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PerÐlhyh

Sta plaÐsia thc paroÔsac Diatrib c pragmatopoioÔntai diataraktikoÐ upologismoÐ sthn

Kbantik  Qrwmodunamik  (KQD), sto formalismì tou Plègmatoc. Efarmìzoume mÐa poiki-

lÐa apì beltiwmènec fermionikèc kai gklouonikèc dr�seic, oi opoÐec qrhsimopoioÔntai eurèwc

stic arijmhtikèc prosomoi¸seic. Oi upologismoÐ pou parousi�zontai eÐnai oi akìloujoi:

• UpologÐsame ton diadìth gia fermiìnia staggered kai tic sunart seic Green me èna

exwterikì kou�rk kai èna exwterikì antikou�rk gia èna pl rec sÔnolo apì upertopikoÔc

(ultralocal) digrammikoÔc fermionikoÔc telestèc, qrhsimopoi¸ntac jewrÐa diataraq¸n mèqri

èna brìgqo kai sthn qamhlìterh t�xh wc proc thn stajer� tou plègmatoc. Apì touc u-

pologismoÔc mac prosdiorÐsame tic sunart seic epanakanonikopoÐhshc gia to pedÐo kou�rk

kai gia ìlouc touc upertopikoÔc taste-singlet digrammikoÔc fermionikoÔc telestèc. To kai-

noÔrgio stoiqeÐo autoÔ tou upologismoÔ  tan ìti oi gklouonikoÐ sÔndesmoi (links), oi opoÐoi

emfanÐzontai sth fermionik  dr�sh kai ston orismì twn digrammik¸n fermionik¸n telest¸n,

eÐqan beltiwjeÐ me thn efarmog  thc diadikasÐac stout smearing èwc dÔo forèc, epanalhpti-

k�. Efarmìsame ta apotelèsmata mac gia ton upologismì thc magnhtik c epidektikìthtac

thc KQD se mhdenik  kai se peperasmènh jermokrasÐa.

• Melet same tic sunèpeiec thc peperasmènhc stajèrac plegmatìc a, sthn t�xh a2,

p�nw se pinakostoiqeÐa twn topik¸n kai ektetamènwn digrammik¸n fermionik¸n telest¸n,

qrhsimopoi¸ntac th dr�sh SLiNC. H sumperÐlhyh ìrwn mèqri kai t�xhc O(a2) periplèkei

dramatik� aut n thn ergasÐa an kai prìkeitai gia enìc brìgqou upologismì. UpologÐsame tic

sunart seic pollaplasiastik c epanakanonikopoÐhshc, oi opoÐec apaitoÔntai prokeimènou na

susqetÐsoume ta arijmhtik� apotelèsmata gia ta pinakostoiqeÐa reum�twn ìpwc proèkuyan

apì prosomoi¸seic sto plègma, me ta peperasmèna fusik� pinakostoiqeÐa. Eidikìtera mele-

t same mia mèjodo gia thn katastol  twn teqnourghm�twn tou plègmatoc, afair¸ntac tic

suneisforèc enìc brìgqou stic sunart seic epanakanonikopoÐhshc, oi opoÐec upologÐsth-

kan me jewrÐa diataraq¸n, apì mh diataraktikèc suneisforèc. SugkrÐname apotelèsmata, ta

opoi� dhmiourg jhkan apì thn pl rh afaÐresh twn apotelesm�twn enìc brìgqou, me ekeÐna

v



PerÐlhyh vi

ìpou afairèsame th suneisfor� t�xhc a2. Ta apotelèsmata mac eÐnai shmantik� gia th me-

lèth twn adronik¸n sunart sewn dom c, oi opoÐec me thn seir� touc parèqoun plhroforÐec

sqetik� me tic katanomèc tou spin, thc elikìthtac kai thc orm c twn sustatik¸n swmatidÐwn

enìc adronÐou.

• UpologÐsame thn epanakanonikopoÐhsh tou qrwmomagnhtikoÔ telest , OCM . O upo-

logismìc autìc den  tan kajìlou tetrimmènoc. Mia sobar  epiplok  s�aut  thn perÐptwsh

eÐnai ìti telestèc me Ðdiouc kbantikoÔc arijmoÔc kai me Ðsh   mikrìterh di�stash, mporoÔn

na anamiqjoÔn me ton OCM sto kbantikì epÐpedo. Autì to fainìmeno epidein¸netai ìtan

qrhsimopoi soume plegmatikèc dr�seic qwrÐc summetrÐa qeÐroc. Se aut n thn perÐptwsh

akìmh kai telestèc me diaforetik  qeiralikìthta mporoÔn na anamiqjoÔn. EÐnai ìlo kai pio

shmantikì, wc ek toÔtou, na upologÐsoume ton pÐnaka an�meixhc twn sunart sewn epana-

kanonikopoÐhshc, ètsi ¸ste na enisqujeÐ ìso to dunatì perissìtero to antÐstoiqo fusikì

s ma apì tic metr seic Monte Carlo. Ta apotelèsmata mac gia ta pinakostoiqeÐa tou OCM
emfanÐzontai, p.q., se melètec diasp�sewn bare¸n mesonÐwn pou emplèkoun allag  geÔshc.



Abstract

In this Thesis we present results on perturbative calculations which we have performed in

the context of Quantum Chromodynamics (QCD), formulated on the Lattice. We have

employed a variety of improved fermion and gluon actions, which are currently used in

numerical simulations. The calculations that we present are the following:

• We computed the staggered fermion propagator, as well as the Green’s functions

with one external quark-antiquark pair for a complete set of ultralocal staggered fermion

bilinear operators, using perturbation theory up to one-loop and to lowest order in the

lattice spacing. From our calculations we determined the renormalization functions for

the quark field and for all ultralocal taste-singlet bilinear operators. The novel aspect of

our calculations was that the gluon links, which appear both in the fermion action and in

the definition of the bilinear operators, had been improved by applying a stout smearing

procedure up to two times, iteratively. We apply our finding to the evaluation of the

magnetic susceptibility of QCD at zero and finite temperature.

• We studied effects of finite lattice spacing a, to order a2, on matrix elements of local

and extended bilinear operators, using the SLiNC action. Carrying out calculations all the

way to O(a2) complicates dramatically the task at hand, even though our computations

were at one loop. We computed the multiplicative renormalization functions, which are

required in order to relate the current matrix elements, as extracted numerically from lattice

simulations, to the physical finite matrix elements. In particular we investigated a method

to suppress the lattice artifacts by subtracting one-loop contributions to renormalization

functions, calculated in lattice perturbation theory, from nonperturbative results. We

compared results obtained from a complete one-loop subtraction with those obtained via

a subtraction of contributions proportional to the square of the lattice spacing. These

results are relevant for the study of hadronic structure functions, which in turn provide

information on the spin, helicity and momentum distributions of the constituent particles

in a hadron.
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• We calculated the renormalization of the chromomagnetic operator, OCM . This

calculation was highly nontrivial. A serious complication in this case is that operators

with the same quantum numbers and equal or lower dimensionality can mix with OCM at

the quantum level. This effect is exacerbated when using lattice actions with inexact chiral

symmetry; in this case, even operators with different chiralities can mix. It becomes all the

more important, therefore, to compute the mixing matrix of renormalization functions, so

as to disentangle as much as possible the corresponding physical signals from Monte Carlo

measurements. Our results for the matrix elements of OCM appear, e.g., in the study of

flavor-changing decays of heavy mesons.
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Chapter 1

Introduction

1.1 Introduction to Quantum Chromodynamics

The most appropriate theory for the description of strong interactions is Quantum Chro-

modynamics (QCD). The theory of QCD has been introduced since the 1970s and is an

integral part of the Standard Model. QCD is based on the non-Abelian group SU(3),

where the number 3 refers to the number of colors carried by quarks. This group has

eight generators, the number 8 corresponding to the number of gluons. QCD has two

fundamental properties, infrared (IR) slavery, which is an increase of the coupling con-

stant g at low energies, and asymptotic freedom, which is the vanishing of the coupling at

high energies. Asymptotic freedom was proven by David J. Gross, H. David Politzer and

Frank Wilczek [1] (Nobel prize 2004), while infrared slavery has only been demonstrated

numerically on the lattice. Given that both quarks and gluons have color charge as an

additional degree of freedom, gluons interact with themselves.

The result of IR slavery is confinement, which means that quarks in experiments are

never observed alone; rather they come in color-singlet combinations, which are called

hadrons. Hadrons can be either mesons (quark-antiquark pairs) or baryons (3 quarks or

3 antiquarks). There exist six flavors of quarks: up (u), down (d), strange (s), charm (c),

bottom (b) and top (t). The Hamiltonian eigenstates in QCD are hadrons, whose properties

can fix the fundamental parameters of QCD: the coupling constant g (or αs = g2/4π) and

the quark masses m.

In order to obtain information on hadronic properties we study structure functions.

These functions are a measure of the partonic composition of hadrons, which is important

for hadronic collisions and decays. They are a key ingredient for deriving parton distribu-

5



1.1. Introduction to Quantum Chromodynamics 6

tion functions (PDFs) of the nucleons. In recent years dramatic progress has been made in

the understanding of nucleon structure and partonic content, due to important theoretical

advances, and the availability of new high precision experiments.

In particular some particle colliders use two protons, or proton-antiproton pair, as

initial state, thus reaching very high center-of-mass energies. Recent QCD related results

were taken in the Fermilab Tevatron Collider and in the Large Hadron Collider (LHC).

The data of these colliders leads to a better determination and detailed understanding

of the partonic structure of the nucleon. Further detailed studies have been carried out

on: inclusive photon and diphoton production, vector boson plus jets production, event

shape variables, and other inclusive multijet productions. Comparisons of experimental

measurements with QCD can be performed using a variety of theoretical approximations.

Studying jets in experiments we test our understanding and predictions of high-energy

QCD processes. Jet physics also provides a check of the strong coupling constant αs. A

recent determination of the strong coupling constant from jet data has been achieved at

Fermilab. Further hadronic processes are investigated at LHC, in particular in the ATLAS,

CMS and LHCb experiments.

Because of the strong force it is difficult to perform analytic calculations of scattering

processes involving hadronic particles from first principles; it is only in the asymptotic-

freedom regime that perturbation theory can be effectively applied. In this regime one

may also make use of the Factorisation Theorem: the latter separates processes into non-

perturbative PDFs which describe the composition of the proton and can be determined

from experiment, and perturbative coefficient functions associated with higher scales which

are calculated as a power-series in αs(µ). Thus, in order to understand any of the results of

the above experiments one needs to understand how incoming hadrons are made up from

constituent quarks and gluons, the interactions of which we then know how to calculate

using perturbation theory as long as there is a large scale µ in the process so that pertur-

bation theory is applicable. The production of any particle, say a Higgs boson at a hadron

collider can be determined by the cross section of the parton-parton collision to produce the

Higgs, convoluted with the probabilities to find these partons within the incoming hadrons.

We can use deep inelastic scattering (DIS) experiments to probe the structure of hadrons

and the fundamental interactions of quarks, gluons, and leptons. In DIS experiments a

lepton probes a target nucleon or nucleus via exchange of an electroweak boson.

An additional physical process which is being investigated at LHC is the production

of the deconfined quark-gluon plasma (QGP) phase in heavy-ion (PbPb) collisions at high
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energies. Quarkonia (cc̄ or bb̄ bound states) are a useful means to probe QGP and to

investigate the behavior of QCD in a high parton-density environment. A QGP state of

matter would suggest a phase transition at some temperature. The existence of such phase

transition was first exhibited in the strong coupling limit of QCD, and further corroborated

by detailed numerical simulations.

1.2 Lattice QCD

The fact that perturbation theory alone cannot describe many aspects of strong interac-

tions, makes quantitative studies of QCD a formidable task. For this purpose, an idea pro-

posed in 1974 by Kenneth G. Wilson [2] was to formulate Gauge Theories on a spacetime

lattice; such a formulation provides description of strongly coupled theories also nonpertur-

batively. Lattice theory is a way of regularizing quantum field theories. The regularization

is achieved in the low-energy (InfraRed, IR) regime using a finite lattice size L. But in the

end of every computation we will need to extrapolate our results to an infinite lattice size.

The high-energy (UltraViolet, UV) regime is regularized by using a finite lattice spacing a.

This introduces a momentum cutoff which is inverse to a, since the momenta are restricted

to the finite interval −π/a ≤ p ≤ π/a (first Brillouin zone). We could use other UV reg-

ulators (e.g. Pauli-Villars, Dimensional Regularization, momentum cutoff) but they are

only applicable to perturbative calculations.

The subjects of lattice QCD are multidirectional. The subjects which are most actively

pursued are listed below with some examples of recent research activity:

• Advances of lattice QCD algorithms have been in constant development over the

years. These advances concern topics such as methods to simulate heavy quarks, the

effects of quenching and the relevance of partial quenching, nonperturbative renor-

malization of operators, the role of chiral perturbation theory in extracting hadronic

quantities from lattice QCD, the reduction of lattice-spacing artifacts, and the use

of small-volume computations to extract infinite-volume physics.

• In order to study Hadron phenomenology, new methods and techniques are used.

Some works are dedicated to improved computations of hadron masses, decay con-

stants and weak transition matrix elements. Calculations of moments of structure

functions, the running coupling and quark masses and many other physical quanti-

ties have also been reported. Lattice QCD also provides the best theoretical evidence

that glueballs states exist.
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• Some research teams are interested in analyzing the properties of QCD under extreme

conditions. On one hand there is the goal of reaching a quantitative description

of the behaviour of matter at high temperature and density. This does provide

important input for a quantitative description of experimental signatures for the

occurrence of a phase transition in heavy ion collisions. At high temperatures the

interaction between quarks and gluons decreases due to asymptotic freedom, leading

to deconfinement, and chiral symmetry is restored. On the other hand the analysis of

a complicated quantum field theory like QCD at non-zero temperature can also help

to improve our understanding of its nonperturbative properties at zero temperature.

The low-temperature phase exhibits confinement and breaking of chiral symmetry.

The introduction of external control parameters (temperature, chemical potential)

allows to observe the response of different observables to this and may provide a

better understanding of their interdependence.

• Using the lattice one can study, besides those transitions which we described, phase

transitions that occurred during the early times of the evolution of the universe, such

as the electroweak phase transition. The study of Quantum Fields on the Lattice also

extends to Physics beyond the Standard Mondel, e.g. the study of quantum gravity

and supersymmetric Yang-Mills theories.

• Calculations, using Lattice gauge theory, play a key role also in flavor physics:

Flavor-changing amplitudes can be computed, providing information on the Cabibbo-

Kobayashi-Maskawa (CKM) quark-mixing matrix. At the LHC, bottom baryons are

being produced in unprecedented quantities, which opens up a new field for flavor

physics. For example, the decay Λb → pµ−ν̄µ can be used to obtain a novel de-

termination of the CKM matrix element |Vub|, and the decay Λb → Λµ+µ− probes

the weak interactions beyond tree-level. The first lattice calculations of the relevant

Λb → p and Λb → Λ form factors have recently been performed using domain-wall

light quarks and static b quarks. In both cases, form factor calculations using lattice

QCD are needed to interpret the experimental data.

• In the past few years there have been also a lot of theoretical developments. We

mention here the Yang-Mills “gradient flow”, which can be a powerful tool for non-

perturbative studies of QCD. A key feature of the flow is certainly the fact that local

fields constructed at positive flow time renormalize in a simple way, however com-

plicated they may be. Correlation functions of such fields calculated in lattice QCD
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therefore have a well-defined continuum limit and thus provide interesting probes of

the universal properties of the theory.

These and other ideas are currently under intensive exploration. Given recent and future

increases in computer power these advances will allow more reliable calculations of hadronic

quantities.

1.3 Lattice Perturbation theory

The lattice is generally used in nonperturbative calculations but comparison with physical

values often requires also perturbative calculations. Perturbation theory is an essential

aspect of computations on the lattice, especially for investigating the behavior of lattice

theories near the continuum limit. For a review in lattice perturbation theory see e.g.,

Ref. [3].

The role of perturbation theory on the lattice is very important since perturbative

calculations connect the outcome of numerical simulations to the continuum physical re-

sults. Using perturbation theory we can determine the renormalization functions (RFs)

of composite operators and of bare parameters of the Lagrangian, like coupling constant

and masses. In many cases one could extract RFs nonperturbatively, but often a nonper-

turbative determination may turn out to be rather difficult (or impossible) to achieve. In

cases where we can find RFs nonperturbatively we can always compare with the corre-

sponding perturbative results, for a specific renormalization scale. This comparison can

give significant cross-checks on the validity of perturbative and nonperturbative methods.

We should also add that perturbative coefficients can be usually computed much more

accurately than typical quantities in numerical simulations. A notetable exception regards

mixing coefficients of operators of lower dimensionality. These coefficients necessarily con-

tain inverse powers of the lattice spacing; consequently they diverge on a → 0, and their

perturbative estimation cannot be relied on. A specific instance of this behavior regards

the vacuum expectation value of certain operators, i.e. their mixing coefficient with the

identity operator.

Moreover, lattice perturbation theory is important for a number of other investigations,

among which we can mention the study of anomalies on the lattice, the study of the general

approach to the continuum limit, including the recovery of continuum symmetries broken

by the lattice regularization (like Lorentz or chiral symmetry) in the limit where the lattice

spacing goes to zero, and the scaling violations, the corrections to the continuum limit
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which are of order an. An accurate treatment of such violations can greatly reduce the

systematic error which is introduced by lattice artifacts in simulation results.

The mixing of lattice operators under renormalization can also be determined through

perturbation theory. Generally operator mixing on the lattice is more complex than in the

continuum. In fact, mixing patterns on the lattice become in general more transparent

when looked at using perturbative renormalization than nonperturbatively.

In this thesis we concentrate on perturbative RFs. As we mentioned earlier RFs are nec-

essary ingredients in the prediction of physical probability amplitudes from lattice matrix

elements of operators. They relate observables computed on finite lattices to their contin-

uum counterparts in specific renormalization schemes. On the lattice we have an infinite

number of interaction vertices but, fortunately, only a finite number of vertices is needed

at any given order in the bare coupling constant, g0. The perturbative calculation of the

relevant Green’s functions in this thesis was carried out at one-loop order by computing

the corresponding Feynman diagrams.

Analytic computations of Feynman diagrams in lattice QCD present quite a few new

and interesting features with respect to the continuum. Of course general properties of the

path integral, Wick’s theorem, and gauge invariance continue to be valid on the lattice.

The combinatorial rules are also similar to the continuum. But there are important differ-

ences, many of them connected to the breaking of Lorentz invariance. Lattice perturbation

theory is much more complicated than continuum perturbation theory: there are more

fundamental vertices and more diagrams. The propagators and vertices, with which one

builds the Feynman diagrams, are also more complicated on the lattice than they are in the

continuum, which can lead to expressions containing a huge number of terms. A typical

“difficult” Feynman diagram contains ∼ 105 terms before we integrate these expressions

over the internal momenta.

Lattice perturbation theory may also be applied to systems at finite temperature: The

euclidean Feynman rules at zero temperature are modified when relativistic systems of

interacting fields are placed in contact with a heat bath. There are exact one-loop calcula-

tions of the equation of state within hard-thermal-loop perturbation theory, which employs

an expansion in the ratios of thermal masses and the temperature [4]. In fact this expan-

sion converges reasonably fast. There are also studies of the existence and properties of

the transfer matrix using Chiral perturbation theory in the quenched approximation [5].

There have been only very few higher-loop results of lattice perturbation theory in

the last decades, due to the fact that providing such results beyond one-loop order is
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very demanding in human and CPU time. More precisely there are a few calculations

of renormalization functions up to two-loops [6, 7, 8]. Numerical stochastic perturbation

theory [9] might be a viable alternative to study higher-loops; for example, the lattice

corrections up to three-loop order for the SU(3) gluon and ghost propagators is achieved

by numerical stochastic perturbation theory in Landau gauge.

Another application of lattice perturbation theory regards the Schrödinger functional

(SF) [10]. This is a powerful and widely used tool for the treatment of a variety of problems

in renormalization and related areas. Albeit offering many conceptual advantages, one

major downside of the SF scheme is the fact that perturbative calculations quickly become

cumbersome with the inclusion of higher orders in the gauge coupling and hence the use

of an automated perturbation theory framework is desirable.

In recent years considerable efforts have also been made to improve lattice actions in

order to reduce the dependence of the results on the lattice spacing. Results from lattice

perturbation theory exist for a variety of improved lattice fermion actions: Wilson, Wilson-

like (e.g. clover, SLiNC), Staggered, Overlap, domain wall fermions, Relativistic heavy

quarks, NRQCD (Non-Relativistic QCD) and HQET (Heavy Quark Effective Theory) [11].

Other improvements of lattice actions are carried out using the background field method

with an application to the hyperfine splitting of quarkonium states.

1.4 Overview of the Thesis

This Thesis contains work carried out over the past four years and it is laid out as follows.

Chapter 2 provides a brief introduction to some lattice actions. We describe the discretiza-

tion passage from continuum actions to a set of discrete space-time lattice actions.

In Chapter 3 we present the perturbative computation of the renormalization functions

for the quark field and for a complete set of ultra-local fermion bilinears. The computation

of the relevant Green’s functions was carried out at 1-loop level for the staggered action

using massive fermions. The gluon links which appear both in the fermion action and in the

definition of the bilinears have been improved by applying a stout smearing procedure up to

2 times, iteratively. In the gluon sector we employed the Symanzik improved gauge action

for different sets of values of the Symanzik coefficients. The renormalization functions

are presented in (two variants of) the RI′ and in the MS renormalization schemes; the

dependence on all stout parameters, as well as on the fermion mass, the gauge fixing

parameter and the renormalization scale, is shown explicitly.
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In Chapter 4 we apply our results of Chapter 3 to a nonperturbative study of the

magnetic susceptibility of QCD at zero and finite temperature. We study the response

of the QCD vacuum to a constant external (electro)magnetic field through the tensor

polarization of the chiral condensate and the magnetic susceptibility at zero and at finite

temperature. We determine these quantities using lattice configurations generated with

the tree-level Symanzik improved gauge action and Nf = 1 + 1 + 1 flavors of stout smeared

staggered quarks with physical masses. The magnetic susceptibilities χf reveal a spin-

diamagnetic behavior; we obtain at zero temperature χu = −(2.08 ± 0.08) GeV−2, χd =

−(2.02± 0.09) GeV−2 and χs = −(3.4± 1.4) GeV−2 for the up, down and strange quarks,

respectively, in the MS scheme at a renormalization scale of 2 GeV. We also find the

polarization to change smoothly with the temperature in the confinement phase and then

to drastically reduce around the transition region.

In Chapter 5 we compute the one-loop 2-point perturbative bare Green’s functions

of the fermion propagator and of local and extended fermion bilinear operators on the

lattice. The calculation is carried out up to O(a2), where a is the lattice spacing. We

employed the SLiNC action. Our results have been obtained for various choices of values

for the Symanzik coefficients, ci. The clover coefficient cSW, the gauge parameter α, the

stout parameter ω, the fermion masses m and the number of colors Nc are kept as free

parameters. The Wilson parameter, r, is set equal to 1. Knowledge of these Green’s

functions allows us to determine renormalization functions for the quark field and each of

the fermion bilinear operators which we studied.

In Chapter 6 we investigate a method to suppress the lattice artifacts from nonperturba-

tive data by subtracting the one-loop contributions of perturbative renormalization factors

using clover improved Wilson fermions with plaquette gauge action. We compare results

obtained from a complete one-loop subtraction with those calculated by a subtraction of

contributions proportional to the square of the lattice spacing.

In Chapter 7 we compute the Green’s functions of the chromomagnetic operator OCM ,

with one external quark-antiquark pair and with zero or one external gluons, on the lattice

and in the continuum using dimensional regularization. The lattice computation is car-

ried out using the maximally twisted-mass action for fermions; for gluons we employ the

Symanzik improved gauge action with different sets of values of the Symanzik coefficients.

In order to find the mixing with other operators we examine the transformation properties

of all candidate operators which could possibly mix with OCM . We have identified these

operators and we construct a mixing matrix to find the renormalization of OCM . We also
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calculate and present the renormalization of fermion field Zψ, gluon field ZA, and of the

coupling constant Zg, which are required by the renormalization conditions.

Finally in Chapter 8 we summarize and conclude. The Appendices contain supplemen-

tary material that has been left out of the main body of the Thesis in order to improve

readability.

Most of the results presented here have already been published in the following papers:

• G. S. Bali, F. Bruckmann, M. Constantinou, M. Costa, G. Endrődi, S. D. Katz,
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finite temperature from the lattice”, Phys. Rev. D86 (2012) 094512.

• M. Constantinou, M. Costa, M. Göckeler, R. Horsley, H. Panagopoulos, H. Perlt,

P. E. L. Rakow, G. Schierholz and A. Schiller, “Perturbatively improving regularization-

invariant momentum scheme renormalization constants”, Phys. Rev. D87 (2013)

096019.

• M. Constantinou, M. Costa and H. Panagopoulos, “Perturbative renormalization

functions of local operators for staggered fermions with stout improvement”, Phys.

Rev. D88 (2013) 034504.

• M. Constantinou, M. Costa, R. Frezzotti, V. Lubicz, G. Martinelli, D. Meloni,

H. Panagopoulos and S. Simula, “The chromomagnetic operator: Hadronic Matrix

Elements and the Mixing under Renormalization”, to be submitted to Phys. Rev. D.

and conference proceedings:

• G. S. Bali, F. Bruckmann, M. Constantinou, M. Costa, G. Endrődi, Z. Fodor,

S. D. Katz, S. Krieg, H. Panagopoulos, A. Schäfer and K. K. Szabo, “Thermody-

namic properties of QCD in external magnetic fields”, PoS Confinement X (2012)

198.

• M. Constantinou, M. Costa, M. Göckeler, R. Horsley, H. Panagopoulos, H. Perlt,

P. E. L. Rakow, G. Schierholz and A. Schiller, “Perturbative subtraction of lattice ar-

tifacts in the computation of renormalization constants”, PoS LATTICE2012 (2012)

239.

• M. Constantinou, M. Costa, M. Göckeler, R. Horsley, H. Panagopoulos, H. Perlt,

P. E. L. Rakow, G. Schierholz and A. Schiller, “Perturbatively improving renormal-

ization constants”, PoS LATTICE2013 (2013) 310.
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Chapter 2

Actions on the lattice

There is a great variety of ways to discretize on the lattice a theory defined in the con-

tinuum. A number of symmetries of the continuum actions are necessarily violated when

discretizing on a lattice, first and foremost Lorentz invariance. The Fermion and Gluon ac-

tions are written on the lattice using a discretization; such that the limit a→ 0 reproduces

the continuum action. In recent years an appreciable effort has been invested in studying

lattice actions which leave intact as many symmetries of the continuum theory as possible.

We know that the renormalizability of Quantum Field Theories is based on gauge symme-

try. Furthermore the existing proofs of perturbative renormalizability of QCD, defined on

the lattice, rely on strict gauge invariance [12]. Thus the lattice actions are constructed

to be gauge invariant. In this Chapter, we describe these actions which were used in our

calculations. These actions are currently employed in large scale numerical simulations.

2.1 Wilson gluons

In this section we present the standard Wilson action for the gluons. To define the gluon

action on the lattice we introduce the link variables, Uµ(x). They are unitary and connect

two neighboring lattice sites. The index µ = 0, ..., 3 labels the direction of the link and µ̂

is the unit vector in the µth direction.

For a gauge theory with Nc colors of fermion fields, the gauge group is SU(Nc). The

link variables are directly related to the gauge fields Aaµ(x) in a nonlinear way; they are

defined in a way that the continuum action is recovered when setting a→ 0.

Uµ(x) ≡ Uµ(x, x+ aµ̂) = exp

[
iag0T

aAaµ(x+
aµ̂

2
)

]
, (2.1)
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where T a (a = 1, ..., N2
c − 1) are the SU(Nc) generator matrices in the fundamental rep-

resentation. By convention, the argument of Aaµ is defined in the midpoint of the link

(without affecting the continuum limit or the simulations) and U is an Nc × Nc unitary

matrix satisfying:

U−µ(x) ≡ U(x, x− aµ̂) = e−iag0TaAaµ(x−aµ̂
2

) = U †(x− aµ̂, x). (2.2)

Figure 2.1: Schematic representation of link variables.

A local gauge transformation G(x) acts on the fermion (ψ(x), ψ(x)) and gauge fields

through the relations:

ψ(x) → G(x)ψ(x)

ψ(x) → ψ(x)G†(x)

Uµ(x) → G(x)Uµ(x)G†(x+ aµ̂) (2.3)

U †µ(x) → G(x+ aµ̂)U †µ(x)G†(x). (2.4)

One requires that the lattice action be invariant under the gauge transformations; thus,

its gluon part must be constructed by gauge invariant objects. The simplest choice is the

trace of the 1× 1 loop, called plaquette:

UP ≡ Uµν(x) = Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν(x), (2.5)

UP is the product of link variables along the perimeter of a square originating at x in the

positive µ− ν directions; it provides a natural discretization of the gauge field strength:

Uµν(x) ≈ exp
[
ia2g0Fµν(x)

]
. (2.6)

As can be realized from Fig. 2.2, there are two different orientations for each plaquette,

which are Hermitian conjugates to each other. Thus, a sum over all orientations involves

only the real part of the loops. Taking the trace over color indices ensures gauge invariance.
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Figure 2.2: Schematic representation of a plaquette.

The Wilson gluon (plaquette) action is written as:

SgW =
2N

g2
0

∑
µ<ν

∑
x

(1− 1

N
ReTr[UP ]). (2.7)

The formulation of this action in terms of the link variables, rather than the gauge fields

directly, serves to uphold gauge invariance.

In a naive continuum limit, where a goes to zero, one has:

SgW → Sgcont. =
1

2

∫
d4xTr (FµνFµν) . (2.8)

2.2 Naive fermion action and Wilson fermions

In the formulation of Lattice QCD, the fermion fields (ψ(x), ψ(x)) live on the lattice sites

x and carry color (i, j, ... = 1, ..., Nc), flavor (f = 1, ..., Nf ) and Dirac indices (α, β, ... =

1, ..., 4). We recall that Nc, Nf are the number of fermion colors and fermion flavors,

respectively. To avoid heavy notation, the Dirac, flavor and color indices are not written.

The naive gauge invariant fermion action on the lattice in Euclidean space-time is:

Sf = a4
∑
x

∑
µ

1

2a
ψ(x)γEµ

[
Uµ(x)ψ(x+ aµ̂)− U †µ(x− aµ̂)ψ(x− aµ̂)

]
+ a4

∑
x

m0ψ(x)ψ(x). (2.9)

This action has the correct continuum limit:

Sfcont. =

∫
d4xψ(x)

(
γEµDµ +m0

)
. (2.10)
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In order to find the naive propagator, it is convenient to work in momentum space. The

Fourier transformation of the fields is:

ψ(x) =

∫ π/a

−π/a

d4p

(2π)4
eiap·x ψ̃(p) (2.11)

ψ(x) =

∫ π/a

−π/a

d4p

(2π)4
e−iap·x ψ̃(p) (2.12)

Aµ(x) =

∫ π/a

−π/a

d4p

(2π)4
eiap·x Ãµ(p). (2.13)

The naive fermion propagator takes the form:

〈ψ(x)ψ(y)〉 = lim
a→0

∫ π

−π

d4k

(2π)4
eik(x−y)

−i
∑

µ γµsin(kµ) +m0∑
µ sin

2(kµ) +m2
0

(2.14)

The correct continuum limit in the naive fermionic case is destroyed due to the vanishing

of sin(kµ) at the edges of the Brillouin zone. Thus there are sixteen regions, in momentum

space rather than one kµ ∼ 0, which contribute to the propagator, as if there were sixteen

fermion species present. This is known as the doubling problem.

Kenneth G. Wilson in 1974 proposed in a famous paper [2] one of the most popular

lattice actions to overcome the problem of the fermion doubling. The solution is to add a

term (Wilson term) to the naive action. The Wilson term is:

− r

2

∑
x

ψ(x)∂µ∂µψ(x) (2.15)

Below, we present Wilson’s lattice action for fermions:

SfW = a4
{∑

x

∑
µ

−1

2a
ψ(x)

[
(r − γµ)Uµ(x)ψ(x+ aµ̂) (2.16)

+ (r + γµ)U †µ(x− aµ̂)ψ(x− aµ̂)
]

+ (4r +m0)
∑
x

ψ(x)ψ(x)
}

where the r is called Wilson parameter.

Besides the absence of fermion doublers and the existence of gauge symmetry, the Wil-

son action has a number of properties:

• It is invariant under translations by a.
• The transformations of charge conjugation C, parity P and time reversal T , leave the
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action invariant.

• Eq. (2.16) includes only nearest-neighbor interactions, leading to vertices with compact

form and easy to work with (locality).

The above properties of Eq. (2.16) go along with the following disadvantages:

• Chiral symmetry is explicitly broken at order a by the Wilson term, and it is restored

only in the continuum limit. The axial current transformations are not an exact symme-

try and the nonsinglet axial current requires a nontrivial multiplicative renormalization to

restore current algebra up to O(a) effects.

• The lattice artifacts in the action are propotional to a, rather that a2.

These properties and disadvantages are consistent with a famous No-Go theorem of

Nielsen and Ninomiya [13] which says that a lattice fermion formulation with locality,

without species doubling and with an explicit continuous chiral symmetry is impossible.

Other types of fermionic disretizations, notably “overlap” and “domain wall” fermions,

bypass this theorem at the expense of not being “ultra local”; in particular these actions

involve couplings between quarks and antiquarks which are at an arbitrary distance apart.

As a result, numerical simulation of these actions is enormously more demanding in CPU

time.

2.3 The Symanzik improved gluon action

The plaquette is not the only possibility for the construction of the discretized version of

the gauge field strength. One can also consider larger closed Wilson loops. Rather than

using only the smallest possible closed loops (1 × 1 plaquettes), we can generalize the

Wilson action by including all loops with 4 and 6 links (plaquette, rectangle, chair, and

parallelogram wrapped around an elementary 3-d cube), as shown in Fig. 2.3.

SG =
2

g2
0

[
c0

∑
plaq.

Re Tr {1− Uplaq.} + c1

∑
rect.

Re Tr {1− Urect.}

+ c2

∑
chair

Re Tr {1− Uchair} + c3

∑
paral.

Re Tr {1− Uparal.}
]
. (2.17)

The coefficients ci can in principle be chosen arbitrarily, subject to the following nor-
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malization condition which ensures the correct classical continuum limit of the action:

c0 + 8c1 + 16c2 + 8c3 = 1 (2.18)

Some popular choices of values [14] for ci used in numerical simulations will be consid-

ered in this work, and are listed in Table D.1 of Appendix D.1. They include the Wilson

case (c0 = 1, c1 = c2 = c3 = 0), and the tree-level Symanzik (c0 = 5/3, c1 = −1/12,

c2 = c3 = 0), TILW (tadpole improved Lüscher-Weisz), Iwasaki and DBW2 (doubly

blocked Wilson) actions. The values for ci used in numerical simulations are normally

tuned in a way as to ensure O(a) improvement.

Figure 2.3: The 4 Wilson loops of the gluon action.

2.4 The clover fermion action

The widely used clover action was originally studied by Sheikholeslami and Wohlert [15]

to remove the O(a) effects of the Wilson fermion action.

The improved action is written as:

Ssw = SfW + a5 icsw

4

∑
f

∑
x,µ,ν

ψ
f
(x)σµνF̂µν(x)ψf (x) (2.19)

where the first term of Eq. (2.19) is the fermion part of the Wilson action (Eq. (2.16)),

csw is the clover parameter, σµν = (i/2) (γµγν − γνγµ), and the quantity F̂µν is a lattice

discretization of the field tensor; more specifically, F̂µν is the sum of plaquettes in the µ−ν
plane, having x as their initial and final point:
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F̂µν(x) =
1

8a2
(Qµν(x)−Q†µν(x)), (2.20)

Qµν is the sum of the plaquette loops:

Qµν = Ux, x+µUx+µ, x+µ+νUx+µ+ν, x+νUx+ν, x

+ Ux, x+νUx+ν, x+ν−µUx+ν−µ, x−µUx−µ, x

+ Ux, x−µUx−µ, x−µ−νUx−µ−ν, x−νUx−ν, x

+ Ux, x−νUx−ν, x−ν+µUx−ν+µ, x+µUx+µ, x (2.21)

as shown in Fig. 2.4.

