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Abstract

This thesis consists of two parts: in the major part we calculate the infinitesimal generators

of families of partial differential equations which are used for derivation of differential

invariants. In the other part we have drawn our attention to point transformations which

preserve the general form of partial differential equations.

In the applied group analysis, one-parameter Lie groups of transformations are deter-

mined by infinitesimal transformations or infinitesimal generators. Using the infinitesimal

generator of a one-parameter Lie group of transformations one can construct various kinds

of invariants (invariant surfaces, invariant points, invariant families of surfaces). A one-

parameter Lie group of transformations acting on the space of independent and dependent

variables is naturally extended (prolonged) to one-parameter Lie group of transformations

acting on an enlarged space that includes all derivatives of the dependent variables up

to a fixed finite order. Consequently, one-parameter extended Lie groups of transforma-

tions are characterized completely by their infinitesimals. This allows one to establish an

algorithm to determine the infinitesimal transformations admitted by a given differential

equation.

There exist two methods for calculation of equivalence transformations, the direct

method which was used first by Lie and the Lie infinitesimal method which was intro-

duced by Ovsyannikov. Although, the direct method involves considerable computational

difficulties, it has the benefit of finding the most general equivalence group.

Recently, Ibragimov developed a simple method for constructing invariants for families

of differential equations. The method is based in the theory of equivalence groups in the

infinitesimal form. Basically, the method consists of two steps: classification of equivalence

groups and then use these groups (and extended groups) to derive the desired differential

invariants. Ibragimov used his method to solve the Laplace problem. That is, to derive
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all invariants for the linear hyperbolic equation

uxy + a(x, y)ux + b(x, y)uy + c(x, y)u = 0.

To achieve this, he constructed a basis for the invariants and then using this basis and

invariant differentiation all invariants, of any order, can be derived. The idea of Ibragimov

was adopted by a number of authors who derived differential invariants for ordinary

differential equations, linear and non-linear partial differential equations.

Differential invariants of the Lie groups of continuous transformations can be used in

wide fields: classification of invariant differential equations and variational problems aris-

ing in the construction of physical theories, solution methods for ordinary and partial

differential equations, equivalence problems for geometric structures. First it was noted

by Lie (see [33]), who proved that every system of differential equations (see [34]), and

every variational problem (see [36]), could be directly expressed in terms of differential

invariants. Lie also showed (see [34]) how differential invariants play an important role

to integrate ordinary differential equations and succeeded in completely classifying all

differential invariants for all possible finite-dimensional Lie groups of point transforma-

tions in the case of one independent and one dependent variable. Tresse (see [56]) and

Ovsyannikov [44] generalized the Lie’s preliminary results on invariant differentiations

and existence of finite bases of differential invariants. The general theory of differential

invariants of Lie groups together with algorithms of construction of differential invariants

can be found in [42,44].

Also, there is merit in studying point transformations directly in finite form with the

ultimate dual goals of finding the complete set of point transformations of systems of two

partial differential equations and discovering new links between these systems.

Relationships between partial derivatives are considerably more cumbersome than the

corresponding relationships for infinitesimal transformations which themselves expand

rapidly with increasing order. However several results are presented. These results help us

achieve the second aim which is to discover the nature of point transformations connecting

systems of two partial differential equations belonging to given classes. Thus, we look at

systems with one partial derivative of u(t, x) and v(t, x) of any order, possibly mixed,

related to lower-order derivatives of u and v, u and v themselves and t and x.

In this thesis, firstly we develop the basic concepts of Lie groups of transformations,
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infinitesimal transformations and invariance of partial differential equations that are nec-

essary in the following chapters. In the beginning we start with known results. That is,

we use the Lie infinitesimal method for calculating the continuous group of equivalence

transformations, for the non-linear diffusion equation. Also, we apply this method to

derive differential invariants for the linear hyperbolic equation in two variables. Finally,

we describe the method which used by Ibragimov to solve the Laplace problem.

The second step is to calculate equivalence transformations for given families of equa-

tions. In the spirit of the recent work of Ibragimov (see [19]), who adopted the infinitesimal

method for calculation of invariants of families of differential equations using the infin-

itesimal groups, we apply the method to several partial differential equations. In this

thesis, we derive the equivalence group for hyperbolic equations of general class and for

two special cases of it. Also, we calculate equivalence transformations for n-dimensional

hyperbolic equations, for n-dimensional wave-type equations and finally for hyperbolic

equations with two dependent variables. For these families of equations, we find the

forms of differential invariants of first or/and second order. In certain cases, we will use

the derived invariants or/and invariant equations to find the form of those equations that

can be mapped into an equation with particular form.

Furthermore, we work on form-preserving point transformations for partial differential

equations. We present some known results (see [29]) for three classes of equations re-

stricted to one dependent variable and two independent variables concerning the nature

of connecting point transformations. We will generalize these results for forms of point

transformations connecting two systems of two partial differential equations. The aim of

this part is first to present results concerning the relation of the transformed partial deriv-

atives to the original partial derivatives and secondly to exploit these results to reduce

the general range of point transformations connecting systems of two partial differential

equations belonging to restricted classes.
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PerÐlhyh

Aut  h diatrib  apoteleÐtai apì dÔo mèrh: sto pr¸to mèroc upologÐzoume apeirostoÔc gen-

n torec gia di�forec kathgorÐec merik¸n diaforik¸n exis¸sewn oi opoÐoi qrhsimopoioÔntai

gia thn eÔresh analloÐwtwn sunart sewn kai sto deÔtero mèroc meletoÔme shmeiakoÔc me-

tasqhmatismoÔc oi opoÐoi diathroÔn thn genik  morf  twn merik¸n diaforik¸n exis¸sewn

analloÐwth.

Sthn efarmosmènh an�lush, oi monoparametrikèc om�dec metasqhmatism¸n Lie, kajo-

rÐzontai apì touc apeirostoÔc metasqhmatismoÔc   touc apeirostoÔc genn torec. Qrhsi-

mopoi¸ntac ton apeirostì genn tora miac monoparametrik c om�dac metasqhmatism¸n Lie,

mporoÔme na kataskeu�soume poikÐlec morfèc analloÐwtwn sunart sewn (ìpwc analloÐw-

tec epif�neiec, analloÐwta shmeÐa, analloÐwtec oikogèneiec epifanei¸n). Mia monoparame-

trik  om�da metasqhmatism¸n Lie pou dra p�nw ston q¸ro twn anex�rthtwn kai exarth-

mènwn metablht¸n eÐnai epektetamènh se mia monoparametrik  om�da metasqhmatism¸n Lie

pou dra se megalÔtero q¸ro, o opoÐoc perilamb�nei ìlec tic parag¸gouc twn exarthmè-

nwn metablht¸n mèqri k�poiac peperasmènhc t�xhc. Sumperasmatik�, mia monoparametrik 

epektetamènh om�da metasqhmatism¸n Lie qarakthrÐzetai apì ta infinitesimal thc. Au-

tì mac epitrèpei na kataskeu�soume èna algìrijmo gia na kajorÐsoume touc apeirostoÔc

metasqhmatismoÔc touc opoÐouc epidèqetai mia dosmènh diaforik  exÐswsh.

Up�rqoun dÔo trìpoi gia upologismì twn isodÔnamwn metasqhmatism¸n, o �mesoc trì-

poc o opoÐoc qrhsimopoi jhke pr¸ta apì ton Lie kai h apeirost  mèjodoc Lie h opoÐ-

a kataskeu�sthke apì ton Ovsyannikov. An kai o �mesoc trìpoc perilamb�nei pollèc

upologistikèc duskolÐec, entoÔtoic èqei to pleonèkthma eÔreshc pio genik c isodÔnamhc

om�dac.

Prìsfata, o Ibragimov anèptuxe mia apl  mèjodo gia kataskeu  analloÐwtwn sunart -

sewn. Aut  h mèjodoc basÐzetai sthn jewrÐa twn isodÔnamwn om�dwn se apeirost  morf .
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Aut  h mèjodoc apoteleÐtai apì dÔo b mata: pr¸ta thn taxinìmhsh twn isodÔnamwn om�dwn

kai èpeita th qrhsimopoÐhs  touc gia eÔresh twn analloÐwtwn sunart sewn. O Ibragimov

qrhsimopoÐhse aut  thn mèjodo gia na lÔsei to prìblhma tou Laplace. Dhlad , qrhsi-

mopoÐhse aut  thn mèjodo gia na brei ìlec tic analloÐwtec sunart seic gia thn grammik 

uperbolik  exÐswsh:

uxy + a(x, y)ux + b(x, y)uy + c(x, y)u = 0.

Gia na to petÔqei, kataskeÔase mia b�sh gia tic analloÐwtec sunart seic kai qrhsimopoi¸n-

tac aut  th b�sh kai me analloÐwth parag¸gish br ke ìlec tic analloÐwtec sunart seic

opoiasd pote t�xhc. H idèa tou Ibragimov uiojet jhke apì polloÔc suggrafeÐc, oi opoÐ-

oi upolìgisan analloÐwtec sunart seic gia sun jeic diaforikèc exis¸seic, grammikèc kai

mh-grammikèc merikèc diaforikèc exis¸seic.

Oi analloÐwtec sunart seic twn om�dwn metasqhmatism¸n Lie mporoÔn na qrhsimopoih-

joÔn se di�fora pedÐa: ìpwc gia thn taxinìmhsh twn analloÐwtwn diaforik¸n exis¸sewn,

se probl mata metabol¸n, se mejìdouc gia th lÔsh sun jwn kai merik¸n diaforik¸n exis¸-

sewn. Pr¸toc o Lie apèdeixe ìti k�je analloÐwto sÔsthma merik¸n diaforik¸n exis¸sewn

kai k�je prìblhma metabol¸n, mporeÐ na ekfrasteÐ mèsw twn analloÐwtwn sunart sewn.

EpÐshc, èdeixe, p¸c oi analloÐwtec sunart seic paÐzoun shmantikì rìlo sthn olokl rwsh

sun jwn diaforik¸n exis¸sewn, gia thn taxinìmhsh ìlwn twn analloÐwtwn sunart sewn

gia ìlec tic peperasmènhc -di�stashc om�dec Lie shmeiak¸n metasqhmatism¸n sthn perÐ-

ptwsh miac anex�rththc kai miac exarthmènhc metablht c. H Tresse kai o Ovsyannikov

genÐkeusan ta apotelèsmata tou Lie se analloÐwth parag¸gish kai gia thn Ôparxh pepe-

rasmènwn b�sewn analloÐwtwn sunart sewn. H genik  jewrÐa twn analloÐwtwn sunart -

sewn twn om�dwn Lie mazÐ me algorÐjmouc gia kataskeu  twn analloÐwtwn sunart sewn

mporeÐ na brejeÐ sta [42,44].

EpÐshc, eÐnai shmantikì na asqolhjoÔme kai me shmeiakoÔc metasqhmatismoÔc, me skopì

thn eÔresh pl rouc om�dac shmeiak¸n metasqhmatism¸n gia sust mata pou apoteloÔntai

apì dÔo merikèc diaforikèc exis¸seic.

Oi sqèseic metaxÔ twn merik¸n parag¸gwn eÐnai pio polÔplokec apì tic antÐstoiqec

sqèseic gia touc apeirostoÔc metasqhmatismoÔc. EntoÔtoic ja parousi�soume k�poia apo-

telèsmata. Aut� ta apotelèsmata mac bohjoÔn na petÔqoume ton deÔtero skopì mac

pou eÐnai na broÔme touc shmeiakoÔc metasqhmatismoÔc pou sundèoun sust mata merik¸n
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diaforik¸n exis¸sewn sugkekrimènhc morf c. Gi' autì asqoloÔmaste me sust mata pou

apoteloÔntai apì dÔo merikèc diaforikèc exis¸seic kai perilamb�noun mia merik  par�gwgo

twn exarthmènwn metablht¸n u(t, x) kai v(t, x) kai èpeita me sust mata pou perilamb�noun

meiktèc parag¸gouc twn exarthmènwn metablht¸n u(t, x) kai v(t, x), oi opoÐec sqetÐzontai

me mikrìterhc t�xhc parag¸gouc twn u(t, x) kai v(t, x), me ta Ðdia ta u(t, x) kai v(t, x) kai

ta t, x.

Gi' autì se aut  thn diatrib , pr¸ta ja anaferjoÔme se basikoÔc orismoÔc twn om�dwn

metasqhmatism¸n Lie , twn apeirost¸n metasqhmatism¸n kai to analloÐwto twn merik¸n

diaforik¸n exis¸sewn, ta opoÐa eÐnai qr sima gia ta epìmena kef�laia. Katarq n, ja

xekin soume parousi�zontac gnwst� apotelèsmata. Dhlad , ja efarmìsoume thn apei-

rost  mèjodo tou Lie gia ton upologismì om�dwn isodÔnamwn metasqhmatism¸n gia th

mh grammik  exÐswsh di�qushc. EpÐshc, ja qrhsimopoi soume th mèjodo gia to upologi-

smì twn analloÐwtwn sunart sewn thc grammik c uperbolik c exÐswshc. Epiplèon, ja

perigr�youme ton trìpo me ton opoÐo o Ibragimov èluse to prìblhma tou Laplace.

San deÔtero b ma, akolouj¸ntac thn idèa tou Ibragimov, gia eÔresh isodÔnamwn me-

tasqhmatism¸n, ja upologÐsoume isodÔnamouc metasqhmatismoÔc gia dosmènec oikogèneiec

merik¸n diaforik¸n exis¸sewn. Sugkekrimèna, ja upologÐsoume tic om�dec isodunamÐac

gia th genik  morf  thc uperbolik c exÐswshc kai dÔo eidik¸n peript¸sewn thc. EpÐshc,

ja upologÐsoume tic om�dec isodunamÐac gia thn uperbolik  exÐswsh di�stashc n, gia thn

kummatik  exÐswsh di�stashc n kai tèloc gia sÔsthma pou apoteleÐtai apì dÔo uperboli-

kèc exÐswseic. Gi' autèc tic oikogèneiec exis¸sewn, brÐskoume tic analloÐwtec sunart seic

pr¸thc  /kai deÔterhc t�xhc. Se perissìterec apì autèc, ja qrhsimopoi soume tic anal-

loÐwtec sunart seic  /kai tic analloÐwtec exis¸seic gia na broÔme th morf  aut¸n twn

exis¸sewn oi opoÐec mporoÔn na apeikonisjoÔn se exis¸seic sugkekrimènhc morf c.

Tèloc, ja d¸soume k�poia gnwst� apotelèsmata pou aforoÔn touc shmeiakoÔc me-

tasqhmatismoÔc miac merik c diaforik c exÐswshc. Sugkekrimèna, ja parousi�soume thn

morf  twn shmeiak¸n metasqhmatism¸n oi opoÐoi sundèoun treic om�dec merik¸n diafo-

rik¸n exis¸sewn pou apoteloÔntai apì mia exarthmènh kai dÔo anex�rthtec metablhtèc.

Skopìc mac eÐnai na genikeÔsoume aut� ta apotelèsmata gia sust mata pou apoteloÔn-

tai apì dÔo diaforikèc exis¸seic. Dhlad , pr¸ta ja parousi�soume apotelèsmata pou

aforoÔn tic sqèseic twn metasqhmatismènwn merik¸n parag¸gwn me tic arqikèc merikèc
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parag¸gouc kai deÔteron qrhsimopoi¸ntac aut� ta apotelèsmata ja prosdiorÐsoume th

morf  twn shmeiak¸n metasqhmatism¸n pou sundèoun sugkekrimèna sust mata merik¸n

diaforik¸n exis¸sewn.
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Chapter 1

Introduction

Modern mathematics has over 300 years history. From the very beginning it was focused

on differential equations as a major tool for the mathematical modeling. Most of math-

ematical models in physics, engineering sciences, biomathematics, etc. lead to nonlinear

differential equations.

The theory of differential equations is one of the most important disciplines in modern

mathematics. It would be correct to say that the notions of derivative and integral, whose

origin goes back to Archimedes, were in fact introduced later in works of Kepler, Descartes,

Cavalieri, Fermat and Wallis. Later, Newton and Leibnitz realized that differentiation and

integration are inverse operations and developed the appropriate algorithms.

The brothers Jacob and Johann Bernoulli (1654-1705, 1667-1748) made further contri-

bution to the theory of differential equations. Especially, famous are their investigations

of geodesic curves and isoperimetric problems that are considered to be the origin of

variational calculus.

The Italian mathematician Riccati (1676-1754) paid attention to particular cases of

the following equation which later became popular:

dy

dx
= X(x) + X1(x)y + X2(x)y2.

This equation should certainly be considered as the simplest and the most significant

among non-integrable differential equations. In particular, new group-theoretic investiga-

tions show that this equation can be interpreted as an analogue of the algebraic equation

of fifth degree.
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A further important contribution to the theory of differential equations was made by

d’ Alembert (1717-1783). By formulating the general mechanical principle, he reduced

all problems of dynamics to differential equations and furnished Newton’s revolutionary

mechanical ideas with a general and definite form.

The first category of all investigations on partial differential equations (PDEs) of the

first order started by Euler, Lagrange and Monge, and continued by Pfaff, Cauchy, Hamil-

ton, Jacobi, A. Mayer and others. Research on PDEs of second and higher order started

by Monge and Laplace. Among followers of Laplace and Monge in this field are Ampére,

Darboux and some other French mathematicians who ensured a considerable advance in

the theory of differential equations. The notion of characteristics introduced by Monge

played implicitly or explicitly an important role.

The linear wave equation uxy = 0 for vibrating strings, was formulated and solved by

d’Alembert in 1747. In 1769/1770, Euler (see [7]) and later, in 1773, Laplace (see [32])

derived the two invariant quantities

h = ax + ab− c, k = by + ab− c. (1.1)

These fundamental invariant quantities are known today as the Laplace invariants.

We owe to Leonard Euler the first significant results in integration theory of general

hyperbolic equations with two independent variables x, y:

uxy + a(x, y)ux + b(x, y)uy + c(x, y)u = 0. (1.2)

In his ”Integral calculus ” (see [7]), Euler introduced what is known as the Laplace invari-

ants h and k. Namely, he generalized d’ Alembert’s solution and showed that equation

(1.2) is factorable, and hence integrable by solving two first-order ordinary differential

equations, if and only if its coefficients a, b, c obey one of the following equations:

h ≡ ax + ab− c = 0

or

k ≡ by + ab− c = 0.

If h = 0, equation (1.2) is factorable in the form
(

∂

∂x
+ b

)(
∂u

∂y
+ au

)
= 0,
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and if k = 0, equation (1.2) is factorable in the form
(

∂

∂y
+ a

)(
∂u

∂x
+ bu

)
= 0.

In the 1773s, Laplace developed a new method, known as Laplace’s ”cascade method”,

in his fundamental paper ”Studies on integral calculus of partial differences”. The central

role in his method play the semi-invariants h and k. His method is used to solve many

hyperbolic equations.

In the 1890s, Darboux discovered the invariance of h and k and called them the Laplace

invariants. He also simplified and improved Laplace’s method, and the method became

widely known due to Darboux’s excellent presentation. Since the quantities h and k are

invariant only under a subgroup of the equivalence group, Ibragimov proposed to call h

and k the semi-invariants in accordance with Cayley’s theory of algebraic invariants.

Louise Petren, in her PhD thesis defended at Lund Univarsity in 1911, extended

Laplace’s method and the Laplace invariants to higher-order equations.

Semi-invariants for linear ordinary differential equations were intensely discussed in

the 1870-1880’s by J.Cockle, E. Laguerre, J.C. Malet, G.H. Halphen, R. Harley and A.R.

Forsyth. The restriction to linear equations was essential in their approach. They used

calculations following directly from the definition of invariants. These calculations would

be extremely lengthly in the case of non-linear equations.

In the second half of the 19th century, the Norwegian mathematician Sophus Lie began

to create a remarkable work that unified all known methods of solving differential equa-

tions. In 1871 Lie had started examining PDEs, hoping that he could find a theory which

was analogous to Galois’s theory of equations. He applied his contact transformations

to extend a method, due to Jacobi, of generating further solutions from a particular set.

This led Lie to define what he called a continuous transformation group. He discovered

that symmetries of differential equations can be found and exploited systematically. Over

many years, considerable research effort has been directed at understanding the elegant

algebraic structure of symmetry groups, but Lie’s methods for determining and using

symmetries were largely neglected until fairly recently. With the advent of powerful sym-

bolic computation packages, it has become possible to apply Lie’s methods to explore the

symmetries and conservation laws of a wide range of physical systems.

It was during the winter of 1873-1874 that Lie began to develop systematically his
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theory of continuous transformation groups, later called Lie groups, leaving behind his

original intention of studying PDEs. Later Killing worked on the Lie algebras associated

with Lie groups. He did this, quite independently of Lie, and it was Cartan who completed

the classification of semi-simple Lie algebras in 1900.

Lie’ s work related a miscellany of topics in ODEs including: integrating factor, sepa-

rable equation, homogeneous equation reduction of order, the methods of undetermined

coefficients and variation of parameters for linear equations, solution of the Euler equa-

tion, and the use of the Laplace transform. Lie (1881) also indicated that for linear

PDEs, invariance under a Lie group, leads directly to superpositions of solutions in terms

of transforms.

Recently, Ibragimov (see [15,16,19]) developed a simple method for constructing invari-

ants of families of differential equations. The method is based in the theory of equivalence

groups in the infinitesimal form. Basically, the method consists of two steps: classification

of equivalence groups and then use of these groups (and extended groups) to derive the

desired differential invariants. Ibragimov (see [20]) used his method to solve the Laplace

problem. That is, to derive all invariants for the linear hyperbolic equations (1.2). To

achieve this, he constructed a basis for the invariants. Using this basis and invariant

differentiation, all invariants, of any order, can be derived. The idea of Ibragimov was

adopted by a number of authors who derived differential invariants for ordinary differential

equations, linear and non-linear PDEs (see [21–26,48,50,52–55,58]).

Different approaches of calculating differential invariants have also been applied. See,

for example, references [9, 39,40,66–68].

In this thesis, in the spirit of Ibragimov’s work, we consider families of PDEs with

the ultimate goal to derive differential invariants. In order to achieve it, we firstly need

to derive the equivalence transformations. The method is based on the infinitesimal

approach and is applicable to algebraic and differential equations possessing finite or

infinite equivalence group. Our first aim is to discuss the main principles of the method.

A brief description of the method used to derive equivalence transformations is pre-

sented. In particular, we apply the method for the families of non-linear diffusion equa-

tions:

ut = f(u)uxx.
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As a second example, we calculate the equivalence transformations for linear hyperbolic

equations in two variables:

utx + a(t, x)ut + b(t, x)ux + c(t, x)u = 0. (1.3)

These results can be also found in [15,16].

Next, motivated by these results, we present our work for several families of hyperbolic

equations (see [57–61]). In particular, in chapter 6, we derive equivalence transformations

for the class

utx = F (t, x, u, ux, ut)

and for two subclasses of it:

utx = f(x, t, u)uxut + g(x, t, u)ux + h(x, t, u)ut + l(x, t, u),

utx = mu(x, t, u)uxut + mtux + mxut + k(x, t, u).

Furthermore, in chapter 7, we calculate equivalence transformations for the n-dimensional

hyperbolic equations

utt =
n∑

i=1

uxixi
+

n∑
i=1

Xi(x1, x2, ..., xn, t)uxi
+ T (x1, x2, ..., xn, t)ut + U(x1, x2, ..., xn, t)u

and in chapter 8, for n-dimensional wave type equations:

utt =
n∑

i=1

Fi(x1, x2, . . . , xn)uxixi
.

Finally, in chapter 10, we use this method to calculate equivalence transformations for

systems that consist of two linear hyperbolic equations

uxt = a1(t, x)ux + b1(t, x)vx + c1(t, x)ut + d1(t, x)vt + f1(t, x)u + g1(t, x)v,

vxt = a2(t, x)ux + b2(t, x)vx + c2(t, x)ut + d2(t, x)vt + f2(t, x)u + g2(t, x)v.

For these equations, we employ these equivalence transformations in order to derive dif-

ferential invariants. We adopt the idea of Ibragimov, who derived differential invariants

using the infinitesimal method. The derivation of differential invariants enable us to clas-

sify forms of PDEs that can be linearized via local mappings. In particular, we find those

equations that can be mapped into one of the four linear forms of equation (1.3), described
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in the applications of Laplace invariants (see [17]). Some examples are given to illustrate

our results.

Another important tool that enables one to calculate differential invariants of higher

order is the derivation of operators of invariant differentiation. This method was applied

by Ibragimov in order to solve the Laplace problem. That is, to find all invariants for the

family of the linear hyperbolic equations (1.3) (see [20]).

Another task of the present work, is to consider point transformations of general form.

Motivated by the existing work (see [29]) for point transformations of the form

t′ = Q(t, x, u), x′ = P (t, x, u), u′ = R(t, x, u)

admitted by classes of single PDEs, in chapter 9, we generalize certain results for systems

of PDEs. In chapter 3, we present existing results (see [29]). In particular, we explain the

notation and summarize the basic theory. These results are useful to find a complete set

of point transformations connecting PDEs belonging to given classes of equations. Using

this approach, equivalence transformations for a given PDE can be derived in finite form.

In chapter 9, following this approach for a single PDE, we consider point transforma-

tions of the form

t′ = Q(t, x, u, v), x′ = P (t, x, u, v), u′ = R(t, x, u, v), v′ = S(t, x, u, v).

General results are presented for the restricted forms of point transformations that connect

classes of systems of PDEs with two dependent variables and two independent variables.

The calculations involved in this thesis have been facilitated by the computer algebraic

package ”REDUCE” (see [11]).

This thesis is organized as follows: in chapter 2, we give the basic definitions which

are needed for the remaining chapters. In chapter 3, we introduce the notion of point

transformations of PDEs. In chapter 4, we present the idea of equivalence transforma-

tions. In chapter 5, the new method determining the differential invariants is described.

Chapters 6-10 are new contributions. Motivated, by the existence results of chapter 5,

in chapter 6 we derive differential invariants for the hyperbolic equations of general class

and for two subclasses of it. Also, we use the derived invariants to construct equations

that can be linearized via local mappings. In chapter 7, we consider n-dimensional linear

hyperbolic equations. We derive equivalence transformations which are used to obtain
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differential invariants for the cases n = 2, 3. Motivated by these results, we present the

general results for the n-dimensional case. In chapter 8, we consider the n-dimensional

wave type equations. We determine differential invariants of first order. For the cases

n = 1, 2, 3 we determine differential invariants of order two. In chapter 9, we generalize

the idea of point transformations as presented in chapter 3. Finally, in chapter 10, we

derive the differential invariants of a system of hyperbolic equations.
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Chapter 2

Basic definitions

2.1 Introduction

In this chapter are developed basic results for continuous groups (Lie groups of trans-

formations) that are generated by a free parameter, hereafter denoted by ε. Therefore,

each element of the group corresponds to a specific value of this parameter. This group

is continuous because ε can vary continuously over the real numbers. Furthermore, a

general idea of transformations is given and a variety of transformations groups are ex-

hibited. This chapter provides a presentation of the infinitesimal theory of one-parameter

(ε) Lie groups, their invariants, invariant functions and invariant solutions. Finally, we

are concerned with applications to PDEs. We find admitted point symmetries and how

to construct invariant solutions. More details about Lie groups of transformations (Lie

symmetries) and their applications to differential equations can be found in a number of

recent textbooks. See, for example [4, 5, 12,13,16,41,44].

2.2 Lie group of transformations

Sophus Lie introduced the notion of continuous group of transformations to put order to

the hodgepodge of techniques for solving ordinary differential equations. Our discussion

begins by first defining arbitrary groups, then we consider a group of transformations and

more specifically, a one-parameter Lie group of transformations. Here, the transformations

act on IRn.
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2.2.1 Groups

Definition 2.1. A group G is a set of elements with a law of composition φ between

elements satisfying the following axioms:

(i) Closure property : For any elements a and b of G, φ(a, b) is an element of G.

(ii) Associative property : For any elements a, b, c of G:

φ(a, φ(b, c)) = φ(φ(a, b), c).

(iii) Identity element : There exists a unique identity element e of G such that for any

element a of G:

φ(a, e) = φ(e, a) = a.

(iv) Inverse element : For any element a of G there exists a unique inverse element a−1

in G such that

φ(a, a−1) = φ(a−1, a) = e.

Definition 2.2. A group G is abelian if φ(a, b) = φ(b, a) for any elements a and b in G.

Definition 2.3. A subgroup of G is a subset of G, which is also a group with the same

law of composition φ.

2.2.2 One-parameter Lie group of transformations

Definition 2.4. : Let x = (x1, x2, . . . , xn) lie in region D ⊂ IRn. The set of transforma-

tions

x′ = Γ(x, ε)

defined for each x in D and parameter ε in S ⊂ IR, with φ(ε, δ) defining a law of compo-

sition of parameters ε and δ in S, forms a one-parameter group of transformations on D

if the following hold:

(i) For each ε in S the transformations are one-to-one onto D.

(ii) S with the law of composition φ forms a group G.

(iii) For each x in D, x′ = x when ε = ε0 corresponds to the identity e, i.e.,

Γ(x, ε0) = x.
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(iv) If x′ = Γ(x, ε), x′′ = Γ(x′, δ), then

x′′ = Γ(x, φ(ε, δ)).

Definition 2.5. A one parameter group of transformations defines a one-parameter Lie

group of transformations if, in addition to axioms (i)-(iv), the following hold:

(v) ε is a continuous parameter, i.e. S is an interval in IR.

(vi) Γ is infinitely differentiable with respect to x in D and an analytic function of ε

in S.

(vii) φ(ε, δ) is an analytic function of ε and δ, ε ∈ S, δ ∈ S.

A Lie group of transformations admitted by a differential equation corresponds to a

mapping of each of its solutions to another solution of the same differential equation.

2.3 Infinitesimal transformations

Consider a one- parameter (ε) Lie group of transformations

x′ = Γ(x, ε) (2.1)

with the identity ε = 0 and law of composition φ. Expanding (2.1) about ε = 0, in some

neighborhood of ε = 0, we get

x′ = x+ε

(
∂Γ(x, ε)

∂ε

∣∣∣∣
ε=0

)
+

1

2
ε2

(
∂2Γ(x, ε)

∂ε2

∣∣∣∣
ε=0

)
+· · · = x+ε

(
∂Γ(x, ε)

∂ε

∣∣∣∣
ε=0

)
+O

(
ε2

)
.

Let

ξ(x) =
∂Γ(x, ε)

∂ε

∣∣∣∣
ε=0

.

The transformation x + εξ(x) is called the infinitesimal transformation of the Lie group

of transformation (2.1). The components of ξ(x) are called the infinitesimals of (2.1).

