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Abstract

Group analysis of differential equations, was originally developed by the Norwegian math-

ematician Marious Sophus Lie in the latter part of 19th century [44, 45]. Lie formally

defined and initiated the mathematical study of continuous groups of transformations,

now known as Lie groups, and showed that the order of an ordinary differential equation

(ODE) can be reduced by one if it is invariant under a one-parameter Lie group of point

transformations.

Following the work of Lie, Ovsiannikov in the late 1950’s and 1960’s and Bluman in

the late 1960’s and 1970’s developed a major revival of interest in symmetry methods for

differential equations. With the publications of the texts of Ovsiannikov [55], Olver [53],

and Bluman and Kumei [10], there are now several comprehensive accounts of the basic

theory as well as more recent applications and generalizations.

Perhaps the most powerful tools currently available in the area of nonlinear partial

differential equations (PDEs) are transformation methods. While there is no existing

general theory for solving such equations, many cases have yielded to appropriate changes

of variables. Point transformations are the ones which are mostly used. These are trans-

formations in the space of the dependent and independent variables of a PDE. Probably

the most useful point transformations of PDE’s are those which form a continuous Lie

group of transformations which leave the equation invariant.

The classical method of finding Lie symmetries is first to find the infinitesimal trans-

formations and with the benefit of linearization to extend these to groups of finite

transformations. This method is easy to apply and well-established in the last few

years [10, 12, 28, 29, 35]. Symmetries of a PDE can enable new solutions to be found

directly using known solutions or via similarity solutions. The similarity solutions arise

from transformations which yield invariants that allow one to obtain solutions through
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reducing the number of independent variables of a PDE by at least one.

Lie [45] was the first to study the complete group classification of (1 + 1)-dimensional

linear parabolic equations (i.e., the complete description of their Lie symmetries up to the

equivalence relation generated by the corresponding equivalence group). This was done

as a part of the more general group classification of linear second-order partial differential

equations in two independent variables. A modern treatment of the subject is given by

Ovsiannikov [55]. There exist also a number of recent papers partially rediscovering the

classical results of Lie and Ovsiannikov.

The idea of group classification of nonlinear equations was introduced by Ovsiannikov

[56] who studied the Lie symmetries of the well known nonlinear diffusion equation

ut = [D(u)ux]x. Since then similar problems have been considered. For example, the

problem of group classification of diffusion-convection equation was considered by many

authors [24,39,54,60,74]. In [67] a group classification of the variable coefficient diffusion

equation was carried out and in [60] the Lie symmetries of variable coefficient diffusion-

convection equations were classified.

A new class of symmetries, nonlocal symmetries was also introduced by Bluman and

al. [10, 11]. The method for finding these nonlocal symmetries, called potential symme-

tries, is first to write the system in conserved form and by introducing new variables,

the potentials, to find the infinitesimal generators of local symmetries admitted by the

auxiliary system of PDEs. The extension of local symmetries to potential symmetries

widens the applicability of symmetry methods to the construction of solutions of ordinary

and partial differential equations.

This thesis is organized as follows. In chapter 2 we present the theoretical background

needed for the subsequent chapters and in chapter 3 we present the known results of the

(1+1)-dimensional diffusion-convection equation. Following the idea of group classifica-

tion for nonlinear equations we present in chapters 4 and 5, a complete group classification

of the (2+1) and the (3+1) nonlinear diffusion-convection equations respectively. Another

problem considered in chapter 6, is the classification of a class of systems of diffusion

equations. Also, the method for finding a new class of symmetries, potential symmetries,

is applied in chapter 7. Finally, in chapter 8 we suggest certain problems that can be

considered in the future.
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$��#) Ovsiannikov ����,���4 ���:��/=<�>=$+�#68/G$!% �?68-#����/=$+�!4 /3� Lie $+�#��,��!<�gy��)C576�$+;#�����+`k���+�#����% &�;#�
/3.!4 6�5768�#�e$+�#�f2!% *#@D-#68�#�

ut = [D(u)ux]x .

r�,��h$+��$+/E,��#�+������% ��,��+����<�;#����$��[>3@D��-#)� "/=57�+�! "/�4�c]�s% �[,��#�+*#2+/�% ������'#��/P$+�#)($��#.!% )+�����#68�[����*#2C57)
$+�#�

ut = [D(u)ux]x +K(u)ux,

>3@D��-#)0�#68@D�!<��! "/�4K,��!<#<���4O68-��D���+�#JK/�4 � [24, 39, 54, 60, 74]. oP,�4 68�#�i6�$�� [67] ,��#�+��-#6K% *#S+/=$���%"�
$��#.!% )+�����#68�L$+�#�h/3.!4 6�5768�#�

f(x)ut = [g(x)D(u)ux]x ,

&���%86�$�� [60] $��#.!% )+������g#)C$���%8��%K68-#����/=$+�!4 /3� Lie $+�#�
f(x)ut = [g(x)D(u)ux]x +K(u)ux.
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&���% (3+1) ���+`k���+�#����% &�;#�1/3.!4 6�5768�#�(2!% *#@D-#68�#�7$+�#�7 "/3�+����$+��$��#�7&���$��#6�&�/3-#*#S+�#)C$��#�1/�% 2!% &�>3��<�g#68/�% �
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q��#�+��-#6K% *#S+��-#��/I/=,�4 68�#�i$��#.!% )+�����#68�F�8% �G68-#6�$+;#����$��9/3.!% 6�A768/=57)0$+�#�i2!% *#@D-#68�#�!'K���!4 6�&��#)C$��#�

$!% �h68-#����/=$+�!4 /3� Lie &��! KA7�e&���%���% �L)+>3�i$+*#.+�i���+`k$���,�% &�A7)I68-#����/=$+�!% A7)�'���)C576�$+>3��57�h68-#����/=$+�!4 /3�
2+-#)+�#��% &���g�cE�s% �j$+�[��>_ "��2+�e/3g#�+/368�#�P�#-�$CA7)($357)����+`k$���,�% &�A7)t68-#����/=$+�!% A7)�'!�[��,���4 �[,��#�+��-#6K% *#6�$+�+`
&�/���,��L$��#) Bluman [10,11], ,��CAP$��I$��068g#6�$+�#���b@D�+/�4 �#S+/=$���%D)+�I���+�#J8$+/�4D68/j�����+JK;L2!% ��$+;#�+�#68�#�
&���%�6�$+�h68-#)+>3@D/�% �f��/1$+�#)[/�% 68���D5P��;f��% �#�t)+>3�#�t��/=$��+��<���$+;#�!'#$+�#����/=$��+��<���$+;#��2+-#)+�#��% &���g�'�)+�����+/a`
 "��g#)[��%���,�/�% �+��6�$���4���/3)+)+;�$����+/3��$���-������! "��$!% &���-h68-#6�$+;#����$����(��,��id?nHoT,���-f2+�#��% ��-#�C��/�4 $���%�c z
/=,�>=&�$��#68�9$357)L$���,�% &�A7)968-#����/=$+�!% A7)L6�$!% �I68-#����/=$+�!4 /3�I2+-#)+�#��% &���gG2!% /3-#�+g#)+/�%K$+�#)H/3JK�#�+���!��;9$357)
��/_ "��2C57)I68-#����/=$+�!% A7)I6�$+�#)I/3g#�+/368�i<�g#68/=57)b�8% �068-#)+;! "/�% �e&���%8��/3�!% &�>3�b2!% �#JK���!% &�>3�b/3.!% 6�A768/�% �!c
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Chapter 1

Introduction

Group analysis furnishes a universal and effective method for analytical investigations of

nonlinear mathematical models in physics, mathematical biology and engineering sciences.

It was Lie, the Norwegian mathematician, who discovered that symmetries of differential

equations can be found and exploited systematically [44,45]. Although Lie’s methods for

determining and using symmetries for many years were largely neglected, fairly recently

with the advent of powerful computation packages it has become possible to apply Lie’s

method to explore the symmetries of a wide range of physical systems.

Lie group methods are perhaps the most powerful currently available in finding exact

solutions of nonlinear partial differential equations. Probably the most useful method is

the application of Lie point transformations which are those that form a continuous Lie

group of transformations, that leave the PDE invariant. Symmetries of this PDE are then

revealed, perhaps enabling new solutions to be found directly or via similarity reductions.

The idea of group classification of nonlinear equations was introduced by Ovsiannikov

[56] who studied the Lie symmetries of the well known nonlinear diffusion equation

ut = [D(u)ux]x .

Since then similar problems have been considered. For example, many authors [24,39,54,

60, 74] studied the problem of group classification of diffusion-convection equation

ut = [D(u)ux]x +K(u)ux.

Also, in [67] a group classification of the variable coefficient diffusion equation

f(u)ut = [g(x)D(u)ux]x ,

1
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was carried out and in [60] the Lie symmetries of

f(x)ut = [g(x)D(u)ux]x +K(u)ux,

were classified. The Lie symmetries of many other physically important systems have

been classified, the first two volumes of a handbook of symmetry analysis edited by

Ibragimov [33, 34] are excellent sources for such classifications.

In this thesis following the idea of group classification for nonlinear equations we present

in chapter 4 a complete group classification of the (2+1) nonlinear diffusion-convection

equations

ut = (D(u)ux)x + (F (u)uy)y +K(u)ux,

and in chapter 5 the (3+1) nonlinear diffusion-convection equations

ut = (D(u)ux)x + (F (u)uy)y + (G(u)uz)z +K(u)ux.

The method for doing this is first to find the infinitesimal transformations and with the

benefit of linearization to extend these to groups of finite transformations. Using then the

derived Lie symmetries we construct similarity reductions and exact solutions of certain

equations.

Another problem considered in this thesis in chapter 6, is the classification of a class

of systems of diffusion equations of the form

∂u

∂t
=
∂

∂x

[

f(u, v)
∂u

∂x

]

, (1.1)

∂v

∂t
=
∂

∂x

[

g(u, v)
∂v

∂x

]

.

We apply also in chapter 7, the method for finding a new class of symmetries for systems

of diffusion equation of the form (1.1). Bluman and al. [10, 11] introduced this method

for a system of PDEs ∆(x, u) in the case when at least one of the PDEs can be written in

conserved form. If we introduce potential variables v for the equations written in conserved

forms as further unknown functions, we obtain a system Z(x, u, v). Any Lie symmetry for

Z(x, u, v) induces a symmetry ∆(x, u). When at least one of the infinitesimals correspond

to the variables x and u depends explicitly on potentials, then the local symmetry of

Z(x, u, v) induces a nonlocal symmetry of ∆(x, u). These nonlocal symmetries are called

potential symmetries.
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As a final application of symmetry methods we use infinite-dimensional potential sym-

metries of (1.1) to derive linearizing mappings.

All calculations have been greatly facilitated by the computer algebraic package RE-

DUCE [30].
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Chapter 2

Lie Groups of Transformations

Before developing the theory of group classification, we first give the necessary theoretical

background needed for the subsequent chapters. Analytically we define the Lie groups of

transformations, the infinitesimal transformations, we examine when a PDE is invariant

under the infinitesimal transformations and how with the use of Lie symmetries we con-

struct the similarity solutions. We also define the potential symmetries and we present

an example of invertible mappings and an example of equivalence transformation.

2.1 Groups

Definition 2.1. A group is a set G with a binary operation ∗ : G×G→ G satisfying the

following axioms:

(i) Closure property: For any element g and h of G, g ∗ h is an element of G.

(ii) Associative property: For any elements g, h and k of G

g ∗ (h ∗ k) = (g ∗ h) ∗ k.

(iii) Identity element: There exists a unique identity element e of G such that for any

element g of G

e ∗ g = g ∗ e = g.

(iv) Inverse element: For any element g of G there exists a unique inverse element g−1

in G such that

g−1 ∗ g = g ∗ g−1 = e.
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2.2 Groups of Transformations

Here and below we assume that all constants to be smooth.

With the term transformation of the space, we mean a function T : R3 → R3 which is

defined by:

x′ = ψ(x, t, u),

t′ = φ(x, t, u), (2.1)

u′ = ω(x, t, u),

where ψ, φ and ω are known functions.

Geometrically, T transforms the point (x, t, u) to another point (x′, t′, u′) at the same

plane of coordinates.

If the equations that define the transformation T can be solved in terms of x, t, u, then

the transformation that appears is the inverse transformation T−1 which is defined by:

x = Ψ(x′, t′, u′),

t = Φ(x′, t′, u′),

u = Ω(x′, t′, u′).

From the composition of those two transformations we obtain the identity transformation

which is defined by:

x′ = x,

t′ = t,

u′ = u.

Now we consider the transformations where the functions ψ, φ and ω in the equations

(2.1) depend on a real parameter, ε. The parameter ε continuously changes in an open

interval such that | ε |< ε0. Then the whole of transformations compose the family

transformation Tε which is defined by:

x′ = ψ(x, t, u, ε),

t′ = φ(x, t, u, ε), (2.2)

u′ = ω(x, t, u, ε),

where ψ, φ, and ω, are analytic functions.
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Definition 2.2. A group of transformations of the form (2.2) defines a one-parameter

Lie group of transformations if the following axioms are satisfied:

(i) T0 = I (Tε0 = I) (existence of the identity)

(ii) T−1
ε = Tε−1 (existence of the inverse element)

(iii) Tγ(TδTε) = (TγTδ)Tε (associativity of a group multiplication)

(iv) TδTε = Tφ(ε,δ) (closure)

Every value of parameter ε corresponds to a special part of the family transformations.

The transformations Tε belongs to the one-parameter family group of transformations.

Below we present some examples of one-parameter Lie Groups of transformations.

Example 2.1. Group of Translations

The group of translations is given by

x′ = x,

t′ = t+ ε,

u′ = u,

where ε0 = 0, ε−1 = −ε and φ(ε, δ) = ε + δ.

Example 2.2. Group of Rotations

The group of rotations is given by

x′ = x cos ε− t sin ε,

t′ = x sin ε + t cos ε,

u′ = u,

where ε0 = 0, ε−1 = −ε and φ(ε, δ) = ε + δ. These transformations describe the rotation

of a point in the xt plane by an angle ε.

Example 2.3. Group of Scalings

A group of scalings is given by

x′ = εx,

t′ = ε2t,

u′ = u,

where ε0 = 1, ε−1 = 1/ε and φ(ε, δ) = εδ.
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2.3 Infinitesimal Transformations

We consider the one-parameter group of transformations Tε with identity ε = 0. Then

we can expand into Taylor series every right part of the equations that define the one-

parameter group of transformations Tε in the neighborhood of ε = 0. So,

x′ = x+ εX(x, t, u) +O(ε2),

t′ = t+ εT (x, t, u) +O(ε2), (2.3)

u′ = u+ εU(x, t, u) +O(ε2),

where X = ∂ψ
∂ε
|ε=0, T = ∂φ

∂ε
|ε=0 and U = ∂ω

∂ε
|ε=0.

The first order transformation is known as infinitesimal transformation and X, T, U

are called the infinitesimals of the transformation.

By knowing the infinitesimals X, T, U of the transformation, we can find the Lie group

of transformations of the form (2.2) by solving the following system of first order diffe-

rential equations

dx′

dε
= X(x′, t′, u′),

dt′

dε
= T (x′, t′, u′), (2.4)

du′

dε
= U(x′, t′, u′),

with initial conditions

x′ = x, t′ = t, u′ = u, when ε = 0.

The linear differential operator

Γ = X
∂

∂x
+ T

∂

∂t
+ U

∂

∂u
, (2.5)

is called the infinitesimal generator of the infinitesimal transformation.

Example 2.4. We consider the rotation group

x′ = x cos ε− t sin ε,

t′ = x sin ε + t cos ε,

u′ = u.
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Hence, the system (2.4) has the following form

dx′

dε
= −x′ sin ε− t′ cos ε,

dt′

dε
= x′ cos ε− t′ sin ε,

du′

dε
= 0,

with initial conditions

x′ = x, t′ = t, u′ = u, when ε = 0.

The infinitesimals for the rotation group are

dx′

dε

∣

∣

∣

∣

ε=0

= (−x′ sin ε− t′ cos ε)|ε=0 = −t′,

dt′

dε

∣

∣

∣

∣

ε=0

= (x′ cos ε− t′ sin ε)|ε=0 = x′,

du′

dε

∣

∣

∣

∣

ε=0

= 0.

So, the infinitesimal generator is

Γ = −t ∂
∂x

+ x
∂

∂t
.

2.4 Invariant Functions

An infinitely differentiable function F (x′, t′, u′) is an invariant function of the Lie group

of transformations (2.3) if and only if for any group of transformations of the form (2.3)

F (x′, t′, u′) = F (x, t, u).

Theorem 2.1. A function F (x′, t′, u′) is invariant if and only if is the solution of the

PDE

ΓF (x′, t′, u′) = 0,

where Γ is defined by equation (2.5).

The proof of the theorem can be found in [10].
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Example 2.5. As we have seen above, a function F (x′, t′, u′) is invariant if and only if

ΓF (x′, t′, u′) = 0.

So, for the group of rotations a function F (x′, t′, u′) is invariant if and only if

ΓF = −t∂F
∂x

+ x
∂F

∂t
= 0. (2.6)

Equation (2.6) is a first order linear partial differential equation which can be solved by

the method of characteristics. That is,

dx

−t =
dt

x
=

du

0
,

from which we deduce that

F = Φ(x2 + t2).

Hence, any function of the form Φ(x2 + t2) remains invariant under the rotation group.

2.5 Invariant PDEs

In this section we will examine when a second order (1+1)-dimensional PDE is invariant

under the transformation of the form (2.3). So we need to know how the derivatives are

transformed.

We define the extended infinitesimal transformation:

u′x′ = ux + εUx(x, t, u, ux, ut) +O(ε2),

u′t′ = ut + εU t(x, t, u, ux, ut) +O(ε2),

u′x′x′ = uxx + εUxx(x, t, u, ux, ut, uxx, uxt, utt) +O(ε2),

u′x′t′ = uxt + εUxt(x, t, u, ux, ut, uxx, uxt, utt) +O(ε2),

u′t′t′ = utt + εU tt(x, t, u, ux, ut, uxx, uxt, utt) +O(ε2),

with the prolongation formula:

Ux = Dx(U) − uxDx(X) − utDx(T ), . . .

(2.7)

Uxx = Dx(U
x) − uxxDx(X) − uxtDt(T ), . . .
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and similarly for the others. Here Dx and Dt are the total derivatives with respect to x

and t, respectively.

The extended infinitesimal generators are defined by:

Γ(1) = Γ + Ux ∂

∂ux
+ U t ∂

∂ut
,

Γ(2) = Γ(1) + Uxx ∂

∂uxx
+ Uxt ∂

∂uxt
+ U tt ∂

∂utt
.

A transformation is said to be symmetry of a second order PDE

E(x, t, u, ux, ut, uxx, uxt, utt) = 0,

if the PDE has the same form in the new variables x′, t′, u′. That is,

E(x′, t′, u′, u′x′, u
′
t′, u

′
x′x′ , u

′
x′t′ , u

′
t′t′) = 0.

The PDE E = 0 admits a symmetry of the infinitesimal transformation if and only if

Γ(2)E|E=0 = 0. (2.8)

Equation (2.8) is a polynomial in ux, ut, uxx, uxt, utt. We impose the condition that (2.8)

is an identity in seven variables of x, t, u, ux, ut, uxx, uxt, utt, since one can be eliminated

using equations E = 0. Equating coefficients of these variables leads to an over-determined

system of differential equations for the functions X(x, t, u), T (x, t, u) and U(x, t, u). Its

solution defines the Lie symmetries of the under-examined PDE.

In the case of a single evolution equation of the form ut = H, where H is a function of

x, t, u and derivatives of u with respect to x, it can be shown that T = T (t) [40, 72]. We

generalize this result for systems of evolution equations.

Theorem 2.2. For the infinitesimal invariant transformation

x∗ = x + εX(x, t, u, v),

t∗ = t+ εT (x, t, u, v), (2.9)

u∗ = u+ εU(x, t, u, v),

v∗ = v + εV (x, t, u, v),
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with x, t be the independent variables and u, v the dependent variables of the following

system of PDE’s

ut = H1(x, t, u, v, ui, vj), (2.10)

vt = H2(x, t, u, v, ui, vj),

(ui, vj are the x derivatives of u and v, respectively, i = 1, ...n, j = 1, ..., m with

n ≥ m > 1 ) where H2
1un

+H2
1vn

+H2
2un

+H2
2vn

6= 0, it follows that T = T (t).

Proof. The system of PDE’s (2.10) admits infinitesimal generator of the form

X = X(x, t, u, v)
∂

∂x
+ T (x, t, u, v)

∂

∂t
+ U(x, t, u, v)

∂

∂u
+ V (x, t, u, v)

∂

∂v
,

with nth extension

X(n) = X
∂

∂x
+ T

∂

∂t
+ U

∂

∂u
+ V

∂

∂v
+

n
∑

i=1

U i ∂

∂ui
+

m
∑

j=1

V j ∂

∂vj
, m ≤ n

if and only if

X(n)(ut −H1) = 0,

X(n)(vt −H2) = 0.

The nth extended infinitesimals U (n) is given by

U (n) = Dx(U
n−1) − unDx(X) − un−1,tDx(T ).

Taking coefficients of un−1,t that occurs from the total derivatives Dx(U
n−1) and Dx(T )

we get

nH1un(Tuu1 + Tvv1 + Tx) = 0,

that is

Tu = Tv = Tx = 0.

Hence,

T = T (t).
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Furthermore, if the right hand side of an evolution equation is a polynomial in the pure

derivatives with respect to x then X = X(x, t) [41]. This result is generalized for system

of evolution equations.

Theorem 2.3. For the infinitesimal transformations (2.9) of the system of PDEs (2.10)

where ui, vj are the x derivatives of u and v respectively, i = 1, ...n, j = 1, ..., m with

n ≥ m > 1 and H2
1un

+H2
1vn

+H2
2un

+H2
2vn

6= 0, if H1 and H2 are polynomial in the pure

derivatives with respect to x, it follows that X = X(x, t) [71].

2.6 Similarity Transformations

The similarity solutions that arise from transformations which yield invariants, allow one

to obtain solutions through reducing the number of independent variables of a PDE by

at least one. For example, a PDE with two independent variables can be reduced into

an ordinary differential equation (ODE). The similarity transformations are constructed

from the solution of the invariant surface condition

Xux + Tut = U. (2.11)

Now if X
T

is independent of u, then the solution of (2.11) has the form

η(x, t) = constant,

u(x, t) = F (x, t, η, f(η)), (2.12)

where F is a known function. Equation (2.12) is the similarity solution and the function

η(x, t) is called the similarity variable that constitute the independent variable of the

ODE that we get from the transformation. The function f(η) is the unknown function of

the ODE.

2.7 Potential Symmetries

Bluman and al. [10, 11] introduced a method for finding a new class of symmetries, non-

local symmetries, for a system of PDEs ∆(x, t, u) with independent variables x, t and

dependent variables u in the case when at least one of the PDEs can be written in

conserved form.
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If we introduce new variables v which are potentials for the PDEs written in conserved

forms as further unknown functions, we obtain a system Z(x, t, u, v). By construction,

any solution u(x, t), v(x, t) of Z(x, t, u, v) defines a solution u(x, t) of ∆(x, t, u). The given

system ∆(x, t, u) is then said to be embedded in the auxiliary system Z(x, t, u, v), so any

Lie group of transformation for Z(x, t, u, v) induces a symmetry for ∆(x, t, u). When

at least one of the infinitesimals which correspond to the variables x, t and u depends

explicitly on the potential v, then the local symmetry of Z(x, t, u, v) induces a nonlocal

symmetry of ∆(x, t, u). These nonlocal symmetries are called potential symmetries. More

details about potential symmetries and their uses can be found in [13, 14].

2.8 Invertible Mappings of nonlinear systems of

PDEs to linear systems of PDEs

Another application of symmetry methods to differential equations is to discover related

differential equations of simpler form. By comparing the Lie groups admitted by a given

differential equation and another differential equation (target equation), one can find

constructively, necessary conditions for a mapping of the given equation to the target

equation. If the target equation, which is a member of a class of equations, is characterized

completely in terms of a Lie symmetry group then one can algorithmically determine if

an invertible mapping exists between the equations. In [10] it is shown that an invertible

mapping that transforms a nonlinear PDE does not exist if the nonlinear PDE does not

admit an infinite-parameter Lie group of contact transformations. Also such mappings

do not exist for a nonlinear system of PDEs if the system does not admit an infinite-

parameter Lie group of transformations. If such infinite-parameter groups exist then the

nonlinear PDE (or system of nonlinear PDEs) can be transformed into a linear PDE (or

into a system of linear PDEs) provided that these groups satisfy certain criteria [10].

For example, we consider the generalized nonlinear heat conduction equation

∂u

∂t
=

∂

∂x

(

K(u)
∂u

∂x

)

. (2.13)
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If we introduce the potential variable v we obtain the auxiliary system of (2.13)

∂v

∂x
= u, (2.14)

∂v

∂t
= K(u)

∂u

∂x
.

In the case when K(u) = u−2 equations (2.14) admit the following infinite-dimensional

symmetry

Γ∞ = h(t, v)
∂

∂x
− u2∂h(t, v)

∂v

∂

∂u
,

where h(t, v) is an arbitrary solution of the linear heat equation hvv − ht = 0.

The above infinite-dimensional symmetry admitted by (2.14) now written as

vx = u, (2.15)

vt = u−2ux,

satisfies the required criteria for linearization. Hence, system (2.15) can be linearized. The

procedure for determining invertible mappings with the employment of infinite-parameter

Lie groups of transformations is well explained in [10]. The above infinite-dimensional Lie

symmetry leads to the mapping

t′ = t, x′ = v, v′ = x, u′ =
1

u
, (2.16)

that transforms any solution (u′(x′, t′), v′(x′, t′)) of the linear system of PDEs

v′x′ = u′, v′t′ = u′x′, (2.17)

to a solution (u(x, t), v(x, t)) of the nonlinear system (2.15). In turn, the mapping (2.16)

produces the one-to-one contact transformation [15]

dx′ = udx+ u−2uxdt, dt′ = dt, u′ =
1

u
,

which transforms the linear diffusion equation

∂u′

∂t′
=
∂2u′

∂x′2
, (2.18)

into the PDE

∂u

∂t
=

∂

∂x

(

u−2∂u

∂x

)

. (2.19)
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Using the inverse mapping of (2.16)

t = t′, x = v′, v = x′, u =
1

u′
,

we deduce the contact transformation

dx = u′dx′ + u′x′dt
′, dt = dt′, u =

1

u′
,

which also connects the linear diffusion equation (2.18) and the nonlinear PDE (2.19).

2.9 Equivalence Transformations

An equivalence transformation is a transformation which has the property that it trans-

forms any member of a class of PDEs to an equation which is also a member of the same

class. The set of all equivalence transformations of a given family of equations forms a

group called the equivalence group. There exist two methods for calculations of equiv-

alence transformations: the direct method which was used by Lie [44] for calculation of

equivalence transformations and group classification of family of second-order ordinary

differential equations. The second method was suggested by Ovsiannikov [55] for deter-

mining generators of continuous equivalence groups which is a subgroup of equivalence

group. Although, the direct method involves considerable computational difficulties, it

has the benefit of finding the most general equivalence group. For recent applications of

the direct method one can refer to references [41, 60, 61, 73]. More detailed description

and examples of both methods can be found in [32].

As an example of equivalence transformations we consider the class of diffusion equa-

tions

ut = k(ux)uxx, k(ux) 6= const.

The equivalence transformations for this class of equation is [3]

t̃ = at + γ1, x̃ = β1x+ β2u+ γ2, ũ = β3x+ β4u+ γ3, k̃ = (β1 + β2ux)
2k/a,

where a, βi and γi are arbitrary constants, a 6= 0 and β1β4 − β2β3 6= 0. A special case of

this, is the hodograph transformation

x̃ = u, ũ = x,
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that connects the nonlinear equation

ut =
uxx
u2
x

,

and the linear equation

ũt = ũxx.
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Chapter 3

Group analysis of (1+1)-dimensional

diffusion-convection equation

The idea of group analysis of the nonlinear diffusion-convection equations

ut = (D(u)ux)x +K(u)ux, (3.1)

was considered by many authors. These equations are used to model a wide variety of

phenomena in mathematical physics, mathematical chemistry, mathematical biology, fluid

mechanics etc. For example equation (3.1) describes vertical one-dimensional transport of

water in homogeneous non-deformable porous media [42,66]. In the case when K(u) = 0

it describes stationary motion of a boundary layer of fluid over a flat plate and a vortex of

incompressible fluid in a porous medium polytropic relations of gas density and pressure.

The outstanding representative of the class (3.1) is the Burgers equation that is the

mathematical model for a large number of physical phenomena [6–9, 47].

