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Περίληψη 

Η υπερηχογραφία με σκιαγραφικές ουσίες  [Dynamic Contrast-Enhanced Ultrasound 

(DCEUS)] παρέχει σημαντικές δυνατότητες σαν κλινικό εργαλείο για την ανάλυση και 

ποσοτικοποίηση της αιμάτωσης των ιστών  καθώς και για την κατανόηση της 

αγγειογέννεσης παθήσεων. Συγκεγκριμένα η πρόοδος νοσημάτων όπως κακοήθης 

ηπατικοί όγκοι, καρκινώματα στους νεφρούς και αθηρωματικές πλάκες στην καρωτίδα 

μπορεί να παρακολουθείται με την ποσοτικοποίηση του DCEUS. Ωστόσο η αξιόπιστη 

ποσοτικοποίηση με DCEUS έχει περιορισμούς όπως η εξάρτηση από τις ικανότητες του 

χειριστή, κορεσμό σήματος, φυσιολογική κίνηση και θόρυβο στίγματος. Σε αυτη την 

διδακτορική διατριβή παρουσιάζεται ένας καινότομος αλγόριθμος για την αυτόματη 

διόρθωση της αναπνευστικής κίνησης [Automatic Respiratory Gating (ARG)] ο οποίος 

ανταποκρίνεται στις δυσκολίες στην χρήση μοντέλων indicator dilution για την 

ποσοτικοποίησης της αιμάτωσης σε ιστούς με σημαντική ροή αίματος όπως ηπατικοί 

όγκοι. Σε αντίθεση οι αθηρωματικές πλάκες στην καρωτίδα έχουν ελάχιστη ροή αίματος 

κατά συνέπεια σχεδιάστηκε μέθοδος για την ποσοτικοποίηση του ποσοστού έκτασης της 

αιμάτωσης της πλάκας δεδομένου ότι τα μοντέλα indicator dilution δεν ισχύουν.  

Ο καινοτόμος αλγόριθμός ARG ξεπερνά αρκετά μειονεκτήματα αλγόριθμων 

διόρθωσης αναπνευστικής κίνησης που υπάρχουν στην βιβλιογραφία επιδεικνύοντας την 

ικανότητα να αφαιρεί την κίνηση εντός και εκτός του απεικονιστικού επιπέδου, υψηλή 

υπολογιστική απόδοση διορθώνοντας μία 2 λεπτών διάρκειας απεικόνιση σε λιγότερο από 

10 δευτερόλεπτα και ευκολία στην χρήση. Η αύξηση στην αξιοπιστία με την χρήση του 

ARG σε όγκους του ήπατος αποδεικνύεται με την χρήση κλινικών δεδομένων με μία 

σημαντική αύξηση στην ποιότητα προσαρμογής του μοντέλου στα δεδομένα (p<0.05). 

Ένα μοντέλο εξομοίωσης της αναπνευστικής κίνησης αναπτύσσεται για την 

διερεύνηση της ικανότητας του αλγόριθμου ARG στην μείωση του ποσοστιαίου 

σφάλματος των παραμέτρων ποσοτικοποίησης από τις πραγματικές τους τιμές. Το μοντέλο 

αποδεικνύει ότι η χρήση του ARG μπορεί να μειώσει το μέγιστο σφάλμα στις 

παραμέτρους από 32.3% σε 6.2%. Επίσης διερευνώνται οι επιπτώσεις στην 

ποσοτικοποίηση με την παρουσία πολλαπλασιαστικού θορύβου. 

Ένας αλγόριθμός αναπτύσσεται για τον υπολογισμό του ποσοστού έκτασης της 

αιμάτωσης των αθηρωματικών πλακών στην καρωτίδα με την χρήση DCEUS. Η ποιοτική 

βαθμονόμηση της αιμάτωσης των αθηρωματικών πλακών χρησιμοποιείτε για την 

επικύρωση της ποσοτικοποίησης. Η ποιοτική όπως και η ποσοτική βαθμονόμηση της 

αιμάτωσης των αθηρωματικών πλακών αποδεικνύουν ότι η έκταση της αιμάτωσης στις 

πλάκες σε συμπτωματικούς ασθενείς είναι σημαντικά μειωμένη σε σχέση με τους 

ασυμπτωματικούς (p<0.05). Το ποσοστό έκτασης της αιμάτωσης της πλάκας παρέχει την 

δυνατότητα της ταυτοποίησης των χαρακτηριστικών ευάλωτων πλακών όπως επίσης και 

αλλαγές στην μικροροή με την χρήση αντιαθηρωματικών θεραπειών.  
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Abstract 

Dynamic contrast enhanced ultrasound (DCEUS) holds great promise as a clinical 

tool for the analysis and quantification of tissue perfusion and it can provide valuable 

insight into the development of disease neovascularization. Specifically the progress of 

diseases such as malignant liver lesions, renal carcinomas and carotid atherosclerotic 

plaques can be monitored using quantitative DCEUS. However the reliable implementation 

of quantitative DCEUS has several limitations like operator dependence, signal saturation, 

physiological motion and speckle noise. In this thesis a novel automatic respiratory gating 

(ARG) algorithm is developed to address challenges in the use of indicator dilution models 

for the quantification of tissue perfusion that exhibits a high amount of blood flow such as 

liver lesions. Contrary carotid plaques exhibit very low blood flows and a method is 

formulated to calculate the percent perfusion coverage of the plaque’s area given than 

indicator dilution models are not applicable.   

 The novel ARG developed overcomes many of the limitations of respiratory 

compensation methods published in the literature demonstrating efficiency in removing in-

plane as well as out-of-plane motion, high computational speed by processing a 2 minute 

DCEUS acquisition in less than 10 seconds and ease of implementation. The increase in 

the reliability of liver lesion DCEUS quantification with the use of ARG is demonstrated 

using clinical data with a significant increase in the quality-of-fit of perfusion modeling 

(p<0.05).  

A respiratory motion simulation model (RMSM) is constructed to investigate the 

efficiency of ARG in reducing the percentage error of DCEUS quantification parameters 

from their true values. The RMSM demonstrates a decrease in the maximum percentage 

error of DCEUS quantification parameters from 32.3% to 6.2% with the use of ARG. The 

implications of the presence of multiplicative noise in liver lesion DCEUS acquisitions are 

also studied and quantified using the RMSM. 

An algorithm is developed for the calculation of the percent perfusion coverage of 

carotid atherosclerotic plaques from DCEUS acquisitions. Visual scores of carotid plaque 

perfusion are used to validate the results from the DCEUS quantification analysis. Both the 

percent perfused area with DCEUS quantification analysis and the qualitative scores 

demonstrate that the extent of carotid plaque perfusion for symptomatic patients is 

significantly less than asymptomatic (p<0.05). Percent perfusion coverage has the potential 

to identify the perfusion characteristics of vulnerable carotid plaques and to also assess 

changes in the microflow caused by anti-atherosclerotic therapies.     
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1-Introduction 

2 

 

Medical imaging harnesses the knowledge of physical phenomena like ultrasound, 

X-rays, radioactivity and magnetic resonance to provide clinicians with effective 

diagnostic tools. Information can be provided into the function, pathology and structure of 

the human body helping with the timely diagnosis of disease. The data provided by any 

medical imaging modality needs to be readily accessible and accurate to maximize its 

diagnostic potential. Algorithms and tools have been developed to quantify, enhance, 

segment and visualize medical imaging data to facilitate reliable, reproducible and accurate 

diagnosis. This thesis focuses on providing such algorithms and methods in order to 

maximize the diagnostic potential of quantitative functional contrast-enhanced ultrasound. 

1.1 Dynamic contrast enhanced ultrasound (DCEUS) 

Ultrasound is a non-invasive, relatively inexpensive, portable imaging modality with 

no adverse ionizing radiation effects. The publication of The Theory of Sound by Lord 

Rayleigh in 1877[1] and the discovery of piezoelectric materials by Pierre Curie in 1880[2] 

were crucial in the development of medical and industrial ultrasound. Developments in 

methods and materials resulted in the first use of medical diagnostic ultrasound in 1942 by 

Karl and Friedrich Dussik in Austria[3] for the detection of brain tumor location.  

The use of ultrasound imaging in medicine for the study of anatomical features is 

based on the pulse-echo principle. Ultrasound pulses are transmitted using the piezoelectric 

elements of an ultrasound probe and the echoes reflected from tissue are detected. The time 

delay between transmission-reception of the echoes and the speed of sound in tissue is used 

to determine the location from which a specific echo has originated. In addition the 

amplitude of the detected echo will determine the grey-scale level of the resulting 

ultrasound image. By transmitting multiple pulses along different piezoelectric elements of 

the ultrasound probe a B- mode or tissue ultrasound image of the patient’s anatomy can be 

constructed (Figure 1-1). 

DAMIANOS C
HRISTOPHID

ES



1-Introduction 

3 

 

 

Figure 1-1: a) Demonstration of the pulse-echo principle used in ultrasound imaging. Pulses are transmitted 

from the ultrasound probe and echoes are reflected from the patient’s anatomical features. The time delay 

between the echoes along with their amplitudes is used to construct an image of the patient’s anatomy. b) 

Example of an ultrasound tissue image of the liver.    

The medical use of diagnostic ultrasound has been enhanced with the development of 

contrast agents that allow for the visualization of tissue perfusion[4]. Ultrasound contrast 

agents are microbubbles usually consisting of a phospholipid shell encompassing an inert 

gas like sulfur hexafluoride (SF6). Microbubbles have the similar size as red blood cells (1-

10μm) and do not leak into the interstitial space making them a pure blood-pool contrast 

agent and thus suitable for the study of tissue perfusion. The microbubbles are introduced 

into the blood stream intravenously either as a bolus or a constant infusion[5], [6].  

Microbubbles produce non-linear echoes when they interact with ultrasound pulses. 

These non-linear echoes contain harmonic components of the pulse’s fundamental 

frequency (fo). With the use of pulsing schemes like pulse inversion (PI), power 

modulation (PM) or their combinations[7], [8] the echoes originating from microbubbles 

can be differentiated from the echoes received from tissue (Figure 1-2). The correct 

implementation of these pulsing schemes is crucial in ensuring that image intensity 

corresponds to the quantity of microbubbles present in the vasculature.  

a) b)
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Echo
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Figure 1-2: Illustration of non-linear echoes produced by a microbubble oscillating[9] under the pressure 

induced by a transmitted ultrasound pulse[10]. The harmonic components of the resulting non-linear echo 

(2fo, 3fo, …) can be differentiated from echoes originating from tissue using PI or PM pulsing schemes.  

The clinical use of microbubbles as an ultrasound contrast agent allows for real-time 

imaging of tissue perfusion. Dynamic contrast enhanced ultrasound (DCEUS) has been 

used widely in radiology for the study of the response to treatment of liver metastases[11],  

the evaluation of focal nodular hyperplasia in the liver[12], the visualization of 

atherosclerotic plaque neovascularization[13] and the evaluation of response to treatment 

of metastatic renal cell carcinoma[14].   

DCEUS enables a clinician to diagnose a medical condition by visual evaluation of a 

frame (image) or a loop (series of images) of the flow of microbubbles in tissue and 

vessels. Such a diagnosis can be performed by injecting the microbubbles as a single bolus 

intravenously and then observe the perfusion patterns in the large vessels and the 

microcirculation. The DCEUS images are often displayed side-by-side with tissue 

ultrasound images in dual-contrast imaging mode in order to provide for simultaneous 

anatomical and functional imaging.  

Specifically DCEUS can be used to visualize the different phases of liver perfusion. 

Using a bolus injection the microbubbles can be seen entering the liver parenchyma 

through the hepatic artery in the first 15-30 seconds (arterial phase) followed by 

microbubbles flowing into the liver from the hepatic portal vein in the subsequent 30-120 

seconds (portal venous phase). The ultrasound contrast agent is then washed-out from the 

normal liver parenchyma via the hepatic vein. Lesions can be differentiated as malignant or 

Transmitted Pulse
f0

Non-linear echo 1 2 3 4
f/f0

Frequency Spectrum 
of Echo

Microbubble 
oscillations
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benign by comparing their wash-in and wash-out times compared to the normal liver 

parenchyma. For example benign focal nodular hyperplasia (FNH) lesions exhibit early 

enhancement during the arterial phase that is sustained through the portal venous phase in 

contrast with some malignant lesions that appear as hypoechoic during the portal venous 

phase[15] (Figure 1-3) .       

 

Figure 1-3: A liver lesion is shown both in contrast mode (left) and B-mode (right) at different times (T) from 
the arrival time of the microbubbles in the liver. In the early arterial phase (T=15 sec) the lesion (dotted white 

line) can be clearly seen in DCEUS mode (white arrow) whereas in the portal venous phase (T=60 sec) the 

lesion cannot be seen since it exhibits identical wash-out kinetics as the surrounding normal liver tissue. 

Thus, by detecting perfusion in the microcirculation and the overall vascular patterns a suspected lesion can 

be diagnosed as a benign FNH.  

Qualitative evaluation of DCEUS can be a valuable clinical tool in the hands of a 

trained clinician. Nevertheless a quantitative approach to DCEUS can have a number of 

advantages. It provides the operator with metrics that can aid with the diagnosis and offers 

functional information that would otherwise not be accessible via visual examination. 

DCEUS B-mode

Arterial Phase

T=15 sec

Portal Venous Phase

T=60 sec
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Subtle changes in the microvasculature that would be difficult to detect using qualitative 

DCEUS can be identified as relative or absolute changes in quantitative DCEUS metrics. 

This can be particularly useful in monitoring changes in the perfusion of disease at 

different stages of treatment. Mathematical methods and algorithms can be used in 

quantitative DCEUS that give metrics relating to physical quantities like blood flow 

rate[16] or extend of neovascularization[17].   

A widely used method of DCEUS quantification is the segmentation of a structure 

using a region of interest (ROI) and extraction of the mean linear DCEUS intensity within 

the ROI as a function of time to form a time-intensity curve (TIC) [5], [6], [11], [18]. A 

mathematical model can be fitted on the TIC and useful information can be extracted 

regarding the hemodynamics within the ROI. 

Indicator dilution models in quantitative DCEUS are used in order to extract 

quantification parameters that can be a relative measure of flow rate like the rise time (RT), 

mean transit time (MTT) and area under the curve (AUC)[16], [19]. The vascular volume 

contained in the ROI can also be related to the peak intensity (PI) derived for the 

mathematical model (Figure 1-4). Empirical quantification parameters like the wash-in 

time (WIT) (time it takes for the intensity to go from 5% of the PI to 95%) have also been 

used in the literature[11]. In addition to the physical assumptions[16] made in the clinical 

use of indicator dilution models it is also crucial that the time intensity curve is 

representative of the hemodynamics of the tissue under investigation. Therefore it is 

imperative to remove any artefacts or sources of uncertainty from the time intensity curve 

before the indicator dilution model is fitted on the data. 
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Figure 1-4: Bolus kinetics curve showing wash-in and washout of the contrast microbubbles. The lognormal 

indicator dilution model[16] (solid line) is fitted on DCEUS mean linear intensity data (dots). The DCEUS 

quantification parameters of RT, MTT, PI and AUC are indicated on the curve and can be extracted from the 

lognormal model. 

1.2 Quantitative DCEUS of liver lesions and respiratory motion 

Numerous studies have used quantitative DCEUS in order to assess the response of 

malignant liver lesions to treatment[11], [20], [21].  In a study by Averkiou et al.[11]  

quantitative DCEUS was used to predict the response of patients undergoing a combination 

of antiangiogenic and cytotoxic treatments. By taking the ratio of the WIT of the liver 

lesions to the WIT of the normal liver parenchyma four out of five patients that had a 

response were identified during the first week of treatment. A 2011 study[21] of 42 

patients treated with Bevacizumab (Avastin; F. Hoffmann-La Roche, Basel, Switzerland) 

for hepatocellular carcinoma (HCC) found that the lesion’s AUC and WIT correlated with 

response to treatment. Zocco et al.[20] also found that AUC and RT to be significantly 

associated with longer survival of HCC patients taking Sorafenib (Nexavar; Bayer Pharma 

AG, Berlin, Germany).      

Even though these studies have shown promise in monitoring treatment response 

there are limitations that compromise the sensitivity, reliability and reproducibility of liver 

lesion DCEUS. One of the most important limitations is operator dependence. Sufficient 

resources must be invested in training competent ultrasound operators so that they can 
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acquire consistent and reliable DCEUS loops. Other common issues encountered in liver 

lesion DCEUS are acoustic shadowing, signal saturation[22] and stability of ultrasound 

probe placement. Tools like surgical-type articulated arms can be used to avoid operator 

hand motion during acquisitions[11]. Although care can be taken by a trained operator to 

limit factors of uncertainty other problems like non-linear propagation of ultrasound[23] 

and beam non-uniformity are inherent to DCEUS acquisitions. 

Respiratory motion is another important limitation of liver lesion DCEUS 

quantification. As the patient breaths the diaphragm pushes against the liver causing the 

anatomy being imaged to change in relation to the fixed imaging plane. The patient’s 

respiratory motion can potentially introduce artefacts of a lesion’s time intensity curve and 

affect the results of quantitative DCEUS. Various solutions have been proposed in the 

literature for correcting the effects of respiratory motion in liver lesion DCEUS. 

A method used mainly for qualitative studies is for the patients to hold their breath 

but this technique has very limited application to quantitative DCEUS acquisitions that can 

last up to three minutes[6]. Liver lesion DCEUS quantification can also be performed by 

instructing the patients to breath slowly in order to minimize respiratory motion 

artefacts[24]. Although these methods can potentially reduce the effects of respiration on 

liver lesion DCEUS acquisitions they rely on the patient’s collaboration and cannot be 

used reliably across multiple monitoring sessions. In addition, breath holding may 

influence the hemodynamics and alter the physical parameter being measured[25], i.e., 

blood flow in the microcirculation. 

Post-processing techniques have also been used on free-breathing liver lesion 

DCEUS acquisitions. In a study of dual-contrast acquisitions by Averkiou et al.[11] a 

reference position of the diaphragm was identified on the tissue images and frames of the 

DCEUS loop in which the diaphragm deviated from the reference position were manually 

rejected. Despite this method being able to remove respiratory motion without relying on 

the patient’s cooperation it is time consuming and it relies on the operator in identifying 

the diaphragm. Grouls et al.[26] implemented a semi-automated approach of the method 

introduced by Averkiou et al. and showed that it can improve accuracy of functional and 

molecular liver imaging. 

Automated respiratory correction techniques have also been published in the 

literature[27]–[30]. Renault et al.[28] used independent component analysis (ICA) to 

extract the respiratory kinetics curve from liver lesion DCEUS acquisitions. The ICA 

method proposed relied on the user to manually select the respiratory kinetics curve from 
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the first three principal components derived. A threshold would then been applied on the 

peaks and troughs of the respiratory kinetics curve to extract the end phases of the 

respiratory cycle. The method suffered from the varying amplitude of the respiratory 

kinetics curve due to the wash-in and wash-out affecting the intensity of the DCEUS signal 

during the acquisition. Mulé et al.[27] expanded on the ICA method proposed by Renault 

et al. using principal component analysis (PCA) to automatically select the respiratory 

kinetics curve based on the prior knowledge that the respiratory frequency range is 

between 0.1 and 0.5Hz. In addition to the automatic selection of the respiratory kinetics 

curve the tissue imaging mode was used in order to avoid changes in the intensity signal of 

the respiratory kinetics curve due to the uptake of contrast agent. The method proposed by 

Mulé et al. would allow for 100 frames to be processed between 6-8 seconds on a PC with 

a 3GHz CPU and 2GB of RAM. The major drawback of the proposed method is that it 

allows for the extraction of only the end phases of the breathing cycle and since the 

acquisition is two dimensional there is no certainty what part, if any,  of the lesion will be 

present on the imaging plane (Figure 1-5).  

 

Figure 1-5: Examples of liver DCEUS images showing a metastatic lesion (white arrow) at two different 

breathing cycle phases with a) maximum and b) minimum presence of the lesion on the imaging plane.      

  Image registration techniques have also been utilized to enable respiratory motion 

compensation in quantitative liver lesion DCEUS[29]–[31]. Rognin et al.[29], [31] used 

the mutual information criterion to align frames onto a reference frame for parametric 

imaging of liver lesion DCEUS acquisitions. The registration process allowed for 2D 

translation and rotation in order to maximize the mutual information criterion and align the 

a) b)
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frames. Zhang et al.[30] used the sum of absolute differences criterion to perform rigid 

registration with only 2D translation to correct for respiratory motion in liver lesion 

DCEUS. Both studies reported a  significant mean increase in the quality of fit of 

parametric imaging perfusion modeling of 11%[29] and 15%[30].  The image registration 

techniques proposed require user intervention in order to delineate one or more ROI on the 

image to define the search space for the image registration. Furthermore the image 

registration technique proposed by Rognin et al. does not offer a scheme for rejecting 

frames with significant out-of-plane motion in contrast with the algorithm proposed by 

Zhang et al. However the method proposed by Zhang et al. is time consuming as it can take 

up to 30 minutes to process a 2 minute liver lesion DCEUS acquisition at a frame rate of 8 

Hz; a computational time that is unacceptable for routine clinical use.   

1.3 DCEUS of carotid atherosclerotic plaques 

The role of carotid arteries is to supply the head and neck with oxygenated blood. 

The carotid arteries themselves get oxygenated through a network of smaller blood vessels 

known as the vasa vasorum. Pathological development of the vasa vasorum from the outer 

layers into the inner layers of the vessel wall has been a consistent feature of carotid 

atherosclerotic plaques[32]. Histological studies have been conducted that showed a 

correlation between increased presence of neovascularization within plaques and risk of 

rupture. Moreno et al.[33] analyzed 269 plaques and demonstrated a higher density of 

microvessels in ruptured plaques compared to non-ruptured.  In a comparative study[34] 

between plaques from symptomatic patients and asymptomatic patients a significantly 

higher number of microvessels were found in the symptomatic group.  

B-mode ultrasound is a long established imaging modality in the classification of 

carotid plaque vulnerability. The most widely accepted categories are presented in 

increasing order of plaque instability: i) uniformly echolucent, ii) predominantly 

echolucent, iii) predominantly echogenic and iv) uniformly echogenic[35], [10]. While the 

information provided from B-mode is restricted to anatomical features with the use of 

DCEUS it is possible to provide real-time functional imaging of the perfusion of the 

microvasculature of carotid plaques by detecting blood flow even at very low velocities (< 

1cm/sec). Therefore DCEUS has the potential to be used as a tool to quantify the extent of 

perfusion in the plaques and consequently evaluate the risk of carotid plaque patients in 

presenting with symptoms. In a qualitative study of 293 atherosclerotic plaques by Staub et 

al.[36] significant correlation was found between DCEUS signal enhancement and plaque 
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echolucency in tissue imaging mode. Coli et al.[37] showed that a qualitative increase in 

DCEUS signal intensity is correlated both with histological density of microvessels and B-

mode plaque echolucency. 

The change in the intensity values due to the uptake of microbubbles can be an 

additional challenge in the qualitative assessment of DCEUS loops compared to B-mode 

imaging. Thus a quantitative approach would be of significant benefit to carotid plaque 

DCEUS as it would allow for the extraction of easily accessible and useful clinical 

information. In addition the low signal intensity within the plaque compared with the high 

signal from the arterial lumen can be difficult to visualize (Figure 1-6). Other sources of 

uncertainty like motion artefacts from probe movement, plaque movement due to the 

pulsating blood pressure and pseudo-enhancement in the far wall of the carotid artery[23] 

need to be taken into account in any reliable qualitative DCEUS analysis.      

A limited number of studies[17], [38], [39] have proposed quantitative DCEUS 

methods in an attempt to address the limitations of qualitative DCEUS evaluation of 

carotid atherosclerotic plaques. In a study by Xiong et al.[39] the gamma variate indicator 

dilution model was fitted onto time intensity curves extracted from carotid plaques and the 

arterial lumen. The PI of the plaque, and the ratio of the PI between the plaque and the 

lumen were shown to be significantly higher in symptomatic patients than in asymptomatic 

patients. Hoogi et al.[17] used image segmentation to detect the percentage of 

neovascularization within the carotid plaque. The study found significant correlation 

between the percentage area of neovascularization of carotid plaques measured with 

histology and DCEUS. Adaptive image thresholding was used by Akkus et al.[38] to detect 

neovascularization within carotid atherosclerotic plaques and compared the results of the 

quantitative analysis with qualitative visual scores. Significant correlation was 

demonstrated between the absolute and percentage areas of plaque perfusion with visual 

scores of DCEUS signal enhancement.   

 

Figure 1-6: Example of an image from a DCEUS loop of a carotid atherosclerotic plaque (red line). With a) 
using the default image contrast and brightness the plaque appears to contain no microbubbles while with b) 

the upper level of the image contrast is reduced to enhance the visualization of low intensity values showing 

the plaque to be perfused proximal to the lumen (white arrow).   

a) b)
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Even though the quantitative DCEUS studies of carotid plaque neovascularization 

have demonstrated potential by showing a significant correlation with either 

symptoms[39], histology[17] or visual scores[38] there are limitations to the methods 

proposed. Although indicator dilution models like the gamma variate model used by Xiong 

et al. have been applied effectively in the assessment of myocardial blood flow[40] they 

may not be applicable to the slower flow rates within the microvasculature of carotid 

plaques. In addition Akkus et al. applied the method proposed by Xiong et al. and found 

that the gamma variate model failed to produce a valid fit for 20% of the plaque time 

intensity curves examined. Despite that both of the methods proposed by Akkus et al. and 

Hoogi et al. quantify the area of neovascularization within the carotid plaque the two 

studies report notably different results. Hoogi et al. analyzed plaques from 22 patients and 

found the percentage of plaque neovascularization to vary approximately between 0 and 

20% whereas Akkus et al. reported significantly higher percentages with a mean of 

32.69%. However there are differences in the characteristics of the patient populations 

examined by the two studies with 68% of the patients studied by Hoogi et al. being 

asymptomatic while Akkus et al. considered only patients with symptomatic stenosis.  