2.3.1 First Fundamental Theorem of Lie

Theorem 2.1. There exists a parametrization τ(ε), such that the Lie group of transfor-

mations (2.1) is equivalent to the solution of an initial value for the system of first order

ODEs given by

dx′

dτ
= ξ(x′),
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with

x′ = x when τ = 0.

In particular,

τ(ε) =

∫ ε

0

F (ε′)dε′,

where

F (ε) =
∂φ(a, b)

∂b

∣∣∣∣
(a,b)=(ε−1,ε)

and

F (0) = 1.

2.3.2 Infinitesimal generators

Lie groups of transformations are characterized by infinitesimal generators. Lie gave an

algorithm to find all infinitesimal generators of point transformations. Significantly, for

a given differential equation, the basic applications of Lie groups of transformations only

require knowledge of the admitted infinitesimal generators.

Definition 2.6. The infinitesimal generator of the one-parameter Lie group of transfor-

mations (2.1) is the operator

Γ = Γ(x) = ξ(x).∇ =
n∑

i=1

ξi(x)
∂

∂xi

,

where ∇ is the gradient operator

∇ =

(
∂

∂x1

,
∂

∂x2

, . . . ,
∂

∂xn

)
.

For any differentiable function F (x) = F (x1, x2, . . . , xn), we have

ΓF (x) = ξ(x).∇F (x) =
n∑

i=1

ξi(x)
∂F (x)

∂xi

.
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2.3.3 Invariants Functions

Definition 2.7. An infinitely differentiable function F (x) is an invariant function of the

Lie group of transformations (2.1) if and only if, for any group transformation (2.1),

F (x′) ≡ F (x).

Theorem 2.2. F (x) is invariant under a Lie group of transformation (2.1) if and only

if

ΓF (x) ≡ 0.

Remark 2.1. Given an invariant F (x), any function Φ(F (x)) is also invariant.

2.3.4 Point transformations

In this subsection, we are interested in determining one-parameter Lie groups of point

transformations admitted by a given system S of differential equations.

Definition 2.8. A one parameter (ε) Lie group of point transformations is a group of

transformations of the form

x′ = X(x, u, ε),

u′ = U(x, u, ε),

acting on the space of n + m variables

x = (x1, x2, . . . , xn),

u = (u1, u2, . . . , um);

x represents n independent variables and u represents m dependent variables.

A Lie group of point transformation admitted by S maps any solution u = Θ(x) of S

into a one-parameter family of solutions u = φ(x, ε) of S. Equivalently, a Lie group of

point transformations leaves S invariant in the sense that the form of S is unchanged in

terms of the transformed variables for any solution u = Θ(x) of S.

12

Chri
sti

na
 Tsa

ou
si



Theorem 2.3. The kth extension of the one-parameter Lie group of point transformations

x′ = X(x, y, ε),

y′ = Y (x, y, ε),

k ≥ 2, is the following one-parameter Lie group of transformations acting on

(x, y, y1, . . . , yk)-space:

x′ = X(x, y, ε),

y′ = Y (x, y, ε),

y′1 = Y1(x, y, y1, ε),

.

.

y′k = Yk(x, y, y1, . . . , yk, ε) =

∂Yk−1

∂x
+ y1

∂Yk−1

∂y
+ · · ·+ yk

∂Yk−1

∂yk−1

∂X(x,y,ε)
∂x

+ y1
∂X(x,y,ε)

∂y

,

where y′1 = Y1(x, y, y1, ε) is defined by

y′1 = Y1(x, y, y1, ε) =

∂Y (x,y,ε)
∂x

+ y1
∂Y (x,y,ε)

∂y

∂X(x,y,ε)
∂x

+ y1
∂X(x,y,ε)

∂y

and Yi = Yi(x, y, y1, . . . , yi, ε), i = 1, 2, . . . , k.

2.4 Invariance of PDEs

Similar to the case for an ordinary differential equation, we will see that the infinitesimal

criterion for the invariance of a PDE leads directly to an algorithm to determine the

infinitesimal generators of the Lie group of point transformations admitted by a given

PDE.

Firstly, we have a kth-order scalar PDE

F (x, u, ∂u, ∂2u, . . . , ∂ku) = 0, (2.2)

where x = (x1, x2, . . . , xn) denotes the coordinates corresponding to its n independent

variables, u denotes the coordinate corresponding to its dependent variable, and ∂ju

denotes the coordinates with components

∂ju

∂xi1∂xi2 . . . ∂xij

= ui1i2...ij , ij = 1, 2, . . . , n for j = 1, 2, . . . , k,
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corresponding to all jth-order partial derivatives of u with respect to x.

Definition 2.9. The one parameter Lie group of point transformations

x′ = X(x, u, ε), (2.3)

u′ = U(x, u, ε), (2.4)

leaves invariant the PDE (2.2), i.e. is a point symmetry admitted by PDE (2.2), if and

only if its kth extension, leaves invariant the surface (2.2).

A solution u = Θ(x) of PDE (2.2) lies on the surface (2.2) with ui1i2...ij =

∂jΘ
∂xi1

∂xi2
...∂xij

, ij = 1, 2, . . . , n for j = 1, 2, . . . , k. The invariance of surface (2.2) under

the kth-extension of (2.3)-(2.4) means that any solution u = Θ(x) of PDE (2.2) maps into

another solution Φ(x, ε) of (2.2) under the action of the one-parameter group (2.3)-(2.4)

for any ε.

Theorem 2.4. (Infinitesimal Criterion for the Invariance of a PDE) Let

Γ = ξi(x, u)
∂

∂xi

+ η(x, u)
∂

∂u
(2.5)

be the infinitesimal generator of the Lie group of point transformation (2.3), (2.4). Let

Γ(k) = ξi(x, u)
∂

∂xi

+ η(x, u)
∂

∂u
+ η

(1)
i (x, u, ∂u)

∂

∂u
+ . . .

+ η
(k)
i1i2...,ik

(x, u, ∂u, ∂2u, . . . , ∂ku)
∂

∂ui1i2...ik

be the kth-extended infinitesimal generator of (2.5), where η
(1)
i given by

η
(1)
i = Diη − (Diξj)uj, i = 1, 2, . . . , n

and η
(j)
i1i2...ij

by

η
(k)
i1i2...ik

= Dikη
(k−1)
i1i2...ik−1

− (Dikξj)ui1i2...ik−1j,

where ij = 1, 2, . . . , n, j = 1, 2, . . . , k, in terms of ξ(x, u) = (ξ1(x, u), ξ2(x, u), . . . , ξn(x, u)),

η(x, u). Then the one-parameter Lie group of point transformations (2.3), (2.4) is admit-

ted by PDE (2.2), i.e. is a point symmetry of PDE (2.2), if and only if

Γ(k)F (x, u, ∂u, ∂2u, . . . , ∂ku) = 0 when F (x, u, ∂u, ∂2u, . . . , ∂ku) = 0.

14

Chri
sti

na
 Tsa

ou
si



2.4.1 Invariant solutions

Consider a kth-order PDE (2.2) (k ≥ 2) that admits a one parameter Lie group of point

transformation with the infinitesimal generator ( 2.5). We assume that ξ(x, u) 6= 0.

Definition 2.10. u = Θ(x) is an invariant solution of PDE (2.2) resulting from its

admitted point symmetry with the infinitesimal generator (2.5) if and only if:

(i) u = Θ(x) is an invariant surface of (2.5). Namely,

Γ(u−Θ(x)) = 0 when u = Θ(x)

i.e.,

ξi(x, Θ(x))
∂Θ(x)

∂xi

= η(x, Θ(x));

and

(ii) u = Θ(x) solves (2.2). Namely,

F (x, u, ∂u, ∂2u, . . . , ∂ku) = 0 when u = Θ(x)

i.e.,

F (x, Θ(x), ∂Θ(x), ∂2Θ(x), . . . , ∂kΘ(x)) = 0.

Invariant solutions for PDEs were first considered by Lie (1881).
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Chapter 3

Point transformations of PDEs

3.1 Introduction

Probably the most useful point transformations of PDEs are those which form a continuous

Lie group of transformations, each member of which leaves an equation invariant. The

method of finding these transformations consists of two steps: first to find infinitesimal

transformations, with the benefit of linearization, and second to extend these groups of

finite transformations. The use of point transformations, is significant to relate a non-

linear PDE with a linear PDE for which the solution exists. In this case, we can derive

the solution of the first PDE. The infinitesimal transformations are not appropriate for

directly linking a PDE with an equation of different form.

Hence, there is merit in studying point transformations directly in finite forms with the

ultimate goal of finding the complete set of point transformations of PDEs and discovering

new links between different equations.

The aim of this chapter is first to present results concerning the relation of the trans-

formed partial derivatives to the original partial derivatives and secondly to exploit these

results in order to find the form of the point transformations connecting PDEs belonging

to restricted classes of equations. More details and the proofs of the theorems below can

be found in [29].
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3.2 Point transformations: Notation and the basic

theory

In this section we explain the notation and summarize the basic theory on which the work

is based.

We consider the point transformation

x′ = P (x, t, u), t′ = Q(x, t, u), u′ = R(x, t, u), (3.1)

relating x, t, u(x, t) and x′, t′, u′(x′, t′), and assume that this is non-degenerate in the

sense that the Jacobian

J =
∂(P,Q, R)

∂(x, t, u)
6= 0 (3.2)

and also that

δ =
∂(P (x, t, u(x, t)), Q(x, t, u(x, t)))

∂(x, t)
6= 0. (3.3)

In (3.3) P and Q are expressed as functions of x and t whereas in (3.2) P, Q and R are

to be regarded as functions of the independent variables x, t, u.

The derivatives of u(x, t) and u′(x′, t′) will be denoted by

uij =
∂i+ju

∂xi∂tj
, u′ij =

∂i+ju′

∂x′i∂t′j
. (3.4)

If Ψ is a function of x, t, u and the derivatives of u, the total derivatives of Ψ with respect

to x and t will be denoted by

ΨX = Ψx +
∑∑

ui+1j
∂Ψ

∂uij

, (3.5)

ΨT = Ψt +
∑ ∑

uij+1
∂Ψ

∂uij

, (3.6)

where the double summations are to be taken over the values of i and j which cover all

derivatives uij and vij occurring in Ψ.

With this notation δ may be expressed as

δ =
∂(P,Q)

∂(X, T )
= PXQT − PT QX

= u10(PuQt − PtQu) + u01(PxQu − PuQx) + (PxQt − PtQx)

=
∂(P, Q)

∂(u, t)
u10 +

∂(P, Q)

∂(x, u)
u01 +

∂(P, Q)

∂(x, t)
. (3.7)
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Also, under the point transformation (3.1),


 dx′

dt′


 =


 PX PT

QX QT





 dx

dt


 ,


 dx

dt


 =

1

δ


 QT −PT

−QX PX





 dx′

dt′




(3.8)

and

dΨ = ΨXdx + ΨT dt =
1

δ
(ΨX ΨT )


 QT −PT

−QX PX





 dx′

dt′


 . (3.9)

Hence, taking Ψ = u′ij−1, u′i−1j respectively, gives

u′ij = δ−1
(
PX(u′ij−1)T − PT (u′ij−1)X

)
, j ≥ 1, i ≥ 0, (3.10)

u′ij = δ−1
(
QT (u′i−1j)X −QX(u′i−1j)T

)
, i ≥ 1, j ≥ 0. (3.11)

Also,

u′00 = u′ = R. (3.12)

Equations (3.10)-(3.12) furnish recurrence relations which enable u′ij to be expressed in

terms of x, t, u and the derivatives of u for any i ≥ 0, j ≥ 0. The factor δ−1 makes the

expressions for u′ij grow with i and j in a very cumbersome manner.

In the case of infinitesimal Lie point transformations in which:

P (x, t, u) = x + εP ∗(x, t, u) + O(ε2),

Q(x, t, u) = t + εQ∗(x, t, u) + O(ε2), (3.13)

R(x, t, u) = u + εR∗(x, t, u) + O(ε2),

the forms of J and δ in (3.2) and (3.3) simplify to

J = 1 + ε(P ∗
x + Q∗

t + R∗
u), (3.14)

δ = 1 + ε(P ∗
x + Q∗

t ), (3.15)

to the first order of ε. In this case the recurrence relations corresponding to (3.10)-(3.12)

are

u′ij = (u′ij−1)T − ε[P ∗
T (u′ij−1)X + Q∗

T (u′ij−1)T ], j ≥ 1, i ≥ 0, (3.16)

u′ij = (u′i−1j)X − ε[P ∗
X(u′i−1j)X + Q∗

X(u′i−1j)T ], i ≥ 1, j ≥ 0, (3.17)

u′00 = u + εR∗, (3.18)
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to the first order in ε. These relations of course lead to considerably less cumbersome

forms of u′ij than those obtained from (3.10)-(3.12).

In the following sections, some results are presented for the point transformations

(3.1). These results help us achieve the second aim which is to discover the nature of

point transformations connecting PDEs belonging to given classes of equations.

3.3 Properties of transformations

Under the point transformation (3.1) each derivative of u′(x′, t′), that is u′ij, i ≥ 0, j ≥ 0,

may be expressed, via the recurrence relations (3.10)-(3.12), as functions of x, t, u

and the derivatives of u. A number of results concerning the functional form of

u′pq(x, t, u, v, . . . , uij, . . . ) are presented in this section. In the next section, the results

of this section are necessary in order to study the nature of point transformations which

perform specific changes to PDEs. Of particular interest, for example, are the cases of no

change which correspond to symmetries of the equations. The proofs of the results are

generally inductive and use the recurrence relations (3.10)-(3.12).

Lemma 3.1. If x′ = P (x, t, u), t′ = Q(x, t, u), u′ = R(x, t, u)

n∑
i=0

zi
∂u′pq

∂uij

=





(−1)p(QX − zQT )p(PX − zPT )qJδ−p−q−1, n > 0

Ru, n = 0
,

where i + j = p + q = n ≥ 0.

Corollary 3.1. The coefficients of zn and z0 in lemma 3.1 give, respectively

∂u′pq

∂up+q0

= (−1)qP q
T Qp

T Jδ−p−q−1, p + q ≥ 1,

∂u′pq

∂u0p+q

= (−1)pP q
XQp

XJδ−p−q−1, p + q ≥ 1.

Lemma 3.2. If x′ = P (x, t, u), t′ = Q(x, t, u), u′ = R(x, t, u) then

∂m+nu′10

∂um
10∂un

01

= (−1)nCmn (nαQX + mβQT ) δ−m−n−1,

∂m+nu′01

∂um
10∂un

01

= (−1)nCmn (nαPX + mβPT ) δ−m−n−1,

where m + n ≥ 1, Cmn = (m + n− 1)!αm−1βn−1J , depends only on x, t and u and where

α = PtQu − PuQt and β = PxQu − PuQx.

The proofs of lemmas 3.1 and 3.2 can be found in [29].
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3.4 Form-preserving transformations of PDEs

In this section we first look at PDEs with one derivative of u(x, t) of any order, possibly

mixed, related to lower-order derivatives of u, u itself and x and t. Subsequently, we

consider three classes of equations.

3.4.1 Basic results

We start with a wide class of PDEs for which general deductions about the forms of

P (x, t, u) and Q(x, t, u) can be made. These will be useful when discussing more restricted

classes of equations.

Theorem 3.1. The PDE upq = H(x, t, u, {uij}) is related to u′pq = H ′(x′, t′, u′, {u′ij}),
where {uij} and {u′ij} respectively denote all derivatives of u and u′ of order i+ j < p+ q,

by the point transformation x′ = P (x, t, u), t′ = Q(x, t, u), u′ = R(x, t, u) in the cases:

(a) p 6= 0, q 6= 0, (b) p 6= 0, q = 0, (c) p = 0, q 6= 0 only if (a) {P = P (x), Q = Q(t)},
or {P = P (t), Q = Q(x)}, (b) Q = Q(t), (c) P = P (x), respectively.

3.4.2 Equations of the form u01 = H(x, t, u, . . . , un0)

Two evolution equations are considered of the form u01 = H(x, t, u, . . . , un0). Tu (see [62])

proved that for evolution equations of this form the time transformation takes the simple

form t′ = t + εf(t) + O(ε2), the interesting feature being that Q is independent of both x

and u. This is a striking result and has been exploited for example by Doyle and Englefield

(see [6]) who used the result to simplify the analysis of infinitesimal transformations of

generalized Burger’s equations. Using the fact that all point transformations connecting

two different Burgers-type equations (Kingston and Sophocleous (see [30])) were also of

this form, Kingston (see [28]) generalized Tu’s result and he showed that for a wide

subclass of these equations it is necessary x′ = P (x, t) (no u dependency).

Theorem 3.2. The point transformation x′ = P (x, t, u), t′ = Q(x, t, u), u′ = R(x, t, u)

transforms

u′01 = H ′(x′, t′, u′, . . . , u′n0)
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to

u01 = H(x, t, u, . . . , un0),

where n ≥ 2, if and only if Q = Q(t) and

H = J−1Qt (PXQtH
′ + PtRX − PXRt) .

Theorem 3.3. If, in the theorem 3.2, H and H ′ are polynomials (non-negative integral

powers) in u10, . . . , un0 and u′10, . . . , u
′
n0 respectively (dependency on x, t, u and x′, t′, u′

unspecified) then P = P (x, t).

These results have been used, for example, to aid the classification of point transfor-

mations within the following classes of PDEs: generalized Burgers equations (see [30]),

radially symmetric non-linear diffusion equation (see [49]), generalized non-linear diffusion

equations (see [45]).

3.4.3 Equations of the form u11 = H(x, t, u, . . . , un0)

This class of PDEs includes, for example, Liouville’s equation uxt = ex, sine-Gordon

equation uxt = sin u and uxt = u
√

1− u2
x.

Theorem 3.4. (n ≥ 3) The point transformation x′ = P (x, t, u), t′ = Q(x, t, u), u′ =

R(x, t, u) transforms

u′11 = H ′(x′, t′, u′, . . . , u′n0)

into

u11 = H(x, t, u, . . . , un0),

where n ≥ 3, if and only if P = P (x, t), Q = Q(t), R = A(t)u + B(x, t) and

H = A−1PxQtH
′ + u20P

−1
x Pt + u10((P

−1
x Pt)x − A−1At)− A−1(Bt − P−1

x PtBx)x.

Theorem 3.5. (n = 2) The point transformations x′ = P (x, t, u), t′ = Q(x, t, u), u′ =

R(x, t, u) which transform

u′11 = H ′(x′, t′, u′, u′10, u
′
20)
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to

u11 = H(x, t, u, u10, u20),

belong to one of the two categories:

(a) P, Q, R and H restricted as in the conditions for the theorem 3.4;

(b) P = P (x, t), Q = Q(x, t), R = A(x, t)u + B(x, t), H ′ = −PxQ
−1
x u′20 −

Aδ−1(A−1Q−1
x δ)xu

′
10 +G′(x′, t′, u′), H = Q−1

x Qtu20 +A−1((AQ−1
x Qt)x−At)u10 +G(x, t, u).

For any G′(x′, t′, u′) the form of G(x, t, u) is then determined by the transformation with-

out further condition. Also, δ = PxQt − PtQx.

Theorem 3.6. (n = 0, 1) The point transformations x′ = P (x, t, u), t′ = Q(x, t, u), u′ =

R(x, t, u) which transform

u′11 = H ′(x′, t′, u′, u′10)

to

u11 = H(x, t, u, u10),

belong to one of the two categories (when n = 0 set A constant in (a) and (b)):

(a) P = P (x), Q = Q(t), R = A(t)u+B(x, t), H = A−1PxQtH
′−A−1Atu10−A−1Bxt;

(b)P = P (t), Q = Q(x), R = A(x, t)u + B(x, t), H ′ = A−1AxQ
−1
x u′10 + G′(x′, t′, u′),

H = −A−1Atu10 + A−1PtQxG
′ − u(A−1At)x − (A−1Bt)x.

3.4.4 Equations of the form u02 = H(x, t, u, . . . , un0)

These equations include many models of physical phenomena, especially wave-type mo-

tions, for example the equation ut = −uxuxx, which arises as a model of steady transonic

gas-dynamic flow, the family of non-linear equations utt = (f(u)ux)x and the Boussinesq-

type equation utt = uxx − 2(u3)xx + uxxxx.

Theorem 3.7. (n ≥ 3) The point transformation x′ = P (x, t, u), t′ = Q(x, t, u), u′ =

R(x, t, u) transforms

u′02 = H ′(x′, t′, u′, . . . , u′n0)
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to

u02 = H(x, t, u, . . . , un0),

where n ≥ 3 if and only if P = P (x), Q = Q(t) and R = A(x)Q
1
2
t u + B(x, t). Also,

H = A(x)−1Q
− 3

2
t

(
Q3

t H
′ + QttRt −QtRtt

)
.

Theorem 3.8. (n = 2) The point transformation x′ = P (x, t, u), t′ = Q(x, t, u), u′ =

R(x, t, u) transforms

u′02 = H ′(x′, t′, u′, u′10, u
′
20)

to

u02 = H(x, t, u, u10, u20),

where H ′
u′20
6= 0, belong to one of the three categories:

(a) P, Q, R and H restricted as in the conditions for the theorem 3.7;

(b) P = P (t), Q = Q(x), H ′ = H ′(x′, t′, u′, u′20+λu′210+µu′10) where λ = −RuuR
−2
u , µ =

P−2
t R−2

u (2PtRtRuu − 2PtRuRut + PttR
2
u) , H = H(x, t, u, u20 + RuuR

−1
u u2

10 + (2RuxR
−1
u −

QxxQ
−1
x )u10);

(c) P = P (x, t), Q = Q(x, t), R = A(x, t)u + B(x, t), H ′ = PxPtQ
−1
x Q−1

t u′20 +

G′
1(x

′, t′)u′10 + G′
2(x

′, t′, u′), H = P−1
x PtQ

−1
x Qtu20 + G1(x, t)u10 + G2(x, t, u).

The proofs of the theorems in this section can be found in [29]. The results of this

subsection were employed in [51] to classify form preserving transformations for three

classes of non-linear wave-type equations.

The results of the present chapter will be generalized in chapter 9 for systems of two

PDEs.
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Chapter 4

Equivalence groups for differential

equation

4.1 Introduction

Equivalence transformations which play the central role in the theory of invariants are

discussed in the present chapter. The set of all equivalence transformations of a given

family of equations forms a group called the equivalence group. There exist two methods

for the calculation of equivalence transformations: the direct method which was used

by Lie (see [35]) and the Lie infinitesimal method suggested by Ovsyannikov (see [44]).

Although, the direct method involves considerable computational difficulties, it has the

benefit of finding the most general equivalence group. For recent applications of direct

method one can refer to [29, 46, 47, 63]. More detailed description and examples of both

methods can be found in [17].

Here we present the Lie infinitesimal method for calculating the continuous group of

equivalence transformations. The method is described by applying it to the non-linear

diffusion equation.
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4.2 Equivalence groups for the non-linear diffusion

equation

In this section, we consider the class of non-linear diffusion equation

ut = f(u)uxx. (4.1)

We call equivalence transformation of the family of equations (4.1), a change of vari-

ables:

t′ = Q(t, x, u), x′ = P (t, x, u), u′ = R(t, x, u), (4.2)

taking any equation of the form (4.1) into an equation of the same form, generally, with

different function f .

In order to find the continuous group EC of equivalence transformations (4.2) for the

equation (4.1), we search for the operators of the group EC , in the following form:

Γ = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+ η

∂

∂u
+ µ

∂

∂f
. (4.3)

The generator Γ defines the group EC of equivalence transformations

t′ = Q(t, x, u), x′ = P (t, x, u), u′ = R(t, x, u), f ′ = F (t, x, u, ut, ux, f),

for the family of equations (4.1) if and only if Γ obeys the condition of invariance of the

following system:

ut − f(u)uxx = 0, (4.4)

fx = ft = 0. (4.5)

In order to write the infinitesimal invariance test for the system (4.4)-(4.5), we should

extend the action of the operator (4.3) to all variables involved in (4.4)-(4.5), i.e. take

Γ̃ = Γ + ζ1
∂

∂ut

+ ζ2
∂

∂ux

+ ζ22
∂

∂uxx

+ µ1
∂

∂ft

+ µ2
∂

∂fx

+ µ3
∂

∂fu

. (4.6)

Here, u and f are considered as differential variables: u on the space (t, x) and f on the

space (t, x, u, ut, ux). The coordinates ξ1, ξ2, η of operator (4.3) depend on t, x, u, while
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coordinate µ depends on x, t, u, f . The coefficients ζ1, ζ2, ζ22 are given by:

ζ1 = Dt(η)− utDt(ξ
1)− uxDt(ξ

2),

ζ2 = Dx(η)− utDx(ξ
1)− uxDx(ξ

2),

ζ22 = Dx(ζ2)− utxDx(ξ
1)− uxxDx(ξ

2),

whereas the coefficients µ are obtained by applying the prolongation procedure to the

differential variables ft and fx with dependent variables (t, x, u, ut, ux). Accordingly, we

use the total differentiations:

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut

+ utx
∂

∂ux

,

Dx =
∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut

+ uxx
∂

∂ux

.

The infinitesimal µi, i = 1, 2, 3 has the form:

µ1 = D̃t(µ)− ftD̃t(ξ
1)− fxD̃t(ξ

2)− fuD̃t(η)− futD̃t(ζ1)− fuxD̃t(ζ2),

µ2 = D̃x(µ)− ftD̃x(ξ
1)− fxD̃x(ξ

2)− fuD̃x(η)− futD̃x(ζ1)− fuxD̃x(ζ2),

µ3 = D̃u(µ)− ftD̃u(ξ
1)− fxD̃u(ξ

2)− fuD̃u(η)− futD̃u(ζ1)− fuxD̃u(ζ2),

where D̃i, i = t, x, u, denote the new total differentiations:

D̃i =
∂

∂i
+ fi

∂

∂f
+ fiu

∂

∂fu

,

where i = t, x, u.

The infinitesimal invariance for the system (4.4)-(4.5) has the form:

Γ̃ (ut − f(u)uxx) = 0, (4.7)

Γ̃(fx) = Γ̃(ft) = 0. (4.8)

In view of equations (4.5) we have

D̃t =
∂

∂t
, D̃x =

∂

∂x

and

D̃u =
∂

∂u
+ fu

∂

∂f
+ fuu

∂

∂fu

.
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So we have the following prolongation formula:

µ1 = µt − ηtfu,

µ2 = µx − ηxfu, (4.9)

µ3 = µu − (ηu − µf )fu.

Using (4.6), the invariance conditions

Γ̃(fx) = Γ̃(ft) = 0

give:

µ1 = µ2 = 0.

So, taking into account equations (4.9) and the fact that µ1 = µ2 = 0 must hold for every

f , we obtain:

µt = µx = 0,

ηt = ηx = 0.

Integrations yield:

µ = µ(u, f, fu), η = η(u). (4.10)

The remaining invariance condition (4.4), can be written as:

ζ1 − µuxx − ζ22f = 0. (4.11)

From (4.11), taking into account (4.8), (4.10), introducing the relation ut = fuxx to

eliminate ut and using the fact that the quantities ux, ut, uxt, uxx are considered to be

independent variables, it follows:

ξ1 = c1t + c2,

ξ2 = c3x + c4,

η = c5u + c6,

µ = f(2c3 − c1),

where ci, i = 1, . . . , 6 are arbitrary constants. Thus we have the following results.
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Theorem 4.1. The equivalence algebra LE for equations ut = f(u)uxx is an 6-dimensional

Lie algebra spanned by the following infinitesimals operators:

Γ1 =
∂

∂t
, Γ2 =

∂

∂x
, Γ3 =

∂

∂u
,

Γ4 = u
∂

∂u
, Γ5 = t

∂

∂t
− f

∂

∂f
, Γ6 = x

∂

∂x
+ 2f

∂

∂f
.

The above equivalence transformations in finite form, can be derived by using First

Fundamental theorem of Lie (2.1). Without presenting any calculations, this transforma-

tion have the following finite form:

t′ = c1t + c2,

x′ = c3x + c4,

u′ = c5u + c6,

f ′ =
c2
3

c1

f.

Alternatively, the above transformation can be obtained using the results of chapter 3,

and in particular theorems (3.2) and (3.3).
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Chapter 5

Invariants of hyperbolic linear

partial differential equations in two

variables

5.1 Introduction

In this chapter, we derive the differential invariants for the scalar linear hyperbolic PDE in

two variables by the infinitesimal method. In fact, our intention is to present the infinites-

imal method for determining differential invariants. Firstly, we calculate the equivalence

transformations which are used to derive differential invariants. After that, we present

Ibragimov’s work on finding a basis for the invariants. That is, the solution of the Laplace

problem (see [19, 20]). The general invariant-differentiation operator is computed and a

basis of all invariants is constructed. Furthermore, all invariants of any order are combi-

nations of the coefficients of the equation and their derivatives. A detailed description of

the method can be found in [15,16].

We give some basic definitions using equation

utx + a(t, x)ut + b(t, x)ux + c(t, x)u = 0. (5.1)

The same definitions follow for any other class of PDEs.

Let a class of PDEs (5.1) admit a continuous group E of equivalence transformations

generated by the Lie algebra LE . As we will see later, this algebra is spanned by 3

operators, say Γ1, Γ2 and Γ3.
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Definition 5.1. A function

J = J(t, x, u, a, b, c, ai, bi, ci, aij, bij, cij, . . . ), i, j, · · · = t, x

is called an invariant of the family of equations (5.1) if J is invariant under the equivalence

group E . That is,

Γi(J) = 0, i = 1, 2, 3.

We call J a semi-invariant if it is invariant only under the subgroup of equivalence

transformations. For example, if it is invariant only under Γ1, Γ1(J) = 0. The order

of the invariant is equal to the order of the highest derivative that appear in the form of

J . If no derivatives appear, we say that we have invariant of zero order.

Definition 5.2. Any system of equations

Ei(t, x, u, a, b, c, aj, bj, cj, . . . ) = 0

that satisfies the condition

Γ
(s)
k (Ei)|E1=0,E2=0,... = 0, i = 1, 2, . . .

is called an invariant system.

Definition 5.3. If for i = j, we have

Γ
(s)
k (Ej)|Ej=0 ,

then Ej = 0 is called an invariant equation.

These definitions will be used throughout in the present and in the next chapters.

5.2 Equivalence transformations

Consider the general hyperbolic equation written in the characteristic variables t, x, i.e.

in the following standard form:

utx + a(t, x)ut + b(t, x)ux + c(t, x)u = 0. (5.2)
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Recall that an equivalence transformation of equation (5.2) is defined as an invertible

transformation

t′ = Q(t, x, u), x′ = P (t, x, u), u′ = R(t, x, u),

which preserves the order of equation (5.2) as well as the properties of linearity and

homogeneity. In general, the transformed equations can have new coefficients a′, b′, c′.