In this chapter we present the group classification of point symmetries admitted by

(1 + 1) diffusion-convection equations [24,39,54,60,74] and also the potential symmetries

for this equation [38, 68, 69]. A continuing interest exists in finding exact solutions for

these equations [16, 58]. Motivated by the results of this chapter, we present a complete

classification of Lie symmetries for the (2 + 1) and (3 + 1) diffusion-convection equations

in the chapters 4 and 5, respectively.
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3.1 Classification of Lie Symmetries

We consider the (1+1)-dimensional diffusion-convection equations (3.1). The equivalence

transformation G∼
1 of class (3.1) consists of the 7-parameter group of transformations

t̃ = ε2
4ε5t+ ε1, x̃ = ε4x+ ε7t + ε2, ũ = ε6u+ ε3,

D̃ = ε−1
5 D, K̃ = ε−1

4 ε−1
5 K − ε7,

(3.2)

where ε1, . . . , ε7 are arbitrary constants, ε4ε5ε6 6= 0.

We have seen that a PDE of second order admits Lie symmetries if and only if

Γ(2)E|E=0 = 0,

where Γ(2) is the second extended generator of

Γ = X
∂

∂x
+ T

∂

∂t
+ U

∂

∂u
,

which is given by the relation

Γ(2) = Γ + [DxU − (DxX)ux − (DxT )ut]
∂

∂ux
+ [DtU − (DtX)ux − (DtT )ut]

∂

∂ut

+ [Dx(U
x) − uxxDx(X) − uxtDt(T )]

∂

∂uxx
.

Here Dx and Dt are the total derivatives with respect to x and t respectively and U x is

the extended transformation.

In this case

E = ut −Duu
2
x −Duxx −Kux = 0. (3.3)

So, equation (3.1) admits Lie symmetries if and only if

Γ(2)
[

ut −Duu
2
x −Duxx −Kux

]

= 0, (3.4)

where ut = Duu
2
x +Duxx +Kux.

After elimination of ut using the above expression, equation (3.4) becomes an identity

in the variables t, x, u, ux, uxx. The coefficients of different powers of these variables

must be zero giving the determining equations for the unknown functions T, X, U, D

and K. From [41] we can assume that T = T (t) and X = X(x, t). Also from coefficients

of u2
x and uxx we deduce that Uuu = 0. So,

U = m1(x, t)u+m2(x, t).
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Using the fact that T = T (t), X = X(x, t) and the above expression of U from coeffi-

cients of uxx, ux and the term independent of derivatives of (3.4) we have the following

determining equations respectively:

Du(m1u+m2) +D(Tt − 2Xx) = 0, (3.5)

2Du(m1xu+m2x) +Ku(m1u+m2) +D(2m1x −Xxx) (3.6)

+K(Tt −Xx) +Xt = 0,

−m1tu+m1xxDu +m1xKu −m2t +m2xxD +m2xK = 0. (3.7)

Equation(3.5) suggests the following forms of D(u):

(1) D(u) arbitrary;

(2) D(u) = eµu;

(3) D(u) = uµ.

However in the subsequent analysis, these forms of D lead to further cases. Summa-

rizing we have the following forms of D:

(1) D(u) arbitrary;

(2) D(u) = eµu;

(3) D(u) = eu;

(4) D(u) = uµ;

(5) D(u) = u−2;

(6) D(u) = u−
4
3 ;

(7) D(u) = 1.

Case 1. D(u) arbitrary.

Using the fact that D(u) is arbitrary from (3.5) we have m1(x, t) = m2(x, t) = 0. So,

from equation (3.6) we have the following forms of K(u):

Subcase 1.1: K(u) arbitrary.

In this case from equations (3.6) and (3.7) we deduce that

X = c1, T = c2, U = 0.

The Lie algebra is two-dimensional spanned by

Γ1 =
∂

∂t
, Γ2 =

∂

∂x
.
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Subcase 1.2: K(u) = 0.

If K(u) = 0 then from equation (3.6) we get that

X = c1x + c2, T = 2c1t + c3, U = 0.

The Lie algebra is three-dimensional given by

Γ1, Γ2, Γ3 = 2t
∂

∂t
+ x

∂

∂x
.

Case 2. D(u) = eµu.

In this case from equation (3.5) we deduce that m1 = 0 and m2 = 1
µ
(2Xx − Tt). Then

from equations (3.6) and (3.7) we get that K(u) = eu and after some calculations we have

X = c1(µ− 1)x+ c2, T = c1(µ− 2)t+ c3, U = c1.

Therefore, the Lie algebra is three-dimensional spanned by

Γ1, Γ2, Γ4 = (µ− 2)t
∂

∂t
+ (µ− 1)x

∂

∂x
+

∂

∂u
.

Case 3. D(u) = eu.

If D(u) = eu then from equation (3.5) we have m1 = 0 and m2 = 2Xx− Tt. Equations

(3.6) and (3.7) deduce the following forms of K(u):

Subcase 3.1: K(u) = u.

In this case from equations (3.6) and (3.7) we have

X = c1(x− t) + c2, T = c1t + c3, U = c1.

So, the Lie algebra is spanned by

Γ1, Γ2, Γ5 = t
∂

∂t
+ (x− t)

∂

∂x
+

∂

∂u
.

Subcase 3.2: K(u) = 0.

Equations (3.6) and (3.7) deduce that

X = c1x + c2, T = 2c1t + c3t+ c4, U = −c3.

In this subcase the Lie algebra is four-dimensional given by

Γ1, Γ2, Γ3, Γ6 = t
∂

∂t
− ∂

∂u
.
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Case 4. D(u) = uµ.

In this case from (3.5) we get m2 = 0 and m1 = 1
µ
(2Xx − Tt). From equations (3.6)

and (3.7) we have the following different forms of K:

Subcase 4.1: K(u) = uν, ν 6= 0.

In this case after some calculations we get

X = c1(µ− ν)x + c2, T = c1(µ− 2ν)t+ c3, U = c1u.

So, the Lie algebra is three-dimensional given by

Γ1, Γ2, Γ7 = (µ− 2ν)t
∂

∂t
+ (µ− ν)x

∂

∂x
+ u

∂

∂u
.

Subcase 4.2: K(u) = 0.

Here from equations (3.6) and (3.7) we deduce that

X = c1x + c2, T = 2c1t + c3µt+ c4, U = −c3u.

In this subcase the Lie algebra is

Γ1, Γ2, Γ3, Γ8 = µt
∂

∂t
− u

∂

∂u
.

Subcase 4.3: K(u) = ln u.

In this subcase using equations (3.6) and (3.7) we have

X = c1(µx− t) + c2, T = c1µt+ c3, U = c1u.

So, the Lie algebra is three-dimensional spanned by

Γ1, Γ2, Γ9 = µt
∂

∂t
+ (µx− t)

∂

∂x
+ u

∂

∂u
.

Case 5. D(u) = u−2.

Here equation (3.5) gives m2 = 0 and m1 = 1
2
(Tt − 2Xx). If we substitute these

expressions into equations (3.6), (3.7) we deduce that K(u) = u−2 and finally we have

X = c1e
−x + c2, T = 2c3t+ c4, U = c1e

−xu+ c3u.

Therefore, the Lie algebra is given by

Γ1, Γ2, Γ10 = 2t
∂

∂t
+ u

∂

∂u
, Γ11 = e−x

(

∂

∂x
+ u

∂

∂u

)

.
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Case 6. D(u) = −4
3
.

From equation (3.5) we get that m2 = 0 and m1 = 1
4
(3Tt − 6Xx). Then, after some

calculations using equations (3.6) and (3.7) we deduce that K(u) = 0 and

X = c1x + c2x
2 + c3, T = 4c4t+ 2c1t + c5, U = 3c4u− 3c2xu.

Hence, the Lie algebra is five-dimensional spanned by

Γ1, Γ2, Γ3, Γ12 = 4t
∂

∂t
+ 3u

∂

∂u
, Γ13 = x2 ∂

∂x
− 3xu

∂

∂u
.

Case 7. D(u) = 1.

From equation (3.5) we get that X = x
2
Tt + g1(t) and then from equations (3.6) and

(3.7) we deduce that K(u) = u. So, we have the Burger’s equation with

X = c1tx + c2x+ c3t+ c4, T = c1t
2 + 2c2t + c5, U = −c1(tu+ x) − c2u− c3.

Therefore, the Lie algebra is given by

Γ1, Γ2, Γ6, Γ14 = t2
∂

∂t
+ tx

∂

∂x
− (tu+ x)

∂

∂u
, Γ15 = 2t

∂

∂t
+ x

∂

∂x
− u

∂

∂u
.

In Table 3.1 we give briefly the Lie symmetries for the different forms of D(u) and

K(u).
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Table 3.1: Classification of equation ut = (D(u)ux)x +K(u)ux

N D(u) K(u) Basis of Amax

1 ∀ ∀ ∂
∂t ,

∂
∂x

2 ∀ 0 ∂
∂t ,

∂
∂x , 2t∂

∂t + x ∂
∂x

3 eµu eu ∂
∂t ,

∂
∂x , (µ− 2)t∂

∂t + (µ− 1)x ∂
∂x + ∂

∂u

4 eu u ∂
∂t ,

∂
∂x , t

∂
∂t + (x− t) ∂

∂x + ∂
∂u

5 eu 0 ∂
∂t ,

∂
∂x , t

∂
∂t − ∂

∂u , 2t
∂
∂t + x ∂

∂x

6 uµ uν ∂
∂t ,

∂
∂x , (µ− 2ν)t∂

∂t + (µ− ν)x ∂
∂x + u ∂

∂u

7a uµ 0 ∂
∂t ,

∂
∂x , µt

∂
∂t − u ∂

∂u , 2t
∂
∂t + x ∂

∂x

7b u−2 u−2 ∂
∂t ,

∂
∂x , 2t ∂

∂t + u ∂
∂u , e

−x( ∂
∂x + u ∂

∂u )

8 u−4/3 0 ∂
∂t ,

∂
∂x , 4t∂

∂t + 3u ∂
∂u , 2t

∂
∂t + x ∂

∂x , x
2 ∂

∂x − 3xu ∂
∂u

9 uµ lnu ∂
∂t ,

∂
∂x , µt

∂
∂t + (µx − t) ∂

∂x + u ∂
∂u

10 1 u ∂
∂t ,

∂
∂x , t

2 ∂
∂t + tx ∂

∂x − (tu+ x) ∂
∂u , 2t∂

∂t + x ∂
∂x − u ∂

∂u , t
∂
∂x − ∂

∂u

Here µ, ν = const. (µ, ν) 6= (−2,−2), (0, 1) and ν 6= 0 for N = 6., µ 6= −4/3 for

N = 7a. Case 7b can be reduced to 7a (µ = −2) by means of the conditional equivalence

transformation t̃ = t, x̃ = ex, ũ = e−xu, (that do not belong to the equivalence group of

class 3.1).

3.2 Classification of Potential Symmetries

We consider the nonlinear diffusion-convection equations of the type

ut = (D(u)ux)x +K(u)ux,

which we write in the following form

ut = (D(u)ux)x − kuux, (3.8)

where k(u) = −
∫

K(u)du.

If we introduce the potential v, equation (3.8) can be written as a system of two PDE’s

vx = u, (3.9)

vt = D(u)ux − k(u).
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We determine infinitesimal transformations of the form

x′ = x+ εX(x, t, u, v) +O(ε2),

t′ = t+ εT (x, t, u, v) +O(ε2), (3.10)

u′ = u+ εU(x, t, u, v) +O(ε2),

v′ = v + εV (x, t, u, v) +O(ε2),

admitted by system (3.9).

These transformations induce potential and point symmetries for (3.8) and point sym-

metries for the integrated form of (3.8) vt = D(vx)vxx − k(vx) where u = vx.

As we have seen, a PDE of first order, admits Lie symmetries if and only if

Γ(1)E|E=0 = 0.

So, the system (3.9) admits Lie transformations of the form (3.10) if and only if

Γ(1)[vx − u] = 0, (3.11)

Γ(1)[vt −D(u)ux + k(u)] = 0,

where vx = u, vt = D(u)ux − k(u) and Γ(1) is the first extended generator of

Γ = X
∂

∂x
+ T

∂

∂t
+ U

∂

∂u
+ V

∂

∂v
,

which is given by the relation

Γ(1) = Γ + [DxU − (DxX)ux − (DxT )ut]
∂

∂ux
+ [DtU − (DtX)ux − (DtT )ut]

∂

∂ut

+[DxV − (DxX)vx − (DxT )vt]
∂

∂vx
+ [DtV − (DtX)vx − (DtT )vt]

∂

∂vt
,

and Dx and Dt are the total derivatives with respect to x and t respectively.

Eliminating vx and vt from equation (3.9), equations (3.11) take the form

E1(x, t, u, v, ux, ut) = 0, E2(x, t, u, v, ux, ut) = 0,

where E1 and E2 are determined polynomials in ux and ut.

Now if we take coefficients of E1uxux and E2ut − E1ux we get respectively:

DTu = 0,

2D(uTv + Tx) = 0,
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from which we get that T is a function of T only.

Calculation of E2uxux and E1ux respectively gives,

Xu = Vu = 0.

Finally from E1 and E2 (the coefficient of ux and the term independent of ux ) we get the

following determining equations of D(u), k(u) and the generators X, T, U and V :

U = −Xvu
2 + (Vv −Xx)u+ Vx, (3.12)

[Xvu
2 + (Xx − Vv)u− Vx]

dD

du
+ [2Xvu+ 2Xx − Tt]D = 0, (3.13)

[

Xvu
2 + (Xx − Vv)u

] dk

du
+ [−Xvu+ Vv − Tt] k = (3.14)

[

Xvvu
3 + (2Xxv − Vvv)u

2 + (Xxx − 2Vxv)u− Vxx
]

D + Vt −Xtu.

From equations (3.12), (3.13) and (3.14) we deduce the different forms of D(u), k(u) and

the generators X, T, U and V . We only classify the Lie symmetries of (3.9) which are

such that X2
v + T 2

v +U2
v 6= 0 and induce potential symmetries of (3.8). So, from equation

(3.13) we conclude that the function D(u) satisfies an ODE of the form

(λ1u
2 + λ2u+ λ3)

dD

du
+ (2λ1u+ λ4)D = 0.

where λi are constants.

So, we get the following forms of D(u):

(1) D = p
(u+q)2

, with p2 − 4q − r2 = 0;

(2) D = 1
u2+pu+q

exp[r
∫

du
u2+pu+q

], with p2 − 4q − r2 6= 0;

(3) D =constant;

where in all three cases p = λ2

λ1
, q = λ3

λ1
and r = λ4−λ2

λ1
.

Case 1. D = p
(u+q)2

, with p2 − 4q − r2 = 0.

From (3.14) we get the following forms of k(u) which produce the following potential

symmetries.

Subcase 1.1: k(u) = r(u+q)m

(u+s)m−1 , (q 6= s).

Equation (3.8) admits the potential symmetry

Γ1 = 2m(q − s)t
∂

∂t
+ ((mq −ms− s)x− v)

∂

∂x
+ (u+ q)(u+ s)

∂

∂u

+ (qsx+ (mq −ms + q)v)
∂

∂v
.
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Subcase 1.2: k(u) = r(u+ q) exp( s
(u+q)

), (s 6= 0).

Here equation (3.8) admits the potential symmetry

Γ2 = 2st
∂

∂t
+ ((s− q)x− v)

∂

∂x
+ (u+ q)2 ∂

∂u
+

(

q2 + (q + s)v
) ∂

∂v
.

Subcase 1.3: k(u) = r
u+q

.

Equation (3.8) admits the following potential symmetries

Γ3 = 4rt2
∂

∂t
−

[

2pt+ (v + qx)2
] ∂

∂x
+ 2(u+ q) [(u+ q)(v + qx) + 2rt]

∂

∂u

+ [q(v + qx)2 + 4rt(v + qx) + 2pqt]
∂

∂v
,

Γ4 = (v + qx)
∂

∂x
− (u+ q)2 ∂

∂u
− [q(v + qx) + 2rt]

∂

∂v
,

Γ1∞ = e−
rx
p

[

pφ
∂

∂x
− (u+ q) (p(u+ q)φξ − rφ)

∂

∂u
− pqφ

∂

∂v

]

,

where in Γ1∞, y = φ(t, ξ), ξ = v + qx is an arbitrary solution of the linear heat equation

p
∂2y

∂ξ2
− ∂y

∂t
= 0. (3.15)

Subcase 1.4: k(u) = r(u+ q).

Here we have the following potential symmetries

Γ5 = (v + qrt)
∂

∂x
− u(u+ q)

∂

∂u
− q(v + qrt)

∂

∂v
,

Γ6 = 12pqt2
∂

∂t
+

[

(v + qx)3 + 3q(rt− x)(v + qx)2 + 6(ptv + 3pqrt2)
] ∂

∂x

+ 3(u+ q)
[

−u(v + qx)2 + 2q(u+ q)(qx2 − rtv − qrtx+ xv) + 4pqt− 2ptu
] ∂

∂u

+ q
[

−(v + qx)3 + 3q(x− rt)(v + qx)2 + 6(ptv + 2pqxt− 3pqrt2)
] ∂

∂v
,

Γ7 =
[

(v + qx)(v − qx) + 2(qrtv + pt+ q2rtx)
] ∂

∂x
+ 2(u+ q)

[

−uv + q2x− qrt(u+ q)
] ∂

∂u

+ q
[

−(v + qx)(v − qx) + 2(pt− qrtv − q2rtx)
] ∂

∂v
,

Γ2∞ = φ
∂

∂x
− (u+ q)2φξ

∂

∂u
− qφ

∂

∂v
,

where y = φ(t, ξ) satisfies (3.15).

Case 2. D = 1
u2+pu+q

exp
[

r
∫

du
u2+pu+q

]

, with p2 − 4q − r2 6= 0.

From equation (3.13) and (3.14) we deduce that X and V are linear in x and v. In

this case we obtain the following results:

Subcase 2.1: k(u) =
√

u2 + pu+ q exp
[

s
∫

du
u2+pu+q

]

.
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Equation (3.8) admits the potential symmetry

Γ8 = (r+2s)t
∂

∂t
+

[

(r + s− p

2
)x− v

] ∂

∂x
+(u2 +pu+ q)

∂

∂u
+

[

qx + (r + s+
p

2
)v

] ∂

∂v
.

Subcase 2.2: k(u) = 1
I(u)

∫ (λ1u+λ2)I(u)du
u2+pu+q

.

Here the function I(u) is given by

I(u) =
1

√

u2 + pu+ q
exp

(

s

∫

du

u2 + pu+ q

)

,

where s = λ4−λ2−λ5

2λ1
. For this case we have

Γ9 = (r + 2s)t
∂

∂t
+

[

(r + s− p

2
)x + λ1t− v

] ∂

∂x
+ (u2 + pu+ q)

∂

∂u

+
[

qx− λ2t+ (r + s+
p

2
)v

] ∂

∂v
.

Subcase 2.3: k(u) = λ(u+ q).

Equation (3.8) admits the following potential symmetries

Γ10 = (p2 − 4q − r2)t
∂

∂t
−

[

(p+ r)v + 2qx+ λ(r2 + pq + qr + 2q − p2)t
] ∂

∂x

+
[

(p2 + pr − 2q)v + q(p+ r)x+ λq(pr − p+ 2q + r2 − r)t
] ∂

∂v

+ (p+ r)(u2 + pu+ q)
∂

∂u
,

Γ11 = [2v + (p− r)x + λ(2q − p+ r)t]
∂

∂x
− 2(u2 + pu+ q)

∂

∂u

− [(p+ r)v + 2qx+ λq(p+ r − 2)t]
∂

∂v
.

Case 3. D =constant= p.

From equation (3.13) we get that X = 1
2
Tt + θ(t) and from (3.14) we deduce that

function k(u) satisfies an ODE of the form:

(λ1u+ λ2)
dk

du
+ λ3k = λ4u

2 + λ5u+ λ6.

Equation (3.8) admits a potential symmetry only when k = r(u + s)2. Any other form

of k(u) which satisfies the above ODE leads to point symmetries. If k = r(u + s)2 then

equation (3.8) becomes the well known Burger’s equation which admits the potential

symmetry

Γ3∞ = e
rv
p (phx + rhu)

∂

∂u
+ pe

rv
p h

∂

∂v
,
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where the function h(x, t) satisfies the linear PDE

ht − phxx + 2rshx −
r2s2

p
h = 0.

As one can see, the obtained results are very cumbersome. However, one can easily

simplify them using equivalence transformations. It is known, that equivalence group

of a PDE can be (trivially) prolonged to equivalence group of any potential system of

the equation. Here we adduce classification of potential system (3.9) up to such (trivial)

prolongation [61].

Table 3.2: Results of group classification for systems (3.9) with respect to G∼
triv.pot-

equivalence

N D(u) k(u) Basis of Amax

1 u−2eµ/u ue1/u ∂
∂t ,

∂
∂x ,

∂
∂v , (µ− 2)t ∂

∂t + ((µ− 1)x+ v) ∂
∂x − u2 ∂

∂u + (µ− 1)v ∂
∂v

2 u−2e1/u u−1 ∂
∂t ,

∂
∂x ,

∂
∂v , t

∂
∂t + (x+ v) ∂

∂x − u2 ∂
∂u + (v − 2t) ∂

∂v

3 u−2e1/u 0 ∂
∂t ,

∂
∂x ,

∂
∂v , 2t

∂
∂t + x ∂

∂x + v ∂
∂v , t

∂
∂t − v ∂

∂x + u2 ∂
∂u

4
uµ

(u+ 1)µ+2

uν+1

(u+ 1)ν

∂
∂t ,

∂
∂x ,

∂
∂v , (µ− 2ν)t ∂

∂t + ((µ− ν)x− v) ∂
∂x + u(u+ 1) ∂

∂u+

+(µ− ν + 1)v ∂
∂v

5
uµ

(u+ 1)µ+2
u ln

u

u+ 1
∂
∂t ,

∂
∂x ,

∂
∂v , µt

∂
∂t + (µx+ v − t) ∂

∂x + u(u+ 1) ∂
∂u + (µ+ 1)v ∂

∂v

6
uµ

(u+ 1)µ+2
0 ∂

∂t ,
∂
∂x ,

∂
∂v , 2t

∂
∂t + x ∂

∂x + v ∂
∂v , µt

∂
∂t + v ∂

∂x − u(u+ 1) ∂
∂u − v ∂

∂v

7
eµ arctan u

u2 + 1

√
u2 + 1 eν arctan u

∂
∂t ,

∂
∂x ,

∂
∂v , (µ− 2ν)t ∂

∂t + (u2 + 1) ∂
∂u+

+(x+ (µ− ν)v) ∂
∂v

8
eµ arctan u

u2 + 1
0 ∂

∂t ,
∂
∂x ,

∂
∂v , 2t

∂
∂t + x ∂

∂x + v ∂
∂v , µt

∂
∂t + v ∂

∂x − (u2 + 1) ∂
∂u − x ∂

∂v

9 u−2 0 ∂
∂t ,

∂
∂v , 2t ∂

∂t + u ∂
∂u + v ∂

∂v , −vx ∂
∂x + u(ux+ v) ∂

∂u + 2t ∂
∂v ,

4t2 ∂
∂t − (v2 + 2t)x ∂

∂x + u(v2 + 6t+ 2xuv) ∂
∂u + 4tv ∂

∂v ,

x ∂
∂x − u ∂

∂u , φ
∂
∂x − φvu

2 ∂
∂u

10 u−2 u−1 ∂
∂t ,

∂
∂v , 2t ∂

∂t + u ∂
∂u + v ∂

∂v , −v ∂
∂x + u2 ∂

∂u + 2t ∂
∂v ,

4t2 ∂
∂t − (v2 + 2t) ∂

∂x + 2u(uv + 2t) ∂
∂u + 4tv ∂

∂v ,

∂
∂x , e

−xφ ∂
∂x + e−x(φ− uφv)u

∂
∂u

11 1 −u2 ∂
∂t ,

∂
∂x , 2t

∂
∂t + x ∂

∂x − u ∂
∂u , 2t

∂
∂x − ∂

∂u − x ∂
∂v ,

4t2 ∂
∂t + 4tx ∂

∂x − 2(x+ 2ut) ∂
∂u − (x2 + 2t) ∂

∂v ,

∂
∂v , e

−v(hx − hu) ∂
∂u + e−vh ∂

∂v
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In the above consideration we have seen that the auxiliary system of the nonlinear

equation

ut = [u−2ux]x + u−2ux,

admits an infinite dimensional Lie symmetry which is equivalent to Lie symmetry algebra

of potential system corresponding to the linear heat equation. This observation shows

that this nonlinear equation can be mapped into the linear heat equation ut = uxx by

contact transformations [61, 68].
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Chapter 4

Group analysis of (2+1) nonlinear

diffusion-convection equations

We consider the (2+1) nonlinear diffusion-convection equations

ut = (D(u)ux)x + (F (u)uy)y +K(u)ux, (4.1)

where D(u), F (u) and K(u) are arbitrary smooth functions. These equations generalize

the well-known Richard’s equation and arise naturally in certain physical applications.

Thus, for example, superdiffusivities of this type have been proposed [20] as a model for

long-range Van der Waals interactions in thin films spreading on solid surfaces. Equa-

tions of such form may describe the flow of particles in a lattice fluid past an impenetrable

obstacle [4, 5]. This equation also appears in the study of cellular automata and inter-

acting particle systems with self-organized criticality (see [17] and references therein) and

describes a model of water flow in unsaturated soil [63]. For other applications of many

special cases of these classes of equations we refer the reader to [18, 48, 49, 57].

Our goal in this chapter is to carry out a group classification of (4.1) [21,22]. In the case

when K(u) = 0, the corresponding results can be found in [34]. This classification gener-

alizes and completes existing results in the literature. Using the derived Lie symmetries

we also construct similarity reductions and exact solutions of certain equations.
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4.1 Classification of Lie Symmetries

The equivalence group of (4.1) consists of the 9-parameter group of point transformations

t̃ = ε5t + ε1, x̃ = ε6x+ ε9t+ ε2, ỹ = ε7y + ε3, ũ = ε8u+ ε4,

D̃ = ε−1
5 ε2

6D, F̃ = ε−1
5 ε2

7F, K̃ = ε−1
5 ε6K − ε9,

where εi are arbitrary constants, ε5ε6ε7ε8 6= 0. This means that scalings and translations

of x, t, y and u may be used to simplify the analysis with the understanding that these

equivalence transformations are included in the conclusions. In particular, D(u)(6= 0)

may be scaled and also u can be translated in order to simplify the form of D(u) without

any loss of generality. For example, if D(u) is a non-zero constant it may be assumed

that D(u) = 1.

We classify the Lie symmetries of equation (4.1) that are not equivalent. For example,

we exclude the case K =constant, since it can be mapped into the case with K = 0 using

a special form of the equivalence transformations.

Equation (4.1) admits Lie transformations of the form

x′ = x+ εX(x, t, y, u) +O(ε2),

t′ = t+ εT (x, t, y, u) +O(ε2), (4.2)

y′ = y + εY (x, t, y, u) +O(ε2),

u′ = u+ εU(x, t, y, u) +O(ε2),

if and only if

Γ(2)E|E=0 = 0, (4.3)

where Γ(2) is the second extended generator of

Γ = X
∂

∂x
+ T

∂

∂t
+ Y

∂

∂y
+ U

∂

∂u
,
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which is given by the relation

Γ(2) = Γ + [Dx(U) − (DxX)ux − (DxT )ut − (DxY )uy]
∂

∂ux

+ [Dt(U) − (DtX)ux − (DtT )ut − (DtY )uy]
∂

∂ut

+ [Dy(U) − (DyX)ux − (DyT )ut − (DyY )uy]
∂

∂uy

+ [Dx(U
x) − uxxDx(X) − uxtDx(T ) − uxyDx(Y )]

∂

∂uxx

+ [Dy(U
y) − uyxDy(X) − uytDy(T ) − uyyDy(Y )]

∂

∂uyy
.

Here Dx, Dt and Dy are the total derivatives with respect to x, t and y, respectively and

Ux, Uy the extended transformations. We point out that in Γ(2) we did not include the

terms that give no contribution.

In this case E = ut −Duu
2
x −Duxx − Fuu

2
y − Fuyy −Kux. So, equation (4.1) admits

Lie symmetries if and only if

Γ(2)[ut −Duu
2
x −Duxx − Fuu

2
y − Fuyy −Kux] = 0, (4.4)

where ut = Duu
2
x +Duxx + Fuu

2
y + Fuyy +Kux.

If we take coefficients of uxt we have

D(Tuux + Tx) = 0, (4.5)

from we get two cases: (A) D 6= 0 and (B) D = 0.

Case A. D 6= 0.

In this case from (4.5) we have Tu = Tx = 0 and also from coefficient of uyt in (4.4)

Ty = 0. So, function T is only function of t. If we take then coefficient of uxy in (4.4) we

have

Xu = Yu = 0, (4.6)

XyD + YxF = 0.

From (4.6) we deduce two cases: (I) F 6= εD and (II) F = εD.

Case A(I): F 6= εD.

If F 6= εD then from (4.6) we get that Xy = Yx = 0, hence X = X(x, t) and Y = y(t, y).