Figure 2.4: Graphical representation of Qµν (Eq. (2.21)) appearing in the clover action.

Given that the clover action is local, it does not introduce excessive complexity in

neither perturbation theory nor numerical simulations. In particular, the addition of the

clover term is only about a 15% overhead per update as compared to Wilson fermion sim-

ulations [16, 18]. Note that any value of csw is in principle allowed, since the corresponding

term vanishes in the continuum limit. Specific choices for values of csw can be made by

requiring, e.g. that O(a1) effects are absent from the action, at the classical or quantum

level.

2.5 SLiNC Action improved fermion and gluon action

The acronym SLiNC stands for the Stout Link Non-perturbative Clover action. It has

been adopted by the QCDSF collaboration for their large scale simulations in recent years

(see, e.g. [17]). The gluonic part of the SLiNC action is the tree-level Symanzik action
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which reads:

SG =
2

g2
0

{
c0

∑
plaq.

Re Tr (1− Uplaq.) + c1

∑
rect.

Re Tr (1− Urect.)

}
(2.22)

with c0 = 5/3 and c1 = −1/12 (c0 + 8c1 = 1). This reduces to the standard plaquette

action SgW for c1 = 0.

The fermionic part of this action has the same form as the clover action but the links

Uµ(x), connecting fermion fields on adjacent sites, are replaced by “stout” smeared links

Ũµ(x) and the Wilson parameter, r, is set to 1:

Sf = a4
∑
x

{
− 1

2a

[
ψ̄(x)Ũµ(x) (1− γµ)ψ(x+ aµ̂)

+ ψ̄(x)Ũ †µ(x− aµ̂) (1 + γµ)ψ(x− aµ̂)
]

(2.23)

+ (4 +m0) ψ̄(x)ψ(x)− csw g0
a

4
ψ̄(x)σµνF̂µν(x)ψ(x)

}
.

The links inside the clover term are not smeared. Stout links [19] are defined by:

Ũµ(x) = eiQµ(x) Uµ(x), (2.24)

with

Qµ(x) =
ω

2 i

[
Vµ(x)U †µ(x)− Uµ(x)V †µ (x)− 1

Nc

Tr
(
Vµ(x)U †µ(x)− Uµ(x)V †µ (x)

)]
. (2.25)

Vµ(x) denotes the sum over all “staples” Uν(x)Uµ(x + aν̂)U †ν(x + aµ̂) associated with the

link Uµ(x) and ω is a tunable parameter; its value can be chosen using criteria similar to

those which apply in the case of csw. Stout smearing is expandable as a power series in g2
0,

so we can use perturbation theory. Many other forms of smearing do not have this nice

property since they lead to non-unitary links which, upon projection to SU(Nc), cease to

be Taylor expandable in g0.

The reason for not smearing the clover term is that one wants to contain the physical

extent of the fermion action in lattice units; this is relevant for non-perturbative calcula-

tions.
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2.6 Staggered fermions

Another means of solving the fermion doubling problem is the introduction of “staggered”

fermions.

In the staggered (or Kogut-Susskind) formulation [20], one is left with 4 fermion “tastes”

whose 16 components are split over a unit hypercube by assigning only a single fermion

field component to each lattice site. This construction can only be carried out in an even

number of space-time dimensions.

The standard passage from the naive action for fermions (ψ, ψ̄) to the staggered action

entails the following change of basis:

ψ(x) = γx χ(x) , ψ̄(x) = χ̄(x) γ†x,

γx = γn1
1 γn2

2 γn3
3 γn4

4 , x = (a n1, a n2, a n3, a n4), ni ε Z . (2.26)

Using the equalities:

γµ γx = ηµ(x)γx+a µ̂ and γ†x γx = 11 , ηµ(x) = (−1)
P
ν<µ nν . (2.27)

the naive fermion action takes the form:

Sf = a4
∑
x

∑
µ

∑
i

1

2a
χi(x)ηµ(x)

[
Uµ(x)χi(x+aµ̂)−U †µ(x−aµ̂)χi(x−aµ̂)

]
+a4

∑
x

mχi(x)χi(x) .

(2.28)

Thus far, we have rewritten the usual lattice action. But the crucial step now is that the

Dirac matrices have disappeared, and they have been replaced by the phase factors ηµ(x);

in the new basis, the naive action consists of 4 identical parts, one for each value of the

spinor index i carried by the spinor χ. Dropping this index altogether leads to the standard

staggered fermion action, Sstag:

Sstag = a4
∑
x

∑
µ

1

2a
χ(x)ηµ(x)

[
Uµ(x)χ(x+aµ̂)−U †µ(x−aµ̂)χ(x−aµ̂)

]
+a4

∑
x

mχ(x)χ(x) .

(2.29)

An advantage of staggered fermions is that a continuous subgroup of the original chiral

transformations remains a symmetry of this lattice action even at finite lattice spacing,

and thus no mass counterterms are needed for vanishing bare quark masses. All this is
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achieved at the expense of taste and (partially) translational symmetry, which become in

fact all mixed together.

2.7 Twisted mass action

As previously mentioned, the Wilson action breaks chiral symmetry, which can be restored

with the introduction of an additive fermion mass renormalization as a counterterm. The

result of the absence of chiral symmetry for nonzero lattice spacing, is that the Wilson-

Dirac operator (Eq. (2.31)) is not protected against zero modes, unless the bare quark mass

is positive. However, due to additive mass renormalization, the masses of the light quarks

correspond to negative bare masses. One of the consequences of the zero modes is the

following: After integration over the fermion and anti-fermion fields in the functional inte-

gral, there is a small eigenvalue of the Wilson-Dirac operator in the fermionic determinant

and the fermion propagators appearing in the correlation functions. Thus, in the quenched

approximation, where the fermionic determinant is ignored, this eigenvalue in the quark

correlation is not canceled out upon division. The results are large fluctuations in particu-

lar measurables that compromise the ensemble average. The gauge field configurations at

which this happens, are called exceptional.

A solution to the problem of exceptional configurations is the addition of a “twisted”

mass term [21] to the standard Wilson action. The resulting action has the benefit that

certain observables are automatically free of O(a) lattice artifacts.

Some additional advantages of this action are efficient simulations (as compared to

other improved actions) and the fact that operator mixing resembles the continuum case.

The twisted mass action can be used to study quarks at small masses, where the Wilson

action would fail. Also, the properties and the interactions of hadrons can be probed

nonperturbatively from first principles.

2.7.1 The lattice twisted mass action for degenerate quarks

The twisted mass lattice action [22] for a doublet of Nf = 2 mass degenerate quarks,

written in the so called twisted basis (χ, χ̄), is:

S
{χ}
tm = a4

∑
x

χ̄(x)
[
DW +m0 + iµqγ

5τ 3
]
χ(x) (2.30)

with m0 real and positive. DW is the Wilson-Dirac operator:



2.7. Twisted mass action 25

DW =
1

2

3∑
µ=0

{γµ(
−→
∇µ +

←−
∇µ)− a r

←−
∇µ
−→
∇µ} (2.31)

The last term with the twisted mass parameter µq protects the Dirac operator against

zero modes for any finite µq, since the twisted Dirac operator has positive determinant:

det(DW +m0 + iµqγ
5τ 3) = det(Q2 + µ2

q) (2.32)

where Q = γ5(DW +m0) is the hermitian Wilson operator; hence, the twisted Dirac opera-

tor does not have any zero eigenvalues. The isospin generator τ 3 acts in flavor space and its

appearance means that isospin is no longer conserved (i.e. the up and down quark have op-

posite signs of the twisted mass leading to flavor symmetry breaking). Moreover, the twist

term breaks parity symmetry (due to γ5). These symmetries are restored in the continuum

limit. The action remains invariant under the flavor-dependent axial transformations:

ψ = eiωγ
5 τ3

2 χ

ψ̄ = χ̄ eiωγ
5 τ3

2 (2.33)

with the mass parameters mixed to each other as:

m′ = µq sin(ω) +m cos(ω)

µ′q = µq cos(ω)−m sin(ω) (2.34)

In the full twist case, ω = π/2, the flavor symmetry is restored at a rate O(a2). This case

is useful, since there is automatic cancellation of O(a) effects in quantities like energies and

on-shell operator matrix elements. The action can be written in the physical basis (ψ, ψ̄),

where the µq term has been eliminated:

S
{ψ}
tm = a4

∑
x

ψ̄(x)
[
DWtm +M

]
ψ (2.35)

DWtm is the twisted Wilson operator:

DWtm =
1

2

3∑
µ=0

{γµ(
−→
∇µ +

←−
∇µ)− a r e−iωγ5τ3←−∇µ

−→
∇µ} (2.36)
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and M is the polar mass:

M =
√
m2

0 + µ2
q (2.37)

In the continuum limit, where the last term of Eq. (2.36) vanishes, tmQCD can be seen

as a change of variables which leaves the physical content of the theory unchanged if the

rotation angle ω satisfies:

tan(ω) =
µq
m0

(2.38)

Thus, in the continuum limit the axial rotation of the fermion fields (Eq. (2.33)) relates

tmQCD to the standard QCD.

We are particularly interested in the action written in the twisted basis, because it is

the one used in simulations. This is due to the fact that the renormalization of gauge

invariant correlation functions is simpler for the twisted fields (χ, χ̄). The expression for

the twisted mass propagator is:

G(p) =
−iγµp

◦
µ +M(p)− iµqγ5τ 3

p◦2
µ +M(p)2 + µ2

q

(2.39)

with p
◦
andM defined through:

p
◦

µ =
1

a
sin(apµ), M(p) = m0 +

r

2
ap̂2

µ, p̂µ =
2

a
sin(

apµ
2

) (2.40)

The tree-level expression can be extracted by taking the Taylor expansion for small values

of the lattice spacing a and keeping terms up to O(a), obtaining:

G0(p) = p2 +m2
0 + µ2

q + am0rp
2 (2.41)

The first observation is that for zero bare mass (or even for m0 = am̃0), the theory is free

of O(a) effects, but this picture changes once we take into account the interactions between

quarks. Moreover, the inclusion of the twisted mass parameter does not affect the O(a)

improvement of the m0 = 0, am̃0 cases.

2.7.2 The lattice twisted mass action for nondegenerate quarks

So far we have discussed the Nf = 2 case of degenerate light quarks, but the action

can be generalized to include a further doublet of non-degenerate quarks [23, 24]. Such

a generalization arises from the need to describe the heavier quarks, charm and strange.
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Since we want to use this action in simulations of full tmQCD, we must maintain the reality

and positivity of the quark determinant. Thus, in the action we add a flavor off-diagonal

splitting:

S
{χ}
tm = a4

∑
x

χ̄(x)
[
DW +m0 + iµqγ

5τ 3 + εqτ
1
]
χ(x) (2.42)

where εq is the mass splitting parameter and we demand µq, εq > 0. The additional term

retains the properties of tmQCD at full twist and it keeps the quark determinant real and

positive if
√
m2

0 + µ2
q > εq.

The transition to the physical basis is achieved with the following field transformations:

ψ =
(

exp(−iωγ5 τ
1

2
)
)( 1√

2
(1 + iτ 2)

)
χ (2.43)

ψ̄ = χ̄
( 1√

2
(1− iτ 2)

)(
exp(−iωγ5 τ

1

2
)
)

(2.44)

The action in this basis is now:

S
{ψ}
tm = a4

∑
x

ψ̄(x)
[
DWtm +M

]
ψ (2.45)

where M =
√
m2
q + µ2

q is again the polar mass. For the description of the heavy doublet

charm and strange (c,s) we associate the physical quark mass with the mass parameterM ,

that is:

mcharm = M + εq mstrange = M − εq (2.46)

and the fermion determinant is positive if M > εq.



Chapter 3

Perturbative renormalization functions

of local operators for staggered fermions

with stout improvement

3.1 Introduction

In recent years, significant improvements have been made in the use of matrix elements of

operators made out of quark fields to extract mass spectra, decay constants, and a plethora

of hadronic properties [25, 26, 27]. Although naive (unimproved) staggered fermions were

introduced more than three decades ago [28], their discretization errors and their relatively

large taste mixing posed a limit on the accuracy of results from simulations, despite their

relatively low computational cost. This situation called for improvement; the outcome of

such efforts was some of the most accurate discretizations used to date for high-precision

simulations. One specific direction regards improving the fermion action (see, e.g. [29, 30]);

in particular, the introduction of stout links in the action which has recently been put to

use [31, 32] allows simulations to be carried out at near physical parameters. Compared to

most other improved formulations of staggered fermions, the above action, as well as the

HISQ action, lead to smaller taste violating effects [33, 34, 35].

Changes in the lattice action and in the discretization of operators imply that renormal-

ization functions must be determined afresh, either perturbatively or non-perturbatively.

In many cases non-perturbative estimates of renormalization functions are very difficult

to obtain, due to complications such as possible mixing with operators of equal or lower

28
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dimension, whose signals are hard to disentangle. For this reason, and in order to provide

cross-estimates which have a reduced systematic error, the perturbative study of a variety

of fermion operators is widely employed in numerical simulations of QCD on the lattice

(see, e.g. [3] and references therein, also [36, 37, 38, 7, 8, 39]).

Within the staggered formulation using massive fermions we compute the fermion prop-

agator and Green’s functions of a set of local taste-singlet bilinears O (scalar (S), pseu-

doscalar (P), vector (V), axial (A) and tensor (T)). Our computation is performed to one

loop and to lowest order in the lattice spacing, a. We also extract from the above the

renormalization functions of the quark field Zq, quark mass Zm and fermion bilinears ZO.

This is the first one-loop computation of these quantities, using staggered fermions with

stout links. In the present work, we provide the details of the perturbative calculation and

our results for the propagator and for the Green’s functions, as well as the renormaliza-

tion functions of all operators, including the vector, axial and pseudoscalar cases. Older

results with staggered fermions [36] in the absence of stout smearing and for the Wilson

gluon action are in complete agreement with our results; perturbartive results related to

alternative improvements of the staggered action can be found, e.g., in Refs. [40, 41].

Stout links [19], rather than ordinary links, have been used both in the fermion ac-

tion and in bilinear operators. Following Ref. [32], we use two steps of stout smearing

with generic smearing parameters (ω1, ω2). We emphasize that the results for the bilin-

ear Green’s functions depend on four stout parameters, two due to the action smearing

(ωA1 , ωA2) and two more coming from the smearing of the operator (ωO1 , ωO2); no numeri-

cal value needs to be specified for these parameters. The extension to further steps of stout

smearing can be achieved with relative ease. For gluons we employ the Symanzik improved

action. Our final expressions for the Green’s functions exhibit a rather nontrivial depen-

dence on the external momentum (p) and the fermion mass (m), and they are polynomial

functions of the gauge parameter (α), stout parameters (ωAi , ωOi), and coupling constant

(g); furthermore, most numerical coefficients in these expressions depend on the Symanzik

parameters of the gluon action.

The one-loop expressions for the renormalization functions are presented in the mass-

independent RI′ scheme; for the vector and axial renormalization functions we also employ

an alternative RI′ scheme which might be more useful in renormalizing non-perturbative

matrix elements. Furthermore, for comparison with experimental determinations and phe-

nomenological estimates, it is useful to present our results also in the MS scheme; we do

so, paying particular attention to the possible alternative definitions of γ5.
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Results for Zq, Zm, ZO exist for simpler actions to O(g4) and/or O(g2an), see e.g.,

Refs. [7, 8] for two-loop renormalization of flavor singlet and non-singlet local fermion

bilinears, Ref. [38] for Zm to two loops, Ref. [42] for one-loop renormalization of the fermion

propagator and bilinears to O(a1), and Refs. [43, 39, 14] for the fermion propagator and

bilinears with 0 and 1 derivatives to one-loop and to O(a2). The extension of the present

computation beyond one loop and/or beyond O(a0) becomes exceedingly complicated: One

reason for this is the appearance of divergences in nontrivial corners of the Brillouin zone;

also, a two-loop calculation requires vertices with up to four gluons, which are extremely

lengthy in the presence of stout links (estimated length: > 106 terms).

We apply our results to a nonperturbative study of the magnetic susceptibility of QCD

at zero and finite temperature in Chapter 4. In particular, we evaluate the “tensor coeffi-

cient”, τ , which is relevant to the anomalous magnetic moment of the muon.

3.2 Formulation

3.2.1 Lattice actions

Our perturbative calculation makes use of the staggered fermion action.

Following the non-perturbative work of Ref. [32] we apply stout smearing according to

Eq. (2.24), to all links appearing in Sstag. In the present work we need the contributions

of Qµ(x) up to 2 gluons, to which the trace terms in Eq. (2.25) are irrelevant; the contri-

butions can be read from the terms:

Q(2)
µ (x) =

ω

2i

±4∑
ρ=±1

(
Uρ(x)Uµ(x+aρ̂)U †ρ(x+aµ̂)U †µ(x)− Uµ(x)Uρ(x+aµ̂)U †µ(x+aρ̂)U †ρ(x)

)
(3.1)

(U−ρ(y) ≡ U †ρ(y − aρ̂), ρ > 0). The above procedure can be performed iteratively, by

dressing the links more than once, in order to improve the convergence to the continuum

limit. In the framework of our calculation we use “doubly-stout” links:

˜̃
Uµ(x) = ei

eQµ(x) Ũµ(x) , (3.2)

where Q̃ is defined as in Eq. (2.25), but using Ũ as links (also in the construction of Vµ).

Such links have been employed in numerical simulations in Refs. [31, 34]. To obtain results

that are as general as possible, we use different stout parameters, ω, in the first (ω1) and
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the second (ω2) smearing iteration. This allows for further optimization of improvement,

by separate tuning of the two parameters; it also provides a check of the perturbative

calculation by comparing the limit ω1 = 0 (or ω2 = 0) to the case of a single step of stout

smearing. We smear both the links in Sstag and those in bilinear operators (see following

subsection), so that we have a total of 4 stout parameters that we keep different from one

another. In Appendix A we present the one-gluon link, U (1), for general ω1 and ω2, as well

as the 2-gluon link, U (2); due to space limitations, the lengthy expression for U (2) (a total

of ∼500 terms) has been presented only for ω2 = 0.

For gluons we employ the Symanzik improved action, Eq. (2.22).

3.2.2 Definition of operators

In the staggered formalism one defines fields that live on the corners of 4-dimensional

elementary hypercubes of the lattice [44, 36, 45]. The position of a hypercube inside the

lattice is denoted by the index y, where y is a 4-vector whose components yµ are even

integers (yµ ε 2Z). The position of a fermion field component within a specific hypercube

is defined by one additional 4-vector index, C (Cµ ∈ {0, 1}).
To be able to obtain the correct continuum limit, both for the action and for operators

containing fermions, we relate χ with the physical field Qβ,b (β: Dirac index, b: taste

index). In standard notation:

χ(y)C ≡ χ(ay + aC)/4 =
∑
β,b

(
1

2
ξC

)
β,b

Qβ,b(y) , Qβ,b(y) ≡ 1

2

∑
C

(γC)β,b χ(y)C , (3.3)

where ξC is defined similarly to γC (Eq. (2.26)), that is: ξC = ξC1
1 ξC2

2 ξC3
3 ξC4

4 , ξµ =
(
γ?µ
)
.

In terms of the field Q one can now define fermion bilinear operators as follows:

OΓ,ξ = Q̄ (Γ⊗ ξ) Q , (3.4)

where Γ and ξ are arbitrary 4 × 4 matrices acting on the Dirac and taste indices of Qβ,b,

respectively. After rotating into the staggered basis, the operator OΓ,ξ can be written

as [36]:

OΓ,ξ =
∑
C,D

χ̄(y)C
(
Γ⊗ ξ

)
CD

χ(y)D , (3.5)

(
Γ⊗ ξ

)
CD
≡ 1

4
Tr
[
γ†C Γ γD ξ

]
. (3.6)
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In this work we focus on taste-singlet operators, thus ξ = 11.

The operator of Eq. (3.5) is clearly not gauge invariant, since χ̄ and χ are defined at

different points of the hypercube. To restore gauge invariance, we insert the average of

products of gauge link variables along all possible shortest paths connecting the sites y+C

and y +D. This average is denoted by UC,D and the gauge invariant operator is now

OΓ ≡ OΓ,11 =
∑
C,D

χ̄(y)C
(
Γ⊗ 11

)
CD

UC,D χ(y)D . (3.7)

From the definition of Eq. (3.6), as well as the equalities of Eq. (2.27), we can further

simplify the expression for the operator OΓ, using:

1

4
Tr
[
γ†C 11 γD

]
= δC,D ,

1

4
Tr
[
γ†C γµ γD

]
= δC,D+µ̂ ηµ(D) ,

1

4
Tr
[
γ†C σµν γD

]
=

1

i
δC,D+µ̂+ν̂ ην(D) ηµ(D + ν̂) ,

1

4
Tr
[
γ†C γ5 γµ γD

]
= δC,D+µ̂+(1,1,1,1) ηµ(D) η1(D + µ̂) η2(D + µ̂) η3(D + µ̂) η4(D + µ̂) ,

1

4
Tr
[
γ†C γ5 γD

]
= δC,D+(1,1,1,1) η1(D) η2(D) η3(D) η4(D) . (3.8)

where σµ ν = [γµ, γν ]/(2i). Here and below, in expressions such as D + µ̂ the sum is to be

taken modulo 2. Using Eqs. (3.8), the operators can be written as:

OS(y) =
∑
D

χ̄(y)D χ(y)D , (3.9)

OV (y) =
∑
D

χ̄(y)D+µ̂ UD+µ̂,D χ(y)D ηµ(D) , (3.10)

OT (y) =
1

i

∑
D

χ̄(y)D+µ̂+ν̂ UD+µ̂+ν̂,D χ(y)D ην(D) ηµ(D + ν̂) , (3.11)

OA(y) =
∑
D

χ̄(y)D+µ̂+(1,1,1,1) UD+µ̂+(1,1,1,1),D χ(y)D ηµ(D)× (3.12)

η1(D + µ̂) η2(D + µ̂) η3(D + µ̂) η4(D + µ̂) ,

OP (y) =
∑
D

χ̄(y)D+(1,1,1,1) UD+(1,1,1,1),D χ(y)D η1(D) η2(D) η3(D) η4(D) . (3.13)

With the exception of the scalar operator, the remaining operators contain averages of
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products of up to 4 links (in orthogonal directions) between the fermion and the antifermion

fields. For example, the average entering the tensor operator of Eq. (3.11) is:

UD+µ̂+ν̂,D =
1

2

[
˜̃U †ν(ay + aD + aµ̂) ˜̃U †µ(ay + aD) + {µ↔ ν}

]
, (3.14)

valid when (D + µ̂+ ν̂)i ≥ Di, i = 1, 2, 3, 4, and similarly for all other cases.

3.3 Calculation of Green’s functions

In this section we describe some of the technical aspects of the calculation and present our

results for one-loop Green’s functions. As a starting point one must derive the vertices

for the staggered action and the operators, up to 2 gluons, as required in our one-loop

computation. For this reason one may use an equivalent expression of ηµ(x) appearing in

the action:

ηµ(x) = eiπµ̄ n , x = an , µ̄ =

µ−1∑
ν=1

ν̂ . (3.15)

Using this form of ηµ(x), instead of the definition of Eq. (2.27), simplifies the expression

for OΓ in terms of Fourier transformed fields, χ̃(k), Ãρ(k) ≡ Ãcρ(k)T c:

OΓ =

∫ π

−π

d4k1

(2π)4

∫ π

−π

d4k2

(2π)4
˜̄χ(k1)VΓ(k1, k2) χ̃(k2)

+
∑
c,ρ

∫ π

−π

d4k1

(2π)4

∫ π

−π

d4k2

(2π)4

∫ π

−π

d4k3

(2π)4
˜̄χ(k1)V c,ρ

Γ (k1, k2, k3;ω1, ω2) χ̃(k2) Ãcρ(k3)

+ two−gluon terms + · · · (3.16)

Thus, after Fourier transformation, the quark-antiquark vertices of Eqs. (3.9) - (3.13),
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become:

VS(k1, k2) = δ (k2 − k1) (3.17)

VV (k1, k2) = δ (k2 − k1 + πµ̄) e−ik1µ , (3.18)

VT (k1, k2) = δ (k2 − k1 + πµ̄+ πν̄) e−ik1µe−ik1ν (ν > µ) , (3.19)

VA(k1, k2) = ηµ(µ̄)δ

(
k2 − k1 + π

4∑
ν=1

ν̄ + πµ̄

)
e−i(k11+k12+k13+k14−k1µ ) , (3.20)

VP (k1, k2) = δ

(
k2 − k1 + π

4∑
ν=1

ν̄

)
e−i(k11+k12+k13+k14 ) . (3.21)

As for vertices containing gluons, we give here as an example the 1-gluon vertex of the

vector operator, including double stout smearing:

V c,ρ
V (k1, k2, k3;ω1, ω2) = igT c

[
cos
(
k3µ

2
+ k1µ

)
δ (k3 − k2 + k1 + πµ̄+ πµ)

+iδ (k3 − k2 + k1 + πµ̄) sin
(
k3µ

2
+ k1µ

)]

×

{
4 sin

(
k3ρ

2

)
sin
(
k3µ

2

)
(ω1 + ω2 + 2ω1 ω2 (−4 +

∑
σ cos (k1σ)))

+δρµ

(
(8ω1 − 1)(8ω2 − 1)

+2
∑

σ cos (k3σ) (ω1 + ω2 + 2ω1 ω2 (−8 +
∑

τ cos (k3τ )))

)}
, (3.22)

where µ is the index of the inserted Dirac matrix (γµ) and ρ is the index of the gluon.

Given that the argument y of the operators OΓ runs only over even integers, summation

over the position ofOΓ, followed by Fourier transformation, leads to expressions of the form:

∑
yµ ε 2Z

ei y·k =
1

16
(2π)4

∑
C

δ2π (k + π C) , (3.23)

where δ2π (k) stands for the standard periodic δ-function with non-vanishing support at

kmod2π = 0. Since contributions to the continuum limit come from the neighborhood of
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each of the 16 poles of the external momenta p, at pµ = (π/a)Cµ, it is useful to define p′µ
and Cµ through

pµ = p′µ +
π

a
Cµ ( mod(

2π

a
) ), (Cµ ε {0, 1}) , (3.24)

where the “small” (physical) part p′ has each of its components restricted to one half of the

Brillouin zone: −π/(2a) ≤ p′µ ≤ π/(2a). Thus, conservation of external momenta takes

the form:

δ2π(a p1 − a p2 + πD) =
1

a
δ(p′1 − p′2)

∏
µ

δC1µ−C2µ+Dµ,0 . (3.25)

For the algebraic operations involved in evaluating the Feynman diagrams relevant to

this calculation, we make use of our symbolic package in Mathematica; a description of

this can be found, e.g., in Ref. [43].

3.3.1 Fermion propagator

We compute the one-loop correction to the fermion propagator in order to obtain the

renormalization function of the fermion field, an essential ingredient for the renormalization

of the operators OΓ. The tree-level fermion propagator in the basis of the χ fields can be

written as:

Stree(p1, p2) = (2π)4

− i
a

∑
µ

sin(a p1µ)δ(p1 − p2 +
πµ̄

a
) +mδ(p1 − p2)

1

a2

∑
µ

sin2(a p1µ) +m2
. (3.26)

The one-loop Feynman diagrams that enter the calculation of the 2-point, 1-particle

irreducible (1PI), amputated Green’s function, S−1(p), are illustrated in Fig. 3.1.

Figure 3.1: One-loop diagrams contributing to the fermion propagator. Wavy (solid) lines
represent gluons (fermions).

We have computed S−1(p) for general values of: the gauge parameter α (α = 0: Landau
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gauge, α = 1: Feynman gauge), the stout smearing parameters ωA1 , ωA2 , the Lagrangian

mass m, the number of colors Nc and the external momenta p1, p2. We have obtained

results using different sets of values for the Symanzik coefficients (shown in Table D.1). In

presenting our result, Eq. (3.27), for S−1(p) up to one loop, the values of the quantities

e1, e2 depend on the Symanzik coefficients and the stout smearing parameters. In all

expressions the systematic errors (coming from an extrapolation to infinite lattice size of

our numerical loop-integrals) are smaller than the last digit we present.

S−1
1−loop = i

∑
ρ

δ(p1 − p2 +
π

a
ρ̄) pρ (−1)C1ρ

{
1 +

g2CF
16π2

[
(e1 − α

(
−4.79201 + log

(
a2m2 + a2p2

)
+
m2

p2
− m4

p4
log

(
1 +

p2

m2

))]}
+δ(p1 − p2)m{

1 +
g2CF
16π2

[
e2 + 5.79201α− (3 + α)

(
log
(
a2m2 + a2p2

)
+
m2

p2
log

(
1 +

p2

m2

))]}
(3.27)

p1, p2 : external momenta, a pρ ≡
(
a p1ρ +

π

2

)
modπ

− π

2
=
(
a p2ρ +

π

2

)
modπ

− π

2
, and C1 is

defined in Eq. (3.24). Eq. (3.27) does have the expected structure of an inverse propagator,

once one identifies, in the continuum limit:∑
ρ

δ(p1 − p2 +
π

a
ρ̄) pρ (−1)C1ρ −→

a→0
δ(p′1 − p′2) 6p1

′ (3.28)

For the tree-level Symanzik gauge action we obtain:

e1 = − 7.21363 + 124.515 (ωA1 + ωA2)− 518.433 (ω2
A1

+ ω2
A2

)− 2073.733ωA1 ωA2

+ 9435.35 (ω2
A1
ωA2 + ωA1 ω

2
A2

)− 45903.1ω2
A1
ω2
A2
, (3.29)

e2 = 27.1081− 264.695 (ωA1 + ωA2) + 885.215 (ω2
A1

+ ω2
A2

) + 3540.86ωA1 ωA2

− 13960.0(ω2
A1
ωA2 + ωA1 ω

2
A2

) + 60910.8ω2
A1
ω2
A2
. (3.30)

In Appendix B.1 we provide the expressions of e1, e2 for the case of Wilson gluons. We

denote the expression in curly brackets, in the last line of Eq. (3.27), as Σm(q2,m); from

this we will extract the multiplicative renormalization of the Lagrangian mass, Zm.
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3.3.2 Fermion bilinears

In the context of this work we also study the 1PI, amputated, 2-point Green’s functions of

the operators OΓ, defined in Eqs. (3.9)-(3.13), up to one-loop: Λ1−loop
OΓ

. The 1PI Feynman

diagrams that enter the calculation of the above Green’s functions are shown in Fig. 3.2, and

include up to two-gluon vertices extracted from the operator (the cross in the diagrams).

The appearance of gluon lines on the operator stems from the product UC,D in the operator

definition (Eq. (3.7))1.

Figure 3.2: One-loop diagrams contributing to the fermion-antifermion Green’s functions
of the bilinear operators. A wavy (solid) line represents gluons (fermions). A cross denotes
an insertion of the operator OΓ.

Analogous expressions to Eq. (3.27) arise for the bilinears as well. We note that the

extraction of ZOΓ
in a mass-independent scheme, such as RI′, necessitates evaluation of

Λ1−loop
OΓ

for m = 0 only. Nevertheless, we have included a nonzero Lagrangian mass in

our computations; this allows us to derive the renormalized Green’s functions at m 6= 0.

Comparing the latter with results using a different regularization scheme (e.g. dimensional

regularization) provides another check in our computation.

Although computing the diagrams of Fig. 3.2 does not use the expression for the prop-

agator (Eq. (3.27)), all our results shown in Eqs. (3.31) - (3.35) are expressed in terms of

e1 (see Eqs. (3.27), (B.1)). The reason for that is to show explicitly the contribution to

the quantities λO (Eqs. (3.36) - (3.40)) which appear in the renormalization functions ZO

(Eqs. (3.52) - (3.56)).

Dropping an overall Dirac δ-function of momentum conservation, and denoting the

1For OS only the top right diagram of Fig. 3.2 contributes, since UC,D = 11.
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physical momentum of the fermion and antifermion by p, we obtain Λ1−loop
O :

Λ1−loop
S = 11 +

g2CF
16π2

[
e1 − λS + 5.79201α + i 6p

(
4α

m3

(p2)2
log

(
1 +

p2

m2

)
− 4α

m

p2

)

− (α + 3)

(
3
m2

p2
log

(
1 +

p2

m2

)
+ log

(
a2m2 + a2p2

))]
(3.31)

Λ1−loop
V = γµ +

g2CF
16π2

[
γµ

(
e1 − λV + 4.79201α− αm

2

p2
− α log

(
a2m2 + a2p2

)
+ α

m4

(p2)2
log

(
1 +

p2

m2

))
+ ipµ

(
2α
m

p2
+ 6

m

p2
−
(

2α
m3

(p2)2
+ 6

m3

(p2)2

)
log

(
1 +

p2

m2

))
− 6ppµ

(
2α

1

p2
− 4α

m2

(p2)2
+ 4α

m4

(p2)3
log

(
1 +

p2

m2

))]
(3.32)

Λ1−loop
T = σµν +

g2CF
16π2

[
γµ γν

(
e1 − λT + 3.79201α− (1− α)

(
2
m2

p2
− log

(
a2m2 + a2p2

)
−
(

2
m4

(p2)2
+
m2

p2

)
log

(
1 +

p2

m2

)))

− (γµ 6ppν − γν 6ppµ)(1− α)

((
4
m4

(p2)3
+ 2

m2

(p2)2

)
log

(
1 +

p2

m2

)
− 4

m2

(p2)2

)
− i γµ γν 6p

(
4
m3

(p2)2
log

(
1 +

p2

m2

)
− 4

m

p2

)
− i (γµpν − γνpµ)

(
4
m

p2
− 4

m3

(p2)2
log

(
1 +

p2

m2

))]
(3.33)

Λ1−loop
A = γ5 γµ +

g2CF
16π2

γ5

[
γµ

(
e1 − λA + 4.79021α− (2− α)

m2

p2
− α log

(
a2m2 + a2p2

)
+

(
2 (1− α)

m4

(p2)2
− 2 (1 + α)

m2

p2

)
log

(
1 +

p2

m2

))

− i pµ(1− α)

(
2
m

p2
− 2

m3

(p2)2
log

(
1 +

p2

m2

))
+ iγµ 6p (1− α)

(
2
m

p2
− 2

m3

(p2)2
log

(
1 +

p2

m2

))
− 6ppµ

(
− 8

m2

(p2)2
+ 2α

1

p2
+ 4α

m2

(p2)2

+

(
8
m4

(p2)3
− 4α

m4

(p2)3
+ 4

m2

(p2)2
− 4α

m2

(p2)2

)
log

(
1 +

p2

m2

))]
(3.34)
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Λ1−loop
P = γ5 +

g2CF
16π2

γ5

[
e1 − λP + 5.79201α− (α + 3)

m2

p2
log

(
1 +

p2

m2

)

− (α + 3) log
(
a2m2 + a2p2

) ]
(3.35)

The quantities λO are independent of the mass, gauge parameter, external momen-

tum and lattice spacing; they depend on the coefficients of the gluon action and on the

stout parameters. As discussed earlier, we have employed different parameters for the 2

smearing steps; in fact, we have also kept the parameters of the action’s smearing proce-

dure (ωA1 , ωA2) distinct from those of the operator smearing (ωO1 , ωO2). For the tree-level

Symanzik action and for general values of the stout parameters we obtained:

λS = −34.3217 + 389.210 (ωA1 + ωA2)− 1403.65
(
ω2
A1

+ ω2
A2

)
− 5614.59ωA1 ωA2

+ 23395.4
(
ω2
A1
ωA2 + ωA1 ω

2
A2

)
− 106814ω2

A1
ω2
A2

(3.36)

λV = 86.7568 [(ωA1 + ωA2) − (ωO1 + ωO2)]− 337.383
[(
ω2
A1

+ ω2
A2

)
−
(
ω2
O1

+ ω2
O2

)]
− 1349.53 (ωA1 ωA2 − ωO1 ωO2) + 5950.81

[ (
ω2
A1
ωA2 + ωA1 ω

2
A2

)
−

(
ω2
O1
ωO2 + ωO1 ω

2
O2

) ]
− 28627.2

(
ω2
A1
ω2
A2
− ω2

O1
ω2
O2

)
(3.37)

λT = 8.88342 + 116.579 (ωA1 + ωA2)− 200.588 (ωO1 + ωO2)− 531.759
(
ω2
A1

+ ω2
A2

)
+ 780.590

(
ω2
O1

+ ω2
O2

)
− 2095.16ωA1 ωA2 + 3154.24ωO1 ωO2

+ 31.8743 (ωA1 + ωA2) (ωO1 + ωO2) + 9877.233
(
ω2
A1
ωA2 + ωA1 ω

2
A2

)
− 13993.1

(
ω2
O1
ωO2 + ωO1 ω

2
O2

)
− 284.001

(
(ωA1 + ωA2)ωO1 ωO2

+ ωA1 ωA2 (ωO1 + ωO2)
)
− 48519.3ω2

A1
ω2
A2

+ 68237.1ω2
O1
ω2
O2

+ 2709.49ωA1 ωA2ωO1 ωO2 (3.38)
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λA = 17.0363 + 117.584 (ωA1 + ωA2)− 314.355 (ωO1 + ωO2)− 518.419
(
ω2
A1

+ ω2
A2

)
+ 1223.79

(
ω2
O1

+ ω2
O2

)
− 2041.80ωA1 ωA2 + 4927.06ωO1 ωO2

+ 31.8758 (ωA1 + ωA2) (ωO1 + ωO2) + 9559.98
(
ω2
A1
ωA2 + ωA1 ω

2
A2

)
− 21823.5

(
ω2
O1
ωO2 + ωO1 ω

2
O2

)
− 210.274

(
(ωA1 + ωA2)ωO1 ωO2

+ ωA1 ωA2 (ωO1 + ωO2)
)
− 47154.2ω2

A1
ω2
A2

+ 105754. ω2
O1
ω2
O2

+ 1396.94ωA1 ωA2ωO1 ωO2 (3.39)

λP = 25.7425 + 119.062 (ωA1 + ωA2)− 428.120 (ωO1 + ωO2)− 518.541
(
ω2
A1

+ ω2
A2

)
+ 1667.00

(
ω2
O1

+ ω2
O2

)
− 2042.29ωA1 ωA2 + 6699.88ωO1 ωO2

+ 31.8765 (ωA1 + ωA2) (ωO1 + ωO2) + 9435.40
(
ω2
A1
ωA2 + ωA1 ω

2
A2

)
− 29654.0

(
ω2
O1
ωO2 + ωO1 ω

2
O2

)
− 210.274

(
(ωA1 + ωA2)ωO1 ωO2

+ ωA1 ωA2 (ωO1 + ωO2)
)
− 44803.9ω2

A1
ω2
A2

+ 143482. ω2
O1
ω2
O2

+ 1657.76ωA1 ωA2ωO1 ωO2 (3.40)

In Appendix B.2 we provide the expressions for λO in the case of the Wilson gluon action.

