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ITepiindm

To Souixd povtéra (SBMs) mepléyouy mAnpogoplec oyetixd ye tn dour| tne tOpPne, TAnpogopieg
ol omoieg ypewdloviar yiot TN owo T TEOBAEYN TV TOAITAOX®Y Xat oo Tod®Y TUEROBWY POGOY.
MohovoTtt ta Souxd povtéra oLy yenouonotniel emTUY WS Yol TNV TEOBAEYN XAVOVIXODY pOWY,
1 eVpElal Ypom TOUG OE UTERYOVTES XWOLXES EYEL EUTOOIGTEL AOYW TNG OLopopoTolncrc Toug and
Tor oUPPBATXE PoVTEARL. 2TV Topodo Blate3y), Wiaitepn Tpocoyn €xel dodel oty avdmTuin
evog axpyBoig xou euatadolg unyovixol povtéhou tipfng. I'o Tov oxond autod, avantioue T
o0levin petall evog AlyePexol Aouixob Movtéhou (ASBM) xouw tou povtélou topfng twmv
Spalart-Allmaras (SA), n onolo mapéyel oe unyavixd HovTéha T BuVATOTNTO YENoLLoToinoNg
TAnpogoplag oyetd e TN dour| g toePng. Toautdypova, yio Vo QEQOUUE TN CUYXEXQUIEVT]
oULeVEn 6 OAOUANPWUEVT Lop®Y, 1 TLEPROON XvnTixh evépyela xou o pudude andofeorc (dissi-
pation) tng yenotponotiinxay we ot Vo xhipoxes tne toePne. To tehxd poviého doxudotnxe

O€ Lol OELRA oo AMAES TEPUTTAOCELS, EEATPUNLOVTAS pag eVIdpEUVTIXG OTOTEAEGUOTA.

ITapdhhnha, €youue avamtOEeL, Yl TEMTN Qopd, €vol douixd YOVTEAD Yiol Tr UEAETN Tng e&éAL-
Ene madnTindy Poduwtdv peyedmv (passive scalars) oe tupfddeic poéc. Téoo 1 Swwomopd Tou
nodnuxol ueyédoug (passive scalar variance), 66o xou 1 UEYSANG xhipaxa xhion outrhc g
dlaomopdc meotelvovTal oY TERInTwan auTr we oL dUo xAlpaxec mou yopaxtnelllovy T cuy-
xexpUévn eCEMET. AxohoDdwe, To SouXd HOVTEND EVOWUATOUNXE GTO AEYOUEVO ‘LWUATLONO
Movtého Adnienidpaonc’ (IPRM), npocdyovtde to oe o ohoxhnpwuévn woper. O pududc
andofeonc tne Paduwthc Sroonopdc (passive scalar dissipation rate) yovtelomoleiton ye Bdom
™ Poduwty| dloaomopd xododg xou T ueYSANG xhipaxag evotpogior (enstrophy). To ev Aoyw
HOVTENO DOXIACTNXE OE €Vl ONUAVTIXO aELIUd TEQIMTOOEWY, CUUTERLAAUBAVOUEVOL BLapoEwY
TOPAULOPPOCEWY Tou uéoou Tediou (mean field), oe oTdoluo xot TEPIO TEEPOUEVH CUC TAUNTOL O
vopopdc, Topéyovtog pag eviuppuvtnég mpoliédelc. To oloxhnpwuévo povtélo eivon oe xaly
ocupgevia ue DNS anotedéopata tne mepintwong yéong ddtuione ot napoucia eite eyxdpotag
elte dlaunxole xhlong tou péoou Poduwtol mediov. Tautoypdvwe, T0 Hoviého 0pYie TEOBAETEL
NV Umoedr LETAUPORdE SLHoTopdS amd TIC MEYURDTERES OTIC XEOTERES Xhipoxes Tng TOpPNE uéow
EVOC UNYOVIOHOU YVWOTO) ¢ ‘UNYAVioos Ylovoo TBddac’ oe BlodldoTaTr LooTpomixY| TupBWon

pon.

Téhog, yehetioope ) Suvatodtnta ollevéng avdueoo oto Ahyefeixd Aouxd Movtého (ASBM)
xou 070 povtého toePng SST. Kotd méco dnhady) n obleuén auth nopéyet oxpiBelc mtpofBiédeic yia
P0EC YOpw amd BLOBLAC TATES AEPOTOUES Xal CLYXEXPWEVA TwV acpoTouny NACA0015 o VRT.

[No tov oxomd auTod, BLEXTEPUMUNKE ETTUYOS WAl OEWRH Omd GTATIXEC TEOGOUOWMCELS Yol EVaL



peydho ebpoc Yoy tpooPolfic (angle of attacks) xaw oproxcdv cuvinxdv. Ta vo Swaopoiicov-
HE TN UYXALOY TWV TEOCOUOIWOEWY, avamTOEouE Eva aptiud TeEXVIXOY oTadeROTNTOS, OL OTolES
ouLvéBoday oTo var emiTeLy Yoy, Yio TEWTN Popd, cuoTtadelc TeofAédelc Yo poég Yipw amd oe-
QOTOUES OL OTIO(EC UTIOXEWVTOL OF UT-OTATIXEC XIVACELS X0 CUYXEXPUIEVOL OF TIEPLOOLXT| TTEPLO TROYT
YOpw amd to sepoduvopxd Touc xévtpo (pitching motions). T tic otaTXée TEPINTOOEL, TO
ouleuyuévo povtého mopéyel Pehtiwpéva anoteréopata oe oyéon e o SST yoviého yia toug
ouvteheotéc mieone xou dvtwong (lift). Avtideta yio tic un-otatixée nepintdoels, 10 ouleuy-
MEVO HOVTENO GUOTNUATIXG UTEQEXTIUS TN TWT TOU CUVIEAEGTH AVIWOTNS, YEYOVOS TOU 00NYel

OTY) DPAC TIXOTERT] UEIWOCT) TOLU GUVTEAEC TH OTULOVEAXOVCUS AT 6,TL AVUUEVOTAY.



Abstract

Structure-based turbulence models (SBM) carry information about the turbulence structure
that is needed for the prediction of complex non-equilibrium flows. SBM have been suc-
cessfully used to predict a number of canonical flows, yet their adoption rate in engineering
practice has been relatively low, mainly because of their departure from standard closure
formulations, which hinders easy implementation in existing codes. Through this thesis, we
demonstrate the coupling between the Algebraic Structured-Based Model (ASBM) and the
one-equation Spalart-Allmaras (SA) model, which provides an easy route to bringing structure
information in engineering turbulence closures. As the ASBM requires correct predictions of
two turbulence scales, which are not taken into account in the SA model, Bradshaw relations
and numerical optimizations are used to provide the turbulent kinetic energy and dissipa-
tion rate. Attention is paid to the robustness and accuracy of the hybrid model, showing

encouraging results for a number of simple test cases.

In addition, a structure-based model has been constructed, for the first time, for the study
of passive scalar transport in turbulent flows. The scalar variance and the large-scale scalar
gradient variance are proposed as the two turbulence scales needed for closure of the scalar
equations in the framework of Interacting Particle Representation Model (IPRM). The scalar
dissipation rate is modeled in terms of the scalar variance and the large-scale enstrophy of the
velocity field. Model parameters are defined by matching the decay rates in freely isotropic
turbulence. The model is validated for a large number of cases of deformation in both fixed
and rotating frames, showing encouraging results. The model shows good agreement with
DNS results for the case of pure shear flow in the presence of either transverse or streamwise
mean scalar gradient, while it correctly predicts the presence of direct cascade for the passive

scalar variance in two dimensional isotropic turbulence.

A series of static computations for a wide range of angle of attacks and freestream parameters
were performed in order to ascertain the performance of the ASBM-SST hybrid model, for a
flow over two types of airfoils, NACAO015 and VR7. In order to obtain smooth, fully con-
verged solutions, we developed advanced filtering schemes suitable for both 2D and 3D highly
stretched grids. Additional stability techniques were developed, needed to obtain converged
solutions, such as zonal separation and blending methods. For the first time, successful com-
putations were performed for a flow over an airfoil undergoing pitching motions. For all static
computations, ASBM-SST provided improved predictions for the lift and pressure coefficient
respectively, while in all pitching computations, ASBM-SST showed a strong tendency to
overestimate the lift coefficient around the stall angle, yielding a faster decrease of the drag

coefficient than it should.
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Roman Symbols

A; Eddy-axis vector.

a; Normalized eddy-axis vector, or passive scalar gradient vector.
a® passive scalar gradient magnitude squared.

Ajj Eddy-axis tensor.

bij Flattening tensor.

C Anisotropic reference total strain, defined as exp( [ Sdt).
c Chord length.

Cs Sound speed.

Cp Specific heat at constant pressure.

Cp Drag coefficient.

Cy, Lift coefficient.

Cp Pressure coefficient.

Cij Inhomogeneity tensor.

Cij Normalized inhomogeneity tensor.

D; Dimensionality vector property in the particle representation model.
D;; Dimensionality tensor.

D;; Passive scalar dimensionality tensor.

d Nearest wall distance.

d;j Normalized dimensionality tensor.

di; Passive scalar normalized dimensionality tensor.

dW; Stochastic force vector denoting the Wiener process.

e Total energy, the sum of kinetic and internal energy.

E Internal energy.

Ey Energy spectrum function.

Ey Passive scalar spectrum function.

E;; Velocity energy spectrum tensor.

Em Magnetic energy spectrum tensor.
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Fij Circulicity tensor.

fij Normalized circulicity tensor.

Gij Mean velocity gradient tensor.

Gt Effective mean gradient tensor based on v, n, a vectors respectively.

=
<

H;; Rotational transformation tensor.

h; Diffusive flux vector.

k; Wavenumber vector.

k Magnitude of wave-vector, reduced frequency.

l; Line segment along the axis of independence.

L Turbulence length scale.

Mo Farfield Mach number.

M;ijpq Fourth rank pressure strain-rate tensor.

N; Gradient vector property in the particle representation model.

N Magnitude of the gradient property vector N;.

n; Normalized gradient vector property.

P Pressure property in the particle representation model.

p Pressure field.

Pe Peclet number.

Pr Prandtl number.

¢ Twice the turbulent kinetic energy.

qj Heat flux vector.

Qij Scalar gradient co-spectrum.

R;; Reynolds stress tensor.

Tij Normalized Reynolds stress tensor.

R Gas constant.

Re Reynolds number.

S Invariant of mean strain rate tensor, or the largest in magnitude
eigenvalue of the mean strain rate tensor.

Sij Mean strain rate tensor.

Sfj’v’" Effective mean strain rate tensor based on a,v,n vectors respectively.

U; P Passive scalar-flux vector.

t Actual computational time.

T Temperature variable.

T Freestream temperature.

U; Velocity field.

Ur Friction velocity.

Uso Magnitude of the freestream velocity.

Vi Velocity property vector in the particle representation model, or
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Greek Symbols

= 2 & 9

Volume of the -i th cell.

Vorticity spectrum tensor.

Sixth moment of eddy-axis vector a;.
Chordwise distance.

Cross-helicity spectrum tensor.

Fourth moment based on a, n vectors respectively.

Blending factor, or angle of attack.
Prandtl-Glauert factor.

Molecular (or thermal) diffusivity.

Jetal-vortex correlation parameter, or ratio of the specific heats.
Stropholysis vector.

Boundary layer thickness.

Kronecker delta tensor.

Energy dissipation rate.

Scalar dissipation rate.

Levi-Civita alternating tensor.

Structure equillibrium parameter.

Eddy effective rotation rate vector.

Turbulent kinetic energy, thermal conductivity.
thermal coefficient.

von-Karman constant.

Half passive scalar variance.

Dynamic viscosity.

Dynamic turbulent (eddy) viscosity.

Kinematic viscosity.

Turbulent eddy viscosity.

Pseudo-eddy viscosity turbulent variable.
Irrotational vector, defined in equation (3.6).
Fluid density.

Turbulence time scale.

Passive scalar variable, or jetal parameter,

or model parameter of the LSE model, defined in Table 3.2.
Blocking scalar parameter.

Eddy flattening parameter,
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or model parameter of the LSE model, defined in Table 3.2.
V; Stream-function vector.
w Angular velocity of the pitching motion, or

specific turbulence dissipation rate.

w? Enstrophy.

Q; Mean vorticity vector.

QF Rms effective eddy rotation rate.

Q{ Frame rotation vector.

or Total rotation vector. given in equation (2.101).
Q° Magnitude of the rotational randomization vector 25.
Q;; Mean rotation rate tensor.
Abbrevations

ADI Alternating direction implicit method.
ASBM Algebraic structure-based model.

AXC Axisymmetric contraction.

AXE Axisymmetric expansion.

BSL Menter baseline turbulence model.

CFD Computational fluid dynamics.

DRSM Differential reynolds stress models.
EASM Explicit algebraic stress model.

EVM Eddy viscosity model.

IPRM Interactive particle representation model.
LHS Left hand side.

MHD Magnetohydrodynamic.

MPI Message passing interface.

POD Proper orthogonal decomposition.

PRM Particle representation model.

PS Plane strain.

RANS Reynolds averaged navier stokes.

RDT Rapid distortion theory.

RHS Right hand side.

SA Spalart-allmaras turbulence model.

SBM Structure-based model.

SST Shear stress transport turbulence model.

Other Symbols

() Conditioned on indicated vector.
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Conditioned averaging on a given vector b;.

Scale filtering, also denoted as bracket averaging.
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Large-scale fluctuating quantity, Favre averaging,
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Chapter 1

Introduction

1.1 Background

Despite substantial progress in aerodynamics during the last century, knowledge about the
physics of turbulent flows is still deficient. In fact, turbulence remains one of the great chal-
lenges of engineering and natural sciences, a fact which is particularly true for the turbulence
near solid surfaces. For flows at very high Reynolds number (e.g. aircrafts, wind turbines
etc.) the geometrical scales of the flow are several orders of magnitudes larger compare to
the smallest turbulence scales, which influence pressure drag only indirectly by influencing
separation. Since the full computation of such flows by solving directly the Navier Stokes
equations is being out of reach for the foreseenable future, scientists and engineers must
develop and use models in order to represent the effect of turbulence on the mean flow. Con-
sequently, nowdays the computation of turbulent flows in industrial design and engineering
applications relies heavily on the use of simple turbulence models in the Reynolds-Averaged
Navier Stokes (RANS) equations. This has been a long-standing trend and is sustained by

practical considerations.

The class of RANS models most often used in engineering applications is that of Eddy Viscos-
ity Models (EVM). One of the most popular EVM is the Spalart-Allmaras (SA) one-equation
model [1]. The SA model is often favored by practicing engineers because it exhibits superior
robustness, low CPU time requirements and substantially lower sensitivity to grid resolution
compared to two-equation models. On the other hand, one has to recognize that, despite
its computational and implementational attractiveness, the eddy viscosity assumption is also
the source of some of the most important performance limitations. For example, like other

EVM, the SA model fails to capture important flow features, such as turbulence anisotropy
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or the effects of mean or system rotation.

The widespread use of EVM in engineering practice, despite their inherent limitations, is sus-
tained by the lack of clearly superior alternatives that would justify the extra computational
complexity required. For example, efforts to circumvent the limitations of the eddy viscos-
ity assumption usually proceed along one of three paths. One path is that of Differential
Reynolds Stress Models (DRSM), where the closure carries the Reynolds Stress Transport
(RST) equations. DRSM closures allow the prediction of stress anisotropy, account for his-
tory effects on the anisotropy, and afford improved handling of rotational and curvature
effects. However, robustness issues and performance inconsistencies have prevented this class
of models from penetrating further into the mainstream of engineering practice. For exam-
ple, a number of large European research projects were aimed at introducing DRSM models
in industrial codes (FLOMANIA and ATAAC), but did not lead to a significant change in
industrial CFD practice. A second common choice is to use one of the Explicit Algebraic
Reynolds Stress Models (EARSM), which are based on a weak equilibrium assumption that
leads to a constitutive equation between the turbulence stresses and the mean deformation
field. In addition, EARSM involve the transport of two turbulence scales. The anisotropy
equilibrium assumption that is inherent to EARSM has been a known source of performance
limitations in complex non-equilibrium flows. A third option is resort to Nonlinear Eddy Vis-
cosity Models (NLEVM), where the stress-strain relation is extended with additional terms.
NLEVM and EARSM models can be made to show sensitivity to curvature and rotation, but

cannot handle consistently complex rotational effects.

A common feature of the classical closure approaches described so far is the assumption that
all key information about the turbulence is contained in the scales of the turbulence and in
the turbulence stress tensor. However, one should consider that the turbulent stresses con-
tain information only about the componentality of the turbulence, i.e. about the directions
in which the turbulence fluctuations associated with large-scale eddies are most energetic.
Thus, traditional closures do not take into account the morphology of the energy-containing
eddies. Yet, eddies tend to organize spatially the fluctuating motion in their vicinity. In
doing so, they eliminate gradients of fluctuation fields in some directions (those in which the
spatial extent of the structures is significant) and enhance gradients in other directions (those
in which the extent of the structures is short). Thus, associated with each eddy are local axes
of dependence and independence that determine the dimensionality of the local turbulence
structure. This structure dimensionality information is complementary to the componental-
ity information contained in the Reynolds stresses, and as Kassinos and Reynolds [2, 3] have

shown it is dynamically important.
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Reynolds and Kassinos identified this common limitation of classical closures and introduced
an alternative modeling approach, the Structure-Based Models (SBM), which today provide
a promising route for devising improved RANS turbulence closures. The main feature of
this type of models is that they provide a complete tensorial representation of turbulence
structure. SBM can be envisioned in two complementary ways. The first is to use directly
the structure tensors that characterize the morphology of the turbulence. The transport of
these tensors is governed by exact partial differential equations that have been derived and
this provides the starting point for differential SBMs, such as the Q-model [4]. In general,
differential SBMs involve a large number of transport equations, which can be unattractive
for routine engineering computations. Hence, a second way is to assume that the turbu-
lence can be mimicked by ensembles of simplified structures, hypothetical 2D eddies, whose
axis of independence is given by an eddy-axis vector. The orientation of the eddy-axis can
be obtained through model equations, either differential or algebraic. These eddies are 2D,
but they can be jetal 2D-1C (motion only along the eddy-axis), vortical 2D-2C (motion in
planes normal to the eddy-axis) or helical 2D-3C (correlated motion along and normal to the
eddy axis). Averaging over ensembles of eddies produces statistical quantities representative
of the field and allows one to relate the Reynolds stress tensor to the statistics of the tur-
bulence structure.[2, 5] The Algebraic Structure-Based Model (ASBM)[6] is an engineering
structure-based model that follows this second approach. It is a fully realizable two-equation

structure-aware model that provides the full Reynolds stress tensor.

In the ASBM, the eddy-axis is obtained through an algebraic equation that takes into account
asymptotic rapid distortion theory (RDT) limits. Under RDT, the governing equations are
linearized by neglecting products of turbulent fluctuations. This linearization is based on the
assumption that the turbulence does not have time to interact with itself because the eddy
turnover timescale is much longer than that of the mean distortion. Near solid boundaries,
the model is sensitized to the wall-blocking effect through an elliptic relaxation equation
that is based on the physical argument that eddies must be realigned parallel to the wall as
the wall is approached. While the ASBM comes with its own transport equations for the
turbulence scales (notably the Large-Scale Enstrophy Equation LSE),[7] it has recently been
successfully coupled with the scale equations of popular Eddy-Viscosity Models (EVM), such
as the v2-f,[8] the k-e-¢-a [9] and the k-w models.[6, 8, 10]
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1.2 Motivation

The work presented in this thesis has been motivated by the current status of Structure-
Based Models (SBMs). The formulation of the Algebraic Structure-Based Model (ASBM)
has provided an engineering simplification of the general Structure-Based Modeling (SBM)
framework, but its impact has so far been limited by two constraints. The first is that until
recently, ASBM had been applied only to canonical flows, such as fully-developed channel
flows, turbulent boundary layers over flat plates and the backward facing step. Thus, we were
motivated to explore the performance of the closure in more complex two-dimensional (2D)
flows, such as flows in an asymmetric diffuser, smooth hills with and without flow control and
airfoils. These are flows where adverse and favorable pressure gradients have a significant
effect on flow development. The second constraint is related to a number of stability issues
associated to the ASBM closure. These issues have become apparent to us during previous
unpublished work. Thus, we have put significant effort into identifying the root causes of

these stability issues and into increasing the overall stability of the model.

Work has also been directed at enriching and improving the physical content of SBMs. For
example, the structural anisotropy of turbulence is known to have a significant effect on scalar
transport. Hence, the expectation has been that SBMs could provide improved predictions
for passive scalar transport and heat transfer phenomena. However, until now this potential
has remained largely unexplored as the main development effort has been directed towards
devising engineering simplifications of the SBM framework, such as the ASBM. In this work,
we have taken the first step into exploring this potential by using the IPRM framework to for-
mulate a structure-based model for passive scalar transport. In the same line of fundamental
work, we constructed a differential SBM providing better predictions for homogeneous turbu-
lence subjected to weak irrotational deformations, a category of flows for which the original

eddy-axis based differential SBM is known to exhibit poor performance.

1.3 Passive scalars

The terminology passive it refers to the simplified case where a scalar is in such low concen-
tration so that does not influence the evolution of the fluid. The study of the passive scalars
is of great importance in engineering applications including pollution contaminants, tempera-
ture or elements concentration, since this simplification is a first step in understanding scalar
behavior in these applications. The significance of this idealized case has motivated a lot
of researchers in trying to construct a theory which would provide a starting point for these

studies. The predominant theory for the description of the energy statistics in a turbulent flow
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in high Reynolds numbers is based on Kolmogorov’s [11] idea of local isotropy, meaning that
the small scales are isotropic, independently of the presence of any large scale anisotropies.
In analogy to the velocity field case, similar arguments were extended to account also passive
scalar statistics by Obuknov [12] and Corrsin [13] for a scalar in the presence of homogeneous
and isotropic turbulent flow field at high Reynolds and Peclet numbers. The elegance of
the formulation based on local isotropy, a case at which the transport equations are severely
simplified, have motivated a large amount of works [14, 15], and similarity solutions for both
scalar and velocity fields have been obtained, even in the presence of mean scalar gradients
[16].

However, this aspect has undergone drastic reinterprentation from a number of works reported
in literature [17, 18] which denote the impact of the large scale turbulent structures at the
small scales. One of the key quantities characterizing this impact is the dissipation rate of
the scalar variance. Specifically, the majority of current models for passive scalar transport
require knowledge of both the turbulence and the scalar dissipation time scales, since the
initial conditions of these time scales and their ratio can severely affect the evolution of the
turbulent scalar field [19]. An elegant approach used by many workers is to solve directly
for the scalar dissipation rate through the use of empirical equations [20, 21]. However, even
though the terms that occur in the exact equation are related to the small-scale processes, it
is common that these terms are modeled solely based on large-scale quantities.

Reynolds et al. [7] developed a structure-based model for the velocity field by modeling the
small-scale processes based on a set of one-point tensors, which contain physical information
with regards to the large-scale structure of the turbulent field. All of these yielding promising
results. Thus, part of this work is motivated by the belief that a good turbulence model for
the passive scalar transport must be build based on structural information about the most
energetic eddies. Hence, the most immediate need is for a robust homogeneous model, and

that is the focus of this work.

1.4 Objectives

Based on the above considerations, we have devoted large effort to the fundamental develop-
ment of Structure Based models, in order to extend the range of their applicability. Thus, the
main objective is to construct a one-point, passive scalar model for homogeneous turbulence
which incorporates information about turbulent structure through the use of tensors related
to turbulent structure, called structure tensors. The model matches the decay rates in freely
isotropic turbulence, while it provides excellent predictions for isotropic turbulence in the

presence of mean scalar gradient and for the case of pure homogeneous shear flow. Therefore,

5
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the proposed model may serve as the backbone of a more general one-point inhomogeneous
model. Another goal of the current thesis is the engineering development of the ASBM for
practical applications. This development deals with the known stability issues of the closure,
while it proposes a new coupling of ASBM, that with SA. Moreover, another objective was
to investigate the performance of the structure-based models in weakly compressible flows.
The test cases that were chosen are those of flows passing over smooth airfoil surfaces at low

Mach number.

1.5 Contributions

The most important contributions of the current work are the following:

e The development, for the first time, of a complete structure-based model for the study
of the transport of passive scalar, consisting of two different types of models. An
extended TPRM model which provides turbulent statistics of a passive scalar field in
homogeneous turbulence. In order to “feed” the extended IPRM model with suitable
turbulence scales, a two-equation model based on the triple decomposition scheme is
constructed, sensitized to the anisotropy of the turbulent field. The complete model has
been validated in a large number of test cases, involving either shear flows or irrotational
deformations, at stationary and rotating frames. The closure was tested at both the

RDT and slow limit, providing very promising results.

e The construction of a new stochastic structure-based model for the case of homogeneous
turbulence. This scheme revises the main issues that were encountered in the previous
version, as described in the work of Kassinos and Reynolds [22]. The proposed model
incorporates additional physical information through the use of more sophisticated ex-
pressions for the turbulent parameters. It provides improved results compare to the
previous model for all the irrotational benchmark cases, accompanied with a more con-
sistent physical behavior. In addition, the model shows excellent agreement at the limit

of rapid deformations.

e We demonstrate, for the first time, a coupling between an algebraic simplification of
the structure-based models, called Algebraic Structured-Based Model (ASBM), and an
one-equation turbulence model, particularly the Spalart-Allmaras (SA) model. The
current coupling provides an easy route to bringing structure information in engineer-
ing turbulence closures. As the ASBM requires correct predictions of two turbulence
scales, which are not taken into account in the SA model, Bradshaw relations and nu-

merical optimizations are used to provide the turbulent kinetic energy and dissipation

6
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rate. Attention is paid to the robustness and accuracy of the hybrid model, showing

encouraging results for a number of two-dimensional test cases.

e The demonstration that a coupling of the Algebraic Structure-Based Model with the
SST model has the potential to lead to improved aerodynamic computations. The
coupled closure has been implemented in a compressible solver and validated against
experiments for low Mach number flows over rotor-craft airfoils. A number of stability
techniques were constructed and implemented in the solver in order to improve the sta-
bility of the closure, leading to converged solutions for pitching cases, for the first time.
For all the static cases considered, the ASBM provides notably improved predictions

for the lift forces when compared to the SST closure.

1.6 Overview

Chapter 2 provides an overview of the mathematical background upon which the develop-
ments in the subsequent chapters are built. In Chapter 3, we discuss the development of a
structure-based model for the passive scalar field. A stochastic generalization, as discussed
in Arnold’s book [23] and in Kassinos and Reynolds [24], is used to extend the original IPRM
so as to account for passive scalar statistics in homogeneous turbulence. In order to bring the
IPRM model into a closed form, a set of transport equations for the passive scalar turbulence
scales is derived based on the triple decomposition method. Accordingly, a term-by-term
modelling process is discussed for the simplified case of homogeneous turbulence, accompa-
nied by physical justifications. The modeling parameters are evaluated by matching simple
isotropic cases in the absence of mean gradients, whereas the performance of the model has
been ascertained through comparison between model predictions with DNS, LES and exper-
imental results for more complex homogeneous flows involving imposed mean deformations.
Some preliminary results are also shown for the newly proposed coupling of the structure-
based scalar model with the algebraic structure based model (ASBM). In this case, the ASBM

provides the structure tensors and their products that are needed in the scalar model.

In Chapter 4, we develop a new stochastic extension of the original differential structure-
based model of Kassinos and Reynolds [2]. We discuss the derivation of modified transport
equations in respect to an earlier stochastic extension of the model [24] and we focus on
physical considerations. Subsequently, the performance of the proposed model is tested on
flows that are subjected to both rapid and slow deformations. The next two chapters are
devoted to the description of the coupling procedure between the ASBM and the one-equation
SA model. The SA model is implemented in an incompressible solver and its validity is

verified through a series of 2D flows, for which DNS and experimental data are available.
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Consequently, we provide a brief and comprehensive summary of a suitable set of algebraic
expressions, used to couple the SA model with the ASBM closure. Concurrently, known
refinement issues from prior couplings of ASBM with Eddy Viscosity Models are examined
one by one, leading to useful outcomes. The validity of the proposed ASBM-SA model is
tested for the same benchmark cases. The closure preserves the superior robustness of the
SA closure, providing smooth converged solutions with a good convergence rate. It has been
able to capture effectively the turbulence anisotropy, whereas it remains fully realizable in all

test cases.

Chapter 7 investigates the potential to extend ASBM applicability to weakly compressible
flows. The algebraic model is implemented in a compressible solver and combined with the
SST model. A discussion about the stability treatment of the hybrid model is presented.
Static and dynamic computations are performed for flows over different types of rotorcraft
airfoils at low Mach number, for which the compressibility effects are weak. Comparison is
made with experimental works which reveals the ability of ASBM to provide notably improved

predictions for the lift forces when compared to the SST closure.
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Mathematical Background

2.1 Cartesian tensors.

2.1.1 Outline

This chapter introduces the mathematical tools that will be needed in subsequent chapters.
After introducing the Cartesian tensors accompanied with their basic properties, the basic
conservation laws are introduced in Section 2.3. In Section 2.4, two decomposition methods,
which are excessively used in this thesis are mentioned, whereas in Section 2.5 we introduce
the governing equations for incompressible and compressible flows. Next, in Section 2.6 we
provide details for a number of popular Eddy Viscosity Models that have been used in this
thesis to perform numerical simulations. In Section 3.2.2; we introduce the one-point structure
tensors, while in Sections 2.8-2.10 we give details for three different structure-based models

that will be used as the starting point for the developments we present in this work.

Notation

Throughout the thesis, the Einstein summation convention is used. Thus, repeated indices

imply summation. For example,

aijbj = a;1b1 + ajbs + a;3bs . (21)

The general definition and laws of operation of Cartesian tensors are given below:
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Definition The tensor A, of rank n, is a quantity defined by 3™ components which may
be written A;ji ...n, which under rotation is linearly transformed to a new coordinate

frame through the identity

qu...t = lipqu ce lntAz]n ; (22)
where [;; is the orthonormal rotation matrix.

Symmetries If interchange of two of the indices does not change the value of the component,
then the tensor is said to be symmetric with respect to these indices. If the absolute
value is unchanged but the sign is reversed, then the tensor is antisymmetric with

respect to the indices.

th

Contraction The 3”2 quantities formed by identifying two of the indices of an n!* rank

tensor and invoking the summation convention are components of a tensor of order

n — 2.

Scalar Multiplication If « is any scalar, A and B are tensors of the same order, they obey

to the following laws

aA = Aox, a(A+B)=aA+aB. (2.3)

Addition If A, B and C are tensors of the same order, they obey to the following laws

A+B=B+A, AB+C)=AB+AC. (2.4)

Multiplication If A and B are tensors of order n and m respectively, the product A B

yields to a tensor of order n 4+ m.

Isotropic tensors Isotropic tensors are those tensors whose components are unchanged
by rotation of the frame of reference. The fundamental second order isotropic tensor, called

Kronecker delta, given by

L i=y
%:{ L
0 i#7

whereas the basic third order isotropic tensor, also called Levi-Civita tensor, is expressed as

10
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1 if (i,7,k) is a cyclic permutation of (1,2,3),
€ijk = § —1 if (4,4, k) is an anti-cyclic permutation of (1,2,3),

0 if any of i, j, k are equal.

A useful identity is given by

€kij€kim = 0i10jm — Oim0j1 (2.5)

which can be extracted through the following generalized expression

O Oim O
€ijk€lmn = det 5]’ 5]’ 5jn )

Okt Okm  Okn

or

€ijk€lmn = 0i10jmOkn + Oim0jn0ki + 0in0j10km — 0i10jndkm — Oim0ji0kn — OinOjmorr,  (2.6)

2.1.2 Invariants
The invariants of a tensor are variables that are independent of the coordinate system, insen-

sitive to rotation. The theory of invariants states that there exist three invariants of a second

order tensor A;;

1 1
(2.7)

An important theorem that is deduced from this theory is the Cayley-Hamilton theorem. This

theorem states that a second order tensor satisfies its own characteristic equation, given by

A — IA% + 1T A; — 1116 =0, (2.8)

where AZQJ = AzkAkj and A?J = A?kAk]

11
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2.2 Equivalence between Euler and Langrangian coordinates.

At some instant ¢t = 0 a certain fluid particle is at a position & and at a later time the same

particle is at position z; , where x; is a function of ¢t and the initial position &;

vy = 2i(&, 1) . (2.9)

The initial coordinates &; are the material coordinates, also called Lagrangian coordinates,
whereas x; are the spatial coordinates, or Eulerian coordinates, also called position or space.
Eq. (2.9) is a curve and these type of curves are called particle paths. Any property of the
fluid, say F' may be followed along the particle path. The equivalence between the material

and spatial description is depicted by

F(zi,t) = Fl& (i, t),1] . (2.10)

Associated with the above descriptions are two time derivatives, denoted by

0 0 d 0
_ 2.11
ot (at)‘” : dt (at)5 ' (2.11)

Thus %—lj is the rate of change of F' as observed at a fixed point x;, whereas ‘é—f is the rate
of change as observed when moving with the particle, also called material derivative. The

connection between the two derivatives is established by

dF 0 d

_8F(8xi) _,_(@) _ 87F+87F
T 0 ot $ T Ve m T Vigs, T ot

(2.12)

where v; = dj;i.

12
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2.3 Conservation laws

Let p(x;,t) be the mass per unit volume at position z; and time ¢. Also let’s assume  being
the mass m of a volume V. Use of Reynolds theorem can leads to the integral form of mass

conservation law

or to the differential form

dp 4 d(pvi)

st =0. 2.14

The forces acting on an element can be separated into two kinds. The external or body
forces per unit volume denoted by f;, such as gravitational or electromagnetic forces, and
the internal forces per unit area denoted by t;, which act on the fluid element through its

bounding element.

The principle of the momentum conservation states that these two kinds of forces define the

rate of change of the linear momentum of the volume V', that is

(Z///V(t)pvid‘/:///V(t)pfidv—i—//s(t)tids~ (2.15)

Denoting by n; the outward unit vector of the element surface and using the identity

ti = nzﬂj 5 (216)

yields the integral form of the conservation law for an arbitrary stress tensor T;;

jt///\/(t) Pvz‘dV—///V(t){ﬂfz‘Jr%zi}dV, (2.17)

or to the differential form, also called Cauchy’s equation of motion

13
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d(pvi) ITji
= pfi . 2.18
The stress tensor may always be written
Tij = —pdij + 7ij » (2.19)
where p is the pressure 7;; is the viscous stress tensor.
Assuming Newtonian fluid, the viscous stress depends linearly on strain rate, that is
ou;  Ou; ou
= + + AN[=2645 2.20
Tij lu’(axj 8.’1%) [axq] 1] ( )
where A\ and p are the two coefficients of viscosity. Based on Stokes assumption A = —2u/3,
whereas the p is estimated through the Sutherland equation
T3/2
=Cl——, 2.21
n=Cr e (2.21)

where C; = 1.458 1075 kgm?/(sv/°K) and Cy = 110.4 ° K for air at moderate temperatures.

The velocity gradient tensor can be written as the sum of symmetric and antisymmetric parts

Ou; 1, 0u;  Ouy 1 Ou;  Ouy Qui _ o g

where S;; is the symmetric strain rate tensor and ();; is the antisymmetric rotation rate

tensor. The latter tensor is related to the vorticity vector through the identities

Qs = iwmemst7 wi = €stfls - (223)

The law of energy conservation states that the increase of total energy (kinetic and internal)

in a material volume is the sum of the heat transfered and the work done on the volume

14
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L e [ ][ 2S5 B

where ¢; is defined by the Fourier law of heat conduction

or
Gk = —KTH — KT is coeflicient of thermal conductivity. (2.25)
),

Another important expression is the conservation equation of a passive, conservative scalar,
say ¢. Passive means that scalar does not influence the properties of the flow and conservative

refers to the absence of sink/source terms at the RHS. The integral form is given by

/// (po)dV = ///V(t) 3362 Jav, (2.26)

where h; is the diffusive flux vector.

2.4 Decomposition methods.

The most common decomposition method is the procedure first introduced by Reynolds [25],
in which an instantaneous variable is decomposed into a mean and a fluctuating part through

time (or spatial averaging)

Additionally, Reynolds [26] introduced an averaging process (denoted by angled brackets)
which extracts the large-coherent motions from the fluctuating field. Applying this approach
leads to the triple decomposition of an instantaneous variable. It is decomposed into a mean
part, denoted by an overbar, and a fluctuating part that consists of a large-scale part, denoted
by a tilde, corresponding to the large-scale coherent motions and a small-scale part which

corresponds to small-scale fluctuations, denoted by a double prime.

Thus, the contributions to an instantaneous quantity [;, are
Bi=Bi+ B =Bi+ B+ B, (2.28)
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and satisfy the following averaging properties,

(Bi) = Bi+ B (2.29a)
(Bi) = Bi (2.29D)
Gi=o0. (2.29¢)

It is also assumed that the commutative property is satisfied between the averaging and the

differentiation operators and that contribution at different scales are not correlated,
BiB! =0, Bif;=PiB; =0, (BiB})=Pi(B])=0. (2.30)

2.5 Governing equations.

2.5.1 Incompressible flows.

For incompressible flows, the conservation laws are summarized as:

gzz —o, (2.31b)
% +u gi _ _pgi‘; , (2.31¢)
s = gt + 5. (2:314)

where the pressure p can be extracted by combining egs. (2.31a), (2.31b). Since pressure can
be solely determined through the momentum, the energy equation is not considered, while a

constant dynamical viscosity is assumed.

2.5.2 Compressible flows.

For compressible flows, the conservation laws take the following forms
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% N 8%3‘) _,
a(g;”) + ;j(/)uwj +poig) = g;j ’ (2.32)
8(;:) + o louile + %H - c‘?ij[umj " KTSZ‘] 7 |
(9(8pt¢>) N 8(%@ _ _£j(rggi),

where I' is the diffusivity coefficient of the scalar ¢. The pressure is evaluated through the

equation of state

p=(y—1p [6 - ;Uzuz] : (2.33)

where « is the ratio of the specific heats. The thermal coefficient and the temperature are

determined by

Cplt D
- T=*2_ 2.34
T Pr’ Rp’ (2.34)

where Pr is the Prandtl number, ¢, is the specific heat at constant pressure, and R is the

gas constant.

2.6 Eddy Viscosity Models.

2.6.1 Boussineq Approximation.

In 1877, Boussineq postulated that the Reynolds stress tensor can be modeled as being

proportional to the deformation rate tensor through the following expression

— ou; Ou; 20u 2
— , ,.: v J 77757, — - 52 .
Pt 'uT(Omj Ox; 3 0xy 2 3" (2:35)

Adding egs. 2.35 and eq. 2.20 yields the following model expression for the total stress tensor

17
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— ou; Ou; 2 0u
.. — .. _ I — v J _ = ..
TZ]toml Tl] + |: puzu]:| (/J’ + MT){ax] + 8$Z 3 81’k 52]} ’ (236)

aniso

where the pressure p absorbs the isotropic part of (2.35), leading to a modified pressure in

the momentum equations, defined by
L2
p=p+ 3Ph- (2.37)

2.6.2 k-w Models.

The k-w model is an EVM commonly used in aerodynamic applications and it was developed
independently by Kolmogorov [27] and Saffman [28]. Since then, improved versions of the xk-w
model have been proposed, such as the model of Wilcox [29, 30] which has been one of the
most used models widely during the last decades. The x-w family consists of two transport
equations and a set of algebraic expressions. As in k-€ models,  is used as the first turbulence
scale, while w is chosen as the second scale, defined as €/(/5*k), where in standard versions
of the model the choice 5*=0.09 is made. These models are designed so that they produce
inappropriate profiles for the turbulent kinetic energy s, which is in general underestimated
in magnitude, without exhibiting the characteristic near-wall peak. These erroneous profiles
are tolerated in order to obtain reasonable distribution of the eddy viscosity 14 and shear

stress u/v’ accordingly. The model equations are

Ok Ok

ot " Yon,
J

. 0 Ok
- = P Bkt (v + o)

oz, oz,

source/sink
diffusion terms

ow _ Ow P 9 0 Ok
e + %87]- ~ Pw® + aT;j[(V + %Vt)%j] (2.38)
—_————
source/sink diffusion terms
(1-F) Ok Ow
2 [ —
+ 0w2 a$j a$j ’

near wall correction

where the source term P = ﬁj% is transformed through the use of the Boussineq aprroxi-
J

mation into the form

5 (2.39)
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Menter [31] proposed extended versions of the x-w models, namely k-w-SST and k-w-BSL.
Even though these versions were originally used for aeronautic applications, they became
widely used also in other fields, such as commercial and many research codes. The k-w-SST
and k-w-BSL models consist of a combination between the x-w and the k-e models such that
the k-w is used in the inner region of the boundary layer and switches to the k-¢ in the
freestream region. That way they are benefited from the superior near-wall behavior of the
k-w model, whereas they use the x-e¢ behavior away from the walls, avoiding that way the
use of the k-w model which is known to encounter numerical difficulties in that region. The
switching between the two zones is done smoothly through the use of blending function Fi,
which drops near unity in the inner half of the boundary layer, while decreasing through the

outer region. This intricate function is given by

Fy = tanh(arg}),

VE 500v,  4dook

Brwd’ dPw ) CD,WdZ]’ (2.40)
20,0 Ok Ow ne

arg; = min[max(

CDmu = a._ A
max( w OxjO0x;

where d is the nearest distance of the point to a wall. To prevent an increase of the stress-
intensity ratio |u/v’|/k, Menter introduced a limiter for the estimation of the eddy viscosity,

such as

max(aiw,SF)

£ for BSL, Wilcox

w

{ o L — for SST
Vy =

where

2/k 5000
B*wd’ d%w

F, = tanh(arg3), arg, = max( ). (2.41)

Also, a production limiter is used in the SST model to prevent the build-up of turbulence in

stagnation regions:

P = min(P*, X f*wk) , (2.42)

where X is a constant, which depends on the particular model choice.
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Model coefficients

In Menter’s models, a blending expression is used of the form

¢=Fi¢g1+ (1 - Fi)gs. (2.43)

This expression is used to ensure the smooth transition between the zones of the model
parameters appearing in the transport equations. A set of values chosen for some of these

parameters is given below:

1 { 10710 SST { 5/9,0.44 for SST
= —20 ) Y172 = B owik*? B2 guak*? s
10 BSL g N i for BSL
[ 085 SST _foss6 sstoBsL [ ]S?)Ssi
9=V 05 BSL® 27\ o Wilcox - :
0 Wilcox

In addition, the parameters that have common values in both Menter’s models were chosen

to be

ow1 = 0.5, f1 =0.075, B2 = 0.0828,

(2.44)
o =10, =031, k" =04,
whereas for Wilcox’s x-w model, the respective constants were chosen to be
o, =0.5,0,=05,3=3/40, y=5/9. (2.45)

2.6.3 Spalart-Allmaras Model.

Spalart-Allmaras (SA) is a one-equation turbulence model which is mostly used in aerody-
namic flows. It is elegant for industrial applications because it provides superior stability, it
is faster and it is less sensitive to the grid choice compared to other popular EVM, such as
k~w model. On the other hand, as it is commonly the case for one equation models, its main
disadvantage is that it lacks of physical content, making it weak for a number of turbulent

flows, such as massively separated flows, free-shear flows and complex internal flows.
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The transport equation of the working variable o is derived by using empiricism and argu-
ments of dimensional analysis, Galilean invariance and selected dependence on the molecular

viscosity and is given by

ov _ Ov AL Cp1 Ve 1.0 oD o ov
" i 1- — [CwlJw — o b —|la a a. )
ot t U Ox;j M [cwn f K2 ftz](d) + U[axj ((v+ V)8acj) + G2 ox; 8332-]
Production
Destruction Diffusion
(2.46)

where k, is the von-Karman constant, while the turbulent eddy viscosity is computed from

pr = pvfu, (2.47)

where f,1 is a damping function, which is defined in a way that ensures that o equals kKyu,

in the log layer, where u, is the friction velocity,

3
X
fr =57

= __Asa (2.48)
Xg)a + cgl

Xsa =

R

The vorticity magnitude ©Q = /2€;;€;; is used so that S maintains its log-layer behavior
(5= )

RolY

v
S=Q+ wfw, (2.49)

where d is the distance from the field point to the nearest wall. Additional functions are

1 6 1/6
f’UQ =1- L ) f = |:—i_cué3:| ’
. % 2.
g=1+cua(r®—r), r= mln[iAFLQd2 ,10], (2.50)

fi2 = ci3 exp(—ct4x2) ,

where function f,, is used for obtaining the correct decay rate of destruction in the outer
region of the boundary layer, g acts as a limiter that prevents large values of f,. As a
consequence, both r and f,, are tuned to equal unity in the log-law layer and decrease in the

outer region. The constants of the model are given in Table 2.1
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TABLE 2.1: Constants for the SA Closure

1 = 0.1355 o= 2/3
2=0.622  k,=0.41

Cw2:0.3 Cw3:2
Cv1:7.1 Ct3:1.2

1
ca=0.5 cw1= H + —

2.7 Turbulence structure tensors.

In the context of Reynolds Averaged Navier-Stokes (RANS), it is important to have good
one-point measures of turbulence anisotropy. As shown by Kassinos and Reynolds [2, 3], such
anisotropy measures must take into account the morphology of the large energy-containing
eddies. These coherent structures tend to organize the fluctuating motion in their vicinity
and in the process create anisotropy in both the componentality and the dimensionality of
the turbulence. Here, componentality refers to information about the directions in which tur-
bulent fluctuations are most energetic, while dimensionality refers to information about the
alignment and extent of the coherent structures. One has to distinguish between the turbu-
lence componentality and dimensionality because they are two distinct aspects of turbulence
anisotropy that affect the dynamics of the turbulence in different ways [3]. The structure
of the turbulence field, i.e. the morphology of the large energy-containing eddies, can be
characterized through a set of one-point turbulence structure tensors. Here, we summarize
the key features of these tensors, but more details can be found in several works, such as
[32-34].

The one-point structure tensors are defined through the fluctuating stream function vector

%, which is related to the fluctuating velocity u, and vorticity w, through the expressions,

u; = 6ijk¢;c,j ) w;,z =0, w;,nn = _wz{ : (251)

The Reynolds stress tensor R;j, also called componentality tensor in the terminology of
Kassinos et al. [3], describes the spatial orientation of the velocity fluctuations, i.e. it
allows one to know in which direction the velocity fluctuations are most energetic. The

componentality tensor is related to the stream function vector through the identity

Rij = wiu); = €ist€jpghy Wy s Tij = Rij/Req = Rij/(2K), (2.52)
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where k is the turbulent kinetic energy. Applying isotropic tensor identities [35] to eq. (2.80a)

leads to a constitutive equation,
Rij + Dij + Fij — (Cij + Cji) = Ryx6ij - (2.53)

Equation (2.53) leads to the definitions of the one-point structure tensors,

Componentality Ri; = m, rij = Rij/ Rk, Tij = 1rij — 6i5/3, (2.54a)
Dimensionality — Dij = ¢}, ;¥  dij = Dij/Drw,  diy = dij —6i5/3,  (2.54b)
Circulicity — Fyj = ¢ 4/, fii = Fij/ Fir, fii=fi; —0i5/3,  (2.54c)
Inhomogeneity Cij = m, ¢ij = Cij /Dy, Gij = cij — 0i5/3. (2.54d)

The dimensionality tensor D;;, describes the spatial orientation of the energy containing
eddies, allowing one to determine the directions in which the eddies tend to be aligned. If in
a given direction, let’s say x4, the structures are long, then gradients of the turbulence stream
function tend to be eliminated in that direction, and as a result dypq — 0 (no summation is
implied over Greek indices). On the other hand, when the turbulence is organized in a stack
of thin two dimensional sheets normal to the x, direction, then stream function gradients
occur primarily in this direction and as a result doo — 1. The circulicity tensor Fj; describes
the structure of the large-scale circulation field. When large-scale circulation is concentrated

along a particular axis x,, then fon — 1.

The inhomogeneity tensor, as its name indicates, describes the degree of inhomogeneity of a
flow and it vanishes at the limit of homogeneous turbulence, as is shown easily if we re-express

the tensor such as

Cij = (Vi ;) k- (2.55)

In contrast to the other structure tensors, the trace Cy; can take zero or negative values in
some regions of a turbulent flow, leading to an ill-defined normalized tensor. Instead of Cyy,
the trace Dy is used to normalized this tensor instead of Ryi, to avoid singularities at the

wall of wall bounded flows.

