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ITepiindm

Yo mhalowa g mapoloous AtplBhc TRayUATOTOUYTAL BIATAUPAXTIXOl UTOAOYIGUOL OTNY
KBovti Xpwuoduvour (KXA), oto gopuakiond tou Iiéypoatoc. Egapuélovpe pio mowxi-
Mo amd BENTIWPEVES QEQUIOVIXES Xol YHAOVOVIXES DRAOELS, OL OTOLES YETOULOTOL0UVTAL EUREWS
oTig apiunuixég mpooouotwoelg. Ou urtohoyiopol mou ragouctdlovtan elvor ot axéhouvdot:

e Trohoyicoue Tov OldOTY Yoo pepuidvia staggered xou Tig cuvapTthoelg Green ue €va
eZTEPNO x0UdEX %ot VA EEMTEPIXG AVTIXOLEAEX Yial £VOL TARPEC GUVOAO omd UTEQTOTIXOUC
(ultralocal) Srypoppixoic GepUIOVIXOUC TEAEGTES, YENOHLOTOLOVTASC Vewpiol BtoTapay v Uy el
éva Bpbyyo xon oTNy yaunAdTERn Tl we Tpog TNV otadepd Tou TAéyuatoc. Amd Toug u-
TOAOYIOU00S UaG TPOGOL0PICUUE TIG CUVIRTYOELC EMAVAXAVOVIXOTOMOTS Yia TO TEDD x0udpx
xou yor 6Aoug Toug uTepToTIX0US taste-singlet drypauuixolc gepuovinols tekeotéc. To xau-
voUpylo oTotyelo auTtol Tou UTohoyiouol Ktay 6Tt ot Yxhouovixol olvdeopot (links), ot onoiot
epgoviCovtal oY QEpULOVIXT| DACT KoL GTOV OQIOUG TV OLYPUUUIXWY PEQUIOVIXGDY TEAECTMY,
ebyav Behtiwiel ye tny eqopuoyy| trg dadtxaciog stout smearing €wg 500 QOPES, ETAVIANTTL-
x3. Egapudoaue tor amoTeAEOUAUTO PG VIO TOV UTOAOYIOUO TNG UAYVNTIXH G EMOEXTIXOTNTOG
e KXA oe unpeviny| xou oe nenepacpévr deppoxpacia.

o Mehetriooue T OUVETEIEC TNC TEMEQUOUEVNC oTadépag TAEYUUTOC a, otny TAEm a?,
TAVL OF TVUXOCTOLYE TWY TOTUXWY X0k EXTETUUEVMDY OLYQOPUUXGDY PEQUIOVIXMDY TEAECTWY,
yenoworotdvtac ) dpdon SLINC. H cupnepiindn dpwv péypt xon téinc O(a?) mepinhéxet
OpaOTIXG AUTAY TNHY ERYACTA O ot TEOAETOHL Yo EVOS Bpdyyou utohoyioud. Troloylooye Tig
OLVUPTHCELS TOMMATAACLACTIXAG ETUVUXAVOVIXOTONGTS, Ot OTOIEC AMULTOUYTOL TROXEWEYOU VU
ouoyeTicouue To apiunTiXd AmOTEAEGUATA VL0l TO TVAXOOTOLYEL PEUUAT®Y OTWE TEOEXUYY
ATO TPOCOUOLCELS GTO TAEYUA, UE TA TETEPACUEVA QUGS TvaxooTolyelo. Ewidtepa ueie-
Thoope Wit PEY0BO YIo TNV XATUAGTOMY TWY TEYVOURYNUATLY TOU TAEYHUTOS, AQUPOYTIS TI
GUVEIGPOREC EVHC BpOYY0U GTIC CGUVIPTAGELS ETUVAXAVOVIXOTOINGYS, oL 0TolEg uToAoYioTN-
xav pe Yewpla Sratapoy @y, and un SLATUPUX TIXEG GUVELCPORES. LUYXPIVIUE AROTEAEGUITA, T

omotd druoupyRinxay and Ty TAREN AQUlpESY) TV ATOTEAEOUATWY EVOS BpdYY0U, UE EXEiva
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OTOU APUPECUUE TY) CUVELGPORY TAENG a®. Ta ATOTENECUATO UAG EVOL ONUOYTIXS VLol T1) PE-
AETT) TV ABROVIXWY CUVIPTACEWY DOUYS, OL OTOIEC UE TNV GELRd TOUG TapéyYouY TANROQOplEC
OYETWE UE TIC XUTAVOUES TOU OTLY, TNG EMXOTNTOC X0k TNG OPUNS TWV CUCTATIXWY CWUATOIWY
evOg adpoviou.

e Trohoylooue TNy ETAVOXAVOVIXOTOINGT Tou YpwuouayvNnTixol tehecth, Ocy. O uro-
AoYLIOUOC auTOG BeY HTav xadohou tetpwuévos. Mia cofopy| emimhoxy 6’auty| Ty tepinTwon
elvon 6Tt TeheoTég Ye Boug xPaviixole apriuolc xo e {on 1 wxpdtepr didoTaoT), uTopoLy
var avaryYolv pe t1ov Ocy 010 xPavtind eninedo. Autd To QUIVOUEVO ETIBEVGVETAL OTAV
YPTOWOTOLCOUNE TAEYUATIXES Opdoels ywplc ouupetpio yelpog. e autAv Tnv mepinTwon
OXOUT| AL TEAECTES UE DLAPOPETIXY YELUAXOTNTO UTopolY Vo, avouydoly. Eivor dho xon o
OTUOYTIXO, WS X TOUTOU, Vo UToAoYiooupE ToV Tiivaxo avaUeEne Twy CUVIPTACEWY ETAVO-
XAVOVIXOTIOINOTG, €TOL WOTE Vo EVIOYLUEL OGO TO BUVITO TEQIGGOTERO TO AVTIOTOLYO PUGLXO
ofjuo and Tic petprioeic Monte Carlo. Ta arotehéoyata pag yia to mvaxostotyeto Tou Ocny

euoavilovtal, OE UEAETEC DLOOTACEWY PApEWY UEGOVIWY ToU EUTAEXOUY ahhayr) YEVOTS
M y Y- OF U e M M Y1) YEVOTC.



Abstract

In this Thesis we present results on perturbative calculations which we have performed in
the context of Quantum Chromodynamics (QCD), formulated on the Lattice. We have
employed a variety of improved fermion and gluon actions, which are currently used in
numerical simulations. The calculations that we present are the following:

e We computed the staggered fermion propagator, as well as the Green’s functions
with one external quark-antiquark pair for a complete set of ultralocal staggered fermion
bilinear operators, using perturbation theory up to one-loop and to lowest order in the
lattice spacing. From our calculations we determined the renormalization functions for
the quark field and for all ultralocal taste-singlet bilinear operators. The novel aspect of
our calculations was that the gluon links, which appear both in the fermion action and in
the definition of the bilinear operators, had been improved by applying a stout smearing
procedure up to two times, iteratively. We apply our finding to the evaluation of the
magnetic susceptibility of QCD at zero and finite temperature.

e We studied effects of finite lattice spacing a, to order a?, on matrix elements of local
and extended bilinear operators, using the SLiNC action. Carrying out calculations all the
way to O(a?) complicates dramatically the task at hand, even though our computations
were at one loop. We computed the multiplicative renormalization functions, which are
required in order to relate the current matrix elements, as extracted numerically from lattice
simulations, to the physical finite matrix elements. In particular we investigated a method
to suppress the lattice artifacts by subtracting one-loop contributions to renormalization
functions, calculated in lattice perturbation theory, from nonperturbative results. We
compared results obtained from a complete one-loop subtraction with those obtained via
a subtraction of contributions proportional to the square of the lattice spacing. These
results are relevant for the study of hadronic structure functions, which in turn provide
information on the spin, helicity and momentum distributions of the constituent particles

in a hadron.

vil
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e We calculated the renormalization of the chromomagnetic operator, Ocy,. This
calculation was highly nontrivial. A serious complication in this case is that operators
with the same quantum numbers and equal or lower dimensionality can mix with O¢,, at
the quantum level. This effect is exacerbated when using lattice actions with inexact chiral
symmetry; in this case, even operators with different chiralities can mix. Tt becomes all the
more important, therefore, to compute the mixing matrix of renormalization functions, so
as to disentangle as much as possible the corresponding physical signals from Monte Carlo
measurements. Our results for the matrix elements of Oy appear, e.g., in the study of

flavor-changing decays of heavy mesons.
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Chapter 1

Introduction

1.1 Introduction to Quantum Chromodynamics

The most appropriate theory for the description of strong interactions is Quantum Chro-
modynamics (QCD). The theory of QCD has been introduced since the 1970s and is an
integral part of the Standard Model. QCD is based on the non-Abelian group SU(3),
where the number 3 refers to the number of colors carried by quarks. This group has
eight generators, the number 8 corresponding to the number of gluons. QCD has two
fundamental properties, infrared (IR) slavery, which is an increase of the coupling con-
stant ¢ at low energies, and asymptotic freedom, which is the vanishing of the coupling at
high energies. Asymptotic freedom was proven by David J. Gross, H. David Politzer and
Frank Wilczek [I] (Nobel prize 2004), while infrared slavery has only been demonstrated
numerically on the lattice. Given that both quarks and gluons have color charge as an
additional degree of freedom, gluons interact with themselves.

The result of IR slavery is confinement, which means that quarks in experiments are
never observed alone; rather they come in color-singlet combinations, which are called
hadrons. Hadrons can be either mesons (quark-antiquark pairs) or baryons (3 quarks or
3 antiquarks). There exist six flavors of quarks: up (u), down (d), strange (s), charm (c),
bottom (b) and top (¢). The Hamiltonian eigenstates in QCD are hadrons, whose properties
can fix the fundamental parameters of QCD: the coupling constant g (or ay = g?/4r) and
the quark masses m.

In order to obtain information on hadronic properties we study structure functions.
These functions are a measure of the partonic composition of hadrons, which is important

for hadronic collisions and decays. They are a key ingredient for deriving parton distribu-
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tion functions (PDFs) of the nucleons. In recent years dramatic progress has been made in
the understanding of nucleon structure and partonic content, due to important theoretical
advances, and the availability of new high precision experiments.

In particular some particle colliders use two protons, or proton-antiproton pair, as
initial state, thus reaching very high center-of-mass energies. Recent QCD related results
were taken in the Fermilab Tevatron Collider and in the Large Hadron Collider (LHC).
The data of these colliders leads to a better determination and detailed understanding
of the partonic structure of the nucleon. Further detailed studies have been carried out
on: inclusive photon and diphoton production, vector boson plus jets production, event
shape variables, and other inclusive multijet productions. Comparisons of experimental
measurements with QCD can be performed using a variety of theoretical approximations.
Studying jets in experiments we test our understanding and predictions of high-energy
QCD processes. Jet physics also provides a check of the strong coupling constant a,. A
recent determination of the strong coupling constant from jet data has been achieved at
Fermilab. Further hadronic processes are investigated at LHC, in particular in the ATLAS,
CMS and LHCb experiments.

Because of the strong force it is difficult to perform analytic calculations of scattering
processes involving hadronic particles from first principles; it is only in the asymptotic-
freedom regime that perturbation theory can be effectively applied. In this regime one
may also make use of the Factorisation Theorem: the latter separates processes into non-
perturbative PDFs which describe the composition of the proton and can be determined
from experiment, and perturbative coefficient functions associated with higher scales which
are calculated as a power-series in as(p). Thus, in order to understand any of the results of
the above experiments one needs to understand how incoming hadrons are made up from
constituent quarks and gluons, the interactions of which we then know how to calculate
using perturbation theory as long as there is a large scale p in the process so that pertur-
bation theory is applicable. The production of any particle, say a Higgs boson at a hadron
collider can be determined by the cross section of the parton-parton collision to produce the
Higgs, convoluted with the probabilities to find these partons within the incoming hadrons.
We can use deep inelastic scattering (DIS) experiments to probe the structure of hadrons
and the fundamental interactions of quarks, gluons, and leptons. In DIS experiments a
lepton probes a target nucleon or nucleus via exchange of an electroweak boson.

An additional physical process which is being investigated at LHC is the production
of the deconfined quark-gluon plasma (QGP) phase in heavy-ion (PbPb) collisions at high
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energies. Quarkonia (cé or bb bound states) are a useful means to probe QGP and to
investigate the behavior of QCD in a high parton-density environment. A QGP state of
matter would suggest a phase transition at some temperature. The existence of such phase
transition was first exhibited in the strong coupling limit of QCD, and further corroborated

by detailed numerical simulations.

1.2 Lattice QCD

The fact that perturbation theory alone cannot describe many aspects of strong interac-
tions, makes quantitative studies of QCD a formidable task. For this purpose, an idea pro-
posed in 1974 by Kenneth G. Wilson [2] was to formulate Gauge Theories on a spacetime
lattice; such a formulation provides description of strongly coupled theories also nonpertur-
batively. Lattice theory is a way of regularizing quantum field theories. The regularization
is achieved in the low-energy (InfraRed, IR) regime using a finite lattice size L. But in the
end of every computation we will need to extrapolate our results to an infinite lattice size.
The high-energy (UltraViolet, UV) regime is regularized by using a finite lattice spacing a.
This introduces a momentum cutoff which is inverse to a, since the momenta are restricted
to the finite interval —7/a < p < 7/a (first Brillouin zone). We could use other UV reg-
ulators (e.g. Pauli-Villars, Dimensional Regularization, momentum cutoff) but they are
only applicable to perturbative calculations.

The subjects of lattice QCD are multidirectional. The subjects which are most actively

pursued are listed below with some examples of recent research activity:

e Advances of lattice QCD algorithms have been in constant development over the
years. These advances concern topics such as methods to simulate heavy quarks, the
effects of quenching and the relevance of partial quenching, nonperturbative renor-
malization of operators, the role of chiral perturbation theory in extracting hadronic
quantities from lattice QCD, the reduction of lattice-spacing artifacts, and the use

of small-volume computations to extract infinite-volume physics.

e In order to study Hadron phenomenology, new methods and techniques are used.
Some works are dedicated to improved computations of hadron masses, decay con-
stants and weak transition matrix elements. Calculations of moments of structure
functions, the running coupling and quark masses and many other physical quanti-
ties have also been reported. Lattice QCD also provides the best theoretical evidence

that glueballs states exist.
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e Some research teams are interested in analyzing the properties of QCD under extreme
conditions. On one hand there is the goal of reaching a quantitative description
of the behaviour of matter at high temperature and density. This does provide
important input for a quantitative description of experimental signatures for the
occurrence of a phase transition in heavy ion collisions. At high temperatures the
interaction between quarks and gluons decreases due to asymptotic freedom, leading
to deconfinement, and chiral symmetry is restored. On the other hand the analysis of
a complicated quantum field theory like QCD at non-zero temperature can also help
to improve our understanding of its nonperturbative properties at zero temperature.
The low-temperature phase exhibits confinement and breaking of chiral symmetry.
The introduction of external control parameters (temperature, chemical potential)
allows to observe the response of different observables to this and may provide a

better understanding of their interdependence.

e Using the lattice one can study, besides those transitions which we described, phase
transitions that occurred during the early times of the evolution of the universe, such
as the electroweak phase transition. The study of Quantum Fields on the Lattice also
extends to Physics beyond the Standard Mondel, e.g. the study of quantum gravity

and supersymmetric Yang-Mills theories.

e (Calculations, using Lattice gauge theory, play a key role also in flavor physics:
Flavor-changing amplitudes can be computed, providing information on the Cabibbo-
Kobayashi-Maskawa (CKM) quark-mixing matrix. At the LHC, bottom baryons are
being produced in unprecedented quantities, which opens up a new field for flavor
physics. For example, the decay A, — pu~v, can be used to obtain a novel de-
termination of the CKM matrix element |V,;|, and the decay A, — Au*p~ probes
the weak interactions beyond tree-level. The first lattice calculations of the relevant
Ay, — p and Ay — A form factors have recently been performed using domain-wall
light quarks and static b quarks. In both cases, form factor calculations using lattice

QCD are needed to interpret the experimental data.

e In the past few years there have been also a lot of theoretical developments. We
mention here the Yang-Mills “gradient flow”, which can be a powerful tool for non-
perturbative studies of QCD. A key feature of the flow is certainly the fact that local
fields constructed at positive flow time renormalize in a simple way, however com-

plicated they may be. Correlation functions of such fields calculated in lattice QCD
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therefore have a well-defined continuum limit and thus provide interesting probes of

the universal properties of the theory.

These and other ideas are currently under intensive exploration. Given recent and future
increases in computer power these advances will allow more reliable calculations of hadronic

quantities.

1.3 Lattice Perturbation theory

The lattice is generally used in nonperturbative calculations but comparison with physical
values often requires also perturbative calculations. Perturbation theory is an essential
aspect of computations on the lattice, especially for investigating the behavior of lattice
theories near the continuum limit. For a review in lattice perturbation theory see e.g.,
Ref. [3].

The role of perturbation theory on the lattice is very important since perturbative
calculations connect the outcome of numerical simulations to the continuum physical re-
sults. Using perturbation theory we can determine the renormalization functions (RFs)
of composite operators and of bare parameters of the Lagrangian, like coupling constant
and masses. In many cases one could extract RFs nonperturbatively, but often a nonper-
turbative determination may turn out to be rather difficult (or impossible) to achieve. In
cases where we can find RFs nonperturbatively we can always compare with the corre-
sponding perturbative results, for a specific renormalization scale. This comparison can
give significant cross-checks on the validity of perturbative and nonperturbative methods.
We should also add that perturbative coefficients can be usually computed much more
accurately than typical quantities in numerical simulations. A notetable exception regards
mixing coefficients of operators of lower dimensionality. These coefficients necessarily con-
tain inverse powers of the lattice spacing; consequently they diverge on a — 0, and their
perturbative estimation cannot be relied on. A specific instance of this behavior regards
the vacuum expectation value of certain operators, i.e. their mixing coefficient with the
identity operator.

Moreover, lattice perturbation theory is important for a number of other investigations,
among which we can mention the study of anomalies on the lattice, the study of the general
approach to the continuum limit, including the recovery of continuum symmetries broken
by the lattice regularization (like Lorentz or chiral symmetry) in the limit where the lattice

spacing goes to zero, and the scaling violations, the corrections to the continuum limit
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which are of order a”. An accurate treatment of such violations can greatly reduce the
systematic error which is introduced by lattice artifacts in simulation results.

The mixing of lattice operators under renormalization can also be determined through
perturbation theory. Generally operator mixing on the lattice is more complex than in the
continuum. In fact, mixing patterns on the lattice become in general more transparent
when looked at using perturbative renormalization than nonperturbatively.

In this thesis we concentrate on perturbative RFs. As we mentioned earlier RFs are nec-
essary ingredients in the prediction of physical probability amplitudes from lattice matrix
elements of operators. They relate observables computed on finite lattices to their contin-
uum counterparts in specific renormalization schemes. On the lattice we have an infinite
number of interaction vertices but, fortunately, only a finite number of vertices is needed
at any given order in the bare coupling constant, go. The perturbative calculation of the
relevant Green’s functions in this thesis was carried out at one-loop order by computing
the corresponding Feynman diagrams.

Analytic computations of Feynman diagrams in lattice QCD present quite a few new
and interesting features with respect to the continuum. Of course general properties of the
path integral, Wick’s theorem, and gauge invariance continue to be valid on the lattice.
The combinatorial rules are also similar to the continuum. But there are important differ-
ences, many of them connected to the breaking of Lorentz invariance. Lattice perturbation
theory is much more complicated than continuum perturbation theory: there are more
fundamental vertices and more diagrams. The propagators and vertices, with which one
builds the Feynman diagrams, are also more complicated on the lattice than they are in the
continuum, which can lead to expressions containing a huge number of terms. A typical
“difficult” Feynman diagram contains ~ 10 terms before we integrate these expressions
over the internal momenta.

Lattice perturbation theory may also be applied to systems at finite temperature: The
euclidean Feynman rules at zero temperature are modified when relativistic systems of
interacting fields are placed in contact with a heat bath. There are exact one-loop calcula-
tions of the equation of state within hard-thermal-loop perturbation theory, which employs
an expansion in the ratios of thermal masses and the temperature [4]. In fact this expan-
sion converges reasonably fast. There are also studies of the existence and properties of
the transfer matrix using Chiral perturbation theory in the quenched approximation [5].

There have been only very few higher-loop results of lattice perturbation theory in

the last decades, due to the fact that providing such results beyond one-loop order is
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very demanding in human and CPU time. More precisely there are a few calculations
of renormalization functions up to two-loops [6, [7, [8]. Numerical stochastic perturbation
theory [9] might be a viable alternative to study higher-loops; for example, the lattice
corrections up to three-loop order for the SU(3) gluon and ghost propagators is achieved
by numerical stochastic perturbation theory in Landau gauge.

Another application of lattice perturbation theory regards the Schrodinger functional
(SF) [10]. This is a powerful and widely used tool for the treatment of a variety of problems
in renormalization and related areas. Albeit offering many conceptual advantages, one
major downside of the SF scheme is the fact that perturbative calculations quickly become
cumbersome with the inclusion of higher orders in the gauge coupling and hence the use
of an automated perturbation theory framework is desirable.

In recent years considerable efforts have also been made to improve lattice actions in
order to reduce the dependence of the results on the lattice spacing. Results from lattice
perturbation theory exist for a variety of improved lattice fermion actions: Wilson, Wilson-
like (e.g. clover, SLiNC), Staggered, Overlap, domain wall fermions, Relativistic heavy
quarks, NRQCD (Non-Relativistic QCD) and HQET (Heavy Quark Effective Theory) [11].
Other improvements of lattice actions are carried out using the background field method

with an application to the hyperfine splitting of quarkonium states.

1.4 Overview of the Thesis

This Thesis contains work carried out over the past four years and it is laid out as follows.
Chapter [2| provides a brief introduction to some lattice actions. We describe the discretiza-
tion passage from continuum actions to a set of discrete space-time lattice actions.

In Chapter |3| we present the perturbative computation of the renormalization functions
for the quark field and for a complete set of ultra-local fermion bilinears. The computation
of the relevant Green’s functions was carried out at 1-loop level for the staggered action
using massive fermions. The gluon links which appear both in the fermion action and in the
definition of the bilinears have been improved by applying a stout smearing procedure up to
2 times, iteratively. In the gluon sector we employed the Symanzik improved gauge action
for different sets of values of the Symanzik coefficients. The renormalization functions
are presented in (two variants of) the RI’ and in the MS renormalization schemes; the
dependence on all stout parameters, as well as on the fermion mass, the gauge fixing

parameter and the renormalization scale, is shown explicitly.
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In Chapter [4 we apply our results of Chapter [3| to a nonperturbative study of the
magnetic susceptibility of QCD at zero and finite temperature. We study the response
of the QCD vacuum to a constant external (electro)magnetic field through the tensor
polarization of the chiral condensate and the magnetic susceptibility at zero and at finite
temperature. We determine these quantities using lattice configurations generated with
the tree-level Symanzik improved gauge action and Ny = 1+ 1+ 1 flavors of stout smeared
staggered quarks with physical masses. The magnetic susceptibilities s reveal a spin-
diamagnetic behavior; we obtain at zero temperature x, = —(2.08 & 0.08) GeV ™2, x4 =
—(2.02+0.09) GeV~2 and xs = —(3.4 4+ 1.4) GeV~? for the up, down and strange quarks,
respectively, in the MS scheme at a renormalization scale of 2 GeV. We also find the
polarization to change smoothly with the temperature in the confinement phase and then
to drastically reduce around the transition region.

In Chapter [5| we compute the one-loop 2-point perturbative bare Green’s functions
of the fermion propagator and of local and extended fermion bilinear operators on the
lattice. The calculation is carried out up to O(a?), where a is the lattice spacing. We
employed the SLiNC action. Our results have been obtained for various choices of values
for the Symanzik coefficients, ¢;. The clover coefficient csw, the gauge parameter «, the
stout parameter w, the fermion masses m and the number of colors N, are kept as free
parameters. The Wilson parameter, r, is set equal to 1. Knowledge of these Green’s
functions allows us to determine renormalization functions for the quark field and each of
the fermion bilinear operators which we studied.

In Chapter 6] we investigate a method to suppress the lattice artifacts from nonperturba-
tive data by subtracting the one-loop contributions of perturbative renormalization factors
using clover improved Wilson fermions with plaquette gauge action. We compare results
obtained from a complete one-loop subtraction with those calculated by a subtraction of
contributions proportional to the square of the lattice spacing.

In Chapter [7| we compute the Green’s functions of the chromomagnetic operator O¢yy,
with one external quark-antiquark pair and with zero or one external gluons, on the lattice
and in the continuum using dimensional regularization. The lattice computation is car-
ried out using the maximally twisted-mass action for fermions; for gluons we employ the
Symanzik improved gauge action with different sets of values of the Symanzik coefficients.
In order to find the mixing with other operators we examine the transformation properties
of all candidate operators which could possibly mix with O¢j,. We have identified these

operators and we construct a mixing matrix to find the renormalization of Ocj;. We also
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calculate and present the renormalization of fermion field Zy, gluon field Z,, and of the
coupling constant Z,, which are required by the renormalization conditions.

Finally in Chapter [§| we summarize and conclude. The Appendices contain supplemen-
tary material that has been left out of the main body of the Thesis in order to improve
readability.

Most of the results presented here have already been published in the following papers:

e G. S. Bali, F. Bruckmann, M. Constantinou, M. Costa, G. Endrédi, S. D. Katz,
H. Panagopoulos and A. Schéfer, “Magnetic susceptibility of QCD at zero and at
finite temperature from the lattice”, Phys. Rev. D86 (2012) 094512.

e M. Constantinou, M. Costa, M. Gockeler, R. Horsley, H. Panagopoulos, H. Perlt,
P. E. L. Rakow, G. Schierholz and A. Schiller, “Perturbatively improving reqularization-
invariant momentum scheme renormalization constants”, Phys. Rev. D87 (2013)
096019.

e M. Constantinou, M. Costa and H. Panagopoulos, “Perturbative renormalization

functions of local operators for staggered fermions with stout improvement”, Phys.
Rev. D88 (2013) 034504.

e M. Constantinou, M. Costa, R. Frezzotti, V. Lubicz, G. Martinelli, D. Meloni,
H. Panagopoulos and S. Simula, “The chromomagnetic operator: Hadronic Matriz

Elements and the Mizing under Renormalization”, to be submitted to Phys. Rev. D.
and conference proceedings:

e G. S. Bali, F. Bruckmann, M. Constantinou, M. Costa, G. Endrédi, Z. Fodor,
S. D. Katz, S. Krieg, H. Panagopoulos, A. Schifer and K. K. Szabo, “Thermody-

namic properties of QCD in external magnetic fields”, PoS Confinement X (2012)
198.

e M. Constantinou, M. Costa, M. Gockeler, R. Horsley, H. Panagopoulos, H. Perlt,
P. E. L. Rakow, G. Schierholz and A. Schiller, “Perturbative subtraction of lattice ar-
tifacts in the computation of renormalization constants”, PoS LATTICE2012 (2012)
239.

e M. Constantinou, M. Costa, M. Gockeler, R. Horsley, H. Panagopoulos, H. Perlt,
P. E. L. Rakow, G. Schierholz and A. Schiller, “Perturbatively improving renormal-
ization constants”, PoS LATTICE2013 (2013) 310.
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e G. S. Bali, F. Bruckmann, M. Constantinou, M. Costa, G. Endrédi, S. D. Katz,
H. Panagopoulos and A. Schéfer, “Perturbative renormalization of staggered fermion

operators with stout improvement: Application to the magnetic susceptibility of QCD”,
PoS LATTICE2013 (2013) 458.

e M. Constantinou, M. Costa, R. Frezzotti, V. Lubicz, G. Martinelli, D. Meloni,
H. Panagopoulos and S. Simula, “The chromomagnetic operator on the lattice”, PoS
LATTICE2013 (2013) 316.



Chapter 2
Actions on the lattice

There is a great variety of ways to discretize on the lattice a theory defined in the con-
tinuum. A number of symmetries of the continuum actions are necessarily violated when
discretizing on a lattice, first and foremost Lorentz invariance. The Fermion and Gluon ac-
tions are written on the lattice using a discretization; such that the limit a — 0 reproduces
the continuum action. In recent years an appreciable effort has been invested in studying
lattice actions which leave intact as many symmetries of the continuum theory as possible.
We know that the renormalizability of Quantum Field Theories is based on gauge symme-
try. Furthermore the existing proofs of perturbative renormalizability of QCD, defined on
the lattice, rely on strict gauge invariance [12]. Thus the lattice actions are constructed
to be gauge invariant. In this Chapter, we describe these actions which were used in our

calculations. These actions are currently employed in large scale numerical simulations.

2.1 Wilson gluons

In this section we present the standard Wilson action for the gluons. To define the gluon
action on the lattice we introduce the link variables, U,(z). They are unitary and connect
two neighboring lattice sites. The index p = 0, ..., 3 labels the direction of the link and /&
is the unit vector in the p'" direction.

For a gauge theory with V. colors of fermion fields, the gauge group is SU(N,). The
link variables are directly related to the gauge fields Af.(z) in a nonlinear way; they are

defined in a way that the continuum action is recovered when setting a — 0.

Uu(r) = Up(w, x + afit) = exp |iagoT* A}, (x + %) : (2.1)
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where 7% (a = 1,..., N> — 1) are the SU(N.) generator matrices in the fundamental rep-
resentation. By convention, the argument of A} is defined in the midpoint of the link
(without affecting the continuum limit or the simulations) and U is an N, x N, unitary

matrix satisfying:

ap

U_,(2) = Uz, — afi) = e 0T %05 = Ul(x — afi, z). (2.2)

~ ~

xap o

x
P -

x
@ > it

-

Utx,x+a ﬁ) Utxta @,x)

Figure 2.1: Schematic representation of link variables.

A local gauge transformation G(x) acts on the fermion (¢)(z), ¢ (x)) and gauge fields
through the relations:

U(z) — Gr)d(z)
P(x) — Y()GY(x)
Uy r) — G@)U,(2)G'(z + aji) (2.3)
Ul(x) — G(a:—{—a,&)UM(x)GT(x). (2.4)

One requires that the lattice action be invariant under the gauge transformations; thus,
its gluon part must be constructed by gauge invariant objects. The simplest choice is the

trace of the 1 x 1 loop, called plaquette:
Up = U () = Up(2)U, (2 + ap) U} (x + a0) U] (2), (2.5)

Up is the product of link variables along the perimeter of a square originating at x in the

positive u — v directions; it provides a natural discretization of the gauge field strength:
U () = exp [z’a2goFW(x)} . (2.6)

As can be realized from Fig. there are two different orientations for each plaquette,
which are Hermitian conjugates to each other. Thus, a sum over all orientations involves

only the real part of the loops. Taking the trace over color indices ensures gauge invariance.
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Figure 2.2: Schematic representation of a plaquette.

