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Abstract

This thesis consists of two parts: in the major part we calculate the infinitesimal generators
of families of partial differential equations which are used for derivation of differential
invariants. In the other part we have drawn our attention to point transformations which
preserve the general form of partial differential equations.

In the applied group analysis, one-parameter Lie groups of transformations are deter-
mined by infinitesimal transformations or infinitesimal generators. Using the infinitesimal
generator of a one-parameter Lie group of transformations one can construct various kinds
of invariants (invariant surfaces, invariant points, invariant families of surfaces). A one-
parameter Lie group of transformations acting on the space of independent and dependent
variables is naturally extended (prolonged) to one-parameter Lie group of transformations
acting on an enlarged space that includes all derivatives of the dependent variables up
to a fixed finite order. Consequently, one-parameter extended Lie groups of transforma-
tions are characterized completely by their infinitesimals. This allows one to establish an
algorithm to determine the infinitesimal transformations admitted by a given differential
equation.

There exist two methods for calculation of equivalence transformations, the direct
method which was used first by Lie and the Lie infinitesimal method which was intro-
duced by Ovsyannikov. Although, the direct method involves considerable computational
difficulties, it has the benefit of finding the most general equivalence group.

Recently, Ibragimov developed a simple method for constructing invariants for families
of differential equations. The method is based in the theory of equivalence groups in the
infinitesimal form. Basically, the method consists of two steps: classification of equivalence
groups and then use these groups (and extended groups) to derive the desired differential

invariants. Ibragimov used his method to solve the Laplace problem. That is, to derive



all invariants for the linear hyperbolic equation
Uzy + CL(I’, y)ul‘ + b(l‘, y)uy + C<x7 y)u = 0.

To achieve this, he constructed a basis for the invariants and then using this basis and
invariant differentiation all invariants, of any order, can be derived. The idea of Ibragimov
was adopted by a number of authors who derived differential invariants for ordinary
differential equations, linear and non-linear partial differential equations.

Differential invariants of the Lie groups of continuous transformations can be used in
wide fields: classification of invariant differential equations and variational problems aris-
ing in the construction of physical theories, solution methods for ordinary and partial
differential equations, equivalence problems for geometric structures. First it was noted
by Lie (see [33]), who proved that every system of differential equations (see [34]), and
every variational problem (see [36]), could be directly expressed in terms of differential
invariants. Lie also showed (see [34]) how differential invariants play an important role
to integrate ordinary differential equations and succeeded in completely classifying all
differential invariants for all possible finite-dimensional Lie groups of point transforma-
tions in the case of one independent and one dependent variable. Tresse (see [56]) and
Ovsyannikov [44] generalized the Lie’s preliminary results on invariant differentiations
and existence of finite bases of differential invariants. The general theory of differential
invariants of Lie groups together with algorithms of construction of differential invariants
can be found in [42,44].

Also, there is merit in studying point transformations directly in finite form with the
ultimate dual goals of finding the complete set of point transformations of systems of two
partial differential equations and discovering new links between these systems.

Relationships between partial derivatives are considerably more cumbersome than the
corresponding relationships for infinitesimal transformations which themselves expand
rapidly with increasing order. However several results are presented. These results help us
achieve the second aim which is to discover the nature of point transformations connecting
systems of two partial differential equations belonging to given classes. Thus, we look at
systems with one partial derivative of wu(t,z) and wv(t,z) of any order, possibly mixed,
related to lower-order derivatives of v and v, u and v themselves and t and z.

In this thesis, firstly we develop the basic concepts of Lie groups of transformations,
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infinitesimal transformations and invariance of partial differential equations that are nec-
essary in the following chapters. In the beginning we start with known results. That is,
we use the Lie infinitesimal method for calculating the continuous group of equivalence
transformations, for the non-linear diffusion equation. Also, we apply this method to
derive differential invariants for the linear hyperbolic equation in two variables. Finally,
we describe the method which used by Ibragimov to solve the Laplace problem.

The second step is to calculate equivalence transformations for given families of equa-
tions. In the spirit of the recent work of Ibragimov (see [19]), who adopted the infinitesimal
method for calculation of invariants of families of differential equations using the infin-
itesimal groups, we apply the method to several partial differential equations. In this
thesis, we derive the equivalence group for hyperbolic equations of general class and for
two special cases of it. Also, we calculate equivalence transformations for n-dimensional
hyperbolic equations, for n-dimensional wave-type equations and finally for hyperbolic
equations with two dependent variables. For these families of equations, we find the
forms of differential invariants of first or/and second order. In certain cases, we will use
the derived invariants or/and invariant equations to find the form of those equations that
can be mapped into an equation with particular form.

Furthermore, we work on form-preserving point transformations for partial differential
equations. We present some known results (see [29]) for three classes of equations re-
stricted to one dependent variable and two independent variables concerning the nature
of connecting point transformations. We will generalize these results for forms of point
transformations connecting two systems of two partial differential equations. The aim of
this part is first to present results concerning the relation of the transformed partial deriv-
atives to the original partial derivatives and secondly to exploit these results to reduce
the general range of point transformations connecting systems of two partial differential

equations belonging to restricted classes.
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[eptAngm

Auth 1 Bt amoteheiton amd HU0 U€pn: 670 TEWTO UEPO LTOAOYILOUUE ATELPOGTOUS YEV-
VATOPES YLol DIAPOPES XATIYORIEC UEPLXWY BLUPORIXWY ECLOWCEWY Ol OTO{OL YENOLULOTO0VVTAL
YL TNV EVEECT) AVAAAOIWTWY GUYVAPTACEWY XA GTO BENTERO UEPOG UEAETOUUE CNUELAXOUS [UE-
TACYNUATIOUOUE Ol OTOLoL BLATNEOUY TNV YEVIXT UOPQT] TV UERIXWY DAPOEX®OY EEIGWOEWY
avaAlolwT.

YNV EQUPUOGUEVT, aVAAUGCT], OL UOVOTIOQUUETOIXEC OUADES UeTaoy uatiop®y Lie, xodo-
eiCovtar amd Toug ATELPOGTOUG UETAGY NUATIOUOUS 1 TOUC ATELROCTOUS YEVVTORES. XETOL-
HOTOLWVTOS TOV ATELPOCTO YEVVATORN ULIG LOVOTOQUUETEIXS OUddAS UETACY NUoTiouwy Lie,
UTOPOUUE VoL XATAOKEVSGOUUE TOXIAES UOPPES AVIAROIDTWY CUVIPTACEWY (6TWS avaAhoiw-
TEC EMLPAVELES, avahholwTa onueia, avahholwTES OIXOYEVELES smcpowstd)v). M povonapaye-
TEWT| odda UETaoY NUATIOU®Y Lie mou Spa mdvew oToV YOpo TwV aveldpTnTwy ot eCupTr-
UEVODY PETUBANTOV efvar ETEXTETUUEYY) OE L0l UOVOTOUQOUETEIXT OUdDN UETUCY UATIoNWY Lie
TOU Opal OE UEYAAUTERO YWEO, 0 0molog TEQAAUBAVEL OAEC TIC TOQUYWYOUS TWY ECUOTNUE-
VOV UETABANTOVY €Y Pt XATOWIG TEREPACUEVNS TAENG. LUUTEQACUTIXG, Uid LOVOTUROUETEIXY
EMEXTETUUEVT, oudda YeTacynuatiopmy Lie yopaxtnpeileton and to infinitesimal tng. Auv-
TO oG EMTEETEL VO XATAOXEUAGOUUE Eva ahyopLduo yia vo xodoplcouue Toug amelpoaTolg
UETAOYNUATIONOUE TOUG 0Toloug EMOEYETAL Uial DOGUEVT daopixy| eCiowoT).

Trdpyouv 500 TEOTOL Yol UTOAOYIOUS TWV LGOOUVAUWY UETACY NUATIOU®Y, O GUECOS TEO-
mo¢ o omofog yenoworoiinxe mpwta and Tov Lie xau 1 ancipooth pédodog Lie 1 omoi-
o xoTooxeVdo Txe omo Tov Ovsyannikov. Av xot o duecog tpémog mepthou3aveL TOAES
UTOAOYIOTIXEG DUOXOMES, EVTONTOLS €YEL TO TASOVEXTTUA €0PECTS O YEVIXNG LOOBOVOUNS
ouddag.

[Tpbogata, o Ibragimov avéntule wa amhy| U€V000 YLo XATACKELT] AVIALOIWTWY GUYVAPTH-

oewv. Auth 1 uédodog Pacileton 6Ny Yewpio TwY 100BHVAUUWY OUAdWY OE ATEIROGC TH LOPQY.
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Avuth n uédodog anotedeltar amod 50 BT TEOTA TNV TAEWVOUNCT TWY LoOSUVIUWY OUIdWY
Ao ETELTOL TN YENOWOTOoNoT Toug Yia e0pEDT) TwY avarhointwy cuvapthoswy. O Ibragimov
yenowonoinoe auty Ty pédodo yio vo Adoet to mpoPBAnua tou Laplace. Anlady, yenot-
uoroinoe auty| Ty u€Vodo Yo v Bpet OAeC TIC AVUAAOIWTES GUVAPTACELS YA TNV YEUUMXY)

urepPBohx elowon:
Uy + a(z, y)uy + b(x, y)uy, + c(z,y)u = 0.

[ vou To ety e, XaTaoxeVUoE Wiat BAoT Yio TS AVAAAOIWTEC GUYUPTACELS XUl Y PTOULOTOLV-
Tag auTh TN Bdom xou ue avolroiwTtn TapaywmYlon Berixe OAES TIC AVAAAOIWTES GUVIRTYHOELS
omolcormote 1déng. H 1déa tou Ibragimov uiodethiinxe and modlholc cuyypagelc, ol omoi-
oL UTOAOYLIoAY AVOANOIWTES CUVUPTAOELS VLo CUVNUELC DlaQORLXEC ECLOWOELS, YRUUUXES ol
UN-Y QOUUXES UERLXES DLapopIxEC EELOWTELC.

O avod Aol TeEG GUYVAPTACELS TWY OUAdWY UETACY U TIoU®Y Lie utopolv va yenowonoin-
Yolv o€ Bidpopa Tedia: OTWS Yo TNV TACVOUNGCT) TWV AVAAROIWTOV SLaPopiXdY eEIGWMOEWY,
o€ TpofBAfuaTa UETUB0AMY, o€ UEVOBOUC YL T AUoT) GUYHTWY XAl UERIXWY BLaPoptxwy ELoW-
oewv. Ilphtog o Lie anédeile 6T xde avallolwto 600 TN UEQIXWY DLAPORLXWY EELCWOEMY
xa xde mpoBAnua YetaBoAmy, utopel Vo ex@pacTel UECK TwV AVAAAOIWTWY CUVILTACEWY.
Enfong, €detle, nwg ot avadlolwteg ouvapthoelc mallouy onuavTind pOho o TNY OAOXA EWoT
oLVHOWY BlaPoEx®Y EEIGWOEWY, Yo TNV TUEIVOUNCT) OAWY TV AVOANOIWTOY CUVIPTACEWY
Yo OAEG TIC TMETEPACPEVNS -OtdoTaoNG OUdde Lie onueloxmy YETAoYNUATION®OY GTNV Tepi-
TTWoT wag aveldptntng xou W e€aptnuévng petaBintrc. H Tresse xan o Ovsyannikov
yevixeuoay ta anoteréopota Tou Lie oe avalholiwtn mapaymdylon xou o tny Unapln mene-
eaoUEVWY Bdoewy avarloinTwy cuvapThoewy. H yevinr| Yewpla twv avorlolwtwy cuvapTh-
oEwV TV ouddwy Lie pali ye alyoplduoug yia XaTaoxew| TV avaAlolwTwY CUVIPTHCE®Y
uropet vo Peedei ota [42,44].

Eniong, eivonr onuavtind vo ooy ohndolue xaL Ue ONUELIXOUE UETAGY NUATIOUOUS, UE OXOTO
NV €0PECT) TAPOUSC OUADUS CTUELIXMY UETUACY NUATICUWDY VLo CUCTHUAUTA TOU ATOTEAODVTAL
and 800 UepXES DLapopnéc ECIOWOELS.

Ov oyéoelc YeTadd TV UEQIXWY TORAYWYWY EVOL TO TOAUTAOXES amd TIC AVTioTOLYEC
OYECELC VLA TOUG ATELROC TOUG PeTaoy NuaTiopols. Evrtoitowg Ya napousidcouye xdmol amo-
teMéopata.  Autd Ta anotedéopata pog Bondolv va mETOYOULUE TOV BEUTERO OXOTH UOg

mou efvan Vo BEollE TOUC GNUELNXOUS PETACY UATIONOUS TOU GUVOEOUY GUGC TAHUATO UEQIXWY
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OLUPOPUAY ECLOWOEWY CUYXEXQIEVTC Wop@pnc. TV autd ooy 0AOUUAGTE UE CUCTHUNTA TOU
AmOTEAOUYTOL Ao DU0 PEPES DLaPOEES EELOMOELC XL TERLAUBAVOUY Wi HERIXT| TaPdYWYO
TV e€apTNUEVLY UETaBANTOY u(t, ) xou v(t, ) xou €netto e GUOTAUATA TOU TEQLAAUBEYOUY
UEIXTES TOPAYWYOUS TwY EZ0pTNUEVWY UETHBANTOY u(t, ) o v(t, x), oL onoleg oyetilovia
UE WXEOTEPNC TAENS TopaydYous twv u(t, x) xaw v(t, x), e o Bt T u(t, ) xou v(t, z) xou
Tot, x.

[V autd o autyh TV dtateiBn, Tpwta Yo avageptolue oe Pactxoie 0piloUolE TwY OuddmY
UETAOY NUATIOU®OY Lie | TV anelpooT®y UETACY NUATIOUOY XdL TO AVUAROIWTO TV UEPLXWY
OLapopx@y e€looEwy, To omola efvor ypriowa Yo T endueva xepdiate.  Katopyry, da
Eexvioouue Tapouctdloviag YVwoTd anotehéopata.  Anhadr), Vo eQUoUOCOUUE TNV OmEL-
coo 1) uédodo Ttou Lie yioa tov UTOAOYIOUO OUSB®Y LGOBUVOUWY UETUCY NUATIOUWY Yo TN
un yeouuxy egiowon dtdyvone. Exiong, Yo yenowonoicovye tn pédodo yia to UTOhOYL-
OUb TV aVIALOIWTOY CUVIPTACEWY TN Yeauuxhc urtepBolxrg eliowone. Emmiéov, Ja
TepLypddoule Tov TeOTo uE Tov omofo o Ibragimov éhuoe to mpoBinua Tou Laplace.

Yav 0eUtepo Priua, axolovdovtac Ty Wwéa Tou Ibragimov, yia ebpeot) 1odlVoUWY Ue-
TACYNUATIOUOY, Yo UTOROYIGOVUE LGOBUVOHOUS UETAGY NUATIOUOUS Yid DOGUEVES OLXOYEVELES
UEQIXWY DLapopx®y EELOMOEWY. MUYXEXPWEVY, Yo UTOAOYICOUUE TIC OUABES tGODLVuiaG
YioL TN YEVIXT| Wop@r| TN UTEPBOAIXS e&lomang ot BUO EWXWY TEQITTOOoEWY TNne. Emiorg,
Yo UTOAOY{COUUE TIC OUADES toodUVaPLaS Yo TNY uTepBohixy| e&lowao BldcTaong N, Yot TNV
xuppatiny| e€lowon SldoTacng 1 xou T€Aog Yo oG TN Tou aroteleltar and 800 uTEQPOAL-
xé¢ e€lowoelg. I'V autéc Tig owoyéveleg e€LloWoewY, PeloxouUe TIC AVIANOIWTEC GUVIPTHCELS
TewTNe f/xon deltepnc téEnc. Xe meplocdTepes ond AUTES, Vol YENOLLOTOLACOUUE TIC OVUA-
MolwTeG CLVAPTACELS f]/XO(L TI¢ avaAholwTeg e€loMOELg Yo Vo BRolUE TN Lop@Y QUTWY TWY
eCIOWOEWY 0L 0TOlEC YToEOUY Vol anexovicVoUy ot eEIOWOELS CUYXEXPWEVNS LOPPNS.

Téhog, Yo BOOOUVUE (MO YVWO T ATOTEAEGUATA TOU APOPOUY TOUG OTUELIX00S UE-
TAOYNUATIOUOUE WG UEPXAC Dlapoptxic e€lowomne. Muyxexptuéva, Yo TUpoUCIdGOUUE TNV
HORYT, TV CNUELIXWY UETACYNUATIOU®Y Ol 0ToloL GUVOEOLUY TEELC OUADES UEQIXWY OLapO-
eV eCLOWoEWY TOU amoTeEAOUVTUL amd Uit ECUPTNUEVY X BLO aveldpTnTeES UETABANTES.
Yx0omo¢ pog Vol VoL YEVIXEUOOUUE AUTE Tol AmOTEAECUATO YOl CUCTAUATO TOU UTOTEAOUV-
Tou amd 000 dlagopixés eClowoelg. Anhadt, meoTo Yo TUROUCIAGOUNE ATOTEAEGUATI TOU

APOEOUV TIC GYEGELS TWV UETACYNUATIOUEVODY UEQIXMY TOQUYWYWY UE TIC APYIXEC UEPIXES
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TOEUYWYOUS XL OEUTEQOY YETNOWOTOLWYTAC aUTd Tal anoTeréopota Vo Tpoodloplcouue T
HORYT, TV ONUELIXGDY UETACY NUATIOUWY TOU GUVOEOLY GUYXEXQUIEVO GUC TAUNTA UEQLXWY

OLAUPOPLXWY EEIGWTEWY.
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Chapter 1

Introduction

Modern mathematics has over 300 years history. From the very beginning it was focused
on differential equations as a major tool for the mathematical modeling. Most of math-
ematical models in physics, engineering sciences, biomathematics, etc. lead to nonlinear
differential equations.

The theory of differential equations is one of the most important disciplines in modern
mathematics. It would be correct to say that the notions of derivative and integral, whose
origin goes back to Archimedes, were in fact introduced later in works of Kepler, Descartes,
Cavalieri, Fermat and Wallis. Later, Newton and Leibnitz realized that differentiation and
integration are inverse operations and developed the appropriate algorithms.

The brothers Jacob and Johann Bernoulli (1654-1705, 1667-1748) made further contri-
bution to the theory of differential equations. Especially, famous are their investigations
of geodesic curves and isoperimetric problems that are considered to be the origin of
variational calculus.

The Italian mathematician Riccati (1676-1754) paid attention to particular cases of

the following equation which later became popular:

dy

T X(x) + Xy (2)y + Xo(z)y*.
This equation should certainly be considered as the simplest and the most significant
among non-integrable differential equations. In particular, new group-theoretic investiga-

tions show that this equation can be interpreted as an analogue of the algebraic equation

of fifth degree.



A further important contribution to the theory of differential equations was made by
d” Alembert (1717-1783). By formulating the general mechanical principle, he reduced
all problems of dynamics to differential equations and furnished Newton’s revolutionary
mechanical ideas with a general and definite form.

The first category of all investigations on partial differential equations (PDEs) of the
first order started by Euler, Lagrange and Monge, and continued by Pfaff, Cauchy, Hamil-
ton, Jacobi, A. Mayer and others. Research on PDEs of second and higher order started
by Monge and Laplace. Among followers of Laplace and Monge in this field are Ampére,
Darboux and some other French mathematicians who ensured a considerable advance in
the theory of differential equations. The notion of characteristics introduced by Monge
played implicitly or explicitly an important role.

The linear wave equation u,, = 0 for vibrating strings, was formulated and solved by
d’Alembert in 1747. In 1769/1770, Euler (see [7]) and later, in 1773, Laplace (see [32])

derived the two invariant quantities
h=a,+ab—c, k=b,+ab—c. (1.1)

These fundamental invariant quantities are known today as the Laplace invariants.
We owe to Leonard Euler the first significant results in integration theory of general

hyperbolic equations with two independent variables x, y:
Ugy + CL(.%', y)uflf + b(l‘, y)uy + C(:L‘, y)u = 0. (12)

In his ”Integral calculus ” (see [7]), Euler introduced what is known as the Laplace invari-
ants h and k. Namely, he generalized d’ Alembert’s solution and showed that equation
(1.2) is factorable, and hence integrable by solving two first-order ordinary differential

equations, if and only if its coefficients a, b, ¢ obey one of the following equations:
h=a,+ab—c=0

or
k=0b,+ab—c=0.

If h =0, equation (1.2) is factorable in the form

0 ou
(%—l—b) <8—y+au> =0,



and if & = 0, equation (1.2) is factorable in the form

0 ou

In the 1773s, Laplace developed a new method, known as Laplace’s ” cascade method”,
in his fundamental paper ”Studies on integral calculus of partial differences”. The central
role in his method play the semi-invariants A and k. His method is used to solve many
hyperbolic equations.

In the 1890s, Darboux discovered the invariance of h and k and called them the Laplace
invariants. He also simplified and improved Laplace’s method, and the method became
widely known due to Darboux’s excellent presentation. Since the quantities A and k are
invariant only under a subgroup of the equivalence group, Ibragimov proposed to call h
and k the semi-invariants in accordance with Cayley’s theory of algebraic invariants.

Louise Petren, in her PhD thesis defended at Lund Univarsity in 1911, extended
Laplace’s method and the Laplace invariants to higher-order equations.

Semi-invariants for linear ordinary differential equations were intensely discussed in
the 1870-1880’s by J.Cockle, E. Laguerre, J.C. Malet, G.H. Halphen, R. Harley and A.R.
Forsyth. The restriction to linear equations was essential in their approach. They used
calculations following directly from the definition of invariants. These calculations would
be extremely lengthly in the case of non-linear equations.

In the second half of the 19th century, the Norwegian mathematician Sophus Lie began
to create a remarkable work that unified all known methods of solving differential equa-
tions. In 1871 Lie had started examining PDEs, hoping that he could find a theory which
was analogous to Galois’s theory of equations. He applied his contact transformations
to extend a method, due to Jacobi, of generating further solutions from a particular set.
This led Lie to define what he called a continuous transformation group. He discovered
that symmetries of differential equations can be found and exploited systematically. Over
many years, considerable research effort has been directed at understanding the elegant
algebraic structure of symmetry groups, but Lie’s methods for determining and using
symmetries were largely neglected until fairly recently. With the advent of powerful sym-
bolic computation packages, it has become possible to apply Lie’s methods to explore the
symmetries and conservation laws of a wide range of physical systems.

It was during the winter of 1873-1874 that Lie began to develop systematically his



theory of continuous transformation groups, later called Lie groups, leaving behind his
original intention of studying PDEs. Later Killing worked on the Lie algebras associated
with Lie groups. He did this, quite independently of Lie, and it was Cartan who completed
the classification of semi-simple Lie algebras in 1900.

Lie’ s work related a miscellany of topics in ODEs including: integrating factor, sepa-
rable equation, homogeneous equation reduction of order, the methods of undetermined
coefficients and variation of parameters for linear equations, solution of the Euler equa-
tion, and the use of the Laplace transform. Lie (1881) also indicated that for linear
PDEs, invariance under a Lie group, leads directly to superpositions of solutions in terms
of transforms.

Recently, Ibragimov (see [15,16,19]) developed a simple method for constructing invari-
ants of families of differential equations. The method is based in the theory of equivalence
groups in the infinitesimal form. Basically, the method consists of two steps: classification
of equivalence groups and then use of these groups (and extended groups) to derive the
desired differential invariants. Ibragimov (see [20]) used his method to solve the Laplace
problem. That is, to derive all invariants for the linear hyperbolic equations (1.2). To
achieve this, he constructed a basis for the invariants. Using this basis and invariant
differentiation, all invariants, of any order, can be derived. The idea of Ibragimov was
adopted by a number of authors who derived differential invariants for ordinary differential
equations, linear and non-linear PDEs (see [21-26, 48, 50, 52-55, 58]).

Different approaches of calculating differential invariants have also been applied. See,
for example, references [9,39,40, 66-68].

In this thesis, in the spirit of Ibragimov’s work, we consider families of PDEs with
the ultimate goal to derive differential invariants. In order to achieve it, we firstly need
to derive the equivalence transformations. The method is based on the infinitesimal
approach and is applicable to algebraic and differential equations possessing finite or
infinite equivalence group. Our first aim is to discuss the main principles of the method.

A brief description of the method used to derive equivalence transformations is pre-
sented. In particular, we apply the method for the families of non-linear diffusion equa-

tions:



As a second example, we calculate the equivalence transformations for linear hyperbolic

equations in two variables:
Up + a(t, x)uy + b(t, v)u, + c(t, x)u = 0. (1.3)

These results can be also found in [15,16].
Next, motivated by these results, we present our work for several families of hyperbolic
equations (see [57-61]). In particular, in chapter 6, we derive equivalence transformations

for the class
Uy = F(t, 2,0, ug, uy)
and for two subclasses of it:
Uy = fx,t,w)uguy + g, t,u)u, + bz, t,u)u, + Uz, ¢, u),

Uge = My (T, 1, w)uguy + myuy, + myuy + k(x, t,u).

Furthermore, in chapter 7, we calculate equivalence transformations for the n-dimensional

hyperbolic equations
n n
Uy = Z Uy, + Z Xi(w1, oy ooy Ty )y, + Ty, oy ooy Ty Oy + U(21, oy ooy T, E) 0
i=1 i=1
and in chapter 8, for n-dimensional wave type equations:
n
Ugy = Z Fi(x1, 29, ., Tp)Usp,z,-
i=1

Finally, in chapter 10, we use this method to calculate equivalence transformations for

systems that consist of two linear hyperbolic equations

Uyt = al(ta :C)um + bl(ta l')?)x + Cl<t7 m)ut + dl(ta l’)’l}t + fl(t? x)u + gl(ta SC)U,

Vgt = 2(t, ) Uy + bo(t, ), + co(t, x)uy + da(t, x)vy + folt, v)u + ga(t, x)v.

For these equations, we employ these equivalence transformations in order to derive dif-
ferential invariants. We adopt the idea of Ibragimov, who derived differential invariants
using the infinitesimal method. The derivation of differential invariants enable us to clas-
sify forms of PDEs that can be linearized via local mappings. In particular, we find those

equations that can be mapped into one of the four linear forms of equation (1.3), described

5



in the applications of Laplace invariants (see [17]). Some examples are given to illustrate
our results.

Another important tool that enables one to calculate differential invariants of higher
order is the derivation of operators of invariant differentiation. This method was applied
by Ibragimov in order to solve the Laplace problem. That is, to find all invariants for the
family of the linear hyperbolic equations (1.3) (see [20]).