In order to find the continuous group of equivalence transformations of equation (5.2)

by means Lie infinitesimal invariance criterion (see [44]), we need the equivalent operator:

Γ = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+ η

∂

∂u
+ ζ1

∂

∂ut

+ ζ2
∂

∂ux

+ ζ3
∂

∂utx

+ µ1 ∂

∂a
+ µ2 ∂

∂b
+ µ3 ∂

∂c
, (5.3)

where ξi = ξi(t, x, u), i = 1, 2, η = η(t, x, u) and µi, i = 1, 2, 3 are functions of t, x, u, a, b

and c. If we solve Γ (utx + aut + bux + cu)|(5.2) = 0, we easily get that:

ξ1 = τ(t), ξ2 = φ(x), η = α(t, x)u, µ1 = −aφx − αx, µ2 = −bτt − αt,

µ3 = −(cτt + cφx + αtx + αta + αxb),

where the functions τ(t), φ(x) and α(t, x) are arbitrary.

We find that equation (5.2) admits an infinite continuous group E of equivalence trans-

formations generated by the Lie algebra LE spanned by the operators:

Γτ = τ(t)
∂

∂t
− τ ′b

∂

∂b
− τ ′c

∂

∂c
,

Γφ = φ(x)
∂

∂x
− φ′a

∂

∂a
− φ′c

∂

∂c
,

Γα = α(t, x)u
∂

∂u
− αx

∂

∂a
− αt

∂

∂b
− (αtx + aαt + bαx)

∂

∂c
.

5.3 Calculation of differential invariants

In this section, we consider the problem of finding differential invariants of the class of

equations (5.2), using the equivalence transformations which are derived in the previous

section.

Firstly, we seek for differential invariants of zero order, i.e. invariants of the form:

J = J(x, t, u, a, b, c).

31

Chri
sti

na
 Tsa

ou
si



Applying the invariant test Γ(J) = 0 to the operators Γτ , Γφ and Γα and using the fact

that functions τ, φ and α are arbitrary, we easily obtain that J = constant. Hence,

equations (5.2) do not have differential invariants of zero order.

In order to obtain differential invariants of first order,

J = J(x, t, u, a, b, c, at, ax, bt, bx, ct, cx),

we need to consider the first prolongation of the operator Γ defined by (5.3):

Γ(1) = Γ + µ11 ∂

∂at

+ µ12 ∂

∂ax

+ µ21 ∂

∂bt

+ µ22 ∂

∂bx

+ µ31 ∂

∂ct

+ µ32 ∂

∂cx

. (5.4)

We introduce the local notation f1 = a, f2 = b, f3 = c. The coefficients µi1, µi2, i = 1, 2, 3

are given by:

µi1 = Dt(µ
i)− fitDt(ξ

1)− fixDt(ξ
2),

µi2 = Dx(µ
i)− fitDx(ξ

1)− fixDx(ξ
2),

and the operators Dt, Dx denote the total derivatives with respect to t and x:

Dt =
∂

∂t
+ at

∂

∂a
+ att

∂

∂at

+ atx
∂

∂ax

+ . . .

+ bt
∂

∂b
+ btt

∂

∂bt

+ btx
∂

∂bx

+ . . .

+ ct
∂

∂c
+ ctt

∂

∂ct

+ ctx
∂

∂cx

+ . . . ,

Dx =
∂

∂x
+ ax

∂

∂a
+ atx

∂

∂at

+ axx
∂

∂ax

+ . . .

+ bx
∂

∂b
+ btx

∂

∂bt

+ bxx
∂

∂bx

+ . . .

+ cx
∂

∂c
+ ctx

∂

∂ct

+ cxx
∂

∂cx

+ . . . .

After calculations we obtain the following form for the coefficients:

µ11 = −at(τt + φx) + αtx, µ12 = −aφxx − 2axαx + αxx,

µ21 = −bτtt − 2btτt + αtt, µ22 = −bx(τt + φx) + αtx,

µ31 = −cτtt − 2ctτt − ctφx − bαtx + αttx − aαtt − atαt − btαx,

µ32 = −cxτt − cφxx − 2cxφx + αtxx − aαtx − axαt − bαxx − bxαx,
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where α = α(t, x) is an arbitrary function.

The infinitesimal test Γ(1)(J) = 0 for invariants J(x, t, u, a, b, c, at, ax, bt, bx, ct, cx) give

straightforward that

J = J(a, b, c, at, bx).

The first prolongation of generator Γτ is

Γ(1)
τ = −τt

(
at

∂

∂at

+ b
∂

∂b
+ bx

∂

∂bx

+ c
∂

∂c

)
.

Applying generator Γ
(1)
τ to the differential invariant, we have

−τt

(
at

∂J

∂at

+ b
∂J

∂b
+ bx

∂J

∂bx

+ c
∂J

∂c

)
= 0.

The characteristic equations:

dat

at

=
db

b
=

dbx

bx

=
dc

c

yield that J = J(p1, p2, p3, p4), where

p1 =
bx

b
, p2 =

at

b
, p3 =

c

b
, p4 = a.

Now first prolongation of the operator Γα becomes:

Γ(1)
α = −αxt

(
∂

∂p1

+
∂

∂p2

+
∂

∂p3

)
+ αt

(
p1

∂

∂p1

+ p2
∂

∂p2

− (p4 − p3)
∂

∂p3

)

− bαx

(
∂

∂p3

+
∂

∂p4

)
.

The invariant test Γ
(1)
α (J) = 0 is written:

αxt

(
∂J

∂p1

+
∂J

∂p2

+
∂J

∂p3

)
−αt

(
p1

∂J

∂p1

+ p2
∂J

∂p2

− (p4 − p3)
∂J

∂p3

)
+bαx

(
∂J

∂p3

+
∂J

∂p4

)
= 0.

(5.5)

Since α(x, t) is an arbitrary function, (5.5) splits into the following equations:

∂J

∂p1

+
∂J

∂p2

+
∂J

∂p3

= 0,

p1
∂J

∂p1

+ p2
∂J

∂p2

− (p4 − p3)
∂J

∂p3

= 0,

∂J

∂p3

+
∂J

∂p4

= 0.
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The solution of the third equation gives:

J = J(p1, p2,m1),

where m1 = p3 − p4 = c−ab
b

. Now the first equation takes the form:

∂J

∂p1

+
∂J

∂p2

+
∂J

∂m1

= 0

and its characteristic equation yields

J = J(l1, l2),

where l1 = p2 − p1 = at−bx

b
, l2 = m1 − p1 = c−ab−bx

b
. Finally, the second equation and

operator Γ
(1)
φ become identical. That is,

l1
∂J

∂l1
+ l2

∂J

∂l2
= 0.

Solving this characteristic equation, we arrive to the following first order differential in-

variant:

p =
l1
l2

=
bx − at

bx + ab− c
.

Denoting

h = l2 − l1, k = l2

we obtain the two independent semi-invariants of equation (5.2):

h = at + ab− c, k = bx + ab− c

known as the Laplace invariants. Now,

h = 0 and k = 0

are invariant equations. To show this, we need to apply the first prolongation Γ(1) to these

equations. That is, we have to show the following:

Γ(1)(h)|(h=0) = 0 and Γ(1)(k)|(k=0) = 0.

The Laplace invariants are useful in various problems, for example in the group clas-

sification of differential equations (see [43]) and the solution of initial value problems for

hyperbolic equations by Riemann’s method (see [14]).
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Finally, we recall the following simple but fundamental applications of the Laplace

invariants:

1. A hyperbolic equation of the form (5.2) can be transformed into utx = 0 iff h = k = 0.

2. A hyperbolic equation of the form (5.2) can be transformed into utx + c(t, x)u = 0 iff

h = k.

3. A hyperbolic equation of the form (5.2) can be transformed into utx + cu = 0, c =

constant iff h = k = f(t)g(x).

4. A hyperbolic equation of the form (5.2) can be factorized iff h = 0 or k = 0. That is,

the second order operator L = DtDx +a(t, x)Dt + b(t, x)Dx + c(t, x) can be expressed as a

product of two operators of first order iff one of the Laplace invariants vanishes. Namely,

L = [Dt + α(t, x)] [Dx + β(t, x)] iff h = 0

and

L = [Dx + β(t, x)] [Dt + α(t, x)] iff k = 0.

The proofs of the above statements can be found in [18, 19]. Motivated by the results of

this section, we derive the corresponding results for systems of hyperbolic equations in

chapter 10.

5.4 Invariant Differentiation

The famous Laplace invariants h and k appeared in Laplace’s paper (1773) on the theory

of integration of linear hyperbolic equations with two independent variables. But, the

question of the presence or absence of other invariants remained open.

Nearly 200 years had passed before Ovsyannikov (see [43]), studying the problem of

group classification of hyperbolic equations, found two invariants

p =
k

h
, q =

1

h

∂2|h|
∂t∂x

,

which do not change under all equivalence transformation. At that time, the general

approach of constructing invariants of systems of equations with an infinite equivalence

transformation group had not been developed, and, hence, the problem of whether all

invariants are exhausted by the quantities found remained open.
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A general method for constructing invariants of systems of linear and non-linear equa-

tions using infinite equivalence transformation groups was recently developed in [15, 16].

This method is applied to several linear and non-linear equations.

In the present section, we give a description of the method that Ibragimov used to

solve the Laplace problem. More detailed description of the method can be found in [20].

This problem consists of finding all invariants of the linear hyperbolic equations (5.2) and

constructing a basis of invariants. To construct a basis of invariants, one first computes

all invariants up to second order, inclusive, and then finds the next three new invariants:

I =
ptpx

h
, N =

1

pt

∂

∂t
ln

∣∣∣pt

h

∣∣∣ , H =
1

px

∂

∂x
ln

∣∣∣px

h

∣∣∣ .

After that, the general invariant-differentiation operator:

D = F (p, I)
1

pt

Dt + G(p, I)
1

px

Dx (5.6)

can be computed. It is proved that, it is possible to construct of the new invariants and

Ovsyannikov invariants, a basis of all invariants. Any invariant of any order is a function

of the basis invariants and their invariant derivatives.

Collecting together invariants, Ibragimov arrived at the following complete set of

second-order invariants for equations (5.2):

p =
k

h
, q =

1

h

∂2 ln |h|
∂t∂x

, q̃ =
1

k

∂2 ln |k|
∂t∂x

,

N =
1

pt

∂

∂t
ln

∣∣∣pt

h

∣∣∣ , H =
1

px

∂

∂x
ln

∣∣∣px

h

∣∣∣ , I =
ptpx

h
.

In addition, there are the following invariant equations:

h = 0, k = 0, kt − pht = 0, kx − phx = 0.

Now, we will find the invariant differentiation operator of the form (5.6), that trans-

forms each invariant of (5.2) into invariants of the same equation. Recall that an operator

Γ is said to be an operator of invariant differentiation for a group E if for any differential

invariant J of the group E , Γ(J) is also a differential invariant of this group.

For any family of infinitesimal operators:

Γν = ξi
ν(x, u)

∂

∂xi
+ ηα

ν (x, u)
∂

∂uα
,
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with n independent variables x = (x1, . . . , xn), there exist n invariant differentiations of

the form (see [16,44])

D = f iDi. (5.7)

Their coefficients have the form:

f i = f i(x, t, u, u(1), u(2), . . . )

and are found by solving the differential equations:

Γν(f
i) = f jDj(ξ

i
ν), i = 1, . . . , n. (5.8)

In our case, the operators Γν are the second extension of the operators

Γ1 = −ξ(t)
∂

∂t
+ ξ′(t)

[
h

∂

∂h
+ k

∂

∂k

]

and

Γ2 = −η(x)
∂

∂x
+ η′(x)

[
h

∂

∂h
+ k

∂

∂k

]
,

using the general procedure. The invariant differentiation operator (5.7) can be written

as

D = fDt + gDx, (5.9)

and the equations (5.8) for the coefficients can be written as:

Γ1(f) = fDt(ξ(t)) + gDx(ξ(t)) ≡ −ξ′(t)f, Γ1(g) = 0,

(5.10)

Γ2(g) = fDt(η(x)) + gDx(η(x)) ≡ −η′(x)g, Γ2(f) = 0.

Here f and g are unknown functions of t, x, h, k, ht, hx, kt, kx, htt,. . . . The operators Γ1

and Γ2 are extended to all derivatives of h and k.

We begin with case where f = f(x, t, h, k) and g = g(x, t, h, k). Then, equations (5.10)

give the following system of equations for f :

ξ(t)
∂f

∂t
− ξ′(t)

[
h
∂f

∂h
+ k

∂f

∂k

]
= ξ′(t)f, η(x)

∂f

∂x
− η′(x)

[
h
∂f

∂h
+ k

∂f

∂k

]
= 0.
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Using the fact that ξ, ξ′, η, η′ are arbitrary functions, we arrive at the following four

equations:

∂f

∂t
= 0, h

∂f

∂h
+ k

∂f

∂k
= −f,

∂f

∂x
= 0, h

∂f

∂h
+ k

∂f

∂k
= 0,

which yield that f = 0. Similarly, equations (5.10), for g = g(x, t, h, k), give g = 0.

This means that there are no invariant differentiations of (5.9) with the coefficients f =

f(x, t, h, k) and g = g(x, t, h, k).

Therefore, we continue the search by setting:

f = f(x, t, h, k, hx, ht, kx, kt), g = g(x, t, h, k, hx, ht, kx, kt).

The extended operators Γ1 and Γ2 lead to the following operators:

Γ1ξ
=

∂

∂t
, Γ1ξ′′ = h

∂

∂ht

+ k
∂

∂kt

,

Γ1ξ′ = h
∂

∂h
+ k

∂

∂k
+ 2ht

∂

∂ht

+ hx
∂

∂hx

+ 2kt
∂

∂kt

+ kx
∂

∂kx

and, hence, to the operators:

Γ2η =
∂

∂x
, Γ2η′′ = h

∂

∂hx

+ k
∂

∂kx

,

Γ2η′ = h
∂

∂h
+ k

∂

∂k
+ ht

∂

∂ht

+ 2hx
∂

∂hx

+ kt
∂

∂kt

+ 2kx
∂

∂kx

.

The existence operators Γ1ξ
and Γ2η leads to the fact that f and g do not depend on x

and t. Next, equations (5.10) split into the equations:

Γ1ξ′ (f) = −f, Γ1ξ′′ (f) = 0, Γ2η′ (f) = 0, Γ2η′′ (f) = 0,

for the function f(h, k, hx, ht, kx, kt) and the equations:

Γ1ξ′ (g) = 0, Γ1ξ′′ (g) = 0, Γ2η′ (g) = −g, Γ2η′′ (g) = 0,

for the function g(h, k, hx, ht, kx, kt). From these, the pair of equations Γ1ξ′′ (f) =

0, Γ2η′′ (f) = 0 for f and the pair of equations Γ1ξ′′ (g) = 0, Γ2η′′ (g) = 0 for g, show

that f and g depend only on the following four variables:

h, k, λ = kt − pht = hpt, µ = kx − phx = hpx.
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Now we rewrite the operators Γ1ξ′ and Γ2η′ in the variables h, λ, µ and p = k/h:

Γ1ξ′ = h
∂

∂h
+ 2λ

∂

∂λ
+ µ

∂

∂µ
, Γ2η′ = h

∂

∂h
+ λ

∂

∂λ
+ 2µ

∂

∂µ
,

and integrate the equations:

Γ1ξ′ (f) = −f, Γ2η′ (f) = 0,

for the function f(h, p, λ, µ) and similar equations:

Γ1ξ′ (g) = 0, Γ2η′ (g) = −g,

for the function g(h, p, λ, µ). As a result, we obtain:

f =
h

λ
F (p, I), g =

h

µ
G(p, I),

where λ = hpt, µ = hpx, and p and I are invariants:

p =
k

h
, I =

λµ

h3
=

ptpx

h
.

Substitution of expression f and g into (5.9) leads to the invariant-differentiation operator:

D = F (p, I)
1

pt

Dt + G(p, I)
1

px

Dx,

with arbitrary function F (p, I) and G(p, I).

Setting F = 1 and G = 0 and then F = 0 and G = 1 in above operator, we obtain the

following simple invariant differentiations in t and x directions:

Dt =
1

pt

Dt, Dx =
1

px

Dx.

It is now possible to construct higher-order invariants using the above invariant differen-

tiations and to prove the following statement.

Theorem 5.1. The basis of invariants of arbitrary order for (5.2) consists of the invari-

ants

p =
k

h
, I =

ptpx

h
, q =

1

h

∂2 ln |h|
∂t∂x

, q̃ =
1

k

∂2 ln |k|
∂t∂x

,

or the alternative basis invariants

p =
k

h
, I =

ptpx

h
, N =

1

pt

∂

∂t
ln

∣∣∣pt

h

∣∣∣ , q =
1

h

∂2 ln |h|
∂t∂x

.

Therefore, we described how Ibragimov derived the complete set of differential invari-

ants for the scalar linear hyperbolic equation (5.2). This completes the Ovsyannikov

invariants obtained in [43,44].
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Chapter 6

Hyperbolic equations of general class

6.1 Introduction

In this chapter, we consider the general class of hyperbolic equations

uxt = F (x, t, u, ux, ut).

We use equivalence transformations to derive differential invariants for this class and for

two subclasses:

uxt = f(x, t, u)uxut + g(x, t, u)ux + h(x, t, u)ut + l(x, t, u),

uxt = mu(x, t, u)uxut + mt(x, t, u)ux + mx(x, t, u)ut + k(x, t, u).

Then we employ these invariants to construct equations that can be linearized via local

mappings. Furthermore, we give applications of the differential invariants.

The approach used here is similar to the one used in [52] for the class of equations

utt − uxx = f(u, ux, ut).

We point out that, we can alternatively use the direct method (see [29]) to determine

equivalence transformations in finite form. These can be expressed in the infinitesimal

form using Lie’s method. Therefore the results of chapter 3 are useful to derive equivalence

transformations if finite form.

Hyperbolic type second-order non-linear PDEs in two independent variables are used

in mathematical physics. They can describe various type of wave propagation and model
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several phenomena in various fields of hydro and gas dynamics, chemical technology, super

conductivity, crystal dislocation. Well-known equations of this type are the Liouville, sine-

Gordon, Goursat, d’Alembert and Tzitzeica equations. These models are integrable by

the inverse problem methods (see [2, 38,65]) or linearizable (see [1, 10,27,64,69]).

6.2 Invariants for the general class of hyperbolic

equations

6.2.1 Equivalence transformations

In this section, we consider hyperbolic differential equations of general class

uxt = F (x, t, u, ux, ut). (6.1)

In order to find the continuous group of equivalence transformations for the class (6.1)

by means of the Lie infinitesimal invariance criterion, we follow Ovsyannikov’s method

(see [44]). That is, we search for equivalent operator in the following form:

Γ = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+ ξ3 ∂

∂u
+ ζt

∂

∂ut

+ ζx
∂

∂ux

+ ζtx
∂

∂utx

+ η
∂

∂F
,

where

ξ1 = ξ1(t, x, u), ξ2 = ξ2(t, x, u), ξ3 = ξ3(t, x, u),

and η is function of t, x, u, ut, ux, F . The infinitesimals ζt and ζx are given by:

ζt = Dt(ξ
3)− utDt(ξ

1)− uxDt(ξ
2) and ζx = Dx(ξ

3)− utDx(ξ
1)− uxDx(ξ

2).

The operators Dt and Dx denote the total derivatives with respect to t and x, respectively.

The equivalence transformations for the similar class of equations:

utt − uxx = f(x, t, u, ux)

were derived in [31].

In order to determine the coefficients that appear in operator Γ, we have to solve the

equation:

Γ [utx − F (t, x, u, ux, ut)]|(6.1) = 0.
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Solution of the equation gives

ξ1 = τ(t), ξ2 = ϕ(x), ξ3 = ψ(t, x, u),

ζt = ψt + (ψu − τt)ut, ζx = ψx + (ψu − ϕx)ux,

η = (ψu − τt − ϕx)F + ψtx + ψtuux + ψxuut + ψuuuxut,

where τ = τ(t), ϕ = ϕ(x), ψ = ψ(x, t, u) are arbitrary functions. Therefore, the generator

takes the form:

Γ = τ
∂

∂t
+ ϕ

∂

∂x
+ ψ

∂

∂u
+ [ψt + (ψu − τt)ut]

∂

∂ut

+ [ψx + (ψu − ϕx)ux]
∂

∂ux

+ [(ψu − τt − ϕx)F + ψtx + (ψtuux + ψxuut + ψuuuxut)]
∂

∂F
.

Therefore, equations (6.1) have a continuous group E of equivalence transformations gen-

erated by the Lie algebra LE which is spanned by the operators:

Γτ = τ
∂

∂t
− τtut

∂

∂ut

− τtF
∂

∂F
,

Γϕ = ϕ
∂

∂x
− ϕxux

∂

∂ux

− ϕxF
∂

∂F
, (6.2)

Γψ = ψ
∂

∂u
+ (ψx + ψuux)

∂

∂ux

+ (ψt + ψuut)
∂

∂ut

+ (ψtx + ψxuut + ψtuux + ψuuutux + ψuF )
∂

∂F
.

Also, one can show that the equivalence transformations (6.2) can be written in the finite

form, using theorems (3.2) and (3.3):

x′ = P (x), t′ = Q(t), u′ = R(t, x, u). (6.3)

Alternatively, (6.3) can be obtained using the First Fundamental theorem of Lie (2.1).

6.2.2 Differential invariants and invariant equations

In this subsection, we consider the problem of finding differential invariants of the class

of equations (6.1). Firstly, we search for invariants of zero order. That is, we look for

functions of the form J(t, x, u, ux, ut, F ) that satisfy the invariance criterion

Γτ (J) = 0, Γϕ(J) = 0, Γψ(J) = 0.
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To this end, we look for functions that satisfy the following equations:

τ
∂J

∂t
− τtut

∂J

∂ut

− τtF
∂J

∂F
= 0,

ϕ
∂J

∂x
− ϕxux

∂J

∂ux

− ϕxF
∂J

∂F
= 0,

ψ
∂J

∂u
+ (ψuux + ψx)

∂J

∂ux

+ (ψt + ψuut)
∂J

∂ut

+(ψuF + ψtuux + ψtx + ψxuut + ψuuutux)
∂J

∂F
= 0.

Since the functions τ, ϕ, ψ are arbitrary, these identities lead to linear first order PDEs

for J . Straightforward calculations lead to the trivial solution, i.e. J =constant. Hence,

equations (6.1) do not admit differential invariants of order zero.

So, it is necessary to consider first-order differential invariants, of the form:

J(t, x, u, ux, ut, F, Ft, Fx, Fu, Fut , Fux).

To find such invariants, one needs to calculate the first prolongation of the operator Γ

Γ(1) = Γ + ηi1
∂

∂Fi1

, i1 = x, t, u, ux, ut,

where

ηi1 = D̃i1(η)− FtD̃i1(ξ
1)− FxD̃i1(ξ

2)− FuD̃i1(ξ
3)− FutD̃i1(ζt)

− FuxD̃i1(ζx)− FutxD̃i1(ζtx),

and D̃i1 denote the total derivatives with respect to i1:

D̃i1 =
∂

∂i1
+ Fi1

∂

∂F
+ Fi1x

∂

∂Fx

+ Fi1t
∂

∂Ft

+ Fi1u
∂

∂Fu

+ Fi1ut

∂

∂Fut

+ Fi1ux

∂

∂Fux

+ . . . .

Similarly, the first prolongation of the operators (6.2) lead to the invariance criterion:

Γ(1)
τ (J) = 0, Γ(1)

ϕ (J) = 0, Γ
(1)
ψ (J) = 0.

The fact that τ, ϕ and ψ are arbitrary functions, leads to linear first order PDEs. Without

giving any details, we obtain the trivial invariant. Hence, equations (6.1) also do not admit

differential invariants of order one.

In order to find differential invariants of order two, i.e. that depend on the second

derivatives of F , we need the second prolongation of the operators (6.2), which can be

derived using the formula:

Γ(2) = Γ(1) + ηi1i2
∂

∂Fi1i2

, i1, i2 = x, t, u, ux, ut,
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where

ηi1i2 = D̃i2(η
i1)− Fi1tD̃i2(ξ

1)− Fi1xD̃i2(ξ
2)− Fi1uD̃i2(ξ

3)− Fi1utD̃i2(ζt)

− Fi1uxD̃i2(ζx)− Fi1utxD̃i2(ζtx),

and D̃i2 denote the total derivatives with respect to i2:

D̃i2 =
∂

∂i2
+ Fi2

∂

∂F
+ Fi2x

∂

∂Fx

+ Fi2t
∂

∂Ft

+ Fi2u
∂

∂Fu

+ Fi2ut

∂

∂Fut

+ Fi2ux

∂

∂Fux

+ . . . .

From the differential invariant test

Γ
(2)
k (J) = 0, k = τ, ϕ, ψ,

we state that equations (6.1) do not admit differential invariants of second order.

However, equations (6.1) admit the following invariant equations:

Futut = 0, Fuxux = 0. (6.4)

That is, we have to show:

Γ
(2)
k [Futut ]|(Futut=0) = 0, Γ

(2)
k [Fuxux ]|(Fuxux=0) = 0, k = τ, ϕ, ψ.

Furthermore, the quantity

J =
Fuxux

Futut

is a semi-invariant of second order. In this case J satisfies the equation Γ
(2)
ψ (J) = 0.

That is, in (6.3) P = x and Q = t which means that (6.1) is invariant only under the

transformation of the dependent variable.

In order to find differential invariants of third order, we follow the same procedure as

before. We get that equations (6.1) admit 13 differential invariants of third order:

J1 =
F 2

uxuxux
Futut

FuxuxF
2
uxuxut

, J2 =
FuxuxuxFutut

FuxuxFuxuxut

, J3 =
FuxuxFututut

FututFuxuxut

,

J4 =
Fuxuxut

F 2
uxux

Fuxuxut

[(FuxFuxut)ux + FuxuxuxFut + Fuuxux ] ,

J5 =
F 3

uxuxux

F 2
uxux

F 3
uxuxut

[(FuxFutut)ut + FuxututFut + Fuutut ] ,
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J6 =
F 3

uxuxux

F 4
uxux

F 2
uxuxut

[FFuxuxFuxutut − FFuxuxutFuxut + FuFuxuxut − FuxFuxuxFutut

− FuxuxFuut + FuxFuxuxutFut + FuxuxFuuxutux + FuxuxFxuxut − FuxuxutFuuxux

− FuxuxutFxux ],

J7 =
F 4

uxuxux

F 4
uxux

F 3
uxuxut

[FFuxuxutFutut − FFuxutFuxutut + FtuxutFutut − FtutFuxutut

+ FuxFuxututFut − FuxuxFutFutut − FuxututFuutut − FututFuux + FututFuuxutut

+ FuFuxutut ],

J8 =
F 5

uxuxux

F 5
uxux

F 4
uxuxut

[(FuxuxFutut)ut{−FFuxut − Ftut + Fu + FuxFut − Fuutut}

+ FFutut(FuxuxFutut)ux + Fututut(FuxuxFutut)u + 2FuxFuxuxF
2
utut

+ Futut(FuxuxFutut)t],

J9 =
F 4

uxuxux

F 5
uxux

F 3
uxuxut

[(FuxuxFutut)ux{−uxFuux − FFuxut + Fu + FuFut − Fxux}

+ FFuxux(FuxuxFutut)ut + Fuxuxux(FuxuxFutut)u + 2FutF
2
uxux

Futut

+ Fuxux(FuxuxFutut)x],

J10 =
F 6

uxuxux

F 6
uxux

F 4
uxuxut

(−FFuxFuxutFututut + FFuxFuxututFutut + FFuxuxF
2
utut

− FF 2
uxut

Futut + FFuxuxutFutFutut − FFuxutFuxututFut − FFuxutFuutut

+ FFututFuuxut + FtuxF
2
utut

+ FtuxutFutFutut − FtutFuxFututut

− FtutFuxutFutut − FtutFuxututFut − FuutFuututut + FtututFuxFutut

+ FtuutFutut + FuFuxFututut + 2FuFuxutFutut + FuFuxututFut

+ FuFuutut + F 2
ux

FutFututut + FuxFuxutFutFutut + FuxFuxututF
2
ut

+ FuxFutFuutut − FuxututFutFuutut + FuxFututFuututut − FuxFutututFuutut

− FuxuxF
2
ut

Futut − FuxutFututFuutut − FuxFututFuut − FututFuu − 2FutFututFuux

+ FutFututFuuxutut − FtutFuutut + F 2
utut

Fuuxut + FututFuuutut),

J11 =
F 4

uxuxux

F 6
uxux

F 2
uxuxut

(−FFuxFuxuxFuxutut + FFuxFuxuxutFuxut − FF 2
uxux

Futut

+ FFuxuxF
2
uxut

− FFuxuxFuxuxutFut − FFuxuxFuuxut + FFuxuxuxFuxutFut

+ FFuxutFuuxux − FuFuxFuxuxut − 2FuFuxuxFuxut − FuFuxuxuxFut − FuFuuxux

+ F 2
ux

FuxuxFutut − F 2
ux

FuxuxutFut − F 2
uxux

Fuutux − FuxFuxuxFuxutFut

− FuxFuxuxFuuxutux + 2FuxFuxuxFuut − FuxFuxuxFxuxut + FuuxuxFxux

− FuxFuxuxuxF
2
ut

+ FuxFuxuxutFuuxux + FuxFuxuxutFxux − FuxFutFuuxux
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+ FuxuxuxFutFxux − FuxuxFutFuuxuxux + FuxuxFuxutFuuxux + FuxuxFuxutFxux