The Wilson gluon (plaquette) action is written as:

s 2N 1
S8, = 7 Y - S ReTH{Up]). (2.7)

p<v  x

The formulation of this action in terms of the link variables, rather than the gauge fields
directly, serves to uphold gauge invariance.

In a naive continuum limit, where a goes to zero, one has:

1
Sty = St = 5 [ 0 Tr (B, (2.5)

2.2 Naive fermion action and Wilson fermions

In the formulation of Lattice QCD, the fermion fields (¢)(z), 1(x)) live on the lattice sites
x and carry color (i,7,... = 1,...,N.), flavor (f = 1,..., N¢) and Dirac indices (o, §,... =
1,...,4). We recall that N, Ny are the number of fermion colors and fermion flavors,
respectively. To avoid heavy notation, the Dirac, flavor and color indices are not written.

The naive gauge invariant fermion action on the lattice in Euclidean space-time is:
1 — . . .
st o= Z Z 5 )y [Uu(x)w(m +aft) = Ul(z — af)(z — afi)
x n
b mob(a)(a) 29)
This action has the correct continuum limit:

St = / d'zip(x) (v, Dy + mo) - (2.10)
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In order to find the naive propagator, it is convenient to work in momentum space. The

Fourier transformation of the fields is:

B w/a d4p iap
bla) = / i) (2.11)
A /e d4p —iap-x;
T(a) = / ) (2.12)
T/a g4 . N
A () = / . (;l—]j e 4, (p). (2.13)

The naive fermion propagator takes the form:

_ L ™ 4k k() —i Y, Yusin(k,) + mo
(U(@)v(y)) = (lzl_r% __(2n) ey ZHMSWQ(]CM) + m2

(2.14)

The correct continuum limit in the naive fermionic case is destroyed due to the vanishing
of sin(k,) at the edges of the Brillouin zone. Thus there are sixteen regions, in momentum
space rather than one k, ~ 0, which contribute to the propagator, as if there were sixteen
fermion species present. This is known as the doubling problem.

Kenneth G. Wilson in 1974 proposed in a famous paper [2] one of the most popular
lattice actions to overcome the problem of the fermion doubling. The solution is to add a

term (Wilson term) to the naive action. The Wilson term is:
5 2 @)D,d,0 () (2.15)
Below, we present Wilson’s lattice action for fermions:
St = {3 S U@[0 Ul + ap) (2.16)
z p
0 U = ap)e(e = ap)| + (4r +mo) Y- Bla)i(x) |

xT

where the r is called Wilson parameter.

Besides the absence of fermion doublers and the existence of gauge symmetry, the Wil-
son action has a number of properties:
e [t is invariant under translations by a.

e The transformations of charge conjugation C, parity P and time reversal 7, leave the
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action invariant.
e Eq. (2.16) includes only nearest-neighbor interactions, leading to vertices with compact

form and easy to work with (locality).

The above properties of Eq. go along with the following disadvantages:
e Chiral symmetry is explicitly broken at order a by the Wilson term, and it is restored
only in the continuum limit. The axial current transformations are not an exact symme-
try and the nonsinglet axial current requires a nontrivial multiplicative renormalization to
restore current algebra up to O(a) effects.

e The lattice artifacts in the action are propotional to a, rather that a?.

These properties and disadvantages are consistent with a famous No-Go theorem of
Nielsen and Ninomiya [I3| which says that a lattice fermion formulation with locality,
without species doubling and with an explicit continuous chiral symmetry is impossible.

Other types of fermionic disretizations, notably “overlap” and “domain wall” fermions,
bypass this theorem at the expense of not being “ultra local”; in particular these actions
involve couplings between quarks and antiquarks which are at an arbitrary distance apart.
As a result, numerical simulation of these actions is enormously more demanding in CPU

time.

2.3 The Symanzik improved gluon action

The plaquette is not the only possibility for the construction of the discretized version of
the gauge field strength. One can also consider larger closed Wilson loops. Rather than
using only the smallest possible closed loops (1 x 1 plaquettes), we can generalize the
Wilson action by including all loops with 4 and 6 links (plaquette, rectangle, chair, and

parallelogram wrapped around an elementary 3-d cube), as shown in Fig. .

Sq = %[ ZReTr{l Uplag.} + @1 ZReTr{l — Useet.}

plag. rect.

> ReTr {1 = Usar} + c3 > ReTr {1 = Uy }] (2.17)

chair paral.

The coefficients ¢; can in principle be chosen arbitrarily, subject to the following nor-
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malization condition which ensures the correct classical continuum limit of the action:
Co + 861 + 1602 + 863 =1 (2.18)

Some popular choices of values [14] for ¢; used in numerical simulations will be consid-
ered in this work, and are listed in Table of Appendix [D.TI} They include the Wilson
case (co = 1, ¢y = ¢g = ¢3 = 0), and the tree-level Symanzik (¢g = 5/3, ¢; = —1/12,
o = ¢3 = 0), TILW (tadpole improved Liischer-Weisz), Iwasaki and DBW2 (doubly
blocked Wilson) actions. The values for ¢; used in numerical simulations are normally
tuned in a way as to ensure O(a) improvement.

plaquette rectangle

chair parallelogram

Figure 2.3: The 4 Wilson loops of the gluon action.

2.4 The clover fermion action

The widely used clover action was originally studied by Sheikholeslami and Wohlert [I5]
to remove the O(a) effects of the Wilson fermion action.

The improved action is written as:

5icsw —f -
Sow =Sl + 023 ) 0 (@) (2)¢ () (2.19)
[ zuv

where the first term of Eq. (2.19)) is the fermion part of the Wilson action (Eq. (2.16)),
Csw is the clover parameter, o, = (i/2) (7,7 — 7 7.), and the quantity ﬁuy is a lattice

discretization of the field tensor; more specifically, F),, is the sum of plaquettes in the y—v

plane, having x as their initial and final point:
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~

Funl) = 5o5(Quo(2) — @ (), (2.20)

@, is the sum of the plaquette loops:

Quv

Ua:, T+ Ux—i—u, T+pt+v Ux—i—u—&—u, T+v Uz-l—y, x
U:c, T+v Ux-l—l/, a:—i—l/—uUJ:—‘rl/—u, T Ux—u, x

Ux, a:quzfp,, xfusUxfufzx, xquxfu, T
U{L‘,CE*I/U$7V,.’E*V+/,LU£E7V+/J,,ZL‘+,LLUQE+/L,{E (221)

+ + o+

as shown in Fig. 2.4

v

s

Figure 2.4: Graphical representation of @, (Eq. 1} appearing in the clover action.

H

Given that the clover action is local, it does not introduce excessive complexity in
neither perturbation theory nor numerical simulations. In particular, the addition of the
clover term is only about a 15% overhead per update as compared to Wilson fermion sim-
ulations |16}, [I8]. Note that any value of ¢, is in principle allowed, since the corresponding
term vanishes in the continuum limit. Specific choices for values of ¢, can be made by
requiring, e.g. that O(a') effects are absent from the action, at the classical or quantum

level.

2.5 SLiNC Action improved fermion and gluon action

The acronym SLiNC stands for the Stout Link Non-perturbative Clover action. It has
been adopted by the QCDSF collaboration for their large scale simulations in recent years

(see, e.g. [I7]). The gluonic part of the SLiNC action is the tree-level Symanzik action
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which reads:

owl Do

{co Z ReTr (1 — Uplaq.) + 1 Z ReTr (1 — Urect,)} (2.22)

plag. rect.

with ¢g = 5/3 and ¢; = —1/12 (¢y + 8¢; = 1). This reduces to the standard plaquette
action S}, for ¢; = 0.

The fermionic part of this action has the same form as the clover action but the links
U,(z), connecting fermion fields on adjacent sites, are replaced by “stout” smeared links

Uu(x) and the Wilson parameter, r, is set to 1:

= ot o { - o [F@Tu) (0 =3 (e + i)
(@) T — a) (14 7,) (o — ajt) (2.23)

©0(w) 0y By () () }.

+ (4 + mo) P ()1h(x) — cow go 1

The links inside the clover term are not smeared. Stout links [19)] are defined by:

Uy(z) = @@ U, (2), (2.24)
with
Q) = 2 [Vu@UL@) = Vi) = 3T (MU - G@Vi@) | - 29)

V,.(z) denotes the sum over all “staples” U, (z)U,(z + a0)UJ(x + afi) associated with the
link U,(z) and w is a tunable parameter; its value can be chosen using criteria similar to
those which apply in the case of cg,. Stout smearing is expandable as a power series in gg,
so we can use perturbation theory. Many other forms of smearing do not have this nice
property since they lead to non-unitary links which, upon projection to SU(N.), cease to
be Taylor expandable in gq.

The reason for not smearing the clover term is that one wants to contain the physical
extent of the fermion action in lattice units; this is relevant for non-perturbative calcula-

tions.
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2.6 Staggered fermions

Another means of solving the fermion doubling problem is the introduction of “staggered”
fermions.

In the staggered (or Kogut-Susskind) formulation [20], one is left with 4 fermion “tastes”
whose 16 components are split over a unit hypercube by assigning only a single fermion
field component to each lattice site. This construction can only be carried out in an even
number of space-time dimensions.

The standard passage from the naive action for fermions (v, ) to the staggered action

entails the following change of basis:

V() =yx) ,  Y) =x@)ql,
Yo =V s vt x = (ani,ans,ans,any), mn;€l. (2.26)

Using the equalities:

Y Yz = nu(x)%c—i-aﬂ and ’71: Ve =1, Uu(if) = (_1)Zy<“nu . (2'27)

the naive fermion action takes the form:

St =a Z Z Z % Xi ()N () [UM(x)xi(:m—aﬂ)—U,t@—aﬂ))(i@—aﬂ)] +a* Z mx; (@) xi(z) -

(2.28)
Thus far, we have rewritten the usual lattice action. But the crucial step now is that the
Dirac matrices have disappeared, and they have been replaced by the phase factors 7,(x);
in the new basis, the naive action consists of 4 identical parts, one for each value of the
spinor index ¢ carried by the spinor x. Dropping this index altogether leads to the standard

staggered fermion action, Sgag:

Svag = @30 3 5 K@) [V e+ af) U e - o) (o —ai)| +at 37 mx(e)x(a)

T o

(2.29)
An advantage of staggered fermions is that a continuous subgroup of the original chiral
transformations remains a symmetry of this lattice action even at finite lattice spacing,

and thus no mass counterterms are needed for vanishing bare quark masses. All this is
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achieved at the expense of taste and (partially) translational symmetry, which become in

fact all mixed together.

2.7 Twisted mass action

As previously mentioned, the Wilson action breaks chiral symmetry, which can be restored
with the introduction of an additive fermion mass renormalization as a counterterm. The
result of the absence of chiral symmetry for nonzero lattice spacing, is that the Wilson-
Dirac operator (Eq. ) is not protected against zero modes, unless the bare quark mass
is positive. However, due to additive mass renormalization, the masses of the light quarks
correspond to negative bare masses. One of the consequences of the zero modes is the
following: After integration over the fermion and anti-fermion fields in the functional inte-
gral, there is a small eigenvalue of the Wilson-Dirac operator in the fermionic determinant
and the fermion propagators appearing in the correlation functions. Thus, in the quenched
approximation, where the fermionic determinant is ignored, this eigenvalue in the quark
correlation is not canceled out upon division. The results are large fluctuations in particu-
lar measurables that compromise the ensemble average. The gauge field configurations at
which this happens, are called exceptional.

A solution to the problem of exceptional configurations is the addition of a “twisted”
mass term [2I] to the standard Wilson action. The resulting action has the benefit that
certain observables are automatically free of O(a) lattice artifacts.

Some additional advantages of this action are efficient simulations (as compared to
other improved actions) and the fact that operator mixing resembles the continuum case.
The twisted mass action can be used to study quarks at small masses, where the Wilson
action would fail. Also, the properties and the interactions of hadrons can be probed

nonperturbatively from first principles.

2.7.1 The lattice twisted mass action for degenerate quarks

The twisted mass lattice action [22] for a doublet of Ny = 2 mass degenerate quarks,

written in the so called twisted basis (x, X), is:
St{ffl} =qat Z X(x) [DW +mo + iuq757'3] x(x) (2.30)

with myg real and positive. Dy is the Wilson-Dirac operator:
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3
1 — — — =
DW:§Z{7#(VH+VM)—arVMVH} (2.31)
n=0

The last term with the twisted mass parameter p, protects the Dirac operator against

zero modes for any finite y,, since the twisted Dirac operator has positive determinant:
det(Dw + mqg + ipgy°1°) = det(Q? + 2) (2.32)

where Q = v°(Dyw +myg) is the hermitian Wilson operator; hence, the twisted Dirac opera-
tor does not have any zero eigenvalues. The isospin generator 73 acts in flavor space and its
appearance means that isospin is no longer conserved (i.e. the up and down quark have op-
posite signs of the twisted mass leading to flavor symmetry breaking). Moreover, the twist
term breaks parity symmetry (due to 7°). These symmetries are restored in the continuum

limit. The action remains invariant under the flavor-dependent axial transformations:

. .3
o= 7
v = yeT (2.33)

with the mass parameters mixed to each other as:

m' = pgsin(w) + mcos(w)

g = figcos(w) —msin(w) (2.34)
In the full twist case, w = /2, the flavor symmetry is restored at a rate O(a?). This case
is useful, since there is automatic cancellation of O(a) effects in quantities like energies and
on-shell operator matrix elements. The action can be written in the physical basis (¢, 1)),

where the i, term has been eliminated:
S = a3 %(@) | Dwm + M0 (2.35)
Dyt is the twisted Wilson operator:

1 — — ) — —
Dwip = 3 Z{%(Vu + V) —are™" 7 V,V,} (2.36)
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and M is the polar mass:
M = /mi+ % (2.37)

In the continuum limit, where the last term of Eq. (2.36]) vanishes, tmQCD can be seen
as a change of variables which leaves the physical content of the theory unchanged if the

rotation angle w satisfies:

tan(w) = % (2.38)

Thus, in the continuum limit the axial rotation of the fermion fields (Eq. (2-33))) relates
tmQCD to the standard QCD.

We are particularly interested in the action written in the twisted basis, because it is
the one used in simulations. This is due to the fact that the renormalization of gauge
invariant correlation functions is simpler for the twisted fields (, x). The expression for

the twisted mass propagator is:

i, + M(p) — iy 7

G(p) = - (2.39)
B+ M(p)? + 2
with p and M defined through:
o 1 . T . R 2 . ap,
P,= a sin(apy), M(p) =mo + 2 Dy Pp = a Sln(T) (2.40)

The tree-level expression can be extracted by taking the Taylor expansion for small values

of the lattice spacing a and keeping terms up to O(a), obtaining:
Go(p) = p* + m§ + pi + amorp” (2.41)

The first observation is that for zero bare mass (or even for my = amy), the theory is free
of O(a) effects, but this picture changes once we take into account the interactions between
quarks. Moreover, the inclusion of the twisted mass parameter does not affect the O(a)

improvement of the my = 0, amy cases.

2.7.2 The lattice twisted mass action for nondegenerate quarks

So far we have discussed the N; = 2 case of degenerate light quarks, but the action
can be generalized to include a further doublet of non-degenerate quarks [23, 24]. Such

a generalization arises from the need to describe the heavier quarks, charm and strange.
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Since we want to use this action in simulations of full tmQCD, we must maintain the reality
and positivity of the quark determinant. Thus, in the action we add a flavor off-diagonal
splitting;:
X} _ 4 . < 5.3 1
Sl =a Z X(x) [DW + mg + ipgy° T + €T | x(T) (2.42)

where ¢, is the mass splitting parameter and we demand f,, ¢, > 0. The additional term
retains the properties of tmQCD at full twist and it keeps the quark determinant real and
positive if y /m§ + p2 > ;.

The transition to the physical basis is achieved with the following field transformations:

1

v = (exp(—iwv57—)> (%(1—#2’7’2)))( (2.43)

2
v = X<i(1 — iTQ)) (exp(—iw757—1)> (2.44)
V2 2
The action in this basis is now:
S} = at 3 (@) [ Dwi + M (2.45)

where M = /mZ + p2 is again the polar mass. For the description of the heavy doublet

charm and strange (c,s) we associate the physical quark mass with the mass parameter M,
that is:
Meharm = M + €q Mstrange = M — €q (246)

and the fermion determinant is positive if M > .



Chapter 3

Perturbative renormalization functions
of local operators for staggered fermions

with stout improvement

3.1 Introduction

In recent years, significant improvements have been made in the use of matrix elements of
operators made out of quark fields to extract mass spectra, decay constants, and a plethora
of hadronic properties [25, 26 27]. Although naive (unimproved) staggered fermions were
introduced more than three decades ago [28], their discretization errors and their relatively
large taste mixing posed a limit on the accuracy of results from simulations, despite their
relatively low computational cost. This situation called for improvement; the outcome of
such efforts was some of the most accurate discretizations used to date for high-precision
simulations. One specific direction regards improving the fermion action (see, e.g. [29]30]);
in particular, the introduction of stout links in the action which has recently been put to
use [31], 32] allows simulations to be carried out at near physical parameters. Compared to
most other improved formulations of staggered fermions, the above action, as well as the
HISQ action, lead to smaller taste violating effects [33] 34} 35].

Changes in the lattice action and in the discretization of operators imply that renormal-
ization functions must be determined afresh, either perturbatively or non-perturbatively.
In many cases non-perturbative estimates of renormalization functions are very difficult

to obtain, due to complications such as possible mixing with operators of equal or lower

28
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dimension, whose signals are hard to disentangle. For this reason, and in order to provide
cross-estimates which have a reduced systematic error, the perturbative study of a variety
of fermion operators is widely employed in numerical simulations of QCD on the lattice
(see, e.g. [3] and references therein, also [36] 37, B8, [7, [8 B39]).

Within the staggered formulation using massive fermions we compute the fermion prop-
agator and Green’s functions of a set of local taste-singlet bilinears O (scalar (S), pseu-
doscalar (P), vector (V), axial (A) and tensor (T)). Our computation is performed to one
loop and to lowest order in the lattice spacing, a. We also extract from the above the
renormalization functions of the quark field Z,, quark mass Z,, and fermion bilinears Zo.

This is the first one-loop computation of these quantities, using staggered fermions with
stout links. In the present work, we provide the details of the perturbative calculation and
our results for the propagator and for the Green’s functions, as well as the renormaliza-
tion functions of all operators, including the vector, axial and pseudoscalar cases. Older
results with staggered fermions [36] in the absence of stout smearing and for the Wilson
gluon action are in complete agreement with our results; perturbartive results related to
alternative improvements of the staggered action can be found, e.g., in Refs. [40] [4T].

Stout links [I9], rather than ordinary links, have been used both in the fermion ac-
tion and in bilinear operators. Following Ref. [32], we use two steps of stout smearing
with generic smearing parameters (wy, we). We emphasize that the results for the bilin-
ear Green’s functions depend on four stout parameters, two due to the action smearing
(wa,, wa,) and two more coming from the smearing of the operator (wo,, wo,); no numeri-
cal value needs to be specified for these parameters. The extension to further steps of stout
smearing can be achieved with relative ease. For gluons we employ the Symanzik improved
action. Our final expressions for the Green’s functions exhibit a rather nontrivial depen-
dence on the external momentum (p) and the fermion mass (m), and they are polynomial
functions of the gauge parameter («), stout parameters (wa,, wo,), and coupling constant
(9); furthermore, most numerical coefficients in these expressions depend on the Symanzik
parameters of the gluon action.

The one-loop expressions for the renormalization functions are presented in the mass-
independent RI" scheme; for the vector and axial renormalization functions we also employ
an alternative RI’ scheme which might be more useful in renormalizing non-perturbative
matrix elements. Furthermore, for comparison with experimental determinations and phe-
nomenological estimates, it is useful to present our results also in the MS scheme; we do

so, paying particular attention to the possible alternative definitions of 5.
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Results for Zy, Zn, Zo exist for simpler actions to O(g*) and/or O(g*a"), see e.g.,
Refs. [7, 8] for two-loop renormalization of flavor singlet and non-singlet local fermion
bilinears, Ref. [38] for Z,, to two loops, Ref. [42] for one-loop renormalization of the fermion
propagator and bilinears to O(a'), and Refs. [43] 39, [14] for the fermion propagator and
bilinears with 0 and 1 derivatives to one-loop and to O(a?). The extension of the present
computation beyond one loop and /or beyond O(a®) becomes exceedingly complicated: One
reason for this is the appearance of divergences in nontrivial corners of the Brillouin zone;
also, a two-loop calculation requires vertices with up to four gluons, which are extremely
lengthy in the presence of stout links (estimated length: > 10° terms).

We apply our results to a nonperturbative study of the magnetic susceptibility of QCD
at zero and finite temperature in Chapter In particular, we evaluate the “tensor coeffi-

cient”, 7, which is relevant to the anomalous magnetic moment of the muon.

3.2 Formulation

3.2.1 Lattice actions

Our perturbative calculation makes use of the staggered fermion action.

Following the non-perturbative work of Ref. [32] we apply stout smearing according to
Eq. (2.24), to all links appearing in Sgag. In the present work we need the contributions
of Q,(z) up to 2 gluons, to which the trace terms in Eq. are irrelevant; the contri-

butions can be read from the terms:

Q) =23 (Up(l’)Uu($+aﬁ)Ul(w+aﬂ)UZ(w) - Uu(rc)Up(w+aﬂ)Ul(rc+a/3)U,I(x)>
p==%1

(3.1)
(U_,(y) = U;(y —ap), p > 0). The above procedure can be performed iteratively, by
dressing the links more than once, in order to improve the convergence to the continuum

limit. In the framework of our calculation we use “doubly-stout” links:

Uy(x) = €9 U (), (3.2)

where @ is defined as in Eq. 1 , but using U as links (also in the construction of V).
Such links have been employed in numerical simulations in Refs. [31) B34]. To obtain results

that are as general as possible, we use different stout parameters, w, in the first (w;) and
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the second (ws) smearing iteration. This allows for further optimization of improvement,
by separate tuning of the two parameters; it also provides a check of the perturbative
calculation by comparing the limit w; = 0 (or ws = 0) to the case of a single step of stout
smearing. We smear both the links in Sy, and those in bilinear operators (see following
subsection), so that we have a total of 4 stout parameters that we keep different from one
another. In Appendix |A|we present the one-gluon link, U, for general w; and ws, as well
as the 2-gluon link, U®); due to space limitations, the lengthy expression for U® (a total
of ~500 terms) has been presented only for ws = 0.

For gluons we employ the Symanzik improved action, Eq. (2.22)).

3.2.2 Definition of operators

In the staggered formalism one defines fields that live on the corners of 4-dimensional
elementary hypercubes of the lattice [44] 36, 45]. The position of a hypercube inside the
lattice is denoted by the index y, where y is a 4-vector whose components y,, are even
integers (y, € 2Z). The position of a fermion field component within a specific hypercube
is defined by one additional 4-vector index, C' (C,, € {0, 1}).

To be able to obtain the correct continuum limit, both for the action and for operators
containing fermions, we relate x with the physical field Qg, (8: Dirac index, b: taste

index). In standard notation:

1 1
e =xley +aC)/1=3 (36) Qi) Quln) =5 3 (e)u X, (39

B.b : c
where £ is defined similarly to vo (Eq. (2.26), that is: &o = &1 €52 €55 €54, ¢, = (7;) .

In terms of the field () one can now define fermion bilinear operators as follows:

Ore=Q (T Q, (3.4)

where I and & are arbitrary 4 x 4 matrices acting on the Dirac and taste indices of gy,
respectively. After rotating into the staggered basis, the operator Or¢ can be written
as [36]:

Or¢ = ZX T®E) ., xWp, (3.5)

T®&op=-Tr [’VTCF’VDG} : (3.6)

1
4
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In this work we focus on taste-singlet operators, thus £ = 1.

The operator of Eq. is clearly not gauge invariant, since y and x are defined at
different points of the hypercube. To restore gauge invariance, we insert the average of
products of gauge link variables along all possible shortest paths connecting the sites y+C'

and y + D. This average is denoted by Uc p and the gauge invariant operator is now

Or=0pg =Y XWec (T®L),, Ueox¥)p- (3.7)
C,D

From the definition of Eq. (3.6), as well as the equalities of Eq. (2.27), we can further

simplify the expression for the operator Or, using:

iTY [’Yé 1 ’YD: = dcp,
% Tr [WTC Yu 'VD: = do,p+a Mu(D),
iTl" [’YTC O ’YD: = %5C,D+ﬂ+f/ 0y (D) (D + D),
i Tr [78 Vs Y VD: = Oc,prir,1,0) Mu(D) (D + ) na(D + 1) n3(D + 1) na(D + f1)
i Tr [’YTC Vs ’VD: = Oc,p+1,1,1,1) (D) n2(D) n3(D) na(D) . (3.8)

where 0, = [Y,,7,]/(2¢). Here and below, in expressions such as D + /i the sum is to be
taken modulo 2. Using Eqs. (3.8), the operators can be written as:

Osly) = ZX(Q)DX(?/)D; (3.9)

Ov(y) = Y XWp+iUpspnXx(y)pnu(D), (3.10)
D
1 A
Or(y) = 5> XW)p+jss Upss,n X(y)p (D) (D + 7). (3.11)
D
Oaly) = Z X(Y) p1i+(1,0,1,0) Upspasra,1,,0,0 X () p nu (D) % (3.12)
D

(D + 1) n2(D + f1) n3(D + 1) na(D + fi),

Or(y) = Y XWo+aiy Upsain.o X))o m (D) na(D) ns(D) na(D).  (3.13)

With the exception of the scalar operator, the remaining operators contain averages of
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products of up to 4 links (in orthogonal directions) between the fermion and the antifermion

fields. For example, the average entering the tensor operator of Eq. (3.11)) is:

Ub+jto,p = [(:]j(ay +aD + ajfi) ﬁj(ay +aD) + {p < V}] : (3.14)

N | —

valid when (D + o+ 0); > D;, i = 1,2,3,4, and similarly for all other cases.

3.3 Calculation of Green’s functions

In this section we describe some of the technical aspects of the calculation and present our
results for one-loop Green’s functions. As a starting point one must derive the vertices
for the staggered action and the operators, up to 2 gluons, as required in our one-loop
computation. For this reason one may use an equivalent expression of 7,(x) appearing in

the action:
pn—1

Nu(r) = ™" x=an, ﬂ:Zﬁ. (3.15)

v=1
Using this form of 7,(z), instead of the definition of Eq. (2.27)), simplifies the expression
for Op in terms of Fourier transformed fields, x(k), A,(k) = /IZ(Z@) T

T d'ky dky -
o = | oy . 2y X Vil R X

+ Z / o / Zf) / ék)s X (k1) Vi (ka, b, ks wr, wn) X (k) A (k)

+ two—gluon terms + - - - (3.16)

Thus, after Fourier transformation, the quark-antiquark vertices of Eqs. (3.9) - (3.13),
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become:
Vs(ki, ko) = 0 (ko — k1) (3.17)
Vir(ki, ko) = 0 (ko —ky 4+ ) e *m (3.18)
Vi(ky,ky) = 6 (kg — ki + i+ 7o) e”™re Y (1 > ) (3.19)

4

v=1

4
Vp(ki, ko) = 0 <k2 —k 4Ty 17) eIk thipthigthy) (3.21)

v=1

As for vertices containing gluons, we give here as an example the 1-gluon vertex of the

vector operator, including double stout smearing:

Vil (ks ko, ksywi,wa) = igTe

COS (IQ”T" + klﬂ) O (ks — ko + k1 + 7+ wp)
+i6 (ks — ko + Ky + /i) sin (’“7 + k;m) ]
X {4sin (%) sin <k%> (w1 +wo + 2wy we (—4 4> cos (ki,)))
+0,, ((8w1 —1)(8wy — 1)
+2% " cos (ksy) (w1 + w2 + 2wy we (=84 ) cos (ksr))) ) } . (3.22)

where p is the index of the inserted Dirac matrix (v,) and p is the index of the gluon.
Given that the argument y of the operators Or runs only over even integers, summation

over the position of Or, followed by Fourier transformation, leads to expressions of the form:

3 vk = 1—16(%)4 S b (k7 C) | (3.23)

Yu €27

where dy, (k) stands for the standard periodic d-function with non-vanishing support at

kmod2m = 0. Since contributions to the continuum limit come from the neighborhood of
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each of the 16 poles of the external momenta p, at p, = (7/a)C,,, it is useful to define p|,

and C), through
2m

T
Pu = pit + ECM (mOd(?) )7 (CM € {07 1}) ) (324)
where the “small” (physical) part p’ has each of its components restricted to one half of the
Brillouin zone: —n/(2a) < pj, < 7/(2a). Thus, conservation of external momenta takes
the form:
1 / /
d2r(apr —aps + D) = 55(101 —1h) [[6c1,~consnpo - (3.25)
m

For the algebraic operations involved in evaluating the Feynman diagrams relevant to
this calculation, we make use of our symbolic package in Mathematica; a description of

this can be found, e.g., in Ref. [43].

3.3.1 Fermion propagator

We compute the one-loop correction to the fermion propagator in order to obtain the
renormalization function of the fermion field, an essential ingredient for the renormalization
of the operators Or. The tree-level fermion propagator in the basis of the y fields can be

written as:

i , T
- Zsm(apm)é(pl —p2+ 7'“) +md(p1 — pa)

Stree(plap2) = (27T)4 s 1 ) ) . (326)
= Zsin (ap1y) +m
n

The one-loop Feynman diagrams that enter the calculation of the 2-point, 1-particle
irreducible (1PT), amputated Green’s function, S~!(p), are illustrated in Fig.

i

Figure 3.1: One-loop diagrams contributing to the fermion propagator. Wavy (solid) lines
represent gluons (fermions).

We have computed S~™!(p) for general values of: the gauge parameter o (o = 0: Landau



3.3. Calculation of Green’s functions 36

gauge, « = 1: Feynman gauge), the stout smearing parameters wa,, wa,, the Lagrangian
mass m, the number of colors N, and the external momenta p;, p. We have obtained
results using different sets of values for the Symanzik coefficients (shown in Table . In
presenting our result, Eq. , for S7!(p) up to one loop, the values of the quantities
e1, es depend on the Symanzik coefficients and the stout smearing parameters. In all
expressions the systematic errors (coming from an extrapolation to infinite lattice size of

our numerical loop-integrals) are smaller than the last digit we present.

