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Abstract

Group analysis of differential equations, was originally developed by the Norwegian math-
ematician Marious Sophus Lie in the latter part of 19th century [44,45]. Lie formally
defined and initiated the mathematical study of continuous groups of transformations,
now known as Lie groups, and showed that the order of an ordinary differential equation
(ODE) can be reduced by one if it is invariant under a one-parameter Lie group of point
transformations.

Following the work of Lie, Ovsiannikov in the late 1950’s and 1960’s and Bluman in
the late 1960’s and 1970’s developed a major revival of interest in symmetry methods for
differential equations. With the publications of the texts of Ovsiannikov [55], Olver [53],
and Bluman and Kumei [10], there are now several comprehensive accounts of the basic
theory as well as more recent applications and generalizations.

Perhaps the most powerful tools currently available in the area of nonlinear partial
differential equations (PDEs) are transformation methods. While there is no existing
general theory for solving such equations, many cases have yielded to appropriate changes
of variables. Point transformations are the ones which are mostly used. These are trans-
formations in the space of the dependent and independent variables of a PDE. Probably
the most useful point transformations of PDE’s are those which form a continuous Lie
group of transformations which leave the equation invariant.

The classical method of finding Lie symmetries is first to find the infinitesimal trans-
formations and with the benefit of linearization to extend these to groups of finite
transformations. This method is easy to apply and well-established in the last few
years [10,12,28,29,35]. Symmetries of a PDE can enable new solutions to be found
directly using known solutions or via similarity solutions. The similarity solutions arise

from transformations which yield invariants that allow one to obtain solutions through



reducing the number of independent variables of a PDE by at least one.

Lie [45] was the first to study the complete group classification of (1 + 1)-dimensional
linear parabolic equations (i.e., the complete description of their Lie symmetries up to the
equivalence relation generated by the corresponding equivalence group). This was done
as a part of the more general group classification of linear second-order partial differential
equations in two independent variables. A modern treatment of the subject is given by
Ovsiannikov [55]. There exist also a number of recent papers partially rediscovering the
classical results of Lie and Ovsiannikov.

The idea of group classification of nonlinear equations was introduced by Ovsiannikov
[56] who studied the Lie symmetries of the well known nonlinear diffusion equation
w = [D(u)uy],. Since then similar problems have been considered. For example, the
problem of group classification of diffusion-convection equation was considered by many
authors [24,39,54,60,74]. In [67] a group classification of the variable coefficient diffusion
equation was carried out and in [60] the Lie symmetries of variable coefficient diffusion-
convection equations were classified.

A new class of symmetries, nonlocal symmetries was also introduced by Bluman and
al. [10,11]. The method for finding these nonlocal symmetries, called potential symme-
tries, is first to write the system in conserved form and by introducing new variables,
the potentials, to find the infinitesimal generators of local symmetries admitted by the
auxiliary system of PDEs. The extension of local symmetries to potential symmetries
widens the applicability of symmetry methods to the construction of solutions of ordinary
and partial differential equations.

This thesis is organized as follows. In chapter 2 we present the theoretical background
needed for the subsequent chapters and in chapter 3 we present the known results of the
(1+1)-dimensional diffusion-convection equation. Following the idea of group classifica-
tion for nonlinear equations we present in chapters 4 and 5, a complete group classification
of the (241) and the (3+1) nonlinear diffusion-convection equations respectively. Another
problem considered in chapter 6, is the classification of a class of systems of diffusion
equations. Also, the method for finding a new class of symmetries, potential symmetries,
is applied in chapter 7. Finally, in chapter 8 we suggest certain problems that can be

considered in the future.
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ITepiindm

O Marious Sophous Lie, NopBnyéc podnuatixde, avdntuie xou edpaiwoe T pordnuatixy
UEAETY) TV CUVEYWY OUAOWY YETUOY UATIONWY, YVWOoTH w¢ ouddeg Lie, detyvovtag ot 7
Ta&n wag ouviiTg Sapopixhc e€iowong Umopel va Yewlel xatd €va edv eivor avaAlolwTy
(4T OTO LA LOVOTURUUETEIXT| OUAOA TOTUXWY UETACYNUATIOU®Y Lie.

Yuveyilovtag 11 douleld tou Lie, o Ovsiannikov ota téhn tou 1950 xar 1960, xat o
Bluman otoa t€An tou 1960 xou 1970, avéntuday yeydho evdlapépoy 0TI UEVOBOUS CUUUE-
TPtV Yo draopixés e€lodoeic. Me Tic Snpootedoes twv Ovsiannikov [55], Olver [53], xou
Bluman xou Kumei [10] tdpa undpyouv owdpopeg exTipnoeg e Pacuxrc Vewplag xong
XU TEOCPATES EQPUPUOYES XAl YEVIXEVOELS.

Or pedodor petacynuatiou®y etvar lowg €va and Ta o yerotua epyaieio Tou eivar dron)é-
OO OTNV TEPLOYT| TOV UN-YEOUUIXDY UeptXdY Stagopxwy edlowoewy (MAE). Iapdho tou
0ev uTdpyel Yevixr Vewpela yiow TNy enthuon TETOIWY EEIOWOEWY, EVTOUTOIS UE TIC XATAAAN-
AeC ohhaYEC TV UETUBANTWY 001 YOUUAOTE GE TOAAES EWXEC TEPITTWOEIS. AUTO €yEl ¢
anotérecpa Ty anronoinon tng MAE. Ot tomixol yetacynuatioyol eivar autol mou yenot-
womoovvTal TEPeaGTEO. AuTol glvon Ol YETAOYNUATIONO! OTO YWEO TwV EApTNUEVMDY ot
aveldotniwy petointov woag MAE. Towg ol mo yeriowot tomixol Yetaoynuatiogol mag
MAE etvar autol mou oynuatiCouyv gia GUVEYT opdda UeTacy nuatiopmy Lie xot agrivouy tny
elowomn avarlolwTy.

H shaooinr| pédodoc elpeone ouypetet®y Lie npoxintel mpodta Ye TNV EUPECT) TWYV ATEL-
POOTWY UETACY NUATICUWDY XAl UETE YETOULOTOLOVTUC WS TAEOVEXTAMUOL TT) YLOUUIXOTNTA TOUC
EMEXTEIVOVTAG TOUC OF OUAOES TETEPACPEVLY PeTaoy NuaTionwy. H uédodog autr egoapudle-
Tou evxoha xau €yet xoepwiel ta teheutaia ypdvia [10,12,28,29,35]. O cuppetpieg autdy
v MAE yenowonoolvtar 6Tt cuvEyeta yia Ty egecT) VEwY hocewy lte anculeiag Ye T

YPNOT YVWOTWY MIcEWY, eite u€ow Twv Aoewy opoldtnTag. Ot Aloeig opotdtntag opilovto
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¢ Ol UETACYNUATIOUO! TOU UELWYOUY Tov apriud Twv avelopti Ty petoBAntoy wac MAE
xotd €va.

H 15éa tng Tavounong twv ogddwy pag pn-yeauixrc e€iowons TpmwToeu@avicTnxe and
tov Ovsiannikov o omolo¢ perétnoe tic oupuetplec Lie g mohd yVwOTAC UN-YRoUUXNC

elowong Tne dLdyuong
up = [D(u)uy), -

Ané t61e mapdpola mpofifuata €youy Vewpniel. o napdderypa, ue Ty Ta€vouncn ouddwy

™me
u = [D(u)u,], + K(u)u,,

€youy aoyolnlel tohhol cuyypaweic [24,39,54,60,74]. Enionc oto [67] mapoucidleto
X XOATN pup U e Y

Tagwounon g eglowong
f(@)ue = [g(2) D(w)ual,,

xot 610 [60] tadvopolvtor ot cuppetpiec Lie trne
f@)u, = [g(z)D(uw)uy], + K (u)u,.

Ye auth) T SwteBr) Tapouctdlouvye o TAYen Tavounon Twv ouuueTel®y Lie g (2+1)
xot (3+1) un-yeouuxnic e€lowong didyuone tne Vepudtntac xataoxeudlovtag eldixéc AIoELC
Y10 XATOLES EWDIXEC TEQITTWOELS AUTAY TWY ECLCOCEMVY.

Hapouctdloupe eniong tagvounocT yia cUCTARATA EEIOWOEWY TS Oldyuong, PeloxovTag
Tic ouppeTtpieg Lie xaddg o yior véa TAEn UN-TOTIXOV CUUUETELOY, YVWOTES W CUUUETPIES
ouvautxoL. T'a tn uédodo VPECTC AUTAOY TWY UN-TOTLXWY GUUUETELMDY, 1) OTOl! TOPOUGIAOTY-
xe an6 tov Bluman [10,11], npdta 10 obotnua yeelaleta va ypagtel o€ pop@h dtatienonge
X0 OTT) GUVEYELXL UE TNV EIGAYWYT| Wag VEUS HETUBANTAS, TNG HETUBANTYS duvautxoU, va Pee-
Yolv ot areipocTol yevvitopeg Tou Pondntixdu cuothuatog and MAE nou dnutovpyeitar. H
EMEXTAOT] TWY TOTUXWY CUUUETELWY OTIC CUUMETEIEC BUVIIXOU BLEVEUVEL TNV EQUPUOYT TWY

UEVHOWY GUUPETEIOV OTNY €UPECT) AUGEMY Yia GUVADELS X0 UERIXES Dla@opnés eCIGMOELS.
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Chapter 1

Introduction

Group analysis furnishes a universal and effective method for analytical investigations of
nonlinear mathematical models in physics, mathematical biology and engineering sciences.
It was Lie, the Norwegian mathematician, who discovered that symmetries of differential
equations can be found and exploited systematically [44,45]. Although Lie’s methods for
determining and using symmetries for many years were largely neglected, fairly recently
with the advent of powerful computation packages it has become possible to apply Lie’s
method to explore the symmetries of a wide range of physical systems.

Lie group methods are perhaps the most powerful currently available in finding exact
solutions of nonlinear partial differential equations. Probably the most useful method is
the application of Lie point transformations which are those that form a continuous Lie
group of transformations, that leave the PDE invariant. Symmetries of this PDE are then
revealed, perhaps enabling new solutions to be found directly or via similarity reductions.

The idea of group classification of nonlinear equations was introduced by Ovsiannikov

[56] who studied the Lie symmetries of the well known nonlinear diffusion equation
u = [D(u)uy), .

Since then similar problems have been considered. For example, many authors [24,39,54,

60, 74] studied the problem of group classification of diffusion-convection equation
u; = [D(u)u,], + K(u)u,.
Also, in [67] a group classification of the variable coefficient diffusion equation

f(wuy = [g(2) D(w)u.], ,



was carried out and in [60] the Lie symmetries of
f(@)uy = [g(x) D(u)us], + K(u)us,

were classified. The Lie symmetries of many other physically important systems have
been classified, the first two volumes of a handbook of symmetry analysis edited by
Ibragimov [33,34] are excellent sources for such classifications.

In this thesis following the idea of group classification for nonlinear equations we present
in chapter 4 a complete group classification of the (241) nonlinear diffusion-convection

equations
up = (D(u)ug), + (Flu)uy), + K(u)u,,
and in chapter 5 the (341) nonlinear diffusion-convection equations

up = (D(w)ug), + (Fu)uy), + (Gw)u.), + K(w)u,.

)

The method for doing this is first to find the infinitesimal transformations and with the
benefit of linearization to extend these to groups of finite transformations. Using then the
derived Lie symmetries we construct similarity reductions and exact solutions of certain
equations.

Another problem considered in this thesis in chapter 6, is the classification of a class

of systems of diffusion equations of the form

ou 0 ou

ov 0 ov

il {g(u,v)%] :
We apply also in chapter 7, the method for finding a new class of symmetries for systems
of diffusion equation of the form (1.1). Bluman and al. [10,11] introduced this method
for a system of PDEs A(x, u) in the case when at least one of the PDEs can be written in
conserved form. If we introduce potential variables v for the equations written in conserved
forms as further unknown functions, we obtain a system Z(z,wu,v). Any Lie symmetry for
Z(x,u,v) induces a symmetry A(x, u). When at least one of the infinitesimals correspond
to the variables x and u depends explicitly on potentials, then the local symmetry of
Z(z,u,v) induces a nonlocal symmetry of A(z,u). These nonlocal symmetries are called

potential symmetries.



As a final application of symmetry methods we use infinite-dimensional potential sym-
metries of (1.1) to derive linearizing mappings.

All calculations have been greatly facilitated by the computer algebraic package RE-
DUCE [30].



Chapter 2

Lie Groups of Transformations

Before developing the theory of group classification, we first give the necessary theoretical
background needed for the subsequent chapters. Analytically we define the Lie groups of
transformations, the infinitesimal transformations, we examine when a PDE is invariant
under the infinitesimal transformations and how with the use of Lie symmetries we con-
struct the similarity solutions. We also define the potential symmetries and we present

an example of invertible mappings and an example of equivalence transformation.

2.1 Groups

Definition 2.1. A group is a set G with a binary operation x : G x G — G satisfying the
following axioms:

(i) Closure property: For any element g and h of G, g x h is an element of G.

(ii) Associative property: For any elements g, h and k of G

g* (hxk)=(gxh)x*k.

(#i1) Identity element: There ezists a unique identity element e of G such that for any

element g of G

exg=gxe=yg.

(iv) Inverse element: For any element g of G there exists a unique inverse element g=*

in G such that

glxg=gxg =



2.2 Groups of Transformations

Here and below we assume that all constants to be smooth.
With the term transformation of the space, we mean a function 7' : R® — R3 which is

defined by:

x/ = w<x7 t7 u)?
t' = ¢(x,t,u), (2.1)

v = w(x,t,u),

where 1), ¢ and w are known functions.

Geometrically, T' transforms the point (z,t,u) to another point (z’,# ') at the same
plane of coordinates.

If the equations that define the transformation 7" can be solved in terms of x, ¢, u, then

the transformation that appears is the inverse transformation 7-! which is defined by:
x =Vt u),
t=o t' ),
u= Q2" t' u).

From the composition of those two transformations we obtain the identity transformation

which is defined by:

r =,
t =t,
u =u

Now we consider the transformations where the functions ¢, ¢ and w in the equations
(2.1) depend on a real parameter, e. The parameter € continuously changes in an open
interval such that | € |< €. Then the whole of transformations compose the family

transformation 7, which is defined by:

x/ - w(l‘7 t7 u7 6)7
t'=¢(z,t,u,e), (2.2)

v =w(z,t,u,e),

where 1, ¢, and w, are analytic functions.



Definition 2.2. A group of transformations of the form (2.2) defines a one-parameter
Lie group of transformations if the following axioms are satisfied:

(i) To = I (T,, = I) (existence of the identity)

(ii) T-1 = T.—1 (existence of the inverse element)

(111) To,(T5T.) = (T, 15)T. (associativity of a group multiplication)

(w) T5T, = Tye5) (closure)
Every value of parameter € corresponds to a special part of the family transformations.

The transformations T, belongs to the one-parameter family group of transformations.
Below we present some examples of one-parameter Lie Groups of transformations.

Example 2.1. Group of Translations

The group of translations is given by

=z,
' =t+e,
u = u,

where eg = 0, ¢ ' = —¢ and ¢(¢,8) = € + .
Example 2.2. Group of Rotations
The group of rotations is given by
2’ = xcose — tsine,
t' = xsine + tcose,
u = u,

where €g = 0, €' = —€ and ¢(¢,0) = € + §. These transformations describe the rotation

of a point in the xt plane by an angle €.

Example 2.3. Group of Scalings
A group of scalings is given by

Xr = €x,

t = €,
/

u = u,

where g =1, €' =1/¢ and ¢(¢,0) = €.



2.3 Infinitesimal Transformations

We consider the one-parameter group of transformations 7, with identity e = 0. Then
we can expand into Taylor series every right part of the equations that define the one-

parameter group of transformations 7, in the neighborhood of € = 0. So,

v =1+ eX(x,t,u) + O(?),
t'=t+el(z,t,u) + O(?), (2.3)

u' = u+ eU(z,t,u) + O(e?),

where X = %—f|€:0, T = g—f|€:0 and U = %—f e—0-
The first order transformation is known as infinitesimal transformation and X,T,U
are called the infinitesimals of the transformation.
By knowing the infinitesimals X, T, U of the transformation, we can find the Lie group

of transformations of the form (2.2) by solving the following system of first order diffe-

rential equations

/
dx ;o

== X (2t ),
/

(cil_te =T(2' t' ), (2.4)
/

(il—?z =U(d' '),

with initial conditions
=z t'=t v =u, whene=0.

The linear differential operator

0 0 0

is called the infinitesimal generator of the infinitesimal transformation.
Example 2.4. We consider the rotation group

2’ = xcose — tsine,
t' = xsine +tcose,

U =1u.



Hence, the system (2.4) has the following form

d_:c’
de
d_t’
de
du’
——0
de ’

= —a'sine —t' cose,

=2’ cose — t' sine,

with initial conditions
=z t'=t, v=u, whene=0.

The infinitesimals for the rotation group are

dz’ .
| = (—2'sine — t' cos€)|c=g = -1/,
€ e=0
!
dt / ! . /
— = (2’ cose — t'sin€)|.—o = ',
de|._,
e—=
du’ 0
d€ e=0

So, the infinitesimal generator is

0 0

2.4 Invariant Functions

An infinitely differentiable function F'(x’,¢ v’) is an invariant function of the Lie group

of transformations (2.3) if and only if for any group of transformations of the form (2.3)
F(' t' ) = F(x, t,u).

Theorem 2.1. A function F(2',t',u') is invariant if and only if is the solution of the

PDE
LF( ', u") =0,
where T" is defined by equation (2.5).

The proof of the theorem can be found in [10].



Example 2.5. As we have seen above, a function F(x',t' u') is invariant if and only if
LF(' ¢ ) =0.

So, for the group of rotations a function F(x',t',u’) is invariant if and only if

rp— 2800 (2.6)

Equation (2.6) is a first order linear partial differential equation which can be solved by
the method of characteristics. That is,

dx g_du

-t =z 0’
from which we deduce that

F = ®(2* +1%).

Hence, any function of the form ®(x* + %) remains invariant under the rotation group.

2.5 Invariant PDEs

In this section we will examine when a second order (141)-dimensional PDE is invariant
under the transformation of the form (2.3). So we need to know how the derivatives are
transformed.
We define the extended infinitesimal transformation:

ul, = uy + U (2,1, u, Uyp, ug) + O(62),

uy = u; + eU' (2, t,u, Uy, ug) + O(€),

Uy = Uy + €U (2,1, U, U, Uy Ug, Ugr, Uge) + O(€2),

/ xt 2
uz’t/ = Ugt + EU (:L‘y ta U, ua?) uta uﬂ?a)a U/xt, utt) + O(E )a

1 tt 2
Upryr = Uy + eU (Z‘, ta Uy Ugy Uty Uggy Unt, utt) + O(G )7

with the prolongation formula:
U* =D, (U) —uyDy(X) —u Dy (T), ...
(2.7)

9



and similarly for the others. Here D, and D; are the total derivatives with respect to x
and t, respectively.

The extended infinitesimal generators are defined by:

0 0
T =T +U*— +U'—
+ aum + aut ’
0 0 0
F(2) — F(l) |k Uzt Utt—.
+ OUyy + Oy + Ouy

A transformation is said to be symmetry of a second order PDE
E(l’, t7 Uy Ugy gy Uggy Ugts utt) = 07

if the PDE has the same form in the new variables 2/, ¢/, u’. That is,

!/

/ / / / / / / _
E(l' s t s Wy Uy Upry Ugprgory Wty s ut’t’) =0.

The PDE E = 0 admits a symmetry of the infinitesimal transformation if and only if
I'®E|p_o = 0. (2.8)

Equation (2.8) is a polynomial in wy, ts, Uze, Uz, uy. We impose the condition that (2.8)
is an identity in seven variables of x,t, u, U, U, Uz, Uz, Uy, SiNce one can be eliminated
using equations £ = 0. Equating coefficients of these variables leads to an over-determined
system of differential equations for the functions X (x,t,u), T(x,t,u) and U(x,t,u). Its
solution defines the Lie symmetries of the under-examined PDE.

In the case of a single evolution equation of the form u; = H, where H is a function of
x,t,u and derivatives of u with respect to x, it can be shown that 7" = T'(¢t) [40,72]. We

generalize this result for systems of evolution equations.
Theorem 2.2. For the infinitesimal invariant transformation

=z 4+ eX(x,t,u,v),
t* =t + €eT'(z,t,u,v), (2.9)
u* =u+ elU(z, t,u,v),

v*=v+€eV(x,t,u,v),

10



with x, t be the independent variables and u, v the dependent variables of the following

system of PDE’s

w = Hy(x,t,u,v,u;,v;), (2.10)

V¢ = HQ(xa ta u, v, Uy, Uj)a

(u;, v; are the x derivatives of u and v, respectively, i =1,..n, j=1,..,m with

n>m>1)where H, + Hj, + Hj, + Hj, #0, it follows that T = T(t).
Proof. The system of PDE’s (2.10) admits infinitesimal generator of the form

0 0 0 0
X =X(z,t,u,v)— + T(x, t,u,v)— + U(z, t,u,v)— + V(x,t,u,v)

oz ot du o’
with nth extension
d o d Iy
XMW =X 4T+ U—+V_— i i <
or Tl Vo TV +;U oy +;V ao, ="

if and only if
X™(u, — Hy) =0,
X" (v, — Hy) = 0.
The nth extended infinitesimals U™ is given by

U(n) = Dz(Un_l) - uan(X) - u”_lvtDm(T)'

Taking coefficients of u,_1; that occurs from the total derivatives D, (U™ ') and D,(T)

we get
nHlun (Tuul + Tyvr + Tx) = 07

that is
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Furthermore, if the right hand side of an evolution equation is a polynomial in the pure
derivatives with respect to = then X = X (z,t) [41]. This result is generalized for system

of evolution equations.

Theorem 2.3. For the infinitesimal transformations (2.9) of the system of PDEs (2.10)
where u;, v; are the x derivatives of u and v respectively, 1 = 1,..n, j =1,...,m with
n>m>1and H}, +H}, +H3, + Hj; #0,if H and Hy are polynomial in the pure
derivatives with respect to x, it follows that X = X (z,t) [71].

2.6 Similarity Transformations

The similarity solutions that arise from transformations which yield invariants, allow one
to obtain solutions through reducing the number of independent variables of a PDE by
at least one. For example, a PDE with two independent variables can be reduced into
an ordinary differential equation (ODE). The similarity transformations are constructed

from the solution of the invariant surface condition

Xug +Tu =U. (2.11)
Now if 2 is independent of u, then the solution of (2.11) has the form

n(z,t) = constant,

u(z,t) = F(z,t,n, f(n)), (2.12)
where F' is a known function. Equation (2.12) is the similarity solution and the function
n(x,t) is called the similarity variable that constitute the independent variable of the

ODE that we get from the transformation. The function f(n) is the unknown function of

the ODE.

2.7 Potential Symmetries

Bluman and al. [10,11] introduced a method for finding a new class of symmetries, non-
local symmetries, for a system of PDEs A(x,t,u) with independent variables x,¢ and
dependent variables u in the case when at least one of the PDEs can be written in

conserved form.

