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Περὶληψη

Στην παροὺσα διατριβὴ παρουσιὰζεται η υδροδυναμικὴ και μαγνητο-υδροδυναμικὴ ροὴ που

αναπτὺσσεται γὺρω απὸ ὲνα κὺλινδρο κυκλικὴς διατομὴς, σε γεωμετρὶες περιορισμὲνες

απὸ σταθερὰ τοιχὼματα. Η επὶδραση του περιορισμοὺ της ροὴς στα ποιοτικὰ χαρακτηρι-

στικὰ της ροὴς, μελετὴθηκε λεπτομερὼς με απευθεὶας αριθμητικὴ επὶλυση των εξισὼσεων

Navier-Stokes (DNS).
Συγκεκριμὲνα, μελετὴσαμε δὺο διαφορετικὲς περιπτὼσεις: τη ροὴ γὺρω απὸ κὺλινδρο

συμμετρικὰ τοποθετημὲνο σε κανὰλι και τη μαγνητο-υδροδυναμικὴ ροὴ υγροὺ μετὰλλου

πὰνω απὸ κὺλινδρο, τοποθετημὲνο σε αγωγὸ ορθογὼνιας διατομὴς, κὰτω απὸ την επὶδραση

εξωτερικοὺ μαγνητικοὺ πεδὶου.

Στην πρὼτη περὶπτωση υδροδυναμικὴς ροὴς γὺρω απὸ κὺλινδρο, δὶνεται ὲμφαση σε μια

περιοχὴ χαμηλὼν αριθμὼν Reynolds, 10 < Re < 390, στην οποὶα η ροὴ μεταπὶπτει απο
τη στρωτὴ σε μια ασταθὴ μεταβατικὴ κατὰσταση η οποὶα χαρακτηρὶζεται απὸ πολὺπλοκες

τρισδιὰστατες δομὲς. Η μετὰβαση σε τρισδιὰστατη ροὴ και η δημιουργὶα τρισδιὰστατων

διαταραχὼν πὶσω απὸ τον κὺλινδρο, εξετὰζονται με λεπτομὲρεια. Τα αποτελὲσματα κατα-

δεικνὺουν για πρὼτη φορὰ σε μια τὲτοια γεωμετρὶα, την παρουσὶα ασταθειὼν τὺπου Α και

Β (mode A and mode B instabilities) καθὼς και την παρουσὶα δινὼν εξὰρθρωσης (vortex
dislocations), στην περιοχὴ μεταβατικὴς ροὴς. Επιπλὲον, δὶνεται εξὴγηση για την αλλαγὴ
στη μορφὴ και διὰδοση των διαταραχὼν αυτὼν, εξαιτὶας της παρουσὶας των τοιχωμὰτων

του καναλιοὺ.

Στη δεὺτερη περὶπτωση, η μελὲτη της μαγνητο-υδροδυναμικὴς ροὴς γὺρω απὸ κὺλινδρο

σε ορθογὼνιο αγωγὸ καλὺπτει αριθμοὺς Reynolds μεταξὺ 0 < Re ≤ 5000, κὰτω απὸ
την επὶδραση μεγὰλου εὺρους μαγνητικὼν πεδὶων μεταξὺ 0 ≤ Ha ≤ 1120. Η εργασὶα
αυτὴ, αποτελεὶ μια πρὼτη προσπὰθεια για να καλὺψει το κενὸ που υπὰρχει στη βιβλιο-

γραφὶα στην περιοχὴ χαμηλὼν αριθμὼν Hartmann, για αυτοὺ του εὶδους τις ροὲς. Τα
αποτελὲσματα αποκαλὺπτουν μια μη-γραμμικὴ εξὰρτηση του κρὶσιμου αριθμοὺ Reynolds
για την ὲναρξη περιοδικὴς αποκὸλησης δινὼν (vortex shedding),σε σχὲση με τον αριθμὸ
Hartmann. Επιπρὸσθετα, τα αποτελὲσματα δεὶχνουν μια απροσδὸκητη αὺξηση του τρισ-
διὰστατου χαρακτὴρα της κατανομὴς των επιφανειακὼν δυνὰμεων που ασκοὺνται κατὰ

μὴκος του κυλὶνδρου, αυξὰνοντας τον αριθμὸ Hartmann. Τὲλος, μὲσα απὸ απεικονὶσεις
και ανὰλυση των χαρακτηριστικὼν που σχετὶζονται με τη δημιουργὶα και διὰδοση των
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δινὼν, προσφὲρουμε μια εξὴγηση για τη μη αναμενὸμενη αποσταθεροποὶηση της ροὴς,

καθὼς αυξὰνεται ο αριθμὸς Hartmann.
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Abstract

In this thesis, we are concerned with the hydrodynamic (HD) and magnetohydrody-
namic (MHD) three-dimensional flow of incompressible fluids over a circular cylinder in
confined geometries. Direct Numerical Simulations (DNS) are employed to investigate
in detail the effect of confinement on the characteristics of the generated flow regimes
and the evolution of force coefficients.

Two different cases are considered: the HD flow over a circular cylinder placed
symmetrically in a plane channel, and the MHD flow of liquid metal past a cylinder
placed symmetrically in a rectangular duct under the presence of an externally applied
magnetic field.

In the first case of a purely HD flow past a cylinder in a channel, the focus is on a
range of moderate Reynolds numbers, 10 < Re < 390, where the flow transitions from
a laminar flow regime to a highly complex three-dimensional tranistional-wake regime.
The onset of three-dimensionality of the flow and the appearance of three-dimensional
wake instabilities are studied in detail. For the first time for such a confined case, our
results show the existence of vortex dislocations, mode A and mode B instabilities,
along with a discontinuous change in the variation of the Strouhal number and base
pressure coefficient, associated with the inception of this transitional flow regime. We
also explain how the shape and evolution of instabilities is affected downstream by the
confinement of the channel walls.

In the second case, the MHD flow around the circular cylinder in a duct is simulated
for 0 < Re ≤ 5000, under low, moderate and strong magnetic fields, 0 ≤ Ha ≤ 1120.
This work is a first effort to try to fill the gap in the literature in the area of low Ha for
this type of flows. Furthermore, we investigate the evolution and distribution of force
coefficients, the enhancement or suppression of flow stability, as well as the induction of
secondary flows. Results reveal a non-monotonic dependance of the critical Reynolds
number for the onset of vortex shedding, with respect to the Hartmann number. Results
also show an unexpected increasing three-dimensionality of the force distributions along
the cylinder with increasing Ha. Finally, through visualizations and analysis of the
characteristics of the formation and propagation of vortices, we offer an explanation
for the surprising destabilization of the flow with increasing Ha.
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Chapter 1
Introduction

1.1 Motivation/Objectives

While the flow over a circular cylinder represents one of the classical problems in
fluid mechanics, the case of flow over a confined cylinder in a plane channel or a
rectangular duct remains relatively unexplored. The extra confinement provided by
the stationary no-slip walls affects the nature and stability of the flow. Understanding
the wide variety of rich flow phenomena that ensue in this case is of intrinsic interest
for the overall understanding of bluff body fluid dynamics. Even more importantly, the
study of such a flow configuration is of considerable practical interest. It represents an
idealization of several industrially important flows; typical examples include flow past
dividers in polymer processing, tubular and compact heat exchangers, etc. On the other
hand, liquid metal flow in confined arrangements under the presence of a magnetic
field also plays a significant role in a wide range of applications in engineering and
industrial processes, such as stirring of melts in the metallurgical industry and cooling
of liquid metal blankets in fusion reactors. Introducing a cylindrical obstacle in the
flow can induce vortices and enhance mixing and heat-transfer rates to favour these
processes. Therefore, understanding the dynamics of a three-dimensional wake behind
a confined cylinder, the enhancement or suppression of flow stability, and the induction
of secondary flows, can provide valuable knowledge with practical importance.

The goal of this work is to produce Direct Numerical Simulation (DNS) results of the
three-dimensional hydrodynamic (HD) and magnetohydrodynamic (MHD) flow over a
confined cylinder in a channel and a rectangular duct, at low to moderate Reynolds
number, using the Finite-Volume method. Understanding the flow behind a confined
bluff body poses a great challenge, especially in the transitional regime where a large
number of instabilities and physical phenomena take place. DNS simulations provide
an accurate and reliable research tool to analyze the complicated physics of these
instabilities. The main objective of this study is to enhance our understanding of these
complex flow regimes through full three-dimensional Direct Numerical Simulations.

1
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1- 2 Chapter 1. Introduction

Two cases of flow have been studied. First, we have investigated in detail the
flow around a circular cylinder placed symmetrically in a plane channel. Particu-
larly, we describe the confinement effect due to the channel’s stationary walls on the
force coefficients and the associated Strouhal number, as well as on the generated flow
regimes. Secondly, we have examined the flow of liquid metal around a circular cylinder
placed symmetrically in a rectangular duct, under the influence of an externally applied
magnetic field. Varying the intensity of the magnetic field, we have investigated the
evolution of flow coefficients and the wake characteristics of the flow.

The design of the current thesis and the roadmap that has been used for its imple-
mentation, is shown in Figure 1.1

1.2 Thesis Structure

This thesis is structured as follows. In Chapter 2 we give a general overview of the
current state of the art in the area of HD and MHD flows over a circular cylinder in
confined and unconfined geometries. In the following chapter (Chapter 3) we briefly
introduce the basic computational methods for fluid dynamics and describe the dis-
cretization methods used in our code for solving the governing equations of motion. In
Chapter 4 we present the case of flow past a confined cylinder in a channel, while the
case of liquid metal flow over a cylinder in a rectangular duct is presented in Chap-
ter 5. Finally, in Chapter 6, we give a brief summary of the main results from this
work, before discussing future work.
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Examine the case when the circular cylinder is 

confined between plates parallel to the cylinder 

and/or end plates, and under the influence of an 

externally applied magnetic field. These are cases 

where much less is known. Understand how the 

nature and stability of the flow is modified and 

differs from its unconfined counterpart and 

identify open issues that can be clarified through 

Direct Numerical Simulations.  

Understand the different aspects of the basic 

hydrodynamic flow over a free, unconfined 

circular cylinder, thorough review of the vast 

amount of work in the literature. 

Investigate by means of three-dimensional Direct 

Numerical Simulations (DNS) the onset and 

development of three-dimensional instabilities in 

the wake of the flow over a circular cylinder 

confined in a plane channel, at moderate 

Reynolds numbers. 

Using three-dimensional DNS, examine the effect 

of the magnetic field on the force coefficients and 

the generated flow regimes, for the case of a 

circular cylinder placed symmetrically in a 

rectangular duct, under the influence of an 

externally applied magnetic field, in the area of 

low and moderate Hartmann numbers. 

Figure 1.1: Thesis roadmap.
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Chapter 2
State of the art

A large amount of work in the literature is dedicated to the investigation of flow over an
unconfined circular cylinder, both experimentally and numerically. On the other hand,
the case of a circular cylinder confined in a channel has received much less attention.
Even fewer studies have been done regarding the case of a cylinder confined in a duct. In
the following subsections, a short review of the existing knowledge for both unconfined
and confined cases is given. In this thesis, we are interested in the flow characteristics
of incompressible, Newtonian fluids with density ρ and kinematic viscosity ν, ranging
from laminar conditions up to the very early stages of turbulence. In this context,
this review is limited to the corresponding flow regimes preceding turbulence. First, in
Section 2.1, we present the fundamental features of flow over an unconfined cylinder.
Special attention has been given in the flow regime where transition to turbulence
occurs, and for this reason a more detailed description of transition is given in Section
2.2. Then in Sections 2.3 and 2.4, we investigate the effects of blockage and end-plates
confinement, respectively. Finally in Section 2.5, we present the magnetohydrodynamic
(MHD) case of flow over a cylinder in a rectangular duct.

2.1 Flow over an unconfined circular cylinder

Over the years, a significant amount of information dealing with different aspects of the
basic hydrodynamic flow over a free, unconfined circular cylinder has been added to the
literature. Several experimental and numerical studies have been performed to analyze
the characteristics of the wake, the stability of the flow, the onset of the vortex shedding
mechanism, as well as global flow parameters, such as the force coefficients. Extensive
reviews of the accumulated knowledge can be found in the books of Zdravkovich [1, 2]
and in the review paper of Williamson [3].

In this flow, non-dimensionalization of the Navier-Stokes equations leaves one gov-
erning dimensionless parameter. This is the Reynolds number, Re = U0D/ν, where U0

is the fluid typical velocity and D is the cylinder’s diameter (or any other characteris-

5
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2- 6 Chapter 2. State of the art

Figure 2.1: Visualization of laminar steady regime: (a) creaping flow, (b) steady
recirculation regions.

Figure 2.2: Sequence of snapshots illustrating the vortex shedding process in the
unsteady flow regime.

tic length of the fluid domain). Re gives a measure for the ratio of the inertial to the
viscous forces. Depending upon the value of Re, the properties of the flow differ and
the flow may be divided into different regimes.

For Reynolds numbers up to approximately Re ' 46, the flow is laminar and steady
[4, 5, 6]. At Re less than approximately 5, the flow is fore and aft symmetric, divides
at the front stagnation point and reunites smoothly behind the cylinder as shown in
Figure 2.1(a). For values of the Reynolds number in the range of Re = 5 to 46, the
boundary layer on the cylinder surface separates, owing to the large friction forces in
the thin viscous layer. Consequently two stable, well defined symmetric vortices are
formed in the downstream direction of the flow, which remain attached to the cylinder
as shown in Figure 2.1(b). The length of the recirculation zone behind the cylinder
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2.2. Transition to three-dimensionality 2- 7

(a) Mode A (b) Mode B (c) Vortex dislocations

Figure 2.3: Experimental visualization of mode A and mode B three-dimensional
instabilities along with vortex dislocations (Figure taken from Ref. [17]).

grows linearly with Re [4, 7, 8], while due to this increase, the base suction pressure
(pressure exerted on the base of the cylinder) decreases with increasing Re [9].

In the range of Re = 46 to 189 the flow remains laminar, however the stability of
the flow is lost [6, 10]. As a result of a supercritical Hopf bifurcation of the steady flow
[11, 12], the recirculation region develops instabilities, that lead to a two-dimensional
oscillatory flow. Vortices are shed from alternate sides of the cylinder, forming two rows
of vortices that move alternately clockwise and anticlockwise, giving rise to the well-
known von Kármán vortex street [13, 14]. The shed vortices, called primary vortices,
are regularly placed behind the cylinder and decay as they convect downstream (see
Figure 2.2). The wake is perfectly time-periodic, and the characteristic frequency of
oscillation of the vortices is expressed in non-dimensional form as the Strouhal number,
St. In this flow regime, St increases with Re [15] as shown in Figure 2.6(a). The base
suction also increases with Re (see Figure 2.6(b)), due to the shrinking of the vortex
formation region and the increase in the Reynolds stresses in the near wake region [16].

Beyond Re ' 189, the flow transitions to a three-dimensional wake-transition
regime, consisting of complex three-dimensional flow structures in the wake of the
cylinder. We shall discuss in more detail this regime in the following subsection.

2.2 Transition to three-dimensionality

Transition to three-dimensionality in the cylinder wake for the unconfined case is well
understood, and much work has already been done in this area [6, 15, 16, 17, 18, 19].
For values of the Reynolds number above Re ' 189 [6], three-dimensional effects
appear, and Roshko [10] was the first to observe a transition regime in the wake of
an unconfined circular cylinder. In this transition regime, three physically different
instabilities are observed, referred to by Williamson [20] as “mode A”, “mode B”, and
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2- 8 Chapter 2. State of the art

(a) Mode A (b) Mode B

Figure 2.4: Physical mechanism (a) in the primary vortex core to produce vortex
loops, and (b) in the braid shear layer to produce mode B streamwise vortices (Figure
taken from Ref. [20]).

“vortex dislocations” (see Figure 2.3).

Mode A is characterized by a discontinuous change in the wake formation, as the
primary spanwise vortices become unstable and generate large-scale streamwise vortex
loops (see Figure 2.3(a)), at a wavelength of around 3 to 4 cylinder diameters [6, 20, 21].
During the process of shedding, a spanwise waviness of the primary vortex cores ap-
pears. This initial small undulation grows until segments of the primary vortex are
caught in the reverse flow and convected back upstream forming vortex loops, while the
remaining segments of the roller travel downstream. A feedback mechanism between
subsequent vortex cores, leads to a self-sustained tearing of the primary vortices occur-
ring at fixed spanwise locations over time (see Figure 2.4(a)). The spanwise-periodic
deformation of core vorticity during shedding is followed by the formation of stream-
wise vortices from the side of the vortex loops, in a process that gives an out-of-phase
streamwise vortex pattern. Most of the streamwise vorticity is being pulled out of the
vortex core and into the braid region [20].

Mode B corresponds to the appearance of small scale streamwise vortex structures,
(see Figure 2.3(b)) with a wavelength of approximately one cylinder diameter [6, 20, 21].
This instability is not related with the waviness of the primary vortex core as in mode
A, and scales on the smaller physical structure in the flow, the braid shear layer. The
symmetries of mode B instability are linked with the presence of pre-existing streamwise
vortices in the vicinity of newly forming streamwise vortices. The induced velocity from
pairs of streamwise vortices formed in a previous half cycle, causes a spanwise waviness
in the newly forming braid shear layer, which in turn will induce tilting and stretching
of streamwise vorticity in the new braid shear layer (see Figure 2.4(b)). This imprint
of one braid onto the next braid, generates an in-phase arrangement of streamwise
vortices which reside in the successive braids [20]. The existence of both mode A and
mode B of vortex shedding, has been confirmed by many three-dimensional numerical
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2.2. Transition to three-dimensionality 2- 9

Figure 2.5: Out-of-phase and in-phase symmetry of mode A and mode B three-
dimensional instabilities respectively (Figure taken from Ref. [20]).

simulations [22, 23, 24, 25].

Finally, large-scale spot-like three-dimensional structures called “vortex disloca-
tions” represent another natural, fundamental feature of wake transition (see Fig-
ure 2.3(c)). At times, spontaneously along the span, shedding of vortices in neighboring
cells in the near-wake falls out-of-phase with respect to each side [17]. This leads to a
breakdown of the primary vortex core, modifying substantially the spanwise structures
and causing the flow to become irregular. Williamson [17] suggests that this phe-
nomenon is mostly responsible for the low-frequency fluctuations reported by Roshko
[10] to characterize the transition regime, and the appearance of turbulent motion.
However Williamson [20] places emphasis on the difference between these “two-sided”
dislocations and the “one-sided” end-dislocations that are associated with the effects
of end conditions, and which are only formed near the ends of the span between span-
wise cells of different frequencies. Proper vortex dislocations are two-sided and are not
an artifact of end conditions. They are triggered naturally, and their development is
systematic and repetitive [19].

Wake transition is further characterized by velocity and pressure modifications.
Various experimental and numerical investigations [15, 23, 24, 25] have shown the ex-
istence of two discontinuities in the evolution of Strouhal frequency with respect to
Reynolds number, as shown in Figure 2.6(a). At the first discontinuity, the Strouhal
frequency drops from the laminar curve to one corresponding to a mode A three-
dimensional shedding plus vortex dislocations. Despite the debate among researchers
about the role of large scale dislocations in the hysteretic behaviour of St–Re relation-
ship, it is widely believed, and has been numerically confirmed [25], that the appearance
of dislocations is responsible for this event. As the Reynolds number is increased fur-
ther, another discontinuity is observed, this time related to mode B instabilities. This
discontinuity is not hysteretic. Experiments have shown that the transition from mode
A to mode B shedding takes place in the Re range 190 to 260.

According to Williamson [20] and Roshko [26] the presence of instabilities in the
flow is also accompanied by variations of the base pressure coefficient, as shown in
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2- 10 Chapter 2. State of the art

(a) (b)

Figure 2.6: (a) Strouhal number St, versus Re, and (b) base pressure coefficient Cpb,
versus Re over the laminar and 3-D transition regimes, for the case of an unconfined
circular cylinder (Figures taken from Refs. [17] and [24] respectively).

Figure 2.6(b). Around Re = 180 a drop in the pressure coefficient is observed which
is associated with the presence of mode A instability and vortex dislocations. With
increasing Re, the the pressure coefficient rises again until it reaches a local maximum
around Re = 260. From that point on, the three-dimensional vortex pattern changes
to one corresponding to mode B instability, and the base suction begins to decrease as
the three-dimensional structures become more disordered.

2.3 Circular cylinder placed in a channel

When the circular cylinder is confined between plates parallel to the cylinder axis, the
nature and the stability of the resulting flow is modified and differs from its unconfined
counterpart due to the blockage effects induced by the stationary walls.

A typical confined geometrical configuration is shown in Figure 2.7. The geometry
consists of an infinitely long circular cylinder, of diameter D, placed in a plane channel.
In this case, two additional dimensionless parameters govern the flow, namely the
blockage ratio, β, and the gap ratio, γ. The ratio of the cylinder diameter to the
distance between the channel walls H, defines the blockage ratio, β = D/H, while the

Figure 2.7: Geometrical configuration for the case of a circular cylinder confined in
a plane channel.
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2.3. Circular cylinder placed in a channel 2- 11

Figure 2.8: Change of critical Reynolds number for the onset of vertex shedding, with
blockage ratio, β. Plots show change of time-dependent flow with Re and β (Figure
taken from Ref. [27]).

ratio of the minimal distance between the cylinder wall and the wall of the channel G,
over the cylinder diameter, defines the gap ratio, γ = G/D.

To analyze the influence of the blockage ratio on the wake of the flow, the case of a
circular cylinder placed symmetrically in a channel is considered. At small blockage ra-
tios, β < 0.1, the flow is quite similar to the unconfined case, and blockage effects may
be ignored. In the range 0.1 < β < 0.6, blockage ratio effects are more pronounced. In
the laminar flow regime, for which the wake consists of a pair of standing vortices at-
tached behind the cylinder, when the blockage ratio is increased, which is equivalent to
moving the channel walls closer to the cylinder, the flow around the cylinder accelerates
based on the continuity equation, and the flow carries locally higher momentum. As a
result, with increasing β, the point where boundary layer separation occurs is pushed
leeward, leading to a shorter and more narrow recirculation zone, compared with that
of a lower β value [28, 29, 30, 31]. Furthermore, increasing β, enhances stability of the
near wake, and transition from steady to unsteady flow in the laminar flow regime is
delayed [27, 28, 32], with respect to the unconfined cylinder case, as seen in Figure 2.8.
The onset of the instability is caused by the formation of gathers (spikes) along the
shear layers, and the oscillation of the wake stagnation point in the transverse direction
[4, 8]. The presence of the channel walls suppress such disturbances, hence transition
occurs at higher Reynolds numbers [32]. Another interesting phenomenon related with
blockage effects, is the inversion of the von Kármán vortex street, in the unsteady
regime. Soon after a pair of vortices is shed from the top and bottom of the cylinder,
they are repelled from the channel walls, and eventually their trajectories intersect
with the vortices ending in opposite vertical positions with respect to the unconfined
case [33]. Further increasing the blockage ratio, β > 0.6, alters the overall flow and
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2- 12 Chapter 2. State of the art

Figure 2.9: Variation of the critical Reynolds number with blockage, β, and gap
ratio, γ (Figure taken from Ref. [34]).

vortex structure radically. In addition to the first critical Hopf bifurcation observed
for values of β below 0.6, two more curves of neutral stability were found [27], and
also vortices start to shed both from the cylinder and the channel walls the coupling
of which modifies the wake flow and makes it much more complex (see Figure 2.8).

In the case where the cylinder is placed away from the channel axis of symmetry, an
asymmetric blockage arises. In this kind of blockage, the influence of the wall nearest
to the cylinder is dominant. For a given β, decreasing the gap ratio, i.e. moving the
cylinder closer to one of the channel walls, the critical Reynolds number at which the
flow becomes unsteady increases as shown in Figure 2.9. This delay of transition is
attributed to the coupling of the boundary layer at the wall with that of the cylinders,
which stabilizes the flow [33, 34]. Afterwards in the unsteady regime, with decreasing
γ the once regular structure and symmetry of vortex shedding is distorted, and a single
raw of like-signed vortices is observed.

All the aforementioned studies, where either two-dimensional numerical simula-
tions or experiments restricted to Reynold numbers where the flow remained two-
dimensional. Studies investigating three-dimensional effects at low Reynolds numbers,
either experimentally or numerically, are relatively scarce. Almost all three-dimensional
studies are at higher Reynolds numbers, in the range O(104)–O(105) [35, 36, 37, 38].
These studies investigate the flow characteristics in the wake of a circular cylinder
placed near a plane wall at various gap heights, G, with the further wall being at
infinity. Their results show that, for small gap ratios, γ ≤ 0.3, vortex shedding is
suppressed. For larger gap ratios, some flow quantities, such as the Strouhal number,
remain remarkably constant and independent of the gap ratio. Moreover, Wang and
Tan [38] found that for the intermediate gap ratios 0.3 ≤ γ ≤ 0.6 the influence of
the wall is fairly strong, causing the flow to develop a distinct asymmetry about the
cylinder centreline.

Only, two quite recent studies focused on the development of three-dimensional
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2.4. Effect of end plates 2- 13

effects for a confined circular cylinder. Rehimi et al. [39], carried out experimental
studies in the Reynolds number range 30–277 for a blockage ratio of 1/3. In their work,
three-dimensional instabilities were observed having close similarities with mode A and
mode B patterns of vortex shedding found in the unconfined case. However, in their
experiments, mode A appeared at Re = 159, which is considered premature relative to
the critical value of Re ' 189 for the onset of this instability in the unconfined case.
They attributed this behavior to wall perturbations. The second study was that of
Camarri and Giannetti [40] where a three-dimensional Floquet stability analysis was
used to investigate the three-dimensional stability of the wake behind a symmetrically
confined circular cylinder for a different blockage ratio of 1/5, for Re up to 300. Their
results showed that the transition to a three-dimensional state has the same space-
time symmetries as the unconfined case. They also found that the critical Reynolds
numbers for the onset of instabilities, when based on the centerline velocity, are similar
to the ones found in Barkley and Henderson [6] for the unconfined case. However, they
observed that due to the inversion of the wake vortices, the linear unstable modes are
significantly affected, leading to differences between the confined and the unconfined
cases.

2.4 Effect of end plates

When the cylinder is further confined between end plates normal to the cylinder axis,
in contrast to the infinitely long cylinder (unconfined case or channel flow), the wake
flow is highly three-dimensional. End effects that occur at the junction of the cylinder
with a wall, alter the flow structure in regions both upstream and downstream of the
cylinder and very complex three-dimensional flow structures arise.

Figure 2.10, represents a typical geometrical configuration, that incorporates end
effects. The geometry consists of a circular cylinder of finite height, with both ends of
the cylinder being attached to side walls. When compared with the confined channel
flow case, a different governing parameter appears. This is the aspect ratio, α = W/D,
which is defined by the ratio of the cylinder length over its diameter.

One important three-dimensional feature associated with the presence of a wall at

Figure 2.10: Geometrical configuration for the case of a circular cylinder confined
by end plates.
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2- 14 Chapter 2. State of the art

Figure 2.11: Change of critical Reynolds number, for the transition from steady to
unsteady flow, with aspect ratio, α (Figure taken from Ref. [42]).

the end of the cylinder is the formation of a horseshoe vortex system [2, 41]. At the
cylinder-wall juncture, the cylinder penetrates the wall boundary layer, creating a re-
gion of adverse pressure gradient. As a result, as the flow approaches the wall-mounted
cylinder, a three-dimensional separation of this boundary layer occurs (upstream of the
cylinder) producing a system of vortices that is swept symmetrically around the base
of the cylinder. Due to its shape, it is usually referred as the horseshoe-vortex system.
The characteristics of such a system depend upon the thickness of the wall boundary
layer and the diameter of the cylinder.

Like the blockage and gap ratios, the aspect ratio is also a very important parameter
when considering the stability of the steady wake [32, 42]. For large aspect ratios,
α > 25, the critical Reynolds number for the onset of vortex shedding remains relatively
unaffected, as seen in Figure 2.11 [42]. However, for smaller aspect ratios, α < 25, as
α is decreased, the standing vortex behind the cylinder is stabilized and the formation
of a vortex street is suppressed until larger Reynolds numbers, with an exponential
increase.

End conditions also have a significant influence on the vortex shedding phenomenon.
As soon as vortex shedding takes place, the vortices adjacent to the end walls begin
to bend, due to the lower velocity with respect to the center of the span. This leads
to an oblique shedding pattern, i.e. vortices are shed at an oblique angle with respect
to cylinder axis, which can be observed even for cylinders with very large aspect ratios
[43, 44]. In addition, cells with different frequencies and shedding angles, at different
spanwise locations are formed [45, 46, 47]. This difference means that the number of
vortices in neighbouring cells cannot be the same, causing the appearance of vortex
dislocations [44] or vortex splitting [48] at the cell boundaries.

All these studies clearly show that the presence of the side walls substantially affects
the forces and the vortex-shedding phenomena from the cylinder. Such changes in the
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2.5. MHD duct flow over a cylinder 2- 15

flow patterns are also reflected in the values of the drag and lift coefficients, and
Strouhal number. The situation becomes even more complex when blockage and end
effects are combined, i.e. in the case of a cylinder placed in a rectangular duct with all
walls being in close proximity. However even though such flows are common in many
engineering systems (e.g., heat exchangers, cooling systems for electronic components
etc.), only a handful of studies are available.

2.5 MHD duct flow over a cylinder

In the case where the flow is exposed to a uniform magnetic field, of amplitude B0, and
the fluid is electrically conducting with an electric conductivity σ, the wake-flow char-
acteristics are dominated by magnetohydrodynamics (MHD) phenomena. A detailed
overview of MHD can be found in the books of Davidson [49], and Müller and Bühler
[50].

Including the magnetic field effects in the Navier-Stokes equations in dimensionless
form, introduces a new governing parameter in addition to Re found in the hydrody-
namic case. This is the interaction parameter, N = σWB2

0/(ρUo), which represents the
ratio of electromagnetic to inertial forces. The interaction parameter can be expressed
in terms of the Reynolds number as N = (DHa2)/(WRe), where Ha = WB0

√
σ/(ρν)

is the Hartmann number, the square of whitch characterizes the ratio of electromagnetic
to viscous forces.

This study is limited to the particular case of a circular cylinder placed symmetri-
cally in a rectangular duct, under the influence of an external homogeneous magnetic
field as shown in Figure 2.12. The magnetic field is applied along the spanwise direction
z, aligned with the cylinder axis. Furthermore, the walls of the cylinder and the duct
are assumed to be electrically insulating. The two dimensionless parameters character-
izing the geometry, are the blockage β = D/H and the aspect ratio α = W/D, which
were described in previous sections.

Any movement of a conducting fluid under the influence of a magnetic field, B0,

Figure 2.12: Geometrical configuration for the case of a circular cylinder confined
in a rectangular duct under the influence of an externally applied magnetic field.
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Figure 2.13: (a) Sketch of current paths and corresponding Lorentz forces, fL, at
the cross section of a rectangular duct with insulating walls, and (b) influence of fL on
the velocity profile (Figure taken from Ref. [50]).

causes an electric field u×B0 to develop, and as a result electric currents, of density j,
are generated. In turn, these currents, induce a second magnetic field. The ratio of the
induced magnetic field over the externally applied field is termed the magnetic Reynolds
number, Rm [51]. However, for most cases of liquid metal flow encountered in industrial
applications, the magnetic Reynolds number is generally very small, Rm � 1, hence the
induced magnetic field is found to be negligible when compared to the imposed magnetic
field. The interaction of the dominant imposed magnetic field with the induced currents
gives rise to an MHD force, known as the Lorentz force, j×B0.

The Lorenz force acts in two ways; first it modifies the velocity distribution of the
primary flow and, second due to its dissipative nature, it dampens the fluctuations
of the unsteady flow [50, 49]. In the case of a rectangular duct with insulating walls
considered here, the electric currents induced in the bulk flow are closed within the
fluid, as shown in Figure 2.13. The magnitude of the resulting Lorentz forces depends
linearly on the velocity, and tends to decelerate the fluid near the center of the duct.
As a result, the flow exhibits a large, uniform core, where the velocity becomes nearly
constant, and relatively thin boundary layers, where the velocity falls to zero. The
boundary layers that develop at the walls parallel to the magnetic field, are called
Shercliff layers, and have a thickness of δS ∼ 1/

√
Ha. At the walls perpendicular

to the magnetic field, thinner boundary layers develop with sharp velocity gradients,
called Hartmann layers [52]. Depending on the intensity of the magnetic field, these
layers can be extremely thin (δH ∼ 1/Ha).

In such wall-bounded flows, if both the Hartmann number and the interaction pa-
rameter are very high, i.e. Ha� 1 and N � 1, any velocity variations parallel to the
direction of the magnetic field are strongly suppressed by Joule dissipation, except in
the viscous Hartmann layers [49, 53]. In these regions, because of the no-slip boundary
condition, strong velocity gradients persist. Moreover, Lorenz forces diffuse momen-
tum along the field lines and vortices whose axes are inclined to the magnetic field are
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Figure 2.14: Variation of the critical Reynolds number for the appearance of different
flow regimes, with Hartmann number, Ha (Figure taken from Ref. [56]).

strongly damped. On the other hand, vortices whose axes are parallel to the magnetic
field are only influenced by friction in the Hartmann layer, which, however is signif-
icantly (Ha times) less efficient than Joule damping [49, 53]. These electromagnetic
effects drive the flow toward a quasi-two-dimensional state, in which one can distinguish
a core flow region, where both the gradient of the velocity and the velocity component
in the direction of the magnetic field are negligible, and two thin Hartmann layers,
where Lorentz forces are balanced by the viscous friction. Under these conditions, in-
tegrating the three-dimensional flow equations along the direction of the magnetic field,
and adding a linear breaking term containing the net effect of the Lorentz forces, yields
a model equation satisfying the two-dimensional hydrodynamic Navier-Stokes equation
[54, 55]. An obvious advantage of this quasi-two-dimensional (Q2D) model is that it
can reduce the computational cost of an initially three-dimensional problem by trans-
lating it to a two-dimensional one. Traditionally, most of the simulations of MHD flows
in such geometrically complex domains, as the one considered in this study, rely on
this model due to the high computational costs associated with full three-dimensional
simulations.

While several studies in the literature deal with MHD flow passed a cylinder, only
a few consider the case where the magnetic field is aligned with the axis of a confined
cylinder. Thus, the only results previously reported in the literature for this case are
from Refs. [56, 57, 51, 58, 59]. Results for N � 1, showed that the stability of the wake
flow is significantly influenced by the magnetic field. References [51, 56, 57] showed
that for moderate and high values of the Hartmann number, Ha ≥ 320, the onset of
vortex shedding is delayed till higher Reynolds numbers. For a given blockage ratio β, a
quasi-linear dependence of the corresponding critical Reynolds number on Ha has been
observed (e.g. dashed line separating regimes II and III in Figure 2.14) [51, 56, 57]. This
behaviour was attributed to the damping of the fluctuations of the unsteady flow by the
magnetic field. Hussam et al. [57], carrying out a parametric study based on the duct
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2- 18 Chapter 2. State of the art

Figure 2.15: Variation of the critical Reynolds number for the onset of vortex
shedding, with Hartmann number, Ha, and blockage ratio, β (Figure taken from Ref.
[57]).

blockage ratio, observed furthermore that with increasing β, the slope of the critical
Reynolds number curve is also found to increase (see Figure 2.15). This was associated
with the interaction of the cylinder wake and the side walls, as already described in
a previous section [57, 58]. By increasing further the Reynolds number, experiments
from Frank et al. [51] and numerical simulations from Dousset and Pothérat [56] have
revealed the presence of an additional flow regime that follows the laminar periodic
vortex shedding, and which is not found in the purely hydrodynamic case (regime IV
in Figure 2.14). In this regime, the flow is characterized by irregular vortex patterns,
with secondary vortices being released from the side walls [56]. Again, as the imposed
magnetic field is increased, transition to this regime is delayed. Mück et al. [59]
showed that for interaction parameters in the range 2 ≤ N ≤ 10 transition from a
time-dependent three-dimensional flow to a two-dimensional state occurred. After the
transition to a quasi-2D flow, cigar-shape vortices (larger diameter at the center, smaller
diameter near the Hartmann walls) were observed (see Figure 2.16). They attributed
the curvature of the vortices obtained near Hartmann walls not to the higher viscous
damping in these regions, but rather to an inertial contribution to the electric potential
in the core flow.

However, most of the aforementioned studies considering the case of a cylinder con-
fined in a duct were not based on a fully three-dimensional analysis. Refs. [56, 57, 58]
performed numerical simulations using a Q2D model. Even in the experimental study
carried out by Frank et al. [51], a non intrusive measurement device was used to calcu-
late the core flow quantities by measuring the electric potential only at one Hartmann
wall. Only Mück et al. [59] performed 3-D simulations, however an analytical wall
boundary model was again used, a fact that precluded the resolution of the Hartmann
layers, therefore making impossible the complex analysis of the interaction between the
vortices and the walls. In addition, due to the limited available computer resources at
that time only two Reynolds numbers could be investigated (Re = 200 and 250), and
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2.5. MHD duct flow over a cylinder 2- 19

Figure 2.16: For N ∼ 1, vortices aligned with the magnetic field are not strictly
two-dimensional, but have a slight curvature along the direction of the magnetic field
(Figure taken from Ref. [59]).

the Hartmann number was varied in the range of 63 < Ha < 850.
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Chapter 3
Important ingredients of numerical solution
method

The equations describing fluid flow have been known for over 150 years. However, these
equations are very complex and highly non-linear, making them extremely difficult to
solve. In the range of practical problems, analytical solutions are known only for
a few very simple cases. However, thanks to the availability and rapidly increasing
speed of supercomputers, an alternative approach is to solve the governing equations
numerically on a computer. This area of solving approximations to the governing fluid-
flow equations using numerical methods is known as Computational Fluid Dynamics
(CFD).