_ . T _ )
51—110012 = Z o(p1 —p2+ EP) Dy (_1)0 .
p
2 i 2 4 2
g Cr 2 2, 29 m m p
{1+ 6.2 (e1 — (—4.79201+10g(a m” +a“p ) +F_p_4 log (1+W>>]}
+0(p1 — p2) m
9°Cr _ 2.2, 29 m? p?
1+ 62 ey +5.79201 a0 — (34 «) log(a m” +a’p ) —|—p—2 log 1+w
(3.27)
7 s s ’/T )
p1, P2 : external momenta, ap, = (aplp + —) -5 = (apgp + 5) 5 and Cf is
modm modm

defined in Eq. (3.24). Eq. (3.27) does have the expected structure of an inverse propagator,

once one identifies, in the continuum limit:

> blpr—pa+ gﬁ) po (=1) — 5(p) — o) (3.28)

a—0
p

For the tree-level Symanzik gauge action we obtain:

er = — T7.21363 4 124.515 (wa, + wa,) — 518.433 (w3, +w?,) — 2073.733 w4, wa,

+ 9435.35 (W}, wa, + wa, wi,) — 45903.1 w3 Wi, (3.29)
ey = 27.1081 — 264.695 (wa, + wa,) + 885.215 (w7, + w?,) + 3540.86 w4, wa,

—  13960.0(w?,wa, + wa, wh,) +60910.8 w5 w3, - (3.30)

In Appendix we provide the expressions of ey, e for the case of Wilson gluons. We
denote the expression in curly brackets, in the last line of Eq. (3.27), as 3,,(¢*, m); from

this we will extract the multiplicative renormalization of the Lagrangian mass, Zy,.
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3.3.2 Fermion bilinears

In the context of this work we also study the 1PI, amputated, 2-point Green’s functions of

the operators Or, defined in Egs. 1)1 , up to one-loop: Agplo"p. The 1PI Feynman
diagrams that enter the calculation of the above Green’s functions are shown in Fig. and

include up to two-gluon vertices extracted from the operator (the cross in the diagrams).

The appearance of gluon lines on the operator stems from the product Uc p in the operator

definition (Eq. (.7))[]

iy

>4 & Yoy

Figure 3.2: One-loop diagrams contributing to the fermion-antifermion Green’s functions
of the bilinear operators. A wavy (solid) line represents gluons (fermions). A cross denotes
an insertion of the operator Or.

Analogous expressions to Eq. arise for the bilinears as well. We note that the
extraction of Zp. in a mass-independent scheme, such as RI’, necessitates evaluation of
A%Q_FZOOP for m = 0 only. Nevertheless, we have included a nonzero Lagrangian mass in
our computations; this allows us to derive the renormalized Green’s functions at m # 0.
Comparing the latter with results using a different regularization scheme (e.g. dimensional
regularization) provides another check in our computation.

Although computing the diagrams of Fig. does not use the expression for the prop-
agator (Eq. ), all our results shown in Eqs. - are expressed in terms of
e1 (see Eqs. (3.27), (B.1)). The reason for that is to show explicitly the contribution to
the quantities Ao (Eqgs. - (3.40)) which appear in the renormalization functions Zo
(Eqs. (552 - (B59)).

Dropping an overall Dirac d-function of momentum conservation, and denoting the

'For Og only the top right diagram of Fig. contributes, since Uc,p = 1L.
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physical momentum of the fermion and antifermion by p, we obtain Aglo"p :

1672 (p?)? p

— (a+3) (3 7;—; log (1 - —2) + log (a®m” + a2p2)) ] (3.31)

20 3 2
ALter = g4 £ F[ﬁl—xs+5.79201a+iﬂ<4“ 7 (1+p_2)_40‘@2>
m

2 2

B C
Alleor %_,_916_7;[%(61 )\V+479201a—a%—0410g(am + a’p?)

+ (m;log(1+p2>>
+ (?*6 (Mﬁl“ﬁi%%0+%ﬁ

1 mA e
_ ( 1? — 72 + 4o ) log (1 + W)) (3.32)
2 2
A;—loop = o, + 91602 [’YN Y ( — Ar +3.79201 v — (1 — Oz) <2 7;—2 — log (a2m2 + (L2p2)
mt om2 7
~(2gm+ ) s (1 _2) )>
— (e — Y pu) (1 = )(( m )10 <1 p2)-4 mQ)
7# v 71/ M <p2 ) g 777,2 <p2)2
. m3 P m
—WW@WW(T);)
. m P
— i (YuPy — WPp) (4 i log ( E)) ] (3.33)
2 C 2
AP = gy, 4 916—7;75% <61 Aa+4.79021 v — (2 — a)% — alog (a*m* + a’p?)

+<2(1—a)(zg; —2(1+04)7;12>10g(1+:1—22)>

m m3 ?
— ip(l—a) (2 o e (142
il a)( P (p?)? Og( - m2)>
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2 C m2 2
ALtoor — o 4 9167;75 e1 —Ap +5.7920l a — (o + 3)p—2 log (1 + %)

— (a+3)log (a’m? + a*p?) (3.35)

The quantities \p are independent of the mass, gauge parameter, external momen-
tum and lattice spacing; they depend on the coefficients of the gluon action and on the
stout parameters. As discussed earlier, we have employed different parameters for the 2
smearing steps; in fact, we have also kept the parameters of the action’s smearing proce-
dure (wa,, wa,) distinct from those of the operator smearing (wo,, we,). For the tree-level

Symanzik action and for general values of the stout parameters we obtained:

As = —34.3217 4 389.210 (wy, + wa,) — 1403.65 (wh, +w3,) — 5614.59wa, wa,
23395.4 (wh, wa, +wa, wh,) — 106814 w7, w?, (3.36)

Av = 86.7568 [(wa, +wa,) — (wo, +wo,)] — 337.383 [(wh, +wh,) — (wo, +wd,)]
— 134953 (wa, wa, — Wo, wo,) + 5950.81 [(wil Wy +wa 2
— (wB, wou +wo,wd,) | — 28627.2 (u], B, — wh, ) (3.37)

At

8.88342 + 116.579 (w4, + wa,) — 200.588 (wo, + woe,) — 531.759 (w5, +w3i,)
780.590 (wp, + wp,) — 2095.16 wa, wa, + 3154.24 wo, wo,
31.8743 (wa, + wa,) (wo, + wo,) + 9877.233 (W}, wa, + wa, wh,)

+ o+

— 139931 (wd, wo, + wo, wh,) — 284.001 ((wAl +wa,) wo, wo,

+

wa, wa, (wo, + w@2)> — 48519.3w%, Wi,

+ 68237.1wp, wo, +2709.49 w4, Wa,wo, Wo, (3.38)
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Aa = 17.0363 + 117.584 (wa, + wa,) — 314.355 (wo, + wo,) — 518.419 (w3, + w?,)

+ 1223.79 (wp, + wp,) — 2041.80wa, wa, + 4927.06 wo, wo,

+ 31.8758 (wa, +wa,) (wo, + wo,) + 9559.98 (Wi, wa, + wa, w3,)

— 218235 (wp, wo, + wo, Wy, ) — 210.274 ( (Wa, +wa,) wo, wo,

+  wa, Wa, (wol + WOQ) ) —47154.2 w1241 (,u1242

+ 105754. wp, wp, + 1396.94 w4, wa,wo, wo, (3.39)
Ap = 25.7425 +119.062 (wa, + wa,) — 428.120 (wo, + wo,) — 518.541 (wh, +w3,)

+ 1667.00 (wp, + wp,) — 2042.29 w4, wa, + 6699.88 wo, wo,

+ 31.8765 (wa, +wa,) (Wo, + wo,) + 9435.40 (W5, wa, +wa, w3,)

— 206540 (wd, wo, + wo, wh,) — 210.274 ((wAl +wa,) wo, wo,

+  wa, wa, (Wo, +wo,) ) — 44803.9 W}, wi,

+ 143482, wy, wp, + 1657.76 w4, wa,wo, Wo, (3.40)

In Appendix [B.2] we provide the expressions for Ao in the case of the Wilson gluon action.
We note in passing that in the absence of stout smearing (w4, = wo, = 0) Ay = 0 which
implies that ZB' = ZMS = 1 (cf. Eqgs. , )7 as is well known from current
conservation. In addition, Egs. (3.37),(B.4) show that non-renormalization of Oy applies
also when wy, = wop,; this follows from the fact that the stout link version of Oy mimics
that of the action, and thus current conservation applies equally well in this case.

The dependence of the Green’s functions of Egs. - on mass and exter-
nal momentum is regularization independent and agrees for instance with the results of
Refs. [42, 14]. As is well known, in the limit of zero mass the vector and axial Green’s
functions beyond tree level are not multiples of their tree-level values: There appear ad-

ditional, finite contributions with tensor structures which are distinct from those at tree
level. These contributions, denoted as Eg) and 2542), can be read off Egs. 1) 1}

2

@ 9 Cr Ypu

EV = 167‘(‘2 |:—2(]1F:| (341)
2

@ _ 9 Cr Vs YDy

@ = 16”2[—204 g } (3.42)

A similar contribution for the tensor bilinear does not appear up to, and including, three



3.4. Renormalization functions 41

loops [46]. The role of Zg) and Zf) in the renormalization of Oy and O4 will be discussed

in the next section.

3.4 Renormalization functions

3.4.1 Renormalization functions in the RI’ scheme

Renormalization functions (RFs), for operators and action parameters, relate bare quanti-

ties, regularized on the lattice, to their renormalized continuum counterparts:
1
YR =2730",  mft=2mP,  OFfF=7,.0F. (3.43)

The RFs of lattice operators are necessary ingredients in the prediction of physical proba-
bility amplitudes from lattice matrix elements. In this section we present the multiplicative
RFs, in the RI’ scheme, of the fermion field (Z), the fermion mass (Z,,) and the fermion
bilinears.

The RI’ renormalization scheme consists in requiring that the renormalized forward
amputated Green’s function A(p), computed in the chiral limit and at a given (large Eu-
clidean) scale p> = p?, be equal to its tree-level value. Since renormalization conditions are
typically imposed on amputated renormalized Green’s functions, let us relate the latter to

the bare ones. For the quark-antiquark Green’s functions:
W) = 2,707 (3.44)
W OF . = (W) W OF T (07T
= (Zt ) (ZaZo P 0r T (20 B0
— 27 Zor (0P Or 0" Yamp. (3.45)

These requirements (along with the definition of ¥, , Eq. (3.27)) lead to the following
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s RI' RI' RI.
definitions for Z", Z,;", Z5..:

-1 — g1 RI'
Sl—loop P2=p2, m=0 - Stree PRpi2, m=0 Zq (M) (346)
> = Z3" () Z5 () (3.47)
p*=p*, m=0
Aoy ey = NS Z () (Zﬁ(u)) . (D=ST,P) (348

where S;!

irec 15 the tree-level result for the inverse propagator, and A is the tree-level

value of the Green’s function for Or.
The presence of Zg) and Ef) in the one-loop Green’s functions of Oy and O, makes

a prescription such as Eq. (3.48)) inapplicable in those cases. Instead we employ:

/ ’ -1
= A2 () (225 (0) (3.49)

p?=p?, m=0

1—loo 2
(AV,A P Eg/,)A)

and thus take into account only the terms in Ay, 4 which are proportional to their corre-
sponding tree-level values.

The expressions we obtain using our results for A%O_Flo"p are shown here only for the
tree-level improved Symanzik gauge action. The quantities Ay are defined in Eqs. -
. We note that the results for Z,, and Zg are related by Z,, = ZS_1 as expected. Our

results for the RFs are presented for arbitrary values of the renormalization scale p.

2

/ C

M~ 14 9167; [61 — o log (a2 y2) + 4.79201 a] (3.50)
, 20

A 91675 [—61 + ez — 3 log (a® p°) + oz} (3.51)
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2
RI' _ g Cp 2 2
z¥ = 1+45 [)\S — a +3log (a®p )} (3.52)
RI' 9> Cp A\
= 1+5 5 ] (3.53)
2
RI' g Cr 2 2
ZT = 1+ W [)\T + a— IOg (CL v )] (354)
gRI _ 9> Cr
e T [)\A} (3.55)
2
RI' 9" Cr 2 2
Zyph = 1+ 62 [/\p — a+3log (a® )} : (3.56)

(e1, €2, Ao: are as defined in the previous Subsection).

In order to compare perturbative and non-perturbative estimates of RFs one clearly
needs to employ the same renormalization prescription in both cases. In the context of a
numerical simulation the term (3 for the vector and axial cases is often not removed from
the Green’s functions, contrary to what is done perturbatively in Eq. . Therefore,

an alternative RI’ renormalization prescription appears more natural:

7 7R alter [Alvj"‘”’ A;A} ~Tr [AtVA A@A} . (3.57)
Using the above prescription, the extracted Z{' 2t and Z{akr take the form (to one
loop):

2
RI alter rr , 9 CrF @

7 Zy +
v = 4y

(3.58)

1672 2°
’ ’ 20
Zye = 2 T (3.59)
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3.4.2 Conversion to the MS scheme

In this section we provide the expressions for the RFs in the MS continuum scheme, using
conversion factors adapted from Ref. [46]. These conversion factors do not depend on the
regularization scheme (and, thus, they are independent of the lattice discretization), when
expressed in terms of the renormalized coupling constant. However, expressing them in
terms of the bare coupling constant introduces a dependence on the action. In our analysis
we use one-loop formulae, which are action independent. The definition for the conversion

factors Cp, is as follows:
Zo NP = Co Z8L (3.60)

The above conversion factors refer to the Naive Dimensional Regularization (NDR) of the
MS scheme (see e.g., Ref. [47]), in which Cp = Cg and C4 = Cy. From Eq. (3.60) one
obtaing?

ZMS,NDR _ 7RI 92 Cr O
MS, NDR RI 92 Cr 4

iyt = 2B (3.63)
WS, NDR re 9°Cr 4

Z = Zp — o2 @ +0O(g"). (3.64)

Other modified minimal subtraction schemes are related to NDR via additional finite
renormalization and affect the operators which include a 5, due to the nonunique general-
ization of 75 to D dimensions. Thus, the treatment of the pseudoscalar and axial operators
in the MS scheme requires special attention. The MS renormalized pseudoscalar and axial
operators, as defined in the scheme of 't Hooft and Veltman (HV) [48], involve extra finite
factors, ZF, ZZ, in addition to the conversion factors of Eqs. - [49]:

2

P 9

Z; =1 62 (8 CF) (3.65)
A 92

Z5 = 1-— 62 (4 CF) . (3.66)

ZNote that, at variance with Eq. , the conversion factors Cy v will not be equal to 1 if one uses,
e.g., the “alternative” RI’ renormalization scheme of Eq. 1}
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The relation between the NDR and the HV schemes is:

ZVSHV. _ ZMSNDR gp (3.67)
ZF,HV _ ZF,NDRZ?' (3.68)

We would like to point out that although the expressions for Z2 and ZZ are, in general,
different for the singlet and non-singlet operators, at one-loop level they coincide.

Other variants of MS include the DREZ and DRED schemes; the conversion from one
scheme to another can be found in Section 4 of Ref. [36]. Our results for the fermion
bilinears using the Wilson gauge action and without stout smearing, converted in the
DREZ scheme, agree with the corresponding results of Ref. [36].

Having obtained Z3_ in some renormalization scheme (X = (RI'), (RI'alter), (MS,NDR),
(MS,HV), etc.) the expression for the renormalized Green’s functions in that scheme,
Ag?orm’x(p, m), follow immediately:

ASX (pom) = NG (pom) (2) " 25, (3.69)

3.5 Summary

In this chapter we presented the calculation of the fermion propagator and the Green’s
functions for the ultra-local fermion bilinear operators: scalar, pseudoscalar, vector, axial
and tensor. The computations were performed to one loop in lattice perturbation theory,
using staggered fermions and Symanzik improved gluons, parameterized by 3 independent
Symanzik coefficients; explicit results have been obtained for some of the most commonly
used actions in this family: Wilson, Tree-level Symanzik, Tadpole improved Liischer-Weisz,
Iwasaki and DBW2.

The novelty in our calculations is the stout smearing of the links that we apply in both
the fermion action and in the bilinear operators. More precisely, we use 2 steps of stout
smearing with distinguishable parameters. To make our results as general as possible we
also distinguish between the stout parameters appearing in the fermion action and in the
bilinears.

Our expressions for the fermion propagator and the Green’s functions of the bilinear
operators exhibit a rather nontrivial dependence on the external momentum (¢) and the
fermion mass (m), and they are polynomial functions of the gauge parameter («/), stout

parameters (wy,, we,), and coupling constant (g). The numerical coefficients appearing in
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these expressions depend on the Symanzik parameters of the gluon action and are presented
for the Wilson and for the tree-level Symanzik improved gluon action.

Using the aforementioned results we extract the renormalization function of the fermion
field and those of the fermion bilinears in the RI’ scheme and we provide the appropriate
conversion factors to the MS scheme; we pay particular attention to the operators which
include a 5 in their definition. Moreover, for the case of the vector and axial operators we
give an alternative prescription to obtain the renormalizations in the RI’ scheme.

There are several directions in which the present work could be extended:

e A natural extension would be the computation of the Green’s functions for operators
including covariant derivatives, such as the one-derivative vector and axial opera-
tor Ev{uﬁl,}@b, @757{;5)1/}%0- The corresponding renormalization functions may
be applied to the nonperturbative lattice evaluation of the momentum fraction of the

nucleon, (z),, and the moment of the polarized quark distribution of the nucleon,

(T)ag-

o A related further work using staggered fermions with stout improvement would be a
computation of Green’s functions for 4-fermi operators; a work in this direction can

be found in Ref. [50].

e A possible improvement to the action may involve further iterations of stout smearing;

such a procedure has been applied to Wilson fermions [51].

e [t would be also interesting to calculate the Green’s functions up to second order in
the lattice spacing; such an extension would not only be useful in order to construct
improved versions of the operators, but also to remove O(g? a*) contributions from the
non-perturbative estimates of the renormalization functions. Similar computations

have been performed recently with Wilson/clover/twisted mass fermions [39} 52, 43].

3Curly brackets denote symmetrization and subtraction of the trace.



Chapter 4

Magnetic susceptibility of QCD at zero
and at finite temperature from the

lattice

In the previous chapter we computed the matrix elements of staggered fermion operators.
The extension to stout improvement on staggered fermions had never been explored until
this computation. The necessity to calculate the perturbative renormalization functions
of the scalar and tensor operator in the staggered formulation was dictated by the sim-
ulations run by our collaborators in University of Regensburg, University of Wuppertal
and Eo6tvos University. They implemented the MILC code v7.6 [53] in order to obtain the

zero-temperature magnetic susceptibilities at physical quark masses.

4.1 Introduction

An external (electro)magnetic field is an excellent probe of the dynamics of the QCD
vacuum. Strong magnetic fields affect fundamental properties of QCD like chiral symme-
try breaking and restoration, deconfinement, the hadron spectrum or the phase diagram,
just to name a few. Chiral symmetry breaking has long been known to be enhanced by
magnetic fields at zero temperature, signalled by an increasing chiral condensate (see e.g.
Ref. [54]). The particle spectrum may undergo drastic changes (see e.g. the ongoing dis-
cussion in Refs. [55] 56, 57]) with some strong decay channels becoming unavailable and

others opening up. The transitions at non-vanishing temperature related to chiral sym-

47
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metry breaking and deconfinement are also affected by the magnetic field B. The phase
diagram of QCD in the temperature-magnetic field plane was determined recently in lattice
simulations [31], 58, 59] by analyzing the dependence of the chiral condensate and of other
observables on B, with the main result that the transition temperature 7, decreasesE] with
growing B and the transition remains an analytic crossover just as at B = 0 [62]. These
effects are relevant in several physical situations as strong magnetic fields are expected to
play a significant role, e.g., in early cosmology [63], in non-central heavy ion collisions [64]
and in dense neutron stars [65].

Another fundamental characteristic of the QCD vacuum is the response of the free

energy density (which at zero temperature is the vacuum energy density) to magnetic
fields,

T
f= —VlogZ, (4.1)

where Z is the partition function of the system and V' the (three-dimensional) volume. Due
to rotational invariance the B-dependence of f is to leading order quadratic, characterized

by the magnetic susceptibility of the QCD vacuum,

9% f

$=- d(eB)? eB=0’

(4.2)

which is a dimensionless quantity (here e > 0 denotes the elementary charge). A positive
susceptibility indicates a decrease in f due to the magnetic field, that is to say, a param-
agnetic response. On the other hand & < 0 is referred to as diamagnetism [66]. Clearly,
the sign of ¢ is a fundamental property of the QCD vacuum.

In the functional integral formalism of QCD the susceptibility is readily split into spin-

and orbital angular momentum-related terms, according to
£=> &,  &=&+¢, (4.3)
f

with contributions from each quark flavor f with electric charge ¢y and mass my. For a

!Employing physical quark masses in the simulation and extrapolating the results to the continuum
limit, as was done in Refs. [31], 58, 59|, proved to be essential. Studies where these ingredients are missing
produce qualitatively different results, namely an increasing T, (B) function [60,[6I]. A possible explanation
for this discrepancy and a comparison to effective theories was given recently in Ref. [59].
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constant magnetic field B = F}, in the positive z direction,

L S IS LV | (4.0

"7 2my O(eB) o2

& J% is given by an analogous expression with o,, replaced by a generalized angular momen-
tum also present for spinless particles, cf. Eq. of Appendix[B.3] Eq. constitutes
an important relation which, to our knowledge, has not been recognized previously in this
context. Its derivation from the quark determinant and the corresponding Dirac operator
is given in Appendix

In the present work we concentrate on the spin contributions, and thus the expectation
value of the tensor polarization operator &fauwa. To leading order this is proportional to
the field strength and thus can be written as [67]

(bpouytbs) = qsB - (Ppids) - xp = arB - 7, (4.5)

where the expectation value is the quark condensate <1Z_)f¢f>. Corrections to the right
hand side are expected to be of O(B3), so that Lorentz invariance is maintained. In the
literature y is referred to as the magnetic susceptibility of the condensate (for the quark
flavor f). In what follows we will also use the term “magnetic susceptibility”. Again we
stress that it constitutes only one of the two contributions to the total susceptibility. We
also define the tensor coefficient 7; as the product of <&f¢f> and x . Both quantities will
depend on the temperature 1" at which the expectation values of Eq. are determined.
At finite quark masses it is advantageous to work with 7 instead of x for reasons related
to renormalization (see below).

The magnetic susceptibility xf, in the context of QCD, was first introduced in Ref. [67].
Since then its experimental relevance has been growing steadily. In particular, this quantity
appears in the description of radiative Dy meson transitions [68], of the anomalous mag-
netic moment of the muon [69] and of chiral-odd photon distribution amplitudes [70, [71].
Moreover, vector-tensor two-point functions at zero momentum are related to x [72].

Since xs acts as an input parameter in various strong interaction processes [73], a high-
precision determination of its value is of importance. In the past, it has been calculated
using QCD sum rules [74] [75] [76], in the holographic approach [77, [78], using the operator
product expansion [79], in the instanton liquid model and chiral effective models [80] 811 82,
83], using the zero modes of the Dirac operator [84], and in low-energy models of QCD like

the quark-meson model and the Nambu-Jona-Lasinio (NJL) model [85]. The numerical
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value of xy was also determined recently on the lattice in the quenched approximation
of two- [86] and of three-color QCD [87], in both cases without renormalization. We
mention that the quenched approach can lead to large systematic errors at strong magnetic
fields [88].

In this work we determine 7,(7") and x(7’) for a wide range of temperatures around the
transition region between the hadronic and the quark-gluon plasma phases and at T" = 0.
We apply fully dynamical lattice simulations, i.e. both the fermionic degrees of freedom
and the external field are taken into account in the generation of the gauge ensembles.
We perform the renormalization of the tensor coefficient and carry out the continuum
extrapolation using results obtained at different lattice spacings. One main result will be
that the tensor coefficient at T' = 0 is negative for each quark flavor f, indicating the spin-
diamagnetic nature of the QCD vacuum. Moreover we observe that 7; decreases around
the QCD crossover temperature similarly to other order parameters like the condensate.

This chapter is organized as follows. We define the lattice implementation of the mag-
netic field and the observables in Sec. and discuss their renormalization in Sec. The
multiplicative renormalization is carried out perturbatively; the determination of renormal-
ization constants is detailed in Chapter [3] After a brief summary of the simulation setup
in Sec. we present the results in Sec. for the tensor coefficients and in Sec. for

the susceptibilities, before we conclude.

4.2 Magnetic field and observables

We study the effect of an external magnetic field B on the expectation value of the tensor
polarization, Eq. . To realize such an external field on the lattice we implement the
continuum U(1) gauge field A, satisfying 0, A, —J,A, = B using space-dependent complex
phases [89, 00, [60, BI] in the following way,

uy(n) _ eiaquBnI,

Uy (Ny — 1,ny, ) = e ia%ar BNany (4.6)
uz(n) =1, Nng # Ny — 1,
u,(n) =1, v {z,y},

where the sites are labeled by integers n = (n,,n,,n,,n;), with n, =0... N, —1 and a is

the lattice spacing. This prescription for the links corresponds to a covariant derivative for
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the flavor f of the formﬁ D,y = 0, +iqp A, +igAjTe. This discretization satisfies periodic
boundary conditions in the spatial directions and ensures that the magnetic flux across
the © — y plane is constant. It is well known that the magnetic flux in a finite volume is

quantized [91], 92], which on the lattice implies

271'Nb

B.g2=-2"""2
qB -a NN,

NyeZ, 0< Ny, < NN, (4.7)
where ¢ is the smallest charge in the system, in our case ¢ = ¢4 = ¢s = —e¢/3. Due to the
periodicity of the links of Eq. in IV, with period N, N,, one expects lattice artefacts to
become large if N}, > N, N, /4. In the following we use lattices with N, = N, = N, = N,.

We consider three quark flavors u, d and s. Since the charges and masses of the quarks
differ we have to treat each flavor separately; ¢, = —2q; = —2¢,. We assume m, = mg #

ms. The partition function in the staggered formulation then reads,

Z:/DUe—ﬁSQ [T [det M (U, qrB,mp)]"* (4.8)

f:u7d78

with M (U,qB,m) = P(U,qB) + m1 being the fermion matrix and 3 = 6/¢* the gauge
coupling. The exact form of the action we use is described in Refs. [33] 03], and further
details of the simulation setup are given in Sec. Since the external field couples directly
only to quarks, B just enters the fermion determinants through the U(1) links of Eq. (4.6).
The volume of the system is given as V = (aN,)? and the temperature as T' = (aN;) ™.

In this formulation the expectation value of the quark condensate for the flavor f can
be written as

TologZ T

{(Ysiby) =7 om; —W<TrM_1(U,qu,mf)>. (4.9)

Likewise, the expectation value of the tensor Dirac structure reads,

(Fr0uiiy) = 7 (T (M (U,47B,m;)0,)) (4.10)

At this point a few comments regarding the sign of the expectation values in Eq. (4.5)
are in place. In continuum calculations a negative sign for the condensate is customary,
see e.g. Ref. [76], in contrast to our convention in Eq. (4.9)). This sign convention applies

for any fermionic bilinear expectation value, therefore it does not affect the sign of x, but

*Note that we do not include in the action the corresponding photon kinetic term F,, F,, /4 = B?/2.
This means that in the discussion we will never encounter B alone but only the combination gfB ~ eB.
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only that of 7y. Further possible differences in the sign can arise from the definition of o,
and from that of the U(1) part of the covariant derivative. We note that our notation is
consistent with that of Ref. [76] in terms of ¢, but differs by a minus sign in the covariant

derivative (see the paragraph below Eq. (4.6)), implying an overall relative minus sign of
Xf-

4.3 Renormalization

In order to determine the continuum limit of the observables defined in Eqs. and ([4.10),
their renormalization has to be performed. The quark condensate (at finite mass) is sub-
ject to additive and multiplicative renormalization, due to the divergent terms in the free
energy density f of Eq. and in the bare mass my. The former divergence is (to leading

order) quadratic in the cutoff 1/a [94]. Therefore, the bare observable can be written as

(Vpop) (B, T) = ZLS (Uptop)" (B, T) 4 Csmy/a® + ..., (4.11)

where Zg is the renormalization constant of the scalar operator and the ellipses denote sub-
leading (logarithmic) divergences in a. Here the superscript r indicates the renormalized
observable. The divergences in <1/_)¢> depend neither on the temperature nor on the ex-
ternal ﬁeldﬂ Therefore, in mass-independent renormalization schemes, (s and Zg are just
functions of the gauge coupling. The conventional way to cancel the additive divergences
is to consider the difference, for example, between the condensate at T' # 0 and at T" = 0.

The situation is somewhat different for the tensor polarization. As a calculation in the
free theory shows, an additive divergence of the form gy Bm log(mfca?) appears in <1Eau,,1p>
(see Appendix [B.4)). This divergence vanishes in the chiral limit (or at zero external field)
and is not related to the multiplicative divergence of the tensor operator to which we will

return below. Altogether the bare observable can thus be written as

<&f0-lwwf> (Bv T)

L, r - (4.12)
=7 (Vrowyby) (B, T) + CrgpBmylog(mia®) + . ..,

where Zr is the renormalization constant of the tensor operator (its perturbative determi-
nation is detailed in Chapter. [3) and (7 the coefficient of the divergent logarithm. Both

3For a detailed argumentation about the absence of B-dependent divergences in the condensate see
Ref. [31] and references therein.
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are independent of 7" and B (and in mass-independent schemes of my). In Eq. (4.12)
the ellipses denote finite terms. In the free theory we calculate (r(g = 0) = 3/(47?) (see
Appendix . For our non-perturbative work, we used ZgTS and Z%%TS, with parameters

wo, = wa, = 0.15:

L 2
79 _ 14 91 6(“7;5 [0.7929 + 3log (a*42)]
(4.13)
L 2
295 _ 1 4 91625 [1.3136 — log (a*4%)] .

From these considerations it is clear that the magnetic susceptibility xs, being pro-
portional to the ratio of Eq. over Eq. , at non-vanishing quark mass contains
additive divergences which depend both on 7" and on B (and also on the quark flavor f).
This means that these singular contributions cannot be removed by subtracting the same
operator, measured at different 7" or B (or flavor f).

Therefore, in the following we consider the tensor coefficient 7/ defined in Eq. .
We notice that the operator 1 —m;0/0m; eliminates the logarithmic divergence and thus

can be used to define an observable with a finite continuum limit,

TF = (1 — mf&’imf) Ty Ly = Tyl — T}iiv. (4.14)
At finite quark mass this is one possible prescription to cancel the additive logarithmic
term. It has the advantages that the chiral limit of 7 is left unaffected, and that, together
with the logarithmic divergence, scheme-dependent finite terms also cancel in this difference
(see Eq. ), such that the scheme- and renormalization scale-dependence of 7 resides
solely in Zr.

Since the subtracted divergence is independent of the temperature, we are able to
determine TJS“V at zero temperature where we systematically study the dependence of 7¢
on my and a, and then perform the subtraction at nonzero temperatures as well. As we
will see, the subtraction in Eq. amounts to a 5 — 10 per cent effect for the lattice

spacings we use.

