

UNIVERSITY OF CYPRUS DEPARTMENT OF CHEMISTRY

DOCTORATE THESIS

New Chemistry of Isothiazoles and 1,2,6-Thiadiazines

Heraklidia Achillea Ioannidou

October 2011

UNIVERSITY OF CYPRUS DEPARTMENT OF CHEMISTRY

DOCTORATE THESIS

Heraklidia Achillea Ioannidou

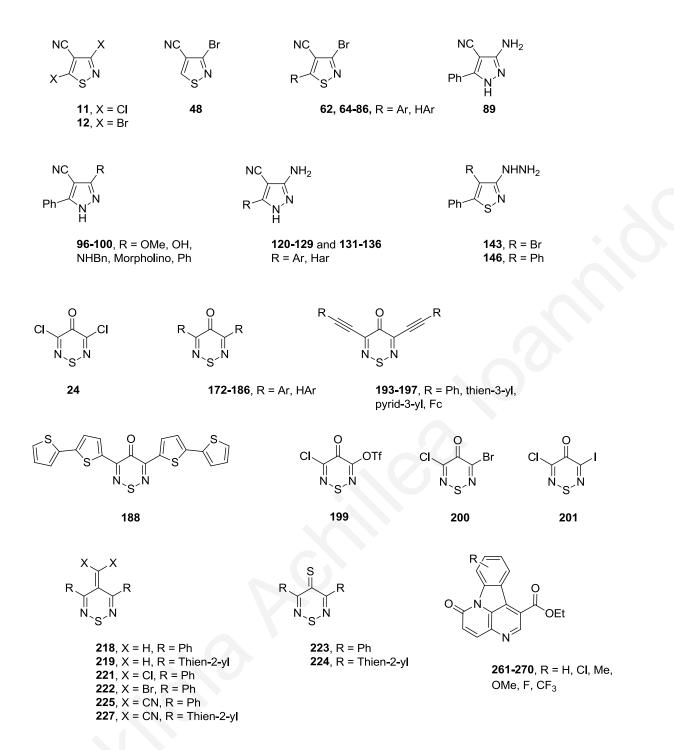
Examination Committee:

- 1. Prof. John A. Joule, University of Manchester (External Examiner)
- 2. Prof. Pierre Audebert, École Normale Supérieure de Cachan (External Examiner)
- 3. Dr. Savvas Georgiades, University of Cyprus (Committee Chairman)
- 4. Dr. Athanassios Nicolaides, University of Cyprus (Internal Examiner)
- 5. Dr. Panayiotis A. Koutentis, University of Cyprus (Project Supervisor)

EXPERIMENTAL PROCESSES ACCOMPLISHMENT STATEMENT

Except where noted below, the work described within this thesis has been carried out exclusively by Heraklidia A. Ioannidou at the Organic Chemistry Research Laboratory, Department of Chemistry, University of Cyprus under the supervision of Dr. Panayiotis A. Koutentis (September 2007-September 2011).

The exceptions include: the synthesis of the 3,5-dichloro-1,2,6-thiadiazin-4-one **24** and preliminary work on the thiadiazines was performed by previous member of the team Mr. Christos Kizas; the polymerization of the thiadiazinone was performed by Dr. Christos Chochos at the Cyprus University of Technology; preliminary work on the canthinones was carried out by Dr. Andreas Gollner and Dr. Aaron Martin; the elemental analysis of all compounds performed by Stephen Boyer at London Metropolitan University.


Date

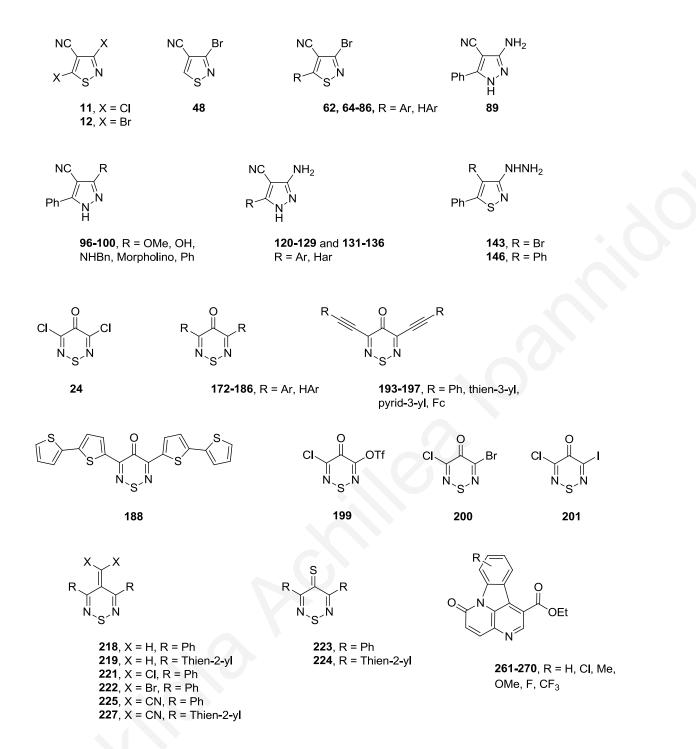
.....

Signature

erakida Achillea loannide

To my mom and dad

ABSTRACT


A brief introduction on heterocyclic chemistry and the chemistry of 3,5-dihaloisothiazole-4-carbonitriles **11** and **12** and 3,5-dichloro-1,2,6-thiadiazin-4-one **24** is described in Chapter 1. The results and discussion section of the thesis is then divided into 3 parts.

In the first part, Chapters 2, 3 and 4 describe the chemistry of the useful isothiazole scaffolds **11** and **12**. In Chapter 2, the selective dehalogenation of 3,5-dihaloisothiazole-4-carbonitriles **11** and **12** is described. The full optimization of the reaction conditions is discussed and some reactions of the potential scaffold 3-bromoisothiazole-4-carbonitrile **48** are given. In Chapter 3 the isothiazole **48** undergoes palladium-catalyzed direct C-H arylation reaction to give 5-aryl and heteroaryl-3-bromoisothiazole-4-carbonitriles **62**, **64**-**86**. The reaction is optimized and full discussion is given. Finally, Chapter 4 describes the transformation of isothiazoles into pyrazoles **89**, **96-102**, **120-129**, **131-136**, **141** and **147**. The scope and limitations of the reaction are described. The first synthesis of the 3-hydrazinylisothiazoles **143** and **146** is reported.

In the second part, new chemistry of 3,5-dichloro-1,2,6-thiadiazin-4-one **24** is described. In Chapter 5 the C-C coupling reactions (Suzuki, Stille, Sonogashira) are applied onto the scaffold **24** to afford bis-aryl and heteroaryl thiadiazines **172-186** and bis-alkynylated thiadiazines **193-197**, in high yields. The synthesis of the potentially useful 3,5-bis[(2,2'-bithien)-5-yl]-4*H*-1,2,6-thiadiazin-4-one **188** is described. In Chapter 6 the synthesis of non symmetrical di-heteroaryl thiadiazinones is described *via* the synthesis of non symmetrical di-heteroaryl thiadiazinones is described *via* the synthesis of non symmetrical di-heteroaryl thiadiazinones **200** and **201** as well as the chloro-triflate thiadiazinone **199**, while Chapter 7 describes the modification of the 3,5-dichloro-1,2,6-thiadiazin-4-one's **24** C-4 position. The methanes **218** and **219**, dihalomethanes **221** and **222**, dicyanoylidenes **225** and **227** and the thiones **223** and **224** of the analogous 3,5-diphenyl and 3,5-di(thien-2-yl)thiadiazin-4-ones **172** and **184** were synthesized.

In the third and final part, the three-step synthesis of canthinone-1-esters **261-270** is described (chapter 8).

Experimental procedures for the preparation of all new compounds together with their full characterization are described in Chapter 9.

ΠΕΡΙΛΗΨΗ

Στο Κεφάλαιο 1 παρατίθεται μια σύντομη εισαγωγή για την ετεροκυκλική χημεία καθώς και τη χημεία των 3,5-διαλογονοϊσοθειαζολών-4-καρβονιτρίλια 11 και 12 και της 3,5-διχλωρο-1,2,6-θειαδιαζιν-4-όνης 24. Τα αποτελέσματα και η συζήτηση της διατριβής χωρίζονται σε 3 μέρη.

Στο πρώτο μέρος, Κεφάλαια 1, 2 και 3, περιγράφεται χημεία των χρήσιμων ισοθειαζολών 11 και 12. Στο Κεφάλαιο 2, περιγράφεται η εκλεκτική αφαλογόνωση των 3,5-διαλογονοϊσοθειαζολών-4-καρβονιτρίλια 11 και 12. Γίνεται συζήτηση για τις συνθήκες βελτιστοποίησης της αντίδρασης και παρατίθενται μερικές αντιδράσεις της 3-βρωμοϊσοθειαζόλης-4-καρβονιτρίλιο 48. Στο Κεφάλαιο 3, η ισοθειαζόλη 48 υπόκειται σε απευθείας αρυλίωση καταλυμένη από παλλάδιο για να δώσει 5-αρυλο και ετεροάρυλο-3-βρωμοϊσοθειαζόλες-4-καρβονιτρίλια 62, 64-86. Η αντίδραση βελτιστοποιήθηκε και δίνεται πλήρης συζήτηση. Τέλος, στο Κεφάλαιο 4, περιγράφεται η μετατροπή ισοθειαζολών σε πυραζόλες 89, 96-102, 120-129, 131-136, 141 και 147 και παρουσιάζονται τα όρια και οι περιορισμοί της αντίδρασης. Επίσης, αναφέρεται η πρώτη σύνθεση των 3-υδραζινοϊσοθειαζολών 143 και 146.

Στο δεύτερο μέρος, περιγράφεται καινούρια χημεία της 3,5-διχλωρο-1,2,6-θειαδιαζιν-4-όνης 24. Στο Κεφάλαιο 5, αντιδράσεις σύζευξης C-C (Suzuki, Stille, Sonogashira) εφαρμόζονται στη θειαδιαζινόνη 24 για να δώσουν δι-αρυλο και ετεροάρυλο θειαδιαζινόνες 172-186 καθώς και δι-αλκινικές θειαδιαζινόνες 193-197, σε ψηλές αποδόσεις. Περιγράφεται επίσης η χημεία της δυνητικά χρήσιμης 3,5-δις[(2,2'-διθειεν)-5υλ]-4H-1,2,6-θειαδιαζιν-4-όνης 188. Στο Κεφάλαιο 6, περιγράφεται η σύνθεση μη συμμετρικών δι-ετεροάρυλο θειαδιαζινονών μέσω της σύνθεσης των μη συμμετρικών διαλογονο θειαδιαζινονών 200 και 201, καθώς και της τριφλικής-χλωρο θειαδιαζινόνης 199 ενώ το Κεφάλαιο 7 περιγράφει τροποποίηση της 4 θέσης της 3,5-διχλωρο-1,2,6θειαδιαζιν-4-όνης 24. Επιτεύχθηκε η σύνθεση των μεθυλενίων 218 και 219, διαλογονομεθυλενίων 221 και 222, δικυανοϋλιδενίων 225 και 227 καθώς και των θειόνων 223 και 224 των αντίστοιχων 3,5-διφαινυλο και 3,5-δι(θειεν-2-υλ)θειαδιαζινον-4-ονών 172 και 184.

Στο τρίτο και τελευταίο μέρος, περιγράφεται η σύνθεση τριών σταδίων των 1-εστέρων κανθινονών **261-270** (Κεφάλαιο 8).

Στο Κεφάλαιο 9 περιγράφονται οι πειραματικές διαδικασίες όλων των νέων ενώσεων μαζί με τον πλήρη χαρακτηρισμό τους.

11

erakidia Achillea loannik

ACKNOWLEDGEMENTS

Coming to the end of this unforgettable period of my life, I would like to thank my supervisor Dr. P. A. Koutentis for providing the opportunity to work on the projects described herein. I thank him for being helpful and for the valuable discussions.

I thank the Cyprus Research Promotion Foundation (CRPF) for financial support (Grant No. PENEK/ENISX/0308/83) and the following organizations in Cyprus for the generous donations of chemicals and glassware: the State General Laboratory, the Agricultural Research Institute and the Ministry of Agriculture. Furthermore, I thank the A. G. Leventis Foundation and the CRPF (Grant No. NEAYIIOΔOMH/NEKYII/0308/02) respectively, for helping to establish the 300 MHz and the 500 MHz NMR facilities in the University of Cyprus. I also thank Stephen Boyer for elemental analysis (London Metropolitan University) and the laboratory technicians Savvas Savva and Panicos Andreou (University of Cyprus).

Within the team I thank Andrey, Maria and Styliana for their friendship and support. I also thank all past members of the team, especially Dani and Stavros for all the good times they offered and for the endless entertainment in the lab. Outside of the lab I thank Marina Berezina and my lovely godson Kirill who made my limited time outside the lab with them pleasant. I also thank Gerasimos, Elena and Katerina for remaining good friends since school.

I would like to deeply thank my parents for their love, support and endless encouragement to keep following my dreams. I am really grateful because, apart from everything else, they taught me how to work hard, as they always have been doing. I also thank my brother Arsenios and sisters Maria-Malevi, Efremia and Porfiria as well as father John, his wife Elena and family. Special thanks go to my godson Achilleas and little nephew Tilemachos who made me smile every time with their innocent comments and always were wondering why they never see me!

erakidia Achillea loannide

CONTENTS

Sections	Page
Abstract in English	9
-	
Abstract in Greek	11
Acknowledgements	13
Contents	15
Abbreviations	21

Brief Contents

Chapter 1:	Introduction	25
Chapter 2:	Regioselective Hydrodehalogenation of 3,5-Dihaloisothiazole-4-	
	carbonitriles: Synthesis of 3-Haloisothiazole-4-carbonitriles	47
Chapter 3:	Silver Mediated Palladium Catalyzed Direct C-H Arylation of	
	3-Bromoisothiazole-4-carbonitrile	63
Chapter 4:	The Conversion of Isothiazole into Pyrazole with Hydrazine	71
Chapter 5:	Palladium Catalyzed C-C Coupling Reactions of	
	3,5-Dichloro-4H-1,2,6-thiadiazin-4-one	95
Chapter 6:	Reactions of 3-Chloro-5-halo(pseudohalo)-4H-1,2,6-thiadiazin-4-ones	105
Chapter 7:	Modification of C-4 Position of 3,5-Disubstituted	
	4H-1,2,6-Thiadiazin-4-ones	113
Chapter 8:	Synthesis of Ethyl Canthinone-1-carboxylates	127
Chapter 9:	Experimental	137
List of Comp	pounds Prepared	223
References		233

Detailed Contents

Chap	oter 1:	Introducti	on	25
1.1	Heter	ocyclic Chei	mistry	26
	1.1.1	Synthesis	of Heterocycles	29
		1.1.1.1	Product Specific Synthesis	29
		1.1.1.2	Non-Product Specific Synthesis	29
1.2	Orga	nometallic C	hemistry	30
	1.2.1	Mechani	sm of C-C and C-N Coupling Reactions	30
1.3	Isothi	azole Scaffo	lds	32
	1.3.1	Transitio	n Metal Mediated Modification of Isothiazole Scaffolds	34
1.4	3,5-D	ichloro-4H-1	1,2,6-thiadiazin-4-one	38
	1.4.1	Synthesis	of 3,5-Dichloro-4H-1,2,6-thiadiazin-4-one 24 and Related	
		Thiadiaz	ines	38
	1.4.2	Chemistr	y of 3,5-Dichloro-4H-1,2,6-thiadiazin-4-one 24 and Related	
		Thiadiaz	ines	39
Char	oter 2:	Regioselec	tive Hydrodehalogenation of 3,5-Dihaloisothiazole-4-	
		carbonitril	es: Synthesis of 3-Haloisothiazole-4-carbonitriles	47
2.1	Intro	luction		48
2.2	Deha	ogenation o	f 3,5-Dibromo- and 3,5-Dichloroisothiazole-4-carbonitriles	52
	2.2.1	C-5 Hyd	rodebromination of 3,5-Dibromoisothiazole-4-carbonitrile	52
2.3	Alter	native Synth	esis of 3-Chloroisothiazole-4-carbonitrile	54
	2.3.1	Sandme	yer Reactions of 5-Amino-3-chloroisothiazole-4-carbonitrile 20	9 54
2.4	Deha	ogenation o	f Dihaloisothiazoles	55
2.5	Synth	esis of 5-De	uterioisothiazole and Proposed Mechanism	56
2.6	Chem	uistry of 3-B	romoisothiazole-4-carbonitrile	60
2.7	Direc	t Cyanation	Attempts	61
2.8	Sum	mary		62

Chapter 3: Silver Mediated Palladium Catalyzed Direct C-H Arylation of	f
3-Bromoisothiazole-4-carbonitrile	63
3.1 Introduction	64
3.2 Optimization Studies	64
3.3 Analogues Synthesis	68
3.4 Summary	70
Chapter 4: The Conversion of Isothiazole into Pyrazole with Hydrazine	71
4.1 Introduction	72
4.2 Hydrazine Equivalents Needed for the Transformation	73
4.3 Modification of Substituents at C-3	74
4.4 Modification of Substituents at C-5	75
4.5 Varying the Isothiazole C-4 Substituent with a Nucleofuge at C-3	78
4.6 Varying the Isothiazole C-4 Substituent without a Nucleofuge at C-3	84
4.7 Mechanistic Rationale	85
4.8 Conversion of Biisothiazoles into Bipyrazoles	87
4.9 Methylhydrazine	88
4.10 Synthesis of <i>tert</i> -Butyl 3-(4-Cyano-5-phenylisothiazol-3-yl)carbazate	90
4.11 Summary	91
Chapter 5: Palladium Catalyzed C-C Coupling Reactions of	
3,5-Dichloro-4H-1,2,6-thiadiazin-4-one	95
5.1 Introduction	96
5.2 Suzuki Reaction on 3,5-Dichloro-1,2,6-thiadiazin-4-one 24	96
5.3 Stille Reaction on 3,5-Dichloro-1,2,6-thiadiazin-4-one 24	98
5.4 Sonogashira Reaction on 3,5-Dichloro-1,2,6-thiadiazin-4-one 24	102
5.5 Summary	103

Chapt	er 6: Reactions of 3-Chloro-5-halo(pseudohalo)-4 <i>H</i> -1,2,6-thiadiazin-4-ones	105
6.1	Introduction	106
6.2	Initial study	106
6.3	Synthesis of Non-symmetrical Dihalo Thiadiazinones	107
6.4	Stille Reaction	108
6.5	Synthesis of Thiadiazinone Dimer	111
6.6	Summary	112
Chapt	er 7: Modification of C-4 Position of 3,5-Disubstituted	
	4H-1,2,6-Thiadiazin-4-ones	113
7.1	Introduction	114
7.2	Addition Reactions	115
7.3	Preparation of Dihalo(thiadiazin-4-ylidene)methanes	117
7.4	Preparation of (Thiadiazin-4-ylidene)malononitriles from 3,5-Diphenyl-	
	and 3,5-Dithien-2-yl Thiadiazinones 172 and 184	118
7.5	Preparation of Thiadiazine-4-thiones	118
7.6	Preparation of (Thiadiazin-4-ylidene)malononitriles from Thiones	119
7.7	Reaction of Thiadiazine-4-thiones with Hydrazine	121
7.8	Comparison of Selected Spectroscopic Data of Thiadiazinylidenes	122
7.9	Summary	123
Chapt	er 8: Synthesis of Ethyl Canthinone-1-carboxylates	127
8.1	Introduction	128
8.2	Suzuki-Miyaura Coupling Reactions of the Bromonaphthyridines	130
8.3	Demethylation of 4-Aryl-6-methoxy-1,5-naphthyridines	131
8.4	Synthesis of Ethyl Canthinone-1-carboxylate and its Analogues	133
8.5	Summary	135

9.1	Introduction	1	38
9.2	Compounds Related to Chapter 2	1	40
9.3	Compounds Related to Chapter 3	1	45
9.4	Compounds Related to Chapter 4	1	56
9.5	Compounds Related to Chapter 5	• • • •	77
9.6	Compounds Related to Chapter 6	1	89
9.7	Compounds Related to Chapter 7	1	.97
9.8	Compounds Related to Chapter 8	2	205
List	of Compounds Prepared	2	223
Refe	erences	2	232

137

erakitika Achillea loannik

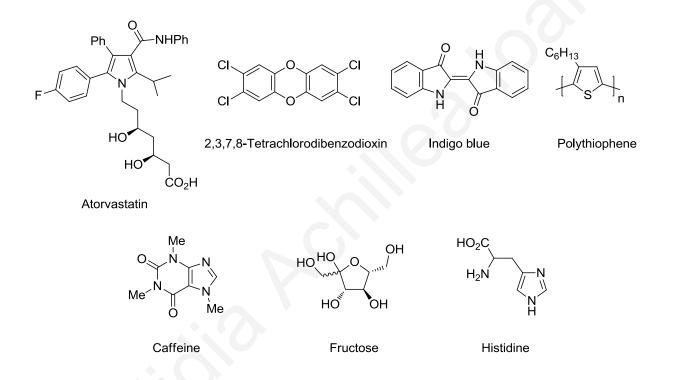
ABBREVIATIONS

Å	Ångström unit
Acac	acetylacetonate
AcOH	acetic acid
Adogen 464®	methyltrialkyl(C_8 - C_{10})ammonium chloride
Aliquat 336 [®]	<i>N</i> -methyl- <i>N</i> , <i>N</i> -dioctyloctan-1-ammonium chloride
Alk	alkyl
amyl	pentyl
APT	Attached Proton Test NMR
aq.	aqueous
Ar	aryl
Bn	benzyl
Boc	tert-butyloxycarbonyl
br	broad
Bu	butyl
ca.	approximately (latin: circa)
CD_2Cl_2	deuterated dichloromethane
CDCl ₃	deuterated chloroform
cm ⁻¹	wavelength unit
18-Crown-6	1,4,7,10,13,16-hexaoxacyclooctadecane
d	doublet (NMR) or days
2D	two-dimensional
Da	Dalton unit (mass spectrometry)
dba	dibenzylideneacetone
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCE	1,2-dichloroethane
DCM	dichloromethane
dd	double doublet
ddd	doublet of double doublets
decomp.	decomposition
DEPT	distortionless enhancement by polarization transfer

DMA	1,2-dimethylacetamide
DMCDA	trans-N,N'-dimethyl-1,2-cyclohexanediamine
DME	dimethoxyethane
DMEDA	N,N'-dimethylethyldiamine
DMF	N,N-dimethylformamide
DMSO	dimethylsulfoxide
DMSO- d_6	deuterated dimethylsulfoxide
dppf	1,1'-bis(diphenylphosphino)ferrocene
<i>e.g.</i>	for example, (Latin: <i>exempli gratia</i>)
EI	electron ionization
equiv.	equivalent
Et	ethyl
Et ₂ O	diethylether
EtOH	ethanol
FTIR	Fourier transform infrared
g	gas
GCMS	gas chromatography mass spectrometry
h	hour
Hal	halogen
Hünig's base	diisopropylethylamine
Hz	Hertz unit
inf	Inflection
in vacuo	under reduced pressure
IR	infrared
J	coupling constant
JohnPhos	(2-Biphenyl)di-tert-butylphosphine
1	liquid
LG	leaving group
lit.	literature
LRMS	low resolution mass spectrometry
m	multiplet (NMR) or medium (IR)
<i>m/z.</i>	mass to charge ratio
\mathbf{M}^+	molecular ion

	<i>m</i> -CPBA	meta-chloroperbenzoic acid
	Me	methyl
	MeOH	methanol
	MHz	megahertz unit
	min	minutes
	mmHg	millimeters of mercury (760 mmHg equals to 101325 Pa)
	mp	melting point
	MW	microwave
	NBS	<i>N</i> -bromosuccinimide
	NCS	<i>N</i> -chlorosuccinimide
	NIS	<i>N</i> -iodosuccinimide
	nm	nanometer unit
	NMR	nuclear magnetic resonance
	nr	no reaction
	Nuc	nucleophile
	°C	celsius degrees
	OX	oxidation
	Ph	phenyl
	PhCl	chlorobenzene
	PhH	benzene
	PhMe	toluene
	PMHS	polymethylhydrosiloxane
	ppm	parts per million
	psi	pounds per square inch (1 psi equals to 6894.76 Pa)
	p-TSA	4-toluenesulfonic acid
	Ру	pyridine
· · · · · · · · · · · · · · · · · · ·	q	quartet
	rt	room temperature (ca. 20 °C)
	S	singlet (NMR) or strong (IR)
	sat.	saturated
	t	triplet
	TCNE	tetracyanoethylene
	TCNEO	tetracyanoethyleneoxide

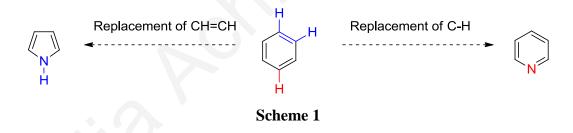
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin layer chromatography
TMS	trimethylsilyl
Tol	tolyl
UV	ultra-violet
Vis	visible
W	weak (IR)
δ	chemical shift relative to a standard
$\lambda_{ m max}$	maximum wavelength
μ l	microliter unit


CHAPTER 1

Introduction

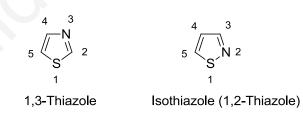

Cont	ents			
1.1	Hetero	cyclic Cher	nistry	26
	1.1.1	Synthesis	of Heterocycles	29
		1.1.1.1	Product Specific Synthesis	29
		1.1.1.2	Non-Product Specific Synthesis	29
1.2	Organ	ometallic C	hemistry	30
	1.2.1	Mechanis	sm of C-C and C-N Coupling Reactions	30
1.3	Isothia	zole Scaffo	lds	32
	1.3.1	Transitio	n Metal Mediated Modification of Isothiazole Scaffolds	34
1.4	3,5-Dio	chloro-4H-1	,2,6-thiadiazin-4-one	38
	1.4.1	Synthesis	of 3,5-Dichloro-4H-1,2,6-thiadiazin-4-one 24 and Related	
		Thiadiazi	nes	38
	1.4.2	Chemistr	y of 3,5-Dichloro-4H-1,2,6-thiadiazin-4-one 24 and Related	
		Thiadiazi	nes	39

1.1. Heterocyclic Chemistry


Heterocyclic compounds are beyond any doubt very important. About 50% of known organic compounds are heterocyclic and many find applications in everyday life, as drugs [*e.g.*, atorvastatin (trade name Lipitor®) which is a substituted pyrrole that lowers blood cholesterol],¹ agrochemicals [2,3,7,8-tetrachlorodibenzodioxin (TCDD) which was a component of Agent Orange used during the Vietnam War],² dyes (*e.g.*, indigo blue that is used to dye jeans),³ and as components in organic electronics [*e.g.*, a polythiophene in organic solar cells].⁴ Many common foods and beverages also contain heterocycles such as coffee (*e.g.*, caffeine⁵), fruit (*e.g.*, fructose⁶), meat (*e.g.*, the essential amino acid histidine⁷) etc.

Some heterocycles are biosynthesized by animals such as haem B, which is found in blood and is responsible for oxygen transport in the red blood cells⁸ or by plants such as chlorophyll, which is essential for photosynthesis.⁹

Fully unsaturated heterocyclic compounds that are planar and obey Hückel's aromaticity rule (4n + 2) are described as **aromatic** or **heteroaromatic** and some of them have similarities to benzene. Pyridine (azabenzene), for example, is formally derived from benzene on replacing one CH unit by N. Analogously, the formal replacement of a CH=CH unit in benzene by NH gives the 5-membered pyrrole (Scheme 1). The introduction of heteroatoms into the aromatic ring and the change of the ring size, can greatly affect the chemistry and physical properties of the ring systems.


While there is a lot of literature investigating the chemistry and applications of compounds containing one heteroatom there are less reports on systems with more than one heteroatom (2 > 3 > 4 etc.). Interestingly, systems with two identical heteroatoms (*e.g.*, N such as pyrimidine, pyridazine, pyrazine, imidazole and pyrazole) have been better explored than those with mixed heteroatoms in the ring, such as O and N (*e.g.*, oxazole and isoxazole) or S and N (*e.g.*, thiazole and isothiazole) (Table 1).

