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Abstract

The aim of this contribution is the investigation of robust estimation methods and their

development of statistical inference for count time series models. Sequences of time de-

pendent counts appear in applications in many scientific fields. However, the sensitivity

that classical statistical methods reveal when exposed to extreme events establishes the

need for a more robust approach.

Our focal point is the study of a log-linear model for counts based on the Poisson dis-

tribution and a feedback structure. Firstly, we consider several robust estimation methods

and examine their properties and behavior under a variety of intervention type effects, for

the case of a simpler model which does not include the feedback mechanism. Namely, we

consider level shifts, transient shifts and additive outliers. The Mallows’ quasi likelihood

estimation method is the one that deserves more focus since it is the estimation method

that behaves the most adequately among all other estimation methods.

We advance the study of the Mallows’ quasi likelihood estimator in the more compli-

cated case of the log-linear model with feedback. The asymptotic behavior of the proposed

estimation method is examined by employing the so called perturbation technique. We find

that the robustly weighted Mallows’ quasi likelihood estimator is asymptotically normally

distributed and a robust score type testing procedure is proposed to examine whether the

model can be deduced to a model without feedback.

Additionally, we discuss ways of approximating the autocovariance function of count

time series by considering orthogonal polynomial expansions.
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PerÐlhyh

Stìqoc aut c thc ergasÐac eÐnai h èreuna eÔrwstwn mejìdwn ektÐmhshc kai h an�ptuxh sta-

tistik c sumperasmatologÐac gia montèla qronoseir¸n ta opoÐa lamb�noun akèraiec timèc.

AkoloujÐec qronik� exarthmènwn akèraiwn metr sewn emfanÐzontai se poll� epiisthmonik�

pedÐa. Wstìso, h euaisjhsÐa thn opoÐa parousi�zoun oi klassikèc statistikèc mèjodoi ìtan

ektÐjentai se akraÐa fainìmena, dhl¸nei thn an�gkh gia mia pio eÔrwsth prosèggish.

Esti�zoume sthn melèth enìc logarijmikoÔ grammikoÔ montèlou gia akèraiec metr seic

basismèno sthn katanom  Poisson kai mia dom  epanatrofodìthshc. Arqik�, jewroÔme di�-

forec mejìdouc eÔrwsthc ektÐmhshc kai exet�zoume tic idiìthtec kai th sumperifor� touc

k�tw apì di�forec morfèc paremb�sewn, gia thn perÐptwsh enìc aploÔsterou montèlou pou

den sumperilamb�nei to mhqanismì epanatrofodìthshc. Onomastik�, jewroÔme metatopÐseic

epipèdou, parodikèc metatopÐseic kai prìsjetec akraÐec timèc. H ektim tria hmipijanof�-

neiac touMallows eÐnai h mèjodoc h opoÐa axÐzei perissìterh prosoq  kajìti eÐnai h mèjodoc

ektÐmhshc h opoÐa sumperifèretai pio kat�llhla an�mesa se ìlec tic upìloipec mejìdouc

ektÐmhshc.

EmbajÔnoume sth melèth thc ektim triac hmipijanof�neiac tou Mallows sthn pio pe-

rÐplokh perÐptwsh tou logarijmikoÔ grammikoÔ montèlou me epanatrofodìthsh. H asum-

ptwtik  sumperifor� thc proteinìmenhc mejìdou ektÐmhshc exet�zetai qrhsimopoi¸ntac th

legìmenh teqnik  thc diataraq c. BrÐskoume ìti h ektim tria hmipijanof�neiac tou Mal-

lows, eÔrwsta stajmismènh, eÐnai asumptwtik� kanonik� katanemhmènh kai proteÐnoume mia

eÔrwsth diadikasÐa elègqou tÔpou score gia na exetasteÐ kat� pìso to montèlo mporeÐ na

periorisjeÐ se èna montèlo qwrÐc epanatrofodìthsh.

Epiprìsjeta, suzhtoÔme trìpouc prosèggishc thc sun�rthshc autodiakÔmanshc qrono-

seir¸n pou lamb�noun akèraiec timèc qrhsimopoi¸ntac epekt�seic orjog¸niwn poluwnÔmwn.
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4.4 MSE of âMQLE as a function of the tuning constant c when using for estimation

the Huber function (4.6). Data are generated by model (4.1) with θ = (d, a, b) =

(0.2, 0.3, 0.65) and with a patch of outliers–see (4.3)–of size ζ = 20. Results are

based on 1000 simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 MSE of b̂MQLE as a function of the tuning constant c when using for estimation

the Huber function (4.6). Data are generated by model (4.1) with θ = (d, a, b) =

(0.2, 0.3, 0.65) and with a patch of outliers–see (4.3)–of size ζ = 20. Results are

based on 1000 simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
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Chapter 1

Introduction

In the last decades, there has been an increasing interest in the concept of robustness for

parametric model estimation, especially when the data indicate deviations from the postu-

lated assumptions. Although several studies on robust estimation have been developed for

independent data, analogous efforts for dependent data have been delayed. In particular,

robust methods for time series of counts have been studied only recently.

Time series of counts of events arise in plentiful contexts in all areas of science, such

as medicine, economics, social sciences etc. Some examples may consist of the monthly

incidences of some disease, the daily number of transactions of some stock, the yearly

number of fatalities in road accidents or the monthly number of claims to an insurance

agency. This plethora of applications has led to a growing development of statistical

methods for analyzing count time series data.

Our interest focuses on robust inference for count time series in the presence of various

types of interventions, and in particular, in the presence of outliers. The aim of this disser-

tation is to extend the application of certain robust estimation procedures that originally

were designed for independent data to the time series data.

Classical statistical procedures heavily rely on a number of prior assumptions, which

reflect what the statistician suspects or already knows about the data. The most commonly

assumed notions are those of normality and independence. These assumptions are not,

in fact, met in real life and classical techniques may be dreadfully vulnerable to minor

distortions from the model assumptions. Consequently, a new statistical concept that

combined both insensitivity to deviations and credible results was essential.

1
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This new approach is robust statistics and the foundations were introduced in the in-

novative contributions of Tukey (1960), Huber (1964) and Hampel (1968). Tukey had ever

been skeptical about the assumption of normality and in Tukey (1960) he demonstrated

the inefficiency and nonrobustness of the sample mean and sample standard deviation

under contaminated Normal distributions. Huber (1964) considers a contaminated model

and suggests a minimax approach that aims at constructing an estimate that minimizes

the maximum asymptotic variance over all neighborhoods of the model. Hampel (1968) on

the contrary, considers an exact model and suggests an infinitesimal approach in which the

chosen estimator has the minimum asymptotic variance over an infinitesimal neighborhood

of the model. In the years that have followed, the interest in the concept of robustness

has grown substantially and the field of robust statistics has gained great importance. It

is now well acknowledged that contemporary robust statistical methods are in need.

One of the most important aims of the robust procedures is to identify possible outlying

observations that are often encountered in the data and decrease their impact on estimation

and testing. Outliers, are aberrant observations that do not fit the structure recommended

by the bulk of the data. These ”bad” observations appear quite frequently in real data

sets and are usually a result of gross errors or otherwise false measurements. For example,

copying, reading or transmission errors and rare phenomena as is an earthquake (Hampel

et al. (1986)). Hampel et al. (1986) suggest that there exists a chance of 1% − 10% of

gross errors in routine data whereas high-quality data do not contain any gross errors. If

a potential outlier can be ruled out as a gross error, then it is a true outlier - a correct

measurement, but deviant.

Robust methods are characterized by their ability to fit well to the majority of the

data. This means that if the data do not contain any outliers, then robust procedures

behave approximately as well as the classical procedures. If the data contain a small

percentage of outliers, then the robust procedures behave approximately as well as the

classical procedures would behave to the clean data.

The outlier problem has been an important aspect in data analysis long before the

concept of robustness. The typical treatment was to remove these extreme values and

then apply an appropriate stochastic model. However, treating outliers in this manner

may conceal very important information. As an example, we refer to the discovery of the
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ozone hole (Maronna et al. (2006, p. 2)):

The discovery of the ozone hole was announced in 1985 by a British team working

on the ground with ”conventional” instruments and examining its observations in

detail. Only later, after reexamining the data transmitted by the TOMS instrument

on NASA’s Nimbus 7 satellite, was it found that the hole had been forming for

several years. Why had nobody noticed it? The reason was simple: the systems

processing the TOMS data, designed in accordance with predictions derived from

models, which in turn were established on the basis of what was thought to be

”reasonable”, had rejected the very (”excessively”) low values observed above the

Antarctic during the Southern spring. As far as the program was concerned, there

must have been an operating defect in the instrument.

Therefore, it is apparent that outliers are of the most valuable observations and should

not be discarded but rather they should be interpreted.

Dependent data are not of course an exception and discrepant observations arise in the

time series framework as well. Outliers in time series may result either from gross errors

or from occasional exogenous interventions (Tsay (1986)). Examples of such exogenous

interventions may consist of a financial crisis, an oil crisis or the outbreak of some disease.

Fox (1972) was the first to suggest outlier types for time series. He assumed an autoregres-

sive model with Gaussian noise and proposed two types of outliers which he named type

I and type II outliers. Type I outliers affect only a single observation and type II outliers

also affect succeeding observations. These two types were renamed later on to Additive

Outliers (AO) and Innovation Outliers (IO). Tsay (1988) considered another two forms

of interventions; namely level shifts (LS) which he classifies further to permanent level

change (LC) and transient level change (TC), and variance change (VC). A permanent

level change changes the level of the series from the time point that the intervention occurs

onwards, whereas a transient change is not permanent but decays exponentially. Finally, a

variance change type of outliers affects the variance of the time series through the addition

of a random variable. In the following years, permanent level change is referred to as a

level shift (LS) and a transient level change is referred to as a transient shift (TS).

For an example of a time series with intervention effects, see Figure 1.1 which exhibits

the polio data time series. This time series consists of monthly number of poliomyelitis
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cases reported in USA between the years 1970 and 1983 and it contains both additive

outliers and level shifts, as we will see in detail in Section 3.4.1.

Polio data
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Figure 1.1: Time series plot of the polio data. The data consist of the monthly number of
poliomyelitis cases in USA from 1970 to 1983.

Interventions in time series data can cause severe consequences on model identification,

estimation and forecasting, which depend on the number, type, size and position of the in-

terventions. The detection of outliers is essential. However, methods for detecting outliers

in independent data cannot be used directly for time series. Temporal dependence cannot

be ignored since estimates for variance are biased when autocorrelations are not taken

into account and additionally, some outliers have effects on more than one observation

(Deutsch et al. (1990)). Outlier detection procedures are mostly based on the framework

of ARMA models. This is because ARMA models are very popular and widely applicable

due to Wold’s decomposition and additionally are extensively studied and their proper-

ties are well understood, see Brockwell and Davis (1991) for instance. Procedures for the

identification and estimation of time series outliers have been introduced by several au-

thors. We note, among others, the works by Fox (1972) who employ maximum likelihood

to study and estimate outlier effects, Box and Tiao (1975) who propose an intervention

analysis technique, Abraham and Box (1979) who propose a Bayesian method for the es-
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timation of both the magnitude and location of outliers and Martin (1983) who developed

a robust procedure based on the spectral domain. In a different approach, Chan (1992)

considers sample autocorrelation and partial autocorrelation as tools for outlier detec-

tion. His analysis has shown that sample autocorrelation and partial autocorrelation are

significantly affected by additive outliers, although they are not affected by innovational

outliers. Deutsch et al. (1990) used autocorrelation and partial autocorrelation estimates

to demonstrate the effects of a single outlier to ARMA models. Tsay (1986, 1988), Chang

et al. (1988) and Chen and Liu (1993) on the other hand, suggest iterative procedures

for the detection of outliers. More specifically, Chen and Liu (1993) developed an itera-

tive outlier detection procedure that jointly estimates the model parameters and outlier

effects. In two recent contributions, Fokianos and Fried (2010, 2012) develop an iterative

detection procedure for time series of counts through testing for intervention effects where

both the type and time of the intervention are unknown using maximum likelihood based

methodology.

Outline of the Thesis

In the next Chapter we review a linear and a log-linear Poisson model for count time series

data when intervention effects are included. Also, some robust estimation procedures

for independent data are discussed. The following two chapters concentrate on robust

estimation of the log-linear model. In Chapter 3 two robust estimators - the Mallows’

Quasi-Likelihood Estimator and the Conditionally Unbiased Bounded Influence Estimator

- are studied, suitably adjusted in the count time series context. A log-linear Poisson model

without feedback is considered, and the two estimators are compared to the maximum

likelihood estimator when interventions are included, particularly level shift, transient

shift and additive outliers. In Chapter 4 we focus on the Mallows’ Quasi Likelihood

Estimator which turned to be the most prominent method for estimating robustly in the

presence of additive outliers. These type of outliers prove to be the most harmful ones

when fitting a regression model to count data. The asymptotic properties of the Mallows’

quasi likelihood estimator are studied under the log-linear Poisson model with feedback.

Both chapters are complemented by simulation and real data examples. Chapter 5 focuses

on the autocovariance of the log-linear model and discusses possible ways of approximation
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using orthogonal polynomials. Finally, we conclude this thesis summarizing the results of

our work and stating further research possibilities.
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Chapter 2

Literature Review

The abundant occurrence of count time series data in various applications in diverse fields

of science has caused a surge towards the development of appropriate statistical models

that take into account the fact that the response is integer valued. The direction we follow

to the analysis of count time series is through the theory of generalized linear models (see

McCullagh and Nelder (1989) for independent data and Kedem and Fokianos (2002) for

time series).

Most of the models designed for count data assume a Poisson distributed response

variable conditioned on the past of the time series although alternatives have been proposed

in the literature. Examples are the negative binomial distribution and the double Poisson

distribution (Fokianos (2012)). The Negative Binomial distribution is suggested by several

authors (see Davis and Wu (2009), Zhu (2011) and Davis and Liu (2015)). Finally, in a

more recent contribution Christou and Fokianos (2014) study a class of autoregressive

models that include a feedback mechanism based on the mixed Poisson process and prove

consistency and asymptotic normality of quasi-likelihood parameter estimates.

The Poisson assumption is the natural distributional assumption used to explain and

model events that take place in a set time interval. Studies on models that incorporate

the Poisson assumption are given among others by Davis et al. (2003), Fokianos et al.

(2009), Fokianos and Tjøstheim (2011), Neumann (2011), Fokianos (2012), Fokianos and

Tjøstheim (2012), Doukhan et al. (2012) and Douc et al. (2013).

Neumann (2011) considers a conditional Poisson model in which the intensity process

{λt} is a function of its previous value λt−1 and the previous value of the response Yt−1,
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i.e. λt = f(λt−1, Yt−1) for some function f . It is shown that the joint process {Yt, λt} is

stationary and ergodic under some contractive condition on the function f .

Fokianos (2012) reviewed a variety of regression models suggested for count time series

based on the Poisson assumption, including the so called linear Poisson autoregressive and

the log-linear Poisson autoregressive model. In the case of the linear Poisson autoregressive

model the conditional mean is linearly linked to past values of the response as well as past

values of itself. In the case of the log-linear Poisson autoregressive model the logarithm of

the conditional mean is linearly linked to its past values and to a logarithmic function of

past responses. Both models are discussed below although the log-linear model is studied

extensively in the next chapters.

2.1 Linear Poisson Autoregressive Model

Let {Yt} be a count time series. Conditioned on the ”past”, this series is Poisson dis-

tributed with mean process {λt}. The simplest model which resembles the AR(1) model

but for integer valued response, is the Poisson autoregressive model

Yt ∥ Ft−1 ∼ Poisson(λt), λt = d+ bYt−1, t ≥ 1

where t is an integer and Ft = σ(Ys, s ≤ t) is the σ-field up to and including time t. The

parameters d and b take non-negative values, something that ensures the non-negativity

of λt. As stated in Fokianos (2012), as a general idea when the autocorrelation function

of the process is available, if high values are found for large lags of the observations then

this signifies that the above model can be used by considering a large number of lagged

responses. A more parsimonious approach however, is to employ a feedback mechanism.

The linear Poisson autoregressive model with feedback is

Yt ∥ Ft−1 ∼ Poisson(λt), λt = d+ aλt−1 + bYt−1, t ≥ 1. (2.1)

The σ-field in this case is given by Ft = σ(Ys, λ0, s ≤ t). The parameters d, a and b

take positive values and further restrictions on those values which ensure stationarity will

be discussed later. In (2.1), λ0 is some starting value. The inclusion of past values of
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the mean process {λt} distinguishes the two models; if a = 0 then (2.1) reduces to the

previous model. Generally, the model without a feedback mechanism (i.e. equation (2.1)

with a = 0) is employed for fitting when the autocorrelation function decays quickly after

a few lags. On the contrary, the model that includes the feedback mechanism is preferred

when the autocorrelation function decays slowly.

The general linear Poisson autoregressive model of order (p, q) is shown in the following

representation (Ferland et al. (2006)):

Yt ∥ Ft−1 ∼ Poisson(λt), λt = d+

p∑
i=1

aiλt−i +

q∑
j=1

bjYt−j, t ≥ 1. (2.2)

This model is an analogue to the GARCH models for volatility, in which there exists a

feedback mechanism of the volatility (Bollerslev (1986)), because in the case of the Pois-

son distribution the conditional mean is equal to the conditional variance: E(Yt|Ft−1) =

Var(Yt|Ft−1) = λt. Model (2.2), can therefore be considered as an Integer GARCH model

of order (p, q), namely an INGARCH(p, q) model. The above model has been studied

by several authors: we cite the works by Rydberg and Shephard (2000), Streett (2000),

Heinen (2003), and Ferland et al. (2006). Streett (2000) has obtained some stationarity

results and Ferland et al. (2006) have proven finite moments and second-order stationarity

of the process under the condition 0 <
p∑

i=1

ai +
q∑

j=1

bj < 1. For the first order model, the

stationarity condition becomes 0 < a+ b < 1.

Examining the first order linear Poisson autoregressive model with feedback (2.1), the

following representation for the response process can be obtained

Yt = λt + (Yt − λt) = d+ aλt−1 + bYt−1 + ϵt

= d+ a(Yt−1 − ϵt−1) + bYt−1 + ϵt

= d+ (a+ b)Yt−1 + ϵt − aϵt−1

by considering that ϵt = Yt − λt. Therefore, the process {Yt} can be represented as an

ARMA(1,1) process with mean µ = d/{1− (a+ b)},

(
Yt −

d

1− (a+ b)

)
= (a+ b)

(
Yt−1 −

d

1− (a+ b)

)
+ ϵt − aϵt−1
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and autocovariance function

Cov(Yt, Yt+h) =


(1− (a+ b)2 + b2)µ

1− (a+ b)2
, h = 0

b(1− a(a+ b))(a+ b)h−1µ

1− (a+ b)2
, h ≥ 1

see Ferland et al. (2006), Weiß (2009) and Fokianos (2012). The above representation for

h = 0 demonstrates that the variance of the process is greater than the expectation, unless

b = 0, which means that the time series is over-dispersed unless the conditional mean λt

is not modeled upon previous observations Yt.

Repeated substitution of the intensity process {λt} for a fixed starting value λ0 gives

λt = d+ aλt−1 + bYt−1

= d+ a(d+ aλt−2 + bYt−2) + bYt−1

= d(1 + a) + a2λt−2 + abYt−2 + bYt−1

= d(1 + a) + a2(d+ aλt−3 + bYt−3) + abYt−2 + bYt−1

= d(1 + a+ a2) + a3λt−3 + b(a2Yt−3 + aYt−2 + Yt−1)

= · · ·

= d
1− at

1− a
+ atλ0 + b

t−1∑
i=1

aiYt−i−1.

The above representation demonstrates that the intensity of the process depends solely on

lagged values of the response. Therefore, the linear Poisson autoregressive model belongs

to the class of observation-driven models, in the sense of Cox (1981). In particular, in Cox

(1981) two categories were described, observation-driven and parameter-driven models. In

the case of observation-driven models the mean function of the process depends exclusively

on lagged values of the dependent variable, whereas in the case of parameter-driven models,

a hidden process controls the mean function of the process.

Recall (2.1) and denote by θ the vector of parameters θ = (d, a, b)T . Then, given

observations Y1, Y2, ...Yn, the likelihood function for θ is given by the expression

L(θ) =
n∏

t=1

exp(−λt(θ))λYt
t (θ)

Yt!
.
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The log-likelihood is then represented, up to a constant, by

ℓn(θ) =
n∑

t=1

ℓt(θ) =
n∑

t=1

(Yt log λt(θ)− λt(θ)).

The conditional maximum likelihood estimator is the solution of the score equation

Sn(θ) = 0 where the score function is

Sn(θ) =
n∑

t=1

∂ℓt(θ)

∂θ
=

n∑
t=1

(
Yt

λt(θ)
− 1

)
∂λt(θ)

∂θ
.

In the above, ∂λt(θ)/∂θ is a three dimensional vector whose components are

∂λt(θ)

∂d
= 1 + a

∂λt−1(θ)

∂d
,

∂λt(θ)

∂a
= λt−1 + a

∂λt−1(θ)

∂a
,

∂λt(θ)

∂b
= Yt−1 + a

∂λt−1(θ)

∂b
,

see Fokianos et al. (2009) who studied the first order linear Poisson model with feedback

(2.1) and proved geometric ergodicity using a perturbation technique. More specifically,

a perturbed model is introduced

Y m
t = Nt(λ

m
t ), λmt = d+ aλmt−1 + bY m

t−1 + ϵt,m, (2.3)

where Nt(·) is a Poisson process and the response Y m
t reflects the number of events Nt(λ

m
t )

in the time interval [0, λt] and

ϵt,m = cm1(Y
m
t−1 = 1)Ut, cm > 0, cm → 0 as m→ ∞.

Note that Ut is a sequence of iid uniform random variables on (0, 1) such that Ut is

independent of Nt(·), and 1(A) is the indicator function of a set A. This representation

enables to prove geometric ergodicity of the perturbed joint process {Y m
t , λmt } (see Robert

and Casella (2005, Def. 4.6.8), among others). Then, the consistency and asymptotic

normality of the maximum likelihood estimator for the perturbed model is established

through geometric ergodicity and by letting cm → 0, that is, as the perturbed model

approximates the non perturbed one, consistency and asymptotic normality for the non

perturbed model is established.

Davis and Liu (2015) consider a more general class where the response conditionally
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on the past follows a distribution belonging to the one-parameter exponential family given

a process that is a function of lagged responses. The linear Poisson model is a special case

of the model studied by Davis and Liu (2015).

2.2 Log-Linear Poisson Autoregressive Model

Even though the linear Poisson autoregressive model described in Section 2.1 is a compe-

tent choice to model count time series data, it has two major disadvantages. First, it can

only be employed when the observations are positively correlated. This is a consequence

of the stationarity condition 0 < a + b < 1. Moreover, covariates cannot be additively

included in the model unless they result in a positively valued term, otherwise λt becomes

negative. These problems are not encountered when a log-linear model is assumed. Con-

sequently, a different approach towards modeling count time series should be considered

and we resort to log-linear models, taking into account that the logarithm is the most

popular link function for modeling count data. Log-linear models for time series of counts

have been studied in many contributions, Zeger and Qaqish (1988), Li (1994), MacDonald

and Zucchini (1997), Kedem and Fokianos (2002), Davis et al. (2003), Jung et al. (2006),

Fokianos and Tjøstheim (2011) and Fokianos (2012).

The log-linear Poisson autoregressive model of order (p, q) is given by

Yt ∥ Ft−1 ∼ Poisson(λt), νt = d+

p∑
i=1

aiνt−i +

q∑
j=1

bj log(1 + Yt−j), t ≥ 1 (2.4)

where νt ≡ log λt is the canonical link process and the σ-field Ft is generated by

σ(Y1−q, . . . , Yt, ν1−p, . . . , ν0). The first order log-linear Poisson autoregressive model is

expressed by

Yt ∥ Ft−1 ∼ Poisson(λt), νt = d+ aνt−1 + b log(1 + Yt−1), t ≥ 1. (2.5)

As opposed to the linear Poisson autoregressive model described in the previous section,

this model can accommodate both positive and negative correlation and additionally it

can include time dependent covariates in a straightforward way by enlarging the σ-field

and adding the covariate to the second equation of (2.5) (see Fokianos and Tjøstheim
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(2011) and Fokianos (2012)).

The log-linear model belongs to the class of observation-driven models, since repeated

substitution in the log-intensity process shows that the hidden process {νt} is determined

by past functions of lagged responses,

νt = d+ aνt−1 + b log(1 + Yt−1)

= d+ a(d+ aνt−2 + b log(1 + Y t− 2)) + b log(1 + Yt−1)

= d(1 + a) + a2νt−2 + ab log(1 + Yt−2) + b log(1 + Yt−1)

= d(1 + a+ a2) + a3νt−3 + b(a2 log(1 + Yt−3) + a log(1 + Yt−2) + log(1 + Yt−1))

= · · ·

= d
1− at

1− a
+ atν0 + b

t−1∑
i=1

ai log(1 + Yt−i−1).

As in the case of the linear model, the inclusion of the feedback process in (2.5) makes it

a more parsimonious model than one in which higher lags of log(1 + Yt) are included but

not a feedback mechanism.

There are several reasons that support the inclusion of the term log(1+Yt−1) in model

(2.5). It is a one-to-one transformation of Yt−1 which transforms both λt and Yt into the

same scale. Additionally, when compared to a model that includes the term log(c+ Yt−1)

instead, where c is a constant varying from 1 to 10 with step 0.5, there are not significant

differences between the two models in terms of mean square error of the obtained MLE;

see Fokianos and Tjøstheim (2011) who also examine a modification of model (2.5) that

includes the term Yt−1 instead of log(1 + Yt−1). However, this means that the mean λt is

given by

λt = exp(d)λat−1 exp(bYt−1)

and stability can only be guaranteed when b < 0 because otherwise λt will increase in

an exponential rate. Consequently, the above modified model that includes the term Yt−1

instead of log(1 + Yt−1) can only be considered to model negatively correlated data. In

a different approach, Zeger and Qaqish (1988) considered the term log(max(Yt−1, c)) for

c ∈ (0, 1] rather than log(1 + Yt−1). The authors have proved that the restriction b < 1 is

a sufficient condition to show stability of the model given that a = 0. However, neither
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ergodicity nor asymptotic inference is examined.

Davis et al. (2003) consider the representation

νt = β0 + β1
Yt−1 − exp(νt−1)

exp(aνt − 1)

for the log-intensity process, where β0 and β1 are regression parameters and a ∈ (0, 1] and

show stationarity of {νt} under the condition 1
2
≤ a ≤ 1.

Fokianos and Tjøstheim (2011) study the model (2.5) and derive ergodicity using the

perturbation idea, along the lines of Fokianos et al. (2009). Accordingly, an equivalent

form of model (2.5) is given by the formulation

Yt = Nt(λt), νt = d+ aνt−1 + b log(1 + Yt−1)

in terms of Poisson processes Nt(·) of unit intensity where Yt given λt equals the number

of events Nt(λt) of the process Nt(·) in the interval [0, λt]. The perturbed chain (Y m
t , νmt )

is defined by

Y m
t = Nt(λ

m
t ), νmt = d+ aνmt−1 + b log(1 + Y m

t−1) + ϵt,m, (2.6)

where ϵt,m = cm1(Y
m
t−1 = 1)Ut, cm > 0, cm → 0 as m → ∞, Ut is a sequence of iid

uniform random variables on (0, 1) such that Ut is independent of Nt(·), and 1(A) is the

indicator function of a set A.

In the case of the log-linear Poisson model (2.5), the log-likelihood is given, up to a

constant, by

ℓn(θ) =
n∑

t=1

ℓt(θ) =
n∑

t=1

(Ytνt(θ)− exp(νt(θ)))

and the conditional maximum likelihood score function is defined as

Sn(θ) =
n∑

t=1

∂ℓt(θ)

∂θ
=

n∑
t=1

(Yt − exp(νt(θ)))
∂νt(θ)

∂θ

where ∂νt(θ)/∂θ is a three dimensional vector whose components are

∂νt(θ)

∂d
= 1 + a

∂νt−1(θ)

∂d
,

∂νt(θ)

∂a
= νt−1 + a

∂νt−1(θ)

∂a
,

∂νt(θ)

∂b
= Yt−1 + a

∂νt−1(θ)

∂b
.

14

Stel
la 

Kitro
milid

ou



Fokianos and Tjøstheim (2011) provide conditions to prove geometric ergodicity. Par-

ticularly, the authors prove that under the condition that |a + b| < 1 when |a| < 1 and

b > 0, and |a||a+ b| < 1 when b < 0 then the perturbed process is stationary and geomet-

rically ergodic with finite moments of any order. Geometric ergodicity is used to deduce

the asymptotic properties of the maximum likelihood estimator of the perturbed model

parameters. It was shown that if |a + b| < 1, whenever a and b have the same sign, and

a2 + b2 < 1 whenever a and b have different signs, then the conditional maximum likeli-

hood estimator of the parameter vector (d, a, b) is consistent and asymptotically normally

distributed. Finally, as cm → 0 asymptotic properties are derived for the non-perturbed

model. More specifically, Fokianos and Tjøstheim (2011) show that the maximum likeli-

hood estimator is consistent and asymptotically normal.

Douc et al. (2013) consider the general class of observation driven models and derive

ergodicity conditions based on the theory of Markov chains. The log-linear Poisson model

is included in their work as an example. Some further properties of the model and relax-

ation of the above stationarity conditions are discussed. The condition acquired to ensure

ergodicity is max{|a+ b|, |a|, |b|} < 1.

2.3 Interventions in Count Time Series

Fokianos and Fried (2010, 2012) study the problem of estimation and detection of various

types of intervention effects on time series of counts for models (2.1) and (2.5).

In the case of the linear model (2.1), Fokianos and Fried (2010) argue that it is more

sensible to import intervention effects through the mean process which governs the dynam-

ics of the model. Additionally, if intervention effects are added directly to the response

variable then they would have to be integer valued in order for the response variable to

remain integer valued. Therefore, a sequence of covariates of the form

Xt = ξ(B)1(t = τ), t ≥ 1

is introduced to the mean process that indicates an intervention happening at the time

point τ . The response process that is observed is henceforth a contaminated response time
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series. The contaminated model is given by

Zt ∥ Ft−1 ∼ Poisson(λct), λct = d+

p∑
i=1

aiλ
c
t−i +

q∑
j=1

bjZt−j + ζXt, t ≥ 1. (2.7)

The σ-field Ft−1 is generated by {Z1−q,..., Zt, λ1−p, . . . , λ0} and

1(t = τ) =

1 if t = τ

0 else

is an indicator function that takes the value 1 is t = τ and 0 otherwise. The term ξ(B) in

the covariate sequence is a polynomial which categorizes intervention effects according to

which observations they affect. More specifically,

ξ(B) = (1− δB)−1, δ ∈ [0, 1]

and B is a shift operator such that BiXt = Xt−i. The value of δ categorizes the type of

the intervention:

• δ = 0 corresponds to a Spiky Outlier (SO), an intervention which affects only a

single observation,

• δ = 1 categorizes the intervention as a Level Shift (LS) which affects the entire series

from the time of the intervention and on and

• if δ ∈ {0.7, 0.8, 0.9} then it is called a Transient Shift (TS). In this case the effect of

the intervention affects a few observations and decays exponentially with rate δ.

For the intervention types described above, the formulation of the covariate Xt is deduced

to Xt = δt−τ
1(t = τ) where 1(·) denotes the indicator function.

We note that in the case of a Spiky Outlier, where the outlier affects only one value

of λt, still a few observations Yt are affected since the outlier is imported on the mean

process λt which is fed back into the next value.

The authors in this contribution propose an iterative detection and estimation pro-

cedure for intervention effects by using the maximum likelihood in three scenarios, when

the type and time of the intervention are both known, both unknown and the scenario
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of multiple interventions. The proposed procedure can be considered as an extension to

Poisson time series of the procedure proposed by Chen and Liu (1993). Below we give the

algorithms proposed by Fokianos and Fried (2010) and Fokianos and Fried (2012) for the

linear and log-linear Poisson models respectively.

Algorithm for the linear Poisson model:

For positive intervention effect ζ > 0, the observed process {Zt} is decomposed as Zt =

Yt+Ct where Yt is the unobserved uncontaminated process and Ct is a sequence of Poisson

random variables whose mean depends on ζ and also on the type of the intervention, that

is on the choice of ξ(B). Set Z(1)
t = Zt, t = 1, . . . , n, and k = 1 for initialization:

1. Fit a linear Poisson model (2.2) to the data {Z(k)
t , t = 1, . . . , n}.

2. Test the hypothesis H
(τ)
0 : ζ = 0 against H

(τ)
1 : ζ ̸= 0 for a single intervention of any

type at any time point by employing (2.7) and using the maximum of the score test

statistics T̃n = maxτ Tn(τ) where

Tn(τ) = ST
nτ (d̃, . . . , ãp, 0)G

−1
nτ (d̃, . . . , ãp, 0)Snτ (d̃, . . . , ãp, 0)

and Snτ (d̃, . . . , ãp, 0) and G−1
nτ (d̃, . . . , ãp, 0) are the score function and conditional

information matrix for the contaminated model (2.7).

3. If there is no significant result, then stop; the data Z
(k)
1 , . . . , Z

(k)
n are considered as

clean. Otherwise:

(a) Fit a contaminated model (2.7) by choosing ξ(B) according to the type of

intervention identified in the previous step. Let ζ̂ be the estimated size of the

intervention effect and τ its point in time, which is estimated as the time point

maximizing the corresponding test statistic T̃n.

(b) Estimate the effect of the intervention on the observation Z
(k)
t by the rounded

value

Ĉt =

[
µ̂t

λ̂ct
Z

(k)
t

]
where λ̂ct is obtained from equation (2.7) by plugging in the estimates of the
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model parameters and

µ̂t =

q∑
i=1

b̂iĈt−i +

p∑
j=1

α̂jµ̂t−j + ζ̂Xt , t = τ, τ + 1, . . . ,

with Ĉt = µ̂t = 0 for t < τ .