Another task of the present work, is to consider point transformations of general form.

Motivated by the existing work (see [29]) for point transformations of the form
t'=Q(t,x,u), ' =P(t,z,u), v =R,z u)

admitted by classes of single PDEs, in chapter 9, we generalize certain results for systems
of PDEs. In chapter 3, we present existing results (see [29]). In particular, we explain the
notation and summarize the basic theory. These results are useful to find a complete set
of point transformations connecting PDEs belonging to given classes of equations. Using
this approach, equivalence transformations for a given PDE can be derived in finite form.

In chapter 9, following this approach for a single PDE, we consider point transforma-

tions of the form
t'=Q(t,x,u,v), =Pt x,uv), v=R(Etrxuv), v =Stz uv).

General results are presented for the restricted forms of point transformations that connect
classes of systems of PDEs with two dependent variables and two independent variables.

The calculations involved in this thesis have been facilitated by the computer algebraic
package "REDUCE” (see [11]).

This thesis is organized as follows: in chapter 2, we give the basic definitions which
are needed for the remaining chapters. In chapter 3, we introduce the notion of point
transformations of PDEs. In chapter 4, we present the idea of equivalence transforma-
tions. In chapter 5, the new method determining the differential invariants is described.
Chapters 6-10 are new contributions. Motivated, by the existence results of chapter 5,
in chapter 6 we derive differential invariants for the hyperbolic equations of general class
and for two subclasses of it. Also, we use the derived invariants to construct equations
that can be linearized via local mappings. In chapter 7, we consider n-dimensional linear

hyperbolic equations. We derive equivalence transformations which are used to obtain



differential invariants for the cases n = 2,3. Motivated by these results, we present the
general results for the n-dimensional case. In chapter 8, we consider the n-dimensional
wave type equations. We determine differential invariants of first order. For the cases
n = 1,2,3 we determine differential invariants of order two. In chapter 9, we generalize
the idea of point transformations as presented in chapter 3. Finally, in chapter 10, we

derive the differential invariants of a system of hyperbolic equations.



Chapter 2

Basic definitions

2.1 Introduction

In this chapter are developed basic results for continuous groups (Lie groups of trans-
formations) that are generated by a free parameter, hereafter denoted by e. Therefore,
each element of the group corresponds to a specific value of this parameter. This group
is continuous because € can vary continuously over the real numbers. Furthermore, a
general idea of transformations is given and a variety of transformations groups are ex-
hibited. This chapter provides a presentation of the infinitesimal theory of one-parameter
(¢) Lie groups, their invariants, invariant functions and invariant solutions. Finally, we
are concerned with applications to PDEs. We find admitted point symmetries and how
to construct invariant solutions. More details about Lie groups of transformations (Lie
symmetries) and their applications to differential equations can be found in a number of

recent textbooks. See, for example [4,5,12,13,16,41,44].

2.2 Lie group of transformations

Sophus Lie introduced the notion of continuous group of transformations to put order to
the hodgepodge of techniques for solving ordinary differential equations. Our discussion
begins by first defining arbitrary groups, then we consider a group of transformations and
more specifically, a one-parameter Lie group of transformations. Here, the transformations

act on IR".



2.2.1 Groups

Definition 2.1. A group G is a set of elements with a law of composition ¢ between
elements satisfying the following axioms:
(i) Closure property: For any elements a and b of G, ¢(a,b) is an element of G.

(ii) Associative property: For any elements a, b, ¢ of G:

¢(a, 9(b, ¢)) = (¢(a,b), c).

(iii) Identity element: There exists a unique identity element e of G such that for any

element a of G:

Pla,e) = ¢(e,a) = a.

(iv) Inverse element: For any element a of G there exists a unique inverse element a™!

in GG such that
$la,a”’) = (" a) =e.
Definition 2.2. A group G is abelian if ¢(a,b) = ¢(b,a) for any elements a and b in G.

Definition 2.3. A subgroup of G is a subset of GG, which is also a group with the same

law of composition ¢.

2.2.2 One-parameter Lie group of transformations

Definition 2.4. : Let x = (z1,x9,...,x,) lie in region D C IR™. The set of transforma-

tions
x =T(x,¢)

defined for each x in D and parameter ¢ in S C IR, with ¢(g, d) defining a law of compo-
sition of parameters € and ¢ in S, forms a one-parameter group of transformations on D
if the following hold:

(i) For each ¢ in S the transformations are one-to-one onto D.

(ii) S with the law of composition ¢ forms a group G.

(iii) For each x in D, x’ = x when € = g corresponds to the identity e, i.e.,

I'(x,e0) = x.



(iv) If X' = I'(x,¢), x" =T'(x/,§), then
x" =T(x,d(g,9)).

Definition 2.5. A one parameter group of transformations defines a one-parameter Lie
group of transformations if, in addition to axioms (i)-(iv), the following hold:

(v) € is a continuous parameter, i.e. S is an interval in IR.

(vi) I' is infinitely differentiable with respect to x in D and an analytic function of €
in S.

(vii) ¢(e,0) is an analytic function of ¢ and §, e € S, § € S.

A Lie group of transformations admitted by a differential equation corresponds to a

mapping of each of its solutions to another solution of the same differential equation.

2.3 Infinitesimal transformations

Consider a one- parameter (¢) Lie group of transformations
x' =T(x,¢) (2.1)

with the identity e = 0 and law of composition ¢. Expanding (2.1) about & = 0, in some

neighborhood of € = 0, we get

. Ol (z,¢) 1, (0T (x,¢) B ol (z,¢€) )
T X+€ ( 66 620) +25 < 882 e=0 + B X+€ 85 e=0 +O (6 ) '
Let
_ 0@(x,¢)
f(X) - 85 A

The transformation x + ££(x) is called the infinitesimal transformation of the Lie group

of transformation (2.1). The components of £(x) are called the infinitesimals of (2.1).

2.3.1 First Fundamental Theorem of Lie

Theorem 2.1. There exists a parametrization 7(g), such that the Lie group of transfor-
mations (2.1) is equivalent to the solution of an initial value for the system of first order

ODEs given by

dx’ ,
E = f(X )7

10



with

x' =x when T=0.

In particular,

and

2.3.2 Infinitesimal generators

Lie groups of transformations are characterized by infinitesimal generators. Lie gave an
algorithm to find all infinitesimal generators of point transformations. Significantly, for
a given differential equation, the basic applications of Lie groups of transformations only

require knowledge of the admitted infinitesimal generators.

Definition 2.6. The infinitesimal generator of the one-parameter Lie group of transfor-

mations (2.1) is the operator

=T = €005 = Y 60

where V is the gradient operator

g 0 0
\&i (8:61’8332"”’03:,1)'

For any differentiable function F'(x) = F(x1,2a,...,x,), we have
& OF(x)
I'kF(x) = VF(x)= i(xX)———.
)= €00 TFE) = 36007

11



2.3.3 Invariants Functions

Definition 2.7. An infinitely differentiable function F'(x) is an invariant function of the

Lie group of transformations (2.1) if and only if, for any group transformation (2.1),

Remark 2.1. Given an invariant F'(x), any function ®(F(x)) is also invariant.

2.3.4 Point transformations

In this subsection, we are interested in determining one-parameter Lie groups of point

transformations admitted by a given system S of differential equations.

Definition 2.8. A one parameter () Lie group of point transformations is a group of

transformations of the form
¥ = X(z,u,¢),

v =U(x,u,¢),

acting on the space of n + m variables

x=(21,Ta, ..., Ty),

x represents n independent variables and u represents m dependent variables.

A Lie group of point transformation admitted by S maps any solution u = O(x) of S
into a one-parameter family of solutions u = ¢(z,¢) of S. Equivalently, a Lie group of
point transformations leaves S invariant in the sense that the form of S is unchanged in

terms of the transformed variables for any solution u = O(z) of S.

12



Theorem 2.3. The kth extension of the one-parameter Lie group of point transformations
¥ =X(z,y,e¢),

Y =Y(zy.5e),
k> 2, is the following one-parameter Lie group of transformations acting on
(T, 9,91, - .., Yk)-space:

o = X(z,y,¢),

y = Y(z,ye),

yi - }/i('rﬂyvy17€)7

Yy _ Yy _ Yy _

¢+y1¢+-~+yk k-1

/ . Y _ ox 8y 8yk71
Yo = Yl@yy1. Uk ) = IX(z.y.2) OX (z.y.€) ’

ozx + hn oy
where y; = Yi(x,y,y1,¢€) is defined by

BY(z,y,a) + 8Y(x,y,e)
;o v . ox 1 9y
Yy = 1(377 Y, Y1, 8) T 0X(x,y,e) 0X (z,y.€)
ox + h 9y

andY;:Y;'(xayayla--wyiaE)a i=1,2,... k.

2.4 Invariance of PDEs

Similar to the case for an ordinary differential equation, we will see that the infinitesimal
criterion for the invariance of a PDE leads directly to an algorithm to determine the
infinitesimal generators of the Lie group of point transformations admitted by a given
PDE.

Firstly, we have a kth-order scalar PDE

F(z,u,0u,d*u, ..., 0%) =0, (2.2)

where x = (z1,2,...,2,) denotes the coordinates corresponding to its n independent
variables, u denotes the coordinate corresponding to its dependent variable, and &’u
denotes the coordinates with components
du
Ox;, 0y, . . . 6%

= WUijyig..ij» ij:1,2,...,n for j:1,2,...,k’,

13



corresponding to all jth-order partial derivatives of v with respect to x.

Definition 2.9. The one parameter Lie group of point transformations
¥ =X(z,u,¢), (2.3)

u =U(z,u,e), (2.4)

leaves invariant the PDE (2.2), i.e. is a point symmetry admitted by PDE (2.2), if and

only if its kth extension, leaves invariant the surface (2.2).

A solution v = ©O(z) of PDE (2.2) lies on the surface (2.2) with w5 =
&Bilaiﬁ, i; = 1,2,...,n for j = 1,2,... k. The invariance of surface (2.2) under
the kth-extension of (2.3)-(2.4) means that any solution u = O(z) of PDE (2.2) maps into
another solution ®(x,¢) of (2.2) under the action of the one-parameter group (2.3)-(2.4)

for any ¢.

Theorem 2.4. (Infinitesimal Criterion for the Invariance of a PDE) Let

+ n(m,u)ﬁ (2.5)

I'= £Z(x7u) 0 ou

&vi

be the infinitesimal generator of the Lie group of point transformation (2.3), (2.4). Let

0 0 0
e — ¢ 9 =~ 4 W —+...
fl(x,u)axi +n(x,u) o +n; (:E,u,@u)au +
+ T]Z-(fl-)l_’ik(x, u, Ou, 0%u, . . ., 0%u) —3Uz‘i...ik

be the kth-extended infinitesimal generator of (2.5), where 77(1)

;. given by
O — Dy — (DENws . G —
n ' =D — (Di&)uj, i=1,2,...,n

and 7, ;. by

k k—
( ) = .D ( 1) (Dzk€j>ulllglk,1j7

Nivia..ip, i Mivin.ip_y

wherei; =1,2,...,n, j=1,2,...,k, in terms of {(x,u) = (& (x,uw), &z, u), ..., & (2, uw)),
n(x,u). Then the one-parameter Lie group of point transformations (2.3), (2.4) is admit-
ted by PDE (2.2), i.e. is a point symmetry of PDE (2.2), if and only if

T®F(2,u, 0u, 0%, . .., 0%u) = 0 when F(z,u,u,du,...,0%) = 0.

14



2.4.1 Invariant solutions

Consider a kth-order PDE (2.2) (k > 2) that admits a one parameter Lie group of point

transformation with the infinitesimal generator ( 2.5). We assume that £(z,u) # 0.

Definition 2.10. v = O(z) is an invariant solution of PDE (2.2) resulting from its
admitted point symmetry with the infinitesimal generator (2.5) if and only if:

(i) uw = ©(x) is an invariant surface of (2.5). Namely,
['(u—0©(x)) =0 when u=0(zx)

ie.,

00(x

(@, 0() 5 = (@, O()):

~—

and

(ii) u = ©(x) solves (2.2). Namely,
F(x,u,0u,0%u,...,0") =0 when u=0(z)
ie.,
F(z,0(x),00(x),0?0(z),...,0"0(x)) = 0.

Invariant solutions for PDEs were first considered by Lie (1881).
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Chapter 3

Point transformations of PDEs

3.1 Introduction

Probably the most useful point transformations of PDEs are those which form a continuous
Lie group of transformations, each member of which leaves an equation invariant. The
method of finding these transformations consists of two steps: first to find infinitesimal
transformations, with the benefit of linearization, and second to extend these groups of
finite transformations. The use of point transformations, is significant to relate a non-
linear PDE with a linear PDE for which the solution exists. In this case, we can derive
the solution of the first PDE. The infinitesimal transformations are not appropriate for
directly linking a PDE with an equation of different form.

Hence, there is merit in studying point transformations directly in finite forms with the
ultimate goal of finding the complete set of point transformations of PDEs and discovering
new links between different equations.

The aim of this chapter is first to present results concerning the relation of the trans-
formed partial derivatives to the original partial derivatives and secondly to exploit these
results in order to find the form of the point transformations connecting PDEs belonging
to restricted classes of equations. More details and the proofs of the theorems below can

be found in [29].

16



3.2 Point transformations: Notation and the basic
theory

In this section we explain the notation and summarize the basic theory on which the work
is based.

We consider the point transformation
¥ =Pz, t,u), t=Q(x,tu), u =R(xtu), (3.1)

relating x, ¢, u(x,t) and 2/, ¢/, «'(2/,t'), and assume that this is non-degenerate in the

sense that the Jacobian

o(P,Q, R)

= )

£ 0 (3.2)

and also that

O(P(z,t,u(z,t)),Q(z, t,u(x,t)))

0= Az, 1)

£0. (3.3)

In (3.3) P and @ are expressed as functions of z and ¢ whereas in (3.2) P, @ and R are
to be regarded as functions of the independent variables x, ¢, u.
The derivatives of u(z,t) and u/(z’,¢") will be denoted by
9ty / 9i+iy/
dwiot T daror

(3.4)

uij =

If ¥ is a function of x, ¢, u and the derivatives of u, the total derivatives of ¥ with respect

to x and t will be denoted by

V=0t Y Y v or (35)
ij

Vp =V, + E E uz‘j+1%, (3.6)
ij

where the double summations are to be taken over the values of ¢ and j which cover all
derivatives wu;; and v;; occurring in W.

With this notation § may be expressed as

o = ((i, Q)) PxQr — PrQx
= Uio ( uQ tQu) + u01<PxQu - PuQx) + (Pth - PtQaz)
LA, L 0P, | APQ) .

a(u, ?) Bz, u) T o)

17



Also, under the point transformation (3.1),

dx’ Px Pr dx dx 1 Qr —Pr da’
dt’ Ox  Or dt | dt o\ —0x Py dt’
(3.8)
and
1 —P dx’
AV = Uydz + Updt = ~(Uyx T7) Qr g . (3.9)
g —Qx  Px )\ dt
Hence, taking W = w;; ,, uj_,; respectively, gives
U;j =4 (PX(u;j—l)T - PT(ugj—l)X) , J=1, 120, (3.10)
U;j =4 (QT(“;—U)X - QX(“;—U)T) g i21, 5720 (3.11)
Also,
ugy = u' = R. (3.12)

Equations (3.10)-(3.12) furnish recurrence relations which enable u;; to be expressed in
terms of x,t,u and the derivatives of u for any ¢ > 0, j > 0. The factor =! makes the
expressions for u}; grow with 7 and j in a very cumbersome manner.
In the case of infinitesimal Lie point transformations in which:
P(z,t,u) = x+eP*(x,t,u)+ O(e?),
Q(z,t,u) = t+eQ*(x,t,u)+ O(e?), (3.13)
R(z,t,u) = u+eR*(x,t,u)+ O(e?),
the forms of J and ¢ in (3.2) and (3.3) simplify to
J = 14+eP;+Q; +R)), (3.14)

§ = 1+e(P+Q)), (3.15)

to the first order of €. In this case the recurrence relations corresponding to (3.10)-(3.12)

are
u;j = (u;j—l)T - 5[P;“<U;j—1)X + Q;}(u;j—l)T]? Jg=1, 1>0, (3.16)
u;j = (u;—lj)X - 5[P)*((u;—1j)X + Q;((u;—lj)T]v 1>1, 520, (3.17)
uy = u+eR”, (3.18)
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to the first order in €. These relations of course lead to considerably less cumbersome
forms of u}; than those obtained from (3.10)-(3.12).

In the following sections, some results are presented for the point transformations
(3.1). These results help us achieve the second aim which is to discover the nature of

point transformations connecting PDEs belonging to given classes of equations.

3.3 Properties of transformations

Under the point transformation (3.1) each derivative of u'(z', '), that is u};, i > 0, j >0,
may be expressed, via the recurrence relations (3.10)-(3.12), as functions of x,t, u
and the derivatives of u. A number of results concerning the functional form of
p, (z,t,u,v, ..., uz,...) are presented in this section. In the next section, the results
of this section are necessary in order to study the nature of point transformations which
perform specific changes to PDEs. Of particular interest, for example, are the cases of no

change which correspond to symmetries of the equations. The proofs of the results are

generally inductive and use the recurrence relations (3.10)-(3.12).

Lemma 3.1. If 2’ = P(z,t,u), t' = Q(x,t,u), v = R(z,t,u)

iziau;q _ (—1)?(Qx — 2Qr)?(Px — zPr)?Jo =971, n>0 |
= O Ry, n=0
where i +j=p+qg=n>0.

Corollary 3.1. The coefficients of 2" and 2° in lemma 3.1 give, respectively
ou!
A= = (=1)1PIQRJSTTT ptg >,
pq0
Otg -
= (=1)PPLQ%JO P p4gqg>1
op+q
Lemma 3.2. If 2’ = P(z,t,u), t' = Q(x,t,u), u' = R(x,t,u) then

m—+n,,/
a8

ouToug,
m—+n,,/
0 Ugy

— (—_1\" —m—n—1
dun o, (—=1)"Cyn (naePx +mpBPr) 6 ,

= (=1)"Cpn (naQx +mpPQr) 6" "7,

where m+n > 1, Cpp = (m+n—1)a™ 13" 1], depends only on x, t and u and where
a=PQ,— P,Q; and f = P,Q, — P,Q,.

The proofs of lemmas 3.1 and 3.2 can be found in [29)].
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3.4 Form-preserving transformations of PDEs

In this section we first look at PDEs with one derivative of u(x,t) of any order, possibly
mixed, related to lower-order derivatives of u, u itself and x and ¢. Subsequently, we

consider three classes of equations.

3.4.1 Basic results

We start with a wide class of PDEs for which general deductions about the forms of
P(z,t,u) and Q(x,t,u) can be made. These will be useful when discussing more restricted

classes of equations.

Theorem 3.1. The PDE uy, = H(w,t,u,{ui;}) is related to u,, = H'(z',t', v/, {uj;}),
where {u;} and {uj;} respectively denote all derivatives of u and u' of order i+j < p+gq,
by the point transformation ' = P(z,t,u), ' = Q(z,t,u), v = R(x,t,u) in the cases:
(a)p#0, ¢#0, (b)) p#0, ¢=0, (¢)p=0, ¢#0 only if (a) {P = P(z), Q=Q(t)},
or [P = P(t). Q= Q@)}. (b) Q = Q(1). (c) P = P(x), respectiely

3.4.2 Equations of the form wug = H(z,t,u, ..., Uy)

Two evolution equations are considered of the form ug = H(x,t,u, ..., uno). Tu (see [62])
proved that for evolution equations of this form the time transformation takes the simple
form ¢ =t +ef(t) + O(g?), the interesting feature being that @ is independent of both x
and u. This is a striking result and has been exploited for example by Doyle and Englefield
(see [6]) who used the result to simplify the analysis of infinitesimal transformations of
generalized Burger’s equations. Using the fact that all point transformations connecting
two different Burgers-type equations (Kingston and Sophocleous (see [30])) were also of
this form, Kingston (see [28]) generalized Tu’s result and he showed that for a wide

subclass of these equations it is necessary =’ = P(x,t) (no u dependency).

Theorem 3.2. The point transformation ' = P(x,t,u), t' = Q(z,t,u), v = R(x,t,u)

transforms

!/ ! T / /!
uy, = H'(2', t'u', ... u )
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to
upr = H(x,t,u, ..., unp),

where n > 2, if and only if Q = Q(t) and
H=J"'Q,(PxQ:H + P,Rx — PxR;).

Theorem 3.3. If, in the theorem 3.2, H and H' are polynomials (non-negative integral
POWETS) N Uy, ..., Uno and Uy, ..., ul, respectively (dependency on x,t,u and ', t' v’

unspecified) then P = P(z,t).

These results have been used, for example, to aid the classification of point transfor-
mations within the following classes of PDEs: generalized Burgers equations (see [30]),
radially symmetric non-linear diffusion equation (see [49]), generalized non-linear diffusion

equations (see [45]).

3.4.3 Equations of the form wuy; = H(z,t,u,. .., Uy)

x

This class of PDEs includes, for example, Liouville’s equation u,; = e*, sine-Gordon

equation u,; = sinwu and u,; = uy/1 — u2.

Theorem 3.4. (n > 3) The point transformation ' = P(z,t,u), t' = Q(x,t,u), v =

R(z,t,u) transforms

!/ ! / / !/ /
uy = H' (2 ). u )
mnto
U11 :H(:L‘,t,u,...,uno),

where n > 3, if and only if P = P(xz,t), Q = Q(t), R= A(t)u+ B(z,t) and
H=A"'"P,QH + uyP, P+ uio(P,'P,), — A A) — A™(B, — P,'P,B,)..

Theorem 3.5. (n = 2) The point transformations ' = P(x,t,u), t' = Q(z,t,u), v =

R(z,t,u) which transform
ulll = H,(l‘/, tlv ul7 u,107 u,20)
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to
U1 = H(LE, t) U, Uio, u20)a

belong to one of the two categories:

(a) P, Q, R and H restricted as in the conditions for the theorem 3.4;

(b) P = P(x,t), Q = Q(z,t), R = A(z,t)u + B(z,t), H = —P,Q; uy —
AFHATIQ )y + G (&, ), H = Q5 Qutizg + A~ ((AQ; Q1) — Ao + Gz, 1, ).
For any G'(2/,t',u') the form of G(z,t,u) is then determined by the transformation with-
out further condition. Also, 6 = P,Q; — P,Q,.

Theorem 3.6. (n =0,1) The point transformations x’ = P(z,t,u), t' = Q(x,t,u), v =

R(z,t,u) which transform
uy, = H'(2' ¢, u', uyy)
to
uy = H(x,t,u,uyp),

belong to one of the two categories (when n =0 set A constant in (a) and (b)):
(a) P=P(z), Q=Q(), R=A{t)u+B(z,t), H=A"'P,Q.H — A ' Ajuio— A~ By,
(b)P = P(t), Q = Q(z), R = A(z,t)u+ B(z,t), H = A A,Q; "}, + G'(«/, ', 1),
H=-A"1Au+ A PQ.G —u(A Ay, — (A1 By),.

3.4.4 Equations of the form wugp = H(z,t,u, ..., Uy)

These equations include many models of physical phenomena, especially wave-type mo-
tions, for example the equation u; = —u,u,,, which arises as a model of steady transonic
gas-dynamic flow, the family of non-linear equations u;; = (f(u)u,), and the Boussinesq-

type equation uy = tzr — 2(U?) e + Uszze-

Theorem 3.7. (n > 3) The point transformation ' = P(x,t,u), t' = Q(x,t,u), v =

R(z,t,u) transforms

!/ ! ) / /
'U/O2:H(x,t,u,,un0)
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to
upe = H(x,t,u, ... uno),

where n > 3 if and only if P = P(z), @ = Q(t) and R = A(m)@%u + B(x,t). Also,
H = A()7'Q,* (QPH' + QuR: — QiRy) .

Theorem 3.8. (n = 2) The point transformation ' = P(z,t,u), t' = Q(x,t,u), v =

R(z,t,u) transforms

ugy = H'(2', ', 0/, g, uy)
to

uge = H(x,t,u, 19, usp),

where Hi,m # 0, belong to one of the three categories:

(a) P, Q, R and H restricted as in the conditions for the theorem 3.7;

(b)) P=P(t), Q=Q(x), H = H'(z/,t', v, uyy+ M2 +pul,) where \ = —R, R;%, p =
P ?R2(2PRiRyy — 2P,R Ryt + Py R?) , H = H(z,t,u, us + Ry Ry 'u2) + (2R Ry —
Q@3 )u10);

(c) P = Px,t), Q = Q(z,t), R = A(x,t)u + B(z,t), H = P,PQ;'Q; 'ub, +
G (2 )y + G2 o)), H= P 'P,Q; ' Qruzy + Gy(x, t)ug + Ga(x, t,u).

The proofs of the theorems in this section can be found in [29]. The results of this
subsection were employed in [51] to classify form preserving transformations for three
classes of non-linear wave-type equations.

The results of the present chapter will be generalized in chapter 9 for systems of two

PDEs.
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Chapter 4

Equivalence groups for differential

equation

4.1 Introduction

Equivalence transformations which play the central role in the theory of invariants are
discussed in the present chapter. The set of all equivalence transformations of a given
family of equations forms a group called the equivalence group. There exist two methods
for the calculation of equivalence transformations: the direct method which was used
by Lie (see [35]) and the Lie infinitesimal method suggested by Ovsyannikov (see [44]).
Although, the direct method involves considerable computational difficulties, it has the
benefit of finding the most general equivalence group. For recent applications of direct
method one can refer to [29,46,47,63]. More detailed description and examples of both
methods can be found in [17].

