University
of Cyprus

DEPARTMENT OF MATHEMATICS AND STATISTICS

DUALITY FOR HARDY SPACES
ON TUBE DOMAINS IN C? AND APPLICATIONS

DOCTOR OF PHILOSOPHY DISSERTATION
NIKOLETA ALEXANDROU

2016



University
of Cyprus

DEPARTMENT OF MATHEMATICS AND STATISTICS

DUALITY FOR HARDY SPACES
ON TUBE DOMAINS IN C?2 AND APPLICATIONS

Nikoleta Alexandrou

A Dissertation Submitted to the University of Cyprus in Partial Fulfillment

of the Requirements for the Degree of Doctor of Philosophy

November 2016



(© Copyright by Nikoleta Alexandrou, 2016



Abstract

Let T, = R* x i{(y1,92) € R? : yi +y3 < 1}, T, = {(z1,20) € R* : 2] + 23 <
1} x iR? be tubes in C* and H*(T,), j = 1,2, be the spaces of holomorphic functions
f(z) = [ f(t)e*™=dt, z € Tp, and g(z) = [ f(t)e*™'dt, = € Tp,. The main result of the
presentR‘shesis is a separation of Singularit§2type theorem allowing to express a function
f € H*(Tg,) as a difference of two holomorphic functions f; € H Q(T(Sg)mt) and fy €
H Z(T(S;)int), defined on suitable tubes T(S;,)i"t and T(S;FI)W, whose base contains a cone,
and satisfying T, = T} S5 yint NT, S yint - It is proven that every function f, € H? (T( SE)””) or
f2 € (T, g:yint) 18 representable by Cauchy-Fantappie formula (and conversely). As a direct
consequence of separation of singularities theorem it is shown also that every function
f € H?*(Tg,) is represented by Cauchy-Fantappie formula supported on the boundary
OTg,. Actually, if ®,(¢,() = (%)2 + (%)2 — 1 is the defining function of the tube
Tg, then for every function f € H*(Tg,)

r2xist (< Ve@i(¢,¢),¢— =z >)2

Similar results are valid for the tube H?(Tg,).



ITepiAndn

'Eotw Tp, = R?* x i{(y1,12) E R*: yi +y3 < 1}, Tp, = {(z1,72) € R? : 23 + 23 < 1} x iR?
xulwvdpixd yweto oto C* xw H*(Tg,), j = 1,2, eivon ot yhpot 0AGHOPYWY GUVIETHOERY
f(z) = [ fX)e*™=tdt, z € T, xu g(z) = [ f(t)e*™dt, z € Tp,. To xlplo anotéheous Tne
napo()oﬁz epyaoiog elvon eva Yewmpnua T()ni})% Loty WEIOUoU TwV WLaloviwy onpeiwy To onolo
emtpénel Ty éxgpoon ouvdptnore f € H*(Tp,) ®c dopopd 800 0AGUopPwY GUVIPTACERY
fie HQ(T(SI;)W) xou fo € H2(T(S§)im)’ OPICUEVWY OE XATAAANAAL ETAEYUEVA, U1 QEAYUEVAL
AXUNVOPLXE Y wela T(S,;)mt ool T(S;})mt, TwY onolwv 1) Bdorn meplEyel xWvVo, TETOW WOTE Vo
wavorooty 1N cuvixn T, = T(S;{)mt ﬂT(sg)mt- Enfong, arodetxvieton 61t xdie cuvdptnon
fi € HZ(T(SE)I-M) h fo € HQ(T(SE)M), avtiototya, ex@pdleton UEow OMOXANPWTIXAC ova-
nopdotaorg tonou Cauchy-Fantappie (xat avtiotpoga). Q¢ dueco anotéheoua hoydvouye,
eniong, 6T xdde ouvdptnon f € H?*(Tp,) uropel va avarapactade! peow ohoxAnpwTixig avo-
nopdotaorg tonou Cauchy-Fantappie pe gopéa 610 alvopo 1,. EWwdtepa, dv @1((, ()=
(%)2 + <%>2 — 1 etvan 1 opiCouca cuvdptnon mou avtioTotyel 610 XVAVOEIXS Ywpelo

T, t61€ Yo xde ouvdptnon f € H*(Tg,) woylet

R2x3S1 (< V<®1(C,§),C—Z>)2

‘Opoto amotehéopata toyhouy xat yio Tov yopeo Hardy H?(Tg,).

il
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Chapter 1

Introduction

The theory of Hardy spaces and their integral representations is rather well developed
for bounded domains Q2 C C™ of different types of convexity (convex and pseudo-convex
domains with reasonably smooth boundaries). However, almost nothing is known about
the related questions for Hardy spaces on unbounded domains G C C", the main reason
being the absence of suitable integral representation for holomorphic functions f € H(G)
on such domains, even if one assumes high degree of smoothness of the boundary 0G and
continuity of f on the closure G. The main obstacle to be able to obtain such integral
formulas is the lack of Stoke’s theorem for unbounded domains.

The main result of the present thesis is a Cauchy-Fantappie formula for the Hardy spaces

H?*(Tp,), j = 1,2, on tubular domains consisting of holomorphic functions
F(z)= /f(t)ezmz'tdt, z €Tp, and G(z) = /f(t)em'tdt, 2z €T,
R2 R2

correspondingly. The tubes are described by their defining functions as follows

21— Z1.9 Zo — Zo
21 )7 21
Lz _

Ty, — {ze©2:(zl2Z1)2+(Z2"£Z2)2—1<0}.

Tp, = {2€C*:( )2 —1<0}

Our approach is based on that of Aizenberg-Martineau ([1, 2, 4],[21, 22]) with the use of the

Y

notion of the ”exterior of a domain ” not in a topological sense, but rather through a gen-

eralized complement (or dual complement in ([10])). To be more specific, if G C C", then



G™ denotes its generalized complement, that is, the set of points through which there exists
a complex hyperplane that does not intersect G. One of the main results of Aizenberg-
Martineau theory is that the Cauchy-Fantappie Transform F¢ : (O(G)) — O(G*),
mapping the analytic functional u € (O(G))" into the space of analytic functions O(G*)
via Fo(p)(C) = M((1+<+>)2)’ is an isomorphism whenever G is an open (or compact) C-
convex set ([10, 29]). Such approach was used to obtain duality results for Hardy spaces
on bounded domains with suitably smooth boundary. Namely, it was proved in ([6, 7])
that (H?(G)) = HY(G*), whenever % + é =1, p>1and G is a bounded convex domain
with smooth enough boundary, where a crucial step was the knowledge of the boundary
values of the Cauchy-Fantappie integral from ([27]). One should note here a string of re-
cent papers concerning the boundary values behavior of the Cauchy-Fantappie kernel and
the description of the corresponding Hardy spaces ([19, 18, 26]). This cycle of ideas breaks
down when G = T, or G = T,, because no Stokes theorem can be applied. Instead, we
prove separation of singularity (Aronsajn type theorem ([11]) for functions spaces equipped
with norm, using the approach developed by L.Aizenberg in [5] via duality arguments for
Hardy spaces on the generalized exteriors (generalized dual complement) and then using
the reflexivity of spaces obtained we return back to the original space. The outline of the
thesis is as follows: in Chapter 2 we present the results describing precisely the ”exterior”
(generalized dual complement) of suitable tubes T - and T’ st with convex , unbounded
base containing a cone, whose intersection is Ts,, in order to obtain the fact that T3 is
the envelope of holomorphy of the union of the compacts T;I; and T S*E . In Chapter 3 we
formulate and prove some results concerning H?(T’,) (similarly arguing results concerning
H?*(Tg,)). In Chapter 4 we prove that f € H 2(TS;I) if and only if it is representable by
Cauchy-Fantappie formula. In Chapter 5 we develop sort of duality theory in the spirit of
Martineau-Aizenberg for the spaces H Q(TS;I) and H?(Tp,). The main result of this chap-
ter describes the general form of F' € (H 2T SH))/. Finally, in Chapter 6 we derive the
separation of singularities theorem and its consequence: the Cauchy-Fantappie integral

representation for f € H?(Tp,).



Chapter 2

Convexity and exterior

We begin by recalling some basic notions and facts from the theory of real and complex
convexity emphasizing on the linear (lineal in ([20])) convexity theory for domains in C"
that will be used throughout the thesis. Next, we introduce the notion of generalized
dual complement of a domain in C™ and then we describe explicitly the generalized dual

complement of particular convex sets in C2.

2.1 Notions of convexity

A domain 2 in C" is a non-empty, open and connected subset of C”. A domain 2 C C"
has a boundary of class C* for k > 1 ([17]) if Q@ = {z € C" : ®q(2,%) < 0} where dg is

a real-valued function at least k times continuously differentiable in some neighborhood

00 .. 09%g

Tl g ) is assumed to

of the closure of Q so that the complex gradient V,®q = (
be non-vanishing at all points of the boundary 9. We write 00 € C*. It is clear that
the boundary of Q corresponds to the set 0 = {z € C" : ®g(z,2) = 0}. Thus, the
boundary 9€) has real dimension 2n — 1. If kK = 1, then one says that €2 is a domain with
smooth boundary. The function ®g, is called the defining function for the domain {2 and
in general is not uniquely determined. This notation for €2 will be used throughout the
thesis. Furthermore, notice that if U O € is a neighborhood of the closure of € then
UNoQ = {z € C" : ®g(z,Z) = 0}. Note that once a defining function is given on a

neighborhood of the boundary of a domain €2, then using a partition of unity, the defining



function is extended to the whole domain.

A domain €2 has a piece-wise smooth boundary ([17]) if Q@ = {z € C" : ®q (2) <

0,j =1,--- ,m} where the real-valued functions Dq, are of class C! in some neighbor-
hood of 2 and for every set of distinct indices ji,- -, j; where 1 < [ < m, the condition
dPo; A+ ANdPq, # 0 is valid on the set {z € C": &g, (2,2) =+ = Pg, (2,2) =0}. In

the particular case when m = 1, a domain {2 C C" has a smooth boundary if d®q # 0 on

092.

We are going to study particular type of domains and compact subsets of C" that
are described in terms of notions analogous to those of real convexity theory. Recall that
A C R* is called geometrically convex set if and only if its intersection with every line
is connected or equivalently if and only if the line segment connecting any two points of
A lies entirely in A. An alternative and equivalent description of convexity consists in the
study of the exterior of a set. Particularly, A C R?*" is convex if and only if for every
a € A° there is a real hyperplane {z € R?*" :< z,y >< «} which does not intersect A,
where < x,y >= 2191 +- - - + T2, Y2, is the usual inner product in R?”. Thus, through every
point in the topological complement of a convex set A C R?" there passes a real hyper-

plane which does not intersect A. The topological dimension of such a hyperplane is 2n—1.

Actually, assume that A C R?" has the property that through any point of its exterior
there passes a real hyperplane not intersecting A. If A is not geometrically convex then
there are points x,y € A so that for some a € Ty, implies that a € R*"\ A. Then there
is a point b € JA (which may be a itself) on the line segment connecting x and b and a
real hyperplane through b which is disjoint from A. Since all points sufficiently near to z,
y belong to A, this is a contradiction. Conversely, assume A is convex according to the
line segment definition and take € 9A. Assume ¢ € A°. Then there is a point a € A
so that the distance |@¢| is minimum for points ranging over A. Then the real hyperplane
< a,r >= |ac| is passing through ¢ and is disjoint from A. Indeed, if this hyperplane
contains b € A, then since the line segment ab is consisted of points of A, there will be a

point z € A such that |[¢z| is less than |ca|, a contradiction. Thus, geometric convexity of



a set A C R?" is equivalently described through the conditions stated above.

Thus, it is natural to define the polar set of a domain 2 C C" (not necessarily convex)
as the set of all real hyperplanes passing through some point ¢ € €2 that do not intersect
Q). The polar set is denoted by €2°. Straightforward reasoning shows that one always has
that Q C (Q°)°. The equality 2 = (Q2°)° is valid only when the domain (2 is convex. The

difference (£2°)° \ €2 is measuring then how far from being convex is the set €.

At this point, we remark that the inner product is a linear map from R?*" to R. Thus,
by Riesz Representation Theorem, being linear it is an element of the dual space (]RQ”)/.
Thus, points in R?" correspond to hyperplanes in (Rzn)/. In order to derive further con-

vexity information we may exploit the duality stated above.

Next, let us recall the notions of real and complex tangent space ([25]).
The real tangent space of a domain Q C C"* ~ R?*" with C* boundary for k > 1 at a point

p € 0N is the (2n — 1)- real dimensional hyperplane

T, (09) = {w eC": R (i 8;;“ (p)w]> = }

J=1

Analogously, the complex tangent space of a domain 2 C C" at the point p € 0N is

the (n — 1)- complex dimensional hyperplane

T,(0Q) = {w eC": Zn: 000 (pw, = O}

= 0z,

It is clear that F,(0f2) is a real (2n — 2)— dimensional subspace of T,,(0€2).

For domains with smooth enough boundary its convexity (or its variations) is often

deduced by the boundary behavior of the gradient of its defining function.

For simplicity, we first remark that for a real-valued twice continuously differentiable



function ®¢ the quadratic form

0? @Q _

is called the Hessian of ®q at p, whereas its hermitian part

Loy, (p, w) = Z 7 (p)wwy (2.1.2)

is called the Levi form.

If f, is another defining function for the domain €2 then &, = h®g where the function
h is strictly positive in a neighborhood of the boundary 0Q. If p € 92 and w € T, (02) we
therefore have that Hag,(p, w) = h(p)He, (p,w). In other words, the value of the Hessian

is independent of the selection of the defining function.

It is a complicated problem to describe the geometric convexity of a domain €2 in C"
by using its definition. Thus, one is looking for alternative approaches for testing it. Such
is the approach for bounded domains 2 = {z € C" : ®g(z,z) < 0} with C* boundary by
using the Hessian of the defining function. The following definition is from ([25]).

Definition 2.1.1 Let Q = {z € C" : ®q(2,%z) < 0} C C" is a domain with C* boundary
then it is convex if the value of the Hessian when restricted to the real tangent space is

positive semi-definite:
Hg,(p, w) > 0 whenever p € 02 and w € T,(0N2) (2.1.3)

When the inequality (2.1.3) is proper for any w € T,(0€2)\ {0}, the domain €2 is strictly
convex at p € JN and p is called a point of strict convexity for the domain 2. If every
point of the boundary 0f2 is a point of strict convexity then € is called strictly convex

domain.

It is well known that the usual geometric definition of convexity is equivalent to the
above analytic requirement that the Hessian of the defining function ®q be positive,

semidefinite, whenever it is restricted to the real tangent space at every p € 992 ([10]).

6



E. Levi introduced another notion of convexity for domains with C? boundary satisfying

a complex analogue of (2.1.3), by formulating the following ([20], [25])

Definition 2.1.2 Let Q C C" be a domain with C* boundary and ®q be its corresponding
defining function. Then 0S) is called Levi pseudoconvex at the point p € 0S) if the restric-
tion of the Levi form to the complex tangent plane is positive semi-definite. A domain is

Levi pseudoconvex if every boundary point is a point of Levi pseudoconvexity.

A domain is called strictly Levi pseudoconvex if in the neighborhood of each of its

boundary points the domain is strictly convex for a suitable choice of coordinates.

Every domain in C is Levi pseudoconvex. However, that is not the case for n > 1. It is
elementary to verify directly that convex domains are Levi pseudoconvex but the converse
is not always true. Simply observe that C" minus a hyperplane is Levi pseudoconvex.
More precisely, if o is a complex hyperplane in C™ then C™ \ {p} is Levi pseudoconvex

but not convex.

An alternative way to describe the convexity of the domain €2 is to involve directly its
boundary. To be more specific, one observes that for a convex domain 2 C C” there is a
real hyperplane through every point ¢ € C™\ 2 which does not meet the domain. Remark
that a real hyperplane in R?" is of real dimension 2n — 1, while a complex hyperplane in

C" is of real dimension 2(n — 1).

The complex analogue of this was introduced by A. Martineau and L. Aizenberg and

is formulated as follows :

Definition 2.1.3 A domain Q@ C C" is said to be linearly convex ( or weakly lineally
convez in ([10])) if for every ( € OQ there exists a complex hyperplane o = {z € C™ :
o121 + ... + apz, + 5 = 0} through ¢ that does not intersect Q. A domain Q C C™ is
called strictly linearly convex if through every point ¢ € Q¢ of its exterior there passes an

(n — 1)— dimensional complex hyperplane not intersecting €.

Thus, strict linear convexity amounts to the condition that through any boundary

point there should pass a complex tangent hyperplane intersecting 0f) at precisely one

7



point.

We will say that a set 2 C C" is approximated from the outside (inside) by the sequence of
domains {Q }een if Qi1 C U (U C Qry1 respectively ) and Q = NMpQy (Q = UL Qy corre-
spondingly ) where ), = {z € C" : ®q, (2,%) < 0}, Pq, € C%(Q,) and V,Pq, (2, 2) # 0 for
all z € 0Q,. A compact set M C C" is said to be linearly convex if there exists a sequence

of linearly convex domains approximating M from the outside ([3], [5]).

Linear convexity is preserved under intersections. Furthermore, all cartesian products
Q; x Qy of linearly convex sets are also linearly convex ([10]). Since every real hyper-
plane contains a complex hyperplane, it is clear that every convex domain €2 C C”" is
linearly convex. However, the converse claim is not always true. For example, the set
Q= {(21,22) € C?: |z1| < 2,]22] < 1} U{(21,22) € C*: |z1| < 1,|22| < 2} is linearly

convex, but not convex.

The above approach has a natural realization for domains Q with C! boundary (so that
it has unique complex tangent hyperplane at every boundary point). Indeed, for a linearly

convex domain 2 C C" and ( € ¢ we consider the complex hyperplane
{Z e C":< VC@Q(CJCT)?C —z>= 0}7

that is, the complex tangent hyperplane passing through ¢. Whenever < V:®q((, (), >#
0,¢ € C™\ Q the tangent hyperplane above can be written as

{ZGC ‘ << v4<1>9<c,§>,<>’2> B 1}

Particularly, let us take n = 2 and assume that Q = {z € C?: Pg(2,2) <0} C C? is a

920 (¢, 9Pa(¢<)
gCl ’ ng ) 7& 0

for ¢ € Q. Furthermore, assume that 0 € 2. For a (1,0)— form ¢ = Z§:1 ¢jdz; and z € C?

linearly convex domain with smooth boundary, that is V ®q(¢, () = (

we will write < ¢,z >= 25:1 ;7. For convenience, we will sometimes identify (1,0)—

929 (¢,0) 92a(¢,0)
a1 ) 9¢

forms with vectors, i.e. we identify 9, ®q(¢, () with ( ). Identifying the slope



w= <Ve®q(¢,0),¢>

with the hyperplane above we have the correspondence
C*ow—{zeC®<z,w>=1}€Q°
Thus, we obtain a description of the exterior of such a domain.

A. Martineau in [21] introduced a way to measure how far away is a set of being linearly
convex. He measured the linear convexity of a domain through the existence of certain
hyperplanes contained in its topological complement. More specifically, he defined the

notion of the generalized dual complement (dual complement in ([10]))

Definition 2.1.4 Let Q2 C C" be a domain. The generalized dual complement % of § is
defined to be the set

U ={CEC": (i + ...+ 2aln £ 1,V2 € Q} (2.1.4)

The notion of the generalized dual complement is geometric in spirit and it plays the
role of the exterior for the domain €. For the domain 2 C C one obtains that 2* = Q°,
since there is no difference between a complex hyperplane and a point. However in higher
dimensions this is not in general the case. In particular, for n = 1 the dual complement
can be expressed as * = {% : ¢ € C\ Q}n{0}. The whole space C" and the singleton

{0} are generalized dual complements the one of the other.

Even though the concept of polar of a set and the concept of its dual complement appear
to be similar, there is no equality between the sets €2° and *, even though Q° C Q* is

always valid, unless some additional geometric characteristics of €2 are present.