+ FuxuxFutFuux + FuuxFuuxuxux − F 2
uxux

Fxut − FuxuxFutFxuxux − FuxuxFuuuxux

− FuxuxFxuux + FuxuxuxFutFuuxux + FuxuxFuu),

J12 =
F 6

uxuxux

F 8
uxux

F 3
uxuxut

(−F 2FuxuxFuxuxutFutut + F 2FuxuxFuxutFuxutut

+ F 2FuxuxuxFuxutFutut − F 2FuxuxutF
2
uxut

+ FFtuxuxFuxutFutut − FFtuxutFuxuxFutut

+ FFtutFuxuxFuxutut − F 2
uFuxuxut − FFtutFuxuxutFuxut − FFuFuxuxFuxutut

− FFuFuxuxuxFutut + 2FFuFuxuxutFuxut + FuFuxuxFuut − FFuxFuxuxFuxututFut

− FFuxFuxuxuxFutFutut + 2FFuxFuxuxutFuxutFut − FFuxuxFuxutFuut

+ FFuxuxFuxutFuuxutux + FFuxuxFuxutFxuxut + FFuxuxFuxututFuutut

− FFuxuxFututFuuxuxux − FFuxuxFututFuuxutut − FFuxuxFututFxuxux

+ FFuxuxuxFututFxux − FFuxuxutFuxutFuuxux − FFuxuxutFuxutFuutut

+ FFuxutFututFuuxuxut − FtFuxuxFuxutFutut + FtuFuxuxFutut + FtuxFuxuxFutFutut

− FtuxuxFuFutut + FtutFuFuxuxut + FFuxuxuxFututFuuxux − FFuxuxutFuxutFxux

− FtuxuxFuxFutFutut + FtuxuxFututFuuxux + FtuxuxFututFxux + FtutFuxFuxuxutFut

+ FtutFuxuxFuuxutux + FtutFuxuxFxuxut − FtutFuxuxutFuuxux − FtutFuxuxutFxux

− 2FuFuxFuxuxutFut − FuF
2
uxux

Fututux − FuFuxuxFuxutFututut − FuFuxuxFuuxutux

− FuFuxuxFxuxut + FuFuxuxutFuuxux − FuxFuxuxFutFuuxutux + FuFuxuxutFxux

− FuxFutFututFuuxuxut + FuxFuxuxFutFuut − FuxFuxuxFutFxuxut

+ FuxFuxuxFututFxux + FuxFuxuxutFutFuuxux + FuxFuxuxutFutFuutut

− FtuuxFuxuxFututux + FuxuxFutFututFuuxut + FuFuxuxutFuutut

− FuxuxFututFuuuxuxut − FuxuxFututFxtux − FuxuxFututFxuuxut

+ FuxuxFuutFxuxutut − FuxuxutFuuxFuutuxut − FuxuxutFuutFxuxut

+ FututFuuxuxFxuxut − FtutFuxuxFuut − F 2
ux

FuxuxutF
2
ut
− FuFututFuuxuxut

− FuxuxF
2
uut

ut + FuxFuxuxutFutFxux + FuxFuxuxFututFuuxux + FuxuxFututFuuut

+ FuxuxFuuxutFuutuxut − F 2
uxux

FututFx + FututFuuxFuuxuxuxut),

J13 =
F 7

uxuxux

F 8
uxux

F 4
uxuxut

(−F 2FuxuxFuxutFututut + F 2FuxuxFuxututFutut − F 2FuxuxutFuxutFutut

+ F 2F 2
uxut

Fuxutut − FFtuxutFuxutFutut − FFtutFuxuxFututut + FFtutFuxutFuxutut

+ F 2
uFuxutut + FFuFuxuxFututut + FFtututFuxuxFutut + FFuFuxuxutFutut
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+ FFuxFuxuxFutFututut + FFuxFuxuxutFutFutut − 2FFuxFuxutFuxututFut

− 2FFuFuxutFuxutut − FFuxuxFuxutFuututux − FFuxuxFuxutFxutut

+ FFuxuxFututFuuxutux + FFuxuxFututFuututut + FFuxuxFututFxuxut

− FFuxuxFutututFuutut − FFuxuxutFututFuuxux − FFuxuxutFututFxux

+ FFuxutFuxututFuuxux + FFuxutFuxututFuutut + FuFuxuxFuxutFututux

+ FFuxutFututFuux − FFuxutFututFuuxutut + FuFuxuxFxutut

+ FtFuxuxF
2
utut

+ FtuxutFuFutut + FtuxutFuxFutFutut − FtuxutFututFuuxux

− FuFuxututFuutut − FtutFuFuxutut − FtutFuxFuxututFut + FtutFuxututFxux

− FtutFuxuxFutFutut − FtutFuxuxFuututux − FtutFuxuxFxutut

+ FFuxutFuxututFxux + FtuutFuxuxFututux + 2FuFuxFuxututFut − FtuxutFututFxux

+ FtutFuxututFuuxux + FuFuxuxF
2
utut

ut + FuFuxuxFuututux − FuFuxututFuuxux

− FuFuxututFxux − FuFututFuux + FuFututFuuxutut + F 2
ux

FuxututF
2
ut

+ FuxFuxuxFutFuututux + FuxFuxuxFutFxutut − FuxFuxuxFututFuutux

− FuxFuxuxFututFxut − FuxFuxututFutFuuxux − FuxFuxututFutFuutut

− FuxFuxututFutFxux + FuxFutFututFuuxutut + FuxuxFututFuuutuxut

+ FuxuxFuxutFututFx − FuxFutFututFuux − FuxuxFututFuuux − FuxuxFutFututFuutut

+ FututF
2
uux

ux + FuxuxFututFxtut − FuxuxFututFxu + FuxuxFututFxuutut

− FuxuxFuutFuututuxut + FututFuuxFxux + FuxututFuuxFuutuxut + FuxututFuutFxuxut

− FututFuuxFuuxutuxut − FuxuxFuutFxututut − FututFuuxutFxuxut). (6.5)

6.2.3 Linearization

Now, we classify all equations of class (6.1) that can be mapped into the linear wave

equation

utx = 0. (6.6)

Since the most general linear equation

utx + a(t, x)ut + b(t, x)ux + c(t, x)u = 0

satisfies the invariant equations, we conclude that these invariant equations provide nec-

essary conditions for linearization. The solution of the system of invariant equations (6.4)

47

Chri
sti

na
 Tsa

ou
si



gives us the form of equation of the class (6.1) that can be mapped into linear equation.

Therefore an equation of the class (6.1) that can be linearized by local mapping must be

also a member of the class of hyperbolic equations. Now, the solution of the system (6.4)

gives

F = f(x, t, u)uxut + g(x, t, u)ux + h(x, t, u)ut + l(x, t, u), (6.7)

where f, g, h, l are arbitrary functions.

Hence, an equation of the class (6.1) is linked with (6.6) only if F is of the form (6.7).

Therefore, an equation of the class (6.1) is mapped into (6.6) only if it is of the form

uxt = f(x, t, u)uxut + g(x, t, u)ux + h(x, t, u)ut + l(x, t, u). (6.8)

Now, our goal is to find the differential invariants for the family of equations (6.8).

6.3 Invariants for equation (6.8)

6.3.1 Equivalence transformations

We employ the same procedure used in the previous section, to derive equivalence trans-

formations and then the differential invariants.

We use Lie’s infinitesimal method for calculating the equivalence transformations of the

class of equations (6.8). We find that equation (6.8) admits an infinite continuous group

of equivalence transformations generated by the Lie algebra spanned by the operators:

Γτ = τ
∂

∂t
− τt(g

∂

∂g
+ l

∂

∂l
),

Γϕ = ϕ
∂

∂x
− ϕx(h

∂

∂h
+ l

∂

∂l
), (6.9)

Γψ = ψ
∂

∂u
+ (ψuu − ψuf)

∂

∂f
+ (ψtu − ψtf)

∂

∂g
+ (ψxu − ψxf)

∂

∂h

+ (ψtx − ψth− ψxg + ψul)
∂

∂l
,

where τ = τ(t), ϕ = ϕ(x), ψ = ψ(t, x, u) are arbitrary functions. Also, equivalence

transformations can be written in the finite form (6.3).
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6.3.2 Differential invariants and invariant equations

Using the operators (6.9) and their suitable prolongations, we find that (6.8) do not admit

invariants of zero and first order.

However, the expressions

ft − gu = 0, fx − hu = 0 (6.10)

are invariant equations of first order. Hence, we have shown that

Γ(1)[ft − gu]|(ft−gu=0) = 0, and Γ(1)[fx − hu]|(fx−hu=0) = 0.

We also point out that

J =
ft − gu

fx − hu

is a semi-invariant of first order. That is, it is invariant only under Γψ, Γ
(1)
ψ (J) = 0.

6.3.3 Linearization

Now, any equation of the linear class of hyperbolic equations

utx + a(t, x)ut + b(t, x)ux + c(t, x)u = 0

satisfies invariant equations (6.10). Therefore equations (6.10) provide necessary con-

ditions for linearization. Solving the system (6.10) we obtain the following forms for

functions f, g, h:

f = mu, g = mt + α(x, t), h = mx + β(x, t), m = m(x, t, u).

For the sake of simplicity we take α = β = 0 and hence (6.8) takes the form

uxt = mu(x, t, u)uxut + mtux + mxut + k(x, t, u). (6.11)

Next step is to study the class (6.11).

6.4 Invariants for equation (6.11)

6.4.1 Equivalence transformations

We use Lie infinitesimal method for calculating the equivalence transformations of the

class of equations (6.11).
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We find that, equations (6.11) admits an infinite continuous group of equivalence trans-

formations generated by the Lie algebra LE spanned by the operators:

Γτ = τ
∂

∂t
− τtk

∂

∂k
− τtmt

∂

∂mt

,

Γϕ = ϕ
∂

∂x
− ϕxk

∂

∂k
− φxmx

∂

∂mx

, (6.12)

Γψ = ψ
∂

∂u
+ ψu

∂

∂m
+ (ψtx − ψtmx − ψxmt + ψuk)

∂

∂k

− (ψxmu − ψxu)
∂

∂mx

− (ψtmu − ψtu)
∂

∂mt

− (ψumu − ψuu)
∂

∂mu

,

where τ = τ(t), ϕ = ϕ(x), ψ = ψ(t, x, u) are arbitrary functions. Now using the results

of chapter 3, equivalence transformations (6.12), can be written in the finite form (6.3).

6.4.2 Differential invariants and invariant equations

We use equivalence transformations (6.12) to derive differential invariants for the class

(6.11). We find no invariants of zero and first order. However, we derive the invariant

equation

mtmx −muk −mtx + ku = 0. (6.13)

Further calculations produce the following invariant of second order:

J =
em(mtmx −muk −mtx + ku)u

mtmx −muk −mtx + ku

. (6.14)

That is, we have shown that J is such that:

Γ(2)
τ (J) = 0, Γ

(2)
φ (J) = 0, Γ

(2)
ψ (J) = 0.

6.4.3 Linearization

Now, we use invariant equation (6.13) and the differential invariant (6.14) to classify

hyperbolic equations that can be linearized, i.e. we can list equations that can be mapped

into a linear hyperbolic equation. We note that the linear wave equation

utx = 0

satisfies invariant equation (6.13), while any other linear hyperbolic equation substituted

in (6.14) gives

J = 0.
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Therefore the expression

(mtmx −muk −mtx + ku)u = 0

provides a necessary condition for linearization. Solving for k, we find:

k = em

∫
(mtx −mtmx + ϕ(t, x)) e−mdu + ψ(t, x)em, (6.15)

where ϕ(t, x) and ψ(t, x) are arbitrary functions. We also point out that using invariant

equation (6.13), which is a necessary condition for mapping a hyperbolic equation into

utx = 0,

we obtain (6.15) with ϕ(t, x) = 0. Expression (6.15) implies that equation (6.11) takes

the form

utx = muutux + mtux + mxut + em

∫
(mtx −mtmx + ϕ(t, x)) e−mdu + ψ(t, x)em.

(6.16)

Therefore, an equation of the form (6.11) is linked with the linear hyperbolic equation

utx = 0

only if is of the form (6.16).

6.5 Applications

In this section, we turn into the problem of finding point transformations of the form (6.3)

that map (6.16) into the linear hyperbolic equations

u′x′t′ = a(x′, t′)u′x′ + b(x′, t′)u′t′ + c(x′, t′)u′. (6.17)

Details of how such transformations are constructed can be found in [29]. Using the

results of chapter 3, we find that equations (6.16) and (6.17) are connected by the local

mapping

x′ = P (x), t′ = Q(t), u′ = γ(x, t)

∫
e−mdu + δ(x, t), (6.18)
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providing the following identities are satisfied:

γt − γaQt = 0, (6.19)

γx − γbPx = 0, (6.20)

γxt − (2ab + c)γPxQt + γϕ = 0, (6.21)

δxt − aδxQt − bδtPx − cδPxQt + γψ = 0. (6.22)

We note from identities (6.19) and (6.20) that ax′ = bt′ . This relation restricts the form of

linear hyperbolic equation (6.17). This restriction can be eliminated if in the construction

of (6.11) the functions α(x, t) and β(x, t) do not vanish. Such case is example 6.4 given

below.

Motivated by the applications of Laplace invariants, we use the above results to classify

those hyperbolic equations that can be mapped into simple linear equations. We use

equations (6.16) - (6.22) to construct the following examples:

Example 6.1. An equation of the class (6.1) can be mapped into the linear equation

utx = 0 (6.23)

by the mapping

u′ = γ

∫
e−mdu + δ(x, t), γ = constant

if and only if it is of the form (6.16) with ϕ = 0 and

δxt + γψ = 0.

Example 6.2. An equation of the class (6.1) can be mapped into the linear equation

u′x′t′ = c(x′, t′)u′

by the mapping

u′ = γ

∫
e−mdu + δ(x, t), γ = constant

if and only if it is of the form (6.16) with

ϕ(x, t) = c(x, t), δxt − c(x, t)δ + ψ(x, t)γ = 0.
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Example 6.3. An equation of the class (6.1) can be mapped into the factorized equation

u′x′t′ = at′(t
′)u′x′ + bx′(x

′)u′t′ + at′bx′u
′

by the mapping

x′ = P (x), t′ = Q(t), u′ = cea(Q(t))+b(P (x))

∫
e−mdu + δ(x, t)

if and only if it is of the form (6.16) where ϕ(x, t) = 2at′(Q(t))bx′(P (x))PxQt and

δxt − at′Qtδx − bx′Pxδt − at′bx′δPxQt + cea+bψ(x, t) = 0.

In the following example we use equation (6.11) with α 6= 0. In this case, equation

(6.11) takes the form

uxt = mu(x, t, u)uxut + (mt + α(x, t))ux + mxut + k(x, t, u).

Example 6.4. We consider the first Lie canonical equation (see [34])

u′x′t′ = α(x′)u′x′ − u′. (6.24)

It can be shown that an equation of the class (6.1) can be mapped into (6.24) if and only

if it is of the form

uxt = muuxut+(mt + α(x)) ux+mxut+em

∫
(mxt−mxmt−αmx−1)e−mdu+ψ(x, t)em

by the point transformation

x′ = x, t′ = t, u′ = c

∫
e−mdu + δ(x, t),

where

δxt − αδx + δ + cψ = 0.

Similar results can be obtained for the other three Lie canonical equations.

6.6 Further applications

In this section we employ differential invariants to derive local mappings that connect

equations of the class (6.1) to known equations. We present two examples.
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Example 6.5. We consider the Liouville equation (see [37])

uxt = eu.

Its general solution is:

u(x, t) = f(x) + g(t)− 2 ln

∣∣∣∣a
∫

ef(x)dx + 1
2k

∫
eg(t)dt

∣∣∣∣ ,

where f(x) and g(t) are arbitrary functions and a is an arbitrary constant. This general

solution can be found using the Bäcklund transformations that connect Liouville equation

and the linear wave equation (6.23). Since Liouville equation satisfies invariant equations

(6.4) and (6.10), we deduce that any equation of the class (6.1) that can be linked to it, has

to be of the form (6.11). Therefore in sections 6.4.1-6.4.2, if we set m = constant, k = eu

in (6.14), we find that J = λ, where λ is an arbitrary constant. Hence, the expression

em(mtmx −muk −mtx + ku)u

mtmx −muk −mtx + ku

= λ

provides necessary conditions for an equation of the class (6.11), and consequently of the

class (6.1), to be connected to Liouville equation. Solving the above expression for η, we

find:

k(x, t, u) = em

∫ (
mxt −mxmt + ϕ(x, t)eλ

R
e−mdu

)
e−mdu + ψ(x, t)em.

Finally, using point transformation of the form (6.3), we conclude that an equation of the

class (6.1) can be connected with Liouville equation if and only if it is of the form

uxt = mu(x, t, u)uxut + mtux + mxut + em

∫ (
mxt −mxmt + ϕ(x, t)eλ

R
e−mdu

)
e−mdu

+ ψ(x, t)em.

The above equation and Liouville equation are connected by the local mapping

x′ = P (x), t′ = Q(t), u′ = c

∫
e−mdu + δ(x, t),

where

δxt + cψ = 0, eδQtPx + ϕ = 0.

Example 6.6. In this example we consider the Goursat equation

uxt =
√

uxut.
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Using nonlocal mappings, this equation is connected with the linear hyperbolic equation

uxt = 1
4
u (see [10]). In order to derive equations of the class (6.1) that are linked with

Goursat equation, we need to use the differential invariants of third order (6.5).

Setting F =
√

uxut, in the forms of the 13 differential invariants, we find

J1 = 9, J2 = −3, J3 = −3, J4 = −3, J5 = −27, J6 = 0, J7 = 0, J8 = 0,

J9 = 0, J10 = 0, J11 = 0, J12 = −729, J13 = −2187.

We note that all differential invariants are constants. Solving the above 13 equations,

where J1, . . . , J13 are the invariants (6.5), we find necessary conditions for an equation of

the class (6.1) to be connected with Goursat equation. That is, any equation that can

be mapped into Goursat equation must satisfy the above 13 equations. Clearly, to solve

the above system with 13 equations is a very difficult task. We give one simple example.

In the case where F = 2utux

u
−

√
utux

xt
, it can be shown that all 13 equations are satisfied.

Furthermore, we state that the reciprocal transformation (twice application of it gives the

identity transformation)

t′ =
1

t
, x′ =

1

x
, u′ =

1

u

maps

uxt =
2utux

u
−
√

utux

xt

into Goursat equation (with primed variables). Since Goursat equation can be linearized

by the nonlocal mapping, the above hyperbolic equation can be mapped into a linear

hyperbolic equation using nonlocal mapping.

The results of this chapter are contained in [58].

6.7 Conclusion

In this chapter our main goal was to classify hyperbolic equations of the class (6.1) that

can be transformed into linear equations by local mappings. To achieve this, we used

its differential invariants. We applied an infinitesimal technique developed by Ibragimov

(see [15, 16, 23]) and we point out that the class of equations (6.1) has no differential
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invariants up to order two, inclusive. The knowledge of semi-invariants was useful for

the linearization of equation (6.1). Also, we calculated equivalence transformations and

differential invariants using Lie’s infinitesimal method for two subclasses of it.

Motivated by the applications of Laplace invariants, we classify those hyperbolic equa-

tions (6.1) that can be mapped into simple linear equations. Furthermore, in the last

section, we presented two examples in which the knowledge of differential invariants can

be used to derive local mappings that connect equations of the class (6.1) to known

equations.
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Chapter 7

Differential invariants for

n-dimensional hyperbolic equations

7.1 Introduction

In this chapter we consider n-dimensional hyperbolic equations. In the spirit of Ibrag-

imov’s work (see [17]), we construct differential invariants with the employment of the

derived equivalence transformations for the cases n = 2 and n = 3. Motivated by these

results, we present the corresponding results for the n-dimensional case of hyperbolic

equations. For the case n = 2 we obtain one invariant of first order, while for the case

n = 3 we find two invariants. We present the corresponding results for the one-dimensional

equation. Finally, we employ the derived invariants to get certain mappings that connect

equivalent equations.

7.2 Invariants for two-dimensional hyperbolic equa-

tions

7.2.1 Equivalence transformations

Firstly, we consider the two-dimensional linear hyperbolic equations of the form:

utt = uxx + uyy + X(t, x, y)ux + Y (t, x, y)uy + T (t, x, y)ut + U(t, x, y)u. (7.1)
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We employ the same procedure used in the previous chapter, to derive equivalence trans-

formations and then differential invariants for the class (7.1).

Using the Lie infinitesimal method for calculating the equivalence transformations of

the class of equation (7.1), we find that equation (7.1) admit an infinite continuous group

E of equivalence transformations generated by Lie algebra LE spanned by operators:

Γ1 =
∂

∂t
, Γ2 =

∂

∂x
, Γ3 =

∂

∂y
, Γ4 = x

∂

∂t
+ t

∂

∂x
+ T

∂

∂X
+ X

∂

∂T
,

Γ5 = y
∂

∂t
+ t

∂

∂y
+ T

∂

∂Y
+ Y

∂

∂T
, Γ6 = y

∂

∂x
− x

∂

∂y
+ Y

∂

∂X
−X

∂

∂Y
,

Γ7 = t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
−X

∂

∂X
− Y

∂

∂Y
− T

∂

∂T
− 2U

∂

∂U
,

Γ8 = 1
2

(
t2 + x2 + y2

) ∂

∂t
+ xt

∂

∂x
+ ty

∂

∂y
+ (xT − tX)

∂

∂X
+ (yT − tY )

∂

∂Y

+ (xX + yY − tT + 1)
∂

∂T
− 2tU

∂

∂U
, (7.2)

Γ9 = xt
∂

∂t
+ 1

2

(
t2 + x2 − y2

) ∂

∂x
+ xy

∂

∂y
− (xX + yY − tT + 1)

∂

∂X

+ (yX − xY )
∂

∂Y
+ (tX − xT )

∂

∂T
− 2xU

∂

∂U
,

Γ10 = ty
∂

∂t
+ xy

∂

∂x
+ 1

2

(
t2 − x2 + y2

) ∂

∂y
+ (xY − yX)

∂

∂X

− (xX + yY − tT + 1)
∂

∂Y
+ (tY − yT )

∂

∂T
− 2yU

∂

∂U
,

Γα = αu
∂

∂u
− 2αx

∂

∂X
− 2αy

∂

∂Y
+ 2αt

∂

∂T

+ (αtt − αxx − αyy − αxX − αyY − αtT )
∂

∂U
,

where α = α(t, x, y) is an arbitrary function.

7.2.2 Differential invariants and invariant equations

We consider the problem of finding differential invariants of the class of equations (7.1).

Firstly, we seek for differential invariants of zero order. That is, invariants of the form:

J = J(t, x, y, u, X, Y, T, U).

Using the operators (7.2), the invariant criterion Γ(J) = 0 gives the following identities:

Γi(J) = 0, i = 1, 2, . . . , 10, α.

It is straightforward that J = constant. Hence, the family of equations (7.1) does not

admit differential invariants of zero order.
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Now, the next step is to consider the problem of existence of differential invariants of

first order, that depend on the first derivatives of the functions X,Y, T, U . That is, for

invariants of the form

J = J(t, x, y, u, X, Y, T, U,Xi, Yi, Ti, Ui), i = t, x, y.

In order to achieve that, we must calculate the first prolongations of the operators. For

more details of how the operators Γi, i = 1, 2, . . . , 10, α can be extended, we refer to the

previous chapter or to [16,44].

First, we consider the problem of calculating semi-invariants of first order. In this case

J only satisfies the invariant criterion

Γ(1)
α (J) = 0. (7.3)

That is, using the results of chapter 3, P = x and Q = t which means that (7.1) is

invariant only under the transformation of the dependent variable.

Equation (7.3) is a polynomial in the derivatives of α(t, x, y). Using the fact that

α(t, x, y) is arbitrary, we set the coefficients of the derivatives of it equal to zero. This

leads to a system of linear first order partial differential equations. First, we note that

Γ
(1)
i = Γi, i = 1, 2, 3 and therefore Γ

(1)
i (J) = 0 implies that J is independent of t, x, u.

Furthermore, the coefficients of α, αxxy, αxxt, αxyy in (7.3) give

∂J

∂u
=

∂J

∂Uy

=
∂J

∂Ut

=
∂J

∂Ux

= 0.

Hence,

J = J(X,Y, T, U,Xt, Xx, Xy, Yt, Yx, Yt, Tt, Tx, Ty).

Now, coefficients of αx, αy, αt, αxx, αxy, αxt, αyy, αyt and αtt in (7.3) give:

2
∂J

∂X
+ X

∂J

∂U
= 0, 2

∂J

∂Y
+ Y

∂J

∂U
= 0, 2

∂J

∂T
− T

∂J

∂U
= 0,

2
∂J

∂Xx

+
∂J

∂U
= 0,

∂J

∂Xy

+
∂J

∂Yx

= 0,
∂J

∂Xt

− ∂J

∂Tx

= 0,

2
∂J

∂Yy

+
∂J

∂U
= 0,

∂J

∂Yt

− ∂J

∂Ty

= 0, 2
∂J

∂Tt

+
∂J

∂U
= 0.

Solving this system we obtain four independent integrals which form the set of semi-

invariants of first order for the class of equations (7.1):

J1 = Yx−Xy, J2 = Xt+Tx, J3 = Yt+Ty, J4 = X2+Y 2−T 2+2Xx+2Yy+2Tt−4U. (7.4)
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Now, in order to obtain a complete set of differential invariants, in addition to (7.3),

we apply the invariance criterion to the other operators:

Γ
(1)
j (J) = 0, j = 4, 5, . . . , 10

and we obtain the following list of equations:

Γ
(1)
4 (J) = 0 ⇔ T

∂J

∂X
−Xx

∂J

∂Xt

+ Tt
∂J

∂Xt

−Xt
∂J

∂Xx

+ Tx
∂J

∂Xx

+ Ty
∂J

∂Xy

− Yx
∂J

∂Yt

−Yt
∂J

∂Yx

+ X
∂J

∂T
+ Xt

∂J

∂Tt

− Tx
∂J

∂Tt

+ Xx
∂J

∂Tx

− Tt
∂J

∂Tx

+ Xy
∂J

∂Ty

= 0,

Γ
(1)
5 (J) = 0 ⇔ −Xy

∂J

∂Xt

−Xt
∂J

∂Xy

+ T
∂J

∂Y
− Yy

∂J

∂Yt

+ Tt
∂J

∂Yt

+ Tx
∂J

∂Yx

− Yt
∂J

∂Yy

+Ty
∂J

∂Yy

+ Y
∂J

∂T
+ Yt

∂J

∂Tt

− Ty
∂J

∂Tt

+ Yx
∂J

∂Tx

+ Yy
∂J

∂Ty

− Tt
∂J

∂Ty

= 0,

Γ
(1)
6 (J) = 0 ⇔ −Y

∂J

∂X
− Yt

∂J

∂Xt

−Xy
∂J

∂Xx

− Yx
∂J

∂Xx

+ Xx
∂J

∂Xy

− Yy
∂J

∂Xy

+ X
∂J

∂Y

+Xt
∂J

∂YT

+ Xx
∂J

∂Yx

− Yy
∂J

∂Yx

+ Xy
∂J

∂Yy

+ Yx
∂J

∂Yy

− Ty
∂J

∂Tx

+ Tx
∂J

∂Ty

= 0,

Γ
(1)
7 (J) = 0 ⇔ −X

∂J

∂X
− 2Xt

∂J

∂Xt

− 2Xx
∂J

∂Xx

− 2Xy
∂J

∂Xy

− Y
∂J

∂Y
− 2Yt

∂J

∂Yt

− 2Yx
∂J

∂Yx

−2Yy
∂J

∂Yy

− T
∂J

∂T
− 2Tt

∂J

∂Tt

− 2Tx
∂J

∂Tx

− 2Ty
∂J

∂Ty

− 2U
∂J

∂U
= 0,

Γ
(1)
8 (J) = 0 ⇔ tΓ

(1)
7 (J) + xΓ

(1)
4 (J) + yΓ

(1)
5 (J)−X

∂J

∂Xt

+ T
∂J

∂Xx

− Y
∂J

∂Yt

+ T
∂J

∂Yy

+
∂J

∂T
− T

∂J

∂Tt

+ X
∂J

∂Tx

+ Y
∂J

∂Ty

= 0,

Γ
(1)
9 (J) = 0 ⇔ tΓ

(1)
4 (J) + xΓ

(1)
7 (J) + yΓ

(1)
6 (J)− ∂J

∂X
+ T

∂J

∂Xt

−X
∂J

∂Xx

− Y
∂J

∂Xy

−Y
∂J

∂Yx

+ X
∂J

∂Yy

+ X
∂J

∂Tt

− T
∂J

∂Tx

= 0,

Γ
(1)
10 (J) = 0 ⇔ tΓ

(1)
5 (J)− xΓ

(1)
6 (J) + yΓ

(1)
7 (J) + Y

∂J

∂Xx

−X
∂J

∂Xy

− ∂J

∂Y
+ T

∂J

∂Yt

−X
∂J

∂Yx

− Y
∂J

∂Yy

+ Y
∂J

∂Tt

− T
∂J

∂TY

= 0.

Using the semi-invariants (7.4), the above equations take the form:

Γ
(1)
4 (J) = 0 ⇔ J1

∂J

∂J3

+ J3
∂J

∂J1

= 0, (7.5)

Γ
(1)
5 (J) = 0 ⇔ J1

∂J

∂J2

+ J2
∂J

∂J1

= 0, (7.6)
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Γ
(1)
6 (J) = 0 ⇔ J3

∂J

∂J2

− J2
∂J

∂J3

= 0, (7.7)

Γ
(1)
7 (J) = 0 ⇔ 2

(
J1

∂J

∂J1

+ J2
∂J

∂J2

+ J3
∂J

∂J3

+ J4
∂J

∂J4

)
= 0, (7.8)

Γ
(1)
8 (J) = 0 ⇔ tΓ

(1)
7 (J) + xΓ

(1)
4 (J) + yΓ

(1)
5 (J) = 0, (7.9)

Γ
(1)
9 (J) = 0 ⇔ tΓ

(1)
4 (J) + xΓ

(1)
7 (J) + yΓ

(1)
6 (J) = 0, (7.10)

Γ
(1)
10 (J) = 0 ⇔ tΓ

(1)
5 (J)− xΓ

(1)
6 (J) + yΓ

(1)
7 (J) = 0. (7.11)

Solving the system (7.5)-(7.8), we obtain

J =
J2

2 + J2
3 − J2

1

J2
4

,

which also satisfies the remaining equations Γ
(1)
j (J) = 0, j = 8, 9, 10. Therefore, we have

derived the differential invariant of first order

J =
(Xt + Tx)

2 + (Yt + Ty)
2 − (Yx −Xy)

2

(X2 + Y 2 − T 2 + 2Xx + 2Yy + 2Tt − 4U)2 . (7.12)

Furthermore, we obtain the invariant system

Xt + Tx = 0, Yt + Ty = 0, Yx −Xy = 0, (7.13)

and the invariant equation

X2 + Y 2 − T 2 + 2Xx + 2Yy + 2Tt − 4U = 0. (7.14)

That is,

Γ
(1)
j (Xt + Tx)|(7.13) = 0, Γ

(1)
j (Yt + Ty)|(7.13) = 0, Γ

(1)
j (Yx −Xy)|(7.13) = 0

and

Γ
(1)
j

(
X2 + Y 2 − T 2 + 2Xx + 2Yy + 2Tt − 4U

)∣∣
(7.14)

= 0,

where j = 1, 2, . . . , 10, α, respectively.