12



If we introduce new variables v which are potentials for the PDEs written in conserved
forms as further unknown functions, we obtain a system Z(z,t,u,v). By construction,
any solution u(zx,t), v(z,t) of Z(x,t,u,v) defines a solution u(zx,t) of A(x,t,u). The given
system A(z,t,u) is then said to be embedded in the auxiliary system Z(z,t,u,v), so any
Lie group of transformation for Z(z,t,u,v) induces a symmetry for A(z,t,u). When
at least one of the infinitesimals which correspond to the variables x, ¢t and u depends
explicitly on the potential v, then the local symmetry of Z(x,t, u,v) induces a nonlocal
symmetry of A(z,t,u). These nonlocal symmetries are called potential symmetries. More

details about potential symmetries and their uses can be found in [13,14].

2.8 Invertible Mappings of nonlinear systems of

PDEs to linear systems of PDEs

Another application of symmetry methods to differential equations is to discover related
differential equations of simpler form. By comparing the Lie groups admitted by a given
differential equation and another differential equation (target equation), one can find
constructively, necessary conditions for a mapping of the given equation to the target
equation. If the target equation, which is a member of a class of equations, is characterized
completely in terms of a Lie symmetry group then one can algorithmically determine if
an invertible mapping exists between the equations. In [10] it is shown that an invertible
mapping that transforms a nonlinear PDE does not exist if the nonlinear PDE does not
admit an infinite-parameter Lie group of contact transformations. Also such mappings
do not exist for a nonlinear system of PDEs if the system does not admit an infinite-
parameter Lie group of transformations. If such infinite-parameter groups exist then the
nonlinear PDE (or system of nonlinear PDEs) can be transformed into a linear PDE (or
into a system of linear PDEs) provided that these groups satisfy certain criteria [10].

For example, we consider the generalized nonlinear heat conduction equation

% - % (K(u)%) . (2.13)

13



If we introduce the potential variable v we obtain the auxiliary system of (2.13)

ov

— = 2.14
or Y ( )
ov ou

In the case when K (u) = u~? equations (2.14) admit the following infinite-dimensional

symmetry

0 oh(t,v) 0
Foo = h(t,v)% — Uziév )%,

where h(t,v) is an arbitrary solution of the linear heat equation h,, — h; = 0.

The above infinite-dimensional symmetry admitted by (2.14) now written as

Uy = U, (2.15)
Vp = u’Quz,
satisfies the required criteria for linearization. Hence, system (2.15) can be linearized. The
procedure for determining invertible mappings with the employment of infinite-parameter

Lie groups of transformations is well explained in [10]. The above infinite-dimensional Lie

symmetry leads to the mapping
=t 2'=v, V=a u=-, (2.16)
that transforms any solution (u/(z’,t'),v'(2’,t")) of the linear system of PDEs

v =, vy = ul, (2.17)

to a solution (u(zx,t),v(x,t)) of the nonlinear system (2.15). In turn, the mapping (2.16)

produces the one-to-one contact transformation [15]

1
de’ = ude + u2u,dt, dtf =dt, o = =,
u

which transforms the linear diffusion equation

o' 0%

= _ 77 2.1
ot oz’ (2.18)

into the PDE

ou 0 [ ,0u

14



Using the inverse mapping of (2.16)

we deduce the contact transformation

1
de =d/da’ +ul,dt', dt =dt', uw=—

?
u/

which also connects the linear diffusion equation (2.18) and the nonlinear PDE (2.19).

2.9 Equivalence Transformations

An equivalence transformation is a transformation which has the property that it trans-
forms any member of a class of PDEs to an equation which is also a member of the same
class. The set of all equivalence transformations of a given family of equations forms a
group called the equivalence group. There exist two methods for calculations of equiv-
alence transformations: the direct method which was used by Lie [44] for calculation of
equivalence transformations and group classification of family of second-order ordinary
differential equations. The second method was suggested by Ovsiannikov [55] for deter-
mining generators of continuous equivalence groups which is a subgroup of equivalence
group. Although, the direct method involves considerable computational difficulties, it
has the benefit of finding the most general equivalence group. For recent applications of
the direct method one can refer to references [41,60,61,73]. More detailed description
and examples of both methods can be found in [32].

As an example of equivalence transformations we consider the class of diffusion equa-

tions
up = k(g ) gy, k(uz) # const.
The equivalence transformations for this class of equation is [3]
t=at+y, =0+ futy, ©=0s+ B+, k= (6 + Ru)’k/a,

where a, 3; and ~; are arbitrary constants, a # 0 and 316, — (233 # 0. A special case of

this, is the hodograph transformation
r=u, U=z,

15



that connects the nonlinear equation

u _ua:a:
t — )
ug

and the linear equation

Ut = Ugy-
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Chapter 3

Group analysis of (1+1)-dimensional

diffusion-convection equation

The idea of group analysis of the nonlinear diffusion-convection equations
ur = (D(u)ug), + K(u)u,, (3.1)

was considered by many authors. These equations are used to model a wide variety of
phenomena in mathematical physics, mathematical chemistry, mathematical biology, fluid
mechanics etc. For example equation (3.1) describes vertical one-dimensional transport of
water in homogeneous non-deformable porous media [42,66]. In the case when K(u) =0
it describes stationary motion of a boundary layer of fluid over a flat plate and a vortex of
incompressible fluid in a porous medium polytropic relations of gas density and pressure.
The outstanding representative of the class (3.1) is the Burgers equation that is the
mathematical model for a large number of physical phenomena [6-9,47].

In this chapter we present the group classification of point symmetries admitted by
(1+ 1) diffusion-convection equations [24,39,54,60,74] and also the potential symmetries
for this equation [38,68,69]. A continuing interest exists in finding exact solutions for
these equations [16,58]. Motivated by the results of this chapter, we present a complete
classification of Lie symmetries for the (2 + 1) and (3 4 1) diffusion-convection equations

in the chapters 4 and 5, respectively.
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3.1 Classification of Lie Symmetries

We consider the (141)-dimensional diffusion-convection equations (3.1). The equivalence

transformation G7* of class (3.1) consists of the 7-parameter group of transformations

5:525575—}—51, T =c4x+eqt+e9, U= cgu—+es, (32)
3.2

D=¢e'D, K=¢"e;'K — ¢y,
where 1, ...,y are arbitrary constants, 4564 # 0.

We have seen that a PDE of second order admits Lie symmetries if and only if
TP E|p_ =0,

where I'® is the second extended generator of

0 0 0
F_X%jLTa—i-U%,

which is given by the relation

0 0
r'» = T+ [D,U— (D, X)u, — (DmT)ut]a— + [DyU — (DX )y — (DT )y 5

Uy Uy
0

Oy

+ [De(U*) = tga Do (X) — uee Dy(T')]

Here D, and D, are the total derivatives with respect to x and t respectively and U? is
the extended transformation.

In this case
E =wu; — Dyu — Dug, — Ku, = 0. (3.3)
So, equation (3.1) admits Lie symmetries if and only if
I'® [u; — Dyu2 — Dug, — Ku,| =0, (3.4)

where u; = Dyu2 + Dug, + Ku,.

After elimination of u; using the above expression, equation (3.4) becomes an identity
in the variables ¢, =, u, u;, u,,. The coefficients of different powers of these variables
must be zero giving the determining equations for the unknown functions 7', X, U, D
and K. From [41] we can assume that T'= T'(t) and X = X(x,t). Also from coefficients

of u? and u,, we deduce that U,, = 0. So,
U =my(x,t)u+ mao(x,t).

18



Using the fact that T = T'(t), X = X(z,t) and the above expression of U from coeffi-
cients of ug,, u, and the term independent of derivatives of (3.4) we have the following

determining equations respectively:

Dy, (myu+mg) + D(T; — 2X,) =0, (3.5)
2D, (magu + may) + Ky(miu + ma) + D(2my, — Xp2) (3.6)
+K(Tt - X:D) —|— Xt - O,

—Mth + Mype Dy + Mip Ky — Moy + Moy D + Mo, K = 0. (3.7)

Equation(3.5) suggests the following forms of D(u):

(1) D(u) arbitrary;

2) Dl(u) = e

(3) D(u) = ut.

However in the subsequent analysis, these forms of D lead to further cases. Summa-
rizing we have the following forms of D:

(1) D(u) arbitrary;

(2) D(u) = e
(3) D(w) = e
(4) D(u) =
(5) D(w) = u;
(6) D(w) = u~4;
(7) D(u) = 1.

Case 1. D(u) arbitrary.

Using the fact that D(u) is arbitrary from (3.5) we have mq(x,t) = ma(x,t) = 0. So,
from equation (3.6) we have the following forms of K (u):

Subcase 1.1: K(u) arbitrary.

In this case from equations (3.6) and (3.7) we deduce that
X:Cb T:C2, U=0.

The Lie algebra is two-dimensional spanned by

0 0

N=2 =2,
YUor T or
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Subcase 1.2: K(u) = 0.
If K(u) =0 then from equation (3.6) we get that

X=cx+c, T=2ct+c3, U=N0.

The Lie algebra is three-dimensional given by

8 8
Iy, Ty, T'3=2t— —
Case 2. D(u) = e!™.
In this case from equation (3.5) we deduce that m; = 0 and my = %(QXI —T;). Then

from equations (3.6) and (3.7) we get that K (u) = e* and after some calculations we have
X=cp—Dz+cy, T=ci(p—2)t+c3, U=c.

Therefore, the Lie algebra is three-dimensional spanned by

0

+(n— 1)962 + o

0
Fla F27 F4 (,u 2) a a au

t

Case 3. D(u) =

If D(u) = e* then from equation (3.5) we have m; = 0 and my = 2X, — T;. Equations
(3.6) and (3.7) deduce the following forms of K (u):

Subcase 3.1: K(u) =

In this case from equations (3.6) and (3.7) we have
X=clr—t)+cy, T=crt+c3, U=c.
So, the Lie algebra is spanned by

0 0
Iy, I'y, I's=t—+(@—%t)— + —.
1 2, 5 8t (ZL' ) —+

Subcase 3.2: K(u) =0.
Equations (3.6) and (3.7) deduce that

X=cx+4+c, T=2c1t+cst+cy, U=—

In this subcase the Lie algebra is four-dimensional given by

o 0

I'y, Ty, I's, I'e=t— — =—.
1 2, 3 6 at au
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Case 4. D(u) = u*.

In this case from (3.5) we get my = 0 and m; = i(QXx — T3). From equations (3.6)
and (3.7) we have the following different forms of K:

Subcase 4.1: K(u) =u", v #0.

In this case after some calculations we get
X=c(p—vix+c, T=c1(p—2v)t+c3, U=cu.

So, the Lie algebra is three-dimensional given by

0 0 0
Iy, Ty, F7—(,u—2y)t§+(u—l/)x%+u%.

Subcase 4.2: K(u) = 0.
Here from equations (3.6) and (3.7) we deduce that

X =cx+cy, T =2c1t+cyut+cqy, U= —csu.

In this subcase the Lie algebra is

0 0
_u_

I'y, Ty, Ty, T's = ut— .
1, 2, 3 8 2 8t au

Subcase 4.3: K(u) = Inu.

In this subcase using equations (3.6) and (3.7) we have
X=cpr—t)+cy, T=cput+cs, U=cu.

So, the Lie algebra is three-dimensional spanned by

0 0 0
I'y, Ty, T'g=put— —t)— —
1 2 9 Hat+(ﬂm )a$+uau
Case 5. D(u) = u2.
Here equation (3.5) gives my = 0 and my; = %(Tt — 2X,). If we substitute these

expressions into equations (3.6), (3.7) we deduce that K(u) = u~? and finally we have
X=ce +c, T=2cst+cy, U=ce u+czu.

Therefore, the Lie algebra is given by

o 0 [0 0
Fl, PQ, FlOZQtE—f-U%, FH:@ (a—x—f-U%)
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Case 6. D(u) = —3.

From equation (3.5) we get that my = 0 and m; = i(?)Tt — 6X,;). Then, after some
calculations using equations (3.6) and (3.7) we deduce that K(u) = 0 and

X = 1 + e’ + c3, T =dcgt + 2cit +c5, U = 3cqu — 3caxu.

Hence, the Lie algebra is five-dimensional spanned by

0 0 0 0
Iy, Ty, Ty, D=4t~ +3u-—, DIiy=a2"——3zu—.
1, 2 3 12 ot + uaua 13 x o muau
Case 7. D(u) = 1.
From equation (3.5) we get that X = $T; + ¢,(¢) and then from equations (3.6) and

(3.7) we deduce that K(u) = u. So, we have the Burger’s equation with
X =citr +cyx+cst +cyy, T =cit? + 29t +¢5, U= —ci(tu+ ) — cyu — cs.

Therefore, the Lie algebra is given by

0 0 0 0 0 0
__ 42 _ — o
'y, Ty, Ty, Tiu=t 8t+m8x (tu—l—x)au, I'is 2t8t+x8z uau.

In Table 3.1 we give briefly the Lie symmetries for the different forms of D(u) and
K (u).
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Table 3.1: Classification of equation u; = (D(u)u,), + K (u)u,

N | D(u) | K(u) Basis of A™a*

1 v v | 2,2

2 v 0 | &, 2, 2% +22

3 eht e | %L (p-2td 4+ (- 1)z + &

4 et u | %Lt (-t + 2

5 ev 0 |5, 2,5 -5 2t% +25

6 ut u” %, %, (quV)t%Jr(ufv)xa% +u%

Ta ut 0 %, %, Mt@t uau,Zta +m8x

b | u? u™? %, %, 2t6 —i—um,e ‘”(% +“%)

8 [u | 0 |Z, 2 4% +3ud,2ts + 25, 2L —3nud
9 ut Inu %, %, utaJr(uxft)% +u—

0| 1 u | %, 8 20 el — (tuta)d, 2t el —ud 12— 2

Here pu,v = const. (u,v) # (=2,-2), (0,1) and v # 0 for N = 6., u # —4/3 for
N = 7a. Case 7b can be reduced to 7a (u = —2) by means of the conditional equivalence

transformation ¢ = ¢, & = e*, 4 = e "u, (that do not belong to the equivalence group of

class 3.1).
3.2 Classification of Potential Symmetries
We consider the nonlinear diffusion-convection equations of the type
up = (D(u)ug), + K(u)us,
which we write in the following form
u; = (D(w)uy), — kutis (3.8)

where k(u :—fK

If we introduce the potential v, equation (3.8) can be written as a system of two PDE’s

Uy = U, (3.9)
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We determine infinitesimal transformations of the form

v =1+ eX(2,t,u,v)+ O(),
t' =t +el(x,t,u,v) + O(?), (3.10)
u' = u+eU(z,t,u,v) + O(?),
v =v+eV(x,t,u,v)+ O(),
admitted by system (3.9).
These transformations induce potential and point symmetries for (3.8) and point sym-

metries for the integrated form of (3.8) vy = D(v,)vz, — k(v,) where u = v,.

As we have seen, a PDE of first order, admits Lie symmetries if and only if
TYE| g, = 0.
So, the system (3.9) admits Lie transformations of the form (3.10) if and only if
Wy, —u] =0, (3.11)
T, = D(u)ug + k(u)] =0,

where v, = u, v, = D(u)u, — k(u) and T is the first extended generator of

0 0 0 0
F—Xa—x—l—Ta—i—U%—l—V%,

which is given by the relation

+ [DU — (D X)u, — (D,fT)ut]i

ﬂU:F+WJP%QXWw%DJW48 0
Ut

Oy,
0 0
—l—[DmV — (DxX)'Ux — (DxT)'Ut]— + [DtV — (DtX)Um — (DtT)’Ut]—,
OV, Ovy
and D, and D, are the total derivatives with respect to x and ¢ respectively.

Eliminating v, and v; from equation (3.9), equations (3.11) take the form
El(xat7u7vvu$aut) = 07 EQ(xat7u7U7u$aut) = 07

where Fy and FE5 are determined polynomials in u, and wu;.

Now if we take coefficients of Fy, ., and Fs,, — F,, we get respectively:

DT, =0,

2D(uT, + T,) =0,

24



from which we get that 7" is a function of 7" only.

Calculation of Ejy,,,, and Ey,, respectively gives,

Finally from E; and FEj (the coefficient of u, and the term independent of u, ) we get the
following determining equations of D(u), k(u) and the generators X, T, U and V:

U=-Xu"+ (Vy,— Xp)u+ Vi, (3.12)
dD
[(X,u? + (X, — V,)u — Vx]@ + [2Xu +2X, — T,)D = 0, (3.13)
dk

[(Xou® + (X, — Vo)u] — + [-Xou+V, =Tk = (3.14)

du
[Xm,u3 + (2X 40 — Vo )u? + (Xpe — 2V )u — Vm] D+V, — Xu.

From equations (3.12), (3.13) and (3.14) we deduce the different forms of D(u), k(u) and
the generators X, T, U and V. We only classify the Lie symmetries of (3.9) which are

such that X2+ T? + U? # 0 and induce potential symmetries of (3.8). So, from equation
(3.13) we conclude that the function D(u) satisfies an ODE of the form

dD
(/\1U2 + )\QU —f- )\3)@ —I— (2)\171 —|— /\4)D = O

where A; are constants.
So, we get the following forms of D(u):
(1) D = 2, with p? —4q — r? = 0;
(2) D = m exp[r [ ugfp“wq], with p? —4q — r? # 0;
(3) D =constant;

where in all three cases p = )\—2 q= i—i and r =

Aa—A2 >\2
A1

Case 1. D = with p? —4q — %2 = 0.

P
(utq)?”

From (3.14) we get the following forms of k(u) which produce the following potential
symmetries.

Subcase 1.1: k(u) = %7 (q # s).

Equation (3.8) admits the potential symmetry
0 0 0
Do = 2mlg— )+ ((mg —ms — s)e —v) S+ (u - g)ut5)
+ (gsx + (mqg — ms + q)v) p
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Subcase 1.2: k(u) = r(u+ q) exp(5i5), (s #0).

Here equation (3.8) admits the potential symmetry

Y 9 L0, 9
Ty =2st= + ((s —@)v —v) 5o+ (u+q)’ 5=+ (¢" + (¢ +5)v) 5.

Subcase 1.3: k(u) = =

u+q "’

Equation (3.8) admits the following potential symmetries

0 0 0
Iy = 4t — [2pt+ (v + qz)?*] =+ 2(u+ ) [(u + ¢)(v + qz) + 2r] B

ot Ox
0
+ q(v + qz)* + 4rt(v + qz) + 2pqt]%,
_ Y 2 0 0
Iy = (U+q$)%—(u+Q) %—[q(v+qx)+2rt]%,
Do = % [poa — (0 a) (pu+ )06~ 76) o — patas
lco = € paxququrﬁupqﬁv’

where in ', y = ¢(t,&), £ = v+ gz is an arbitrary solution of the linear heat equation

oy Oy
_9% g 1
Poez ™ o 0 (3.15)

Subcase 1.4: k(u) = r(u + q).

Here we have the following potential symmetries

B ) )
s = (v+ qrt)% —u(u + Q)% —q(v+ qrt)%,

0 0

Iy = 12pqt2a + [(v + qw)3 + 3q(rt — z)(v + qm)2 + 6(ptv + 3pqrt2)} pp
0

+ 3(u+q) [~ulv+ qr)* 4 2q(u + q)(qz* — rtv — qrtx + 2v) + 4pgt — 2ptu] B

0
+ q[—(v+qx)® +3q(x — rt) (v + qz)* + 6(ptv + 2pgat — 3pgrt?)]

%7
0 0
I, = [('U + qz)(v — qx) + 2(grtv + pt + qzrtx)} p +2(u+q) [—uv + ¢*x — qrt(u + q)} Ew
0
+ q[—(v+qz)(v—qz) + 2(pt — griv — ¢*riz)] 50

0 0 0

where y = ¢(t, €) satisfies (3.15).

Case 2. D = m exp |:T f u2ﬁpuu+fIi|’ with p2 - 4(] —r? 7é 0.
From equation (3.13) and (3.14) we deduce that X and V are linear in  and v. In

this case we obtain the following results:
Subcase 2.1: k(u) = \/u? + pu + gexp [s S qup“quq} :
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Equation (3.8) admits the potential symmetry

0 0 0
Iy = (T+2S)t§+ [(7”+8 - g)w—v] %+(u2+pu+q)%+ qr + (r+s+ g) 5
Subcase 2.2: k(u u) f (Alzji;ﬂq; &

Here the function / ( ) is given by

1 du
Iu) = ——=exp|s | 57—,
Vu?+pu+q u? +pu+q

where s = %ﬁ_’“ For this case we have

%) %)
=+ W+ putq)o-

0 p
Iy = (T-I—QS)tE-I—[(T+S—§)$+)\1t—v] 2 50

0

+ [q:c—)\gt+(r+s—|—p) } 50"

Subcase 2.3: k(u) = Au + q).

Equation (3.8) admits the following potential symmetries

a a
T = (0" —dg—r)tm — [(p+7)0 +2q2 + A +pg + qr +2g = p)t] o

ot
0
+ [0+ pr = 2000 +g(p+ )z + Aglpr —p+2g 07 = )] o
+ () +put ),
0 5 0
Iy, = [2v+(p—7")m+)\(2q—p+r)t]a—x—2(u —I—pu—i—q)%
0
- [(p+r)v+2qx+)\q(p—l—r—2)t]%.

Case 3. D =constant= p.
From equation (3.13) we get that X = 17} + 6(¢) and from (3.14) we deduce that
function k(u) satisfies an ODE of the form:

dk
()\1U + )\2)@ + )\3/€ = )\4’&2 + )\5U + )‘6-

Equation (3.8) admits a potential symmetry only when k& = r(u + s)?. Any other form
of k(u) which satisfies the above ODE leads to point symmetries. If k = r(u + s)? then
equation (3.8) becomes the well known Burger’s equation which admits the potential

symmetry

0

rv a rv
300 = €7 (phy + 7hu)— + per h%,

ou
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where the function h(z,t) satisfies the linear PDE

r2s?

hy — phyy + 2rsh, — ——h = 0.
p

As one can see, the obtained results are very cumbersome. However, one can easily
simplify them using equivalence transformations. It is known, that equivalence group
of a PDE can be (trivially) prolonged to equivalence group of any potential system of
the equation. Here we adduce classification of potential system (3.9) up to such (trivial)

prolongation [61].