2.2 Generalized dual complement for particular

linearly convex domains

2.2.1 Basic properties of generalized dual complement

We now briefly recall some properties of the generalized dual complement and the notion
of linear (weakly linear) convexity (linearly convex in ([10])) to be found in ([1],[2], [10]).
For a domain €2 C C” the generalized dual complement of its closure, (ﬁ)*, is the interior
of %, that is (ﬁ)* = (%)™, The interior of a linearly convex set is linearly convex while
its closure is not in general ( i.e. Hartogs triangle ). In addition if € is compact then Q*
is open and vice versa. Furthermore, if {21, 25 are domains in C" so that the inclusion
(23 C 2y is hold, then 5 C Q7. The generalized dual complement of a domain 2 = Ugen$2
is (0 = Ngen(2;. Furthermore, (ﬂkeN Qk)* O Uken{2;. On the other hand, if a compact set
M C C" is defined as M = NM and M, is relatively compact in M, for every k € N
(we denote this by My CC Q) then M* = NpenyM; and (ﬂkeN M'k)*)k = UkenM;™.
Subsequently, any linearly convex and compact set admits a basis of linearly convex open

neighborhoods.

Some examples are in order.

Example 2.2.1 Let B,(0,7) = {(21,- - ,2,) € C* ¢ |z1|* + -+ + |za* < 1%} be the

open ball in C". Assume, now, that € (B,(0,7))". Then 2,(y + -+ + 2, # 1 for all

2= (21, ,2n) € Bu(0,7). Without loss of generality take |(,| # 0. Thus the hyperplane
Cnfl Cl

Zn#cin—(c—nzn_l—F""‘—C—nZl)

does not meet the ball B, (0,1) for CZ;lzn,l et g_izl = z,. Follows that (0,--- ,0, CLH) ¢
B, (0,7). Hence ]%ﬂ|2 > 1?2 or equivalently |G,|* < &. Similarly, take |(j] # 0 for j =
1,---,n—1 and conclude that (B,(0,7))" C B,(0, %) For the converse inclusion, assume

¢ € By(0,1). Then |G1]* + -+ + ¢l < %. Therefore for every z € B, (0,7) we have that
a6+ 26l < (D BPHE 6P < (50) =1
i=1 j=1

10



Thus z21G1 + - - + 2,G # 1 for every z € B, (0,7) and the inclusion By, (0, 1) C (B,(0,7))"
follows. Hence (B,(0,7))" = B,(0,). Note that both B,(0,7) and B,(0,1) have smooth
boundary, but that is not the case in general. For r = 1 we obtain that (B,(0,1))" =

B,(0,1).

One might be tempted, motivated by the previous example, to assume that Q** =
(Q%)* = Q, where Q** is the union of all complex hyperplanes that intersect . In general,
however, only the inclusion  C Q** is valid and the difference (Q*)" \ Q quantifies how
far away is the set 2 from being linearly convex. The domains for which 2 = Q** were
introduced and studied by A. Martineau in [22] in relation to the solution of the duality
problem in several complex variables. These domains are known also as Martineau linearly
convex domains. However, ([9]) provides examples of linearly convex domains which are
not Martineau linearly convex domains. Therefore one can define for any domain € its
linearly convex hull to be the smallest linearly convex domain containing it, that is, the
generalized dual complement of its generalized dual complement, Q** ([10]). Hence, linear
convexity is a type of convexity defined more conveniently in terms of the generalized dual
complement of a domain in C". Specifically, if 2 = Q** ([10]) then the domain (2 is linearly

convex.

Of particular interest to us is the following domain with non-smooth boundary and its

generalized dual complement.

Example 2.2.2 Let Ay = {(21,22) € C? : |21| + |22] < 1} be the hyper-cone. We claim
that its generalized dual complement A is the closed complex bi-disk Dy(0,1) = {(¢1, &) €
C2: ¢ < 1,|G| <1}, Let ¢ = (G, &) € Do(0,1). Then |¢1| <1, |G| < 1. Therefore, for

every z € Ay we have
Crz1 + Gzo| < [Gil[z] + [Glfz2] < [a1] + |22 <1

Thus Ciz1 + Cozy # 1 for every z € Ay. Hence Dy(0,1) C A5 In order to prove the
converse inclusion, let us assume that ' = ({1, () € AS. It means that ({2 + Chze # 1

for every z = (21, z9) € Ay. Without loss of generality, we may assume that || = 02 # 0.
¢

Hence zy # é - %zl . Now, the line é —aa does not intersect the hyper-cone for z; =0

11



also, thus (0, é) g Ay or |i| > 1. Thus || < 1. Similarly, we treat the other cases. Thus

A C Dy(0,1). Thus Dy(0,1) = A5. Note that both domains are circular (Reinhardt), but

do have a non smooth boundary.

The above example can be generalized for the hyper-cone
A ={(z1,.,20) €EC" i r|zq | + oo+ 7|20 < 1}

whose generalized dual complement is

A = (G G) €€ 1G] € 7 [l <~} =00, )

r

If the bounded domain € C C" is convex containing the origin 0 € Q then A\Q C €,
for all |A| < 1 and thus, Q and (Q)* are star shaped domains. Recall that a set  C C"
is called star shaped with respect to some point zy € Q if Azp + (1 — A\)z € ) for every
z € Qand 0 < XA < 1. Observe that all convex sets are star shaped with respect to any
point zg € €, but a star shaped set is not convex in general, (i.e. consider the star set ).
Furthermore, if €2 is a convex domain containing the origin with smooth boundary then

Q* is star-shaped ([7]). The converse claim is not true in general.

Example 2.2.3 The domains Ay and Dy(0,1) considered in Example (2.2.2) are both

star-shaped sets with a non-smooth boundary.

Definition 2.2.1 A domain Q2 C C" is called C— convex if QN1 is connected and simply

connected for every complex line | = {\z : A € C}.

In order that the Cauchy-Fantappie Transform F : H(E) — H(E*) is isomorphism
it is necessary and sufficient the set £ C C" being convex ([10]). In the one variable case
a non-empty set E is C— convex precisely if its complement is. For n > 1 however, the
complement of a C— convex set, £ C C", is never C— convex. Every convex domain
2 C C™ is strictly linearly convex since through each point in Q€ there is a (2n — 1) real
hyperplane « that does not intersect {2 containing a complex hyperplane of dimension

n — 1. A linearly convex domain €2 C C" is not necessarily a C— convex domain. In fact
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the two notions coincide when the domain is smoothly bounded ([10]).

Example 2.2.4 Let Q C R*™ C C*. Then Q is C— convex if and only if Q is conve.
Notice that Q C R*™ is linearly convex if its complement in R*" is a union of real (n—2)—
dimensional planes. This happens because any complex hyperplane’s intersection with R?®
represents either a real (n — 2)— plane or a real hyperplane. For example, a circle in R?

is complex linearly convex, but a sphere in R? is not.

2.2.2  On the generalized dual Ty for the tube Tg,

Consider the tube domains Tp = R™ x iB C C" (or T = B x iR"), where the set B is
called the base of Ts. A tubular domain is convex whenever its base is convex. Thus, for

the rest of the thesis, we assume that the base B of Tz is open and convex.

At this point we turn our attention to the tube domains

T, = R*xi{(y, 1) €eR?:y} +42 <1} (2.2.1)

T, = {(1,73) € R*: 2] + a5 <1} xiR?

having a convex base (namely a disk). Actually, By = {(y1,vy2) € R? : y? +y2 < 1} and
By = {(z1,72) € R? : 22 + 22 < 1}. Observe that the intersection of the tubes (2.2.1) is

realizing the topological bi-disk:
2 2
U, = {(l’l,l’g,iyl,iyg) € R? x ZRQ : Z%Z <1, Zyﬂ < 1} = TBl N T32 (222)
1=1 1=1

Notice that the tubes Tz,, Tz, are star shaped with respect to the origin.
It is straight-forward to verify that the defining functions for the tubes T, i = 1,2 are

correspondingly the C? maps

2 2
él(C’CT) _ (<12_Z<1) + (<22_ZC2) 1

2 =\ 2
By(C,C) = <C1;C1> +(C2;—C2> _q (2.2.3)




for ¢ = (¢1,¢) € C2 Furthermore, 0Ty, = {¢ € C% : ®;(¢,() = 0}, i = 1,2. We use,
for simplicity, the notation d¢,®;(¢,¢), i,/ = 1,2 for the partial derivatives of the defining
functions at the point (¢, ¢) and the corresponding 1-form as well. Furthermore, notation
Ve®i(¢, () = (%fl’@, %ff)) is used for the complex gradient at the point (¢, () € Tp,.

The tubes Tz, and T, are convex sets by definition and thus are linearly convex sets also.

Let us consider the tube T,. Calculating the partial derivatives of ®; in order to verify

convexity condition (2.1.1) we obtain for j = 1,2

8®1(C7 é) _ 2 A _a(Dl(C7 C)
8@- - (22-)2 (CJ Cj) - 8@
Furthermore,
1 (ST N JTCSTO R B - o
aCZaC] 6{;8{, 07 1%‘]

for i,j = 1,2. Hence, V®;((,() # 0 for any ¢ € 9Tp, = R? x iS! where S = 0B, =
{(y1,y2) € R? : y} +y3 = 1}. Condition (2.1.1) is equal to

1 1
—58‘%(10% + w3) + §(|w1|2 + [ws]?) = F*w; + F*wy >0

valid for all w € T,(0T,).

Setting ¢; = x; + iy; for j = 1,2 one obtains

99,0 1(8@1(x,y)_i8<b1(x,y)>

oG 2\ O ay; )
and thus,
aCI)l(fL‘7 y) 8(131(1', y)
il e/ d =1\ I) 9.
oz, 0 an Jy; Yj
2 2 2
a q)l(fay) — a (I)l(xuy) — 0 and a (Pl(f?y) -9
Ox; Oy y;

An essential characteristic of the domains Tz,, T, is that they do not contain any
complex line. In particular, if € : a(; + ¢, = 1 is a complex line then for g # 0 we

have that (; = % — (1 for A\ = % Thus € cannot lie entirely in 75, considering the fact
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that the values of R(; and R({, can be arbitrarily large although &, S(s are restricted

inside the unit disc. Similarly, one derives that Tz, can not contain an entire complex line.

Our purpose is to describe the generalized dual complement of the tubes introduced
n (2.2.1). Since V®;(¢,¢) # 0 is valid for any ¢ € T, we may consider the complex
hyperplane passing through ( € 97, without intersecting 7’z,. This hyperplane is given
by the equation

(Ve®i(¢.0),¢—2) #0

for every z € T, or equivalently by the equation

RIS, ((STO N 642@
(V6. 0).) 7 T (V6. 0.0) " (Ve

J\/-\

Conclude that

o Ve9i(¢0) (¢, ) 9, ®i(C, €) \
< V(¢ Q). ¢ > <<V<‘1’(C (),¢>" < V(¢ ¢ );C>)€TB1

for ( € C*\ Tp,,i=1,2.

In order to define the generalized dual complement of the tubular domains Tg,,7 = 1,2
we introduce increasing families of unbounded tubular domains T, for i = 1,2 and

1 < r < o0. Precisely, we consider the tubular sets

7 g
Tp,, = {(cl,@)ec?;%(g,@:(%) +(#> _T<0}

It is straightforward to verify that ®,,((,() are C? functions for every i = 1,2 and

every r € [1,00). Particularly, for 1 <i,j <2

0ir(¢,Q) _ 09:(¢,Q) 0 Pir(( ) _ PDi(C, ()
I¢j ¢ 0G0¢; 9GO¢;
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Furthermore, V®; (¢, () # 0 for all ¢ € OTp,, and i = 1,2.

Observe that for every ¢ € C? \ T, there exists unique 1 < r < oo so that ¢ € 9T, ,.
The tubes T, are all star shaped, linearly convex sets so that T, C Ts,, C T, , when-
ever r,7" € [1,00), 7 <7'andi=1,2. Thus, T , CTj wheni=1,2and r,1" € [1,00)

for r <7’

Following ([1]) we define the generalized dual complements of the tubular domains

Tp.,i=1,2.

Lemma 2.2.1 Let Ty, i = 1,2 be the tubes defined by (2.2.1). Then

T = Jwy) € C? iy = : _ L i=1,2,1<r<

B {(wl w2) “ < v((bl,r(g?g ag > ' =" OO}
a-q)Qr( g) .

T = Wi, W GCZ;wi: Gi*2 ’, 72:1,2,1§T<OO,

B = i) < V2, (6,0).C > }

Furthermore T, C B(0,1) C C?,i=1,2.

Proof: First we observe that (0,0) € T, i = 1,2. For the nontrivial elements of the
generalized dual sets it is enough to prove only the first claim, the proof of the second
follows along the same lines. For every point ¢ € Tp there exists unique 1 < r < 0o so
that ¢ € 0Tp,,. Fix 1 <r < co. Since V®1,(¢, () # (0,0) for every ¢ € 0T, ,, there
exists complex analytic hyperplane passing through ¢ € 07, , and not intersecting Tg, , .
This hyperplane is given by the equation < V®;,.(¢,(),( — 2z ># 0 for every z € T, or

equivalently, for the same z, by the equation

VC(I)LT(CJ C) _ aﬁlq)lﬂ’(ga E) aCQ(I)l,T(Cu 5) 1
S NeL0.C T IV, 0. T IV, 0. s T
Hence
a{lq)l,r(C7 E) a(gq)l,r «
(< v((bl,r(Ca E)ac >’ < VC®1,T7< >) © TBI’T’

whenever ¢ € 9Tp,,. Thus, if we put y; = “-%, x;, = 3% 4 = 1,2, with w € 9Tp,,
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then at ( = r - w we have

b = aclcbl,r(C,_C_) _ (Y (wyr + 23) — i (Y5 +43))
< Ve®1,(¢,¢), ¢ > (g3 + y3)? + (x1y1 + 2212)?)
_ 1 0y, @1 (w, w)< Vw?l(w,w),w > (2.2.4)
r | < V@i (w,w),w > |?
and
B 96, ®1.,-(¢, C) ¥y + woye) — iy (yi 4+ 43))
w2 = AR ~ o 4 2 2\2 2
<Ve®1,(¢,0),¢ > M ((yi +v32)* + (2191 + 2y2)?)
_ 10y, @1 (w, w)< Vwél(w,w),w > (2.2.5)
r | < V@i (w,w),w > |?
This essentially means that
* 1 *
Ty, = ;TBl whenever 1 <7 < oo (2.2.6)
Furthermore, elementary computations show that
Rw)? + (Rwe)? + (Swi)? + (Swy)? = = 172 2.2.7
( 1) ( 2) ( 1) ( 2) r2 (y% +y§)2 + (:Elyl +$2y2)2 ( )
11 (T151 + ways)? <L
r2 2 (2 +y2)2 + (Tyr + woyp)? T 12

where the equality occurs in the case when z1y; + x2y2 = 0. Hence the mapping defined
by (2.2.4) and (2.2.5) maps the exterior of tubes into the unit ball. We observe that T
contains a disk. Actually, since Tj is a star compact and the circumference yi + y5 = 1
(when z1y; + 22y, = 0 ) is subset of the generalized dual we have the desired result. Thus

Ty, € B(0,1) € C*. Actually

T, NOB(0,1) = {(0,0, —iy, —iya) € R? x iR : yf + y3 = 1}
Similarly, T3, € B(0,1) c C2. ¢
Lemma 2.2.2 The generalized dual T, cannot contain a ball in its interior.

Proof : Assume that B(q, o) C (T%,)™ for some ¢, 0 > 0. Hence B(q, 0) C Tf,. Thus,
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(B(q,0))" D (Ts,)* = Tp, because T, is strictly linearly convex. But (B(q, 0))* = B(q, é)

Thus the tube T, (unbounded set) is contained in a ball, contradiction.

Since <V4<I>1(C, 0), §> # 0 for ¢ € 9T, one considers the mapping o : T — T}

0,8 = YO %l 9uB1(C.C)
| (Ve@1(¢,0),¢) "< Ve@i(¢, ), ¢ > < Ve@i((,¢), ¢ >
G =G =G

(

=06+ 6-06 G -0a+(G-0)G

for every ¢ = (C1,¢2) € Tp,. It is straightforward to see that o is onto but it is neither R—
linear nor C— linear (o is C— anti-linear). Next, notice that o is non invertible for any

¢ € T, . More precisely, we formulate the following.
Lemma 2.2.3 The real Jacobian of o is identically zero.

Proof: One can do the computations directly to verify the claim, however we can have
the following short argument. Assume that J,(z,y) # 0 for some w = (z,iy) € T5,. From
the inverse function theorem follows that there exist open neighborhoods B(w,r) C Tf,
and B(o(w), p) C T, for some r, p > 0 such that o(B(w,r)) C B(o(w), p) and the restric-
tion oy, B(w,r) = B(c(w), p) is biholomorphic. Lemma 2.2.2 leads to a contradiction

and the desired result follows.

2.3 Holomorphic extension in tubular domains

A function f defined on an open set U C C" belongs to the space C*(U), where k is

a non-negative integer, if f is k times continuously differentiable in U. More precisely,

f € CKU) if all of the partial derivatives ,ffkf"  exist and are continuous, where

8Z"il i

1<y, i <nk= (k- k) € N is a non-negative integer and k = ky + --- + k.
We then write f € C*(U). In the special case of k = 0 one obtains the space of continuous
functions, CO(U) = C(U). If M is a closed set in C" then f € C*(M) when f extends
to some neighborhood U of M as a function of class C¥(U). Similarly, the space H(U) is
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consisted of all functions f that are holomorphic on the open set U. Whenever M is a
closed set, H(M) consists of all functions f that are holomorphic in some neighborhood of
M. Recall that if 2 C C" is a domain then the vector space H(2) of all holomorphic func-

tions on 2 is equipped with the usual topology of uniform convergence on compact subsets.

For every domain 2 C C there exists a holomorphic function f € H(£2) which cannot be
holomorphically extended to a strictly larger domain. Take, for instance, (; € 92 C C and
then consider the function f(z) = ﬁ which is holomorphic in a neighborhood U of €2 but
is not holomorphically extendable at (;. A domain for which this simultaneous extension
phenomenon does not occur is called a domain of holomorphy. Recall that f € H() can
be holomorphically extended to a larger domain Q O Q if there is a function F € H(ﬁ)
whose restriction to €2 coincides with f, i.e., Fjo = f. We recall the notion of the domain

of holomorphy from ([16]).

Definition 2.3.1 A domain 2 in C" is called a domain of holomorphy if the following
property holds : There do not exist non-empty open sets 0y, Qo with Qo connected, Qs €
Q,Q C QN such that for every holomorphic function f on Q there is a function fo

holomorphic on Qo such that f = fo on €.

A domain € is a domain of holomorphy if every f € H({2) cannot be holomorphically
extended to a strictly larger domain. In the complex plane C every open set is a domain
of holomorphy (i.e. f({) = ﬁ cannot holomorphically extend at (y). Every linearly
convex domain in C” is a domain of holomorphy. To be more precise, if < ( —(y, (o >=0
is a hyperplane passing through (, € 0€2, then the function f(¢) = m € H(Q) can-
not be holomorhically extended at (y. Particularly, for convex tube domains the notions
domain of holomorphy, Levi pseudoconvex domain and geometrically convex domain are

all equivalent ([16]). Any domain of holomorphy can be approximated from the inside by

strictly pseudoconvex domains ([4]).

Next, we recall the notion of envelope of holomorphy.

Definition 2.3.2 Let Q2 C C" be a domain. The envelope of holomorphy of 2 is a domain
Eq with the following properties:
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(1) Every holomorphic function in Q can be extended holomorphically to Fq
(13) For every boundary point zy € Eq there exists a function holomorphic in Eq which

has no holomorphic extension to a neighborhood of zy.

Thus, the envelope of holomorphy Eq of a domain €2 C C” is the largest domain to
which all holomorphic functions on €2 may holomorphically extend.