Now, in order to derive differential invariants of second order we need to consider the

invariant criterion

Γ
(2)
j (J) = 0, j = 1, 2, . . . , 10, α,

where Γ
(2)
j is the second order extension of Γj. Without presenting any calculations we

state that we only re-obtained the differential invariant (7.12). That is, they do not exist

differential invariants of second order.
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7.3 Invariants for three-dimensional hyperbolic equa-

tions

7.3.1 Equivalence transformations

Using the same procedure used in the previous section, we calculate the equivalence

transformations of the three-dimensional linear hyperbolic equations

utt = uxx + uyy + uzz + X(t, x, y, z)ux + Y (t, x, y, z)uy + Z(t, x, y, z)uz

+ T (t, x, y, z)ut + U(t, x, y, z)u. (7.15)

We find that the family of equations (7.15) admits an infinite continuous group E of

equivalence transformations generated by the Lie algebra LE spanned by the operators:

Γ1 =
∂

∂t
, Γ2 =

∂

∂x
, Γ3 =

∂

∂y
, Γ4 =

∂

∂z
,

Γ5 = t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
−X

∂

∂X
− Y

∂

∂Y
− T

∂

∂T
− Z

∂

∂Z
− 2U

∂

∂U
,

Γ6 = x
∂

∂t
+ t

∂

∂x
+ T

∂

∂X
+ X

∂

∂T
, Γ7 = y

∂

∂t
+ t

∂

∂y
+ T

∂

∂Y
+ Y

∂

∂T
,

Γ8 = z
∂

∂t
+ t

∂

∂z
+ Z

∂

∂T
+ T

∂

∂Z
, Γ9 = −y

∂

∂x
+ x

∂

∂y
− Y

∂

∂X
+ X

∂

∂Y
,

Γ10 = z
∂

∂y
− y

∂

∂z
+ Z

∂

∂Y
− Y

∂

∂Z
, Γ11 = z

∂

∂x
− x

∂

∂z
+ Z

∂

∂X
−X

∂

∂Z
,

Γ12 =
1

2

(
t2 + x2 + y2 + z2

) ∂

∂t
+ tx

∂

∂x
+ ty

∂

∂y
+ tz

∂

∂z
+ (xT − tX)

∂

∂X

+ (yT − tY )
∂

∂Y
+ (zT − tZ)

∂

∂Z
+ (xX + yY − tT + zZ + 2)

∂

∂T
− 2tU

∂

∂U
,

Γ13 = tx
∂

∂t
+

1

2

(
t2 + x2 − y2 − z2

) ∂

∂x
+ xy

∂

∂y
+ xz

∂

∂z

− (xX + yY − tT + zZ + 2)
∂

∂X
+ (yX − xY )

∂

∂Y
+ (zX − xZ)

∂

∂Z

+ (tX − xT )
∂

∂T
− 2xU

∂

∂U
,

Γ14 = ty
∂

∂t
+ xy

∂

∂x
+

1

2

(
t2 − x2 + y2 − z2

) ∂

∂y
+ yz

∂

∂z

+ (xY − yX)
∂

∂X
− (xX + yY − tT + zZ + 2)

∂

∂Y
+ (zY − yZ)

∂

∂Z

+ (tY − yT )
∂

∂T
− 2yU

∂

∂U
,

62

Chri
sti

na
 Tsa

ou
si



Γ15 = tz
∂

∂t
+ xz

∂

∂x
+ yz

∂

∂y
+

1

2
(t2 − x2 − y2 + z2)

∂

∂z
+ (xZ − zX)

∂

∂X

+ (yZ − zY )
∂

∂Y
+ (tZ − zT )

∂

∂T
− (xX + yY − tT + zZ + 2)

∂

∂Z
− 2zU

∂

∂U
,

Γα = αu
∂

∂u
− 2αx

∂

∂X
− 2αy

∂

∂Y
− 2αz

∂

∂Z
+ 2αt

∂

∂T

+ (αtt − αxx − αyy − αzz − αxX − αyY − αtT − αzZ)
∂

∂U
,

where α = α(x, t, y, z).

7.3.2 Differential invariants and invariant equations

In order to find semi-invariants we have to apply operator Γ
(1)
α onto invariants of first

order, i.e. of the form

J = J(t, x, y, z, u,X, Y, Z, T, U,Xi, Yi, Zi, Ti, Ui), i = t, x, y, z.

The invariant criterion Γ
(1)
α (J) = 0 leads to seven semi-invariants:

J1 = Yx −Xy, J2 = Xt + Tx, J3 = Yt + Ty,

J4 = Zx −Xz, J5 = Tz + Zt, J6 = Zy − Yz,

J7 = X2 + Y 2 + Z2 − T 2 + 2Xx + 2Yy + 2Zz + 2Tt − 4U.

Now using the complete equivalence group we find that equations (7.15) admit two dif-

ferential invariants of first order:

J1 =
(Tx + Xt)

2 + (Ty + Yt)
2 + (Tz + Zt)

2 − (Yx −Xy)
2 − (Zx −Xz)

2 − (Zy − Yz)
2

(X2 + Y 2 + Z2 − T 2 + 2Xx + 2Yy + 2Zz + 2Tt − 4U)2 ,

J2 =
(Tx + Xt)(Yz − Zy)− (Ty + Yt)(Xz − Zx) + (Tz + Zt)(Xy − Yx)

(X2 + Y 2 + Z2 − T 2 + 2Xx + 2Yy + 2Zz + 2Tt − 4U)2 .

In addition we have an invariant system with six equations:

Xt + Tx = 0, Tz + Zt = 0, Yt + Ty = 0,

Yx −Xy = 0, Zx −Xz = 0, Zy − Yz = 0,

and the invariant equation

X2 + Y 2 + Z2 − T 2 + 2Xx + 2Yy + 2Zz + 2Tt − 4U = 0.

We point out that, this results are more general from the two-dimensional equation, with

the exception that the three-dimensional equation admits two differential invariants.
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7.4 Invariants for n-dimensional hyperbolic equa-

tions

7.4.1 Equivalence transformations

In this section, we consider the n-dimensional (n ≥ 3) linear hyperbolic equations of the

form:

utt =
n∑

i=1

uxixi
+

n∑
i=1

Xi(x1, x2, . . . , xn, t)uxi
+T (x1, x2, . . . , xn, t)ut+U(x1, x2, . . . , xn, t)u.

(7.16)

Motivated by the results of the previous sections, we can generalize them to n dimensions.

We state that equations (7.16) admit an infinite continuous group E of equivalence

transformations generated by the Lie algebra LE spanned by the operators:

Γ1i
=

∂

∂xi

, i = 1, 2, . . . , n, Γ1n+1 =
∂

∂t
,

Γ2 = t
∂

∂t
+

n∑
i=1

xi
∂

∂xi

−
n∑

i=1

Xi
∂

∂Xi

− T
∂

∂T
− 2U

∂

∂U
,

Γ3ij
= xi

∂

∂xj

− xj
∂

∂xi

+ Xi
∂

∂Xj

−Xj
∂

∂Xi

, i = 1, 2, . . . , n− 1, j = i + 1, . . . n,

Γ4i
= xi

∂

∂t
+ t

∂

∂xi

+ T
∂

∂Xi

+ Xi
∂

∂T
, i = 1, 2, . . . , n,

Γ5i
= xit

∂

∂t
+

1

2

(
t2 + x2

i −
n∑

j=1, j 6=i

x2
j

)
∂

∂xi

+
n∑

j=1, j 6=i

xixj
∂

∂xj

+
n∑

j=1, j 6=i

(xjXi − xiXj)
∂

∂Xj

+ (tXi − xiT )
∂

∂T
−

(
n∑

j=1

xjXj − tT + n− 1

)
∂

∂Xi

−2xiU
∂

∂U
, i = 1, 2, . . . , n,

Γ5n+1 =
1

2

(
n∑

i=1

x2
i + t

)
∂

∂t
+

n∑
i=1

txi
∂

∂xi

+
n∑

i=1

(xiT − tXi)
∂

∂Xi

+

(
n∑

i=1

xiXi − tT + n− 1

)
∂

∂T
− 2tU

∂

∂U
,

Γα = αu
∂

∂u
− 2

n∑
i=1

αxi

∂

∂Xi

+ 2αt
∂

∂T
+

(
αtt −

n∑
i=1

αxixi
−

n∑
i=1

αxi
Xi − αtT

)
∂

∂U
,

where α = α(t, x1, x2, . . . , xn) is an arbitrary function.
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7.4.2 Differential invariants and invariant equations

Motivated by the results about differential invariants, we have that equations (7.16) admit

the one differential invariant of first order, namely,

J =

∑n
i=1(Txi

+ Xit)
2 −∑n−1

i=1

∑n
j=i+1(Xixj

−Xjxi
)2

(
∑n

i=1 X2
i − T 2 + 2

∑n
i=1 Xixi

+ 2Tt − 4U)2
.

We note that for the case where n = 3, two differential invariants exist.

The invariant criterion Γ
(1)
α (J) = 0, leads to 1

2
n(n + 1) + 1 semi-invariants:

Ji = Txi
+ Xit , i = 1, 2, . . . n,

Jij = Xixj
−Xjxi

, i = 1, 2, . . . n− 1, j = i + 1, . . . n,

J 1
2
n(n+1)+1 =

n∑
i=1

X2
i − T 2 + 2

n∑
i=1

Xixi
+ 2Tt − 4U.

Furthermore, we point out that the 1
2
n(n + 1) equations

Txi
+ Xit = 0, i = 1, 2, . . . n,

Xixj
−Xjxi

= 0, i = 1, 2, . . . n− 1, j = i + 1, . . . n,

form an invariant system and

n∑
i=1

X2
i − T 2 + 2

n∑
i=1

Xixi
+ 2Tt − 4U = 0

is an invariant equation. Semi-invariants, invariant system and invariant equation gener-

alize naturally with no exceptions.

7.5 Invariants for one-dimensional hyperbolic equa-

tions

7.5.1 Equivalence transformations

In this section we consider the one-dimensional linear hyperbolic equation of the form:

utt = uxx + X(t, x)ux + T (t, x)ut + U(t, x)u. (7.17)
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From the elementary study of partial differential equations, it is known that canonical

variables connect the linear hyperbolic equations

uxy + a(x, y)ux + b(x, y)uy + c(x, y)u = 0 (7.18)

and (7.17). Therefore the results of (7.18) (see [19, 20]) can be mapped into results of

(7.17) using canonical variables. In fact, this procedure was carried out in [17]. For

completeness, we present the results for the one-dimensional linear hyperbolic (7.17).

We find that the family of equations (7.17) has an infinite equivalence group E . The

corresponding Lie algebra LE is spanned by the operators:

Γφ = −φ
∂

∂t
+ φ

∂

∂x
− φ′(X + T )

∂

∂X
− φ′(X + T )

∂

∂T
− 2φ′U

∂

∂U
,

Γψ = ψ
∂

∂t
+ ψ

∂

∂x
− ψ′(X − T )

∂

∂X
+ ψ′(X − T )

∂

∂T
− 2ψ′U

∂

∂U
,

Γα = αu
∂

∂u
− 2αx

∂

∂X
+ 2αt

∂

∂T
+ (αtt − αxx − αxX − αtT )

∂

∂U
,

where φ = φ(x− t), ψ = ψ(x + t), α = α(x, t) are arbitrary functions. We note that the

above equivalence group is not a special form of the equivalence group of the family of

n-dimensional linear hyperbolic equations (7.16).

7.5.2 Differential invariants and invariant equations

In order to find semi-invariants for equation (7.17) we have to solve Γ
(1)
α (J) = 0. The

invariant criterion Γ
(1)
α (J) = 0 leads to two semi-invariants:

J1 = Xt + Tx,

J2 = X2 − T 2 + 2(Xx + Tt)− 4U.

These semi-invariants can be transformed into Laplace invariants, using canonical vari-

ables. We also point out that J1 = 0 and J2 = 0 are invariant equations.

Also, we obtain one differential invariant of first order

J =
Xt + Tx

X2 − T 2 + 2(Xx + Tt)− 4U
.

The above differential invariant can be obtained from the general case by setting n = 1.

However, the family (7.17) admits differential invariants of higher order (see [20]).

The results of this chapter are contained in [59].

66

Chri
sti

na
 Tsa

ou
si



7.6 Applications

Two given partial differential equations are called equivalent if one can be transformed into

the other by a change of variables. The equivalence problem consists of two parts: deciding

if there exists equivalence and then determining a transformation that connects the partial

differential equations. The motivation for considering this problem is to translate a known

solution of a partial differential equation to solutions of others which are equivalent to

this one.

In general, the equivalence problem is considered to be solved when a complete set of

invariants has been found. In practice, using invariants to solve the equivalence problem

for a given class of partial differential equations may require substantial computational

effort. However any set of invariants can provide necessary conditions for deriving equiv-

alent equations.

Here we consider the problem of finding those forms of the class (7.1) that can be

mapped to an equation of the same class with constant coefficients. That is, we deter-

mine the forms of the functions X(t, x, y), Y (t, x, y), T (t, x, y) and U(t, x, y) such that

equations (7.1) is mapped into

utt = uxx + uyy + c1ux + c2uy + c3ut + c4u, (7.19)

where c1, . . . c4 are constants. Firstly, we note that the mapping

t′ = at, x′ = ε1ax, y′ = ε2ay, u′ = e
1
2
(c1x+c2y−c3t)u,

where a is an arbitrary constant, ε1 = ±1, ε2 = ±1, transforms

u′t′t′ = u′x′x′ + u′y′y′ +
4c4 − c2

1 − c2
2 + c2

3

4a2
u′

into (7.19). Hence, choosing the appropriate value of the parameter a, equation (7.19) is

equivalent with

u′t′t′ = u′x′x′ + u′y′y′ + u′. (7.20)

Therefore we can, equivalently, consider the problem of finding those forms of the class

(7.1) that can be mapped into (7.20) instead of those forms that can be mapped into

(7.19).
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In the special case c4 = 1
4
(c2

1 + c2
2 − c2

3), equation (7.19) can be mapped into the two-

dimensional linear wave equation

u′t′t′ = u′x′x′ + u′y′y′ . (7.21)

We point out that equations (7.20) and (7.21) are inequivalent. Hence, there is merit to

consider additionally the problem of finding those forms of the class (7.1) that can be

mapped into (7.21).

Note 7.1. For equivalent equations (7.19) and (7.20) the differential invariant J in equa-

tion (7.12) is equal to zero. Equations (7.19) and (7.21) satisfy the invariant system (7.13)

and the invariant equation (7.14) only if c4 = 1
4
(c2

1 + c2
2 − c2

3).

We state the results of this section in the following theorem. The proof can be carried

out using first that two equivalent equations have the same invariants or/and satisfy the

invariant equations. This fact provides necessary conditions for connecting two equations.

The second step is to find a point transformation that connects these equations (or special

cases). Details of how such transformations are constructed can be found in [29,46].

Theorem 7.1. (i) An equation of the class (7.1) can be mapped into the two-dimensional

linear wave equation (7.21) by the point transformation

t′ = ct, x′ = ε1cx, y′ = ε2cy, u′ = e−
1
2
F u, (7.22)

where ε1 = ±1, ε2 = ±1, and c is an arbitrary constant, if and only if it is of the form

utt = uxx + uyy − Fx(t, x, y)ux − Fy(t, x, y)uy + Ft(t, x, y)ut

+ 1
4

[
F 2

x + F 2
y − F 2

t − 2(Fxx + Fyy − Ftt)
]
u, (7.23)

where F (t, x, y) is an arbitrary function. Transformation (7.22) is a member of the equiv-

alence transformations admitted by the class (7.1).

(ii) An equation of the class (7.1) can be mapped into the constant coefficient equation

(7.20) by the point transformation (7.22) if and only if it is of the form

utt = uxx + uyy − Fx(t, x, y)ux − Fy(t, x, y)uy + Ft(t, x, y)ut

+ 1
4

[
F 2

x + F 2
y − F 2

t − 2(Fxx + Fyy − Ftt) + 4c2
]
u. (7.24)
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Note 7.2. Equation (7.21) and equation (7.23) satisfy the invariant system (7.13) and

invariant equation (7.14). Equation (7.20) and equation (7.24) are such that the invariant

(7.12) vanishes. This is the starting point for proving the above theorem.

Note 7.3. The results derived in this section can easily be generalized to n-dimensional

equations of the class (7.16).

7.7 Conclusion

In this chapter, we used Lie infinitesimal method for calculating the equivalence trans-

formations of the class of two- and three-dimensional hyperbolic equations. We have

derived the differential invariants up to first order. Motivated by these results, we gener-

alized them to n-dimensions. For one-dimensional hyperbolic equations a different form of

equivalence transformations have been derived. In the last section, we used the fact that

the knowledge of differential invariants can be useful to find the forms of those equations

of the form (7.1), that can be mapped into an equation of the same class with constant

coefficients.
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Chapter 8

Differential Invariants for

n-dimensional wave-type equations

8.1 Introduction

In this chapter, equivalence transformations and differential invariants of first order for the

n-dimensional wave type equations of the form: utt =
∑n

i=1 Fi(t, x1, x2, . . . , xn)uxixi
, are

given. These equations have considerable interest in Mathematical Physics and Biology

(see [3,8,65,69]). They have a number of applications, for example, in population dynam-

ics, tides and waves, chemical reactors, flame and combustion problems and problems in

transonic aerodynamics. Also, for the cases where n = 1, 2, 3 we present differential in-

variants of second order. In order to produce higher order invariants, we need to consider

higher order prolongations. Finally, we employ the derived invariants to find the form of

those equations that can be mapped into an equation with constant coefficients.
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8.2 Differential Invariants for n-dimensional wave-

type equations

8.2.1 Equivalence Transformations

We consider the n-dimensional wave-type class of equations

utt =
n∑

i=1

Fi(x1, x2, . . . , xn)uxixi
. (8.1)

In the spirit of Ibragimov’s work (see [19]), we classify differential invariants of first order

for the class (8.1). In order to achieve this goal, we firstly need to derive the equivalence

transformations for the class (8.1).

We use infinitesimal method for calculating the equivalence transformations of the class

(8.1). We find that the class of equations (8.1) admits a (3n + 4)-dimensional continuous

group E of equivalence transformations generated by Lie algebra LE given by the operators:

Γ1i
=

∂

∂xi

, i = 1, 2, . . . , n,

Γ1n+1 =
∂

∂t
,

Γ1n+2 =
∂

∂u
,

Γ2i
= xi

∂

∂xi

+ 2Fi
∂

∂Fi

, i = 1, 2, . . . , n, (8.2)

Γ2n+1 = t
∂

∂t
− 2

n∑
i=1

Fi
∂

∂Fi

,

Γ3i
= x2

i

∂

∂x
+ xiu

∂

∂u
+ 4xiFi

∂

∂Fi

, i = 1, 2, . . . , n,

Γ3n+1 = t2
∂

∂t
+ tu

∂

∂u
− 4t

n∑
i=1

Fi
∂

∂Fi

.

8.2.2 Differential invariants and invariant equations

Firstly, we consider the problem of finding differential invariants of the class of equations

(8.1). Firstly, we seek for differential invariants of order zero. Using the 3n + 4 operators

given by relations (8.2), the invariance criterion Γ(J) = 0, lead to the trivial invariant,

J = constant.
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In order to find differential invariants of first order, that depend of first derivatives of

the functions Fi, i = 1, 2, . . . , n,

J = J(t, xi, u, Fi, Fit , Fixj
), i, j = 1, 2, . . . , n, (8.3)

we need to consider the first prolongation of the operators (8.2). Using the formula:

Γ(1) = Γ + µj1
i

∂

∂Fij1

,

where:

µj1
i = D̃j1(µi)−

n∑

k=1

FktD̃j1(ν)−
n∑

k=1

n∑

l=1

Fkxl
D̃j1(ξl),

i = 1, 2, . . . , n, j1 = t, x1, x2, . . . , xn and D̃j denote the total derivative with respect to

j = t, x1, x2, . . . , xn

D̃j =
∂

∂j
+ Fij

∂

∂Fi

+ Fijx

∂

∂Fix

+ Fijt

∂

∂Fit

+ . . . ,

we obtain the first extension of the generators (8.2):

Γ
(1)
1i

=
∂

∂xi

, Γ
(1)
1n+1

=
∂

∂t
, Γ

(1)
1n+2

=
∂

∂u
, (8.4)

Γ
(1)
2i

= Γ2i
+ Fixi

∂

∂Fixi

+ 2Fit

∂

∂Fit

+ 2
n∑

j = 1

j 6= i

Fixj

∂

∂Fixj

−
n∑

j = 1

j 6= i

Fjxi

∂

∂Fjxi

, (8.5)

Γ
(1)
2n+1

= Γ2n+1 − 2
n∑

i=1

n∑
j=1

Fixj

∂

∂Fixj

− 3
n∑

i=1

Fit

∂

∂Fit

, (8.6)

Γ
(1)
3i

= 2xiΓ
(1)
2i
− x2

i

∂

∂xi

+ xiu
∂

∂u
+ 4Fi

∂

∂Fixi

, (8.7)

Γ
(1)
3n+1

= 2tΓ
(1)
2n+1

− t2
∂

∂t
+ tu

∂

∂u
− 4

n∑
i=1

Fi
∂

∂Fit

, (8.8)

where i = 1, 2, . . . , n. Applying the operators (8.4), differential invariant (8.3) simplifies

to

J = J(F1, F2, . . . , Fn, F1t , F1x1
, . . . , F1xn

, . . . , Fnt , Fnx1
, . . . , Fnxn

).

Using the operators (8.7) we deduce, from the terms independent of xi, that

∂J

∂Fixi

= 0, i = 1, 2, . . . , n.
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Hence,

J = J(F1, F2, . . . , Fn, Fit , Fixj
), i, j = 1, 2, . . . , n, i 6= j. (8.9)

Now, operators (8.7) and operators (8.5) become identical.

Applying the operator (8.8) to differential invariant given by (8.9), and the vanish-

ing coefficients that are independent of t, lead to the following characteristic system of

equations:

dF1t

F1

=
dF2t

F2

= · · · = dFnt

Fn

,

which produces the n− 1 integrals

pk = F1tFk − F1Fkt , k = 2, 3, . . . , n.

Hence,

J = J(F1, F2, . . . , Fn, Fixj
, p2, . . . , pn), i, j = 1, 2, . . . , n, i 6= j. (8.10)

This implies that operators (8.8) and (8.6) are the same.

Now, we have to employ operators (8.5) and (8.6). Application of these operators to

differential invariants given by (8.10), lead to a system of n+1 PDEs. Solving this system,

we arrive to

(n− 1)
(

3
2
n− 1

)
(8.11)

first order differential invariants:

Ii−1 =
F1Fit − F1tFi

F
3
2
1 Fix1

, i = 2, 3, . . . , n,

Ji−1 =
F

3
2
1 Fix1

F
3
2

i F1xi

, i = 2, 3, . . . , n,

Ki−1j−1 =
F1Fixj

F1xj
Fi

, i 6= j, i, j = 2, 3, . . . , n,

Li−2j−1 =
F

1
2

i F1xi

F
1
2

j F1xj

, i > j, i = 3, 4, . . . , n, j = 2, 3, . . . , n− 1. (8.12)

Furthermore, we point out that the following (n− 1)(n + 1) expressions:

Fixj
= 0, i, j = 1, 2, . . . , n, i 6= j,

F1Fit − F1tFi = 0, i = 2, 3, . . . , n, (8.13)
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are invariant equations for the class of equations (8.1). That is, they satisfy the relations:

Γ
(1)
lm

(
Fixj

)∣∣∣h
Fixj

=0
i = 0, i, j = 1, 2, . . . , n, i 6= j

and

Γ
(1)
lm

(F1Fit − F1tFi)|[F1Fit−F1tFi=0] = 0, i = 2, 3, . . . , n,

where l = 1, 2, 3, m = 1, . . . , n + 2.

8.3 Differential invariants for the case n = 1

We consider the one-dimensional wave-type equation

utt = F1(x, t)uxx. (8.14)

We set n = 1 in operators (8.2) to deduce that the class (8.14) admits a 7-dimensional

continuous group of equivalence transformations. From (8.11) we deduce that the class

of equation (8.14) does not admit differential invariants of order one.

In order to determine differential invariants of order two, we need to apply the invariant

test

Γ
(2)
k (J) = 0, k = 1, 2, . . . , 7.

The second prolongation of operators (8.2), can be calculated using the formulas

Γ
(2)
k = Γ

(1)
k + µj1j2

i

∂

∂Fij1j2

,

where:

µj1j2
i = D̃j2(µ

j1
i )−

n∑

k=1

Fkj1t
D̃j2(ν)−

n∑

k=1

n∑

l=1

Fkj1xl
D̃j2(ξl),

i = 1, 2, . . . , n, j1, j2 = t, x1, x2, . . . , xn and D̃j denote the total derivative with respect to

j = t, x1, x2, . . . , xn.

We state that the class of equations (8.14) admits two differential invariants of second

order:

I1 =
2F

1
2
1 (F1tF1x − F1F1xt)

4F1F1tt − 5F 2
1t

, I2 =
F1(3F

2
1x
− 4F1F1xx)

4F1F1tt − 5F 2
1t

.

Furthermore, we have the following three invariant equations:

F1tF1x − F1F1xt = 0, 3F 2
1x
− 4F1F1xx = 0, 4F1F1tt − 5F 2

1t
= 0.

74

Chri
sti

na
 Tsa

ou
si



8.4 Differential Invariants for the case n = 2

Now, we consider the two-dimensional wave-type equation

utt = F1(x, y, t)uxx + F2(x, y, t)uyy. (8.15)

For the case n = 2, it follows that equation (8.15) admits a 10- dimensional continuous

group of equivalence transformations. Now, from (8.11), we have that there exist two

differential invariants of first order, which are given from relations (8.12), by setting

n = 2. In order to find differential invariants of second order, we need to calculate the

second prolongations of generators. The invariant test

Γ
(2)
k (J), k = 1, 2, . . . , 10

leads to a system of PDEs. The solution of the system produce the following 12 differential

invariants of second order:

I1 =
4F1F1tt − 5F 2

1t

F 2
1y

F2

, I2 =
4F1F1xx − 3F 2

1x

F
4
3
1y

F
2
3
2x

,

I3 =
4F2F2yy − 3F 2

2y

F
2
3
1y

F
4
3
2x

, I4 =
F1F2xt − F1tF2x

F
1
2
2 F1yF2x

,

I5 =
F2F2yt − F2tF2y

F
1
2
2 F

2
3
1y

F
4
3
2x

, I6 =
F1F1yt − F1tF1y

F
1
2
2 F 2

1y

,

I7 =
F1F1xt − F1tF1x

F
1
2
2 F

5
3
1y

F
1
3
2x

, I8 =
F1F1xy − F1xF1y

F
5
3
1y

F
1
3
2x

,

I9 =
F2F2xy − F2xF2y

F
1
3
1y

F
5
3
2x

, I10 =
2F1F2xx + F1xF2x

F
2
3

1y
F

4
3
2x

,

I11 =
F1yF2y + 2F1yyF2

F
4
3

1y
F

2
3
2x

, I12 =
4F 2

1 F2tt − 10F1F1tF2t + 5F 2
1t

F2

F 2
1y

F 2
2

.

8.5 Differential Invariants for the case n = 3

Finally, we consider the 3-dimensional wave-type equation of the form

utt = F1(x, y, z, t)uxx + F2(x, y, z, t)uyy + F3(x, y, z, t)uzz. (8.16)

From operators (8.2), by setting n = 3, we obtain the 13-dimensional continuous group

of equivalence transformations of equations (8.16). Also, from (8.11) we deduce that it
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admits seven differential invariants of first order. These invariants can be obtained from

relations (8.12) by setting n = 3.

Now, we determine differential invariants of second order, that depend on the second

derivatives of F1, F2, F3. Therefore we need the second prolongation of the operators

(8.2). The invariance criterion

Γ
(2)
k (J) = 0, k = 1, 2, . . . , 13,

leads to the following differential invariants:

I1 =
F1F1yz

F1yF1z

, I2 =
F1F2xzF

1
2
1z

F
1
2
2z

F1yF2z

, I3 =
F 2

1 F
1
2
1z

F3xy

F
1
2
2z

F 2
1y

F3

,

I4 =
4F1F1tt − 5F 2

1t

2F 2
1y

F2

, I5 =
F1F1yt − F1tF1y

F 2
1y

F
1
2
2

, I6 =
F1F2zt − F1tF2z

F2zF
1
2
3 F1z

,

I7 =
F1F1zt − F1tF1z

F1yF1zF
1
2
2

, I8 =
F1F1xz − F1xF1z

F
1
2
1z

F1yF
1
2
2z

,

I9 =
F 2

1 (F1yF3yy − F1yyF3y)

F 3
1y

F3

, I10 =
F 2

1 (F1zF2zz − F1zzF2z)

F 3
1z

F2

,

I11 =
F 2

1 (F1zF3yz + 2F1zzF3y)

F 3
1y

F2

, I12 =
F1(F1yF2yz + 2F1yyF2z)

F 2
1y

F2z

,

I13 =
F1(F1yF2y + 2F1yyF2)

F 2
1z

F3

, I14 =
F1(F1zF3z + 2F1zzF3)

F2F 2
1y

,

I15 =
F 4

1z
(F1F3xt − F1tF3x)

F
1
2
1 F 4

1y
F 2

2z

, I16 =
F

5
2
1 (F1zF3xz + 2F1zzF3x)

F 3
1y

F
3
2
2

,

I17 =
F

3
2
1 (F1F2xt − F1tF2x)

F 2
1y

F 2
2

, I18 =
F1(F1F3yt − F1tF3y)

F 2
1y

F3F
1
2
2

,

I19 =
F

1
2
1 (F1F1xt − F1tF1x)

F 2
1y

F2

, I20 =
F1(4F1F1xx − 3F 2

1x
)

2F 2
1y

F2

,

I21 =
F

1
2
1 (F1F1xy − F1xF1y)

F
1
2
2 F 2

1y

, I22 =
F1F

3
2
1z

(F1yF2xy + 2F1yyF2x)

F
3
2
2z

F 3
1y

,

I23 =
F 2

1 (2F1F2xx + F1xF2x)

F 2
2 F 2

1y

, I24 =
F1F1z(2F1F3xx + F1xF3x)

F 2
1y

F2zF3

,

I25 =
4F 2

1 F2tt − 10F1F1tF2t + 5F 2
1t

F2

2F 2
1y

F 2
2

,
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I26 =
4F 2

1 F3tt − 10F1F1tF3t + 5F 2
1t

F3

2F
2
3
1 F

4
3
1y

F
2
3
2z

F
4
3
3

,

I27 =
F 2

1 (F 2
1y

F2yy + 3F1yF2yF1yy + 3F2F
2
1yy

)

F2F 4
1y

,

I28 =
F1(F

2
1z

F3zz + 3F1zF1zzF3z + 3F 2
1zz

F3)

F 2
1y

F1zF2z

,

I29 =
F1F1zF3zt + 2F1F1zzF3t − F1tF1zF3z − 2F1tF1zzF3

F 2
1y

F2zF
1
2
3

,

I30 =
F

1
2
1 F

1
2
1z

(F1F1yF2yt + 2F1F1yyF2t − F1tF1yF2y − 2F1tF1yyF2)

F
1
2
2z

F 3
1y

F2

.