Table 3.2: Results of group classification for systems (3.9) with respect to Gy

triv.pot”
equivalence
N D(u) k(u) Basis of A™ax
1 u e:“‘/“ uel/u %,ai Gi (‘u, 2) ((M—l)x+v)%fu 8@4,(#71)1}6%
2| e B B 0 +<x+v>—,7u26 +w-20%
—2el 8 8 B ) B 9 29
3 u e/u O L0 Bz Jo° 2t6_+x8$+vav7t _Ua_'i_u%
o 8 b 5
P u S o s (=200t + (0 —v)z —v) & +u(u+1)4;
2
(u+1)» (u+ 1) +(,u—l/+1)v%
ut U
S| e uln —— 202 0 il 4 (prtv—t)2 fulut 1)L+ (4 Dol
6 ut 0 8 9 8 2t‘9 ) 1.2 o
(u+1)u+2 9t’ dz dv? +x61+vavyﬂ ot +’U%7U(u+ )E*U%
rctan o 9 9 _ 9 2 K3
7 M U2 + 1 e¥arctanu at’ o v,(,LL 2V)tat+(u +1)8u+
241
e ot (- v
6ltarctanu R ) , , ;
8 Zrl 0 2.2 Lol ol +0vl 4ol —(uw2+1)2 —z2
9 u=? 0 gt, 3v72t‘9 "'“eau"'“avv Ux8x+u(“x+v)au+2tava
4t2% — (v? + 2t)x% + u(v? + 6t + 2xuv)m + 4tv%,
9 2.9
xaiuau’ (’b@J, ¢)Uu du
10 w2 u-l gt’86U72t8 +u8u+vau,—v8x+u 8u+2t88v,
428 — (V2 +2t) & + 2u(uww + 2t) 2 + dtv 2,
6—5;, e—w¢% +e (¢ — ud}u)u%
2 9 940 0 0
11 1 —Uu 6t’8x72t +{L‘%_u6u’2 ——m_m%,
428 4+ dtel — 2(z + 2ut) 2 — (2 + 2t) 2,
I
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In the above consideration we have seen that the auxiliary system of the nonlinear

equation

Ut = [u_2uz]m + U_QUJ,"

admits an infinite dimensional Lie symmetry which is equivalent to Lie symmetry algebra
of potential system corresponding to the linear heat equation. This observation shows
that this nonlinear equation can be mapped into the linear heat equation u; = ug, by

contact transformations [61,68].
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Chapter 4

Group analysis of (2+1) nonlinear

diffusion-convection equations

We consider the (2+1) nonlinear diffusion-convection equations
up = (D(u)uy)e + (F(uw)uy)y + K (), (4.1)

where D(u), F(u) and K(u) are arbitrary smooth functions. These equations generalize
the well-known Richard’s equation and arise naturally in certain physical applications.
Thus, for example, superdiffusivities of this type have been proposed [20] as a model for
long-range Van der Waals interactions in thin films spreading on solid surfaces. Equa-
tions of such form may describe the flow of particles in a lattice fluid past an impenetrable
obstacle [4,5]. This equation also appears in the study of cellular automata and inter-
acting particle systems with self-organized criticality (see [17] and references therein) and
describes a model of water flow in unsaturated soil [63]. For other applications of many
special cases of these classes of equations we refer the reader to [18,48,49,57].

Our goal in this chapter is to carry out a group classification of (4.1) [21,22]. In the case
when K (u) = 0, the corresponding results can be found in [34]. This classification gener-
alizes and completes existing results in the literature. Using the derived Lie symmetries

we also construct similarity reductions and exact solutions of certain equations.
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4.1 Classification of Lie Symmetries
The equivalence group of (4.1) consists of the 9-parameter group of point transformations

t=est+e, T=cer+egt+ey, §=cry+es, U=csu+ey,

D= e5'eaD, F= e 'e2F, K =¢e5 e K —

where ¢; are arbitrary constants, esegereg # 0. This means that scalings and translations
of x, t, y and u may be used to simplify the analysis with the understanding that these
equivalence transformations are included in the conclusions. In particular, D(u)(# 0)
may be scaled and also u can be translated in order to simplify the form of D(u) without
any loss of generality. For example, if D(u) is a non-zero constant it may be assumed
that D(u) = 1.

We classify the Lie symmetries of equation (4.1) that are not equivalent. For example,
we exclude the case K =constant, since it can be mapped into the case with K = 0 using
a special form of the equivalence transformations.

Equation (4.1) admits Lie transformations of the form
v =1+ eX(2,t,y,u)+ O(),
t'=t+el(x,t,y,u) + O(?), (4.2)
Y =y+eY(aty,u)+O(e),
' =u+eU(x,t,y,u) + O(?),
if and only if

Ir'@E|g_y =0, (4.3)

where I'® is the second extended generator of

o 0 o 0
rex? 72 v2%. . pyY
ar Lo TV, TV
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which is given by the relation

I'® = D'+ [D,(U) — (D X)uy — (D T)us — (DyY )] a(zx
+ [DyU) = (DX )uy — (DiT)uy — (DY )uy] a%
+ [D,(U) = (DyX)uy — (DyT)us — (DY )u,] a%y
+ [Do(U?) = g Da(X) — 1y Da(T) — 1ty Dy (V)] afm
+ [Dy(UY) = ttye Dy(X) = uyuDy(T) =t Dy (V)] a%y'

Here D,, D; and D, are the total derivatives with respect to x, t and y, respectively and
U?®, UY the extended transformations. We point out that in T'® we did not include the
terms that give no contribution.

In this case £ = u; — Dyu — Dy, — Fyul, — Fuy, — Ku,. So, equation (4.1) admits

Lie symmetries if and only if
I, — Dyu? — Dug, — Fyul — Fuy, — Ku,] =0, (4.4)

where u; = Dyu? + Dug, + Fuuz + Fuyy + Kug.

If we take coefficients of u,; we have
D(Tyu, +T2) = 0, (45)
from we get two cases: (A) D # 0 and (B) D = 0.

Case A. D #0.

In this case from (4.5) we have T, = T,, = 0 and also from coefficient of u,; in (4.4)

T, = 0. So, function T is only function of ¢. If we take then coefficient of u,, in (4.4) we
have
X,=Y,=0, (4.6)
X,D+Y, F=0.

From (4.6) we deduce two cases: (I) F' # €D and (II) F' = €D.

Case A(I): F # €D.
If F' # €D then from (4.6) we get that X, =Y, =0, hence X = X (z,t) and Y = y(¢,y).

Also from coefficients of w,, and “32/ we get that Uy, = 0, so U = a1 (z,t,y)u + as(z,t,y).
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Using the fact that T =T(t), X = X(z,t), Y = Y (¢,y) and the form of U, then from

equation (4.4) we obtain the following determining equations of the functional forms of

D, F, K, X, T, Y and U:

(a1u + az)D, + (T, —2X,)D = 0, (4.7)
(aqu + ag)F, + (T — 2Y,) =0, (4.8)
(2a1,u + 2a2, ) Dy + (241, — Xow) D + (a1u + ag) Ky, + (4.9)
(T — X)) K + X; =0, (4.10)
(2a1yu + 2a9,) F, + (2a1, — Yy, ) F + Y, =0, (4.11)
(A122U + Q245 ) D + (a1yyu + Gy ) F + (1,0 + a2,) K — agpu — age = 0. (4.12)

From equation (4.7) we conclude that function D(u) satisfies an ordinary differential

equation (ODE) of the form

where \; are constants. Equation (4.13) suggests the following forms of D(u):
(i) D(u) arbitrary;

(i) D(w) = e
(iii) D(u) = ut.

However in the following analysis, these forms of D lead to further special cases. Sum-

marizing we have the following forms of D(u):

1. D(u) arbitrary;

2. D(u) = et
3. D(u) = u*;

4. D(u) =u=%
5. D(u) = 1.

Case 1. D(u) arbitrary.

In the case when D(u) is arbitrary (4.7) we deduce that a; = as = 0 and

X = £T; + g1(t). Substituting the above expressions into (4.8) and (4.11) we have

forms of K:

T = cit + o, g2(t) = c3. Equation (4.10) then, suggests the following

(i) K(u) arbitrary;
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(i) K(u)=0.
Subcase 1.1: K(u) arbitrary.

Here, from equation (4.10) we get
X:Ch T:C2, Y:C;g, U=0.

So, the Lie algebra is three-dimensional and is spanned by

a FQ a ngg

Ni=gp Ta=g0 a9y

Subcase 1.2: K(u) =0.

From equation (4.10) we have
X=cx+c, T=2ct+cy, Y=cy+c3, U=0.

Hence, the Lie algebra is four dimensional and is given by

0 0 0
I'y, Ty, I's, T'y = 2t— — —.
1, 2 3 4 8t+xax+yay

Case 2. D(u) = e,
If D(u) = e then from equation (4.7) we get that a; = 0 and ay = = (2X, — T}).
Also from (4.8) we deduce that F(u) = ee”* and substituting the expression of F' into

equations (4.8), (4.10) and after some calculations we get

1 1
Y =ygi(t) + 92(t), X =axgs(t) + ga(t), g3(t) = §Tt +c, 1= Z(Ttﬂ +2¢1v).

Substituting the above expressions into (4.11) we have
T = cot +c3, g2 = cy.

So, equation (4.10) can be written in the form
Iy + po S = pug,

where p; are constants, that gives the following forms of K (u):
(i) K(u) = e
(i) K(u) = u;
(ili) K(u) = 0.

34



Subcase 2.1: K(u) = e".

In this subcase using equation (4.10) we have
X=2p—pax+c, T=22p—p)at+cs, Y=02p—p—v)ay+cs, U=2¢.

So, the Lie algebra is spanned by

0 0

B )
Iy, Ty D Ts=2(2p— w)t— +2(p — ) z— + (20 — 1t — )y — — 2—.
1, To, T3, T5=2(2p ”)tat+ (p u)xaxﬂp 0 V)yay 5

Subcase 2.2: K(u) = u.

Here from equation (4.10) we get
X =2c1px —2cit + ¢o, T =2c1ut+c3, Y =(u+v)ay+cy, U =2c.

The Lie algebra is four dimensional and is given by

0 0 0 0
I'y, Ty, T's, T'e=2ut— +2 —t)— — +2—.
1 2, 3 6 Mtat—i_ (/,LZ' t)al, +(lu+y)ay+ 8’&

Subcase 2.3: K(u) =0.
Using the fact that K (u) = 0 then from (4.10) we have

X=c—-—pwzr+cpur+c, T=2cvt+cy, Y =covy+cs, U= —2¢c;+ 2.

So, the Lie algebra is given by

9 9 9 9 5 9
I, Ty Ty =2t S L S AL AP S
v Lo Ty Tr=2pty +alv —p)ge = 2ugn, Ts = prgr +vyg + 250

Case 3. D(u) = u*
In this case from equation (4.7) we have ay = 0 and a; = i (2X, — T;) and from (4.8)

we deduce that function F'(u) has the form F(u) = eu”. So, from (4.8) we get that

1
Y =ygi(t) + g2(t), X =u=gs(t) +u(t), g1 = % (2g5v + Ti(p — nu)) .
Substituting the above expressions into (4.11) and (4.12) we get
1
g2 ==¢C1, g3 = 5Tt+027 T = cst + .
We can then suppose that equation (4.10) can be written in the form
:ulku + MQk = 3,
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from which we get the following forms of K (u):
(i) K(u) =u?, p#0;
(ii) K(u) = log u;
(iii) K = 0.
Subcase 3.1: K(u) = u?.
From (4.10) we have

X =2c(p—plr+cs, T=2c(pu—2p)t+cs, Y =co(u+v—2py+c1, U=2cou.

So the Lie algebra is four-dimensional spanned by

0 0 0 0
[y Ty, Ta To=2(2p— u)t— +2(p — p)o— + (2p — 1t — v)y— — 2u—-.
1, Toy T3, Tg=2(2p—p) i (p M)xaer(p 7 V)yay um

Subcase 3.2: K(u) = logu.

In this subcase from equations (4.10) and (4.11) we have
X =2cpx — 209t + 1, T =2cout+c3, Y =coy(pp+v)+cq, U=2cou.
Hence, the Lie algebra is given by
Iy, Ty, T3, T 2t8+2( t)8+(+) + 2
= 2ut— r—t)— V)y— + 2u—.
1 29 3 10 1% at % 81‘ 2 Y

Subcase 3.3: K(u) =0.
From equations (4.10) and (4.11) we deduce that

X =cpxr+csx+cy, T=2c3t+cy, Y =covy+c3y+cs, U=2cu.

So, the Lie algebra is five-dimensional given by

Case 4. D(u) = u2.

From equation (4.7) we have ay = 0 and a1 = (T3 — 2X,). Also from (4.8) we deduce
that F'(u) = eand Y = 5T, +g,(t). Using these expressions, from (4.11) we get T' = ¢ t+c,
and ¢ (t) = c3. Finally from (4.12) we deduce that K(u) = u~2. So,

X=ci+ce ™ T=2t+cy, Y=cry+ecs, U=/ (c;+cse®)u.

36



Hence, the Lie algebra is spanned by

0 0 0 0
Iy, Ty, I's, T'o=2t— — —, I'y=e"— 4+ e "u—.
1, Lo, la, Lo at—i-yay-i-uau, 13=¢€ +eu
Case 5. D(u) = 1.
In this case using the fact that D(u) = 1 from (4.7) we get X = £T; + g1(t) and from
(4.8) we deduce that F(u) = u~3. So, ay = 0 and a; = T (3T} — 6Y;). Substituting the

above expressions into (4.10)-(4.12) we have K(u) = 0 and
X =2c1x+c5, T=deit+co, Y =cyy? —2c5y+cs, U=3(ci+cs+ cay)u.

The Lie algebra is six-dimensional spanned by

0 0 0 0 0 0 0
Iy, Ty, Iy, Ty =4t—+22—+3 s =—2y——3 I = —y2——3yu—-.
1, Lo, la, Ly BN + ﬁfax—i‘ Ua , L1s yay u@u 16 Y By yu

Case A(II): ' =e€D.

In the case when F' = €D, from the coefficients u,,, u2 of (4.4) we deduce that U,, = 0,
so U = ay(z,t,y)u+ as(z,t,y). Substituting the expression of D(u) into (4.4) we obtain
the following determining equations of the functional forms of D, K, X, T, Y and U:

(ayu + ag)Dy + (T; — 2X,)D = 0, (4.14)
(ayu + az2)D, + (Ty — 2Y,)D =0, (4.15)
X, +Y, =0, (4.16)
(2a1,u + 2a2,) Dy, + (201, — Xy — €Xyy) D + (aqu + a2) K, + (4.17)
(T, — Xa) K + X, =0,

(2earyu + 2easy) Dy + (2eary — Yy — €Yy )D =Y, K +Y, =0, (4.18)
(@120 + €a1yy) U+ Qopy + €a2yy) D + (a1,0 + ag,) K — aypu — ag = 0. (4.19)

From equation (4.14), we conclude that function D(u) satisfies an ODE of the form
(i + p2) Dy + pzD = 0,

where p; are constants. The solution of the above ODE gives us the following different

forms of function D(u):
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(1) D(u) arbitrary;
(2) D(u) = e

(3) D(u) = u;

(4) D(u) = 1.

Case 1. D(u) arbitrary.
Solving equations (4.14)-(4.19) we deduce that K = 0 and
X=cr+cy+cs, T=2c1t+cy, Y =cry—c3ex+cq4y, U=0.
Hence, the Lie algebra is five-dimensional spanned by
0 0

I'y, Ty, I3, Ty, FnZ?J%—Eﬂca—y.

Case 2. D(u) = e*.
From (4.14)-(4.19) we get that K = 0 and
X=csx+cyy+cs, T=cit+co, Y =c3y—ceexr+cg, U= —cy+ 2c3.
So, the Lie algebra is six-dimensional given by
0 0 0 0

T I T I INeg=t—— —, T'yg=a0— — +2—.
1, Lo, Lz, Lhz, Ihg % ou Y iﬂaxﬂLZ/ayﬂL u

Case 3. D(u) = u*.
In this case from equations (4.14)-(4.19) we deduce that K = 0 and

X=cr+cur+cy+cy, T =2c1t+c5, Y =cry+copy—csex+cg, U = 2cou.
Hence, the Lie algebra is given by

0 0 0
). Ty T Ty Ty Tis = poo + uy2 + 20,
1, 2 3 4, 17, 18 ,ul'ax + ,uyay + uau

Case 4. D(u) = 1.
Here after some calculations using equations (4.14)-(4.19) we deduce that K = u and
X=crx+cit+cs5, T=2c1t+co, Y=cry+c3, U=—c4—u.
Therefore, the Lie algebra is five-dimensional given by
0 0 0 0 0

0
T T T [ =2t— — — —u—, I'yg=t— — —.
1, Lo, L3, L9 o1 +x8x +y8y u@u’ 20 or  ou
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Case B. D(u) =0.
In the case when D(u) = 0 then from coefficients of w,, uy,u,, and u,, in equation

(4.4) we get respectively

T,=T,=0,
Y, =0,
X, =X, =0

Using the fact that 7= T'(z,t), Y =Y(x,t,y) and X = X(z,t) then from (4.4) we get

the following determined equations for the functional forms of F, K, X, T, Y and U:

UF, + (T, — T,K — 2Y,)F =0, (4.20)
UFy + [T, — T, K + U, — 2Y,|F, + Uy, F = 0, (4.21)
UK, + (T, — KT, — X,)K + X, =0, (4.22)
U, F + UK — U, =0, (4.23)
2U,F, + (U, — Y,,)F — Y, K +Y, = 0. (4.24)

Using the above equations we get the following forms of F'(u)

(1) F(u) arbitrary;

() Flu) = e
(3) Flu) = u"
(4)Pwu)::uf%zm
(5) Flu) = g
(6) F(u) =1.

Case 1. F(u) arbitrary.

In this case K is arbitrary and
X =2c1x+cy, T=2c1t4+cy, Y=cry+c3, U=0.
So, the Lie algebra is four-dimensional given by

Fla F27 F37 F4-

Case 2. F(u) = e".
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Here K (u) has the following forms:
(i) K (u) = u;

(il) K(u) = et

Subcase 2.1: K(u) = u.

In this subcase we have
X =2c1x —2cot +c3, T =2c1t+cy, Y =cry+coy—+cs, U=2cs.

The Lie algebra is given by

0 0 0
I'y, Ty, T'g, Ty, Ty = —2t— — 4+ 2—.
1, 2, 3 4, 21 O _'_yay + ou

Subcase 2.2: K(u) = e!.

Here after some calculations we deduce that
X =2c1x +2copx +c3, T =2c1t+cy, Y =cry+cy+cs, U=2cs.

The Lie algebra is spanned by

'y, Ty, T's, Ty, T'yy = Q/M,'E% + y% + 2%.
Case 3. F(u) = u".
In this case K has the following forms:
(i) K(u) = ws
(i) K(u) =u"".
Subcase 3.1: K(u) = uP.
Using the fact that K(u) = u? we have

X =2cx+cx(p—v)+c, T=2ct—cwt+cy, Y=cry+cs, U=cou.

So, the Lie algebra is

0 0 0
'y, Ty, T, Ty, Teys=—vt— —V)— —.
1, 2, 3 4, 23 v ot —|—.fl'(p V)al' +u8u

Subcase 3.2: K(u) =u"'.

In this subcase

X =2c1x —2cov +c3, T =2c1t+cq4, Y =c1y+ covy+c5, U = 2cou.
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Therefore, the Lie algebra is five-dimensional spanned by

0 0 0
'y, Ty, T, Ty, Toy=—-20— — + 2u—.
1, 2, 3 4, 24 xax +]/yay + uau

Case 4. F(u) =u 2.

In this case after some calculations we deduce that K (u) = u"z and
X =2c12+2cx+c3, T =2cit+cax+cs, Y =ciy+cytcg, U= —4dcyu—2c4\/u.

So, the Lie algebra is six-dimensional given by

0 0 0 0 0
Iy, Ty, Ty, Ty, Doy =20—+y=——4du-—, Dog=0——2u-.
ox dy Ju

[ pdu
o (@+h—ru

(p+E—r)u
In this case we deduce that K(u) = [u¢(u)]’ where u = (¢* + p¢p + q)—l/Zef #ivéte and

Case 5. F(u) =

X =2c1z + [(g—l—r—i—u)x—qt} co+c3, T =2cit+ [x—i—(r—i—u—‘g)t} co + ¢y,

Y = cy + cs, U:02<T—g—¢>u.

Hence, the Lie algebra is five-dimensional given by

Fl) FZ, F3a 1147

oo (o g+ [ oren)e—o] o (-3 -o)
Case 6. F'(u) = 1.
Using the fact that F'(u) = 1 we deduce that K (u) has the following forms:
(i) K(u) = e
(i) K(u) = u.
Subcase 6.1: K(u) = e

In this subcase after some calculations we get
X =2c1x+cox+c3, T=2c1t+cy, Y=cry+cs5, U=cs.

So, the Lie algebra is

0 0
I'y, Ty, T'g, Ty, Togs=0— 4+ —.
1, 2, 3 4, 28 :L‘al' + au
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Subcase 6.2: K(u) =

In this subcase we have
X=2c1x+crx+cst+cy, T=2c1t+c5, Y =c1y+cg, U=cou—cs.

Hence the Lie algebra is six-dimensional given by

0 0
Fl) PZ, F3a P47 FQO) PQS =x +u .
ox ou

In Table 4.1 we summarize the Lie symmetries for the different forms of D(u), F(u) and

Table 4.1: Group classification of u; = (D(uw)us) + (F(u)uy), + K(w)u,

N | D(u) F(u) K(u) Amax

1 v v v A = (&, 2. &)

2 |V v 0 Ak (28 + ok +y2)

3 v eD 0 Aker (2t 0 +xax+yay,y——sx§y>

41 0 v v AR+ 25+ 20+ y S

51 0 et et AR 28+ 208 +y s 2ued +y +25)

6| 0 e u AR 25 20+ y S, 2+ ye + 25

7 0 u u? Aker 4 (2t6+2x8x+y8 a(p—v)E —vtd +ul)

8 0 u™ u™t Aker (2t 9 +2:cax+y8 : 2xa¢+l’ + 2u)

9 0 w2 w2 Aker 4 + (2t5; o 4 23761 —l—yay,Zma—i —I—ya—y — élum7
:c% 72\/ﬂa—i>

du

10 0 H [up(u)] | A+ (2t2 + 222 +y8 B+ 1+ p)z — qt) 2+
+a+ (r+p—BH2 +(r—L—¢ul)

1| o 1 et | A 2tf 2ty e+

121 0 1 u AR 4 (25 20+ y S w s Fug b — )
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13

14

15

16

17

18

19

20

21

22

23

et

et

et

ut

ut

ut

rvu

ge

Eeuu

Eel/u

ge

EU

Eu

EU

cut

eP

AR+ (26(2p — ) g + 22(p — ) 3+
+y(2p — p = V)Y — 240
AR Qut G+ 2(px — 8) T + (1 + )y + 24)

Aker ot d (v — p) L —

= 2%,um%+”yaﬁy+2
Aker+<t%,%7 8x+y8y+28u,yg—6:ca@y>
AR 4 (22 — ) 5 + 22(p — 1) g+

+y(2p — v — )5 — 2ugy)

AR Qut sy + 2(px — 1) &+ (v + Wy + 2ud)
Akt 28 afk 4y, s + vy g + 2ugk)
AR (255 + wn +y gy, negy + gy + 2ugy
Yar — ET5y)

Aker 4 (2156 +y8y+u8u, %+U€*x%>
Aker 4 <4t8 +2;pax+3uau,

=2y L+ Bugs, —y* & + Byugs)

9 9
A+ 25 v o dys —ud bt — o)

2]
5u)

Here e = +1, p # 0, in case

10 u = (¢ + po + q) /2! Fivera.
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4.2 Similarity reductions of u; = u,, — 2uu,
We consider the two-dimensional diffusion-advection equation of the form

d
ur = Duyy — UO@[U(l — )|ty (4.25)

This equation describes the flow of particles in a lattice fluid past an impenetrable obstacle
[4,5], where u(z, y, t) is the particle concentration and D and vy are constants representing
the diffusion coefficient and the drift velocity, respectively.