1.4 Scope of this thesis 

The scope of this thesis is to develop, test and clinically validate methods and 

algorithms for the quantification of perfusion in the microcirculation. In particular the 

thesis aims in significantly reducing the detrimental effect of respiratory motion on the 

accuracy and reliability of liver lesion DCEUS quantification. A novel algorithm for 

automatic respiratory gating (ARG) is developed that aims to address the limitations of 

other algorithms presented in the literature. The efficiency of the ARG algorithm in 

significantly removing respiratory motion artefacts and increasing the accuracy of liver 

lesion DCEUS is validated using clinical data and a simulation model. In addition the 

differences in the perfusion characteristics of carotid plaques between symptomatic and 

asymptomatic patients are investigated. A new method for quantifying the percentage 

perfusion coverage of carotid plaques is developed and verified against qualitative visual 

scores of clinical acquisitions.  

In Chapter 2 a novel ARG algorithm is developed that aims to overcome the 

limitations of the methods presented in the literature in terms of computational speed, 

efficiency and ease of use. The ARG algorithm is implemented on the tissue side of dual 

contrast imaging acquisitions. Moving structures in the loops are detected using frame 
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subtraction from the average of all the frames in the loop. Furthermore the nature of the 

detected motion is characterized according to its respiratory contents using frequency 

domain analysis. The respiratory kinetics curve of the dual contrast imaging acquisition is 

extracted by calculating the time intensity curve of the moving structure with the highest 

content of respiratory motion. The technical characteristics of the ARG algorithm are 

compared with other respiratory motion compensation methods found in the literature. 

Also the efficiency of the ARG algorithm in removing respiratory motion is evaluated by 

considering the improvement in the quality of fit of the lognormal indicator dilution 

model[16]  onto liver lesion time intensity curves.  

Chapter 3 which presents a clinical validation of the developed ARG algorithm, 

explores in depth the clinical impact of the ARG algorithm on the accuracy of liver lesion 

DCEUS quantification. The effect of respiration on the time intensity curve of each liver 

lesion examined is quantified using the respiration amplitude (RA) metric. The influence of 

the ARG algorithm on the quantification parameters of RT, MTT, PI and AUC is analyzed 

for different ranges of RA. Furthermore the correlation between the quality of fit of the 

lognormal model on liver lesion time intensity curves (R
2

LN) and the RA is investigated 

with and without the use of ARG. 

In Chapter 4 a respiratory motion simulation model (RMSM) is developed to address 

the intrinsic limitation of assessing the absolute accuracy of liver lesion DCEUS. The 

RMSM is constructed using perfusion models and respiratory kinetics derived from 

clinical acquisitions. Specifically the liver lesion is modeled as a sphere moving under the 

effect of respiration inside of a cubic liver parenchyma. Using the RMSM the true liver 

lesion quantification parameters can be compared with those calculated under the influence 

of respiratory motion. The decrease of the percentage error with the use of ARG is 

assessed for the RT, MTT, PI and AUC. In addition the clinical relevance of the RMSM is 

verified by comparing the relationship of the R
2

LN and RA extracted from the RMSM and 

clinical data.    

A method for quantifying the percentage area of perfusion in carotid atherosclerotic 

plaques is presented in Chapter 5. Statistics, image and signal processing are used to design 

an algorithm for the detection of the low intensity DCEUS signal within the plaques. The 

ratio of the perfused area within the carotid plaque and the total area of the carotid plaque 

is calculated as the percent perfusion coverage of the plaque. The use of the plaque percent 

perfusion coverage as a biomarker of atherosclerosis and plaque vulnerability is 

investigated by comparing the differences in the perfusion of plaques between 
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symptomatic and asymptomatic patients. In addition to the quantitative analysis the 

perfusion of the carotid plaques is graded based on a qualitative scale. The results will be 

compared with other studies in the literature. The work presented in Chapter 5 contributes 

to the limited number of studies on carotid plaque DCEUS quantification.   

Chapter 6 presents a conclusive discussion on the overall impact of this thesis in the 

development of quantification methods, algorithms and tools for the improvement of liver 

lesion and carotid plaque DCEUS quantification.  
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Abstract  

Dynamic contrast-enhanced ultrasound (DCEUS) has been used in radiology for many 

years for lesion detection and characterization. In the recent years, more emphasis has been 

placed on tumor perfusion quantification with DCEUS. To ensure accuracy in both 

quantitative and qualitative evaluation of liver tumors with DCEUS, sources of noise in 

clinical data must be identified and, if possible, removed. One of the major sources of such 

noise is respiratory motion. A new automatic respiratory gating (ARG) algorithm is 

presented and evaluated with clinical data. The results of the evaluation demonstrate the 

potential of the ARG algorithm for clinical use as a fast and easy to implement method in 

removing respiratory motion from DCEUS loops. 

2.1 Introduction 

Microbubbles have been used in medical ultrasound imaging since the mid-1990s 

[1]. Microbubbles have the advantage of being a pure blood-pool contrast agent because 

they are similar in size with red blood cells [2], [3], allowing for the imaging of perfusion 

in real time. Ultrasound imaging with microbubbles or dynamic contrast-enhanced 

ultrasound (DCEUS) has found uses in the evaluation of response to treatment of liver 

metastases [4], the analysis of focal nodular hyperplasia in the liver [5], the detection of 

coronary disease [6], and the assessment of microvascular damage after a myocardial 

infarction [7]. 

Quantification of DCEUS image loops provides important blood flow information on 

tumor microcirculation [8]. One of the biggest challenges in quantitative DCEUS for liver 

lesions is motion caused by respiration. Respiratory motion can cause the lesion, as it 

appears in the imaging plane, to change in size, shape and location (Figure 2-1). This 

causes problems in the qualitative evaluation of the lesion, because the clinician needs to 

take into account the movement of the lesion to evaluate its size and perfusion patterns. 

This type of motion might also cause significant problems in the quantitative evaluation of 

the lesion’s perfusion, because the lesion will be moving in and out of a region-of-interest 

(ROI) that samples the DCEUS mean linear intensity and thus introducing noise artifacts. 

Various approaches have been used clinically to compensate for the effects of 

respiratory motion. One such approach is directing the patient to hold his or her breath at a 

specific breathing cycle phase desired by the clinician or sonographer, but this technique 

applies only to patients that have the ability to perform a breath hold that can last more 

than 40 s; another disadvantage of this technique is that hemodynamics are affected during 
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breath holds [9], [10].  Another technique for respiratory motion compensation found in 

the literature [4] is to identify the position of the diaphragm at a reference position and 

reject frames in which the diaphragm deviates from the reference position. This is also a 

post-processing technique (it is implemented after the acquisition of the ultrasound loop) 

and it relies on the operator expertise to identify the brightest moving reflector. 

 

Figure 2-1: Example of the changes of the size, location, and shape of a liver lesion, in a dynamic contrast-

enhanced ultrasound (DCEUS) loop, at three different time instances. These changes are mainly attributed to 

respiratory motion. 

Several computational techniques have been proposed in the literature that would 

allow for fully or semi-automated compensation of respiratory motion. Renault et al. [11] 

introduced a technique based on independent component analysis (ICA) with which the 

respiratory cycle could be extracted manually from the ICA-derived components that 

represent motion; a threshold can be used on the final respiratory kinetics curve to derive 

the frames that belong to the end phases of the respiratory cycle. Mulé et al. [12] used 

principal component analysis (PCA) to extract the respiratory kinetics to perform fully 

automatic gating. A drawback of both these techniques is that, because the ultrasound 

acquisition is two-dimensional, there is uncertainty on the portion of the lesion, if any, that 

will be present at the extreme phases of the respiratory cycle, because of out-of-plane 

motion.   

Rigid registration is another technique used to compensate for respiratory motion. 

Rognin et al. [13], [14] used a rigid registration technique, with 2-D translation and 

rotation, to realign frames to a reference frame; a disadvantage of this approach is that out-

of-plane frames might be difficult, if not impossible, to re-align. Zhang et al. [15] also used 

rigid registration, with 2-D translation only, and frame selection to perform automatic 

gating; the algorithm rejected out-of-plane frames but it required a long computation time 

that would not be realistic in a clinical context. Both of these techniques require the user to 
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manually draw ROI(s) on frames to denote the search space for the registration to take 

place.  

 In the present work, a new post-processing method is proposed for automatic 

respiratory gating (ARG) of dual-contrast imaging (an anatomical B-mode image and a 

contrast-specific image displayed side-by-side in the same frame) loops. The only input 

needed by the user is to select a trigger frame in which the lesion is clearly seen and can be 

delineated. The new ARG algorithm is easy to implement and use, fast, and leads to a 

simple workflow for the clinical operator. 

2.2 Materials and methods 

2.2.1 ARG algorithm 

The ARG algorithm applies to the B-mode loop of the dual-contrast imaging loop 

acquisition because the anatomical information in the B-mode loop is less sensitive to 

intensity variation than the contrast loop. The algorithm is presented as implemented in this 

study but modifications can be made to the algorithm to change its speed and/or 

performance. The software package Matlab (v. 2007b, The MathWorks Inc., Natick, MA) 

was used to implement the ARG algorithm. 

2.2.1.1 Quantify amount of motion 

Consider a B-mode loop consisting of N frames,  
1

N

i i
I


. First, the B-mode loop was 

downsampled by a factor of 2 (i.e., every other frame is kept) and resized using nearest-

neighbor interpolation by a factor of 0.3. The resulting sequence of frames was stored as a 

new loop, 
ˆ

1

ˆ
N

i
i

I


. To detect the motion present, each resulting frame was subtracted from 

the average of all the frames [16] (Figure 2-2). The sequence of frames resulting from the 

subtraction is defined by 

    
ˆ

ˆˆ

1 1
1

1ˆ ˆ
ˆ

N
NN

i i ii i
i

M I I
N

 


  
   

  
  . (1) 
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Figure 2-2: Subtraction of a frame from the average of the  
ˆ

1

ˆ
N

i
i

I


 sequence. Note the relative increase of 

brightness of the diaphragm in the resulting frame with the original frame of the  
ˆ

1

ˆ
N

i
i

I


 sequence.  

Next, the frames from 
 

ˆ

1

N

i i
M

  were threshold to binary by the 30% of the maximum value 

of each frame. The resulting frames suffered from the presence of noise from single and 

small clusters of bright pixels present in the 
 

ˆ

1

N

i i
M

  sequence. This problem was 

addressed by first removing single pixels from the thresholded binary images and then 

keeping only the n largest groups of clusters of connected pixels, called structures 

hereafter. The removal of single pixels was implemented using the morphological 

operation clean of the bwmorph function and the extraction of the largest structure using 

the Area operation of the regionprops function both, part of Matlab’s Image Processing 

Toolbox. The sequential procedures of applying a threshold on the frames and the retention 

of the n largest structures will be referred to hereafter as image operator  . The   

operator takes two arguments: X  that can be a frame or sequence of frames, and n, which 

is the number of largest structures that will be extracted by the operator. The   operator 

was applied on the  
ˆ

1

N

i i
M


 sequence and the resulting binary frames were stored in the 

sequence  
ˆ

1

N

i i
P


 (Figure 2-3), according to  

    
ˆ ˆ

1 1
,n , with n = 1

N N

i ii i
P M

 
   . (2) 

 

Figure 2-3: Extraction of the largest moving structure from the  
ˆ

1

N

i i
M


 sequence: a) threshold image to 

binary by the 30% of the maximum pixel value, b) remove single pixels, and c) keep only the first largest 

structure. 
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Each frame from the 
ˆ

1

N

i i
P


 sequence holds a moving structure extracted from the 

corresponding B-mode frame; thus, if all the frames from the  
ˆ

1

N

i i
P


 sequence are added 

together, a map of the motion present in the whole B-mode loop can be produced. The 

result was a matrix made up of integer-value elements; each element in this matrix was 

associated with the amount of motion present at the corresponding pixel coordinate in the 

whole of the B-mode loop. This matrix was called the motion information matrix (MIM) 

(Figure 2-4) and was calculated using 

  
ˆ

1

N

i i
MIM P


  . (3) 

 

Figure 2-4: Example motion information matrix (MIM). Observe the two main areas in which motion occurs. 

The dominant structure producing motion is the diaphragm. Note that the values shown have been log-

compressed to make the data easier to visualize. 

2.2.1.2 Establish breathing cycle to be extracted 

As previously mentioned, the user must define the trigger frame before the ARG 

procedure begins. This frame defines the breathing cycle phase that was extracted by the 

ARG algorithm. First, the trigger frame was subtracted from the average of the 

uncompressed (without the reduction in the resolution)/undownsampled B-mode loop:  

  
1

1 N

trigger trigger i i
M I I

N 
    . (4) 

The   image processing operator was then applied on the 
triggerM  frame according to  

 ,5trigger triggerP M   . (5) 

The MIM was resized to the original B-mode loop frame size using bicubic 

interpolation. The 
triggerP  frame’s structures were overlaid over the MIM, and the mean 

DAMIANOS C
HRISTOPHID

ES



2-Automatic respiratory gating for contrast ultrasound evaluation of liver lesions 

25 

 

intensity MIM value was calculated within each structure (Figure 2-5). These values were 

stored in the  
5

1M i
S


 sequence, where the index i corresponds to each extracted structure. 

 

Figure 2-5: Moving structures extracted from the trigger frame overlaid over the motion information matrix 

(MIM). The structures are labeled for reference purposes. 

The  
5

1M i
S


 sequence holds values of the amount of motion associated with each 

structure. This motion or change in the grayscale values of the B-mode loop frames could 

be due to respiration, cardiac motion, contrast agent presence, or any other change in the 

gray scale values of the B-mode loop through time.  

In the interest of establishing whether the motion associated with each structure can 

be attributed to respiration, the mean grayscale intensity values for each frame of the B-

mode loop within a square measuring 30 x 30 pixels was calculated. The size of the square 

was selected by considering two competing factors: 1) the standard error of the mean of the 

grayscale intensity values decreases with the size of the square; and 2) a very large square 

would fail to detect motion from small moving structures. Based on these two factors, a 

30x30 square is optimal. The center of the square was placed at the center of mass of each 

structure of the 
triggerP frame. Each structure on the 

triggerP  frame was identified by a specific 

index number assigned using the bwlabel function and the center of mass of each structure 

was calculated using the Centroid operation of the regionprops function, both part of 

Matlab’s Image Processing Toolbox. This operation returned the time-intensity curve 

(TIC) associated with each extracted structure from the trigger frame. A square was used to 

extract the TIC, rather than using each structure as a binary mask, to reduce calculation 

time by approximately a factor of three. The next step was to calculate the Fourier 

Transform (FT) of each TIC so its frequency contents could be analyzed (Figure 2-6).  DAMIANOS C
HRISTOPHID
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Figure 2-6: The Fourier Transform of the time-intensity curve (TIC) extracted from structure labeled 4 in 

Figure 2-5. The respiration cycle bandwidth is denoted with the dashed vertical lines. 

A metric was needed to quantify the presence the respiratory motion associated with 

each structure extracted from the trigger frame; these metric values were stored in the 

 
5

1F i
S


 sequence.  

5

1F i
S


 values were calculated as the area of the frequency spectrum 

between 0.1 and 0.5 Hz divided by the sum of the area from 0 to 0.1 Hz and the area 

between 0.5 to 1 Hz: 

  
 

   

0.5

5 0.1

0.1 11

0 0.5

i

F i

i i

F f df

S

F f df F f df







 

  (6) 

The rationale for (6) is that the area between 0.1 and 0.5Hz represents contributions 

to the frequency spectrum by respiration. The 0 to 0.1 Hz range represents contributions 

from slow changing events, such as the change of grayscale values caused by the flow of 

microbubbles, and the 0.5 to 1 Hz frequency range represents sources of noise or 

physiological motion other than respiration present in the TIC curve. Thus, from (6), it can 

be observed that the values stored in  
5

1F i
S


 increase as respiratory motion presence 

increases and undesired change in grayscale values in the B-mode loop decreases. 

Another metric that was recorded was whether the maximum value of the amplitude 

of the frequency spectrum lay within the respiration frequency range or not. This is a 

binary metric, stored in the  
5

1B i
S


 sequence, and it takes the values of either 0 or 1.  

The combined metric, stored in the  
5

1i
S


 sequence, is defined as  

  
 

 

 

 

5 5

5 1 1

5 51

1 1

0.6 0.4
max max

M Fi i

i

M Fi i

S S
S

S S

 



 

   
      
   
   

 . (7) 
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Eq. (7) holds unless a structure receives an BS of 0, then the corresponding S  metric also 

receives a value of 0. If all the values  
5

1i
S


 were given a zero value, then the  

5

1i
S


 

sequence reverted back to its original values before the consideration of BS . In Table 2-1, 

example       
5 5 5

1 1 1
, ,M F Bi i i

S S S
  

, and  
5

1i
S


 values are shown for the structures in Figure 

2-5. 

 

Table 2-1: Example of scores received by various structures shown in Figure 2-5. 

Structure Index MS  FS  BS  S  

1 2.27 0.89 0 0.00 

2 5.68 0.85 0 0.00 

3 1.40 1.04 0 0.00 

4 24.25 1.65 1 0.90 

5 8.61 2.21 1 0.61 

 

The TIC corresponding to the structure that receives the highest  
5

1i
S


 score value 

was extracted again, this time using the structure as a binary mask applied on the B-mode 

loop. This was done in order to ensure maximum quality for the next step of the ARG 

procedure. 

2.2.1.3 Final step of ARG procedure 

The final step of the ARG procedure involves finding the location of the peaks and 

troughs of the TIC of the structure that receives the highest S  score. Peaks are indicative 

of the presence of a structure on the position it occupied on the trigger frame, whereas 

troughs indicate the absence of the structure from its position on the trigger frame. To 

locate the peaks of the TIC, the approximate time between the peaks of the TIC was 

calculated using the frequency spectrum. By locating the frequency at which the maximum 

amplitude occurs within the respiratory range (0.1 to 0.5 Hz), maxf , the time between the 

peaks was approximated as  
1

max maxT f


 . The peaks were then located based on their 

separation being no less than max

2

T
; this allows for flexibility because patient respiration 

frequency can fluctuate during examination. The location of the peaks was implemented by 

setting the parameter MINPEAKDISTANCE of Matlab’s Signal Processing Toolbox 

findpeaks function to max

2

T
. 
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Figure 2-7: Gated time-intensity curve (TIC) extracted from structure 4, shown in Figure 2-5. 

Once the peaks of the TIC were located, a piecewise cubic Hermite interpolating 

polynomial (pchip) was fitted on the peaks. The TIC was inverted and the same procedure 

was repeated to locate the troughs and fit a pchip on the troughs; thus, the envelope of the 

TIC was calculated. A threshold of 40% was then applied on the envelope of the signal and 

only frames that were above this threshold were accepted, the rest were rejected. The 40% 

value was established after considering the robustness of the fit of the lognormal model 

onto the data and at the same time optimizing the goodness of fit of the model. The frames 

that were accepted made up the ARG loop and were, within a threshold, at the same 

breathing cycle phase as the trigger frame (Figure 2-7).The whole ARG algorithm is laid 

out in a flowchart shown in Figure 2-8. 

2.2.2 Imaging protocol 

 Eighteen (18) patients (7 female, 11 male) with liver metastasis were imaged. 

Approval for the scanning was obtained by the ethics review board of our hospital. The 

procedure was fully explained to all participating patients and informed consent was 

obtained. 

All imaging was performed with a Philips iU22 scanner (Philips Medical Systems, 

Bothell, WA) using the C5-1 imaging probe. The imaging frequency was 1.7MHz, the 

pulsing imaging sequence used was power modulation (PM) with a mechanical index (MI) 

of less than 0.06, and the frame rate varied between 7 and 10 Hz. The acquisition mode 
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was dual-contrast imaging and 2-min loops were acquired. During the acquisition, the 

focus was set well below the depth of the lesion to ensure uniform pressure field. The time 

gain compensation (TGC) gain was adjusted in such a way that it was uniform across depth 

and avoided signal saturation. Before the arrival of the contrast agent, there was a hint of 

uniform noise in the image as an assurance that the TGC gain was at the threshold of 

detection. 

A 2.4mL bolus of Sonovue (Bracco s.p.a., Milan, Italy) was injected. The radiologis, 

acquiring the loops maintained a constant imaging plane by observing the tissue side of the 

acquisition. 

 

Figure 2-8: Flowchart of the automatic respiratory gating (ARG) algorithm. 

2.2.3 Quantification approach 

The patient DICOM loops acquired with the Philips iU22 scanner were transferred to 

a workstation running the commercial quantification software QLAB (v. 8.1, Philips 

Medical Systems, Bothell, WA). An ROI was manually drawn on the trigger frame of the 
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DCEUS loop encompassing the lesion (Figure 2-9). Both the arterial and late portal phases 

of the DCEUS loop were used for the accurate drawing of the ROI [4].  

 Time-intensity curves from linearized image data were extracted using the QLAB 

software and saved to a text file. The B-mode loop image data, the trigger frame index, and 

the frame rate of the acquisition were also saved. This information was passed on to the 

Matlab implementation of the ARG algorithm. After processing by the ARG algorithm, a 

new lesion TIC was produced. 

 

Figure 2-9: Region of interest (ROI) drawn encompassing lesion on trigger frame of dynamic contrast-

enhanced ultrasound (DCEUS) loop, shown here in late portal phase. The mean linear intensity DCEUS 

values are extracted from within this ROI. 

2.2.4 Data analysis 

To assess the effectiveness of the ARG algorithm, both the TICs extracted with and 

without ARG processing were fitted on a lognormal indicator dilution model [8]. The 

goodness of fit of the data to the model was established using the coefficient of 

determination (R
2
) and the root mean square error (RMSE), shown in (8) and (9), 

respectively, 
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where yi are the linear intensity data points,  fi are the corresponding points from the 

lognormal model fit, y  is the mean value of the yi points and n is the number of data points. 

An example of such an analysis is shown in Figure 2-10. 
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Figure 2-10: Mean linear intensity data from a region of interest (ROI) around a lesion with and without 

automatic respiratory gating (ARG), including the fits on the lognormal indicator dilution model. In this 

example, the R2 of the fit with and without ARG are 0.89 and 0.37, respectively. 

To arrive at useful conclusions, the data were visualized as boxplots. The limits of 

the boxes are the 25% (Q1) and 75% (Q3) quartiles and the middle of the box indicates the 

median of the data. The lower limit of the whiskers is FL=Q1-[1.5x(Q3-Q1)] and the upper 

limit of the whiskers is FU=Q3+[1.5x(Q3-Q1)]. All data that are outside FL and FU are 

considered outliers. The boxplots have notches indicating 95% confidence intervals for the 

median, the limits of which are calculated as 
 3 1

1.57
Q Q

median
N


  , where N is the 

number of samples. 

Further to the boxplots of the data, one-tail paired t-tests with unequal variances were 

performed using the R programming language [17] and the pwr package [18] was used to 

calculate the power of the t-tests performed. 

2.3 Results 

The results of the t-test performed on the R
2
 with and without ARG processing show 

a p-value less than 0.05 with a t-test power of 1.00. A p-value of less than 0.05 is also 

calculated for the RMSE data with a t-test power of greater than 0.93. The p-values 

calculated and the powers of the tests allow for confident conclusions to be drawn from the 

analysis. 

 In Figure 2-11 boxplots of the R
2
 and RMSE values of the lognormal model fits are 

plotted with and without ARG. From Figure 2-11a) it can be seen that the R
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confidence interval notches on the boxplots of with and without ARG processing are not 

overlapping. This is not the case, however ,with the RMSE boxplot 95% confidence 

interval notches. 

 

Figure 2-11: a) Boxplots of the R2 values and b) boxplots of the root mean square error (RMSE) for the 

model fit of the clinical cases analyzed with and without automatic respiratory gating (ARG). The notches on 

the boxplots are the 95% confidence levels of the median. The p-values and the power at 95% confidence 

level of t-tests performed are also included. 

It should also be noted that the ARG algorithm, as implemented in Matlab 2007b, 

had a mean run time of 0.87±0.10 (standard deviation) seconds per 100 frames on an Intel 

E8400 (Intel Corp., Santa Clara, CA) at 3GHz with 2GB RAM. These run times are faster 

than those previously published in the literature [11], [12], [15]. 

2.4 Discussion 

From Figure 2-11, it is evident both from the notches on the boxplots and the t-test 

results that the R
2
 is indeed improved with the use of ARG, within a 95% confidence 

interval. However regarding the RMSE, although the t-test arrives at the conclusion that by 

using ARG the RMSE is significantly lower than without using ARG, there is an overlap of 

1.2 RMSE units in the 95% confidence interval notches of the boxplots. 

This mismatch is believed to be caused by the two outlier points seen clearly in 

Figure 2-11a) that have an R
2
 value, without the use ARG, of more than 0.8. In Figure 

2-12, the boxplots are re-drawn, this time omitting the two outlier cases; note that the 

statistical power of the t-test on the RMSE data has increased, although marginally. Also 

note that the notches of the boxplots, in this case, do not overlap either for the R
2
 or RMSE 

boxplots. It is believed that certain patient’s data do not suffer from respiratory motion as 

much as others even though, of course, there is respiratory motion present.  
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Figure 2-12: a) Boxplots of the R2 values and b) boxplots of the root mean square error (RMSE) for the 

model fit of the clinical cases analyzed with and without ARG, not including the outlier cases. The notches 
on the boxplots are 95% confidence levels around the median. The p-values and the power at 95% confidence 

level of t-tests performed are also included. 

Another important assumption underlying this work is that a better fit of the data to 

the model suggests more accurate results on the hemodynamics of the lesion. This 

assumption considers respiratory motion as noise added to the data which, if removed, will 

provide more accurate results. However, it is very difficult to refer to “more accurate 

results” when the real perfusion of the lesion is unknown.  

In addition to significantly increasing the goodness of fit of the lesion linear intensity 

data to the lognormal indicator dilution model, ARG results in effective frame 

downsampling by eliminating frames that are not useful for quantitative or qualitative 

evaluation. This frame downsampling makes the evaluation of the image loop faster by 

reducing the time required to calculate the fit of an indicator dilution model to the data, in 

the qualitative evaluation of the loop, and in parametric imaging approaches. The rejection 

of frames that are out of phase with the presence of the lesion on the imaging plane can 

reduce the processing time for motion-compensation algorithms that use computing-

intensive image processing techniques such as image registration [13]–[15].  

For the goals of the current study, only a single phase of the breathing cycle was 

extracted by the ARG algorithm. However, there are clinical situations in which multiple 

breathing cycle phases must be extracted. An example of such a clinical situation is the 

presence of multiple lesions that cannot be captured on a single imaging plane. This 

multiphase extraction can be achieved using the ARG algorithm and modifying the gating 

of the lesion’s TIC (Figure 2-7) so that the signal envelope of the TIC is segmented into 

several parts, each representing a different breathing cycle phase.     