8.6 Applications

We recall that, two given partial differential equations are called equivalent if one can be

transformed into the other by a change of variables. However a complete set of invariants

can provide necessary conditions for deriving equivalent equations.

In this section, we use invariants to classify equivalent PDEs. In particular, we aim

to derive all equations of the form (8.1) that can be linked with the constant coefficient

equation

utt =
n∑

i=1

εiuxixi
, εi = ±1. (8.17)

Equation (8.17) is a member of the class (8.1). If we set Fi = εi the invariant equations

(8.13) are satisfied. Hence, any equation of the class (8.1) that is connected with equation

(8.17) must satisfy the invariant equations. Consequently, the solution of the invariant

equations will provide necessary conditions for an equation of the class (8.1) to be mapped

into equation (8.17).

Solving the invariant equations, we find that

Fi(t, x1, x2, . . . , xn) = Φ(t)Ai(xi),

where Φ(t) and Ai(xi), i = 1, 2, . . . , n are arbitrary functions. Hence, an equation of the

class (8.1) is linked with equation (8.17) only if is of the form

utt = Φ(t)
n∑

i=1

Ai(xi)uxixi
. (8.18)
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Now, we will use the results of chapter 3 to derive the equivalence transformation in

finite form. In this case we consider transformations of the form

x′i = Pi(x, t, u), t′ = Q(x, t, u), u′ = R(x, t, u), x = (x1, . . . , xn).

It can be shown that equation (8.18) (consequently equation (8.1)) can be mapped into

equation (8.17) if and only if it is of the form

utt = Q2(t)
n∑

i=1

εi

P 2
i (xi)

uxixi
, (8.19)

where the functions Pi(xi) and Q(t) are solutions of the third order ordinary differential

equation

f ′f ′′′ − 3
2
f ′′2 = 0.

The transformation that connects equation

utt = Q2(t)
n∑

i=1

εi

P 2
i (xi)

uxixi

and equation

u′t′t′ =
n∑

i=1

εiu
′
x′ix

′
i
, εi = ±1

is given by

t′ = Q(t), x′i = Pi(xi), u′ =

√√√√Qt

n∏
i

Pixi
u.

The results of this chapter are appeared in a recent paper [57].

8.7 Conclusion

In this chapter, we have derived the complete set of differential invariants and invariant

equations for the n-dimensional wave-type equations (8.1) up to order one by the infin-

itesimal method. Also, we have determined differential invariants of second order, for

the cases where n = 1, 2, 3. As an application of the differential invariants, in the last

section, we find the form of those equations (8.1) that can be mapped into an equation

with constant coefficients.
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Chapter 9

Point Transformations: Notations

and basic theory

9.1 Introduction

In the spirit of chapter 3, we generalize the results of point transformations for systems

of two partial differential equations. Similar as in chapter 3, we start with presenting

identities relating arbitrary order partial differential derivatives of u(x, t), v(x, t) and

u′(x′, t′), v′(x′, t′). These identities are useful to study the nature of those point transfor-

mations which preserve specific types of systems of two PDEs. We study three common

classes of systems of PDEs restricted to two dependent variables and two independent

variables and deduce results, summarized in theorems. These classes of systems are such

that {ut, vt}, {uxt, vxt}, {utt, vtt} are functions of x, t, u, v and x-derivatives of u and v.

9.2 Notations and basic theory

In this section, we generalize the notation, that we had in chapter 3, in notation with two

dependent variable, and summarize the basic theory on which the work in the sections

below is based.

We consider the point transformation

x′ = P (x, t, u, v), t′ = Q(x, t, u, v), u′ = R(x, t, u, v), v′ = S(x, t, u, v), (9.1)
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relating x, t, u(x, t), v(x, t) and x′, t′, u′(x′, t′), v′(x′, t′), and assume that this is non-

degenerate in the sense that the Jacobian

J =
∂(P,Q, R, S)

∂(x, t, u, v)
6= 0 (9.2)

and also that

δ =
∂(P (x, t, u(x, t), v(x, t)), Q(x, t, u(x, t), v(x, t)))

∂(x, t)
6= 0. (9.3)

In (9.3) P and Q are expressed as functions of x and t whereas in (9.2) P, Q, R and S

are to be regarded as functions of the independent variables x, t, u, v.

The derivatives of u(x, t), v(x, t) and u′(x′, t′), v′(x′, t′) will be denoted by

uij =
∂i+ju

∂xi∂tj
, u′ij =

∂i+ju′

∂x′i∂t′j
, (9.4)

vij =
∂i+jv

∂xi∂tj
, v′ij =

∂i+jv′

∂x′i∂t′j
. (9.5)

If Ψ is a function of x, t, u, v and the derivatives of u, v, the total derivatives of Ψ with

respect to x and t will be denoted by

ΨX = Ψx +
∑∑

ui+1j
∂Ψ

∂uij

+
∑∑

vi+1j
∂Ψ

∂vij

, (9.6)

ΨT = Ψt +
∑ ∑

uij+1
∂Ψ

∂uij

+
∑ ∑

vij+1
∂Ψ

∂vij

, (9.7)

where the double summations are to be taken over the values of i and j which cover all

derivatives uij and vij occurring in Ψ.

With this notation δ may be expressed as

δ =
∂(P,Q)

∂(X, T )
= PXQT − PT QX

= u10(PuQt − PtQu) + u01(PxQu − PuQx) + v10(PvQt − PtQv)

+ v01(PxQv − PvQx) + (u10v01 − u01v10) (PuQv − PvQu) + (PxQt − PtQx)

=
∂(P, Q)

∂(u, t)
u10 +

∂(P, Q)

∂(x, u)
u01 +

∂(P, Q)

∂(v, t)
v10 +

∂(P, Q)

∂(x, v)
v01

+
∂(P, Q)

∂(u, v)
(u10v01 − u01v10) +

∂(P, Q)

∂(x, t)
. (9.8)

Also, under the point transformation (9.1),


 dx′

dt′


 =


 PX PT

QX QT





 dx

dt


 ,


 dx

dt


 =

1

δ


 QT −PT

−QX PX





 dx′

dt′



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(9.9)

and

dΨ = ΨXdx + ΨT dt =
1

δ
(ΨX ΨT )


 QT −PT

−QX PX





 dx′

dt′


 . (9.10)

Hence, taking Ψ = u′ij−1, u′i−1j, v′ij−1, v′i−1j respectively, gives

u′ij = δ−1
(
PX(u′ij−1)T − PT (u′ij−1)X

)
, j ≥ 1, i ≥ 0, (9.11)

u′ij = δ−1
(
QT (u′i−1j)X −QX(u′i−1j)T

)
, i ≥ 1, j ≥ 0, (9.12)

v′ij = δ−1
(
PX(v′ij−1)T − PT (v′ij−1)X

)
, j ≥ 1, i ≥ 0, (9.13)

v′ij = δ−1
(
QT (v′i−1j)X −QX(v′i−1j)T

)
, i ≥ 1, j ≥ 0. (9.14)

Also,

u′00 = u′ = R, v′00 = v′ = S. (9.15)

Equations (9.11)-(9.15) furnish recurrence relations which enable u′ij and v′ij to be ex-

pressed in terms of x, t, u, v and the derivatives of u and v for any i ≥ 0, j ≥ 0. The

factor δ−1 makes the expressions for u′ij, v′ij grow with i and j in a very cumbersome

manner.

In the case of infinitesimal Lie point transformations in which:

P (x, t, u, v) = x + εP ∗(x, t, u, v) + O(ε2),

Q(x, t, u, v) = t + εQ∗(x, t, u, v) + O(ε2),

R(x, t, u, v) = u + εR∗(x, t, u, v) + O(ε2),

S(x, t, u, v) = v + εS∗(x, t, u, v) + O(ε2),

the forms of J and δ in (9.2) and (9.3) simplify to

J = 1 + ε(P ∗
x + Q∗

t + R∗
u + S∗v), (9.16)

δ = 1 + ε(P ∗
x + Q∗

t ), (9.17)
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to the first order of ε. In this case the recurrence relations corresponding to (9.11)-(9.15)

are

u′ij = (u′ij−1)T − ε[P ∗
T (u′ij−1)X + Q∗

T (u′ij−1)T ], j ≥ 1, i ≥ 0, (9.18)

u′ij = (u′i−1j)X − ε[P ∗
X(u′i−1j)X + Q∗

X(u′i−1j)T ], i ≥ 1, j ≥ 0, (9.19)

v′ij = (v′ij−1)T − ε[P ∗
T (v′ij−1)X + Q∗

T (v′ij−1)T ], j ≥ 1, i ≥ 0, (9.20)

v′ij = (v′i−1j)X − ε[P ∗
X(v′i−1j)X + Q∗

X(v′i−1j)T ], i ≥ 1, j ≥ 0, (9.21)

u′00 = u + εR∗, (9.22)

v′00 = v + εS∗, (9.23)

to the first order in ε. These relations of course lead to considerably less cumbersome

forms of u′ij and v′ij than those obtained from (9.11)-(9.15).

9.3 Properties of the transformations

Under the point transformation (9.1) each derivative of u′(x′, t′) and v′(x′, t′), that is u′ij

and v′ij, i ≥ 0, j ≥ 0, may be expressed, via the recurrence relations (9.11)-(9.15), as

functions of x, t, u, v and the derivatives of u and v. A number of results concerning the

functional form of u′pq(x, t, u, v, . . . , uij, . . . , vij, . . . ) and v′pq(x, t, u, v, . . . , uij, . . . , vij, . . . )

are presented in this section. The proofs of the results are generally inductive and use

the recurrence relations (9.11)-(9.15).

Lemma 9.1. If x′ = P (x, t, u, v), t′ = Q(x, t, u, v), u′ = R(x, t, u, v), v′ = S(x, t, u, v)

n∑
i=0

zi
∂u′pq

∂uij

=





(−1)p(QX − zQT )p(PX − zPT )qJ1δ
−p−q−1, n > 0

Ru, n = 0

n∑
i=0

zi
∂u′pq

∂vij

=





(−1)p(QX − zQT )p(PX − zPT )qJ2δ
−p−q−1, n > 0

Rv, n = 0

n∑
i=0

zi
∂v′pq

∂uij

=





(−1)p(QX − zQT )p(PX − zPT )qJ3δ
−p−q−1, n > 0

Su, n = 0

n∑
i=0

zi
∂v′pq

∂vij

=





(−1)p(QX − zQT )p(PX − zPT )qJ4δ
−p−q−1, n > 0

Sv, n = 0
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where i + j = p + q = n ≥ 0, and

J1 =
∂(P, Q,R)

∂(t, u, v)
vx − ∂(P,Q, R)

∂(x, u, v)
vt +

∂(P, Q, R)

∂(x, t, u)
, (9.24)

J2 = −∂(P,Q, R)

∂(t, u, v)
ux +

∂(P, Q, R)

∂(x, u, v)
ut +

∂(P, Q,R)

∂(x, t, v)
, (9.25)

J3 =
∂(P, Q, S)

∂(t, u, v)
vx − ∂(P, Q, S)

∂(x, u, v)
vt +

∂(P,Q, S)

∂(x, t, u)
, (9.26)

J4 = −∂(P,Q, S)

∂(t, u, v)
ux +

∂(P, Q, S)

∂(x, u, v)
ut +

∂(P,Q, S)

∂(x, t, v)
. (9.27)

We point out that Ji, i = 1, 2, 3, 4 are non-zero quantities.

Corollary 9.1. The coefficient of zn and z0 in lemma 9.1 give, respectively

∂u′pq

∂up+q0

= (−1)qP q
T Qp

T J1δ
−p−q−1, p + q ≥ 1, (9.28)

∂u′pq

∂u0p+q

= (−1)pP q
XQp

XJ1δ
−p−q−1, p + q ≥ 1, (9.29)

∂u′pq

∂vp+q0

= (−1)qP q
T Qp

T J2δ
−p−q−1, p + q ≥ 1, (9.30)

∂u′pq

∂v0p+q

= (−1)pP q
XQp

XJ2δ
−p−q−1, p + q ≥ 1, (9.31)

∂v′pq

∂up+q0

= (−1)qP q
T Qp

T J3δ
−p−q−1, p + q ≥ 1, (9.32)

∂v′pq

∂u0p+q

= (−1)pP q
XQp

XJ3δ
−p−q−1, p + q ≥ 1, (9.33)

∂v′pq

∂vp+q0

= (−1)qP q
T Qp

T J4δ
−p−q−1, p + q ≥ 1, (9.34)

∂v′pq

∂v0p+q

= (−1)pP q
XQp

XJ4δ
−p−q−1, p + q ≥ 1. (9.35)

Lemma 9.2. If x′ = P (x, t, u, v), t′ = Q(x, t, u, v), u′ = R(x, t, u, v, ), v′ = S(x, t, u, v)

then

∂m1+n1+m2+n2u′10

∂um1
10 ∂un1

01∂vm2
10 ∂vn2

01

= [(−1)n1Cm1n1(n1α1QX + m1β1QT )

+ (−1)n2Dm2n2(n2α2QX + m2β2QT )]δ−m1−n1−m2−n2−1,

∂m1+n1+m2+n2u′01

∂um1
10 ∂un1

01∂vm2
10 ∂vn2

01

= [(−1)m1Cm1n1(n1α1PX + m1β1PT )

+ (−1)m2Dm2n2(n2α2PX + m2β2PT )]δ−m1−n1−m2−n2−1,

83

Chri
sti

na
 Tsa

ou
si



where

α1 =
∂(P, Q)

∂(t, u)
− ∂(P, Q)

∂(u, v)
vt,

β1 =
∂(P, Q)

∂(x, u)
− ∂(P, Q)

∂(u, v)
vx,

α2 =
∂(P, Q)

∂(t, v)
+

∂(P,Q)

∂(u, v)
ut,

β2 =
∂(P, Q)

∂(x, v)
+

∂(P,Q)

∂(u, v)
ux.

Lemma 9.3. If x′ = P (x), t′ = Q(t), u′ = R(x, t, u, v), v′ = S(x, t, u, v) then

∂2u′pq

∂uij∂ukl

=






 p

i





 q

j


 P−p

x Q−q
t Ruu, i + k = p, j + l = q

0, i + k > p or j + l > q

∂2u′pq

∂uij∂vkl

=






 p

i





 q

j


 P−p

x Q−q
t Ruv, i + k = p, j + l = q

0, i + k > p or j + l > q

∂2u′pq

∂vij∂vkl

=






 p

i





 q

j


 P−p

x Q−q
t Rvv, i + k = p, j + l = q

0, i + k > p or j + l > q.

For the derivatives of v′pq we simply R → S in the above relations.

9.4 Form-preserving transformations of systems of

PDEs

9.4.1 Basic results

Here, we will use the results of the previous section in order to study the nature of

point transformations which perform specific changes to systems of PDEs. We start

with a general class of systems of PDEs for which general deductions about the forms

of P (x, t, u, v) and Q(x, t, u, v) can be made. These will be useful for the discussion of

restricted classes of systems.

We give a similar theorem as theorem 3.1 for systems of two PDEs.
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Theorem 9.1. The system of PDEs

upq = H (x, t, u, v, {uij}, {vkl}) , vµν = F (x, t, u, v, {uαβ}, {vγδ})

is related to

u′pq = H ′ (x′, t′, u′, v′, {u′ij}, {v′kl}
)
, v′µν = F ′ (x′, t′, u′, v′, {u′αβ}, {v′γδ}

)
,

where {uij}, {uαβ}, {vkl}, {vγδ} and {u′ij}, {u′αβ}, {v′kl}, {v′γδ} respectively denote all

derivatives of u, v, u′ and v′ of order i+j < p+q, k+l < p+q, α+β < µ+ν, γ+δ < µ+ν

by the point transformation x′ = P (x, t, u, v), t′ = Q(x, t, u, v), u′ = R(x, t, u, v), v′ =

S(x, t, u, v) in the cases:

(a) (p 6= 0, q 6= 0) or (µ 6= 0, ν 6= 0),

(b){(p 6= 0, q 6= 0) and (µ 6= 0, ν = 0)} or {(p 6= 0, q 6= 0) and (µ = 0, ν 6= 0)} or

{(p 6= 0, q = 0) and (µ = 0, ν 6= 0)} or {(p 6= 0, q = 0) and (µ 6= 0, ν 6= 0)} or

{(p = 0, q 6= 0) and (µ 6= 0, ν 6= 0)} or {(p = 0, q 6= 0) and (µ 6= 0, ν = 0)},
(c) (p = 0, q 6= 0) or (µ = 0, ν 6= 0),

(d) (p 6= 0, q = 0) or (µ 6= 0, ν = 0)

only if

(a) {P = P (x), Q = Q(t)} or {P = P (t), Q = Q(x)},
(b) P = P (x), Q = Q(t),

(c) P = P (x),

(d) Q = Q(t),

respectively.

Proof. For the proof of the theorem 9.1, we consider the fate of the highest-order derivative

of u′pq = H ′, v′µν = F ′ under the point transformation. Consider the lemma 9.1, corollary

9.1, p + q ≥ 1 and µ + ν ≥ 1, that is equations (9.28)-(9.35).

In case (a) neither (p = 0, q = 0) nor (µ = 0, ν = 0) so that the expressions

(9.28)-(9.35) must vanish in order for u′pq and v′µν to generate upq and vµν alone of order

p + q and µ + ν, respectively. Any lower-order derivatives of u′ and v′ which occur in H ′

and F ′ transform to derivatives of u and v of order less than p + q and µ + ν. Hence,

85

Chri
sti

na
 Tsa

ou
si



QT PT = QXPX = 0. Hence, either {P = P (x), Q = Q(t)} or {P = P (t), Q = Q(x)} as

required.

In the first case of case (b), where {p 6= 0 and q 6= 0}, from case (a) we deduce that

{P = P (x), Q = Q(t)} or {P = P (t), Q = Q(x)}. Since, (µ 6= 0 and ν = 0) only

the expressions (9.33) and (9.35) must vanish. So that QX = 0 and hence Q = Q(t)

as required. Therefore, {P = P (x), Q = Q(t)}. In the second case, first we have

{P = P (x), Q = Q(t)} or {P = P (t), Q = Q(x)} and since (µ = 0 and ν 6= 0)

only the expressions (9.32) and (9.34) must vanish. Therefore, PT = 0 and hence {P =

P (x), Q = Q(t)}. Finally, in the case where {(p 6= 0 and q = 0) and (µ = 0 and ν 6= 0)},
only the expressions (9.29), (9.31), (9.32) and (9.34), must vanish together. Therefore,

P = P (x), Q = Q(t). The other cases can be proved in a similar way.

Case (c), where {(p = 0, q 6= 0) and (µ = 0, ν 6= 0)}, the expressions (9.28), (9.30),

(9.32) and (9.34) must vanish. Therefore P = P (x).

Case (d) follows by symmetry (x ↔ t, P ↔ Q, X ↔ T, p ↔ q, µ ↔ ν) from case

(c).

9.4.2 System of two equations of the form

u01 = H(x, t, u, v, . . . , un10, vm10)

In this subsection, we are interested in system of two equations where ut, vt are related to

x, t, u, v and derivatives of u and v with respect to x. We will generalize the theorems

3.2 and 3.3. That is, we will show that point transformations for systems of this type

with n1 ≥ 2, m2 ≥ 2 must take the form t′ = Q(t) (no x, u, v dependency). Also, for

restricted classes of these systems it is necessary for x′ = P (x, t).

Theorem 9.2. The point transformations x′ = P (x, t, u, v), t′ = Q(x, t, u, v), u′ =

R(x, t, u, v), v′ = S(x, t, u, v) transform

u01 = H(x, t, u, v, . . . , un10, vm10), v01 = F (x, t, u, v, . . . , un20, vm20) (9.36)

to

u′01 = H ′(x′, t′, u′, v′, . . . , u′n10, v
′
m10), v′01 = F ′(x′, t′, u′, v′, . . . , u′n20, v

′
m20), (9.37)
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where at least one of n1, m2 ≥ 2 if and only if Q = Q(t) and

H ′ =
PXRt − PtRX + H

[
−v10

∂(P,R)
∂(u,v)

+ ∂(P,R)
∂(x,u)

]
+ F

[
u10

∂(P,R)
∂(u,v)

+ ∂(P,R)
∂(x,v)

]

PXQt

, (9.38)

F ′ =
PXSt − PtSX + H

[
−v10

∂(P,S)
∂(u,v)

+ ∂(P,S)
∂(x,u)

]
+ F

[
u10

∂(P,S)
∂(u,v)

+ ∂(P,S)
∂(x,v)

]

PXQt

. (9.39)

Proof. Without loss of generality, we assume that n1 ≥ 2. Theorem 9.1 applies with {(p =

n1, q = 0), so that Q = Q(t). Each u′i0 and v′i0 in H ′ and F ′ transforms to an expression

in x, t, u, v, u10, v10, . . . , ui0, vi0, that is no t derivatives of u and v are introduced. System

(9.36) thus transforms to the form (9.37) and the form of H ′ and F ′ are determined, with

no further conditions on P, Q, R and S, from (9.38) and (9.39) for any H and G.

Note 9.1. In theorem 9.2, the identity H2
un10

+ H2
vm10

+ F 2
un20

+ F 2
vm20

6= 0, holds.

The following theorem is a generalization of theorem 3.3, where ut, vt and u′t′ , v′t′ are

polynomials in {ui0}, {vj0} and {u′i0}, {v′j0}, respectively.

Theorem 9.3. If, in the above theorem, H, F and H ′, F ′ are polynomials (non-negative

integral powers) in {ui0}, {vj0} and {u′i0}, {v′j0} respectively, then P = P (x, t).

The following lemmas will be needed for the proof of theorem 9.3.

Lemma 9.4. If u′r0 and v′r0 are expressed in terms of x, t, u, v and the x, t-derivatives

of u, v then

∂u′r0
∂u0r

= (−1)r J1Q
r
X

δr+1
,

∂v′r0
∂v0r

= (−1)r J4Q
r
X

δr+1
,

where r ≥ 1 and J1, J4 are given by relations (9.24) and (9.27).

Proof. The proof is by induction on r.

∂u′r+10

∂u0r+1

=
∂

∂u0r+1

{
∂

∂x′
u′r0

}

=
∂

∂u0r+1



((u′r0)X (u′r0)T )

1

δ


 QT −PT

−QX PX





 1

0







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using (9.10) with ψ = u′r0

=
1

δ

(
0

∂u′r0

∂u0r

)

 QT

−QX




using (9.6) and (9.7) and noting that for r ≥ 1 the term u0r+1 only appears in the second

term of the row vector,

= (−1)r+1J1Q
r+1
X

δr+2

from the induction hypothesis. For the basis of the induction consider firstly, from (9.10),

for Ψ = u:

du′ =
1

δ
(RX RT )


 QT −PT

−QX PX





 dx′

dt′


 , (9.40)

we have

u′x′ =
1

δ
(RX RT )


 QT −PT

−QX PX





 1

0


 =

RXQT −RT QX

PXQT −QXPT

. (9.41)

Noting from

φX = φx + uxφu + vxφv, φT = φt + utφu + vtφv

that

∂φT

∂ut

= φu,
∂φX

∂ut

= 0,

(9.41) may be differentiated to give

∂u′10

∂u01

≡ ∂u′x′
∂ut

= −J1QX

δ2
,

which is relation with r = 1, completing the induction and proof of lemma 9.4.

Using the result of lemma 9.4, we can proof the following relations.

With Q = Q(t),

δ = PXQT − PT QX = PXQt 6= 0

and

J = −Qt ((RuSx −RxSu)Pv − (RvSx −RxSv)Pu − (RuSv −RvSu)Px) 6= 0.
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Equation (9.10) simplifies to

dΨ =
1

PXQt

(ΨX ΨT )


 QT −PT

0 PX





 dx′

dt′


 ,

so that

Ψx′ =
1

PX

ΨX , Ψt′ = − 1

PXQt

(PT ΨX − PXΨT ). (9.42)

In particular,

u′t′ = u′01 = − 1

PXQt

(PT RX − PXRT )

= − 1

PXQt

[(PtRx − PxRt) + ux(PtRu − PuRt) + vx(PtRv − PvRt)

+ ut(PuRx − PxRu) + vt(PvRx − PxRv) + (utvx − uxvt)(PuRv − PvRu)],(9.43)

v′t′ = v′01 = − 1

PXQt

(PT SX − PXST )

= − 1

PXQt

[(PtSx − PxSt) + ux(PtSu − PuSt) + vx(PtSv − PvSt)

+ ut(PuSx − PxSu) + vt(PvSx − PxSv) + (utvx − uxvt)(PuSv − PvSu)], (9.44)

u′x′ = u′10 =
RX

PX

=

(
1

PX

D

)
R, (9.45)

v′x′ = v′10 =
SX

PX

=

(
1

PX

D

)
S, (9.46)

denoting RX by DR,

u′x′x′ = u′20 =

(
1

PX

D

)2

R, u′n0 =

(
1

PX

D

)n

R, n ≥ 1, (9.47)

v′x′x′ = v′20 =

(
1

PX

D

)2

S, v′n0 =

(
1

PX

D

)n

S, n ≥ 1. (9.48)

The lemma below will be needed in order to find the coefficients of the terms (9.43) and

(9.44) which contain the highest power of the highest-order derivatives. These coefficients

is found to contain non-zero factors.
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Lemma 9.5. If u′r0 and v′r0 are expressed in terms of x, t, u, v and the x, t-derivatives

of u, v then

∂u′r0
∂ur0

=
(PvRu − PuRv)v10 + PxRu − PuRx

P r+1
X

, r ≥ 1,

∂v′r0
∂vr0

=
(PuSv − PvSu)u10 + PxSv − PvSx

P r+1
X

, r ≥ 1,

where PX = Px + uxPu + vxPv.

Proof. The proof of this lemma is by induction on r.

∂u′r+10

∂ur+10

=
∂

∂ur+10

{
∂

∂x′
u′r0

}

=
∂

∂ur+10

{
1

PX

(u′r0)X

}
, from (9.42)

=
1

PX

∂u′r0
∂ur0

, from (9.6), r ≥ 1

=
(PvRu − PuRv)v10 + PxRu − PuRx

P r+2
X

,

from the induction hypothesis. Similarly, we can prove the other expression.

Now, using lemmas 9.4 and 9.5 we are ready to give the proof of theorem 9.3.

Proof. of theorem 9.3: Suppose that the leading term in H(x, t, u, v, u10, v10, . . . , un10, vm10)

is

F1(x, t, u, v)u
αn1
n10u

αn1−1

n1−10 . . . uα1
10v

βm1
m10v

βm1−1

m1−10 . . . vβ1

10 , (9.49)

and the corresponding term in F (x, t, u, v, u10, v10, . . . , un20, vm20) is

F2(x, t, u, v)u
cn2
n20u

cn2−1

n2−10 . . . uc1
10v

dm2
m20v

dm2−1

m2−10 . . . vd1
10, (9.50)

where F1(x, t, u, v) 6= 0, F2(x, t, u, v) 6= 0, n1, n2 ≥ 2, αn1 ≥ 1, cn2 ≥ 1 is

the highest power of the highest-order derivative. Similarly, the leading term in

H ′(x′, t′, u′, v′, u′10, v
′
10, . . . , u

′
n10, v

′
m10) is

G1(x
′, t′, u′, v′)u

′An1
n10 u

′An1−1

n1−10 . . . u′A1
10 v

′Bm1
m10 v

′Bm1−1

m1−10 . . . v′B1
10 , (9.51)

and the corresponding term in F ′(x′, t′, u′, v′, u′10, v
′
10, . . . , u

′
n0, v

′
m0) is

G2(x
′, t′, u′, v′)u

′Cn2
n20 u

′Cn2−1

n2−10 . . . u′C1
10 v

′Dm2
m20 v

′Dm2−1

m2−10 . . . v′D1
10 , (9.52)
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where G1(x, t, u, v) 6= 0, G2(x, t, u, v) 6= 0, n1, n2 ≥ 2, An1 ≥ 1, Cn2 ≥ 1.

Substituting for u01 and v01 by

H(x, t, u, v, u10, v10, . . . , un10, vm10)

and

F (x, t, u, v, u10, v10, . . . , un20, vm20),

respectively, in the transformed form of

u′01 = H ′(x′, t′, u′, v′, u′10, v
′
10, . . . , u

′
n10, v

′
m10)

and

v′01 = F ′(x′, t′, u′, v′, u′10, v
′
10, . . . , u

′
n20, v

′
m20),

and using the identities (9.43)-(9.48) we arrive:

u′t′ = u′01 = − 1

PXQt

(PT RX − PXRT )

= − 1

PXQt

[u10(PtRu − PuRt) + v10(PtRv − PvRt) + (PtRx − PxRt)

− H[v10(PvRu − PuRv) + PxRu − PuRx]− F [u10(PuRv − PvRu) + PxRv − PvRx]

≡ H ′
(

P, Q, R, S,

(
1

PX

D

)
R,

(
1

PX

D

)
S, . . . ,

(
1

PX

D

)n1

R,

(
1

PX

D

)m1

S

)
(9.53)

and

v′t′ = v′01 = − 1

PXQt

(PT SX − PXST )

= − 1

PXQt

[u10(PtSu − PuSt) + v10(PtSv − PvSt) + (PtSx − PxSt)

− H[v10(PvSu − PuSv) + PxSu − PuSx]− F [u10(PuSv − PvSu) + PxSv − PvSx]

≡ F ′
(

P,Q, R, S,

(
1

PX

D

)
R,

(
1

PX

D

)
S, . . . ,

(
1

PX

D

)n2

R,

(
1

PX

D

)m2

S

)
,

(9.54)

respectively.