(c) Correct the time series for the estimated intervention effects by setting

Z
(k+1)
t =

Z
(k)
t − Ĉt, t ≥ τ,

Z
(k)
t , t < τ,

increase k by 1 and return to step 1.

The iterative procedure is continued until no further interventions are detected.

In a recent contribution, Liboschik et al. (2014) consider a similar contaminated model

but in their approach the intervention influences the observation and not the underlying

mean at the time it occurs and afterwards enters the dynamics of the process.

Also Fried et al. (2014) discuss the model η(λt) = β0 + β1η(Yt−1 + c) + a1η(λt−1)

following generalized linear models, where η(·) is the link function. By considering the

known constant c to be equal to 1, the link functions identity and logarithm correspond

to the linear and log-linear Poisson models (2.1) and (2.5) respectively.

A different approach to the linear Poisson model within the Bayesian framework is

proposed by Fried et al. (2015). The authors define additive outliers in the context of

the linear Poisson model that only affect the observations at which they occur but do not

contaminate subsequent observations, and suggest a Bayesian retrospective detection and

estimation procedure of outlier effects.

We also point out the work by Elsaied and Fried (2014) which is related to our work

and examines robust M-estimation for the parameters of the linear Poisson model. More

specifically, Elsaied and Fried (2014) focus on the linear Poisson model without feedback,

namely an INARCH(q) model, and propose M-estimation using a modification of the

conditional log-likelihood with weighting and bias correction. The proposed estimator is
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a solution to the estimating equations

n∑
t=2

ψ

(
yt − λt√

λt

)
1√
λt

 1

σψ
(

yt−1−λ
σ

)
+ λ

− (n− 1)

α0

α1

 =

0

0

 .

In the above representation, the function ψ(·) is either the Huber’s or Tukey’s ψ function, λ

and σ are the marginal mean and variance given by λ = d/(1−b) and σ2 = d/((1−b)(1−b2))

respectively and (α0, α1)
T is the bias correction term. The authors follow Cantoni and

Ronchetti (2001) and approximate the bias correction by

∞∑
j=0

∞∑
i=0

ψ

(
j − λt√
λt

)
1√
λt

 1

σψ
(
i−λ
σ

)
+ λ

× P(Yt = j|Yt−1 = i)× P(Yt−1 = i)

where the conditional probability P(Yt = j|Yt−1 = i) is derived from a Poisson distribution

with rate λt = d + bi and the probability P(Yt−1 = i) is empirically estimated by Monte

Carlo simulation.

All of the intervention effects that are considered in Fokianos and Fried (2010) are mod-

eled through the underlying mean process and therefore influence future observations since

the mean depends on past observations and past mean values. However, this framework

cannot be used to model purely additive outliers. An Additive Outlier (AO) is another

form of intervention given by

Zt =

Yt + ζ, when t = τ

Yt, otherwise

where ζ is the size of the outlier at time τ and ζ is an integer.

Fried et al. (2011) extend the work of Fokianos and Fried (2010) to include Additive

Outliers, proposing M-estimators for robustly estimating the model parameters. Even

though Fokianos and Fried (2010) consider maximum likelihood estimation, in the presence

of additive outliers it is quite ambitious to estimate the model parameters using maximum

likelihood estimation. This is because in the construction of the likelihood, Zτ+1 needs to

be conditioned on Yτ instead of Zτ , but Yτ is unobserved.

The case of the log-linear Poisson model (2.5) however requires a different modeling
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approach due to the logarithmic structure. Fokianos and Fried (2012) assume a contami-

nated logarithmic model

Zt ∥ Ft−1 ∼ Poisson(λct), νct = d+

p∑
i=1

aiν
c
t−i +

q∑
j=1

bj log(Zt−j + 1)+ ζXt, t ≥ 1 (2.8)

where in this case the σ-field is generated by {Z1−q,..., Zt, ν1−p, . . . , ν0}. In contrast to

the contaminated linear Poisson model described above where the intervention affects

additively the mean process, in the contaminated log-linear Poisson model the intervention

affects the logarithm of the mean process, resulting in a multiplicative effect exp{ζ} on

the mean process λt.

Algorithm for the log-linear Poisson model:

Set Z
(1)
t = Zt, t = 1, . . . , n, and the iteration index k to 1 for initialization:

1. Fit a log linear autoregressive model (2.4) to the data {Z(k)
t , t = 1, . . . , n}.

2. Test for a single intervention of any type at any time point by employing (2.8) and

using the maximum of the score test statistics T̃n

3. If there is no significant result, stop; regard the data Z
(k)
1 , . . . , Z

(k)
n as clean. Other-

wise:

(a) Fit a contaminated log linear Poisson autoregressive model (2.8) by choosing

ξ(B) according to the type of intervention identified in the previous step. Let

ζ̂ be the estimated size of the intervention effect and τ̂ its estimated point in

time, which is the time point maximizing the corresponding test statistic.

(b) Correct the time series for the estimated intervention effects by setting

Z
(k+1)
t =


[
Z

(k)
t / exp(µ̂t)

]
, t ≥ τ,

Z
(k)
t , t < τ,

where µ̂t is obtained recursively for t = τ, τ +1, . . . from the following equation

20

Stel
la 

Kitro
milid

ou



by plugging in the estimates of the model parameters,

µ̂t =

p∑
i=1

âiµ̂t−i +

q∑
j=1

b̂j log

(
1 +

Ĉt−j

Z
(k)
t−j + 1

)
+ ω̂xt , t = τ, τ + 1, . . . ,

with Ĉt = µ̂t = 0 for t < τ and the estimate of the intervention effect on Z
(k)
t

being

Ĉt = Z
(k)
t − Z

(k+1)
t , t ≥ τ .

Then increase k by 1 and return to step 1.

This iterative procedure is continued until no further interventions are detected.

Figures 2.1 and 2.2 demonstrate how the various types of interventions described above

affect a time series in which the linear model (2.1) and log-linear model (2.5) are employed

respectively.

Fokianos and Fried (2012) propose a stepwise procedure using a score test statistic to

detect and jointly estimate the model parameters as well as the size of interventions using

maximum likelihood. A notable remark is that the detection procedure that Fokianos and

Fried (2010, 2012) propose does not seem to be strongly influenced by the link function

since in the real data examples considered the same intervention effects are detected using

both the identity and the logarithmic link function.

2.4 Robust Estimation for Independent Data

In this section we discuss several robust estimators for independent data within the frame-

work of generalized linear models. The response variable follows a distribution F belong-

ing to the exponential family of distributions where the mean E(Yi) = µi depends on

the explanatory variables xi through a link function g(.) such that ηi = g(µi) = xTi β,

i = 1, . . . , n, β ∈ Rp is the vector of parameters and Var(Yi) = V (µi).

An M-estimator is the solution of the estimating equations

n∑
i=1

ψ(yi, µi) = 0

21

Stel
la 

Kitro
milid

ou



time series without interventions

Time

y

0 50 100 150 200 250 300

0
4

8
time series with a level shift

Time

y

0 50 100 150 200 250 300

0
15

35

time series with a transient shift

Time

y

0 50 100 150 200 250 300

0
10

time series with a spiky outlier

Time

y

0 50 100 150 200 250 300

0
10

25

Intervention effects − Linear Poisson Model

Figure 2.1: Example of a time series with various forms of interventions, based on the linear
Poisson model.

where ψ is a function with certain properties (see Section 5, van der Vaart (1998)). Hampel

et al. (1986) define the Influence Function of an M-estimator as

IF(y;ψ, F ) =M(ψ, F )−1ψ(y, µ)

where the matrix M is given by

M(ψ, F ) = −E [∂ψ(y, µ)/∂β] .

The Influence Function is a measure of robustness which measures the asymptotic bias that

is caused by an infinitesimal contamination. Furthermore, the estimator defined above is

asymptotically normally distributed and its asymptotic covariance matrix is given by the
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Intervention effects − Log−Linear Poisson Model
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Figure 2.2: Example of a time series with various forms of interventions, based on the log-linear
Poisson model.

formulation

Ω =M(ψ, F )−1Q(ψ, F )M(ψ, F )−1

where the matrix Q(ψ, F ) is

Q(ψ, F ) = E
[
ψ(y, µ)ψ(y, µ)T

]
.

Since the Influence Function is proportional to ψ(y, µ), it is unbounded. Therefore, a

bound on the Influence Function will ensure the robustness of the estimator. Because the

Influence Function of the estimator is a vector, a scalar measure of the Influence Function

is given by the self-standardized sensitivity (see Krasker and Welsch (1982))

s2(ψ) = sup
y,µ
ψ(y, µ)TQ(ψ, F )ψ(y, µ).
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2.4.1 The Conditionally Unbiased Bounded-Influence Estimator

(CUBIF)

The Conditionally Unbiased Bounded Influence Estimator (CUBIF) was proposed by

Künsch et al. (1989) to robustly estimate the parameters in a regression model. CUBIF

is a conditionally Fisher consistent M-estimator, made robust by bounding its influence

function, more specifically its scalar measure, the self-standardized sensitivity and has

minimum variance subject to this bound.

We note that Fisher-consistency depends on the explanatory variables being indepen-

dent and additionally relies on their distribution. This is a disadvantage because the

explanatory variables sometimes are not random. Thus, conditional Fisher-consistency

is a more desirable property since not only it does not involve the distribution of the

predictors but also it does not depend on them, being random.

Recall again that we discuss a generalized linear model where the response variable

follows a distribution F belonging to the exponential family of distributions where the

mean E(Yi) = µi depends on the explanatory variables xi through a link function g(.)

such that ηi = g(µi) = xTi β, i = 1, . . . , n, β ∈ Rp is the vector of parameters and

Var(Yi) = V (µi).

The CUBIF score function is given by

ψcond(y, x,β, c, B) = d(y, x,β, c, B)Wc(|d(y, x,β, c, B)|(xTBx)1/2)x.

In the above representation,

d(y, x,β, c, B) = y − µ− C(xTβ,
c

(xTB−1x)1/2
)

and

Wc(α) = ψc(α)/α where ψc(α) is the Huber function

ψc(α) =

α, |α| ≤ c

csign(α), |α| > c.

The scalar function C(.) is a bias correction that ensures Fisher consistency. The matrix
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B is chosen so that a bound is appointed on the sensitivity, s(ψcond) = c, and is given by

B = E{ψcondψ
T
cond}.

2.4.2 The Mallows’ Quasi Likelihood Estimator (MQLE)

In another contribution, Cantoni and Ronchetti (2001) propose the Mallows’ Quasi Like-

lihood Estimator (MQLE). The MQLE is an M-estimator, based on the quasi likelihood,

of Mallows’ type. That is, the observations and the explanatory variables are bounded

separately. A bound on the influence function ensures the robustness of the estimator and

appropriate weights are used to downsize leverage points on the explanatory variables.

The MQLE estimator is the solution of the estimating equations

n∑
i=1

[
ψc(ri)w(xi)

1

V 1/2(µi)

∂µi

∂β
− α(β)

]
= 0.

Here, the term

α(β) =
1

n

n∑
i=1

E

[
ψc(ri)w(xi)

1

V 1/2(µi)

∂µi

∂β

]
is a bias correction term which ensures Fisher consistency and can be calculated explicitly

under a Poisson or a Binomial assumption. In addition,

ri =
Yi − µi

V 1/2(µi)

are the Pearson residuals. Finally, w(xi) are weights and the authors discuss several

weighting options, including weights defined from the hat matrix and robust weights de-

fined using the inverse of the robust Mahalanobis distance when center and scale are

estimated to have high breakdown properties. For more information on breakdown points

see Maronna et al. (2006). In the particular cases where the response follows a conditional

Binomial or Poisson distribution then the bias correction term can be calculated exactly in

a closed form expression. We provide more details on the weighting options for the MQLE

estimator in the next chapter where this estimator is studied within the framework of

count time series.
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2.4.3 Lq - Estimator

Morgenthaler (1992) suggests to use the Lq-norm, q ≥ 1, in the quasi-likelihood, instead

of the L2-norm. He proposed a conditionally Fisher consistent estimator, the Lq estimator

of β, which is determined as the solution to the estimating equations

n∑
i=1

{|yi − µi|q−1
1(yi − µi)− c(µi)}

1

(V (µi))q/2
∂µi

∂β
= 0

where the term c(µi) is a bias correction term to ensure Fisher consistency given by

c(µi) = EY |X{|yi − µi|q−1
1(yi − µi)}.

We note however, that the bias correction term cannot be displayed by a closed form, hence

it cannot be easily computed. Therefore, it is computed by Monte Carlo simulation. More

specifically, the term c(µi) is obtained as a sample mean: m samples zij, j = 1, . . . ,m, are

generated from the distribution that we postulate the observations to follow and calculate

the term c(µi) by

ĉ(µi) =
1

m

m∑
i=1

|zij − µi|q−1
1(zij − µi).

The Lq estimate β̂ is computed using the Newton-Raphson method. However, the com-

putation of the Lq estimate presents numerical difficulties because when the estimated

parameters µ̂i are close to the responses yi, the Newton-Raphson algorithm does not con-

verge.

Hosseinian (2009) studies the Lq estimator for Poisson regression models. In this case,

the bias correction term c(µi) can be calculated by the formulation

c(µi) = −
⌊µi⌋∑
i=1

(µi − yi)
q−1P(Yi = yi) +

∞∑
yi=⌈µi⌉

(yi − µi)
q−1P(Yi = yi).

The infinite sum in the above expression is a convergent sum and therefore it can be

approximated by a finite sum of the first N terms. To define the proper value of the

constant N , Hosseinian (2009) has computed the above approximation for values of N =

10, 100, 1000, 10000 in order to find the best value of N for which the maximum error
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is bounded. Her simulation study indicates that taking N = 4ȳ establishes sufficient

accuracy.

Hosseinian (2009) also proposes a modification of the Lq-estimator for binary regres-

sion, namely the BLq estimator. In this contribution we do not study binary regression

so the BLq estimator will not be discussed although this could be a subject for further

research, as is commented in Chapter 6.

2.4.4 Weighted Maximum Likelihood Estimates for Poisson Re-

gression

Hosseinian (2009) introduces two weighted maximum likelihood estimates for Poisson re-

gression. Both estimates are based on weighting the maximum likelihood estimating equa-

tion
n∑

i=1

1

µi

W (µi)(yi − µi)
∂µi

∂β
.

The first Weighted Maximum Likelihood Estimate (WMLE) corresponds to the weight

function

W (µi) = exp

(
−(µi −m)2

2s2

)
where m =

n∑
i=1

yi
/
n is the arithmetic mean and s2 =

n∑
i=1

(yi −m)2
/
n is the variance of the

observations, although m and s can be replaced by robust alternatives using the MCD al-

gorithm described in Rousseeuw and Driessen (1999). However, the above weight function

has a few drawbacks. First, the resulting estimate is biased because E(W (µi)(Yi−µi)) ̸= 0

and an additional drawback is that it exhibits numerical instabilities when the sample size

is small. The second weighted maximum likelihood estimate WMLEMH corresponds to

the weight function

WMH(µi) =



1, υ
c1
< µi < c1υ

c1µi

υ
, µi <

υ

c1
c2υ − µi

υ
, c1υ < µi < c2υ

0, µi ≥ c2υ.
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The constants c1 and c2 are arbitrarily chosen and υ is the median of µ. Hosseinian (2009)

suggests the arbitrary values of c1 = 2 and c2 = 3.
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Chapter 3

Log-Linear Poisson Model Without

Feedback

We study robust inference for the log-linear Poisson model without feedback for count

time series under three different forms of interventions: additive outliers, transient shifts

and level shifts. Some robust estimation procedures, which have been suggested for the

analysis of independent and not identically distributed data, are applied to this setting and

their performance is investigated by an empirical study. In fact, the aim of this chapter is

to extend those estimation procedures to the setting of count time series and to examine

empirically their behavior.

We estimate the parameters of the log-linear Poisson model without feedback using

the maximum likelihood estimator (MLE), the conditionally unbiased bounded-influence

estimator (CUBIF) and the Mallows’ quasi-likelihood estimator (MQLE) and compare all

three estimators in terms of their mean square error, bias and mean absolute error.

Our empirical results illustrate that under a level shift or a transient shift there are

no significant differences among the three estimators and the most interesting results are

obtained in the presence of additive outliers. The results are complemented by real data

examples.

We will assume that {Yt, t = 1, . . . , n} is a count time series and we will denote by Ft

the history of the process up to and including time t. An approach to analyze count time

series, is based on the framework of generalized linear models as described in the previous

chapter.
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Elsaied (2012) addresses partially some of the questions that we study in this chapter

but from a different perspective, in the context of the linear Poisson model (2.1). More

specifically, Elsaied (2012) suggests a new bias-corrected M-estimator which depends on

the Tukey’s bisquare function - as opposed to the Huber’s function. As discussed in

Section 2.1, a linear count time series, such as (2.1), is related, in some sense, with the

ordinary GARCH models. We note that for this class of processes studies on robust

estimation have been advancing over the last years; see Muler and Yohai (2002, 2008)

and more recently Mukherjee (2008). Muler and Yohai (2002, 2008) propose two robust

M-estimates for ARCH and GARCH models respectively, based on a modification of the

likelihood function. The second estimate is adjusted by bounding the effect of one outlier

on subsequent observations. The proposed estimates are also consistent and asymptotically

normal. Mukherjee (2008) defines a more general class of M-estimates for GARCH models

that includes among others the quasi maximum likelihood estimate.

However, in this chapter, we focus on model (2.2) and in particular on models that do

not contain a feedback mechanism. Based on this model, we advance robust estimation of

the regression parameters in the presence of sudden events. To the best of our knowledge,

studies on robust estimation for count time series are missing from the literature. In

Section 3.1, we discuss the notion of interventions and their effects on the estimated model

parameters. We describe three methods of estimation in Section 3.2, which we compare

empirically in Section 3.3. Finally, in Section 3.4 we apply these methods to real data

sets.

3.1 Intervention Effects

As reviewed in the previous chapter, Fokianos and Fried (2010, 2012) studied the problem

of detection and testing for outliers and intervention effects in the linear count time series

model (2.1) and in the log-linear count time series model (2.5), respectively. Our goal is

to complement this research by developing robust estimation procedures. Following the

work of Fokianos and Fried (2010, 2012), recall that we observe a contaminated process
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{Zt} given by

Zt ∥ Ft−1 ∼ Poisson(λct), νct = d+

p∑
i=1

aiν
c
t−i +

q∑
j=1

bj log(1 + Zt−j) + ζXt, t ≥ 1,

where the sequence {Xt} is a deterministic covariate sequence modeling the intervention

happening at time τ as

Xt = ξ(B)1(t = τ), t ≥ 1.

In the above display, ξ(B) = (1 − δB)−1, δ ∈ [0, 1), B is a shift operator such that

BiXt = Xt−i, 1(t = τ) is an indicator function that is equal to 1 if t = τ and 0 otherwise

and ζ is the size of the intervention. We consider two forms of interventions as follows:

• Transient Shift (TS) which corresponds to the case δ ∈ {0.7, 0.8, 0.9},

• Level Shift (LS) which corresponds to Xt = 1(t ≥ τ).

For the above cases, the covariate Xt becomes δt−τ
1(t ≥ τ) but other cases can be

included in the general framework. We note that the parameter δ can be estimated from

the data should we already know or have estimated the time that the intervention occurred.

If, however, the time of the intervention is unknown, we consider a fixed value of δ, as

discussed in Fokianos and Fried (2010, 2012). Recall that another interesting form of

outlier modeling is given by

Zt =

Yt + ζ, when t = τ,

Yt, otherwise,

(3.1)

where Yt follows (2.4). This corresponds to the case of an Additive Outlier (AO) of size

ζ at time τ . All these different forms of outliers have been considered by Fokianos and

Fried (2012) in the context of the log-linear model (2.5). It was shown that a TS type

of outlier yields a sudden effect to the observation which eventually decays, a LS type of

intervention changes the mean of the process (either upwards or downwards depending on

the sign of the coefficient ζ) and an AO affects the observation Zτ and its values a few

lags after. We note that Innovation Outliers (IO) are not considered in our work. An

innovative outlier in the context of ARMA modeling, affects the observations from the
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time of occurrence henceforth through a polynomial. To be more precise, an innovative

outlier of size ζ occurring at time τ has an effect equal to ζϕk where ϕk is the kth coefficient

of the polynomial ϕ0 + ϕ1B + ϕ2B
2 + ... (Chen and Liu (1993)). However, in the context

of the log-linear Poisson model there is no direct equivalent to innovative outliers because

the model is not defined in terms of innovations (Fokianos and Fried (2012)).

For the following, we will confine on the special case of (2.4) with p = 0; that is of the

log–linear model without feedback, which is given by

Yt ∥ Ft−1 ∼ Poisson(λt), νt = d+

q∑
j=1

bj log(Yt−j + 1). (3.2)

In the presence of interventions we observe a contaminated version {Zt} of the clean

process {Yt} of the following form,

Zt ∥ Ft−1 ∼ Poisson(λct), νct = d+

q∑
j=1

bj log(Zt−j + 1) + ζXt. (3.3)

Consider now model (3.3) and suppose that the goal is to estimate the parameters d

and {bj, j = 1, 2, . . . , q} using maximum likelihood estimation. We will see that the MLE

is affected by the contamination in some cases. Hence, employing results that have been

obtained for the case of independent and not identically distributed data, we consider

robust estimation methods in the context of (3.3) using the following two procedures:

• the Conditionally Unbiased Bounded-Influence estimator (CUBIF), proposed by

Künsch et al. (1989),

• the Mallows’ Quasi-Likelihood estimator (MQLE), proposed by Cantoni and Ronchetti

(2001).

3.2 Methods of Estimation

In this section, we will explain briefly the computation of all estimators considered and

we will compare them empirically in the following section.
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3.2.1 Maximum Likelihood Estimator (MLE)

The standard approach for estimating the parameters d and {bj, j = 1, . . . , q} is maximum

likelihood estimation. Recall model (3.2). Let θ be the q+1 dimensional vector of unknown

parameters θ = (d, b1, ..., bq)
T . Then the conditional likelihood function for θ based on

model (3.2) is given by
n∏

t=1

exp(−λt(θ))λt(θ)Yt

Yt!
.

Under the model assumptions νt ≡ log λt, so λt(θ) = exp(νt(θ)). Hence, the log-likelihood

function is given up to a constant by

ℓn(θ) =
n∑

t=1

ℓt(θ) =
n∑

t=1

(Yt log(λt(θ))− λt(θ)) =
n∑

t=1

(Ytνt(θ)− exp(νt(θ))).

The score function is defined by

Sn(θ) =
n∑

t=1

∂ℓt(θ)

∂θ
=

n∑
t=1

{Yt − exp(νt(θ))}
∂νt(θ)

∂θ
, (3.4)

where ∂νt(θ)/∂θ is the q + 1 dimensional vector

∂νt(θ)

∂θ
= (

∂νt(θ)

∂d
,
∂νt(θ)

∂b1
, ...

∂νt(θ)

∂bq
)T = (1, log(1 + Yt−1), ..., log(1 + Yt−q))

T ≡ X̃t−q.

For the case q = 1, Fokianos and Tjøstheim (2011) have shown that if |b1| < 1 then

a perturbed version of the process (Yt, νt) is geometrically ergodic with moments of any

order. In addition, the maximum likelihood estimator given as solution to S(θ) = 0,

is consistent and asymptotically normal. These facts are needed for studying the large

sample behavior of the proposed estimators, at least in the case q = 1.

3.2.2 Conditionally Unbiased Bounded–Influence Estimator

(CUBIF)

The idea behind the conditionally unbiased bounded–influence estimator is to find a con-

ditionally Fisher–consistent estimator that has small variance subject to a chosen bound

33

Stel
la 

Kitro
milid

ou



on its influence function; see Künsch et al. (1989). Consider M–estimates of the form

ψ(θ) =
n∑

t=1

ψt(Y
(q)
t ;θ,B) = 0.

where Y
(q)
t = (Yt, Yt−1, ..., Yt−q)

T . In the time series context, the score function for the

CUBIF estimator is specified as

ψt(Y
(q)
t ;θ, c,B) = d(Y

(q)
t ,θ, c,B)

×Wc(|d(Y (q)
t ,θ, c,B)|(X̃T

t−qB
−1X̃t−q)

−1/2)X̃T
t−q (3.5)

with

d(Y
(q)
t ,θ, c,B) = Yt − λt(θ)− C

νt(θ), c(
X̃T

t−qB
−1X̃t−q)−1/2

)


and Wc(α) = ψc(α)/α where ψc(α) is the Huber function

ψc(α) =

α, |α| ≤ c,

csign(α), |α| > c,

(3.6)

with c a tuning constant. The scalar function C(·) and the matrix B in (3.5) are chosen

so that the sensitivity function is bounded and the estimating function to be unbiased,

that is E(ψt(Y
(q)
t ;θ, c,B)ψt(Y

(q)
t ;θ, c,B)T ) = B and

∑n
t=1 E(ψt(Y

(q)
t ;θ, c,B)||Ft−1) = 0,

respectively - recall the discussion in Section 2.4.1.

3.2.3 Mallows’ Quasi-Likelihood Estimator (MQLE)

Cantoni and Ronchetti (2001) robustified the quasi-likelihood approach for estimating

the regression coefficient of generalized linear models. Their approach is based on ro-

bust deviances which are natural generalizations of the quasi-likelihood functions. The

robustification proposed by Cantoni and Ronchetti (2001) is performed by bounding and

centering the quasi score function. In the context of model (3.2), the MQLE is given as a
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solution of the following equation

Q(θ) =
n∑

t=1

{
ψc

(Yt − λt(θ)√
λt(θ)

)
wt

1√
λt(θ)

∂λt(θ)

∂θ
− α(θ)

}
= 0, (3.7)

where ψc(α) is the Huber function (4.6) and the tuning constant c is chosen to ensure a

given level of asymptotic efficiency. The sequence {wt} consist of suitable weights. Some

choices for the weights {wt} are wt =
√
1− htt where htt is the t-th diagonal element of

the hat matrix H = X(XTX)−1XT . Here X is the {n − (q + 1)} × (q + 1) matrix with

the t-th column given by X̃t−q. Following those authors we note that weights defined

on the hat matrix do not have high breakdown properties. Therefore it is preferable to

consider other weighting schemes that are robust. Such choices are the inverse of the

robust Mahalanobis distance where location and scatter are robustly estimated to have

high breakdown properties using either the minimum volume ellipsoid (MVE) estimator

or the minimum covariance determinant (fast MCD) algorithm (see Rousseeuw and van

Zomeren (1990) and Rousseeuw and Driessen (1999), for more). The term α(θ) appearing

in (3.7) is a bias correction term which is used to ensure Fisher–consistency. It is given by

α(θ) =
1

n

n∑
t=1

E

{
ψc

(Yt − λt(θ)√
λt(θ)

)
wt

1√
λt(θ)

∂λt(θ)

∂θ

∣∣∣Ft−1

}
,

where

E
(
ψc

(Yt − λt(θ)√
λt(θ)

)∣∣∣Ft−1

)
= c{P (Yt ≥ j2 + 1∥Ft−1)− P (Yt ≤ j1∥Ft−1)}

+
√
λt(θ){P (Yt = j1∥Ft−1)− P (Yt = j2∥Ft−1)},

with j1 and j2 are defined as j1 = ⌊λt(θ) − c
√
λt(θ)⌋ and j2 = ⌊λt(θ) + c

√
λt(θ)⌋. This

can be proved along the lines of Cantoni and Ronchetti (2001, App. A). Notice that as

c → ∞, then MQLE ≃ MLE, when wt ≡ 1. However, this approximation is no longer

true when robust weights are employed for solving (3.7).

35

Stel
la 

Kitro
milid

ou



3.3 Empirical Results

In this section we compare empirically all three estimators when the data contain different

forms of interventions. In particular, the MQLE is computed based on the following

weighting schemes (recall (3.7)):

• with no weights,

• with weights defined on the hat matrix,

• with weights obtained by robust Mahalanobis distance by using the minimum volume

ellipsoid method (MVE),

• with weights obtained by robust Mahalanobis distance by using the minimum co-

variance determinant method (MCD).

In all examples below, we run the experiment 1000 times and we consider sample sizes

of n = 200, 500. We report results with 500 observations since the results from both

settings were quite analogous. We are working with model (3.3) with q = 1, 2, 3. The

estimators are compared empirically in terms of mean square error (MSE), mean absolute

error (MAE) and bias. All results have been obtained using R (R Core Team (2014)).

Definition 3.3.1 Mean Square Error (MSE): The MSE of an estimator θ̂ of a parameter

θ is E
[
(θ̂ − θ)2

]
. The sample MSE is given by ˆMSE =

n∑
i=1

(θ̂(i) − θ0)
2
/
n, where θ0 is the

true value and θ̂(i) is a simulated estimate obtained by the simulation.

Definition 3.3.2 Mean Absolute Error (MAE): The MAE of an estimator θ̂ of a parameter

θ is E|θ̂ − θ|. The sample MAE is given by ˆMAE =
n∑

i=1

|θ̂(i) − θ0|
/
n.

However, to save space we will report only results for the MSE and for some combina-

tions of sample sizes and interventions, since all other quantities yield identical conclusions

as those we will present. All plots are constructed by assuming that the intervention oc-

curred at time τ = n/4, but other time points have been considered as well.
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3.3.1 Level Shift and Transient Shift

Recall model (3.3). In the examples in this section we focus on the first order model with

either a Level Shift or a Transient Shift type of intervention. In the case of the transient

shift we consider δ = 0.9.
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Figure 3.1: MSE for the case of a Level Shift at τ = n/4 for b of the model with q = 1 with (a):
θ = (d, b) = (0.2, 0.5), ζ = 0.3, (b): θ = (d, b) = (0.2,−0.5), ζ = 0.3 (c): θ = (d, b) = (0.2, 0.5),
ζ = −0.3.
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Figure 3.2: Bias for the case of a Level Shift at τ = n/4 for b of the model with q = 1 with (a):
θ = (d, b) = (0.2, 0.5), ζ = 0.3, (b): θ = (d, b) = (0.2,−0.5), ζ = 0.3 (c): θ = (d, b) = (0.2, 0.5),
ζ = −0.3.

Our simulation study on the effect of a LS or TS intervention illustrates that in these

cases there do not exist considerable dissimilarities among the proposed estimators in

terms of mean square error (MSE).
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Figure 3.5: QQ-plots for b̂ for the case of a Level Shift with θ = (d, b) = (0.2, 0.5), ζ = 0.3 and
c = 3.
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Figure 3.6: QQ-plots for b̂ for the case of a Transient Shift with θ = (d, b) = (0.2, 0.5), ζ = 0.3
and c = 3.
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3.3.2 Additive Outliers

In the following examples, we examine the effect of large additive outliers in count time

series under various scenarios. Note that it is not interesting to test the case when the

size of the additive outlier is small because in this case the resulting value of the response

could actually be realized by a Poisson random variable. We examine the following three

cases:

• Single outlier

• Patch of outliers

• Isolated outliers

Generally the observed contaminated series takes on the form

Zt =

Yt + ζ, t = τ1, τ2, ..., τk,

Yt, otherwise,

(3.8)

at times τ1, τ2, ..., τk. Note that (3.1) is a special case of (3.8) when k = 1.

Single outlier

Recall model (3.8) for an AO type of intervention. When k = 1, a single large additive

outlier of size ζ is added to the time series. This has an effect on the observed series at

time τ and a few lags after that time point. In the following example we consider the first

and second order model. The values of the parameters are θ = (d, b1) = (0.2, 0.5) for the

upper two figures and θ = (d, b1, b2) = (0.2, 0.3, 0.4) for the lower two figures. The size of

the outlier ζ takes the values 10 and 30. The first two figures show that in the case of the

first order model there are no significant dissimilarities among the estimators and in fact

the MLE performs adequately. As the lag increases (see the lower two figures), we observe

that the MSE values of the estimates decrease and still no noteworthy differences among

the estimators are reported. Similar findings have been obtained for b2.
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Figure 3.7: MSE for the case of a single outlier for b1 of the model with q = 1 for the first two
plots and q = 2 for the last two plots.

Patch of outliers

In the case of consecutive interventions, the times τ1, τ2, ..., τk are contiguous. Hence,

if for instance we have a time series of size n = 500, k = 15, τ = 125 and ζ = 10,

then we will observe fifteen consecutive additive outliers of size ζ = 10 occurring at

times t = 125, 126, ..., 139. Figure 3.8 shows results from the first order model with

θ = (d, b1) = (0.2, 0.5). The size of the intervention is ζ = 10 but the same conclusions

can be drawn for larger outlier sizes, particularly for ζ = 20, 30. It is clear that the best

estimator, in terms of MSE, is the robustly weighted MQLE regardless of the number of

consecutive outliers.
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Figure 3.8: MSE for the case of a patch of outliers for the model with q = 1 and ζ = 10.

In the case of the second order model, we have discovered that the same results hold

as in the case of the first order model for both b1 and b2 as well as for various intervention

sizes. Additionally, it is observed that the MSE values decrease as the lag increases.

Figures 3.9 and 3.10 correspond to the third order model with θ = (d, b1, b2, b3) =

(0.2, 0.2, 0.3, 0.4) and we report the results for two outlier sizes, ζ = 10 and ζ = 30

and for b1, although the same results hold for b2 and b3. For this example, note that

when the size of the intervention is relatively small, that is ζ = 10, then no remarkable

contrasts are revealed. However, increasing the size of the intervention and as the number

of consecutive outliers increases, then the estimator that performs better, in terms of

MSE, than all others is the robustly weighted MQLE. In particular, we note that the
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Figure 3.9: MSE for the case of a patch of k outliers for the model with q = 3 for b1.

weights based on the MVE and the fast MCD algorithms yield an estimator with smaller

MSE. An additional conclusion in this case is that the CUBIF and the MQLE estimators

are competitive for small values of c but only in the case of adding a few outliers to the

series. Increasing further the number of consecutive outliers, the differences between these

three estimators increase substantially. Furthermore, we point out that as the number

of consecutive outliers increases the regression coefficient of MLE, CUBIF and the non-

robustly weighted MQLE’s increase towards one.