Here we present the Lie infinitesimal method for calculating the continuous group of
equivalence transformations. The method is described by applying it to the non-linear

diffusion equation.
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4.2 Equivalence groups for the non-linear diffusion
equation
In this section, we consider the class of non-linear diffusion equation
up = f(U) gy (4.1)

We call equivalence transformation of the family of equations (4.1), a change of vari-

ables:
t'=Q(t,x,u), o' =Pt ,z,u), v =Rtz u), (4.2)

taking any equation of the form (4.1) into an equation of the same form, generally, with
different function f.
In order to find the continuous group £¢ of equivalence transformations (4.2) for the

equation (4.1), we search for the operators of the group &¢, in the following form:

o .0 o8 0
=¢= 2_ —_ —. 4.
S e Y. (43)

The generator I' defines the group &¢ of equivalence transformations
t'=Q(t,x,u), z'=P(t,z,u), v =Rt x,u), [ =Ft xuu,u,f)),

for the family of equations (4.1) if and only if I' obeys the condition of invariance of the

following system:
wp — f(u)ug, =0, (4.4)

In order to write the infinitesimal invariance test for the system (4.4)-(4.5), we should

extend the action of the operator (4.3) to all variables involved in (4.4)-(4.5), i.e. take

0 0 0 0 0 0
a_ut + Cza—uz + sz—aum + /ha—ft + Ma—fm + Mga_fu' (4.6)

Here, u and f are considered as differential variables: u on the space (¢,z) and f on the

=T+

space (t, T, u, us, u,). The coordinates &', €2, n of operator (4.3) depend on ¢, z, u, while
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coordinate p depends on z, t, u, f. The coefficients (y, (5, (52 are given by:

G = Di(n) — ueDi(€') — uaDy(€7),
Co = Da(n) — wDo(€') — us Do (€%),
Coo = Di(C2) — Do (€") — e Do (€7),
whereas the coefficients p are obtained by applying the prolongation procedure to the

differential variables f; and f, with dependent variables (t, z,u, u;, u,). Accordingly, we

use the total differentiations:

D, — 0 N 0 N 0 N 0
at " "ou T "u T T ouy,
D,=_—+u 2—|—u i%—u 0
T ox “ou " Ouy " Oy

The infinitesimal p;, ¢ = 1,2, 3 has the form:
pr = D) = f:Di(€") = f2Du(€®) = JuDi(n) = Fu Dil(G1) = Fu. Di(G2),

M2 = ( ) — ft (51) _fxl~)1<£2> _fuzjw(n) _futﬁz(cl) _fuzﬁ:v(@)?
M3 = ( ) — ft (51) - fmﬁU(éz) - fuﬁu(n) - futﬁu(<1> - fUZEU(<2)7
where ﬁi, 1 = t,x,u, denote the new total differentiations:

~ 0 0 0
D = — L i
(2 8Z+flaf+f1/u8fu7

where i = t, x, u.

The infinitesimal invariance for the system (4.4)-(4.5) has the form:

T (u — f(u)uge) =0, (4.7)
L(fs) =T(f) = 0. (4.8)
In view of equations (4.5) we have
~ 0 ~ 3}
D, = o D, = 9z
and
0 3} 0
D, = +fuaf+fuuafu~
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So we have the following prolongation formula:

1 = it — N fu,
M2 = Nx_nxfua (4‘9>

py = pu = (= pg) fu-
Using (4.6), the invariance conditions
L(f) =T(f) =0
give:
pr = pe =0.

So, taking into account equations (4.9) and the fact that g1 = ps = 0 must hold for every

f, we obtain:

pr = pz =0,

ne =1z =0.
Integrations yield:

p=plu, f, fu), n=mn(w). (4.10)
The remaining invariance condition (4.4), can be written as:

Gl — pgy — G2 f = 0. (4.11)

From (4.11), taking into account (4.8), (4.10), introducing the relation u; = fu,, to
eliminate u; and using the fact that the quantities wu,, uy, Uy, Uy, are considered to be

independent variables, it follows:

51 = Clt -+ Co,
52 = 3T+ ¢y,
n = C5U + Ce,

no= f(203 - C1)7
where ¢;, i = 1,...,6 are arbitrary constants. Thus we have the following results.
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Theorem 4.1. The equivalence algebra Le for equations u, = f(u)uy, is an 6-dimensional

Lie algebra spanned by the following infinitesimals operators:

0 0 0
Fl - §7 F2:£7 F3:%a
0 0 0 (9
r, = Uz F5—t§—f§; L' = +2f aF

The above equivalence transformations in finite form, can be derived by using First
Fundamental theorem of Lie (2.1). Without presenting any calculations, this transforma-

tion have the following finite form:

t/ = Clt+62,
¥ = c3x+cy,
o= csu + cg,
2
fr=2
C1

Alternatively, the above transformation can be obtained using the results of chapter 3,

and in particular theorems (3.2) and (3.3).
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Chapter 5

Invariants of hyperbolic linear
partial differential equations in two

variables

5.1 Introduction

In this chapter, we derive the differential invariants for the scalar linear hyperbolic PDE in
two variables by the infinitesimal method. In fact, our intention is to present the infinites-
imal method for determining differential invariants. Firstly, we calculate the equivalence
transformations which are used to derive differential invariants. After that, we present
Ibragimov’s work on finding a basis for the invariants. That is, the solution of the Laplace
problem (see [19,20]). The general invariant-differentiation operator is computed and a
basis of all invariants is constructed. Furthermore, all invariants of any order are combi-
nations of the coefficients of the equation and their derivatives. A detailed description of
the method can be found in [15,16].

We give some basic definitions using equation
Up + a(t, x)uy + b(t, v)u, + c(t, x)u = 0. (5.1)

The same definitions follow for any other class of PDEs.
Let a class of PDEs (5.1) admit a continuous group £ of equivalence transformations
generated by the Lie algebra Lg. As we will see later, this algebra is spanned by 3

operators, say [y, I'y and I's.
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Definition 5.1. A function
J = J(t,x,u,a,b, C, ai7biaciaaij7bij7cij7 e )a i7j7 = t,l’

is called an invariant of the family of equations (5.1) if J is invariant under the equivalence

group &. That is,
ri(J)=0, i=1,23.

We call J a semi-invariant if it is invariant only under the subgroup of equivalence
transformations. For example, if it is invariant only under I'y, I'y(J) = 0. The order
of the invariant is equal to the order of the highest derivative that appear in the form of

J. If no derivatives appear, we say that we have invariant of zero order.
Definition 5.2. Any system of equations

Ei(t,z,u,a,b,c,a;,bj,¢j,...) =0
that satisfies the condition

FI(CS) (E’i)’Ele,Egzﬁ,... =0, 1=12,...
is called an invariant system.
Definition 5.3. If for i = j, we have

Iy (B5)| g0
then F; = 0 is called an invariant equation.

These definitions will be used throughout in the present and in the next chapters.

5.2 Equivalence transformations

Consider the general hyperbolic equation written in the characteristic variables t, z, i.e.

in the following standard form:

Up + a(t, x)uy + b(t, v)u, + c(t, x)u = 0. (5.2)
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Recall that an equivalence transformation of equation (5.2) is defined as an invertible

transformation
t'=Q(t,x,u), ='=P(t,z,u), v =Rt xu),

which preserves the order of equation (5.2) as well as the properties of linearity and
homogeneity. In general, the transformed equations can have new coefficients o', b, ¢
In order to find the continuous group of equivalence transformations of equation (5.2)

by means Lie infinitesimal invariance criterion (see [44]), we need the equivalent operator:

0 0 0 0 0
I'= fl +52—+778 +C1 +C2 Du. +C3 90

0 0 0
1~ 2 7 3 7

tx
where ¢ = £(t,z,u), i = 1,2, n =n(t,r,u) and p, i = 1,2, 3 are functions of ¢, z,u, a,b
and c. If we solve T" (uy, + auy + bu, + cu)|(5_2) = 0, we easily get that:

61 = T(t)a 52 = ¢(x)7 n= Oé(t, x)u, ,ul = _a¢x — Oy, MQ = _th — Oy,

1 = —(cti + ety + Qup + ya + agb),

where the functions 7(t), ¢(x) and «a(t,x) are arbitrary.
We find that equation (5.2) admits an infinite continuous group £ of equivalence trans-

formations generated by the Lie algebra L¢ spanned by the operators:

[y =¢(x )8 ¢a ¢C—

€T

o= a(t,zus - %3 —ad -

(e +acy +b )2
N da ob i T A G Jc

5.3 Calculation of differential invariants

In this section, we consider the problem of finding differential invariants of the class of
equations (5.2), using the equivalence transformations which are derived in the previous
section.

Firstly, we seek for differential invariants of zero order, i.e. invariants of the form:

J = J(x,t,u,a,b,c).
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Applying the invariant test I'(J) = 0 to the operators I';, I', and I', and using the fact
that functions 7, ¢ and a are arbitrary, we easily obtain that J = constant. Hence,
equations (5.2) do not have differential invariants of zero order.

In order to obtain differential invariants of first order,
J = J(x,t,u,a,b,c,ay,ay, by, by, ¢, cy),

we need to consider the first prolongation of the operator I' defined by (5.3):

12i 212 2 0 312 52 0

o 9 5.4
o0, M T o M e TH e (5:4)

R
Qg

We introduce the local notation f; = a, fo = b, f3 = c. The coefficients p*, p?, i =1,2,3

are given by:
,U Dt( ) fztDt(f) fiIDt(f2)>

= Dy(u') = fi, Da(€') — fi, Da(€7),

and the operators D;, D, denote the total derivatives with respect to ¢t and x:

D *2 + 0 + 0 + 0 +
t = ot ata atta Cltxaaz
0 0 0
+ btab—'l_bttab +bt1‘ab
+ 0 + 0 + i-ﬁ-
Ct—— e Cit = — X Ctx e, )
D —2 + 24_ i_|_ i_|_
C Oz % Ba amﬁat am(()%

0 0 0
+ bx%—i—bma—[%jtbma—%—i—...

0
+ Cr=

TP
o Ca

ey

After calculations we obtain the following form for the coefficients:

= —a (4 ¢u) + ug, P = —adpy — 20,00 + Oy,

M21 = _tht — 2bt7_t + Oyt ,U22 - _bx(Tt + ¢a}) + g,y

,u31 = —CTyt — 20Ty — CtPp — bty + Quy — a0 — a0y — byarg,
,u32 = —C,Tt — C¢mm — 2Cz¢m + Qpy — A0y — QO — barm - bxaxa
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where oo = «(t, x) is an arbitrary function.
The infinitesimal test TV)(J) = 0 for invariants J(z,t,u, a,b, ¢, a;, az, by, by, ¢;, ) give

straightforward that
J = J(a,b,c,a,by).

The first prolongation of generator I'; is

0 0 0 0
0= 7 (g + b2 7).
s Tt (ataat_'—bab—i_bxabz—i_cﬁc)

Applying generator 'Y to the differential invariant, we have

B A A
T\ %, "0 T on,  Cac)

The characteristic equations:

dag

A _db, _de

as b b, c
yield that J = J(p1, pa, p3,ps), where

b, ay c
b1 b’ D2 b’ D3 b’ 2!

Now first prolongation of the operator I', becomes:

I‘(l) = —q (i+i+i>+a <pi+pi—(p _p)i>
“ o Op1 Op2 Ops ! lapl 23]?2 ! ° Ops

_ ba (i+i)
’ Ops ~ Opa '

The invariant test FS)(J ) = 0 is written:

o (ﬂ_*_ﬂ_{_ﬂ)_a( 24_ ﬁ_( _ )ﬂ)—l—ba (y_Fg)—O
ot (9]?1 3]92 8]33 t | P1 (9191 p28p2 D4 D3 D T .

Since a(z,t) is an arbitrary function, (5.5) splits into the following equations:

a5 01 0
Op; Op2 Ops

LY
D1 3}?1 D2 8p2 Ps — D3 )

dps3 B
9l 0l
dps3 Opa4

0,

0.
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The solution of the third equation gives:

J = J(P17P27m1)7

c—

where m; = p3 — py = T“b Now the first equation takes the form:

o] oJ 9J

— + — + =0
Ipy Op2 omy

and its characteristic equation yields

J - J(ll,lg),

at—by

c—ab—b
e R R R

where [ = py — p1 = . Finally, the second equation and

operator I’f;) become identical. That is,

a7 97
L9019
v, Tl =0

Solving this characteristic equation, we arrive to the following first order differential in-

variant:

ll bz — Q¢

YT T berab—c

Denoting
h=1l—1l, k=1

we obtain the two independent semi-invariants of equation (5.2):
h=a;+ab—c, k=b,+ab—c

known as the Laplace invariants. Now,
h=0 and k=0

are invariant equations. To show this, we need to apply the first prolongation I'™ to these

equations. That is, we have to show the following:
LW (R)|r=o) =0 and TV (k)=o) = 0.

The Laplace invariants are useful in various problems, for example in the group clas-
sification of differential equations (see [43]) and the solution of initial value problems for

hyperbolic equations by Riemann’s method (see [14]).
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Finally, we recall the following simple but fundamental applications of the Laplace
invariants:
1. A hyperbolic equation of the form (5.2) can be transformed into u, = 0 iff h = k = 0.
2. A hyperbolic equation of the form (5.2) can be transformed into wuy, + ¢(t,x)u = 0 iff
h=k.
3. A hyperbolic equation of the form (5.2) can be transformed into u; + cu = 0, ¢ =
constant iff h =k = f(t)g(x).
4. A hyperbolic equation of the form (5.2) can be factorized iff h = 0 or £ = 0. That is,
the second order operator L = D;D, + a(t,x)D;+b(t, x) D, + c(t, z) can be expressed as a

product of two operators of first order iff one of the Laplace invariants vanishes. Namely,
L=[D;+a(t,z)][D, + B(t,x)] iff h=0

and
L=[D,+ 3(t,z)][D; + a(t,x)] iff k=0.

The proofs of the above statements can be found in [18,19]. Motivated by the results of
this section, we derive the corresponding results for systems of hyperbolic equations in

chapter 10.

5.4 Invariant Differentiation

The famous Laplace invariants h and k appeared in Laplace’s paper (1773) on the theory
of integration of linear hyperbolic equations with two independent variables. But, the
question of the presence or absence of other invariants remained open.

Nearly 200 years had passed before Ovsyannikov (see [43]), studying the problem of
group classification of hyperbolic equations, found two invariants

_k _1on
P=5 17 Lotor

which do not change under all equivalence transformation. At that time, the general
approach of constructing invariants of systems of equations with an infinite equivalence
transformation group had not been developed, and, hence, the problem of whether all

invariants are exhausted by the quantities found remained open.
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A general method for constructing invariants of systems of linear and non-linear equa-
tions using infinite equivalence transformation groups was recently developed in [15,16].
This method is applied to several linear and non-linear equations.

In the present section, we give a description of the method that Ibragimov used to
solve the Laplace problem. More detailed description of the method can be found in [20].
This problem consists of finding all invariants of the linear hyperbolic equations (5.2) and
constructing a basis of invariants. To construct a basis of invariants, one first computes

all invariants up to second order, inclusive, and then finds the next three new invariants:

— PiPx
h Y

10

L ML
py Ot

1
h

N

, H=——In

h

After that, the general invariant-differentiation operator:

1 1
t

w
can be computed. It is proved that, it is possible to construct of the new invariants and
Ovsyannikov invariants, a basis of all invariants. Any invariant of any order is a function
of the basis invariants and their invariant derivatives.

Collecting together invariants, Ibragimov arrived at the following complete set of

second-order invariants for equations (5.2):

ko 18m _ 18mk

P=w 1= % e 0 1T % otor
:lgln D :igln Pz ]:ptpm
pr Ot |h pe O | h I’ h

In addition, there are the following invariant equations:
h=0, k=0, k —ph=0, k,—ph,=0.

Now, we will find the invariant differentiation operator of the form (5.6), that trans-
forms each invariant of (5.2) into invariants of the same equation. Recall that an operator
' is said to be an operator of invariant differentiation for a group & if for any differential
invariant J of the group &, I'(J) is also a differential invariant of this group.

For any family of infinitesimal operators:

. 0 0
I, = ﬂ(%u)% + 773(%“)%,
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with n independent variables z = (z',..., ™), there exist n invariant differentiations of

the form (see [16,44])

D = f'D,. (5.7)
Their coefficients have the form:

= iz tu,uny, w), - - )

and are found by solving the differential equations:

L,(f) = fD;&), i=1,...,n (5.8)

In our case, the operators I', are the second extension of the operators

I = —g(t)2 +&'(t) {hﬁ + kg]

ot oh ok
and
o o 9

using the general procedure. The invariant differentiation operator (5.7) can be written

as
D=fD;,+gD,, (5.9)
and the equations (5.8) for the coefficients can be written as:
Ii(f) = fD(&@) + 9D (&(t) = =€) f,  Ti(g) =0,
(5.10)
Tao(g9) = fDi(n(x)) + gD:(n(z)) = —1'(z)g, Ta(f) =0.
Here f and ¢ are unknown functions of ¢, z, h, k, hy, hy, ki, kz, hy,. ... The operators I'y
and I'y are extended to all derivatives of h and k.

We begin with case where f = f(z,t,h, k) and g = g(x,t, h, k). Then, equations (5.10)

give the following system of equations for f:

{05 — €0 [ + k5| =¢or, w03 i) |G+ ko
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Using the fact that &, &', n, n' are arbitrary functions, we arrive at the following four

equations:
of of of of of of
ot~ hgp thap=—h =0 hg Thgp =0

which yield that f = 0. Similarly, equations (5.10), for g = g(z,t, h, k), give g = 0.
This means that there are no invariant differentiations of (5.9) with the coefficients f =
f(xata hv k) and 9= g(l’,t, hv k)

Therefore, we continue the search by setting:
f = f(l', ta h7 ka hma ht7 kw; kt); g = g(x, ta h7 ka hma ht7 kw; kt)

The extended operators I'; and I's lead to the following operators:

0 0 0
¢ T ap [en = ha_ht + ka_kt’

9 9 9 9 9 9
Iy =h— — +2h,— 4Lk — —a.
1o = hgp R gp 2Rt ha g+ 2k R

and, hence, to the operators:

Iy

0 0 0
[y, = 97 Lo = h@hw + kﬁ_k:x’
0 0 0 0 0 0

The existence operators I'y, and I'y, leads to the fact that f and g do not depend on x
and t. Next, equations (5.10) split into the equations:

Flg/(f) = _fa Flg//(f) =0, FQw(f) =0, F2n// (f) =0,
for the function f(h,k, hy, hy, k., ki) and the equations:
P15/ (g) — 07 1—‘151/ (g) = 07 1—\2,,]/ (g) = -9, FQW// (g) = 07

for the function g(h,k,hy, hy, ks, k).  From these, the pair of equations Flg//(f) =
0, an,,(f) = 0 for f and the pair of equations I'y, (g9) = 0, Iy, (g) = 0 for g, show
that f and ¢ depend only on the following four variables:

h, k, AX=ki—phy=hps, p=k,— phy=hp,.
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Now we rewrite the operators I'; ” and an, in the variables h, A\, u and p = k/h:

0 0 0 0
I, =h—+2\—~ —, Iy, =h—+ A\~ +2u—

and integrate the equations:

Liy(f) = —f. Ta,(f) =0,

for the function f(h,p, A\, u) and similar equations:

]‘—‘151 (g) = 07 1—‘2,7/ (g) =9,

for the function g(h,p, A, ). As a result, we obtain:

h h
=—F(p, I =—-G(p,1
f=5Fw1). g M(p,),
where \ = hp;, p = hp,, and p and [ are invariants:

P=1 EE

Substitution of expression f and g into (5.9) leads to the invariant-differentiation operator:

1 1
D=F(p,I)—D;+ G(p,I)—D,,
Dt p

T

with arbitrary function F(p,I) and G(p, I).
Setting /' =1 and G = 0 and then F' =0 and G = 1 in above operator, we obtain the

following simple invariant differentiations in ¢ and x directions:
1 1

Dt - _Dt7 Dx - _D:C
Dbt Pz

It is now possible to construct higher-order invariants using the above invariant differen-

tiations and to prove the following statement.

Theorem 5.1. The basis of invariants of arbitrary order for (5.2) consists of the invari-

ants
k DiDa 1 0%*1In |h] _ 10*In|k|
P S T a0 TR oo
or the alternative basis invariants
k PPz 10 Dt 10 1In|h|
p=g =0 NEpw MRl T e

Therefore, we described how Ibragimov derived the complete set of differential invari-
ants for the scalar linear hyperbolic equation (5.2). This completes the Ovsyannikov

invariants obtained in [43,44].
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Chapter 6

Hyperbolic equations of general class

6.1 Introduction
In this chapter, we consider the general class of hyperbolic equations
Uz = F(2, 6,0, ug, uy).

We use equivalence transformations to derive differential invariants for this class and for

two subclasses:
Uz = [, 6, w)uguy + glx, t,w)u, + h(z, t,w)u, + Uz, t,u),

Uz = My (T, L, w)uguy + my(z, t,w)u, + me(x, t,u)u, + k(z, t,u).

Then we employ these invariants to construct equations that can be linearized via local
mappings. Furthermore, we give applications of the differential invariants.

The approach used here is similar to the one used in [52] for the class of equations

Uy — Ugg = f (U, Ug, uy).

We point out that, we can alternatively use the direct method (see [29]) to determine
equivalence transformations in finite form. These can be expressed in the infinitesimal
form using Lie’s method. Therefore the results of chapter 3 are useful to derive equivalence
transformations if finite form.

Hyperbolic type second-order non-linear PDEs in two independent variables are used

in mathematical physics. They can describe various type of wave propagation and model

40



several phenomena in various fields of hydro and gas dynamics, chemical technology, super
conductivity, crystal dislocation. Well-known equations of this type are the Liouville, sine-
Gordon, Goursat, d’Alembert and Tzitzeica equations. These models are integrable by

the inverse problem methods (see [2,38,65]) or linearizable (see [1,10,27,64,69]).

6.2 Invariants for the general class of hyperbolic

equations

6.2.1 Equivalence transformations
In this section, we consider hyperbolic differential equations of general class
Ugy = F (2, 6,0, ug, uy). (6.1)

In order to find the continuous group of equivalence transformations for the class (6.1)
by means of the Lie infinitesimal invariance criterion, we follow Ovsyannikov’s method

(see [44]). That is, we search for equivalent operator in the following form:

0 20 50 0 0 o 0

— 3_ — —

r— ¢! 2 2
¢ Ug 0utx+n8F7

where
¢ =¢&(tau), &€=E81tru), &€=,
and 7 is function of ¢, x, u, us, u,, F'. The infinitesimals (; and (, are given by:
G = Du(€%) = wDi(§") — uzDy(€%) and o = Dy(€”) — wDa(€") — uzDu(€?).

The operators D; and D, denote the total derivatives with respect to ¢ and x, respectively.

The equivalence transformations for the similar class of equations:

Ut — Ugg = f(x7t7ua uz)

were derived in [31].
In order to determine the coefficients that appear in operator I', we have to solve the

equation:
I [utz - F(t, Ty Uy Ug, ut)”(ﬁ.l) = 0.
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Solution of the equation gives
61 :T(t)a 52 :(,O(ZE), 53 :1/}@71:7“)7

Ct = ¢t + (¢u - Tt)uh Ca: = 'QZ)a: + (wu - (p:c)uaca
n= (wu — Tt — SOx)F + wtz + wtuuaz + wxuut + wuuu:ruta

where 7 = 7(t), ¢ = ¢(x), ¥ = ¢ (x,t,u) are arbitrary functions. Therefore, the generator

takes the form:

0 0 0 0 0
I = too-t IP% + [ + (Yu — Tt)ut]a—ut + [y + (Vo — 2 )Ug| 57—

T ot Ouy,

0

Therefore, equations (6.1) have a continuous group £ of equivalence transformations gen-

erated by the Lie algebra L¢ which is spanned by the operators:

0 0 0

FT 7'5 — Ttuta—Ut — TtFa—F,
0 0 0

Pgo - 90% - @xuxaT - SOmFﬁa (62>
0 0 0

Ly = Tﬂ% + (¥ + ¢uux)3_um + (v + wuut)a—ut

0
+ (1/}1% + ¢zuut + wtuux + l/JuuutUg; + 1/JUF)8—F

Also, one can show that the equivalence transformations (6.2) can be written in the finite

form, using theorems (3.2) and (3.3):
o' =P(x), t'=Q(t), v =R(txz,u). (6.3)

Alternatively, (6.3) can be obtained using the First Fundamental theorem of Lie (2.1).

6.2.2 Differential invariants and invariant equations

In this subsection, we consider the problem of finding differential invariants of the class
of equations (6.1). Firstly, we search for invariants of zero order. That is, we look for

functions of the form J(t, z, u, u,, us, F') that satisfy the invariance criterion

T,(J) =0, T,(J)=0, Ty(J)=0.
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To this end, we look for functions that satisfy the following equations:

0J aJ oJ
TE — Ttuta—Ut — TtFa_F = 07
oJ oJ 0J
90% - Qpa:uxa_% - SOzFa_F - 07
aJ oJ oJ
Qﬁ% + (@Z)uuzv + ¢m)a_% + (@bt + ¢UUt)a_m
0J

JoF =
Since the functions 7, ¢, ¥ are arbitrary, these identities lead to linear first order PDEs
for J. Straightforward calculations lead to the trivial solution, i.e. J =constant. Hence,

equations (6.1) do not admit differential invariants of order zero.

So, it is necessary to consider first-order differential invariants, of the form:
J(taxauyuxvutaFvﬂvaa Fua Futa Fux)

To find such invariants, one needs to calculate the first prolongation of the operator I'

F(l) =T+ 77“ il = watauauxautv

OF,,

where
77i1 = 52'1 (77) - Ftﬁh (61) - F$511(€2> - Fuﬁll(é“?’) - Futﬁil (Ct)
- Fuzﬁil (Cﬁv) - Futzﬁil (Ctm)ﬂ

and ﬁil denote the total derivatives with respect to i;:

~ 0 0 0 0 0 0 0
Dy = —+F +Filxa—EE+Filt—+E +E1utaTm+E1uzaT%

1 iy ila_F oF, lua—Fu + ...

Similarly, the first prolongation of the operators (6.2) lead to the invariance criterion:

The fact that 7, ¢ and v are arbitrary functions, leads to linear first order PDEs. Without
giving any details, we obtain the trivial invariant. Hence, equations (6.1) also do not admit
differential invariants of order one.

In order to find differential invariants of order two, i.e. that depend on the second
derivatives of F', we need the second prolongation of the operators (6.2), which can be

derived using the formula:

PO =TW o, i, i = 2,8 0, U,

1112
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where

Uim = ﬁlﬁ (Uil) - Filtﬁlé (51) - Elmﬁi2 (62) - Eluﬁi2 (53) - Filutﬁi2 (Ct>
- E1uzﬁi2 (Cm) - Elutzﬁiz(étx)a

and l~)i2 denote the total derivatives with respect to is:

~ 0 0 0 0 0 0 0
Diy = 5+ Fyzz + Fuoner + Fors = + Fipum— + Fou s + Frpuy s + -
2= giy Tegp T ieegp, t gy T gt B e B e

From the differential invariant test

TP =0, k=70,
we state that equations (6.1) do not admit differential invariants of second order.