We note in passing that in the absence of stout smearing (ωAi = ωOi = 0) λV = 0 which

implies that ZRI′
V = ZMS

V = 1 (cf. Eqs. (3.54), (3.63)), as is well known from current

conservation. In addition, Eqs. (3.37),(B.4) show that non-renormalization of OV applies

also when ωAi = ωOi ; this follows from the fact that the stout link version of OV mimics

that of the action, and thus current conservation applies equally well in this case.

The dependence of the Green’s functions of Eqs. (3.31) - (3.35) on mass and exter-

nal momentum is regularization independent and agrees for instance with the results of

Refs. [42, 14]. As is well known, in the limit of zero mass the vector and axial Green’s

functions beyond tree level are not multiples of their tree-level values: There appear ad-

ditional, finite contributions with tensor structures which are distinct from those at tree

level. These contributions, denoted as Σ
(2)
V and Σ

(2)
A , can be read off Eqs. (3.32), (3.34):

Σ
(2)
V =

g2CF
16π2

[
− 2α

6p pµ
p2

]
(3.41)

Σ
(2)
A =

g2CF
16π2

[
− 2α

γ5 6p pµ
p2

]
(3.42)

A similar contribution for the tensor bilinear does not appear up to, and including, three



3.4. Renormalization functions 41

loops [46]. The role of Σ
(2)
V and Σ

(2)
A in the renormalization of OV and OA will be discussed

in the next section.

3.4 Renormalization functions

3.4.1 Renormalization functions in the RI′ scheme

Renormalization functions (RFs), for operators and action parameters, relate bare quanti-

ties, regularized on the lattice, to their renormalized continuum counterparts:

ψR = Z
1
2
q ψ

B , mR = Zmm
B , ORΓ = ZOΓ

OBΓ . (3.43)

The RFs of lattice operators are necessary ingredients in the prediction of physical proba-

bility amplitudes from lattice matrix elements. In this section we present the multiplicative

RFs, in the RI′ scheme, of the fermion field (Zq), the fermion mass (Zm) and the fermion

bilinears.

The RI′ renormalization scheme consists in requiring that the renormalized forward

amputated Green’s function Λ(p), computed in the chiral limit and at a given (large Eu-

clidean) scale p2 = µ2, be equal to its tree-level value. Since renormalization conditions are

typically imposed on amputated renormalized Green’s functions, let us relate the latter to

the bare ones. For the quark-antiquark Green’s functions:

〈ψR ψR〉 = Zq〈ψB ψ
B〉 (3.44)

〈ψRORΓ ψ
R〉amp = 〈ψR ψR〉−1 〈ψRORΓ ψ

R〉 〈ψR ψR〉−1

=
(
Z−1

q 〈ψB ψ
B〉−1

) (
Zq ZOΓ

〈ψB OΓ ψ
B〉
) (

Z−1
q 〈ψB ψ

B〉−1
)

= Z−1
q ZOΓ

〈ψB OΓ ψ
B〉amp. (3.45)

These requirements (along with the definition of Σm , Eq. (3.27)) lead to the following
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definitions for ZRI′

q , ZRI′

m , ZRI′

OΓ
:

S−1
1−loop

∣∣∣
p2=µ2, m=0

= S−1
tree

∣∣∣
p2=µ2, m=0

ZRI′

q (µ) (3.46)

Σm

∣∣∣
p2=µ2, m=0

= ZRI′

m (µ)ZRI′

q (µ) (3.47)

Λ1−loop
OΓ

∣∣∣
p2=µ2, m=0

= Λtree
OΓ

ZRI′

q (µ)
(
ZRI′

OΓ
(µ)
)−1

, (Γ = S, T, P ) (3.48)

where S−1
tree is the tree-level result for the inverse propagator, and Λtree

OΓ
is the tree-level

value of the Green’s function for OΓ.

The presence of Σ
(2)
V and Σ

(2)
A in the one-loop Green’s functions of OV and OA makes

a prescription such as Eq. (3.48) inapplicable in those cases. Instead we employ:

(
Λ1−loop
V,A − Σ

(2)
V,A

) ∣∣∣∣∣
p2=µ2, m=0

= Λtree
V,AZ

RI′

q (µ)
(
ZRI′

V,A(µ)
)−1

, (3.49)

and thus take into account only the terms in ΛV,A which are proportional to their corre-

sponding tree-level values.

The expressions we obtain using our results for Λ1−loop
OΓ

are shown here only for the

tree-level improved Symanzik gauge action. The quantities λO are defined in Eqs. (3.36) -

(3.40). We note that the results for Zm and ZS are related by Zm = Z−1
S as expected. Our

results for the RFs are presented for arbitrary values of the renormalization scale µ.

ZRI′

q = 1 +
g2CF
16π2

[
e1 − α log

(
a2 µ2

)
+ 4.79201α

]
(3.50)

ZRI′

m = 1 +
g2CF
16π2

[
−e1 + e2 − 3 log

(
a2 µ2

)
+ α

]
(3.51)
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ZRI′

S = 1 +
g2CF
16π2

[
λS − α + 3 log

(
a2 µ2

)]
(3.52)

ZRI′

V = 1 +
g2CF
16π2

[
λV

]
(3.53)

ZRI′

T = 1 +
g2CF
16π2

[
λT + α− log

(
a2 µ2

)]
(3.54)

ZRI′

A = 1 +
g2CF
16π2

[
λA

]
(3.55)

ZRI′

P = 1 +
g2CF
16π2

[
λP − α + 3 log

(
a2 µ2

)]
. (3.56)

(e1, e2, λO: are as defined in the previous Subsection).

In order to compare perturbative and non-perturbative estimates of RFs one clearly

needs to employ the same renormalization prescription in both cases. In the context of a

numerical simulation the term Σ(2) for the vector and axial cases is often not removed from

the Green’s functions, contrary to what is done perturbatively in Eq. (3.49). Therefore,

an alternative RI′ renormalization prescription appears more natural:

Z−1
q ZRI′ alter

V,A Tr
[
Λ1−loop
V,A Λtree

V,A

]
= Tr

[
Λtree
V,A Λtree

V,A

]
. (3.57)

Using the above prescription, the extracted ZRI′ alter
V and ZRI′ alter

A take the form (to one

loop):

ZRI′ alter
V = ZRI′

V +
g2CF
16π2

α

2
, (3.58)

ZRI′ alter
A = ZRI′

A +
g2CF
16π2

α

2
. (3.59)
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3.4.2 Conversion to the MS scheme

In this section we provide the expressions for the RFs in the MS continuum scheme, using

conversion factors adapted from Ref. [46]. These conversion factors do not depend on the

regularization scheme (and, thus, they are independent of the lattice discretization), when

expressed in terms of the renormalized coupling constant. However, expressing them in

terms of the bare coupling constant introduces a dependence on the action. In our analysis

we use one-loop formulae, which are action independent. The definition for the conversion

factors CO, is as follows:

ZMS,NDR
OΓ

= CO Z
RI′

OΓ
. (3.60)

The above conversion factors refer to the Naive Dimensional Regularization (NDR) of the

MS scheme (see e.g., Ref. [47]), in which CP = CS and CA = CV . From Eq. (3.60) one

obtains2:

ZMS,NDR
q = ZRI′

q − g2CF
16π2

α +O(g4) (3.61)

ZMS,NDR
S,P = ZRI′

S,P +
g2CF
16π2

(4 + α) +O(g4) (3.62)

ZMS,NDR
V,A = ZRI′

V,A (3.63)

ZMS,NDR
T = ZRI′

T − g2CF
16π2

α +O(g4) . (3.64)

Other modified minimal subtraction schemes are related to NDR via additional finite

renormalization and affect the operators which include a γ5, due to the nonunique general-

ization of γ5 to D dimensions. Thus, the treatment of the pseudoscalar and axial operators

in the MS scheme requires special attention. The MS renormalized pseudoscalar and axial

operators, as defined in the scheme of ’t Hooft and Veltman (HV) [48], involve extra finite

factors, ZP
5 , Z

A
5 , in addition to the conversion factors of Eqs. (3.62) - (3.63) [49]:

ZP
5 = 1− g2

16π2
(8CF ) (3.65)

ZA
5 = 1− g2

16π2
(4CF ) . (3.66)

2Note that, at variance with Eq. 3.63, the conversion factors CA,V will not be equal to 1 if one uses,
e.g., the “alternative” RI′ renormalization scheme of Eq. (3.57)
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The relation between the NDR and the HV schemes is:

ZMS,HV
P = ZMS,NDR

P ZP
5 (3.67)

ZMS,HV
A = ZMS,NDR

A ZA
5 . (3.68)

We would like to point out that although the expressions for ZA
5 and ZP

5 are, in general,

different for the singlet and non-singlet operators, at one-loop level they coincide.

Other variants of MS include the DREZ and DRED schemes; the conversion from one

scheme to another can be found in Section 4 of Ref. [36]. Our results for the fermion

bilinears using the Wilson gauge action and without stout smearing, converted in the

DREZ scheme, agree with the corresponding results of Ref. [36].

Having obtained ZX
OΓ

in some renormalization scheme (X = (RI′), (RI′alter), (MS,NDR),

(MS,HV), etc.) the expression for the renormalized Green’s functions in that scheme,

Λrenorm,X
OΓ

(p,m), follow immediately:

ΛR,X
OΓ

(p,m) = ΛB,X
OΓ

(p,m)
(
ZX
q

)−1
ZX
OΓ
. (3.69)

3.5 Summary

In this chapter we presented the calculation of the fermion propagator and the Green’s

functions for the ultra-local fermion bilinear operators: scalar, pseudoscalar, vector, axial

and tensor. The computations were performed to one loop in lattice perturbation theory,

using staggered fermions and Symanzik improved gluons, parameterized by 3 independent

Symanzik coefficients; explicit results have been obtained for some of the most commonly

used actions in this family: Wilson, Tree-level Symanzik, Tadpole improved Lüscher-Weisz,

Iwasaki and DBW2.

The novelty in our calculations is the stout smearing of the links that we apply in both

the fermion action and in the bilinear operators. More precisely, we use 2 steps of stout

smearing with distinguishable parameters. To make our results as general as possible we

also distinguish between the stout parameters appearing in the fermion action and in the

bilinears.

Our expressions for the fermion propagator and the Green’s functions of the bilinear

operators exhibit a rather nontrivial dependence on the external momentum (q) and the

fermion mass (m), and they are polynomial functions of the gauge parameter (α), stout

parameters (ωAi , ωOi), and coupling constant (g). The numerical coefficients appearing in
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these expressions depend on the Symanzik parameters of the gluon action and are presented

for the Wilson and for the tree-level Symanzik improved gluon action.

Using the aforementioned results we extract the renormalization function of the fermion

field and those of the fermion bilinears in the RI′ scheme and we provide the appropriate

conversion factors to the MS scheme; we pay particular attention to the operators which

include a γ5 in their definition. Moreover, for the case of the vector and axial operators we

give an alternative prescription to obtain the renormalizations in the RI′ scheme.

There are several directions in which the present work could be extended:

• A natural extension would be the computation of the Green’s functions for operators

including covariant derivatives, such as the one-derivative vector and axial opera-

tors3: ψγ{µ
←→
D ν}ψ, ψγ5γ{µ

←→
D ν}ψ. The corresponding renormalization functions may

be applied to the nonperturbative lattice evaluation of the momentum fraction of the

nucleon, 〈x〉q, and the moment of the polarized quark distribution of the nucleon,

〈x〉∆q.

• A related further work using staggered fermions with stout improvement would be a

computation of Green’s functions for 4-fermi operators; a work in this direction can

be found in Ref. [50].

• A possible improvement to the action may involve further iterations of stout smearing;

such a procedure has been applied to Wilson fermions [51].

• It would be also interesting to calculate the Green’s functions up to second order in

the lattice spacing; such an extension would not only be useful in order to construct

improved versions of the operators, but also to removeO(g2 a2) contributions from the

non-perturbative estimates of the renormalization functions. Similar computations

have been performed recently with Wilson/clover/twisted mass fermions [39, 52, 43].

3Curly brackets denote symmetrization and subtraction of the trace.



Chapter 4

Magnetic susceptibility of QCD at zero

and at finite temperature from the

lattice

In the previous chapter we computed the matrix elements of staggered fermion operators.

The extension to stout improvement on staggered fermions had never been explored until

this computation. The necessity to calculate the perturbative renormalization functions

of the scalar and tensor operator in the staggered formulation was dictated by the sim-

ulations run by our collaborators in University of Regensburg, University of Wuppertal

and Eötvös University. They implemented the MILC code v7.6 [53] in order to obtain the

zero-temperature magnetic susceptibilities at physical quark masses.

4.1 Introduction

An external (electro)magnetic field is an excellent probe of the dynamics of the QCD

vacuum. Strong magnetic fields affect fundamental properties of QCD like chiral symme-

try breaking and restoration, deconfinement, the hadron spectrum or the phase diagram,

just to name a few. Chiral symmetry breaking has long been known to be enhanced by

magnetic fields at zero temperature, signalled by an increasing chiral condensate (see e.g.

Ref. [54]). The particle spectrum may undergo drastic changes (see e.g. the ongoing dis-

cussion in Refs. [55, 56, 57]) with some strong decay channels becoming unavailable and

others opening up. The transitions at non-vanishing temperature related to chiral sym-

47
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metry breaking and deconfinement are also affected by the magnetic field B. The phase

diagram of QCD in the temperature-magnetic field plane was determined recently in lattice

simulations [31, 58, 59] by analyzing the dependence of the chiral condensate and of other

observables on B, with the main result that the transition temperature Tc decreases
1 with

growing B and the transition remains an analytic crossover just as at B = 0 [62]. These

effects are relevant in several physical situations as strong magnetic fields are expected to

play a significant role, e.g., in early cosmology [63], in non-central heavy ion collisions [64]

and in dense neutron stars [65].

Another fundamental characteristic of the QCD vacuum is the response of the free

energy density (which at zero temperature is the vacuum energy density) to magnetic

fields,

f = −T
V

logZ, (4.1)

where Z is the partition function of the system and V the (three-dimensional) volume. Due

to rotational invariance the B-dependence of f is to leading order quadratic, characterized

by the magnetic susceptibility of the QCD vacuum,

ξ = − ∂2f

∂(eB)2

∣∣∣∣
eB=0

, (4.2)

which is a dimensionless quantity (here e > 0 denotes the elementary charge). A positive

susceptibility indicates a decrease in f due to the magnetic field, that is to say, a param-

agnetic response. On the other hand ξ < 0 is referred to as diamagnetism [66]. Clearly,

the sign of ξ is a fundamental property of the QCD vacuum.

In the functional integral formalism of QCD the susceptibility is readily split into spin-

and orbital angular momentum-related terms, according to

ξ =
∑
f

ξf , ξf = ξSf + ξLf , (4.3)

with contributions from each quark flavor f with electric charge qf and mass mf . For a

1Employing physical quark masses in the simulation and extrapolating the results to the continuum
limit, as was done in Refs. [31, 58, 59], proved to be essential. Studies where these ingredients are missing
produce qualitatively different results, namely an increasing Tc(B) function [60, 61]. A possible explanation
for this discrepancy and a comparison to effective theories was given recently in Ref. [59].
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constant magnetic field B = Fxy in the positive z direction,

ξSf =
qf/e

2mf

∂

∂(eB)

〈
ψ̄fσxyψf

〉∣∣∣∣
eB=0

, σµν =
1

2i
[γµ, γν ]. (4.4)

ξLf is given by an analogous expression with σxy replaced by a generalized angular momen-

tum also present for spinless particles, cf. Eq. (B.14) of Appendix B.3. Eq. (4.4) constitutes

an important relation which, to our knowledge, has not been recognized previously in this

context. Its derivation from the quark determinant and the corresponding Dirac operator

is given in Appendix B.3.

In the present work we concentrate on the spin contributions, and thus the expectation

value of the tensor polarization operator ψ̄fσµνψf . To leading order this is proportional to

the field strength and thus can be written as [67]

〈
ψ̄fσxyψf

〉
= qfB ·

〈
ψ̄fψf

〉
· χf ≡ qfB · τf , (4.5)

where the expectation value is the quark condensate
〈
ψ̄fψf

〉
. Corrections to the right

hand side are expected to be of O(B3), so that Lorentz invariance is maintained. In the

literature χf is referred to as the magnetic susceptibility of the condensate (for the quark

flavor f). In what follows we will also use the term “magnetic susceptibility”. Again we

stress that it constitutes only one of the two contributions to the total susceptibility. We

also define the tensor coefficient τf as the product of
〈
ψ̄fψf

〉
and χf . Both quantities will

depend on the temperature T at which the expectation values of Eq. (4.5) are determined.

At finite quark masses it is advantageous to work with τf instead of χf for reasons related

to renormalization (see below).

The magnetic susceptibility χf , in the context of QCD, was first introduced in Ref. [67].

Since then its experimental relevance has been growing steadily. In particular, this quantity

appears in the description of radiative Ds meson transitions [68], of the anomalous mag-

netic moment of the muon [69] and of chiral-odd photon distribution amplitudes [70, 71].

Moreover, vector-tensor two-point functions at zero momentum are related to χf [72].

Since χf acts as an input parameter in various strong interaction processes [73], a high-

precision determination of its value is of importance. In the past, it has been calculated

using QCD sum rules [74, 75, 76], in the holographic approach [77, 78], using the operator

product expansion [79], in the instanton liquid model and chiral effective models [80, 81, 82,

83], using the zero modes of the Dirac operator [84], and in low-energy models of QCD like

the quark-meson model and the Nambu-Jona-Lasinio (NJL) model [85]. The numerical



4.2. Magnetic field and observables 50

value of χf was also determined recently on the lattice in the quenched approximation

of two- [86] and of three-color QCD [87], in both cases without renormalization. We

mention that the quenched approach can lead to large systematic errors at strong magnetic

fields [88].

In this work we determine τf (T ) and χf (T ) for a wide range of temperatures around the

transition region between the hadronic and the quark-gluon plasma phases and at T = 0.

We apply fully dynamical lattice simulations, i.e. both the fermionic degrees of freedom

and the external field are taken into account in the generation of the gauge ensembles.

We perform the renormalization of the tensor coefficient and carry out the continuum

extrapolation using results obtained at different lattice spacings. One main result will be

that the tensor coefficient at T = 0 is negative for each quark flavor f , indicating the spin-

diamagnetic nature of the QCD vacuum. Moreover we observe that τf decreases around

the QCD crossover temperature similarly to other order parameters like the condensate.

This chapter is organized as follows. We define the lattice implementation of the mag-

netic field and the observables in Sec. 4.2 and discuss their renormalization in Sec. 4.3. The

multiplicative renormalization is carried out perturbatively; the determination of renormal-

ization constants is detailed in Chapter 3. After a brief summary of the simulation setup

in Sec. 4.4 we present the results in Sec. 4.5 for the tensor coefficients and in Sec. 4.6 for

the susceptibilities, before we conclude.

4.2 Magnetic field and observables

We study the effect of an external magnetic field B on the expectation value of the tensor

polarization, Eq. (4.5). To realize such an external field on the lattice we implement the

continuum U(1) gauge field Aµ satisfying ∂xAy−∂yAx = B using space-dependent complex

phases [89, 90, 60, 31] in the following way,

uy(n) = eia
2qfBnx ,

ux(Nx − 1, ny, nz, nt) = e−ia
2qfBNxny ,

ux(n) = 1, nx 6= Nx − 1,

uν(n) = 1, ν 6∈ {x, y},

(4.6)

where the sites are labeled by integers n ≡ (nx, ny, nz, nt), with nν = 0 . . . Nν − 1 and a is

the lattice spacing. This prescription for the links corresponds to a covariant derivative for
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the flavor f of the form2 Dµ,f = ∂µ + iqfAµ + igAaµT
a. This discretization satisfies periodic

boundary conditions in the spatial directions and ensures that the magnetic flux across

the x − y plane is constant. It is well known that the magnetic flux in a finite volume is

quantized [91, 92], which on the lattice implies

qB · a2 =
2πNb

NxNy

, Nb ∈ Z, 0 ≤ Nb < NxNy, (4.7)

where q is the smallest charge in the system, in our case q = qd = qs = −e/3. Due to the

periodicity of the links of Eq. (4.6) in Nb with period NxNy, one expects lattice artefacts to

become large if Nb > NxNy/4. In the following we use lattices with Nx = Ny = Nz ≡ Ns.

We consider three quark flavors u, d and s. Since the charges and masses of the quarks

differ we have to treat each flavor separately; qu = −2qd = −2qs. We assume mu = md 6=
ms. The partition function in the staggered formulation then reads,

Z =

∫
DUe−βSg

∏
f=u,d,s

[detM(U, qfB,mf )]
1/4 , (4.8)

with M(U, qB,m) = /D(U, qB) + m1 being the fermion matrix and β = 6/g2 the gauge

coupling. The exact form of the action we use is described in Refs. [33, 93], and further

details of the simulation setup are given in Sec. 4.4. Since the external field couples directly

only to quarks, B just enters the fermion determinants through the U(1) links of Eq. (4.6).

The volume of the system is given as V ≡ (aNs)
3 and the temperature as T = (aNt)

−1.

In this formulation the expectation value of the quark condensate for the flavor f can

be written as 〈
ψ̄fψf

〉
≡ T

V

∂ logZ
∂mf

=
T

4V

〈
TrM−1(U, qfB,mf )

〉
. (4.9)

Likewise, the expectation value of the tensor Dirac structure reads,

〈
ψ̄fσµνψf

〉
=

T

4V

〈
Tr (M−1(U, qfB,mf )σµν)

〉
. (4.10)

At this point a few comments regarding the sign of the expectation values in Eq. (4.5)

are in place. In continuum calculations a negative sign for the condensate is customary,

see e.g. Ref. [76], in contrast to our convention in Eq. (4.9). This sign convention applies

for any fermionic bilinear expectation value, therefore it does not affect the sign of χf , but

2Note that we do not include in the action the corresponding photon kinetic term FµνFµν/4 = B2/2.
This means that in the discussion we will never encounter B alone but only the combination qfB ∼ eB.
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only that of τf . Further possible differences in the sign can arise from the definition of σµν

and from that of the U(1) part of the covariant derivative. We note that our notation is

consistent with that of Ref. [76] in terms of σµν , but differs by a minus sign in the covariant

derivative (see the paragraph below Eq. (4.6)), implying an overall relative minus sign of

χf .

4.3 Renormalization

In order to determine the continuum limit of the observables defined in Eqs. (4.9) and (4.10),

their renormalization has to be performed. The quark condensate (at finite mass) is sub-

ject to additive and multiplicative renormalization, due to the divergent terms in the free

energy density f of Eq. (4.1) and in the bare mass mf . The former divergence is (to leading

order) quadratic in the cutoff 1/a [94]. Therefore, the bare observable can be written as

〈
ψ̄fψf

〉
(B, T ) =

1

ZS

〈
ψ̄fψf

〉r
(B, T ) + ζSmf/a

2 + . . . , (4.11)

where ZS is the renormalization constant of the scalar operator and the ellipses denote sub-

leading (logarithmic) divergences in a. Here the superscript r indicates the renormalized

observable. The divergences in
〈
ψ̄ψ
〉
depend neither on the temperature nor on the ex-

ternal field3. Therefore, in mass-independent renormalization schemes, ζS and ZS are just

functions of the gauge coupling. The conventional way to cancel the additive divergences

is to consider the difference, for example, between the condensate at T 6= 0 and at T = 0.

The situation is somewhat different for the tensor polarization. As a calculation in the

free theory shows, an additive divergence of the form qfBmf log(m2
fa

2) appears in
〈
ψ̄σµνψ

〉
(see Appendix B.4). This divergence vanishes in the chiral limit (or at zero external field)

and is not related to the multiplicative divergence of the tensor operator to which we will

return below. Altogether the bare observable can thus be written as〈
ψ̄fσµνψf

〉
(B, T )

=
1

ZT

〈
ψ̄fσxyψf

〉r
(B, T ) + ζT qfBmf log(m2

fa
2) + . . . ,

(4.12)

where ZT is the renormalization constant of the tensor operator (its perturbative determi-

nation is detailed in Chapter. 3) and ζT the coefficient of the divergent logarithm. Both

3For a detailed argumentation about the absence of B-dependent divergences in the condensate see
Ref. [31] and references therein.
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are independent of T and B (and in mass-independent schemes of mf ). In Eq. (4.12)

the ellipses denote finite terms. In the free theory we calculate ζT (g = 0) = 3/(4π2) (see

Appendix B.4). For our non-perturbative work, we used ZMS
S and ZMS

T , with parameters

ωOi = ωAi = 0.15:

ZMS
S = 1 +

g2CF
16π2

[
0.7929 + 3 log

(
a2µ2

)]
,

ZMS
T = 1 +

g2CF
16π2

[
1.3136− log

(
a2µ2

)]
.

(4.13)

From these considerations it is clear that the magnetic susceptibility χf , being pro-

portional to the ratio of Eq. (4.12) over Eq. (4.11), at non-vanishing quark mass contains

additive divergences which depend both on T and on B (and also on the quark flavor f).

This means that these singular contributions cannot be removed by subtracting the same

operator, measured at different T or B (or flavor f).

Therefore, in the following we consider the tensor coefficient τf defined in Eq. (4.5).

We notice that the operator 1−mf∂/∂mf eliminates the logarithmic divergence and thus

can be used to define an observable with a finite continuum limit,

τ rf ≡
(

1−mf
∂

∂mf

)
τf · ZT ≡ τfZT − τdiv

f . (4.14)

At finite quark mass this is one possible prescription to cancel the additive logarithmic

term. It has the advantages that the chiral limit of τf is left unaffected, and that, together

with the logarithmic divergence, scheme-dependent finite terms also cancel in this difference

(see Eq. (B.24)), such that the scheme- and renormalization scale-dependence of τf resides

solely in ZT.

Since the subtracted divergence is independent of the temperature, we are able to

determine τdiv
f at zero temperature where we systematically study the dependence of τf

on mf and a, and then perform the subtraction at nonzero temperatures as well. As we

will see, the subtraction in Eq. (4.14) amounts to a 5 − 10 per cent effect for the lattice

spacings we use.

4.4 Simulation setup

For our measurements we used the gauge ensembles of Refs. [31, 59] augmented by ad-

ditional new ensembles. All configurations were generated with the tree-level improved
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Symanzik gauge action and stout smeared staggered fermions, at physical quark masses.

We use lattices at both T = 0 and at T > 0, at various values of the external magnetic field.

We employ two steps of stout smearing with parameter ωA = ωO = 0.15 both in the action

and in the operators. The zero temperature ensembles consist of 243 × 32, 323 × 48 and

403×48 lattices at five different lattice spacings, while at finite temperature we carried out

measurements on lattices with Nt = 6, 8 and 10, allow for a continuum limit extrapolation.

We studied finite volume effects on Nt = 6 lattices, using three different aspect ratios. The

light (mu = md ≡ mud) and strange (ms) quark masses are set to their physical values,

along the line of constant physics (LCP) as mud = mud(β), and ms/mud = 28.15. The LCP

was determined by keeping fK/Mπ and fK/MK physical, and the lattice scale is set using

fK . More details about the lattice action, the determination of the scale and the LCP, and

the lattice ensembles can be found in Refs. [33, 93, 31]. At each temperature and external

magnetic field we measured the observables of interest on O(100) thermalized configura-

tions which were separated by 5 trajectories to reduce autocorrelations. The measurements

were carried out using the noisy estimator method, with 20–40 random vectors.

We define the coupling g in the “E” scheme [95], using the nonperturbative plaquette

expectation value,

g2
E =

1

c

(
1− 1

3
〈TrU�〉nonper

)
, (4.15)

which is found to be 10−20% larger than the bare coupling g2. We compute c perturbatively

from the plaquette expectation value up to one-loop:

〈TrU�〉per = Nc(1− g2c). (4.16)

For the tree-level improved Symanzik gauge action we obtain c = 0.183131340(2) · CF ,
thereby confirming Ref. [96].

We allow for a systematic error of 50% in 1− ZMS
T for the effect of higher order terms

in the perturbative calculation.

4.5 Results

We measure the tensor polarizations as functions of the external field at various temper-

atures for the three different flavors. We observe that
〈
ψ̄uσxyψu

〉
is negative, indicating

that χu < 0, in accordance with Ref. [76] and the discussion about the sign convention

below Eq. (4.10). Whether this corresponds to a para- or a diamagnetic response will be
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discussed in Sec. 4.6.

Figure 4.1: Minus the bare tensor polarization (upper panel) and the bare condensate
(lower panel) for the up quark, for three temperatures on the Nt = 6 lattices.

In the upper panel of Fig. 4.1 we show minus the bare tensor polarization as a function

of the magnetic field for Nt = 6. We confirm the linear trend to leading order in B,

in agreement with Ref. [86]. However, the slope at small B is also observed to change

significantly with temperature. We find that nonlinear effects are always below 5% for

magnetic fields eB < 0.2 GeV2 and they reduce as the temperature decreases. In the lower

panel of Fig. 4.1 we also show how the bare condensate itself changes with B for different

temperatures. We observe that the dependence of the condensate on B varies strongly with

the temperature in the transition region. This behavior was found to be the reason for the

decrease of the chiral transition temperature with growing B, and was investigated in detail

in Refs. [31, 58, 59]. We study finite volume effects at one temperature T = 141 MeV, for

Nt = 6 ensembles with Ns = 16, 24 and 32, see Fig. 4.1. The largest lattice corresponds

to a linear extent of 7 fm. Since we see no deviation for the tensor polarization or the

condensate between the different volumes, we conclude that finite size effects are smaller

than our statistical errors.

Next, we concentrate on the leading linear trend in
〈
ψ̄fσxyψf

〉
, i.e. on the slope charac-

terized by the tensor coefficient τf , as defined in Eq. (4.5). We perform the multiplicative
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renormalization of τf according to Eq. (4.14), using the tensor renormalization constant,

Eq. (4.13) in the MS scheme at a renormalization scale µ = 2 GeV. The dependence of

the results on the renormalization scale µ is found to be mild, as can be seen below.

We measure ZT · τf at zero temperature for several lattice spacings and quark masses.

Here we fix the strange quark mass to its physical value and tune only the light mass such

that R ≡ mud/m
phys
ud varies between 0.5 and 28.15. For the latter ratio all three quarks

have equal masses. (Note that these measurements are also fully dynamical and no partial

quenching is applied.) In Fig. 4.2 we plot minus the tensor coefficient for the up quark as

a function of R for five different lattice spacings. Motivated by the behavior of the tensor

coefficient in the free case, Eq. (B.23), and by the scaling properties of the action we use,

we consider the following fit function for ZTτf :

cf0 + cf1R + cf2R log(R2a2), cfi = c
(0)
fi + c

(1)
fi a

2. (4.17)

Here a is to be understood in units of GeV−1. This form describes the data very well; we

obtain χ2/d.o.f. ≤ 1.5 for both the up and down flavors. The fitted values for c
(j)
fi are listed

in Table 4.1. We remark that the coefficients of the logarithms, c
(0)
u2 /m

phys
ud = 0.055(5) and

c
(0)
d2 /m

phys
ud = 0.072(6) are quite close to the free-field value of 3/(4π2) (see Appendix B.4).

We perform the fit both for all lattice spacings and for only the finest four lattices. Moreover

we consider the inclusion of an R2 term in the fit and vary the fit range to exclude points

with largest masses. The difference between these fits is used to estimate the systematic

error of this combined extrapolation.

Figure 4.2: Mass dependence of the combination −ZT · τu in the MS scheme at renormal-
ization scale µ = 2 GeV. The coefficient of the logarithmic divergence is determined by
fitting the data by a lattice spacing-dependent function (solid lines).



4.5. Results 57

f c
(0)
f0 c

(1)
f0 c

(0)
f1 c

(1)
f1 c

(0)
f2 c

(1)
f2

u -40.3 3.8 -2.1 0.5 0.19 -0.03

d -38.9 2.8 -2.5 0.7 0.25 -0.07

Table 4.1: Central values for the fit parameters of Eq. (4.17) in units of MeV.

At zero quark mass the additive divergence is absent and therefore, applying the com-

bined fit, the continuum limit of the chiral limit of ZTτf can be extracted (it equals

the c
(0)
f0 parameter). This corresponds to the black point in Fig. 4.2. However, since

we are interested in the tensor coefficient at physical quark masses, we now follow the

scheme of Eq. (4.14), subtracting the logarithmic divergence. We apply the operator

1−mf∂mf = 1−R∂R, which acting on the fit function of Eq. (4.17) yields

τ rf = cf0 − 2cf2R. (4.18)

As already emphasized in Sec. 4.3, the subtraction of the divergent term τdiv
f does not

affect the chiral continuum limit since it vanishes at mf = 0. Moreover, this subtraction

eliminates the scheme-dependent finite terms (cf. Eq. (B.24)), making the conversion to

the MS scheme trivial.