Next, we recall some facts connecting the envelope of holomorphy to convexity.

For arbitrary domains §2; C €y C C" the inclusions 2y C Eq, and Eqo, C Eq, are
always true. Furthermore, the envelope of holomorphy of any domain is a domain of holo-
morphy, while condition Fq = (Q is valid for any domain of holomorphy 2. Fundamental
results of Oka and Cartan show that a necessary and sufficient condition for a domain
Q2 C C™ to be a domain of holomorphy is that each function holomorphic on a domain
Q' C Q C C™ is the restriction of some function holomorphic on the whole domain 2. Fur-
thermore, the theorem of Bochner ([16]), for tubular domains Tz = R" x iB states that
the notion of the envelope of holomorphy coincides with the one of the convex envelope
(convex hull), conv(Tg). Thus, Er, = conv(Ts) = Teons(p)- Recall, at this point, that the
convex hull of a set is the smallest convex set containing it and it is defined to be the
intersection of all convex sets containing a given set. It is clear that for convex sets one

simply has that conv(2) = Q. Thanks to Caratheodory, the convex hull of a set Q C R*"

is given by
2n 2n
conv(Q)) = {Z A;x;, whenever z; € Q,\; € [0, 1], Z)\j =1}
=0 =0

It is easy to observe that if € is open, then so is its convex hull, conv(€2). Thus, the
smallest convex set containing a tubular domain 7’5 is exactly the largest set in which all

holomorphic functions defined on T may holomorphically extend.

It is known that the relation T U Tpj C (T, N 1p,)* always holds. However, for
the intersection of the above tubes one has that the generalized dual complement of the

topological bi-disk is a compact in C? | which is similar to the closed hyper-cone.
Lemma 2.3.1 Let U, = T, N Tp, be the topological bi-disk and Go C C? be the compact
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defined as the closure of the convexr hull of star compact T U Ty, , that is
Go={(1—=Nw+Au, A€ [0,1}, w,u €Ty UTg }. (2.3.1)

Then Gy = {(wy,wy) € R* X iR? : |lwylla + ||walla < 1,}, where || - ||z is the standard

Euclidean norm, is compact of holomorphy and U: = G,.

Proof: First we observe that uTj C Tp, p € [0,1], 7 = 1,2, because the com-
pacts T, @ = 1,2 are star. Thus the set Gy is convex and hence linearly convex com-
pact set. Thus G, = E(TﬁlUTég) is a hull of holomoprhy. Furthermore, if (z1,2y) =
(1, T2,0y1,7y2) € Uy and (w,u) € UF then < (z1,29), (w,u) >7# 1 implies that ei-
ther |z;Rw + zoRu — 118w — yoSu| > 1 or |z1Rw + xoRu — y1Sw — ySu| < 1. The
first case is excluded, because U is star with respect to the origin. Rewriting the
above equation in the standard norm as ||(z1,z2)l2 - [|(Rw, Ru)||2cos0 — ||(y1,y2)|l2 -

|(Sw, Su)||scosa # 0 and assuming that ||(Rw, Ru)||2cosf # 0 we observe that the

1 N [|(Sw,Su)]|2 cos o
[|(Rw,Ru)||2 cos [|(Rw,Ru)||2 cos

|(y1, y2)||2 does not intersect U, for any

| > 1. This

line ||(z1,22)|2 =
value (z1,22) € U,. In particular for zo = 0 we deduce that |m
implies that (Rw,Ru,0,0) € G, for particular choice of § . Similar argument shows that
(0,0, —QSw, —Su) € Gy. Convexity of G, implies that U* C Go. On the other hand, if
(w,u) € Go, then |(z1w + 20u)| < |z1w| + |2u] < |w| + |u] < 1. Thus G C U;. This

concludes the proof of the lemma.
Furthermore, we show that the generalized dual complement of the topological bi-disk

is the envelope of holomorphy of the star compact Tg U Tj, .

Lemma 2.3.2 Let U, =T, N'Tp, be the topological bi-disk in C?. Then
Go=U= (T, NTp,)" = By, ury,)

where ET§1UT§2 denotes the envelope of holomorphy of the normal compact T UTp, and

Gs is defined in (2.3.1).

Proof: Observe that the compact Tj; U Tp; C C? is also star with respect to the

origin. Thus T3 UTp, C C? has an envelope of holomorphy E(T§1UT§2)' Furthermore,
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Tp UTE C (T, NTg,)* = Go where G, is a compact of holomorphy. Consequently,
E(TélUTEQ) C Gs. At the same time, the envelope of holomorphy;, E(TélUTEQ) is by definition
the maximal set in which all holomorphic functions in 7% U T, can holomorphically

extend. The converse inclusion follows and E(T}§1UT§2) =Gy

2.4 Tubular domains of type one

We begin this section by recalling the notion of an open cone.

Definition 2.4.1 A non-empty set I' C R™ satisfying
(i) 0¢T
(i) For every x1,xo € I' and Ay, Ay > 0 then \jx; + Aoxe € T

15 an open cone in R™.

A closed cone is an open cone’s closure. We define the dual cone I'* to be the set
F*:{yGRnyltl++yntn20, tEF}

Obviously, whenever I" is open then I'* is closed. If n = 1 is the case then the open cones
are just the half-lines 'y = {y € R: y > 0} and I';s = {y € R: y < 0}. For n = 2 open
cones are angular regions of two rays meeting at the origin and forming an angle less or

equal to .

Consider the tubular domain T having a base containing a cone. Notice that B may
contain cones of different dimensions. Assume, for instance, that Tz C R? x {R?. Then its
base, B, may contain one-dimensional cones, two-dimensional cones, or both. It is natu-
ral therefore to define the type of the tube Tz to be the dimension of the maximal cone
for which a displacement lies in B([13],[14]), i.e. the type is equal to 2. With the term
displacement of B we mean the parallel transfer of all vectors lying in B. The simplest
tubular domain Tz having type the dimension of a cone I' contained in B is taken when

B=T.

We restrict our attention to particular tubular domains. In order to realize Tz, as
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an intersection of tubular domains whose base contain a cone, we introduce the tubular

domains with bases contained in iR?. We define

Sy = {ly,iys) € iR? 1y +y3 <1, =1 <y < 0}

ciR*:yf+y; <1, 0<y <1}

( )
U {(iy1,iy2) € iR?: =1 <y <1, 3y > 0}
Sy = {(iy, iya)

( )

U {(iy1,iy2) €iR?*: =1 <y < 1, 3 <0} (2.4.1)
and then
Tigym = RZx(Sp)™
Tistym = R?x (SH)™ (2.4.2)
Thus,
Tp, = Tisymt O Tyspyme = R X {(igr,igo) € R® : g + 45 < 1} (2.4.3)

The tubular domains (2.4.2) with bases the convex open sets (S5)™, (S};)™ (interiors of
the sets Sy, S} correspondingly) are open, convex sets and hence linearly convex. Thus
both tubular domains defined by (2.4.2) are hulls of holomorphy. Furthermore, notice that
the bases (Sp)™, (Sf;)™ of the half tubes T{giu, T(g+)m have been selected in order not

to contain any entire straight line, but they both contain a cone.

One observes that both Tg—yim: and Tgsime contain only one-dimensional cone, that
is {(y1,0), y1 > 0} C R? for the first and {(y1,0), y; < 0} C R? for the latter. Obviously,
they cannot contain angular regions of two rays meeting at the origin and forming an
angle less or equal to 7. Following ([14], [13]), we observe that the type of T(g-yime 1s the
dimension of the cone {(y1,0), y; > 0} C R? and for T, (5#yine its type Is the dimension of
the cone {(y1,0), y1 < 0} C R%. According to ([14], [13]) we will say that T(syim and

T §iyine AT€ tubular domains of type one.

It is straightforward from (2.4.1) that the semi-tubes are defined via smooth defining
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functions. One corresponding to the strictly convex part of them and another for the one

of the strip. It follows from (2.4.1) and (2.4.2) that

T(S;I)int = {(a:l,xg,z'yl,iyg) € RQ X ZRQ . (I)l(c, E) = @I((,f),when —1 S < O}

U {(21, 9, iy1,1y2) € R? x iR? : &7 (¢, () = (CQQ;ZCQ)? — 1, when y; > 0}
T(sj,)int = {(x1, 20, 0y1,012) € R? x iR?*: ®((,{) = &7 (¢,(),when 0 < y; <1, }
GG

U {(z1, 22,0y, y2) € R? x iR? : &7 (¢, () = ( ) — 1, when 3 < 0}

2
(2.4.4)

The tubes defined equivalently by (2.4.2) and (2.4.4) are piece-wise smooth, in the
sense that each one of their boundaries 0T ()it and 8T(S§)mt is the union of disjoint,
smooth hyper-surfaces. Namely, the connected part R? x iS~ and the part consisting of
two connected components R? x i{(y1,y2) € R? : y; > 0, yo = 1} and R? x i{(y1,42) €
R? : 9 > 0, y» = —1} where S~ denotes the left hand-side half unit circle. Similarly,
the boundary of the tube T, (SH)int is the union of the connected part R? x ST and the
part consisting of two connected components R? x i{(y;,72) € R* : y; <0, y» = 1} and
R? x i{(y1,y2) € R? : 4y > 0, yo = —1}, where ST denotes the right hand-side half unit
circle. At every point ( € 8T(S;I)int ( 0T, (S5 yint respectively ) of strict convexity there is
a unique analytic hyperplane (complex line) passing through ¢ without intersecting the
interior of T| S yint (T( Sk yint respectively ). Furthermore, the existence of (algebraic) tangent
line at the non-smoothness points R* x i{(0,%1)} of the boundary 9T, §ymt 18 guaranteed
by the convexity of the tubes (2.4.4).

Observe that for every point of strict convexity (Ci, ¢2) € T §oymt; that s —1 < 3G <0,
the defining function of the semi-tube T Syt coincides with the defining function of T,
(2.4.4). Hence, the partial derivatives of first and second order of ®] coincide with the
corresponding partial derivatives of ®; as they were calculated in (2.2.4). Actually,

021 (¢, )

G —G) = o

991 (¢,¢)

aG (20
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and

(2?)2 , 1=

Per(¢,0) P19

0GOG — 0GIG | o, 4]
whenever —1 < 3¢; < 0 and j = 1,2. However, that is not the case for ((1,(3) € T(S;{)int

_ ~ N\ 2
with S¢; > 0. Since ®7(¢,0) = (%) ~ 1 for S¢ > 0 it is clear that all partial

derivatives with respect to ¢; or (; are equal to zero on these points. Furthermore,

097 (¢, 2 (e
el - Za-a--Ted
PoCO | 2 P00

0¢3 (20) e
Pord) 2 ()
920G, (20)? 9C20C

whenever &¢; > 0.

Rewriting in real variables, taking into account that @ (z1, T2, y1,%2) = y3 + y3 — 1

whenever —1 < y; < 0 and ®; (21, 22, y1,y2) = y3 — 1 for y; > 0, one obtains

0P (z,y) P71 (¢, () L 9216 9

o, = ac, ac, =0forv=1,2

0Py (z,y) _ 1 (8@{(4,0 B 8@{(4,0) _ ) 2l <n <O
Iy i 9¢, G 0, y1 > 0.

0%y (v,y) _ 1 (8<I>1<_<,E> B 8%(@5)) oy
Oys i\ 0G G2 ?

It is clear, now, that all partial derivatives of second order are equal to zero except from

the cases m%;—?f;c’y) for —1 < y; < 0 and % for y; € R that are both equal to 2.
1 2
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Particularly,

D07 (z,y) P07 (z,y) 9?07 (x,y)

a2 Oy 0yy; o
0*®y 2, =1L
M — ) whenever —1 <y, <0
92PT 0, j=1;
1—(3779) — ) whenever y; > 0

It is straightforward that @] is smooth except from the points (z1, 29,0, £1) € 8T<S§)mt.

Assume ¢ € C?\ Tigyime, L. ®7(¢,¢) > 0. The complex gradient of ®; (¢,() is the

vector V@7 (¢, () = (%%, %). For ¢ € R? x iS~ we obtain that

Ve (60 = 3 (G- 0). (e~ &)

As expected V@7 (¢, () # 0 is valid for any ¢ in the strictly convex part of the boundary,
R? x iS™. Actually, every ¢ = (1, () € R? x iS™ satisfies

(Cl 21 Cl) " (CQ 21 C2> = 1 or equivalently ({; — 51)2 + (G2 — 52)2 = —4

Since V@7 (¢, ¢) # 0 is valid for any ¢ € R? x iS~ we consider the analytic hyperplane
passing through ¢ € R? x ¢S~ without intersecting T(S;I)mt~ This hyperplane is given by

the equation

(V@1 (¢,€) ¢ —2) #0

for every z € T Sz yint OT equivalently by the equation

VP (¢, Q)
()

aCl ( 5)
(V@1 (¢, ¢ ¢)

YT e 0.0

In order to describe the generalized dual complements of the semi-tubes as they were

introduced in (2.4.4) we consider more "narrow” tubes. More precisely, we consider the
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tubular domains :

G-\, (-G
T yine = 1,0 R2 % iR2: &7 (¢.0) = (21> 32 752 _
(SHr) {($1>$272y172y2) € X1 1,7‘(€a g) ( 2% + 2% r,
when —r <y <0, 7,(¢,¢) = (C2;C2)2 — 7, when y; > 0}
’ 1
) SN2
Tist yime = (@1, 22,091, 0y2) € R? xiR?: &F ((,() = (%) + (M) -,
v 7 21
when 0 <y <r, ®7,(¢,() = (C2 _ CQ)Q —r, when y; <0} (2.4.5)

21

Observe that ®1,(¢,¢) and ®F,(¢,¢) are C' functions, for every r € [1,00), except

from the points R? x i{(0, £1)} which are points of non-smoothness. Particularly,

VC(I)I,T(C,E) = V®;(¢¢) and
0, (¢, () 9207 (¢, 0)

ocas . ogag oI hE
e, (¢ (0, .
R

Thus, VO, (¢, ) # 0 for ¢ € OT(s- yine \ {R? x i(0, £1)}.

2.5 Generalized dual complement of the semi-tubes

The tubes TSZI and T g were suitably chosen in order to have a convex, unbounded base
containing a cone, whose intersection is T , in order to obtain the fact that Tp is the
envelope of holomorphy of the union of the compacts T;E and TS*IJ; .

Next, we turn to the precise description of the generalized dual of the domains (2.4.2), by

using the method of lemma (2.2.1).

Lemma 2.5.1 Let Tig—yini, Tigtyim be the unbounded domains in C? defined by (2.4.2).
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Then T, V2 ,

(55 yint = V_;, where (x,iy) € aT(S;I)i"t or 8T(Sg)m correspondingly

S+ )znt

_ r® (yi(z1y1 + 22y2) — iy (Y7 + 3))
VQ = {((JJ]_,WQ)E(Cz:UJi: 1 5 N2 1 22 s

(W1 +12)* + (211 + 2202)°)

(z,iy) € R? xiR?* 1 <r <o0,i=1,2, =1 <y <0}

1 29y3 — iy5
Ty + (T2y2)?
(z,iy) € R? x iR?, whenevery, >0, r > 1}

Vi o= 2 — 3 (yi(@1yr + 22y2) — iy +v3))
wiwp) € C7rwy = — s e 2)

(W +12)* + (211 + 2202)°)

(z,iy) e R* xiR?* i =1,2, 1 <r<oo, 0 <y <1}

1 2oy3 — i3
Ty + (T2y2)?
(z,iy) € R? x iR?, whenevery, <0, r > 1}

U {(WI,WQ) c CQ . (0,W2) = (0

Y

U {(WI,WQ) c C2 . (O,WQ) = (0

Y

(2.5.1)

The closure V_Qi corresponds to the case when we add to Vi the slopes of complex tangent hy-
perplanes to the tubes Tis Syt and Ts+)mt at the points (x1, x2,0,+i) € OT, (5 yint - Thus, we

are leading to (wy,ws) = (0, 122Xy ¢ T*

These slopes exist because V<I>1 (21, 22,0, +7)

Y r 143 (Si)mt
s well defined. Furthermore,
Tgmyine U sty = T, C B(0,1) c C*. (2.5.2)

and

Tl yom NOB(0,1) = T(g i, NR? x iS+

= {(0,0, —iyy, —iys) € R* X iR? : 2 + 95 =1, =1 <y <0} C B(0,1)

NoB(0,1) = NR? x iS—

(S+ int

= {(0,0, —iyy, —iyp) ER? xiR*: yi+y;=1,0<y <1} C B(0,1) (2.5.3)

(S+ int

Proof: It is enough to prove the first claim in (2.5.1), since the proof of the second
follows along the same lines. Recall that the boundary of the tube T ¢ Syt is union of a half
circle with parallel lines. Following the method of Lemma (2.2.1) we consider the tubular
domains T(Sﬁr)i”t whenever r € [1,00). For every ¢ € T ¢ 52 yint there exist € [1,00) so that

T(S;I)int - T(S}_H)m,g. Note that at every point ({1, () € 8T(SI—{T)W where the boundary is
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strictly convex the tangent line (hyperplane) is uniquely determined. If ¢ € OT yint 18 &
point of strict convexity then ®; (¢, () = <;> + (CQ CQ) —r =0 where —1 < \SC1 <0
and 7 € [1,00). The complex line passing through ¢ without intersecting 7 —yint OT

T Sp, )t is described by the equation <VCCI>1 (¢,0),¢ z> # 0 or equivalently,

VC(I)l r(C C) > 17"(< C) L+ aCQ(I)l_,r(CLE)
(Ve®7,(¢,0),¢) <V<<I>1T 60,0 Ve, 0, )

22751

since < V@ ,.(C, (), ># 0 for every ¢ € 8T yme and —1 < ¢ < 0. Thus, for
¢ € 8T yint Such that —1 < $¢1 < 0 one has that

€ T(SZI yint

( 0,21, (¢ 9,%1,(¢.Q) )
(Ve®1,(6.0), )" (Ve®r, (¢, 0):¢)

r

Setting y; = “i2, x; = 2 i =1,2, with w € T - —yint; b ¢ =7 w we have
CI)L«(C:__) _ 3 (yi(xay1 + xay) — i (Y7 + 43))

<V, (0, ¢>  rH((yf +43)* + (zyr + 2202)°)

10y, @7 (w, w)< V@71 (w, w), w >

r | < V@1 (w,w),w > |?

fori=1,2, =1 <3¢ <0 and r € [1,00).

Thus, T (’;_ Jimt = iT(”ig yint for 1 <r < oco. Similarly one obtains that 7’ (gﬁzr)i”t = }nT &ﬂm
for1 <r < oo.

The elements of the generalized duals at the smooth points of 7 - T(Si)mt, 1 <r <o
are described in (2.5.1). For every ¢ = ((1,() = (x1, 22, iy1,1y2) € (9T yine satisfying
®7(¢, () = y2 —1 = 0 the existence of a complex (algebraic) line passing through (¢

without intersecting Tis —yint is guaranteed from the convexity of the tube. Actually, if

¢ = (21,29, 1y1, i) € 8T(S;{)m,f whenever y; > 0 then for r > 1

9,97,(¢,0)

< V@i, (¢0),¢ >
®7,(¢,C) _ (G — &) I

< Ve®1,(¢,¢0), (> 13— ()¢ raxEi

w1
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Taking the closure V_Q_ by adding to V, the slopes of complex tangent hyperplanes to
the tube Tig- i at the points (x1,29,0,+7) € OT g yine we are leading to (wy,wa) =

) ")
(0, %f_ﬁ;é) € T(*S,;)mt' These slopes exist because V&7 (x1, 9,0, £4) is well defined.