However, equations (6.1) admit the following invariant equations:
Fou, =0, Fu., =0. (6.4)

That is, we have to show:

F](<;2) [Futut] |(Futut:0) = 07 F/E,‘Z) [Fuzu:t“(FuLul:O) = 07 k = T? (p, w

Furthermore, the quantity

Fuzuz

J =
Futut

is a semi-invariant of second order. In this case J satisfies the equation Fff )(J ) = 0.
That is, in (6.3) P = 2 and @) = t which means that (6.1) is invariant only under the
transformation of the dependent variable.

In order to find differential invariants of third order, we follow the same procedure as

before. We get that equations (6.1) admit 13 differential invariants of third order:

2
Jl - FumuwuxFutut J2 _ FuzuzuzFutut J3 _ Fuzuz Fututut
- 2 ) - I - I
Fuz'u:c Fuacuxut FuLuz FuLuLut Futut Fu‘Lu‘L Ut
Fy
o zUg Ut
Jy = 2 [(FuxFuwt)ux + FuacuacuxFut + Fuuxe] )
Ugp Uz~ UzUgUt
F3
Uz Uz U,
Js = 2 IFE - [(FUzFUtUt)Ut + Fupupu Fuy + F’U«U«t’ut] )

Uz Uz ™ UgUgUt

44



Jo

Jz

JlO

3

F
F4 UI;IZUI [FFU:EU:E F’U,z’ut’ut - FFua;UzUtFUzUt + FuFuzuzut - FUzFuzuz Futut

Uz Uz ™ UgUgUt

Fuzuz Fuut + Fuz FuzuzutFut + FuzuzFuuzutul‘ + Fuzuz quzut - FuzuzutFuuzux

Fuftuggut Fa:ux] )
4

F
Uz Uz U,
#[FFuzuzutFutut - FFuzut Fuzutut + Euxut Fuzut - EutFuzuzut

Uz Uz ™ UgpUgUt

Fuz FuzututFut - FuzuzFutFutut - FuzututFuutut - FututFuuz + FututFuuzutut

FuFuzututL
5

Fumuxux
W[(FuxuxFumz)w{_FFuwt — Fuy + Fu + Fy, Fyy, — Fuuue}

Uz Uz ™ UgUg Ut

FFutut (Fuzum Futut)uz + Fututut(Fuzuz FUtUt)u + 2FuzF F2

Uz Uz ™ uput
Futut<FumuwFutut)t]7

F4
F5 ZFE - [(FUIUzFutUt>Uz{_u$FUUI - FFUzut + F, + F“F“t o F‘T”z}

Uz Uz ™ UgUgUt

FFuanc (Fuxux Futut )ut + Fu

FuzugD(FuzumFutut)I]?
F¢ 2
F6 IFZ . (_FFUIF’LLzUtF’LLtutut ils FFuz FuzututFutUt + FFuwuzFutut

Uz Uz ™ UgpUg Ut

FF2 Futut + FFuzuzutFutFutut - FFuzutFuzututFut - FFuzutFuutut

Ug Ut

ua:(FuxuxFutuJu + 2F F2 Futut

z Uz Ut UgpUy

FFututFuuzut + Ftuz F2 + EuzutFutFutut - ButFuzFututut

uLut

EutFuxutFutut - EutFuxututFut ¥ Fuut Fuututut + F;SututFux Futut
Euut Futut + F’U,F’U,x Fututut + 2FuFurut Futut + FuFumutut Fut

FuFuutut + FizFutFututut + FuzFuzutFutFutut + FuzFu F2

zUtUt— Ut

Fuz FutFuutut - FuzututFutFuutut + FuzFututFuututut - Fuz Fututut Fuutut

F F2 Futut - FuxutFututFuuzut - FuxFututFuut - FututFuu - 2FutFututFuux

Uz Uz = Ut

2
FutFutut Fuuzutut - FtutFuuzut + F

Ut Ut
4

M(—FF Fy..F + FF,,F, Fyu — FF?  F,
6 F2 Ug L UgUg L+ UgUtUL Ug © UgpUg Ut~ Ug Ut Ugp Uy~ UtUL
UgpUgz ™ UgUgpUt

FF F2 - FFuzuI FuzuzutFut - FFuzuzFuuzut + FFuzquzFuzutFut

Ug Uz~ Uz Ut

Fuuzut + FututFuuutut)a

2 2 2
Fuz FuxumFutug - FuzFuxuxut Fut - FururFuutuiﬁ - Fuac FuxumFuggutFut

FuIFu F2 + FuzFuzuzutFuuzux + FuIFumuzutquz - FuzFutFuuzuI

cUg Uz~ Ut
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2

Uz Ug

F6
J12 - #(_FzFuzuwFuzumutFutut + FQFuzuz FuzutFuzutut

Ug Uy ™ UgUgUt

+ FQFuzuzuzFuzutFutut - F2FuzuzutF2 + FFtuzuI FuzutFutut - FFtuzutFumuzFutut

Uz Ut

2
+ FFtutFuzuzFuwutut - Fu FuLuLut - FFtutFuwuzutFuwut - FFuFuLuL Fuzutut

- FFuFuwuxumFutut + QFFuFumuwutFuxut + FuFu Fuut - FFumFugcuxFumututFu

Uz t

- FFuzFuzuzuzFutFutut + QFFuzFuzuzutFuzutFut - FFuzuzFuzutFuut

+ FFuzuzFuzutFuumutux + FFuzuzFqutquzut + FFuzuI FuxututFuutut

- FFuluzFututFuululua: - FFuwumFututFuuwutut - FFuzumFututquluz
FFuxuxuxFutut qux - FFuxuxutFugcutFuuwux - FFuxuxut Fuxut Fuutut
FFuzutFututFuuzuzut - FtFuzuzFuzutFutut _'_ FtuFuzuzFutut + Ftuz FuzuzFutFutut

- EfuzuI FuFutut + FtutFuFuzuzut + }7171173111uI FututFuuzux - 17}71ugguggutF’umutF}cugE

- Ftuxux FuxFutFutuz + FtuxuxFutut Fuuxuw + EuxumFutuz Fa;ux + EutFux FuxumutFut

+ Ftut Fu Fuuggutuw + Ftut Fu quxut - Ftut Fuxuxut Fuuxum - Ftut Fuxuxut qux

z Uz Uz

2
- ZFUFUI FuzuzutFut - FuFuzuz Fututu:p _ FuFuzuzFuzutFututut - FuFuzuz Fuuzutux
- FuFuzuzquzut + FuFuzuzutFuuzux - Fuz FuzumFutFuumutuoc + FuFuzuzutFazuI
- FuxFutFututFuuxuxut + FuxFuxuxFutFuut - FuwFumuxFutquxut

+ FuTFu Fututquz + FuzFuzuzutFutFuuzur + FuzFuzuzutFutFuutut

z Uz

- FtuuzFuzuzFututua: + FuzuzFutFututFuuzut + FuFuzuzutFuutut
- FuzuzFututFuuuzuaﬁut - FuzuIFututFxtuz - FumuzFututquuzut
FuxumFuut quwutut - Fumuxut Fuug; Fuutuxut - FuxuxutFuut quxut

FututFuuzuz quzut - Ftut Fu Fuut - FQI Fuzuzut Fqi - FuFututFuuzumut

zUg u

- ITquIZ?2 Uy + Fuz FuzuzutFut F:):uz + F;LmFIquz FututFuuzux + Fuzum FututFuuut

uut
2
+ FuzuzFuuzutFuutuxut - FuxurFututFx + FututFuuz Fuuzuzu:cut)a

7

Jiz = —F““”“z“z F?F, , F, ..F F?F, ., F. F, F2F F, .. F
B3 = F8 F4 <_ Uz Uz = Uz Ut Ututut_'_ Uy L Ugurur £ ugus = UgUgp Ut L ugur L urug

UgUgp ™ UgUgUt

+ F2F2 Fuxutut - FﬂuxutFumutFutut - FEutFu

Ug Ut

Fututut + FFtut Fuwut Fuxutut

Uz

F’fFuzutut + FFuFuzuz Fututut + FﬂututFuzuz Futut + FFuFuzuzutFutut
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+ FF,FouwFuFuuu + FFuy P Fu Fuw — 28 Fy, Fupu Fupu Fu,
— 2FF,Fy u,Fovvu, — FFyuy Fupu, Funyuyte — FEy o, Fuou, Fougu,

+ FFuuw FuuFuvpwtic + FFupu, Fuyu Fun e + FEypy Fuguy Frugu

— FFu P FPowttt — F oy Fuu Fuu e — FFy g P Fru,

+  FFuu P Fuu, Ve + FFyu EFugu Fuu e+ FuFugu, Fugu Fu, Ua

+  FFupu Puu Fuve = F Fuguy Fuyus Fungu Wt + FulFoygu, Fruu,

+ FiFuu, Bl + Frugu FuFuu, + Fuugu Fuo Fus Fuis = Frgu Fuu Fuug e

— FuFu i Funte — Fry FuFuuw, — Frug Fuy Fugupu Py + Frug Fuguguy Fru,

- EUtFuacuxFutFUtUt - FtutFu;cuxFuututua: - FtUtFuacuxF.Tutut

+  FFupu Foun Frue + Frw Fugug Fuu e + 2F0Fyy, Foypugu Fuy — Frugu Fugu Freu,
+  FuFupuiue Funa e + FuFuu, Fo e+ FuF o, Fuuu s — FuFupupu, Fuu, Uz

Ug Uz~ ULU

- FuFuwutut quz - FuFutut Fuul + FuFututFuuwutut + ng: Fuzututhi

+ Fux Fuxux Fut Fuututux + Fuw Fuxuw FutFa:utut - F;LQc FumuxFutut Fuutum

- F1uz FuzuzFututhut - FuzFuzututFutFuuzux U FuIFuzututFutFuutut

- F’uz FuzututFuthuz + FuzFutFututFuuzutut + FuzuzFUtUtFu’LLUtuCCut

+ Fuxux Fumut FuzutFx - FumFutFutut Fuur y Fuxux FututFuuU'a: - Fumux FutFututFuutut
+ Futut quuzua: + Fuwux FututFxtut N FuxuxFutut qu + FuxuxFutut quutut

- Fuzuz FuutFuututuxut + FututFuuz quz + Fuzutut FIuUJc Fuutuxut + Fuzutut Fuutquzut

- FututFuuz Fuuzutuxut - Fuzuz Fuutqututut - FututFuuzut F:L‘uzut) (65)

6.2.3 Linearization

Now, we classify all equations of class (6.1) that can be mapped into the linear wave

equation

U = 0. (6.6)
Since the most general linear equation

Upe + a(t, x)uy + b(t, v)u, + c(t, z)u =0

satisfies the invariant equations, we conclude that these invariant equations provide nec-

essary conditions for linearization. The solution of the system of invariant equations (6.4)
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gives us the form of equation of the class (6.1) that can be mapped into linear equation.
Therefore an equation of the class (6.1) that can be linearized by local mapping must be
also a member of the class of hyperbolic equations. Now, the solution of the system (6.4)

gives
F = f(x,t,u)uyus + g(x, t,u)u, + h(z, t,w)u, + Uz, t, u), (6.7)

where f, g, h, [ are arbitrary functions.
Hence, an equation of the class (6.1) is linked with (6.6) only if F' is of the form (6.7).

Therefore, an equation of the class (6.1) is mapped into (6.6) only if it is of the form
Ut = f (2,1, gty + g(2, 8, u)uy + Wzt w)uy + Uz, £, u). (6.8)

Now, our goal is to find the differential invariants for the family of equations (6.8).

6.3 Invariants for equation (6.8)

6.3.1 Equivalence transformations

We employ the same procedure used in the previous section, to derive equivalence trans-
formations and then the differential invariants.

We use Lie’s infinitesimal method for calculating the equivalence transformations of the
class of equations (6.8). We find that equation (6.8) admits an infinite continuous group

of equivalence transformations generated by the Lie algebra spanned by the operators:

0 0
I, = o T Tt(ga—g + 55)7
0 0 0
0 0 0 0
Iy = 1/1% + (Y — ¢uf)w + (Y — ¢tf)a—g + (Ygu — %:f)%

0
+ (Ve — Pth — Y29 + wul)aa

where 7 = 7(t), ¢ = ¢(x), ¥ = P(t,z,u) are arbitrary functions. Also, equivalence

transformations can be written in the finite form (6.3).
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6.3.2 Differential invariants and invariant equations

Using the operators (6.9) and their suitable prolongations, we find that (6.8) do not admit
invariants of zero and first order.

However, the expressions

ft_gu:()a fm_hu:O (610)

are invariant equations of first order. Hence, we have shown that

PO = gull(fi—gu=0) = 0, and TV[fy = hol(r,—n,—0) = 0.

We also point out that

_ ft_gu
fz_hu

is a semi-invariant of first order. That is, it is invariant only under I'y, Ff;)((] ) =0.

J

6.3.3 Linearization
Now, any equation of the linear class of hyperbolic equations
Uty + alt, z)uy + b(t, x)u, + c(t, z)u =0

satisfies invariant equations (6.10). Therefore equations (6.10) provide necessary con-
ditions for linearization. Solving the system (6.10) we obtain the following forms for

functions f, g, h:
f=my, g=my+azt), h=m;+[(z,t), m=mz,t u).
For the sake of simplicity we take o = 5 = 0 and hence (6.8) takes the form
Ugp = My (2, L, W)Uy + myuy, + meuy + k(x, t,u). (6.11)

Next step is to study the class (6.11).

6.4 Invariants for equation (6.11)

6.4.1 Equivalence transformations

We use Lie infinitesimal method for calculating the equivalence transformations of the

class of equations (6.11).
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We find that, equations (6.11) admits an infinite continuous group of equivalence trans-

formations generated by the Lie algebra L¢ spanned by the operators:

0 0 0
FT = T& - Ttk% - Ttmta_TrLt7
0 0 0
r, = Por @xk% - %mx@_mx’ (6.12)
A i+(¢ — himy — Yemy + ¢ k:)2
P 811, uam tx My 2Tt u 8]{’
0 0 0

where 7 = 7(t), v = p(z), ¥ = ¥(t,z,u) are arbitrary functions. Now using the results

of chapter 3, equivalence transformations (6.12), can be written in the finite form (6.3).

6.4.2 Differential invariants and invariant equations

We use equivalence transformations (6.12) to derive differential invariants for the class
(6.11). We find no invariants of zero and first order. However, we derive the invariant

equation
MMy — Myk — My + &y, = 0. (6.13)

Further calculations produce the following invariant of second order:

e™(mymy — myk — myy + Ky )y

J= (6.14)

MMy — Myk — My + Ky,

That is, we have shown that .J is such that:

() =0, TP) =0, TY(J)=0.

T

6.4.3 Linearization

Now, we use invariant equation (6.13) and the differential invariant (6.14) to classify
hyperbolic equations that can be linearized, i.e. we can list equations that can be mapped

into a linear hyperbolic equation. We note that the linear wave equation
Uty — 0

satisfies invariant equation (6.13), while any other linear hyperbolic equation substituted

in (6.14) gives
J=0.
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Therefore the expression
(mymy — myk — My, + ky)y =0
provides a necessary condition for linearization. Solving for k, we find:
k=em / (M — mymy + @(t, x)) e ™ du + P (t, x)e™, (6.15)

where (¢, x) and ¥(t, x) are arbitrary functions. We also point out that using invariant

equation (6.13), which is a necessary condition for mapping a hyperbolic equation into
Uty = 07

we obtain (6.15) with ¢(¢,2) = 0. Expression (6.15) implies that equation (6.11) takes

the form

Uty = My Uty = My Uy + Mg Uy + e / (mtx — MMy + QO(t, CL’)) e "du + ¢<t7 x)em'

(6.16)

Therefore, an equation of the form (6.11) is linked with the linear hyperbolic equation
Uty = 0

only if is of the form (6.16).

6.5 Applications

In this section, we turn into the problem of finding point transformations of the form (6.3)

that map (6.16) into the linear hyperbolic equations
ulyy = a(x’ t)ul, + b2 t)uy + (o ). (6.17)

Details of how such transformations are constructed can be found in [29]. Using the

results of chapter 3, we find that equations (6.16) and (6.17) are connected by the local

mapping

Y= Pa), ¥ =QW), u=~b) / e+ 8(x, ), (6.18)
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providing the following identities are satisfied:

Ve —vaQy =0, (6.19)
Ve — YbP, =0, (6.20)
Vot — (2ab + )Y P Qi + v = 0, (6.21)
Opt — a0,Q¢ — b0y Py — cOP,Q; + v = 0. (6.22)

We note from identities (6.19) and (6.20) that a,s = by. This relation restricts the form of
linear hyperbolic equation (6.17). This restriction can be eliminated if in the construction
of (6.11) the functions a(z,t) and [(z,t) do not vanish. Such case is example 6.4 given
below.

Motivated by the applications of Laplace invariants, we use the above results to classify
those hyperbolic equations that can be mapped into simple linear equations. We use

equations (6.16) - (6.22) to construct the following examples:
Example 6.1. An equation of the class (6.1) can be mapped into the linear equation
e = 0 (6.23)
by the mapping
u =7 / e "du + 0(x,t), ~ = constant
if and only if it is of the form (6.16) with ¢ = 0 and
0zt +7¢ = 0.
Example 6.2. An equation of the class (6.1) can be mapped into the linear equation
Uy = (2’ )
by the mapping
u = / e”"du+ d(x,t), -~ = constant
if and only if it is of the form (6.16) with
o(x,t) =c(x,t), 0 — c(x,t)d+)(x,t)y =0.
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Example 6.3. An equation of the class (6.1) can be mapped into the factorized equation
Uy = ap ()l + by (2" uyy + apbytd

by the mapping
¢ =Px), t'=Q(@), u = cct@HP@) /emdu +0(z,t)

if and only if it is of the form (6.16) where p(x,t) = 2ax(Q(t))br (P(x))P.Q: and
Ozt — Ay Qy0y — by Ppdy — apbyd PyQy 4 ce®Pop(a,t) = 0.

In the following example we use equation (6.11) with a # 0. In this case, equation

(6.11) takes the form
Uzt = My (T, t, W) ugue + (my + oz, t))uy + myuy + k(z, ¢, u).
Example 6.4. We consider the first Lie canonical equation (see [34])
/

Uy = afx)ul, —u'. (6.24)

T

It can be shown that an equation of the class (6.1) can be mapped into (6.24) if and only

if it is of the form
Uzt = MyUztly + (My + () Uy +myguy+e™ /(mxt —mgmy—amg,—1)e " du+1)(x, t)e™
by the point transformation

o =x t=t, u’:c/e_mdu—l—é(x,t),

Opt — 0y + 0 4+ cp = 0.

Similar results can be obtained for the other three Lie canonical equations.

6.6 Further applications

In this section we employ differential invariants to derive local mappings that connect

equations of the class (6.1) to known equations. We present two examples.
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Example 6.5. We consider the Liouville equation (see [37])
Uy = €%,
Its general solution is:

u(z,t) = f(x) +g(t) —2In

a/ef(”‘“)dx—l—ﬁ/eg(t)dt‘,

where f(x) and g¢(t) are arbitrary functions and « is an arbitrary constant. This general
solution can be found using the Backlund transformations that connect Liouville equation
and the linear wave equation (6.23). Since Liouville equation satisfies invariant equations
(6.4) and (6.10), we deduce that any equation of the class (6.1) that can be linked to it, has
to be of the form (6.11). Therefore in sections 6.4.1-6.4.2, if we set m = constant, k = e

in (6.14), we find that J = A, where X is an arbitrary constant. Hence, the expression

em(memy — myk — My + ky)u \

MMy — Myk — M + Ky,
provides necessary conditions for an equation of the class (6.11), and consequently of the

class (6.1), to be connected to Liouville equation. Solving the above expression for 7, we

find:
R —m
k(x,t,u) = em/ (mxt — memy + p(z,t)e* © d“) e "du + Y(z,t)e™.

Finally, using point transformation of the form (6.3), we conclude that an equation of the

class (6.1) can be connected with Liouville equation if and only if it is of the form

R
U = My (T, t, w)upty + Myt + mguy + em/ (mzt — mgmy + o(x,t)e e_mdu) e "du

+ P(x,t)e™.

The above equation and Liouville equation are connected by the local mapping
¥ =Px), t'=Q(), v = c/emdu +0(z,t),

where
S +ch =0, QP+ ¢ =0.

Example 6.6. In this example we consider the Goursat equation

Upt = A/ UgpUt.
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Using nonlocal mappings, this equation is connected with the linear hyperbolic equation
Uy = ju (see [10]). In order to derive equations of the class (6.1) that are linked with
Goursat equation, we need to use the differential invariants of third order (6.5).

Setting F' = \/u,uy, in the forms of the 13 differential invariants, we find
J1:9, J2:—3, J3:—3, J4:—3, J5:—27, J6:0, J7:0, JgZO,

Jg = 0, JlO = 0, J11 = O, J12 = —729, J13 = —2187.

We note that all differential invariants are constants. Solving the above 13 equations,
where Ji, ..., Ji3 are the invariants (6.5), we find necessary conditions for an equation of
the class (6.1) to be connected with Goursat equation. That is, any equation that can
be mapped into Goursat equation must satisfy the above 13 equations. Clearly, to solve

the above system with 13 equations is a very difficult task. We give one simple example.
uiuy _ V/UtlUz
u

—» it can be shown that all 13 equations are satisfied.

In the case where ' =
Furthermore, we state that the reciprocal transformation (twice application of it gives the

identity transformation)

maps

into Goursat equation (with primed variables). Since Goursat equation can be linearized
by the nonlocal mapping, the above hyperbolic equation can be mapped into a linear

hyperbolic equation using nonlocal mapping.

The results of this chapter are contained in [58].

6.7 Conclusion

In this chapter our main goal was to classify hyperbolic equations of the class (6.1) that
can be transformed into linear equations by local mappings. To achieve this, we used
its differential invariants. We applied an infinitesimal technique developed by Ibragimov

(see [15,16,23]) and we point out that the class of equations (6.1) has no differential
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invariants up to order two, inclusive. The knowledge of semi-invariants was useful for
the linearization of equation (6.1). Also, we calculated equivalence transformations and
differential invariants using Lie’s infinitesimal method for two subclasses of it.
Motivated by the applications of Laplace invariants, we classify those hyperbolic equa-
tions (6.1) that can be mapped into simple linear equations. Furthermore, in the last
section, we presented two examples in which the knowledge of differential invariants can
be used to derive local mappings that connect equations of the class (6.1) to known

equations.
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Chapter 7

Differential invariants for

n-dimensional hyperbolic equations

7.1 Introduction

In this chapter we consider n-dimensional hyperbolic equations. In the spirit of Ibrag-
imov’s work (see [17]), we construct differential invariants with the employment of the
derived equivalence transformations for the cases n = 2 and n = 3. Motivated by these
results, we present the corresponding results for the n-dimensional case of hyperbolic
equations. For the case n = 2 we obtain one invariant of first order, while for the case
n = 3 we find two invariants. We present the corresponding results for the one-dimensional
equation. Finally, we employ the derived invariants to get certain mappings that connect

equivalent equations.

7.2 Invariants for two-dimensional hyperbolic equa-

tions

7.2.1 Equivalence transformations

Firstly, we consider the two-dimensional linear hyperbolic equations of the form:

Ut = Uy + Uyy + X (2, y)uy + Y (¢, y)uy, + Tt 2, y)ue + UL, z, y)u. (7.1)
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We employ the same procedure used in the previous chapter, to derive equivalence trans-
formations and then differential invariants for the class (7.1).

Using the Lie infinitesimal method for calculating the equivalence transformations of
the class of equation (7.1), we find that equation (7.1) admit an infinite continuous group

& of equivalence transformations generated by Lie algebra Lg¢ spanned by operators:

I = y§t+t§+T8%+YaaT Fezyaax—xaﬁ—kY@iX—Xa({;
I, = ;+x§+y§—x% Y%—T{%—wa@
Iy = 3 (t*+2° +y)§t+xt§+tyaa +(xT—tX)aiX+(yT—tY)aay
+ (xX~|—yY—tT+1)aaT 2tU%, (7.2)
Iy = xt%+%(t2+x2—y)%—l—xy(%—(:chLyY—tT—irl)aiX
+ (yX—xY)aiYJr(tX—xT)a%—QanaU
Iy = ;&+$y88 +§(t2—x2+y)(%+(:vY yX)a(z(
L @X 4 gV —T+ )2y —y1) 2 — o D
oY oT ou’
SV RN I R )
+ (Oztt—ozm—ayy—axX—ayY—atT)%,

where o = «(t, x,y) is an arbitrary function.

7.2.2 Differential invariants and invariant equations

We consider the problem of finding differential invariants of the class of equations (7.1).

Firstly, we seek for differential invariants of zero order. That is, invariants of the form:
J=Jt,x,y,u, X, Y, T,U).
Using the operators (7.2), the invariant criterion I'(J) = 0 gives the following identities:
T,(J)=0, i=1,2,...,10,a.

It is straightforward that J = constant. Hence, the family of equations (7.1) does not

admit differential invariants of zero order.
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Now, the next step is to consider the problem of existence of differential invariants of
first order, that depend on the first derivatives of the functions X,Y,T,U. That is, for

invariants of the form
J:J(t7$7y7u7X7Y7TaUaX’b}/;aj—‘ian)) i:t,l',y.

In order to achieve that, we must calculate the first prolongations of the operators. For
more details of how the operators I';, 1 =1,2,...,10,a can be extended, we refer to the
previous chapter or to [16,44].

First, we consider the problem of calculating semi-invariants of first order. In this case

J only satisfies the invariant criterion
rer) =o. (7.3)

That is, using the results of chapter 3, P = x and ) = ¢ which means that (7.1) is
invariant only under the transformation of the dependent variable.

Equation (7.3) is a polynomial in the derivatives of a(t,z,y). Using the fact that
a(t,z,y) is arbitrary, we set the coefficients of the derivatives of it equal to zero. This
leads to a system of linear first order partial differential equations. First, we note that
Fgl) =Ty, 1 =1,2,3 and therefore Fgl)(J) = 0 implies that J is independent of ¢, x, w.