No. of heteroatoms	Heterocycle	Year of	No. of references
	(Keyword) ^a	appearance	
1	Pyridine	1900	67,389
2	Pyrimidine	1900	33,455
2	Pyridazine	1901	2,565
1	Pyrrole	1900	19,201
2	Pyrazole	1902	9,022
2	Imidazole	1901	24,731
1	Furan	1900	15,637
2	Oxazole	1906	1,865
2	Isoxazole	1909	3,152
1	Thiophene	1903	19,994
2	Thiazole	1910	7,011
2	Isothiazole	1956	360

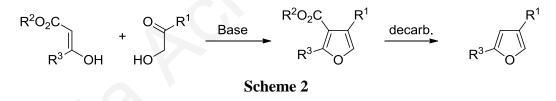
Table 1. Number of publications that have appeared in the literature for selected heterocycles according to the Web of Science website based on the name of the heterocycle as keyword.

^{*a*} Keyword used in the search contains no additional filters.

The amount of work reported, in part is related to the relative abundance of the ring system in nature: thiazoles, which occur in many natural products, have received considerably more attention than the isomeric isothiazoles, natural products of which are rare. As such, there is considerable room for development of both the chemistry and applications of isothiazoles.

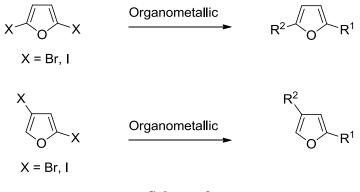
1.1.1 Synthesis of Heterocycles

The synthesis of a substituted compound with a heterocyclic core can follow two pathways: a) product specific, which includes cyclization of acyclic precursors to give directly the heterocycle with the desired substituents and b) non-product specific, which for example can be based on a readily available heterocyclic scaffold that can be further functionalized to afford the desired target compound.


1.1.1.1 Product Specific Synthesis

Representative examples of product specific syntheses, are the Paal-Knorr^{10,11} cyclization of 1,4-diketones that gives 2,5-disubstituted furans and the Feist-Benary^{12,13} synthesis which affords 2,4-disubstituted furans (Scheme 2). In these syntheses the desired substituents (\mathbb{R}^1 and \mathbb{R}^2) are present in the starting acyclic precursors.

Paal-Knorr



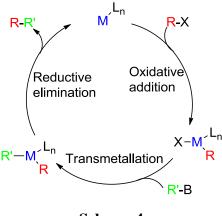
Feist-Benary

1.1.1.2 Non-Product Specific Synthesis

Alternatively, the use of 2,4- and 2,5-dihalofurans, which are readily available,^{14,15} combined with modern methods in organometallic chemistry can offer fast non-product specific routes to 2,4- and 2,5-disubstituted furans, respectively (Scheme 3).

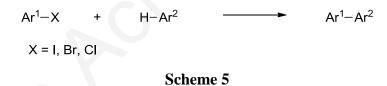
Scheme 3

When large libraries of heterocycles need to be prepared that vary in substituents R^1 and R^2 then the latter non-product specific route offers many advantages over the former, particularly with respect to cost and speed of library construction.


1.2 Organometallic Chemistry

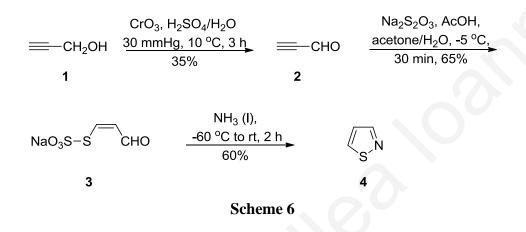
In the second half of the 20th century the use of organometallic chemistry in synthesis has surged: novel synthetic methods, chemical compounds and catalysts have led to a chemical renaissance.¹⁶ Several Nobel prizes have been awarded for the work on organometallics, and notably the 2010 Nobel Prize was awarded to Heck, Suzuki and Negishi for their work on C-C coupling reactions.

Inter- or intramolecular C-C and C-N coupling reactions can be performed, using a wide range of transition metal catalysts (*e.g.*, palladium, platinum, copper, silver, rhodium, ruthenium etc) allowing for the fast and efficient synthesis of aryl, heteroaryl, alkynylated, alkenylated and alkyl substituted systems. Many readily available halo-substituted compounds especially halo-heterocyclic scaffolds exist in the literature that can be easily derivatized by organometallic chemistry.

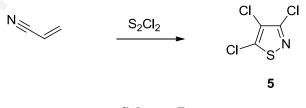

1.2.1 Mechanism of C-C and C-N Coupling Reactions

The mechanism for this type of reactions usually begins with an oxidative addition of one organic halide to the catalyst. The organometallic reagent undergoes transmetallation, a step that places both reagents on the same metal catalyst. Reductive elimination, the last step, affords the product, together with regeneration of the catalyst to continue the catalytic cycle (Scheme 4).¹⁷

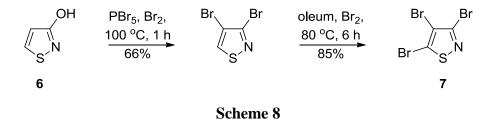
Scheme 4


Despite the importance of C-C coupling reactions, they require access to expensive or sometimes difficult to make organometallics, such as boronic acids or esters (Suzuki-Miyaura coupling) or toxic stannyl reagents (Stille reaction) etc. The area of transition metal catalyzed **direct arylation**¹⁸ which has developed rapidly over the last few years, overcomes this problem and offers an efficient route to useful compounds, by simply combining an organic halide with an active arene (Scheme 5).

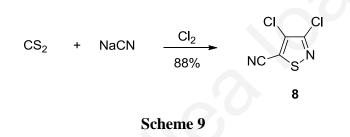
There are a number of potentially useful and readily available isothiazole scaffolds. By applying the powerful C-C and/or C-N coupling techniques to these scaffolds it should be possible to both dramatically extend the known chemistry of isothiazoles and provide more facile routes to isothiazole derivatives.


1.3 Isothiazole Scaffolds

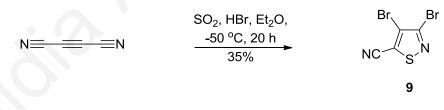
The most common routes to isothiazoles are *via* the formation of the N-S bond.¹⁹ The parent isothiazole can be prepared in three steps starting from prop-2-yn-1-ol (propargyl alcohol) **1**. Oxidation of the latter with CrO_3 under reduced pressure gives propiolaldehyde **2**, which on treatment with sodium thiosulfate affords aldehyde dithionite **3**. Cyclization of **3** in NH₃ (1) gives isothiazole **4** in an overall yield of 14% (Scheme 6).²⁰


The parent isothiazole **4**, however, is a rather limited scaffold for further functionalisation. Its chemistry includes mainly base activation of the C-5 position and subsequent reaction with electrophiles.²¹⁻²³ There are also a few examples of substitution on the N-2 position.^{24,25}

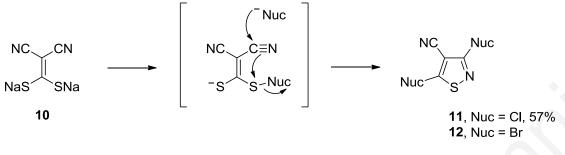
The potentially more useful 3,4,5-trichloroisothiazole **5** was synthesized by treatment of acrylonitrile with disulfur dichloride in 31% yield (Scheme 7),²⁶ however, only the *N*-methylation has been reported.²⁷



Scheme 7


The analogous 3,4,5-tribromoisothiazole **7** was synthesized in two steps starting with 3-hydroxyisothiazole **6** (Scheme 8).²⁸ This isothiazole has been further derivatized using transition metal catalyzed C-C coupling chemistry (see Section 1.3.1).

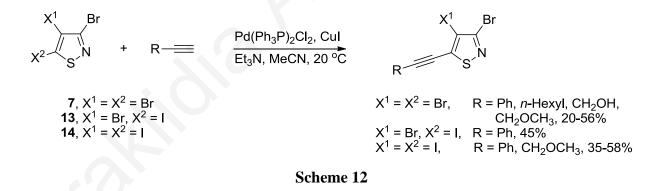
Another useful halo-substituted isothiazole is the 3,4-dichloroisothiazole-5-carbonitrile **8** which is readily available in good yield by reaction of carbon disulfide, sodium cyanide and chlorine gas (Scheme 9).²⁹ An alternative synthesis involves heating a mixture of trichloroacetonitrile and elemental sulfur at 300 $^{\circ}$ C.³⁰

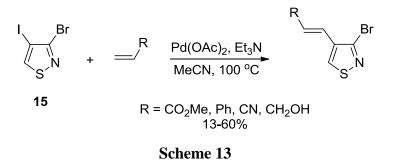


The analogous 3,4-dibromoisothiazole-5-carbonitrile 9 was synthesized by treatment of dicyanoacetylene with sulfur dioxide and hydrogen bromide (Scheme 10).³¹ This route is limiting because of the low yielding synthesis and the need to prepare dicyanoacetylene.

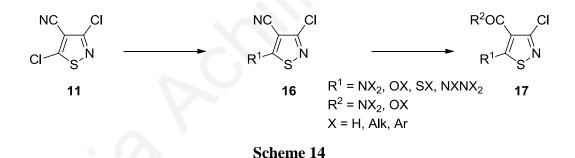
Scheme 10

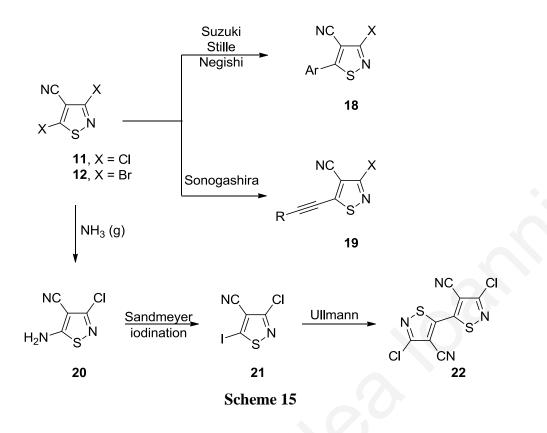
In 1964 Hatchard reported a two step synthesis of another useful scaffold 3,5-dichloroisothiazole-4-carbonitrile **11**. Treating a mixture of malononitrile and carbon disulfide in EtOH with sodium hydroxide gave sodium 2,2-dicyanoethene-1,1-bis(thiolate) **10** in high yield. This salt cyclized on treatment with chlorine gas to afford 3,5-dichloroisothiazole-4carbonitrile **11** in 57% yield. The analogous 3,5-dibromoisothiazole-4-carbonitrile **12** was also prepared on treatment of 10 with excess bromine, but the yield was not reported (Scheme 11).³²

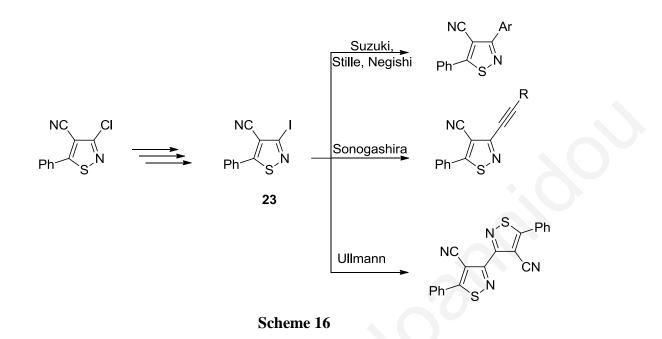


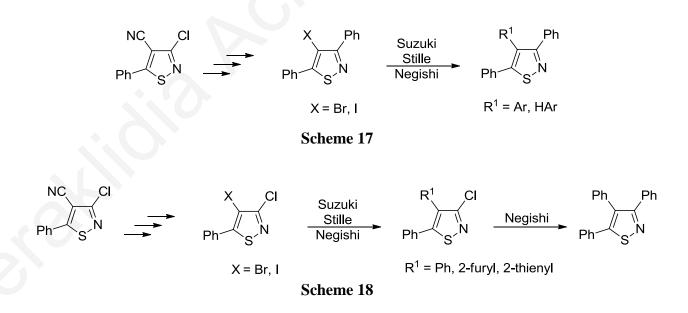

Several of these scaffolds have already been exploited as for the development of organometallic mediated protocols for the non-product specific synthesis of isothiazoles.

1.3.1 Transition Metal Mediated Modification of Isothiazole Scaffolds


Recently, C-C coupling reactions were applied on some halogenated isothiazoles. More specifically, 3,4,5-tribromoisothiazole **7**, 3,4-dibromo-5-iodoisothiazole **13** and 3-bromo-4,5-diiodoisothiazole **14** underwent Sonogashira C-C coupling reaction to afford the 5-alkynylated products in low to moderate yields (Scheme 12).³³


The tribromoisothiazole **7** failed to give a regioselective Heck coupling reaction at C-5 due to protodebromination of the starting isothiazole to 3,4-dibromoisothiazole. A successful Heck reaction was eventually achieved at the C-4 position of 3-bromo-4-iodoisothiazole **15** in low to moderate yields using $Pd(OAc)_2/Et_3N$ in refluxing MeCN (Scheme 13).³⁴


The 3,5-dihaloisothiazole-4-carbonitriles **11** (Hal = Cl) and **12** (Hal = Br) mentioned above (Scheme 11), appeared to be superior building blocks, owing to their facile synthesis, the presence of a stable nitrile substituent at C-4 that could be modified readily at later stages and the presence of two non-chemically equivalent halogen substituents at C-3 and C-5 that promised potential chemoselectivity. The chemistry of 3,5-dihaloisothiazole-4-carbonitriles **11** (Hal = Cl), however, until recently, was limited to mostly nucleophilic displacement of the C-5 halogen forming 5-amino, alkoxy and thio-substituted isothiazoles **16** and further modification of the C-4 nitrile to give amides, esters and acids **17** (Scheme 14).³²

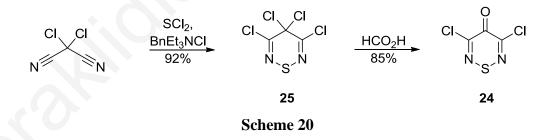

Suzuki, Stille, Sonogashira and Negishi coupling reactions on isothiazoles **11** and **12**, were recently demonstrated by Christoforou *et al.*,^{35,36} affording 3-chloro and 3-bromo-5-aryl and 5-alkynylated isothiazole-4-carbonitriles **18** and **19** in very high yields (Scheme 15). Furthermore, a successful Ullmann type reaction of 3-chloro-5-iodoisothiazole-4-carbonitrile **21** (which was prepared from readily available 5-amino-3-chloroisothiazole-4-carbonitrile **20**³² using either catalytic or stoichiometric Pd(OAc)₂ in refluxing DMF gave the 5,5'-bisisothiazole **22** in high yield (Scheme 15).

The 5-aryl-3-chloroisothiazole-4-carbonitriles were also useful scaffolds as further chemistry could be achieved at both C-3 and C-4. Coupling at C-3, however, required activation since the chlorine atom at this site was not sufficiently reactive. This was overcome by converting the chlorine atom at C-3 into the more reactive iodine using a 3-step protocol which included nucleophilic displacement of chlorine by benzylamine, deprotection to afford the 3-amino-isothiazole, which on Sandmeyer iodination gave the desired 3-iodoisothiazole **23**. The latter was shown to undergo successfully Suzuki, Stille, Negishi, Sonogashira and Ullmann type reactions (Scheme 16).³⁶

Later, Christoforou *et al.*,³⁷ also demonstrated that the isothiazole could be modified in all positions synthesizing 3,4,5-triarylisothiazole *via* two different sequences *i.e.* C-5:C-3:C-4 and C-5:C-4:C-3. While the first sequence worked well for all three Suzuki, Stille and Negishi reactions, the second sequence which involved arylation of the C-3 position at the last step, worked only under Negishi conditions (Scheme 17 and 18).

The availability of useful sulfur-nitrogen heterocyclic scaffolds that can be exploited is not limited to 5-membered heterocycles such as isothiazole. Useful 6-membered scaffolds exist

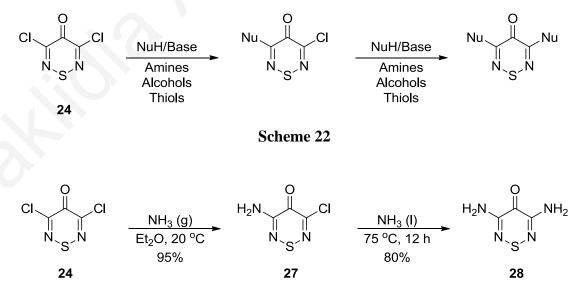
and somewhat similar to 3,5-dichloroisothiazole-4-carbonitrile **11** is 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (Scheme 19). Both isothiazole **11** and thiadiazinone **24** contain a three carbon unit in the ring skeleton, adjacent mixed N and S heteroatoms, a Cl-N=S unit, and two active chlorines at the extremities of the three carbon skeleton separated by a central electron deficient carbon substituted by an electron withdrawing group (C-C=N *vs* C=O). Furthermore, both have existed for some time in the literature but have had comparatively little chemistry reported.



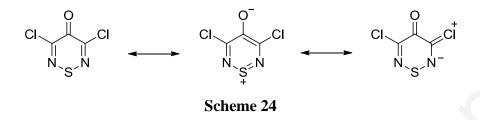

1.4 3,5-Dichloro-4*H*-1,2,6-thiadiazin-4-one

1.4.1 Synthesis of 3,5-Dichloro-4H-1,2,6-thiadiazin-4-one 24 and Related Thiadiazines

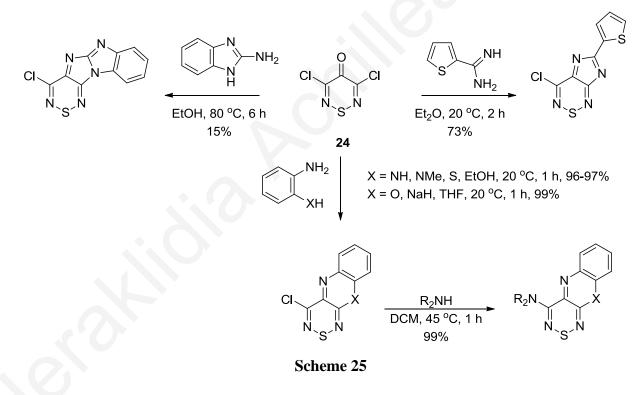
3,5-Dichloro-4*H*-1,2,6-thiadiazin-4-one **24** is readily available and can be made in two steps starting from dichloromalononitrile. This reacts with sulfur dichloride to afford the tetrachloro-1,2,6-thiadiazine **25**, which after treatment with formic acid can give the thiadiazinone **24** in good overall yield (78%) (Scheme 20).³⁸



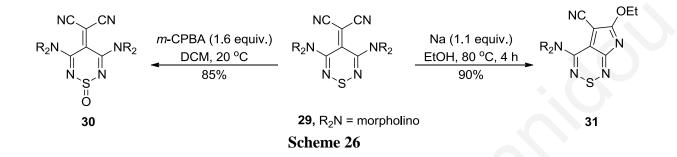
Interestingly, the condensation reaction of thiadiazinone **24** with malononitrile was unsuccessful, but the analogous 4-dicyanomethylene, 2-(3,5-dichloro-4*H*-1,2,6-thiadiazin-4-ylidene)malononitrile **26** was synthesized from tetracyanoethylene (TCNE) on treatment with sulfur dichloride in moderate yield (Scheme 21).^{39,40}

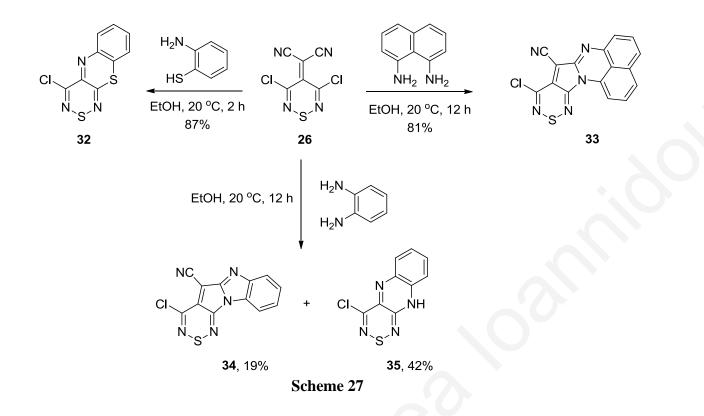

1.4.2 Chemistry of 3,5-Dichloro-4H-1,2,6-thiadiazin-4-one 24 and Related Thiadiazines

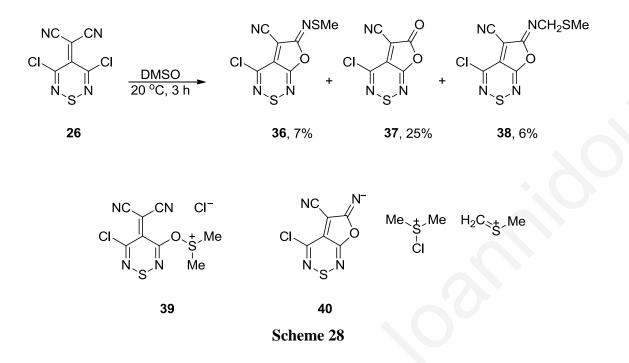
While the chemistry of the thiadiazine-oxides and dioxides has been well explored,^{41,42} that of the non-oxidized 4*H*-1,2,6-thiadiazines has not. The majority of work on 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** and its 4-dicyanomethylene analogue **26** revolves around the nucleophilic substitution of the C-3 and/or C-5 chlorine atoms by nitrogen, oxygen and sulfur nucleophiles (Scheme 22).⁴³⁻⁴⁵ Interestingly, while the initial nucleophilic displacement of the one chlorine atom occurred rapidly and under mild conditions, the second required harsher conditions. For example, while the mono-amino substitution reaction of dichlorothiadiazinone **24** with NH₃ (g) occurs at rt affording the 3-amino-5-chloro-4*H*-1,2,6-thiadiazin-4-one **27** in quantitative yield, the formation of the bis-amino compound **28** required prolonged heating of the mono-amino compound **27** in liquid ammonia in a sealed tube (Scheme 23).



Scheme 23


Furthermore, while the C-4 position bears a carbonyl group, its selective modification in the presence of the highly reactive chlorines at C-3 and C-5, was difficult. Resonance structures indicate considerable electron density on the carbonyl oxygen and this may partially explain the carbonyl's poor reactivity (Scheme 24).


Nevertheless, an intramolecular cyclization onto the carbonyl group was achieved using bisnucleophiles (*e.g.*, 1,2-diaminobenzene, 2-aminophenoxide, *N*-methyl-1,2,-diaminobenzene etc). Initial displacement of C-3 chlorine by the bisnucleophile was followed by an intramolecular cyclocondensation onto the carbonyl to give fused thiadiazines (Scheme 25).⁴³


In a similar manner the ylidenemalononitrile 26 can react with nucleophiles to afford monoand eventually bis-substituted systems. Bis-amino substituted ylidenemalononitriles 29 can react further: in the presence of *m*-CPBA the sulfoxide 30 can be formed while with sodium ethoxide the cyclized 6-ethoxy-4-morpholinopyrrolo[2,3-c][1,2,6]thiadiazine-5-carbonitrile **31** was obtained (Scheme 26).⁴⁴⁻⁴⁶

Cyclization to form fused thiadiazine systems, in a similar way to that of thiadiazinone 24, can also occur when the ylidenemalononitrile 26 reacts with bis-nucleophiles such as 1,2-diaminobenzene, 2-aminobenzenethiol and 1,8-diaminonaphthalene (Scheme 27). With the ylidenemalononitrile 26 the cyclization can occur either at C-4 to afford 6-membered fused compounds by displacing malononitrile (e.g., with 2-aminobenzenethiol, 4-chlorobenzo [5,6][1,4]thiazino[2,3-c][1,2,6]thiadiazine 32 is formed), or at the nitrile group to afford the 5-membered compounds with 1,8-diaminonaphthalene, fused (e.g., 9-chloro-[1,2,6]thiadiazino[4',3':4,5]pyrrolo[1,2-a]perimidine-8-carbonitrile **33** is formed). When 1,2-diaminobenzene was used, both 5-membered and 6-membered fused systems 34 and 35 were formed with the main product being the latter (Scheme 27).⁴³

Unexpectedly, the ylidenemalononitrile **26** reacts with DMSO to form the unprecedented products **36-38**. A possible mechanism was proposed and included initial attack of DMSO (as the nucleophile) and displacement of the chlorine to afford the intermediate salt **39**. This on cleavage could form an anion on the oxygen atom, which on subsequent cyclization onto the nitrile could afford product **36**. The formation of the other products can be explained by further reaction of anion **40** with DMSO species (Scheme 28).⁴⁶

While the 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** bears two chlorine atoms which can readily be modified using non product specific routes (such as organometallic chemistry shown above for the isothiazoles), the known chemistry for the system is presently restricted to only nucleophilic displacement of the chlorines and some intramolecular cyclocondensation reactions.

In this thesis we will examine (Part 2) the potential organometallic mediated chemistry of this useful thiadiazinone scaffold **24**. Particular emphasis will be placed on synthesizing symmetrical and non symmetrical bis-arylated thiadiazinones using non product specific, divergent routes and investigating the reactivity of the C-4 position.

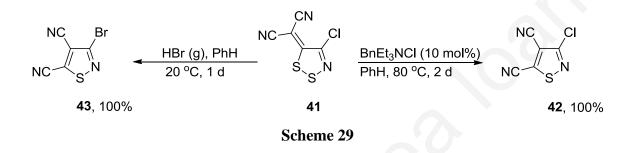
Furthermore, the related 3,5-dihaloisothiazole-4-carbonitrile **11** and **12** scaffolds will be investigated further (Part 1) for its activity towards different types of reagents/reactions emphasizing the synthesis of new isothiazole analogues.

In the third and last part of the thesis, the three-step synthesis of canthinone-1-carboxylates will be described by applying the C-C and C-N coupling methods on bromonaphthyridines. This work is non-related with the projects described in parts 1 and 2 and is considered as "Extra work".

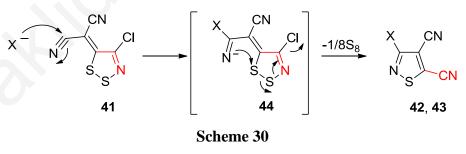
orakidia Achillea loannide

PART 1

erakidia Achillea loannide

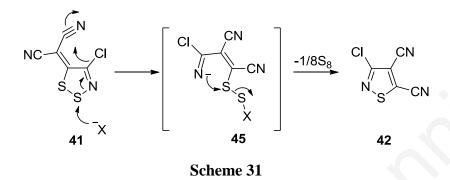

CHAPTER 2

Regioselective Hydrodehalogenation of 3,5-Dihaloisothiazole-4-carbonitriles: Synthesis of 3-Haloisothiazole-4-carbonitriles

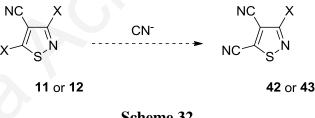

Secti	ons					
2.1	Introdu	iction	48			
2.2	Dehalo	Dehalogenation of 3,5-Dibromo- and 3,5-Dichloroisothiazole-4-carbonitriles				
	2.2.1	C-5 Hydrodebromination of 3,5-Dibromoisothiazole-4-carbonitrile	52			
2.3	Alterna	ative Synthesis of 3-Chloroisothiazole-4-carbonitrile	54			
	2.3.1	Sandmeyer Reactions of 5-Amino-3-chloroisothiazole-4-carbonitrile 20	54			
2.4	Dehalo	genation of Dihaloisothiazoles	55			
2.5	Synthesis of 5-Deuterioisothiazole and Proposed Mechanism					
2.6	Chemi	stry of 3-Bromoisothiazole-4-carbonitrile	60			
2.7	Direct	Cyanation Attempts	61			
2.8	Summ	hary	62			

2.1 Introduction

3-Haloisothiazole-4,5-dicarbonitriles **42** (Halo = Cl) and **43** (Halo = Br)^{47,48} are important building blocks for the synthesis of new isothiazole biocides.⁴⁹ The former can be prepared quantitatively by treating (dithiazolylidene)malononitrile **41** with tetraalkylammonium chloride in refluxing PhH for 2 days while the latter can be prepared in high yield (83%) by treating (dithiazolylidene)malononitrile **41** with hydrogen bromide in toluene for 1 day (Scheme 29).