4.4 Simulation setup

For our measurements we used the gauge ensembles of Refs. [31, [59] augmented by ad-

ditional new ensembles. All configurations were generated with the tree-level improved
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Symanzik gauge action and stout smeared staggered fermions, at physical quark masses.
We use lattices at both 7" = 0 and at 7" > 0, at various values of the external magnetic field.
We employ two steps of stout smearing with parameter wq = wo = 0.15 both in the action
and in the operators. The zero temperature ensembles consist of 24% x 32, 323 x 48 and
403 x 48 lattices at five different lattice spacings, while at finite temperature we carried out
measurements on lattices with N, = 6,8 and 10, allow for a continuum limit extrapolation.
We studied finite volume effects on NV, = 6 lattices, using three different aspect ratios. The
light (m, = mgq = muq) and strange (mg) quark masses are set to their physical values,
along the line of constant physics (LCP) as myg = mqyq(5), and mg/myq = 28.15. The LCP
was determined by keeping fx /M, and fx /My physical, and the lattice scale is set using
fr- More details about the lattice action, the determination of the scale and the LCP, and
the lattice ensembles can be found in Refs. [33] 93] [31]. At each temperature and external
magnetic field we measured the observables of interest on O(100) thermalized configura-
tions which were separated by 5 trajectories to reduce autocorrelations. The measurements
were carried out using the noisy estimator method, with 20-40 random vectors.

We define the coupling g in the “E” scheme [95], using the nonperturbative plaquette

expectation value,

1 1
== (1 — 5 (Ir UD>“°“Per> , (4.15)
C

which is found to be 10—20% larger than the bare coupling g*. We compute ¢ perturbatively

from the plaquette expectation value up to one-loop:
(Tr Un)* = N.(1 — g%c). (4.16)

For the tree-level improved Symanzik gauge action we obtain ¢ = 0.183131340(2) - Cp,
thereby confirming Ref. [96].
We allow for a systematic error of 50% in 1 — ZMS for the effect of higher order terms

in the perturbative calculation.

4.5 Results

We measure the tensor polarizations as functions of the external field at various temper-
atures for the three different flavors. We observe that <@Euaxywu> is negative, indicating
that x, < 0, in accordance with Ref. [76] and the discussion about the sign convention
below Eq. . Whether this corresponds to a para- or a diamagnetic response will be
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discussed in Sec. [4.6]
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Figure 4.1: Minus the bare tensor polarization (upper panel) and the bare condensate
(lower panel) for the up quark, for three temperatures on the N, = 6 lattices.

In the upper panel of Fig. we show minus the bare tensor polarization as a function
of the magnetic field for N; = 6. We confirm the linear trend to leading order in B,
in agreement with Ref. [86]. However, the slope at small B is also observed to change
significantly with temperature. We find that nonlinear effects are always below 5% for
magnetic fields eB < 0.2 GeV? and they reduce as the temperature decreases. In the lower
panel of Fig. we also show how the bare condensate itself changes with B for different
temperatures. We observe that the dependence of the condensate on B varies strongly with
the temperature in the transition region. This behavior was found to be the reason for the
decrease of the chiral transition temperature with growing B, and was investigated in detail
in Refs. [31], 58, [59]. We study finite volume effects at one temperature T'= 141 MeV, for
N; = 6 ensembles with Ny = 16,24 and 32, see Fig. [£.1] The largest lattice corresponds
to a linear extent of 7 fm. Since we see no deviation for the tensor polarization or the
condensate between the different volumes, we conclude that finite size effects are smaller
than our statistical errors.

Next, we concentrate on the leading linear trend in <zﬁfaxwa>, i.e. on the slope charac-
terized by the tensor coefficient 7¢, as defined in Eq. . We perform the multiplicative
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renormalization of 7y according to Eq. , using the tensor renormalization constant,
Eq. in the MS scheme at a renormalization scale i = 2 GeV. The dependence of
the results on the renormalization scale p is found to be mild, as can be seen below.

We measure Zt - 7 at zero temperature for several lattice spacings and quark masses.
Here we fix the strange quark mass to its physical value and tune only the light mass such
that R = mud/mggys varies between 0.5 and 28.15. For the latter ratio all three quarks
have equal masses. (Note that these measurements are also fully dynamical and no partial
quenching is applied.) In Fig. we plot minus the tensor coefficient for the up quark as
a function of R for five different lattice spacings. Motivated by the behavior of the tensor
coefficient in the free case, Eq. , and by the scaling properties of the action we use,

we consider the following fit function for Zp7y:

cro +cp R+ cppRlog(R*a®), cpi = cgg) + cgfli)aQ. (4.17)
Here a is to be understood in units of GeV ™', This form describes the data very well; we
obtain y?/d.o.f. < 1.5 for both the up and down flavors. The fitted values for 0532 are listed
in Table We remark that the coefficients of the logarithms, cg)z)/mggys = 0.055(5) and
cg;) /mPR® = 0.072(6) are quite close to the free-field value of 3/(472) (see Appendix .
We perform the fit both for all lattice spacings and for only the finest four lattices. Moreover
we consider the inclusion of an R? term in the fit and vary the fit range to exclude points
with largest masses. The difference between these fits is used to estimate the systematic

error of this combined extrapolation.
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Figure 4.2: Mass dependence of the combination —Zr - 7, in the MS scheme at renormal-
ization scale p = 2 GeV. The coefficient of the logarithmic divergence is determined by
fitting the data by a lattice spacing-dependent function (solid lines).
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0 D (0 1 0 1
f CS‘O) C}o) 0501) ng) 05«2) C§f2)

w|-40.3]13.8-2.110.5(0.19]-0.03
d|-38.9]2.81-2.5]0.7/0.25|-0.07

Table 4.1: Central values for the fit parameters of Eq. 1) in units of MeV.

At zero quark mass the additive divergence is absent and therefore, applying the com-
bined fit, the continuum limit of the chiral limit of Zyp7; can be extracted (it equals
the c%) parameter). This corresponds to the black point in Fig. However, since
we are interested in the tensor coefficient at physical quark masses, we now follow the
scheme of Eq. , subtracting the logarithmic divergence. We apply the operator

1 —mfOm, =1 — ROg, which acting on the fit function of Eq. (4.17) yields
TJC = Cfo — QCfQR. (418)

As already emphasized in Sec. the subtraction of the divergent term T}iiv does not
affect the chiral continuum limit since it vanishes at m; = 0. Moreover, this subtraction
eliminates the scheme-dependent finite terms (cf. Eq. (B.24)), making the conversion to
the MS scheme trivial.

For the strange quark we do not perform a similar analysis with modified strange quark
masses, but subtract the logarithmic divergence by using the fit parameters for the down
quark and R = 28.15. We find that the dependence of the strange quark tensor polarization
on the light quark masses is below a few per cent (1% for the coarsest and 4% for the finest
lattice). Therefore this approximation introduces errors smaller than those already present
due to statistics and renormalization.

After the subtraction, the renormalized tensor coefficient 7 has a well defined con-
tinuum limit even for finite quark masses. We find that for physical light quark masses
|7'§de | < 2.5 MeV for our range of lattice spacings. For the strange quark the divergent
contribution is larger in magnitude, giving rise to larger errors due to this subtraction.

Our final results for the zero temperature renormalized tensor coefficients in the MS
scheme at a renormalization scale up = 2 GeV are summarized in Table For the
light flavors this Table contains the results both for physical quark masses and for the
chiral limit. These values may be compared to the unrenormalized quenched SU(2) lattice
result —7,4 = 46(3) MeV of Ref. [86] and to a similar study in the quenched SU(3) theory,
52 MeV [87]. Our results are in reasonable agreement with the QCD sum rule result 50(15)
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MeV of Ref. [76], which was calculated at © = 1 GeV (note that the scale dependence of 7;
is small due to its small anomalous dimension, see Eq. ) We also compare our results
to the NJL and quark-meson model predictions of 69 MeV and 65 MeV [85], respectively,
which were obtained at an even lower renormalization scale of © ~ 0.6 GeV. We remark

that a lower value of 44 MeV is obtained in the renormalized version of the quark meson
model [85].

error
stat. | mult. | cont. | scale | total
phys.||-40.71 0.2 | 0.3 | 1.0 | 0.8 | 1.3
chir. |[-40.3]1 0.2 | 0.3 | 1.1 | 0.8 | 14
d phys.||-39.4( 03 | 0.3 | 1.1 | 0.8 | 14
chir. [|-389( 03 | 0.3 | 1.3 | 0.8 | 1.5
s|phys.[|-53.01 0.5 | 0.3 | 7.1 | 1.1 | 7.2

fl m T

Table 4.2: Results and error budget for the renormalized tensor coefficients for physical
quark masses (phys.) and in the chiral limit (chir.). Given are (in units of MeV) the errors
related to statistics, the multiplicative renormalization, the combined continuum fit, the
lattice scale and, finally, the total error.

Next, one uses the fact that the T]?iv contribution is independent of T" to perform the
additive renormalization of the tensor coefficient at finite temperatures. In Fig. —T,, 18
plotted as a function of the temperature for three lattice spacings. A simultaneous fit of the
results is performed for different lattice spacings to an N;-dependent spline function. This
dependence is of the form N, 2, once again to reflect the scaling properties of our lattice
action. We can read off the continuum extrapolation at N, ? = 0, which is shown in the
figure by the hatched yellow band. The systematic error of the continuum extrapolation
is estimated to be 1 MeV based on our experience at 7' = 0 (see Table and is added
to the statistical error in quadrature. Moreover, the uncertainty in the determination of
the lattice scale (for details see Ref. [93]) propagates into this result and gives rise to an
additional systematic error of 2%. Since this latter error is uniform and does not influence
the shape of the 77(T) curve, it is not included in the plot.

In the same manner the tensor coefficient is determined for the down quark at 7" > 0,
and obtain results which are within errors consistent with 7., just as was observed at
T = 0. For the strange quark this procedure leads to a qualitatively similar temperature-
dependence too. The dependence of 7, ; on the temperature in the transition region can

be used to define a transition temperature at B = 0. We determine the inflection point
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Figure 4.3: Minus the renormalized tensor coefficient 7/ (T") in the MS scheme at a renor-
malization scale = 2 GeV for three lattice spacings and the continuum extrapolation.

of 7 4(T) and obtain T, = 162(3)(3) MeV in the continuum limit. Here the first error
combines the statistical error and the error coming from the continuum extrapolation,
and the second one is due to the uncertainty in the lattice scale. In conclusion, the
tensor coefficient acts as a quasi-order parameter for the chiral transition, and gives a
similar transition temperature as the chiral condensate at B = 0, T, = 159(3)(3) MeV, cf.
Refs. [311 97].

Finally, the dependence of 7 is studied on the renormalization scale p at T = 0. We
carry out the analysis for a range of renormalization scales in the window 1 GeV < u <
4 GeV. We find a very mild dependence on p such that the tensor coefficients remain
within the total errors given in Table

4.6 Magnetic susceptibility

We can translate the result for 77 to the magnetic susceptibility x; of Eq. 1) using the
(scale- and scheme-dependent) value of the quark condensate. We recall the Gell-Mann-

Oakes-Renner relation,

which, at zero external field and in the chiral limit, relates the light condensate | = u, d to
the quark masses and to the pion mass and decay constant, with F' = 86.2(5) MeV [98].
We make use of a recent lattice determination [99] of the quark masses in the MS scheme
at =2 GeV, my, +my = 6.94(13) MeV, to extract (Y1) = (269(2) MeV)3. (We mention
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that multiplying the lattice bare mass along the LCP [93] and the inverse of the scalar
renormalization constant of Eq. , we get a compatible value for the renormalized
quark mass in the MS scheme, albeit with large uncertainties.) For the strange condensate
we employ the QCD sum rule prediction [I00], (¢s¢5) / {¢yth) = 0.8(3). Using these values
for the quark condensates, the zero-temperature magnetic susceptibilities at physical quark

masses are calculated as

Xu = —(2.08 £0.08) GeV 2,
MS, =2 GeV : Xa = —(2.02 £ 0.09) GeV 2, (4.20)
Xs = —(3.4 £ 1.4) GeV 2.

The magnetic susceptibilities at different values of i1 can be obtained by running down with
the ratio of renormalization constants ZMS/ZMS. Using the four-loop running to y = 1 GeV
one has to multiply the above values by r = 1.49(7). We remark furthermore that running
down with Z}™ to a renormalization scale of 1 = 1 GeV we obtain (i) = (245(5) MeV)?.

Our results in Eq. are in good agreement with the QCD sum rule calculationsﬂ
summarized and updated in Ref. [76]: x; = —2.11(23) GeV 2 at u = 2 GeV, and also
compare well with the vector dominance estimate of y; = —2/mz ~ —3.3 GeV 2. We
remark that for the strange susceptibility, QCD sum rules predict ;s =~ x; [L01], which is
somewhat smaller than our result in Eq. (4.20).

Comparing the temperature-dependence of the light tensor coefficient (Fig. and
that of the light quark condensate from Ref. [59], we conclude that the ratio of the
two renormalized observables is compatible with a constant, resulting in a magnetic sus-
ceptibility x;(7") depending only weakly on the temperature, at least for temperatures
T < 170 MeV. Moreover, we remark that since y is given in terms of the chiral conden-
sate (which has a large anomalous dimension), the magnetic susceptibility has a stronger
scale dependence than 7}.

As anticipated in the introduction, the magnetic susceptibility x s of the condensate is
intimately connected to the spin contribution £° to the total magnetic susceptibility. Using
this equivalence (which we prove in Appendix , one sees that with our sign conventions
Xf > 0 corresponds to paramagnetism and x; < 0 to diamagnetism. Thus we conclude

that the response of the QCD quark condensate to external magnetic fields is in its nature

4The value given in Ref. [76] is x; = 3.15(30) GeV ™2 at u = 1 GeV. We divided this by —1.49(7),
running the value to the scale = 2 GeV and accounting for the different sign convention we employ, see

the remark after Eq. (4.10).
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diamagnetic.

In conclusion, in this Chapter we studied the response of the QCD vacuum to a con-
stant external magnetic field at zero and at finite temperature. We determined the tensor
polarizations of the quark condensates for various temperatures and external fields. We
observed that the polarization of the flavor f at a temperature 7T is a linear function of B
for fields eB < 0.2 GeV?, with a coefficient 7;(T'), defined in Eq. . The renormalization
of this tensor coefficient requires two steps. The additive divergences (which are present for
finite quark masses) were fitted explicitly at 7' = 0 and then subtracted using the operator
1 —md,,, at T =0 and at T" > 0. The multiplicative renormalization was performed per-
turbatively. We obtained results in the MS scheme at a renormalization scale j = 2 GeV,
and extrapolated these to the continuum limit using several lattice spacings. Our final
results for the renormalized 7} are given in Table for T'= 0 and are shown in Fig.
for ' > 0. Combining the results for 7; and the quark condensates we also determined the
magnetic susceptibilities x, see Eq. for the zero temperature values. We found x
to remain constant within errors as the temperature is increased up to 7'~ 170 MeV.

We showed furthermore that there is a simple relation between the tensor coefficients
7¢ and the spin contribution ¢5 to the total magnetic susceptibility, see Eq. 1) The
negative sign of £ reveals a diamagnetic response, i.e., that the spin magnetization of the
medium aligns itself antiparallel to the external field. The magnitude of this effect reduces
as the temperature grows, since &7 is proportional to 7¢ which is plotted in Fig. For the
free case €% and &% are known to have opposite signs [102], implying a partial cancellation
between the two sectors. Therefore, a determination of the orbital angular momentum
contribution is necessary to arrive at a definite conclusion on whether the total response

of the QCD vacuum to external magnetic fields is para- or diamagnetic.



Chapter 5

Perturbative calculation of local and

extended fermion bilinear operators
with the SLINC action

In this Chapter we calculate corrections to the fermion propagator and to the Green’s
functions of all local and one-derivative vector, axial and tensor fermion bilinear operators,
to one-loop in perturbation theory. We employ the SLINC action. This action is presently
being used by the QCDSF Collaboration, in simulations of QCD with dynamical quark
flavors. The novel aspect of our calculations is that they are carried out to second order
in the lattice spacing, O(a?). Consequently, they have addressed a number of new issues,
most notably the appearance of loop integrands with strong IR divergences (convergent
only beyond 6 dimensions). Such integrands are not present in O(a') improvement cal-
culations; there, IR divergent terms are seen to have the same structure as in the O(a°)
case, by virtue of parity under integration, and they can thus be handled by well-known
techniques [43]. The O(a?) corrections to the quark propagator and Green’s functions
computed in this Chapter are useful to improve the nonperturbative RI-MOM determina-
tion of renormalization constants for quark bilinear operators. Our results depend on a
large number of parameters: coupling constant, number of colors, lattice spacing, external

momentum, clover parameter, Symanzik coefficients, stout and gauge parameter.

62
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5.1 Introduction

One fundamental aim in simulations of hadronic states is the accurate evaluation of mo-
ments of parton momentum, helicity and transversity distributions as a function of the
momentum fraction, as well as moments of generalized parton distributions (GPDs) of
meson and baryon states. These quantities contain a very rich spectrum of physical infor-
mation on nucleons, and are thus at the forefront of research in Strong Interaction Physics.
Beyond the information that GPDs yield, such as size, magnetization and shape, GPDs
encode additional information, relevant for experimental investigations, such as the de-
composition of the total hadron spin into angular momentum and spin carried by quarks
and gluons. GPDs are single particle matrix elements of the light-cone operator [103] [104],
which can be expanded in terms of local twist-two operators. Lattice QCD allows us to
extract hadron matrix elements for the twist-two operators, which can be expressed in
terms of generalized form factors.

In order to evaluate moments of GPDs from numerical simulations of QCD on the Lat-
tice, one must measure nucleon matrix elements of a series of composite fermion operators,
both local and extended. These operators must be renormalized, before one can compare
results from simulations to physical, experimentally measurable quantities. Sophisticated
techniques in Quantum Field Theory will be applied to compute the perturbative renor-
malization of the fermion propagator, local bilinears and higher-twist operators, beyond
leading order in g (coupling constant) and a (lattice spacing). These terms are subtracted
from the non-perturbative results as we are going to see in Chapter [6]in the case of clover
fermions and Wilson gluons. This subtraction suppresses lattice artifacts considerably,
depending on the operator under study, and leads to a more accurate determination of the
renormalization constants [39).

In the Bjorken linrlitlj_-]7 involved in studies of deep inelastic scattering, the Operator

Product Expansion (OPE) for a product of hadronic currents takes the form:
1 i

J()J(0) ~ Y~ CUD (@)oo O (0) (5.1)

The forward matrix elements of the local operators O(z; N, i) appearing in this expan-

sion are directly related to the moments of hadron structure functions [I07]. The dominant

'In the Bjorken limit [105, [I06] structure functions have factorization properties, which follow from
the renormalizability of the theory.
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contribution in the expansion is given by operators whose twist (dimension minus spin)
equals two, which in the flavor non-singlet case means the following traceless operators [108§]
(curly brackets denote symmetrization over Lorentz indices and subtraction of the traces;

T are flavor matrices):

— T
O} — 3pfnpr .. Dun}7¢ (5.2)

y I
2

The matrix elements of local operators we studied are given by:

OE{)HIJT"HH} _ E,Y{H,%Dﬂl e DHn Y (5-3)

(8| O ps) (5.4)

where s, s" are the initial and final spin 4-vectors of the nucleon, p, p’ are the corresponding
momenta and D = D = (5 - 5)/2 is the covariant derivative.
The extended bilinear operators, which we study, are symmetrized over two Lorentz

indices and are made traceless:

Oterr = %(OO’T + OTU) _ ido’T ;OA)\, O°T = E,}/UDT,LP. (55)

This definition avoids mixing with lower dimension operators. In a massless renormal-
ization scheme the renormalization constants are defined in the chiral limit, where flavor
symmetry is exact. Hence, the same value for Z is obtained independently of the value
of T* and therefore we drop (7/2) on the operators from here on. One should however
keep in mind the fact that the values of Z for flavor singlet and nonsinglet operators will
be different beyond one-loop in perturbation theory and also nonperturbatively.
Concentrating on one derivative operators, there are three types of forward matrix
elements, (p = p’) according to the choice of the y-structure of the operator O; in the

flavor singlet case, these three types correspond to:

e Unpolarized quark distributions:
The operator is Ol 12} = 4)(0)y{m Dr21e)(0) and it is related to the moment:

(@ = [ doa ola) + (D" @] g =+ (5:6)

1

where ¢(z) is the quark density distribution.
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e Longitudinal spin distributions:
The operator O 2} = (0)ys v Dr2})(0) is related to the moment:

(e g = / doa® [Ag(o) + (<1 Aa(@)] g = 0.~ (5.7)

where Ag(x) is the quark helicity distribution.

e Transversity distribution: The operator is OF ¥} = 1(0); o#{# DF2}4)(0) and the

corresponding moment is:

("5, = / dz 2™ [Sq(x) + (~1)™6q(x)] , ¢ = a1 — q) (5.8)

1

where 0¢(z) is the quark transversity distribution.

The quark density, helicity, and transversity distributions are related to the following

matrix elements of twist-2 operators [109]:

2(a" g p - pt

1 .\ n—1 B Sl o n}
3 2.(ps (5) DD Ylps) (5.9)

2 n oo 4 t " o M <hin}
st = el (5) BB B ol
2 1 —pn}

n v n — i " v
—— (2")gq stpMIp - pit = (ps] (—) by D - D ps),
my 2

where the square brackets denote antisymmetrization.

5.2 Computation

The most laborious aspect of our calculation is the extraction of the dependence on lattice
spacing a and external momentum p. This is a delicate task even at one-loop level, since we
are interested in O(a?) improvement; for this purpose, we cast algebraic expressions (typi-
cally involving thousands of summands) into terms which can be naively Taylor expanded
in a to the required order, plus a smaller set of terms containing superficial divergences.
The latter can be evaluated via analytical continuation to D > 4 or even D > 6 dimen-
sions, and splitting each expression into a UV-finite part (which can thus be calculated
in the continuum), and a part which is polynomial in a. A list of the divergent integrals

appearing in this calculation can be found in Ref. [43].
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Dealing with “strong” IR divergent terms, a typical example of integral is:

/ Tk (5.10)

— @M 2 ey

First we split the original integrand [ into two parts

1

2

2k +ap

~
Il

where I is obtained from [ by a series expansion, with respect to the arguments of all

trigonometric functions, to subleading order; I, is simply the remainder I — I

_ 1 (k+ap)4 X!
I, = k2 (k 4+ ap)? + {12/{2 ((k'+ap)2)2 + 1o (k2)2 (k—&—ap)z} (5.12)

IR T Gy
Il - N /\2+ 9 /\2+ 9 )
Kk2k+ap 12 (K?)" kK2k+ap 12 (k2" (k+ap)?’k+ap

k4 ((k +ap)? — k/—|—7p2)

2

(k+ap)? — a0t gy .\ (k +ap)* ((k‘ +tap)?—k+ap

) (5.13)

2 2
k2 (k+ap)?k+ap 12k2 (k+ap)?)’ k+ap
(¢* = Zu qﬁ). 15 is free of trigonometric functions, while I; has been written as a sum of

terms, each of which is naively Taylor expandable to O(a?); its integral equals

T Ak
/ @i 27T)411 = 0.004210419649(1) + a* p* 0.0002770631001(3) 4+ O(a*,a*Ina)  (5.14)

—T

The errors appearing in the above equation come from extrapolations to infinite lattice
size.
To evaluate the integral of I5 we split the hypercubic integration region into a sphere

of arbitrary radius p about the origin (¢ < 7) plus the rest

[ L L) 515

The integral outside the sphere is free of IR divergences and is thus Taylor expandable to
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any order, giving (for p = 3.14155).

s 4
(/ —/ ) (;l—];b = 6.42919(3) 107 4 a? p? 6.2034(1) 10~° + O(a?) (5.16)
—m |k|<n @

We are now left with the integral of I over a sphere. The most infrared divergent part

of Iy is 1/(k* (k + ap)?), with TR degree of divergence -4, and can be integrated ezactly,

d*k 1 1 a® p?
= 1—1 5.17
/LEH(2wﬂkﬂ(k+—apV ) (517)

The remaining two terms comprising I, have IR degree of divergence -2, thus their cal-

giving

culation to O(a?) can be performed in D-dimensions, with D slightly greater that 4. Let
us illustrate the procedure with one of these terms: k*/((k%)* (k + ap)*). By appropriate
substitutions of | . 2k - p) — 7
—2(k-p)— D i
==+ ——" = 5.18
(k+p)? k;2+ k2 (k + p)? (p=ap) (5.18)

we split this term as follows

K TR EY(=2(kp) —p?) | 4K(K-p)?
Eirrl [ A i

kY (4(k-p)p* + (p%)%) | 4K (k-p)* (=2(k - p) — p°)
! ( GRS NG ) (5.19)

The part in square brackets is polynomial in a and can be integrated easily, using D-
dimensional spherical coordinates. The remaining part is UV-convergent; thus the integra-

tion domain can now be recast in the form

Afw - /|k|<oo - /M<k7<oo (5.20)

The integral over the whole space can be performed using the methods of Ref. [I10], whereas
the integral outside the sphere of radius p is O(a®) and may be safely dropped. The same
procedure is applied to the remaining term of I,. Adding the contributions from all the

steps described above, we check that the result is independent of .
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5.3 Renormalization of the fermion propagator and of

the bilinears

Perturbative calculations involving the SLINC action will be used in forthcoming simu-
lations. The fermion propagator with quantum corrections using the SLINC action with
non-zero bare mass, m, and the computation of the one-loop 2-point bare Green’s functions
of local and extended bilinear operators are the main objects that we are going to deal
with in this Chapter.

We compute the one-loop 2-point bare Green’s functions (amputated, 1PI), St~loor =
(p(2)2(y)) (fermion self-energy). The clover coefficient csw and the stout parameter w
have been considered to be free parameters and our results are given as polynomials of cgw
and of w. Moreover, the dependence on the number of colors N,, the coupling constant g,
the gauge fixing parameter o and the lattice spacing a, is shown explicitly.

The one-loop Feynman diagrams that enter the 2-point Green’s function calculation,
are the same as those illustrated in Fig. (but, of course, with different expressions for
the bare propagator and vertices).

Here we present the expression for the inverse propagator (S1~1°P)~! (with zero quark

masses):
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1—loop -1 _ tree -1 QQCF
(s7rp) ™ = (57 ) "+ 5

1
— [ — 40.4432 + 4.6627 cZy, + 11.9482 caw + w(455.514 — 37.3014 csw) — 1685.6w7]
a

+1 $[13.0233 — 4.79201c + alog (a®p?) — 2.01543 cgw — 1.2422 By

+w(4.6734 csw i P — 152.564) + 541.381w?]
3
+ap*[10.6964 — 3.8639a + alog (a’p?) — 5 log (a’p®) — 4.7529 csw

3
5 Csw log (a°p?) — 0.0759 ¢y, + w (8.7722 csw — 90.6889) + 271.446w”|

+a? [ - %oz ) 153 log (a2p2) — goz ip*#log (a2p2) - i C%W ip*#log (a2p2)
—l—w( — ip*plog (a2p2) — 0.5058 caw i p* P — 0.4164 cqw i f° + 12.0983 4 p? ¢
+29.5091¢ 153) — icsw ip®plog (a2p2) + % i log (azpz) + S ip®plog (a2p2)

360
Savi pd
. ‘1;72 P 15160501y + 0.507001ai §° + 04978 &y i p°§
P

+0.0786 cZyy i #F* + 0.6534 cow i p* P + 0.0514 cgw i f°

. ) Tipdy i L
+w? (—28.0799 i p2p — TA.1412i ) — S0yt 114721 p2 ) — 4.2478 i ] } (5.21)

where S'°(p) is the tree-level propagator, and the contributions O(a™') determine the
additive renormalization of mass (critical mass).

A number of Lorentz non-invariant tensors (p4 = > pj, ;= >, VuP,) appear in
O(a?) correction terms of S171P; they are compatible with hypercubic invariance.

Using our results for the fermion propagator, we can compute the multiplicative renor-
malization function of the quark field in the RI’ renormalization scheme (Z*'). In order

/ . . o o,
to find Z}fl , we use a mass-independent renormalization condition:

ZRI/ . iTr —1 Zp Vp Sin(pp)

a 12 Zp sin®(p,)

, (5.22)

Pp=Hp

(5”00”(13))1]

where p is the renormalization scale 4-vector, the trace is taken over spin and color indices
and (S17%P(p))~! is the inverse fermion propagator that we computed up to one-loop
and up to O(a?). Given the dependence of O(a?) terms on the direction of the external
momentum, p,, alternative renormalization prescriptions, involving different directions of

the renormalization scale u, = p,, treat lattice artifacts diversely.
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Our result for Z?I/ is:

2C
a BT

- [—13.0233 47920 + 2.0154 caw + 1.2422 2y
152.5641 w — 4.6734 csw w — 541.3805 w? — a log(a?u?)
a? 1 (1.14716 — 1.51605 v — 0.653431 cgw — 0.497834 iy

— 12.0983w + 0.5059 cgw w + 28.0799 w?
733 1

1
+ log(a®u?) <— %"‘g@"‘z csw + 7 cgw—l—w))
o 4

ke <2.1065 +0.3958 a + 0.2845 csw + 0.1284 2y
1

+ o+

+ a

157
— 4.0816w — 0.3625 o w — 16.0889 " — =5 log(aQ,uZ)ﬂ (5.23)
We now turn to the one-loop O(a?) corrections to Green’s functions A%TZOOP of local
fermion operators that have the form ¢T'¢. T’ corresponds to the following set of products
of the Dirac matrices:

1

I'= ﬂa V55 Vs V5 Vs Opws Oy = 5[’}%7%/] (524)

for the scalar (O%), pseudoscalar (OF), vector (OV), axial (O4) and tensor (OT) operator,
respectively. We restrict ourselves to forward matrix elements. We also considered the
tensor operator O, corresponding to I' = V50, and checked that its Green’s function
coincides with that of O this is a nontrivial check for our calculational procedure. These
operators are very important because from their matrix elements we can extract decay
constants and hadronic masses.

The only one-particle irreducible Feynman diagram that enters the calculation of the

above operators is shown in Fig. 5.1l Our results for the one-loop corrections to the

Figure 5.1: One-loop diagram contributing to the local bilinear operators. A wavy (solid)
line represents gluons (fermions). A cross denotes the Dirac matrices 1 (scalar), 75 (pseu-
doscalar), v, (vector), 757, (axial), o, (tensor T') and 750, (tensor 1").
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amputated 2-point Green’s function of each operator ¥I'y), at momentum p

AT = (3 (IT9) D)y (5.25)

are a polynomial of cgw, a and w, in a general covariant gauge. One might attempt to
use the O(a) corrections computed above in order to devise an improved operator, with
suppressed finite-a artifacts; it should be noted, however, that improvement by means of
local operators, as permitted by Quantum Field Theory, is not sufficient to warrant a
complete cancellation of O(a?) terms in Green’s functions, since the latter contain also
terms with non-polynomial momentum dependence, such as > i p;‘; /p?. Thus, at best, one
can achieve full O(a?) improvement only on-shell, or approximate improvement near a
given reference momentum scale. Such non-polynomial terms are not present at O(a').