Furthermore, the coefficients of o, quuy, Quat, Oy in (7.3) give

oJ _9J _ 9] _9J _,
ou 09U, 0oU, oU,

Hence,
J = J(Xv Y7 Ta Uv Xta XJC7 Xy7 }/Ih }/ﬂf}) }/tv 7—;57 Txa Ty)

Now, coefficients of av, oy, o, Oy, Quy, Qui, Oy, ay and ay in (7.3) give:

oJ  _aJ oJ a7 oJ ..0J

ox Trar =Y Ty Ve =Y o Tap =Y

S P R PR
0X,  oU ox, oy, ox, or,
oJ  9J o]  0J o  0J

000 L L R 0c- L2 .
v, Tar =" v, or, o1, T ov =

Solving this system we obtain four independent integrals which form the set of semi-

invariants of first order for the class of equations (7.1):
J=Y,—X,, Jo=Xi+Ty, J3=Yi+T,, Jy=X+Y*-T?*+2X,+2Y,+2T,—4U. (7.4)
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Now, in order to obtain a complete set of differential invariants, in addition to (7.3),

we apply the invariance criterion to the other operators:
r'() =0, j=4,5...,10
Vi ) ) VAR

and we obtain the following list of equations:

rJ=0 < g—;—Xxg—)i+Tt§—)i—Xt£(]x+Tm£i+Tyaa)‘(]y —ng—é
—n§é+xg;+xt§£ Txg—é+xw§é 7}(;97{ +Xy§; —0,
rJ)=0 < —Xyg)i—Xtaa)}]ijTg}{ Yy§é+ﬂt§é+Tx§é Ytg—;y
+@§f+@%+K§%—n§%+n§%+n§%—ﬂgéza
=0 < —Yg—;—iﬁ;;t—Xyai‘(]x—yxai‘(]x+xxaa;y 1@;)‘(] +X§—}{
+Xt§; +Xx§é—Y;,gé+xy§é+ng}{y—Tygj‘iJrTxgjé:o,
r'y=0 < —Xg—j( - Qth_)i - 2Xx;)—)i -~ 2Xy;—)i - Yg—; - zng—y‘]_t - maaé
_QYyS—}{y - Tg—; - mg—j{t - 2Tx§—7‘£ = 2Ty(%] - 2U§—é — 0,

aJ o] o] _dJ
7y — ) (Y P Xov t 15w —Your + T
() =0 < V() + 2Ty (J) + oyl (J) — ox, Tox. oy, ay,

(2T 0T 0T 0
or o1, “oT, ' 0T,

TN =0 o TP) +2TDW) + T V() = oo 4 T — X - Y

07 01 01 0 _
oy, oy, Cor  oT.
0 Lo o . aJ

_xZ2Z 27 pP
ox, “ox, oy oy

IV =0 < o) =2 () + 9 ()

a7 o7 8] _0J
vy P
ov, oy, o tan =

-X

Using the semi-invariants (7.4), the above equations take the form:

a.J 0.J

r'J)y=0 < I+ g =0 (7.5)
0.J 0.J

r'J)y=0 < I+ g =0 (7.6)

60



F(l) _ e R
6 (J) 0 < 38J2 J28J3 O, (77)
a.J a.J o.J o.J
T =0 2o ==+ J J J =0 7.8
7 ()=0 & o5, T a5 T B T, ) (7.8)
V=0 < M)+ 20 +yrJ) =0, (7.9)
TN =0 < V() + 2080 + 08 () = 0, (7.10)
r'V)=0 < M) =2 + 91 (J) =o0. (7.11)

Solving the system (7.5)-(7.8), we obtain
S+ -7

J
J? ’

which also satisfies the remaining equations F§l)(J ) =0, 7 =28,9,10. Therefore, we have

derived the differential invariant of first order

(Xt + Tx)Z + (Yt + Ty)2 _ (Yx — Xy)2

= 5 (7.12)
(X2+Y2-T2+2X,+42Y,+2T, —4U)
Furthermore, we obtain the invariant system
X +T1T,=0, Y, +T,=0, Y,—-X,=0, (7.13)
and the invariant equation
X2+ Y? —T?+2X, +2Y, + 2T, — 4U = 0. (7.14)

That is,

O (X0 + Tlany = 0 I (4 Ty = 0 T (¥ = Xl g9 = 0

(7.13) |(7.13) =

and

I (X2 4+ Y2~ T 42X, +2Y, + 2T, — 4U) 0,

|(7.14) -
where 7 = 1,2, ..., 10, «, respectively.
Now, in order to derive differential invariants of second order we need to consider the

invariant criterion

(2 _ -
r;7(J)=0, j=12,...,10,¢q,

where Ff) is the second order extension of I';. Without presenting any calculations we
state that we only re-obtained the differential invariant (7.12). That is, they do not exist

differential invariants of second order.
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7.3 Invariants for three-dimensional hyperbolic equa-

tions

7.3.1 Equivalence transformations

Using the same procedure used in the previous section, we calculate the equivalence

transformations of the three-dimensional linear hyperbolic equations

Ut

Uy + Uyy + Uz + X(E,2,y, 2)uy + Y (¢, 2, y, 2)uy + Z(t, 0,9, 2)u,

+ T(t,z,y,2)u + U(t, z,y, 2)u. (7.15)

We find that the family of equations (7.15) admits an infinite continuous group £ of

equivalence transformations generated by the Lie algebra Lg spanned by the operators:

I'is

F14

B B 9 9
3 ay? 4 827
9 o0 o 0 0 9 o9 0 9
91,9 4,9,,9 x99 y9 79 29 oy 9
Yo T TVa, e~ Yax Yoy lar Zaz  Vaur
o o0 0 )

0 0 0 0 0
00,0 L0 0 D0 D

ox 0z 0X 07’

0 0 0 0 0
= (42 2 2 2\ 7 . i I - _
(B +2*+y +z)6t+ta:ax—l—tyay+tzaz+(a:T tX) o5

0 0 0 0
(yT — tY)a—Y + (2T — tZ)O_Z + (X +yY —tT'+ 22 + 2>8_T - QtUW’

O 1,, . . L0 9 9
tr— + = (t =) L oyt ar—
R Gt Mk wh i - wii s

9] 0 9,
(X +yY —tT + 27 + 2)6_X + (yX — xY)a—Y +(zX — xZ)a—Z
9, 9]

0

0 0o 1 0
tyaquy%—i—i(t2—x2+y2—z2)8—y+yz$

0 0 0
0 0
(tY — yT)a_T - QQU@,

—_

62



0 0 0 1 0 0
Iy = tz— — — (2= 7 — 2X)—
15 tzat+xzax+yzay+2(t x y—l—z)az—l—(x z >8X

0 0 0 0
0 0 0 0
o = oug = 2055 — 20y —2ag, T 200

+ (att — Qg — Qyy — Qpp — oy X — OéyY — a1 — OéZZ)@,

where o = a(z,t,y, 2).

7.3.2 Differential invariants and invariant equations

In order to find semi-invariants we have to apply operator FS) onto invariants of first

order, i.e. of the form

J = J(twr?yVZ?uaX? Y7 Z7T7 U7 Xi7}/ivzi7ﬂ7Ui)7 1= tax7yaz'

The invariant criterion I'’(J) = 0 leads to seven semi-invariants:

leyx_Xya ‘]2:Xt+Txa J3:Y;+Tya

J4:Zx_XZ7 J5:Tz+Zt7 ‘]GZZy_}/ZJ
Jr=X?+Y?+ 2% —T? +2X, +2Y, + 2Z, + 2T, — 4U.

Now using the complete equivalence group we find that equations (7.15) admit two dif-

ferential invariants of first order:
J = (Tx + Xt)2 + (Ty + 1/;5)2 + (Tz + Zt)2 — (Yx — Xy)2 - (Zx - XZ)2 - (Zy _ YZ)2
1 — )
(X2 4+ Y24 722 -T2 42X, + 2V, + 27, + 2T, — 4U)?
2 = .
(X2 4+ Y24 22 -T2 42X, + 2V, + 27, + 2T, — 4U)?

In addition we have an invariant system with six equations:

Xe+T1T,=0, T.+2,=0, Y, +T,=0,
Y,-X,=0, Z,—-X.=0, Z,-Y,=0,

and the invariant equation
X+ Y2+ 22 —T? 42X, +2Y, + 22, + 2T, — 4U = 0.

We point out that, this results are more general from the two-dimensional equation, with

the exception that the three-dimensional equation admits two differential invariants.
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7.4 Invariants for n-dimensional hyperbolic equa-

tions

7.4.1 Equivalence transformations

In this section, we consider the n-dimensional (n > 3) linear hyperbolic equations of the

form:

Uy = Zuxixi—i—ZXi(xl,xQ, ey Ty U, T (1, Ty o Xy, DU +U (21, 2o, .o T, )0
(7.16)
Motivated by the results of the previous sections, we can generalize them to n dimensions.

We state that equations (7.16) admit an infinite continuous group &£ of equivalence

transformations generated by the Lie algebra Lg spanned by the operators:

Fli:@iz’ 1=1,2,...,n, Fln“:%a

F2_t—+2xlaxl ; aX Ta%—w%,

F3”:$i(9ix] x]aiqLXaij—Xjaii, 1=1,2,...,n—1, g=1+1,...n,
F4i:xi% 81— 8?(1- ia%, 1=1,2,...,n,

Z xlx]a

J=1, j#i

o 1 -
[s, = ait— + = [ * + 27 —
5 xat+2< + Z )

J=1, j#i

- 0 0 - 0
J [

J=1, j#i

9,
—QLE'ZUw, i21,2,...,n,

F5n+1—%<2x?+t> +Zmz +le X;) ;

0 0
(ZmX —tT+n—1>a—T—2tUaU

=1

where a = «(t, x1, za, ..., 2,) is an arbitrary function.
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7.4.2 Differential invariants and invariant equations

Motivated by the results about differential invariants, we have that equations (7.16) admit
the one differential invariant of first order, namely,

Zy:l(Txi + Xit)2 - z?:_ll Z?:i-i-l(Xixj o X]xz)2
o X7 = T2 42300 X, + 2T, — 4U)?

J:

We note that for the case where n = 3, two differential invariants exist.

The invariant criterion F&l)((] ) =0, leads to in(n+ 1) + 1 semi-invariants:

JZ:TIZ—FX”? 7::1,2,...77,,

T jzi7

i=1,2,..n—1, j=i+1,...n,
Tinanyer = ) X2 =T?+2) X, +2T, —4U.
i=1 i=1
Furthermore, we point out that the 1n(n + 1) equations

T, +X;, =0, i=1,2,...n,

X, — X

z; Jx;

=0, :=12,..n—-1, j=14+1,...n,
form an invariant system and
n n
YNXP-T*+2) X, +2T,-4U =0
i=1 i=1
is an invariant equation. Semi-invariants, invariant system and invariant equation gener-

alize naturally with no exceptions.

7.5 Invariants for one-dimensional hyperbolic equa-

tions

7.5.1 Equivalence transformations

In this section we consider the one-dimensional linear hyperbolic equation of the form:

U = Uy + X (8, 2)uy + T(t, 2)u, + U(t, z)u. (7.17)
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From the elementary study of partial differential equations, it is known that canonical

variables connect the linear hyperbolic equations
(7.18)

Uay + a2, y)tz + bz, y)uy + c(z,y)u =0
and (7.17). Therefore the results of (7.18) (see [19,20]) can be mapped into results of
(7.17) using canonical variables. In fact, this procedure was carried out in [17]. For
completeness, we present the results for the one-dimensional linear hyperbolic (7.17).

We find that the family of equations (7.17) has an infinite equivalence group £. The

corresponding Lie algebra L¢ is spanned by the operators:
0 0 0 0 0
Iy =—0¢p— — =X+ T (X +T)=x — 20U ——

x -2 _ oyl

0 ,
ax 7Y aT Flia

o a0

0 0 0
Fa = O./U% - 20@;& + 2Oét8—T + (Oétt — gy — Oéa;X v OétT)@,
where ¢ = ¢(z —t), ¥ =Y(x + 1), o = a(x,t) are arbitrary functions. We note that the

above equivalence group is not a special form of the equivalence group of the family of

n-dimensional linear hyperbolic equations (7.16).

7.5.2 Differential invariants and invariant equations

In order to find semi-invariants for equation (7.17) we have to solve ry) (J) = 0. The

invariant criterion I'Y?(J) = 0 leads to two semi-invariants:

Jl = Xt + TCE:
Jo=X*-T?+2(X, +T;) — 4U.
These semi-invariants can be transformed into Laplace invariants, using canonical vari-
ables. We also point out that J; = 0 and J; = 0 are invariant equations.
Also, we obtain one differential invariant of first order

g X+ T,
X2 -T2 2(X, +Ty) —4U’
The above differential invariant can be obtained from the general case by setting n = 1.

However, the family (7.17) admits differential invariants of higher order (see [20]).

The results of this chapter are contained in [59].
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7.6 Applications

Two given partial differential equations are called equivalent if one can be transformed into
the other by a change of variables. The equivalence problem consists of two parts: deciding
if there exists equivalence and then determining a transformation that connects the partial
differential equations. The motivation for considering this problem is to translate a known
solution of a partial differential equation to solutions of others which are equivalent to
this one.

In general, the equivalence problem is considered to be solved when a complete set of
invariants has been found. In practice, using invariants to solve the equivalence problem
for a given class of partial differential equations may require substantial computational
effort. However any set of invariants can provide necessary conditions for deriving equiv-
alent equations.

Here we consider the problem of finding those forms of the class (7.1) that can be
mapped to an equation of the same class with constant coefficients. That is, we deter-
mine the forms of the functions X (t,z,y), Y(t,z,y), T(t,x,y) and U(t,z,y) such that

equations (7.1) is mapped into
U = Uy + Uy + C1Uy + CoUy + C3u; + Cau, (7.19)

where ¢y, ...c4 are constants. Firstly, we note that the mapping

c1x+coy—cat)

V= at r_ o r_ 3
=at, x =eaxr, Y =eay, u =e u,

where a is an arbitrary constant, e; = +1, 9 = £1, transforms

2 2, 2
deg —cf —c53+c3
4a?

!/ / /
ut’t’ - 'U/x/x/ + 'U/y/y/ +

into (7.19). Hence, choosing the appropriate value of the parameter a, equation (7.19) is

equivalent with
u:f’t’ = u;/x/ + U;/y/ + ul. (720)

Therefore we can, equivalently, consider the problem of finding those forms of the class
(7.1) that can be mapped into (7.20) instead of those forms that can be mapped into
(7.19).
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In the special case ¢y = (¢} + 3 — ¢}), equation (7.19) can be mapped into the two-

dimensional linear wave equation
!/ / /
Upryr = Ugrgr + Uy/y/. (721)

We point out that equations (7.20) and (7.21) are inequivalent. Hence, there is merit to
consider additionally the problem of finding those forms of the class (7.1) that can be
mapped into (7.21).

Note 7.1. For equivalent equations (7.19) and (7.20) the differential invariant J in equa-
tion (7.12) is equal to zero. Equations (7.19) and (7.21) satisfy the invariant system (7.13)

and the invariant equation (7.14) only if ¢, = (¢} + 3 — ¢3).

We state the results of this section in the following theorem. The proof can be carried
out using first that two equivalent equations have the same invariants or/and satisfy the
invariant equations. This fact provides necessary conditions for connecting two equations.
The second step is to find a point transformation that connects these equations (or special

cases). Details of how such transformations are constructed can be found in [29, 46].

Theorem 7.1. (i) An equation of the class (7.1) can be mapped into the two-dimensional

linear wave equation (7.21) by the point transformation
¥ =ct, 2 =cicx, Y =eqcy, u =e 2Fq, (7.22)
where e = +1, g9 = +1, and c is an arbitrary constant, if and only if it is of the form

Ut = Ugy T+ Uyy — Fx(tama y>ua: - Fy(ta :C?y)uy + Ft<t7'x7 y>ut
+ [FP4F— F} = 2(Fu+ Fy — Fu)l u, (7.23)

where F(t,z,y) is an arbitrary function. Transformation (7.22) is a member of the equiv-
alence transformations admitted by the class (7.1).
(ii) An equation of the class (7.1) can be mapped into the constant coefficient equation

(7.20) by the point transformation (7.22) if and only if it is of the form

U = Ugy + Uy — Fo(t, x,y)u, — Fy(t, x,y)uy, + Fi(t, z, y)w

+ H[EPHF = F} = 2(Fpo + Fyy — Fy) + 4% w. (7.24)
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Note 7.2. Equation (7.21) and equation (7.23) satisfy the invariant system (7.13) and
invariant equation (7.14). Equation (7.20) and equation (7.24) are such that the invariant

(7.12) vanishes. This is the starting point for proving the above theorem.

Note 7.3. The results derived in this section can easily be generalized to n-dimensional

equations of the class (7.16).

7.7 Conclusion

In this chapter, we used Lie infinitesimal method for calculating the equivalence trans-
formations of the class of two- and three-dimensional hyperbolic equations. We have
derived the differential invariants up to first order. Motivated by these results, we gener-
alized them to n-dimensions. For one-dimensional hyperbolic equations a different form of
equivalence transformations have been derived. In the last section, we used the fact that
the knowledge of differential invariants can be useful to find the forms of those equations
of the form (7.1), that can be mapped into an equation of the same class with constant

coefficients.
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Chapter 8

Differential Invariants for

n-dimensional wave-type equations

8.1 Introduction

In this chapter, equivalence transformations and differential invariants of first order for the
n-dimensional wave type equations of the form: wy; = Y | Fi(t,x1, @2, . .., Tp)Up,q;, are
given. These equations have considerable interest in Mathematical Physics and Biology
(see [3,8,65,69]). They have a number of applications, for example, in population dynam-
ics, tides and waves, chemical reactors, flame and combustion problems and problems in
transonic aerodynamics. Also, for the cases where n = 1,2,3 we present differential in-
variants of second order. In order to produce higher order invariants, we need to consider
higher order prolongations. Finally, we employ the derived invariants to find the form of

those equations that can be mapped into an equation with constant coefficients.
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8.2 Differential Invariants for n-dimensional wave-

type equations

8.2.1 Equivalence Transformations

We consider the n-dimensional wave-type class of equations

U = ZE(xIVIQV"?xn)uwixi' (81>

In the spirit of Ibragimov’s work (see [19]), we classify differential invariants of first order
for the class (8.1). In order to achieve this goal, we firstly need to derive the equivalence
transformations for the class (8.1).

We use infinitesimal method for calculating the equivalence transformations of the class
(8.1). We find that the class of equations (8.1) admits a (3n + 4)-dimensional continuous

group &€ of equivalence transformations generated by Lie algebra Lg given by the operators:

0

Fli:@xi’ 1=1,2,...,n,

Iy, xlal—l—QFi@iFi, 1=1,2,...,n, (8.2)
I t%—zgﬂ%,

Fgl—:c?(%mzua —|—4a:iFiaiFi, i=1,2,...,n,
F3n+1:t§+t——4tZFaF

8.2.2 Differential invariants and invariant equations

Firstly, we consider the problem of finding differential invariants of the class of equations
(8.1). Firstly, we seek for differential invariants of order zero. Using the 3n + 4 operators
given by relations (8.2), the invariance criterion I'(J) = 0, lead to the trivial invariant,

J = constant.
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In order to find differential invariants of first order, that depend of first derivatives of

the functions F;, 1 =1,2,...,n,
J=J(t xiu, B, By, F), ij=12...n (8.3)

1t

we need to consider the first prolongation of the operators (8.2). Using the formula:

r =1
+ pf! 5F.
1
where:
pit = Dy, () ZFkt W)=Y Fr, Dy (&),
k=1 I=1
1=1,2,...,n, 51 = t,x1,29,...,x, and ﬁj denote the total derivative with respect to
j:taxlax%"')xn
~ 0 0 0 0
Di=—+F,—+F, F;. ce
1= 9 T hugE T g, ThugE, T

we obtain the first extension of the generators (8.2):

0 0 0
F(l) _ Y F(l) _ - F(l) _ Y4 4
L 9gy Int1 ™ g’ bnt2 ™ 9y (8-4)

0 B 0 " 0 " B
) =Ty + F, 2F, — +2 F - F, —— (85
2+ L, {OF,, + OF, +2 ), R, OF;, > B OF, (85)

j=1 j=1
JF JF#
() B n n
L5, =Ta =2 > F, LT F —3 Z Fiugr F (8.6)
=1 j=1
) B 0
I = 20,1 — 22 2 4 aju— + 4F—— 8.7
3i Z 18$+$uau+ 0E127 ( )
Y — oM z 2 9 t 4N TR 8.8
3n+1 2+1_ +u__ Z aF ()

where ¢ = 1,2,...,n. Applying the operators (8.4), differential invariant (8.3) simplifies

to

J=J(F, Fay. oo Foy By Fry e oy Fo B F,.).

nzl""7

Using the operators (8.7) we deduce, from the terms independent of z;, that

0J
OF;

iz,
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Hence,

J=JF,F,... B, F, F, ), i,7=1,2,....n, i#j. (8.9)

Now, operators (8.7) and operators (8.5) become identical.

Applying the operator (8.8) to differential invariant given by (8.9), and the vanish-

ing coefficients that are independent of ¢, lead to the following characteristic system of

equations:
dFy, dF;, _dF,,
Fr R R

which produces the n — 1 integrals
pr=F,F,— 1 F,,, k=2,3,...,n.
Hence,
J = J(Fl,Fg,...,Fn,Fiﬁj,pg,...,pn), 1,j=1,2,...,n, i # J. (8.10)

This implies that operators (8.8) and (8.6) are the same.
Now, we have to employ operators (8.5) and (8.6). Application of these operators to
differential invariants given by (8.10), lead to a system of n+1 PDEs. Solving this system,

we arrive to
(n—1)(3n—1) (8.11)

first order differential invariants:

_ RF, - F\,F,

Ii,1 3 y 7;:2,3,...,71,
FP B,
3
F12F’i(1; .
Jz'_lz 3 1, 2:2,3,...,71,
FPF,
FF, o
Ki—l]—l_ Flsz7 Z%]v ?, j:273a , I,
1
I .
Ligjy=——", i>j, i=3,4...,n, j=2,3,...,n— 1 (8.12)
FiF,

Furthermore, we point out that the following (n — 1)(n + 1) expressions:

E :07 i’j:172""7n7 Z%]?

Flﬂt_Fltﬂzoa i:2737”'7n7 (813>

“fj
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are invariant equations for the class of equations (8.1). That is, they satisfy the relations:
P(”<F. )‘h =0, d,j=1,2 A
1 1z - Y 7.]_ ’ ,...,TL, Z#]
m J Fizj =0
and
r'Y (R F, — F\,F) =0
I 1 L)l [P Ry, — Py, F=0) ’

where [ =1,2,3, m=1,...,n+ 2.

8.3 Differential invariants for the case n =1

We consider the one-dimensional wave-type equation
Uy = F1 (2, 1)Uy (8.14)

We set n = 1 in operators (8.2) to deduce that the class (8.14) admits a 7-dimensional
continuous group of equivalence transformations. From (8.11) we deduce that the class
of equation (8.14) does not admit differential invariants of order one.

In order to determine differential invariants of order two, we need to apply the invariant

test
r?J)y=0, k=1,2,...,7.

The second prolongation of operators (8.2), can be calculated using the formulas

2 1 j 0
Flg) — F]& ) + Iuglh aF
Z]1]2
where:
n n
M‘ljl]Q = .72 /’L’L Z ijlt Z Fk]lzl D
k=1 1=1
1=1,2,...,n, j1,Jo =t,x1,22,...,T, and Dj denote the total derivative with respect to
j = t7x17x27' <oy Ly

We state that the class of equations (8.14) admits two differential invariants of second

order:

1
2F2 (Fy, Fy, — VFy) . F(3F} —4FFy)
ARF,, —5F2 7 ARy, —5F2

Furthermore, we have the following three invariant equations:

I =

FltFlz - FlFlzt = 07 31711 - 4F1F1zz = O’ 4F1F1tt - 5F12t = 0.
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8.4 Differential Invariants for the case n =2
Now, we consider the two-dimensional wave-type equation
uy = Fi(z,y, t)ug, + Fo(z,y, t)uy,. (8.15)

For the case n = 2, it follows that equation (8.15) admits a 10- dimensional continuous
group of equivalence transformations. Now, from (8.11), we have that there exist two
differential invariants of first order, which are given from relations (8.12), by setting
n = 2. In order to find differential invariants of second order, we need to calculate the

second prolongations of generators. The invariant test
r?, k=1,2,...,10

leads to a system of PDEs. The solution of the system produce the following 12 differential

invariants of second order:

ARFy, —5F2 ;o _ARPL, - 3FY,
1 = ; 2 = z 2 )
Fr, F R}
4F2F2yy _3F22y Flezt —Flthm
[3 = 2 4 ) [4: 1 )
F2F2yt_F2tF2y FlFlyt_FltFly
[5 = 1 2 4 5 16: 1 )
F} }7’13;}7’23z F} ny
FFy,, — F\,F, FlFlzy —Flely
I; = 15 1 Is = 5 1 )
FyFs,, — Fy By, 2R\ Fy,, + Fy By,
Iy = 1 5 ) I = 2 1 )
Ff;F;; nyFQSI
Flngy + 2F1ny2 4F12F2tt — 10F\ Fy, Fy, + 5F12tF2
Iy = —1 32 ) L = 2 2 .
Ff;!FQ:; 1,12

8.5 Differential Invariants for the case n = 3
Finally, we consider the 3-dimensional wave-type equation of the form
uy = Fi(z,y, 2, ) Uy + Fo(x,y, 2, t)uyy + F3(x,y, 2, 1)U, (8.16)

From operators (8.2), by setting n = 3, we obtain the 13-dimensional continuous group

of equivalence transformations of equations (8.16). Also, from (8.11) we deduce that it
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admits seven differential invariants of first order. These invariants can be obtained from

relations (8.12) by setting n = 3.