This work concentrated on DCEUS of liver lesions but it should be noted that the 

ARG algorithm can be implemented in other DCEUS studies, such as the evaluation of 
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blood flow in the hepatic artery and portal vein [19], [20]. Moreover, the ARG algorithm 

can also be used in conventional B-mode imaging to help with qualitative evaluation of 

video loops.     

The novel algorithm presented addresses limitations of computational methods for 

compensation of respiratory motion found in the literature, such as the ability to select any 

breathing cycle phase desired by the clinician instead of extracting the end phases of the 

breathing cycle [11], [12]. The only user input required by the ARG algorithm is the 

trigger frame, whereas other methods in the literature require the user to draw ROIs on 

frames to perform rigid registration [13-15], a requirement that has the potential to 

introduce time delays in the clinical workflow.  

Finally, it should be noted that the ARG algorithm cannot be applied in cases where 

there was an accidental move (by either the operator or the patient) that changed the image 

plane, unless the original image plane is recovered later in the loop.  In such a case, the 

ARG algorithm will eliminate all motion frames acquired after the change of the imaging 

plane. Empirically, the minimum number of frames needed to perform a robust fit on the 

model lies between 100-150 frames for a 2-min acquisition. 

2.5 Conclusion 

This study presents an ARG algorithm that can improve both the qualitative and 

quantitative analysis of DCEUS loops. The ARG algorithm requires only the selection of 

the trigger frame that defines the breathing cycle phase to be extracted and performs all 

other tasks automatically. The implementation of such algorithm is possible on any 

diagnostic ultrasound system that has a dual-contrast imaging mode. Furthermore, the 

patient is not required to alter his/her breathing, allowing for a comfortable examination. 

The effectiveness of the ARG algorithm in removing respiratory motion in a clinical 

setting has been demonstrated by the results of this study. Finally, this algorithm is very 

fast; it may remove respiratory motion from a 1000 frames loop in 8 seconds. 
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Abstract  

Objectives: To evaluate the efficiency of automatic respiratory gating (ARG) in reducing 

respiratory motion-induced artefacts from dynamic contrast-enhanced ultrasound 

(DCEUS) acquisitions and to assess the impact of ARG on DCEUS quantification 

parameters in patients with liver malignancies. 

Methods: Twenty-five patients with liver metastasis were imaged with DCEUS. The 

lognormal indicator dilution model was fitted on time-intensity curves extracted from 

hepatic lesions with and without the use of ARG and DCEUS quantification parameters 

were extracted. The goodness of fit was assessed using the coefficient of determination 

(R
2

LN).  

The effect respiration had on the data was assessed using the respiration amplitude (RA) 

metric. Pearson's correlation coefficient (r) was used to assess the correlation between R
2

LN 

and RA with and without the use of ARG. 

Results: The RA parameter was strongly correlated with R
2

LN (r =-0.96, P=7.412x10
-15

) and 

this correlation became weaker with ARG (r =-0.64, P=5.449x10
-4

). ARG significantly 

influenced the values of the quantification parameters extracted (P≤0.05). The RA was 

significantly decreased when ARG was used (P=1.172x10
-6

). 

Conclusions: ARG has a significant impact on the quantification parameters extracted and 

it has been shown to improve the accuracy of liver lesion DCEUS.      

Keywords: Contrast Agents; Respiration; Liver Metastases; Ultrasound Imaging; 

Microbubbles 

Key Points:  

• ARG has a significant impact on DCEUS quantification parameters 

• ARG can improve the modelling of liver lesion hemodynamics using DCEUS 

quantification  

• ARG significantly reduces the respiration amplitude of DCEUS lesion time-intensity 

curves 

3.1 Introduction 

Studies have shown that dynamic contrast-enhanced ultrasound (DCEUS) can be  

used for early evaluation of response to anti-angiogenic treatment of patient with liver and 

renal cancers [1]–[4]. Indicator dilution theory can be used to model lesion hemodynamics 

and extract blood flow parameters [5]. The DCEUS quantification parameters relating to 

lesion perfusion may provide for an early detection of patient response to treatment [6], 
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[7]. Various factors can affect the image intensity in DCEUS loops such as signal 

saturation , acoustic shadowing, nonlinear propagation of ultrasound
 

, beam non-

uniformity, ultrasound probe motion and system settings [8]–[10]. 

    Respiratory motion is a major limitation in the accurate measurement of the time-

intensity curve parameters, especially in liver imaging by it introducing noise in the curves. 

Typically, a region-of-interest (ROI) is drawn around the lesion and the average pixel 

intensity is measured as a function of time forming the time-intensity curve of the lesion. 

Respiration causes the lesion to move in and out of the ROI, thus the image intensity 

within the ROI may also have components arising from sampling of normal tissue and/or 

vessels (Figure 3-1) that shows as added noise in the data (Figure 3-3a).  

Respiratory gating algorithms have been suggested in literature as a possible solution 

to limiting the effect of breathing motion [11]–[14]. Here we evaluated an algorithm for 

automatic respiratory gating (ARG) in a clinical study for efficiency in reducing the effect 

of respiratory motion from DCEUS loops [15]. The impact ARG has on the various 

DCEUS quantification parameters that relate to blood flow is also assessed. 

 

Figure 3-1: Demonstration of a lesion moving a) inside and b) outside a region-of-interest (ROI) (indicated 

by the arrow) at two different time points of the DCEUS acquisition. In a) the mean intensity value within the 

ROI is representative of the lesion perfusion whereas in b) the ROI also includes part of the liver 

parenchyma, and thus the mean linear intensity value extracted is not representative of lesion perfusion. 

3.2 Materials and methods 

3.2.1 Patients 

Twenty five patients (11 females, 14 males) presenting with colorectal liver 

metastases were imaged. The overall mean age of the patients was 69 years (range, 47-77), 

with a male population age mean of 71 (range, 59-77) and a female population mean age of 

67 (range, 47-72). The patients imaged received a bi-weekly dose of bevacizumab 
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(Avastin; Hoffmann-La Roche, Basel, Switzerland) along with a chemotherapeutic 

regiment of oxaliplatin (Eloxatin; Sanofi-Aventis, Paris, France) or irinotecan (Camptosar; 

Pfizer, New York, NY, USA) combined with capecitabine (XELODA; Hoffmann-La 

Roche, Basel, Switzerland). DCEUS image loops were obtained from each patient for 

further analysis.  

Ethical approval for this study was provided from the institutional review board of 

our hospital. The nature of the procedure was fully explained to all patients and informed 

consent was obtained. 

3.2.2 Clinical dynamic contrast-enhanced ultrasound (DCEUS) acquisitions 

 The Philips iU22 scanner (Philips Medical Systems, Bothell, WA, USA) along with 

the C5-1 curved array probe was utilized for all imaging. System settings were: imaging 

frequency of 1.7 MHz, power modulation pulsing scheme with a mechanical index (MI) of 

0.06, and frame rate between 7 and 10 Hz, depending on the image depth. One-minute 

loops of lesions were acquired in dual-contrast imaging acquisition mode. A very low-level 

uniform noise in the image before the arrival of the microbubbles was allowed to ensure 

that the time-gain-compensation (TGC) was exactly at the threshold of detection. The 

focus was set a little below the depth of the lesion for a uniform pressure field. A 2.4-mL 

bolus of microbubble contrast agent Sonovue (Bracco s.p.a., Milan, Italy) was injected via 

a three-way valve. A constant imaging plane was maintained by the clinician by 

monitoring the “tissue” side of the acquisition.  

The lesions presented in this study varied in their size, depth, initial vascularity and 

location. The diameter of the lesions varied between 7.7 and 62.6 mm with a median 

diameter of 16.8mm whilst the median depth of the lesions was 5.1 cm with a minimum of 

2.55 cm and a maximum of 8.56 cm. Eleven lesions had a hypervascular perfusion pattern, 

13 exhibited hypervascular perfusion with hypovascular cores and one lesion displayed 

hypovascular perfusion with hypervascular ring enhancement on its periphery. One-third 

of the lesions presented where located in the right lobe of the liver. In addition, seven 

patients had more than one lesion present in their acquisitions. In these cases the largest 

lesion was chosen for analysis except for one patient in which the largest lesion was 

confounded by shadowing artefacts, and so the second largest lesion was chosen.  

The patients received no breathing instructions during the DCEUS acquisitions. This 

was done in order to evaluate the ARG algorithm under various magnitudes of in-plane and 

out-of-plane respiratory motion induced naturally by the variability in the breathing 

patterns of the patient population. 
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3.2.3 Image data analysis 

The commercial quantification software QLAB version 8.1 (Philips Medical 

Systems) was used to analyze the image loops. A radiologist with over 20 years of 

experience used both the arterial and late portal phases of the DCEUS loop to accurately 

draw a ROI around the liver lesion. The specific frame on which the ROI was drawn will 

be referred to as the “trigger” frame. Time-intensity curves from linearized [16] image data 

were extracted from QLAB without the use of ARG.  

Subsequently, the tissue side loop of each acquisition was imported into MATLAB 

(2012b, The MathWorks Inc., Natick, MA, USA) in order to implement the ARG 

algorithm (Figure 3-2). Analysis of the image data was performed by a Biomedical 

Engineering PhD candidate supervised by a professor of bioengineering with more than 20 

years of experience in clinical ultrasound research. The frame subtraction technique [17] 

was utilized to detect the location and intensity of motion throughout the acquisition. 

Bright moving structures were identified on the trigger frame and the motion intensity 

corresponding to the position of each structure was recorded. In addition, the content of 

respiration for the motion associated with each structure was quantified using frequency 

domain analysis. The structure with the highest degree of respiratory motion was used to 

construct a ROI on the tissue loop and extract the time-intensity curve. The peaks of the 

time-intensity curve correspond to the time instances at which the bright moving structure 

is at the same position as on the trigger frame. Frames that were below 40% from the peak 

intensity were rejected as being out of phase with the trigger frame. The threshold value of 

40% was chosen as a good default value preserving enough data points to perform a 

reliable fit of the lognormal model onto the lesion time-intensity curve and reducing 

respiratory motion in the DCEUS acquisitions. The intensity data on the lesion time-

intensity curve matching the rejected frames were removed. Thus after the implementation 

of the ARG algorithm the lesion time-intensity curve data were in phase with the trigger 

frame (Figure 3-3a). Details regarding the implementation of the ARG algorithm can be 

found in the literature [15]. 

The lognormal indicator dilution model [5] was fitted on to time-intensity curves 

extracted from lesions with and without the use of ARG. The most common DCEUS 

quantification parameters [1], [3], [4], [6] are the area under the curve (AUC), the peak 

intensity (PI), the rise time (RT) and the mean transit time (MTT). The coefficient of 

determination of the fit of the lognormal model to the data (R
2

LN )  was calculated. The 

R
2

LN was used in order to assess whether the ARG procedure improves the quality of the 
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lognormal model fit on to the time-intensity curves, thus improving the reliability of the 

quantification parameters extracted. The assumption that the quality of the fit of the model 

to the data improves reliability of DCEUS quantification was suggested in the literature 

[13], [14].   

 

Figure 3-2: a) Flowchart of the procedures used for the implementation of the automatic respiratory gating 

(ARG) algorithm. b) Examples of moving structures identified by the ARG algorithm on the trigger frame of 

the “tissue” side of the dual contrast imaging acquisition (indicated by the arrows). 

Another useful parameter that was extracted from the time-intensity curves was the 

respiration amplitude (RA). RA quantifies how much respiration affects a time-intensity 

curve and it was calculated using the frequency spectrum of the time-intensity curves 

extracted with and without the use of ARG. Any significant reduction in the RA with the 

use of ARG would demonstrate that there is a decrease on the effect of respiration on the 

lesion time-intensity curve. The RA was calculated based on the fact that the perfusion 

pattern of the liver lesion changes more slowly compared to components from respiration 

that vary within a frequency range between 0.1 and 0.5 Hz [18]. The RA was calculated by 

calculating the area under the frequency spectrum between 0.1 and 0.5 Hz and dividing by 

the area between 0 to 0.1 Hz (Figure 3-3b). 

 

Figure 3-3: a) Example of DCEUS time-intensity curve extracted from a region-of-interest (ROI) 

encompassing a lesion with and without the use of automatic respiratory gating (ARG). b) Frequency 
spectrum of a lesion’s time-intensity curve with and without the use of ARG. The slow changing intensity 

signal originates from the perfusion of the lesion and it lies below 0.1 Hz. The respiratory component lies at 

0.1-0.5 Hz. By dividing the area under the curve between the respiration range of 0.1-0.5 Hz over the lesion 

perfusion range of 0-0.1 Hz the respiration amplitude (RA) was calculated. 
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3.2.4 Statistical analysis 

For each quantification parameter examined in this study, the distribution before and 

after ARG was summarized in boxplots indicating the median, first and third quartiles. An 

outlier was considered as a value that was greater than the third quartile plus 1.5 times the 

interquartile range (IQR, first – third quartiles) or less than the first quartile minus 1.5 

times the IQR. The boxplot bottom whisker was calculated as the minimum value that was 

not an outlier and the top whisker as the maximum value not considered an outlier.       

In order to assess whether ARG has any effect on DCEUS quantification, Wilcoxon 

signed rank tests were performed between quantification parameters extracted with and 

without ARG for all the patients participating in the study(N=25). Additionally the 

Wilcoxon signed rank tests were repeated on quantification parameters extracted from 

lesion time-intensity curves that had an RA of less than 1.5(N=12). This was done in order 

to establish the impact of ARG in cases where there was not too much respiration motion 

present.  P-values calculated from the Wilcoxon signed rank test that were less than 0.05 

were considered to indicate a significant difference.  Statistical analyses were performed 

using MATLAB’s Statistical Toolbox. The power of the Wilcoxon signed rank test 

performed was assessed using Monte Carlo simulation. The Monte Carlo simulation was 

performed in MATLAB and a description of the procedure can be found in the Appendix.  

The reduction in the RA calculated from lesion time-intensity curves extracted 

without and with the use of ARG was assessed using a paired t-test. The t-test was chosen 

because the difference in the distribution of the RA data with and without ARG allows for 

the calculation of power analytically. The significance level for the t-test was set at a p-

value of 0.05. The correlation between the quality-of-fit (R
2

LN) and the RA was assessed 

using the Pearson’s r. 

3.3 Results 

3.3.1 Relationship between quality of fit and respiration amplitude  

Pearson’s r between the effect of respiration (RA) and the quality-of-fit (R
2

LN) when 

ARG was not used had a value of -0.96 (P=7.412x10
-15

). This strong linear correlation 

between the RA and the quality of fit demonstrated the decline of the accuracy in the 

modelling of lesion perfusion as the magnitude of respiration increases. When the ARG 

algorithm was used Pearson’s r was calculated to be -0.64 (P=5.449x10
-4

). The 33% 

decrease in the correlation between RA and R
2

LN shows the improvement that ARG can 

have in the modelling of the haemodynamics of liver lesions using DCEUS quantification 
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across the whole range of RA. Furthermore with the use of ARG the R
2

LN (the quality of fit 

of the lognormal model onto the lesion time-intensity curves) was almost constant as RA 

increased. The slope of the linear regression line had a value of -0.11 with the use of ARG 

compared to -0.31 without ARG. More specifically without the use of ARG 17/25 patients 

exhibited an R
2

LN of less than 0.8; this number decreased to 3/25 patients with the use of 

ARG (Figure 3-4). 

 

Figure 3-4: R2
LN of DCEUS time-intensity curve data fit on lognormal model vs. respiration amplitude with 

and without the use of automatic respiratory gating (ARG). The linear regression lines of the displayed data 

are also shown without (dotted) and with (solid) ARG. 

3.3.2 Impact of ARG on quantification parameters 

Boxplots of the distribution of DCEUS quantification parameters with and without 

the use of ARG for the group of all patients (N=25) are presented in Figure 3-5. Significant 

differences between RT, AUC and PI with and without the use of ARG were found 

(P<0.05). No significant difference was found between using ARG and not using it for the 

MTT (P=0.904). The power of the Wilcoxon singed rank tests was assessed for each 

parameter and for a sample size of 25 it was calculated to be 0.75 for the RT (standard 

deviation, 0.03), 0.07 for the MTT (standard deviation, 0.01), 0.95 for the AUC (standard 

deviation, 0.01) and 0.87 for the PI (standard deviation, 0.02).  

Distribution of the values of the quantification parameters with and without the use 

of ARG was similar, with the IQR of the boxplots overlapping extensively (Figure 3-5). 

For patients with RA < 1.5 ARG did not have a significant impact on any quantification 
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parameter (P>0.077). This suggests that the use of ARG in cases where there is not too 

much respiration motion does not affect the quantification data in any way. 

 

Figure 3-5: Boxplots of distributions of a) rise time (RT), b) mean transit time (MTT), c) area under the curve 

(AUC) and d) peak intensity (PI) quantification parameters with and without the use of automatic respiratory 
gating (ARG) for all the patients (N=25) participating in the study. LI linear intensity. +outliers, *P≤0.05. 

3.3.3 Reduction of RA with the use of ARG  

The RA calculated from lesion time-intensity curves extracted without the use of 

ARG was compared to the RA calculated with the use of ARG (Figure 3-6). The RA was 

reduced significantly when ARG was used (P≤0.05). 

3.4 Discussion 

From the results of the statistical analysis on the whole patient population it has been 

demonstrated that ARG can have a significant impact on the RT, AUC and PI. No 

statistically significant impact on MTT could be shown. In patients that have an RA of less 

than 1.5 ARG has no impact on any quantification parameters. Grouls et al. [19] also 

investigated the effect of respiratory gating on DCEUS quantification parameters using a 

semi-automatic gating implementation of the manual technique introduced by Averkiou et 

al. [1].  Grouls et al. [19] showed that gating can have a significant effect on the AUC of 

bolus injection DCEUS and on the calculation of the retention of targeted microbubbles for 

molecular ultrasound imaging. 
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Figure 3-6: Boxplots of the distribution of respiration amplitude (RA) with and without the use of automatic 

respiratory gating (ARG). +outliers, *P≤0.05, Power>0.9. 

A strong correlation has been demonstrated between R
2

LN and RA, with the increase 

in RA explaining to a large extent the decline in R
2

LN of non-ARG processed clinical 

DCEUS lesion time-intensity curves. This demonstrates that respiration can have a large 

impact on DCEUS quantification parameters. ARG increases the quality of fit of the time-

intensity curve data on to the lognormal model examined in this study across the range of 

RA values, and thus increases the accuracy of the extracted quantification parameters. 

The mean increase in R
2

LN across the patient population expressed as a percentage is 

37. In the literature 15% and 11% increases in the quality of fit were reported by Rognin et 

al. [13]  in the application of motion correction on the parametric imaging of DCEUS of 

the kidney and liver, respectively. A mean increase between the quality of fit factor before 

and after motion correction of 15% was reported by Zhang et al. [14] for the parametric 

imaging of ten liver DCEUS loops. The above two studies [13], [14] involve the technique 

of parametric imaging and report the quality of fit on a pixel-to-pixel basis. The presence 

of noise on data sampled from single pixels or groups of pixels is expected to be greater 

than those of the present work. Thus any comparison of the results of the mentioned 

studies with the current study needs to take into account the detrimental effect that the 

increased noise will have on the quality of fit reported. Furthermore, these studies did not 

quantify the presence of respiration in their data thus making any comparisons with the 

current study even more complicated. 
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In addition to the increase in the R
2

LN  with the use of ARG, the RA was also 

decreased significantly in time-intensity curves of lesions. This reduction in the RA with 

the use of ARG further demonstrates the effectiveness of the ARG algorithm in removing 

respiratory motion from lesion time-intensity curves and increasing the accuracy of 

DCEUS quantification. By increasing the accuracy of in-vivo DCEUS quantification 

parameters the clinician can perform a more accurate diagnosis, e.g. on the response of the 

patient to treatment. Accurate tumour microflow measurements may lead to a decision to 

be made in regards to continuing with the current treatment or altering the treatment, which 

can result in a better clinical outcome or a reduction in expenditure on ineffective 

treatments.       

Although this study evaluates the use of ARG on DCEUS quantification, qualitative 

evaluation of image loops [20] may also benefit from such a motion-correction technique. 

By applying ARG on image loops during review, the removal of out-of-plane motion 

results in a more accurate depiction of the area. For example, small lesion vessels stay in-

plane and show their feeding patterns.  

Other post-processing procedures for treating respiratory motion on DCEUS loops of 

liver lesions can be found in the literature. One technique proposed by Averkiou et al. [1] 

is for the clinician to manually reject frames in which the diaphragm position deviates from 

a reference location. This technique does not require any special precautions to be taken 

during the DCEUS acquisition but it is time consuming and operator dependent. The 

present ARG algorithm works by detecting bright structures moving with a frequency 

within the range of respiration (0.1-0.5Hz). Often such a bright structure is the diaphragm 

but others may be encountered also. In 17/25 cases analyzed the diaphragm was 

automatically detected. In the rest other bright image structures were detected (Figure 

3-2b). 

Studies on methods for automatic respiratory motion correction have been published 

in the literature [11]–[14], [21]. A technique based on independent component analysis 

(ICA) was introduced by Renault et al. [12] where the respiratory kinetics curve could be 

manually extracted from the components derived from the ICA. Frames of the loop that 

were part of the end phases of the respiratory cycle could be isolated by using a threshold 

on the respiratory kinetics curve. Furthermore, Mule et al. [11] developed a fully automatic 

algorithm that utilizes principal component analysis (PCA) to perform respiratory gating 

and extract frames that belong to the end phases of the respiratory cycle. Although the ICA 

and PCA algorithms proposed can correct for both in-plane and out-of-plane respiratory 
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motion, they are limited in extracting only the end phases of the respiratory cycle. It is 

possible that part of the lesion, or even the whole lesion, could be absent on the imaging 

plane during the end-respiratory phases. 

Image registration has also been used in the literature to correct for respiratory 

motion. Zhang et al. [14] used a 2D image registration technique with frame selection in 

order to remove both in-plane and out-of-plane motion but a computational time of 3 min 

per 100 frames could limit the use of the algorithm in the clinic. Rognin et al. [13], [21] 

used a 2D rigid registration technique with translation and rotation to register frames with a 

reference frame; however, this technique lacked a scheme for removing out-of-plane 

respiratory motion. Both the image registration algorithms discussed required the user to 

draw ROI(s) on frames to define the area on the image into which the registration process 

would take place.       

The ARG algorithm clinically evaluated in the present study is fully automated 

requiring the user to only provide a reference frame; it is fast since it can process 100 

frames in less than a second, it allows for the extraction of any breathing cycle phase 

required by the operator, and it removes both in-plane and out-of-plane respiratory motion 

[15], [22]. 

A limitation of the present work is the use of a fixed gating threshold for all of the 

patients. The gating threshold regulates what percentage of frames that are out of 

synchronization with the trigger frame are allowed to be part of the ARG processed loop. 

By setting the gating threshold too high a large number of frames that are out of phase with 

the trigger are quantified leading to uncertainty in the results. If the gating threshold is low 

it includes a very small number of frames to be quantified and possibly too few to be able 

to perform a robust fit of the model. Since the breathing patterns of patients can differ 

significantly, the clinician performing the quantification analysis can easily adjust the 

threshold for each patient during quantification of the loops. A 40% threshold was used on 

all patients to standardize the procedure as was previously reported in the literature [15].      

Moreover it is possible to manually reject frames of the ARG processed loop to 

further improve the quantification analysis. This option was not used in this study in order 

to ensure reproducibility and objectivity. Some quantification software offer the ability to 

perform motion compensation based on image registration algorithms. Since this work 

focused on evaluating a specific ARG technique, no further motion compensation was 

performed on the extracted data. In clinical practice, conventional motion compensation DAMIANOS C
HRISTOPHID
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algorithms may be applied to ARG processed loops and further improve the quantification 

accuracy. 

In conclusion, the ARG algorithm examined had a strong impact on clinical DCEUS 

quantification parameters. Furthermore, the use of ARG resulted in an overall increase in 

the quality of fit of the lognormal model and a significant decrease in the respiration 

amplitude. This study demonstrates the implications that respiration can have on liver 

DCEUS; the same technique may also be applied to study the impact of respiration on 

DCEUS when studying the perfusion of other organs, but further validation studies are 

necessary. 
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Appendix: Calculation of the power of the Wilcoxon signed rank tests 

Some assumptions must be made in order to calculate the power of the Wilcoxon signed 

rank tests performed in this study. The first assumption was that the parameters from 

before and after the application of ARG were part of the same distribution. Two-sample 

Kolmogorov-Smirnov tests were performed on the quantification parameters before and 

after the application of ARG demonstrating that the parameters were part of the same 

distribution (P>0.05). The Monte Carlo simulation made use of this by concatenating the 

before and after ARG parameters into one population from which the mean and standard 

deviation were calculated. 

Another assumption made in order to calculate the power was that the concatenated 

distributions of the quantification parameters along with the differences between the 

parameters before and after the application of ARG were normal. This was demonstrated 

using one-sample Kolmogorov-Smirnov tests at a significance level of 0.05. This 

assumption was used in the Monte Carlo simulation in order to simulate random samples 

from normal distributions. DAMIANOS C
HRISTOPHID
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The Monte Carlo simulation for a particular pair of quantification parameters extracted 

without ARG (A) and with ARG (B) is described in the following steps: 

Step 1: Calculate mean (μnoARG) and standard deviation (σnoARG) of the concatenated 

vector of A and B. 

Step 2: Calculate mean (μdiff) and standard deviation (σdiff) of the differences (A minus 

B). 

Step 3: Set the sample size equal to 25 (n=25). 

Step 4: Simulate quantification parameters extracted without ARG by randomly 

sampling 25 data points (n=25) from a normal distribution with a mean equal to μnoARG and 

a standard deviation equal to σnoARG. 

Step 5: Simulate differences between quantification parameters extracted with and 

without ARG by randomly sampling (n=25) from a normal distribution with a mean equal 

to μdiff and a standard deviation equal to σdiff. 

Step 6: Simulate quantification parameters extracted with ARG by subtracting the 

random sample of step 4 from that of step 5. 

Step 7: Perform a Wilcoxon signed rank test between the simulated parameters 

extracted with and without the use of ARG at a significance level of 0.05. 

Step 8: Increment counter variable (CV) by one if the test returns a significant 

difference between the simulated parameters extracted with and without the use of ARG. 

Step 9: Repeat steps 4-8 200 times. 

Step 10: Calculate power by dividing CV over 200. 