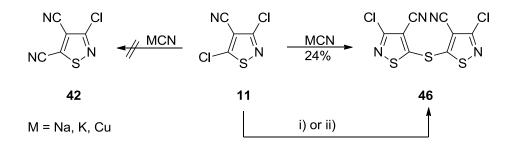


An early proposed mechanism for the formation of isothiazoles **42** and **43** involved nucleophilic attack by either bromide or chloride on the nitrile group leading to the formation of the intermediate **44** which undergoes a variant of the Boulton-Katritzky rearrangement in which a three-atom side chain on a 5-membered heterocycle cyclizes onto that ring forcing the ring to open to afford a new 5-membered heterocycle.⁵⁰ Intramolecular cyclization of the proposed imidine intermediate **44** onto the dithiazole ring sulfur atom (S-1) afforded the aromatic isothiazole; concomitant cleavage of the dithiazole released the new nitrile group (Scheme 30).

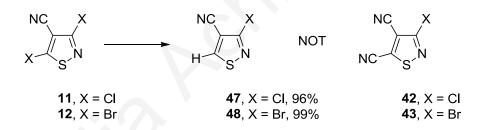


In the case of the chloro analogue, an alternative thiophilic mechanism could also be proposed, which includes initial attack of the nucleophile onto the S-2 sulfur to form the disulfide **45** after a transfer of the chlorine C-5 atom onto the nitrile. The intermediate **45** can

then cyclize, like before, to afford the isothiazole 42 (Scheme 31). This can be supported by examples in the literature where thiophilic reagents attack first the S-2 atom.^{48,51}



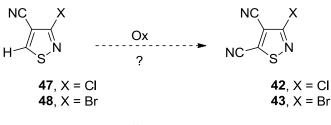
The high yielding conversion of (dithiazol)ylidene 41 into 3-haloisothiazole-4,5dicarbonitriles 42 (Halo = Cl) and 43 (Halo = Br) suffers from the drawback of requiring access to the ylidene, although considerable efforts have been made to prepare this ylidene at lower cost. In an attempt to further reduce the cost for the preparation of these isothiazoles we attempted a shorter and more rational synthetic route by displacement of the C-5 isothiazole's halide of 3,5-dihaloisothiazole-4-carbonitriles 11 and 12 which are readily available³² by cyanide (Scheme 32).⁵²


Previous efforts to introduce a nitrile group at the C-5 position of 3,5-dichloroisothiazole-4carbonitrile **11** using CuCN at 160-250 °C gave 5.5'-thiobis(3-chloroisothiazole-4-carbonitrile) **46** in 24% yield together with unreacted 3,5-dichloroisothiazole-4-carbonitrile **11** (48%).^{53,54} Cyanide, which is a known thiophile,⁵⁵⁻⁵⁸ presumably attacked the ring sulfur to generate a source of nucleophilic sulfur which then attacks the C-5 position of the isothiazole ring to form the sulfide 46. Independent synthesis of the sulfide 46 using MSCN (M = Na, K, Cu) or Na₂S led only to the isolation of 5,5'-thiobis(3-chloroisothiazole-4-carbonitrile) 46 in 77 and 46 %, respectively (Scheme 33). 53,54

Reagents and conditions: i) NaSCN, acetone, 60 °C, 77%; ii) Na₂S.10H₂O, H₂O / MeOH, 45 °C, 15 min, 46%.

Scheme 33

As such, alternative cyanating agents such as $Zn(CN)_2$, $K_4[Fe(CN)_6]$, Bu_3SnCN , Me_3SiCN were tried under palladium catalysis but none of them gave the desired product. In most cases, the starting material could be recovered. In the case where $Zn(CN)_2$ was used, in the presence of $Pd(OAc)_2$ (1 equiv) and PMHS, the C-5 protodebrominated product, 3-chloroisothiazole-4-carbonitrile **47** was isolated in high yield (96%) (Scheme 34). Similar treatment of 3,5-dibromo **12** gave 3-bromoisothiazole-4-carbonitrile **48** in 99% yield.



Reagents and conditions: Zn(CN)₂ (1 equiv.), Pd(OAc)₂ (0.1 equiv.), DPPF (0.01 equiv.), PMHS (few drops), PhMe, 110 °C

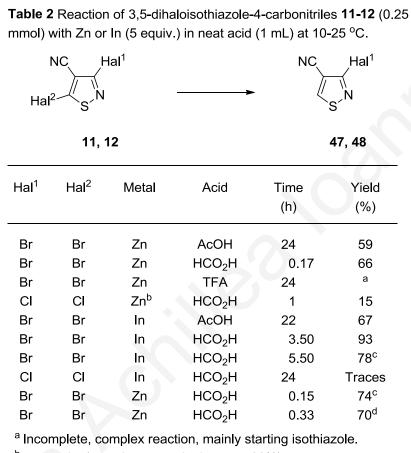
Scheme 34

To the best of our knowledge the preparation of 3-bromoisothiazole-4-carbonitrile **48** had not been reported and while 3-chloroisothiazole-4-carbonitrile **47** has been prepared in good yield (76%) from the protodecarboxylation of 3-chloro-4-cyanoisothiazole-5-carboxylic acid,³⁶ this route required access to 3-chloroisothiazole-4,5-dicarbonitrile **42**⁴⁷ and was considered expensive. As such, we investigated the regioselective hydrodehalogenation of 3,5-dihaloisothiazole-4-carbonitriles **11** (Hal = Cl) and **12** (Hal = Br) with the objective of developing a gram scale and inexpensive route to 3-halo-isothiazole-4-carbonitriles **47** (Hal =

Cl) and **48** (Hal = Br), respectively. The dehalogenated isothiazoles **47** and **48** could then undergo oxidative direct cyanation to afford the desired 5-cyano systems **42** and **43** (Scheme 35).

Scheme 35

A wide variety of hydrodehalogenated systems have been developed.^{59,60} In mixed halogen systems the ease of hydrodehalogenation follows the order of $I > Br > Cl \ge F$ in line with the C-Hal bond dissociation energies.⁶¹⁻⁶⁷ Interestingly, there are comparatively few examples of regioselective hydrodehalogenations and typically the halogen most susceptible to nucleophilic displacement hydrodehalogenated first.⁶⁸ As such, hydrodehalogenation of 3,5-dichloro and 3,5-dibromoisothiazole-4-carbonitriles **11** and **12** was expected to occur regioselectively at C-5, since the C-5 halogen was by far the most susceptible to nucleophilic displacement.^{32,53,69-72}


2.2 Dehalogenation of 3,5-Dibromo- and 3,5-Dichloroisothiazole-4-carbonitriles 2.2.1 C-5 Hydrodebromination of 3,5-Dibromoisothiazole-4-carbonitrile

Initially we focused our attention on the 3,5-dibromoisothiazole-4-carbonitrile **12**. Reducing agents such as NaBH₄ in MeOH, H₂ or HCO₂H with Pd/C, i-PrOH with Mg, or SnCl₂ (DCM) failed to give any product and the starting isothiazole could be recovered while the use of thiourea (EtOH) led to intractable polar products (baseline on TLC). Nevertheless, a successful hydrodebromination was achieved with the use of Zn powder (2 equiv) in refluxing AcOH for 1 h and with In powder (2 equiv) in refluxing H₂O for 24 h or in refluxing HCO₂H for 2 h affording 3-bromoisothiazole-4-carbonitrile **48** in moderate yields 40, 53 and 40%, respectively. In all cases hydrogen sulfide (H₂S) was detected indicating reductive cleavage of the isothiazole ring. The reaction conditions were partially optimized with respect to the metal and its equivalents, the solvent (hydrogen source) and the reaction temperature.

Lowering the reaction temperature to *ca.* 15 °C and performed without heating, reduced the formation of H₂S and subsequently the hydrodebromination of 3,5-dibromoisothiazole-4-carbonitrile **12** but this required the addition of at least 5 equivalents of either Zn or In powder to get good product yields. Reducing the equivalents led to longer reaction times and in most cases unreacted isothiazole could be recovered even after 24 h. While increasing the equivalents of Zn (10 equiv) improved the reaction times, the product yields dropped significantly. At elevated temperatures, the product yields dropped and a strong odour of H₂S could be detected. In this regard, switching from acetic (mp 16.5 °C, pK_a 4.76) to formic acid (mp 8.4 °C, pK_a 3.75) was superior, as the latter not only was a better source of hydrogen⁶⁸ but also had a lower melting point facilitating its use at these lower reaction temperatures. On switching to formic acid the reaction times and product yields improved significantly (Table 2).

Interestingly, switching to the significantly stronger trifluoroacetic acid (pK_a 0.65) led to predominantly unreacted isothiazole even after extended reaction times. It has been reported previously that use of strong acids with either Zn (or to hydrodehalogenate) can fail owing to the extremely rapid rates of hydrogen evolution.⁷³ On scaling the reaction of 3,5-dibromoisothiazole-4-carbonitrile **12** (200 mg, 0.75 mmol) with either Zn or In (5 equiv) in formic acid, the advantageous yields seen with the use of In powder on the smaller scales became negligible 74 *vs* 78%, respectively. In light of the relative costs of Zn and In we

subsequently carried out the hydrodebromination reaction on a 1 g scale only using Zn powder to get the target 3-bromoisothiazole-4-carbonitrile **48** in 70% yield without the need for chromatography.

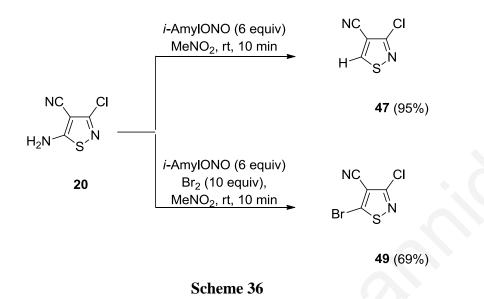
^b 7.5 equiv. (on a 1 g scale yield rose to 23%).

^c 200 mg scale based on starting isothiazole / acid (3 mL).

^d 1 g scale based on starting isothiazole / acid (15 mL).

The best conditions Zn or In (5 equiv), formic acid, 10-25 $^{\circ}$ C were then applied to the 3,5-dichloro analogue. Interestingly, 3,5-dichloroisothiazole-4-carbonitrile **11** treated with Zn powder (5 equiv) failed to give a complete reaction even after 24 h. The reaction finished within 2 h when additional Zn (2.5 equiv) was added but the desired product was isolated in low yield (15%) and a strong odour of H₂S was noticeable indicating reductive cleavage of the isothiazole ring. When In (5 equiv) was used, almost no reaction was observed. Indium has a

lower reduction potential than zinc [-0.763 (Zn) vs -0.338 V (In)] and is considered to be a more selective reagent.⁷⁴


Presumably, the bond dissociation energy⁷⁵ of the C-Cl (397), C-Br (280) and C-S (272 kJ/mol) bonds played a role in the release of H_2S . In the presence of a chlorine atom at C-5 and thus a significantly stronger bond, reductive ring cleavage presumably became competitive. In light of this we searched for an alternative route to 3-chloroisothiazole-4-carbonitrile **47** by either Sandmeyer hydrodeamination of 5-amino-3-chloroisothiazole-4-carbonitrile **20** or by Sandmeyer hydrodehalogenation of either 5-bromo or 5-iodo substituted 3-chloroisothiazole-4-carbonitriles.

2.3 Alternative Synthesis of 3-Chloroisothiazole-4-carbonitrile

2.3.1 Sandmeyer Reactions of 5-Amino-3-chloroisothiazole-4-carbonitrile 20

5-Amino-3-chloroisothiazole-4-carbonitrile **20** can be readily prepared and isolated chromatography free by treating 3,5-dichloroisothiazole-4-carbonitrile **11** with dry ammonia in THF.³² Sandmeyer chemistry could afford the desired 3-chloroisothiazole-4-carbonitrile **47** either directly *via* a hydrodeamination, or indirectly *via* a halodeamination followed by hydrodehalogenation. Reaction of 5-amino-3-chloroisothiazole-4-carbonitrile **20** with isoamyl nitrite (6 equiv) in MeNO₂ at *ca*. 20 °C for 10 min, gave the desired 3-chloroisothiazole-4-carbonitrile **47** in 95% yield (Scheme 36). When MeCN was used as the solvent, the reaction at *ca*. 20 °C gave the desired product in 65% (20 min reaction) while at reflux the product was isolated in 96% yield (10 min).

The Sandmeyer iododeamination of 5-amino-3-chloroisothiazole-4-carbonitrile **20** using isoamyl nitrite and iodine was reported earlier.³⁶ Similar treatment of 5-amino-3-chloroisothiazole-4-carbonitrile **20** with isoamyl nitrite (6 equiv) and dibromine (10 equiv) in nitromethane, gave 5-bromo-3-chloroisothiazole-4-carbonitrile **49** in 69% yield together with traces of 3-chloroisothiazole-4-carbonitrile **47** (Scheme 36). The use of less isoamyl nitrite or less dibromine led to more hydrodeamination product and lower yields of the halodeaminated isothiazole. With access to both the 5-bromo and the 5-iodo 3-chloroisothiazole-4-carbonitriles **49** and **21** the above hydrodehalogenation conditions could be compared directly against the series I *vs* Br *vs* Cl.

2.4 Dehalogenation of Dihaloisothiazoles

Hydrodehalogenation of either 5-bromo or 5-iodo 3-chloroisothiazole-4-carbonitriles **49** and **21** in neat formic acid with Zn powder (5 equiv) gave 3-chloroisothiazole-4-carbonitrile **47** in 77 and 51% yields, respectively. The latter hydrodeiodination gave a strong odour of H_2S indicating isothiazole ring cleavage and possibly accounted for the moderate yield of product. This could be owed to a possible exothermic reaction and as such, the reaction was repeated with less Zn (3 equiv) over a 25 min period, however, no improvement in the yield was observed (56%). Although, reaction with Zn (3 equiv) in AcOH gave a fast reaction (40 min) and 86% yield of the desired product. The analogous reactions with In powder (5 equiv) took slightly longer but gave the hydrodebrominated and deiodinated products in comparable and better yields, 75 and 86% yields, respectively (Table 3).

	1 mL) at 10-2	. ,	with Zn or In in
N(Hal		>	
	11, 21, 49		47
Hal	Metal	Time	Yield
	(equiv)	(h)	(%)
CI	Zn (7.5)	2	15
Br	Zn (5)	0.67	77
Ι	Zn (5)	0.25	51
I	Zn (3)	0.42	56
Ι	Zn (3) ^a	0.67	86
Cl	ln (5)	24	traces
Br	ln (5)	5.5	75
	ln (5)	1	86

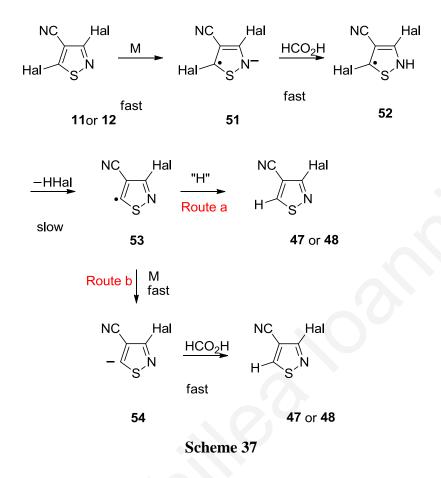
2.5 Synthesis of 5-Deuterioisothiazole and Proposed Mechanism

There are many examples of reductions using $Zn/AcOH^{76-82}$ and the hydrogen transferred is considered to be that of the hydroxyl acid.⁸³⁻⁸⁵ However, in the analogous case of Zn/HCO_2H there was some ambiguity.⁸⁶ Formic acid is a known hydrogen source and there are examples to support that both hydrogens, formyl and hydroxyl, can be transferred.⁸⁷⁻⁹⁰

In light of the above we investigated the reaction of 3,5-dibromoisothiazole-4-carbonitrile **12** with Zn powder (5 equiv) and various commercial deuterated formic acids DCO_2H and HCO_2D in an effort to elucidate which hydrogen or deuterium, formyl or hydroxyl, transferred to the isothiazole (Table 4). Initially, 3,5-dibromoisothiazole-4-carbonitrile **12** treated with zinc (5 equiv) and commercially available deuterated formic acid DCO_2D was shown to afford 3-bromo-5-deuterioisothiazole-4-carbonitrile **50** (Figure 1) in good yield (71%).

Figure 1. 3-Bromo-5-deuterioisothiazole-4-carbonitrile

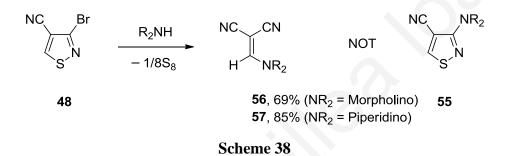
50

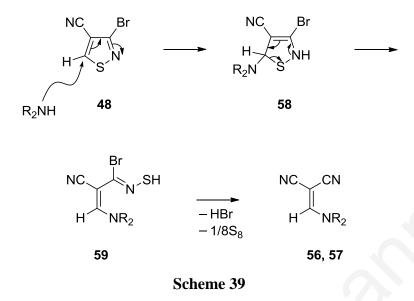

Mass spectrometry (EI) of the crude product (prior recrystallization) indicated the parent ions peaks at m/z 189 (86), 190 (8), 191 (90) and 192 Da (5%). The absence of a peak at m/z 188 Da suggested no or very little 3-bromoisothiazole-4-carbonitrile **48** was present. ¹H and ¹³C NMR spectroscopy showed no signal for H-5, and the ¹J_{CD} 29.4 Hz splitting could be observed. Furthermore, in the FTIR the v(C-H) 3100 cm⁻¹ stretch of 3-bromoisothiazole-4-carbonitrile **48** was replaced by the v(C-D) 2315 cm⁻¹ stretch of 3-bromo-5-deuterio-isothiazole-4-carbonitrile **50**. With pure samples of both 3-bromoisothiazole-4-carbonitrile **48** and 3-bromo-5-deuterioisothiazole-4-carbonitrile **50** we subsequently investigated the use of DCO₂H and HCO₂D.

Treating 3,5-dibromoisothiazole-4-carbonitrile **12** with Zn (5 equiv) and HCO₂D gave 3-bromo-5-deuterioisothiazole-4-carbonitrile **50** in 60% yield, identical to that described above with no significant trace of the non-deuterated isothiazole **48**. However, when the reaction was repeated using DCO₂H instead of HCO₂D, 3-bromoisothiazole-4-carbonitrile **48** was the only product (58%) with no significant trace of the deuterated isothiazole observed. In both cases ¹H, ¹³C NMR and FTIR spectroscopy and EI mass spectrometry studies on the reaction products were carried out prior to recrystallization. Furthermore, control studies revealed that pure samples of 3-bromo-5-deuterioisothiazole-4-carbonitrile **50** and 3-bromoisothiazole-4-carbonitrile **48** treated with HCO₂H and DCO₂D, respectively at *ca.* 20 ^oC for 1 h (with and without Zn dust) did not suffer any hydrogen-deuterium exchange (by MS and NMR).

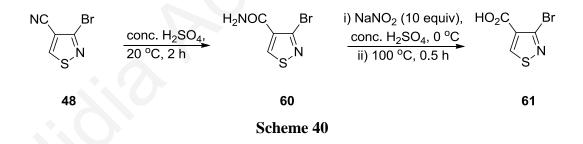
Formic Acid		<i>m/z</i> (Da) / F	Relative Intens	ities (%)		_
HCO_2H	188 (97.29)	189 (6.12)	190 (100)	191 (6.23)	192 (0)	
DCO_2D	188 (3.69)	189 (99.69)	190 (8.78)	191 (100)	192 (6.31)	
HCO_2D	188 (5.60)	189 (99.36)	190 (11.59)	191 (100)	192 (6.31)	
DCO_2H	188 (97.92)	189 (6.12)	190 (100)	191 (6.24)	192 (0)	

Table 4 Parent ion isotopic ratios for products of the Zn mediated hydrodebromination of 3,5-dibromoisothiazole-4-carbonitrile **12** (0.25 mmol) with formic acids (1 mL) at 20 °C.

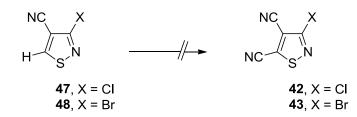

The above results, suggested that the hydrogen transferred from the formic acid to the isothiazole originated only from the hydroxyl and not the formyl group. Formally, this could be considered a protodehalogenation but may be misleading. Furthermore, in reviewing the literature we find the terms hydro and protodehalogenation used rather indiscriminately.^{91,92} Several mechanisms can be proposed: Single electron transfer from zinc to isothiazole can form the radical anion **51** and subsequent protonation by the formic acid can give radical **53**. This radical could either accept another electron from the Zn to form anion **54** that protonates to afford the observed product *i.e.* protodehalogenation (Route B),^{93,94} or the radical **53** could simply take a "nascent" hydrogen (Route A) (Scheme 37). In the latter case this would imply that all the available "nascent hydrogen" was either H in the case of DCO₂H or D when HCO₂D was used.


Our understanding of "nascent hydrogen" is hydrogen chemisorbed onto the surface of the zinc that can be transferred to chemisorbed neighboring isothiazole. Formic acid can undergo reduction by zinc to give hydrogen and formate chemisorbed onto the zinc surface. Intuitively, the transferability of the hydroxyl hydrogen must be superior to that of the formyl hydrogen based on the relative O-H (428 kJ/mol) and C-H (338 kJ/mol) bond dissociation energies (BDE's).⁷⁵ The possibility, however, that the formic acid dissociates to give both formyl and hydroxyl hydrogen species (H or D) with the formic acid protons (H⁺ or D⁺) in the bulk solvent. As such this apparent protodehalogenation may in fact be a hydrodehalogenation.

2.6 Chemistry of 3-Bromoisothiazole-4-carbonitrile


With the 3-bromoisothiazole-4-carbonitrile **48** in hand we examined the nucleophilic displacement of the C-3 bromide using various nucleophiles. Treating the 3-bromoisothiazole **48** with either sodium methoxide in methanol at 70 °C for 4 h led to a complex reaction mixture while treatment with thiophenol and DBU or Hünig's base in benzene led to decomposition. When 3-bromoisothiazole-4-carbonitrile **48** was treated with excess dialkylamines in EtOH at reflux, a clean reaction was obtained with a main product; however, rather than obtaining the 3-aminoisothiazole **55** the ring opened amino-ylidenemalononitriles **56-57** were obtained in good yields, together with elemental sulfur (80%) (Scheme 38).

This was not completely unexpected; isothiazoles are more prone to nucleophilic attack at C-5 and also at the ring sulfur rather than at C-3.⁹⁵ As such, we suspect the amines attack the isothiazole at C-5 to give adduct **58**, which subsequently fragments to the sulfide that presumably loses elemental sulfur through a sulfur chain extension mechanism.⁹⁶ Direct attack by the amine on the ring sulfur could be dismissed owing to the absence of bis(amino)sulfide in the reaction mixture and the isolation of significant amounts of elemental sulfur (80%) (Scheme 39).



Attempts to brominate 3-bromoisothiazole-5-carbonitrile **48** at C-5 using NBS or Br₂ (2 equiv) in AcOH or in CCl₄ at 60 °C, failed to give any reaction even after 24 h. Nevertheless, under acidic conditions, concentrated sulfuric acid at *ca*. 20 °C for 2 h, the cyano suffered hydration to give the expected 3-bromoisothiazole-4-carboxamide **60** in 70% yield. The latter was reacted with NaNO₂ (10 equiv) in H₂SO₄ at 100 °C³⁷ to give after 0.5 h the 3-bromoisothiazole-4-carboxylic acid **61** in 92% yield (Scheme 40).

2.7 Direct Cyanation Attempts

While there are many examples on cyanation of activated aromatic halides, very little exist in the literature about direct cyanation through transition-metal catalyzed C-H bond activation.⁹⁷⁻⁹⁹ Conditions such as trimethylsilyl cyanide or potassium hexacyanoferrate in the presence of a palladium and copper catalysts were tried but failed to give any reaction, while the starting material could be recovered intact (Scheme 41).

Conditions: i) $K_4[Fe(CN)_6]$ (1.5 equiv), $Pd(OAc)_2$ (10 mol%), $Cu(OAc)_2$ (3 mol%), O_2 , DMSO, 130 °C, 12 h; ii) TMSCN, $Cu(OAc)_2$ (1 equiv), MeCN, air, 82 °C, 12 h

Scheme 41

2.8 Summary

A regioselective dehalogenation on 3,5-dihaloisothiazole-4-carbonitriles using Zinc dust in formic acid, was achieved affording 3-haloisothiazole-4-carbonitriles in good yields. Use of deuterated formic acids (DCO₂D and HCO₂D) afforded the 3-bromo-5-deuterioisothiazole-4-carbonitrile **50** in good yield while use of DCO₂H gave only 3-bromoisothiazole-4-carbonitrile **48**. During ongoing studies on the utility of the versatile isothiazole building blocks 3,5-dichloroisothiazole-4-carbonitrile **11** and 3,5-dibromoisothiazole-4-carbonitrile **12**, we developed conditions for the regiospecific C-5 hydrodehalogenations that gave 3-haloisothiazole-4-carbonitriles **47** (Hal = Cl) and **48** (Hal = Br). Unfortunately, attempts for direct cyanation at C-5 position failed to give any desired product.

CHAPTER 3

Silver Mediated Palladium Catalyzed Direct C-H Arylation of 3-Bromoisothiazole-4carbonitrile

Sections

- 3.1 Introduction
- 3.2 Optimization Studies
- 3.3 Analogues Synthesis
- 3.4 Summary

64 68

64

70

3.1 Introduction

After the regiospecific C-5 hydrodehalogenation study of the 3,5-dichloro- and 3,5-dibromoisothiazole-4-carbonitriles **11** and **12**, the desired 3-chloro- and 3-bromoisothiazole-4-carbonitriles **47** and **48** could be prepared in large scale without the need for chromatography. This gave the opportunity for further functionalization of the system. Combining the 3-haloisothiazole-4-carbonitriles with Pd catalyzed C-H direct arylations, a new route to 5-arylisothiazole-4-carbonitriles that are important due to their cytotoxicity¹⁰⁰ and antiviral activity ^{100,101} was feasible. To date aryl-substituted isothiazoles have been prepared by either treating arylylidenemalononitriles with $S_2Cl_2^{26,35,100}$ or by arylating haloisothiazoles using Suzuki, Stille or Negishi reactions.^{35,36,72} However, the former has limitations due to harsh reaction conditions that often lead to chlorination of electron rich aryls and the latter requires often expensive reagents, such as organometallic reagents. In this chapter, we demonstrate for the first time the efficient silver mediated Pd catalyzed direct C-5 arylation of 3-bromoisothiazole-4-carbonitrile **48** using readily available iodoarenes.

Pd-catalyzed direct C-H arylation overcomes the need for expensive organometallic reagents.¹⁰² The reaction has been demonstrated on a wide range of heteroarenes using cheap aryl halides.¹⁰³⁻¹⁰⁹ While many publications appear in the literature about direct C-H arylation of thiazoles,^{102,106,110-115} there have been no reported examples of Pd catalyzed direct arylation of isothiazoles.

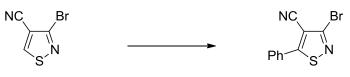
3.2 Optimization Studies

Initially, 3-bromoisothiazole-4-carbonitrile **48** was treated with either chloro-, bromo- or iodobenzene (PhI) in the presence of a Pd catalyst Pd(dppf)Cl₂.DCM (20 mol%) and base in MeCN at *ca.* 82 °C. Surprisingly, the use of inorganic bases such as KF, CsF, K₂CO₃, Cs₂CO₃, Na₂CO₃ and organic bases such as pyridine and *i*-Pr₂NEt failed to work. In light of this, we investigated the use of silver (I) salts, which are effective additives in both oxidative¹¹⁶⁻¹¹⁸ and non-oxidative arylations.^{113,119-126}

The addition of AgNO₃ assisted the Pd-catalyzed arylation of allyltrimethylsilanes,^{127,128} vinylsilanes,¹²⁸ while Ag₂O promoted the Pd-catalyzed cross coupling reactions of silanols,

silanediols and silanetriols)¹²⁹ as well the reaction between aryl and alkenyl halides with terminal alkynes.¹³⁰ Silver(I) fluoride (AgF) served as both an activator of the electrophilic substitution reaction and as the oxidant of Pd(0), and in combination with Cu(II) salts aided the arylation of acetanilides.¹²⁴ Furthermore, AgF was used as base for the arylation of thiophenes and thiazoles.^{111,132-134}

In light of the above, we treated 3-bromoisothiazole-4-carbonitrile **48** with PhI (1.2 equiv), AgF (2 equiv), Pd(dppf)Cl₂.DCM (20 mol%), and Ph₃P as ligand (10 mol%) in MeCN at *ca*. 82 °C for 2 h and obtained the 5-phenylisothiazole **62** in 73% yield (Scheme 42).