Now, we determine differential invariants of second order, that depend on the second

derivatives of Fy, Fy, F3. Therefore we need the second prolongation of the operators

(8.2). The invariance criterion

leads to the following differential invariants:

1 1
FFy, F\F,, F? F2F? F3,,
I, = 7R i E— 3= —1T
1,41 Fp R, Fy I} Fy
4F1F1tt B 5F12t FlFlyt — FltFly FlFQZt N FltFQZ
Iy = 2F2 I ) 5 = 1 ) Is = T )
1,12 F12yF22 Fy F¥ P,
F1F1zt—F1tF1 Fllez_FlmFlz
I7 = T . ) ]8 = T T )
P\, P\ Fy FY P, F3,
I — FE(Fy, Fs,, — Fy,, Fs) I FY(FLF,, — )
9 — F13yF3 ) 10 — F132F2 )
- Ff(Flegyz +2Fy, F3,) I (I, Fy,, +2F, F,)
11 — Flg)y F2 ) 12 — F12y FQZ )
o F\(F\, F>, +2F,, F5) I, — Fy(Fy Fs, + 28 F3)
13 F12zF3 ) 14 F2F12y )
F142 (F1F3:vt - FltF3z) FF (Fle3:cz + 2F1zz F3x)
[15 = 1 » ) 116 = 3 3 )
F12F1yF2z Flszg
3
PP (B By, — P F,) B F, — Py, Fs)
Li; = F2 2 ) Lig = ) 1 )
1,72 117’111117’3F22
[ F?(F\Fy,, — L F) _ F(4RF,, —3FY)
19 — F12y FQ ) 20 — 2F12y F2 )
1 3
FP (R Fy,, — F ) FFP (Fy B, + 28, F,)
I = 1 ) Iy = 3 ’
FPF? FLFY,
. FEQ2R By, + P F,) [ Py (2R, + P F,)
2= F3FY 7 “ I} Py Py ’
Lo — AFEF,, — 10F Fy, Fy, + 5F12tF2
25 2F12yF22 3
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. AF2Fy, — 10F,Fy, Fy, + 5F2 Fy
26 — )

2 4 2 4

2F} Fy Fy Fy
I Ff(nyngy +3F, Fy, Iy, + 3F2F12yy)
27 — F2F14y 9
L. - Fl(FfZngz + 35 _Fy _F5 + 3F12ZZF3)
28 — nyF12F2Z 3
I Py Fs , +2FFy_Fs, — Fy, Py Fs, — 21, Fy__F3
29 — 1 )

By F3
11

I F12F122(F1F1yF2yt +2F 1 by, by, — F1 By By — 2F1tF1ny2)
30 — .

FZF} By
8.6 Applications

We recall that, two given partial differential equations are called equivalent if one can be
transformed into the other by a change of variables. However a complete set of invariants
can provide necessary conditions for deriving equivalent equations.

In this section, we use invariants to classify equivalent PDEs. In particular, we aim
to derive all equations of the form (8.1) that can be linked with the constant coefficient

equation
Uy = Zgum g = +1. (8.17)
i=1

Equation (8.17) is a member of the class (8.1). If we set F; = ¢; the invariant equations
(8.13) are satisfied. Hence, any equation of the class (8.1) that is connected with equation
(8.17) must satisfy the invariant equations. Consequently, the solution of the invariant
equations will provide necessary conditions for an equation of the class (8.1) to be mapped
into equation (8.17).

Solving the invariant equations, we find that
Fi(t,xy,20,...,x,) = O(t) Ai (),

where ®(t) and A;(z;), i = 1,2,...,n are arbitrary functions. Hence, an equation of the

class (8.1) is linked with equation (8.17) only if is of the form
uy = R(t) > A2y, (8.18)
i=1
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Now, we will use the results of chapter 3 to derive the equivalence transformation in

finite form. In this case we consider transformations of the form
T, = P(x,t,u), t =Q(xt,u), u =RXtu), x=(x1,...,2T).

It can be shown that equation (8.18) (consequently equation (8.1)) can be mapped into
equation (8.17) if and only if it is of the form

uy = Q*(t) Z %U:ﬁm, (8.19)

=1
where the functions P;(z;) and Q(t) are solutions of the third order ordinary differential

equation

f/f/ll o %f/lZ — O

The transformation that connects equation

n

uy = Q*(t) Z %Uzm

=1 "1

and equation
n
Wy = g g = *1
t't — 1 xlals [
i=1

is given by

The results of this chapter are appeared in a recent paper [57].

8.7 Conclusion

In this chapter, we have derived the complete set of differential invariants and invariant
equations for the n-dimensional wave-type equations (8.1) up to order one by the infin-
itesimal method. Also, we have determined differential invariants of second order, for
the cases where n = 1,2,3. As an application of the differential invariants, in the last
section, we find the form of those equations (8.1) that can be mapped into an equation

with constant coefficients.
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Chapter 9

Point Transformations: Notations

and basic theory

9.1 Introduction

In the spirit of chapter 3, we generalize the results of point transformations for systems
of two partial differential equations. Similar as in chapter 3, we start with presenting
identities relating arbitrary order partial differential derivatives of u(x,t), v(x,t) and
u' (2, t'), v'(a',t"). These identities are useful to study the nature of those point transfor-
mations which preserve specific types of systems of two PDEs. We study three common
classes of systems of PDEs restricted to two dependent variables and two independent
variables and deduce results, summarized in theorems. These classes of systems are such

that {u;, v}, {wer, Vat}, {un, vu} are functions of x,t, u, v and z-derivatives of u and v.

9.2 Notations and basic theory

In this section, we generalize the notation, that we had in chapter 3, in notation with two
dependent variable, and summarize the basic theory on which the work in the sections
below is based.

We consider the point transformation

2= P(x,t,u,v), t'=Q(x t,u,v), u =R(xtuv), v=>S8rtuv), (9.1)
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relating x, t, u(z,t), v(x,t) and 2/, ¢/, ' (2',¢"), V/(2/,t'), and assume that this is non-
degenerate in the sense that the Jacobian

_9(P.Q.R,S)

Dot 70 9.2)

and also that

O(P(z,t,u(z,t),v(x, 1), Q(x, t,u(x,t),v(x,t)))
O(z,t)

In (9.3) P and @ are expressed as functions of « and ¢ whereas in (9.2) P, @, R and S

5:

£ 0. (9.3)

are to be regarded as functions of the independent variables x, ¢, u, v.
The derivatives of u(x,t), v(z,t) and u/(2',t"), v'(2/,t") will be denoted by

az‘—i-ju , 8i+j u/

Ui = pgpp " g (54)
0"y , Oty
A T v )

If ¥ is a function of x, t, u, v and the derivatives of u, v, the total derivatives of ¥ with

respect to z and ¢ will be denoted by

0 0
Uy =T, + ) > ui+1j87\1; +Y > Uz‘+1jaT\I;7 (9.6)

\I/T = \I/t -+ Z Z u,‘j_;_l% + Z Z Uij—i—l%; (97)
1) 3

where the double summations are to be taken over the values of ¢ and j which cover all
derivatives wu;; and v;; occurring in W.
With this notation § may be expressed as

Q) B
jy = 8(X’T)—PXQT PrQx

= 'LL10<Pth - PtQu) + uOl(P:EQu - Pqu) + U10<Pth - Pth)

+ U01<Pva - Pva) + (U10U01 - U011110) (PuQv - Pv@u) + (Pth - Pth)
oPQ), L APQ)  APQ)  IPQ

= 2w T 9w " T B T B )
n %((ii?)) (umvm_uowmn%. (9.8)

Also, under the point transformation (9.1),

dx’ Px Pr dx dx 1 QT — Py da’
dt’ Ox O dt | dt S\ —0y Py dt’
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(9.9)

and

Qr —Pr dx’

1
dV = Uydr + Updt = =(Vx Wr) . (9.10)
d —Qx Py )\ d
Hence, taking W = w;; y, uj_;, vj;_;, vj_y; respectively, gives
uj; =61 (Px(uj;_y)r — Pr(uj;_y)x), i>1, i>0, (9.11)
wy =0 (Qr(uiy)x — Qx(ui_y))r), 121, j=0, (9.12)
vi; =6 (Px(vl_y)r — Pr(vi,_1)x), j>1, i>0, (9.13)
Also,
upy =u' =R, vy, =v"=5. (9.15)

Equations (9.11)-(9.15) furnish recurrence relations which enable u;; and vj; to be ex-

pressed in terms of z,t, u,v and the derivatives of u and v for any ¢ > 0, 5 > 0. The

!/

factor 6! makes the expressions for ug;, vi; grow with ¢ and j in a very cumbersome

manner.

In the case of infinitesimal Lie point transformations in which:

( ) = x+eP*(x,t,u,v)+ O(?),
( ) = t+eQ*(x,t,u,v) + O(?),

R(x,t,u,v) = wu+eR*(z,t,u,v)+ O(?),
( )

= v+ eS*(w,t,u,v) + O(?),
the forms of J and ¢ in (9.2) and (9.3) simplify to

J = 1+eP;+Q;+R,+5;), (9.16)

d = 1+e(Pr+Q)), (9.17)
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to the first order of . In this case the recurrence relations corresponding to (9.11)-(9.15)

are

/
Ugg =

/
Voo =

(u'jfl)T - 5[P7t(u;j71>X + Q?(“ég’ﬂ)ﬂa J=1, 1>0,
(“2—1j)X - S[P;((U;—lj)X + Q}(U;—lj)T]a 1>1, j=0,
('Uz/'j—l)T - E[PI*“(U:‘]‘—DX + Q*T(Uz/‘j—l)T]a J=1 >0,
(Uz{—lj)X - 5[P)*((U§—1j)X + Q?{(”é—u‘)T], 1>1, 720,
u—+eR",

v+ eS*,

9.18

e}
—_

)
9)
0)
)
)
)

Ne
DO

NeJ
[\

1

Ne)
DO

(
(
(
(
(9.22
(

9.23

to the first order in €. These relations of course lead to considerably less cumbersome

forms of u}; and v;; than those obtained from (9.11)-(9.15).

9.3 Properties of the transformations

Under the point transformation (9.1) each derivative of u/(2',#') and v'(2',#'), that is uj;

/
and vj;,

i >0, j > 0, may be expressed, via the recurrence relations (9.11)-(9.15), as

functions of z,t,u,v and the derivatives of u and v. A number of results concerning the

functional form of w) (v,t,u,v,... wi,...,v45,...) and v} (z,t, 0,0, ..., U, . .

-;Uiju--->

are presented in this section. The proofs of the results are generally inductive and use

the recurrence relations (9.11)-(9.15).

Lemma 9.1. If 2’ = P(x,t,u,v), t' = Q(z,t,u,v), v = R(x,t,u,v), v = S(x,t,u,v)

i 0 (=D"(@x = 2Qr)"(Px = =Pp)t /6777, n >0
i=0 8uij R, i
” Zi% = (—1)P(Qx — 2Qr)P(Px — 2Pr)1Jyd P~171 n >0
i=0 avij R,, .
y Zi% = (=1)P(Qx — 2Qr)P(Px — 2Pr)%J36 P~71 n >0
=0 8uij Su’ .
n ZiaU;q . (_1)P(QX — zQT)p(PX . ZPT)qJ4§—P—q—1’ . 0
- 8?% So, n=20
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wherei+j=p+q=n>0, and

OP.QR) _APQE) PR
at,u,v) ° O(x,uv) O tu)

5 _ _OPQR) - OPQR) PR (9.25)

S (9.24)

O(t, u,v) (x,u,v) Oz, t,v)
P P P
J3 a( 7Q’S>/Ux—a( 7Q7S>,Ut a( 7@75)’ (926)
o(t, u,v) O(z,u,v) O(z,t,u)
I(P,Q,5) (P, Q,5) I(P,Q,5)
Jy = - . . 9.27
! (t, u,v) e Oz, u,v) et O(z,t,v) (9:27)
We point out that J;, 1 = 1,2,3,4 are non-zero quantities.
Corollary 9.1. The coefficient of 2" and z° in lemma 9.1 give, respectively
0u;q q p4H)p —p—q—1
un (=1)P{Q7p 16 ,  ptag=>1, (9.28)
p+q
au;q P p4d NP —p—q—1
e (=1)PPyQ% o . ptg=1, (9.29)
p+q
ou!
Gt = (CUPPQERS T prg L (9.30)
p+q
ou!
avopq _ (_1)pP)Q(Q§(J25—p—q—1’ p4q>1, (9.31)
p+q
av;)q q p4H)P —p—q—1
T (=1)"PrQ7J30 ,  ptg=>1, (9.32)
P+q
Iy a0 7. 5-p—q-1
W = (—1)pPXQXJ35 L 9 p—f-q Z ]_, (933)
p+q
(%é,q q p4HP —p—q—1
p+q
av;q P P4 NP —p—q—1
o (—1)P Py Q% Jad ,  ptg=>1 (9.35)
p+q

Lemma 9.2. If 2’ = P(z,t,u,v), t' = Q(x,t,u,v), v = R(x,t,u,v,), v/ = S(x,t,u,v)
then

am1 +ni+ma+n2 uIIO

mi ni m2 n2
Quiy Ougy Ovyy* Oy

- [<_1)n10m1n1 (TLquQX + mlﬁlQT)
+  (=1)™Dyyny (n202Q x + Mo BoQy)]d ™M M2 271

)
am1+n1+m2+n2u61
= [(=1)™Cpyn, (mioy Px + my 31 Pr)

mi ni mo no
Auyg' Qugy Ovyg* Ovgy

4+ (=1)™ Dy, (Nacia Px + my By Pp)]g—m1 M ma=n2=1
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where

L arQ_aPrQ).
! O(t,u) d(u,v) b
L, ARPQ) APQ)

oz,u)  O(u,v)
oP.Q)  oP.Q).
at,v) ' d(u,v) "
5 - APQ) APQ),

(z,v) o(u,v)

Lemma 9.3. If 2’ = P(x), t' = Q(t), ' = R(z,t,u,v), v/ = S(z,t,u,v) then

Qg =

s
82U;q p) (q)Pprthuzm 2+k:p, ]+l:q
8uij8ukl_ L J

0, t+k>p or j+1>q

p
82u;;q p) (?)Pprthm” i—l—]{;:p, j—i—l:q
8uij0vkl_ t J

L 0, i+k>p or j+1>q
52u;)q p (q P;th_quva Z—|—]{j:p’ ]‘l‘l:q
avijﬁvkl_ L J

0, i+k>p or j+1>q.

For the derivatives of v, we simply R — S in the above relations.

9.4 Form-preserving transformations of systems of

PDEs

9.4.1 Basic results

Here, we will use the results of the previous section in order to study the nature of
point transformations which perform specific changes to systems of PDEs. We start
with a general class of systems of PDEs for which general deductions about the forms
of P(x,t,u,v) and Q(x,t,u,v) can be made. These will be useful for the discussion of
restricted classes of systems.

We give a similar theorem as theorem 3.1 for systems of two PDEs.
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Theorem 9.1. The system of PDEs
Upg = H (z,t,u,v, {wij b, {vow}), vw = F (2,t,u,0, {uas}, {vys})
is related to
u;q =H (x’,t’,u',v', {u;j}, {v,'d}) , U,/w = F’ (:c',t',u’,v’, {u’aﬁ}, {U/vé}) ,
where {uij}, {uap}, {vu}, {vys} and {uy}, {u,s}, {vi}, {vis} respectively denote all
derivatives of u, v, u' and v’ of orderi+j < p+q, k+l < p+q, a+5 < p+v, v+ < p+v

by the point transformation ' = P(x,t,u,v), t = Q(z,t,u,v), v = R(z,t,u,v), v =

S(z,t,u,v) in the cases:

(@) (p#0, ¢#0)or (n#0, v#0),

O{p#0, ¢#0) and (u#0, v=0)} or{(p#0, ¢#0)and (u=0, v#0)} or
{p#0, ¢=0) and (p=0, v#0)} or {(p#0, ¢=0) and (n#0, v#0)} or
{(p=0, ¢#0) and (p#0, v#0)} or {(p=0, ¢#0)and (u#0, v=0)}
(c) (p=0, ¢#0)or(p=0, v#0),

(d) p#0, ¢=0)or(p#0, v=0)

only if
(@) {P=Px), Q@=Q)} or{P=P(t), @=0Q()}
(b) P=Pzx), Q@=Q(),
() P=Plx),
(d) Q=0Q(),

respectively.

Proof. For the proof of the theorem 9.1, we consider the fate of the highest-order derivative
of w,, = H', v,,, = F" under the point transformation. Consider the lemma 9.1, corollary
9.1, p+¢>1and u+ v > 1, that is equations (9.28)-(9.35).

In case (a) neither (p = 0, ¢ = 0) nor (u = 0, v = 0) so that the expressions
(9.28)-(9.35) must vanish in order for u,, and v}, to generate u,, and v,, alone of order
p+ q and p + v, respectively. Any lower-order derivatives of «’ and v" which occur in H’

and F’ transform to derivatives of u and v of order less than p + ¢ and u + v. Hence,
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QrPr = QxPx = 0. Hence, either {P = P(z), Q = Q(t)} or {P = P(t), Q = Q(x)} as
required.

In the first case of case (b), where {p # 0 and ¢ # 0}, from case (a) we deduce that
{P =Pz), Q@ =QHt)}or {P =P(t), Q= Q(x)}. Since, (n # 0 and v = 0) only
the expressions (9.33) and (9.35) must vanish. So that Qx = 0 and hence Q = Q(t)
as required. Therefore, {P = P(x), @ = Q(t)}. In the second case, first we have
{P = P(x), Q@ = Q(t)} or {P = P(t), Q@ = Q(z)} and since (x = 0 and v # 0)
only the expressions (9.32) and (9.34) must vanish. Therefore, Pr = 0 and hence {P =
P(z), Q = Q(t)}. Finally, in the case where {(p # 0 and ¢ = 0) and (=0 and v # 0)},
only the expressions (9.29), (9.31), (9.32) and (9.34), must vanish together. Therefore,
P = P(x), @ = Q(t). The other cases can be proved in a similar way.

Case (c), where {(p =0, ¢ # 0) and (1 = 0, v # 0)}, the expressions (9.28), (9.30),
(9.32) and (9.34) must vanish. Therefore P = P(x).

Case (d) follows by symmetry (z <> t, P < @Q, X < T, p < q, p < v) from case
(c). O

9.4.2 System of two equations of the form
Upr = H(.’,C, ta u,v,... 7un107 Um10>

In this subsection, we are interested in system of two equations where u;, v; are related to
x, t, u, v and derivatives of u and v with respect to x. We will generalize the theorems
3.2 and 3.3. That is, we will show that point transformations for systems of this type
with 7y > 2, my > 2 must take the form ¢ = Q(¢) (no x, u, v dependency). Also, for

restricted classes of these systems it is necessary for 2’ = P(x,t).

Theorem 9.2. The point transformations ' = P(z,t,u,v), t' = Q(z,t,u,v), v =

R(z,t,u,v), v = S(z,t,u,v) transform
upr = H(x,t,u,v, ... Upyo, Umyo), Vo1 = F(T,8,U,0, ..., Uny0o, Umgo) (9.36)
to

/ _ ! / / / / / !/ / _ / / / !/ !/ / /
ug, = H'(2', ¢, 00wy 0, v,0), v = FU(@ 00 a0, vr00), (9:37)
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where at least one of ny, my > 2 if and only if Q = Q(t) and

PxRo— PiRx + H [—on 380 + G20] + F [mo380 + 523

H = ,
PxQ

(9.38)

Py~ P + H [ -3 + 4253] + F [unffe] + 525]

PxQ:

Proof. Without loss of generality, we assume that n; > 2. Theorem 9.1 applies with {(p =

F = (9.39)

ny, g =0), so that @ = Q(t). Each u}, and v}, in H" and F’ transforms to an expression
in z,t,u, v, u, V1o, - - - , U0, Vio, that is no ¢ derivatives of v and v are introduced. System
(9.36) thus transforms to the form (9.37) and the form of H’ and F’ are determined, with
no further conditions on P, @), R and S, from (9.38) and (9.39) for any H and G. ]

Note 9.1. In theorem 9.2, the identity Hﬁnlo + Hfmo + Ff@o + FmeO # 0, holds.

The following theorem is a generalization of theorem 3.3, where u;, v; and uj,, v}, are

polynomials in {u}, {vjo} and {ujy}, {v}o}, respectively.

Theorem 9.3. If, in the above theorem, H, F and H', F' are polynomials (non-negative
integral powers) in {uio}, {vjo} and {ujy}, {vjy} respectively, then P = P(x,t).

The following lemmas will be needed for the proof of theorem 9.3.

Lemma 9.4. If u, and v, are expressed in terms of x, t, u, v and the x, t-derivatives

of u, v then

au;«o _ (_ )7" JlQ;(
3u0r N ort+l ’
a'U?,“O @ TJ4Q§(

6U0r B (_ ) ort+l ’
where v > 1 and Jy, Jy are given by relations (9.24) and (9.27).

Proof. The proof is by induction on r.
Oz y10 _ 9 0 o
Ougr41 Ougrs1 | 02" "

9 :
Oor41
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using (9.10) with ¢ = u,
1 < 0 2t ) Qr
d w2\ —Qx
using (9.6) and (9.7) and noting that for » > 1 the term wuo,,; only appears in the second

term of the row vector,

J Qr+1
— r+1Y1w X
B <_1) ort2

from the induction hypothesis. For the basis of the induction consider firstly, from (9.10),
for ¥ = u:

1 —P dz’
du' = ~(Ry Rr) Qr ! , (9.40)
0 ~Qx Py d'
we have
1 —P 1 R - R
U/w/ = —(RX RT) QT g = XQT TQX. (941)
0 —Qy Py 0 PxQr — QxPr
Noting from
Ox = Oz + Uphy + Vy Py, OT = Ot + UPy + Vi Py
that
0
ﬂ = ¢ua a¢X - 07
(3ut aut
(9.41) may be differentiated to give
ouyy _ Ou,  JiQx
8u01 - aut N 02 ’
which is relation with r = 1, completing the induction and proof of lemma 9.4. O]

Using the result of lemma 9.4, we can proof the following relations.

With Q = Q(1),
0 =PxQr — PrQx = PxQ; #0
and

J = —=Q: ((RuS: — ReSu) Py — (RySy — RySy) Py — (RySy — RySu)Py) # 0.
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Equation (9.10) simplifies to

1 -P dz’
dU = (Ux Uy) r g :
PxQ; 0 Px at
so that
Uy = Wy, Wy = ——(PrUy — Pyy) (9.42)
@ = P X t PO VX x¥Yr). .
In particular,
Ul = u’ = — L (PTRX — PxRT)
t 01 PXQt
1
= (PR, — P.R;) + uy (PR, — P,R;) + v.(P,R, — P,Ry)

- PxQ
+ w(P,R, — P.R,) + v(P, Ry — P.R,) + (upvy — uzvy) (PR, — P,R,)]{9.43)

1
Uzlt’ = 2)61 = —PXQt(PTSX — PX‘ST>
1
= [(Pth — PxSt) + ux(PtSu D PuSt) + 'Ux(PtSv — PUSt)

- PxQ,
+ w(P,Sy — PpSy) + vi(P, Sy — PpSy) + (ugvy — ugvy) (PSS, — B,Sy)], (9.44)

Rx 1
Sx 1
denoting Rx by DR,
1 \? 1 \"
u;/x, = UIZO = (P—XD> R, u:10 = (P—XD> R, n Z 1, (947)
1\ 1 \"
U/x’x’ =3 'Uéo = (P—XD) S, ’U;lo = (P—XD> S, n Z 1. (948)

The lemma below will be needed in order to find the coefficients of the terms (9.43) and
(9.44) which contain the highest power of the highest-order derivatives. These coefficients

is found to contain non-zero factors.
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Lemma 9.5. If u,, and v,, are expressed in terms of x, t, u, v and the x, t-derivatives
of u, v then

@U’;"O (PvRu - PuRv)UIO + PzRu - PuRm

= >1
8ur0 P;{—’_l ’ =t
(%;0 (PuSv — PUSU>U10 + PxSv — Pva >1
= r
avro P;;—+1 ’ -
where Px = P, +u, P, + v, P,.
Proof. The proof of this lemma is by induction on r.
Ouy 110 _ 0 i o
Ori10 Oury10 | O’ "0
0 1,
= — f 9.42
g { pottax . om0
1 Oul,
= ——= f 9.6 >1
Py Dy rom (9.6), r>
(PvRu - PuRv)Ulo + PxRu - Pqu
from the induction hypothesis. Similarly, we can prove the other expression. Il

Now, using lemmas 9.4 and 9.5 we are ready to give the proof of theorem 9.3.

Proof. of theorem 9.3: Suppose that the leading term in H (x, ¢, u, v, 410, V10, - - - , Uny0, Umy0)
is
Fi(z,tu,v)u, dun™ wGrpmay im0 (9.49)
1\&y by Wy n10 “n1—10 * * - %10 Ym10Ym1—10 - - - Y10> :
and the corresponding term in F(z, ¢, u, v, U109, V10, - - - » Uny0, Umao) 18
I ( ¢ ) Cng , Cng—1 c1,,dmg  dmy—1 d1 (9 50)
2 .,L‘, ,U,U U/n20un2_10...ulovm200m2_10...vlo, .

where Fi(z,t,u,v) # 0, Fy(z,t,u,v) # 0, ny,ny > 2, ap, > 1, ¢, > 1 s

the highest power of the highest-order derivative. Similarly, the leading term in

H'(2' U0/ v, g, Vg, - - - Upy g Upyyo) 18

Gh(a't' o, U/)U/:igl u::njl_ol . .u’fglvfgl v,flmjl_ol B (9.51)
and the corresponding term in F'(z/,t',u', v/, u)q, Vg, - - - Ulgs Vlnpo) 1S

[ENCRARTS v/)ugg2 ug?l—ol . .u’l%vlv;zg? v;gﬂizl_ol Ve (9.52)
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where Gy(x,t,u,v) # 0, Go(z,t,u,v) #0, ny,ng > 2, A,, > 1, Cp, > 1.

Substituting for ug; and vg; by
H(z,t,u,v,uig, V10, - - -, Up,05 Umy0)
and
F(z,t,u,v,u10, 010, - - -, Ung0s Umy0)s

respectively, in the transformed form of

!/ o ! AT / / !/ / / /
Uy, = H'(2', ', ', v g, Vg, - U0 Vo)
and
/ _ / / / / / / / !/ /
voy = F'(2', 1, ', v ulg, Vg, - 00 Vo)

and using the identities (9.43)-(9.48) we arrive:
1
Px @y

U;’ = “61 = (PrRx — PxRr)

1

= [ulo(PtRu - PuRt) + UIO(PtRU - PvRt) + (PtRx - PmRt)

- PxQ,

— Hlvy(P,R, — P,R,) + P.R, — P,R,| — Fluyo(P,R, — P,R,) + P.R, — P,R,]

, 1 1
i (P,Q,R, S, (P—XD) R, (P—XD) S ... (

1 ni 1 mi
P—XD) R, (P_XD) S) (9.53)

2 H[”lO(PvSu - PuSv) + PxSu - Pqu] - F[ul(](PuSv - PUSu) + P:(:Sv - Pva]

, 1 1 1 n2 1 ma

(9.54)

and
! ! 1
1
= - {u10<PtSu - PuSt> + UIO(—PtS’U - PvSt) + (PtSac - P:BSt)
PxQ:
respectively.