The field of CFD is as large as the field of fluid mechanics itself, and numerous
books have been written regarding the mathematical modelling and numerical analysis
employed in CFD for solving the partial differential equations that describe fluid flows
and related phenomena [60, 61, 62, 63]. Therefore, in this chapter we shall focus
our attention only in the techniques and methods implemented in the numerical code
used in this study. All computations have been performed using the unstructured
nodal-based finite-volume code CDP 1 as a general platform. The CDP code has been
developed by the Center of Turbulence Research (CTR) at Stanford University. It
should be noted here, that for the study of MHD fluid flow, we have complemented this
code with a module to compute the additional force (Lorentz force) that appears in the
governing equations. CDP is a highly scalable parallel code, capable of time-dependent
simulations on fully unstructured grids with over 100 million control volumes.

This chapter is divided into five sections. In Section 3.1, we review the general
governing equations of hydrodynamic and magnetohydrodynamic flow. In Section 3.2
we give a general outline of the finite-volume method used for the discretization of
the partial differential equations describing the flow. In Sections 3.3 and 3.4 we dis-
cuss various grid-generation methods and mesh structures. Finally, in Section 3.5 we

1The code is named after the late Charles David Pierce (1969-2002)
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3- 22 Chapter 3. Important ingredients of numerical solution method

introduce the methods for solving the discrete equations, focusing primarily on the
finite-volume method. Special problems arising due to the numerical approximation of
the flow equations are also discussed and methods to resolve them are also introduced
in this section.

3.1 Mathematical model

The first step in any analysis is the derivation of the basic equations describing the
behaviour of the flow These equations basically represent mathematical statements of
fundamental conservation laws of physics: conservation of mass and momentum.

Before turning our attention to the derivation of the governing equations, we need
to define the system on which the basic balances will be made. It is common practice in
CFD to treat fluid as a continuum. This means that the molecular structure of matter
can be ignored, and even in an infinitesimally small element of the fluid, macroscopic
properties, such as velocity, pressure and density, are assumed not to be influenced by
individual molecules. In this way, we can focus our attention on an infinitesimally small
region in space through which matter is flowing and apply to it the basic conservation
laws (see Figure 3.1). The defined space is sometimes called a control volume.

Figure 3.1: Illustration of a fluid element in cartesian coordinates.

The conservation of a certain flow quantity in a control volume analysis can be
expressed in the following form:

production rate = output rate− input rate + accumulation rate (3.1)

This equation states that the amount of a property created in the control volume
per unit time, equals the rate of change of the property stored within the control
volume plus the net flux of the property crossing the boundaries of the control volume.
Applying the basic conservation laws to the control volume leads to the fluid flow
equations.
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3.1.1 Continuity equation

A basic principle of science and engineering is the conservation of mass. In particular,
the law of conservation of mass states that, given an isolated system, the amount of
matter present in the system remains constant over time. Alternatively, mass may be
neither created nor destroyed.

Let us now consider an infinitesimal control volume (CV) of dimensions dx, dy and
dz within a fluid flowfield in a cartesian coordinate system, as shown in Figure 3.1. The
fluid velocity and density are respectively u and ρ, with the components of velocity
being u, v, w. Following equation (3.1) and the definition of mass law, which states
that mass may be neither created nor destroyed, mass conservation may be expressed
verbally as:{

rate of mass
accumulation in the CV

}
=

{
rate of mass entering minus

rate of mass leaving the CV faces

}
(3.2)

The time rate of change of mass within the CV is:

∂

∂t
(ρ dx dy dz) = dx dy dz

∂ρ

∂t
. (3.3)

Mass flow terms occur on all six faces. If the mass flux entering the volume through
the left face is ρu dy dz, the mass leaving the opposite side of the volume is:[

ρu+
∂(ρu)

∂x
dx

]
dy dz . (3.4)

Summing up the contributions from all six faces of the elemental control volume leads
to a partial differential equation, which in index notation reads:

∂ρ

∂t
+
∂(ρui)

∂xi
= 0 . (3.5)

This equation is known as the continuity equation in cartesian coordinates. In the case
of fluids that are incompressible, this equation reduces to:

∂ui
∂xi

= 0 . (3.6)

3.1.2 Momentum equation

Another important principle is the conservation of momentum, also known as New-
ton’s second law of motion. In the context of the control volume method, the law of
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momentum conservation states that:
rate of increase
of momentum
in the CV

 =


net momentum influx
crossing the faces

of the CV

+

{
any external forces
acting on the CV

}
(3.7)

Following an analogous analytical formulation as used above for deriving the con-
tinuity equation, a first expression for the conservation of momentum in differential
form is: [

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj

]
dx dy dz =

∑
Fi , (3.8)

where
∑
Fi is the sum of externally applied forces on the control volume. On the

left hand side of the equation, the first term represents the time rate of change of
momentum within the CV, while the second term is associated with the momentum
fluxes.

Let us turn our attention now on the forces acting on the control volume. These
forces can be expressed as the sum of body forces, fbi, and surface forces, fsi , per unit
volume:

1

dx dy dz

∑
Fi = fbi + fsi . (3.9)

Body forces act on the entire control volume, and include forces induced by external
fields, such as gravity and magnetic fields. The only body force we shall consider in
this study is the Lorentz force. Surface forces arise due to the stresses on the sides of
the control surface. These stresses, σij, are the sum of the hydrostatic pressure, p, plus
viscous stresses τij and can be defined by the equation:

σij = −pδij + τij , (3.10)

where δij is the Kronecker’s delta. Pressure is negative by convention. Stresses, σij and
τij, are second-rank nine-component tensor quantities, unlike velocity which is a tree-
component vector, and are identified by two subscripts. The first subscript i indicates
the normal direction of the face on which the stress acts, while the second subscript j
identifies the direction of the stress. The area of the element’s face is denoted by the
vector, Ai. Thus the force is really the inner product of A and τ , i.e. Fi = Ajτji.

Combining the contribution to the momentum balance coming from the fluid flow
with the one coming from the stresses we get:

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+
∂τik
∂xk

+ fbi . (3.11)
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Using the continuity equation (3.5) the above equation reduces to:

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂p

∂xi
+
∂τik
∂xk

+ fbi . (3.12)

This equation is the differential momentum equation in its viscous stress approach,
and it is valid for any fluid in general motion. However, despite the brief and compact
form of the equation, we still need to write the viscous stresses in terms of velocity
components. Otherwise the system of equations (continuity and momentum equation),
can not be closed, i.e. there are fewer equations than the unknown dependent variables,
and solution is not possible.

To do so, equation (3.12) must be coupled with a material constitutive equation. A
constitutive equation is an empirical relation that can be applied to particular materials
under limited circumstances. Under the assumption of a Newtonian fluid, i.e. an
idealized fluid that approximates the behaviour of air, water and many other fluids,
the following constitutive equation can be used.

τij = −2

3
µSkkδij + 2µSij , (3.13)

where µ is the fluid viscosity and Sij the rate of strain tensor given in terms of velocity
gradients as:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3.14)

Equation (3.13) is called the Newton’s Law of viscosity and linearly relates the stress
to the rate of strain in a fluid medium.

For an incompressible fluid, with specified density and viscosity, which obeys the
Newtonian constitutive equation, substitution of equation (3.13) in (3.12) yields the
well known Navier-Stokes equations of motion:

ρ
∂ui
∂t︸ ︷︷ ︸

Transient term

+ ρuj
∂ui
∂xj︸ ︷︷ ︸

Convective term

= − ∂p

∂xi︸ ︷︷ ︸
Pressure term

+ µ
∂2ui
∂x2j︸ ︷︷ ︸

Diffusive term

+ fbi︸︷︷︸
Bodyforces

. (3.15)

All fluids under consideration in this work are assumed to obey equation (3.15).

3.1.3 Magnetohydrodynamics equations

In the case of electrically conducting fluids in the presence of a magnetic field mag-
netohydrodynamic (MHD) phenomena occur. An extensive introduction to MHD is
available in references [49, 50]. Any movement of a conducting fluid in a magnetic
field, B, causes an electric field, E, to develop, and as a result electric currents, of
current density j, are generated. The interaction of the imposed magnetic field with
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the induced currents gives rise to an MHD force, known as the Lorentz force:

fL = j×B . (3.16)

The Lorentz force is explicitly added to the momentum balance which now, in more
compact vector notation, takes the form:

ρ
∂u
∂t

+ ρu · ∇u = −∇p+ µ∇2u + j×B . (3.17)

Having described, with the aforementioned equations, the motion of a conducting
fluid interacting with a magnetic field, one needs to describe the evolution of the electric
and magnetic field in the presence of electric charges or current. One of the most
elegant and concise ways to state the laws of classical electromagnetism, is through the
Maxwell’s equations, which in differential form read:

∇ · E =
q

ε0
(3.18)

∇ ·B = 0 (3.19)

∇× E =
∂B
∂t

(3.20)

∇×B = µ0

(
j + ε0

∂E
∂t

)
. (3.21)

Here µ0 denotes the magnetic permeability and ε0 denotes the electric permettivity of
the conducting medium. Equation (3.18) means that the total flux of an electric field
crossing a closed surface equals the charge density contained inside. Equation (3.19)
tells us that the flux of a magnetic field through a closed surface is zero. Equation
(3.20) describes how a magnetic field that is changing in time induces an electric field.
Similarly, equation (3.21) describes how the current flow and a changing electric field,
produces a magnetic field.

Following equations (3.18) and (3.19), the electric and magnetic field can be defined
using a scalar, φ, and a vector potential, A, as:

E = −∇φ− ∂A
∂t

, (3.22)

B = −∇×A . (3.23)

The electromagnetic potentials φ and A are defined as functions of space and time.

The current density is given by Ohm’s law which reads as,

j = σ(E + u×B) , (3.24)

where σ the electrical conductivity of the conducting medium.
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The temporal evolution of the magnetic field, is linked with the advection of the
magnetic field by the velocity field and the diffusion of the magnetic field within the
domain, with the induction equation. We can derive the induction equation using
equations (3.19), (3.20), and the curl of equations (3.21), (3.24):

∂B
∂t

=
1

σµ0

∇2B +∇× (u×B) . (3.25)

At this point, we need to note that in this thesis we are interested in fields where
the intensity of the magnetic field is assumed to be constant. Under this assumption
the above equation is rendered unnecessary. Furthermore, using equation (3.22), for
time-independent magnetic fields, Ohm’s law becomes:

j = σ(−∇φ+ u×B) . (3.26)

To be able to solve the above equation we need to define the electric potential in terms
of the velocity components and the magnetic field. For this we need Ampere’s law (see
equation (3.21)). For slowly varying electromagnetic processes, in which the occurring
velocities and related time scales are much smaller compared to the speed of light, the
last term in equation (3.21) is negligible and can be dropped [50], simplifying Ampere’s
law to:

∇×B = µ0 j . (3.27)

Taking the divergence of (3.27), and noting that ∇ · ∇ ×B = 0, yields,

∇ · j = 0 . (3.28)

That is to say, the current density lines are closed.

Combining now equations (3.28) and (3.26), gives a Poisson equation

∇2φ = ∇ · (u×B) , (3.29)

which can be used in to obtain the electric potential.

3.1.4 Dimensionless form of equations

Let us now briefly summarize the equations that describe the flow of an incompressible
Newtonian fluid. These are the continuity and momentum equations:

∇ · u = 0 , (3.30)

∂u
∂t

+ u ·∇u = −1

ρ
∇p+ ν∇2u +

1

ρ
(j×B) . (3.31)
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with ν being the kinematic viscosity of the fluid. The last term in the momentum
balance is the Lorentz force and appears only in the case of an electrically conducting
fluid under the presence of a magnetic field. In that case, and under the assumption
of a constant magnetic field, two additional equations are needed:

j = σ(−∇φ+ u×B) , (3.32)

∇ · j = 0 . (3.33)

It is common practice to express the equations of motion in dimensionless form.
Nondimensionalization of the governing equations reduces the number of variables mak-
ing the equations simpler, and helps highlight those terms that are dominant. This
way the generality of a numerical solution is extended.

The equations of motion (see equations (3.31)-(3.33)) can be written in dimension-
less form by making the following scale transformations,

t→ L

U0

t , u→ U0u , p→ ρU2
0 p ,

j→ σU0B0 j , B→ B0B , φ→ LU0B0 φ ,

(3.34)

where L, U0 and B0 are reference constants for length, velocity and magnetic field,
that might be characteristic of the particular fluid flow. The resulting dimensionless
equations of motion are:

∇ · u = 0 , (3.35)

∂u
∂t

+ u ·∇u = −∇p+
1

Re
∇2u +N(j×B) , (3.36)

j = −∇φ+ u×B , (3.37)

∇ · j = 0 . (3.38)

Combining equations (3.37) and (3.38), we get the electrical potential Poisson equation
which is used to obtain the electrical potential and remains the same as before,

∇2φ = ∇ · (u×B) . (3.39)

Two dimensionless parameters governing the problem appear in equation (3.31). The
Reynolds number,

Re = U0D/ν , (3.40)

and the interaction parameter,

N =
σWB2

0

ρU0

=
D

W

Ha2

Re
, (3.41)
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where Ha is the Hartmann number, defined as:

Ha = WB0

√
σ

ρν
. (3.42)

Re represents the ratio of inertial to viscous forces, while Ha quantifies the ratio of
electromagnetic to viscous forces and N the relationship between electromagnetic and
inertial forces. It is important to note here that two different length scales D and W
were chosen in calculating Ha and Re. This was driven by the fact that D characterizes
the structure of the flow, while Ha and W govern the strength of the electromagnetic
damping, as explained in the study of Frank et al. [51].

3.1.5 Analytical solution for flow in rectangular duct

Hydrodynamic case

Many approximate solutions were proposed in the past for the steady, laminar, fully
developed fluid flow in a rectangular duct. In this study, we are using the analytical
solution of the steady-state velocity profile, expressed as an eigenfunction expansion,
described by Spiga and Morini [64].

We consider a laminar flow in a duct of rectangular cross section with width W

and height H aligned in the z- and y-axis, respectively, as shown in Figure 3.2. The
x-axis is aligned with the streamwise flow direction, and the flow is driven by a con-
stant pressure gradient. For a fully developed flow the velocity is independent of the
streamwise direction, u = u(y, z)x̂. Finally, for the presented formulation, the origin
of the Cartesian coordinate system is located at the corner of the duct.

Under this conditions, using the following scale transformations,

x→ Wx , y → Wy , z → Wz , u→ −∂p
∂x

W 2

ρν
u , (3.43)

the momentum equation (3.31) in dimensionless form becomes:

∂2u

∂x2
+
∂2u

∂y2
+ 1 = 0 . (3.44)

At the walls of the duct, y = 0, y = H
W
, z = 0 and z = 1, no slip boundary condition

is prescribed for the velocity field.
By taking Fourier’s sine transform of (3.44) with respect to the variables x and y,

and inverting the result by means of the inverse formula, we obtain the velocity field
on 0 < y < H

W
and 0 < z < 1:

u(y, z) =
16

π4

∞∑
n

∞∑
m

sin(nπy) sin(mπz)

nm
[
n2 +m2

(
H2

W 2

)−1] , (3.45)
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3- 30 Chapter 3. Important ingredients of numerical solution method

Figure 3.2: Geometrical configuration for the flow in a rectangular duct.

where

n,m = 1, 3, 5, 7... .

The series in the above equation are uniformly converging, hence the solution of the
velocity profile can be obtained easily.

Magnetohydrodynamic case

The equations governing a similar flow, where the fluid is in addition subjected to an
externally applied constant and uniform imposed magnetic field, are well known and
are discussed by Shercliff [65], Dragos [66] and others.

In this case, the fluid is also driven by means of a constant pressure gradient, and
the magnetic field is assumed to be parallel to the z-axis. Following from the induction
equation (3.25), the only component of the induced magnetic field is Bi = Bi(y, z)x̂.
This time, the origin of the Cartesian coordinate system is positioned at the geometrical
center of the rectangular duct.

For this conditions, using the following scale transformation for the induced mag-
netic field in addition to the aforementioned transformations (3.43),

Bi → −
∂p

∂x
W 2√ρνσ Bi , (3.46)

the resulting dimensionless momentum (3.36) and induction equation (3.25) take the
form:

∇2u+Ha
∂Bi

∂y
= −1 , (3.47)

∇2Bi +Ha
∂u

∂y
= 0 . (3.48)

Regarding the boundary conditions, without going into details (see, e.g., book of Müller
and Bühler [50] for further details) at all walls, y = ±H

W
and z = ±1, no slip is imposed

for the velocity field and the walls are assumed to be electrically insulated with the
induced magnetic field set to zero.

Nico
las

 Kan
ari

s



3.2. Finite-volume Method 3- 31

By the help of the so-called Elsasser variables, the above equations can be decoupled
and the velocity field can be expanded into a Fourier series on −H

W
< y < H

W
and

−1 < z < 1 as:

u(y, z) =
∞∑
n

un(z) cos(λny) , (3.49)

where:

n = 1, 3, 5, 7...

un(z) =
κn
λ2n

[
1− sinh pn2 cosh(pn1z)− sinh pn1 cosh(pn2z)

sinh(pn2 − pn1)

]
pn1 =

1

2

(
Ha−

√
Ha2 + 4λ2n

)
pn2 =

1

2

(
Ha+

√
Ha2 + 4λ2n

)
λn =

nπ

2 H
W

κn = 2
sin
(
λn

H
W

)
λn

H
W

3.2 Finite-volume Method

The next step in CFD, is to obtain the so-called discretized equations of motion. There
are many available discretization methods for approximating the basic equations of
motion (see equations (3.35)-(3.38)) by a system of algebraic equations at discrete
locations within the calculation domain. Among the most often used methods are
the finite-difference, finite-volume and finite-element methods. Here we will only con-
centrate our attention on the finite-volume method, which CDP (code developed at
Stanford university) uses.

The finite-volume method is based on the discretization of the integral form of
the governing equations, making it easier to comply with the conservation laws. The
method starts by dividing the computational flow domain into a finite number of non-
overlapping control volumes (CVs), defined by the computational mesh. The conser-
vation equations are then integrated over each CV. At the center of each CV, a grid
node is assigned where all the variable values are calculated. In order to approximate
the resulting surface integrals, the variable values at the CV surfaces are needed. This
can be done by interpolation in terms of the center values. This leads to an algebraic
equation for every CV, in which neighbouring nodal values appear.

One of the principal advantages of this method is the build-in global conserva-
tion. Global conservation is ensured, since the discretization equations obtained in this
manner are based on applying conservation principles over each small control volume.
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3- 32 Chapter 3. Important ingredients of numerical solution method

Another advantage of the finite-volume method is its ability to be applied not only
on structured meshes but also on unstructured meshes, making it suitable for complex
geometries.

3.3 Numerical Grid

Before deriving the discrete approximations of the partial differential equations govern-
ing the flow we have to divide the physical space, i.e. the space where the flow is to be
computed, into a large number of geometrical elements called grid cells. These make
up the numerical grid, which essentially represents, in a discrete manner, the geometric
domain on which the problem is to be solved. The numerical grid (also referred to as
mesh) consists of a set of points, called nodes, which in turn form a set of volumes
called cells or elements. Depending upon the way the solution domain is divided and
the elements used, many grid types are available. Some of the most commonly used
types are the structured, block-structured and unstructured grids.

A structured grid is one in which the elements have a regular topology. A single
block structured grid may comprise of square elements (in 2-D) or hexahedral elements
(in 3-D) which are uniquely identified by a set of two (e.g. i, j) or three (e.g. i, j, k)
indices respectively. This implies that one can go to a neighbour node by increasing
or reducing one of the indices by unity. This property directly corresponds to how
the flow variables are stored in the computer memory. As a result, when solving the
system of algebraic equations it is much easier to loop through neighbouring elements
and this can be efficient with memory usage. On the other hand, for this type of grid,
controlling the distribution of grid points in selected regions tends to be difficult. As
a result, one is often forced to use more grid points than necessary in some parts of
the domain in order to satisfy minimum resolution requirements in other parts. In
addition, one is often forced to accept skewed grid elements. Another disadvantage of
structured grids is that it is difficult to realize for complicated geometries, therefore
can be used only for geometrically simple domains.

One way to avoid these difficulties is by allowing the mesh to be represented in
multiple blocks. A block structured grid can be made up of arbitrary-connected blocks,
which uses i, j, k indexing within each mesh block. This kind of grid allows the use
of finer grids in selected regions, where greater resolution is required and yields high-
quality elements. In general, block structured grids are more flexible than single block
grids. However, they are usually more time consuming and still limited when compared
with unstructured grids.

Unstructured grids are more flexible when it comes to meshing complex geometries
and one can use different shape of elements or control volumes (like tetrahedra, prisms,
pyramids, hexahedra) to address a problem. In such grids the cells have no particular
ordering and are arranged in an arbitrary fashion lacking the i, j, k structure, thus
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Figure 3.3: Schematic representation of CDP’s collocated mesh. Lines belong to the
grid, while the shaded area represents a face belonging to the dual mesh (Figure taken
from Ref. [67]).

there are no restriction on the number of neighbour elements or nodes. Obviously, if
desired, the grid may be easily locally refined. The advantage of increased flexibility is
offset by the disadvantage of increased memory requirements, due to the irregularity of
the data structure inside the flow solver. This means that for this kind of grid, solvers
take longer to arrive at a solution than those for a structured grid. Also grid generation
is usually much more difficult for unstructured grids.

3.4 Grid Arrangement and Flow Variables

Having generated the grid, we have to address two important questions: How do we
define the control volumes and where do we locate the flow variables with respect to
the computational grid.

With respect to the first question, among the many possibilities of defining the shape
and position of the control volume (CV) with respect to the grid, two basic strategies
are available. One of the most common approach is the cell-centered scheme, for which
control volumes are identical with the grid cells and CV centers are located at their
centroids, as shown in Figure 3.3(a), for a two-dimensional case. The other one is
the cell-vertex scheme, also known as dual based scheme. Within this formulation, the
control volumes are formed around each grid point by a median dual mesh construction,
which connects the midpoints of the grid cells with surrounding midpoints of faces and
edges, as shown in Figure 3.3(b). In such a case, we speak of dual control volumes.

In CFD both methods are successfully used in finite-volume codes, with each
method having its own advantages and disadvantages [63]. Early implementations
of CDP were based on a cell-centered CV approach, which proved very efficient and ac-
curate, when used for high-quality hex-dominant meshes [68]. However, after reporting
the results of a one-to-one comparison of the two methods on a variety of grids, Ham
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Figure 3.4: Staggered (a) and collocated (b) grid arrangements of velocity compo-
nents and pressure on a finite-volume grid. Horizontal arrows indicate the locations
for u velocities and vertical ones denote those for v velocity.

et al. [67] concluded that, with few exceptions, in truly complex geometries the nodal
discretization was significantly more accurate. For this reason, CDP’s discretization
was modified to a node-based formulation.

With respect to the second question, regarding the locations within the domain at
which the various variables are to be computed, several arrangements can be used. The
two most popular are the staggered and collocated grid arrangement.

The staggered grid arrangement was introduced by Harlow and Welch [69]. On a
staggered grid, pressure and other scalar variables are stored at the cell centers while
the velocity components are stored at the cell face. A typical staggered arrangement
is depicted in Figure 3.4(a) where the structure of the grid and the location of each
variable is shown for a two-dimensional flow. As we will show in section 3.5, in the
discretization of the N-S equations based on the finite-volume formulation velocities
appear at the cell faces of the control volume. The staggered arrangement enable us
to avoid further numerical approximations for obtaining velocities at the cell faces,
therefore allowing a very natural and accurate discretization of equations. Another
important advantage of staggered grids is the strong coupling they provide between the
velocities and pressure, which helps to avoid non-physical oscillations in the pressure
and velocity fields. We shall discuss this issue in greater detail further below. However,
the staggered approach possesses serious drawbacks in terms of accuracy and stability,
when applied in non-orthogonal three-dimensional grids employed to compute flow over
complex geometries. Therefore the staggered arrangement is mainly used on structured
grids.

The alternative grid arrangement is the collocated grid arrangement. Here, all the
dependent variables are stored at the same nodal points, e.g. in the cell centers. Such
arrangement is plotted in Figure 3.4(b) for a two-dimensional grid. The collocated
arrangement offers significant advantages, especially when multigrid procedures and
non-orthogonal grids are used. Although convenient, this method is related to major
problems with respect to the pressure and velocity fields prediction. For example, when
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the gradient of pressure is approximated using the central difference scheme (CDS) on
a collocated grid (see Figure 3.4), we obtain:

∂p

∂xi

∣∣∣∣
P

=
pE − pW
xE − xW

+
pN − pS
xN − xS

. (3.50)

This equation involves nodes which are a cell apart, and drops out the pressure at the
point where the gradient is discretized. As a result, a pressure field that oscillates from
node to node can appear as uniform to the discretized momentum equation, yielding
clearly an unphysical solution. This effect is known as the pressure checkerboard effect.
A similar result is obtained for the velocity field when the divergence of velocity is
evaluated using CDS. To overcome this problem, Rhie and Chow [70] proposed a novel
momentum interpolation technique to evaluate the cell face velocities.

In CDP the collocated arrangement is adopted for the location of flow variables. In
order to avoid the checkerboard problem, CDP follows Rhie and Chow [70] methodol-
ogy, but with a few differences in terms of the discretization details. For more detail
on the methodology followed in CDP see reference [71].

3.5 Finite-volume approximations

Having generated the grid, we need to address the next question of how to actually
discretize the governing equations. A considerable amount of information related to
the discretization methods can be found in detail in the literature, e.g. in the books
of Patankar [60], and Ferziger and Peric [62]. In this section some aspects of the dis-
cretization methods used in CDP, under finite-volume techniques, are briefly presented.

3.5.1 Spatial Discretization

As already mentioned, CDP uses a collocated finite-volume discretization in a nodal
formulation. Figure 3.5 shows a typical grid element. For the dual mesh, in the node-
based discretization, the velocity vector ui, pressure p, electric current ji, and electric
potential φ are stored at the control volume center, while the the velocities normal to
the faces Uf are treated as an independent variable which is stored at the centroid of
each face.

With the finite-volume method all terms need to be computed inside the CV. Ap-
proximations of the terms that appear inside the volumetric integrals is needed. Most
spatial derivatives can be obtained in an easier way at CV faces rather than at the
mid-point. Hence, surface integrals are more easily addressed. In order to transform
an integral over a volume V into a simpler surface integral over a closed surface S, the
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Figure 3.5: Schematic representation of CDP’s collocated mesh. Lines belong to the
grid, while the shaded area represents a face belonging to the dual mesh (Figure taken
from Ref. [72]).

Gauss theorem (green theorem) is used:∫
V

∇ ·GdV =

∮
S

G · ndS , (3.51)

where G is an arbitrary vector function.
The momentum equation (3.36) in integral form, after applying Gauss’ theorem

where ever possible, reads:∫
V

∂ui
∂t
dV = −

∮
S

ui(uj · nj)dS +
1

Re

∮
S

∂ui
∂xj
· njdS

−
∫
V

∂p

∂xi
dV +

∫
V

N [j×B]i dV ,

(3.52)

where V and S are the volume and surface of the control volume, respectively. Ap-
proximation of integrals for an infinitesimal volume such as the control volume is, leads
to a discrete equation:

∂ui
∂t

∣∣∣∣
P

VP︸ ︷︷ ︸
Transient

= −
∑
f

ui,fUfAf︸ ︷︷ ︸
Convective

+
1

Re

∑
f

∂ui
∂xj

∣∣∣∣
f

· nj,fAf︸ ︷︷ ︸
Diffusive

− ∂p

∂xi

∣∣∣∣
P

VP︸ ︷︷ ︸
Pressure

+N [jP ×BP ]i VP︸ ︷︷ ︸
Lorentz Force

.

(3.53)

In the above equation, the subscript P denotes a value calculated at the control volume
center, and f denotes a value evaluated at the common face, which lies between the
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control volume and a neighbour control volume. Af denotes the face area and nj,f their
unit normal vectors.

Focusing our attention on the convective and viscous terms, while assuming a linear
profile between neighbour nodes we get:

ui,f =
ui,P + ui,nbr

2
, (3.54)

∂ui
∂xj

∣∣∣∣
f

· nj,f =
ui,nbr − ui,P
‖xj,nbr − xj,P‖

, (3.55)

where ui,nbr indicates a component of the velocity evaluated at a neighbouring control
volume.

The pressure term has been left in differential form, because a special treatment is
needed to provide corrections for skewed or stretched elements. In this direction, the
pressure gradient is computed using the discrete Gauss theorem which approximates
the derivative of pressure with a summation-by-parts operator [73] as follows:

∂p

∂xi

∣∣∣∣
P

VP =
∑
f

∑
f ′

pE + pF + pC
3

ni,f ′Af ′ . (3.56)

pE, pF , and pC are evaluated at different locations denoted by the corresponding sub-
scripts as shown in Figure 3.5, and computed from simple averages over circumcenter
values:

pE = (pP + pnbr)/2

pF = (pP + pnbr + p1 + p2)/4

pC = (pP + pnbr + p1 + p2 + p3 + p4 + p5 + p6)/8 .

(3.57)

The accurate computation of the Lorentz force is the most challenging aspect in
DNS calculations for moderate and high Hartmann numbers. Until recently a non-
conservative method was used to calculate the Lorentz force on collocated meshes.
Under this formulation the calculation of the Lorentz force depends on the current
density at the cell center which can be directly calculated through equation (3.37) of
the Ohm’s law:

ji,P = − ∂φ

∂xi

∣∣∣∣
P

+ [uP ×BP ]i . (3.58)

The current density depends on the electrical potential gradient and the velocity at the
cell center. The gradient of the electric potential at the cell center, can be evaluated by
taking its integral over the volume of a CV and then applying the divergence theorem
as follows:

∂φ

∂xi

∣∣∣∣
P

=
1

VP

∫
V

∂φ

∂xi
dV =

1

VP

∮
S

φnidS =
1

VP

∑
f

φfni,fAf . (3.59)
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The value of the electric potential at the cell face, φf , can be calculated from linear
interpolation between cell centers in a similarly way with velocity as shown in (3.54),

φf =
φP + φnbr

2
. (3.60)

Substituting equation (3.59) into (3.58), Ohm’s law can then be rewritten in discrete
form as follows:

ji,P = − 1

VP

∑
f

φfni,fAf + [uP ×BP ]i . (3.61)

Therefore, the Lorentz force can be calculated based on the above equation as:

jP ×BP =

(
− 1

VP

∑
f

φfnfAf + [uP ×BP ]

)
×BP . (3.62)

However, this non-conservative scheme for the calculation of the Lorentz force, even
though yielding smooth and numerically stable results, will introduce a numerical error
for the calculation of the total momentum [74, 75], resulting in inaccurate predictions
of the flow behaviour.

To get a more accurate result on the calculation of the Lorentz force, Ni et. al.
[74, 75] proposed a conservative method. The basic idea of the method is to calculate
the current density at the cell center from the current fluxes at the cell faces of a control
volume. Ni et. al. [75] introduced the following equation for the current density:

j = ∇ · (jr) , (3.63)

where r denotes the position vector. That is, ∇·(jr) can be regarded as an interpolation
of the current density. The current density at the cell center can be written as:

jP =
1

V

∫
V

jdV . (3.64)

Substituting equation (3.63) into (3.64) we therefore have:

jP =
1

V

∫
V

∇ · (jr)dV . (3.65)

Using Gauss’ rule the detailed discretized formulation is:

jP =
1

V

∮
S

jj · njridS =
1

V

∑
f

Jfri,fAf , (3.66)

where Jf represents the current densities normal to the faces. The current flux on the
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cell face can be calculated using Ohm’s law:

Jf = jj,f · nj,f = − ∂φ

∂xj

∣∣∣∣
f

· nj,f + [uf ×Bf ]j · nj,f . (3.67)

Expanding the gradient of the electrical potential on the cell faces, in terms of the
electric potential in the current cell and neighbouring cell, as in (3.55), we have:

Jf = −
∑
f

φnbr − φP

‖xj,nbr − xj,P‖
+ [uf ×Bf ]j · nj,f . (3.68)

The main advantage of this method is that the information required for computing the
current density at the cell center, and therefore the Lorentz force, is placed at the cell
faces. Putting the current density fluxes on the cell faces is natural, and can effectively
conserve the current density in the control volume, resulting in calculating the Lorentz
force with higher accuracy [74, 75]. For this reason, we have adopted this formulation
and implemented it in CDP.

In either scheme, conservative or non-conservative, we obtain the electric potential
at the cell center through the discretization of the electric potential Poisson equation
(3.39). The discretization of the Poisson equation includes the discretization of the
Laplace and divergence operators. Integrating over a control volume and using Gauss’
rule we obtain,

∇2φ =

∫
V

∇2φdV =

∮
S

∂φ

∂xj
njdS =

∑
f

∂φ

∂xj

∣∣∣∣
f

nj,fAf , (3.69)

for the Laplace operator, and,

∇ · (u×B) =

∫
V

∇ · (u×B)dV =

∮
S

[u×B]jnjdS =
∑
f

[uf ×B]jnj,fAf , (3.70)

for the divergence operator. Combining equations (3.69) and (3.70), and then rewriting
the electrical potential gradient on the cell faces in terms of cell center values, yields
the discretized electric potential Poisson equation as follows:

∑
f

φnbr − φP

‖xj,nbr − xj,P‖
Af =

∑
f

[uf ×B]jnj,fAf . (3.71)

3.5.2 Time advancement

Time is also discretized by first integrating the equations of motion over the control
volume, and then evaluating each integral using a numerical approximation method.
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Taking the time integral of the discrete momentum equation (3.53) yields,

∫ tn+1

tn

∂ui
∂t

∣∣∣∣
P

VPdt =
(
un+1
i,P − u

n
i,P

)
VP =∫ tn+1

tn
[(Conv.) + (Diff.) + (Press.) + (LF)] dt ,

(3.72)

where superscripts are used to indicate time level.

To evaluate the right hand side of this equation we need to make some assumptions
regarding the variation of the different variables with time. We could estimate each
integral using values at time t or at time t+ ∆t or, alternatively, using a combination
of values at time t and t+∆t. Depending on the approximation method used, different
time-advancing schemes exist, each with different stability characteristics as we will
briefly discuss later on.

Explicit, implicit and Crank-Nicolson schemes are some of the most commonly used
schemes. In the explicit scheme the time integral is evaluated using the value of the
integrand at the initial point of the integration interval where the solution is known
(old time step). On the other hand, the implicit method uses the final point (new
time step) to evaluate the integral. In the Crank-Nicolson scheme, the approximation
of the integral is constructed by using a straight line interpolation between the initial
and final points. For higher order approximations one must use information at more
points, other than t = tn and tn+1. Such methods are called multipoint methods. A
very well known multipoint method is the Adams-Bashforth method, which is derived
by fitting a polynomial to the derivatives at a number of points in time.

In the limit as the time step tends to zero, ∆t → 0, all methods produce good
solutions. However, in practice we are concerned with finite steps. This raises the issue
of stability. In the case where the time step becomes too large, many numerical methods
become unstable, causing the solution to grow unboundedly. In order to establish the
convergence of a numerical approximation of a partial differential equation, linear or
nonlinear, it is necessary to imply limitations on the length of the time step. Generally
two stability limits apply. The first is the viscous stability limit, which dictates that
the largest time step size that allows convergence and numerical stability should be
less than:

∆tv =
VSL (∆x)2

ν
. (3.73)

The VSL number depends on actual time advancement scheme. The viscous condition
assures that for one time step, the distance a disturbance has propagated by diffusion
is less than one grid length. The second is the famous Courant-Friedrichs-Lewy (or
CFL) stability criterion [76], which requires that the time step should be less than:

∆tc =
CFL ∆x

u
, (3.74)
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The CFL condition also depends on the numerical discretization scheme used. The
physical interpretation of this restriction, is that a fluid particle cannot travel more
than the length of adjacent grid points, in a single time step.

Explicit schemes are known to be conditionally stable, usually requiring that the
VSL number is roughly less than 0.5 and the CFL number less than or equal to 1. The
exact time step, necessary for stability, differs between the various explicit schemes.
Implicit, and semi implicit schemes are unconditionally stable allowing arbitrarily large
time steps to be taken. An important drawback of these methods is that they need to
solve a large coupled set of equations at each time step. Furthermore, when solving
unsteady problems, there may be a limitation on the employed time step, since the
solution can change a great deal in just one time step. In practice, implicit schemes
allow a much larger time step than explicit schemes, with the limit being problem
dependent.

CDP uses different time-advancement schemes for the various terms that appear in
the Navier-Stokes equations. In CDP the nodal velocity is advanced in time using the
Crank-Nicholson advancement scheme,

un+1
i,f =

1

2

(
un+1
i,f + uni,f

)
, (3.75)

while the Adams-Bashforth scheme is used for the face normal velocity,

Un+1
f =

3

2
Un
f −

1

2
Un−1
f . (3.76)

Using equations (3.75) and (3.76), the time advancement of the convective term reads,

∫ tn+1

tn
(Conv.) dt ≈

∑
f

u
n+ 1

2
i,f U

n+ 1
2

f Af∆t

=
∑
f

1

2

(
un+1
i,f + uni,f

)(3

2
Un
f −

1

2
Un−1
f

)
Af∆t .

(3.77)

The reasoning behind this blending of schemes is linked with the additional difficulties
that arise when solving the convective terms. The non-linearity of the equations makes
their solution using, the much more stable, implicit methods very difficult. In order to
simplify the structure of the large system of equations to be solved, the best procedure
is to combine direct and indirect methods, in the time-advancement of the velocity
field.
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For the diffusion term we have,

∫ tn+1

tn
(Diff.) dt ≈

∑
f

∂ui
∂xj

∣∣∣∣n+ 1
2

f

· nj,fAf∆t

=
∑
f

1

2

[(
∂ui
∂xj

∣∣∣∣n+1

f

· nj,f

)
+

(
∂ui
∂xj

∣∣∣∣n
f

· nj,f

)]
Af∆t .

(3.78)

The Lorentz force is treated explicitly,∫ tn+1

tn
(LF ) dt ≈ [jnP ×BP ]i VP∆t . (3.79)

Approximation of the pressure term involves a two-step, predictor-corrector time ad-
vancement scheme, due to the lack of an independent equation for pressure. This issue
requires special attention and will be addressed in more detail in the next section.