2.7.1 The special case of homogeneous turbulence.

Next, we consider the case of homogeneous turbulence, in which the statistics of the turbulent

field are independent of position. The concept of homogeneous turbulence is an idealization,
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in that there is no known method of realizing such a motion exactly. Nevertheless, this
idealization is useful for modeling development, since it can be used as an intermediate step

towards the construction of a turbulence model, suitable for general inhomogeneous flows.

In this limit, the one-point structure tensors of the velocity field can be expressed in terms

of an equivalent Fourier representation involving the following integrals,

Rij = / Ei;(k)d’k, (2.56a)

Dij = / kQJqu(k)d?’k, (2.56b)
Wij (k)

E; = / #d?’k, (2.56¢)

where Ej;; ~ <ﬁzﬁ;‘> is the velocity energy spectrum, Wj; ~ (wzw;> is the vorticity spec-
trum tensor and k is the wave-number vector. Here, the upper-script (*) denotes a complex
conjugate. Eq. (2.56¢) clearly reveals the connection between the circulicity tensor and the

large-scale circulation.

An interesting observation can be also deduced through the simplified constitutive equation

Eq. (2.57) implies that even in the case of homogeneous turbulence, two of the three tensors
are linearly independent, supporting the argument that knowledge of the componentality
tensor alone does not suffice to completely characterize the turbulence field. Furthermore,
it is important to note that the diagonal components of trace-normalized tensors can attain

values only in the range zero to unity.

In homogeneous turbulence, Fourier expansions can be used to represent turbulent variables.

Thus, the following fluctuating quantities are represented by the Fourier series,

up =ik, t)e Fmrm (2.58a)
k

wj =Y ik, t)e Fmom (2.58b)
k
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The spectra satisfy the incompressibility conditions as follows

kiE; =0, 2.59
71
kjWij =0. (2.59D)

Eq. (2.59a) is a consequence of the incompressibility requirement. Since the turbulent vari-

ables are real quantities, the following identities must be satisfied by their Fourier coefficients

al(k,t) = ai(—k), @f(kt)=wi(—k). (2.60)

The componentality tensor is connected to the velocity spectrum through the equation

Rij = / Eij(k,t)d%k, (2.61)

whereas the Fourier representation of the dimensionality tensor is given by the integral form

D;j = / k—sz,m(k, t)d’k . (2.62)

The circulicity tensor is related to the vorticity spectrum through the relation

knkt Wi'
Fj= einmejts/kQEmS(k,t)dgk:/k;dgk- (2.63)

Another important tensor which is defined in terms of the velocity spectrum tensor is the

fourth-rank tensor M;j,, given by

kpk
Mijpg = %Eij (k,t)d’k. (2.64)

Different contractions of the fourth rank tensor can yield the structure tensors through the

expressions
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kik;
Rij = M;jss = /Eijdgk Dij = Miipq = / ?;Ennd?)ka (2.65)

Fij = 6'L'pqejrs]\4qspr )

revealing that M;;,, is linearly dependent not only on R;; but also on D;;.

At the limit of large Sk/e, meaning the time scale of the mean deformations (1/S) is much
shorter than the characteristic turbulence time scale (k/€), the equations can be linearized
in terms of the turbulent variable, leaving as the only non-linear term the product involving

the pressure and velocity variables

dR;;
dt

= —GiRij — Gjp Ry + T;

(2.66)

where the upper-script (r) refers to the rapid part of the pressure related term, which is

related to the M;ji, through the equation

T = 2Gxn(Minkj + Mjnki) (2.67)

2.8 The Interactive particle representation model (IPRM)

for homogeneous turbulence.

The Particle Representation Model (PRM) was introduced by Kassinos and Reynolds [2] as
a means of carrying out efficiently exact simulations of general deformations of homogeneous
turbulence in the limit of Rapid Distortion Theory (RDT). In the RDT regime, the time
scale of the turbulence is assumed to be much larger than the characteristic mean defor-
mation time scale, leading to a linearization of the governing equations by neglecting terms
involving products of fluctuating quantities. Even in the RDT limit, the governing equations
are not closed at the one-point level because of the non-locality of the pressure fluctuations.
One way to carry out exact RDT computations is to resort to spectral or pseudo-spectral
simulations. While this is of course a valid approach, it is computationally costly and an
overkill if one only needs to compute one-point statistics of turbulence. The PRM is based
on the recognition that a full Fourier representation is unnecessary if all one is interested in is

to compute exactly the one-point statistics of turbulence in the RDT limit. One can achieve
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this goal through a reduced representation that retains only a subset of the information nor-
mally carried in a spectral computation. In a sense, the PRM retains the minimal amount
of information beyond one-point that enables a self-consistent closure of the RDT governing
equations without resort to the use of a model and without resorting to full two-point formu-
lations. Furthermore, Kassinos and Reynolds [2] cast this minimal representation in terms of
“hypothetical particles”, thus avoiding the formality of Fourier transforms. Further details

about the PRM framework are given in a number of publications [24, 36].

Each PRM “particle” is equivalent to a one-dimensional one-component (1D-1C) sheet of
turbulence. In essence, particles are building blocks that can be used to construct more
complex turbulence fields. Each of the PRM particles is assigned a number of properties, the
exact set of properties depending on the application. In this work, we extend the original
PRM by adding to the set of particle properties the passive scalar. Here, the complete set of

particle properties is taken to be,

N; gradient vector

Vi velocity vector

W;  vorticity vector

S; stream function vector
P pressure

®  passive scalar.

The gradient vector N; represents a physical space abstraction of the wavenumber vector.
The plane of each particle (the sheet of turbulence) is a plane of independence, in the sense
that properties do not vary within the sheet. The gradient vector points in the direction of
dependence, that is normal to the particle plane. Properties vary only in the direction normal

to the sheet of turbulence.

In the PRM framework, one computes one-point statistics by taking ensemble averages over
all the particles being tracked. For example, the one-point structure tensors of (B.9) are

obtained through
Rij = <V2’Uﬂ)j>, Dij = <V2nmj>, Ej = <V2SZ’S]’> y DZSJ = <<I>2nmj> y (268)

where the angled brackets denote an ensemble average, and where we have used lower case

to indicate the components of the unit vectors, for example n; = N;/N where N = /NsNs.
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2.8.1 PRM evolution equations

The particle properties are evolved in time according to simple differential equations that

emulate the exact governing equations (3.4) in the limit of inviscid RDT,

déf = —G,N,, (2.69a)
av;
= (G +20[)V. + PN, (2.69b)
dd
— = AV (2.69¢)

The rapid pressure is determined by enforcing the incompressibility condition V;N; = 0,

Vi N,
N2 7

P =2(Gpi + Q) (2.70)
where ka is the frame rotation tensor, if present. The form of the pressure solution in (2.70)
means that the velocity evolution depends only on the unit gradient vector n;. Thus, one can

replace equation (2.69a) by

dni
dt

= —Gring + Grmngnmn; . (2.71)

2.8.2 TIPRM evolution equations

For weak deformations of homogeneous turbulence, when the time scale of the mean defor-
mation is comparable to that of the turbulence, equations eq. (2.69) must be modified to
account for the effects of the non-linear turbulence-turbulence interactions. Kassinos and
Reynolds [24] argued that under weak mean deformation, when the turbulence has time to
interact with itself, each particle sees an effective gradient due to the background action of
the sea of large-scale eddies in addition to the mean velocity gradient. The same action
provides an effective rotational randomization of the particles, much as mean or frame rota-
tion tends to randomize the Fourier modes under RDT. Based on these arguments, Kassinos
and Reynolds [24, 36] proposed the following form of the Interacting Particle Representation

Model (IPRM) equations that are valid for general deformations of homogeneous turbulence

AN; = —GYNydt, (2.72a)
dV; = —(GY + 200 \Vidt + PNydt —CyVidt — CoVeipgdWypn, . (2.72b)

rotational randomization
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The effective gradients are given by
C C
Gij = Gij + anikdkj , Gy =Gij + %Tikdkj , (2.73)

where 7 is the turbulence time scale. The model constants C,, and C, are chosen to be
C, = 2.2C, = 2.2. The rotational randomization model is designed to leave the turbulent
kinetic energy unaffected and it involves a Gaussian white-noise forcing dW;, having the

following properties when averaged
aw; =0, dW;dW; =dtd;;, A;dW; =0, (2.74)

where A; is a stochastic vector. The pressure is again determined by the incompressibility

condition VN = 0,
Vi Np,

P=(GY+ G+ 29&,6)? . (2.75)
The model constants C; and Cs are given by
2 8.5 s s sO)s s
Cl = CQ = 79 qunpnq, Q = Qqu, Q’L = eipqqudkp .
C,=220C,=22, (2.76)
K 2K
T = ; = ?Cvriqdqsrsz‘ .

For the evaluation of the time scale 7, the standard e evolution equation with a correction in

the presence of rotational effects is used,

d 2
d{ = —002% — CsSpaTape — Cory/ Qe (2.77)
with
11.0
Co=—¢=r Ce=30, Co=00L. (2.78)

Note that with the use of effective gradients the governing equations retain under slow defor-
mation the basic structure of the RDT equations, even though they now include nonlinearity
through the effective gradients, as they should. Furthermore, using effective gradients means
that one does not need to resort to traditional return-to-isotropy “slow” terms. This is im-
portant because there are known cases where return to isotropy does not apply under very
weak deformation, such as the release of turbulence following a history of deformation under

irrotational plane strain or axisymmetric expansion [3, 37, 38]. The effective gradients allow
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the IPRM to match the turbulence behavior shown in DNS and experiments for these atypical

cases.

2.9 Structure Based Models (SBMs)

The PRM and IPRM fall within the SBM category of models. The main idea behind this cat-
egory of models is that the structure of a turbulent field can be completely described by a set
of tensors, called structure tensors. A phenomenological approach to introduce the structure
tensors was proposed by Reynolds and Kassinos, which provides a promising route for devis-
ing improved RANS turbulence closures. The main difference between the structure-based
model and the PRM stems on the methodology used for the formulation of the statistical
quantities. In the PRM, the statistics are obtained by averaging over particles of fixed normal
vectors n;, while in the SBM model, averaging is performed on particles carrying the same
eddy-axis vector a;.

Kassinos and Reynolds [2] introduced the first SBM for flows subjected to rapid mean de-
formations, thus obeying to the RDT theory. This model succeeded in providing accurate
modeling of the stresses under irrotational deformation, exact modeling of the RDT fixed
points for all combinations of mean strain and mean rotation. Motivated by the success of
the rapid model, Kassinos and Reynolds extended the model to account for weak deformation
rates in homogeneous turbulence through the inclusion of stochastic terms [22], in a way that
the realizability of the resulted transport equations is guaranteed.

Below a brief summary of the original model of Kassinos and Reynolds (KR) is given, starting

from the basic conditional moments

a < 1- Q
R!ij = VZ[( 5 %) (0i5 — aijaj) + paa; + %ﬁk(eikyayaj + ejkyayai)] , (2.79a)
pla_ V2 s 2.79b
ij_7(ij_aiaj)a (2.79b)

where 2, is the mean vorticity vector. These tensors are then averaged over all particles to

obtain

78

)
Rij =q ——— (845 —a,-j)—i-cbaij—i- 20

(€ikyty; + €jkyayi)] , (2.80a)

gy = = 9) (2.80b)
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where ¢ is the fraction of energy in the jetal mode, (1 — ¢) is the fraction of energy in the
vortical mode and v is the jetal-vortex correlation parameter. The normalized eddy-axis

tensor a;; describes the orientation of the eddies, given by

<V2aiaj)

C (2.81)

aij =

where a; is a unit vector aligned with the axis of independence.

Eq. (2.80a) reveals a distinct discrepancy between the SBM approach and the conventional
EVM. EVM are based on the Boussineq approximation, which states that the turbulent stress

tensor has a proportional relation to the mean strain rate through the constitutive equation

2
jdij — QVTSz'j, vy = C#/iz/e. (2.82)

Rijz 3

Instead, in structure-based modelling the Reynolds stress is related to a number of structure
parameters and the mean vorticity vector €2;.

Based on the previous arguments, the stochastic differential of the energy-scaled eddy-axis

vector A; = Va; is given by

dA; = |G Ak — GrmanamAi — Gpmvnvm A;ldt
+ C1A;dt + CodW; + C3dePpAi + C46¢pqupAq .

(2.83)

Starting from eq. (2.83), the transport equation for the eddy-axis tensor was found to be

da
d;J = Gikakj + ijaki — (3¢ + 1)Skmzlgmij + (3q25 — 1)Snmamnaij
e a 2.84
- 275nm66nkt(ztmij - atmaij) ( 8 )
+ (G (1= 9)(1 —a”) (5 — ayy) + Cey (€jpean + €iprar)]
where Z7  is a fully symmetric fourth order tensor, defined as

ga  _ (V2ajajapag)

iipg = W (2.85)
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The transport equations for the jetal and jetal-vortex correlation parameters ¢ and  are

given by
d Q0. C
O 39St — Tim) + 21 (5, — ) — 2, (2.86)
dt Q T
and
(% +¢Q 7)[5 QQ (5kz - akz)] = (1 - 2¢) 02 (5kz - akz)
1
+ ¢ 6pzm mkakp + 'Y{ [Snmrmn - Zskmamk]
(2.87)
QkQZ (1—-69) " 10,9,
ﬁ[szmamk + Tsnmzkzmn - 5 QQ S qpPkz
Qm C
Spq 0 eqthtpkz]} - 777)
where Q* is the rms effective eddy rotation rate
0,0, 1/2
OF = 1 (5nm — anm) + Qzézkrsrpapk + StmSmz0kz — SktSqu,‘;tpq . (2.88)
The model parameter ¢ present in eq. (2.87) is taken as
1Iq
=Ci—— * 2.89
C 1IIQ+C2IIS+C ; ( )
where
[92:€2;5:;] . e .
Cs 4Hm/ﬁ if 5S¢ >0;
=190 if 5¢=0;
Q:9;5; o e
044119@ if S¢<0.

(* is the structure equilibrium parameter, which is modeled in terms of the mean structure

strain-rate and the second invariants

Se = Sz-jaji, (2.90&)
IIS = Sz-jSij/2, IIQ = _Qiiji/2 . (290b)
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The standard x-¢ model is used for the evaluation of the time scale

d
d/ti SRy e, (2.91a)
de €
o7 = [=CaSkx — Cog — CulSpqrap — Car/ Qi Qnaile (2.91b)
with
4 11
Ca=3, Co=-—, C;=30, Co=001. (2.92)

Lastly, the values of the model constants are chosen to be:

Rapid Model: C7; =5.9, Cy, =2.0,C3=7.0,Cy =2.5,

Slow Model: C, =18, C. = —0.35, Cy = 1.3, C, = 2.8.

2.10 Algebraic Structure-Based Model.

The ASBM belongs to the family of structure-based Models (SBM) that are designed to
include information about the morphology of the energy-containing turbulence eddies. ASBM
has been built as an engineering simplification to more complex differential structure-based
models, [4, 32] and requires two turbulence scales and the mean velocity gradients as inputs.
Given these inputs, it uses algebraic relations to return the normalized structure tensors,

including the Reynolds stresses, as output.

2.10.1 Structure parametrization

The fundamental idea behind the algebraic structure representation in ASBM is that any
three-dimensional three-component (3D-3C) turbulent field can be constructed by the su-
perposition of an ensemble of simpler 2D-3C fields representing individual eddies. Thus,
individual eddies can be envisioned as building blocks that are used in ensembles to repre-
sent complex turbulence fields. Individual eddies can differ in character according to their
componentality (C) and dimensionality (D). Averaging over an ensemble of eddies yields an
algebraic constitutive equation that relates the normalized Reynolds stress tensor 7;; to the

other structure parameters of the ensemble
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1
rij = 5(1 = )(0ij — aij) + dai;

e et

+ (1 = @)x[50ij — —aij — bij + [ab];j] (2.93)

2 2
(1—xe")

- ’Yk(fiprapj + 6j]m“a/pi){ 5k7’ + kar - Xaknbm"} 5

where we have used

et =1+ Anmbmn, [ab]ij = ambnj + ajnbni . (294)

To compute the Reynolds stress tensor one has to know the structure parameters that appear
on the RHS of equation (2.93), namely the eddy-axis tensor a;j, the jetal parameter ¢, the
Jetal-vortex correlation, also called helical, parameter v, the flattening tensor b;; and the
flattening scalar x. These are obtained through model functions that are based on the
asymptotic states produced by the RDT of homogeneous turbulence and adjusted for the
effects of weak deformation and wall-proximity, where appropriate. A brief description of
these structure parameters and of the model functions used to compute them is given below

and in greater detail in [5, 10].

2.10.1.1 Eddy-axis tensor

The unit eddy-axis vector a; describes the orientation of individual eddies. The eddy-axis
tensor a;; is the energy-weighted, ensemble-averaged direction cosine tensor of the eddies,

defined in eq. (2.81), where A;; is related to the eddy-axis tensor the equation
Aij = ¢*ay; . (2.95)

In differential SBM, the evolution of a;; is based on the transport equation for a material line
in homogeneous turbulence. In the ASBM, a;; is obtained by following the weak-equilibrium
procedure of Rodi [39], where it is assumed that variations in A;; are due to variations in q>
only, while variations in a;; are neglected. Thus,
dA;;
dt

~ 2(17;j (P - 6) , (2.96)

where P and € are the production and dissipation rates of the turbulent kinetic energy.
Furthermore, the algebraic procedure is split into two steps, based on the assumption that

the effects of irrotational mean deformation and mean rotation on the eddy axis tensor can
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be decomposed. This splitting is justified by the observation that the orientation of the eddy-
axis must be computed in the analysis frame where the flow is in equilibrium or very close
to it. This is typically a rotating frame. The eddy axis is computed with no reference to the
frame rotation, as it is only kinematically rotated by it [2, 40]. The two evaluation steps are

summarized next.

The irrotational contribution is calculated using the implicit algebraic expression

* 8 * 8 2 SIS, .
o = %+Tsikakj+5jkaki_§|sa |0
g 3 2 2 Q* *
ap +2y/a7 + T Sk,p kg

, (2.97)

S
Apq

where 7 is a turbulent time scale, S7; = S;; — Skr0ij/3 is the anisotropic part of the mean

strain rate tensor S;;, and |Sas| = S, Here, a,=1.4 and a1 = (2.1 —a,)/2 are “slow” pa-

S
q%qp-
rameters whose values were determined by considering the initial growth rate of the Reynolds
stress anisotropy when ST is very small. Moreover, these parameters were optimized simulta-
neously with other model constants to ensure the model satisfies a canonical boundary-layer

state.

Next, mean rotation effects are included through a rotation operator H;; that is applied to

a’

3; in order to yield the final homogeneous eddy-axis tensor

aij = HigHjmag,, , (2.98)
where H;; is the rotational transformation tensor, given by

Qij Qinpj
+ o .
V Qstht QStQSt

Hij = 51’]’ + aq (299)

Here, €;; is the mean rotation tensor. The requirement that H;; obeys the orthonormality

conditions H;,Hj, = 0;; and Hy; H,; = d;; enforces a dependence between the two coefficients

a1 and a9, namely

a1 = y/2a —a3/2. (2.100)

Matching the RDT limiting states under the combined action of mean plane strain and

rotation determines ag,[40]
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2-2y/11+vV1=7) ifr <1
a9 =
2 2\/5(1ﬂ/1f1/r) ifr>1,

where 7 = (aququ:p)/( ZnS:Lmamk)’

2.10.1.2 Jetal parameter

Motion around the eddy-axis is called vortical, whereas the motion aligned to it is called
jetal. The eddy jetal parameter 0 < ¢ < 1 represents the fraction of the energy in the jetal
mode. Of course, the energy fraction in the vortical mode is given by 1 — ¢. In the ASBM,
it is assumed that homogeneous isotropic turbulence is composed entirely of vortical eddies.
The vortical character of the turbulence (¢ = 0) is preserved by rapid irrotational strain, but

in the presence of mean rotation the jetal component is activated.

2.10.1.3 Helical parameter

Under rapid irrotational strain the turbulence is assumed to be vortical. Jetal turbulence
results from the breaking of reflectional symmetry [2, 3] caused by mean or frame rotation.
Furthermore, in the presence of mean shear, the vortical and jetal components of motion
are correlated. In the ASBM, the correlation between the vortical and jetal components is
related to the stropholysis vector 7. The stropholysis vector is zero for purely vortical or

purely jetal turbulence, leading to

O k) IV (2.101)

T+x 7 Varar’

where ~ is the helical parameter, 5 is a parameter indicative of the degree of correlation
between fluctuating velocities at different directions. Qg is the total rotation vector given
by the sum of the frame and the mean rotation vector. y is the eddy flattening parameter

introduced next.

2.10.1.4 Eddy flattening

If the motion is not axisymmetric around the eddy, the eddy is called flattened. This asym-

metry occurs when rotation is present and is incorporated in the model through a scalar,
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called flattening parameter x, and a tensor, called the flattening tensor b;;. The flattening

tensor b;; is modeled in terms of the mean and frame vorticity vectors {2; and Q{ ,
L |
bij = ek Q7 =0 + G2 (2.102)

To capture the correct sign of the secondary shear stress for the case of shear with streamwise
frame rotation, Cj is set equal to -1. Thus, b;; is a frame-dependent parameter, sensitized to

the particular frame choice.

2.10.2 Computation of the structure scalars

Completion of the homogeneous formulation of the ASBM requires the specification of the
scalar structure parameters ¢, 5, v and x. In the general case, these are defined in a three-

dimensional space in terms of

N = g—g” NnfF = MNm — sign(X) 5'2 a? = A5 Q44 , (2-103)
where, 02, = —a;; Qi j, O = —a; QLT 52 = 035555, and X = a;;Q% 57, Functional

forms for the scalar structure parameters, such as ¢ = ¢(nm, ns,a?), 8 = B(Nm,ny,a?) etc.,
are chosen with reference to RDT limiting states, while interpolation functions are chosen to
bridge between these limiting RDT states and isotropy. The details of the functional forms

can be found in [5].

2.10.3 Near-wall effects

In the ASBM, it is assumed that as a solid boundary is approached, the turbulence eddies
are forced by wall blocking to become parallel to the plane of the wall, as shown in the
diagram of Fig. 2.1. At the same time, the eddies become jetal because of the blocking on the
wall-normal velocity component. As described below, the parametrization of the turbulence

structure is adjusted for these wall-proximity effects through an elliptic blocking procedure.

Blocking parameter The blocking scalar parameter ® provides a measure of the prox-

imity to the wall. This parameter is computed through an elliptic relaxation equation
3/2 3
L2<I>7jj =&, L=0.17 max(%, 80.0 {l/f) , (2.104)
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B —————

X5 X1

FIGURE 2.1: An eddy becomes jetalized due to the blocking effect of a solid boundary.

where k, € are the turbulent kinetic energy and the dissipation rate respectively.
Blockage tensor The blockage tensor is computed from the the scalar blocking parameter

i p i DD, >0
By = TePe TR (2.105)
0, if ® ,® ), =0

and gives the strength and the direction of the wall projection. Thus, depending on the
distance from the wall as measured through ®, the eddies are partially projected onto a plane

parallel to the wall, through the operation
ai; = PiPuajy (2.106)

where the eddy projection tensor F;; is given by

Py =" D2=1—(2— Bu)al, Bun - (2.107)

Note that the eddies are renormalized during the operation so that the eddy axis tensor
is maintained as the energy-weighted direction cosine tensor of unit trace. The “jetaliza-
tion” of the eddies due to the preferential blocking of the wall-normal velocity component is

accomplished through the blocking of the jetal and helical scalar eddy parameters
¢=1+(¢" = 1)1 - Bw)®,  7=7"(1- Bu)- (2.108)

38



Chapter 3

A structure-based model for the
transport of passive scalars in

homogeneous turbulent flows

3.1 Introduction

The transport of passive scalars is of great scientific interest since it plays a role in physical
phenomena such as atmospheric dispersion and in engineering applications involving turbulent
mixing. The term passive scalar refers to the simplified case where a scalar is present in such
a low concentration that it does not influence the evolution of the fluid flow. Hence, the
transport of passive scalars is also a convenient simplified starting point for the study of
processes where one expects a more complex interaction between the scalar and the fluid

flow, such as reacting flows with concentration gradients and heat release.

At sufficiently high Reynolds numbers, the predominant theory for the description of the
velocity field statistics is based on Kolmogorov’s [11] idea of local isotropy, which assumes
that the small scales remain mostly isotropic, independently of the presence of any large-scale
anisotropies. By analogy, similar arguments were extended by Obuknov [12] and Corrsin [13]
to describe the statistics of a passive scalar in homogeneous and isotropic turbulent flow at
high Reynolds and Peclet numbers. The assumption of local isotropy enables the drastic sim-
plification of the governing transport equations and leads to similarity solutions for the passive
scalar and velocity fields, even in the presence of mean scalar gradients [16]. The simplicity

and elegance of such solutions has motivated a large amount of work in the literature. [14, 15]
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Yet, deviation from small-scale isotropy has been observed experimentally by a number of
workers. For example, Tong and Warhaft [41] considered the case of isotropic turbulence in
the presence of a transverse mean scalar gradient, finding that W ~ 1.4W where ¢’
denotes the fluctuating passive scalar and y is the direction of the mean gradient. A similar
observation was published some years earlier by Sreenivasan et al. [42] for shear turbulence,
again in the presence of transverse mean scalar gradient. The departure from isotropy for
small-scale second-order statistics that was reported in these studies was relatively small.
However, in the case of third order small-scale statistics, the assumption of small-scale isotropy
breaks down entirely, as first reported by Stewart [43] for high Reynolds and Peclet number

measurements in the atmospheric boundary layer. Stewart observed that the scalar-derivative

skewness, defined as

Ser, = (@3 [(61,)712, (3.1)

was of order one and not zero, as small-scale isotropy requires. Based on experimental
observations, Sreenivasan and Tavoularis [44] argued that the skewness should vanish only
when the mean shear and the mean scalar gradient are both zero. In all other cases, it was

found that:

(a) sgn(Sy,) = —sgn(S)sgn(Ss)"
(b) [Se, | varies linearly with the magnitude of £oSy/ (¢2)1/2

(¢) |Se, | depends on the history of 5,

where £y is the characteristic lengthscale of the large eddies, Sy is the magnitude of the mean
scalar gradient and S is the magnitude of the mean velocity gradient, both imposed transverse
to the mean flow direction. Clearly the three above observations show that scalar derivative

skewness is directly linked to both the mean field and the large-scale structure.

The aforementioned efforts addressed passive scalar transport in non-rotating flows. Recently,
however, significant effort has been directed to the study of passive scalar transport in shear
flows in rotating frames as well. Brethouwer [46] performed a number of DNS computations
at different frame rotation rates for the case of homogeneous shear flow in the presence of
mean scalar gradient. Particularly, for the case of a transverse mean scalar gradient, he
observed that scalar flux in the mean flow direction tends to become much larger compared
to the flux in transverse direction. The DNS study of Kassinos et al., [47] provided additional
supporting evidence for the strong dependency of the passive scalar transport on the relative
strength of the frame rotation rate and the mean shear rate and emphasized the role played

by the large-scale turbulence structure in determining passive scalar transport.

'also mentioned in [45]
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3.1.1 General approach and objectives

The significant effect that the large-scale structures have on the evolution of the small-scale
scalar statistics [48] has motivated us to construct a structure-based model (SBM) for passive
scalar transport with the ability to account for these effects. Such an SBM for passive scalar
transport could be based either on the Interacting Particle Representation Model (IPRM)[36]
or a simplified engineering SBM such as the Algebraic Structure-Based Model (ASBM) [49].
In either case, the intent is to take advantage of the turbulence structure information carried
in these models in order to provide improved predictions of scalar transport. In order to
accomplish this in a self-consistent framework, we found it necessary to develop a set of
transport equations for the scales of the passive scalar field that are sensitized to the structure

of the large scales.

In Section 3.2, we give a brief summary of the one-point turbulence structure tensors and the
IPRM framework. In Section 3.3, we develop an extension of the IPRM model to account
for the passive-scalar statistics. In order to bring the extended IPRM model into a closed
form, a set of structure-based scales for the passive scalar field is derived and discussed
in Section 3.4 through Section 3.6. The validation of the complete structure-based model
equations for a large number of test cases is carried out in Section 3.7, leading to encouraging
results. In Section 3.8, we outline our future plans to adapt the current approach for use
with the ASBM and show preliminary results that appear to be promising. A summary and

conclusions are given in Section 3.9.

3.2 Mathematical background

3.2.1 The governing equations

The transport of a passive scalar ¢ in an incompressible fluid with no buoyancy effects is

governed by the continuity, momentum and passive scalar transport equations,

i =0, (3.2a)
1

Oru; + uju; j = —;p,z‘ + vu g, (3.2b)

Op +ujd; =vd;, (3.2¢)

where p is the density of the fluid and wu;, p, ¢ are the instantaneous velocity, pressure
and passive scalar fields respectively. The fluid viscosity and scalar diffusivity are denoted

by v and + respectively. Hereafter, we are using index notation whereby repeated indexes
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imply summation and an index following a comma denotes differentiation with respect to the

corresponding spatial coordinate. Applying Reynolds’ decomposition of the flow variables,

up =T +u,  p=p+p, d=0+¢, (3.3)

to eq. (3.2) leads to the set of equations governing the transport of the turbulence fluctuations.

For the case of homogeneous turbulence these take the form,

U;"i — 07 (34&)
1

i+ TUjup; = —Gigug, — wjug ; — ;pfi + vy (3.4b)

0" + W = —Ajuj —widl; + 95, (3.4c)

where G;; = u; j and A; = 51 are the mean velocity gradient tensor and mean scalar gradient

vector respectively.

3.2.2 The one-point turbulence structure tensors

In addition to the one-point structure tensors which were introduced in Chapter 2, we defined

the structure dimensionality tensor for the scalar field as

Dj; = ¢, & di; = Dj;/ Dy, , dfj =d;; — 0ij/3, (3.5)

2,052,5
where & is an irrotational vector field satisfying
Eimkzgl{;,m =0, fz{,i =, éé,kk = Qb:z (3.6)

Note, that as a result of the definition (3.6),

Dy =€ € =€ ¢ (3.7)

1,257,2 °

Hence, when the scalar field in organized in large-scale structures with a large extent in a
particular direction, z,, then qbf » — 0 and as a result d;, — 0. In the opposite case, when
the scalar field is organized in two-dimensional sheets normal to the the z, direction, the

only non-vanishing scalar gradients are d)f . and as result d5, — 1.

The fluctuating passive scalar quantity is represented into Fourier series as follow

¢ = ok, t)eFmim (3.8)
k
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Hence, the passive scalar spectrum is Eg4 ~ <q5q£*> Furthermore, in the scope of the present
work, which is restricted to homogeneous turbulence, the dimensionality tensor for the scalar
turbulent field can be expressed in terms of an equivalent Fourier representation involving

the following integrals,

D;; = / k; E?(k)d’k, (3.9)

where ¢ is the Fourier mode of the fluctuating passive scalar field and E? ~ (¢¢*) is the

scalar variance spectrum tensor. Moreover, it is worth noting that the tensor trace Dy, is

identical to the scalar variance ¢'2.

3.3 An Interacting particle representation model for passive

scalar transport

In the present work, equations (2.72) are supplemented by the IPRM equation for the passive

scalar, p
®
—= —APV;, (3.10)

where A? is the effective gradient for the passive scalar
Al =N+ A =6, +A;. (3.11)

Here, A} is the non-linear contribution to the effective scalar gradient arising from the back-
ground turbulence-turbulence interactions. This is modeled as

g 2

Tisdsq ¢ = (V?), 3.12
P q (V=) (3.12)

with ¢?=2k being the turbulent kinetic energy and T4 the characteristic time scale of the

scalar field.

3.3.1 Conditionally averaged particle clusters

The algorithmic implementation of the IPRM involves the numerical solution of equations (2.72)
and (3.10) along with appropriate evolution equations of the turbulence scales that appear
in the effective gradients (see Sections 3.4 and 3.5). One also has to provide initial condi-
tions, which amount to sprinkling a random or uniform distribution of particles on a unit n
sphere. The initial condition has to be consistent with continuity, which in the IPRM context

amounts to enforcing the initial orthogonality of the n;, V; and S; vectors.
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Numerical experiments have shown that instead of tracking a larger number of individual par-
ticles, one gains in numerical efficiency by tracking “clusters” of particles. Particle clusters
amount to organized collections of particles that all have the same unit vector n;, = N;/N.
Thus, while an individual particle represents a 1D-1C field of turbulence, a cluster of particles
represents a 1D-2C field. The gain in numerical efficiency results because the conditional av-
eraging of the property evolution equations can be carried out analytically, yielding equations
for the evolution of the cluster properties. As a result, converged one-point statistics can be
obtained by tracking a much smaller number of clusters instead of large number of individual
particles. Figures 3.1a and 3.1b show examples of the IPRM initializations corresponding to
individual particles and conditional clusters respectively. In the case of individual particles
(1D-1C fields), the n; vectors (black) are sprinkled on the unit sphere; shown in the plane of
each particle are the velocity (red) and streamfunction vectors (blue). In the case of clusters
(1D-2C fields), the n; vectors (black) are again sprinkled on the unit sphere, but shown in the

plane of each particle are all the velocity vectors (red) that belong to the particular cluster.

Averaging over the particles of a given cluster yields the conditional statistics of the cluster.

These include the conditional one-point structure-tensors tensors, given by
Rij = (ViVjin), DJj = (VPningln), E}}' = (Vsisiln). (3.13)

where the superscript | indicates moments obtained by averaging over all the particles be-
longing to a cluster with a common n;. The cluster properties include the conditional scalar

variance and the conditional scalar flux,
%" = (@%n), Q" = (Vid|n). (3.14)

For more details regarding the basic ideas and the fundamental formulation the reader should
refer to [24, 36].

The conditionally averaged IPRM model, including the transport of a passive scalar can then

be summarized as follows,

In
My (G + 200 )R — (G + 200 )R + (G + Gl + 29 )%
dt ik ik/ "k jk jk/ ki km km km (3 15)

(Rl%nkn] + Rﬁnnkm) — QClRL? — CQZRLZ((E] — ninj) ,
where the rotational randomization parameters C7, Co are modeled based on dimensional

considerations and the requirement that the material indifference to rotation property is

satisfied
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F1GURE 3.1: Initialization of the IPRM model: (a) individual particles version; (b) condi-
tional clusters version. In both cases, the unit gradient vectors (black) are sprinkled on the
unit sphere. On the left, the velocity (red) and the streamfuction (blue) vectors are shown
in the plane of each individual particle (1D-1C field). On the right, only the velocity vectors
(red) belonging to each cluster (1D-2C field) are shown. In the conditional cluster version of
the IPRM, one advances in time the evolution equations of the conditional moments of the
cluster rather than equations for individual properties, thus gaining significantly in numerical
efficiency.

8.5 ., . .
C,=C3= — fognpng, O = VOO, QF = eipgrandip - (3.16)

In order to bring the model into a closed form, the turbulence timescale is obtained through

the following expression|24, 36|

C 2
n>§%%wm,f:wm, (3.17)

where the energy dissipation rate is evaluated from a transport model equation that will be

introduced in the next section. The conditional evolution equations for the scalar properties

d (@3 )
- ( 5 ) = —Q"AY, (3.18)

are given by

and

w7

d n n v n n v n n
%QL = —RI"A? — (G4, +200)QI" — C1Q" + (G + G2 + 29 QM . (3.19)
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The non-linear contribution to the passive-scalar effective gradients Af’ involves the passive-

scalar time-scale 74, defined by

(I)Z
Ty = Cv7< 6¢>T’ijdj57’si . (3.20)

The elegance of eq. (3.20) is that 7 is determined without any further modeling assumptions,

since it is automatically adjusts to the energy related model parameters.

Substituting for Af’ in equation (3.18) shows that the nonlinear contribution due to turbulence-

turbulence interactions has the form
Cy
(Vg®)(Vi®|n) —5 e 5 Tisdsq - (3.21)
Numerical experiments suggest that the approximation,
Cy 2, Cu
(Vg@) (Vie|n) — - 5Tisdsj = (ViVg|n)(® >T¢q Tislsq 5 (3.22)

yields an improvement to the overall model behavior. Adopting this modification, the final

form of the scalar variance equation is

d [ ®2n n n
dt( . ) ~QI"A; — AR, (3.23)
where C< 2>
)
A = =2 Lpiodgs . .24
J T¢q2 T'isUsj (3.24)

The modeled expression (3.20) for 74 is derived such that the ratio of the timescales yields

R=_ = . (3.25)

Closure of the conditional IPRM requires determination of the dissipation rates for both
the turbulent passive scalar and energy fields, a topic we consider in the following sections.
Particularly, we consider the transport of two scalar scales, that of the scalar variance and
the large-scale gradient variance, which subsequently are used to model the passive scalar

dissipation rate €.

46



A Structure-Based Model for the Transport of Passive Scalars in Homogeneous Turbulent
Flows

3.4 Turbulence scales in structure-based modeling

The Interacting Particle Representation model (IPRM) has been constructed with numerical
efficiency in mind, as needed in engineering applications. Hence, in modeling nonlinear effects
associated with the energy cascade process no attempt has been made to resolve different
scales directly in the IPRM. This means that there is no internal determination of turbulence
scales. For example, there is no internal length scale specification, as one caries the unit
gradient vector n; instead of IN;. Nevertheless, closure of the IPRM equations requires proper
specification of the turbulent kinetic energy dissipation rate ¢ and scalar dissipation rate ey
in equations (3.17) and (3.20). Hence, model transport equations for the scales are required

and must be externally supplied.

In the framework of two-equation structure-based modeling, Reynolds, Langer and Kassinos
[50] (hereafter RLK02) have proposed the use of the Large-Scale-Enstrophy (LSE) equation
to provide one of the turbulence scales. In the LSE equation, closure is achieved in terms
of the one-point structure tensors, thus sensitizing the turbulence scales to the effects of the
turbulence structure. The main idea behind the formulation of the large-scale enstrophy
model is that the turbulent kinetic energy is transferred from large to small scales through
a cascade mechanism that is determined by non-linear interactions between the large-scale
coherent structures and the small scales. To bring this interaction between different scales to
the foreground, RLKO02 applied the triple decomposition scheme, described in Chapter 2.4,
which is based on the idea that the large-scale eddies contain most of the turbulent energy
and that these large-scale eddies determine the small-scale processes. Starting from this idea
and using a simple model energy spectrum that varies as k~°/3, RLK02 were able to relate the
turbulent kinetic energy dissipation rate € to the root-mean-square (rms) of the large-scale

enstrophy,

& = \/Cid; . (3.26)

In the case of homogeneous turbulence, the model transport equations for the turbulent

kinetic energy x and the rms large-scale enstrophy @ are given by

dk

i —(2r)1i;Sji — [Ferw + 1/&)2] , (3.27a)
Ao _ @3
o = @fiiSii = [Caz — ¢Cz3 0" — vCp — (3.27b)

where the turbulent kinetic energy dissipation rate is determined by the following algebraic
expression

€= F.ri+ vd?. (3.28)
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The first term in (3.28) refers to the cascade process, through which energy is transferred from
larger towards smaller eddies. The viscous term is the exact representation of the dissipation
rate by the large-scale motions; it is important only at low turbulence Reynolds numbers.
Here, S;; = %(ﬂ” + ;) is the strain rate tensor, while F, = Ccx and ¢, x are parameters of
the large scale enstrophy model. Tables 3.1 and 3.2 summarizes all model parameters related
to the turbulence scale equations as these were determined in RLKO02, where further details

can be found.

Spectrum C@%/CE = CaQT/CE Cw%/CE = Ca%/CE ng ICde Cg
k? 25/14 20/21 5/6 0.3
K 3/2 4/5 7/10 0.5

TABLE 3.1: Values of the constants for the extended large-scale enstrophy (ELSE) model
for different low wave-number spectra.

Spectrum X 10} X? o
/{?2 Sfijdji 97’1']' djqfqi QTZ‘qujT’jZ‘ 9riqd3jfji
kJ4 3f1] dji 9Tij djqfqi gringjrji 9Tiqd2j fji

TABLE 3.2: Model parameters of the large-scale enstrophy model[7] and the extended large-
scale enstrophy (ELSE) model for different low wave-number spectra.

Previous work by Kassinos and co-workers (unpublished) suggests that modeling the turbu-
lent kinetic energy dissipation rate in terms of the large-scale enstrophy leads to improved
predictions in the case of homogeneous shear in a rotating frame. Motivated by these observa-
tions, we have adopted the large-scale enstrophy equation in the new extension of the IPRM
for passive scalars that we propose herein. Thus, in the framework of the current scheme,
Eq. (3.28) is used in eq. (3.17) for the determination of 7, bringing the IPRM evolution of
the velocity vector into a closed form. All subsequent validation tests utilize this model.
However, to complete the model we also need to determine the scalar field scales. We turn

to this task in the next section, again making use of the triple decomposition approach.

3.5 A set of structure-based scales for the passive scalar field

In this section, we adopt the passive-scalar variance and passive scalar gradient variance
as the appropriate scales for the scalar field and we put forth a new model that properly
accounts for the influence of the large-scale structural anisotropy on the evolution of these
scales. Applying the triple decomposition scheme of the previous section to the governing
equations (3.2) yields three transport equations; one for each of the three contributions to

the instantaneous passive scalar field. In summary, these are
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Mean passive scalar squared magnitude:

7 e
0(5) +ui(5)g = Z(Cwd)ds — (H(ujd")di —79id
ML transfer to transfer to  dissipation of
mean Lagrangian increase large scales small scales mean field
P (3.29)
— |6 (We") + b — ()|
g
spati;rl flux
Large-Scale variance:
E — ﬁ ~ N7 " s
W) +u(5)y = ()i —(—(wjd")o:) —vd:0,
2 2 —_———— —_———— ——
L L transfer from mean transfer to  dissipation by
mean Lagrangian increase small scales large scales
(3.30)
¢2
C S -
K}
spatial flux
Small-Scale variance:
¢1/2 ¢//2 _ E——— J—
0P+ a0y = RN+ (Wl d) — AT
mean Lagrangian increase transfer from mean  transfer from large scales dissipation by small scales
¢//2 ¢//2 ¢//2 (3 31 )
" ~
— | (u; 7) + Ui<7> - V<7>,i

N

spatial flux

Comparing the first two terms of the RHS of eq. (3.29) to the first term of the RHS of
eq. (3.30) and eq. (3.31) respectively, we see that the mean field “feeds” the large and small
scale fields through scalar variance transfer. Comparing the second terms of the fluctuating
equations, we see that additional scalar variance transfer takes place from the large scales
towards the small ones, revealing the importance of the cascade processes. Consequently,
the terms that are traditionally called production and dissipation of scalar variance are more
accurately described as transfer terms representing exchanges between the scales, rather than

source and sink terms.

Spatial differentiation of eq. (3.2) yields the transport equation of passive scalar gradient

vector

Owa; + Ui 5 = —QjUj; + Vi jj (332)
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where we have introduced the shorthand notation

ai=¢;. (3.33)

The triple decomposition procedure yields the transport equations for the three contributors

of the scalar-gradient variance.

Mean passive scalar-gradient magnitude squared:

_ _ . T TN = — _ N
Oy(aia;) + u;(aiai) j = —(=2(uz,0))@im —(—=2Umi)@im +(—20:0;) U
7 o
mean Lagrangian increase transfer to transfer to production by
small scales large scales self stretching

—[26_12‘ <CL// u” > + 2C_Li(~lm’[~tm’i] _2'7ai,m(_1i,m
—_——

m“'m,i
production by dissipation from mean (334)
cross—scale stretching
ool A Y a0
— | 2a; <Umai > + 20Uy, 0 — ’Y(azaz),m ,
m
spatial flux
Variance of large-scale passive scalar-gradient:
=~ = — =~ = _ =<\ — T\~ =~ 0\ —
O (Amam) + uj(amam),j = (—20iQm)am,; — (—2<Ui am)am,i) + (_2amaj)“j,m
mean Lagrangian increase transfer from mean  transfer to small scales production by
mean stretching
+(—2a$amu,7m) + ( 2azamuz,m) + ( 2am, <ui,mai >)
—_——
production by self stretching production by cross—scale stretching
— T N, === —
H(=2Ym iQms)  — | 2(w/al,)am + Ambm T — Y(Amam)i|
i
dissipation by large scales 2
spatial flux
(3.35)
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Variance of small-scale passive scalar-gradient:

9 o . o
—(aman,) +aj(amaly,) ; = +(=2(ujal,))ami + (—2(uf ap,)am.;)

ot

mean Lagrangian increase

transfer from mean transfer from
large scale

+ (=2(a5,af))wjm + (=2{amaiuiy,)) +(=2{ama;)dim)

production by production by production by
mean stretching self stretching  large—scale stretching (3 36)
YA RPN _ Y
_[2<a’mui,m>al + 2(11 <amui,m>] 27<am,iam,i>

production by cross—scale stretching dissipation by small scales

~ (@i + (fafaly — v (alali))i|
52

spatial flux

Note that in addition to transfer between the scales, passive scalar gradient variance is also
produced (not transferred) at all scales due to mean velocity gradient stretching. Note also that
in the limit of homogeneous turbulence the mean scalar-gradient becomes uniform. Hence,
the first term on the RHS of Egs. (3.35) and (3.36), representing the transfer from the mean

scalar gradient towards the fluctuating fields through the cascade process, vanishes.

In the current work, the two turbulence scales that are needed for modeling passive scalar
transport are provided by the passive scalar variance and the large-scale passive scalar gra-

dient variance, namely

A= ¢2/2, (3.37a)

a’ =i (3.37h)

In the homogeneous turbulence limit, the transport equations for A and &72/ 2 reduce to

DX —— T
S = ZUPA = (10,6)) = Py — g, (338)
production  dissipation
and
&2 ELQ _ _— ===
o) +15(5) = —( ) ams) + (~Gm) s +(~Famitim)
transfer to small scales production by production by

mean Lagrangian increase mean stretching  self stretching (3 39)

+ (=@iGmtim) + (—am(u] ,af))  +H(=Yam,im,;)
—_—

production by dissipation by large scales
cross—scale stretching
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Equations (3.38) and (3.39) are complemented with the model equations of the turbulent
kinetic energy x and large-scale enstrophy &2 of RLK02, thus providing all the scales needed
by the extended IPRM. Note, however, that equations (3.38) and (3.39) contain unknown
terms that must be modeled. In the next section, we provide closure in terms of the one-point

structure tensors.

3.5.1 Modeling the fluctuating passive scalar variance equation

We express the A equation (3.38) into an alternative form by decomposing the dissipation

term into the large and small scale contributions, yielding

dX

pri —ul¢/ A — [v(¢"¢"7) + VP, - (3.40)

Although mainly a small-scale quantity, scalar dissipation is directly linked to the large-scale
eddies through the cascade mechanism. Based on Richardson’s notion[51], we assume that
the small-scale eddies are in dynamical equilibrium, since in this range, the timescales are
small compared to the large-scale timescales. Thus, the small eddies can adapt quickly to
maintain equilibrium with the scalar variance transferred by the large eddies. Hence, the
scalar variance diffused is set to be approximately equal to the scalar variance that reaches

the small scales via transfer from the large scales, such as

(ui¢") i : (3.41)

~ ‘v(¢f§¢f§>

The sum of the two terms inside the first bracket in eq. (3.40) equals the total dissipation

term, thus

ﬁ = UZ¢ A’L €¢ s (342)

yielding the following alternative expression for the scalar dissipation rate €4

o= (“Wfg)d; + 79,

transfer from large to small  dissipation by large scales

(3.43)

The first term at the RHS of eq. (3.42) is the source term associated to the mean scalar
gradient, while the first term of eq. (3.43) refers to the rate at which passive-scalar variance
is transferred from the large towards the small scales. The second term refers to diffusive loss

of scalar variance; it becomes significant only at low Peclet numbers. Next we consider the
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closure of eq. (3.43).