It is straightforward to observe that if (wq,ws) € then

3y ((T1y1 + Tay2) — 1)

* x _ 2. .
Elementary computations as in Lemma (2.2.1) show that if (wy,ws) € T(*S,)Z.m uT (";,ﬂm
H H
then
2 2 (N2 L ()2 1 yi + v 1
(Rw1)” + (Rw2)” + (Swi)” + (Swe)* = < =

72 (v +93)? 4 (z1y1 + 22y2)? — 7

Recall that

TB1 - <T(S}—I)mt N T(S;})””) D) T(s;[)int U (Sg)int

valid for any intersection of sets. In order to derive the converse inclusion it is sufficient to
see what happens with the points (v, y2) = (0, £1). Now, it remains to show that the com-
pact sets V_2_7 V_; are contained in the closure of the unit ball. It is enough to verify that the
norm of the regular points of the form (0,w) from (2.5.1) have norm smaller or equal to 1.
But this indeed is the case because in this case y, = 1. Thus, the topological closure of the

set of regular points cannot generate points in the sets V_g, V_QJ“, whose norms are strictly

larger than 1. In order to proof the last claim one observes that ||(0,ws)||? = xQIH < 1 for
2

every (0,wq) € V5, since for yo = 1 (and hence y; = 0) we deduce that ||(0,ws)| = ﬁ,
2

for every element (0,w;) € T, and (2.5.2) has been proved. In order to prove (2.5.3), it is

enough to observe that in (2.5.4) one has equality only when either r = 1, z1y; + 22y2 = 0

or r =1 and x5 = 0. Similarly the other case. Thus the claim follows.

satisfying ||w|| = 1

An immediate observation is that the only elements w & T(*ig_)mt
H
are of the form w = (wy,wy) = (0 — iy;,0 — iys) whenever y? +y2 = 1,—1 < y; < 0.

Furthermore, if w € T7, ., is such that [[w|| < 1 then either w = (0,wy) € C? or w

( H)int
belongs to the generalized dual complement of the circular part of T S yint-
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Observe that equation (2.5.2) follows directly from the linear convexity of the tubular

domains T, , T(Sg)i"t and T( S yint- Actually,

(TBl) C (T(S;I)int U (Sﬁ)int) = (T(Sg)int) ﬂ( (S;)hn) :T(SI;)“” mT(S;})int

= Tp, C (T},)"

Recall, now, that for a compact K C C" , which is also a star, there exists a sequence
of star domains {Dy}ren so that K = NgDy, Dry1 CC Dy, VE € N. Since every star
domain Dy, is Runge, there exists its holomorphic envelope Ep,, for every &k € N. Thus
the compact K, which is a star, is a normal compact (a compact is called normal if it
can be approximated from outside by a sequence of compactly contained in each other
domains having envelope of holomorphy) ([3]). The envelope of holomorphy Ex of a
normal compact K is defined to be the intersection of envelopes of holomoprhy Ep, of
domains D, approximating K, that is, Ex = NgenEp, ([2]). A normal compact K is
called a compact of holomorphy if Fx = K. Furthermore, every function holomorphic on

K is also holomorphic on E. Thus, the envelope of holomorphy E( ) of the compact

v, Wy
V_Q_ U V_QJr is defined. We have the following lemma.

Lemma 2.5.2 Let V; ,V; be the compacts defined in (2.5.1). Then E =Tp,.

vy W5)
Proof: Since Tp, is a strictly linearly convex set it is a compact of holomorphy. The
last claim follows from Proposition 2.1.5 in ([10]), because T is connected (being star)

and taking into account that there linear convexity means strict linear convexity in the

present paper. Thus from equality (2.5.2) the claim of the lemma is valid.<

In order to realize the tube T, as an intersection of tubular domains whose base

contain a cone, we define the closed half-strips contained in R? :

R;I = {($1,$2)€R2:$%+$%§1, —1§$1§0}
U {($1,$2)€R21—1§9§'2§1, 1'120}
R = {(z1,20) eER* il +23<1,0< 2 <1}
U {(z1,m) €R*: 1< 2, <1, 21 <0} (2.5.4)
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Similarly to (2.4.2) and using the interiors (Rj)™, (R})™ of the closed half-strips from

(2.5.4) we introduce tubular domains with unbounded base contained in R? :

Tty = (Bfp)™ x iR? (2.5.5)

The tube domains introduced above in (2.5.5) are defined via piece-wise smooth defining

functions similarly to (2.4.2) as follows:

T(RI_{)”” = {(xl,xg,iyl,iyg) c R? x iR?: (I)2<<7§> = (I);(C,C_)ywhen 1< < 0}
U {(21, 29, iy1,iy2) € R? x iR? : &5 (¢, () = (—<2;C2)2 — 1, when z; > 0}
i
Tigptyime = {(z1, 2, iy1,7y2) € R? x iR? 1 ®5(¢, () = ®F(¢, (), when 0 < 2, <1, }

G+ G
21

U {(z1, 29,1y, y2) € R? x iR? : ®F((,¢) = ( ) — 1, when z; < 0}

(2.5.6)

where ®5((, () = (%)2—1— (%)2 —1is smooth. One deduces that the domains defined in
(2.5.5) are convex tube domains whose bases contain the one-dimensional cones {(x1,0) €
R?: z; > 0} and {(21,0) € R? : 1 < 0} respectively. Thus, a tube domain with convex
base contained in R? is now realized as the intersection of the tubes defined in (2.5.5).

Actually,
T32 = T(R'}_})i”t U T(R;I)m = {(1‘1,1’2) c R2 : l’% + I’% < 1} X ZRQ (257)

Analogously to the case of the tube Tz, one obtains the generalized dual complement 77,

of T’s,. We formulate the following lemma without proof.

Lemma 2.5.3 Let Tipyine, Tigiyime be the unbounded domains defined in (2.5.5). Then
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T(*R )int = T(*R+ yint

= V'3, where (z,iy) € 8T yine o OT, (R yint» correspondingly.
30, ) 2

r?(zi(z1y1 + Taya) — iwi(yi + 3))
(23 + 23)% 4+ (2191 + 2292)?)

(z,iy) € R* xiR?* 1 <r <o0,i=1,2, -1 <z <0}
1 $§y2 — Zx%

v ah 4 (22y2)?

(z,iy) € R? x iR?, when z; >0, r > 1}

3 (xy(21y1 4 Toyo) — ixi(2] + 23))
(23 + 23)% + (2191 + 2212)?)

(x,z'y)ERQxi]Rz, i=1,2,1<r<oo, 0 <z <1}

1 96%92 — Zx% )

U {(wl,wg) - CQ : (O,WQ) = (0, —
(z,iy) € R? x iR?, whenever x; < 0, r > 1} (2.5.8)

/2_ = {(wl,w2) < C2 LW =

U {(wl,w2) € (C2 : (O,WQ) = (0

V/;_ = {(wl,wg) c C2 LWy =

T x5 + (72y2)?

The closures V_’zi correspond to the case when we add to V’Qi the slopes of complex tangent
hyperplanes to the tubes TRi)m at the points (0, £1,iy,,1y2) € aT(RfI)im. Thus, we are

leading to (w1, wa) = (0, 1 55%) € Tips -

These slopes exist because V&5 (0, +1,4y1,1y2)
is well defined, where ®5 are the defining functions of the tubes involved.

Furthermore,

T =T

2 = (R+)1nt U T* )mt = VQ_ U Vé—i_ C B<07 1) (259>

(R

and

T(* e NOB(0,1) = T(* o NST X iR?
= {(21,72,0,0) € R* x iR?*: 2} +25=1, -1 <2, <0} C B(0,1)
(*R+ yint N 83(0 1) (S+ int S X ZR2
H

= {(21,72,0,0) € R* xiR*: z7+25=1,0<2; <1} C B(0,1) (2.5.10)

Similarly to lemma 2.5.2 one obtains the following equality for the envelope of holo-

morphy of the compact T (R yint U T(* it

znt

Lemma 2.5.4 Let T(R;,)int’T(R;)mt be the unbounded domains defined in (2.5.5). ]fT*
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and T(*Rﬂim are like in Lemma 2.5.3 then
H

5, = Eorom

Corollary 2.5.1 Let Tg—yint, Tigtyime and T yine, T gt yine be the unbounded domains de-
fined in (2.4.2) and (2.5.5) correspondingly. It follows directly from (2.5.2) and (2.5.9)
that

( (S}S)int U T(S;I)lnt) U ( (R;rl)mt U T(RZ,)””)

34



Chapter 3

The Hardy space HZ(TBl) and its
dual

We begin this chapter by recalling some basic facts about Hardy spaces H*(Tp) on tubular
domains Tp = R?x D, taken from [27]. One considers then the Hardy space of holomorphic

functions F' € H(Tp) defined by

H*(Tp) = {F € H(Tp) : /|F(x +iy)|?dr < A* < +o0, Vy € D} (3.0.1)
R2

The space defined by (3.0.1) becomes a normed vector space when
| F|| tr2(r) = inf A where the constant A is satisfying (3.0.1). (3.0.2)

The main result in Chap.3, §2, [27] states that F' € H?(Tp) if and only if

F(z) = / f)e*m=tdt, = € Tp, (3.0.3)
RQ
whenever f satisfies
2 _—Arny-t 2
sup/ |f(t)]%e dt < A® < 400 (3.0.4)
yeD
RQ
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Plancherel’s Theorem implies then

1
2

sup/ If(t)Pe 40t | = ||| 21
RQ

yeD

3.1 Basic properties of the Hardy space HZ(T(SI—{)int)

If yo € 0D is such that it can be approached by a sequence {y, }n, ¥, € D, non-tangentially,

then the function

Fo(z) = F(x +iy) = / ft)eritetivortqy,
R2

defined for almost all z, is the L?(R?)-limit of functions F,(z) = F(z + iy,). We remark
that this definition of the function F'(x + iyg) is independent from the sequence {y, },.

We look at the particular tube T(S;,)int with base the unbounded, symmetric, convex
set (S7)™, introduced in the previous chapter, focusing on the values of F' € H 2(T( Sﬁ)m)
at the boundary 9T(g-m = R? x 0S5;. As was pointed out in Cor.2.10 in [27] these
values in general exist almost everywhere. Their existence is proven by using the analytic
continuation of Fourier Transform and then its inversion. However, it is also stated in
Th.2.11 in [27] that such limits do exist at every point of the boundary T, 85 yint provided
the point is polygonal (that is, vertex of bounded, convex polygon contained entirely in the
tube T(S;I)mt), which is exactly the setting in our case. However, for completeness of the
presentation of the results, we will prove the existence of our limits at every zo € R? x 95
by simple, classical means.

Actually, consider the sequence {r,} C (0,1] such that r, 1 1. Define the sequence
of functions g,(t) = |f(t)|?e=*"¥ converging point-wise in t € R? as n — oo (i.e
r, T 1) to g(t) = |f(t)]?e™ ™. Now, y -t = ||y|l|[t|| cosf, where € is the angle be-
tween the corresponding vectors. Fix y € R? y # 0, its direction defines the hor-
izontal ”axis”. Then, we split the plane R? into two closed half-planes, intersecting
along a line. Namely, the closed half-plane II,. = {(t1,%2) : y -t = ||y||||t||cos® > 0}
and the closed half-plane T1_ = {(t1,t2) : y -t = ||yl|[|t||cos® < 0}. Observe that
Iy NI = {(t1,t2) = y -t = ||y||||t]| cos® = 0}. If cos® > 0, then, after changing co-
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ordinates in Il , g,(|[t]|cos®,||t]|sin8) < |f(||t|cos@, ||t||sin@)|, g(||t]|cosb,||t|sinb) <
|f(||t]] cos @, ||t|| sinB)|. Since

Jus
2

/ (b, o) Pdtrdty — / / £(0,r)Prdodr, = |¢]

s
2

Lebesgue dominated convergence theorem implies then that [ |f(¢)[?e ™ v dt —

[ 1f(@))Pe ™ dt, as n — oo. Similarly, in the half-plane HT cos < 0, and thus Mono-
rt[(ﬁne convergence theorem combined with the fact that [ |f(¢)|?e*™¥*dt < A? imply that
[ f@)Petmmvtdt — [ |f(t)]Pe*™vidt, as n — gc; The case cosf = 0 corresponds
i -

to line Iy NII_. Now, it is straightforward to show that ||g, — g|;2®2) — 0 in L*(R?)

also. Thus, every function F' € H?(T, ( Sg)mt> has boundary values on R? x 957 everywhere.

Furthermore, one can also show, using the particular form of boundary of the base of the
tube, that whenever y,, — 4o, Yn, Yo € Sy for every n € N one has that F(y,) — F(y),

n —» oo , where
Fw) = [ Irere i, y e o5, (3.1.5)
R2

Thus, we have the following

Lemma 3.1.1 Let F(z) = [ f(t)e?™=dt € HQ(T(S;{)W)' Then the function F(y), y €
R2
0Sy defined by (3.1.5) is continuous.
Reasoning along the same lines, when the tube in question is the tube Ts, and y € 01, ,
y? + y5 < 1 leads to the formulation of the following
Lemma 3.1.2 Let Fi(z) = [ f(t)e*™*'dt € H*(Tp,). Then the function Fi(y), defined
R2
by (3.1.5) for y € S* C R? is continuous.
Direct implications of the above lemmas are the facts:
1)if F e H2(T(5§)i”t) then its norm |]F\|H2(T(S;I

0Sy satistying [lyl| = \/y? +y3 = 1;
2)if G € H*(Tp,), j = 1,2, then its norm |G|l 273 Is realized on the boundary R? x 15!

int) is realized on the part of the boundary
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(St x iR?) or at ||y|| = 0, using the concavity of the functions in question, after proving
similar results for the tube Tp,. Direct comparison of the integrals implies then that
|G|l #22(7,) appears on the boundary of the tubes R? x 7St (St x iR?) .

The proof of the above claims is subject to the following comparison of norms corollary.

Corollary 3.1.1 1) If F € HQ(T(S;I)M); then the following is valid

T
§||F||%12(T(S_ ) < ||F||%12,(]R2><i5—) < 27T||FH12L12(T(S (3.1.6)

—)int)7
H H

)int

where the measure v is equivalent to the Lebesque measure X on C? restricted to the R? x
1S, that is, any measure v that satisfies Hvdg% A v = |K|dzxidzody dys
2) If G € H*(T,), then the following is valid

™
S Nzirs) < IF Nz o) < 27 F W2 ) (3.1.7)

where V is R? x iS* or S* x iR? and the measure v; is equivalent to the Lebesque measure
A on C? restricted to the R? x iS* (or to S* x iR?), that is, any measure v; that satisfies

d®((.C) _
Reacon N Vi = [Kjldeidesdy,dys

Proof: In order to proof the first part we begin by remarking that the continuity of
the function F : y — [ |F(z + iy)*dz for all y € Sy implies that it is integrable on
S, z
Furthermore, for every point y € Sy one has that F(y) = [ |f(t)|2e*mlllthcosbqt, qt,,
where 0 is the angle between vectors y and t. It is evideﬂﬁt that 6 € [0,27]. Now,
by taking the direction of y as our new ”z” axis one has that |yl||||t]|cos@® = |y| .
Thus the integral defining F(y) is transformed, after rotation of the coordinate system,
to F(y) = [ |f(m1, ) Pe *WImdr dr,, taking into account that the determinant of the

R?

rotation matrix in the plane is equal to 1. Thus F(y) = F(||ly||). It is straightforward to see

now that the norm || F| HA(T is realized on the arc S~, where we have || F|| 13,

;I)int) S;I)i"t) =

[ 1f(T)|Pe ™ drdr, since |y|| = 1. Actually, differentiating twice F(r) with respect to
R2

r = |ly||, one has on the horizontal part of Sy, except at the points (0,+1), that this
function is concave up at every point (which means that possible changes of its monotony

on every horizontal component of 05}, determines only local minima ). Since at 7 = +00
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the value of F is finite one has the desired result. It is easy now to deduce that since

[ |F(z + iy)|*de = f |f(t)|Pe~*™vtdt dty for y € (S5)™ we have, after taking limits and
R2
integrating with respect to y, that

PP e _//ww+wnmws<zﬂmm

S— R2

(S )znt (S )'Lnt)

where dv;g- is a measure on the arc ¢S~ that makes the measure dv = dxdy;5- equivalent
to the Lebesgue measure in C2. This implies the required inequality in the first part.

To prove the second part , we argue along the same line, but the justification that supre-
mum appears on the circumference or at the center of the base of the tube has to do with
the concavity of the map F; involved. <

An example of such a measure is in order.

Lemma 3.1.3 The Lebesgue measure m(C, ) in C? restricted to the sets R?xiS™ C 3TSE,

R2 x iST C 8TS§ or 0Tg, = R? x iS! is equivalent to any one of the following measures

Moy (ga 5) = a(DI(C7 5) N (agq)l(C> 5))
pot(C.0) = 99{(C,0) A (83¢+( D

1

induced by the defining functions of the tubes involved.

Proof: The proof consists of direct verification by computation. We will verify the
claim only for the defining function @, the rest of the cases are proved analogously.
Recall that the Lebesgue measure m (¢, )|g2xist is equivalent to the measure 0®,(¢, () A
(0091 (¢, ()) if there exists a positive constant K satisfying

A OD1(C, Q) A (0091(¢,C)) = Km(¢, (), z € R* x iS™.

Lo i
i (

()
HVﬂ@ Ol
Elementary calculations show that

G =G
2i

G =G
2i

00,(G,0) = AP+ (2P - 1) = 26 - Q)G+ 56 - GG
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Similarly,

G — G G—G
21 )

00,(0,0) = ALY — (2 - 1) =~ (G- Q)G - (6 - GG

Furthermore,

000,(¢,0) = 00( L - (L) 1) = Zd6y ndGy + 56 A dGy

Finally, after substitution, we get

OP1(¢,C) NOOP((,C) = i((Cl — ()¢ + (G — 2)dG)) A (—=dC Ady — dGy A dGy)

= _;l(CI — Q)d¢ AdG A dG — ;l(Cz — G)dGy AdG A dG
= _%1((1 — CQ)d¢ A dG AN dG — }l(Cz — ()¢ AdC A dGy
On the other hand
dq)l(Cv _> aq)1(<7 _> 5(I)l(§7 _) = a =
[ = . ) 9P, (¢, C) + DDy (C,
NGOl NGOl Ve a  He9 om0

Thus, for (¢,() € R? x iSt, we deduce that

1 2 dq)l(gv _) ~ ) & = ?) C C ) C
2 Tow . " 0BG AIICD) = 0BG A (20(6,0) A 00i(C, )
2 2
_ %)?(@)dg A dG NG N dy
= %dl'l Adyy N dxg A dys,

that is, the measures in question are equivalent. <

Corollary 3.1.2 1) The space <H2(T(S;I)int), - ”HQ(T(S—)M)) is Banach.
H
2) The space (H*(Tp,), || - lu2(rp,)) s Banach.

Proof: We will give the proof of the first part only, because the second one is proved

similarly. The completeness of the space in question is proven as follows: let {F,}, C
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HQ(T(SI;)W) be Cauchy. Then, for every z = x + iy € T(S;I)int we have by Plancherel

Theorem

/]F x +iy) — B (v +iy)|*dedzy = /\fn (t)|?e~ ™V dt, dt,

S ||F F ||H2T 7)7,71t)

for every n,m > ng. Thus, for y = 0 one is led to [ |f.(t) — fm(t)|*dtrdts — 0.
R2

Completeness of the space L?(R?) implies that || f,, — f|r2@2) — 0, where f € L*(R?).

We claim that F(z f fer=tdt, » € T(S;{)inta belongs to the space HQ(T(S;I)W).

Actually, || f, — fHL2 R?) H 0 implies that || fu||r2®2) || fll 222y < C. Hence we deduce

that f2(t) — f2(t) a.e and [ |[fa(¢)]* — |f(t)]*|dt — 0. Thus, Fatou’s lemma implies

RQ
that for every z € Tis —yint ONE has

/|f2(t)|e4”y'tdt < lirilgof/|f2(t) _47rytdt<hm1nf||F ||H2T -

This completes the proof of the claim. The other part is proved similarly.
The following proposition is similar to convergence in mean results for the classical Hardy

spaces to be found in ([12], [24]).