In the CDP code, as there is no pure time-discretization implemented, the specific
value of the maximum allowable CFL number is problem dependent. As a rule of
thumb, to maintain convergence the dimensionless CFL number needs to be less than
or equal to one.

3.5.3 Fractional Step Method

Solution of the Navier-Stokes (N-S) equations in incompressible flows is not a trivial
task. The N-S equations suffer from a closure issue. Closure implies that there is
a sufficient number of equations for all the unknowns. However, in the case of the
N-S equations, there are more unknown variables than equations. Strictly speaking,
this redundancy lies in the fact that there isn’t an independent equation for obtaining
pressure, whose gradient contributes to the momentum equation. Furthermore, for
such a flow, the continuity equation is a kinematic constraint on the velocity field
rather than a dynamic equation. Therefore, an additional equation is necessary to link
the pressure with the velocity and provide closure. One possible way to overcome this
difficulty is by constructing the pressure field through the continuity equation in such
a way to guarantee conservation of the continuity equation.

An approach to solve the mass and momentum coupling of the N-S equations is the
fractional step method (also known as time-splitting method) proposed by Chorin [77]
and further developed later on by Kim and Moin [78]. The fractional step concept is
a generic method for solving the incompressible Navier-Stokes equations, based on a
pressure correction approach.

The fractional step method consists of a sequence of steps that solves for the velocity
and pressure at each time level. A more detailed analysis of the methodology followed
in CDP is given in Ref. [71]. In the first step of the method, the momentum equations
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are solved for an auxiliary velocity field, while the pressure gradient term is computed
from the pressure in the previous time step:

ûi − uni
∆t

= Oi −
δpn

δxi
, (3.80)

where Oi is a shorthand notation representing the discretized convective, diffusive and
additional source terms (if present), whose treatment is of no importance here. δp/δx
represents a discretized spatial derivative for pressure.

In the next step, the old pressure gradient is removed from the previous computation
of û using the following equation:

u∗i − ûi
∆t

= +
δpn

δxi
. (3.81)

Including the old pressure gradient in the momentum advancement is not necessary in
the time-splitting method, however this numerical technique (of including and removing
the old pressure gradient) is an additional feature which can improve the robustness
and numerical behaviour of the code.

Once the intermediate velocity field u∗ is computed, new velocities can be obtained,
un+1, through the new pressure field gradient:

un+1
i − u∗i

∆t
= −δp

n+1

δxi
. (3.82)

Of course, at this step the new pressure is not available and is also important to note
that the new velocity field does not satisfy the continuity equation. To circumvent
the above mentioned issues, one can take the numerical divergence of the previous
equation. Enforcing continuity to the unknown new velocity field, dependence on the
unknown velocity field may be eliminated, resulting to a discrete Poisson system for
pressure:

δ

δxi

(
δpn+1

δxi

)
=

1

∆t

δu∗i
δxi

. (3.83)

By solving the pressure Poisson equation the pressure field at the new time step can
be obtained, hence the new velocity can be computed. At the same time, solving the
Poisson equation, will also cause the velocity field to become divergence free satisfying
the continuity equation.
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Chapter 4
Three-dimensional DNS of the flow around a
circular cylinder confined in a plane channel

This chapter presents two- and three-dimensional direct numerical simulations of the
flow around a circular cylinder placed symmetrically in a plane channel. Results are
presented in the Reynolds-number range (based on the cylinder diameter and centerline
velocity) of 10 to 390, for a blockage ratio (ratio of the cylinder diameter to the channel
height) of 0.2. To the best of our knowledge, no published direct numerical simula-
tions of the three-dimensional flow in a channel exists in the Reynolds number range
examined here. The main objective of this study is to investigate how the confinement
provided by the channel walls affects the onset and development of three-dimensional
instabilities in the wake of the flow at moderate Reynolds numbers. Comparisons are
made with two-dimensional studies for the confined case, as well as with the extensive
literature available for the unconfined case.

In the sections to follow, first the complete problem is formulated and presented
together with a detailed grid-sensitivity analysis (Section 4.1). The main results from
the 3-D simulations together with a discussion of confinement effects are presented in
Sections 4.2, 4.3, followed by the conclusions of the present study.

Results of this work have been published in reference [79].

4.1 Problem statement and formulation

4.1.1 Flow configuration

The geometry considered in this study is shown in Figure 4.1. The geometry consists
of a circular cylinder, of diameter D, symmetrically placed in a plane channel. The
ratio of the cylinder diameter to the distance between the channel walls H, defines
the blockage ratio, β = D/H. Results for β = 1/5 are presented in the present
thesis, allowing for a direct comparison with the linear stability analysis of Camarri and

45
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Figure 4.1: Schematic diagram of the flow configuration and related geometrical
parameters.

Gianneti [40]. We decided not to use the higher blockage ratio (β = 1/3) that was used
in the experiments of Rehimi et al. [39], even though that would have meant a smaller
computational domain in favour of computational cost, “in order to avoid peculiar flow
features related to a complex interaction between the wake and the confining walls,"
as mentioned in Camarri and Giannetti [40]. By choosing the lower blockage ratio, we
can bring into focus the wall-blocking effects without these being obscured by the more
complex interactions with the near-wall viscous regions.

The channel inlet is placed at a distance of Li = 12.5D upstream of the circular
cylinder, while the outlet is located at Lo = 35.5D behind the body. This choice of
parameters ensures minimal distortion of the flow structure due to the boundary con-
ditions [80], while maintaining a reasonable computational cost, and is in line with
those used by others in the literature [33, 40]. Two spanwise lengths were considered,
W = 8D and W = 12D. Based on observations from the transitional wake of open
uniform flow past a circular cylinder, the value of 8D was considered sufficient for the
development of both mode B and the larger mode A three-dimensional wake instabili-
ties. The relatively large spanwise length of 12D has been used only in the analysis of
natural vortex dislocations. In this case, the use of such a large span was motivated by
the need to provide a sufficiently wide domain for the development of such irregularities
in the wake, and it is in agreement with the practice followed by Braza et al. [19].

4.1.2 Mathematical formulation

The flow is completely described by the set of Navier-Stokes equations for an incom-
pressible Newtonian fluid, of density ρ, dynamic viscosity µ, and kinematic viscosity
ν = µ/ρ. Using the cylinder’s diameter, D, and the centerline inflow velocity, Uc, as
the characteristic length and velocity scales respectively, the non-dimensional continu-
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ity and momentum equations in a Cartesian coordinate system are given by

∂ui
∂xi

= 0 (4.1)

∂ui
∂t

+
∂uiuj
∂xj

= −∂P
∂xi

+
1

Re

∂2ui
∂xj∂xi

, (4.2)

where Re = UcD/ν is the Reynolds number.
The drag and lift coefficients were both determined by considering the viscous and

the pressure forces on the cylinder surface,

CD =
FD

1
2
ρU2

cD
and CL =

FL

1
2
ρU2

cD
, (4.3)

where FD and FL are the drag and lift forces per unit length of the cylinder, defined
as,

Fi =

[
−pδij + νρ

(
∂ui
∂xj

+
∂uj
∂xi

)]
nj . (4.4)

Here, nj denotes the unit normal vector pointing in the direction of xj. The Strouhal
number, characterizing the vortex shedding phenomenon, is based on the dominant
frequency of the lift coefficient,

St = f
D

Uc

. (4.5)

The base pressure coefficient is defined as,

Cpb =
pb − p∞
1
2
ρU2

c

, (4.6)

where pb is the spatiotemporal average, with respect to the time and the spanwise
coordinate z, of pressure at the rear stagnation point of the cylinder (180 degrees from
the front), and p∞ is the free-stream pressure at the inlet boundary (x = −12.5D,
y = 0).

4.1.3 Numerical method and boundary conditions

The current computations have been performed using an unstructured collocated nodal-
based finite-volume code (CDP). Details of the discretization methods and the numer-
ical techniques used by this code were provided in Chapter 3.

Boundary conditions are given at the domain’s inlet by prescribing a Poiseuille,
parabolic velocity profile,

u(−Li, y) = Uc

[
1−

(
y

H/2

)2
]
, (4.7)

while a no-slip boundary condition is imposed on the cylinder surface, the top, and
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Figure 4.2: Computational grid G2. The picture on the top shows the whole domain,
while the bottom picture shows an expanded view in the vicinity of the cylinder. Only
every 4th node is plotted for clarity.

bottom walls. At the outlet, in order to minimize reflective effects and avoid the
distortion of the flow structures leaving the domain, a convective boundary condition
is applied,

∂ui
∂t

+ Uconv
∂ui
∂n

= 0 , (4.8)

where Uconv ≡
∫
uds/

∫
ds. In order to assess the influence of this boundary condition

on the computed physical characteristics of the flow, a domain dependance study is
performed in Section 4.2.2. For the 3-D simulations, a Neumann boundary condition
has been adopted for the velocity field in the spanwise direction,

∂ui
∂z

= 0 , (4.9)

which is considered appropriate and in accordance with experimental observations of
the flow regime considered in the present study [24]. A series of simulations performed
with periodic spanwise boundary conditions suggested that, even though numerical
results where similar, not all of the critical physical mechanisms could be captured as
accurately as with Neumann conditions.

4.2 Validation tests

4.2.1 Effect of grid resolution

The influence of the grid resolution on the computed physical characteristics of the flow
was examined in detail in order to optimize the simulation in terms of accuracy and
computational cost. For this reason, a series of two- and three-dimensional simulations
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Table 4.1: Parameters used for the different grid configurations. Ncyl: nodes along
cylinder circumference; ∆nwalls: grid spacing normal to the cylinder surface and channel
walls; ∆z: grid spacing in spanwise direction; Nz: nodes along spanwise direction; W :
channel width.

Grid Ncyl ∆nwalls ∆z Nz W Total Nodes

G1 2-D 120 0.020 – – – 25,531
G2 2-D 240 0.005 – – – 66,989
G3 2-D 320 0.002 – – – 112,657
G2C 3-D 240 0.005 0.4 21 8 1,406,769
G2M 3-D 240 0.005 0.2 41 8 2,726,109
G2F 3-D 240 0.005 0.1 81 8 5,426,109
G2W 3-D 240 0.005 0.12 101 12 6,765,889
G2FF 3-D 240 0.005 0.1 81 8 7,247,880
G2FS 3-D 240 0.005 0.1 81 8 4,533,084

were carried out at Re = 300. The parameters of the different grid configurations
tested are summarized in Table 4.1.

First, a series of two-dimensional simulations were performed using three non-
uniform grids (G1, G2, G3), mainly differing in the spatial resolution in the vicin-
ity of the cylinder and the channel walls. The hyperbolic tangent function was used
for stretching the cell sizes in a clustered region close to the cylinder, and linear grid
stretching was applied in the direction normal to the channel walls, as shown in Fig-
ure 4.2. Further upstream and downstream of the cylinder a uniform grid was used.
The discrepancy between the values of mean drag coefficient C̄D, rms value of the
lift coefficient C ′L, Strouhal number St, and the base pressure coefficient Cpb resulting
from the use of different grids is shown in Table 4.2. Results show that a grid indepen-
dent solution can be achieved with the grids considered. For example, the percentage
difference between the values predicted on the coarsest grid with respect to the ones
obtained on the finest grid is below 2.1%. This discrepancy is further reduced to less
than 0.5% when the two finest grids are compared. Hence, one can conclude that the
intermediate grid G2 is sufficiently fine to resolve the flow.

To study the effect of the spanwise grid spacing in the numerical solution for the
3-D cases, several three-dimensional grids were generated by repeating the grid G2
along the spanwise direction. Three grids differing in the spanwise resolution were
tested, namely G2C, G2M, and G2F with ∆z grid spacings of 0.4D, 0.2D, and 0.1D,
respectively. The spanwise dimension of 8D was adopted for these meshes. Simulations
were performed over periods of at least 900 dimensionless time units, corresponding to
about 180 vortex-shedding cycles, with time averaging of results performed over the
last 100 shedding cycles, when the flow had reached a “fully developed” state.

Results obtained with the three grids are listed in Table 4.2, and overall show good
grid convergence. For example, replacing the coarsest grid G2C with the finest grid
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Table 4.2: Mean drag coefficient C̄D, rms lift coefficient C ′L, Strouhal number St,
and base pressure coefficient Cpb at Re = 300 for the 2-D and 3-D grids.

Grid Re C̄D C ′L St Cpb

G1 2-D 300 1.210 0.551 0.2021 1.0440
G2 2-D 300 1.232 0.559 0.2023 1.0472
G3 2-D 300 1.236 0.562 0.2024 1.0488
G2C 3-D 300 1.157 0.405 0.1915 0.929
G2M 3-D 300 1.167 0.388 0.1967 0.937
G2F 3-D 300 1.172 0.376 0.1989 0.942
G2FF 3-D 300 1.175 0.372 0.1979 0.942
G2FS 3-D 300 1.162 0.365 0.1976 0.926

Figure 4.3: y+ measured around cylinder and at channel walls, using grid G2F.

G2F, resulted in only 3.7% change in St and 1.4% in Cpb, whereas the corresponding
changes were only 1.1% and 0.6% when replacing the intermediate grid G2M by the
finest grid. Based on these results, one could have opted for the intermediate grid
G2M. However, because we were particularly interested in capturing the details of the
vortical structures downstream of the cylinder, we decided to use the finest grid G2F,
despite the increased computational cost. For example, a typical simulation with grid
G2F, required a total of 27 days of computation on a 32 node (64 processor) Linux
cluster to complete 180 shedding cycles. Each node has dual Opteron 244 (1.8GHz)
processors with 4GB of RAM.

Another way to verify adequate grid resolution is to look at the value of y+ at the
cylinder and channel walls. y+ is a dimensionless wall distance defined as y+ = u∗y/ν,
where u∗ is the friction velocity. The value of y+ in the wall-adjacent cells dictates how
the wall shear stress is calculated, and therefore how well resolved the boundary layers
are with respect to grid resolution. For accurate simulations with resolved boundary
layers the first grid point should have a y+ which is below 1. Looking at Figure 4.3
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Figure 4.4: Local Enstrophy calculated at different positions for grids G2F and
G2FF.

is clear that the flow around the cylinder and close to the channel walls is very well
resolved.

We further wanted to explore the effect of the medium-to-far-field resolution on
the computed physical characteristics of the flow. Thus, one more grid was generated,
namely G2FF. This grid was based on the grid G2F (selected grid for the computations
presented in this chapter) differing in the resolution of the mesh in the streamwise
direction. In the case of G2FF the grid at the far field was doubled.

Results obtained with grid G2FF are also listed in Table 4.2, and once more show
good grid convergence. We also calculated the local and global Enstrophy (based on
the averaged vorticity) for grids G2F and G2FF. The difference in global Enstrophy
between the two cases, was found to be around 1%. Figure 4.4 displays the local
Enstrophy at different positions for the two grids. As seen the differences between the
two cases are relatively small, verifying that the resolution of grid G2F is fine enough.
However, we believe that this is related to the highly transitional character of the flow,
and that the use of longer averaging times would have resulted in better agreement.

Finally, in order to study the natural occurrence of vortex dislocations, a case at
Re = 240 was computed in a wider domain with a spanwise dimension of 12D. To
accommodate this case, an additional grid (G2W) was generated, which in view of the
increased computational requirements, had a spanwise grid spacing of 0.12D, which is
slightly coarser than G2F, but still finer than G2M.

The dimensionless time step was kept constant during each simulation, but was
determined independently for each case in order to satisfy the Courand-Friedrichs-
Lewy stability criterion, CFL ≤ 1. This yielded values in the range 7.5 × 10−3D/Uc

to 10× 10−3D/Uc.
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Figure 4.5: Comparison of (a) the time and space averaged streamwise velocity, and
(b) the r.m.s. streamwise velocity at different slices using grids G2F (Lo = 35.5) and
G2F-S (Lo = 22.5).

4.2.2 Effect of outlet boundary condition

In order to examine the effect of the convective outlet boundary condition on the
computed physical characteristics of the flow, another grid was generated, namely G2F-
S. This grid grid was based on grid G2F. However, this time the outlet was positioned
closer to the cylinder, at 22.5D from the cylinder center (compared to 35.5D in the
case of the G2F computations).

Results obtained with the later grid are listed in Table 4.2. When replacing grid G2F
by the shortest grid G2F-S, results overall show good agreement with the differences
being below 3%. Figure 4.5 displays both the mean and r.m.s. streamwise velocities,
averaged over time and along the spanwise direction, at different one-dimensional slices,
for grids G2F and G2F-S. From the comparison of the average velocity it can be seen
that the effect of the convective outlet is quite small, and maintained in the vicinity
of 5D from the outlet. In the case of values of the r.m.s. streamwise velocity, the
convective outlet seems to affect the flow for a longer distance from the outlet. Again,
as already mentioned, we believe that longer averaging times would have yielded better
agreement between the two grids.

4.2.3 Comparison against previously reported studies

To the best of our knowledge, the only 3-D results reported in the literature for the
case of flow over a confined circular cylinder in a channel are from Rehimi et al. [39],
who, however, considered a different blockage ratio of β = 1/3. For the blockage ratio
examined in the present paper (β = 1/5), the only previously available results had been
obtained from 2-D simulations. Therefore, 2-D numerical simulations were performed

Nico
las

 Kan
ari

s



4.2. Validation tests 4- 53

Table 4.3: Comparison of critical Reynolds number and corresponding Strouhal
number with previous two-dimensional numerical studies.

Present Sahin and Zovatto and Chen et al. [28]
Owens [27] Pedrizzetti [33]

Recr 69.5 69.9 68.9 69.3
Stcr 0.1567 0.1567 – 0.1559

Figure 4.6: Drag coefficient CD and Strouhal number St versus Reynolds number,
numerically obtained from two-dimensional simulations, compared with previous two-
dimensional numerical studies (References [33, 34, 29, 40]).
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first, allowing the validation of the numerical code and the chosen parameters through
comparisons with existing literature.

The critical Reynolds number Recr for the transition from steady to unsteady flow,
the mean drag coefficient C̄D, and the Strouhal number St were computed and com-
pared against previous studies. Our results for Recr, and the corresponding Strouhal
number Stcr, are listed in Table 4.3. When compared with the values reported in
Refs. [27, 33, 28], these show an excellent agreement. Figure 4.6 displays a comparison
of both the drag coefficient and the Strouhal number versus Re. As shown, the agree-
ment is again very satisfactory, confirming the accuracy of the numerical code and the
choice of appropriate numerical parameters.

4.3 Three-dimensional effects

4.3.1 Transition to three-dimensionality

In order to carefully investigate transitional effects, a series of nine three-dimensional
simulations have been carried out for the range 150 ≤ Re ≤ 390, in steps of 30. A
summary of the results obtained is listed in Table 4.4.

It is important to note that the vortex shedding in the present 3-D simulations
is initiated without imposing or forcing any artificial or external flow-disturbances.
Instead, the round-off and truncation errors, which are uniformly distributed over the
whole computational domain, were allowed to generate the self-excitation needed for
the flow to naturally develop three-dimensionalities. This choice was associated with
long computational times that became even longer for the cases that were closer to the
transitional regime, as we discuss further below. However, this choice was motivated
by the lack of previously reported data on this flow configuration.

The first steps of transition to three-dimensionality are reflected in the amplifica-

Table 4.4: Summary of results from the current three-dimensional numerical simu-
lations.

Case Re W C̄D C ′L St Cpb

1 150 8 1.2389 0.271 0.1850 0.8487
2 180 8 1.2253 0.342 0.1893 0.8845
3 210 8 1.166 0.25 0.1852 0.832
4 240 12 1.169 0.30 0.1895 0.880
5 270 8 1.170 0.37 0.1949 0.913
6 300 8 1.172 0.37 0.1989 0.942
7 330 8 1.139 0.33 0.2015 0.918
8 360 8 1.120 0.30 0.2035 0.895
9 390 8 1.099 0.26 0.2053 0.883
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Figure 4.7: Time variation of the spanwise component of velocity, uz, along the rear
axis at x/D=1.5, three-dimensional case.

tion of the spanwise velocity-component, uz, in the near wake. Figure 4.7 shows the
time evolution of uz in the near-wake, at Reynolds numbers ranging from 180 to 300.
For the sake of clarity, each signal is truncated at a different evolution time to avoid
overlaps. For the lowest Reynolds numbers considered here, namely Re = 180 (and
Re = 150, which is not shown in Figure 4.7), the flow did not exhibit any sign of
spanwise fluctuations, an indication that it remained completely two-dimensional. In
contrast, for higher values of the Reynolds number, Re ≥ 210, the flow showed an ex-
ponential growth of uz, indicating the inception of three-dimensionality. As a general
trend, with increasing Reynolds number, the uz amplification was found to initiate ear-
lier. Thus, the present simulations indicate that the transition in the cylinder’s wake
occurs within the interval between Re = 180 and Re = 210. This is consistent with
the results of Camarri and Giannetti [40], who carried out a Floquet stability analysis
for the same configuration and found a critical value of RecrA ≈ 201 for the transition
to a three-dimensional state.

Transition to three-dimensionality is also depicted on the time history of the lift, CL,
and drag, CD, coefficients as shown in Figure 4.8. After a transient period, during which
the flow remains in a two-dimensional state and periodic vortex shedding is observed,
the signal eventually loses its coherence, and a drastic reduction in the lift and drag
forces occurs, corresponding to a three-dimensional state of the flow. The flow develops
these three-dimensional effects soon after the amplification of the spanwise velocity uz.
The length of the transient period was particularly long for Re = 210, approaching
500 time units, but it got shorter as the Reynolds number was further increased. For
all other cases up to Re = 390, the transient period was ranging between 50 to 200
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Figure 4.8: Lift CL and drag coefficient CD versus time, for the three-dimensional
cases: (a) Re = 180, (b) Re = 210, (c) Re = 240, and (d) Re = 300.
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time units. This behavior bears strong resemblance to the simulations of Mittal and
Balachandar [9] for the case of an unconfined circular cylinder.

4.3.2 Effect of Re on Strouhal number St and base pressure

coefficient Cpb

As the Reynolds number is increased, modifications in the dynamics of the wake struc-
ture produce distinct changes in the shedding frequency and the pressure field. The
transient nature of the flow necessitates long simulation times before reliable statistics
can be collected, especially for Re values close to the wake transition critical points.
In our case, simulation times were made even longer because of our relyince on self-
excitation to trigger transition. Once a statistically stationary state was reached in
the computation, the calculation was continued for another 100 to 150 vortex shed-
ding cycles to obtain the time-averaged values. Strouhal numbers have been obtained
from the lift coefficient signals using Welch’s averaged periodogram method [81]. A
Hamming window was applied to each overlapping segment of data.

The variation of the Strouhal number, St, as a function of the Reynolds number is
shown in Figure 4.9, where results from the present 2-D and 3-D simulations are com-
pared to the experimental results of Williamson [15] for the unconfined case. Dashed
vertical lines indicate the critical Reynolds numbers, which, according to Camarri and
Giannetti [40], mark the onset of different wake instabilities for the case of a confined
circular cylinder with the same blockage ratio as used in the present study. As shown
in Section 4.3.1, the flow remains completely two-dimensional up to Re = 180. Not
surprisingly then, results from the 2-D flow simulations are identical to those from
the 3-D simulations in this range of Re values. However at Re = 210, where three-
dimensional effects start to develop, a significant difference between the 2-D and 3-D
cases is observed. In the 3-D case, St undergoes a sudden drop of approximately 4%

that persists up to Re = 240. As Re is further increased, differences are observed to be
less significant, and another discontinuity in the St–Re relationship shows up, which
this time is not hysteretic. At Re = 270 the difference between 2-D and 3D cases is
around 2.5%, while for Re = 300− 390 the difference decreases to 1.5%. Interestingly,
results from the three-dimensional simulations compare well to the experimental re-
sults of Williamson for the case of an unconfined cylinder, but with a small delay in
the critical Re values. This offset, towards higher Re in our case, seems to be attributed
to the additional confinement from the channel walls, which presumably stabilizes the
flow and produces higher transitional Reynolds numbers [82].

Williamson [20] associated these two discontinuous changes in the St–Re curve,
with the development of different instabilities in the wake; mode A instability combined
with intermittent vortex dislocations, and mode B instability. In accordance with these
observations, current results indicate the existence of two instability regions: the first
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Figure 4.9: Strouhal number St versus Re, compared with the linear stability analysis
of Camarri and Giannetti [40], and the experimental study of Williamson [15] for the
case of an unconfined circular cylinder. Dashed lines mark the critical Reynolds number
indicated by Camarri and Giannetti [40] for the onset of different wake instabilities.

occurs around Re = 210 and corresponds to the onset of three-dimensionalities in the
flow, while the second occurs around Re = 270. We shall discuss these instabilities in
greater detail in the following section. These findings are consistent with the results
of Camarri and Giannetti [40], who carried out a linear stability analysis for the case
of a confined circular cylinder having the same blockage ratio as in the present study
and also found the existence of two instability regions. They found the critical value
for the onset of the second instability to be RecrB ≈ 256. According to their work,
these instabilities have the same symmetries as the mode A and mode B instabilities
found in the unconfined case. However, no drop in the Strouhal number is reported in
their study. This is not surprising taking into consideration the limitations of the linear
stability approach, and the fact that this transition feature, observed at Re ≈ RecrA

and above, is not a linear effect of the instability, but is a result of strongly nonlinear
phenomena [6, 23].

Despite its value in assessing flow instabilities, the evolution of the base pressure
coefficient, Cpb, as a function of the Reynolds number has not been previously discussed
in the literature for the confined case. Figure 4.10 shows this evolution for the present
2-D and 3-D simulations together with the experimental results of Williamson and
Roshko [16], and the data of Dennis and Chang [5] for comparison with the unconfined
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Figure 4.10: Base pressure coefficient Cpb, versus Re, compared with the experimen-
tal study of Williamson and Roshko [16] and the numerical simulations of Dennis and
Chang [5] for the case of an unconfined circular cylinder.

case. Again, as expected, results from the 2-D and 3-D simulated flows are identical
up to Re = 180, where the flow remains two-dimensional. For Re > 210, where three-
dimensional effects start to take place, the results from the 3-D simulation show a
marked drop in the level of Cpb, which remains undetected in the 2-D simulations.
Once again, the Cpb predictions from the current 3-D simulations exhibit a very similar
evolution with Re as found experimentally by Williamson and Roshko [16], for the
unconfined case.

According to Williamson [20] and Roshko [26] the variations of the base pressure
coefficient correspond to the presence of instabilities in the flow. In the unconfined
case, the drop in the base pressure coefficient at Re = 180 is thought to be to related
to the presence of mode-A instability and vortex dislocations [20]. At Re = 260, on
the other hand, there is a local maximum that corresponds to a saturation of the
primary instability growth [26]. Around that point, the secondary spanwise structure
changes to one with smaller scale, mode B instability [20]. As Re is further increased,
three-dimensional structures become more disordered and the base suction begins to
decrease. Our computations show the same characteristics in the variation of Cpb with
Re, the only difference being again a small delay in the initiation of 3-D effects in the
confined case relative to the unconfined results (Re = 210 instead of Re = 180), and
similar delay in the saturation effects (Re = 270− 300 instead of Re = 260), which are
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attributed to the additional confinement of the channel walls. Based on these results,
one would expect the overall structure of the confined wake to be similar to that of
the unconfined case. This expectation is confirmed by the findings presented in the
following sections.

4.3.3 Instabilities in the wake

In order to identify three-dimensional vortex structures in free shear flows, the vorticity
magnitude is usually used. However, in our case due to the existence of vorticity at
the channel walls, using the vorticity magnitude to identify vortices would result in
deformed vorticity structures and difficulties in visualizing them. The λ2 criterion is
by far more appropriate for boundary layer type of flows and it is defined as the second
eigenvalue of S2 +X2, where S and X denote the symmetric and antisymmetric parts
of the velocity gradient tensor respectively [83]. Thus, iso-surfaces of λ2 were used in
order to exclude the wall shear region and focus on the swirling motion of the primary
and induced vortices of the cylinder wake. Indeed, through the application of the λ2
criterion we were able to clearly detect the vortical motions of interest for such a highly
three-dimensional wall-bounded shear flow.

A visual impression of the three-dimensional structures related to the different
instabilities found in the flow can be obtained from Figure 4.11. There, we show
snapshots of iso-surfaces of λ2 normalized by its absolute minimum, λ2,min, for different
Reynolds numbers with increasing value. Iso-surfaces are colored by the streamwise
vorticity component, ωx, to reveal the streamwise rotation direction of each vortical
structure. The spanwise rollers essentially identify the primary vortex cores.

At Re = 240 (see Figure 4.11(a)), a Reynolds number corresponding to a regime
well after the onset of the first instability, a spanwise waviness of the primary vortex
cores is observed in the cylinder’s wake, along with the formation of counter-rotating
streamwise vortex pairs. Over successive half cycles of vortex shedding, vortex pairs of
opposite-sign vorticity are formed. The flow displays a dominant spanwise wavelength
of around 4D, in agreement with the value of 4.65D reported by Camarri and Gianneti
[40] for a similar configuration. This periodic, out-of-phase, three-dimensional flow
pattern is topologically similar to that of mode A [20], at least in the near wake region
(as it will be discussed in the next section). Mode A instability appears in the wake
of an unconfined circular cylinder with a spanwise wavelength of approximately 4D

[21, 20, 6].

For Re = 300 and above, finer scale streamwise vortex pairs are observed (see
Figures 4.11(d) and 4.11(e)), with a distinctly smaller spanwise wavelength of approx-
imately 1D. This time, successive vortex pairs from one braid layer to the next, have
the same orientation, forming an in-phase streamwise vortex pattern. This instability,
in contrast to mode A, is restricted to the near wake only and it is not found in the
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Figure 4.11: Instantaneous plots of iso-surfaces of the λ2 criterion normalized by
its absolute minimum (λ2/λ2,min = 0.5%) and rendered by contours of streamwise
vorticity, top view. Flow is from left to right. (a) Re = 240 at t = 1116D/Uc,
(b) Re = 270 at t = 1048D/Uc, (c) Re = 270 at t = 1110D/Uc, (d) Re = 300 at
t = 916D/Uc, and (e) Re = 390 at t = 694D/Uc.
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far downstream locations. With increasing Re, the number of streamwise vortices is
increased, and the flow becomes more distorted. This flow pattern is analogous to that
of mode B vortex shedding described by Williamson [20] for the case of an unconfined
circular cylinder. It also compares well with the predicted critical wavelength of 0.86D

found by Camarri and Gianneti [40] for the confined case.

In the case of Re = 270, which is close to the instability threshold, ReB ' 256,
found by Camarri and Gianneti [40], modes of vortex shedding similar to both mode
A and mode B were observed at different instances of the flow (see Figures 4.11(b)
and Figure 4.11(c), respectively) . This intermittent nature of the flow is in line with
the experimental observations of Williamson [20], the direct numerical simulations
of Henderson [23], and the stability analysis of Barkley [84] for the unconfined case.
They have shown that the transition from mode A to mode B is associated with a
gradual transfer of energy from one mode to the other, resulting in a mixed-mode state
approximately in the Re range 230−265. Williamson attributes this to the intermittent
swapping between the two modes, rather than the coexistence of both modes. Also,
Behara and Mittal [25] in their numerical investigations demonstrated the swapping
between modes up to Re = 275 for the unconfined case.

The present three-dimensional simulations are the first to reveal the presence of
natural vortex dislocations in the confined wake of a circular cylinder. Williamson
[17, 20] has shown that large-scale, spot-like, vortex dislocations are an intrinsic phe-
nomenon of wake transition. These irregularities occur spontaneously along the span
as a natural feature of the wake flow, and are associated with the presence of mode A
instability. However, few three-dimensional simulations have captured them. Zhang et
al. [21] reproduced numerically Williamson’s vortex-dislocations, after applying strong
localized spanwise inhomogeneity in the initial conditions. Braza et al. [19] were the
first to obtain the vortex dislocations naturally by means of a complete Navier-Stokes
simulation. In the present work, clear observations of the existence of natural vortex
dislocations are presented for the case of a confined circular cylinder.

The occurrence of such dislocations can clearly be seen in Figure 4.12, where snap-
shots of iso-surfaces of λ2 = −0.4 and pressure p = −0.4 are presented for Re = 240

at t = 870D/Uc. Iso-surfaces of λ2 are colored by streamwise vorticity component, ωx.
At the occurrence of dislocation, in the vicinity of z/D = −2, the span-wise coherence
of the primary vortex core is lost and a break in the continuity of the vortex tube
can be seen. Moreover, during this phase of the flow, dislocations affect the shedding
phenomenon, which as a result becomes irregular.

One can identify the occurrence of dislocations through their signature in instan-
taneous velocity signals and the corresponding spectra at different spanwise positions.
Figure 4.13 displays the crossflow velocity component signal from a series of probes
spaced in the spanwise direction and placed at the intersection of the horizontal plane
y/D=0.5 and the vertical plane x/D=1.5. This a location slightly downstream from
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Figure 4.12: Iso-surfaces of (a) pressure (p = −0.4) and (b) λ2-definition (λ2 = −0.5),
top view, for Re = 240 at t = 870D/Uc. Iso-surfaces of λ2 are colored by streamwise
vorticity component ωx.

the cylinder. At certain spanwise positions, the normal Karman vortex shedding gives
way to a pronounced modulation in the time history of fluctuating velocities. These
can be seen as the marked areas in Figure 4.13(a), or more clearly in Figure 4.13(b),
where two samples of velocity signals are displayed in an interval corresponding to the
time instant of the snapshot shown in Figure 4.12. These irregularities, or glitches, in
the velocity signal correspond directly to the passage of a vortex dislocation structure
past the measuring probe [17]. The spontaneous occurrence of such dislocations at
different spanwise locations was found to be regular in time.

Another way to visualize dislocations is by looking at the corresponding power
spectral density of the velocity signal (see Figure 4.14). Braza et al. [19] found that in
the regions where a vortex dislocation occurs the spectral energy of the fundamental
frequency is reduced considerably. This behavior is clearly seen in Figure 4.14. In the
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Figure 4.13: (a) Time history of velocity component uy measured at probes located
along the span at the position x/D = 1.5, y/D = 0.5. Dotted lines mark areas
of pronounced modulation of the velocity signal, indicating the presence of vortex
dislocations. (b) Expanded view showing two samples of velocity signals in a time
interval associated with the snapshot in Figure 4.12.
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Figure 4.14: Spectra of crossflow velocity component uy along the span at the
position x/D = 1.5, y/D = 0.5, for Re = 240, 270, and 300 from left to right.

case of Re = 240, where the flow exhibits mode A vortex shedding, there is a significant
decrease in the spectral energy in the vicinity of z/D = 4 and z/D = −3. The drop, at
certain spanwise positions, reaches up to 50% from the maximum value. On the other
hand, for the cases of Re = 270 and Re = 300, which correspond to a mixed or pure
mode B vortex shedding, changes in the amplitude of the spectral density are much
smaller, approximately 15% and 20% respectively. In these cases, the flow is devoid
of vortex dislocations, in agreement with the experiments of Williamson [17] and the
numerical simulations of Behara and Mittal [25].

4.3.4 Effects of confinement

In order to identify differences between the wake characteristics of confined and uncon-
fined cylinders, two more simulations were performed, at Re = 240 and Re = 300, this
time for an unconfined cylinder. To accommodate the unconfined simulations, grids
G2W and G2F were laterally extended from 5D to 50D, in order to minimize blockage
effects [6, 24], while providing a comparable resolution to the corresponding confined
cases.

The effects of confinement on mode A flow structures are examined first. A com-
parison between the confined and the unconfined case is shown in Figure 4.15, where
snapshots of iso-surfaces of the λ2 criterion are plotted at Re = 240. Although mode
A is identified in the confined case, the downstream evolution of the cylinder wake is
strongly affected by confinement. In the near wake region, i.e. for x/D < 5, mode
A is clearly identifiable in the confined case, and one cannot discern clear differences
between the vortical patterns generated by the confined and unconfined cases. Moving
further downstream though, one finds that the structure of the confined wake departs
from that of a standard unconfined cylinder wake. For example, at 5 < x/D < 17,
the hairpin structures of the braid shear layer that are a standard feature of the un-
confined wake, can still be identified in the confined case, but their motion and shape
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Figure 4.15: Iso-surfaces of λ2 normalized by its absolute minimum (λ2/λ2,min =
0.35%), colored by the streamwise vorticity component, for the case of a confined
(a,b) and an unconfined (c,d) circular cylinder at Re = 240. ωx.max is the maximum
streamwise vorticity magnitude. Supplementary movie shows an animation of the
vortex structures for the confined case (Mode A instability).
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is significantly modified. These differences may be attributed to the inversion of the
Von Karman vortices caused by wall interactions in the confined case, as described by
Camarri and Gianneti [40]. For x/D > 17, the confined wake is much more fragmented,
without a clear presence of primary vortex cores, which in the unconfined case, are seen
to persist this far downstream. In the same region, one finds a stronger streamwise
alignment of vortices in the confined case compared to the unconfined case. In the
confined case, hairpin vortices sustain their coherency and persist for larger distances,
up to x/D ≈ 30.

The breakdown of the primary vortex cores and the fragmented nature of the flow
depicted by iso-surfaces of λ2 = −0.3 (0.5% of its absolute minimum) is represented
over successive time instants at Re = 240 in Figure 4.16. In order to have a more clear
view of the spanwise vortex cores, rather than the streamwise vortices, iso-surfaces are
colored by the spanwise vorticity component ωz. At t = 1111D/Uc one can observe
that from approximately x/D ≈ 17 and above, the primary vortex cores lose their
coherence and break into smaller structures that become aligned in the streamwise
direction as they are advected further downstream. If we focus our attention on one
such a pair of counter-rotating spanwise vortex cores (see Figure 4.16(a) - box A),
and follow them in time as they move further downstream, the initial small waviness
grows, and they seem to be gradually pulled backwards and towards the channel walls.
When they reach the vicinity of x/D = 17 (see Figure 4.16(b) - box B), the front
counterclockwise vortex roller (top roller, colored red) starts losing its continuity and
breaks. At x/D ≈ 22, eventually both vortices break down and they are transformed
to U-shaped vortices (see Figure 4.16(c) - box C). The legs of these structures are later
separated and transformed to streamwise rollers as they are advected downstream (see
Figure 4.16(d) - box D). Interestingly this pattern of behavior is systematic and all
primary vortex cores are stretched and eventually break down in a similar manner and
around the same spanwise positions.