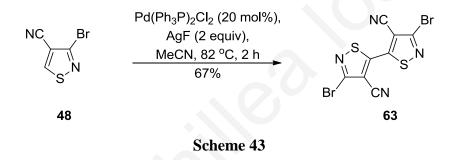


Reagents and Conditions: PhI (1.2 equiv), AgF (2 equiv), Pd(dppf)Cl₂.DCM (20 mol%), Ph₃P (10 mol%), MeCN, 82 $^{\circ}$ C, 2 h

Scheme 42

The conditions were subsequently optimized with respect to catalyst, ligand and base (Table 5). Of the catalysts screened, $Pd(Ph_3P)_2Cl_2$ gave the highest yield (88%) in the shortest time (20 min) and was chosen for further optimization. In contrast $Pd_2(dba)_3$ gave a complex reaction mixture, while $Pd(OAc)_2$, and $(MeCN)_2PdCl_2$ gave the desired product in only moderate yields and required longer reaction times.

Table 5 Reaction of 3-bromoisothiazole-4-carbonitrile**48** (0.25 mmol)with PhI, $Pd(Ph_3P)_2Cl_2$, AgF and Ph_3P in MeCN at ca. 82 °C



62

AgF (equiv)	Pd(Ph ₃ P) ₂ Cl ₂ (mol %)	Ph ₃ P (mol %)	Phl (equiv)	Time (h)	Yield 62 (%)
1	20	10	1.2	24	а
2	20	10	1.2	0.33	88
2	20	10	1	2.50	60
2	20	10	1.5	0.17	84
2 2	20	0	1.2	1	73
2	20	0	1.5	0.50	86
2	20	0	2	0.17	86
2	10	10	1.2	7	62 ^b
2	10	10	1.5	5	80
2	10	10	2	3	73
2	5	10	1.2	12	72 ^b
2	5	10	1.5	11	60 ^c
3	20	10	1.2	0.17	63 ^d
3	20	10	2	0.08	78
3	10	10	2	0.10	83
3	5	10	2	0.13	85
3	1	10	2 2	0.50	17
2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	10	10	1.5	0.12	91 ^b
3	5	10	1.5	0.17	93 ^b
^a Incompl also isolat	ete reaction. ^b Tr ted. ^d Dimer 63 (aces of dim 14%) was a	er 63 (TLC Iso isolatec). ^c Dimer 63 I.	(15%) was

On holding constant the catalyst, $Pd(Ph_3P)_2Cl_2$ (20 mol%), both the reaction time and product yield were affected by varying the equivalents of PhI; the highest yields (88 and 84%) were achieved with 1.2 and 1.5 equiv of PhI over a 20 and 10 min period, respectively. In the absence of additional ligand, the product can still be formed in good yield by increasing the PhI equivalents. Switching the ligand to dppf (10 mol%) led to a longer reaction (7 h) and a 67% yield, while the use of JohnPhos (10 mol%) gave only traces of product after 4 h. The catalyst loading was then investigated to find the minimum needed for the reaction to succeed. Reducing the catalyst loading to 10 mol% with 1.2 equiv of PhI, led to longer reaction times (7 h), moderate product yields (60%) and gave traces of 3,3'-dibromo-5,5'-biisothiazole-4,4'dicarbonitrile **63** presumably owing to a competing oxidative C-5 dimerization. The formation of the latter can be suppressed by increasing the PhI to 1.5 or 2 equiv which led to shorter reaction times (5 and 3 h, respectively) and the isolation of 5-phenylisothiazole **62** in 80 and 73% yields, respectively. Further attempts to reduce the catalyst loading to 5 mol%, again led to increased reaction times, lower product yields and dimer formation.

3,3'-Dibromo-5,5'-biisothiazole-4,4'-dicarbonitrile **63** was isolated as colorless plates, mp 286 °C (PhCl). Elemental analysis and mass spectrometry supported a molecular formula of $C_8Br_2N_4S_2$. Infrared spectroscopy supported the presence of nitrile functionality $v(C\equiv N)$ 2230 cm⁻¹ and ¹³C NMR spectroscopy gave only 4 carbon resonances indicating a symmetrical molecule. Treating 3-bromoisothiazole-4-carbonitrile **48** with AgF (2 equiv) and Pd(Ph₃P)₂Cl₂ (20 mol%) in the absence of PhI gave the 5,5'-biisothiazole **63** in 67% yield (Scheme 43).

The formation of a dimer **63** in the absence of ArI implied that direct palladation of isothiazole **48** by a Pd(II) species was possible and as such the silver salt serves as an oxidant to support a Pd(II)/Pd(IV) catalytic cycle. This hypothesis also agreed with the observation that Br remained intact during the catalysis.

Control reactions revealed that the presence of both the Pd catalyst and the AgF was needed for the reaction to work, while the use of Ph_3P was not. Attempts to decrease the catalyst loading to 5 mol% led to longer reaction time (12 h) and a drop in yield (51%).

With these partially optimized arylation conditions, the need for AgF was further investigated. In our hands, the use of other silver (I) reagents such as AgBr, AgNO₃, Ag₂O, Ag₂SO₄, AgBF₄, AgSbF₆, AgOTf and AgOAc proved to be ineffective in the arylation reaction of 3-bromoisothiazole-4-carbonitrile **48** with PhI. Nevertheless, Ag₂CO₃, was effective with 20 mol% catalyst giving the desired 3-bromo-5-phenylisothiazole-4-carbonitrile **62** in good yields (68-73%) together with some amount of dimer **63**. However, attempts to decrease the catalyst loading to 10 or 5 mol% using 2 or 3 equiv of Ag_2CO_3 led to only traces of phenylated product. As such, further optimizations were restricted to the use of AgF.

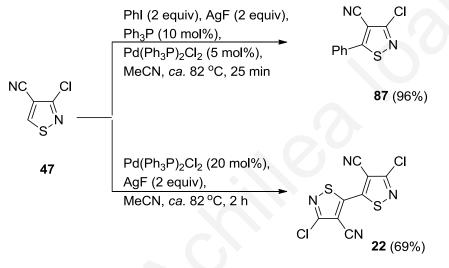
Screening the AgF equivalents needed for the reaction, revealed that 1 equiv was insufficient to drive the reaction to completion within 24 h, while the use of 3 equiv led to fast reaction times (10 min), a reduced yield of the desired 3-bromo-5-phenylisothiazole-4-carbonitrile **62** (63%) and an increased yield of dimer **63** (14%). Fortunately, the formation of the dimer could be suppressed by increasing the amount of PhI. As such, when PhI (2 equiv) and AgF (3 equiv) were used the reaction finished in 5 min affording the desired product in 78% yield with no dimer byproduct. This last result was promising and under these conditions the Pd catalyst loading was reduced from 10 to 5 mol%. Successfully, the desired product was isolated in high yield (85%) in very short reaction time (8 min). Reducing the catalyst loading to 1 mol%, gave low yields of the desired product, while decreasing the PhI to 1.5 equiv using 10 and 5 mol% catalyst loading, led to fast reactions and very high yields of the desired product but traces of the dimer were also present.

3.3 Analogues Synthesis

The best conditions were applied to a variety of iodoarenes providing a range of 5-aryl and 5-heteroaryl-isothiazole-4-carbonitriles (Table 6). The reactions worked well with aryl derivatives bearing both electron releasing (*e.g.*, entries 2-6) and withdrawing (*e.g.*, entries 7-9) groups. Furthermore, the existence of a second halide (Cl or Br) on the iodoarenes did not affect the reaction and showed that reaction was haloselective (entries 19-23). In most cases iodohetero-arenes worked equally well (entries 11-13,17-22), but in some cases dimer was formed (entries 14-16). Comparitively poor yields were obtained for 4-amino-3-nitroiodobenzene (entries 10) and the 7-iodoindoles (16 and 23) and presumably these reactions would require additional optimisation to maximise the product yields.

Table 6 Reaction of the 3-bromoisothiazole **48** (0.25 mmol) with Arl(2 equiv), $Pd(Ph_3P)_2Cl_2$ (5 mol%), AgF (3 equiv), Ph_3P (10 mol%) inMeCN at ca. 82 °C

64-86


Br

Entry	Ar	time (h)	yield 64-86 (%)	yield 63 (%)
1	4-Tol	3.50	64 (82)	-
2	2-MeOC ₆ H ₄	7	65 (89)	-
3	3-MeOC ₆ H ₄	3	66 (91)	-
4	4-MeOC ₆ H ₄	2.50	67 (81)	-
5	2,4-(MeO) ₂ C ₆ H ₃	4	68 (73)	-
6	4-HOC ₆ H ₄	4	69 (79)	-
7	$2-O_2NC_6H_4$	0.67	70 (89)	-
8	$3-O_2NC_6H_4$	0.67	71 (83)	-
9	$4-O_2NC_6H_4$	0.50	72 (98)	-
10	4-H ₂ N-3-O ₂ NC ₆ H ₃	0.17	73 (41) ^a	-
11	Pyrid-2-yl	20	74 (74)	-
12	Pyrid-3-yl	5	75 (92)	-
13	Pyrid-4-yl	20	76 (95)	-
14	Pyrazinyl	2	77 (72)	16
15	Indol-5-yl	3	78 (66)	20
16	Indol-7-yl	2	79 (52)	28
17	Thien-2-yl	0.33	80 (93)	-
18	Thien-3-yl	0.67	81 (92)	-
19	3-BrC ₆ H ₄	1.50	82 (97)	-
20	2-CI-Pyrid-4-yl	6	83 (78)	-
21	2-Br-Pyrid-4-yl	4	84 (87)	-
22	7-Cl-Quinolin-4-yl	1.50	85 (94)	-
23	5-Br-Indol-7-yl	20	86 (34) ^b	-

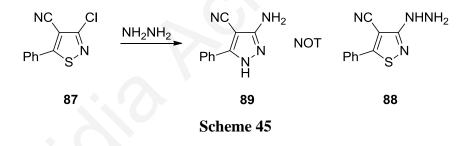
^a Reaction finished immediately but 24% of Arl was recovered. ^b Yield based on 43% recovered starting isothiazole **48**.

The best conditions for the direct arylation of 3-bromoisothiazole-4-carbonitrile **48** were also used with the 3-chloroisothiazole **47**. The chemistry was subtly different. Treating 3-chloro-isothiazole-4-carbonitrile **47** with PhI (2 equiv) in the presence of AgF (3 equiv), Ph₃P (10 mol%) and Pd(Ph₃P)₂Cl₂ (5 mol%) in MeCN at *ca.* 82 °C gave after 15 min 3-chloro-5-phenylisothiazole-4-carbonitrile **87** in moderate yield (58%) and traces of 3,3'-dichloro-5,5'-biisothiazole-4,4'-dicarbonitrile **22**. In light of the above study we rationalized that decreasing

the AgF to 2 equiv, could help avoid the competing oxidative dimerization and indeed obtained in 25 min the desired product **87** in excellent yield (96%) with no traces of dimer. The influence of the 3-halogen was surprising since it was not near the reaction site, but presumably chlorine being more electronegative than bromine would make the C-5 hydrogen marginally more acidic and this may play a role. Finally by applying the conditions used for the dimerization of the bromo analogue $[Pd(Ph_3P)_2Cl_2 (20 \text{ mol}\%), AgF (2 \text{ equiv})]$, onto 3-chloroisothiazole-4-carbonitrile **47**, the 3,3'-dichloro-5,5'-biisothiazole-4,4'-dicarbonitrile **22** was isolated in 69% yield after 2 h (Scheme 44).

3.4 Summary

In conclusion, 3-bromoisothiazole-4-carbonitrile **48** readily undergoes Pd catalyzed direct CH arylation at C5 with a range of cheap, commercially available iodoarenes in the presence of AgF to give twenty four 5-aryl and heteroarylisothiazole-4-carbonitriles in good yields. Furthermore, treating 3-bromoisothiazole-4-carbonitrile **48** with AgF and Pd catalyst led to oxidative dimerization affording 3,3'-dibromo-5,5'-biisothiazole-4,4'-dicarbonitrile **63**. Similarly, phenylation at C-5 and oxidative C-5 dimerization were demonstrated for 3-chloroisothiazole-4-carbonitrile **47** affording the chloro phenylated and dimerized analogues **87** and **22** in 96 and 69% yields, respectively.


CHAPTER 4

The Conversion of Isothiazole into Pyrazole with Hydrazine

Sectio	ons	
4.1	Introduction	72
4.2	Hydrazine Equivalents Needed for the Transformation	73
4.3	Modification of Substituents at C-3	74
4.4	Modification of Substituents at C-5	75
4.5	Varying the Isothiazole C-4 Substituent with a Nucleofuge at C-3	78
4.6	Varying the Isothiazole C-4 Substituent without a Nucleofuge at C-3	84
4.7	Mechanistic Rationale	85
4.8	Conversion of Biisothiazoles into Bipyrazoles	87
4.9	Methylhydrazine	88
4.10	Synthesis of tert-Butyl 3-(4-Cyano-5-phenylisothiazol-3-yl)carbazate	90
4.11	Summary	91

4.1 Introduction

Pyrazoles (1,2-diazoles) rarely occur in nature, however they are structural components of many biologically active compounds. Important commercial pyrazole products include Sildenafil (Viagra),¹³⁵ Lonazolac,^{136,137} Difenamizole,¹³⁸ Mepirizole,¹³⁹ Phenidone,¹⁴⁰ and bicyclic pyrazolidinone LY 186826.¹⁴¹ Synthetic methods for the preparation of monocyclic pyrazoles are well documented¹⁴²⁻¹⁴⁵ and a common synthetic strategy involves the reaction of 1,3-dicarbonyl compounds or their equivalents with hydrazine. Heterocycles that can behave as 1,3-dicarbonyl equivalents can therefore be transformed into pyrazoles on treatment with hydrazines.¹⁴⁵ Recently a former member of the group tried to prepare 3-hydrazino-5phenylisothiazole-4-carbonitrile 88 from 3-chloro-5-phenylisothiazole-4-carbonitrile 87 using neat anhydrous hydrazine but obtained in quantitative yield 3-amino-5-phenylpyrazole-4- $45)^{36}$ 89 (Scheme This pyrazole, first prepared carbonitrile by treating [2-methoxy(phenyl)methylene]-malononitrile with hydrazine monohydrate,¹⁴⁶ when in solution is in a dynamic solvent dependent prototropic equilibrium¹⁴⁷⁻¹⁵⁰ with isomer 5-amino-3-phenylpyrazole-4-carbonitrile. No attempts to differentiate between prototropic isomers were made.

The analogous transformation of isoxazoles into pyrazoles using arylhydrazines¹⁵¹⁻¹⁶⁷ or alkylhydrazines¹⁶⁸ is well documented. Furthermore, the transformations of isoxazolium salts,¹⁶⁹ isoxazolidin-2-yl,¹⁷⁰ isoxazolidin-5-ones,¹⁷¹ isoxazol-4-one oximes^{172,173} and isoxazole-4,5-diones¹⁷⁴ into pyrazoles have been reported. While there are several reports on the analogous conversion of isothiazolium salts into pyrazoles,^{25,175-177} there is only one report on the transformation of isothiazoles into pyrazoles using arylhydrazines.¹⁷⁸ In this chapter an extended study on the transformation of substituted isothiazoles into pyrazoles on treatment with hydrazine is described.

4.2 Hydrazine Equivalents Needed for the Transformation

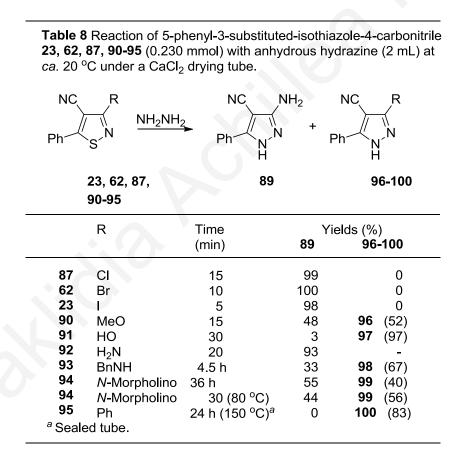
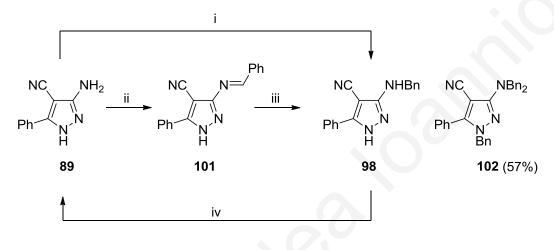

In an early effort to avoid the need for excess neat anhydrous hydrazine, the use of hydrazine monohydrate with a co-solvent to improve solubility was studied (Table 7).

Table7Recarbonitrile87solvents(1 mLNCCIPhS87	(0.230 m).		NH ₂ .H ₂ '	
NH ₂ NH ₂ .H ₂ O (equiv.)	Solvent	Temperature (°C)	Time (h)	Yield (%)
10	DMSO	20	5.5	50
15	DMSO	20	5	51
25	DMSO	20	1	65
100	DMSO	20	1	72
100	DMF	20	1	60
100	EtOH	20-80	1	87
150	DMSO	20	0.5	89
200	DMSO	20	0.5	92

The use of either DMF or DMSO as co-solvent was satisfactory for the room temperature conversion of 3-chloro-5-phenylisothiazole-4-carbonitrile **87** into the pyrazole **89**, while the use of ethanol required heating to reflux owing to poor solubility of the starting isothiazole. Of the three co-solvents investigated, DMSO gave the cleanest reaction mixtures (by TLC), however, there remained a need for a large excess (>100 equiv.) of hydrazine monohydrate to obtain short reaction times and high product yields. By comparison neat anhydrous hydrazine gave the cleanest reaction mixtures and since the absence of a co-solvent also facilitated isolation of pyrazole product all further studies were conducted using neat anhydrous hydrazine.

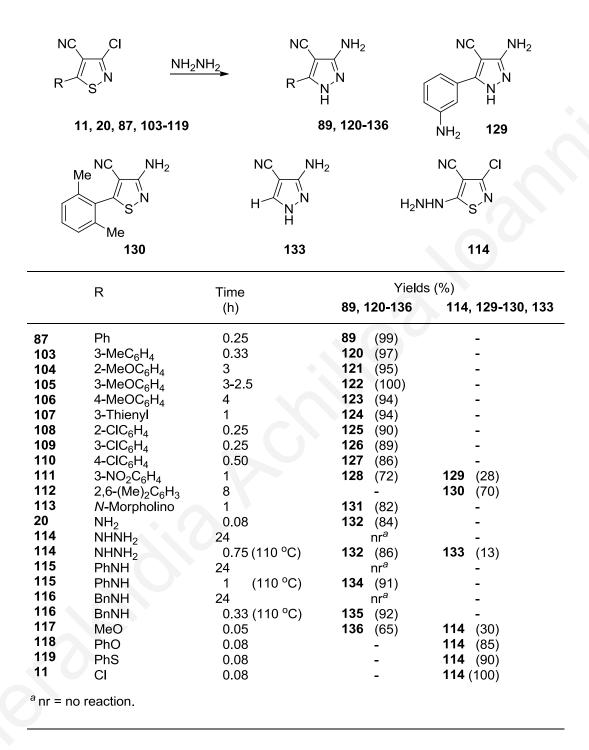
4.3 Modification of Substituents at C-3


A structural comparison of the pyrazole product and the starting isothiazole indicated that cleavage of the C-R bond at the isothiazole C-3 position must occur during the transformation. As such the leaving group ability of the C-3 substituent was investigated (Table 8). The reaction times of the 3-halo derivatives (**87** R = Cl, **62** R = Br, **23** R = I) decreased in accordance with the nucleofugality of the halide. However, when the C-3 substituent was methoxy, hydroxyl or alkylamino, which are by comparison poor nucleofuges, new major pyrazole products **96-99** were isolated that retained the C-3 substituent together with some of the 3-aminopyrazole **89**. The conversion of 3,5-diphenylisothiazole-4-carbonitrile **95**, which has no leaving group at C-3 (R = Ph), into 3,5-diphenylpyrazole-4-carbonitrile **100** (83%) required harsh conditions (150 °C, sealed tube).

Interestingly the major product of the reaction between 3-benzylamino-5-phenylisothiazole-4carbonitrile **93** and hydrazine was 3-benzylamino-5-phenylpyrazole-4-carbonitrile **98** (67%). To the best of our knowledge the 3-benzylaminopyrazole **98** has not previously been reported

74

and in our hands its preparation *via* direct regiocontrolled *N*-benzylation of the 3-amino-5phenylpyrazole-4-carbonitrile **89** using benzyl bromide and KOH, led to a complex mixture from which the desired product **98** could be isolated in low yield (33%) together with the tribenzylated pyrazole **102** (57%). Nevertheless a two step benzylation *via* the imine¹⁷⁹ **101** followed by treatment with NaBH₄ in MeOH gave the *N*-benzylaminopyrazole **98** in a good overall yield of 72% (Scheme 46).



Reagents and conditions: i) PhCH₂Br (1 equiv.), KOH (12 equiv.), DMF, 20 °C, 15 min, 33%; ii) PhCHO (36 equiv. = 1 mL), 20 °C, 2 h, 72%; iii) NaBH₄ (2 equiv.), MeOH, 0-20 °C, Ar, 10 min, 100%; iv) H₂O-MeOH (5%), 20 °C, 15 min, 99%.

Scheme 46

4.4 Modification of Substituents at C-5

The transformation of isothiazole into pyrazole required that C-N bond formation occurs at the isothiazole C-5 carbon. This carbon, known to be highly electrophilic^{32,35,180} was a probable site for initial attack by hydrazine and as such both steric and electronic factors that influence the C-5 position could affect the ring transformation. To investigate this, a series of 3-chloro-5-substituted isothiazole-4-carbonitriles bearing steric and/or electronic constraints at C-5 were treated with anhydrous hydrazine to examine their effect on reaction time and pyrazole yields (Table 9).

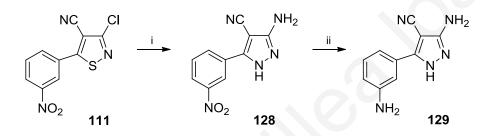


Table 9 Reaction of 3-chloro-5-substituted isothiazole-4-carbonitriles **11**, **20**, **87**, **103**-**119** (0.230 mmol) in anhydrous hydrazine (2 mL) at *ca*. 20 $^{\circ}$ C under a CaCl₂ drying tube.

Electron rich aryl and thien-3-yl substituents at C-5 (*e.g.*, isothiazoles **103-107**) led to long reaction times (1-4 h) while comparatively electron poor aryl substituents (*e.g.*, isothiazoles **108-111**) led to short reaction times (15-30 min). More interestingly the isothiazole **112**

bearing the sterically demanding 2,6-dimethylphenyl substituent at C-5 reacted slowly (8 h) with anhydrous hydrazine to give 3-amino-5-(2,6-dimethylphenyl)isothiazole-4-carbonitrile **130** in good yield (70%). Tentatively this 3-aminoisothiazole is derived from the 3-hydrazinyl derivative (see below, Tables 11-14), although all our efforts to isolate this were not successful. The data supported that the C-5 substituent influenced the reaction both sterically and electronically and tentatively supported that hydrazine initially attacked the isothiazole C-5 position. This was further supported when the C-5 substituent could act as a leaving group. Isothiazoles with poor leaving groups at C-5 such as the 5-morpholino, 5-anilino- and 5-benzylaminoisothiazoles 113, 115 and 116 gave the expected morpholino, anilino and benzylamino substituted pyrazoles 131, 134 and 135 respectively in good yield, however, where the C-5 isothiazole substituent was a better nucleofuge (e.g., PhO, PhS and Cl substituted isothiazoles 118, 119, 11) only the 5-hydrazinylisothiazole 114 was obtained quickly and in good yield. Several examples of the replacement of leaving groups (e.g., halogen,^{32,181,182} OEt,¹⁸³ SR,^{181,184} and SO₂R,¹⁸⁵) at the isothiazole C-5 position by hydrazine monohydrate are known and the displacement of phenoxy groups by hydrazine from from [1,2,4]dithiazolo-[1,5-b][1,2,4]dithiazoles,¹⁸⁶ acridines¹⁸⁷ and heteroarenes, (e.g., phthalazines¹⁸⁸), has been previously reported. The data collected, suggested that the conversion of 5-amino-3-chloroisothiazole-4-carbonitrile 20 into 3,5-diaminopyrazole-4carbonitrile 132 at ambient temperatures probably does not proceed via initial displacement of the C-5 amine by hydrazine to give the intermediate hydrazinylisothiazole 114. Nevertheless under more forcing conditions (110 °C), a pure sample of 3-chloro-5-hydrazinylisothiazole-4carbonitrile **114** treated with anhydrous hydrazine gave 3,5-diaminopyrazole-4-carbonitrile 132 (86%) together with some reduced 3-aminopyrazole-4-carbonitrile 133 (13%). Heating (ca. 200 °C) a pure sample of the 5-hydrazinylisothiazole 114 gave a very complex mixture (by TLC) which was not pursued further. Interestingly a colorless DMSO solution of pure 3-chloro-5-hydrazinylisothiazole-4-carbonitrile 114 on standing in the presence of daylight turns blue in color. TLC indicated the formation of an unidentified highly polar (baseline) blue colored product together with starting isothiazole 114. This light sensitivity was confirmed when a fresh solution kept in the dark gave no color change. The identification of this product was outside of the scope of the present study.

Furthermore, while the methoxyphenyl, chlorophenyl and thienyl substituents were unaffected by the hydrazine treatment, the reaction of 3-chloro-5-(3-nitrophenyl)-isothiazole-4carbonitrile **111** with anhydrous hydrazine gave a second product, 5-(3-anilino)-3chloropyrazole-4-carbonitrile **129**. Hydrazine in the presence of a transition metal catalyst is well known to reduce nitro to amino groups.^{189,190} A pure recrystallized sample of 3-amino-5-(3-nitrophenyl)pyrazole-4-carbonitrile **128** treated with hydrazine and KOH in MeOH at *ca*. 20 °C for 4 d in the absence of any transition metal catalyst gave the (3-anilino)pyrazole **129** in 97% yield. Interestingly the reduction of the nitro group could be avoided with the use of hydrazine monohydrate in DMSO at *ca*. 20 °C for 40 min which converted the isothiazole **111** into the desired 3-nitrophenylpyrazole-4-carbonitrile **128** in 90% yield (Scheme 47).

Reagents and conditions: i) **111** (0.19 mmol), NH₂NH₂.H₂O (0.5 mL, 20 °C, DMSO (1.5 mL), 40 min, 90%; ii) **128** (0.19 mmol), NH₂NH₂ (2 equiv.), KOH (3 equiv.), MeOH, 4 d, 20 °C, 97%.

Scheme 47

4.5 Varying the Isothiazole C-4 Substituent with a Nucleofuge at C-3

The isothiazole C-4 nitrile could be involved in the isothiazole into pyrazole transformation. As such several isothiazoles with a variety of C-4 substituents (**137** R = H, **138** R = Br, **139** R = Ph and **140** R = NH₂) were subjected to anhydrous hydrazine to elucidate the influence of the C-4 substituents (Table 10).

Table10Reactionof3-chloro-5-phenyl-4-substituted-
isothiazolesisothiazoles87, 137-140 (0.230 mmol) in anhydrous hydrazine (2mL) under a CaCl2 drying tube.

Ph	R N S	CI	NH ₂ NH ₂	Ph NH ₂ N N H
	87, 1	37-140		89, 141
	R	Temp. (^o C)	Time (h)	Yields (%)
87 137 137 138 139 140 140	CN H Br Ph NH ₂ NH ₂	20 20 200 ^a 20 20 20 200 ^a	0.25 7 0.5 27 24 24 48	89 (99) 141 (70) 141 (72) complex ^b complex ^c v. complex v. complex
	d tube. to Table to Table	.0	2	

3-Chloro-5-phenylisothiazole **137** was converted cleanly into the corresponding 3-amino-5-phenylpyrazole **141** (70%), but required a long reaction time (7 h) compared to the 4-carbonitrile derivative **87**. Introducing the reaction mixture (sealed tube) into a preheated Wood's metal bath at 200 °C gave a substantially shorter reaction time (0.5 h) and comparable yield (72%). This supported that the C-4 nitrile was not essential for the ring transformation to occur but tentatively assisted the reaction by enhancing the electrophilicity of the isothiazole C-5 position. The 4-bromo- and 4-phenylisothiazoles **138** and **139** gave complex reaction mixtures which were studied further (Tables 11-14), while 4-amino-3-chloro-5-phenylisothiazole **140** gave a reaction mixture that was too complex to analyze.