Proposition 3.1.1 Let F € Hz(T(S;I)int) and r € (0,1]. Then ligl F(rzi,rzg) = F(z1, 22)
in || - || g2 (T 5 yine) THOTTI- Consequently, there exists a subsequence {ry}, C (0,1], . 11 so
that F,, (z) = F(’T‘kzl,’l"kZQ) — F(21, 22) for almost all (21, z) € R? x iS~. Similarly, the

same claim is valid for G € H*(Tp,) with respect to ||.|| g2z, )— norm.

Proof: First we observe that if (21, 29) € T(s-yim then (rz1,rze) € Tiy.gyme; that is,
(iryy, irys) € (rSy)™ C (Sy;)™ for every r € (0,1]. For simplicity of the reasoning, we
consider the sequence F,(z) = F(ryz), r, € (0,1, F' € H*(T{g ). Since f2|Fn(x +
iy)|Pdr = Rj; |f()Petrmmvidt < A2 A? = ||F||H2 - for every r,, we dfduce that

F, € HQ(T(S;{)W> for every n = 1,2, .... Furthermore,

/ |f(t>|2674rn7ry-tdt S 1427
R2
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for all y € S~. Thus, taking into account that the functions above have values everywhere

on the boundary of the tube, one has there for t € II_

’f(t)ef%rny-t _ f(t>6727ry.t‘2 < |f(t)‘2ef4m~ny-t + |f(t)‘2674ﬂy.t

+ 20 f ()P <A f ()Pt
Similarly, whenever ¢ € I1,, one has that

|F(t)e 2 vt — f()e 2R < (1) Pe Yt | f(2)[Pe v

+ 2|f(t)|26—27r(1+rn)y-t S 4|f(t)|26_27ry't,

if one assumes (without loss of generality ) that r| = % Thus, by keeping y fixed, Lebesgue

dominated convergence theorem implies that

/ |f(t)e 2™yt — f(t)e 2™ 2 dt — 0, (3.1.8)
RQ

as r, — 1. Since (3.1.8) is valid in particular at the points y of the boundary where the

norm ||.|| HAT i) is realized one deduces the convergence in ||.|| HA(T, y norm. The
H

—yint
SH)’LTL

second claim follows. The other case is proved analogously.

3.2 Duality results

At this point we recall the Schwarz space S(R") of rapidly decreasing functions on R”

S(R™) = {f € C(R") : sup |2°0° f(x)| < +o0,Va, B € Ny}

FASING

Bl

a — L g = 6 — 0%
where 2% = z{ e ol = + -+, and 97 = P S
1 n

The natural topology on S(R™) is defined as follows :

fn — fif and only if lim sup |2*0°(f, — f)(z)| = 0 for all o, 3

n—oo TER™
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If f € S(R™) then its derivative and z;f(z) are elements of S(R™). Direct computations
show that

P00 = (o) Fa)

The inclusion S(R™) C LP(R") is valid for any p > 1. If C§°(R™) is the space of smooth
functions with compact support on R” then C§°(R™) C S(R™). Since C§°(R™) is dense in
LP(R™), follows that S(R™) is dense in LP(R") for any p > 1. Furthermore, the Fourier

transform is an automorphism of the Schwarz space.

The following result is of importance, because using the Corollary 3.1.1 it allows to
connect the regular L?— approximants of functions to approximants in the spaces with

Sup-normes.

Theorem 3.2.1 Every F € H2(T(s;,)mt) is a || - HHQ(T(S_)M) limit of a sequence {F,} C
H
HQ(T(S,;)W)7 where

Fy(x +1y) = / OE / a8 e 2 € Tigyin,
R2 R?

whenever z = &+ 1y € Ty, fn € S(R?) and || fo — fllr2@®z) — 0. Similarly, the same

claim is valid for every G € H*(Tp,) with respect to the || - || g2(ry,)-norm and z € Tg,.

Proof: Recall that F' € H*(T(s.)m) is equivalent by definition to the fact that
J |F(z +iy)Pde < A%, Vy € (Sz)™. As it was pointed above, for any y, € 0 (SI})W =
RQ

0Sy; one has that

Fo(x) = F(x + iyo) = / f)e™ = dt = / f(t)e*m ety
R2

R2

is the L?*(R?)-limit of functions

F(x +iy,) = / f(t)e2mentdt = / feyerm=te=2mntdt, y, € (Sp)™,
R2 R?

whenever y,, — yo. Therefore F(x + iyo) € L*(R?) as a function of x = (x1, z3).
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Hence [ |F(x + iyo)[*dz < A? for all yo € S~. Then, Corollary 3.1.1 implies that we

R2
can integrate the last inequality with respect to yg on S™. Thus, we imply that F €
L? (R? xiS7).

M-

Next , we are going to show that F'(x+iy) is a limit of rapidly decreasing functions for
y-fixed in L*(R?), for every y € (S;)™. To this end we need to recall the constructions
of such approximants . Here again one takes into account the particular form of F' for

y-fixed:
F(x +1iy) = / f(t)e™ = dt = / f)e™ = te 2™t qy
R2 R2

It implies that f(¢) decreases sufficiently rapidly at infinity when —27y -¢ > 0. Now,
since f € L?(R?) (this is the case when y = 0), we know that there exists a sequence
{fu}n C S(R?) converging to f in L?*(R?)-norm. We claim that there exists a subsequence
{fortne C {fn}n C S(R?) such that

nE—roo

lim / o (D20 tdt = / F()Pe= "™ dt, while
R2 R2

/ | fo, @) Pe ™ dt < K / |f(O) e~ ™ dt, Vny, (3.2.9)
R2 R2

for some constant K > 0. Actually, given any M > 0, define gy (t) = f(t), whenever
|f(£)] < M, [t| < M and gu(t) = 0 otherwise. If Ks(t) = 55¢(%) is an approximation to
the identity, then gy * Ks5(t) < sup,epe |gar(t)|, meaning that gas* K is uniformly bounded
with respect to 6. It is known that |ga * Ks(t) — ga(t)| — 0 for almost all ¢t € R? | as

d — 0. From bounded convergence theorem it follows that ||gas * K5 — gar|| 22y — 0.

But [lgn * K5(1)[| 22y < M supyege [0 ()]s 19y (8)[| 22m2) < M supege [gar(2)], thus

/ g * Ks(t)]* = |gn (8)*|dt < 4M Sup \gae (Ol gnr * Ks — gl 2 m2)
teR
]RQ

< AM?||gur * Ks — gu | 222
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Then, for sufficiently small § > 0, one has that
1w st Pae <2 [ oo (32.10)
R2 R2

Relation (3.2.10) implies then that

/ s # Ks(t) 2t < 2 / lgar (1)t < 2 / ()P, (3.2.11)
R2 R2 R2

where the function gy * Ks(t) € S(R?) by construction. Appropriate choice of M > 0 and
0 > 0 leads to the construction of sequence f,, = gu, * Ks satisfying (3.2.9) taking into

account that
lgar(t) = (1) 722y — 0, while M — oo
Relation (3.2.11) implies that for every n; € N we have
supye(sl—{)int / |fnk (t) |2e—4ﬂ'y'tdt S Ksupye(s;l)znt / ‘f(t) |2e_47'('y'tdt7
R2 R2
where K is a positive constant independent of y. Hence, we deduce that

F, (7 +iy) = / fur ()™t dt € H*(T(g— yint) (3.2.12)

R2

Direct computations show that for every y € 0S5 fixed, F, (z +iy) € S(R?).

It remains to show that F,, converges to Fin L2 (R® x iS~). Actually, it follows from
‘1)1

(3.2.12) and the fact that ' € HQ(T(S;I)int) that for any y € S~ C 05} fixed, one has

that

[ 1) = s0Pe 1 — 0
RQ

and thus ||F,, — F||H2(T(

_y — 0, since the norm || - ||g2(r __ ) is realized on #S™.
SH)”lt (SH)““

Integrating with respect to y on S~ using Lemma 3.1.1, and applying the comparison of
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the norms Corollary 3.1.1 one concludes the proof of the first claim. The other case is
proved analogously.<»

The last Theorem gives us a first, rather simplistic, description of the dual space (H 2(T( S;,)””)> /,
which is the following

Corollary 3.2.1 Consider the subspace of the space Li (R2 x iS™) defined by
2

G ={he Liq}f (R* x iS7) : every restriction hlgexi{i ) € S(R®)}  (3.2.13)

/ — —
Then (HQ(T(S}—I)WD = G, where G~ is Lii’f (R? x iS™)-closure of the space (3.2.13).

Furthermore, the space HQ(T(S;I)M) is reflexive.

Proof: It follows from the above that every F € H*(T (5?1)”“) has boundary val-
ues on R? x S~ denoted also by F and it is the L (R* x 45~ )-limits of a sequence
@1
{F,,} C HQ(T(S;I)M) satisfying (3.2.12), where f,, € S(R?). Thus, in order to de-
/

termine L € <H AT, (SZI)“”)> , it is enough to determine it on elements of H*(T{g_)im)

of the form (3.2.12). In this case F,, (z + iy) € S(R?), for y-fixed, while remaining

F,, € L, (R?*xiS™). Hence, if g € L, (R® xiS~) represents the functional L, then for
o -3

almost all (iy1,iys) € 1S~ the mapping (y1,y2) — [ |g(@1, 22, y1, y2)|*da1dzy is almost

R2

everywhere continuous (with respect to the measure ,LL(I,1—> on 1S~. Denote by A C S~

the metric space of continuity points of the mapping. Note that A is a paracompact.

Following, [23], we consider the carrier ¢ : A — 2¥, where Y = L3, ;.. (R?) is a Banach

space. The carrier ¢, maps every element (iy;,iy2) € A into a ball of positive radius

centered at the element

Y2 Y2

79(y1,y2)(m17‘7;2> - 79($17$27Z/17?J2) € szld:pg(Rz)'

This ball a convex set. The factor ””72 that appears above is there to justify the compati-
bility of the measures: the measure %dxldxg is the measure fig- On the surface R? x ¢S~
taking into account that dy;dy, = 0 on it. It is straightforward to check that the carrier ¢,
is lower semi-continuous and thus admits a continuous selection G : A — Y, satisfying
G(y1,12) € ¢, (y1,92). We choose our selection to be an element (depending on (y1,¥2))

Gy € S(R?) which is sufficiently close to gy, 4.) (21, 22) in L3, 4. (R?) norm. We ex-

dxidxs
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tend our selection to the set S~ \ A by corresponding to every (y1,y2) € S~ \ A the value 0

considered now as an element of S(R?). Since (y1,y2) — [ |9(x1, 22, Y1, y2)|* L da1dzs is
R2

integrable with respect to (y1,72) we deduce that the extended selection Gy, 4.) (71, 22) €

S(R?) defines an integrable mapping with respect to y; via the formula

_ 1
(Y1,92) € 57 — / \G<y1,y2>(x1,xz)IQ%dmwQ.
RQ

Thus, every functional acting on a function defined by (3.2.12), slice-wise gives rise to
the space G~. Taking the closures of both spaces with respect to the LZ@I (R%x 7S~)-norm
and the application of the relation (3.1.6) lead to the desired conclusion. The only thing
that remains to show is the reflexivity of the space HZ(T(SI;)Z-M). Let {gn}n C HQ(T(SI;)M)
be a bounded sequence. Then (3.1.6) implies that this sequence is also bounded Liq); (R% x
iS7). Reflexivity of the space Liq)l_ (R?x4S7) implies that there exists a weakly convergent
subsequence of {gy, }n, of {gn}n. Thus, it is weakly convergent with respect to G~ too as

a subset of HQ(T(S,;)i"t)u taking into account (3.1.6).$

Similarly, we have the following

Corollary 3.2.2 Consider the subspace of the space L7, (R? x iS'), where ®1(Gi, ) =
(<1;i<1)2 + (C2;i<2)2 — 1 is the defining function for the tube Tg,, defined by

G ={he€ Li@l (R? x iS") : every restriction hlpexif(y 4y € SR} (3.2.14)

Then (H*(Tg,)) = Ggi, where Gg1 is Liq}l (R? x iS1)-closure of the space (3.2.14). Fur-

thermore, the space H*(Tg,) is reflexive.

Proof: The proof follows along the line of the previous corollary and is given here for
the completeness of presentation. Actually, every F' € H?(Tp,) has boundary values on
R? x iS" denoted also by I and it is the L7 (R? x iS")-limits of a sequence {F,, } C
H?(Tp,) satisfying

F, (z +iy) = / fo, ()™= dt € H*(Tp,) (3.2.15)
R2
(3.2.15), where f,, € S(R?*). The proof of this claim is the repetition of the one pre-
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sented in the proof of the previous lemma. Thus, in order to determine L € (H?*(Tg,)),
it is enough to determine it on elements of H?(Tpg,) of the form (3.2.15). In this case
Fy, (z +iy) € S(R?), for y-fixed, while remaining Fy, € L (R? x iS"). Thus, following
the reasoning of the previous corollary with respect to the Michael selection principle,
every functional acting on such a function, slice-wise gives rise to the space Ggi1. Taking
the closures of both spaces with respect to the Liq)l (R? x #S")-norm and the application
of the relation (3.1.6) lead to the desired conclusion. The only thing that remains to show
is the reflexivity of the space H*(Tg,). Let {g,}» C H*(Ts,) be a bounded sequence.
Then (3.1.7) implies that this sequence is also bounded LZ% (R% x iS1). Reflexivity of the
space LZ% (R? x 4S1) implies that there exists a weakly convergent subsequence of {gy, }n,
of {gn}n. Thus, it is weakly convergent with respect to Gs1 too as a subset of H 2(Ts,),
taking into account (3.1.7).$

We note however, that this description of the dual space is rather restrictive, because it

does not provide us with the exact information about the structure of the space G~ and

the space Gg1.
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Chapter 4

Integral representation for the space

H?%(T <Sﬁ>im)

Our purpose is to describe this space through Cauchy-Fantappie type formulas to be found
in [13]. To be more specific, we recall the closed half-strips (which are convex sets) in 7R?
defined by (2.4.1). Using the interiors (Sy;)™, (S;;)™ of the closed half-strips from (2.4.1)
we consider the tubular domains defined in (2.4.2).

Following ([14], [13]), we have derived in Chapter 2 that the tubular domains T
and T(sg)mt defined by (2.4.2) are both tubular domains of type one. The corresponding

(to the type of the domain cones) conjugate cones are the half-planes

P(Sz)™ = {(t1,t2) € R? : t; > 0}
= {(t1,t2) € R* 1 tyys + 50 > 0, 3 > 0}
(S = {(t1,t) € R*: ¢, < 0}
= {(ti,t2) €R": t1y1 + 40 2 0, yy < 0} (4.0.1)

It is easy to see that the half planes (4.0.1) are cones of the corresponding half-circles.
That is, if ST and S~ denote the closed half circles on the unit circle S = {(t1,t2) € R? :

t? 4+ 13 = 1}, corresponding to ¢; > 0 and ¢; < 0 correspondingly, then

P(Sﬁ)mt = {()éS+, a >0, (tl,tg) € S+}
P(SH)™ = {aS™, a>0,(t,t:) € S7} (4.0.2)
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In particular, P(Sﬁ)mt are the sets of generators on S' for the conjugate cones of the
cones defining the type of the tubes.

We now observe that the boundary 05, is smooth and is the union of half circle with
parallel lines. For every vector ¢t € 05}, where the boundary is strictly convex, one can
correspond a unique unit vector ¢ € S! so that < £,y >= p, for some p = a(§)- the
supporting hyperplane to Sy at ¢ and satisfying < &,y >< a(€) for y € (S5;)™. Near the
point of strict convexity of 9S};, that is , where 05} is described by ®7 (y) = 2 +y5 — 1,
—1 < y; <0, the domain S}, is characterized by ®; (y) < 0 and its boundary by ®; (y) = 0.
Thus, for (yy,y2) satisfying y?+y3—1 =0, —1 < y; < 0, one has that the vector ¢ realizing
the supporting hyperplane (line) at the present point is the vector

=V (y)

= — c St c P(Sy)™
Ve (y)]] A

£(y)
The points {(y1,y2) € 0Sy : y1 € [0,00), yo = £1} are not points of strict convexity. The
above correspondence means in this case that to the vector (0,1) € S! there correspond
the points (y1,1) € 0S5 and to the vector (0,—1) € S* there correspond the points
(y1,—1) € 055.
This leads us to consider the skeleton {2g- ([13]).

Definition 4.0.1 The skeleton Q(S;I)m of the base of the tube T(S;I)i"t 1s defined to be the

set of £(y) € ST realizing the supporting hyperplane to 0Sy at a unique y € OS;;.

Direct computation shows that

Q4 =S

Furthermore, one observes that T{g-yum. = {zeC?:3(< &2 >) <alf), VEe ST
Now we are ready to formulate and prove the following proposition following closely the

ideas from ([14], [13]).

Proposition 4.0.1 Let [ be function holomorphic in T(SZI)”” so that for every (yi,ys) €

0Sy the limit lim  f(z1 +iryy, xo+irys) = f(x1 +iy1, x2 +iy2). Assume further that for
r—1-

every (z1,22) € T(S;I)int C C? with (y1,y2) = (Sz1,S22) fiwed, the restriction frzxif(y )}

is in S(R?). If flr2xif(yiys)} 15 continuous with respect to (y1,y2) = (Sz1,S22) € S~ and
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is also in L*(0T g yint), then

flw) =

27T / € Tyg yimt- (4.0.3)

(< VCD ) z—w>)?% "’
R2x3S—

Proof: The Radon transform of the function f is f(£,p) = | f(2)dwe, where the
<&,z>=p

—VOT (y)

[IVer )l

that Sz =y € (Sp)™ and < £,y >= Jp. The value f(¢,p) is independent from the choice

€ ST, chosen in a such a way

integral is over the hyperplane < £,z >=p, £ =

of y satisfying < &,y >= Sp. Thus the resulting function f(&,p) is holomorphic function
of p in the strip —a(—¢€) < Sp < a(€). Furthermore, f(€,p) # 0, since both, & and —¢&
do not belong to S*. We observe that f(&,p) # 0 for Sz =y € (S7)™ fixed is identical
to the Radon Transform f(£,Rp) # 0, as a function of Rz = z € R%. Radon Transform

Inversion Formula for n = 2 implies that one has for every w € T Syint the following

- S | et
Sp=a
- 27rz / JZ{( <§,z— >)?2

_ / F() Ve (v)||?dodzdzy
N 2m (< VO (y), 2 —w >)?

RZXQ _
o 2ddxd
. / QINENO) KUY (4.0.4)
(27i)? (< VO] (y),z —w >)?
R2xiS—
where dfl = —d¢ is a measure on S—, making the measure dfdx,dz, equivalent to a three

dimensional Lebesgue measure. We remark here that the first equality in (4.0.4) is just
the Radon inversion formula involving the first derivative with respect to p of f (&, Rp),
represented by the inner integral. The second equality is realized by replacing f (&, Rp)
with its equal f(&, Rp) = | f(Rz)dwe, taking into account that 1-form dwe is
chosen, by the definition 0f<§fg >§§gon transform, to satisfy dwedp = dxidxs. The last
equality follows from the discussion that preceded the formulation of the proposition. {

Recall that the measure j14-(C, () = 097 (¢, ) N3O (¢, () is equivalent to the Lebesgue

measure also. This observation and the concluding remarks of the last proof allow to
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rewrite (4.0.3) as a classic Cauchy-Fantappie formula for w € T(S,;)int :

F(€) (927 (¢, Q) A 90Dy (¢, C)
flw) = / (< vab (C.0).C—w>) e Tisgyme (4.0.5)
R2xiS—
_ 1 / f(©) (021 (¢, ) A 00%; (¢, C))
(2i)? (1- < Y20 4y 5y2 (< Ve27(C(),¢>)?