Figures 3.11 and 3.12 exhibit boxplots and qq-plots for b̂1 in the case of the second

order model with 10 consecutive outliers of size 10 and for c = 3. Both from the boxplots

as well as from the qq-plots we conjecture the asymptotic normality of all estimates.
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Figure 3.10: MSE for the case of a patch of k outliers for the model with q = 3 for b1.
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Figure 3.11: Boxplots for b̂1 for the case of the second order model with 10 consecutive outliers
of size 10 and for c = 3.
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Figure 3.12: QQ-plots for b̂1 for the case of the second order model with 10 consecutive outliers
of size 10 and for c = 3.
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Isolated outliers

Next we examine the case of several isolated large additive outliers. Recall model (3.8) for

the additive interventions and set k = 5, 10, 15, 20 and suppose that the size ζ are equal

to 10, 20, 30. The outliers are added to the observed data in randomly chosen positions.

Figure 3.13 corresponds to the case of the first order model and Figures 3.14 and 3.15

correspond to the case of the third order model. In the case of the first order model, see

Figure 3.13, it is clear that when MQLE is robustly weighted, and in particular using the

MVE or MCD algorithm, then it is the best estimate as the number of outliers increases.

In addition, the difference between robustly weighted MQLE and MLE is of substantial

order.
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Figure 3.13: MSE for the case of k isolated outliers for the model with q = 1 for b1.
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The case of the second order model is not presented though our findings suggest that

robustly weighted MQLE performs better. Figure 3.14 shows the MSE of the estimation

of b1 of the third order model when the size of the outliers is ζ = 10 and Figure 3.15 the

corresponding when the size of the outliers is increased to ζ = 30. Firstly, it is noticed

that increase of the lag yields a decrease in the values of the MSE. Also, we note that

when the size of the interventions is ζ = 10 then the differences between the estimators

are not substantial. However, increasing the size of the outliers, see Figure 3.15, shows

that MQLE when robustly weighted dominates the other estimators, although CUBIF is

also competitive.
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Figure 3.14: MSE for the case of k isolated outliers for the model with q = 3 for b1 and ζ = 10.
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Figure 3.15: MSE for the case of k isolated outliers for the model with q = 3 for b1 and ζ = 30.

3.3.3 Choice of the Tuning Constant

A fundamental aspect in implementing robust method is to calculate a proper value of c to

achieve a certain optimality criteria. The tuning constant c is chosen so that a predefined

level of relative efficiency is ensured. The MSE of the robust estimate is thus compared

to the MSE of MLE and this should yield

MSE(θ̂MLE)

MSE(θ̂robust)
≃ 0.95
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where θ̂robust is any estimator defined by the estimating equations (3.5) and (3.7). In the

following simulation example, 1000 samples of clean data, that is data without outliers,

are generated according to model (3.2). The model parameters are estimated for numer-

ous values of c varying between 1 and 10 and the relative efficiency is computed for all

estimation procedures.
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Figure 3.16: Efficiency and choice of c.

Figure 3.16 displays the relative efficiency of all estimation methods in three cases corre-

sponding to the first, second and third order model. In all cases, MQLE robustly weighted

is significantly less efficient than MLE. On the contrary, the non robustly weighted MQLE

possesses an extremely high level of efficiency, that actually reaches the efficiency of MLE

as the value of c increases. This is somewhat anticipated since the MQLE which is not

robustly weighted converges to the MLE as the value of the tuning constant increases. It

is recommended that the most appropriate c value that ensures a 95% level of efficiency

is between 1.5 and 2 for the first order model and between 1 and 1.5 for the higher order

models. In the next section, we study an additional method of obtaining c by splitting

the data into a training and a testing dataset.
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3.3.4 Summary

We have compared several robust estimators for various form of interventions for log-linear

models of the form (3.2). We note that when a LS or a TS type of intervention is detected,

then all estimators behave in the same way, in terms of MSE, MAE and bias. However,

in the case of large AO which occur either isolated or consecutively, then, in general, the

robustly weighted MQLE will dominate all the other estimators in terms of MSE.

3.4 Real Data Examples

3.4.1 Polio Data

The polio data is a well known count time series example which has been used in several

applied works. It consists of monthly number of incidents of poliomyelitis in USA during

the years 1970 to 1983. The data have been released by the U.S. Center for Disease and

Control and there are total of n = 168 observations. A plot of the data is displayed in

Chapter 1. These data have been previously analyzed by Zeger (1988), Fokianos (2001)

and Fokianos and Fried (2012), among others. Fokianos and Fried (2012) studied the

data by fitting a log-linear model and investigated for possible intervention effects due to

unusual events. Their analysis revealed several intervention effects including three spiky

outliers and a level shift. We consider a different approach by applying the log-linear

model (3.2) of order q = 6. A long-term decrease of the incidence rate might exist, and

so a trend of the form t/n is also included in the model. Moreover, since the observations

are recorded monthly, we include sinusoid terms to model annual seasonality. The fitted

model is given by

νt = d+

q∑
j=1

bj log(1 + Yt−j) + βt/n+
S∑

s=1

{β1;s sin(ωst) + β2;s cos(ωst)}

where S is the number of harmonics and ωs = 2πs/12 are the Fourier frequencies. We

fit different models in the data using the maximum likelihood estimate. The first six

observations are excluded from the fit to ensure comparability among the models and the

last ten observations are excluded for prediction purposes. The models are compared in
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terms of AIC; see Table 3.1.

Model 1 2 3 4 5 6
q 1 1 2 2 3 3
S 1 2 1 2 1 2
AIC 506.661 498.756 506.458 497.277 502.224 495.266

Model 7 8 9 10 11 12
q 4 4 5 5 6 6
S 1 2 1 2 1 2
AIC 500.206 493.941 495.109 490.965 495.653 492.59

Table 3.1: Table of the AIC of different fitted models for the polio data

As we can see from Table 3.1, the chosen model according to the Akaike information

criterion is model 10; i.e.

νt = d+
5∑

j=1

bj log(1 + Yt−j) + βt/n+
2∑

s=1

{β1;s sin(ωst) + β2;s cos(ωst)}. (3.9)

The next step in our analysis is to fit the chosen model by employing the proposed robust

estimation methods. The estimators are compared in terms of their mean square error

(MSE) and mean absolute error (MAE). In the cases of CUBIF and MQLE, we fit the

model for fifty different values of the tuning constant c taking values from 1 to 3.5. Figure

3.17 demonstrates the estimated MSE and MAE of the predicted values for the estimation

methods considered. From both graphs it is clear that CUBIF is the estimator whose

predicted values posses the highest MSE and MAE values. In fact, these values are

much greater than the corresponding ones of the MLE, making CUBIF the least favorable

estimator among the proposed estimating procedures, even though it is a robust estimation

method. Additionally, among the MQLE alternatives, the two robust weighting options

of MVE and MCD based weights are preferred although the procedures do not reflect

significant differences. We choose the tuning constant c for the Huber function (4.6) by

predicting the last ten observations which were excluded from the analysis and calculating

the associated MSE or MAE; the value of c that minimizes the MSE or MAE is the choice

for the tuning constant; see Table 3.2. The results illustrate that the MQLE based method

performs better, especially when it is robustly weighted using the MCD based weights.
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Figure 3.17: Estimated Mean Square Error (MSE) and Mean Absolute Error (MAE) of the
predicted values for the Polio data.

MLE CUBIF MQLE MQLEhat MQLEmve MQLEmcd
c – 1.408 1.051 1.102 3.041 1.051

MSE 0.692 1.503 0.572 0.577 0.535 0.522
c – 1.408 1.051 1.051 3.041 1.664

MAE 0.741 1.102 0.663 0.666 0.622 0.629

Table 3.2: Minimum MSE and MAE of the estimators and the corresponding value of the tuning
constant c for the prediction of the last ten observations of the polio data.

Table 3.3 reports the estimated values of the parameters of model (3.9) under the

various proposed methods. The tuning constant c has been chosen according to Table 3.2

and the number in the parentheses is the standard error of the corresponding estimate.

3.4.2 Hyde Park Data

The Hyde Park data consist of the number of purse snatching in the neighborhood Hyde

Park of Chicago, Illinois, recorded every 28 days during the period from January 1969

to May 1974. There is a total of n = 71 observations. During the 42nd period a com-

munity crime prevention program was launched, namely the WhistleStop Operation (see

McCleary et al. (1980)). Previous analyses of the data, mostly in the Social Sciences, were
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MLE CUBIF MQLEnone MQLEhat MQLEmve MQLEmcd
d -0.121(0.239) -0.164(0.316) -0.192(0.268) -0.201(0.269) -0.230(0.296) -0.136(0.397)

b1 0.421(0.118) -0.036(0.164) 0.112(0.137) 0.102(0.138) 0.107(0.147) 0.223(0.192)

b2 0.289(0.131) 0.427(0.163) 0.333(0.143) -0.034(0.145) 0.406(0.154) 0.276(0.198)

b3 -0.336(0.131) 0.067(0.168) -0.040(0.145) -0.034(0.145) -0.099(0.161) 0.301(0.205)

b4 0.164(0.120) 0.283(0.169) 0.241(0.141) 0.255(0.142) 0.250(0.154) 0.429(0.209)

b5 0.270(0.120) -0.197(0.171) 0.027(0.142) 0.016(0.142) 0.124(0.155) -0.121(0.219)

β -0.585(0.272) -0.421(0.369) -0.454(0.310) -0.444(0.311) -0.684(0.336) -0.454(0.431)

β1;1 -0.441(0.123) -0.242(0.149) -0.419(0.136) -0.415(0.136) -0.579(0.172) -0.224(0.185)

β1;2 -0.015(0.102) 0.066(0.141) 0.051(0.121) 0.065(0.122) 0.152(0.138) 0.033(0.162)

β2;1 -0.122(0.107) 0.028(0.140) 0.032(0.123) 0.041(0.124) 0.171(0.141) 0.127(0.164)

β2;2 0.283(0.109) 0.185(0.138) 0.245(0.123) 0.238(0.123) 0.303(0.135) 0.029(0.175)

Table 3.3: Estimates (standard errors) of the parameters of model (3.9) based on the proposed
robust estimation methods. The tuning constant c has been chosen according to Table 3.2.

concentrated in evaluating whether the WhistleStop program resulted in a reduction of

purse snatching in the area. The direction we are interested in is the analysis of the data

using the log-linear model with intervention effects. The data are shown in Figure 3.18.

We use the outlier detection method of Chen and Liu (1993) and Fokianos and Fried

(2010, 2012) to detect intervention effects in the data. The method of Chen and Liu

(1993) revealed five interventions and outliers. In particular, four transient shifts at times

15, 27, 33, 35 and an additive outlier at time 43 are found. The method of Fokianos and

Fried (2010, 2012) has detected two transient shifts at times 23 and 35 and a spiky outlier

at time 33 when a log-linear model without feedback of order q = 4 is applied. We

apply the log-linear model without feedback (3.2) of order q = 4 and exclude the last ten

observations for prediction. To choose the best model that fits the data we compare the

models using the Akaike information criteria (AIC); see Table 3.4. The table suggests that

the chosen model based on the AIC criterion is the log-linear model of order 2, that is

model

νt = d+ a1 log(1 + Yt−1) + a2 log(1 + Yt−2). (3.10)

q
Model 1 2 3 4
AIC 430.255 410.144 411.334 412.768

Table 3.4: Table of the AIC of different fitted models for the Hyde Park data

Next, the model (3.10) is fitted to the data and the parameters of the model are
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Figure 3.18: Hyde Park Time Series Plot.

estimated using the proposed robust estimates. The CUBIF and MQLE estimates are

calculated for values of the tuning constant c of the Huber function from 1 to 3.5. The

last test observations that were excluded are then predicted using the fitted model. We

calculate the mean square error (MSE) and mean absolute error (MAE) of the predicted

values and choose the value of c which minimizes these quantities. The MSE and MAE of

the predicted observations are reported in Table 3.5.

MLE CUBIF MQLE MQLEhat MQLEmve MQLEmcd
c – 1 1.765 1.765 2.327 2.327

MSE 16.170 15.659 15.489 15.085 13.757 14.105
c – 1 1.663 2.378 3.092 3.449

MAE 3.352 3.353 3.319 3.265 2.999 3.117

Table 3.5: Minimum MSE and MAE of the estimators and the corresponding value of the tuning
constant c for the prediction of the last ten observations of the Hyde Park data.

The estimated MSE and MAE of the predicted values are shown in Figure 3.19. Table

3.5 and Figure 3.19 indicate that the robustly weighted MQLE methods outperform both

the maximum likelihood and CUBIF estimates. Also, the weighting procedure of the MVE

algorithm is somewhat better than the alternative of the MCD algorithm in terms of MSE

and MAE.
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Figure 3.19: Estimated Mean Square Error (MSE) and Mean Absolute Error (MAE) of the
predicted values for the Hyde Park data.

Finally, Table 3.6 shows the parameter estimates of the fitted model and their standard

errors in parenthesis. The value of the tuning constant c has been chosen according to the

MSE values in Table 3.5. In Appendix A, we give the details of this analysis based on the

software R (R Core Team (2014)).

MLE CUBIF MQLEnone MQLEhat MQLEmve MQLEmcd
d 0.849(0.230) 0.789(0.315) 0.824(0.234) 0.816(0.237) 0.814(0.277) 0.795(0.265)
b1 0.295(0.079) 0.218(0.110) 0.333(0.081) 0.325(0.082) 0.274(0.104) 0.324(0.096)
b2 0.389(0.083) 0.450(0.115) 0.354(0.085) 0.362(0.086) 0.399(0.102) 0.359(0.098)

Table 3.6: Estimates (standard errors) of the parameters of model (3.10) based on the proposed
robust estimation methods. The tuning constant c has been chosen according to the MSE in
Table 3.5.
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Chapter 4

Log-Linear Poisson Model With

Feedback

In the previous chapter we studied robust estimation for the log-linear Poisson model

without feedback, for contaminated data with level shifts, transient shifts and additive

outliers. It turns out that the case of additive outliers deserves special attention. Addi-

tionally, among the robust estimators we have examined, the Mallows’ Quasi Likelihood

estimator (MQLE) appears to be the most prominent, especially when robustly weighted.

In this chapter, we consider the problems of robust estimation and testing for the

log-linear Poisson model with feedback for the analysis of count time series. We focus on

the first order model with feedback and we propose a robust method for estimating the

regression coefficients in the presence of interventions. The resulting robust estimators

are asymptotically normally distributed under some regularity conditions. A robust score

type test statistic is also examined. We apply the methodology to real and simulated data.

The log-linear Poisson model with feedback studied in this chapter is expected to be

more parsimonious than a model that does not include the feedback mechanism, like the

one studied in the previous chapter. Additionally, the setup behind the log-linear Poisson

model makes it suitable for modeling both negatively and positively correlated count data

and allows the inclusion of time dependent covariates. Fokianos and Tjøstheim (2011) have

studied extensively the log-linear Poisson model and have examined in detail maximum

likelihood estimation by employing a perturbation technique. See also Woodard et al.

(2011) and Douc et al. (2013) for related studies. However, the maximum likelihood
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estimator is highly affected by interventions which enter the log-mean of the process as

”unusual” observations, in a variety of ways. These interventions are typically modeled

as covariates - as suggested by Fokianos and Fried (2010, 2012) - and can affect the entire

time series or a few points, as we have seen in previous sections. Intervention types of

this kind are, for example, level shifts (LS) and transient shifts (TS), see Fokianos and

Fried (2010, 2012) and more recently Elsaied and Fried (2014). We have seen however

that for these types of intervention effects there are no considerable differences among

the robust estimation methods and maximum likelihood when a log-linear model without

feedback is employed. Adversely, the case of additive outliers (AO) to the process requires

more attention. In a different context than what we will be studying, Barczy et al. (2012)

consider AO for a first order integer autoregressive model (INAR(1)).

In this chapter, we consider the Mallows’ Quasi Likelihood Estimator (MQLE) pro-

posed by Cantoni and Ronchetti (2001). For alternative robust estimation procedures

in the context of generalized linear models, see Morgenthaler (1992), Lô and Ronchetti

(2009) and Valdora and Yohai (2014), among others. Lô and Ronchetti (2009) propose a

robust test statistic for hypothesis testing and variable selection. They show that the test

statistic they propose maintains the level of the test and additionally it is asymptotically

χ2. Valdora and Yohai (2014) suggest a class of robust M-estimators for generalized lin-

ear models based on transformations of the response that aim at stabilizing the variance

of the response to a nearly constant value. The proposed estimates are consistent and

asymptotically normally distributed. A general theory of robust statistics is discussed

by Maronna et al. (2006) and Huber and Ronchetti (2009). We follow the approach by

Cantoni and Ronchetti (2001) because it is based on the notion of quasi-likelihood func-

tion (or estimating equations). Additionally, the empirical study in the previous chapter

about the log-linear Poisson model without the feedback mechanism has revealed that

the MQLE estimator produces better results than the MLE. We show that this method,

suitably adjusted for count time series, estimates consistently the regression coefficients

in the presence of additive outliers and other types of interventions. We also complement

the works by Fokianos and Fried (2010, 2012) who studied detection and testing for in-

tervention effects in count time series. Furthermore, we develop a robust test statistic for

testing the existence of the feedback mechanism.
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Since the log-linear model is closely related to the standard GARCH model, our work

is related to Muler and Yohai (2002, 2008) who propose two robust estimators for ARCH

and GARCH models respectively; see also Mukherjee (2008) for other results.

Our interest is to extend the MQLE framework to time series setup and examine

its asymptotic properties. We employ a perturbation technique following Fokianos and

Tjøstheim (2011). Section 4.1 focuses on estimation and inference of MQLE and in Sec-

tion 4.2 a robust procedure of the score test is employed for testing the existence of the

feedback mechanism. In both sections we complement the study with a simulation exam-

ple, while Section 4.3 provides two real data examples. Appendix 4.4 contains proofs of

the theoretical results and Appendix B shows our R code for the empirical and real data

study.

4.1 Mallows’ Quasi Likelihood Estimation

Recall that the log–linear Poisson model with feedback is given by

Yt ∥ Ft−1 ∼ Poisson(λt), νt = d+ aνt−1 + b log(1 + Yt−1), (4.1)

where {Yt, t = 1, . . . , n} is a time series of counts, Ft denotes the σ–field σ(Ys, s ≤ t)

and νt ≡ log λt. Following the work of Fokianos and Tjøstheim (2011), introduce at each

time point t, a Poisson process Nt(·) of unit intensity. Then (4.1) can be restated in terms

of these Poisson processes by assuming that Yt given λt is equal to the number of events

Nt(λt) in the time interval (0, λt]. Let therefore {Nt(·), t = 1, 2, 3...} be a sequence of

independent Poisson processes of unit intensity and rewrite model (4.1) as

Yt = Nt(λt), νt = d+ aνt−1 + b log(1 + Yt−1).

To advance the theory, we introduce a perturbed chain (Y m
t , νmt ) defined by

Y m
t = Nt(λ

m
t ), νmt = d+ aνmt−1 + b log(1 + Y m

t−1) + ϵt,m (4.2)
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where ϵt,m = cm1(Y
m
t−1 = 1)Ut, cm > 0, cm → 0 as m → ∞, Ut is a sequence of

iid uniform random variables on (0, 1) such that Ut is independent of Nt(·), and 1(A) is

the indicator function of a set A. This perturbation idea which is employed for studying

properties of (4.1) is advanced in Fokianos et al. (2009) and Fokianos and Tjøstheim

(2011) and is crucial for proving geometric ergodicity of the process. More specifically, the

ergodic properties of the process (Yt, νt) are based on the property of irreducibility and

the introduction of the sequence {Ut} makes possible to prove irreducibility and therefore

geometric ergodicity.

Our interest focuses on estimating the parameters of the log-linear model (4.1) using

the robust method of estimation proposed by Cantoni and Ronchetti (2001) – the so called

Mallows’ quasi likelihood estimation (MQLE). This estimation is then compared to the

maximum likelihood estimation, as studied in Fokianos and Tjøstheim (2011).

To motivate the study of robust estimation, we show a simulated example where maxi-

mum likelihood estimation does not perform satisfactorily. We consider Additive Outliers

(AO) of size ζ observed at times τ1, τ2, . . . , τk. In this case, the time series is given by

Zt =

Yt + ζ, when t = τ1, τ2, . . . , τk,

Yt, otherwise.

(4.3)

We also consider a Level Shift (LS) and a Transient Shift (TS) type of intervention.

Both types of interventions enter the dynamics of the model through the log-intensity

process {νt} as a sequence of deterministic covariates {Xt} that models the intervention

occurring at time τ . Recall that in this case, we observe a contaminated process {Zt}

which is given by

Zt ∥ Ft−1 ∼ Poisson(λct), νct = d+ aνct−1 + b log(1 + Zt−1) + ζXt. (4.4)

The sequence {Xt} is given by

Xt = ξ(B)1(t = τ),

where ξ(B) = (1 − δB)−1, δ ∈ [0, 1), B is a shift operator such that BiXt = Xt−i, 1t(τ)
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is an indicator function that is equal to 1 if t = τ and 0 otherwise and ζ is the size of the

intervention. A LS corresponds to δ = 1 and a TS corresponds to δ ∈ {0.7, 0.8, 0.9}.

Table 4.1 shows empirical means of maximum likelihood estimates based on 1000 sim-

ulated samples, and their sample standard deviation (in parentheses), for a time series

of length 500 from model (4.1) with θ = (d, a, b) = (0.2, 0.3, 0.5) that contains a patch

of consecutive outliers(recall (4.3)), a level shift and a transient shift type of interven-

tion. The results demonstrate that the MLE is affected by interventions and does not

estimate model’s parameters satisfactorily. In fact, we note that the parameter d is gen-

erally underestimated but the parameter b is overestimated. A comprehensive discussion

of interventions in count time series has been given by Fokianos and Fried (2010). The

effect of interventions to count data has been investigated by Elsaied (2012), Fried et al.

(2014) and Kitromilidou and Fokianos (2015). It has been noticed empirically that when

the data are generated by a model which does not include {νt} and contains moderate

LS or a TS type of intervention, then the MLE is not affected considerably. However,

additive outliers still have an impact on estimation. Table 4.1 shows that the MLE does

not estimate consistently the model parameters when the hidden process is included in

the model in all the above cases.

Patch of Additive Outliers d̂ â b̂
5 outliers 0.146 (0.073) 0.224 (0.067) 0.609 (0.050)
10 outliers 0.014 (0.054) 0.283 (0.056) 0.640 (0.048)
15 outliers -0.043 (0.046) 0.312 (0.051) 0.652 (0.048)
20 outliers -0.073 (0.042) 0.327 (0.049) 0.656 (0.047)
Level Shift 0.007 (0.042) 0.438 (0.042) 0.552 (0.042)

Transient Shift 0.036 (0.059) 0.273 (0.060) 0.633 (0.050)

Table 4.1: Maximum likelihood estimation of the true value θ = (0.2, 0.3, 0.5) for the log-linear
model (4.1), under increasing number of additive outliers, a level shift and a transient shift
intervention. Results are based on 1000 simulations of length 500. Standard errors are reported
in parentheses.
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4.1.1 Estimation

The MQLE is defined as a Fisher consistent M-estimator which is given as a solution of

the following quasi–score function Sn(θ) = 0 where

Sn(θ) =
n∑

t=1

(
mt(θ)− E

(
mt(θ) ∥ Ft−1

))
=

n∑
t=1

st(θ), (4.5)

with

mt(θ) = ψ
(
rt(θ)

)
wte

νt(θ)/2
∂νt(θ)

∂θ
.

We will denote the estimator obtained by the solution of the above equations as Sn(θ) = 0

by θ̂MQLE. Note that rt = (Yt − λt)/
√
λt are the so called Pearson residuals and ψ is a

suitable weight function that depends on a tuning constant chosen to ensure a desired

level of asymptotic efficiency (see also Cantoni and Ronchetti (2001)). The most common

choice for the function ψ(·) is the Huber function given by (4.6) but several other choices

are available to the literature, like the Tukey biweight function. The vector ∂νt(θ)/∂θ is

a three dimensional vector with components

∂νt(θ)

∂d
= 1+a

∂νt−1(θ)

∂d
,
∂νt(θ)

∂a
= νt−1+a

∂νt−1(θ)

∂a
,
∂νt(θ)

∂b
= log(1+Yt−1)+a

∂νt−1(θ)

∂b
.

The sequence {wt} is an appropriate sequence of weights. Some choices include wt =
√
1− htt where htt are the diagonal elements of the so called ”hat matrix” H. However,

as Cantoni and Ronchetti (2001) point out, weights defined on the hat matrix do not have

high breakdown properties. Choices of robust weights can be based on the inverse of the

robust Mahalanobis distance matrix where location and scatter are robustly estimated to

have high breakdown properties using either the minimum volume ellipsoid estimator or

the minimum covariance determinant (Rousseeuw and van Zomeren (1990) and Rousseeuw

and Driessen (1999)). Regardless of the choice of robust weights, it always holds that

0 < wt ≤ 1, cf. Seber and Lee (2003, p. 89). The bias correction term appearing in (4.5)

implies that the resulting estimator is Fisher–consistent (see also Cantoni and Ronchetti

(2001)).

The properties of the MQLE can be studied theoretically by viewing the quasi–score

equations Sn(θ) = 0 as a solution to the following maximization problem. More precisely,
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defining

Mt(θ) =

∫ λt(θ)

s̃

(
ψ

(
Yt − z√

z

)
− E

[
ψ

(
Yt − z√

z

)
∥ Ft−1

])
wt

1√
z
dz,

with s̃ such that
(
ψ
(

Yt−s̃√
s̃

)
− E

[
ψ
(

Yt−s̃√
s̃

)
∥ Ft−1

])
wt

1√
s̃
= 0, we obtain that

∂

∂θ
Mt(θ) = mt(θ)− E

(
mt(θ) ∥ Ft−1

)
.

By using Taniguchi and Kakizawa (2000, Thm 3.2.23) which is based on the work by

Klimko and Nelson (1978), we can prove existence, consistency and asymptotic normality

of θ̂MQLE. To obtain these results the main assumption imposed on the function ψ(·) is

to be bounded and to possess a second derivative which is continuous. Obviously such

a condition is not satisfied by the Huber function (4.6). In these cases however, we can

develop asymptotic properties of θ̂MQLE by appealing to the theory of Z-estimators; in

particular van der Vaart (1998, Thm 5.21) lists the necessary conditions for obtaining

asymptotic normality provided that θ̂MQLE is a consistent root of Sn(θ) = 0. Consistency

is established by empirical process theory.

The main problem that we are facing is that we cannot prove the necessary conditions

for the unperturbed model to obtain the asymptotic theory (see also Fokianos et al. (2009),

Fokianos and Tjøstheim (2011) and Tjøstheim (2012) for detailed discussion about the

issues involved). Therefore we prove the corresponding conditions for the perturbed model

and then show that the perturbed and unperturbed versions are ”close”. Towards this

goal we define analogously Sm
n to be the MQLE score function for the perturbed model

Sm
n (θ) =

n∑
t=1

(
mm

t (θ)− E
(
mm

t (θ) ∥ Fm
t−1

))
=

n∑
t=1

smt (θ),

and mm
t , r

m
t to have the same form as their counterparts in the non perturbed model

but with (Yt, νt) replaced by (Y m
t , νmt ). Then the following theorem follows after proving

Lemmas 4.1.1–4.1.5 which verify the conditions of Taniguchi and Kakizawa (2000, Thm

3.2.23).

Theorem 4.1.1 Consider model (4.1). Let θ ∈ Θ ⊂ R3 which is assumed compact and

suppose that the true value θ0 belongs to the interior of Θ. Assume further that ψ is two
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times continuously differentiable bounded function. Introduce lower and upper values of

each component of θ0 = (d0, a0, b0)
T such that dL < d0 < dU , −1 < aL < a0 < aU < 1 and

bL < b0 < bU and suppose that at the true value θ0, |a0 + b0| < 1 if a0 and b0 have the

same sign, and a20 + b20 < 1 if a0 and b0 have different sign. Then, there exists a fixed open

neighborhood O(θ0) of θ0

O(θ0) = {θ|dL < d < dU ,−1 < aL < a < aU < 1, bL < b < bU}

such that with probability tending to 1 as n → ∞, the equation Sn(θ) = 0 has a unique

solution, say θ̂MQLE. Furthermore, θ̂MQLE is strongly consistent and asymptotically nor-

mal,
√
n(θ̂MQLE − θ0)

d−→ N(0, V −1WV −1)

where the matrices W and V are defined in Lemmas 4.1.1 and 4.1.3.

To prove this Theorem we need the following lemmas whose proof is postponed to the

Appendix.

Lemma 4.1.1 Define the matrices

Wm(θ) = E
(
smt (θ)s

m
t (θ)

T
)

and W (θ) = E
(
st(θ)st(θ)

T
)
.

Under the assumptions of Theorem 4.1.1, the above matrices evaluated at the true value

θ = θ0, satisfy W
m → W , as m→ ∞.

Lemma 4.1.2 Under the assumptions of Theorem 4.1.1, the score functions for the per-

turbed (4.2) and unperturbed model (4.1) evaluated at the true value θ = θ0 satisfy the

following:

1. Sm
n /n

a.s−→ 0,

2. Sm
n /

√
n

d−→ Sm := N(0,Wm),

3. Sm d−→ N(0,W ), as m→ ∞,

4. limm→∞ lim supn→∞ P (||Sm
n − Sn|| > ϵ

√
n) = 0, ∀ϵ > 0.
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Lemma 4.1.3 Define the matrices

V m(θ) = −E
[
∂

∂θ
smt (θ)

]
, V (θ) = −E

[
∂

∂θ
st(θ)

]
.

Under the assumptions of Theorem 4.1.1, the above matrices evaluated at the true value

θ = θ0, satisfy V
m → V , as m→ ∞.

Lemma 4.1.4 Denote by

Hn(θ) =
1

n

n∑
t=1

st(θ)
∂ℓt(θ)

∂θ
,

where ℓt(θ) = Ytνt(θ) − exp(νt(θ)), is the t’th component of the Poisson log-likelihood

function. Define analogously Hm
n (θ). Then, under the assumptions of Theorem 4.1.1,

1. Hm
n

p−→ V m as n→ ∞

2. limm→∞ lim supn→∞ P (||Hm
n −Hn|| > ϵn) = 0, ∀ϵ > 0.

where V m has been defined in Lemma 4.1.3.

Lemma 4.1.5 Under the assumptions of Theorem 4.1.1,

max
i,j,k=1,2,3

sup
θ∈O(θ0)

∣∣∣∣∣ 1n
n∑

t=1

∂2sti(θ)

∂θk∂θj

∣∣∣∣∣ ≤ M̃n :=
1

n

n∑
t=1

m̃t

where θi for i = 1, 2, 3 refers to θi = d, a, b respectively and {m̃t} is defined by (A-8).

Define analogously M̃m
n . Then

1. M̃m
n

p−→ M̃m, as n→ ∞ for each m = 1, 2, ...,

2. M̃m → M̃ , as m→ ∞, where M̃ is a finite constant,

3. limm→∞ lim supn→∞ P (|M̃m
n − M̃n| > ϵn) = 0, ∀ϵ > 0.

Remark 4.1.1 A related study to ours in that of Elsaied and Fried (2014). The authors

are studying robust estimation for a linear count time series model but without feedback.

We study a log-linear model which includes feedback and additionally we develop a test

statistic for robust testing of existence of the feedback process - see Section (4.2).
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4.1.2 A Simulated Example

A brief simulation study is presented to demonstrate the performance of the MQLE es-

timator. Recall that the observed process in the presence of additive outliers is given by

(4.3). The scenario in which the additive outliers appear in consecutive times τ1, τ2, . . . , τk

is referred to as a patch of outliers. In the following, a time series of size 800 is generated

under the assumptions of model (4.1) with a patch of consecutive outliers. The first 300

observations are discarded. We choose θ = (0.2, 0.3, 0.5) and θ = (0.2, 0.3, 0.65) and the

size of the intervention is set to ζ = 20.

From several simulation studies we have empirically observed that the MQLE estimator

is superior when weighted - in fact when robustly weighted. As discussed by Cantoni and

Ronchetti (2001), suitable choices for the weights wt are given by
√
1− htt where htt are

the diagonal elements of the hat matrix H = X(XTX)−1XT , where X is a general design

matrix. Alternatively, we can employ the inverse of the robust Mahalanobis distance

where location and scatter are robustly estimated to have a high breakdown point by

using either the MVE algorithm or the MCD algorithm (Rousseeuw and van Zomeren

(1990) and Rousseeuw and Driessen (1999)). To use robustly weighted methods in this

context, it is required to substitute the hidden process {νt} by an observable process so

that the design matrix can be calculated explicitly.

Two methods are proposed to create the design matrix X for the case of model (4.1)

which includes a hidden process.

Method A:

The matrix X is constructed by approximating (4.1) with

ν̂t = d+ aν̂t−1 + b1 log(1 + Yt−1),

where ν̂t is computed by employing θ̂MQLE calculated without weights.

Method B:

We approximate (4.1) by

ν̂t = d∗ +
M∑
i=1

a∗i log(1 + Yt−i),

for some truncation pointM and some regression parameters {d∗, a∗1, . . . , a∗M}. This choice
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is motivated by the fact that repeated substitution in (4.1) shows that

νt = d
1− at

1− a
+ atν0 + b

t−1∑
i=0

ai log(1 + Yt−i−1).