Sreenivasan [52] and Warhaft [18] have shown that in isotropic turbulence at high Reynolds
and Peclet numbers, with or without a mean-scalar gradient, the passive scalar spectrum
varies close to k~°/3 in the inertial sub-range regime. Based on their arguments, a sim-
ple model for the passive scalar spectrum function has been chosen, as shown in Fig. 3.2.
The enstrophy w2 and the passive scalar gradient variance a'? are by definition small-scale
quantities, thus the contribution of the large-scale motion to the Fourier integrals of these
quantities becomes significant only in the final period of decay, during which the small and
large scales become comparable. A standard model for the passive scalar dissipation rate
that has appeared in many works is [18, 53]

€p ~ R¢Tl2 = 27'\’,% . (3.44)
where R is the ratio of integral time scale of turbulent velocity fluctuations to that of the
scalar fluctuations and 7 = 2k/e is the turbulence time scale [53]. Substituting eq. (3.28) in
the above definition at high Rer leads to the expression for the passive scalar dissipation rate
€y = F'R M\w. Consequently, in the present framework, the large-scale enstrophy &2 appears

as the natural time scale to describe the transfer rate of scalar variance from large to small

scales.
1§ T T T —
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(a)

FIGURE 3.2: Standard model for passive-scalar spectrum at high Reynolds and Peclet num-
bers.
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Based on the above considerations, the rate of scalar energy transfer to small-scale is modeled

as follows

— (ull¢")p ;s = Fp @, (3.45)

where Fy is a dimensionless coefficient that depends on invariants of the turbulence structure
tensors. Here, we set Fyy = C¢X¢’, where \? = 9rigdy;rji and Cy is a constant that will be
determined later on. The functional form of x? has been motivated by the work of Lesieur
and Herring [54], who have shown that the passive scalar cascade is direct in the 2D-2C limit,
mirroring the direct cascade of the enstrophy in this same limit. Furthermore, they showed
that the scalar-fluctuation variance decays similar to the enstrophy, if the enstrophy spectrum
is considered as a passive scalar. The chosen functional form of x? is able to account for the
presence of the direct cascade in the 2D-2C limit, while it becomes equal to unity for isotropic
turbulence and vanishes in 2C-1D turbulence. Thus, we finally model the scalar dissipation

rate €4 in the turbulent scalar variance equation by
€ = F o +7a? = Cpx? i + vd®, (3.46)

where Cy remains to be determined.

3.5.2 Modeling the large-scale passive scalar-gradient variance equation

Next, we perform a term-by-term modeling of the @2 equation. First, we model the dissipation

term by

C~l4

’)/dm’iam’i = 0527’7? s (347)
where Cj2., will be defined in order to match decay rates at small turbulent Reynolds numbers
(final period of decay).

As shown in the Appendix A.2, the relation that connects the scalar dimensionality tensor d;;
to the large-scale passive-scalar-gradient variance is analogous to the one that exists between
the large-scale vorticity and the circulicity tensor Fj; (eq. A.25). Thus, we model the large-

scale squared-magnitude-scalar-gradient correlation in the production term as

ama; = dj,;i° . (3.48)
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Note that contracting di; yields the correct trace. Accordingly, the production by mean-
stretching term can be modeled as

— Gl = —d ;G T, (3.49)

We model the rate of transfer to small-scales in terms of the large-scale gradients by

— (ufal,)am; = Cz a%0, (3.50)

where Cﬁ% is a dimensionless coefficient that in general depends on invariants of the turbulence

structure tensors.

Next, we turn to the modeling of the production terms. The first of the production terms due
to cross-scale stretching involves the mean scalar gradient, @,, = A, = a’m, and is modeled

on its own as,

— GimUim = [Caz, — qsd’cd%]Aaw, (3.51)

where A = /ApA} is the magnitude of the mean scalar gradient. The modeled expression
has been chosen such that a acquires the correct asymptotic behavior for decaying turbulence

in the presence of mean scalar gradient (see Appendix A.3).

The second production term due to cross-scale stretching is modeled together with the term
representing by production self-stretching. The term corresponding to production through
self-stretching is composed entirely of large-scale quantities, and as can be easily shown, it
vanishes in the limit of 1D-2C pancake turbulence (vortex sheets). To see this, one can assume
without the loss of generality that x3 is the axis of dependence. Then, d33 — 1, while the
velocity fluctuations in the z3 direction (as well as the Reynolds stress component r33) must
vanish. Hence,

Aillim = @,ilim = P 3Uzm = 0. (3.52)

= = =~ = I\ ~9 ~
— QG Ui m, + (=am(uf,,0i)) = Fpa o, (3.53)
~—_——— —
production by self stretching production by

cross—scale stretching

where F&% is a dimensionless coefficient that will depend on invariants of the turbulence
structure tensors. We use Fg2 = Cj2 ¢®, where Caz, is a constant and ¢ = 971igdy; fji- For

isotropic turbulence ¢? = 1, and for 2D-2C and 2C-1D turbulence ¢? = 0.
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Before we proceed to the evaluation of the model constants, we summarize the complete
set of transport equations for the Extended Large-Scale Enstrophy model (ELSE) in their

simplified form for homogeneous turbulence:

dk

= = —(20)rig Sji — [Fendo + vi?], (3.54a)
do 3 @3

o = @figSii = [Cap — ¢Cz3 0" — vCp — (3.54b)
% = —ud’ Ay — [@® + Cyx ), (3.54c)
da a _ b 1xn " -

The scalar-flux vector, the structure-tensors and their products are obtained from the IPRM

model.

3.6 Evaluation of the model parameters in the ELSE scales

model

The model parameters in the scale equations for the scalar are determined by matching
the decay rates for the scalar variance and scalar dissipation rate in freely decay isotropic
turbulence. Since the evolution of the passive scalar field is strongly affected by the velocity
field as pointed out by Rogers et al. [55], we expect that the constants will depend also on
the structure tensors and the turbulence scales related to the velocity field. Thus, for the
evaluation of the constants we will utilize the complete set of transport equations, given by

eq. (3.54).

First, we introduce a simplifying assumption by setting [C&QT — gf)‘bC&% | = [C’&% — (;Sd’C@Iz) ]
This assumption mainly stems from the fact that the constants {C&QT , Caz, } and {C’Q% ,Caz, }
are used to model the non-linear terms appearing in the transport equation for a? and &2
respectively, terms which are responsible for the cascade process. To illustrate this point, we
considered the special case of freely decaying isotropic turbulence at high Rer, Pe = %, where
the evolution of the turbulence is solely driven by these terms. Based on a similarity analysis,
at large times a@? and &2 have the same decay rates, which moreover are independent of the
form of the low wave-spectrum. The proposed substitution is consistent with this argument
and has the additional advantage that it reduces by two the number of free model parameters
that must be determined. Thus eq. (3.54d) is modified as follows

da as 3 . N
= = ~Cazv = iy Sima — [Caz — ¢ Czala® + [Cgz — ¢7Cip JAG . (3.55)
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Here, the kinetic energy and the passive-scalar variance spectra are denoted by being E,;(k,t)

and Ey(k,t) respectively. Expansions around k£ = 0 yield the well-known expressions

E,(k,t) = 2nk*(By 4+ Bok? + ..., (3.56a)
k,t) = 2mk%(C, + Cok?® + ...) (3.56b)

<

where B,,, C, are the expansion coefficients. The current model is calibrated with respect
to the two sets of low wave number spectra, {k?, k?} and {k*, k*}, where the elements inside
the curly brackets refer to the leading order of the expansion of the energy and passive scalar

spectrum respectively.

3.6.1 High Rer, Pe without mean scalar gradients.

In freely decaying isotropic turbulence at high Rer and Pe numbers, direct viscous and
diffusion effects occur at smaller scales than the ones containing most of the scalar variance.

Thus, their contribution can be neglected and the system of equations simplifies to

%’: — ki, (3.57a)
%i) = —[Caz — 6Cx 0%, (3.57b)
% OO, (3.57¢)
% = —[Cp2 — ¢°Cp Jais (3.57d)

The solution of eq. (3.57) is given by

—XisoCe/[C-2 —¢isoC -,
B[4 (Cap — GsoCin iot] 6103 7] (3.58)
Ko T P
)\ — ¢ C, C.o— isoC‘~
2 D[4 (Cap — GisoClap )ot] 0T/ Cag mPuoCaz ] (3.58b)
Ao T P
@ 1
Y _ 3.58
(.:Jo 1 + (C[D% - gbiSOCQ%)(:JOt ’ ( C)
a —[C.2 —¢? C 2 1/[C-2 —disoC.-
dg = [1+ (Caz — disoC2 )ot] Cop ~PoCap 1Cag ~omeCiap ] (3.584)
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where ¢i5o = ¢¢ = 1. At very large times, ({ — o0), the asymptotic behavior of the variables

iso

is given by
- isoce C_o—C,
e s (3.59)
Ro
A X Co/[C 2 —C,
2 g Nl ) (3.59b)
Ao
w ~1
— ~ 3.59
ot (3.59)
a -1
— ~ 3.59d
. (3.504)
The ratio —XiOC’qg / [C’@% - C@% | defines the decay rate of the scalar variance in this case. This

rate depends on the spectra of both the turbulent kinetic energy and the scalar. Assuming
either a ~ k2 or a ~ k% low-wavenumber behavior, Chasnov [16] used simple theoretical ar-
guments in order to derive similarity states for both spectra in isotropic turbulence. These
theoretical predictions were found to be in good agreement with LES simulations for cases
with or without mean scalar gradient. We have extended this approach in order to take into
account the decay rates of the enstrophy and of the mean squared magnitude of scalar gradi-
ent. The asymptotic states that have been obtained through this approach are summarized
in Table 3.3, with additional details given in Appendix A.3. Compared to the theory, the

model captures the correct decay rates for @2 and a? for both the {k?, k2}, {k* k*} cases.

Spectra K @2 w'? a'?

{k2, K2} B2/o=6/5 C,B, */Pt=6/5 | =2 C,B;1t2
{k*, K4} Bg 74—10/7 0232—5 T4=10/7 | 42 Cy By 't~2
{kQ, k4} Bo2/5t—6/5 Cnglt_Q 2 02357 5,—14/5
{k*, K2} BS 74—10/7 0032—3 74—6/7 42 0032—5 74—10/7

TABLE 3.3: Summary of the asymptotic expressions for the turbulent statistics using different
combinations of low wave-spectra at high Rer and Pe numbers, in freely decay turbulence.

In the absence of mean scalar gradients, the scalar variance evolves solely due to the presence
of the advection term in its evolution equation. In this case, the scalar decay rate follows the

decay rate of the turbulent kinetic energy. Assuming the {k?, k?} low-wavenumber spectra

yields,
XisoCe X¢ C¢ 6
— _Xiso _— (3.60)
(C&)Q - C@Q ) (C&')Q - C&Z ) 5
T P T P
Recalling that yiso = X;Zo =1, eq. (3.60) suggests that in this case
Co=C,. (3.61)
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Based on dimensional analysis, we have €5 = % ~ t~1/5 Applying the modeled expression
for €4 leads to the same result, since eg“’del = C’¢X¢)\d) ~ t76/5¢=1 = ¢=11/5 thus providing
support to our decision to model the scalar dissipation rate €4 as in eq. (3.46). Similarly,

when a {k*, k*} low-wavenumber behavior is assumed for the spectra, the model gives

Xiso Ce o Xidéo C¢ o 9
7

Cp —Ct)  (Cop —Cy 7 CGe=Co (3.62)
T P T

w w. w
Dimensional arguments suggest €4 ~ t=17/7 which again coincides to the prediction of our
model, since egwdel = C¢X¢A@ ~ t710/Tg=1 — ¢=17/7 Based on these two cases, we take
Cy = C¢ in general, thus reducing further the number of the model coefficients that needs to

be determined. With this choice, the final form of the scalar dissipation becomes,

Fy=0x®? and eg= Fy o+ 7a* = Ox® & + vad?. (3.63)

Fig. 3.3 shows results for the evolution of the power law exponent of scalar variance in the
absence of mean scalar gradients. Comparison is made between the predictions of the ELSE
model and the LES results of Chasnov [16] for {k?, k?} and {k* k*} spectra. In his paper,
Chasnov points out that the decay exponent for the {k? k2} case is expected to be exact
and that potential discrepancies can be attributed to error sources in the LES simulations,
including a partial development of the flow due to the limited number of large-eddy turnover
times available in the computations and inadequately resolved small scales. Even so, the

predictions of the ELSE model agree quite well with LES results.

3.6.2 Low Rer and Pe in the final period of decay.

Next, we consider the case of freely decaying isotropic turbulence at low Rer and Pe. The final
period of decay is dominated by diffusive effects, yielding a narrow range of large scales that
contribute to the variance of the scalar field. In this regime, the nonlinear-interactions and
consequently the energy transfer though the cascade process become negligible. As a result,

the asymptotic state of the turbulence quantities depends solely on the low wavenumber part
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FIGURE 3.3: Predictions of the ELSE model for the time evolution of the power-law exponent
of ¢’2 in the absence of mean scalar gradients. Double-dotted line (—--— ) corresponds for

{k?,k?} low-wave number spectra, solid line (

) to {k*, k*} spectra. Comparison is

made with the asymptotic values of the LES predictions of Chasnov [16] (horizontal lines).

of the spectrum and the molecular diffusivity. In this case, the model equations simplify to

d
£ = —1/&)2,
dw o3
o = Ve
@ —_ _ &2
a4
da a3
- = _C~ -
The solution of eq. (3.64) is
Yy = (B
()= ()%,
~2
5 =1+ (2C5z - 1)y%t]—1/[2%3—11 :
o o
a, ;A Cp
(go) - (AO) v ?
A a2 ~1/12C; 1]
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At very large times, the solution for the passive scalar variables approaches the following

asymptotic states

A —1/[2C.2 —1]
~ t ay N

(70) (3.66a)
()2 ot 20t/ BR (3.66b)

Table 3.4 summarizes the predictions for the asymptotic states of the turbulent variables
using dimensional analysis and similarity arguments. The independence of the passive scalar
quantities from the velocity spectrum is a consequence of the linearization of their transport

equations for this case.

Spectra K @2 w'? a'?

{k?, K%} B, (vt)=3/2 C,(yt)=3/2 B, (vt)5/2 C,(yt)=5/?
{k4,k4} BQ(Vt)_5 2 Cz("yt)_5 2 Bg(wf)_7 2 CQ(’Wf)_7 2
{k2, k*} B, (vt)=3/2 Co(yt)=5/2 B, (vt)5/2 Co(yt)~ /2
{k*, k%) By (vt) /2 C,(yt)=3/2 By (vt)~7/? C,(yt)=5/?

TABLE 3.4: Summary of the predictions for the asymptotic state of the turbulent statistics
at the final period of freely decay turbulence for different combinations of low wave-spectra.

The model constant C’a% can be determined by matching the asymptotic states predicted by
the ELSE model to the corresponding predictions of dimensional analysis shown in Table 3.4.

For a passive scalar spectrum with a k2 low wavenumber behavior, this leads to

1 3
2, -1 27 / (3.67)

If instead the low wave-number spectrum of the passive scalar varies as k*, we have

1 5
- =——= (5 =7/10.

2 — 1 5 a2 =1/ (3.68)
For a low wave-number spectrum that varies as k2, setting Ca% = 5/6 in the asymptotic
expression for a2 yields @? ~ t~5/2, which is consistent to the dimensional analysis. If instead
the low wave-number spectrum varies as k?, setting Cd% = 7/10 in the asymptotic expression

for a2 yielding a2 ~ t~7/2, which again agrees with the dimensional analysis.

3.6.3 Apriori testing

Having determined the model constants for the dissipation rates € and €4, we can perform an

a priori test of the functional forms given in equations (3.28) and (3.46) by using available
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DNS data. For example, when used with eq. (3.25), the two models yield the timescales ratio
R

R= T = 3rsalmlms (3.69)
s fijdji

The form of Eq. (3.69) exhibits the expected dependence of R on the large-scale structure of
the two fields, which is introduced through the structure tensors. For a priori test, we have
used values for the structure tensor components given in the DNS work Kassinos et al. [47]
for the case of homogeneous shear with a transverse scalar gradient, which yields the value
R = 1.69. While Kassinos et al. [47] did not report R, their simulations results were in close
agreement with those of Brethouwer [46] which reported a value of R = 1.71. The good
agreement between the two values provides an indication for the validity of the proposed

models, since the ELSE model has not been calibrated for this case.

3.6.4 Validation of the scalar scales model: isotropic turbulence with im-

posed mean scalar gradient

Before we proceed to the full validation of the extended IPRM model, we consider a simple
case where the ELSE model for the turbulence scales can be independently validated. In the
presence of mean scalar gradient in isotropic turbulence at high Reynolds and Peclet number,
the evolution of the passive scalar field is driven by the scalar-flux vector, which is present in

the production term. The system of equations (3.54) then becomes

CciTIZ = ~Cexne, (3.70a)
CclTi) = —[Caz — oC3 ), (3.70b)
% = —uj¢'Ai = Cox*\@, (3.70¢)
% = —[Cag — ¢°Cglad + [Cap — 6°Ci ] MA@ (3.70d)

The simplicity of this test case (no mean velocity gradients) means that algebraic models of
the scalar flux vector can be expected to produce reasonable results. Here, we use the explicit

model of Younis et al. [56],

K2 K——r K3
P , RN A
—ul¢p = C ; A+ Co ; wiuiAj + Cs 2 (RIS,

: (3.71)

K
1o 55, A .
+ 0467(%“1@%% + gt k) Aj
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which in the present case reduces to

T 2\ K2 3.72
—u;p = (01-1-502)?/\1, (3.72)

with standard values assigned to the model constants, namely, C; = —4.55 x 1072 and
Cy=3.73 x 1071

Fig. 3.4 shows a comparison of the predictions of the ELSE model for power law exponent
for the scalar variance with the corresponding LES computations of Chasnov [16]. A good

agreement is achieved. As shown in Fig. 3.5, a good agreement between the ELSE model

1.0

e e LR AL AL P LA L VMM PO A £ 8 S A VAR 1 4/5
..—"

....... enrenreneenseanene s ssntsassas s s aans 4/7

Power Law Exponent

50 75 100

St
(a)
FIGURE 3.4: Predictions of the ELSE model for the time evolution of the power-law exponent
of ¢'2 in the presence of mean scalar gradients. Double-dotted line (—--— ) corresponds for

{k?, k?} low-wave number spectra, solid line ( ) to {k*, k*} spectra. Comparison is
made with the asymptotic values of the LES predictions of Chasnov [16] (horizontal lines).

and the LES of Chasnov|[16] is also obtained for the scalar dissipation rate. Finally, Fig. 3.6
shows a comparison of model predictions for the ratio of the scalar-variance production to
dissipation, — B@/ €4 to the corresponding LES results. For this comparison, /3 represents
the magnitude of the mean scalar gradient. An excellent agreement is achieved, clearly

showing that the model is sensitive to the choice of the different spectrum combinations.

63



A Structure-Based Model for the Transport of Passive Scalars in Homogeneous Turbulent
Flows

e -1/5

-3/7

Power Law Exponent

_1.0 1 | | |
0 25 50 75 100
St
(a)

FIGURE 3.5: As in Fig. 3.4 but for the passive scalar dissipation rate €4.
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FIGURE 3.6: As in Fig. 3.4 but for the ratio of the scalar-variance production to passive
scalar dissipation rate €4.

3.7 Validation of the complete IPRM model for passive scalar

transport

In this section, we present the validation of the complete IPRM model for passive scalar

transport. For easy reference, the complete set of equations defining the model is summarized
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in Appendix A.1.

3.7.1 2D-2C isotropic decaying turbulence.

For 2D-2C isotropic turbulence at high Rer and Pe, and in the absence of mean scalar or

velocity gradients, eq. (3.54) reduces to

d
d—’;” =0, (3.73a)
s
di; = —Cpd?, (3.73b)
A
i —CyX?\@, (3.73c)
o
ch = —Cppii. (3.73d)
The solution of eq. (3.73) is
/; =1, (3.74a)
@2 1
wo_ . 74D
32+ Copant” (3.74b)
A ~ *X¢C¢/Cm2
= 1+ C@%wot] T, (3.74c)
o
a? 1
S S— 3.74d
a2 L+ Cop ot? (3.74d)

At very large times, the power law exponent of A\ tends to —X¢C¢ / C@% . Furthermore, if we
take the axis of independence to be x3 without the loss of generality, the asymptotic limit of

the structure tensors is

/2 0 0 0 0
rij=dij=dj; =1 0 1/2 0 |, fij=| 00 0 |,
0 0 0 0 0 1.0

yielding a value of x® = Irigdy;1ji = %. Thus, the power law exponent becomes

o]
X 9p.2cCo _9 Ce _
G T iCy, T 5. (3.75)

The value of parameter § depends on the choice of the energy spectrum. It becomes 1.27 or
1.5 for {k% K%} or {k*, k*} spectra respectively, while Lesieur [54] suggested a value around
2.0.
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=~

F1GURE 3.7: Sketch of the mean velocity profile, along with the frame rotation vector.
3.7.2 Homogeneous shear in fixed and rotating frames

Next, we consider the case of homogeneous shear in fixed and rotating frames at high Reynolds
and Peclet numbers. Both transverse and streamwise mean scalar gradients are considered.
These simple canonical cases are of particular interest because of their relevance to geophysical
flows and industrial applications, such as turbomachinery flows. The configuration of the

mean flow is given by
Gij = 61052, Qf =763, A = Sybia, (3.76)

where the no-summation (greek) index « denotes the direction of the mean scalar gradient,
which can be either in the transverse or streamwise direction. S denotes the mean shear
rate, Sy is the magnitude of the mean scalar gradient, Q{ is the frame-rotation vector, where
Of = —Q{Q, so that positive values of Q/ corresponds to a frame counter-rotating with respect

to the rotation sense of the mean shear S (see Figure 3.7).

During the validation process, a number of dimensionless parameters are computed and com-
pared to the corresponding DNS and experimental data. The first of these, used to determine
the initial conditions of each case, is the shear parameter ratio S*, defined as
S 2
g =20 (3.77)

€

which measures how “slow” or “rapid” the initial flow configuration is. Another important

parameter is the ratio of the strengths of passive scalar and velocity fluctuations B, defined
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as

/ —
=22 g-\/ ¢=VE. (3.78)

S¢q’ ’

In the presence of frame-rotation, another important parameter is the ratio of the frame

rotation rate Qf = —Q{z to the mean shear rate S, given by
20/

The case ny = 0.5 is of particular interest since it corresponds to the most unstable case, where
the growth of turbulent kinetic energy is maximized, as shown in the bifurcation diagram in
Fig. 3.8. Apart from this case, additional frame-rotating cases are considered (ny = —0.5 and

ny = 1.0), along with the non-rotating case (ny = 0.0).

A useful parameter in order to test the ability of the proposed model to capture the anisotropic
nature of the turbulent field, is the inclination angle of turbulent scalar-flux vector a. Since
no scalar-flux is expected along the spanwise (x3) direction, ay is defined relative to the

streamwise direction (x1) as

ap = tan"! (“W> : (3.80)

u) ¢’

Another parameter is the scalar-velocity correlation coefficient, denoted as ¢f*, which measures

the degree of correlation between the scalar and velocity fields, defined as

o_ (4

where no-summation is performed on the indices. For example, (7 refers to the turbulent flux
of a scalar in the streamwise direction (x1) in the presence of a transverse (z3) mean scalar
gradient. For zero values, the two fields are completely uncorrelated, whereas for large-values,

a strong correlation is implied.

In all simulations involving homogeneous shear, the initial passive scalar field is zero, yielding
an initial B parameter By = 0, which subsequently evolves under the combined action of the

turbulent velocity and the mean scalar fields respectively.

3.7.2.1 Homogeneous shear in the presence of transverse mean scalar gradient

We consider a transverse mean scalar gradient imposed under conditions that correspond to

cases studied in the DNS work of Kassinos et al. [47]. First, we consider the case with an
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F1GURE 3.8: Bifurcation diagram for homogenous turbulence in rotating frames.
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F1GURE 3.9: IPRM model predictions for the time evolution of relative strength of the scalar

fluctuations B. Double-dotted lines (—:-— ) correspond to {k? k?} low-wave number case,

solid lines ( ) correspond to {k%, k*} ( ) low-wave number case. Comparison is

made with DNS results ( symbols ) of Kassinos et al.[47] for homogeneous shear turbulence

with transverse mean scalar-gradient at Sq2/e, = 35.85. Two different frame rotation rates
are shown: (a) ny = 0.5; (b) ny = 1.0.

initial shear parameter S5 = 35.85, corresponding to case C0.2.0 in Kassinos et al.[47] In
Fig. 3.9 we show predictions for the dimensionless ratio B for two different frame-rotation
rates, particularly ns = 0.5 and 1.0. Results are shown assuming either a {k%, k*} or a {k%, k}
spectra combination. The discrepancies between the two spectra choices are trivial, reaching
up to 3% for large times. Thus, for the sake of space, we hereafter report results using only

one spectra combination for each case.

In Fig. 3.10 IPRM predictions are compared to DNS results [47] for the time evolution of

B using {k* k*} spectra combinations for four frame-rotation rates. Fair predictions for
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FIGURE 3.10: IPRM model predictions ( lines ) for the time evolution of relative strength
of the scalar fluctuations B using {k*, k*} low wave-number spectra. Comparison is made
with DNS results ( symbols ) of Kassinos et al.[47] for homogeneous shear turbulence with

transverse mean scalar-gradient at S¢2/e, = 35.85. Four different frame rotation rates
are shown: (a) (V,——-— ) ny = —0.5; (O,—— ) ny = 0.0; and (b) (O,---- ) ny =
(T AN— )0y = 1.0.
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F1GURE 3.11: IPRM model predictions ( lines ) for the time evolution of the angle of the
scalar flux vector o using {k?, k*} low wave-number spectra. Comparison is made with DNS
results ( symbols ) of Kassinos et al.[47] for homogeneous shear turbulence with transverse
mean scalar-gradient at Sq¢2/e, = 35.85. Four different frame rotation rates are shown:

(V,—===)ny =-0.5; (O, ) g =0.0; (O,==== ) np =055 (A, ) ng = 1.0

the stationary frame and the co-rotating case (ny = —0.5) are shown in Fig. 3.10a, while
the closure captures quite well the remaining two cases, especially the most unstable case

ns = 0.5 (Fig. 3.10Db).

The time advancement of the inclination angle ay is presented in Fig. 3.11, where the strong
influence of the frame rotation is profound. A good agreement with the corresponding DNS

data is achieved, especially for ny = 0.5 and 1.0.

The evolution history of the scalar-velocity correlation coefficient ¢;* is shown in Fig. 3.12.

For ny = —0.5, model predictions are in very good agreement with the DNS values. For the
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FIGURE 3.12: IPRM model predictions ( lines ) for the time evolution of the scalar flux
coefficient ¢ using {k*, k*} low wave-number spectra. Comparison is made with DNS results
( symbols ) of Kassinos et al. [47] for homogeneous shear turbulence with transverse mean
scalar-gradient at Sq2/e, = 35.85: (V,—-— ),(¥; (O,—— ),¢3. Four different frame
rotation rates are shown: (a) ny = —0.5; (b) ny = 0.0; (c) ny = 0.5; (d) ny = 1.0.

fixed frame case, IPRM captures accurately C22 , whereas fair predictions are obtained for Cll.
For ny = 0.5 and ny = 1.0, the closure agrees well with the DNS data for ¢? except at large

times.

The initial shear parameter is S; = 35.85 in this case, corresponding to a somewhat rapid
mean deformation. Hence, the importance of the contribution of the effective gradients (non-
linear terms) in the IPRM in the time evolution of the turbulent fields needs to investigated.
Thus, we perform additional computations using the linear PRM model, which corresponds
to exact RDT computations. Fig. 3.13 shows IPRM and PRM predictions for the parameter
B. Comparison is made again to the DNS data of Kassinos et al. [47] for the C0.2.0. The
improvement due to the inclusion of the effective gradients is significant for ny = 0.5 and 1.0,
whereas the predictions of the RPM (RDT) and IPRM models for the remaining two cases
ny = —0.5 and 1y = 0.0 are similar.

Next, we consider case C0.3.0 from the DNS work of Kassinos et al., [47] which is based
on the same configuration, but for a much weaker mean shear rate, corresponding to an

initial shear parameter S; = 3.58. Fig. 3.14 shows the corresponding comparison between
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FIGURE 3.13: IPRM (—--— ) and PRM (—— ) predictions using {k?, k?} as the low wave-

number spectra. Comparison is made with DNS results ( symbols ) of Kassinos et al. [47]

for homogeneous shear turbulence with transverse mean scalar-gradient at Sq2/e, = 35.85.

Four different frame rotation rates are shown: (a) ny = —0.5; (b) ny = 0.0; (¢) ny = 0.5;
and (d) ny = 1.0.

IPRM and PRM predictions for the parameter B, yielding similar behavior to the previous
rapid case. Fig. 3.15 shows a comparison of the parameter B predictions of IPRM with the
corresponding DNS predictions. As in the previous case, the model produces good results for
ny = 0.5 and 1.0, while when 7y = —0.5 and 0.0 it tends to overestimate B values at large
total shear. The relative small differences between the IPRM and PRM predictions point to
the fact that, even at this relative weak shear rate, linear effects play a significant role in the

evolution of the turbulence fields, at least for the range of total shear shown.

Fig. 3.16 shows the corresponding comparison for the inclination angle ay4. Overall, IPRM
produces encouraging results, especially for ny = 0 and 1y = 0.5, being able to capture
satisfactory the DNS values at large times.

Next, we compare the predictions of IPRM model for the scalar-velocity correlation coefficient
¢ with the DNS data (Fig. 3.17). IPRM achieves very good agreement with the DNS for
ny = —0.5 and 0.0 for both components ¢? and (3. For ny = 0.5 and 1.0, the IPRM provides
fair predictions for (7, while it underpredicts the value for (2, a trend that was also observed

in the C0.2.0 case.
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FIGURE 3.14: As in Fig. 3.13 but for S¢2 /e, = 3.58.
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FIGURE 3.15: As in Fig. 3.10 but for S¢2 /e, = 3.58.

3.7.2.2 Homogeneous shear in the presence of streamwise mean scalar gradient

In this subsection, we consider homogeneous shear in the presence of streamwise mean scalar
gradient. Computations are conducted for flow conditions that correspond to the DNS results
of Brethouwer [46]. The initial shear parameter for all computations is set to be S = 36.0,
while the initialization process for the passive-scalar field is similar to that used by Kassinos
et al.[47], i.e. starting from a zero initial passive scalar field, corresponding to a zero value
for the B parameter. As before, we perform computations for four frame rotation rates, ny =

—0.5,0,0.5 and 1.0. Fig. 3.18a shows results for the relative strength of the scalar fluctuations
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FIGURE 3.17: As in Fig. 3.12 but for S¢2 /e, = 3.58.

B. In all cases, IPRM achieves excellent agreement with the DNS results, revealing its
sensitivity to the direction of the mean scalar gradient. Fig. 3.18b shows the corresponding
comparison for the inclination angle. As expected, IPRM predictions agree quite well with
the DNS data for all cases. Especially for the co-rotating case ny = —0.5, IPRM captures

surprisingly well the shape of the profile during its transition from negative to positive values.

Fig. 3.19 shows the corresponding comparison for the scalar flux coefficient. In consistence
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FIGURE 3.18: IPRM model predictions ( lines ) for the time evolution of characteristics
of the passive scalar field using {k*, k*} low wave-number spectra. Shown on the left (a)
is the relative strength of the scalar fluctuations B, and on the right (b) the angle of the
scalar flux vector ay. Comparison is made with DNS results ( symbols ) of Brethouwer [46]
for homogeneous shear turbulence with streamwise mean scalar-gradient at Sq2 /e, = 36.0.
Four different frame rotation rates are shown: (V,—--— ) n; = —0.5; (0, ) ny = 0.0;

(Ov____ )nf:0'5; (A’ ................ )nle_().

with the results for o, we see that IPRM captures accurately the time evolution of both &
and (4 for ¢+ = —0.5. Good predictions are obtained for the remaining three cases, except for
the predictions regarding ({ at St larger than 5 for the cases ny = 0.0 and ny = 1.0., where
the IPRM tends to underestimate its magnitude.

3.7.3 Irrotational axisymmetric contraction

Here, we consider the case of homogeneous turbulence deformed by irrotational axisymmetric
contraction in the presence of a transverse mean scalar gradient at high Reynolds and Peclet
numbers. Computations are conducted for conditions that correspond to the experimental
work of Gylfason and Warhaft [57]. The initial shear parameter is S; =~ 5.0, while the
imposed initial passive scalar fluctuations correspond to an initial value for the B parameter

of By = 1.0. The flow configuration for the mean field is given by

Gij = Séiléjl — géigéjg — géigéjg, A,’ = S¢5,~2, (3.82)

where S > 0. Fig. 3.20a shows results for the passive scalar dissipation rate €4 using both
{k? k?} and {k* k*} low wavenumber spectra. We observe that the IPRM predictions are
close to the experimental measurements for both spectra choices, with the results correspond-
ing to {k?, k?} being in better agreement, as expected, due to the flow configuration in the
experiment. Fig. 3.20b shows the corresponding comparison for the passive scalar variance

¢2. The IPRM model predicts that scalar variance remains practically unchangeable, in good

agreement with the experiments [57].
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FIGURE 3.19: IPRM model predictions ( lines ) for the time evolution of the scalar flux
coefficient ¢ using {k*, k*} low wave-number spectra. Comparison is made with DNS results
( symbols ) of Brethouwer [46] for homogeneous shear turbulence with streamwise mean
scalar-gradient at Sq¢2/e, = 36.0: (V,——-— ),{}; (O,—— ),¢3. Four different frame
rotation rates are shown: (a) ny = —0.5; (b) ny = 0.0; (c) ny = 0.5; (d) ny = 1.0.

3.8 Future plans for an algebraic four equation structure based

model and initial results

In Section 3.5, we’ve used the triple decomposition approach to derive a set of model scale
equations for the passive scalar field. These scale equations along with the corresponding
scale equations for the velocity field, comprise the Extended Large-Scale Enstrophy (ELSE)
turbulence scales model. The ELSE model has been formulated for use with structure-based
models and it is therefore based on the assumption that information about the scalar flux
vector and the one-point turbulence structure tensors is independently available. In the
present work, the ESLE scales model was coupled with the IPRM, which provided all the

necessary information.

We also plan to explore the coupling of the ELSE scales model with the the Algebraic
Structure-Based Model (ASBM) [6, 49]. The ASBM is a one-point engineering model based
on an equilibrium assumption that provides estimates of the equilibrium state of the one-

point structure tensors for any given mean deformation mode. Currently, the ASBM does
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FIGURE 3.20: TPRM model predictions ( lines ) for the time evolution of characteristics of
the passive scalar field using low wave-number spectra. Shown on the left (a) is the passive
scalar dissipation rate eg, and on the right (b) the passive scalar variance ¢'2. Comparison
is made with the experimental measurements ( symbols ) of Gylfason and Warhaft [57] for
homogeneous axisymmetric contraction with streamwise mean scalar-gradient at Sq¢?/e, ~

5.0. Two different low-wave number spectra combinations are shown: (—--— ) {k? k*};

( ) {k K1}

not provide estimates of the scalar dimensionality tensor d;;, which is needed in the ELSE
model. Numerical experiments that we have carried out using the Particle Representation
Model (PRM) show that in the case of irrotational mean deformation, d;; = d;; at large times,
to a very good degree of approximation. This is a very attractive approximation because it
affords closure of the model without the need to introduce another transport equation. While
the PRM simulations show the approximation to be less accurate in the presence of mean
rotation, we deemed it to be reasonable enough for use in the closure of the passive scalar
model. The option to construct a more elaborate algebraic model for d;; within the ASBM
formalism, as done for d;;, is not ruled out, but will only be attempted if it proves to be
necessary during future evaluation of the model in complex turbulent flows. Using this ap-
proximation, the invariants that appear in the coefficients of the passive scalar model can
be evaluated within the ASBM formalism, thus ensuring the self-consistency with the ELSE

scales model.

In order to test the potential of incorporating the ASBM formalism in the complete model, we
performed computations using two different approaches. In the first approach, the scalar-flux
vector as well as the structure tensors and the associated tensor products and invariants are
evaluated solely within the IPRM model, called the “pure IPRM” case. Alternatively, in the
second approach named “ASBM case” only the scalar-flux vector is obtained using the IPRM
model, whereas the ASBM provides all the data related to the structure tensors and their
invariants. In Fig. 3.21 we show some preliminary results using both approaches for the time
evolution of the B parameter for the homogeneous shear case in the presence of transverse
mean scalar gradient. Two different frame-rotation rates are shown, ny = —0.5 and 0.0, while

comparison is made to DNS work of [47], particularly case C0.2.0. As we can see, the second
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FIGURE 3.21: Time evolution of the relative strength of the scalar fluctuations B using

{k?,k?} low wave-number spectra. Double-dotted lines (—--— ) correspond for the “pure

IPRM case”, solid lines ( ) to the case where ASBM is used to obtain the one-point

structure-tensors (“ASBM case”). Comparison is made with DNS results ( symbols ) of

Kassinos et al.[47] for homogeneous shear turbulence with transverse mean scalar-gradient

at Sq2/e, = 35.85. Two different frame rotation rates are shown: (a) ny = —0.5; (b)
ng = 0.0.

approach produces encouraging results, however more cases should be considered and further

analysis regarding known issues related to the algebraic model should be resolved.

3.9 Conclusions

An extended IPRM model is proposed which, for the first time, provides predictions for the
statistics of the passive-scalar fluctuations. A structure-based model is proposed in order to
provide the turbulence scales based on a triple decomposition method of the exact passive
scalar and velocity transport equations. Furthermore, we propose the use of the scalar vari-
ance and the large-scale scalar gradient variance as the two turbulence scales characterizing
the scalar field. Due to the strong influence of the velocity field on the passive scalar statis-
tics, the proposed model is coupled with the large-scale enstrophy model of RLK02. We have
taken into account this fact by sensitizing the passive scalar model equations into products
of the structure tensors and by modeling the dissipation rate in terms of the large-scale en-

strophy.

The model parameters at high Rer and Pe numbers were determined simply by matching
the decay rates of the scalar variance in isotropic, unstrained turbulence and in the absence
of mean scalar gradient. Model predictions exhibit very good agreement with similarity
arguments for the decay rate of the scalar gradient variance and scalar dissipation rate. Ad-
ditionally, the model has been tested in isotropic turbulence at high Rer, Pe, this time in the

presence of mean scalar gradient. The newly proposed model provided very good agreement
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with LES predictions and similarity arguments for the asymptotic decay rates of the scalar
variance and of the ratio of the scalar variance production to scalar dissipation rate for dif-
ferent combinations of the low wave number spectra, showing its sensitivity in the choice of
spectrum. For 2D-2C turbulence the model indicates correctly the presence of a direct cas-
cade for the scalar variance, however it underpredicts the decay rate of the scalar variance.
In order to further ascertain the performance of the model, the case of homogeneous shear
flow in the presence either of transverse or streamwise mean scalar gradient at high Rer, Pe,
has also been considered. For each case, the model was tested in non-rotating and rotating
frames, providing good predictions for a number of dimensionless parameters, such as the
ratio of passive scalar intensities to velocity intensities, denoted as B, the inclination angle a4
and the scalar-velocity correlation coefficient ¢;*. Especially for the case where a streamwise
mean scalar gradient is imposed, the proposed model provides excellent predictions for B and
ag, revealing its ability to adopt to the highly anisotropic nature of the passive-scalar field.
Using structure tensors given by DNS fair predictions are obtained for the ratio of turbulence
timescale to passive scalar timescale, denoted as R. Additionally, the performance of the
model was ascertained for one irrotational case, particularly for axisymmetric contraction in
the presence of mean transverse gradient, yielding good predictions for the time evolution of
the passive scalar variance @ and passive-scalar dissipation rate €4. The satisfactory per-
formance of the model at the limit of high Rer and Pe supports the use of the large-scale
enstrophy in the model expression of €4. In order to complete the model, the constant asso-
ciated with diffusion C&% is determined by examining the asymptotic behavior of the flow at

low Rer and Pe.

Preliminary computations were conducted in order to test the potential of incorporating
ASBM to the complete model, showing encouraging results. All the above findings enforce
our confidence for the validity of the passive scalar large scale model, which fits nicely with
the k — @2 model. The overall agreement of the current model with the DNS simulations
enforces our confidence that the proposed modeled expression for scalar dissipation rate is

appropriate for the study of the turbulent passive scalar field. Our current efforts are focused

s

on the construction of a model for the scalar dimensionality tensor d;;, and the prospect of

extending the model to more general flows.

Finally, it is useful to comment on the differences between the structure-based approach
present herein and more common approaches such as those based on one-point Reynolds
stress transport models. In this respect, two key features of the IPRM approach stand out.
First is the inclusion of structure information via the one-point structure tensors in the scale
equations, a feature that is not linked to the particle representation per se and thus can be

expected to also carry over to one-point formulations, such as the ASBM. The sensitization
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of the turbulence scales to the structure of the turbulence can be expected to allow the model
to reflect more accurately a number of limiting cases. An example of such an advantage
that is directly related to the cases considered in this paper, comes from unpublished work
by Kassinos. This work shows that using the large-scale enstrophy equation in place of
the standard epsilon equation allows the IPRM (and ASBM) to capture the bifurcation
diagram of homogeneous shear flow in a rotating frame much more accurately. The second
characteristic is the extra information carried out in the particle representation that leads to
an enhancement of realizability and robustness for the IPRM. These features provide enough

evidence that further investigation of this approach might be both interesting and fruitful.
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Chapter 4

A new stochastic Differential
Structure-Based Model (D-SBM).

4.1 Introduction

The problems encountered in the original model have motivated us to re-consider the mod-
eling procedure in order to extent its validity to weak irrotational deformations through the
inclusion of additional physical information in the model equations. To achieve this, a number

of objectives were defined, which are:

e Retain stochastic nature of the model.
e Revisit the R;; constitutive equation (correlation) part.

e Obtain more sophisticated transports equations for the structural equations, which can
produce non-zero values for ¢ and ~ for irrotational flows, which is true only for flows
that are subjected to slow deformations, while it will still provide zero values for rapid

deformations.

e Validate the proposed structure-based model for a number of basic irrotational flows

subjected to slow deformations.

Based on the above considerations, the constitutive equation was modified by substituting
the mean rotation vector that appears in the jetal-vortex correlation part with the eddy
effective rotation rate vector. The motivation behind this modification stems from the fact
that under RDT, the jetal-vortex correlation is activated by mean or frame rotation. In slow

irrotational deformations, we have an effective rotation (due to the action of the larger eddies
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on the smaller ones) that can also induce this correlation. In addition, the non-linear effects
are expressed in terms of the effective gradients, an idea introduced by Kassinos et al. [24]
who assumed that these turbulence-turbulence interactions provide a gradient acting on the
eddies, in addition to the mean gradient. Furthermore, this modification maintains basic

properties of 2D turbulence (e.g. material indifference).

4.1.1 Outline

Section 4.2 discuss the construction of a stochastic model which includes the concept of the
effective gradients. It is devoted to the derivation of the evolution equations for the a;; and
the two structural parameters ¢ and gamma appearing in the constitutive equation for the
Reynolds stresses . Section 4.3 is devoted to the construction of modified expressions for the
one-point statistics and the evolution equations for a;;, ¢ and « based on the eddy-effective
rotation rate vector. In addition, an evolution equation for the normalized dimensionality
tensor d;; is derived. In Section 4.5 we ascertain the performance of the newly proposed
models for three basic irrotational cases, in the presence of either rapid or slow deformations.
Comparison is made to the stochastic SBM model of Kassinos and Reynolds (KR) [22], briefly
described in Chapter 2.9, and the DNS work of Lee and Reynolds [58].

4.2 Stochastic SBM based on effective gradients.

4.2.1 Evolution for a;;.
4.2.1.1 Differential of a;, V.

We start our analysis by modifying the differential of the normalized eddy-axis vector a; to

account for the additional non-linear effects

da; = Gjardt — G arasa;dt (4.1)

where the model for the effective eddy deformation is incorporated inside the effective gradient

tensor

ng = Gij + fTiqdqj . (4.2)

a
T
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The constant C, is determined through the orthogonality condition between a; and n; and
is found to be equal to C,. The values of the model constants C,, and C,, are chosen to be 1
and 2.2 respectively, as in Kassinos et al. [24]. Note that we have used the same tensor r;,d;
to represent the eddy effective deformation rate as both n; and v;. In order to obtain the
evolution equation for a;;, an additional differential is needed, that of the velocity magnitude.

Use of eq. (2.72) leads to the following expression

1
dV = 52 [-2GViVedt — 2C1V3dt + C3V2(dW,dWynsng — dWsdWyngns)] . (4.3)

Note that we have kept only terms of order O(#?), since the remaining terms provide negligible

contribution to the evolution of the velocity field.

4.2.1.2 Evolution equation for a;;.

We combine eqs. (4.1) and (4.3) and apply averaging in order to obtain the evolution equation

for the eddy-axis tensor

dA;;
dt

= G Akj + GpAri — 2G%.¢ Srs — 2G0 (Vkvg AiAj) (4.4)

From the definition (2.81) it follows that the equation for the normalized eddy-axis tensor a;;
is given by

daij _ d Ay Ay Ay A _ Ay _a”@
dt —dt Ap Awe A A 27 @

Using eq. (4.4) in eq. (4.5) one obtains the evolution equation for a;;

dai< Qs
dt] — Gikakj + ijaki — (3¢ + 1)qu gjkq + qu(3(b — 1)[aijakq] + 27§queksy[ayqaij — Z;qij]
RDT term
cv Qs C"

+77ﬂqwdwk(3¢ — Dlaijarg — Zlgqij] + VET(qudwk + Thwwq) €kst|atg@ij — Ztgﬁn‘j]

slow term-velocity contribution
a a
a
+ ——dar[rigar; + 750k = ——Trqdas Zijs -

slow term-eddy contribution
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Eq. (4.6) is written in a form that clearly shows the influence of each field to the stochastic
processes. We observe that the velocity field adds an additional contribution to both the
stropholysis and jetal terms, while the eddy-contribution provides an effective rotational

randomization of the a;;.

4.2.2 Evolution for v, ¢.

In this subsection, we consider the evolution of the jetal parameter ¢ and the jetal-vortex
correlation parameter . Details of the derivation of their evolution equations are given in
Appendix C. As shown in the constitutive equation for the Reynolds stress, these structural
parameters are responsible for the redistribution of the energy between the different modes,
thus affecting the Reynolds stress components. First, we construct a suitable algebraic ex-

pression by multiplying eq. (2.79a) with a;a;, which yields the algebraic expression
¢ = R}la;a; . (4.7)
Taking the time-derivative of eq. (4.7) one finds

la
dp 1, dR;
@ gl e

la 2
ad <Rijazaﬂ><di. (4.8)
dt

Using eq. (2.79a) in eq. (4.8) produces the evolution equation for ¢

do Q8 v
E =7 0 [5315 - asat} + 2¢Sk’q [qu - aqk’]
RDT term
(4.9)
8.50° O C, C,
+ (1 —2¢) or (1 — fpqagp) + ’Yﬁez’ktaw[jriqdqs - Trsqdqi] .

slow term

For the construction of the correlation parameter v we consider the contraction

afly 02,0, 1
<RLjﬁeimamaj> — skzz 5 (@0 — Arz). (4.10)
Taking the time-derivative of eq. (4.10) yields
la
dRr;; d Q. d

iz , la @ 202y 4 4 aZsz & ) —
(( i ) 0) €izm@maj) + (Rzg dt( 0 )€izmamag) + Ezzm<Rm QO dt (amay)) (4.11)
(G a7 (@ 0k = Ake) + 7 (F557)5 (@ 0z — Ak) + 7555 (07 0ks — Arz) -
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Using eq. (4.11) leads to the evolution equation for -y

dry 00, 1 ’YQI{Q u Q.
() a5 Oks — k) = =5 =05 (= Styage + S5y Zipg) + (1= 36)eizm

a
SiqQqm

eddy contribution

8.5 .
+727 02 Q°[(atm — Otm) + fpglOmeapg — qutm”
pure slow term
Q0 ~ Qs 0,0
5 (Big = aig)[L = 20] + 5 =05 ame(==5" Syr + Sir)
pure vorticity contribution
60, se Q2. QY ST 0., SE Q.

+ Sk Qekm“mq”[?+7<T2 am + =5~ 0em) = S 05 ~ g Tz im

gradient contribution

n
kg 28% 0 I

kg tm

§ Q2 Ttk g

gradient contribution

atm]

QZ v v
_szmﬁamq[¢skq + (1 - ¢> qk]

velocity contribution

v v QY Qi v 7a Sfmatm
+Y[SkmTmk + Skkwamt(‘l@b -1)+ ROZ P sakz(T—12¢) — gSkk i

velocity contribution

S 1 Qn Qi 00 O

ik gaz o Tar Gmt T amk) = a3 Yo

velocity contribution

+

(esthtqk:z + €qthtskz)S s] :

(4.12)

Clearly the evolution equation for  is the most complicated among all structural parameters,
containing various terms. This equation is highly non-linear in terms of products among
turbulent quantities. However, this expression is consistent to one of our objectives, which is
to construct more sophisticated equations which would provide more accurate, and physically

more meaningful results.