For the strange quark we do not perform a similar analysis with modified strange quark

masses, but subtract the logarithmic divergence by using the fit parameters for the down

quark and R = 28.15. We find that the dependence of the strange quark tensor polarization

on the light quark masses is below a few per cent (1% for the coarsest and 4% for the finest

lattice). Therefore this approximation introduces errors smaller than those already present

due to statistics and renormalization.

After the subtraction, the renormalized tensor coefficient τ rf has a well defined con-

tinuum limit even for finite quark masses. We find that for physical light quark masses

|τdiv
u,d | < 2.5 MeV for our range of lattice spacings. For the strange quark the divergent

contribution is larger in magnitude, giving rise to larger errors due to this subtraction.

Our final results for the zero temperature renormalized tensor coefficients in the MS

scheme at a renormalization scale µ = 2 GeV are summarized in Table 4.2. For the

light flavors this Table contains the results both for physical quark masses and for the

chiral limit. These values may be compared to the unrenormalized quenched SU(2) lattice

result −τud = 46(3) MeV of Ref. [86] and to a similar study in the quenched SU(3) theory,

52 MeV [87]. Our results are in reasonable agreement with the QCD sum rule result 50(15)
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MeV of Ref. [76], which was calculated at µ = 1 GeV (note that the scale dependence of τf

is small due to its small anomalous dimension, see Eq. (4.13)). We also compare our results

to the NJL and quark-meson model predictions of 69 MeV and 65 MeV [85], respectively,

which were obtained at an even lower renormalization scale of µ ∼ 0.6 GeV. We remark

that a lower value of 44 MeV is obtained in the renormalized version of the quark meson

model [85].

f m τ rf
error

stat. mult. cont. scale total

u
phys. -40.7 0.2 0.3 1.0 0.8 1.3

chir. -40.3 0.2 0.3 1.1 0.8 1.4

d
phys. -39.4 0.3 0.3 1.1 0.8 1.4

chir. -38.9 0.3 0.3 1.3 0.8 1.5

s phys. -53.0 0.5 0.3 7.1 1.1 7.2

Table 4.2: Results and error budget for the renormalized tensor coefficients for physical
quark masses (phys.) and in the chiral limit (chir.). Given are (in units of MeV) the errors
related to statistics, the multiplicative renormalization, the combined continuum fit, the
lattice scale and, finally, the total error.

Next, one uses the fact that the τdiv
f contribution is independent of T to perform the

additive renormalization of the tensor coefficient at finite temperatures. In Fig. 4.3 −τ ru is

plotted as a function of the temperature for three lattice spacings. A simultaneous fit of the

results is performed for different lattice spacings to an Nt-dependent spline function. This

dependence is of the form N−2
t , once again to reflect the scaling properties of our lattice

action. We can read off the continuum extrapolation at N−2
t = 0, which is shown in the

figure by the hatched yellow band. The systematic error of the continuum extrapolation

is estimated to be 1 MeV based on our experience at T = 0 (see Table 4.2) and is added

to the statistical error in quadrature. Moreover, the uncertainty in the determination of

the lattice scale (for details see Ref. [93]) propagates into this result and gives rise to an

additional systematic error of 2%. Since this latter error is uniform and does not influence

the shape of the τ rf (T ) curve, it is not included in the plot.

In the same manner the tensor coefficient is determined for the down quark at T > 0,

and obtain results which are within errors consistent with τ ru , just as was observed at

T = 0. For the strange quark this procedure leads to a qualitatively similar temperature-

dependence too. The dependence of τ ru,d on the temperature in the transition region can

be used to define a transition temperature at B = 0. We determine the inflection point
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Figure 4.3: Minus the renormalized tensor coefficient τ ru(T ) in the MS scheme at a renor-
malization scale µ = 2 GeV for three lattice spacings and the continuum extrapolation.

of τ ru,d(T ) and obtain Tc = 162(3)(3) MeV in the continuum limit. Here the first error

combines the statistical error and the error coming from the continuum extrapolation,

and the second one is due to the uncertainty in the lattice scale. In conclusion, the

tensor coefficient acts as a quasi-order parameter for the chiral transition, and gives a

similar transition temperature as the chiral condensate at B = 0, Tc = 159(3)(3) MeV, cf.

Refs. [31, 97].

Finally, the dependence of τ rf is studied on the renormalization scale µ at T = 0. We

carry out the analysis for a range of renormalization scales in the window 1 GeV ≤ µ ≤
4 GeV. We find a very mild dependence on µ such that the tensor coefficients remain

within the total errors given in Table 4.2.

4.6 Magnetic susceptibility

We can translate the result for τ rf to the magnetic susceptibility χf of Eq. (4.5) using the

(scale- and scheme-dependent) value of the quark condensate. We recall the Gell-Mann-

Oakes-Renner relation,

M2
πF

2 = (mu +md) ·
〈
ψ̄lψl

〉
+ . . . , (4.19)

which, at zero external field and in the chiral limit, relates the light condensate l = u, d to

the quark masses and to the pion mass and decay constant, with F = 86.2(5) MeV [98].

We make use of a recent lattice determination [99] of the quark masses in the MS scheme

at µ = 2 GeV, mu+md = 6.94(13) MeV, to extract
〈
ψ̄lψl

〉
= (269(2) MeV)3. (We mention
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that multiplying the lattice bare mass along the LCP [93] and the inverse of the scalar

renormalization constant of Eq. (4.13), we get a compatible value for the renormalized

quark mass in the MS scheme, albeit with large uncertainties.) For the strange condensate

we employ the QCD sum rule prediction [100],
〈
ψ̄sψs

〉
/
〈
ψ̄lψl

〉
= 0.8(3). Using these values

for the quark condensates, the zero-temperature magnetic susceptibilities at physical quark

masses are calculated as

MS, µ = 2 GeV :

χu = −(2.08± 0.08) GeV−2,

χd = −(2.02± 0.09) GeV−2,

χs = −(3.4± 1.4) GeV−2.

(4.20)

The magnetic susceptibilities at different values of µ can be obtained by running down with

the ratio of renormalization constants ZMS
T /ZMS

S . Using the four-loop running to µ = 1 GeV

one has to multiply the above values by r = 1.49(7). We remark furthermore that running

down with ZMS
S to a renormalization scale of µ = 1 GeV we obtain

〈
ψ̄lψl

〉
= (245(5) MeV)3.

Our results in Eq. (4.20) are in good agreement with the QCD sum rule calculations4

summarized and updated in Ref. [76]: χl = −2.11(23) GeV−2 at µ = 2 GeV, and also

compare well with the vector dominance estimate of χl = −2/m2
ρ ≈ −3.3 GeV−2. We

remark that for the strange susceptibility, QCD sum rules predict χs ≈ χl [101], which is

somewhat smaller than our result in Eq. (4.20).

Comparing the temperature-dependence of the light tensor coefficient (Fig. 4.3) and

that of the light quark condensate from Ref. [59], we conclude that the ratio of the

two renormalized observables is compatible with a constant, resulting in a magnetic sus-

ceptibility χl(T ) depending only weakly on the temperature, at least for temperatures

T < 170 MeV. Moreover, we remark that since χf is given in terms of the chiral conden-

sate (which has a large anomalous dimension), the magnetic susceptibility has a stronger

scale dependence than τ rf .

As anticipated in the introduction, the magnetic susceptibility χf of the condensate is

intimately connected to the spin contribution ξS to the total magnetic susceptibility. Using

this equivalence (which we prove in Appendix B.3), one sees that with our sign conventions

χf > 0 corresponds to paramagnetism and χf < 0 to diamagnetism. Thus we conclude

that the response of the QCD quark condensate to external magnetic fields is in its nature

4The value given in Ref. [76] is χl = 3.15(30) GeV−2 at µ = 1 GeV. We divided this by −1.49(7),
running the value to the scale µ = 2 GeV and accounting for the different sign convention we employ, see
the remark after Eq. (4.10).



4.6. Magnetic susceptibility 61

diamagnetic.

In conclusion, in this Chapter we studied the response of the QCD vacuum to a con-

stant external magnetic field at zero and at finite temperature. We determined the tensor

polarizations of the quark condensates for various temperatures and external fields. We

observed that the polarization of the flavor f at a temperature T is a linear function of B

for fields eB < 0.2 GeV2, with a coefficient τf (T ), defined in Eq. (4.5). The renormalization

of this tensor coefficient requires two steps. The additive divergences (which are present for

finite quark masses) were fitted explicitly at T = 0 and then subtracted using the operator

1−m∂m, at T = 0 and at T > 0. The multiplicative renormalization was performed per-

turbatively. We obtained results in the MS scheme at a renormalization scale µ = 2 GeV,

and extrapolated these to the continuum limit using several lattice spacings. Our final

results for the renormalized τ rf are given in Table 4.2 for T = 0 and are shown in Fig. 4.3

for T > 0. Combining the results for τ rf and the quark condensates we also determined the

magnetic susceptibilities χf , see Eq. (4.20) for the zero temperature values. We found χf

to remain constant within errors as the temperature is increased up to T ≈ 170 MeV.

We showed furthermore that there is a simple relation between the tensor coefficients

τ rf and the spin contribution ξS to the total magnetic susceptibility, see Eq. (4.4). The

negative sign of ξS reveals a diamagnetic response, i.e., that the spin magnetization of the

medium aligns itself antiparallel to the external field. The magnitude of this effect reduces

as the temperature grows, since ξS is proportional to τ rf which is plotted in Fig. 4.3. For the

free case ξS and ξL are known to have opposite signs [102], implying a partial cancellation

between the two sectors. Therefore, a determination of the orbital angular momentum

contribution is necessary to arrive at a definite conclusion on whether the total response

of the QCD vacuum to external magnetic fields is para- or diamagnetic.



Chapter 5

Perturbative calculation of local and

extended fermion bilinear operators

with the SLiNC action

In this Chapter we calculate corrections to the fermion propagator and to the Green’s

functions of all local and one-derivative vector, axial and tensor fermion bilinear operators,

to one-loop in perturbation theory. We employ the SLiNC action. This action is presently

being used by the QCDSF Collaboration, in simulations of QCD with dynamical quark

flavors. The novel aspect of our calculations is that they are carried out to second order

in the lattice spacing, O(a2). Consequently, they have addressed a number of new issues,

most notably the appearance of loop integrands with strong IR divergences (convergent

only beyond 6 dimensions). Such integrands are not present in O(a1) improvement cal-

culations; there, IR divergent terms are seen to have the same structure as in the O(a0)

case, by virtue of parity under integration, and they can thus be handled by well-known

techniques [43]. The O(a2) corrections to the quark propagator and Green’s functions

computed in this Chapter are useful to improve the nonperturbative RI-MOM determina-

tion of renormalization constants for quark bilinear operators. Our results depend on a

large number of parameters: coupling constant, number of colors, lattice spacing, external

momentum, clover parameter, Symanzik coefficients, stout and gauge parameter.

62
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5.1 Introduction

One fundamental aim in simulations of hadronic states is the accurate evaluation of mo-

ments of parton momentum, helicity and transversity distributions as a function of the

momentum fraction, as well as moments of generalized parton distributions (GPDs) of

meson and baryon states. These quantities contain a very rich spectrum of physical infor-

mation on nucleons, and are thus at the forefront of research in Strong Interaction Physics.

Beyond the information that GPDs yield, such as size, magnetization and shape, GPDs

encode additional information, relevant for experimental investigations, such as the de-

composition of the total hadron spin into angular momentum and spin carried by quarks

and gluons. GPDs are single particle matrix elements of the light-cone operator [103, 104],

which can be expanded in terms of local twist-two operators. Lattice QCD allows us to

extract hadron matrix elements for the twist-two operators, which can be expressed in

terms of generalized form factors.

In order to evaluate moments of GPDs from numerical simulations of QCD on the Lat-

tice, one must measure nucleon matrix elements of a series of composite fermion operators,

both local and extended. These operators must be renormalized, before one can compare

results from simulations to physical, experimentally measurable quantities. Sophisticated

techniques in Quantum Field Theory will be applied to compute the perturbative renor-

malization of the fermion propagator, local bilinears and higher-twist operators, beyond

leading order in g (coupling constant) and a (lattice spacing). These terms are subtracted

from the non-perturbative results as we are going to see in Chapter 6 in the case of clover

fermions and Wilson gluons. This subtraction suppresses lattice artifacts considerably,

depending on the operator under study, and leads to a more accurate determination of the

renormalization constants [39].

In the Bjorken limit1, involved in studies of deep inelastic scattering, the Operator

Product Expansion (OPE) for a product of hadronic currents takes the form:

J(x)J(0) ∼
∑
n,i

C(n,i)(x2)xµ1 · · ·xµn O(n,i)
µ1···µn(0) (5.1)

The forward matrix elements of the local operators O(x;N, i) appearing in this expan-

sion are directly related to the moments of hadron structure functions [107]. The dominant

1In the Bjorken limit [105, 106] structure functions have factorization properties, which follow from
the renormalizability of the theory.
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contribution in the expansion is given by operators whose twist (dimension minus spin)

equals two, which in the flavor non-singlet case means the following traceless operators [108]

(curly brackets denote symmetrization over Lorentz indices and subtraction of the traces;

T a are flavor matrices):

O{µµ1···µn} = ψγ{µDµ1 · · ·Dµn}T
a

2
ψ (5.2)

O{µµ1···µn}
5 = ψγ{µγ5D

µ1 · · ·Dµn}T
a

2
ψ (5.3)

The matrix elements of local operators we studied are given by:

〈p′s′|O{µ1···µn}
Γ |ps〉 (5.4)

where s, s′ are the initial and final spin 4-vectors of the nucleon, p, p′ are the corresponding

momenta and D ≡ D
↔

= (D
→
−D
←

)/2 is the covariant derivative.

The extended bilinear operators, which we study, are symmetrized over two Lorentz

indices and are made traceless:

O{σ τ} ≡ 1

2

(
Oσ τ +Oτ σ

)
− 1

4
δσ τ

∑
λ

Oλλ , Oσ τ ≡ ψγσDτψ. (5.5)

This definition avoids mixing with lower dimension operators. In a massless renormal-

ization scheme the renormalization constants are defined in the chiral limit, where flavor

symmetry is exact. Hence, the same value for Z is obtained independently of the value

of T a and therefore we drop (T a/2) on the operators from here on. One should however

keep in mind the fact that the values of Z for flavor singlet and nonsinglet operators will

be different beyond one-loop in perturbation theory and also nonperturbatively.

Concentrating on one derivative operators, there are three types of forward matrix

elements, (p = p′) according to the choice of the γ-structure of the operator O; in the

flavor singlet case, these three types correspond to:

• Unpolarized quark distributions:

The operator is O{µ1 µ2} = ψ(0)γ{µ1Dµ2}ψ(0) and it is related to the moment:

〈xn〉q =

∫ 1

−1

dx xn
[
q(x) + (−1)n+1q̄(x)

]
, q = q↓ + q↑ (5.6)

where q(x) is the quark density distribution.
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• Longitudinal spin distributions:

The operator O{µ1 µ2}
5 = ψ(0)γ5 γ

{µ1Dµ2}ψ(0) is related to the moment:

〈xn〉∆q =

∫ 1

−1

dx xn [∆q(x) + (−1)n∆q̄(x)] , q = q↓ − q↑ (5.7)

where ∆q(x) is the quark helicity distribution.

• Transversity distribution: The operator is Oµ {µ1 µ2}
5σ = ψ(0)γ5 σ

µ{µ1Dµ2}ψ(0) and the

corresponding moment is:

〈xn〉δq =

∫ 1

−1

dx xn
[
δq(x) + (−1)n+1δq̄(x)

]
, q = q⊥ − q‖ (5.8)

where δq(x) is the quark transversity distribution.

The quark density, helicity, and transversity distributions are related to the following

matrix elements of twist-2 operators [109]:

2 〈xn−1〉q pµ1 · · · pµn ≡ 1

2

∑
s

〈ps|
(
i

2

)n−1

ψ̄γ{µ1
↔
D
µ2

· · ·
↔
D
µn}
ψ|ps〉 (5.9)

2

n+ 1
〈xn〉∆q s{σpµ1 · · · pµn} ≡ −〈ps|

(
i

2

)n
ψ̄γ5γ

{σ↔
D
µ1

· · ·
↔
D
µn}
ψ|ps〉

2

mN

〈xn〉δq s[µp{ν]pµ1 · · · pµn} ≡ 〈ps|
(
i

2

)n
ψ̄γ5σ

µ{ν ↔
D
µ1

· · ·
↔
D
µn}
ψ|ps〉,

where the square brackets denote antisymmetrization.

5.2 Computation

The most laborious aspect of our calculation is the extraction of the dependence on lattice

spacing a and external momentum p. This is a delicate task even at one-loop level, since we

are interested in O(a2) improvement; for this purpose, we cast algebraic expressions (typi-

cally involving thousands of summands) into terms which can be naively Taylor expanded

in a to the required order, plus a smaller set of terms containing superficial divergences.

The latter can be evaluated via analytical continuation to D > 4 or even D > 6 dimen-

sions, and splitting each expression into a UV-finite part (which can thus be calculated

in the continuum), and a part which is polynomial in a. A list of the divergent integrals

appearing in this calculation can be found in Ref. [43].
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Dealing with “strong” IR divergent terms, a typical example of integral is:∫ π

−π

d4k

(2π)4

1

k̂2 k̂ + a p
2 (5.10)

First we split the original integrand I into two parts

I ≡ 1

k̂2 k̂ + a p
2 = I1 + I2 (5.11)

where I2 is obtained from I by a series expansion, with respect to the arguments of all

trigonometric functions, to subleading order; I1 is simply the remainder I − I2

I2 =
1

k2 (k + a p)2
+

[
(k + a p)4

12 k2 ((k + a p)2)2 +
k4

12 (k2)2 (k + a p)2

]
(5.12)

I1 =
k2 − k4

12
− k̂2

k2 k̂2 k̂ + a p
2 +

k4
(
k2 − k̂2

)
12 (k2)2 k̂2 k̂ + a p

2 +
k4
(

(k + a p)2 − k̂ + a p
2)

12 (k2)2 (k + a p)2 k̂ + a p
2

+
(k + a p)2 − (k+a p)4

12
− k̂ + a p

2

k2 (k + a p)2 k̂ + a p
2 +

(k + a p)4
(

(k + a p)2 − k̂ + a p
2)

12 k2 ((k + a p)2)2 k̂ + a p
2 (5.13)

(q4 ≡
∑

µ q
4
µ). I2 is free of trigonometric functions, while I1 has been written as a sum of

terms, each of which is naively Taylor expandable to O(a2); its integral equals∫ π

−π

d4k

(2π)4
I1 = 0.004210419649(1) + a2 p2 0.0002770631001(3) +O(a4, a4 ln a) (5.14)

The errors appearing in the above equation come from extrapolations to infinite lattice

size.

To evaluate the integral of I2 we split the hypercubic integration region into a sphere

of arbitrary radius µ about the origin (µ ≤ π) plus the rest∫ π

−π
=

∫
|k|≤µ

+

(∫ π

−π
−
∫
|k|≤µ

)
(5.15)

The integral outside the sphere is free of IR divergences and is thus Taylor expandable to
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any order, giving (for µ = 3.14155).(∫ π

−π
−
∫
|k|≤µ

)
d4k

(2π)4
I2 = 6.42919(3) 10−3 + a2 p2 6.2034(1) 10−5 +O(a4) (5.16)

We are now left with the integral of I2 over a sphere. The most infrared divergent part

of I2 is 1/(k2 (k + a p)2), with IR degree of divergence -4, and can be integrated exactly,

giving ∫
|k|≤µ

d4k

(2π)4

1

k2 (k + a p)2
=

1

16π2

(
1− ln(

a2 p2

µ2
)

)
(5.17)

The remaining two terms comprising I2 have IR degree of divergence -2, thus their cal-

culation to O(a2) can be performed in D-dimensions, with D slightly greater that 4. Let

us illustrate the procedure with one of these terms: k4/((k2)
2

(k + a p)4). By appropriate

substitutions of
1

(k + p̄)2
=

1

k2
+
−2(k · p̄)− p̄2

k2 (k + p̄)2
(p̄ ≡ a p) (5.18)

we split this term as follows

k4

(k2)2 (k + p̄)2
=

[
k4

(k2)3 +
k4 (−2(k · p̄)− p̄2)

(k2)4 +
4 k4(k · p̄)2

(k2)5

]

+

(
k4 (4(k · p̄)p̄2 + (p̄2)2)

(k2)4 (k + p̄)2
+

4 k4(k · p̄)2 (−2(k · p̄)− p̄2)

(k2)5 (k + p̄)2

)
(5.19)

The part in square brackets is polynomial in a and can be integrated easily, using D-

dimensional spherical coordinates. The remaining part is UV-convergent; thus the integra-

tion domain can now be recast in the form∫
|k|≤µ

=

∫
|k|<∞

−
∫
µ≤|k|<∞

(5.20)

The integral over the whole space can be performed using the methods of Ref. [110], whereas

the integral outside the sphere of radius µ is O(a3) and may be safely dropped. The same

procedure is applied to the remaining term of I2. Adding the contributions from all the

steps described above, we check that the result is independent of µ.
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5.3 Renormalization of the fermion propagator and of

the bilinears

Perturbative calculations involving the SLiNC action will be used in forthcoming simu-

lations. The fermion propagator with quantum corrections using the SLiNC action with

non-zero bare mass, m, and the computation of the one-loop 2-point bare Green’s functions

of local and extended bilinear operators are the main objects that we are going to deal

with in this Chapter.

We compute the one-loop 2-point bare Green’s functions (amputated, 1PI), S1−loop =

〈ψ(x)ψ(y)〉 (fermion self-energy). The clover coefficient cSW and the stout parameter ω

have been considered to be free parameters and our results are given as polynomials of cSW

and of ω. Moreover, the dependence on the number of colors Nc, the coupling constant g,

the gauge fixing parameter α and the lattice spacing a, is shown explicitly.

The one-loop Feynman diagrams that enter the 2-point Green’s function calculation,

are the same as those illustrated in Fig. 3.1 (but, of course, with different expressions for

the bare propagator and vertices).

Here we present the expression for the inverse propagator (S1−loop)−1 (with zero quark

masses):
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(
S1−loop(p)

)−1
=

(
Stree(p)

)−1
+
g2CF
16π2

{
1

a

[
− 40.4432 + 4.6627 c2

SW + 11.9482 cSW + ω(455.514− 37.3014 cSW)− 1685.6ω2
]

+ i 6p
[
13.0233− 4.79201α + α log

(
a2p2

)
− 2.01543 cSW − 1.2422 c2

SW

+ω(4.6734 cSW i 6p− 152.564) + 541.381ω2
]

+a p2
[
10.6964− 3.8639α + α log

(
a2p2

)
− 3

2
log
(
a2p2

)
− 4.7529 cSW

+
3

2
cSW log

(
a2p2

)
− 0.0759 c2

SW + ω (8.7722 cSW − 90.6889) + 271.446ω2
]

+a2
[
− 1

6
α i 6p3 log

(
a2p2

)
− 3

8
α i p2 6p log

(
a2p2

)
− 1

4
c2

SW i p2 6p log
(
a2p2

)
+ω
(
− i p2 6p log

(
a2p2

)
− 0.5058 cSW i p2 6p− 0.4164 cSW i 6p3 + 12.0983 i p2 6p

+29.509 i 6p3
)
− 1

4
cSW i p2 6p log

(
a2p2

)
+

157

180
i 6p3 log

(
a2p2

)
+

73

360
i p2 6p log

(
a2p2

)
−5α i p46p

48p2
+ 1.51605α i p2 6p+ 0.507001α i 6p3 + 0.4978 c2

SW i p2 6p

+0.0786 c2
SW i 6p3 + 0.6534 cSW i p2 6p+ 0.0514 cSW i 6p3

+ω2
(
−28.0799 i p2 6p− 74.1412 i 6p3

)
− 7 i p46p

240p2
− 1.1472 i p2 6p− 4.2478 i 6p3

]}
, (5.21)

where Stree(p) is the tree-level propagator, and the contributions O(a−1) determine the

additive renormalization of mass (critical mass).

A number of Lorentz non-invariant tensors (p4 =
∑

µ p
4
µ, 6p3 =

∑
µ γµp

3
µ) appear in

O(a2) correction terms of S1−loop; they are compatible with hypercubic invariance.

Using our results for the fermion propagator, we can compute the multiplicative renor-

malization function of the quark field in the RI′ renormalization scheme (ZRI′
q ). In order

to find ZRI′
q , we use a mass-independent renormalization condition:

ZRI′

q =
1

12
Tr

[
−i
∑

ρ γρ sin(pρ)∑
ρ sin2(pρ)

(S1−loop(p))−1

] ∣∣∣
pρ=µρ

, (5.22)

where µ is the renormalization scale 4-vector, the trace is taken over spin and color indices

and (S1−loop(p))−1 is the inverse fermion propagator that we computed up to one-loop

and up to O(a2). Given the dependence of O(a2) terms on the direction of the external

momentum, pρ, alternative renormalization prescriptions, involving different directions of

the renormalization scale µρ = pρ, treat lattice artifacts diversely.
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Our result for ZRI′
q is:

ZRI′

q = 1 +
g2CF
16π2

[
−13.0233 + 4.7920α + 2.0154 cSW + 1.2422 c2

SW

+ 152.5641ω − 4.6734 cSW ω − 541.3805ω2 − α log(a2µ2)

+ a2 µ2
(

1.14716− 1.51605α− 0.653431 cSW − 0.497834 c2
SW

− 12.0983ω + 0.5059 cSW ω + 28.0799ω2

+ log(a2µ2)
(
− 73

360
+

3

8
α +

1

4
cSW +

1

4
c2

SW + ω
))

+ a2µ4

µ2

(
2.1065 + 0.3958α + 0.2845 cSW + 0.1284 c2

SW

− 4.0816ω − 0.3625 cSW ω − 16.0889ω2 − 157

180
log(a2µ2)

)]
(5.23)

We now turn to the one-loop O(a2) corrections to Green’s functions Λ1−loop
Γ of local

fermion operators that have the form ψ̄Γψ. Γ corresponds to the following set of products

of the Dirac matrices:

Γ = 11, γ5, γµ, γ5γµ, σµν , σµν =
1

2
[γµ, γν ] (5.24)

for the scalar (OS), pseudoscalar (OP ), vector (OV ), axial (OA) and tensor (OT ) operator,

respectively. We restrict ourselves to forward matrix elements. We also considered the

tensor operator OT ′ , corresponding to Γ = γ5σµν and checked that its Green’s function

coincides with that of OT ; this is a nontrivial check for our calculational procedure. These

operators are very important because from their matrix elements we can extract decay

constants and hadronic masses.

The only one-particle irreducible Feynman diagram that enters the calculation of the

above operators is shown in Fig. 5.1. Our results for the one-loop corrections to the

Figure 5.1: One-loop diagram contributing to the local bilinear operators. A wavy (solid)
line represents gluons (fermions). A cross denotes the Dirac matrices 11 (scalar), γ5 (pseu-
doscalar), γµ (vector), γ5γµ (axial), σµν (tensor T ) and γ5σµν (tensor T

′).
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amputated 2-point Green’s function of each operator ψ̄Γψ, at momentum p

Λ1−loop
Γ = 〈ψ

(
ψ̄Γψ

)
ψ̄〉amp(p) (5.25)

are a polynomial of cSW, a and ω, in a general covariant gauge. One might attempt to

use the O(a) corrections computed above in order to devise an improved operator, with

suppressed finite-a artifacts; it should be noted, however, that improvement by means of

local operators, as permitted by Quantum Field Theory, is not sufficient to warrant a

complete cancellation of O(a2) terms in Green’s functions, since the latter contain also

terms with non-polynomial momentum dependence, such as
∑

µ p
4
µ/p

2. Thus, at best, one

can achieve full O(a2) improvement only on-shell, or approximate improvement near a

given reference momentum scale. Such non-polynomial terms are not present at O(a1).

Our results for Λ1−loop
Γ are:

Λ1−loop
S (p) = 11 +

g2CF
16π2

[
0.5835 + 5.79201α + 8.8507 cSW − 0.1252 c2

SW

− (3 + α) log
(
a2p2

)
+ i a 6p

(
0.3394− 3.93576α− 3.76354 cSW − 1.15006 c2

SW

+
3

2
(1 + cSW + α) log

(
a2p2

) )
+ ω

(
12.3004− 22.8948 cSW − a 14.6765 i 6p+ a 8.44675 cSW i 6p

− a2 11.4484p2 + a2 5.29756 cSWp
2
)

+ ω2
(
−60.0198 + a 52.0918 i 6p+ a2 27.3685p2

)
+ a2

(
(2.35473− 2.27359α− 3.85278 cSW + 0.196462 c2

SW)p2

−
(

1

4
− 3

4
α− 3

2
cSW

)
p2 log

(
a2p2

)
+ (13α + 11)

p4

72p2
+
6p3 6p+ 6p 6p3

p2

(
25

144
− 11

72
α

))]
(5.26)

Λ1−loop
P (p) = γ5 +

g2CF
16π2

γ5

[
8.7101 + 5.79201α + 2.98701 c2

SW − (3 + α) log
(
a2p2

)
+ ω

(
48.6342− a2 6.5059p2

)
+ ω2

(
108.487 + a2 29.2531p2

)
+ a2

(
(0.7064− 0.8381α− 0.2756 c2

SW)p2 −
(

1

4
− 3

4
α

)
p2 log

(
a2p2

)
+ (13α + 11)

p4

72p2
+
6p3 6p+ 6p 6p3

p2

(
25

144
− 11

72

))]
(5.27)
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Λ1−loop
V (p) = γµ +

g2CF
16π2

{
γµ

[
3.5796 + 4.79201α− 2.2127 cSW + 0.7781 c2

SW

− α log
(
a2p2

)
+ ω

(
− 15.6991 + 5.72369 cSW

− a2 (8.1378− 0.9433 cSW − log
(
a2p2

)
)p2
)

+ ω2
(
43.4652 + a2 24.501p2

)
− 2α

6p pµ
p2

+ a2
(
(0.0214− 0.8110α + 0.8342 cSW − 0.2874 c2

SW)p2

+

(
4

45
+

1

8
α− 5

12
cSW +

1

4
c2

SW

)
p2 log

(
a2p2

)
+ (55α + 17)

p4

720p2

)
+ a2p2

µ

(
1.6763 + 0.1249α + 0.2260 cSW + 0.02822 c2

SW

− ω
(
3.0079 + 1.6200 cSW + 7.4373ω

)
− 8

15
log
(
a2p2

) )]
+ i a pµ

[
2.0974− 0.9357α− 1.5187 cSW − 0.3851 c2

SW

+ (α− 3 + 3 cSW) log
(
a2p2

)
− ω

(
23.2135− 6.1854 cSW − 38.4633ω

)
− i a 6p

[
1.0377 + 0.2436α + 0.2896 cSW − 0.3028 c2

SW

− ω
(
8.7521 + 0.09571 cSW + 15.8859ω

)
+

(
− 7

120
− 5

24
α

)
p4

(p2)2
+

(
−52

45
+

1

4
α +

1

6
cSW +

1

2
c2

SW

)
log
(
a2p2

)
+ 2ω

(
a2p2

) ]]
+ a2 6p

p3
µ

p2

(
− 1

20
+

1

12
α
)
− a2 6p3pµ

p2

(157

90
+

1

3
α
)

+ a2 γµ
6p3 6p+ 6p 6p3

p2

(
1

360
+

1

72
α

)}
(5.28)
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Λ1−loop
A (p) = γ5γµ +

g2CF
16π2

γ5

{
γµ

[
− 0.483698 + 4.79201α + 2.2127 cSW − 0.7781 c2

SW

− α log
(
a2p2

)
+ ω

(
14.7682− 5.72369 cSW

− a2 (14.4089− 2.6709 cSW − log
(
a2p2

)
)p2
)

+ ω2
(
40.7883 + a2 25.345p2

)
− 2α

6p pµ
p2

+ a2
(
(1.3008− 1.7465α− 1.4876 cSW + 0.3141 c2

SW)p2

+

(
−37

90
+

5

8
α +

7

12
cSW −

1

4
c2

SW

)
p2 log

(
a2p2

)
+ (55α + 17)

p4

720p2

)
+ a2p2

µ

(
0.29617 + 0.1249α + 1.7629 cSW − 0.1113 c2

SW

− ω
(
1.0288 + 5.1342 cSW − 10.4477ω

)
− 8

15
log
(
a2p2

) )]
+ i a pµ

[
− 0.9254 + 2.9357α− 1.5461 cSW + 0.1283 c2

SW + α log
(
a2p2

)
+ ω

(
17.5221− 3.5991 cSW − 47.5493ω

)
− i a 6p

[
0.596635 + 1.1146α + 0.3347 cSW + 0.2787 c2

SW

+ ω
(
4.4682− 0.25184 cSW − 9.1428ω

)
−

(
7

120
+

5

24
α

)
p4

(p2)2
+

(
38

45
− 3

4
α− 5

6
cSW −

1

2
c2

SW

)
log
(
a2p2

)
+ 2ω

(
a2p2

) ]]
+ a2 6p

p3
µ

p2

(
− 1

20
+

1

12
α
)
− a2 6p3pµ

p2

(157

90
+

1

3
α
)

+ a2 γµ
6p3 6p+ 6p 6p3

p2

(
1

360
+

1

72
α

)}
(5.29)

Note that the expressions for Λ1−loop
V (p) and Λ1−loop

A (p) are more complicated, compared

to the scalar Λ1−loop
S (p) and pseudoscalar Λ1−loop

P (p) amputated Green’s functions, in the

sense that momentum dependence assumes a wider variety of functional forms.

The tensor Green’s function Λ1−loop
T (p) (and Λ1−loop

T ′ (p)) is the most complicated of all
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the Green’s functions that we studied.