Repeated substitution up to M lags gives

νt = d+ aνt−1 + b log(1 + Yt−1)

= d+ a(d+ aνt−2 + b log(1 + Yt−2)) + b log(1 + Yt−1)

= d(1 + a) + a2νt−2 + ab log(1 + Yt−2) + b log(1 + Yt−1)

= d(1 + a) + a2(d+ aνt−3 + b log(1 + Yt−3)) + ab log(1 + Yt−2) + b log(1 + Yt−1)

= d(1 + a+ a2) + a3νt−3 + a2b log(1 + Yt−3) + ab log(1 + Yt−2) + b log(1 + Yt−1)

= · · ·

= d(1 + a+ a2 + · · ·+ aM−1) + aMνt−M +
M∑
i=1

ai−1b log(1 + Yt−i),

therefore in the approximation of νt,

d∗ = d
1− aM−1

1− a
+ aMνt−M and a∗i = ai−1b.

In our studies, we use the truncation point M = 20. To be more precise, in method B, a

total of N observations are generated from which a number of observations are discarded

so that n observations remain. We include the last M discarded observations and create

the n× n matrix X as follows

X =



log(1 + YN−(n−1)) log(1 + YN−1−(n−1)) log(1 + YN−2−(n−1)) . . . log(1 + YN−(M−1)−(n−1))

log(1 + YN−(n−2)) log(1 + YN−1−(n−2)) log(1 + YN−2−(n−2)) . . . log(1 + YN−(M−1)−(n−2))

log(1 + YN−(n−3)) log(1 + YN−1−(n−3)) log(1 + YN−2−(n−3)) . . . log(1 + YN−(M−1)−(n−3))
...

...
...

. . .
...

log(1 + YN ) log(1 + YN−1) log(1 + YN−2) . . . log(1 + YN−(M−1))


The behavior of MLE, MQLE without weights, MQLE with ”hat weights” (using the

approximation method A or B), MQLE based on the MVE algorithm (using again the
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methods A and B) and MQLE based on the MCD algorithm (using again methods A and

B) is examined in terms of their mean square error (MSE). In all the calculations we use

the Huber function

ψc(x) =

x, |x| ≤ c

csign(x), |x| > c

(4.6)

where sign(·) denotes the sign function. Clearly, the choice of (4.6) does not fulfill the

requirements of Theorem 4.1.1, but it is usually employed in robust estimation based

methods. Even though (4.6) does not fulfill the requirements of Theorem 4.1.1, θ̂MQLE is

expected to be asymptotically normally distributed, as it was discussed earlier. In fact,

by recalling (4.5), we note that for this particular choice of ψ(·) function, the bias term

can be calculated upon noticing that

E
(
mt(θ) ∥ Ft−1

)
= E

(
ψc(rt(θ)) ∥ Ft−1

)
wte

νt(θ)/2
∂νt(θ)

∂θ

where

E
(
ψc

(Yt − λt(θ)√
λt(θ)

)
∥ Ft−1

)
= c {P (Yt ≥ j2 + 1∥Ft−1)− P (Yt ≤ j1∥Ft−1)}

+
√
λt(θ) {P (Yt = j1∥Ft−1)− P (Yt = j2∥Ft−1)} ,

with j1 and j2 defined by j1 = ⌊λt(θ)−c
√
λt(θ)⌋ and j2 = ⌊λt(θ)+c

√
λt(θ)⌋, Cantoni and

Ronchetti (2001). As the tuning constant c tends to infinity, then the MQLE approximates

the ordinary MLE, provided that wt ≡ 1. However, this approximation is no longer true

when robust weights are employed for solving (4.5) by using the Huber function (4.6).

Figures 4.1 and 4.4 (respectively Figures 4.2 and 4.5) display the MSE of âMQLE (re-

spectively b̂MQLE) for all estimation methods considered. To solve the score equations (4.5),

we initialize ν0 = 1, ∂ν0/∂θ = 1 and we employ the above approximation to the bias terms

based on (4.6).

For this simulation, we consider the intervention to occur in the first quarter of the

series, but simulations where the intervention occurred in the middle of the series provided

similar conclusions. It is obvious that in all cases the robustly weighted MQLE outperforms

the non-robustly weighted MQLE as well as the MLE. When comparing the two proposed
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weighting methods we note that method A is superior to method B in all cases considered.

It is also noted that for both the estimation of the parameters a and b, as the number of

consecutive outliers increases so does the MSE values. Similar results have been obtained

for other measures of performance like mean absolute error and bias but they are omitted.

Additionally, Figure 4.3 shows QQ-plots of the simulated values of â for all estimating

methods considered. For this example, we assume a patch of 15 consecutive outliers of

size ζ = 20 and the value of the tuning constant of the Huber function is set to c = 1.571.

In general, we recommend values of the tuning constant c to be chosen between 1.50 and

2 when the data does not indicate non stationarity. The plot illustrates that the asserted

asymptotic normality is achieved quite satisfactorily.

We examine also the way that various estimation procedures perform when the sum

of the regression coefficients, say a + b, is close to unity in the case of observing a patch

of outliers. Figures 4.4 and 4.5 show the MSE of âMQLE and b̂MQLE respectively, for the

choice of parameter θ = (0.2, 0.3, 0.65). These values are close to the estimated obtained

by the data analysis example included in Section 4.3.1. In both cases, the best performing

estimating procedure is again the robustly weighted MQLE obtained by method A. Note

that when the data are close to the non-stationarity region, the values of MSE remains

approximately the same regardless of the number of outliers.

We include an additional simulation example in which a LS or a TS occurs at the first

quarter of the series. The size of the intervention is ζ = 0.2 for the case of a LS, and ζ = 1

for the case of a TS. For the case of a TS, the value of δ is chosen to be 0.8; recall (4.4).

Figures 4.6 and 4.7 show that the robustly weighted MQLE perform significantly better

than all other estimation procedures. Also, when comparing the two proposed methods

for obtaining the robustly weighted MQLE, method A yields to considerably better results

than method B in terms of MSE for the case of a+ b < 1. When a+ b approach 1, we note

that the MSE of âMQLE and b̂MQLE changes slowly across c. A possible explanation of this

behavior is that for a+ b close to unity, the process Yt assumes large values and therefore

moderate values of an intervention do not influence the final outcome of estimation.

The choice of the tuning constant c is of high importance in our analysis and depends

upon a predefined level of relative efficiency. In the simulation example that follows, we

calculate the relative efficiency of the robust estimators for various values of c based on
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1000 generated samples of clean data. An efficiency of approximately 95% determines the

value of c. The results are displayed in Figure 4.8.

As shown, the estimator that possesses the highest level of efficiency is the MQLE without

weights, followed by the non-robustly weighted MQLE with weights based on the hat

matrix. On the other hand, the robustly weighted MQLE are considerably less efficient,

especially when weighted using the MCD algorithm.
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Figure 4.1: MSE of âMQLE as a function of the tuning constant c when using for estimation the
Huber function (4.6). Data are generated by model (4.1) with (d, a, b) = (0.2, 0.3, 0.5) and with
a patch of outliers–see (4.3)–of size ζ = 20. Results are based on 1000 simulations.
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Figure 4.2: MSE values of b̂MQLE as a function of the tuning constant c when using for estimation
the Huber function (4.6). Data are generated by model (4.1) with (d, a, b) = (0.2, 0.3, 0.5) and
with a patch of outliers–see (4.3)–of size ζ = 20. Results are based on 1000 simulations.
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Figure 4.3: QQ-plots for the various estimating methods for âMQLE. A patch of 15 consecutive
outliers of size ζ = 20–see (4.3)–is considered and the Huber function (4.6) is used for the
calculation of MQLE with tuning constant equal to c = 1.571. Data are generated by model
(4.1) with (d, a, b) = (0.2, 0.3, 0.5). Results are based on 1000 simulations.
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Figure 4.4: MSE of âMQLE as a function of the tuning constant c when using for estimation the
Huber function (4.6). Data are generated by model (4.1) with θ = (d, a, b) = (0.2, 0.3, 0.65) and
with a patch of outliers–see (4.3)–of size ζ = 20. Results are based on 1000 simulations.
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Figure 4.5: MSE of b̂MQLE as a function of the tuning constant c when using for estimation the
Huber function (4.6). Data are generated by model (4.1) with θ = (d, a, b) = (0.2, 0.3, 0.65) and
with a patch of outliers–see (4.3)–of size ζ = 20. Results are based on 1000 simulations.
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Figure 4.6: MSE of âMQLE (right column) and b̂MQLE (left column) as a function of the tuning
constant c when using for estimation the Huber function (4.6). Data are generated by model
(4.4) with (d, a, b) = (0.2, 0.3, 0.5) and with either a LS of size ζ = 0.2 or a TS of size ζ = 1.
Results are based on 1000 simulations.
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Figure 4.7: MSE of âMQLE (right column) and b̂MQLE (left column) as a function of the tuning
constant c when using for estimation the Huber function (4.6). Data are generated by model
(4.4) with (d, a, b) = (0.2, 0.3, 0.65) and with either a LS of size ζ = 0.2 or a TS of size ζ = 1.
Results are based on 1000 simulations.
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Figure 4.8: Efficiency and choice of c.
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4.2 Robust Score Test

In this section we develop a robust procedure for testing the presence of the feedback

process {νt} when there exist outliers, or unusual observations, in the data. In other

words, we will be testing

H0 : a = 0 vs. H1 : a ̸= 0 (4.7)

for model (4.1). Heritier and Ronchetti (1994) consider robust tests based on M-estimators

and influence functions. Testing the above hypothesis is performed by employing the score

test, because this test statistic is constructed under the null hypothesis and can be easily

computed, see Francq and Zaköıan (2010).

4.2.1 Results

For developing the score test, consider the partition θ = (θ(1), θ(2))T of the vector of

parameters θ = (d, a, b)T where θ(1) = (d, b)T and θ(2) = a. Then, the score test is defined

by

STn = [S(2)
n (θ̃MQLE)]

2/σ̃2, (4.8)

where S
(2)
n is the second component of the partition of the score Sn = (S

(1)
n , S

(2)
n )T and

θ̃MQLE is the constrained MQLE under the null hypothesis (4.7), given by θ̃n = (θ̃
(1)

n , 0)T

(see Breslow (1990), Harvey (1990) and Christou and Fokianos (2015)). In addition, σ̃2 is

a consistent estimator of

σ2 =W22 − V21V11
−1W12 −W21V11

−1V12 + V21V11
−1W11V11

−1V12

where Vij, Wij, i, j = 1, 2 correspond to partitions of the matrices V and W . The form

of the variance term σ2 is based on the fact that the MQLE is not based on a true log-

likelihood function but on a quasi-score function. With this notation, we have the following

results:

Theorem 4.2.1 Consider model (4.1) and assume the conditions of Theorem 4.1.1. Then,

under the null hypothesis (4.7) we have the following:
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1. Define the score test for the perturbed model (4.2) by STm
n . Then

STm
n

d−→ χ2
1

where χ2
d denotes the chi–square distribution with d degrees of freedom.

2. The score statistic for the perturbed model (4.2) and unperturbed model (4.1) satisfy

lim
m→∞

lim sup
n→∞

P (|STm
n (θ̃n)− STn(θ̃n)| > ϵn) = 0, ∀ϵ > 0.

The above results imply that we reject (4.7) whenever STn > χ2
1,α

2
or STn < χ2

1,1−α
2
where

α is a predetermined level of significance.

4.2.2 Simulation Results for the Robust Score Test

Testing is performed in two distinct cases, the case of a patch of outliers and additionally,

the case of isolated outliers, in which the outliers are added to the observed series in

non-contiguous time positions. Our objective is to obtain a test statistic which achieves

the correct size as well as has high power. To study first the MQLE estimator as to the

size of the test, we simulate the behavior of the score test statistic given by (4.8). We

generate 1000 samples under the null hypothesis and calculate the score statistic (4.8) for

the various weighting options we discussed. We use again the Huber function (4.6) for

construction of the test statistic. Our study is based on choosing a = 0 for the size and

a > 0 for the power, and b as before (see Section 4.1.2). Note that under (4.7), there is

no need to consider an approximation to the hidden process {νt} as it was discussed in

Section 4.1.2.

We generate 1000 samples of size 800 from model (4.2). The first 300 observations

are discarded to ensure stationarity of the process, hence the time series consists of 500

observations. The parameters of the model are set to d = 0.2 and b = 0.5.

Table 4.2 exhibits the results for the size of the test for selected significance level

α = 0.01, α = 0.05 and α = 0.10 and for c = 1.571. In both scenarios we note that

the non-robustly weighted MQLE behave in a similar way. Additionally, the robustly

weighted MQLE appear to have a similar behavior as well. We observe that when there
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do not exist outliers in the time series, then all test statistics achieve the desired size.

When there exists a patch of outliers to the time series, we observe that the behavior of

the test statistics depends on the percentage of the contamination, as well as on the value

of the tuning constant c. If there exist 5 outliers in the series, that is 1% of contamination,

then values of the tuning constant over 2.50 make the non-robustly weighted MQLE based

test statistics to diverge from the desired size. The robustly weighted MQLE based test

statistics do not have this behavior. Increasing further the percentage of contamination

to 2% (10 outliers), 3% (15 outliers) and 4% (20 outliers) then, the non-robustly weighted

MQLE based test statistics do not achieve the desirable size. The test statistics based on

robust weighting depends on the value of the tuning constant. In particular, the smaller

the data contamination the larger the value of the tuning constant for which the (4.8)

diverges from the desirable size. If there exist isolated outliers in the series, then the

non-robustly weighted version of (4.8) does not achieve the desired size regardless of the

number of outliers and the value of the tuning constant but the robustly weighted MQLE

are not affected by either the number of outliers nor the value of the tuning constant,

especially for smaller percentage of contamination.

Patch of Outliers Isolated Outliers

Number of Weights Significance level Significance level
outliers α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

none 0.003 0.047 0.082 0.009 0.055 0.113
hat 0.003 0.046 0.084 0.006 0.055 0.114

no outliers
mve 0.008 0.049 0.102 0.012 0.056 0.104
mcd 0.007 0.036 0.090 0.007 0.054 0.102
none 0.009 0.042 0.088 0.028 0.076 0.129
hat 0.007 0.036 0.084 0.015 0.075 0.132

5 outliers
mve 0.011 0.046 0.102 0.008 0.048 0.092
mcd 0.007 0.037 0.091 0.008 0.056 0.113
none 0.281 0.528 0.683 0.018 0.072 0.127
hat 0.250 0.497 0.649 0.014 0.069 0.133

10 outliers
mve 0.006 0.048 0.103 0.011 0.049 0.095
mcd 0.008 0.056 0.108 0.009 0.045 0.084
none 0.693 0.864 0.919 0.019 0.098 0.180
hat 0.693 0.860 0.916 0.021 0.094 0.181

15 outliers
mve 0.009 0.048 0.097 0.010 0.051 0.107
mcd 0.012 0.055 0.110 0.016 0.042 0.091
none 0.825 0.947 0.977 0.021 0.106 0.165
hat 0.825 0.945 0.978 0.023 0.103 0.168

20 outliers
mve 0.015 0.061 0.119 0.012 0.054 0.101
mcd 0.026 0.084 0.155 0.013 0.053 0.106

Table 4.2: Empirical size of the test for the case of a patch of outliers and the case of isolated
outliers.
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To obtain the power of the test we consider the robustly weighted test statistics since

they achieve the nominal size. Figure 4.9 shows the power of the test when the weights

implemented are the robust weights based on the MVE and MCD algorithm. The selected

value of the tuning constant is c = 1.571 and the nominal significance level is α = 0.05.

The results are generally consistent, showing that the power of the test increases as we

move away from the null hypothesis.
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Figure 4.9: Power of the test statistic (4.8) for the cases of a patch of outliers and isolated
outliers. Robust weighting is considered (MVE and MCD). The tuning constant is c = 1.571
and the nominal significance level is α = 0.05.
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4.3 Real Data Examples

4.3.1 Measles Data

We apply the methodology to a time series of weekly number of measles infections re-

ported in North Rhine-Westphalia, Germany during the period from January 2001 until

November 2003; see Figure 4.10. First, we examine whether the data contain some irreg-

ular observations employing the works by Chen and Liu (1993) for the case of real valued

data and the method proposed by Fokianos and Fried (2012) for the case of integer valued

time series. Note that in the context of count time series, the methodology suggested by

Fokianos and Fried (2012) cannot detect additive outliers. The method, however, detects

8 interventions that include three transient shifts at time positions 4, 10 and 48, and five

spiky outliers at positions 59, 86, 97, 109 and 122. A spiky outlier is an outlier which is

defined by (4.4) for δ = 0. Following the methodology of Chen and Liu (1993), we detect

twenty seven interventions, including seven additive outliers, two of which are consecutive.

However, we note that some of the interventions detected by the methodology of Chen

and Liu (1993) need to be examined carefully because some of its discoveries are not lo-

cated far apart; for instance we identify a TS followed by an AO. This is a result of the

non-stationarity which is pronounced by the data; Note that the sum of the coefficients a

and b is close to 1 as Table 4.3 shows.

In fact, Table 4.3 displays the estimated parameters of model (4.1) for the various

estimating procedures described in the previous sections, along with the standard devia-

tions of the estimates in parentheses. Estimation is implemented by employing the Huber

function (4.6) and M = 10 for method B. In all cases, the MQLE provides estimates with

equal or smaller standard deviation, regardless of the value of the tuning constant c. Be-

cause of the non-stationarity of the data, we choose values of c greater than 3. This choice

affects directly the large values observed in the data and makes possible robust fitting of

the log-linear model. Smaller values of c might result to convergence issues but for this

data examples any choice of c ≥ 3 yields robust estimators. Even though there are some

differences among findings we note that in general method A and B give similar results

and the sum of the regression coefficients is close to 1. Furthermore, hypothesis (4.7) is

rejected by all test procedures (p-value < 0.001).
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Measles Infections Time Series
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Figure 4.10: Weekly number of measles infections reported.

Estimation procedure d a b
MLE 0.242(0.001) 0.435(0.010) 0.500(0.009)

MQLE no weights 0.077(0.002) 0.379(0.001) 0.587(0.001)
MQLE hat (A) 0.076(0.002) 0.378(0.001) 0.588(0.001)
MQLE hat (B) 0.024(0.002) 0.309(0.001) 0.665(0.001)
MQLE mve (A) -0.005(0.003) 0.359(0.001) 0.628(0.001)
MQLE mcd (A) -0.035(0.003) 0.358(0.001) 0.636(0.001)
MQLE mve (B) 0.049(0.002) 0.268(0.001) 0.697(0.001)
MQLE mcd (B) 0.067(0.002) 0.255(0.001) 0.706(0.001)

Table 4.3: Estimates and standard errors (in parentheses) of the parameters of model (4.1)
when applied to the measles infection time series. Fitting is done by employing (4.6) with c = 3.

It is noted that an analysis of the data without feedback indicates a model of order

q = 13.

4.3.2 Firearm Homicides Data

The Homicides data consist of the number of weekly firearm homicides recorded at the

Salt River state mortuary in Cape Town during the years 1986 to 1991; Zucchini and

MacDonald (2009). Figure 4.11 shows a time series plot of the data.
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Firearm Homicides in Cape Town during 1986−1999
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Figure 4.11: Weekly number of firearm homicides reported at the Salt River state mortuary in
Cape Town during 1986-1999.

An application of the outlier detection method by Chen and Liu (1993) has detected

5 additive outliers at times 20,193,300,302,309, a transient shift at time 206 and a level

shift at time 295. Table 4.4 displays the estimated parameters of model (4.1) and their

standard errors. We note that using the first proposed method for the construction of the

design matrix, the MVE and MCD algorithms do not work because in this case an error

in the singular value decomposition is produced. Analogous problems do not occur when

applying the second proposed method for constructing the design matrix. The displayed

estimates on Table 4.4 correspond to the value c = 2.429 of the Huber function tuning

constant. It is observed however that MLE, non weighted MQLE and MQLE with weights

based on the hat matrix and the first method do not provide stationary solutions since

the stationarity condition is not satisfied. On the contrary, MQLE weighted applying the

second method maintains the stationarity condition for all values of the tuning constant

considered.

In all cases, the MQLE provides estimates with smaller standard deviations, regardless

of the value of the tuning constant c. Here we demonstrate the estimation results for

c = 2.429-see Table 4.4. Furthermore, hypothesis (4.7) is rejected by all test procedures

(p-value < 0.001).
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Estimation procedure d a b
MQLE hat (B) 0.060(0.054) 0.396(0.061) 0.303(0.043)
MQLE mve (B) 0.046(0.055) 0.407(0.061) 0.310(0.044)
MQLE mcd (B) 0.026(0.055) 0.425(0.061) 0.322(0.044)

Table 4.4: Estimates of the parameters of model (4.1) for the firearm homicides time series,
c = 2.429.

4.4 Appendix

In the following, the symbol C denotes a constant which depends upon the context. Define

also dM = max(|dL|, |dU |), aM = max(|aL|, |aU |) and bM = max(|bL|, |bU |). In addition,

when a quantity is evaluated at the true value of the parameter θ, denoted by θ0, then

the notation will be simplified by dropping θ0. For instance, mt ≡ mt(θ0) and so on. The

following two results are taken from Fokianos and Tjøstheim (2011) and are included for

completeness.

Lemma A-1 Assume model (4.2) and suppose that |a| < 1. In addition, assume that

when b > 0 then |a + b| < 1, and when b < 0 then |a||a + b| < 1. Then, the following

conclusions hold:

1. The process {νmt , t ≥ 0} is a geometrically ergodic Markov chain with finite moments

of order k, for an arbitrary k.

2. The process {(Y m
t , Ut, ν

m
t ), t ≥ 0} is a V(Y,U,ν)-geometrically ergodic Markov chain

with VY,U,ν(Y, U, ν) = 1 + log2k(1 + Y ) + ν2k + U2k, k being a positive integer.

Lemma A-2 Suppose that (Yt, νt) and (Y m
t , νmt ) are defined by (4.1) and (4.2) respec-

tively. Assume that |a+ b| < 1, if a and b have the same sign, and a2 + b2 < 1 if a and b

have different signs. Then the following statements are true:

1. E|νmt − νt| → 0 and |νmt − νt| < δ1,m almost surely for m large.

2. E(νmt − νt)
2 ≤ δ2,m,

3. E|λmt − λt| ≤ δ3,m,

4. E|Y m
t − Yt| ≤ δ4,m,
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5. E(λmt − λt)
2 ≤ δ5,m,

6. E(Y m
t − Yt)

2 ≤ δ6,m,

where δi,m → 0 as m → ∞ for i = 1, ..., 6. Furthermore, almost surely, with m large

enough

|λmt − λt| ≤ δ and |Y m
t − Yt| ≤ δ, for any δ > 0.

We will also need the following lemmas whose proof is given below.

Lemma A-3 Define the Pearson residuals for both perturbed and unperturbed models

by

rmt =
Y m
t − eν

m
t

eν
m
t /2

, rt =
Yt − eνt

eνt/2

respectively. Suppose that (Yt, νt) and (Y m
t , νmt ) are defined by (4.1) and (4.2) respectively.

Assume that |a + b| < 1, if a and b have the same sign, and a2 + b2 < 1 if a and b have

different signs. Then,

1. E|rmt − rt| → 0,

2. E(rmt − rt)
2 ≤ δ7;m,

where δ7,m → 0 as m→ ∞. Furthermore, almost surely, with m large enough

|rmt − rt| ≤ δ for any δ > 0.
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Proof of Lemma A-3. We have that

|rmt − rt| =

∣∣∣∣Y m
t − eν

m
t

eν
m
t /2

− Yt − eνt

eνt/2

∣∣∣∣ = ∣∣∣∣ Y m
t

eν
m
t /2

− Yt
eνt/2

+
(
eνt/2 − eν

m
t /2
)∣∣∣∣

≤
∣∣∣∣Y m

t eνt/2 − Yte
νmt /2 ± Y m

t eν
m
t /2

eν
m
t /2eνt/2

∣∣∣∣+ ∣∣eνt/2 − eν
m
t /2
∣∣

=

∣∣∣∣∣(Y m
t − Yt)e

νmt /2 + Y m
t

(
eνt/2 − eν

m
t /2
)

eν
m
t /2eνt/2

∣∣∣∣∣+ ∣∣eνmt /2 − eνt/2
∣∣

≤
∣∣∣∣Y m

t − Yt
eνt/2

∣∣∣∣+
∣∣∣∣∣Y m

t

(
eνt/2 − eν

m
t /2
)

eν
m
t /2eνt/2

∣∣∣∣∣+ ∣∣eνmt /2 − eνt/2
∣∣

≤ |Y m
t − Yt|+

∣∣∣Y m
t

(√
λt −

√
λmt

)∣∣∣+ ∣∣∣√λmt −
√
λt

∣∣∣
≤ |Y m

t − Yt|+ |Y m
t |
√
|λmt − λt|+

√
|λmt − λt|

≤ |Y m
t − Yt|+ (|Y m

t |+ 1) |λmt − λt|1/2

< δ,

for any δ > 0 almost surely and for m large enough by using the results of Lemma A-2. In

addition, we obtain the first and second part of Lemma because of uniform integrability

of |rmt − rt|. It holds that

sup
t

{
(|Y m

t |+ 1) |λmt − λt|1/2
}
≤ sup

t
{|Y m

t |+ 1}

and additionally we have that

E ||Y m
t |+ 1| <∞.

Therefore, the process {
(|Y m

t |+ 1) |λmt − λt|1/2
}

is uniformly integrable, and because it converges almost surely to zero, from the approxi-

mation Lemma A-2, we finally obtain that

E
∣∣∣(|Y m

t |+ 1) |λmt − λt|1/2
∣∣∣→ 0.

Finally,

E|rmt − rt| ≤ E|Y m
t − Yt|+ E

∣∣∣(|Y m
t |+ 1) |λmt − λt|1/2

∣∣∣→ 0.
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For the second part of the Lemma we have that

|rmt − rt|2 ≤
{
|Y m

t − Yt|+ (|Y m
t |+ 1) |λmt − λt|1/2

}2

≤ |Y m
t − Yt|2 + (|Y m

t |+ 1)2 |λmt − λt|+ 2 (|Y m
t |+ 1) |Y m

t − Yt| |λmt − λt|1/2 .

Then,

sup
t

{
(|Y m

t |+ 1)2 |λmt − λt|+ 2 (|Y m
t |+ 1) |Y m

t − Yt| |λmt − λt|1/2
}

≤ sup
t

{
(|Y m

t |+ 1)2 + 2 (|Y m
t |+ 1)

}
and because

E
{
(|Y m

t |+ 1)2 + 2 (|Y m
t |+ 1)

}
<∞

we conclude that the process

{
(|Y m

t |+ 1)2 |λmt − λt|+ 2 (|Y m
t |+ 1) |Y m

t − Yt| |λmt − λt|1/2
}

is uniformly integrable. Since it additionally converges almost surely to zero, we finally

obtain that

E
{
(|Y m

t |+ 1)2 |λmt − λt|+ 2 (|Y m
t |+ 1) |Y m

t − Yt| |λmt − λt|1/2
}
→ 0.

Finally,

E|rmt − rt|2 ≤ E|Y m
t − Yt|2 + E

{
(|Y m

t |+ 1)2 |λmt − λt|+ 2 (|Y m
t |+ 1) |Y m

t − Yt| |λmt − λt|1/2
}

→ 0

Lemma A-4 For any unbiased estimating function E (ψ(x; θ)) = 0, it holds true that

E

[
ψ(x; θ)

∂ℓ(x; θ)

∂θ

]
= −E

[
∂ψ(x; θ)

∂θ

]

where ℓ(x; θ) denotes the log-likelihood function.
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Proof of Lemma A-4.

E

[
ψ(x; θ)

∂ℓ(x; θ)

∂θ

]
=

∫
ψ(x; θ)

∂ℓ(x; θ)

∂θ
f(x; θ)dx

=

∫
ψ(x; θ)

∂

∂θ
log f(x; θ) · f(x; θ)dx

=

∫
ψ(x; θ)

1

f(x; θ)

∂f(x; θ)

∂θ
f(x; θ)dx

=

∫ [
ψ(x; θ)

∂f(x; θ)

∂θ
± ∂ψ(x; θ)

∂θ
f(x; θ)

]
dx

=

∫ [
ψ(x; θ)

∂f(x; θ)

∂θ
+
∂ψ(x; θ)

∂θ
f(x; θ)

]
dx−

∫
∂ψ(x; θ)

∂θ
f(x; θ)dx

=

∫
∂

∂θ
(ψ(x; θ)f(x; θ)) dx− E

[
∂ψ(x; θ)

∂θ

]
=

∂

∂θ

∫
(ψ(x; θ)f(x; θ)) dx− E

[
∂ψ(x; θ)

∂θ

]
=

∂

∂θ
E (ψ(x; θ))− E

[
∂ψ(x; θ)

∂θ

]
= −E

[
∂ψ(x; θ)

∂θ

]
.

Proof of Lemma 4.1.1. We will show that

E
(
mm

t (θ) (m
m
t (θ))

T
)
− E

(
mt(θ) (mt(θ))

T
)
→ 0 (A-1)

and

E (mm
t (θ))E

T (mm
t (θ))− E (mt(θ))E

T (mt(θ)) → 0, (A-2)

as m → ∞. Consider first (A-1). Working along the lines of Fokianos and Tjøstheim

(2011), we consider differences of the perturbed and non perturbed matrix along the

diagonal individually for θi = d, a, b. Then, we need to evaluate

E

∣∣∣∣∣(Zm
t )2

(
∂νmt
∂θi

)2

− Z2
t

(
∂νt
∂θi

)2
∣∣∣∣∣ ,
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with Zt = ψ(rt)wte
νt/2 and similarly for Zm

t . We have,

E

∣∣∣∣∣(Zm
t )2

(
∂νmt
∂θi

)2

− Z2
t

(
∂νt
∂θi

)2
∣∣∣∣∣ = E

∣∣∣∣∣(Zm
t )2

(
∂νmt
∂θi

)2

− Z2
t

(
∂νt
∂θi

)2

± (Zm
t )2

(
∂νt
∂θi

)2
∣∣∣∣∣

E

∣∣∣∣∣(Zm
t )2

[(
∂νmt
∂θi

)2

−
(
∂νt
∂θi

)2
]
+ ((Zm

t )2 − Z2
t )

(
∂νt
∂θi

)2
∣∣∣∣∣

≤ E

∣∣∣∣∣(Zm
t )2

[(
∂νmt
∂θi

)2

−
(
∂νt
∂θi

)2
]∣∣∣∣∣+ E

∣∣∣∣∣((Zm
t )2 − Z2

t

)(∂νt
∂θi

)2
∣∣∣∣∣

≤ CE
∣∣∣exp(νmt )

((∂νmt
∂θi

)
−
(
∂νt
∂θi

))((∂νmt
∂θi

)
+

(
∂νt
∂θi

))∣∣∣+
√
E
(
(Zm

t )2 − Z2
t

)2
E

(
∂νt
∂θi

)4

The first term can become arbitrarily small because it can be shown (following the proof

of Fokianos et al. (2009, Lemma 3.1)) that as m→ ∞

∣∣∣∂νmt
∂θi

− ∂νt
∂θi

∣∣∣ < δ, E
∣∣∣∂νmt
∂θi

− ∂νt
∂θi

∣∣∣ < δ, E
(∂νmt
∂θi

− ∂νt
∂θi

)2
< δ (A-3)

almost surely for any δ > 0. For the second term, note first that E(∂νt/∂θi)
4 is bounded

by a finite constant for i = 1, 2, 3 since

∂νt
∂d

≤ 1

(1− aM)
,

∂νt
∂a

≤ c0
(1− aM)

+ bM

t−1∑
i=1

iai−1
M log(1 + Yt−i−1),

∂νt
∂b

≤
t−1∑
i=0

ai−1
M log(1 + Yt−i−1), (A-4)

by using Lemma A-1.
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Furthermore

∣∣(Zm
t )2 − Z2

t

∣∣ ≤
∣∣ψ2(rmt )e

νmt − ψ2(rt)e
νt
∣∣ = ∣∣ψ2(rmt )e

νmt − ψ2(rt)e
νt ± ψ2(rt)e

νmt
∣∣

=
∣∣(ψ2(rmt )− ψ2(rt))e

νmt + ψ2(rt)
(
eν

m
t − eνt

)∣∣
≤ |ψ2(rmt )− ψ2(rt)|λmt + ψ2(rt)|λmt − λt|

= |(ψ(rmt )− ψ(rt))(ψ(r
m
t ) + ψ(rt))|λmt + ψ2(rt)|λmt − λt|

≤ C
(
|rmt − rt|λmt + |λmt − λt|

)
< δ

where we have used the boundedness of the function ψ(·), the mean-value theorem and

Lemmas A-2 and A-3. Then,

E
∣∣(Zm

t )2 − Z2
t

∣∣2 ≤ C
{
E|λmt − λt|2 + E

(
|rmt − rt|2(λmt )2 + 2λmt |rmt − rt||λmt − λt|

)}
.

The process {
|rmt − rt|2(λmt )2 + 2λmt |rmt − rt||λmt − λt|

}
is uniformly integrable, because

sup
t

{
|rmt − rt|2(λmt )2 + 2λmt |rmt − rt||λmt − λt|

}
≤ sup

t

{
(λmt )

2 + 2λmt
}

and

E
∣∣(λmt )2 + 2λmt

∣∣ ≤ E
∣∣eνmt ∣∣2 + 2E

∣∣eνmt ∣∣
is bounded. Also, because the process converges almost surely to zero, we obtain that

E
∣∣|rmt − rt|2(λmt )2 + 2λmt |rmt − rt||λmt − λt|

∣∣→ 0.

Therefore,

E
∣∣(Zm

t )2 − Z2
t

∣∣ ≤ δ.