1-1
Our results for Ay °” are:

¥e,
1+ 916 = [0.5835 + 5.792010 + 8.8507 ey — 0.1252 By
T

— (3+a)log (a2p2)

Ay (p)

+ ia(0.3394 — 3.93576cx — 3.76354 csw — 1.15006 cdyy

+ g(l + csw + «) log (a2p2) )

+ w(12.3004 — 22.8048 csw — a 14.6765 Y + a8.44675 csw i Y
— @’ 11.4484p* + a*5.29756 cswp®)

+ w? (—60.0198 + a 52.0918 % § + a* 27.3685p")

+ a®((2.35473 — 2.27359cr — 3.85278 cgw + 0.196462 cgyy )p*

- (;l - §Oé - §CSW) p*log (a2p2)

472
4 3 B /25 11
+ (13&+11)71;p2+¢¢p+2w (m—ﬁa))} (5.26)

20
AP () = st 96—; s [8.7101 +5.792010 + 2.98701 &y, — (3 + ) log (a%p?)

1
+ w(48.6342 — a®6.5059p") + w?(108.487 + a* 29.2531p?)
1 3
+ a®((0.7064 — 0.8381cc — 0.2756 Gy )p” — (Z — Za) p*log (ap?)
pd  PY+pF (25 11
130 + 11 Bt ] 5.27
+ Bat ) s+ = 7)) (5:27)
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Ay (p)

+ o+ 4+ +

+

9> Cp

1672
2,2

alog (a D ) + w( — 15.6991 + 5.72369 csw

a? (8.1378 — 0.9433 cqw — log (a%p?))p?)

Yo+ {% [3.5796 +4.79201c — 2.2127 cqw + 0.7781 2y,

(434652 + ? 24.5015%) — 20P L
p
a® ((0.0214 — 0.8110c + 0.8342 csw — 0.2874 3y )p

4 1 5 1o\ ue )y A
2 foa-2 - 1 550 4 17) =2
(45+8a 12csw+4csw>p og (a*p*) + (55a + )720p2)

a’p’, (1.6763 + 0.1249a + 0.2260 csw + 0.02822 c3yy
8
w (3.0079 + 1.6200 csw + 7.4378w) — 1= log (a”p’) )]

iap, [2.0974 — 0.9357a — 15187 cqw — 0.3851 2y

(a — 3+ 3csw) log (a’p?)

w(23.2135 — 6.1854 cayy — 38.4633w)

i a P[1.0377 + 0.243600 + 0.2896 csyy — 0.3028 By

w(8.7521 + 0.09571 cgyy + 15.8850w)

(—370 — %a) % + (—Z—? + ia + é csw + % cgw) log (a*p?)
1

3
D 1 P, (157 1
20 (@) ]| + ¥ 5 (- 5+ 130) — “# 5 (g + 39)
w(ap)} —l—aﬂpQ 20+12a angpQ 9O+3a

3 3 1 1
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2C
AP (py = Y5 Yu + ‘6116—7;75 {% [ — 0.483698 + 4.79201cr + 2.2127 cgw — 0.7781 iy
— alog (a’p?) + w(14.7682 — 5.72369 csw

— a?(14.4089 — 2.6709 cgw — log (a2p2))p2)
(407883 + o 25.345p%) — 202 L

p
a® ((1.3008 — 1.74650 — 1.4876 csw + 0.3141 cgy )p”

37 5 7 R pi
% w — - 1 550+ 17) —o
( o0 T3t g oW 4CSW>p og (a*p*) + (55a + )720p2)

a’p’(0.29617 4 0.1249a + 1.7629 csw — 0.1113 c3yy

+ o+ 4+ +

— w(1.0288 4 5.1342 cgw — 10.4477w) — 18—5 log (a’p?) )}

+

iap, [ —0.9254 + 2.9357a — 1.5461 cgw + 0.1283 c&y, + avlog (a’p?)
+ w(17.5221 — 3.5991 cgw — 47.5493w)

—  1a §[0.596635 + 1.1146cx + 0.3347 csw + 0.2787 cZyy

+ w(4.4682 — 0.25184 cgw — 9.1428w)

75 \ p4 (38 3 5 1, )
(2 2,2 _z ]
(120 * 24“) O (45 14TV T CSW) og («°7")

3
2, 9 o Puf L 1 N 2 apu (15T 1
b2 (@)]]+ (- g5+ 1p0) - @ (g + 5)
3 3
o (11
A <360+720‘>} 29

Note that the expressions for A '°(p) and A'"*(p) are more complicated, compared
to the scalar Aé_lmp (p) and pseudoscalar A} '°?(p) amputated Green’s functions, in the
sense that momentum dependence assumes a wider variety of functional forms.

The tensor Green’s function AL (p) (and AL ' (p)) is the most complicated of all
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the Green’s functions that we studied.

20
ATy = g+ T {(%% — 77 [0.2575 +1.8961c — 0.73755 cqw — 0.2384 2y,

167

1
+ S(1—a)log (a®p®) + w(2.7175 4+ 1.9079 csw — a® (8.6127 + 0.0412 csw )p?)

+ w?( —3.1465 + a” 13.6028p*) + a*(0.5287 — 0.6097cx + 0.1233 csw — 0.0306 cZyy

31 1 P+ 121 13
ol 1 1 2 2\\,2 2 _ 19
* ( 72+4O‘+°") og (a°p) )p* — o =5 1440 144"

7 1 p4
— 2 — — —
¢ (360 * 720‘) pz}

+ a [2i (WPu — Yup) [0.7557 — 0.9678a — 0.3988 cgw + 0.1917 By

3 1 1
+ w( —10.1839 + 1.4227 cgw + 21.5031w) — (1 307 csw) log (a’p?)
1
+ ag (=i 7pu + i 7up0) (— 0.06725 + 0.625a + 0.3842 csw — 0.06573 ¢y
+ w(04947 — 0.8785 oy + 4.47120)) |

+ «a

—~

T — i) pf[o.7557 — 0.9678a — 0.3988 cgw + 0.1916 ¢y

42 ' 4
— @ (Vuby — Yobu) ¢[0.3350 + —0.5604a — 0.0225 cgyw — 0.0351 cZyy

— w(6.6101 — 0.1737 csw — 12.5144w) — (1 _la- 1cSW> log (a2p2)]

3 1 1
+ w( —10.1839 + 1.4227 cgw + 21.5031w) + (—— +—a+ - Csw) log (a’p?) ]

2 2
101 /pip,  pip P Dy Py P> <1O 1 >
2 14 _ v ip 2 1% _ u 'y - -
+ a 36 ( - pe a® | e Y, e ¥ 9 +4a
101 [ pf®  puf I AV
2 v 1 2 o v
- a 79 (’Y,U pg - T p2 +a ’YV? T pg (ﬂ + Za> (530>

As a check of our calculation we also compute AITTZOOP given below in Eq. 1} Indeed this
expression becomes identical to Eq. (5.30), once it is expressed in terms of the coordinates

Pp, Po Which are complementary to p,, p,.
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2

C
AITTZOOp(p) = Y50, + ‘6116—7; Y5 {(%% — YY) [0.2575 +1.8961a — 0.73755 csw — 0.2384 ciy,

1
+ S(1—a)log (a®p®) + w(2.7175 4+ 1.9079 csw — a® (4.8128 + 0.9241 csw )p?)

+ w?(—3.1465 + a® 11.8168p”) 4 a”(0.07340 — 0.3919cr + 0.5188 cgw — 0.01750 c&yy

5 1 P+ (121 13
o 1 1 2. 2\\,2 2 1o
* (72 4CSW+°‘J> og (a°p") Jp* = 0" 5 1440 ~ 144"

7 1 p4
— 2 — — —
¢ (360 * 720‘) pz}

+ a [21’ (WPu — Yupw) [ — 0.7557 + 0.9678cx + 0.3988 csw — 0.1917 cgyy

3.1 1
+ w(10.1839 — 1.4227 cgw — 21.5031w) + <1 — 30— csw) log (a*p?)
1
+ ag (=i 7pu + i 7up0) (0.6228 + 0.625a — 0.3842 csw + 0.06573 cZyy
+ w(— 0.4947 + 0.8785 csw — 44712 |

— @& (s — ’yl,p#)ﬂ[ — 0.7761 + 0.3104c + 0.0225 csw + 0.0351 2y

11
+ w(6.6101 — 0.1737 cgw — 12.5144w) + (1 — 30~ 3 cSW> log (a°p?) ]

101 (pipy Pp P2 Dy D P> 10 1
2 14 v rp 2 M _ Py - -
o 36 ( P2 P2 @ \m p? R P2 ¢(9 +4a>

0L pif pf N A AVAEE
- e (W ) e (W ) (L) s

Starting from Aj"”(p), it is straightforward to write down the renormalization functions

Zr (for the operators OV) in the RI’ renormalization scheme, which uses the tree-level 2-pt
Creen’s functions of the corresponding operators A¥®¢(p). ZEU as obtained from Ar(p),
differ from the corresponding expressions evaluated at O(a®), by lattice artifacts, which
are functions of (au), and vanish as a — 0.

In order to determine the renormalization of the local bilinear operator ZE! we use the

renormalization condition:

T [AF 7 () Afre(p)']

T AR () AT ey (5:32)

Pp=Hp
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where the trace is taken again over spin and color indices, and the conditions are imposed

on the massless theory. In Chapter [3] we discussed alternative renormalization schemes for

Zy and Z,, stemming from the fact that the corresponding one-loop Green’s functions were

not mere multiples of the bare ones; the latter property will hold for all Green’s functions
once O(a?) corrections are included. Thus Eq. (5.32) corresponds to the alternative scheme
discussed in Chapter

Our results for ZE are (the momentum p must be set equal to the renormalization

scale 4-vector p: p, = f1,):

RY
Z S

RY
Z P

~ +

20
91 — [—13.6067 — 0 — 6.8353 cow + 1.3674 2y

140.2641 w + 18.2213 cgw w — 481.3605 w? 4 3 log(a?p?)
a? p* ( — 1.2076 + 0.7575 a + 3.1993 csw — 0.6943 ciyy

0.6499 w — 4.7917 csw w + 0.7114 w?
17 3 5

1
log(a”p") (555 + 5@~ 3 w7 Gw )

4
a2p—2 (1.6065 +0.5208 v + 0.2845 cgw + 0.1284 3y,
p

1+

157
408160 — 0.3625 cqww — 1608890 — T 10g(a2p2)>} (5.33)

20
1+ 916 ! [—21.7334 ~ a4 2.0154 cgw — 1.7448 2y
T

201.1975w — 4.6734 csw w — 649.8675 w* + 3 log(a®p?)
a2 p? (0.4408 — 06779 — 0.6534 cgw — 0.2223 By

5.5924 w + 0.5059 cgw w — 1.1732 w?
log(a? 2)<1—7—|—1a—|—10 —|—l02 +w>>
BlP ) \360 T YTy BW T W

4
a2p—2 (1.6065 +0.5208 v + 0.2845 cgw + 0.1284 iy,
p

157
408160 — 03625 csw w — 16.0889w” — T2 1og(a2p2)>} (5.34)
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v 1672 ' ' SW ' SW

+ 168.2635w — 10.3971 cgw w — 584.8465 w?
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+ an,%( — 2.7140 — 0.3686 a — 0.5157 csw + 0.2746 iy
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ZR = 14 g°Cr —12.5396 — 0.1972 +2.0203 2
A — 1671—2 . . CSW . CSW

+ 137.796 w + 1.0502 cgw w — 500.593 w?

+oa?p? ( — 0.1537 + 0.2305 a + 0.8342 cgw — 0.8120 2y

+ 2.3106w — 2.1650 cgw w + 2.7349 w?

+ log(a®p?) (3 — 104%—1 csw + L >>
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+ 22 (207734 02917 + 0.2845 csw +0.1284
p
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+ an,%( —0.8928 — 1.2396 a — 2.0977 csw — 0.1673 iy

— 3.4394w + 5.3861 cgw w — 1.3048 w?

+ log(a®p?) <1—4 43042 csw + ! Gy — 2w>>

45 4 6 2
2 2
Py 2 P4 P, ( 75 )
Nl - 4 =
R A SR T
4
2Py (323 5 >]
L= = 5.36
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20
1+ 916 4 [—13.5383 + a4 3.4905 csw + 1.7192 cZy
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a

157
— 4.0816w — 0.3625 cgw w — 16.0889 w? — =0 log(a2p2)>

+ d*(pp + p§)< —0.2005 — 0.6856 o — 0.7910 cgw + 0.0964 cZy
— 7.5997w + 1.9309 csw w + 3.5718 w?
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These results are in complete agreement with clover fermions [14] in the absence of
stout smearing.

Lastly, we compute the matrix elements of the extended bilinear operators of the form
(x)['D,ap(x). Here I' corresponds to the Dirac matrices

I'= Y V5 Vs Opv (538)

and D = D (5 — 5) /2. More specifically, the extended bilinear operators are defined
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as:
v 17— g — = 1 — —
Oy’ = §#meuw+¢m¢Duw}—Z@w§:¢”*DT¢ (5.39)
v 17— > — o 1 _ PN
O{M} = §_¢75WMDV¢+¢V5%DH¢} _16#”Z¢75%DT¢ (5.40)
Op™ = 5|00 Dot + 9750, D } 5Vp2¢75% Doy (5.41)

The above operators, being symmetrized and traceless, have no mixing with lower dimen-
sion operators. In the flavor nonsinglet case, mixing with operators of the same dimension
is also absent. However, in the flavor singlet case, (9{“ “} will mix with the dimension-4

gluon operator:
1
Tr (F, F) — Zéw,Tr (Fyp Fpo) (5.42)

In our computation, u, v, p, 7 are generic Lorentz indices. We denote the correspond-
ing Z-factors by Zpy, Zpa, Zpr . In a massless renormalization scheme the renormaliza-
tion constants are defined in the chiral limit, where isospin symmetry is exact. The one
derivative operators fall into different irreducible representations of the hypercubic group,

depending on the choice of indices. Hence, we distinguish between

5.43
5.44
5.45
5.46
0.47
5.48

Opvi = Opy with u=v
Opve = Opy with p # v
Opa1 = Opp with p=v
Opa2 = Opa with p #v
Opri = Oprwithp#v=plaso: p=v#p,p=p#v,u=v=p)

(
(
(
(
(
Opr2 = Opr withu#v#p#pu (

)
)
)
)
)
)

Thus, Zpy; will be different from Zpys, but renormalized matrix elements of the two
corresponding operators will be components of the same tensor in the continuum limit.
The expressions for the matrix elements are functions of a general gauge parameter,
coupling constant, external momentum, masses, stout parameter w and clover parameter
csw. The Feynman diagrams involved in the computation of the Z-factors are the same

as those illustrated in Fig. (where now crosses denote the insertion of an extented
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operator). The presence of a covariant derivative in the definition of these operators implies
that the corresponding vertices may also contain gluons. This explains the appearance
of more diagrams as compared to Fig. B.Il The Z-factors for the extended operators
are determined by setting the quark masses to zero and using Eq. (5.32), which is most
amenable to non-perturbative treatment.

The tree-level expressions of the operators, including the O(a?) terms, are:

ABVi(D) = (pu —a’ i) — Zv< , —a’ pT) +O(a%) (5.49)
AB(p) = % AB:(p) (5.50)
: 3
ree G v p
Apva(p) = 5 (w (py - a2p6 ) + % <pu —a? F#D +0O(a*) (5.51)
ADa(p) = 75 Abva(p) (5.52)

3 .
ree . Py 1 pT
ASTi(p) = 0 <Pu —a’ E) 1 E Vs U;u'( pr—a’ 5 ) + O(a*) (5.53)

. 3 3
ree ¢ p Py
A;:)TQ(]?) = 5 5 (Uuu (pp - CL2 Ep> + Oup (Pu - a2 E)) + O(CL4) (554)

We perform a Taylor expansion up to O(a?) in the denominator of the renormalization
condition Eq. (5.32) and it leads to the following:

ree ree 1 1 2
TeABG () - ABR()] = —208— 50t + (et + 5ph) + Ola) (5.55)
= —Tr[ABS () - ABS ()] (5.56)
tree tree 2 2 CL2 4 4 4
Te[ABS () - ABR()] = —pl =Pl + Tk +ph) + Oa) (5.57)
= —Tr[AB () - Al ()] (5.58)
2 2 4
tree . Aftree _ p_ 2 & 42 p_4 % pM
TT[ADT1(P) ADTl(p)} = 7 +2p, L ¢ (12 + 3 12) +O(a*) (5.59)
tree tree 2 2 a2 4 4 4
Tr [ADTZ(p) : ADTQ(p)} = mtr -3 (, +p,) + O(a") (5.60)

Bellow we present the numerator of Eq. (5.32)), in each of the six cases Eqs. (5.43)-



5.3. Renormalization of the fermion propagator and of the bilinears 82

(5.48). Since the expressions are extremely lengthy, we only show them for the special

choices: mo =0 and o = 0 (Landau gauge).

_loo ree 1 1 2
Te[ARET () ABR ()] = ~282 — 357 + aX(pd + 5o
2 4
g°Cr (4p
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iy | 22 ___ﬂ]
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9 2 2, 8 s oo 29 pd 169D
= tw— oy —ow]l = —-2|]} 5.61
+ <15 3 Csw 3 CSW 3 U}) Og(a’ p ) + 90 (p2)2 + 45 p2 ’ ( )
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2
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We present also the corresponding trace of the tensor operators for the special choices:

mo =0, csw =0, w=0 and o = 0 (Landau gauge).
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Te[ AR (0) - B ()] = T 2t et (e - 2EY)
4 12 3
20
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45 p? ' '

By inserting our results (Eqgs. (5.61)-(5.66)) into Eq. (5.32) we immediately obtain the

renormalization functions Zpv1, Zpva, ZDA1, ZDA2, ZDT1, £4DT2-

5.4 Summary

In this Chapter we have calculated the fermion propagator and the Green’s functions for the
fermion bilinear operators up to one loop, using the SLiNC action. These matrix elements
are used to extract mass spectra, decay rates and transition amplitudes in hadronic Physics;
others are directly related to physical properties of quarks inside nucleons, such as moments
of their helicity and momentum distributions [I11], T12].

The truly novel feature in our calculations is that they were performed to second order
in the lattice spacing a (O(a? a*loga)). This fact introduces a number of complications,
which are not present in lower order results. In a nutshell, the reason for these complications
is as follows: The extraction of a further power of a from a Feynman diagram strengthens,
by one unit, the superficial degree of infrared (IR) divergence of the corresponding integrand
over loop momenta. Thus, a priori, in a O(a') calculation, loop integrals would be IR
convergent only in D > 5 dimensions; however, as can be easily deduced by inspection,
the most divergent parts of the integrands are odd functions of the loop momenta, and
will thus vanish upon integration. What is left behind is a less divergent integrand which
is TR convergent in D > 4, just as in the case of O(a") calculations, and can thus be
treated by standard methods, such as those of Ref. [I13]. For O(a?) calculations, on the
other hand, integrands are IR convergent only at D > 6, and their most divergent parts

no longer vanish upon integration; a naive application of the procedure of Ref. [113]| will
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fail to produce all O(a?) contributions. The procedure which we proposed in this work for
handling the above difficulty is in fact applicable to any order in a. In brief, it recasts the
integrands as a sum of two parts: The first part can be exactly evaluated as a function of
a, while the second part is naively Taylor expandible, as a polynomial to the desired order
in a.

The propagator and Green’s functions have been obtained with massive fermions (in-
cluding non-degenerate flavors). Nevertheless, even at vanishing masses, our final ex-
pressions are quite lengthy, since they exhibit a rather nontrivial dependence on several
parameters. Our final results for the Z functions do not contain masses since we used the
mass independent renormalization scheme.

One possible use of our results is in constructing improved versions of the operators
OY, with reduced lattice artifacts. In doing so, however, one must bear in mind that,
unlike the O(a') case, corrections to O(a?) include expressions which are non-polynomial
in the external momentum and, therefore, cannot be eliminated by introducing admixtures
of local operators. Full improvement can be achieved at best for on-shell matrix elements
only.

At the nonzero values of a employed in numerical simulations, O(a?) corrections are
quite important. Ideally, one would prefer a nonperturbative determination of renormal-
ization functions; while this is often possible, several sources of error must be dealt with. A
very effective way to proceed is through a combination of perturbative and nonperturbative
results. This procedure is carried out and explained in detail in the next Chapter. Briefly
stated, nonperturbative data are “corrected” by the perturbative expressions for Green’s
functions, and then extrapolated towards small a. In the next Chapter we improve the

nonperturbative renormalization constants in the RI'-MOM scheme using the clover action.



Chapter 6

Perturbatively improving RI-MOM
renormalization constants using the

Clover action

In this Chapter we compute the perturbative renormalization factors (Z factors) of local
and extended (one derivative) fermion bilinear operators which are defined in Table A
novel feature in this one-loop perturbative calculation is that the relevant 2-point Green’s
functions are computed up to second order in the lattice spacing a. We employ the clover
action for fermions and the Symanzik improved gauge action for gluons. We apply our re-
sults to data extracted from numerical simulations performed by the QCDSF collaboration
using Ny = 2 clover improved Wilson fermions with plaquette gauge action; in particular,
in order to suppress lattice artifacts from the nonperturbative Green’s functions we sub-
tract the one-loop, O(a?) contributions of the renormalization factors calculated in lattice
perturbation theory. We compare results obtained from a complete one-loop subtraction

with those obtained by subtracting only contributions proportional to a?.

6.1 Introduction

As mentioned in previous Chapters, renormalization factors in lattice Quantum Chromo-
dynamics (QCD) relate observables computed on finite lattices to their continuum coun-
terparts in specific renormalization schemes. Therefore, their determination should be as

precise as possible in order to allow for a reliable comparison with experimental results.
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Given that the approach based on lattice perturbation theory suffers from its intrinsic com-
plexity, slow convergence and the impossibility to handle mixing with lower-dimensional
operators, nonperturbative methods have been developed and applied. Among them the
so-called Rome-Southampton method [114] (utilizing the RI-MOM scheme) is widely used
because of its simple implementation,even though it requires gauge fixing.

Like (almost) all quantities evaluated in lattice QCD also renormalization factors suffer
from discretization effects. One can attempt to cope with these lattice artifacts by extrap-
olating the nonperturbative scale dependence to the continuum (see Ref. [115]) or one can
try to suppress them by a subtraction procedure based on perturbation theory. Here we
shall deal with the latter approach.

In a recent work of the QCDSF /UKQCD collaboration [117] a comprehensive discussion
and a comparison of perturbative and nonperturbative renormalization have been given.
Particular emphasis was placed on the perturbative subtraction of the unavoidable lattice
artifacts. For simple operators this can be done in one-loop order completely by comput-
ing the corresponding diagrams for finite lattice spacing numerically. While being very
effective this procedure is rather involved and not suited as a general method for more
complex operators, especially for operators with more than one covariant derivative, and
complicated lattice actions. An alternative approach can be based on the subtraction of
one-loop terms of order a?, with a being the lattice spacing. The computation of those
terms has been developed by our group [43] and applied to various operators for different
actions. In this Chapter we use some of those results for the analysis of Monte Carlo data
for renormalization coefficients.

We study the flavor-nonsinglet quark-antiquark operators given in Table The
corresponding renormalization factors have been measured (and chirally extrapolatedED at
B =5.20,5.25,5.29 and 5.40 using Ny = 2 clover improved Wilson fermions with plaquette
gauge action [117]. All results are computed in the Landau gauge. Our perturbative results
were obtained for generic values of the clover parameter cgy; in order to apply these results

to the nonperturbative calculation we set cgy = 1.

!The chiral limit is reached when the masses of the light quarks assume their critical value, i.e., the
value at which chiral symmetry is restored.
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Operator | Notation Repre- |Operator basis
(multiplet) sentation
ad oS n oS
uysd or o or
i, d oV 4oy, oy 0y o
@ y,ys d o4 T of 08,048,090
U0, d or, 79 oL, o, of, oL, o, Of,
@9 D, d |0 — 0| ¥ Oy, Opusy, Opray, Oasy, Opaay, Oy
UYp 51/ d |0y — O 71(3) 1/2(011 + Oz — Os3 — Ou4),
1/\/5(033 - O44>7 1/\/5(011 - 022)

Table 6.1: Operators and their representations as investigated in the present Chapter. The
symbol {...} means the totally symmetric and traceless part. A detailed group theoretical

discussion is given in [118]. There are 20 (inequivalent) irreducible representations of H(4),

which are denoted by T,El), where [ is the dimension of the representation and £ =1,2,...

distinguishes inequivalent representations of the same dimension.

6.2 Renormalization group invariant operators

We define the renormalization constant Z of an operator O from its amputated Green
function (or vertex function) A(p), where p is the external momentum and the operator
is taken at vanishing momentum. The corresponding renormalized vertex function and
the tree-level (Born) term (with all lattice artifacts included) are denoted by Agr(p) and
A" (p), respectively. Just as in Eq. , if there is no mixing, Z can then be obtained
by imposing the condition

St [An(p) A(p) ] = 1 (6.1)

for vanishing quark mass at p* = p?, where pu, is the (4-vector) renormalization scale. The

Z factor relates the renormalized and the unrenormalized vertex function through
Ar(p) =2, Z Alp), (6.2)

with Z, being the quark field renormalization constant determined by

tr [—13°, ysin(apy) aS™H(p)]

123" sin®*(ap,) (6:3)

Zq(p) =
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in the chiral limit again at p*> = p?. Condition (6.1) together with (6.3) defines the RI-
MOM renormalization scheme. Here S~ is the inverse quark propagator. The argument
p appearing in all Z factors is meant to be set equal to the renormalization scale 4-vector

w. Using (6.1]) we compute Z from

Z'Z %tr [A(p) A™(p)~'] = 1. (6.4)
For operators transforming as singlets under the hypercubic group H(4), such as O, Z
can depend on the components of p only through H(4) invariants.

For operators belonging to an H (4) multiplet of dimension greater than 1 the condition
(6.1) violates H(4) covariance and would in general lead to different Z factors for each
member of the multiplet. In Ref. [I17] an averaging procedure has been proposed to
calculate one common Z factor for every multiplet. Labeling the chosen operator basis by

1=1,2,...,d the common Z was calculated from

&I»—‘

Zi? (p)AF<(p)~'] =1. (6.5)

This condition leads to an H(4)-invariant Z for the operators without derivatives in Ta-
ble 6.1} However, in general this is not the case.

It is not difficult to devise a renormalization condition that respects the hypercubic
symmetry. Choosing a basis of operators (again labeled by i), transforming according to a
unitary irreducible representation of H(4), the relation

777 S tr [M@AG)] (6.6)

Z] 1 [Atree( )A;ree(p) }

defines a Z factor which is invariant under H(4), provided that the quark field renormal-
ization factor is also H(4) invariant. The derivation of renormalization condition is
given in Appendix [C| For the operators without derivatives the definitions and
are equivalent. For the operators with one derivative the resulting differences turn out
to be negligible. In the following the Z factors will be determined from using the
operator basis given in Table 6.1} This is our version of the RI'-MOM scheme.

We define a so-called RGI (renormalization group invariant) operator, which is inde-
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pendent of scale M and scheme S, by [116] 117]
ORI — AZS (M) O (M) = Z%(a) Opare (6.7)

with

s B gS(M)Z —(70/2B0) g5 (M) / ,78(9/) Y
AZ° (M) = (260 62 ) exp /0 dg (ﬁs(g’) +ﬁog’> (6.8)

and the RGI renormalization constant (depending on a via the lattice coupling)
Z"Na) = AZ5(M) Zijye(M, a) . (6.9)

Here ¢ is the coupling constant, 3° is the S-function which is defined by: 3% = udg®/du;
7S is the anomalous dimension of the renormalized operator OR! which is defined by:
udZS /dy = —v°Z° where p is the renormalization scale. Relations , and
allow us to compute the operator O in any scheme and at any scale we like, once ZRG is
known. Therefore, the knowledge of ZR! is very useful for the renormalization procedure
in general. Ideally, ZRS! depends only on the bare lattice coupling, but not on the momen-
tum p. Computed on a lattice, however, it suffers from lattice artifacts, e.g., it contains
contributions proportional to a’p?®, (a*p?)?, a* 3 p,, etc. For a precise determination it
is essential to have these discretization errors under control.

As the RI'-MOM scheme is in general not O(4)-covariant even in the continuum limit,
it is not very suitable for computing the anomalous dimensions needed in . Therefore
we use an intermediate scheme S with known anomalous dimensions and calculate ZRG!
as follows:

28N a) = AZ5(M = ) Zgyp—yiom(M = pr) ZRILMOM(/& a). (6.10)

bare

[t turns out that a type of momentum subtraction scheme is a good choice for S (for
details see Ref. [117]). The formula which is used to compute the transformation factor
Z8 smom (1) is given there together with all needed coefficients of the B-function and
anomalous dimensions, which are based on continuum three-loop calculations such as those
in [119, 120, 121].

On a lattice with linear extent L the scale p should ideally fulfill the relation

1/L* < Nyop < 12 < 1/a?. (6.11)
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In that case Z%%(a) would be independent of y, and from the resulting plateau we could
read off the corresponding final value. However, in practice ap is not necessarily small
leading to non-negligible lattice artifacts that have to be tamed. A promising tool to
control lattice artifacts in a systematic way is lattice perturbation theory: We expect that
after subtracting these perturbative terms the calculation of the Z factors can be done

more accurately.

6.3 Subtraction of all lattice artifacts in one-loop order

In standard lattice perturbation theory the one-loop renormalization constants are given
in the form
Z(u,a)zl—i—& (70 In(ap) + A), C’F:é. (6.12)
16 72 3
This means that the a-dependence is retained only in the logarithm and implicitly in g,
while in all other contributions the limit a — 0 has been taken.