Figures 4.17(a) and 4.17(b) show iso-surfaces of the streamwise component of the
velocity field, for ux = 0.5 and 1.5 respectively, for Re = 240 at t = 1130D/Uc. Looking
at Figure 4.17(a), one can observe close to the channel walls “streaks” of low-velocity
fluid that protrude towards the center of the channel. These “streaks” are aligned
in the streamwise direction and occur on both sides of the channel walls at similar
spanwise positions. In between these low-velocity fields, regions of high-velocity fluid
are observed that are also aligned in the streamwise direction, as seen in Figures 4.17(b)
and 4.17(d).

This organized, “symmetric” mixing of low and high velocity fields results from the
interaction of the streamwise vortex pairs, from mode A instability, and the channel
walls. Figure 4.17(c) shows a contour plot of ux in the plane x/D = 7.2 (plane A).
Contour lines of streamwise vorticity, ωx = ±0.6,±0.8, are superimposed to give in-
formation on the location and rotation direction of the streamwise vortex pairs. The
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Figure 4.16: Instantaneous visualization of iso-surfaces using λ2 = −0.3 over suc-
cessive time instants at Re = 240. Iso-surfaces are colored by the spanwise vorticity,
ωz. (a) t = 1111D/Uc, (b) t = 1120D/Uc, (c) t = 1127D/Uc, (d) t = 1130D/Uc.
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Figure 4.17: Instantaneous visualizations of the streamwise velocity field, ux, for the
case of Re = 240 at t = 1130D/Uc. (a-b) Iso-surfaces of ux = 0.5 (a), and ux = 1.5
(b). (c-d) Contour plots of ux in the planes x/D = 7.2 (c), and x/D = 16.8 (d). Lines
represent the values of streamwise vorticity, ωx = ±0.6,±0.8 (dashed lines correspond
to negative values of ωx). Arrows indicate the direction of the velocity induced by
the streamwise vortices. (e-f) Contour plots of ux in the planes z/D = 2 (e), and
z/D = 4 (f). Lines represent the values of spanwise vorticity, ωz = ±0.8 (dashed
lines correspond to negative values of ωz). P1 and P2 are anticlockwise and clockwise
primary vortex cores respectively.
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induced velocity due to the streamwise vortex pairs drives low-velocity fluid towards
the centreplane of the wake and high-velocity fluid towards the channel walls. Be-
cause mode A instability gives an out-of-phase streamwise vortex pattern at particular
spanwise locations, streamwise vortex pairs of opposite sign reside on opposing sides
of channel walls. As a result, the deformation and stretching of low and high velocity
fluid towards and away from the centreplane of the wake occurs at the same spanwise
positions on both sides. The self-sustaining nature of mode A, that gives an array of
streamwise vortex pairs that travel further downstream at the same spanwise positions,
explains why these low and high speed regions are aligned in the streamwise direction.

Figures 4.17(e) and 4.17(f) show contour plots of ux in the planes z/D = 2 (plane
C) and z/D = 4 (plane D) respectively, which correspond to areas in the wake where
high and low velocity fields are more prominent accordingly. In order to investigate
the effect of the velocity field on the primary vortex cores, lines representing values
of spanwise vorticity, ωz = ±0.8 are displayed on top. As seen in Figure 4.17(e) the
primary vortex cores strongly interact with the high-speed velocity field and are forced
to follow a trajectory close to the centerline as they shed downstream. On the other
hand, in the plane z/D = 4 (see Figure 4.17(f)), as segments of the vortex cores are
caught in the low-speed region, the primary vortex cores follow an oblique trajectory
closer to the channel walls and progressively slow down (see vortex cores P1 and
P2). This accelerating and slowing down of segments of the primary vortex cores at
different spanwise locations causes the enhanced waviness observed. Around x/D = 17

the stretching of the vortex core become so strong that forces it to break down.

So far, the discussion of confinement effects has been limited to mode A instability.
In the case of mode B, when compared with the unconfined case, the downstream
evolution of the cylinder wake also seems to be strongly affected by confinement in
a similar manner with mode A as shown in Figure 4.18 for Re = 300. For higher
values of Re, the break down of the primary vortex cores ensues further upstream (up
to x/D = 12 for Re = 390, as shown in Figure 4.11(e)) and the flow becomes more
fragmented. However, in the presence of mode B instability, it was not possible to
observe a regular pattern of vortex breakdown.

There are mainly two features of the flow responsible for this behavior. Unlike
mode A, mode B instability leads to an in-phase streamwise vortex array with a smaller
spanwise wavelength (see Figures 4.11 and 4.19(c)). Also, a spanwise wandering of
the streamwise vortices from one half-cycle to the next is observed, in line with the
experimental visualizations of Williamson [20] for the unconfined case. As a result,
induced velocity from the streamwise vortices was found to generate irregular streams
of low velocity, as shown in Figure 4.19(a). In contrast with mode A, these slow-
moving regions, were neither aligned along the streamwise direction nor observed at
symmetric locations on the channel walls. In addition, no clustered regions of high
velocity extending in the streamwise direction were identified (see Figure 4.19(b)).
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Figure 4.18: Same as Figure 4.15, but for Reynolds number, Re = 300. Supple-
mentary movie shows an animation of the vortex structures for the confined case at
Re = 300 and Re = 390 (Mode B instability).
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Figure 4.19: Instantaneous visualizations of the streamwise velocity field, ux, for the
case of Re = 300 at t = 916D/Uc. (a-b) Iso-surfaces of ux = 0.5 (a), and ux = 1.5
(b). (c-d) Contour plots of ux in the planes x/D = 8.9 (a), and x/D = 14.6 (b). Lines
represent the values of streamwise vorticity, ωx = ±0.6,±0.8 (dashed lines correspond
to negative values of ωx).

These features promote the amplified distortion observed for mode B instability and
result to the irregular break down of the primary vortex cores. With increasing Re
these effects become even more pronounced leading to the breakdown of the primary
vortex cores earlier downstream.

4.4 Conclusions

Direct numerical simulations of the two- and three-dimensional flow around a circular
cylinder placed in a plane channel have been performed. The blockage ratio was kept
constant at 1/5, and the Reynolds number was varied between 10 and 390.

Present results indicate that up to Re = 180 the flow remains two-dimensional. For
higher values of the Reynolds number, Re ≥ 210, the flow develops three-dimensional
effects which are depicted on the time history of the lift, CL, and drag, CD, coefficients.
Two discontinuous changes were detected in the St–Re curve corresponding to differ-
ent spanwise instabilities in the wake, an effect that is linked to inherently nonlinear
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mechanisms and which previous studies failed to capture. We have also confirmed for
the first time, that the critical points are also reflected in the Cpb–Re relationship, as
was also found by Williamson for the unconfined case. Similar to the case of an uncon-
fined circular cylinder, mode A 3-D shedding was observed for Re = 210 and 240. For
Re ≥ 300, mode B vortex structures were detected. At Re = 270 the flow exhibited an
intermittent swapping between the two modes. The intermittent presence of naturally
occurring vortex dislocations, as a fundamental feature of wake transition, was also
demonstrated. This is the first time that the existence of these instabilities, has been
confirmed via full 3-D simulations for the confined circular cylinder in a channel.

The present work leads to a clarification of how the shape and evolution of mode
A and mode B instabilities are affected downstream by the confinement of the channel
walls. In case of mode A, organized, “symmetric" mixing of low and high velocity fields
is observed downstream, which eventually forces the primary vortex cores to break
in a consistent and systematic way. In the case of mode B, irregular streams of low
and high velocity are observed, which result to the irregular breakdown of the vortex
cores. Understanding the hydrodynamic field and knowledge of the velocity profiles
is important to properly predict local phenomena such as heat transfer and corrosion
effects.
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Chapter 5
Three-dimensional numerical simulations of
MHD flow around a confined circular
cylinder under low, moderate and strong
magnetic fields

The work in this chapter was motivated by the lack of detailed three-dimensional
simulations addressing the case of confined MHD flows with flow-obstructions. In
this study, we perform fully three-dimensional direct numerical simulations around
a circular cylinder placed symmetrically in a rectangular duct. The Hartmann and
Schercliff layers developing along solid surfaces are fully resolved without using any
wall model. Results are presented for values of the Hartmann number (based on the
duct width) in the range of 0 ≤ Ha ≤ 1120, and the Reynolds number (based on
the cylinder diameter and centerline velocity) in the range 0 ≤ Rec ≤ 5000. Most
of the studies in the literature have been based on the Q2D model, whose validity is
restricted to high Ha numbers. Hence a main objective of this study is to fill in the gap
in the area of low Ha for this type of flows. Fully three-dimensional direct numerical
simulations are used to assess independently the performance and range of validity of
simplified models, such as the Q2D model. Leveraging the information provided by
the fully 3-D simulations, we attempt to address physical effects, which, as already
pointed out by Dousset and Pothérat, [56] are not properly accounted for in the Q2D
model due its inherent limitations. For example, we aim to shed light on the effect of
the magnetic field intensity on the generated flow regimes. In addition, we describe the
evolution of the flow characteristics (force coefficients and recirculation length) with
Ha and Re, and discuss their spanwise distribution along the cylinder. Providing the
full three-dimensional flow characteristics could also be beneficial to future modelers
working towards the construction of advanced near-wall models for these type of flows.

The chapter is organized as follows. In Section 5.1, we define the test case consid-
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ered and recall the governing equations, along with the proper boundary conditions.
Section 5.2 is devoted to the numerical aspects of this study; in particular, we de-
scribe the numerical algorithm and the development of the grid design along with its
respective validation and verification. In Section 5.3, we present the evolution of the
critical Reynolds number for the onset of vortex shedding with respect to Ha, while in
Sections 5.4 and 5.5 results under steady and unsteady flow conditions are presented,
respectively. Finally, Section 5.6 presents the concluding remarks derived from the
numerical experiments.

5.1 Problem statement and formulation

5.1.1 Flow configuration and mathematical formulation

The geometry considered in this study is shown in Figure 5.1. The geometry consists of
a circular cylinder of diameter D and length W placed symmetrically in a rectangular
duct. The ratio of the cylinder length to its diameter defines the aspect ratio,

α = W/D , (5.1)

while the ratio of the cylinder diameter to the duct height H (distance between the
duct walls perpendicular to the cylinder axis) defines the blockage ratio,

β = D/H . (5.2)

Results are reported for β = 1/4 and α = 4, allowing for a direct comparison with
the numerical simulations of Dousset and Pothérat [56]. The origin of the coordinates
axes is placed at the cylinder’s geometrical center, with the z direction being aligned
with the cylinder axis. The duct inlet is placed at a distance of Li = 12.5D upstream
of the circular cylinder, while the outlet is located at Lo = 35.5D behind the body.
This choice of parameters ensures minimal distortion of the flow structures due to the
outlet boundary conditions, while maintaining a reasonable computational cost, as will
be described further in Section 5.2.3.

The flow of an incompressible, electrically conducting Newtonian fluid, of density
ρ, kinematic viscosity ν and electrical conductivity σ, is considered. An external ho-
mogeneous magnetic field of amplitude B0 is applied along the spanwise direction z,
aligned with the cylinder axis. The walls of the cylinder and the duct are assumed to
be electrically insulating. In most cases of liquid-metal flow encountered in industrial
applications, the magnetic Reynolds number is in general very small, and thus the in-
duced magnetic field is found to be negligible when compared to the imposed magnetic
field. Hence, in this study it is also assumed that the magnetic Reynolds number,
Rm, is much smaller than unity, Rm � 1, therefore the quasi-static approximation is
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Figure 5.1: (a) Schematic diagram of the flow configuration and related geometrical
parameters. (b-c) Shaded areas represents location of the Hartmann layers (b), and
Schercliff layers (c).

invoked [85]. Under these assumptions, the non-dimensional magnetohydrodynamic
equations governing the flow can be written as:

∇ · u = 0 , (5.3)

∂u
∂t

+ u ·∇u = −∇p+
1

Rec
∇2u +N(j×B0) , (5.4)

j = −∇φ+ u×B0 , (5.5)

∇ · j = 0 . (5.6)

The dimensionless flow variables appearing in equations (5.3) - (5.6) are obtained from
their dimensional counterpart by using the centerline inflow velocity, Uc, as the char-
acteristic velocity scale and the cylinder’s diameter, D, as the characteristic length
scale. Therefore, the following variables, t, u, p, j, B, φ, which denote the dimen-
sionless time, velocity, pressure, current density, imposed magnetic field and electric
potential are scaled with D/Uc, Uc, ρUc

2, σUcB0, B0, and DUcB0, respectively. Two
dimensionless parameters appear in equation (5.4). The Reynolds number, Rec, and
the interaction parameter, N ,

Rec = UcD/ν , N =
σDB2

0

ρUc

=
D2

W 2

Ha2

Rec
, (5.7)

where Ha is the Hartmann number, defined as:

Ha = WB0

√
σ

ρν
. (5.8)
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5- 78 Chapter 5. 3D MHD flow around a confined circular cylinder

The drag, CD, and lift coefficient, CL, the Strouhal number, St, and the base pres-
sure coefficient, Cpb, are defined by equations (4.3)-(4.6) in Chapter 3. The recirculation
length, Lr, is defined as the average distance, along the center-plane (y = 0), from the
rear stagnation point of the cylinder (180 degrees from the front), to the point where
the streamwise velocity is zero.

5.1.2 Boundary Conditions

Boundary conditions are given at the domain’s inlet by prescribing the analytical so-
lution for an MHD flow in a rectangular duct with insulating walls, in the absence of
a cylinder, as described by Müller and Bühler [50]. A no-slip boundary condition is
imposed on the cylinder surface and the duct walls, uwall = 0. At the outlet, in order
to minimize reflective effects and avoid the distortion of the flow structures leaving the
domain, while ensuring mass conservation, a convective boundary condition is applied,

∂ui
∂t

+ Uconv
∂ui
∂n

= 0. (5.9)

Here Uconv ≡
∫
ujnjds/

∫
ds, with the integrals being calculated over the outlet surface.

For the electric potential, the condition ∂φ/∂n = 0 is imposed at the duct walls to
ensure that no current crosses the insulating walls. At the inlet and outlet of the duct,
the following boundary condition is used,

∂φ

∂n
= (u×B) · n, (5.10)

ensuring that no electric currents enter or leave the domain [59]. This boundary con-
dition reduces to the requirement of zero normal component of the current at the inlet
and outlet.

5.2 Numerical Aspects

5.2.1 Numerical method

The current computations have been performed using the unstructured collocated
nodal-based finite-volume code (CDP). Extensive details of the code, related with
the discretization methods and the numerical techniques used, have been described in
Chapter 3.

For this study, we have complemented this code with a module to compute the
Lorentz force and include it in the momentum balance. A very detailed description
of the numerical techniques used by this module is reported in Albets-Chico et al.
[72]. A consistent and conservative computation of the Lorentz force is used [75]. The
implementation and integration of this module in CDP has been validated for several
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Table 5.1: Numerical grids used for MHD simulations in a duct with no cylinder.
∆ymin: grid spacing at Shercliff walls, ∆zmin: grid spacing at Hartmann walls.

Grid Ny ×Nz ∆ymin ∆zmin

G1 45× 45 0.02 0.02
G2 65× 65 0.01 0.01
G3 85× 85 0.005 0.005
G4 85× 104 0.005 0.002

MHD flows and in various geometries including the MHD channel flow [86] and the
MHD pipe flow [87]. In the next subsection, we further validate the code together with
the proper grid density and design for fully-developed MHD flow in a rectangular duct,
in the absence of a cylinder.

5.2.2 2-D fully-developed MHD duct flow

In order to provide the appropriate grid for the different flow regimes analyzed by this
work, and in particular to establish proper resolution criteria regarding the Hartmann
and Shercliff layers, a series of preliminary numerical computations are performed in a
rectangular duct without the presence of the cylinder. Additionally, this step further
validates the numerical code and its ability to deal with basic MHD flow dynamics, as
the numerical results can be assessed against the known semi-analytical solution for
the duct flow without a cylinder [50].

For this reason, the configuration of Figure 5.1 is first considered without the pres-
ence of a cylinder. The flow is assumed to be fully developed, hence a two-dimensional
case is addressed, with periodic boundary conditions for the velocity in the streamwise
direction, and with a fixed pressure drop (iteratively computed such as to enforce a
constant mass flow) that is used in the whole domain as a forcing term. The Reynolds
number is fixed at Rec = 100, while Hartmann numbers in the range Ha = 0 − 1120

are considered.
Four different grid configurations are tested, differing in the spatial resolution at

the Hartmann and Shercliff walls, as summarized in Table 5.1. In the direction normal
to these walls, linear grid stretching is applied. The non-dimensional velocity profiles
resulting from the respective different grids are shown in Figure 5.2. In this Figure the
velocity is scaled by W 2ν−1ρ−1(−∂p/∂x), where ∂p/∂x is the pressure gradient driving
the flow. This scaling relates the velocity profile with the magnitude of the pressure
drop required to produce it. This is a strict, but critical way to present results because
one could obtain very similar velocity profiles, even with a very coarse mesh, just by
fixing the mass flow. However, in such case, the viscous stresses at the walls, and hence
the pressure drop, would be overpredicted. Therefore, it is necessary not only to obtain
an accurate velocity profile, but also to predict accurately the pressure drop needed to
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5- 80 Chapter 5. 3D MHD flow around a confined circular cylinder

Figure 5.2: Velocity profiles for Ha = 320 (a,b) and Ha = 1120 (c,d) at Sher-
cliff (a,c), and Hartmann walls (b,d), for the case of a fully developed MHD flow in
a rectangular duct, in the absence of the cylinder. Symbols show results from cur-
rent computations using different grid configurations, while solid lines represent the
analytical solution of Müller and Bühler [50].
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5.2. Numerical Aspects 5- 81

drive the fluid through the duct.

Results are compared with the analytical solution in terms of a series expansion
provided by Müller and Bühler. [50] The solution was obtained for the case of an MHD
flow in a rectangular duct with insulating walls and a strong transverse magnetic field.
For brevity, only results for Ha = 320 and 1120 are shown. For lower Ha numbers even
better agreement with the semi-analytical solution is obtained, as the electrodynamic
layers are less challenging from a numerical point of view. For Ha = 320, the maximum
local discrepancy between the velocity profiles predicted numerically on grid G3 with
respect to the ones obtained analytically is less than 2%. This percentage difference
is further reduced to less than 0.4% when the analytical solution is compared to the
results obtained using grid G4. Hence, one can conclude that the intermediate grid G3
is sufficiently fine to resolve the flow forHa ≤ 320, as lowerHa numbers present thicker
electrodynamic layers. On the other hand, for higher values of Ha, (Ha = 1120), the
maximum local discrepancy between the analytical velocity profiles with respect to the
ones obtained numerically on grid G3 is around 17%, which is unacceptably high. This
fact makes imperative the use of the finer grid G4 for this range of Hartmann flows,
so as to reduce the numerical error to less than 3%. In general, when using grid G3
for Ha ≤ 320 and grid G4 for 320 < Ha ≤ 1120 the agreement is very good for all
the examined cases, confirming the ability of our numerical code, together with the
appropriate grids, to accurately resolve the Hartmann and Shercliff layers.

5.2.3 3-D mesh details and computational domain

In this subsection we present the mesh design for the configuration of interest (see
Figure 5.1), that is in the presence of a circular cylinder, together with a domain-
dependence analysis.

The influence of the grid resolution on the computed physical characteristics of the
purely hydrodynamic flow was examined in detail in a previous paper of ours [79], for
the case of a circular cylinder confined in a channel with a slightly smaller blockage
ratio. Grid development for the current configuration was based on that study, with
a few modifications to compensate for the different blockage ratio and the additional
confinement from the walls at the cylinders ends. Furthermore, results related to the
grid resolution of the Shercliff and Hartmann layers found in the previous subsection
were considered when generating the grid. In view of the exponential decay of the
thickness of the Hartmann layers with increasing Ha (δH ∼ O(Ha−1)), and in order to
accommodate the wide range of Ha numbers investigated herein, two grids, differing
only in the resolution of the Hartmann layers have been used.

Hence, based on the results obtained for the fully-developed case in the previous
section, two grids were generated, namely GL-M and GH-M, with a minimum grid
spacing along the direction of the magnetic field, of ∆zmin = 0.005D and 0.002D
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5- 82 Chapter 5. 3D MHD flow around a confined circular cylinder

Figure 5.3: Computational grid GL-M. The upper plot shows the whole domain,
while the bottom plot shows an expanded view in the vicinity of the cylinder. Only
every 4th node is plotted for clarity.

respectively. The grid-naming convention adopted here is as follows. The first segment
of the grid name (two letters preceding the hyphen) indicate the the relative grid
resolution, i.e. GL- and GH- stand for Lower and Higher grid resolution respectively.
The second segment of the grid name (letter following the hyphen) indicates the domain
size, i.e. S, M and L stand for Short, Medium and Long domains respectively. The short
(-S) and and long (-L) domains were used only during the domain-size independence
study, otherwise the medium domain (-M) was used in all other runs. The parameters
of the different grid configurations tested are summarized in Table 5.2.

Grid GL-M has been used for the cases where Ha ≤ 320, and grid GH-M for the
last two cases with the higher Hartmann numbers, Ha = 640 and Ha = 1120. A
posteriori, we determined that at least 6 mesh nodes were present inside the Hartmann
layers and 18 nodes in the Shercliff layers for all the analyzed cases. For both grids,
a hyperbolic tangent-based function was used to stretch the cell sizes in a clustered
region close to the cylinder, and a linear grid stretching was applied in the direction
normal to the duct walls, as shown in Figure 5.3. Further upstream and downstream
of the cylinder, a uniform grid was used in the stream-wise direction.

In order to examine the influence of the computational domain on the predicted
flow fields, a domain-dependence study is also performed. For this reason, two more
grids are tested, namely GL-S and GL-L, with a smaller and larger computational
domain respectively. These grids are based on the spacing of grid GL-M. The tests
are carried out at Ha = 320, and Rec = 2000, which are the highest Hartmann and
Reynolds numbers examined for mesh GL-M. Simulations are performed over periods
of at least 180 dimensionless time units, corresponding to about 45 vortex shedding
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Table 5.2: Grid parameters used for the three-dimensional flow configuration. ∆nH :
grid spacing normal to the Hartmann walls; ∆nS,C : grid spacing normal to the Shercliff
and cylinder walls; Nz: nodes along spanwise direction.

Grid Cases Li Lo ∆nH ∆nS,C Nz Total Nodes

GL-S Ha = 320 Re = 2000 8.5 22.5 0.005 0.005 85 4,535,090
GL-M Ha ≤ 320 Re ≤ 5000 12.5 35.5 0.005 0.005 85 5,568,265
GL-L Ha = 320 Re = 2000 16.5 45.5 0.005 0.005 85 6,419,115
GH-M Ha > 320 Re ≤ 5000 12.5 35.5 0.002 0.005 104 6,812,936

GF-M Ha = 320 Re = 5000 12.5 35.5 0.005 0.005 85 8,600,000
GX-M Ha = 1120 Re = 5000 12.5 35.5 0.002 0.005 104 10,507,120

GR-T Ha = 320 Re = 5000 7 14 0.0015 0.0015 129 19,762,978

Table 5.3: Effect of grid design on time-averaged flow characteristics: Mean recircu-
lation length L̄r, pressure coefficient calculated in front and rear staganation point of
the cylinder C̄ ′pb, mean drag coefficient C̄D, and Strouhal number St.

Grid Ha Rec L̄r C̄ ′pb C̄D St

GL-S 320 2000 0.490 3.149 1.715 0.260
GL-M 320 2000 0.488 3.152 1.714 0.260
GL-L 320 2000 0.479 3.159 1.714 0.260

GL-M 320 5000 0.524 3.028 1.627 0.241
GF-M 320 5000 0.514 3.054 1.644 0.248
GR-T 320 5000 0.513 3.063 1.661 0.249

GH-M 1120 5000 - 3.727 2.148 0.265
GX-M 1120 5000 - 3.728 2.152 0.265
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5- 84 Chapter 5. 3D MHD flow around a confined circular cylinder

Figure 5.4: Effect of domain size on the average streamwise velocity at three different
locations in the mid-plane (z=0) using grids GL-S, GL-M and GL-L at Ha = 320 and
Rec = 1000.

cycles, with time averaging of results performed over the last 25 shedding cycles, when
the flow had reached a statistically steady state.

The discrepancy between the time-averaged values of drag coefficient C̄D, recircu-
lation length L̄r, base pressure coefficient C̄ ′pb, and the Strouhal number St resulting
from the use of different domain sizes is shown in Table 5.3. Because, Cpb (see equation
(4.6)) depends on the distance between the points used to compute the pressure drop,
we define a different base pressure coefficient, C ′pb in which the reference pressure is
at the front stagnation point of the cylinder (0 degrees from the front). Results show
that a domain independent solution can be achieved with the domains considered. For
example, replacing the shortest domain GL-S with the longest one, GL-L, resulted in
only 2.3% change in L̄r, and 0.3% in C̄ ′pb, whereas the corresponding changes were 1.9%
and 0.2% when replacing the intermediate domain GL-M with the longest domain. In
the case of C̄D and St almost no variations can be seen. Furthermore, Figure 5.4 dis-
plays the mean streamwise velocities at different one-dimensional slices, for domains
GL-S, GL-M and GL-L. From this comparison it can be concluded that the effect of
the convective outlet is very small, and is isolated within a distance of 2D from the
outlet. Based on these results, one can conclude that the intermediate domain GL-M
is sufficiently long to resolve the flow.

As explained below, it was necessary to design additional grids that would enable
us to investigate the presence of the fourth flow regime, which has been reported to
come in succession after regular vortex shedding [51, 56]. For this purpose, simulations
have been performed for an even higher Reynolds number, Rec = 5000, and for Ha =
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Figure 5.5: Spectra of crossflow component of velocity at the mid-plane (z = 0), for
Ha = 320 and Rec = 5000.

320 and 1120. The high value of the Reynolds number in this regime was found to
promote the presence of finer structures, especially at Ha = 320 (see Figure 5.18). To
capture these fine structures, grids GL-M and GH-M that were used in cases where
Ha = 320 and Ha = 1120, respectively, were refined even further. Grid refinement
was performed only in the streamwise direction, in the vicinity of the cylinder and
further downstream, decreasing the maximum value of ∆xmax from 0.2D to 0.1D. As
summarized in Table 5.2, this yielded two finer grids, namely GF-M (Fine resolution,
Medium domain) and GX-M (eXtra fine resolution, Medium domain), with a total of
8.6 and 10.5 million nodes, respectively. Given the irregular character of the flow in this
regime, special care was needed to ensure the validity of statistical quantities. For this
purpose, simulations were carried out for longer periods of at least 400 dimensionless
time units (100 vortex shedding cycles), while the time-averaging was performed over
a minimum period of 300 time units (75 shedding cycles). As we shall discuss in
Section 5.5, in the case of Ha = 320, Re = 5000, the presence of small-scale structures
in the near-wake is an inherent and important feature of the flow. In an effort to
ensure proper resolution of the smallest scales of motion on grid GF-M, an even finer
grid was generated in a shorter domain, namely GR-T (Reference resolution, Truncated
domain). The latter grid is up to three times finer in the near-wake region than grid
GF-M (see Table 5.2). Because of the extremely high computational cost associated
with the use of this grid, only one simulation was performed to provide a reference case
at Ha = 320, and Rec = 5000.

Overall, as shown in Table 5.3, the agreement between the results obtained with
the different grids is very satisfactory, with the discrepancies being below 2.2% at
Ha = 320, and 0.3% at Ha = 1120. Figure 5.5 shows the power spectral density of the
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5- 86 Chapter 5. 3D MHD flow around a confined circular cylinder

crossflow velocity component uy, obtained at x = 1.5D, y = 0.5D, z = 0 using grids
GF-M and GR-T. The observed spectra, as we shall see in Section 5.5, are consistent
with the instantaneous visualizations of the flow, where the presence of small scales is
clearly observed. The good agreement between the two cases indicates that the mesh
resolution of grid GF-M is sufficient to represent correctly the small scales of motion.

5.3 Crirical Re, onset of vortex shedding

We have first investigated the effect ofHa on the laminar flow regime and the transition
from steady to unsteady flow. In order to determine Rec,cr for a given value of Ha, a
series of independent simulations were performed for different values of Re starting from
a zero velocity field in all cases. Figure 5.6(a) shows the critical Reynolds number Rec,cr
(based on the centerline velocity) for the onset of vortex shedding as a function of the
Hartmann number. Each critical Reynolds number is defined in an interval represented
by an error bar. The lower end of the bar corresponds to the simulation with the
highest Re that leads to a steady flow-regime, while the higher end corresponds to the
simulation with the lowest Re that leads to unsteady flow. Results are compared with
those obtained by Dousset and Pothérat [56] using a Q2D model. However, it should
be noted that in their study, Recr was obtained by performing two series of numerical
computations, where Re was sequentially increased in small steps till unsteadiness was
reached, and then gradually decreased again till steadiness was recovered. Figure 5.6(b)
shows an expanded view in the area of low values of Hartmann number, this time
showing the critical Reynolds number Reb,cr based on the bulk velocity. Keeping Reb
fixed while varying Ha corresponds to the same mass flow rate, which is important
when presenting the transition from steady to unsteady flow.

As seen from these figures, for Ha > 80 the critical Reynolds number becomes
proportional to the Hartmann number with the linear relation Recr ' 0.52Ha. This
relation is in very good agreement with the results of Dousset and Pothérat, [56] who
report a relation of Recr ' 0.43Ha. A similar linear relationship between Re and
Ha was also observed by Frank et al. [51] (Recr ' 0.47Ha) and Hussam et al. [57]
(Recr ' 0.5Ha) for configurations with different blockage and aspect ratio, i.e. β = 0.1,
α = 5 and β = 0.2, α = 2.5 respectively. The relative differences between the results
obtained by Ref. [56] and the current study (see Table 5.4), may be at least partly
attributed to the different methods used for obtaining the critical Reynolds number.
Nevertheless, the agreement between the quasi-two-dimensional model and current
three-dimensional results gradually improves with increasing Ha. This is expected,
due to the enlargement of the quasi-inviscid core flow, which improves the validity of
the Q2D model.

Surprisingly, as one decreases the Hartmann number below Ha = 80, the critical
Reynolds number decreases slightly until it reaches a minimum value, Remin

b,cr ≈ 90, in
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Figure 5.6: (a) Effect of magnetic field intensity on the critical Reynolds number for
the onset of vortex shedding. (b) Expanded view in the area of low Ha, for the same
bulk flow through the duct.

Table 5.4: Relative differences between the critical Reynolds numbers for the onset
of vortex shedding, obtained in the present study and by Dousset and Pothérat. [56]

Ha 320 640 1120

Rec,cr 33% 25% 18%

the vicinity of Hacr ≈ 35. From that point on, it starts to increase up to Reb,cr ≈ 150 as
Ha is further decreased towards the hydrodynamic case,Ha = 0. This counter-intuitive
behavior indicates that there is a group of parameters in the range of Ha < Hacr, and
Remin

cr < Re < Recr(Ha) [shaded area in Figure 5.6(b)], in which for a fixed value
of Re and with increasing Ha, the flow will go from a steady to an unsteady state.
To verify the unexpected effect of generating unsteadiness by increasing Ha, we have
performed a series of additional numerical simulations for a few selected Re values
(within the shaded area), as opposed to the original simulations that were done for
fixed Ha values. For each Re value, the new simulations were carried out by increasing
Ha in small steps, each time allowing the flow to reach a statistically steady state.
By doing so, we have verified that when crossing the original stability boundary, as
given in Figure 5.6(b), unsteadiness was obtained. Of course, when Ha is increased
significantly steadiness eventually prevails again.

To the best of our knowledge, this is the first time that such a behavior at low
Hartmann numbers is observed, at least for the case of a wake flow with the magnetic
field aligned with the cylinder axis. Other studies in the literature of similar flow
configurations approached the problem by making use of the Q2D model [51, 56, 57],
and as a result, were limited to relatively high Hartmann numbers (Ha ≥ 320), where
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Recr is only found to increase with increasing Ha. Nonetheless, it is important to note
that similar non-monotonic scenarios have been demonstrated in the past for other
configurations, such as the case of a free cylinder with the magnetic field being parallel
to the oncoming flow [88] and the case of a duct flow [55]. For example, Ref. [55], while
investigating the case of a shear driven flow in a duct with non-uniform conductance
of the Hartmann walls, observed a similar behaviour at moderate values of Ha and
attributed that effect to the velocity deficit across the shear layers. Despite the fact
that once again a Q2D model was used in his study, results were expected to apply
qualitatively. Even though that study was addressing a different configuration, our
results are qualitatively similar and follow similar physical explanations, as we shall
see in the following paragraphs.

The overall behavior can be explained taking into account two physical aspects of
the flow: how laminar vortex shedding is triggered in the wake of a circular cylinder
and how the magnetic field affects the stability of the flow.

The first question has been addressed several times in the past and it is well-known:
The onset of the von Kármán vortex flow results from a global Hopf bifurcation of the
steady flow [11, 12]. The driving mechanism for this self-excited instability is associated
with the inception of small disturbances located symmetrically at approximately the
end of the separation bubble. In turn, these disturbances generate sinusoidal waves
traveling against the basic flow on the sides of the recirculation region [8, 89, 90]. If the
blockage and aspect ratio are relatively small and high, respectively, the presence of
walls, either at the ends of the cylinder or parallel to the cylinder axis, does not appear
to change the bifurcation properties in a dramatic manner. However, as the blockage
ratio increases or the aspect ratio becomes smaller, the walls confine the streamlines
near the cylinder, and the flow becomes more stable as the propagation of infinitesimal
disturbances becomes suppressed [27, 28, 32]. In addition to this effect, the local
acceleration of the flow in the vicinity of the cylinder and along the center-line of the
duct, presumably stabilizes the flow, leading to a delay of the onset of vortex shedding
[32, 33, 58, 82]. In the purely hydrodynamic case, and for the blockage ratio used in this
study, namely β = 1/4, Dousset and Pothérat [56] reported a critical value of Reb,cr '
55, without considering any additional confinement from the side walls (channel flow
case). In their experimental investigation of the stability of the steady wake, where
they considered the effect of confinement due to end plates normal to the cylinder
axis, Shair et al. [32]. reported a critical value of Reb,cr ≈ 135 for the case of α = 5.
Nishioka and Sato [42] showed that, as α is decreased, the standing vortex behind the
cylinder is stabilized and vortex shedding does not take place until larger Reynolds
numbers. For example, for α = 4.5 they found Reb,cr ≈ 140. Given the smaller aspect
ratio used in our study, α = 4, along with the additional confinement from the top
and bottom walls of the duct, our value of Reb,cr ≈ 150, is in reasonable agreement
with independent results from the literature. From all the aforementioned, it is evident
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Figure 5.7: Velocity profiles for the same bulk flow rate at the inlet of the rectan-
gular duct along the Shercliff (dashed lines), and Hartmann walls (solid lines) for low
Hartmann numbers.

that the rectangular duct aspect and blockage ratios become critical parameters when
considering the stability of the flow.

Concerning the second aspect, the magnetic field acts in two ways. On one hand, it
increases the damping of the fluctuations of the unstable flow through Joule dissipation,
as pointed out by Müller and Bühler [50]. On the other hand, it modifies the velocity
distribution of the primary flow, hence also acting on the flow stability through inertia.

For small Hartmann numbers, where N ∼ 1, viscous and Joule dissipation are of the
same order of magnitude and overall dissipation is stronger than in the hydrodynamic
case. This would suggest that the stability should increase with increasing Ha, however
the current results show the opposite for Ha < 35. In fact, what really explains this far
from obvious effect is the second action of the Lorentz force, viz. the modification of the
velocity distrubution before the cylinder, as shown in Figure 5.7. As already mentioned,
the instability mechanism leading to the onset of vortex shedding is affected by local
acceleration in the vicinity of the cylinder. Therefore, it is useful to look at the effect of
Ha on the fluid velocity on the upstream side of the cylinder. As shown in Figure 5.6(b)
(dotted line), with increasing Hartmann number, the centerline velocity Uc decreases
rapidly at first, i.e. for low values of Ha, and approaches asymptotically the bulk flow
velocity for larger values of Ha. The rapid decrease of the centerline velocity Uc at low
Ha can be translated to a deceleration of the flow in the neighberhood of the cylinder,
which effectively enhances instabilities and destabilizes the flow. This is in line with
the explanation given by Bühler [55]. In other words, with increasing Ha, the action of
Lorentz forces leads to a more uniform velocity distribution along the cross-section of
the duct (as shown in Figure 5.7), resembling a flow configuration with a higher aspect
ratio, and smaller blockage ratio. This action mimics the effect of moving the walls of
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Table 5.5: Relative differences between the steady-flow characteristics obtained in
the present study and by Dousset and Pothérat.[56]

Ha Lr Cpb CD

320 3% 4% 9%
640 2% 5% 8%
1120 3% 1% 6%

the duct further away from the cylinder. Consequently, having already explained the
significance of aspect and blockage ratio on the flow stability, increasing Ha enhances
the propagation of disturbances, which eventually destabilizes the flow leading to lower
values for the critical Reynolds numbers. This effect becomes clearer when comparing
the reduction of the flow stability at fixed bulk flow, and this explains the motivation
for using Reb,cr instead of Rec,cr in Figure 5.6(b).

In the case of high Hartmann numbers, where N � 1, the Lorentz forces become
dominant, and the main effect of the magnetic field is the stabilization of the flow, by
opposing vortical motions in planes lateral to the direction of the magnetic field. In
this case, increasing Ha leads to a significant reduction of the energy amplification of
disturbances due to Hartmann damping [58] and the critical Reynolds number becomes
proportional to Ha, as already pointed out in our results.