R2xiS~ <Ve®y (6,6)6>7

One more observation is needed to clarify the relation between the functions satisfying
(4.0.5) and functions satisfying (4.0.3): whenever z € T{g- i, the restriction of (4.0.3)
to the plane R? x i(SJ2;, J2y) is a rapidly decreasing function. The crucial information
available to us here is that (4.0.3) is holomorphic for z € T| s-yine- Therefore it is not the
case when z € 01( Soyint- That is, the theorem below has to be understood in the context of
understanding the boundary behavior of the function in question. Therefore when we say
that a function F' is representable by (4.0.5) then it means that F' is holomorphic in the
tube and has directional boundary values with respect to y € 8T( Syints ie. rl—i>H11— F(z, +
iryy, To + irys) = F(z1 + Y1, o + iy2). Furthermore, in addition to F' € L*(R? x iS™) we

require

(51, 10) —> / (F (1, 29, 11, 9) [P

to be continuous when y € aT(s;I)mt- We say, for simplicity, that F'is continuous along
the boundary of the base of the tube. Before proceeding any further, we set Sj; =-S5y,
0 <7 < 1. Then (Sy )™ =r-(Sy)™ and we have the following

Theorem 4.0.2 Consider the tube domain Tig-yum: C C*. If ' € H*(T(g.yim) then I
satisfies (4.0.5). If F' satisfies (4.0.5) then F € HQ(T(S]—{)M).

Proof : If F € H*(T, (Sé)i”t)’ then its Cauchy-Fantappie Cr,(F') transform is given by

Cra(F)w) = 2=V / F(Q)| V1 (y)|*dfda:dus

@m S (VeI C—w>)
_ 1 F(¢) (097 (¢, )/\aacp (¢, )
- (2n)? / <V (COC—w>p W s (4.0.6)
R2xiS—

because of the relation (4.0.5). We want to prove that Cr, (F)(w) = F(w) for w € T(S;I)int.
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Prop.4.0.1 and relation (4.0.6) imply that

Cr, (F)(w) = Cr,(F)(w) = Cp (F)(w) = F,, (w) ) )
1 / (F = Fo,)(©) (924 (G, C)/\33<I> (€.9)
(27)? (< V@i (C,0),¢ —w>) ’

R2x4S—

whenever w € Tg-in: and {F,,} is a sequence such that F,, — Fin || ||g2(r -norm.

~int)

(SH)"lt

Since F,,, — F in || - ||H2(T< _i)7hOTI, taking the limit when ny — oo leads to the
H

desired conclusion.

In order to prove the second claim, we assume first that [’ satisfies the conditions of
Prop.4.0.1 and thus is expressed by (4.0.3) or , equivalently, by (4.0.5). Hence, F' being
holomorphic in the tube 7|4 S=yints implies that it is holomorphic in the closure of a more

"narrow” tube T(SETV"“ 0 <r < 1. The convexity of ST and straightforward calculations

imply the inequality
I < Ty (C.0).C— 2 >> By (C) — By () + ¢ — 2. (407

whenever ¢ € R? x 1S~ and 2z € Tl yime for 0 <r —17. Using (4.0.7) and (4.0.5) one

deduces, using Holder inequality, that the function

1

F a <I> (o3
RO / \(HM alo9T(C.0) 00007 (C.0)
R2xiS—
1
< ||F||Lﬁq>7 (szz’sf)HmﬂLg( (R2xis—) = (1),

1 1

is bounded by a constant a(r) dependent on r, whenever z € T| s yme- Thus, for (21, S29)

fixed, using (4.0.3) one has from Tonelli’s Theorem,

/|F(8“Ezl,%ZQ,%zl,%,ZQ)Fd?Rzld?RzQ < a(r)/|F(3‘€zl,%22,321,922)|d%21d§)%29

Rz \R2xis— (Do (Szi —SG)? + ;GRZ@ —x;)?)*

=1
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<o) [ | [ R 007 (¢, &) A 80B; (¢, )],
rexis— \R2 (Q0(S2 —SG)? + ;(%Zz' —x;)?)t

=1

(4.0.8)

where z; = R(;, 1 = 1,2, and (Sz; — SG)? + (S20 — 8G)? > (1 — 1) > 0. Now, in
order to compute the inner integral we make the change of variables Rz; — x; = pcos¥f,

Rzo — x9 = psind, 0 < p < +00, 0 < 0 < 27 and obtain

Y

oo 2
dRz1dR 2z pdpd@ T
< < .(4.0.9
/ (1 =722+ (Rey —x1)%2 + (R2g — x9)2)* — / (1—=r)224+p2)* = 3(1—1r)8 ( )
0

R2 0

Thus, using (4.0.9), (4.0.8) becomes

mo(r)

/‘F(%Zl,%ZQ,%21,%22)‘2d§}%21d%22 S m / |F(C,E)H8<Df(() /\85@;(<)|
R2x3S5—

(4.0.10)

On the other hand, if the point (30, 3C0) = (Y10, y20) realizes the maximum of the

continuous function

575 (361.86) — [ [F(ar +i3G 22 + 19 |durds

then

/ F(C, 1097 (C) A 50Dy (C)] = / / F(C,O)| — yrdardaadys + yadadzady

R2xiS— S— R2?

S C/ |F(LC1 +Z%C10,.’L‘2 +Z%C20)’d$1d&?2 (4011)

Thus, for some constant C, (4.0.11) implies that

Cr? Cr?a(r)

/ ]F(%zl, %ZQ, %21, %ZQ) ’2d§R21d§R22 ( )
—r

/!F T1, T2, Y10, Y20)|dr1dTs, (4.0.12)
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where the last integral is finite because the restriction of F(z1 +1iy1g, 72 +iy20)|r2 € S(R?).
Combining (4.0.8) and (4.0.12) we deduce that F' € HQ(T(S;IT)Z‘M)- We now rewrite (3.0.3)
for F' € HQ(T(SI-{T)M) as follows: for any sequence {ry} C [0,1], 7 T 1~ one has that
S;I,.k = ry - Sy. Thus, the restriction of F'(z) from (4.0.5) to the closure T(
by

—  yine 1S glven
SHT‘k)znt g

F,, (w) = /f(t)e%k”“"td@ whenever w € T(S;I),-m,
R2

and  sup /]f(t)]Qe‘“"”y'tdt < (1), (4.0.13)
ye(sf_l)inth

where the constant 3?(r;) depends on the base of the tube Sh,, - Since the function F,, (2)
(an element of HZ(T(S;I)M)) is a restriction of the function F'(z) to the tube Tis, _ yin the
Tk

directional limit (along iy) exists and we denote it by [ f(¢)e**™=!d¢, thus defining
R2

T‘k—>17
R2

F(z) = /f(t)€2rk7riz-tdt — lim f(t)@wkm.z'tdt
R2

for every z € T(S;I)mt' Now the crucial step is to show that (4.0.13) is extended to the
case when r, = 1. We achieve it by proving first that the claim is valid since f € S(R?)
(inverse Fourier transform is a mapping from S(R?) into S(R?)). The desired conclusion
will follow then from the fact that every element f € L*(R?) is a L*(R?) limit of sequence
of functions {f.} C S(R?) and from the way one extends the definition of the Fourier
transform in the space L*(R?).

Let us begin by considering the integral

/|Frk(561+iy1,x2+iy2)]2d:c1d:c2 — /If(t)]%‘*”ky'tdt
R2 R2

2 oo

— //|f(9,9)|26_4w’“”y@Cosegdgd(?,
0 0

where f € S(R?) and y-fixed is assumed to be defining the "horizontal axis” for the use of
polar coordinates. This integral cannot be bounded above (independently of ||y||), when

rr = 1 and cosf < 0. Thus, it is enough to consider the integral over the "left” hand-side
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half-plane:

3m
2

/ |f(e.0)PemrHllec=0 gd o).
0

jus

[V

In general this is a non-solvable problem. However, in the present setting we do the
following. Choosing sufficiently large 3? > 0 we split the strip (S5;)™ into two parts: the
part Sy Ni{(y1,y2) € R? : =1 < y; < 3V} whose closure is compact and the unbounded

part Si; Ni{(y1,v2) € R? : ¥ < y1}. Over the unbounded part of the strip one expresses

Cra(r)
(1=r)°

(S21,S29) = (y1,42) € 0S7 Ni{(y1,42) € R? : =1 < y) <y }. That is , we rewrite (4.0.8)

an estimate like (4.0.11) in terms of a constant like but now written in terms of

as (11 — S¢C1)? — (y2 — ¢2)? > 4|y[|* > 0. This is possible for suitably chosen y > 0,

2HFHL2(]R2><7LS*)
llyll*

whenever (y1,y2) € S5 Ni{(y1,y2) € R? : Y < y1}. Furthermore, the bound on the right
of (4.0.9) becomes HZZ# Thus, modified inequalities (4.0.10) and (4.0.11) give

because (S¢;,3¢) € S—. This way one can have the estimate |F(z)| <

01271'2

/|F(%Zl7 §}3227 %Zlu %Z2>|2d%21d%22 S W
Yy
R2

/|F(x1;$2,y10,y20)|d$1d$2, (4.0.14)
R2

whenever (321, S22) = (y1,y2) € 0S5 N{(y1,y2) € R? : ¢y <y}, for ¢ > 0 large enough.

It remains to show the boundedness of the integrals over the rest of the tube. Since

point-wise
3m 3m
2 OO 2 o0
/ |f(Q, 9)|26—47rrk||y||gcosggd9d9 S / |f(Q, 9)|26—47r||y||900590dgd9’
T 0 0

on the "left” half-plane. The continuity of F' along the boundary of the base of the

tube implies the desired result. That is, we have shown that F' € H 2(T(S;{)mt), with

F(z) = [ ft)e*™=tdt, z € T(s;m whenever f € S(R?). Using the definition of the
RQ

Fourier Transform on L?(R?) we deduce that

NJE] \M‘Sf

/ | f(r,0)|2e 4l cosbrgrdh < 400, (4.0.15)
0
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for every f € L*(R?). Finally, for every z = (21,290) = (21 + iy1, T2 + iys) € Tl yime we

have, using Plancherel’s Theorem, that

/ F o1, 22,31, 40) 2 — / F(O)Pe ™ dt < 4o, (4.0.16)
R2 R2

whenever y € S, is fixed. Furthermore, using previously developed argument, one can
deduce know that F(z) € H 2(T(S;I)mt), by splitting the set 0S5y into non compact part
ISy Ni{(y1,y2) € R?: o) <y}, yf > 0 and into compact part dSy N i{(y1,y2) € R? :
-1<y <y} $

Next, we are going to examine the boundary behavior of the Cauchy-Fantappie type
integral over R? x S~ of a function f € L*(R? x iS™). We begin by considering the
other form of (4.0.5) but for a function f € L*(R? x iS™) so that for every the restriction
flR2xif{(y1.52)1 € S(R?). Namely, the identity

1 £(Q) (091 (C,C) A 00P1 (¢, C))
Cr.(f)(z) = i) / o= Sl on (Vb (600 (4.0.17)
R2xiS— <VC¢; (C7<)7C> ’

whenever z € T, (S7)int describing the Cauchy-Fantappie type integral. It was shown pre-
Ve (6.0

<V @7 (¢0),6>

every (¢,() € R? xiS™, the denominator 1— <

viously that is an element of the generalized dual complement T(*S_)mt . For
_ H
V@ (€9
<Ve®y (66)6>7

plane, which does not intersect the closure of the tube T(_)... whenever I

z > is the equation of hyper-
Vb (60
<V @y (€,0),¢>

1. Therefore, the singularities of the integral occur when H%H =land ||| =1
1 'S /)y

or, taking into account the endpoints of the semicircle S~, when w = (wy, ws) € Ty yint:
H

I <

|lw|| = 1 and ¢ € aT(S;I)W~ Analytically, the above are expressed by the realization of
the points of generalized dual having length equal to one, that is ((0, —iy;), (0, —iys))
satisfying y? +y2 = 1, —1 < y; < 0 while z € T(S,;)i"t and tends to the boundary. This
means CF, (f)(z) is holomorphic in a neighborhood of the part of the tube T (s yine whose
imaginary part of the base is described by the {(y1,v2) € Sy : y1 > 0}. Thus it remains
only to examine the existence of the boundary values of Cr,(f)(z) at the singular points
((0, —iy1), (0, —iys)) satisfying y? +y3 = 1, —1 < y; < 0. In our particular setting this

problem is reduced (see the proof of next corollary) to the extension of the domain of
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convergence of the Fourier Transform.<

Lemma 4.0.1 The value of the integral

/ QAPT(C0) / 0P7 (G, ¢) A 9P (¢, C) (4.0.18)

<V(I)1( 75)7C>2 <V(I)1_<C7<t)ac>4

R2xiS— R2xiS—

18 finite.
Proof: We have the following

1 1 1
(3 +y3 — i(zys + zoy)?| (1 + [|2]]?[lyllPcos?6)? (1 + [|=>y})?’

where || - || is the usual norm in R? and 6 is the angle between the vectors z and y in
R? and we assume that y; = |ly||cos@. Furthermore, the integration on R? x iS~, for
(¢,¢) € R?xiS™, is reduced to the integration of the forms y,dx,dxodys and yodzydzadyy,
while S— hm S=, where S = {(—=/1—¥3,42), y2 € [-1+¢€,1 —¢€|}. Thus, we have

that (understandlng the integrals on the arc as generalized ones)

< Ve (G¢),¢> T (1+ [|z]2y?)?
R2x iS¢ R2 —1+e
+ ‘/ / 2 dxldxgdyz |
J a0 PP

We turn now to the evaluation of every integral in the last relation. We have, since

|// dridzady, |_27T / dyso _ 0
T+ TolPy? 2143 7

R2 —1+€ [—14€,1—¢]

o8



where +0, — +7. Similarly, the other integral is

’// dxidxodys | B ’// 1—y§—1 dxidxodys ‘
\/1—y2 1+ |l=]Pyt) V1—92 (1+ |=]?y9)?

R2Z —1+e R2 —1+e

< w/\/( —y3)dyz + | / ﬁyzl

—14€ —1+4€
< 272,

Therefore

/ |a¢;<<,§{Aa?¢;<<,é>|: lim / ,0®I(C75>A85<1> 1(¢0) < o2
< V@i (¢, (), ¢ > e—0 < V@7 (¢, Q) ¢ >

R2xiS— R2xiSC

Thus we have the desired result. <

The proof of the last Theorem, the concept of generalized dual T* introduced in

)'Lnt

Chapter 2 and the above lemma lead to the following

Corollary 4.0.3 Let us assume that the function h € L*(R* x iS™) so that for every the
restriction h|gzxif(y 400y € S(R?). Assume further that ®7(C, () is the defining function
for the tube T g Syt Then the Cauchy-Fantappie transform of the function h defined by

Cra(h)(2) = / LIV (S N Tis:yint (4.0.19)

V(60 )
I-< FFeoe?>)

R2ZxiS—

is holomorphic in Tg_ym:. The function Cra(h) € H2(T(S;I)int)f provided that the ratio

1h(¢Q)]
(1—r)?

(¢, Q) € OT g yin are near (0,0,0,%i). The differential form-measure is

remains bounded, whenever (Szi,3z2) — (0,%i) within an angle Lo < T and

Ly OP1(¢0) AP (C,Q)
Q((I)l (Ca C)) - < VCq)I(Cu g)’c >2

(4.0.20)

. o V@ (6.0 *
Proof: The analyticity of Cr,(h)(2) follows from the fact that RN € T( 5= yont

for any ¢ = ((1,¢2) € R? x iS™, thus implying that 1— < %,z >=# ( for every

29



CeT S yint- Hence, we can rewrite the desired formula as

‘)Aaacb (¢ g)
(), —z>2

Cra(h)(2) = / € Ty o (4.0.21)

R2xiS—

h(¢, Q)02 (¢,
< VC(I) (

Using (4.0.7) and Holder inequality, like in the proof of the Theorem 4.0.2, one can show

that for any 0 < r < 1,
|0Fa(h)(2)| < ﬁ( ) Vze T( )mt (4022)

where the constant 5(r) depends on the tube T(SH_)int. Now, using the same line of

arguments that led to (4.0.8), (4.0.9),(4.0.10),(4.0.11), we deduce that for Sz = (21, Sz)-

fixed the inequality

Km26(r)

/ |Cra(h)(Rz1, Rzo, I2)|?dR21dRzy < =y
- T

/|h T1, T2, Y10, Yoo)|dridrs (4.0.23)

holds for some constant K > 0, since the last integral is finite because the restriction of
h(zx + iyi0, T + iYoo) |r2 € S(R?). The inequality (4.0.23) is similar to (4.0.12). Combining
(4.0.8) and (4.0.23) we deduce that Cr,(h) € H2(T(S,;r)int)- We now rewrite (3.0.3) for
Cra(h) € H2(T(SZ;T)“”) as follows. For any sequence {ry} C [0,1], 7z T 1~ one has that
Su, =7k Sy Thus, the restriction of Cra(h)(2) from (4.0.5) to the closure T(SI-{%)M is

given by
Cp(h)(2) = /j(t)GQT’“mz'tdt, whenever z ET( —yint s
RQ
and  sup /|j(t)|26_4r’“7ry'tdt <), (4.0.24)
ye(sgl)int

where the constant ~%(ry) depends on the base of the tube S;{Tk. The difference here
with respect to the proof of Theorem 4.0.2 is that we do not know that the function
j(t) € S(R?), we know that j(t) € L*(R?) instead. The discussion that preceded the
present corollary has shown that Cp (h)(z) = Cr.(h)(2), z € T(Sf e for every 1y has
directional boundary values for every zo = (201, 202) € 8T —yint Wlth Imzy > 0, but we

do not know how it is realized. In other words, if it is reahzed as a Fourier transform of
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j at the boundary point zg, with Imzy; > 0. At any such boundary point consider the
sub-tube 17, C T( S=yint having as a base the convex polygon with one of its vertices at
20 € OT{g-yim- The fact that the boundary values of Cr,(h)(2) in the tube T(g- ). are
bounded (locally) (especially in {(0,0)} x iS™) we deduce that Cr,.(h)(2) € H*(Tw.,).
Thus one can define Cry(h)(z9) = Hg{j(t)eQWiZO'tdt, whenever zg € T{gyim, Imzo1 > 0.
Since the arc ST (the right half of the circumference) is open, is contained in the strip
(Sy)™ and the integral [ |j(¢)|?e~*™*dt converges whenever y € S~. Thus, the only
points where we do not liglow the behavior of Cr, (h)(z) are the boundary points whose
imaginary parts are (yi,y2) = (0,£i). These cases are covered by the assumptions of the
corollary. Once we have established the existence of boundary values, the boundedness
of integrals follows as in the Theorem 4.0.2. Thus Cp,(h) € H Q(T(S,;)Mt)- Note however,
that in this case C'r, (h)(20) # h(z0) in general for 2y € R* x S~ C 9T (- yine- <

i)
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Chapter 5

Version of Aizenberg-Martineau

duality for the space HZ(T< _>int)

In the present section we will formulate and prove duality results for spaces H*(T, ( S;{)int)
in the spirit of results of Aizenberg-Martineau, [1, 3, 21, 22]. Similar results are valid
for space H Q(T(S;'I)int)- Using the relation (2.5.1) from Chapter 2 we consider the star

*
compact T’ (S5)int

neighborhood U of the compact T(*S,
H o
The notation of the (n,n — 1)-form Q(®;(¢,¢)) = af’;éiglﬁi‘?zf)’,f) and the vector

1 'S/

function 7(®7) = (1 (P7), ..., 7u(P))), T(P7) = %, i = 1,2 is consistent with

= V_z_ and denote by H (T (E,)im) the space of holomorphic functions in a
H

)int ‘

notation in ([1]).
We begin by observing that in the integral representation of f € H 2(T(S;,)W)v given by
(4.0.5),where the only part of the boundary o1, g5 yine Present is the set R? x iS~. Thus

for every ¢ € R? x iS~ there exists a tangent complex line

{2€eC? < VP, ((,(),(—2>=0} = {2 € C*: 7 (P] )21 + (P )20 = 1}

9¢; 21 (¢.0)
<VC(1>1_(47§)7<>,
< V®7(¢,¢),( >#0, since 0 € T (- yime- Furthermore, for ¢ € R? x 45~ and from Lemma

where 7;(®7) = i = 1,2, not intersecting Tig—ym. . Observe that
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2.5.1 we have that

F-) — 0e, @1 (¢: ) _n (11 + 22yo) — i1 (Y7 + 93)
7—1( 1) - ps 2 2\2 2
< V@i (G, C ¢> (i +92)* + (2191 + 2292)
P-) — ¢, P71 (G, yZ(xlyl + Tay2) — 2 (Y5 +3)
T2( 1) - 9 2\2 2
< Ve (G, ) (Y1 +92)* + (2191 + 2292)
Using the fact that the compact T(’ig Jint is star, the same computations for the vector
ra(lq)l_(<7 5) raCQCI)I_(Ca 5)

( )7

< Ve (€.0).6> < V2 (¢,€),¢ >

where 0 < r < 1, as in Lemma 2.5.1 imply that

v+ 3

<
(3 +3)2 + (w1n + x2y2)® —

1
(@) + 0 (87) = -
with equality taking place when ziy; + x2yo = 0. This last inequality implies that

(rr(®7),rm(P7)) € T(;;Il Jints whenever r € (0, 1].