However, there is no need to do so. We can keep a finite everywhere and thus evaluate
the lattice artifacts at one-loop order completely, proceeding as follows. Let us denote
by F(p,a) the total one-loop correction to the 2-pt Green’s functions and by F(p, a) the
expression resulting from F(p,a) by neglecting all contributions which vanish for a — 0.
The difference

D(p,a) = F(p,a) = F(p,a) (6.13)
represents the lattice artifacts in one-loop perturbation theory and is used to correct for

the discretization errors:

2

Zg;;MOM (pv a)MC,sub = Z}l};;e—MOM(p, a)MC - 169;'2 C(F D(pa Cl) : (614)

There is a certain freedom in choosing the coupling g, in (6.14). It turned out that the use

of the boosted coupling
2

%= prgy =9 O (6.15)

(P(g) being the measured plaquette at 8 = 6/¢*) is quite successful in estimating the
higher-order discretization effects. With the prescription all lattice artifacts in one-
loop order are subtracted.

In Fig. we show the effect of subtraction on the RGI renormalization factors for

selected operators of Table For all operators we recognize after subtraction a remark-
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Figure 6.1: ZEY (left) and ZRC! (right) for 3 = 5.40. The Z factors obtained without
subtraction are shown as red squares, those with complete one-loop subtraction (6.14) as

blue triangles. (The necessary scale transformation factors for the momenta are given at
the end of Section [6.4])

able smoothing and a pronounced plateau as a function of p? for p?> > 10 GeVZ2. The large
bending in the small p? region might indicate the breakdown of perturbation theory (cf.
the discussion in [I17]). The examples show that the one-loop subtraction of lattice ar-
tifacts works very well and, moreover, is needed for a precise determination of the
renormalization constants. The final values for ZRS! from are obtained by a fit with

an ansatz [117]

S RI'~MOM 2% (a) 2,2
Zxy—vom(P) Ziare (p, a)nc,sun = AZS(p) [+ br ()] +cra’p”. (6.16)

The free parameter b; takes into account that the transformation factor Zg, yom(p) is
known to three-loop order (93)6 only. Further possible lattice artifacts are parametrized
by ¢ a?p?.

For practical reasons the numerical calculation of F(p, a) - and therefore the calculation
of ZRG! using - is restricted to operators with at most one derivative and for Ny = 2
only. In order to perform the subtraction for a wider class of operators and /or for Ny = 2+1
(where the lattice action under consideration becomes more complicated) we have to look
for an alternative method. One possibility which will be discussed in the next sections is
a “reduced” subtraction: Instead of subtracting the complete one-loop lattice artifacts we

subtract only the one-loop terms proportional to a2, if they are known for the given action.
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6.4 Subtraction of order o’ one-loop lattice artifacts

6.4.1 Lattice perturbation theory up to order ¢a”

The diagrammatic approach to compute the one-loop a? terms for the Z factors of local
and one-link operators has been developed by some of us [43, 122]. The general case of
Wilson type improved fermions is discussed in [14]. For details of the computations we
refer to these references. Here we give explicitly the results for the operators and actions
investigated in this work (massless improved Wilson fermions with csw = 1, plaquette
gauge action, Landau gauge).

Using the relation we compute a common Z factor for each multiplet given in
Table 6.1l The results are as follows:
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Zs

Zp

Zy

V2,a

V2,b

92 Cr

1672

239 Sy 101
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Here we have introduced the notation

4
= . (6.18)
A=1

with p, being the momentum components. Note that terms of type (S4/S:)log(a®S,),
appearing in Zg, Zp, Zy, Za, Zr, all have the same coefficient which arises solely from
the quark wave function renormalization constant Z,. The corresponding one-loop vertex
functions A;(p) in do not contain such a structure. For later purposes we write the

Z factors generically as

QCF

6.2 Zy1oop + @ gQZ(a) (p,a). (6.19)

1 loop

=14+

We emphasize that the numerical coefficients in the above expressions are either exact
rationals or can be computed to a very high precision.
. . . . 2
Below we provide numerical values for the 1-loop renormahzatlon constants 916% Z1-100p

at 0 = 5.40, so that we have an idea on the significance of z for the local operators.

1— 100

20

916—5 S ooy = —0.218684 + 0.028144 log(ap)? (6.20)
T

920F P 2

le—loop = —0247511+0028144 10g<(lp) (621)
T

20

916—7; Yooy = —0.143811 (6.22)
20

916—7; Doy = —0.129397 (6.23)

9°Cp T 2

lefloop = —0104440—000938110g(ap) (624)
s

In Figs. and |6.4| we present anQZYilop (p, a) for selected operators as a function
of a?p? on a finite lattice, where we choose the lattice momenta as py = (2wiy)/(a Ly).
Here, i) are integers and L) is the lattice extension in direction A. We compare the
correction terms for a general set of momenta with those obtained for the momenta used
in this investigation at 3 = 5.40 on 243 x 48 lattices and with “diagonal” momenta, i.e.,
momenta on the diagonal of the Brillouin zone.

The figures show that the momenta of the actually measured Z factors are very close

to the diagonal. For clarity of presentation, only a subset of momentum choices have been
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Figure 6.2: The a2g2Zl(‘i212)0p(p, a) for operators O° (left) and OF (right) as a function of
a’p? on a 243 x 48 lattice at 8 = 5.40. The green filled circles are the values for an arbitrary
set of momenta, whereas the red filled squares are obtained from the momenta used in this

investigation. The blue line is computed from diagonal momenta.
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Figure 6.3: The same as Fig. but for operators OV (left), O4 (right) and OT (lower).

included for (ap)? > 5. Furthermore, one recognizes that the magnitude of the calculated
one-loop a? corrections in the used momentum range is small but not negligible compared

to the measured values which are of order 1 (see also Fig. . Therefore, one can expect
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Figure 6.4: The same as Fig. |6.2| but for operators O">« (left) and O"2* (right).

that the subtraction of those terms yields a noticeable effect.

6.4.2 Subtraction of lattice artifacts up to order o’

The subtraction procedure of order a? terms is not unique - we can use different definitions.

The only restriction is that at one-loop order different procedures should lead to the same

ZRI’ —MOM

estimates for the renormalization functions (treating Z,,

(p,a)mc in perturbation

theory). We investigate the following possibilities,

/__ /_ a2

ZIE{aIre MOM (p7 a>MC7SUb,S = ZkF){;re MOM (p7 a)MC - Cl2 93 folg)op(p’ CL) ) (625)
1__ /_ a2

le;gre MOM(p7 a)MC,sub,m = Z}E{alre MOM (p7 a)MC X (1 - a2 gf Z£_12)op (pv a)) ) (626)

where g, can be chosen to be either the bare lattice coupling g or the boosted coupling

gg (6.15). (In the following we denote subtraction type (6.25) by (s) and (6.26]) by (m)).

With ansatz (s) the one-loop a? correction is subtracted “directly” from Zg‘alr/;MOM(p, a)mc-
2

Subtraction type (m) factorizes the one-loop a* correction from the nonperturbative Z
factor. We have not performed this procedure on the pseudoscalar operator, because chiral
extrabolation of nonperturbative data is rather unstable in this case.

The ZBRS are computed from (6.10) using (s) or (m), where we expect slightly dif-

ferent numbers depending on the choice of coupling g,. The only significant errors to

ZRI’fMOM

bore (p, a)mc sub are due to the Monte Carlo simulations.

In Fig. we show how the subtraction of lattice artifacts (complete and a?) affects
the renormalization constants for the scalar and tensor operators. The complete one-loop

subtraction results in a clear plateau for both ZRG! factors. Using the a? subtractions
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Figure 6.5: Unsubtracted and subtracted renormalization constants for the scalar operator
O% (left) and the tensor operator OT (right) at 3 = 5.40, for p* > 10 GeV? and ro Ay =
0.700. The complete subtraction is based on (6.14)), whereas the a® subtractions are of

type (s) and (m) with g, = gg.

there remains a more or less pronounced curvature which has to be fitted. From the
definitions of the subtraction terms it is clear that they vanish at a*p* = 0. Moreover, for
small p? ~ 10 GeV? the subtraction methods (s) and (6.14) already agree, as they should.
However, as discussed above, ZRS! can only be determined from sufficiently large momenta
(p? 2 10GeV?), where differences arise between the various procedures. Therefore the

ZRGI

results for may differ depending on the kind of subtraction. As can be seen in

Fig. [6.5] this effect varies strongly from operator to operator.

6.4.3 Fit procedure

Compared to the complete one-loop subtraction we expect that Z&Ire MOM(p7 a)MC sub a8

computed from (s) or (m) contains terms proportional to a®® (n > 2) even at order g%, as
well as the lattice artifacts from higher orders in perturbation theory, constrained only by
hypercubic symmetry. Therefore, we parametrize the subtracted data for each § in terms

of the hypercubic invariants .S,, defined in (6.18]) as follows

78 ( ) ZRI'-MOM (p a) _ ZRGI(G) n (6 27)
RI'—~MOM\P) Zpare » &)MC,sub AZS(p) [1 + by (98)8] )
Sy Se
(01 Sg ‘I"CQ S +03 (S ) ) +a (04 (52)2+C5 S4) +a6 (06 (52)3 +C7 54 SQ +Cg Sﬁ) .
2

There are also further non-polynomial invariants at order a*, a®, but their behavior is ex-

pected to be well described by the invariants which have been included already. Ansatz
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is a generalization of (6.16): After the “reduced” one-loop subtraction of lattice arti-
facts the Z factors are expected to depend more strongly on a* or a® hypercubic invariants
than after the complete one-loop subtraction (see Fig. . The parameters cq,...,cg
describe the lattice artifacts.

Together with the target parameter Z8(a) we have ten parameters for this general
case. In view of the limited number of data points for each single § value (5.20, 5.25, 5.29,
5.40) we apply the ansatz to several 3 values simultaneously with

ZRG(q) . ZR (ay,)
AZ5(p) [L+b1 (g% AZF(p) [1+ b1 (%)%

(6.28)

where k labels the corresponding 3 value (a;, = a(f)). The parameters ¢; are taken to
be independent of . This enhances the ratio (number of data points)/(number of fit
parameters) significantly and we obtain several Z8%(a;) at once. The fit is performed by
a nonlinear model fit which uses - depending on the actual convergence - either the Nelder-
Mead or a differential evolution algorithm [123]. Additionally, we have checked some of
the fit results using MINUIT [124].

The renormalization factors are influenced by the choicd?] for 7o Ajrg. This quantity
enters AZS(M) in via the corresponding coupling g%(M) (for details see [117]). We
choose 79 Ajyig = 0.700 [I25]. In order to estimate the influence of the choice of ry Ayg
we also use 19 Ayg = 0.789 calculated in [I126]. The Sommer scale 7 is chosen to be
ro = 0.501 fm and the relation between the lattice spacing a and the inverse lattice coupling
3 is given by ro/a = 6.050 (8 = 5.20),6.603 (3 = 5.25),7.004 (3 = 5.29) and 8.285 (8 =
5.40) [127].

6.5 Renormalization factors for local and one-link oper-

ators

The fit procedure as sketched above has quite a few degrees of freedom and it is essential
to investigate their influence carefully. A criterion for the choice of the minimal value
of p? is provided by the breakdown of perturbation theory at small momenta. The data
suggest [I17] that we are on the “safe side” when choosing p?; = 10GeV?. As the upper

end of the fit interval we take the maximal available momentum at given coupling f3.

2The Sommer scale 7 is a length scale (distance) defined in terms of the force, F(r), between static
quarks, satisfying: r3F(rg) = 1.65.
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Other important factors are

e Type of subtraction: As discussed above the procedure of the one-loop subtrac-
tion is not unique. We choose different definitions (s) and (m) with either bare g or

boosted coupling gp.

e Selection of hypercubic invariants: For the quality of the fit it is essential how
well we describe the lattice artifacts which remain after subtraction [128,[129]. This is
connected to the question whether the a? subtraction has been sufficient to subtract

2 artifacts. Therefore, we perform fits with various combinations of

(almost) all a
structures with coefficients ¢; in (6.27). One should mention that the concrete optimal
(i.e. minimal) set of ¢; depends strongly on the momenta of the available Monte
Carlo data - nearly diagonal momenta require fewer structures to be fitted than far

off-diagonal ones.

The analysis should provide an optimal restricted set of parameters which can be used
as a guideline for other classes of operators. Nevertheless, one has to inspect every new
case carefully.

The results for ZRT will depend on the above mentioned factors. As a detailed pre-
sentation for all operators and [-values would be too lengthy, we select some operators
and/or (3 values and take the corresponding results as a kind of reference. All results pre-
sented in this section are computed for ro Ayg = 0.700. The choice ry Ay = 0.789 leads
to qualitatively similar results. The large number of parameters in ansatz calls for a
combined use of the data sets at 5 = (5.20, 5.25,5.29, 5.40) for our fit analysis as indicated
in . With the choice p2,, = 10 GeV? this results in 94 data points available for the
corresponding fits. Additionally, we should note that the errors on our fit parameters are
those obtained from the nonlinear model fit. They differ from the error calculation for the
ZRCT based on (6.16) and used in [117].

6.5.1 Dependence on the subtraction type

In Fig. we present the ZRS! for operators O°, OV, OT and O« for the different
subtraction types using the fit ansatz (6.27)) with all ¢; # 0, i.e., we include a?, a* and af
terms. From the discussion in Section we expect that the resulting differences vary
from operator to operator (cf. Fig. .

From Fig. [6.6]we observe that the complete one-loop subtraction (1) and the subtraction

(2) agree within 1%. This is not unexpected because the subtraction schemes are similar
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Figure 6.6: ZRG! of selected operators at 5 = 5.40 as a function of the subtraction type
(subtype): 1: complete subtraction (6.14]) with g, = gp, 2: (s) with g, = gp, 3: (m) with
gx = 9B, 4: (s) with g, = ¢, 5: (m) with g, = g. The horizontal borders of the shaded
area show a 1% deviation from case 1.

and the gauge couplings coincide. The differences in the results for (2) and (3) can be
used as an indication for a systematic uncertainty in the determination of ZRS! based
on the schemes (s,m). We observe that both subtraction approaches are numerically
almost equivalent. Choices (4) and (5) lead to ZR! factors which are partly outside the
1% deviation. Generally, we recognize that all subtraction procedures for both bare and
boosted couplings produce fit results within a reasonable error band width.

In order to test the effect of subtraction we compare the g?a® contributions as given in
(6.17) with the remaining lattice artifacts of the Monte Carlo data fitted after subtraction,
i.e. the result for (6.27) setting Z%%(a) = 0. In Fig. we show the results for the
same selected operators choosing gp. In the small p? region the remaining lattice artifacts
are significantly smaller than the one-loop a? terms (operators O°, OT and O"<). In
case of already small one-loop a? artifacts (operator OV) the final artifacts remain small.
This behavior strongly suggests to subtract the one-loop a? terms before applying the fit

procedure.



6.5. Renormalization factors for local and one-link operators 104

artifacts after subtraction o artifacts after subtraction o
0.2+ one-loop a? artifacts @ o 0©® 0.06 one-loop a? artifacts @ °
o 0]
o
75} o) o %5}
- o© +
S 01} 00 g
h=| 00° b=
= fo) £
-
= ®oe, E
N o ° N
°
°
°
®e
-0.1 °
L L L L L ,002 L L L L L
0 20 40 60 80 100 0 20 40 60 80 100
p?[GeV?] % [GeV?|
0.15 T T T . . 0.15 T T T T
artifacts after subtraction o artifacts after subtraction o
one-loop a? artifacts @ ° one-loop a? artifacts @
0.1 F L 1 0.1} 1
[ ] ° [ ] °
@ ° b 2] ° ®
3 B ° kst _ °°
& 005 - ® b & 0.05 °®
b= o°’ b= oo
3 ..0 =1 ...o
3 0 830 3 s 0 000®
N Sfeto} o) N OOOO
Coq ©00
5 o 5 o
20.05 b 0o A 20.05 - %¢
o Io) o
o
-0.1 L L L L L -0.1 L L L L L
0 20 40 60 80 100 0 20 40 60 80 100
P [GeV?] P2 [GeV?]

Figure 6.7: Lattice artifacts for ZRCT of selected operators for 3 = 5.40 as a function of p?
choosing g, = gp. The blue filled circles are the corresponding g?a? correction terms, the
red open circles are the fit results for (6.27) setting Z%%(a) = 0.

Since the boosted coupling g is assumed to remove large lattice artifacts due to tadpole
contributions in the perturbative series, we will use gg in the following. In addition, we
restrict ourselves to subtraction type (s), which is closest in spirit to the complete one-loop

subtraction studied in [T17] (leading approximately to a plateau in the ZR! as a function

of p?).

6.5.2 Dependence on hypercubic invariants

Now we discuss the dependence on the hypercubic invariants included in the fit ansatz
(6.27). The goal is to select a reasonable set of parameters to parametrize the remaining
lattice artifacts. Figure shows the fit results for some ZRCT utilizing different parameter
sets {cx}. We use the subtraction type (s) with g, = gp. In that case the results from the
complete one-loop subtraction (1) serve as reference values.

Generally, we recognize that the resulting RGI renormalization factors do not vary

significantly. Most fit results for ZR are located in a 1% deviation band around the
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Figure 6.8: ZRS! for selected operators at 3 = 5.40 as a function of the parameters included
in the fit ansatz (6.27). The used parameter combinations (partype) are: 1: complete one-
loop subtraction of lattice artifacts 2: all ¢;, 3: (c1,c4,¢6) - O(4) invariant, 4:
(1,2, C3,¢4,¢5) - (a?, a*)- hypercubic invariants, 5: (c4, cs, ¢g, 7, c8) - (a?, a®)- hypercubic
invariants. The horizontal borders of the shaded area show a 1% deviation from case 1.

corresponding complete subtraction results (1). In addition, parametrizations (2) and (3)
give almost identical fit results. This reflects, of course, the fact that our momenta are
very close to the diagonal in the Brillouin zone. These restricted momentum sets might be
the reason that even “incomplete” hypercubic invariant sets (4, 5) can be used to obtain
reasonable fits. For the final results we use the fit with all ¢; # 0 which would be natural
in the case of more off-diagonal momenta.

In Figs. and we show the results for all operators using the parameter sets

with all ¢; compared to the results obtained by the subtraction scheme based on (6.14)).
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6.6 Results for local and one-link operators and conclu-

sions

As a result of the preceding discussions we use subtraction type (s) (Eq. (6.25)) with
boosted coupling g and the fitting formula (6.27)) with all ¢; and b; coefficients to determine
the ZRGL The final renormalization factors are collected in Table[6.2] using the two different

Op. |70 Asis ZRGI‘ﬁ—s 20 ZRGI\ﬁ—s) o5 | ZRC! ’ﬁ=5.29 ZRAL ’[3:5.40
O% | 0.700 | 0.4530(34) | 0.4475(33) | 0.4451(32) | 0.4414(30)
0.789 | 0.4717(44) | 0.4661(65) | 0.4632(54) | 0.4585(27)
OV | 0.700 | 0.7163(26) | 0.7253(26) | 0.7308(25) | 0.7451(24)
0.789 | 0.7238(72) | 0.7319(94) | 0.7365(99) | 0.7519(50)
O4 | 0.700 | 0.7460(41) | 0.7543(40) | 0.7590(39) | 0.7731(37)
0.789 | 0.7585(46) | 0.7634(77) | 0.7666(81) | 0.7805(30)
OT | 0.700 | 0.8906(43) | 0.9036(42) | 0.9108(41) | 0.9319(39)
0.789 | 0.8946(85) [0.9041(111)]0.9075(120) | 0.9316(49)
Ov24| 0.700 | 1.4914(55) | 1.5131(55) | 1.5266(54) | 1.5660(53)
0.789 [1.4635(108)|1.4776(112) | 1.4926(90) | 1.5397(58)
Ov2+| 0.700 | 1.5061(37) | 1.5218(37) | 1.5329(36) | 1.5534(35)
0.789 |1.4601(151) [1.4727(206) | 1.4863(165) | 1.5115(140)

Table 6.2: ZRC! values using the subtraction (s) with gp.

7o Ayg values 0.700 and 0.789. This shows the influence of the choice of 7y Ayg (depending

on the anomalous dimension of the operator). For the investigated operators and (3 values

we found for the relative differences of the ZRGI

For comparison we collect in Table the values for ZRG! computed by means of fits
with the ansatz (6.16) to data where a complete one-loop subtraction of lattice artifacts

52RGI —

RGI

ZRGI

RGI

<0.04.
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(according to (6.14) with g, = ¢gg) has been performed. Note that here the errors are deter-
mined from the variation of the subtracted data between the scales u? = 10, 20, 30 GeV?

[I17]. The reported renormalization factors are calculated for the values ro/a given at the

Op. |70 Ayg ZRGI|ﬂ:5.20 ZRGI|ﬂ:5.25 ZRGI|ﬂ:5.29 ZRGI‘B:&M)
OS | 0.700 | 0.4508(20) |0.44952(32) | 0.44788(70) | 0.4460(20)
0.789 | 0.4620(85) | 0.4603(60) | 0.4585(61) | 0.4560(48)
OV | 0.700 |0.7225(44) | 0.7321(31) | 0.7370(46) | 0.7511(41)
0.789 | 0.7219(53) | 0.7316(41) | 0.7364(55) | 0.7506(50)
OA | 0.700 | 0.7529(17) |0.76046(70) | 0.76463(33) | 0.77731(20)
0.789 | 0.7530(14) |0.76054(48) | 0.7647(14) | 0.7774(10)
OT | 0.700 | 0.9020(12) |0.91427(24) | 0.9206(14) |0.94009(69)
0.789 | 0.8948(40) | 0.9072(32) | 0.9137(48) | 0.9333(38)
Ov2e | 0.700 | 1.5018(48) | 1.5190(64) | 1.5321(52) | 1.5681(29)
0.789 | 1.473(18) | 1.490(14) | 1.504(12) | 1.540(14)
Ov20 | 0.700 | 1.5083(51) | 1.524(14) | 1.5362(92) | 1.5706(61)
0.789 | 1.480(15) | 1.497(28) | 1.509(23) | 1.5436(69)

Table 6.3: ZRS! ysing a complete one-loop subtraction of lattice artifacts.

end of Section and, therefore, differ from those given in [I17]. The Z factors of the
local operators in both tables agree within 1%. The Z factors of the one-link operators
differ at most by 2 %.

Let us compare our results in Table [6.3| for the local vector current with Z8S! obtained
from an analysis of the proton electromagnetic form factor [I30] following [I31], which are
listed in Table[6.4 The numbers agree within less than 1% with the numbers in Table
(ro Ayrg = 0.700), supporting the complete one-loop subtraction as our reference point.

From the present investigation we conclude: The alternatively proposed “reduced” sub-
traction algorithm can be used for the determination of the renormalization factors if the
complete subtraction method is not available. Possible applications could be Z factors for

Ny = 2+1 calculations with more complicated fermionic and gauge actions where one-loop
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ZRGI|B:5.20 ZRGI|5:5.25 ZRGI|B:5.29 ZRGI|5:5.40

0.7296(4) | 0.7355(3) | 0.7401(2) | 0.7521(3)

Table 6.4: ZRS! values for operator V from the proton electromagnetic form factor analysis.

results to order a? are available (for the fermionic SLINC action with improved Symanzik
gauge action see Chapter 5| and Ref. [122]).

In this study we have analyzed data sets with momenta close to the diagonal of the
Brillouin zone. The one-loop a? contributions to the Z factors are completely general and
can be used for arbitrary (also non-diagonal) momentum sets. Our ansatz allows to
take into account the remaining artifacts after subtracting these one-loop a? terms. To get
reasonable fit results the ratio (number of data points)/(number of fit parameters) has to
be sufficiently large.

As we pointed out the subtraction type is not unique. With (s) and (m) we tested two
different types. The resulting fits do not give a clear preference for one of these. Even
the additional choice for the coupling (g, = g or g, = gp) does not lead to significantly
different results. Therefore, our final choice (s) (Eq. with g, = gp) was supported
by “external” arguments: the improved behavior of the boosted perturbative series and the
results obtained by complete one-loop subtraction [117].

We have shown that already the one-loop a? subtraction improves the behavior of the
Z factors significantly: In the small p? region the contributions of the remaining lattice
artifacts are smaller than the corresponding one-loop a? terms. As mentioned above, the
accuracy to determine the Z factors is already at the 1% level for local operators and at
the 2 % level for operators with one covariant derivative compared to the complete one-loop
subtraction of lattice artifacts. Additional systematic uncertainties are due to the choice

of the r¢ Ay and 79/a.



Chapter 7

Renormalization of the
Chromomagnetic Operator on the
Lattice

In this Chapter we describe our study of the chromomagnetic operator (CMO), which is
defined asTh

OCM = g@g Oy Guuwd (71)

This operator appears in effective Hamiltonians describing semileptonic processes in and
beyond the Standard Model. We have computed its Green’s functions with two (quark-
antiquark) and three (quark-antiquark-gluon) external fields, at nonzero quark masses.
Our calculations were performed using both the lattice and dimensional regularization.

Having dimension 5, the chromomagnetic operator is characterized by a rich pattern of
mixing with other operators of equal and lower dimensionality, including also non gauge
invariant quantities; it is thus quite a challenge to extract from lattice simulations a clear
signal for the hadronic matrix elements of this operator.

The lattice computation is carried out using the maximally twisted-mass action for the
fermions; for the gluons we employed the Symanzik improved gauge action, for different
sets of values of the Symanzik coefficients. In order to find the mixing with other operators
we examined the transformation properties of all operators which could possibly mix with
Ocum. We have identified these operators and we calculated those elements of the mixing

matrix which are relevant for the renormalization of Ogjy;. We also computed and present

!Notation: go: bare coupling constant, Ys,qa: s- and d-quark fields, G,,: gluon tensor, o,, =
(i/2) [V, Wl

110



7.1. Introduction 111

the renormalization of the fermion field Z,, of the gluon field Z4, of the ghost field Z. and

the coupling constant Z,, which enter the renormalization conditions.

7.1 Introduction

The electroweak effective Hamiltonian describing strangeness changing (AS = 1) processes,

in the Standard Model (SM) and beyond, contains four “magnetic” operators of dimension

D:
HAS=L d=5 Z(C;Q; +CIQY) + e (7.2)
i=+
+ Qde n F + /y F 7.3
Q’Y o @ (¢SL Opv L'yw 7#dR ¢5R0MV 214 77Z}dL) ? ( ) )
g - _
Q;t - 1672 wsL O Guv Yar £ Vsr 0w G ¢dL) (7.4)

In the above expressions, F), and G, represent the electromagnetic and strong field
strength tensors respectively, ¥s and 14 are the strange and down quark fields and the
subscripts R, L denote the left /right chiral structure (1= +5). The coefficients C?, and C?,
multiplying the electromagnetic (EMO) and chromomagnetic (CMO) operators, respec-
tively, may be calculated perturbatively via the OPE; they are suppressed within the SM,
but become more pronounced beyond the SM, e.g. through penguin diagrams in SUSY.

Some of the most relevant matrix elements of the CMO are parameterized as [132]:

—11 MIQ((pﬂ"pK)

NQF|IKYY = B 7.5
MIQTIK) = e = g B (7.5)
111 M2 M?
Q7 KDY = K _p 7.6
<7T m |Qg| > 327T2 fﬂ' (ms+md) 92 ( )
—11 M2 M?
(wrrtaT|Q KT = KT By, (7.7)

1672 f2 (mg + my)

These matrix elements appear in the study of K°— K° mixing, € /e, the AI = 1/2 rule, and
K — 3w decays. To leading order in Chiral Perturbation Theory (xPT), the B-parameters
are all related [133]:

. u e
925672 my + my

Q

B, [U(DUN(D"U) £ (DU (D"U)UT],, (7.8)

Thus, a lattice study of, say, Eq. (7.5)), provides information for Egs. (7.6, (7.7) as well.
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The EMO has been studied in simulations with Ny = 0 [134] and Ny = 2 [135] dynam-
ical flavors, focusing on:

€ \/§ " 17
DN e B BrRele®) [Re©) =1 (79)

(wIQF|K°) =i

The parameter Br appears, e.g., in the branching ratio of K; — 7%e*e™ in SUSY
models.

We focused on the matrix elements of O¢)s between a kaon and a pion state. The K —
matrix element of O¢j; has never been calculated before on the lattice. Its renormalization
entails subtraction of operators, which can mix with power divergent coefficients. In gen-
eral, the renormalization of effective operators is highly non trivial. A serious complication
in this case is that operators with the same dimensions as O¢)s or lower, and with the same
quantum numbers, can mix with Ogys at the quantum level. In order to identify which
operators can possibly mix, we exploited the fact that all candidate operators should have
the same transformation properties as Oy, and we reduced the number of these operators
to a minimal set of 13 operators.

We compute perturbatively the relevant Green’s functions of Ogy; to determine the
renormalization mixing coefficients. The calculations were performed in the continuum
(dimensional regularization) and on the lattice using the maximally twisted mass fermion
action and the Symanzik improved gluon action. This computation is followed by the
construction of the mixing matrix, which involves gauge invariant operators and operators
that vanish by the equations of motion. In parallel, non-perturbative measurements of the
K — 7 matrix element are being performed by the Roma Tre group, in simulations with 2

dynamical (N = 2) twisted mass fermions and the Iwasaki improved gluon action.

7.2 Symmetries of the Action and Transformation Prop-

erties of operators
We study the mixing of the chromomagnetic operator:
Ocmt = 9o V5 0 Grvtba, (7.10)

using both dimensional regularization (DR) and lattice regularization (L). On the lattice

we use the fermion setup studied by Frezzotti and Rossi [137, 138, 139]; in particular,
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valence quarks are described by the twisted mass action, which in the physical basis reads:

Selty, b, Ul =a* Y Y () [7 Y = insWeelry) + myg |y (2), (7.11)
;o

where
~ 1 .
V-V = §ZWH(VM+VM), (7.12)
7
T *
mumzzﬂgzmmﬁmmm (7.13)
I

rs is the Wilson parameter for the flavor f = u, d, s and M (ry) is the corresponding
critical quark mass (M, (—71f) = — M (14)).

The full fermion action includes also a part describing sea quarks, as well as a ghost
part (to compensate the valence quark determinant) [138]; these parts will not be needed
in our one-loop calculation. For the gluon part we employ the Symanzik improved action
described in Eq. . Our results (Section will be provided for some of the most
popular choices for the Symanzik coefficients.

There exist certain symmetries of the action (valid both in the continuum and lattice
formulation of the theory) which reduce considerably the number of operators that can
possibly mix with O¢g), at the quantum level. These symmetries are defined by means of

the discrete transformations P (continuum parity) and Dy in the physical basis,

(

Uo(z) — Us(zp),  Uplz) — Ul(zp —ak), k=1,2,3

Py s@) = iy (wp) (7.14)

VYi(z) — Yr(zp)y0,

Uu(z) — Ul(= = aft)
Daiy wpla) — ¥y (—a) (7.15)

vp(z) — e pp(—a),

\
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(where xp = (—x,x0) and [ is the unit vector in the p-direction)

Yy — Ysip
R5:HRf5, Rf5 . (716)

f &f - _&fﬂyf)a

T

C (charge conjugation; * means transpose)

() = iy (z)"

C: 0 d(a) = —(@) i (717

Uulz) = Ui(z), p=0,1,2,3,

\

and S (exchange between the s and the d quark)

(

Us(@) = Ya()
S:q dy(z) o hy(z) (7.18)

My — My .
\

In terms of the above transformations, the symmetries of the action ard?
o P xDyx (m— —m), where m are all masses except M,

e D, x Rs

e C xS, ifry=ry

e CxPxS,ifr,=—ry.