Table 11 Reaction of 4-bromo-3-chloro-5-phenylisothiazole**138** (0.230 mmol) with anhydrous hydrazine (2 mL) under a $CaCl_2$ drying tube.

NH ₂ NH	-	Br Nł	H ₂ E	Br I	NHNH ₂	2
138	► 137 +		+		+	141
	Pr	S N	Ph	N S_N		
		142		143		
Temp.	Time		Yield	ds (%)		
(°C)	(h)	137	142	143	141	
20	27	11	29	18	26	
20-110	2.5	34	25	14	20	
110	0.5	20	55	16	7	
150 ^a	5 min	0	5	82	6	
200 ^a	3 min	0	0	86	4	
^a Sealed tu	be.					

At ca. 20 °C, 4-bromo-3-chloro-5-phenylisothiazole 138 required 27 h to be consumed by anhydrous hydrazine and the reaction gave four products but not 3-amino-4-bromo-5phenylpyrazole. The first and fourth products isolated by chromatography were 3-chloro-5phenylisothiazole 137 in which chemoselective protodehalogenation had occurred at C-4 and the corresponding 3-amino-5-phenylpyrazole 141. Unlike the reduction of the nitro group (Scheme 3) the use of hydrazine monohydrate in DMSO failed to prevent the protodehalogenation at C-4. Hydrazine is known to reduce alkyl and aryl halides.¹⁸⁹ Surprisingly, the second and third products were 3-amino-4-bromo-5-phenylisothiazole 142 and 4-bromo-3-hydrazino-5-phenylisothiazole 143. Since arylhydrazines are known to suffer autoreductive conversion to give anilines¹⁹¹ it was possible that the 3-aminoisothiazole 142 was derived from the 3-hydrazinylisothiazole 143. While 3-hydrazinyl benzoisothiazole was reported,¹⁹² monocyclic 3-hydrazinylisothiazoles are not known and only a few unsubstituted 5-hydrazinyl monocyclic isothiazoles have been reported,^{32,181-185,193,194} together with only two reports of trisubstituted 4-hydrazinyl-isothiazoles.^{195,196} To our delight, performing the reaction at high temperature in a preheated (200 °C) Wood's metal bath for a short duration (3 min) followed by a rapid quench in crushed ice gave 4-bromo-3-hydrazino-5phenylisothiazole 143 in high yield (86%). This allowed for a careful study of the novel 4-bromo-3-hydrazino-5-phenylisothiazole 143.

A 2D silica TLC stability study showed that the 3-hydrazinylisothiazole **143** was unstable and converted into the 3-aminoisothiazole **142**. Furthermore a degassed DCM solution of 3-hydrazinylisothiazole **143** under an argon or air atmosphere after 3 d led to a 64-62% conversion of 3-hydrazinylisothiazole **143** into 3-amino-4-bromo-5-phenylisothiazole **142** (56-49%) and 3-aminoisothiazole **144** (43-51%). After 3 d under a pure O_2 atmosphere a similar quantity of the 3-hydrazinylisothiazole **143** was consumed (60%), however, a significantly improved yield of 3-amino-4-bromo-5-phenylisothiazole **142** (89%) together with a significantly reduced amount of the protodebrominated 3-aminoisothiazole **144** (11%) were obtained (Table 12).

Br NHNH ₂ Ph S ^N	<u></u> 20 ºC, 3 d	Ph S N +	Ph S ^{-N} +	Br NHNH ₂ Ph S ⁻ N
143		142	144	143
Atmospher	е		Yields (%) ^a	
		142	144	143
Ar		56	43	36
Air		49	51	38
O ₂		89	11	40

Table 12 Stability of the 3-hydrazinylisothiazole **143** (0.074 mmol) in DCM (1 mL) under various atmospheres at *ca.* 20 $^{\circ}$ C for 3 d.

^a Yields based on recovered 3-hydrazinylisothiazole **143**.

Interestingly treating 4-bromo-3-hydrazino-5-phenylisothiazole **143** with neat anhydrous hydrazine under an air atmosphere at *ca.* 20 °C for only 35 min gave a clean conversion to 3-amino-4-bromo-5-phenylisothiazole **142** (96%). Although when the reaction was repeated in neat degassed anhydrous hydrazine under an argon atmosphere the conversion (**143** \rightarrow **142**) was incomplete after 1 d. Suprisingly under a pure oxygen atmosphere the reaction was still slow but after 25 h the conversion (**143** \rightarrow **142**) was complete and high yielding (98%). Furthermore, on prolonged reaction times (2 d) at *ca.* 20 °C or under reflux (110 °C) the reaction mixture became more complex and both the protodebrominated 3-amino-5-

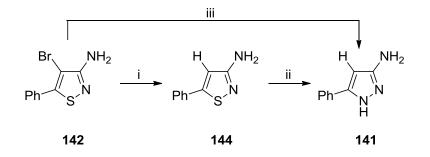

phenylisothiazole **144** and the 3-amino-5-phenylpyrazole **141** could be isolated. Prolonged heating (6 d) at 110 °C gave 3-amino-5-phenylpyrazole **141** as the major product (81%) (Table 13).

Table 13 Reaction of the 3-hydrazinylisothiazole **143** (0.100 mmol) with anhydrous hydrazine (1 mL) under an atmosphere of air protected from moisture by a $CaCl_2$ drying tube.

Br NHNH Ph S ^N	2 NH ₂ NH ₂	Br, NH ₂ Ph S ^N	+ Ph S ^{NH2} +	Ph NH ₂ N H
143		142	144	141
			Yields (%)	
Temp. (°C)	Time (d)	142	144	141
20	35 min	96	0	0
20	1 ^a	91 ^{<i>b</i>}	0	0
20	2	26	45	20
20	25 h ^c	98	0	0
110	1	0	39	55
110	6	0	9	81
^a Degassed h	ydrazine under	an argon atmosp ed 3-hydrazinylis		

^c Under an oxygen atmosphere.

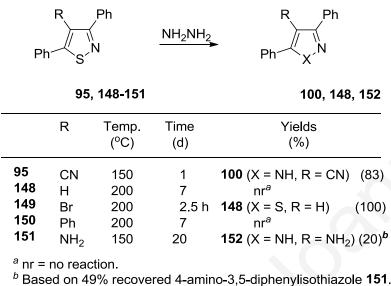
Attempts to directly obtain a high yield of 3-amino-5-phenylisothiazole **144** from 4-bromo-3hydrazino-5-phenylisothiazole **143** were not successful (Table 13). Nevertheless, treating 3-amino-4-bromo-5-phenylisothiazole **142** with anhydrous hydrazine at *ca*. 20 °C for 35 h gave only the protodebrominated 3-amino-5-phenylisothiazole **144** in high yield (90%). Heating either 3-amino-4-bromo- or 3-amino-5-phenylisothiazole **142** & **144** with anhydrous hydrazine at 110 °C for 4 and 5 d respectively gave 3-amino-5-phenylpyrazole **141** in 80% (8% recovered starting isothiazole **144**) and 81% yields respectively (Scheme 48).

Reagents and conditions: i) N₂H₄, 20 °C, 35 h, 90%; ii) N₂H₄, 110 °C, 4 d, 80%; iii) N₂H₄, 110 °C, 5 d, 81%.

Scheme 48

The reaction of 3-chloro-4,5-diphenylisothiazole **139** with anhydrous hydrazine at 20 °C gave a complex reaction mixture (Table 14), but the product distribution was simplified when the reaction was performed in a sealed tube at 200 °C (Wood's metal bath) for 20 min, giving mainly 3-hydrazino-4,5-diphenylisothiazole **146** in good yield (77%) together with some unreacted starting isothiazole **139**. Prolonged heating (35 min) gave two new products, 3-amino-4,5-diphenylisothiazole **145** and 3-amino-4,5-diphenylpyrazole **147** (Table 14). Extending the heating period to 2 h led to an increase in the formation of 3-aminoisothiazole **145** and the 3-amino-4,5-diphenylpyrazole **147** at the expense of 3-hydrazino-4,5-diphenylisothiazole **146**.

$\begin{array}{c} Ph & Cl \\ \hline \\ Ph & \\ S & \\ S & \\ \end{array} \\ \begin{array}{c} N \\ \hline \\ 2 \\ \end{array}$	$H_2 NH_2$ $H_2 $	Ph NHNH ₂ Ph S ⁻ N +	Ph NH Ph N H
139	145	146	147
Time		Yields (%)	
(min)	145	146	147
20	0	77 (87) ^a	0
35	39	40	21
2 h	60	0	33
^a Yield based or	recovered 3-chloro-4,5-diphen	ylisothiazole 139 .	

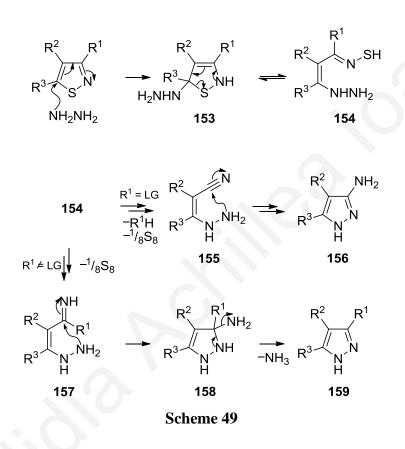

Table 14 Reaction of 3-chloro-4,5-diphenylisothiazole **139** (0.185 mmol) with anhydrous hydrazine (2 mL) in a sealed tube at 200 °C.

The stability of the 3-hydrazino-4,5-diphenylisothiazole **146** was investigated further. Rather surprisingly, DCM solutions of 3-hydrazino-4,5-diphenylisothiazole **146** under air, argon and oxygen atmospheres for 3 d at *ca*. 20 °C, gave no reaction products and the 3-hydrazino-4,5-diphenylisothiazole **146** was quantitatively recovered unchanged. This stability was in stark contrast with that of the 4-bromo-3-hydrazino-5-phenylisothiazole **143** (Table 12). While this difference in stability remains to be explained the formation of the 3-hydrazinylisothiazoles **143** and **146** under thermodynamically driven conditions (200 °C) provides a rather precarious yet novel route to these previously unreported 3-hydrazino functionalized isothiazoles. The analogous attempts to prepare 3-hydrazino-5-phenylisothiazole-4-carbonitrile **87** only afforded pyrazole **89**.

4.6 Varying the Isothiazole C-4 Substituent without a Nucleofuge at C-3

When the substituent at the isothiazole C-3 position was not a leaving group the conversion into pyrazole proceeded only under relatively very harsh conditions; no reactions were observed at room temperature (Table 15).

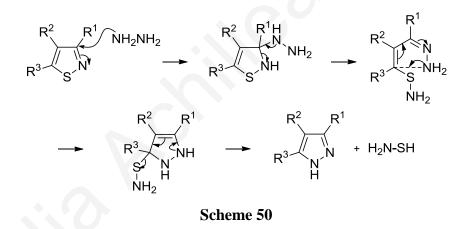
Table 15 Reaction of 3,5-diphenyl-4-substituted isothiazoles **95**, **148-151** (0.230 mmol) in anhydrous hydrazine (2 mL) in a sealed reaction tube.



4-Bromo-3,5-diphenylisothiazole **149** suffered only quantitative protodebromination to afford 3,5-diphenylisothiazole **148** which showed no further reaction with anhydrous hydrazine. Prolonged heating in a sealed tube or the use of a CEM Discover microwave reactor at 200 °C for 20 min failed to convert or consume either 3,5-diphenyl- or 3,4,5-triphenyl- isothiazoles **148** and **150**, respectively. These examples identified one of the limits for the isothiazole into pyrazole conversion using neat anhydrous hydrazine. The high yield conversion of the 4-cyano isothiazole **95** was presumably owed to the powerful electron withdrawing effect of the nitrile which provided some activation for the isothiazole into pyrazole conversion, although at the reaction temperature (150 °C) and based on the isolation of 3-hydrazinyl-isothiazoles **143** and **146** the initial site of attack by hydrazine could in this case be the isothiazole C-3 position (see Scheme 50 below).

4.7 Mechanistic rationale

In light of the above, rational mechanisms could be proposed to explain the formation of the pyrazoles depending on the leaving ability of the isothiazole C-3 substituent (Scheme 49). Initially hydrazine could attack the highly electrophilic isothiazole $C-5^{32,35,180}$ to afford the 2,5-dihydroisothiazole **153** that could be in equilibrium with its ring opened form **154**. When


 R^1 was a good leaving group (*e.g.*, $R^1 = Cl$), loss of R^1H and sulfur could give the hydrazinyl acrylonitrile **155**. Intramolecular cyclization and subsequent tautomerization would afford the 3-aminopyrazole **156**. The intramolecular cyclization of 3-hydrazinyl acrylonitriles into 3-aminopyrazoles has been reported to be rapid and independent of *E/Z* alkene geometry.^{197,198} Where R^1 was not or was a poor leaving group the ring opened intermediate **154** could lose sulfur to afford the hydrazinyl enimine **157**, which could suffer intramolecular cyclization to give the 1,3-dihydropyrazole **158** and ultimately the fully aromatic pyrazole **159**.

The reaction mixtures showed no elemental sulfur as would be expected since anhydrous hydrazine was known to reduce sulfur rapidly to hydrogen sulfide which then can form $(N_2H_4)_2.H_2S$ and $N_2H_4.H_2S$ salts with the excess hydrazine.¹⁹⁹ Indeed the reaction mixtures gave a strong odour of hydrogen sulfide [WARNING TOXIC] and its presence was confirmed using Accuro pump fitted with a hydrogen sulfide Dräger tube which tested positive. It was not clear whether hydrogen sulfide was formed directly from the reaction or from elemental sulfur which could have originated from the reaction mixture. However, nucleophilic attack on isothiazole in the absence of a good nucleofuge at C-5 is normally expected to occur on the ring sulfur.^{200,201} Since this possibility cannot be eliminated based on the observed

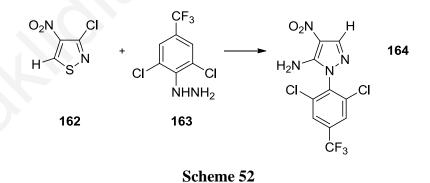
experimental data, initial nucleophilic attack at sulfur could also be the initiation point for this ring transformation, although the failure to convert 3-chloro-5-(2,6-dimethylphenyl)-isothiazole-4-carbonitrile **112** into the corresponding pyrazole suggested that when the isothiazole C-5 position was sterically hindered then attack at C-3 was preferential to attack at the ring sulfur.

Furthermore, in light of the initial formation and isolation of 3-hydrazinylisothiazoles **143** and **146** during the high temperature reactions with anhydrous hydrazine an alternative mechanism must be considered for the high temperature (150 $^{\circ}$ C) ring transformation of 3,5-diphenyl-isothiazole-4-carbonitrile **95** into 3,5-diphenylpyrazole-4-carbonitrile **100**. In this case, hydrazine could initially attack the isothiazole C-3 carbon and a ring opening - ring closure sequence ultimately releasing the observed pyrazole and possibly a species equivalent to thiohydroxylamine (Scheme 50).²⁰²

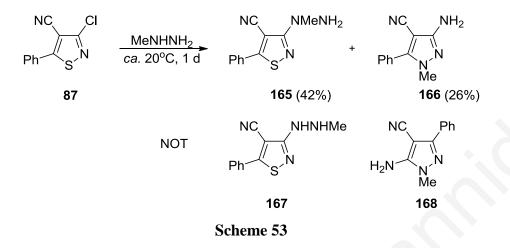


Regardless of which pathways are proposed this ring transformation clearly belongs to the Addition Nucleophilic Ring Opening Ring Closing ANRORC family.²⁰³

4.8 Conversion of Biisothiazoles into Bipyrazoles

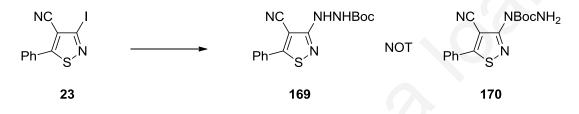

The conversion of isothiazoles into pyrazoles using neat anhydrous hydrazine could be extended without complication to the known 5,5'-diphenyl-3,3'-biisothiazole-4,4'-dicarbonitrile **160** which was readily transformed into 5,5'-diphenyl-3,3'-bi(1H-pyrazole)-4,4'-dicarbonitrile **161** in 65% yield (Scheme 51). Similar treatment of 5,5'-bi(3-chloroisothiazole-

4-carbonitrile) with hydrazine, however, gave only a complex reaction mixture from which no products could be isolated and characterized. Many bipyrazoles are known, and several 3,3'- and 5,5'-bipyrazoles have shown interesting biological activities.²⁰⁴⁻²⁰⁶



4.9 Methylhydrazine

The conversion of isothiazoles into pyrazoles has been shown to proceed with hydrazine, both in its hydrated and anhydrous form. Only one example currently exists where the conversion has been achieved with a substituted hydrazine. 3-Chloro-4-nitroisothiazole **162** was converted into 5-amino-1-(2,6-dichloro-4-trifluoromethylphenyl)-4-nitropyrazole **164** using 2,6-dichloro-4-trifluoromethyl-phenylhydrazine **163** (Scheme 52).¹⁷⁸ Assuming the initial attack occurred at the isothiazole C-5 position then the arylhydrazine appeared to have attacked *via* its β -nitrogen. A logical extension of our current study was therefore to investigate the action of methylhydrazine on isothiazoles.


3-Chloro-5-phenylisothiazole-4-carbonitrile **87** treated with methylhydrazine at *ca.* 20 °C for 1 d gave two products, 3-(1-methylhydrazino)-5-phenylisothiazole-4-carbonitrile **165** in 42% and 3-amino-1-methyl-5-phenylpyrazole-4-carbonitrile **166** in 27% yield (Scheme 53).

The structural elucidation of the reaction products was complicated owing to the possibility of alternative isomeric structures isothiazole 167 and pyrazole 168. Nevertheless, the two possible isothiazole isomers **165** and **167** could be tentatively differentiated by their ¹H NMR spectra. The 1,2-disubstituted unsymmetrical hydrazine 167 was expected to show two separate NH resonances which should integrate in a ratio of 1:1, while the 1,1-disubstituted hydrazine 165 should show only one NH₂ resonance the integration of which should show two protons. The ¹H NMR of the isolated isothiazole gave a single broad peak at 4.02 ppm the integration of which showed two protons and supported the structure to be isothiazole 165. Fortunately the two possible pyrazole isomers had both been previously prepared independently with no ambiguity in their reported structures. These two pyrazoles had significantly different melting points, 3-amino-1-methyl-5-phenylpyrazole-4-carbonitrile 166 (mp 158 °C)²⁰⁷ and 5-amino-1-methyl-3-phenylpyrazole-4-carbonitrile **168** (mp 134 °C, from H₂O).²⁰⁸ The isolated pyrazole (mp 158 °C from EtOH) matched the melting point of the reported pyrazole **166**. Both products clearly indicated a preference for the methylhydrazine to attack through the α -nitrogen bearing the methyl substituent which was unlike the preference of the arylhydrazine that preferred to attack through the β -nitrogen.

4.10 Synthesis of *tert*-Butyl 3-(4-Cyano-5-phenylisothiazol-3-yl)carbazate

As mentioned earlier, attempts to prepare the desired 3-hydrazinyl-5-phenylisothiazole-4carbonitrile **88** were unsuccessful. An alternative strategy to access 3-hydrazinyl-5-phenylisothiazole-4-carbonitrile involved preparing the title compound *via* modified Buchwald C-N coupling conditions.²⁰⁹⁻²¹¹ As such, the reaction of 3-iodo-5-phenylisothiazole-4-carbonitrile **23**³⁶ with *tert*-butyl carbazate in the presence of copper iodide and cesium carbonate as base, together with 1,10-phenanthroline as the ligand, in dry DMF at 80 °C gave the Boc protected 3-hydrazinyl-5-phenylisothiazole-4-carbonitrile **169** (Scheme 54).

Reagents and conditions: BocNHNH₂, Cul, Cs₂CO₃, 1,10-phen, DMF, 80 °C, 0.5 h, 70%

Scheme 54

Elemental analysis supported an empirical formula of C₁₅H₁₆N₄O₂S and LREI gave a weak parent ion of m/z 316 Da (1%) with a major ion at 216 Da (100%) corresponding to the loss of the Boc group. IR spectroscopy supports the presence of the amino [v(N-H) 3350w & 3239w cm⁻¹], cyano [v(C=N) 2216w cm⁻¹] and the carbonyl [v(C=O) 1722s cm⁻¹] functionalities. Despite this data, two possible isomers could still be formed whereby coupling occurred *via* the carbazate β or α nitrogens to give either isothiazoles 2 or 3, respectively. ¹H NMR spectroscopy, showed two separate NH resonances at $\delta_{\rm H}$ 6.83 and 6.64 ppm that integrated in a ratio of 1:1, tentatively supporting isothiazole **169** to be the correct product. The alternative isomer *tert*-butyl 2-(4-cyano-5-phenylisothiazol-3-yl)carbazate **170** should exhibit a single NH resonance in the ¹H NMR spectrum with an integration supporting two hydrogens.²⁰⁹ Although the compound was successfully synthesized and characterized, there was a problem repeating this chemistry since in all the attempts to isolate the target molecule in quantities, a new product was observed as the only product and this appeared to be the sulfide **171** (Figure 2).

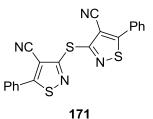


Figure 2. Structure of the sulfide

4.11 Summary

The use of hydrazine to convert isothiazoles into pyrazoles has been investigated with respect to substitution patterns on the isothiazole at C-3, C-4 and C-5. The data tentatively suggests that in the absence of steric hindrance the hydrazine attacks initially the isothiazole C-5 carbon and that this is followed by ring opening and subsequent ring closure to give pyrazoles. When the isothiazole C-5 substituent is not a good nucleofuge and the C-3 substituent is a good nucleofuge the use of high temperatures and short reaction times can lead to the formation of 3-hydrazinylisothiazoles. When both the C-3 and C-5 substituents are not leaving groups the isothiazoles can be transformed into pyrazoles only under harsh conditions and the presence of a nitrile at C-4 assists this transformation. The isothiazole into pyrazole conversion can be extended to methylhydrazine which preferentially attacks through its α -nitrogen. Furthermore, in an attempt to independently synthesize 3-hydrazino isothiazole, the *N*-Boc protected isothiazole *tert*-butyl 3-(4-cyano-5-phenylisothiazol-3-yl)carbazate, was synthesized.

PART 2

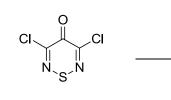
erakidia Achillea loannide

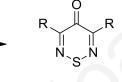
CHAPTER 5

Palladium Catalyzed C-C Coupling Reactions of 3,5-Dichloro-4H-1,2,6-thiadiazin-4-one

Sect	tions	
5.1	Introduction	96
5.2	Suzuki Reaction on 3,5-Dichloro-1,2,6-thiadiazin-4-one 24	96
5.3	Stille Reaction on 3,5-Dichloro-1,2,6-thiadiazin-4-one 24	98
5.4	Sonogashira Reaction on 3,5-Dichloro-1,2,6-thiadiazin-4-one 24	102
5.5	Summary	103

5.1 Introduction


In this chapter the chemistry of 3,5-dichloro-1,2,6-thiadiazinone **24** is investigated. Suzuki-Miyaura, Stille and Sonogashira palladium-catalyzed C-C coupling reactions were applied for the first time onto dichlorothiadiazinone **24** to give symmetrical 3,5-bis-arylated, heteroarylated and alkynylated thiadiazinones.


Palladium catalyzed C-C coupling reactions have widely been used for the synthesis of alkylated and/or arylated arenes and heteroarenes.^{13,212,213} Interestingly, while there are many electron rich symmetrical dihalo heterocyclic systems that participate in palladium catalyzed C-C coupling reactions to give in one pot bis-arylated/alkylated systems, there are relatively few examples of electron poor symmetrical dihalohetero-arenes *e.g.*, 1,2,5-thiadiazoles,²¹⁴ 1,3,4-thiadiazoles,²¹⁵ pyridines,²¹⁶⁻²¹⁹ and pyrimidines.^{220,221}

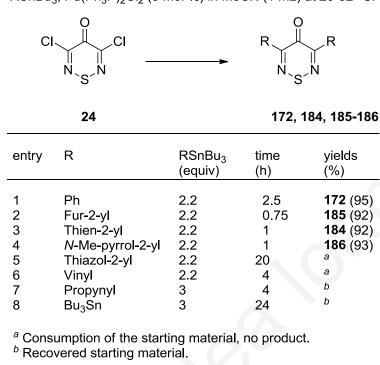
5.2 Suzuki Reaction on 3,5-Dichloro-1,2,6-thiadiazin-4-one 24

Owing to the facile displacement of chloride by a wide variety of nucleophiles the initial attempts at Suzuki-Miyaura coupling of the dichlorothiadiazinone 24 focused on protocols that were non-aqueous with the hope of limiting base catalyzed hydrolysis of the heterocycle. Similar anhydrous protocols worked well for the C-5 selective Suzuki-Miyaura reactions of reactive 3.5-dichloroisothiazole-4-carbonitrile **11**.³⁵ Nevertheless when the highly dichlorothiadiazinone 24 was reacted with phenylboronic acid (2.2 equiv) and $Pd(OAc)_2$ (5 mol%) in organic solvents (PhH, PhMe, DCM, MeCN, 1,4-dioxane, THF) and inorganic $[M_2CO_3 (M = Li, Na, K, Cs), KHCO_3, KF, KOH, K_3PO_4]$ or organic (Et₃N, *i*-Pr₂NEt, pyridine) bases together with phase-transfer agents (18-C-6, Adogen 464[®], Aliquat 336[®], BnEt₃NI, BnEt₃NCl,) only mixtures of unreacted dichlorothiadiazinone 24, mono- and bisphenylated thiadiazines were isolated after 24 h. In light of this, we switched to biphasic systems and fortunately this led to complete consumption of the dichlorothiadiazinone 24. We screened a range of solvents (PhH, PhMe, DCM, 1,4-dioxane, DME, MeCN, THF, DMA, DMF,), bases [KOH, M₂CO₃, MHCO₃, MF (M = Na, K, Cs)] and catalysts [(Pd(Ph₃P)₄, $Pd(OAc)_{2}$ $(Ph_3P)_2PdCl_2$, $(PhCN)_2PdCl_2$, $(MeCN)_2PdCl_2$, $(dba)_3Pd_2$, [1,1'- (Ph_2P) ferrocene]PdCl₂.DCM)]. The best conditions required the use of PhB(OH)₂ (2.2-3) equiv), Pd(Ph₃P)₄ (5 mol%) and Na₂CO₃ (2 equiv) in either 1,4-dioxane/H₂O (5:3) or 96 benzene/H₂O (5:3) at 20-100 $^{\circ}$ C. The concentration of the reaction mixture proved to be important: high concentrations (*e.g.*, 0.8 mL for 0.27 mmol of **24**) led to faster and cleaner reaction. Using the best conditions 12 analogues were synthesized that tested both steric and electronic limits (Table 16).

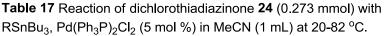
Table 16 Reaction of dichlorothiadiazinone**24** (0.273 mmol) with $RB(OH)_2$ (2.2 equiv), $Pd(Ph_3P)_4$ (5 mol%), Na_2CO_3 (2 equiv) in dioxane/ H_2O (0.5:0.3 mL) at 20-100 °C.

24

172-184


entry	RB(OH) ₂	time	yields
	(equiv)	(min)	(%)
1	PhB(OH) ₂ (2.2)	20	172 (91)
2	2-TolB(OH) ₂ (2.2)	30	173 (94)
3	3-TolB(OH) ₂ (2.2)	30	174 (91)
4	4-TolB(OH) ₂ (2.2)	15	175 (99)
5	2,6-Me ₂ C ₆ H ₃ B(OH) ₂ (2.2)	40	a
6	$2-MeOC_6H_4B(OH)_2$ (2.2)	15	176 (87)
7	3-MeOC ₆ H ₄ B(OH) ₂ (2.2)	15	177 (88)
8	$4-MeOC_{6}H_{4}B(OH)_{2}$ (2.2)	15	178 (86)
9	2-CIC ₆ H ₄ B(OH) ₂ (2.2)	40	179 (80)
10	3-CIC ₆ H ₄ B(OH) ₂ (2.2)	40	180 (81)
11	4-CIC ₆ H ₄ B(OH) ₂ (2.2)	40	181 (89)
12	3-O ₂ NC ₆ H ₄ B(OH) ₂ (2.2)	30	182 (54)
13	$3-O_2NC_6H_4B(OH)_2$ (3)	30	182 (64)
14	3-O ₂ NC ₆ H ₄ B(OH) ₂ (4)	30	182 (66)
15	Thien-3-yIB(OH) ₂ (2.2)	15	183 (98)
16	Thien-2-yIB(OH) ₂ (2.2)	75	184 (42)
17	Thien-2-ylB(OH) ₂ (3)	60	184 (90)
18	Pyrid-3-yIB(OH) ₂ (2.2)	60	а
19	$Pyrid-4-yIB(OH)_2$ (2.2)	60	а
20	MeB(OH) ₂ (2.2)	30	а

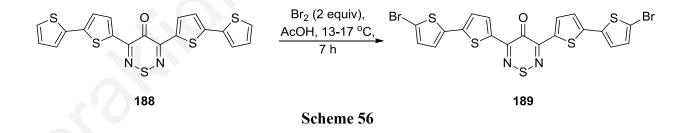
^a Consumption of the starting material, no product.