Retaining the leading terms on both the left and the right sides of (9.53), (9.54) and

making use of (9.49)-(9.52), lemma 9.5 and the fact that J # 0, produces the following

terms:
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from (9.49):

1 an, @
1 ny—1 a1 Bml ﬁml—l B1+1
P Fl(x, t, /U/, v)unlounl_lo e ulovmlovml_lo oo UIO
x @t

Cng  Cng—1 c1+1, dmg  dmg—1 di
_FQ(x, t’ U, v)unzounz_lo o e ulo /Um207jm2_10 “e e Ulo (P’URU - P’LLR’U)7 (9-55)

from (9.50):

Qny  Qnq—1 a1 Bml /Bmlfl B1+1
Iz Fy(@, b, u, v)ty, Uy 210 - - T U 6 Vs =10 - - - V1o
x @t

—Fy(x, b, u, v)up u,2 - u%ﬂvfn”;évzgzlo . .vi%] (P,S, — P.S,), (9.56)
from (9.51):
1
G1(P,Q,R,S)——(P,R,— P,R,)"(P,S, — PvSu)b2u:1"01 . u?&u%’%lvﬁ?& Bl B

Py
(9.57)

where
a; = (n1 —+ 1)An1 + (m1 -+ 1)Bm1 + 77,11411171 + mle1,1 + 4 2A1 + 231,

by :An1 +An171+"'+A17
b2:Bm1+Bm1—1+"'+Bla
and from (9.52):

1

b3 by, Cna Cs, ba+C1, Dmoy Ca, b3+D1
P (P,R, — P,R,)?(P.SyP,Sy)  u, & .. usduyly tu, "2 .. Vg gy
X

n20 m20

Ga2(P,Q, R, S)

Y

(9.58)
where
a9 = (TLQ -+ 1)Cn2 -+ (mg + 1)Dm2 -+ ngch,l —+ ngm2,1 + 4 201 + 2D1,

by = Chy + Cry 1 + -+ C4,
by = Dun, + D1 + -+ Dy

Multiplying by Py and Py equations (9.55) and (9.56), respectively, the leading terms

gives
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a1—1 pa;—1 a1—1 pa;—1
(uw Pu +U$ Pv )

Q:

Cng  Cng—1 c141, dmy  dmg—1 d1
—Fy(x,t,u, v)u, 0, 2 g . ULy VgV 10| (PR, — PuRy) (9.59)

Qnqy  Onj—1 a1 Bml ﬁml—l 514-1
Fl(x7 t, u7 U)unlounl_lo “ e ulovmlovml_lo oo /Ulo

mo0¥mo—10 * *
and
as—1 pas—1 as—1 pas—1
(ux Pu + Uy Pv )
Qt

— Byl 0l - s oy - vih] (RS, — PuSL) (9.60)

m20“mo—10 * *

Qny  Onp—1 a1 ﬂml ﬁmlfl B1+1
Fi(x,tu, ), gu, g - U3 U 0V 10 - - - V10

Similarly, multiplying by P¢' and P§? equations (9.57) and (9.58), respectively, the leading

terms gives

G1(P, Q. R, S) (PR, — PR, (PuS, — PySy) 2t . bzt iglm bt Be (9 61)

n10 m10

and

Go(P,Q, R, S)(P,Ry — PuRy)®(PuS, — P,Sy ) ul™2 . alstCryPme - ybatDi (9 62)

n20 m20

The equation (9.59) must be matched by equation (9.61) and equation (9.60) must be
matched by equation (9.62). Therefore

PUSu_PuSUZOa

P,R,— PR, =0.

The solution of the above system is P, = P, = 0, otherwise J = 0. Therefore P =
P(z,t). O

9.4.3 System of two equations of the form
U1 = H(ZU, ta U, v,...,Un0, Uml())

In this subsection, we are working on systems where wu,; and v,; are related with x, ¢, u, v
and x-derivatives of u and v. Firstly, we consider that the order of derivatives is bigger
or equal to 3. Then, we consider that the order of derivatives is 2 and finally we have
lower-order derivatives.

Now, we give a similar theorem as theorem 3.4.

93



Theorem 9.4. (n; > 3, m; > 3) The point transformation ' = P(x,t,u,v), t' =

Q(x,t,u,v), v = R(x,t,u,v), v/ = S(x,t,u,v) transforms

up = H(x,t,u,v,. .., %0, Vmio), v = F(x,t,u,v,. .. Unyo, Umyo) (9.63)
mto
/ o / / / / / / / / o / / / / / / /
uyy, = H' (2"t 0,0 g 05 00),s vy = F(a 0,0, Un,0),  (9-64)

where at least ny > 3 or mo > 3 if and only if

= P(l’,t), Q= Q(t),
= Al(t)u + Ag(t)’U + Bl(QT, t), S = Ag(t)u + A4(t)v + Bg(l‘, t),

H =P 'Q; " (AiH + AyF) — P2 PQy  (Ayugg + Agvag) + uio P Qy  (Ar, — (PP Ay)

+o10P, ' QM (Ag, — (P R Ag) + Pl QN (By, — Py ' BBy, )., (9.65)

F'= P'Q; Y(AsH + A4F) — P2 PQ; ! (Asugg + Agvag) + uio Pt Qy H (As, — (P 1Py As)
0P, ' Qy H(As, — (B P Ad) + P QN (By, — Py BBy, ). (9.66)

Proof. From the theorem 9.1 with {(p = ny, ¢ =0) and (g = me, v = 0)} it follows that
Q = Q(t). Relations (9.12) and (9.14) simplifies to

wy = Px'(ui_yo)x, vjp = Px'(vj_10)x, 1> 1,

so that no ¢ derivatives of u and v arise from ), and v, ¢ > 0 and H, F transform to
the forms H', F".

Hence, system (9.63) only transform to (9.64) if u}; and v}, give rise to no terms of

ou', ou’, o o
Ug2, Ugpl, Vg2 and vgr. Thus =+ =0, 32 =0, =% =0 and avéi

dup1 ’ Ovol ’ Oupl

= 0, so that

o (o
( ““) = —Q?P, [vio(P,R, — P,R,) + P,R, — P,R,] 63 =0,

4 (‘%“) = —Q?P, [vio(PySy — P,S,) + PpS, — P,S,] 07 =0,

o (o
( “11> = —Q?P, [uyo(P,R, — P,R,) + PR, — P,R,] 6 =0,
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Ougr \ Ovag
and
0 8U/11 2 -3
- —_ — P,U Pv u_Puv ng u_Pu x(S = 9
e <8u20> Q2P, [vio(P,R R,) + P.R R,] 0
0 [ovy -3
R = — P’U PvSu_PuSU PISU_Pqu(S EO’
81}01 (aUZO) Qt [,Um( )+ ]
0 8’[/11 -
_ = — PU PuRv_PvRu P:URU_PURI53EO7
81)01 <8U20> Q [UIO( ) i ]
- = — Pv Pu ’U_PUU Pz v_P’Uzé?’E
= <8v20> Q?P, [u10(PaSy — PySy) + PySy — PoS,] 0
Hence, P(z,t). Then the following system:
a /
_U’ll = 5_1(Rux + ulORuu + UlORuv) = 0’
Oupy
8 !
U1 = 5_1(R7m; + UlORuv + UlORU'U) = 07
O0voy
8 /
! = 5_1(Sum + UIOSuu + UlOSu”U) = O’
Oup
8 /
9 = 5_1(51)1 + U10Suy + UlOSW) =0,
Ovoy

give the form of R, S. Now, system (9.63) transform to system (9.64) and H', G’ are

given in terms of H, G by equations (9.65) and (9.66), respectively. ]
In the theorem below, we give a generalization of theorem 3.5.

Theorem 9.5. (ny = ny = m;y = my = 2) The point transformations =’ =

P(z,t,u,v), t' = Q(x,t,u,v), v = R(z,t,u,v), v = S(x,t,u,v) which transform
uyy = H(x, t,u,v,u10, V10, U0, V20), V11 = F(,t,u,v,u10, V10, U20, V20) (9.67)
mto

/ S I R R L R ’ N R Y R A A
uy = H'(2' ¢ 0,0 ulg, vig, U, Vo), 01y = F1 (2, 8,0, 0w, Vg, g, va) (9.68)
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belongs to one of the two categories:

P Q, R, S, H and F restricted as in the condition for theorem 9.4;

Q = Q(z, 1),
R = Hy(z,t)u+ Ho(z,t)v + Hs(z,1),

P = P(x,t),
S = Hy(x,t)u + Hs(z,t)v + Hg(x,t),
H' = —P,Q; by + Dy(a ' 0/, 0" Wy + Doz, ' 0, v vl + Ds(a!, ', u/ v,
F' = —P,Q; "hy + Dy(z', ¥, v/, v )y + Ds(2, ', 0, v vy + De(a', ¥, u',0'),
H = QiQ; "ugg + f1(w, t,u,v)uig + falz,t, u,v)vio + f3(2,t,u,v),

F= Qth_IUQO + f4(l‘7 ta u, U)Ulo + f5(£L‘7 ta Uu, U)UIO + f6($7 t; u, U)'

= F', apply the transformation and then

Proof. Let FE; uy, — H,

H and V11

— /

F. E; and FE; will now, possibly, depend on

substitute wuq;

x,t, u, v, Uig, V10, Uo1, Vo1, oo, V20, Uz and vge, but for system (9.67) to transform into sys-
tem (9.68), we require that Fy = 0 and Ey = 0.

In particular,

) _ Ouyy  OH' Ouy,  OH' vy, 0
Ougy  Ougy  Oubg Qugy  Ovhy uge
OFE, _ Ouyy  OH' Ouy,  OH' Juyy 0
Ovge  Ovgy  Ouby Ovge Oy Qvgy
0FE, _ vy, OF Quyy  OF vy, _ 0
Ougy  Ougy  Oubg Ougy  Ovhy Quge
0E, _ vy OF Ouyy  OF' Ovyy _ 0
Ovge  Ovgy  Ouby Qvgy  Ovhg Ovgy

and from the lemma 9.1, corollary 9.1, equations (9.29), (9.31), (9.33), (9.35) correspond-
ing to {p =q¢=1} and {p =2, ¢ = 0}, we arrive to the following system:

6 *Qx (
53Qx (

07°Q

OH'
Oty

OH'
ouly
aF’

0 (g
+ (o

ou,
(9F’
ou,

OH'
Iy

QxJ1 +

J:
Qx 2+8§o

J
Qx 1+3§o
oF’
Oy

QxJs + PXJ1> =0,

OH'
QxJs+ PxJo

—QxJs+ PxJy

QxJ3 + PXJ3>



Hence, either (a) Qx = 0, so that Q = Q(t), or (b) Qx # 0, H = —PxQy uh +

Al (ZL’,,

VA R A} / / -1, VAR N AN BN | /
tu v u, V) and F' = —PxQy vh + Ao (2t w0, uly, vy,)-

For case (a) the same analysis applies as for the theorem 9.4.

For case (b) system (9.68) is linear in the second-order derivatives of v’ and v and this

will transform into a system which is also linear in second -order derivatives. Thus

Since

H = Bl(.flf, ta u, v, Uip, UlO)U'QO + BQ(xa tv u, v, ulo, UlO)?

F = Bs(x,t,u, v, u1g, v10)v20 + Ba(x, t,u, v, u10, v10).

oF

=0 'Q Ru(BiQs — Q) =0,
U20

oF

Sk = =07 QL Ru(ByQu — Q1) =0,
V20

OF:

3 2 — —07'Q, ' Su(B1Q, — Q1) =0,
U20

oF

o= 071 5u(BaQe — Q1) = 0,
V20

it follows that B; = Q,'Q;, Bz = Q,'Q;. Next,

0*E

. = _5_2Q2(R2A1 o + ZRUSuAl o + S2Al ror ) = 07
au(Q)l r U v “10v10 W g0
0*E

21 = _672Q2<R3A1 . R QRWSvAl . ngAl ;o ) = 07
(%01 “10%10 “10"10 v10"10
0*E

= 02X (RuR, Ay, ., + (RuSy+ RyS)AL, |, +8uS,Ar, , ) =0.

8u011)01 “10%10 “10"10 Y1010

The solution of this system is:

Ay = Dy(2', ' 0" )y + Da(2f # u v vy + Ds(a, ', u', 0.

Similarly, from equation FEj:

Ay = Dy(2' ' !, 0" )y + Ds(2f, ' 0’ 0" )iy + Dg(a!, ¢, u',0').

Then,

0?E,

= _5_1Ruu = 07
OuqoUo
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0?E,

= _5_1Ruv = 07
Ouy0vo1
O’F
: = _5_1va = 07
Oup1v19
so that

R = H(z,t)u+ Hy(x,t)v + Hs(x,t).
Similarly, from equation Ej:

S = Hy(z,t)u + Hs(x,t)v + Hg(x,t).

Also,
227% - _571(B2u10u10H1 + B4u10u10H2) =0,
%?01 - _5_1(32vlov10 Hy + By, H2) =0,
a(zjilm = —0""(Ba,,,.,, Hi + Bi,,,., H2) =0,
%?02 = _5—1(32u10u10 H, + B4muw Hy) =0,
%?02 = =6 (B, o Ha + B, Hs) =0,
@(Ziglo = —6"(Ba,, ., Ha + B, Hs) = 0.

Since HiHs — HyHy # 0 (otherwise J = 0), from the first and the fourth equations, we

have

=0, =0.

2“10“10 4ulO“lO

Using the second and the fifth equations, we lead to

=0, = 0.

21’10”10 47’10“10

Finally, using the third and the sixth equations,

=0, = 0.

2“10”10 4“10“10

Solving the above system for By and B, we take

By = fi(x,t,u,v)uig + folz, t,u,v)vi0 + f3(x,t,u,v),
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By = fa(z,t,u,v)uig + f5(z, t,u,v)v10 + fo(x, t,u,v).

Solving the system of equations

o0F,
aulo

0F,

Ouqg

and then

oF,
811,01 o

OF,
Oug

=0,

:07

=0,

9B _
Ovyg

9B _ .
(%10

9B _
Ovo

OE,

81)01 o

give the form of fi, fo, f4, f5 and Dy, Dy, D4, Ds, respectively, in term of functions

Hl) HQa H47 HS'

Finally, £; = 0 and E5 = 0 provides a length relation between f3, f¢ and D3, Dg. [

In the following theorem, we relate .y, vy and u),,, vl with lower-order z-derivatives

of u, v and v, v', respectively. That is, we generalize theorem 3.6.

/

Theorem 9.6. (ny,ny, my,mo = 0,1) The point transformations ' = P(x,t,u,v), t' =

Q(z,t,u,v), v = R(x,t,u,v), v = S(x,t, u,v) which transform

Uil = H(l', t,u, v, U, UlO)a

nto

/ ! / / / / !/ /
uy = H'(2' ', 0" uig, vyp),
belongs to one of the two categories:

a) P =

H =

F =

P(z), Q=Q(@),
Al(t)u -+ Ag(t)l) + Bl (ZE, t),

As(t)u + A4(t)v + Bo(z,t),

V11 = F(.CL', t,u, Uauloavlo)

VA /Y S AT N N A /
Ull_F(matauavauloavlo)

Px_th_l(AlH + Ao F' + Ay uip + Ag,v10 + Byy,),

P'Q Y (AsH + AyF + Asuyg + Ay vio + Ba,,);
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b) P = P(t), @=Q(x),

= Ai(z,t)u+ Az, t)v + As(x,t),

S = Ay(x,t)u+ As(z,t)v + Ag(z, 1),

H = (A1As — AyA) (= Ay, As + A Ay )uro + (AgAs, — Ag, As)vig)
+ Dy(z,t,u,v),

F = (A1As — A3Ay) T [(—ALAy, + A A ugg + (AgAg, — ApAs,)vy]
+ Dy(z,t,u,v),

H = Q.'(A1As — AyAy) (A As — Ay Ay + (A1 Ay, — Ay, Ag)vh,)
+ Hy(2' ' 0",

F'o= Qu (A1As — ApAy) (A, As — AgAs, g + (A1 As, — As Ay, vl
+ Ho(x', ¥, 0",

where

Dy = ((A145 — AAy) (AL As + AyAy)) u+ ((A1As — Ay Ay) N (AL As, — A As)) v
— A5 ((A145 — A2A4)_1A3t)w + Ay (4145 — A2A4)_1A6t)m
+ (Aids — AsAy) TN (Az, Ao, — Az, As,) + PiQu(A1As — A2 A)) ™ (AsHy — A2 Hy),
Dy = ((A1As — AsAy) (AL Ay — AtAL)) u+ ((A1As — AgAy) (A Ay — A14;,)) v
— A ((A145 — 142/14)_114@)z + Ay ((A1A5 — A2A4)_1A3t)x
+ (Aids — A Ay)TH( Az Ay, — Ar As,) + PBiQu(A1As — A2 A)) ™ (AvHa — AdHY).
(9.71)
Proof. From the theorem 9.1 with {(p =1, ¢ =1) and (u =1, v = 1)} we have two cases
to consider: (a) P = P(z), Q = Q(t) and (b) P = P(t), Q = Q(z).
For case (a) H' and F’ transforms into functions of x, ¢, u, v, u10, v1p SO we required that

u’; and v}, transforms into functions of the same variables, having replaced ui; and vy;

by H and G, respectively. Hence,

duy, -1
0 =9 (Ruuulo + Ruyv10 + Rux) =0,
Uo1
o’
8:1611 - 5_1(Ruvu10 + vavlo + RWC) = 0’
01
o'
ﬁ = 5_1(Suuu10 + Suvvlo + SUCC) = O’
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!
dvyy

81101 - 6_1(Suvu10 + vavlo + SU"L’) = O’

giving

R = Ai(t)u+ Ay(t)v + B(z,t),

S = Ag(t)u + A4(t>U + B1<I, t)

System (9.69) now transform into system (9.70) with H" and F” as stated in relation

Fo= P:c_th_l(A3H + Ay F + A3tU10 + A4tU10 + Bth)-

In case (b) let By = v}y — H and Ey = v}; — F’ with H and F substituted for u;; and

v11, respectively. Thus F; = 0 and Ey = 0 for the given transformation to exist. Hence,

oF
! = 571(Ruuu01 + RuvU01 + Rut + HuloRu + Fulon) = 07
aulO
oF
— = 671(Ruvu01 + vav[)l + th + HvloRu + Fvlon) = O,
87}10
oF.
2 = 571(5’”““01 + Suvv()l + Sut + HumSu + Fulos'u) = 07
8U10
oF
_2 = 571(51“;“01 + SM)UOI + Svt + Hvlosu + Fvlosv) = 07
8010
giving

and

Also,

R=A(z,t)u+ Ay(x,t)v + As(z,t),

S = Ay(z,t)u+ As(x,t)v + Ag(x, t),

H = <A1A5 — A2A4)71 [(—AltAg, + A2A4t)u10 -+ (A2A5t — AgtAg))’Ulg]
+ Dl(x7tau7/0)a
F = (A1A;5 — 142144)_1 (—A1 Ay, + A1, Augg + (— A1 A5, + Ao, Ay

+ Doz, t,u,v).

oE,
Oug

g <A11 —Q.H, A~ QIH;iOA4> 0,
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0F,
Aoy
0Fs
Ouor
0Fs
vy

so that

=5 <142z - Q:):H;’IOAQ - QtzlywA5> =0,

67 (Ar, = QuFy Ay = Q) Ar) =0,

=67 (As, = QuF As = QuE) As) =0,
H = Q;'(Aids — AsA) 7 (A1, As — Az, Aduy + (A1 As, — Ar, Az)v))
+ H; (IL’/, v, U’),
F' = Q7' (A1As — AyA)  [(—AyAs, + Ay, As)uly + (A1 As, — Ay AV,
+ Hy(2' ¢/ /0.
System (9.69) now transforms into system (9.70) with D; and Dy being determined by
Hy and Hj as (9.71) and the proof of case (b) is complete for ny = ny = m; = my = 1.

When ny = ny = my = my = 0, H, F' and H', F’ contain no derivatives of u, v and

u’, ', respectively and the further restriction A;, ¢ = 1,...,6 must apply. O

9.4.4 System of two equations of the form
Up2 = H(;E, ta U, v,...,Un0, Uml())

In the third class of systems, we restrict to relations of uy and vy with x, t, u, v and
x-derivatives of u and v.

In the following theorem, we give similar result as theorem 3.7.

Theorem 9.7. (ny > 3, my > 3) The point transformation x' = P(x,t,u,v), t' =

Q(z,t,u,v), v = R(x,t,u,v), v' = S(x,t,u,v) transforms

e = H(x,t,u,v,. .. %0, Vmi0), voe = F(x,t,u,v,. .. Upnyo, Umyo) (9.72)
to
!/ ! / / / / / / / / / / / / !/ /
ugy = H' (2", ', 0,0, .oy gomy0 ) Voo = F' (&t W0 0, 0,0)  (9.73)
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= P(z), @=0Q({),
R = Q*(c(@)u+c(@)v) + Bilx,t), S=Q;(cs(x)u+ ca(z)v) + By(z,1),
o= Q7 (e + R - et e (303 - 5Qu)

~ Q(BLQu - BL.Q)). (9.74)
F o= Q" ((C3H + e F)Q? — (csu+ cqv) GQ; - %QmQt)

— QP(BaQu - BQ)). (9.75)

Proof. From theorem 9.1 with (p = ny, ¢ = 0) it follows that Q = Q(t). Relations (9.12)

and (9.14) simplify to u}, = Px'(u]_,o)x and v}y = Py (vi_1y)x, i > 1 respectively, so

it is evident that the transformed w}, and vj,, ¢ > 1, involve no t derivatives of u and v.

Hence, system (9.72) can only be transformed into system (9.73) if g, and v}, do not

give rise to either of terms wq1, ug1, v11, v91. However, lemma 9.1, corollary 9.1 give

8 /
Tlhoz = 25_2PT [(PURU — PURU)Um + PR, — PmRU] =0,
Ouqy
uiy -2
= —25 PT [(PuR'u - PURu)ulo = PCCRU - PURZ'] = 07

Oy
Ovpn -2
—= =20""Pr[(P,S, — P,Sy)vi0 + P,S; — P.S,] =0,
Ouyy
gy -2 =
W =—20 Py [(PuSv X PvSu)ulo + P:):Sv - PUS»’L‘] =0.

11

Therefore, it follows that Pr = 0. So that P = P(z).

Lemma 9.3, now gives

D uy, 0?uf 0?uf

a 2Ruu o2 =V, 02 = 2va 2 =U, 2 - 2Ruv o2 =4,
811,(2)1 Qt 8’081 Qt 8U01U01 Qt
(921}62 0% 2’

=25,,0;2 =0, 92 —929,,Q;2=0, —%2 —925,0;2=0,
du, ¢ o3, t Qo1 Vo1 t

showing that R and S are of the form R = Ay (z,t)u+ As(z, t)v+ Bi(x,t), S = As(z, t)u+

Ay(z,t)v + Bo(x,t). Further

= Qt_3 [2<RuvU01 + Ruuu01 + Rut)Qt - QttRu] 3

a. Qt_g [Q(Ruvu01 + RUUU01 + th)Qt - Qtth] )

103



!
0vpy

) = Qt_3 [2<Suv001 + Suu“Ol + Sut)Qt - Qttsu] )
Uo1

vps
o
so that R and § are of the form R = Q;*(c1(z)u + co(z)v) + By(x,1), S = Q1> (cs(x)u +
ca(x)v) + Ba(z,t). With these form of P, @, R and S system (9.72) is transformed to
system (9.73) and H', F’ are given by relations (9.74) and (9.75). O

= Qt_3 [Q(Suvu01 + va2101 + Svt)Qt - Qttsv] 3

Finally, we give a generalization of theorem 3.8, where u; and vy are related with

x, t, u, v and second-order z-derivatives of u and v.
/

Theorem 9.8. (n; = ny = my = mg = 2) Point transformations ' = P(z,t,u,v), t' =

Q(x,t,u,v), v = R(x,t,u,v), v = S(x,t,u,v) which transform
up2 = H(x,t,u,v,u10, V10, U0, V20), vop = F(7,t,u,v, U0, V10, U0, V20) (9.76)
mto
u62 = Hl(xlv t/7 u/> U’, u/10> 0/107 u,207 Uéo)a U[/)Q N F/<:U/7 tlu u/7 vlv u,107 UIlO? u/20’ Uéo) (9'77)
belongs to one of the three categories:

a) P, Q, R and S restricted as in the conditions for theorem 9.7,

b)  P=P(t), Q=Q();

c)  P=P(t), @=Q(1),
R =ci(z,t)u+ co(z, t)v + c3(z,t), S =cy(x,)u+ cs(x,t)v+ co(x,t),
H' = PiP,Q,Q, g + G2/, )y + Ga(a', )iy + Ga(a', 8, u',0),
F' = PP,Q;'Q, vy + Gu(a!, )y + Gs(2, vy + Ge(2/, 0/, 0,
H = PQ.P, Q gy + Fi(x, t)uig + Fo(w, t)vyg + Fy(z,t,u,v),

F = PQ.P; ' Q,  vag + Fiu(, t)uro + F5(, t)vio + Fo(w, t,u,v).

Proof. The expressions E; = uj, — H' and Ey = v), — ' become an expressions in
x,t,u,v and the derivatives of u and v up to order 2. This expressions (=0) is identified

with system (9.76). That is, if ugy and wvgy are replaced by H and F in F; and FEj,

104



respectively, then the resulting expression is required to be identically zero in terms of

the remaining variables x, t, u, v, w19, V10, Uo1, Vo1, U20, V2o, U11, V11. 1IN particular,

OE, 0B, _ 0B, _,  OE
Oury ’ Ovy o Oupy 7 Ovy

=0,

give
PrPxJ, = QrQx JIH;’m + J3H{,;0> ;

(
PxPrJy = QrQx (J2H;/20 + J4H1/J§0> ;
PrPxJs = QrQx <J1F1:/20 + J3F£§O> ;
PrPyJs = OrQx (JQF;,ZO + J4F;é0> .
More complicated conditions give the following system:

8UQO ’ 3020 ’ (‘3u20 ’ 81)20

OB, 0 % OF; 0 % —0.