5.4 Steady flow regime

In this section we present and discuss results from numerical simulations with time-
independent flow, i.e. under parameters that produce steady mean flow. Results from
the present three-dimensional simulations are compared against the numerical results
of Dousset and Pothérat [56] obtained using a quasi-two-dimensional model. It should
be noted that in their study, they are reporting only results for high Ha, which is
necessary for their model to hold, so a direct comparison is only possible for the cases
where Ha ≥ 320. An overview of the relative differences between the results obtained
with two studies is given in Table 5.5.

5.4.1 Effect of Ha on the recirculation length Lr

The variation of the spanwise-averaged recirculation length, Lr, as a function of the
Reynolds number, Rec, and Hartmann number, Ha, is shown in Figure 5.8. In Fig-
ure 5.8(a), an almost linear evolution of Lr with Rec, for each Ha, is observed. In the
case of low Hartmann numbers, up to Ha = 80, the magnetic field seems to have little
effect on Lr, and all data collapse onto a single curve that depends only on Rec. In-
creasing Ha further causes the data to depart from that curve, while the slope slightly
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Figure 5.8: Recirculation length averaged along the spanwise direction, versus Re
and Ha. Results from present study (open symbols) are compared with the study of
Dousset and Pothérat [56] who used a quasi-2D model (closed symbols).

decreases. As shown in Figure 5.8(a), an increase of Ha at a fixed value of Re causes a
decrease in Lr. This is attributed to the action of the Lorentz forces as we shall discuss
in more detail in the following paragraph. Interestingly, if we plot Lr as a function of
Rec/Ha

0.8, as shown in Figure 5.8(b), a universal scaling law appears, this time for
high Hartmann numbers, Ha ≥ 320. This collapse for high Ha, was first demonstrated
by Dousset and Pothérat, [56] with whom the current results agree very well. As seen
from Table 5.5, the relative differences between the two studies are around 3%.

In addition to the spanwise-averaged recirculation length, Lr, it is also useful to
look at the distribution of the recirculation length along the span, Lr(z), as shown in
Figure 5.9. This allows us to analyze in greater detail the evolution the recirculation
length with increasing Ha. In this plot, we compare Lr(z) for different Ha, while
keeping the flow rate constant, i.e. Reb constant. In the case of low Ha values (see
Figure 5.9(a)), we can see that, as we move away from the centerline and closer to the
Hartmann walls, there is a large discrepancy between the values of Lr(z). Contrary
to the previous observation, where the magnetic field was revealed to have little effect
on the average value of the recirculation length, here we can see that an increasing
magnetic field induces significant differences in the distribution of the recirculation
length. Particularly at Ha = 20, besides the peak reached by Lr(z) at midspan, two
local peaks exist near the Hartmann walls. As recently explained by Dousset and
Pothérat [91] while considering the case of a truncated rectangular cylinder, these two
peaks are due to the presence of a pair of counter-rotating streamwise vortices, referred
to as base vortices, located in the vicinity of each Hartmann wall downstream of the
cylinder. The strength of these vortices is diminished with decreasing boundary layer
thickness upstream of the cylinder [92]. Therefore, with the increase of Ha, as the
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5- 92 Chapter 5. 3D MHD flow around a confined circular cylinder

Figure 5.9: Variation of recirculation length along the span for different Ha at the
same flow rate. (a) Ha = 20, 40, 80, and 160 at Reb = 50. (b) Ha = 320, 640 and
1120 at Reb = 250.

Hartmann boundary layer becomes rapidly thinner (δH ∼ 1/Ha), the base vortices are
weakened, which translates into the damping of the peaks near the walls of the duct.
In addition to the weakening of the base vortices, Lorentz forces act in the direction
opposite to the flow in the core region of the duct, while diffusing vorticity along the
magnetic field. These effects explain why increasing the intensity of the magnetic field
for a given mass flow rate leads towards lower values of Lr and smaller variations
along the span. At higher Hartmann numbers (see Figure 5.9(b)), Lorentz forces are
enhanced, and as a result, the recirculation region displays increasingly a relatively flat
distribution, i.e. the flow is driven towards a two-dimensional flow.

5.4.2 Evolution of the base pressure coefficient Cpb

Figure 5.10, shows the evolution of base pressure coefficient, Cpb, with respect to Ha
and Rec. Dousset and Pothérat [56] demonstrated that for high Hartmann numbers,
Re/Ha is a governing parameter for which all data collapse on a single curve. In this
study, we observe that the Re/Ha universality holds also for all the low values of Ha
investigated here for the first time. Even though at low Hartmann numbers a shift
towards higher values of Re/Ha is observed, the slope remains the same and Re/Ha
can be considered as a governing parameter of Cpb, for the entire range of parameters
studied here. As shown in Table 5.4, when the current results are compared with the
results obtained with the Q2D model, once again, a remarkable agreement between the
two studies can be observed. The relative difference between the two studies ranges
between 4% and 5% for Ha = 320 and 640, and drops to 1% for Ha = 1120. This
demonstrates that the Q2D model produces a very accurate averaging of the physical
phenomena along the spanwise direction, provided that the magnetic field is sufficiently
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Figure 5.10: Base pressure coefficient versus Re and Ha.

Figure 5.11: Spanwise distribution of the normalised base pressure coefficient for
Reb = 50.
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Figure 5.12: Sreamlines of the current density field passing close to the rear part of
the cylider surface at Ha = 1120 and Reb = 50. Along the cylinder surface, a contour
plot of the crossflow component of the current density is shown.

strong for the model to hold.

The spanwise distribution of the base pressure coefficient, Cpb(z), normalized with
its spanwise average value can be seen in Figure 5.11. In contrast to the spanwise
distribution of the recirculation length, where a stronger magnetic field leads to a
flatter distribution of Lr(z) (see Figure 5.9), the base pressure coefficient is found to
become less uniform for higher values of Ha. As the Hartmann number increases, the
pressure progressively drops at the mid span and increases close the side walls. This
unexpected trend is linked to the three-dimensional distribution of the Lorentz forces
along the surface of the cylinder. For example, Figure 5.12 shows the current density
streamlines, passing close to the rear part of the cylinder surface at Ha = 1120. The
surface of the cylinder is colored by the crossflow component of the current density,
Jy. As clearly seen, due to the electrically insulating flow insert, the current density
paths are deflected, generating a three-dimensional distribution of currents around the
cylinder. Along the rear side of the insert, this current pattern becomes more complex,
with a region of negative values of the cross-flow component of current density Jy

appearing between regions of positive values. In turn, this non-uniform distribution
of the current density field at the rear part, induces Lorentz forces which act in the
positive streamwise direction at both ends of the cylinder and towards the upstream
direction at the core region of the flow. These non-uniform forces effectively redistribute
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the pressure field at the rear part of the cylinder leading to the “three-dimensionality"
of the base pressure coefficients as shown in Figure 5.12. As the Hartmann number
is increased, Lorentz forces become stronger, and the variation of the base pressure
coefficient along the spanwise direction is enhanced. Nevertheless, it is important to
note that the spanwise variation of Cpb(z) is relatively small. Even at the highest
Hartmann number considered in this investigation, Ha = 1120, the relative difference
between the minimum and maximum values of Cpb(z) is found to be around 10% with
respect to the minimum value.

5.4.3 Influence of Ha on the drag coefficient CD

Figure 5.13, shows the evolution of the drag coefficient, CD, as a function of Rec, and
Ha. Focusing at the range of high Ha values in this figure (Ha ≥ 320), a universal
scaling law is found to hold for the drag coefficient as a function of Re/Ha0.8, as was
the case with Lr. While the same slope is valid for values of Ha < 320, results in this
case are shifted relative to the curve followed at high Ha. Here again, the agreement
between the current three-dimensional simulations and the Q2D model, is very good,
as shown in Table 5.5. Nevertheless, the discrepancy between the two studies is found
to be larger for CD values than for Cpb, and this difference is explained in the following
paragraphs. However, in the present study we have further found that there is a
relatively accurate universal scaling, for all Hartmann numbers, if we plot CD with
respect to Re/Ha0.6 as shown in Figure 5.13(b). Even though the collapse at high Ha
is not that accurate as with the previous scaling, for both high and low Ha numbers
results are concentrated in a narrow region. Of course, at low Ha results still shift
to lower values of CD. We have also noticed that if we use the drag coefficient based
on the bulk flow velocity, CD,bulk = CDU

2
c /U

2
b , and plot it versus the bulk Reynolds

number, Reb, results at low Hartmann numbers, Ha ≤ 80, collapse to a single curve
(see Figure 5.13(c)). For higher Ha, results are shifted to higher CD,bulk.

The distribution along the cylinder span, of the drag coefficient, CD(z), normalized
with its spanwise average is shown in Figure 5.14, where different Hartmann numbers
are compared at Reb = 50. Similarly to the base pressure coefficient, an increasing
variation of the drag coefficient along the spanwise direction is observed with increasing
Ha. Indeed, CD(z) displays a rather flat distribution at low Hartmann numbers and
gradually becomes highly non-uniform as Ha is increased. This evidence shows again
how the budget of forces becomes more “three-dimensional” with increasing Ha due to
the stronger action of the Lorentz forces. The physical mechanism underlying such a
non-uniformity can be better understood by examining the spanwise variations of the
pressure and viscous components of the total drag, as shown in Figure 5.15 for selected
values of Hartmann numbers. In all cases, the magnitude of the total drag is dominated
by the pressure forces around the surface of the cylinder, which on average correspond
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Figure 5.13: Drag Coefficient as a function of Re and Ha. (a) The universal scaling
law CD = f(Re/Ha0.8) for high Ha is verified. (b) A new scaling law is proposed for all
Ha, CD = f(Re/Ha0.6). (c) Plotting CD,bulk versus Reb data at low Ha ≤ 80, collapse
to a single curve.
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Figure 5.14: Variation of the normalised drag coefficient along the span for different
Hartmann numbers at the same flow rate, Reb = 50.

Figure 5.15: Spanwise variation of the drag coefficient and its components, viscous
and pressure drag, for Reb = 50, at Ha = 20 and 1120.
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to about 80% of the total. At Ha = 20, the influence of Lorentz forces on the pressure
drag is small with the latter displaying a relatively flat profile, therefore the spanwise
variation of CD(z) is due almost entirely to the effect of viscous stresses, that are
obviously affected by the wall-boundary layer at both ends of the cylinder. At Ha =

1120, owing to the stronger magnetic field, the Lorentz forces affect considerably the
distribution of the pressure forces, as previously explained. As a result, the contribution
of the pressure drag to the spanwise variation of the total drag, outweighs significantly
the viscous forces. Interestingly, unlike Cpb(z), the relative difference between the
minimum and maximum value of CD(z) for Ha = 1120, is almost 200% with respect
to its minimum value. This is attributed to the fact that Cpb(z) is simply a point
measurement, while CD(z) is an integral quantity of both the viscous and pressure
forces over the surface of the cylinder and therefore more indicative of the Lorentz forces
effect. From an engineering point of view, the increased non-uniformity of the spanwise
distribution of CD is important since it can lead to uneven stress distributions. Yet, this
unexpected trend could not have been inferred by examining the velocity distribution,
which on the contrary becomes more two-dimensional with increasing Ha.

In view of this strikingly “three-dimensional” distribution of the drag coefficient, one
would have expected that the Q2D-calculated value for the average CD would have dif-
fered significantly from the result produced by this fully three-dimensional simulation.
However, as shown in Table 5.5, the discrepancies between the two studies are quite
small, and not significantly larger than those for the Cpb. This fact suggests that for
steady-flow configurations, the averaging of the three-dimensional governing equations
– as done by the Q2D model – can capture the integral effects of the MHD flow, thus
producing sensible and reasonably accurate values for the averaged parameters, such
as CD and Cpb. Yet, despite providing an accurate prediction for the average CD, the
Q2D model cannot reproduce the details of the pressure distribution along the flow
insert that the present three-dimensional study has revealed. While not surprising,
this limitation means that the Q2D model should not be used for predicting spanwise
force distributions on inserts, even at high Hartmann numbers, where in general the
Q2D model is expected to hold.

5.5 Flow characteristics of the unsteady regime

The third and final part of the current study concerns the unsteady flow regime. Within
this regime very rich phenomena appear, which are of interest partially due to the
antecedents in the literature. As already mentioned in the introduction, the results of
Frank et al. [51], and Dousset and Pothérat [56], revealed the presence of an additional
flow regime that comes in succession after the laminar periodic vortex shedding. This
regime is characterized by irregular vortex patterns and by the shedding of secondary
vortices from the top and bottom walls, and it does not have a counterpart in the
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Table 5.6: Relative differences between the unsteady-flow characteristics obtained
in the present study and those by Dousset and Pothérat [56]. It should be noted,
that there simualtions were performed at Ha = 320, Re = 2030, and Ha = 1120,
Re = 4790.

Case C̄ ′pb C̄D St

U1 26% 36% 16%
U3 2% 8% 7%

purely hydrodynamic case at such moderate blockage ratio [27].
The aim of this section is to verify the presence of this regime and to describe addi-

tional flow features that can only be observed using a full three-dimensional analysis.
Furthermore, the analysis includes a discussion of unsteady regimes at low interaction
parameters, N ∼ 1, never addressed before.

Due to the increased computational time needed for such three-dimensional flow
simulations, and especially the need to integrate to a sufficiently long physical time to
achieve a statistically steady-state, only a limited number of simulations are carried
out. The choice of simulations is guided by the current results from Section 5.3, which
show when regular vortex shedding starts to take place, and by the parametric study
of Dousset and Pothérat [56], which indicates when the newly identified flow regime
occurs. Therefore, a total of three simulations are carried out, namely cases U1, U2

and U3, using grids GL-M, GF-M and GX-M, respectively. Case U1 is performed, at
Ha = 320, Rec = 2000, N ' 3, matching the von Kármán vortex flow. The other
two simulations are performed for a fixed higher Reynolds number (Rec = 5000) while
varying the Hartmann numbers. Thus, case U2 corresponds to moderate (Ha = 320)
and case U3 to strong magnetic field intensity (Ha = 1120). These sets of parame-
ters correspond to the forth flow regime according to Ref. [56] and yield interaction
parameters of N ' 1 and N ' 16, respectively for cases U2 and U3.

The results obtained in the unsteady flow regime are summarized in Table 5.3, while
in Table 5.6 they are compared to the data reported in Ref. [56]. For case U3, results
between the two studies are in good agreement, however for case U1 large discrepancies
can be observed. These can be attributed to the low interaction parameter associated
with case U1, as the Q2D model used in Ref. [56] is likely to produce invalid results at
this low interaction parameter, as pointed out by the authors [56].

5.5.1 Case U1: Ha = 320, Re = 2000

Figure 5.16 shows snapshots of contour plots of spanwise vorticity, ωz, in the center-
plane z = 0, for the case U1 (Ha = 320, Rec = 2000). In this figure, a typical
von Kármán vortex street is observed. Vortices are shed in a regular manner from
alternate sides of the cylinder, forming two rows that move alternately clockwise and
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Figure 5.16: Contour plots of spanwise vorticity, ωz, in the mid-plane (z = 0) for
the case of Ha = 320 and Rec = 2000.

anti-clockwise. Nevertheless, when the vortex trajectories are contrasted to the corre-
sponding confined case of flow over a cylinder in a channel [33, 40, 79], a fundamental
difference between the two cases can clearly be observed. Unlike the channel flow case,
where the trajectories of the two rows of vortices intersect and their position with re-
spect to the symmetry line is inverted [33, 40, 79], in this case no inversion of the shed
vortices is observed. As reported in previous studies [50, 51, 93], under the action of
the magnetic field the wake of the cylinder is narrowed and the distance between the
vortices is reduced. Consequently, shed vortices reach the vicinity of the walls only
further downstream. As the inversion of the von Kármán vortices is caused by inter-
actions with the top and bottom walls soon after they are shed [33, 40], no inversion
of vortices is observed in this case.

5.5.2 Case U2: Ha = 320, Re = 5000

In case U2, inertial effects are amplified with respect to case U1, by increasing Re

number to Rec = 5000, while keeping the Hartmann number constant at Ha = 320.
As seen in Figure 5.17(a-b), vortex shedding remains periodic, but appears irregular.
Looking at the different instances of the flow, the wake still comprises of an arrangement
of vortices shed from the cylinder, however the wake is further narrowed and loses
its symmetry. Shed vortices maintain their vorticity for longer distances, follow an
irregular path and their paths intersect crossing each other. It is interesting to note
that in the near wake region, x/D < 5, generated vortices are fragmented and small-
scale structures are observed. This can be seen more clearly in Figure 5.17(c), where a
closer look into the near wake region of Figure 5.17(a) is presented. Here, the primary
vortices appear heavily distorted, and small structures appear in the separated shear
layers. Moving further downstream, these smaller structures are eventually damped,
and one finds that the structure of the wake returns to a more coherent state.

The visualization of flow structures in this rather complicated three-dimensional
wall-bounded shear flow can be facilitated using the λ2 criterion. The λ2 is defined as
the second eigenvalue of S2 +X2, where S and X denote the symmetric and antisym-
metric parts of the velocity gradient tensor respectively [83]. Plotting iso-surfaces of λ2
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Figure 5.17: Contour plots of spanwise vorticity, ωz, in the mid-plane (z = 0) for the
case of Ha = 320 and Rec = 5000. (a-b) Different instances of the flow. (c) Expanded
view of figure (a) marked by the dashed line.

provides an effective way to visualize the primary and induced vortices of the cylinder
wake, while excluding the wall shear region.

Figure 5.18 shows snapshots of iso-surfaces of λ2 normalized by its absolute mini-
mum, λ2,min, for the case U2. Iso-surfaces are colored by the spanwise vorticity com-
ponent, ωz, in order to reveal the spanwise rotation direction of each vortical structure.
The spanwise rollers essentially identify the primary vortex cores. At these values of
Ha = 320 and Rec = 5000, the corresponding interaction parameter is N ' 1, and
the flow is expected to approach a two-dimensional state according to Mück et al [59].
This can be verified from Figure 5.18, if we focus our attention further downstream.
Indeed, from approximately x ' 5D and further downstream, the primary vortex cores
are aligned in the spanwise direction, parallel to the magnetic field direction, although
they display a slight curvature in the bulk of the flow. Only in the very thin viscous
Hartmann layers close to the side walls, three-dimensional effects are visible. This
tendency towards a two-dimensional flow is in very good agreement with the observa-
tions of Mück et al [59]. However, in the near wake region the flow is strikingly more
complex and highly three-dimensional. The flow in the separated shear layers is highly
fragmented and hosts a plethora of small-scale vortices. Inevitably, as these small
turbulent-like structures travel downstream, they become suppressed by the magnetic
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Figure 5.18: Instantaneous plots of iso-surfaces of the λ2 criterion normalized by its
absolute minimum (λ2/λ2,min = 0.2%), for Ha = 320 and Rec = 5000. Iso-surfaces are
colored by spanwise vorticity component.

field and eventually are completely damped.

Figure 5.18 shows snapshots of iso-surfaces of λ2 normalized by its absolute min-
imum, λ2,min, for the case U2. Iso-surfaces are colored by the streamwise vorticity
component, ωx, in order to reveal the streamwise rotation direction of each vortical
structure. The spanwise rollers essentially identify the primary vortex cores. Here,
we recall that values of Ha = 320 and Rec = 5000 correspond to an interaction pa-
rameter N ' 5, thus in this case the electrodynamic forces are slightly dominant in
the flow, and the flow is expected to approach a two-dimensional state. This can be
verified from Figure 5.18, if we focus our attention further downstream. Indeed, from
approximately x/D ' 5 and further downstream, the primary vortex cores are aligned
in the spanwise direction, parallel to the magnetic field direction. Only in the very thin
viscous Hartmann layers close to the side walls, three-dimensional effects are visible.
The slight curvature, of these vortices, observed along the direction of the magnetic
field is in line with the observations of Mück et al [59]. Nevertheless, in the near wake
region the flow is strikingly more complex and highly three-dimensional. The flow in
the separated shear layers is highly fragmented and hosts a plethora of small scale
vortices. Inevitably, as these small turbulent-like structures travel downstream, they
become suppressed by the magnetic field and eventually are completely damped.
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The structure of the near wake can be attributed to the presence of the circular
cylinder, which acts as a turbulence promoter, thereby facilitating the generation of
three-dimensional flow structures (especially at this high Reynolds number). Looking
at a collection of various snapshots the small-scale vortices in the near wake seem to
arise from instabilities originating at the shear layers, before mixing with the primary
Kármán vortices. This development of three-dimensional structures on the scale of the
shear layer vortices, bears resemblance to flow characteristics during the initial stages of
the shear-layer transition regime, as described in several purely hydrodynamic studies
for the case of a free cylinder at similar Reynolds numbers [94, 95, 96]. In hydrodynamic
scenarios, the shear layers separating from the sides of the cylinder eventually become
turbulent. Of course, this phenomenon can not be seen here due to the damping action
of the magnetic field.

One could also argue that the irregular character of vortex shedding resembles
the new flow regime reported in previous studies for similar values of Ha and Rec

[51, 56]. For this range of parameters, reference [56] reported irregular shedding of
primary vortices that interacted strongly with the boundary layers at the walls leading
to shedding of secondary vortices from the top and bottom walls. However, this is not
supported by the present results. Despite the irregular shedding of primary vortices
also seen in case U2, the wake remains narrow and the interaction between the primary
vortices and the Shercliff layers at the top and bottom walls of the duct is weak. As
a consequence, the flow fails to produce boundary layer separation at the duct walls
and, eventually, no shedding of secondary vortices from the top and bottom walls is
observed. Secondary vortices shed from the top and bottom walls, represent a primary
feature of the reported flow regime in reference [56], and therefore a main difference
between the two analyses. It is nevertheless important to underline the fact that
Dousset and Pothérat [56] suggested that for such a low interaction parameter, i.e.
N ' 1, three-dimensional effects are likely to appear, therefore rendering the validity
of the quasi-2D approximation questionable, which in turn raises questions about their
description of the flow regime. Indeed, the current three-dimensional computations
show that, for these set of parameters, 3-D structures are a salient feature of the flow.
Current results reveal that the quasi-2D model is not able to capture these specific
three-dimensional effects, as they are caused by small and turbulent-like events which
can not be accurately captured by the averaging of the equations. A more detailed
discussion concerning these differences and the respective physical reasons behind them
will be addressed in subsection 5.5.5.

5.5.3 Case U3: Ha = 1120, Re = 5000

Case U3 corresponds to the same Reynolds number (Rec = 5000) as case U2, but at
a higher Hartmann number value of Ha = 1120. Intuitively, under these conditions
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Figure 5.19: Instantaneous visualization of contour plots of streamwise vorticity, ωz,
in the plane z/D = 0. (a) t = 271.4D/UC , (b) t = 284.8D/UC , (c) t = 294.6D/UC ,
(d) t = 307.7D/UC , (e) zoomed area of plot (a) marked by dashed line.
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Figure 5.20: Instantaneous plots of iso-surfaces of the λ2 criterion normalized by its
absolute minimum (λ2/λ2,min = 0.2%), for Ha = 1120 and Rec = 5000. Iso-surfaces
are colored by spanwise vorticity component ωz.

of stronger electrodynamic damping, one would expect the shed vortices to be more
suppressed and to diffuse more rapidly as they convect downstream, while reducing
the irregularity of the overall vortex shedding pattern. Surprisingly, as seen in Figure
5.19, the current results show that the shedding pattern of the vortices for this set
of parameters is actually even more irregular when compared with the previous case
(case U2) for a lower Hartmann number (Ha = 320, Figure 5.17). In the near wake
of the cylinder, i.e. x/D < 10, the lateral spacing between shed vortices is increased,
with the vortices following an irregular oblique trajectory closer to the top and bottom
walls. As they are progressively convected further downstream, i.e. x/D > 10, they
interact with the duct walls inducing secondary vortices from the top and bottom walls
(see vortex core WV in Figure 5.19) and inevitably are reflected back in the opposite
direction (see vortex cores KV1, KV2). The induced secondary vortices are, however,
weak and are quickly dissipated soon after they are shed. Nevertheless, their influence
on the overall phenomenology is significant. Another interesting feature of the flow
is the appearance of secondary vortices (see vortex core SV ) alongside with the main
vortices. At times a primary vortex core, soon after it is shed, deforms and eventually
is torn apart, giving birth to a smaller secondary vortex. This intermittent secondary
vortex, interacts with its surrounding vortices and eventually disrupts significantly the
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trajectories of the primary vortex cores. This effect occurs spontaneously from either
side of the cylinder in a consistent and systematic way. The formation of the secondary
vortex can be clearly seen in Figure 5.19(d), where a close-up view of Figure 5.19(a) in
the vicinity of the cylinder is presented. Additionally, the figure displays shed vortices
that appear less fragmented and more coherent at the shear layers.

This is also evident in Figure 5.20 where iso-surfaces of λ2, normalized by its abso-
lute minimum, λ2,min, are presented for this case. In this figure, the stronger magnetic
damping (as compared to the previous case U2, shown in Figure 5.18) is obvious. Close
to the cylinder for example, the shear layers are devoid of small three-dimensional struc-
tures and more coherent vortices are formed. Only a weak undulation of the primary
vortices is observed. Vortex rollers are almost perfectly aligned along the spanwise di-
rection further downstream. These effects can clearly be attributed to the flattening of
the velocity profiles along the spanwise direction as mentioned before, and as expected
due to the high interaction parameter N ' 16. It is interesting to note that for this
Hartmann number the vortex alignment highly resembles that of a flow configuration
without side-walls or even unconfined cases. The current flow phenomenology for case
U3 is in better agreement with the results of reference [56], although the flow is still
clearly less irregular. In order to understand the differences and the physical reasons
behind them, a detailed spectral analysis is incorporated next in the discussion.

5.5.4 Effect on lift and drag coefficient

The regular or irregular nature of the flow is reflected by the time history of the lift,
CL, and drag, CD, coefficients as shown in Figure 5.21. For case U1, the perfectly
time-periodic nature of the flow is displayed in Figure 5.21(a). The irregular vortex
shedding observed in cases U2 and U3, is clearly depicted on the time history of the
lift and drag coefficient, as seen in Figures 5.21(b-c). Both signals keep a periodic
character, however, lose their coherence.

5.5.5 Spectral analysis

Another powerful way to identify the occurrence of vortex structures, and investigate
the presence of irregular flow phenomena, is through a spectral analysis of velocity
signals gathered from probes placed at different streamwise positions. Figure 5.22
displays the power spectral density of the crossflow velocity, uy, obtained from probes
positioned at the mid-plane (z = 0) at several (x, y) locations: in the vicinity of the
cylinder’s shear layer (x = 1.5D, y = 0.5D), at the center downstream (x = 10D,
y = 0) and further downstream (x = 20D, y = 0). Power spectral densities have
been obtained using Welch’s averaged periodogram method [81], while a Hamming
window was applied to each overlapping segment of data. Results are shown for all
cases examined in this subsection, namely cases U1, U2 and U3.
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Figure 5.21: Time history of drag and lift coefficient.Nico
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Figure 5.22: Spectra of crossflow velocity component, uy, along the centerline at
the plane z/D = 0 at different positions for (a) Ha = 320 Re = 2000, (b) Ha = 320
Re = 5000 and (c) Ha = 1120 Re = 5000.
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For the case U1 (Ha = 320, Rec = 2000), the power spectrum exhibits the ex-
pected strong peak at the fundamental frequency of the flow (Strouhal frequency, St),
corresponding directly to the passage of a laminar periodic vortex array through the
measuring probe. The rest of the peaks observed represent harmonic frequencies (in
the centerline only odd harmonics are observed), in line with the observations of Ko-
vasznay [97] for the hydrodynamic flow over an unconfined cylinder in the laminar flow
regime.

In the case U2 (Ha = 320, Rec = 5000), the strong presence of the Strouhal
frequency in the spectra can still be observed, suggesting that a vortex street continues
to be present. However, the spectrum close to the cylinder, at x = 1.5D, is broadened
indicating the presence of smaller scales of motion. The scaling of the energy spectrum
in the inertial region is of the form f−3, which is characteristic of MHD turbulence
[98, 54]. This broad range of frequencies illustrates the development of finer-scale
three-dimensional structures in the shear layers, in line with our previous observations
(see Figure 5.17). Looking at the spectra obtained from the probes positioned further
downstream, at x = 10D and x = 20D, it is evident that the small-scale fluctuations are
slowly suppressed, and the spectra are dominated by a primary frequency of oscillation
and its harmonics. The weakly turbulent behaviour of the flow gives place to larger,
regular and smoother vortices that correspond to the primary vortices. Nevertheless,
non-harmonic components are also present due to a irregular periodic signal, supporting
the idea of the irregular vortex shedding process described before.

Finally, in the case U3 (Ha = 1120, Rec = 5000) the spectra exhibit different
features. Close to the cylinder, at x = 1.5D, the spectrum is characterized by fewer high
frequencies and harmonics of the primary shedding frequency can clearly be identified.
This spectral feature support the visualizations of the flow shown in Figure 5.20, where
the cylinder wake was found to be dominated by coherent vortices with shear layers
devoid of small-scale three-dimensional structures. More importantly, when compared
to case U2, the energy content of low frequencies is strongly enhanced (by almost an
order of magnitude) indicating the presence of more energetic primary vortices in the
flow. This is associated with the irregular character of the flow at this set of parameters,
as will be explained in the following paragraph. Irregular vortex shedding is also
supported, by looking at the spectra further downstream, at x = 10D and x = 20D.
Although a strong peak is present indicating periodic vortex shedding, the absence
of clearly identifiable harmonic frequencies, together with the broadening of the power
spectrum is linked with the presence of irregular vortex flow patterns. Furthermore, the
power density contained in the higher frequencies has been greatly reduced, indicating
that no turbulent-like phenomena are present. This complete suppression of turbulence
is of course not surprising, given the stronger magnetic field.

The presented spectral analysis, in combination with the flow visualizations of cases
U2 and U3 (shown in subsections 5.5.2 and 5.5.3 respectively), allow us to finally pro-
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pose a mechanism explaining the surprising enhancement of flow irregularity with in-
creasing Hartmann number and the differences observed the between current results
and quasi two-dimensional studies. This explanation is based on the MHD modification
of small-scale three-dimensional motions. At low interaction parameters, N ' 1, the
combination of strong inertial forces due to the high Reynolds number (Rec = 5000)
and of a flow obstruction promotes transitional or even turbulent characteristics near
the cylinder. The presence of small scale three-dimensional structures causes very
strong Joule dissipation, which eventually extracts energy from the large-scale primary
vortex cores. Through this process the primary vortices become less energetic, leading
to a more regular vortex shedding pattern. For a given Reynolds number, increasing
the Hartmann number suppresses the intensity of the smallest three-dimensional flow
structures due to increased Hartmann damping. Consequently, increasing Ha results
in more energetic primary vortices, which retain most of their inertia since less en-
ergy is transferred to smaller scales of motion. This fact explains why for the higher
Ha number considered (case U3), the vortex cores start interacting with the top and
bottom walls, thus inducing secondary vorticity and leading to a more irregular flow
pattern. The Q2D model fails to capture the enhancement of the Joule dissipation due
to the presence of highly three-dimensional structures, and as a result, over-predicts
the inertia retained in the primary vortex cores, especially at these high Reynolds
numbers. This phenomenology explains why the Q2D model yields more irregular flow
characteristics than those observed in the current three-dimensional analysis for the
same set of parameters.

Nevertheless, additional work would be required in order to clarify the trends at
Ha values even higher than those considered here. A further increase of the Hartmann
number, could damp even more the three-dimensional effects, yielding a more irregular
flow regime, closer to the one identified by the Q2D approach. On the other hand,
the increased magnetohydrodynamic damping could be sufficiently strong to suppress
vortex shedding, stabilize the flow, and eventually lead to a steady flow regime. These
considerations require further extensive simulations that would help understand the
complex interaction between the inertial three-dimensional effects, the mechanisms of
magnetic dumping, and the way they affect the generated flow patterns.

5.6 Conclusions

Direct numerical simulations of three-dimensional flow of a liquid metal around a circu-
lar cylinder placed in a rectangular duct, under a wide range of magnetic field intensities
have been performed. The blockage and aspect ratio were kept constant at β = 1/4,
α = 4. The Reynolds number was varied between 50 ≤ Rec ≤ 5000 for Hartmann
numbers in the range of 0 ≤ Ha ≤ 1120.

A non-monotonus behavior of the critical Reynolds number for the onset of vortex
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shedding with respect to the Hartmann number has been shown. For Ha > 80, a linear
dependence of the critical Re is observed with respect toHa. However, when decreasing
the Hartmann number below Ha = 80, a non-monotonous relation is observed, where
initially Recr decreases slightly until it reaches a minimum value around Ha ' 35.
As Ha is decreased even further, Recr starts to increase again. This unexpected phe-
nomenon is explained by the effect of the Lorentz forces on the velocity profile, which
becomes flatter for increasing Hartmann numbers. A flatter velocity profile implies
a reduction of the velocity deficit for a given bulk flow, which essentially mimics the
effect of moving the walls further away, therefore, promoting the destabilization of the
flow. This effect could be of practical importance in various engineering applications
where enhancement of heat and mass transfer or mixing is desired.

Within the steady flow regime, the evolution of the recirculation length and of
the drag and base pressure coefficients with respect to Ha and Re was presented. The
predictions of the Q2D model for these global flow characteristics are in good agreement
with the current three-dimensional numerical results when averaged over the cylinder
length. However, the current three-dimensional computations display an increase in
the three-dimensionality of the spanwise distribution of forces along the cylinder with
increasing Ha, an effect that cannot possibly be captured in the Q2D analysis. Hence,
depending on the range of parameters, an accurate stress analysis of the cylinder, and
presumably of other flow inserts, could require a fully three-dimensional treatment.

We have also showed that for a high Reynolds number, Rec = 5000, even for
relatively high values of the interaction parameter (N up to 16), inertia effects in the
near wake play a significant role in the formation and transport of vortices. For Ha =

320 (N ' 1), inertial forces lead to turbulence-like instabilities, which redistribute the
energy towards small scales, eventually reducing the energy of the shedding vortex
cores. When the Hartmann number is increased to Ha = 1120 (N ' 16), the presence
of a stronger magnetic field acts like a turbulent suppressor, hence primary vortices
retain most of the inertia and remain more energetic as they move downstream. This
phenomenology leads to the surprising new observation of enhanced flow irregularity
with increasing Ha. This effect also explains the differences observed between the
current three-dimensional results and the Q2D model predictions. The quasi-two-
dimensional model can not capture the enhancement of the Joule dissipation due to
the presence of highly three-dimensional structures in the flow. As consequence, it
overestimates the energy retained in the primary vortex cores and predicts a much
more irregular vortex shedding for a given set of parameter values than what has been
observed in the present work. Nevertheless, it is reasonable to expect this behavior to
be non-monotonic, as for even higher magnetic fields the flow should become steady
again, since the energy of the large scales would eventually be also damped by stronger
magnetic fields.
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Chapter 6
Summary and Future Work

6.1 Summary of present work

As already discussed, fluid flow past a bluff body is a common occurrence associated
with many engineering applications and can have a significant impact on design. The
alternate shedding of vortices in the near wake, in the classical vortex street configura-
tion, leads to large fluctuating pressure forces in a direction transverse to the flow and
may cause structural vibrations, acoustic noise, or resonance, which in some cases can
trigger failure. On the other hand, bluff bodies may promote turbulence and in this
way enhance mixing and heat transfer in a flow. Therefore, the motivation for studying
the wake dynamics of such a flow arises not only from the need to improve our under-
standing of the fundamental processes that drive the flow, but also from the need to
devise methods for effectively controlling vortex shedding in engineering applications.

Disturbed flows around all bluff bodies develop similar flow structures in the wake
of the flow, despite differences in shape and the presence or absence of sharp edges. The
flow over a circular cylinder represents an idealization of several industrially important
processes. In this thesis, we studied and analyzed the effect of confinement on the
flow characteristics and associated flow regimes in the wake of a circular cylinder.
Confinement was investigated in the case of a channel flow and flow in a rectangular
duct. In the later case, the fluid was assumed electrically conducting and the action
of an externally applied magnetic field was investigated. We addressed these flows,
using full three-dimensional direct numerical simulations (DNS). Despite the very large
demand in CPU power and memory storage capacity associated with this method of
choice, DNS is a very reliable and accurate method, as it does not involve any model
nor approximation.

In the purely hydrodynamic case of flow over a circular cylinder in a plane channel,
3-D simulations were carried out in the Reynolds number range 150 ≤ Re ≤ 390, for a
blockage ratio (ratio of the cylinder diameter to the channel height) of β = 1/5. Three-
dimensional effects were observed for Re ≥ 210. For the first time, two discontinuous
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changes were detected in the St−Re and Cpb −Re curves, corresponding to different
spanwise instabilities in the wake. For Re = 210 and 240, mode A 3-D shedding was
observed, while for Re > 300 mode B vortex structures were detected. The intermittent
presence of naturally occurring vortex dislocations, as a fundamental feature of wake
transition, was also demonstrated for the first time. The present work leads to a
clarification of how the shape and evolution of mode A and mode B instabilities are
affected downstream by the confinement of the channel walls.