Also from coefficients of uyy and u2
y we get that Uuu = 0, so U = a1(x, t, y)u+ a2(x, t, y).
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Using the fact that T = T (t), X = X(x, t), Y = Y (t, y) and the form of U , then from

equation (4.4) we obtain the following determining equations of the functional forms of

D, F, K, X, T, Y and U :

(a1u+ a2)Du + (Tt − 2Xx)D = 0, (4.7)

(a1u+ a2)Fu + (Tt − 2Yy) = 0, (4.8)

(2a1xu+ 2a2x)Du + (2a1x −Xxx)D + (a1u+ a2)Ku + (4.9)

(Tt −Xx)K +Xt = 0, (4.10)

(2a1yu+ 2a2y)Fu + (2a1y − Yyy)F + Yt = 0, (4.11)

(a1xxu+ a2xx)D + (a1yyu+ a2yy)F + (a1xu+ a2x)K − a1tu− a2t = 0. (4.12)

From equation (4.7) we conclude that function D(u) satisfies an ordinary differential

equation (ODE) of the form

(λ1u+ λ2)Du + λ3D = 0, (4.13)

where λi are constants. Equation (4.13) suggests the following forms of D(u):

(i) D(u) arbitrary;

(ii) D(u) = eµu;

(iii) D(u) = uµ.

However in the following analysis, these forms of D lead to further special cases. Sum-

marizing we have the following forms of D(u):

1. D(u) arbitrary;

2. D(u) = eµu;

3. D(u) = uµ;

4. D(u) = u−2;

5. D(u) = 1.

Case 1. D(u) arbitrary.

In the case when D(u) is arbitrary (4.7) we deduce that a1 = a2 = 0 and

X = x
2
Tt + g1(t). Substituting the above expressions into (4.8) and (4.11) we have

Y = y
2
Tt + g2(t), T = c1t + c2, g2(t) = c3. Equation (4.10) then, suggests the following

forms of K:

(i) K(u) arbitrary;
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(ii) K(u) = 0.

Subcase 1.1: K(u) arbitrary.

Here, from equation (4.10) we get

X = c1, T = c2, Y = c3, U = 0.

So, the Lie algebra is three-dimensional and is spanned by

Γ1 =
∂

∂t
, Γ2 =

∂

∂x
, Γ3 =

∂

∂y
.

Subcase 1.2: K(u) = 0.

From equation (4.10) we have

X = c4x + c1, T = 2c4t + c2, Y = c4y + c3, U = 0.

Hence, the Lie algebra is four dimensional and is given by

Γ1, Γ2, Γ3, Γ4 = 2t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
.

Case 2. D(u) = eµu.

If D(u) = eµu then from equation (4.7) we get that a1 = 0 and a2 = 1
mu

(2Xx − Tt).

Also from (4.8) we deduce that F (u) = εeνu and substituting the expression of F into

equations (4.8), (4.10) and after some calculations we get

Y = yg1(t) + g2(t), X = xg3(t) + g4(t), g3(t) =
1

2
Tt + c1, g1 =

1

2µ
(Ttµ+ 2c1ν).

Substituting the above expressions into (4.11) we have

T = c2t + c3, g2 = c4.

So, equation (4.10) can be written in the form

µ1Ku + µ2K = µ3,

where µi are constants, that gives the following forms of K(u):

(i) K(u) = epu;

(ii) K(u) = u;

(iii) K(u) = 0.
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Subcase 2.1: K(u) = epu.

In this subcase using equation (4.10) we have

X = 2(p− µ)c1x+ c5, T = 2(2p− µ)c1t+ c3, Y = (2p− µ− ν)c1y + c4, U = 2c1.

So, the Lie algebra is spanned by

Γ1, Γ2, Γ3, Γ5 = 2(2p− µ)t
∂

∂t
+ 2(p− µ)x

∂

∂x
+ (2p− µ− ν)y

∂

∂y
− 2

∂

∂u
.

Subcase 2.2: K(u) = u.

Here from equation (4.10) we get

X = 2c1µx− 2c1t + c2, T = 2c1µt+ c3, Y = (µ+ ν)c1y + c4, U = 2c1.

The Lie algebra is four dimensional and is given by

Γ1, Γ2, Γ3, Γ6 = 2µt
∂

∂t
+ 2(µx− t)

∂

∂x
+ (µ+ ν)

∂

∂y
+ 2

∂

∂u
.

Subcase 2.3: K(u) = 0.

Using the fact that K(u) = 0 then from (4.10) we have

X = c1(ν − µ)x + c2µx+ c3, T = 2c1νt + c4, Y = c2νy + c5, U = −2c1 + 2c2.

So, the Lie algebra is given by

Γ1, Γ2, Γ3, Γ7 = 2µt
∂

∂t
+ x(ν − µ)

∂

∂x
− 2u

∂

∂u
, Γ8 = µx

∂

∂x
+ νy

∂

∂y
+ 2

∂

∂u
.

Case 3. D(u) = uµ

In this case from equation (4.7) we have a2 = 0 and a1 = 1
µ

(2Xx − Tt) and from (4.8)

we deduce that function F (u) has the form F (u) = εuν . So, from (4.8) we get that

Y = yg1(t) + g2(t), X = xg3(t) + g4(t), g1 =
1

2µ
(2g3ν + Tt(µ− nu)) .

Substituting the above expressions into (4.11) and (4.12) we get

g2 = c1, g3 =
1

2
Tt + c2, T = c3t+ c4.

We can then suppose that equation (4.10) can be written in the form

µ1ku + µ2k = µ3,
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from which we get the following forms of K(u):

(i) K(u) = up, p 6= 0;

(ii) K(u) = log u;

(iii) K = 0.

Subcase 3.1: K(u) = up.

From (4.10) we have

X = 2c2(µ− p)x+ c3, T = 2c2(µ− 2p)t+ c4, Y = c2(µ+ ν − 2p)y+ c1, U = 2c2u.

So the Lie algebra is four-dimensional spanned by

Γ1, Γ2, Γ3, Γ9 = 2(2p− µ)t
∂

∂t
+ 2(p− µ)x

∂

∂x
+ (2p− µ− ν)y

∂

∂y
− 2u

∂

∂u
.

Subcase 3.2: K(u) = log u.

In this subcase from equations (4.10) and (4.11) we have

X = 2c2µx− 2c2t + c1, T = 2c2µt+ c3, Y = c2y(µ+ ν) + c4, U = 2c2u.

Hence, the Lie algebra is given by

Γ1, Γ2, Γ3, Γ10 = 2µt
∂

∂t
+ 2(µx− t)

∂

∂x
+ (µ+ ν)y

∂

∂y
+ 2u

∂

∂u
.

Subcase 3.3: K(u) = 0.

From equations (4.10) and (4.11) we deduce that

X = c2µx + c3x + c1, T = 2c3t+ c4, Y = c2νy + c3y + c5, U = 2c2u.

So, the Lie algebra is five-dimensional given by

Γ1, Γ2, Γ3, Γ4, Γ11 = µx
∂

∂x
+ νy

∂

∂y
+ 2u

∂

∂u
.

Case 4. D(u) = u−2.

From equation (4.7) we have a2 = 0 and a1 = 1
2
(Tt − 2Xx). Also from (4.8) we deduce

that F (u) = ε and Y = y
2
Tt+g1(t). Using these expressions, from (4.11) we get T = c1t+c2

and g1(t) = c3. Finally from (4.12) we deduce that K(u) = u−2. So,

X = c4 + c5e
−x, T = 2c1t+ c2, Y = c1y + c3, U = (c1 + c5e

−x)u.
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Hence, the Lie algebra is spanned by

Γ1, Γ2, Γ3, Γ12 = 2t
∂

∂t
+ y

∂

∂y
+ u

∂

∂u
, Γ13 = e−x

∂

∂x
+ e−xu

∂

∂u
.

Case 5. D(u) = 1.

In this case using the fact that D(u) = 1 from (4.7) we get X = x
2
Tt + g1(t) and from

(4.8) we deduce that F (u) = u−
4
3 . So, a2 = 0 and a1 = 1

4
(3Tt − 6Yx). Substituting the

above expressions into (4.10)-(4.12) we have K(u) = 0 and

X = 2c1x + c6, T = 4c1t+ c2, Y = c4y
2 − 2c5y + c6, U = 3(c1 + c5 + c4y)u.

The Lie algebra is six-dimensional spanned by

Γ1, Γ2, Γ3, Γ14 = 4t
∂

∂t
+2x

∂

∂x
+3u

∂

∂u
, Γ15 = −2y

∂

∂y
−3u

∂

∂u
, Γ16 = −y2 ∂

∂y
−3yu

∂

∂u
.

Case A(II): F = εD.

In the case when F = εD, from the coefficients uxx, u
2
x of (4.4) we deduce that Uuu = 0,

so U = a1(x, t, y)u+ a2(x, t, y). Substituting the expression of D(u) into (4.4) we obtain

the following determining equations of the functional forms of D, K, X, T, Y and U :

(a1u+ a2)Du + (Tt − 2Xx)D = 0, (4.14)

(a1u+ a2)Du + (Tt − 2Yy)D = 0, (4.15)

εXy + Yx = 0, (4.16)

(2a1xu+ 2a2x)Du + (2a1x −Xxx − εXyy)D + (a1u+ a2)Ku + (4.17)

(Tt −Xx)K +Xt = 0,

(2εa1yu+ 2εa2y)Du + (2εa1y − Yxx − εYyy)D − YxK + Yt = 0, (4.18)

((a1xx + εa1yy)u+ a2xx + εa2yy)D + (a1xu+ a2x)K − a1tu− a2t = 0. (4.19)

From equation (4.14), we conclude that function D(u) satisfies an ODE of the form

(µ1u+ µ2)Du + µ3D = 0,

where µi are constants. The solution of the above ODE gives us the following different

forms of function D(u):
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(1) D(u) arbitrary;

(2) D(u) = eu;

(3) D(u) = uµ;

(4) D(u) = 1.

Case 1. D(u) arbitrary.

Solving equations (4.14)-(4.19) we deduce that K = 0 and

X = c1x + c3y + c5, T = 2c1t+ c2, Y = c1y − c3εx + c4, U = 0.

Hence, the Lie algebra is five-dimensional spanned by

Γ1, Γ2, Γ3, Γ4, Γ17 = y
∂

∂x
− εx

∂

∂y
.

Case 2. D(u) = eu.

From (4.14)-(4.19) we get that K = 0 and

X = c3x + c4y + c5, T = c1t+ c2, Y = c3y − c4εx + c6, U = −c1 + 2c3.

So, the Lie algebra is six-dimensional given by

Γ1, Γ2, Γ3, Γ17, Γ18 = t
∂

∂t
− ∂

∂u
, Γ19 = x

∂

∂x
+ y

∂

∂y
+ 2

∂

∂u
.

Case 3. D(u) = uµ.

In this case from equations (4.14)-(4.19) we deduce that K = 0 and

X = c1x+ c2µx+ c3y + c4, T = 2c1t+ c5, Y = c1y + c2µy− c3εx+ c6, U = 2c2u.

Hence, the Lie algebra is given by

Γ1, Γ2, Γ3, Γ4, Γ17, Γ18 = µx
∂

∂x
+ µy

∂

∂y
+ 2u

∂

∂u
.

Case 4. D(u) = 1.

Here after some calculations using equations (4.14)-(4.19) we deduce that K = u and

X = c1x + c4t + c5, T = 2c1t+ c2, Y = c1y + c3, U = −c4 − c1u.

Therefore, the Lie algebra is five-dimensional given by

Γ1, Γ2, Γ3, Γ19 = 2t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
− u

∂

∂u
, Γ20 = t

∂

∂x
− ∂

∂u
.
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Case B. D(u) = 0.

In the case when D(u) = 0 then from coefficients of uyt, uyyuy, and uxy in equation

(4.4) we get respectively

Tu = Ty = 0,

Yu = 0,

Xu = Xy = 0.

Using the fact that T = T (x, t), Y = Y (x, t, y) and X = X(x, t) then from (4.4) we get

the following determined equations for the functional forms of F, K, X, T, Y and U :

UFu + (Tt − TxK − 2Yy)F = 0, (4.20)

UFuu + [Tt − TxK + Uu − 2Yy]Fu + UuuF = 0, (4.21)

UKu + (Tt −KTx −Xx)K +Xt = 0, (4.22)

UyyF + UxK − Ut = 0, (4.23)

2UyFu + (2Uuy − Yyy)F − YxK + Yt = 0. (4.24)

Using the above equations we get the following forms of F (u)

(1) F (u) arbitrary;

(2) F (u) = eu;

(3) F (u) = uν;

(4) F (u) = u−
1
2 ;

(5) F (u) = e

∫ µdu

(φ+
p
2−r)u

(φ+ p
2
−r)u ;

(6) F (u) = 1.

Case 1. F (u) arbitrary.

In this case K is arbitrary and

X = 2c1x + c4, T = 2c1t+ c2, Y = c1y + c3, U = 0.

So, the Lie algebra is four-dimensional given by

Γ1, Γ2, Γ3, Γ4.

Case 2. F (u) = eu.
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Here K(u) has the following forms:

(i) K(u) = u;

(ii) K(u) = eµu.

Subcase 2.1: K(u) = u.

In this subcase we have

X = 2c1x− 2c2t + c3, T = 2c1t + c4, Y = c1y + c2y + c5, U = 2c2.

The Lie algebra is given by

Γ1, Γ2, Γ3, Γ4, Γ21 = −2t
∂

∂x
+ y

∂

∂y
+ 2

∂

∂u
.

Subcase 2.2: K(u) = eµu.

Here after some calculations we deduce that

X = 2c1x + 2c2µx+ c3, T = 2c1t + c4, Y = c1y + c2y + c5, U = 2c2.

The Lie algebra is spanned by

Γ1, Γ2, Γ3, Γ4, Γ22 = 2µx
∂

∂x
+ y

∂

∂y
+ 2

∂

∂u
.

Case 3. F (u) = uν.

In this case K has the following forms:

(i) K(u) = up;

(ii) K(u) = u−1.

Subcase 3.1: K(u) = up.

Using the fact that K(u) = up we have

X = 2c1x + c2x(p− ν) + c3, T = 2c1t− c2νt + c4, Y = c1y + c5, U = c2u.

So, the Lie algebra is

Γ1, Γ2, Γ3, Γ4, Γ23 = −νt ∂
∂t

+ x(p− ν)
∂

∂x
+ u

∂

∂u
.

Subcase 3.2: K(u) = u−1.

In this subcase

X = 2c1x− 2c2x + c3, T = 2c1t + c4, Y = c1y + c2νy + c5, U = 2c2u.
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Therefore, the Lie algebra is five-dimensional spanned by

Γ1, Γ2, Γ3, Γ4, Γ24 = −2x
∂

∂x
+ νy

∂

∂y
+ 2u

∂

∂u
.

Case 4. F (u) = u−
1
2 .

In this case after some calculations we deduce that K(u) = u− 1
2 and

X = 2c1x+2c2x+ c3, T = 2c1t+ c4x+ c5, Y = c1y+ c2y+ c6, U = −4c2u−2c4
√
u.

So, the Lie algebra is six-dimensional given by

Γ1, Γ2, Γ3, Γ4, Γ25 = 2x
∂

∂x
+ y

∂

∂y
− 4u

∂

∂u
, Γ26 = x

∂

∂t
− 2

√
u
∂

∂u
.

Case 5. F (u) = e

∫ µdu

(φ+
p
2−r)u

(φ+ p
2
−r)u .

In this case we deduce that K(u) = [uφ(u)]′ where u = (φ2 + pφ+ q)−1/2e
∫

rdu
φ2+pφ+q and

X = 2c1x +
[(p

2
+ r + µ

)

x− qt
]

c2 + c3, T = 2c1t+
[

x +
(

r + µ− p

2

)

t
]

c2 + c4,

Y = c1y + c5, U = c2

(

r − p

2
− φ

)

u.

Hence, the Lie algebra is five-dimensional given by

Γ1, Γ2, Γ3, Γ4,

Γ27 =
[

x+
(

r + µ− p

2

)

t
] ∂

∂t
+

[(p

2
+ r + µ

)

x− qt
] ∂

∂x
+

(

r − p

2
− φ

)

u
∂

∂u
.

Case 6. F (u) = 1.

Using the fact that F (u) = 1 we deduce that K(u) has the following forms:

(i) K(u) = eu;

(ii) K(u) = u.

Subcase 6.1: K(u) = eu.

In this subcase after some calculations we get

X = 2c1x + c2x + c3, T = 2c1t+ c4, Y = c1y + c5, U = c2.

So, the Lie algebra is

Γ1, Γ2, Γ3, Γ4, Γ28 = x
∂

∂x
+

∂

∂u
.
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Subcase 6.2: K(u) = u.

In this subcase we have

X = 2c1x + c2x + c3t+ c4, T = 2c1t+ c5, Y = c1y + c6, U = c2u− c3.

Hence the Lie algebra is six-dimensional given by

Γ1, Γ2, Γ3, Γ4, Γ20, Γ28 = x
∂

∂x
+ u

∂

∂u
.

In Table 4.1 we summarize the Lie symmetries for the different forms of D(u), F (u) and

K(u).

Table 4.1: Group classification of ut = (D(u)ux) + (F (u)uy)y +K(u)ux

N D(u) F (u) K(u) Amax

1 ∀ ∀ ∀ Aker = 〈 ∂
∂t ,

∂
∂x ,

∂
∂y 〉

2 ∀ ∀ 0 Aker + 〈2t ∂
∂t + x ∂

∂x + y ∂
∂y 〉

3 ∀ εD 0 Aker + 〈2t ∂
∂t + x ∂

∂x + y ∂
∂y , y

∂
∂x − εx ∂

∂y 〉

4 0 ∀ ∀ Aker + 〈2t ∂
∂t + 2x ∂

∂x + y ∂
∂y 〉

5 0 eu eµu Aker + 〈2t ∂
∂t + 2x ∂

∂x + y ∂
∂y , 2µx

∂
∂x + y ∂

∂y + 2 ∂
∂u 〉

6 0 eu u Aker + 〈2t ∂
∂t + 2x ∂

∂x + y ∂
∂y ,−2t ∂

∂x + y ∂
∂y + 2 ∂

∂u 〉

7 0 uν up Aker + 〈2t ∂
∂t + 2x ∂

∂x + y ∂
∂y , x(p− ν) ∂

∂x − νt ∂
∂t + u ∂

∂u 〉

8 0 un u−1 Aker + 〈2t ∂
∂t + 2x ∂

∂x + y ∂
∂y ,−2x ∂

∂x + ν ∂
∂y + 2u ∂

∂u 〉

9 0 u−
1
2 u−

1
2 Aker + 〈2t ∂

∂t + 2x ∂
∂x + y ∂

∂y , 2x
∂
∂x + y ∂

∂y − 4u ∂
∂u ,

x ∂
∂t − 2

√
u ∂

∂u 〉

10 0 e

∫ µdu

(φ+
p
2
−r)u

(φ+ p
2−r)u [uφ(u)]′ Aker + 〈2t ∂

∂t + 2x ∂
∂x + y ∂

∂y , [(
p
2 + r + µ)x − qt) ∂

∂x+

+[x+ (r + µ− p
2 )t] ∂

∂t + (r − p
2 − φ)u ∂

∂u 〉

11 0 1 eu Aker + 〈2t ∂
∂t + 2x ∂

∂x + y ∂
∂y , x

∂
∂x + ∂

∂u

12 0 1 u Aker + 〈2t ∂
∂t + 2x ∂

∂x + y ∂
∂y , x

∂
∂x + u ∂

∂u , t
∂
∂x − ∂

∂u 〉
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13 eµu εeνu epu Aker + 〈2t(2p− µ) ∂
∂t + 2x(p− µ) ∂

∂x+

+y(2p− µ− ν)y ∂
∂y − 2 ∂

∂u 〉

14 eµu εeνu u Aker + 〈2µt ∂
∂t + 2(µx− t) ∂

∂x + (µ+ ν)y ∂
∂y + 2 ∂

∂u 〉

15 eµu εeνu 0 Aker + 〈2νt ∂
∂t + x(ν − µ) ∂

∂x − 2 ∂
∂u , µx

∂
∂x + νy ∂

∂y + 2 ∂
∂u 〉

16 eu εeu 0 Aker + 〈t ∂
∂t − ∂

∂u , x
∂
∂x + y ∂

∂y + 2 ∂
∂u , y

∂
∂x − εx ∂

∂y 〉

17 uµ εuν up Aker + 〈2t(2p− µ) ∂
∂t + 2x(p− µ) ∂

∂x+

+y(2p− ν − µ) ∂
∂y − 2u ∂

∂u 〉

18 uµ εuν logu Aker + 〈2µt ∂
∂t + 2(µx− t) ∂

∂x + (ν + µ)y ∂
∂y + 2u ∂

∂u 〉

19 uµ εuν 0 Aker + 〈2t ∂
∂t + x ∂

∂x + y ∂
∂y , µx

∂
∂x + νy ∂

∂y + 2u ∂
∂u 〉

20 uµ εuµ 0 Aker + 〈2t ∂
∂t + x ∂

∂x + y ∂
∂y , µx

∂
∂x + µy ∂

∂y + 2u ∂
∂u ,

y ∂
∂x − εx ∂

∂y 〉

21 u−2 ε u−2 Aker + 〈2t ∂
∂t + y ∂

∂y + u ∂
∂u , e

−x ∂
∂x + ue−x ∂

∂u 〉

22 1 u−
4
3 0 Aker + 〈4t ∂

∂t + 2x ∂
∂x + 3u ∂

∂u ,

−2y ∂
∂y + 3u ∂

∂u ,−y2 ∂
∂y + 3yu ∂

∂u 〉

23 1 ε u Aker + 〈2t ∂
∂t + x ∂

∂x + y ∂
∂y − u ∂

∂u , t
∂
∂x − ∂

∂u 〉

Here ε = ±1, p 6= 0, in case 10 u = (φ2 + pφ+ q)−1/2e
∫

rdu
φ2+pφ+q .
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4.2 Similarity reductions of ut = uyy − 2uux

We consider the two-dimensional diffusion-advection equation of the form

ut = Duyy − v0
d

du
[u(1 − u)]ux. (4.25)

This equation describes the flow of particles in a lattice fluid past an impenetrable obstacle

[4,5], where u(x, y, t) is the particle concentration and D and v0 are constants representing

the diffusion coefficient and the drift velocity, respectively.

Using the transformation

x′ = v0(t− x), y′ =
√
Dy, t′ = t, u′ = u,

equation (4.25) can be mapped into the following equation

ut = uyy − 2uux. (4.26)

This transformation is a special case of the equivalence transformations of

ut = Duyy −K(u)ux,

given by

x′ = c1x + c2t + c3, y′ = εc4

√

D′

D
y + c5, t′ = c24t + c6, u′ = c7u+ c8.

In this section we construct all possible similarity solutions of (4.26). Similarity solu-

tions are obtained by solving the invariant surface condition

Xux + Y uy + Tut = U.

These are transformations that reduce the number of independent variables by one. Hence,

in the present work similarity solutions will transform (4.26) into a PDE with two inde-

pendent variables using its Lie symmetries

Γ1 =
∂

∂t
, Γ2 =

∂

∂x
, Γ3 =

∂

∂y
, Γ4 = 2t

∂

∂t
+ 2x

∂

∂x
+ y

∂

∂y
, Γ5 = 2t

∂

∂x
+

∂

∂u
.

In order to achieve this we need to construct the optimal system following the method of

Ovsiannikov [53,55]. First we make the commutator table for the Lie algebra Γi and then

using the Lie series we construct a table showing the separate adjoint actions for each
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element Γi acting on all the rest of elements. Finally, this table enables us to derive the

optimal system that provides all possible similarity solutions. So, in the next tables we

present the commutator table for the Lie algebra Γi, the adjoint table for the Lie algebra

and the table for the infinitesimal generator ∆i of the optimal system, the similarity

variables and the similarity solutions.

Table 4.2: Commutator table for the Lie algebra {Γi} of ut = uyy − 2uux

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ1 0 0 0 2Γ1 0 2Γ2

Γ2 0 0 0 2Γ2 Γ2 0

Γ3 0 0 0 Γ3 0 0

Γ4 −2Γ1 −2Γ2 −Γ3 0 0 0

Γ5 0 −Γ2 0 0 0 −Γ6

Γ6 −2Γ2 0 0 0 Γ6 0

Table 4.3: Adjoint table for the Lie algebra {Γi} of ut = uyy − 2uux

Ad Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ1 Γ1 Γ2 Γ3 Γ4 − 2εΓ1 Γ5 Γ6 − 2εΓ2

Γ2 Γ1 Γ2 Γ3 Γ4 − 2εΓ2 Γ5 − εΓ2 Γ6

Γ3 Γ1 Γ2 Γ3 Γ4 − εΓ3 Γ5 Γ6

Γ4 e2εΓ1 e2εΓ2 eεΓ3 Γ4 Γ5 Γ6

Γ5 Γ1 eεΓ2 Γ3 Γ4 Γ5 eεΓ6

Γ6 Γ1 + 2εΓ2 Γ2 Γ3 Γ4 Γ5 − εΓ6 Γ6
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Table 4.4: Infinitesimal generators 〈∆i〉 of the optimal system, similarity variables, simi-

larity solutions

〈∆i〉 η ξ similarity solution

1 〈Γ4 + aΓ5〉 yt−
1
2 xt−

2+a
2 u = t

a
2 φ(η, ξ)

2 〈Γ4 + δΓ6〉 yt−
1
2

x
t − δ ln t u = − δ

2 ln t+ φ(η, ξ)

3 〈Γ5 + δΓ3 + aΓ1〉 t− δay xe−δy u = xφ(η, ξ)

4 〈Γ5 + εΓ1〉 y t− ε logx u = xφ(η, ξ)

5 〈Γ1 + aΓ6 + εΓ3〉 y − εt x− at2 u = −at+ φ(η, ξ)

6 〈Γ6 + εΓ3〉 y − εx
2t t u = − x

2t + φ(η, ξ)

7 〈Γ2 + εΓ3〉 y − εx t u = φ(η, ξ)

8 〈Γ3〉 x t u = φ(η, ξ)

ε = −1, 0, 1 and δ = ±1.

We use the optimal system in Table 4.4 to derive the reduced PDE and then we classify

the Lie symmetries for this PDE. We employ the Lie symmetries of the reduced PDE to

derive similarity transformations that map the reduced PDEs into ODEs. Solutions of

these ODEs lead to similarity solutions of (4.26). Next we present some examples and we

ignore the trivial case that corresponds to the generator 〈Γ3〉. The solutions of those that

can be solved analytically are presented in the next section.

Case 1. The similarity solution that corresponds to the generator Γ4 + aΓ5 reduces

(4.26) to

2φηη − 4φφξ + ηφη + (2 + a)ξφξ − aφ = 0. (4.27)

Equation (4.27) admits the Lie symmetry

X1 = ξ
∂

∂ξ
+ φ

∂

∂φ
,

which produces the similarity solution

φ = ξψ(z), z = η,

that reduces (4.27) to

d2ψ

dz2
+

1

2
z
dψ

dz
− 2ψ2 + ψ = 0. (4.28)
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A second symmetry exists if a = 0 or a = −2. If a = 0 equation (4.27) admits the Lie

symmetries X1 and

X2 = 2
∂

∂ξ
+

∂

∂φ
.

The generator X2 + µX1, µ 6= 0 produces the similarity solution

φ =
1

µ
(2 + µξ)ψ(z) − 1

µ
, z = η,

that maps (4.27) into ODE (4.28). The generator X2 leads to the similarity solution

φ =
1

2
ξ + ψ(z), z = η,

that reduces (4.27) into

d2ψ

dz2
+

1

2
z
dψ

dz
− ψ = 0. (4.29)

If a = −2 equation (4.27) admits the Lie symmetries X1 and

X2 =
∂

∂ξ
.

The generator X2 + µX1 leads to the similarity solution

φ = (1 + µξ)ψ(z), z = η,

that reduces (4.27) to

d2ψ

dz2
+

1

2
z
dψ

dz
− 2µψ2 + ψ = 0. (4.30)

Case 2. The similarity solution that corresponds to the generator Γ4 + δΓ6 reduces

(4.26) to

2φηη + (2ξ + 2δ − 4φ)φξ + ηφη = δ, (4.31)

which admits the Lie symmetry

X1 = 2
∂

∂ξ
+

∂

∂φ
.

The above Lie symmetry leads to the similarity solution

φ =
1

2
ξ + ψ(η),
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that transforms (4.31) into the ordinary differential equation (4.29). It turns out that

the similarity solution obtained here is the same as the one produced by the generator

X2 + µX1 in the case 1, where a = 0.

Case 3. The similarity solution that corresponds to the generator Γ5 + δΓ3 + aΓ1

reduces (4.26) to

a2φηη + 2aξφηξ + ξ2φξξ + (1 − 2φ)ξφξ − φη − 2φ2 = 0,

and using the change of variables

ξ′ = ξ − a log η, η′ = ξ + a log η,

where a 6= 0, this parabolic PDE simplifies to

4a2φη′η′ + (a− 1)(φη′ + φξ′) − 2aφφη′ − 2φ2 = 0. (4.32)

Equation (4.32) admits two Lie symmetries

X1 =
∂

∂η′
, X2 =

∂

∂ξ′
,

which are simply translations in the independent variables. The optimal system is

〈X1 + µX2, X2〉. The generator X1 + µX2 produces the similarity solution

φ(η′, ξ′) = ψ(z), z = ξ′ − µη′,

that reduces (4.32) to the ODE

4a2µ2 d2ψ

dz2
+ (a− 1)(1 − µ)

dψ

dz
+ 2aµψ

dψ

dz
− 2ψ2 = 0. (4.33)

The generator X2 produces the similarity solution

φ(η′, ξ′) = ψ(z), z = η′,

that reduces (4.32) to the ODE

4a2 d2ψ

dz2
+ (a− 1)

dψ

dz
− 2aψ

dψ

dz
− 2ψ2 = 0. (4.34)

In the case where a = 0, we have the following PDE

ξ2φξξ + (1 − 2φ)ξφξ − φη − 2φ2 = 0, (4.35)
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which admits the Lie symmetries

X1 =
∂

∂η
, X2 = ξ

∂

∂ξ
.