Hence (A-1) follows.
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To prove (A-2), consider

∣∣∣E2
(
Zm

t

∂νmt
∂θi

)
− E2

(
Zt
∂νt
∂θi

)∣∣∣ ≤ E

∣∣∣∣Zm
t

∂νmt
∂θi

− Zt
∂νt
∂θi

∣∣∣∣E ∣∣∣∣Zm
t

∂νmt
∂θi

+ Zt
∂νt
∂θi

∣∣∣∣
≤ CE

∣∣∣∣Zm
t

∂νmt
∂θi

− Zt
∂νt
∂θi

± Zm
t

∂νt
∂θi

∣∣∣∣E ∣∣∣∣eνmt /2∂ν
m
t

∂θi
+ eνt/2

∂νt
∂θi

± eν
m
t /2∂νt

∂θi

∣∣∣∣
= CE

∣∣∣∣Zm
t

(
∂νmt
∂θi

− ∂νt
∂θi

)
+ (Zm

t − Zt)
∂νt
∂θi

∣∣∣∣E ∣∣∣∣eνmt /2

(
∂νmt
∂θi

+
∂νt
∂θi

)
+
(
eν

m
t /2 − eνt/2

) ∂νt
∂θi

∣∣∣∣ .
The above quantity can be made arbitrarily small because of finite moments of ∂νt/∂θi,

∂νmt /∂θi, exp(ν
m
t ), (A-3) and the fact that E |(Zm

t − Zt) ∂νt/∂θi| → 0, as → ∞ which is

proved following the previous arguments. Indeed, considering each expected value in the

above representation separately we have:

for the first expected value,

E

∣∣∣∣Zm
t

(
∂νmt
∂θi

− ∂νt
∂θi

)∣∣∣∣ ≤ CE

∣∣∣∣eνmt /2

(
∂νmt
∂θi

− ∂νt
∂θi

)∣∣∣∣
≤ C

√
E|eνmt |E

(
∂νmt
∂θi

− ∂νt
∂θi

)2

< δ,

for the third expected value,

E

∣∣∣∣eνmt /2

(
∂νmt
∂θi

+
∂νt
∂θi

)∣∣∣∣ ≤ E

∣∣∣∣eνmt /2

(
∂νmt
∂θi

)∣∣∣∣+ E

∣∣∣∣eνmt /2

(
∂νt
∂θi

)∣∣∣∣
≤

√
E|eνmt |

(
∂νmt
∂θi

)2

+

√
E|eνmt |

(
∂νt
∂θi

)2

<∞,

for the fourth expected value

E

∣∣∣∣(eνmt /2 − eνt/2
) ∂νt
∂θi

∣∣∣∣ = E

∣∣∣∣(√λmt −
√
λt)

∂νt
∂θi

∣∣∣∣
≤ E

∣∣∣∣√|λmt − λt|
∂νt
∂θi

∣∣∣∣
≤

√
E|λmt − λt|E

(
∂νt
∂θi

)2

< δ
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and for the second expected value

E

∣∣∣∣(Zm
t − Zt)

∂νt
∂θi

∣∣∣∣ ≤
√
E (Zm

t − Zt)
2E

(
∂νt
∂θi

)2

.

But,

|Zm
t − Zt| ≤ |ψ(rmt )eν

m
t /2 − ψ(rt)e

νt/2| = |ψ(rmt )eν
m
t /2 − ψ(rt)e

νt/2 ± ψ(rt)e
νmt /2|

=
∣∣(ψ(rmt )− ψ(rt))e

νmt /2 + ψ(rt)
(
eν

m
t /2 − eνt/2

)∣∣
≤ |ψ(rmt )− ψ(rt)||eν

m
t /2|+ |ψ(rt)||

√
λmt −

√
λt|

≤ C{|rmt − rt||eν
m
t /2|+

√
|λmt − λt| < δ

and by taking expectation of the square

E(Zm
t − Zt)

2 ≤ C{E|λmt − λt|+ E
(
|rmt − rt|2|eν

m
t |+ 2|rmt − rt||eν

m
t /2|

√
|λmt − λt|

)
}

It can be shown that the process

{|rmt − rt|2|eν
m
t |+ 2|rmt − rt||eν

m
t /2|

√
|λmt − λt|}

is uniformly integrable because

sup
t
{|rmt − rt|2|eν

m
t |+ 2|rmt − rt||eν

m
t /2|

√
|λmt − λt|} ≤ sup

t
{|eνmt |+ 2|eνmt /2|}

and

E
(
|eνmt |+ 2|eνmt /2|

)
<∞.

Also, in addition to uniform integrability, the process converges almost surely to zero,

therefore its expected value converges to zero. These show that

E(Zm
t − Zt)

2 < δ.

Proof of Lemma 4.1.2. The score function Sm
n for the perturbed model is a martingale
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sequence, with E(Sm
n |Fm

t−1) = Sm
n−1 at the true value θ = θ0 and Fm

t−1 denotes the σ-field

generated by {Y m
0 , ..., Y m

t−1,U0, ...,Ut−1}. This is because the following statements hold

true

i. Fm
n ⊂ Fm

n+1 since Fm
n denotes the σ-field generated by {Y0, ..., Yn,U0, ...,Un} and Fm

n+1

denotes the σ-field generated by {Y0, ..., Yn, Yn+1,U0, ...,Un,Un+1},

ii. Sm
n is Fm

n -measurable,

iii. E | Sm
n |<∞ since the score is centered and

iv.

E(Sm
n ∥ Fm

n−1) = E

(
n∑

t=1

smt ∥ Fm
n−1)

)
= E

(
n−1∑
t=1

smt + smn ∥ Fm
n−1)

)

= E

(
n−1∑
t=1

smt ∥ Fm
n−1)

)
+ E

(
smn ∥ Fm

n−1)
)

= E(Sm
n−1 ∥ Fm

n−1) + E
(
mm

n − E(mm
n ∥ Fm

n−1)
)︸ ︷︷ ︸

=0

= Sm
n−1.

We will show that it is square integrable. Proving that E||smt ||2 is finite for θ0 = d0, a0

and b0 guarantees an application of the strong law of large numbers for martingales (Chow

(1967)), which gives almost sure convergence to 0 of Sm
n /n as n→ ∞. But

E

{∣∣∣∣ψ(rmt )wte
νmt /2∂ν

m
t

∂θi

∣∣∣∣}2

≤ C
(
E|eνmt |2

)1/2(
E

(
∂νmt
∂θi

)4
)1/2

and this is finite because of Lemma A-1 and (A-4). Finite moments of |eνmt |2 and (∂νmt /∂θi)
4

show that the above is finite and conclude the first assertion of the Lemma. To show

asymptotic normality of the perturbed score function Sm
n we apply the CLT for mar-

tingales (Hall and sHeyde (1980, Cor. 3.1). (Sm
n )n≥1 is a zero mean, square integrable

martingale sequence with (smt )t≥N a martingale difference sequence, and so a conditional

Lindeberg condition and a condition on the conditional variance hold. To prove the con-
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ditional Lindeberg’s condition, denote by 1(.) the indicator function and note that

1

n

n∑
t=1

E(∥ smt ∥2 1(∥ smt ∥>
√
nδ)|Fm

t−1) ≤ 1

n

n∑
t=1

E

{
||smt ||4

nδ2
|Ft−1

}
=

1

n2δ2

n∑
t=1

E(||smt ||4|Ft−1)
p−→ 0

because E||smt ||4 <∞ and by applying the Lyapounov condition since the indicator func-

tion implies that

||smt ||21(∥ smt ∥>
√
nδ) ≤ ||smt ||21(∥ smt ∥>

√
nδ)

||smt ||2

nδ2

≤ ||smt ||4

nδ2
1(∥ smt ∥>

√
nδ)

≤ ||smt ||4

nδ2
.

In addition, on the conditional variance

1

n

n∑
t=1

V ar(smt |Fm
t−1)

p−→ E
{
E[(smt )(s

m
t )

T |Fm
t−1]
}
= E (smt (s

m
t )) = Wm.

This concludes the second result of the Lemma.

The third result of the Lemma is identical to Lemma 4.1.1 by Prop. 6.3.9. of Brockwell

and Davis (1991). Consider now the last result of the Lemma.

1√
n
(Sm

n − Sn) =
1√
n

n∑
t=1

{smt − st} =
1√
n

n∑
t=1

(
Wm

t

∂νmt
∂θ

−Wt
∂νt
∂θ

)
=

1√
n

n∑
t=1

(
Wm

t

∂νmt
∂θ

−Wt
∂νt
∂θ

±Wm
t

∂νt
∂θ

)
=

1√
n

n∑
t=1

[
Wm

t

(
∂νmt
∂θ

− ∂νt
∂θ

)
+ (Wm

t −Wt)
∂νt
∂θ

]
,

where Wt = Zt − E[Zt ∥ Ft−1] and similarly for the perturbed model. For the first
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summand in the above representation, we obtain that

P

(∥∥∥∥∥
n∑

t=1

Wm
t

(
∂νmt
∂θ

− ∂νt
∂θ

)∥∥∥∥∥ > δ
√
n

)
≤ P

(
γm

∣∣∣∣∣
n∑

t=1

Wm
t

∣∣∣∣∣ > δ
√
n

)

≤ γ2m
δ2n

n∑
t=1

E |Wm
t |2 ≤ Cγ2m → 0,

as m→ ∞, for some γm. For the second summand, note that

Wm
t = Zm

t − E[Zm
t ∥ Ft−1] = ψ(rmt )wte

νmt /2∂ν
m
t

∂θ
− E

(
ψ(rmt )wte

νmt /2∂ν
m
t

∂θ
∥ Ft−1

)
= ψ(rmt )wte

νmt /2∂ν
m
t

∂θ
− E (ψ(rmt ) ∥ Ft−1)wte

νmt /2∂ν
m
t

∂θ

= [ψ(rmt )− E (ψ(rmt ) ∥ Ft−1)]wte
νmt /2∂ν

m
t

∂θ
.

Consider now the difference

Wm
t −Wt =

[
ψ(rmt )− E

(
ψ(rmt ) ∥ Fm

t−1

)]
wte

νmt /2∂ν
m
t

∂θ
− [ψ(rt)− E (ψ(rt) ∥ Ft−1)]wte

νt/2∂νt
∂θ

≤
[
ψ(rmt )− E

(
ψ(rmt ) ∥ Fm

t−1

)]
eν

m
t /2∂ν

m
t

∂θ
− [ψ(rt)− E (ψ(rt) ∥ Ft−1)] e

νt/2∂νt
∂θ

±
[
ψ(rmt )− E

(
ψ(rmt ) ∥ Fm

t−1

)]
eνt/2

∂νt
∂θ

=
( [
ψ(rmt )−E

(
ψ(rmt ) ∥ Fm

t−1

)]
− [ψ(rt)− E (ψ(rt) ∥ Ft−1)]

)
eνt/2

∂νt
∂θ

+
[
ψ(rmt )− E

(
ψ(rmt ) ∥ Fm

t−1

)](
eν

m
t /2∂ν

m
t

∂θ
− eνt/2

∂νt
∂θ

)
.

For the first term,

∣∣∣(ψ(rmt )− E
(
ψ(rmt )||Fm

t−1

))
−
(
ψ(rt)− E

(
ψ(rt)||Ft−1

)]∣∣∣
=
∣∣[ψ(rmt )− ψ(rt)]−

[
E
(
ψ(rmt )||Fm

t−1

)
− E (ψ(rt)||Ft−1)

]∣∣
=
∣∣[ψ(rmt )− ψ(rt)]−

[
E
(
ψ(rmt )− ψ(rt)||Fm

t−1

)]∣∣
≤ C

(
|rmt − rt|+ E

(
|rmt − rt|||Fm

t−1

))
(A-5)

and therefore its expected value tends to 0 by Lemma A-3.
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For the second term,

eν
m
t /2∂ν

m
t

∂θ
− eνt/2

∂νt
∂θ

= eν
m
t /2∂ν

m
t

∂θ
− eνt/2

∂νt
∂θ

± eν
m
t /2∂νt

∂θ

= eν
m
t /2
(∂νmt
∂θ

− ∂νt
∂θ

)
+
(
eν

m
t /2 − eνt/2

)∂νt
∂θ

= eν
m
t /2
(∂νmt
∂θ

− ∂νt
∂θ

)
+
(√

λmt −
√
λt

)∂νt
∂θ

≤ eν
m
t /2
(∂νmt
∂θ

− ∂νt
∂θ

)
+
√

|λmt − λt|
∂νt
∂θ

whose expected value tends to 0 by (A-4) and Lemma A-2. The fact that E||∂νt/∂θ||2 <∞

yield the desired conclusion.

P

(
∥

n∑
t=1

(Wm
t −Wt)

∂νt
∂θ

∥ > δ
√
n

)
≤ P

(
γm∥

n∑
t=1

∂νt
∂θ

∥ > δ
√
n

)

≤ γ2m
δ2n

n∑
t=1

E∥∂νt
∂θ

∥2 ≤ Cγ2m → 0,

as m→ ∞, for some γm.

Proof of Lemma 4.1.3. Because Sn(θ) = 0 is an unbiased estimating function, it holds

by Lemma A-4 that

−E
(
∂

∂θ
st(θ)||Ft−1

)
= E

(
st(θ)

∂ℓt(θ)

∂θ
||Ft−1

)
,

where ℓt(θ) = (Ytνt(θ) − exp(νt(θ))), is the logarithm of the conditional probability of

Yt||Ft−1 under the Poisson assumption. The matrices Vn(θ) = − 1
n

n∑
t=1

E
(

∂
∂θ
st(θ)||Ft−1

)
and V m

n (θ) = − 1
n

n∑
t=1

E
(

∂
∂θ
smt (θ)||Ft−1

)
are consistent estimators of the matrices V and

V m respectively. Then, the matrix Vn(θ) is rewritten in the form

Vn(θ) =
1

n

n∑
t=1

E

(
st(θ)

∂ℓt(θ)

∂θ
||Ft−1

)

and the matrix V m
n (θ) for the perturbed model is defined analogously. We again examine
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the difference smt (∂ℓ
m
t /∂θi)− st(∂ℓt/∂θi) for θi = d, a, b. Notice that

st
∂ℓt
∂θi

= (mti − E(mti||Ft−1))(Yt − eνt)
∂νt
∂θi

=
(
ψ(rt)wte

νt/2
∂νt
∂θi

− E

(
ψ(rt)wte

νt/2
∂νt
∂θi

||Ft−1

))
(Yt − eνt)

∂νt
∂θi

=
(
ψ(rt)wte

νt/2
∂νt
∂θi

− E (ψ(rt)||Ft−1)wte
νt/2

∂νt
∂θi

)
(Yt − eνt)

∂νt
∂θi

= wte
νtrt

(
ψ(rt)− E (ψ(rt)||Ft−1)

)(∂νt
∂θi

)2

.

Then,

E

∣∣∣∣smt ∂ℓmt∂θi − st
∂ℓt
∂θi

∣∣∣∣
= E

∣∣∣∣∣wte
νmt rmt

(
ψ(rmt )− E

(
ψ(rmt )||Fm

t−1

))(∂νmt
∂θi

)2

− wte
νtrt

(
ψ(rt)− E (ψ(rt)||Ft−1)

)(∂νt
∂θi

)2
∣∣∣∣∣

≤ E|eνmt rmt
(
∂νmt
∂θi

)2 (
ψ(rmt )− E

(
ψ(rmt )||Fm

t−1

))
− eνtrt

(
∂νt
∂θi

)2 (
ψ(rt)− E (ψ(rt)||Ft−1)

)
± eν

m
t rmt

(
∂νmt
∂θi

)2 (
ψ(rt)− E (ψ(rt)||Ft−1)

)
|

≤ E

∣∣∣∣∣eνmt rmt
(
∂νmt
∂θi

)2 ([
ψ(rmt )− E

(
ψ(rmt )||Fm

t−1

)]
− [ψ(rt)− E (ψ(rt)||Ft−1)]

)∣∣∣∣∣
+ E

∣∣∣∣∣(eνmt rmt
(
∂νmt
∂θi

)2

− eνtrt

(
∂νt
∂θi

)2)
(ψ(rt)− E (ψ(rt)||Ft−1))

∣∣∣∣∣ .
For the first summand, (A-5) shows that it tends to zero. More specifically, recall that

the expected value of (A-5) tends to 0 as m→ ∞. This demonstrates that the process

{[
ψ(rmt )− E

(
ψ(rmt )||Fm

t−1

)]
− [ψ(rt)− E (ψ(rt)||Ft−1)]

}
is uniformly integrable, and because

∣∣eνmt rmt (∂νmt /∂θi)
2
∣∣
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is bounded by a finite constant, we obtain uniform integrability of the process{
eν

m
t rmt

(
∂νmt
∂θi

)2 [
ψ(rmt )− E

(
ψ(rmt )||Fm

t−1

)]
− [ψ(rt)− E (ψ(rt)||Ft−1)]

}
.

Also, because the above process converges almost surely to 0 as m→ ∞ we finally obtain

that the first summand tends to zero. We work similarly for the second summand to

obtain the desired result. In particular,∣∣∣∣∣eνmt rmt
(
∂νmt
∂θi

)2

− eνtrt

(
∂νt
∂θi

)2
∣∣∣∣∣ =

∣∣∣∣∣eνmt rmt
(
∂νmt
∂θi

)2

− eνtrt

(
∂νt
∂θi

)2

± eν
m
t rmt

(
∂νt
∂θi

)2
∣∣∣∣∣

≤

∣∣∣∣∣eνmt rmt
[(

∂νmt
∂θi

)2

−
(
∂νt
∂θi

)2
]∣∣∣∣∣+

∣∣∣∣∣(eνmt rmt − eνtrt
)(∂νt

∂θi

)2
∣∣∣∣∣

=

∣∣∣∣∣eνmt rmt
[(

∂νmt
∂θi

)2

−
(
∂νt
∂θi

)2
]∣∣∣∣∣+ ∣∣eνmt rmt − eνtrt ± eν

m
t rt
∣∣ (∂νt

∂θi

)2

=

∣∣∣∣∣eνmt rmt
[(

∂νmt
∂θi

)2

−
(
∂νt
∂θi

)2
]∣∣∣∣∣+ ∣∣eνmt (rmt − rt) +

(
eν

m
t − eνt

)
rt
∣∣ (∂νt

∂θi

)2

≤
∣∣eνmt rmt ∣∣

∣∣∣∣∣
(
∂νmt
∂θi

)2

−
(
∂νt
∂θi

)2
∣∣∣∣∣+ ∣∣eνmt ∣∣

(
∂νt
∂θi

)2

|rmt − rt|+
∣∣eνmt − eνt

∣∣ |rt|(∂νt
∂θi

)2

.

(A-6)

The expected value of (A-6) tends to 0 as m→ ∞, by using (A-3) and Lemmas A-2 and

A-3, which shows that the process{
eν

m
t rmt

(
∂νmt
∂θi

)2

− eνtrt

(
∂νt
∂θi

)2
}

is uniformly integrable. In addition, |ψ(rt)− E (ψ(rt)||Ft−1) | is bounded by a finite con-

stant. Considering also that[
eν

m
t rmt

(
∂νmt
∂θi

)2

− eνtrt

(
∂νt
∂θi

)2
]
[ψ(rt)− E (ψ(rt)||Ft−1)]

tends to zero as m → ∞, we conclude to the desired result. To show that Vn is positive

definite it is sufficient to show that z′ (∂νt/∂θ) (∂νt/∂θ)
′ z > 0 for any non-zero three

dimensional real vector z. If z′∂νt/∂θ = 0, then we obtain that z′(1, νt−1, log(Yt−1+1))′ =
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0. But if the last equation holds, then z = 0 because νt is expressed as a past function of

log(Yt + 1) and Yt is non-zero for some t. The same reasoning holds for V m
n .

Proof of Lemma 4.1.4. The first assertion of the Lemma holds by using a LLN. For

the second, the Hessian matrix Hn can be represented as

Hn =
1

n

n∑
t=1

st
∂lt
∂θ

=
1

n

n∑
t=1

{
wte

νtrt [ψ(rt)− E (ψ(rt)||Ft−1)]

(
∂νt
∂θ

)(
∂νt
∂θ

)T
}
.

The matrix Hm
n for the perturbed model is defined analogously. Examining the difference

Hm
n −Hn, we obtain that

Hm
n −Hn =

1

n

n∑
t=1

wt

{
eν

m
t rmt

[
ψ(rmt )− E

(
ψ(rmt )||Fm

t−1

)](∂νmt
∂θ

)(
∂νmt
∂θ

)T

− eνtrt [ψ(rt)− E (ψ(rt)||Ft−1)]

(
∂νt
∂θ

)(
∂νt
∂θ

)T}
=

1

n

n∑
t=1

wt

{
eν

m
t rmt

[
ψ(rmt )− E

(
ψ(rmt )||Fm

t−1

)] [(∂νmt
∂θ

)(
∂νmt
∂θ

)T

−
(
∂νt
∂θ

)(
∂νt
∂θ

)T
]

+
(
eν

m
t rmt

[
ψ(rmt )− E

(
ψ(rmt )||Fm

t−1

)]
− eνtrt [ψ(rt)− E (ψ(rt)||Ft−1)]

)(∂νt
∂θ

)(
∂νt
∂θ

)T}
.

The second term in the above representation tends to zero as m → ∞ because of the

previous Lemma and the fact that E
∥∥∥(∂νt/∂θ) (∂νt/∂θ)T∥∥∥ <∞. Indeed,

eν
m
t rmt

[
ψ(rmt )− E

(
ψ(rmt )||Fm

t−1

)]
− eνtrt [ψ(rt)− E (ψ(rt)||Ft−1)]

= eν
m
t rmt

([
ψ(rmt )− E

(
ψ(rmt )||Fm

t−1

)]
− [ψ(rt)− E (ψ(rt)||Ft−1)]

)
+
(
eν

m
t − eνt

)
[ψ(rt)− E (ψ(rt)||Ft−1)]

≤ eν
m
t |rmt |

∣∣[ψ(rmt )− E
(
ψ(rmt )||Fm

t−1

)]
− [ψ(rt)− E (ψ(rt)||Ft−1)]

∣∣
+ |λmt − λt|| [ψ(rt)− E (ψ(rt)||Ft−1)] |
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and both terms tend to zero by (A-5) and Lemma A-2. So,

P

(∥∥∥∥∥
n∑

t=1

{
eν

m
t rmt

[
ψ(rmt )− E

(
ψ(rmt )||Fm

t−1

)]
− eνtrt [ψ(rt)− E (ψ(rt)||Ft−1)]

}(∂νt
∂θ

)(
∂νt
∂θ

)T
∥∥∥∥∥ > ϵn

)

≤ δ

ϵn

n∑
t=1

E

∥∥∥∥∥{eνmt rmt [ψ(rmt )− E
(
ψ(rmt )||Fm

t−1

)]
− eνtrt [ψ(rt)− E (ψ(rt)||Ft−1)]

}(∂νt
∂θ

)(
∂νt
∂θ

)T
∥∥∥∥∥

≤ Cγm → 0.

For the first term in the representation of Hm
n −Hn, we obtain the following

P

(∥∥∥∥∥
n∑

t=1

eν
m
t rmt

[
ψ(rmt )− E

(
ψ(rmt )||Fm

t−1

)] [(∂νmt
∂θ

)(
∂νmt
∂θ

)T

−
(
∂νt
∂θ

)(
∂νt
∂θ

)T
]∥∥∥∥∥ ≥ ϵn

)

≤ 1

ϵn

n∑
t=1

E

∥∥∥∥∥eνmt rmt [ψ(rmt )− E
(
ψ(rmt )||Fm

t−1

)] [(∂νmt
∂θ

)(
∂νmt
∂θ

)T

−
(
∂νt
∂θ

)(
∂νt
∂θ

)T
]∥∥∥∥∥

→ 0.

Proof of Lemma 4.1.5. Recall that the components of the MQLE score are given by

sti(θ) = mti(θ)−E(mti(θ)||Ft−1), where mti(θ) = ψ(rt(θ))wte
νt(θ)/2

∂νt(θ)

∂θi
, i = 1, 2, 3.

The second derivative of the i-th component of the MQLE score ∂2sti(θ)/∂θk∂θj is given

by
∂2sti(θ)

∂θk∂θj
=
∂2mti(θ)

∂θk∂θj
− E(

∂2mti(θ)

∂θk∂θj
||Ft−1),

where

∂2mti(θ)

∂θk∂θj
= ξ1t(θ)

∂νt(θ)

∂θk

∂νt(θ)

∂θj

∂νt(θ)

∂θi

+ ξ2t(θ)

{
∂2νt(θ)

∂θk∂θj

∂νt(θ)

∂θi
+
∂2νt(θ)

∂θk∂θi

∂νt(θ)

∂θj
+
∂2νt(θ)

∂θj∂θi

∂νt(θ)

∂θk

}
+ ξ3t(θ)

∂3νt(θ)

∂θk∂θj∂θi
.
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where

ξ1t(θ) = −1

2
{ψ′(rt(θ))e

νt(θ) − 1

2
ψ′′(rt(θ))(Yt + eνt(θ))(Yte

−νt(θ)/2 + eνt(θ)/2)

+
1

2
ψ′(rt(θ))(Yt + eνt(θ))− 1

2
ψ(rt(θ))e

νt(θ)/2}wt

ξ2t(θ) = −1

2

{
(Yt + eνt(θ))ψ′(rt(θ))− ψ(rt(θ))e

νt(θ)/2
}
wt

ξ3t(θ) = ψ(rt(θ))wte
νt(θ)/2.

Without loss of generality, we only consider derivatives with respect to a. For the deriva-

tives with respect to d and b we use identical arguments. For the derivatives of νt with

respect to the parameter a we obtain the following bounds:

νt ≤ µ0t := bM

t−1∑
j=1

ajM log(1 + Yt−j−1) + c0, where c0 = dM/(1− aM) + ν0,

∂νt
∂a

≤ µ1t := bM

t−1∑
j=1

jaj−1
M log(1 + Yt−j−1) + c1, where c1 = c0/(1− aM),

∂2νt
∂a2

≤ µ2t := bM

t−2∑
j=1

j(j + 1)aj−1
M log(1 + Yt−j−2) + c2, where c2 = 2c0/(1− aM)2,

∂3νt
∂a3

≤ µ3t := bM

t−3∑
j=1

j(j + 1)(j + 2)aj−1
M log(1 + Yt−j−3) + c3, where c3 = 6c0/(1− aM)3.

(A-7)

Derivation of the above relations is found in the end of the proof of the Lemma.

With θi = θj = θk = a,

∣∣∣ ∂2mti

∂θk∂θj
− E(

∂2mti

∂θk∂θj
||Ft−1)

∣∣∣ < C
{
|ξ1t(θ)− E(ξ1t(θ)||Ft−1)|µ31t + |ξ2t(θ)− E(ξ2t(θ)||Ft−1)|µ1tµ2t

+ |ξ3t(θ)− E(ξ3t(θ)||Ft−1)|µ3t

}
≡ m̃t. (A-8)

M̃m
n is defined analogously. The first assertion of the Lemma holds by applying the Law

of Large Numbers for geometrically ergodic processes; see Jensen and Rahbek (2007). To
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prove the second assertion of the Lemma, consider the difference m̃m
t − m̃t:

|m̃m
t − m̃t| < C|

[
ξm1t(θ)− E(ξm1t(θ)||Fm

t−1)
]
(µm

1t)
3 − [ξ1t(θ)− E(ξ1t(θ)||Ft−1)]µ

3
1t

+
[
ξm2t(θ)− E(ξm2t(θ)||Fm

t−1)
]
µm
1tµ

m
2t − [ξ2t(θ)− E(ξ2t(θ)||Ft−1)]µ1tµ2t

+
[
ξm3t(θ)− E(ξm3t(θ)||Fm

t−1)
]
µm
3t − [ξ3t(θ)− E(ξ3t(θ)||Ft−1)]µ3t|

≤ C{|At|+ |Bt|+ |Γt|}.

We examine separately the expected value of each of the |At|, |Bt| and |Γt|.

E|At| = E|
[
ξm1t(θ)− E(ξm1t(θ)||Fm

t−1)
]
(µm

1t)
3 − [ξ1t(θ)− E(ξ1t(θ)||Ft−1)]µ

3
1t|

≤ E|
[
ξm1t(θ)− E(ξm1t(θ)||Fm

t−1)
]
((µm

1t)
3 − µ3

1t)|

+ E|
[
(ξm1t(θ)− ξ1t(θ))− E(ξm1t(θ)− ξ1t(θ)||Fm

t−1)
]
µ3
1t|.

Similarly for E|Bt| and E|Γt|. It follows that

E(µ3
1t) ≤ C

t−1∑
j=1

j2a
2(j−1)
M <∞, as aM < 1,

and analogously E(µ1tµ2t) <∞ and E(µ3t) <∞ by using Lemma A-1. Also,

|µm
3t − µ3t| ≤

t−3∑
j=1

j(j + 1)(j + 2)aj−1
M | log(1 + Y m

t−j−3)− log(1 + Yt−j−3)|

≤
t−3∑
j=1

j(j + 1)(j + 2)aj−1
M |Y m

t−j−3 − Yt−j−3|

tends to zero as m → ∞, by Lemma A-2. The same reasoning holds for the differences

|µm
1t − µ1t| and |µm

2t − µ2t|. For the difference |µm
1tµ

m
2t − µ1tµ2t| we have that

|µm
1tµ

m
2t − µ1tµ2t| = |µm

1tµ
m
2t − µ1tµ2t ± µm

1tµ2t|

≤ |(µm
1t − µ1t)µ2t|+ |(µm

2t − µ2t)µ
m
1t|
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which tends to zero as m→ ∞ following previous results. Additionally,

|ξm3t(θ)− ξ3t(θ)| = |ψ(rmt (θ))eν
m
t (θ)/2 − ψ(rt(θ))e

νt(θ)/2 ± ψ(rmt (θ))e
νt(θ)/2|

≤ |ψ(rmt (θ))(eν
m
t (θ)/2 − eνt(θ)/2)|+ |(ψ(rmt (θ))− ψ(rt(θ)))e

νt(θ)/2|

≤ C(
√

|λmt (θ)− λt(θ)|+ |rmt (θ)− rt(θ)|eνt(θ)/2),

therefore the expected value of

|(ξm3t(θ)− ξ3t(θ))− E(ξm3t(θ)− ξ3t(θ) ∥ Fm
t−1)|

tends to zero by Lemmas A-2 and A-3. In the same manner, we obtain that

|ξm2t(θ)− ξ2t(θ)| ≤ 1

2
|ξm3t(θ)− ξ3t(θ)|+

1

2
|(Y m

t + eν
m
t (θ))(ψ′(rmt (θ))− ψ′(rt(θ)))

+ (Y m
t − Yt + eν

m
t (θ) − eνt(θ))ψ′(rt(θ))|

≤ 1

2
|ξm3t(θ)− ξ3t(θ)|+

1

2
C{(Y m

t + eν
m
t (θ))(|rmt (θ)− rt(θ)|

+ |Y m
t − Yt|+ |λmt (θ)− λt(θ)|}

and

|ξm1t(θ)− ξ1t(θ)| ≤ 1

4
|ψ′′(rmt (θ))(Y

m
t + eν

m
t (θ))2 − ψ′′(rt(θ))(Yt + eνt(θ))2|

+
1

2
|ξm2t(θ)− ξ2t(θ)|+

1

2
(ψ′(rmt (θ))e

νmt (θ) − ψ′(rt(θ))e
νt(θ))

=
1

4
C|(Y m

t + eν
m
t (θ))2 − (Yt + eνt(θ))2|+ 1

2
|ξm2t(θ)− ξ2t(θ)|

+
1

2
|(ψ′(rmt (θ))− ψ′(rt(θ)))e

νt(θ) + ψ′(rmt (θ))(e
νmt (θ) − eνt(θ))|

=
1

4
C|(Y m

t + eν
m
t (θ))2 − (Yt + eνt(θ))2|+ 1

2
|ξm2t(θ)− ξ2t(θ)|

+
1

2
C(|rmt (θ)− rt(θ)|eνt(θ) + |λmt (θ)− λt(θ)|)

whose expected value tends to zero as m → ∞. This concludes the second part of the

Lemma.
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Finally, for the third assertion of the Lemma, we have that

P
(
|M̃m

n − M̃n| > ϵn
)
= P

(∣∣∣∣∣
n∑

t=1

[
(m̃m

t − m̃t)− E(m̃m
t − m̃t ∥ Fm

t−1)
]∣∣∣∣∣ ϵn

)
→ 0

by previous arguments. This concludes the proof of the Lemma.

To show (A-4), recall that after repeated substitution, the process {νt} can be expressed

as

νt = d
1− at

1− a
+ atν0 + b

t−1∑
i=0

ai log(1 + Yt−i−1).

Then,

|νt| ≤
∣∣∣∣d1− at

1− a

∣∣∣∣+ |at||ν0|+ bM

t−1∑
i=0

aiM log(1 + Yt−i−1)

≤ dM
1− aM

+ |ν0|+ bM

t−1∑
i=0

aiM log(1 + Yt−i−1)

= c0 + bM

t−1∑
i=0

aiM log(1 + Yt−i−1), where c0 = dM/(1− aM).

On the derivatives of νt with respect to d:

∂νt
∂d

=
1− at

1− a
≤ 1

1− a
≤ 1

1− aM
.

On the derivative of νt with respect to a:

∂νt
∂a

= νt−1 + a
∂νt−1

∂a
= νt−1 + a{νt−2 + a

∂νt−2

∂a
} = · · · =

t−2∑
j=0

ajνt−j−1

≤
t−2∑
j=0

ajM

c0 + bM

(t−j−1)−1∑
i=0

aiM log(1 + Y(t−j−1)−i−1)


≤ c0

t−2∑
j=0

ajM +
t−2∑
j=0

ajMbM

(t−j−1)−1∑
i=0

aiM log(1 + Y(t−j−1)−i−1),

where
t−2∑
j=0

ajM =
1− at−1

1− a
≤ 1

1− aM
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and

t−2∑
j=0

ajMbM

(t−j−1)−1∑
i=0

aiM log(1 + Y(t−j−1)−i−1) = bM

t−2∑
j=0

(t−j−1)−1∑
i=0

ai+j
M log(1 + Y(t−j−1)−i−1)

= bM

t−1∑
j=0

jaj−1
M log(1 + Yt−j−i)

which result to

∂νt
∂a

≤ c1 + bM

t−1∑
j=0

jaj−1
M log(1 + Yt−j−1), where c1 = c0/(1− aM).