Step 11: Repeat steps 4-10 20 times to calculate the uncertainty of the power 

calculation. 
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Abstract  

Confidence in the accuracy of dynamic contrast enhanced ultrasound (DCEUS) 

quantification parameters is imperative for the correct diagnosis of liver lesion perfusion 

characteristics. An important source of uncertainty in liver DCEUS acquisitions is artifacts 

introduced by respiratory motion. The objective of this study is to construct a respiratory 

motion simulation model (RMSM) of dual contrast imaging mode acquisitions of liver 

lesions in order to evaluate an algorithm for automatic respiratory gating (ARG). The 

respiratory kinetics as well as the perfusion models of the liver lesion and parenchyma 

used by the RMSM were solely derived from clinical data. The quality of fit (of the 

DCEUS data onto the bolus kinetics model) depends on the respiration amplitude. Similar 

trends in terms of quality of fit as a function of respiration amplitude were observed from 

RMSM and clinical data. The errors introduced on the DCEUS quantification under the 

influence of respiration were evaluated. The RMSM revealed that the error in the liver 

lesion DCEUS quantification parameters significantly decreased(p<0.001) from a 

maximum of 32.3% to 6.2% when ARG was used. The use of RMSM clearly demonstrates 

the capability of the ARG algorithm in significantly reducing errors introduced from both 

in-plane and out-of-plane respiratory motion.  

Index Terms - Medical simulation, Ultrasonic imaging, Contrast agents, Liver metastases, 

Respiratory gating 

4.1 Introduction 

In their more than fifteen years of use [1]  microbubble contrast agents have been 

used in many clinical applications. These include the diagnosis of liver lesions [2], the 

assessment of microvascular damage after a myocardial infarction [3] and the detection of 

coronary disease [4]. Microbubbles are a pure blood pool contrast agent, because their size 

is of the same order as red blood cells and thus cannot leave the vascular bed and escape in 

the interstitium [5], [6]. Their size along with their unique acoustic properties allow for the 

imaging of perfusion in real time using diagnostic ultrasound. 

Microbubbles can be used to perform dynamic contrast enhanced ultrasound 

(DCEUS) for the characterization of liver lesions[7]. Muhi et al[8] compared the 

sensitivity of DCEUS, contrast enhanced computed tomography (CECT) and contrast 

enhanced magnetic resonance imaging (CEMRI) in detecting metastatic liver lesions from 

patients with primary colorectal cancer. The sensitivity of DCEUS was found to be 73% 

which compared favorably with the 63% sensitivity of CECT although it was significantly 
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lower than the 95% sensitivity exhibited by CEMRI. Tranquart et al[9] demonstrated a 

similar sensitivity of 79.4% for DCEUS in the characterization of 1034 liver lesions as 

malignant or benign. Furthermore DCEUS is a safe imaging modality since it does not 

make use of ionizing radiation like CECT and it can be used on patients with pacemakers 

and ferromagnetic metal implants unlike CEMRI. In addition to its safety and clinical 

efficiency liver lesion DCEUS is cost effective and it can provide savings of 19% and 52% 

compared with CECT and CEMRI respectively[9].  

Studies have been published in the literature [10]–[12] that use microbubbles to 

quantify liver lesion perfusion for early evaluation of patient response to treatment. These 

studies use modeling of the tumor perfusion to extract quantification parameters in order to 

make the evaluation of the response to treatment more objective than visual assessment 

and provide an early detection of response [13], [14]. Ideally these quantification 

parameters would be affected only by the blood flow and volume which in turn are related 

to the concentration of the microbubbles in the lesion under investigation. This is almost 

impossible to achieve due to factors that can affect the signal intensity detected by the 

imaging system like nonlinear propagation of ultrasound [15], signal saturation [16], and 

stability of ultrasound probe placement.  

Further to the DCEUS acquisition problems mentioned there is the problem of 

physiological motion which can also have a negative impact on the quantification of blood 

flow and volume. Respiratory motion has the potential to move and deform the anatomy 

being imaged in relation to the imaging plane being acquired. In quantitative DCEUS for 

liver lesions the clinician needs to delineate the tumor using a region-of-interest (ROI) in 

order to extract the signal from within the lesion. However due to respiratory motion, the 

lesion moves in and out of the ROI.  Thus the DCEUS linear intensity signal extracted 

from within the ROI can also have a component derived from sampling of normal liver 

parenchyma and/or vessels. Respiration can also obscure visual details in the qualitative 

assessment of liver lesion DCEUS such as the lesion’s feeding vessels since different cross 

sections of the lesion appear on the imaging plane due to out-of-plane respiratory motion.  

A clinically used approach to compensate for the effects of respiratory motion is to 

direct patients to perform breath-holds [17]. However this approach can only by applied to 

patients that are able to hold their breath for a substantial period of time. Further to the 

practical problems breath-holds can also affect hemodynamics [18].  

Post-processing procedures can also be implemented to negate the effect of 

respiratory motion for DCEUS quantification of liver lesions. One technique proposed by 
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Averkiou et al [10] is for the clinician to manually reject frames in which the diaphragm 

position deviates from a reference location. This technique does not require any special 

precautions to be taken during the DCEUS acquisition and although it is implemented after 

the acquisition it can be very time consuming since all the steps of the procedure are 

manual.  

Automation of correcting for respiratory motion can also be achieved using 

computational methods [19]–[23]. Disadvantages of these methods include the need for 

user intervention [20], [21], [23], extraction of only the end-phases of the respiration cycle 

[19], [20], and speed of execution [23]. 

A fully automatic respiratory gating (ARG) algorithm has been presented in the 

literature that is capable of significantly increasing the reliability of DCEUS 

quantification[24], [25]. The ARG algorithm can typically process 1000 frames in 8 

seconds and it can extract any breathing cycle phase required by the user. The only manual 

intervention needed by the ARG algorithm is that the user chooses a “trigger” frame thus 

selecting the image (tumor) plane to be analyzed. Even though the ARG algorithm has 

been shown to increase the quality of fit of the lognormal indicator dilution model[26] onto 

liver lesion time intensity curves[24] it is impossible to determine the absolute gain in 

accuracy since it is impossible to know the true lesion perfusion in-vivo. The solution to 

this obstacle is the use of a simulation of a liver DCEUS acquisition in which the perfusion 

of the lesion is calculated using an indicator dilution model.   

The objective of this work is to evaluate the efficiency of the ARG algorithm[25] in 

increasing the absolute accuracy of liver lesion DCEUS quantification using the controlled 

environment of a respiratory motion simulation model (RMSM) of dual contrast imaging 

mode liver lesion acquisitions.  

4.2 Materials and methods 

4.2.1 Respiratory Motion Simulation Model 

The RMSM was constructed in order to simulate a dual contrast imaging mode 

acquisition of liver lesions. During clinical acquisitions of liver DCEUS both in-plane and 

out-of-plane respiratory motion can affect the lesion’s shape, size, and location in the 

image. Furthermore the appearance of structures like the diaphragm is also influenced by 

respiratory motion and is easily observed on the tissue side of the acquisition (Figure 4-1). 

These changes in the appearance of the lesion and bright structures (e.g. the diaphragm) 

induced by respiratory motion were incorporated into the RMSM. 
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Figure 4-1: Example of a clinical dual contrast imaging mode acquisition showing the contrast side (left) and 

the tissue side (right) at two time instances from the time of microbubble injection. At 44.1 s from the 

microbubble bolus injection a) the lesion (solid outline) can be clearly seen on the imaging plane whereas 0.5 
s after b) the lesion appears altered in shape, size, and location. The diaphragm (dashed outline) has changed 

in position and dimensions due to both in-plane and out-of-plane motion.   

The RMSM was constructed in MATLAB® (2012b, The MathWorks Inc., Natick, 

MA) by generating image loops of a spherical lesion imbedded in a liver-like structure in 

the presence of cyclic respiratory motion. A dual contrast imaging mode was simulated, 

where the left side displayed the contrast image and the left side the tissue. The brightness 

of the contrast enhanced signal of the lesion and liver was programmed according to 

lognormal indicator dilution models derived from mean values of quantification parameters 

extracted from clinical DCEUS acquisitions (see section 4.2.2). Specifically the lognormal 

indicator dilution model was fitted onto the clinical lesion time intensity curves and the 

mean values of the extracted quantification parameters of RT, MTT and PI were 

calculated. DAMIANOS C
HRISTOPHID
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The lesion was perfused according to the lognormal model[26] with a rise time (RT) 

of 17 seconds, a mean transit time (MTT) of 80 seconds and a peak intensity (PI) of 17 

AIU (arbitrary intensity units). The parenchyma was perfused with a RT of 30 seconds, a 

MTT of 62 seconds and a PI of 33 AIU (Figure 4-2). On the tissue side of the acquisition 

constant intensity levels were kept between a low intensity background and a 50% higher 

intensity moving structure. The total simulation time was 74 seconds, the frame rate was 

set to 8Hz and the imaging plane consisted of 300 by 300 pixels (px).  

 

Figure 4-2: Lognormal indicator dilution model time intensity curves used to calculate the linear DCEUS 

intensity on the contrast side of the RMSM. The lognormal models were constructed using clinically derived 

(see section 4.2.2) quantification parameters (normal liver and liver lesions) for the RT, MTT, and PI. 

 The lesion was modeled as a sphere approximating the ellipsoid appearance of 

lesions seen in clinical acquisitions (Figure 4-1). The radius of the lesion was set at 20px 

(RL) corresponding to the median liver lesion size from the clinical study and the 

parenchyma as a cube containing the lesion. In-plane and out-of-plane respiratory motion 

was produced by varying the position and radius of the lesion respectively according to a 

normalized respiratory kinetics curve (G(t)) that was extracted from patient data (Figure 

4-3). A set of liver lesion radii [r(t)] corresponding to each time instance in the acquisition 

were calculated using (1) and the values of the in-plane translation [Δr(t)]  of the liver 

lesion were determined using (2), 

  
22( ) ( )Lr t R OPA G t   , (1) 

  ( ) ( ) ,r t IPA G t i j      (2) 
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where G(t) was the patient derived normalized respiratory kinetics curve, RL=20px, t was 

the time instance during the acquisition, OPA was a scalar defining the out-of-plane 

amplitude attributed to out-of-plane respiratory motion and IPA was a scalar defining the 

in-plane amplitude attributed to in-plane respiratory motion (Figure 4-4a). On the tissue 

side of the acquisition the bright moving structure was modeled as a triangular prism 

captured as a rectangle on the imaging plane as a representation of the oblong appearance 

of the diaphragm in clinical studies (Figure 4-1). The width of the rectangle was set to a 

constant value of 50 px and the values of the height of the triangle captured on the imaging 

plane were calculated using  

 0

( )
( ) ,

2

OPA G t
h t h


    (3) 

where G(t) was the patient derived normalized respiratory kinetics curve, ho=20px, t was 

the time instance during the acquisition and OPA was a scalar specifying the out-of-plane 

amplitude attributed to out-of-plane respiratory motion (Figure 4-4b). In plane motion was 

imposed by varying the center of the rectangle according to (2).  

 

Figure 4-3: Normalized respiratory kinetics curve extracted from patient data that was used to drive the 

respiration motion of the respiratory motion simulation model. 

Multiplicative noise was applied to the DCEUS side of the simulation in order to 

compare errors caused by respiratory motion to those produced by noise. The gamma 
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distribution multiplicative noise model proposed by Barrois et al[27] was used according to 

(4), 

 
 

1

(x; , ) ,

x

x e
gamma

 


 

 







  (4) 

where κ=3 and α=0.5. The k value of 3 was based on measurements performed by Barrois 

et al whereas the alpha value of 0.5 was derived based on the condition that the mode of 

the distribution (Mo) must have a value of 1. In order to apply the multiplicative noise 

from the gamma distribution  each DCEUS frame of the simulation was multiplied by a 

random sample of a 300 x 300 matrix derived from the a gamma distribution with κ=3 and 

α=0.5. The random sample was generated using the “gamrnd” function part of MATLAB’s 

Statistics Toolbox. 

Three sets of simulations were run to study the effect of lesion size, in-plane and out-

of-plane respiration amplitude. An additional set of simulations was run this time with 

multiplicative noise applied on the contrast side of the acquisition to investigate the effect 

of noise on the DCEUS quantification parameters extracted from the RMSM. The effect of 

lesion size on the DCEUS quantification parameters was studied with a set of simulations 

with increasing lesion radius between 10 and 35 px; the IPA was varied between 0 to 36 px 

and the OPA was set to 0 px. A set of simulations with a constant OPA of 10 px and a 

varying IPA between 0 to 36 px, a set with a constant IPA of 10px and a varying OPA 

between 0 to 36 px in order to evaluate the error introduced on the DCEUS quantification 

parameters from both in-plane and out-of-plane motion. The maximum amplitude of 36 px 

was chosen in order to simulate the clinical scenario in which the lesion is not visible in the 

imaging plane at the end phases of respiration. A set of simulations were also run with a 

constant OPA of 10 px and a varying IPA between 0 to 36 px with the presence of 

multiplicative noise on the DCEUS side of the acquisition.  
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Figure 4-4: Zoom-in on a simulated dual contrast imaging acquisition at the time of peak of the parenchyma 

(29 seconds). a) Simulated DCEUS side of the acquisition with the initial position of the lesion indicated 

(solid black line) encompassing mostly the parenchyma with the lesion moved out of position in-plane by a 

vector Δr(t) and a reduction of its radius from the initial radius of RL (20 px) to r(t) due to out-of-plane 

respiratory motion. b) Simulated tissue side of the acquisition with the moving structure out of position in-

plane by a vector Δr(t) and a variation in its height from h0 (20 px) to h(t) accounting for out-of-plane  

motion. 

The mean linear intensity within a ROI corresponding to the initial position of the 

lesion on the contrast side of the RMSM (Figure 4-4a) at time zero was extracted across 

time. Due to the respiratory motion present in the simulation the lesion time intensity curve 

extracted will exhibit similar breathing artefacts as in the clinic. The lognormal indicator 

dilution model was fitted onto lesion time intensity curves extracted with and without the 

use of ARG. The quantification parameters of RT, MTT, area under the curve (AUC) and 

PI were calculated and compared to the input perfusion parameters of the RMSM. By 

comparing the error introduced on the quantification parameters the accuracy of DCEUS 

quantification with and without ARG can be assessed. 

 

4.2.2 Clinical DCEUS acquisitions 

 Twenty-two (22) patients (10 female, 12 male) with liver metastasis were imaged. 

The median age of the female patients was 69 (range, 47-72) and the male median age was 

74 (range, 59-77). Approval for the scanning was obtained by the ethics review board of 

our hospital. Also the procedure was fully explained to all participating patients and 

informed consent was obtained. 

The Philips iU22 scanner (Philips Medical Systems, Bothell, WA) along with the 

C5-1 curve-linear array probe was utilized for all imaging. The imaging frequency was set 

at 1.7 MHz and the pulsing scheme used was power modulation with a mechanical index 
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(MI) of 0.06. One minute loops were acquired at a frame rate between 7-10 Hz in dual 

contrast imaging acquisition mode with an image resolution of 0.39mm/px. The time-gain-

compensation (TGC) was set so that a very low level of uniform noise was present on the 

image before the arrival of the microbubbles, ensuring that the TGC was at the threshold of 

detection. In an effort to maintain a uniform pressure field the focus was set below the 

depth of the lesion. The Sonovue (Bracco s.p.a., Milan, Italy) microbubble contrast agent 

was injected as a 2.4mL bolus. The clinician maintained a constant imaging plane by 

monitoring the “tissue” side of the acquisition. 

4.2.3 Image data analysis 

The patient DICOM files were extracted from the Philips iU22 scanner and 

transferred to the commercial quantification software QLAB version 8.1 (Philips Medical 

Systems, Bothell, WA) for analysis. Both the arterial and late portal phases of the DCEUS 

loop were used to accurately draw a ROI encompassing the liver lesion. The frame at 

which the lesion was delineated was the reference that defined the breathing cycle phase to 

be extracted by the ARG algorithm. In particular this frame served as the “trigger” frame 

by which ARG was performed (see section 4.2.4). The lesion time intensity curves from 

linearized image data were extracted from QLAB and were analyzed with and without the 

implementation of the ARG.  

Non-linear regression fits of the lognormal indicator dilution model [26] were 

performed on the lesion time intensity curves using MATLAB’s Curve Fitting Toolbox 

trust region algorithm. The quantification parameters of AUC, PI, RT, and MTT were 

extracted from the lognormal model fit. In addition the quality of fit of the lognormal 

model on to the data was assessed by calculating the coefficient of determination (R
2

LN). 

The quality of fit has been used in the literature[21], [23], [25] as a metric of the 

improvement in the reliability of DCEUS quantification.     

The effect of respiration on the DCEUS acquisitions was quantified by calculating 

the respiration amplitude (RA) of the time intensity curves extracted without the use of 

ARG. The RA was calculated by first computing the frequency spectrum of the lesion time 

intensity curves. The faster varying respiration component of the lesion time intensity 

curve was between the respiration range of 0.1-0.5 Hz [28] in contrast to the slower 

changing lesion perfusion pattern that was below 0.1Hz (Figure 4-5). The RA was 

calculated as the ratio between the area under the frequency spectrum between 0.1-0.5Hz 

and the area between 0-0.1Hz.  
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Figure 4-5: Example of a clinical lesion time intensity curve extracted from a DCEUS acquisition under the 

influence of respiratory motion (left) and its frequency spectrum (right). The separation of the lesion 

perfusion and respiration components is clearly shown in the frequency domain. 

4.2.4 ARG algorithm 

The ARG algorithm was applied on the tissue side of the dual contrast imaging 

acquisition. The MATLAB® (2012b, The MathWorks Inc., Natick, MA) scientific 

computing software was used to implement the ARG algorithm (Figure 4-6). 

The location and intensity of motion produced by bright structures in the loop was 

identified by subtracting each frame from the average from all the frames[29] and 

summing the result. Bright moving structures were identified on the trigger frame and the 

intensity of the motion corresponding to each structure was calculated as the average 

motion intensity encompassed by the structure. In addition a frequency domain analysis 

was performed to calculate the respiratory contents associated with each moving structure. 

A ROI was constructed from the structure with the highest contents of respiratory motion 

and applied on the tissue loop to extract the time intensity curve. The troughs and peaks of 

the time intensity curve correspond to the time instances at which the acquisition was out-

of-phase and in-phase with the trigger frame respectively. By removing the frames that 

were below 40% from the peak intensity the respiratory motion in the loop was reduced. 

The threshold value of 40% was a compromise between preserving enough time intensity 

curve data to perform a reliable fit of the lognormal indicator dilution model, while at the 

same time reducing the amount of respiratory motion in the loop. A more detailed 

description of the implementation of the ARG algorithm can be found in the literature[25]. 
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Figure 4-6: Summary flowchart of the processes used to implement the ARG algorithm in MATLAB. 

4.3 Results 

From the simulations investigating the effect of lesion size with increasing IPA it 

was shown that as the lesion size decreases the percentage error in the parameters increases 

for the same IPA (Figure 4-7). However when the IPA was normalized to the lesion radius 

of each simulation the percentage error of the quantification parameters was shown to be 

constant for the same IPA/RL ratio (Figure 4-8). The results reported hereafter are in 

reference to the IPA/RL and OPA/RL. 
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Figure 4-7: RMSM results with increasing in-plane respiratory amplitude and different lesion sizes. The 

percentage error for a) RT, b) MTT, c) AUC, and d) PI is shown. 

 

Figure 4-8: RMSM results from Figure 4-7 with the x-axis of the plots displaying the IPA normalized to the 

lesion radius (RL=20px). 

The results from the RMSM showed that ARG algorithm reduced the error in the 

quantification parameters introduced from in-plane respiratory motion (Figure 4-9). The 

overall errors where reduced from a mean of 13.0% to a mean of 2.4%. Specifically for the 

RT the mean error was decreased from 20.0% to a mean of 3.9%, for the MTT from a 

mean of 3.1% to 1.3%, for the AUC from 16.4% to a mean of 2.6% and for the PI from a 

mean of 12.4% to 2.0%. In addition to reducing errors introduced from in-plane respiratory 
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motion the ARG algorithm was shown to also reduce the errors from out-of-plane motion. 

The mean error introduced with increased OPA was reduced by 16.4%, 1.2%, 14.1% and 

9.9% for the RT, MTT, AUC and PI respectively (Figure 4-10). 

 The reduction in the mean percentage error of quantification parameters with the use 

of ARG was tested using the paired t-test at a significance level of 0.001. It was found to 

be statistically significant for the RT, AUC and PI (p<0.001) both for in-plane and out-of-

plane respiratory motion. The reduction of the MTT percentage error was found not to be 

significant for the in-plane (p=0.014) and out-of-plane (p=0.044) motion. MTT did not 

suffer much from motion as it is a time parameter associated with the overall duration of 

the bolus that despite the respiratory noise it still remains unaffected. As an example, 

consider adding high frequency noise (respiratory noise) on a low frequency signal (MTT). 

The overall effective period of the low frequency signal remains unaffected. 

 

Figure 4-9: Percent error of the quantification parameters with increasing in-plane respiratory amplitude with 

(squares) and without (circles) the use of the ARG algorithm. 

The multiplicative noise introduced on the DCEUS simulation had no effect on the 

RT and MTT with the results with and without noise being almost identical [compare 

Figure 4-9(a)-(b) with Figure 4-11(a)-(b)]. However noise did increase the errors for the 

amplitude quantification parameters by a mean value of 50.0% for AUC and 50.0% for PI 

[compare Figure 4-9(c)-(d) with Figure 4-11(c)-(d)]. The error increase due to noise for the 

amplitude parameters was almost constant across increasing IPA with the calculated 

standard deviation of the mean increase in error being less than 0.6%. 
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Figure 4-10: Same as Figure 4-9 but with out-of-plane motion. Percent error of the quantification parameters 

with increasing out-of-plane respiratory amplitude with (squares) and without (circles) the use of the ARG 

algorithm. 

 

Figure 4-11: Same as Figure 4-9 but with added multiplicative noise. Percent error of the quantification 

parameters with the application of multiplicative noise under increasing in-plane respiratory amplitude with 

(squares) and without (circles) the use of the ARG algorithm. 

The overall RMSM validity was evaluated by comparing the relationship between 

the R
2

LN and the respiration amplitude (RA) extracted both from the simulation and patient 
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data. Simulation data using the parenchyma perfusion model extended to an RA of 1.1 

whereas the clinical data extended to an RA of 2.2. This was attributed to the fact that 

clinical data include signal from nearby vessels, like veins, that can contribute to a higher 

linear intensity within the lesion ROI compared to the parenchyma. In order to investigate 

the effect of vessels to lesion DCEUS quantification parameters a set of simulations were 

run with constant OPA and variable IPA. The parenchyma perfusion model was replaced 

with a vein model with a RT of 27 seconds, a MTT of 54 seconds and a PI of 190 AIU 

derived from the clinical data. The results from both simulation sets were compared with 

the clinical data (Figure 4-12). Both the clinical data and the simulations demonstrate a 

negative correlation with the R
2

LN decreasing as the RA increases without the use of ARG. 

The slope of the linear regression was -0.33 and -0.40 for the clinical and simulation data 

respectively. With the use of ARG the slope was decreased for both the patient (-0.12) and 

simulation data (-0.14). 

 

Figure 4-12: Scatter plots of R2
LN vs. respiration amplitude with and without the use of automatic respiratory 

gating (ARG) for a) clinical patient data and b) simulation results from the RMSM. The linear regression 

lines of the displayed data are also shown without (dotted) and with (solid) ARG. 

4.4 Discussion 

In this study a RMSM was developed that was used to study the effectiveness of an 

ARG algorithm in increasing the absolute accuracy of liver lesion DCEUS quantification. 

The use of simulation to evaluate respiratory compensation algorithms for liver lesion 

DCEUS has been previously suggested by Renault et al[20]. The simulation by Renault et 

al examined the effects of respiration for a single in-plane and out-of-plane amplitude with 

only the contrast side of the acquisition being simulated. Furthermore the errors that 

respiration introduced on lesion time intensity curves were evaluated qualitatively without 

looking into specific quantification parameters. That study concluded that image 

registration based algorithms for respiratory motion compensation were inadequate in 
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removing out-of-plane motion from liver DCEUS acquisitions.  The independent 

component analysis (ICA) method proposed by Renault et al and the principal component 

analysis (PCA) examined by Mule et al[19] have been shown to remove both in-plane and 

out-of-plane motion from DCEUS loops. However only the end phases of the respiratory 

cycle can be extracted using ICA and PCA analysis, and since the acquisition is two 

dimensional there is the uncertainty whether a portion or any part of the lesion will be 

present on the extracted frames.  

The RMSM used in this study considers a broad range of out-of-plane and in-plane 

respiratory motion amplitudes. The application of the ARG algorithm on the dual contrast 

imaging mode simulation has been shown to significantly reduce the errors on DCEUS 

quantification parameters. Overall the implementation of the ARG algorithm significantly 

reduced the errors introduced by respiratory motion (p<0.001) from a maximum of 32.3% 

to less than 6.3%. ARG produced significant gains in DCEUS quantification parameter 

accuracy for the RT, AUC and PI (p<0.001) whereas the impact of ARG on MTT was not 

significant. This was also the case for a clinical study [24] where the MTT was found to be 

unaffected by the ARG algorithm.  

The increase in the accuracy from the use of the ARG algorithm can improve clinical 

outcomes in liver DCEUS quantification. For example in a clinical study on liver lesion 

DCEUS quantification by Averkiou et al [10] the response of patients to treatment was 

detected as a mean change in the wash-in time ratio quantification parameter of 17% after 

the first treatment. Zocco et al [30] found significant changes from the baseline of -20% 

and -25% in the AUC and PI respectively for patients that had a response to hepatocellular 

carcinoma treatment. Both Averkiou et al and Zocco et al used respiratory gating to 

improve the accuracy of their quantitative analysis.  These changes in the quantification 

parameters would be impossible to detect if there is an error of about 30% already present 

due to the respiratory motion. Furthermore in the quantification parameter reproducibility 

study performed by Averkiou et al an average deviation of 9% was calculated which is 

above the maximum residual error of 6.3% remaining after the use of ARG. 