Using the transformation
@ =wvt—z), ¥ =VDy, t'=t u =u,
equation (4.25) can be mapped into the following equation
Up = Uy — 2Uly. (4.26)
This transformation is a special case of the equivalence transformations of
up = Duy, — K(u)uy,

given by

!/

¥ =cix+ct+es, Yy =eccy oY s, t=cit+cs, U =crutcs.

In this section we construct all possible similarity solutions of (4.26). Similarity solu-

tions are obtained by solving the invariant surface condition
Xug +Yu, +Tu, = U.

These are transformations that reduce the number of independent variables by one. Hence,
in the present work similarity solutions will transform (4.26) into a PDE with two inde-

pendent variables using its Lie symmetries

g, FQZQ, sz a P4:2t2+21’g a ]_—‘5:215g—|—2
ot ox

T, = 9 9 .
! oy ot o Yoy oz du

In order to achieve this we need to construct the optimal system following the method of
Ovsiannikov [53,55]. First we make the commutator table for the Lie algebra I'; and then

using the Lie series we construct a table showing the separate adjoint actions for each
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element I'; acting on all the rest of elements. Finally, this table enables us to derive the
optimal system that provides all possible similarity solutions. So, in the next tables we
present the commutator table for the Lie algebra I';, the adjoint table for the Lie algebra
and the table for the infinitesimal generator A; of the optimal system, the similarity

variables and the similarity solutions.

Table 4.2: Commutator table for the Lie algebra {I';} of u; = uy,, — 2uu,

Table 4.3: Adjoint table for the Lie algebra {I';} of u; = u,, — 2uu,

Iy Iy s Ty Ts Ts
| o 0 0 2, 0 2T,
Ty 0 0 0 2y T'g 0
I's 0 0 0 I's 0 0
I'y | =2I'y -2I's —-TI'g 0 0 0
rs| o T, 0 0 0 -Tg
I's | —2I'9 0 0 0 T's 0

Ad I, Iy I3 I'y I Is

I I Ty Iy Ty — 26, s Ig — 2ely
Iy I, Iy I's Ty4—2ely Ts5—ely T's

I's I, Iy I's Ty —ely I's T's

Iy eIy e*Ty €Ty Iy s Ts

I's Iy eTy Ty Iy I's eTg
Ig | T14+2Ty Ty I's Iy I's — elg T's
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Table 4.4: Infinitesimal generators (A;) of the optimal system, similarity variables, simi-

larity solutions

(Aq) n

similarity solution

<F4 + aF5> yt—

(s + T3+ al'1) t—day

<F6 +€F3> — %

(Ty +el's) Yy —ex

1
2
3
4
5 ([1+4+allg+els) y—et
6
7
8 (T's) x

<F4 + 5F6> yt— % —

(T's +el) Y t—clogz
T — at?
t
t
t

u=12¢(1,¢)
u=—2Int+¢(n,&)

u = zd(n,§)

u = z¢(1,§)

u = —at +¢(1,§)
u=—3+6n¢)
u=¢(n,§)
u=¢(n,§)

e=-1,0,1and § = +1.

We use the optimal system in Table 4.4 to derive the reduced PDE and then we classify

the Lie symmetries for this PDE. We employ the Lie symmetries of the reduced PDE to

derive similarity transformations that map the reduced PDEs into ODEs. Solutions of

these ODEs lead to similarity solutions of (4.26). Next we present some examples and we

ignore the trivial case that corresponds to the generator (I's). The solutions of those that

can be solved analytically are presented in the next section.

Case 1. The similarity solution that corresponds to the generator I'y + al's reduces

(4.26) to

20y — 40 + Ny + (2 + a)€ds — ad = 0.

Equation (4.27) admits the Lie symmetry

9

)
Xi= 5+ 055

96’

which produces the similarity solution

+¢

o= §¢(Z)v £ =1,

that reduces (4.27) to

d?y 1 do
ST g =0
dz2+22dz Yi+y=0
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A second symmetry exists if a = 0 or a = —2. If a = 0 equation (4.27) admits the Lie

symmetries X; and

o 0

The generator Xy + puXi, p # 0 produces the similarity solution

1 1
¢:;(2+M5)¢(3)—;, z =1,

that maps (4.27) into ODE (4.28). The generator X, leads to the similarity solution

¢:%€+w(2)7 Z=1,

that reduces (4.27) into

d?y 1 dy
1L o 42
dz? + QZdz ¥=0 (4.29)

If a = —2 equation (4.27) admits the Lie symmetries X; and

0

nga—g.

The generator X, + X7 leads to the similarity solution

o= 1+pé)Y(z), z=mn,

that reduces (4.27) to

(4.
2
i + %zi—f — 2up® + 1 = 0. (4.30)

dz?

Case 2. The similarity solution that corresponds to the generator I'y + 01’ reduces

(4.26) to

20y + (26 + 20 — 49) ¢ + 1y = 4, (4.31)

which admits the Lie symmetry

o 0

The above Lie symmetry leads to the similarity solution

6= 36+(m),
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that transforms (4.31) into the ordinary differential equation (4.29). It turns out that
the similarity solution obtained here is the same as the one produced by the generator

X5 4 pX; in the case 1, where a = 0.

Case 3. The similarity solution that corresponds to the generator I's + 6I's + al’y
reduces (4.26) to

a2¢7m + 2a§¢n§ + §2¢§§ + (1 - 2¢)€¢§ - ¢n - 2¢2 = 07

and using the change of variables

¢ =&—alogn, n'=¢&+alogn,

where a # 0, this parabolic PDE simplifies to

4a2gbn/n/ + (CL — 1)(¢77/ + Cbﬁ’) — 2agz5gz5n/ — 2¢2 =0. (432)

Equation (4.32) admits two Lie symmetries

0 0

Xi=—, Xo=—
1 an,’ 2 aél’

which are simply translations in the independent variables. The optimal system is

(X1 + pXs, Xo). The generator X + pXs produces the similarity solution

¢(77/a g/) - Q,D(Z), &= g/ - /”7/’
that reduces (4.32) to the ODE

2 %
a dz?

d d
+(a—1)(1 - u)d—f + QaWd—f —2¢? = 0. (4.33)

4a*
The generator X5 produces the similarity solution

o', &) =v(2), 2=,
that reduces (4.32) to the ODE

4&2(12—w + (a — 1)% — Qawdw

= 0p? =0. 4.34
dz? dz dz v 0 (4.34)

In the case where a = 0, we have the following PDE

Edee + (1 — 20)8d¢ — by — 2¢° = 0, (4.35)
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which admits the Lie symmetries

0 0

Xl :a—n, Xzzéa—é

The generator Xy + X7 leads to the similarity solution

¢(n,€) = ¢(2), z=mn—plogé,
that reduces (4.35) to

A% dep di

- — 1) — - — 2% =0 4.36
ud22+(/t )dz po =29 , (4.36)

and from the generator X; we obtain

¢, &) =(2), z=¢,

which reduces (4.35) to

>y dy di
200 00 9t oy =
& dz? +Zdz 7 dz v 0,

and using the transformation z = e", this ODE becomes a constant coefficient equation

Sy dy
T e

2¢% = 0. (4.37)

Case 4. The similarity solution that corresponds to the generator I's 4 €'y reduces

(4.26) to

Gy + 260 — dg — 2¢° = 0. (4.38)

If £ # 0, equation (4.38) admits two Lie symmetries

with the optimal system: (X;+puXs, Xs). The generator X;+ X5 produces the similarity

solution

o(n, &) = ¥(2), z=E&— un,

that reduces (4.38) to the ODE

d%p  dy dvy
247y Ay av 52
Wiz~ @ + 2ev P 29 = 0. (4.39)

49



The generator X5 produces the similarity solution

o(n, &) =v(2), z=mn,

that reduces (4.38) to the ODE

d?y)
7 2% = 0. (4.40)

If ¢ = 0, then the symmetry Lie algebra is three-dimensional and is spanned by the

generators

0 0 0 0 0
o AR F VI T

Here the optimal system is: (X3, Xo+aX;, X;). The generator X3 produces the similarity

—2¢

solution

Mmazéw@,z:%%,

that reduces (4.38) to the ODE (4.28). The generator X3 + aX; produces the similarity

solution

¢(777£> = w(z)a =10 0467
that reduces (4.38) to the ODE

d? d
d—;f + ad—f —2¢* = 0. (4.41)

The generator X; produces the similarity solution

¢, &) =(z), z=¢,

that reduces (4.38) to the ODE

d
AW
dz

Solving this ODE leads to the similarity solution u(x,y,t) = 5% of (4.26). This solution

can be obtained, using the similarity transformation that corresponds to the generator I's

(Table 4.4, entry 8).
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Case 5. The similarity solution that corresponds to the generator I'y + al's + €l's

reduces (4.26) to

¢7777 + 5¢n - 2¢¢§ = a. (442)

If £ #0, that is ¢ = § = %1, equation (4.42) admits two Lie symmetries

9 _ 0
~ On’ o

The optimal system is: (X7 + uXs, Xs). The generator X + uX, produces the similarity

solution

45(7%5) = 2ﬂ("z)? z = 5 — M,

that reduces (4.42) to the ODE

d?qy dvy dv
2 _ L
1 P o P 21) s a. (4.43)

The generator X5 produces the similarity solution

¢(n, ) =v(2), z=n,
that reduces (4.42) to the ODE

v | dy
bl I sk
=z 0L Y

which produces the similarity solution u(z,y,t) = Ae°W=%) + §ay + B of (4.26).

If e =0, then the symmetry Lie algebra is three-dimensional and is spanned by

0 0

0 0 0
an Xz_c?_g’ + 4o + 20—

~ o T %0 T g

The optimal system for these Lie symmetries is: (X3, X5+ aX;, X7). The generator X;

Xl — X3

produces the similarity solution

6(n,€) = n*(2), zz%,
that reduces (4.42) to the ODE
&2y do o a
2= D 14— 42— = _. 4.44
8z dz2+ zdz+zwdz+w 5 (4.44)
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The generator X5 + aX; produces the similarity solution

¢(777£> = 2ﬂ("z)? Z2=1 = O‘f?
that reduces (4.42) to the ODE
— + 20— =a. (4.45)
z z
The generator X; produces the similarity solution
o(n,€) = v(z), z2=¢,
that reduces (4.42) to the ODE
dy
2 _— =
v, =%

which leads to the similarity solution u(z,y,t) = \/a(x — at)? + ¢ + at of (4.26).

Case 6. The similarity transformation that corresponds to the generator I's + '3

transforms (4.26) to

3 1
¢n77 + _¢¢n - ¢§ - _¢ =0. (446)
§ §
If £ # 0, then equation (4.46) admits three Lie symmetries
0 ed 10 0 0 0
Xi= o, Xp=oo g -2 Xy=ne 4262 4
L= gy £8n+§8¢’ 3 n8n+€8§+¢8¢’

with optimal system: (X3, X7 + aXs, X5). The generator X3 produces the similarity

solution

o(n,6) = ny(2), = =7€",
that reduces (4.46) to the ODE

d*y 1, de 2, At 2
v+ @452 et ey’ — 2 =0, (4.47)

The generator X; + aX, produces the similarity solution

& (e _
o(n,§) = £+t o (2774‘@/)(2)) , 2=,
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that reduces (4.46) to the ODE

dy
e =0, (4.48)

The generator X5 produces the similarity solution

6.6 = Tn (), z=€,

that reduces (4.46) to the ODE

@ _

0
dz ’

which gives u(z,y,t) = iy + c.

If e = 0, then equation (4.46) becomes a linear PDE that admits an infinite dimensional

Lie group
L0 D 60 0 0 00
0 0 0 0 0
X5 = 4én— + 42— — (n? = Xe=o¢—., X, = =

where h(&,n) satisfies the linear equation h,, —he —h/§ = 0. We point out that if € = 0,

then the transformation

id
g )

maps (4.46) into the linear heat equation

o=

w& _@Z)nn = 0.

Hence, we conclude that

lx

1
U(l‘,y,t) — 5? + ;w(yat)a

is a solution of (4.26), where ¥ (y, t) is a solution of the linear diffusion equation

wt _@Z)yy =0.

Case 7. Finally, the generator I'y+¢I's produces a similarity solution that maps (4.26)

into the well-known Burgers equation

¢nn + 25¢¢n - (b& = 07 (4-49)
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which among other applications is of considerable interest in nonlinear acoustics [19]. In
the next section we use known solutions of Burgers equation to derive similarity solutions
for equation (4.26). In fact, the similarity solutions of (4.26) presented in [27] can be
obtained from known solutions of Burgers equation which can be found, for example,

in [33,59].

4.3 Exact solutions for u; = u,, — 2uu,

In this section we derive exact similarity solutions for equation (4.26) by considering
certain ODEs which have been obtained in the previous section. Solution of this ODE
yields exact solutions of (4.26).

Multiplying equation (4.40) by % and integrating twice, we obtain its solution in an

implicit form. This in turn, leads to the steady state similarity solution of (4.26),

(e L
Y= 3X + X+ cCy, X=—.
x

The solution of the ODE (4.48) produces the similarity solution

T+ 20y + 2ac
2(t + ae)

u(x,y,t) =

Now we consider the ODE (4.43). If a # 0, we obtain the similarity solution

pW'(z)

—, Z2=I — —|—5t—at2,
W(z) ny 2

u(z,y,t) = at —

where

5z 2 Ja 2 Ja 4c—1
W(Z) N e%\/% |:Cl‘]1/3 (@\/;X:%m) =+ 62)/1/3 (@\/;X3/2>:| y X = Z+ MT&)

where Jj/3 and Yj/3 are Bessel functions of first and second kind, respectively. In the
case where a = 0, from the solution of the ODE (4.43) we have the following similarity

solutions of (4.26), depending on the form of the first constant of integration

0 1
__5/‘Lv
B—x+py—ceut 2

A
u(z,y,t) = Atan (E(x — py + ept) + B) ,

u(x,y,t) =

A
u(z,y,t) = Atanh (E(x — py + eut) + B) .
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We can obtain similar results to the above, using ODE (4.45). However the solutions
are of the steady state form.
The general solution of (4.29) is expressed in terms of the degenerate hypergeometric

functions [2]. We derive the similarity solution

Lz 11 11
o) = g e (g ) ver (g ).

where ®(a,b; x) and \If(a b; x) are the degenerate hypergeometric functions

(1 -0 Fb—1) 1,
biy) =1 a,bx) = ®(a, b; B(a—bt1,2-b;
CL X +Z kl ’ ’X) F(a—b—i—l) (CL, 7X>+ F(a) X (CL b+1,2—b; X),

where (a)y = a(a+1)...(a+k —1), (a)o =1 and I'(a) = [;° e "t 'd¢ is the gamma
function.
Now we turn into case 7 of the previous section. We use known solutions of Burg-

ers equation [59] and the corresponding similarity transformation, to derive similarity

solutions for equation (4.26). We obtain the following list of solutions:
2e(y —ex) + Ae
y—er)?+2A(y —ex)+ 2t + B’
3e[(y — ex)? + 2t + A]
(y —ex)3+6(y —ex)t +3A(y —ex) + B’
)
1+ Aexp(—A%t — Ay —ex))’

B EA My—ex)+ B
u(x,y,t) = 500+ A) thanh( A > —/\(y—sx)—B} :
edcos|A(y — ex) + A]

Bexp(A%t) + sin[A(y — ex) + A)’

where in the last solution, erfz = 2 [“exp(—£?)d€ is the error function. Furthermore, if

U(:L‘,y,t) = (

u(x,y,t) =

u(z,y,t) =

u(z,y,t) =

we consider the Cauchy problem with initial condition of the form u(x,y,0) = f(n),
n =y — ez, then using the corresponding solution of Burgers equation [31], we find the

solution of (4.26)

e, .t) = 5 (. 1),

F(n,t) = \/—/ eXp[ /f dx}
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Note 4.1. The transformation

dy

9 = — = 2
(X) dw’ w Y
maps ODE (4.37) into an Abel equation of the second kind

df
Iqy — 0= VX

Similar transformations exist for equations (4.33), (4.34), (4.36), (4.39) and (4.41) which

map them into an Abel equation of the second kind.

Note 4.2. Some of the above similarity solutions do no depend on the time t. That s,

these solutions satisfy the PDE

Uyy

Uy =
ou’

which can be transformed into a nonlinear diffusion type equation

_1
Uy = [U 21@} ,
Yy

by the mapping u — %\/5 This diffusion type equation admits four Lie symmetries [33,56]
which can be employed to derive further steady state similarity solutions for equation
(4.26). If u = 0(x,y) is a steady state solution of (4.26), then using note 4.1 we deduce
that uw = 0(x + 2at,y) — a is also a solution of (4.26).

Note 4.3. Any solution of the linear heat equation w, = w,, yields a solution of the

equation (4.26).

4.4 Similarity reductions of (241)-dimensional
Burgers equation
Consider the 2-dimensional Burgers equation (Table 4.1 equation 23, ¢ = 1)
Up = Ugy + Uyy + ULy, (4.50)

We derive similarity reductions using one- and two-dimensional subalgebras of its max-

imal Lie invariance algebra. One-dimensional subalgebras enable us to derive similarity
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reductions that reduce (4.50) into a partial differential equations in two independent vari-
ables. These equations are also studied from Lie’s point of view. That is, we classify their
Lie symmetries. The symmetries lead to reductions that transform the reduced partial
differential equations into ordinary differential equations. Two-dimensional subalgebras
enable us to derive similarity reductions that reduce (4.50) directly into an ordinary dif-
ferential equation. Both approaches are examined in the following two subsections. The

first approach was also employed in [25,62].

4.4.1 One-dimensional subalgebras

Equation (4.50) admits the Lie symmetry algebra spanned by the following generators

B ) B o o o 0 o 0
r-2 2% 9% -l ,%9,,9 9 p_¢_ 2
1S90 2Ty 3T oy AT T Ve T T er T

We classify the similarity reductions that reduce (4.50) into a partial differential equation
with two independent variables. In Tables 4.5 and 4.6 we give commutation relations and
adjoint representations for the Lie symmetries of equation (4.50). Using these, then we
derive the optimal system of one-dimensional subalgebras and the Lie symmetries of the

reduced equations.

Table 4.5: Commutator table for the Lie algebra {I';} of u; = ugy, + uyy + uuy,

Iy Iy s Iy, Tj
Iy 0 0 0 2 Iy
I 0 0 0 Iy 0
rs | o 0O 0 Ty 0
Iy | 21y —-I'y —TIs 0 I's
I's | —2I'y 0 0 —I's 0
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Table 4.6: Adjoint table for the Lie algebra {I';} of uy = uyy + wyy + uu,

Ad Iy Iy I's Iy I's

Iy ry Iy s T4—2el; T'5—2ely
Ty Iy Ty I's T'y—2els T's

T3 Iy Ty I's I'y—els T's

Ty | ey ey €Ty Iy e “I's
5 | eIy Ty s s+ €el5 s

Table 4.7: Subalgebras (A;), similarity variables, similarity solutions and reduced equa-

tions of (4.50)

(A;) £ similarity solution reduced equations
1 (Ta) xt~ 3 yt~z u=36(n,¢) 202Gy + 2% bee + (209 — A0 +0°) ¢y
+PEpe + 46 —2¢ =0

2 U5+ 6T +83T3) 220 y—0163t  u=¢(n,&) —dzy Apn + dee —2(E+010)0y
+01030¢ =0

3 (Ts +el's) y—F u=dn,&) 5 (€ +10)bee —engde —nPdy —ng =0

4 (U5 + 01T1) t2 =25 u=¢(n,&) — ot 401¢¢e + 010y — 200 +1 =10

5 (T4l +dsls)  w—d0it  y—ds u=¢(n,§) Py + 2¢¢c — 2030ns + (¢ + 1)y
—039p¢ =0

6 (T2 +0T') x— o1t u=¢(n,¢) Gee + dpy + (¢ +61)¢c =0

7 (C2 +€T's) y—ex u=¢(n,§) (€2 + 1)dee — e¢de — dy =0

8 (Ty +eTs) y—et u=(n,) bun + bge + Oy + e =0

9 (T's) x u=¢(n,¢) bee + 9P — oy =0

e =-1,0,1and 41,63 = £1.

We note that reduced equations in Table 4.8 in the entries 7a and 9 are the well known

Burgers equations. Also equations in the entries 3b and 7b are linear equations. The

lists of known exact solutions of these equations can be found in [36,59]. Therefore, in

the subsequent analysis we do not consider the latter equations and also equation in the

entry 1 since it does not admit Lie symmetries. We use the symmetries of the remaining

equations in Table 4.8 to reduce them to ordinary equations. Exact solutions of the

ordinary equations provide, in turn, exact solutions for the original equation (4.50).
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Table 4.8: Symmetries of the reduced equations

N | Reduced equation Symmetry algebra
L | 207y + 20 0ee + (209 — 40+ 1)y, No symmetries
F1PE¢ + 40 — 26° = 0
2 | Adyy + dee — 2(E +010)dy + 01030 =0 (6%7 51(% - 8%)
3a | (€2 +12)dec — endde — by — 16 =0 (e £0) | (&1 e - 2))
3b | n*bee —n¢y — 1 =0 (¢ =0) (Z 2 + %, 02, % — 02, M2,
220 an? L +ant s — (61 +E20)2)
4 | 401¢¢e + 010y — 200 +1 =0 , 6%>
o)

5 | Gy + 20¢c — 20300 + (¢ + 01) Py — d3dpe =0
6 | ¢ee + Py + (¢ +01)pe =0
Ta | (€2 + 1)dee — e¢de — ¢y = 0 (¢ # 0)

Q3|Qj

gy — (04 61) )
9 P o .8 | 0
7 &0 T 215, — 035:€M% T 35

)

lo Blo &le flo =
g

|

o~ o~~~

267D
e & +ené e + (€ —end) )

T | dec — 6, =0 (e =0) A
4P g+ AnEfe — (€ + 20)dap, N 55)

8 ¢7m + ¢£€ + ¢¢7} + Ed)ﬁ =0 <
9 | Pee+ dde — by =0 (B 2 €5 + 2055 — D5 e — a0
5y + g — (E+19) )

-
|

Here \' = \i(n,&), i = 1,2 are solutions of the linear equations \! = n()\%g — A1) and )\37 = )‘gg

correspondingly.
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Equation 2 of Table 4.8 admits a two-dimensional symmetry algebra spanned by sym-

metry generators X; = Its optimal system of one-dimensional

o] _ o) o)
o Xy = 513—5 ~ 9
subalgebras consists of (X7 + aX3) and (X3). If a # 0, generator X + a X, leads to the

similarity solution

¢ = —an+¢Pv), v=_~E=oda,

which reduces equation 4.8.2 to

&y

(40 +1)d 5

+ (201av + 2a9) + 51(53)% + 2av + 26,av) = 0.