On the derivative of νt with respect to b:

∂νt
∂b

=
t−1∑
i=0

ai log(1 + Yt−i−1) ≤
t−1∑
i=0

aiM log(1 + Yt−i−1).

To show the bounds on the second and third derivative of νt with respect to a, as in (A-7),

we work as follows:

On the second derivative of νt with respect to a,

∂2νt
∂a2

=
∂

∂a

(
∂νt
∂a

)
≤ ∂

∂a

(
t−2∑
j=0

ajνt−j−1

)
=

t−2∑
j=0

(
jaj−1νt−j−1 + aj

∂νt−j−1

∂a

)

≤
t−2∑
j=0

(
jaj−1

M |νt−j−1|+ ajM
∂νt−j−1

∂a

)

≤
t−2∑
j=0

jaj−1
M c0 +

t−2∑
j=0

ajM
c0

1− aM

+
t−2∑
j=0

(
jaj−1

M bM

t−j−2∑
i=0

aiM log(1 + Yt−j−i−2) + ajMbM

t−j−2∑
i=1

iai−1
M log(1 + Yt−j−i−2)

)

using the bounds on νt and ∂νt/∂a. It holds that

t−2∑
j=0

jaj−1
M c0 +

t−2∑
j=0

ajM
c0

1− aM
< c0

1

(1− aM)2
+

c0
1− aM

1

1− aM
=

2c0
(1− aM)2

.
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Also,

t−2∑
j=0

(
jaj−1

M bM

t−j−2∑
i=0

aiM log(1 + Yt−j−i−2) + ajMbM

t−j−2∑
i=1

iai−1
M log(1 + Yt−j−i−2)

)

=
t−2∑
j=0

aj−1
M bM

t−j−2∑
i=0

(i+ j)aiM log(1 + Yt−j−i−2)

= bM

t−2∑
j=0

t−j−2∑
i=0

(i+ j)ai+j−1
M log(1 + Yt−j−i−2)

= bM

t−2∑
j=1

j(j + 1)aj−1
M log(1 + Yt−j−2).

Therefore, we conclude that

∂2νt
∂a2

= c2 + bM

t−2∑
j=1

j(j + 1)aj−1
M log(1 + Yt−j−2), where c2 =

2c0
(1− aM)2

.
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On the third derivative of νt with respect to a,

∂3νt
∂a3

=
∂

∂a

(
∂2νt
∂a2

)
≤ ∂

∂a

{
t−2∑
j=0

(
jaj−1νt−j−1 + aj

∂νt−j−1

∂a

)}

=
t−2∑
j=0

(
j(j − 1)aj−2νt−j−1 + 2jaj−1∂νt−j−1

∂a
+ aj

∂2νt−j−1

∂a2

)

≤
t−2∑
j=0

{j(j − 1)aj−2
M

(
c0 + bM

t−j−2∑
i=0

aiM log(1 + Yt−i−j−2)

)

+2jaj−1
M

(
c0/(1− aM) + bM

t−j−2∑
i=0

iai−1
M log(1 + Yt−i−j−2)

)

+ajM

(
2c0

(1− aM)2
+ bM

t−j−3∑
i=1

i(i+ 1)ai−1
M log(1 + Yt−i−j−3)

)
}

=
t−2∑
j=0

{j(j − 1)aj−2
M c0 + 2jaj−1

M

c0
1− aM

+ ajM
2c0

(1− aM)2
}

+
t−2∑
j=0

{j(j − 1)aj−2
M bM

t−j−2∑
i=0

aiM log(1 + Yt−i−j−2)

+2jaj−1
M bM

t−j−2∑
i=0

iai−1
M log(1 + Yt−i−j−2)

+ajMbM

t−j−3∑
i=1

i(i+ 1)ai−1
M log(1 + Yt−i−j−3)}

=

(
2c0

(1− aM)3
+

2c0
1− aM

1

(1− aM)2
+

2c0
(1− aM)2

1

1− aM

)
+bM

t−3∑
j=1

j(j + 1)(j + 2)aj−1
M log(1 + Yt−j−3)

= c3 + bM

t−3∑
j=1

j(j + 1)(j + 2)aj−1
M log(1 + Yt−j−3), where c3 =

6c0
(1− aM)3

.

Proof of Theorem 4.2.1. The first assertion of the Theorem follows from arguments

given in Francq and Zaköıan (2010, Prop. 8.3). For the second assertion of the Theorem,
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we consider the difference

STm
n (θ̃n)− STn(θ̃n) =

[S
(2,m)
n (θ̃n)]

2

(σ̃m)2
− [S

(2)
n (θ̃n)]

2

σ̃2

= [S(2,m)
n (θ̃n)]

2 σ̃
2 − (σ̃m)2

(σ̃m)2σ̃2
+

[S
(2,m)
n (θ̃n)]

2 − [S
(2)
n (θ̃n)]

2

σ̃2
.

The above representation is composed of the following differences, Wm
22 −W22, W

m
12 −W12,

Wm
21 −W21, W

m
11 −W11, V

m
11

−1V m
12 − V11

−1V12, V
m
21 V

m
11

−1 − V21V
−1
11 and V m

11
−1V m

12 − V −1
11 V12

which all converge to zero as results of Lemmas 4.1.1 and 4.1.3. In particular, for the first

summand we have that

|σ̃2 − (σ̃m)2| = |(W22 − V21(V11)
−1W12 −W21(V11)

−1V12 + V21(V11)
−1W11(V11)

−1V12)

− (Wm
22 − V m

21 V
m
11

−1Wm
12 −Wm

21V
m
11

−1V m
12 + V m

21 (V
m
11 )

−1Wm
11V

m
11

−1V m
12 )|

= (Wm
22 −W22) + (V m

21 (V
m
11 )

−1Wm
12 − V21V11

−1W12)

+ (Wm
21(V

m
11 )

−1V m
12 −W21V11

−1V12)

+ (V m
21 (V

m
11 )

−1Wm
11(V

m
11 )

−1V m
12 − V21V11

−1W11V11
−1V12)

≤ |Wm
22 −W22|+ |V m

21 (V
m
11 )

−1Wm
12 − V21V11

−1W12|

+ |Wm
21(V

m
11 )

−1V m
12 −W21V11

−1V12|

+ |V m
21 (V

m
11 )

−1Wm
11(V

m
11 )

−1V m
12 − V21V11

−1W11V11
−1V12|

and the following hold true:

• Wm
22 −W22 converges to zero from Lemma 4.1.1.

• V m
21 (V

m
11 )

−1Wm
12−V21V11−1W12 = V m

21 (V
m
11 )

−1(Wm
12−W12)+(V m

21 (V
m
11 )

−1−V21V11−1)W12

converges to zero from Lemmas 4.1.1 and 4.1.3.

• Wm
21(V

m
11 )

−1V m
12 −W21V

−1
11 V12 =Wm

21((V
m
11 )

−1V m
12 − V11

−1V12) + (Wm
21 −W21)V11

−1V12

converges to zero from Lemmas 4.1.1 and 4.1.3.

• V m
21 (V

m
11 )

−1Wm
11(V

m
11 )

−1V m
12 − V21V11

−1W11V11
−1V12 = V m

21 (V
m
11 )

−1(Wm
11(V

m
11 )

−1V m
12 −

W11V11
−1V12)+(V m

21 (V
m
11 )

−1−V21V11−1)W11V11
−1V12 which converges to zero because

Wm
11(V

m
11 )

−1V m
12 −W11V11

−1V12 = Wm
11((V

m
11 )

−1V m
12 −V11

−1V12)+ (Wm
11 −W11)V11

−1V12
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by Lemmas 4.1.1 and 4.1.3.

For the second summand, we have that

[S
(2,m)
n (θ̃n)]

2 − [S
(2)
n (θ̃n)]

2

σ̃2
=

[S
(2,m)
n (θ̃n)− S

(2)
n (θ̃n)][[S

(2,m)
n (θ̃n) + S

(2)
n (θ̃n)]]

σ̃2

which converges to zero as a result of Lemma 4.1.2 because θ̃n is a consistent estimator

of θ.
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Chapter 5

Orthogonal Polynomial

Approximation

In this chapter, our interest centers on the autocovariance and autocorrelation functions

of the first order log-linear Poisson model with feedback (4.1) which was studied in the

previous chapter.

In the case of the first order linear Poisson model (2.1), the autocovariance function of

the observed process {Yt} can be derived explicitly because the model can be represented

as an ARMA(1, 1) process; see Section 2.1, Ferland et al. (2006) and Fokianos (2012) for

more. However, a similar expression for the autocovariance function of {Yt} in the case

of the log-linear Poisson model (4.1) cannot be developed, because of the non-linearity

imposed by the log-linear structure.

Our approach to develop an expression for the autocovariance and autocorrelation

functions of {Yt} is by using the autocovariance function of a transformation of the pro-

cess, which we can construct more easily. In particular, we attempt to construct the

autocovariance function of {Yt} using the autocovariance function of the one-to-one trans-

formation {log(1+Yt)} and a connection between the two through orthogonal polynomial

expansions.

There exists a close relationship that connects stochastic processes with orthogonal

polynomials; see Schoutens (2000) among others. Examples of the connection between

stochastic processes and orthogonal polynomials have been examined since the 1950s. For

instance, stochastic integration theory with respect to the Brownian motion, the binomial
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and Poisson processes is connected respectively to the Hermite, Krawtchouk and Charlier

polynomials, whilst the so called Karlin-McGregor representation is applied to express the

transition probabilities of birth and death processes in terms of orthogonal polynomials.

Since then, more relations among stochastic processes and orthogonal polynomials have

been instituted. Schoutens (2000) studies this connection and additionally links the wider

class of Sheffer polynomials with Lévy processes using a martingale relation. The broad

class of Sheffer polynomials includes well known polynomials as are the Hermite, Laguerre

and Charlier polynomials and Lévy processes include among others the Gaussian and

Poisson processes.

In the following section we explore some of the most important classes of orthogonal

polynomials and review their properties. These will be very useful tools in the derivation

of the autocovariance function of {Yt} as discussed above.

5.1 Orthogonal Polynomials

Orthogonal polynomials consist of a most classical topic that emerges in many fields of

mathematical studies. Many surveys on orthogonal polynomials can be found in the

literature, we emphasize however the significant manuscripts of Lebedev (1972), Szegő

(1975) and Chihara (1978). The aforementioned books provide the reader an introduction

to orthogonal polynomials but at the same time provide additionally an extensive study of

the properties and attributes of several particular classes of orthogonal polynomials that

are related to specific weight functions.

5.1.1 Hermite Polynomials

The Hermite polynomials Hn(x) constitute one of the most important classes of orthog-

onal polynomials; see Lebedev (1972) and Szegő (1975). The Hermite polynomials are

associated with the standard normal distribution and are defined by the equation

Hn(x) = (−1)nex
2/2 ∂

n

∂xn
e−x2/2, n = 0, 1, 2, ..., x ∈ (−∞,+∞).
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The first few polynomials are

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3.

An explicit formula to derive the Hermite polynomials is given by

Hn(x) =

[n/2]∑
k=0

(−1)kn!

k!(n− 2k)!

xn−2k

2k

where [ν] denotes the largest integer less than or equal to ν. The generating function of

the Hermite polynomials is

w(x, t) = ext−t2/2 =
∞∑
n=0

Hn(x)
tn

n!
. (5.1)

To support the above representation, consider the Taylor expansion of w(x, t) as a function

of t:

w(x, t) = ext−t2/2 =
∞∑
n=0

[
∂nw(x, t)

∂tn

]
tn

n!
, |t| <∞.

This implies that

∂nw(x, t)

∂tn
= ex

2/2

[
∂n

∂tn
e−(x−t)2/2

]
t=0

= (−1)nex
2/2 ∂

n

∂xn
e−x2/2 = Hn(x)

because ext−t2 = ex
2/2−(x−t)2/2 by completing the square and using the substitution u = x−t

we obtain

[
∂n

∂tn
e−(x−t)2/2

]
t=0

=

[
∂n

∂un
e−u2/2

(
∂u

∂t

)n]
u=x

= (−1)n
[
∂n

∂un
e−u2/2

]
u=x

.

In order to built a three term recurrence relation for the Hermite polynomials, we substi-

tute the generating function (5.1) into the identity

∂w

∂t
− (x− t)w = 0.
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Then,

∞∑
n=1

Hn(x)
ntn−1

n!
− x

∞∑
n=0

Hn(x)
tn

n!
+ t

∞∑
n=0

Hn(x)
tn

n!
= 0

⇒
∞∑
n=1

Hn(x)
tn−1

(n− 1)!
− x

∞∑
n=0

Hn(x)
tn

n!
+ t

∞∑
n=0

Hn(x)
tn+1

n!
= 0

⇒
∞∑
n=1

Hn(x)
tn−1

(n− 1)!
− x

∞∑
n=0

Hn(x)
tn

n!
+

∞∑
n=−1

Hn(x)(n+ 1)
tn+1

(n+ 1)!
= 0

⇒
∞∑
n=0

Hn+1(x)
tn

n!
− x

∞∑
n=0

Hn(x)
tn

n!
+

∞∑
n=0

nHn−1(x)
tn

n!
= 0

and when the coefficient of tn is set equal to zero the three term recurrence relation

Hn+1(x)− xHn(x) + nHn−1(x) = 0, n = 1, 2, . . . (5.2)

is achieved. The above formula (5.2) can be used to derive the Hermite polynomials

starting with H0(x) and H1(x).

The Hermite polynomials Hn(x) are orthogonal with respect to the standard normal

distribution. In particular, they are orthogonal on the interval (−∞,+∞) with respect to

the weight function e−x2/2, that is

∫ ∞

−∞
e−x2/2Hm(x)Hn(x)dx = 0 if m ̸= n.

To retrieve an analogous result for m = n, we use the recurrence relation (5.2). Replacing

the index n by n− 1 and multiplying the result by Hn(x) gives

H2
n(x)− xHn(x)Hn−1(x) + (n− 1)Hn(x)Hn−2(x) = 0.

Also, multiplying the recurrence relation (5.2) by Hn−1(x) gives

Hn+1(x)Hn−1(x)− xHn(x)Hn−1(x) + nH2
n−1(x) = 0.

Subtracting the last two equations we obtain that

H2
n(x) + (n− 1)Hn(x)Hn−2(x)−Hn+1(x)Hn−1(x)− nH2

n−1(x) = 0, n = 2, 3, . . . .
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Finally, multiplying by e−x2/2 and integrating over (−∞,+∞) the above equation, appli-

cation of the property when m ̸= n gives

∫ ∞

−∞
e−x2/2H2

n(x)dx = n

∫ ∞

−∞
e−x2/2H2

n−1(x)dx.

By repeated application we obtain

∫ ∞

−∞
e−x2/2H2

n(x)dx = n

∫ ∞

−∞
e−x2/2H2

n−1(x)dx = n(n− 1)

∫ ∞

−∞
e−x2/2H2

n−2(x)dx

= . . .

= n!

∫ ∞

−∞
e−x2/2H2

1 (x)dx = n!

∫ ∞

−∞
e−x2/2dx

= n!
√
2π, n = 0, 1, 2, . . .

Combining the two resulting equations for m ̸= n and m = n gives the orthogonality

relation of the Hermite polynomials

∫ ∞

−∞
e−x2/2Hm(x)Hn(x)dx = n!

√
2πδmn (5.3)

where δmn denotes the Kronecker delta defined by

δmn =

0, m ̸= n

1, m = n.

The following result is obtained from Lebedev (1972) and shows that a real function

f(x) satisfying certain conditions may be expanded in a series of Hermite polynomials.

Proposition 5.1.1 If the real function f(x) defined on the infinite interval (−∞,+∞) is

piecewise smooth in every finite interval [−a, a], and if the integral

∫ ∞

−∞
e−x2/2f2(x)dx

is finite, then the series

f(x) =
∞∑
n=0

cnHn(x), −∞ < x <∞, (5.4)
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with coefficients cn calculated from

cn =
1

n!
√
2π

∫ ∞

−∞
e−x2/2f(x)Hn(x)dx, (5.5)

converges to f(x) at every continuity point of f(x).

We note that the conditions that are imposed on the function f(x) allow the calculation

of the coefficients cn since they imply the existence of the integral on the right hand side

of (5.5).

The coefficients cn can be determined by multiplying the series (5.4) by e−x2/2Hm(x),

integrating over (−∞,+∞) and applying the orthogonality property of the Hermite poly-

nomials (5.3). In particular, we find that

∫ ∞

−∞
e−x2/2Hm(x)f(x)dx =

∞∑
n=0

cn

∫ ∞

−∞
e−x2/2Hm(x)Hn(x)dx = cmm!

√
2π

which implies (5.5).

The following is an example of expansion of a function in series of Hermite polynomials.

Example 5.1.1 (Lebedev (1972)) Let f(x) = eax where a is an arbitrary real number.

Setting t = a in the generating function (5.1) we obtain that

eax−a2/2 =
∞∑
n=0

Hn(x)
an

n!
⇒ eax = ea

2/2

∞∑
n=0

Hn(x)
an

n!
.

Alternatively, we calculate the coefficients cn in the series expansion of the function f(x) =

eax according to (5.5) as follows:

cn =
1

n!
√
2π

∫ ∞

−∞
e−x2/2f(x)Hn(x)dx =

1

n!
√
2π

∫ ∞

−∞
eax−x2/2Hn(x)dx

=
1

n!
√
2π

∫ ∞

−∞
eax−x2/2(−1)nex

2/2 ∂
n

∂xn
e−x2/2dx =

1

n!
√
2π

∫ ∞

−∞
(−1)neax

∂n

∂xn
e−x2/2dx

= . . . (performing integration by parts n times)

=
1

n!
√
2π
anea

2/2

∫ ∞

−∞
e−x2/2dx =

1

n!
√
2π
anea

2/2
√
2π

= anea
2/2.
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5.1.2 Laguerre Polynomials

Another important class of orthogonal polynomials is the class of the Laguerre polynomials

La
n(x) defined by

La
n(x) = ex

x−a

n!

dn

dxn
(e−xxn+a), n = 0, 1, 2, . . .

for arbitrary real a > −1. The first few Laguerre polynomials are

La
0(x) = 1, La

1(x) = 1 + a− x, La
2(x) =

x2

2
− (a+ 2)x+

(a+ 2)(a+ 1)

2
,

La
3(x) = −x

3

6
+

(a+ 3)x2

2
− (a+ 3)(a+ 2)x

2
+

(a+ 3)(a+ 2)(a+ 1)

6
,

La
4(x) =

x4

24
− (a+ 4)x3

6
+

(a+ 4)(a+ 3)x2

4
− (a+ 4)(a+ 3)(a+ 2)x

6

+
(a+ 4)(a+ 3)(a+ 2)(a+ 1)

24
.

An explicit formula gives

La
n(x) =

n∑
k=0

Γ(n+ a+ 1)

Γ(k + a+ 1)

(−x)k

k!(n− k)!
.

The generating function of the Laguerre polynomials is

w(x, t) = (1− t)−a−1e−xt/(1−t) =
∞∑
n=0

La
n(x)t

n, |t| < 1. (5.6)

To obtain a three term recurrence relation, we substitute the Laguerre generating function

(5.6) into the identity

(1− t)2
∂w

∂t
+ [x− (1− t)(1 + a)]w = 0.
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Then,

(1− t)2
∞∑
n=0

nLa
n(x)t

n−1 + [x− (1− t)(1 + a)]
∞∑
n=0

La
n(x)t

n = 0

⇒ (1− 2t+ t2)
∞∑
n=0

nLa
n(x)t

n−1 + [x− (1a) + (1 + a)t]
∞∑
n=0

La
n(x)t

n = 0

⇒
∞∑
n=0

nLa
n(x)t

n−1 − 2
∞∑
n=0

nLa
n(x)t

n +
∞∑
n=0

nLa
n(x)t

n+1

+ [x− (1 + a)]
∞∑
n=0

La
n(x)t

n + (1 + a)
∞∑
n=0

nLa
n(x)t

n+1 = 0

⇒
∞∑
n=0

(n+ 1)La
n+1(x)t

n − 2
∞∑
n=0

nLa
n(x)t

n +
∞∑
n=0

(n− 1)La
n−1(x)t

n

+ [x− (1 + a)]
∞∑
n=0

La
n(x)t

n + (1 + a)
∞∑
n=0

La
n−1(x)t

n = 0

⇒ (n+ 1)La
n+1(x) + [x− a− 2n− 1]La

n(x) + (n+ a)La
n−1(x) = 0 (5.7)

when the coefficient of tn is equated to zero. The Laguerre polynomials are orthogonal on

the interval [0,∞) with weight e−xxa, that is

∫ ∞

0

e−xxaLa
m(x)L

a
n(x)dx = 0, if m ̸= n, a > −1.

For m = n, working as before, we replace the index n by n− 1 in the recurrence formula

(5.7) multiplied by La
n(x) to obtain

n[La
n(x)]

2 + [x− a− 2(n− 1)− 1]La
n−1(x)L

a
n(x) + (n− 1 + a)La

n−2(x)L
a
n(x) = 0.

Multiplying the recurrence relation (5.7) by La
n−1(x) gives

(n+ 1)La
n+1(x)L

a
n−1(x) + [x− a− 2n− 1]La

n(x)L
a
n−1(x) + (n+ a)[La

n−1(x)]
2 = 0.

Then, subtracting the two equations we get the equation

n[La
n(x)]

2−(n+a)[La
n−1(x)]

2−(n+1)La
n+1(x)L

a
n−1(x)+2La

n(x)L
a
n−1(x)+(n+a−1)La

n−2(x)L
a
n(x) = 0.
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Finally, multiplying the last equation by e−xxa, integrating over the interval [0,∞) we find

that

n

∫ ∞

0

e−xxa[La
n(x)]

2dx = (n+ 1)

∫ ∞

0

e−xxa[La
n−1(x)]

2dx, n = 2, 3, . . .

Repeated application gives

∫ ∞

0

e−xxa[La
n(x)]

2dx =
n+ 1

n

∫ ∞

0

e−xxa[La
n−1(x)]

2dx

=
(n+ a)(n+ a− 1)

n(n− 1)

∫ ∞

0

e−xxa[La
n−2(x)]

2dx

= . . .

=
(n+ a)(n+ a− 1) . . . (a+ 2)

n!

∫ ∞

0

e−xxa[1 + a− x]2dx

=
(n+ a)(n+ a− 1) . . . (a+ 2)

n!
{(1 + a)2

∫ ∞

0

e−xxadx− 2(1 + a)

∫ ∞

0

e−xxa+1dx

+

∫ ∞

0

e−xxa+2dx}

=
(n+ a)(n+ a− 1) . . . (a+ 2)

n!
{(1 + a)2Γ(a+ 1)− 2(1 + a)Γ(a+ 2) + Γ(a+ 3)}

=
(n+ a)(n+ a− 1) . . . (a+ 2)

n!
(a+ 1)Γ(a+ 1)

=
(n+ a)(n+ a− 1) . . . (a+ 2)(a+ 1)a!

n!
=

(n+ a)!

n!

=
Γ(n+ a+ 1)

n!
, n = 2, 3, . . .

Concluding, the orthogonality relation of the Laguerre polynomials is given by

∫ ∞

0

e−xxaLa
m(x)L

a
n(x)dx =

Γ(n+ a+ 1)

n!
δmn. (5.8)

A real function f(x) can be expanded in a series of Laguerre polynomials using the fol-

lowing result; see Lebedev (1972).

Proposition 5.1.2 If the real function f(x) which is defined on the interval (0,∞), is

piecewise smooth in every finite subinterval [x1, x2] where 0 < x1 < x2 <∞, a > −1, and

if the integral
∫∞
0
e−xxaf 2(x)dx is finite, then the series

f(x) =
∞∑
n=0

cnL
a
n(x), 0 < x <∞, (5.9)
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with coefficients cn calculated from

cn =
n!

Γ(n+ a+ 1)

∫ ∞

0

e−xxaf(x)La
n(x)dx, (5.10)

converges to f(x) at every continuity point of f(x).

The coefficients cn are determined using the orthogonality property (5.8) of the La-

guerre polynomials. To be more precise, multiplying the series (5.9) by e−xxaLa
m(x) and

integrating over (0,∞) we obtain

∫ ∞

0

e−xxaf(x)La
m(x)dx =

∞∑
n=0

∫ ∞

0

e−xxaLa
m(x)cnL

a
n(x)dx

= cn

∫ ∞

0

e−xxa[La
n(x)]

2dx = cn
Γ(n+ a+ 1)

n!

which gives the cn as in (5.10).

5.1.3 Poisson-Charlier Polynomials

In contrast with the two classes of orthogonal polynomials described in the previous sec-

tions, the Poisson-Charlier polynomials constitute a discrete orthogonal polynomial se-

quence that is orthogonal with respect to the Poisson distribution with rate µ; Chihara

(1978).

The monic Charlier polynomials Cn(µ;x) are defined by the generating function

e−µw(1 + w)x =
∞∑
n=0

Cn(µ;x)
wn

n!
, µ ̸= 0.

An explicit representation is given by

Cn(µ;x) =
n∑

k=0

(
n

k

)(
x

k

)
k!(−µ)n−k (5.11)

and the orthogonality relation is given by

∞∑
x=0

Cm(µ;x)Cn(µ;x)
e−µµx

x!
= µnn!δmn. (5.12)
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To show the orthogonality relation (5.12) consider the following series expansion of the

generating function

G(x,w) = e−µw(1 + w)x =
∞∑

m=0

(−µ)mwm

m!

∞∑
n=0

(
x

n

)
wn.

Forming the Cauchy product of the two series in the above equation we obtain

G(x,w) =
∞∑
n=0

dn, where dn =
n∑

k=0

(
x

k

)
wk (µ)

n−kwn−k

(n− k)!
=

n∑
k=0

(
x

k

)
(−µ)n−kwn.

This gives

G(x,w) =
∞∑
n=0

Pn(x)w
n where Pn(x) =

n∑
k=0

(
x

k

)
(−µ)n−k

(n− k)!

and Pn(x) is a polynomial of degree n. To show this, consider

µxG(x, ν)G(x,w) = µxe−µν(1 + ν)xe−µw(1 + w)x = eµ(ν+w)[µ(1 + ν)(1 + w)]x.

Then,

∞∑
k=0

µkG(x, ν)G(x,w)

k!
=

∞∑
k=0

e−µ(ν+w)[µ(1 + ν)(1 + w)]k

k!

= e−µ(ν+w)eµ(1+ν)(1+w) = eµeµνw

=
∞∑
n=0

eµµn (νw)
n

n!
.

Also,

∞∑
k=0

µkG(x, ν)G(x,w)

k!
=

∞∑
k=0

µk

k!

∞∑
m,n=0

Pm(k)Pn(k)ν
mwn =

∞∑
m,n=0

∞∑
k=0

Pm(k)Pn(k)
µk

k!
νmwn.

By comparing the coefficients of νmwn in the two resulting series above, we conclude that

∞∑
k=0

Pm(k)Pn(k)
µk

k!
=


0, m ̸= n

eµµn

n!
, m = n.

Finally, (n!)−1Cn(µ;x) is denoted by Pn(x).
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The three term recurrence formula corresponding to the Poisson Charlier polynomials

is given by

Cn+1(µ;x) = (x− n− µ)Cn(µ;x)− µnCn−1(µ;x). (5.13)

We note that the Charlier polynomials can also be expressed in terms of the Laguerre

polynomials by

Cn(µ;x) = n!Lx−n
n (µ).

The first few Charlier polynomials are given by

C0(µ;x) = 1, C1(µ;x) = x− µ, C2(µ;x) = µ2 − 2µx+ x(x− 1),

C3(µ;x) = −µ3 + 3µ2x− 3µx(x− 1) + x(x− 1)(x− 2)

C4(µ;x) = µ4 − 4µ3x+ 6µ2x(x− 1)− 4µx(x− 1)(x− 2) + x(x− 1)(x− 2)(x− 3).

A non-monic form of the Charlier polynomials is given by

cn(µ;x) = (−1)nµ−nCn(µ;x) (5.14)

and the first few polynomials are

c0(µ;x) = 1, c1(µ;x) = 1− x

µ
, c2(µ;x) = 1− 2x

µ
+
x(x− 1)

µ2

c3(µ;x) = 1− 3x

µ
+

3x(3− 1)

µ2
− x(x− 1)(x− 2)

µ3

c4(µ;x) = 1− 4x

µ
+

6x(x− 1)

µ2
− 4x(x− 1)(x− 2)

µ3
+
x(x− 1)(x− 2)(x− 3)

µ4
.

This notation allows the symmetry relation cn(µ;x) = cx(µ;n) from which follows a ”dual

orthogonality”

∞∑
x=0

cn(µ;x)cm(µ;x)
e−µµx

x!
=

∞∑
x=0

cx(µ;n)cx(µ;m)
e−µµx

x!
= µ−nn!δmn.

An explicit formula for the cn(µ;x) is

cn(µ;x) =
x!

µx
∇n

(
µx

x!

)
=
x!

µx

n∑
k=0

(−1)k
(
n

k

)
µx−k

(x− k)!
(5.15)

124

Stel
la 

Kitro
milid

ou



where ∇ is the backward difference operation defined as

∇f(x) = f(x)− f(x− 1).

It holds that

∇nf(x) = ∇(∇n−1f(x)) =
n∑

k=0

(−1)k
(
n

k

)
f(x− k).

Indeed, using equations (5.11) and (5.14) we have that

cn(µ;x) = (−1)nµ−nCn(µ;x) = (−1)nµ−n

n∑
k=0

(
n

k

)(
x

k

)
k!(−µ)n−k

=
n∑

k=0

(
n

k

)
(−1)2n−k x!k!

k!(x− k)!
µ−n+n−k =

x!

µx

n∑
k=0

(−1)−k

(
n

k

)
µx−k

(x− k)!

=
x!

µx

n∑
k=0

(−1)k
(
n

k

)
µx−k

(x− k)!

which verifies the explicit formula (5.15). Normalizing the polynomials we obtain the

orthonormal Poisson - Charlier polynomials

Cn(µ;x) =
√
µn

n!
cn(µ;x). (5.16)

The first few polynomials are

C0(µ;x) = 1, C1(µ;x) = µ(1− x

µ
), C2(µ;x) =

√
2

2
{µ− 2x+

x(x− 1)

µ
},

C3(µ;x) =
√
µ

2

{√
3µ

3
−
√
3x+

√
3

µ
x(x− 1)−

√
3

3µ2
x(x− 1)(x− 2)

}

C4(µ;x) =
1√
6

{
µ2

2
− 2µx+ 3x(x− 1)− 2x(x− 1)(x− 2)

µ
+
x(x− 1)(x− 2)(x− 3)

2µ2

}
.

The following proposition exhibits the series expansion to Charlier polynomials of a func-

tion, when it possess certain properties.

Proposition 5.1.3 A function f(x) defined on the integers such that

∞∑
x=0

f 2(x)ϱ(µ;x) <∞
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for some µ > 0, where

ϱ(µ;x) = e−µµ
x

x!
, x = 0, 1, . . .

is the pdf of the Poisson distribution, can be expanded in a series of Poisson-Charlier

orthogonal polynomials

f(x) =
∞∑
n=0

bnCn(µ;x) (5.17)

where

bn = E[f(x)Cn(µ;x)] =
∞∑
k=0

f(k)Cn(µ; k)ϱ(µ; k). (5.18)

Indeed, multiplying (5.17) by Cm(µ;x)ϱ(µ;x) and taking the sum with respect to x

from 0 to infinity we find that

∞∑
x=0

f(x)Cm(µ;x)ϱ(µ;x) =
∞∑
x=0

∞∑
n=0

bnCn(µ;x)Cm(µ;x)ϱ(µ;x)

=
∞∑
n=0

bn

∞∑
x=0

Cn(µ;x)Cm(µ;x)ϱ(µ;x)

=
∞∑
n=0

bn

∞∑
x=0

√
µn

n!
cn(µ;x)

√
µm

m!
cm(µ;x)ϱ(µ;x)

=
∞∑
n=0

bn

∞∑
x=0

√
µn

n!
(−1)nµ−nCn(µ;x)

√
µm

m!
(−1)mµ−mCm(µ;x)ϱ(µ;x)

= bm
µm

m!
µ−2mµmm!δmn

= bm

using the orthogonality relation (5.12).

Example 5.1.2 Consider the function f(x) = ex. Then, f(x) can be expanded in an

orthogonal series as (5.17) with coefficients bn given as follows:

n = 0 : b0 =
∞∑
x=0

f(x)C0(µ;x)ϱ(µ;x) =
∞∑
x=0

ex
e−µµx

x!
= eµ(e−1)

n = 1 : b1 =
∞∑
x=0

f(x)C1(µ;x)ϱ(µ;x) =
∞∑
x=0

ex
√
µ(1− x

µ
)
e−µµx

x!
=

√
µb0(1− e)

126

Stel
la 

Kitro
milid

ou



n = 2 : b2 =
∞∑
x=0

f(x)C2(µ;x)ϱ(µ;x) =
∞∑
x=0

ex
1√
2

{
µ− 2x+

x(x− 1)

µ

}
e−µµx

x!

=
µ(1− e)2√

2
b0

n = 3 : b3 =
∞∑
x=0

f(x)C3(µ;x)ϱ(µ;x)

=
∞∑
x=0

ex
√
µ

2

{√
3µ

3
−
√
3x+

√
3

µ
x(x− 1)−

√
3

3µ2
x(x− 1)(x− 2)

}
e−µµx

x!