Λ1−loop
T (p) = σµν +

g2CF
16π2

{
(γµγν − γνγµ)

[
0.2575 + 1.8961α− 0.73755 cSW − 0.2384 c2

SW

+
1

2
(1− α) log

(
a2p2

)
+ ω

(
2.7175 + 1.9079 cSW − a2 (8.6127 + 0.0412 cSW)p2

)
+ ω2

(
− 3.1465 + a2 13.6028p2

)
+ a2

(
0.5287− 0.6097α + 0.1233 cSW − 0.0306 c2

SW

+

(
−31

72
+

1

4
α + ω

)
log
(
a2p2

) )
p2 − a2 6p

3 6p+ 6p 6p3

p2

(
121

1440
− 13

144
α

)
− a2

(
7

360
+

1

72
α

)
p4

p2

]
+ a

[
2i (γνpµ − γµpν)

[
0.7557− 0.9678α− 0.3988 cSW + 0.1917 c2

SW

+ ω
(
− 10.1839 + 1.4227 cSW + 21.5031ω

)
−
(

3

4
− 1

2
α− 1

4
cSW

)
log
(
a2p2

)
+ a

1

2
(− i γνpµ + i γµpν)

(
− 0.06725 + 0.625α + 0.3842 cSW − 0.06573 c2

SW

+ ω
(
0.4947− 0.8785 cSW + 4.4712ω

))]
+ a (i γµγν − i γνγµ)6p

[
0.7557− 0.9678α− 0.3988 cSW + 0.1916 c2

SW

+ ω
(
− 10.1839 + 1.4227 cSW + 21.5031ω

)
+

(
−3

4
+

1

2
α +

1

4
cSW

)
log
(
a2p2

) ]
− a2 (γµpν − γνpµ)6p

[
0.3350 +−0.5604α− 0.0225 cSW − 0.0351 c2

SW

− ω
(
6.6101− 0.1737 cSW − 12.5144ω

)
−
(

1− 1

2
α− 1

2
cSW

)
log
(
a2p2

) ]
+ a2 101

36

(
p3
µ pν

p2
− p3

ν pµ
p2

)
− a2

(
γµ
p2
µ pν

p2
− γν

pµ p
2
ν

p2

)
6p
(10

9
+

1

4
α
)

− a2 101

72

(
γµ
pν 6p3

p2
− γν

pµ 6p3

p2

)
+ a2

(
γν
p3
µ 6p
p2
− γµ

p3
ν 6p
p2

)( 7

24
+

1

4
α
)}

(5.30)

As a check of our calculation we also compute Λ1−loop
T ′ given below in Eq. (5.31). Indeed this

expression becomes identical to Eq. (5.30), once it is expressed in terms of the coordinates

pρ, pσ which are complementary to pµ, pν .
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Λ1−loop
T ′ (p) = γ5σµν +

g2CF
16π2

γ5

{
(γµγν − γνγµ)

[
0.2575 + 1.8961α− 0.73755 cSW − 0.2384 c2

SW

+
1

2
(1− α) log

(
a2p2

)
+ ω

(
2.7175 + 1.9079 cSW − a2 (4.8128 + 0.9241 cSW)p2

)
+ ω2

(
− 3.1465 + a2 11.8168p2

)
+ a2

(
0.07340− 0.3919α + 0.5188 cSW − 0.01750 c2

SW

+

(
5

72
− 1

4
cSW + ω

)
log
(
a2p2

) )
p2 − a2 6p

3 6p+ 6p 6p3

p2

(
121

1440
− 13

144
α

)
− a2

(
7

360
+

1

72
α

)
p4

p2

]
+ a

[
2i (γνpµ − γµpν)

[
− 0.7557 + 0.9678α + 0.3988 cSW − 0.1917 c2

SW

+ ω
(
10.1839− 1.4227 cSW − 21.5031ω

)
+

(
3

4
− 1

2
α− 1

4
cSW

)
log
(
a2p2

)
+ a

1

2
(− i γνpµ + i γµpν)

(
0.6228 + 0.625α− 0.3842 cSW + 0.06573 c2

SW

+ ω
(
− 0.4947 + 0.8785 cSW − 4.4712ω

))]
− a2 (γµpν − γνpµ)6p

[
− 0.7761 + 0.3104α + 0.0225 cSW + 0.0351 c2

SW

+ ω
(
6.6101− 0.1737 cSW − 12.5144ω

)
+

(
1− 1

2
α− 1

2
cSW

)
log
(
a2p2

) ]
+ a2 101

36

(
p3
µ pν

p2
− p3

ν pµ
p2

)
− a2

(
γµ
p2
µ pν

p2
− γν

pµ p
2
ν

p2

)
6p
(10

9
+

1

4
α
)

− a2 101

72

(
γµ
pν 6p3

p2
− γν

pµ 6p3

p2

)
+ a2

(
γν
p3
µ 6p
p2
− γµ

p3
ν 6p
p2

)( 7

24
+

1

4
α
)}

(5.31)

Starting from Λ1−loop
Γ (p), it is straightforward to write down the renormalization functions

ZΓ (for the operators OΓ) in the RI′ renormalization scheme, which uses the tree-level 2-pt

Green’s functions of the corresponding operators Λtree
Γ (p). ZRI′

Γ , as obtained from ΛΓ(p),

differ from the corresponding expressions evaluated at O(a0), by lattice artifacts, which

are functions of (aµ), and vanish as a→ 0.

In order to determine the renormalization of the local bilinear operator ZRI′
Γ we use the

renormalization condition:

(
ZRI′

Γ

)−1

ZRI′

q =
Tr
[
Λ1−loop

Γ (p) Λtree
Γ (p)†

]
Tr [Λtree

Γ (p) Λtree
Γ (p)†]

∣∣∣
pρ=µρ

, (5.32)
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where the trace is taken again over spin and color indices, and the conditions are imposed

on the massless theory. In Chapter 3, we discussed alternative renormalization schemes for

ZV and ZA, stemming from the fact that the corresponding one-loop Green’s functions were

not mere multiples of the bare ones; the latter property will hold for all Green’s functions

once O(a2) corrections are included. Thus Eq. (5.32) corresponds to the alternative scheme

discussed in Chapter 3.

Our results for ZRI′
Γ are (the momentum p must be set equal to the renormalization

scale 4-vector µ: pρ = µρ):

ZRI′

S = 1 +
g2CF
16π2

[
−13.6067− α− 6.8353 cSW + 1.3674 c2

SW

+ 140.2641ω + 18.2213 cSW ω − 481.3605ω2 + 3 log(a2p2)

+ a2 p2
(
− 1.2076 + 0.7575α + 3.1993 cSW − 0.6943 c2

SW

− 0.6499ω − 4.7917 cSW ω + 0.7114ω2

+ log(a2p2)
( 17

360
+

3

8
α− 5

4
cSW +

1

4
c2

SW + ω
))

+ a2p4

p2

(
1.6065 + 0.5208α + 0.2845 cSW + 0.1284 c2

SW

− 4.0816ω − 0.3625 cSW ω − 16.0889ω2 − 157

180
log(a2p2)

)]
(5.33)

ZRI′

P = 1 +
g2CF
16π2

[
−21.7334− α + 2.0154 cSW − 1.7448 c2

SW

+ 201.1975ω − 4.6734 cSW ω − 649.8675ω2 + 3 log(a2p2)

+ a2 p2
(

0.4408− 0.6779α− 0.6534 cSW − 0.2223 c2
SW

− 5.5924ω + 0.5059 cSW ω − 1.1732ω2

+ log(a2p2)
( 17

360
+

1

8
α +

1

4
cSW +

1

4
c2

SW + ω
))

+ a2p4

p2

(
1.6065 + 0.5208α + 0.2845 cSW + 0.1284 c2

SW

− 4.0816ω − 0.3625 cSW ω − 16.0889ω2 − 157

180
log(a2p2)

)]
(5.34)
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ZRI′

V = 1 +
g2CF
16π2

[
−16.6029 + 4.2281 cSW + 0.4641 c2

SW

+ 168.2635ω − 10.3971 cSW ω − 584.8465ω2

+ a2 p2
(

1.1257− 0.7050α− 1.4877 cSW − 0.2105 c2
SW

− 3.9604ω + 1.4492 cSW ω + 3.5785ω2

+ log(a2p2)
(−7

24
+

1

4
α +

2

3
cSW

))
+ a2p4

p2

(
2.0773 + 0.2917α + 0.2845 cSW + 0.1284 c2

SW

− 4.0816ω − 0.3625 cSW ω − 16.0889ω2 − 157

180
log(a2p2)

)
+ a2p2

µ

(
− 2.7140− 0.3686α− 0.5157 cSW + 0.2746 c2

SW

+ 11.76ω + 1.5243 cSW ω − 8.4485ω2

+ log(a2p2)
(76

45
− 1

4
α +

1

6
cSW −

1

2
c2

SW + 2ω
))

+
p2
µ

p2
(2α) + a2

p4p2
µ

(p2)2

( 7

120
+

5

24
α
)

+ a2
p4
µ

p2

(323

180
− 5

12
α
)]

(5.35)
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ZRI′

A = 1 +
g2CF
16π2

[
−12.5396− 0.1972 cSW + 2.0203 c2

SW

+ 137.796ω + 1.0502 cSW ω − 500.593ω2

+ a2 p2
(
− 0.1537 + 0.2305α + 0.8342 cSW − 0.8120 c2

SW

+ 2.3106ω − 2.1650 cSW ω + 2.7349ω2

+ log(a2p2)
( 5

24
− 1

4
α +

1

3
cSW +

1

2
c2

SW

))
+ a2p4

p2

(
2.0773 + 0.2917α + 0.2845 cSW + 0.1284 c2

SW

− 4.0816ω − 0.3625 cSW ω − 16.0889ω2 − 157

180
log(a2p2)

)
+ a2p2

µ

(
− 0.8928− 1.2396α− 2.0977 cSW − 0.1673 c2

SW

− 3.4394ω + 5.3861 cSW ω − 1.3048ω2

+ log(a2p2)
(14

45
+

3

4
α +

5

6
cSW +

1

2
c2

SW − 2ω
))

+
p2
µ

p2
(2α) + a2

p4 p2
µ

(p2)2

( 7

120
+

5

24
α
)

+ a2
p4
µ

p2

(323

180
− 5

12
α
)]

(5.36)



5.3. Renormalization of the fermion propagator and of the bilinears 79

ZRI′

T = 1 +
g2CF
16π2

[
−13.5383 + α + 3.4905 cSW + 1.7192 c2

SW

+ 147.129ω − 8.4892 cSW ω − 535.088ω2 − log(a2p2)

+ a2 p2
(

0.0897− 0.2966α− 0.9001 cSW − 0.5592 c2
SW

+ 5.1271ω + 0.4234 cSW ω + 0.8744ω2

+ log(a2p2)
( 79

120
− 1

8
α +

1

4
cSW +

1

4
c2

SW − ω
))

+ a2p4

p2

(
2.4815 + 0.06250α + 0.2845 cSW + 0.1284 c2

SW

− 4.0816ω − 0.3625 cSW ω − 16.0889ω2 − 157

180
log(a2p2)

)
+ a2(p2

µ + p2
ν)
(
− 0.2005− 0.6856α− 0.7910 cSW + 0.0964 c2

SW

− 7.5997ω + 1.9309 cSW ω + 3.5718ω2

+ log(a2p2)
(
− 1 +

1

2
α +

1

2
cSW

))
+ a2

p4
µ + p4

ν

p2

(10

9
+

1

4
α
)

+ a2
p2
µ p

2
ν

p2

(20

9
+

1

2
α
)]

(5.37)

These results are in complete agreement with clover fermions [14] in the absence of

stout smearing.

Lastly, we compute the matrix elements of the extended bilinear operators of the form

ψ(x)ΓDνψ(x). Here Γ corresponds to the Dirac matrices

Γ = γµ, γ5γµ, σµν (5.38)

and D ≡ D
↔

= (D
→
− D
←

)/2. More specifically, the extended bilinear operators are defined
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as:

O{µν}DV =
1

2

[
ψ γµD

↔
ν ψ + ψ γν D

↔
µ ψ
]
− 1

4
δµν
∑
τ

ψ γτ D
↔
τ ψ (5.39)

O{µν}DA =
1

2

[
ψ γ5γµD

↔
ν ψ + ψ γ5γν D

↔
µ ψ
]
− 1

4
δµν
∑
τ

ψ γ5γτ D
↔
τ ψ (5.40)

Oµ{νρ}DT =
1

2

[
ψ γ5σµν D

↔
ρ ψ + ψ γ5σµρD

↔
ν ψ
]
− 1

4
δνρ
∑
τ

ψ γ5σµτ D
↔
τ ψ (5.41)

The above operators, being symmetrized and traceless, have no mixing with lower dimen-

sion operators. In the flavor nonsinglet case, mixing with operators of the same dimension

is also absent. However, in the flavor singlet case, O{µν}DV will mix with the dimension-4

gluon operator:

Tr (Fµρ Fρν)−
1

4
δµνTr (Fσρ Fρσ) (5.42)

In our computation, µ, ν, ρ, τ are generic Lorentz indices. We denote the correspond-

ing Z-factors by ZDV, ZDA, ZDT . In a massless renormalization scheme the renormaliza-

tion constants are defined in the chiral limit, where isospin symmetry is exact. The one

derivative operators fall into different irreducible representations of the hypercubic group,

depending on the choice of indices. Hence, we distinguish between

ODV1 = ODV with µ = ν (5.43)

ODV2 = ODV with µ 6= ν (5.44)

ODA1 = ODA with µ = ν (5.45)

ODA2 = ODA with µ 6= ν (5.46)

ODT1 = ODT with µ 6= ν = ρ (also : µ = ν 6= ρ , µ = ρ 6= ν , µ = ν = ρ) (5.47)

ODT2 = ODT with µ 6= ν 6= ρ 6= µ (5.48)

Thus, ZDV1 will be different from ZDV2, but renormalized matrix elements of the two

corresponding operators will be components of the same tensor in the continuum limit.

The expressions for the matrix elements are functions of a general gauge parameter,

coupling constant, external momentum, masses, stout parameter ω and clover parameter

cSW. The Feynman diagrams involved in the computation of the Z-factors are the same

as those illustrated in Fig. 3.2 (where now crosses denote the insertion of an extented
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operator). The presence of a covariant derivative in the definition of these operators implies

that the corresponding vertices may also contain gluons. This explains the appearance

of more diagrams as compared to Fig. 5.1. The Z-factors for the extended operators

are determined by setting the quark masses to zero and using Eq. (5.32), which is most

amenable to non-perturbative treatment.

The tree-level expressions of the operators, including the O(a2) terms, are:

Λtree
DV1(p) = iγµ

(
pµ − a2

p3
µ

6

)
− i

4

∑
τ

γτ

(
pτ − a2 p

3
τ

6

)
+O(a4) (5.49)

Λtree
DA1(p) = γ5 Λtree

DV1(p) (5.50)

Λtree
DV2(p) =

i

2

(
γµ

(
pν − a2 p

3
ν

6

)
+ γν

(
pµ − a2

p3
µ

6

))
+O(a4) (5.51)

Λtree
DA2(p) = γ5 Λtree

DV2(p) (5.52)

Λtree
DT1(p) = iγ5 σµν

(
pν − a2 p

3
ν

6

)
− i

4

∑
τ

γ5 σµτ

(
pτ − a2 p

3
τ

6

)
+O(a4) (5.53)

Λtree
DT2(p) =

i

2
γ5

(
σµν

(
pρ − a2

p3
ρ

6

)
+ σµρ

(
pν − a2 p

3
ν

6

))
+O(a4) (5.54)

We perform a Taylor expansion up to O(a2) in the denominator of the renormalization

condition Eq. (5.32) and it leads to the following:

Tr
[
Λtree

DV1(p) · Λtree
DV1(p)

]
= −2 p2

µ −
1

4
p2 + a2(

1

12
p4 +

2

3
p4
µ) +O(a4) (5.55)

= −Tr
[
Λtree

DA1(p) · Λtree
DA1(p)

]
(5.56)

Tr
[
Λtree

DV2(p) · Λtree
DV2(p)

]
= −p2

µ − p2
ν +

a2

3
(p4
µ + p4

ν) +O(a4) (5.57)

= −Tr
[
Λtree

DA2(p) · Λtree
DA2(p)

]
(5.58)

Tr
[
Λtree

DT1(p) · Λtree
DT1(p)

]
=

p2

4
+ 2 p2

ν −
p2
µ

4
− a2

(
p4

12
+

2 p4
ν

3
−
p4
µ

12

)
+O(a4) (5.59)

Tr
[
Λtree

DT2(p) · Λtree
DT2(p)

]
= p2

ν + p2
ρ −

a2

3

(
p4
ν + p4

ρ

)
+O(a4) (5.60)

Bellow we present the numerator of Eq. (5.32), in each of the six cases Eqs. (5.43)-
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(5.48). Since the expressions are extremely lengthy, we only show them for the special

choices: m0 = 0 and α = 0 (Landau gauge).

Tr
[
Λ1−loop

DV1 (p) · Λtree
DV1(p)

]
= −2 p2

µ −
1

4
p2 + a2(

1

12
p4 +

2

3
p4
µ)

+
g2CF
16π2

{4

3

p4
µ

p2
+ p2

[
3.6101 + 0.4024 cSW − 0.0877 c2

SW − 7.6866ω − 0.9116 cSW ω

+ 0.6488ω2 − 2

3
log(a2 p2)

]
+p2

µ

[
27.5472 + 3.2198 cSW − 0.7021 c2

SW − 61.4926ω − 7.2932 cSW ω + 5.1905ω2

− 16

3
log(a2 p2)

]
+a2

[
(p2)2

[
0.1183− 0.2026 cSW + 0.0577 c2

SW + 2.4778ω − 0.2136 cSW ω − 0.5638ω2

+

(
7

288
+

1

4
cSW −

5

48
c2

SW −
1

2
ω

)
log(a2 p2)

]
+p2 p2

µ

[
− 0.6573− 0.8958 cSW + 0.2028 c2

SW + 10.0278ω + 2.4515 cSW ω − 1.2017ω2

−
(

299

180
+

7

6
cSW −

1

6
c2

SW −
4

3
ω

)
log(a2 p2)

]
+p4

[
− 1.7188− 0.0970 cSW + 0.0112 c2

SW + 3.1421ω + 0.5376 cSW ω − 0.1729ω2

+
397

720
log(a2 p2)− 43

360

p2
µ

p2

]
+p4

µ

[
− 16.1049− 1.5015 cSW + 0.3484 c2

SW + 34.9319ω + 0.1408 cSW ω − 4.6922ω2

+

(
94

15
− 2

3
cSW −

2

3
c2

SW −
8

3
ω

)
log(a2 p2) +

29

90

p4

(p2)2
+

169

45

p2
µ

p2

]]}
, (5.61)
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Tr
[
Λ1−loop

DV2 (p) · Λtree
DV2(p)

]
= −p2

µ − p2
ν +

a2

3
(p4
µ + p4

ν)

+
g2CF
16π2

{4

3

p2
µ p

2
ν

p2
+ (p2

µ + p2
ν)
[
15.0458 + 1.5496 cSW − 0.6719 c2

SW − 37.1295ω − 2.6765 cSW ω

+ 22.3039ω2 − 8

3
log(a2 p2)

]
+a2

[
(p4
µ + p4

ν)
[
− 7.1429− 0.3175 cSW + 0.1395 c2

SW + 14.2793ω + 0.9123 cSW ω − 8.4361ω2

+
491

360
log(a2 p2)

]
+(p2

µ + p2
ν)
[
p2
(
−0.13212− 0.6358 cSW + 0.2072 c2

SW + 7.5642ω + 0.0782 cSW ω − 0.5418ω2

+

(
−103

360
+

5

12
cSW −

1

4
c2

SW −
4

3
ω

)
log(a2 p2)

)
+

353

720

p4

p2

]
+p2

µ p
2
ν

[
− 4.0096− 0.9718 cSW + 0.2141 c2

SW + 8.0384ω + 1.9856 cSW ω − 2.6169ω2

+

(
1013

180
− 2

3
cSW −

2

3
c2

SW −
8

3
ω

)
log(a2 p2) +

29

90

p4

(p2)2
+

169

90

(p2
µ + p2

µ)

p2

]]}
, (5.62)
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Tr
[
Λ1−loop

DA1 (p) · Λtree
DA1(p)

]
= 2 p2

µ +
1

4
p2 + a2(− 1

12
p4− 2

3
p4
µ)

+
g2CF
16π2

{
−4

3

p4
µ

p2
+ p2

[
− 4.1273 + 0.2230 cSW − 0.1390 c2

SW + 9.4907ω + 0.4476 cSW ω

− 2.9191ω2 +
2

3
log(a2 p2)

]
+p2

µ

[
− 31.6853 + 1.7842 cSW − 1.1120 c2

SW + 75.9257ω + 3.5816 cSW ω − 23.3531ω2

+
16

3
log(a2 p2)

]
+a2

[
(p2)2

[
0.1703− 0.1565 cSW + 0.0439 c2

SW − 1.9315ω + 0.1725 cSW ω − 0.2107ω2

+

(
65

288
− 1

48
cSW −

5

48
c2

SW −
1

2
ω

)
log(a2 p2)

]
+p2 p2

µ

[
0.3982− 1.1861 cSW + 0.3708 c2

SW − 21.8081ω − 1.1757 cSW ω + 4.2720ω2

+

(
−541

180
+

11

6
cSW −

1

6
c2

SW +
4

3
ω

)
log(a2 p2)

]
+p4

[
1.6923 + 0.1097 cSW + 0.0292 c2

SW − 3.7154ω − 0.3908 cSW ω + 1.6098ω2

− 397

720
log(a2 p2) +

43

360

p2
µ

p2

]
+p4

µ

[
18.4613 + 0.8116 cSW + 0.2139 c2

SW − 23.3669ω − 0.5706 cSW ω + 6.9208ω2

+

(
2

5
− 2 cSW −

2

3
c2

SW +
8

3
ω

)
log(a2 p2)− 29

90

p4

(p2)2
− 169

45

p2
µ

p2

]]}
, (5.63)
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Tr
[
Λ1−loop

DA2 (p) · Λtree
DA2(p)

]
= p2

µ + p2
ν −

a2

3
(p4
µ + p4

ν)

+
g2CF
16π2

{
−4

3

p2
µ p

2
ν

p2
+ (p2

µ + p2
ν)
[
− 16.1020 + 0.8946 cSW − 0.4852 c2

SW + 33.2339ω

+ 1.0929 cSW ω + 8.4372ω2 +
8

3
log(a2 p2)

]
+a2

[
(p4
µ + p4

ν)
[
7.2286− 0.2033 cSW + 0.0726 c2

SW − 13.1536ω − 0.5131 cSW ω − 1.7577ω2

− 491

360
log(a2 p2)

]
+(p2

µ + p2
ν)
[
p2
(

0.7587− 0.6017 cSW + 0.2159 c2
SW − 9.5685ω + 0.2459 cSW ω + 0.7202ω2

+

(
−137

360
+

5

12
cSW −

1

4
c2

SW +
4

3
ω

)
log(a2 p2)

)
− 353

720

p4

p2

]
+p2

µ p
2
ν

[
4.8509 + 1.1683 cSW − 0.0629 c2

SW + 7.8377ω − 2.3841 cSW ω − 0.9413ω2

+

(
187

180
+ 2 cSW −

2

3
c2

SW +
8

3
ω

)
log(a2 p2)− 29

90

p4

(p2)2
− 169

90

(p2
µ + p2

µ)

p2

]]}
. (5.64)

We present also the corresponding trace of the tensor operators for the special choices:

m0 = 0, cSW = 0, ω = 0 and α = 0 (Landau gauge).

Tr
[
Λ1−loop

DT1 (p) · Λtree
DT1(p)

]
=

p2 − p2
µ

4
+ 2 p2

ν + a2 (
p4
µ − p4

12
− 2 p4

ν

3
)

+
g2CF
16π2

{
(p2
µ − p2)

[
4.2265− log(a2 p2)

]
+ p2

ν

[
− 29.1167 + 5 log(a2 p2)

]
+a2

[
p4
[
− 0.14754− 43

1440
log(a2 p2)

]
+ p4

[
1.9379− 433

720
log(a2 p2)

− 379

720

p2
ν

p2
+

17

192

p2
µ

p2

]
+p2

[
1.7215 p2

ν +
61

48
log(a2 p2) p2

ν + 0.37022 p2
µ −

227

1440
log(a2 p2) p2

µ

]
+p4

ν

[
14.9155− 71

15
log(a2 p2)− 721

90

p2
µ

p2

]
+ p2

ν p
2
µ

[
2.4896− 881

240
log(a2 p2)− 39

10

p2
µ

p2

]
+p4

µ

[
− 2.2491 +

71

90
log(a2 p2)

]
− 134

45

p6
ν

p2

]}
, (5.65)
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Tr
[
Λ1−loop

DT2 (p) · Λtree
DT2(p)

]
= p2

ρ + p2
ν + a2 (−

p4
ρ

3
− p4

ν

3
)

+
g2CF
16π2

{
(p2
ν + p2

ρ)
[
− 15.8474 + 3 log(a2 p2)

]
+a2

[
(p2
ν + p2

ρ)
[
0.2213 p2 +

107

360
log(a2 p2) p2 − 41

60

p4

p2
+ 0.7360 p2

µ

− 301

360
log(a2 p2) p2

µ −
67

90

p4
µ

p2

]
−67

15

p2
ρ p

2
µ p

2
ν

p2
+ (p4

ν + p4
ρ)
[
7.3949− 1051

720
log(a2 p2)

]
+ p2

ρ p
2
ν

[
2.9845 − 1609

360
log(a2 p2)

]
−67

45

p4
ρ p

2
ν + p2

ρ p
4
ν

p2

]}
. (5.66)

By inserting our results (Eqs. (5.61)-(5.66)) into Eq. (5.32) we immediately obtain the

renormalization functions ZDV1, ZDV2, ZDA1, ZDA2, ZDT1, ZDT2.

5.4 Summary

In this Chapter we have calculated the fermion propagator and the Green’s functions for the

fermion bilinear operators up to one loop, using the SLiNC action. These matrix elements

are used to extract mass spectra, decay rates and transition amplitudes in hadronic Physics;

others are directly related to physical properties of quarks inside nucleons, such as moments

of their helicity and momentum distributions [111, 112].

The truly novel feature in our calculations is that they were performed to second order

in the lattice spacing a (O(a2, a2 log a)). This fact introduces a number of complications,

which are not present in lower order results. In a nutshell, the reason for these complications

is as follows: The extraction of a further power of a from a Feynman diagram strengthens,

by one unit, the superficial degree of infrared (IR) divergence of the corresponding integrand

over loop momenta. Thus, a priori, in a O(a1) calculation, loop integrals would be IR

convergent only in D > 5 dimensions; however, as can be easily deduced by inspection,

the most divergent parts of the integrands are odd functions of the loop momenta, and

will thus vanish upon integration. What is left behind is a less divergent integrand which

is IR convergent in D > 4, just as in the case of O(a0) calculations, and can thus be

treated by standard methods, such as those of Ref. [113]. For O(a2) calculations, on the

other hand, integrands are IR convergent only at D > 6, and their most divergent parts

no longer vanish upon integration; a naive application of the procedure of Ref. [113] will
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fail to produce all O(a2) contributions. The procedure which we proposed in this work for

handling the above difficulty is in fact applicable to any order in a. In brief, it recasts the

integrands as a sum of two parts: The first part can be exactly evaluated as a function of

a, while the second part is naively Taylor expandible, as a polynomial to the desired order

in a.

The propagator and Green’s functions have been obtained with massive fermions (in-

cluding non-degenerate flavors). Nevertheless, even at vanishing masses, our final ex-

pressions are quite lengthy, since they exhibit a rather nontrivial dependence on several

parameters. Our final results for the Z functions do not contain masses since we used the

mass independent renormalization scheme.

One possible use of our results is in constructing improved versions of the operators

OΓ, with reduced lattice artifacts. In doing so, however, one must bear in mind that,

unlike the O(a1) case, corrections to O(a2) include expressions which are non-polynomial

in the external momentum and, therefore, cannot be eliminated by introducing admixtures

of local operators. Full improvement can be achieved at best for on-shell matrix elements

only.

At the nonzero values of a employed in numerical simulations, O(a2) corrections are

quite important. Ideally, one would prefer a nonperturbative determination of renormal-

ization functions; while this is often possible, several sources of error must be dealt with. A

very effective way to proceed is through a combination of perturbative and nonperturbative

results. This procedure is carried out and explained in detail in the next Chapter. Briefly

stated, nonperturbative data are “corrected” by the perturbative expressions for Green’s

functions, and then extrapolated towards small a. In the next Chapter we improve the

nonperturbative renormalization constants in the RI′-MOM scheme using the clover action.



Chapter 6

Perturbatively improving RI-MOM

renormalization constants using the

Clover action

In this Chapter we compute the perturbative renormalization factors (Z factors) of local

and extended (one derivative) fermion bilinear operators which are defined in Table 6.1. A

novel feature in this one-loop perturbative calculation is that the relevant 2-point Green’s

functions are computed up to second order in the lattice spacing a. We employ the clover

action for fermions and the Symanzik improved gauge action for gluons. We apply our re-

sults to data extracted from numerical simulations performed by the QCDSF collaboration

using Nf = 2 clover improved Wilson fermions with plaquette gauge action; in particular,

in order to suppress lattice artifacts from the nonperturbative Green’s functions we sub-

tract the one-loop, O(a2) contributions of the renormalization factors calculated in lattice

perturbation theory. We compare results obtained from a complete one-loop subtraction

with those obtained by subtracting only contributions proportional to a2.

6.1 Introduction

As mentioned in previous Chapters, renormalization factors in lattice Quantum Chromo-

dynamics (QCD) relate observables computed on finite lattices to their continuum coun-

terparts in specific renormalization schemes. Therefore, their determination should be as

precise as possible in order to allow for a reliable comparison with experimental results.

88
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Given that the approach based on lattice perturbation theory suffers from its intrinsic com-

plexity, slow convergence and the impossibility to handle mixing with lower-dimensional

operators, nonperturbative methods have been developed and applied. Among them the

so-called Rome-Southampton method [114] (utilizing the RI-MOM scheme) is widely used

because of its simple implementation,even though it requires gauge fixing.

Like (almost) all quantities evaluated in lattice QCD also renormalization factors suffer

from discretization effects. One can attempt to cope with these lattice artifacts by extrap-

olating the nonperturbative scale dependence to the continuum (see Ref. [115]) or one can

try to suppress them by a subtraction procedure based on perturbation theory. Here we

shall deal with the latter approach.

In a recent work of the QCDSF/UKQCD collaboration [117] a comprehensive discussion

and a comparison of perturbative and nonperturbative renormalization have been given.

Particular emphasis was placed on the perturbative subtraction of the unavoidable lattice

artifacts. For simple operators this can be done in one-loop order completely by comput-

ing the corresponding diagrams for finite lattice spacing numerically. While being very

effective this procedure is rather involved and not suited as a general method for more

complex operators, especially for operators with more than one covariant derivative, and

complicated lattice actions. An alternative approach can be based on the subtraction of

one-loop terms of order a2, with a being the lattice spacing. The computation of those

terms has been developed by our group [43] and applied to various operators for different

actions. In this Chapter we use some of those results for the analysis of Monte Carlo data

for renormalization coefficients.

We study the flavor-nonsinglet quark-antiquark operators given in Table 6.1. The

corresponding renormalization factors have been measured (and chirally extrapolated1) at

β = 5.20, 5.25, 5.29 and 5.40 using Nf = 2 clover improved Wilson fermions with plaquette

gauge action [117]. All results are computed in the Landau gauge. Our perturbative results

were obtained for generic values of the clover parameter cSW ; in order to apply these results

to the nonperturbative calculation we set cSW = 1.

1The chiral limit is reached when the masses of the light quarks assume their critical value, i.e., the
value at which chiral symmetry is restored.
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Operator Notation Repre- Operator basis

(multiplet) sentation

ū d OS τ
(1)
1 OS

ū γ5 d OP τ
(1)
4 OP

ū γµ d OVµ τ
(4)
1 OV1 ,OV2 ,OV3 ,OV4

ū γµγ5 d OAµ τ
(4)
4 OA1 ,OA2 ,OA3 ,OA4

ū σµν d OTµν τ
(6)
1 OT12,OT13,OT14,OT23,OT24,OT34

ū γµ
↔
Dν d Oµν → Ov2,a τ

(6)
3 O{12},O{13},O{14},O{23},O{24},O{34}

ū γµ
↔
Dν d Oµν → Ov2,b τ

(3)
1 1/2(O11 +O22 −O33 −O44),

1/
√

2(O33 −O44), 1/
√

2(O11 −O22)

Table 6.1: Operators and their representations as investigated in the present Chapter. The
symbol {...} means the totally symmetric and traceless part. A detailed group theoretical
discussion is given in [118]. There are 20 (inequivalent) irreducible representations of H(4),

which are denoted by τ
(l)
k , where l is the dimension of the representation and k = 1, 2, . . .

distinguishes inequivalent representations of the same dimension.

6.2 Renormalization group invariant operators

We define the renormalization constant Z of an operator O from its amputated Green

function (or vertex function) Λ(p), where p is the external momentum and the operator

is taken at vanishing momentum. The corresponding renormalized vertex function and

the tree-level (Born) term (with all lattice artifacts included) are denoted by ΛR(p) and

Λtree(p), respectively. Just as in Eq. (5.32), if there is no mixing, Z can then be obtained

by imposing the condition
1

12
tr
[
ΛR(p) Λtree(p)−1

]
= 1 (6.1)

for vanishing quark mass at p2 = µ2, where µρ is the (4-vector) renormalization scale. The

Z factor relates the renormalized and the unrenormalized vertex function through

ΛR(p) = Z−1
q Z Λ(p) , (6.2)

with Zq being the quark field renormalization constant determined by

Zq(p) =
tr [−i

∑
λ γλ sin(apλ) aS

−1(p)]

12
∑

ν sin2(apν)
(6.3)
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in the chiral limit again at p2 = µ2. Condition (6.1) together with (6.3) defines the RI′-

MOM renormalization scheme. Here S−1 is the inverse quark propagator. The argument

p appearing in all Z factors is meant to be set equal to the renormalization scale 4-vector

µ. Using (6.1) we compute Z from

Z−1
q Z

1

12
tr
[
Λ(p) Λtree(p)−1

]
= 1 . (6.4)

For operators transforming as singlets under the hypercubic group H(4), such as OS, Z
can depend on the components of p only through H(4) invariants.

For operators belonging to an H(4) multiplet of dimension greater than 1 the condition

(6.1) violates H(4) covariance and would in general lead to different Z factors for each

member of the multiplet. In Ref. [117] an averaging procedure has been proposed to

calculate one common Z factor for every multiplet. Labeling the chosen operator basis by

i = 1, 2, . . . , d the common Z was calculated from

Z−1
q Z

1

d

d∑
i=1

1

12
tr
[
Λi(p)Λ

tree
i (p)−1

]
= 1 . (6.5)

This condition leads to an H(4)-invariant Z for the operators without derivatives in Ta-

ble 6.1. However, in general this is not the case.

It is not difficult to devise a renormalization condition that respects the hypercubic

symmetry. Choosing a basis of operators (again labeled by i), transforming according to a

unitary irreducible representation of H(4), the relation

Z−1
q Z

∑d
i=1 tr

[
Λi(p)Λ

tree
i (p)†

]∑d
j=1 tr

[
Λtree
j (p)Λtree

j (p)†
] = 1 (6.6)

defines a Z factor which is invariant under H(4), provided that the quark field renormal-

ization factor is also H(4) invariant. The derivation of renormalization condition (6.6) is

given in Appendix C. For the operators without derivatives the definitions (6.6) and (6.5)

are equivalent. For the operators with one derivative the resulting differences turn out

to be negligible. In the following the Z factors will be determined from (6.6) using the

operator basis given in Table 6.1. This is our version of the RI′-MOM scheme.

We define a so-called RGI (renormalization group invariant) operator, which is inde-
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pendent of scale M and scheme S, by [116, 117]

ORGI = ∆ZS(M)OS(M) = ZRGI(a)Obare (6.7)

with

∆ZS(M) =

(
2β0

gS(M)2

16 π2

)−(γ0/2β0)

exp

{∫ gS(M)

0

dg′
(
γS(g′)

βS(g′)
+

γ0

β0g′

)}
(6.8)

and the RGI renormalization constant (depending on a via the lattice coupling)

ZRGI(a) = ∆ZS(M)ZSbare(M,a) . (6.9)

Here gS is the coupling constant, βS is the β-function which is defined by: βS = µ dgS/dµ;

γS is the anomalous dimension of the renormalized operator ORGI, which is defined by:

µ dZS/dµ = −γSZS where µ is the renormalization scale. Relations (6.7), (6.8) and (6.9)

allow us to compute the operator O in any scheme and at any scale we like, once ZRGI is

known. Therefore, the knowledge of ZRGI is very useful for the renormalization procedure

in general. Ideally, ZRGI depends only on the bare lattice coupling, but not on the momen-

tum p. Computed on a lattice, however, it suffers from lattice artifacts, e.g., it contains

contributions proportional to a2p2, (a2p2)2, a4
∑

µ p
4
µ, etc. For a precise determination it

is essential to have these discretization errors under control.

As the RI′-MOM scheme is in general not O(4)-covariant even in the continuum limit,

it is not very suitable for computing the anomalous dimensions needed in (6.8). Therefore

we use an intermediate scheme S with known anomalous dimensions and calculate ZRGI

as follows:

ZRGI(a) = ∆ZS(M = µ)ZSRI′−MOM(M = µ)ZRI′−MOM
bare (µ, a) . (6.10)

It turns out that a type of momentum subtraction scheme is a good choice for S (for

details see Ref. [117]). The formula which is used to compute the transformation factor

ZSRI′−MOM(µ) is given there together with all needed coefficients of the β-function and

anomalous dimensions, which are based on continuum three-loop calculations such as those

in [119, 120, 121].