4.3 Extended Stochastic SBM including eddy effective rota-

tion rate.

As already mentioned in the outline subsection of the current chapter, one of the main issues
regarding the original model is that, for irrotational flows subjected to slow deformations, it

predicts zero values for the ¢ and v parameters. As this is true for flows subjected to rapid
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irrotational deformations, as explained in [22], in the presence of weak deformations the no-
linear terms effectively redistribute the energy of an initially pure jetal mode (¢ = 0), resulting
to the emergence of a vortical mode. These eddy-eddy interactions provide an effective eddy
rotation acting on each individual eddy, allowing for non-zero values to be produced. As
described in detail in Kasssinos & Reynolds (KR) [22], “in order to capture these effects it is

not enough to allow for non-zero ¢ and v under irrotational strain ”

. KR took a step forward
and suggested the replacement of the mean vorticity of the €; in eq. (2.79a) with the effective

eddy rotation rate ©;, given by

0, = €,pGrrapay . (4.13)

This modification, in the presence of non-zero ¢ and  can yield a contribution in the strophol-
ysis part even in the absence of mean rotation. Motivated by their arguments, in this subsec-
tion we introduce a stochastic model, called Model 2, which combines the idea of the effective
mean gradients in a similar manner as in Model 1, while modifying the constitutive equation

as proposed by KR.

4.3.1 Constitutive relationship between r;; and a;;, ¢, .

Substituting eq. (4.13) in eq. (2.79a) produces the constitutive equation for the normalized

Reynolds stress

’y a a a a
(65 — aij) + da;; + ﬁ(QStthqij — Giyaq; — Ghaq)], (4.14)

where

Q* = 1/(0;0), (4.15a)
0 = (©:0;) = G?ngqakq - kagq takpq? (4.15b)
(0i0;) = 0ij(GLGgarg — SikSpgZpqir) T Ste(GigZikjq + GiqZiniq) (4.15¢)
— G Glarg — GG Ziing - (4.15d)

As expected, eqs. (4.15) contribute to the constitutive equation even for strained-only flows
through the effective gradients. However, for strained-only flows in the RDT limit and for
initially zero value for the jetal-vortex correlation -, the stropholysis part of eq. (4.14) remains

zero, in accordance to the RDT theory.
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4.3.2 Modified expression for pressure strain rate tensor M;;,,.

The fourth-rank pressure strain rate tensor is derived by the conditioned moment

M8, = (ViVinyngla), (4.16)

1jpq

which consists of three distinct parts, namely

M (1- )

.2 =3 €irt€jzs|(0r20pg + Orplzg + OrgOzp) — Orzapaglasas (4.17a)
jla
% = 5[(5pqa,~aj — aijajapag|, (4.17b)
hla
ijpg _ Y Ok
" = g@(eirtataj + €r101;)[(Ork0pg + OrpOig + OrgOkp) (4.17¢)
— (Orkapaq + Orparaq + drqarap)|, (4.17d)

where v,j and h refer to the vortical, jetal and helical components respectively.
As shown in Appendix C, applying averaging on each component of the tensor produces the

corresponding model expressions for the individual components of Mj;;,q

M?. (1—29)
Py _ (3055 (8pg — Gpg) — 30pgaij + Z% .+ (ap;idiq + aqi0ip)
e 3 7\Opq Pq 'pg&ij JPq PJ =g 477 (4.18)

+ (6jpaiq + 6gjaip) — (8jpdig + 8q50ip)]

J.
qzépq = g(épqalj - Z’qupq)a (419)
and the helical part
Miva _ 3 65 qo g0 o w, 30, (G Ge
q2 - ]8O+ [ PgT rn“ijnr rnVVigpgnr — pq( inanj + jnani)
4.20
+ 3(G?n ;qnj + G?n ;qni) - G?n(Zgnrjdpi + gn'riépj) + G;n(anjéqi + amalﬂ) ( )
- 2G;n gqij - QngZiajnp + ng (anj(spi + CLm'(Spj - G?n(zgnrj(sqi + ;nri(s‘ﬂ)] .

where the total pressure-strain rate tensor is given by
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j h
Mijpq = Mivqu + Mi]qu + Miqu : (4.21)

4.3.3 Evolution for a;.

Following similar procedure as before, we found the evolution equation for the eddy-axis

tensor to be

ClAij
dt

= G Akj + G Ak — 2S8,0° Zins — 25 (Ukvg AiAj) . (4.22)
The first three terms of the RHS of eq. (4.22) are identical to the ones presented in eq. (4.4),
whereas the last term contains the stropholysis part. This part will be modeled based on
eddy effective rotation rate, in constrast to the analogous stropholysis part in eq. (4.4) which
is modeled based on the stropholysis term of the conditional constitutive equation as given

in eq. (2.79). Using eq. (4.22) in eq. (4.5) produces the evolution equation for a;;

dau
d;j = Sigarj + Sjpari + (Qpars; + Qjpar:) — 285, 2, + (36 — 1)Sgilargaij — Ziyij)

2y
v a r7a a a a r7a
+ 7qu( tpZLtpkqdij — kaapqaij - SthtUquij + kaZw

Q* qij) :

(4.23)

Note the presence of the sixth-order tensor W;;xmpq, which is a fully-symmetric tensor defined

as

(V2a;0;a10ma,a,)
Wz‘jkmpq: J<V2> s (4'24)

This tensor is modeled in terms of a;; and its invariants as described in detail in [2], who
constructed a fully realizable expression, which reduces to the modeling expression of Z;  ,
when any two indices are contracted, e.g. when k=m.

4.3.4 Evolution for v, ¢.

In order to bring the modified model into a closed form, we need to obtain the evolution
equations for ¢ and «. The mathematical derivation for these expressions is considered in

great detail in Appendix C. Starting from eq. (4.7) we obtain
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do _
dt

g a (Qa v a
+ ﬁ Stq(‘sjs - Sjs)sttq

v 85
2¢qu(rkq —agg) + (1 — 2‘25)?9 fradap
(4.25)
+ (ng - G?S)G?qaqs )

which coincides to eq. (2.86) for irrotational deformations in the RDT limit, in which ~ value

remains zero. The evolution equation for « is given by the following expression

() OO 5 — ) = B0~ (G, G008, — 55055250
b o S5 Bt + Gia(6G + (1= $)CE )]
b o (St B~ Ol Cang) — L0100y 5 )
%<%%(%)>(5sz — sz) — ’Yi_ﬁgsqu(dpq - <@g§y> (npngayam))
+ 7[58’27“ — Sg’“ <®;2?2m> amt — Siy <2§Sj> - quaqk + Sky <@2§;”> Ak (4.26)
= 2000 71 ) #2300 (G — 58,7
g = Sy Oy OnO) (121260 gy (00))
-5 00, 4 5, 00 T,
O 5 Wt — 3. )]

where the terms involving time derivatives are given by

doe,

(@iﬁ>

= 0i:G[Glw (Grrawl — Gpp Zpry) — 2850 (G Ziswr — GorWtsrwk)]

+ ng[ %w(G?k glwp - G;kzgiizl) - 2Sgw(G?szlsz>wk - G;k;Wzlsiwk)]

+ GUlGrw(Gi Ziirt — Girauwt) — 255, (Gl Wrisivk — G Zpr)] (4.27)
i(@) — l@ _ @i@j@
dt e’ O dt 03 dt’

d ,0; 1 do; do;

dt( 0?2 )= @2(61 dt 6 dt ) 02 02 4t

01 0,0, dO;

The model constants that appear in the expressions for the effective gradients are now taken
to be C, = 2.0, C,, = C, = 2.2C,. If we take a closer look to eq. (4.26), we see that the

first two terms are not zero even for irrotational flows with initially zero ¢ and +, producing
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non-zero gamma values. Consequently, a non-zero stropholysis contribution appears in the
constitutive equation, while a non-zero value for ¢ is achieved due to the activation of the

stropholysis term of eq. (4.25).

4.3.5 Evolution for d;;.

As mentioned above, the non-linear interactions are modeled in terms of products between
the structure tensors r;; and d;;. While a lot of attention has been given to the construction
of a suitable algebraic expression for r;;, so far the normalized dimensionality tensor d;; was
estimated through the simple expression given by eq. (2.80b) through the use of axisymmetric
assumption, an assumption that is not valid in the presence of weak deformations. Thus, we
have proceeded to the construction of an evolution equation for d;; which is consistent with
the remaining model expressions.

We start with the differential of the normalized normal vector, given by

Using eq. (4.28) and eq. (4.3) one finds

dD; = d(VTL,L) = Zledt + ngnkanldt — szvpkaidt — C1D;dt

02
+ ?QDi(dede — dWdWyngns) ,

(4.29)

where D; = Vn;. Starting from eq. (4.29), the evolution equation for the dimensionality

tensor is found to be

dDij

I = — Z@'ij — ZjDki + 2G;‘k<DiDjnknq> — 2G;k<’l)p’l)kDiDj> , (4.30)

or
Dii _ _gpp " Dii + 26T 20y — 2G5 M, 4.31
dt ki ki — GrjPri + 2G Q" Zijrg — 2GppMpkiy 5 (4.31)

where the fourth-moment is defined by

n
ijkq
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(V2ninjngng)

From the definition of the dimensionality tensor it follows that the evolution equation for the

normalized dimensionality tensor is given by

ddiy 1dDy . 1dDy

a @ dt U@ at (4.33)
Substituting eq. (4.31) in eq. (4.33) one obtains
dd;; Gpn

4.4 Model synopsis.

Here we outline the basic equations and model parameters that comprise the proposed model.

Details regarding these models are given in Sections 4.2 and 4.3.

Model 1

Model 1 is denoted as the stochastic model that uses effective gradients to model slow effects
without the inclusion of the eddy effective rotation rate and is described by the following

equations :

Constitutive equations:

rij = S (Gij, aij, 8,7) 5 (4.35a)

1
dij = 5((5” — aij) . (4.35b)

Evolution Equations:

da;; v,n a
;t] = Sa(sz ,ai]’7ZZ’quv¢a’Y’T) )
do v,n
E = %d’(GU’ y Qig, ®,7, T) ) (436)
dy

|
I
@

dt ’Y(G;L')J"n>aijazijpqa¢>’777—) )
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Model 2

Model 2 takes into account the contribution of the eddy effective vector to the statistics of

the homogeneous turbulence field and is summarized as follow:

Constitutive equations:

Tij = %r(ij’»", ijs Zijpgr D7 ) - (4.37)

Evolution Equations:

d;;j = Su(G", aijy ZEip0 Wigpgmn: 6,7)

% = S6(G3" aijs dig, Zijpg 6,7, 7, 07) (4.38)
% = (G, aijs dig Zijpg, Wigpamn, 67,7, 7).

dj;j = %d(ijnv dij Z[‘qu, Mijpq) ,

Egs. (2.91) and eq. (2.92) are used to determine the turbulence time scale in both models,
whereas the model parameters C7 and Cy are the same with the ones used in the IPRM

model, given in eq. (2.76).

4.5 Validation Results

In this section, the proposed models are tested for three independent irrotational homogeneous
flows in a stationary frame (Q{ = 0), namely axisymmetric contraction (AXC), axisymmetric
expansion (AXE) and plane strain (PL). The mean velocity tensor in axisymmetric turbulence

is given by

Sz'j = S(Sﬂéﬂ — S/2(5Z‘2(5j2 — S/Q(Sigéjg, Qij =0, (4.39)

with S > 0 for contraction and S < 0 for expansion. In the case of plane strain the mean

strain tensor is defined as follows

Sij = S5i15j1 - 5(51‘2(53‘2, Qij =0. (4.40)

The dimensionless total strain parameter is given by
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C = expl /O S (£ )] (4.41)

and serves as the time coordinate in all figures, whereas [S),q.| is the magnitude of the
maximum eigenvalue of the mean strain rate tensor. Comparison is made to the DNS values
of Lee and Reynolds [58] for flows subjected to weak deformations and the PRM predictions
for the analogous rapid distortion cases. Where meaningful, additional comparisons between
the new structure-based models and the original stochastic model will be included. The
data used for the comparison include the normalized anisotropic componentality (Reynolds
stress) tensor 7;;, defined as 7;; = r;; — % the normalized anisotropic dimensionality tensor
Jij =d;j — % and the turbulence time-scale 7. Also, the time development of the structural
parameters ¢ and v is shown for the corresponding cases in order to discuss the physical

behavior of Model 2. For all cases, we consider initially isotropic turbulence

%
37
p=v=0.

T:s = =
Y 3 (4.42)

For the slow cases, we also set initial values for the turbulence scales in order to match the

initial conditions of the DNS data

Ko (4.43)

Model 1 and Model 2 are both constructed so that they coincide at the RDT limit. Thus we
only need to consider the performance of Model 2 for homogeneous turbulence at the rapid
distortion limit. Figure 4.1 shows a comparison between Model 2 predictions with the RDT
results for the normalized Reynolds stress components 7;; for the three irrotational cases. As

expected, the proposed model is in excellent agreement with the RDT values.

The validity of the new structure-based models for the irrotational cases at the slow limit is
now tested. We consider an initially isotropic state as specified in egs. (4.42) and (4.43). The
solution depends on these conditions through the non-dimensional parameter xg/€g. Mod-
els predictions are compared to the corresponding DNS results of Lee and Reynolds [58].
Figure 4.2a shows the evolution of the normalized Reynolds stress anisotropic tensor 7;; for

irrotational axisymmetric contraction with Skg/ep = 0.56. Both models are in very good
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FI1GURE 4.1: Comparison of the Model 2 predictions with the RDT results for the normalized
Reynolds stress anisotropic tensor ;; for (a) irrotational axisymmetric contraction. (b)
irrotational axisymmetric expansion. (c) plane strain.

agreement with the DNS values for the 792, 33 components, with Model 2 showing improved
predictions for the 717 component. Figure 4.2b shows the corresponding comparison for irro-
tational axisymmetric expansion with Skg/eg = 0.41. Both models significantly underpredict
the level of anisotropy, even though Model 2 produces a slight increase of the components
compared to Model 1 towards the DNS values. Figure 4.2c shows results for irrotational
plane strain with Skg/eg = 0.50. Note that both models are accurate for small total strain
and quickly degrade, particularly for 799, 733, while Model 2 provides a very good agreement
with the DNS for the 717.

Based on Figure 4.2, Model 2 provides an overall better agreement with the DNS than Model
1. Thus we consider only Model 2 predictions in the following figures. We now turn to
the comparison of Model 2 and the original KR stochastic model with the DNS for the
three irrotational cases having the same initial conditions as described before. The evolution
of the Reynolds stress anisotropy for irrotational axisymmetric contraction is displayed in
Figure 4.3a. Model 2 exhibits better agreement with DNS than KR Model for 11, while for
times larger than C' =~ 2, KR Model provides more accurate predictions for the evolution of

the normalized turbulent kinetic energy (Figure 4.3b).
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FIGURE 4.2: Model 1 and Model 2 predictions for the normalized Reynolds stress anisotropic

tensor 7;;. (a) irrotational axisymmetric contraction with Sk/ey = 0.56. (b) irrotational ax-

isymmetric expansion with Sko/ep = 0.41. (c) plane strain with Skg/ep = 0.50. Comparison
is made to the DNS of Lee and Reynolds [58], shown as symbols.

Figure 4.4a shows the corresponding comparison for the evolution of the Reynolds stress
anisotropic components for the irrotational axisymmetric expansion. Even though Model 2
significantly increases the level of anisotropy, eventually both models’ predictions are proved
deficient. Regarding the evolution of the turbulent kinetic energy, Model 2 remains accurate

for larger times than KR model does, but eventually it also degrades (Figure 4.4b).

Next we turn to the analogous case for irrotational plane strain. Figure 4.5a demonstrates the
time development of the Reynolds stress anisotropic components, showing the deficiency of
both models to sufficiently capture the anisotropy magnitudes, despite the fact that Model 2
provides improved predictions, particularly for 711. Regarding the evolution of the turbulent
kinetic energy, shown in Figure 4.5b, we observe that Model 2 manages to remain accurate

for the whole simulation, up to total strain C' = 5, much longer than KR model.

Figure (4.6) shows Model 2 predictions for the time development of the jetal parameter ¢ and
the stropholysis parameter v for the three irrotational cases subjected to weak deformations.
Starting from a purely vortical mode, Model 2 manages to produce non-zero values for both

parameters, in contrast to Model 1 and KR models. The mechanism behind this deviation
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F1GURE 4.3: Model 2 and KR model predictions for irrotational axisymmetric contraction

with Skg/eg = 0.56. (a) Evolution of the normalized Reynolds stress anisotropic tensor 7;;.

(b) Evolution of the normalized turbulent kinetic energy x/kg. Comparison is made to the
DNS of Lee and Reynolds [58], shown as symbols.
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FIGURE 4.4: Model 2 and KR model predictions for irrotational axisymmetric expansion

with Sko/eg = 0.41. (a) Evolution of the normalized Reynolds stress anisotropic tensor ;.

(b) Evolution of the normalized turbulent kinetic energy k/ko. Comparison is made to the
DNS of Lee and Reynolds [58], shown as symbols.

involves the initial non-zero contribution from the first two terms at the RHS of eq. (4.26),
leading to a non-zero 7 and consequently to a non-zero ¢. Accordingly, the inclusion of
the eddy-effective rotation rate in the constitutive equation lead to the activation of the
stropholysis part, providing an additional contribution to the Reynolds stress in respect to
the other models. After taking a closer look to the time evolution of the individual terms
that are present in the transport equations, we concluded that even though the non-linear
terms are the ones that “activated” the jetal mode, the evolution of the parameters is driven
by the rapid terms. This argument is in compliance with the findings of Lee and Reynolds
[58], enforced by Kassinos and Reynolds [22], who suggested that, even in the presence of an
initially isotropic turbulent field, anisotropies could be triggered by unequal rates of return

to isotropy for the two tensors r;; and d;;.

Additionally, we are interested on the evolution of the normalized dimensionality tensor d;;,
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FIGURE 4.5: Model 2 and KR model predictions for irrotational plane strain with Skq/eq =

0.50. (a) Evolution of the normalized Reynolds stress anisotropic tensor 7;;. (b) Evolution

of the normalized turbulent kinetic energy x/ko. Comparison is made to the DNS of Lee and
Reynolds [58], shown as symbols.
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FIGURE 4.6: Model 2 predictions for the time evolution of the structural parameters ¢
and ~ for irrotational axisymmetric contraction (—); for irrotational axisymmetric expansion
(———); for irrotational plane strain (--—-- ).

because this tensor is used to account for the non-linear effects through the model expressions
for the effective gradients. In the following figures we ascertain the performance of Model 2
to predict the anisotropy of this tensor Jij for the three irrotational cases at the slow limit,
defined as ciz-j =d;j — %, either through the use of the algebraic expression in eq. (2.80b), or
through its transport equation as expressed in eq. (4.34). For irrotational flows subjected to
rapid deformations, eq. (2.80b) is shown to be exact, since the non-linear terms do not have
time to disturb the random distribution of the eddy-axis vector at the plane of independence,
thus the axisymmetric assumption remains valid. However, in the presence of slow deforma-
tions, non-linear eddy-eddy interactions provide an effective rotation acting on an individual

eddy, leading to the breaking of the axisymmetry.

Figures 4.7a-4.8b show a comparison between Model 2 predictions and the corresponding DNS

results using the two approaches. For all cases, the evaluation of d;; through the transport
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FIGURE 4.7: Model 2 predictions for the normalized anisotropic dimensionality tensor ci”

Evaluation through eq. (2.80b) for axisymmetric assumption (—) and its transport evolution

equation (———). (a) irrotational axisymmetric contraction with Skg/eg = 0.56. (b) irrota-

tional axisymmetric expansion with Skg/eg = 0.41. Comparison is made to the DNS of Lee
and Reynolds [58], shown as symbols.
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FIGURE 4.8: As in the previous figure for the irrotational plane strain. (a) dy; and dao
components. (a) di; and ds3 components.

equation produces more accurate predictions, particularly for axisymmetric expansion and
plane strain, since for these cases the deviation from the axisymettric assumption is more
profound. However, the replacement of the transport equation with the algebraic expression
haven’t lead to a noticeable improvement of the predictions for the axisymmetric expansion

and plane strain cases, enforcing the argument that rapid terms are driving the evolution of

the stresses.

4.6 Conclusions

The proposed structure-based models, denoted as Model 1 and Model 2, were validated for

three fundamental irrotational cases, for rapid and weak deformations respectively. For the
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cases which correspond to rapid deformations, both Model 1 and Model 2 achieve excel-
lent agreement with RDT, even at high levels of anisotropy. For irrotational axisymmetric
contraction in the presence of weak deformations, both models are in good agreement with
the DNS results for the Reynolds stress components. For the cases of irrotational axisym-
metric expansion and plane strain, both models underpredict the magnitude of the 72, 733
anisotropic Reynolds stress components, providing however improved predictions in respect
to the original stochastic model. Overall, the proposed models achieve better agreement with
the DNS data than the KR model for all cases considered. Additionally, we replaced the
simple algebraic expression for the dimensionality tensor with a suitable transport equation.
The transport equation is constructed based on stochastic forcing terms such as to ensure
realizability, yielding improved predictions for d;;, without however any trivial changes on the
Reynolds stresses. For initially isotropic turbulence, Model 2 is capable to produce non-zero
values for the structural parameters, displaying a more meaningful physical behavior than

the previous models, in consistence with previous works.
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Chapter 5

Blending of the ASBM with the
one-equation Spalart Allmaras
model (ASBM-SA).

5.1 Introduction

Here we construct, for the first time, a new coupling of the ASBM with the one-equation
SA model. The motivation is that the hybrid ASBM-SA model can potentially combine the
numerical robustness and stability of the SA model along with the deeper physical content of
the ASBM that ensures full realizability. Significant effort has been made for the development
of a coupling which, except from providing improved results compared to the SA model, could
be added to existing SA implementations with minimal additional effort. Such an approach
could provide immediate access to ASBM technology in engineering codes. Thus, the main
objectives of this work are (a) to describe the coupling of the ASBM and SA closures, (b) to
outline the implementation of ASBM-SA model in our solver and evaluate its computational
characteristics, such as numerical stability, speed of convergence etc., and (c) to evaluate the

performance of the model in a number of standard benchmark cases.

5.1.1 Outline

Section 5.2 presents the details of the coupling of the ASBM closure with the SA model which
yields the hybrid ASBM-SA model. This derivation is inspired by the work of Rahmann et
al. [59], who derived a set of algebraic expressions from which the turbulence scales x and e

can be extracted from one-equation turbulence models.
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Section 5.3 is devoted to the validation of the proposed model in 2D standard benchmark
cases. The computations include some simple cases where no flow separation occurrs, that of
a fully developed channel flow and that of a turbulent boundary layer over a flat plate. Results
for more advanced cases in the presence of moderate flow separation are shown also, such as a
flow over a backward facing step, and a flow passing through an asymmetric diffuser. Finally,
the performance of the hybrid model is ascertained in the challenging case of a turbulent flow
over a 2D smooth bump in the shape of a “Modified Witch of Agnesi” hill, since it involves

strong separation in the presence of both favorable/adverse pressure gradients .

5.2 Coupling with the SA model

The Spalart-Almaras (SA) closure is a one-equation turbulence model developed primarily
for application in aerodynamics, but which has been successfully applied in a wider range
of flows. The main limitation of SA (and any other one-equation model) is that it does not
provide of a complete set of turbulence scales. On the other hand, the ASBM closure relies
on the availability of suitable turbulence scales and this was the key stumbling block in trying
to couple the ASBM and SA closures.

5.2.1 The Bradshaw Hypothesis

As early as the 1940’s, a number of authors [60] had made the observation that in attached
boundary layer flows the turbulent shear stress can be assumed to be approximately propor-
tional to the turbulent kinetic energy and proposed simple models based on this approxima-
tion

| — | /k = ar. (5.1)

Later Bradshaw et al.[61] elaborated this approach further and used it as the basis for con-
structing a one-equation turbulence closure based on the assumption of a constant a;, and
as a result equation (5.1) is often referred to as ‘the Bradshaw relation’. This relation is the
starting point for coupling of the SA closure to the ASBM because it provides the framework
for extracting the two turbulence scales needed by the ASBM from the SA closure.

Early attempts to use equation (5.1) for the construction of one-equation closures were based
on the assumption of a constant a; throughout the flowfield. However, DNS and experimental
data indicate that a; is not a constant in the near wall regime, neither in the viscous sublayer
of the turbulent boundary layer, nor at the edge of the boundary layer, as indicated by Fares
et al. [62] and Nagano et al. [63]. In their work, Nagano et al. provided a variable a; for the
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Bradshaw relation through the use of Boussineq approximation,

| — uo| vy Ouy
7:(]/1:

— 2

where u; is the tangential component of the mean velocity and y,, is the normal to the wall
component of the local coordinate system, and where the turbulence structure parameter is

assumed to have the functional form

a; = C,u,fa . (53)

Here, the role of the model function f, is to account for the variation of a; in the viscous

sublayer and the edge of the boundary layer.

5.2.2 Adaptation to the Spalart-Allmaras model

Traditionally, the Bradshaw hypothesis has been used as the starting point for transforming
k-€ closures to one equation models. Here, our objective is to use the same phenomenology
in order to extract the turbulence scales (x and €) from the SA one-equation closure. Hence,

we next require that the eddy viscosity as defined in the context of the SA closure[l],
vy = fuil, (5.4)

be consistent with the eddy viscosity arising in the low Reynolds number x-¢ model, namely

Iﬁ‘,2

v = CufuRa R = ? ’ (55)

which yields the relation
foi = C,ufuR =vr. (56)

Using equations (5.3) and (5.6) in (5.2), allows the turbulent kinetic energy to be expressed

“Zﬁwjétfxsasa fxsa:\lj;zl» (5.7)

where the strain invariant S = /25;;5;; has been used in place of the velocity gradient

in the form

Ouy/Oyy for generality. The function f,,, accounts for the variation of the turbulence struc-
ture parameter in both the viscous sublayer and the boundary layer edge and in general is

a depended on the SA parameter x,, and on C,. Based on numerical optimizations the
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functional form

sza = 1 + C)(zs§7 CXsa = \/C/% + 1/(1 + XSG)27 CM = 0097 (58)

has been adopted[59].

Specification of the effective strain contributions

Two important limitations of equation (5.7) is that it does not hold true in regions where S
tends to zero and it does not adequately account for rotational effects. To overcome these
limitations, and thus extend the range of applicability of the coupled closure, a modified

strain rate S, is introduced in eq. (5.7), given by

Sy =/ 52+ S2. (5.9)

Here, S represents an effective strain rate corrected for rotational effects, while S, provides

an effective strain contribution in regions where S tends to zero.

Following the approach of Rahman et al.[59], the effective strain contributions are evaluated

according to

| —m

S = fi(S Cr

) (5.10)

with

n=5-Ww, fk—l—g;\/max(l—Ra,O),

(5.11)

Ra=|W/s|,  fu=1-ewp(-g).

where W = /20;;;; and Cr = 2.0. In eq. (5.10), the term inside the parenthesis considers
the region where Ra > 1, such as in the vortex core, whereas function f; accounts for Ra < 1
and ensures a smooth transition between the two regions. The second contribution to the

modified strain rate, which provides a correction away from the wall, is given by

& QCxSafa< ik >27 (5.12)

¢ v \1+pr/p

where C,, is given in equation (5.8) and @; is the mean velocity vector relative to the wall.

Summarizing,  is obtained from the equation
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~ fvl
K= Vsza a SXsa ) (513)

along with the set of relations (5.8) through (5.12).

Consistent computation of the dissipation rate

In addition, a consistent evaluation of the dissipation rate e is necessary in order to ensure
realizable time and length scales. Following similar arguments as for the kinetic energy

case[h9], an algebraic expression for the reduced dissipation rate € is adopted

- _ 13- a2
€= foi" U5y

(5.14)

where the exponent of f,; is chosen through numerical optimizations.

Solid wall corrections

At a solid wall, both « and € tend to zero, but the vanishing of the reduced dissipation leads
to numerical singularities and thus an additional correction is needed. The remedy is the
addition of a term ¢, which signifies the equality between the wall dissipation rate to the

viscous-diffusion rate [59, 64], given by

0
€w =24, v (87?)12“ ~ 24, VS)QCM , (5.15)

where v is the kinematic viscosity of the fluid. Experimental and DNS data for channel flows
and flow over a flat plate indicate a range for A, between 0.05 < A, < 0.11. In the current
computations, A, = C, = 0.09 is adopted.

Summing all parts that contribute to the dissipation rate yields the final modelling expression
e=/€2+ . (5.16)

5.2.3 Determination of the ASBM time scale

The coupling of ASBM to the SA closure is completed by using equations (5.13) and (5.16)

to obtain k and € respectively, which are then used for computing the turbulence time and
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length scales through the expressions [65],

3/2 3
T = max (H,CT\/;> , L = Cf max <K,Cn(y)1/4) , (5.17)
€ € € €

where Cp, = 0.17, C,, = 80.0, 7 is the time scale and L is the characteristic length scale. For
near-wall turbulence, a lower bound based on the Kolmogorov scales is imposed on the time
and length scales. This procedure ensures proper near-wall behavior of the turbulence scales.
Fig. 5.1 demonstrates a schematic description of the numerical procedure that was followed

in the current work.
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FIGURE 5.1: Schematic description of the structure of the coupling algorithm.

5.3 Computations

In order to test the efficiency and performance of the proposed ASBM-SA model, we consider
a series of two-dimensional flows, namely a fully-developed channel flow, a turbulent boundary
layer over a flat plate, a backward-facing step, an asymmetric diffuser and a smooth steep hill.
The model is validated against DNS and experimental data and compared to the standard
SA model. In all cases, the computations were repeated on progressivelly finer grids till
a grid indepedent solution was achieved. An unstructured, nodal-based finite-volume code
called CDP that has been developed at the Center of Turbulence Research (Stanford/NASA)
is used as a general platform. For the discretization of the diffusive and advection terms in
both the mean and turbulent transport equations, a second-order accurate centered-difference

scheme with skewness corrections has been used. The coupling of the transport equations
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is done through a fractional-step method, while a Crank-Nicholson scheme is used for time

integration. Details of the code have been described extensively in [66].

5.3.1 Fully-developed channel flow

Computations are carried out for fully-developed turbulent channel flow at a Reynolds num-
bers Re, = 180, Re,; = 550 and Re, = 2000, based on the channel half-height § and friction
velocity u,. The profiles are compared to the DNS data of Del Alamo and Jimenez [67]
and Hoyas and Jimenez [68]. The flow is maintained by a uniform mean pressure gradient
imposed along the streamwise direction x. No-slip boundary conditions are applied at the
top and bottom walls and periodic conditions along the other two directions. Computations
are carried on a 1x105x1 nonuniform grid based on the grid independence test and in order to
ensure proper near-wall resolution, the first cells adjacent to the walls are placed at y < 1.0.

Results are non-dimensionalized using the friction velocity, as U = Uy /ur, Urms = v/ Rez/tr,

Urms = 4/ Ryy/uT, Wrms = V Rz /ur and uv = —ny/uZ.

Figures 5.2a - 5.2c show the mean velocity profile for the low (Re, = 180), the intermediate
(Re; = 550) and the high (Re; = 2000) Reynolds number cases, respectively. In all cases,
the predictions of both the ASBM-SA and SA models agree well with the DNS data. As
shown, in the buffer and log-layer regions (30 < y™ < 50), the ASBM-SA coupling produces

a marginal improvement relative to the SA predictions.

Corresponding profiles for the rms quantities are displayed in Figs. 5.3a - 5.3c, where again
good agreement of the model predictions with the DNS data is noted. The SA closure cannot
provide predictions for the rms turbulence quantities and thus the comparison is made only
between the ASBM-SA closure and the DNS results.

5.3.2 Turbulent boundary layer

Next, we consider the case of a turbulent boundary layer flow over a flat plate, for which many
experimental datasets are available. Here, we have chosen to validate the model against
the experiments of Loureiro and Freire,[69] since these are related to the inlet conditions
used later for the ‘Witch of Agnesi’ case. The Reynolds number is Res=4772, based on
freestream velocity us and the boundary thickness d, corresponding to a friction-velocity
Reynolds number of Re, = 277. At the inlet, Dirichlet boundary conditions are imposed for
v and U;, while zero-flux is used for the other variables. For all flow variables, a penalty
condition is applied at the outlet to ensure mass conservation and a zero-flux at the top

free surface, while symmetry conditions are used in the spanwise direction. Finally, a no-slip
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FIGURE 5.2: Fully-developed turbulent channel flow at (a) Re, = 180 (b) Re, = 550 and
(¢) Re, =2000. Model predictions (lines) for the streamwise mean velocity are compared to
the DNS results (symbols) .[67, 68]

condition is used at the bottom wall. In order to ensure adequate resolution, the cells adjacent
to the wall are placed within y™ < 0.9. The computations are carried on a nonuniform grid
of size 63x104x1 in the streamwise, wall-normal and spanwise directions, respectively. The
grid is stretched along the wall-normal direction, but kept uniform along the streamwise.
Finer grids were also considered, which all converged to the same solutions, indicating grid-

independence for our results.

Figure 5.4a highlights the performance of the ASBM-SA closure. In the case of the mean
velocity U, the predictions lie very close to those of the SA model and are in good agreement
with the experiments. As shown in Fig. 5.4b, the ASBM-SA predictions for the rms turbulent

fluctuations are in very good agreement with the experimental values for y= > 10.

5.3.3 Backward facing step

To ascertain the performance in separated flows, the proposed model is applied to the flow over
a backward facing step. This is the simplest benchmark case with flow separation, since the

separation point is fixed. Computations are conducted for flow conditions that correspond to
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FIGURE 5.3: Fully-developed turbulent channel flow at (a) Re, = 180 (b) Re, = 550 and
(¢) Rer = 2000. The predictions of the ASBM-SA model (solid lines) for the streamwise
intensities are compared to the DNS results (dashed lines).[67, 68]

the experiment performed by Jovic and Driver[70] and the DNS computations by Le et al.[71].
At the inlet, a zero-pressure-gradient (ZPG) boundary layer profile is imposed, corresponding
to a Reynolds number Rej, = 5100 based on the step size h and the freestream velocity wu,,
and taken from an SA computation of a ZPG boundary layer. The same (SA based) inlet
profile was used for both the SA and the ASBM-SA computations in order to make the
comparison more meaningful. The ratio between the inlet height and the step height is
4. In the current computations, the grid is arranged in two blocks. The upper block (the
area above the step) contains a 160x91x1 nonuniform grid, while the lower one contains a
134x31x1 nonuniform grid respectively. Both grids are stretched in both the streamwise and
the crossflow directions. The grid independence of our results was verified by computing the
flow on a finer grid containing an upper block of 161x153x1 and a lower one of 134x63x1 and
demonstraing that the solution remained unaffected. The maximum distance between the
first grid cell and the wall is kept within y™ < 0.75. Details of the flow geometry and grid

design are shown in Fig. 5.18.
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FIGURE 5.4: Turbulent boundary layer at Res=4772. SA and ASBM-SA model predictions

(lines) for (a) the streamwise mean velocity and ASBM-SA model predictions (lines) for (b)

the rms and shear stresses. Comparison is made to the experimental values of Loureiro and
Freire[69], shown as symbols.

b

FIGURE 5.5: Geometry and grid design for RANS computations of turbulent flow over a

backward facing step at inlet Rep, = 5100. The domain inlet is located at a distance of 3H

upstream of the step corner, while the outlet is at a distance 40H downstream the corner.

The ratio between inlet-step height is 4. Data is extracted at two stations located within the

re-circulation region (A,B) and one station located at the recovery region (C). The location
of the experimental reattachment point (R) is also shown.

The inlet conditions are specified at a distance of 3h upstream of the corner, whereas the
outlet boundary conditions are imposed at 40h downstream of the corner. The imposed
boundary conditions correspond to slip conditions at the top surface of the domain, no-slip
conditions at the bottom wall, and periodic conditions in the spanwise direction. All the
quantities reported are normalized by the step size h and the reference freestream velocity
to. The distance x/h is measured exactly from the step corner. The streamwise mean velocity
profiles at three representative positions are shown in Figs. 5.6a, 5.6b and 5.6c. The first
two positions, x/h=4 and x/h=6 are located inside the recirculation region, whereas the
third, x/h=10, is within the recovery region. As shown, both the SA and ASBM-SA models
capture accurately the profiles in the separation region. In the recovery region, a slight

underestimation of the freestream value is observed.
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FIGURE 5.6: Turbulent flow over a backward facing step at Re;, = 5100. Model predictions
for the streamwise mean velocity at streamwise locations: (a) x/h =4, (b) x/h=6 and (c)
x/h=10. Comparison is made to the experiments of Jovic & Driver, [70] shown as symbols.

Comparisons for the distributions of Reynolds stress components at the three reference lo-

cations are shown in Figs. 5.7, 5.8 and 5.9. The ASBM-SA closure provides encouraging

results in both the recirculation and recovery regions. It captures both the peak magnitudes

and the freestream values, proving its sensitivity to the anisotropic nature of this flow.
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F1GURE 5.7: Turbulent flow over a backward facing step at Rep = 5100. ASBM-SA model

predictions for the normalized streamwise Reynolds stress (R,,/U2) at different streamwise

locations: (a) x/h =4, (b) x/h=6 and (c)x/h=10. Comparison is made to the experiments
of Jovic & Driver, [70] shown as symbols.

110



ASBM-SA . Validation results

4
| — SA
o ASBM-SA
> R o EXPERIMENT
..................... S,
P
0 T T \
0 0.005 0.010 0.015 0.020
Ryy/UZ
(A) z/H =4
43 — SA
------- ASBM-SA
T o EXPERIMENT
2,
............ e
0t
o
° [
0> - ° |
0 0.005 0.010 0.015
Ryy/UZ
(B) z/H =6
4 — SA
------- ASBM-SA
T o EXPERIMENT
27 2y
3+
o
0- ‘ o9 \ ‘ \ ‘
0 0.0025 0.0050 0.0075 0.0100
Ryy/UZ
(¢) z/H =10

F1GURE 5.8: Turbulent flow over a backward facing step at Rep, = 5100. SA and ASBM-SA
predictions for the normalized turbulent shear stress (— Ry, /U2) at three z-stations: (a) x/h
=4, (b) x/h=6 and (c¢)x/h=10. Comparison is made to the experiments of Jovic & Driver

[70], shown as symbols.
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FIGURE 5.9: Turbulent flow over a backward facing step at Rep, = 5100. ASBM-SA predic-

tions for the transverse Reynolds stress (R,, /UZ2) at three z-stations: (a) x/h =4, (b) x/h=6

and (c) x/h=10. Comparison is made to the experiments of Jovic & Driver, [70] shown as
symbols.
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The re-attachment length X, predicted by DNS is X, = 6.39 in step-height units. Both SA
and ASBM-SA predict the same X, = 6.51.

The variation of the skin-friction coefficient Cy with streamwise distance along the bottom
wall is shown in Fig. 5.10. Both the SA and ASBM-SA closures are in reasonable agreement
with the experimental and DNS results, but the ASBM-SA produces slightly improved CY

levels in the recirculation bubble and after reattachment.

0.010

— SA
| ASBM-SA

DNS
0.005 - - o EXPERIMENT

\
-5 0 ) 10 15 20 25
x/H

FIGURE 5.10: SA and ASBM-SA model predictions for the skin-friction coefficient at the
bottom wall. Comparison is made to experiments of Jovic & Driver [70] and the DNS of Le
et al.[71].

5.3.4 Asymmetric diffuser

Steady flow in a two dimensional asymmetric diffuser is considered next. In this type of flow,
adverse pressure gradients are generated leading to a large recirculation bubble. The flow
conditions are chosen to correspond to the reliable and detailed experimental database of Obi
et at. [72] The profile specified at the inlet is obtained from an SA solution for a fully-developed
channel flow corresponding to a Reynolds number of Re =20,000 based on the channel height
and the centerline velocity. At the bottom and top walls a no-slip condition is applied, whereas
periodic conditions are used in the spanwise direction. Finally, a penalty condition is used at
the outlet, ensuring mass conservation. A 148x68x1 non-uniform grid is used, stretched along
the transverse direction so that the y™ < 1 of all grid points adjacent to the walls. Fig. 5.11

shows details of the computational grid, where the stations marked with letters A through D
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correspond to the positions x/h = 6, x/h = 16, z/h = 24 and x/h = 29 respectively, which are
all located inside the recirculation region. Station A roughly corresponds to the experimental
flow separation point. Finally, station R corresponds to the location of the experimental
re-attachment point, which was located approximately at x/h = 30. Comparisons between

model predictions and experimental results are done at these locations.

3H
- —

21H 28H

FIGURE 5.11: Geometry and mesh details for RANS computations of turbulent flow in an

asymmetry diffuser. The domain inlet is located at a distance of 3H upstream the point at

the beginning of the expansion region, while the outlet is at a distance 49H downstream that

point. The expansion domain is 21H long at the streamwise direction, yielding an expansion

ratio of 4.7. Data is extracted at four stations located within the re-circulation region. The
re-attachment point(R) is also shown.

Fig. 5.12 demonstrates the time development of the maximum velocity residual, ensuring
that fully converged, steady solutions are reached. The residual is normalized by its initial

value and is given by

V x AU/At
(V. x AU/AY),

Res:max[ } , AU =U™" ™ —un, (5.18)

where n is the number of iteration, At is the uniform time step, U is the streamwise mean
velocity and V' is the volume of the corresponding cell. As shown in Fig. 5.12, the ASBM-SA
model achieves the same final residual levels as the SA closure, an observation that applies

to all cases considered in this work.

Both mean and turbulent quantities are normalized by the channel height H and the reference
bulk velocity U,, obtained from the channel simulation. The origin of the z coordinate

(xz/h = 0) is located at the beginning of the expansion section.

Figure 5.13 showcases the predictions of the ASBM-SA and SA models for the wall static-
pressure coefficient Cj, = (p — p,)/3pU2 and the skin-friction coefficient C; along the bottom
wall. The ASBM-SA closure yields a significant improvement in the prediction of C), relative
to SA, especially after reattachment (see Fig. 5.13a). The ASBM-SA model correctly predicts
both the drop and the subsequent recovery of the pressure, with only a slight overestimation

of the C) near the outlet. This difference between experiments and predictions has also been
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FIGURE 5.12: Time history of the mean velocity residual for the ASBM-SA. The instanta-
neous jump in the residual levels, indicates the point where the ASBM coupling is turned
on.

observed in the LES results of Kaltenbach et al.[73] The two models produce similar Cy
predictions that are in good agreement with the experiments. Based on these skin-friction
results, the separation and re-attachment points are predicted by both the SA and ASBM-SA
models to be approximately at x/h = 3.6 and x/h = 33.5 respectively. Thus, both models
over-predict the size of the recirculation bubble. These results are consistent with those of
DalBello et al.[74] who has also computed the same case using the SA model. A slight Cy
oscillation is observed in the solution of both models at x/h =~ 20. This wiggle in the C;
profile is located around the point x/H = 21, which is the point where the geometry exhibits
a sharp change (end of expansion region). Thus, these oscillations in the C profile seem
to be associated with the sudden change of the geometry and are most likely caused by the
recirculating flow encountering the inclined wall. These disturbances in the C'y profile are

also known to be exhibited in the solutions of other RANS models[74].

Fig. 5.14 shows the predictions for the mean streamwise velocities at the reference stations.
As shown, the ASBM-SA predictions are in better agreement with the experiments than
the SA predictions at all stations, except at the last one that is located at the edge of the

recirculation region.
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FIGURE 5.13: SA and ASBM-SA model predictions at the bottom wall for (a) the wall
static-pressure coefficient and (b) the wall skin-friction coefficient . Comparison is made to
the experimental values of Obi et al.[72]

Comparisons between the ASBM-SA predictions and the experiments for the diagonal R,
and Ry, Reynolds stress components are shown in Figs. 5.15 and 5.16 respectively. The
closure is in fair agreement with the experiments, capturing the peak levels and saddle points

in the profiles. Fig. 5.17 shows comparison between ASBM-SA predictions and SA for the
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FI1GURE 5.14: Turbulent flow over the asymmetry diffuser. Model predictions for the stream-
wise mean velocity U, at various x-stations for SA and ASBM-SA closures. Comparison is
made to the experimental values of Obi et al.[72].
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shear stress component R,,,. At the first two stations, ASBM-SA overestimates the near wall
peak magnitude at the bottom wall, whereas SA captures the correct magnitudes. At the last
two-stations however, the closure recovers and provides better agreement with experiments

than the SA closure.
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FI1GURE 5.15: Model predictions for the streamwise components R, at various x-stations
for SA and ASBM-SA closures. Comparison is made to the experimental values of Obi et
al.[72]

5.3.5 Smooth hill

To further evaluate the model performance in configurations involving flow separation, we
consider next a case in which the separation point is not fixed. Thus, the ASBM-SA and SA
models are applied to a model complex terrain, specifically to flow over a steep smooth hill.
The shape of the hill is defined using a modified ‘Witch of Agnesi’ profile. Detailed near-
wall experimental data [69] provide a good data set for model validation. For the sake of
comparison, additional computations for the same case were performed using ASBM couplings
with other EVM, which were implemented by us in the same code. Based on our findings,
we have chosen ASBM-BSL closure for our following discussion because it had shown that

among ASBM couplings it is the one that produces the most reliable results for this case.
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FIGURE 5.16: Model predictions for the streamwise components R,, at various z-stations
for SA and ASBM-SA closures. Comparison is made to the experimental values of Obi et
al.[72]

The computational domain and its mesh details are shown in Fig 5.18. Domain dimensions
are expressed in terms of the hill height H. Thus, the domain has a total height and length
of 4H and 27.73H, respectively, and is divided into three sections. First form left to right is
the inlet section that has a length of 7.5H and contains 64x119x1 grid cells. A second section
with a length of 10H encloses the hill and contains 169x119x1 cells, and finally the outlet
block is 10.23H in length and contains 74x119x1 cells.A grid sensitivity analysis was used in
order to ensure grid independence of the solution. For this purpose, additional computations
on both a coarser (with blocks of 50x100x1, 120x100x1 and 60x100x1) and a finer grid (with
blocks 97x125x1, 331x125x1 and 158x125x1) were performed. It was confirmed that the same
solution was obtained when using the two finer grids, thus verifying that our solutions are

grid converged.

At the inlet, the height of the cell adjacent to the wall is placed at a y* ~ 0.25. The inlet
profile is extracted from a flat-plate boundary layer simulation at Res = 4772, where the
Reynolds number is based on the freestream velocity us and the boundary layer thickness §.

An outflow penalty condition was used at the outlet, a no-slip condition at the bottom wall,
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FIGURE 5.17: Model predictions for the shear stress component R,, at various z-stations
for SA and ASBM-SA closures. Comparison is made to the experimental values of Obi et

al.[72]

a slip condition at the top free surface, and periodic conditions were imposed in the spanwise

direction.

7.5H

10H | 10.23H

FIGURE 5.18: Geometry and grid design for RANS computations of turbulent flow over the

‘Witch of Agnesi Hill’ at inlet Res = 4772. The domain inlet is located at a distance of 12.5H

from the hilltop, while the outlet is at 15.23H. The domain height is 4H. Data is extracted at

three stations located within the re-circulation region (A,B,C) and one station located near
the experimental re-attachment point.
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Firstly we report on how the prediction for the recirculation region and the profiles of the
turbulent intensities is affected by the choice of carrier closure. We report results for both the
uncoupled and ASBM-coupled models. In particular, we focus on the extent of the predicted
recirculation region and the profiles of the turbulent intensities and the turbulent shear stress

at different stations along the streamwise direction.

Table 5.1 shows model predictions related to the recirculation zone. As shown, the uncoupled
BSL model gives better results than the rest of the models, followed closely by the SA model.
However, the ASBM-BSL also seems to be more sensitive to the coupling than ASBM-SA.
After comparing all models, we concluded that the BSL and SA models produce the best
predictions, in both the uncoupled and the ASBM-coupled case.