In most cases 2-substituted phenylboronic acids reacted equally well with the 3- and 4substituted analogues, indicating that there was little steric effect, however, when the more sterically demanding 2,6-dimethylphenylboronic acid was used no product was obtained (Table 16, entry 5). In the case of 3-nitrophenyl analogue the yield was low and could not be significantly improved by increasing the quantity of the boronic acid from 2.2 to 4 equiv (entries 12-14). The other electron poor 3- and 4-pyridylboronic acids gave only intractable polar products (baseline on TLC) (entries 18 and 19). The reaction with methyl-boronic acid was also unsuccessful (entry 20). Fortunately, both the 2- and 3-thienylboronic acids reacted to give the expected bisthienyl substituted thiadiazinones **183** and **184**, although the former required additional equivalents to give high yields (entry 17). This was not surprising considering the ease with which thien-2-ylboronic acid suffers protodeboronation.²²²⁻²²⁴


5.3 Stille Reaction on 3,5-Dichloro-1,2,6-thiadiazin-4-one 24

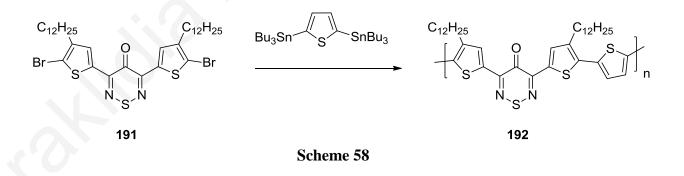
The Stille coupling of dichlorothiadiazinone **24** with phenyl, fur-2-yl, thien-2-yl and *N*-methylpyrrol-2-yl tributyl stannanes in the presence of $Pd(Ph_3P)_2Cl_2$ (5 mol%) in MeCN gave the expected products in very high yields. Other stannyl reagents such as thiazol-2-yl, vinyl, propynyl and tributylstannyl led to either decomposition or no reaction (Table 17).

Having access to a high yielding synthesis of 3,5-di-(thien-2-yl)-4*H*-1,2,6-thiadiazin-4-one **184** and in light of our on-going goal for the incorporation of thiadiazine into conjugated polymers, we proceeded to synthesize oligothiophene 1,2,6-thiadiazin-4-one **188**. Oligo- and polythiophenes are shown to be important as advanced electronic and photonic materials, such as organic TFT's, liquid crystals, photovoltaic cells, etc.²²⁵⁻²²⁸



Bromination of bis(thien-2-yl) 1,2,6-thiadiazin-4-one **184** using 2 equiv of either Br_2 or NBS in AcOH at low temperature (13-15 °C) gave the 3,5-di(5-bromothien-2-yl)-4*H*-1,2,6-thiadiazin-4-one **187** in 80% yield. The latter underwent the Stille conditions developed earlier using 2-tributylstannyl thiophene in refluxing MeCN to afford the tetrathiophene **188** in very high yield (95%).

Attempts to make the hexathiophene thiadiazinone, failed due to the low solubility of the synthesized 3,5-bis(5'-bromo-[2,2'-bithiophen]-5-yl)-4*H*-1,2,6-thiadiazin-4-one **189** (Scheme 56) in acetonitrile even in high dilution conditions (50 mg, 10 mL). Some product, although in low yield, was observed when Biphenyl was used as a solvent.



As such, a more soluble oligothiophene thiadiazinone was desired. Using the Stille conditions, the 3-dodecyldithienyl-1,2,6-thiadiazinone **190** was prepared using (4-dodecylthiophen-2-yl)trimethylstannane. The reaction proceeded very well giving the bis-thiophene **190** in high

yield. The latter underwent bromination using NBS to give the bis-bromo product **191** in high yield (Scheme 57).

The bis-bromo compound **191** was then given to collaborators in CUT (Cyprus University of Technology) where it was copolymerized with 2,5-bis(tributylstannyl)thiophene to give a deep purple-colored polymer **192** (Scheme 58) which is now under study. The UV-vis spectrum of the polymer **192** is shown below (Figure 3).

101

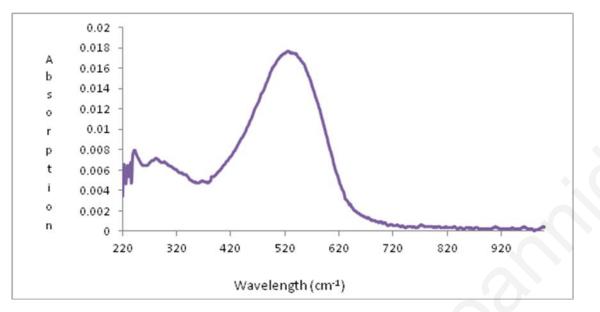


Figure 3. UV-vis spectrum of the thiadiazinone polymer 192

5.4 Sonogashira Reaction on 3,5-Dichloro-1,2,6-thiadiazin-4-one 24

Attempts to carry out the Sonogashira reaction between the dichlorothiadiazinone **24** and phenylacetylene, included the examination of the solvent (PhH, PhMe, 1,4-dioxane, THF, DMF, DCM, MeCN) and organic base (Et₃N, Hünig's, lutidine, pyridine) using 5 mol% of a palladium source [Pd(Ph₃P)₄, (dba)₃Pd₂, Pd(OAc)₂, (PhCN)₂PdCl₂, (MeCN)₂PdCl₂, (Ph₃P)₂PdCl₂ and [1,1'-(Ph₂P)ferrocene]-PdCl₂.DCM)] and CuI (10 mol%) at rt. The best yield of bisacetylene **193** (73%) was obtained using MeCN, Et₃N (4 equiv), (Ph₃P)₂PdCl₂ (5 mol%) and CuI (10 mol%) at rt (Table 18, entry 1). Using these conditions the 3,5-bis(thien-3-ylacetylene) derivative **194** was synthesized in 69% yield at 20-80 °C. While 3-pyridinyl acetylene gave the 3,5-bis(pyrid-3-ylacetylene) **195** in 68% yield, the 2-pyridinyl acetylene led to a very complex reaction mixture even at higher temperature (80 °C). Use of the ferrocenyl acetylene (3 equiv) gave mixtures of the mono- and di-substituted thiadiazin-4-ones **196** and **197** in 10 and 17% yields, respectively, while use of TMS-acetylene led to decomposition of the starting material (Table 18).

Table 18 Reaction of dichlorothiadiazinone **24** (0.273 mmol) with acetylene (2.2 equiv), Et₃N (4 equiv), Cul (10 mol%), $Pd(Ph_3P)_2Cl_2$ (5 mol%) in MeCN.

		O R CI S	O R N S ^{-N}
24		196	193-195, 197
entry	R	time (min)	yields (%)
1	Ph	10	193 (73)
2 3	Thien-3-yl	30	194 (69) a
3 4	Pyrid-2-yl	30 45	
5	Pyrid-3-yl Ferrocenyl	180	195 (68) 196 (10), 197 (17)
6	TMS	60	
^a Complex r ^b Decompos	eaction mixture ition		

5.5 Summary

In conclusion, the dichlorothiadiazinone **24** underwent Pd catalyzed Suzuki-Miyaura, Stille and Sonogashira C-C coupling reactions to afford symmetrical bis-arylated, heteroarylated and alkynylated systems, respectively. The synthesis of thiophene-thiadiazinone oligomers together with the first thiadiazinone polymer, were achieved.

orakidia Achillea loannido

CHAPTER 6

Reactions of 3-Chloro-5-halo(pseudohalo)-4H-1,2,6-thiadiazin-4-ones

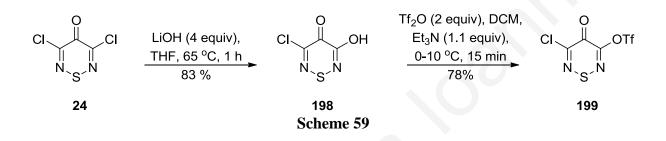
Sections

6.1	Introduction	106
6.2	Initial study	106
6.3	Synthesis of Non-symmetrical Dihalo Thiadiazinones	107
6.4	Stille Reaction	108
6.5	Synthesis of Thiadiazinone Dimer	111
6.6	Summary	112

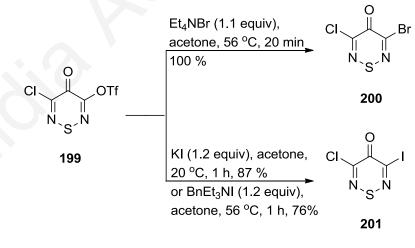
6.1 Introduction

The two chlorine atoms that 3,5-dichloro-4H-1,2,6-thiadiazin-4-one **24** bears, have exactly the same reactivity owing to the perfect symmetry of the system. As such, the differentiation of the two is impossible and all the C-C coupling reactions tried on the system, were affording mixtures of mono and bis-coupled products. In a continuation of our studies on the scaffold thiadiazinone **24** we proceeded to investigate the synthesis of non-symmetrical 3,5-bis-heteroarylated thiadiazinones by modifying the initial chlorine substituent to bromine, iodine and triflate, targeting chemoselective chemistry.

6.2 Initial study


A search in the literature revealed that chemistry can be efficient with symmetrical dihaloheteroarenes that are electron poor (*e.g.*, 1,3,4-thiadiazoles,^{229,230} pyridines,²³¹⁻²³⁶ and pyrimidines^{237,238}). In some cases (*e.g.*, 2,6-dihalopyridine) the selective displacement of only one halogen using the Stille protocol required the presence of a large excess of the substrate to prevent the formation of the bis-coupled product,²³⁹ while the Sonogashira reaction of 3,5-dibromopyridine, gave mixtures of mono- and bis-ethynylated derivatives.²⁴⁰

Attempts to synthesize 3-aryl-5-chlorothiadiazinone starting from 3,5-dichloro-1,2,6-thiadiazin-4-one **24** using our typical Suzuki-Miyaura or Stille conditions²⁴¹ with only 1 equiv of arylboronic acid or arylstannyl reagent, gave only mixtures of mono- and bis-arylated systems, despite varying the reaction solvent, temperature and catalysts. As such, an alternative pathway was proposed that required access to non-symmetrical 3,5-dihalo or 3-halo-5-(pseudohalo)thiadiazinones, which could favor chemoselective Pd catalyzed C-C coupling reactions. Pd catalyzed C-C coupling reactions of "non-symmetrical" mixed dihalo systems 2-bromo-6-chloropyridine²⁴² and 2-bromo-5-chlorothiophene²⁴³⁻²⁴⁷ occur chemoselectively at the more reactive bromine.


Initial attempts to exchange selectively one halide with KBr or KI in acetone (Finkelstein reaction)²⁴⁸ failed and only the starting dichlorothiadiazinone **24** was recovered. Nevertheless, thiadiazinone **24** could be converted into 3-chloro-5-trifluoromethanesulfonyl-4*H*-1,2,6-thiadiazin-4-one **199** in two steps (Scheme 59) and this in turn could be readily converted into the 3-bromo-5-chloro- and the 3-chloro-5-iodothiadiazinones **200** and **201**, respectively (Scheme 60).

6.3 Synthesis of Non-symmetrical Dihalo Thiadiazinones

3,5-Dichloro-4*H*-1,2,6-thiadiazin-4-one **24** treated with LiOH (4 equiv) in dry THF heated at *ca.* 65 °C for 1 h gave 3-chloro-5-hydroxy-4*H*-1,2,6-thiadiazin-4-one **198** directly in 83% yield. The reaction of the alcohol **198** with trifluoromethanesulfonic anhydride (Tf₂O) (2 equiv) in the presence of Et₃N (1.1 equiv) in DCM at *ca.* 0-10 °C for 15 min gave the 3-chloro-5-triflate-1,2,6-thiadiazin-4-one **199** in 78% yield (Scheme 59).

By treating the triflate **199** with Et₄NBr (1.1 equiv) in acetone at *ca*. 56 °C for 20 min, 3-bromo-5-chloro-4*H*-1,2,6-thiadiazin-4-one **200** was obtained in 100% yield, while treatment with KI (1.2 equiv) or BnEt₃NI (1.2 equiv) in acetone at rt and 56 °C for 1 h gave 3-chloro-5-iodo-4*H*-1,2,6-thiadiazin-4-one **201** in 87 and 76% yields, respectively (Scheme 60).

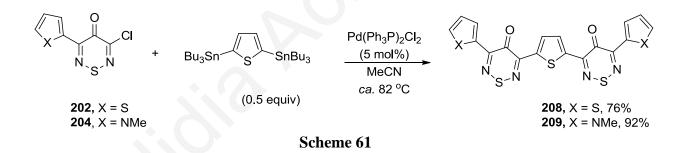
6.4 Stille Reaction

Initially, a screen was pursued of Stille reaction conditions for the mono arylation of the dihalo and pseudohalo thiadiazinones **24, 199-201** using 2-(tributylstannyl)thiophene (1 equiv) and Pd(Ph₃P)₂Cl₂ (5 mol%) at rt varying the solvents (*e.g.*, THF, PhH, PhMe and MeCN). 2-(Tributylstannyl)thiophene was used instead of the tributylphenyltin, because the dihalo-, 3-chloro-5-phenyl- and 3,5-diphenylthiadiazinones co-run on TLC. From the solvents screened, PhH gave the fastest and cleanest reaction mixtures, while in MeCN the starting thiadiazinones were insoluble at rt and required heating to *ca*. 50 °C to solubilize but this led to mixtures of mono and bisthienylated thiadiazinones. The use of THF led to a very fast but complex reaction mixtures (by TLC) while in the case of the PhMe a small amount (4%) of the bis-thienylated product was also isolated.

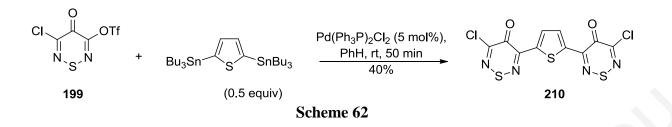
Of the four thiadiazinones screened, the dichlorothiadiazinone **24** gave mixtures of mono- and bis-thienylated products, while the chloroiodothiadiazinone **201** gave a complex reaction mixture from which no desired product was detectable (by TLC). Fortunately, the bromochloro- and the chlorotriflate- thiadiazinones **200** and **199** reacted chemoselectively with 2-(tributylstannyl)thiophene to give 3-chloro-5-thien-2-yl-4*H*-1,2,6-thiadiazin-4-one **202** in 83 and 85% yields, respectively.

Since the Stille reaction of the 2-(tributylstannyl)thiophene with the triflate thiadiazinone **199** was significantly faster than that of the bromochlorothiadiazinone **200** (2 h *vs* 2 d) we subsequently chose the triflate thiadiazinone **199** as the starting material for the synthesis of a series of chloro monoaryl thiadiazinones (Table 19) that could later be modified into a series of mixed biaryl thiadiazinones (Table 20).

 $\begin{array}{l} \textbf{Table 19} \mbox{ Reaction of the 3-chloro-5-halo(pseudohalo)-1,2,6-thiadiazinones 24, 199-201 (0.22 mmol) with ArSnBu_3 (1 equiv), \\ Pd(Ph_3P)_2Cl_2 \ (5 mol\%), \ in PhH \ (2 mL) \ at \ rt. \end{array}$

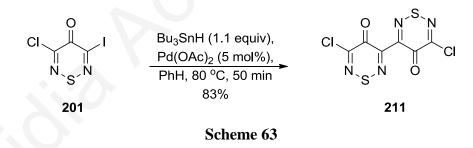

	X ArSn	Bu ₃	
2	24, 199-201		202-20
х	Ar	time (h)	yield (%)
CI	Thien-2-yl	48	а
Br	Thien-2-yl	44	202 (83)
I	Thien-2-yl	0.5	b
OTf	Thien-2-yl	2	202 (85)
OTf	Fur-2-yl	0.8	203 (76)
OTf	N-Me-pyrrol-2-yl	0.08	204 (94)
OTf	Ph	4	a
	of mono and bi arylate ex reaction mixture.	ed thiadiazino	nes.

Disappointingly, attempts to perform a one-pot Stille mediated two step mixed arylation failed. Nevertheless, unsymmetrical biheteroaryl thiadiazinones were prepared in high yields by reacting the isolated 3-chloro-5-heteroaryl thiadiazinones **202-204** with heteroaryltin and $Pd(Ph_3P)_2Cl_2$ (5 mol%) in MeCN at *ca.* 82 °C (Table 20).

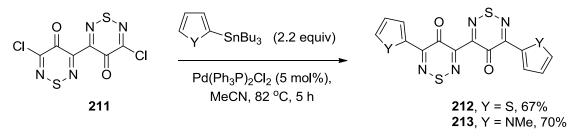

Table 20 Reaction of the 3-chloro-5-heteroarylthiadiazin-4-ones **202-204** (0.22 mmol) with ArSnBu₃ (1.2 equiv), Pd(Ph₃P)₂Cl₂ (5 mol%), in MeCN (2 mL) at *ca.* 82 °C.

$\begin{array}{c} CI \xrightarrow{O}_{Het^1} \\ N_{S^{N}} \\ N \end{array}$	Het ² SnBu ₃ ►	Het ²	D Het ¹ S
202-204		2	205-207
Het ¹	Het ²	time (min)	yield (%)
Thien-2-yl	Fur-2-yl	20	205 (88)
Thien-2-yl	N-Me-pyrrol-2-yl	45	206 (88)
Fur-2-yl	Thien-2-yl	20	205 (78)
Fur-2-yl	N-Me-pyrrol-2-yl	20	207 (100)
N-Me-pyrrol-2-yl	Thien-2-yl	45	206 (100)
N-Me-pyrrol-2-yl	Fur-2-yl	15	207 (94)

Furthermore, by reacting either the 3-chloro-5-(thien-2-yl)- or the 3-chloro-5-(*N*-methylpyrrol-2-yl)thiadiazin-4-ones **202** or **204** with 2,5-bis(tributylstannyl)thiophene the potentially useful **208** and **209** were synthesized in 76 and 92% yields, respectively (Scheme 61).



An alternative synthesis of compounds **208** and **209** was also targeted by building first 5,5'-(thiophene-2,5-diyl)bis(3-chloro-4*H*-1,2,6-thiadiazin-4-one) **210** but the synthesis of this from 2,5-bis(tributylstannyl)thiophene and the 3-chloro-5-triflate thiadiazinone **199** was low yielding (40%) and as such this route was abandoned (Scheme 62).



6.5 Synthesis of Thiadiazinone Dimer

We also tried to make 5,5'-dichloro-4*H*,4'*H*-[3,3'-bi-(1,2,6-thiadiazine)]-4,4'-dione **211** from the dihalo-thiadiazinones **24**, **200** and **201** *via* the Ullmann reaction, but the use of copper powder,²⁴⁹ led to complex reaction mixtures (by TLC) and the use of $Pd(OAc)_2^{36}$ gave only decomposition. Nevertheless, Bu₃SnH in the presence of a Pd catalyst and KOAc was known to react with iodoarenes to give the tributyltin-arenes but in the absence of base these reactions often afford some biaryls.^{250,251} In light of this, 3-chloro-5-iodo-4*H*-1,2,6-thiadiazin-4-one **201** was treated with Bu₃SnH (1.1 equiv) and Pd(OAc)₂ (5 mol%) in PhH heated at reflux, and after 50 min the desired 5,5'-dichloro-4*H*,4'*H*-[3,3'-bi(1,2,6-thiadiazine)]-4,4'-dione **211** was isolated in 83% yield (Scheme 63). Similar treatment of the dichloro- and bromochloro-thiadiazinones **24** and **200** gave only recovered starting materials.

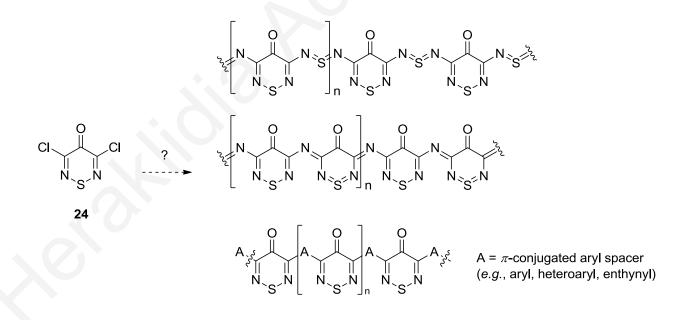
The dimer **211** reacted readily with either 2-(tributylstannyl)thiophene or 1-methyl-2-(tributylstannyl)pyrrole (2.2 equiv) and Pd(Ph₃P)₂Cl₂ (5 mol%) in MeCN heated to reflux to give 5,5'-di(thiophen-2-yl)-4H,4'H-[3,3'-bi-(1,2,6-thiadiazine)]-4,4'-dione **212** and 5,5'-di(*N*meth-ylpyrrol-2-yl)-4H,4'H-[3,3'-bi(1,2,6-thiadiazine)]-4,4'-dione **213** in 67 and 70% yields, respectively (Scheme 64).

Scheme 64

6.6 Summary

In conclusion, desymmetrization of dichlorothiadiazinone 24 *via* modified Finkelstein reaction conditions gave triflate-, bromo-, and iodo-substituted chlorothiadiazinones 199, 200 and 201 respectively. Both the triflate and the bromochlorothiadiazinones suffered chemoselective Stille couplings to give 3-chloro-5-heteroaryl thiadiazinones 202-204, while treatment of the chloroiodothiadiazinone 201 with Bu₃SnH and Pd(OAc)₂ gave the dimer dichlorobithiadiazinone 211. Manipulation of the above gave the π -extended oligomers 208, 209, 212 and 213 that could find use in optoelectronic applications.

CHAPTER 7


Modification of C-4 Position of 3,5-Disubstituted 4H-1,2,6-Thiadiazin-4-ones

Sect	tions	
7.1	Introduction	114
7.2	Addition Reactions	115
7.3	Preparation of Dihalo(thiadiazin-4-ylidene)methanes	117
7.4	Preparation of (Thiadiazin-4-ylidene)malononitriles from 3,5-Diphenyl-	
	and 3,5-Dithien-2-yl Thiadiazinones 172 and 184	118
7.5	Preparation of Thiadiazine-4-thiones	118
7.6	Preparation of (Thiadiazin-4-ylidene)malononitriles from Thiones	119
7.7	Reaction of Thiadiazine-4-thiones with Hydrazine	121
7.8	Comparison of Selected Spectroscopic Data of Thiadiazinylidenes	122
7.9	Summary	123

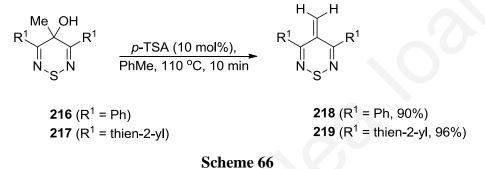
7.1 Introduction

While many 5-substituted derivatives of 3-chloro-4*H*-1,2,6-thiadiazin-4-ones have high fungicidal activity,²⁵²⁻²⁵⁵ this usefulness has not prompted extensive studies and the known chemistry of the dichlorothiadiazines **24** and **26** remains limited. The chlorines in **24** and **26** can be successively displaced by a range of nucleophiles, the second requiring more vigorous conditions.^{38,43-45} To the best of our knowledge there are no reports on the direct intermolecular condensation on the C-4 carbonyl of the dichlorothiadiazinone **24**. The only examples about modification of the C-4 carbonyl are those of bidentate bisnucleophiles reacting with thiadiazinones **24** and **26** (see Introduction schemes 25, 27).⁴³⁻⁴⁶

In Chapters 5 and 6, we have demonstrated that C-C coupling reactions can be applied onto 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** to form both symmetrical and non-symmetrical 1,2,6-thiadiazin-4-ones.^{241,256} This development in the chemistry of the dichlorothiadiazinone **24** potentially could lead to the construction of novel π -conjugated oligomers and polymers (Scheme 65). π -Conjugated polymers of thiadiazines have been proposed by both Woodward²⁵⁷ and Rees ^{39,40,43} as stable alternatives to the superconductor poly(sulfur nitride) (SN)_x.

Scheme 65

The optical/electrical properties of such oligomers or polymers could be moderated by manipulation of the thiadiazine C-4 position. In this chapter we describe our efforts to moderate the C-4 position of the model compound 3,5-diphenyl-4H-1,2,6-thiadiazin-4-one 172 together with some related chemistry of 3,5-dithien-2-yl-4H-1,2,6-thiadiazin-4-one 184.


7.2 **Addition Reactions**

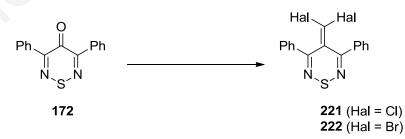
Both 3,5-diphenyl- and 3,5-dithien-2-yl-4H-1,2,6-thiadiazin-4-ones 172 and 184 were prepared in multigram quantities (up to 5g) via Suzuki-Miyaura or Stille coupling reactions starting from 3,5-dichloro-4H-1,2,6-thiadiazin-4-one 24 as described in chapter 5.241 Our study on the chemistry of the C-4 position began with the formal addition of hydrogen and methane across the carbonyl. The mild reduction of the diphenylthiadiazinone 172 using NaBH₄ (2 equiv) in dry MeOH gave 3,5-diphenyl-4H-1,2,6-thiadiazin-4-ol **214** in 90% yield in only 5 min, however, owing to the poor solubility of the dithienylthiadiazinone 184 in MeOH the analogous reduction of the latter required a 1:1 mixture of MeOH and DCM (Table 21).

Table 21 A	Addition reactions of 3,5-diaryl-4 <i>H</i> -1,2,6-thiad	iazin-4-on	es 172 a	and 184 .
	$R^{1} \xrightarrow{O} R^{1}$ N_{S}^{N}	R^{1}	DH ↓ R ¹ ↓ N	
. À	172 (R ¹ = Ph) 184 (R ¹ = Thien-2-yl)	214	4-217	
R ¹	Conditions	Time (min)	R ²	Yields (%)
Ph	NaBH ₄ (2 equiv), MeOH, 50 °C	5	н	214 (97)
Thien-2-yl	NaBH ₄ (2 equiv), MeOH/DCM (1:1), 50 °C	15	н	215 (98)
Ph	MeLi (4 equiv), THF, 0-10 °C	60	Me	216 (90)
Thien-2-yl	MeLi (4 equiv), THF, 0-10 °C	60	Me	217 (79)

Addition of methane could also be achieved by treating 3,5-diphenyl- and 3,5-dithien-2ylthiadiazinone 172 and 184 with MeLi in dry THF at 0-10 °C, to give after 1 h 4-methyl-3,5diphenyl- and 4-methyl-3,5-dithien-2-yl-4*H*-1,2,6-thiadiazin-4-ols **216** and **217** in high yields, respectively (Table 21).

Attempts to chlorodehydroxylate or prepare the triflate of 4-methyl-3,5-diphenyl-4*H*-1,2,6-thiadiazin-4-ol **216**, using SOCl₂ or Tf₂O/Et₃N, respectively gave only the dehydrated (3,5-diphenyl-4*H*-1,2,6-thiadiazin-4-ylidene)methane **218**. In light of this facile dehydration the diphenyl- and dithienylthiadiazinols **216-217** were treated with catalytic *p*-TSA (10 mol%) in PhMe at *ca*. 110 °C for 10 min to afford the corresponding ylidenes **218** and **219** in high yields (Scheme 66).