We have then considered the case of a further confined configuration bounded by
four impermeable walls, i.e. the case of flow over a cylinder in a rectangular duct.
We further considered the flow to be electrically conducting and in the presence of
an externally applied magnetic field, under a wide range of magnetic field intensities.
The walls of the cylinder and the duct were assumed to be electrically insulating.
The blockage and aspect ratio (ratio of the cylinder length to its diameter) was kept
constant at β = 1/4, and α = 4 respectively. The Reynolds number was varied
between 50 ≤ Re ≤ 5000, for Hartmann numbers in the range of 0 ≤ Ha ≤ 1120.
This work revealed the presence of a non-monotonic behaviour of the critical Reynolds
number for the onset of vortex shedding, with respect to the Hartmann number. This
unexpected effect of generating unsteadiness by increasing Ha could be of practical
importance in various engineering applications where enhancement of heat and mass
transfer is desired. For example, controlling the flow this way could be used to stir
metal alloys more efficiently in industrial settings. Performing a series of simulations
in the unsteady flow regime for high values of Ha and Re numbers, we further showed
a new and surprising result, the destabilization of the flow with increasing Ha. This
unexpected behavior was attributed to the formation of turbulent characteristics near
the cylinder, and the action of an energy-transfer mechanism to the higher frequency
range. Due to the presence of such strongly 3-D phenomena, the quasi 2-D model fails
to capture this mechanism yielding flow characteristics that significantly more irregular
than those observed by the current 3-D analysis.

Overall, this work provides new understanding of the flow characteristics and phys-
ical mechanisms in the case of flow over bluff bodies in a confined geometry, and as
such it could contribute to efforts to devise improved means of controlling flow charac-
teristics in related configurations.

6.2 Future Work

Following the investigations described in this thesis, several lines of research arising
from this work could be pursued.

A main line of research that could be pursued further is the heat transfer charac-
teristics for the investigated configurations for a wide range of Reynolds and Prandtl
numbers. Heat transfer characteristics, have so far received even less attention than the
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purely hydrodynamic part of the problem. Such studies would be particularly interest-
ing in the flow regimes investigated in the current thesis where highly three-dimensional
flow patterns were observed, and which are expected to significantly modify the dis-
tribution of the heat transfer mechanisms. The proposed research could focus on the
development of simple correlations for Nusselt number (ratio of convective heat transfer
to conductive heat transfer) as a function of the pertinent dimensionless variables. In
addition, to the average Nusselt number, the effects of the Reynolds number, Prandtl
number (ratio of momentum diffusivity to thermal diffusivity) and thermal boundary
conditions on the temperature field near the cylinder and the walls, and on the lo-
cal Nusselt number distributions could also be studied. This would help researchers
develop a deeper understanding of the underlying physical processes related to heat
transfer phenomena.

Another line of research, associated with the heat transfer analysis, is to investigate
the effects of geometrical parameters (blockage ratio, aspect ratio, symmetric or off-
centre placement of the obstacle) and thermal boundary conditions on the local Nusselt
number and on the temperature field near the cylinder and along the confining walls.
Using the numerical results, simple heat transfer correlations could be obtained for
constant temperature and constant heat flux conditions as a function of the geometrical
parameters on the solid circular cylinder. These investigations could be used to fill
the gap that exists in the literature by providing parametric relations between the
dynamical and geometrical parameters, enhance our understanding on complex fluid
flow regimes and heat transfer characteristics, and provide further physical insight into
the nature of the flow.

Finally, it would be interesting to investigate the flow characteristics and enhance-
ment of heat transfer, as observed by increased Nusselts, by means of testing new
configurations like multiple obstacles with a staggered arrangement within the con-
fined geometry.
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Appendix A
Software Development

Although CDP has the potential to deal with the problems under consideration in this
thesis, it had to be further developed in order to simulate and analyze in detail the
flows of interest. For this reason we additionally developed routines and modules, which
allowed simulations and analysis of flow around a confined cylinder in a channel and
a rectangular duct. The implemented modules can produce quantities and parameters
characterizing the flow such as the lift/drag coefficients, wall shear stresses etc.

In order to meet the objectives of this thesis a parallel implementation of the de-
veloped software is required. All the modules were designed and developed for parallel
execution using Fortran 90/95 and the Message Passing Interface (MPI), a library spec-
ification for message passing. The developed routines and modules used in this thesis
are shown below.

A.1 Modified hooks file

subroutine reg i s te r_hook ( i f 2 )

use if2_defs_m
use misc_tools_m ! f o r VORT, CFL − see be low
use param_m
use if_qs_m ! MHD

implicit none

type ( i f 2_t ) , intent ( inout ) : : i f 2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

real (WP) ,dimension ( : ) ,pointer : : wall_shear , tke

125
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126 Chapter A. Software Development

log ica l : : solve_mhd

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (myrank == 0) &
write (∗ ,∗ ) ’ reg i s te r_hook . . . ’

! add your own data here . . .
i f ( get_logical_param ( ’CALCULATE_WALL_SHEAR_TKE’ , default=.FALSE. ) ) then

NULLIFY( wal l_shear ) ; ca l l r e g i s t e r_r1 ( wall_shear , ’WALL_SHEAR’ ,NO_DATA
, i f 2%gp , r eadwr i t e_f lag=.TRUE. )

NULLIFY( tke ) ; ca l l r e g i s t e r_r1 ( tke , ’TKE’ ,NO_DATA, i f 2%gp ,
r eadwr i t e_f lag=.TRUE. )

end i f

! i f us ing misc_tools_m . . .
i f ( get_logical_param ( ’CALCULATE_VORT’ , default=.FALSE. ) ) &

ca l l register_VORT( i f 2%gp )
i f ( get_logical_param ( ’CALCULATE_LAMBDA2’ , default=.FALSE. ) ) &

ca l l register_LAMBDA2( i f 2%gp )

! g e t the s t ep i n t e r v a l f o r dumping p r o f i l e s
! quasi−s t a t i c i n i t i a l i z a t i o n . . .
i f ( get_logical_param ( ’SOLVE_MHD’ , default=.FALSE. ) ) then

ca l l i n i t_qs ( i f 2 )
end i f

end subroutine reg i s te r_hook

subroutine i n i t i a l_hook ( i f 2 )

use if2_defs_m
use gp_func_m
use param_m
use global_m ! to use p i
use cdp_if2_hooks_m ! calc_max_velocity_volume

implicit none

type ( i f 2_t ) , intent ( inout ) , target : : i f 2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

type ( gp_t ) , pointer : : gp
real (WP) : : x (3 ) ,u (3 ) ,&

HEIGHT,WIDTH,RADIUS, &
B0Z ,SIGMA_REF,Ha ,TOL, & ! parameters f o r MHD p r o f i l e
lambda_n , p1_n , p2_n , k_n , & ! c o e f f i c i e n t s f o r MHD p r o f i l e
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y_star , z_star , &
f_n , f1_n ,u_n, & ! MHD p r o f i l e
u_add ,my_max_u_add,max_u_add , & ! MHD p r o f i l e
mean_velocity (3 ) , max_velocity (3 ) , & ! s c a l i n g
U_TARGET, U_scal ing_coef f ! s c a l i n g

log ica l : : adjust_bulk_veloc i ty
! r e a l (WP) , po in t e r : : ph i ( : )
integer : : ino , n , i e r r , &

INITIAL_BULK_PROFILE
real (WP) : : HARVEST

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (myrank == 0) &
write (∗ ,∗ ) ’ i n i t i a l_hook . . . ’

gp => i f 2%gp
! ph i => get_r1 ( ’PHI ’ , gp )

i f ( i f 2%step == 0) then
! g e t parameters o f geometry
HEIGHT = get_real_param ( ’HEIGHT ’ , default=1.0_WP)
WIDTH = get_real_param ( ’WIDTH’ , default=1.0_WP)
RADIUS = get_real_param ( ’RADIUS ’ , default=1.0_WP)
! g e t i n i t i a l c ond i t i on s f o r bu l k f l ow
INITIAL_BULK_PROFILE = get_integer_param ( ’INITIAL_BULK_PROFILE ’ ,

default=0)

select case (INITIAL_BULK_PROFILE)
! . . . f o r p lug f l ow
case (1 )

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣>␣ apply ing ␣ i n i t i a l ␣ v e l o c i t y ␣ in ␣x␣ d i r e c t i o n ’

do ino = 1 , gp%nno_ib
i f 2%u (1 , ino ) = 1 .0_WP
i f 2%u ( 2 : 3 , ino ) = 0 .0_WP
i f 2%p( ino ) = 0 .0_WP

end do
! . . f o r channel ( p o i s e u i l l e f l ow )
case (2 )

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣>␣ apply ing ␣ i n i t i a l ␣ pa rabo l i c ␣ v e l o c i t y ␣ p r o f i l e ␣

along ␣ channel ’
do ino = 1 , gp%nno_ib

i f 2%u (1 , ino ) = (3 . 0_WP/2.0_WP) ∗( 1 . 0_WP−( gp%node_cc (2 , ino ) /(
HEIGHT/2.0_WP) ) ∗∗2 )

i f 2%u ( 2 : 3 , ino ) = 0 .0_WP
i f 2%p( ino ) = 0 .0_WP
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end do
! . . f o r channel ( p o i s e u i l l e f l ow ) wi th SPANWISE NOISE
case (3 )

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣>␣ apply ing ␣ i n i t i a l ␣ pa rabo l i c ␣ v e l o c i t y ␣ p r o f i l e ␣

along ␣ channel ␣with␣SPANWISE␣NOISE ’
do ino = 1 , gp%nno_ib

i f 2%u (1 , ino ) = (3 . 0_WP/2.0_WP) ∗( 1 . 0_WP−( gp%node_cc (2 , ino ) /(
HEIGHT/2.0_WP) ) ∗∗2 )

i f 2%u (2 , ino ) = 0 .0_WP
ca l l random_number (HARVEST)
i f 2%u (3 , ino ) = HARVEST∗0.0001_WP
i f 2%p( ino ) = 0 .0_WP

end do
! . . . f o r duct ( two parabo la s )
case (4 )

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣>␣ apply ing ␣ i n i t i a l ␣ pa rabo l i c ␣ v e l o c i t y ␣ p r o f i l e ␣

along ␣duct ’
do ino = 1 , gp%nno_ib

i f 2%u (1 , ino ) = (9 . 0_WP/4.0_WP) ∗( 1 . 0_WP−( gp%node_cc (2 , ino ) /(
HEIGHT/2.0_WP) ) ∗∗2 ) ∗ &

( 1 .0_WP−( gp%node_cc (3 , ino ) /(WIDTH/2.0_WP) ) ∗∗2 )
i f 2%u ( 2 : 3 , ino ) = 0 .0_WP
i f 2%p( ino ) = 0 .0_WP

end do
! . . .MHD Duct f low ,
case (5 )

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣>␣ apply ing ␣ i n i t i a l ␣ v e l o c i t y ␣ p r o f i l e ␣ along ␣duct ␣

f o r ␣MHD␣ f low ’
do ino = 1 , gp%nno_ib

i f 2%u ( 1 : 3 , ino ) = 0 .0_WP
i f 2%p( ino ) = 0 .0_WP

end do
! c a l c u l a t e Hartman number . . .
! . . . c h a r a c t e r i s t i c l e n g t h i s a long B d i r e c t i o n / 2
B0Z = get_real_param ( ’B0Z ’ , default=0.0_WP)
SIGMA_REF = get_real_param ( ’SIGMA_REF’ , default=0.0_WP)
Ha = (WIDTH/2.0_WP) ∗B0Z∗ s q r t (SIGMA_REF/ i f 2%constant_nu )

TOL = 2e−7
my_max_u_add = 1 .0_WP !
max_u_add = 1 .0_WP ! to en ter loop
n = −1 ! to s t a r t wi th n=1 when enter the loop

do while ( ( max_u_add>TOL ) .AND. ( n<20000 ) )
n = n+2 ! n corresponds to 1 , 3 , 5 , . . . f o r Sum
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! c a l c u l a t e c o e f f i c i e n t s
lambda_n = REAL(n) ∗ pi /( 2 . 0_WP∗(HEIGHT/WIDTH) )
p1_n = 0 .5_WP∗( Ha −s q r t ( Ha∗∗2 +4.0_WP∗lambda_n∗∗2 ) )
p2_n = 0 .5_WP∗( Ha +sq r t ( Ha∗∗2 +4.0_WP∗lambda_n∗∗2 ) )
k_n = 2.0_WP∗ s i n ( lambda_n∗HEIGHT/WIDTH ) /( lambda_n∗HEIGHT/

WIDTH )

my_max_u_add = 0 .0_WP ! r e s e t max va lue to zero

do ino = 1 , gp%nno_ib
! c r ea t e non−dimensiona l dimensions o f duct
! NOTE: y i s normal to B, and z i s a l i gn ed wi th B
y_star = gp%node_cc (2 , ino ) /(WIDTH/2) ! −H/W < y∗ < H/W
z_star = gp%node_cc (3 , ino ) /(WIDTH/2) ! −1 < z∗ < 1

f_n = s inh ( p2_n ) ∗ cosh ( p1_n∗ z_star ) −s inh ( p1_n ) ∗ cosh (
p2_n∗ z_star )

f1_n = s inh ( p2_n−p1_n )
! ! f 1_i i = a lpha2_i i ∗ cosh ( p1_ii∗WIDTH/2.0_WP ) − a lpha1_i i ∗ cosh

( p2_ii∗WIDTH/2.0_WP )
u_n = ( k_n/( lambda_n∗∗2) ) ∗( 1 . 0_WP − f_n/f1_n )

u_add = u_n∗ cos ( lambda_n∗y_star )
! a n a l y t i c a l va lue o f v e l o c i t y = sum of a l l pa r t s o f expansion
i f 2%u (1 , ino ) = i f 2%u (1 , ino )+u_add
! check convergence
my_max_u_add = max( u_add ,my_max_u_add )

end do

ca l l MPI_ALLREDUCE(my_max_u_add,max_u_add, 1 ,MPI_REAL_WP,MPI_MAX,
mycomm, i e r r )

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣>␣ loop ’ ,n , ’ ␣max_u_add ’ ,max_u_add

end do
! . . f o r p ipe (Hagen−Po i s e u i l l e f l ow )
case (6 )

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣>␣ apply ing ␣ i n i t i a l ␣ pa rabo l i c ␣ v e l o c i t y ␣ p r o f i l e ␣

along ␣ pipe ’
do ino = 1 , gp%nno_ib

i f 2%u (1 , ino ) = 2 .0_WP∗( 1 . 0_WP −(gp%node_cc (2 , ino )∗∗2+gp%node_cc
(3 , ino ) ∗∗2) /(RADIUS∗∗2) )

i f 2%u ( 2 : 3 , ino ) = 0 .0_WP
i f 2%p( ino ) = 0 .0_WP

end do
! . . f o r p ipe (Hagen−Po i s e u i l l e f l ow ) wi th SPANWISE NOISE
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! NOISE = 20% of streamwise v e l o c i t y
case (7 )

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣>␣ apply ing ␣ i n i t i a l ␣ pa rabo l i c ␣ v e l o c i t y ␣ p r o f i l e ␣

along ␣ pipe ␣with␣SPANWISE␣NOISE ’
do ino = 1 , gp%nno_ib

i f 2%u (1 , ino ) = 2 .0_WP∗( 1 . 0_WP −(gp%node_cc (2 , ino )∗∗2+gp%node_cc
(3 , ino ) ∗∗2) /(RADIUS∗∗2) )

i f 2%u (2 , ino ) = 0 .0_WP
ca l l random_number (HARVEST)
i f 2%u (3 , ino ) = HARVEST∗0 .20_WP∗ i f 2%u (1 , ino )
i f 2%p( ino ) = 0 .0_WP

end do
! . . . zero everywhere
case default

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣>␣ s t a r t i n g ␣with␣ZERO␣ v e l o c i t y ␣ everywhere ’

do ino = 1 , gp%nno_ib
i f 2%u ( 1 : 3 , ino ) = 0 .0_WP
i f 2%p( ino ) = 0 .0_WP

end do
end select

! −−−−−−− SCALING −−−−−−−
!
! Ca l cu l a t e c o e f f i c i e n t f o r VELOCITY s c a l i n g
ca l l calc_mean_max_axial_velocity_volume (mean_velocity , max_velocity ,

i f 2 )

i f ( get_logical_param ( ’ADJUST_MEAN_VELOCITY’ , default=.FALSE. ) ) then
adjust_bulk_veloc i ty = .TRUE.
U_TARGET = get_real_param ( ’U_MEAN_TARGET’ , default=1.0_WP)
U_scal ing_coef f = U_TARGET/mean_velocity (1 )
i f (myrank == 0) &

write (∗ ,∗ ) ’ ␣␣␣>␣ ad jus t ␣mean␣ v e l o c i t y . . . ␣ s c a l i n g ␣ c o e f f . : ␣ ’ ,
U_scal ing_coef f

else i f ( get_logical_param ( ’ADJUST_MAX_VELOCITY’ , default=.FALSE. ) )
then

adjust_bulk_veloc i ty = .TRUE.
U_TARGET = get_real_param ( ’U_MAX_TARGET’ , default=1.0_WP)
U_scal ing_coef f = U_TARGET/max_velocity (1 )
i f (myrank == 0) &

write (∗ ,∗ ) ’ ␣␣␣>␣ ad jus t ␣max␣ v e l o c i t y . . . ␣ s c a l i n g ␣ c o e f f . : ␣ ’ ,
U_scal ing_coef f

else
adjust_bulk_veloc i ty = .FALSE.
i f (myrank == 0) &

write (∗ ,∗ ) ’ ␣␣␣>␣NOTE: ␣No␣ s c a l i n g ␣ o f ␣ v e l o c i t y ’
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end i f

! SCALE VELOCITY p r o f i l e
i f ( adjust_bulk_veloc i ty ) then

do ino = 1 , gp%nno_ib
i f 2%u (1 , ino ) = i f 2%u (1 , ino ) ∗U_scal ing_coef f
i f 2%u (3 , ino ) = i f 2%u (3 , ino ) ∗U_scal ing_coef f

end do

ca l l calc_mean_max_axial_velocity_volume (mean_velocity , max_velocity
, i f 2 )

end i f

end i f

end subroutine i n i t i a l_hook

subroutine scalar_bc_hook ( phi_bc , bc_type , s ca l a r , zone , i f 2 )

use if2_defs_m

implicit none

real (WP) , pointer : : phi_bc ( : )
integer , intent (out ) : : bc_type
type ( sca la r_t ) , intent ( in ) : : s c a l a r
type ( zone_t ) , intent ( in ) : : zone
type ( i f 2_t ) , intent ( inout ) , target : : i f 2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

write (∗ ,∗ ) ’ Error : ␣ c a l l e d ␣ scalar_bc_hook␣ f o r ␣ s c a l a r : ␣ ’ , &
trim ( s c a l a r%name) , ’ ␣ zone : ␣ ’ , tr im ( zone%name)

ca l l g ra c e fu l_ex i t (0 )

end subroutine scalar_bc_hook

subroutine scalar_source_hook (Ap, bp , s ca l a r , i f 2 )

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! modify the s c a l a r system with a source i f you want to :
! [Ap]{ phi } = {bp}
! NOTE tha t bp i s now a RHS vec to r
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use if2_defs_m
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implicit none

real (WP) , intent ( inout ) : : Ap ( : ) , bp ( : )
type ( sca la r_t ) , intent ( in ) : : s c a l a r
type ( i f 2_t ) , intent ( inout ) : : i f 2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (myrank == 0) &
write (∗ , ’ (3 a ) ’ ) ’ ␣␣>␣ scalar_source_hook : ␣" ’ , tr im ( s c a l a r%name) , ’

" . . . ’

end subroutine scalar_source_hook

subroutine momentum_bc_hook(u_bc , bc_type , zone , i f 2 )

use if2_defs_m
use param_m
use cdp_if2_hooks_m ! r e ad_ve l o c i t y_pro f i l e
use global_m ! to use p i

implicit none

real (WP) , pointer : : u_bc ( : , : )
integer , intent (out ) : : bc_type
type ( zone_t ) , intent ( in ) : : zone
type ( i f 2_t ) , intent ( inout ) , target : : i f 2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

type ( gp_t ) , pointer : : gp
integer : : i , ino , i e r r , &

INLET_PROFILE, &
TRANC_EXP, p , q ,m, n

real (WP) : : x (3 ) , tmp , u (3 ) ,nu , &
U_MEAN_TARGET,HEIGHT,WIDTH,RADIUS, &
fac to r1 , f a c to r2 , y_shi fted , z_shi f ted , &
sin_my , sin_nz , &
HARVEST, &
B0Z ,SIGMA_REF,Ha ,TOL, & ! parameters f o r MHD p r o f i l e
lambda_n , p1_n , p2_n , k_n , & ! c o e f f i c i e n t s f o r MHD p r o f i l e
y_star , z_star , &
f_n , f1_n ,u_n, & ! MHD p r o f i l e
u_add ,my_max_u_add,max_u_add ! MHD p r o f i l e

real (WP) , allocatable , save : : ux_bc_stored ( : )
logical , save : : f i r s t = .TRUE.

Nico
las

 Kan
ari

s



A.1. Modified hooks file 133

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

gp => i f 2%gp

i f ( ( zone%name == ’ i n l e t ’ ) .OR. ( zone%name == ’INLET ’ ) ) then

! READ INLET FROM FILE . . .
i f ( get_logical_param ( ’READ_PROFILE’ , default=.FALSE. ) ) then

ca l l r ead_ve l o c i t y_pro f i l e (u_bc , zone , i f 2 )

! OR DEFINE EQUATION. . .
else

! g e t parameters o f geometry and mean v e l o c i t y at i n l e t
HEIGHT = get_real_param ( ’HEIGHT ’ , default=1.0_WP)
WIDTH = get_real_param ( ’WIDTH’ , default=1.0_WP)
RADIUS = get_real_param ( ’RADIUS ’ , default=1.0_WP)
U_MEAN_TARGET = get_real_param ( ’U_MEAN_TARGET’ , default=1.0_WP)

! g e t d e s i r ed i n l e t v e l o c i t y p r o f i l e
INLET_PROFILE = get_integer_param ( ’INLET_PROFILE ’ , default=0)

select case (INLET_PROFILE)
! Plug f l ow
case (1 )

do i = 1 , zone%n_nodel i s t
ino = zone%nod e l i s t ( i )
u_bc ( 1 : 3 , ino ) = (/ 1 .0_WP, 0 .0_WP, 0 .0_WP /)

end do

! Plane P o i s e u i l l e f l ow
case (2 )

do i = 1 , zone%n_nodel i s t
ino = zone%nod e l i s t ( i )
u_bc (1 , ino ) = (3 . 0_WP/2.0_WP) ∗U_MEAN_TARGET∗ &

( 1 .0_WP−( gp%node_cc (2 , ino ) /(HEIGHT/2 .0_WP) ) ∗∗2 )
u_bc ( 2 : 3 , ino ) = 0 .0_WP

end do

! Plane P o i s e u i l l e f l ow with Spanwise Dis turbances ( order e−4)
case (3 )

do i = 1 , zone%n_nodel i s t
ino = zone%nod e l i s t ( i )
u_bc (1 , ino ) = (3 . 0_WP/2.0_WP) ∗U_MEAN_TARGET∗ &

( 1 .0_WP−( gp%node_cc (2 , ino ) /(HEIGHT/2 .0_WP) ) ∗∗2 )
u_bc (2 , ino ) = 0 .0_WP
ca l l random_number (HARVEST)
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u_bc (3 , ino ) = HARVEST∗0.0001_WP
end do

! Duct f low ,
case (4 )

i f ( f i r s t .EQV. .TRUE. ) then

! c r ea t e dummy array to s t o r e v e l o c i t y a f t e r read ing
i f ( .NOT. a l l o c a t e d ( ux_bc_stored ) ) allocate ( ux_bc_stored (

zone%n_nodel i s t ) )

ux_bc_stored ( : ) = 0 .0_WP

do i = 1 , zone%n_nodel i s t
ino = zone%nod e l i s t ( i )

! s e t t runca t i on error f o r the expansion
TRANC_EXP = 10

! sum over the order o f the expansion
f a c t o r 1 = 16 .0_WP/ i f 2%constant_nu /( p i ∗∗4 .0_WP)
do p = 0 ,TRANC_EXP

m = 2∗p+1
do q = 0 ,TRANC_EXP

n = 2∗q+1
f a c t o r 2 = f a c t o r 1 /( 1 .0_WP∗m∗n ∗ ( (m∗∗2/WIDTH∗∗2) + (n∗∗2/

HEIGHT∗∗2) ) )
! a n a l y t i c a l s o l u t i o n i s f o r y , z a t corner o f duct
! . . . so i f coord ina t e s are at cen ter must be moved
y_shi f ted = gp%node_cc (2 , ino )+(HEIGHT/2 .0_WP)
z_sh i f t ed = gp%node_cc (3 , ino )+(WIDTH/2 .0_WP)
sin_my = s in ( m∗ pi ∗ y_shi f ted /HEIGHT )
sin_nz = s in ( n∗ pi ∗ z_sh i f t ed /WIDTH )
ux_bc_stored ( i ) = ux_bc_stored ( i ) + f a c t o r 2 ∗sin_my∗ sin_nz

end do
end do

end do ! l oop over i n l e t nodes

f i r s t = .FALSE.
end i f

! d e f i n e u_bc f o r i n l e t
do i =1, zone%n_nodel i s t

ino = zone%nod e l i s t ( i )
u_bc (1 , ino ) = ux_bc_stored ( i )
u_bc ( 2 : 3 , ino ) = 0 .0_WP

end do
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! MHD Duct f low ,
case (5 )

! c a l c u l a t e Hartman number . . .
! . . . c h a r a c t e r i s t i c l e n g t h i s a long B d i r e c t i o n / 2
B0Z = get_real_param ( ’B0Z ’ , default=0.0_WP)
SIGMA_REF = get_real_param ( ’SIGMA_REF’ , default=0.0_WP)
Ha = (WIDTH/2.0_WP) ∗B0Z∗ s q r t (SIGMA_REF/ i f 2%constant_nu )
i f (myrank == 0) &

write (∗ ,∗ ) ’ ␣>␣Ha␣number␣based␣on␣ ha l f ␣width␣=’ , Ha

! compute ana l y t i c p r o f i l e on ly f o r f i r s t i t e r a t i o n
i f ( f i r s t .EQV. .TRUE. ) then

! c r ea t e dummy array to s t o r e v e l o c i t y a f t e r read ing
i f ( .NOT. a l l o c a t e d ( ux_bc_stored ) ) allocate ( ux_bc_stored (

zone%n_nodel i s t ) )

ux_bc_stored ( : ) = 0 .0_WP
!TOL = 10e−8
TOL = get_real_param ( ’TOL’ , default=5.0E−8_WP)
my_max_u_add = 1 .0_WP !
max_u_add = 1 .0_WP ! to en ter loop
n = −1 ! to s t a r t wi th n=1 when enter the

loop

do while ( ( max_u_add>TOL ) .AND. ( n<20000 ) )

n = n+2 ! n corresponds to 1 , 3 , 5 , . . . f o r Sum

! c a l c u l a t e c o e f f i c i e n t s
lambda_n = REAL(n) ∗ pi /( 2 . 0_WP∗(HEIGHT/WIDTH) )
p1_n = 0 .5_WP∗( Ha −s q r t ( Ha∗∗2 +4.0_WP∗lambda_n∗∗2 ) )
p2_n = 0 .5_WP∗( Ha +sq r t ( Ha∗∗2 +4.0_WP∗lambda_n∗∗2 ) )
k_n = 2.0_WP∗ s i n ( lambda_n∗HEIGHT/WIDTH ) /( lambda_n∗HEIGHT

/WIDTH )

my_max_u_add = 0 .0_WP ! r e s e t max va lue to zero

do i = 1 , zone%n_nodel i s t
ino = zone%nod e l i s t ( i )

! c r ea t e non−dimensiona l dimensions o f duct
! NOTE: y i s normal to B, and z i s a l i gn ed wi th B
y_star = gp%node_cc (2 , ino ) /(WIDTH/2) ! −H/W < y∗ < H/W
z_star = gp%node_cc (3 , ino ) /(WIDTH/2) ! −1 < z∗ < 1
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f_n = s inh ( p2_n ) ∗ cosh ( p1_n∗ z_star ) −s inh ( p1_n ) ∗ cosh (
p2_n∗ z_star )

f1_n = s inh ( p2_n−p1_n )
! ! f 1_i i = a lpha2_i i ∗ cosh ( p1_ii∗WIDTH/2.0_WP ) − a lpha1_i i ∗

cosh ( p2_ii∗WIDTH/2.0_WP )
u_n = ( k_n/( lambda_n∗∗2) ) ∗( 1 . 0_WP − f_n/f1_n )

u_add = u_n∗ cos ( lambda_n∗y_star )
! a n a l y t i c a l va lue o f v e l o c i t y = sum of a l l pa r t s o f

expansion
ux_bc_stored ( i ) = ux_bc_stored ( i )+u_add
! check convergence
my_max_u_add = max( u_add ,my_max_u_add )

end do

ca l l MPI_ALLREDUCE(my_max_u_add,max_u_add, 1 ,MPI_REAL_WP,
MPI_MAX,mycomm, i e r r )

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣>␣ loop ’ ,n , ’ ␣max_u_add ’ ,max_u_add

end do ! l oop over i n l e t nodes

f i r s t = .FALSE.
end i f

! d e f i n e u_bc f o r i n l e t
do i =1, zone%n_nodel i s t

ino = zone%nod e l i s t ( i )
u_bc (1 , ino ) = ux_bc_stored ( i )
u_bc ( 2 : 3 , ino ) = 0 .0_WP

end do

! Laminar Pipe (Hagen−Po i s e u i l l e f l ow )
case (6 )

do i = 1 , zone%n_nodel i s t
ino = zone%nod e l i s t ( i )
u_bc (1 , ino ) = 2 .0_WP∗U_MEAN_TARGET∗ &

( 1 .0_WP −(gp%node_cc (2 , ino )∗∗2+gp%node_cc (3 , ino ) ∗∗2) /(
RADIUS∗∗2) )

u_bc ( 2 : 3 , ino ) = 0 .0_WP
end do

case default
write (∗ ,∗ ) ’ Error : ␣momentum_bc_hook␣ equat ion ␣not␣ s e t ␣up␣ f o r ␣ zone :

␣ ’ , &
trim ( zone%name)

ca l l g ra c e f u l_ex i t (0 )
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end select

end i f
bc_type = INJECT_BC

! s c a l e v e l o c i t y at i n l e t p r o f i l e
ca l l i n l e t_ve l o c i t y_s ca l i n g (u_bc , zone , i f 2 )

else
write (∗ ,∗ ) ’ Error : ␣momentum_bc_hook␣not␣ s e t ␣up␣ f o r ␣ zone : ␣ ’ , &

trim ( zone%name)
ca l l g ra c e fu l_ex i t (0 )

end i f

end subroutine momentum_bc_hook

subroutine momentum_source_hook (Au, bu , i f 2 )

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! modify the momentum system with a source i f you want to :
! [Au]{ u} = {bu}
! NOTE tha t bu i s now a RHS vec to r
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use if2_defs_m
use param_m
use cdp_if2_hooks_m ! in l e t_convergence
use if_qs_m ! MHD

! use my_data_m

implicit none

real (WP) , intent ( inout ) : : Au ( : , : ) , bu ( : , : )
type ( i f 2_t ) , intent ( inout ) : : i f 2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣>␣momentum_source_hook . . . ’

! f o r channel , app ly a nega t i v e pre s sure g rad i en t − so on the
! RHS t h i s i s a p o s i t i v e source o f momentum . . .
i f ( get_logical_param ( ’FORCE_FLOW’ , default=.FALSE. ) ) then

i f (myrank == 0) &
write (∗ ,∗ ) ’ apply ing ␣ turbu l ent ␣ channel ␣ f o r c i n g . . . ’

ca l l pre s su r e_grad i en t_cont ro l l e r (bu , i f 2 )
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ca l l check_inlet_convergence (bu , i f 2 )

end i f

! Add Lorentz f o r c e (MHD)
i f ( get_logical_param ( ’SOLVE_MHD’ , default=.FALSE. ) ) then

ca l l coulomb_source ( i f 2 , bu )
end i f

end subroutine momentum_source_hook

subroutine temporal_hook ( i f 2 )

use cdp_if2_hooks_m ! o u t pu t_ve l o c i t y_pro f i l e / calc_drag
use if2_defs_m
use param_m
use misc_tools_m
! use gp_io_new_m
! use gp_func_m

implicit none

type ( i f 2_t ) , intent ( inout ) : : i f 2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! charac t e r ( l en=64) : : f i l ename
real (WP) : : gwss , gtke , xcut
logical , save : : f i r s t = .TRUE.

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (myrank == 0) &
write (∗ ,∗ ) ’ temporal_hook . . . ’

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! g e t parameters from f i l e ’ cdp_if2 . in ’ . . .
! . . . to dec ide what sub rou t ine s to use
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f ( get_logical_param ( ’EXTRACT_PROFILE’ , default=.FALSE. ) ) then

i f (MOD( i f 2%step ,20000) == 0) &
ca l l ex t r a c t_ve l o c i t y_pro f i l e ( i f 2 )

end i f

i f ( get_logical_param ( ’CALCULATE_DRAG’ , default=.FALSE. ) ) &
ca l l calc_drag ( i f 2 )

i f ( get_logical_param ( ’CALCULATE_DRAG_SLICES ’ , default=.FALSE. ) ) &
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ca l l ca l c_drag_s l i c e s ( i f 2 )

i f ( get_logical_param ( ’CALCULATE_WALL_SHEAR_TKE’ , default=.FALSE. ) ) then
xcut = 60 .0_WP ! For the aneurysm geometry

! c a l l get_dump_bounds ( i f 2 , xmin , xmax)
ca l l calc_shear_wal l ( i f 2 , gwss )
ca l l ca lc_global_tota l_ke ( i f 2 , xcut , gtke )

! Write data to f i l e
i f (myrank == 0) then

write (∗ ,∗ ) ’ ␣>␣ g l oba l ␣wa l l ␣ shear ␣ s t r e s s ␣ ’ , gwss
write (∗ ,∗ ) ’ ␣>␣ g l oba l ␣ t o t a l ␣ k i n e t i c ␣ energy ␣ ’ , gtke

! on ly f i r s t time wr i t e header to f i l e
i f ( f i r s t ) then

open (145 ,FILE=" s t a t i ona ry . dat" ,STATUS=’unknown ’ ,ACTION=’
readwr i t e ’ ,POSITION=’ append ’ )

write (145 ,∗ ) ’ var ␣=␣" i t e " ," time " ,"gWSS" , ␣"gTKE" ’
close (145)
f i r s t = .FALSE.

end i f

open (145 ,FILE=" s t a t i ona ry . dat" ,STATUS=’UNKNOWN’ ,ACTION=’READWRITE’ ,
POSITION=’APPEND’ )

write (145 , ’ ( i8 , 2 x , e12 . 6 , 2 x , e12 . 6 , 2 x , e12 . 6 ) ’ ) , i f 2%step , i f 2%time , gwss
, gtke

close (145)
end i f

end i f

! i f us ing misc_tools_m . . .
i f ( get_logical_param ( ’CALCULATE_VORT’ , default=.FALSE. ) ) &

ca l l update_VORT( i f 2%u , i f 2%gp )
i f ( get_logical_param ( ’CALCULATE_LAMBDA2’ , default=.FALSE. ) ) &

ca l l update_LAMBDA2( i f 2%u , i f 2%gp )

end subroutine temporal_hook

subroutine f ina l_hook ( i f 2 )

use if2_defs_m

implicit none

type ( i f 2_t ) , intent ( inout ) : : i f 2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (myrank == 0) &
write (∗ ,∗ ) ’ f inal_hook . . . ’

end subroutine f ina l_hook

subroutine init_b0_hook ( i f 2 )
! MHD
use global_m ! f o r main_ts_loop_index
use if2_defs_m
use iqs_defs_m
use if_qs_m
use param_m

implicit none

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

type ( i f 2_t ) , intent ( inout ) , target : : i f 2
real (WP) : : &

x (3 ) , s e t_pos i t i on , &
b0x , b0y , b0z , &
SIGMA,WIDTH,Haw

integer : : ino

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (myrank == 0) &
write (∗ ,∗ ) ’ hook , ␣ s e t t i n g ␣up␣ the ␣magnetic ␣ f i e l d . . .CNT’

b0x = get_real_param ( ’B0X ’ , default=0.0_WP)
b0y = get_real_param ( ’B0Y ’ , default=0.0_WP)
b0z = get_real_param ( ’B0Z ’ , default=0.0_WP)

i f (myrank == 0) &
write (∗ ,∗ ) ’ s e t t i n g ␣up␣ the ␣magnetic ␣ f i e l d . . . ’

do ino = 1 , i f 2%gp%nno_ib

x ( 1 : 3 ) = i f 2%gp%node_cc ( 1 : 3 , ino )

s e t_pos i t i on=(x (1 ) −0.0_WP)

bc0 (1 , ino ) = b0x
bc0 (2 , ino ) = b0y
bc0 (3 , ino ) = b0z
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end do

i f (myrank == 0) then
SIGMA = get_real_param ( ’SIGMA_REF’ , default=0.0_WP)
WIDTH = get_real_param ( ’WIDTH’ , default=0.0_WP)
Haw = 1.0_WP∗WIDTH∗b0z∗ s q r t ( SIGMA/ i f 2%constant_nu )

open (50 ,FILE=’INFO−flow_params . dat ’ , status=’unknown ’ , action=’ wr i t e ’ ,
position=’APPEND’ )

write (50 ,∗ )
write (50 ,∗ ) ’ ␣>␣MHD␣PARAMETERS. . . ’
write (50 , ’ ( ␣ 5(2X,A16) ␣ ) ’ ) ’B0X ’ , ’BOY’ , ’BOZ ’ , ’SIGMA’ , ’Ha_w ’
write (50 , ’ ( ␣ 5(2X,G16 . 8 ) ␣ ) ’ ) b0x , b0y , b0z , SIGMA, Haw
close (50)

end i f

end subroutine init_b0_hook

A.2 Developed module

module cdp_if2_hooks_m

use if2_defs_m ! t ype i f 2_t

contains

subroutine calc_mean_max_velocity_face ( mean_velocity , max_velocity , i f 2 )

use gp_defs_m

implicit none

real (WP) , intent (out ) : : mean_velocity ( 1 : 3 ) , max_velocity ( 1 : 3 )
type ( i f 2_t ) , intent ( inout ) , target : : i f 2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

type ( gp_t ) , pointer : : gp
type ( zone_t ) , pointer : : zone
real (WP) : : &

area_of_node_at_face , & ! area o f node at f ace
my_face_area , & ! area o f f ace f o r each proces sor ( l o c a l )
my_mass_flow (3) , & ! q = v .dA , f o r each proseccor ( l o c a l )
face_area , & ! area o f a l l f a ce ( g l o b a l )
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mass_flow (3) , & ! Q = Sum{q} , over the whole f ace (
g l o b a l )

my_max_velocity (3 )
integer : : i , ino , i e r r , &

ino_f i r s t , ino_las t

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣␣>␣calc_mean_and_max_velocity␣ f o r ␣ f a c e ␣ i n l e t . . . ’