Recall the fact that the measure uq)l—(g“, () = 09, (¢, ¢) A 90Dy (¢, () is equivalent to
the Lebesgue measure on the boundary of the tube R? x iS~. Furthermore, any linear
continuous functional F' € (H*(T, ( sI;)mt))/ is represented by an element h € G-, as we have
seen in Corollary 3.2.1. However, this description gives us an implicit description of the
dual space, because there is no knowledge of the limit points. Our goal is to give a sharper

description for the space (Hz(T(S;I)m))’, that is, for h € L2 (R* x iS™)
®

P = [ HOmO0er (€O 000 = [ FOMCna; (),

2x4iS—

F(f)] < HfHLiq)_(RQXiS—)HhHLiq)_(RQXiS—)SAHhHL2 (R2xiS—) HfHHQT -’ (5.0.1)

1 1 1

where the constant A depends on constants from comparison of norms corollary.
Thus, using (4.0.5) for f € H*(T, ( S;{)m) we have the following formula representing the

functional F*:

P = [ HOMG (.0 502)
R2 x5S~
- /RQ iS— Tk11—>1rll— f(?”kC) (C) 7(675)7 (503)
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where the limit denotes the L2-limit in the sense of Prop. 3.1.1. But, for every 0 < 7, < 1
the point r.( € T(S,;)mh whenever ¢ € R? x 4S~. Theorem 4.0.2, formal application of

Fubini’s Theorem and the properties of the inner product imply then

o = [ ([ A 0 o

rp—1— _ _TEVE W) 2
R2x5S— ( < <V<I>1_(w,z,?)),w>’C >)

_ /R MS( lim / h(fk?sff(ié;)g_) )f(w)Q(cbI(w,w)).

re—1— . 2
* R2x5S5— (1 < <V<I>1‘(w,¢:;),w>’C >)

(5.0.4)

This approach has meaning provided that the denominator kwl oo in the
(1,<#7<>)2
<VG}'1 (w,w),w>

Ve (w,w)

inner integral does not vanish. Actually, the line [ = 1— < o)

¢ > is tangent to

the tube T° (L sy only at a point of its boundary, and thus does not vanish at any point

inside this tube. Thus, in particular, it does not vanish for any ¢ € R? x iS~ C T, (155 yint-
Tk
Thus, assuming that h is also in L}L _(R? x 4S7), the inner integral has a meaning.
@y
This approach brings forward the following two problems with respect to the inner integral:

1) the inner integral

/ h(Qra- (.0) 505)

B re Ve (w,@) 27
(1- < 2Tt )

R2x3S— <V (w,@),w

VP (w,)

defines a function of w = W,

w € R? x iS~, whose behavior at r = 1 has to be
investigated

2) what is the meaning of the limit in the front of it.

Furthermore, one observes that there is a question related to the outer integral in (5.0.4)

(its existence).

One observes that for every 0 < r < 1, the function ¢y, : T (*s—)mt
H

— C defined by

Mg (¢.C)

1— <rw,( >)?

Pnr (W) = n(rw) = / ( (5.0.6)

R2xiS—

is well defined since 1— < rw, ( ># 0. The relation (5.0.5) is particular case of (5.0.6) in
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Vo (w,0)

o o) os W € R? x iS~. One can also interpret the limiting case
1 I 9

the case when w =
r — 17 of (5.0.6) as the analogue of the Cauchy-Fantappie transform of the element of the
dual space of the normed space of analytic functions H 2(T( SE)“”) , i.e analytic functional,
defined by h(C),uq);(C, (), ¢ € R? x iS~. Recall that in the Aizenberg-Martineau setting
for an open domain U C C", the Cauchy-Fantappie transform Fe(u)(w) = u(m)
maps an element of (H(U))" into the function belonging to H(U*). Furthermore, the main
result of their approach is the fact that the Cauchy-Fantappie transform is an isomorphism

whenever U is C-convex ([1, 2],[10, 21, 22],[29]).

It is clear therefore, that the integral in (5.0.6) might have singularities when r = 1
among the points w € T*, having ||w|| = 1 and |Jw|| < 1. Recall that, according to
results of Chapter 2, w € T* and ||w|| = 1 happens only when w = (wy,wy) =

( )znt
((0, —iy1), (0, —iys)) satisfying y? +y2 =1, —1 < y; < 0. The following lemma, describing

the values of the pseudo-analogue of the Cauchy-Fantappie transform of an element of the

dual space (H2(T(Sg)mt))/ is of importance.

Lemma 5.0.2 Let us assume that the function h € Liq) (R? x iS™) and satisfies the prop-

erty: for every (yi,y2) € S~ the restriction h|g2y;(y, 40 € S(R?). Let

rVo; (w,w) T

B=v= g ma)ws L

0<r<l1}.

Then the function ¢y, : B — C defined by

On(

PV (w,®) () pg- (¢, C)
-

<VCI) ( ) w > (1_ < rVo (w,w) C>)

R2x3S— <Vor (ww ),w>"

extends in a unique way to a holomorphic function $h defined on the open set £ C C? con-

taining the set T(S Jint \ B. Furthermore, this extension is bounded on T:- and continuous
H

on T;E \ {((0,0), (0,+£7))}.

Proof: We begin by pointing out that the assumption on A implies also that h €

7"V<I>7( *
= EBCT

L}Lq)l_ (R? x iS~). Furthermore, one observes that when z, = m

0 < r < 1, then Fw;Swy + RweSwe = 0 and thus its norm is equal to ||z,|| = r taking 1nt0

account Lemma 2.5.1. Since the set T(*S Jint is star with respect to the origin the point

VO (W@) o for every 0 < r < 1. Thus, for every 0 < r < 1 one obtains the

<V (w,@),w> (Sg)mt
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function

Q) ey (€, C)

rV& (w,w)
(1_ < %A (ww o.)>’C >)

Op(rm(P7), rme(P7)) = /
R2xiS—

defined on a segment contained in 77

(57 yint- Even though the above integral at first glance is
H

similar to Cauchy-Fantappie type integral they differ crucially: the direction of the element

(wy,wy) € T(s Jint does not change with ¢ € 9T (4. The claim is that it extends to a

full dimensional open set £ C C2. Actually, for ry € (0,1), the convexity of the tube in

roVe ¢ ># 1, for every ( € R? x iS™, since ( € R? x iS™ C

w implies that < m7

T( L g yint - Thus, there exists 6(rg, wy,) > 0 so that ( € R? x 1S~ C T( S yints whenever
r E (ro—0,70+9). Thus the function (5.0.6) has holomorphic extension in a neighborhood

of every point rw € T (* defined by the same formula, whenever r € [0,1). Thus, it

S;{)znt

remains to see what happens in the case r = 1. In this setting there are two possibilities:

i) we Ts- ~yint and ||lw|]| =1 or
i) w e T(’; Jint and |lw|| < 1.
If weT ., and [w]| < 1, then according to (2.5.1), w = (w1, ws) = (0,w;) € C* or w

( )'Lnt
belongs to generalized dual of the circular part of the strip T} S yint-

In the first case it represents the line that is passing through the point "above ” the
horizontal part of the strip and thus does not intersect the tube R? x ¢S~. In the second
case w coincides (through a different parametrization) with a point ”outside” the cylinder
R? x iS~. In both cases one can consider a small ball centered at w so that for every
w’ in this ball the line passing through this point does not intersect the cylinder, that is
1— < w',¢ ># 0 for every ¢ € R? x iS~. Thus (5.0.6) extends holomorphically into a ball
around every such point through the same formula. The union of all the balls provides us
with the open set &£.

Thus, the only case left to examine about the behavior of the function in question is on
the points of w € T;E satisfying [|w|| = 1. As pointed out above, these are exactly the

points with coordinates ((0, —iy), (0, —iys)) satisfying y? + y2 = 1, 0 < y; < 1. That is,
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whenever (wi,w;) # (0,0,0,+i) € Ty and [lw|| = 1, then (w;,w;) € R* x iS¥,
H

(1= <rw, ¢ >)?’| = |(1= < (=riys, —riy2), (C1, G2) >)[°
= (1 = r(nSG + 125G) — i(rpRG + ryRG)|?

> (1=r[ylllIS¢]lcos B)* = (1 — rcos B)?,

since [lyl| = Vo7 +42 = 1, [|S¢]| = /SCG+3¢ = 1 and S is the angle between the
vectors y and §C. The only solutions to 1 — rcos 8 = 0 occur when r = 1 and 8 = 0,
which is impossible since 3 # 0. Thus the function ¢ (w) is well defined and holomorphic
in a neighborhood of any point w € T*E that satisfies |[w|| < 1 and is continuous at any
w € T;;I \ {((0,0),(0,£i))}. If w = (wy,ws) = ((0,0),(0,£i)) then the denominator in
(5.0.6) vanishes 1— < ((0,0),(0,7)),7((1,¢2) >= 0 if and only if 1 — ri(s = 0, or, which
is equivalent, (1 + r¢) + irR¢ = 0. Hence, the only singularity that appears in the
integral (5.0.6) corresponds to the case when r = 1, S¢; = F1 and R¢; = 0. Naturally,
these points provide the sets {(R¢y, 0, 3¢;, F1)} when viewed as points on R? x 2.5~. Thus,
even though the denominator in the integral (5.0.6) does not vanish (recall that S~ is an

open arc), it is not evident that its value is finite. We have

h(Ota- (C.0)

i-<oorcspr 007

|6n.r(0 40,0 +4)| = [¢n(0 4 0,0 + 7i)| < / |

R2xiS—

even if we do not know yet that the right hand-side of (5.0.7) is finite when = 1. Observe,
that the denominator of (5.0.7) is estimated from below in the context of the observation
above (approaching the singularity at 3(; = —1 within a cone located in Cg, coordinate),

leads in the case r =1, to

(1= < ((0,0),(0,9)), (¢1, &) > 7 = |(1 i)
= ((1+3¢)° + (RG)*)

> (1+S¢G)?,

where (1+S3¢2)? becomes very small, whenever ¢, — —17. Similar estimate from below
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one obtains in the case

(1= < ((0,0), (0, =), (1, &) > P = [(1+i)?
= ((1-9¢)" + (RG)*)

> (1 - %§2>27

where (1 — $¢s)? becomes very small, whenever ¢, — 17. Recall now that

07 (€. ) A 99D (C,C) = —SGARGARGAIC, + SCARG ARG
Using the fact that ¢, = —y/1 — (3¢)?, ¢ € (—1,1), we deduce that

(Cf@)Q _ARGARGASCo.

V1= (S¢)

Thus, if h € L2 (R*xiS™)NL, (R?xiS™), then the above implies that h tends to oo
q’l <I>1
(in the worst case) to the order strictly smaller than that of \/ﬁ while approaching

the points ((0,0), (0, +7)) € R? x iS~. Now, in a small neighborhood of B((0,0, —i), 0o)

0Py (¢, C) N OODT (C,C) = /1 — (SC)2dRGARGASC +

of (0,0,—i) € R? x iR we introduce the spherical coordinates z = —i + ipcos @, z; =
osingcosf, vy = psingsing, where 0 < o < g << 1, § < ¢ < ¢ < ¢ <7, 0 <
¢ — ¢y << 1,0 € [0,27]. Thus

(1= < ((0,0),(0,9), (¢1,¢) > [* = [(1 —iC)[?
= |1 —i((—i+iocos @)+ ipsin ¢sind)|?

= |ocos¢ +ipsin¢sinf|> > o cos® ¢.

Thus, approaching 3¢, = —1 non-tangentially, through a wedge in R? x ¢S~ with the apex
at ((0,0), (0,—1)) (or with the apex at ((0,0), (0,7))), removed, described by

W(;QO = {(x1,22,y1) : y1 = pcos @, 1 = psingcosl, xo = psinPsinb,

0 € (8,00), 9 € (do, 91),0 € [0,2m)}
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in the three dimensional space we are led to the following estimate, valid for every 6 > 0

¢1 00 2w

/ / / B P sinododods < A / / / h(0, 6,6)|dodedd

SAWj/|mxmg@©<w
R2 %3S~

(5.0.8)

\sm¢>1|

where the positive constant Ag, 4 = o2&

depends only on cos ¢; and sin¢;, 4,5 = 0, 1.
The size of the radius oy also does not depend on h and on ¢g, ¢;. The second inequality
follows by comparison of integrals over subsets of R? ("horizontal slices” of the wedge

Wy.0,) and of integrals over R?. Taking the limit § — 0 in (5.0.8) one is led to the

estimate
600 +10,0£ 0] < (L Aos) [ G Olal6,0) < . (5.0)
R2xiS—
Similarly one treats the case of the singular point ((0,0), (0, —i)) € T That is, ¢, is

( )’H‘Lt
bounded function on T 5oy and continuous everywhere in T(S;I)* C C?, except at points

(0 + 10,0 £ 7). This completes the proof of the lemma.

We may assume that the open set £ C C2? from the last lemma is an open ellipsoid
contained in the unit ball and containing the set 77 )nt\{(( —iy1), (0, —iya)) : yi+ys =
1} so that 0ENT (S;{)int = {((0, —igy), (0, —iyn)) : y2+y2 = 1}. Then, ¢, € LA(E) C LY(E),
also it is holomorphic in £. The open set £ is independent of h.

Now, for a function (Zh like in Lemma 5.0.2, we define the function

Ony ¢ (w,@) eR®xiS™ —C
O (w, @) == dpox, (5.0.10)
that is, gh% is composition of the mapping y : R? x iS~ — T(*S Jint sending (w,w) €
R2 x iS~ to % € T(fg Jint and of the function th. It follows from the definition

of x that it is continuous. Thus we have the following result
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Lemma 5.0.3 Let us assume that the function h € L?> (R* x 1S™) and satisfies the
2

1

property: for every (yi,y2) € S~ the restriction hlpzyif(y, 400y € S(R?). Let
A={f¢€ HQ(T(SE)i,Lt) : every restriction fr2xif( ) € S(R?)}.
Then the functional Ly : A — R defined by

Lu(f) = Ohx (W) f (W) (w,w)), (5.0.11)

for f € A, is continuous and extends to continuous functional on HQ(T(S;{)Z»M).

Proof: The functional defined by (5.0.11) is continuous. Actually the conditions on
both functions f and h imply that both of them belong to space Liq,; (R? x iS7), because
being in S(R?) for fixed (y1,y2) € S~ implies integrability on R? and then integrability
(or square integrability ) on the finite measure arc S~. Furthermore, applying Holder

inequality in (5.0.11), because 5h,x is bounded and because of the Lemma 4.0.1, we have

that

[ aswneieal = | [ e g w0)
R2x3S5— R2x43S—

< || ¢h7x (w)

< VO] (w,w),w >2

Liq),(IRi"’XvLS*)Hf||qu> (R2xiS—)-

1 1

Now, every function g € H*(T, s;.yint ), which on the boundary of the tube is L2 (R*xiS™),
@y

is the || - ||H2(T(Si)mt)—limit of the sequence {g,}, C A. Thus, using (3.1.6), the functional
H

defined above is extended by continuity

L) = [ )o@ @.0)
R2xiS—
= i [ G (w.e)
R2 xS~

/!
and gives us an element of the space (H Q(T(S;I)int)) e
Taking into account that S'(R™) = S(R") and the fact that every element f € A is as
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in the lemma above implies that on almost any slice R?* x i{(y1,y2)} an element g €
(H Q(T( SI_{)mt))’ = LZ@I (R? x 4S7) gives a rise to the same continuous functional realized
by an element hy, 4,) € S'(R?). This implies that {h(, ,,), for almost all (y1,y2) € S~}
is also in Liq); (R* x 457). Such a selection is possible by the use of Michael’s selection
principle as in the proof of the lemmas in Chapter 3. Thus, such a function gives rise to

an element
on, h € Li@f (R* x iS7) : every restriction Algzyi{(y.4.)) € S(R?),

by completing hlg2yxif(y,4,)3 = 0, when necessary.

It A(T*S )mt) denotes the space of functions holomorphic in a neighborhood of every point

belonging to T* Jint \ {((0,0), (0,+£7))} and bounded on the compact T(*S Jint then

2 2. ia— . o 5
VT(S it {¢h e A(T}, (5= )mt) h € Luq,; (R* x 4S7) : every restriction hlg2xif(y, 403 € SIR”)}
is its subspace. Note also that the space A(T (5= )mt) equipped with
[ollaz-_ )= sup |p(w)]
(S weT* _
(s;{)znt

becomes a normed space.

Lemma 5.0.4 Let G~ be the space described by (3.2.13). The mapping : G= — Vp-

(S )'Lnt

defined by correspondence ¥(h) = o using (5.0.6) is monomorphism. Furthermore, if

{hn}n C G~ is Cauchy, then so is the sequence {¢p,} C Vp-

(S )znt

Proof: The only non-obvious part of the first part of lemma is to show that the
correspondence is one-to-one. Let us assume that hy # hy almost everywhere, but ¢ (hy) =
¥ (hg). Thus the equality gghl = (Zh2 implies the equality of holomorphic ¢, = ¢y, on the
set B defined in the Lemma 5.0.2 above. But this set is a set of uniqueness for the
holomorphic functions involved. Thus ¢, = ¢5, everywhere on the set T(ts;,)mi' Thus the
function hy — hy € Lf%; (R? x iS™) defines the zero functional in (5.0.11). The action on
the boundary R? x S~ implies that the restriction of h; — hy on the slice R? x i{(yy,v2)}

is (h1 — h2)(y, ys) = 0 for almost all (y1,42) € S™. Thus hy = hy a.e. This concludes the
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proof of the first part of the lemma.

In order to prove the second part we first observe that the Jensen inequality

2

[ 100 = hnOlaar €O | < [ 1b6) = bl (€:)

2% G- R2xiS—

holds. Actually, applying the classical Jensen inequality on the sets of finite measure
Dp x iS™, where Dg = {(z,y) € R? : 22 +y? < R}, R > 0 and then taking the limit
R — o0 one gets the Jensen inequality on R? x ¢S~ stated above.

Now for every compact subset K C T(*SI;)W C & so that ((0,0),(0,44)) € K there exists
an open set V C & containing it, so that V N 9dB(0,1) = (. Then for every w € V, in

particular for every w € K, taking into account (5.0.6), one has

o1,0) = o0, @F < Cup [ [ (O = hn©)lar €0

2xiS—

< Cur [ 10 = Bl (6.0).