In order to identify which operators can possibly mix with O¢,/, we examine the trans-

formation properties of all candidate operators under the above symmetries; admissible

ZNote that, in the case of r, = —rg, CPS will not be a symmetry of the valence part of the action
which contains a u quark, since it will require r, — —r,. However, the u quark can be dropped from
the valence part of the action, since our operator does not contain u quarks, and therefore the Green’s
functions of interest will also not contain any external u quarks. Nonetheless, it is important to note that
the sea quark part of the action is symmetric even in the presence of u, since it is an even function of the
Wilson r coefficients [I38].



7.2. Symmetries of the Action and Transformation Properties of operators115

Operators PxDygx |DgxRs| CxS |[CxPxS
(m — —m) ifry=rylifrs = —ry
Dimension 3 operators
Vo - + - +
iP5 + + + -
Dimension 4 operators
(ma + M) - - + +
(ma —ms) Y a + + - —
(+) | 7 (ma +m) 53 - + + -
(=) | @ (ma —ms), V5t — - — -
Go(D + ma)tba + y(—D + m)a + + + +
G(D +ma)a = 0,(—=D + ma)ta + + - -
()| 1015(D + ma)a +i6,(—D +my)stba - + + -
(=) | 195D + ma)ea — i 0y(—D +my)ysta - + - +

Table 7.1: Transformation properties of dimension 3 and 4 operators. Included are gauge
invariant operators and operators which vanish by the equations of motion, in the physical
basis.

operators must transform in the same way as O¢ys. Furthermore, by general renormaliza-
tion theorems, these operators must be gauge invariant, or else they must vanish by the
equations of motion.

In Tables and [7.2] we present all candidate operators along with their transformation
properties. Operators marked by ”v"” have the same properties as Ocys and thus may mix
with it. Operators marked by ”(+4)” or ”(—)” have the same transformation properties as

Ocuy only if ry = rg or ry = —rg, respectively; for this reason the Wilson parameters r, r4
have been explicitly introduced in Oy and Op2 below (see Eqgs. (7.29) - (7.30)). There
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Dimension 5 Operators PxDygx |DgxRs| CxS |[CxPxS
(m — —m) ifrg =ry|if rg=—rq
90 050 Gl a - + + +
i 90 V50 Gt + + + -
(m +m2)y - + + +
i (m2 4+ m2) 514 + + + —
(mg — m)Y W - + - -
i (m2 — m2)Y vs514 + + - +
mam - + + +
i ma Mg, Ysta + + + -
msy(D + ma)a +mady(—D + my)ig - + + +
maty(D + ma)a +meby(—D +m.)i - 1 + +
mMsy(D +ma)ba — ma (=D + my)ia - + - -
math (D + ma)ipa — math, (=D +my )i - - - -
i Mg y5(D +ma)a+imab,(—D+mg) st + + + -
i mdwsfy5(5+md)wd+z map,(— 5—|—ms)’75¢d + + + -
i Mg ys(D +ma) g —imab,(—D+my) st + + - +
zmdws%(ﬁ—l—md)wd—z map,(— E—Fms)%wd + + - +
Go(D +ma)*ba+ Dy(=D +my) iy - + + +
Go(D +ma) b = 0y (=D +my) - + - -
19 y5(D 4 ma)*pa + i 9,(—D + mg) > 5 + + + -
i, ’Ys(D‘i‘md) g — i (— D‘i‘ms)Q’Ys% + + — +
0. D, Db - + + +
Z@{YsﬁuDuwd + + + —
Oy(=D +my) (D +mg)i —~ - - +
i0,(=D +my) 75 (D +ma)ta + + + -
D, P (D + ma)a — By(~D + my) Pt - + + +
@sﬁ(ﬁ + ma)a — ¥, (=D + ms)<5¢d — + + -
0, D (D +ma)bu+ 0y(~D +m) Dy - + - -
ESE}<5 + ma)hg + 1, (— D+ ms)(ﬁwd - + — —
z@ﬁ%(D+md)¢d—i%(—5+m5)%ﬁ¢d + + + -
ZE3575(5+md)wd_Zas(_D_'_ms)’yS(Ewd + + + -
i, P 95(D +ma)ba+i0,(~D +m)y Ava|  + + - +
zEﬁ%(Derd)wdH%( 5+ms)75ﬁwd + + - +

Table 7.2: Transformation properties of gauge invariant operators and of operators which
vanish by the equations of motion, in the physical basis (Operator dimension = 5).
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follows immediately that Ocyr = O; can only mix with the following operators:

Oy
O,
Os
Oy
Os
Os
Or

Os

012

O3

go Es Ouv Guuwd

(mg 4+ m2)abg

0y (D + ma)*tha + by (=D + me)*a
My (D + ma)ty + mahy(—D + my)iy

Mgy (D + ma)thg + may(—D + my)iy

<

P (D + ma)tba — Dy(—D +my) P
¥

(D + ma)tpg — (=D + ms)%i/fd

<

iTq Es%(ﬁ + M) g + i Es(—ﬁ + ms)Ys5a

i (rama + 15 me)Y Y54

P, Ya,

(7.19)
(7.20)
(7.21)
(7.22)
(7.23)
(7.24)
(7.25)
(7.26)
(7.27)
(7.28)
(7.29)
(7.30)

(7.31)

where left and right covariant derivatives are defined in terms of the gluon field A, as

follows:

— — )
D, = 0,+1igA,,

H .
m 811«_290"4#'

>l
I

(7.32)

(7.33)

For the parameters 7, , 74, in our perturbative calculation we have made the (indepen-

dent) choices of values ry = +1, r4 = %1, consistently with their values in simulations.

Operators Oy and Oy are not gauge invariant, but they are admissible candidates for
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mixing, since they vanish by the equations of motion; indeed, they will mix with O¢yy
both in dimensional regularization and on the lattice. The operators Oy;, O12, O3 are of
lower dimension and thus they do not mix with O in dimensional regularization; they do

however show up in the lattice formulation.

7.3 Renormalization functions

The operators OF are related to the bare ones, O; (i = 1,...,13), through:
13
O, = Z ZUOJR (in matrix notation : O = ZOR) ) (7.34)
j=1

The 13 x 13 mixing matrix Z;; should more properly be denoted as Zg’y, where X =
DR, L,... is the regularization and Y = RI',MS, ... is the renormalization scheme. It
obeys:

Z=1+0(g, (7.35)

where ¢ is the renormalized coupling constant; in particular,

13

OR:Z(Z_1>1']' 0;, Z7h=2-1-2+0(g"). (7.36)

(2

Since we are interested in OF we calculate the first row of the mixing matrix: Z; = Zy;.
We note that Z; = O(g?) for i > 1, and Z; = 1 + g% z; + O(g?).

Since renormalization conditions are typically imposed on amputated renormalized
Green’s functions, let us relate the latter to the bare ones. For the quark-antiquark Green’s

functions:

WP ORG = (@R (R ORGP (pR P
13

= (2o D)) (2" (@ 0) (Zo )™
= Zy Z(Zil)li@ﬂ Oi@>amp’ Y= \/Z_wl/JR- (7.37)

The one-loop Feynman diagrams contributing to () Oy $>amp are shown in Fig. Note
that Eq. (7.37) holds for an arbitrary regularization and arbitrary renormalization scheme;
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the only condition on the renormalization scheme is that it be mass-independent, in which
case the quark field renormalization constant Z,; does not depend on flavor. To avoid
heavy notation we have omitted coordinate/momentum arguments on v, O, as well as
Dirac/flavor indices on (¥ ), () O 1)), etc.

A R S T

Figure 7.1: One-loop Feynman diagrams contributing to the 2-pt Green’s function of the
chromomagnetic operator, @;. A wavy (solid) line represents gluons (quarks). A cross
denotes the insertion of O, .

Similarly for quark-antiquark-gluon Green’s functions we have:

13
(R ORG AR sy = 2o 2N (27Nl O A, Ay = Za AR, (1.38)

i=1
[Strictly speaking, in the right-hand sides of Egs. and one must take the
regulator to its limit value (i.e. ¢ — 0 in dimensional regularization or a — 0 on the lattice).
This limit is convergent, provided all renormalization functions Z have been appropriately
chosen. It is only in this limit that the right-hand sides of Eqs. (7.37) and ([7.38) are equal

to the corresponding left-hand sides.|

The one-loop Feynman diagrams contributing to () O, @A»amp are shown in Fig.
(one-particle irreducible (1PI)) and Fig. (one-particle reducible (1PR)).

Imposing renormalization conditions of the above 2- and 3-pt Green’s functions is suf-
ficient?] in order to obtain all Z;.

In some definitions of O¢y (see, e.g., [136]) there is an extra factor of a quark mass:

Ocrr =mOcyy (7.39)

R

where m is the mass of one of the quark flavors. The renormalized mass m™ is given by

30ne could of course calculate also 4-pt Green’s functions; in doing so, a number of consistency checks
would emerge regarding the divergent part of the mixing coefficients Z;. Further Green’s functions (5-pt
and above) will bring in no superficial divergences; thus the regulator (in our case, the lattice spacing a)
can be taken to its limit right away and no further renormalization conditions or consistency checks will
arise.
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5
Sy
AN
(o2}
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Y

X
%LL'M/\N\'\H;

G-C
P

S

Figure 7.2: 1PI Feynman diagrams which contribute to the 3-pt Green’s function of O;.
Diagrams 1, 4, 6 do not appear in dimensional regularization. A wavy (solid) line represents
gluons (quarks). A cross denotes the insertion of O; .

SN N S
Ty ™

Figure 7.3: 1PR Feynman diagrams which contribute to the 3-pt Green’s function of O;.
A wavy (solid) line represents gluons (quarks). A cross denotes the insertion of O; .




7.3. Renormalization functions 121

mf = Z-1m; in a mass-independent scheme, Z,, is also flavor independent, by analogy

with Zy. In this case:

13
Of = mfof=m"> " (27), 0
i=1
13 13
= (2,'m)) (27", 0:=> (27", Z,} (mOy) . (7.40)
=1 =1

Thus the renormalization matrix Zij for @CM is given by: Zij = L Lij.

By analogy with Z,,, a multiplicative factor of Z, must be included in 7, if the calcu-
lation of Green’s functions involves the operator 1, 0w G Ya, rather than g, 0w G V4.
We will make use of this fact in Eq. (7.61). The calculation of Z,, and Z, is presented in
section [7.4l

In order to impose renormalization conditions, we need the expressions for the tree-
level 2-pt and 3-pt Green’s functions of O;, i = 1,...,13. The tree-level parts of the 3-pt
amputated bare Green’s functions (¥s(q2)O;(2)¥4(g3) A, (q1))amp are shown (apart from
an overall factor of e!®(~#1—92+®)) in Table ; similarly for the tree-level parts of the
2-pt bare Green’s functions (1s(q2)O;(2)14(q3))amp- Note that the tree-level 3-pt Green’s
functions, despite being amputated, receive also contributions which are not 1PI, as shown
in Fig.[7.4] We do not include these in Table[7.3} however, their value can be easily deduced

from the corresponding tree-level 2-pt Green’s functions.

Figure 7.4: 1PR Feynman diagrams contributing to the tree-level 3-pt Green’s functions; A
wavy (solid) line represents gluons (quarks). A cross denotes the insertion of the operator
O, i=1,...,13.
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7.3.1 Dimensional Regularization

The next step in our renormalization procedure is to calculate the MS-renormalized 2-pt
and 3-pt Green’s functions of O¢jy; in order to do so, we must regularize the theory in
D-dimensions (D = 4 —2¢), in the continuum. The general form of the O (1/¢€) part of the

bare Green’s functions is:

(Y O )28 L= P (45 + 43) + p2 (mZ +m3) + psi (ma s+ ms ¢b)
+pai (Msgs +mah) + ps5G2-q3 + pe o s + prmsmg  (7.41)
<¢ Ol EAV>3,D£71P[’1/€ = Rl g (Q2 + q3)11 + RQg (f)/qu + Q/Q %) + RBZQ (ms + md) Yo

+Ry (=290, qip) (7.42)

where g is the renormalized coupling constant in the MS scheme, which is related to the bare

ZDR,W)A DR
g

coupling constant in dimensional regularization, gi’® | through: g = = ( gt

and p;, R; are numerical coefficients. Computing p;, R; to one loop we find:
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2

_ 3 4
P 16 72 < 6) (7.43)

_ gQﬁ _6 (7.44)
P2 = Hgpe € '

_ 90 (3 (7.45)
P5 = 672 \e '
pr = ps=ps=pr =70 (7.46)
R - 9Cr(=6 (7.47)

RRETY C '

Ry =

5 NC) (7.48)

Ry

(7.50)

=
o - W( L a0
- 1 (v

o} 7N, BaNC)

167T2 2]\76+ de + de

Here, N.: number of colors, Cp = (N? —1)/(2N.): quadratic Casimir operator in the
fundamental representation, a: gauge parameter (a« = 1(a = 0) corresponds to Feynman
(Landau) gauge).

We have also computed the finite parts (O(e°)) for the above Green’s functions, which
are just the corresponding MS-renormalized Green’s functions. These are irrelevant for
the computation of the mixing coefficients in the MS scheme in dimensional regularization;
however, they are necessary in the calculation of Z;; with lattice regularization and MS
renormalization, see Section Using the form of Eqs. - and the tree-level
Green’s functions of the various operators (Table , we construct a set of equations

for the disentanglement of the mixing coefficients; in particular, by demanding that the
coefficients of O(1/e) in the left-hand sides of Egs. (7.37) - (7.38) vanish, we obtain [T}

4Note that Eq. di will also contain O (1/¢) terms which are not polynomial in g;, m; such terms
arise from the 1PR one-loop 3-pt Green’s function of O; (Fig. and from the 1PR tree-level Green’s
functions of O,, ..., 013 (Fig. . By Eq. (7.37) all such terms cancel out among themselves.
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— gZDPRMS _ gDRMS (7.51)

R (7.52)

9 ZDRMS | gDRNS | ZDRNS - _ (7.53)

_ ZPRMS _ ZDRMS | ZDRMS _ (7.54)

—ZPRMS (7.55)

— ZPRMS | g gDRVS (7.56)

— ZDRMS _ gDRMS _ o ZDRNS - _ (7.57)

ZPRMS _ 9 gDRMS _ 9 ZDRMS - p (7.58)

— ZPRMS | gDRMS | ZDRMS R, (7.59)

ZPRMS _ o gDRMS | ZDRMS | ZDRMS - g (7.60)

g ZPRANS  gDRNS 4 gDRMS _ g2 (sz’MS + % LREMS ngRvMS) (7.61)
where

ZfR’NTS = 1+4+4° zgR’I\TS +O(gY), zgR’I\TS = #% (—Cra) (7.62)

ZDRMS - g 2 DRMS 4 gty SDRMS 1617T2% (136NC - O‘;V‘f - 2;\@ ) (7.63)

ZPRMS = 1 4 g2 DENS L O(gh),  ZDRMS = #% (% - 116NC) . (7.64)

In particular, Eq. (7.61)) stems from the requirement that the coefficients of (1/€)(—2ig0,,q1,)
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in the left-hand side and right-hand side of Eq. ([7.38)) coincide:

R 1 _ _ R
0 = (14 zgR,NIS) (1 I 592 Zf‘)R,MS) (1+92 Z;:)R,Ms) (1— ¢ zPEMS) (1 4 R))

J

~~

only the O(1/¢) part

— ZDRMS _ ZDRMS (7.65)

As it stands, the system of 11 equations (Eq. (]7.51 - (]7.61 ) for the 10 unknowns ZER’WS—
Zl%R’WS appears overconstrained; indeed, Eqs. 7.51'), 7.55') and can only be com-
patible if 2 p; = R;. This relation is indeed confirmed by our results (Eq. and Eq.
(7.47)). The presence of zé)R’m in Eq. stems from the fact that all one-loop Green’s
functions were calculated with an insertion of ¢, 0, G, ¥4 (rather than g, 0,, G Va,

see comment below Eq. ((7.40)).

Solving the above equations, we obtain the mixing coefficients:

VS 2 1 ( N 5
ZDRMS 4 g L[ N .
! Tl 2 +2Nc (7.66)
— 2 1 3
7 DRMS g L[ N. 4+ =2 .

2 1672 € 3 Ne + N, (7.67)
ZPEMS (7.68)
ZPEMS (7.69)

WS 2 1 /3N, 3
gbRMS 9 2 c 9 770

° 1672 ¢ \ 2 N. (7.70)

ZPEMS (7.71)
VS 2 1 ( 3N, 3
gDRMS 9 1 [ _9f% 79

! 1672 ¢ 1 a2, (7.72)

ZPRMS (7.73)
NS 2 1 (3N, 3

gDRMS 97 2 c 74

) 1672 ¢ \ 4 2N, (7.74)

2
DRMS g 1 (3N, 3
ZIO — 16 7r2 E ( - . (775)
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An immediate check of our results is the extraction of the correct anomalous dimension,

Yo, already known in the literature for the operator Ocur (Eq. (7.39)), with a quark mass

and a coupling constant in its definition [I36]. The following relation holds between 2z, RMS

and f’\Y/CMI
_ __ 2 8
Sens = —2¢ g% (PRMS o DRNSY 97 (4 O ,
Youm €g (’Zl —+ Zm ) 16 7T2 NC ) (7 76)
_ — = 1 1
( ZpS =14 g2 228 1 0(gY), 22 = g (-3 CF)) : (7.77)

7.3.2 Lattice regularization — MS renormalization

The computations of the 2-pt and 3-pt bare Green’s functions of O¢js on the lattice are the
most demanding part of the present work. This is particularly true for the 3-pt function,
since it had to be calculated for arbitrary values of the external momenta, g; , of the quark,
antiquark and gluon. The algebraic expressions involved were split into two parts: a)
Terms which can be evaluated in the a — 0 limit: Included in this part are terms with
polynomial dependence on ¢; (with coefficients which depend on the lattice regularization),
but also terms which exhibit a very complicated dependence on ¢;, even for zero quark
masses, involving Spence functions. These functions constitute a part of the regularization
independent renormalized Green’s functions. b) All remaining terms: These are divergent
as a — 0, however their dependence on g;, m is necessarily polynomial. Our computations
were performed in a covariant gauge, with arbitrary value of the gauge parameter a. Given
that some of the operators which mix with O¢g), contain powers of the quark masses, we
have kept these masses different from zero throughout most of the computation; it is only
in the final expressions for Z; that we set m — 0.

For the algebraic operations involved in evaluating Feynman diagrams, we make use
of our symbolic package in Mathematica. A brief description of the computation of a
Feynman diagram can be found, e.g., in Ref. [43] and references therein. The algebraic
expressions for each Feynman diagram typically involve ~ 10° terms at intermediate stages.
The requirements in terms of CPU time, both for algebraic manipulation and for numerical
integration of momentum loop integrals, were rather modest as compared to human effort:
A total of ~ 4 months on a single core CPU was required.

The computation on the lattice is performed in the twisted basis (, x), and thus, before

comparing with the results in dimensional regularization, we must rotate to the physical
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basis (1, 1). This rotation amounts to the following transformation of the fermion field:

XY = e ting, (7.78)
X = e i’y (7.79)

The rotation of the 2-pt Green’s function is therefore:

(W OP)amp = €17 (XO X)ampe 57, (7.80)

and similarly for the 3-pt Green’s function.
We will make use, once again, of Eqs. (7.37) - (7.38)), with MS being the renormalization

scheme; however, the regularization will now be the lattice. The above equations now take

the form:
__ — 13 ___
(O )y = 2y > (257 L, (W O ) by (7.81)
and l 113
(W OV AN, = Zp B (ZEM)P N (2597 (W Oig A, (7.82)
=1

The left-hand sides of the above equations are known from the calculations in dimen-
sional regularization, see Subsection [7.3.1] The bare lattice Green’s functions in these
equations contain terms which diverge in the limit a — 0; these divergent terms have a
form similar to Eqgs. (7.41)) and (7.42)), with two differences:

o — — —log(a”)
€

e There are additional O <l2)7 @ <1> contributions:
a a

i (YOI )y, - P8 (TaVs s+ 75 o Vs) + poi (rama +75ms) v5 +pro- 1 (7.83)

in (O OA ) awpapr = Rsg(ra—75) 757 (7.84)
These contributions lead to mixing with O1, O12 and Os3.

The renormalization functions Zi’m (Zj’m) for the quark (gluon) field, as well as Z;’m,

Z#{m, were only partially available in the literature; we computed them for a general co-

variant gauge, using the Symanzik improved gauge action for different sets of values for the
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Symanzik coefficients. These results are presented in section in the RI' renormalization
scheme along with conversion factors to the MS scheme.

Renormalizability of the theory implies that the difference between the one-loop renor-
malized and bare Green’s functions must only consist of expressions which are polynomial
in ¢;, m ; in this way, the right-hand sides of Eqs. - can be rendered equal to the
corresponding left-hand sides, by an appropriate definition of the (¢;- and m-independent)

renormalization functions Z . These differences can be written as follows:

13

(% O1PNS — (W O1 )y = g (zi M MS) (W O1 P)iree — 3 ZEV(W O s (7.85)

1=2

and

_ —— 1 —
WOTAN, — WO TAN Gy = ¢* (2™ + 525" + ™ 1Y) (101 0A e

13 L
Z ZzL’MS<77ZJ Oz EAV>U‘€6 . (786)
=2

Indeed, we have checked explicitly the polynomial character of the left-hand sides of

Eqgs. (7.85) - (7.86). This check is quite nontrivial, especially for Eq. (7.86]), since both
the bare and renormalized Green’s functions, taken individually, exhibit a very complex

dependence on the momenta qi. The left-hand sides of Egs. - (7-86) have the same
tensorial form as Eqgs. - (7.42), respectively, but with the addltlonal contributions of
Eas. (T53) - (753).

Each tensorial structure (multiplying p; — p1o, R1 — Rs) will provide an equation; the
set of these equations (a total of 15) can be solved for the 13 mixing coefficients Z;. Two of
the equations serve as consistency checks and the remaining 13 lead to a well determined

system. Upon solving all equations we obtain for the tree-level Symanzik gluon action (see
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Appendix , for other gluon actions we have considered):

I 2
2 = 14 L (N 128455+ % log (a? /) ) + — (9.3779 — g log (? %) ) ) (7.87)

16 2 N,
LMS 9°Cr 2 -2
Z A T (2.7677 4 6 log (o 2°)) (7.88)
s
ZgL,NTs — 0 (7.89)
Z4L,1\/Ts — 0 (7.90)
7S 9 N, (53804 - 2 log (a® 7)) + i(—5.5061+3 log (a® pﬂ)) (7.91)
° 16 72 2 N,
ZEMS — g (7.92)
L ZL,W
ZLMS 52 (7.93)
J— 20
gLNS  _ 9 YF g 968y .94
3 6.2 (—3.9654) (7.94)
L ZL,W
ZLMS 52 (7.95)
2
LMS g°Cr 2 -2
26" = gz (5.5061 — 3 log (a* %)) (7.96)
_ 1 92 CF
M = = —4. :
I 162 (—4.0309) (7.97)
i = -z (7.98)
MS 1 ¢°C
LMS g Ufr
735 = 5152 (47.7929) . (7.99)
In these equations, fi is the MS renormalization scale which appears in (1) O; ﬁ)ﬁp and

(6 OV TANE, by virtue of: g = = (ZPRVS) 71 gPR i = (4 fe%) 12
The above results for ZlL’MS - Zng’MS are independent of the choices r, = £1, ry = £1.
There is also a small systematic error originating from the numerical estimation of lattice

integrals, however it is much smaller than the displayed accuracy of the results.
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If one wants to renormalize in an (appropriately defined) RI’ scheme, the calculation
in dimensional regularization is not necessary: it suffices to compute the bare Green’s
functions on the lattice. In this case the left-hand sides of Eqgs. - (7.38), for particular
values of the external momenta, are dictated by the RI’ renormalization conditions.

The conversion factor between the RI' and the MS scheme will actually be a (13x13)

MS

.. . RI’ . . .. . . .
matrix in this case: C; Since this matrix is regularization independent, one may

compute it through:
O = CRINS OfI' | RIS _ (7PR3E) " gorRr (7.100)
Thus, in RI’, the mixing coefficients read (in matrix notation):

g L.RI' _ 7 LMSRI'MS (7.101)

7.4 One-loop Renormalizationof Z., Z;, Z,,, Za, Z, on
the Lattice

In this section we provide the results of our one-loop calculation for the renormalization
functions of the ghost field (Z.), quark field (Z,), gluon field (Z4), coupling constant (Z,),
quark mass (Z,,). These functions enter the renormalization of the chromomagnetic oper-
ator through Eqs. (7.117)), (7.37), (7.38), (7.86), (7.40). The computation was performed
using twisted mass fermions, Symanzik improved gluons and a general covariant gauge.
Here we present the results for the Wilson, tree-level Symanzik, TILW (Bc¢y = 8.30),

Iwasaki and DBW2 gluon actions. For the extraction of the renormalization functions, we

applied the RI’ scheme at a scale ji. Once we have computed the renormalization functions
in the RI’ scheme we can construct their MS counterparts using conversion factors which

are known (see, e.g., [121]), up to the required perturbative order.
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The aforementioned renormalization functions are defined as follows:

G = Zg49, (7.102
c = 2., (7.103
v o= /ZyYh, (7.104

A, = VZ4 AL, (7.105
a = Z7'7Z, ", (7.106

R (7.107

m = Z,m?".

)
)
)
)
)
)

In the above, Z, actually stands for ZgL’RI'; similarly for all other Z’s. The renormalization

function Z, for the gauge parameter receives no one-loop contribution.

7.4.1 Ghost Field Renormalization Z,

The ghost field renormalization enters the evaluation of Z, (see subsection [7.4.4)); it can

be extracted from the RI’ condition:
¥L(q, a)

: LRI'/ -~ _
lim | 7 (aju) 2 |, 7h

(7.108)

where YZ(q,a) is the ghost self energy up to one-loop, computed from the diagrams in

Fig. [7.5]

S, 0) = ¢ + O(g%). (7.109)
The generic form of ZFRY is:
2
LRI _ g-Ne 1 2 -2
zP =144 [ec —1.20200 — 7 (3 - ) log (o j )]. (7.110)

The numerical values of the coefficient e, are listed in Table for all gluon actions we

have considered.
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Figure 7.5: One-loop Feynman diagrams contributing to the renormalization of the ghost
field. A wavy (dotted) line represents gluons (ghosts).

Coefficient | Wilson | Tree-level Symanzik | TILW (8 ¢y = 8.30) | Iwasaki | DBW2
€c 4.6086 3.7759 3.2208 2.5469 | 0.9433
€4 16.6444 13.0233 10.7153 8.1166 2.9154
€m 16.9524 13.6067 11.4247 8.8575 2.9060
€Al 22.3157 10.3088 2.4199 -7.2464 | -28.5805
€42 -19.7392 -6.6595 2.0039 11.8888 | 32.2815
€g.1 -13.4192 -6.5831 -2.0835 3.4235 | 15.6942
€g.2 9.8696 3.3297 -1.0019 -5.9444 | -16.1407

Table 7.4: The coeflicients e., ey, €m, €41, €a2, €g1and ey for five actions: Wilson,
tree-level Symanzik, TILW (/3 ¢y = 8.30), Iwasaki and DBW2.

7.4.2 Renormalization of Fermion Field (Z,) and Mass (Z,,)

In order to obtain the renormalization functions of fermionic operators we also compute
the quark field renormalization, Z,, as a prerequisite.

Zy is extracted from an RI’ condition on the fermion self energy ¥/ (q,a) = if +m +
O(g%):
lim [ng’(ag) tr (S5 (g, a) ) /(4 q2)] ~ 1 (7.111)

a—0 q2=ﬂ2
The trace here is over Dirac indices; a Kronecker delta in color and in flavor indices has
been factored out of the definition of X. The Feynman diagrams contributing to ¥ are
identical to those shown in Fig. Our result for Zy, is:

/ 2C
Z LRI _ gULF
v T 16m2

ey = 4.79200 + alog (a* ) |. (7.112)
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The part of pr proportional to the unit matrix in Dirac space leads to the value of Z,,.

Our result for Z,, is:
9*Cr

ZLRI' _
m + 1672

em +a — 3 log (a® [f)} : (7.113)

The numerical values of the coefficients e, and e,, are listed in Table

7.4.3 Gluon Field Renormalization Z4

The renormalization for the gluon field, Z4, can be evaluated from the gluon propagator

G, (q,a) with radiative corrections:

1 [@w GWiv/€® | dudu/d } (7.114)

Gt (q,0) = = Q

W)= T ag) T Mg
where the one-loop contributions to the transverse (ITr) and longitudinal (II;) parts of the
gluon self-energy, Tz (aq) = 1+ O(g?) are obtained from the diagrams of Fig. The

normalization condition is:

a—0

: 1
lim lzj’m (afi) ] = 1. (7.115)
q2

Our result up to one-loop is:

2
LRI g 1, 1
ZA = 1+ 167‘{'2 [Nc (61471 — 0.8863c + ZOC ) + E@AQ — 21685Nf
2 13 1 _
+ <§ ;- ENC + 5az\fc) log (a” ;ﬁ)], (7.116)

(N stands for the number of flavors). The numerical values of the coefficients e4; and
ez are listed in Table . From Il (aq) one can deduce the value of Z,, as mentioned

before, this receives no contributions at one-loop.

7.4.4 Coupling constant renormalization 7,

Z,4 can be extracted either from the gluon-quark-antiquark Green’s function, or equivalently
from the gluon-ghost-antighost Green’s function G%_.; we have chosen to compute the

latter. However, the results of the two determinations coincide, as has been checked by us
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Figure 7.6: One-loop Feynman diagrams contributing to the renormalization of the gluon
field. A wavy (solid, dotted) line represents gluons (fermions, ghosts). A solid box denotes
a vertex from the measure part of the lattice action.

in the Feynman gauge. The corresponding normalization condition is [’}

lim | 228 (25 22BN G (g, )| = G, (7.117)

a—0

where the expression Gl is required to be the same as the one stemming from the
continuum:

: ' 7DRRI ' i

11_{% [ZCDR’RI (Z4 )1/2ZgDR’RI GAEC(Q)] P2 = G, (7.118)

is required to eliminate only the pole parts of the left-hand

[In the above equation ZP#RI

side, without additional finite terms; hence, it is trivially equal to Z QI)R’I\TS.] Calculating in

dimensional regularization, Gi* is found to be:

2 169 3 1 ji2 5
e =1+ = (= + 5 1 JNe= 2Ny 7.119
Acc L+ 16 72 72 + oo+ 8a + a 0g q 9 f ( )
The Feynman diagrams contributing to G%,, are shown in Fig. [7.7 Our result for Z-RV
is:
LRI g’ 1 11 1 22
7R =14 L [6971 Net 5oz + 0.528TNy + (5 Ne = 2Ny ) los(a’ i )]. (7.120)

PEq. (7.117) is evaluated at vanishing ghost momentum; ¢ stands for the antighost/gluon momentum.
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The numerical values of the coefficients e, and ey o are listed in Table [7.4]

——er—— > —>——g-—>——-

——> >R - > ——-

Figure 7.7: One-loop Feynman diagrams contributing to GL_.. A wavy (dotted) line rep-
resents gluons (ghosts).