By taking into consideration multiplicative noise on the contrast side of the dual 

contrast imaging simulation no change was observed on the time quantification parameters 

of RT and MTT. The results were almost identical with the maximum difference being less 

than 1.8% for the RT and MTT extracted both with and without ARG. On the other hand 

the amplitude parameters of AUC and PI were severely affected with the value of the AUC 

error increasing by a maximum of 51.4% and of the PI by a maximum of 50.5%. 
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Simulations run by Barrois et al [27] found absolute error differences for the AUC of 49.8-

50.3% , the MTT of 15.5-22.0% and 4.3-5.6% for the RT. The simulations applied 

multiplicative noise directly onto each data point of the time intensity curve, corresponding 

to a mean signal from a 5x5 block of pixels, in contrast with the RMSM that takes the 

average within a 20px radius ROI. Thus the sample size used to calculate the values of the 

time intensity curve data points for the current study is 1257 compared with 25 from 

Barrois et al. The standard error of the mean, SE
n


   [31], is thus expected to be higher 

for the smaller sample explaining the discrepancy between the results obtained from the 

two studies. Therefore the errors reported by Barrois et al are more relevant to parametric 

imaging studies rather than the modeling of the average perfusion of a liver lesion. 

The errors introduced from the gamma distribution noise model on the amplitude 

parameters can be predicted analytically. The mean and standard deviation can be 

calculated from the moments of the gamma distribution[32] and are given by      and 

k   . Also by differentiating (4) the mode (i.e. maximum of the probability density 

function) can be calculated as  1Mo     . By eliminating κ and α the mode can be 

written in respect to μ and σ as
2 2

Mo
 




 . The multiplicative model used from the work 

of Barrois et al[27] uses the relationship between the standard deviation (σ), the mean (μ), 

and the shape parameter κ of the gamma distribution to estimate κ from DCEUS 

measurements of the standard deviation and mean linear intensity with increasing 

concentration of microbubbles. Since the relationship used [27] between σ and μ is a linear 

model slope    and also 





  , derived from the moments of the gamma 

distribution, the mean, and the mode can directly related to the shape parameter κ by 

1
Mo





 



 
 
 

. Consequently the mean (μ) linear intensity within the ROI will be one and 

a half times the value of the mean liner intensity before the gamma distribution noise was 

applied with parameters κ=3 and Mo=1 used in the RMSM. The overall mean error 

between the amplitude parameters extracted with and without multiplicative from the 

simulation was found to be 50.0% with a standard deviation of less than 0.5% verifying the 

analysis made. As already mentioned in the previous paragraph the error obtained from the 

simulations by Barrois et al for the AUC was between 49.8-50.3% agreeing with the 

prediction of the analysis presented.  
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Limitations of the RMSM include simplifications made compared to the complexity 

of clinical dual contrast imaging acquisitions. The shape of clinical lesions does not follow 

a strict spherical shape as used in the RMSM although an ellipsoidal shape is generally 

assumed for demonstration purposes[7]. In addition respiratory motion does not only cause 

rigid in-plane and out-of-plane motion but also results in deformation due to the elasticity 

of tissue.  The deformation of the lesions due to respiratory motion was not accounted for 

in the RMSM. Despite of these limitations of the RMSM it offers a controlled platform by 

which to study the absolute errors introduced by respiratory motion on DCEUs 

quantification parameters. Furthermore the RMSM has the potential to be used in the 

training of clinicians in DCEUS quantification in an effort to increase intra-observer and 

inter-observer agreement. This could be especially useful for multi-centre studies since the 

training can be performed remotely and data analysis can be centralized. Future studies of 

respiratory motion could also simulate 3D DCEUS acquisitions to investigate the effect of 

respiratory motion compensation schemes on DCEUS quantification. However 3D DCEUS 

is not currently used routinely in the clinic[33] thus there are not enough clinical data 

available to construct such a model.    

Both the perfusion and respiration kinetics of the RMSM were derived from clinical 

dual contrast imaging acquisitions in an effort to maximize the clinical relevance of the 

model. The similarities of the relationship between R
2

LN and RA for the RMSM and the 

clinical data give confidence to the clinical suitability of the model (Figure 4-12). This 

further reinforces that the results obtained for the error reduction in DCEUS quantification 

parameters are expected to occur in the clinic. 

4.5 Conclusion 

A RMSM was presented that takes into account in-plane, out-of-plane respiratory 

motion, and multiplicative noise. The RMSM was used to investigate the effectiveness of 

an ARG algorithm in increasing the accuracy of liver lesion DCEUS quantification by 

removing in-plane and out-of-plane motion from dual contrast imaging mode acquisitions. 

The use of RMSM clearly revealed that the ARG algorithm significantly reduces errors 

introduced from in-plane and out-of-plane respiratory motion. The time quantification 

parameters of RT and MTT remained almost unaffected under the presence of 

multiplicative speckle noise whereas the amplitude quantification parameters of AUC and 

PI showed a constant error of 50% from their set values. The relationship between the 

quality-of-fit (R
2

LN) and the respiration amplitude (RA) for both clinical and RMSM-
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simulated data was similar thus confirming the clinical relevance of the simulation. Finally, 

the RMSM has proven to be a useful tool in studying bolus kinetics and investigating the 

impact of ARG on the accuracy of liver lesion DCEUS quantification parameters.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DAMIANOS C
HRISTOPHID

ES



4-Evaluation of ARG using a respiratory motion simulation model 

74 

 

References 

[1] P. N. Burns, “Harmonic imaging with ultrasound contrast agents.,” Clin Radiol, vol. 

51 Suppl 1, pp. 50–5, Feb. 1996. 

[2] C. Huang-Wei, A. Bleuzen, P. Bourlier, J. Roumy, A. Bouakaz, L. Pourcelot, and F. 

Tranquart, “Differential diagnosis of focal nodular hyperplasia with quantitative 

parametric analysis in contrast-enhanced sonography.,” Invest Radiol, vol. 41, no. 3, 

pp. 363–8, Mar. 2006. 

[3] L. Galiuto, B. Garramone, A. Scarà, A. G. Rebuzzi, F. Crea, G. La Torre, S. Funaro, 

M. Madonna, F. Fedele, and L. Agati, “The Extent of Microvascular Damage 

During Myocardial Contrast Echocardiography Is Superior to Other Known Indexes 

of Post-Infarct Reperfusion in Predicting Left Ventricular Remodeling,” J Am Coll 

Cardiol, vol. 51, no. 5, pp. 552–9, Feb. 2008. 

[4] R. Senior et al., “Detection of coronary artery disease with perfusion stress 

echocardiography using a novel ultrasound imaging agent: two Phase 3 international 

trials in comparison with radionuclide perfusion imaging.,” Eur J Echocardiogr, 

vol. 10, no. 1, pp. 26–35, Jan. 2009. 

[5] K. Wei, A. R. Jayaweera, S. Firoozan, A. Linka, D. M. Skyba, and S. Kaul, “Basis 

for detection of stenosis using venous administration of microbubbles during 

myocardial contrast echocardiography: bolus or continuous infusion?,” J Am Coll 

Cardiol, vol. 32, no. 1, pp. 252–260, Jul. 1998. 

[6] M. Averkiou, M. Bruce, S. Jensen, P. Rafter, T. Brock-Fishe, and J. Powers, 

“Pulsing schemes for the detection of nonlinear echoes from contrast 

microbubbles,” in 9th European Symposium on Ultrasound Contrast Imaging, 2004, 

pp. 17–24. 

[7] S. R. Wilson and P. N. Burns, “Microbubble-enhanced US in body imaging: what 

role?,” Radiology, vol. 257, pp. 24–39, 2010. 

[8] A. Muhi, T. Ichikawa, U. Motosugi, H. Sou, H. Nakajima, K. Sano, M. Sano, S. 

Kato, T. Kitamura, Z. Fatima, K. Fukushima, H. Iino, Y. Mori, H. Fujii, and T. 

Araki, “Diagnosis of colorectal hepatic metastases: Comparison of contrast-

enhanced CT, contrast-enhanced US, superparamagnetic iron oxide-enhanced MRI, 

and gadoxetic acid-enhanced MRI,” J. Magn. Reson. Imaging, vol. 34, no. 2, pp. 

326–335, Aug. 2011. 

[9] F. Tranquart et al., “Role of contrast-enhanced ultrasound in the blinded assessment 

of focal liver lesions in comparison with MDCT and CEMRI: Results from a 

multicentre clinical trial,” Eur. J. Cancer Suppl., vol. 6, no. 11, pp. 9–15, Sep. 2008. 

[10] M. Averkiou, M. Lampaskis, K. Kyriakopoulou, D. Skarlos, G. Klouvas, C. 

Strouthos, and E. Leen, “Quantification of tumor microvascularity with respiratory 

gated contrast enhanced ultrasound for monitoring therapy.,” Ultrasound Med Biol, 

vol. 36, no. 1, pp. 68–77, Jan. 2010. 
DAMIANOS C

HRISTOPHID
ES



4-Evaluation of ARG using a respiratory motion simulation model 

75 

 

[11] M. Bertolotto, G. Pozzato, L. S. Crocè, F. Nascimben, C. Gasparini, M. A. Cova, 

and C. Tiribelli, “Blood flow changes in hepatocellular carcinoma after the 

administration of thalidomide assessed by reperfusion kinetics during microbubble 

infusion: preliminary results.,” Invest Radiol, vol. 41, no. 1, pp. 15–21, Jan. 2006. 

[12] N. Lassau, S. Koscielny, L. Chami, M. Chebil, B. Benatsou, A. Roche, M. Ducreux, 

D. Malka, and V. Boige, “Advanced hepatocellular carcinoma: early evaluation of 

response to bevacizumab therapy at dynamic contrast-enhanced US with 

quantification--preliminary results.,” Radiology, vol. 258, no. 1, pp. 291–300, Jan. 

2011. 

[13] C. F. Dietrich, M. A. Averkiou, J.-M. Correas, N. Lassau, E. Leen, and F. Piscaglia, 

“An EFSUMB introduction into Dynamic Contrast-Enhanced Ultrasound (DCE-US) 

for quantification of tumour perfusion.,” Ultraschall Med, vol. 33, no. 4, pp. 344–

51, Aug. 2012. 

[14] E. Leen, M. Averkiou, M. Arditi, P. Burns, D. Bokor, T. Gauthier, Y. Kono, and O. 

Lucidarme, “Dynamic contrast enhanced ultrasound assessment of the vascular 

effects of novel therapeutics in early stage trials.,” Eur Radiol, vol. 22, no. 7, pp. 

1442–50, Jul. 2012. 

[15] A. Thapar, J. Shalhoub, M. Averkiou, C. Mannaris, A. H. Davies, and E. L. S. Leen, 

“Dose-dependent artifact in the far wall of the carotid artery at dynamic contrast-

enhanced US.,” Radiology, vol. 262, no. 2, pp. 672–9, Feb. 2012. 

[16] M. Lampaskis and M. Averkiou, “Investigation of the relationship of nonlinear 

backscattered ultrasound intensity with microbubble concentration at low MI.,” 

Ultrasound Med Biol, vol. 36, no. 2, pp. 306–12, Mar. 2010. 

[17] D. Klein, M. Jenett, H.-J. Gassel, J. Sandstede, and D. Hahn, “Quantitative dynamic 

contrast-enhanced sonography of hepatic tumors.,” Eur. Radiol., vol. 14, no. 6, pp. 

1082–91, Jun. 2004. 

[18] H. S. Markus and M. J. Harrison, “Estimation of cerebrovascular reactivity using 

transcranial Doppler, including the use of breath-holding as the vasodilatory 

stimulus.,” Stroke, vol. 23, no. 5, pp. 668–73, May 1992. 

[19] S. Mulé, N. Kachenoura, O. Lucidarme, A. De Oliveira, C. Pellot-Barakat, A. 

Herment, and F. Frouin, “An automatic respiratory gating method for the 

improvement of microcirculation evaluation: application to contrast-enhanced 

ultrasound studies of focal liver lesions.,” Phys Med Biol, vol. 56, no. 16, pp. 5153–

65, Aug. 2011. 

[20] G. Renault, F. Tranquart, V. Perlbarg, A. Bleuzen, A. Herment, and F. Frouin, “A 

posteriori respiratory gating in contrast ultrasound for assessment of hepatic 

perfusion.,” Phys Med Biol, vol. 50, no. 19, pp. 4465–80, Oct. 2005. 

[21] N. Rognin, R. Campos, J. Thiran, T. Messager, P. Broillet, P. Frinking, M. Mercier, 

and M. Arditi, “A new approach for automatic motion compensation for improved 

estimation of perfusion quantification parameters in ultrasound imaging,” in 

Proceedings of the 8th French Conference on Acoustics, 2006, pp. 61–65. 

DAMIANOS C
HRISTOPHID

ES



4-Evaluation of ARG using a respiratory motion simulation model 

76 

 

[22] N. G. Rognin et al., “Parametric imaging for characterizing focal liver lesions in 

contrast-enhanced ultrasound.,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 

57, no. 11, pp. 2503–11, Nov. 2010. 

[23] J. Zhang, M. Ding, F. Meng, M. Yuchi, and X. Zhang, “Respiratory motion 

correction in free-breathing ultrasound image sequence for quantification of hepatic 

perfusion,” Med Phys, vol. 38, no. 8, pp. 4737–4748, Aug. 2011. 

[24] D. Christofides, E. L. S. Leen, and M. A. Averkiou, “Improvement of the accuracy 

of liver lesion DCEUS quantification with the use of automatic respiratory gating.,” 

Eur. Radiol., Apr. 2015. 

[25] D. Christofides, E. Leen, and M. Averkiou, “Automatic respiratory gating for 

contrast ultrasound evaluation of liver lesions.,” IEEE Trans. Ultrason. Ferroelectr. 

Freq. Control, vol. 61, no. 1, pp. 25–32, Jan. 2014. 

[26] C. Strouthos, M. Lampaskis, V. Sboros, A. McNeilly, and M. Averkiou, “Indicator 

dilution models for the quantification of microvascular blood flow with bolus 

administration of ultrasound contrast agents.,” IEEE Trans Ultrason Ferroelectr 

Freq Control, vol. 57, no. 6, pp. 1296–310, Jun. 2010. 

[27] G. Barrois, A. Coron, T. Payen, A. Dizeux, and L. Bridal, “A multiplicative model 

for improving microvascular flow estimation in dynamic contrast-enhanced 

ultrasound (DCE-US): theory and experimental validation.,” IEEE Trans. Ultrason. 

Ferroelectr. Freq. Control, vol. 60, no. 11, pp. 2284–94, Nov. 2013. 

[28] S. Fleming, M. Thompson, R. Stevens, C. Heneghan, A. Plüddemann, I. 

Maconochie, L. Tarassenko, and D. Mant, “Normal ranges of heart rate and 

respiratory rate in children from birth to 18 years of age: a systematic review of 

observational studies.,” Lancet, vol. 377, no. 9770, pp. 1011–8, Mar. 2011. 

[29] A. Jain, Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice-

Hall, 1989. 

[30] M. A. Zocco et al., “Early prediction of response to sorafenib in patients with 

advanced hepatocellular carcinoma: The role of dynamic contrast enhanced 

ultrasound,” J. Hepatol., vol. 59, no. 5, pp. 1014–1021, 2013. 

[31] D. G. Altman and J. M. Bland, “Standard deviations and standard errors.,” BMJ, vol. 

331, no. 7521, p. 903, Oct. 2005. 

[32] R. Scheaffer, M. Mulekar, and J. McClave, Probability and Statistics for Engineers, 

5th ed. Cengage Learning, 2010. 

[33] J. M. Hudson, R. Williams, C. Tremblay-Darveau, P. S. Sheeran, L. Milot, G. A. 

Bjarnason, and P. N. Burns, “Dynamic contrast enhanced ultrasound for therapy 

monitoring.,” Eur. J. Radiol., 2015.  

 DAMIANOS C
HRISTOPHID

ES



 

 

Submitted for review; by Damianos Christofides, Edward Leen, Brahman Dharmarajah, 

Alun Davies, Andrew Nicolaides and Michalakis Averkiou in European Radiology. 2015 

Jul 

Patent Application: Michalakis Averkiou, Edward Leen, and Damianos Christofides, 

“Evaluation of carotid plaque using contrast enhanced ultrasonic imaging,” World 

Intellectual Property Organization Provisional Patent Application #PCT/IB2015/050452, 

2015. (Appendix 2) 

77 

 

 

 

5                                                                          

Carotid atherosclerotic plaque 

perfusion of symptomatic and 

asymptomatic patients with DCEUS 

 

 

 

 

 

 

 

 

 

DAMIANOS C
HRISTOPHID

ES



5-Carotid plaque perfusion of symptomatic and asymptomatic patients with DCEUS 

78 

 

Abstract  

Objectives: To detect differences in the extent of carotid intraplaque microflow between 

symptomatic and asymptomatic patients using both qualitative and quantitative dynamic 

contrast-enhanced ultrasound (DCEUS) analysis. 

Methods Twenty-seven patients were enrolled in the study and underwent DCEUS of the 

carotid artery. The extent of the microflow within the carotid plaques was qualitatively 

graded as 1 if more of 50% of their area was covered by moving microbubbles otherwise a 

score of 0 was given. Quantitative analysis was also performed in which the percent 

perfusion coverage of the carotid plaques was calculated. The qualitative and quantitative 

analyses were performed by two independent observers. The study was approved by the 

UK National Research Ethics Service and informed consent was obtained. 

Results: The proportion of asymptomatic patients that received a qualitative score of 1 was 

significantly greater than the symptomatic(p<0.05). The quantitative scores of carotid 

plaque percent perfusion coverage were significantly higher in asymptomatic patients 

compared to symptomatic(p<0.05). Significant inter-observer agreement was 

demonstrated(p<0.05).  

Conclusions: Qualitative and quantitative analysis demonstrated that carotid plaques from 

asymptomatic patients had a greater extent of microflow compared to symptomatic 

patients. The increased perfusion in asymptomatic patients is indicative of plaque 

vulnerability in some of the plaques examined.      

Key Points:  

 DCEUS quantification can measure the percent perfusion coverage of carotid plaques 

 Carotid plaques from symptomatic patients have reduced perfusion coverage compared 

to asymptomatic 

 Quantitative DCEUS can monitor the microflow in carotid plaques for risk stratification 

Keywords: Contrast Agents; Carotid Artery Plaque; Neovascularization,;Ultrasound 

Imaging;Microbubbles 

5.1 Introduction 

Stroke is a significant cause of death in the western world accounting for more than 

5% of deaths in the United States[1] and 650,000 deaths annually in Europe[2]. Up to 20 % 

of ischemic strokes can be attributed to stenosis in extra-cranial carotid arteries[3]. The 

ability to categorize which carotid atherosclerotic plaques are likely to cause symptoms is a 

key challenge in addressing the high morbidity and mortality caused by stroke.  
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Histological results by Moreno et al[4] showed that plaques that have ruptured 

contained a higher density of microvessels than non-ruptured plaques. Furthermore 

McCarthy et al[5] showed that significantly more neovessels are formed in plaques from 

symptomatic patients than from asymptomatic patients. The histology studies suggest that 

plaques that are vulnerable in causing symptoms are at some point of their evolution 

perfused to a greater extent than non-vulnerable plaques.  

Non-invasive imaging techniques are an ideal tool for the characterization of 

perfusion in carotid atherosclerotic plaques. Dynamic contrast enhanced ultrasound 

(DCEUS) utilizes gas filled microbubbles as a pure intravascular contrast agent to detect 

very low velocity blood flow (<1 cm/sec) in carotid atherosclerotic plaques. In a qualitative 

DCEUS study by Staub et al[6] the perfusion characteristics of 293 atherosclerotic plaques 

were evaluated and a correlation was established between the degree of plaque 

echogenicity in B-mode and the extent of moving microbubbles within the carotid plaque 

using DCEUS.  Coli et al[7] demonstrated an association between qualitative scores of 

intraplaque microbubble coverage and the histological density of microvessels in carotid 

plaques. Xiong et al[8] employed  both qualitative and quantitative DCEUS to demonstrate 

increased signal enhancement in carotid atherosclerotic plaques from symptomatic patients 

compared to asymptomatic. A quantitative analysis of carotid plaque DCEUS loops from 

22 patients with severe (70-99%) stenosis by Hoogi et al[9] showed a strong correlation 

between the percentage coverage of plaque neovascularization measured using histology 

and quantitative DCEUS. Furthermore Akkus et al[10] found significant correlation 

between the area of intraplaque neovascularization calculated using an adaptive image 

threshold technique and visual scores from 45 carotid plaque DCEUS loops. 

In this study DCEUS was performed on 27 symptomatic and asymptomatic patients 

with carotid atherosclerotic plaques. A novel DCEUS quantification technique was 

developed specifically to address the challenge of measuring the extent of low intensity 

microflow within carotid plaques. The purpose of this study is to detect differences in the 

extent of carotid intraplaque microflow between symptomatic and asymptomatic patients 

using both qualitative and quantitative DCEUS analysis. 

5.2 Materials and methods 

5.2.1 Patient population 

Ethical approval was obtained prior to commencing the study (Ref 09/H0706/89).  

Written informed consent was obtained from all patients. Twenty-seven consecutive 
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patients with a discrete 50-99% internal carotid artery stenosis in relation to the normal 

distal internal carotid diameter (NASCET equivalent[11]) were recruited from 

neurovascular clinics between January 2011 and January 2012.  Inclusion criteria were: 

male or female patients aged 18 years or over with a 50-99% (NASCET) internal carotid 

artery stenosis.  Exclusion criteria were: atrial fibrillation, mechanical heart valve, 

cardiomyopathy, elevated troponin, contrast contraindication, NYHA III/IV cardiac failure, 

myocardial infarction within 3 months and neurovascular ischemic symptoms >4 weeks 

previously. An independent stroke physician assigned the diagnosis of carotid territory 

ischemic symptoms after a workup including intracranial computed tomography, 24 hour 

electrocardiogram, troponin result, echocardiography and for cases of amaurosis fugax, an 

ophthalmic opinion.  If no history of stroke, transient ischemic attack or amaurosis were 

present, an asymptomatic status was recorded.  

5.2.2 DCEUS acquisitions 

The Philips iU22 scanner (Philips Medical Systems, Bothell, WA) along with the L9-

3 linear array probe was utilized for all imaging. System settings were: power modulation 

(PM) with a mechanical index (MI) of 0.06 and frame rate between 13-16 Hz. One minute 

loops of carotid plaques were acquired in dual contrast imaging mode. The 2D gain was 

carefully set just above the noise floor for maximum sensitivity. The focus was set below 

the depth of the plaque for a uniform pressure field[12]. A 2 mL bolus of microbubble 

contrast agent Sonovue (Bracco s.p.a., Milan, Italy) was injected intravenously. A constant 

imaging plane was maintained by monitoring the “tissue” side of the acquisition. 

The acquired DCEUS loops were evaluated off-line by an independent, blinded 

observer, not present at the DCEUS scans. The twenty-seven (27) patients enrolled in the 

study were analyzed both quantitatively and qualitatively with the methods developed in 

the present work. 

5.2.3 Qualitative analysis 

The DICOM files of the patient’s scans were exported to QLAB for off-line analysis 

by a trained observer. The observer changed zoom, contrast and brightness in low light 

ambient conditions to optimize viewing of the DCEUS loop images.  Moving 

microbubbles within the ROI encompassing the plaque were considered indicators of 

plaque perfusion. The trained observer would visually compare the area that had moving 

microbubbles to the total area of the plaque. A qualitative assessment was then made in 

regards to the percentage area of the plaque covered with moving microbubbles. Carotid 
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atherosclerotic plaques were graded as having significant perfusion if more than 50% of 

their area was considered to be covered by moving microbubbles. 

5.2.4 Quantitative analysis 

The quantitative analysis was divided into two stages. The first stage of the analysis 

was performed in QLAB version 8.1 (Philips Medical Systems, Bothell, WA). The data 

derived from the QLAB stage of the analysis were then accessed from MATLAB (2012b, 

The MathWorks Inc., Natick, MA) in order to quantify the extent of perfusion in the 

carotid plaques.   

 

Figure 5-1: a) Contrast side of the dual-contrast imaging carotid plaque acquisition with the carotid plaque 

delineated using QLAB’s polygon tool to draw the region of interest (ROI), b) tissue side of the dual-contrast 

imaging carotid plaque acquisition and c) zoom-in on the carotid plaque on the contrast image with the upper 

level of the contrast window decreased to enhance the low intensity signal within the plaque. d) Detection of 

microbubble arrival in carotid atherosclerotic plaques. The arrival time was defined as the first time instance 
at which the mean linear intensity value from within the ROI encompassing the plaque exceeds the maximum 

value present in the background noise (dashed line). 

For the first stage of the analysis the DICOM files of the acquired DCEUS loops 

were transferred to QLAB. A region of interest (ROI) was drawn around the plaque using 

the ROI polygon tool of QLAB’s quantification suite (Figure 5-1a-c). Caution was taken 

not to include any nearby tissue or arterial lumen in the ROI. Frames in which there was an 

excessive amount of out of plane motion were manually removed. In-plane motion was 

treated with the motion compensation tool of QLAB. Manual corrections in the position of 

the ROI were also performed as a final step in ensuring that the ROI encompassed only the 
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plaque. The steps described are crucial in the correct quantification of the loops since the 

low intensity microflow signal within the plaque can be contaminated by high intensity 

signal from within the lumen and the surrounding tissue, and thus introducing errors in the 

quantification results.  

The second stage of the quantitative DCEUS analysis was performed in MATLAB. 

The DCEUS loop image data were imported into MATLAB. For each loop, the ROI was 

reconstructed in MATLAB using the coordinates of the vertices of QLAB’s polygon ROI. 

The coordinates of the polygon vertices were imported into MATLAB from the 

“parameters.xml” file, as well as the 2D translation values from the motion compensation, 

the rejected frame indices and the time intensity curve (TIC) of the ROI.  

 

Figure 5-2: Results of dynamic contrast-enhanced ultrasound (DCEUS) quantification analysis of a near-wall 

carotid plaque (delineated with white line) from a symptomatic patient. a) Parametric map of p-values from 

the two sample Kolmogorov-Smirnoff test used to detect intraplaque perfusion is shown. b) A threshold of 

0.001 is used on the p-value parametric map to differentiate between perfused (p-value<0.001) and non-

perfused pixels (p-value≥0.001). In this symptomatic patient the plaque had 32% perfusion coverage. 