R2xiS—

where |(1— < w,¢ >)?| > C,y > 0 for every w € V and ¢ € R? x iS™ and for
some constant C, 3, which depends on V and w only ( or, alternatively on K and w
only). Thus, one has that the sequence {¢;,} is Cauchy over compact subsets (such as
K) under the topology of uniform convergence over compact set. K can be realized as
(B((0,0), (0, —1)), 05) U B((0,0), (0,1)), Qo))CﬂT(*SI,{)m. Using the estimates (5.0.9) one can
prove that {¢p, (w) — ¢p,, (W)} C A(T(*S;I)im) is Cauchy, in the sense that

00,0) = 0, @ £ 24 Ags) [ 1a(O) = bnl0) g (C0) <€

R2xiS—

for every w € €, whenever n, m > ng(e) or which is the same

[6n, () = P, (W) < /(24 Agig))l[hn = P2y mexis—) < ¢ (5.0.12)
The relation (5.0.12) shows that lim ¢, (w) = ¢ belongs to the space Vp- . This
n—>o00 (Sp)int

concludes the proof of the lemma. <
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Thus it is natural to state the following

Lemma 5.0.5 Let QA: be Li _(R? xiS™)-closure of the space G~. Then v has continuous
@y

extension v : G= — Vp» ¥ where YV« s the closure of Vp= ) under (5.0.12).

Proof : Every element h € év— is a limit of the sequence {h,}, C G~. Without loss

of generality, passing to a subsequence if necessary, we may assume that lim h,(¢,() =
n—:oo

h(¢, ¢) for almost all (¢,() € R? x iS~. Therefore the extension is defined by

(k) = lim ¥(h,) = lim ¢y, .

n—aoo n——oo

But {¢n,} € V-  is a Cauchy sequence, since the sequence {h,} C G~ is. Thus
(SI_{)””

U(h) = ¢, where ¢p(w) = lim ¢y, (w), that is ¢ is of the form ¢,. The existence of the
n—-ao0
limit above follows from (5.0.12).{

Lemma 5.0.6 1) For every h € A(T(*S,)m) the function —120WS) 12 (R2 5 jG-)
H

VO (w,0),w>2 Hq>1

. h %,
and whose norm is H%HLZ (R2xiS~)-
1 ’ P

2) For every ¢ € T(Sﬁ)i"t fized and w € T consider the function V¢(w) = ( 1

(S )int? T—<wis)e:

. ) (9c0x) (ws) Ve (w,) o
Then the function 9 € A(T(S;{)int) and <V¢41_z<w@)7w>2 = <V<I><1_>((w,@),uJ>2 € Liq); (R? x 257).
Proof: The proof of the first part follows directly from the fact that ————-—— €

<VOT (w,@),w>2

Li (R? x 4S7). In order to prove the second part, one observes first that for every
<I>1

¢ €T, (S5t the function ¢ (w) = 5 1s holomorphic in a neighborhood of the

1
(1-<w,(>)

compact T’;_

( We may assume that this neighborhood contains the closure of the
H

)’Lnt °

ellipsoid £ considered above. Furthermore, direct computation shows that

19¢7X(w,(jd) i 1
< VO (w,0),w>2 < VO (w,0),w—(>2

Thus, on a strictly convex part of the boundary 0T - consisting of R? x S~, we have the
estimate (4.0.7). Using the reasoning that led to (4.0.9) we deduce the desired conclusion.
¢

Now we are ready to formulate the following theorem, interpreted as boundary value

analogue of the result from ([1]), describing the space (H Q(T(Sﬁ)m))’ :
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Theorem 5.0.3 Every linear continuous functional ' € (HQ(T(S;I)W))/ =G s repre-

sented by
FN =P = o [ T .0
R2 xS~
= G | HOBEED)000)
R2xiS—

= Fo(f),  (5.0.13)

where h € G- and ¢y, € A(T(*S_ ). This mapping, corresponding to every h € <H2<T(Sl;)int>), =

)
H
o— Yrox .
G~ the element o (o) € WT(S;I)W, where
Wre = (e YOX  hered € A(TY )},
spint < VO (w, @), w >2 (S1)
is subspace of the space (L2, (R* x iS™), || - lz2  (m2xis-)), induces a morm preserving
§>1 q>1_
monomorphism. Furthermore, every element ¢ € A(T(*S_)mt) induces an element of the
H
space W= ) defining an analytic functional.
(S

Proof: The relation (5.0.4), as we have shown in the above lemmas, is valid whenever
h € G~ and the holomorphic extension of ¢, defined by (5.0.5), belongs to the space
A(T

(*S,)m) as described by the corresponding lemma (5.0.2). The relation (5.0.4), as it
H

. . Gy
follows through by using all the steps in between, shows that h and —<V<I>£(VC,§), = define

the same analytic functional on H Q(T(S;I)i"t)' Furthermore, for every h € G~ there exists

an element ¢y, € A(T(*S, .. ) satisfying

")

e P = HOM O (€20

= /R On(w) f(w),uq>1- (w,w), (5.0.14)

25— < V@f(w,@),w >2

where #%N € Li“’f (R% x iS7). The above identity follows from continuity of the

correspondence L, without the intermediary steps to justify it. Now, if one interprets the

first equality in (5.0.14) using Riesz Representation Theorem, then || F|| = [|A[|rz  ®exis-)-
o

1
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On the other hand, the second equality in (5.0.14) and Riesz Representation Theorem im-

ply that || F|| = H%H de’f (®2xis—)- T'hus, the correspondence is norm preserving.
To conclude the proof of the theorem we just remark that for every element ¢ € A(T(*S,)im),
~ H
: P(w) 2 2 o Q-
the function TR L%; (R* x iS7) defines an element of the dual space. The

proof of the theorem is complete.

Naturally, results analogous to the proven ones in the present section for the space

H?*(Ty- ), can be obtained for the space H?(T, o ) after suitable (and direct) reformulation.

H
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Chapter 6

Separation of singularities and

integral representation theorem for

the space H2(TBl)

Assume that a bounded domain ) C C" is realized as the intersection of bounded do-
mains €2, and §2,. If f is a holomorphic function in € is it possible to define functions f;
holomorphic in ©; and f; holomorphic in 25 such that f = f; — f37 This is known as
a separation of singularities problem for holomorphic functions on domains €2 C C". For

n =1 it was proved by Aronsajn ([11]).

However for n > 1 this is not valid in general. More precisely, recalling ([3]), consider
the bi-disk D,., = {(z1,22) € C* : |z1| < 1, |22 < p} and set @ = Dy1,Q; = Dy, and
2y =Dy ;. Then 2 = QN Qy. The function

1 N m . n
f(zleQ) = (1 —Zl)(l _22) - Z 21

is holomorphic in € although it is not representable as a sum of holomorphic func-
tions f; and f, defined in the domains 2; and 2, respectively. Simply, observe that
= {(¢1,G) € C 1G]+ G| < 1} while Q7 U Q5 = {(G,¢) € C 1 |G +2|¢] <
1} U{(G,¢6) € C 221G + |G| < 1}, The compact QF U Q3 is star with respect to

the origin. Thus, it has an envelope of holomorphy FEq:yo;. Furthermore, 27 U Q5 C

76



(U NQ)* ={(¢1,G) € C2: |G| + |G| < 1} = Ay where A, is the hyper-cone as in exam-
ple 2.2.2. Recalling that A, is a compact of holomorphy one has that Eqruay C A, and
thus Eq:uo; = A,. Hence, QruUQs C Eqrus- Thus, f is not representable as a difference

of holomorphic functions f; and f; defined in the domains €2; and €25 respectively.

However, in the opposite direction one has the following result ([3]).

Theorem 6.0.4 Any holomorphic function f defined in a strictly linearly convex domain
Q = Q1N Qy can be represented as f = fi1 + fo, where fi is holomorphic in §;, © =
1, 2 if and only if the compactum of holomorphy Eq:uas for the union QF U S satisfies
Earuny = (1 N Q)"

For classical Hardy spaces similar results were formulated by L. Aizenberg and G.

Henkin ([3]). Their formulation is the following

Theorem 6.0.5 Let 2 = Q1N ---NQy where all of the domains are strictly pseudoconvex
with C* boundary. Every f € HP(Q) for 1 < p < oo is written as f = fi + -+ + fr with
f; € H? () for every j =1,--- k.

Our purpose is to state and proof similar results for the space H?(Tp,).
Consider the space H?(Tp,), where the tube Tg,, is defined by (2.2.1). Furthermore,
we recall that Tz, = TSZI N TSE' The first result in the present section states that ev-
ery f € H?(Tp,) can be written in a unique way as f = f; — fo, where f; € H2(Ts§)’
f2 € H*(T§..). It essentially means that while f € H*(Ts,) cannot be expressed through
Cauchy-Fantappie integral representation formula, it can be represented as a sum of func-

tions which are represented in a such a manner. The first result of the present section is

following separation of singularities theorem (Aronsajn type Theorem).

Theorem 6.0.6 Let f € H*(Tg,). Then there exist functions f; € H2(TS§) and fy €
H?(Tg;) that satisfy
f(Z) = fl(z) - f2(z>’ EAS TB1'
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Furthermore, for every z € T, one has that

fe) R/S <V<<I> €Oz >)
£2(¢) (097 (¢, C) A 9DDT (¢, Q)
, /S L (< V<<I>+<c O:¢=z>) \ \&
and
&) = G Ve (G O.C =257 (602)

Proof: Recall that Ep- urs, ) =T, because of the Lemma 2.5.2. We equip the space
Su m
A(T%,) consisting of functions which are holomorphic in a neighborhood of every point

of Tx \ {((0,0),(0,%i))} and bounded on the compact Tp , with the supremum norm

H¢HA(T§1) = SUPyery, ¢(w)|. Now, we consider the spaces

A _ Ypox —
WT(*S;I)Z'M - {< V‘I)f (CL),(D),CL) >2, where ¢h € A( )znt) fOI' some h c g }
and
Wi = { Ynox , where ¢y, € A(T7+\:n;) for some h € éjr}
(sf)int < VO (w,0),w >2 (5h)in

subspaces of (L2 C(R*xiS7), || llzz  (rexis-)) and of (L2 L (R?xiSH), |- HLz . (R2xis™))
Yoy o

correspondingly. Here we used the notatlon ®F for the deﬁnlng functions of T(Si)mt cor-

respondingly. Similarly, we consider the space, subspace of (L (®2xis) -l 12, R2X251))

for ®; being the defining function for the tube Tp,:

- On- 0 X 2 Co—
. = R h T7,
Wr;, {<V<I>1(w,@),w>2’we x iS”, when ¢p- € A(T(, )mt)
Pn+ o X'

w € R? x iST, when ¢p+ € A(T, 5H) wme), for h € Qsl}

<V (w,0),w >?’

where x’ is the mapping defined on the complementary half-tube to the domain of definition
of the mapping y and h™ denotes the restriction of h € 551 to the corresponding R? x iS7.

Here v, stands for a function defined by a relation similar to (5.0.6) with integration taking

78



place over R? x4S! and measure jg, or by completion of limits like in a lemma before. Note
that all measures of integration involved are equivalent to the Lebesgue measure. One can
identify the space WTél as a subspace of 551. We claim that the topology corresponding
to this norm coincides with the initial (projective ) topology induced by the topologies
of normed spaces )/NVT(*SE)M, VNVT(*S;VM' To be more specific, by initial topology we mean

the weakest (coarsest) topology that make the maps maps p~ : WTél — WT(* e
S

Pt WTél — WT* .. continuous. The open sets of the initial topology are unions of
(SH)ZTE
finite intersections (p™) (V)N (p~) "1 (U), were U and V' are open sets in the corresponding

normed spaces. Naturally, it is meant that (p)~*(g) = () whenever g € Wr-

(57t \ WT§1 '

Thus, it follows from Havin’s lemma ([5]) every continuous functional F' € (WTél )’ can be

written as

F(¢) = Fi(9) + Fx(¢), (6.0.3)

where the functionals F; € (WT , t)’ and F, € (WT , t)’ are continuous with respect

to the initial topology induced by the corresponding spaces. Since VNVTEI C 551 one has
that (Gg1)' C <WT1§1)I' Since the space H%(Tp,) is reflexive (see Chapter 3) we have that
H*(Tg,) C (WTﬁl)/ and thus the equation (6.0.7) becomes

F(¢) = Fi(6) D Fal9), (6.0.4)

taking into account that (WT(*S;I)i”t)/ C HQ(T(S;{)Z-M) , (WT(*S;I)M)/ C H2(T(S;r1)i”t)7
H2(T(Sg)m,f) N HQ(T(S;)M) = (). Hence we have

g = g1+ 9o, (6.0.5)

where the equality is understood as equality of functionals (elements of L?(9Tp,)) on

H?(Tg,). Tt implies that the boundary values of the function
h(z) = 9(2) = 91(2) — g2(2) = / fu(t)e* = dt € H*(Ts,)
R2

on the 9T, = R? xS defines a zero functional. Its slice-wise action (i.e $z° = (32

79



fixed) on h(Sz2Y, 329, 21, 19) and Parseval’s Theorem imply that

/|h 32V, 329, 21, w0 Pdayday = /|f;Z e v 12dt dty = 0.

This implies that f;(t) = 0 a.e on R? and hence g(2°) = ¢1(z°) + g2(2°) for almost all
2% € 0Tp,. Thus every element g € H*(Tp,), is expressed ( almost everywhere at the
boundary) in a unique way as a difference on the boundary 07z, of the boundary values

of two elements ¢g; and g, from the spaces H Q(T( S;{)m) and H Q(T(S+)m) correspondingly.

1

Furthermore, for every z € T, fixed, we have that the function ¢, (w;, ws) = CET——

is holomorphic in a neighborhood of the compact T, , and thus in a neighborhood of the

compacts T;;I, T;Zr also. Then

(914 92)(0:2) = 91(2) + 92(2), V2 € Ty, (6.0.6)

because of the Theorem 4.0.2 and the equality

VC(I)I(QLC)
< Ve®i(¢,6), ¢ >

(wl,wg) = € Tgl

Thus, taking into account that (6.0.5) holds for almost all zy € 9T, and the identity
(6.0.6) one has firstly the relation (6.0.1) and secondly that

9(¢2) = (91 + 92)(¢2) = 91(2) + ga(2), Vz € T,

Thus, a Cauchy-Fantappie type integral g(¢.), as a function of z, equals ¢1(z)+¢2(2), Vz €
Tp,. Going to the boundary values on the left hand side of the last equality, we have that
for almost all zg € 0T, the following identity

91(20) + g2(20) = /fl (t)e> =0t d + / o)t
R2 R2
holds. Thus, for every z € T,

9(¢2) = (91 + 92)(¢2) = g1(2) + ga(2) = 9(2).
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This identity concludes the proof of the theorem . <

The last proposition of the present describes the partial converse of the previous theo-
rem. Its formulation and proof could be well located in Chapter 3, since the mathematical

content of its proof is closer in spirit to results presented there.

Proposition 6.0.2 Let f be holomorphic function in the tube Tg,, defined also on T,
and such that f € L*(0Tg,). Assume also that f satisfies the property that every restriction
FIR2xi{(y1.5)} belongs to S(R?) , whenever (yi,y2) € S* and that the growth estimate at the
endpoints present in Corollary 4.1 holds. If (6.0.2) is valid, then f € H*(Tg,).

Proof: Let us assume that for every z € T, the integral representation formula (6.0.2)

is valid. Then for the same z € Tz, one defines the functions

B f(C 1 (¢, Q) A 20P; ((,Q))
filz) = RQX/S_ (5) (—z>)

/ F(C) (091 (¢, ¢) A 0OPT (¢, Q))
(< V<¢+(C (),¢—z>)

f2(2) (6.0.7)

R2xiS+

It is easy to see that apphcatlon of Corollary 4.1 implies that f1 c H? (T(S znt) fa €
H (T(S?_}),Lnt) Thus f1 — fg 27”Z tdt z 6 T(S inty f2 — fg ZﬂZtht, z e
Tsyine- Therefore, one deduces that HfHHQ(Tsl) < HleHz(T — + Hf2HH2 This

(S+ yint )

concludes the proof of the proposition.<»
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Chapter 7

Conclusions and Further Research

7.1 Conclusions

The main objective of this thesis was to describe the Hardy space H*(Tg,), for i = 1,2,
through a Cauchy-Fantappie type formula, where T, @ = 1,2, are the tube domains
(2.2.1). The main obstacle was the absence of Stoke’s theorem for unbounded domains.
In this direction, we realized each of tubes Tg,, ¢ = 1,2, as an intersection of tube domains
with convex, unbounded base which contains a cone. Namely, we defined Tz, = T soyime 0
T(styime and Tp, = Tip-yine N Tyt yime where the bases S% and RF are defined in (2.4.1)
and (2.5.4), correspondingly. Following ([13], [14]) we derived a Cauchy-Fantappie formula
for the space H 2(T(S;I)im)' More specifically, we proved that a function is an element of
the space H 2(T( S,;)mt) if and only if it is representable by a Cauchy-Fantappie formula.
Similarly arguing results are valid for the space H Q(T(s; yine). In the spirit of Martineau-
Aizenberg we obtained that every analytic functional F' € (H 2T, (Sg,)mt)>/ is represented
by

FN =R = o [ T @0
R2xiS—
= G [ HO8EED)000)
R2xiS—
B 1 %(T(‘DI))M@;(C,E) B
i <27”'>2R2X/S VN T
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where h € G~ and ¢, € .A( mt) Recall at this point that A(T* is the space of

S )znt)
holomorphic functions on a nelghborhood of every point belonging to T g mt\{((O 0),(0,%1))}

and bounded on the compact T(* — yint and

“={he L] (R®xiS7): every restriction hlpzx{(y ) € S(R?)}
q’l

where G- is its L2 (R*x iS™)-closure. Concluding, we derived the separation of singu-
2

larities type theorem for the space H*(Tp,) providing that for every f € H?*(Tg,) there

exist functions f; € HQ(T(SI;)W) and f, € Hz(T(S;I)W) that satisfy f(z) = fi1(2) — fa(2)

for z € Tl,. Actually, for every z € Tz, we have obtained that

f1(€) (097 (¢, ¢) A 9P (€, Q)

& = /S (< v<<1> (CO.C—2>P
/ f2(C) (091 (¢, C) A 8D (¢, Q)

(< V@*(C (),¢—z>)?

]R2><zS
and finally
£€) (991(¢, C) A 9D (¢, ()
=G | COC—2>7

R2xiS1

As a direct consequence we have derived an integral representation formula valid for any
f € H?(Tp,). Actually, if f is a holomorphic function in the tube T, , defined also on 97,
and such that f € L*(9Tp,) satisfying the property that every restriction f|rzxif(y y2)}
belongs to S(R?) , whenever (y1,y2) € S* and (6.0.2) is valid, then f € H*(Tg,).

7.2 Further Research

In this thesis we exclusively focus on the tube domains T} g ()it and 7 ()it (2.4.2) the
intersection of which defines the tube T, (2.2.1). An obvious consideration consists in
the determination of a class of convex tube domains Tp = R? x D, D C R? that admits
a Cauchy-Fantappie integral representation formula. One considers that we may assume
once again that the base of the tube is convex, does not contain an entire straight line but

is intersection of tubes Tp,, ¢ = 1,2, containing a cone. Furthermore, one has to ensure
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that whenever f € H?*(Tp,) then || f|| 2 (Tp,) 18 realized on the strictly convex part of 9D;.
At this point, we note that the existence of boundary values everywhere on 97T} g yine Was
based to the fact that each point on 0T (5 yint Was polygonal. Furthermore, an important
fact is the form of the complex tangent hyperplanes when the strictly convex part of the

boundary is not a part of a circle ( half circle in our case ) .

The problem of obtaining a Cauchy-Fantappie type integral formula for functions on
Hardy spaces H?(Tp) over tube domains in higher dimensions is worth further investiga-
tion. Actually, if we assume that Tp = R" x ¢D, D C R” then in order to ensure the
existence of a complex tangent hyperplane at every boundary point ( € 9Tp one requires
higher degree of smoothness of the boundary R™ x 0D, D C R"™. If one decides to ex-
plore the duality for Hardy spaces HP(Tp) over tube domains for p # 2 then the loss
of Plancherel’s theorem will change an important part of the resulting method, thus the

generalization of results to HP(Tp) for p # 2 are far from obvious.
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