On a lattice with linear extent L the scale µ should ideally fulfill the relation

1/L2 � Λ2
QCD � µ2 � 1/a2 . (6.11)
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In that case ZRGI(a) would be independent of µ, and from the resulting plateau we could

read off the corresponding final value. However, in practice aµ is not necessarily small

leading to non-negligible lattice artifacts that have to be tamed. A promising tool to

control lattice artifacts in a systematic way is lattice perturbation theory: We expect that

after subtracting these perturbative terms the calculation of the Z factors can be done

more accurately.

6.3 Subtraction of all lattice artifacts in one-loop order

In standard lattice perturbation theory the one-loop renormalization constants are given

in the form

Z(µ, a) = 1 +
g2CF
16 π2

(γ0 ln(aµ) + ∆) , CF =
4

3
. (6.12)

This means that the a-dependence is retained only in the logarithm and implicitly in g,

while in all other contributions the limit a→ 0 has been taken.

However, there is no need to do so. We can keep a finite everywhere and thus evaluate

the lattice artifacts at one-loop order completely, proceeding as follows. Let us denote

by F (p, a) the total one-loop correction to the 2-pt Green’s functions and by F̃ (p, a) the

expression resulting from F (p, a) by neglecting all contributions which vanish for a → 0.

The difference

D(p, a) = F (p, a)− F̃ (p, a) (6.13)

represents the lattice artifacts in one-loop perturbation theory and is used to correct for

the discretization errors:

ZRI′−MOM
bare (p, a)MC,sub = ZRI′−MOM

bare (p, a)MC −
g2
?

16 π2
CF D(p, a) . (6.14)

There is a certain freedom in choosing the coupling g? in (6.14). It turned out that the use

of the boosted coupling

g2
B =

g2

P (g)
= g2 +O(g4) (6.15)

(P (g) being the measured plaquette at β = 6/g2) is quite successful in estimating the

higher-order discretization effects. With the prescription (6.14) all lattice artifacts in one-

loop order are subtracted.

In Fig. 6.1 we show the effect of subtraction on the RGI renormalization factors for

selected operators of Table 6.1. For all operators we recognize after subtraction a remark-



6.3. Subtraction of all lattice artifacts in one-loop order 94

0.45

0.5

0.55

0 20 40 60 80 100

Z
R

G
I

S

p2 [GeV2]

no subtraction

complete subtraction

0.9

0.95

1

0 20 40 60 80 100

Z
R

G
I

T

p2 [GeV2]

no subtraction

complete subtraction

Figure 6.1: ZRGI
S (left) and ZRGI

T (right) for β = 5.40. The Z factors obtained without
subtraction are shown as red squares, those with complete one-loop subtraction (6.14) as
blue triangles. (The necessary scale transformation factors for the momenta are given at
the end of Section 6.4.)

able smoothing and a pronounced plateau as a function of p2 for p2 & 10 GeV2. The large

bending in the small p2 region might indicate the breakdown of perturbation theory (cf.

the discussion in [117]). The examples show that the one-loop subtraction of lattice ar-

tifacts (6.14) works very well and, moreover, is needed for a precise determination of the

renormalization constants. The final values for ZRGI from (6.10) are obtained by a fit with

an ansatz [117]

ZSRI′−MOM(p)ZRI′−MOM
bare (p, a)MC,sub =

ZRGI(a)

∆ZS(p) [1 + b1 (gS)8]
+ c1 a

2p2 . (6.16)

The free parameter b1 takes into account that the transformation factor ZSRI′−MOM(p) is

known to three-loop order
(
gS
)6

only. Further possible lattice artifacts are parametrized

by c1 a
2p2.

For practical reasons the numerical calculation of F (p, a) - and therefore the calculation

of ZRGI using (6.16) - is restricted to operators with at most one derivative and for Nf = 2

only. In order to perform the subtraction for a wider class of operators and/or forNf = 2+1

(where the lattice action under consideration becomes more complicated) we have to look

for an alternative method. One possibility which will be discussed in the next sections is

a “reduced” subtraction: Instead of subtracting the complete one-loop lattice artifacts we

subtract only the one-loop terms proportional to a2, if they are known for the given action.
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6.4 Subtraction of order a2 one-loop lattice artifacts

6.4.1 Lattice perturbation theory up to order g2a2

The diagrammatic approach to compute the one-loop a2 terms for the Z factors of local

and one-link operators has been developed by some of us [43, 122]. The general case of

Wilson type improved fermions is discussed in [14]. For details of the computations we

refer to these references. Here we give explicitly the results for the operators and actions

investigated in this work (massless improved Wilson fermions with cSW = 1, plaquette

gauge action, Landau gauge).

Using the relation (6.6) we compute a common Z factor for each multiplet given in

Table 6.1. The results are as follows:
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ZS = 1 +
g2CF
16π2

{
− 23.3099 + 3 log(a2S2)

+a2

[
S2

(
1.64089− 239

240
log(a2S2)

)
+
S4

S2

(
1.95104− 101

120
log(a2S2)

)]}
,

ZP = 1 +
g2CF
16π2

{
− 26.3832 + 3 log(a2S2)

+a2

[
S2

(
−6.31906 +

121

240
log(a2S2)

)
+
S4

S2

(
1.95104− 101

120
log(a2S2)

)]}
,

ZV = 1 +
g2CF
16π2

{
− 15.3291

+a2

[
S2

(
−1.33855 +

151

240
log(a2S2)

)
+
S4

S2

(
2.89896− 101

120
log(a2S2)

)]}
,

ZA = 1 +
g2CF
16π2

{
− 13.7927

+a2

[
S2

(
−0.92273 +

151

240
log(a2S2)

)
+
S4

S2

(
2.89896− 101

120
log(a2S2)

)]}
,

ZT = 1 +
g2CF
16π2

{
− 11.1325− log(a2S2) (6.17)

+a2

[
S2

(
−1.72760 +

221

240
log(a2S2)

)
+
S4

S2

(
3.21493− 101

120
log(a2S2)

)]}
,

Zv2,a = 1 +
g2CF
16π2

{
6.93831− 8

3
log(a2S2)− 2

9

S4

(S2)2

+a2

[
S2

(
−1.50680 +

167

180
log(a2S2)

)

+
S4

S2

(
2.63125− 197

180
log(a2S2)

)
− 71

540

S4
2

(S2)3
− 82

135

S6

(S2)2

]}
,

Zv2,b
= 1 +

g2CF
16π2

{
5.78101− 8

3
log(a2S2) +

4

9

S4

(S2)2

+a2

[
S2

(
−0.56888 +

1

30
log(a2S2)

)

+
S4

S2

(
−0.51323 +

19

30
log(a2S2)

)
+

71

270

S4
2

(S2)3
+

164

135

S6

(S2)2

]}
.
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Here we have introduced the notation

Sn =
4∑

λ=1

pnλ , (6.18)

with pλ being the momentum components. Note that terms of type (S4/S2) log(a2S2),

appearing in ZS, ZP , ZV , ZA, ZT , all have the same coefficient which arises solely from

the quark wave function renormalization constant Zq. The corresponding one-loop vertex

functions Λi(p) in (6.6) do not contain such a structure. For later purposes we write the

Z factors generically as

Z = 1 +
g2CF
16π2

Z1−loop + a2g2Z
(a2)
1−loop(p, a) . (6.19)

We emphasize that the numerical coefficients in the above expressions are either exact

rationals or can be computed to a very high precision.

Below we provide numerical values for the 1-loop renormalization constants g2 CF
16π2 Z1−loop

at β = 5.40, so that we have an idea on the significance of Z
(a2)
1−loop for the local operators.

g2CF
16π2

ZS
1−loop = −0.218684 + 0.028144 log(ap)2 (6.20)

g2CF
16π2

ZP
1−loop = −0.247511 + 0.028144 log(ap)2 (6.21)

g2CF
16π2

ZV
1−loop = −0.143811 (6.22)

g2CF
16π2

ZA
1−loop = −0.129397 (6.23)

g2CF
16π2

ZT
1−loop = −0.104440− 0.009381 log(ap)2 (6.24)

In Figs. 6.2, 6.3 and 6.4 we present a2g2Z
(a2)
1−loop(p, a) for selected operators as a function

of a2p2 on a finite lattice, where we choose the lattice momenta as pλ = (2π iλ)/(aLλ).

Here, iλ are integers and Lλ is the lattice extension in direction λ. We compare the

correction terms for a general set of momenta with those obtained for the momenta used

in this investigation at β = 5.40 on 243 × 48 lattices and with “diagonal” momenta, i.e.,

momenta on the diagonal of the Brillouin zone.

The figures show that the momenta of the actually measured Z factors are very close

to the diagonal. For clarity of presentation, only a subset of momentum choices have been
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Figure 6.2: The a2g2Z
(a2)
1−loop(p, a) for operators OS (left) and OP (right) as a function of

a2p2 on a 243×48 lattice at β = 5.40. The green filled circles are the values for an arbitrary
set of momenta, whereas the red filled squares are obtained from the momenta used in this
investigation. The blue line is computed from diagonal momenta.

0 1 2 3 4 5 6 7 8 9 10
(a p)

2

0.00

0.02

0.04

0.06

0.08

0.10

0.12
arbitrary momenta
diagonal
actual momenta

0 1 2 3 4 5 6 7 8 9 10
(a p)

2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
arbitrary momenta
diagonal
actual momenta

0 1 2 3 4 5 6 7 8 9 10
(a p)

2

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
arbitrary momenta
diagonal
actual momenta

Figure 6.3: The same as Fig. 6.2 but for operators OV (left), OA (right) and OT (lower).

included for (ap)2 > 5. Furthermore, one recognizes that the magnitude of the calculated

one-loop a2 corrections in the used momentum range is small but not negligible compared

to the measured values which are of order 1 (see also Fig. 6.1). Therefore, one can expect
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Figure 6.4: The same as Fig. 6.2 but for operators Ov2,a (left) and Ov2,b (right).

that the subtraction of those terms yields a noticeable effect.

6.4.2 Subtraction of lattice artifacts up to order a2

The subtraction procedure of order a2 terms is not unique - we can use different definitions.

The only restriction is that at one-loop order different procedures should lead to the same

estimates for the renormalization functions (treating ZRI′−MOM
bare (p, a)MC in perturbation

theory). We investigate the following possibilities,

ZRI′−MOM
bare (p, a)MC,sub,s = ZRI′−MOM

bare (p, a)MC − a2 g2
? Z

(a2)
1−loop(p, a) , (6.25)

ZRI′−MOM
bare (p, a)MC,sub,m = ZRI′−MOM

bare (p, a)MC ×
(

1− a2 g2
? Z

(a2)
1−loop(p, a)

)
, (6.26)

where g? can be chosen to be either the bare lattice coupling g or the boosted coupling

gB (6.15). (In the following we denote subtraction type (6.25) by (s) and (6.26) by (m)).

With ansatz (s) the one-loop a2 correction is subtracted “directly” from ZRI′−MOM
bare (p, a)MC.

Subtraction type (m) factorizes the one-loop a2 correction from the nonperturbative Z

factor. We have not performed this procedure on the pseudoscalar operator, because chiral

extrabolation of nonperturbative data is rather unstable in this case.

The ZRGI are computed from (6.10) using (s) or (m), where we expect slightly dif-

ferent numbers depending on the choice of coupling g?. The only significant errors to

ZRI′−MOM
bare (p, a)MC,sub are due to the Monte Carlo simulations.

In Fig. 6.5 we show how the subtraction of lattice artifacts (complete and a2) affects

the renormalization constants for the scalar and tensor operators. The complete one-loop

subtraction results in a clear plateau for both ZRGI factors. Using the a2 subtractions
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Figure 6.5: Unsubtracted and subtracted renormalization constants for the scalar operator
OS (left) and the tensor operator OT (right) at β = 5.40, for p2 & 10 GeV2 and r0 ΛMS =
0.700. The complete subtraction is based on (6.14), whereas the a2 subtractions are of
type (s) and (m) with g? = gB.

there remains a more or less pronounced curvature which has to be fitted. From the

definitions of the subtraction terms it is clear that they vanish at a2p2 = 0. Moreover, for

small p2 ≈ 10 GeV2 the subtraction methods (s) and (6.14) already agree, as they should.

However, as discussed above, ZRGI can only be determined from sufficiently large momenta

(p2 & 10GeV2), where differences arise between the various procedures. Therefore the

results for ZRGI may differ depending on the kind of subtraction. As can be seen in

Fig. 6.5, this effect varies strongly from operator to operator.

6.4.3 Fit procedure

Compared to the complete one-loop subtraction we expect that ZRI′−MOM
bare (p, a)MC,sub as

computed from (s) or (m) contains terms proportional to a2n (n ≥ 2) even at order g2, as

well as the lattice artifacts from higher orders in perturbation theory, constrained only by

hypercubic symmetry. Therefore, we parametrize the subtracted data for each β in terms

of the hypercubic invariants Sn defined in (6.18) as follows

ZSRI′−MOM(p)ZRI′−MOM
bare (p, a)MC,sub =

ZRGI(a)

∆ZS(p) [1 + b1 (gS)8]
+ (6.27)

a2

(
c1 S2 + c2

S4

S2

+ c3
S6

(S2)2

)
+ a4

(
c4 (S2)2 + c5 S4

)
+ a6

(
c6 (S2)3 + c7 S4 S2 + c8 S6

)
.

There are also further non-polynomial invariants at order a4, a6, but their behavior is ex-

pected to be well described by the invariants which have been included already. Ansatz



6.5. Renormalization factors for local and one-link operators 101

(6.27) is a generalization of (6.16): After the “reduced” one-loop subtraction of lattice arti-

facts the Z factors are expected to depend more strongly on a4 or a6 hypercubic invariants

than after the complete one-loop subtraction (see Fig. 6.5). The parameters c1, . . . , c8

describe the lattice artifacts.

Together with the target parameter ZRGI(a) we have ten parameters for this general

case. In view of the limited number of data points for each single β value (5.20, 5.25, 5.29,

5.40) we apply the ansatz (6.27) to several β values simultaneously with

ZRGI(a)

∆ZS(p) [1 + b1 (gS)8]
→ ZRGI(ak)

∆ZSk (p) [1 + b1 (gS)8]
, (6.28)

where k labels the corresponding β value (ak = a(βk)). The parameters ci are taken to

be independent of β. This enhances the ratio (number of data points)/(number of fit

parameters) significantly and we obtain several ZRGI(ak) at once. The fit is performed by

a nonlinear model fit which uses - depending on the actual convergence - either the Nelder-

Mead or a differential evolution algorithm [123]. Additionally, we have checked some of

the fit results using MINUIT [124].

The renormalization factors are influenced by the choice2 for r0 ΛMS. This quantity

enters ∆ZS(M) in (6.8) via the corresponding coupling gS(M) (for details see [117]). We

choose r0 ΛMS = 0.700 [125]. In order to estimate the influence of the choice of r0 ΛMS

we also use r0 ΛMS = 0.789 calculated in [126]. The Sommer scale r0 is chosen to be

r0 = 0.501 fm and the relation between the lattice spacing a and the inverse lattice coupling

β is given by r0/a = 6.050 (β = 5.20), 6.603 (β = 5.25), 7.004 (β = 5.29) and 8.285 (β =

5.40) [127].

6.5 Renormalization factors for local and one-link oper-

ators

The fit procedure as sketched above has quite a few degrees of freedom and it is essential

to investigate their influence carefully. A criterion for the choice of the minimal value

of p2 is provided by the breakdown of perturbation theory at small momenta. The data

suggest [117] that we are on the “safe side” when choosing p2
min = 10GeV2. As the upper

end of the fit interval we take the maximal available momentum at given coupling β.

2The Sommer scale r0 is a length scale (distance) defined in terms of the force, F (r), between static
quarks, satisfying: r20F (r0) = 1.65.
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Other important factors are

• Type of subtraction: As discussed above the procedure of the one-loop subtrac-

tion is not unique. We choose different definitions (s) and (m) with either bare g or

boosted coupling gB.

• Selection of hypercubic invariants: For the quality of the fit it is essential how

well we describe the lattice artifacts which remain after subtraction [128, 129]. This is

connected to the question whether the a2 subtraction has been sufficient to subtract

(almost) all a2 artifacts. Therefore, we perform fits with various combinations of

structures with coefficients ci in (6.27). One should mention that the concrete optimal

(i.e. minimal) set of ci depends strongly on the momenta of the available Monte

Carlo data - nearly diagonal momenta require fewer structures to be fitted than far

off-diagonal ones.

The analysis should provide an optimal restricted set of parameters which can be used

as a guideline for other classes of operators. Nevertheless, one has to inspect every new

case carefully.

The results for ZRGI will depend on the above mentioned factors. As a detailed pre-

sentation for all operators and β-values would be too lengthy, we select some operators

and/or β values and take the corresponding results as a kind of reference. All results pre-

sented in this section are computed for r0 ΛMS = 0.700. The choice r0 ΛMS = 0.789 leads

to qualitatively similar results. The large number of parameters in ansatz (6.27) calls for a

combined use of the data sets at β = (5.20, 5.25, 5.29, 5.40) for our fit analysis as indicated

in (6.28). With the choice p2
min = 10GeV2 this results in 94 data points available for the

corresponding fits. Additionally, we should note that the errors on our fit parameters are

those obtained from the nonlinear model fit. They differ from the error calculation for the

ZRGI based on (6.16) and used in [117].

6.5.1 Dependence on the subtraction type

In Fig. 6.6 we present the ZRGI for operators OS, OV , OT and Ov2,a for the different

subtraction types using the fit ansatz (6.27) with all ci 6= 0, i.e., we include a2, a4 and a6

terms. From the discussion in Section 6.4.2 we expect that the resulting differences vary

from operator to operator (cf. Fig. 6.5).

From Fig. 6.6 we observe that the complete one-loop subtraction (1) and the subtraction

(2) agree within 1 %. This is not unexpected because the subtraction schemes are similar
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Figure 6.6: ZRGI of selected operators at β = 5.40 as a function of the subtraction type
(subtype): 1: complete subtraction (6.14) with g? = gB, 2: (s) with g? = gB, 3: (m) with
g? = gB, 4: (s) with g? = g, 5: (m) with g? = g. The horizontal borders of the shaded
area show a 1% deviation from case 1.

and the gauge couplings coincide. The differences in the results for (2) and (3) can be

used as an indication for a systematic uncertainty in the determination of ZRGI based

on the schemes (s,m). We observe that both subtraction approaches are numerically

almost equivalent. Choices (4) and (5) lead to ZRGI factors which are partly outside the

1 % deviation. Generally, we recognize that all subtraction procedures for both bare and

boosted couplings produce fit results within a reasonable error band width.

In order to test the effect of subtraction we compare the g2a2 contributions as given in

(6.17) with the remaining lattice artifacts of the Monte Carlo data fitted after subtraction,

i.e. the result for (6.27) setting ZRGI(a) = 0. In Fig. 6.7 we show the results for the

same selected operators choosing gB. In the small p2 region the remaining lattice artifacts

are significantly smaller than the one-loop a2 terms (operators OS, OT and Ov2,a). In

case of already small one-loop a2 artifacts (operator OV ) the final artifacts remain small.

This behavior strongly suggests to subtract the one-loop a2 terms before applying the fit

procedure.
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Figure 6.7: Lattice artifacts for ZRGI of selected operators for β = 5.40 as a function of p2

choosing g? = gB. The blue filled circles are the corresponding g2a2 correction terms, the
red open circles are the fit results for (6.27) setting ZRGI(a) = 0.

Since the boosted coupling gB is assumed to remove large lattice artifacts due to tadpole

contributions in the perturbative series, we will use gB in the following. In addition, we

restrict ourselves to subtraction type (s), which is closest in spirit to the complete one-loop

subtraction studied in [117] (leading approximately to a plateau in the ZRGI as a function

of p2).

6.5.2 Dependence on hypercubic invariants

Now we discuss the dependence on the hypercubic invariants included in the fit ansatz

(6.27). The goal is to select a reasonable set of parameters to parametrize the remaining

lattice artifacts. Figure 6.8 shows the fit results for some ZRGI utilizing different parameter

sets {ck}. We use the subtraction type (s) with g? = gB. In that case the results from the

complete one-loop subtraction (1) serve as reference values.

Generally, we recognize that the resulting RGI renormalization factors do not vary

significantly. Most fit results for ZRGI are located in a 1 % deviation band around the
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Figure 6.8: ZRGI for selected operators at β = 5.40 as a function of the parameters included
in the fit ansatz (6.27). The used parameter combinations (partype) are: 1: complete one-
loop subtraction of lattice artifacts (6.14) 2: all ci, 3: (c1, c4, c6) - O(4) invariant, 4:
(c1, c2, c3, c4, c5) - (a2, a4)- hypercubic invariants, 5: (c4, c5, c6, c7, c8) - (a4, a6)- hypercubic
invariants. The horizontal borders of the shaded area show a 1% deviation from case 1.

corresponding complete subtraction results (1). In addition, parametrizations (2) and (3)

give almost identical fit results. This reflects, of course, the fact that our momenta are

very close to the diagonal in the Brillouin zone. These restricted momentum sets might be

the reason that even “incomplete” hypercubic invariant sets (4, 5) can be used to obtain

reasonable fits. For the final results we use the fit with all ci 6= 0 which would be natural

in the case of more off-diagonal momenta.

In Figs. 6.9, 6.10 and 6.11 we show the results for all operators using the parameter sets

with all ci compared to the results obtained by the subtraction scheme based on (6.14).
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Figure 6.9: ZRGI
S (left) and ZRGI

V (right) at r0 ΛMS = 0.700 as a function of β using all ci
compared to the complete one-loop subtraction.
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6.6 Results for local and one-link operators and conclu-

sions

As a result of the preceding discussions we use subtraction type (s) (Eq. (6.25)) with

boosted coupling gB and the fitting formula (6.27) with all ci and b1 coefficients to determine

the ZRGI. The final renormalization factors are collected in Table 6.2 using the two different

Op. r0 ΛMS ZRGI|β=5.20 ZRGI|β=5.25 ZRGI|β=5.29 ZRGI|β=5.40

OS 0.700 0.4530(34) 0.4475(33) 0.4451(32) 0.4414(30)

0.789 0.4717(44) 0.4661(65) 0.4632(54) 0.4585(27)

OV 0.700 0.7163(26) 0.7253(26) 0.7308(25) 0.7451(24)

0.789 0.7238(72) 0.7319(94) 0.7365(99) 0.7519(50)

OA 0.700 0.7460(41) 0.7543(40) 0.7590(39) 0.7731(37)

0.789 0.7585(46) 0.7634(77) 0.7666(81) 0.7805(30)

OT 0.700 0.8906(43) 0.9036(42) 0.9108(41) 0.9319(39)

0.789 0.8946(85) 0.9041(111) 0.9075(120) 0.9316(49)

Ov2,a 0.700 1.4914(55) 1.5131(55) 1.5266(54) 1.5660(53)

0.789 1.4635(108) 1.4776(112) 1.4926(90) 1.5397(58)

Ov2,b 0.700 1.5061(37) 1.5218(37) 1.5329(36) 1.5534(35)

0.789 1.4601(151) 1.4727(206) 1.4863(165) 1.5115(140)

Table 6.2: ZRGI values using the subtraction (s) with gB.

r0 ΛMS values 0.700 and 0.789. This shows the influence of the choice of r0 ΛMS (depending

on the anomalous dimension of the operator). For the investigated operators and β values

we found for the relative differences of the ZRGI

δZRGI =

∣∣∣∣∣Z
RGI
r0 ΛMS=0.700 − ZRGI

r0 ΛMS=0.789

ZRGI
r0 ΛMS=0.700

∣∣∣∣∣ . 0.04 . (6.29)

For comparison we collect in Table 6.3 the values for ZRGI computed by means of fits

with the ansatz (6.16) to data where a complete one-loop subtraction of lattice artifacts
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(according to (6.14) with g? = gB) has been performed. Note that here the errors are deter-

mined from the variation of the subtracted data between the scales µ2 = 10, 20, 30 GeV2

[117]. The reported renormalization factors are calculated for the values r0/a given at the

Op. r0 ΛMS ZRGI|β=5.20 ZRGI|β=5.25 ZRGI|β=5.29 ZRGI|β=5.40

OS 0.700 0.4508(20) 0.44952(32) 0.44788(70) 0.4460(20)

0.789 0.4620(85) 0.4603(60) 0.4585(61) 0.4560(48)

OV 0.700 0.7225(44) 0.7321(31) 0.7370(46) 0.7511(41)

0.789 0.7219(53) 0.7316(41) 0.7364(55) 0.7506(50)

OA 0.700 0.7529(17) 0.76046(70) 0.76463(33) 0.77731(20)

0.789 0.7530(14) 0.76054(48) 0.7647(14) 0.7774(10)

OT 0.700 0.9020(12) 0.91427(24) 0.9206(14) 0.94009(69)

0.789 0.8948(40) 0.9072(32) 0.9137(48) 0.9333(38)

Ov2,a 0.700 1.5018(48) 1.5190(64) 1.5321(52) 1.5681(29)

0.789 1.473(18) 1.490(14) 1.504(12) 1.540(14)

Ov2,b 0.700 1.5083(51) 1.524(14) 1.5362(92) 1.5706(61)

0.789 1.480(15) 1.497(28) 1.509(23) 1.5436(69)

Table 6.3: ZRGI using a complete one-loop subtraction of lattice artifacts.

end of Section 6.4 and, therefore, differ from those given in [117]. The Z factors of the

local operators in both tables agree within 1 %. The Z factors of the one-link operators

differ at most by 2 %.

Let us compare our results in Table 6.3 for the local vector current with ZRGI
V obtained

from an analysis of the proton electromagnetic form factor [130] following [131], which are

listed in Table 6.4. The numbers agree within less than 1 % with the numbers in Table 6.3

(r0 ΛMS = 0.700), supporting the complete one-loop subtraction as our reference point.

From the present investigation we conclude: The alternatively proposed “reduced” sub-

traction algorithm can be used for the determination of the renormalization factors if the

complete subtraction method is not available. Possible applications could be Z factors for

Nf = 2+1 calculations with more complicated fermionic and gauge actions where one-loop
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ZRGI|β=5.20 ZRGI|β=5.25 ZRGI|β=5.29 ZRGI|β=5.40

0.7296(4) 0.7355(3) 0.7401(2) 0.7521(3)

Table 6.4: ZRGI values for operator V from the proton electromagnetic form factor analysis.

results to order a2 are available (for the fermionic SLiNC action with improved Symanzik

gauge action see Chapter 5 and Ref. [122]).

In this study we have analyzed data sets with momenta close to the diagonal of the

Brillouin zone. The one-loop a2 contributions to the Z factors are completely general and

can be used for arbitrary (also non-diagonal) momentum sets. Our ansatz (6.27) allows to

take into account the remaining artifacts after subtracting these one-loop a2 terms. To get

reasonable fit results the ratio (number of data points)/(number of fit parameters) has to

be sufficiently large.

As we pointed out the subtraction type is not unique. With (s) and (m) we tested two

different types. The resulting fits do not give a clear preference for one of these. Even

the additional choice for the coupling (g? = g or g? = gB) does not lead to significantly

different results. Therefore, our final choice (s) (Eq. (6.25) with g? = gB) was supported

by “external” arguments: the improved behavior of the boosted perturbative series and the

results obtained by complete one-loop subtraction [117].

We have shown that already the one-loop a2 subtraction improves the behavior of the

Z factors significantly: In the small p2 region the contributions of the remaining lattice

artifacts are smaller than the corresponding one-loop a2 terms. As mentioned above, the

accuracy to determine the Z factors is already at the 1 % level for local operators and at

the 2 % level for operators with one covariant derivative compared to the complete one-loop

subtraction of lattice artifacts. Additional systematic uncertainties are due to the choice

of the r0 ΛMS and r0/a.



Chapter 7

Renormalization of the

Chromomagnetic Operator on the

Lattice

In this Chapter we describe our study of the chromomagnetic operator (CMO), which is

defined as1:

OCM = g ψs σµν Gµνψd (7.1)

This operator appears in effective Hamiltonians describing semileptonic processes in and

beyond the Standard Model. We have computed its Green’s functions with two (quark-

antiquark) and three (quark-antiquark-gluon) external fields, at nonzero quark masses.

Our calculations were performed using both the lattice and dimensional regularization.

Having dimension 5, the chromomagnetic operator is characterized by a rich pattern of

mixing with other operators of equal and lower dimensionality, including also non gauge

invariant quantities; it is thus quite a challenge to extract from lattice simulations a clear

signal for the hadronic matrix elements of this operator.

The lattice computation is carried out using the maximally twisted-mass action for the

fermions; for the gluons we employed the Symanzik improved gauge action, for different

sets of values of the Symanzik coefficients. In order to find the mixing with other operators

we examined the transformation properties of all operators which could possibly mix with

OCM . We have identified these operators and we calculated those elements of the mixing

matrix which are relevant for the renormalization of OCM . We also computed and present

1Notation: g0: bare coupling constant, ψs,d : s- and d-quark fields, Gµν : gluon tensor, σµν =
(i/2)[γµ, γν ].

110
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the renormalization of the fermion field Zψ, of the gluon field ZA, of the ghost field Zc and

the coupling constant Zg, which enter the renormalization conditions.

7.1 Introduction

The electroweak effective Hamiltonian describing strangeness changing (∆S = 1) processes,

in the Standard Model (SM) and beyond, contains four “magnetic” operators of dimension

5:

H∆S=1, d=5
eff =

∑
i=±

(Ci
γQ

i
γ + Ci

gQ
i
g) + h.c. (7.2)

Q±γ =
Qd e

16π2

(
ψ̄sL σµν Fµν ψdR ± ψ̄sR σµν Fµν ψdL

)
, (7.3)

Q±g =
g

16π2

(
ψ̄sL σµν Gµν ψdR ± ψ̄sR σµν Gµν ψdL

)
(7.4)

In the above expressions, Fµν and Gµν represent the electromagnetic and strong field

strength tensors respectively, ψs and ψd are the strange and down quark fields and the

subscripts R,L denote the left/right chiral structure (1± γ5). The coefficients Ci
γ and C

i
g,

multiplying the electromagnetic (EMO) and chromomagnetic (CMO) operators, respec-

tively, may be calculated perturbatively via the OPE; they are suppressed within the SM,

but become more pronounced beyond the SM, e.g. through penguin diagrams in SUSY.

Some of the most relevant matrix elements of the CMO are parameterized as [132]:

〈π0|Q+
g |K0〉 =

−11

32
√

2π2

M2
K(pπ · pK)

ms +md

Bg1 (7.5)

〈π+π−|Q−g |K0〉 =
11 i

32π2

M2
KM

2
π

fπ (ms +md)
Bg2 (7.6)

〈π+π+π−|Q+
g |K+〉 =

−11

16π2

M2
KM

2
π

f 2
π (ms +md)

Bg3 (7.7)

These matrix elements appear in the study of K0−K̄0 mixing, ε′/ε, the ∆I = 1/2 rule, and

K → 3π decays. To leading order in Chiral Perturbation Theory (χPT), the B-parameters

are all related [133]:

Q±g =
11

256π2

f 2
πM

2
K

ms +md

Bg

[
U(DµU

†)(DµU)± (DµU
†)(DµU)U †

]
23

(7.8)

Thus, a lattice study of, say, Eq. (7.5), provides information for Eqs. (7.6), (7.7) as well.
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The EMO has been studied in simulations with Nf = 0 [134] and Nf = 2 [135] dynam-

ical flavors, focusing on:

〈π0|Q+
γ |K0〉 = i

Qd e
√

2

16π2MK

pµπ p
ν
K Fµν BT RT (q2) [RT (0) = 1] (7.9)

The parameter BT appears, e.g., in the branching ratio of KL → π0 e+ e− in SUSY

models.

We focused on the matrix elements of OCM between a kaon and a pion state. The K−π
matrix element of OCM has never been calculated before on the lattice. Its renormalization

entails subtraction of operators, which can mix with power divergent coefficients. In gen-

eral, the renormalization of effective operators is highly non trivial. A serious complication

in this case is that operators with the same dimensions as OCM or lower, and with the same

quantum numbers, can mix with OCM at the quantum level. In order to identify which

operators can possibly mix, we exploited the fact that all candidate operators should have

the same transformation properties as OCM , and we reduced the number of these operators

to a minimal set of 13 operators.

We compute perturbatively the relevant Green’s functions of OCM to determine the

renormalization mixing coefficients. The calculations were performed in the continuum

(dimensional regularization) and on the lattice using the maximally twisted mass fermion

action and the Symanzik improved gluon action. This computation is followed by the

construction of the mixing matrix, which involves gauge invariant operators and operators

that vanish by the equations of motion. In parallel, non-perturbative measurements of the

K − π matrix element are being performed by the Roma Tre group, in simulations with 2

dynamical (Nf = 2) twisted mass fermions and the Iwasaki improved gluon action.

7.2 Symmetries of the Action and Transformation Prop-

erties of operators

We study the mixing of the chromomagnetic operator:

OCM = g0 ψs σµν Gµνψd, (7.10)

using both dimensional regularization (DR) and lattice regularization (L). On the lattice

we use the fermion setup studied by Frezzotti and Rossi [137, 138, 139]; in particular,
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valence quarks are described by the twisted mass action, which in the physical basis reads:

SF [ψf , ψ̄f , U ] = a4
∑
f

∑
x

ψ̄f (x)
[
γ · ∇̃ − iγ5Wcr(rf ) +mf

]
ψf (x) , (7.11)

where

γ · ∇̃ ≡ 1

2

∑
µ

γµ(∇?
µ +∇µ) , (7.12)

Wcr(rf ) ≡ −arf
2

∑
µ

∇?
µ∇µ +Mcr(rf ) , (7.13)

rf is the Wilson parameter for the flavor f = u, d, s and Mcr(rf ) is the corresponding

critical quark mass (Mcr(−rf ) = −Mcr(rf )).

The full fermion action includes also a part describing sea quarks, as well as a ghost

part (to compensate the valence quark determinant) [138]; these parts will not be needed

in our one-loop calculation. For the gluon part we employ the Symanzik improved action

described in Eq. (2.17). Our results (Section 7.3.2) will be provided for some of the most

popular choices for the Symanzik coefficients.

There exist certain symmetries of the action (valid both in the continuum and lattice

formulation of the theory) which reduce considerably the number of operators that can

possibly mix with OCM at the quantum level. These symmetries are defined by means of

the discrete transformations P (continuum parity) and Dd in the physical basis,

P :


U0(x)→ U0(xP) , Uk(x)→ U †k(xP − ak̂) , k = 1, 2, 3

ψf (x)→ γ0ψf (xP)

ψ̄f (x)→ ψ̄f (xP)γ0 ,

(7.14)

Dd :


Uµ(x) → U †µ(−x− aµ̂)

ψf (x) → e3iπ/2ψf (−x)

ψ̄f (x) → e3iπ/2ψ̄f (−x),

(7.15)
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(where xP = (−x, x0) and µ̂ is the unit vector in the µ-direction)

R5 =
∏
f

Rf 5 , Rf 5 :


ψf → γ5ψf

ψ̄f → −ψ̄fγ5 ,

(7.16)

C (charge conjugation; T means transpose)

C :


ψ(x)→ iγ0γ2ψ̄(x)T

ψ̄(x)→ −ψ(x)T iγ0γ2

Uµ(x)→ U?
µ(x) , µ = 0, 1, 2, 3 ,

(7.17)

and S (exchange between the s and the d quark)

S :


ψs(x) ↔ ψd(x)

ψ̄s(x) ↔ ψ̄d(x)

ms ↔ md .

(7.18)

In terms of the above transformations, the symmetries of the action are2:

• P × Dd × (m→ −m), where m are all masses except Mcr

• Dd ×R5

• C × S, if rs = rd

• C × P × S, if rs = −rd .