=
µ
√
µ

√
3 · 2

(1− e)3b0

n = 4 : b4 =
∞∑
x=0

f(x)C4(µ;x)ϱ(µ;x) =
µ2

√
24

(1− e)4b0

Continuing as above we conclude that

bn =

√
µn

n!
(1− e)neµ(e−1).

5.2 Representation by ARMA

Recall the first order log-linear Poisson model with feedback given by (4.1). The following

result is taken from Fokianos and Tjøstheim (2011):

Lemma A-1 E(log(1 + Yt|νt = ν)− ν → 0, as ν → ∞.

Then, we have the following approximate representation

log(1 + Yt) = log(1 + Yt)− νt + νt

= νt + ϵt where ϵt = log(1 + Yt)− νt

Hence

log(1 + Yt) = d+ aνt−1 + b log(1 + Yt−1) + ϵt

= d+ a(log(1 + Yt−1)− ϵt−1) + b log(1 + Yt−1) + ϵt

= d+ (a+ b) log(1 + Yt−1) + ϵt − aϵt−1.
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Therefore,

{
log(1 + Yt)−

d

1− (a+ b)

}
− (a+ b)

{
log(1 + Yt−1)−

d

1− (a+ b)

}
= ϵt − aϵt−1.

The above representation shows that the process {log(1 + Yt)} can be represented as

an ARMA(1, 1) process with mean given by
d

1− (a+ b)
. Additionally, the stationarity

condition |a+b| < 1 guarantees the causality of the process. Since the process {log(1+Yt)}

can be represented as an ARMA(1, 1) process, then its autocovariance function is given

by

γ(h) = Cov(log(1 + Yt), log(1 + Yt+h)) =


(1− a2 − 2ab)σ2

ϵ

1− (a+ b)2
, h = 0

b(1− a(a+ b))σ2
ϵ

1− (a+ b)2
(a+ b)h−1, h ≥ 1

(5.19)

Set

Xt ≡ log(1 + Yt)

and the mean of the process as µx =
d

1− (a+ b)
. Then,

Yt = eXt − 1.

Our interest is to derive the autocovariance function of {Yt} using the autocovariance

function of {Xt}.

Cov(Yt, Yt+h) = Cov(eXt − 1, eXt+h − 1) = Cov(eXt , eXt+h)

= Cov(f(Xt), f(Xt+h)), where f(x) = ex (5.20)

Considering the strong connection between orthogonal polynomials and probability theory,

we will derive the autocovariance function of the process {Yt} using orthogonal series

expansion of the function f(x) as given above. Similar approaches have been attempted

mostly in econometrics, for example see Abadir and Talmain (2005) who derive a method

to obtain the autocovariance function of transformations of a time series, however not

through orthogonal polynomials.
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5.2.1 Hermite Expansion

Granger and Newbold (1976) examine the autocovariance of transformed series of Gaussian

processes based on Hermite polynomial expansion. Accordingly, assume that the process

Xt is stationary Gaussian with mean µx, variance σ
2
x and autocorrelation function ρ(h) =

Corr(Xt, Xt+h). Additionally, we set

Zt =
Xt − µx

σx

and the transformation f(Zt) can be expanded in a series of Hermite polynomials as

f(Zt) =
M∑
n=0

cnHn(Zt).

Then, the autocovariance function of f(Xt) is given by

Cov(f(Xt), f(Xt+h)) =
∞∑
n=1

c2nn!Corr
n(Xt, Xt+h).

In our case, we have the transformation

f(Xt) = eXt = eµx+σxZt

and using also Example 5.1.1 we obtain the series expansion

f(Xt) = eXt = exp(µx + σ2
x/2)

∞∑
n=0

σn
x

n!
Hn(Zt).

Hence, the autocovariance function of Yt (5.20) is given by the following

Cov(Yt, Yt+h) = exp(2µx + σ2
x)

∞∑
n=1

(σ2
xρ(h))

n

n!

= exp(2µx + σ2
x)

{
∞∑
n=0

(σ2
xρ(h))

n

n!
− (σ2

xρ(h))
0

0!

}
= exp(2µx + σ2

x){exp(σ2
xρ(h))− 1}

= exp(2µx + σ2
x){exp(γ(h))− 1} (5.21)
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5.2.2 Log-Normal Representation

If a random variable X is normally distributed then the random variable W = exp(X)

follows a Log-Normal distribution. Considering the Gaussian process Xt then the Wt =

exp(Xt) has mean equal to E(Wt) = exp(µx + σ2
x/2). This is derived directly from the

moment generating function of the Normal distribution. Therefore,

Cov(Wt,Wt+h) = E(WtWt+h)− E(Wt)E(Wt+h) = E(WtWt+h)− exp(2µx + σ2
x).

The mean E(WtWt+h) is obtain using the bivariate normal distribution. More precisely,

(Xt, Xt+h)

has a bivariate normal distribution with mean vector (µ, µ)T and covariance matrix given

by

Σ(h) =

 σ2
x γ(h)

γ(h) σ2
x

 .
Also, the moment generating function of the bivariate normal distribution is given by

M(Xt,Xt+h)(t1, t2) = eµ
T t+ 1

2
tTΣt = eµt1+µt2+

1
2
[t21σ

2
x+t22σ

2
x+2t1t2γ(h)].

Using the above moment generating function and t1 = t2 = 1 we obtain the mean

E(WtWt+h) as

E(WtWt+h) = e2µ+σ2
x+γ(h).

The above representation yields the autocovariance function of Yt, Cov(Yt, Yt+h) from

(5.20) as

Cov(Yt, Yt+h) = e2µ+σ2
x+γ(h) − exp(2µx + σ2

x) = exp(2µx + σ2
x){exp(γ(h))− 1}

which is directly equivalent to the approximation derived by the Hermite polynomial

expansion.
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5.2.3 Poisson-Charlier Expansion

Using the explicit formula (5.15) and (5.16) then we obtain the following explicit formula

for the Charlier polynomials Cn(µ;x):

Cn(µ;x) =
√
µn

n!

x!

µx

n∑
k=0

(−1)k
(
n

k

)
µx−k

(x− k)!
.

We are interested in deriving a formula for the covariance

Cov(f(x), f(y))

when the function f(x) is the exponential function, that is f(x) = ex. Using the result of

Example 5.1.2 we have that

Cov(f(x), f(y)) = Cov(
∞∑
n=0

bnCn(µ;x),
∞∑

m=0

bmCm(µ; y))

=
∞∑
n=0

b2nCov(Cn(µ;x), Cn(µ; y))

where

Cov(Cn(µ;x), Cm(µ; y))

= Cov

(√
µn

n!

x!

µx

n∑
k=0

(−1)k
(
n

k

)
µx−k

(x− k)!
,

√
µn

n!

x!

µy

n∑
l=0

(−1)l
(
n

l

)
µy−l

(y − l)!

)

=
µn

n!

n∑
k=0

n∑
l=0

(−1)k+l

(
n

k

)(
n

l

)
µ−(k+l)Cov(

x!

(x− k)!
,

y!

(y − l)!
)

=
µn

n!

n∑
k=0

n∑
l=0

(
−1

µ

)k+l(
n

k

)(
n

l

){
E

(
x!y!

(x− k)!(y − l)!

)
− E

(
x!

(x− k)!

)
E

(
µy−l

(y − l)!

)}

=
µn

n!

n∑
k=0

n∑
l=0

(
−1

µ

)k+l(
n

k

)(
n

l

){
E

(
x!y!

(x− k)!(y − l)!

)
− µk+l

}
. (5.22)
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For example, we present the covariances for the first few n

n = 1 : Cov(C1(µ;x), C1(µ; y)) = µ

{
E(xy)

µ2
− 1

}
n = 2 : Cov(C2(µ;x), C2(µ; y)) = 2E(xy)− 1

µ
{E(xy(y − 1)) + E(x(x− 1)y)}

+
1

µ2
E(x(x− 1)y(y − 1))− µ2

2

n = 3 : Cov(C3(µ;x), C3(µ; y)) =
3µ

2
E(xy)− 3

2
{E(xy(y − 1)) + E(x(x− 1)y)}

+
1

2µ
{E(xy(y − 1)(y − 2)) + E(x(x− 1)(x− 2)y)}

− 1

2µ2
{E(x(x− 1)y(y − 1)(y − 2)) + E(x(x− 1)(x− 2)y(y − 1))}

+
3

2µ
E(x(x− 1)y(y − 1)) +

1

6µ3
E(x(x− 1)(x− 2)y(y − 1)(y − 2))− µ3

6

n = 4 : Cov(C4(µ;x), C4(µ; y)) =
2µ2

3
E(xy)− µ{E(xy(y − 1)) + E(x(x− 1)y)}

+
2

3
{E(xy(y − 1)(y − 2)) + E(x(x− 1)(x− 2)y)}

− 1

6µ
{E(xy(y − 1)(y − 2)(y − 3)) + E(x(x− 1)(x− 2)(x− 3)y)}

+
3

2
E(x(x− 1)y(y − 1)) +

2

3µ2
E(x(x− 1)(x− 2)y(y − 1)(y − 2))

− 1

µ
{E(x(x− 1)y(y − 1)(y − 2)) + E(x(x− 1)(x− 2)y(y − 1))}

+
1

4µ2
{E(x(x− 1)y(y − 1)(y − 2)(y − 3)) + E(x(x− 1)(x− 2)(x− 3)y(y − 1))}

− 1

6µ3
{E(x(x− 1)(x− 2)y(y − 1)(y − 2)(y − 3))

+ E(x(x− 1)(x− 2)(x− 3)y(y − 1)(y − 2))}

+
1

24µ4
E(x(x− 1)(x− 2)(x− 3)y(y − 1)(y − 2)(y − 3))− µ4

24
.

5.3 Discussion

We have considered a primary empirical study to examine the behavior of the approxi-

mations to the autocovariance function of the observed process through the orthogonal

polynomial theory explored in the previous sections.

Notice that the approximation based on orthogonal polynomials depends on the joint

distribution of Xt and Xt+h. In the case of the Hermite polynomials, this is a bivariate
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normal distribution. However, in the case of the Poisson-Charlier polynomials this is the

joint distribution of two marginally distributed Poisson variables. More specifically, the

autocovariance depends on factorial means of the two variables. Unfortunately, the joint

distribution of two Poisson variables cannot be explicitly derived. In order to bypass this

problem in a simulation, we have to empirically estimate these factorial means.

Our initial empirical results suggest that both the Hermite and the Poisson-Charlier

representations fail to adequately approximate the autocovariance function of the response

process. In fact, the Hermite approximation produces satisfactory results but for small

values of the parameters d,a and b and only for the first few lags, whereas the Poisson-

Charlier approximation is overall a very poor approach.
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Chapter 6

Discussion and Further Research

6.1 Discussion

This work focuses on robust estimation for count time series models. The motivation for

this study arises from the fact that classical statistical methods for inference appear to

be immensely sensitive to interventions that result in observations that are distant from

the bulk of the data. Initiating from simpler models for the analysis of count data, our

goal was to investigate the behavior of several robust estimation procedures under extreme

events, and thereafter advance the study to more complicated situations.

In the first part of this thesis, we review two models based on the Poisson distribution,

which is the natural assumption on the distribution for the analysis of count data. In

particular, we consider a linear and a log-linear Poisson model, both including a feedback

component. We propose the log-linear model because it has more advantages and is widely

applicable rather than the linear model. Three forms of intervention effects are described:

level-shifts, which result in a permanent level change of the mean process, transient-shifts,

whose effect on the level of the mean process is not permanent but decays exponentially,

and additive outliers, whose effect is directly additive to the observations.

The second part of the thesis concentrates on the log-linear Poisson model that does

not include the feedback mechanism (recall (3.3)). We propose two robust estimators,

the conditionally unbiased bounded influence estimator (CUBIF) and the Mallows’ quasi

likelihood estimator (MQLE), and we compare them against the maximum likelihood es-

timator (MLE), for data contaminated with the aforementioned types of interventions.
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Especially, the Mallows’ quasi likelihood estimator is studied under four types of weight-

ing schemes. The two choices consist of non robust types of weights and the other two

are robust, and more specifically they are based on robust versions of the Mahalanobis

distance. Our findings suggest that under level-shifts or transient-shifts, all estimation

methods compared behave in a quite similar manner. However, this is not the case when

additive outliers are implemented. We consider the cases of a single additive outlier, a

patch of outliers and isolated outliers. Generally, the Mallows’ quasi likelihood estimator

is the best performing estimator in terms of mean square error, mean absolute error and

bias, especially when robustly weighted.

Since additive outliers prove to be the most interesting type of intervention effects and

the Mallows’ quasi likelihood estimator the most prominent estimating procedure, in the

third part of the thesis, we examine further the properties of the Mallows’ quasi likelihood

estimator suitably adjusted to the context of count time series. We convey to the first order

log-linear Poisson model with a feedback mechanism (recall model (4.1)). By applying the

so called perturbation technique suggested by Fokianos and Tjøstheim (2011), we show

that the Mallows’ quasi likelihood estimator is asymptotically normally distributed under

some conditions on the model parameters. The key to proving asymptotic normality

is martingale limit theory. When the data is contaminated with additive outliers, the

robustly weighted MQLE exceeds the performance of the maximum likelihood estimator

and estimates consistently the regression coefficients.

Additionally, we address the problem of testing whether the first order log-linear model

with feedback can be reduced to a model that does not include the feedback mechanism,

under the presence of additive outliers. We develop a robust score test and prove that the

test statistic follows asymptotically a chi-square distribution. In the case where the data

contain additive outliers, the test statistic based on MQLE with robust weights achieve

the desirable size of the test and additionally have high power.

In the last part of this study, we approximate the autocovariance function of the time

series process {Yt}, using orthogonal polynomial expansions. Our approximation is based

on the fact that the process {log(1 + Yt)} can be represented as an ARMA process. We

therefore question whether the autocovariance function of the series be somehow approxi-

mated using the known autocovariance function of the process {log(1+Yt)}. We consider
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three families of orthogonal polynomials: the Hermite, Laguerre and Poisson-Charlier

polynomials. The autocovariance function of the process Yt is then described by a series

that depends on the autocovariance and mean properties of {log(1 + Yt)}. The more

suitable approximation is suggested by the Hermite polynomials.

6.2 Further Research

A number of suggestions can be made as points for further research. As a first continuation,

we plan to construct our R code on the Mallows’ quasi likelihood estimation procedure for

the log-linear Poisson model with feedback (Appendix B) into an R package. At this point

we would like to acknowledge the R package tscount which has just been launched and

includes functions for likelihood-based estimation analysis of integer-valued time series in

the presence of interventions, as studied in the works of Fokianos and Fried (2010) and

Fokianos and Fried (2012). For more information see Liboschik et al. (2015). The pack-

age provides the first available software for the analysis of dependent structured models

following generalized linear model theory, and covers the distributional assumptions of

both the Poisson and the Negative Binomial distributions. Considering that the functions

available are based on the maximum likelihood estimator, the robust procedure of the

Mallows’ quasi likelihood estimator that we study, will provide an appealing alternative

to MLE and advance the applicability of the package.

Furthermore, keeping in mind that certain conditions on the model parameters are

imposed to guarantee stationarity and ergodicity, the problem of constrained optimization

deserves more attention.

A notable remark is that even though in Chapter 3 we have studied the (p, q) order

log-linear model without feedback, we have only considered the first order model with

feedback in Chapter 4. The aim of Chapter 4 is to show how suitably chosen estimating

functions can be employed for obtaining robust estimators for the regression coefficients

of the log-linear model (4.1), especially in the presence of interventions. This chapter

complements the works by Fokianos and Fried (2010, 2012) who studied detection and

testing for intervention effects in count time series. Furthermore, we developed a robust

test statistic for testing the existence of a feedback mechanism. There are some potential
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useful extensions of this methodology as we outline below. A first extension is the investi-

gation of the Mallows’ quasi likelihood estimator for a higher order log-linear model with

feedback. More particularly, consider the model

Yt ∥ Ft−1 ∼ Poisson(λt), νt = d+

p∑
i=1

aiνt−i +

q∑
j=1

bj log(1 + Yt−j)

where the log-intensity is linked to the past p values of itself and the past q values of

the response. Roughly speaking, we can still employ the quasi-score function (4.5) for

estimation and inference with some necessary modifications. For instance, the derivative

process ∂νt(θ)/∂θ is a p + q + 1-dimensional vector whose elements are given by the

following representation

∂νt(θ)

∂d
= 1 +

p∑
i=1

ai
∂νt−i(θ)

∂d

∂νt(θ)

∂ak
= νt−k +

p∑
i=1

ai
∂νt−i(θ)

∂ak
, k = 1, 2, . . . , p

∂νt(θ)

∂bl
= log(1 + Yt−l) +

p∑
i=1

ai
∂νt−i(θ)

∂bl
l = 1, 2, ..., q.

However, there are no results reported in the literature about stationarity and ergodicity

properties of the above model. Hence, given suitable conditions, we conjecture that a sim-

ilar robust estimation theory can be developed. Although, deriving asymptotic inference

for a higher order model with feedback is not an easy task, particularly due to regressing

on a number of past values of the log-intensity process. As we have demonstrated for the

first order model, derivation of asymptotic properties depends mostly on derivatives with

respect to the feedback coefficient parameter.

A further problem would be to relax the Poisson assumption and to replace it by

either a more general discrete distribution (see Christou and Fokianos (2015)) or by a

mean specification relation like in Kedem and Fokianos (2002, Ch.4). An alternative is

the negative binomial distribution, which has probability mass function given by

P(Y = y) =

(
y + r − 1

y

)
θy(1− θ)r
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and E(Y ) = rθ/(1 − θ) and Var(Y ) = rθ/(1 − θ)2. Linear count models based on the

negative binomial distribution have previously been studied by several authors, for example

Davis and Wu (2009), Zhu (2011) and Davis and Liu (2015). A possible log-linear negative

binomial model is given for instance by

Yt ∥ Ft−1 ∼ NegBin(r, θt), νt = d+

p∑
i=1

aiνt−1 +

q∑
j=1

bj log(1 + Yt−j)

where νt = log{rθt/(1− θt)}. The negative binomial distribution belongs to the exponen-

tial family of distributions when r is fixed and therefore an MQLE type estimator may

be constructed, as described in Cantoni and Ronchetti (2001). We think that both of

these extensions are possible given suitable conditions on the moments of the joint pro-

cess (Yt, νt). Finally, given an estimating function we can also construct a test statistic

analogous to (4.8) for robust testing of feedback presence.

Another interesting point for consideration concerns the ψ-function. Recall that the

MQLE score estimating equation depends on the Huber function ψc(x) which is used to

impose a bound on the influence function of the estimator. However, other functions can

be employed instead of the Huber function. For example, consider the Tukey’s bisquare

ψ function

ψTukey(x) =


x

[
1−

(x
c

)2]2
, |x| ≤ c

0, |x| > c

which is everywhere differentiable but only exists within the interval [−c, c]. Other contri-

butions where the Tukey ψ-function is used include Elsaied and Fried (2014) who study

robust M-estimation using a modified version of the Huber and Tukey ψ-functions but

for a linear Poisson model without feedback. The Tukey’s bisquare ψ-function read above

may be used as an alternative choice of ψ-function for the MQLE estimator rather than

the Huber ψ-function.

We have studied the Mallows’ quasi likelihood estimator in the context of the log-linear

Poisson model with feedback (2.1). Additionally, the estimator may be surveyed within

the context of the linear Poisson model as well. In this context, the lemmas proved in

chapter 4 are derived analogously.

Moreover, another important topic for further research is that of binary regression.
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That is the response variable follows a binomial distribution. Cantoni and Ronchetti

(2001) propose the Mallows’ quasi likelihood estimator for binary data, with a logit link

implemented in the generalized linear modeling setting. Other than the Mallows’ quasi

likelihood estimator, one may consider the BLq-estimator suggested byHosseinian (2009)

or the Bianco-Yohai estimator suggested by Bianco and Yohai (1996) and studied further

by Croux and Haesbroeck (2003), for binary processes.

Lastly, further study on the orthogonal polynomial approximation to the autocovari-

ance and autocorrelation properties of the response process can be considered.
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Appendix A

R Code for Chapter 3

Hyde Park Data Analysis

Load the data and plot a time series plot of the data.

HydePark=read.table("HydePark.txt",header=T)

ts.plot(HydePark, main="Hyde Park Time Series",ylab="Number of p

urse snatchings")

Use the Chen and Liu (1993) method to detect outliers and interventions.

library(tsoutliers)

HydePark.ts=ts(HydePark)

HydePark.outliers=tso(HydePark.ts,maxit.iloop=10) # detect outliers

HydePark.outliers$outliers

Use the method of Fokianos and Fried (2010, 2012) to detect outliers and interventions.

library(tscount)

fit=tsglm(HydePark.ts,model=list(past_obs=c(1,2),past_mean=1),

link="log",distr="poisson")

interventionsHydePark=interv_multiple(fit) # detect interventions

Apply the log linear Poisson model without feedback of order q=4, fit the models and

choose the best model using the AIC criterion.
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response=HydePark[5:71,]

x1=log(1+HydePark[4:70,])

x2=log(1+HydePark[3:69,])

x3=log(1+HydePark[2:68,])

x4=log(1+HydePark[1:67,])

dataout=as.data.frame(cbind(response,x1,x2,x3,x4))

fit1=glm(response~x1,data=dataout[1:57,],family=poisson)

fit2=glm(response~x1+x2,data=dataout[1:57,],family=poisson)

fit3=glm(response~x1+x2+x3,data=dataout[1:57,],family=poisson)

fit4=glm(response~x1+x2+x3+x4,data=dataout[1:57,],family=poisson)

summary(fit1)$aic # similarly we obtain the AIC for all 4 fits

The selected model based on the AIC criterion is the second order model (fit2). Fit the

selected model. Matrices to save the estimated parameters and their standard errors.

library(robust)

cc=seq(1,3.5,length=50)

estCUBIF=estMQLEnone=estMQLEhat=estMQLEmve=

estMQLEmcd=matrix(NA,nrow=length(cc),ncol=3)

std.erCUBIF=std.erMQLEnone=std.erMQLEhat=

std.erMQLEmve=std.erMQLEmcd=matrix(NA,nrow=length(cc),ncol=3)

Matrices to save the predicted values of the response for all values of c. every row will be

the 10 predicted values for each value of c.

CUBIFpr=MQLEnonepr=MQLEhat=prMQLEmvepr=

MQLEmcdpr=matrix(NA,nrow=length(cc),ncol=10)

Vectors to save the estimated MSE, MAD and MAE of the predicted values for each c.

mseCUBIF=mseMQLEnone=mseMQLEhat=mseMQLEmve=mseMQLEmcd=rep(NA,length(cc))

madCUBIF=madMQLEnone=madMQLEhat=madMQLEmve=madMQLEmcd=rep(NA,length(cc))

maeCUBIF=maeMQLEnone=maeMQLEhat=maeMQLEmve=maeMQLEmcd=rep(NA,length(cc))
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Matrices to save the residuals from every fit. Each line corresponds to a value of c for

CUBIF and MQLE.

residCUBIF=residMQLEnone=residMQLEhat=residMQLEmve=

residMQLEmcd=matrix(NA,nrow=length(cc),ncol=57)

Fit the chosen model using the estimators of interest and calculate, for all values of c, the

estimated parameters of the model with their standard errors and the predicted values.

estMLE=fit2$coef # MLE

std.erMLE=summary(fit2)$coef[,2]

residMLE=fit2$residuals

MLEpr=predict(fit2,dataout[58:67,],type="response")

for (i in 1:length(cc))

{

fitCUBIF=glmRob(response~x1+x2,

family=poisson(),data=dataout[1:57,],method="cubif",

control=glmRob.cubif.control(bpar=cc[i]))

estCUBIF[i,]=fitCUBIF$coef

std.erCUBIF[i,]=summary(fitCUBIF)$coef[,2]

residCUBIF[i,]=fitCUBIF$residuals

nuhatCUBIF=rep(NA,10)

lambdaCUBIF=rep(NA,10)

for (t in 1:10)

{

nuhatCUBIF[t]=estCUBIF[i,1]+estCUBIF[i,2]*log(1+yCUBIF[t+57-1])+

estCUBIF[i,3]*log(1+yCUBIF[t+57-2])

lambdaCUBIF[t]=exp(nuhatCUBIF[t])

CUBIFpr[i,t]=exp(nuhatCUBIF[t])

}

fitMQLEnone=glmrob(response~x1+x2,family=poisson,data=dataout[1:57,],

method="Mqle",control=glmrobMqle.control(tcc=cc[i]))
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estMQLEnone[i,]=fitMQLEnone$coef

std.erMQLEnone[i,]=summary(fitMQLEnone)$coef[,2]

residMQLEnone[i,]=fitMQLEnone$residuals

MQLEnonepr[i,]=predict(fitMQLEnone,dataout[58:67,],type="response")

fitMQLEhat=glmrob(response~x1+x2,family=poisson,data=dataout[1:57,],

method="Mqle",weights.on.x="hat",control=glmrobMqle.control(tcc=cc[i]))

estMQLEhat[i,]=fitMQLEhat$coef

std.erMQLEhat[i,]=summary(fitMQLEhat)$coef[,2]

residMQLEhat[i,]=fitMQLEhat$residuals

MQLEhatpr[i,]=predict(fitMQLEhat,dataout[58:67,],type="response")

fitMQLEmve=glmrob(response~x1+x2,family=poisson,data=dataout[1:57,],

method="Mqle",weights.on.x="robCov",control=glmrobMqle.control(tcc=cc[i]))

estMQLEmve[i,]=fitMQLEmve$coef

std.erMQLEmve[i,]=summary(fitMQLEmve)$coef[,2]

residMQLEmve[i,]=fitMQLEmve$residuals

MQLEmvepr[i,]=predict(fitMQLEmve,dataout[58:67,],type="response")

fitMQLEmcd=glmrob(response~x1+x2,family=poisson,data=dataout[1:57,],

method="Mqle",weights.on.x="covMcd",control=glmrobMqle.control(tcc=cc[i]))

estMQLEmcd[i,]=fitMQLEmcd$coef

std.erMQLEmcd[i,]=summary(fitMQLEmcd)$coef[,2]

residMQLEmcd[i,]=fitMQLEmcd$residuals

MQLEmcdpr[i,]=predict(fitMQLEmcd,dataout[58:67,],type="response")

}

Vector for MLE and matrices for CUBIF and MQLE in which the first 57 observations

will be the same as the original ones and the last 10 observations will be the predicted

ones. In the cases of CUBIF and MQLE, each row of the matrices corresponds to a value

of c.

yMLE=rep(NA,67)

yCUBIF=yMQLEnone=yMQLEhat=yMQLEmve=yMQLEmcd=

matrix(NA,nrow=length(cc),ncol=67)
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for (i in 1:57)

{

yMLE[i]=HydePark[i+4,]

for (j in 1:length(cc))

{

yCUBIF[j,i]=yMQLEnone[j,i]=yMQLEhat[j,i]=yMQLEmve[j,i]=

yMQLEmcd[j,i]=HydePark[i+4,]

}

}

for (i in 1:10)

{

yMLE[i+57]=MLEpr[i]

for (j in 1:length(cc))

{

yCUBIF[j,i+57]=CUBIFpr[j,i]

yMQLEnone[j,i+57]=MQLEnonepr[j,i]

yMQLEhat[j,i+57]=MQLEhatpr[j,i]

yMQLEmve[j,i+57]=MQLEmvepr[j,i]

yMQLEmcd[j,i+57]=MQLEmcdpr[j,i]

}

}

Find the MSE, MAD and MAE of the estimators.

mseMLE=(sum((HydePark[58:67,]-yMLE[58:67])^2))/10

madMLE=mad(yMLE[58:67])

maeMLE=mean(abs(yMLE[58:67]-HydePark[58:67,]))

for (i in 1:length(cc))

{

mseCUBIF[i]=(sum((HydePark[58:67,]-yCUBIF[i,58:67])^2))/10

mseMQLEnone[i]=(sum((HydePark[58:67,]-yMQLEnone[i,58:67])^2))/10

mseMQLEhat[i]=(sum((HydePark[58:67,]-yMQLEhat[i,58:67])^2))/10
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mseMQLEmve[i]=(sum((HydePark[58:67,]-yMQLEmve[i,58:67])^2))/10

mseMQLEmcd[i]=(sum((HydePark[58:67,]-yMQLEmcd[i,58:67])^2))/10

madCUBIF[i]=mad(yCUBIF[i,58:67])

madMQLEnone[i]=mad(yMQLEnone[i,58:67])

madMQLEhat[i]=mad(yMQLEhat[i,58:67])

madMQLEmve[i]=mad(yMQLEmve[i,58:67])

madMQLEmcd[i]=mad(yMQLEmcd[i,58:67])

maeCUBIF[i]=mean(abs(yCUBIF[i,58:67]-HydePark[58:67,]))

maeMQLEnone[i]=mean(abs(yMQLEnone[i,58:67]-HydePark[58:67,]))

maeMQLEhat[i]=mean(abs(yMQLEhat[i,58:67]-HydePark[58:67,]))

maeMQLEmve[i]=mean(abs(yMQLEmve[i,58:67]-HydePark[58:67,]))

maeMQLEmcd[i]=mean(abs(yMQLEmcd[i,58:67]-HydePark[58:67,]))

}
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Appendix B

R Code for Chapter 4

The libraries robustreg and robust are required to obtain the Huber function and use the

glmrob function respectively and the packages foreach and doMC are required for parallel

computing.

library(robustreg)

library(robust)

library(foreach)

library(doMC)

registerDoMC(cores=12)

Program constructed to generate data from the first order log-linear Poisson model with

feedback that includes a patch of additive outliers.

kappa is the number of outliers of size w that occur at time tau and size is the size of

the generated series.

loglinearpoisson.ts.patchAO=function(theta,w,tau,kappa,size)

{

z=rep(NA,size) # contaminated response

y=rep(NA,size) # clean response

lambda=nu=rep(NA,size)

nu[1]=0 # starting value of nu

lambda[1]=1 # starting value of the mean
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z[1]=y[1]=rpois(1,lambda[1])

for (t in 2:size)

{

nu[t]=theta[1]+theta[2]*nu[t-1]+theta[3]*log(y[t-1]+1)

lambda[t]=exp(nu[t])

y[t]=rpois(1,lambda[t])

z[t]=y[t]

}

end=tau+kappa-1

for (i in tau:end)

{

z[i]=z[i]+w

}

return(cbind(z,nu))

}

Programs to construct the log-likelihood and score functions, and the Information matrix

corresponding to the MLE.

theta is the vector of parameters and data is the generated data vector using the above

data generating function.

loglikelihood.poisson=function(theta,data)

{

loglik=nu=rep(NA,times=length(data))

nu[1]=1

loglik[1]=0

ldata=log(data+1)

for (t in 2:length(data))

{

nu[t]=theta[1]+theta[2]*nu[t-1]+theta[3]*ldata[t-1]

loglik[t]=-data[t]*nu[t]+exp(nu[t])

}
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final=sum(loglik)

}

score.poisson <- function(theta, data)

{

nu=first=second=third=rep(NA, times=length(data))

nu[1]=first[1]=second[1]=third[1]=1

s1=s2=s3=rep(NA, times=length(data))

ldata=log(data+1)

for (t in 2:length(data))

{

nu[t]=theta[1]+theta[2]*nu[t-1]+theta[3]*ldata[t-1]

first[t]= (1+theta[2]*first[t-1])

second[t]=(nu[t-1]+theta[2]*second[t-1])

third[t]=(ldata[t-1]+theta[2]*third[t-1])

s1[t]=-( (data[t]-exp(nu[t])))*first[t]

s2[t]=-( (data[t]-exp(nu[t])))*second[t]

s3[t]=-( (data[t]-exp(nu[t])))*third[t]

}

ss1=sum(s1[-1])

ss2=sum(s2[-1])

ss3=sum(s3[-1])

score=c(ss1,ss2,ss3) # score dianisma

}

mlefromloglinear=function(theta,data)

{

results=rep(NA,length(theta))

# Calculate initial values using LSE. We fit an ARMA(1,1) model

r1=arima(data,order=c(1,0,1),method="CSS")

phi=r1$coef[1]
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thetarima=r1$coef[2]

mu=sigma2=r1$coef[3]

start=c(mu*(1-phi),sigma2*(1-phi),-thetarima,(phi+thetarima))

results=optim(loglikelihood.poisson,p=c(start[2],start[3],start[4]),

data=data,score.poisson,method="BFGS")$par

return(results)

}

information1.logpoisson <- function(theta, data)

{

theta1=first=second=third=rep(NA, times=length(data))

theta1[1]=first[1]=second[1]=third[1]=1

Information=matrix(0, nrow=3, ncol=3)

s1=s2=s3=rep(NA,times=length(data))

for (t in 2:length(data))

{

theta1[t]=theta[1]+theta[2]*theta1[t-1]+theta[3]*log(data[t-1]+1)

first[t]= (1+theta[2]*first[t-1])

second[t]=(theta1[t-1]+theta[2]*second[t-1])

third[t]=(log(data[t-1]+1)+theta[2]*third[t-1])

s1[t]=first[t]

s2[t]=second[t]

s3[t]=third[t]

var.comp= (exp(theta1[t]/2))*c(s1[t], s2[t], s3[t])

Information=Information+var.comp%*%t(var.comp)

}

return(Information)

}

Program to construct the score of the MQLE.

cc is the value of the tuning constant c of the Huber function and wt is the vector of

weights.
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score.MQLE.poisson.A=function(theta,data,cc,wt)

{

library(robustreg)

nu=rep(NA,times=length(data))

nu[1]=1

first=second=third=rep(NA,times=length(data)) # derivative of nu

first[1]=second[2]=third[1]=1

r.stand=rep(NA,times=length(data)) # Pearson residuals

r.stand[1]=(data[1]-exp(nu[1]))/sqrt(exp(nu[1]))