These conditions show that all possibilities are included in the three cases:

(a) P=P(z), Q=Q();
()  P=P(), Q@=0Q();
() H' = PxPrQ5' Qp'uby + AL (2 ¥ 0/, v g, v)p),
F' = Px PrQy Qplvy, + Ay(2/, ',/ v/ il vl) (9.78)
and
H = P¢' PrQy' Qruso + Bi(z,t, u, v, uig, v19),
F = Px' PrQx' Qruao + Ba(x,t, u, v, u1, v1p). (9.79)
Case (a) follows exactly as in the proof of theorem 9.7 following the stage at which
P = P(x) and the results here are exactly as in the sole case of that theorem.
In case (c), we have that H', F’ and H, F given by (9.78) and (9.79). H and F are
independent of ug; and vy, so that (9.79) implies that Py 1PTQ;(1 Q7 is independent of ug;
and vo;. It readily follows that P = P(z,t), Q = Q(xz,t). Considering again Fy = uj,—H’

and Fy = v, — F', transformed, with ug2, vg2 replaced by H, F, respectively, we have:

0*F,
OuroUor

= QuQ.(A1, , Ry +2R.S. A, + 834, )02 =0,

Vy Vg
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0,y

- Qt@x(AZ"’zulz R?‘L + 2RuSuA2u/1v,1 + 53A2v§;v9;)5_2 = 0’

Quouor
0*F, ) ) i
= QtQCC(Al /o Rv + 2R1}‘S(11141 ' + SvAl ;o )(5 = O’
a'UIOUOl Yoz Ug Vg v vl
0*E, ) ) i
= QtQI(AZ ’ ol Rv + QRUSUAQ ’ o + SUAQ ;o )(5 = 0’
a'U:LO'UO]_ ] Ug Vg v vl
0*FE 0*FE
- = - = QtQ:v(Al Il RuRv+RuSvA1 / /+RvSuA1 Il _I_SuSvAl 7ol )5_2 = Oa
Qug1v10 Ou10vo1 vt YoV “10%10 VgV
OB,  0%F,

= = QiQ.(As, , RyR,+R,S, Az, , +R,SuAs, , +5,5,A5, )02 =0,
Oug1v10 Ou19vo1 Yo te vt “10v10 Vg

giving
Ay =Gy u 0"y + Ga(a U ! v vy + Gs(a! ' u '),

Ay = Gy, ¢ u/ 0" )l + Gs(2, ¢ u' v vy + Ge(2/, /0, 0").

Now,
*E ’FE
5 =0, -5 =0,
oug, v,
9’E 9’E
S =0, -5 =0,
Ougy Iy
and
0’F ’FE
1 = 07 0 2 _ 0’
o101 Oug1 Vo1
give

R = Dy(z,t)u+ Ds(x,t)v + Dy(z,t), S = Dg¢(z,t)u+ D7(x,t)v+ Dg(x,t).

The relations:

92F, ; -
o, = P,Q; (B, yu,, D2 + Ba,,.,,D3)0 " =0,
%QT?: = P,Q;"(Bi,,,,, D2+ Ba,,, D3)s ' =0,
221?02 = P,Q; " (Bi,,.,, Ds + Ba,,.,,D7)5 ' =0,
%?02 = P,Q; ' (Bi,,,.,, Ds + Ba,,,,,,D7)0 " =0,

106



0?E,

- . -1 _

au10vlo - Pth (Blulovlo D2 + Bz“’lO”lO D3)5 f— O’
L ;! -1 —

aqu’Ulo = Pth (Blulovm D6 + B2u10v10 D7)(5 = O’

where Dy D7 — D3Dg # 0 (otherwise J = 0), give the form of B; and Bs:
Bl = F1(1;7 tu U, U)ul(] + FQ(£7 t7 Uu, U>v10 + F3(:U7 ta u, U)7

By = Fys(z,t,u,v)ug + Fr(x, t,u,v)vi9 + Fs(x,t, u,v).

Finally,
0’FE 0’FE 0’FE 0’FE
150, 150, 150, 150,
o1 U o1V v u Jvg1v
give Glu/ = le, = Ggu, = va, =0 and

2E 2E 2E 2EI
0 2 =0, 0 2 =0, 0 2 =0, 0 2 =,
8u01u 8u01v 8’001u 8’(}01’0

give Gy, = Gy, = G5, = G5, = 0. Similarly,

’E ’E ’E ’E
alEO, 8150, 8150, 8150
8u10u 81/401) 8vlou 81}10@

and
O°FE O’FE O?E 0?E.
2 =0, 2 =, 2 =0, 2 =,
8%10@& 8%101) (%wu aUl()U

give Fy = Fy = F3 = F3 = Iy, = Fy, = Fs, = Fs, = 0 which, completes the proof of

v

case (c) of the theorem. O

9.5 Applications

In this section, as application, we present the form of point transformation which connect
restricted form of system of two PDEs, in which u; and vy is a linear combinations of

Uzy and v,,, respectively.

Theorem 9.9. The point transformation ' = P(x,t,u,v), t' = Q(z,t,u,v), v =

R(z,t,u,v), v = S(z,t,u,v) transforms
uge = g + H(x,t,u,v,u10,v10), Vo2 = Va0 + F(x,t,u,v,u19,v10)
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to

!/ o / ! AT / / !/ / !l / / AT / / / /
Upy = elny + H' (2 1,0/, 0" ug, vyg),  ve = Vi + F' (2, 8/, 0’ v uly, vlg)

if
P
Q
R
S
H/
F/
or
P
Q
R
S
Hl
F/
or
H =
F =

= g7 + c3, g1 = =+1,

= at+cs,

= ¢1(z)u+ ga(w)v + Bi(w, 1),
= ¢3(x)u+ ¢ps(x)v + Bao(z,t),

1
= = (Hpr + Foo — e(Pr,,u + 201, Uy + P2, 0 + 2¢2,v,) + By, —€B1,,),
1

1
= g (H¢3 + F¢4 - E<¢3zmu + 2¢31u$ + ¢4wxv + 2¢4wv1‘) + BQtt > 83211) ?
1

- Clt+ Co,

€101

= —x+cs, g1 = %1,
€
= ¢1(z)u+ ¢a(x)v + Bi(x,t),

= q53(a:)u + ¢4($)U + B2(x7 t)v

£

= g (—H¢1 — F¢2 + €(¢1mu + 2¢1ZU;,; + ¢2mv + 2@2521’095) — Bltt + 5B1M) ,

2
1
£

=z (—Hps — Foy + (s, u+ 2¢3,uy + ¢a,, U+ 2¢4,0,) — By, +€Bs,,),
1

P(z,t), Q=Q(x,1),

d1(2)u + do(z)v + By (x, 1),

d3(z)u + d4(x)v + Bo(z,t),

Q?—;an (Hpy + Fpp — (1, u+ 2¢1,uz + ¢2,,0 + 2¢2,0,) + By, — By, ),
1

Q? gQQ' (Hps + Foou + (¢, u+ 203, Uy + ¢y, 0+ 2¢4,0;) + Bo,, —€Ba,,),
t x

where Qy = €Que and Py = Py,
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9.6 Conclusion

We have drawn attention to form-preserving point transformations. In particular, we
have generalized the results of chapter 3, into systems of two equations. We have studied
three special classes of systems restricted to two independent and dependent variables.

The work of this chapter is the subject of a forthcoming article [60].
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Chapter 10

System of hyperbolic equations

10.1 Introduction

Finally, in this chapter, we consider the system of linear hyperbolic equations. In the spirit
of Ibragimov’s work, who adopted the infinitesimal method for calculating invariants of
families of PDEs using the equivalence groups, we apply the method to system of two
hyperbolic equations. We will show that this system admits five differential invariants of
first order. As applications, we use the semi-invariants to determine systems that can be

transformed into simpler systems.

10.2 Equivalence transformations
In this chapter, we consider the system of linear hyperbolic equations of the form

Ugp = a1 (b, 2)uy 4+ b1 (t, x)ve + 1 (t, x)u + di(t, 2)vy + f1(t, )u + g1(t, ),
Uy = ao(t, )uy + bo(t, 2)vy + co(t, 2)uy + do(t, x)vy + fo(t, 2)u + go(t, x)v.(10.1)
In order to find continuous group of equivalence transformations of a class of system

(10.1) by means of the Lie infinitesimal invariance criterion, we search for the equivalence

operator I' in the following form:

0 0 0 0] 0 0 0 0
r — 9% 29 19 29 v v v
¢ ot & Ox v ou v ov +<H(‘3ut * Cm@um +C2181)t +<22(9vx
+ 1¢ 9 + 2 9 + 3ii + 44 0 + 5¢ 9 + 62’2
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where £, €2, v!, v? depend on ¢, x, u and v, while /%, j =1,...,6, i = 1,2 depend on
t, x, u, v, a;, b;, ¢, d;, fi, g;. The infinitesimals (;, i,k = 1,2 are given by

Cll = Dt(Vl) - utDt(Sl) - 'LLth(§2), Cl? = D:c(yl) - uth(gl) - ua:D:t(fQ)a

621 = Dt(VQ) - UtDt(él) - v:th(£2)a C22 = Dx(V2) - Uth<£1) - U:th(€2)

The operators D, and D, are the total derivatives with respect to ¢ and x, respectively.
By using the same procedure used in the previous chapters, we find that system (10.1)
admits an infinite continuous group & of equivalence transformations generated by Lie

algebra Lg spanned by the operators:

0 0 0 0 0 0 0 0
¢——¢ [ _+d18d +f1 of, +91ag +Cza +d28d +f2 of +926 }
F 7—2_7- ai+ i+fa+ i_|_ i+bi+fa i
ot Ba, U, Thgn T Y50 T2, T gy, T 95, |
0 0 0 0 0 0
¢1U— + (/51ta + ¢1b L5 + b1, e, + ¢1d1 + (¢1,, — P1,01 — P1,01) 3_f1
0 (9 0
—¢1g1— — 2¢1— — ¢1C 2— — (¢p1,62 + P10 + ¢1f2) of,
2
0 0
¢2 — — ¢2b LT ¢2d1 o — (P2, dr + ¢2zbl + $201) 3_91
8 0 0 0 0
+¢26L26 + o, — b, + ¢202 + P2, — o4, + ¢2f2 o7 + (¢2,, — P2,d2 — P2, b2) (9_927
0 0 0 0
¢3U— + ¢3a2 (¢3t P3a1 + P3ba) — + Pp3ca=——
oby Jcy
T (5, — duc +¢d>i+¢fi+<¢  aer — Ga,an — dafi + aga)
3 3C1 302 B 3 Qafl 3t 3:C1 3,01 31 392 901
0
—¢3a2 — ¢3cC 2 — (¢p3,c2 + ¢3,a2 + ¢3f2) 7
0 8 0 0
Ly, = ¢4U% N ¢>4b1a—a1 — ¢4dla—c1 — (Pa,dy + Pu, b1 + Gu01) ot
0 0 0
+ (¢4, + Gaa1 — Pabo) 8_(12 + ¢4bla—b2 + (P4, + Pac1 — ¢ads) 8_02
0 0
+oady — Dds + (@4, — G4,d2 — Pu,bo + Gsf1 — P492) a_fz
0
+¢4gla (10.2)
9o’

where ¢ = ¢(z), 7 =171(t), ¢; = ¢i(t,x), 1 =1,2,3,4, are arbitrary functions.
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10.3 Differential invariants and invariant equations

We consider the problem of finding differential invariants of the system (10.1). Using the

operators (10.2), the invariance criterion I'(J) = 0 gives the six identities

Fk(‘]) =0, k= ¢7 T, ¢1, ¢2’¢37¢4-

Since ¢(x), 7(t), p1(t, x), pa(t, ), ¢3(t, ) and ¢4(t, x) are arbitrary functions, these iden-
tities lead to the trivial solution, J =constant. Hence, the system (10.1) does not admit
differential invariants of order zero.

In order to calculate the differential invariants of order one, we need the first prolon-

gation of the operators (10.2). The first prolongation lead to the invariant criterion

() =0, k=67, 61,6, b5, bu.

Using the fact that ¢(x),7(t), ¢1(t, x), pa(t, ), d3(t, ) and ¢4(t,z) are arbitrary func-
tions, these leads to a system of linear first-order PDEs for J. Without presenting any

calculations, we state that the differential invariants of first order are the following:

I I3 Iy I Ig
L=2 0 =2 =2t =2 =i
1 ]17 2 1127 3 1127 4 ]—12a 5 ]ip
where
L = K5+ K,
_[2 - K1+K4,

Iy = KiK4— KK,

Iy = Ks;Kg— K¢Ky,

Iy = KiKs+ KoKq7+ K3Ke + Ky K,

Iy = KyK3(Ks— Kg)* + KeK7(K, — Ky)? — (KyK7 — K3Kg)?

+ (KoK;+ K3Kg) (K, — Ky)(Ks — Ks),
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and

K1 = ajc; + agdy — ay, + fi,
Ky = aica + agdy — ag, + fo,
K3 =bicr + bady — b1, + 61,
Ky = bicg + bady — b, + go,
K5 = ajc; +bicy — ¢, + fi,
K = azer + bacy — ¢, + fo,
K7 = ardy + bidy — dy, + g1,

Kg = asd; + bady — da, + go.
Furthermore, it can be shown that the quantities
=0, I,=0 I;=0 I,=0 Is=0, Is=0
are invariant equations of system (10.1). That is,
LY (In)lg,im0 = 0.

where k = ¢7T7¢17¢27¢37¢47 m = 17"'76'

Also, the following quantities:
Il7 -[27 -[37 -[4a ]5a ]6

are semi-invariants for the system (10.1).

Also, any three of following quantities:

K1:O, KQZO, K3:O, K4:O

are invariant systems. That is,

Y (k)

K;=0, K]'ZO, Knn=0 = 07

where k = ¢, 7, ¢1, 2, ¢3, 04 and {i,j,m =1,...,4} or {i,j,m =5,...,8}.
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10.4 Applications

In this section we present examples in which we derive systems of the class (10.1) that
can be linked with a known system. Consider the system of hyperbolic equations of the

form

Ugp = a1 (b, 2)uy + b1 (t, )0, + 1 (E, x)u + di(t, 2)vp + f1(t, 2)u + g1(t, ),

Vgt = Qo(t, X) Uy + ba(t, 2) vy + cot, x)us + do(t, )ve + fot, x)u + g2(t, x)v.(10.5)
First of all, we identify the most general form of changes of variables that can be utilized
without loss of linearity and homogeneity of system (10.5) as well as their standard form.

Using the results of chapter 9, to derive the equivalence transformations in the finite form,

we deduce that these changes of variables have the following form:
t'=Q(t), 2'=Px), v =k(x,t)u+ke(z,t)v, v =ks(x,t)u+ ks(z,t)v. (10.6)

Systems (10.5) related by an equivalence transformation (10.6) are said to be equivalent.

(1) We consider the linear system
Uyt = O, Vet = 0. (107)

System (10.7) is a member of the class (10.5). If we set a; = b; = ¢; =d; = f; = g; =
0, ¢ = 1,2 the invariant equations (10.3) are all satisfied. Hence any system of the form
(10.5) that is connected with the linear system (10.7) satisfies the invariant equations.
Consequently, the solution of the system (10.3) will provide necessary conditions for a
system of the form (10.5) to be mapped into (10.7).

It can be shown that system (10.5) can be mapped into (10.7) by transformation (10.6)

providing the following 12 identities are satisfying:

ki, + airk; + ask; =0,
ki, + bik; + bok; = 0,
ki, + cik; + cok; = 0,
k;, 4+ dik; 4+ dok; = 0,
Kiy. + fiki + fok; = 0,

ijt + glk‘i + ggl{?j = 0,
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where {i =1, j =2} and {i = 3, j =4} and kq, ko, k3, k4 are arbitrary functions. These
identities lead K; =0, i =1,...,8.
Hence we have proved that invariant equations provided necessary and sufficient con-

ditions for linking system of the form (10.5) and the linear system (10.7).

Example 10.1. The transformation

/ / / !/
r=x t =t u =uxtu, vV =xu-+tv

maps

/ /
ux’t’ - 0, U{E’t’ - O

into
1 1 1
Upt = —7TUp — — U — —U,
t T xt
T 1 1
Vot = plle — Sl + 2 - (10.8)

Hence the general solution of system (10.8) is

fi(@) + 9, (1) fx) + (1) filz) +9:(t)

Uy=—""7">= 0v=
xt t 2

(2) Now we consider the linear system

Uzt +u =0,
vgr +v = 0. (10.9)

The system of the form (10.5) can be mapped into system (10.9), by the point transfor-
mation (10.6) providing the following 12 identities are satisfying:

ki, + airk; + ask; = 0,
ki, + bik; + bok; = 0,
ki, +cik; + c2k; = 0,
k;, + dik; + dok; = 0,
ki,, + PpQik; + fik; + fok; = 0,

kj,, + PrQikj + g1k + g2k = 0,
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where {i =1, j =2} and {i = 3, j =4} and kq, ko, k3, k4 are arbitrary functions. These

identities lead to the following results:

Ki=Ky=Ks=Kg=—FP,Qy, Ky=Kz=Kg=K;=0.

It can be shown that the system of the form (10.5) can be mapped into system (10.9),

if and only if

I =L, =—2H(2)G(t), I3=1,=1I5=H*(2)G*(t),

Example 10.2. The transformation
=a, t'=t v =u+zv, V=10t

maps

!/ / / /
ul’/t/ ‘I‘ u = 0, ,Ua:/tl + v = 0

into
T L 1
Uy = —Vp— U+ —0,
! t t
1 1 " 1
Vgt = ——Ugp— —UVp — — | .
! t T K tx

(3) Now, we consider the linear system

uxt+U:O7

Vg +u = 0.

[620.

(10.10)

(10.11)

The system of the form (10.5) can be mapped into system (10.11), by the point transfor-

mation (10.6) providing the following 12 identities are satisfying:

ki, + a1k + agks = 0,
ko, + biky + boky = 0,
k1, + c1ky + coko = 0,
ko, + diky 4 doko = 0,
ki, + PeQiks + fiky + foky = 0,

ka + Pthk4 + gﬂﬁ + 92/{?2 =0
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and

ks, + a1ks + axks = 0,
k4, + biks + boky = 0,
ks, + c1ks 4 coky = 0,
ks, + diks + doky = 0,
ks, + PoQiky + fiks + faks =0,

ka,, + PoQko + g1ks + goks = 0,

where ki, ko, k3, k4 are arbitrary functions.

It can be shown that the system of the form (10.5) can be mapped into system (10.11),

if and only if

L=1L=0, I=1I=1I=—-H(z)G*t), Is=0.
Example 10.3. The transformation

=x, t'=t, U =tu UV =azu+atv
maps

!/ / / /
ux’t’ + v = O7 /let’ + u = O

into

1 T

Uyt = ——Ug— —U— TV,
t t

1 1 1 1 N x2 —t? N 2 —1
Vgt = —=Up — —Vy — —Up — —V U v.
! 12 t te ozt 2z tx
(4) System

Ugt = al(t7 ‘T)um + Cl(ta x)ut + fl(tv ZE)U,

Vgt = bo(t, 2)v, + dao(t, x)vp + g2(t, x)v

is factorable, viz. the differential operators of the second order

Liy=DDy, —aD, — 1Dy — fi, Lo= DDy —byDy —doDy — go
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can be expressed as a product of two operators of the first order if and only if the semi-

invariants vanishes. Namely,

Ly = [D, 4+ my(x,t)|[Dy + ma(x, t)],

iff fy= Iy =I5 = Is = 0, (10.14)
Ly = [D, + ms(x,t)][Dy + ma(x,t)]
Ly = [Dy + my(z,t)][ Dy + ma(x, t)],
iff I, =1,=1s=0, (10.15)
Ly = [Dy + mg(z,t)][Dy + ma(x,t)]
Ly = [Dy + my (2, t)][Dy + ma(x, t)],
Ly = [D, + ms(x,t)][Dy + ma(x,t)] (10.16)
or 1ff]3:]4:]6:0
Ly = [Dy 4+ my(x,t)|[Dy + mao(zx, t)],
Ly = [Dy + mg(x,t)][ Dy + ma(x, t)] (10.17)

The proof of the both statements (10.14) and (10.15) are similar, therefore let us prove
only one of them, e.g. (10.14). Let

Ly = D, + my(x,t)][Dy + mao(z,t)]
and
Ly = [Dy + ms(z,t)][ Dy + ma(z,1)].

If we compare this operators with the linear system (10.5), the coefficients of L; and Lo

have the form

ay = —My, bl = O, C1 = —my, d1 == 0, f1 = —Mo, —M1Ma, g1 = 0
and

a9 — 07 b2 = —My, Cy = O, dQ = —ms, f2 = 07 go = —m4$ — 3Ny,

respectively. Therefore the semi-invariants Iy, I3, I5, Ig vanish.
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Conversely, if

and solve this system for f; and g9, we arrive to the following form of f; and gs:
fi=a1, —aic1, ga = by, — bads.

Hence, L, and Ly are factorable
Ly=DD, —aD, — 1Dy — a1, + arc1 = [Dy — 1] [Dy — a4,

L2 = DtDm — szI — d2Dt - bzz + b2d2 = [Dz — dg] {Dt — bg] .

Also, the proof of the both statements (10.16) and (10.17) arise together. Let
{Ly = [D; +mq(x,t)][Dy + ma(z,t)] and Lo = [D, + ms(z,t)|[Dy + ma(z,t)]}
or
{Ly = [Dy +my(x,t)][Dy + ma(x,t)] and Ly = [Dy +mg(x,t)][Dy + ma(z,1)]}.

If we compare these operators with the linear system (10.5), the coefficients of L; and Lo

have the form

{a1 = —my, by =0, ¢, = —mg, dy =0, fi = —my, —mymy, g1 =0}
and

{ag =0, by=—my, c2=0, do=—m3, fo=0, go=—my, —mzmy},
or

{ar=—mg, by =0, c1=-my, di=0, fi=-my, —mimy, ¢ =0}
and

{ag =0, by=—m3, co2=0, dy=—my, fo=0, go=—my, —mzmy},

respectively. In the both cases, the semi-invariants I3, I4, Ig vanish.
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Conversely, if I3 =0, I, =0, I = 0, and solve this system for f; and g, we arrive to

the following forms of f; and gs:
fi=ca, —aicr, g2 = by, — bady
or
fi=a1, —aic1, g2 = dy, — bads.
For the first solution of the system, L; and Ly are factorable as:
Ly=DD, —ayD, — 1Dy — ¢1, + arc1 = [Dy — a1 [Dy — 1],
Ly = D,D, —byD, — dyDy — by, + body = [D, — da] [Dy — by] .
For the second solution of the system, L, and L, are factorable as
Ly=DD,—aaD, — 1Dy — ay, + arc1 = [Dy — 1] [Dy — a4,
Ly = DD, — byD, — dyD;y — ds, + bady = [Dy — bs] [D, — ds] .
For illustration, we consider the following examples.

Example 10.4. We consider the following system:
r—1 x
Uy = TU, + — ut—<t—2—|—x—t)u,
t t
Vgt = (—) Vg + TV — (—2 + t) v. (10.18)
x x

This system is a member of the class of system (10.13). Comparing system (10.18) with

(10.13), we have the following forms of coefficients:

r—t T
alzta 1 = n ) f1:_<t_2+x_t>a

t t
bQI—, d2:$, g2:—<—2+t>
T X

The semi-invariants (10.4) are
Ii=0, I, =0, I;=0.

Hence, the system (10.18) is factorable. It is easy to show that system (10.18) is written

in the following form:
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Example 10.5. We consider the system:

Uy = Tty — tuy + (¢ + 2t%)u,

Vgt = — 0, + 20, + (1 — 2%)0. (10.19)

Comparing the system (10.19) with system (10.13), we have that:
ay =at, ¢y =—t, fi=t(1+2?),

bQI—CC, dgzl', ggzl—l’z.
Its semi-invariants I, I3, I5, Is are vanish. Hence the system (10.19) is factorable and

can be written in the form:

D, +t][Dy — atju =0,
D, — ] [Dy + x]v = 0.

Example 10.6. Now, we consider the following system:

tr — 1 tr +1 t?x? —tr —1
Upp = Uy — U+ | ——— | u,
t T tx

t+1 t+1
Vgt = — (%) v + U + (x( :_ )> . (10.20)
The system (10.20) is also a member of system (10.13) with coefficients:
tr — 1 tr +1 t22? —tr — 1
al = - 9 cl = Y f]. = - .
t z tx

t+1 r(t+1
bQ:T’ dy =, go= (t )

Substituting these coefficients into semi-invariants (10.4) we arrive

L,=0, I, =0, Is=0.

Therefore, the system (10.20) is factorable. It is straightforward to show that system

(10.20) takes the following form:

tr —1 t 1
-2 o 5
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Example 10.7. Finally, we consider the following system:

oz t—2 20 t—2
Uyt = —t—2um—i— T U/t+ t_3+ t2 u,

tr —1
Vgt = ( t . ) Uy + tog + (2 — ta)v. (10.21)

The system (10.21) has the form (10.13) with coefficients:

x t—2 f 20 t—2
a1 = —— C1 = = —
1 t27 1 T ) 1 t3 t2 )
tr — 1
b2: T dQIt, 92:2—tl’

Then the semi-invariants I3, Iy, I vanish. Therefore, the system (10.21) is factorable

and is given by:

{Dt—mt_l} D, —t]v =

10.5 Conclusion

In this chapter, we work on invariants for systems of hyperbolic equations. We have
shown that the class of systems (10.1) has no differential invariants of order zero. We
determined five independent differential invariants of first order. Also, we have derived
invariant equations and two invariant systems for (10.1). Motivated by the applications
of Laplace invariants, we use the forms of the semi-invariants to classify those systems
of hyperbolic equations that can be mapped into simple linear systems. We used these
results to construct some examples.

The work of this chapter is the subject of a forthcoming article [61].
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Chapter 11

Final remarks

Recently, Ibragimov developed a systematic method for determining invariants of families
of equations. This method is based on the infinitesimal approach and is applicable to
algebraic and differential equations possessing finite or infinite equivalence groups. The
method was applied to a number of ordinary and partial differential equations.

The present thesis is aimed at discussing the main principles of the method and its
applications to more general hyperbolic equations. In particular, we apply it to non-linear
hyperbolic equations and two subclasses of it, to n-dimensional hyperbolic equations, to n-
dimensional wave-type equations and to system of two hyperbolic equations. Also, known
identities are presented relating arbitrary order partial derivatives of u(z,t) and u'(2',t")
for the general point transformation =’ = P(z,t,u),t' = Q(z,t,u), v' = R(x,t,u). These
identities are used to study the nature of those point transformations which preserve the
general form of wide class of 1+1 PDEs. These results are generalized to system of two
equations.

The work here opens the way on certain other problems that can be considered in the
near future. For example, the work on differential invariants for hyperbolic equation of

general class
Uz = [, u, uy, uy) (11.1)

is incomplete. We can use invariant differentiation to construct a basis for the invariants
in the same way as Ibragimov did for the linear hyperbolic equation (see [20]).

Another problem is to find equivalence transformations and differential invariants for
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the following general class of equations:
Uyt = f(xa L, u, uy, uac)uxx + g(xa i, u, ug, ux)

Further study, along the lines of the chapter 3, of a single equation with more than

two independent variables, can be carried out.
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