Interestingly, during the attempted chlorodehydroxylation of 4-methyl-3,5-diphenyl-4*H*-1,2,6-thiadiazin-4-ol **216** with neat SOCl₂ we observed traces of a compound that gave a molecular ion of m/z 298 Da with a chlorine isotope pattern tentatively corresponding to a chlorodehydration. As such we investigated the possibility of further halogenating the (thiadiazinylidene)methanes. The attempted chlorination of the (diphenylthiadiazinylidene) methane **218** using SOCl₂ gave mixtures and was abandoned. Neverthesless, treating (3,5-diphenyl-4*H*-1,2,6-thiadiazin-4-ylidene)methane **218** with NBS (1 equiv) in CCl₄ at *ca*. 20 °C, gave bromo(3,5-diphenyl-4*H*-1,2,6-thiadiazin-4-ylidene)methane **220** in 80% yield (Scheme 67). The analogous reactions with NCS and NIS at *ca*. 20 °C gave only recovered starting material while at *ca*. 70 °C the former gave again recovered starting material and the latter gave a complex reaction mixture (TLC) and no trace of the target compound. The analogous reaction of (dithienylthiadiazinylidene)methane **219** led to mainly unreacted starting material and a polar baseline.



Scheme 67

Further attempts to bis halogenate by either treating the methylene **218** or the monobromoylidene **220** with additional NBS (2 and 3 equiv.) in either CCl_4 or with Br_2 in AcOH led to complex mixtures but no trace of the dibrominated product (by TLC), as such this was not pursued further.

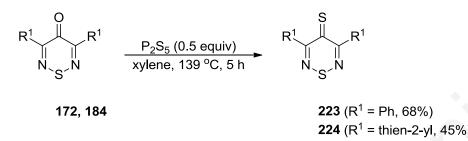
7.3 Preparation of Dihalo(thiadiazin-4-ylidene)methanes

Fortunately, the dihalomethane thiadiazines **221** and **222** could be prepared *via* the Appel reaction.²⁵⁸ Treating the diphenylthiadiazinone **172** with Ph₃P in CCl₄ or CBr₄ at elevated temperatures in a sealed tube and prolonged heating gave the desired dichloro(3,5-diphenyl-4H-1,2,6-thiadiazin-4-ylidene)methane **221** and dibromo(3,5-diphenyl-4H-1,2,6-thiadiazin-4-ylidene)methane **222**, respectively. In the case of the CCl₄ reaction, heating at *ca*. 140 °C under microwave irradiation (MW 250 W, 70 PSI) was the best choice for small scale reactions (up to 0.75 mmol), giving a short reaction time (1 h) (95%) while with CBr₄, heating with microwave irradiation at *ca*. 140 °C (MW 250 W, 68 PSI) led to lower yields (70%) and the best yield was obtained when a sealed tube was used for 7 h at 150 °C (91%) (Scheme 68).

Reagents and Conditions: Hal = Cl, Ph_3P (4 equiv), CCl_4 , MW (250 W), 140 °C (70 PSI), 1 h, 95%; Hal = Br, Ph_3P (4 equiv), CBr_4 (2 equiv), PhH, MW (250 W), 140 °C (68 PSI), 1 h, 70% or sealed tube, 150 °C, 7 h, 91%.

Scheme 68

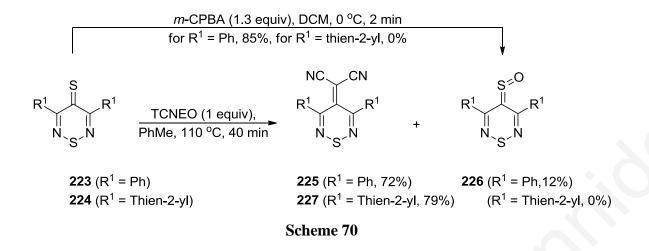
The dibromomethane **222** proved to be stable under several reducing conditions: H_2 over Pd/C in EtOH or NaBH₄ in MeOH, and In (0) in AcOH but the use of Zn in HCO₂H²⁵⁹ led to decomposition of the starting material. Furthermore, the dichloromethane **221** and dibromomethane **222** were stable in the presence of nucleophiles, such as morpholine for 2 d at 100 °C, *o*-phenylenediamine in EtOH heated at reflux for 2 d and thiophenol in refluxing PhMe for 2 d. This limited reactivity of the dihalomethanes **221** and **222** could be owed to steric effect shielding from the phenyl groups.


7.4 Preparation of (Thiadiazin-4-ylidene)malononitriles from 3,5-Diphenyl- and 3,5-Dithien-2-yl Thiadiazinones 172 and 184

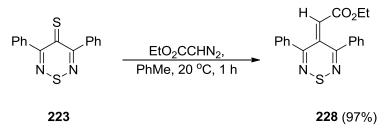
Prior attempts to condense malononitrile and the dichlorothiadiazinone 24 to prepare the dicyanomethylene 26 had failed and this was tentatively owed to the high reactivity of the chlorine substituents at C-3 and C-5. With the 3,5-diphenyl- and 3,5-dithien-2-yl thiadiazinones 172 and 184 in hand the C-3 and C-5 positions were now blocked and the reexamined. Treatment of either analogous condensation was diphenylor dithienylthiadiazinones 172 and 184 with malononitrile in the presence of bases such as Et₃N, pyridine, t-BuLi or n-BuLi/diisopropylamine in THF or the use of Lewis acids TiCl₄ in PhH or ammonium acetate in Ac₂O, or simply refluxing the mixture in Ac₂O afforded only recovered starting thiadiazinones. Furthermore, the thiadiazinones 172 and 184 were unreactive towards a series of reagents like TCNE, TCNEO, MeI, ethyl diazoacetate and the Wittig reagent (cyanomethyl)triphenylphosphonium chloride with NaH in THF. Nevertheless, the ylidenemalononitriles could be prepared from the more reactive thiones 223-224.

7.5 Preparation of Thiadiazine-4-thiones

Alternative routes to ylidenemalononitriles involve cycloaddition of TCNE or tetracyanoethylene oxide (TCNEO) to thiones^{47,260,261} and fortunately, the thiadiazine-4-thiones could be readily prepared. The reaction of thiadiazinones **172** and **184** with of P_2S_5 (0.5 equiv) in xylenes heated at *ca*. 139 °C for 5 h gave the desired 3,5-diphenyl- and 3,5-dithien-2-yl-4*H*-1,2,6-thiadiazine 4-thiones **223** and **224** in about 70% and 45% yields, respectively (1 g scales) (Scheme 69). Interestingly, the analogous reactions with Lawesson's reagent (LR) (0.5 equiv) in dry toluene or xylenes heated at *ca*. 110 °C and 139 °C, 118


respectively for 12 h led to complex mixtures containing mainly unreacted starting thiadiazinones (by TLC).

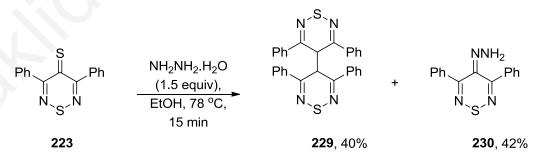
Scheme 69


7.6 Preparation of (Thiadiazin-4-ylidene)malononitriles from Thiones

3,5-Diphenyl-4H-1,2,6-thiadiazin-4-thione 223 treated with TCNE (1 equiv) in PhCl heated to ca. 132 °C for 12 h gave 2-(3,5-diphenyl-4H-1,2,6-thiadiazin-4-ylidene)malononitrile 225 in a moderate (36%) yield together with two purple colored minor side products that could not be separated or characterized. The reaction of the dithienylthiadiazinethione 224 with TCNE, however, led to a complex reaction mixture and this was not altogether surprising since TCNE was known to react with thiophenes to give tricyanovinyl substituted thiophenes at C-2²⁶² and in rare cases Diels-Alder adducts can form.^{263,264} In light of this, we then reacted both diphenyl and dithienylthiadiazine-4-thiones 223 and 224 with TCNEO (1.2 equiv) in PhMe heated to ca. 110 °C for 40 min and obtained the desired ylidenemalononitriles 225 and 227 in 72 and 79% yields, respectively (Scheme 70). Interestingly, the reaction between 3,5-diphenyl-4H-1,2,6-thiadiazin-4-thione 223 and TCNEO also gave 3,5-diphenyl-4H-1,2,6-thiadiazine-4thione oxide 226 as a minor side product in 12% yield (Scheme 70). The sulfine 226 could be prepared directly and in high yield (85%) by treating the diphenylthiadiazinethione 223 with *m*-CPBA (1.3 equiv) at *ca*. 0° C for 2 min, however, the analogous reaction with the dithienylthiadiazin-4-thione 224 gave only decomposition (by TLC), and this was probably owed to the ability of *m*-CPBA to oxidize the electron rich thiophenes.²⁶⁵

The mechanistic rationale for the reactions between TCNE and TCNEO with thiones to give ylidenemalononitriles and also in the latter case the sulfine have been previously reported for 1,2,3-dithiazole-5-thione.^{47,261} Briefly, both reagents cycloadd to the thione, TCNE *via* [2+2] and TCNEO *via* [2+3] cycloadditions. The adducts then fragment *via* retrocycloadditions tentatively losing in the first case thiocarbonyl cyanide and in the second case carbonyl cyanide and elemental sulfur, leaving behind the desired ylidenemalononitriles. It has been postulated that sulfine **226** forms by direct attack of the thione onto the TCNEO oxygen leading to an effective oxygen transfer and generation of TCNE as a reaction side product.²⁶¹

In light of this success, we extended the [2+3] cycloaddition chemistry of the thiadiazinethiones by reacting both the diphenyl- and dithienylthiadiazinethiones **223** and **224** with ethyl diazoacetate (1.5 equiv) in PhMe at *ca*. 20 °C for 1 h and isolated ethyl 2-(3,5-diphenyl-4*H*-1,2,6-thiadiazin-4-ylidene)acetate **228** in 97% yield from the former (Scheme 71) but failed to obtain a product from the dithienyl analogue. This could be owed to the known reactivity of thiophenes with ethyl diazoacetate that can lead to competing cyclopropanation reactions.²⁶⁶

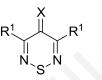


Scheme 71

7.7 Reaction of Thiadiazine-4-thiones with Hydrazine

Finally we considered the preparation of [(thiadiazin-4-ylidene)amino]arenes by treating either 3,5-diphenyl- and 3,5-dithien-2-yl-4*H*-1,2,6-thiadiazin-4-ones and thiones with primary anilines [*e.g.*, PhNH₂ in EtOH at reflux or neat PhNH₂] but were unable to isolate any desired products. In light of this, the thiadiazinones and thiadiazine-thiones were treated with the more nucleophilic hydrazine. While the thiadiazinones were again unreactive, 3,5-diphenyl-thiadiazin-4-thione **223** reacted with hydrazine monohydrate (1.5 equiv) in EtOH at *ca*. 78 °C for 20 min to give an unknown **229** and 4-hydrazono-3,5-diphenyl-4*H*-1,2,6-thiadiazine **230** in 40 and 42% yields, respectively (Scheme 72).

The unknown compound **229** was isolated as yellow plates mp 262-263 °C (from cyclohexane). Microanalysis of the compound gave C, 71.4; H, 4.7; N, 11.1% and mass spectrometry of compound **229** indicated a MW of 251 Da which could probably be the M⁺-1. However, the ¹H-NMR showed a singlet at 6.02 ppm integrating only 1 proton while the aromatic region integrated 10 protons. The ¹³C-NMR showed 6 peaks of which one, was an sp³ (CH) carbon at 25.4 ppm splitting into a double-doublet (*J* 138.8 and 5 Hz) in the coupled ¹³C-NMR. The UV/vis spectroscopy showed a λ_{max} at 397 nm (log ε 3.71) which indicated less extensive conjugation in comparison with the starting thione **223**. The above data suggested that the structure of the unknown was 3,3',5,5'-tetraphenyl-4*H*,4'*H*-4,4'-bi(1,2,6-thiadiazine) **229** which however has a molecular weight of 502 Da. Further attempts to observe the molecular weight using MALDI-TOF showed only a very weak peak at 502 while the major peak was the 251.



Scheme 72

7.8 Comparison of Selected Spectroscopic Data of Thiadiazinylidenes

With a range of 4H-1,2,6-thiadiazin-4-ylidenes in hand that varied at C-4, the absorption properties in the UV/vis absorption spectra could be compared. This comparison can yield qualitative information about optical band gaps that can be used in the design of oligomers or polymers needed for further materials studies. On comparing the 3,5-diphenylthiadiazines it was clear that the replacement of oxygen by either sulfur or carbon substituents shifted the longest wavelength absorption to the red (Table 22). On switching the C-4 oxygen for C(CN)₂ red shifts of 97 and 157 nm were observed for the diphenyl and dithienylthiadiazinylidenes, respectively.

Table 22 Longest wavelength absorption in the UV/vis spectra of thiadiazinylidenes.

Compound No.	R ¹	X λ _{max}	$_{\kappa}$ (DCM) /nm (log ε)	¹³ C (ppm) $C(X)_2$
172	Ph	0	348 (3.28)	_
221	Ph	CCl ₂	358 (3.19)	121.2
222	Ph	CBr ₂	361 (3.19)	91.9
218	Ph	CH ₂	392 (2.84)	117.3
223	Ph	S	416 (3.37)	-
225	Ph	C(CN) ₂	445 (3.07)	79
184	thien-2-yl	0	327 (3.74)	-
219	thien-2-yl	CH ₂	395 (3.59)	114.8
224	thien-2-yl	S	454 (3.15)	-
227	thien-2-yl	C(CN) ₂	484 (3.29)	78.6

The ¹³C NMR data of ylidenemalononitriles **225** and **227** also indicated that a considerable negative charge was located on the central carbon of the malononitrile group [$\delta_{\rm C} C({\rm CN})_2$ **225** (R¹ = Ph) 79.0 ppm and **227** (R¹ = thien-2-yl) 78.6 ppm] indicating the presence of a considerable push–pull effect,³⁴ the 'push' originating presumably from the electron rich arenes at C-3 and C-5 and also from the thiadiazine ring sulfur. The above data tentatively support that electron transfer occurred from the 3,5-diaryl substituents to the thiadiazine ring

and that modifications at the C-4 positions strongly affect the properties of these 3,5-diarylthiadiazinylidenes.

7.9 Summary

We have succesfully demonstrated a series of reactions taking place at C-4 position of 3,5-biaryl-1,2,6-thiadiazinones **172** and **184**. The carbonyl group appeared to be difficult to modify but nevertheless by converting it into the most reactive thiones **223-224**, condensations and addition reactions could be addressed affording the desired products in high yields.

PART 3

CHAPTER 8

Synthesis of Ethyl Canthinone-1-carboxylates

Sections

8.1	Introduction	128
8.2	Suzuki-Miyaura Coupling Reactions of the Bromonaphthyridines	130
8.3	Demethylation of 4-Aryl-6-methoxy-1,5-naphthyridines	131
8.4	Synthesis of Ethyl Canthinone-1-carboxylate and its Analogues	133
8.5	Summary	135

8.1 Introduction

Canthin-6-one **231** (6*H*-indolo[3,2,1-*de*][1,5]naphthyridin-6-one) (Figure 4), first isolated in 1952 by Haynes,²⁶⁷ is the parent of the 120 member plus canthinone alkaloid family which includes over 40 naturally occurring analogues.²⁶⁸⁻²⁷⁴ Selected canthin-6-one alkaloids have interesting biological properties including antiparasitic activity against *Trypanosoma cruzi* (Chagas disease),^{275,276} and *Plasmodium falciparum* (malaria),²⁷⁷⁻²⁷⁹ antibacterial^{280,281} and antifungal²⁸²⁻²⁸⁴ properties. Furthermore, some canthinones are cytotoxic against several strains of cancer cells^{277,278,285-291} and act as vasodilators since they can inhibit cAMP phosphodiesterase,^{292,293} while 1-methoxycanthinone is a potent anti-HIV agent.²⁹⁰

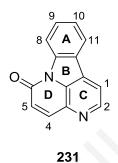
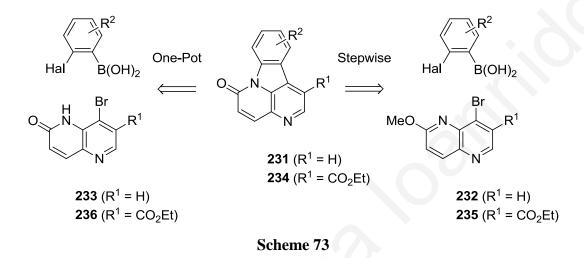
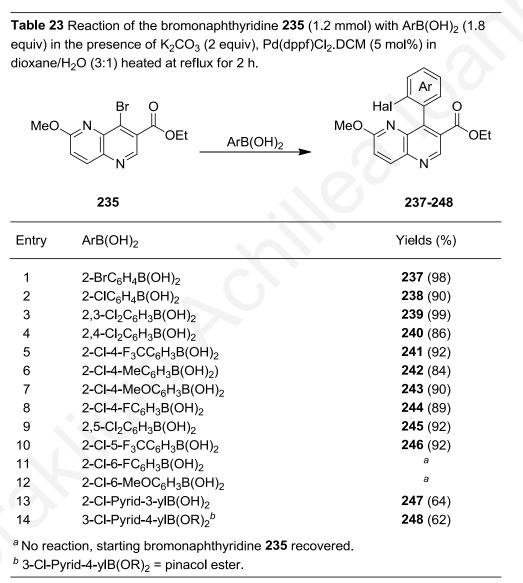



Figure 4. Structure and chemical numbering of canthin-6-one.

Owing to this broad range of biological activity there is continued demand for syntheses that provide functionalized canthinones efficiently. Canthinones bearing carboxylate groups are of particular value since modification of the carboxylate group can lead to a wide variety of other functionalities. We note that there are several reports on the preparation of canthinone-2-carboxylates,²⁹⁴⁻³⁰⁰ but only two reports on canthinone-5-carboxylates³⁰¹⁻³⁰² and one report each on canthinone-1,2-dicarboxylates³⁰³ and 1,2,5-tricarboxylates.²⁹⁶ No specific routes to canthinone-1-carboxylates have been reported and we therefore considered preparing a series of this class of canthinones.

The "classical" approach to synthesize canthinones relies on the sequential construction of rings *C* and *D* starting from indoles or construction of the *D* ring starting from β -carbolines.^{295-298, 300-314.} Recently, a former member of the group demonstrated both a rapid one-pot and stepwise "non-classical" convergent synthesis of canthinones **231** (R¹ = H) that required access to available 4-bromo-6-methoxy-1,5-naphthyridine **232** (R¹ = H), 4-bromo-5,6-

dihydro-1,5-naphthyrid-6-one **233** ($R^1 = H$) and 2-haloarylboronic acids.³¹⁵ The synthesis involved construction of ring *B via* transition metal catalyzed intermolecular C-C and intramolecular C-N bond formation. By varying the 2-haloarylboronic acids the construction of analogues bearing substitution on ring *A* was achieved (Scheme 73).



In this chapter, the preparation of 10 new canthinone-1-carboxylates including the first examples of aza-canthinone analogues starting from ethyl 4-bromo-6-methoxy-1,5-naphthyridine-3-carboxylate **235** ($R^1 = CO_2Et$) *via* the stepwise protocol is described.

The stepwise synthesis of the desired ethyl canthinone-1-carboxylates **234** ($R^1 = CO_2Et$) required the known ethyl 4-bromo-6-methoxy-1,5-naphthyridine-3-carboxylate **235** which can be prepared in multigram quantities (3-5 g) in three steps from commercially available 6-methoxypyridin-3-amine.³¹⁶ Attempts to access the one-pot procedure required access to the unknown ethyl 4-bromo-6-oxo-5,6-dihydro-1,5-naphthyridine-3-carboxylate **236**, however, this route could not be realized because a clean demethylation of the bromonaphthyridine **235** using either TMSCI/NaI in MeCN, aq. HBr in dioxane at reflux, or BBr₃ in DCM 0 °C to *ca*. 20 °C failed.

8.2 Suzuki-Miyaura Coupling Reactions of the Bromonaphthyridines

With ethyl 4-bromo-6-methoxy-1,5-naphthyridine-3-carboxylate **235** in hand, the stepwise synthetic protocol was followed. As such, the Suzuki-Miyaura coupling of a variety 2-haloarylboronic acids (1.8 equiv) with the bromonaphthyridine **235** using Pd(dppf)Cl₂[·]DCM (5 mol%) as catalyst and K₂CO₃ (2 equiv) as base in aqueous dioxane/H₂O (3:1) heated to reflux for *ca*. 2 h gave 8-(2-haloaryl)-2-methoxynaphthyridines **237-248** in high yields (Table 23).

Typically the reactions came to completion with only a minimal quantity of biphenyl byproducts present (by TLC). The ethyl 4-(2-haloaryl)-6-methoxy-1,5-naphthyridine-3-carboxylates **237-248** were isolated by dry flash chromatography (Hexane/*t*-BuOMe, 4:1) as viscous yellow oils that were in nearly all cases crystallized from pentane. Furthermore, electron impact (EI) mass spectrometry of these naphthyridines indicated only very weak or non-visible parent ions owing to a very facile fragmentation of the 2-halogen on the 4-aryl substituent, leading to the m/z (M⁺-Hal) ion as the base peak.

The Suzuki-Miyaura coupling also tolerated the use of the heterocyclic 2-chloropyrid-3ylboronic acid (entry 12) and 3-chloropyrid-4-ylboronic acid pinacol ester (entry 14) which afforded the corresponding pyridylnaphthyridines **247** and **248** in 64 and 62% yields, respectively, with no sign of bipyridyl byproducts. Sterically demanding 2,6-disubstituted arylboronic acids, however, led to the quantitative recovery of the starting bromonaphthyridine **235** (entries 11 and 12).

8.3 Demethylation of 4-Aryl-6-methoxy-1,5-naphthyridines

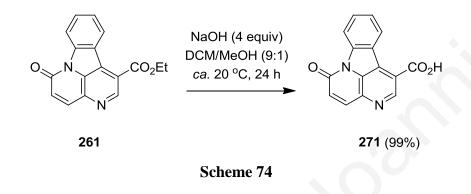
Demethylation of the ethyl 4-(2-haloaryl)-6-methoxy-1,5-naphthyridine-3-carboxylates **237-248** to afford the desired ethyl 4-(2-haloaryl)-6-oxo-5,6-dihydro-1,5-naphthyridine-3carboxylates **249-260** was achieved using TMSCl/NaI³¹⁷ in refluxing MeCN heated to reflux for about 1-2 h (Table 24).

Ha MeO		-R _CO ₂ Et _	Demethylation
	237-248	3	249-260
Entry	Hal	R	Yields (%)
1	Br	н	249 (70)
2	CI	Н	250 (81)
3	CI	3-CI	251 (92)
4	CI	4-CI	252 (83)
5	CI	4-F ₃ C	253 (80)
6	CI	4-Me	254 (74)
7	CI	4-MeO	255 (89)
8	CI	4-F	256 (98)
9	CI	5-Cl	257 (97)
10	CI	5-F ₃ C	258 (92)
11	CI	3-aza	259 (87)
12	CI	4-aza	260 (67)

Table 24 Demethylation of the naphthyridines **237-248** (0.5 mmol) with TMSCI (5equiv), Nal (3 equiv) in the MeCN (1 mL) at reflux for 1-2 h.

Earlier attempted demethylations using aqueous HCl in dioxane at reflux that had previously worked well for the non-ester analogues,³¹⁵ or BBr₃ resulted in complex reaction mixtures (TLC). Interestingly, the TMSCI/NaI demethylation conditions were selective and differentiated between the naphthyridine and anisidine methoxy groups (entry 7). The naphthyridones **249-260** were isolated using dry flash chromatography (*t*-BuOMe, 100%), and recrystallized from the same solvent. ¹H NMR spectroscopy of the products showed the absence of the naphthyridine methoxy signals (*ca.* 3.7 ppm) and the formation of a broad exchangeable signals at 8.0-8.6 ppm attributed to the naphthyridone amide NH. The presence of the amide was also supported by FTIR spectroscopy which showed new amide carbonyl stretching frequencies v(NH-C=O) 1659-1697 cm⁻¹. With the naphthyridones **249-260** accessible formation of the central *B* ring could be pursued *via* a copper catalyzed Buchwald cyclization.

8.4 Synthesis of Ethyl Canthinone-1-carboxylate 261 and its Analogues


Treating ethyl 4-(2-bromophenyl)-6-oxo-5,6-dihydro-1,5-naphthyridine-3-carboxylate 249 with our typical Buchwald conditions [CuI (5 mol%), DMEDA (10 mol%), Cs₂CO₃ (2 equiv), water (2 equiv) in refluxing dioxane, 1 h³¹⁵ gave the ethyl canthinone-1-carboxylate **261** in 85% yield (Table 25, entry 1). However, these conditions were not successful with the 2-chlorophenyl analogue **250** that gave only traces of product even after 24 h (entry 2). The reaction could, however, be driven to completion when additional CuI/DMEDA (a total of 30 mol% with respect to CuI) was added to the reaction mixture affording after 18 h the canthinone **261** in moderate yield of (48%) (entry 3). By premixing various ratios of CuI and DMEDA in dioxane/H₂O (1 mL) we found that a ratio of CuI (10 mol%)/DMEDA (60 mol%) added to the reaction mixture of starting material and base in dioxane/H₂O (1 mL), significantly improved the product yield and shortened the reaction time, affording the desired canthinone 261 in 84% yield in only 9 h (entry 4). Further increases in the ratio of CuI/DMEDA, 1:8 and 1:10, did not improve the yields but did shorten the reaction times further, 82%/3.5 h and 83%/3 h, respectively. Keeping the ratio of CuI/DMEDA at 1:6, and reducing the quantity of CuI (5 mol%) led to a very slow reaction which gave only traces of product after 24 h (TLC). In a further attempt to improve the cyclization, DMEDA was replaced with the ligand *trans-N,N'*-dimethyl-1,2-cyclohexanediamine (DMCDA) which was known to be particularly effective for C-N coupling of chloro-substituted substrates.³¹⁸ As such, when a dioxane/H₂O (1 mL) solution of the 2-chlorophenyl analogue **250** ($R^1 = H$) and Cs₂CO₃ (2 equiv) was treated with a premix of CuI (10 mol%)/DMCDA (60 mol%) and heated to reflux for 2 h, the cyclization was completed affording the canthinone 261 in 74% yield (entry 5). These conditions also worked well for most of the remaining 2-chlorophenyl derivatives (entries 8-10, 15 and 16). The exceptions were the 2,3-dichlorophenyl analogue **251** ($R^1 = 3$ -Cl) (entries 6 and 7) which gave no reaction even with 30 mol% CuI and the 2-chloro-4-methoxyphenyl, 2-chloro-4-fluorophenyl, 2-chloropyrid-3-yl and 3-chloropyrid-4vl analogues, **255** ($R^1 = 4$ -MeO), **256** ($R^1 = 4$ -F), **259** ($R^1 = 3$ -aza) and **260** ($R^1 = 4$ -aza) which required a CuI catalyst loading of at least 20 mol% to reach completion (entries 11-14 and 17-20) (Table 25). Worthy of note was the cyclization of the two pyridyl analogues 259 and 260 that afforded, to the best of our knowledge, the first azacanthinones 269 and 270 in 69 and 56% yields, respectively (entries 18 and 20). The failure to cyclize the 2,3-dichlorophenyl 133

analogue **251** was surprising since the analogous non ester substituted canthinone was readily prepared.³¹⁵

	-		naphthyridones 2 er (2 equiv) in reflux	•	,	th Cul, Ligand,	
0		Hal CO ₂ Et	Buchwald Coupling			CO ₂ Et	
	249-	260			20	61-270	
Entry	Hal	Cul (mol%)	Ligand (mol%)	Time (h)	R ²	Yields (%)	
1	Br	5	DMEDA (10)	1	н	261 (85)	
2	CI	5	DMEDA (10)	24	Н	a	
3	CI	30	DMEDA (60)	18	Н	261 (48)	
4	CI	10	DMEDA (60)	9	н	261 (84)	
5	CI	10	DMCDA (60)	2	Н	261 (74)	
6	CI	10	DMCDA (60)	24	8-CI	b	
7	CI	30	DMCDA (180)	24	8-Cl	b	
8	CI	10	DMCDA (60)	4	9-CI	262 (85)	
9	CI	10	DMCDA (60)	1	9-F ₃ C	263 (90)	
10	CI	10	DMCDA (60)	12	9-Me	264 (80)	
11	CI	10	DMCDA (60)	24	9-MeO	а	
12	CI	20	DMCDA (120)	24	9-MeO	265 (73)	
13	CI	10	DMCDA (60)	24	9-F	а	
14	CI	20	DMCDA (120)	24	9-F	266 (70)	
15	CI	10	DMCDA (60)	1.5	10-CI	267 (89)	
16	CI	10	DMCDA (60)	4.3	10-F ₃ C	268 (95)	
17	CI	10	DMCDA (60)	24	8-aza	а	
18	CI	20	DMCDA (120)	4	8-aza	269 (69)	
19	CI	10	DMCDA (60)	24	9-aza	а	
20	CI	20	DMCDA (120)	4	9-aza	270 (56)	
^a Incomplete reaction.							
^b No re	eaction, s	tarting mate	erial recovered eve	en after 24	h.		