In order to identify which operators can possibly mix with OCM , we examine the trans-

formation properties of all candidate operators under the above symmetries; admissible

2Note that, in the case of rs = −rd, CPS will not be a symmetry of the valence part of the action
which contains a u quark, since it will require ru → −ru. However, the u quark can be dropped from
the valence part of the action, since our operator does not contain u quarks, and therefore the Green’s
functions of interest will also not contain any external u quarks. Nonetheless, it is important to note that
the sea quark part of the action is symmetric even in the presence of u, since it is an even function of the
Wilson r coefficients [138].
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Operators P ×Dd× Dd ×R5 C × S C × P × S

(m→ −m) if rs = rd if rs = −rd
Dimension 3 operators

X ψsψd − + + +

i ψsγ5ψd + + + −

Dimension 4 operators

(md +ms)ψsψd + + + +

(md −ms)ψsψd + + − −
(+) i (md +ms)ψsγ5ψd − + + −
(−) i (md −ms)ψsγ5ψd − + − +

ψs(D
→

+md)ψd + ψs(−D
←

+ms)ψd + + + +

ψs(D
→

+md)ψd − ψs(−D
←

+ms)ψd + + − −
(+) i ψsγ5(D

→
+md)ψd + i ψs(−D

←
+ms)γ5ψd − + + −

(−) i ψsγ5(D
→

+md)ψd − i ψs(−D
←

+ms)γ5ψd − + − +

Table 7.1: Transformation properties of dimension 3 and 4 operators. Included are gauge
invariant operators and operators which vanish by the equations of motion, in the physical
basis.

operators must transform in the same way as OCM . Furthermore, by general renormaliza-

tion theorems, these operators must be gauge invariant, or else they must vanish by the

equations of motion.

In Tables 7.1 and 7.2 we present all candidate operators along with their transformation

properties. Operators marked by ′′X′′ have the same properties as OCM and thus may mix

with it. Operators marked by ′′(+)′′ or ′′(−)′′ have the same transformation properties as

OCM only if rs = rd or rs = −rd, respectively; for this reason the Wilson parameters rs, rd

have been explicitly introduced in O11 and O12 below (see Eqs. (7.29) - (7.30)). There
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Dimension 5 Operators P ×Dd× Dd ×R5 C × S C × P × S

(m→ −m) if rs = rd if rs = −rd
X g0 ψsσµνGµνψd − + + +

i g0 ψsγ5σµνGµνψd + + + −
X (m2

d +m2
s)ψsψd − + + +

i (m2
d +m2

s)ψsγ5ψd + + + −
(m2

d −m2
s)ψsψd − + − −

i (m2
d −m2

s)ψsγ5ψd + + − +

X mdmsψsψd − + + +

imdmsψsγ5ψd + + + −
X msψs(D

→
+md)ψd +mdψs(−D

←
+ms)ψd − + + +

X mdψs(D
→

+md)ψd +msψs(−D
←

+ms)ψd − + + +

msψs(D
→

+md)ψd −mdψs(−D
←

+ms)ψd − + − −
mdψs(D

→
+md)ψd −msψs(−D

←
+ms)ψd − + − −

imsψsγ5(D
→

+md)ψd+imdψs(−D
←

+ms)γ5ψd + + + −
imdψsγ5(D

→
+md)ψd+imsψs(−D

←
+ms)γ5ψd + + + −

imsψsγ5(D
→

+md)ψd−imdψs(−D
←

+ms)γ5ψd + + − +

imdψsγ5(D
→

+md)ψd−imsψs(−D
←

+ms)γ5ψd + + − +

X ψs(D
→

+md)
2ψd + ψs(−D

←
+ms)

2ψd − + + +

ψs(D
→

+md)
2ψd − ψs(−D

←
+ms)

2ψd − + − −
i ψsγ5(D

→
+md)

2ψd + i ψs(−D
←

+ms)
2γ5ψd + + + −

i ψsγ5(D
→

+md)
2ψd − i ψs(−D

←
+ms)

2γ5ψd + + − +

X ψs
←−
Dµ

−→
Dµψd − + + +

i ψsγ5

←−
Dµ

−→
Dµψd + + + −

X ψs(−D
←

+ms) (D
→

+md)ψd − + + +

i ψs(−D
←

+ms) γ5 (D
→

+md)ψd + + + −
X ψs 6

←−
∂ (D
→

+md)ψd − ψs(−D
←

+ms)6
−→
∂ ψd − + + +

X ψs 6
−→
∂ (D
→

+md)ψd − ψs(−D
←

+ms)6
←−
∂ ψd − + + +

ψs 6
←−
∂ (D
→

+md)ψd + ψs(−D
←

+ms)6
−→
∂ ψd − + − −

ψs 6
−→
∂ (D
→

+md)ψd + ψs(−D
←

+ms)6
←−
∂ ψd − + − −

i ψs 6
←−
∂ γ5(D

→
+md)ψd− i ψs(−D

←
+ms)γ5 6

−→
∂ ψd + + + −

i ψs 6
−→
∂ γ5(D

→
+md)ψd− i ψs(−D

←
+ms)γ5 6

←−
∂ ψd + + + −

i ψs 6
←−
∂ γ5(D

→
+md)ψd + i ψs(−D

←
+ms)γ5 6

−→
∂ ψd + + − +

i ψs 6
−→
∂ γ5(D

→
+md)ψd + i ψs(−D

←
+ms)γ5 6

←−
∂ ψd + + − +

Table 7.2: Transformation properties of gauge invariant operators and of operators which
vanish by the equations of motion, in the physical basis (Operator dimension = 5).
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follows immediately that OCM ≡ O1 can only mix with the following operators:

O1 = g0 ψsσµνGµνψd (7.19)

O2 = (m2
d +m2

s)ψsψd (7.20)

O3 = mdmsψsψd (7.21)

O4 = ψs
←−
Dµ
−→
Dµψd (7.22)

O5 = ψs(−D
←

+ms)(D
→

+md)ψd (7.23)

O6 = ψs(D
→

+md)
2ψd + ψs(−D

←
+ms)

2ψd (7.24)

O7 = msψs(D
→

+md)ψd +mdψs(−D
←

+ms)ψd (7.25)

O8 = mdψs(D
→

+md)ψd +msψs(−D
←

+ms)ψd (7.26)

O9 = ψs 6
←−
∂ (D
→

+md)ψd − ψs(−D
←

+ms) 6
−→
∂ ψd (7.27)

O10 = ψs 6
−→
∂ (D
→

+md)ψd − ψs(−D
←

+ms) 6
←−
∂ ψd (7.28)

O11 = i rd ψsγ5(D
→

+md)ψd + i rs ψs(−D
←

+ms)γ5ψd (7.29)

O12 = i (rdmd + rsms)ψsγ5ψd (7.30)

O13 = ψs ψd , (7.31)

where left and right covariant derivatives are defined in terms of the gluon field Aµ as

follows:

−→
Dµ =

−→
∂ µ + ig0Aµ , (7.32)

←−
Dµ =

←−
∂ µ − ig0Aµ . (7.33)

For the parameters rs , rd , in our perturbative calculation we have made the (indepen-

dent) choices of values rs = ±1, rd = ±1, consistently with their values in simulations.

Operators O9 and O10 are not gauge invariant, but they are admissible candidates for
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mixing, since they vanish by the equations of motion; indeed, they will mix with OCM
both in dimensional regularization and on the lattice. The operators O11, O12, O13 are of

lower dimension and thus they do not mix with O1 in dimensional regularization; they do

however show up in the lattice formulation.

7.3 Renormalization functions

The operators ORi are related to the bare ones, Oi (i = 1, . . . , 13), through:

Oi =
13∑
j=1

ZijORj (in matrix notation : O = ZOR) . (7.34)

The 13 × 13 mixing matrix Zij should more properly be denoted as ZX,Y
ij , where X =

DR,L, . . . is the regularization and Y = RI ′,MS, . . . is the renormalization scheme. It

obeys:

Z = 11 +O(g2) , (7.35)

where g is the renormalized coupling constant; in particular,

ORi =
13∑
j=1

(
Z−1

)
ij
Oj , Z−1 = 2 · 11− Z +O(g4) . (7.36)

Since we are interested in OR1 we calculate the first row of the mixing matrix: Zi ≡ Z1i.

We note that Zi = O(g2) for i > 1, and Z1 = 1 + g2 z1 +O(g4).

Since renormalization conditions are typically imposed on amputated renormalized

Green’s functions, let us relate the latter to the bare ones. For the quark-antiquark Green’s

functions:

〈ψROR1 ψ
R〉amp = 〈ψR ψR〉−1 〈ψROR1 ψ

R〉 〈ψR ψR〉−1

=
(
Zψ 〈ψ ψ〉−1

) (
Z−1
ψ

13∑
i=1

(Z−1)1i〈ψOi ψ〉
) (

Zψ 〈ψ ψ〉−1
)

= Zψ

13∑
i=1

(Z−1)1i〈ψOi ψ〉amp , ψ =
√
Zψ ψ

R . (7.37)

The one-loop Feynman diagrams contributing to 〈ψO1 ψ〉amp are shown in Fig. 7.1. Note

that Eq. (7.37) holds for an arbitrary regularization and arbitrary renormalization scheme;
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the only condition on the renormalization scheme is that it be mass-independent, in which

case the quark field renormalization constant Zψ does not depend on flavor. To avoid

heavy notation we have omitted coordinate/momentum arguments on ψ, O, as well as

Dirac/flavor indices on 〈ψ ψ〉, 〈ψO ψ〉, etc.

Figure 7.1: One-loop Feynman diagrams contributing to the 2-pt Green’s function of the
chromomagnetic operator, O1 . A wavy (solid) line represents gluons (quarks). A cross
denotes the insertion of O1 .

Similarly for quark-antiquark-gluon Green’s functions we have:

〈ψROR1 ψ
R
ARν 〉amp = Zψ Z

1/2
A

13∑
i=1

(Z−1)1i〈ψOi ψAν〉amp , Aν =
√
ZAA

R
ν . (7.38)

[Strictly speaking, in the right-hand sides of Eqs. (7.37) and (7.38) one must take the

regulator to its limit value (i.e. ε→ 0 in dimensional regularization or a→ 0 on the lattice).

This limit is convergent, provided all renormalization functions Z have been appropriately

chosen. It is only in this limit that the right-hand sides of Eqs. (7.37) and (7.38) are equal

to the corresponding left-hand sides.]

The one-loop Feynman diagrams contributing to 〈ψO1 ψAν〉amp are shown in Fig. 7.2

(one-particle irreducible (1PI)) and Fig. 7.3 (one-particle reducible (1PR)).

Imposing renormalization conditions of the above 2- and 3-pt Green’s functions is suf-

ficient3 in order to obtain all Zi.

In some definitions of OCM (see, e.g., [136]) there is an extra factor of a quark mass:

ÕCM ≡ mOCM , (7.39)

where m is the mass of one of the quark flavors. The renormalized mass mR is given by

3One could of course calculate also 4-pt Green’s functions; in doing so, a number of consistency checks
would emerge regarding the divergent part of the mixing coefficients Zi. Further Green’s functions (5-pt
and above) will bring in no superficial divergences; thus the regulator (in our case, the lattice spacing a)
can be taken to its limit right away and no further renormalization conditions or consistency checks will
arise.
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1 2 3

4 5 6

7 8 9

1 0 1 1

Figure 7.2: 1PI Feynman diagrams which contribute to the 3-pt Green’s function of O1.
Diagrams 1, 4, 6 do not appear in dimensional regularization. A wavy (solid) line represents
gluons (quarks). A cross denotes the insertion of O1 .

Figure 7.3: 1PR Feynman diagrams which contribute to the 3-pt Green’s function of O1.
A wavy (solid) line represents gluons (quarks). A cross denotes the insertion of O1 .
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mR = Z−1
m m; in a mass-independent scheme, Zm is also flavor independent, by analogy

with Zψ. In this case:

ÕR1 = mROR1 = mR

13∑
i=1

(
Z−1

)
1i
Oi

=
(
Z−1
m m

) 13∑
i=1

(
Z−1

)
1i
Oi =

13∑
i=1

(
Z−1

)
1i
Z−1
m (mOi) . (7.40)

Thus the renormalization matrix Z̃ij for ÕCM is given by: Z̃ij = Zm Zij.

By analogy with Zm, a multiplicative factor of Zg must be included in Z1, if the calcu-

lation of Green’s functions involves the operator ψs σµν Gµν ψd, rather than g ψs σµν Gµν ψd.

We will make use of this fact in Eq. (7.61). The calculation of Zm and Zg is presented in

section 7.4.

In order to impose renormalization conditions, we need the expressions for the tree-

level 2-pt and 3-pt Green’s functions of Oi, i = 1, . . . , 13. The tree-level parts of the 3-pt

amputated bare Green’s functions 〈ψs(q2)Oi(x)ψd(q3)Aν(q1)〉amp are shown (apart from

an overall factor of ei x·(−q1−q2+q3)) in Table 7.3; similarly for the tree-level parts of the

2-pt bare Green’s functions 〈ψs(q2)Oi(x)ψd(q3)〉amp. Note that the tree-level 3-pt Green’s

functions, despite being amputated, receive also contributions which are not 1PI, as shown

in Fig. 7.4. We do not include these in Table 7.3; however, their value can be easily deduced

from the corresponding tree-level 2-pt Green’s functions.

Figure 7.4: 1PR Feynman diagrams contributing to the tree-level 3-pt Green’s functions; A
wavy (solid) line represents gluons (quarks). A cross denotes the insertion of the operator
Oi , i = 1, . . . , 13.
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7.3.1 Dimensional Regularization

The next step in our renormalization procedure is to calculate the MS-renormalized 2-pt

and 3-pt Green’s functions of OCM ; in order to do so, we must regularize the theory in

D-dimensions (D = 4− 2 ε), in the continuum. The general form of the O (1/ε) part of the

bare Green’s functions is:

〈ψO1 ψ〉DRamp

∣∣∣
1/ε

= ρ1 (q2
2 + q2

3) + ρ2 (m2
s +m2

d) + ρ3 i (md 6q3 +ms 6q2)

+ρ4 i (ms 6q3 +md 6q2) + ρ5 q2.q3 + ρ6 6q2 6q3 + ρ7msmd (7.41)

〈ψO1 ψAν〉DRamp,1PI

∣∣∣
1/ε

= R1 g (q2 + q3)ν +R2 g (γν 6q3 + 6q2 γν) +R3 i g (ms +md) γν

+R4 (−2 i g σρν q1ρ ) (7.42)

where g is the renormalized coupling constant in the MS scheme, which is related to the bare

coupling constant in dimensional regularization, gDR0 , through: g = µ−ε (ZDR,MS
g )−1 gDR0

and ρi, Ri are numerical coefficients. Computing ρi, Ri to one loop we find:
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ρ1 =
g2CF
16π2

(
−3

ε

)
(7.43)

ρ2 =
g2CF
16π2

(
−6

ε

)
(7.44)

ρ3 =
g2CF
16π2

(
3

ε

)
(7.45)

ρ4 = ρ5 = ρ6 = ρ7 = 0 (7.46)

R1 =
g2CF
16π2

(
−6

ε

)
(7.47)

R2 =
g2

16 π2

(
3Nc

4 ε

)
(7.48)

R3 =
g2

16 π2

(
− 3

2Nc ε
+

3Nc

4 ε

)
(7.49)

R4 =
g2

16 π2

(
1

Nc ε
− α

2Nc ε
+

7Nc

4 ε
+

3αNc

4 ε

)
. (7.50)

Here, Nc : number of colors, CF = (N2
c − 1)/(2Nc): quadratic Casimir operator in the

fundamental representation, α: gauge parameter (α = 1(α = 0) corresponds to Feynman

(Landau) gauge).

We have also computed the finite parts (O(ε0)) for the above Green’s functions, which

are just the corresponding MS-renormalized Green’s functions. These are irrelevant for

the computation of the mixing coefficients in the MS scheme in dimensional regularization;

however, they are necessary in the calculation of Zij with lattice regularization and MS

renormalization, see Section 7.3.2. Using the form of Eqs. (7.41) - (7.42) and the tree-level

Green’s functions of the various operators (Table 7.3), we construct a set of equations

for the disentanglement of the mixing coefficients; in particular, by demanding that the

coefficients of O(1/ε) in the left-hand sides of Eqs. (7.37) - (7.38) vanish, we obtain 4:

4Note that Eq. (7.38) will also contain O (1/ε) terms which are not polynomial in qi, m; such terms
arise from the 1PR one-loop 3-pt Green’s function of O1 (Fig. 7.3) and from the 1PR tree-level Green’s
functions of O2, . . . ,O13 (Fig. 7.4). By Eq. (7.37) all such terms cancel out among themselves.
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− ZDR,MS
6 − ZDR,MS

10 = ρ1 (7.51)

ZDR,MS
2 + ZDR,MS

6 + ZDR,MS
8 = ρ2 (7.52)

2ZDR,MS
6 + ZDR,MS

8 + ZDR,MS
10 = ρ3 (7.53)

−ZDR,MS
5 − ZDR,MS

7 + ZDR,MS
9 = ρ4 (7.54)

−ZDR,MS
4 = ρ5 (7.55)

−ZDR,MS
5 + 2ZDR,MS

9 = ρ6 (7.56)

−ZDR,MS
3 − ZDR,MS

5 − 2ZDR,MS
7 = ρ7 (7.57)

ZDR,MS
4 − 2ZDR,MS

6 − 2ZDR,MS
10 = R1 (7.58)

−ZDR,MS
5 + ZDR,MS

9 + ZDR,MS
10 = R2 (7.59)

ZDR,MS
5 − 2ZDR,MS

6 + ZDR,MS
7 + ZDR,MS

8 = R3 (7.60)

g2 zDR,MS
1 + ZDR,MS

6 + ZDR,MS
10 = R4 + g2

(
zDR,MS
ψ +

1

2
zDR,MS
A + zDR,MS

g

)
(7.61)

where

ZDR,MS
ψ = 1 + g2 zDR,MS

ψ +O(g4) , zDR,MS
ψ =

1

16 π2

1

ε
(−CF α) (7.62)

ZDR,MS
A = 1 + g2 zDR,MS

A +O(g4) , zDR,MS
A =

1

16 π2

1

ε

(
13Nc

6
− αNc

2
− 2Nf

3

)
(7.63)

ZDR,MS
g = 1 + g2 zDR,MS

g +O(g4) , zDR,MS
g =

1

16 π2

1

ε

(
Nf

3
− 11Nc

6

)
. (7.64)

In particular, Eq. (7.61) stems from the requirement that the coefficients of (1/ε)(−2igσµνq1µ)
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in the left-hand side and right-hand side of Eq. (7.38) coincide:

0 = (1 + g2 zDR,MS
ψ )

(
1 +

1

2
g2 zDR,MS

A

) (
1 + g2 zDR,MS

g

)
(1− g2 zDR,MS

1 )(1 +R4)︸ ︷︷ ︸
only the O(1/ε) part

−ZDR,MS
6 − ZDR,MS

10 . (7.65)

As it stands, the system of 11 equations (Eq. (7.51) - (7.61)) for the 10 unknowns ZDR,MS
1 −

ZDR,MS
10 appears overconstrained; indeed, Eqs. (7.51), (7.55) and (7.58) can only be com-

patible if 2 ρ1 = R1. This relation is indeed confirmed by our results (Eq. (7.43) and Eq.

(7.47)). The presence of zDR,MS
g in Eq. (7.61) stems from the fact that all one-loop Green’s

functions were calculated with an insertion of ψs σµν Gµν ψd (rather than g ψs σµν Gµν ψd ,

see comment below Eq. (7.40)).

Solving the above equations, we obtain the mixing coefficients:

ZDR,MS
1 = 1 +

g2

16π2

1

ε

(
−Nc

2
+

5

2Nc

)
(7.66)

ZDR,MS
2 =

g2

16 π2

1

ε

(
−3Nc +

3

Nc

)
(7.67)

ZDR,MS
3 = 0 (7.68)

ZDR,MS
4 = 0 (7.69)

ZDR,MS
5 =

g2

16 π2

1

ε

(
3Nc

2
− 3

Nc

)
(7.70)

ZDR,MS
6 = 0 (7.71)

ZDR,MS
7 =

g2

16 π2

1

ε

(
−3Nc

4
+

3

2Nc

)
(7.72)

ZDR,MS
8 = 0 (7.73)

ZDR,MS
9 =

g2

16 π2

1

ε

(
3Nc

4
− 3

2Nc

)
(7.74)

ZDR,MS
10 =

g2

16 π2

1

ε

(
3Nc

2
− 3

2Nc

)
. (7.75)
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An immediate check of our results is the extraction of the correct anomalous dimension,

γ̃CM , already known in the literature for the operator ÕCM (Eq. (7.39)), with a quark mass

and a coupling constant in its definition [136]. The following relation holds between zDR,MS
1

and γ̃CM :

γ̃CM = −2 ε g2 (zDR,MS
1 + zDR,MS

m ) =
g2

16 π2

(
4Nc −

8

Nc

)
, (7.76)(

ZDR,MS
m = 1 + g2 zDR,MS

m +O(g4), zDR,MS
m =

1

16π2

1

ε
(−3CF )

)
. (7.77)

7.3.2 Lattice regularization – MS renormalization

The computations of the 2-pt and 3-pt bare Green’s functions of OCM on the lattice are the

most demanding part of the present work. This is particularly true for the 3-pt function,

since it had to be calculated for arbitrary values of the external momenta, qi , of the quark,

antiquark and gluon. The algebraic expressions involved were split into two parts: a)

Terms which can be evaluated in the a → 0 limit: Included in this part are terms with

polynomial dependence on qi (with coefficients which depend on the lattice regularization),

but also terms which exhibit a very complicated dependence on qi , even for zero quark

masses, involving Spence functions. These functions constitute a part of the regularization

independent renormalized Green’s functions. b) All remaining terms: These are divergent

as a→ 0, however their dependence on qi,m is necessarily polynomial. Our computations

were performed in a covariant gauge, with arbitrary value of the gauge parameter α. Given

that some of the operators which mix with OCM contain powers of the quark masses, we

have kept these masses different from zero throughout most of the computation; it is only

in the final expressions for Zi that we set m→ 0.

For the algebraic operations involved in evaluating Feynman diagrams, we make use

of our symbolic package in Mathematica. A brief description of the computation of a

Feynman diagram can be found, e.g., in Ref. [43] and references therein. The algebraic

expressions for each Feynman diagram typically involve ∼ 105 terms at intermediate stages.

The requirements in terms of CPU time, both for algebraic manipulation and for numerical

integration of momentum loop integrals, were rather modest as compared to human effort:

A total of ∼ 4 months on a single core CPU was required.

The computation on the lattice is performed in the twisted basis (χ, χ̄), and thus, before

comparing with the results in dimensional regularization, we must rotate to the physical
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basis (ψ, ψ̄). This rotation amounts to the following transformation of the fermion field:

χ = e−i
π
4
γ5 ψ , (7.78)

χ̄ = e−i
π
4
γ5 ψ̄ . (7.79)

The rotation of the 2-pt Green’s function is therefore:

〈ψO ψ̄〉amp = e−i
π
4
γ5 〈χO χ̄〉amp e

−i π
4
γ5 , (7.80)

and similarly for the 3-pt Green’s function.

We will make use, once again, of Eqs. (7.37) - (7.38), with MS being the renormalization

scheme; however, the regularization will now be the lattice. The above equations now take

the form:

〈ψO1 ψ〉MS
amp = ZL,MS

ψ

13∑
i=1

(
(ZL,MS)−1

)
1i
〈ψOi ψ〉Lamp (7.81)

and

〈ψO1 ψAν〉MS
amp = ZL,MS

ψ (ZL,MS
A )1/2

13∑
i=1

(
(ZL,MS)−1

)
1i
〈ψOi ψAν〉Lamp . (7.82)

The left-hand sides of the above equations are known from the calculations in dimen-

sional regularization, see Subsection 7.3.1. The bare lattice Green’s functions in these

equations contain terms which diverge in the limit a → 0; these divergent terms have a

form similar to Eqs. (7.41) and (7.42), with two differences:

• 1

ε
→ − log(a2)

• There are additional O
(

1

a2

)
, O

(
1

a

)
contributions:

in 〈ψO1 ψ〉Lamp : ρ8 (rd γ5 6q3 + rs 6q2 γ5) + ρ9 i (rdmd + rsms) γ5 + ρ10 · 1 (7.83)

in 〈ψO1 ψAν〉Lamp,1PI : R5 g (rd − rs) γ5 γν . (7.84)

These contributions lead to mixing with O11, O12 and O13.

The renormalization functions ZL,MS
ψ (ZL,MS

A ) for the quark (gluon) field, as well as ZL,MS
g ,

ZL,MS
m , were only partially available in the literature; we computed them for a general co-

variant gauge, using the Symanzik improved gauge action for different sets of values for the
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Symanzik coefficients. These results are presented in section 7.4, in the RI′ renormalization

scheme along with conversion factors to the MS scheme.

Renormalizability of the theory implies that the difference between the one-loop renor-

malized and bare Green’s functions must only consist of expressions which are polynomial

in qi, m ; in this way, the right-hand sides of Eqs. (7.81) - (7.82) can be rendered equal to the

corresponding left-hand sides, by an appropriate definition of the (qi- and m-independent)

renormalization functions ZL,MS
i . These differences can be written as follows:

〈ψO1 ψ〉MS
amp−〈ψO1 ψ〉Lamp = g2

(
zL,MS
ψ − zL,MS

1

)
〈ψO1 ψ〉tree−

13∑
i=2

ZL,MS
i 〈ψOi ψ〉tree (7.85)

and

〈ψO1 ψAν〉MS
amp − 〈ψO1 ψAν〉Lamp = g2

(
zL,MS
ψ +

1

2
zL,MS
A + zL,MS

g − zL,MS
1

)
〈ψO1 ψAν〉tree

−
13∑
i=2

ZL,MS
i 〈ψOi ψAν〉tree . (7.86)

Indeed, we have checked explicitly the polynomial character of the left-hand sides of

Eqs. (7.85) - (7.86). This check is quite nontrivial, especially for Eq. (7.86), since both

the bare and renormalized Green’s functions, taken individually, exhibit a very complex

dependence on the momenta qi . The left-hand sides of Eqs. (7.85) - (7.86) have the same

tensorial form as Eqs. (7.41) - (7.42), respectively, but with the additional contributions of

Eqs. (7.83) - (7.84).

Each tensorial structure (multiplying ρ1 − ρ10, R1 − R5) will provide an equation; the

set of these equations (a total of 15) can be solved for the 13 mixing coefficients Zi. Two of

the equations serve as consistency checks and the remaining 13 lead to a well determined

system. Upon solving all equations we obtain for the tree-level Symanzik gluon action (see
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Appendix D.1, for other gluon actions we have considered):

ZL,MS
1 = 1 +

g2

16π2

(
Nc

(
− 12.8455 +

1

2
log
(
a2 µ̄2

) )
+

1

Nc

(
9.3779− 5

2
log
(
a2 µ̄2

) ))
(7.87)

ZL,MS
2 =

g2CF
16π2

(
2.7677 + 6 log

(
a2 µ̄2

))
(7.88)

ZL,MS
3 = 0 (7.89)

ZL,MS
4 = 0 (7.90)

ZL,MS
5 =

g2

16π2

(
Nc

(
5.3894− 3

2
log
(
a2 µ̄2

))
+

1

Nc

(
−5.5061 + 3 log

(
a2 µ̄2

)))
(7.91)

ZL,MS
6 = 0 (7.92)

ZL,MS
7 = −Z

L,MS
5

2
(7.93)

ZL,MS
8 =

g2CF
16π2

(−3.9654) (7.94)

ZL,MS
9 =

ZL,MS
5

2
(7.95)

ZL,MS
10 =

g2CF
16π2

(
5.5061− 3 log

(
a2 µ̄2

))
(7.96)

ZL,MS
11 =

1

a

g2CF
16π2

(−4.0309) (7.97)

ZL,MS
12 = −ZL,MS

11 (7.98)

ZL,MS
13 =

1

a2

g2CF
16π2

(47.7929) . (7.99)

In these equations, µ̄ is the MS renormalization scale which appears in 〈ψO1 ψ〉MS
amp and

〈ψO1 ψAν〉MS
amp by virtue of: g = µ−ε (ZDR,MS

g )−1 gDR0 , µ̄ = µ(4π/eγE)1/2.

The above results for ZL,MS
1 - ZL,MS

13 are independent of the choices rs = ±1, rd = ±1.

There is also a small systematic error originating from the numerical estimation of lattice

integrals, however it is much smaller than the displayed accuracy of the results.
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If one wants to renormalize in an (appropriately defined) RI′ scheme, the calculation

in dimensional regularization is not necessary: it suffices to compute the bare Green’s

functions on the lattice. In this case the left-hand sides of Eqs. (7.37) - (7.38), for particular

values of the external momenta, are dictated by the RI′ renormalization conditions.

The conversion factor between the RI′ and the MS scheme will actually be a (13×13)
matrix in this case: CRI′,MS

ij . Since this matrix is regularization independent, one may

compute it through:

OMS
R ≡ CRI′,MSORI′R , CRI′,MS =

(
ZDR,MS

)−1

ZDR,RI′ . (7.100)

Thus, in RI′, the mixing coefficients read (in matrix notation):

ZL,RI′ = ZL,MSCRI′,MS . (7.101)

7.4 One-loop Renormalization of Zc , Zψ , Zm , ZA , Zg on

the Lattice

In this section we provide the results of our one-loop calculation for the renormalization

functions of the ghost field (Zc), quark field (Zψ), gluon field (ZA), coupling constant (Zg),

quark mass (Zm). These functions enter the renormalization of the chromomagnetic oper-

ator through Eqs. (7.117), (7.37), (7.38), (7.86), (7.40). The computation was performed

using twisted mass fermions, Symanzik improved gluons and a general covariant gauge.

Here we present the results for the Wilson, tree-level Symanzik, TILW (β c0 = 8.30),

Iwasaki and DBW2 gluon actions. For the extraction of the renormalization functions, we

applied the RI′ scheme at a scale µ̄. Once we have computed the renormalization functions

in the RI′ scheme we can construct their MS counterparts using conversion factors which

are known (see, e.g., [121]), up to the required perturbative order.
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The aforementioned renormalization functions are defined as follows:

g0 = Zg g, (7.102)

c =
√
Zc c

R, (7.103)

ψ =
√
Zψ ψ

R, (7.104)

Aµ =
√
ZAA

R
µ , (7.105)

α = Z−1
α ZA α

R, (7.106)

m = Zmm
R . (7.107)

In the above, Zg actually stands for ZL,RI′
g ; similarly for all other Z’s. The renormalization

function Zα for the gauge parameter receives no one-loop contribution.

7.4.1 Ghost Field Renormalization Zc

The ghost field renormalization enters the evaluation of Zg (see subsection 7.4.4); it can

be extracted from the RI′ condition:

lim
a→0

[
ZL,RI′

c (aµ̄)
ΣL
c (q, a)

q2

]
q2=µ̄2

= 1, (7.108)

where ΣL
c (q, a) is the ghost self energy up to one-loop, computed from the diagrams in

Fig. 7.5.

ΣL
c (q, a) = q2 +O(g2). (7.109)

The generic form of ZL,RI′
c is:

ZL,RI′

c = 1 +
g2Nc

16π2

[
ec − 1.2029α− 1

4
(3− α) log

(
a2 µ̄2

)]
. (7.110)

The numerical values of the coefficient ec are listed in Table 7.4 for all gluon actions we

have considered.
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Figure 7.5: One-loop Feynman diagrams contributing to the renormalization of the ghost
field. A wavy (dotted) line represents gluons (ghosts).

Coefficient Wilson Tree-level Symanzik TILW (β c0 = 8.30) Iwasaki DBW2

ec 4.6086 3.7759 3.2208 2.5469 0.9433

eψ 16.6444 13.0233 10.7153 8.1166 2.9154

em 16.9524 13.6067 11.4247 8.8575 2.9060

eA,1 22.3157 10.3088 2.4199 -7.2464 -28.5805

eA,2 -19.7392 -6.6595 2.0039 11.8888 32.2815

eg,1 -13.4192 -6.5831 -2.0835 3.4235 15.6942

eg,2 9.8696 3.3297 -1.0019 -5.9444 -16.1407

Table 7.4: The coefficients ec , eψ , em , eA,1 , eA,2 , eg,1 and eg,2 for five actions: Wilson,
tree-level Symanzik, TILW (β c0 = 8.30), Iwasaki and DBW2.

7.4.2 Renormalization of Fermion Field (Zψ) and Mass (Zm)

In order to obtain the renormalization functions of fermionic operators we also compute

the quark field renormalization, Zψ, as a prerequisite.

Zψ is extracted from an RI′ condition on the fermion self energy ΣL
ψ(q, a) = i/q + m +

O(g2):

lim
a→0

[
ZL,RI′

ψ (aµ̄) tr
(
ΣL
ψ(q, a) /q

)
/(4i q2)

]
q2=µ̄2

= 1. (7.111)

The trace here is over Dirac indices; a Kronecker delta in color and in flavor indices has

been factored out of the definition of ΣL
ψ. The Feynman diagrams contributing to ΣL

ψ are

identical to those shown in Fig. 3.1. Our result for Zψ is:

ZL,RI′

ψ = 1 +
g2CF
16π2

[
eψ − 4.7920α + α log

(
a2 µ̄2

)]
. (7.112)
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The part of ΣL
ψ proportional to the unit matrix in Dirac space leads to the value of Zm.

Our result for Zm is:

ZL,RI′

m = 1 +
g2CF
16π2

[
em + α− 3 log

(
a2 µ̄2

)]
. (7.113)

The numerical values of the coefficients eψ and em are listed in Table 7.4.

7.4.3 Gluon Field Renormalization ZA

The renormalization for the gluon field, ZA, can be evaluated from the gluon propagator

GL
µν(q, a) with radiative corrections:

GL
µν(q, a) =

1

q2

[
δµ ν − qµqν/q2

ΠT (aq)
+ α

qµqν/q
2

ΠL(aq)

]
, (7.114)

where the one-loop contributions to the transverse (ΠT ) and longitudinal (ΠL) parts of the

gluon self-energy, ΠT,L(aq) = 1 + O(g2) are obtained from the diagrams of Fig. 7.6. The

normalization condition is:

lim
a→0

[
ZL,RI′

A (aµ̄)
1

ΠT (aq)

]
q2=µ̄2

= 1. (7.115)

Our result up to one-loop is:

ZL,RI′

A = 1 +
g2

16π2

[
Nc

(
eA,1 − 0.8863α +

1

4
α2

)
+

1

Nc

eA,2 − 2.1685Nf

+

(
2

3
Nf −

13

6
Nc +

1

2
αNc

)
log
(
a2 µ̄2

)]
, (7.116)

(Nf stands for the number of flavors). The numerical values of the coefficients eA,1 and

eA,2 are listed in Table 7.4. From ΠL(aq) one can deduce the value of Zα , as mentioned

before, this receives no contributions at one-loop.

7.4.4 Coupling constant renormalization Zg

Zg can be extracted either from the gluon-quark-antiquark Green’s function, or equivalently

from the gluon-ghost-antighost Green’s function GL
Ac̄c; we have chosen to compute the

latter. However, the results of the two determinations coincide, as has been checked by us
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Figure 7.6: One-loop Feynman diagrams contributing to the renormalization of the gluon
field. A wavy (solid, dotted) line represents gluons (fermions, ghosts). A solid box denotes
a vertex from the measure part of the lattice action.

in the Feynman gauge. The corresponding normalization condition is 5:

lim
a→0

[
ZL,RI′

c (ZL,RI′

A )1/2ZL,RI′

g GL
Ac̄c(q, a)

]
q2=µ̄2

= Gfinite
Ac̄c , (7.117)

where the expression Gfinite
Ac̄c is required to be the same as the one stemming from the

continuum:

lim
ε→0

[
ZDR,RI′

c (ZDR,RI′

A )1/2ZDR,RI′

g GAc̄c(q)
]
q2=µ̄2

= Gfinite
Ac̄c . (7.118)

[In the above equation ZDR,RI′
g is required to eliminate only the pole parts of the left-hand

side, without additional finite terms; hence, it is trivially equal to ZDR,MS
g .] Calculating in

dimensional regularization, Gfinite
Ac̄c is found to be:

Gfinite
Ac̄c = 1 +

g2

16π2

[(169

72
+

3

4
α +

1

8
α2 +

1

2
α log

(
µ̄2

q2

))
Nc −

5

9
Nf

]
. (7.119)

The Feynman diagrams contributing to GL
Ac̄c are shown in Fig. 7.7. Our result for ZL,RI′

g

is:

ZL,RI′

g = 1 +
g2

16 π2

[
eg,1Nc +

1

Nc

eg,2 + 0.5287Nf +

(
11

6
Nc −

1

3
Nf

)
log(a2 µ̄2)

]
. (7.120)

5Eq. (7.117) is evaluated at vanishing ghost momentum; q stands for the antighost/gluon momentum.
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The numerical values of the coefficients eg,1 and eg,2 are listed in Table 7.4.