Making the substitution w = v + 6, and integrating once we obtain

d
d—w = Aw?+ Bw + Cv + D, (4.51)
v
where A = =% g, B=-— 4‘;12‘?1, C = ﬁ?’“, and D is an integration constant. In order

to solve (4.51), we make a further transformation

we O
A0
which maps (4.51) into
d?0 de

having the following solution

0 = exp (%)@ [C’lJ% (%\/E]fﬂ) + CQY% <§\/Ep3/2>} )

4AD—B?
4AC

Here p = v + and J 1 and Y% are the Bessel functions of first and second kind,
respectively. Here and below C, (s, ¢; and ¢y are arbitrary constants. Collecting all the

subsequent results, we derive the similarity solution for equation (4.50),

B 1
U(t,l‘,y) = 63t - (51 + 63)y — ﬂ — 2p_A_
B @ (%\/—p3/2) + C2Y1 (% /A0p3/2) (4 52)
A ClJl(gv Cp3/2) +CQY1(2\/_p3/2) ’ :
where
= _L B=— 5153 . L
T 4a24+1 T 4a24+1 T a2+ 1

4AD — B?

= 2ax — dat® — 6105t
P =Y+ 2ax 1a 103t + 1TAC
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Solution (4.52) was also obtained in [25] in terms of Airy functions.

In the case where a = 0, we obtain the solution
u(t, ,y) = c1e” %Y — Say + .

The second subalgebra, (X5), leads to similarity reduction ¢ = 6, + ¢(v), v = n which
reduces 4.8.2 to

d*y di

Integration gives an equation of form (4.51), with A = %1, B=0, C= %f', which can
be solved to obtain a solution similar to (4.52), where p = t* — 26,z + D/C.

The Lie symmetry algebra of equation 3a of Table 4.8 is spanned by the Lie symmetries
X1 =0, Xy =n 1 (0€ — 09). Tts inequivalent one-dimensional subalgebras (X + aX5)

and (X53) lead to exact solutions

—x+ay+c —x—syt+clt—|—52
y=——-"-—— and u=

t—ca t {

respectively.
The optimal system of one-dimensional subalgebras of the maximal Lie invariance
algebra of equation 4 of Table 4.8 leads to two exact solutions of form (4.52) and to the

solution
u=—=6(t—cy+ 3y’ +a).

Equation 5 of Table 4.8 admits two Lie symmetry algebra (X; = 8%, Xy = a%>. Its
inequivalent one-dimensional subalgebras are (X; + aX5) and (X5). The first subalgebra

leads to the similarity reduction ¢ = ¢(v), v = n— af that transforms equation 5 of Table

4.8 into
d
@ _ A* 4+ By + C, (4.53)
dv

where A = (1+ad;) = &1 and C' is the integration constant. If A =0

T 2(14+2a2+203a)° — T 142a24+2063a

we obtain exact solution of form

u=cyexp (t+ d1ay).
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If A#0, we solve (4.53) and using that

u(t,z,y) = ¢(x — 61ty — d3z) = ¥((1 + ads)xr — ay — 01t)

we obtain the similarity solution

r1—Dro exp(A(r1—r2)v)
1-Dexp(A(ri—r2)v)

u(t,r,y) = —ﬁﬂ”ﬁ, =172, T, T2 €ER
—B +V4AC — B?tan ( R 4AC B 4 D)] , T1,T9 complex numbers,
(4.54)

™ %TQa r1, o ER

where 71, 79 are the roots of the quadratic Ar?+ Br+C =0, v = (1+ads)x —ay —d;t and
D is an arbitrary constant of integration. The first two branches of the solution (4.54)
also appear in [25].

The second subalgebra, (Xs), leads to a steady state similarity solution of form (4.54)
with v =y — d3z .

Equation 6 of Table 4.8 admits three-dimensional Lie symmetry algebra spanned by
X = 85, Xy = 8%, and X3 = fa% + 778%7 — (¢ + 51)%. The optimal system of one-
dimensional subalgebras consists of (X3), (Xs + aX;), (X;). The first subalgebra, (X3),
leads to the reduction ¢ = %w(u) — 01, V= % that maps equation 6 of Table 4.8 into

d*y dep

(1+u)d 5 +(4u+¢)5+2¢:0

Integrating once, we get the Riccati equation

dy

1 2
1+

+ 1P+ 2wy =y

In the case where ¢; = 0, its general solution has the form

4
v+ (arctanv + ¢)(v2 + 1)

P =

This leads to the solution of the Burgers equation of form

4
= -4
“ y(v + (arctanv + c) (12 + 1)) "

where v = (z — ;) /y.
The second subalgebra, (Xs + aXi), leads to a solution of the form (4.54), while the

third subalgebra, (X;), produces a solution of form
u = c1y + Cp.
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Finally, equation 8 of Table 4.8 admits Lie symmetry algebra (X; = Xy = a%>' The

ag’
corresponding reductions lead to a similarity solution of the form (4.54) and two solutions

of form
u=-crexp{—e(y —et) + co} and u=ci(y—et)+co.

Note 4.4. Some of the derived classes of exact solutions can be extended by symmetry
transformations of the corresponding reduced equations, more precisely by scaling and

translation transformations.

4.4.2 Two-dimensional subalgebras

In this subsection we consider the optimal set of the two-dimensional subalgebras of
the Lie symmetry algebra of the two-dimensional Burgers equation. These enable us
to derive similarity reductions that reduce the two-dimensional Burgers equation into
ordinary differential equation. The optimal goal is to derive solutions that cannot be
obtained by the first approach. In each of the following cases we give the reduction and
the corresponding reduced equation. We present only the similarity solutions that are

different from subsection 4.4.1.
1. (T4, Ts): u=—x/t +(v)/y, v = yt~'/? reduces (4.50) to

d*y dy o
2P+ v — 4) T+ 22— V) = 0,

and making the substitution 1) = v?w this equation changes to

2

w dw
20— 4
v Tl +V)dy

0,
which has the solution w(v) = ¢; [ v™? exp —”Z)du + ¢o. Therefore the similarity solution

for (4.50) leads to

2
u(t,z,y) = —at ™t yt’1 (01 / v? exp < — %)du + cg) ,
where v = yt*%.
2. ([, &9y 4+ psls): If e = § = 41 then u = 72 (v), v = t~Y2(y — Susx) reduces
(4.50) to

a av

205 + 1) g + (v = 20p30)— + ¢ = 0.
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Its general solution is

V() = sl (20n 20— rcap) My — 4G + DWA] + 2
where
5+ 1+ coptz 1 v? ps+1+cops 1 v?
WIZW(‘ 03 +1) ’1’4<u§+1>)’ M :M(‘ G2 +1) ’1’4<u§+1>>’
2 2 2 2
e (g0 ) e (e )

are Whittaker functions [2]. In particular, if ¢ = 0 this expression can be simplified to

1/2
2v/1i3 + Lexp (=)

erf(2\/:§1)ﬁu3 +2e1v/p3 + 1

P(v) =

where erfz = % foz e_§2d§ is the error function (also called the probability integral). In

fact, this latter expression is the solution of the ordinary differential equation

dyp
2(pj + D4+ p3® + vih = 0.

This solution gives a solution of the Burgers equation of the form
t(y—dusx)?
2/ 3 +1 exp(—%)
t=1/2(y—Susx) ’
erf(#\/g_ﬁ?’)ﬁug +2c1y/ 13+ 1

If £ = 0 then u = ¥(v)/z, v = xt~1/2 that reduces (4.50) to

d*y dy
2 3
QUﬁ‘F(QVw—ZLV‘i‘V)E

u(z,y,t) =t ?

+ 4 — 2% = 0.

The above equation can be solved numerically.
3. (U5 + &1y +e303,T3): If g1 # 0, then uw = —e1t + ¢ (v), v = 2,2 — 12, that reduces
(4.50) to

d*y dy
451@ —2@05—}-1 —O,

which leads to results that obtained using one-dimensional subalgebras. If €1 = 0 then

u= —x/t +1(t) that leads to the similarity solution

u=(c—ux)/t.
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4. <F5 —|—81F1 +€3F3,F2 +b3F3>I If g1 = 0= :l:l, then u = —5t+'l/1(l/), v=y —ng—l-
b3dt? — dest, that reduces (4.50) to

d? d

If e, =0, then u = %2 4 ¥(v), v =t that reduces (4.50) to

bst—es

dvp
by — 5) 2 + byt = 0.
(bsv — e3) D 31 =0

The solutions of these two latter ordinary differential equations lead to similarity solutions

obtained in subsection 4.4.1.
9. <F1 +€2P2+0,3F3, F2+b3P3> If (62, a3) 7é (O, 0) then u = 1/}(V), V= bg(l'—ggt)—y—f-&gt,

that reduces (4.50) to

d*y dy
(bg -+ 1)@ + (bgw -+ 82b3 — Oég)a = 0.

6. (I't,['y + e303): Here u = ¢(v), v =y — 3z, that reduces (4.50) to

d*y dip

2
(1 -+ 53)@ — 53@[)5 = 0.

7. (I'1,I'3): Here u =9(v), v =z, that reduces (4.50) to

@y dy
ez T =

Integration of the ordinary differential equations obtained in cases 5, 6 and 7 lead to

similarity solutions of the form (4.54).

8. (I's + a3l's, I's): Produces the solution u = const.
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4.5 Hidden Symmetries for the two-dimensional
Burgers equation
We consider the two-dimensional Burgers equation
Up = Ugy + Uyy + ULy, (4.55)

As we have seen before in this section the Lie group generators of (4.55) are

0 0 0 0 0 0 0 0 0
a, FQ—%, Fg— F4—2t—+x—+y——u—, T t— — —. (456)

I = 9 _
! dy’ ot “or oy ou ° “dr Ou

We reduce the number of variables of the two-dimensional Burgers equation using the

following similarity solution and similarity variables

u:¢(n7€)v n =1, fzy—EJZ,

found using symmetry I'y + eI's (Table 4.7). The reduced PDE is the one-dimensional

Burgers equation

(€ + 1)dee — eppe — ¢y = 0, € #0. (4.57)

The symmetries of (4.57) are

0 0 3} 0 0
o XQ—a_na X3—§8_§+2?78_77_¢8_¢’

9 0 _ 20 9 e 9
X4_€”a_§+a_¢’ X5 =en an+€”£a§+(£ 677¢)3¢-

X1:

The inherited symmetries are I'y — Xy, 'y — Xq, I's — X, I'y — X3, I's — X5, all of
which can be inferred by looking at the Lie algebra of (4.56). The symmetry Xj is known
as hidden symmetry of Type II [1].
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Chapter 5

Group analysis of (3+1) nonlinear

diffusion-convection equations

We consider the (3+1)-dimensional nonlinear diffusion convection equations

u = (D(u)ug), + (F(uw)uy)y + (Glu)u,), + K(u)u,. (5.1)
Here D(u), F(u), G(u) and K (u) are arbitrary smooth functions, F'(u) # 0, G(u) # 0
and D?(u) + K?(u) # 0 (otherwise the problem is reduced to that of lower dimension)
and D2 + F? + G2 + K? # 0 (i.e, the equation is nonlinear). A complete Lie group
classification of (341)-dimensional nonlinear diffusion convection equations is presented
in this chapter. We derive its Lie symmetries [22] and we give an example of similarity
reduction of a PDE of four independent variables into an ODE using a three-dimensional

subalgebra.

5.1 Classification of Lie Symmetries

The equivalence group of (5.1) consists of the 11-parameter group of point transformations
t=cet+e, T=crrtent+es, J=esy+es, Z=coz+es, U=EcUtes,
D=c;'e2D, F=¢'e2F, G=¢c;'%€2G, K =¢c5'esK — ey,

where €1, ...,€1; are arbitrary constants, egeregegerg # 0, and a discrete transformation

I3

t=t, i=ux, §=2 Z=y, a=u,



of interchanging the variables y and z. The equivalence transformations are used to
simplify the forms of D(u), F(u), G(u) and K (u) in the subsequent analysis.
Equation (5.1) admits Lie transformations of the form
¥ =x+eX (2, t,y, z,u) +O(?),
t'=t+eT(z,t,y,2,u) + O(),

v =y+eY(x,ty z,u)+ O(e2

),
Y =z 4 eZ(w, by, 2,u) + O(),
' =u+eU(x,t,y, z,u) + O(),
if and only if
T'®E|p =0,

where I'® is the second extended generator of

0 0 0 0 0

I'= X8x+T3t+Y3 +Z32+U8
which is given by the relation

MO = T4 DuU) = (DX — (DT = (DY Y, — (D2}
+ [D(U) — (D X)uy — (D T)uy — (DY )uy, — (DtZ)uZ]aiut
+ [Dy(U) — (DyX)uy — (DT )ur — (DyY )uy,, — (DyZ)uZ]aiuy
s IDA0) ~ (D-X)ug = (DT = (DY, — (D 2]
+ IDaU%) ~ 1aeDalX) = Do) = iy DoY) = 0 Dul )] 5
b (Dy{U) = 1Dy (X) = uaD,(T) = 1, D, (¥) = 4Dy D)) 5
+uum—%@mp%@m—%@m—%@@%i.

Here D,, D;, D, and D, are the total derivatives with respect to x, ¢, y and z respectively,
and U®, UY, U? are the extended transformations. We point out that in I'® we did not

include terms with no contribution.

In this case £ = u; — [D(w)u,], — [F(w)uy], — [G(u)u.], — K(u)u,. So, equation (5.1)
admits Lie symmetries if and only if
T [ug = [D(u)usls — [F(u)uy)y, — [Glu)u]. — K(w)us] =0, (5.2)
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where u, = [D(u)uy], + [F(u)uyly + [G(u)u,], + K(u)u,.
If we take coeflicients of u,; we have two cases: (A) D # 0 and (B) D = 0.

Case A. D #0.

In the case when D # 0 from the coeflicients of ., w, and u,, in (5.2) we deduce
that T, =T, =T, =T, = 0, so, T is only function of ¢. Also from the coefficients of
UgylUy, Uz, We get that X, = Y, = 0 and from the coefficients of u,, and u? we get
Uuw = 0. Hence, U = ay(z,t,y, 2)u + as(z,t,y, 2).

Using the fact that T = T(t), X = X(z,t,y,2), Y = Y(x,t,y,2) and the form of
U into (5.2) we obtain the following determining equations of the functional forms of

D, F G K, X, T,Y, Zand U:

(ayu + as)D, + (T} — 2X,)D =0, (5.3)
(a1u+ ag)F, + (T, — 2Y,)F =0, (5.4)
(a1u+ a2)G, + (1} — 2Z,)G = 0, (5.5)
Y,D + X, F =0, (5.6)
Z,D+ X,G =0, (5.7)
Y.G + Z,F =0, (5.8)
(2a1,u + 2a2,) Dy + (201, — Xpo)D — Xy F' — X,.G + (1w + a2) Ky (5.9)

+(T, — Xo) Ku + Xy = 0,
—Y.. D + (2a1yu + 2agy) F,, + (2a1y — Yy ) F = Y..G - Y, K, + Y, =0, (5.10)
—ZyuD — ZyF + (2a1.u 4 2a9,)Gy + (201, — Z..)G — Z, K, + Z; =0, (5.11)
(A122U + Qg0 ) D + (a1yyu + A2y ) F 4 (1220 + a2.,)G + (a0 + ag,) K, (5.12)
—au — ag = 0.
Equation (5.3) suggests the following forms of D(u):

(1) D(u) arbitrary;

(2) D(u) = e

(3) D(u) = ut.

However in the analysis, these forms of D(u) lead to further special cases. Summarizing

we have the following forms of D(u):

(1) D(u) arbitrary;
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(2) D(u) = e
(3) D(u) = e*;
(4) D(u) = u';
(5) D(u) = u™%;
(6) D(u) = u3;
(7) D(u) = u%;
(8) D(u) = u™h;
(9) D(u) = 1.

Case 1. D(u) arbitrary.
In this case from equations (5.3)-(5.12) we have the following subcases for the functions

of F, G, K and the Lie algebra for each subcase.

Subcase 1.1: F(u), G(u), K(u) arbitrary.
From (5.3)-(5.12) we have

X:Ch T:CQ, Y:C;g, Z:C4, U=0.

So, the Lie algebra is four-dimensional spanned by

0 0 0 0

M=, Ty=— Ty=—, T)=—.

Subcase 1.2: F(u), G(u) arbitrary, K(u) = 0.
Using equations (5.3)-(5.12) we deduce that
X=cx+cy, T=2ct+c3, Y=cry+tc, Z=cz+c;, U=0.
The Lie algebra is five-dimensional given by
0 0 0 0
Iy, Ty, I3, Ty, T's=2t— — — 4+ 2z—.
1, 2 3 4 5 8t+xax+yay+zaz

Subcase 1.3: F(u) arbitrary, G(u) = ¢, F', K(u) arbitrary.
From (5.3)-(5.12) we have

X=c, T=cy, Y=—c3c,2+cy, Z=c3y+c;, U=0.
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Therefore, the Lie algebra is spanned by

0

0
Fla F27 F37 F47 F6:y&—€zza—y.

Subcase 1.4: F(u) arbitrary, G(u) = ¢, F, K(u) = 0.
In this subcase from (5.3)-(5.12) we have

X=crx+cy, T=2ct+c3, Y =c1y— c4c,2+ cs,

Z =c1z+cy+cg, U=0.

The Lie algebra in this subcase is given by
Fla F27 F37 F47 F57 FG'

Subcase 1.5: F(u) = ¢,D, G(u) arbitrary, K(u) = 0.
From (5.3)-(5.12) we deduce that

X=cr+cy+tc, T=2ct+cs, Y =cry— cogyx+cs,

Z =cz+cg, U=0.

So, the Lie algebra is spanned by

0 0

'y, Ty, I's, Ty, T, F7:y%_8yx8_y'

Note 5.1. It is obvious that subcase 1.5 is equivalent to 1.4 with respect to the rotation
transformation. However this transformation does not belong to equivalence group of the

class (5.1). We adduce it after the Table 5.1. The same is true for all similar cases below.

Subcase 1.6: F(u) =¢,D, G(u) =¢,D, K(u) =0.

Here after some calculations using equations (5.3)-(5.12) we have
X=carx+cytcztca, T=2t+c, Y =cy— ey —ceeyz+ cr,

Z =12+ ceey — c3e.x +cg, U=0.

The Lie algebra is eight-dimensional given by

0 0 0 0
I, Ty, I's, Ty, I's, I'y, P8:5zy&_5yza_y> Ig=z2——co—
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Case 2. D(u) = et.

Using the fact that D(u) = e from equations (5.3)-(5.12) we have the following
subcases for the functions of F, GG, K and the Lie algebra for each subcase.

Subcase 2.1: F(u) = g,e", G(u) = e,e™, K(u) = u.

In this subcase from (5.3)-(5.12) we deduce that

c
X=c(ux—t)+cy, T=crut+cs, Y= EI(V‘HL)Z/‘FC%

Z:%(A+u)z+c5, U=q.

The Lie algebra is five-dimensional spanned by

0 o 1 o 1 a9 0
Iy, Ty, Ty, Ty, Tyo=put— —t)— + = — + =\ — 4+ =
1, Do, T's, Ty Do uat+(u:r >ax+2(”+“)yay+2( +“)Zaz+au

Subcase 2.2: F(u) = ¢,e", G(u) =¢e,e™, K(u) = el".
From (5.3)-(5.12) we have

C
X=clp—mwr+c, T=c2p—pt+c, Y= 51(219— v — )y + ca,

&

2

Z = 2p—A—p)z+cs5, U=—cu.

The Lie algebra in this subcase is five-dimensional given by

1 0 1 0 0

0 0
Iy, Ty, Ty, Iy, Fu:(2p—u)t§+(p—u)x%+§(2p—v—u)ya—y—§(2p—A—u)z$—u%~

Subcase 2.3: F(u) = ¢g,e", G(u) =e,e™, K(u) =0.
Here, using equations (5.3)-(5.12) we deduce that

c C
X:clx+§2()\—u):v+03, T = 2c1t + o\t + ¢y, Y:cly+§2(>\—l/)y+c5,
Z =cz+c¢c, U=—c.
The Lie algebra is given by
o 1 0o 1 0 0
'y, Ty, T35, Ty, T's T'ia = M— +=(\— — 4+ (A= —— .
1, 2, 3 4, 5 12 at =+ 2( ’u)xal' + 2( V>yay au

Subcase 2.4: F(u) = ¢, G(u) = e,e”, K(u) = u.
In this subcase from (5.3)-(5.12) we have

c
X =c(ux —t)+co, T =crput+ cs, Yz;l(u+u)y—c45yszz—|—c5,
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c
Z:§1(V+M)Z+C4y+c6, U=c.

Hence, the Lie algebra is six-dimensional spanned by

0z ot

0 0 0 0 1 0 0
Fl) P27 P3a F4a F13 =Y EYE 2 1114 - ,U/t (,U/:L'_t>%+§(]/+,u) (ya_y + Z%)—F

dy’
Subcase 2.5: F(u) = ¢,e”, G(u) = e,e”™, K(u) = e
In this subcase from (5.3)-(5.12) we get

X=clp—pwzr+c, T=cap—pt+ec, Y= 2(V+u)y—046y€zz+05,

c
Z = 51(2P—V—M)Z+C4y+66, U=—c
The Lie algebra is six-dimensional given by

0 0 1 0 0
[y, To, I3y Ty, Ty Tis = (2p—p)t 5 (p—M)QU%%—i(Qp—u—u) (y8y+2£)_%’

Subcase 2.6: F(u) = e, G(u) =", K(u) =0.
Using equations (5.3)-(5.12) we have

C
X=cx+c, T=2ct+czput+cs, Y =cry— cseyc.z+ EB(V — )y + cg,

C
Z:clz—l—c5y+—3

2(1/_:”>y+c77 U:_C3

In this subcase the Lie algebra is

0 1 0 0 0
Iy, Ty, I's, Ty, I's, T I'g = put— — — i
1, 2 3 4 5 13, 16 = M at (V M) (yay ‘I’Zaz) Ju

Subcase 2.7: F(u) = g, G(u) = e, K(u)=0.
Using the forms of F, G and K from (5.3)-(5.12) we get

X—clx—l— ()\ p)x—cseyy+ca, T =2cit+cot+cs, Y—cly+03x+ ()\ 1)y + ce,

Z=cz+cr, U=—c

Therefore, the Lie algebra is seven-dimensional spanned by

0 0 0 0 0 0
Iy, Ty, T3, Ty, T, F17—xa—y—5yya—x, Ig /\ta (/\ ,u)( 3_+y8_y)_%'

Case 3. D(u) = e".
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In this case using the fact that D(u) = e* from equations (5.3)-(5.12) we deduce that
F(u) =¢eye", G(u) = e,e* and K(u) = 0. So,

X =cx+cz—cagyy+cs, T =21t +cet+cr, Y =cry — cagye.z + cux + cs,

Z =012 — g x+ 3y + oo, U= —cq,

and the Lie algebra is nine-dimensional given by

Iy, Ty, T, Ty, s, Ty, Tz, Tz, T = t% - %
Case 4. D(u) = u*.
From equations (5.3)-(5.12) we have the following subcases for the different forms of
F, G, K, X, T, Y, Zand U and its Lie algebra respectively.
Subcase 4.1: F(u) = e,u”, G(u) =e,u*, K(u) =Inu.
In this subcase from (5.3)-(5.12) we have

X=c(ux—t)+cy, T=crut+c3, Y= 2(u—|—u)y+c4,

Z = %(A‘I"M)Z"_CE), U = cu.