Turbulence Closure  Separation Point(z/H) Re-attachment Point(x/H) Ls/H
Uncoupled Case

v2-f 0.26 9.18 8.92
BSL 0.33 6.67 6.34
SST 0.27 8.08 7.81
Wilcox 0.27 9.67 9.40
SA 0.27 7.84 7.57
Coupled with ASBM

ASBM-v?-f 0.23 9.70 9.47
ASBM-BSL 0.27 7.80 7.53
ASBM-SST 0.27 9.1 8.83
ASBM-Wilcox 0.27 10.1 9.83
ASBM-SA 0.27 8.32 8.05
Experiments 0.50 6.67 6.17

TABLE 5.1: Recirculation zone data

Next, we investigated the stability and robustness of all the ASBM-coupled two-equation
models. To achieve this we have used the following procedure: for each different ASBM
coupling, we first run the carrier model alone (without the ASBM coupling) until a converged
solution was obtained. Then, we have used that solution as an initial guess for the coupled
run, where the same carrier model was now coupled to ASBM. The convergence results for
this procedure are shown in Figure 5.20. On the horizontal axis we show the number of
iterations, while on the vertical one we show the maximum velocity residual, normalized by

its initial value. This is given by eq. (5.18).

As already mentioned in previous studies, the original ASBM-v?%-f resulted in spurious un-
dulations in the contour plots of the mean velocity in the recirculation region, as shown in
Figure 5.19a. The first important finding from this effort is that all the ASBM-coupled ver-
sions of the new carrier models (ASBM-SST, ASBM-BSL, ASBM-Wilcox, ASBM-SA) are
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completely free of these numerical artifacts. For example, Figure 5.19b shows contours of the
streamwise mean velocity as obtained with the ASBM-SA coupled model, but similar results
have been obtained with all the other new couplings of the ASBM. Thus, the artifacts in the
original solution were not related to the ASBM, but were peculiar to v2-f or at least to the
ASBM-v%-f— coupling. Based on these findings, we have decided that this issue has been

closed and at this stage there is no reason to revisit the ASBM formulation for this purpose.

]

4 & 6
x/H x/H

(A) ASBM-v>-f (B) ASBM-SA

FIGURE 5.19: Contour predictions of the streamwise mean velocity profile for (a) ASBM-SA
and (b) ASBM-v2-f models on the leeward side of the hill.

As expected, all the k-w models exhibited very similar behavior, thus in Figure 5.20 we
show only a comparison between the BSL-ASBM and SA-ASBM models. The main plot
in Figure 5.20 shows the residuals during the final stages of convergence with the ASBM
coupling turned on. In each time history, the instantaneous jump of the residual indicates
the iteration at which the ASBM coupling was activated. The insert on the top right of the
figure, shows the time history of the residuals for both stages of the simulations, i.e. including
both the uncoupled and the coupled phases. As shown, in the uncoupled stage, the SA model
achieves lower residuals than the BSL model, indicating the better convergence of the SA
closure. Once the ASBM coupling is activated, we find that the amplitude of the residual’s
oscillations about the mean value is much smaller for SA-ASBM than for BSL-ASBM (by
approximately four times). This indicates the superior robustness of the SA-ASBM coupling,
a conclusion that we have reached repeatedly during the various tests that we have been
carrying out over the last couple of months. Based on these results we plan to direct most of
our future efforts in further developing the SA-ASBM coupling, since as it will be shown, its

performance is otherwise comparable to or better than that of the k-w family of couplings.

In the figures that follow, all quantities are normalized using the hill height H and the

reference inlet freestream velocity us. Measuring streamwise distance x/h from the top of
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FIGURE 5.20: Time history of the mean velocity residual for the ASBM-BSL (blue dashed

line) and ASBM-SA models (red solid line). The main figure shows only the final stages of

convergence for the coupled models, while the insert shows the evolution of the residuals for

the entire simulation range, including both the uncoupled and coupled runs. The instanta-

neous jumps in the residual levels, indicate the points where the ASBM coupling is turned
on.

the hill, profiles are extracted at four different stations inside the recirculation region (from
x/h=1.25 up to x/h=6.67), where the most notable discrepancies between the models are
expected to occur. The four stations A, B, C, and D correspond to z/h = 1.15, 2.5, 3.75 and
6.67 respectively.

Figure 6.13 shows results for the mean streamwise velocity U,. In all cases, comparison is
made to experimental measurements and the predictions of the ASBM-BSL model. As shown,

the predictions of all three closures are comparable.

Figure 5.22 shows the corresponding comparison for the case of the wall-normal mean velocity,
Uy. Again, the predictions of the the three closures are comparable, but overall the ASBM-SA
and ASBM-BSL closures seem to provide somewhat improved predictions in the recirculation

zone relative to the SA model.

Next, we compare the predictions of the ASBM-SA model for the turbulent intensities with
experimental measurements and the corresponding predictions of the ASBM-BSL model. The
SA model is not included in this comparison because it cannot predict the turbulent intensi-
ties. Figures 5.23 and 5.24 show the streamwise (R,,) and wall-normal (R,,) Reynolds stress
components respectively. In the case of R,,, the ASBM-SA closure provides slightly better
agreement with the experiments than the ASBM-BSL model throughout the recirculation

zone. For example, at the first station A inside the recirculation region, the ASBM-SA is

122



ASBM-SA . Validation results

4 4
— SA : — SA
g e ASBM-SA ‘ Y ASBM-SA
ASBM-BSL | ASBM-BSL
: o EXPERIMENT : o EXPERIMENT

0 T T T T T T T T 0 T T T T T
-0.2 0.2 0.6 1.0 1.4 -0.2 0.2 0.6 1.0 1.4
UnUo UuUo
(A) station A, z/h =1.25 (B) station B, z/h = 2.5
4 4
3 % IR
3 2 3 2
1- 1-
0 T T T T T T T T 07 . T T T T T
-0.2 0.2 0.6 1.0 1.4 -0.2 0.2 0.6 1.0 1.4
UpUo UdUo
(c) station C, x/h = 3.75 (D) station D, z/h = 6.67

FIGURE 5.21: Turbulent flow over the ‘witch of Agnesi’ smooth hill. Model predictions
for the streamwise mean velocity U, at various z-stations for SA and ASBM-SA closures.
Comparison is made to experimental values[69] and the predictions of ASBM-BSL model.

able to capture more satisfactorily the near-wall peak in R,,, while at the last station D it
slight improves the predicted R, profile. Overall, the ASBM-SA closure exhibits satisfactory

agreement with experiments.

Figure 5.25 shows a comparison of the shear stress predictions of ASBM-SA with the corre-
sponding experimental measurements and the predictions of the SA and ASBM-BSL closures.
In the middle of the recirculation zone (stations B and C), the hybrid closures ASBM-SA and
ASBM-BSL are able to capture the peak of the shear stress more accurately than SA, but
they overpredict the peak at station D, which coincides with the experimental re-attachment
point. Overall, the predictions of the two hybird closures are comparable and they are both
able to capture the near-wall peak in the shear stress reasonably well. However, as shown
in Figure 5.25e, at the top of the hill (station zz/h = 0), we notice a problem with both
model predictions, where positive magnitudes for the shear stress are predicted which might
be related to the local nature of the ASBM closure and the lack of memory effects. Fig-
ure 5.26 shows the the variation of the skin-friction cofficient along the hill surface. The
hybrid ASBM-SA and ASBM-BSL closures give comparable results that are in reasonable
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FIGURE 5.22: Model predictions for the streamwise mean velocity U, at various z-stations for
SA and ASBM-SA closure. Comparison is made to experimental values and the predictions
of ASBM-BSL model.

agreement with experiments. It is worth noting that in the recirculation zone, the hybrid

closures are in better agreement with experiments than the SA closure.

Overall the ASBM-SA closure provides comparable or slightly improved predictions relative
to the ASBM-BSL closure. On the other hand, one has to take into account that ASBM-SA
is a one-equation model and as such exhibits some computational performance advantages

relative to the two-equation ASBM-BSL.

5.4 Conclusions

A new coupling between ASBM and the SA one-equation model was presented. To imple-
ment the coupling, consistent profiles for the turbulence scales were extracted from the SA
predictions and fed to ASBM through a set of algebraic expressions[59], applicable for a large
range of turbulent flows. The ASBM-SA closure preserves (not shown here) the full realiz-
ability enjoyed by the ASBM closure and exhibits improved numerical robustness and speed

of convergence relative to other couplings such as the ASBM—v?-f and even the ASBM-BSL.
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FIGURE 5.23: Model predictions for the streamwise Reynolds stress R, at various z-stations
for SA and ASBM-SA closure. Comparison is made to experimental values and the predic-
tions of ASBM-BSL model.

The performance of the hybrid model was evaluated in several standard benchmark cases.
First, a fully-developed turbulent channel flow was considered, for which model predictions
have shown satisfactory agreement with the experimental data for both mean and fluctuat-
ing quantities. Then a boundary layer simulation was performed, revealing good matching
between CFD and experiment measurements for rms and shear correlations, especially for
yT > 10. Then the simplest case of separated flow, that of a backward facing step, was
examined. The coupled model managed to capture both peak magnitudes and freestream
values of the mean and fluctuating variables, both in and out the recirculation region, ex-
hibiting its sensitivity in anisotropic features. The ASBM-SA model was also evaluated for
a case of turbulent flow in a planar asymmetric diffuser, where its predictions were found to
be in fair agreement with experiments. Predictions for the static-pressure and skin-friction
coefficients were within 4% of the experimental values. Finally, the model was challenged in
a more difficult case involving separation, that of flow over a steep hill. Again, an overall

good agreement between model and experimental predictions was achieved.

Concluding, the new coupling preserves the superior robustness of the SA closure, providing
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FIGURE 5.24: Model predictions for the transverse Reynolds stress R,, at various z-stations
for SA and ASBM-SA closure. Comparison is made to experimental values and the predic-
tions of ASBM-BSL model.

smooth converged solutions with a good convergence rate. At the same time, the hybrid clo-
sure has been able to capture effectively the turbulence anisotropy in all the flows considered
as a result of the ASBM contribution. Future work will focus on testing the coupling over

two-dimensional airfoil surfaces and three-dimensional smooth hills.

A Fortran-90 module containing our implementation of the ASBM is being made available
online[75]. Researchers interested in implementing the ASBM-SA closure in their own CFD

codes can contact the authors for assistance.
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FIGURE 5.25: Model predictions for the shear stress at various z-stations for SA and ASBM-
SA closure. Comparison is made to experimental values and the predictions of ASBM-BSL
model.
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FIGURE 5.26: SA and ASBM-SA model predictions for the skin-friction coefficient. Com-
parison is made to experimental values and the predictions of ASBM-BSL model.
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Chapter 6

Application of the ASBM-SA

closure in a case of active-controlled

flow separation

6.1 Introduction

In this chapter, we consider the application of the ASBM-SA closure to the case of turbulent
flow over a 2D hill with and without separation control. In particular, we have considered the
case of no-flow control, as well as the case where active-control is applied via steady-suction.
During the CFDVAL2004 Workshop[76], these two cases were considered extensively in an
effort to assess the performance of the current engineering turbulence models in strongly

separated flows subjected to favorable/adverse pressure gradients.

Experiments have been conducted in the NASA Langley Transonic Cryogenic Tunnel by
Greenblatt et al. [77]. The shape of the hump is that of a “Modified Glauert-Goldschmied”
hill, similar to the one used by Seifert and Pack [78]. The experiments are nominally two-
dimensional (2D), despite the presence of three dimensional (3D) effects near the side end-
plates. The scenarios involved both uncontrolled and controlled flow (steady suction) for
Reynolds numbers (Re) ranging from 0.37 up to 1.1 million, corresponding to Mach numbers
(M) ranging from 0.04 up to 0.12. One no-flow control case and one active-control case were

selected for the extraction of detailed experimental measurements.

Figure 6.1 shows the geometry of the whole domain, including a detailed view of the flow
control lot. The chord length of the hump is denoted as ¢, the height of the domain H is 90%
the chord length, while the maximum height of the hump is approximately 0.13 c¢. The slot is
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located near z/c ~ 0.65, where the slot width A is 0.00187 ¢. Detailed information regarding

the geometry, computational grids and the relevant experiments can be found in [79].

One of the conclusions reached during the CFDVAL2004 Workshop is that blockage effects
stemming from the presence of side plates need to be accounted for in simulations, other-
wise the computed pressure coefficients levels exhibit significant discrepancy relative to the
experiments, especially over the hump. Thus, the top tunnel surface around hump location
is modified so as to reflect the change in the tunnel cross-sectional area due to the presence

of the side-plates, as described in [79].

I
R el
Y

FIGURE 6.1: Sketch of the geometry, with a modification along the top-surface such as to
account for the side-plate effects, as described in [79].

6.2 Validation results

Initially, we considered the case of a turbulent boundary layer over a flat plate, which is
needed to provide the inlet profile for the two cases of the wall-mounted “Modified Glauert-
Goldschmied” hill. Subsequently, we performed a series of computations regarding the no-flow
control and steady-suction cases respectively. In all cases conisdered, we first run simulations
using the SA closure until a time-converged solution was reached. Then, we performed
additional runs starting from the SA converged solutions as an initial map in order to obtain
the predictions of the ASBM-SA closure. The predictions of the ASBM-SA hybrid model
and the standard SA model were then compared to the available experimental data. For each
case, we have conducted grid-convergence analysis, starting from coarser and moving towards
finer grids, in order to provide grid-independent solutions. In order to ensure that the grids
were sufficiently resolved, the cells adjacent to the wall were placed within y* < 1, except
inside the recirculation region where y becomes slightly bigger, reaching values up to 1.4

for the SA closure and up to 1.2 for the ASBM-SA closure. Here, 3y represents wall-normal
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spacing in wall units yu,/v. Also, all solutions are assumed to become time-converged after

achieving sufficiently small residuals, as discussed later.

Unstructured computational grids were generated using the ICEM-CFD mesh generator for
all cases considered. Using these meshes the numerical solution was advanced using an
unstructured, nodal-based finite-volume code called CDP, developed at the Center of Turbu-
lence Research (Stanford/NASA), and which is used in our group as a general platform for
the study of the incompressible flows. The diffusive and advection terms in both the mean
and turbulent transport equations are discretized through a second-order accurate centered-
difference scheme, while skewness corrections has been employed. The coupling of the trans-
port equations is done through a time-splitting method, while for the time-advancement a
Crank-Nicholson scheme is used. More details regarding the solver and its various options

are given in [80].

6.2.1 Turbulent boundary-layer.

Initially, we simulated a spatially developing boundary layer flow over a flat plate, so as to
match the experimental data of Greenblatt et al.[77]. These results were then used as the
inlet boundary conditions for the cases involving the 2D hump. The desired Reynolds number
is Res =~ 68,200, based on the freestream velocity U, and the boundary layer thickness
6 ~ 0.074 ¢. At the inlet, Dirichlet boundary conditions are imposed for the mean and
turbulent variables, such as Un/v = 3 and U, = 0.1 M, yielding a freestream Reynolds
number Reo, = 929,000, based on the chord length ¢ of the hump, and the freestream
velocity U,. At the outlet, a penalty condition is imposed to prevent the occurrence of
reflectional effects while ensuring mass conservation. A slip condition was imposed at the
top surface, a no-slip condition at the bottom wall surface and periodic conditions along
the spanwise direction. In order to obtain grid-independent solutions, three different meshes
of increasing resolution were considered. For each mesh, geometric functions were used to
define the normal distribution of the nodes, while uniform spacing has been adopted along
the streamwise direction. Grid 1 contains a non-uniform mesh of size 120 x 90 x 1 along
the streamwise, wall-normal and spanwise directions respectively. The corresponding size for
Grid 2 is 130 x 120 x 1 and for Grid 3 is 140 x 150 x 1. The finest grid yields a value of
yT around 0.5 for the wall-adjacent cell at the location of the extracted data. Figures 6.2a-b
show predictions using the SA closure for the streamwise mean velocity and pseudo-viscosity
respectively. In Figure 6.3 we show a comparison between the predictions of the SA model
using Grid 3 as the baseline grid, and the experimental data for the streamwise mean velocity

U, yielding a good agreement.
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FIGURE 6.2: Grid-convergence analysis for a spatially developing turbulent boundary layer
at Res =~ 68,200. SA model predictions for (a) the streamwise mean velocity and (b) the

pseudo-viscosity. Comparison is made among three different grids: Grid 1 ( ) ; Grid 2
(----); Grid 3 (—---—).
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FIGURE 6.3: SA model predictions (lines) for the streamwise mean velocity. Comparison is
made to the experiments (symbols) of Greenblatt et al. [77].

6.2.2 No-flow control

The case of flow over a hump having the shape of “Modified Glauert” hill is considered next.

This case was originally conceived for testing the ability of active control to reduce the size

of the existing recirculation bubble. However, from a turbulence modeling perspective, even

the uncontrolled case is interesting due to the presence of strong separation, which proves

to be challenging to turbulence engineering models. Thus, in our numerical experiments, we

considered first the uncontrolled case of flow.

Simulations have been performed using SA and ASBM-SA models, which are compared to the

experimental work of Greenblatt et al. [77] At the inlet surface, profiles for the variables are

obtained from the SA solution for the turbulent boundary layer corresponding to Res =~ 68200

as described in the previous subsection. At the floor surface, as well as at the wall surfaces

inside the cavity, solid wall (no-slip) boundary conditions were applied. A penalty condition
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is imposed at the outlet surface to ensure that mass flow exit the domain properly, while slip
conditions are used at the top surface and periodic conditions for the spanwise direction. A
grid-sensitivity analysis was conducted where two grid were considered. The coarser grid con-
tains approximately 103,000 grid points, whereas the finer grid posses approximately 160,000

grid points. Mesh details are shown in Figure 6.4, with a zoomed view of the cavity region.
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F1GURE 6.4: Unstructured computational grid with details of the slot region.

Figures 6.5a-b show SA model predictions for the wall-static pressure coefficient ¢, = (p —
Po)/ % pU?2 and skin-friction coefficient c; = 7,/ % pU2 respectively. Based on these results, the

coarser grid is shown to be fine enough for the current case.
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FIGURE 6.5: Effect of grid on SA model predictions for the uncontrolled case, for (a) the
wall-static pressure coefficient and (b) the skin-friction coefficient. Two grids are shown:
coarse grid ( ); fine grid (---- ).

Due to the algebraic nature of the ASBM closure, numerical difficulties are encountered for
the cases where strongly separated flows are considered, as the present ones. During previous
works, a filtering scheme was applied in order to obtain smooth solution, improving that way
the numerical stability of the solution. However, use of the scheme in the current case yielded
a mismatch between SA and ASBM-SA predictions for the skin-friction coefficients in regions
where a good agreement was expected, such as upstream of the leading edge of the hill and
downstream the recirculation region. This problem was resolved by separating the domain
into two zones, one prior the leading edge where the filtering scheme is not active, and the
region downstream the leading edge where the scheme is switched on (Fig. 6.6). Fig. 6.7 shows
a comparison between SA and ASBM-SA predictions using both approaches for the filtering
scheme, revealing the significant role the filtering details play on the skin-friction distribution
all along the bottom surface. In contrast, the pressure coefficient remains unaffected by the

choice of filtering scheme.

FIGURE 6.6: Separation zones showing where the filtering scheme is active (on) or not (off).

Figure 6.8 displays the evolution of the maximum mean streamwise velocity residual. The

residual is divided by its initial value and is defined by
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FIGURE 6.7: Effect of zonal filtering on (a) the wall static-pressure coefficient and (b) the wall
skin-friction coefficient for the no-flow control case. SA (---- ) and ASBM-SA (—---—) are

compared to the ASBM-SA predictions when filtering is active in the entire domain ( )
and the experimenal values (symbols) of [77].
V x AU, /At
Residual = max | ——————_| | AU, = U1 —U", 6.1
o mX{(VxAUIAt)O T e v (6.1)

where n refers to the n-th iteration, At to the current time step and V is the volume of
the corresponding cell. For both SA and ASBM-SA models, a drop of at least 5 orders of

magnitude for the residuals compared to the initial field is achieved, which is believed to be

sufficient to provide time-converged solutions.
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FIGURE 6.8: Time history of the streamwise mean velocity residual for the uncontrolled
case. The sudden jump in the residual levels indicates the point where the ASBM coupling
is switched on.

In order to both accelerate our simulations and overcome some stability issues related to the
ASBM-SA computations inside the cavity in the case of no-suction, additional computations
using similar meshes but without the presence of the cavity were conducted. Instead, we
impose a solid-wall condition along the slot exit. Figures 6.9a-b show SA predictions for
the mean velocity streamlines at the vicinity of the hump in the presence and absence of

the cavity respectively, demonstrating the trivial discrepancies between the two approaches.
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Figure 6.10 shows the corresponding comparison for the wall-static pressure coefficient, which
again reveals the negligible effect on the results of the cavity absence when the flow control

is inactive (no suction).

(B)

FIGURE 6.9: SA model predictions for the streamlines of the mean flow approaching the
hump (a) in the presence of the cavity and (b) in the absence of the cavity.
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FIGURE 6.10: SA model predictions in the presence ( ) or absence (---- ) of the cavity
for the wall-static pressure coefficient .

In the following figures, all turbulent and mean quantities ( except cy, ¢, ) are normalized
based on the chord length ¢ and the reference inlet freestream velocity U,. Setting the leading
edge of the hump as the origin of the streamwise distance (z/c = 0), profiles are extracted
at three different stations inside the recirculation bubble as measured by the experiments
(x/c=0.66, 0.8, 1.0) and one station at the recovery region (z/c = 1.2), denoted as stations
A, B, C, D respectively (Figure 6.11).
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FIGURE 6.11: Geometrical and mesh details in the absence of cavity. Data is extracted in
four stations, denoted as A, B, C and D. The leading-edge point (LE) and the re-attachment
point (R) are also shown.

Figure 6.12 shows the predictions of the ASBM-SA and SA closures for the variation of the
pressure (Cp,) and skin friction (Cy) coefficients along the wall surface. Comparison is made to
experimental measurements. The ASBM-SA model captures accurately the peak magnitude
of the pressure coefficient around z/c ~ 0.57. In the range —1 < z/c < 1.1, that is from
the inlet up to about the re-attachment point, the ASBM-SA provides slightly improved
C), predictions when compared to SA. Right after re-attachment, the ASBM-SA predicts a
slightly delayed recovery of C, as compared to the experiments (and the SA closure). The two
models produce comparable agreement with the experiments for the skin-friction coefficient.
ASBM-SA provides an improvement right after the upstream edge of the hill (z/c ~ 0.2),
while SA predicts correctly the magnitude near the sharp geometry change that occurs around
x/c =~ 0.65. Based on Table 6.1, both models overpredict the recirculation bubble, with
ASBM having the tendency to delay the re-attachment of the flow further downstream, an
observation which is in agreement with previous cases in which separated flows over 2D hills

were considered, such as the “Witch of Agnesi” hump, as described in detail in [49].

Figure 6.13 shows results for the streamwise mean velocity U, at the four stations. As shown
in Figures 6.13a-b, at the first two stations ASBM-SA provides slightly improved predictions
relative to the SA model, while SA is in better agreement with the experimental data at
the next two stations, mostly due to the greater delay of re-attachment in the ASBM-SA

predictions.

Next, we consider the performance of the ASBM-SA closure for the turbulent intensities and
the fluctuating shear stress with respect to experimental results. The SA model is included
only in the comparison for the fluctuating shear stress component, since it cannot provide
predictions for the turbulent intensities. Figure 6.14 displays the streamwise Reynolds stress
components R,,. At station A, ASBM-SA captures the near-wall peak magnitude, yielding a
reasonable predictions for R,,. At the remaining three stations (z/c = 0.8,1.0,1.2), ASBM-
SA is able to capture satisfactorily the peak magnitude. We note that the wiggles near

y/c = 0.2 at station A (Fig. 6.14a) originate from the algebraic expressions for the estimation
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FIGURE 6.12: SA ( ) and ASBM-SA (---- ) model predictions for the no-flow con-
trol case for (a) the wall static-pressure coefficient and (b) the wall skin-friction coefficient.
Comparison is made to experimental values (symbols) of[77].
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FIGURE 6.13: Turbulent flow over the “Glauert-Goldschmied” 2D hill for the no-flow control

case. Model predictions for the streamwise mean velocity U, at various z-stations for SA

( ) and ASBM-SA (---- ) closures. Comparison is made to experimental values of
Greenblatt et al.[77].

of the turbulent kinetic energy (not shown here). Following term by term the algebraic
procedure for the calculation of kinetic energy, we found that this issue is mostly likely
related to the local mean velocity gradients. These wiggles are also present in previous works
[49], for which similar findings were deduced. Also, the location y/c = 0.2 where the wiggles
appear is close to the interface between two grid blocks. Overall, we believe that this is a

localized effect which does not affect the quality of the solution.
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FIGURE 6.14: Turbulent flow over the ” Glauert-Goldschmied” 2D hill for the no-flow control
case. ASBM-SA model predictions (lines) for the streamwise Reynolds stress component R,
at various z-stations are shown. Comparison is made to experimental values (symbols) [77].

Figure 6.15 depicts the corresponding predictions for the transverse Reynolds stress com-

ponent R,,. ASBM-SA closure strongly overpredicts the near-wall magnitude at station A,

while a fair agreement with the experiments is achieved at the remaining stations.
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FI1GURE 6.15: Turbulent flow over the “Glauert-Goldschmied” 2D hill for the no-flow control
case. ASBM-SA model predictions (lines) for the transverse Reynolds stress component R,
at various z-stations are shown. Comparison is made to experimental values (symbols) [77].

Figure 6.16 shows SA and ASBM-SA predictions for the fluctuating shear stress component.

At the first station, ASBM-SA exhibits a similar behavior as for the transverse Reynolds stress

component. At the remaining three stations, ASBM-SA provides noticable improvement

relative to the SA model, in both the near-wall and freestream regions. This improvement is

evident in the whole range of the recirculation bubble, suggesting a satisfactory response of

the hybrid model to the strong anisotropic effects that characterize this region.
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FIGURE 6.16: Turbulent flow over the “Glauert-Goldschmied” hill for the no-flow control
case. Model predictions for the shear stress component R, at various x-stations for SA and
ASBM-SA closures. Comparison is made to experimental values [77].

6.2.3 Steady suction

Even though we perform URANS computations, we consider essentially steady cases, thus

we define the steady mass transfer momentum coefficient

. phUjZet

= J= 2
u 1/2¢pU2’ (62)

where Uj¢; is the total jet velocity. For the current case, ¢, is set equal to 0.241%, correspond-
ing to a constant mass flow rate of rh = 0.01518 kg/s being sucked through the slot, in order
to match the experimental conditions of Greenblatt et al. [77]. Figure 6.17 shows ASBM-SA
model predictions for the wall-normal spacing along the floor surface for the uncontrolled
and controlled cases, needed to ensure that our solutions are obtained in sufficiently resolved
grids. As expected, a sharp increase in y* levels occurs at the location of the slot exit where

no-wall is present.
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FIGURE 6.17: ASBM-SA model predictions for the streamwise variation at the bottom
surface for the normal spacing at the wall normalized in wall-units. Results are shown for
both the no-flow control ( ) and the steady-suction (---- ) cases.

Results for the wall-static pressure coefficient are shown in Figure 6.18, where she the predic-
tions of the SA and ASBM-SA models are compared to the experimental data of Greenblatt
et al.[77]. The ASBM-SA closure manages to capture accurately the magnitude and the lo-
cation of the first sharp change right after the slot, located around z/c ~ 0.67, followed by a
small recovery delay, as compared to the SA model, till the trailing edge of the hill (z/c = 1)

where the two models coincide again.

0.8

FIGURE 6.18: SA ( ) and ASBM-SA (---- ) model predictions for the steady-suction
case for the wall static-pressure coefficient. Comparison is made to experimental values [77].

Figure 6.19 displays results for the streamwise mean velocity U, at the four stations. As
shown, SA provides slightly better agreement with the experiments than the ASBM-SA
model. In figure 6.20 we see the corresponding comparison for the transverse mean velocity
Uy. In general, SA predictions are in better agreement with the experimental data compared
to ASBM-SA model.
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FIGURE 6.19: Turbulent flow over the “Glauert-Goldschmied” hill for the steady-suction
case. Model predictions for the streamwise mean velocity U, at various x-stations for SA
and ASBM-SA closures. Comparison is made to experimental values [77].
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FIGURE 6.20: Turbulent flow over the “Glauert-Goldschmied” hill for the steady-suction
case. Model predictions for the transverse mean velocity U, at various z-stations for SA and
ASBM-SA closures. Comparison is made to experimental values [77].

Table 6.1 shows details regarding the recirculation region. SA predicts more accurately the
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re-attachment point for both cases, providing an indication why SA closure obtains better

results than the hybrid model for the mean statistics.

TABLE 6.1: Details of SA and ASBM-SA model predictions regarding the recirculation
bubble for each case. Comparison is made to the experimental work of Greenblatt et al.[77].

Case Model sep.loc. sep.loc. Error reatt.loc. reatt.loc. Error

experiment ~ CFD (%)  experiment CFD (%)
no-flow control SA ~ 0.67 0.663 1.0 1.11 +0.003 1.235 11.3
no-flow control ASBM-SA ~ 0.67 0.656 2.1 1.11 £+ 0.003 1.330 19.8
steady suction SA ~ 0.68 0.676 0.6  0.94+0.005 1.113 18.4

steady suction ~ASBM-SA ~ 0.68 0.665 2.2 0.94+0.005 1.180 25.5

Figure 6.21 shows the corresponding comparison for the streamwise Reynolds stress com-
ponent R,,. At three of the four stations, ASBM-SA correctly predicts the near-wall peak

magnitude and the freestream values, yielding a fair agreement with the experiments.
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FIGURE 6.21: Turbulent flow over the “Glauert-Goldschmied” hill for the steady-suction
case. Model predictions for the streamwise Reynolds stress component R,, at various z-
stations for SA and ASBM-SA closures. Comparison is made to experimental values [77].

In Figure 6.22, the agreement is qualitative between the ASBM-SA predictions and the exper-
imental measurements for the transverse Reynolds stress component R,,. Combining these
results with the analogous ones for R,; reveals the sensitivity of the algebraic model to the

anisotropic nature of the flow.
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FIGURE 6.22: Turbulent flow over the “Glauert-Goldschmied” hill for the steady-suction
case. Model predictions for the transverse Reynolds stress component R, at various z-
stations for SA and ASBM-SA closures. Comparison is made to experimental values [77].

Results for the for the fluctuating shear stress component R, are shown in Figure 6.23.
As shown, the hybrid ASBM-SA model is able to provide significantly improved predictions
compared to the SA closure in the whole range of the recirculation region. Overall, ASBM-SA

provides a satisfactory agreement with experiments.
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FIGURE 6.23: Turbulent flow over the “Glauert-Goldschmied” hill for the steady-suction
case. Model predictions for the fluctuating shear stress component R, at various z-stations
for SA and ASBM-SA closures. Comparison is made to experimental values [77].

The active control effect on the recirculation bubble is visualized in Figure 6.24. ASBM-SA
model predictions for the streamlines of the mean velocity for both cases are shown, revealing

a noticeable reduction of the bubble size.
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FIGURE 6.24: ASBM-SA model predictions for the streamlines of the mean velocity for (a)
the uncontrolled case and (b) the controlled case .

6.2.4 An alternative expression for the turbulence lengthscale.

Until now, a standard expression is adopted in the current version of the ASBM-SA model

in order to obtain the turbulence lengthscale L, as given by

13/2 3

L = Cp max <6, C”(e)M) , (6.3)
where k is the turbulent kinetic energy, € is the dissipation rate, v is the kinematic viscosity.
The main disadvantage of expression (6.3) is that it contains limited physical information
regarding the structure of the local flow field, since it is based solely on the turbulent variables
x and e. Furthermore, this expression is calibrated from previous works [6] for cases where
the ASBM is coupled with the four-equation v?- f model. All the above make the applicability
of expression (6.3) to the ASBM-SA closure questionable.
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6.2.4.1 Details of the Rahmann’s lengthscale expression.

The model coefficient C), is determined by the following expressions

a1

C,=—F5—7——,
H 1_%772“‘252

n=asTiS,  &=asTiW, (6.4)

where T} is a turbulence timescale, and W, S are the invariants of the mean strain rate and

vorticity tensor respectively, defined by

S=1/25;8:, W =\/20,%. (6.5)

The alpha model coefficients are defined by

1 2 1/2 3g 3042 Pk -1
— —_ —1I = = = — = 1 2— 6.6
“ g<4+3b)’ Vo R RV R <+ ) 69

where Py /e is the relative strength between the production and the dissipation rate and II;

is an invariant of the Reynolds stress tensor. These parameters are modeled as

IT :C”L)ia 720’0 ) CU: )
b € € ¢ 2(14+ T1SvV1+ R?)

¢ =T;Smax(1,R), (6.7)

where 8 = |IW/S| is a dimensionless parameter. Finally, the turbulence lengthscale is esti-

mated by

L* = ¢(9.0 4+ C,Re v R _& 6.8
= ¢(9. nBer)\[ er = —. (6.8)

Ve

Detailed analysis of the model is given in [81].

6.2.4.2 Validation

Consequently, we repeat our computations for the uncontrolled case, this time using an
expression for the lengthscale as described in Rahmann et al. [81]. The elegance of this
choice stems from the fact that it is constructed for use in another one-equation model, the

Baldwin-Barth (BB) model [82], and from the fact that it is sensitized to both vorticity and
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shear dominated flows that are far from equilibrium. Figs. 6.25 show a comparison between
ASBM-SA results using both expressions with the SA predictions and the experiments for
the pressure and wall-static skin-friction coefficients. The choice of algebraic expression is
shown to have trivial effect on the results for the specific case, while the numerical stability

of the algorithm remained also unaffected.

0.8 0.012
0.4+
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1

FIGURE 6.25: ASBM-SA model predictions when the new (—---— ) and the old (----)

lengthscale expression is used for the no-flow control case for (a) the wall static-pressure

coefficient and (b) the skin-friction coefficient. Comparison is made to SA model predictions
( ) and the experimental values (symbols) [77].

Fig 6.26 shows the corresponding ASBM-SA predictions at station A for the fluctuating
intensities and fluctuating shear stress. Choosing the new lengthscale expression resulted in
improved predictions for the near-wall peak magnitude for all statistical correlations, while

similar results are produced at the remaining stations.
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FIGURE 6.26: ASBM-SA predictions using the new (—---— ) and the old (---- ) lengthscale

expression at station A for the no-flow control case. Comparison is made to the SA predictions

( ) and the experimental values (symbols) [77] for (a) the streamwise Reynolds stress

component R, (b) the transverse Reynolds stress component Ry, and (c) the fluctuating
shear stress component R,,.

6.2.5 Conclusions

The ASBM-SA closure has been tested for the case of a flow over a two-dimensional smooth
hill in the shape of a “Modified Glauert-Goldschmied” hump both in the presence and absence
of separation control. For both cases considered, the ASBM-SA model produced satisfactory
predictions for the streamwise Reynolds stress component R,,, while a qualitative agreement
with the experiments was achieved for the transverse component R,,. ASBM-SA closure
provided improved predictions compared to SA for the shear stress in the entire domain. Re-
garding the mean quantities, the predictions of both closures are comparable, providing fair
agreement with the experiments. Overall, the hybrid model managed to capture satisfactory
the traits of these highly anisotropic flows, while maintaining the high robustness of the SA
model, at a good convergence rate. A new expression for the estimation of the turbulence
lengthscale, suitable for flows far from equillibrium, is adopted and tested for the no-flow
controlled case. This choice led to improved predictions for the near-wall peak magnitudes of
the statistical correlations, while exhibiting similar robustness to the previous choice. Use of
separated zones for the activation of the filtering scheme resulted to smoother mean velocity
profiles in the recirculation region, and more meaningful skin-friction profiles upstream and

downstream the separated region.

150



Validation results

As part of future work we intend to ascertain the performance of the hybrid model over chal-
lenging two-dimensional flows, such as turbulent flows around a wall-mounted cube and plane
wall jets, while an extension to three-dimensional smooth hills will be attempted. Regarding
the refinement issues encountered in the current and previous works, further consideration is
needed to understand why ASBM-SA delays further the re-attachment compared to SA for
all validation cases considered until now, even though it gives better predictions for the shear
stress over the entire region of the recirculation. We have already started developing more
advanced filtering schemes, suitable for highly deformed meshes, since we believe that the
choice of filtering scheme plays a role on the delay of flow’s re-attachment, and contributes

to yielding larger recirculation bubbles.
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Chapter 7

2D airfoil simulations using the
ASBM-SST hybrid model.

7.1 Introduction

In this chapter the main objective was to obtain converged smooth solutions with the full
ASBM closure for flow over the VR7 rotorcraft airfoil in a wide range of flow parameters.
Another objective was to further investigate the performance of the ASBM model for the
flow over the symmetric NACA-0015 airfoil, since this type of NACA airfoil is thicker than
the VRT7 airfoil. Particularly, we focus on testing the response of the algebraic structure-
based model to compressibility effects which are encountered in compressible flows, for Mach
numbers ranging from 0.06 up to 0.3. In order to achieve that, we used a compressible solver,
called SUmb, as the platform for coupling the ASBM closure to the SST model, leading to the
ASBM-SST hybrid model. Due to the complexity of this solver, we have spent considerable
time in order to incorporate the ASBM module in the solver in such a way that it is elegant
for others to use it. Additionally, due to the highly nonlinear algebraic nature of the ASBM
closure, we have developed a number of numerical improvements which enabled us to perform,
for the first time, successful computations for these type of flows. Particularly, new smoothing
expressions were constructed that are suitable for deformed meshes in order to improve the
convergence and stability characteristics of the ASBM computations. Also, we developed an
extended blending methodology that is applicable in compressible flow solvers which enabled

model refinements.
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7.1.1 Outline

Section 7.2 shows details related to three independent techniques that are developed in order
to encounter the stability issues stemming from the non-linear nature of the ASBM clo-
sure. Particularly, it contains proper smoothing expressions for two-dimensional (2D) and
three dimensional (3D) highly stretched meshes, blending expressions for the mean transport
equations, whilst it introduces the concept of zonal separation, in which the computational
domain is divided in two zones. Sections 7.3 and 7.4 discuss the performance of the ASBM-
SST hybrid model for a number of 2D static cases over two types of airfoils, namely VR-7 and
NACA-0015 respectively. In Sections 7.5 and 7.6, 2D pitching runs are performed in order to
further ascertain the performance of the closure at different freestream Mach and Reynolds
numbers, again for flows over two types of airfoils, VR-7 and NACA-0015 respectively. SST
and ASBM-SST model predictions for a number of integrated mean quantities, such as lift,

drag and pressure coefficients, are then compared to detailed experimental measurements.

7.2 Computational Formulation

The use of a suitable smoothing expression is motivated by the nonlinear algebraic nature
of the ASBM closure, combined with the need for highly deformed meshes surrounding the
airfoil surfaces. Smoothing is typically utilized in ASBM implementations to provide im-
proved convergence and stability characteristics. The final smoothing expression that we
have reached takes into account the volumes of the nodes, and satisfies the limiting case of
completely uniform grids (cube volumes). The expression is applicable to 3D grids, even

though in this work it has been applied only to 2D grids.

7.2.0.1 Smoothing expression

In order to construct a suitable smoothing of a variable ®, we divide the nodes in three
categories named A,B,C, in respect to their distance from the reference node (referenced
with index 0). The expression takes into account the volume which encloses each node. The

equations satisfy the limiting state of uniform grids. The 2D expression is given by

- ®y 3
@ =+,
Fave _ Zi:l(QVi )A + Zi:l(;ﬂ/‘i)B (7 1)

rest — 4 1 4 1 )
Zizl(QW)A + Zi:1(4V¢)B
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whereas the 3D expression is given by

B, 7
¢ = 3 g‘bggEm
6 . 12 @ 8 ; .
v it 24+ Zi:l(fw)B + Zi:l(éb\/i)c (72)

=1\2V;
rest — 6 1 12 1 8 1 .
it (o) + 22 () P+ i ()

Figure 7.1 shows how neighboring nodes are distributed around reference node 0. Nodes of
type A are the closest to the reference node, type B are the middle ones and C are the most
distant ones. For a grid consisting of hexaedrons, as it is the case in SUmb, the total number

of neighboring nodes is 26.

|

C B

I
FI1GURE 7.1: The distribution of neighbor nodes around the reference node with index 0.

7.2.0.2 Blending expressions

This concept, originally introduced by O’Sullivan et al (2010) for incompressible flows, has
been extended to account for compressibility effects in the mean momentum and mean energy

equations. The extended mean momentum equations are given by
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I(pu;)  O(pujuy) 0 2
v = 1— P
8 8 8u, au]' 2 8uk
8ui 8uj 2 3uk ) ):|
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+ (1 —a)ur(

and the energy equation is given by

d(pe) = O(puiedi;) 0 2
N 0 0 8u2 c’?uj
== O‘axi [ujpRij] + o [“J#(axj + Dz -
_2%5“)_’_(1_ Yuj (% .
30xy, uRT 0z
an 2 8uk B tot s
owi 30w, T4 0]

where k is the turbulent kinetic energy, u;, p, e denote the mean parts of the velocity, pressure
and total internal energy fields respectively, whilst « is the blending factor, which represents

the fraction of Reynolds stress contribution coming from the ASBM closure,

Rij = uwju); = aRf}SBM + (1 - a)RﬁOUS. (7.5)

For o = 0, egs. (7.3)-(7.4) reduce to a pure EVM formulation, whereas for « = 1 they
correspond to a pure ASBM scheme. Additionally, q§0t is the total heat flux loss, given by

tot _ 1 ( 1% ur )acg

¢ — (= = . (7.6)
y—1"Pr  PrT’ oz;

Here, C; is the sound speed, Pr is the dimensionless Prandtl number and v is the heat

capacity ratio.

7.2.0.3 Zonal Separation

During our computations, ASBM incurred numerical failures at the wake region at the vicinity
the airfoil. These were handled by separating the domain into two distinct regions based on a

reference point. The reference point had coordinates (0,c), which coincides with the trailing
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edge point at zero angle of attack and it remained fixed during all simulations. Upstream of
this point, ASBM was active, whereas downstream of the point pure SST model was used
instead. Fig 7.2 shows the “active” zonal region for an airfoil when stall is already present and
separated flow is encountered. Clearly, a significant portion of the recirculation region lies
inside the active region, enforcing ASBM influence on the computations. As shown in Fig 7.2,
the solutions obtained are smooth and continuous across the zonal boundary. The continuity
and smoothness of the solution extends to turbulence quantities such as the turbulent kinetic

energy (not shown here).

FIGURE 7.2: Separation zones which determine where ASBM is active or not at a = 13.0°
angle of attacks.

7.2.1 SUmb compressible solver.

SUmb is a multi-block structured flow solver developed in the Stanford University. It solves
the compressible Euler, laminar Navier-Stokes and Reynolds-Averaged Navier-Stokes equa-
tions. It has been developed as a completely general solver and it is therefore applicable
to a variety of other types of problems, including external aerodynamic flows. SUmb is a
parallel code, suited for running on massively parallel platforms. For more details regarding

this platform, see [83].
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7.2.2 General guidelines for the validation cases

In all simulations considered, static or dynamic, the maximum height of the cells adjacent
to the airfoil surface ranged from y* ~ 1.0 to y* ~ 2.5, depending on the case, in order to
ensure that the boundary layer was sufficiently resolved. For all computations, the value of
the freestream turbulence intensity Tu was set to 0.001, and the freestream eddy viscosity

ratio EFR was set to 0.01, where

2673 1/2
AR .
re )
ER = :T : (7.7b)
ref loo

where the subscript ref refers to the reference values. The reference Reynolds averaged
velocity U,y is defined by the farfield Mach number, whilst the reference kinematic velocity
is defined using both the Reynolds and Mach numbers respectively. Consequently, farfield
values for the remaining independent variables used in the model can be set. A constant
specific heat ratio v equal to 1.4 and a Prandtl number equal to 0.72 were assumed, with the
freestream temperature 7o, = 288.15 K, corresponding to a speed of sound value of Cs o, of
340 m/s. Also, the dynamic laminar viscosity u was calculated using Sutherland’s equation.
The above reference values were used to non-dimensionalize the transport equations. On the
airfoil’s surface, a viscous wall (no-slip) boundary condition was imposed, while a far-field
boundary condition was set by applying freestream values to all variables at the corresponding

sub-faces. In the spanwise direction, symmetry conditions were imposed.

Results and comparisons are made for the lift, drag, moment and pressure coefficients , defined
by

O =—"—, 7.8
YT LUZe (7.82)
D
2 [e’¢)
M
Cv=+——, 7.8
YT SeUze (7.8c)
P — Poo
Cp = (P = Peo) T2 C) : (7.8d)
2 o]
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where L, D, M are the lift, drag and moment per unit span and U, the freestream mean

velocity.

Converged solutions for all pure SST runs were obtained first. Subsequently, starting from the
SST converged solution, predictions for a blending factor o = 0.5 were obtained. Using the
converged solution for & = 0.5 as an initial guess, the converged solution for the pure ASBM
computation (o = 1) was then obtained. This methodology remained unchanged during all

simulations, both static and dynamic.

7.3 Static Runs for VR-7 airfoil.

Firstly, we consider a turbulent flow over a VR-7 rotorcraft airfoil, at at freestream Mach
numbers of My, = 0.184, My, = 0.25 and M., = 0.30 for a series of fixed angles of attack,
ranging from 0° to 15°. The converged, steady model predictions for the current and following

cases are compared with the static experimental data of [84].

In order to ascertain the performance of the closure at the linear regime, the relative errors
associated with the lift curve slope (LCS) and the zero-lift angle (ZLA) are introduced, given
by

ce . —C¢
o1 = |%\ % 100 |
L1 (7.9)
ZLA® — ZLAC
UO - |W’ X ].00,

where superscripts e and ¢ refer to the experimental and computational values respectively.

7.3.1 M.,.=0.3 with tab.

Firstly we consider the unsteady case at freestream Mach Number of M., = 0.30, yielding to
a Prandtl-Glauert factor equal to 8 = 0.9539. A fixed time step equal to 0.0058 s was chosen,
whilst at each time step, 30 Newton-Raphson sub-iterations were imposed, a number which

proved to be large enough in all static cases.

Table 7.1 shows the linear expressions and the associated relative errors for the lift-curve slope.

Clearly, ASBM improves the slope estimation almost 100 percent relative to the pure SST
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results , revealing its sensitivity to the pressure changes. Zero-lift angle remains practically

unaffected.

’ Case \ LCS \ o1 ‘ ZLA ‘ oo ‘
Exp | 0.1227 ] - |-1.56] -

SST 0.1036 | 15.5 | -2.13 | 36.5
ASBM | 0.1145 | 6.7 | -2.22 | 41.0

TABLE 7.1: Linear expressions and zero-lift angle based on least-squares methods, accom-
panying with their relative errors.

2.0

— SST
w ASBM-SST
o EXPERIMENT

[ ' [ '
0 5 10 15 20

angle (°)

FiGURE 7.3: Lift coefficient C}, as a function of angle of attack for M., = 0.3 and Re. =
4.25 x 10%. Predictions of the ASBM-SST (dashed line) and SST (solid line) closures are
compared to the experiments of McCroskey et al. [84], shown as symbols.

Fig 7.3 shows a comparison of model predictions and experimental results for the lift coef-
ficient. ASBM closure provides a much better agreement to the experiments relative to the

SST computation, although a slight delay of the onset of stall is noted.

Fig. 7.4 shows model and experimental predictions for the drag coefficient. Again, we see
negligible changes at small angle of attacks. After the dynamic stall, the ASBM closure tends
to underpredict the Cp value by a larger amount than the SST closure, however the devi-
ations are inside error limits, especially near and after stall region where high uncertainties

due to different effects are encountered, as described by Moulton et al (2010).
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FIGURE 7.4: Pressure part of the coefficient of drag Cp as a function of angle of attack for
M., = 0.3 and Re, = 4.25 x 10°. Predictions of the ASBM-SST (dashed line) and SST (solid
line) closures are compared to the experiments of McCroskey et al. [84], shown as symbols.
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FIGURE 7.5: Pressure coefficient of lift C'p as a function of angle of attack for M., = 0.3 and
Re. = 4.25 x 10°. Predictions of the ASBM-SST (dashed line) and SST (solid line) closures
are compared to the experiments of McCroskey et al. [84], shown as symbols.
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Since the lift coefficient attains much larger values than the drag coefficient, based on the
above results for C, it’s reasonable to anticipate improvement of the pressure distribution
along airfoil’s surface, even though the C'p predictions are not improved. Fig. 7.5 advocates
this argument. The pressure distribution at the suction side, shows a noticeable improvement,
starting from the leading edge and extending downstream until (x/c) ~ 0.8. Near the trailing
edge, the SST closure produces slightly better predictions, however the trailing edge region has
the smallest contribution to the lift integration. This is why the overall coefficient predictions

dramatically improved.