The generator X2 + µX1 leads to the similarity solution

φ(η, ξ) = ψ(z), z = η − µ log ξ,

that reduces (4.35) to

µ2 d2ψ

dz2
+ (µ− 1)

dψ

dz
− µψ

dψ

dz
− 2ψ2 = 0, (4.36)

and from the generator X1 we obtain

φ(η, ξ) = ψ(z), z = ξ,

which reduces (4.35) to

z2 d2ψ

dz2
+ z

dψ

dz
− 2zψ

dψ

dz
− 2ψ2 = 0,

and using the transformation z = ew, this ODE becomes a constant coefficient equation

d2ψ

dw2
− 2ψ

dψ

dw
− 2ψ2 = 0. (4.37)

Case 4. The similarity solution that corresponds to the generator Γ5 + εΓ1 reduces

(4.26) to

φηη + 2εφφξ − φξ − 2φ2 = 0. (4.38)

If ε 6= 0, equation (4.38) admits two Lie symmetries

X1 =
∂

∂η
, X2 =

∂

∂ξ
,

with the optimal system: 〈X1+µX2, X2〉. The generator X1+µX2 produces the similarity

solution

φ(η, ξ) = ψ(z), z = ξ − µη,

that reduces (4.38) to the ODE

µ2 d2ψ

dz2
− dψ

dz
+ 2εψ

dψ

dz
− 2ψ2 = 0. (4.39)
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The generator X2 produces the similarity solution

φ(η, ξ) = ψ(z), z = η,

that reduces (4.38) to the ODE

d2ψ

dz2
− 2ψ2 = 0. (4.40)

If ε = 0, then the symmetry Lie algebra is three-dimensional and is spanned by the

generators

X1 =
∂

∂η
, X2 =

∂

∂ξ
, X3 = η

∂

∂η
+ 2ξ

∂

∂ξ
− 2φ

∂

∂φ
.

Here the optimal system is: 〈X3, X2+αX1, X1〉. The generatorX3 produces the similarity

solution

φ(η, ξ) =
1

ξ
ψ(z), z = ηξ−

1
2 ,

that reduces (4.38) to the ODE (4.28). The generator X2 + αX1 produces the similarity

solution

φ(η, ξ) = ψ(z), z = η − αξ,

that reduces (4.38) to the ODE

d2ψ

dz2
+ α

dψ

dz
− 2ψ2 = 0. (4.41)

The generator X1 produces the similarity solution

φ(η, ξ) = ψ(z), z = ξ,

that reduces (4.38) to the ODE

dψ

dz
+ 2ψ2 = 0.

Solving this ODE leads to the similarity solution u(x, y, t) = x
2t+c

of (4.26). This solution

can be obtained, using the similarity transformation that corresponds to the generator Γ3

(Table 4.4, entry 8).

50

Elen
a D

em
etr

iou



Case 5. The similarity solution that corresponds to the generator Γ1 + aΓ6 + εΓ3

reduces (4.26) to

φηη + εφη − 2φφξ = a. (4.42)

If ε 6= 0, that is ε = δ = ±1, equation (4.42) admits two Lie symmetries

X1 =
∂

∂η
, X2 =

∂

∂ξ
.

The optimal system is: 〈X1 +µX2, X2〉. The generator X1 +µX2 produces the similarity

solution

φ(η, ξ) = ψ(z), z = ξ − µη,

that reduces (4.42) to the ODE

µ2 d2ψ

dz2
− δµ

dψ

dz
− 2ψ

dψ

dz
= a. (4.43)

The generator X2 produces the similarity solution

φ(η, ξ) = ψ(z), z = η,

that reduces (4.42) to the ODE

d2ψ

dz2
+ δ

dψ

dz
= a,

which produces the similarity solution u(x, y, t) = Ae−δ(y−δt) + δay +B of (4.26).

If ε = 0, then the symmetry Lie algebra is three-dimensional and is spanned by

X1 =
∂

∂η
, X2 =

∂

∂ξ
, X3 = η

∂

∂η
+ 4ξ

∂

∂ξ
+ 2φ

∂

∂φ
.

The optimal system for these Lie symmetries is: 〈X3, X2 +αX1, X1〉. The generator X3

produces the similarity solution

φ(η, ξ) = η2ψ(z), z =
η4

ξ
,

that reduces (4.42) to the ODE

8z2 d2ψ

dz2
+ 14z

dψ

dz
+ z2ψ

dψ

dz
+ ψ =

a

2
. (4.44)

51

Elen
a D

em
etr

iou



The generator X2 + αX1 produces the similarity solution

φ(η, ξ) = ψ(z), z = η − αξ,

that reduces (4.42) to the ODE

d2ψ

dz2
+ 2αψ

dψ

dz
= a. (4.45)

The generator X1 produces the similarity solution

φ(η, ξ) = ψ(z), z = ξ,

that reduces (4.42) to the ODE

2ψ
dψ

dz
= a,

which leads to the similarity solution u(x, y, t) =
√

a(x− at)2 + c+ at of (4.26).

Case 6. The similarity transformation that corresponds to the generator Γ6 + εΓ3

transforms (4.26) to

φηη +
ε

ξ
φφη − φξ −

1

ξ
φ = 0. (4.46)

If ε 6= 0, then equation (4.46) admits three Lie symmetries

X1 =
∂

∂η
, X2 =

ε

ξ

∂

∂η
+

1

ξ

∂

∂φ
, X3 = η

∂

∂η
+ 2ξ

∂

∂ξ
+ φ

∂

∂φ
,

with optimal system: 〈X3, X1 + αX2, X2〉. The generator X3 produces the similarity

solution

φ(η, ξ) = ηψ(z), z = ηξ−
1
2 ,

that reduces (4.46) to the ODE

z
d2ψ

dz2
+ (2 +

1

2
z2)

dψ

dz
+ εz2ψ

dψ

dz
+ εzψ2 − zψ = 0. (4.47)

The generator X1 + αX2 produces the similarity solution

φ(η, ξ) =
ξ

ξ + εα

(

α

ξ
η + ψ(z)

)

, z = ξ,
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that reduces (4.46) to the ODE

z
dψ

dz
+ ψ = 0. (4.48)

The generator X2 produces the similarity solution

φ(η, ξ) =
1

ε
η + ψ(z), z = ξ,

that reduces (4.46) to the ODE

dψ

dz
= 0,

which gives u(x, y, t) = 1
2
y + c.

If ε = 0, then equation (4.46) becomes a linear PDE that admits an infinite dimensional

Lie group

X1 =
∂

∂η
, X2 =

∂

∂ξ
− φ

ξ

∂

∂φ
, X3 = 2ξ

∂

∂η
− φη

∂

∂φ
, X4 = 2ξ

∂

∂η
+ η

∂

∂η
,

X5 = 4ξη
∂

∂η
+ 4ξ2 ∂

∂ξ
− (η2 + 6ξ)φ

∂

∂φ
, X6 = φ

∂

∂φ
, Xh = h(η, ξ)

∂

∂φ
,

where h(ξ, η) satisfies the linear equation hηη − hξ − h/ξ = 0. We point out that if ε = 0,

then the transformation

φ =
ψ

ξ
,

maps (4.46) into the linear heat equation

ψξ − ψηη = 0.

Hence, we conclude that

u(x, y, t) =
1

2

x

t
+

1

t
ψ(y, t),

is a solution of (4.26), where ψ(y, t) is a solution of the linear diffusion equation

ψt − ψyy = 0.

Case 7. Finally, the generator Γ2+εΓ3 produces a similarity solution that maps (4.26)

into the well-known Burgers equation

φηη + 2εφφη − φξ = 0, (4.49)
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which among other applications is of considerable interest in nonlinear acoustics [19]. In

the next section we use known solutions of Burgers equation to derive similarity solutions

for equation (4.26). In fact, the similarity solutions of (4.26) presented in [27] can be

obtained from known solutions of Burgers equation which can be found, for example,

in [33, 59].

4.3 Exact solutions for ut = uyy − 2uux

In this section we derive exact similarity solutions for equation (4.26) by considering

certain ODEs which have been obtained in the previous section. Solution of this ODE

yields exact solutions of (4.26).

Multiplying equation (4.40) by dψ
dz

and integrating twice, we obtain its solution in an

implicit form. This in turn, leads to the steady state similarity solution of (4.26),

y = ±
∫

(

4

3
χ3 + c1

)− 1
2

dχ + c2, χ =
u

x
.

The solution of the ODE (4.48) produces the similarity solution

u(x, y, t) =
x+ 2αy + 2αc

2(t+ αε)
.

Now we consider the ODE (4.43). If a 6= 0, we obtain the similarity solution

u(x, y, t) = at− µ2W ′(z)

W (z)
, z = x− µy + εµt− at2,

where

W (z) = e
δz
2µ
√
χ

[

c1J1/3

(

2

3µ

√

a

µ
χ3/2

)

+ c2Y1/3

(

2

3µ

√

a

µ
χ3/2

)]

, χ = z +
µ(4c− 1)

4a

where J1/3 and Y1/3 are Bessel functions of first and second kind, respectively. In the

case where a = 0, from the solution of the ODE (4.43) we have the following similarity

solutions of (4.26), depending on the form of the first constant of integration

u(x, y, t) =
µ2

B − x+ µy − εµt
− 1

2
δµ,

u(x, y, t) = A tan

(

A

µ2
(x− µy + εµt) +B

)

,

u(x, y, t) = A tanh

(

A

µ2
(x− µy + εµt) +B

)

.
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We can obtain similar results to the above, using ODE (4.45). However the solutions

are of the steady state form.

The general solution of (4.29) is expressed in terms of the degenerate hypergeometric

functions [2]. We derive the similarity solution

u(x, y, t) =
1

2

x

t
+ c1Φ

(

−1,
1

2
;−1

4

y2

t

)

+ c2Ψ

(

−1,
1

2
;−1

4

y2

t

)

,

where Φ(a, b;χ) and Ψ(a, b;χ) are the degenerate hypergeometric functions

Φ(a, b;χ) = 1+
∞

∑

k=1

(a)k
(b)k

χk

k!
, Ψ(a, b;χ) =

Γ(1 − b)

Γ(a− b + 1)
Φ(a, b;χ)+

Γ(b− 1)

Γ(a)
χ1−bΦ(a−b+1, 2−b;χ),

where (a)k = a(a + 1) . . . (a + k − 1), (a)0 = 1 and Γ(a) =
∫ ∞
0

e−tta−1dt is the gamma

function.

Now we turn into case 7 of the previous section. We use known solutions of Burg-

ers equation [59] and the corresponding similarity transformation, to derive similarity

solutions for equation (4.26). We obtain the following list of solutions:

u(x, y, t) =
2ε(y − εx) + Aε

(y − εx)2 + 2A(y − εx) + 2t+B
,

u(x, y, t) =
3ε[(y − εx)2 + 2t+ A]

(y − εx)3 + 6(y − εx)t+ 3A(y − εx) +B
,

u(x, y, t) =
ελ

1 + A exp(−λ2t− λ(y − εx))
,

u(x, y, t) =
ελ

2(λ2t+ A)

[

2 tanh

(

λ(y − εx) +B

λ2t+ A

)

− λ(y − εx) −B

]

,

u(x, y, t) =
ελ cos[λ(y − εx) + A]

B exp(λ2t) + sin[λ(y − εx) + A]
,

u(x, y, t) =
εA

√

π(t + λ)
exp

[

−(y − εx +B)2

4(t + λ)

] [

Aerf

(

y − εx+B

2
√
t + λ

)

+ C

]−1

,

where in the last solution, erfz = 2
π

∫ z

0
exp(−ξ2)dξ is the error function. Furthermore, if

we consider the Cauchy problem with initial condition of the form u(x, y, 0) = f(η),

η = y − εx, then using the corresponding solution of Burgers equation [31], we find the

solution of (4.26)

u(x, y, t) = ε
∂

∂η
lnF (η, t),

where

F (η, t) =
1√
4πt

∫ ∞

−∞
exp

[

−(η − χ)2

4t
− 1

2

∫ χ

0

f(χ′)dχ′

]

dχ.
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Note 4.1. The transformation

θ(χ) =
dψ

dw
, χ = ψ2,

maps ODE (4.37) into an Abel equation of the second kind

θ
dθ

dχ
− θ =

√
χ.

Similar transformations exist for equations (4.33), (4.34), (4.36), (4.39) and (4.41) which

map them into an Abel equation of the second kind.

Note 4.2. Some of the above similarity solutions do no depend on the time t. That is,

these solutions satisfy the PDE

ux =
uyy
2u

,

which can be transformed into a nonlinear diffusion type equation

vx =
[

v−
1
2vy

]

y
,

by the mapping u 7→ 1
2

√
v. This diffusion type equation admits four Lie symmetries [33,56]

which can be employed to derive further steady state similarity solutions for equation

(4.26). If u = θ(x, y) is a steady state solution of (4.26), then using note 4.1 we deduce

that u = θ(x + 2at, y) − a is also a solution of (4.26).

Note 4.3. Any solution of the linear heat equation ut = uyy yields a solution of the

equation (4.26).

4.4 Similarity reductions of (2+1)-dimensional

Burgers equation

Consider the 2-dimensional Burgers equation (Table 4.1 equation 23, ε = 1)

ut = uxx + uyy + uux. (4.50)

We derive similarity reductions using one- and two-dimensional subalgebras of its max-

imal Lie invariance algebra. One-dimensional subalgebras enable us to derive similarity
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reductions that reduce (4.50) into a partial differential equations in two independent vari-

ables. These equations are also studied from Lie’s point of view. That is, we classify their

Lie symmetries. The symmetries lead to reductions that transform the reduced partial

differential equations into ordinary differential equations. Two-dimensional subalgebras

enable us to derive similarity reductions that reduce (4.50) directly into an ordinary dif-

ferential equation. Both approaches are examined in the following two subsections. The

first approach was also employed in [25, 62].

4.4.1 One-dimensional subalgebras

Equation (4.50) admits the Lie symmetry algebra spanned by the following generators

Γ1 =
∂

∂t
, Γ2 =

∂

∂x
, Γ3 =

∂

∂y
, Γ4 = 2t

∂

∂t
+x

∂

∂x
+ y

∂

∂y
−u

∂

∂u
, Γ5 = t

∂

∂x
− ∂

∂u
.

We classify the similarity reductions that reduce (4.50) into a partial differential equation

with two independent variables. In Tables 4.5 and 4.6 we give commutation relations and

adjoint representations for the Lie symmetries of equation (4.50). Using these, then we

derive the optimal system of one-dimensional subalgebras and the Lie symmetries of the

reduced equations.

Table 4.5: Commutator table for the Lie algebra {Γi} of ut = uxx + uyy + uux

Γ1 Γ2 Γ3 Γ4 Γ5

Γ1 0 0 0 2Γ1 Γ2

Γ2 0 0 0 Γ2 0

Γ3 0 0 0 Γ3 0

Γ4 −2Γ1 −Γ2 −Γ3 0 Γ5

Γ5 −2Γ2 0 0 −Γ5 0
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Table 4.6: Adjoint table for the Lie algebra {Γi} of ut = uxx + uyy + uux

Ad Γ1 Γ2 Γ3 Γ4 Γ5

Γ1 Γ1 Γ2 Γ3 Γ4 − 2εΓ1 Γ5 − 2εΓ2

Γ2 Γ1 Γ2 Γ3 Γ4 − 2εΓ2 Γ5

Γ3 Γ1 Γ2 Γ3 Γ4 − εΓ3 Γ5

Γ4 e2εΓ1 eεΓ2 eεΓ3 Γ4 e−εΓ5

Γ5 e2εΓ1 Γ2 Γ3 Γ4 + εΓ5 Γ5

Table 4.7: Subalgebras 〈∆i〉, similarity variables, similarity solutions and reduced equa-

tions of (4.50)

〈∆i〉 η ξ similarity solution reduced equations

1 〈Γ4〉 xt−
1
2 yt−

1
2 u = 1

xφ(η, ξ) 2η2φηη + 2η2φξξ + (2ηφ− 4η + η3)φη

+η2ξφξ + 4φ− 2φ2 = 0

2 〈Γ5 + δ1Γ1 + δ3Γ3〉 t2 − 2δ1x y − δ1δ3t u = φ(η, ξ) − δ3y 4φηη + φξξ − 2(ξ + δ1φ)φη

+δ1δ3φξ = 0

3 〈Γ5 + εΓ3〉 t y − εx
t u = φ(η, ξ) − x

t (ε2 + η2)φξξ − εηφφξ − η2φη − ηφ = 0

4 〈Γ5 + δ1Γ1〉 y t2 − 2δ1x u = φ(η, ξ) − δ1t 4δ1φξξ + δ1φηη − 2φφξ + 1 = 0

5 〈Γ2 + δ1Γ1 + δ3Γ3〉 x− δ1t y − δ3x u = φ(η, ξ) φηη + 2φξξ − 2δ3φηξ + (φ+ δ1)φη

−δ3φφξ = 0

6 〈Γ2 + δΓ1〉 y x− δ1t u = φ(η, ξ) φξξ + φηη + (φ+ δ1)φξ = 0

7 〈Γ2 + εΓ3〉 t y − εx u = φ(η, ξ) (ε2 + 1)φξξ − εφφξ − φη = 0

8 〈Γ1 + εΓ3〉 x y − εt u = φ(η, ξ) φηη + φξξ + φφη + εφξ = 0

9 〈Γ3〉 t x u = φ(η, ξ) φξξ + φφξ − φη = 0

ε = −1, 0, 1 and δ1, δ3 = ±1.

We note that reduced equations in Table 4.8 in the entries 7a and 9 are the well known

Burgers equations. Also equations in the entries 3b and 7b are linear equations. The

lists of known exact solutions of these equations can be found in [36, 59]. Therefore, in

the subsequent analysis we do not consider the latter equations and also equation in the

entry 1 since it does not admit Lie symmetries. We use the symmetries of the remaining

equations in Table 4.8 to reduce them to ordinary equations. Exact solutions of the

ordinary equations provide, in turn, exact solutions for the original equation (4.50).
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Table 4.8: Symmetries of the reduced equations

N Reduced equation Symmetry algebra

1 2η2φηη + 2η2φξξ + (2ηφ− 4η + η3)φη No symmetries

+η2ξφξ + 4φ− 2φ2 = 0

2 4φηη + φξξ − 2(ξ + δ1φ)φη + δ1δ3φξ = 0 〈 ∂
∂η , δ1

∂
∂ξ − ∂

∂φ 〉
3a (ε2 + η2)φξξ − εηφφξ − η2φη − ηφ = 0 (ε 6= 0) 〈 ∂

∂ξ , η
−1(ε ∂

∂ξ − ∂
∂φ )〉

3b η2φξξ − η2φη − ηφ = 0 (ε = 0) 〈 ∂
∂ξ , 2η

∂
∂η + ξ ∂

∂ξ , φ
∂

∂φ , 2η
∂
∂ξ − ξφ ∂

∂φ , λ
1 ∂

∂φ ,

∂
∂η − φ

η
∂

∂φ , 4η
2 ∂

∂η + 4ηξ ∂
∂ξ − (6ηφ+ ξ2φ) ∂

∂φ 〉
4 4δ1φξξ + δ1φηη − 2φφξ + 1 = 0 〈 ∂

∂ξ ,
∂
∂η 〉

5 φηη + 2φξξ − 2δ3φηξ + (φ + δ1)φη − δ3φφξ = 0 〈 ∂
∂ξ ,

∂
∂η 〉

6 φξξ + φηη + (φ+ δ1)φξ = 0 〈 ∂
∂ξ ,

∂
∂η , ξ

∂
∂ξ + η ∂

∂η − (φ+ δ1)
∂

∂φ〉
7a (ε2 + 1)φξξ − εφφξ − φη = 0 (ε 6= 0) 〈 ∂

∂ξ ,
∂
∂η , ξ

∂
∂ξ + 2η ∂

∂η − φ ∂
∂φ , εη

∂
∂ξ + ∂

∂φ ,

εη2 ∂
∂η + εηξ ∂

∂ξ + (ξ − εηφ) ∂
∂φ 〉

7b φξξ − φη = 0 (ε = 0) 〈 ∂
∂ξ ,

∂
∂η , ξ

∂
∂ξ + 2η ∂

∂η , φ
∂

∂φ , 2η
∂
∂ξ − ξφ ∂

∂φ ,

4η2 ∂
∂η + 4ηξ ∂

∂ξ − (ξ2 + 2η)φ ∂
∂φ , λ

2 ∂
∂φ 〉

8 φηη + φξξ + φφη + εφξ = 0 〈 ∂
∂ξ ,

∂
∂η 〉

9 φξξ + φφξ − φη = 0 〈 ∂
∂ξ ,

∂
∂η , ξ

∂
∂ξ + 2η ∂

∂η − φ ∂
∂φ , η

∂
∂ξ − ∂

∂φ ,

η2 ∂
∂η + ηξ ∂

∂ξ − (ξ + ηφ) ∂
∂φ 〉

Here λi = λi(η, ξ), i = 1, 2 are solutions of the linear equations λ1 = η(λ1
ξξ − λ1) and λ2

η = λ2
ξξ

correspondingly.
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Equation 2 of Table 4.8 admits a two-dimensional symmetry algebra spanned by sym-

metry generators X1 = ∂
∂η

, X2 = δ1
∂
∂ξ

− ∂
∂φ

. Its optimal system of one-dimensional

subalgebras consists of 〈X1 + aX2〉 and 〈X2〉. If a 6= 0, generator X1 + aX2 leads to the

similarity solution

φ = −aη + ψ(ν), ν = ξ − δ1aη,

which reduces equation 4.8.2 to

(4a2 + 1)
d2ψ

dν2
+ (2δ1aν + 2aψ + δ1δ3)

dψ

dν
+ 2aν + 2δ1aψ = 0.

Making the substitution w = ψ + δ1ν and integrating once we obtain

dw

dν
= Aw2 +Bw + Cν +D, (4.51)

where A = −a
4a2+1

, B = − δ1δ3
4a2+1

, C = δ3
4a2+1

, and D is an integration constant. In order

to solve (4.51), we make a further transformation

w = − θν
Aθ

,

which maps (4.51) into

d2θ

dν2
− B

dθ

dν
+ (ACν + AD)θ = 0,

having the following solution

θ = exp
(Bν

2

)√
p
[

C1J 1
3

(

2
3

√
ACp3/2

)

+ C2Y 1
3

(

2
3

√
ACp3/2

)]

.

Here p = ν + 4AD−B2

4AC
and J 1

3
and Y 1

3
are the Bessel functions of first and second kind,

respectively. Here and below C1, C2, c1 and c2 are arbitrary constants. Collecting all the

subsequent results, we derive the similarity solution for equation (4.50),

u(t, x, y) = δ3t− (δ1 + δ3)y −
B

2A
− 1

2pA
−

−
√

Cp

A





C1J
′
1
3

(2
3

√
ACp3/2) + C2Y

′
1
3

(2
3

√
ACp3/2)

C1J 1
3
(2

3

√
ACp3/2) + C2Y 1

3
(2

3

√
ACp3/2)



 , (4.52)

where

A = − a

4a2 + 1
, B = − δ1δ3

4a2 + 1
, C =

δ3
4a2 + 1

,

p = y + 2ax− δ1at
2 − δ1δ3t+

4AD − B2

4AC
.
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Solution (4.52) was also obtained in [25] in terms of Airy functions.

In the case where a = 0, we obtain the solution

u(t, x, y) = c1e
−δ1δ3y+t − δ3y + c2.

The second subalgebra, 〈X2〉, leads to similarity reduction φ = δ1ξ + ψ(ν), ν = η which

reduces 4.8.2 to

4
d2ψ

dν2
− 2δ1ψ

dψ

dν
− δ3 = 0.

Integration gives an equation of form (4.51), with A = δ1
4
, B = 0, C = δ3

4
, which can

be solved to obtain a solution similar to (4.52), where p = t2 − 2δ1x +D/C.

The Lie symmetry algebra of equation 3a of Table 4.8 is spanned by the Lie symmetries

X1 = ∂ξ, X2 = η−1(ε∂ξ − ∂φ). Its inequivalent one-dimensional subalgebras 〈X1 + aX2〉
and 〈X2〉 lead to exact solutions

u =
−x + ay + c

t− εa
and u =

−x− εyt+ c1t + ε2

t
,

respectively.

The optimal system of one-dimensional subalgebras of the maximal Lie invariance

algebra of equation 4 of Table 4.8 leads to two exact solutions of form (4.52) and to the

solution

u = −δ1(t− cy + 1
2
y2 + c1).

Equation 5 of Table 4.8 admits two Lie symmetry algebra 〈X1 = ∂
∂ξ
, X2 = ∂

∂η
〉. Its

inequivalent one-dimensional subalgebras are 〈X1 + aX2〉 and 〈X2〉. The first subalgebra

leads to the similarity reduction φ = ψ(ν), ν = η−aξ that transforms equation 5 of Table

4.8 into

dψ

dν
= Aψ2 +Bψ + C, (4.53)

where A = − (1+aδ3)
2(1+2a2+2δ3a)

, B = − δ1
1+2a2+2δ3a

and C is the integration constant. If A = 0

we obtain exact solution of form

u = c1 exp (t + δ1ay) .
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If A 6= 0, we solve (4.53) and using that

u(t, x, y) = φ(x− δ1t, y − δ3x) = ψ((1 + aδ3)x− ay − δ1t)

we obtain the similarity solution

u(t, x, y) =



















r1−Dr2 exp(A(r1−r2)ν)
1−D exp(A(r1−r2)ν)

, r1 6= r2, r1, r2 ∈ R

− 1
Aν+D

+ r1, r1 = r2, r1, r2 ∈ R

1
2A

[

−B +
√

4AC − B2 tan
(√

4AC−B2ν
2

+D
)]

, r1, r2 complex numbers,

(4.54)

where r1, r2 are the roots of the quadratic Ar2 +Br+C = 0, ν = (1+aδ3)x−ay−δ1t and

D is an arbitrary constant of integration. The first two branches of the solution (4.54)

also appear in [25].

The second subalgebra, 〈X2〉, leads to a steady state similarity solution of form (4.54)

with ν = y − δ3x .

Equation 6 of Table 4.8 admits three-dimensional Lie symmetry algebra spanned by

X1 = ∂
∂ξ

, X2 = ∂
∂η

, and X3 = ξ ∂
∂ξ

+ η ∂
∂η

− (φ + δ1)
∂
∂φ

. The optimal system of one-

dimensional subalgebras consists of 〈X3〉, 〈X2 + aX1〉, 〈X1〉. The first subalgebra, 〈X3〉,
leads to the reduction φ = 1

η
ψ(ν) − δ1, ν = ξ

η
that maps equation 6 of Table 4.8 into

(1 + ν2)
d2ψ

dν2
+ (4ν + ψ)

dψ

dν
+ 2ψ = 0.

Integrating once, we get the Riccati equation

(1 + ν2)
dψ

dν
+ 1

2
ψ2 + 2νψ = c1.

In the case where c1 = 0, its general solution has the form

ψ =
4

ν + (arctan ν + c2)(ν2 + 1)
.

This leads to the solution of the Burgers equation of form

u =
4

y(ν + (arctan ν + c2)(ν2 + 1))
− δ1,

where ν = (x− δ1t)/y.

The second subalgebra, 〈X2 + aX1〉, leads to a solution of the form (4.54), while the

third subalgebra, 〈X1〉, produces a solution of form

u = c1y + c0.
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Finally, equation 8 of Table 4.8 admits Lie symmetry algebra 〈X1 = ∂
∂ξ
, X2 = ∂

∂η
〉. The

corresponding reductions lead to a similarity solution of the form (4.54) and two solutions

of form

u = c1 exp{−ε(y − εt) + c2} and u = c1(y − εt) + c2.

Note 4.4. Some of the derived classes of exact solutions can be extended by symmetry

transformations of the corresponding reduced equations, more precisely by scaling and

translation transformations.

4.4.2 Two-dimensional subalgebras

In this subsection we consider the optimal set of the two-dimensional subalgebras of

the Lie symmetry algebra of the two-dimensional Burgers equation. These enable us

to derive similarity reductions that reduce the two-dimensional Burgers equation into

ordinary differential equation. The optimal goal is to derive solutions that cannot be

obtained by the first approach. In each of the following cases we give the reduction and

the corresponding reduced equation. We present only the similarity solutions that are

different from subsection 4.4.1.