!
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! l oop through zones u n t i l zone i s INLET
!
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

zone => i f 2%gp%f i r s t_zone_ptr

do while ( a s s o c i a t ed ( zone ) )
i f ( ( zone%name == ’ i n l e t ’ ) .OR. ( zone%name == ’INLET ’ ) ) then

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−
! c a l c u l a t e mean v e l o c i t y
my_face_area = 0 .0_WP
my_mass_flow ( 1 : 3 ) = 0 .0_WP
face_area = 0 .0_WP
mass_flow ( 1 : 3 ) = 0 .0_WP

! f i n d "mass f l ow " and "area o f f ace " l o c a l l y
do i = 1 , zone%n_nodel i s t

ino = zone%nod e l i s t ( i )

my_mass_flow ( 1 : 3 ) = my_mass_flow ( 1 : 3 ) + &
dot_product ( i f 2%u_bc ( 1 : 3 , ino ) ,−zone%no_local_normal ( 1 : 3 , i

) )

area_of_node_at_face = sq r t ( zone%no_local_normal (1 , i ) ∗∗2 + &
zone%no_local_normal (2 , i ) ∗∗2 + zone%no_local_normal (3 , i )

∗∗2 )
my_face_area = my_face_area + area_of_node_at_face

end do

! SUM "mass f l ow " and " face volume" from a l l p roce s so r s
! ’ AllReduce ’ sends back the r e s u l t to a l l p roce s so r s
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ca l l MPI_AllReduce (my_face_area , face_area , 1 ,MPI_REAL_WP,MPI_SUM,
mycomm, i e r r )

ca l l MPI_AllReduce (my_mass_flow , mass_flow , 3 ,MPI_REAL_WP,MPI_SUM,
mycomm, i e r r )

mean_velocity ( 1 : 3 ) = mass_flow ( 1 : 3 ) / face_area

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−
! c a l c max v e l o c i t y
my_max_velocity ( 1 : 3 ) = 0 .0_WP
max_velocity ( 1 : 3 ) = 0 .0_WP
i f ( .NOT. ( zone%n_nodel i s t==0)) then

i n o_ f i r s t = zone%nod e l i s t (1 )
ino_las t = zone%nod e l i s t ( zone%n_nodel i s t )
do i = 1 ,3

my_max_velocity ( i ) = maxval ( i f 2%u_bc( i , i n o_ f i r s t : ino_las t ) )
end do

end i f
ca l l MPI_AllReduce (my_max_velocity , max_velocity , 3 ,MPI_REAL_WP,

MPI_MAX,mycomm, i e r r )

i f (myrank == 0) &
write (∗ , ’ ( a , 2 g18 . 8 ) ’ ) ’ ␣ i n l e t ␣mean , ␣max␣x−v e l o c i t y : ␣ ’ ,

mean_velocity (1 ) , max_velocity (1 )

end i f ! i f zone i s INLET
zone => zone%next

end do

end subroutine calc_mean_max_velocity_face

! #########################################################

subroutine calc_mean_max_axial_velocity_volume (mean_velocity ,
max_velocity , i f 2 )

use gp_defs_m

implicit none

real (WP) , intent (out ) : : mean_velocity ( 1 : 3 ) , max_velocity ( 1 : 3 )
type ( i f 2_t ) , intent ( inout ) , target : : i f 2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

type ( gp_t ) , pointer : : gp
real (WP) : : &
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my_volume , & ! volume o f geometry f o r each proces sor (
l o c a l )

my_mass_flow (3) , & ! q = v .dA , f o r each proseccor ( l o c a l )
volume , & ! ho l e volume o f geomtery ( g l o b a l )
mass_flow (3) , & ! Q = Sum{q} , over the whole f ace (

g l o b a l )
c o e f f , &
my_max_velocity (3 )

integer : : i , ino , i e r r

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

gp => i f 2%gp

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣␣>␣ calc_mean_axial_velocity ␣ f o r ␣volume . . . ’

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−
! c a l c u l a t e mean v e l o c i t y o f geometry
my_volume = 0 .0_WP
my_mass_flow ( 1 : 3 ) = 0 .0_WP
volume = 0 .0_WP
mass_flow ( 1 : 3 ) = 0 .0_WP

! f i n d "mass f l ow " l o c a l l y
do ino = 1 , gp%nno_ib

c o e f f = gp%no_local_volume ( ino )
my_mass_flow ( 1 : 3 ) = my_mass_flow ( 1 : 3 ) + i f 2%u ( 1 : 3 , ino ) ∗ c o e f f
my_volume = my_volume + c o e f f

end do

! SUM "mass f l ow " and " face volume" from a l l p roce s so r s
! ’ AllReduce ’ sends back the r e s u l t to a l l p roce s so r s
ca l l MPI_AllReduce (my_mass_flow , mass_flow , 3 ,MPI_REAL_WP,MPI_SUM,

mycomm, i e r r )
ca l l MPI_AllReduce (my_volume , volume , 1 ,MPI_REAL_WP,MPI_SUM,mycomm, i e r r

)

mean_velocity ( 1 : 3 ) = mass_flow ( 1 : 3 ) / volume

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−
! c a l c max v e l o c i t y
my_max_velocity ( 1 : 3 ) = 0 .0_WP
max_velocity ( 1 : 3 ) = 0 .0_WP
do i = 1 ,3

my_max_velocity ( i ) = maxval ( i f 2%u( i , 1 : gp%nno_ib ) )
end do
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ca l l MPI_AllReduce (my_max_velocity , max_velocity , 3 ,MPI_REAL_WP,MPI_MAX
,mycomm, i e r r )

i f (myrank == 0) &
write (∗ , ’ ( a , 2 g18 . 8 ) ’ ) ’ ␣volume␣mean , ␣max␣x−v e l o c i t y : ␣ ’ ,

mean_velocity (1 ) , max_velocity (1 )

end subroutine calc_mean_max_axial_velocity_volume

! #########################################################

subroutine pre s su r e_grad i en t_cont ro l l e r (bu , i f 2 )

use param_m

implicit none

real (WP) , intent ( inout ) : : bu ( : , : )
type ( i f 2_t ) , intent ( inout ) : : i f 2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

real (WP) , save , allocatable : : &
dPdx ( : ) , dPdx_old ( : ) ! p g rad i en t at t ^{n} , t ^{n−1}

real (WP) : : &
mean_velocity (3 ) , & ! mean v e l o c i t y o f domain at t ^{n}
max_velocity (3 ) , &
mean_ux_REFERENCE, & ! r e f e r ence mean x v e l o c i t y
e0 , e1 , & ! e r ror = u_REF−u_mean −−> at t ^{n} , t ^{

n−1}
Kp, Ki ,Kd ! p ropor t i ona l , i n t e g r a l and d e r i v a t i v e

gain
real (WP) , save : : &

mean_ux_old ! mean x v e l o c i t y o f domain at t ^{n−1}
integer : : ino
logical , save : : f i r s t = .TRUE.

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! g e t c o n t r o l l e r gain parameters
Kp = get_real_param ( ’Kp ’ , default=1.0_WP)
Ki = get_real_param ( ’Ki ’ , default=1.0_WP)
Kd = get_real_param ( ’Kd ’ , default=1.0_WP)
mean_ux_REFERENCE = get_real_param ( ’U_REF’ , default=1.0_WP)

! c r ea t e arrays − s i z e v a r i e s accord ing to p a r t i t i o n i n g
i f ( .NOT. a l l o c a t e d (dPdx) ) allocate ( dPdx( i f 2%gp%nno_ib ) )
i f ( .NOT. a l l o c a t e d (dPdx_old ) ) allocate ( dPdx_old ( i f 2%gp%nno_ib ) )
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ca l l calc_mean_max_axial_velocity_volume (mean_velocity , max_velocity ,
i f 2 )

i f ( f i r s t .EQV. .TRUE. ) then
! s e t t ^{n−1} va l u e s to zero f o r f i r s t i t e r a t i o n
dPdx_old = 0 .0_WP
mean_ux_old = mean_velocity (1 )

! wr i t e header to f i l e
i f (myrank == 0) then

open (80 ,FILE=’ cont ro l l e r_output . dat ’ , status=’unknown ’ , action=’
wr i t e ’ , position=’ append ’ )

write (80 ,∗ ) ’ ␣ v a r i a b l e s ␣=␣" i t e " , ␣" time " , ␣"Ux␣mean" , ␣" e r r o r ( k ) " , ␣"
Ux␣mean␣ (REFERENCE)" ’

close (80)

open (81 ,FILE=’ cont ro l l e r_parameter s . dat ’ , status=’unknown ’ , action
=’ wr i t e ’ , position=’ append ’ )

write (81 , ’ ( ␣ 4(2x ,A, F6 . 3 ) ␣ ) ’ ) ’Kp␣=’ ,Kp, ’Ki␣=’ ,Ki , ’Kd␣=’ ,Kd
write (81 , ’ ( ␣2x ,A, F6 . 3 ␣ ) ’ ) ’U␣mean␣REF␣=␣ ’ ,mean_ux_REFERENCE
close (81)

end i f

f i r s t = .FALSE.
end i f

! c a l c u l a t e e r ro r s
e0 = mean_ux_REFERENCE − mean_velocity (1 )
e1 = mean_ux_REFERENCE − mean_ux_old

do ino = 1 , i f 2%gp%nno_ib
! a d j u s t p g rad i en t us ing a PID con t r o l e r
dPdx( ino ) = &

Kp∗ e0 + & ! p r opo r t i ona l c o n t r o l l e r
dPdx_old ( ino ) + Ki∗ e0/ i f 2%dt + & ! i n t e g r a l c o n t r o l l e r
Kd∗( e0−e1 ) / i f 2%dt ! d e r i v a t i v e c o n t r o l l e r

bu (1 , ino ) = i f 2%gp%no_local_volume ( ino ) ∗dPdx( ino )

! new grad i en t va lue goes to o ld var f o r next i t e r a t i o n
dPdx_old ( ino ) = dPdx( ino )

end do

! new mean x v e l o c i t y va lue goes to o ld var f o r next i t e r a t i o n
mean_ux_old = mean_velocity (1 )

i f (myrank == 0) then
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open (80 ,FILE=’ cont ro l l e r_output . dat ’ , status=’unknown ’ , action=’
wr i t e ’ , position=’ append ’ )

write (80 , ’ ( I6 , 2X,G12 . 4 , 6 ( 2X,G16 . 8 ) ) ’ ) &
i f 2%step , i f 2%time , mean_velocity (1 ) , e0 , mean_ux_REFERENCE

close (80)
end i f

end subroutine pre s su r e_grad i en t_cont ro l l e r

! #########################################################

subroutine check_inlet_convergence (bu , i f 2 )

implicit none

type ( i f 2_t ) , intent ( inout ) , target : : i f 2
real (WP) , intent ( in ) : : bu ( : , : )

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

real (WP) : : &
dU, dUdt , dPdx , mean_dPdx , &
my_total_volume , total_volume , &
my_sum_dPdx_dV, sum_dPdx_dV, &
my_sum_dUdt_over_dPdx_dV, sum_dUdt_over_dPdx_dV , &
mean_dUdt_over_dPdx , &
my_max_dU_abs, max_dU_abs , &
my_max_dUdt_over_dPdx , max_dUdt_over_dPdx

integer : : ino
integer : : i e r r , i rank , status (MPI_STATUS_SIZE) ! t h e s e are f o r

MPI_Send ,MPI_Recv
logical , save : : f i r s t = .TRUE.

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! i n i t i a l i z e arrays
my_total_volume = 0 .0_WP
total_volume = 0 .0_WP
my_sum_dPdx_dV = 0.0_WP
sum_dPdx_dV = 0.0_WP
my_sum_dUdt_over_dPdx_dV = 0.0_WP
sum_dUdt_over_dPdx_dV = 0.0_WP
my_max_dU_ABS = 0.00000000001_WP ! ( to compare aga in s t

r e s i d u a l s o f the s o l v e r )
max_dU_ABS = 0.0_WP
my_max_dUdt_over_dPdx = 0.00000000001_WP ! ( to compare aga in s t

r e s i d u a l s o f the s o l v e r )
max_dUdt_over_dPdx = 0 .0_WP
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! A l l p roce s so r s c a l c u l a t e t h e i r par t o f v a r i a b l e s
do ino = 1 , i f 2%gp%nno_ib

my_total_volume = my_total_volume + i f 2%gp%no_local_volume ( ino )
! d i f f e r e n c e between u − u0
dU = ( i f 2%u (1 , ino )− i f 2%u0 (1 , ino ) ) !+&

! ( i f 2%u(2 , ino )− i f 2%u0 (2 , ino ) ) ∗∗2.0_WP +&
! ( i f 2%u(3 , ino )− i f 2%u0 (3 , ino ) ) ∗∗2.0_WP)

! ca l c d e r i v a t i v e s
dUdt = dU/ i f 2%dt
dPdx = bu (1 , ino ) / i f 2%gp%no_local_volume ( ino )

! sum d e r i v a t i v e s and dpdx volume i n t e g r a l
my_sum_dUdt_over_dPdx_dV = my_sum_dUdt_over_dPdx_dV + i f 2%gp%

no_local_volume ( ino ) ∗abs ( dUdt ) /dpdx
my_sum_dPdx_dV = my_sum_dPdx_dV + bu (1 , ino ) ! Sum { volume

∗dP/dx }

! a b s o l u t max v e l o c i t y increment
my_max_dU_ABS = max( my_max_dU_ABS, abs (dU) )
! percentage o f the t r an s i e n t term re sp e c t the pre s sure drop per

node
my_max_dUdt_over_dPdx = max( my_max_dUdt_over_dPdx , ( 1 0 0 . 0_WP∗dUdt/

dPdx) )
end do

! SUM DERIVATIVES from ALL proce s so r s
ca l l MPI_Reduce(my_sum_dUdt_over_dPdx_dV, sum_dUdt_over_dPdx_dV , 1 ,

MPI_REAL_WP,MPI_SUM,0 ,mycomm, i e r r )
ca l l MPI_Reduce(my_sum_dPdx_dV, sum_dPdx_dV, 1 ,MPI_REAL_WP,MPI_SUM,0 ,

mycomm, i e r r )
ca l l MPI_Reduce(my_total_volume , total_volume , 1 ,MPI_REAL_WP,MPI_SUM,0 ,

mycomm, i e r r )

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! RANK 0 RECIEVE’ s
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f (myrank == 0) then

! f i r s t c o l l e c t data from rank 0 ,
! swap l o c a l maximum va lue wi th g l o b a l maximum va lue ( noth ing ye t

to compare wi th )
max_dU_ABS = my_max_dU_ABS
max_dUdt_over_dPdx = my_max_dUdt_over_dPdx

! then c o l l e c t data from other proce s s e s
do i rank = 1 , nprocs−1

ca l l MPI_RECV(my_max_dU_ABS, 1 ,MPI_REAL_WP, irank ,50002 ,mycomm,
status , i e r r )

Nico
las

 Kan
ari

s



A.2. Developed module 149

ca l l MPI_RECV(my_max_dUdt_over_dPdx , 1 ,MPI_REAL_WP, irank ,50002+1 ,
mycomm, status , i e r r )

! compare g l o b a l wi th every l o c a l va lue to f i nd maximum va lue
max_dU_ABS = max( max_dU_ABS, my_max_dU_ABS)
max_dUdt_over_dPdx = max( max_dUdt_over_dPdx ,

my_max_dUdt_over_dPdx )
end do

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! OTHER PROCESSES SEND
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
else

ca l l MPI_SEND(my_max_dU_ABS, 1 ,MPI_REAL_WP,0 ,50002 ,mycomm, i e r r )
ca l l MPI_SEND(my_max_dUdt_over_dPdx , 1 ,MPI_REAL_WP,0 ,50002+1 ,mycomm,

i e r r )
end i f

! Write data to f i l e
i f (myrank == 0) then

! on ly f i r s t time wr i t e header to f i l e
i f ( f i r s t ) then

open (10 ,FILE=’ time_convergence . dat ’ , status=’unknown ’ , action=’
wr i t e ’ , position=’ append ’ )

write (10 ,∗ ) ’ var ␣=␣" i t e " ," time " ,"MEAN␣dPdx" ,"MEAN␣dUdt/dPdx" ,"
MAX␣dUdt/dPdx␣ [%]" ,"MAX␣ | de l t a ␣U|" ’

close (10)
f i r s t = .FALSE.

end i f

mean_dUdt_over_dPdx = sum_dUdt_over_dPdx_dV/total_volume
mean_dpdx = sum_dPdx_dV/total_volume

write (∗ ,∗ ) ’ check ing ␣ steady ␣ s t a t e ␣ in ␣PRESSURE␣FIELD␣IMPOSED␣ALONG␣X
! ’

write (∗ ,∗ ) ’MEAN␣dUdt/dPdx␣ [%] ␣=’ , mean_dUdt_over_dPdx
write (∗ ,∗ ) ’MAX␣ | de l t a ␣U| ␣=’ , max_dU_ABS

open (10 ,FILE=’ time_convergence . dat ’ , status=’unknown ’ , action=’ wr i t e ’
, position=’ append ’ )

write (10 , ’ ( I6 , 5G14 . 6 ) ’ ) i f 2%step , i f 2%time , mean_dPdx ,
mean_dUdt_over_dPdx , max_dUdt_over_dPdx , max_dU_ABS

close (10)
end i f

end subroutine check_inlet_convergence

! #########################################################
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subroutine ex t r a c t_ve l o c i t y_pro f i l e ( i f 2 )

use gp_defs_m ! t ype zone_t , gp_t
use bc_parsing_m ! f unc t i on zone_is_wal l

implicit none

type ( i f 2_t ) , intent ( inout ) , target : : i f 2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

type ( gp_t ) , pointer : : gp
type ( zone_t ) , pointer : : zone
real (WP) , pointer : : u ( : , : )
real (WP) : : &

accuracy , x_intersect ion_plane , x_node , &
x_left_plane , x_right_plane

real (WP) , allocatable : : &
my_y_of_point_on_plane ( : ) , &
my_z_of_point_on_plane ( : ) , &
my_u_of_point_on_plane ( : ) , &
y_of_point_on_plane ( : ) , &
z_of_point_on_plane ( : ) , &
u_of_point_on_plane ( : )

integer : : &
i , j , ino , i counter , &
my_array_size , array_size , & ! w i l l be the s i z e o f my

a l l o c a t a b l e arrays
i e r r , status (MPI_STATUS_SIZE) , & ! t h e s e are f o r MPI_Send ,

MPI_Recv
TAG0,TAG1,TAG2,TAG3 !

log ica l : : done
character (30) : : f i l ename

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

gp => i f 2%gp
u => i f 2%u

! parameters f o r p lane f o r i n t e r s e c t i o n
x_intersect ion_plane = 0 .0_WP ! . . . d e f i n e

p o s i t i o n
accuracy = 0.01_WP ! . . . s e t

accuracy
x_right_plane = x_intersect ion_plane + accuracy ! . . . s e t upper

l im i t
x_left_plane = x_intersect ion_plane − accuracy ! . . . s e t lower

l im i t
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! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! RANK 0 RECIEVE’ s
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f (myrank == 0) then

write (∗ ,∗ ) ’ ␣␣>␣output␣ v e l o c i t y ␣ p r o f i l e ␣ in ␣ f i l e . . . ’

write ( f i l ename , ’ ( a , i 6 . 6 , a ) ’ ) ’ v e l o c i t y_p r o f i l e . ’ , i f 2%step , ’ . dat ’
open (30 ,FILE=f i l ename )

do i = 1 , nprocs−1
! r e d i f i n e ID ’ s f o r sending r e qu e s t s f o r each proces s
TAG0 = i ∗1000
TAG1 = i ∗1000 + 1
TAG2 = i ∗1000 + 2
TAG3 = i ∗1000 + 3

! f i r s t r e c i e v e s i z e o f array ’ s
ca l l MPI_Recv( array_size , 1 ,MPI_INTEGER, i ,TAG0,mycomm, status , i e r r )

! i f s i z e not zero then r e c i e v e r e s t o f data ’ s
i f ( ar ray_s ize .NE. 0) then

! s i z e o f arrays need to be known p r e c i s e f o r MPI_Recv
allocate ( y_of_point_on_plane ( array_s ize ) )
allocate ( z_of_point_on_plane ( array_s ize ) )
allocate ( u_of_point_on_plane ( array_s ize ) )

ca l l MPI_Recv( y_of_point_on_plane , array_size ,MPI_REAL_WP, i ,TAG1
,mycomm, status , i e r r )

ca l l MPI_Recv( z_of_point_on_plane , array_size ,MPI_REAL_WP, i ,TAG2
,mycomm, status , i e r r )

ca l l MPI_Recv( u_of_point_on_plane , array_size ,MPI_REAL_WP, i ,TAG3
,mycomm, status , i e r r )

! wr i t e data from each proces s to f i l e
do j = 1 , ar ray_s ize

write (30 ,∗ ) y_of_point_on_plane ( j ) , z_of_point_on_plane ( j ) ,
u_of_point_on_plane ( j )

end do

deallocate ( y_of_point_on_plane , z_of_point_on_plane ,
u_of_point_on_plane )

end i f

end do ! end loop from a l l procs

! wr i t e to f i l e a l s o po in t s from rank 0
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do ino = 1 , gp%nno_ib
x_node = gp%node_cc (1 , ino )
i f ( ( x_node < x_right_plane ) .AND. ( x_node > x_left_plane ) ) &

write (30 ,∗ ) gp%node_cc (2 , ino ) , gp%node_cc (3 , ino ) ,u (1 , ino )
end do

close (30)

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! OTHER PROCESSES SEND
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
else

! f i r s t count number o f po in t s on p lane o f i n t e r s e c t i o n f o r each
proces s

! in order to a l l o c a t e s i z e o f array to be SEND and be ab l e to
RECIEVE

my_array_size = 0
do ino = 1 , gp%nno_ib

x_node = gp%node_cc (1 , ino )
i f ( ( x_node < x_right_plane ) .AND. ( x_node > x_left_plane ) ) &

my_array_size = my_array_size + 1
end do

! ID fo r send func t i on s
TAG0 = myrank∗1000
TAG1 = myrank∗1000 + 1
TAG2 = myrank∗1000 + 2
TAG3 = myrank∗1000 + 3

! f i r s t SEND SIZE of array ’ s
ca l l MPI_Send(my_array_size , 1 ,MPI_INTEGER,0 ,TAG0,mycomm, i e r r )

! i f s i z e o f array ’ s not zero then SEND ARRAY’ s
i f (my_array_size .NE. 0) then

! s i z e o f arrays need to be known p r e c i s e f o r MPI_Recv
allocate (my_y_of_point_on_plane (my_array_size ) )
allocate (my_z_of_point_on_plane (my_array_size ) )
allocate (my_u_of_point_on_plane (my_array_size ) )

! e x t r a c t and s t o r e data from each proces s to arrays
i c oun t e r = 0
do ino = 1 , gp%nno_ib

x_node = gp%node_cc (1 , ino )
i f ( ( x_node < x_right_plane ) .AND. ( x_node > x_left_plane ) ) then

! i f po in t on p lane
i c oun t e r = i count e r + 1
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my_y_of_point_on_plane ( i c oun t e r ) = gp%node_cc (2 , ino ) ! y
my_z_of_point_on_plane ( i c oun t e r ) = gp%node_cc (3 , ino ) ! z
my_u_of_point_on_plane ( i c oun t e r ) = u (1 , ino ) ! u

end i f
end do

! SEND the array ’ s
ca l l MPI_Send(my_y_of_point_on_plane , my_array_size ,MPI_REAL_WP,0 ,

TAG1,mycomm, i e r r )
ca l l MPI_Send(my_z_of_point_on_plane , my_array_size ,MPI_REAL_WP,0 ,

TAG2,mycomm, i e r r )
ca l l MPI_Send(my_u_of_point_on_plane , my_array_size ,MPI_REAL_WP,0 ,

TAG3,mycomm, i e r r )

deallocate (my_y_of_point_on_plane , my_z_of_point_on_plane ,
my_u_of_point_on_plane )

end i f

end i f ! end SEND−RECIEVE

end subroutine ex t r a c t_ve l o c i t y_pro f i l e

! #########################################################

subroutine r ead_ve l o c i t y_pro f i l e (u_bc_tmp , zone , i f 2 )

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! NOTE: THIS SUBROUTINE IS CALLED IF ZONE IS INLET
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use param_m

implicit none

real (WP) , pointer : : u_bc_tmp ( : , : )
type ( zone_t ) , intent ( in ) : : zone
type ( i f 2_t ) , intent ( inout ) , target : : i f 2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

type ( gp_t ) , pointer : : gp
real (WP) , save , allocatable : : u_bc_stored ( : , : )
real (WP) , allocatable : : &

y_inp ( : ) , z_inp ( : ) , ux_inp ( : ) , & ! data o f input nodes
d i s t ( : , : ) ! d i s t ance between input and

i n l e t nodes
real (WP) : : &

y , z , & ! c a r t e s i an coord ina t e s o f input nodes
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y_ref , z_ref , & ! c a r t e s i an coord ina t e s o f i n l e t nodes
c l o s e s t_d i s t (4 ) , & ! c l o s e s t d i s t ance in each quadrant from

re f e r ence node
sum_weights , & ! sum weigh t o f input nodes used to

c a l c u l a t e i n l e t v e l o c i t y
mean_velocity (3 )

integer : : &
i , j , ino , i e r r , &
num_nodes_file , & ! number o f nodes in f i l e ’

i n l e t_ v e l o c i t y_p r o f i l e . dat ’
index_mn , & ! l o c a t i o n o f node in array i f matching

nodes
index_cn (4) ! l o c a t i o n o f c l o s e s t node in array

real (WP) , parameter : : MAX_DISTANCE = 1000.0_WP
real (WP) : : &

CHAR_LENGTH, Re_TARGET, U_MEAN_TARGET, &
Re , Re_scal ing_coef f , U_mean_scaling_coeff

logical , save : : f i r s t = .TRUE.
log ica l : : nodes_match ! , done

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

gp => i f 2%gp

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣␣>␣ read␣ v e l o c i t y ␣ p r o f i l e ␣ from␣ f i l e . . . ’

i f ( f i r s t .EQV. .TRUE. ) then

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! READ FILE FOR EXTRAPOLATION. . .
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

open (31 ,FILE=’ i n l e t_v e l o c i t y_p r o f i l e . dat ’ ,STATUS=’OLD’ )

! f i n d what i s the s i z e o f the f i l e ( read u n t i l End−Of−F i l e )
i e r r = 0 ! i f i e r r=−1 then EOF
num_nodes_file = 0 ! number o f records in f i l e
do while ( i e r r == 0)

num_nodes_file = num_nodes_file + 1
read (31 ,∗ , iostat=i e r r )

end do
num_nodes_file = num_nodes_file − 1
rewind (31)

! c r ea t e arrays on−the− f l y −> use s i z e o f f i l e
i f ( .NOT. a l l o c a t e d ( y_inp ) ) allocate ( y_inp ( num_nodes_file ) )
i f ( .NOT. a l l o c a t e d ( z_inp ) ) allocate ( z_inp ( num_nodes_file ) )
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i f ( .NOT. a l l o c a t e d ( ux_inp ) ) allocate ( ux_inp ( num_nodes_file ) )
i f ( .NOT. a l l o c a t e d ( d i s t ) ) allocate ( d i s t ( zone%n_nodel ist ,

num_nodes_file ) )
! c r ea t e dummy array to s t o r e v e l o c i t y a f t e r read ing
i f ( .NOT. a l l o c a t e d ( u_bc_stored ) ) allocate ( u_bc_stored (3 , zone%

n_nodel i s t ) )

u_bc_stored ( : , : ) = 0 .0_WP

! read data from f i l e
do i = 1 , num_nodes_file

read (31 ,∗ ) y_inp ( i ) , z_inp ( i ) , ux_inp ( i )
end do

! c a l c u l a t e d i s t ance between i n l e t and input nodes
do i = 1 , zone%n_nodel i s t

ino = zone%nod e l i s t ( i )
do j = 1 , num_nodes_file

d i s t ( i , j ) = sq r t ( ( gp%node_cc (2 , ino )−y_inp ( j ) ) ∗∗2 + &
( gp%node_cc (3 , ino )−z_inp ( j ) ) ∗∗2 )

end do
end do

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! f i n d 4 c l o s e s t nodes
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! l oop over a l l i n l e t nodes
do i = 1 , zone%n_nodel i s t

ino = zone%nod e l i s t ( i )

c l o s e s t_d i s t ( 1 : 4 ) = MAX_DISTANCE ! d i s t ance from c l o s e s t po in t
a t a l l d i r e c t i o n s

! For comparisson we use ’ ino ’ as an argument { e . g . y_ref = gp%
node_cc (2 , ino ) } . . .

! BUT fo r s t o rage we use ’ i ’ { u_bc_stored (1 , i ) } . . .
! o t he rw i s e we would had a b i g array l i k e i f 2%u_bc { a l l o c a t e

u_bc_stored (3 , gp%nno_ib ) } . . .
! we l o t s o f z e ros at p l a c e s f o r a l l o ther zones .

! c a r t e s i an coord ina t e s o f node o f r e f e r ence
y_ref = gp%node_cc (2 , ino )
z_ref = gp%node_cc (3 , ino )

! l oop over a l l input nodes
j = 1
nodes_match = .FALSE. ! assume nodes don ’ t match
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do while ( ( j <= num_nodes_file ) .AND. ( nodes_match .EQV. .FALSE. ) )
! c a r t e s i an coord ina t e s o f input node
y = y_inp ( j )
z = z_inp ( j )

! check f i r s t i f r e f e rnce node match any i n l e t node
i f ( ( y == y_ref ) .AND. ( z == z_ref ) ) then

nodes_match=.TRUE.
index_mn = j

! i f not then l o c a t e nodes around re f e r ence node . . .
! . . . a t four quadrants o f a ca r t e s i an coord ina te system
else

! . . . check above the node o f r e f e r ence − f i s r t 2 quadrants
i f ( y >= y_ref ) then

! check 1 s t quadrant
i f ( z >= z_ref ) then

i f ( d i s t ( i , j ) < c l o s e s t_d i s t (1 ) ) then
index_cn (1) = j ! index o f c l o s e s t node

in array
c l o s e s t_d i s t (1 ) = d i s t ( i , j )

end i f
end i f
! check 2nd quadrant
i f ( z <= z_ref ) then

i f ( d i s t ( i , j )<c l o s e s t_d i s t (2 ) ) then
index_cn (2) = j ! index o f c l o s e s t node

in array
c l o s e s t_d i s t (2 ) = d i s t ( i , j )

end i f
end i f

end i f

! . . . check be low the node o f r e f e r ence − l a s t 2 quadrants
i f ( y <= y_ref ) then

! check 3rd quadrant
i f ( z <= z_ref ) then

i f ( d i s t ( i , j )<c l o s e s t_d i s t (3 ) ) then
index_cn (3) = j ! index o f c l o s e s t node

in array
c l o s e s t_d i s t (3 ) = d i s t ( i , j )

end i f
end i f
! check 4 th quadrant
i f ( z >= z_ref ) then

i f ( d i s t ( i , j )<c l o s e s t_d i s t (4 ) ) then
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index_cn (4) = j ! index o f c l o s e s t node
in array

c l o s e s t_d i s t (4 ) = d i s t ( i , j )
end i f

end i f
end i f

end i f

j = j + 1
end do ! l oop over input nodes

! c a l c u l a t e i n l e t v e l o c i t y at nodes
i f ( nodes_match .EQV. .TRUE. ) then

u_bc_stored (1 , i ) = ux_inp ( index_mn)
else

! Equation : u = sum{ weigh t ( i )∗ux ( i ) /sum [ we igh t ( i ) ] }
sum_weights = ( 1 .0_WP/ c l o s e s t_d i s t (1 ) ) + &

( 1 .0_WP/ c l o s e s t_d i s t (2 ) ) + &
( 1 .0_WP/ c l o s e s t_d i s t (3 ) ) + &
( 1 .0_WP/ c l o s e s t_d i s t (4 ) )

u_bc_stored (1 , i ) = ( ( 1 . 0_WP/ c l o s e s t_d i s t (1 ) ) ∗ux_inp ( index_cn
(1) ) + &

( 1 .0_WP/ c l o s e s t_d i s t (2 ) ) ∗ux_inp ( index_cn
(2 ) ) + &

( 1 .0_WP/ c l o s e s t_d i s t (3 ) ) ∗ux_inp ( index_cn
(3 ) ) + &

( 1 .0_WP/ c l o s e s t_d i s t (4 ) ) ∗ux_inp ( index_cn
(4 ) ) ) / &

sum_weights
end i f

end do ! l oop over i n l e t nodes

deallocate ( y_inp , z_inp , ux_inp , d i s t )
close (31)

f i r s t = .FALSE.
end i f

! d e f i n e u_bc f o r i n l e t
do i =1, zone%n_nodel i s t

ino = zone%nod e l i s t ( i )
u_bc_tmp(1 , ino ) = u_bc_stored (1 , i )
u_bc_tmp( 2 : 3 , ino ) = 0 .0_WP

end do
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end subroutine r ead_ve l o c i t y_pro f i l e

! #########################################################

subroutine i n l e t_ve l o c i t y_s ca l i n g (u_bc_tmp , zone , i f 2 )

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! NOTE: THIS SUBROUTINE IS CALLED IF ZONE IS INLET
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

use param_m

implicit none

real (WP) , pointer : : u_bc_tmp ( : , : )
type ( zone_t ) , intent ( in ) : : zone
type ( i f 2_t ) , intent ( inout ) , target : : i f 2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

real (WP) : : mean_velocity (3 ) , max_velocity (3 )
integer : : i , ino
real (WP) : : &

CHAR_LENGTH,Re_TARGET,U_TARGET, &
Re_bulk , Re_cent

real (WP) , save : : &
Re_scal ing_coef f , U_scal ing_coef f

logical , save : : f i r s t = .TRUE.
log ica l : : ad ju s t_ in l e t_ve l o c i t y

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣␣>␣ ad jus t ␣ v e l o c i t y ␣ at ␣ i n l e t ␣by␣ s c a l i n g ␣ v e l o c i t y ␣and

␣ v i s c o s i t y . . . ’

i f ( f i r s t .EQV. .TRUE. ) then
! −−−− BEFORE SCALING −−−−
!
! Ca l cu l a t e Re and v e l o c i t i e s b e f o r e any s c a l i n g
Re_TARGET = get_real_param ( ’Re_TARGET’ , default=100.0_WP)
CHAR_LENGTH = get_real_param ( ’CHAR_LENGTH’ , default=1.0_WP)

! d e f i n e i f 2%u_bc f o r i n l e t to be a b l e to use subrou t ine
calc_mean_Velocity

! . . . u n t i l now i f 2%u_bc i s not de f ined
do i =1, zone%n_nodel i s t

ino = zone%nod e l i s t ( i )
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i f 2%u_bc (1 , ino ) = u_bc_tmp(1 , ino )
i f 2%u_bc ( 2 : 3 , ino ) = 0 .0_WP

end do

ca l l calc_mean_max_velocity_face ( mean_velocity , max_velocity , i f 2 )

Re_bulk = mean_velocity (1 ) ∗CHAR_LENGTH/ i f 2%constant_nu
Re_cent = max_velocity (1 ) ∗CHAR_LENGTH/ i f 2%constant_nu

open (50 ,FILE=’INFO−flow_params . dat ’ )
write (50 ,∗ ) ’ ␣>␣INLET␣VELOCITY␣SCALING . . . ’
write (50 ,∗ ) ’ ␣␣␣<␣Before ␣ Sca l i ng ␣> ’
write (50 , ’ ( ␣ 6(2X,A16) ␣ ) ’ ) ’Re␣ ta r g e t ’ , ’Re_bulk ’ , ’ Re_cent ’ , ’mean␣

v e l o c i t y ’ , ’max␣ v e l o c i t y ’ , ’ v i s c o s i t y ’
write (50 , ’ ( ␣ 6(2X,G16 . 8 ) ␣ ) ’ ) Re_TARGET, Re_bulk , Re_cent ,

mean_velocity (1 ) , max_velocity (1 ) , i f 2%constant_nu
!
! −−−−−−− SCALING −−−−−−−
!
! Ca l cu l a t e c o e f f i c i e n t f o r VELOCITY s c a l i n g
i f ( get_logical_param ( ’ADJUST_MEAN_VELOCITY’ , default=.FALSE. ) ) then

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣␣␣>␣ ad jus t ␣mean␣ v e l o c i t y . . . ’

U_TARGET = get_real_param ( ’U_MEAN_TARGET’ , default=1.0_WP)
U_scal ing_coef f = U_TARGET/mean_velocity (1 )
ad ju s t_ in l e t_ve l o c i t y = .TRUE.

else i f ( get_logical_param ( ’ADJUST_MAX_VELOCITY’ , default=.FALSE. ) )
then

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣␣␣>␣ ad jus t ␣max␣ v e l o c i t y . . . ’

U_TARGET = get_real_param ( ’U_MAX_TARGET’ , default=1.0_WP)
U_scal ing_coef f = U_TARGET/max_velocity (1 )
ad ju s t_ in l e t_ve l o c i t y = .TRUE.

else
i f (myrank == 0) &

write (∗ ,∗ ) ’ ␣␣␣>␣NOTE: ␣No␣adjustment ␣ o f ␣ f low ␣parameters ’
ad ju s t_ in l e t_ve l o c i t y = .FALSE.

end i f

! SCALE VELOCITY p r o f i l e
i f ( ad ju s t_ in l e t_ve l o c i t y ) then

do i =1, zone%n_nodel i s t
ino = zone%nod e l i s t ( i )
i f 2%u_bc (1 , ino ) = u_bc_tmp(1 , ino ) ∗U_scal ing_coef f
i f 2%u_bc ( 2 : 3 , ino ) = 0 .0_WP

end do
ca l l calc_mean_max_velocity_face ( mean_velocity , max_velocity , i f 2 )
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! Reynolds number a f t e r mean v e l o c i t y co r r e c t i on
Re_bulk = mean_velocity (1 ) ∗CHAR_LENGTH/ i f 2%constant_nu
Re_cent = max_velocity (1 ) ∗CHAR_LENGTH/ i f 2%constant_nu

! V i s c o s i t y i s a l s o ad ju s t ed by d e f au l t , but t h i s i s o p t i ona l . . .
! . . . i t can be d ea c t i v a t e d us ing ’ADJUST_VISCOSITY=.FALSE. ’ in

input f i l e
i f ( get_logical_param ( ’ADJUST_VISCOSITY ’ , default=.TRUE. ) ) then

! Ca l cu l a t e COEFFICIENT fo r VISCOSITY s c a l i n g
i f ( get_logical_param ( ’ADJUST_MEAN_VELOCITY’ , default=.FALSE. ) )

then
Re_scal ing_coef f = Re_TARGET/Re_bulk

else i f ( get_logical_param ( ’ADJUST_MAX_VELOCITY’ , default=.FALSE
. ) ) then

Re_scal ing_coef f = Re_TARGET/Re_cent
end i f
! SCALE VISCOSITY
i f 2%constant_nu = i f 2%constant_nu/Re_scal ing_coef f

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣␣␣>␣ v i s c o s i t y ␣ adjusted : ␣ ’ , i f 2%constant_nu

! Reynolds number a f t e r v i s c o s i t y co r r e c t i on
Re_bulk = mean_velocity (1 ) ∗CHAR_LENGTH/ i f 2%constant_nu
Re_cent = max_velocity (1 ) ∗CHAR_LENGTH/ i f 2%constant_nu

end i f
end i f
!
! −−−− AFTER SCALING −−−−
!
write (50 ,∗ ) ’ ␣␣␣<␣After ␣ Sca l i ng ␣> ’
write (50 , ’ ( ␣ 6(2X,A16) ␣ ) ’ ) ’Re␣ ta r g e t ’ , ’Re_bulk ’ , ’ Re_cent ’ , ’mean␣

v e l o c i t y ’ , ’max␣ v e l o c i t y ’ , ’ v i s c o s i t y ’
write (50 , ’ ( ␣ 6(2X,G16 . 8 ) ␣ ) ’ ) Re_TARGET, Re_bulk , Re_cent ,

mean_velocity (1 ) , max_velocity (1 ) , i f 2%constant_nu
close (50)
!
! −−−−−−−−−−−−−−−−−−−−−−−
f i r s t = .FALSE.

end i f

! s c a l e i n l e t v e l o c i t y p r o f i l e
! . . . v e l o c i t y s c a l i n g c o e f f . i s s t o r ed to save time
u_bc_tmp = u_bc_tmp∗U_scal ing_coef f

end subroutine i n l e t_ve l o c i t y_s ca l i n g
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! #########################################################

subroutine calc_drag ( i f 2 )

! DRAG AND LIFT IS CALCULATED BASED ON REFERENCE VELOCITY ( e i t h e r
mean or max U)

use bc_parsing_m ! f unc t i on zone_is_wal l
use gp_func_m ! sub rou t ine ca l c_duidx j ( )
use buffer_m ! sub rou t ine use_r3_buffer ( ) , var r3_buf fer
use param_m ! f unc t i on get_real_param
use gp_defs_m ! t ype zone_t , gp_t

implicit none

type ( i f 2_t ) , intent ( inout ) , target : : i f 2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

type ( gp_t ) , pointer : : gp
type ( zone_t ) , pointer : : zone
real (WP) , pointer : : u ( : , : ) , p ( : ) , nu ( : )
real (WP) : : &

my_drag_form (3) , drag_form (3) , &
my_drag_friction (3 ) , d rag_f r i c t i on (3 ) , &
drag (3 ) , &
drag_coef f ( 3 ) , drag_coef f_cyl (3 ) , &
HEIGHT,DIAMETER,WIDTH, & ! parameters o f f l ow
DENSITY,CHAR_LENGTH, & ! parameters o f f l ow
mean_velocity (3 ) , max_velocity (3 ) ,U_cyl , & ! mean max Vel . in

channel & in f r on t o f c y l i n d e r
Re , Re_cyl , & ! Reynolds number and

c y l i n d e r based Re
time_star , & ! d imens ion l e s s time
b_ratio , a spect_rat io

real (WP) , save : : U_ref
integer : : i , ino , j , i e r r
character (35) , save : : f i l ename1 , f i l ename2
! ! l o g i c a l : : POISEUILLE_FLOW
logical , save : : f i r s t = .TRUE.