The first step in the MATLAB quantification analysis was to determine the arrival 

time of the contrast agent in the ROI. The arrival time was defined as the first time instance 

at which the TIC intensity value exceeds the maximum value of the background noise 

recorded (Figure 5-1d). The ROI was then applied as a binary mask on each valid frame of 

the DCEUS loop. At each pixel location within the ROI the distribution of image intensity 
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values recorded before the arrival of the contrast agent in the ROI were considered to be a 

sample from the noise distribution. For each pixel the noise distribution sample was 

compared to the distribution of image intensity values after the arrival of the contrast 

agent. The comparison of the two samples was performed using the two sample 

Kolmogorov-Smirnoff test at a significance level of 0.1%. If the two samples differed 

significantly (i.e. p-value<0.001) then that pixel location was considered to be perfused, 

since the distribution of image intensity values after the arrival of the contrast agent differs 

significantly from that of noise. The number of pixels in the ROI that were perfused was 

divided by the total number of pixels in the ROI to evaluate the percent perfusion coverage 

of the plaque (Figure 5-2).  

5.2.5 Statistical analysis 

The qualitative and quantitative analysis was performed by a vascular surgery 

research fellow and repeated by a Professor of Bioengineering with more than 20 years of 

experience in clinical ultrasound research. Inter-observer agreement was calculated using 

the intraclass correlation coefficient and Cohen’s kappa for the quantitative and qualitative 

analysis respectively. The qualitative scores reported were mutually agreed upon following 

the inter-observer agreement analysis. From the quantitative analysis the mean of the 

percent perfusion coverage calculated by the two observers was reported.  

Differences in the qualitative scores between asymptomatic and symptomatic 

patients were tested using Fisher’s exact test. The Mann-Whitney U test was used to 

calculate differences in the percent perfusion coverage of the carotid atherosclerotic 

plaques between symptomatic and asymptomatic patients. Furthermore the results from the 

quantitative analysis were placed into two groups based on their qualitative score. The 

differences between the two groups were compared using the unpaired two sample t-test. 

The significance level for the statistical tests was set at a p-value of 0.05. The data were 

analyzed using the R programming language (R Foundation for Statistical Computing, 

Vienna, Austria). 

5.3 Results 

5.3.1 Qualitative analysis 

A substantial degree of agreement was found between the two observers with a 

calculated Cohen’s kappa of 0.703 (p<0.05). The results of the qualitative analysis show 

that 12 (77%) out of the15 asymptomatic patients exhibited greater than 50% perfusion 
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coverage of the carotid atherosclerotic plaques compared with 4 (33%) out of the 12  

symptomatic patients (P < 0.05) (Figure 5-3). 

 

Figure 5-3: Bar plot of the results from the qualitative analysis of the carotid plaque DCEUS scans. 

Symptomatic patients showed significantly higher proportions of plaques graded as having moving 

microbubbles in less than 50% of their area. * = P≤0.05 

5.3.2 Quantitative analysis 

Strong inter-observer agreement was demonstrated for the quantification analysis 

with a calculated intraclass correlation coefficient of 0.831(95% confidence interval, 

0.662-0.919). The values of percent perfusion coverage for symptomatic patients 

concentrated in their majority (8/12) below 50% with 4/12 of symptomatic patients 

exhibiting percent perfusion coverage of over 80%. The percent perfusion coverage of 

plaques in asymptomatic patients was evenly spread between 40-100%, with only one of 

the asymptomatic plaques having percent perfusion coverage less than 50% (Figure 5-4). 

The results of the quantitative analysis were compared with the qualitative visual scores 

(Figure 5-5) and a significant increase of the percent perfusion coverage was demonstrated 

for the plaques that received a qualitative score of higher than 50% perfusion coverage 

(p<0.05). 

Asymptomatic Symptomatic
0

2

4

6

8

10

12
>50% qualitative perfusion
<50% qualitative perfusion

N
u

m
b

e
r 

o
f 

p
a

ti
e

n
ts

*

DAMIANOS C
HRISTOPHID

ES



5-Carotid plaque perfusion of symptomatic and asymptomatic patients with DCEUS 

85 

 

 

Figure 5-4: Scatter plot of percentage perfusion coverage of plaques between symptomatic and asymptomatic 

patients. Plaques in asymptomatic patients have percentage perfusion coverage values covering the range 

between 40 to 100% whereas the majority of plaques from symptomatic patients (8/12) have less than 50% 

perfusion coverage. * = P≤0.05. 

 

Figure 5-5: Boxplots of the percentage perfusion coverage of carotid plaques grouped according to results of 

the qualitative analysis. Carotid atherosclerotic plaques that received a qualitative score of 1 where 

considered to be perfused in more than 50% of their area. The percentage perfusion coverage values where 

significantly higher in the group with a qualitative score of 1 compared with the values that received a 

qualitative score of 0. * = P≤0.05, Power=1.0. 
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5.4 Discussion 

Both the qualitative and quantitative analysis of this study found that carotid 

atherosclerotic plaques from symptomatic patients exhibit significantly less perfused area 

compared with asymptomatic patients. The results of the qualitative and quantitative 

analysis were examined for inter-observer variability with correlation scores demonstrating 

substantial and strong agreement respectively.  In addition the results of the quantitative 

analysis where validated against the qualitative scores.  

Akkus et al[10] performed a DCEUS quantitative study of 45 plaques using an 

adaptive image threshold technique to detect the perfusion within the plaques. The patients 

participating in the study presented with symptomatic stenosis and they exhibited mean 

percentage perfusion coverage of 32.7% ± 24.7% (mean ± standard deviation). In the 

current study the mean percentage perfusion coverage for symptomatic patients was 47.4% 

±34.9% (N=12) compared with 80.1% ±21.2% for the asymptomatic patients (N=15). 

Using an unpaired t-test no significant difference can be shown between the symptomatic 

patients from Akkus et al and this study (p=0.192). On the contrary when comparing the 

results of the asymptomatic patients of the current study and the mean percentage coverage 

reported by Akkus et al a significant difference can be demonstrated (p<0.001). The 

agreement of the results for the symptomatic patients between our study and the one by 

Akkus further amplifies our finding that carotid plaques from symptomatic patients often 

have reduced perfusion coverage compared to asymptomatic patients.    

In a quantitative DCEUS study by Hoogi et al[9] active contouring image 

segmentation[13] was used to detect the microflow within carotid plaques. Regions of 

contrast enhancement within a plaque were considered areas of neovascularization. Strong 

correlation was demonstrated between the ratio of intraplaque area neovascularization 

calculated using DCEUS and histology. No differences could be shown between the 

symptomatic and asymptomatic patients. Although this contradicts the findings of the 

current study there are several differences in the methodology and carotid plaque 

characteristics to be considered. The current study uses statistics to detect perfusion in 

carotid plaques whereas Hoogi et al utilizes image segmentation. In addition the ratio of 

intraplaque area neovascularization reported by Hoogi et al varies approximately between 

0 and 20% whereas in the present study the percent perfusion coverage varies between 10 

and 100%. The low percentage of the perfused plaque area reported by Hoogi et al also 

differs from the mean percent perfused area of 32.69% reported by Akkus et al and could 
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indicate that perhaps the plaques analyzed had a high content of intraplaque calcification or 

prior hemorrhage and thrombus formation. 

Xiong et al[8] used an indicator dilution model to calculate the peak intensity (PI) in 

plaques and the ratio of the PI in plaques to the PI in the lumen of arteries. The study found 

that plaques from symptomatic patients exhibit more intense contrast agent enhancement 

than asymptomatic patients. The quantification method used in this study is different from 

the one was used by Xiong et al since we used pixel-by-pixel parametric imaging to 

calculate the percent perfusion coverage of the plaque. No relationship can be established 

between percent perfusion coverage and PI since high values of the PI could be originating 

from a very large signal in a small area within the plaque and do not represent the extent of 

perfusion within the whole of the plaque. Although indicator dilution models have been 

used in the quantification of liver lesion perfusion[14] and myocardial blood flow[15] the 

low flows observed in the plaques of this study does not satisfy the assumptions made by 

indicator dilution models[14], [16]–[19] and that is the reason why we have not used it. 

Furthermore Akkus et al[10] found very poor correlation between the PI metric used by 

Xiong et al and visual scores of intraplaque neovascularization prompting them to 

disregard any further consideration of this parameter. 

DCEUS qualitative studies have shown a strong correlation between visual scores of 

enhanced plaque perfusion and predictors of plaque vulnerability. Staub et al[6] used a 

qualitative grading system to categorize carotid plaques as having no perfusion, moderate 

perfusion and extensive appearance of moving microbubbles. A significant correlation 

between plaque echolucency in B-mode and the qualitative DCEUS scores was 

established. Plaque echolucency in B-mode is a suggested predictor of cerebrovascular 

events[20], [21] and therefore of plaque vulnerability. In addition, in a study of 52 carotid 

plaques by Coli et al[7] a significant correlation was shown between DCEUS enhancement 

and microvessel density measured with histology.  

Contrary to the qualitative DCEUS studies mentioned, this work does not aim to 

identify vulnerable plaques but to detect differences in the perfusion characteristics 

between plaques from symptomatic and asymptomatic patients. It is reasonable to expect 

that a group of asymptomatic patients will have plaques with a mixed of degree of 

vulnerability. This can be clearly seen from the 40-100% range of percentage perfusion 

coverage values for the asymptomatic patients in this study (Figure 5-4). Once a patient 

exhibits symptoms there is a high probability that a rupture event took place which could 

have disrupted the microvessel network which in turn may give rise to a reduced perfusion 
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of the plaque. The presence of large necrotic cores, thrombus and hemorrhage could also 

contribute to the reduced perfusion of plaques from symptomatic patients [22]. 

Although the statistical results of this study show that plaques from symptomatic 

patients to have significantly less perfusion compared with asymptomatic patients a close 

examination of the quantitative data (Figure 5-4) is needed. Whereas the symptomatic 

perfusion data are mostly concentrated below 50% (8/12) the remaining four plaques have 

perfusion coverage of more than 80%. The authors believe that these four cases are not 

necessarily outliers to the low percentage perfusion coverage distribution of symptomatic 

patients but could be vulnerable plaques with extensive neovascularization that have 

caused symptoms without their microvessel network being yet disrupted. Similarly, close 

examination of the perfusion of asymptomatic patients, shows that one had percent area 

less than 50%, and four 50-60% and the rest higher. It is possible that some of the 

asymptomatic patients with high degree of perfusion might develop symptoms in the future 

thus suggesting that they may be the ones with the vulnerable plaques. Similar conclusions 

may be drawn from the qualitative analysis in Figure 5-3.  

Several limitations can be identified in the present study. Although the results are 

statistically significant further studies with a larger number of patients and a stricter 

classification of their symptom status will give more confidence in the findings and further 

progress the research towards identifying the characteristics of vulnerable plaques.  

Furthermore the percent perfusion coverage calculated in the quantitative analysis of 

this study is representative of only a 2D slice through the plaque. Future volumetric 3D 

studies can provide additional insight into the perfusion patterns of vulnerable plaques and 

also increase sensitivity. In addition, in 2D DCEUS the plaque might not be perfectly 

centered on the elevation plane of the ultrasound probe or might be thin compared to the 

elevation plane thickness and signal from nearby lumen might be perceived as originating 

from within the plaque.  

Inherent limitations to carotid plaque DCEUS include the presence of non-linear 

artefact[23], insufficient resolution and limited sensitivity in detecting the perfusion in the 

microscopic scale of plaque vasculature, signal saturation due to the large discrepancy in 

the image intensity between the lumen and the plaque, and the presence of non-linear 

signal cancellation artefacts (from the nonlinear pulsing schemes). These sources of 

uncertainty do not just affect the current study but are intrinsically present in all of the 

DCEUS studies done in the past too.  DAMIANOS C
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Another limitation is that the findings of the current study have not been verified 

against histology. Even though histological results were available for the symptomatic 

patients and a limited number of high risk asymptomatic patients there was no ethical 

justification for performing surgery on the majority of asymptomatic patients. Thus any 

comparison of the results from the DCEUS analysis with histology would be biased. 

Furthermore the current study aims to identify differences in the extend of carotid plaque 

perfusion based on the appearance of symptoms rather than performing a direct 

comparison with histology.  

In conclusion, a new metric of plaque neovascularization, percent plaque perfused 

area, was developed and measured in a group of both symptomatic and asymptomatic 

patients. The new metric is more appropriate for plaque perfusion quantification than other 

metrics based on bolus wash-in/washout kinetics. The findings of our study show that 

plaques in patients that already demonstrated symptoms had reduced perfused area, 

possibly due to intraplaque hemorrhage, large necrotic cores and thrombus formation. The 

opposite was observed in asymptomatic patients and their plaques had increased perfused 

area. The increased perfusion in asymptomatic patients is suggesting that some of these 

plaques may be vulnerable. Thus, a more appropriate study in the future would be one in 

which plaques are identified in asymptomatic patients and evaluated through a period of 

time in order to better understand and monitor plaque microvessel flow progression. 
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6.1 Summary 

Dynamic contrast enhanced ultrasound (DCEUS) can have enormous clinical 

potential in analyzing and visualizing the dynamics of tissue perfusion. However the 

necessary tools need to be developed to enable clinicians to perform reproducible, reliable 

and quantitative analysis of DCEUS in routine clinical practice. The work in this thesis 

was motivated by the need for algorithms and methods in order to remove noise and isolate 

useful information of quantitative DCEUS. Challenges in quantifying the perfusion in 

tissues with a high amount of blood flow using indicator dilution models were addressed in 

Chapters 2-4 with the use of an automatic respiratory gating (ARG) algorithm developed 

for liver lesion DCEUS quantification. Indicator dilution models cannot be applied in cases 

of low amount of blood flow for that reason a method for calculating the percent perfusion 

coverage of carotid atherosclerotic plaques was developed in Chapter 5.     

In Chapter 2 the technical aspects of the ARG algorithm were presented. In essence 

the ARG algorithm fully automates the manual respiratory gating process described by 

Averkiou et al. [1]. Instead of relying on an observer to identify the diaphragm or other 

moving bright reflectors the ARG algorithm made use of frame subtraction [2] to detect 

moving structures in the tissue loop of a dual-contrast imaging acquisition. An observer 

would also be able to avoid selecting moving structures that are not related to respiration 

like vessel movement due to the pulsating blood pressure. The ARG algorithm analyzes the 

motion from each moving structure detected using frequency domain analysis and the prior 

knowledge that the frequency of respiration is between 0.1-0.5Hz [3].  

Since the ARG algorithm was designed with the aim to be used clinically, 

computational speed was an important technical characteristic that needed to be taken into 

account. The ARG algorithm developed in this thesis can process 100 frames in less than a 

second. For a 2 minute clinical liver lesion dual-contrast imaging acquisition at a frame 

rate of 8Hz the ARG algorithm can perform respiratory gating in less than 9 seconds. This 

calculation time compares favorably with the current solutions proposed in the literature 

and is 6 times faster than the second fastest reported algorithm [4].  

The ARG algorithm presented can readily remove out-of-plane as well as in-plane 

respiratory motion. Removing out-of-plane motion can be a challenge especially for 

motion compensation schemes that make use of image registration since out-of-plane 

respiratory motion can cause anatomical landmarks to move completely outside the 

imaging plane causing failures in the registration process [5], [6]. Zhang et al. [7] 
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implemented a scheme by which image registration was used for the rejection of frames 

with excessive out-of-plane motion. However the extra steps implemented by Zhang et al. 

in order to remove out-of-plane motion resulted in a clinically unacceptable computational 

time of 3 minutes for 100 frames. 

Respiratory motion correction algorithms based on independent [8] and principal [4] 

component analysis can efficiently remove out-of-plane motion as well as in-plane motion 

but allow only for the end-of-respiration breathing cycle phases to be extracted. This can 

cause problems in liver lesion DCEUS quantification since a crucial step of the 

quantification process requires the operator to choose an optimal frame to delineate the 

lesion in order to extract a time intensity curve representative of the lesion’s perfusion. If 

this optimal frame is not part of the extracted loop then the DCEUS quantification may not 

be as reliable or fail completely if the lesion is not present on the imaging plane due to out-

of-plane motion. The ARG algorithm presented in Chapter 2 allowed for the user to choose 

the optimal frame to perform the quantification and used that frame as the “trigger” frame 

to extract the ARG-processed loop. This allowed not only for the optimal frame to be 

present in the extracted loop but to also be the reference by which respiratory gating was 

performed.   

Chapter 3 assessed the impact of the ARG algorithm on clinical liver lesion DCEUS 

quantification. The main hypothesis tested in Chapter 3 is whether there is a varying 

degree by which respiration affects DCEUS quantification. It is likely that the use of ARG 

offers marginal, if any benefit at all, to liver lesion DCEUS quantification if respiration 

induces minimal movement on a lesion. Respiration amplitude (RA) was developed and 

introduced as a metric by which to quantify the effect of respiration on liver lesion 

DCEUS. To the author’s knowledge no other study has quantified the effect of respiration 

on liver lesion DCEUS quantification.  

It is expected that as RA increases the accuracy of liver lesion DCEUS quantification 

decreases. This was demonstrated by comparing the RA with the quality of fit of the 

lognormal indicator dilution model [9] on liver lesion time intensity curves (R
2

LN). As 

expected with the increase in RA the quality of fit decreased with a strong linear correlation 

of -0.96, whereas with the use of ARG the correlation was reduced by 33%. Overall the 

quality of fit increased significantly with the use of ARG with 88% of the lesion time 

intensity curves exhibiting an R
2

LN of greater than 0.8 compared with only 32% without 

ARG. Furthermore the use of ARG had a significant impact on the quantification 

parameters of rise time (RT), peak intensity (PI) and area under the curve (AUC). However 
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this was not the case for liver lesion time intensity curves with an RA of less than 1.5 with 

ARG affecting none of the quantification parameters. This further demonstrated the need 

of RA in the analysis of respiratory motion compensation algorithms before any 

conclusions can be reached on their clinical impact. 

The need of determining the absolute decrease in accuracy of liver lesion DCEUS 

quantification in the presence of respiratory motion was addressed in Chapter 4. Although 

metrics like the R
2

LN and RA are useful in analyzing the effect of the ARG algorithm on 

clinical data, it was impossible to quantify the exact impact of ARG since the true lesion 

perfusion was not known. A respiratory motion simulation model (RMSM) was 

constructed from clinical data to formulate the perfusion and respiratory kinetics of the 

model. The perfusion of a virtual spherical lesion inside of a cubic liver parenchyma was 

determined by a lognormal normal indicator dilution model derived from clinical averages 

of RT, MTT and PI. The virtual lesion was captured on the imaging frame as a disk with 

variable location and radius due to in-plane and out-of-plane respiratory motion 

respectively.  

The RMSM showed that the ARG algorithm reduced the maximum percentage error 

in the quantification parameters caused by out-of-plane motion almost nine-fold from 

27.3% to 3.1%.  A decrease of the maximum percentage error from 32.2% to 6.2% was 

calculated in the case of in-plane respiratory motion. The clinical relevance of the RMSM 

was demonstrated by comparing the relationship between the R
2

LN and RA derived from the 

RMSM and clinical liver lesion DCEUS. The slope of the linear regression for the clinical 

data increased from -0.33 to -0.12 with the use of ARG compared to a similar increase of -

0.40 to -0.14 for the RMSM.  

In addition to investigating the impact of respiration, the RMSM was also used for 

the analysis of the effect of multiplicative noise on liver lesion DCEUS quantification. The 

gamma distribution multiplicative noise model proposed by Barrois et al. [10] was used to 

introduce noise onto the RMSM.  It was shown in Chapter 4 that the multiplicative noise 

model increased the error introduced from respiratory motion by 50% for the amplitude 

parameters of AUC and PI; whereas no increase in error was demonstrated for the RT and 

MTT. However the increase in the error of the amplitude quantification parameters was 

theoretically predicted using the moments of the gamma distribution to be directly 

proportional to the true values of the parameters. 

Finally in Chapter 5 a novel method was introduced in quantifying the percent 

perfusion coverage of the microflow within carotid atherosclerotic plaques. The DCEUS 
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quantitative method was verified using visual qualitative scores of the extent of moving 

microbubbles within the plaque. The area of perfusion within carotid plaques was 

determined to be significantly less in symptomatic patients compared to asymptomatic 

using both qualitative and quantitative DCEUS. Furthermore the results of the study were 

tested for inter-observer variability demonstrating strong agreement for the qualitative and 

quantitative analysis. The values of percent perfusion coverage of Chapter 5 were in 

agreement with results reported by Akkus et al. [11] for patients with symptomatic 

stenosis, supporting the validity of the analysis performed in this thesis. 

An important conclusion drawn from Chapter 5 was that the comparison of the extent 

of plaque perfusion between symptomatic and asymptomatic patients does not provide a 

definitive answer to the perfusion characteristics of vulnerable carotid plaques. The results 

indicate that as the disease progresses in asymptomatic patients the perfusion coverage of 

the plaques will increase until symptoms occur. Symptoms are associated with the 

presence of hemorrhage, large necrotic cores and thrombus in the carotid plaques [13] that 

explains the reduced perfusion coverage observed in symptomatic patients. Additional 

work is needed both in terms of validating tools for carotid plaque microflow 

quantification and in the design of new clinical studies. In order to characterize vulnerable 

plaques a clinical study would need to monitor the carotid plaque microflow in 

asymptomatic patients prospectively for a period of time to identify the microflow patterns 

that can lead to symptoms. 

6.2 Conclusion 

In his bestselling book “The Signal and the Noise” Nate Silver says that “The signal 

is the truth. The noise is what distracts us from the truth.”[14]. The methods and 

algorithms developed in this thesis were aimed to remove noise from liver lesion and 

carotid plaque DCEUS quantification so that the true perfusion values could be quantified. 

In the case of liver lesion DCEUS the ARG algorithm developed has been shown to 

significantly reduce the noise imparted by respiration onto lesion time intensity curves. 

The reduction in respiration noise resulted in greater accuracy for liver lesion DCEUS 

quantification demonstrated using both clinical data and the RMSM. In addition the ARG 

algorithm was fast, easy-to-implement and allowed the user to choose the breathing cycle 

phase to be extracted. The algorithm for detecting the percent perfusion coverage of the 

carotid plaques was able to show distinct perfusion characteristics between symptomatic 

and asymptomatic patients. Furthermore the results from the algorithm were validated 
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using qualitative visual scores. Although overall the results were inconclusive in answering 

the crucial question whether quantitative DCEUS can predict vulnerable carotid plaques 

they do provide the tools and insight that is crucial in the design of future studies in 

answering this question.  

6.3 List of Original Contributions 

 In this thesis advanced algorithms and methods were designed that contribute 

significantly to the reliability of liver lesion and carotid plaque DCEUS quantification. 

Specifically a novel ARG algorithm was developed that overcame the limitations of 

the algorithms presented in the literature in terms of computational speed, ease of 

implementation, and efficiency in removing both in-plane and out-of-plane respiratory 

motion.   

 

 The RA was introduced as an important metric for quantifying the amount of 

respiratory motion present in liver lesion DCEUS acquisitions. The relationship of the 

quality of fit of the lognormal indicator dilution model onto liver lesion time intensity 

curves and the RA was used to demonstrate the efficiency of the ARG algorithm in 

significantly reducing respiratory motion across the range of RA observed in the clinic.  

 

 A RMSM was constructed to overcome the limitation of establishing the true 

perfusion characteristics of liver lesions in the clinic. The RMSM allowed for the 

absolute determination of the efficiency of the ARG algorithm in improving the 

accuracy of DCEUS quantification parameters in the presence of respiratory motion. 

Furthermore the clinical relevance of the RMSM was validated by comparing the 

relationship between RA and R
2

LN extracted from the simulation and clinical data.  

 

 The effect of multiplicative noise on liver lesion DCEUS quantification was also 

investigated using the RMSM. It was demonstrated that multiplicative noise had no 

impact on the time parameters of RT and MTT. However it was shown that it did 

affect the amplitude parameters of PI and AUC through a theoretically derived linear 

relationship.  

 

 A novel algorithm was developed for the quantification of the extent of perfusion 

within carotid atherosclerotic plaques. The algorithm made use of statistics, image and 
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signal processing to remove sources of noise from carotid plaque DCEUS 

quantification and calculate the percent perfusion coverage. The results of the 

quantification method were verified against visual scores of the extent of plaque 

perfusion.  

 

 Carotid plaque percent perfusion coverage scores were able to show a significant 

decrease in the extent of microflow in symptomatic patients compared to 

asymptomatic. The carotid plaque DCEUS quantification algorithm developed 

contributes to the limited number of studies in the literature and provides better 

understanding for the design of future clinical studies.       
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 This application claims the benefit of U.S. 

provisional application serial no. 61/753,898 filed 

January 17, 2013, which is incorporated herein by 

reference. 

 This invention relates to ultrasonic diagnostic 5 

imaging systems and, in particular, to the use of 

ultrasonic diagnostic imaging systems to assess the 

progress of therapeutic treatment of tumors. 

 International patent publication WO 2006/090309 

(Bruce et al.) describes an ultrasonic imaging 10 

technique for detecting lesions in the liver by use 

of an ultrasonic contrast agent.  A bolus of contrast 

agent is introduced into the body and the time of 

arrival of the contrast agent in the liver is 

detected.  When a bolus of contrast agent travels 15 

through the blood vessels of the body and begins to 

appear at a specific organ or location in the body, 

the build-up of contrast in the images is termed the 

"wash-in" of the contrast agent.  As the infusion of 

contrast agent plateaus at the location in the body 20 

and then declines as it is carried away from the 

location by the flow of blood, the decline is termed 

the "wash-out" of the contrast agent.  In the 

aforementioned patent publication the inventors take 

advantage of the fact that the flow of blood to the 25 

liver comes from two sources, the hepatic artery and 

the portal vein.  Since the flow of blood during the 

first, arterial phase of blood flow will perfuse HCC 

and metastatic liver lesions first, the inventors 

identify such lesions by detecting the times of 30 

arrival of contrast agent in the liver during the 

arterial and the later portal phase of blood flow.  

An area of early wash-in of contrast agent to the 

liver can be symptomatic of a lesion. 

 Once a lesion or metastasis has been identified 35 

by this and/or other means, a treatment regimen is 

generally prescribed by a physician.  The therapy may DAMIANOS C
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involve hyper-/hypothermia, cytotoxic chemotherapy, 

or anti-angiogenesis agents, for example.  The 

therapy is usually not performed in a single session, 

but in several sessions over a period of weeks or 

months.  At each therapy session it is generally 5 

desirable for a physician to assess the progress of 

the therapy to determine its effectiveness for the 

patient.  The lesion or metastasis may be imaged 

diagnostically to see whether it is shrinking, for 

instance.  But often the progress of treatment is 10 

slow and only small changes in the lesion or 

metastasis have occurred since the previous session.  