1. 〈Γ4,Γ5〉: u = −x/t + ψ(ν)/y, ν = yt−1/2 reduces (4.50) to

2ν2 d2ψ

dν2
+ ν(ν2 − 4)

dψ

dν
+ 2(2 − ν2)ψ = 0,

and making the substitution ψ = ν2w this equation changes to

2ν
d2w

dν2
+ (4 + ν2)

dw

dν
= 0,

which has the solution w(ν) = c1
∫

ν−2 exp(−ν2

4
)dν+c2. Therefore the similarity solution

for (4.50) leads to

u(t, x, y) = −xt−1 + yt−1

(

c1

∫

ν−2 exp
(

− ν2

4

)

dν + c2

)

,

where ν = yt−
1
2 .

2. 〈Γ4, ε2Γ2 + µ3Γ3〉: If ε = δ = ±1 then u = t−1/2ψ(ν), ν = t−1/2(y − δµ3x) reduces

(4.50) to

2(µ2
3 + 1)

d2ψ

dν2
+ (ν − 2δµ3ψ)

dψ

dν
+ ψ = 0.
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Its general solution is

ψ(ν) =
1

µ3ν(c1M1 +W1)
[(2c1 + 2c1µ

2
3 − c1c2µ3)M3 − 4(µ2

3 + 1)W3] +
c2
ν
,

where

W1 = W

(

−µ
2
3 + 1 + c2µ3

4(µ2
3 + 1)

,
1

4
,

ν2

4(µ2
3 + 1)

)

, M1 = M

(

−µ
2
3 + 1 + c2µ3

4(µ2
3 + 1)

,
1

4
,

ν2

4(µ2
3 + 1)

)

,

W3 = W

(

3(µ2
3 + 1) − c2µ3

4(µ2
3 + 1)

,
1

4
,

ν2

4(µ2
3 + 1)

)

, M3 = M

(

3(µ2
3 + 1) − c2µ3

4(µ2
3 + 1)

,
1

4
,

ν2

4(µ2
3 + 1)

)

.

are Whittaker functions [2]. In particular, if c2 = 0 this expression can be simplified to

ψ(ν) =
2
√

µ2
3 + 1 exp

(

− ν2

4(µ2
3+1)

)

erf
(

ν

2
√
µ2

3+1

)√
πµ3 + 2c1

√

µ2
3 + 1

,

where erfz = 2√
π

∫ z

0
e−ξ

2
dξ is the error function (also called the probability integral). In

fact, this latter expression is the solution of the ordinary differential equation

2(µ2
3 + 1)

dψ

dν
+ µ3ψ

2 + νψ = 0.

This solution gives a solution of the Burgers equation of the form

u(x, y, t) = t−1/2
2
√

µ2
3 + 1 exp

(

− t(y−δµ3x)2

4(µ2
3+1)

)

erf
( t−1/2(y−δµ3x)

2
√
µ2

3+1

)√
πµ3 + 2c1

√

µ2
3 + 1

.

If ε = 0 then u = ψ(ν)/x, ν = xt−1/2 that reduces (4.50) to

2ν2 d2ψ

dν2
+ (2νψ − 4ν + ν3)

dψ

dν
+ 4ψ − 2ψ2 = 0.

The above equation can be solved numerically.

3. 〈Γ5 + ε1Γ1 + ε3Γ3,Γ3〉: If ε1 6= 0, then u = −ε1t + ψ(ν), ν = 2ε1x − t2, that reduces

(4.50) to

4ε1
d2ψ

dν2
− 2ψ

dψ

dν
+ 1 = 0,

which leads to results that obtained using one-dimensional subalgebras. If ε1 = 0 then

u = −x/t + ψ(t) that leads to the similarity solution

u = (c− x)/t.
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4. 〈Γ5 + ε1Γ1 + ε3Γ3,Γ2 + b3Γ3〉: If ε1 = δ = ±1, then u = −δt + ψ(ν), ν = y − b3x +

b3δt
2 − δε3t, that reduces (4.50) to

δ(b23 + 1)
d2ψ

dν2
+ (ε3 − δb3ψ)

dψ

dν
+ 1 = 0.

If ε1 = 0, then u = y−b3x
b3t−ε3

+ ψ(ν), ν = t that reduces (4.50) to

(b3ν − ε3)
dψ

dν
+ b3ψ = 0.

The solutions of these two latter ordinary differential equations lead to similarity solutions

obtained in subsection 4.4.1.

5. 〈Γ1+ε2Γ2+a3Γ3,Γ2+b3Γ3〉 : If (ε2, a3) 6= (0, 0) then u = ψ(ν), ν = b3(x−ε2t)−y+α3t,

that reduces (4.50) to

(b23 + 1)
d2ψ

dν2
+ (b3ψ + ε2b3 − α3)

dψ

dν
= 0.

6. 〈Γ1,Γ2 + ε3Γ3〉: Here u = ψ(ν), ν = y − ε3x, that reduces (4.50) to

(1 + ε2
3)

d2ψ

dν2
− ε3ψ

dψ

dν
= 0.

7. 〈Γ1,Γ3〉: Here u = ψ(ν), ν = x, that reduces (4.50) to

d2ψ

dν2
+ ψ

dψ

dν
= 0.

Integration of the ordinary differential equations obtained in cases 5, 6 and 7 lead to

similarity solutions of the form (4.54).

8. 〈Γ2 + a3Γ3,Γ3〉: Produces the solution u = const.
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4.5 Hidden Symmetries for the two-dimensional

Burgers equation

We consider the two-dimensional Burgers equation

ut = uxx + uyy + uux. (4.55)

As we have seen before in this section the Lie group generators of (4.55) are

Γ1 =
∂

∂t
, Γ2 =

∂

∂x
, Γ3 =

∂

∂y
, Γ4 = 2t

∂

∂t
+x

∂

∂x
+y

∂

∂y
−u ∂

∂u
, Γ5 = t

∂

∂x
− ∂

∂u
. (4.56)

We reduce the number of variables of the two-dimensional Burgers equation using the

following similarity solution and similarity variables

u = φ(η, ξ), η = t, ξ = y − εx,

found using symmetry Γ2 + εΓ3 (Table 4.7). The reduced PDE is the one-dimensional

Burgers equation

(ε2 + 1)φξξ − εφφξ − φη = 0, ε 6= 0. (4.57)

The symmetries of (4.57) are

X1 =
∂

∂ξ
, X2 =

∂

∂η
, X3 = ξ

∂

∂ξ
+ 2η

∂

∂η
− φ

∂

∂φ
,

X4 = εη
∂

∂ξ
+

∂

∂φ
, X5 = εη2 ∂

∂η
+ εηξ

∂

∂ξ
+ (ξ − εηφ)

∂

∂φ
.

The inherited symmetries are Γ1 → X2, Γ2 → X1, Γ3 → X1, Γ4 → X3, Γ5 → X5, all of

which can be inferred by looking at the Lie algebra of (4.56). The symmetry X5 is known

as hidden symmetry of Type II [1].
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Chapter 5

Group analysis of (3+1) nonlinear

diffusion-convection equations

We consider the (3+1)-dimensional nonlinear diffusion convection equations

ut = (D(u)ux)x + (F (u)uy)y + (G(u)uz)z +K(u)ux. (5.1)

Here D(u), F (u), G(u) and K(u) are arbitrary smooth functions, F (u) 6= 0, G(u) 6= 0

and D2(u) + K2(u) 6= 0 (otherwise the problem is reduced to that of lower dimension)

and D2
u + F 2

u + G2
u + K2

u 6= 0 (i.e, the equation is nonlinear). A complete Lie group

classification of (3+1)-dimensional nonlinear diffusion convection equations is presented

in this chapter. We derive its Lie symmetries [22] and we give an example of similarity

reduction of a PDE of four independent variables into an ODE using a three-dimensional

subalgebra.

5.1 Classification of Lie Symmetries

The equivalence group of (5.1) consists of the 11-parameter group of point transformations

t̃ = ε6t + ε1, x̃ = ε7x+ ε11t+ ε2, ỹ = ε8y + ε3, z̃ = ε9z + ε4, ũ = ε10u+ ε5,

D̃ = ε−1
6 ε2

7D, F̃ = ε−1
6 ε2

8F, G̃ = ε−1
6 ε2

9G, K̃ = ε−1
6 ε3K − ε11,

where ε1, . . . , ε11 are arbitrary constants, ε6ε7ε8ε9ε10 6= 0, and a discrete transformation

t̃ = t, x̃ = x, ỹ = z, z̃ = y, ũ = u,

D̃ = D, F̃ = G, G̃ = F, K̃ = K,
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of interchanging the variables y and z. The equivalence transformations are used to

simplify the forms of D(u), F (u), G(u) and K(u) in the subsequent analysis.

Equation (5.1) admits Lie transformations of the form

x′ = x+ εX(x, t, y, z, u) +O(ε2),

t′ = t+ εT (x, t, y, z, u) +O(ε2),

y′ = y + εY (x, t, y, z, u) +O(ε2),

z′ = z + εZ(x, t, y, z, u) +O(ε2),

u′ = u+ εU(x, t, y, z, u) +O(ε2),

if and only if

Γ(2)E|E=0 = 0,

where Γ(2) is the second extended generator of

Γ = X
∂

∂x
+ T

∂

∂t
+ Y

∂

∂y
+ Z

∂

∂z
+ U

∂

∂u
,

which is given by the relation

Γ(2) = Γ + [Dx(U) − (DxX)ux − (DxT )ut − (DxY )uy − (DxZ)uz]
∂

∂ux

+ [Dt(U) − (DtX)ux − (DtT )ut − (DtY )uy − (DtZ)uz]
∂

∂ut

+ [Dy(U) − (DyX)ux − (DyT )ut − (DyY )uy − (DyZ)uz]
∂

∂uy

+ [Dz(U) − (DzX)ux − (DzT )ut − (DzY )uy − (DzZ)uz]
∂

∂uz

+ [Dx(U
x) − uxxDx(X) − uxtDx(T ) − uxyDx(Y ) − uxzDx(Z)]

∂

∂uxx

+ [Dy(U
y) − uyxDy(X) − uytDy(T ) − uyyDy(Y ) − uyzDy(Z)]

∂

∂uyy

+ [Dz(U
z) − uzxDz(X) − uztDz(T ) − uzyDz(Y ) − uzzDz(Z)]

∂

∂uzz
.

HereDx, Dt, Dy andDz are the total derivatives with respect to x, t, y and z respectively,

and Ux, Uy, U z are the extended transformations. We point out that in Γ(2) we did not

include terms with no contribution.

In this case E = ut − [D(u)ux]x − [F (u)uy]y − [G(u)uz]z −K(u)ux. So, equation (5.1)

admits Lie symmetries if and only if

Γ(2) [ut − [D(u)ux]x − [F (u)uy]y − [G(u)uz]z −K(u)ux] = 0, (5.2)

68

Elen
a D

em
etr

iou



where ut = [D(u)ux]x + [F (u)uy]y + [G(u)uz]z +K(u)ux.

If we take coefficients of uxt we have two cases: (A) D 6= 0 and (B) D = 0.

Case A. D 6= 0.

In the case when D 6= 0 from the coefficients of uxt, uyt and uzt in (5.2) we deduce

that Tx = Ty = Tz = Tu = 0, so, T is only function of t. Also from the coefficients of

uxyuy, uxyux we get that Xu = Yu = 0 and from the coefficients of uxx and u2
x we get

Uuu = 0. Hence, U = a1(x, t, y, z)u+ a2(x, t, y, z).

Using the fact that T = T (t), X = X(x, t, y, z), Y = Y (x, t, y, z) and the form of

U into (5.2) we obtain the following determining equations of the functional forms of

D, F, G, K, X, T, Y, Z and U :

(a1u+ a2)Du + (Tt − 2Xx)D = 0, (5.3)

(a1u+ a2)Fu + (Tt − 2Yy)F = 0, (5.4)

(a1u+ a2)Gu + (Tt − 2Zz)G = 0, (5.5)

YxD +XyF = 0, (5.6)

ZxD +XzG = 0, (5.7)

YzG+ ZyF = 0, (5.8)

(2a1xu+ 2a2x)Du + (2a1x −Xxx)D −XyyF −XzzG+ (a1u+ a2)Kuu (5.9)

+(Tt −Xx)Ku +Xt = 0,

−YxxD + (2a1yu+ 2a2y)Fu + (2a1y − Yyy)F − YzzG− YxKu + Yt = 0, (5.10)

−ZxxD − ZyyF + (2a1zu+ 2a2z)Gu + (2a1z − Zzz)G− ZxKu + Zt = 0, (5.11)

(a1xxu+ a2xx)D + (a1yyu+ a2yy)F + (a1zzu+ a2zz)G+ (a1xu+ a2x)Ku (5.12)

−a1tu− a2t = 0.

Equation (5.3) suggests the following forms of D(u):

(1) D(u) arbitrary;

(2) D(u) = eµu;

(3) D(u) = uµ.

However in the analysis, these forms of D(u) lead to further special cases. Summarizing

we have the following forms of D(u):

(1) D(u) arbitrary;
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(2) D(u) = eµu;

(3) D(u) = eu;

(4) D(u) = uµ;

(5) D(u) = u−2;

(6) D(u) = u−
4
3 ;

(7) D(u) = u−
4
5 ;

(8) D(u) = u−1;

(9) D(u) = 1.

Case 1. D(u) arbitrary.

In this case from equations (5.3)-(5.12) we have the following subcases for the functions

of F, G, K and the Lie algebra for each subcase.

Subcase 1.1: F (u), G(u), K(u) arbitrary.

From (5.3)-(5.12) we have

X = c1, T = c2, Y = c3, Z = c4, U = 0.

So, the Lie algebra is four-dimensional spanned by

Γ1 =
∂

∂t
, Γ2 =

∂

∂x
, Γ3 =

∂

∂y
, Γ4 =

∂

∂z
.

Subcase 1.2: F (u), G(u) arbitrary, K(u) = 0.

Using equations (5.3)-(5.12) we deduce that

X = c1x + c2, T = 2c1t + c3, Y = c1y + c4, Z = c1z + c5, U = 0.

The Lie algebra is five-dimensional given by

Γ1, Γ2, Γ3, Γ4, Γ5 = 2t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
.

Subcase 1.3: F (u) arbitrary, G(u) = εzF , K(u) arbitrary.

From (5.3)-(5.12) we have

X = c1, T = c2, Y = −c3εzz + c4, Z = c3y + c5, U = 0.
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Therefore, the Lie algebra is spanned by

Γ1, Γ2, Γ3, Γ4, Γ6 = y
∂

∂z
− εzz

∂

∂y
.

Subcase 1.4: F (u) arbitrary, G(u) = εzF , K(u) = 0.

In this subcase from (5.3)-(5.12) we have

X = c1x + c2, T = 2c1t + c3, Y = c1y − c4εzz + c5,

Z = c1z + c4y + c6, U = 0.

The Lie algebra in this subcase is given by

Γ1, Γ2, Γ3, Γ4, Γ5, Γ6.

Subcase 1.5: F (u) = εyD, G(u) arbitrary, K(u) = 0.

From (5.3)-(5.12) we deduce that

X = c1x + c2y + c3, T = 2c1t+ c4, Y = c1y − c2εyx+ c5,

Z = c1z + c6, U = 0.

So, the Lie algebra is spanned by

Γ1, Γ2, Γ3, Γ4, Γ5, Γ7 = y
∂

∂x
− εyx

∂

∂y
.

Note 5.1. It is obvious that subcase 1.5 is equivalent to 1.4 with respect to the rotation

transformation. However this transformation does not belong to equivalence group of the

class (5.1). We adduce it after the Table 5.1. The same is true for all similar cases below.

Subcase 1.6: F (u) = εyD, G(u) = εzD, K(u) = 0.

Here after some calculations using equations (5.3)-(5.12) we have

X = c1x + c2y + c3z + c4, T = 2c1t + c5, Y = c1y − c2εyx− c6εyz + c7,

Z = c1z + c6εzy − c3εzx + c8, U = 0.

The Lie algebra is eight-dimensional given by

Γ1, Γ2, Γ3, Γ4, Γ5, Γ7, Γ8 = εzy
∂

∂z
− εyz

∂

∂y
, Γ9 = z

∂

∂x
− εzx

∂

∂z
.
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Case 2. D(u) = eµu.

Using the fact that D(u) = eµu from equations (5.3)-(5.12) we have the following

subcases for the functions of F, G, K and the Lie algebra for each subcase.

Subcase 2.1: F (u) = εye
νu, G(u) = εze

λu, K(u) = u.

In this subcase from (5.3)-(5.12) we deduce that

X = c1(µx− t) + c2, T = c1µt+ c3, Y =
c1
2

(ν + µ)y + c4,

Z =
c1
2

(λ+ µ)z + c5, U = c1.

The Lie algebra is five-dimensional spanned by

Γ1, Γ2, Γ3, Γ4, Γ10 = µt
∂

∂t
+ (µx− t)

∂

∂x
+

1

2
(ν + µ)y

∂

∂y
+

1

2
(λ+ µ)z

∂

∂z
+

∂

∂u
.

Subcase 2.2: F (u) = εye
νu, G(u) = εze

λu, K(u) = epu.

From (5.3)-(5.12) we have

X = c1(p− µ)x+ c2, T = c1(2p− µ)t+ c3, Y =
c1
2

(2p− ν − µ)y + c4,

Z = −c1
2

(2p− λ− µ)z + c5, U = −c1u.

The Lie algebra in this subcase is five-dimensional given by

Γ1, Γ2, Γ3, Γ4, Γ11 = (2p−µ)t
∂

∂t
+(p−µ)x

∂

∂x
+

1

2
(2p−ν−µ)y

∂

∂y
−1

2
(2p−λ−µ)z

∂

∂z
−u ∂

∂u
.

Subcase 2.3: F (u) = εye
νu, G(u) = εze

λu, K(u) = 0.

Here, using equations (5.3)-(5.12) we deduce that

X = c1x +
c2
2

(λ− µ)x+ c3, T = 2c1t + c2λt+ c4, Y = c1y +
c2
2

(λ− ν)y + c5,

Z = c1z + c6, U = −c1.

The Lie algebra is given by

Γ1, Γ2, Γ3, Γ4, Γ5 Γ12 = λt
∂

∂t
+

1

2
(λ− µ)x

∂

∂x
+

1

2
(λ− ν)y

∂

∂y
− ∂

∂u
.

Subcase 2.4: F (u) = εye
νu, G(u) = εze

νu, K(u) = u.

In this subcase from (5.3)-(5.12) we have

X = c1(µx− t) + c2, T = c1µt+ c3, Y =
c1
2

(ν + µ)y − c4εyεzz + c5,
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Z =
c1
2

(ν + µ)z + c4y + c6, U = c1.

Hence, the Lie algebra is six-dimensional spanned by

Γ1, Γ2, Γ3, Γ4, Γ13 = y
∂

∂z
−εyεzz

∂

∂y
, Γ14 = µt

∂

∂t
+(µx−t) ∂

∂x
+

1

2
(ν+µ)

(

y
∂

∂y
+ z

∂

∂z

)

+
∂

∂u
.

Subcase 2.5: F (u) = εye
νu, G(u) = εze

νu, K(u) = epu.

In this subcase from (5.3)-(5.12) we get

X = c1(p− µ)x+ c2, T = c1(2p− µ)t+ c3, Y =
c1
2

(ν + µ)y − c4εyεzz + c5,

Z =
c1
2

(2p− ν − µ)z + c4y + c6, U = −c1.

The Lie algebra is six-dimensional given by

Γ1, Γ2, Γ3, Γ4, Γ13, Γ15 = (2p−µ)t
∂

∂t
+(p−µ)x

∂

∂x
+

1

2
(2p−ν−µ)

(

y
∂

∂y
+ z

∂

∂z

)

− ∂

∂u
.

Subcase 2.6: F (u) = εye
νu, G(u) = εze

νu, K(u) = 0.

Using equations (5.3)-(5.12) we have

X = c1x + c2, T = 2c1t + c3µt+ c4, Y = c1y − c5εyεzz +
c3
2

(ν − µ)y + c6,

Z = c1z + c5y +
c3
2

(ν − µ)y + c7, U = −c3.

In this subcase the Lie algebra is

Γ1, Γ2, Γ3, Γ4, Γ5, Γ13, Γ16 = µt
∂

∂t
+

1

2
(ν − µ)

(

y
∂

∂y
+ z

∂

∂z

)

− ∂

∂u
.

Subcase 2.7: F (u) = εye
µu, G(u) = εze

λu, K(u) = 0.

Using the forms of F, G and K from (5.3)-(5.12) we get

X = c1x+
c2
2

(λ−µ)x−c3εyy+c4, T = 2c1t+c2λt+c5, Y = c1y+c3x+
c2
2

(λ−µ)y+c6,

Z = c1z + c7, U = −c2.

Therefore, the Lie algebra is seven-dimensional spanned by

Γ1, Γ2, Γ3, Γ4, Γ5, Γ17 = x
∂

∂y
−εyy

∂

∂x
, Γ18 = λt

∂

∂t
+

1

2
(λ−µ)

(

x
∂

∂x
+ y

∂

∂y

)

− ∂

∂u
.

Case 3. D(u) = eu.
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In this case using the fact that D(u) = eu from equations (5.3)-(5.12) we deduce that

F (u) = εye
u, G(u) = εze

u and K(u) = 0. So,

X = c1x + c2z − c4εyy + c5, T = 2c1t+ c6t+ c7, Y = c1y − c3εyεzz + c4x + c8,

Z = c1z − c2εzx+ c3y + c9, U = −c6,

and the Lie algebra is nine-dimensional given by

Γ1, Γ2, Γ3, Γ4, Γ5, Γ9, Γ13, Γ17, Γ19 = t
∂

∂t
− ∂

∂u
.

Case 4. D(u) = uµ.

From equations (5.3)-(5.12) we have the following subcases for the different forms of

F, G, K, X, T, Y, Z and U and its Lie algebra respectively.

Subcase 4.1: F (u) = εyu
ν, G(u) = εzu

λ, K(u) = ln u.

In this subcase from (5.3)-(5.12) we have

X = c1(µx− t) + c2, T = c1µt+ c3, Y =
c1
2

(ν + µ)y + c4,

Z =
c1
2

(λ+ µ)z + c5, U = c1u.

The Lie algebra is five-dimensional spanned by

Γ1, Γ2, Γ3, Γ4, Γ20 = µt
∂

∂t
+ (µx− t)

∂

∂x
+

1

2
(ν + µ)y

∂

∂y
+

1

2
(λ+ µ)z

∂

∂z
+ u

∂

∂u
.

Subcase 4.2: F (u) = εyu
ν, G(u) = εzu

λ, K(u) = up.

Using equations (5.3)-(5.12) we have

X = c1(p− µ)x+ c2, T = c1(2p− µ)t+ c3, Y =
c1
2

(2p− ν − µ)y + c4,

Z = −c1
2

(2p− λ− µ)z + c5, U = −c1u.

Therefore, the Lie algebra is five-dimensional given by

Γ1, Γ2, Γ3, Γ4, Γ21 = (2p−µ)t
∂

∂t
+(p−µ)x

∂

∂x
+

1

2
(2p−ν−µ)y

∂

∂y
−1

2
(2p−λ−µ)z

∂

∂z
−u ∂

∂u
.

Subcase 4.3: F (u) = εyu
ν, G(u) = εzu

λ, K(u) = 0.

Here after some calculations using (5.3)-(5.12) we have

X = c1x +
c2
2

(λ− µ)x+ c3, T = 2c1t + c2λt+ c4, Y = c1y +
c2
2

(λ− ν)y + c5,
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Z = c1z + c6, U = −c2u.

Hence, the Lie algebra is six-dimensional given by

Γ1, Γ2, Γ3, Γ4, Γ5, Γ22 = λt
∂

∂t
+

1

2
(λ− µ)x

∂

∂x
+

1

2
(λ− ν)y

∂

∂y
− u

∂

∂u
.

Subcase 4.4: F (u) = εyu
ν, G(u) = εzu

ν, K(u) = ln u.

In this subcase from (5.3)-(5.12) we deduce that

X = c1(µx− t) + c2, T = c1µt+ c3, Y =
c1
2

(ν + µ)y − c4εyεzz + c5,

Z =
c1
2

(ν + µ)z + c4y + c6, U = c1u.

The Lie algebra is six-dimensional spanned by

Γ1, Γ2, Γ3, Γ4, Γ13, Γ23 = µt
∂

∂t
+ (µx− t)

∂

∂x
+

1

2
(ν + µ)

(

y
∂

∂y
+ z

∂

∂z

)

+ u
∂

∂u
.

Subcase 4.5: F (u) = εyu
ν, G(u) = εzu

ν, K(u) = up.

In this subcase we have

X = c1(p− µ)x+ c2, T = c1(2p− µ)t+ c3, Y =
c1
2

(2p− ν − µ)y − c4εyεzz + c5,

Z =
c1
2

(2p− ν − µ)z + c4y + c6, U = −c1u.

Hence, the Lie algebra is

Γ1, Γ2, Γ3, Γ4, Γ13, Γ24 = (2p−µ)t
∂

∂t
+(p−µ)x

∂

∂x
+

1

2
(2p−ν−µ)

(

y
∂

∂y
+ z

∂

∂z

)

−u ∂
∂u
.

Subcase 4.6: F (u) = εyu
ν, G(u) = εzu

ν, K(u) = 0.

Here from (5.3)-(5.12) we have

X = c1x + c2, T = 2c1t + c3µt+ c4, Y = c1y +
c3
2

(ν − µ)y − c5εyεzz + c6,

Z = c1z + c7, U = −c3u,

and the Lie algebra is seven-dimensional given by

Γ1, Γ2, Γ3, Γ4, Γ5, Γ13, Γ25 = µt
∂

∂t
+

1

2
(ν − µ)

(

y
∂

∂y
+ z

∂

∂z

)

− u
∂

∂u
.

Subcase 4.7: F (u) = εyu
µ, G(u) = εzu

λ, K(u) = 0.
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In this subcase

X = c1x−c2εyy+
c3
2

(λ−µ)x+c4, T = 2c1t+c3λt+c5, Y = c1y+c2x+
c3
2

(λ−µ)y+c6,

Z = c1z + c7, U = −c3u.

So, the Lie algebra is spanned by

Γ1, Γ2, Γ3, Γ4, Γ5, Γ17, Γ26 = λt
∂

∂t
+

1

2
(λ− µ)

(

x
∂

∂x
+ y

∂

∂y

)

− u
∂

∂u
.

Subcase 4.8: F (u) = εyu
µ, G(u) = εzu

µ, K(u) = 0.

Using equations (5.3)-(5.12) we have

X = c1x + c2z − c3εyy + c4, T = 2c1t+ c5µt+ c6, Y = c1y − c7εyεzz + c3x + c8,

Z = c1z − c2εzx+ c7y + c3x+ c9, U = −c5u.

The Lie algebra is nine-dimensional given by

Γ1, Γ2, Γ3, Γ4, Γ5, Γ9, Γ13, Γ17, Γ27 = µt
∂

∂t
− u

∂

∂u
.

Case 5. D(u) = u−2.

In this case from equations (5.3)-(5.12) we get that F (u) = εy, G(u) = εz and

K(u) = u−2. So,

X = c1e
−x + c2, T = 2c3t+ c4, Y = c3y − c5εyεzz + c6,

Z = c5y + c3z + c7, U = c1e
−xu,

and the Lie algebra is seven-dimensional spanned by

Γ1, Γ2, Γ3, Γ4, Γ13, Γ28 = 2t
∂

∂t
+ y

∂

∂y
+ z

∂

∂z
+ u

∂

∂u
, Γ29 = e−x

(

∂

∂x
+ u

∂

∂u

)

.

Case 6. D(u) = u−4/3.

From equations (5.3)-(5.12) we have F (u) = εy, G(u) = εz, K(u) = 0 and

X = c1x + 2c2x + c3x
2 + c4, T = 2c1t + c5 Y = c1y − c6εyεzz + c7,

Z = c1z + c6y + c8, U = −3c2u− 3c3xu.
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So, the Lie algebra in this case is

Γ1, Γ2, Γ3, Γ4, Γ5, Γ13, Γ30 = 2x
∂

∂x
− 3u

∂

∂u
, Γ31 = x2 ∂

∂x
− 3xu

∂

∂u
.

Case 7. D(u) = u−4/5.

From equations (5.3)-(5.12) we get F (u) = εyu
−4/5, G(u) = εzu

−4/5 and K(u) = 0.

Therefore,

X = c1x + c2z − c3εyy +
c4
2

(εyεzx
2 − εyz

2 − εzy
2) + c5εzxy

2 + c6εyxz + c7,

T = 2c1t+ 4c11t+ c8,

Y = c1y − c9εyεzz + c3x + c4εyεzxy +
c5
2

(εzy
2 − εyεzx

2 − εyz
2) + c6εyzy + c10,

Z = c1z − c2εzx+ c9y + c4εyεzxz + c5εzyz +
c6
2

(εyz
2 − εyεzx

2 − εzy
2) + c12,

U = 5c11u−
5

2
(c4εyεzx + c5εzy + c6εyz)u.