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣␣>␣ c a l c u l a t e ␣drag . . . ’

gp => i f 2%gp
u => i f 2%u
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p => i f 2%p
nu => i f 2%nu

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Ca l cu l a t e c h a r a c t e r i s t i c numbers o f the f l ow
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! f i r s t time ca l c r e f e r ence v e l o c i t y and s t o r e i t
i f ( f i r s t .EQV. .TRUE. ) then

ca l l calc_mean_max_velocity_face ( mean_velocity , max_velocity , i f 2 )

i f ( get_logical_param ( ’ADJUST_MEAN_VELOCITY’ , default=.FALSE. ) ) then
U_ref = mean_velocity (1 )

else i f ( get_logical_param ( ’ADJUST_MAX_VELOCITY’ , default=.FALSE. ) )
then

U_ref = max_velocity (1 )
else

U_ref = 1 .0_WP
end i f

end i f

i f (myrank == 0) then
! g e t parameters o f geometry and v e l o c i t y p r o f i l e
HEIGHT = get_real_param ( ’HEIGHT ’ , default=1.0_WP)
DIAMETER = get_real_param ( ’DIAMETER’ , default=1.0_WP)
WIDTH = get_real_param ( ’WIDTH’ , default=1.0_WP)
DENSITY = get_real_param ( ’DENSITY ’ , default=1.0_WP)
CHAR_LENGTH = get_real_param ( ’CHAR_LENGTH’ , default=1.0_WP)

! c h a r a c t e r i s t i c numbers
b_ratio = DIAMETER/HEIGHT
aspect_rat io = WIDTH/DIAMETER
Re = U_ref∗CHAR_LENGTH/ i f 2%constant_nu
time_star = i f 2%time∗U_ref/CHAR_LENGTH
! Cy l inder based Re
! . . .WORKS ONLY FOR CHANNEL FLOW
! . . .NEED MORE WORK FOR OTHER FLOWS
U_cyl = 1 .5_WP∗U_ref ∗ ( 1 . 0_WP−(DIAMETER∗∗2) / (3 . 0_WP∗HEIGHT∗∗2) )
Re_cyl = Re∗U_cyl

i f ( f i r s t .EQV. .TRUE. ) then
open (50 ,FILE=’INFO−flow_params . dat ’ , status=’unknown ’ , action=’

wr i t e ’ , position=’APPEND’ )
write (50 ,∗ )
write (50 ,∗ ) ’ ␣>␣CALCULATE␣DRAG. . . ’
write (50 , ’ ( ␣ 4(2X,A16) ␣ ) ’ ) ’ Re_ref ’ , ’ r e f ␣ v e l o c i t y ’ , ’mean␣

v e l o c i t y ’ , ’max␣ v e l o c i t y ’
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write (50 , ’ ( ␣ 4(2X,G16 . 8 ) ␣ ) ’ ) Re , U_ref , mean_velocity (1 ) ,
max_velocity (1 )

close (50)
end i f

end i f

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Loop through zones u n t i l zone i s WALL .AND. zone%name=cy l i n d e r
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
zone => gp%f i r s t_zone_ptr
do while ( a s s o c i a t ed ( zone ) )

i f ( zone_is_wall ( zone%name) .AND. &
( ( zone%name == ’ cy l i nd e r ’ ) .OR. ( zone%name == ’CYLINDER ’ ) ) )

then

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! c a l c u l a t e FORM DRAG and FRICTION DRAG for a l l nodes on

c y l i n d e r
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! i n i t i a l i z e arrays
my_drag_form ( 1 : 3 ) = 0 .0_WP
my_drag_friction ( 1 : 3 ) = 0 .0_WP
drag_form ( 1 : 3 ) = 0 .0_WP
drag_f r i c t i on ( 1 : 3 ) = 0 .0_WP
drag ( 1 : 3 ) = 0 .0_WP

! the e x p l i c i t v e l o c i t y g r ad i en t s are r equ i r ed f o r some terms . . .
ca l l use_r3_buffer (3 , 3 , gp%nno_ib )
r3_buf fer ( 1 : 3 , 1 : 3 , 1 : gp%nno_ib ) = 0 .0_WP
ca l l ca lc_duidxj ( r3_buffer , u , gp )

do i = 1 , zone%n_nodel i s t
ino = zone%nod e l i s t ( i )

! FORM DRAG
! i . e . Fx = Area∗Pressure ∗normal
my_drag_form ( 1 : 3 ) = my_drag_form ( 1 : 3 ) + &

p( ino ) ∗( −zone%no_local_normal ( 1 : 3 , i ) )

! FRICTION DRAG
! i . e . Fx = Area∗ v i s c o s i t y ∗dot_product ( grad (u) , normal )
do j= 1 ,3

my_drag_friction ( j ) = my_drag_friction ( j ) + nu( ino ) ∗ &
( dot_product ( r3_buf fer ( 1 : 3 , j , ino ) ,−zone%

no_local_normal ( 1 : 3 , i ) ) + &
dot_product ( r3_buf fer ( j , 1 : 3 , ino ) ,−zone%

no_local_normal ( 1 : 3 , i ) ) )
end do
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end do

! SUM DRAG from a l l p roce s so r s
ca l l MPI_Reduce(my_drag_form , drag_form , 3 ,MPI_REAL_WP,MPI_SUM,0 ,

mycomm, i e r r )
ca l l MPI_Reduce( my_drag_friction , drag_f r i c t i on , 3 ,MPI_REAL_WP,

MPI_SUM,0 ,mycomm, i e r r )

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! c a l c u l a t e DRAG−COEFF
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f (myrank == 0) then

! TOTAL DRAG
drag ( 1 : 3 ) = −drag_form ( 1 : 3 ) + drag_f r i c t i on ( 1 : 3 )

! DRAG COEFFICIENT
drag_coef f ( 1 : 3 ) = drag ( 1 : 3 ) / &

( 0 .5_WP∗DENSITY∗(U_ref ∗∗2) ∗DIAMETER∗WIDTH )
! . . . c y l i n d e r based
drag_coef f_cyl ( 1 : 3 ) = drag_coef f ( 1 : 3 ) /(U_cyl∗∗2)

! −−−−−−−−−−−−−−−−−
! output r e s u l t s
! −−−−−−−−−−−−−−−−−
write ( f i l ename1 , ’ (A, F3 . 1 ,A, F4 . 2 ,A, I4 . 4 ,A) ’ ) &

’CDrag−AR’ , aspect_rat io , ’−b ’ , b_ratio , ’−Re ’ , n int (Re) , ’ . dat ’
write ( f i l ename2 , ’ (A, F3 . 1 ,A, F4 . 2 ,A, I4 . 4 ,A) ’ ) &

’ CLift−AR’ , aspect_rat io , ’−b ’ , b_ratio , ’−Re ’ , n int (Re) , ’ . dat ’

open (31 ,FILE=fi lename1 , status=’unknown ’ , action=’ wr i t e ’ ,
position=’APPEND’ )

open (32 ,FILE=fi lename2 , status=’unknown ’ , action=’ wr i t e ’ ,
position=’APPEND’ )

i f ( f i r s t .EQV. .TRUE. ) then
write (31 ,∗ ) ’ v a r i a b l e s ␣=␣" i t e " , ␣" time ∗" , ␣"Cd" , ␣"%form " , ␣"%

f r i c t i o n " ’
write (32 ,∗ ) ’ v a r i a b l e s ␣=␣" i t e " , ␣" time ∗" , ␣"Cl " , ␣"%form " , ␣"%

f r i c t i o n " ’
end i f

write (31 , ’ ( ␣ I6 , 4 ( 2X,G18 . 1 0 ) ␣ ) ’ ) i f 2%step , time_star , drag_coef f
( 1 ) , &

−drag_form (1) ∗100 .0_WP/drag (1 ) , d rag_f r i c t i on (1 ) ∗100 .0
_WP/drag (1 )

write (32 , ’ ( ␣ I6 , 4 ( 2X,G18 . 1 0 ) ␣ ) ’ ) i f 2%step , time_star , drag_coef f
( 2 ) , &
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−drag_form (1) ∗100 .0_WP/drag (1 ) , d rag_f r i c t i on (1 ) ∗100 .0
_WP/drag (1 )

close (31) ; close (32)
end i f
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

end i f ! i f zone i s wa l l
zone => zone%next

end do

! no l onger needed
ca l l f r ee_r3_buf fe r ( )

f i r s t = .FALSE.
end subroutine calc_drag

! #########################################################

subroutine ca l c_drag_s l i c e s ( i f 2 )
! BELOW: WHAT IS DEFINED AND WHERE

use bc_parsing_m ! f unc t i on zone_is_wal l
use gp_func_m ! sub rou t ine ca l c_duidx j ( )
use buffer_m ! sub rou t ine use_r3_buffer ( ) , var r3_buf fer
use param_m ! f unc t i on get_real_param
use gp_defs_m ! t ype zone_t , gp_t
use global_m ! f o r p i

implicit none

type ( i f 2_t ) , intent ( inout ) , target : : i f 2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

type ( gp_t ) , pointer : : gp
type ( zone_t ) , pointer : : zone
real (WP) , pointer : : u ( : , : ) , p ( : ) , nu ( : )
real (WP) : : &

my_drag_form (3) , drag_form (3) , &
my_drag_friction (3 ) , d rag_f r i c t i on (3 ) , &
drag (3 ) , &
drag_coef f ( 3 ) , drag_coef f_cyl (3 ) , &
HEIGHT,DIAMETER,WIDTH, & ! parameters o f f l ow
DENSITY,CHAR_LENGTH, & ! parameters o f f l ow
mean_velocity (3 ) , max_velocity (3 ) ,U_cyl , & ! mean Vel . in

channel & in f r on t o f c y l i n d e r
Re , Re_cyl , & ! Reynolds number and

c y l i n d e r based Re
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time_star , & ! d imens ion l e s s time
b_ratio , a spect_rat io

real (WP) , save : : U_ref
integer : : i , ino , j , k , i e r r
character (35) : : f i l ename1 , f i l ename2
! ! l o g i c a l : : POISEUILLE_FLOW
logical , save : : f i r s t = .TRUE.

real (WP) , save , allocatable : : s l i c e_z_cc_l i s t ( : )
real (WP) , allocatable : : &

slice_my_drag ( : , : ) , s l i c e_drag ( : , : ) , &
s l i c e_drag_coe f f ( : , : ) , &
slice_my_1D_buffer ( : ) , s l ice_1D_buffer ( : ) , &
slice_my_area ( : ) , s l i c e_ar ea ( : ) , s l i c e_ l eng th ( : )

real (WP) : : &
my_drag_form_1node (3 ) , my_drag_friction_1node (3 ) , &
node_z , s l i c e_z , sl ice_z_width , &
slice_z_ubound , s l ice_z_lbound

integer , save : : inno_along_cyl inder
integer : : i s l i c e_ index , i b u f f e r_ s i z e
log ica l : : node_in_sl ice
character (40) : : s l i c e_ f i l e name

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣␣>␣ c a l c u l a t e ␣drag . . . ’

gp => i f 2%gp
u => i f 2%u
p => i f 2%p
nu => i f 2%nu

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Ca l cu l a t e c h a r a c t e r i s t i c numbers o f the f l ow
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! f i r s t time ca l c r e f e r ence v e l o c i t y and s t o r e i t
i f ( f i r s t .EQV. .TRUE. ) then

ca l l calc_mean_max_velocity_face ( mean_velocity , max_velocity , i f 2 )

i f ( get_logical_param ( ’ADJUST_MEAN_VELOCITY’ , default=.FALSE. ) ) then
U_ref = mean_velocity (1 )

else i f ( get_logical_param ( ’ADJUST_MAX_VELOCITY’ , default=.FALSE. ) )
then

U_ref = max_velocity (1 )
else

U_ref = 1 .0_WP
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end i f
end i f

i f (myrank == 0) then
! g e t parameters o f geometry and v e l o c i t y p r o f i l e from input f i l e
HEIGHT = get_real_param ( ’HEIGHT ’ , default=1.0_WP)
DIAMETER = get_real_param ( ’DIAMETER’ , default=1.0_WP)
WIDTH = get_real_param ( ’WIDTH’ , default=1.0_WP)
DENSITY = get_real_param ( ’DENSITY ’ , default=1.0_WP)
CHAR_LENGTH = get_real_param ( ’CHAR_LENGTH’ , default=1.0_WP)

! c h a r a c t e r i s t i c numbers
b_ratio = DIAMETER/HEIGHT
aspect_rat io = WIDTH/DIAMETER
Re = U_ref∗CHAR_LENGTH/ i f 2%constant_nu
time_star = i f 2%time∗U_ref/CHAR_LENGTH
! . . . c y l i n d e r based Re
! ( ! ? ! −−> WORKS ONLY FOR CHANNEL FLOW <−− ? !? )
! ( ! ? ! −−> NEED MORE WORK FOR OTHER FLOWS <−− ? !? )
U_cyl = 1 .5_WP∗U_ref ∗ ( 1 . 0_WP−(DIAMETER∗∗2) / (3 . 0_WP∗HEIGHT∗∗2) )
Re_cyl = Re∗U_cyl

i f ( f i r s t .EQV. .TRUE. ) then
open (50 ,FILE=’INFO−flow_params . dat ’ , status=’unknown ’ , action=’

wr i t e ’ , position=’APPEND’ )
write (50 ,∗ )
write (50 ,∗ ) ’ ␣>␣CALCULATE␣DRAG. . . ’
write (50 , ’ ( ␣ 4(2X,A16) ␣ ) ’ ) ’ Re_ref ’ , ’ r e f ␣ v e l o c i t y ’ , ’mean␣

v e l o c i t y ’ , ’max␣ v e l o c i t y ’
write (50 , ’ ( ␣ 4(2X,G16 . 8 ) ␣ ) ’ ) Re , U_ref , mean_velocity (1 ) ,

max_velocity (1 )
close (50)

end i f
end i f

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Loop through zones u n t i l zone i s WALL .AND. zone%name=cy l i n d e r
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
zone => gp%f i r s t_zone_ptr
do while ( a s s o c i a t ed ( zone ) )

i f ( zone_is_wall ( zone%name) .AND. &
( ( zone%name == ’ cy l i nd e r ’ ) .OR. ( zone%name == ’CYLINDER ’ ) ) )

then

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! f i r s t time read po s i t i o n o f nodes spanwise f o r SLICE_DRAG
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f ( f i r s t .EQV. .TRUE. ) then
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open (77 ,FILE=’ zPosConstXY . dat ’ ,STATUS=’OLD’ )

! f i n d what i s the s i z e o f the f i l e ( read u n t i l End−Of−F i l e )
i e r r = 0
inno_along_cyl inder = 0 ! number o f records in f i l e
do while ( i e r r == 0)

inno_along_cyl inder = inno_along_cyl inder + 1
read (77 ,∗ , iostat=i e r r )

end do
inno_along_cyl inder = inno_along_cyl inder − 1
rewind (77)

! c r ea t e arrays on−the− f l y −> use s i z e o f f i l e
i f ( .NOT. a l l o c a t e d ( s l i c e_z_cc_l i s t ) ) allocate (

s l i c e_z_cc_l i s t ( inno_along_cyl inder ) )

! read data from f i l e
do i = 1 , inno_along_cyl inder

read (77 ,∗ ) s l i c e_z_cc_l i s t ( i )
end do
close (77)

end i f ! f i r s t == .TRUE.

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! c a l c u l a t e form drag and f r i c t i o n drag f o r each node on

c y l i n d e r
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! a l l o c a t e v a r i a b l e s
i f ( .NOT. a l l o c a t e d ( slice_my_drag ) ) allocate ( slice_my_drag (3 ,

inno_along_cyl inder ) )
i f ( .NOT. a l l o c a t e d ( s l i c e_drag ) ) allocate ( s l i c e_drag (3 ,

inno_along_cyl inder ) )
i f ( .NOT. a l l o c a t e d ( slice_my_area ) ) allocate ( slice_my_area (

inno_along_cyl inder ) )
i f ( .NOT. a l l o c a t e d ( s l i c e_a r ea ) ) allocate ( s l i c e_a r ea (

inno_along_cyl inder ) )
i f ( .NOT. a l l o c a t e d ( s l i c e_ l eng th ) ) allocate ( s l i c e_ l eng th (

inno_along_cyl inder ) )
i f ( .NOT. a l l o c a t e d ( s l i c e_drag_coe f f ) ) allocate (

s l i c e_drag_coe f f (3 , inno_along_cyl inder ) )
i b u f f e r_ s i z e = 3∗ inno_along_cyl inder
i f ( .NOT. a l l o c a t e d ( slice_my_1D_buffer ) ) allocate (

slice_my_1D_buffer ( i b u f f e r_ s i z e ) )
i f ( .NOT. a l l o c a t e d ( s l ice_1D_buffer ) ) allocate (

s l ice_1D_buffer ( i b u f f e r_ s i z e ) )

slice_my_drag ( : , : ) = 0 .0_WP
slice_my_area ( : ) = 0 .0_WP
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my_drag_form ( 1 : 3 ) = 0 .0_WP
my_drag_friction ( 1 : 3 ) = 0 .0_WP

! the e x p l i c i t v e l o c i t y g r ad i en t s are r equ i r ed f o r some terms . . .
ca l l use_r3_buffer (3 , 3 , gp%nno_ib )
r3_buf fer ( 1 : 3 , 1 : 3 , 1 : gp%nno_ib ) = 0 .0_WP
ca l l ca lc_duidxj ( r3_buffer , u , gp )

do i = 1 , zone%n_nodel i s t
ino = zone%nod e l i s t ( i )

! FORM−DRAG:
! [ Fx = Area∗Pressure ∗normal ]
my_drag_form_1node ( 1 : 3 ) = p( ino ) ∗( −zone%no_local_normal ( 1 : 3 , i )

)

! FRICTION−DRAG:
! [ Fx = Area∗ v i s c o s i t y ∗dot_product ( grad (u) , normal ) ]
do j = 1 ,3

my_drag_friction_1node ( j ) = nu( ino ) ∗ &
( dot_product ( r3_buf fer ( 1 : 3 , j , ino ) ,−zone%

no_local_normal ( 1 : 3 , i ) ) + &
dot_product ( r3_buf fer ( j , 1 : 3 , ino ) ,−zone%

no_local_normal ( 1 : 3 , i ) ) )
end do

! f i n d in which s l i c e t h i s node be l ong s to
! . . . t h i s i s f o r SLICE−DRAG
i s l i c e_ i nd ex = 0
node_in_sl ice = .FALSE.
do while ( ( node_in_sl ice .EQV. .FALSE. ) .OR. ( i s l i c e_ i nd ex <

inno_along_cyl inder ) )
i s l i c e_ i nd ex = i s l i c e_ i nd ex + 1 ! node po s i t i o n i s g i ven

us ing t h i s index

node_z = gp%node_cc (3 , ino ) ! node spanwise
p o s i t i o n

s l i c e_z = s l i c e_z_cc_l i s t ( i s l i c e_ i nd ex ) ! s l i c e spanwise
p o s i t i o n

s l ice_z_width = 0.0001_WP !
slice_z_ubound = s l i c e_z + sl ice_z_width ! upper bound
s l ice_z_lbound = s l i c e_z − s l ice_z_width ! lower bound

! i f node in s l i c e then add f r i c t i o n and form drag to reduce
number o f arrays ,

! and j u s t pass the sum fo r each s l i c e
i f ( ( node_z < slice_z_ubound ) .AND. ( node_z > sl ice_z_lbound ) )

then
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slice_my_drag ( 1 : 3 , i s l i c e_ i nd ex ) = slice_my_drag ( 1 : 3 ,
i s l i c e_ i nd ex ) &
− my_drag_form_1node ( 1 : 3 ) + my_drag_friction_1node

( 1 : 3 )
slice_my_area ( i s l i c e_ i nd ex ) = slice_my_area ( i s l i c e_ i nd ex ) +

zone%no_local_area ( i )
node_in_sl ice = .TRUE.

end i f
end do ! do wh i l e

! sum form and f r i c t i o n drag s e p e r a t l y f o r a l l nodes on zone
! . . . t h i s i s f o r DRAG
my_drag_form ( 1 : 3 ) = my_drag_form ( 1 : 3 ) + my_drag_form_1node

( 1 : 3 )
my_drag_friction ( 1 : 3 ) = my_drag_friction ( 1 : 3 ) +

my_drag_friction_1node ( 1 : 3 )

end do ! l oop over nodes in zone " c y l i n d e r "

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! d i s t r i b u t e the answers to the roo t node
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! reshape array "slice_my_drag" to 1D in order to use MPI_Reduce
do j = 1 , inno_along_cyl inder
do i = 1 ,3

slice_my_1D_buffer (3∗ ( j−1)+i ) = slice_my_drag ( i , j )
end do
end do

ca l l MPI_Reduce( my_drag_form , drag_form , 3 ,MPI_REAL_WP,MPI_SUM,0 ,
mycomm, i e r r )

ca l l MPI_Reduce( my_drag_friction , drag_f r i c t i on , 3 ,MPI_REAL_WP,
MPI_SUM,0 ,mycomm, i e r r )

ca l l MPI_Reduce( slice_my_area , s l i c e_area , inno_along_cylinder ,
MPI_REAL_WP,MPI_SUM,0 ,mycomm, i e r r )

ca l l MPI_Reduce( slice_my_1D_buffer , s l ice_1D_buffer , i bu f f e r_s i z e ,
&
MPI_REAL_WP,MPI_SUM,0 ,mycomm, i e r r )

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! c a l c u l a t e DRAG−COEFF and SLICE−DRAG−COEFF
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f (myrank == 0) then

! unpack array from sum_buffer to " s l i c e_drag "
s l i c e_drag = RESHAPE( sl ice_1D_buffer , ( / 3 , inno_along_cyl inder

/) )

! DRAG
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drag ( 1 : 3 ) = −drag_form ( 1 : 3 ) + drag_f r i c t i on ( 1 : 3 )

! DRAG−COEFF ( a l s o c y l i n d e r based )
drag_coef f ( 1 : 3 ) = drag ( 1 : 3 ) / &

( 0 .5_WP∗DENSITY∗(U_ref ∗∗2) ∗DIAMETER∗WIDTH )
drag_coef f_cyl ( 1 : 3 ) = drag_coef f ( 1 : 3 ) /(U_cyl∗∗2)

! SLICE−DRAG_COEFF
do i = 1 , inno_along_cyl inder

s l i c e_ l eng th ( i ) = s l i c e_ar ea ( i ) /( p i ∗DIAMETER )

s l i c e_drag_coe f f ( 1 : 3 , i ) = s l i c e_drag ( 1 : 3 , i ) / &
( 0 .5_WP∗DENSITY∗(U_ref ∗∗2) ∗DIAMETER∗ s l i c e_ l eng th ( i ) )

end do

! −−−−−−−−−−−−−−−−
! output r e s u l t s
! −−−−−−−−−−−−−−−−
! f o r drag−c o e f f . . .
write ( f i l ename1 , ’ (A, F3 . 1 ,A, F4 . 2 ,A, I4 . 4 ,A) ’ ) &

’CDrag−AR’ , aspect_rat io , ’−b ’ , b_ratio , ’−Re ’ , n int (Re) , ’ . dat ’
write ( f i l ename2 , ’ (A, F3 . 1 ,A, F4 . 2 ,A, I4 . 4 ,A) ’ ) &

’ CLift−AR’ , aspect_rat io , ’−b ’ , b_ratio , ’−Re ’ , n int (Re) , ’ . dat ’

open (31 ,FILE=fi lename1 , status=’unknown ’ , action=’ wr i t e ’ ,
position=’APPEND’ )

open (32 ,FILE=fi lename2 , status=’unknown ’ , action=’ wr i t e ’ ,
position=’APPEND’ )

i f ( f i r s t .EQV. .TRUE. ) then
write (31 ,∗ ) ’ v a r i a b l e s ␣=␣" i t e " , ␣" time ∗" , ␣"Cd" , ␣"%form " , ␣"%

f r i c t i o n " ’
write (32 ,∗ ) ’ v a r i a b l e s ␣=␣" i t e " , ␣" time ∗" , ␣"Cl " , ␣"%form " , ␣"%

f r i c t i o n " ’
end i f

write (31 , ’ ( ␣ I6 , 4 ( 2X,G18 . 1 0 ) ␣ ) ’ ) i f 2%step , time_star , drag_coef f
( 1 ) , &

−drag_form (1) ∗100 .0_WP/drag (1 ) , d rag_f r i c t i on (1 ) ∗100 .0
_WP/drag (1 )

write (32 , ’ ( ␣ I6 , 4 ( 2X,G18 . 1 0 ) ␣ ) ’ ) i f 2%step , time_star , drag_coef f
( 2 ) , &

−drag_form (1) ∗100 .0_WP/drag (1 ) , d rag_f r i c t i on (1 ) ∗100 .0
_WP/drag (1 )

close (31) ; close (32)

! f o r s l i c e−drag−c o e f f . . .
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do i = 1 , inno_along_cyl inder
write ( s l i c e_f i l ename , ’ (A, F3 . 1 ,A, F4 . 2 ,A, I4 . 4 ,A, F5 . 3 ,A) ’ ) &

’ DragLiftC−AR’ , aspect_rat io , ’−b ’ , b_ratio , ’−Re ’ , n int (Re) , ’−
z ’ , s l i c e_z_cc_l i s t ( i )+2, ’ . dat ’

open (UNIT=i +1000 ,FILE=s l i c e_f i l ename , status=’unknown ’ , action
=’ wr i t e ’ , position=’APPEND’ )

i f ( f i r s t .EQV. .TRUE. ) write ( i +1000 ,∗) ’ v a r i a b l e s ␣=␣" i t e " , ␣"
time ∗" , ␣"Cd" , ␣"Cl" ’

write ( i +1000 , ’ ( ␣ I6 , 3 ( 2X,G18 . 1 0 ) ␣ ) ’ ) i f 2%step , time_star ,
s l i c e_drag_coe f f (1 , i ) , s l i c e_drag_coe f f (2 , i )

close ( i +1000)
end do

end i f
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

end i f ! i f zone i s wa l l
zone => zone%next

end do

! no l onger needed
ca l l f r ee_r3_buf fe r ( )

f i r s t = .FALSE.
end subroutine ca l c_drag_s l i c e s

! #########################################################

subroutine calc_shear_wal l ( i f 2 , gwss )

use bc_parsing_m ! f unc t i on zone_is_wal l
use gp_func_m ! sub rou t ine ca l c_duidx j ( )
use buffer_m ! sub rou t ine use_r3_buffer ( ) , var r3_buf fer
use param_m ! f unc t i on get_real_param
use gp_defs_m ! t ype zone_t , gp_t
use if2_func_m

implicit none

type ( i f 2_t ) , intent ( inout ) , target : : i f 2
real (WP) , intent (out ) : : gwss

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

type ( gp_t ) , pointer : : gp
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type ( zone_t ) , pointer : : zone
real (WP) , pointer : : u ( : , : ) , p ( : ) , nu ( : ) , wal l_shear ( : )
real (WP) : : &

wall_normal_grad (3 ) , wall_normal_normal , wall_normal_tang (3 ) , &
area , nn (3 ) , s s (3 ) ,my_wss , global_wss , my_area , g lobal_area

integer : : i , ino , j , i e r r

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣>␣ c a l c u l a t e ␣ shear ␣ s t r e s s ␣ at ␣ a l l ␣ wa l l ␣ zones ␣ . . . ’

gp => i f 2%gp
u => i f 2%u
p => i f 2%p
nu => i f 2%nu
wall_shear => get_r1 ( ’WALL_SHEAR’ , gp )

! i n i t i a l i z e arrays
my_wss = 0 .0_WP
global_wss = 0 .0_WP
my_area = 0 .0_WP
global_area = 0 .0_WP

! the e x p l i c i t v e l o c i t y g r ad i en t s are r equ i r ed f o r some terms . . .
ca l l use_r3_buffer (3 , 3 , gp%nno_ib )
r3_buf fer ( 1 : 3 , 1 : 3 , 1 : gp%nno_ib ) = 0 .0_WP
ca l l ca lc_duidxj ( r3_buffer , u , gp )

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! l oop through zones u n t i l zone name matches input v a r i a b l e
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
zone => gp%f i r s t_zone_ptr
zone_loop : do while ( a s s o c i a t ed ( zone ) )

! p r i n t ∗ , l en ( zone%name) , l en ( zone_name)
! i f ( tr im ( zone%name) == trim (zone_name) ) then
i f ( zone_is_wall ( zone%name) . and . ( zone%name . ne . ’DUMP’ ) ) then

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! c a l c u l a t e wa l l shear s t r e s s f o r a l l nodes on zone
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
do i = 1 , zone%n_nodel i s t

ino = zone%nod e l i s t ( i )

area = sq r t ( dot_product ( zone%no_normal ( 1 : 3 , i ) , zone%no_normal
( 1 : 3 , i ) ) )

nn ( 1 : 3 ) = zone%no_normal ( 1 : 3 , i ) / area
! in CDP fac e s on the boundary are always outward po in t i n g
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! . . . be c a r e f o u l in what d i r e c t i o n you want the normal to be
f a c in g

nn ( 1 : 3 ) = −nn ( 1 : 3 )

! WALL SHEAR STRESS ( in genera l coord ina t e s )
! i . e . wa l l_shear_stress = v i s c o s i t y ∗ du_tangent ia l /dn_normal
! . . . we need to ca l c the t a n g en t i a l v e l o c i t y
! . . . then we need the g rad i en t in the wa l l normal d i r e c t i o n
do j = 1 ,3

wall_normal_grad ( j ) = dot_product ( r3_buf fer ( 1 : 3 , j , ino ) , nn
( 1 : 3 ) )

end do
wall_normal_normal = dot_product ( wall_normal_grad ( 1 : 3 ) , nn ( 1 : 3 )

)
wall_normal_tang ( 1 : 3 ) = wall_normal_grad ( 1 : 3 ) −nn ( 1 : 3 ) ∗

wall_normal_normal

! add cons tant f a c t o r s
s s ( 1 : 3 ) = nu( ino ) ∗wall_normal_tang ( 1 : 3 )

! magnitude o f the shear s t r e s s
wall_shear ( ino ) = sq r t ( dot_product ( s s ( 1 : 3 ) , s s ( 1 : 3 ) ) )

! t h e s e are f o r averag ing the g l o b a l wa l l shear s t r e s s
my_wss = my_wss + wall_shear ( ino ) ∗ area
my_area = my_area + area

end do
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

end i f ! i f zone i s wa l l
zone => zone%next

end do zone_loop

! SUM DRAG from a l l p roce s so r s
ca l l MPI_Reduce(my_wss , global_wss , 1 ,MPI_REAL_WP,MPI_SUM,0 ,mycomm, i e r r

)
ca l l MPI_Reduce(my_area , global_area , 1 ,MPI_REAL_WP,MPI_SUM,0 ,mycomm,

i e r r )

gwss = global_wss / global_area

ca l l f r ee_r3_buf fe r ( )

end subroutine calc_shear_wal l

! #########################################################

subroutine ca lc_global_tota l_ke ( i f 2 , xcut , gtke )
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use gp_defs_m ! t ype zone_t , gp_t
use buffer_m ! sub rou t ine use_r3_buffer ( ) , var r3_buf fer
use if2_func_m ! sub rou t ine done_cdp_if2 ( i f 2 )
use param_m ! f unc t i on get_real_param

implicit none

type ( i f 2_t ) , intent ( inout ) , target : : i f 2
real (WP) , intent ( in ) : : xcut
real (WP) , intent (out ) : : gtke

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

type ( gp_t ) , pointer : : gp
real (WP) , pointer : : tke ( : ) ,u ( : , : )
real (WP) : : xx (3 ) ,my_tke ,my_volume , gvo l
integer : : ino , i e r r

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (myrank == 0) &
write (∗ ,∗ ) ’ ␣>␣ c a l c u l a t e ␣ t o t a l ␣ k i n e t i c ␣ energy ␣ in ␣ a l l ␣volumes␣where

␣z␣<␣ 60 .0 ␣ . . . ’

gp => i f 2%gp
tke => get_r1 ( ’TKE’ , gp )
u => i f 2%u

my_tke = 0 .0_WP
gtke = 0 .0_WP
my_volume = 0 .0_WP
gvol = 0 .0_WP

node_loop : do ino = 1 , gp%nno_ib
xx = gp%node_cc ( 1 : 3 , ino )
i f ( xx (3 ) . ge . xcut ) cycle node_loop

tke ( ino ) = 0 .5_WP∗dot_product (u ( : , ino ) ,u ( : , ino ) )
my_tke = my_tke + tke ( ino ) ∗gp%no_volume ( ino )
my_volume = my_volume + gp%no_volume ( ino )

end do node_loop

ca l l MPI_REDUCE(my_tke , gtke , 1 ,MPI_REAL_WP,MPI_SUM,0 ,mycomm, i e r r )
ca l l MPI_REDUCE(my_volume , gvol , 1 ,MPI_REAL_WP,MPI_SUM,0 ,mycomm, i e r r )

i f (myrank == 0) print ∗ , gtke , gvol , gtke / gvo l

gtke = gtke / gvo l
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end subroutine ca lc_global_tota l_ke

end module cdp_if2_hooks_m
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