7.3.2 M,=0.25 with tab.

In order to further assess the performance of the closure, the unsteady case at freestream
Mach Number of My, = 0.25 was considered at § = 0.9682.

Table 7.2 shows an improvement of the slope close to 50% when ASBM is fully active (o = 1),

whereas the marginal effects to the zero-lift angle estimation are again confirmed.

’ Case \ LCS \ o1 ‘ ZLA ‘ oo ‘
Exp |0.1235 | - |-1.526] -

SST 0.1096 | 11.26 | -2.215 | 45.14
ASBM | 0.1135 | 7.80 | -2.218 | 45.32

TABLE 7.2: Linear expressions and zero-lift angle based on least-squares methods, accom-
panying with their relative errors.

Figure 7.6 presents both model and experimental calculations for the lift coefficient, displaying
the notable ability of the ASBM closure to accurately capture Cp, profile. In the case of the
drag coefficient, Cp, Fig 7.7 shows again the trivial changes at small angle of attacks and
the tendency of the closure to further under-predict the coefficient in the high angle of attack

regime.

Figure 7.8 shows that, as previously observed, the pure ASBM produces an improved pressure
distribution on the upper side. Again, in the vicinity of the trailing edge SST gives better
predictions than ASBM, but this does not affect the overall advantage of ASBM because of

the small contribution of the trailing edge region to Cf.

7.3.3 M, =0.184 with tab.

In order to further test the performance of the closure at lower Reynolds numbers, we per-
formed unsteady computations at freestream Mach Number of M., = 0.184, following a

similar methodology as in the previous cases.

161



2D simulations using ASBM-SST hybrid model.

2.0
1.5 .9%09 o
S 1.0-
------- ASBM-SST
0.5 o EXPERIMENT
O T [ T [ T [ T
0 5 10 15 20

angle (°)

FIGURE 7.6: Same as Fig. 7.3, but for M., = 0.25 and Re. = 3.55 x 106.
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FIGURE 7.7: Same as Fig. 7.4, but for M., = 0.25 and Re. = 3.55 x 10°.
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FIGURE 7.8: Same as Fig. 7.5, but for M., = 0.25 and Re. = 3.55 x 10°.

Table 7.3 shows the linear expressions and the relative errors for the lift-curve slope, revealing
an improvement of the slope prediction close to 100% when ASBM is fully active (relative to

the SST a = 0 computation).

’ Case ‘ LCS ‘ o1 ‘ ZLA ‘ oo ‘
Exp 0.1185 - -1.573 -

SST 0.1072 | 9.50 | -2.170 | 37.95
ASBM | 0.1117 | 5.74 | -2.119 | 34.71

TABLE 7.3: Linear expressions and zero-lift angle based on least-squares methods, accom-
panying with their relative errors.

Fig 7.9 displaying again the superior accurancy of ASBM closure. In Fig. 7.10, we find the

same trends for Cp as in the former cases.

7.3.3.1 Pressure tab interpolation.

To further establish the validity of the comparison between CFD and experiments, we adopt
an additional integration method via the Trapezium rule, in accordance to McCroskey et
al. [84]. At the trailing edge point, an interpolation of values between the nearest points to
the edge from the upper and lower surface is utilized. The computational data were linearly
interpolated between computational node locations at the experimental tap locations.Figs.

7.11 graphically represents the small deviations between the two approaches.
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FIGURE 7.9: Same as Fig. 7.3, but for M., = 0.184 and Re. = 2.6 x 10°.
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FIGURE 7.10: Same as Fig. 7.4, but for M., = 0.184 and Re. = 2.6 x 106.
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FIGURE 7.11: Absolute relative errors when integrating with CFD nodes and the experimen-
tal pressure tabs using the Menter x-w SST as a carrier model at M., = 0.25, Re, = 3.55x106.

7.3.4 VRT7 computations without tab.

As mentioned above, convergence issues made necessary the use of zonal decomposition in
order to achieve fully converged ASBM solutions at high angles of attack. During our com-
putations, we concluded that the main source of the instabilities is located in the vicinity of
the trailing edge tab. Based on pure SST runs with and without the trailing edge tab, we
have conlcuded that at higher angles of attack the effect of the tab presence on the computed
integral coefficients (Cr, Cp, and C)y) is less than 2%. Hence, we proceeded to obtain full
ASBM solutions over the entire domain (i.e. without zonal separation). The geometry mod-
ifications were applied to the airfoil’s tail region for which the x-coordinate ranges between
0.98c and 1.00c. Additional points were added as needed to ensure a smooth geometry in the
vicinity of the trailing edge. The case we have considered is again for the flow over the VR7
airfoil at freestream Mach Number of M, = 0.25 and chord length based Re. = 3.55 x 10°
at fixed angles of attack. Again, the SST closure is chosen as a carrier model and the angle

of attack ranges from 0° to 15°.

Fig.7.13 depicts SST and ASBM predictions for the distribution of the pressure coefficient
along the cross section of the airfoil. No experimental data is available for this angle, however

we clearly see smooth profiles obtained for both closures.
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T

FIGURE 7.12: Details of the VR7 mesh design focused in the vicinity of the airfoil trailing
edge.
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FIGURE 7.13: VR7 Computations at M.=0.25, at Re. = 3.55 x 106. Model predictions for
the pressure coefficient at an angle of attack of a = 15°.

166



2D simulations using ASBM-SST hybrid model.

7.4 Static Runs for NACA-0015 airfoil.

Next, we examined the standard case of a turbulent flow over a symmetric NACA type
airfoil with camber thickness 15% its chord length, denoted as NACA-0015. This scenario is
interesting because NACA-0015 airfoil is thicker than the VR-7, which has camber thickness
12% its chord length instead. Firstly we conducted static runs for fixed angles from 0° up
to 20°, at a constant freestream mach number of My, = 0.062 and two different freestream
Reynolds numbers, Re. = 6.55 x 10°, 1.27 x 10°, where Re, is based on the chord length ¢

and freestream mean velocity Uy .

7.4.1 M,=0.062 and Re, = 6.55 x 10°, no trip.

First, we considered the unsteady case at freestream Mach Number of M., = 0.062 and
Re. = 6.55 x 10° for a series of fixed angles of attack. The SST closure was chosen as a car-
rier model and the angle of attack was varied from 0° to 20°. The converged steady predictions
of the model for the current and following cases are compared with the static experimental

data of Eastman [85]. Based on the above Mach number, the value of the Prandtl-Glauert

factor is 8 = /1 — M2 = 0.9981.

Initially, we explored the effect of the far-field boundary placement (domain size) on the
integrated quantities. For this purpose, we computed the same baseline case (My,=0.062 and
Re. = 6.55 x 10°) using three different domains with a far-field extent of 25¢c, 35¢ and 55¢
respectively, and in all cases the same number (297x97) of grid nodes. As shown in Fig. 7.14a,
the lift coefficient predictions are insensitive to the different domain sizes (0.44% maximum
relative error), whereas as shown in Fig. 7.14b, the predictions for the drag coefficient display
a stronger dependency with relative errors around 4.5%. However, as discussed in detail in
previous reports on VR-7 computations, the drag coefficient predictions already suffer from
significant uncertainties emerging from a number of effects, such as geometrical, blocking,
and even the method used to numerical integration yielding the integral force coefficients
[86]. Consequently, we believe that the uncertainty associated with the far field extent is of
the same order as the uncertainties already present in the Cp values. Based on the above,

we have chosen 25c as the baseline far field extent in order to accelerate the simulations.

Next, we performed grid-convergence analysis in order to determine the proper grid resolution.
We have used three different grids at a fixed domain extent of 25¢, for which different trailing
edge streamwise spacings Axrg were adopted. The connection between the total number of

cells adjacent to the airfoil surface N, and the streamwise trailing edge spacing is given by
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FIGURE 7.14: Static computations on a 297 x 97 baseline grid using the SST closure for the
NACA 0015 airfoil with M., = 0.062 and Re, = 6.55 x 10° and at o = 11°. Effect of far-field
extent on: (a) Lift coefficient Cp; (b) Drag coefficient Cp.

Ng+1°
Fig. 7.15 shows the predictions of the SST closure for the lift coefficient Cf, as a function of
1/N 172 where N is the total number of grid cells. The discrepancy between the two most
resolved grids is negligible (around 1 %), suggesting that the choice 297 x 97 provides an
adequately resolved grid and this has been adopted for all subsequent computations for this
case. Based on the findings of previous workers who dealt a similar case, such as Consul[87],

we consider the results to be sufficiently converged, when the change in Cf is smaller than
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FIGURE 7.15: Static computations on a 25c farfield extent baseline grid using the SST
closure for the NACA0015 airfoil with M., = 0.062 and Re, = 6.55 x 10° at a = 11°. Effect
of grid resolution on the lift coefficient Cp.

about 1% and the change in C'p smaller than 5%, as .
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FIGURE 7.16: Static computations for the lift coefficient C', as a function of angle of attack

using the ASBM-SST (dashed line) and SST (solid line) closures with M., = 0.062 and

Re. = 6.55 x 10°. Comparison is made to the experiments of Eastman et al. (1939), shown
as symbols.

Fig. 7.16 shows model and experimental predictions for the lift coefficient. In the linear

regime, ASBM tends to increase the lift coefficient values towards the experimental values,

whereas a delay of the onset of stall to a higher angle of attack (which again is in better

agreement with the experiments) yields improved results relative to the SST predictions.

Fig. 7.17 shows the corresponding predictions for lift coefficient C}, as a function of drag
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coefficient C'p. Again ASBM exhibits a small but noteworthy improvement, especially in the
linear regime. At high angles, we see the occurrence of a short drop in lift for both closures.
This can be explained by the sudden spread of the recirculation bubble, which also leads to
a sharp increase in drag, whilst its growth rate and its effect on lift depends on the Reynolds

number, as discussed in Sharpe [88].
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FIGURE 7.17: Static computations for the lift coefficient C';, as a function of the drag

coefficient C'p using the ASBM-SST (dashed line) and SST (solid line) closures with My, =

0.062 and Re. = 6.55 x 10°. Comparison is made to the experiments of Eastman et al.
(1939), shown as symbols.

7.4.2 M,=0.062 and Re, = 1.27 x 10%, no trip.

In order to further assess the performance of the ASBM closure, the unsteady case at
freestream Mach Number of M, = 0.062 and Re. = 1.27 x 10% was considered. Again

the angle of attack varies from 0° to 20° and the same Prandtl-Glauert factor as before is

used (8 = 0.9981).

The methodology used for the evaluation of the results was the same as before, keeping
all model parameters unchanged during all simulations. Based on the findings from the
previous case, we adopted a fixed domain extent of 25c, without any further investigation.
Furthermore, grid-convergence analysis regarding lift coefficient predictions suggested that a
297 x 97 grid was sufficient for our purposes due to the marginal relative errors (around 0.5

% ), as shown in Fig. 7.18.
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FIGURE 7.18: Static computations on a 25c farfield extent baseline grid using the SST
closure for the NACA 0015 airfoil with M., = 0.062 and Re. = 1.27 x 10% at a = 11°. Effect
of grid resolution on the lift coefficient Cp.

Fig. 7.19 shows results for the lift coefficient C}, as a function of the angle of attack. As in
the previous case, ASBM is found to improve the C', predictions relative to the SST over the
entire range of angles of attack. The ASBM also captures more accurately the stall angle.
The moderate improvement brought about by ASBM is also evident in Fig. 7.20, where Cf,

is shown as a function of Cp.
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FIGURE 7.19: Static computations for the lift coefficient C' as a function of angle of attack
using the ASBM-SST (dashed line) and SST (solid line) closures with My, = 0.062 and

Re. = 1.27 x 10°. Comparison is made to the experiments of Eastman et al. (1939), shown
as symbols.
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FIGURE 7.20: Static computations for the lift coefficient C';, as a function of the drag

coefficient C'p using the ASBM-SST (dashed line) and SST (solid line) closures with My, =

0.062 and Re. = 1.27 x 10%. Comparison is made to the experiments of Eastman et al.
(1939), shown as symbols.

7.5 Pitching Runs for NACAO0015

Next, we examine the performance of the ASBM closure for a turbulent flow over a VR-7 ro-
torcraft airfoil undergoing pitching motions. We consider three cases at different parameters,
described in Table 7.5, whilst model predictions are compared with the experimental data
of [89]. Converged solutions for all pure SST runs were obtained after approximately 190
time steps, using a fixed time step equal to 0.03189s. At each time step, 30 Newton-Raphson

sub-iterations were imposed, a number which proved to be adequate in all cases.

7.5.1 Grid-sensitivity analysis at M.,,=0.1235 and Re, = 1.48 x 10°.

First, we conducted a grid analysis at a freestream Mach Number of M,, = 0.1235 and
Re. = 1.48 x 10 for a fixed angle of attack of a = 11° using the SST closure. The an-
gle of attack was chosen to correspond to the higher end of the pitching angles, where the
largest discrepancies during the pitching motion in both drag and lift coefficient are expected
to occur. Based on the above Mach number, the value of the Prandtl-Glauert factor is
8= m = 0.9923. We computed the same baseline case for four different meshes,
starting from the coarsest grid (197x77) and moving towards the finest mesh (397x117).
Fig. 7.21 shows the predictions of the SST closure for the lift coefficient Cf, and the pressure
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part of the drag coefficient Cp ) as a function of 1/N 1/2 wwhere N is the total number of grid
cells. The discrepancy between the three most resolved grids is negligible for both coefficients,
less than 1% and 3% for the lift and drag coefficients respectively, suggesting that the choice
237 x 97 provides an adequately resolved grid.
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FIGURE 7.21: Static computations on a 25c farfield extent baseline grid using the SST
closure for the NACA0015 airfoil with Mo, = 0.1235 and Re, = 1.48 x 10% at o = 11°. Effect
of grid resolution on (a) the lift coefficient and (b) the pressure-part of the drag coefficient.

Based on a grid-convergence analysis, we have adopted a 237x97 baseline grid with a 25¢ far-
field extent for all NACAOQ0015 pitching cases considered. The details of the various parameters
for each case are shown in Table 7.5, where k£ is the reduced frequency, w is the angular velocity

of the pitching. For all cases considered, the freestream Mach number M., equals to 0.1235.

Case | Mean (°/rad ) | Amplitude (°/rad ) | Osc.Freq (Hz) | w (rad/s) | Re (10°) k
1 0 /0.0000 5.4 /0.0942 0.488 3.06619 1.49 0.02
2 3 /0.0524 8 /0.1396 0.612 3.84531 1.48 0.026
3 4 /0.0698 8 /0.1396 0.245 1.53938 1.48 0.01

TABLE 7.4: Details regarding the various parameters used for the pitching computations as
described in Green and Giuni [89].

7.5.2 Case 1.

We first consider the case where the NACAQ015 airfoil undergoes pitching motions about the
quarter chord (c¢/4), described by

a=0.0+54sin(wt), k=0.02,
we (7.11)
k= )
2U

where Uy is the far-field air speed and t is the actual computational time. We consider

the case with Re, = 1.49 x 10°, with a mean angle of 0° and a pitch oscillation amplitude
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Aa = 5.4°. In all cases, we have run the simulation for almost 3 periods T, where T' = %’r,
allowing the airfoil to settle into a periodic state (closed loop). In order to ensure that our
results are time-converged, we have first performed a time convergence analysis using the
SST closure. Fig. 7.22 illustrates that 250 sub-iterations per time step are adequate to obtain
fully time converged solutions. We have adopted this number of sub-iterations for the ASBM

run as well (currently without any further investigation).
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FIGURE 7.22: SST predictions for the evolution of the lift coefficient Cp when 250 sub-

iterations (solid lines) and 350 sub-iterations (dashed lines) per time step are chosen for

pitching computations over NACA 0015 airfoil on a 237 x 97 baseline grid with M., = 0.1235,

Re. = 1.49 x 10° and k = 0.02. Comparison is made to experiments of Green and Giuni [89],
shown as symbols.

Fig. 7.23a shows model predictions and experimental results for the lift coefficient. The
ASBM-SST closure tends to increase the width of the pitching loop by over-predicting the
separation in C, during the upswing and downswing motions. The ASBM-SST also tends to
overpredict the level of C, relative to experiments near the positive extremum of the pitch-
ing angles and to underpredict it near the negative extremum. SST seems to provide better
agreement with the experiments relative to ASBM-SST. In the case of the drag coefficient
(fig. 7.23b), ASBM-SST provides improved predictions for pitching angles below approxi-
mately 3°, while SST predictions are closer to the experiments than ASBM-SST for angles
above 3°. Both closures miss the peak in Cp, near the positive extremum of the pitching

motion.
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FIGURE 7.23: Pitching computations for the NACA 0015 airfoil with M., = 0.1235, Re, =

1.49 x 10% and k = 0.02 for (a) the lift coefficient C, and (b) the pressure part of the drag

coefficient Cp ,, as a function of the angle of attack using ASBM-SST (dashed blue line) and

SST (solid red line) closures. Comparison is made to the experiments of Green and Giuni
[89], shown as symbols.

7.5.3 Case 2.

Next,we consider a case where the NACA 0015 airfoil undergoes pitching motions about the

quarter chord (c/4), described by

a=3.0+8.0sin(wt), k=0.026,
wce (7.12)
k= .
2Us

Fig 7.24 shows the time convergence analysis for this case, which suggests that a number of

250 sub-iterations is sufficient to obtain fully time-converged results.

Fig. 7.25a shows the comparison of the SST and ASBM-SST predictions for the lift coefficient
in this case. Again the SST captures more accurately the profile of the pitching loop over the
entire angle of attack range. As before, ASBM-SST tends to increase the separation between
the Cp, magnitudes during the upswing and downswing motions and to overpredict the mag-
nitude of C, near the positive extremum of the cycle. This increase becomes more profound
as we move towards higher angles, closer to the dynamic stall. As shown in Fig. 7.25b, the
SST predictions are also in better agreement with the experiments than the ASBM-SST pre-
dictions for the drag coefficient in the positive angle region, while ASBM-SST provides more

accurate results in the negative range.
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FIGURE 7.24: Pitching computations for the NACA 0015 airfoil on a 237 x 97 baseline grid

using the SST closure with M., = 0.1235, Re. = 1.48 x 10% and k = 0.026. Effect of number

of sub-iterations per time step on the evolution of the lift coefficient C'p: 250 sub-iterations
(solid lines) and 350 sub-iterations (dashed lines) per time step.
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FIGURE 7.25: Pitching computations for the NACA 0015 airfoil with M., = 0.1235, Re. =

1.48 x 105 and k = 0.026 for (a) the lift coefficient C, and (b) the pressure part of the drag

coefficient Cp ,, as a function of the angle of attack using ASBM-SST (dashed line) and SST

(solid line) closures. Comparison is made to the experiments of Green and Giuni [89], shown
as symbols.

7.5.4 Case 3
In the last NACAO0O015 case considered, the evolution of the angle of attack is described by
a=4.0+8.0sin(wt), k=0.01,

o e (7.13)
22U

Fig. 7.26a shows again the tendency of ASBM-SST to over-estimate the lift magnitude over

most of the angle-of-attack range and particularly in the positive extremum. In the case of
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the drag coefficient Cp , ASBM-SST again provides better estimates than SST for negative
angles. For positive angles, both closures under-predict Cp , relative to the experiments, but
during the airfoil downswing phase of the pitching motion, the under-prediction by ASBM-

SST is more pronounced.
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FIGURE 7.26: Pitching computations for the NACA 0015 airfoil with M., = 0.1235, Re. =

1.48 x 10% and k = 0.01 for (a) the lift coefficient Cy, and (b) the pressure part of the drag

coefficient Cp ,, as a function of the angle of attack using ASBM-SST (dashed line) and SST

(solid line) closures. Comparison is made to the experiments of Green and Giuni [89], shown
as symbols.

7.6 Pitching Runs for VR7

Next, we proceed to examine the performance of the ASBM-SST closure for turbulent flow
over a VRT airfoil undergoing pitching motions, for which experimental data is available[84].
In order to reduce the factors that potentially affect the numerical stability of our compu-
tations, we have chosen two cases for which the reduced frequency k is similar to the ones
adopted for the NACA cases. In contrast to the previous runs, the range of the angle of attack
extends above the stalling angle, thus strong hysteresis effects are expected, making the study
of these two cases a more interesting task. Also, we note that the maximum thickness of the
VRT airfoil is 11.4% of the chord length ¢, which is lower than the corresponding parameter
for the NACA0015 (15%).

First, we have performed unsteady computations at a fixed angle o = 11° with My, = 0.30
and Re. = 4.25 x 10 in order to ensure that our results are grid-independent. Four different
grids were considered, starting from the coarsest grid which contained 197 x 77 x 1 grid nodes
and moving towards the finest grid which contained 397 x 117 x 1 nodes. Fig. 7.27 shows SST

predictions for the integrated coefficients {Cp,Cpp} as a function of the number of nodes.
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Based on these results, we have chosen 297 x 97 x 1 as the baseline grid for the pitching

computations.

1.41 0.019
| 397x117
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o 29ma7 23797 2
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] 197 | 397x117 P07x97

1.38 ‘ T ‘ T 0.016 ‘ \ ‘ \
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(1/N)*2 (1N)*2
F1GURE 7.27: Computations on a 25c¢ farfield extent baseline grid using the SST closure for

the VRYT airfoil with My, = 0.30 and Re. = 4.25 x 10° at a = 11°. Effect of grid resolution
on (a) lift coefficient and (b) pressure-part of the drag coefficient.

Table 7.5 gives details for the parameters as they were imposed during the subsequent simu-

lations.
Case | Mean (°/rad ) | Amplitude (°/rad ) | Osc.Freq (Hz) | w (rad/s) | Re (10°) k
1 4.1 /0.07156 10 /0.1745 1.3307 8.3612 4.25 0.025
2 4.1 /0.07156 10 /0.1745 2.6614 16.722 4.25 0.050

TABLE 7.5: Details regarding the various parameters used for the pitching computations as
described in McCroskey et al [84].

7.6.1 Casel

The evolution of the angle of attack is described by

a=4.1+10.0sin(wt), k=0.025,
we (7.14)

2Us

k:

Fig. 7.28 shows SST and ASBM-SST predictions for the lift and drag coefficients. At low
angles of attack (o < 7), both closures produce similar results. As the stalling angle is
approached and the hysteresis effects become significant, SST predictions are in better agree-
ment with the experiments than the ASBM-SST ones. The ASBM-SST closure tends to shift
the cross over of the Cf, loop towards higher angles, while it under-predicts the magnitude of

the drag coefficient Cp ,, during the downwash motion.
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FIGURE 7.28: Pitching computations for the VR7 airfoil with M., = 0.30, Re. = 4.25 x 10°
and k = 0.025 for (a) the lift coefficient C1, and (b) the pressure part of the drag coefficient
Cp p, as a function of the angle of attack using ASBM-SST (dashed line) and SST (solid line)
closures. Comparison is made to the experiments of McCroskey et al.[84], shown as symbols.
7.6.2 Case 2

The angle of attack is evolved according to the following expression

a=4.1+10.0sin(wt), k=0.05,

wce (7.15)

k=

2

Fig. 7.29 shows again the tendency of the ASBM-SST closure to delay the appearance of

the crossover in the lift coefficient C';, values till more positive angles of attack and to un-

derestimate the pressure part of the drag coefficient during the downswing of the airfoil

motion. These consistent behaviour points to the need to understand better the response of

the ASBM-SST closure to hysteresis effects, since at angles far from the stalling angle, both

closures provide comparable results.
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FIGURE 7.29: Pitching computations for the VR7 airfoil with M., = 0.30, Re. = 4.25 x 10°

and k = 0.050 for (a) the lift coefficient Cr, and (b) the pressure part of the drag coefficient

Cpp, as a function of the angle of attack using ASBM-SST (dashed line) and SST (solid

line) closures. Comparison is made to the experiments of McCroskey et al. [84], shown as
symbols.

7.7 Conclusions

We have performed both static and dynamic computations for a number of different freestream
parameters. For the static cases, we have been able, for the first time, to obtain full ASBM
solutions, from 0° up to 20° for the NACA-0015 cases and from 0° up to 15° for the VR-7
cases, achieving 2-3 orders of magnitude reductions in the L2 norm of the mean and turbulent
variables. For all the static cases considered, ASBM augmented the lift coefficient magnitude
towards the experimental values. The ASBM also predicts a delay on the onset of stall onset
till higher angles of attack, which is in better agreement with the experimental results. Thus,
overall the ASBM predictions are providing better agreement with the experimental results
when compared to the results obtained with SST closure. These results have been verified to
be fully converged and free of boundary effects through a series of grid and far-field boundary

extent convergence analyses.

Regarding the dynamic cases, we have been able for the first time to to obtain full ASBM so-
lutions for all cases, achieving 2-3 orders of magnitude reductions in the L2 norm of the mean
and turbulent variables. Zonal separation was necessary only for the pitching computations
where VR-7 airfoil was used. We have performed a total of five different pitching computa-
tions, three for the symmetric NACAO0015 airfoil and two for the VR7 airfoil. Comparable
values for the freestream parameters were used in both sets of computations. In all the cases
considered, SST provided better agreement than ASBM-SST to the experimental values for
the lift coefficient, due to the tendency of ASBM to overpredict the lift coefficient magnitude.
The ASBM-SST closure decreases the drag coefficient magnitude achieving better agreement

with experimental data for negative values of the angle of attack. For positive angles of attack
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near the dynamic stall, ASBM-SST experiences more intensively the hysteresis effect com-
pared to SST, yielding a faster decrease of the drag coefficient than it should. As was done
for the static case, we ensured that these results are fully converged and free of boundary

effects through a series of grid and far-field boundary extent convergence analyses.

We are currently exploring ways to obtain full ASBM solutions without resorting to zonal-
separation for the case of pitching airfoils. We also plan to focus on understanding why the
ASBM-SST closure seems to magnify unrealistically the hysteresis effect near the positive
extremum of the pitching cycle, despite the fact that ASBM-SST was found to perform
better than SST during dynamic stall without pitching.
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Chapter 8

Conclusions.

8.1 Structure-based model for passive scalar transport.

At the conclusion of this thesis, we have managed to develope, for the first time, a structure-
based model which accounts for the statistics of a passive-scalar field. In order to achieve
that, we have derived a set of transport equations using the triple-decomposition scheme.
After performing a term by term modelling based on physical considerations, we evaluated
the model so that it matches asymptotic rates for simple decaying cases. The model is

constructed so that it is sensitive to the choice of low-wave spectrum.

The performance of the model was tested in a large number of cases, exhibiting encouraging
results. The model responds adequately in the presence of frame rotation effects for homo-
geneous shear turbulence in the presence of mean passive scalar gradient. Also, the model
provided good predictions for one irrotational case, particularly that of an Axisymmetric

Contraction for which experimental data was availiable for comparison.

Motivated by the success of the proposed structure based model for passive scalar transport,
we have set a number of objectives for the near future. Currently, a transport model for
the passive scalar dissipation rate is being developed, stemming directly from the large-scale
model equations. This modeled equation will accompany the passive scalar variance equation.
In addition, we are exploring the potential of using ASBM instead of the extended IPRM
model for the estimation of the structure tensors and their products. However, in order to
achieve closure in this case, an algebraic expression for the scalar-flux is needed, suitable
for rotating frames. Thus, we are in a process of extending the explicit scalar-flux model of

Younis as described in [56] to account for frame-rotation effects.
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Also, we work intensively towards the extension of the proposed model to stably-stratified
flows. This effort requires the inclusion of additional terms in the IPRM conditional expres-
sions for the Reynolds stress and the modeling of the buoyancy-related terms that appear in
the transport equations for the turbulent kinetic energy » and large-scale enstrophy @?. The
model parameters related to the additional terms were evaluated so that the model matches
the correct decay rates for the simple case of decaying buoyancy-generated turbulence at high

Re and Pe numbers.

The extended model is currently validated in a number of stably-stratified flows for Richardson
number ranging from zero to unity, showing very promising results. Moreover, the model is
shown to be sensitive on the relative angle between the mean velocity gradient and the mean

passive scalar gradient, for angles ranging from 0° (parallel) up to 90° (perpendicular).

8.2 Coupling of the ASBM with EVMs.

We have accumulated a significant understanding about the behaviour, strengths and weak-
nesses of ASBM for applications in aerodynamics. Our own assessment is that ASBM remains
a promising contestant for adoption in aerodynamics, but we have also identified a few im-
portant weaknesses that must be addressed if the model is to achieve its full potential. We
also believe that the experience with ASBM provides sufficient grounds for optimism with
regards to the potential of other classes of Structure-Based Models, such as the Interacting
Particle Representation Model (IPRM). These issues are analysed in greater detail below in

a discussion organized along the two main tracks of work carried out over the last four years,
namely the the ASBM-SA and ASBM-SST closures.

8.2.1 ASBM-SA hybrid model

8.2.1.1 Main Accomplishments:

e We have managed to couple, for the first time, the ASBM closure with one-equation
Eddy Viscosity Models (EVM), most notably the Spallart-Allamaras (SA) model. We
have used suitable algebraic expressions for the extraction of the turbulence scales, as
described in Rahmnan et al. [59, 81].

e Successful validation of the performance of the ASBM-SA model over a wider range of
test cases than what had been accomplished with previous couplings (e.g. with v2-f
and Menter’s k-w. ). Overall, ASBM-SA obtained good predictions for the turbulent

correlations (intensities, shear stress) for all test cases.
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e With ASBM-SA we have achieved superior numerical stability compared to previous
couplings, while also achieving good convergence rate. Additionally, the improved nu-
merical stability leads to the elimination of artificial spurious strikes occurring in the
recirculation regions of strongly separated flows (such as smooth hills) when other cou-

plings are used (such as v%-f).

8.2.1.2 Weaknesses-Limitations:

e Overestimation of the size of the recirculation region in separated flows, as already

observed in all previous ASBM couplings.

e Numerically unstable for certain 3D flows (e.g. square duct flow), a weakness which we

believe is related to the physical content of the ASBM model.

e Unrealizable shear-stress predictions at the top of smooth hills. We believe this defi-
ciency is related to the physical content of the ASBM closure. In particular, we believe
that the RDT state map needs to be revised or completely replaced with an improved

scheme.

e Use of a filtering/smoothing scheme, needed to improve the stability of the model,
significantly influences the wall-shear stress profile (e.g. on NASA hump case). The
current schemes are constructed for uniform grids, however more advanced schemes
should be developed for the cases where highly stretched grids are present, such as in
complex flows (e.g. separated flows). Currently, we believe that this deficiency is partly

responsible for the overestimation of the recirculation bubble.

8.2.2 ASBM-SST hybrid model

8.2.2.1 Main Accomplishments:

e A series of static computations for a wide range of angle of attacks and freestream
parameters were performed in order to ascertain the performance of the ASBM-SST
hybrid model, for a flow over two types of airfoils, NACA0015 and VRYT.

e In order to obtain smooth, fully converged solutions, we developed advanced filtering
schemes suitable for both 2D and 3D highly stretched grids. Currently, these schemes
are suitable for structured-grids, however efforts are focused on extending them on

unstructured grids.

e For the VR7 computations, additional stability techniques were developed, needed to

obtain converged solutions, such as zonal separation and blending methods.
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o We successfully performed, for the first time, computations for a flow over an airfoil
undergoing pitching motions. Initially we considered three different cases of pitching
computations over a NACAO0015 airfoil, for which the ranges of angle of attacks were
chosen to be below the stall angle. Neither zonal separation nor blending approach
were used. Next, two different cases of pitching computations over a VR7 airfoil were
considered, for which the same angle of attack was chosen. This time, the range of angle
of attacks included the stall angle, but computations utilised the stability techniques

mentioned above.

e For all static computations, ASBM-SST provided improved predictions for the lift and

pressure coeflicient respectively.

8.2.2.2 Weaknesses-Limitations:

e In all pitching computations, ASBM-SST showed a strong tendency to overestimate the
lift coefficient around the stall angle, yielding a faster decrease of the drag coefficient
than it should. We believe that this deficiency is somehow related to the existence of
hysteresis effects, thus further analysis of the impact these effects have on ASBM-SST

is needed.

e In the case of the VR7 computation with pitching, resorting to zonal separation remains
necessary, something we deem to be undesirable. As part of future work we will seek
ways to improve the numerical stability of the ASBM-SST closure in order overcome

the need to use of this technique.

e We believe that modifications on the fundamental formulation of the ASBM closure are
required in order to improve the ability of the closure to capture complex effects such

as the ones encountered in pitching motions.
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Appendix A

Details on the large-scale passive

scalar model.

A.1 The complete IPRM model for passive scalar transport

The evolution equation for the normal vector n; and the conditional Reynolds stress are given
by

dni

gt = —Gring + Gemngnmni , (A.l)

and

In
dR!"
dt

= — (Gl + 200 )R — (GY + 200 R + (Gl + Gty + 291, % "

(Rlzfnnkn] + Ry:nnknz) - {QClRZL - CQQRLZ((SZ] - nmj) .

Regarding the evolution of the passive scalar field, the conditional expressions for the passive

scalar variance and the scalar-flux vector are given by

d [ ®2In " "
ﬁ<2>=—@M—&ﬁW (A.3)

and
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d n n v n n v n n
QI = —RGAT — (G +200)Q)" — CQ)" + (G + G + 200, )@ mni . (A4)

where the effective gradients are given by

Cy . Cy
G% = Gij + Trikdkj s Gij = Gij + Trikdkj , (A_5)
and
Co(V4®) Cy(D?)
Ad):A’L 7qiss A'inls s A.
' + T¢<V2>r dsq J T¢<V2>r ds; , (A.6)

with C), = 2.2C, = 2.2. The turbulence and scalar time scales are given by
Cu(V?) (@?)

T = frisdsmrmia T¢ = Cv?'rijrisdsj . (A7)

The turbulent kinetic energy and scalar dissipation rates are determined by the algebraic

models

e = F.r@ + v&?, €y = Fy\d + a2, (A.8)

with the model parameters F, and Fj determined by

F.=Cex, X = 3fijdji, (A.9)
Fy =0, X% = Origds;rji, (A.10)

along with the set of scale evolutions equations of the ELSE model,

dk - -

i —(2r)1i;Sji — [Fekw + ng] , (A.11a)
o N o3

o = @fiiSii = [Caz — ¢Cz3 )" — vCp — (A.11b)
A T ) (Alle)
da _ @’ d® .Sima — [C ?C.2]aw + [C ?C 2 ]AG A.11d
o = Cary — dpSima — [Cap — 67Cgz Jaw + [Cgz — ¢°Cz JAG . (A.11d)
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All model constants are summarised in Tables 3.1 and 3.2.

A.2  Analogy between f;; and d;;

We seek to show the connection between the scalar-variance and the mean-squared-magnitude
scalar gradient with the scalar dimensionality tensor d7;. The Fourier Representation of the

dimensionality tensor is

£)3

2

Dj; = ( k23<¢¢ VdPk = / e 5(k)d’k . (A.12)

Also, the Fourier representations of ¢’ and al, are

— Z qge*ikmxm , al, = Z G~ Fmem (A.13a)
k k
)y =¢, = —ikype Fmm (A.13b)
k
= Gy = —ikwo. (A.13c)

Based on eq. (A.13) we can express (a;a}) as

(i) = 3 S UGG () e hmam ki) (A14)

where here (.) denotes ensemble averaging. Since we consider one-point statistics, we set
Ty = x),. Also, we define a new wave-number vector k” = —k’. In order for a; to be a real

variable, Gy( k') = G (k") = G;(k”). Substituting back into eq. (A.14) leads

ZZ G« G* k// > —i(km—kl,)Tm ) (A15)

k//

Next, we take into account the orthogonality condition

% e~ilhm—Ki)em gy — 5(k — K. (A.16)

188



Appendix A. Details on the large-scale passive scalar model.

Applying three dimensional spatial averaging on eq. (A.14) and using the orthogonality con-

dition gives

(dfaf) = D (Gi(k)G (k). (A.17)

We set Ak; = 2?7: and assume isotropic conditions, (L, = L, = L, = L) so that eq. (A.17)

becomes

) = Z<G‘i(k)éj(k)>(%)3Ak1Akz2Ak3. (A.18)
k

—~

Based on eq. (A.18) we define the scalar gradient co-spectrum as

Qij = (£)3<G‘i(k)é*(k)> . (A.19)

2 J

For Ak; — oo the scalar gradient spectrum is defined through the expression

Qij = Jim Qij » (A.20)
thus eq. (A.18) becomes
)y = / Oudk. (A.21)

Next we relate Qij with the scalar dimensionality tensor d;;, through the identity

Qij _ L3/ (ki®)(kj@)*\ _ L skikj o-,
We define the passive scalar-spectrum as
L 3/7 7%
By (k) = (5-)"(¢(k)o" (k) , (A.23)
at the limit L — oo, which yields the following expression
Qij(k) _ kik
j(K) _ kik; Ey(k). (A.24)

k2 k?
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Thus the scalar dimensionality tensor can be expressed as

kik; ;
ij:/ k;E k)d’k /de?’ (A.25)

A.3 Dimensional analysis

The energy and passive scalar spectra Ey(k,t) and FEy(k,t) respectively, can be expressed as
a series of Taylor coefficients. Since large scale eddies contain most of the passive scalar or

kinetic energy, the expansion is taken around k£ = 0, such as

E,.(k,t) = 2nk*(B, + Bok® + ...) ,
w (k1) (Bo ) (4.26)

Ey(k,t) = 27k*(Cy + Cok* + ...)
from which the kinetic and scalar energy fields can be deduced by three-dimensional integra-
tion in the wave-space. Near k = 0, higher order terms can be neglected. If B, = 0, only
By remains as the leading coefficient [90], whereas if By = 0 and B, # 0 [91], B, drives the

evolution of the flow. Using dimensional analysis, we find that

B, oc t2L7, (A.27a)
By oc t72L7, (A.27b)
Cy o ¢2L3, (A.27c)
Cy o ¢2L7, (A.27d)

where L is a characteristic length scale.

High Reynolds and Peclet numbers

At high Reynolds and Peclet numbers, diffusion terms do not have major impact on the
evolution of the fields, which are determined through nonlinear interactions. For {C,, B,}
leading coefficients, it can be shown to be invariants, so that the dimensional analysis results

in
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K o BAtP o (t72L5) P = L2
=k o B2/5476/5

@2 o CuBot? o« ¢2L3(t72L5)1° = ¢
=¢'2 o C,B;3/5t76/5

w2 o« BP o (Lot 2)*tP = 72
=w?2 o t72, (A.28)
a’? oc CyBotP o ¢2 L3Pt 2)P o ¢2L72,

=a? C,B't72,

=€ d—’i oc B2/5¢~11/5
dt ° ’

52
=€y X o o 00353/575*11/5.

For zero {B,,C,} and nonzero {B2,C5}, there are no longer strictly invariant quantities.
Even so, making the assumption that {Bg,C3} vary slowly compared to the energy and
scalar variance respectively, approximate expressions can be derived. The resulted similarity

expressions are shown below

K oc BStP o (t72L7)tP = L2

Lo BT/

¢ oc CoBSt? o gL (t72L7) P = ¢2
=¢'2 oc CyBy /Tt 10/7

w2 o« B§tP o (L7t72)2t8 =72
w2t 2, (A.29)

a? o CuBYtP o G2LP[LTE2)tP oc §2L72
=a'? o OBy 172,

d
=€ X d—l; o B§/7t_17/7,

112
=€g % o 0232_5/725_17/7.

In the case of decaying turbulence in presence of a mean scalar gradient (5, the leading

coefficients of the passive scalar spectrum {C,, Co} become functions of time which depend
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on the energy spectrum, defined as

C,(t) o« B2Byt?, (A.30a)
Cy(t) o< B2Byt? . (A.30Db)

For {C,, B,} leading coefficients, the dimensional analysis results in

2 o CuBot? o B2 2L ot = g2
ip o COB;3/5t_6/5 — BZBE/5t4/5 ,

72 — (A.31)
a2 o« CuBYP o B2t 2L HetP = g2 L2
=a2 o C,B; 't 2 = 2.
Respectively, when {Cy, B} are the leading coefficients, dimensional analysis yields
&7 o CuBYtP o B2 2 LT IHerP — g2
:W & 02375/715—10/7 _ 5232/7#1/7 ’
: i (A.32)

a'? o« CoBSt? o B[t 2L P = 22

=a'2 o« CuBy 12 = 2.

Low Reynolds and Peclet numbers

At low Reynolds and Peclet numbers, higher order interactions can be neglected, since the
range of scales in which cascade process takes place becomes narrow. Thus, the behavior of
the flow at large times depend solely on viscosity effects, and low wave-number spectrum.

For {B,,C,} spectra, one finds
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K o Bov®t? o (t72L°) (LA 4P = L2172
=k o B,(vt) ™32,
@2 o Coy2t? o ¢2L3 (41 L2) 0 = 72
=¢2? C’O(”yt)_?’/2 )
W2 o Bor2t? oo Lt 2(LA 1P = 72
=w? o By(vt)~%2, (A.33)
a2 o Cy™t? o ¢2L3 LA o ¢2L 72
=a'2 o C,(yt)7%/2,
=€ Ccll—/: o By(vt) ™2,
2

407 o 0, (4£)~5/2
=€y X pn oc Co(nt) ,

whereas for { By, C2} spectra we have

K o« Bov®t? o (¢ 207 (LAY P = L2172
=k o By(vt)™%?,
@2 o Cgy*t? o 2L (471 L2) 0 = ¢'2
=92 ac Co(yt) /2,
w2 o¢ Bov®t? o« LT3 (LA )P =172
—w'? o Bo(wt)" /2, (A.34)
a2 o CQ’YatB loe EL5 [LQt_l]O‘tB o EL_Q

=a'2 o« Co(yt) /2,

=€ le—lz o By(wt)" 72,

2

- t_7/2.
=€p X~ o Co(rt)
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Appendix B

Preliminary work on the
development of a Structure-based

model for MagnetoHydroDynamic
(MHD) flows.

B.1 Brief introduction

Magnetohydrodynamics deals with electrically conducting flows in the presence of magnetic
fields. Those flows can be described by solving Navier-Stokes and Maxwell equations in a
coupled manner. The reason for that is the existence in such flows of induced electric cur-
rents which lead to the appearance of an additional mechanism of energy dissipation which
is based on Joule effects, namely as Joule dissipation. This kind of flows play an important
role in the evolution of many physical phenomena, such as the evolution of planetary ac-
cretion disks, while they are present in engineering applications, such as fusion plasma and
magnetic stirring. Most popular turbulence models used in CFD codes are based on tradi-
tional models, such as x-¢, modified by adding ad-hoc terms in order to represent magnetic
effects. These terms lack of information regarding the influence that the large-scale structure
of the turbulent fields plays on the interaction between the velocity and the magnetic field.
As it is already extensively described in this work, Structure-based Models are sensitized by
construction to the turbulent structures through the use of structure-tensors, a trait that
makes them elegant for use in the development of appropriate turbulence models for MHD
applications. Preliminary work of Kassinos and Reynolds [92] in homogeneous unstrained

MHD turbulence enforces the validity of this idea, while consequent work of Kassinos et al.
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[47] served supportively by focusing on the further understanding of combined effects of frame
rotation and mean rotation. Furthermore, Kassinos et al. [93] proposed a simplification of
the coupled equations based on the quasi-linear assumption, in which the non-linear terms
involving the fluctuating magnetic field are discarded. Their results agreed very well with the
full MHD equations at least for magnetic Reynolds numbers up to R,, = 50. This conclusion
is important for modeling purposes because it suggests that simplified equations can be solved
instead of the full MhD equations for the study of MHD flows lying at the proposed range of
validity.

B.1.1  General approach and objectives

The significant influence that the large-scale have on the dynamics of the turbulent statistics
has urged us to explore the potential of constructing a complete Structure-based model for
MHD applications, capable on taking into account these effects. Motivated by the success of
the SBM for the passive scalar statistics, we put effort on extending the applicability of the
Interaction Particle Representation Model for these flows. The Quasi-Linear assumption is
adopted such that it leads to simpler modeling expressions, while some preliminary work is
shown for the development of transport equations for the scales of the magnetic field which
are also sensitized to the details of the large-scale field. In Section B.2 we introduce the
governing equations of an incompressible, electrically conductive fluid. In order to describe
the structure of the magnetic field, a set of relevant turbulence tensors is also presented.
In Section B.3 we extend the IPRM model to account for the magnetic statistics, while in
Section B.4 a set of transport equations for the structure-based magnetic scales is presented
and discussed, which in future work will be used to bring the complete SBM into a closed
form. In Section B.5 we introduce linearized expressions for the transport equations of the
magnetic scales which are suitable for modeling purposes. Preliminary results for two test
cases are shown in Section B.6, whereas conclusions and a list of future activities is given in

Section B.7.

B.2 Mathematical Background

B.2.1 Governing equations

The transport equations of an electrically conductive fluid flow is governed by the continuity,

momentum and induction equations,
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%1: + uqlig = —;P,i + bgbi g + VU qq (B.1a)

ob;

5 T Uabiaq = bqltig + nbigq (B.1b)
Ugq =0, (B.1c)
bgq =0, (B.1d)

where b; is the magnetic field expressed in alfven units (1/y/p*p), u; and p are the instanta-
neous velocity and pressure fields respectively, 7 is the magnetic diffusivity, v is the kinematic

viscosity, p is the fluid density and p* is the fluid magnetic permeability.

The flow variables can be decomposed into a mean and a fluctuating part by applying the

Reynolds decomposition

u¢=Ui+U27 bi:Bi+b;7 p=p+7". (B.2)

For the case of homogeneous turbulence, use of eq. (B.2) into egs. (B.1) leads to the following

set of governing equations for the fluctuating and mean variables

ui],q = 07 7‘1:‘1 =Y (B 3&)
byy =0, bgq=0, (B.3b)
au; _ /— / :Z I, 2y /
ﬁ + UqW; 4 UqUig + bqbi,q - (uqui),q + (bqbz) q + VU qq (B'BC)
8b; i T o ;) I3V W, /
E + uqbi,q = bquz,q + bq Ui,q (uq i):q + (bqui)ﬂ + nbi,qq’ (B'3d)
ou; _ _ D _
a—tl + Uyt g = — pl + VU gq (B.3e)
ob; - _
87; = bquth (B?)f)

B.2.2 Quasi-Linear approach.

We further simplify eqs. (B.3) by adopting the so-called Quasi-Linear (hereafter QL) ap-
proximation, in which we discard all the non-linear terms involving the fluctuating magnetic
field and keep the non-linear convective term in the fluctuating momentum equation. Thus

egs. (B.3c),(B.3d) are simplified to the following forms
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au; _ ) — T 3t p:i 1ol /

5 + U g = —uglig + bgbs  — = — (ugw;) g + v 4y (B.4a)
8b; — 1/ 7 / / — /

Bt + uqbi’q = bqui’q + bqum + nbi’qq . (B.4b)

Note that, compared to the analogous QL expression for the purely hydrodynamic case,
eq. (B.4a) has an additional term which depends solely on the magnetic field. This term is
linear, meaning it is also present in the RDT limit. Regarding eq. (B.4b), all terms are linear

in terms of the fluctuating quantities, thus it has the same form at the RDT limit.