Hub=rep(NA,times=length(data)) # Huber function

Hub[1]=psiHuber(r.stand[1],cc)

gs1=gs2=gs3=rep(NA,times=length(data))

gs1[1]=gs2[1]=gs3[1]=1

jinf=jsup=rep(NA,times=length(data)) # j1 and j2

jinf[1]=floor(exp(nu[1])-cc*sqrt(exp(nu[1])))

jsup[1]=floor(exp(nu[1])+cc*sqrt(exp(nu[1])))

epsi=rep(NA,times=length(data))

epsi[1]=-cc*ppois(jinf[1],exp(nu[1])) + cc*(1-ppois(jsup[1],exp(nu[1])))

+ sqrt(exp(nu[1]))*(ppois(jinf[1],exp(nu[1]))-ppois(jinf[1]-1,exp(nu[1]))

-(ppois(jsup[1],exp(nu[1])) - ppois(jsup[1]-1,exp(nu[1]))))

alpha=matrix(NA,nrow=length(data),ncol=3)

alpha[1,1]=epsi[1]*wt[1]*sqrt(exp(nu[1]))*first[1]

alpha[1,2]=epsi[1]*wt[1]*sqrt(exp(nu[1]))*second[1]

alpha[1,3]=epsi[1]*wt[1]*sqrt(exp(nu[1]))*third[1]

alpha.theta=rep(NA,3) # bias correction term alpha(theta)

s1=s2=s3=rep(NA, times=length(data))

s1[1]=s2[1]=s3[1]=0

ldata=log(data+1)

for (t in 2:length(data))

{

nu[t]=theta[1]+theta[2]*nu[t-1]+theta[3]*ldata[t-1]
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first[t]= (1+theta[2]*first[t-1])

second[t]=(nu[t-1]+theta[2]*second[t-1])

third[t]=(ldata[t-1]+theta[2]*third[t-1])

r.stand[t]=(data[t]-exp(nu[t]))/sqrt(exp(nu[t]))

Hub[t]=psiHuber(r.stand[t],cc)

gs1[t]=Hub[t]*wt[t]*sqrt(exp(nu[t]))*first[t]

gs2[t]=Hub[t]*wt[t]*sqrt(exp(nu[t]))*second[t]

gs3[t]=Hub[t]*wt[t]*sqrt(exp(nu[t]))*third[t]

jinf[t]=floor(exp(nu[t])-cc*sqrt(exp(nu[t])))

jsup[t]=floor(exp(nu[t])+cc*sqrt(exp(nu[t])))

epsi[t]=-cc*ppois(jinf[t],exp(nu[t])) + cc*(1-ppois(jsup[t],exp(nu[t])))

+ sqrt(exp(nu[t]))*(ppois(jinf[t],exp(nu[t]))-ppois(jinf[t]-1,exp(nu[t]))

-(ppois(jsup[t],exp(nu[t])) - ppois(jsup[t]-1,exp(nu[t]))))

alpha[t,1]=epsi[t]*wt[t]*sqrt(exp(nu[t]))*first[t]

alpha[t,2]=epsi[t]*wt[t]*sqrt(exp(nu[t]))*second[t]

alpha[t,3]=epsi[t]*wt[t]*sqrt(exp(nu[t]))*third[t]

}

alpha.theta=apply(alpha,2,mean)

s1[-1]=gs1[-1]-alpha.theta[1] # first score component

s2[-1]=gs2[-1]-alpha.theta[2] # second score component

s3[-1]=gs3[-1]-alpha.theta[3] # third score component

ss1=sum(s1)

ss2=sum(s2)

ss3=sum(s3)

score=c(ss1,ss2,ss3) # score vector

}

grad.score.A=function(theta,data,cc,wt)

{

delta=.Machine$double.eps^.5

Ident=diag(1,length(theta))
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thetadelta=theta+delta*Ident

score.derivative1=(score.MQLE.poisson.A(thetadelta[,1],data,cc,wt)-

score.MQLE.poisson.A(theta,data,cc,wt))/delta

score.derivative2=(score.MQLE.poisson.A(thetadelta[,2],data,cc,wt)-

score.MQLE.poisson.A(theta,data,cc,wt))/delta

score.derivative3=(score.MQLE.poisson.A(thetadelta[,3],data,cc,wt)-

score.MQLE.poisson.A(theta,data,cc,wt))/delta

result=rbind(score.derivative1,score.derivative2,score.derivative3)

result=as.matrix(result)

return(result)

}

solve.score.MQLE.A=function(theta,data,cc,wt)

{

library(MASS) # to use the ginv() command for the inverse of a matrix

mytol=(.Machine$double.eps)^(1/2)

max.it=200

# Calculate initial values using LSE. We fit an ARMA(1,1) model

r1=arima(data, order=c(1,0,1), method="CSS")

phi=r1$coef[1]

thetarima=r1$coef[2]

mu=sigma2=r1$coef[3]

start=c(mu*(1-phi), sigma2*(1-phi), -thetarima, (phi+thetarima))

start1=optim(loglikelihood.poisson, p=c(start[2], start[3], start[4]),

data=data, score.poisson , method="BFGS")$par

theta.old=start1

it=0 # iterations

test=1

while(abs(test)>mytol && (it<-it+1)<max.it)

{

g.old=score.MQLE.poisson.A(theta.old,data,cc,wt)
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grad.score.old=grad.score.A(theta.old,data,cc,wt)

csi=(-1)*(ginv(grad.score.old))%*%(g.old)

theta.new=as.vector(theta.old+csi)

test=max((abs(theta.new-theta.old))/(abs(theta.old)))

theta.old=theta.new

cat("This is the",it,"iteration","\n")

}

return(theta.old)

}

Program to construct the asymptotic covariance matrix of MQLE. The program contains

some commands that are the same as in the program score.MQLE.poisson.A. These

commands are omitted and we only present the commands that differ.

Asym.Variance.Matrix=function(theta,data,cc,wt)

{

library(robustreg)
...

s1[-1]=gs1[-1]-alpha.theta[1]

s2[-1]=gs2[-1]-alpha.theta[2]

s3[-1]=gs3[-1]-alpha.theta[3]

for (t in 2:length(data))

{

matrix.W=matrix.W+(c(s1[t],s2[t],s3[t]))%*%t(c(s1[t],s2[t],s3[t]))

matrix.H=matrix.H+(Hub[t]*wt[t]*sqrt(exp(nu[t]))*(data[t]-exp(nu[t])))*

(c(first[t],second[t],third[t])%*%t(c(first[t],second[t],third[t])))

}

matrix.W=matrix.W

H_antistrofo=ginv(matrix.H)

asym=H_antistrofo%*%matrix.W%*%H_antistrofo

return(asym)

}
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Program to estimate the parameter values of the first order log-linear Poisson model with

feedback using MQLE.

estim_patch=function(theta,w,tau,kappa,size,sim,cc)

{

simulations.data=foreach(i=1:sim,.combine=’rbind’,.multicombine=TRUE,

.inorder=FALSE,.errorhandling="pass")%dopar%

{

cat("\n\n********** Now doing simulation",i,"of", sim, "**********\n\n")

myalldata=loglinearpoisson.ts.patchAO(theta,w,tau,kappa,size)

mydata=myalldata[301:size,1]

mynudata=myalldata[301:size,2]

# create the design matrix X (method A):

thetahatA=solve.score.MQLE(theta,mydata,cc)

ldata=log(mydata+1)

nuhatA=rep(NA,length(mydata))

nuhatA[1]=1

for (t in 2:length(mydata))

{

nuhatA[t]=thetahatA[1]+thetahatA[2]*nuhatA[t-1]+thetahatA[3]*ldata[t-1]

}

X_A=cbind(nuhatA,ldata)

Xti_A=(t(X_A))%*%X_A

Xtitr_A=solve(Xti_A)

HatMat_A=X_A%*%Xtitr_A%*%(t(X_A)) # hat matrix

hi_A=diag(HatMat_A) #diagonal elements of the hat matrix

weights.hii_A=sqrt(1-hi_A) # hat weights

mve_A=cov.rob(X_A,method="mve")

mve_center_A=mve_A$center

mve_cov_A=mve_A$cov

maha.mve_A=sqrt(mahalanobis(X_A, mve_center_A, mve_cov_A))

weights.mve_A=1/maha.mve_A # mve weights
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mcd_A=cov.rob(X_A,method="mcd")

mcd_center_A=mve_A$center

mcd_cov_A=mve_A$cov

maha.mcd_A=sqrt(mahalanobis(X_A, mcd_center_A, mcd_cov_A))

weights.mcd_A=1/maha.mcd_A # mcd weights

# Create the X matrix (B)

M=20 # truncation constant M

X_B=matrix(NA,nrow=length(mydata),ncol=M)

myally=myalldata[,1]

all_ldata=log(1+myally)

for (i in 1:length(mydata)){ #rows

for (j in 1:M){ #columns

X_B[i,j]=all_ldata[300+i-(j-1)]

}}

Xti_B=(t(X_B))%*%X_B

Xtitr_B=solve(Xti_B)

HatMat_B=X_B%*%Xtitr_B%*%(t(X_B)) # hat matrix

hi_B=diag(HatMat_B) #diagonal elements of the hat matrix

weights.hii_B=sqrt(1-hi_B) # hat weights

mve_B=cov.rob(X_B,method="mve")

mve_center_B=mve_B$center

mve_cov_B=mve_B$cov

maha.mve_B=sqrt(mahalanobis(X_B, mve_center_B, mve_cov_B))

weights.mve_B=1/maha.mve_B # mve weights

mcd_B=cov.rob(X_B,method="mcd")

mcd_center_B=mve_B$center

mcd_cov_B=mve_B$cov

maha.mcd_B=sqrt(mahalanobis(X_B, mcd_center_B, mcd_cov_B))

weights.mcd_B=1/maha.mcd_B # mcd weights

estim=c(mlefromloglinear(theta,mydata),

solve(information1.logpoisson(mlefromloglinear(theta,mydata),mydata)),
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solve.score.MQLE(theta,mydata,cc,rep(1,500)),

Asym.Variance.Matrix(solve.score.MQLE(theta,mydata,cc),mydata,cc,rep(1,500)),

solve.score.MQLE.A(theta,mydata,cc,weights.hii_A),

Asym.Variance.Matrix(solve.score.MQLE.A(theta,mydata,cc,weights.hii_A),

mydata,cc,weights.hii_A),solve.score.MQLE.A(theta,mydata,cc,weights.mve_A),

Asym.Variance.Matrix(solve.score.MQLE.A(theta,mydata,cc,weights.mve_A),

mydata,cc,weights.mve_A),solve.score.MQLE.A(theta,mydata,cc,weights.mcd_A),

Asym.Variance.Matrix(solve.score.MQLE.A(theta,mydata,cc,weights.mcd_A),

mydata,cc,weights.mcd_A),solve.score.MQLE.A(theta,mydata,cc,weights.hii_B),

Asym.Variance.Matrix(solve.score.MQLE.A(theta,mydata,cc,weights.hii_B),

mydata,cc,weights.hii_B),solve.score.MQLE.A(theta,mydata,cc,weights.mve_B),

Asym.Variance.Matrix(solve.score.MQLE.A(theta,mydata,cc,weights.mve_B),

mydata,cc,weights.mve_B),solve.score.MQLE.A(theta,mydata,cc,weights.mcd_B),

Asym.Variance.Matrix(solve.score.MQLE.A(theta,mydata,cc,weights.mcd_B),

mydata,cc,weights.mcd_B))

}

return(simulations.data)

}

Testing Program. Again, the commands that are the same as in the score.MQLE.poisson.A

program are omitted.

Asym.Variance.Matrix_testing=function(theta,data,cc,wt)

{

library(robustreg)
...

s1=s2=s3rep(NA, times=length(data))

s1[1]=s2[1]=s3[1]=0

ldata=log(data+1)

s1MLE=s2MLE=s3MLE=rep(NA, times=length(data))

matrix.V=matrix.W=matrix.H=matrix(0,nrow=3,ncol=3)

for (t in 2:length(data))
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{

nu[t]=theta[1]+theta[2]*nu[t-1]+theta[3]*ldata[t-1]

first[t]= (1+theta[2]*first[t-1])

second[t]=(nu[t-1]+theta[2]*second[t-1])

third[t]=(ldata[t-1]+theta[2]*third[t-1])

r.stand[t]=(data[t]-exp(nu[t]))/sqrt(exp(nu[t]))

Hub[t]=psiHuber(r.stand[t],cc)

gs1[t]=Hub[t]*wt[t]*sqrt(exp(nu[t]))*first[t]

gs2[t]=Hub[t]*wt[t]*sqrt(exp(nu[t]))*second[t]

gs3[t]=Hub[t]*wt[t]*sqrt(exp(nu[t]))*third[t]

jinf[t]=floor(exp(nu[t])-cc*sqrt(exp(nu[t])))

jsup[t]=floor(exp(nu[t])+cc*sqrt(exp(nu[t])))

epsi[t]=-cc*ppois(jinf[t],exp(nu[t])) + cc*(1-ppois(jsup[t],exp(nu[t])))

+ sqrt(exp(nu[t]))*(ppois(jinf[t],exp(nu[t]))-ppois(jinf[t]-1,exp(nu[t]))

-(ppois(jsup[t],exp(nu[t])) - ppois(jsup[t]-1,exp(nu[t]))))

alpha[t,1]=epsi[t]*wt[t]*sqrt(exp(nu[t]))*first[t]

alpha[t,2]=epsi[t]*wt[t]*sqrt(exp(nu[t]))*second[t]

alpha[t,3]=epsi[t]*wt[t]*sqrt(exp(nu[t]))*third[t]

s1MLE[t]=-( (data[t]-exp(nu[t])))*first[t]

s2MLE[t]=-( (data[t]-exp(nu[t])))*second[t]

s3MLE[t]=-( (data[t]-exp(nu[t])))*third[t]

}

alpha.theta=apply(alpha,2,mean)

s1[-1]=gs1[-1]-alpha.theta[1]

s2[-1]=gs2[-1]-alpha.theta[2]

s3[-1]=gs3[-1]-alpha.theta[3]

for (t in 2:length(data))

{

matrix.V=matrix.V+(c(s1[t],s2[t],s3[t]))%*%t((c(s1MLE[t],s2MLE[t],s3MLE[t])))

matrix.W=matrix.W+(c(s1[t],s2[t],s3[t]))%*%t(c(s1[t],s2[t],s3[t]))

matrix.H=matrix.H+(Hub[t]*wt[t]*sqrt(exp(nu[t]))*(data[t]-exp(nu[t])))*
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(c(first[t],second[t],third[t])%*%t(c(first[t],second[t],third[t])))

}

matrix.V=matrix.V

matrix.W=matrix.W

V_antistrofo=ginv(matrix.V)

H_antistrofo=ginv(matrix.H)

asym=H_antistrofo%*%matrix.W%*%H_antistrofo

return(list(mat.W=matrix.W,mat.V=matrix.H,asym.mat=asym))

}

testing_program=function(theta,w,tau,kappa,size,sim,cc)

{

library(robust)

score.test.none=score.test.hat=score.test.MVE=

score.test.MCD=matrix(NA,nrow=length(cc),ncol=sim)

for (k in 1:length(cc))

{

for (i in 1:sim)

{

# Generate under the null hypothesis, from the model without feedback

mydata=loglinearpoisson.ts.patchAO(theta,w,tau,kappa,size)[301:size]

response=mydata[2:(size-300)]

x=log(1+mydata[1:(size-300-1)])

dataout=as.data.frame(cbind(response,x))

# Obtain the MQLE estimates under the null hypothesis

fit_MQLE_none=glmrob(response~x,family=poisson,data=dataout,method="Mqle",

control=glmrobMqle.control(tcc=cc[k]))

fit_MQLE_hat=glmrob(response~x,family=poisson,data=dataout,method="Mqle",

weights.on.x="hat",control=glmrobMqle.control(tcc=cc[k]))

fit_MQLE_MVE=glmrob(response~x,family=poisson,data=dataout,method="Mqle",

weights.on.x="robCov",control=glmrobMqle.control(tcc=cc[k]))

fit_MQLE_MCD=glmrob(response~x,family=poisson,data=dataout,method="Mqle",
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weights.on.x="covMcd",control=glmrobMqle.control(tcc=cc[k]))

# MQLE score partition corresponding to a

MQLE.score.none=score.MQLE.poisson.A(c(fit_MQLE_none$coef[1],0,

fit_MQLE_none$coef[2]),mydata,cc[k],wt=rep(1,500))

MQLE.score.hat=score.MQLE.poisson.A(c(fit_MQLE_hat$coef[1],0,

fit_MQLE_hat$coef[2]),mydata,cc[k],wt=c(1,summary(fit_MQLE_hat)$w.x))

MQLE.score.MVE=score.MQLE.poisson.A(c(fit_MQLE_MVE$coef[1],0,

fit_MQLE_MVE$coef[2]),mydata,cc[k],wt=c(1,summary(fit_MQLE_MVE)$w.x))

MQLE.score.MCD=score.MQLE.poisson.A(c(fit_MQLE_MCD$coef[1],0,

fit_MQLE_MCD$coef[2]),mydata,cc[k],wt=c(1,summary(fit_MQLE_MCD)$w.x))

# Partitions of the matrices W and V

#Without weights

Asym.matrices.none=Asym.Variance.Matrix_testing(c(fit_MQLE_none$coef[1],

0,fit_MQLE_none$coef[2]),mydata,cc[k],wt=rep(1,500))

Matrix_V.none=Asym.matrices.none$mat.V

Matrix_W.none=Asym.matrices.none$mat.W

W_11.none=rbind(c(Matrix_W.none[1,1],Matrix_W.none[1,3]),

c(Matrix_W.none[3,1],Matrix_W.none[3,3]))

W_12.none=rbind(Matrix_W.none[1,2],Matrix_W.none[3,2])

W_21.none=cbind(Matrix_W.none[2,1],Matrix_W.none[2,3])

W_22.none=Matrix_W.none[2,2]

V_11.none=rbind(c(Matrix_V.none[1,1],Matrix_V.none[1,3]),

c(Matrix_V.none[3,1],Matrix_V.none[3,3]))

V_12.none=rbind(Matrix_V.none[1,2],Matrix_V.none[3,2])

V_21.none=cbind(Matrix_V.none[2,1],Matrix_V.none[2,3])

V_22.none=Matrix_V.none[2,2]

# With hat weights

Asym.matrices.hat=Asym.Variance.Matrix_testing(c(fit_MQLE_hat$coef[1],

0,fit_MQLE_hat$coef[2]),mydata,cc[k],wt=c(1,summary(fit_MQLE_hat)$w.x))

Matrix_V.hat=Asym.matrices.hat$mat.V

Matrix_W.hat=Asym.matrices.hat$mat.W
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W_11.hat=rbind(c(Matrix_W.hat[1,1],Matrix_W.hat[1,3]),

c(Matrix_W.hat[3,1],Matrix_W.hat[3,3]))

W_12.hat=rbind(Matrix_W.hat[1,2],Matrix_W.hat[3,2])

W_21.hat=cbind(Matrix_W.hat[2,1],Matrix_W.hat[2,3])

W_22.hat=Matrix_W.hat[2,2]

V_11.hat=rbind(c(Matrix_V.hat[1,1],Matrix_V.hat[1,3]),

c(Matrix_V.hat[3,1],Matrix_V.hat[3,3]))

V_12.hat=rbind(Matrix_V.hat[1,2],Matrix_V.hat[3,2])

V_21.hat=cbind(Matrix_V.hat[2,1],Matrix_V.hat[2,3])

V_22.hat=Matrix_V.hat[2,2]

# With robust Mahalanobis MVE weights

Asym.matrices.MVE=Asym.Variance.Matrix_testing(c(fit_MQLE_MVE$coef[1],

0,fit_MQLE_MVE$coef[2]),mydata,cc[k],wt=c(1,summary(fit_MQLE_MVE)$w.x))

Matrix_V.MVE=Asym.matrices.MVE$mat.V

Matrix_W.MVE=Asym.matrices.MVE$mat.W

W_11.MVE=rbind(c(Matrix_W.MVE[1,1],Matrix_W.MVE[1,3]),

c(Matrix_W.MVE[3,1],Matrix_W.MVE[3,3]))

W_12.MVE=rbind(Matrix_W.MVE[1,2],Matrix_W.MVE[3,2])

W_21.MVE=cbind(Matrix_W.MVE[2,1],Matrix_W.MVE[2,3])

W_22.MVE=Matrix_W.MVE[2,2]

V_11.MVE=rbind(c(Matrix_V.MVE[1,1],Matrix_V.MVE[1,3]),

c(Matrix_V.MVE[3,1],Matrix_V.MVE[3,3]))

V_12.MVE=rbind(Matrix_V.MVE[1,2],Matrix_V.MVE[3,2])

V_21.MVE=cbind(Matrix_V.MVE[2,1],Matrix_V.MVE[2,3])

V_22.MVE=Matrix_V.MVE[2,2]

# With robust Mahalanobis MCD weights

Asym.matrices.MCD=Asym.Variance.Matrix_testing(c(fit_MQLE_MCD$coef[1],

0,fit_MQLE_MCD$coef[2]),mydata,cc[k],wt=c(1,summary(fit_MQLE_MCD)$w.x))

Matrix_V.MCD=Asym.matrices.MCD$mat.V

Matrix_W.MCD=Asym.matrices.MCD$mat.W

W_11.MCD=rbind(c(Matrix_W.MCD[1,1],Matrix_W.MCD[1,3]),
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c(Matrix_W.MCD[3,1],Matrix_W.MCD[3,3]))

W_12.MCD=rbind(Matrix_W.MCD[1,2],Matrix_W.MCD[3,2])

W_21.MCD=cbind(Matrix_W.MCD[2,1],Matrix_W.MCD[2,3])

W_22.MCD=Matrix_W.MCD[2,2]

V_11.MCD=rbind(c(Matrix_V.MCD[1,1],Matrix_V.MCD[1,3]),

c(Matrix_V.MCD[3,1],Matrix_V.MCD[3,3]))

V_12.MCD=rbind(Matrix_V.MCD[1,2],Matrix_V.MCD[3,2])

V_21.MCD=cbind(Matrix_V.MCD[2,1],Matrix_V.MCD[2,3])

V_22.MCD=Matrix_V.MCD[2,2]

# calculate Sigma

Sigma.none=W_22.none-V_21.none%*%solve(V_11.none)%*%W_12.none

-W_21.none%*%solve(V_11.none)%*%V_12.none

+V_21.none%*%solve(V_11.none)%*%W_11.none%*%solve(V_11.none)%*%V_12.none

Sigma.hat=W_22.hat-V_21.hat%*%solve(V_11.hat)%*%W_12.hat

-W_21.hat%*%solve(V_11.hat)%*%V_12.hat

+V_21.hat%*%solve(V_11.hat)%*%W_11.hat%*%solve(V_11.hat)%*%V_12.hat

Sigma.MVE=W_22.MVE-V_21.MVE%*%solve(V_11.MVE)%*%W_12.MVE

-W_21.MVE%*%solve(V_11.MVE)%*%V_12.MVE

+V_21.MVE%*%solve(V_11.MVE)%*%W_11.MVE%*%solve(V_11.MVE)%*%V_12.MVE

Sigma.MCD=W_22.MCD-V_21.MCD%*%solve(V_11.MCD)%*%W_12.MCD

-W_21.MCD%*%solve(V_11.MCD)%*%V_12.MCD

+V_21.MCD%*%solve(V_11.MCD)%*%W_11.MCD%*%solve(V_11.MCD)%*%V_12.MCD

# Calculation of the score test

score.test.none[k,i]=MQLE.score.none[2]*MQLE.score.none[2]/Sigma.none

score.test.hat[k,i]=MQLE.score.hat[2]*MQLE.score.hat[2]/Sigma.hat

score.test.MVE[k,i]=MQLE.score.MVE[2]*MQLE.score.MVE[2]/Sigma.MVE

score.test.MCD[k,i]=MQLE.score.MCD[2]*MQLE.score.MCD[2]/Sigma.MCD

}

}

return(list(score.test.no.weights=score.test.none,score.test.hat.weights

=score.test.hat,score.test.MVE.weights=score.test.MVE,
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score.test.MCD.weights=score.test.MCD))

}

Measles Data Analysis

Load the data from the library tscount and plot a time series plot.

library(tscount) # to load the data

measles1=measles[1:150,3]

ts.plot(measles1) # time series plot of the data

Detect outliers using the Chen and Liu (1993) method from the tsoutliers package.

library(tsoutliers)

measles1.ts=ts(measles1) # convert the data into a time series format

measles1.outliers=tso(measles1.ts,maxit.iloop=10)

measles1.outliers$outliers

Fit an ARIMA(1,0,1)=ARMA(1,1) model to obtain initial estimates of the parameter

estimates (theta)

r1.measles1=arima(measles1,order=c(1,0,1),method="CSS")

phi.measles1=r1.measles1$coef[1]

thetarima.measles1=r1.measles1$coef[2]

mu.measles1=sigma2.measles1=r1.measles1$coef[3]

theta.initial.measles1=c(sigma2.measles1*(1-phi.measles1),

-thetarima.measles1,(phi.measles1+thetarima.measles1))

theta.initial.measles1

Obtain the parameter estimates using MLE and MQLE as described in Chapter 4.

# MLE

theta.MLE.measles1=mlefromloglinear(theta.initial.measles1,measles1)

asym.cov.MLE.measles1=solve(information1.logpoisson(theta.initial.measles1,
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measles1))

# MQLE no weights

cc=seq(1,5,length=15)

theta.MQLEnone.measles1=matrix(NA,nrow=length(cc),

ncol=length(theta.initial.measles1))

asym.cov.MQLEnone.measles1=array(NA,dim=c(length(theta.initial.measles1),

length(theta.initial.measles1),length(cc)))

for (i in 1:length(cc))

{

theta.MQLEnone.measles1[i,]=solve.score.MQLE.A(theta.initial.measles1,

measles1,cc[i],wt=rep(1,length(measles1)))

asym.cov.MQLEnone.measles1[,,i]=Asym.Variance.Matrix(theta.initial.measles1,

measles1,cc[i],wt=rep(1,length(measles1)))

}

# MQLE with weights

# Method A:

thetahatA.measles1=matrix(NA,nrow=length(cc),ncol=length(theta.initial.measles1))

ldata.measles1=log(measles1+1)

nuhatA.measles1=matrix(NA,nrow=length(cc),ncol=length(measles1))

weights.hii_A.measles1=weights.mve_A.measles1=

weights.mcd_A.measles1=matrix(NA,nrow=length(cc),ncol=length(measles1))

theta.MQLEhatA.measles1=theta.MQLEmveA.measles1=

theta.MQLEmcdA.measles1=matrix(NA,nrow=length(cc),

ncol=length(theta.initial.measles1))

matrix(NA,nrow=length(cc),ncol=length(theta.initial.measles1))

asym.cov.MQLEhatA.measles1=asym.cov.MQLEmveA.measles1=asym.cov.MQLEmcdA.measles1=

array(NA,dim=c(length(theta.initial.measles1),

length(theta.initial.measles1),length(cc)))

for (i in 1:length(cc))

{

nuhatA.measles1[i,1]=1
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thetahatA.measles1[i,]=solve.score.MQLE(theta.initial.measles1,measles1,cc[i])

for (t in 2:length(measles1))

{

nuhatA.measles1[i,t]=thetahatA.measles1[i,1]

+thetahatA.measles1[i,2]*nuhatA.measles1[i,(t-1)]

+thetahatA.measles1[i,3]*ldata.measles1[t-1]

}

X_A.measles1=cbind(nuhatA.measles1[i,],ldata.measles1)

Xti_A.measles1=(t(X_A.measles1))%*%X_A.measles1

Xtitr_A.measles1=solve(Xti_A.measles1)

HatMat_A.measles1=X_A.measles1%*%Xtitr_A.measles1%*%(t(X_A.measles1))

hi_A.measles1=diag(HatMat_A.measles1) #diagonal elements of the hat matrix

weights.hii_A.measles1[i,]=sqrt(1-hi_A.measles1)

mve_A.measles1=cov.rob(X_A.measles1,method="mve")

mve_center_A.measles1=mve_A.measles1$center

mve_cov_A.measles1=mve_A.measles1$cov

maha.mve_A.measles1=sqrt(mahalanobis(X_A.measles1,

mve_center_A.measles1, mve_cov_A.measles1))

weights.mve_A.measles1[i,]=pmin(rep(1,length(measles1)),1/maha.mve_A.measles1)

mcd_A.measles1=cov.rob(X_A.measles1,method="mcd")

mcd_center_A.measles1=mcd_A.measles1$center

mcd_cov_A.measles1=mcd_A.measles1$cov

maha.mcd_A.measles1=sqrt(mahalanobis(X_A.measles1,

mcd_center_A.measles1, mcd_cov_A.measles1))

weights.mcd_A.measles1[i,]=pmin(rep(1,length(measles1)),1/maha.mcd_A.measles1)

}

for (i in 1:length(cc))

{

theta.MQLEhatA.measles1[i,]=solve.score.MQLE.A(theta.initial.measles1,

measles1,cc[i],wt=weights.hii_A.measles1[i,])

asym.cov.MQLEhatA.measles1[,,i]=Asym.Variance.Matrix(theta.initial.measles1,
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measles1,cc[i],wt=weights.hii_A.measles1[i,])

theta.MQLEmveA.measles1[i,]=solve.score.MQLE.A(theta.initial.measles1,

measles1,cc[i],wt=weights.mve_A.measles1[i,])

asym.cov.MQLEmveA.measles1[,,i]=Asym.Variance.Matrix(theta.initial.measles1,

measles1,cc[i],wt=weights.mve_A.measles1[i,])

theta.MQLEmcdA.measles1[i,]=solve.score.MQLE.A(theta.initial.measles1,

measles1,cc[i],wt=weights.mcd_A.measles1[i,])

asym.cov.MQLEmcdA.measles1[,,i]=Asym.Variance.Matrix(theta.initial.measles1,

measles1,cc[i],wt=weights.mcd_A.measles1[i,])

}

# Method B:

theta.MQLEhatB.measles1=theta.MQLEmveB.measles1=theta.MQLEmcdB.measles1=

matrix(NA,nrow=length(cc),ncol=length(theta.initial.measles1))

asym.cov.MQLEhatB.measles1=asym.cov.MQLEmveB.measles1=asym.cov.MQLEmcdB.measles1=

array(NA,dim=c(length(theta.initial.measles1),

length(theta.initial.measles1),length(cc)))

M=10

X_B.measles1=matrix(NA,nrow=(length(measles1)-M),ncol=M)

ldata=log(1+measles1)

for (i in 1:(length(measles1)-M)){

for (j in 1:M){

X_B.measles1[i,j]=ldata[M+i-(j-1)]

}}

Xti_B.measles1=(t(X_B.measles1))%*%X_B.measles1

Xtitr_B.measles1=solve(Xti_B.measles1)

HatMat_B.measles1=X_B.measles1%*%Xtitr_B.measles1%*%(t(X_B.measles1))

hi_B.measles1=diag(HatMat_B.measles1) #diagonal elements of the hat matrix

weights.hii_B.measles1=sqrt(1-hi_B.measles1) #these are the hat weights

mve_B.measles1=cov.rob(X_B.measles1,method="mve")

mve_center_B.measles1=mve_B.measles1$center
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mve_cov_B.measles1=mve_B.measles1$cov

maha.mve_B.measles1=sqrt(mahalanobis(X_B.measles1,

mve_center_B.measles1, mve_cov_B.measles1))

weights.mve_B.measles1=pmin(rep(1,length(measles1)-M),1/maha.mve_B.measles1)

mcd_B.measles1=cov.rob(X_B.measles1,method="mcd")

mcd_center_B.measles1=mcd_B.measles1$center

mcd_cov_B.measles1=mcd_B.measles1$cov

maha.mcd_B.measles1=sqrt(mahalanobis(X_B.measles1,

mcd_center_B.measles1, mcd_cov_B.measles1))

weights.mcd_B.measles1=pmin(rep(1,length(measles1)-M),1/maha.mcd_B.measles1)

for (i in 1:length(cc))

{

theta.MQLEhatB.measles1[i,]=solve.score.MQLE.A(theta.initial.measles1,

measles1[11:150],cc[i],wt=weights.hii_B.measles1)

asym.cov.MQLEhatB.measles1[,,i]=Asym.Variance.Matrix(theta.initial.measles1,

measles1[11:150],cc[i],wt=weights.hii_B.measles1)

theta.MQLEmveB.measles1[i,]=solve.score.MQLE.A(theta.initial.measles1,

measles1[11:150],cc[i],wt=weights.mve_B.measles1)

asym.cov.MQLEmveB.measles1[,,i]=Asym.Variance.Matrix(theta.initial.measles1,

measles1[11:150],cc[i],wt=weights.mve_B.measles1)

theta.MQLEmcdB.measles1[i,]=solve.score.MQLE.A(theta.initial.measles1,

measles1[11:150],cc[i],wt=weights.mcd_B.measles1)

asym.cov.MQLEmcdB.measles1[,,i]=Asym.Variance.Matrix(theta.initial.measles1,

measles1[11:150],cc[i],wt=weights.mcd_B.measles1)

}

Standard deviations of the parameter estimates:

sdnone=sdhatA=sdmveA=sdmcdA=sdhatB=sdmveB=sdmcdB=matrix(NA,nrow=15,ncol=3)

for (i in 1:15){

sdnone[i,]=sqrt(diag(asym.cov.MQLEnone.measles1[,,i]))

sdhatA[i,]=sqrt(diag(asym.cov.MQLEhatA.measles1[,,i]))
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sdmveA[i,]=sqrt(diag(asym.cov.MQLEmveA.measles1[,,i]))

sdmcdA[i,]=sqrt(diag(asym.cov.MQLEmcdA.measles1[,,i]))

sdhatB[i,]=sqrt(diag(asym.cov.MQLEhatB.measles1[,,i]))

sdmveB[i,]=sqrt(diag(asym.cov.MQLEmveB.measles1[,,i]))

sdmcdB[i,]=sqrt(diag(asym.cov.MQLEmcdB.measles1[,,i]))

}
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