The Lie algebra is five-dimensional spanned by

0 1 0 0 0
—I—(,ux—t)——k—(l/—I—u)ya ()\—I—,u)z——I—u—

0
I'y, Ty, T's, T4, T'ogg = ut—
1, 29 3 4, 20 /‘L al_ 2 a au

ot
Subcase 4.2: F(u) = e,u”, G(u) = e,u*, K(u) = uP.

Using equations (5.3)-(5.12) we have
c
X=alp-—mwr+ce, T=al@p-—pltc, Y= 51(219— V= )y + ca

Z = —%(Qp— A—u)z+cs, U=—qu.

Therefore, the Lie algebra is five-dimensional given by

1 0 1 0 0

o o
Pi Toy Ty, Ty, Ty = (2p—p)t5, (p—u)x%+§(2p—v—u)ya—y—§(2p—A—u)Z@—u%-

Subcase 4.3: F(u) = ¢, u”, G(u) = e,u*, K(u) = 0.

Here after some calculations using (5.3)-(5.12) we have

2O =)y + e,

X—clx—I— (/\ p)x 4 c3, T =21t + coAt + ¢y, Y:cly—I—2
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Z =c1z+cg, U= —cou.

Hence, the Lie algebra is six-dimensional given by

o 1 o 1 0 0
'y, Ty, T'3, Ty, T's5, Ty =At— +=(\— — + (A= — —u—.
1, 2, 3 4, 5 22 at + 2( ,U/)wal' + 2( V)y y Uu

Subcase 4.4: F(u) =¢c,u”, G(u) =c,u”, K(u) =Inu.
In this subcase from (5.3)-(5.12) we deduce that

c
X =c(ux —t)+co, T =crput+ cs, Y:%(u+u)y—c4€ygzz+c5,

c
Z = 51(1/+u)z—|—c4y+06, U = cu.

The Lie algebra is six-dimensional spanned by

0 0 1 0 0 0
Fl) FQ) F37 F4a 11137 F23 - Mt& + (,LL[L' - t)% + §(V+H) (ya_y + Z@) + U%

Subcase 4.5: F(u) =¢,u”, G(u) =e,u”, K(u) =uP.

In this subcase we have

X

X=clp—pzr+c, T=c(2p—p)t+cs, Y= 5 2p — v — 1)y — c4gyELZ + 5,

c
Z = 51(2]9— v—p)z+cay+c, U=—cu.

Hence, the Lie algebra is

0 0 1 0 0 0
'y, Ty, I's, Ty, I'is, F24—(2p—u)t§+(p—,u)ma—x—l—§(2p—y—,u) (yﬁ_y—I—Z&) —u%.

Subcase 4.6: F(u) =¢c,u”, G(u) =e,u”, K(u)=0.
Here from (5.3)-(5.12) we have

c
X=cx+c, T=2t+csut+cy, Y =cy+ 53(1/ — )Y — C5EyELZ + Cg,

Z =c1z+ ¢, U= —c3u,

and the Lie algebra is seven-dimensional given by

o 1 o o
I'y, Iy, T'5, T'y, T's, T Tor = ut— + —(v — _ .
1, 2 3 4, 5 13, 25 M ot + 2(1/ ,u) (yay + z ) U

Subcase 4.7: F(u) = g,u”, G(u) = e,u*, K(u) =0.
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In this subcase

C3 C3

X =cx—cogyy+ 5 A=p)x+cy, T =2c1t4c3At4c5, Y =cry+ox+ 5 (A — )y +ce,

Z =cz+cr, U= —csu.

So, the Lie algebra is spanned by

o 1 0 0
I'y, Ty, T'g, Ty, T's, T Tog = M— + —(\— - i
1, 2, 3 4, 5 17, 26 ot + 2( :u) (x&c _'_yay) u

Subcase 4.8: F(u) = ¢, u*, G(u) = e, u, K(u) =0.
Using equations (5.3)-(5.12) we have

X =crv+cz—czeyy+ca, T =2cit+csput +cs, Y = cry — creye2 + c3x + ¢y,

Z =12 — e,x + cry + c3x + ¢g, U = —csu.

The Lie algebra is nine-dimensional given by

0 0
Fla F27 F37 F47 F57 F97 F137 Fl?a F27:lut__u_‘
ot ou

Case 5. D(u) = u2.

In this case from equations (5.3)-(5.12) we get that F'(u) =¢,, G(u) =¢, and

K(u) =u"2. So,
X =cie"+cy, T=2cst+cs, Y =c3y— cseyc.2+ ce,

Z =c5y+c3z+cr, U=ce "u,

and the Lie algebra is seven-dimensional spanned by

0 0 0 0 0
Iy, T, T's, T'y, T Tos = 2t— — — — Tog=¢€e"
1, Lo, I3, 1y, Iz, Dog 8t+y8y+zaz+u8u’ 29 = € (

Case 6. D(u) = u™*/3.
From equations (5.3)-(5.12) we have F(u) =¢,, G(u)=¢,, K(u) =0 and

X=cx+200+c32>+cy, T=2c1t+c; Y = C1Y — CeEyELZ + C7,

Z =c1z2+ cgy +cs, U= —3cou — 3czzu.
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So, the Lie algebra in this case is

0 0 0 0
Iy, Ty, Ts Ty Ds Tys Tao = 20-2 — 3u-2, Ty = 222 — 30u-2)
1, 2 3 4 5 13, 30 :C@:E uau7 31 T O l'uau

Case 7. D(u) = u=/°.
From equations (5.3)-(5.12) we get F(u) = e,u™?®, G(u) = e,u™® and K(u) = 0.

Therefore,

2 2 2
X =12+ ce2 — c3ey —|— 5 (5ysz —gy2° — £.y°) + cse,xy” + ceeyxZ + 7,

T = QClt -+ 4C11t + cg,
Y =1y — cogye.2 + 37 + cagye 1y + 5 (gzy — £,8,7% — £,2%) + c6gy2Y + Ci0,

2 2
Z = €12 — Co€,X + Coly + C4€yE,T2 + C5ELY2 —|— 5 ( EyZ” — EyELL” — €,Y°) + Ci12,

5
U = 5¢cpiu — 5(045?/32:70 + 56,y + cogy2) U

Hence, the Lie algebra is twelve-dimensional spanned by

0 0
Fla F27 F37 F47 F57 F97 F137 Fl?a F32—4t +5u
ot ou’

1 , , N o 9 5 0
Loy = 2 (5yezx TR el ) ox TEyEt y@y * 92 2% )
r l( )a+ 9,0 52

34 — 9 zy 8y€zx — EyR ay €Y xya Zaz QUau )

1 , N, o 0 5 0

U =5 (" — e’ —e’) 5ot ey (%*ya—y‘aua—u)

Case 8. D(u) = u™ .
From equations (5.3)-(5.12) we have F(u) = e,u™", G(u) =¢, and K(u) = 0. So,

X = Cl(b(xay)? T = 203t-|—02, Y = 011/1(%19), Z = C32+Cy, U= —263U—201¢x(l’,y)U,

and the Lie algebra is given by

0 0 0 0 0
Iy, Ty, F36—2a +Z&+2Ua F37—¢%+wa_y_2¢zu%7

where ¢ = ¢(z,y), ¥ = ¢¥(z,y) run through the solution set of the system ¢, = v,
% - _5y¢y'
7



Case 9. D(u) = 1.
From (5.3)-(5.12) we have the following subcases:

Subcase 9.1: F(u) =¢,, G(u)=¢,, K(u)=u.

In this subcase we have
X=cx+ct+cs, T=2tl+cy, Y =ciy—cseyez+ cs,

Z=cz+csy+cr, U=—ciu—cs.

Hence, the Lie algebra is seven-dimensional spanned by

0 0 0 0 0 0 0
Iy, Ty, T'5. Ty, T Tas = 26— — — — —u—, I'yg=t—— —.
1, Lo, D'z, Iy, I'yz, I'zs t@t +x8x +y8y +282 “au’ 39 t@:p 9

Subcase 9.2: F(u) =¢,, G(u)=c,u*3 K(u)=0.
In this subcase from (5.3)-(5.12) we have

X =cr—ceyy+cs, T'=2ct+cy, Y =cy— coxr+cs,

7 = 1w + 2c62 + c72° 4+ cg, U= —3(cg + cr2)u.

The Lie algebra is eight-dimensional given by

0 0 0 0
Iy, Ty Ts Ty s Tyr Tao=2:2 — 302 Ty=222 302
1, 25 3 4, 55 17, 40 zaz uau7 41 z G Z’U,au

Subcase 9.3: F(u) =¢c,u™t, Gu)=c,ut, K(u)=0.
Using equations (5.3)-(5.12) we deduce that

X = Cc1x+Co, T= 201t+03, Y = C2Q;(:L‘7y)7 Z = c2§g(l‘7y)7 U=2 <Cl - CQQEZ(:L‘7y)> u.

The Lie algebra in this subcase is given by

o 9 B 0 -9 - 0
I'y, Ty, Tyo = 2t— — +2u—, Ty3 = o— — =2 —
1 2 42 tat _'_x&c + uaua 43 (baz +’l/}ay (bzuaU’

where ¢ = (5(2, Y), ) = 1;(2, y) run the solution set of the system b, = zzy, e, = —5y<5y.
In Table 5.1 we give briefly the Lie symmetries for the different forms of
D(u), F(u), G(u) and K (u).
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Table 5.1: Group classification of class (5.1), D # 0

N D(u) | F(u) | G(u) | K(u) Amax

LV | VoA = (58 9, )

2 v v v 0 | Ak 28+l +y2 +24)

3 v v e, F Vo ARy - ez f)

4a v v e F 0 Aker 4 (9t at—l—xaz—l—yay—i—zaz,y —Ezza%)

4b v gyD v 0 Aker 4 (2t 2 4 2 0 —l—yay—l—zaz,yax nya%>

5 v eyD e.D 0 Aker (2158 +x8x +y8y +28z’y8x syxa%,ezy% fsyza%,
22— l)

6 et | g et | g et U Aker (,uti + (px — t)a—(i; + 3+ u)ya%

3O+ )2 g + 5%)

7 et | gy et geM ePv Aker 4 ((2p — p) 5+ (p— u)x%
+3(2p—v - u)ya% —3@2p—A—p)2L —ug

8 et | g et | g et 0 Aker 4 + (2t 5; 9 4 xax + ya% + z%,
S+ 3N —prd + 5= v)ys — &)

9 et | g et | e.e"" u Aker 4 (y 2 — syezza%, pt + (px —t)2
+3(v+ WS+ 25 + %)

10 et | gyet | egett | ePn | Ak 4 (y 2 Eyzszza ,(2p — )t + (p— e
+520 —v— )y +25) — o)

1la | et | gye?™ | g€ 0 Aker 4 + (2t 5 g xaz + yay + Z(,?Z,y& — EyELZ aay,
uté’t + 3V — M)(Z/a—y + Z&) - %>

11b | et | gyelt | eeM 0 Aker <2t O +al+ yay + 2, xaay — ey,
MG+ 3N =)@ gs +y5r) — a0

12 et | gyt | et 0 Aker <2t T Yt I T — ey Y — eyt
2y — ety — 5

13 ut gu’ | et | Inu | A4 (utd 5+ (nr — t)i
3+ gy + 5+ g +ug)

14 u ggu’ | eut wP | AR ((2p — )t + (p— pr
+520 — v — @y — 520 — A — )z g —ud)

15 ut gu’ | eut 0 Aker (2t d 2 2 4 yay + 22,
Mg+ 5N = mwz gy + 5\ = v)yz —ugy)

16 uk e | eu’ | Inu | Ak (y 2 — Eyazza%, pt2 + (px —t) 2

+5(v+ W)y +25n) +ug)
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17 ut EyU €U u? | AR 4 (y 2L — Eyezza%, (2p— 2+ (p—pa
+3(2p —v = )(ygy +25E) —ugy)
18a | uH eyu” e uY 0 | Aerp(2td 422 + yay + 22,y syszza%,
pt5; (Vfu)(ya—ﬁz@)fu%
18b | wH gyutt e.u? 0 | Aer (2t 422 + yay + 22, x(% Eyy L,
MG+ 3N =) (g +yg) —us)
18c | u™? Ey £, u? | Ak (gL ez ay,Qta +y8y 22 tu e (L +ul))
19 ut £ ut £ ut 0 | AT+ (25 +a g Fyd 2 T — Sy he Uit — EyEat s

a a
2oz szaz’“tat — Ugy)

20 1 Ey €z w | ARy 2 Yoz —EyEzipy ’Qta +xa¢+ya JrZ_*“au’ E*%>

2la | u=*%/3 Ey €2 0 | Aker 4 (2td 422 +y6y+zaz,yaz EyELZ 6y,29:%f3u6u,
2?22 — 3zul)

21b 1 €y e u Y3 0 | Aker 4+ + (2t5; 9 4 xax + yay + zaz,xa‘i; Eyya—i,%% - Su%,
222 — 3aul)

22 | utP eun S | e 0 | AT QUG b a g by Fr T — ey he Y — EyEat
Za% szaz,élta +5uau,
L(eye.a? — gy — eyt L +eye.n (yay + 22— Sul),
1(e.y? syez:c —ey?%) 5 +6zy(fvyaz +28 - Zug),
3(eyz® —eyean® — ) +eyz(agy +ygz — Jugy))

23a | 1 eut | eutt |0 (%,%,Zt——i—x% +2u, G + ) — 26.uz)

23b | w7t gyut €2 0 | (2, &2t +22 +2u8u,¢m+¢8y 2¢,u)

Here ¢y,e., = %1, p # 0; in case 23b, ¢ = ¢(z,y), ¥ = ¢¥(z,y) are arbitrary solutions of the system

br = 1y, Yp = —ey0,; in case 23a, ¢ = &(2,y), ¥ = ¥(z,y) are arbitrary solutions of the system
(gz = &ya E,21;,2 = _Ey(gy-

Additional equivalence transformations

“l\u
Il

8
)
I

!
eS|l
I

4b +— 4a, 11b+— 1la, 18b+— 18a, 21b+— 21a, 23b+—— 23a:t =€et, & = eD;

—

18c+——18a |y=—2: T = €", & =€ "u.

Case B. D = 0.

In this case when D = 0 from the coeflicients of u,; and u,; of equation (5.2) we get
that T, = T, = T;, = 0. Also from the coefficients of u,,u., uy.u;, u,. and u,, we deduce
that ¥V, = 7, = X, = X, = X,, = 0 and from the coefficients of u,, and “3 we get the

following form of U

U= _TxK + al(xataya Z>u + a2(x7t7y7z)'
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Using the fact that T = T'(x,t), X = X(x,t), Y =Y(x,t,y,2), Z = Z(x,t,y, z) and the

form of U then from (5.2) we obtain the following determining equations of the functional

formsof I, G, K, X, T, Y, Z and U:

(a1u + ay — T, K)F, + (T, — T, K, — 2Y,)F = 0,

(au+ay —T,K)G, + (T, — T, K, —2Z,)G =0,

Z,F +Y.G =0,

(2a1yu + 2a9,) F, + (2a1, — Yy)F - Y..G - Y, K, + Y, =0,

—Zyy F + (2a1,u + 2a2,)G,, + (2a1, —

7..)G — ZyK,+ Z, =0,

(T, K — ag — ayu)Kyy + T, K2 + (=T + X,) K, — X; =0,

(alyyu + a/2yy>F + (alzzu + a2zz>G + (alxu + A2y — szK)Ku +

T K — ajpu — ag = 0.

From equations (5.13) we get the following different forms of F'(u):

(

(2) F(u) = e

(3) F(u) = e

(4) F(u) = u”;

) Pl =

(6) F(u) eé;:;p T;;u , where u = (k% + 2pk + q)~
(7) F(u) =1.

Case 1. F(u) arbitrary

rdu
1/2ej w2 +2prtq s

Solving equations (5.13)-(5.19) we get the following subcases for functions G and K:

Subcase 1.1: G(u), K(u) arbitrary.

In this subcase we have

X=2c1x+cy, T=2c1t+c3, Y=cry+cy, Z=c1z+cs, U=0.

So, the Lie symmetries are
I =—
Subcase 1.2: G(u) =¢.F, K(u) arbitrary.
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Using equations (5.13)-(5.19) we have

X =2c1x+cy, T=2c1t+c3, Y=cry+cz+cs, Z=ciz—cac,y+cg, U=0.

So, the Lie algebra is six-dimensional spanned by

0 0
I'y, Ty, T's, Ty, T's, I'e =2— —c,y—.
1 2, 3 4, 5 6 Zay € yaz

Case 2. F(u) =e"™

From equations (5.13)-(5.19) we get the following different forms for functions G
and K.

Subcase 2.1: G(u) = e, K(u) = eP™.

In this subcase after some calculations we get
X =2¢pr 4+ 2c3(v —p)x + 3, T =2cvt +c¢y4, Y =c vy + cs,

Z=c z+c(v—Nz+cs, U=2(c;—c).

Hence, the Lie algebra is six-dimensional spanned by

0 0 0 0
[y, Ty Iy Ty F7—2p$8—x+7/ya—y+)\2$+2%7
0 0 0 0

Subcase 2.2: G(u) = e,e™, K(u) = u.
Substituting the above forms of G and K into (5.13)-(5.19) we have

X = =2c1t 4+ 2c(ve +t) +c3, T =2cout+cy, Y =c1vy+ c52 + cg,

Z=c z+c(v—Nz+cs, U=2(c;—c).

So, we get the following Lie algebra

0 0 0 0
'y, Ty, Ty, Ty, T'9g=—-2t— — — +2—
1, 2, 3 4, 9 tax‘i‘l/yay—i-)\zaz—l— au7
0 0 0 0
FlO = 2Vt§ + Q(Vl' + t)% + (V — )\)Z% — 2%

Subcase 2.3: G(u) = ¢,e"", K(u) = eP".
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Using equations (5.13)-(5.19) we have
X =2c1pr+ca(v—p)x+c3, T =covt+cy, Y =cvy+csz+ cg,

7 =cvz —csey +c7, U = 2¢1 — co.

Therefore, the Lie algebra is seven-dimensional given by

0 0 0 0
I'y, T'y, T's, T'y, T'g, I't1 =2pxr— — — +2—
1 2, 3 4, 6 11 pxal_—l—yyay—'—yzaz—}_ au7
0 0 0
Flg = l/ta + (V —p>$% — %

Case 3. F(u) = e".
From equations (5.13)-(5.19) we deduce that G(u) = ¢,¢*, K(u) = u and

X =2ct+c(z+t)+c3, T=cot+ecy, Y=c19+cs5z+ c,

Z =c1z—c5e.y +cp, U=2c —cy.

The Lie algebra is seven-dimensional given by

0 0 0 0 0 0 0
'y, Ty, T'y, Ty, T'g, I'13 = —2t— — 4 z2—+42—, Tu=t— t)— — —.
1 2 3 4, 65 13 ax+yay+zaz+ au’ 14 at+(’r+ )ax au

Case 4. F(u) =u".

Substituting the above form of F' from equations (5.13)-(5.19) we deduce the following
subcases:

Subcase 4.1: G(u) = e,u*, K(u) = u?

In this subcase we have
X =2c1(A—=p)x +2c(v —p)x +c3, T =201 M+ 2000t +c¢y, Y =c1(A—1)y +cs,

Z=c(v—Nzx+c, U=-2(c;+ co)u.

Therefore, the Lie algebra is six-dimensional spanned by

0 0 0 0
Iy, Ty, T3, Ty, Ty =2M— 4 2(\ — — — — — 2u—
1, Loy g, Day Tys At(?t +2(A p)xax + (A u)yay Uz
0 0 0 0
I = QVtE +2(v —p)x% + (v — )\)& — 2u%_



Subcase 4.2: G(u) = c,u*, K(u) = Inu.

In this subcase using equations (5.13)-(5.19) we have
X =2c1(Ax+1t) —2c0(vx +t)+c3, T =201\t —2cout +c¢4, Y =c1(A—1)y+cs,

Z=co(A=v)z+cs, U=—-2(c; —c2)u.

Hence, the Lie algebra is six-dimensional spanned by

0 0 0 0
Ty, Ty, Ty Ty Ty =2M— 42 g I
1, 2, 3 4, 17 At@t + ()\Z' + t) O + y()\ V) ay uau,
0 0 0 0
F18 = —2Vta — 2(Vl' +t)% —+ Z()\ — V)% + QU%

Subcase 4.3: G(u) = e,u”, K(u)=uP.
Here from (5.13)-(5.19) we get

X =2cpr+ca(v—plx+c3, T=covt+cy, Y =cvy+ csz+ s,

Z =cwz—csey+ o, U=2(c; —co)u.

The Lie algebra is seven-dimensional given by

0 0 0 0

I'y, Ty, T's, Ty, T, T'ig =2pz— — — + 2u—

1, 25 3 4, 65 19 pxam—i_l/yay‘i‘l/zaz_'_ uaua
0 0 0
Ty = vt 2 w2
20 V8t+x(y p)ﬁm u@u

Subcase 4.4: G(u) =¢c,u”, K(u) =1Inu.
Substituting the above forms of G and K we deduce that

X =2ct+cvr+t)+c3, T=covt+ecy, Y =cvy+csz+ g,

Z =cvz —csey+cor, U=2(c; —co)u.

So, the Lie algebra is

0 0 0 0
I'y, Ty, T'g, Ty, T'g, T'9g = —2t— — — 4+ 2u—
1 29 3 4, 6 21 &’E +Vyay+yzaz + uau7

[y = t2+( +t)3— 9
2= Vg T or  ou

Case 5. F(u) =u"'/2
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In this case from equations (5.13)-(5.19) we get that G(u) = eu™/2, K(u) = u~'/? and
X=crx+crxr+cz, T=2t+cst+c5 Y =cry+cez+cr,

Z=c1z—ceey +cs, U= (—c1+2cq)u— QCQU/%.

Hence, the Lie algebra is eight-dimensional spanned by

0 0 0 0 0
Fl) FZ, F3a P47 FG, F23 :2t—+l'—+y_+2_ —Uu

ot Tox oy T0z o’
0 0 0 0
Doy =t— 4 2u—, D95 =a2— — 2u'/2—.
S T T A T
f(nﬁ;di)u f
Case 6. F(U) = e(mrﬁ7 where u = (I{ + 2p/{ + q) 1/2 2+2pn+q

Substituting the above form of function F' we get the following subcases:
podu

J K+p—T)u
Subcase 6.1: G(u) = e, " K (u) = [ur(u)]'.