B.2.3 One point turbulence magnetic structure tensors

In the presence of magnetic fluctuations, additional effects occur in the flow in respect to
the pure hydrodynamic case, which influence the status of the turbulent field. The orien-
tation of the magnetic fluctuations determines the joule dissipation mechanism, thus having
a significant impact on the morphology of the eddies and consequently to the velocity field.
Furthermore, the correlation between the magnetic and the velocity fluctuations is known for
playing important role to the dynamics of both fields, thus contributing to the turbulence
anisotropy. As a result, additional one-point structure tensors are introduced which can be
used to describe the contribution of the magnetic field to the anisotropy of the turbulent
structure. In order to define the new tensors we introduce the fluctuating magnetic potential

vector wf/, which is used to define the magnetic field as follows

b = el (B.5)

In analogy to the energy field, the magnetic stress tensor describes the spatial orientation
of the magnetic intensities and it is related to the magnetic potential through the following

identity,

by B b b
RY; = b, = eist€pgf WY, rl=RY/(RL). (B.6)
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The one-point structure tensors which describe solely the anisotropy of the magnetic field are
defined by,

R?j - Wb}’ T?j = R?j/Rle f?j = 7’% —0ij/3, (B.7a)
Dy :wlg/,z g,j? dij = Dij | Dy Cz%b:d?;—(gij/?). (B.7b)

The correlation between the velocity and the magnetic field is represented by the cross-helicity

tensor H;j, defined by

Hi; = b, = eistejpg) Wy hij = Hij/\|RqRb,  hij=hij —6;5/3,  (B.8)

where 1/ is the fluctuating stream function vector. Note that the cross-helicity tensor H;; is
not normalized by its trace Hyy. This happens because it might become ill-defined in cases
where its trace takes zero or negative values. Since we consider homogeneous turbulence, it

is useful to express these tensors as integrals in Fourier space,

b _ m 3

R = /Eij(k)d k, (B.9a)
m klk m 3
pr = / - ()i (B.9b)
Hy = / Xi;(k)d’k, (B.9¢)

where EJ} ~ (ZA)JA);> is the magnetic energy spectrum and X;; ~ <I§,ﬁ;> is the cross-helicity

spectrum. Note that the tensor trace Dy is identical to the magnetic variance w

B.2.4 Averaged equations
Starting from the quasi-linear expressions of eq. (B.4), a set of transport equations for the

fluctuating statistics is derived. Firstly, the evolution of the Reynolds stress components is

given by
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du;u; — —
7 = —U,L»’U,q’u,j’q — ujuqqu 21/U,L quj q —U ’U,q’U,J q UJ'U/q'U/ i,q
Langrangian term production due to viscous dissipation higher-order
mean velocity field related term re-distribution term

: ) (B.10)
f;u;pfj — ;u;pfz +Bq <uzb; gt ujbqu) .

pressure-strain rate Joule dissipation term
re-distribution term

The additional term compared to hydrodynamic case that appears in eq. (B.10) contains the
mean magnetic field and is called Joule-dissipation term, because it is a sink term related to
Joule energy losses. Note that Fourier analysis shows that this term acts evenly in all scales,
thus it can not be neglected at high Reynolds number flows. The time history of the statistics

of the magnetic fluctuations is found by the following equation

@ = —b, (V. +ub b’b’u +bbu —onb. b,
dt o q\ "i"jq J g 3.4 ©4q M%iq%.q > (B.ll)

magnetic dissipation

Langrangian term
grang related term

production due to production due to
mean magnetic field mean stretching

where the magnetic tensor @ is the analogous for the magnetic fields to what the Reynolds
stress tensor is for the energy field. In contrast to the Reynolds stress equation, the mean
magnetic field acts now as a source term, accompanied with another production mechanism
due to mean stretching and a dissipation mechanism due to magnetic diffusivity. This expres-
sion is elegant for modeling purposes due to its simplicity, since it stems from the linearized
expression of eq. (B.4b). Additionally, the transport equation for the cross-helicity tensor

b;u; is needed to be considered for modeling purposes, which at the QL limit becomes

d(b;u;) Yl b 1 b V()
dt = —Qulje VO U5 q4q - —0;D 5 - i(uquj),q
—_——— ~—— 4 —_———
Langrangian term production due to viscous dissipation M i higher-order
mean velocity field related term pressure-magnetic re-distribution term
re-distribution term
o 7 o WAV
+ b g, + beuiu; , + by Ui g + nu3b; 40
—— —
Joule dissipation production due to production due to magnetic diffusive
related term mean magnetic field mean velocity field related term

(B.12)
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B.3 An extended Interaction Particle Representation Model

for magnetic field transport

We seek to further extent this model to account for magnetic effects. We start by introducing
an additional particle property, the magnetic vector B, which is the particle representation
of the Fourier mode of the magnetic fluctuating field. Based on the exact expression (B.4b)

the evolution of this property is a linear expression and can be given by

dB;
dt

= —BViNg + GigBy — Gi‘)qvq ) (B.13)
where the dissipation term is modeled in terms of the magnetic effective gradient ng which

is defined as

Ghy= MR o), (B.14)
where C), is set to be equal to unity. The reason why we have used the concept of effective
gradients stems from the standard view of energy transfer through a cascade mechanism,
which assumes that at sufficiently high Reynolds number the dissipation of energy takes place
mostly in the small scales, with a rate that is determined by the rate of energy transfer from
the large-scale eddies to the smaller ones. In that sense, this term represents the non-linear
turbulence interactions between large-scale structures and the smaller ones. More arguments
that will justify the specific form of this term are given in the section regarding the magnetic
scales, in which an alternative expression for the magnetic dissipation is given. Note that the
same idea was successfully adopted for the development of a structure-based model for the

passive-scalar model. The magnetic time-scale 7, is defined by

BZ
7o = Cy < >T7l;)q'rqi , (B.15)
€b
which leads the following ratio between the turbulence and the magnetic time scale

T <V2>€b riqdqsrsi

— = . B.16
Th <B2>6 qu'f‘qi ( )

The conditional expressions for the one-point tensors are given by
Bl' = (B:Bjln),  D{" = (Bunjln),  H =(B;Vjn). (B.17)
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The conditional evolution equations for the magnetic properties are

aB"
5= = ByNG(H; + Hy) + (GigByj + GoByy) — (G Hyy + G Hy) . (BAS)
and
dH"
i = (G 2+ (Gl G+ 20, ) Hn - Gt

(B.19)

B kg In b pln In
+ By Ny <Bz'j - Rij> = GigRy; + GigHy;
Based on our experience, we have chosen to modify the expression for the conditional magnetic

dissipation

Cy
Gy (BjVyln) = Tq2<BqW><Bqu|n> : (B.20)

We adopt instead the following approximation

C’U n
(BVi)(B;jVyln) ~ —%(B;B,)R

qi >’

Cy
)

B.21
Tvq qu2 ( )

because this form is known to be more stable numerically, and it is successfully used to model
the diffusive term in the structure-based model for the passive-scalar transport. Substituting
back into eq. (B.18) yields

[n
dB!"
dt

= —ByNy(H[! + H?) + (GBI + GjyBIt) — (AR + A;RIY), (B.22)

where the effective gradient is expressed as

Cy
=3

AH
Y g

(BiB;j) . (B.23)

Lastly, the transport for the conditional Reynolds stress tensor with the inclusion of the joule

term becomes
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|n
dR!"
dt

- <G3}k + 29516) RLTZL - (Gfk + 2Q{k>R|,$ + (Gl + G + QQim] X

<R£lnknj + R'ﬁnnkni> + BN, (Hj + H]|”> - {2011%5? — C2RI" <5ij - nnjﬂ .

(B.24)

B.4 A set of structure-based scales for the magnetic field

In this section, we have chosen the magnetic variance and the magnetic enstrophy as the
eligible scales for the magnetic field, and we derive a set of transport equations which can
be used in the future for the development of a two-equation structure-based model sensitized
to large-scale anisotropies. Applying the triple decomposition method to eq. (B.4) leads to a

set of transport equation for each contributor to the instantaneous magnetic field, which are

Mean magnetic squared magnitude:

o(bbi/2) . T e —
= _ - ~ 7" ~ 7
——— tUg(bibi/2) g = bibglig  —big| bell; + <bf{ui> + biquqgbi + bi,q<u/q/bi>
ot —— —_——  ——
. production by transfer to transfer t
mean Langrangian self-stretching production by large-scales s&%?lb—segalgs

ncrease cross-scale stretching

— Mbighig +[Ei(l;qﬂi—ﬂqbi)+51(<bg’u;’>—<ug’bé’>)+n(5i5i/2),q :
——

)
dissipation from
mean spatial flux
(B.25)
Large-Scale magnetic variance:
iz — S
ot + uq(bibi/Q),q = —bitugbiq +  bibgliig  —(bglibig — Ugbibig | —Mbigbig
—— ~—— ——
L . transfer from production by dissipation by
mean uangranglan mean mean stretching production by large-scale
ncrease self-stretching
Fbgbitis g — (W) )by g+ (ub])b;
q-t=,q < q 7,> 1,9 < q z> 2,9 (B26)
production by transfer to
cross-scale stretching small-scales

+ <5il~)qﬂi + 51<b’q’u;’> - Biaqgi — Bl<ugb;’> + 7’](6151/2)) s

g

spatial flux
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Small-Scale magnetic variance:

<b//b///2>

= (BRI 10 1\ T v TN — (W'Y — .
ot Uq <bz bz /2> <b >b <b b >ul q <bq A bz q> < qbz bz q> <uq bz >bqu
A/—’ A,_/ ——
: transfer from production by production by transfer from
meanir%jrr;iginglan mean mean stretching self-stretching large-scales
Ty — 7 AN NN ~ I NG

+b <bz zq> b < zbz q> u1<bqbz q> +uq<bz bz q> 77<bz qbz q>

———

production by dissipation by

cross-scale stretching small-scales

+ b (bl + @ b0y — g (b0 — (b7 ug) + (B70ul) + (b8} /2))

spatial flux

(B.27)

Comparison between eqs. (B.26), (B.27) suggests that magnetic variance is transfered from
large-scales towards small scales in a similar fashion as occurs in both the analogous energy
and passive scalar cases. This picture is consistent with Richardson’s idea about cascade
mechanism, a picture which will be used later on in order to re-express the magnetic dissipa-

tion term in an alternative form.

Applying the operator espia%p in eq. (B.3) yields the analogous expressions for the magnetic
enstrophy vector hs. Below we summarize the transport equations for the mean and the

large-scale contributors.

Mean magnetic enstrophy:

hshs/2 _ B
w + ﬂq(hshs/2)7q = 7ﬂq7mbn qbn m + bq mun qb b h a}

5,9
— (Bq(:)s — quilé)h <<b// // _ //h// ) 77h 7q

+ i’q,mﬂn,q — bg,nlim,g = Tgmbn,g + ﬂq,ni’m,q} bn,m (B.28)

o (R — )+ 1T — ) + n(ﬁsﬁs/m}

q
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Large-Scale magnetic enstrophy:

+ ﬂq(ﬁsﬁs/Q),q = _Bn,qgnmaq,p + Bqﬂngiﬂnai,q + (aqmgn,i - aq,mgi,M) th

+ (an,qgn’p - 7j‘mqi’pﬂn> Bq,p - Bsﬁqhs,q + Eqﬁsws qt hsa)s,qi)q - nﬁs,qﬁs,q

s

_@@+@p@_@w%mﬂ+Fﬂ@fm¢g+m@%y4%w»_%m@+m@mmm

g

+ (BQ:manaq - Bq,nam,q) - (aq,mgmq - agfﬂi)m,q)} En,m

ity — ) — (b — <ug,nb;'n,q>>] b

(B.29)

As clearly shown from egs. (B.28), (B.29), the derived expressions include a large number of
complex terms, making further analysis of them a difficult task to perform. This is done at
the next sub-section, in which the Quasi-Linear approach is adopted, which leads to simplified

equations.

The magnetic field also contributes to the evolution of the enstrophy field w, since additional
terms depending solely to the magnetic field occur in its transport equation. The evolution

equation for the instantaneous vorticity vector is derived by applying the operator €4, —82 to
P
eq. (B.4),

Ouws

ot + Uqws,qg = Wqlls,g + Vws,qq + bghs,q — bsghg - (B.30)

Applying to eq. (B.30) the triple decomposition scheme yields the following transport equa-
tions for the contributors of the enstrophy field,

Mean enstrophy:

_5_32 — 77 77 77 77 — —
mﬂ;/).”+%wa%waGwsbmo%ﬂQ%w><ww0%ﬂ

production by production by
self-stretching cross-scale stretching (B 31)

+F{@@&%)+@O%w><ww0}
q

diffusive flux
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Large-scale enstrophy:

a0e)2 — L = = _= —
% — e By g — by g@shg + T gbylis — hgbs gDy — @4 gghts — s g (IR
- - (B.32)
+ @y gbshg + D0 g IR + | byGoshs + Qs (BIRLY — @ybshy — Gos (WU
»q
Small-scale enstrophy:
", 9 _ _ B _ — _
O(ws'es/2)) 8";8/ D B TR — b TR 4 ooy ) — g 07 o) — gl )+ Tong ()
— (bgwll W) + b (Wl it + ha(wll b) + (DYl i)
+ \bg{wl ) + (WIRIDY) = bo(wihly) = hylwlibl) — (WlbIRY)
»q
(B.33)

B.5 Linearized equations

As mentioned above, the derived expressions include long and complicated terms, making
them not elegant for modeling purposes. Instead, we choose as a starting point for the
modeling process the corresponding expressions for the case of homogeneous turbulence at
the QL limit. At this limit, the set of transport equations for the fluctuating statistics

simplifies as follow:

o(ulul /2 - ou', o
T | by 2) = By b~ vt 0%
T/ ZI; .f] (B34)
" Total dissipation
5j+€v

O(WsWs/2) =~ T NE . A e =
TN — IRYAYNTES SN Ty ed . SRIN LT
B + g (Wsws/2) g = H{Ujw )i+ @ity + Wity + o oiwiug )
t N———— N~—— ~—— N——
transfer to production by production by production by
small scales mean stretching  self stretching  cross-scale stretching

—VW; Wi j +bewshs g — Wsgbghs

dissipation by exchange with
large scales magnetic enstrophy

(B.35)

205



Appendix B. Preliminary work on the development of a Structure-based model for MHD
flows.

a(bjb}/2) 2) .
I/ Vi N VARV
o g (VV;]2) 4 bbzquﬁbbulq b b, B
—_— (B.36)
Total production €p
Pi+P,
O(hshs/2) | 5= = =
ot + tg(hshs/2) g = —bngbnpliqp + bgmbimiiq —Nhsqhsg
production by dissipative term
mean stretching (B 37)
" ANAYA
—Gshs gby + Ds.qbalts —hs g(WIB) + (IR Vg .
exchange with transfer to small ~ transfer to
large scale enstrophy scale enstrophy small scales

Note that the second term of the RHS of eq. (B.34) is related to the joule effects and acts as a
sink term, while this term is also present in the evolution equation for the magnetic variance
(B.36) in which it acts as a source term. The latter statement suggests the existence of an
energy exchange mechanism which leads to a transfer of energy from the turbulent energy
field to the magnetic variance field. Note also that, by comparing the enstrophy equations,
we see the presence of an exchange mechanism in all scales. This observation is important

since it further reduces the terms that we need to model.

B.5.1 Alternative expression for magnetic dissipation

Decomposing the magnetic dissipative term in eq. (B.36) into a large and a small part leads

to the following alternative expression for the time evolution of the magnetic variance field,

oY, /2 2
ot

g (O] /2) 4 = —babl ) + VL bis g — | (b7 BT ) + nbigbig | - (B.38)

2,9 1 1,9 1,9

According to Richardson idea [51], the small scales adapt quickly to the changes that emerge
to the large-scale structures. Consequently, these changes determine the rate at which the
smallest scales dissipate magnetic energy, similarly to the energy and passive scalar fields.
Thus, we assume that the rate at which magnetic variance is dissipated equals the rate at

which magnetic variance is transfered through the cascade mechanism, such as

(b )bi g (B.39)

1 WL

%,9 " %,q
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Substitution of eq. (B.39) back into the dissipation term of eq. (B.40) yields

YD)
2
8() b / (blb//2) — _b b/ U + b/ b/uz,q eba (B40)

1,91

where the magnetic dissipation ¢, is alternatively expressed as

_ v
€ = < b; >b ig + 775 ,qb g (B.41)
%,_/ ———
transfer from dissipation by
large to small large scales

The first term refers to the transfer of magnetic variance through the cascade mechanism
and involves higher-order turbulence interactions. This alternative form is used to derive the
modeled expression for the dissipation term in the Particle Representation Space based on
the effective gradients concept (B.14). The second term refers to the dissipation of magnetic

variance by the large-scales.

B.6 Preliminary results

Even though the structured-based model is incomplete and no computations can be per-
formed, some preliminary results were obtained after approaching the Joule term that is

present in the conditional evolution equation for the Reynolds stress tensor (B.24) as

ByNy(H)? + HI!) ~ —2\/ B,N,B,N,R!" (B.42)

This form is valid at the limit of very low R,,, where the joule time scale is much smaller
than the turbulence time scale. Thus, the magnetic field adapts rapidly to the changes of the
velocity field, reaching the so-called quasi-static state. Expression (B.42) has the advantage
that it brings eq. (B.24) into a closed form without the need to solve the transport equations
for the conditional cross-helicity tensor HZ| and magnetic tensor B " The turbulence scales

are provided by a k-¢ model with the addition of an ad-hoc magnetlc term, given by

d C, C BB
d—;:— 6—|—Cupq7‘qp—|—0\/m - = qs €, (B43)

where 7,,, is the Joule time scale, §2; is the mean vorticity vector and the constants are chosen

to be
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C,=11/30, C,=30, C,=001, C,=29. (B.44)

We consider the case of homogeneous shear in a rotating frame at high Reynolds number for
which DNS data is availiable[47]. A spanwise mean magnetic field and a transverse mean

velocity gradient are imposed. The configuration of the mean flow is given by

uij = S0indja, af =0/s, B; = Bdis . (B.45)

In the presence of frame-rotation, an important parameter is the ratio of the frame rotation

rate {0y to the mean shear rate S, given by

np=g (B.46)

where the frame-rotation rate is related to the frame-rotation tensor through the identity

Q= —0f,, (B.A7)
and the initial conditions are determined by the shear parameter S*, defined as

S* = 552 . (B.48)
Figure B.1 shows IPRM predictions for the time evolution of the turbulent kinetic energy at
Sq2/e, = 3.58 and frame rotation rate ny = 0.5 for two different magnetic Reynolds numbers,
R, =1 and R,, = 50. This frame rotation rate is of particular interest since it corresponds
to the most unstable hydrodynamic case. For the low R,, case, we observe that IPRM
predictions are in good agreement with the DNS results except at large times, as expected
due to the choice of eq. (B.42). For the high R,, case, IPRM is not capable of producing
good matching with the DNS data, partly due to the fact that the quasi-static limit is not
valid anymore. Even so, IPRM correctly predicts that the kinetic energy should increased at

large times.
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FIGURE B.1: IPRM model predictions ( lines ) for the time evolution of the turbulent

kinetic energy. Comparison is made with DNS results ( symbols ) of Kassinos et al.[47] for

homogeneous shear turbulence with transverse mean scalar-gradient at Sq2/e, = 3.58 and

frame rotation rate ny = 0.5. Two different magnetic Reynolds numbers are shown: (a)
(O,—-—) R, =1.0; (O, ) Ry, = 50.0.

B.7 Conclusions

The initial steps for the development of an extended IPRM model are presented which takes
into account the presence of a magnetic field in a turbulent field. Additional transport
equations for the evaluation of the magnetic scales are derived and discussed using the triple
decomposition scheme. We propose the magnetic variance and the magnetic enstrophy as
the proper scales to characterize the fluctuating magnetic field. These equations are strongly
coupled to the corresponding scales for the velocity field, a trait that needs to be taken into
account during the modeling process. An alternative expression for the magnetic dissipation is
proposed based on the cascade mechanism which will be used to provide a modeled expression
sensitized to the turbulence structure tensors. Further work is needed in order to reach a

complete structure-based model, which needs to fulfill the following tasks:

e Obtain the asymptotic decay rates for the magnetic variance and the magnetic enstrophy
in the limit of both very high and very low Reynolds numbers in order to evaluate the

model parameters which appear in the magnetic scales.

e Model the additional magnetic terms which occur in the evolution equations for the

turbulence scales through simple cases.

e Perform DNS computations for homogeneous shearless and shear turbulent flows in the

presence of uniform external magnetic field for validation purposes.
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Details on the extended stochastic

models using effective gradients.

C.1 Model 1l

C.1.1 Derivation of the transport equation for eddy-axis tensor a;;.

The non-linear effects are incorporated into the differential of the eddy-axis vector through

the effective gradients as follow

dai = G?kakdt — stakasaidt>
= dai
dt

= Gja, — Gigaiasa; .

The differential of the velocity magnitude V = (V;V;,)'/? is given by

1

dv = d([V;Vi]'/?) = %(Wi)*/zd(wm = 5d(ViVi).

Expanding the expression for the differential of d(V;V;) yields,

1 1
ﬁd(%%) =97

210

1
(Vi +dVi)(V; + dV;) — ViVi] = W[ﬂ/%d% + dV;dVi] .

(C.1a)

(C.1b)

(C.2)

(C.3)



Appendix C. Details on the extended stochastic models using effective gradients.

Substituting eq. (C.3) in eq. (C.2) and using eq. (2.72) for the velocity differential in the

absence of frame rotation gives,

1
AV =5 [2Vi(~Gl Vet + PNidt = C1Vidt = CoV €ipgdWyn,)]
1
+ W (—G;}kadt + PN;dt — C1V;dt — CQVEipqupnq)(—G;]q‘/th + PN;dt (04)

— C1Vidt — CoVejrsdWinyg) | .

Keeping terms of order O(dt) one finds

1

AV =5 2GR ViVidt + 2P NiVi di — 201Vt + CFV expgeiradWypdWyngn,|
Zero
: i 2 212 (C.5)
=5y 2GR ViVidt — 2C1V2dt 4 C3VE (3040 — Bpabigr) AWy dWingn,|
1
= AV =5 [22GViVidt = 201V 2dt + C3VA (AW dWynsny — dWsdWongn,)] .

Combining egs. (C.1), (C.5) yields an expression for the differential of the vector
Ai = VCLZ‘:

1
= V[G?kakdt - Gisakasaidt] + a; [2‘/[—2qu%‘/th — 201V2dt

+ C3V2(dW,dWynsng — dWdeqnqns)]}
= G4 (Vay)dt — G} aras(Vas)dt — Ghvpvg(Vai)dt — Cy(Vas)dt  (C-6)
+ Cf(vai)[dwpdwp — dWdW,ngny]

= dA; = G Ardt — G aras Aidt — szvkquidt — C1A;dt

2
+ %Ai[dede — dWsdWyngn,| .

The dV.da; has terms of higher order than O(dt), thus it does not contribute to dA;. In order
to evaluate d(A;A;) we use the following identity
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Again, we retain terms up to O(dt), thus we neglect dA;dA;. Substituting eq. (C.6) in
eq. (C.7) yields,

d(AlA]) = G?kAkAjdt + G;zkAkAldt — QGzSakasAiAjdt — QGZkvk’L)inAjdt

(C.8)
— 201 AjAjdt + C3 A A [dW,dW,, — dWsdWyngn,] .
A useful identity is
<AZA]deCqu> ~ <AZA]><dequ> = Aijdt(qu . (09)
Ensemble averaging eq. (C.8) and use of eq. (C.9) yields,
d(AZ]) = G?kAk:jdt + G?kA]mdt - 2st<akasAiAj>dt - QGZk <U]€’UinAj>dt (C 10)
— 20 Ayjdt + C3Aij[6,p — nsms)dt . '
Dividing eq. (C.10) by dt yields the transport equation for A;;
dAZ j a a a a v
where ik = Wif’“m is a fully symmetric tensor and the model parameters C, Cy are
chosen to be
2 8.5 s s sO)Ss s
Ci=0C5= 79 fpgnpng, 7 =/, QF = €ipgrgrdip - (C.12)

A very good model for Z7:

the expressions from eq. (C.12) in eq. (C.11) yields,

has already been constructed by Kassinos et al. [2]. Substituting
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dA;;
dt

= G Ak + G Ak — 2G.q° Srs — 2GU (Vkvg A Aj) . (C.13)

Comparing eq. (C.13) with the analogous RDT equation as given in [2], we see that they are
identical if instead of G‘;]?” we use Gjj.
Now, we seek to derive the transport equation for the normalized eddy-axis tensor

ajj = j,i . We start from the following equation

dayj _d Ay, Ay Ay Ay _ Ay Ak

- = — — = @R C.14
dt dt(Akk A Ap Ay @ g (C14)
The transport equation of Ay is found as follow
dAw a a a v
dtw = 2kaAkw - 2Gks wwks ~ 2qu<V2 QO Ukrvq>
1
(C.15)

= 2GypAkw — 2GAgs — 2GRy = —2G ) Ry
v v

C C .
= _2(qu + qu + Trqsdsk)qu = _Q(qu + ?qudsk)qu = _2qu‘qu7

where the term involving the mean rotation tensor is zero (symmetric-antisymmetric product)

and S’ij is an effective strain rate tensor, defined by

R v

C
qu = qu + Trqsdsk . (C.16)

Notice that qu is not a symmetric tensor. Substituting eq. (C.16) in eq. (C.15) yields,

v

da: G A
%ij = G?kakj + G?kaki - QGzSZq - 2q7q2k<vkquiAj> + 2aiqukrkq . (017)

dt

ijks

Now we express the fourth and the fifth term of eq. (C.17) in terms of a;; and the remaining
structure parameters. For simplicity we deal with each term separately. We substitute the

algebraic constitutive equation for the Reynolds stress into the fifth term to obtain
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20, SqkTrq = 2aij9qk[;)(5kq — Gkq) + Parq +

B €ksyQyq T €qsyyk)]

2 Q (
R . Q. -
= (1= 0)Sar(0kq — arg)aij + 20Sgrarqaij + - Sqklersyyq + €qsyayr]ai;

= a;[20Sgkarg + (1 — ¢)Sqq — (1 — #)Sgrarg] + %[queksyayq + Sqk€qsyayk)ai; -

(C.18)
Substituting the expression for S’Z-j into eq. (C.18) yields,
. Cv Cv Q
2aijSqkTrg = ij[(3¢ — 1)(Sgk + ——Tquwduwk)akg + (1 = ¢)——rqudug] + 27 > Sk €hsy yqaij
Q. C”
+7 = Q“ (qudsk)[eksyayq + €gsyayk] + (1 — ¢)Sgqaij
Q v
= ij(3¢ — 1)Sqrarq + 275 > Sqk€hsyyqQij + aij(3¢ — 1)— — Tqutwnkiq]
Q. C” cv
+v= Q (TquSk)[eksyayq + Eqsyayk] + (1 - ¢)7Tq3d8qa’ij + (1 - Qb)sqqaij .
(C.19)

Next, we deal with the fourth term of eq. (C.17). We use the conditioned expression for the

Reynolds stress

a o (1= ¢ - 5 Q
(ViVgla)aia; = Raniaj = V2[( 5 ?) (Okg — araq) + paraq + 2 q > (ekstaraq + €gstarar))a;a;
(C.20)

where the symbol |a) denotes particle properties averaged over a constant eddy-axis vector
a;.

Substituting eq. (C.20) in the fourth term yields,

2GY, 2GY, Go. V21— )
- T;(UkquiAj> = _qu<quaia]> = -2 = ( 5 (Okq — arag)aia;)
Gak 77 Gow V2570
- 2q—q2k(V2gbakaqaiaj> — 2q—q2k( 27 Qs (€xstatag + €gstarar)a;a;)
C.21
sz (72 1 2GZ 2 ( )
= _qT<V (1 — ¢)[kqaia; — axaqaiaj]) — 2 <V gi)akaqalaJ}
S k V ’yQ Q k V ’yQ
-2 qu (—— 5 0 — (€xstaraq + €gstarag)a;a;) — 2 q(; (— 7 Q — (€xstaraq + €gstarag)a;aj) .
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The last term of eq. (C.21) is zero, as shown below

2 V25 Qs V25 Q4
_?Kqu 5 0 — €pst At g Qa5 + Qg —— 50 eqstatakazaﬂ]
C.22
2 V Qg V27 Q, ( )
_?Kqu 5 0 — €kt A AqQia; — Qpg——— 5 Q eqstatakalaﬁ]
Interchanging the indices yields
2 V25 Q
=k = Q)5 nsenagaias)] = 0. (C.23)

Substituting eq. (C.23) into eq. (C.21) yields,

v

v B N 2G’U
- 2q—qk<vkquiAj> = —qqu(w(l — 9)[0rqaiaj — araqaia;]) — qq (Vdaraqaiay)

S V25 Q
-2 qqgk< 27 0 (Ekstataq + eqstatak)aza]>
Low o2 e v N2 2G;}k (2 7
- _?[quaf (1 - ¢)aiaj> + qu<_(1 - ¢)V akaqaiaj>] - <V qﬁakaqaiaj)
1CY -~ Q 28, V25 20,
- ?7<V2 Q 2 (€kstataqa;a;)) [ropdpr + Tepdpg) — qTQk< 27 O ® (€kstaraqa;ag)) (C.24)
1Cv ~ Gy . 2GY, -~
=2 —Tqudug(V?(1 = d)asas) + Tg((l — )V2aragaia;) — —5= (V2 bagagaiag)
1cCv Q, 25,1 _Q,
- ?7<V2'7 0 (ekstataqalaj»[rqupk + Tkpdpg] — q <V2 Q (ekstataqaza]»
1

- qﬁsqq<vz(1 — P)aiay) .
Averaging over all eddy-axis vectors yields,

v Cv Cv
_Qq—q2k<vkquiAj> = —T’r‘qwdwq(l — qb)aij + qu(l - @b)ZI?qij + - qudwk( gf))quw

a Q,
- 2¢quZk'qu (b rqw wkaqu 27 Q quﬁkstthz]
cv Qg
- 77 O EkStthz] (qudpk + Tkpdpq) (1- ¢)Sqqaij :
(C.25)
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The final expression for the fourth term of a;; transport equation is

v

G k a Qs a
- 273(%%14@'14]') = (1= 30)Sek Zkgij — 27-gy Saenst Zigij — (1 = ¢)Sqqaij

RDT term

cv cv Cv Q “
] Trqwdwq(l —¢)+(1—-3¢)— qudwkquzg T’Yﬁekstthz‘j (rapdpk + Thpdpg) -
slow term
(C.26)
Adding the fourth and the fifth terms of eq. (C.17) together yields,
5 Zkz Qs
20 SqkTrqg — 7(vkquiAj> = a;j(3¢ — 1)Sgrarg + 2'yﬁqu6ksyayqaij
“ Q. cv cv
+(1— 3¢)qu’quij - 2765qk6k5t2tqm + aw[(3¢ —1)— - TqsdskQkq + (1- ¢)Trqsdsq]
cv cv Ccv Qy a
— Qi Tqudsq(l —¢)+(1-3¢)— qu skang T’Yﬁekstthij(rqupk + Thpdpg)
cCv Qq
+ Vg ChsttgQij (rgpdpk + Thpdpq) -
(C.27)

The sixth term of eq. (C.27) cancels with the seventh term, leading to the expression

’U

N

2 Qg
2a;;SqkTrq — 7 <vkqu iAj) = Sqr(3¢ — 1)[asjarg — quu] + 2v— q queksy[ayqaw Z;qij]

RDT term
v v

C S C a
+ ?qudwk(?’ﬁﬁ — Dlaijarg — Zl?qij] + Vﬁj(rqwdwk + Thwwq) €kst|atq@ij — thij] .

slow term
(C.28)
Substituting eq. (C.28) in eq. (C.17) results to the following expression
dai] a a a a
gt = Giparj + Gipari — 2G4 Ziks + Sqr (30 — D)]aijarg — Zig;)
2 a 14 ¢ a C.29
+ 2765 k€ksylQyqQij — quzg] — —Tqudwk (3¢ — 1)[aijarg — Zk:qij] (C.29)
Qs CY
+7 = QO - (rqwdwk + Tkwdwq)fkst [atan quiﬂ .
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In order to decompose eq. (C.29) into an RDT and a slow part, we need to find an expression

for the effective gradient GJ,. Thus we assume that it has the following form

a

C
G?j = Gij + Tsikwkj R (0.30)

where s;j, w;; might be normalized structure tensors. Substituting eq. (C.30) in eq. (C.29)

and assuming that s;; = r;;, w;; = d;; yields,

daij
dt

Q, .
= Girarj + Gjrari — (3¢ +1)Sqn Zijg + Sk (36 — 1)laijang] + 275 Sanersylayqtis — Zyqi)

RDT term
v v

C s C
+77"qwdwk(3¢ - 1)[aijakq - Zl(clqij] + Vﬁj(rqwdwk + Tkwdwq)ﬁkst[atqaij - Ztaqz‘j]

slow term-velocity contribution

a a

a
+ - da[riqar; + Tjqani] — - Tkqlqs Zijs -

slow term-eddy contribution

(C.31)

The specific form of eq. (C.31) reproduces correctly the RDT limit of the transport equations.

C.1.2 Derivation of the transport equation for the jetal parameter ¢.

In order to achieve the closure of the system we need to incorporate modified transport
equations for the remaining structure parameters which take into account the non-linear
effects. Starting with the vortical parameter ¢, its transport equation can be derived through

the following equation

la
dR!"

do _1 a;a
dt

i~ 2N

la
ad <Rz’jalaﬂ><dLQ . (C.32)
dt

We consider the second term first. Use of eq. (C.1) leads to the following expression

d(aiaj)
dt

= Giaqa; + Gj aq0; — 2GG aqasa;a; . (C.33)
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Substituting back into eq. (C.32) yields,

a d [/ 1- 7 a a a
(Rl — 5 (i) = <V2[( 5 ?) (0ij — aiaz) + pasa;|(Girara; + Girara; — 2Gi arasaiag)) +(...)
\72[va 1 a 7 a VQ’Y Q
= (V2[Gdara; + Gippajar — 206Gy aras]) + (—— 5 [ezktatajG Qg0 + €raa; G aqa;i])
V235 Q
= 2( 27 eintlaiGla)
(C.34)
or q
|a d 7 k a
<R’Lj dt( )> - 0O fikth’qut : (035)
The third term of eq. (C.32) is
<quaia'> d q2 1- Q; v 7 v
qu J <dt> = <( 5 )((51] — aiaj)aiaj> X —QSquqk + <¢a,~ajaiaj> X —2Squqk
v C.36
<; q (€iktaraj + €Kpara;)a;aj) x =255, Rk ( )
— —2¢Squqk- .
Next, we consider the first term of eq. (C.32), given by
dR}! Y ol -
(— i az%> —(G; Rkjaiaj> - jk<Rkiaiaj> (C.37)
+ (G + Gl ([Blynin + Ry minilazag) — (201 RS — C3RyG, (85 — namy))aza;)
Re-expressing,
v a v /Y 1— (5 7
— GY(Ryaia;) = _Gik<v2[( 5 )(51«3' — aga;) + ¢agajla;a;)
" V25 Q
= Gil(—— 5 0 (ekqtataj + €jqrarar)aia;)] (C.38)
(11— - V25 Q,
= - fk(V2[( 5 ) (aiay — aiar) + dara;]) — Gi[( 27 q Chat010;@ia;)]
v Qy

—Gfk(v2$akai> - GY

@kﬁkqt 20 Atz s
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yields the simplified equation

a v » V8
— GY(R) aiaj) = ~GYdApi — ekthik%Ati . (C.39)
Summation of the first two terms of eq. (C.37) yields,
(R aga;) — G (R asay) = 26T Api — v Gl L0 A, (C.40)
i kjalaj> TRy aia;) = kP Aki — €kt G Q ‘i :
Next, we consider the fourth term of eq. (C.37) which is given by
(2R} — C3RY5(5y — minplaiag) = —26(C1V?) + (G3V?) )
=(1- 2¢)<CI‘72> )
where the slow rotational-randomization coefficient is expressed by
~ 85 ., 85 .,
(C1V?) = TQ fpaDpq = ;Q (1 — frqqp) - (C.42)
Substituting eq. (C.42) in eq. (C.41) yields,
la 2 pla 8.50* ,
- <[201R7;j — O3 Ry, (655 — miny)]aiay) = (1 - 29) o 4 [1 = fpqaqp] - (C.43)
Substituting all simplified terms back to eq. (C.32) leads,
do Qk " ~Q " " v 8.50*
T 7ﬁ€iktquaqt - ﬁqekthikati + 26(SkyTqk — Sikaki) + (1 — 2¢)7(1 — [pqQqp) -
RDT term slowterm
(C.44)
The first two terms of eq. (C.44) can be put into the form
Q Q Q
7ﬁk€iktGgqaqt - VﬁkeiktGgiats = ’Yﬁkﬁikt [Glsast — Ggars)
Q. C Cy

= ’Yieikt([Qisast - Qsiats] + ats[Tariqdqs - 7rsqdqi]) .

Q

Substituting eq. (C.45) in eq. (C.44) yields,
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d Q 8.50*
90 o sty + 20SY, o — agi] + (1~ 20) 2 (1~ fratigy)
Q. C, Cy '

=+ 766iktats[7'riqdqs - 7rsqdqi] .

The relation between the antisymmetric part of the mean velocity gradient tensor and the
mean rotation vector is given by

Qij == iejizﬂz . (047)
Substituting eq. (C.47) in eq. (C.46) yields,
dé 0 ) 8.50*
at = eiktfizs’)/ﬁgzasat + 2¢Skq [rar — agr] + (1 — 2¢)?(1 — fpqQqp)
k C’a Cv
+ VEGiktats[jriqdqs - Trsqdqi]
Q 8.50*
= (5kz§ts - 5ks5tz)77szasat =+ 2¢qu[qu - aqk] + (1 - 2¢)7(1 - quaqzo)
Q2 27 (C.48)
Qp Cq Cy
+ PYﬁfiktats[jriqdqs - Trsqdqi]
Q.0
=7 z) t[ést - asat] + 2¢5}$q [qu - aqk]
8.500* Q C, Cy
+ (1 - 2¢) i

or (1= fpqagp) + 'YﬁeiktatS[jriqdqs - Trsqdqi] .

Thus the final equation for the evolution of ¢ reduces to the following form

E = 0 [6315 - asat] + 2¢S}c}q [qu - aqk]

RDT term
(C.49)
8.500" Qp C, Cy
+(1-29) o0 (1= fpqtgp) + VEGiktats[Triqdqs - Trsqdqi] :

slow term

C.1.3 Derivation of the transport equation for the stropholysis scalar ~.

Next, we consider the stropholysis scalar v. A useful identity is
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Q, Q. 1
fzzmamaj> Y (kp 2( z(skz Akz)- (C'50)

la
<Rz] 9

For our analysis, some useful identities are given below

- =Q, T \a/) T T o3 ’ 51
dt Sk dt(Q) O3 dt (C.51)
02 A% d 1 Q. dQ,

i = By @) = 2o (C52)

Taking the time-derivative of eq. (C.50) yields,

la
dR;; Q d Q. Q. d
iJ z la la
(g ) Cimmmas) + (Rij g (0 )eiamamas) o+ iom (3= (amay)) = (C.53)
(dt) 02 2( q Ok — Ak:z)"i"ydt( 02 )2( q Ok — Akz)+7 202 dt(q 5kz_Akz)'
Use of eqgs. (C.51) leads to the following expression
d Q. Q0 Q.Q, Q, dQy
—( ) = Sz + Skr + (255 ——)
dt* Q2 1522 02 0 QQ;‘) glzt (C.54)
k9az T
(U Sar + Q.Q-Skr) — QTQSQT :

T

Substituting eq. (C.54) in the second term of the RHS of eq. (C.53) yields,

jﬁg? 2 (000 — Ape) = LIy (040 + 0.0 85,) — SISy oy
§§[Q 0.5 + Q9,5 —2Q,0,5,] — ;2 (292,52 + Q.0 Skr ) k2
w&;r%z] (C.55)
2;2 (.9 Sprazk + Q.0 Sprag. — Q’“Q 2 0,0,5, 0]
20,0, Sy~ %SMJ .

or
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d Q)
dt( 02 )2( 25kz Agz) ZQQ’Y[

g —oz Skrakz] - (C.56)

The third term of the RHS of eq. (C.53) is given by

d a
T (@ 0ke— Apz) = =280, ROz — Gy Agz — Gl Age+ 2G50 2y + 26 (Rlagaz) . (C.57)
Consequently,
YEUSL, d 0.0, o “ v u
202 dt( 5 kz — Akz) = ’YSk'mRmk + Y 02 [ kquZ -+ Spqqukzpq + qu<R|SqakaZ>] .

(C.58)
Next, we deal with the LHS of eq. (C.53). The third term of this equation is treated as follow

oy d -5 (1 —¢) Qo "
fzzm<ng QO dt —(amaj)) = 6izm<v2[(2(6ij - aiaj)]ﬁ[quaqaj + Ggaqam

Q
—z[anqaqaj + G?qaqam — ZGZSaqasamajD

— QGZSaqasamajD + Eizmﬂﬁq;aiaj O
~ 9 ﬁ/ Qk Q o a u
+ €i2m(V ERVIG) (elktata] + €jktarai) (G, aqa; + G aqam — 2Gsaqasamag])
- (1—o
= zzm<v2( B 9§ [Ga mqQq@i + G qqOm — Ggsaqasamai - quaqa,D
¥ ~Qz a V2’5/ Qk Q a
+ eizm<V2¢ﬁ[quaqajaiaj]> + €izm< 9 Q 9 ~ €iktQtaj [G%qaqaj + quaqam
Q. V25 Q
- 2Ggsa‘1a$amaj]> + €izm—=- Q ( 27 Qk €jreara; Gy, qaqaj) (C.59)
V21— ) Q. -
= 6izm<(2¢) Q [qu q0m — Ggsaqasama;]) + eizm<V2¢ﬁquaqai>
Q) - " " .
* %%wzk%t = 0ut0mi) (V2 a4 [GFgaqa; + Glgaqam — 2G,aqasama])
Q€ "
+ % gkl? €izm€iktGomg(V araiaqay)
, -9, . %o
>y a a a Y Qe g a
+ 7677175 [qu Gquqsmt] 7 02 [qu Gquqsmt]

or
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an d (1_¢)QZ a a rza QZ a
flzm<R|z] QO di (ama])> = q2€izm72 E[quaqm Gquqsmz] + qzqﬁéizmﬁquaq
q v Q Q a (1 B ¢) Q a QZ a
+ 7(577% 02 )(G -Gy 2 ﬁqu qm T P€izm ﬁquaqi}

qs qsmt) q [Eizm

9 02 [mqqt GysZyg ]

gs“qsmt

(C.60)

Now, the second term of the LHS of eq. (C.53) is given by

<R|a d <‘"/2[(1 — d))

d Q.
1] dt( Q )e’bzmama]>

2~ ((52']' a;a; )dt( Q )ﬁzzmamaJD

~ o~ d Q.

+ <V2¢aiaj£(ﬁ)€izmamaj> +
d Q.

- % dt( 0 " )€izmm) = (5kz mt — OkmOtz)

25 Qu, d Q.
Tﬁ(ezktata] + Ejktatal)dt( %) )ezzmama]> (C'Gl)
Q. (as al &1(&)

q Cikt\® Qat o’

The following useful identity is derived if we use egs. (C.51)

d Q.. 1d d, 1. Qq d

a'e) = aat T ) = g OS] g gl C.62
e (C.62)
= S = Sy

Substituting back into eq. (C.61) yields,

|a d Q. 7& Q.5 .
<R1,g dt( Q )elzma’ma’]> 2 Q ( Q
2
k

Q.0
QBqQ Sq7)(6kz(5mt 5km5tz)amt
P D, 20, YV S 220,
=5 Lg% —gr WSel =T o
v Q 2, 02.Q,0,
%ﬁmg Strame + q2’yTSqramt .