Hence, the Lie algebra is twelve-dimensional spanned by

Γ1, Γ2, Γ3, Γ4, Γ5, Γ9, Γ13, Γ17, Γ32 = 4t
∂

∂t
+ 5u

∂

∂u
,

Γ33 =
1

2

(

εyεzx
2 − εyz

2 − εzy
2
) ∂

∂x
+ εyεzx

(

y
∂

∂y
+ z

∂

∂z
− 5

2
u
∂

∂u

)

,

Γ34 =
1

2

(

εzy
2 − εyεzx

2 − εyz
2
) ∂

∂y
+ εzy

(

xy
∂

∂x
+ z

∂

∂z
− 5

2
u
∂

∂u

)

,

Γ35 =
1

2

(

εyz
2 − εyεzx

2 − εzy
2
) ∂

∂z
+ εyz

(

x
∂

∂x
+ y

∂

∂y
− 5

2
u
∂

∂u

)

.

Case 8. D(u) = u−1.

From equations (5.3)-(5.12) we have F (u) = εyu
−1, G(u) = εz and K(u) = 0. So,

X = c1φ(x, y), T = 2c3t+c2, Y = c1ψ(x, y), Z = c3z+c4, U = −2c3u−2c1φx(x, y)u,

and the Lie algebra is given by

Γ1, Γ4, Γ36 = 2t
∂

∂t
+ z

∂

∂z
+ 2u

∂

∂u
, Γ37 = φ

∂

∂x
+ ψ

∂

∂y
− 2φxu

∂

∂u
,

where φ = φ(x, y), ψ = ψ(x, y) run through the solution set of the system φx = ψy,

ψx = −εyφy.
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Case 9. D(u) = 1.

From (5.3)-(5.12) we have the following subcases:

Subcase 9.1: F (u) = εy, G(u) = εz, K(u) = u.

In this subcase we have

X = c1x + c2t + c3, T = 2c1t+ c4, Y = c1y − c5εyεzz + c6,

Z = c1z + c5y + c7, U = −c1u− c2.

Hence, the Lie algebra is seven-dimensional spanned by

Γ1, Γ2, Γ3, Γ4, Γ13, Γ38 = 2t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
− u

∂

∂u
, Γ39 = t

∂

∂x
− ∂

∂u
.

Subcase 9.2: F (u) = εy, G(u) = εzu
−4/3, K(u) = 0.

In this subcase from (5.3)-(5.12) we have

X = c1x− c2εyy + c3, T = 2c1t+ c4, Y = c1y − c2x + c5,

Z = c1x + 2c6z + c7z
2 + c8, U = −3(c6 + c7z)u.

The Lie algebra is eight-dimensional given by

Γ1, Γ2, Γ3, Γ4, Γ5, Γ17, Γ40 = 2z
∂

∂z
− 3u

∂

∂u
, Γ41 = z2 ∂

∂z
− 3zu

∂

∂u
.

Subcase 9.3: F (u) = εyu
−1, G(u) = εzu

−1, K(u) = 0.

Using equations (5.3)-(5.12) we deduce that

X = c1x+c2, T = 2c1t+c3, Y = c2ψ̃(x, y), Z = c2φ̃(x, y), U = 2
(

c1 − c2φ̃z(x, y)
)

u.

The Lie algebra in this subcase is given by

Γ1, Γ2, Γ42 = 2t
∂

∂t
+ x

∂

∂x
+ 2u

∂

∂u
, Γ43 = φ̃

∂

∂z
+ ψ̃

∂

∂y
− 2φ̃zu

∂

∂u
,

where φ̃ = φ̃(z, y), ψ̃ = ψ̃(z, y) run the solution set of the system φ̃z = ψ̃y, εzψ̃z = −εyφ̃y.
In Table 5.1 we give briefly the Lie symmetries for the different forms of

D(u), F (u), G(u) and K(u).
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Table 5.1: Group classification of class (5.1), D 6= 0

N D(u) F (u) G(u) K(u) Amax

1 ∀ ∀ ∀ ∀ Aker = 〈 ∂
∂t ,

∂
∂x ,

∂
∂y ,

∂
∂z 〉

2 ∀ ∀ ∀ 0 Aker + 〈2t ∂
∂t + x ∂

∂x + y ∂
∂y + z ∂

∂z 〉
3 ∀ ∀ εzF ∀ Aker + 〈y ∂

∂z − εzz
∂
∂y 〉

4a ∀ ∀ εzF 0 Aker + 〈2t ∂
∂t + x ∂

∂x + y ∂
∂y + z ∂

∂z , y
∂
∂z − εzz

∂
∂y 〉

4b ∀ εyD ∀ 0 Aker + 〈2t ∂
∂t + x ∂

∂x + y ∂
∂y + z ∂

∂z , y
∂
∂x − εyx

∂
∂y 〉

5 ∀ εyD εzD 0 Aker + 〈2t ∂
∂t + x ∂

∂x + y ∂
∂y + z ∂

∂z , y
∂
∂x − εyx

∂
∂y , εzy

∂
∂z − εyz

∂
∂y ,

z ∂
∂x − εzx

∂
∂z 〉

6 eµu εye
νu εze

λu u Aker + 〈µt ∂
∂t + (µx− t) ∂

∂x + 1
2 (ν + µ)y ∂

∂y

+ 1
2 (λ+ µ)z ∂

∂z + ∂
∂u 〉

7 eµu εye
νu εze

λu epu Aker + 〈(2p− µ)t ∂
∂t + (p− µ)x ∂

∂x

+ 1
2 (2p− ν − µ)y ∂

∂y − 1
2 (2p− λ− µ)z ∂

∂z − u ∂
∂u 〉

8 eµu εye
νu εze

λu 0 Aker + 〈2t ∂
∂t + x ∂

∂x + y ∂
∂y + z ∂

∂z ,

λt ∂
∂t + 1

2 (λ− µ)x ∂
∂x + 1

2 (λ− ν)y ∂
∂y − ∂

∂u 〉
9 eµu εye

νu εze
νu u Aker + 〈y ∂

∂z − εyεzz
∂
∂y , µt

∂
∂t + (µx− t) ∂

∂x

+ 1
2 (ν + µ)(y ∂

∂y + z ∂
∂z ) + ∂

∂u 〉
10 eµu εye

νu εze
νu epu Aker + 〈y ∂

∂z − εyεzz
∂
∂y , (2p− µ)t ∂

∂ t + (p− µ)x ∂
∂ x

+ 1
2 (2p− ν − µ)(y ∂

∂y + z ∂
∂z ) − ∂

∂u 〉
11a eµu εye

νu εze
νu 0 Aker + 〈2t ∂

∂t + x ∂
∂x + y ∂

∂y + z ∂
∂z , y

∂
∂z − εyεzz

∂
∂y ,

µt ∂
∂t + 1

2 (ν − µ)(y ∂
∂y + z ∂

∂z ) − ∂
∂u 〉

11b eµu εye
µu εze

λu 0 Aker + 〈2t ∂
∂t + x ∂

∂x + y ∂
∂y + z ∂

∂z , x
∂
∂y − εyy

∂
∂x ,

λt ∂
∂t + 1

2 (λ− µ)(x ∂
∂x + y ∂

∂y ) − ∂
∂u 〉

12 eu εye
u εze

u 0 Aker + 〈2t ∂
∂t + x ∂

∂x + y ∂
∂y + z ∂

∂z , x
∂
∂y − εyy

∂
∂x , y

∂
∂z − εyεzz

∂
∂y ,

z ∂
∂x − εzx

∂
∂z , t

∂
∂t − ∂

∂u 〉
13 uµ εyu

ν εzu
λ lnu Aker + 〈µt ∂

∂t + (µx− t) ∂
∂x

+ 1
2 (ν + µ)y ∂

∂y + 1
2 (λ+ µ)z ∂

∂z + u ∂
∂u 〉

14 uµ εyu
ν εzu

λ up Aker + 〈(2p− µ)t ∂
∂t + (p− µ)x ∂

∂x

+ 1
2 (2p− ν − µ)y ∂

∂y − 1
2 (2p− λ− µ)z ∂

∂z − u ∂
∂u 〉

15 uµ εyu
ν εzu

λ 0 Aker + 〈2t ∂
∂t + x ∂

∂x + y ∂
∂y + z ∂

∂z ,

λt ∂
∂t + 1

2 (λ− µ)x ∂
∂x + 1

2 (λ− ν)y ∂
∂y − u ∂

∂u 〉
16 uµ εyu

ν εzu
ν lnu Aker + 〈y ∂

∂z − εyεzz
∂
∂y , µt

∂
∂t + (µx− t) ∂

∂x

+ 1
2 (ν + µ)(y ∂

∂y + z ∂
∂z ) + u ∂

∂u 〉
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17 uµ εyu
ν εzu

ν up Aker + 〈y ∂
∂z − εyεzz

∂
∂y , (2p− µ)t ∂

∂t + (p− µ)x ∂
∂x

+ 1
2 (2p− ν − µ)(y ∂

∂y + z ∂
∂z ) − u ∂

∂u 〉
18a uµ εyu

ν εzu
ν 0 Aker + 〈2t ∂

∂t + x ∂
∂x + y ∂

∂y + z ∂
∂z , y

∂
∂z − εyεzz

∂
∂y ,

µt ∂
∂t + 1

2 (ν − µ)(y ∂
∂y + z ∂

∂z ) − u ∂
∂u 〉

18b uµ εyu
µ εzu

λ 0 Aker + 〈2t ∂
∂t + x ∂

∂x + y ∂
∂y + z ∂

∂z , x
∂
∂y − εyy

∂
∂x ,

λt ∂
∂t + 1

2 (λ− µ)(x ∂
∂x + y ∂

∂y ) − u ∂
∂u 〉

18c u−2 εy εz u−2 Aker + 〈y ∂
∂z − εyεzz

∂
∂y , 2t

∂
∂t + y ∂

∂y + z ∂
∂z + u ∂

∂u , e
−x( ∂

∂x + u ∂
∂u )〉

19 uµ εyu
µ εzu

µ 0 Aker + 〈2t ∂
∂t + x ∂

∂x + y ∂
∂y + z ∂

∂z , x
∂
∂y − εyy

∂
∂x , y

∂
∂z − εyεzz

∂
∂y ,

z ∂
∂x − εzx

∂
∂z , µt

∂
∂t − u ∂

∂u 〉
20 1 εy εz u Aker + 〈y ∂

∂z − εyεzz
∂
∂y , 2t

∂
∂t + x ∂

∂x + y ∂
∂y + z ∂

∂z − u ∂
∂u , t

∂
∂x − ∂

∂u 〉
21a u−4/3 εy εz 0 Aker + 〈2t ∂

∂t + x ∂
∂x + y ∂

∂y + z ∂
∂z , y

∂
∂z − εyεzz

∂
∂y , 2x

∂
∂x − 3u ∂

∂u ,

x2 ∂
∂x − 3xu ∂

∂u 〉
21b 1 εy εzu

−4/3 0 Aker + 〈2t ∂
∂t + x ∂

∂x + y ∂
∂y + z ∂

∂z , x
∂
∂y − εyy

∂
∂x , 2z

∂
∂z − 3u ∂

∂u ,

z2 ∂
∂z − 3zu ∂

∂u 〉
22 u−4/5 εyu

−4/5 εzu
−4/5 0 Aker + 〈2t ∂

∂t + x ∂
∂x + y ∂

∂y + z ∂
∂z , x

∂
∂y − εyy

∂
∂x , y

∂
∂z − εyεzz

∂
∂y ,

z ∂
∂x − εzx

∂
∂z , 4t

∂
∂t + 5u ∂

∂u ,

1
2 (εyεzx

2 − εyz
2 − εzy

2) ∂
∂x + εyεzx(y

∂
∂y + z ∂

∂z − 5
2u

∂
∂u ),

1
2 (εzy

2 − εyεzx
2 − εyz

2) ∂
∂y + εzy(xy

∂
∂x + z ∂

∂z − 5
2u

∂
∂u ),

1
2 (εyz

2 − εyεzx
2 − εzy

2) ∂
∂z + εyz(x

∂
∂x + y ∂

∂y − 5
2u

∂
∂u )〉

23a 1 εyu
−1 εzu

−1 0 〈 ∂
∂t ,

∂
∂x , 2t

∂
∂t + x ∂

∂x + 2u ∂
∂u , φ̃

∂
∂z + ψ̃ ∂

∂y − 2φ̃zu
∂

∂u 〉
23b u−1 εyu

−1 εz 0 〈 ∂
∂t ,

∂
∂z , 2t

∂
∂t + z ∂

∂z + 2u ∂
∂u , φ

∂
∂x + ψ ∂

∂y − 2φxu
∂
∂u 〉

Here εy, εz = ±1, p 6= 0; in case 23b, φ = φ(x, y), ψ = ψ(x, y) are arbitrary solutions of the system

φx = ψy, ψx = −εyφy; in case 23a, φ̃ = φ̃(z, y), ψ̃ = ψ̃(z, y) are arbitrary solutions of the system

φ̃z = ψ̃y, εzψ̃z = −εyφ̃y .

Additional equivalence transformations

4b 7−→ 4a, 11b 7−→ 11a, 18b 7−→ 18a, 21b 7−→ 21a, 23b 7−→ 23a : t̃ = εt, x̃ = z, z̃ = x, D̃ = F, F̃ = εD;

18c 7−→ 18a |µ=−2: x̃ = ex, ũ = e−xu.

Case B. D = 0.

In this case when D = 0 from the coefficients of uyt and uzt of equation (5.2) we get

that Ty = Tz = Tu = 0. Also from the coefficients of uyzuz, uyzuz, uxz and uxy we deduce

that Yu = Zu = Xy = Xz = Xu = 0 and from the coefficients of uyy and u2
y we get the

following form of U

U = −TxK + a1(x, t, y, z)u+ a2(x, t, y, z).
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Using the fact that T = T (x, t), X = X(x, t), Y = Y (x, t, y, z), Z = Z(x, t, y, z) and the

form of U then from (5.2) we obtain the following determining equations of the functional

forms of F, G, K, X, T, Y, Z and U :

(a1u+ a2 − TxK)Fu + (Tt − TxKu − 2Yy)F = 0, (5.13)

(a1u+ a2 − TxK)Gu + (Tt − TxKu − 2Zz)G = 0, (5.14)

ZyF + YzG = 0, (5.15)

(2a1yu+ 2a2y)Fu + (2a1y − Yyy)F − YzzG− YxKu + Yt = 0, (5.16)

−ZyyF + (2a1zu+ 2a2z)Gu + (2a1z − Zzz)G− ZxKu + Zt = 0, (5.17)

(TxK − a2 − a1u)Kuu + TxK
2
u + (−Tt +Xx)Ku −Xt = 0, (5.18)

(a1yyu+ a2yy)F + (a1zzu+ a2zz)G+ (a1xu+ a2x − TxxK)Ku + (5.19)

TtxK − a1tu− a2t = 0.

From equations (5.13) we get the following different forms of F (u):

(1) F (u) arbitrary;

(2) F (u) = eνu;

(3) F (u) = eu;

(4) F (u) = uν;

(5) F (u) = u−1/2;

(6) F (u) = e

∫ µ1du
(κ+p−r)u

(κ+p−r)u , where u = (κ2 + 2pκ+ q)−1/2e
∫

rdu
κ2+2pκ+q ;

(7) F (u) = 1.

Case 1. F (u) arbitrary

Solving equations (5.13)-(5.19) we get the following subcases for functions G and K:

Subcase 1.1: G(u), K(u) arbitrary.

In this subcase we have

X = 2c1x + c2, T = 2c1t+ c3, Y = c1y + c4, Z = c1z + c5, U = 0.

So, the Lie symmetries are

Γ1 =
∂

∂t
, Γ2 =

∂

∂x
, Γ3 =

∂

∂y
, Γ4 =

∂

∂z
, Γ5 = 2t

∂

∂t
+ 2x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
.

Subcase 1.2: G(u) = εzF , K(u) arbitrary.
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Using equations (5.13)-(5.19) we have

X = 2c1x+ c2, T = 2c1t+ c3, Y = c1y + c4z + c5, Z = c1z − c4εzy + c6, U = 0.

So, the Lie algebra is six-dimensional spanned by

Γ1, Γ2, Γ3, Γ4, Γ5, Γ6 = z
∂

∂y
− εzy

∂

∂z
.

Case 2. F (u) = eνu

From equations (5.13)-(5.19) we get the following different forms for functions G

and K.

Subcase 2.1: G(u) = εze
λu, K(u) = epu.

In this subcase after some calculations we get

X = 2c1px + 2c2(ν − p)x+ c3, T = 2c2νt + c4, Y = c1νy + c5,

Z = c1λz + c2(ν − λ)z + c6, U = 2(c1 − c2).

Hence, the Lie algebra is six-dimensional spanned by

Γ1, Γ2, Γ3, Γ4, Γ7 = 2px
∂

∂x
+ νy

∂

∂y
+ λz

∂

∂z
+ 2

∂

∂u
,

Γ8 = 2νt
∂

∂t
+ 2(ν − p)x

∂

∂x
+ (ν − λ)z

∂

∂z
− 2

∂

∂u
.

Subcase 2.2: G(u) = εze
λu, K(u) = u.

Substituting the above forms of G and K into (5.13)-(5.19) we have

X = −2c1t+ 2c2(νx + t) + c3, T = 2c2νt + c4, Y = c1νy + c5z + c6,

Z = c1λz + c2(ν − λ)z + c6, U = 2(c1 − c2).

So, we get the following Lie algebra

Γ1, Γ2, Γ3, Γ4, Γ9 = −2t
∂

∂x
+ νy

∂

∂y
+ λz

∂

∂z
+ 2

∂

∂u
,

Γ10 = 2νt
∂

∂t
+ 2(νx + t)

∂

∂x
+ (ν − λ)z

∂

∂z
− 2

∂

∂u
.

Subcase 2.3: G(u) = εze
νu, K(u) = epu.
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Using equations (5.13)-(5.19) we have

X = 2c1px + c2(ν − p)x + c3, T = c2νt + c4, Y = c1νy + c5z + c6,

Z = c1νz − c5εzy + c7, U = 2c1 − c2.

Therefore, the Lie algebra is seven-dimensional given by

Γ1, Γ2, Γ3, Γ4, Γ6, Γ11 = 2px
∂

∂x
+ νy

∂

∂y
+ νz

∂

∂z
+ 2

∂

∂u
,

Γ12 = νt
∂

∂t
+ (ν − p)x

∂

∂x
− ∂

∂u
.

Case 3. F (u) = eu.

From equations (5.13)-(5.19) we deduce that G(u) = εze
u, K(u) = u and

X = −2c1t+ c2(x + t) + c3, T = c2t+ c4, Y = c1y + c5z + c6,

Z = c1z − c5εzy + c7, U = 2c1 − c2.

The Lie algebra is seven-dimensional given by

Γ1, Γ2, Γ3, Γ4, Γ6, Γ13 = −2t
∂

∂x
+y

∂

∂y
+z

∂

∂z
+2

∂

∂u
, Γ14 = t

∂

∂t
+(x+ t)

∂

∂x
− ∂

∂u
.

Case 4. F (u) = uν.

Substituting the above form of F from equations (5.13)-(5.19) we deduce the following

subcases:

Subcase 4.1: G(u) = εzu
λ, K(u) = up

In this subcase we have

X = 2c1(λ− p)x+ 2c2(ν − p)x+ c3, T = 2c1λt+ 2c2νt+ c4, Y = c1(λ− ν)y + c5,

Z = c2(ν − λ)x+ c6, U = −2(c1 + c2)u.

Therefore, the Lie algebra is six-dimensional spanned by

Γ1, Γ2, Γ3, Γ4, Γ15 = 2λt
∂

∂t
+ 2(λ− p)x

∂

∂x
+ (λ− ν)y

∂

∂y
− 2u

∂

∂u
,

Γ16 = 2νt
∂

∂t
+ 2(ν − p)x

∂

∂x
+ (ν − λ)

∂

∂z
− 2u

∂

∂u
.
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Subcase 4.2: G(u) = εzu
λ, K(u) = lnu.

In this subcase using equations (5.13)-(5.19) we have

X = 2c1(λx+ t) − 2c2(νx+ t) + c3, T = 2c1λt− 2c2νt+ c4, Y = c1(λ− ν)y + c5,

Z = c2(λ− ν)z + c6, U = −2(c1 − c2)u.

Hence, the Lie algebra is six-dimensional spanned by

Γ1, Γ2, Γ3, Γ4, Γ17 = 2λt
∂

∂t
+ 2(λx + t)

∂

∂x
+ y(λ− ν)

∂

∂y
− 2u

∂

∂u
,

Γ18 = −2νt
∂

∂t
− 2(νx+ t)

∂

∂x
+ z(λ− ν)

∂

∂z
+ 2u

∂

∂u
.

Subcase 4.3: G(u) = εzu
ν, K(u) = up.

Here from (5.13)-(5.19) we get

X = 2c1px + c2(ν − p)x + c3, T = c2νt + c4, Y = c1νy + c5z + c6,

Z = c1νz − c5εzy + c7, U = 2(c1 − c2)u.

The Lie algebra is seven-dimensional given by

Γ1, Γ2, Γ3, Γ4, Γ6, Γ19 = 2px
∂

∂x
+ νy

∂

∂y
+ νz

∂

∂z
+ 2u

∂

∂u
,

Γ20 = νt
∂

∂t
+ x(ν − p)

∂

∂x
− u

∂

∂u
.

Subcase 4.4: G(u) = εzu
ν, K(u) = ln u.

Substituting the above forms of G and K we deduce that

X = −2c1t+ c2(νx + t) + c3, T = c2νt + c4, Y = c1νy + c5z + c6,

Z = c1νz − c5εzy + c7, U = 2(c1 − c2)u.

So, the Lie algebra is

Γ1, Γ2, Γ3, Γ4, Γ6, Γ21 = −2t
∂

∂x
+ νy

∂

∂y
+ νz

∂

∂z
+ 2u

∂

∂u
,

Γ22 = νt
∂

∂t
+ (νx + t)

∂

∂x
− u

∂

∂u
.

Case 5. F (u) = u−1/2.
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In this case from equations (5.13)-(5.19) we get that G(u) = εu−1/2, K(u) = u−1/2 and

X = c1x + c2x + c3, T = 2c1t + c4t+ c5, Y = c1y + c6z + c7,

Z = c1z − c6εzy + c8, U = (−c1 + 2c4)u− 2c2u
1
2 .

Hence, the Lie algebra is eight-dimensional spanned by

Γ1, Γ2, Γ3, Γ4, Γ6, Γ23 = 2t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
− u

∂

∂u
,

Γ24 = t
∂

∂t
+ 2u

∂

∂u
, Γ25 = x

∂

∂t
− 2u1/2 ∂

∂u
.

Case 6. F (u) = e

∫ µ1du
(κ+p−r)u

(κ+p−r)u , where u = (κ2 + 2pκ+ q)−1/2e
∫

rdu
κ2+2pκ+q .

Substituting the above form of function F we get the following subcases:

Subcase 6.1: G(u) = εz
e

∫ µ2du
(κ+p−r)u

(κ+p−r)u , K(u) = [uκ(u)]′.

In this subcase we have

X = 2c1x + c2 [(p+ r + µ1)x− qt] + c3, T = 2c1t+ c2 [x + (r + µ1 − p)t] + c4,

Y = c1y + c5, Z = c1z +
c2
2

(µ1 − µ2)z + c6, U = c2(r − p− κ)u.

The Lie algebra is six-dimensional given by

Γ1, Γ2, Γ3, Γ4, Γ5,

Γ26 = [x + (r + µ1 − p)t]
∂

∂t
+[(p+ r + µ1)x− qt]

∂

∂x
+

1

2
(µ1−µ2)z

∂

∂z
+(r−p−κ)u ∂

∂u
.

Subcase 6.2: G(u) = εz
e

∫ µ1du
(κ+p−r)u

(κ+p−r)u , K(u) = [uκ(u)]′.

Using equations (5.13)-(5.19) we get

X = 2c1x + c2 [(p+ r + µ1)x− qt] + c3, T = 2c1t+ c2 [x + (r + µ1 − p)t] + c4,

Y = c1y + c5z + c6, Z = c1z − c5εzy + c7, U = c2(r − p− κ)u.

So, the Lie algebra is

Γ1, Γ2, Γ3, Γ4, Γ5, Γ6,

Γ27 = [x+ (r + µ1 − p)t]
∂

∂t
+ [(p+ r + µ1)x− qt]

∂

∂x
+ (r − p− κ)u

∂

∂u
.
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Case 7. F (u) = 1.

In this case from equations (5.13)-(5.19) we get that G(u) = εz, K(u) = u and

X = c1x + c2t + c3t+ c4, T = 2c1t+ c5, Y = c1y + c6z + c7,

Z = c1z − c6εzy + c8, U = −c1u− c2 + c3u.

Therefore, the Lie algebra is eight-dimensional given by

Γ1, Γ2, Γ3, Γ4, Γ6, Γ23, Γ28 = t
∂

∂x
− ∂

∂u
, Γ29 = x

∂

∂x
+ u

∂

∂u
.

In Table 5.2 we summarize the Lie symmetries for the different forms of F, G and K.
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Table 5.2: Group classification of class (5.1), D = 0

N F (u) G(u) K(u) Amax

1 ∀ ∀ ∀ Aker + 〈2t ∂
∂t + 2x ∂

∂x + y ∂
∂y + z ∂

∂z 〉
2 ∀ εzF ∀ Aker + 〈2t ∂

∂t + 2x ∂
∂x + y ∂

∂y + z ∂
∂z , z

∂
∂y − εzy

∂
∂z 〉

3 eνu εze
λu epu Aker + 〈2px ∂

∂x + νy ∂
∂y + λz ∂

∂z + 2 ∂
∂u ,

2νt ∂
∂t + 2x(ν − p) ∂

∂x + z(ν − λ) ∂
∂z − 2 ∂

∂u 〉
4 eνu εze

λu u Aker + 〈−2t ∂
∂x + νy ∂

∂y + λz ∂
∂z + 2 ∂

∂u ,

2νt ∂
∂t + 2(νx+ t) ∂

∂x + z(ν − λ) ∂
∂z − 2 ∂

∂u 〉
5 eνu εze

νu epu Aker + 〈2px ∂
∂x + νy ∂

∂y + νz ∂
∂z + 2 ∂

∂u ,

νt ∂
∂t + x(ν − p) ∂

∂x − ∂
∂u , z

∂
∂y − εzy

∂
∂z 〉

6 eu εze
u u Aker + 〈−2t ∂

∂x + y ∂
∂y + z ∂

∂z + 2 ∂
∂u ,

t ∂
∂t + (x+ t) ∂

∂x − ∂
∂u , z

∂
∂y − εzy

∂
∂z 〉

7 uν εzu
λ up Aker + 〈2λt ∂

∂t + 2x(λ− p) ∂
∂x + y(λ− ν) ∂

∂y − 2u ∂
∂u ,

2νt ∂
∂t + 2x(ν − p) ∂

∂x + z(ν − λ) ∂
∂z − 2u ∂

∂u 〉
8 uν εzu

λ lnu Aker + 〈2λt ∂
∂t + 2(λx+ t) ∂

∂x + y(λ− ν) ∂
∂y − 2u ∂

∂u ,

−2νt ∂
∂t − 2(νx+ t) ∂

∂x + z(λ− ν) ∂
∂z + 2u ∂

∂u 〉
9 uν εzu

ν up Aker + 〈2px ∂
∂x + νy ∂

∂y + νz ∂
∂z + 2u ∂

∂u ,

νt ∂
∂t + x(ν − p) ∂

∂x − u ∂
∂u , z

∂
∂y − εzy

∂
∂z 〉

10 uν εzu
ν lnu Aker + 〈−2t ∂

∂x + νy ∂
∂y + νz ∂

∂z + 2u ∂
∂u ,

νt ∂
∂t + (νx+ t) ∂

∂x − u ∂
∂u , z

∂
∂y − εzy

∂
∂z 〉

11 e

∫ µ1du
(κ+p−r)u

(κ+p−r)u εz
e

∫ µ2du
(κ+p−r)u

(κ+p−r)u [uκ(u)]′ Aker + 〈2t ∂
∂t + 2x ∂

∂x + y ∂
∂ y + z ∂

∂z , [x+ (r + µ1 − p)t] ∂
∂t+

+[(p+ r + µ1)x − qt] ∂
∂x + 1

2 (µ1 − µ2)z
∂
∂z + (r − p− κ)u ∂

∂u 〉

12 e

∫ µ1du
(κ+p−r)u

(κ+p−r)u εz
e

∫ µ1du
(κ+p−r)u

(κ+p−r)u [uκ(u)]′ Aker + 〈2t ∂
∂t + 2x ∂

∂x + y ∂
∂y + z ∂

∂z , [x+ (r + µ1 − p)t] ∂
∂t+

+[(p+ r + µ1)x − qt] ∂
∂x + (r − p− κ)u ∂

∂u , z
∂
∂y − εzy

∂
∂z 〉

13a 1 εz u Aker + 〈2t ∂
∂t + x ∂

∂x + y ∂
∂y + z ∂

∂z − u ∂
∂u , t

∂
∂x − ∂

∂u ,

x ∂
∂x + u ∂

∂u , z
∂
∂y − εzy

∂
∂z 〉

13b u−1/2 εu−1/2 u−1/2 Aker + 〈2t ∂
∂t + x ∂

∂x + y ∂
∂y + z ∂

∂z − u ∂
∂u , t

∂
∂t + 2u ∂

∂u ,

z ∂
∂y − εzy

∂
∂z , x

∂
∂t − 2u1/2 ∂

∂u 〉

Here εz = ±1; p 6= 0; ν = 0, 1 in cases 3, 4, 5; in cases 11 and 12 u = (κ2 + 2pκ+ q)−1/2e
∫

rdu
κ2+2pκ+q

Additional equivalence transformations

13b 7−→ 13a : t̃ = −x, x̃ = −2t, ỹ = y, z̃ = z, ũ = 2u1/2.
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In order to reduce an equation from the class (5.1) into an ordinary differential equation,

we need three-dimensional solvable subalgebras. For example, equation

ut = (u−2ux)x − (u−2uy)y + (u−2uz)z + u−1ux,

which is a special case of equation in Table 5.1.14, admits five Lie symmetries

Γ1 =
∂

∂t
, Γ2 =

∂

∂x
, Γ3 =

∂

∂y
, Γ4 =

∂

∂z
, Γ5 = x

∂

∂x
+ y

∂

∂y
− z

∂

∂z
− u

∂

∂u
.