Figure 7.7: One-loop Feynman diagrams contributing to GL
Ac̄c. A wavy (dotted) line rep-

resents gluons (ghosts).

7.4.5 Conversion to the MS scheme

Each renormalization function on the lattice, ZL,RI′ , may be expressed as a power series in

the renormalized coupling constant gRI
′
. For the purposes of our work the conversion of

gRI′ to MS is trivial since:

gRI
′
= gMS +O

(
(gMS)9

)
. (7.121)

As already mentioned, our one-loop calculations for Zc, Zψ, Zm, ZA and Zg are per-

formed in a generic gauge with parameter αRI
′
. The conversion of αRI

′
to the MS scheme

is given by:

αRI
′
=

(
ZL,MS
α

ZL,RI′
α

)−1
ZL,MS
A

ZL,RI′

A

αMS. (7.122)

Since (ZL,MS
α /ZL,RI′

α ) = (ZDR,MS
α /ZDR,RI′

α ) = 1 at three loops [140], there follows:

αRI
′
= (ZL,MS

A /ZL,RI′

A )αMS ≡ αMS /CA(gMS, αMS). (7.123)

Since the ratio of Z’s appearing in Eq. (7.123) must be regularization independent,

it may be calculated more easily in dimensional regularization [121]; to one loop, the
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conversion factor CA equals:

CA(g, α) =
ZDR,RI′

A

ZDR,MS
A

= 1 +
g2

36(16π2)

[(
9α2 + 18α + 97

)
Nc − 40Nf

]
, (7.124)

(Here, and below, both g and α are in the MS scheme).

Thus, once we have computed the renormalization functions in the RI′ scheme we

can construct their MS counterparts using conversion factors which, up to the required

perturbative order, are given by:

Cc(g, α) ≡ ZL,RI′
c

ZL,MS
c

=
ZDR,RI′
c

ZDR,MS
c

= 1 +
g2

16π2
Nc , (7.125)

Cψ(g, α) ≡
ZL,RI′

ψ

ZL,MS
ψ

=
ZDR,RI′

ψ

ZDR,MS
ψ

= 1− g2

16π2
CF α, (7.126)

Cm(g, α) ≡ ZL,RI′
m

ZL,MS
m

=
ZDR,RI′
m

ZDR,MS
m

= 1 +
g2

16π2
CF (4 + α). (7.127)

(7.128)

7.4.6 Non-perturbative results – Preliminary

In the calculation of on-shell matrix elements, by virtue of the equations of motion, some

of the operators O1 − O13 will not appear. The remaining ones: O1 , O2 , O3 , O4 , O12 ,

O13 will be present, and it is imperative to have a stringent estimate of the corresponding

mixing coefficients. For operators of the same dimensionality as the chromomagnetic one,

i.e. O1 , O2 , O3 , O4 , our one-loop results are expected to provide satisfactory accuracy;

however, for operators of lower dimensionality (O12 , O13), given that their coefficients are

power divergent, perturbation theory is expected to provide only a ballpark estimate at

best. Fortunately, it is precisely for the coefficients of these latter operators that we can

have best access to non-perturbative estimates.

Imposing conditions such as:

lim
ms , md→0

〈π(0)|Osub
1 |K(0)〉 = lim

ms , md→0
〈π(0)|O1 +

c13

a2
O13|K(0)〉 = 0 (7.129)

〈0|Osub
1 |K(0)〉ms , md = 〈0|O1 +

c13

a2
O13 +

c12

a
O12|K(0)〉ms , md = 0 (7.130)
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we can fit the values of c13(g0), c12(g0) to data from simulations with varying quark masses.

In a preliminary series of simulations, by our collaborators in University of Roma Tre,

the coefficient c13 extracted at different values of the coupling (β ≡ 6/g2
0 = 1.90, 1.95, 2.10)

using the Iwasaki gluon action. The results for c13 closely follow a quadratic dependence on

g0 , thus resembling a one-loop effect; nevertheless there is some difference, as was expected:

Znon−pert
13 ∼ a−2 g

2CF
16π2

(33.7) (7.131)

Zpert
13 = a−2 g

2CF
16π2

(36.061) (7.132)

7.5 Summary – Extensions

On the lattice, the mixing pattern of the CMO can become considerably more complicated,

given that certain symmetries are violated; there can be mixing with additional operators

of dimension five (with logarithmically divergent coefficients) or less (with power-divergent

coefficients). A generic hypercubic- and gauge-invariant lattice discretization will result in

mixing with 2+8+32 candidate operators of dimension 3, 4, 5, respectively. It is thus im-

perative to make a judicious choice of lattice action, with a large set of discrete symmetries,

so as to exclude as many as possible of these candidates.

We calculated the 2- and 3-pt bare Green’s functions of the CMO, first in DR and then

in the far more complicated case of the lattice. The purpose of the calculation in DR is

twofold: First, it provides the mixing coefficients ZDR,MS
i , which are interesting on their

own right; second, and most important, it leads to the renormalized Green’s functions in

MS, which are then necessary for extracting the real quantities of interest: ZL,MS
i .

The renormalization functions Zψ, ZA (as well as those for the coupling constant (Zg),

the fermion mass (Zm), and the ghost field (Zc)) were not all available for the actions

considered in this work, and had to be calculated as a prerequisite. We mention in passing

that Zψ and Zm do not depend on flavor in mass-independent schemes. We also note that

both the 2-pt and 3-pt functions are necessary in order to fix all Zi , but they are also

sufficient.

Besides a series of controls which we have applied to our results, some further ones

may be applied: (i) A calculation of 4-point Green’s functions will provide important

consistency checks, but no new information, on Zi . On the other hand, 5-point functions

and beyond are irrelevant: Being superficially convergent, they have a straightforward

continuum limit. (ii) Non-perturbative estimates of all mixing coefficients would be very



7.5. Summary – Extensions 139

important cross checks.

Depending on the method one wishes to employ for computing matrix elements of the

CMO non-perturbatively, a renormalization scheme other than MS may be more appro-

priate. In particular, one may employ an extension of the RI’ scheme, in which RI’-like

conditions need to be imposed on both 2-point and 3-point functions. The new mixing

coefficients ZL,RI′

ij are related to ZL,MS
ij via a (13× 13) regularization-independent conver-

sion matrix, whose elements are finite functions of the renormalized coupling. In fact,

all relevant matrix elements are directly obtainable from our results on the renormalized

Green’s functions, with no further calculation required.

A further extension of the present work would be to apply methods of improved per-

turbation theory (“boosted” coupling, “cactus” diagrams, etc.) to our results. Another

direction is to compute O(a2g2) corrections to Green’s functions; these, combined with

non-perturbative evaluations, lead to an improvement in the non-perturbative estimates of

the mixing coefficients.



Chapter 8

Summary and Conclusions

In this Thesis we have performed a series of calculations in Lattice Perturbation Theory,

as a tool for connecting results from lattice simulations to physical predictions for strong

interaction processes. Each computation was performed employing improved actions for

fermions (staggered, SLiNC, clover and Twisted mass action) and/or gluons (Symanzik

action).

Let us mention the main computations of this Thesis. We began in Chapter 3 with

the perturbative calculation of the renormalization functions for the quark field and for a

complete set of ultralocal fermion bilinears. This was the first one-loop calculation using

staggered fermions with stout links, and it proved to be extremely demanding in human

and CPU time, due to the fact that the vertices of the staggered operators with stout links

involve lengthy expressions. More specifically, we calculated the fermion propagator and

the quark-antiquark Green’s functions of the bilinears. We presented the matrix elements of

these operators and the renormalization functions for the quark field and for all ultralocal

taste-singlet bilinear operators with general values of the action’s and operator’s stout

smearing parameters ωA1 , ωA2 , ωO1 , ωO2 . Our perturbative results of ZS and ZT have

been used, in Chapter 4, for the determination of the quark condensates (
〈
ψ̄fσxyψf

〉
and〈

ψ̄fψf
〉
), in order to study the response of the QCD vacuum to an external magnetic field,

at zero and finite temperature. Magnetic fields probe the QCD vacuum in several ways,

by affecting its fundamental properties like chiral symmetry breaking and restoration, the

phase diagram, as well as the vacuum polarization. Together with our collaborators in

Regensburg and Wuppertal, we aimed at a determination of the magnetic susceptibility of

the vacuum. This quantity was evaluated for a wide range of temperatures applying fully

dynamical lattice simulations. We performed the renormalization of the tensor coefficient

140
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and carried out the continuum extrapolation using results obtained at different lattice

spacings. We extracted the value of the magnetic susceptibilities χf at zero temperature

for the up, down and strange quarks in the MS scheme at a renormalization scale of 2

GeV. The magnetic susceptibilities at T = 0 were negative, indicating the spin-diamagnetic

nature of the QCD vacuum. We also found that the polarization changes smoothly with

temperature in the confinement phase and is then drastically reduced around the transition

region.

In Chapter 5 we discussed improvement to second order in the lattice spacing a, in

one-loop perturbation theory. In particular, we focused on the fermion propagator, local

and extended fermion bilinear operators; employing the fermionic part of the SLiNC action

and the Symanzik improved gauge action for different sets of values of the Symanzik coef-

ficients. These operators are of great phenomenological interest, since they are employed

in the calculation of certain transition amplitudes among hadrons and in the extraction

of meson and baryon form factors. We provided the expression for the inverse fermion

propagator (in the massless case) S−1, the 2-pt Green’s function of local bilinears Λ1−loop
Γ

as functions of the coupling constant, the number of colors, the gauge fixing parameter,

the clover and the stout parameter. The dependence of these quantities on the Symanzik

coefficients is not expressible in closed form, thus we provided results for a selected list of

the most commonly used values for these coefficients; for economy of space, we presented

our results for tree-level Symanzik gluons. We also presented the Z factors for the quark

field and for all local fermion bilinears in the case of tree-level Symanzik gluons, along with

the renormalization of the extended bilinear operators. Our O(a2) perturbative results are

applicable to data extracted from numerical simulations performed by the QCDSF collab-

oration. Our results will be useful for many collaborations worldwide: By setting the stout

parameter to zero, the SLiNC action reduces to the clover action; setting both the stout

and the clover parameter equal to zero we obtain the Wilson action (where the Wilson

parameter r is henceforth set to r = 1), and finally setting only the clover parameter equal

to zero we obtain the Wilson action with one stout smearing step.

In Chapter 6 we used perturbative results to correct nonperturbative renormalization

factors in the RI′-MOM scheme. We investigated a method to suppress lattice artifacts

by subtracting one-loop contributions to renormalization factors, calculated in lattice per-

turbation theory, from simulation data. The perturbative Z factors of local and one-link

operators had been calculated using clover fermions and Wilson gluons up to O(g2 a2).

These results can be used in order to construct improved versions of the operators, with
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reduced lattice artifacts. In doing so, however, one must bear in mind that, unlike the

O(a1) case, corrections to O(a2) include expressions which are non-polynomial in the ex-

ternal momentum and thus cannot be eliminated by local counterterms for all momentum

values. As an alternative stratergy, we subtracted the O(a2) effects which we calculated

from the corresponding nonperturbative Green’s functions and this procedure allows for

an improved extrapolation to the limit a→ 0.

Finally, in Chapter 7 we studied matrix elements of the chromomagnetic operator on

the lattice. This operator is contained in the strangeness-changing part of the effective

Hamiltonian which describes electroweak effects of semileptonic processes. This study on

the lattice has been hampered up to now by the exceedingly complex pattern of operator

mixing. We identify these operators and subtract their contributions, which are typically

divergent. There is mixing with lower dimensional operators (power divergent), as well

as with gauge non-invariant operators. We computed all relevant mixing coefficients to

one loop in lattice perturbation theory; this necessitates calculating both 2-pt (quark-

antiquark) and 3-pt (gluon-quark-antiquark) Green’s functions at nonzero quark masses.

We used the twisted mass lattice formulation (at maximal twist), with Symanzik improved

gluon action. In our approach, the nonperturbative mixing coefficients will be determined

through a combination of simulations and perturbative calculations. In a preliminary series

of simulations, by our collaborators in University of Roma Tre, one mixing coefficient (c13)

was extracted at different values of the coupling (β ≡ 6/g2
0 = 1.90, 1.95, 2.10) using

the Iwasaki gluon action showing a better-than-expected agreement with our perturbative

results. The continuation of these simulations, along with our perturbative results, will

allow a clean interpretation of lattice data on the Green’s functions of the chromomagnetic

operator.

There are several future plans in which this dissertation could be extended. A natural

extension would be the computation of the Green’s functions for operators including more

covariant derivatives in their definitions. Such Green’s functions provide more detailed

information on the structure of hadrons, being related to higher moments of structure

functions and parton distributions.

We also can study the mixing of Tr (Fµρ Fρν) − 1
4
δµνTr (Fσρ Fρσ) with ψγ{µ

←→
D ν}ψ. By

analogy with the chromomagnetic operator, we will obtain a 2× 2 mixing matrix in order

to compute the renormalization functions of these operators which will be applied to the

nonperturbative lattice evaluation of the fraction of the nucleon momentum, 〈x〉f carried

by quarks (f ≡ q = u, d, s, . . .) and gluons (f ≡ g).
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It would be also interesting to calculate the Green’s functions of staggered operators

and of the chromomagnetic operator up to second order in the lattice spacing. These

extensions are useful in order to construct improved versions of the operators, but also to

remove O(g2 a2) contributions from the non-perturbative data of the operators.

A further extension of the present work would be to compute the existing Green’s

functions up to two loops. Computing higher loops in perturbation theory is a difficult task

due to the increased number of Feynman diagrams and the appearance of more complicated

terms as well as due to the more intricate structure of (sub)divergences. Also flavor singlet

results become different from nonsinglet ones because of a diagrams with closed fermion

loop.

We could also apply methods of improved perturbation theory such as “boosted” cou-

pling [142] or “cactus” diagrams [141] to our results. Such improvements lead to an agree-

ment with nonperturbative estimates, which is typically comparable to what is obtained

by two-loop computations.

Finally, further improved actions are continuously being implemented in simulations by

international lattice collaborations; as a simple example, further steps of stout smearing

are being currently tested. It would thus be important to extend our computations to

these actions as well.



Appendix A

Stout smeared links

Here we present the 1-gluon part of the doubly-stout link, U (1), for general values of ω1

and ω2, as well as the 2-gluon part, U (2), (only for ω2 = 0, to simplify the latter’s lengthy

expression):

˜̃U (1)
µ (x;ω1, ω2) =

ig
[
Aµ(x) + (ω1 + ω2)

(
− 8Aµ(x) +

±4∑
ρ=±1

(
Aµ(x+ aρ̂) + Aρ(x)− Aρ(x+ aµ̂)

))
+ (ω1 ω2)

[
64Aµ(x) +

±4∑
ρ=±1

(
− 16Aµ(x+ aρ̂)− 8Aρ(x) + 8Aρ(x+ aµ̂)

)
+

±4∑
ρ=±1

±4∑
σ=±1

(
Aρ(x+ aσ̂)− Aρ(x+ aµ̂+ aσ̂) + Aµ(x+ aρ̂+ aσ̂)

)]]
(A.1)
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Ũ (2)
µ (x;ω1, ω2 = 0) =

g2
[
−Aµ(x)2

2
+ ω1

(
8Aµ(x)2 −

±4∑
ρ=±1

Aµ(x)(Aµ(x+ aρ̂) + Aρ(x)− Aρ(x+ aµ̂))
)

+ ω2
1

[
− 32Aµ(x)2 +

±4∑
ρ=±1

(
8Aµ(x)(Aµ(x+ aρ̂) + Aρ(x)− Aρ(x+ aµ̂))

)
+

±4∑
ρ=±1

±4∑
σ=±1

(
− 1

2
Aµ(x+ aρ̂)Aµ(x+ aσ̂)− Aµ(x+ aρ̂)Aσ(x)

− 1

2
Aρ(x)Aσ(x) +

1

2
Aρ(x+ aµ̂)Aσ(x) +

1

2
Aρ(x+ aµ̂− aρ̂)Aσ(x+ aµ̂)

+ Aµ(x+ aρ̂)Aσ(x+ aµ̂)− 1

2
Aρ(x− aρ̂)Aσ(x+ aµ̂)

)]]
(A.2)

where we define A−ρ(y) = −Aρ(y − aρ̂), ρ > 0 .

Note: The order in which a product of gluon fields appear in Ũ
(2)
µ is irrelevant for

the particular diagrams which we compute (since these two gluons are contracted among

themselves); we have used this fact in order to simplify the expression for Ũ
(2)
µ .



Appendix B

Results and proofs using Staggered

fermions

B.1 Numerical results for the staggered propagator and

for λO in the case of the Wilson gluon action

In this Appendix we present the numerical coefficients e1 and e2 appearing in Eq. (3.27)

for the Wilson gluon action. For economy of space, we do not list our results for the

remaining gluon actions which we have considered; however, they are publicly available.

The coefficients e1 and e2 are polynomials in the 2 stout smearing parameters of the action

(ωA1 , ωA2):

e1 = −9.83170 + 167.367 (ωA1 + ωA2)− 710.612 (ω2
A1

+ ω2
A2

)

− 2842.45ωA1 ωA2 + 13134.2 (ω2
A1
ωA2 + ωA1 ω

2
A2

)− 64757.6ω2
A1
ω2
A2
, (B.1)

e2 = 33.3933− 342.525 (ωA1 + ωA2) + 1174.37 (ω2
A1

+ ω2
A2

)

+ 4697.49ωA1 ωA2 − 18790.0(ω2
A1
ωA2 + ωA1 ω

2
A2

) + 82920.9ω2
A1
ω2
A2
. (B.2)
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B.2 Results for λO

We provide the expressions for λO in the case of the Wilson gluon action; these are poly-

nomials in the 4 stout smearing parameters (ωA1 , ωA2 , ωO1 , ωO2):

λS = −43.2250 + 509.892 (ωA1 + ωA2)− 1884.98
(
ω2
A1

+ ω2
A2

)
− 7539.93ωA1 ωA2

+ 31924.1
(
ω2
A1
ωA2 + ωA1 ω

2
A2

)
− 147678ω2

A1
ω2
A2

(B.3)

λV = 118.435 [(ωA1 + ωA2) − (ωO1 + ωO2)]− 473.741
[(
ω2
A1

+ ω2
A2

)
−
(
ω2
O1

+ ω2
O2

)]
− 1894.96 (ωA1 ωA2 − ωO1 ωO2) + 8527.33

[ (
ω2
A1
ωA2 + ωA1 ω

2
A2

)
−

(
ω2
O1
ωO2 + ωO1 ω

2
O2

) ]
− 41689.2

(
ω2
A1
ω2
A2
− ω2

O1
ω2
O2

)
(B.4)

λT = 11.4655 + 157.914 (ωA1 + ωA2)− 276.349 (ωO1 + ωO2)− 728.589
(
ω2
A1

+ ω2
A2

)
+ 1105.42

(
ω2
O1

+ ω2
O2

)
− 2869.44ωA1 ωA2 + 4466.53ωO1 ωO2

+ 44.9165 (ωA1 + ωA2) (ωO1 + ωO2) + 13709.5
(
ω2
A1
ωA2 + ωA1 ω

2
A2

)
− 20212.9

(
ω2
O1
ωO2 + ωO1 ω

2
O2

)
− 402.837

(
(ωA1 + ωA2)ωO1 ωO2

+ ωA1 ωA2 (ωO1 + ωO2)
)
− 68173.3ω2

A1
ω2
A2

+ 100117ω2
O1
ω2
O2

+ 3865.46ωA1 ωA2ωO1 ωO2 (B.5)

λA = 22.5089 + 157.914 (ωA1 + ωA2)− 434.263 (ωO1 + ωO2)− 710.612
(
ω2
A1

+ ω2
A2

)
+ 1737.05

(
ω2
O1

+ ω2
O2

)
− 2797.53ωA1 ωA2 + 6993.12ωO1 ωO2

+ 44.9165 (ωA1 + ωA2) (ωO1 + ωO2) + 13300.9
(
ω2
A1
ωA2 + ωA1 ω

2
A2

)
− 31582.7

(
ω2
O1
ωO2 + ωO1 ω

2
O2

)
− 298.982

(
(ωA1 + ωA2)ωO1 ωO2

+ ωA1 ωA2 (ωO1 + ωO2)
)
− 66424.5ω2

A1
ω2
A2

+ 155387 ω2
O1
ω2
O2

+ 2004.59ωA1 ωA2ωO1 ωO2 (B.6)
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λP = 34.3567 + 157.914 (ωA1 + ωA2)− 592.176 (ωO1 + ωO2)− 710.612
(
ω2
A1

+ ω2
A2

)
+ 2368.71

(
ω2
O1

+ ω2
O2

)
− 2797.53ωA1 ωA2 + 9519.74ωO1 ωO2

+ 44.9166 (ωA1 + ωA2) (ωO1 + ωO2) + 13134.2
(
ω2
A1
ωA2 + ωA1 ω

2
A2

)
− 42952.5

(
ω2
O1
ωO2 + ωO1 ω

2
O2

)
− 298.982

(
(ωA1 + ωA2)ωO1 ωO2

+ ωA1 ωA2 (ωO1 + ωO2)
)
− 63289.9ω2

A1
ω2
A2

+ 210973 ω2
O1
ω2
O2

+ 2371.72ωA1 ωA2ωO1 ωO2 (B.7)

B.3 Spin- and orbital angular momentum- contributions

The appendices B.3 and B.4 contain some material elaborated by F. Bruckmann, and

included here for completeness. The partition function of QCD is given by the functional

integral,

Z =

∫
DUe−βSg

∏
f

det(/Df +mf ), (B.8)

with the massless Dirac operator /Df = γµDµ,f and covariant derivative Dµ,f = ∂µ+iqfAµ+

igAaµT
a. For an external magnetic field in the z-direction one has ∂xAy − ∂yAx = B and

Az = At = 0.

The derivative of the logarithm of Eq. (B.8) with respect to B is

∂ logZ
∂B

=
∑
f

〈
Tr

1

/Df +mf

∂/Df

∂B

〉
. (B.9)

We manipulate this using Tr ∂/Df/∂B ∝ Tr γµ = 0 and the cyclicity of the trace:

∂ logZ
∂B

=
∑
f

1

mf

〈
Tr

(
mf

/Df +mf

− 1

)
∂/Df

∂B

〉
= −

∑
f

1

mf

〈
Tr

1

/Df +mf

/Df
∂/Df

∂B

〉

= −1

2

∑
f

1

mf

〈
Tr

1

/Df +mf

∂/D2
f

∂B

〉
.

(B.10)

The derivative of the square of the Dirac operator in the magnetic field background, after
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a standard simplification involving γ-matrices, reads

∂/D2
f

∂B
=
∂D2

f

∂B
− qfσxy, (B.11)

where D2
f = Dµ,fDµ,f with summation over µ but not over f . This implies,

T

V

∂ logZ
∂B

=
1

2

∑
f

qf
mf

(〈
ψ̄fσxyψf

〉
+
〈
ψ̄fLxyψf

〉)
, (B.12)

where we defined

Lxy ≡ −
∂D2

f

∂(qfB)
. (B.13)

This operator corresponds to a generalized angular momentum, as for the choice Ax =

−By/2, Ay = Bx/2 (such that ∂µAµ = 0), it assumes the form Lxy = −i(x∂y − y∂x) +

qfB(x2 + y2)/2− yAaxT a + xAayT
a.

Altogether, using the definition of the (total) magnetic susceptibility, Eqs. (4.2) and (4.3),

we get

ξf =
qf/e

2mf

(
∂
〈
ψ̄fσxyψf

〉
∂(eB)

+
∂
〈
ψ̄fLxyψf

〉
∂(eB)

)∣∣∣∣∣
eB=0

, (B.14)

showing two separate contributions ξS + ξL to the total susceptibility, cf. Eq. (4.4).

The conventional calculation of the spin- and orbital momentum-related contributions

to ξ yields the same result. Below we demonstrate this for the free case. Here the spin-

related contribution to the change in the free energy density due to the magnetic field at

zero temperature is given by [102, 144, 145],

∆fS = −Nc

∫
d3p

(2π)3
(B.15)

×
∑
f,s=±1

(√
p2 +m2

f + s qfB −
√
p2 +m2

f

)
.

Employing the definition of the total susceptibility, Eq. (4.2), the spin-dependent contri-

bution equals

ξS =− ∂
2∆fS

∂(eB)2

∣∣∣∣
eB=0

=−Nc

∑
f

(qf/e)
2

2π

∫
d2p

(2π)2

1

p2 +m2
f

. (B.16)

In Appendix B.4 we will calculate the tensor polarization in the free case. Comparing
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Eq. (B.16) with Eq. (B.22) below, we see that the first term of Eq. (B.14) is indeed the

spin-related contribution, ξS. The second term of Eq. (B.14) is then identified with the

orbital momentum coupling. The two contributions to Eq. (4.3) then read,

ξS =
∑
f

(qf/e)
2

2mf

τf , ξL =
∑
f

qf/e

2mf

∂
〈
ψ̄fLxyψf

〉
∂(eB)

, (B.17)

where we used the definition of the tensor coefficient, Eq. (4.5). This shows that the tensor

coefficient of the quark condensate is responsible for the spin contribution of the total mag-

netic susceptibility. Recalling the relation between the sign of ξS and para/diamagnetism

as discussed in Chapter 4, we conclude that with our sign conventions τf > 0 (χf > 0)

corresponds to paramagnetism, while τf < 0 (χf < 0) to diamagnetism. We remark that

on the lattice ξL cannot directly be computed from Eq. (B.13), due to the quantization of

the magnetic flux.

B.4 Logarithmic divergence in the tensor polarization

In this appendix we will demonstrate the appearance of a logarithmic divergence in the

tensor polarization of the condensate. We consider one free quark with electric charge qf

and mass mf at vanishing temperature.

The negative square of the Dirac operator in the background of a constant magnetic

field is well-known to have eigenvalues [66, 146]

−/D2
f → λ2 = p2

0 + p2
z + (2n+ 1)|qfB|+ s qfB, (B.18)

being twice degenerate (incorporating particle and antiparticle). Here p0, pz are momenta,

n = 0, 1, . . . labels the Landau levels and s = ±1 is twice the spin (these are the eigenvalues

of σxy), which is coupled to the magnetic field (here we do not consider anomalous magnetic

moments). The sum over the eigenvalues is performed according to (see e.g. Ref. [102]),

∑
λ2

= 2Nc
1

2πT

∫ ∞
−∞
dp0

Lz
2π

∫ ∞
−∞
dpz

LxLy|qfB|
2π

∞∑
n=0

∑
s=±1

. (B.19)

For the tensor polarization of Eq. (4.10) we note that due to chirality (and since γ5
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commutes with σxy),

Tr
1

/Df +mf

σxy = Tr γ5
1

/Df +mf

γ5σxy (B.20)

= Tr
1

−/Df +mf

σxy = mf Tr
σxy

−/D2
f +m2

f

,

which results in the spectral representation,

〈
ψ̄fσxyψf

〉
= Nc

mf |qfB|
π

∫
d2p

(2π)2
(B.21)

×
∑
n,s

s

p2 +
(
2n+ 1 + s sign(qfB)

)
|qfB|+m2

f

.

In the sum the contributions {n = k, s sign(qfB) = 1} and {n = k+ 1, s sign(qfB) = −1}
cancel leaving only the unpaired lowest Landau level {n = 0, s sign(qfB) = −1}, as was
also noted in Ref. [85]. Hence we get

〈
ψ̄fσxyψf

〉
= −Nc

mf qfB

π

∫
d2p

(2π)2

1

p2 +m2
f

. (B.22)

This cancellation can be confirmed via zeta function regularization and is absent for other

observables like the free energy or the condensate. As the eigenvalue of the lowest Landau

level is B-independent, the free tensor polarization is exactly linear in the magnetic field.

We evaluate the remaining logarithmically divergent integral with dimensional regular-

ization in d = 2− ε dimensions,

〈
ψ̄fσxyψf

〉
=Nc

mf qfB

4π2

[
−2

ε
+ γ + log

(
m2
f

4π

)]
+O(ε). (B.23)

A logm2
f -term has appeared, whose coefficient is scheme-independent; for 3 colors its coeffi-

cient is 3/(4π2) ·mf qfB (cf. Ref. [67] with different sign conventions). Also the singularity

for ε → 0 has been isolated and can be subtracted through a particular renormalization

scheme, introducing a cut-off Λ such that
〈
ψ̄fσxyψf

〉
∝ log(m2

f/Λ
2), or, on the lattice

log(m2
fa

2). The finite term (γ − log(4π) in Eq. (B.23)) is scheme-dependent (in our lat-

tice scheme it reads 0.1549π2 − log 4) but, together with the logarithmic contribution, it
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disappears from the combination

(1−mf∂mf )
〈
ψ̄fσxyψf

〉
= −mf qfB

2π2
, (B.24)

as we also emphasized in the body of Chapter 4, Eq. (4.18). Note that (1 − mf∂mf )

acting on Eq. (B.22) renders the integral finite and allows for a direct computation of the

coefficient of the logarithmic term.



Appendix C

The derivation of renormalization

condition for Chapter 6

In this Appendix we show that the definition (6.6) leads to renormalization factors which

are invariant under the hypercubic group H(4).

We consider a multiplet of local quark-antiquark operators Oi(x) (i = 1, 2, . . . , d) in

position space which transform according to

Oi(x)→ Sij(R)Oj(R−1x) (C.1)

when

ψ(x)→ D(R)ψ(R−1x) , ψ̄(x)→ ψ̄(R−1x)D(R)† (C.2)

for all N = 384 elements R of H(4). Here D(R) denotes the (unitary) spinor representation

of H(4) (or O(4)):

D(R)†γµD(R) = Rµνγν . (C.3)

We assume that the operators Oi(x) have been chosen such that the d× d-matrices S(R)

form a unitary irreducible representation of H(4).

Denoting the unrenormalized vertex function at external momentum p of the operator

Oi by Λi(p) we have

Λi(p) =
d∑
j=1

Sij(R)D(R) Λj(R
−1p)D(R)† (C.4)

for all R ∈ H(4), and analogously for the corresponding tree-level term Λtree
i (p). Conse-
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quently we get
d∑
i=1

Tr
[
Λi(p)Λi(p)

†] =
d∑
i=1

Tr
[
Λi(Rp)Λi(Rp)

†] . (C.5)

Using the orthogonality relations for the matrix elements of irreducible representations one

finds in addition

∑
R

Tr
[
Λi(Rp)Λj(Rp)

†] =
1

d
δij

d∑
k=1

∑
R

Tr
[
Λk(Rp)Λk(Rp)

†] , (C.6)

where the sum extends over all R ∈ H(4). The same relations hold when one of the vertex

functions or both are replaced by the corresponding tree-level terms, e.g.,

d∑
i=1

Tr
[
Λi(p)Λ

tree
i (p)†

]
=

d∑
i=1

Tr
[
Λi(Rp)Λ

tree
i (Rp)†

]
. (C.7)

Therefore the renormalization condition

Z−1Zq =

∑d
i=1 Tr

[
Λi(p) Λtree

i (p)†
]∑d

j=1 Tr
[
Λtree
j (p) Λtree

j (p)†
] (C.8)

or, equivalently,

Z−1Zqδij =
d

N

∑
R Tr

[
Λi(Rp) Λtree

j (Rp)†
]∑d

k=1 Tr [Λtree
k (p) Λtree

k (p)†]
(C.9)

respects the hypercubic symmetry, i.e., writing more precisely Z = Z(p) we have Z(Rp) =

Z(p) for all R ∈ H(4), and all lattice artefacts in Z must be invariant under the hypercubic

group. Of course, here it has been assumed that Zq(Rp) = Zq(p), as is the case for our

definition (6.3) of Zq.



Appendix D

Results from the calculation of the

chromomagnetic operator on the lattice

D.1 Mixing coefficients Zi

In this Appendix we present our results for the mixing coefficients, Zi (i = 1, . . . , 13)

in the MS scheme, for the following gluon actions: Wilson, tree-level Symanzik, Tadpole

Improved Lüscher-Weisz (TILW, at β c0 = 8.30; β = 2Nc/g
2), Iwasaki and Doubly Blocked

Wilson (DBW2). The values of the Symanzik coefficients corresponding to these actions

are shown in table D.1.

Coefficient Wilson Tree-level Symanzik TILW (β c0 = 8.30) Iwasaki DBW2

c0 1 5/3 2.386978 3.648 12.2688

c1 0 -1/12 -0.159128 -0.331 -1.4086

c2 0 0 0 0 0

c3 0 0 -0.014244 0 0

Table D.1: Symanzik coefficients for various choices of gluon actions.

Our calculation has been performed in an arbitrary covariant gauge. All the mixing

coefficients Zi (i = 1, . . . , 13) in the MS scheme are gauge independent. To one loop, the
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generic forms of the mixing coefficients are:

ZL,MS
1 = 1 +

g2

16 π2

(
Nc

(
e1,1 +

1

2
log(a2 µ̄2)

)
+

1

Nc

(
e1,2 −

5

2
log(a2 µ̄2)

))
(D.1)

ZL,MS
2 =

g2CF
16 π2

(
e2 + 6 log

(
a2 µ̄2

))
(D.2)

ZL,MS
3 = 0 (D.3)

ZL,MS
4 = 0 (D.4)

ZL,MS
5 =

g2

16π2

(
Nc

(
e5,1 −

3

2
log(a2 µ̄2)

)
+

1

Nc

(
e5,2 + 3 log(a2 µ̄2)

))
(D.5)

ZL,MS
6 = 0 (D.6)

ZL,MS
7 = −Z

L,MS
5

2
(D.7)

ZL,MS
8 =

g2CF
16 π2

(e8) (D.8)

ZL,MS
9 =

ZL,MS
5

2
(D.9)

ZL,MS
10 =

g2CF
16 π2

(
−e5,2 − 3 log

(
a2 µ̄2

))
(D.10)

ZL,MS
11 =

1

a

g2CF
16π2

(e11) (D.11)

ZL,MS
12 = −ZL,MS

11 (D.12)

ZL,MS
13 =

1

a2

g2CF
16π2

(e13) . (D.13)

The values of ei, ei,j are shown explicitly in Table D.2.
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Coefficient Wilson Tree-level Symanzik TILW (β c0 = 8.30) Iwasaki DBW2

e1,1 -16.8770 -12.8455 -10.4920 -7.9438 -3.2465

e1,2 13.4540 9.3779 7.0022 4.4851 -0.5102

e2 1.9290 2.7677 3.4589 4.5370 8.5250

e5,1 5.9806 5.3894 4.9311 4.2758 2.2834

e5,2 -6.4047 -5.5061 -4.8014 -3.7777 -0.5292

e8 -4.0626 -3.9654 -3.8894 -3.7760 -3.4713

e11 -4.4977 -4.0309 -3.6792 -3.2020 -1.9216

e13 54.9325 47.7929 42.6253 36.0613 19.9812

Table D.2: Results for the mixing coefficients at one-loop using the MS scheme on the
lattice. The finite parts ei and ei,j are given for five actions: Wilson, tree-level Symanzik,
TILW (β c0 = 8.30), Iwasaki and DBW2.
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