9 o3 Jam: (C.63)

or

ad L P 0
(RS 7 eizmama;) = o 5—"ami] éQqsqr — S (C.64)
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Next, we deal with the first term of the LHS of eq. (C.53), which is the most complicated one

dR! 0 0
<( - )JEizmamaﬁ = <R|ka Zezzmama <R‘]€al Zfzzmama]>
at =4 T : QO 2 (C.65)
+[Glg + Gy <(<Vdi”k”j|a> + <Vj‘/anni|a>)(;€izmamaj> + slow term.
The first term of eq. (C.65) is treated as follow
Q. e (1— 6 Q)
(RLaJ O €izmOmQj) = ik(VQ[( 5 )(5kj —akaj)]ﬁzeizmamaﬁ
Q,
-Gy, <V qbakajﬁqzmamaj)
V25 Q Q
- Gz < 2 (Ekqtataj + qutatak) Zfizmamaj>
2 Q Q (C.66)
Al ~2( _¢)& v ~2(1_¢)&, '
- sz<V 9 O ezzmamak> + sz<V ) 0 6lzmamalc>
V250,9.
<V2¢ 6zzmamak> fk<%[ekqt6izmatam + quteizmatakamajb
V250,
= <V2¢ €izmAm Ak — ;}k<%ekqt€izmatam> .
Thus we obtain
a2 Q, Q Q,
_Gz <R|k] 9) fzzmamaf]> G 0 fzzmA le"}/ 502 fkqtezzmAtm' (067)

Use of Mahoney’s isotropic identities leads to the following expression for the second term of
eq. (C.67)
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sz’Y QQQ [6k16q26tm + 5kz(5qm6n + 6km5q16tz 6k:i5qm6tz - 6kz6qi6tm - 6km6qz5ti]Atm
Q Q Qk z t Qm t QQk 2
= -Gy —es 202 Lokiq” — Gy —s 202 Aim — GV 565 202 A + G —az 202 A + Gy 202 ¢
2,0
+ sz'y 2Q2q Alk;
20 Oy OO Q0 00 5 00
- Gkk7 292 q +G 292 Atﬂ’L 1]67[ 292 Azm + 292 Atk 292 q 292 A’Lk]
SE q Q2,8 o ;) Q QO 2
Yy Sk A = Gy ge Am = Gl gas Au £ Sk 507 ¢
. S
+ Sik 292 LA
’YS Q Qk’ [3 fLQk Q Q
= 2kk 2 + Skk 2Q2 Atﬂ) Szkﬁy 292 Azm - Szk’y 2Q2t Atk + quV 292 q2 + Szk’y 292 Atk
Sy 20 B Mo 1 Qi 0 L 0.0
= 2kk‘ q2 —I-’VSkkWQtAtm —’yS,Lk(Alm 202 + Apm 202 )+S'Lk 292 2 +S'Lk 2Q2qAZk
(C.68)
Substituting eq. (C.68) back into eq. (C.67) one obtains,
Q S QnQ
<RLZ QZ Ezzmama3> (b €izmAmk — VTkqu + 'YkkT’rgtAtm
k Q Q Qk Q,,;
+ kafy 2192 2 + '7 2q92q Azk Y i (Alm# + Akmﬁ)
(C.69)
The second term of eq. (C.65) is treated as follow
Q (11— Q
— G;’k(Rﬁﬁzeizmamaj) = -G <V2( 5 )((5/1ﬂ — akai)ﬁzeizmamaﬁ
Q, V25 Q, Q
Gh (V2 dara;— a = €immag) — G 27 q L (epqrara; + eigrasay,) szizmamaj>
1—¢ Q. 1—¢ Q.
= —G;-’k( 5 )(VQQekzmama]> +G ( 5 )<V2 a e,zmama]aka,>
~ V25 Q,
- Gvkqb elzm<v2akaiamaj> - 7{ <T(;Qq61qtatak 9 6'Lzmamaj> (070)
1—¢ Q 78, Q, -~
= —G;}k(2)6k3m QZA G” 50 ((5q2(5tm - 5qm5tz)ﬁz<v2atakamaj>
1—¢ Q Q48
= —G}’k(z)ekzm QzA kY 2(192 (V2aya;) + Gy 292 ® (V2a,apaqa;)
1-¢) 0 2,0, )
= _G}}kTEkzm QZA — GV =5 202 “[Arjbqz — 4 Zg4] -
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or

v Q v (1 — ¢) Q v Q Q.
_G] <R|ka; QO elzmamaj> - jkTekz’m 0 A - Gj k’y 292 [Ak](sqz q szqj] (071)

Adding egs. (C.69) and (C.71) together, one finds

avtbz a Qz v (1 - ¢) Qz
G ciomanas) + GRS o)) = ~05 U Ve o,
L Q0. Q. Sv. Q2
-G kY 502 292 [Akjfsqz q szq]} Gk 6zzmAmk +9[= 9 q + Sk QQQtAtm
v Qka Qsz Q Qk; 2 ) Q Q
- ik(AimW +Aka) +Szk 292 + 51 292 Azk:]
C1-¢) Q. 0,0
= _ij(27)€k‘zm Q G 67,zrnAmk + ’Y[ kk 2 + Skk QQQtAtm
. Q0 Q% QmQ Q Qe Q2,0 » 28
ik(Alm 2002 + Akm 202 ) Szk 202 q2 + zk 2QQQ Aik — ik QQ; Api + sz 20)2 q qui]
1-— QZ .
;}k( 9 ¢) €kzm o~ Q -G k¢ Gzzm mk
SY 0,,Q . Q0 Qe Q,,8; » S48 Q,0,
+ 'Y[ ;k 2 + Skk 2QQtAtm - zk(A"nW + Akm 202 ) + zk 292 2 + S’Lk 292 q szqz] )
(C.72)
or
Q0 0 1—¢) Q
[ <R|a QZ Eizmamaj> + Gl') <R|kC; QZ ezzmamaj>] = - ;‘)k;(Q)ekzmQZAmj
Q S7 Q. Qe QY
- Gl') ﬁzeizmAmk + "Y[_ ;k 2 + Skk 2QQtAtm - ;)k(#A’Lm + %Amk) (073)
+ zk 292 Sk 20)2 q ,?kqi] .
Next, we consider the term involving the fourth moments, given by
Q
[ Zq + qu]<(‘/;anknj + V’]'ankni)izeizmamaj|a> : (074)

Q

The first term is zero due to the orthogonality condition n;a; = 0. The second term can be

written in the more suitable form
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n v a 22
[ kq Tt qu] <M]|‘qkiﬁ€izmamaj> . (C.75)

We deal with the term involving G}, and generalize for (G}, +G7,.). We decompose the fourth

moment into three parts as follow

Q Q iq 0
zq<Mj|'Zkiﬁz€izmamaj> = };q(M;’q‘Ziﬁzeizmamaj) + qu<Mj(LZiﬁzeizmamaj> (C 76)
0 .
+ G%q<M]hq|Ziﬁzeizmamaj) ,
where
V21— ¢
M;)jlgq = (8¢)6i7"t€jzs[(5rz(5pq + 5Tp52q + 57"q6zp) - 57’zapaq]atas ) (077&)
jla _ V2 -
M, = 7¢[5pqaiaj — a;a;apa,) , (C.77b)
hla ~ 172 Q 1
M;jp, =V ﬁ(ei,ntataj + ejrtatai)[g(érmpq + OrpOig + OrqOkp) (C.77¢)
1
— g(érkapaq + Orparaq + Orqarap)] . (C.77d)
The vortical contribution is found to be zero,
v <Mv\a&€ a a-> =0 (078)
kq ]qkz Q 1zmUmtly )
since we have €;,tara; = 0. The jetal component is given by
fa © V26 0
M o) = G rsaga, — axaiagog] o cmanas)] o
_ v V9 L a o 0% |
= kq< 9 [ QO €kzmmaq — 19) 6zzmakazaqam]> = qu 19) €kzmAmg -

The contribution from the helical term is treated as follow
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a Qz )~ Qs 1
zq<Mh| '76izmamaj> = kq(VVzﬁ(ejrtataq + eqrtata/j)[é((s’rséki + 6rk(ssi + 6ri55k)

jqki 0

1 2
- g(grsakai + 6rkasai + 57’ia5ak)]ﬁeizm,amaj>

~Y Qs 1 Q
= G}éq <7V26(6qrtataj)[§(6r86ki + (Srk(ssi + 5Ti68k) -

8

~x7 Qs 1 1 QZ
= Gv <’YV26(eqrtataj)[g(arsaki + 0rk0si + 57"1531@) - gériasak]ﬁeizmamaj>

ariasak] ﬁzeizmamaj>

FV? 0,0, Q0. Q.
k:q< ] [eqstekzm Watam + €qkt€szm Watam + €itq€izm Watamb
5V2 Q0
_G <’y €qit€izm —~5 02 AtAmGs ak>
~f/2 Q.0 0.0
zq<%[€qst€kzm%atam + [6420gm — 6tm6qz]%atam
0.0,
- [5tz5qm - 5tm6qz] 02 atamasak]>
5V2 Q.0 Q.0 QRO Q.0
kq<78 [eqsterzm—os 02 atam + 52fataq 62{1 - QQ*ataqasak+ Lasar])
) :)/‘72 QSQZ 'YV2 Qkﬂt Q Qt QkQ
= Lq(Teqstekszatam> + <T[ kq(ﬁatq—f— 02 Cbtk) Sk}q
Qs
— SquQtataanakD
~ 0.0, N Qth Q Qt 0.0 0.0
_quseqstEkzm 02 Atm gG}C( Atq Atk:) Skq ng 2 Skq o q2
or simply
Ba © 5 0,0, S 1X¢) Qg
zq<qu|ZiﬁZ€izmamCLj>:qugﬁqstékzm Q Atm ngq( QQ Atq QQ Atk)
QQy 5 Qs 5
~ 5t~ gk 4 i

Expanding the first term of eq. (C.81), one finds
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Qg Q
qugeqstekrzm 02 qu 3 [5qk65z6tm + 6qz63m5tk: + 5qm63k6tz - 6qk68m6tz 6qz5sk6tm
Q0.
- 5q7716(ez5tk]FAtm
v’yQQzQ v Y Qm o 7 Qs o Y Qe o V28 o
qu8 Q2 Gtzg Q2 Atm G5m8 Q2 Azm - quS Q2 Atm — Gsz 8 QQ
o 7Y 280
Gtm8 Q2 At"l
0 2 v 7 Qs v V0 v Y 2 U'VQQzQ v Y
= Sqq8 + Stz 8 QQ At'm + Ssm 3 QQ Azm Sqq 3 Q2 Atm Ssz 3 QQ Stm SAtm .
(C.82)
Substituting back into eq. (C.81) yields
v h\an v Y ’U,-YQQ ’U,-YQQ ’U,-YQ Qf
kq<quk:iﬁ€i2m’amaJ> Sqq 8 2 + Stz S 02 Atm =+ S9m8 02 zm SQQ8 02 Atm
DI 0w T, TV Q0 Y e U8 0l e
_Ssz8 02 2 SthAtm Sk:q( QQtAtq tAtk?) Sk:q ng 2 Sk:q ! 2 tgsk *
symmetric/antisymmetric
(C.83)
Simplifying,
ha O ~ 0.0, QL ~ Q.0
zq<qu|Z¢ﬁZ€izmama]> S;l;qg 2 (ng QZ Azm+ tz Q2 Atm) S:z4 QQZ 2
"}/Q Qt Y Q Qt 2
— S};QS QQ Atm - Stm 8Atm - Skq Q2 q tqsk .
(C.84)
Substituting from eq. (C.84) in eq. (C.76) yields
0 6 Q. St 8Y QO
G%q<qukiiz€izmamaj> = QQqu -~ €kzmOmq T ¢ ’7[ = m2 atm
Q 2 Q 8 4 Q (C.85)
LSEQm SO0 SuQn  Si 0 Sting, |
Lo YT s o mT g e ek g Gl

Collecting all terms together gives the expression for the total term
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la
dr; Q. » (1= 9)

Qz ) z
<( dt )ﬁeizmamaj> = - jkTekzmﬁq2amJ’ - Gikﬁbﬁeizquamk
Stk 2 Qe 5 o 2m Qe Q2 » 28 &
+ [ 5 4 + Skk 505 502 4 %m — ik(WAier WAmk)Jr ik 502 4
2,0, L 00 Sy, St QS Q2,0
+ Szk 20)2 q qui] +q2qu2 %) —€kzmQmq + ¢ ’Y[ ;q i ( 02 Qg + 02 tazm) (086)
S Qs Sgq
T4 ooz g g im
Srq Q.0
gq o2 : fysk — Sém agm) + slow term ,
where G7; is defined by
Next, we deal with the slow term as follow
dRjj Q. . . Q.
<( dt] )Sﬁ€izmamaj> = _<[2ClR|ZJ - CZZR‘kk((SZJ - ninj)]ﬁeizmamaj>

GQZ
= —2(Cy R‘” O €izmOmj)

- Q. e
= —2<C [V2(2¢)(5” — aiaj)]ﬁeizmamaﬂ — 2(01V2gbaiajﬁeizmamaj>

7 Q,
<C 270 Vz(e,-ktataj -+ 6jktatai)ﬁeizmamaj) (C.88)

= —27%9% €ikt€izm (C1V 2 aganm,)

—2 Q;Q% [0k 20tm — 6km5tz]<87_59 qunpnqatamV2)
=-2 %Q% <8 5Q*qunpan )+ 2 9292275 <8 5Q*qunpnqatamv2>
= _7f<9*quDzlv(fz> + QQQt > 5<Q quD ¢ @tam) -

Substituting the expression D| 5Z — a;a4) in eq. (C.88) yields,
2 J J
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la
dR;; Q, 85 ../,
(( dtj) ﬁeizmamaﬂ = ’YTQ [%QQ(‘Spq — apg)]
V85 . g :
et 22 S (O — apag)azam)] (C.89)
8. 5 QY a 8.5 0N 4 o
= ’727 [qu 02 (5mtapq - qutm)} + 7; 02 Q q [atm - 5tm] :

Thus the final expression for the slow term is given by

<(dRL; o0 8.5 QY

dt ﬁﬁizmamaﬁ = 7? 02 Q*QQ[(atm — Otm) + fpq(Omeapg — qutm)] .

(C.90)

Now we seek to further simplify the derived expressions for the terms of eq. (C.50). For

simplicity we will deal with each term separately. Starting from the first term we have

oo i(amam = Pleiam 05 2 Gt + Gt Gy

S G 0~ G 2]

= ¢ [sz@ ) = S Ggm + ¢€zzm O = S il + ¢ [Eizm@%giqaqm + ¢€izm%9mqaqz‘}
- (]277 Qgggt [ngq qudemt] ;%[quaqt Qg ng'mt]

R LTI DL CLIE A

+ q2[(1 ; ¢) €¢zm€irq%9raqm + ¢ﬁ€miz€mrq9r6qi] - %%[GZM Qsaqt Esqr Q demt}

1 = 30)eim g5 STgtam — 5T (S~ 50, )

+ q?[(1 ; ¢) (82rOmg — 5zq5m,)§QQ g + ¢ ( i102q — Oig0ar)rayi]
- QfTV Qgggt [€gms$2saqt — €sgr{ds Z;th]
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2 qa >y Qi a
= q2(1 - 3¢)€izmﬁsiqaqm - 7 02 ( mqQqt — ququmt)
2 (1 _Qb) QZQZ _ Qqu d)
Al B [ 20 20 agm] + 20 o [ Qefiag — Q]|
2
qy QnLQt
T Q2 [€gms$2saqt — €5qrQr Zq&mt]
a q Y Qmﬂt a a (1 - Qb) QZQ ¢
= q2(1 3¢)6”"L2QS Qgm — o e (qu ngzqsmt) q2( 5 50 2QQ 20)
¢ ( *QS)QQm Q’VQmQt
+4q (2QQ Qiag — 9 qQQ agm) — 12 [eqms$hsaqt — €sqrilr qumt]
Q. ca Y Ul .
=q (1 3¢)612mﬁsiqaqm - 7 02 (qu qu*qumt)
@y Al " 5§28, Q: Qa4
- TT[Eqmstaqt — €sqrQ Zgsmi] + @7 10 (1-3¢)+ #(% —(1—-9))]
Q. ca Y Ul .
=4q (1 3¢)€izmﬁsiqaqm - 7 02 (qu ququmt)
@y A o Q.Q, Q; Q Qgi
- TT[Eqmstaqt — €0 Z i) + 10 (1-3¢) + —5L(3p—1)].
(C.91)

Simplification of eq. (C.91) yields the final expression,

Q. d Q >y QU
6ZZW<R|1(; 0 dt(amaj» 2(1 _3¢)€izmﬁsg]aqm - 7 gg ( mqQqt — qu qsmt) (C 92)
Q,Q '
2
+4q ﬁ(l — 30)(8ig — aiq) -
Next, we consider the third term of eq. (C.53),
v Q). d Q2. “ “ “ . “
2 (k)z %(QQ(SM = Apz) = =Sk Bk + ;)2 - kquZ + SquQZkzpq + qu <R‘sqakaz>}
Q.
= G Sk + V=5 [~ S0 Ags + Sy Ziepg + Sy (Rlgaras)].
(C.93)

The last term of eq. (C.93) can be put into the following form
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2(1-9)
2

(1-9) 9 T v
= q2 9 gqakz + 5 33 quz(3¢ - 1) 2 25;)3 0 (GSPyZ;qkz + 6QIUngc/Lsk:z) .

- Qo
S}Z’S<RL‘2akaz> = Sgs([V (65 — asag)aga, + V2 qbasaqakaz + V252 o € smtAtQqaras))

(C.94)

Substituting back into the third term of eq. (C.53) yields,

7 %2 d 2 (L2,

2 2 dt( @Ok — Akz) = =G SmTmk + 74 02 [=Shg0az T SpgZitspg]

Oz 2

(C.95)
+y

Q
[(1 - ¢)quakz + Z])s quz(3¢ - 1) + F}/Hm(esmtzzquz + Eqthgskz)SZ])s] .

Now we consider the most complicated term of eq. (C.53) as follow

dea Qz 1-—- Qz z
<( dt] )ﬁeizmamaj> = _G”f (TekzmﬁqQG/mj - G;)k(bﬁeizquamk:

gv o Mo Qs v 282
—|—'y[ —kk 2+Skk 502 ¢ apm — in(ap Aim + 55 Amik) + Sik 5074 ¢

2
Q0,0 Q. SE8E 0,0,
q2Z0qu:| + slow term + qukq;b QO €kzmmgq + 7 |: & + i

+ 50 g T4 gz om

Y SE Q2 Siy i, 28 Sx
02 azm) - 4 02 8 02 Atm — ) 02 tqsk 3 5 Atm
, 1=9) € b e (1-¢)
= TPk 2 Ekzmﬁcfamj - Sikqsieizquamk - ijTGk2m6q2amJ—
S oS 2.0 O
zkd) elzmq Amk + ’Y|: ;k 2 + Skk 202 q2atm - ik(%gkAim + #Amk)

QQk 2+ v Q Q 2 a S};q Sz’fuz QmQZ QmQt
zk 20)2 ik 292 zkqi

_|_

(C.96)

_|_

} + slow term—&—q%{ 3 1 ( 02 A + RE Azm,)

SY. 0,0, Sh, Q0,0 Sia Q2,0 Sp. Q,
sz qaq t ~kq t g atm +q25kq(§ a9 €hzmimyg

4@ w o Um Ty g Dk T

XY Sy, Sn Q0,4
+ 2q2quZ 0 €kzmlmq + QQSkqQ Q €kzmGmq + q Y % + %( QQ a’tm + 32 fazm)

Ssz Qst S(?q QmQt Sl?q Qth

S’rb
4 Q2 g Q2 MmT g T2 “task T g at’”}

Collecting terms and simplifying yields,
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R Q. U

_ QZ 2 . v v 2 ? . .
<( dt )ﬁeizmamaj> - _Ekzmﬁq aml[(]- - ¢)Szk‘ + 2¢Skz] + q (1 - 3¢) 4Q (5m1 - ami)

3 3 Q.0 SY 2,0 QY Q,Q 3 o 280,
2 v v Sfmeet ik m3 ok m= b v YLk
+q ’7[_§Skk+§skk? T @im + —q5— amk) + Sk~ 05 +3% gz Q2 hxqi
Sf’m 2 Qu d)QZ q2¢Q Qq 2 on QSQZ
- 3 atm] +q Skqiﬁekzma'mq 7 Q (6sq _asq) +q Skqgﬁekzmamq
Sy, St 9,0 Q) ST Q0 Sqq Q) Sia Q.0
2 tz meiz ma &t sz Sbsibz t k 536
B oo e R N EHC U T EE
s
— ?atm] + slow term
(C.97)
or
dR!* Q Qs
LY P A 220 (1 — v v 2(1 — p)mi - .
<( dt )Q 6zzmamafj> EkZWLQQq aml[(l ¢) zk+2¢skz]+q (1 ¢) 40 (677“ aml)
v O n @82
+ QQSkqgﬁﬁkzmamq +4q QSkqgﬁekzmamq
0, S 0, L% 3., 9,0
+q 7[—75,%4— Skk 02 Amt — 4k( 82 aim‘f’%amk)‘k ik 4192 +8 1k 02 kzqi
S 2 S;q Si Q€2 Qn S™ Q. Sk QY
R kel bl e i s Y e e s S AN
Skqﬂ Q, Sn dR\a slow) Q.

s (2 tqsk 3 —apm] + <(T) Q 6szarnaj>

slow term
(C.98)
where the contribution of the slow term due to slow randomization is given by

AR 8.5 Q2
() g €izmamas) = 75— 20 [(am = 6tm) + foglOmitng = Zpggal] - (C.99)

We re-arrange eq. (C.53) to obtain

la
dy 1, L d AR Q.
el —(q 0, — Ap,) = Opr — Ag izmam
(dt) 02 2((] k k) = 2Q2 dt( k k) +(( dt ) Q Cizm ]> (C.100)
\an d la d S, i Q2 2 _A
+ €iam (R — Q dt(ama]» (R dt( O 2V €izmm ;) — th( e )2( q Ok kz) -

In order to simplify our following calculations, we separate the terms based on their contri-

bution. The eddy axis contribution is given by
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2’}/ Qsz Qsz
F = _?qz 02 (—quaqz + quzgzpq) - qQ'V 20)2 (quaqz ququkz)
Q,
q2(1 - 3¢)€1zm75;1 Qgm,
0.0 20 Q, (C.101)
- _%(f G (28} ags + 285, 21y + Sfgags — S Zipg) + (1= 3¢)eizm 55 Styagm
Q QZ a a a
= ,%q2 82 (—=Skq@qz + SpyZiapg) T 2(1 = 3¢)€iam QS Agm
whereas the vorticity contribution is
5 9, Q.0 0.0 QS
F® = =5 (1= 36) (0ig — aig) +0° 5~ mel( gz Sy = Sur) + 4 (1 = )~ (Orus — i)
0.0.Q,Q Q.Q,
- QQV[%SW'C%Z - 02 Skrakz}
QiQ 5 Q48 27 Q2 Q.0
= P (1= 36)(Big — asg) + P (1= 600 — a4i) + 6 2 it (“5 Sy — Sir)
v Q Q00
2 2 2 QQ amt( QQqu Str)
2 ;0 Q. 0.0 Q
= P iy — aig)[1 = 36+ 1= 0]+ 023 o (<5 S = Sup — 275080+ 28)
Q/LQ Q’I,LQ’ Q q
= q2 29‘1 (6iq - aiq)[l - 2¢} + q2% Q2 ramt( ;22 ISqT + Str) )
(C.102)
and the normal contribution is
o0, o Sqq S Q0. Qi ST Q0.
"= q2S]? S o EkzmAmg +q "Y[ Z( 2 A + 2 azm) - 5
72 Q 8 4 Q Q 4 Q (C.103)

S Sp ., s

tm

3 2 Um TR qp sk T g

atm] .

The most contribution is given by velocity, which is decomposed in two parts, the non-

stropholysis part,

v QZ v v v ¢ QZ
Fl = —Ekzmﬁamq(:ﬁ[(l — ¢) qk + 2¢Skq] + q25kq§ﬁekzmamq

QZ v v v
= szmﬁamqq2 [¢Skq - (1 - (b) gk — 2¢Skq]

o (C.104)
= ekzm2Qamqq [ gbsl’gq - (]' - ¢)S}]}kz]

= —€kzm

Q.
2Qamqq [¢Skq ( _¢) Z])k]v
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and the stropholysis part

” v 4QkQZ v 4QkQZ v a
Fy = q27[skmrmk - 302 (1 - @)Sqqakz - W qs sqkz(sqZ5 - 1)
0. Q 0, 1 QS
2()2 Sarey Q (esthtqkz +6qthtskz)S s 8Skk + SSkk 02 Amt — 4 zk( 02 Aim
QmQZ v QZQk 3 Q Q Smatm
Wamk%f' ikm_'_ 3 1k Qg Zkzqz_ L 3 ]
Q Qt 4Q Qt v 4QI€QZ v a
= Y[ Skmrmk + Skk oz Omt W(l — ¢)Sikmt — R0z Vas aqkz(39 — 1)
B oy o By Shwtm g % Ly MmOl
Q2 PasPaskz T gPkk T 3 k402 4 i ( 02 Qjm + 02 Amk)
00 O .
- 2()2 Y ) (ﬁsthtqkz +6qthtskz)qu]
D W 3 .
=4q ’Y[Skmrmk + Skk ]0)2 amt(?’ 4+ 4¢) 892 qs sqkz(_12¢+ 4+ 3) - gskk
(TP o Yo MRS TN o W o Qi
TR e~ 1o Tge Gt gy am)
% O :
- 292 Q (esthtqkz +Eqthtsk:z)qu]
v v QmQt Qsz v 7a Svmatm
= Y [ShmTmk + Skkwamt(% - 1)+ ROZ as sz (T —12¢) — Sk;k : 3
S 1, QS D AT ,
+ zkﬁ - Z zk( 02 Qim + 02 amk) 292 Q (ESthtqkz + Eqthtskz)S 5] .

(C.105)
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Adding all -F terms together yields the final expression for the transport equation of =,

dy Q0 1 SR X o T o Qo
(E) 02 5(6162’ - akz) = —iw(—Skqaqz + Squkqu) + (1 — 3¢)6izmﬁsiqaqm
eddy contribution
8.5 0 . .
7; 82 ‘0 [(atm — 6tm) + fpqlOmtapg — qutm“
pure slow term
QiQ Y QmQr QtQ
2Qq (0ig — aig)[1 — 2¢] + §Wamt(_gigqsqr + Sir)
pure vorticit;rcontribution
n ¢S Sgg S Q). Q2 ST Q. Sy Q2
+ Sty g hemma +15 + T (Fop e+ g am) — T — g amm

-~
gradient contribution

n
Skq Q8 a S?m
— Gtm

8 QQ thk - 8 ]

gradient contribution

QZ v v
_szmﬁamq[gﬁskq +(1-9) qk]

velocity contribution

QY Q) 3 SYay
+7[Slfgmrmk + Slfgkgmwamt(4¢ - 1) + SQ; (11)3 quz(7 - 12¢) - éslgk - th =
velocity c?);tribution
Q% 1 Q.0 0, 2.0, Q
+ zvk 4192 - Z ka( 82 Aim + gg Zamk) - 29227?7”(6577%251]@3 +€qth,§§kz)SZ{s] .

~
velocity contribution

(C.106)

The above equation captures correctly the RDT limit given in TF61.
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C.2 Model 2.

The final goal of the following analysis is to construct a model which, in contrast to Model
1, predicts non-zero ¢ and ~ for irrotational flows which are subjected to slow deformations.

We start by introducing the expression for the effective eddy rotation rate

O, = €2pGrapay . (C.107)

Some useful products regarding this vector are given below

02 = (0:0:) = G4.G%arg — S50 Ziipq (C.108a)
(0i0;) = 0ij(GeGagang — SfiSpa L) + Sit(GiZiisq + GqZikig) (C.108b)
— G Gigarg — G G5, Zy (C.108¢)

The constitutive equation of the Reynolds stress is given by

(1-9¢)
2

0
200+

Rij = ¢*[ (6ij — aiz) + daij + 555 (250 Zigi; — Gigagi — Gigaqi)] - (C.109)

A set of useful identities is given below

d@Z a dakl
ﬁ = El]kGﬂW s (CllOa)
d .0, 1d0; ©,0;d,
d O _ 1do; 11
e " o@w o a’ (C.110b)
d 00, 1,6  do, d0;. 0, 0,0, do,
@ 0,20 4 9,20 _ 9Pk DiD; @Ok 11
a7l e ) T @@y 0 2 er (C.110¢)

The main idea is to use again the concept of effective gradients as described in [24], combined
with the effective eddy rotation rate. Below we derive the transport equations of the structure

parameters.

C.2.1 Derivation of the transport equation for the eddy-axis tensor a;.

We start by introducing the transport equation of A;;

dAy;
dt

= G Arj + G Ak — 2S¢ ¢? Crs — 290 (Vkvg AiAj) . (C.111)

The transport equation for the energy-weighted normalized eddy-axis tensor can be found

through the identity
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da;; Az’j A

d ¢ aij?' (C.112)
We introduce the symmetric tensor Sfj’"’” and the antisymmetric tensor Q?J?"’v, which are
defined as follow
Sfév,n = S, + a,v,n (Tiqqu + qudqi) , (C,113a)
C
Qi7" = Qi + =2 (rigdak — Thadas) - (C.113b)

Again, contraction of the A;; transport equation yields the energy evolution equation

dAss
dt

— 2% Ry, (C.114)

where the transport equation of the normalized tensor is given by

v

daij a a qu v
= szak] + ija;” QSk‘s ijks — 2?<Ukqu2A]> + 2qu,7'kqaij . (0115)

dt

The last term of eq. (C.115) can be shown to be

Y v qa o
SaStpZhgtp — SqkGippg)aij - (C.116)

v v 2
Qququaij = ( (b)S a” (3¢ — 1)quakqaij + @(

Simplifying the fourth term yields,

SV 2y
—2qi2<’()/€’quAiAj> = _(1 - ¢)quaw + (1 - S(b) gkzgqij 0 qk(sa Wthql] ka qu])

(C.117)

where Wijiipg is a fully-symmetric sixth-order tensor. A non-singular model for this tensor is

already constructed by Kassinos in TF61, consistent with the model used here for Z tensor.

Substituting egs. (C.117),(C.116) in eq. (C.115) yields the final expression for the transport

equation of a;; by

da;;
dt

Szkak] + 55, kak% (Q?kakj + Q?kakl) 2S Zz]kq (3¢ - 1)531]]9 [akqaij - Zlcclqz’j}

a a a
Q* (S tpkq®ij — kaapqaw StwWiwkgij + G qug)

(C.118)
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C.2.2 Derivation of the transport equation for the jetal parameter ¢.

As before, the transport equation of scalar ¢ can be found through the expression

la la
dp 1 dR; la d (R;aiaj) dg?
&Y - oy RS —(a;a;)) — —L—L—"]. C.119
Re-expressing the RHS of eq. (C.119) yields,
1 |a d v a Qa rza a a
?(sz@(aia]‘» = @(Stquszths - quGisa(JS) : (0120)

Following similar analysis as before, the first part of the first term of eq. (C.119) is found to
be

v

G; Y
-2 q;k <R/‘rcc}aiaj> = —20Sjak; — @(ka taZiktq — GikGrqqi) 5 (C.121)

while for the pure slow term we can obtain

-2

(CiRfjaiay) | (C3RE)
2

8.5
= ¢ =(1- 2¢)798qudqp. (C.122)

Adding both terms back into the first term of eq. (C.119) yields the simplified expression

1 dR® : 8.5 y
?< dtj aia;) = —2¢0S;.ak; + (1 — 2¢)7Q Fpgdap — o

(S35 Zierg — GiuGryaqi) - (C.123)
Also, the third term of the RHS of eq. (C.119) is simply given by

la
1, (Rja:a5) dg? )

Lastly, addition of all terms yields the final expression for the ¢ transport equation

dd) v 8.5 s Y a a v a v a a
E = 2¢)qu(er - ak‘q) + (1 - 2¢))TQ qudqp + @ (Stq(sjs - Sjs)sttq + (Gsi - Gis)quaqS> :

(C.125)
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C.2.3 Derivation of the transport equation for the stropholysis scalar ~.

The third term of the RHS of eq. (C.53) can be shown to be

2 J—
(R i (amag)) = T2 =D (G Gy, — 85,58 Z5)
7 O dt 200* pa (C.126)
27 (Om02) a ra
o 5 O)*2 (qu qz ququmz) .
A simplified expression of the second term is
2O €19 d Oz C.127
<R1,y dt( @ )Elzmamaj> 2 < @ dt ( @ ))(582 asz)- ( )

Regarding the manipulation of the fourth term of eq. (C.53), a useful identity is given by

v a 2(1 ¢) (3¢) ) v a
Spq<R1|3qazam> =4 Sqq am + 4 SpqZpgzm

(C.128)

2
qy
+ 0O (SZSS?wWSthmZ Sv G(slwzguqmz) :

while the fourth term of eq. (C.53) can be shown to be

0.0,,) d " 0.94) .
B fy( 2002 : dt (¢°0em = Azm) = Vg ltig + 7q2<Q2>(Szkakm SpaZpgzm)
@z®m v v r7a v Qa v a a
~- ¢ < ZQ*Q ) [(1 - ¢)Sqqazm + (3¢ )Squpqzm Q* (S SthSQtme S Gstwqmz)]
0.0,
+ q2’y< 2 >szakm.

(C.129)

Next, the first term of eq. (C.53) is decomposed as follow
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dR‘la O a9 a0,
<( dtj )6€izmama]’> = — <R‘]§] o Ezzmamaj> }}k<R|ki§6izmamaj>
n v a a @Z
+ [GRy + G (Mg + My ) = €izmmay) (C.130)

a a @z
— <[201Rij — C%lek(éw — nmj)]geizmamaj) .

We deal with each term of eq. (C.130) individually. Thus, the first term is given by

a @Z 2¢ v a a q2/->/ v
- Gj <R|k] fa) €izmAmaj) = O [S 1SmaqZkpgm — GrGrgtg] — B — Sk (C.131)
S <@ © >a 2 Sv <@m62>a 2511) <65@Z> + QSZ/)ma ‘
kk Q*Q ym Yz Q*Q ym sz QQ*Q 9 ym s
while the second term can be shown to be
ka’ a©: (1 ¢) a QU r7a a
_TJQ<RLi§€izmama’j> = - 20)* (quS]prqm] quijale)
16,6, (C.132)
- ;‘)k#((sqzakj - quj) .
Adding both terms yields the expression
a 62 v a @z 1 a
-G <R|k] /o) €izmAmaj) — jk<R‘ki66izmamaj> = 2Q*[ (1+ ¢) qZpkmq
a v v v <®m@ > a SU <@ e >
+ G, (290G, + (1 — 9)GY, ) agr] + otal jkT*Qy ykmj — kk + Shk a2 Qym (C.133)
— Sy 02 aym + S, 2Q*2 ik
Next, the pure slow part of eq. (C.130) is shown to be
o 8.5 4 (©0,0,)
<201Rl] o S €iamm ;) = _QQ’Y*Q fra(dpg — Tgymp”qayam» 134
8 5 (@ O) s “ (C.134)
27 02 Q%[(atm — 0tm) + fpg(Omtapg — qutm)] .
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The third term of eq. (C.53) involves the fourth order pressure-strain tensor, which is decom-

posed at three parts, similarly to the previous analysis. Again, the vortical contribution is

Zero

v vla @Z —
k’q<quki§€izma/maj> = 07 (0135)
where the jetal contribution is not, given by
jla ©2 q°
<quk1 [e) 6izmamaj> 29* (Skq gns gzskq - G%q zsasq) : (0136)
The expression for the helical contribution is found to be
v ha®z 97 qu v<®t6> <®®>
kq<qulki§€izmamaj> = ?[Sk:k — SkkT ez Omt ~ 255, gz Skqlak (©.137)
(©¢Om) (©:O%) v (©:0s) '
+ 2G kq ;2*2 Amk + 2ka Q*2 Amt — Skﬁq Q*2 sktq] .
Adding all contributions together yields,
a ©: 2¢ a a v va q2,y v v <@t@m>
<M]|qm /o) €izmUm ;) = 20 Sor OkgSmsZmskg — GhqGlstsq) + ?[Skk - Skkwamt
v (©qOk) (©¢Om) (©1Om) v (©:6s)
— 250, g Sketar + 250 (g tmk T g ama) = Sky g Dokl
(C.138)
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which leads to the final expression for the first term of v transport equation

<@k@m>
49*2

1 dRj 6, 1

q2< dt © g Cizmma;) = ﬁ[_ okOmaZpkmq T Grg(0G, + (1 — ¢)GY, ) agk]
23* [SrqSms Zmskg — GrqGlstsq]

+ ’Y[—gskk + SSkk: <@QS y Aym — ngzjz <®Q*(;) >aym + S, <(29?2> - SZanqk

+ Skq <(?19(22 >amk g Tk <6$*(;)y> k)

. 7[55'“ - a1, Gt o+ G o+
s <%2> chtql — 8595qu( dpq — <®5*(;)y> (Npngayam)) -

)

(C.139)

Summarizing, all the simplified expressions for the RHS terms of eq. (C.53) are given below

00, d PBo—1) 0
< l,‘] (_) E’Lzmdt (amaj)> = (%)*)[G G kakq S S@k pqzk]
27 <®m@z> a a rza
—4q 5 02 (qu qz ququmz) ’
ad O 47 Osd Oz 5
( ij dt( /o) 5 )€iammay) = 5 ( 0 di ( o) ) (052 — asz)
vd (0.0,) v d (0.0,)
5@( 02 )(62m — azm) 5%( 02 )(0zm — zm),
0.0,,) d 0.0, . )
- < 20)*2 > %(q2(52m - Azm) 'YS kqu + vq <Q >(Szkakm Squpqzm
2 (0:0m)

2()*2 (1- ¢)S}1]qazm + (3¢ — )S;)]ngqzm

®z@m a
*(S” St Wsqtwmz — SqsGewZgms) +q27< 02 >szakm.

swwgmz

Q

)

(C.140)

(C.141)

(C.142)

(C.143)

Adding all the above expressions and further simplifying yields the final expression for the

transport equation of
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d’}/ 0.0,, (3@5 — 1) a a a Qa r7a
(7)< 20)*2 >(6zm — Q) = 200 (Gqurkakq o SpqSikZPqik)
¢

dt
1
too-| ~ S;ksg;qu;kmq + Ggq<¢G’lr)k + (1 - ¢)quér)aqk:| + 7( /TCLq gns zzskq - GZqG%saSq)

200* 200*

400, o gede. s

5%( 02 )(2m — @zm) + §< o) dt( o) N (0sz — asz) = - Q° fpq(dpq
Sik Sk (©:Om)

O (0,01) Sp

( Q*2y><npnqayam>)+7{ S R amt_Skq<4g-2*2k> _%aqk
(0,60,,) Skq (0:05) ., (0.0,,)
2?)*2 Amk — 8q iz Zektq +7 2072

+ Sy

(GZrarm = SpeZpgzm)

pg—pgzm

v 3w, 40—1) o, (OmOy) (7T-12¢) o, (OmOy) 4
V[ SgkTka — gSqq + 3 Sqq Q*2y Qym + 3 ik Q*zy Zykmj
v <@z@m> v <@9@z> S;C} <®Z®m> v a v a a
- Syz 20)*2 Aym + Ssz 402 - 8qaqk’ -7 O3 (qusth‘?thmZ - quGstwqmz) .

(C.144)

Endly, the following expressions are needed in order to bring the system of equations into a

closed form

do,

O

) = 012G G (GO — G Zr) — 2820 (Go Zt — G Woptsruwn)]
+ Ggl[ Z“’( ?k glwl’ o ngzgizl) - QSgw(G?szlspwk - ngWzlSiwk)] (0‘145)

+ GUlGrw(GrrZair — Girawr) — 255, (GrWoisivk — Gk Zgiwr)] -

C.2.4 Derivation of the transport equation of the normalized Dimension-

ality tensor d;;.

Next, we derive the transport equation for the normalized dimensionality tensor at the slow

limit. We start from the differential of the normal vector, given by

dN; = —G7.Ny.dt . (C.146)

The transport equation of its normalized vector can be expressed as follow

dn; d 1 1 dN; N; dN 1 dN;
Sy NS () e sy S C.147
dt(N) dt Zdt(N)JrN dt N2 dt +N dt ’ ( )

while the transport equation of its magnitude is simply
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dN d(z\f,fj\f,g)l/2 1 Lo d dN},
= R NeNe) 2L (NN, = —2N
dt dt 5 NN (NeNk) = 5 2Nk =
dN}, n
= m— = = mi [~ Gy Ny = —GineN, (C.148)
dN
o G Ny -
Substituting eq. (C.148) in eq. (C.147) one finds
dni n; dN 1 ni
=——— -Gy —(=GhnN,) — G,
dni . n n ’
v —Gpng + qunknqni .
The differential of the vector Vn; is
d(VnZ) = (V + dV)(nZ + dnz) —Vn; =Vdn; + n;dV +dVdn; = dD; . (C.150)

Substituting the expressions for dV and dn; in eq. (C.150) yields,

n n n

+ O3V (dW,dWyngng — dW,dW, ngns)]

=[2GV, Vidt — 20,V dt

02
= G} Dydt + Glyning Didt — GYvpve Dydt — CyDydt + %Di(dede — AW dWyngny) .

(C.151)

Using eq. (C.151) one finds

d(D;D;) = (D; + dD;)(D; 4+ dD;) — D;Dj = D;dD; + D;dD; + dD;dD;
= —GzkaDjdt + QGankaniDjdt QGkapka D dt — 2C1 D; D dt (0.152)
+ C3D; D;(dW,dW, — dWdWynsn,) — Gy D Didt .
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Averaging over all particles yields,

dDZ‘j = —GZkajdt - ZjDkidt + 2ng (DiDjnknq)dt — QG;k <UpkaiDj>dt
— 2(C1D;D;)dt + (C3D; D;dW,dW,) — C3(D;D;jdWsdW,nsn,)

dDZ'j = — Z@'ijdt — ZjDkidt + Qng (D,'Djnknq)dt - 2sz <UpkaiDj>dt (0'153)
+ (D;D;dt(—2Cy + 3C5 — C3))
dDZ'j

g =~ GkiDrj — Gy D + 26 {DiDjngng) — 2Gpy (vporDiDj)

or

dD;;

- = —GJiDg; = G Dyi + 2G0T Z g — 2G i Mpiij (C.154)
where the higher order tensors are defined as
(V2n;ningng)
injkq = —qu K y Mprij = <Vkanm]~>- (C.155)
Now, the normalized energy-weighted tensor is given by
DA .
dij = TZ (C.156)
A useful identity is
dd;; 1 dD;; 1 dDyy,
_ —d— - C.157
dt ¢ dt Vg2 dt ( )
Substituting eq. (C.154) in eq. (C.157) one obtains,
dd. - G
d;] = — Zidkj — Zjdki + QG(T;k znjkq - 272Mpkij + 2S§krkqdij . (C'158)
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C.3 Derivation of M;j,, using eddy effective rotation rate vec-

tor.

We start our analysis by introducing the conditioned form of this tensor, which can be

decomposed in three components

vla
M., 1—

;,;pq _ ( < ¢)’6i7‘t€jzs[(6’l‘26pq + 5rp5zq + 67‘q6zp> — 5rzapaq]atas s (C_1593)
Ml

;qu = g[(quaiaj — 4ia;apa] (C.159Db)
Mh\a "

ijpa _ VY e . _

q2 - ] O* (Gzrtata] + ejrtataz)[(ark(qu + 6rp6kq + 6rq6kp) (5rkapaq + (5Tpak0,q + 5Tqa‘kap)} s

(C.159¢)

where v,j and h refer to the vortical, jettal and helical components respectively.

Compare to the original expression derived by Kassinos & Reynolds in TF61, in eq. (C.159)
we have replaced the mean rotation vector €2; with the eddy effective rotation rate vector, in
an attempt to incorporate additional structural information through a modified stropholysis

term. A useful identity is given by

€irt€jzs = (5ij5r25ts + 5i25r55tj + 5i55rj5tz) - (51'3'67“85152 + 51'267“]'5153 + 51’557",25153') . (0160)

Applying eq. (C.160) into the vortical part of eq. (C.159) yields,
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vla
M, 1-—
__urq = ( ¢) 5ij [(5225]9(1 + §zp52q + 5zq5zp 5zzapaq)atat

V2 8
— (0520pq + 0spdzq + 0sg02p — Os20pag)a.as)
1_
+ ( 3 ?) [(85i0pg + Ospdiq + 0sqdip — Osiapag)ajas — (8;i0pq + 6jpbiq + 6jq0ip — ijapaq)asas)
1—
+ %[(‘%zépq + 0jpOaq + 0jg0zp — 0j2pag)az@; — (8220pg + 02p02q + 02g02p — 0z2apag)aa;]
1—¢
= %513-[(351,,1 + 6pq + Opg — 3apag) — (Opg@zas + apaq + apay — aza.apaq)]
1-9¢
+ ( 3 ) [a;(aibpq + apdiq + aqdip — aiapag) — (8ij0pg + djpdig + djq0ip — dijapay)]
1-9¢
+ ( 3 ) [ai(a;0pq + agdjp + apdjq — ajapaq) — aia;(30pq + Opg + Opg — 3apag)]
1—¢
= %51& [50pq — 3apag — dpg — apag]
(1-9¢) s s as
+ T[aiajépq + 0iqapa; + 0ipaga; — a;ajapaq — 0ii0pg — dipdiq — 05q0ip + ijapay]
+«1_¢”‘~6 8piy + 040 a a; (50, — 3
3 i@;j0pq + 0jpaiaq + 0jq0iap — a;ajapag — a;a;(56pg apag)] -

(C.161)

Averaging over all particles (carrying different a;) one finds

M 1—¢
—H = ( )5ij(6pq — apq) +

Q> 2

(1-9)
8

[0pq(aij — i) + (ap;diq + aq;bip) — (0jpdiq + 6q0ip)
+ 0ijapg — Zj;

1jpq
*(17@455 46 1) Opa0, 1) 1) N ) 1)
= 3 [46:j0pg — 40ijapg + Opg@ij — Opglij + apjdiq + agjdip — 6jpbiq — jq0ip + Sijapg

aij(qu + ijaiq + (5jqa7;p — Z%pq — 55pqa7;j + 3quij]

— Z?qu + aij(qu + (5jpaiq =+ (quaip — Z?qu — 56pqaij =+ 3Z?qu]
1—¢ a

= ( 3 ) [30:5 (0pg — @pg) — 30pqaij + Ziipg T (apjliq + aqjdip) + (8jpaiq + dgjaip)

- (5jp5iq + 5qj5ip)] .
(C.162)

Thus the final form of the vortical component of Mj;j,, is given by
Mip, _ (1-9)
ql;pq = g 30 (0pq — apg) — 30pqaij + ququ + (apjdiq + aqjdip) + (6jpaiq + dgjaip)

- (5jp5iq + 5qj5ip)] .

(C.163)

Contracting eq. (C.163) by setting p = ¢ yields,
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MY —
;;pp -4 5 ) (0ij — aij) = rij (C.164)

Also, the continuity condition is satisfied if we set i = p

MY, 1-—
é’gm = < ?) 3074 — 3ajq — 3ag; + ajq + ajq + 3ag; + ajq + 8jq — djq — 39;4] = 0. (C.165)

The jetal component is simply given by

qépq = 5(511(]0’2] Z'Lqu) (0166)

Next, we deal with the most complicated component, which is the helical part

Mz@pq V82
e - T8O (€irtata; + €jrtata;)[(6rk0pq + Orpdrg + Orgkp) — (Srrapaq + Srparaq + drgaray)] .
part 1 Part 2
(C.167)
The first part is treated as follow
hla
1jpq | (5 (5 6 _
Part 1 = 89* [E’Lk‘tataj pq T €ipt@tQ;0kq + €iqrAtQ;0kp — €kt AtG;ApQg
— €iptAt A ALag — €iqrQrajagap)
Vekrngnasan
= T[Eiktatajdpq — €kt At QjApQq + Eipt(Orqra; — arajagag)
+ €igt(ara;ory — arajarap))
Y
=P [(8r£05i — 0ri0st) Gy Usnta;0pg — (Ort0si — 0ri0st) Gy s Grajapag
C.168
+ €rs G Qs €ipt Ojqai@j + €krs Gy UsUn€igtOkpaiay — €rs G Qs On Eipt G QgL ( )

a
— €rs G s On €igt QL Ap 1 O
89*[GY 0 0iOn Q0 — G5 a1ana1a;0pg — G aianarajapag + G5, aranaia;a,a,
a
+ €4rs G Qs An €iptaa; + €prs Gy Usn€igrasa]

Mh
=

‘Partl 8(2* G dp ZZm GinOpganj — GrnWijpgnr + G Zy

m n]pq

. a rza . a rza
+ EquelptGrnantj + fprsethGrnantj] .
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Using eq. (C.160), we expand the term €y, s€ipt G%, Zsntj to obtain

EqrsfiptngZgntj = [5qi57’p65t + 6qp6rt65i + 6qt(5ri65p - 6qi6rt55p - 5qp5ri65t - 5qt§rp65i]Ga zZg

rn“/sntj
= ngzgntjéqi + 5qPGtanZ1qntj + ngZ;nqj - G(tlnzgntjéqi - 5PQG?nZgnsj - ngzianqj
= nganj(sqi + G?H(SPQZ%TLT + G;'lnzgqnj - G?nzgnrjdqi - 5I7(IG;'Ina’nj - ngzgnqj :
(C.169)
Substituting eq. (C.169) back into eq. (C.168) yields,
L Y
i
%’Part 1= @[36Pngnqujnr - 35Pngna’nj + 3G?nZ]C3lqnj + ng<anj5qi -7, )

M (C.170)
+ ng(a’njépi - szip) - ng<Wz’qunr + Zgnrjdpi - G?nZgnrjdqi)] :
The second part is treated similarly, leading to the final form for the helical part of the fourth

moment

Mih' Y a a a a a a a a a
% = Ton [65qurnZijnr — QGTnWiqunr — 35pq(Gmanj + Gjnam-) + S(Gianqnj + Gjanqni)

- G:n(ZgnTj(SPi + Zgnriépj) =+ G;n (a"jéqi + a7li6qj) - 2C;(;ZnZZqij - QngZlanp

+ ng(a’nj(spi + a’niépj - G?n(zgnrj(sqi + Zz()lnm(SQJ)] .

(C.171)
Contracting eq. (C.171) by setting p = ¢ gives
Mo _ 3 (Go 70 (1892 2) 1 (G ans + G ans)[-9+ 143+ 1] — 4G% 78
q2 - ]8O [ rn ij’m'( e T e ) + ( in@nj + jna’nl)[_ +1+35+ ] - pnijnp (0172)
i a r7a a a Y a r7a a a
= 80+ [SGanijnp - 4(Ginanj + Gjna”ﬂi)] = 20)* [QGanijnp - (Ginanj + Gjna”ﬂi)] .

which coincides with the stropholysis part of the Reynolds stress constitutive equation.
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Details of the stability
manipulation of the ASBM closure.

D.1 Blending method.

The idea behind the blending concept is to relate a fraction of the solution with a more
stable algorithm, particularly that of an eddy viscosity model (EVM), and the remaining
fraction with a less stable closure, such as ASBM. The fraction, expressed by a blending
factor «, starts from zero (pure EVM) and progressively increases until it reaches unity (purely
ASBM). O’Sullivan [94] already developed and successfully implemented a blending method
for incompressible momentum equations. Here we derive suitable blending expressions for the
momentum and energy transport equations, used in order to improve the robustness of the
ASBM closure when low-compressibility flows cases are conisdered, such the ones described in
Chapter 7. In order to derive the blended expressions, the Reynolds stress tensor is expressed

as a sum of two distinct parts,

exact 7/3 ous

0 —— 0
- %(PUQU/') = —%[a/’ugu; + (1= a)puzu ] (D.1)
J j

Substituting eq. (D.1) into the incompressible mean momentum equations and applying the

Boussineq approximation yields,
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Appendix D. Details of the stability manipulation of the ASBM closure.

o) | Opusty) 0 o 2K oo Opuy 9 [ 0,
ot du, T og, Pt g (Em @il = mama e e, D2)
ou; 8’L_I,j .

Here this idea is extended in order to account for compressible flows. Accordingly, the mean

momentum and energy equations are given by

o(pi;) o o ., 2 _ 0 Ou; Ou; 2 Ouy A —
oty P g (P 5Pu] = Ml G SHeg, Sl — e
(D.3a)
d(pe) 0 ey o ou; ~ 0u; 2 OJuy tot s
ot +87j(PUz(€+P)5zJ) = 87{ i [8:5] T i] 5’“8756;66 — pujul) + ¢ 03}
(D.3b)
Applying the Boussineq approximation yields,
0pi) | 0 02D on Oy 2 O,
ot + 0 (Puzuj) + oz, ((p+ 3P"@)51J] = oz, [(M+NT)[a$j + O, 3“3xk6”]]7 (D.4a)
ape) 0 9 0; | Dy 2 i

— (pu:(é N = — {0 _Z ZoKS: tots.
at +8$J (pul(e+p)6lj) azl{u][(ﬂ—'_:uT)[ + 6 ] 3pm6lj}+qj 674]}'

81']‘ (91171 3 8
(D.4b)

Substituting eq. (D.1) into egs. (D.4) and after a little bit of algebra yields the final blending

expressions

d(pui) 8(/)“2“])

apu;u;Jra{ [aai 0t

2pK _
T 2 axj{m (1= ey} = —a=g o gt 4 5 o
_2%5..“_(1_0[) [61_” +8Uj] |
30w HT Ox;  Ox;

and
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Appendix D. Details of the stability manipulation of the ASBM closure.

d(pe) 9 N 0 — 9 . ou  Ou; 2 Oug .
ou; Gﬂj 2 Ouy tot

_Z 8ii otg:] .
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(D.6)

+ (1 — a)ujpr(
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