In such instances it is desirable to assess the 

progress of therapy quantitatively by measuring 

certain characteristics of the tumor.  One such 15 

measure is the regression of tumor angiogenesis.  As 

a lesion or metastasis shrinks with the necrosis of 

its cells, the microvasculature which developed to 

nourish the lesion will provide a smaller supply of 

blood for the lesion and may itself begin to shrink.  20 

One quantitative approach is to assess this 

regression of angiogenesis, the decline in 

performance of the lesion's microvasculature.  A 

preferred technique for doing this is with a contrast 

agent which brightly illuminates the blood flow 25 

during the uptake of blood containing the agent, and 

the subsequent decline in brightness during the wash-

out phase of the contrast agent.  Measurement of the 

time-intensity curve of this reperfusion enables 

precise assessment of the success of the treatment 30 

therapy toward lesion necrosis.  But the acquisition 

of the necessary image sequence of contrast agent 

wash-in and wash-out requires that the imaging probe 

steadily image the lesion in the image plane during 

the wash-in and wash-out period of the contrast 35 

agent, which can last for as long as 100 seconds or 

more.  However, the liver is adjacent to the DAMIANOS C
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diaphragm in the body, causing the patient’s 

respiratory motion to cause some small movement of 

the aiming of the probe during the imaging procedure.  

This movement can cause the lesion to move into and 

out of the image plane during the procedure.  As a 5 

result, the brightness of the lesion and its contrast 

agent in the image will vary with the lesion movement 

rather that solely due to contrast agent wash-in and 

wash-out.  Consequently it is desirable to eliminate 

these unwanted motional effects when acquiring images 10 

used for perfusion assessment. 

One technique for eliminating motional effects 

is described in U.S. Pat. 8,529,453 (Averkiou et al.)  

This technique involves acquiring images of the 

target anatomy, in this case the liver, which also 15 

show a portion of the diaphragm in the image.  The 

size and position of the diaphragm in the images is 

used as a landmark.  Images containing the diaphragm 

in the desired size and position are used for 

perfusion assessment, while images in which the 20 

diaphragm has changed its size and/or position or is 

absent entirely are deleted from subsequent 

processing.  This in effect retains for processing 

only those images in which the lesion is shown in a 

consistent image plane.  But recognition and deletion 25 

of images from the sequence is a manual process, 

requiring individual inspection and assessment of 

each image and its view of the diaphragm.  

Accordingly it is desirable to eliminate motional 

effects in an automated process which is both robust 30 

and requires less intensive user analysis of images. 

In accordance with the principles of the present 

invention, methods are described for processing 

medical images so that movement due to a certain 

physiological function, such as the cyclic movement 35 

due to respiration or cardiac motion, can be 

identified and selectively removed from subsequently DAMIANOS C
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processed images.  This is preferably done by 

processing only those image frames which belong to 

the same range of phases of the motion cycle.  By 

processing only those image frames acquired during 

the same phase range of the motion cycle, the image 5 

data is more uniformly affected by the motion and 

disparate motional effects are largely eliminated 

from the data, allowing for more precise quantitative 

assessment of anatomical performance such as 

perfusion.  Clinical applications of the methods 10 

include liver, kidney, pancreas, breast, and prostate 

cancer assessment. 

In one implementation, a sequence (loop) of 

images is acquired during one, and preferably more, 

cycles of the motion.  The normal breathing rate of 15 

an adult at rest is 8-16 breaths per minutes, so the 

acquisition of a one-minute loop will acquire images 

over about 8-16 cycles of respiratory motion, for 

instance.  The acquired images are tagged with their 

times of acquisition so that these times can be 20 

related to phases of the motion.  Strong reflecting 

structures are identified in the images and their 

motion followed throughout the loop, which is 

identified by their cyclic variation in position 

and/or brightness throughout the loop.  For instance, 25 

a reflector may start at one location in an image, 

move to another location over a first series of 

images, then back to its original location over a 

second series of images, the time to acquire the two 

series of images being the time of one cycle of 30 

motion.  As a second example, a reflector may start 

with a given brightness in an image, increase in 

brightness during a first series of images, then 

decrease in brightness back to its original intensity 

during a second series of images.  Again, the time 35 

required to acquire the two series of images is the 

time of a motion cycle.  The identified time or times DAMIANOS C
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of motion cycles may be compared with typical cycle 

times of the physiological function in question to 

see that they correlate.  For example, if an 

identified motion cycle is outside an expected range 

of 5-20 breaths per minute, the cycle measurement 5 

would be discarded as a respiratory cycle and another 

cycle measurement made. 

Once the motion cycles of the loop have been 

identified, those images which were acquired during 

desired phases of the motion cycle are accepted for 10 

further processing while the remainder are discarded.  

For example, it may be desired to accept for 

processing only those images which were acquired 

during a 25% range of phases of a respiratory cycle.  

Images acquired within this range of the respiratory 15 

phase of each cycle are then accepted for processing 

for quantified measurement, such as time-intensity 

curve and reperfusion measurement. 

 In the drawings: 

 FIGURE 1 illustrates in block diagram form an 20 

ultrasonic diagnostic imaging system constructed in 

accordance with the principles of the present 

invention. 

 FIGURES 2 and 3 illustrate details of the 

operation of the QLab processor of FIGURE 1 when 25 

calculating a time-intensity curve for perfusion 

assessment. 

 FIGURES 4a, 4b, and 4c illustrate the variation 

of the appearance of a tumor and blood vessels as the 

image plane moves due to respiratory motion. 30 

FIGURE 5 illustrates in block diagram form a 

first method for removing respiratory motion effects 

from image characteristic quantification as performed 

by the ultrasound system of FIGURE 1 in accordance 

with the principles of the present invention. 35 

FIGURE 6 illustrates in block diagram form a 

second method for removing respiratory motion effects DAMIANOS C
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from image characteristic quantification as performed 

by the ultrasound system of FIGURE 1 in accordance 

with the principles of the present invention. 

FIGURES 7a, 7b and 7c are ultrasound images 

illustrating the formation of a motion information 5 

matrix used to extract a respiratory curve in 

accordance with the present invention. 

FIGURE 8 illustrates respiratory gating using a 

respiratory curve in accordance with the present 

invention. 10 

FIGURE 9 illustrates time-intensity curves of a 

liver metastasis processed with and without 

respiratory gating in accordance with the present 

invention. 

 Referring first to FIGURE 1, an ultrasound 15 

system constructed in accordance with the principles 

of the present invention is shown in block diagram 

form.  This system operates by scanning a two or 

three dimensional region of the body being imaged 

with ultrasonic transmit beams.  As each beam is 20 

transmitted along its steered path through the body, 

the beam returns echo signals with linear and 

nonlinear (fundamental and harmonic frequency) 

components corresponding to the transmitted frequency 

components.  The transmit signals are modulated by 25 

the nonlinear response of contrast agent microbubbles 

encountered by the beam, thereby generating echo 

signals with harmonic components. 

 The ultrasound system of FIGURE 1 utilizes a 

transmitter 16 which transmits waves or pulses of a 30 

selected modulation characteristic in a desired beam 

direction for the return of harmonic echo components 

from scatterers within the body.  The transmitter is 

responsive to a number of control parameters which 

determine the characteristics of the transmit beams, 35 

including the frequency components of the transmit 

beam, their relative intensities or amplitudes, and DAMIANOS C
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the phase or polarity of the transmit signals.  The 

transmitter is coupled by a transmit/receive switch 

14 to the elements of an array transducer 12 of an 

ultrasound probe 10.  The array transducer can be a 

one dimensional array for planar (two dimensional) 5 

imaging or a two dimensional array for two 

dimensional or volumetric (three dimensional) 

imaging.  A two dimensional matrix array can also be 

operated in an xMatrix mode in which a single plane 

(xPlane) which can be steered over a volumetric 10 

region is scanned by the matrix array probe. 

 The transducer array 12 receives echoes from the 

body containing fundamental (linear) and harmonic 

(nonlinear) frequency components which are within the 

transducer passband.  These echo signals are coupled 15 

by the switch 14 to a beamformer 18 which 

appropriately delays echo signals from the different 

transducer elements then combines them to form a 

sequence of linear and harmonic signals from along 

the beam direction from shallow to deeper depths.  20 

Preferably the beamformer is a digital beamformer 

operating on digitized echo signals to produce a 

sequence of discrete coherent digital echo signals 

from a near field to a far field depth of the image.  

The beamformer may be a multiline beamformer which 25 

produces two or more sequences of echo signals along 

multiple spatially distinct receive scanlines in 

response to a single transmit beam, which is 

particularly useful for 3D imaging.  The beamformed 

echo signals are coupled to an ensemble memory 22. 30 

In the ultrasound system of FIGURE 1, multiple 

waves or pulses are transmitted in each beam 

direction using different modulation techniques, 

resulting in the reception of multiple echoes for 

each scanned point in the image field.  The echoes 35 

corresponding to a common spatial location are 

referred to herein as an ensemble of echoes, and are DAMIANOS C
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stored in the ensemble memory 22, from which they can 

be retrieved and processed together.  The echoes of 

an ensemble are combined in various ways by the 

nonlinear signal separator 24 to produce the desired 

nonlinear or harmonic signals.  For example, two 5 

pulses with different phase or polarity modulation 

can be transmitted to each point in the image field.  

When the echoes resulting from the two pulses are 

received by the ultrasound system and additively 

combined, the different modulation causes the 10 

fundamental frequency components of the echoes to 

cancel and the harmonic components to reinforce each 

other.  This separates out the harmonic components of 

the echo signals.  Alternatively, when the two echoes 

are subtracted from each other, the fundamental 15 

frequency components are reinforced and the harmonic 

components cancel.  This separates out fundamental 

frequencies for construction of a standard B mode 

image.  This modulation is referred to as "pulse 

inversion," and can be done by phase, polarity or 20 

amplitude modulation as described in US patents 

5,706,819 (Hwang et al.), 5,951,478 (Hwang et al.), 

and 5,577,505 (Brock Fisher et al.) 

The separated signals are filtered by a filter 

30 to further remove unwanted frequency components, 25 

then subjected to B mode or Doppler detection by a 

detector 32.  The detected signals are coupled to a 

nonlinear signal combiner 34 to reduce image speckle 

content.  The signals are then processed for the 

formation of two dimensional, three dimensional, 30 

spectral, parametric, or other desired image in image 

processor 36, and the image is then displayed on a 

display 38.  Detected fundamental (linear) signals 

which do not need speckle reduction processing are 

coupled directly to the image processor 36 for image 35 

formation and display. 

In the system of FIGURE 1, the ultrasound image DAMIANOS C
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data is also coupled to a QLab image processor 40 for 

the production of time-intensity curves and contrast 

agent wash-in and wash-out characteristics.  The 

time-intensity curves and characteristics produced by 

the QLab processor are coupled back to the image 5 

processor where they may be displayed numerically or 

graphically on the display 38 along with the 

ultrasound images.  A standard QLab processor which 

is suitable for the production of time-intensity 

curves is available from Philips Healthcare of 10 

Andover, Massachusetts. 

A standard QLab processor produces the well-

known time-intensity curves, also referred to as 

perfusion curves or reperfusion curves.  See US 

patent 5,833,613 (Averkiou et al.), international 15 

patent publication WO 2005/099579 (Rafter), and 

international patent publication WO 2005/054898 (Garg 

et al.)  As these publications illustrate, the build-

up of contrast agent at points in the tissue (points 

in the image) is monitored during the arrival of the 20 

contrast agent at locations in the body.  The amount 

of contrast agent at a point is indicated by the 

intensity of echoes returned from contrast agent 

microbubbles at each point, and is present in a 

sequence of images acquired by low power (low MI) 25 

transmission as the contrast agent washes into the 

tissue.  A time-intensity curve can be formed of this 

build-up of contrast intensity and its subsequent 

decline during wash-out of the contrast agent for 

each point in the tissue which returns the time 30 

sequence of echoes frame-by-frame.  A qualitative 

presentation of the time-intensity curves for the 

entire tissue being viewed can be formed by coloring 

each pixel in an anatomical image with a color that 

represents a parameter of the time-intensity curves 35 

at each point in the image.  The Garg et al. 

application illustrates the formation of a parametric DAMIANOS C
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image of the myocardium where the color of each pixel 

in the image represents the peak level attained by 

the time-intensity curve at each point in the 

myocardium, for example.  Alternatively, the slope of 

the time-intensity curve can be used to indicate the 5 

rate of reperfusion instead of the peak.  See also US 

patent 6,692,438 (Skyba et al.) 

In an implementation of the present invention, 

contrast agent perfusion echo data is acquired over a 

sequence (loop) of images as the contrast agent 10 

arrives at the location of a metastasis in the body, 

builds up, and then washes out.  The intensity values 

of the echoes will thus start from a baseline level 

of no contrast agent present, then rise, plateau, and 

decline as the contrast agent washes out.  A curve-15 

fitting algorithm then fits this data variation to an 

error function defined as 

     00 / ITtterfAtI   

where I(t) is the linear intensity at time t, A 

is the maximum intensity over the baseline offset, T 20 

is wash-in time parameter which is linearly 

proportional to wash-in time (e.g., from 5%-95%), I0 

is baseline offset, and t0 is a time offset. The wash-

in time is preferably extracted from the fitted curve 

rather than the noisy image data.  Preferably the 25 

contrast agent echo data does not undergo data 

compression prior to this processing so that the data 

remains in its acquired linear relationship.  Another 

approach is to fit the whole time-intensity curve 

(instead of just the wash-in part) to appropriate 30 

mathematical models as the lognormal distribution for 

example defined as 
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where   and   are the mean and standard 

deviation of the normal distribution from which the 35 

logarithmic transformation was obtained.  The curve DAMIANOS C
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can be scaled horizontally by varying μ and changed 

in terms of skewness by varying σ.  The area under 

the curve is A, 0t is the time offset, and C  is the 

baseline intensity offset. The lognormal fitted curve 

is used to extract the wash-in time. 5 

The ultrasound system of FIGURE 1 can compute a 

quantitative measure of the perfusion of a 

metastasis, a parameter referred to as the wash-in 

time ratio (WITR).  The WITR is computed as shown by 

the block diagram of FIGURE 2.  From a temporal 10 

sequence of images of a metastasis or lesion during 

contrast agent wash-in and wash-out, contrast agent 

intensity values are computed for the ROIMet of the 

metastasis 50, a region of interest in the 

metastasis, as indicated by box 72.  As explained 15 

above, these values can be computed by combining the 

pixel values of the metastasis ROI for each image of 

the sequence acquired during wash-in.  In box 74 

intensity values are computed for an ROIPar of normal 

parenchyma of the tissue.  This may be done by 20 

tracing a region of normal tissue in an image of the 

liver metastasis and using the normal tissue 

perfusion pixel values within this second tracing.  

These values are therefore perfusion values of normal 

tissue.  In box 76 a time-intensity curve is fitted 25 

to the perfusion values of ROIMET, and in box 78 a 

time-intensity curve is fitted to the perfusion 

values of ROIPAR.  The fit is not always necessary but 

it gives a better estimation of WITR.  While WITR can 

be measured directly from the data, noise in the data 30 

can interfere with the accuracy of the measurement, 

hence the preference for curve-fitting.  A wash-in 

time parameter WIT is found for each curve, for 

example by use of the error function or lognormal 

distribution described above.  This determines a 35 

wash-in time parameter for both the metastasis and 

normal parenchyma, WITMET and WITPAR, respectively.  A DAMIANOS C
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wash-in time ratio WITR is then computed from the two 

wash-in parameters by dividing WITMet by WITPar as 

shown by box 70.  The effect of normalizing WITMet by 

the wash-in time parameter of normal tissue is to 

reduce or eliminate the effects of variables in the 5 

procedure such as bolus size, cardiac output, and 

ultrasound system settings, which may differ from one 

therapy session to another.  Thus, comparable 

quantitative measures of the growth or shrinkage of 

the metastasis as indicated by its angiogenesis can 10 

be produced for each therapy session over the period 

of weeks or months that the patient is being treated. 

Another quantified measure of metastasis 

angiogenesis which reduces or removes the effects of 

bolus injection rate, cardiac output of the patient, 15 

or variation in machine settings is illustrated in 

FIGURE 3.  A time-intensity curve is fitted for each 

of the ROIs of the metastasis and the parenchyma as 

shown in boxes 76 and 78.  In boxes 82 and 84, the 

range of each time-intensity curve is normalized.  A 20 

convenient normalization scale is zero to one.  In 

box 80 a difference curve ΔT-I Curve is computed as 

the difference between the two normalized curves T-I 

CurveMET and T-I CurvePAR.  Further details of this 

production of a time-intensity curve may be found in 25 

U.S. Pat. 8,529,453 (Averkiou et al.) which is 

incorporated herein by reference. 

As mentioned above, a typical period of contrast 

agent wash-in and wash-out can last for as long as 

100 seconds or more.  This means that a clinician 30 

acquiring the image data must maintain the same image 

of the lesion steadily for 100 seconds so that each 

intensity value is of the same region of the lesion.  

If the probe moves during the acquisition, for 

instance, the lesion can move out of the image plane 35 

and the data acquired cannot be used.  Even if the 

probe is held steady against the body of the patient, DAMIANOS C
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ES



Appendix 1-Eliminating motion effects caused by physiological function 

117 

 

the lesion can still move relative to the probe field 

of view due to the respiratory motion of the patient.  

This is illustrated by the ultrasound images of 

FIGURES 4a, 4b, and 4c.  These are images of a liver 

lesion indicated by the white pointer over the images 5 

with the hepatic artery visible in the images beneath 

the lesion and above the circle 2.  These images were 

acquired while the sonographer was trying to hold the 

probe steady against the abdomen of the patient so 

that the same anatomy was continuously shown in the 10 

images from one image to the next.  But the images 

are affected by the breathing of the patient and the 

respiratory motion causes the lesion and the desired 

image to move in and out of the image plane of the 

probe.  This is best illustrated in these images by 15 

the variation seen of the hepatic artery.  In FIGURE 

4a it is seen that the image cut plane through the 

hepatic artery is through the central region of the 

artery and the artery appears large in the image.  

But that central portion of the artery has moved out 20 

of the image plane in FIGURE 4b and the artery 

appears much thinner as a different cut plane through 

the artery has moved into the image plane.  In FIGURE 

4c the artery is barely visible as it has move almost 

completely out of the probe’s image plane.  25 

Corresponding, the size and position of the lesion 

indicated by the white pointer also changes from one 

image to another.  One way to overcome the 

deleterious effect of respiratory motion is to gate 

the image acquisition to the respiratory cycle.  A 30 

respiratory signal can be acquired by known means 

such as an elastic band with strain or pressure 

sensors around the chest of the patient.  Another 

technique is to transmit small signals between 

sensors across the chest of the patient and measure 35 

the patient's chest impedance variations.  These and 

other techniques can produce cyclical signals of the DAMIANOS C
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respiratory cycle and can be used to gate the 

acquisition of images to the same phase of the 

respiratory cycle. 

In accordance with the principles of the present 

invention, respiratory gating is performed by image 5 

processing as shown by the block diagram of FIGURE 5, 

which illustrates one implementation of the present 

invention.  In step 50 a sequence of successive 

images is acquired during one or more motion cycles.  

This image loop could be a sequence of images 10 

acquired during the 100+ seconds of contrast agent 

wash-in and wash-out mentioned above, and could 

comprise hundreds or even thousands of images.  

Obviously, manually processing this many images would 

be a painstaking task.  An image loop this long would 15 

cover over 20 respiratory cycles at a nominal 

breathing rate of thirteen breaths per minute.  A 

loop this long would cover about 100 heartbeat cycles 

at a nominal heart rate of one beat per second.  This 

loop would therefore be contaminated by many cycles 20 

of motion of either physiological phenomenon. 

In step 52 the cyclical motion is identified.  

One way to do this may be understood with reference 

to the images of FIGURE 4.  It is seen in these 

images that the hepatic artery above the circle 2, 25 

filled as it is with contrast agent, is a very bright 

reflector in the images, indeed it is the largest 

bright structure in the images.  The artery is seen 

to be at its largest and brightest when the cut plane 

of the image passes through the center of the artery 30 

as it is in FIGURE 4a, and less so in the other 

images.  Thresholding or decimation of the pixel 

values of these images below the hepatic artery 

brightness will extract the pixels of the hepatic 

artery from the center of the images and the pixel 35 

values summed or integrated to indicate the 

brightness of this structure in each image.  The DAMIANOS C
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recurrence of the peak brightness of the hepatic 

artery each time it moves fully into the cut plane of 

the probe image plane indicates the periodicity of 

the respiratory motion moving the image plane, and 

the duration of the motional cycle is the time 5 

between the acquisition of two such images as shown 

by their time-tagging.  With the motion cycle thus 

identified, the images acquired during a desired 

phase or phase range of the motion are identified in 

step 54.  For instance, it may be decided to use each 10 

image of peak brightness (FIGURE 4a) and the five 

images preceding and succeeding the peak brightness 

image in every respiratory cycle.  These eleven 

images of each respiratory cycle are then selected 

for perfusion assessment processing as shown in step 15 

56.  The images which were acquired during less 

desirable phases of the respiratory cycle are omitted 

from processing.  As a result the perfusion 

measurement should be relatively unaffected by the 

effects of respiratory motion. 20 

FIGURE 6 illustrates a preferred implementation 

of the present invention in block diagram form.  

Using the acquired image sequence from step 50 in 

this drawing, the motion information contained in the 

image sequence is extracted in what is referred to 25 

herein as a “motion information matrix.”  FIGURES 7a-

7d illustrate one way to form a motion information 

matrix (MIM).  FIGURE 7a illustrates an ultrasound 

image of the liver and FIGURE 7b illustrates an image 

which is an average of all of the image frames in the 30 

loop containing the image of FIGURE 7a.  Each frame 

of the loop such as that of FIGURE 7a is subtracted 

from the average of the frames (FIGURE 7b) and pixel 

intensities above a certain threshold are assigned a 

value of 1 with all others assigned a value of zero.  35 

This produces a binary image of bright structures in 

each image such as the one shown in FIGURE 7c.  The DAMIANOS C
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resulting binary images are added together to form an 

MIM as shown in FIGURE 7d, an image of structures 

which can be readily identified in the image loop and 

which are potentially affected by motion. 

The next step 62 is the selection of a trigger 5 

frame from the loop.  A trigger frame is one which 

will be included among the finally processed images.  

It may be one, for instance, in which the lesion is 

clearly defined as by a high intensity or large size 

in the image. Or it may be an image which appears 10 

virtually identical to previously and/or successively 

acquired images in the loop and thus exhibits little 

or no motion contamination.  The trigger frame may be 

designated by the user by inspection, or may be 

selected by an automated method such as by 15 

subtracting each pair of successive frames and using 

using one of the frames which produced the most 

minimal difference image.  Candidate structure for 

motion identification are then extracted from the 

trigger frame for motion curve formation as shown by 20 

step 64.  This extraction may comprise a binary image 

produced from the trigger frame as discussed above.  

The structures extracted from the trigger image are 

compared with the structures of the MIM to choose one 

which is significantly affected by motion.  A 25 

structure of the MIM which varies over a wide 

intensity range or positional range could be 

selected, for instance.  The frequency of the 

variation can be compared with the frequency of the 

physiological phenomenon to ascertain that its 30 

variation corresponds to that of the physiological 

function.  If it does not, the structure is 

disregarded and another structure of the MIM selected 

for motion identification.  To aid in the selection, 

the structures of the MIM can be ranked in accordance 35 

with their likelihood of exhibiting effects of 

motion.  The structure which is found to be the DAMIANOS C
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region of greatest interest for motion extraction is 

then used as a binary mask that is used to extract a 

curve of the respiratory or other bodily motion.  The 

mask of the structure is applied to the corresponding 

location in each image in the loop and a series of 5 

intensity values extracted from the image frames 

which exhibit intensity variation during the loop 

that is representative of the cyclical motion.  These 

intensity values are plotted as a function of time 

(or, equivalently, frame number in the sequence) to 10 

yield an approximate respiratory curve.  The initial 

plot may be fitted to an average curve to produce a 

smoothly varying respiratory curve as shown by 

respiratory curve 100 in FIGURE 8.  Known curve 

fitting techniques may be used to produce a smoothly 15 

varying curve, such as a piecewise cubic Hermite 

interpolating polynomial fitted to the peaks and 

troughs of the approximate curve, for instance. 

FIGURE 8 illustrates a respiratory curve 100 

formed from respiratory motion intensity variation of 20 

a structure over a loop of 600 image frames.  It is 

seen that the curve 100 indicates 21 respiratory 

cycles occurring during acquisition of the 600 image 

frames.  The small circles 110 at the top of the plot 

indicate some of the discrete frames of the loop.  25 

The circles are shown on the respiratory curve in 

correspondence to the points in the respiratory 

cycles.  A threshold 102 is applied to the curve 100 

to delineate the phase range of each respiratory 

cycle during which image frames will be accepted for 30 

perfusion processing.  For instance, suppose that the 

lower peaks of the respiratory curve are points where 

the patient has fully inhaled, and the upper peaks of 

the curve are points where the patient has fully 

exhaled.  The clinician may decide to use image 35 

frames that all were acquired around the time of full 

exhalation, for example, just before and just after DAMIANOS C
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ES



Appendix 1-Eliminating motion effects caused by physiological function 

122 

 

the patient has fully exhaled.  The system then 

applies a threshold 102 as shown in the drawing which 

delineates, in this example, this phase range of each 

respiratory cycle, which is seen in this example to 

comprise about 30% of each cycle.  The image frames 5 

acquired during this respiratory phase range, the 

frames represented by the circles 110, are then 

selected for processing as shown in step 66 of FIGURE 

6.  The processed image frames of step 68 are thus a 

set of frames which all were acquired during the same 10 

phase range of respiratory motion and should thus 

generally correspond spatially to each other, with 

the structures and lesions of the images appearing 

generally the same in size and position in each of 

the processed images.  This will yield accurate 15 

quantification of physiological measures and 

functions such as time-intensity curve production and 

perfusion assessment.  The data for such 

quantification may be selected from the accepted 

images using the trigger frame.  The lesion is 20 

identified in the trigger frame as a region of 

interest (ROI), and data extracted from the location 

of the ROI in each of the accepted image frames.  

This data is then processed to produce time-intensity 

curves as described above and in European patent EP 2 25 

234 544 B1, the contents of which are incorporated 

herein. 