7.4.5 Conversion to the MS scheme

! . .
ZPRY “may be expressed as a power series in

Each renormalization function on the lattice,
the renormalized coupling constant ¢!, For the purposes of our work the conversion of

g™ to MS is trivial since:

g™ = g™ + O((g™)?). (7.121)

As already mentioned, our one-loop calculations for Z., Z,, Z,,, Z4 and Z, are per-
formed in a generic gauge with parameter o', The conversion of ¥’ to the MS scheme

is given by:

—\ —1 —
) 7LMS ZL’MS _
RI' __ a A MS
at = (ZOL/RI/ LT ar’. (7.122)

Since (ZLMS/ZLRI"Y — (ZDRMS ) 7DRRI') — 1 at three loops [140], there follows:

o = (2525 ) 0 = oM Ca(g™, o). (7.123)

Since the ratio of Z’s appearing in Eq. (7.123) must be regularization independent,

it may be calculated more easily in dimensional regularization [121I]; to one loop, the
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conversion factor C'4 equals:

9 2
Calg, o) = TS 1+ 36(167) [(90” + 18+ 97) N, — 40Ny] , (7.124)
A

DR,RY 2
ZA

(Here, and below, both g and a are in the MS scheme).
Thus, once we have computed the renormalization functions in the RI’ scheme we
can construct their MS counterparts using conversion factors which, up to the required

perturbative order, are given by:

7 LRI 7 DRRI' 2
c _ c

Clg,a) = ZLMS — yDRVS — L g2 e (7.125)
B Z£7RI/ Z5R7RI/ 2
C¢<g,0&) = ZL7W = ZDR,W =1- W CF a, (7126)
(] ()
ZT[);,RI’ ZgR’RII g2
Cm(g,a) = ZL,WS = ZDR,WS =14+ 1672 CF <4+ Oé). (7127)
(7.128)

7.4.6 Non-perturbative results — Preliminary

In the calculation of on-shell matrix elements, by virtue of the equations of motion, some
of the operators O; — O;3 will not appear. The remaining ones: Oy, Oy, O3, Oy, O1,
O3 will be present, and it is imperative to have a stringent estimate of the corresponding
mixing coefficients. For operators of the same dimensionality as the chromomagnetic one,
ie. O, Oy, Oz, Oy, our one-loop results are expected to provide satisfactory accuracy;
however, for operators of lower dimensionality (O15, O;3), given that their coefficients are
power divergent, perturbation theory is expected to provide only a ballpark estimate at
best. Fortunately, it is precisely for the coefficients of these latter operators that we can
have best access to non-perturbative estimates.

Imposing conditions such as:

lim  (r(0)|OS|K(0)) = lim  (m(0)|O) + 22015 K(0)) = 0 (7.129)

ms, mq—0 ms, mg—0 a?

OIOF K (0D, my = (0101 + =2 O3 + 2Ol K (0)}n, 1y =0 (7.130)

a
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we can fit the values of ¢13(go), ¢12(go) to data from simulations with varying quark masses.

In a preliminary series of simulations, by our collaborators in University of Roma Tre,
the coefficient c;3 extracted at different values of the coupling (5 = 6/¢2 = 1.90, 1.95, 2.10)
using the Iwasaki gluon action. The results for c;3 closely follow a quadratic dependence on

Jo , thus resembling a one-loop effect; nevertheless there is some difference, as was expected:

20

Zronpert g2 91675 (33.7) (7.131)
20

ZPt = 2 ﬁ%g (36.061) (7.132)

7.5 Summary — Extensions

On the lattice, the mixing pattern of the CMO can become considerably more complicated,
given that certain symmetries are violated; there can be mixing with additional operators
of dimension five (with logarithmically divergent coeflicients) or less (with power-divergent
coefficients). A generic hypercubic- and gauge-invariant lattice discretization will result in
mixing with 24+-8+32 candidate operators of dimension 3, 4, 5, respectively. It is thus im-
perative to make a judicious choice of lattice action, with a large set of discrete symmetries,
so as to exclude as many as possible of these candidates.

We calculated the 2- and 3-pt bare Green’s functions of the CMO, first in DR and then
in the far more complicated case of the lattice. The purpose of the calculation in DR is

DRMS
ZR,S

twofold: First, it provides the mixing coefficients Z, , which are interesting on their

own right; second, and most important, it leads to the renormalized Green’s functions in
MS, which are then necessary for extracting the real quantities of interest: ZiL MS

The renormalization functions Z,, Z4 (as well as those for the coupling constant (Z,),
the fermion mass (Z,,), and the ghost field (Z.)) were not all available for the actions
considered in this work, and had to be calculated as a prerequisite. We mention in passing
that Z, and Z,, do not depend on flavor in mass-independent schemes. We also note that
both the 2-pt and 3-pt functions are necessary in order to fix all Z;, but they are also
sufficient.

Besides a series of controls which we have applied to our results, some further ones
may be applied: (i) A calculation of 4-point Green’s functions will provide important
consistency checks, but no new information, on Z;. On the other hand, 5-point functions
and beyond are irrelevant: Being superficially convergent, they have a straightforward

continuum limit. (ii) Non-perturbative estimates of all mixing coefficients would be very
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important cross checks.

Depending on the method one wishes to employ for computing matrix elements of the
CMO non-perturbatively, a renormalization scheme other than MS may be more appro-
priate. In particular, one may employ an extension of the RI’ scheme, in which RI’-like
conditions need to be imposed on both 2-point and 3-point functions. The new mixing
LMS

: L,RI'
coefficients Z; " are related to Z;;

sion matrix, whose elements are finite functions of the renormalized coupling. In fact,

via a (13 x 13) regularization-independent conver-

all relevant matrix elements are directly obtainable from our results on the renormalized
Green’s functions, with no further calculation required.

A further extension of the present work would be to apply methods of improved per-
turbation theory (“boosted” coupling, “cactus” diagrams, etc.) to our results. Another
direction is to compute O(a%g?) corrections to Green’s functions; these, combined with
non-perturbative evaluations, lead to an improvement in the non-perturbative estimates of

the mixing coefficients.



Chapter 8
Summary and Conclusions

In this Thesis we have performed a series of calculations in Lattice Perturbation Theory,
as a tool for connecting results from lattice simulations to physical predictions for strong
interaction processes. Fach computation was performed employing improved actions for
fermions (staggered, SLINC, clover and Twisted mass action) and/or gluons (Symanzik
action).

Let us mention the main computations of this Thesis. We began in Chapter [3| with
the perturbative calculation of the renormalization functions for the quark field and for a
complete set of ultralocal fermion bilinears. This was the first one-loop calculation using
staggered fermions with stout links, and it proved to be extremely demanding in human
and CPU time, due to the fact that the vertices of the staggered operators with stout links
involve lengthy expressions. More specifically, we calculated the fermion propagator and
the quark-antiquark Green’s functions of the bilinears. We presented the matrix elements of
these operators and the renormalization functions for the quark field and for all ultralocal
taste-singlet bilinear operators with general values of the action’s and operator’s stout
smearing parameters wgu,, Wa,, Wo,, Wo,. Our perturbative results of Zg and Zp have
been used, in Chapter , for the determination of the quark condensates (<z/_1fazwa> and
<@Ef¢f>), in order to study the response of the QCD vacuum to an external magnetic field,
at zero and finite temperature. Magnetic fields probe the QCD vacuum in several ways,
by affecting its fundamental properties like chiral symmetry breaking and restoration, the
phase diagram, as well as the vacuum polarization. Together with our collaborators in
Regensburg and Wuppertal, we aimed at a determination of the magnetic susceptibility of
the vacuum. This quantity was evaluated for a wide range of temperatures applying fully

dynamical lattice simulations. We performed the renormalization of the tensor coefficient

140
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and carried out the continuum extrapolation using results obtained at different lattice
spacings. We extracted the value of the magnetic susceptibilities x s at zero temperature
for the up, down and strange quarks in the MS scheme at a renormalization scale of 2
GeV. The magnetic susceptibilities at 7" = 0 were negative, indicating the spin-diamagnetic
nature of the QCD vacuum. We also found that the polarization changes smoothly with
temperature in the confinement phase and is then drastically reduced around the transition
region.

In Chapter [5| we discussed improvement to second order in the lattice spacing a, in
one-loop perturbation theory. In particular, we focused on the fermion propagator, local
and extended fermion bilinear operators; employing the fermionic part of the SLINC action
and the Symanzik improved gauge action for different sets of values of the Symanzik coef-
ficients. These operators are of great phenomenological interest, since they are employed
in the calculation of certain transition amplitudes among hadrons and in the extraction
of meson and baryon form factors. We provided the expression for the inverse fermion
propagator (in the massless case) S~1, the 2-pt Green’s function of local bilinears A%ﬁloo‘”
as functions of the coupling constant, the number of colors, the gauge fixing parameter,
the clover and the stout parameter. The dependence of these quantities on the Symanzik
coefficients is not expressible in closed form, thus we provided results for a selected list of
the most commonly used values for these coefficients; for economy of space, we presented
our results for tree-level Symanzik gluons. We also presented the Z factors for the quark
field and for all local fermion bilinears in the case of tree-level Symanzik gluons, along with
the renormalization of the extended bilinear operators. Our O(a?) perturbative results are
applicable to data extracted from numerical simulations performed by the QCDSF collab-
oration. Our results will be useful for many collaborations worldwide: By setting the stout
parameter to zero, the SLINC action reduces to the clover action; setting both the stout
and the clover parameter equal to zero we obtain the Wilson action (where the Wilson
parameter r is henceforth set to r = 1), and finally setting only the clover parameter equal
to zero we obtain the Wilson action with one stout smearing step.

In Chapter [6] we used perturbative results to correct nonperturbative renormalization
factors in the RI'-MOM scheme. We investigated a method to suppress lattice artifacts
by subtracting one-loop contributions to renormalization factors, calculated in lattice per-
turbation theory, from simulation data. The perturbative Z factors of local and one-link
operators had been calculated using clover fermions and Wilson gluons up to O(g*a?).

These results can be used in order to construct improved versions of the operators, with
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reduced lattice artifacts. In doing so, however, one must bear in mind that, unlike the
O(a') case, corrections to O(a?) include expressions which are non-polynomial in the ex-
ternal momentum and thus cannot be eliminated by local counterterms for all momentum
values. As an alternative stratergy, we subtracted the O(a?) effects which we calculated
from the corresponding nonperturbative Green’s functions and this procedure allows for
an improved extrapolation to the limit a — 0.

Finally, in Chapter [7| we studied matrix elements of the chromomagnetic operator on
the lattice. This operator is contained in the strangeness-changing part of the effective
Hamiltonian which describes electroweak effects of semileptonic processes. This study on
the lattice has been hampered up to now by the exceedingly complex pattern of operator
mixing. We identify these operators and subtract their contributions, which are typically
divergent. There is mixing with lower dimensional operators (power divergent), as well
as with gauge non-invariant operators. We computed all relevant mixing coefficients to
one loop in lattice perturbation theory; this necessitates calculating both 2-pt (quark-
antiquark) and 3-pt (gluon-quark-antiquark) Green’s functions at nonzero quark masses.
We used the twisted mass lattice formulation (at maximal twist), with Symanzik improved
gluon action. In our approach, the nonperturbative mixing coefficients will be determined
through a combination of simulations and perturbative calculations. In a preliminary series
of simulations, by our collaborators in University of Roma Tre, one mixing coefficient (¢;3)
was extracted at different values of the coupling (8 = 6/¢g2 = 1.90, 1.95, 2.10) using
the Iwasaki gluon action showing a better-than-expected agreement with our perturbative
results. The continuation of these simulations, along with our perturbative results, will
allow a clean interpretation of lattice data on the Green’s functions of the chromomagnetic
operator.

There are several future plans in which this dissertation could be extended. A natural
extension would be the computation of the Green’s functions for operators including more
covariant derivatives in their definitions. Such Green’s functions provide more detailed
information on the structure of hadrons, being related to higher moments of structure
functions and parton distributions.

We also can study the mixing of Tr (F,, Fj,,) — $0,, T (F,, F,,) with ﬁy{uﬁy}w. By
analogy with the chromomagnetic operator, we will obtain a 2 X 2 mixing matrix in order
to compute the renormalization functions of these operators which will be applied to the
nonperturbative lattice evaluation of the fraction of the nucleon momentum, (z) carried

by quarks (f = ¢ =u,d,s,...) and gluons (f = g).
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It would be also interesting to calculate the Green’s functions of staggered operators
and of the chromomagnetic operator up to second order in the lattice spacing. These
extensions are useful in order to construct improved versions of the operators, but also to
remove O(g? a?) contributions from the non-perturbative data of the operators.

A further extension of the present work would be to compute the existing Green’s
functions up to two loops. Computing higher loops in perturbation theory is a difficult task
due to the increased number of Feynman diagrams and the appearance of more complicated
terms as well as due to the more intricate structure of (sub)divergences. Also flavor singlet
results become different from nonsinglet ones because of a diagrams with closed fermion
loop.

We could also apply methods of improved perturbation theory such as “boosted” cou-
pling [142] or “cactus” diagrams [141] to our results. Such improvements lead to an agree-
ment with nonperturbative estimates, which is typically comparable to what is obtained
by two-loop computations.

Finally, further improved actions are continuously being implemented in simulations by
international lattice collaborations; as a simple example, further steps of stout smearing
are being currently tested. It would thus be important to extend our computations to

these actions as well.



Appendix A

Stout smeared links

Here we present the 1-gluon part of the doubly-stout link, U™, for general values of w;
and ws, as well as the 2-gluon part, U®), (only for wy = 0, to simplify the latter’s lengthy

expression):

U;(Ll)<x;w17w2) =

ig [Aﬂ(x) (W +w) ( — 8A,(z) + _ii (Am +ap) + Ay(z) — Ay(z + aﬂ)))
o (wrw) [64Au(x) + i ( —16A,(x + ap) — 8A,(z) + 8A,(z + aﬂ))
- i i (Ap(x +ac) — Ay(v +app+ad) + Az +ap+ a&))“ (A1)

p==t1lo==%1
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14

O(2ywy,wy =0) =

A, (x)?
g2_u()

; +owi (84u(2)” = D Au(@)(Au(x + ap) + Ay(x) — Ay(z + afi)))

p==%1

+ W [ —324,(z)° + ) (8Au($)(Au(x +ap) + Ay(x) — Az + aﬂ)))

p==%1

£ Y (- i A+ a8) - A +ap) A

p==x1o==%1

1 1 . 1 . . N
= 5A(@)As(2) + 5 A (@ + af) Ay (2) + S A (2 + afs — ap) As(z + ajt)
. | . X
+ Auw+ap) Ao (@ + aft) = A, (x — ap) A (o + au))“ (A.2)
where we define A_,(y) = —A,(y —ap), p> 0.

Note: The order in which a product of gluon fields appear in Uf) is irrelevant for
the particular diagrams which we compute (since these two gluons are contracted among

themselves); we have used this fact in order to simplify the expression for (79.



Appendix B

Results and proofs using Staggered

fermions

B.1 Numerical results for the staggered propagator and

for A\p in the case of the Wilson gluon action

In this Appendix we present the numerical coefficients e; and ey appearing in Eq. (3.27)
for the Wilson gluon action. For economy of space, we do not list our results for the
remaining gluon actions which we have considered; however, they are publicly available.

The coefficients e; and ey are polynomials in the 2 stout smearing parameters of the action

(wAv WA2)3
er = —9.83170 + 167.367 (wAl + u)AQ) — 710.612 (wil + w1242)

—  2842.45wa, wa, + 13134.2 (W, wa, + wa, wh,) — 64757.6w3 w3, ,  (B.1)

ey = 33.3933 — 342.525 (wa, + wa,) + 1174.37 (W3, + w?)

+ 469749 w4, wa, — 18790.0(w}, wa, + wa, w3,) +82920.9w3 wh . (B.2)
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B.2 Results for \p

We provide the expressions for Ao in the case of the Wilson gluon action; these are poly-

nomials in the 4 stout smearing parameters (wa,, Wa,, Wo,, Wo,):

As = —43.2250 + 509.892 (wa, + wa,) — 1884.98 (W}, 4+ w3h,) — 7539.93 w4, wa,
+ 31924.1 (W}, wa, + wa, wh,) — 147678 w?, Wi, (B.3)

Av = 118435 [(wa, + wa,) — (wo, + wo,)] — 473.741 [(wh, +wh,) — (wp, +wd,)]
— 189496 (wa, wa, — Wo, Wo,) + 8527.33 [(wfh Way +wa, w2

— (wél wo, + wo, w?%)} — 41689.2 (%241 wiz — w%l w?%) (B.4)

Ar = 11.4655 + 157.914 (wa, + wa,) — 276.349 (wo, + wo,) — 728.589 (W}, + w3,)
1105.42 (wp, + wp,) — 2869.44 w4, wa, + 4466.53 wo, wo,
44.9165 (wa, + wa,) (Wo, + wo,) + 13709.5 (w5, wa, + wa, w3, )

+ o+

— 202129 (wp, wo, + wo, we,) — 402.837 < (Wa, +wa,) wo, wo,

+

wa, wa, (Wo, +wo,) ) — 68173.3w5, Wi,

100117 wgy, wg, + 3865.46 wa, wa,wo, Wo, (B.5)

_I_

>
=
Il

22.5089 + 157.914 (wa, +wa,) — 434.263 (wo, + wo,) — 710.612 (w5}, + w3,)
1737.05 (wg, + wp,) — 2797.53wa, wa, + 6993.12woe, wo,
44.9165 (wa, +wa,) (wo, + wo,) + 13300.9 (W}, wa, + wa, w3,)

+ o+

—  31582.7 (wp, wo, + wo, Wy, ) — 298.982 ( (Wa, + wa,) wo, wo,

+

WA, wa, (Wo, +wo,) ) 664245 W2

+ 155387 w, wo, + 2004.59 wa, wa,wo, wo, (B.6)
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Ap 34.3567 + 157.914 (w4, + wa,) — 592.176 (wo, + wo,) — 710.612 (w3, + w3,)
2368.71 (wp, + wp,) — 279753 wa, wa, + 9519.74 wo, wo,

44.9166 (wa, + wa,) (Wo, + wo,) + 13134.2 (W}, wa, + wa, w3, )

-

— 420525 (w3, wo, + wo, wh,) — 298.982 <(wA1 +wa,) wo, wo,

+

wa, wa, (wo, + wog)) — 63289.902 w3

210973 wg, wo, + 2371.72wa, Wa,wo, Wo, (B.7)

+

B.3 Spin- and orbital angular momentum- contributions

The appendices [B.3] and contain some material elaborated by F. Bruckmann, and
included here for completeness. The partition function of QCD is given by the functional

integral,

Z = /DUe—ﬂSnget(pf+mf), (B.8)
f

with the massless Dirac operator Dy = v, D,, s and covariant derivative D, = 0,+iq;A,+
igA;T®. For an external magnetic field in the z-direction one has 0,4, — 9,4, = B and
A, =A=0.

The derivative of the logarithm of Eq. with respect to B is

dlogZ 1 0Py

We manipulate this using Tr0Ds/0B x Tr~, = 0 and the cyclicity of the trace:
dlog Z 1 0
LR o G (e A—— op;
8B my l)f + my 8B

1 1 op
- X0 (" P38 )

The derivative of the square of the Dirac operator in the magnetic field background, after
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a standard simplification involving y-matrices, reads

op3  oD?
a_B = a_B — QfO'wy, (Bll)

where DJ% = D, D, s with summation over p but not over f. This implies,

T0 IOg Z 1 qr _ B
vV oB 2 zf: oy (r0mtis) + (OrLeytiy)) (B.12)
where we defined -
—— f
Lay = d(q;B) (B.13)

This operator corresponds to a generalized angular momentum, as for the choice A, =
—By/2, A, = Bz/2 (such that 0,4, = 0), it assumes the form L,, = —i(xz0d, — y0,) +
qrB(2? 4 y?) /2 — yALT® + z AST".

Altogether, using the definition of the (total) magnetic susceptibility, Eqs. (4.2)) and (4.3),

we get

_gg/e (a<d—’f‘7my1/’f> N a<1/7foy¢f>> 7 (B.14)

- 2my J(eB) J(eB)

eB=0
showing two separate contributions &% 4 &% to the total susceptibility, cf. Eq. .

The conventional calculation of the spin- and orbital momentum-related contributions
to & yields the same result. Below we demonstrate this for the free case. Here the spin-
related contribution to the change in the free energy density due to the magnetic field at

zero temperature is given by [102] 144 145],
d3p
ATfS =—N, [ —— B.15
f / (271')3 ( )

fis==%1

Employing the definition of the total susceptibility, Eq. (4.2), the spin-dependent contri-

bution equals

_N, Z qu/; / 7 jm (B.16)

In Appendix we will calculate the tensor polarization in the free case. Comparing
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Eq. (B.16) with Eq. (B.22) below, we see that the first term of Eq. (B.14)) is indeed the
spin-related contribution, £°. The second term of Eq. (B.14)) is then identified with the
orbital momentum coupling. The two contributions to Eq. (4.3)) then read,

G-y (a5/€)° Z qr/€9 <1/)fLa:y1/ff> (B.17)

- 2my 2my eB)
where we used the definition of the tensor coefficient, Eq. . This shows that the tensor
coefficient of the quark condensate is responsible for the spin contribution of the total mag-
netic susceptibility. Recalling the relation between the sign of ¢° and para/diamagnetism
as discussed in Chapter , we conclude that with our sign conventions 7, > 0 (x; > 0)
corresponds to paramagnetism, while 75 < 0 (x5 < 0) to diamagnetism. We remark that
on the lattice £ cannot directly be computed from Eq. , due to the quantization of

the magnetic flux.

B.4 Logarithmic divergence in the tensor polarization

In this appendix we will demonstrate the appearance of a logarithmic divergence in the
tensor polarization of the condensate. We consider one free quark with electric charge gy
and mass my at vanishing temperature.

The negative square of the Dirac operator in the background of a constant magnetic

field is well-known to have eigenvalues [66, 146]

—D7 = N =pi+pi+ (2n+1)|qrB| + s qrB, (B.18)

being twice degenerate (incorporating particle and antiparticle). Here pg, p, are momenta,
n =20, 1, ...labels the Landau levels and s = £1 is twice the spin (these are the eigenvalues
of 0,,), which is coupled to the magnetic field (here we do not consider anomalous magnetic

moments). The sum over the eigenvalues is performed according to (see e.g. Ref. [102]),

O B L o) SR

n=0 s==%1

For the tensor polarization of Eq. (4.10) we note that due to chirality (and since 75
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commutes with o),

1 1
Tr——o,, = Trys——50, B.20
Drtmg Dm0 (20
1 o
= Tr—o,, =m; Tr———4—
D +my P 4 m]
which results in the spectral representation,
; mylgsB| [ dp
<wfamwa> = N, - (271')2 (B.Ql)

S
y .
%S: P?+ (2n+ 1+ s sign(qs B))|qs B| + m?

In the sum the contributions {n = k, s sign(q;B) = 1} and {n = k+1, s sign(q;B) = —1}
cancel leaving only the unpaired lowest Landau level {n = 0, s sign(q;B) = —1}, as was

also noted in Ref. [85]. Hence we get

. myqB [ d’p 1
. = —N, ) B.22
Wroats) ™ /(27r)2p2+m? 522

This cancellation can be confirmed via zeta function regularization and is absent for other
observables like the free energy or the condensate. As the eigenvalue of the lowest Landau
level is B-independent, the free tensor polarization is exactly linear in the magnetic field.
We evaluate the remaining logarithmically divergent integral with dimensional regular-

ization in d = 2 — € dimensions,

2
my QfB 2 TTLf
—— 1 — . B.2
= { s og(4ﬁ>}+0(e) (B.23)

<1zf‘7xwa> =N

Alog mfc—term has appeared, whose coefficient is scheme-independent; for 3 colors its coeffi-
cient is 3/(47%) -my q; B (cf. Ref. [67] with different sign conventions). Also the singularity
for ¢ — 0 has been isolated and can be subtracted through a particular renormalization
scheme, introducing a cut-off A such that (¢o,,0) log(m3/A?), or, on the lattice
log(m3a?). The finite term (y — log(47) in Eq. (B.23)) is scheme-dependent (in our lat-
tice scheme it reads 0.1549 72 — log4) but, together with the logarithmic contribution, it
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disappears from the combination

myqrB
on2

(1 — mfamf) <7vzf0-a:y¢f> = — (B24)

as we also emphasized in the body of Chapter , Eq. (4.18). Note that (1 — my0,,,)
acting on Eq. (B.22)) renders the integral finite and allows for a direct computation of the

coefficient of the logarithmic term.



Appendix C

The derivation of renormalization

condition for Chapter [

In this Appendix we show that the definition leads to renormalization factors which
are invariant under the hypercubic group H(4).
We consider a multiplet of local quark-antiquark operators O;(z) (i = 1,2,...,d) in

position space which transform according to
Oi(x) — S;(R) O;(R™'x) (C.1)

when

¥(z) = D(R)$(R™'z) , ¥(x) — ¥(R™'x) D(R)! (C.2)

for all N = 384 elements R of H(4). Here D(R) denotes the (unitary) spinor representation
of H(4) (or O(4)):
D(R)™y,D(R) = Ry, - (C.3)

We assume that the operators O;(x) have been chosen such that the d x d-matrices S(R)
form a unitary irreducible representation of H(4).
Denoting the unrenormalized vertex function at external momentum p of the operator
O; by A;(p) we have
d
Ai(p) = D Si(R) D(R) A;(R'p) D(R)! (C.4)

Jj=1

for all R € H(4), and analogously for the corresponding tree-level term A!**°(p). Conse-
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quently we get
d
> Tr [Ai(p)A Z Tr [A(Rp)Ai(Rp)'] (C.5)
i=1

Using the orthogonality relations for the matrix elements of irreducible representations one
finds in addition

d
k=1

> (AR ()] = 205 S0 T [Aw(Bp)AK(RD)'] (C.6)

where the sum extends over all R € H(4). The same relations hold when one of the vertex

functions or both are replaced by the corresponding tree-level terms, e.g.,

Z Tr [Ai(p)Af(p Z Tr [A;(Rp)AY*(Rp)'] . (C.7)

Therefore the renormalization condition

77, - 23?:1 Tr [Ai(p) Ai°(p)T]
Zj:l Tr [A;ree (p) A;ree (p)T]

or, equivalently,
dY pTr [AZ-(Rp) A;-ree(Rp)T]

Z7 7.0 = —
YN T (AR (p) Aee(p)]

(C.9)

respects the hypercubic symmetry, i.e., writing more precisely Z = Z(p) we have Z(Rp) =
Z(p) for all R € H(4), and all lattice artefacts in Z must be invariant under the hypercubic
group. Of course, here it has been assumed that Z,(Rp) = Z,(p), as is the case for our

definition (6.3)) of Z,.



Appendix D

Results from the calculation of the

chromomagnetic operator on the lattice

D.1 Mixing coefficients Z;

In this Appendix we present our results for the mixing coefficients, Z; (i = 1,...,13)
in the MS scheme, for the following gluon actions: Wilson, tree-level Symanzik, Tadpole
Improved Liischer-Weisz (TILW, at 3¢y = 8.30; 8 = 2N, /g*), Twasaki and Doubly Blocked
Wilson (DBW2). The values of the Symanzik coefficients corresponding to these actions
are shown in table [D.11

Coefficient | Wilson | Tree-level Symanzik | TILW (8¢o = 8.30) | Iwasaki | DBW2
Co 1 5/3 2.386978 3.648 | 12.2688
c1 0 -1/12 -0.159128 -0.331 | -1.4086
Co 0 0 0 0 0
3 0 0 -0.014244 0 0

Table D.1: Symanzik coefficients for various choices of gluon actions.

Our calculation has been performed in an arbitrary covariant gauge. All the mixing

coefficients Z; (i = 1,...,13) in the MS scheme are gauge independent. To one loop, the
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generic forms of the mixing coefficients are:

_ 2 1 1 )
ZlL»MS = 14+ # (NC (6171 + 3 log(a* /ZQ)) + A (el,g —3 log(a* /12)) > (D.1)

— 2
MS 9°Cr _
zPMS = o7 (e2 + 6 log (a* %)) (D.2)
ZEMS — g (D.3)
ZEMS - — g (D.A4)
N A BN, = 3 og(a? 2 ! 3 log(a? i2 (D.5)
5 T e\ 175 og(a” ii”) +Fc (es,2 + 3 log(a® %)) -
ZEMS — (D.6)
L ZL,W
zEMS = 52 (D.7)
2
MS g°Cr
Z8L MS = ﬁ (68) (D8)
L ZL,WS
ZyM = > (D.9)
2
MS g Cp _
ZEMS oz (—es2— 3log (a* %)) (D.10)
I 1 20
,MS g Ufp
e = w1672 (e11) (D.11)
Zi" = -z (D.12)
I 1 92 CF
75" = 21672 (e13) - (D.13)

The values of e;, e; ; are shown explicitly in Table
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Coefficient | Wilson | Tree-level Symanzik | TILW (5 ¢y = 8.30) | Iwasaki | DBW2
e1,1 -16.8770 -12.8455 -10.4920 -7.9438 | -3.2465
€1,2 13.4540 9.3779 7.0022 4.4851 | -0.5102
€2 1.9290 27677 3.4589 4.5370 | 8.5250
€51 5.9806 5.3894 4.9311 4.2758 | 2.2834
€52 -6.4047 -2.5061 -4.8014 -3.7777 | -0.5292
es -4.0626 -3.9654 -3.8894 -3.7760 | -3.4713
el -4.4977 -4.0309 -3.6792 -3.2020 | -1.9216
€13 54.9325 47.7929 42.6253 36.0613 | 19.9812

Table D.2: Results for the mixing coefficients at one-loop using the MS scheme on the
lattice. The finite parts e; and e, ; are given for five actions: Wilson, tree-level Symanzik,
TILW (3 ¢y = 8.30), Iwasaki and DBW2.
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