The three-dimensional (solvable) subalgebra 〈Γ5,Γ1,Γ2 + δΓ3〉 produces the similarity

reduction

u = (y − δx)−1φ(ξ), ξ = z(y − δx)−1,

that transforms the above partial differential equations in four independent variables to

the ordinary differential equation

φ
d2φ

dξ2
− 2

(

dφ

dξ

)2

+ ξφ2 dφ

dξ
+ φ3 = 0.
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Chapter 6

Lie Group Classification of Systems

of Diffusion Equations

We consider the class of systems of diffusion equations of the form

∂u

∂t
=
∂

∂x

[

f(u, v)
∂u

∂x

]

, (6.1)

∂v

∂t
=
∂

∂x

[

g(u, v)
∂v

∂x

]

,

where f and g are arbitrary non-zero smooth functions in their arguments, both equations

are nonlinear, and f 2
v + g2

u 6= 0. Special cases of this class of equations have been used to

model successfully physical situations, such as transport in porous media with variable

transmissivity [26] and river pollution [46]. Special cases of (6.1) have also applications in

Plasma Physics [64,65]. A number of diffusion type systems of equations has been studied

using Lie group analysis by Nikitin [50–52]. Also the special case f = f(u), g = g(v) can

by found in [33,43]. In this chapter we perform the complete classification of the class of

systems of diffusion equations (6.1). Then using some of the obtained Lie symmetries, we

construct exact invariant solutions [23].

6.1 Classification of Lie Symmetries

For the class of systems of diffusion equations of the form (6.1) we determine infinitesimal

transformations of the form

x′ = x+ εX(x, t, u, v) +O(ε2),
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t′ = t+ εT (x, t, u, v) +O(ε2),

u′ = u+ εU(x, t, u, v) +O(ε2),

v′ = v + εV (x, t, u, v) +O(ε2).

That is, we search for such transformations that leave system (6.1) invariant.

We have seen that a PDE of second order, admits Lie symmetries if and only if

Γ(2)E|E=0 = 0.

So the system (6.1) admits Lie symmetries if and only if

Γ(2)
{

ut − fuxx − fuu
2
x − fvuxvx

}

= 0, (6.2)

Γ(2)
{

vt − gvxx − guuxvx − gvv
2
x

}

= 0,

where ut = fuxx + fuu
2
x + fvuxvx and vt = gvxx + guuxvx + gvv

2
x.

After elimination of ut and vt using the above expressions, equations (6.2) become

identities in the variables t, x, u, v, ux, vx, uxx, vxx, uxt and vxt. In fact, these identities are

multi-variable polynomials in ux, vx, uxx, vxx, uxt and vxt. The coefficients of different

powers of these variables must be zero, giving the determining equations for the four

unknown functions T, X, U and V and also for the functions f(u, v) and g(u, v).

Since equations (6.1) are polynomial in the pure derivatives of u and v with respect to

x, using Theorem 2.3 we deduce that T = T (t) and X = X(x, t). Therefore, equations

(6.2) are simplified. Now the coefficient of vxx in the first equation and uxx in the second

equation of Eqs. (6.2) give respectively,

Uv(f − g) = 0, Vu(f − g) = 0. (6.3)

Therefore, we can split the analysis into two cases:

A. f 6= g;

B. f = g.

Case A. f 6= g.

From equations (6.3) we deduce that U = U(t, x, u) and V = V (t, x, v) and from the

first invariant condition in (6.2) that the coefficients of u2
x, uxvx, uxx, ux, vx and the
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term independent of derivatives give the following determining equations respectively:

Uuuf + (Tt + Uu − 2Xx)fu + V fuv + Ufuu = 0, (6.4)

(Tt + Vv − 2Xx)fv + Ufuv + V fvv = 0, (6.5)

Ufu + V fv + (Tt − 2Xx)f = 0, (6.6)

2Uxfu + Vxfv + (2Uux −Xxx)f +Xt = 0, (6.7)

Uxfv = 0, (6.8)

Ut − Uxxf = 0. (6.9)

Coefficients of v2
x, uxvx, vxx, vx, ux and the term independent of derivatives in the

second equation in (6.2) give respectively:

Vvvg + (Tt + Vv − 2Xx)gv + Uguv + V gvv = 0, (6.10)

(Tt + Uu − 2Xx)gu + V guv + Uguu = 0, (6.11)

(Tt − 2Xx)g + Ugu + V gv = 0, (6.12)

Uxgu + 2Vxgv + (2Vvx −Xxx)g +Xt = 0, (6.13)

Vxgu = 0, (6.14)

Vt − Vxxg = 0. (6.15)

Using equations (6.4) and (6.6) we get Uuu = 0, so we can suppose that

U = uh1(x, t) + h2(x, t). Also from (6.10) and (6.12) we have Vvv = 0 that leads to

V = vh3(x, t) + h4(x, t). Using the form of V , equation (6.14) becomes

gu(h3xv + h4x) = 0, (6.16)

from we deduce the following two cases:

1. gu 6= 0;

2. gu = 0.

Case 1. gu 6= 0.

Using the fact that gu 6= 0 then from (6.16), from which we have h3x = h4x = 0, we

deduce that functions h3 and h4 are only functions of t. Also from (6.15) we deduce that

h3t = h4t = 0 so h3 = s1 and h4 = s2 where s1 and s2 are constants. Therefore equation

(6.12) becomes

gu(h1u+ h2) + gv(s1v + s2) = g(2Xx − Tt). (6.17)
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We can then suppose that g satisfies the following equation:

gu(k1u+ k2) + gv(k3v + k4) = gk5,

where k1, k2, k3, k4, k5 are constants.

Therefore we have to solve the following system:

du

k1u+ k2
=

dv

k3v + k4
=

dg

k5g
. (6.18)

Equation (6.18) suggests the following forms of g:

(i) g arbitrary;

(ii) g = unK(v + ε ln u);

(iii) g = unK(v
m

u
);

(iv) g = euK(v + εu).

However in the following analysis these forms of g lead to further special cases. Sum-

marizing we have the following forms of g:

(i) g arbitrary;

(ii) g = unK(v + ε ln u);

(iii) g = unK(v
m

u
);

(iv) g = euK(v + εu);

(v) g = unvm;

(vi) g = unev;

(vii) g = eu+v.

Subcase 1.1: g arbitrary.

In this subcase from (6.17) we get that h1 = h2 = s1 = s2 = 0 and Xx = Tt

2
. So,

X = xTt

2
+ a1(t). From equation (6.13) we have a1t = Ttt = 0, therefore a1 = s3 and

T = s4t + s5. Finally,

X = c1x + c2, T = 2c1t + c3, U = 0, V = 0.

So the Lie algebra is three-dimensional spanned by

Γ1 =
∂

∂t
, Γ2 =

∂

∂x
, Γ3 = 2t

∂

∂t
+ x

∂

∂x
.

Subcase 1.2: g = unK(v + ε ln u).
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Here from (6.12) after some calculations we deduce that s1 = h2 = 0, h1 = − s2
ε

and

X = x
2ε

(εTt− s2n)+ a1(t). Also from (6.13) we get that a1 = s3 and T = s4t+ s5. Finally

from (6.6) we deduce that f = unR(v + ε ln u). So,

X = c1x + c2, T = 2c1t + c3nt + c4, U = −c3u, V = c3ε.

Therefore the Lie algebra is four-dimensional spanned by

Γ1, Γ2, Γ3, Γ4 = nt
∂

∂t
− u

∂

∂u
+ ε

∂

∂v
.

Subcase 1.3: g = unK
(

vm

u

)

.

In this subcase from equation (6.12) we deduce that h2 = s2 = 0, h1 = s1m and

X = x
2
(Tt + s1mn) + a1(t). From equation (6.13) we get that a1 = s3 and T = s4t + s5.

Also from (6.6) we deduce that f = unR
(

vm

u

)

. So,

X = c1x + c2, T = 2c1t + c3mnt + c4, U = −c3mu, V = −c3v,

and the Lie algebra is four-dimensional spanned by

Γ1, Γ2, Γ3, Γ5 = mnt
∂

∂t
−mu

∂

∂u
− v

∂

∂v
.

Subcase 1.4: g = euK (enuv).

In this subcase from equation (6.12) we have that s2 = h1 = 0, h2 = − s1
n

and

X = x
2n

(nTt − c1) + a1(t). From (6.13) we get a1 = s3 and T = s4t+ s5, while from (6.6)

we deduce that F = euR(enuv). Therefore,

X = c1x + c2, T = 2c1t + c3t+ c4, U = −c3, V = c3nv.

So, the Lie algebra is four-dimensional spanned by

Γ1, Γ2, Γ3, Γ6 = t
∂

∂t
− ∂

∂u
+ nv

∂

∂v
.

Subcase 1.5: g = euK(v + εu).

In this subcase from (6.12) we get h1 = s1 = 0, h2 = − s2
ε

and X = x
2ε

(εTt− s2)+ a1(t).

Also from (6.13) we have a1 = s3 and T = s4t+s5. Finally from equation (6.6) we deduce

that f = euR(v + εu). So,

X = c1x + c2, T = 2c1t + c3t+ c4, U = −c3, V = εc3.
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The Lie algebra is four-dimensional spanned by

Γ1, Γ2, Γ3, Γ7 = t
∂

∂t
− ∂

∂u
+ ε

∂

∂v
.

Subcase 1.6: g = unvm.

Using the fact that g = unvm then from (6.12) we have s2 = h2 = 0,

h1 = 1
n

(2Xx − Tt − s1m) and from (6.13) and (6.9) we get respectively,

X = s3x + s4, T = s5t+ s6. Also from (6.6) we deduce that f = cunvm.

So, after some change in the constants we have

X = c1x + c2mx + c3nx+ c4, T = 2c1t+ c5, U = 2c3u, V = 2c2v.

Therefore, the Lie algebra is five-dimensional given by

Γ1, Γ2, Γ3, Γ8 = mx
∂

∂x
+ 2v

∂

∂v
, Γ9 = nx

∂

∂x
+ 2u

∂

∂u
.

Subcase 1.7: g = unev.

In this subcase from (6.12) we have s1 = h2 = 0, h1 = 1
n

(2Xx − Tt − s2), from (6.13)

we get X = s3x+ s4 and from (6.9) T = s5t + s6. Also from (6.6) we deduce that

f = cunev. So,

X = c1x + c2x + c3nx + c4, T = 2c1t + c5, U = 2c3u, V = 2c2,

and the Lie algebra is

Γ1, Γ2, Γ3, Γ9, Γ10 = x
∂

∂x
+ 2

∂

∂v
.

Subcase 1.8: g = eu+v.

Using equations (6.12), (6.13) and (6.9) after some calculations we get s1 = h1 = 0,

h2 = 2Xx − Tt − s2, X = s3x + s4 and T = s5t + s6. Also from (6.6) we deduce that

f = ceu+v. Therefore,

X = c1x + c2, T = 2c1t + c3t+ c4t+ c5, U = −c3u, V = −c4v,

and the Lie algebra is five-dimensional given by

Γ1, Γ2, Γ3, Γ11 = t
∂

∂t
− ∂

∂u
, Γ12 = t

∂

∂t
− ∂

∂v
.
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Case 2. gu = 0.

Since g = g(v), equation (6.12) can be written as

(vh3(x, t) + h4(x, t)) gv + (Tt − 2Xx)g = 0. (6.19)

We then suppose that equation (6.19) has the following form:

(k1v + k2)gv + k3k = 0. (6.20)

where k1, k2, k3 are constants.

Equation (6.20) suggests the following forms of g(v):

(i) g(v) arbitrary;

(ii) g(v) = cvm;

(iii) g(v) = cev.

Subcase 2.1: g(v) arbitrary.

From (6.19) we get that h3 = h4 = 0 and X = x
2
Tt + a1(t). Also from (6.13) we deduce

that T = s1t + s2 and a1 = s3. Then from (6.7) we have f = f(v) and from equations

(6.8) and (6.9) we get that h1 = s4 and h2 = s5. So,

X = c1x + c2, T = 2c1t + c2, U = c4u+ c5, V = 0.

Therefore, the Lie algebra is five-dimensional spanned by

Γ1, Γ2, Γ3, Γ13 =
∂

∂u
, Γ14 = u

∂

∂u
.

Subcase 2.2: g = vm.

In this subcase using equations (6.12), (6.13) and (6.15) we have h4 = 0,

h3 = 1
m

(2Xx − Tt), X = s1x+ s2, T = s3t+ s4. Also from (6.6) we deduce that f = cvm.

So, after some change of constants we have

X = c1x + c2, T = 2c1t + c3mt + c4, U = c5u+ c6, V = −c3v.

Hence, the Lie algebra is given by

Γ1, Γ2, Γ3, Γ13, Γ14, Γ15 = mt
∂

∂t
− v

∂

∂v
.

Subcase 2.3: g = ev.
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Using the fact that g = vm then from equations (6.12), (6.13) and (6.15) we have

h3 = 0, h4 = 2Xx − Tt, X = s1x + s2 and T = s3t + s4. Also from equations (6.6), (6.8)

and (6.9) we deduce that f = cev, h1 = s5 and h2 = s6. So,

X = c1x + c2, T = 2c1t + c3t+ c4, U = c5u+ c6, V = −c3,

and the Lie algebra is six-dimensional spanned by

Γ1, Γ2, Γ3, Γ12, Γ13, Γ14.

In the following table we summarize the Lie symmetries for the different forms of f

and g in the case when f 6= g.

Table 6.1: Group classification of class (6.1) if f 6= g

N f(u, v) g(u, v) Amax

1 ∀ ∀ Aker = 〈 ∂
∂t ,

∂
∂x , 2t

∂
∂t + x ∂

∂x 〉

2 unR(v + ε lnu) unK(v + ε lnu) Aker + 〈nt ∂
∂t − u ∂

∂u + ε ∂
∂v 〉

3 unR(vm/u) unK(vm/u) Aker + 〈mnt ∂
∂t −mu ∂

∂u − v ∂
∂v 〉

4 euR(enuv) euK(enuv) Aker + 〈t ∂
∂t − ∂

∂u + nv ∂
∂v 〉

5 euR(v + εu) euK(v + εu) Aker + 〈t ∂
∂t − ∂

∂u + ε ∂
∂v 〉

6 unvm cunvm Aker + 〈mx ∂
∂x + 2v ∂

∂v , nx
∂
∂x + 2u ∂

∂u 〉

7 unev cunev Aker + 〈x ∂
∂x + 2 ∂

∂v , nx
∂
∂x + 2u ∂

∂u 〉

8 eu+v ceu+v Aker + 〈t ∂
∂t − ∂

∂u , t
∂
∂t − ∂

∂v 〉

9 R(v) K(v) Aker + 〈 ∂
∂u , u

∂
∂u 〉

10 vm cvm Aker + 〈 ∂
∂u , u

∂
∂u ,mt

∂
∂t − v ∂

∂v 〉

11 ev cev Aker + 〈 ∂
∂u , u

∂
∂u , t

∂
∂t − ∂

∂v 〉

Here ε = 0, 1, c 6= 0, 1, n 6= 0, m 6= 0; R, K are arbitrary functions of their variables, K 6= R .
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Case B. f = g.

As in the previous case from the first invariant condition in (6.2) the coefficients of

u2
x, uxvx, uxx, ux, v

2
x, vx and the term independent of derivatives give respectively:

Uuuf + (Tt + Uu − 2Xx)fu + Vufv + V fuv + Ufuu = 0, (6.21)

2Uuvf + Uvfu + (Tt + Vv − 2Xx)fv + Ufuv + V fvv = 0, (6.22)

(Tt − 2Xx)f + Ufu + V fv = 0, (6.23)

2Uxfu + Vxfv + (2Uux −Xxx)f +Xt = 0, (6.24)

Uvvf = 0, (6.25)

2Uvxf + Uxfv = 0, (6.26)

Ut − Uxxf = 0. (6.27)

Also, from the second invariant condition in (6.2) the coefficients of v2
x, uxvx, vxx,

u2
x, ux and the term independent of derivatives give respectively:

Vvvf + Uvfu + (Tt + Vv − 2Xx)fv + Ufuv + V fvv = 0, (6.28)

2Vuvf + Vufv + (Tt + Uu − 2Xx)fu + V fuv + Ufuu = 0, (6.29)

Uxfu + 2Vvfv + (2Vvx −Xxx)f +Xt = 0, (6.30)

Vuuf = 0, (6.31)

2Vuxf + Vxfu = 0, (6.32)

Vt − Vxxf = 0. (6.33)

The solution of the above system with thirteen equations provides the desired classifi-

cation of Lie symmetries for the class (6.1) if f = g.

Specifically, using equations (6.21), (6.23) and (6.25) we deduce that Uuu = Uvv =

Uuv = 0. So,

U = a1(x, t)u+ a2(x, t)v + a3(x, t).

Also from equations (6.28), (6.23) and (6.31) we have Vvv = Vuu = Vuv = 0. Therefore,

V = a4(x, t)u+ a5(x, t)v + a6(x, t).

Substituting the above expressions of U and V into equations (6.21)-(6.33), equation

(6.26) becomes,

fv(a1xu+ a2xv + a3x) + 2a2xf = 0. (6.34)
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We can then suppose that (6.34) can be written in the following form:

fv(λ1u+ λ2v + λ3) + 2λ2f = 0.

where λ1, λ2, λ3 are constants.

In order to solve the above equation we just have to solve the following system:

du

0
=

d

λ1u+ λ2v + λ3
=

df

−2λ2f
. (6.35)

The above system suggests that the analysis must be split into three cases:

1. λ1 = λ2 = λ3 = 0;

2. λ2 = 0;

3. λ2 6= 0.

Case 1. λ1 = λ2 = λ3 = 0.

In this case from equation (6.27) we have a1 = s2, a2 = s2, a3 = s3 where s1, s2, s3

are constants. So, equation (6.23) becomes

fu(s1u+ s2v + s3) + fv(a4u+ a5v + a6) + f(Tt − 2Xx) = 0. (6.36)

Equation (6.36) suggests a PDE of the form

(au+ bv + c)fu + (mu+ nv + r)fv + pf = 0,

where a, b, c, m, n, r and p are constants and m, n 6= 0.

Solution of this PDE leads to the following forms of f :

1. f arbitrary;

Certain forms of f admit additional symmetries.

2. f = un(v + εu)m;

3. f = eu(v + εu)m;

4. f = unev+εu;

5. f = eu
2
ev+εu;

6. f = R(v + εu);

7. f = (v + εu)m;

8. f = ev+εu.

Subcase 1.1: f arbitrary solution of (au+ bv + c)fu + (mu+ nu+ r)fv + pf = 0.
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In this subcase using equations (6.21)-(6.33) we deduce that

X = c1x + c2, T = 2c1t + c4pt+ c3, U = c4(au+ bv + c), V = c4(mu+ nv + r).

So, the Lie algebra is four-dimensional spanned by

Γ1, Γ2, Γ3, Γ9 = pt
∂

∂t
+ (au+ bv + c)

∂

∂u
+ (mu+ nv + r)

∂

∂v
.

Subcase 1.2: f = un(v + εu)m.

In this subcase from equation (6.23) we have a4 = ε
m

(−Tt + 2Xx − s1m− s1n) ,

s2 = 0, a5 = 1
m

(−Tt + 2Xx − s1n) and s3 = a6 = 0. Finally from (6.24) and (6.33) we get

respectively X = s4x+ s5 and T = s6t+ s7. After some changes in the constants s1, ..., s7

we have

X = c1x+c2mx+c3, T = 2c1t+c4, U = c5mu, V = 2c2(v+εu)−c5(nv+ε(m+n)u).

The Lie algebra is five-dimensional given by

Γ1, Γ2, Γ3, Γ10 = mx
∂

∂x
+ 2(v + εu)

∂

∂v
, Γ11 = mu

∂

∂u
− (nv + ε(m + n)u)

∂

∂v
.

Subcase 1.3: f = eu(v + εu)m.

Here from (6.23) we have s2 = 0, a4 = 1
m

(−εTt + 2εXx − s1εm− s1v − εs3m) ,

a5 = 1
m

(−Tt + 2Xx − s3) and a6 = −εs3. Also from (6.24) and (6.33) we get respectively

X = s4x + s5 and T = s6t+ s7 while from (6.29) we deduce that s1 = 0. So,

X = c1x + c2mx + c3x+ c4, T = 2c1t+ c5, U = 2c3, V = 2c2(v + εu) − 2c3ε.

Therefore, the Lie algebra is five-dimensional spanned by

Γ1, Γ2, Γ3, Γ10, Γ12 = x
∂

∂x
+ 2

∂

∂u
− 2ε

∂

∂v
.

Subcase 1.4: f = unev+εu.

In this subcase from (6.23) we deduce that a4 = −εs1, a5 = s2 = s3 = 0,

a6 = −Tt + 2Xx − s1n and from (6.24) and (6.33) we get respectively X = s4x + s5 and

T = s6t + s7. After a change in the constants s1, ...s7 we have

X = c1x + c2x + c3nx + c4, T = 2c1t + c5, U = 2c3u, V = 2c2 − 2εc3u.
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The Lie algebra is five-dimensional given by

Γ1, Γ2, Γ3, Γ13 = x
∂

∂x
+ 2

∂

∂v
, Γ14 = nx

∂

∂x
+ 2u

(

∂

∂u
− ε

∂

∂v

)

.

Subcase 1.5: f = eu
2
ev+εu.

In this subcase from (6.23) we have s1 = s2 = 0, a4 = −2s3, a5 = 0 and

a6 = −Tt + 2Xx − εs3. Also from (6.24) and (6.33) we deduce that X = s4x + s5 and

T = s6t + s7. After a change of constants s3, ...s7 we deduce that

X = c1x + c2, T = 2c1t + εc3t + c4t + c5, U = −c3, V = 2c3u− c4,

and the Lie algebra is

Γ1, Γ2, Γ3, Γ15 = εt
∂

∂t
− ∂

∂u
+ 2u

∂

∂v
, Γ16 = t

∂

∂t
− ∂

∂v
.

Subcase 1.6: f = R(v + εu).

Using the fact that f = R(v+εu) from (6.23) we have a4 = εa5−εs1,+ε
2s2, a5 = −εs2,

a6 = −εs3 and X = x
2
Tt + g1(t). Finally from (6.24) we deduce that T = s4t + s5 and

g1 = s6 where s1, ..., s6 are constants. After a change in the constants

X = c1x + c2, T = 2c1t + c3, U = c5u+ c6v + c4, V = −ε(c5u+ c6v + c4).

Therefore, the Lie algebra is six-dimensional spanned by

Γ1, Γ2, Γ3, Γ17 =
∂

∂u
− ε

∂

∂v
, Γ18 = u

(

∂

∂u
− ε

∂

∂v

)

, Γ19 = v

(

∂

∂u
− ε

∂

∂v

)

.

Subcase 1.7: f = (v + εu)m.

In this subcase from (6.23) we get a6 = −εs3, a4 = 1
m

(−εTt + 2εXx − εs1m) and

a5 = 1
m

(−Tt +2Xx− εs2m). From (6.24) and (6.33) we get respectively X = s4x+ s5 and

T = s6t + s7 where s1, ..., s7 are constants. So,

X = c1x+c2, T = 2c1t+c3mt+c4, U = c5u+c6v+c7, V = −c3(εu+v)−ε(c5u+c6v+c7).

The Lie algebra is seven-dimensional spanned by

Γ1, Γ2, Γ3, Γ17, Γ18, Γ19, Γ20 = mt
∂

∂t
− (εu+ v)

∂

∂v
.

Subcase 1.8: f = ev+εu.
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Using the fact that f = ev+εu from (6.23) we have a5 = −εs2, a4 = −εs1 and

a6 = −Tt + 2Xx − εs3. Equations (6.24) and (6.33) yield respectively X = s4x + s5 and

T = s6t + s7 where s1, ...s7 are constants. So,

X = c1x+ c2, T = 2c1t+ c3t+ c4, U = c5u+ c6v+ c7, V = −ε(c5u+ c6v+ c7)− c3,

and the seven-dimensional Lie algebra is spanned by

Γ1, Γ2, Γ3, Γ16, Γ17, Γ18, Γ19.

Case 2. λ1 = 0.

In this case the results are the same as those of Case 1.

Case 3. λ2 6= 0.

From the system (6.35) we deduce that f = φ(u)(v + εu)−2. So, using equation (6.26)

we get a3 = a3(t) and a1 = εa2 + g1(t). Also from the coefficient of v2 in equation (6.32)

we deduce that φ(u) = ν where ν is constant. So, using the fact that f = ν(v + εu)−2

then from equation (6.28) we have a5 = 1
2
(Tt − 2Xx − 2εa2), a6 = −εa3 and

a4 = ε
2
(Tt − 2Xx − 2εa2 − 2g1). Also, from (6.30) we get X = s1x + s2 and from (6.27)

a3 = s3, g1 = s4 and a2 = s5x + s6. Finally equation (6.33) leads to T = s7t + s8. Here

s1, ..., s8 are constants and after some change of constants we have the following forms of

X, T, U and V :

X = c1x + c2, T = 2c1t + 2c3 + c4, U = c5u+ c6(εu+ v) + c7 + c8x(εu + v),

V = c3(εu+ v) − c5εu− εc6(εu+ v) − εc7 − εc8x(εu + v).

Therefore, the Lie algebra is eight-dimensional spanned by

Γ1, Γ2, Γ3, Γ17, Γ18, Γ21 = 2t
∂

∂t
+ (εu+ v)

∂

∂v
,

Γ22(εu+ v)

(

∂

∂u
− ε

∂

∂v

)

, Γ23 = x(εu+ v)

(

∂

∂u
− ε

∂

∂v

)

.

In the following table we give briefly the Lie symmetries for the different forms of f in

the case when f = g.
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Table 6.2: Group classification of class (6.1) if f = g

N f(u, v) Amax

1 f1(u, v) Aker + 〈pt ∂
∂t + (au+ bv + c) ∂

∂u + (mu+ nv + r) ∂
∂v 〉

2 un(v + εu)m Aker + 〈mx ∂
∂x + 2(v + εu) ∂

∂v ,mu
∂
∂u − (nv + ε(m+ n)u) ∂

∂v 〉

3 eu(v + εu)m Aker + 〈mx ∂
∂x + 2(v + εu) ∂

∂v , x
∂
∂x + 2 ∂

∂u − 2ε ∂
∂v 〉

4 unev+εu Aker + 〈x ∂
∂x + 2 ∂

∂v , nx
∂
∂x + 2

(

u ∂
∂u − εu ∂

∂v

)

〉

5 eu2

ev+εu Aker + 〈εt ∂
∂t − ∂

∂u + 2u ∂
∂v , t

∂
∂t − ∂

∂v 〉

6 R(v + εu) Aker + 〈 ∂
∂u − ε ∂

∂v , u
(

∂
∂u − ε ∂

∂v

)

, v
(

∂
∂u − ε ∂

∂v

)

〉

7 (v + εu)m Aker + 〈 ∂
∂u − ε ∂

∂v , u
(

∂
∂u − ε ∂

∂v

)

, v
(

∂
∂u − ε ∂

∂v

)

,mt ∂
∂t − (εu+ v) ∂

∂v 〉

8 ev+εu Aker + 〈 ∂
∂u − ε ∂

∂v , u
(

∂
∂u − ε ∂

∂v

)

, v
(

∂
∂u − ε ∂

∂v

)

, t ∂
∂t − ∂

∂v 〉

9 (v + εu)−2 Aker + 〈2t ∂
∂t + (εu+ v) ∂

∂v , u
(

∂
∂u − ε ∂

∂v

)

, (εu+ v)
(

∂
∂u − ε ∂

∂v

)

,

∂
∂u − ε ∂

∂v , x(εu+ v)
(

∂
∂u − ε ∂

∂v

)

〉

Here ε = 0, 1, c 6= 0, 1, n 6= 0, m 6= 0;f 1(u, v) is an arbitrary solution of the equation

(au+ bv + c)f1
u + (mu+ nv + r)f1

v + pf1 = 0.

6.2 Similarity reductions

Lie symmetries of a system of differential equations can be used for the construction of

exact solutions of the system. In particular, invariance with respect to a one-parameter

group of symmetries leads to the reduction of the number of independent variables by

one. For a case of two-dimensional systems in such way one obtains a reduced system of

ordinary differential equations.