Retaining the leading terms on both the left and the right sides of (9.53), (9.54) and

making use of (9.49)-(9.52), lemma 9.5 and the fact that J 6= 0, produces the following

terms:
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from (9.49):

1

PXQt

[
F1(x, t, u, v)u

αn1
n10u

αn1−1

n1−10 . . . uα1
10v

βm1
m10v

βm1−1

m1−10 . . . vβ1+1
10

−F2(x, t, u, v)u
cn2
n20u

cn2−1

n2−10 . . . uc1+1
10 v

dm2
m20v

dm2−1

m2−10 . . . vd1
10

]
(PvRu − PuRv), (9.55)

from (9.50):

1

PXQt

[
F1(x, t, u, v)u

αn1
n10u

αn1−1

n1−10 . . . uα1
10v

βm1
m10v

βm1−1

m1−10 . . . vβ1+1
10

−F2(x, t, u, v)u
cn2
n20u

cn2−1

n2−10 . . . uc1+1
10 v

dm2
m20v

dm2−1

m2−10 . . . vd1
10

]
(PvSu − PuSv), (9.56)

from (9.51):

G1(P, Q, R, S)
1

P a1
X

(PvRu−PuRv)
b1(PuSv−PvSu)

b2u
An1
n10 . . . uA2

20 ub2+A1
10 v

Bm1
m10 . . . vB2

20 vb1+B1
10 ,

(9.57)

where

a1 = (n1 + 1)An1 + (m1 + 1)Bm1 + n1An1−1 + m1Bm1−1 + · · ·+ 2A1 + 2B1,

b1 = An1 + An1−1 + · · ·+ A1,

b2 = Bm1 + Bm1−1 + · · ·+ B1,

and from (9.52):

G2(P, Q, R, S)
1

P a2
X

(PvRu−PuRv)
b3(PuSvPvSu)

b4u
Cn2
n20 . . . uC2

20 ub4+C1
10 v

Dm2
m20 . . . vC2

20 vb3+D1
10 ,

(9.58)

where

a2 = (n2 + 1)Cn2 + (m2 + 1)Dm2 + n2Cn2−1 + m2Dm2−1 + · · ·+ 2C1 + 2D1,

b3 = Cn2 + Cn2−1 + · · ·+ C1,

b4 = Dm2 + Dm2−1 + · · ·+ D1.

Multiplying by P a1
X and P a2

X equations (9.55) and (9.56), respectively, the leading terms

gives
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(ua1−1
x P a1−1

u + va1−1
x P a1−1

v )

Qt

[
F1(x, t, u, v)u

αn1
n10u

αn1−1

n1−10 . . . uα1
10v

βm1
m10v

βm1−1

m1−10 . . . vβ1+1
10

−F2(x, t, u, v)u
cn2
n20u

cn2−1

n2−10 . . . uc1+1
10 v

dm2
m20v

dm2−1

m2−10 . . . vd1
10

]
(PvRu − PuRv) (9.59)

and

(ua2−1
x P a2−1

u + va2−1
x P a2−1

v )

Qt

[
F1(x, t, u, v)u

αn1
n10u

αn1−1

n1−10 . . . uα1
10v

βm1
m10v

βm1−1

m1−10 . . . vβ1+1
10

−F2(x, t, u, v)u
cn2
n20u

cn2−1

n2−10 . . . uc1+1
10 v

dm2
m20v

dm2−1

m2−10 . . . vd1
10

]
(PvSu − PuSv). (9.60)

Similarly, multiplying by P a1
X and P a2

X equations (9.57) and (9.58), respectively, the leading

terms gives

G1(P,Q, R, S)(PvRu − PuRv)
b1(PuSv − PvSu)

b2u
An1
n10 . . . ub2+A1

10 v
Bm1
m10 . . . vb1+B1

10 (9.61)

and

G2(P, Q, R, S)(PvRu − PuRv)
b3(PuSv − PvSu)

b4u
Cn2
n20 . . . ub4+C1

10 v
Dm2
m20 . . . vb3+D1

10 . (9.62)

The equation (9.59) must be matched by equation (9.61) and equation (9.60) must be

matched by equation (9.62). Therefore

PvSu − PuSv = 0,

PvRu − PuRv = 0.

The solution of the above system is Pu = Pv = 0, otherwise J = 0. Therefore P =

P (x, t).

9.4.3 System of two equations of the form

u11 = H(x, t, u, v, . . . , un10, vm10)

In this subsection, we are working on systems where uxt and vxt are related with x, t, u, v

and x-derivatives of u and v. Firstly, we consider that the order of derivatives is bigger

or equal to 3. Then, we consider that the order of derivatives is 2 and finally we have

lower-order derivatives.

Now, we give a similar theorem as theorem 3.4.
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Theorem 9.4. (ni ≥ 3, mj ≥ 3) The point transformation x′ = P (x, t, u, v), t′ =

Q(x, t, u, v), u′ = R(x, t, u, v), v′ = S(x, t, u, v) transforms

u11 = H(x, t, u, v, . . . , un10, vm10), v11 = F (x, t, u, v, . . . , un20, vm20) (9.63)

into

u′11 = H ′(x′, t′, u′, v′, . . . , u′n10, v
′
m10), v′11 = F ′(x′, t′, u′, v′, . . . , u′n20, v

′
m20), (9.64)

where at least n1 ≥ 3 or m2 ≥ 3 if and only if

P = P (x, t), Q = Q(t),

R = A1(t)u + A2(t)v + B1(x, t), S = A3(t)u + A4(t)v + B2(x, t),

H ′ = P−1
x Q−1

t (A1H + A2F )− P−2
x PtQ

−1
t (A1u20 + A2v20) + u10P

−1
x Q−1

t (A1t − (P−1
x Pt)xA1)

+v10P
−1
x Q−1

t (A2t − (P−1
x Pt)xA2) + P−1

x Q−1
t (B1t − P−1

x PtB1x)x, (9.65)

F ′ = P−1
x Q−1

t (A3H + A4F )− P−2
x PtQ

−1
t (A3u20 + A4v20) + u10P

−1
x Q−1

t (A3t − (P−1
x Pt)xA3)

+v10P
−1
x Q−1

t (A4t − (P−1
x Pt)xA4) + P−1

x Q−1
t (B2t − P−1

x PtB2x)x. (9.66)

Proof. From the theorem 9.1 with {(p = n1, q = 0) and (µ = m2, ν = 0)} it follows that

Q = Q(t). Relations (9.12) and (9.14) simplifies to

u′i0 = P−1
X (u′i−10)X , v′i0 = P−1

X (v′i−10)X , i ≥ 1,

so that no t derivatives of u and v arise from u′i0 and v′i0, i ≥ 0 and H, F transform to

the forms H ′, F ′.

Hence, system (9.63) only transform to (9.64) if u′11 and v′11 give rise to no terms of

u02, u01, v02 and v01. Thus
∂u′11
∂u01

≡ 0,
∂u′11
∂v01

≡ 0,
∂v′11
∂u01

≡ 0 and
∂v′11
∂v01

≡ 0, so that

∂

∂u01

(
∂u′11

∂u20

)
= −Q2

t Pu [v10(PvRu − PuRv) + PxRu − PuRx] δ
−3 ≡ 0,

∂

∂u01

(
∂v′11

∂u20

)
= −Q2

t Pu [v10(PvSu − PuSv) + PxSu − PuSx] δ
−3 ≡ 0,

∂

∂u01

(
∂u′11

∂v20

)
= −Q2

t Pu [u10(PuRv − PvRu) + PxRv − PvRx] δ
−3 ≡ 0,
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∂

∂u01

(
∂v′11

∂v20

)
= −Q2

t Pu [u10(PuSv − PvSu) + PxSv − PvSx] δ
−3 ≡ 0,

and

∂

∂v01

(
∂u′11

∂u20

)
= −Q2

t Pv [v10(PvRu − PuRv) + PxRu − PuRx] δ
−3 ≡ 0,

∂

∂v01

(
∂v′11

∂u20

)
= −Q2

t Pv [v10(PvSu − PuSv) + PxSu − PuSx] δ
−3 ≡ 0,

∂

∂v01

(
∂u′11

∂v20

)
= −Q2

t Pv [u10(PuRv − PvRu) + PxRv − PvRx] δ
−3 ≡ 0,

∂

∂v01

(
∂v′11

∂v20

)
= −Q2

t Pv [u10(PuSv − PvSu) + PxSv − PvSx] δ
−3 ≡ 0.

Hence, P (x, t). Then the following system:

∂u′11

∂u01

= δ−1(Rux + u10Ruu + v10Ruv) ≡ 0,

∂u′11

∂v01

= δ−1(Rvx + u10Ruv + v10Rvv) ≡ 0,

∂v′11

∂u01

= δ−1(Sux + u10Suu + v10Suv) ≡ 0,

∂v′11

∂v01

= δ−1(Svx + u10Suv + v10Svv) ≡ 0,

give the form of R, S. Now, system (9.63) transform to system (9.64) and H ′, G′ are

given in terms of H, G by equations (9.65) and (9.66), respectively.

In the theorem below, we give a generalization of theorem 3.5.

Theorem 9.5. (n1 = n2 = m1 = m2 = 2) The point transformations x′ =

P (x, t, u, v), t′ = Q(x, t, u, v), u′ = R(x, t, u, v), v′ = S(x, t, u, v) which transform

u11 = H(x, t, u, v, u10, v10, u20, v20), v11 = F (x, t, u, v, u10, v10, u20, v20) (9.67)

into

u′11 = H ′(x′, t′, u′, v′, u′10, v
′
10, u

′
20, v

′
20), v′11 = F ′(x′, t′, u′, v′, u′10, v

′
10, u

′
20, v

′
20) (9.68)
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belongs to one of the two categories:

a) P, Q, R, S, H and F restricted as in the condition for theorem 9.4;

b) P = P (x, t), Q = Q(x, t),

R = H1(x, t)u + H2(x, t)v + H3(x, t), S = H4(x, t)u + H5(x, t)v + H6(x, t),

H ′ = −PxQ
−1
x u′20 + D1(x

′, t′, u′, v′)u′10 + D2(x
′, t′, u′, v′)v′10 + D3(x

′, t′, u′, v′),

F ′ = −PxQ
−1
x v′20 + D4(x

′, t′, u′, v′)u′10 + D5(x
′, t′, u′, v′)v′10 + D6(x

′, t′, u′, v′),

H = QtQ
−1
x u20 + f1(x, t, u, v)u10 + f2(x, t, u, v)v10 + f3(x, t, u, v),

F = QtQ
−1
x v20 + f4(x, t, u, v)u10 + f5(x, t, u, v)v10 + f6(x, t, u, v).

Proof. Let E1 = u′11 − H ′, E2 = v′11 − F ′, apply the transformation and then

substitute u11 = H and v11 = F . E1 and E2 will now, possibly, depend on

x, t, u, v, u10, v10, u01, v01, u20, v20, u02 and v02, but for system (9.67) to transform into sys-

tem (9.68), we require that E1 ≡ 0 and E2 ≡ 0.

In particular,

∂E1

∂u02

=
∂u′11

∂u02

− ∂H ′

∂u′20

∂u′20

∂u02

− ∂H ′

∂v′20

∂v′20

∂u02

≡ 0,

∂E1

∂v02

=
∂u′11

∂v02

− ∂H ′

∂u′20

∂u′20

∂v02

− ∂H ′

∂v′20

∂v′20

∂v02

≡ 0,

∂E2

∂u02

=
∂v′11

∂u02

− ∂F ′

∂u′20

∂u′20

∂u02

− ∂F ′

∂v′20

∂v′20

∂u02

≡ 0,

∂E2

∂v02

=
∂v′11

∂v02

− ∂F ′

∂u′20

∂u′20

∂v02

− ∂F ′

∂v′20

∂v′20

∂v02

≡ 0,

and from the lemma 9.1, corollary 9.1, equations (9.29), (9.31), (9.33), (9.35) correspond-

ing to {p = q = 1} and {p = 2, q = 0}, we arrive to the following system:

δ−3QX

(
∂H ′

∂u′20

QXJ1 +
∂H ′

∂v′20

QXJ3 + PXJ1

)
= 0,

δ−3QX

(
∂H ′

∂u′20

QXJ2 +
∂H ′

∂v′20

QXJ4 + PXJ2

)
= 0,

δ−3QX

(
∂F ′

∂u′20

QXJ1 +
∂F ′

∂v′20

QXJ3 + PXJ3

)
= 0,

δ−3QX

(
∂F ′

∂u′20

QXJ2 +
∂F ′

∂v′20

QXJ4 + PXJ4

)
= 0.
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Hence, either (a) QX = 0, so that Q = Q(t), or (b) QX 6= 0, H ′ = −PXQ−1
X u′20 +

A1(x
′, t′, u′, v′, u′10, v

′
10) and F ′ = −PXQ−1

X v′20 + A2(x
′, t′, u′, v′, u′10, v

′
10).

For case (a) the same analysis applies as for the theorem 9.4.

For case (b) system (9.68) is linear in the second-order derivatives of u′ and v′ and this

will transform into a system which is also linear in second -order derivatives. Thus

H = B1(x, t, u, v, u10, v10)u20 + B2(x, t, u, v, u10, v10),

F = B3(x, t, u, v, u10, v10)v20 + B4(x, t, u, v, u10, v10).

Since

∂E1

∂u20

= −δ−1Q−1
x Ru(B1Qx −Qt) ≡ 0,

∂E1

∂v20

= −δ−1Q−1
x Rv(B3Qx −Qt) ≡ 0,

∂E2

∂u20

= −δ−1Q−1
x Su(B1Qx −Qt) ≡ 0,

∂E2

∂v20

= −δ−1Q−1
x Sv(B3Qx −Qt) ≡ 0,

it follows that B1 = Q−1
x Qt, B3 = Q−1

x Qt. Next,

∂2E1

∂u2
01

= −δ−2Q2
x(R

2
uA1u′10u′10

+ 2RuSuA1u′10v′10
+ S2

uA1v′10v′10
) ≡ 0,

∂2E1

∂v2
01

= −δ−2Q2
x(R

2
vA1u′10u′10

+ 2RvSvA1u′10v′10
+ S2

vA1v′10v′10
) ≡ 0,

∂2E1

∂u01v01

= −δ−2Q2
x(RuRvA1u′10u′10

+ (RuSv + RvSu)A1u′10v′10
+ SuSvA1v′10v′10

) ≡ 0.

The solution of this system is:

A1 = D1(x
′, t′, u′, v′)u′10 + D2(x

′, t′, u′, v′)v′10 + D3(x
′, t′, u′, v′).

Similarly, from equation E2:

A2 = D4(x
′, t′, u′, v′)u′10 + D5(x

′, t′, u′, v′)v′10 + D6(x
′, t′, u′, v′).

Then,

∂2E1

∂u10u01

= −δ−1Ruu ≡ 0,
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∂2E1

∂u10v01

= −δ−1Ruv ≡ 0,

∂2E1

∂u01v10

= −δ−1Rvv ≡ 0,

so that

R = H1(x, t)u + H2(x, t)v + H3(x, t).

Similarly, from equation E2:

S = H4(x, t)u + H5(x, t)v + H6(x, t).

Also,

∂2E1

∂u2
10

= −δ−1(B2u10u10
H1 + B4u10u10

H2) ≡ 0,

∂2E1

∂v2
10

= −δ−1(B2v10v10
H1 + B4v10v10

H2) ≡ 0,

∂2E1

∂u10v10

= −δ−1(B2u10v10
H1 + B4u10v10

H2) ≡ 0,

∂2E2

∂u2
10

= −δ−1(B2u10u10
H4 + B4u10u10

H5) ≡ 0,

∂2E2

∂v2
10

= −δ−1(B2v10v10
H4 + B4v10v10

H5) ≡ 0,

∂2E2

∂u10v10

= −δ−1(B2u10v10
H4 + B4u10v10

H5) ≡ 0.

Since H1H5 − H2H4 6= 0 (otherwise J = 0), from the first and the fourth equations, we

have

B2u10u10
= 0, B4u10u10

= 0.

Using the second and the fifth equations, we lead to

B2v10v10
= 0, B4v10v10

= 0.

Finally, using the third and the sixth equations,

B2u10v10
= 0, B4u10v10

= 0.

Solving the above system for B2 and B4 we take

B2 = f1(x, t, u, v)u10 + f2(x, t, u, v)v10 + f3(x, t, u, v),
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B4 = f4(x, t, u, v)u10 + f5(x, t, u, v)v10 + f6(x, t, u, v).

Solving the system of equations

∂E1

∂u10

≡ 0,
∂E1

∂v10

≡ 0,

∂E2

∂u10

≡ 0,
∂E2

∂v10

≡ 0,

and then

∂E1

∂u01

≡ 0,
∂E1

∂v01

≡ 0,

∂E2

∂u01

≡ 0,
∂E2

∂v01

≡ 0,

give the form of f1, f2, f4, f5 and D1, D2, D4, D5, respectively, in term of functions

H1, H2, H4, H5.

Finally, E1 ≡ 0 and E2 ≡ 0 provides a length relation between f3, f6 and D3, D6.

In the following theorem, we relate uxt, vxt and u′x′t′ , v′x′t′ with lower-order x-derivatives

of u, v and u′, v′, respectively. That is, we generalize theorem 3.6.

Theorem 9.6. (n1, n2,m1,m2 = 0, 1) The point transformations x′ = P (x, t, u, v), t′ =

Q(x, t, u, v), u′ = R(x, t, u, v), v′ = S(x, t, u, v) which transform

u11 = H(x, t, u, v, u10, v10), v11 = F (x, t, u, v, u10, v10) (9.69)

into

u′11 = H ′(x′, t′, u′, v′, u′10, v
′
10), v′11 = F ′(x′, t′, u′, v′, u′10, v

′
10) (9.70)

belongs to one of the two categories:

a) P = P (x), Q = Q(t),

R = A1(t)u + A2(t)v + B1(x, t),

S = A3(t)u + A4(t)v + B2(x, t),

H ′ = P−1
x Q−1

t (A1H + A2F + A1tu10 + A2tv10 + B1xt),

F ′ = P−1
x Q−1

t (A3H + A4F + A3tu10 + A4tv10 + B2xt);
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b) P = P (t), Q = Q(x),

R = A1(x, t)u + A2(x, t)v + A3(x, t),

S = A4(x, t)u + A5(x, t)v + A6(x, t),

H = (A1A5 − A2A4)
−1 [(−A1tA5 + A2A4t)u10 + (A2A5t − A2tA5)v10]

+ D1(x, t, u, v),

F = (A1A5 − A2A4)
−1 [(−A1A4t + A1tA4)u10 + (A4A2t − A1A5t)v10]

+ D2(x, t, u, v),

H ′ = Q−1
x (A1A5 − A2A4)

−1 [(A1xA5 − A2xA4)u
′
10 + (A1A2x − A1xA2)v

′
10]

+ H1(x
′, t′, u′, v′),

F ′ = Q−1
x (A1A5 − A2A4)

−1 [(A4xA5 − A4A5x)u
′
10 + (A1A5x − A2A4x)v

′
10]

+ H2(x
′, t′, u′, v′),

where

D1 =
(
(A1A5 − A2A4)

−1(−A1tA5 + A2A4t)
)

x
u +

(
(A1A5 − A2A4)

−1(A2A5t − A2tA5)
)

x
v

− A5

(
(A1A5 − A2A4)

−1A3t

)
x

+ A2

(
(A1A5 − A2A4)

−1A6t

)
x

+ (A1A5 − A2A4)
−1(A2xA6t − A3tA5x) + PtQx(A1A5 − A2A4)

−1(A5H1 − A2H2),

D2 =
(
(A1A5 − A2A4)

−1(A1tA4 − A1A4t)
)

x
u +

(
(A1A5 − A2A4)

−1(A2tA4 − A1A5t)
)

x
v

− A1

(
(A1A5 − A2A4)

−1A6t

)
x

+ A4

(
(A1A5 − A2A4)

−1A3t

)
x

+ (A1A5 − A2A4)
−1(A3tA4x − A1xA6t) + PtQx(A1A5 − A2A4)

−1(A1H2 − A4H1).

(9.71)

Proof. From the theorem 9.1 with {(p = 1, q = 1) and (µ = 1, ν = 1)} we have two cases

to consider: (a) P = P (x), Q = Q(t) and (b) P = P (t), Q = Q(x).

For case (a) H ′ and F ′ transforms into functions of x, t, u, v, u10, v10 so we required that

u′11 and v′11 transforms into functions of the same variables, having replaced u11 and v11

by H and G, respectively. Hence,

∂u′11

∂u01

= δ−1(Ruuu10 + Ruvv10 + Rux) ≡ 0,

∂u′11

∂v01

= δ−1(Ruvu10 + Rvvv10 + Rvx) ≡ 0,

∂v′11

∂u01

= δ−1(Suuu10 + Suvv10 + Sux) ≡ 0,
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∂v′11

∂v01

= δ−1(Suvu10 + Svvv10 + Svx) ≡ 0,

giving

R = A1(t)u + A2(t)v + B1(x, t),

S = A3(t)u + A4(t)v + B1(x, t).

System (9.69) now transform into system (9.70) with H ′ and F ′ as stated in relation

H ′ = P−1
x Q−1

t (A1H + A2F + A1tu10 + A2tv10 + B1xt),

F ′ = P−1
x Q−1

t (A3H + A4F + A3tu10 + A4tv10 + B2xt).

In case (b) let E1 = u′11 −H ′ and E2 = v′11 − F ′ with H and F substituted for u11 and

v11, respectively. Thus E1 ≡ 0 and E2 ≡ 0 for the given transformation to exist. Hence,

∂E1

∂u10

= δ−1(Ruuu01 + Ruvv01 + Rut + Hu10Ru + Fu10Rv) ≡ 0,

∂E1

∂v10

= δ−1(Ruvu01 + Rvvv01 + Rvt + Hv10Ru + Fv10Rv) ≡ 0,

∂E2

∂u10

= δ−1(Suuu01 + Suvv01 + Sut + Hu10Su + Fu10Sv) ≡ 0,

∂E2

∂v10

= δ−1(Suvu01 + Svvv01 + Svt + Hv10Su + Fv10Sv) ≡ 0,

giving

R = A1(x, t)u + A2(x, t)v + A3(x, t),

S = A4(x, t)u + A5(x, t)v + A6(x, t),

and

H = (A1A5 − A2A4)
−1 [(−A1tA5 + A2A4t)u10 + (A2A5t − A2tA5)v10]

+ D1(x, t, u, v),

F = (A1A5 − A2A4)
−1 (−A1A4t + A1tA4)u10 + (−A1A5t + A2tA4)v10]

+ D2(x, t, u, v).

Also,

∂E1

∂u01

= δ−1
(
A1x −QxH

′
u′10

A1 −QxH
′
v′10

A4

)
≡ 0,

101

Chri
sti

na
 Tsa

ou
si



∂E1

∂v01

= δ−1
(
A2x −QxH

′
u′10

A2 −QxH
′
v′10

A5

)
≡ 0,

∂E2

∂u01

= δ−1
(
A4x −QxF

′
u′10

A1 −QxF
′
v′10

A4

)
≡ 0,

∂E2

∂v01

= δ−1
(
A5x −QxF

′
u′10

A2 −QxF
′
v′10

A5

)
≡ 0,

so that

H ′ = Q−1
x (A1A5 − A2A4)

−1 [(A1xA5 − A2xA4)u
′
10 + (A1A2x − A1xA2)v

′
10]

+ H1(x
′, t′, u′, v′),

F ′ = Q−1
x (A1A5 − A2A4)

−1 [(−A4A5x + A4xA5)u
′
10 + (A1A5x − A2A4x)v

′
10]

+ H2(x
′, t′, u′, v′).

System (9.69) now transforms into system (9.70) with D1 and D2 being determined by

H1 and H2 as (9.71) and the proof of case (b) is complete for n1 = n2 = m1 = m2 = 1.

When n1 = n2 = m1 = m2 = 0, H, F and H ′, F ′ contain no derivatives of u, v and

u′, v′, respectively and the further restriction Ai, i = 1, . . . , 6 must apply.

9.4.4 System of two equations of the form

u02 = H(x, t, u, v, . . . , un10, vm10)

In the third class of systems, we restrict to relations of utt and vtt with x, t, u, v and

x-derivatives of u and v.

In the following theorem, we give similar result as theorem 3.7.

Theorem 9.7. (n1 ≥ 3, m2 ≥ 3) The point transformation x′ = P (x, t, u, v), t′ =

Q(x, t, u, v), u′ = R(x, t, u, v), v′ = S(x, t, u, v) transforms

u02 = H(x, t, u, v, . . . , un10, vm10), v02 = F (x, t, u, v, . . . , un20, vm20) (9.72)

to

u′02 = H ′(x′, t′, u′, v′, . . . , u′n10,
′
m10 ), v′02 = F ′(x′, t′, u′, v′, . . . , u′n20, v

′
m20) (9.73)
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if

P = P (x), Q = Q(t),

R = Q
1/2
t (c1(x)u + c2(x)v) + B1(x, t), S = Q

1/2
t (c3(x)u + c4(x)v) + B2(x, t),

H ′ = Q
−7/2
t

(
(c1H + c2F )Q2

t − (c1u + c2v)

(
3

4
Q2

tt −
1

2
QtttQt

)

− Q
1/2
t (B1tQtt −B1ttQt)

)
, (9.74)

F ′ = Q
−7/2
t

(
(c3H + c4F )Q2

t − (c3u + c4v)

(
3

4
Q2

tt −
1

2
QtttQt

)

− Q
1/2
t (B2tQtt −B2ttQt)

)
. (9.75)

Proof. From theorem 9.1 with (p = n1, q = 0) it follows that Q = Q(t). Relations (9.12)

and (9.14) simplify to u′i0 = P−1
X (u′i−10)X and v′i0 = P−1

X (v′i−10)X , i ≥ 1 respectively, so

it is evident that the transformed u′i0 and v′i0, i ≥ 1, involve no t derivatives of u and v.

Hence, system (9.72) can only be transformed into system (9.73) if u′02 and v′02 do not

give rise to either of terms u11, u01, v11, v01. However, lemma 9.1, corollary 9.1 give

∂u′02

∂u11

= 2δ−2PT [(PuRv − PvRu)v10 + PuRx − PxRu] ≡ 0,

∂u′02

∂v11

= −2δ−2PT [(PuRv − PvRu)u10 + PxRv − PvRx] ≡ 0,

∂v′02

∂u11

= 2δ−2PT [(PuSv − PvSu)v10 + PuSx − PxSu] ≡ 0,

∂v′02

∂v11

= −2δ−2PT [(PuSv − PvSu)u10 + PxSv − PvSx] ≡ 0.

Therefore, it follows that PT = 0. So that P = P (x).

Lemma 9.3, now gives

∂2u′02

∂u2
01

= 2RuuQ
−2
t ≡ 0,

∂2u′02

∂v2
01

= 2RvvQ
−2
t ≡ 0,

∂2u′02

∂u01v01

= 2RuvQ
−2
t ≡ 0,

∂2v′02

∂u2
01

= 2SuuQ
−2
t ≡ 0,

∂2v′02

∂v2
01

= 2SvvQ
−2
t ≡ 0,

∂2v′02

∂u01v01

= 2SuvQ
−2
t ≡ 0,

showing that R and S are of the form R = A1(x, t)u+A2(x, t)v+B1(x, t), S = A3(x, t)u+

A4(x, t)v + B2(x, t). Further

∂u′02

∂u01

= Q−3
t [2(Ruvv01 + Ruuu01 + Rut)Qt −QttRu] ,

∂u′02

∂v01

= Q−3
t [2(Ruvu01 + Rvvv01 + Rvt)Qt −QttRv] ,
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∂v′02

∂u01

= Q−3
t [2(Suvv01 + Suuu01 + Sut)Qt −QttSu] ,

∂v′02

∂v01

= Q−3
t [2(Suvu01 + Svvv01 + Svt)Qt −QttSv] ,

so that R and S are of the form R = Q
1/2
t (c1(x)u + c2(x)v) + B1(x, t), S = Q

1/2
t (c3(x)u +

c4(x)v) + B2(x, t). With these form of P, Q, R and S system (9.72) is transformed to

system (9.73) and H ′, F ′ are given by relations (9.74) and (9.75).

Finally, we give a generalization of theorem 3.8, where utt and vtt are related with

x, t, u, v and second-order x-derivatives of u and v.

Theorem 9.8. (n1 = n2 = m1 = m2 = 2) Point transformations x′ = P (x, t, u, v), t′ =

Q(x, t, u, v), u′ = R(x, t, u, v), v′ = S(x, t, u, v) which transform

u02 = H(x, t, u, v, u10, v10, u20, v20), v02 = F (x, t, u, v, u10, v10, u20, v20) (9.76)

into

u′02 = H ′(x′, t′, u′, v′, u′10, v
′
10, u

′
20, v

′
20), v′02 = F ′(x′, t′, u′, v′, u′10, v

′
10, u

′
20, v

′
20) (9.77)

belongs to one of the three categories:

a) P, Q, R and S restricted as in the conditions for theorem 9.7;

b) P = P (t), Q = Q(x);

c) P = P (x, t), Q = Q(x, t),

R = c1(x, t)u + c2(x, t)v + c3(x, t), S = c4(x, t)u + c5(x, t)v + c6(x, t),

H ′ = PtPxQ
−1
t Q−1

x u′20 + G1(x
′, t′)u′10 + G2(x

′, t′)v′10 + G3(x
′, t′, u′, v′),

F ′ = PtPxQ
−1
t Q−1

x v′20 + G4(x
′, t′)u′10 + G5(x

′, t′)v′10 + G6(x
′, t′, u′, v′),

H = PtQtP
−1
x Q−1

x u20 + F1(x, t)u10 + F2(x, t)v10 + F3(x, t, u, v),

F = PtQtP
−1
x Q−1

x v20 + F4(x, t)u10 + F5(x, t)v10 + F6(x, t, u, v).

Proof. The expressions E1 = u′02 − H ′ and E2 = v′02 − F ′ become an expressions in

x, t, u, v and the derivatives of u and v up to order 2. This expressions (=0) is identified

with system (9.76). That is, if u02 and v02 are replaced by H and F in E1 and E2,
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respectively, then the resulting expression is required to be identically zero in terms of

the remaining variables x, t, u, v, u10, v10, u01, v01, u20, v20, u11, v11. In particular,

∂E1

∂u11

= 0,
∂E1

∂v11

= 0,
∂E2

∂u11

= 0,
∂E2

∂v11

= 0,

give

PT PXJ1 = QT QX

(
J1H

′
u′20

+ J3H
′
v′20

)
,

PXPT J2 = QT QX

(
J2H

′
u′20

+ J4H
′
v′20

)
,

PT PXJ3 = QT QX

(
J1F

′
u′20

+ J3F
′
v′20

)
,

PT PXJ4 = QT QX

(
J2F

′
u′20

+ J4F
′
v′20

)
.

More complicated conditions give the following system:

∂E1

∂u20

= 0,
∂E1

∂v20

= 0,
∂E2

∂u20

= 0,
∂E2

∂v20

= 0.

These conditions show that all possibilities are included in the three cases:

(a) P = P (x), Q = Q(t);

(b) P = P (t), Q = Q(x);

(c) H ′ = PXPT Q−1
X Q−1

T u′20 + A′
1(x

′, t′, u′, v′, u′10, v
′
10),

F ′ = PXPT Q−1
X Q−1

T v′20 + A′
2(x

′, t′, u′, v′, u′10, v
′
10) (9.78)

and

H = P−1
X PT Q−1

X QT u20 + B1(x, t, u, v, u10, v10),

F = P−1
X PT Q−1

X QT v20 + B2(x, t, u, v, u10, v10). (9.79)

Case (a) follows exactly as in the proof of theorem 9.7 following the stage at which

P = P (x) and the results here are exactly as in the sole case of that theorem.