Z (ktp—r)u ’

In this subcase we have
X =2c1x+c|(p+r+u)r—qt]+cs, T =2c1t+cox~+ (r+ p —p)t] + cq,

Y =1y + s, Z—clz+2(u1 p2)z + g, U= co(r —p — K)u.

The Lie algebra is six-dimensional given by

Fl) FZ, F3a P47 F5a

0 0 1 0 0
Lo = [z + (r + 1 — p)t] §+[(p+r + p)x — gt %+§(M1—M2)Z%+(T—P—H)U%-
I pidu

Subcase 6.2: G(u) = e, &% K (u) = [ur(u)].

2 (k+p—r)u ?

Using equations (5.13)-(5.19) we get
X=2cx+c(p+r+m)e—qtl+cs, T=2ct+cox+ (r+p —p)t]+ca,

Y=cy+cz+tc, Z=ciz—csey+cr, U=co(r—p—ku.

So, the Lie algebra is
Fl) PQa F3a P47 F5a PG)

+Kp+r+ugx—¢y9

(D= R

0
F27:[x—|—(r+u1—p)t]a— ou

t
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Case 7. F(u) = 1.
In this case from equations (5.13)-(5.19) we get that G(u) =¢,, K(u) = v and

X=crx+ct+cst+cy, T=2c1t4c5 Y =c1y+ csz+ cr,

Z =c1z —cgey +cg, U= —cru—cy+ csu.

Therefore, the Lie algebra is eight-dimensional given by

0 0 0 0
I'y, Ty, T'g, Ty, T, T I'pg =t— — —, T'9g=2— —.
1, 2, 3 4, 65 23 28 O aua 29 xal[’ +uau

In Table 5.2 we summarize the Lie symmetries for the different forms of F, G and K.
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Table 5.2: Group classification of class (5.1), D =0

N F(u) G(u) K(u) Amax
r d d d d
1 v v v AR 25 20l +y s+ 2 )
2 v e F v Aker 4 (2¢0 4 250 4 yaﬁ +z2 2, Za% —e.y2)
3 evt e ePv Aker 4 (9pg 0 5: T I/ya + Az 5 T 270 8
2vt 2 + 2z (v —p)% +2(v—MNE - 2%)
4 er £ e u Aker (=2t 2 4yl 6y + Az 422
2wt L —|—2(1/Jc+t) +Z(V—)\)——2%>
5 evt g.evt ePv Aker 4 (9pg 0 50 T VYS: 8y +vzE az + 28‘1,
vtd +a(v—p)Z — %,zfy e.y)
6 ev £ e u Aler (2t D +y8y +zE +22,
t (@)L — 2 —eayiE)
7 u” e, ut uP Aker 4 2Xt2 4+ 22(A —p) 2 +y(A — 1/)8% —2ul,
tE +20(v—p) 2 +2(v — N)Z — 2u)
8 u? eut Inu Aker o0 D 4+ 2Nz + 1) 2 + y(A — V)a% —2ul,
721/t% —2(vz + )& +z2(A— 1/)% + 2u%>
9 uY e u” uP Aker 4 <2px6% + I/y(% + 1/2% + QU%,
vt +a(v—p)E — u%, Za% —e.y2)
10 u” g u” Inu Aker 4 (— 2t 6 + vy 8y + vz 82 + 2u8u,
vt + (vo + 1) 2 — uaau,z(% —e.yZ)
J(n—fz{dHW J(n—iz%duT)u / ker o o
11 e | & e | lus()] | A%+ (2t 5 +2z2 —l—yay tz2 w4 (r+p —p)t] o+
Hp+r+ )z = atlgy + 5(n — p2)2 g + (r = p = wugy)
J oht J ot | grer 4 g9y P
12 (n+p T €,% pET=— [uk(u)]" | AT + (2t 5 + 2:v — + y(9 + Zazv [+ (7 + p1 — p)t]5;+
Hp+r+ ) — gl + (r—p— w)ugs, 25 —2y4)
13a 1 £, U Aker 4 <2t6+xax+y8y+z—7u6u,tai %,
o
13b w12 gu~1/2 w2 | Aker 4 <2t8 —I—mGz —l—yay —l—z& —uau, —|—2u6u,

Here e, = +1; p # 0; v = 0,1 in cases 3, 4, 5; in cases 11 and 12 u = (k? 4 2pr + q) " /%e U Fe e

Additional equivalence transformations

13b— 13a:t=—x, =2t =y, 2=2 0=2u

1/2.
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In order to reduce an equation from the class (5.1) into an ordinary differential equation,

we need three-dimensional solvable subalgebras. For example, equation

uy = (W ug)e — (u™%uy)y + (W 2uy), + utu,

which is a special case of equation in Table 5.1.14, admits five Lie symmetries

9 0 0 0 0 0 0 0
ot’ FQ_a_x’ F3_6_y’ I'y= >F5—x—+ya—y—z——u—

Fr= 0z ox 0z ou’

The three-dimensional (solvable) subalgebra (I's, 'y, Ty + 6I'3) produces the similarity

reduction

u=(y—ox)'p(&), &=z2(y—ox)",

that transforms the above partial differential equations in four independent variables to

the ordinary differential equation

2 (do\T  ,dd oy
i 2 () T e =0

88



Chapter 6

Lie Group Classification of Systems

of Diffusion Equations

We consider the class of systems of diffusion equations of the form

ou 0 ou

5% = o [f(u,v)a—x] : (6.1)
00 _0 [0

ot oz [Nz

where f and g are arbitrary non-zero smooth functions in their arguments, both equations
are nonlinear, and f2 + g2 # 0. Special cases of this class of equations have been used to
model successfully physical situations, such as transport in porous media with variable
transmissivity [26] and river pollution [46]. Special cases of (6.1) have also applications in
Plasma Physics [64,65]. A number of diffusion type systems of equations has been studied
using Lie group analysis by Nikitin [50-52]. Also the special case f = f(u), g = g(v) can
by found in [33,43]. In this chapter we perform the complete classification of the class of
systems of diffusion equations (6.1). Then using some of the obtained Lie symmetries, we

construct exact invariant solutions [23].

6.1 Classification of Lie Symmetries

For the class of systems of diffusion equations of the form (6.1) we determine infinitesimal

transformations of the form
v =1+ eX(2,t,u,v)+ O(),

89



t' =t +eT(xz,t,u,v) + O(e?),
u' = u+eU(z,t,u,v) + O(?),
v =v+eV(x, t,u,v)+ O(?).

That is, we search for such transformations that leave system (6.1) invariant.

We have seen that a PDE of second order, admits Lie symmetries if and only if
I'@FE|g_, = 0.
So the system (6.1) admits Lie symmetries if and only if

r® {ut — fUge — fuu? — fvuzvz} =0, (6.2)

r® {’Ut — QUzz — JulzVy — gvvi} =0,

where uy = fuae + futly + fotlaVe and vy = gUge + GullaVe + Gov3.

After elimination of u; and v; using the above expressions, equations (6.2) become
identities in the variables t, x, u, v, Uy, Uy, Upe, Vpz, Uge and vy, In fact, these identities are
multi-variable polynomials in u,, vy, Uzz, Vez, Uz and v, The coefficients of different
powers of these variables must be zero, giving the determining equations for the four
unknown functions 7, X, U and V' and also for the functions f(u,v) and g(u,v).

Since equations (6.1) are polynomial in the pure derivatives of u and v with respect to
x, using Theorem 2.3 we deduce that 7' = T'(t) and X = X (z,t). Therefore, equations
(6.2) are simplified. Now the coefficient of v,, in the first equation and u,, in the second

equation of Eqgs. (6.2) give respectively,

U(f=9)=0, Vu(f—-g)=0. (6.3)

Therefore, we can split the analysis into two cases:

A f#g;

B. f=g.

Case A. f #g.

From equations (6.3) we deduce that U = U(t,z,u) and V = V(¢,x,v) and from the

first invariant condition in (6.2) that the coefficients of u2, u vy, Upy, Uy, v, and the
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term independent of derivatives give the following determining equations respectively:

Unaf + (Tt + Uy = 2X0) fu + V fur + U fuw = 0, (6.4)
(Ty + Vo = 2X,) fo + Ufuw + V for = 0, (6.5)
Ufu+ Vi + (T —2X,)f =0, (6.6)
2Up fu+ Ve fo + QUuz — Xoo) f + X =0, (6.7)
U.f, =0, (6.8)
Uy — Upef = 0. (6.9)

Coefficients of v2, uyVp, Uiz, Uz, Uy and the term independent of derivatives in the

second equation in (6.2) give respectively:

Vg + (Ty + Vy — 2X2) g0 + Uguw + Vguw = 0, (6.10)
(Ti + Uu = 2X2)gu + V guo + Uguu = 0, (6.11)
(T, —2X,)g + Ugu + Vg, =0, (6.12)
UsrGu + 2Vagy + (2Viw — Xaw)g + X = 0, (6.13)
Vagu =0, (6.14)
Vi—Vieg =0. (6.15)
Using equations (6.4) and (6.6) we get U,, = 0, so we can suppose that
U = uhy(z,t) + he(z,t). Also from (6.10) and (6.12) we have V,, = 0 that leads to
V' = wvhs(x,t) + hy(z,t). Using the form of V', equation (6.14) becomes
Gu(hszv + hag) = 0, (6.16)

from we deduce the following two cases:

L g, #0;
2. g, = 0.

Case 1. g, # 0.
Using the fact that g, # 0 then from (6.16), from which we have hg, = hy, = 0, we
deduce that functions hs and hy are only functions of t. Also from (6.15) we deduce that

hst = hyy = 0 so hg = s; and hy = so where s; and sy are constants. Therefore equation

(6.12) becomes
Gu(hiu+ ha) + gu(s10 + 82) = 9(2X, — T). (6.17)
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We can then suppose that g satisfies the following equation:
gu(kr1u + ko) + go(ksv + ky) = gks,

where ki, ko, k3, k4, ks are constants.

Therefore we have to solve the following system:

du B dv _%
klu+k2 - ]{73U+k4 - ]{75g

(6.18)

Equation (6.18) suggests the following forms of g:

(i) g arbitrary;

(i) g = u"K (v + elnu);

(if) g = u" K (22

(iv) g = e"K (v + eu).

However in the following analysis these forms of ¢ lead to further special cases. Sum-
marizing we have the following forms of g¢:

(i) g arbitrary;

Subcase 1.1: g arbitrary.
In this subcase from (6.17) we get that hy = hg = s1 = s =0 and X, = % So,
X = ’”TTt + ay(t). From equation (6.13) we have a;; = Ty = 0, therefore a; = s3 and

T = s4t + s5. Finally,
X=cx+cy, T=2ct+c3, U=0, V=0

So the Lie algebra is three-dimensional spanned by

0 0 0 0
a, FQ—%, F3—2t——|—x—

I, = .
! ot oz

Subcase 1.2: g =u"K(v+elnu).
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Here from (6.12) after some calculations we deduce that s; = hy = 0, hy = —2 and
X = 52 (€T}, — son) +ay(t). Also from (6.13) we get that a; = s3 and T = s4t + s5. Finally
from (6.6) we deduce that f = u"R(v+ elnu). So,

X=cx+4+c, T=2ct+csnt+cy, U=—csu, V =cse.

Therefore the Lie algebra is four-dimensional spanned by

0 0 0
I'y, Ty, Ty, TWy=nt— —u— —.
1, 2, 3 4 nt@t u8u+€av

Subcase 1.3: g =u"K (%)

In this subcase from equation (6.12) we deduce that hy = so = 0, hy = s3m and
X = 5 (T, + symn) + a;(t). From equation (6.13) we get that a; = s3 and T' = syt + s5.
Also from (6.6) we deduce that f =u"R (%-). So,

X=cx+cy, T=20c1t+csmnt+cy, U= —c3mu, V = —c3v,

and the Lie algebra is four-dimensional spanned by

0 0
Iy, Iy, Ty, I's=mnt— —mu— —v—

ot ou o
Subcase 1.4: g = ¢"K (e"v).
In this subcase from equation (6.12) we have that sy, = h1 =0, hy = —2L and
X = o= (nT; — c1) +ai(t). From (6.13) we get a; = s3 and T = syt + s5, while from (6.6)
we deduce that F' = e"R(e™v). Therefore,

X=cx+4+c, T=2c1t+cst+cy, U= —c3, V =c3nv.

So, the Lie algebra is four-dimensional spanned by

0 0 0
I, I'y, I's, PG—ta—%—f—nU%.

Subcase 1.5: g = e¢"K (v + eu).
In this subcase from (6.12) we get hy = 51 = 0, hy = —*2 and X = (T} — s3) +ay(t).
Also from (6.13) we have a; = s3 and T' = s4t+ s5. Finally from equation (6.6) we deduce

that f = e“R(v + eu). So,

X=cx+c, T=2c1t+cst+cy, U=—c3, V =cecs.
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The Lie algebra is four-dimensional spanned by

a 0 0
Fl, FQ, Fg, F7—t§—%+€%

Subcase 1.6: g = u™v™.

Using the fact that g = u"0™ then from (6.12) we have sy = hy = 0,
hy =1 (2X, — T, — sym) and from (6.13) and (6.9) we get respectively,
X = s3z + 54, T = s5t + sg. Also from (6.6) we deduce that f = cu"v™.

So, after some change in the constants we have
X=cx+cmx+cnr+cy, T =2ct+c, U=2c3u, V =20.

Therefore, the Lie algebra is five-dimensional given by

0 0 0 0
I'y, Ty, T'y, T's= — 4+ 20—, I'g=nx— + 2u—.
1, 2, 3 8 mxax + Ua’l)’ 9 nl‘ax + uau

Subcase 1.7: g = u"e".
In this subcase from (6.12) we have s; = hy = 0, hy = = (2X, — T, — s5), from (6.13)
we get X = s3x + s4 and from (6.9) T' = s5t + s¢. Also from (6.6) we deduce that

f =cu™e’. So,
X=cx4+cxr+cnr+cy, T =2ct+c, U=2c3u, V =20,

and the Lie algebra is

0 0
T T T T INo=oz—+2—.
1, Lo, L, lg, Lo x&x + BN

Subcase 1.8: g = e“".
Using equations (6.12), (6.13) and (6.9) after some calculations we get s; = hy = 0,
hy = 2X, — Ty — s9, X = sgx + s4 and T = s5t + sg. Also from (6.6) we deduce that

f = ce*t?. Therefore,
X=crx+cy, T=2ct+cst+cyt+cs, U=—c3u, V =—cyv,
and the Lie algebra is five-dimensional given by
0 0 o 0

I'y, Iy, I's, )1 =t———, Tio=t— — —.
1, 2, 3 11 875 aua 12 (7t a?}
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Case 2. g, = 0.

Since g = ¢g(v), equation (6.12) can be written as
(vhs(z,t) + ha(, 1)) go + (T1 — 2X;)g = 0. (6.19)
We then suppose that equation (6.19) has the following form:
(k1v + ko2)gy, + ksk = 0. (6.20)

where ki, ko, k3 are constants.

Equation (6.20) suggests the following forms of g(v):

(i) g(v) arbitrary;

(i) g(v) = co™

(ili) g(v) = ce”.

Subcase 2.1: g(v) arbitrary.

From (6.19) we get that hy = hy = 0 and X = £T; +ay(t). Also from (6.13) we deduce
that T' = s1t + so and a; = s3. Then from (6.7) we have f = f(v) and from equations
(6.8) and (6.9) we get that hy = s4 and hy = s5. So,

X=cx+c, T=2ct+c, U=cu+cs V=0

Therefore, the Lie algebra is five-dimensional spanned by

0 0
Iy, I'y, I, 11132%, F14:u%.

Subcase 2.2: g =v™.
In this subcase using equations (6.12), (6.13) and (6.15) we have hy = 0,
hs = % (2X, —T;), X = s12 + s9, T = s3t + s4. Also from (6.6) we deduce that f = co™.

So, after some change of constants we have
X=cx+4+c, T=2ct+csmt+cy, U=csu+cg, V=—c3v.

Hence, the Lie algebra is given by

0 0
Ty, Ty, T3 Diy Diyy Dis=mle —ve.
1, 2 39 13, 14, 15 m ; (% v

Subcase 2.3: g = €.
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Using the fact that ¢ = v™ then from equations (6.12), (6.13) and (6.15) we have
hs =0, hy =2X, —T;, X = s1x + 2 and T = s3t + s4. Also from equations (6.6), (6.8)
and (6.9) we deduce that f = ce”, hy = s5 and hy = s¢. So,

X=cx+4+c, T=2ct+ct+cy, U=csu+cg, V=—cs,

and the Lie algebra is six-dimensional spanned by

Fla F27 F37 F127 F137 F14-

In the following table we summarize the Lie symmetries for the different forms of f

and ¢ in the case when f # g.

Table 6.1: Group classification of class (6.1) if f # ¢

N[ o gwy) | ame

1 v v Aker = (20 o8 4 2.2

2 | w"R(v+ehhu) | u"K(v+elnu) | A + (ntd —ul +e2)

3 u"R(v™ /u) u" K (™ /u) Ak (mnt 2 — mul — o)

4 e“R(e™v) e"K(e"v) Aker 4 (t% — % + nv%}

5 e"R(v + eu) e"K(v+eu) | A+ (t2 - 2L 42

6 u o™ cuv™ Ak 4 (ma 2 + 202 nal +2ul)
7 u"e’ cu™e’ Aker o (z- 2 420 ngl 42yl
8 eutv ceutv Aker + <t% _ %,t% _ 8_(2;>

9 R(v) K (v) Aker 4 (D u L)

10 ™ co™ Aker 4 (%,u%, mt% — v(%>

11 e’ ce’ Aker 4 (2 0 8 0

Here e =0,1,c# 0,1, n # 0, m # 0; R, K are arbitrary functions of their variables, K # R .
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Case B. f =g.

As in the previous case from the first invariant condition in (6.2) the coefficients of

2

U2, UgUs, Ugg, Uy, V2, v, and the term independent of derivatives give respectively:
Ui + (Tt + Uy — 2X3) fur + Vafo + V fuo + U fu = 0, (6.21)
W] + U fu+ (Ti+ Vo = 2X0) fo + Ufuw + Vfir = 0, (6.22)
(Tt —2X,)f +Ufu+Vfy =0, (6.23)
2Us fu+ Vafo + QUus — Xao) f + X =0, (6.24)
Unf =0, (6.25)
Wy f +Usfy =0, (6.26)
U — U, f=0. (6.27)

Also, from the second invariant condition in (6.2) the coefficients of v%, UpVsy Vgs,

2

uz, u, and the term independent of derivatives give respectively:
Voo + Unfu+ (Te + Vo = 2X0) fo + U fuw + V foo = 0, (6.28)
Woof + Vafo + (T + Uy = 2X0) fu + V fuw + U fuu = 0, (6.29)
Usfu+2Vofo + (2Vie — Xao) f + Xy =0, (6.30)
Viuf =0, (6.31)
W + Vafu =0, (6.32)
Vi—= Vi f = 0. (6.33)

The solution of the above system with thirteen equations provides the desired classifi-
cation of Lie symmetries for the class (6.1) if f = g.

Specifically, using equations (6.21), (6.23) and (6.25) we deduce that Uy, = U,, =
U =0. So,

U=a(z,t)u+ as(z,t)v + as(z,t).
Also from equations (6.28), (6.23) and (6.31) we have V,,, = V,,,, = Vi, = 0. Therefore,
V = aq(z, t)u + as(z, t)v + ag(x, t).

Substituting the above expressions of U and V into equations (6.21)-(6.33), equation
(6.26) becomes,

folaizu + ag,v + agy) + 2a9, f = 0. (6.34)
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We can then suppose that (6.34) can be written in the following form:
fv()\lu —+ )\QU -+ )\3) -+ 2)\2f =0.

where A1, Aoy, A3 are constants.
In order to solve the above equation we just have to solve the following system:

du d Cdf
0 n )\1U—|—)\2U+)\3 n —2)\2f

(6.35)

The above system suggests that the analysis must be split into three cases:
L. A1 =X=X3=0;
2. Ao =0;
3. A2 # 0.

Case 1. )\1 = )\2 = )\3 =0.
In this case from equation (6.27) we have a; = s9, ay = S9, a3 = s3 where sy, Sg, S3

are constants. So, equation (6.23) becomes

Ju(s1u + 820 + 53) + fo(agu + asv + ag) + f(T;, — 2X,) = 0. (6.36)
Equation (6.36) suggests a PDE of the form

(au+bv+c)fu+ (mu+nv+r)f, +pf =0,

where a, b, ¢, m, n, r and p are constants and m, n # 0.
Solution of this PDE leads to the following forms of f:
1. f arbitrary;
Certain forms of f admit additional symmetries.
2. f=u(v+ew)™
3. f=e"(v+eu)™;
4. f =u"e'te;
5. f = euQeereu;
6. f = R(v+ eu);
7. f=(v+euw)™
8. f=evT,

Subcase 1.1: f arbitrary solution of (au + bv + ¢) f, + (mu + nu +r)f, + pf = 0.
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In this subcase using equations (6.21)-(6.33) we deduce that
X=cx+cy, T=2ct+cpt+cs, U=cylau+bv+c), V=cy(mu+nv+r).
So, the Lie algebra is four-dimensional spanned by

0 ) o
I, I'y, I's, Fg—pta+(au+bv+c)%+(mu+nv+r)%,

Subcase 1.2: f = u"(v + eu)™.

In this subcase from equation (6.23) we have ay = = (=T} +2X, — sym — s1n),
so =0, a5 = = (=T, + 2X, — syn) and s3 = ag = 0. Finally from (6.24) and (6.33) we get
respectively X = syx + s5 and T = sgt + s7. After some changes in the constants sq, ..., s7

we have
X =cx+eme+cy, T =2ct+cy, U=csmu, V =2c(v+eu)—cs(nv+e(m+n)u).
The Lie algebra is five-dimensional given by

0 0 0 0
T I T Iy = — +2 — Ty = - _ )
1, Iy, T3, Ty mxax (v+ eu) 500 Lu muau (nv + e(m + n)u) 5

Subcase 1.3: f = ¢e"(v + eu)™.

Here from (6.23) we have sy = 0, ag = — (—€T} + 2eX, — s1em — 510 — €53m)

a5 = + (=T} + 2X, — s3) and ag = —es3. Also from (6.24) and (6.33) we get respectively
X = s4z + s5 and T = sgt + s7 while from (6.29) we deduce that s; = 0. So,

X=cx+cmz+cxr+c, T=2ut+c;, U=2c, V =2c(v+eu)—2cze.
Therefore, the Lie algebra is five-dimensional spanned by

0 0
I'y, Ty, T'g, T lN's=2— +2— — 2¢e—.
1, 2, 3 10, 12 xal' + au 681}

Subcase 1.4: f = u"evte,
In this subcase from (6.23) we deduce that ay = —e€s1, a5 = so = s3 =0,
ag = —T; + 2X, — syn and from (6.24) and (6.33) we get respectively X = syx + s5 and

T = sgt + s7. After a change in the constants sy, ...s; we have

X=crx+cx+cynr+cy, T =2c1t+cy;, U=2c3u, V =29— 2ecsu.
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The Lie algebra is five-dimensional given by

0 0 0 0
Fla FQ, Fg, F13:.CL'—+2—, F14:77,.Z'—+2U - — € ).
Ox v x

Subcase 1.5: f = ¥ evteu,
In this subcase from (6.23) we have s; = so =0, ag = —2s3, a5 = 0 and
ag = =Ty + 2X, — es3. Also from (6.24) and (6.33) we deduce that X = syz + s5 and

T = sgt + s7. After a change of constants ss, ...s; we deduce that
X=cx+c, T=2c1t+ecst+cyt+cs5, U= —c3, V =2c3u— cy,

and the Lie algebra is

9 9 5,9 p 9 9
ot ou  Mou T ' T oo

Fl) FZ, F3a F15 =€t
Subcase 1.6: f = R(v + eu).