The foregoing technique was applied to 

clinically acquired image loops from a number of 

liver cancer patients.  FIGURE 9 illustrates time-30 

intensity curves produced in one of these cases, both 

with and without respiratory phase gating.  The 

intensity data of a region of interest in the images 

was fitted to a lognormal function to produce time-

intensity curves of reperfusion.  The goodness of fit 35 

was quantified using the R-squared value and the root 

mean squared error technique.  The time-intensity DAMIANOS C
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curve 120 was produced from data of all of the image 

frames without gating, and is seen to be affected by 

the highly oscillatory characteristic of the 

intensity values 140 sampled at the ROI of the 

images, which contains large spikes due to sampling 5 

of images outside the lesion caused by respiratory 

motion of the anatomy.  When gating is applied in 

accordance with the present invention and only the 

image frames 110 acquired around the lower phase 

range of motion are used, the oscillatory effects of 10 

the intensity data are greatly diminished because 

sampling more uniformly occurs within the lesion 

since the size and position of the lesion ROI are 

more uniform over the image frames 110 accepted for 

processing. 15 

The mathematical formulae used in an 

implementation of the present invention is detailed 

in Appendix A, and their use in a method of the 

present invention explained. 
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WHAT IS CLAIMED IS: 

 

1. A method for reducing the effect of 

physiological motion in image data acquired from a 

sequence of medical images of a subject comprising: 5 

acquiring a sequence of medical images 

containing image data of a target region of a subject 

during the occurrence of cyclical physiological 

motion affecting the target region; 

using image data of the images to identify 10 

cycles of the physiological motion; 

identifying images acquired during a certain 

range of phases of the identified motion cycles; and 

processing image data of the identified images 

to assess a property of the target region. 15 

 

2. The method of Claim 1, wherein the 

acquiring step further comprises acquiring a loop of 

medical images which are affected by respiratory 

motion or cardiac motion. 20 

 

3. The method of Claim 1, wherein using image 

data further comprises using image data of the same 

corresponding location in each of the images to 

identify cycles of the physiological motion. 25 

 

4. The method of Claim 3, wherein using image 

data further comprises using intensity image data. 

 

5. The method of Claim 1, wherein processing 30 

further comprises processing image data of the target 

region from each of the identified images. 

 

6. The method of Claim 1, wherein acquiring 

further comprises acquiring a sequence of two 35 

dimensional medical images of an image plane during 

the occurrence of physiological motion affecting the DAMIANOS C
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target region by moving the target region in and out 

of the image plane. 

 

7. The method of Claim 1, wherein acquiring 

further comprises acquiring a sequence of two 5 

dimensional medical images of an image plane during 

the occurrence of physiological motion affecting the 

target region by varying its intensity or location in 

an image during the acquisition. 

 10 

8. The method of Claim 1, wherein using image 

data further comprises extracting a motion 

information matrix from the image data. 

 

9. The method of Claim 8, wherein using image 15 

data further comprises selecting a trigger frame 

acquired during the range of phases of one of the 

cycles. 

 

10. The method of Claim 9, wherein using image 20 

data further comprises using image data of the 

trigger frame and data of the motion information 

matrix to select a structure in the images whose 

image data is to be used for motion curve 

identification. 25 

 

11. The method of Claim 10, wherein using image 

data further comprises identifying a motion curve 

using the variation in brightness or position of the 

selected structure over the sequence of images. 30 

 

12. The method of Claim 1, wherein using image 

data of the images to identify cycles of motion 

further comprises comparing the frequency of cycles 

of motion to an expected frequency of a cyclical 35 

physiological phenomenon. 
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13. The method of Claim 1, wherein processing 

image data further comprises processing image data 

from the target region in identified images to 

produce a time-intensity curve of perfusion. 

 5 

14. The method of Claim 13, wherein processing 

image data further comprises processing contrast 

agent image data from an image region containing a 

tumor or lesion in identified images to produce a 

time-intensity curve of contrast reperfusion. 10 

 

15. A method for reducing the effect of 

respiratory motion in image data of a time sequence 

of ultrasound images which is to be used to produce a 

time-intensity curve comprising: 15 

acquiring a sequence of ultrasound images 

containing image data of a target region for which a 

time-intensity curve is to be produced, the sequence 

being acquired during the occurrence of respiratory 

motion affecting the target region; 20 

using image data of the images to identify 

cycles of the respiratory motion; 

selecting a range of phases of the identified 

respiratory motion cycles; and 

processing image data of images of the sequence 25 

which were acquired at one of the phases of the 

selected range of phases of the respiratory motion 

cycles. 
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ELIMINATING MOTION EFFECTS IN MEDICAL IMAGES  

CAUSED BY PHYSIOLOGICAL FUNCTION 

 

Abstract of the disclosure: 

 5 

 Ultrasonic imaging methods are described for 

eliminating the effects of physiological motion such 

as respiratory motion from image data of a sequence 

of images which is to be used for quantified analysis 

such as time-intensity curve computation.  A bright 10 

reflector in the images of the loop which exhibits 

motional effects such as cyclical variation in 

brightness or position from image to image is 

identified and its variation used to identify cycles 

of motion.  A phase or range of phases of the cycles 15 

is identified.  Images acquired during the identified 

phase or phase range of the motion cycles during the 

loop are then used for quantified processing. 
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Evaluation of carotid plaque using 

contrast enhanced ultrasonic 

imaging 
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 This invention relates to ultrasonic diagnostic 

imaging systems and, in particular, to the use of 

contrast enhanced ultrasonic imaging to evaluate the 

risk of stroke. 

 The development of plaque in the vascular 5 

system, particularly atherosclerosis in the carotid 

artery, is a common occurrence in many patients.  

Plaque can build up to a degree where partial and 

even total occlusion of blood vessels can occur.  

FIGURE 1 illustrates a blood vessel 110 with the 10 

vessel wall 18 partially cut away to show the lumen 

16 inside, where a plaque build-up 24 is seen.  Since 

the plaque 24 has filled most of the lumen at its 

thickest point it has partially occluded the flow of 

blood through the vessel.  Not only does the plaque 15 

restrict the delivery of fresh blood to tissue and 

organs downstream of the occlusion, but it can also 

trap blood clots in the narrowed lumen, blocking all 

blood flow.  An additional, equally serious 

occurrence can arise from carotid plaque.  Since the 20 

carotid arteries provide the supply of blood to the 

brain, particulate matter in the carotid blood flow 

can pose a risk of cranial vessel occlusion and 

potentially stroke.  Bits of plaque can break loose 

from the endothelial lining of the carotid arteries 25 

and flow to the brain, where they can occlude cranial 

blood vessels of different dimensions and 

functionality, depending on the size of the plaque 

particulates and their path of flow.  It would be 

desirable to be able to identify plaques with this 30 

potential so that intervention can be taken to 

minimize or prevent the potential for stroke. 

 In accordance with the principles of the present 

invention, an ultrasonic diagnostic imaging system 

and method are described which enable the assessment 35 

of the risk of stroke from plaque build-up in the 

carotid artery.  Carotid atherosclerotic plaques have DAMIANOS C
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areas of plaque neovascularization and perfusion.  A 

study using images from twenty-four patients was 

conducted to differentiate between symptomatic and 

asymptomatic patients based on plaque perfusion 

patterns.  In this study the perfusion of carotid 5 

plaques was evaluated both qualitatively and 

quantitatively in order to investigate differences in 

the perfusion between symptomatic and asymptomatic 

patients.  The patients were injected with 2ml of 

Sonovue (Bracco s.p.a., Milan, Italy), an ultrasonic 10 

microbubble contrast agent, and one minute ultrasound 

loops were acquired and saved as the contrast agent 

flowed through the carotid artery and perfused the 

plaque microvasculature with microbubbles.  The 

ultrasound images can be acquired by B mode imaging 15 

which shows the increasing signal intensity from 

microbubbles which perfuse the plaque.  Preferably, 

the images are acquired by colorflow imaging so that 

motion of the microbubbles can simultaneously be 

detected along with signal intensity.  Signals 20 

exhibiting a high intensity harmonic return together 

with Doppler-detected motion at the same location are 

indicative of moving microbubbles at that location.  

This correlation can be used to distinguish over and 

reject signal returns from static bright reflectors 25 

which are often artifacts.  The result is the 

detection of dynamic contrast agent microflow in the 

plaque vasculature. 

Since the ultrasound image sequence is to be 

used to calculate contrast time-intensity curves (T-I 30 

curves) at each point in the plaque, it is important 

to hold the imaging probe as stationary as possible 

during image acquisition so that the plaque in the 

images will spatially correlate over the image 

sequence.  The spatial correlation can be improved by 35 

the use of image stabilization, for instance, and/or 

by detecting and compensating for global motion in DAMIANOS C
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the images as might occur due to probe motion or 

anatomical motion from pulsatility or patient 

movement. 

 For the assessment of contrast perfusion of the 

plaque a region-of-interest (ROI) is drawn around the 5 

plaque in the images.  This delineates the plaque 

without including any portion of the lumen signal so 

that the potentially large amplitude signals 

returning from contrast agent flowing in the carotid 

lumen is excluded from the analysis.  The mean 10 

intensity contrast agent signal from within the ROI 

containing the plaque is sampled across time from 

image to image to generate time intensity curves of 

the carotid plaque.  The mean intensity signal from 

individual points in the plaque (pixels) can be used, 15 

or groups of pixels can be aggregated and the mean 

intensity of signals from the aggregated groups of 

pixels used.  The signal intensity data is assessed 

by comparing the signal levels against a threshold 

noise level and by assessing the distribution of 20 

values of intensity before and after contrast 

arrival.  If there is a significant difference and 

distribution of values characteristic of contrast 

build-up, the pixel is identified as indicating 

perfusion.  The mean T-I curve signal amplitude after 25 

the arrival of the microbubbles into the plaque ROI 

is calculated for each pixel.  A qualitative image of 

the mean intensity signal amplitudes of the pixels 

can be displayed as colors or intensities of a range 

of values to indicate qualitatively the 30 

vascularization of the plaque.  

 In accordance with a further aspect of the 

present invention, quantitative perfusion assessment 

is performed on the pixel data.  The overall number 

of pixels that have perfusion are divided by the 35 

total number of pixels in the delineated image of the 

plaque.  A binary grading system is then applied to DAMIANOS C
HRISTOPHID
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this result.  Zero represents less than 50% of 

carotid plaque area contained moving microbubbles and 

1 represents more than 50% of the carotid plaque area 

contained moving microbubbles.  It was found that for 

the patients of the study the mean contrast agent 5 

intensity signal from the plaques was significantly 

higher for asymptomatic patients (patients with no 

history of plaque particulate breakup) than 

symptomatic patients (patients with a history of 

plaque particulates in the blood flow).  The 10 

qualitative analysis results of the study showed that 

only 25% (3/12) of asymptomatic patients had a score 

of 0 in comparison to 67% (8/12) of symptomatic 

patients. 

 In the drawings: 15 

 FIGURE 1 is an illustration of a blood vessel 

containing plaque. 

 FIGURE 2 illustrates in block diagram form an 

ultrasound system constructed in accordance with the 

principles of the present invention. 20 

 FIGURE 3 illustrates a contrast time-intensity 

curve. 

 FIGURES 4a and 5a are ultrasound images in which 

plaques in carotid arteries have been outlined. 

 FIGURES 4b and 5b illustrate the change in 25 

signal intensity in the plaque areas of FIGURES 4a 

and 5a with the arrival of contrast agent flows in 

the plaques. 

 FIGURE 6 is a flowchart illustrating the steps 

of a method of the present invention. 30 

 FIGURE 7 illustrates four qualitative images of 

atherosclerotic plaque areas with different 

percentages of perfusion. 

 Referring now to FIGURE 2, an ultrasound system 

constructed in accordance with the principles of the 35 

present invention is shown in block diagram form.  An 

ultrasonic probe 12 includes an array 14 of DAMIANOS C
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ultrasonic transducer elements that transmits and 

receives ultrasonic signals.  The array 14 may be a 

one dimensional linear or curved array for two 

dimensional imaging, or may be a two dimensional (2D) 

matrix of transducer elements for electronic beam 5 

steering in three dimensions.  The array 14 may also 

be a one dimensional array that is mechanically swept 

back and forth by the ultrasonic probe 12 to scan a 

three dimensional volume of the body.  The ultrasonic 

transducers in the array 14 transmit ultrasonic 10 

energy and receive echoes returned in response to 

this transmission.  A transmit/receive (“T/R”) switch 

22 is coupled to the ultrasonic transducers in the 

array 14 to selectively couple echo signals from the 

transducer elements to A/D converters 30 during the 15 

receive phase of operation.  The times at which the 

array 14 is activated to transmit signals may be 

synchronized to an internal system clock, or may be 

synchronized to a bodily function such as the heart 

cycle, for which a heart cycle waveform is provided 20 

by an electrocardiography (ECG) device 26.  When the 

heartbeat is at the desired phase of its cycle as 

determined by the waveform provided by the ECG device 

26, the ultrasonic probe 12 is commanded to acquire 

an ultrasonic image.  In the conduct of the method of 25 

the present invention, a continuous sequence of real 

time image frames of a carotid artery is acquired as 

blood containing contrast agent begins to perfuse the 

vasculature of plaques in the carotid. 

Echoes from the transmitted ultrasonic energy 30 

are received by the transducer elements of the array 

14, which generate echo signals that are coupled 

through the T/R switch 22 and digitized by analog to 

digital (“A/D”) converters 30 when the system uses a 

digital beamformer.  Analog beamformers may 35 

alternatively be used.  The A/D converters 30 sample 

the received echo signals at a sampling frequency DAMIANOS C
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controlled by a signal fs generated by a central 

controller 28.  The desired sampling rate dictated by 

sampling theory is at least twice the highest 

frequency of the received passband, and might be on 

the order of 30-40 MHz.  Sampling rates higher than 5 

the minimum requirement are also desirable.  Control 

of the ultrasound system and the setting of various 

parameters for imaging, such as probe selection, are 

affected by user manipulation of the controls of the 

user interface of a control panel 20 which is coupled 10 

to and applies its control through the central 

controller 28.  

The echo signal samples from the individual 

transducer elements of the array 14 are delayed and 

summed by a beamformer 32 to form digital coherent 15 

echo signals.  For 3D imaging with a two dimensional 

array, it is preferable to partition the beamformer 

32 between a microbeamformer located in the 

ultrasonic probe 12 and the main beamformer in the 

system mainframe as described in US Pat. 6,013,032 20 

(Savord) and US Pat. 6,375,617 (Fraser).  The digital 

coherent echo signals are then filtered by a digital 

filter 34.  In this embodiment, the probe transmit 

frequency and the receiver frequency are individually 

controlled so that the beamformer 32 is free to 25 

receive a band of frequencies which is different from 

that of the transmitted band such as a harmonic 

frequency band for detection of harmonic contrast 

agents.  The digital filter 34 bandpass filters the 

signals, and can also shift the frequency band to a 30 

lower or baseband frequency range.  The digital 

filter 34 could be a filter of the type disclosed in 

U.S. Patent No. 5,833,613 (Averkiou et al.), for 

example.  Filtered echo signals from scans of 

successive image frames are stored in a frame memory 35 

42.  Since it is important for the calculation of 

precise time intensity curves that pixels of DAMIANOS C
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successive image frames be spatially aligned, 

registration of the successive frames is performed by 

an image stabilizer 44.  This spatial correlation is 

preferably performed by use of an image stabilizer as 

described in US Pat. 6,589,176 (Jago et al.) 5 

The spatially aligned image frames are coupled 

from the frame memory 42 to a B mode processor 36 for 

conventional B mode processing and the production of 

2D B mode images.  The image frames, and particularly 

their harmonic contrast agent signal content returned 10 

from microbubbles, are coupled to a contrast signal 

processor 38.  The contrast signal processor 38 

preferably separates echoes returned from harmonic 

contrast agents by the pulse inversion technique, in 

which echoes resulting from the transmission of 15 

multiple pulses to an image location are combined to 

cancel fundamental signal components and enhance 

harmonic components.  A preferred pulse inversion 

technique is described in U.S. patent 6,186,950 

(Averkiou et al.) 20 

The filtered echo signals from the frame memory 

42 are also coupled to a Doppler processor 40 for 

conventional Doppler processing to produce velocity 

and/or power Doppler images.  The output signals from 

these three processors 36, 38, 40 may be scan 25 

converted and displayed as planar 2D images, for 

which their outputs are coupled to an image processor 

50 for a display 52.  Their output images, when 3D 

scanning is performed, may also be rendered as three 

dimensional (3D) images, which may also be processed 30 

for display on display 52. 

 After a sequence of image frames has been 

acquired during contrast agent delivery and stored in 

the frame memory 42, the user may review the images 

in the B mode, examples of which are shown in FIGURES 35 

4a and 4b.  These are images of carotid arteries 

containing plaque.  The large bright areas 62 in the DAMIANOS C
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images are regions of blood flow containing contrast 

agent, which return particularly strong (and hence 

brightly displayed) echo signals.  The vessel wall 18 

is distinctly shown in FIGURE 4a with its vasculature 

perfused with contrast.  A discerning user can also 5 

spot plaques in the images.  Unlike the lumen of the 

vessel, the microvasculature of plaques will contain 

much less contrast and hence appear as darker areas 

in the images.  The user can trace or outline these 

plaques when they are spotted, and these outlined 10 

plaque areas are processed as described below.  

FIGURES 4a and 4b each contain a plaque 60 which the 

user has outlined using a control on the control 

panel 20 such as a trackball or mouse. 

The identification of the plaque outline area 60 15 

is coupled to a T-I curve calculator 46 as shown in 

FIGURE 2.  The T-I curve calculator then processes 

the pixels of the plaques in the sequence of image 

frames to form a time intensity curve for each point 

in the plaque.  When contrast agent is flowing at a 20 

particular point in the plaque during contrast 

delivery, the contrast agent will build up following 

its initial arrival time as shown in FIGURES 4b and 

5b, which correspond to points in FIGURES 4a and 5a, 

respectively.  The T-I curve calculator processes 25 

this build-up in contrast signal intensity to produce 

a time intensity curve as described in US pat. pub. 

no. US2012/0253190 (Gauthier et al.) and US Pat. 

8,460,194 (Averkiou et al.)  An idealized time 

intensity curve 60 is shown in FIGURE 3.  It is seen 30 

that this curve begins to increase following the 

initial arrival of contrast agent at time t0, builds 

up to a maximum amplitude A at the time of maximum 

contrast perfusion, then gradually declines as the 

contrast agent flows out of that region of the body. 35 

 A comparator 48 performs several checks on the 

time intensity curve data to verify that contrast DAMIANOS C
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agent is indeed present at each point for which a 

time intensity curve has been produced.  (If there is 

no flow of contrast at a point, there will be no time 

intensity curve for that point.)  One check is to 

compare the amplitude of the time intensity curve 5 

against a noise threshold.  Amplitude spikes from 

artifacts in the image data are thereby eliminated 

from consideration as contrast.  Another test is to 

compare the maximal amplitude region of the curve 60 

against a contrast threshold.  This threshold is a 10 

level which a contrast agent response should exceed 

for a sustained period of time.  When the time 

intensity curve from a point in the plaque region 

passes both of these tests, it is confirmed that a 

flow of contrast agent was present at the point. 15 

 A qualitative image of perfusion may now be 

formed for the plaque region.  The maximum intensity 

amplitudes A or the mean signal intensity of the time 

intensity curves at the points where contrast was 

present may be mapped to corresponding colors of a 20 

color map, and the color map may be displayed as a 

parametric overlay over a B mode image of the plaque 

region as described in US Pat. 6,692,438 (Skyba et 

al.)  For instance, region of contrast perfusion may 

be displayed in varying shades of red and areas with 25 

no perfusion may be displayed as black.  The user can 

thus observe the degree of perfusion of the plaque, 

the degree to which it contains vascularization.  

FIGURE 7 illustrates four regions of plaque 70 with 

varying degrees of perfusion, each shown against a 30 

black background.  Within each plaque region, points 

which are perfused are shown in white and points with 

no perfusion are shown in black.  In FIGURE 7a the 

plaque area 70 is 100% perfused.  In FIGURE 7b the 

plaque area 70 is 76% perfused.  In FIGURE 7c the 35 

plaque area 70 is 38% perfused and in FIGURE 7d the 

plaque area 70 is only 26% perfused. DAMIANOS C
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 In accordance with a further aspect of the 

present invention, the overall perfusion of a plaque 

is quantified by a perfusion quantifier 54.  The 

overall number of pixels in a plaque area 70 that 

have perfusion are divided by the total number of 5 

pixels in the image of the plaque.  A binary grading 

system is then applied to this result.  Zero 

represents less than 50% of a carotid plaque area 70 

contained moving microbubbles and 1 represents more 

than 50% of the carotid plaque area contained moving 10 

microbubbles.  To enhance the reliability of these 

results, the perfusion quantifier receives the 

Doppler flow map of the plaque.  Each point where a 

valid time intensity curve of contrast was found 

should also be found to exhibit motion at the 15 

corresponding point in the Doppler flow map, since 

the contrast agent must be flowing at the point.  The 

presence of Doppler-identified motion at a point 

where contrast and a time intensity curve were found 

confirms the point as having contrast present.  A 20 

highly reliable quantification of perfusion is 

thereby produced and displayed on the display 52.  It 

has been found that the mean contrast agent intensity 

signal from a plaque is significantly higher for 

asymptomatic patients (patients with no history of 25 

plaque particulate breakup) than symptomatic 

patients, patients with a history of plaque 

particulates in the blood flow. 

 FIGURE 6 is a flowchart of a method of the 

present invention.  In step 100 an image sequence of 30 

a carotid artery is acquired, typically lasting at 

least a minute following infusion of contrast.  This 

captures images of any plaque microflow containing 

the contrast agent.  In step 102 frame-to-frame 

motion is compensated using motion compensation 35 

techniques so that the plaque is in registration with 

the same pixels over the image sequence.  In step 104 DAMIANOS C
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the plaque region is delineated in the images as by 

tracing.  In step 106 a time-intensity curve is 

formed for each pixel in the plaque region.  The 

contrast arrival time may be estimated based on a 

given increase intensity above the noise level.  In 5 

step 108 the intensity values at each point where 

contrast is present is compared before and after 

contrast arrival and, if there is a significant 

difference, the pixel is identified as having 

perfusion.  This identification of perfusion is done 10 

for every pixel or group of pixels (step 110).  In 

step 112 the percentage of the total pixels in the 

plaque exhibiting perfusion is quantified.  This is 

done by dividing the overall number of pixels that 

have perfusion by the total number of pixels in the 15 

image of the plaque.  In step 114 a qualitative 

result is presented by forming an anatomical map of 

the percentage of the plaque that is perfused as 

shown in FIGURE 7. 
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WHAT IS CLAIMED IS: 

 

 1. An ultrasonic diagnostic imaging system for 

the evaluation of plaque by contrast enhanced 

ultrasound comprising: 

 an ultrasound imaging probe having an array 5 

transducer which acquires a sequence of ultrasound 

images of a plaque during contrast agent delivery; 

 a time intensity curve calculator which forms a 

time intensity curve for each point in a plaque image 

where contrast is present; 10 

 a comparator which identifies pixels in the 

plaque image where perfusion is present; and 

 a display which displays the degree of perfusion 

in the plaque. 

 15 

 2. The ultrasonic diagnostic imaging system of 

Claim 1, further comprising an image processor which 

produces an anatomical map of the plaque showing 

where perfusion is present. 

 20 

 3. The ultrasonic diagnostic imaging system of 

Claim 1, further comprising a perfusion quantifier 

which quantifies the percentage of pixels in the 

plaque image exhibiting perfusion. 

 25 

4. The ultrasonic diagnostic imaging system of 

Claim 1, further comprising a frame memory which 

stores the acquired sequence of ultrasound images. 

 

5. The ultrasonic diagnostic imaging system of 30 

Claim 4, further comprising an image stabilizer, 

responsive to images stored in the frame memory, 

which compensates for frame-to-frame motion. 

 

6. The ultrasonic diagnostic imaging system of 35 

Claim 1, further comprising a plaque tracer which DAMIANOS C
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outlines a plaque in a carotid image. 

  

7. The ultrasonic diagnostic imaging system of 

Claim 6, wherein the plaque tracer further comprises 

a user control of an ultrasound system control panel. 5 

 

8. The ultrasonic diagnostic imaging system of 

Claim , wherein the comparator is further operable to 

compare pixel intensity values before and after 

contrast arrival in the plaque. 10 

 

9. A method of evaluating plaque with contrast 

enhanced ultrasound comprising: 

acquiring a sequence of ultrasound images during 

contrast agent delivery of a carotid artery having 15 

plaque; 

identifying a plaque in an ultrasound image; 

comparing intensity values at locations in the 

plaque before and after the arrival of contrast; 

identifying points in the image having 20 

perfusion; and 

displaying the degree of perfusion in the 

plaque. 

 

10. The method of Claim 9, wherein identifying 25 

a plaque further comprises outlining a plaque in one 

of the ultrasound images. 

 

11. The method of Claim 10, further comprising 

forming a time intensity curve at each point in the 30 

plaque where contrast is present. 

 

12. The method of Claim 9, further comprising 

forming an anatomical map of the plaque which shows 

points where perfusion has been identified. 35 

 

13. The method of Claim 9, further comprising DAMIANOS C
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quantifying the percentage of points in an image of 

the plaque which exhibit perfusion. 

 

14. The method of Claim 9, further comprising 

compensating for frame-to-frame motion in the 5 

sequence of ultrasound images. 

  

15. The method of Claim 9, further comprising 

correlating points in the image of the plaque where 

perfusion has been identified with points in the 10 

image of the plaque where motion is present. 
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EVALUATION OF CAROTID PLAQUE USING 

CONTRAST ENHANCED ULTRASONIC IMAGING 

Abstract of the disclosure: 

 

An ultrasound system and method are described 5 

for acquiring a sequence of ultrasound images of the 

carotid artery during the delivery of a contrast 

agent.  Plaque in the images is identified and a 

time-intensity curve is calculated for pixels in the 

images.  The intensity values before and after the 10 

arrival of contrast are compared to identify pixels 

or groups of pixels having perfusion.  An anatomical 

image may be formed showing areas in an image of the 

plaque where perfusion is present, or the perfusion 

may be quantified by determining the percentage of 15 

pixels in the plaque image which exhibit perfusion.  

The degree of perfusion is an indicator of the risk 

of plaque particulates in the blood stream which may 

lead to stroke 
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