In case (c), we have that H ′, F ′ and H, F given by (9.78) and (9.79). H and F are

independent of u01 and v01, so that (9.79) implies that P−1
X PT Q−1

X QT is independent of u01

and v01. It readily follows that P = P (x, t), Q = Q(x, t). Considering again E1 = u′02−H ′

and E2 = v′02 − F ′, transformed, with u02, v02 replaced by H, F , respectively, we have:

∂2E1

∂u10u01

= QtQx(A1u′xu′x
R2

u + 2RuSuA1u′xv′x
+ S2

uA1v′xv′x
)δ−2 ≡ 0,
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∂2E2

∂u10u01

= QtQx(A2u′xu′x
R2

u + 2RuSuA2u′xv′x
+ S2

uA2v′xv′x
)δ−2 ≡ 0,

∂2E1

∂v10v01

= QtQx(A1u′xu′x
R2

v + 2RvSvA1u′xv′x
+ S2

vA1v′xv′x
)δ−2 ≡ 0,

∂2E2

∂v10v01

= QtQx(A2u′xu′x
R2

v + 2RvSvA2u′xv′x
+ S2

vA2v′xv′x
)δ−2 ≡ 0,

∂2E1

∂u01v10

=
∂2E1

∂u10v01

= QtQx(A1u′xu′x
RuRv+RuSvA1u′xv′x

+RvSuA1u′10v′10
+SuSvA1v′xv′x

)δ−2 ≡ 0,

∂2E2

∂u01v10

=
∂2E2

∂u10v01

= QtQx(A2u′xu′x
RuRv+RuSvA2u′xv′x

+RvSuA2u′10v′10
+SuSvA2v′xv′x

)δ−2 ≡ 0,

giving

A1 = G1(x
′, t′, u′, v′)u′10 + G2(x

′, t′, u′, v′)v′10 + G3(x
′, t′, u′, v′),

A2 = G4(x
′, t′, u′, v′)u′10 + G5(x

′, t′, u′, v′)v′10 + G6(x
′, t′, u′, v′).

Now,

∂2E1

∂u2
01

≡ 0,
∂2E1

∂v2
01

≡ 0,

∂2E2

∂u2
01

≡ 0,
∂2E2

∂v2
01

≡ 0,

and

∂2E1

∂u01v01

≡ 0,
∂2E2

∂u01v01

≡ 0,

give

R = D2(x, t)u + D3(x, t)v + D4(x, t), S = D6(x, t)u + D7(x, t)v + D8(x, t).

The relations:

∂2E1

∂u2
10

= PxQ
−1
t (B1u10u10

D2 + B2u10u10
D3)δ

−1 ≡ 0,

∂2E1

∂v2
10

= PxQ
−1
t (B1v10v10

D2 + B2v10v10
D3)δ

−1 ≡ 0,

∂2E2

∂u2
10

= PxQ
−1
t (B1u10u10

D6 + B2u10u10
D7)δ

−1 ≡ 0,

∂2E2

∂v2
10

= PxQ
−1
t (B1v10v10

D6 + B2v10v10
D7)δ

−1 ≡ 0,
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∂2E1

∂u10v10

= PxQ
−1
t (B1u10v10

D2 + B2u10v10
D3)δ

−1 ≡ 0,

∂2E2

∂u10v10

= PxQ
−1
t (B1u10v10

D6 + B2u10v10
D7)δ

−1 ≡ 0,

where D2D7 −D3D6 6= 0 (otherwise J = 0), give the form of B1 and B2:

B1 = F1(x, t, u, v)u10 + F2(x, t, u, v)v10 + F3(x, t, u, v),

B2 = F6(x, t, u, v)u10 + F7(x, t, u, v)v10 + F8(x, t, u, v).

Finally,

∂2E1

∂u01u
≡ 0,

∂2E1

∂u01v
≡ 0,

∂2E1

∂v01u
≡ 0,

∂2E1

∂v01v
≡ 0,

give G1u′ = G1v′ = G2u′ = G2v′ = 0 and

∂2E2

∂u01u
≡ 0,

∂2E2

∂u01v
≡ 0,

∂2E2

∂v01u
≡ 0,

∂2E2

∂v01v
≡ 0,

give G4u′ = G4v′ = G5u′ = G5v′ = 0. Similarly,

∂2E1

∂u10u
≡ 0,

∂2E1

∂u10v
≡ 0,

∂2E1

∂v10u
≡ 0,

∂2E1

∂v10v
≡ 0

and

∂2E2

∂u10u
≡ 0,

∂2E2

∂u10v
≡ 0,

∂2E2

∂v10u
≡ 0,

∂2E2

∂v10v
≡ 0,

give F2u = F2v = F3u = F3v = F6u = F6v = F6u = F6v = 0 which, completes the proof of

case (c) of the theorem.

9.5 Applications

In this section, as application, we present the form of point transformation which connect

restricted form of system of two PDEs, in which utt and vtt is a linear combinations of

uxx and vxx, respectively.

Theorem 9.9. The point transformation x′ = P (x, t, u, v), t′ = Q(x, t, u, v), u′ =

R(x, t, u, v), v′ = S(x, t, u, v) transforms

u02 = εu20 + H(x, t, u, v, u10, v10), v02 = εv20 + F (x, t, u, v, u10, v10)
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to

u′02 = εu′20 + H ′(x′, t′, u′, v′, u′10, v
′
10), v′02 = εv′20 + F ′(x′, t′, u′, v′, u′10, v

′
10)

if

P = ε1c1x + c2, ε1 = ±1,

Q = c1t + c3,

R = φ1(x)u + φ2(x)v + B1(x, t),

S = φ3(x)u + φ4(x)v + B2(x, t),

H ′ =
1

c2
1

(Hφ1 + Fφ2 − ε(φ1xxu + 2φ1xux + φ2xxv + 2φ2xvx) + B1tt − εB1xx) ,

F ′ =
1

c2
1

(Hφ3 + Fφ4 − ε(φ3xxu + 2φ3xux + φ4xxv + 2φ4xvx) + B2tt − εB2xx) ,

or

P = c1t + c2,

Q =
ε1c1

ε
x + c3, ε1 = ±1,

R = φ1(x)u + φ2(x)v + B1(x, t),

S = φ3(x)u + φ4(x)v + B2(x, t),

H ′ =
ε

c2
1

(−Hφ1 − Fφ2 + ε(φ1xxu + 2φ1xux + φ2xxv + 2φ2xvx)−B1tt + εB1xx) ,

F ′ =
ε

c2
1

(−Hφ3 − Fφ4 + ε(φ3xxu + 2φ3xux + φ4xxv + 2φ4xvx)−B2tt + εB2xx) ,

or

P = P (x, t), Q = Q(x, t),

R = φ1(x)u + φ2(x)v + B1(x, t),

S = φ3(x)u + φ4(x)v + B2(x, t),

H ′ =
1

Q2
t − εQ2

x

(Hφ1 + Fφ2 − ε(φ1xxu + 2φ1xux + φ2xxv + 2φ2xvx) + B1tt − εB1xx) ,

F ′ =
1

Q2
t − εQ2

x

(Hφ3 + Fφ4 + ε(φ3xxu + 2φ3xux + φ4xxv + 2φ4xvx) + B2tt − εB2xx) ,

where Qtt = εQxx and Ptt = εPxx.
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9.6 Conclusion

We have drawn attention to form-preserving point transformations. In particular, we

have generalized the results of chapter 3, into systems of two equations. We have studied

three special classes of systems restricted to two independent and dependent variables.

The work of this chapter is the subject of a forthcoming article [60].
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Chapter 10

System of hyperbolic equations

10.1 Introduction

Finally, in this chapter, we consider the system of linear hyperbolic equations. In the spirit

of Ibragimov’s work, who adopted the infinitesimal method for calculating invariants of

families of PDEs using the equivalence groups, we apply the method to system of two

hyperbolic equations. We will show that this system admits five differential invariants of

first order. As applications, we use the semi-invariants to determine systems that can be

transformed into simpler systems.

10.2 Equivalence transformations

In this chapter, we consider the system of linear hyperbolic equations of the form

uxt = a1(t, x)ux + b1(t, x)vx + c1(t, x)ut + d1(t, x)vt + f1(t, x)u + g1(t, x)v,

vxt = a2(t, x)ux + b2(t, x)vx + c2(t, x)ut + d2(t, x)vt + f2(t, x)u + g2(t, x)v.(10.1)

In order to find continuous group of equivalence transformations of a class of system

(10.1) by means of the Lie infinitesimal invariance criterion, we search for the equivalence

operator Γ in the following form:

Γ = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+ ν1 ∂

∂u
+ ν2 ∂

∂v
+ ζ11

∂

∂ut

+ ζ12
∂

∂ux

+ ζ21
∂

∂vt

+ ζ22
∂

∂vx

+ µ1i ∂

∂ai

+ µ2i ∂

∂bi

+ µ3i ∂

∂ci

+ µ4i ∂

∂di

+ µ5i ∂

∂fi

+ µ6i ∂

∂gi

,
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where ξ1, ξ2, ν1, ν2 depend on t, x, u and v, while µji, j = 1, . . . , 6, i = 1, 2 depend on

t, x, u, v, ai, bi, ci, di, fi, gi. The infinitesimals ζik, i, k = 1, 2 are given by

ζ11 = Dt(ν
1)− utDt(ξ

1)− uxDt(ξ
2), ζ12 = Dx(ν

1)− utDx(ξ
1)− uxDx(ξ

2),

ζ21 = Dt(ν
2)− vtDt(ξ

1)− vxDt(ξ
2), ζ22 = Dx(ν

2)− vtDx(ξ
1)− vxDx(ξ

2).

The operators Dt and Dx are the total derivatives with respect to t and x, respectively.

By using the same procedure used in the previous chapters, we find that system (10.1)

admits an infinite continuous group E of equivalence transformations generated by Lie

algebra LE spanned by the operators:

Γφ = φ
∂

∂x
− φ′

[
c1

∂

∂c1

+ d1
∂

∂d1

+ f1
∂

∂f1

+ g1
∂

∂g1

+ c2
∂

∂c2

+ d2
∂

∂d2

+ f2
∂

∂f2

+ g2
∂

∂g2

]
,

Γτ = τ
∂

∂t
− τ ′

[
a1

∂

∂a1

+ b1
∂

∂b1

+ f1
∂

∂f1

+ g1
∂

∂g1

+ a2
∂

∂a2

+ b2
∂

∂b2

+ f2
∂

∂f2

+ g2
∂

∂g2

]
,

Γφ1 = φ1u
∂

∂u
+ φ1t

∂

∂a1

+ φ1b1
∂

∂b1

+ φ1x

∂

∂c1

+ φ1d1
∂

∂d1

+ (φ1tx − φ1tc1 − φ1xa1)
∂

∂f1

−φ1g1
∂

∂g1

− a2φ1
∂

∂a2

− φ1c2
∂

∂c2

− (φ1tc2 + φ1xa2 + φ1f2)
∂

∂f2

,

Γφ2 = φ2v
∂

∂v
− φ2b1

∂

∂b1

− φ2d1
∂

∂d1

− (φ2td1 + φ2xb1 + φ2g1)
∂

∂g1

+φ2a2
∂

∂a2

+ φ2t

∂

∂b2

+ φ2c2
∂

∂c2

+ φ2x

∂

∂d2

+ φ2f2
∂

∂f2

+ (φ2tx − φ2td2 − φ2xb2)
∂

∂g2

,

Γφ3 = φ3v
∂

∂u
+ φ3a2

∂

∂a1

+ (φ3t − φ3a1 + φ3b2)
∂

∂b1

+ φ3c2
∂

∂c1

+ (φ3x − φ3c1 + φ3d2)
∂

∂d1

+ φ3f2
∂

∂f1

+ (φ3tx − φ3tc1 − φ3xa1 − φ3f1 + φ3g2)
∂

∂g1

−φ3a2
∂

∂b2

− φ3c2
∂

∂d2

− (φ3tc2 + φ3xa2 + φ3f2)
∂

∂g2

,

Γφ4 = φ4u
∂

∂v
− φ4b1

∂

∂a1

− φ4d1
∂

∂c1

− (φ4td1 + φ4xb1 + φ4g1)
∂

∂f1

+ (φ4t + φ4a1 − φ4b2)
∂

∂a2

+ φ4b1
∂

∂b2

+ (φ4x + φ4c1 − φ4d2)
∂

∂c2

+φ4d1
∂

∂d2

+ (φ4tx − φ4td2 − φ4xb2 + φ4f1 − φ4g2)
∂

∂f2

+φ4g1
∂

∂g2

, (10.2)

where φ = φ(x), τ = τ(t), φi = φi(t, x), i = 1, 2, 3, 4, are arbitrary functions.
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10.3 Differential invariants and invariant equations

We consider the problem of finding differential invariants of the system (10.1). Using the

operators (10.2), the invariance criterion Γ(J) = 0 gives the six identities

Γk(J) = 0, k = φ, τ, φ1, φ2, φ3, φ4.

Since φ(x), τ(t), φ1(t, x), φ2(t, x), φ3(t, x) and φ4(t, x) are arbitrary functions, these iden-

tities lead to the trivial solution, J =constant. Hence, the system (10.1) does not admit

differential invariants of order zero.

In order to calculate the differential invariants of order one, we need the first prolon-

gation of the operators (10.2). The first prolongation lead to the invariant criterion

Γ
(1)
k (J) = 0, k = φ, τ, φ1, φ2, φ3, φ4.

Using the fact that φ(x), τ(t), φ1(t, x), φ2(t, x), φ3(t, x) and φ4(t, x) are arbitrary func-

tions, these leads to a system of linear first-order PDEs for J . Without presenting any

calculations, we state that the differential invariants of first order are the following:

J1 =
I2

I1

, J2 =
I3

I2
1

, J3 =
I4

I2
1

, J4 =
I5

I2
1

, J5 =
I6

I4
1

,

where

I1 = K5 + K8,

I2 = K1 + K4,

I3 = K1K4 −K2K3,

I4 = K5K8 −K6K7,

I5 = K1K5 + K2K7 + K3K6 + K4K8,

I6 = K2K3(K5 −K8)
2 + K6K7(K1 −K4)

2 − (K2K7 −K3K6)
2

+ (K2K7 + K3K6)(K1 −K4)(K8 −K5),
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and

K1 = a1c1 + a2d1 − a1x + f1,

K2 = a1c2 + a2d2 − a2x + f2,

K3 = b1c1 + b2d1 − b1x + g1,

K4 = b1c2 + b2d2 − b2x + g2,

K5 = a1c1 + b1c2 − c1t + f1,

K6 = a2c1 + b2c2 − c2t + f2,

K7 = a1d1 + b1d2 − d1t + g1,

K8 = a2d1 + b2d2 − d2t + g2.

Furthermore, it can be shown that the quantities

I1 = 0, I2 = 0, I3 = 0, I4 = 0, I5 = 0, I6 = 0 (10.3)

are invariant equations of system (10.1). That is,

Γ
(1)
k (Im)|Im=0 = 0,

where k = φ, τ, φ1, φ2, φ3, φ4, m = 1, . . . , 6.

Also, the following quantities:

I1, I2, I3, I4, I5, I6 (10.4)

are semi-invariants for the system (10.1).

Also, any three of following quantities:

K1 = 0, K2 = 0, K3 = 0, K4 = 0

or, any three of the following quantities:

K5 = 0, K6 = 0, K7 = 0, K8 = 0

are invariant systems. That is,

Γ
(1)
k (Ki)|Ki=0, Kj=0, Km=0 = 0,

where k = φ, τ, φ1, φ2, φ3, φ4 and {i, j,m = 1, . . . , 4} or {i, j,m = 5, . . . , 8}.
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10.4 Applications

In this section we present examples in which we derive systems of the class (10.1) that

can be linked with a known system. Consider the system of hyperbolic equations of the

form

uxt = a1(t, x)ux + b1(t, x)vx + c1(t, x)ut + d1(t, x)vt + f1(t, x)u + g1(t, x)v,

vxt = a2(t, x)ux + b2(t, x)vx + c2(t, x)ut + d2(t, x)vt + f2(t, x)u + g2(t, x)v.(10.5)

First of all, we identify the most general form of changes of variables that can be utilized

without loss of linearity and homogeneity of system (10.5) as well as their standard form.

Using the results of chapter 9, to derive the equivalence transformations in the finite form,

we deduce that these changes of variables have the following form:

t′ = Q(t), x′ = P (x), u′ = k1(x, t)u + k2(x, t)v, v′ = k3(x, t)u + k4(x, t)v. (10.6)

Systems (10.5) related by an equivalence transformation (10.6) are said to be equivalent.

(1) We consider the linear system

uxt = 0, vxt = 0. (10.7)

System (10.7) is a member of the class (10.5). If we set ai = bi = ci = di = fi = gi =

0, i = 1, 2 the invariant equations (10.3) are all satisfied. Hence any system of the form

(10.5) that is connected with the linear system (10.7) satisfies the invariant equations.

Consequently, the solution of the system (10.3) will provide necessary conditions for a

system of the form (10.5) to be mapped into (10.7).

It can be shown that system (10.5) can be mapped into (10.7) by transformation (10.6)

providing the following 12 identities are satisfying:

kit + a1ki + a2kj = 0,

kjt + b1ki + b2kj = 0,

kix + c1ki + c2kj = 0,

kjx + d1ki + d2kj = 0,

kixt + f1ki + f2kj = 0,

kjxt + g1ki + g2kj = 0,
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where {i = 1, j = 2} and {i = 3, j = 4} and k1, k2, k3, k4 are arbitrary functions. These

identities lead Ki = 0, i = 1, . . . , 8.

Hence we have proved that invariant equations provided necessary and sufficient con-

ditions for linking system of the form (10.5) and the linear system (10.7).

Example 10.1. The transformation

x′ = x, t′ = t, u′ = xtu, v′ = xu + tv

maps

u′x′t′ = 0, v′x′t′ = 0

into

uxt = −1

t
ux − 1

x
ut − 1

xt
u,

vxt =
x

t2
ux − 1

t
vx +

1

t2
u. (10.8)

Hence the general solution of system (10.8) is

u =
f1(x) + g1(t)

xt
, v =

f2(x) + g2(t)

t
− f1(x) + g1(t)

t2
.

(2) Now we consider the linear system

uxt + u = 0,

vxt + v = 0. (10.9)

The system of the form (10.5) can be mapped into system (10.9), by the point transfor-

mation (10.6) providing the following 12 identities are satisfying:

kit + a1ki + a2kj = 0,

kjt + b1ki + b2kj = 0,

kix + c1ki + c2kj = 0,

kjx + d1ki + d2kj = 0,

kixt + PxQtki + f1ki + f2kj = 0,

kjxt + PxQtkj + g1ki + g2kj = 0,

115

Chri
sti

na
 Tsa

ou
si



where {i = 1, j = 2} and {i = 3, j = 4} and k1, k2, k3, k4 are arbitrary functions. These

identities lead to the following results:

K1 = K4 = K5 = K8 = −PxQt, K2 = K3 = K6 = K7 = 0.

It can be shown that the system of the form (10.5) can be mapped into system (10.9),

if and only if

I1 = I2 = −2H(x)G(t), I3 = I4 = I5 = H2(x)G2(t), I6 = 0.

Example 10.2. The transformation

x′ = x, t′ = t, u′ = u + xv, v′ = xtv

maps

u′x′t′ + u′ = 0, v′x′t′ + v′ = 0

into

uxt =
x

t
vx − u +

1

t
v,

vxt = −1

t
vx − 1

x
vt −

(
1 +

1

tx

)
v. (10.10)

(3) Now, we consider the linear system

uxt + v = 0,

vxt + u = 0. (10.11)

The system of the form (10.5) can be mapped into system (10.11), by the point transfor-

mation (10.6) providing the following 12 identities are satisfying:

k1t + a1k1 + a2k2 = 0,

k2t + b1k1 + b2k2 = 0,

k1x + c1k1 + c2k2 = 0,

k2x + d1k1 + d2k2 = 0,

k1xt + PxQtk3 + f1k1 + f2k2 = 0,

k2xt + PxQtk4 + g1k1 + g2k2 = 0
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and

k3t + a1k3 + a2k4 = 0,

k4t + b1k3 + b2k4 = 0,

k3x + c1k3 + c2k4 = 0,

k4x + d1k3 + d2k4 = 0,

k3xt + PxQtk1 + f1k3 + f2k4 = 0,

k4xt + PxQtk2 + g1k3 + g2k4 = 0,

where k1, k2, k3, k4 are arbitrary functions.

It can be shown that the system of the form (10.5) can be mapped into system (10.11),

if and only if

I1 = I2 = 0, I3 = I4 = I5 = −H2(x)G2(t), I6 = 0.

Example 10.3. The transformation

x′ = x, t′ = t, u′ = tu, v′ = xu + xtv

maps

u′x′t′ + v′ = 0, v′x′t′ + u′ = 0

into

uxt = −1

t
ux − x

t
u− xv,

vxt =
1

t2
ux − 1

t
vx − 1

tx
ut − 1

x
vt +

(
x2 − t2

t2x

)
u +

(
x2 − 1

tx

)
v. (10.12)

(4) System

uxt = a1(t, x)ux + c1(t, x)ut + f1(t, x)u,

vxt = b2(t, x)vx + d2(t, x)vt + g2(t, x)v (10.13)

is factorable, viz. the differential operators of the second order

L1 = DtDx − a1Dx − c1Dt − f1, L2 = DtDx − b2Dx − d2Dt − g2
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can be expressed as a product of two operators of the first order if and only if the semi-

invariants vanishes. Namely,

L1 = [Dx + m1(x, t)][Dt + m2(x, t)],

iff I2 = I3 = I5 = I6 = 0,

L2 = [Dx + m3(x, t)][Dt + m4(x, t)]

(10.14)

L1 = [Dt + m1(x, t)][Dx + m2(x, t)],

iff I1 = I4 = I6 = 0,

L2 = [Dt + m3(x, t)][Dx + m4(x, t)]

(10.15)

L1 = [Dt + m1(x, t)][Dx + m2(x, t)],

L2 = [Dx + m3(x, t)][Dt + m4(x, t)] (10.16)

or iff I3 = I4 = I6 = 0.

L1 = [Dx + m1(x, t)][Dt + m2(x, t)],

L2 = [Dt + m3(x, t)][Dx + m4(x, t)] (10.17)

The proof of the both statements (10.14) and (10.15) are similar, therefore let us prove

only one of them, e.g. (10.14). Let

L1 = [Dx + m1(x, t)][Dt + m2(x, t)]

and

L2 = [Dx + m3(x, t)][Dt + m4(x, t)].

If we compare this operators with the linear system (10.5), the coefficients of L1 and L2

have the form

a1 = −m2, b1 = 0, c1 = −m1, d1 = 0, f1 = −m2x −m1m2, g1 = 0

and

a2 = 0, b2 = −m4, c2 = 0, d2 = −m3, f2 = 0, g2 = −m4x −m3m4,

respectively. Therefore the semi-invariants I2, I3, I5, I6 vanish.
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Conversely, if

I2 = 0, I3 = 0, I5 = 0, I6 = 0,

and solve this system for f1 and g2, we arrive to the following form of f1 and g2:

f1 = a1x − a1c1, g2 = b2x − b2d2.

Hence, L1 and L2 are factorable

L1 = DtDx − a1Dx − c1Dt − a1x + a1c1 ≡ [Dx − c1] [Dt − a1] ,

L2 = DtDx − b2Dx − d2Dt − b2x + b2d2 ≡ [Dx − d2] [Dt − b2] .

Also, the proof of the both statements (10.16) and (10.17) arise together. Let

{L1 = [Dt + m1(x, t)][Dx + m2(x, t)] and L2 = [Dx + m3(x, t)][Dt + m4(x, t)]}

or

{L1 = [Dx + m1(x, t)][Dt + m2(x, t)] and L2 = [Dt + m3(x, t)][Dx + m4(x, t)]}.

If we compare these operators with the linear system (10.5), the coefficients of L1 and L2

have the form

{a1 = −m1, b1 = 0, c1 = −m2, d1 = 0, f1 = −m2t −m1m2, g1 = 0}

and

{a2 = 0, b2 = −m4, c2 = 0, d2 = −m3, f2 = 0, g2 = −m4x −m3m4},

or

{a1 = −m2, b1 = 0, c1 = −m1, d1 = 0, f1 = −m2x −m1m2, g1 = 0}

and

{a2 = 0, b2 = −m3, c2 = 0, d2 = −m4, f2 = 0, g2 = −m4t −m3m4},

respectively. In the both cases, the semi-invariants I3, I4, I6 vanish.
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Conversely, if I3 = 0, I4 = 0, I6 = 0, and solve this system for f1 and g2, we arrive to

the following forms of f1 and g2:

f1 = c1t − a1c1, g2 = b2x − b2d2

or

f1 = a1x − a1c1, g2 = d2t − b2d2.

For the first solution of the system, L1 and L2 are factorable as:

L1 = DtDx − a1Dx − c1Dt − c1t + a1c1 ≡ [Dt − a1] [Dx − c1] ,

L2 = DtDx − b2Dx − d2Dt − b2x + b2d2 ≡ [Dx − d2] [Dt − b2] .

For the second solution of the system, L1 and L2 are factorable as

L1 = DtDx − a1Dx − c1Dt − a1x + a1c1 ≡ [Dx − c1] [Dt − a1] ,

L2 = DtDx − b2Dx − d2Dt − d2t + b2d2 ≡ [Dt − b2] [Dx − d2] .

For illustration, we consider the following examples.

Example 10.4. We consider the following system:

uxt = tux +

(
x− t

t

)
ut −

( x

t2
+ x− t

)
u,

vxt =

(
t

x

)
vx + xvt −

(
t

x2
+ t

)
v. (10.18)

This system is a member of the class of system (10.13). Comparing system (10.18) with

(10.13), we have the following forms of coefficients:

a1 = t, c1 =
x− t

t
, f1 = −

( x

t2
+ x− t

)
,

b2 =
t

x
, d2 = x, g2 = −

(
t

x2
+ t

)
.

The semi-invariants (10.4) are

I3 = 0, I4 = 0, I6 = 0.

Hence, the system (10.18) is factorable. It is easy to show that system (10.18) is written

in the following form:

[Dt − t]

[
Dx −

(
x− t

t

)]
u = 0,

[Dx − x]

[
Dt − t

x

]
v = 0.
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Example 10.5. We consider the system:

uxt = xtux − tut + (t + xt2)u,

vxt = −xvx + xvt + (1− x2)v. (10.19)

Comparing the system (10.19) with system (10.13), we have that:

a1 = xt, c1 = −t, f1 = t(1 + x2),

b2 = −x, d2 = x, g2 = 1− x2.

Its semi-invariants I2, I3, I5, I6 are vanish. Hence the system (10.19) is factorable and

can be written in the form:

[Dx + t] [Dt − xt] u = 0,

[Dx − x] [Dt + x] v = 0.

Example 10.6. Now, we consider the following system:

uxt =

(
tx− 1

t

)
ux −

(
tx + 1

x

)
ut +

(
t2x2 − tx− 1

tx

)
u,

vxt = −
(

t + 1

t

)
vx + xvt +

(
x(t + 1)

t

)
v. (10.20)

The system (10.20) is also a member of system (10.13) with coefficients:

a1 = −tx− 1

t
, c1 =

tx + 1

x
, f1 =

t2x2 − tx− 1

tx
,

b2 =
t + 1

t
, d2 = x, g2 =

x(t + 1)

t
.

Substituting these coefficients into semi-invariants (10.4) we arrive

I1 = 0, I4 = 0, I6 = 0.

Therefore, the system (10.20) is factorable. It is straightforward to show that system

(10.20) takes the following form:
[
Dt − tx− 1

t

] [
Dx +

tx + 1

x

]
u = 0,

[
Dt +

t + 1

t

]
[Dx − x] v = 0.
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Example 10.7. Finally, we consider the following system:

uxt = − x

t2
ux +

(
t− 2

x

)
ut +

(
2x

t3
+

t− 2

t2

)
u,

vxt =

(
tx− 1

t

)
vx + tvt + (2− tx)v. (10.21)

The system (10.21) has the form (10.13) with coefficients:

a1 = − x

t2
t, c1 =

t− 2

x
, f1 =

2x

t3
+

t− 2

t2
,

b2 =
tx− 1

t
, d2 = t, g2 = 2− tx.

Then the semi-invariants I3, I4, I6 vanish. Therefore, the system (10.21) is factorable

and is given by:
[
Dx − t− 2

x

] [
Dt +

x

t2

]
u = 0,

[
Dt − tx− 1

t

]
[Dx − t] v = 0.

10.5 Conclusion

In this chapter, we work on invariants for systems of hyperbolic equations. We have

shown that the class of systems (10.1) has no differential invariants of order zero. We

determined five independent differential invariants of first order. Also, we have derived

invariant equations and two invariant systems for (10.1). Motivated by the applications

of Laplace invariants, we use the forms of the semi-invariants to classify those systems

of hyperbolic equations that can be mapped into simple linear systems. We used these

results to construct some examples.

The work of this chapter is the subject of a forthcoming article [61].
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Chapter 11

Final remarks

Recently, Ibragimov developed a systematic method for determining invariants of families

of equations. This method is based on the infinitesimal approach and is applicable to

algebraic and differential equations possessing finite or infinite equivalence groups. The

method was applied to a number of ordinary and partial differential equations.

The present thesis is aimed at discussing the main principles of the method and its

applications to more general hyperbolic equations. In particular, we apply it to non-linear

hyperbolic equations and two subclasses of it, to n-dimensional hyperbolic equations, to n-

dimensional wave-type equations and to system of two hyperbolic equations. Also, known

identities are presented relating arbitrary order partial derivatives of u(x, t) and u′(x′, t′)

for the general point transformation x′ = P (x, t, u), t′ = Q(x, t, u), u′ = R(x, t, u). These

identities are used to study the nature of those point transformations which preserve the

general form of wide class of 1+1 PDEs. These results are generalized to system of two

equations.

The work here opens the way on certain other problems that can be considered in the

near future. For example, the work on differential invariants for hyperbolic equation of

general class

uxt = f(x, t, u, ut, ux) (11.1)

is incomplete. We can use invariant differentiation to construct a basis for the invariants

in the same way as Ibragimov did for the linear hyperbolic equation (see [20]).

Another problem is to find equivalence transformations and differential invariants for
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the following general class of equations:

uxt = f(x, t, u, ut, ux)uxx + g(x, t, u, ut, ux).

Further study, along the lines of the chapter 3, of a single equation with more than

two independent variables, can be carried out.
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