Consider the system

ut = (vmux)x, vt = c(vmvx)x, (6.37)

which is a member of the class (6.1). This system admits nontrivial Lie symmetries found

in previous section. Its Lie symmetry algebra is six-dimensional and spanned by the

operators

Γ1 =
∂

∂t
, Γ2 =

∂

∂x
, Γ3 = 2t

∂

∂t
+ x

∂

∂x
, Γ4 =

∂

∂u
, Γ5 = u

∂

∂u
, Γ6 = mt

∂

∂t
− v

∂

∂v
.

102

Elen
a D

em
etr

iou



Any two conjugate subgroups of a Lie symmetry group of a system of differential

equations give rise to reduced equations that are related by a conjugacy transformation

in the point symmetry group of the system acting on the invariant solutions determined

by each subgroup [55]. Hence, up to the action of the point symmetry transformations,

all invariant solutions for a given system can be obtained by selecting a subgroup in

each conjugacy class of all admitted one dimensional point symmetry subgroups. Such

a selection is called an optimal set of one-dimensional subgroups. A set of subalgebras

of the Lie algebra corresponding to the optimal set of subgroups consists of subalgebras

inequivalent with respect to the actions of adjoint representation of the Lie symmetry

group on its Lie algebra.

In Tables 6.3-6.6 we adduce results of classification of similarity reductions of sys-

tem (6.37). More precisely, we give commutation relations for the Lie symmetries, present

adjoint representations of the Lie symmetry group of system (6.37) on its Lie symmetry al-

gebra, derive its optimal system of one-dimensional subalgebras and list the corresponding

reduced systems.

Table 6.3: Commutator table for the Lie algebra

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ1 0 0 2Γ1 0 0 mΓ1

Γ2 0 0 Γ2 0 0 0

Γ3 −2Γ1 −Γ2 0 0 0 0

Γ4 0 0 0 0 Γ4 0

Γ5 0 0 0 −Γ4 0 0

Γ6 −mΓ1 0 0 0 0 0

103

Elen
a D

em
etr

iou



Table 6.4: Adjoint table for the Lie algebra

Ad Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ1 Γ1 Γ2 Γ3 − 2εΓ1 Γ4 Γ5 Γ6 − εmΓ1

Γ2 Γ1 Γ2 Γ3 − εΓ2 Γ4 Γ5 Γ6

Γ3 Γ1e
2ε Γ2e

ε Γ3 Γ4 Γ5 Γ6

Γ4 Γ1 Γ2 Γ3 Γ4 Γ5 − εΓ4 Γ6

Γ5 Γ1 Γ2 Γ3 Γ4e
ε Γ5 Γ6

Γ6 Γ1e
mε Γ2 Γ3 Γ4 Γ5 Γ6

Table 6.5: Subalgebras 〈∆i〉, similarity variables, similarity solutions

〈∆i〉 ξ similarity solution

1 〈Γ3 + a6Γ6 + a5Γ5〉 x2+a6mt−1 u = xa5φ(ξ), v = x−a6ψ(ξ)

2 〈Γ3 + a6Γ6 + ε4Γ4〉 xt
−

1
2+a6m u = ε4

2+a6m ln t+ φ(ξ), v = t
−

a6
2+a6mψ(ξ)

3 〈Γ6 + a5Γ5 + ε2Γ2〉 ext−
ε2
m u = t

a5
m φ(ξ), v = t−

1
mψ(ξ)

4 〈Γ6 + ε2Γ2 + ε4Γ4 ext−
ε2
m u = ε4

m ln t+ φ(ξ), v = t−
1
mψ(ξ)

5 〈Γ5 + δ1Γ1 + ε2Γ2〉 x− ε2δ1t u = eδ1tφ(ξ), v = ψ(ξ)

6 〈Γ5 + δ2Γ2〉 t u = eδ2xφ(ξ), v = ψ(ξ)

7 〈Γ1 + ε2Γ2 + ε4Γ4〉 x− ε2t u = ε4t+ φ(ξ), v = ψ(ξ)

8 〈Γ2 + ε4Γ4〉 t u = ε4x+ φ(ξ), v = ψ(ξ)
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Table 6.6: Subalgebras 〈∆i〉, reduced equations

〈∆i〉 reduced equations

1 〈Γ3 + a6Γ6 + a5Γ5〉 (2 + a6m)2ξ2ψmφξξ + a5(a5 − 1)ψmφ+

(2a5 − 1)(2 + a6m)ξψmφξ + ξ2φξ + (2 + a6m)2ξψmφξ = 0

cξ2ψm(2 + a6m)2ψξξ + cmψm−1(−a6ψ + (2 + a6m)ξψξ)
2 + ξ2ψξ

+cψm[a6(a6 + 1)ψ − (2a6 + 1)(2 + a6m)ξψξ + (2 + a6m)2ξψξ ] = 0

2 〈Γ3 + a6Γ6 + ε4Γ4〉 (2 + a6m)ψmφξξ + ξφξ − ε4 = 0

(2 + a6m)cψmψξξ + cm(2 + a6m)ψm−1ψ2
ξ + ξψξ + a6ψ = 0

3 〈Γ6 + a5Γ5 + ε2Γ2〉 mξ2ψmφξξ +mξψmφξ + ε2ξφξ − a5φ = 0

cmξ2ψmψξξ + cmξψmψξ + cm2ξ2ψm−1ψ2
ξ + ε2ξψξ + ψ = 0

4 〈Γ6 + ε2Γ2 + ε4Γ4 mξ2ψmφξξ +mξψmφξ + ε2ξφξ − ε4 = 0

cmξ2ψmψξξ + cmξψmψξ + cm2ξ2ψm−1ψ2
ξ − ε2ξψξ + ψ = 0

5 〈Γ5 + δ1Γ1 + ε2Γ2〉 ψmφξξ + ε2δ1φξ − δ1φ = 0

cψmψξξ + cmψm−1ψ2
ξ + ε2δ1ψξ = 0

6 〈Γ5 + δ2Γ2〉 φξ − ψmφ = 0

ψξ = 0

7 〈Γ1 + ε2Γ2 + ε4Γ4〉 ψmφξξ + ε2φξ − ε4 = 0

cψmψξξ + cmψm−1ψ2
ξ + ε2ψξ = 0

8 〈Γ2 + ε4Γ4〉 ψmφξξ − φξ = 0

ψξ = 0

Here ai are arbitrary constants, εi = 0,±1, δi = ±1.

Solutions of the reduced systems listed in Table 6.6 give rise to similarity solutions of

the initial system. As examples we consider some cases in more detail.

Example 6.1. 〈Γ3 + a6Γ6 + ε4Γ4〉
For a6 = 1 and m = −1, if we integrate once equation

cψ−1ψξξ − cψ−2ψ2
ξ + ξψξ + ψ = 0,

we get the following Riccati equation

ψξ = Aξψ2 +Bψ,

where A = − 1
c
, B = c1

c
and c1 is the integration constant. The solution of the Riccati

equation is

ψ =
B2

CeBξ + ABξ + A
, B 6= 0; ψ = − 2

Aξ2 + C
, B = 0, (6.38)
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where C is an integration constant.

So the similarity solution of the initial system is

v = t−1ψ(ξ), u = ε4 ln t + φ(ξ),

where φ(ξ) is the solution of ψmφξξ + ξφξ − ε4 = 0, ψ(ξ) is given by (6.38) and ξ = xt−1.

Example 6.2. 〈Γ5 + δ1Γ1 + ε2Γ2〉.
The similarity solution is v = ψ(ξ), u = eδ1tφ(ξ), where φ(ξ) is the solution of

ψmφξξ + ε2δ1φξ − δ1φ = 0,

and ψ(ξ) is the solution of the following relation

∫

cψmdξ

ε2δ1ψ + c1
= ξ + c2,

Here c2 is the integration constant and ξ = x− ε2δ1t.

Example 6.3. 〈Γ1 + ε2Γ2 + ε4Γ4〉.
If we integrate once equation

cψmψξξ + cmψm−1ψ2
ξ + ε2ψξ = 0,

then we get cψmψξ + ε2ψ = c2, where c2 is the integration constant. Taking c2 = 0, we

have

ψ(ξ) =
[m

c
(−ε2ξ + c3)

]
1
m
,

where c3 is the integration constant. Substitution of this form of ψ into equation

ψmφξξ + ε2φξ − ε4 = 0,

leads us to two cases depending on the values that the constant c takes. In particular, we

need to take c 6= −m and c = −m.

If c 6= −m, then

φ =
ε4
ε2
ξ − am

ε2(c+ 1)
(−ε2ξ + c3)

c+m
m + b,
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where c 6= −1 and a, b are integration constants. So the similarity solution is

u = ε4t +
ε4
ε2

(x− ε2t) −
am

ε2(c+ 1)
[−ε2(x− ε2t) + c3]

c+m
m + b,

v =
[m

c
(−ε2(x− ε2t) + c3)

]
1
m
.

If c = −m, then

φ =
ε4
ε2
ξ +

(ε2c3 + aε2)

ε22
log(ε2ξ − c3) + b,

where a and b are integration constants. So the similarity solution is

u = ε4t +
ε4
ε2

(x− ε2t) +
ε4c3 + aε2

ε22
log [ε2(x− ε2t) − c3] + b,

v = [ε2(x− ε2t) − c3]
1
m .
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Chapter 7

Potential Symmetries of Systems of

Diffusion Equations

The problem of finding potential symmetries for the system of diffusion equations

∂u

∂t
=
∂

∂x

[

f(u, v)
∂u

∂x

]

, (7.1)

∂v

∂t
=
∂

∂x

[

g(u, v)
∂v

∂x

]

,

is examined in this chapter. In order to achieve this we need to write system (7.1) as

a system of three or four equations by introducing potential variables. These auxiliary

systems can be constructed using the conservation laws of system (7.1). A complete

classification of conservation laws for system (7.1) is presented in [37] where conservation

laws were used, in particularly, to derive all possible auxiliary systems. Here we give the

results only for arbitrary f and g and the case where g = −f .

∀f, g
1. ut = (fux)x, wx = v, wt = gvx;

2. ut = (fux)x, wx = u+ v, wt = fux + gvx;

3. wx = u, wt = fux, zx = v, zt = gvx;

∀f, g = −f
4. ut = (fux)x, wx = uv, wt = fuxv − fuvx;

5. wx = uv, wt = fuxv − fuvx, zx = v, zt = −fvx;
6. wx = uv, wt = fuxv − fuvx, zx = u+ v, zt = fux − fvx;

7. wx = u, wt = fux, zx = v, zt = gvx, qx = uv, qt = fuxv − fuvx.
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All possible auxiliary systems that correspond to (7.1) can be found in [37].

In this chapter we consider one of the auxiliary systems of the systems of diffusion

equations and we present some examples of potential symmetries. We also present an

example of linearization using infinite-dimensional potential symmetries.

7.1 Examples of Potential Symmetries

We consider the following auxiliary system in the case when g = −f :

wx = uv,

wt = fuxv − fuux, (7.2)

zx = v,

zt = −fvx.

We search for transformations admitted by system (7.2) of the form:

x′ = x+ εX(x, t, u, v, w, z) +O(ε2),

t′ = t+ εT (x, t, u, v, w, z) +O(ε2),

u′ = u+ εU(x, t, u, v, w, z) +O(ε2),

v′ = v + εV (x, t, u, v, w, z) +O(ε2),

w′ = w + εW (x, t, u, v, w, z) +O(ε2),

z′ = z + εZ(x, t, u, v, w, z) +O(ε2),

that leave system (7.2) invariant. The system (7.2) admits Lie symmetries if and only if

E1 = Γ(1) [wx − uv] = 0, (7.3)

E2 = Γ(1) [wt − fuxv + fuvx] = 0, (7.4)

E3 = Γ(1) [zx − v] = 0, (7.5)

E4 = Γ(1) [zt + fvx] = 0, (7.6)

where wx = uv, wt = fuxv − fuvx, zx = v and zt = −fvx.
We only classify the Lie symmetries of (7.2) which are such that:

X2
w +X2

z + T 2
w + T 2

z + U2
w + U2

z + V 2
w + V 2

z 6= 0. (7.7)
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These symmetries induce potential symmetries of (6.1). If (7.7) is not satisfied then the

symmetry of (7.2) projects into a point symmetry of (6.1).

Analytically, after elimination of wx, wt, zx and zt from equations (7.2), equations

(7.3)-(7.6) become four identities in the variables t, x, u, v, w, z, ux, vx, ut, vt, uxvx, utvx,

uxvt. These identities are multi-variable polynomials in ux, vx, ut, vt, uxvx, uxvt, utvx;

therefore the coefficients of different powers of these variables must be zero giving the

determining equations for the unknown functions T, X, U, V, W, Z and f(u, v).

Taking the coefficients of E4u2
x,v

2
x
, E3vx and E4vt we deduce that Tx = Tu = Tv =

Tw = Tz = 0. Hence, T = T (t). Also after some calculations using the coefficients of

E1uxvx,ux,vx, E3vx,ux, E4ux we deduce that X = X(x, t, z), W = W (t, w, z) and

Z = Z(t, z) and from E1 and E3 we get the following expressions for functions U and V :

U = Wwu+Wz − Zzu,

V = −Xxv −Xzv
2 + vZz.

Then from coefficient of ux in E2 we get the following equation:

fu(uWww +Wwz) = 0. (7.8)

So, the analysis is split into two cases:

1. fu = 0;

2. fu 6= 0.

Case 1. fu = 0.

In this case using the fact that f = f(v) from E2 the only form of f that gives potentials

is f = 1
v2

. Therefore after some briefly calculations using equations (7.3)-(7.6) we deduce

that

X = c1x + c2, T = 2c1t + c3, U = −c1u+ c4u+ h1z(t, z), V = 0,

W = c4w + h1(t, z), Z = c1z + c5,

where function h1(t, z) is an arbitrary solution of h1zz − h1t = 0.
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Therefore, the system (7.2) admits the following infinite Lie algebra spanned by

Γ1 =
∂

∂t
, Γ2 =

∂

∂x
, Γ3 =

∂

∂z
,

Γ4 = 2t
∂

∂t
+ x

∂

∂x
− u

∂

∂u
+ z

∂

∂z
, Γ5 = u

∂

∂u
+ w

∂

∂w
,

Γ∞ = h1(t, z)
∂

∂w
+ h1z(t, z)

∂

∂u
.

Symmetry Γ∞ is a potential symmetry of (6.1).

Case 2. fu 6= 0.

In this case from equation (7.8) and E2 we deduce that W = c1w + a1(t, z) and from

equations (7.3)-(7.6) we have the following determining equations

[(Zz − c1)u− a1z] fu +
[

Xzv
2 + (Xx − Zz)v

]

fv + (2vXz + 2Xx − Tt)f = 0, (7.9)

[

−Xzzuv
2 + 2uv(Zzz −Xxz) − a1zzv −Xxxu

]

f −Xtuv + a1t = 0, (7.10)

[

−v3Xzz + v2(Zzz − 2Xxz − vXxx

]

f − vXt + Zt = 0. (7.11)

We can then suppose that equation (7.9) can be written in the following form

(k1u+ k2)fu + (k3v
2 + k4v)fv + (2k3v + k5)f = 0. (7.12)

So, in order to find the different forms of f that induce potential symmetries for (6.1) we

just have to solve the following system

du

k1u+ k2
=

dv

k3v2 + k4v
=

df

f(−2k3v + k5)
,

with the method of characteristics.

Some of the forms of f that induce potentials symmetries are

(i) f = v−2φ(u);

(ii) f = v−2eνu;

(iii) f = v−2uν.

Subcase 2.1: f = v−2φ(u).

From equations (7.9)-(7.11) using the form of f = v−2φ(u) after some calculations we

deduce that

X = c3z+c4x+c2, T = 2c1t+c5, U = 0, V = v(c1−c3v−c4), Z = c1z+c6, W = c1w+c7.
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So, the Lie algebra is seven-dimensional spanned by

Γ1, Γ2, Γ3, Γ6 =
∂

∂w
, Γ7 = z

∂

∂x
−v2 ∂

∂v
, Γ8 = x

∂

∂x
−v ∂

∂v
, Γ9 = 2t

∂

∂t
+v

∂

∂v
+z

∂

∂z
+w

∂

∂w
.

Here symmetry Γ7 induce potential symmetry for equation (6.1).

Subcase 2.2: f = v−2eνu.

In this subcase from equations (7.9)-(7.11) we deduce that

X = c3z + c4x+ c5, T = 2c1t− c8νt + c2, U = c8, V = v(c1 − c3v − c4),

Z = c1z + c7, W = c1w + c8z + c6.

Therefore the Lie algebra is eight-dimensional spanned by

Γ1, Γ2, Γ3, Γ6, Γ7, Γ8, Γ9, Γ10 =
∂

∂u
+ z

∂

∂w
.

So, Γ7 induce potential symmetry for (6.1).

Subcase 2.3: f = v−2uν.

Here from equations (7.9)-(7.11) after some calculations we have

X = c3z + c4x+ c5, T = (−c1ν + 2c6)t+ c2, U = c1u, V = v(−c3v − c4 + c6),

Z = c6z + c7, W = (c1 + c6)w + c8.

Hence the Lie algebra is eight-dimensional given by

Γ1, Γ2, Γ3, Γ6, Γ7, Γ8, Γ9, Γ11 = νt
∂

∂t
+ u

∂

∂u
+ w

∂

∂w
.

In this subcase symmetry Γ7 induce potential symmetry for (6.1).

Although, the Lie algebra in the three subcases is different, all three equations admit

the same potential symmetry.

7.2 Linearization using Potential Symmetries

We consider the following auxiliary system of (7.1)

wx = u,

wt = f(u, v)ux, (7.13)

vt = [g(u, v)vx]x.
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In the case when f = −u−2 and g = −f system (7.13) is written as

wx = u,

wt = −u−2ux, (7.14)

vt = [u−2vx]x.

The symmetries of (7.14) that induce potential symmetries of (7.1) are [70]

Γ1 = x(w2 − 2t)
∂

∂x
+ 4t2

∂

∂t
+ u(6t− 2xuw − w2)

∂

∂u
− v(w2 + 2t)

∂

∂v
+ 4tw

∂

∂w
,

Γ2 = wx
∂

∂x
− u(w + ux)

∂

∂u
− vw

∂

∂v
+ 2t

∂

∂w
,

Γφ = φ(t, w)
∂

∂x
− u2φw

∂

∂u
,

Γψ = ψ(t, w)
∂

∂v
,

where the function φ(t, w) satisfies the backward linear heat equation φt + φww = 0 and

ψ(t, w) satisfies the linear heat equation ψt − ψww = 0.

As mentioned in paragraph (2.8) if a nonlinear PDE (or a system of PDEs) admits

infinite-parameter groups, then it can be transformed into a linear PDE (or into a linear

system of PDEs) if these groups satisfy certain criteria. These criteria and the method for

finding the linearizing mapping using the infinite-dimensional symmetries can be found

in [10]. Hence, using the method described in [10] the infinite-dimensional Lie symmetries

Γφ, Γψ lead to the transformation

x′ = w, t′ = t, u′ =
1

u
, v′ = v, w′ = x,

which maps the linear system

w′
x′ = u′, w′

t′ = −u′x′, v′t′ = v′x′x′,

into the nonlinear system (7.14). Consequently this mapping leads to the contact trans-

formation

dx′ = udx+ u−2uxdt, dt′ = dt, u′ =
1

u
, v′ = u,

which maps the separable linear system

u′t′ = −u′x′x′, v′t′ = v′x′x′ ,
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into the nonlinear system (7.1) now written as

ut = −[u−2ux]x, vx = [u−2vx]x.

The question that arises here is what other equations of the class (7.1) can be linearized

using similar linear approaches.
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Chapter 8

Conclusions

The main goal of this thesis was the group classification of diffusion-type equations. The

starting point was the known results of the (1+1) nonlinear diffusion equations and dif-

fusion convection equations. In particular we made a complete classification of the (2+1)

nonlinear diffusion-convection equations

ut = (D(u)ux)x + (F (u)uy)y +K(u)ux,

and the (3+1) nonlinear diffusion-convection equations

ut = (D(u)ux)x + (F (u)uy)y + (G(u)uz)z +K(u)ux.

In the literature appeared the results only in the cases K(u) = 0 and D(u) = F (u) =

G(u) = 1 and K(u) = u (Burgers’ equation).

Furthermore, we classified the Lie symmetries for the systems of diffusion equations

∂u

∂t
=

∂

∂x

[

f(u, v)
∂u

∂x

]

,

∂v

∂t
=

∂

∂x

[

g(u, v)
∂v

∂x

]

,

which generalize Ovsiannikovs results of nonlinear diffusion equations.

The problem of classification of potential symmetries of a system is a very difficult and

lengthy task. In addition to the existing results, we present some new cases of potential

symmetries.

The work of the present thesis suggests certain problems that can be considered in the

future. For example one can study the following problems:

115

Elen
a D

em
etr

iou



• Similar to Theorem 2.2 find the restrictions of the infinitesimal functions for evolu-

tion equations with more than two independent variables.

• Classification of Lie symmetries for (n + 1) diffusion-convection equations.

• Classification of potential symmetries of the systems of diffusion equations (7.1)

using all possible auxiliary systems.

• The Lie symmetries derived here can be employed to construct exact solutions.

116

Elen
a D

em
etr

iou



Bibliography

[1] Abraham-Shrauner B. and Govinder K.S., Provenance of Type II hidden symmetries

from nonliear partial differential equations, J. Math. Phys. 13, 2006, 612-622.

[2] Abramowitz M.J. and Stegun I., Handbook of Mathematical Functions, Dover, New

York, 1964.

[3] Akhatov I.Sh., Gazizov R.K. and Ibragimov N.Kh., Nonlocal symmetries. A heuristic

approach, Itogi Nauki i Tekhniki, Current problems in mathematics. Newest results

34, 1989, 3-83 (Russian, translated in J. Soviet Math. 55, 1991, 1401-1450).

[4] Alexander F.J. and Lebowitz J.L., Driven diffusive systems with a moving obstacle:

a variation on the Brazil nuts problem, J. Phys. A: Math. Gen. 23, 1990, 375-382.

[5] Alexander F.J. and Lebowitz J.L., On the drift and diffusion of a rod in a lattice

fluid, J. Phys. A: Math.Gen. 29, 1994, 683-696.

[6] Ames W.F., Nonlinear Partial Differential Equations in Engineering vol. 1, Academic

Press, New York, 1965.

[7] Ames W.F., Nonlinear Partial Differential Equations in Engineering vol. 2, Academic

Press, New York, 1972.

[8] Barenblatt G.I., On some unsteady motions of a liquid and gas in a porous medium,

Prikl. Mat. Mekh. 16, 1952, 67-78.

[9] Barenblatt G.I., On self-similar motion of compressible fluid in a porous medium,

Prikl. Mat. Mekh. 16, 1952, 679-698.

[10] Bluman G.W. and Kumei S., Symmetries and Differential Equations, Springer-

Verlag, New York, 1989.

117

Elen
a D

em
etr

iou



[11] Bluman G.W., Reid G.J. and Kumei S., New classes of symmetries for partial differ-

ential equations, J. Math. Phys. 29, 1998, 806-811.

[12] Bluman G.W. and Anco S.C., Symmetry and Integration Methods for Differential

Equations, Applied Mathematical Sciences 154, New York, 2002.

[13] Bluman G.W., Potential symmetries and equivalent conservation laws, in: N.H.

Ibragimov, M. Torrisi, A. Valenti (Eds.), Modern Group Analysis: Advanced Analyt-

ical and Computational Methods in Mathematical Physics (Acireale, 1992), Kluwer,

Dordrecht, 1993, pp. 71-84.

[14] Bluman G.W., Use and construction of potential symmetries, Math. Comput. Mod-

elling 18, 1993, 1-14.

[15] Bluman G. and Kumei S., On the remarkable nonlinear diffusion equation

(∂/∂x)[a(u+ b)−2(∂u/∂x)] − (∂u/∂t) = 0, J. Math. Phys. 21, 1980, 1019-1023.

[16] Broabridge P., Knight J.H and Rogers C., Constant Rate Rainfall Infiltration in a

Bounded Profile: Solutions of a Nonlinear Model, Soil Sci. Soc. Am. J. 52, 1988,

1526-1533.

[17] Chayes J.T., Osher S.J. and Ralston J.V., On singular diffusion equations with ap-

plications to self-organized criticality, Comm. Pure Appl. Math. 46, 1993, 1363-1377.

[18] Crank J., The Mathematics of Diffusion, second ed., Oxford, London, 1979.

[19] Crighton D.G., Basic nonlinear acoustics. In: Frontiers in physical acoustics (D.

Sette, ed.), North-Holland, Amsterdam, 1986.

[20] De Gennes P.G., Wetting: statics and dynamics, Rev. Mod. Phys. 57, 1985, 827-863.

[21] Demetriou E., Christou M.A. and Sophocleous C., On the classification of similarity

solutions of a two-dimensional diffusion-advection equation, Appl. Math. Comput.

187, 2007, 1333-1350.

[22] Demetriou E., Ivanova N.M. and Sophocleous C., Group Analysis of (2 + 1) and

(3 + 1)-dimensional diffusion-convection equations, J. Math. Anal. Appl. 348, 2008,

55-65.

118

Elen
a D

em
etr

iou



[23] Demetriou E., Sophocleous C. and Ivanova N.M., Lie group classification of systems

of diffusion equations, Proceedings of International Conference “Nonlinear science

and complexity” (NSC’08) (Porto, Portugal, 2008).

[24] Edwards M.P., Classical symmetry reductions of nonlinear diffusion-convection equa-

tions, Phys. Lett. A. 190, 1994, 149-154.

[25] Edwards M.P. and Broadbridge P., Exceptional symmetry reductions of Burgers’

equations in two and three spatial dimensions, Z. Angew. Math. Phys. 46, 1995,

595-622.

[26] Edwards M.P., Hill J.M. and Selvadurai A.P.S., Lie group symmetry analysis of

transport in porous media with variable transmissivity, J. Math. Anal. Appl. 341,

2008, 906-921.

[27] Elwakil S.A., Zahran M.A.and Sabry R., Group classification and symmetry reduc-

tions of a (2+1) dimensional diffusion-advection equation, ZAMP 56, 2005, 986-999.

[28] Fushchich W.I. and Nikitin A.G., Symmetries of Equations of Quantum Mechanics,

Allerton Press, 1994.

[29] Fushchich W.I., Shtelen W.M. and Serov N.I., Symmetry Analysis and Exact Solu-

tions of Equations of Nonlinear Mathematical Physics, Kluwer, Dordrecht, 1993.

[30] Hearn A.C., REDUCE user’ s manual, version 3.8, ZIB, Berlin, 2004.

[31] Hopf E., The partial differential equation ut+uux = µuxx, Comm. Pure Appl. Math.

3, 1950, 201-230.

[32] Ibragimov N.H., Equivalence groups and invariants of linear and non-linear equations,

Archives of ALGA 1, 2004, 9-69.

[33] Ibragimov N.H., Ed. CRC Hanbook of Lie Group Analysis of Differential Equations

Vol. 1: Symmetries, Exact solutions and Conservation laws, CRC Press, Boca Raton,

FL, 1994.

119

Elen
a D

em
etr

iou



[34] Ibragimov N.H., Ed. CRC Handbook of Lie Group Analysis of Differential equations,

Vol. 2: Applications in Engineering and Physical Sciences, CRC Press, Boca Raton,

FL, 1995.

[35] Ibragimov N.H., Elementary Lie Group Analysis and Ordinary Differential Equa-

tions, Wiley, New York, 1999.

[36] Ivanova N.M., Exact solutions of diffusion-convection equations, Dynamics of PDEs

5, 2008, 139-171 (arXiv:0710.4000).

[37] Ivanova N.M. and Sophocleous C., Conservation laws and potential symmetries of

systems of diffusion equations, J. Phys. A: Math. Theor. 41, 2008, 235201 (14pp).

[38] Ivanova N.M., Popovych R.O. and Sophocleous C., Group analysis of variable coeffi-

cient diffusion-convection equations. IV. Potential symmetries, 2008, in preparation.

[39] Katkov V.L., Group classification of solutions of Hopf’s equations, Zh. Prikl. Mekh.

Tech. Fiz. 6, 1965, 105-106 (in Russian).

[40] Kingston J.G., On point transformations of evolution equations J. Phys. A: Math.

Gen. 24, 1991, 769-774.

[41] Kingston J.G. and Sophocleous C., On form-preserving point transformations of par-

tial differential equations, J. Phys. A: Math. Gen. 31, 1998, 1597-1619.

[42] Klute A., A numerical method for solving the flow equation for water in unsaturated

materials, Soil. Sci. 73, 1952, 105-116.

[43] Knyazeva I.V. and Popov M.D., Group classification of diffusion equations, Preprint

6, 1986, Keldysh Institute.of Applied Mathematics, Academy of Sciences, U.S.S.R,

1986, Moscow.

[44] Lie S., Klassifikation und Integration von gewohnlichen Differentialgleichungen zwis-

chen x, y, die eine Gruppe von Transformationen gestatten IV, Archiv for Matematik

og Naturvidenskab 9, 1884, 431-448. Reprinted in Lie’s Ges. Abhandl. 5, paper XVI,

1924, 432-446.

120

Elen
a D

em
etr

iou
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