Using the fact that f = R(v+eu) from (6.23) we have a4 = eas —esy, +€289, a5 = —€so,

ag = —esg and X = £T; + gi(t). Finally from (6.24) we deduce that T = s4t 4 s5 and

g1 = Sg where sq, ..., sg are constants. After a change in the constants
X=cx+c, T=2ct+c3, U=csutcev+cy, V=—€(csu+ cev+cy).

Therefore, the Lie algebra is six-dimensional spanned by

0 0 0 0 0 0
Iy, Ty, T, F17:%—€%, Flszu(%—ﬁa), F19=v(%—e%).

Subcase 1.7: f = (v + eu)™.
In this subcase from (6.23) we get ag = —es3, ay = —(—€T; + 2¢X, — esym) and

as (—T: +2X, —esom). From (6.24) and (6.33) we get respectively X = sy + s5 and

1
T m

T = sgt + s7 where sq, ..., s7 are constants. So,
X =cixz+co, T =2c1t+csmt+cy, U = csutcgv+cr, V = —c3(eut+v)—e(csutcgv+cr).

The Lie algebra is seven-dimensional spanned by

0 0
I'y, Ty, T'g, T r r Iy = mt— — —.
1, 2, 3 17, 185 19, 20 m ot (€u+v>8’0

Subcase 1.8: f = eV,
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Using the fact that f = €™ from (6.23) we have a5 = —esy, a4 = —es; and
ag = —T; + 2X, — es3. Equations (6.24) and (6.33) yield respectively X = s4x + s5 and

T = set + s; where sq, ...s7 are constants. So,
X=crx+cy, T=2c1t+cst+cy, U=csutcgv+cr, V =—€(csu+cgv+cr)—cs,
and the seven-dimensional Lie algebra is spanned by

Fla F27 F37 F167 F177 F187 F19'

Case 2. \; = 0.

In this case the results are the same as those of Case 1.

Case 3. \y #0.

From the system (6.35) we deduce that f = ¢(u)(v + eu) 2. So, using equation (6.26)
we get az = az(t) and a; = eay + g1(t). Also from the coefficient of v? in equation (6.32)
we deduce that ¢(u) = v where v is constant. So, using the fact that f = v(v + eu) ™2
then from equation (6.28) we have as = %(Tt —2X, — 2¢eay), ag = —eaz and
ay = §(Tp — 2X, — 2eaz — 2g1). Also, from (6.30) we get X = s;2 + s, and from (6.27)
as = S3, g1 = S4 and ay = s5 + s¢. Finally equation (6.33) leads to T' = s;t + sg. Here
s1, ..., Sg are constants and after some change of constants we have the following forms of

X, T, UandV:
X=cx+c, T=2c1t+2c3+cy, U=csu+csleuw+v)+ cr+ cgx(eu + v),

V = c3(eu + v) — czeu — ecg(eu + v) — ecy — ecsr(eu + v).

Therefore, the Lie algebra is eight-dimensional spanned by

0 0
I'y, Ty, T'g, T r I'y; = 2t— —
1, 2, 3 17, 185 21 ot +(€u+v)av7

0 0 0 0
oo (eu + v) (% — e%) , Doz = x(eu + v) (% - e%) :

In the following table we give briefly the Lie symmetries for the different forms of f in

the case when f = g.
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Table 6.2: Group classification of class (6.1) if f =g

N f(u,v) Amax
1 f(u,v) Aker 4 (pt2 + (au+bv+ )2 + (mu+nv+71)2)
2 | u™(v+eu)™ | Aker 4 (mxa% +2(v + eu) mu% — (nv+e(m+ n)u)(%)

9
ov?
3| et(v+eu)™ | A4 (ma +2(v+eu)2,zld +22 —2:2)

n vteu ker 9 9 9 9 _ g0
4 u-e A +<x83;+28'u’nx83;+2(u8u €U8U)>
u? Jvteu ker 9o _ 90 9 40 _ 90
5 et e AT+ (etgp — gq + 2ugs tor — 55)

6 | Rvteu) | A4+ (2 el u(L-¢

ud
—
S
|
™
o
~—
~

S

7 (v+eu)™ AkerJr(%75%,1;(%76%),v(%fs%),mt%f(equv)é%)
s | e | A e B o) i B

9 | (vteu)? | A4 (2L + (cutv)Z

U
L el g(eu+tv) (L —<2))

Here ¢ = 0,1, ¢ # 0,1, n # 0, m # 0;f*(u,v) is an arbitrary solution of the equation

(au+bv+ ) fL + (mu+nv+r)fL +pft = 0.

6.2 Similarity reductions

Lie symmetries of a system of differential equations can be used for the construction of
exact solutions of the system. In particular, invariance with respect to a one-parameter
group of symmetries leads to the reduction of the number of independent variables by
one. For a case of two-dimensional systems in such way one obtains a reduced system of
ordinary differential equations.

Consider the system
up = (V"Uy)z, U = (V") s (6.37)

which is a member of the class (6.1). This system admits nontrivial Lie symmetries found
in previous section. Its Lie symmetry algebra is six-dimensional and spanned by the

operators



Any two conjugate subgroups of a Lie symmetry group of a system of differential
equations give rise to reduced equations that are related by a conjugacy transformation
in the point symmetry group of the system acting on the invariant solutions determined
by each subgroup [55]. Hence, up to the action of the point symmetry transformations,
all invariant solutions for a given system can be obtained by selecting a subgroup in
each conjugacy class of all admitted one dimensional point symmetry subgroups. Such
a selection is called an optimal set of one-dimensional subgroups. A set of subalgebras
of the Lie algebra corresponding to the optimal set of subgroups consists of subalgebras
inequivalent with respect to the actions of adjoint representation of the Lie symmetry
group on its Lie algebra.

In Tables 6.3-6.6 we adduce results of classification of similarity reductions of sys-
tem (6.37). More precisely, we give commutation relations for the Lie symmetries, present
adjoint representations of the Lie symmetry group of system (6.37) on its Lie symmetry al-
gebra, derive its optimal system of one-dimensional subalgebras and list the corresponding

reduced systems.

Table 6.3: Commutator table for the Lie algebra

Ty Ty I's ry I's T
Iy 0 0 2T 0 0 mIy
Iy 0 0 Ty 0 0 0
I's | =2I't  —TI'» 0 0 0 0
Ty 0 0 0 0 Ty 0
I's 0 0 0 -y 0 0
I'g | —mIy 0 0 0 0 0
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Table 6.4: Adjoint table for the Lie algebra

Ad| T, 'y I Iy Is Lg
I I Iy T3—2I; Ty s I'g —emlI';
Iy I Iy Ty3—ely Ty I's T
Iy | Tie? Ty I's Iy I's Ts
r, | Iy Iy I's Iy Ts5—ely Ts
s I Iy I's I4ef s Ts
I'g | Tieme Ty I's Iy I's Ts

Table 6.5: Subalgebras (A;), similarity variables, similarity solutions

(Ag)

£

similarity solution

1 (Ts+aele+ asl's)

x2+a6'rnt— 1

u=2(§), v=z""Y(¢)

1
xt 2taem

v =TT ()

2 (Is+aels + esl'y) u= 52— Int + ¢(§),

3 (Dg+asls+els) et m w=tmp(€), v=_t"m(s)

4 (Tg+ ey + esly vt u=SInt+¢(), v==tmpE)
5 (Is+6T1+els) z—edit u=entp(€), v=1(&)

6 (T5 + 6oT5) t u=e?"¢(), v=1(¢)

7 (Ty+ela+ e4ly) T — €at u=est +¢(§), v=1v(§)

8 (Po +e4Ty) t u=esr+ ¢(§), v=1(&)
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Table 6.6: Subalgebras (A;), reduced equations

(A;) reduced equations
1 (T34 aels +asl's) (2 4+ agm)?E2p™ pee + as(as — 1)Yp™ o+
(2a5 — 1)(2 + asm)EP™ de + E2¢¢ + (2 + agm)?EP™ de = 0
&P (2 + agm)*Pee + emip™H (—ast) + (2 + agm)Eie)? + Ee
+eg™ag(as + )¢ — (2a6 + 1)(2 + agm)§¢be + (2 + agm)*§yhe] = 0
2 (I's +apl's +eal's) (24 agm)P™ dee + e — €4 =0
(2 + agm)c)™ e 4 em(2 4 agm)yY™ T E + e + agh = 0
3 (Te+asl's + eal2) mEY™ pee +mEY™ e + €a€pe — azd =0
em&PMPee + emEP" e + emPEY ™ TINE + eolihe +1p =0
4 (To+elz+ ey mE*P" dee + mEY™ P¢ + €26 — €4 =0
em&P Mg + emEP" e + emPEY™TINE — e2lihe +1p =0
5 (Is+ 0611 + €eI'2) YY" ee + €201 — 010 =0
™ e 4 emP™ T IPE 4 €261 = 0
6 (T'5 + 02T'3) Ge —yY"p=0
Ye =0
7 Ty + ey +egTy) V" Pee + €apg — €4 =0
™ ee + emP™ Y + eathe = 0
8 (D2 + eal's) P Pee — de =0
Ye =0

Here a; are arbitrary constants, ¢; = 0,£1, §; = £1.

Solutions of the reduced systems listed in Table 6.6 give rise to similarity solutions of

the initial system. As examples we consider some cases in more detail.

Example 6.1. <F3 + a6F6 + €4F4>

For ag = 1 and m = —1, if we integrate once equation

) e — cTHPE + Ebe + U = 0,

we get the following Riccati equation

Ve = A&Y* + B,

1

where A = —, B = < and ¢; is the integration constant. The solution of the Riccati

equation is
B? 2
B #0; =
CeBs + ABE+ A’ 70 4 A2+ C7

W = B=0, (6.38)
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where C' is an integration constant.

So the similarity solution of the initial system is

v=t""Y(€), u=-eslnt+¢(¢),

where ¢(£) is the solution of Y™ ¢ee + Epe — €4 = 0, P(€) is given by (6.38) and & = at ™.

Example 6.2. <F5 + 51F1 + 62F2>.
The similarity solution is v = ¥(&), u = e?!¢(£), where ¢(£) is the solution of

V" Pee + €201 — 019 =0,

and (&) is the solution of the following relation

cymdg
/ a6 +e St

Here ¢, is the integration constant and £ = x — €301t.

Example 6.3. <F1 + EQFQ + €4F4>.

If we integrate once equation

Cwmd)gg + Cm@[)m_ld)g + Egd)g = O,

then we get ™ + €210 = ¢y, where ¢y is the integration constant. Taking co = 0, we

have

1

m

v = (et +e)] "

where c3 is the integration constant. Substitution of this form of v into equation

V" Pge + €20 — €4 = 0,

leads us to two cases depending on the values that the constant ¢ takes. In particular, we

need to take ¢ # —m and ¢ = —m.
If ¢ # —m, then
€4 am ctm
=—(— ———(—ef+c) ™ +b,
(b 625 62(C+ 1) ( 2£ 3)
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where ¢ # —1 and a, b are integration constants. So the similarity solution is

€4 am ctm
=t + 2z —6t) — ——— [—€(x — €t " b
U= €4t + . (x — egt) et D) [—ea(z — €at) + c3] + b,

1

v= [%(—62(37 — et) + cg)] "

If ¢ = —m, then

+
6= ey M log(est — ¢3) + b,
€9 €5

where a and b are integration constants. So the similarity solution is

€ €4C3 + ae
U= egt+ — (z— et) + — 2

€o €3

log [ea(z — €at) — 3] + b,

3=

v = [ea(x — €3t) — c3]™ .
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Chapter 7

Potential Symmetries of Systems of

Diffusion Equations

The problem of finding potential symmetries for the system of diffusion equations

ou 0 ou
ov_0 [ o
ot oz |7V oz

is examined in this chapter. In order to achieve this we need to write system (7.1) as
a system of three or four equations by introducing potential variables. These auxiliary
systems can be constructed using the conservation laws of system (7.1). A complete
classification of conservation laws for system (7.1) is presented in [37] where conservation
laws were used, in particularly, to derive all possible auxiliary systems. Here we give the
results only for arbitrary f and ¢g and the case where g = —f.
Vg
Louy = (fug)e, we = v, wy = gug;
2. up = (fug)e, We =u+v, wy = fug, + gug;

3' w$:u7wt:fu$7z$:v7zt:gv$ﬂ

vag: _f
Uy = (ful“>x7 Wy = UV, Wy = foU - f’U/Ux;
Wy = UV, wt:ful‘v_fuvm Ze = U, Zt:_fvm;

Wy = UV, wt:fumv_fuvza Zy = U+, Zt:fua:_fvz;

N o

Wy = U, wt:fuxa Zg = VU, 2t = Uz, Gz = UV, Qt:fuxv_fuvz-
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All possible auxiliary systems that correspond to (7.1) can be found in [37].
In this chapter we consider one of the auxiliary systems of the systems of diffusion
equations and we present some examples of potential symmetries. We also present an

example of linearization using infinite-dimensional potential symmetries.

7.1 Examples of Potential Symmetries

We consider the following auxiliary system in the case when g = —f:
Wy = UV,
wy = fuv — fuug, (7.2)
2y = U,
2z = —fu,.

We search for transformations admitted by system (7.2) of the form:

v =1+ eX (2t u,v,w,2) + O(?),
t'=t+eT(z,t,u,v,w, z) + O(e?),
' =u+eU(x, t,u,v,w,2) + O(?),
v =v+ V(b u,v,w, 2) + O(?),
w' = w4+ eW(x,t,u,v,w,2) + O(?),

=z +eZ(x,t,u,v,w, z) + O(e?),

that leave system (7.2) invariant. The system (7.2) admits Lie symmetries if and only if

Ey =TW [w, —uv] =0, (7.3)
Ey =TW [w, — fuyv + fuvy] =0, (7.4)
Es =TW [z, —v] =0, (7.5)
E,=TW [z + fv,] =0, (7.6)
where w, = wv, w; = fu,v — fuv,, z, =wv and z, = — fu,.
We only classify the Lie symmetries of (7.2) which are such that:
X+ X2+ To+ T2+ UL+ U+ V2 +VE#0. (7.7)
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These symmetries induce potential symmetries of (6.1). If (7.7) is not satisfied then the
symmetry of (7.2) projects into a point symmetry of (6.1).

Analytically, after elimination of w,, w;, z, and z from equations (7.2), equations
(7.3)-(7.6) become four identities in the variables ¢, =, u, v, w, 2, Uy, Vg, Up, Vi, Uply, Uy,
u,v;. These identities are multi-variable polynomials in ., vy, U, Vg, UpUz, UV, Uy,
therefore the coefficients of different powers of these variables must be zero giving the
determining equations for the unknown functions 7, X, U, V, W, Z and f(u,v).

Taking the coefficients of Ey,2 .2, Es,, and Ey, we deduce that T, = T, = T, =
T, =T, =0. Hence, T = T(t). Also after some calculations using the coefficients of
Ervpvs invns E3ve e, Pau, we deduce that X = X(z,¢,2), W = W(t,w, z) and

Z = Z(t, z) and from E; and E3 we get the following expressions for functions U and V:
U=Wyu+W, - Z,u,
V=—-Xv— X0+ vZ.,.

Then from coefficient of u, in Es we get the following equation:

So, the analysis is split into two cases:
1. fu=0;
2. fu#0.

Case 1. f, =0.
In this case using the fact that f = f(v) from E5 the only form of f that gives potentials
is f = —. Therefore after some briefly calculations using equations (7.3)-(7.6) we deduce

that
X=cr+c, T=2ct+c3, U=—ciu+cqu+hy(t,z), V=0,

W =cow+ hi(t,2), Z=c12+cs,

where function hy(¢, z) is an arbitrary solution of hy,, — hyy = 0.

110



Therefore, the system (7.2) admits the following infinite Lie algebra spanned by

0 0 0
Fl_aa FQ_%a F3_%7
0 0 0 0 0 0
Pa=2tg vag —ug, T2g, i=ug  twgy,
0 0
Foo = hl(t, Z)@ + hlz(t, Z)a—

Symmetry I'y, is a potential symmetry of (6.1).

Case 2. f, #0.
In this case from equation (7.8) and E, we deduce that W = c;w + a4(t, z) and from

equations (7.3)-(7.6) we have the following determining equations

(Z. — c)u—ar.] fu+ [Xo0® + (X — Z)0] fo + (20X, + 2X, = T3) f =0,(7.9)
[—Xzzuv2 +2uv(Z,, — Xyz) — 12,0 — Xmu] f—Xuv+ay =0, (7.10)

[—* X + (2., — 22X, — vXoo| f — 0 X+ Z, = 0. (7.11)
We can then suppose that equation (7.9) can be written in the following form
(k:lu —|— k?g)fu —f- (k’31)2 —f- k’4U)fU —f- (2]€3U —f- k’5)f = O (712)

So, in order to find the different forms of f that induce potential symmetries for (6.1) we

just have to solve the following system

du dv df

kiu+ ks kg0 + koo f(—2ks0 + ks)

with the method of characteristics.
Some of the forms of f that induce potentials symmetries are
(i) f=v2p(u);
(i) f = v
(iii) f = v 2u".
Subcase 2.1: f = v2¢(u).
From equations (7.9)-(7.11) using the form of f = v2¢(u) after some calculations we

deduce that

X = cgzteqztco, T =2cit+cs, U=0, V=v(ci—czv—cyq), Z = c12+cs, W = cyw+ter.
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So, the Lie algebra is seven-dimensional spanned by

0 , I'r = zg—iﬂ 0 I's = xg—'v 0 Iy QtQ—l—vg—l—zQ—i—wi

I'y, I'y, T'3, I'g = —
L 22 23 267 5 or — Ov’ or v’ ot ov "0z = Ow

Here symmetry I'; induce potential symmetry for equation (6.1).
Subcase 2.2: f = v 2e"

In this subcase from equations (7.9)-(7.11) we deduce that
X=cz4+cx+cs, T=2c1t—cgvt+co, U=cg, V=0v(c; —c3v—cy),

Z=ciz+cy, W=cirw+ cgz+ cg.

Therefore the Lie algebra is eight-dimensional spanned by

0 0
Iy, Ty, I's, T, I'z, I's, T, Flo—a +Za—w

So, I'; induce potential symmetry for (6.1).
Subcase 2.3: f = v 2u”

Here from equations (7.9)-(7.11) after some calculations we have
X=cz+cux+cy, T=(—crv+2c)t+cy, U=ciu, V =uv(—c3v—cy4+ cg),

Z =c¢z+cr, W= (c1+cs)w+ cs.

Hence the Lie algebra is eight-dimensional given by

0 0 0
I'y, Ty, T, T, T'7, T'g, Ty, T'\1 =vt—= — —.
1, 25 3 65 7y 8 9 11 =V ot _'_uau _'_waw

In this subcase symmetry I'; induce potential symmetry for (6.1).
Although, the Lie algebra in the three subcases is different, all three equations admit

the same potential symmetry.

7.2 Linearization using Potential Symmetries

We consider the following auxiliary system of (7.1)
Wy = U,
wy = f(u, )iy, (7.13)
Uy = [g(u7v)vx]l“

112



In the case when f = —u~2 and g = — f system (7.13) is written as

Wy = U,
wy = —u U, (7.14)

vy = [u 0.,
The symmetries of (7.14) that induce potential symmetries of (7.1) are [70]

0 9, 0
I =a(w® — 215)3 + 41522 + u(6t — 2zuw — wQ)% —v(w? + 2t) = + dtw——

ox ot ov ow’

[y = wr— —u(w+ ux) 7 — g+2ti
9 = WX u(w uxa Uwc% 0’

o 4, 0
F¢> - (b(t,’LU)% —u ¢w%a

0
r -
(0] w(t’w>8v’

where the function ¢(t,w) satisfies the backward linear heat equation ¢; + ¢y, = 0 and
¥ (t,w) satisfies the linear heat equation ¥y — ¥, = 0.

As mentioned in paragraph (2.8) if a nonlinear PDE (or a system of PDEs) admits
infinite-parameter groups, then it can be transformed into a linear PDE (or into a linear
system of PDEs) if these groups satisfy certain criteria. These criteria and the method for
finding the linearizing mapping using the infinite-dimensional symmetries can be found
in [10]. Hence, using the method described in [10] the infinite-dimensional Lie symmetries

I'y, I'y lead to the transformation

which maps the linear system

/
z'x!

/ / /
wz/ — u, wt/ — _ux/, /Ut/ =

into the nonlinear system (7.14). Consequently this mapping leads to the contact trans-

formation
de’ = udzx + u2u,dt, dt =dt, o' ==, v =u,
which maps the separable linear system

r / r
Uy = —Uprgry Vp = Uprgrs
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into the nonlinear system (7.1) now written as
= —[u Uy, Ve = U0,

The question that arises here is what other equations of the class (7.1) can be linearized

using similar linear approaches.
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Chapter 8

Conclusions

The main goal of this thesis was the group classification of diffusion-type equations. The
starting point was the known results of the (141) nonlinear diffusion equations and dif-
fusion convection equations. In particular we made a complete classification of the (2+1)

nonlinear diffusion-convection equations
up = (D(u)ug), + (F(u)uy), + K(u)u,,
and the (3+1) nonlinear diffusion-convection equations

w = (D(wu), + (F(w,), + (Glu)u.), + K (u)u,.

)

In the literature appeared the results only in the cases K(u) = 0 and D(u) = F(u) =
G(u) =1 and K(u) = u (Burgers’ equation).
Furthermore, we classified the Lie symmetries for the systems of diffusion equations

ou 0 ou
% ox [f(%v)a—x} )

ov 0 v
9 or [g(u,v)%} ,
which generalize Ovsiannikovs results of nonlinear diffusion equations.

The problem of classification of potential symmetries of a system is a very difficult and
lengthy task. In addition to the existing results, we present some new cases of potential
symmetries.

The work of the present thesis suggests certain problems that can be considered in the

future. For example one can study the following problems:
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Similar to Theorem 2.2 find the restrictions of the infinitesimal functions for evolu-

tion equations with more than two independent variables.
Classification of Lie symmetries for (n + 1) diffusion-convection equations.

Classification of potential symmetries of the systems of diffusion equations (7.1)

using all possible auxiliary systems.

The Lie symmetries derived here can be employed to construct exact solutions.
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