Having demonstrated a route to the ethyl canthinone-1-carboxylates **261-270** we showed that the ester group of the ethyl canthinone-1-carboxylate **261** could be readily hydrolyzed (Scheme 74). Treating a DCM/MeOH (9:1) solution of the ethyl canthinone-1-carboxylate **261**

with NaOH (4 equiv) at *ca*. 20 °C for 24 h^{319} afforded a precipitate assumed to be the sodium carboxylate. Acidification of the reaction mixture using 10% HCl followed by extraction with EtOAc afforded the orange 6-oxo-6*H*-indolo[3,2,1-*de*]-[1,5]naphthyridine-1-carboxylic acid **271** in excellent yield.

8.5 Summary

Starting from the known ethyl 4-bromo-6-methoxy-1,5-naphthyridine-3-carboxylate **235** a series of eight ethyl canthinone-1-carboxylates **261-268** were prepared bearing various substituents on the A ring, together with the 8-aza and 9-aza analogues **269** and **270** that constitute two members of previously unknown ring systems. The synthetic route that was used involved three key steps: first the Suzuki-Miyaura arylation of the 4-bromonaphthyridine **235** to afford the ethyl 4-aryl-6-methoxy-1,5-naphthyridine-3-carboxylates **237-248**, then the TMSCl/NaI mediated demethylation to afford the ethyl 4-(2-haloaryl)-6-oxo-5,6-dihydro-1,5-naphthyridine-3-carboxylates **249-260** and finally the copper catalyzed Buchwald cyclization to afford the target ethyl canthinone-1-carboxylates **261-270**. The biological properties of these compounds are now being pursued by collaborators in France and Italy.

CHAPTER 9

Experimental

Sections Introduction 9.1 138 9.2 140 **Compounds Related to Chapter 2** 9.3 **Compounds Related to Chapter 3** 145 **Compounds Related to Chapter 4** 156 9.4 **Compounds Related to Chapter 5** 9.5 177 **Compounds Related to Chapter 6** 9.6 189 **Compounds Related to Chapter 7** 9.7 197 **Compounds Related to Chapter 8** 9.8 205

DCM, CCl₄, MeOH, PhH, PhMe and PhCl were freshly distilled from CaH₂ under argon. DMF was azeotropically distilled with PhH then distilled under vacuum from anhydrous MgSO₄ and stored over 4Å molecular sieves. THF was freshly distilled from potassium under argon. Anhydrous hydrazine was prepared by distillation of hydrazine monohydrate from KOH under argon and stored over 4Å molecular sieves. Potassium salts K₂CO₃ and KF were powdered and vacuum dried at 130 °C / 2 Torr. All chemicals were commercially available except those whose synthesis is described. Anhydrous Na₂SO₄ was used for drying organic extracts and all volatiles were removed under reduced pressure. All reaction mixtures and column eluents were monitored by TLC using commercial thin layer chromatography (TLC) plates (Merck Kieselgel 60 F₂₅₄). The plates were observed under UV light at 254 and 365 nm. The technique of dry flash chromatography was used throughout for all non-TLC scale chromatographic separations using Merck Silica Gel 60 (less than 0.063 mm).³²⁰ A CEM Discover Microwave Reactor was used for microwave experiments. Melting points were determined using a PolyTherm-A, Wagner & Munz, Koefler - Hotstage Microscope apparatus or were determined using a TA Instruments DSC Q1000 with samples hermetically sealed in aluminium pans under an argon atmosphere; using heating rates of 5 °C/min (DSC mp listed by onset and peak values). Solvents used for recrystallization are indicated after the melting point. UV spectra were obtained using a Perkin-Elmer Lambda-25 UV/vis spectrophotometer and inflections are identified by the abbreviation "inf". IR spectra were recorded on a Shimadzu FTIR-NIR Prestige-21 spectrometer with Pike Miracle Ge ATR accessory and strong, medium and weak peaks are represented by s, m and w respectively. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance 300 and 500 machine (at 300 and 75 and 500 and 125 MHz respectively). Deuterated solvents were used for homonuclear lock and the signals are referenced to the deuterated solvent peaks. CH assignments are made based on DEPT 135 or APT experiments. Low resolution (EI) mass spectra were recorded on a Shimadzu Q2010 GCMS with direct inlet probe. 3,5-Dichloroisothiazole-4-carbonitrile 11. 3.5dibromoisothiazole-4-carbonitrile 12 and 5-amino-3-chloroisothiazole-4-carbonitrile 20,³² 3chloro-5-iodoisothiazole-4-carbonitrile **21**,³⁶ 3-iodo-5-phenylisothiazole-4-carbonitrile **23**, 3-**90**.³²¹ methoxy-5-phenylisothiazole-4-carbonitrile 3-hydroxy-5-phenylisothiazole-4carbonitrile 91, 3-amino-5-phenylisothiazole-4-carbonitrile 92 and 3-benzylamino-5phenylisothiazole-4-carbonitrile 93 and 3,5-diphenylisothiazole-4-carbonitrile 95,³⁶ 3-N-138

morpholino-5-phenylisothiazole-4-carbonitrile 94, ^{101.}3-chloro-5-(*m*-tolyl)isothiazole-4-carbonitrile 103, 3-chloro-5-(2-methoxyphenyl)isothiazole-4-carbonitrile 104, 3-chloro-5-(3methoxyphenyl)isothiazole-4-carbonitrile **105**, 3-chloro-5-(4-methoxyphenyl)isothiazole-4carbonitrile 106. 3-chloro-5-(3-thienyl)isothiazole-4-carbonitrile 107. 3-chloro-5-(2chlorophenyl)isothiazole-4-carbonitrile 108, 3-chloro-5-(3-chlorophenyl)isothiazole-4carbonitrile 109, 3-chloro-5-(4-chlorophenyl)isothiazole-4-carbonitrile 110 and 3-chloro-5-(3nitrophenyl)isothiazole-4-carbonitrile **111**,³⁶ 3-chloro-5-hydrazinylisothiazole-4-carbonitrile 3-chloro-5-(*N*-phenylamino)isothiazole-4-carbonitrile 114, 115, 3-chloro-5methoxyisothiazole-4-carbonitrile 117, 3-chloro-5-phenoxyisothiazole-4-carbonitrile 118 and **119**.^{32.} 4-bromo-3-chloro-5-phenyliso-3-chloro-5-(phenylthio)isothiazole-4-carbonitrile thiazole 138, 3-chloro-4.5-diphenylisothiazole 139, 4-amino-3-chloro-5-phenylisothiazole 3,5-diphenylisothiazole 146, 4-bromo-3,5-diphenylisothiazole 140, 149, 3,4,5-4-amino-3,5-diphenylisothiazole 69 triphenylisothiazole 150, and 3-amino-4,5diphenylisothiazole 151, ³⁷ 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one 24,³⁸ TCNE,³²² TCNEO³²³ and ethyl 4-bromo-6-methoxy-1,5-naphthyridine-3-carboxylate 235³¹⁶ were prepared according to literature procedures.

3-Bromoisothiazole-4-carbonitrile 48

To a mixture of 3,5-dibromoisothiazole-4-carbonitrile **12** (67 mg, 0.25 mmol) and Zn dust (81.7 mg, 1.25 mmol) at *ca*. 10 °C was added cold (*ca*. 15 °C) HCO₂H (1 mL) and stirred for 10 min at 10-15 °C. After the reaction was finished (TLC) the mixture was filtered and the filtrate extracted with DCM (20 mL) and water (5 mL). The organic phase was dried (Na₂SO₄), filtered and the volatiles removed *in vacuo* to afford the *title compound* **48** (31 mg, 66%) as colorless long needles, mp 47.5–48.5 °C (from pentane) DSC (onset) 54.0 °C (peak) 54.9 °C, R_f 0.33 (Hexane/DCM, 1:1); (found: C, 25.6; H, 0.5; N, 14.8. C₄HBrN₂S requires C, 25.4; H, 0.5; N, 4.8%); λ_{max} (DCM)/nm 264 (log ε 4.05); v_{max} /cm⁻¹ 3100m (Ar CH), 2241m (C=N), 1487m, 1352w, 1323s, 1144m, 1026m, 868s, 831s, 804m, 764m; δ_H (300 MHz; CDCl₃) 9.16 (1H, s, *H*-5); δ_C (75 MHz; CDCl₃) 158.2 (d), 139.2 (s), 113.2 (s), 111.5 (s); *m/z* (EI) 190 (M⁺+2, 100%), 188 (M⁺, 97), 139 (25), 137 (25), 109 (7), 83 (82), 58 (10), 51 (14), 45 (36). Similarly, treating 3,5-dibromoisothiazole-4-carbonitrile **12** (1 g, 3.6 mmol), with Zn powder (1.22 g, 18.7 mmol) in HCO₂H (15 mL) gave the title compound **48** (493 mg, 70%) as colorless needles identical to that described above.

3-Chloroisothiazole-4-carbonitrile 47; Typical procedure (Table 1)

To a mixture of 3,5-dichloroisothiazole-4-carbonitrile **11** (45 mg, 0.25 mmol) and Zn dust (123 mg, 1.88 mmol) at *ca*. 10 °C was added cold (*ca*. 15 °C) HCO₂H (1 mL) and stirred for 1 h at 10-15 °C. After the reaction was finished (TLC) the mixture was filtered and the filtrate extracted with DCM (20 mL) and water (5 mL). The organic phase was dried (Na₂SO₄), filtered and the volatiles removed *in vacuo* to afford the title compound **47** (5.5 mg, 15%) as colorless long needles, mp 50-51 °C (from pentane) (lit., ³⁶ 50-51 °C), R_f 0.33 (Hexane/DCM, 1:1) identical to an authentic sample.

Sandmeyer reactions

3-Chloroisothiazole-4-carbonitrile 47 from 5-amino-3-chloroisothiazole-4-carbonitrile 20 To a mixture of isoamyl nitrite (5.1 mL, 37.8 mmol) in MeNO₂ (5 mL) at *ca.* 20 °C, a solution of 5-amino-3-chloroisothiazole-4-carbonitrile **20** (1 g, 6.3 mmol) in MeNO₂ (5 mL) was added and the reaction mixture was stirred for 10 min. After the reaction was finished (TLC), the mixture was diluted with DCM (50 mL) and extracted with water (50 mL). The organic phase 140 was dried (Na₂SO₄), filtered, adsorbed onto silica and chromatographed (DCM) to afford the title compound **47** (870 mg, 96%) as colorless needles, mp 50-51 °C (from pentane) (lit.,³⁶ 50-51 °C), $R_{\rm f}$ 0.33 (Hexane/DCM, 1:1) identical to an authentic sample.

5-Bromo-3-chloroisothiazole-4-carbonitrile 49

To a mixture of isoamyl nitrite (2.55 mL, 18.9 mmol) and Br₂ (1.6 mL, 31 mmol) in MeNO₂ (2 mL) at *ca*. 20 °C, a solution of 5-amino-3-chloroisothiazole-4-carbonitrile **20** (0.5 g, 3.1 mmol) in MeNO₂ (2 mL) was added and the reaction mixture was stirred for 10 min. After the reaction was finished (TLC), the mixture was diluted with DCM (50 mL), washed with Na₂S₂O₃ (500 mg, 32 mmol) and extracted with water (50 mL). The organic phase was dried (Na₂SO₄), filtered, adsorbed onto silica and chromatographed (Hexane) to afford the *title compound* **49** (486 mg, 69%) as colorless plates, mp 94.5-95.5 °C (from cyclohexane), R_f 0.56 (Hexane/DCM, 1:1); (found: C, 21.6; H, <0.1; N, 12.5. C₄BrClN₂S requires C, 21.5; H, 0.0; N, 12.5%); λ_{max} (DCM)/nm 250 (log ε 4.06), 263 (4.08), 268 inf (4.04); v_{max} /cm⁻¹ 2237m (C≡N), 1495s, 1331s, 1090w, 970m, 816s, 793m; δ_C (75 MHz; CDCl₃) 151.0 (s), 147.3 (s), 113.5 (s), 110.1 (s); m/z (EI) 226 (M⁺+4, 10%), 224 (M⁺+2, 38), 222 (M⁺, 30), 173 (31), 171 (86), 163 (11), 161 (11), 143 (M⁺-Br, 22), 108 (20), 82 (82), 71 (52), 69 (23), 57 (32), 55 (18), 51 (20), 49 (53).

Hydrodehalogenation of mixed dihaloisothiazoles 49 and 21

3-Chloroisothiazole-4-carbonitrile 47 from 5-bromo-3-chloroisothiazole-4-carbonitrile 49 To a mixture of 5-bromo-3-chloroisothiazole-4-carbonitrile **49** (56 mg, 0.25 mmol) and Zn dust (81.7 mg, 1.25 mmol) at *ca*. 10 °C was added cold (*ca*. 15 °C) HCO₂H (1 mL) and stirred for 40 min at *ca*. 10-15 °C. After the reaction was finished (TLC) the mixture was filtered and the filtrate extracted with DCM (20 mL) and water (5 mL). The organic phase was dried (Na₂SO₄), filtered and the volatiles removed *in vacuo* to afford the *title compound* **47** (28 mg, 77%) as colorless long needles, mp 50-51 °C (from pentane) (lit.,³⁶ 50-51 °C), identical to an authentic sample.

3-Chloroisothiazole-4-carbonitrile 47 from 5-iodo-3-chloroisothiazole-4-carbonitrile 21

To a mixture of 5-iodo-3-chloroisothiazole-4-carbonitrile **21** (68 mg, 0.25 mmol) and Zn dust (81.7 mg, 1.25 mmol) at *ca*. 10 °C was added cold (*ca*. 15 °C) HCO₂H (1 mL) and stirred for 15 min at 10-15 °C. After the reaction was finished (TLC) the mixture was filtered and the filtrate extracted with DCM (20 mL) and water (5 mL). The organic phase was dried (Na₂SO₄), filtered and the volatiles removed *in vacuo* to afford the *title compound* **47** (18.5 mg, 51%) as colorless long needles, mp 50-51 °C (from pentane) (lit., ³⁶ 50-51 °C) identical to an authentic sample.

Reactions with deuterated formic acids

3-Bromo-5-deuterioisothiazole-4-carbonitrile 50

To a mixture of 3,5-dibromoisothiazole-4-carbonitrile **12** (67 mg, 0.25 mmol) and Zn dust (81.7 mg, 1.25 mmol) at *ca.* 10 °C was added cold (*ca.* 15 °C) DCO₂D (1 mL) and stirred at 10-15 °C. After the reaction was finished (TLC) the mixture was filtered and the filtrate extracted with DCM (20 mL) and water (10 mL). The organic phase was dried (Na₂SO₄), filtered and the volatiles removed *in vacuo* to afford the *title compound* **50** (34 mg, 71%) as colorless long needles, mp 46-46.5 °C (from pentane) DSC (onset) 53.9 °C (peak) 54.8 °C, $R_{\rm f}$ 0.33 (Hexane/DCM, 1:1); (found: C, 25.3; H, 1.0; N, 14.6. C₄DBrN₂S requires C, 25.3; H, 1.1; N, 14.7%); $\lambda_{\rm max}$ (DCM)/nm 263 (log ε 4.36); $v_{\rm max}$ /cm⁻¹ 2315m (Ar CD), 2239m (C=N), 1476s, 1354w, 1346w, 1315s, 1034m, 1016m, 986m, 804s, 766s; $\delta_{\rm C}$ (125 MHz; CDCl₃) 158.0 (t, ¹*J*_{CD} 29.8, *C*-5), 139.3 (s), 113.1 (s), 111.5 (s); *m*/*z* (EI) 191 (M⁺+2, 90%), 189 (M⁺, 86), 139 (28), 137 (30), 110 (9), 84 (100), 82 (49), 58 (22), 52 (20), 46 (57). Similar treatment of 3,5-dibromoisothiazole-4-carbonitrile **12** with HCO₂D gave the title compound **50** (28.5 mg, 60%) as colorless needles, mp 46-46.5 °C (from pentane) identical to that described above.

3-Bromoisothiazole-4-carbonitrile 48 from DCO₂H reaction

Similar treatment of 3,5-dibromoisothiazole-4-carbonitrile **12** (67 mg, 0.25 mmol) with Zn dust (81.7 mg, 1.25 mmol) and DCO₂H (1 mL), gave the title compound **48** as colorless needles, mp 47.5–48.5 $^{\circ}$ C (from pentane), identical to that described above.

Reactions of 3-bromoisothiazole-4-carbonitrile 48

2-(Morpholinomethylene)malononitrile 56 (Typical Procedure)

A stirred mixture of 3-bromoisothiazole-4-carbonitrile **48** (25 mg, 0.13 mmol) and morpholine (45 μ L, 0.52 mmol) in EtOH (1 mL) was heated at *ca.* 78 °C until no starting material remained (TLC). The reaction mixture was adsorbed onto silica and chromatographed (Hexane) to afford elemental sulfur (3.3 mg, 80%) as yellow needles, mp 114-115 °C, R_F 0.76 (Hexane). Further elution (Hexane/DCM, 1:4) gave the title compound **56** (15 mg, 71%) as beige flakes, mp 138-140 °C (from EtOH/pentane) [lit.,³²⁴ 149-150 °C (from EtOH)], R_F 0.43 (DCM/t-BuOMe, 9:1); v_{max} /cm⁻¹ 2982w, 2874w, 2208m and 2197m (C=N), 1632s (C=C), 1466w, 1454m, 1439m, 1375w, 1354m, 1310w, 1285w, 1250m, 1119s, 1080w, 1026m, 1011m, 974w, 937w, 870s, 779w; δ_H (300 MHz; CDCl₃) 7.02 (1H, s, C-H), 3.95 (2H, br s, NCH₂), 3.79 (4H, dd *J* 4.9, 4.7, OCH₂), 3.49 (2H, br s, NCH₂); m/z (EI) 163 (M⁺, 47%), 105 (37), 91 (7), 78 (80), 57 (39), 51 (9), 42 (100).

2-(Piperidin-1-ylmethylene)malononitrile 57

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (25 mg, 0.13 mmol) with piperidine (51 μ L, 0.52 mmol) afforded elemental sulfur (3.7 mg, 87%) as yellow needles, mp 114-115 °C; R_F 0.76 (hexane) and then the title compound **57** (18 mg, 84%) as light orange needles, mp 85.5-86.5 °C (from EtOH/pentane) [lit.,³²⁵ 90-91 °C (from EtOAc/pentane)], R_F 0.84 (DCM/*t*-BuOMe, 9:1); v_{max}/cm^{-1} 2947w, 2208m and 2195m (C=N), 1618s (C=C), 1470w, 1441w, 1362m, 1346m, 1269w, 1256w, 1217w, 1179w, 1098w, 1024m, 997w, 968w, 945w, 854w, 764m; $\delta_H(300 \text{ MHz}; \text{CDCl}_3)$ 6.96 (1H, s, =C-*H*), 3.86 (2H, br s, NC*H*₂), 3.43 (2H, br s, NC*H*₂), 1.73 (6H, br s, 3 × C*H*₂); *m/z* (EI) 161 (M⁺, 100%), 146 (13), 132 (32), 120 (26), 106 (32), 94 (11), 83 (73), 78 (43), 67 (13), 57 (29), 41 (65).

3-Bromoisothiazole-4-carboxamide 60

A mixture of 3-bromoisothiazole-4-carbonitrile **48** (25 mg, 0.13 mmol) in c. H₂SO₄ (1 mL) was stirred at *ca*. 20 °C for 2 h until no starting material remained (TLC). After the reaction was finished, the reaction mixture was poured onto crushed ice and extracted with *t*-BuOMe (2×50 mL). The organic layers were combined, dried (Na₂SO₄) and evaporated *in vacuo* to afford the *title compound* **60** (15 mg, 70%) as colorless needles, mp 138-141 °C (from PhH), $R_{\rm f}$ 0.47 (*t*-BuOMe); (found: C, 23.3; H, 1.4; N, 13.4. C₄H₃BrN₂OS requires C, 23.2; H, 1.5; N, 143

13.5%); λ_{max} (DCM)/nm 228 (log ε 3.44), 258 (3.96); v_{max} /cm⁻¹ 3381w (NH), 3289w, 3188w, 3102w, 1655s (C=O), 1612m, 1506m, 1406m, 1344w, 1294m, 1140w, 1120m, 1003m, 864w, 822w, 812w, 779w; δ_{H} (300 MHz; DMSO- d_{6}) 9.32 (1H, s, *H*-5), 7.96 (1H, br s, *NH*), 7.59 (1H, br s, *NH*); δ_{C} (75 MHz; DMSO- d_{6}) 162.4 (s), 153.4 (d), 136.1 (s), 133.8 (s); *m*/*z* (EI) 208 (M⁺+2, 58%), 206 (M⁺, 59), 192 (99), 190 (100), 164 (3), 162 (3), 127 (15), 113 (5), 111 (9), 85 (20), 83 (22), 57 (32), 52 (9), 44 (65).

3-Bromoisothiazole-4-carboxylic acid 61

To a stirred solution of 3-bromoisothiazole-4-carboxamide **60** (86 mg, 0.41 mmol) in c. H₂SO₄ (2 mL) at 0 °C, was added in 3 equal portions NaNO₂ (285 mg, 4.1 mmol). The reaction mixture was then heated at *ca*. 100 °C until no starting material remained (TLC). The mixture was allowed to cool to *ca*. 20 °C and was poured onto crushed ice to afford a colorless precipitate. The precipitate was filtered, washed (H₂O) and dried *in vacuo* to give the *title compound* **61** (79.4 mg, 92%) as pale beige plates, mp 195-197 °C (from PhH), R_f 0.44 (*t*-BuOMe); (found: C, 23.2; H, 0.7; N, 6.5. C₄H₂BrNO₂S requires C, 23.1; H, 1.0; N, 6.7%); λ_{max} (DCM)/nm 228 (log ε 3.49), 260 (3.93); v_{max} /cm⁻¹ 3113w, 2947w, 2907w, 2733w, 2602w, 2536w, 1713 (C=O), 1483m, 1435w, 1418w, 1354m, 1333w, 1217s, 1015s, 887m, 849w, 835m; δ_H (300 MHz; DMSO-*d*₆) OH missing, 9.60 (1H, s, *H*-5); δ_C (75 MHz; DMSO-*d*₆) 161.2 (s), 159.2 (s), 137.3 (s), 129.6 (s); *m*/*z* (EI) 209 (M⁺+2, 94%), 207 (M⁺, 96), 192 (100), 190 (95), 128 (6), 113 (6), 111 (9), 85 (19), 83 (29), 82 (18), 57 (57), 52 (12), 45 (63).

9.3 Compounds related to Chapter 3

3-Bromo-5-phenylisothiazole-4-carbonitrile 62

To a stirred solution of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) in MeCN (1 mL) at *ca*. 20 °C, AgF (63 mg, 0.5 mmol), Ph₃P (6.5 mg, 10 mol%), and iodobenzene (33 μ L, 0.3 mmol) were added. To this mixture Pd(Ph₃P)₂Cl₂ (8.8 mg, 5 mol%) was then added and the mixture was heated at *ca*. 82 °C until no starting material remained (TLC). The reaction mixture was left to cool to *ca*. 20 °C and adsorbed onto silica. Chromatography (Hexane/DCM, 3:2) gave the title compound **62** (49.5 mg, 90%) as colorless needles, mp 93-94 °C (from cyclohexane, lit.,³⁵ 93-94 °C) identical to an authentic sample.

3-Bromo-5-p-tolylisothiazole-4-carbonitrile 64

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 4-iodotoluene (65.4 mg, 0.3 mmol) gave the *title compound* **64** (57 mg, 82%) as colorless plates, mp 107.5–109.5 °C (from cyclohexane), R_f 0.4 (Hexane/DCM, 1:1); (found: C, 47.5; H, 2.5; N, 9.9. C₁₁H₇BrN₂S requires C, 47.3; H, 2.5; N, 10.0%); λ_{max} (DCM)/nm 229 (log ε 3.95), 285 (4.27), 296 inf (4.23); v_{max} /cm⁻¹ 2953w, 2924w and 2853w (Ar CH), 2232m (C=N), 1611m, 1524w, 1487s, 1458w, 1391m, 1337s, 1317w, 1240m, 1194w, 1130w, 1036s, 966w, 951w, 833s, 820s, 797s; δ_{H} (300 MHz; CDCl₃) 7.69 (2H, d, *J* 7.7, Ph *H*), 7.37 (2H, d, *J* 7.7, Ph *H*), 2.47 (3H, s, CH₃); δ_{C} (75 MHz; CDCl₃) 176.5 (s), 143.3 (s), 139.7 (s), 130.5 (d), 127.2 (d), 124.5 (s), 112.9 (s), 107.8 (s), 21.6 (CH₃); *m/z* (EI) 280 (M⁺+2, 100), 278 (M⁺, 95), 266 (8), 264 (8), 199 (76), 184 (10), 172 (52), 155 (31), 140 (24), 134 (13), 128 (14), 113 (11), 101 (7), 91 (21), 77 (11), 65 (32), 51 (18).

3-Bromo-5-(2-methoxyphenyl)isothiazole-4-carbonitrile 65

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 2-iodoanisole (70.2 mg, 0.3 mmol) gave the *title compound* **65** (65 mg, 89%) as colorless needles, mp 160–162 °C (from cyclohexane), R_f 0.29 (Hexane/DCM, 1:1); (found: C, 44.8; H, 2.3; N, 9.6. C₁₁H₇BrN₂OS requires C, 44.8; H, 2.4; N, 9.5%); λ_{max} (DCM)/nm 229 (log ε 3.85), 284 (4.02), 292 inf (3.95), 331 (3.87); v_{max} /cm⁻¹ 2968w, 2941w, 2878w, 2839w, 2220w (C=N), 1601w, 1578w, 1503m, 1476m, 1462m, 1435m, 1393w, 1331s, 1300m, 1290w, 1259s, 1231w, 1219w, 1188w, 1159m, 1128m, 1055w, 1016s, 941w, 831s, 804w; δ_{H} (300 MHz;

CDCl₃) 8.39 (1H, d, *J* 7.9, Ph *H*), 7.54 (1H, dd, *J* 7.8, 7.8, Ph *H*), 7.16 (1H, dd, *J* 7.6, 7.6, Ph *H*), 7.09 (2H, d, *J* 8.3, Ph *H*), 4.06 (3H, s, OCH₃); δ_{C} (75 MHz; CDCl₃) 169.9 (s), 156.6 (s), 138.5 (s), 133.4 (d), 127.3 (d), 121.6 (d), 117.0 (s), 114.3 (s), 111.5 (d), 106.6 (s), 55.8 (OCH₃); *m*/*z* (EI) 296 (M⁺+2, 53%), 294 (M⁺, 50), 215 (100), 200 (29), 187 (34), 182 (63), 171 (23), 155 (16), 146 (29), 137 (21), 128 (20), 120 (35), 114 (35), 77 (21), 69 (23), 63 (29), 51 (21).

3-Bromo-5-(3-methoxyphenyl)isothiazole-4-carbonitrile 66

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 3-iodoanisole (70.2 mg, 0.3 mmol) gave the *title compound* **66** (67 mg, 91%) as colorless plates, mp 112.5–114.5 °C (from cyclohexane), R_f 0.29 (Hexane/DCM, 1:1); (found: C, 44.7; H, 2.3; N, 9.4. C₁₁H₇BrN₂OS requires C, 44.8; H, 2.4; N, 9.5%); λ_{max} (DCM)/nm 228 (log ε 3.77), 246 (3.71), 280 (3.86), 314 inf (3.42); v_{max} /cm⁻¹ 3013w, 2974w, 2941w, 2835w, 2232w (C=N), 1605w, 1576m, 1508m, 1487m, 1479m, 1464w, 1456w, 1425w, 1389w, 1337s, 1288s, 1269w, 1206s, 1173s, 1103w, 1053s, 1028w, 970w, 876m, 864m, 793s, 760m; δ_{H} (300 MHz; CDCl₃) 7.46 (1H, dd, *J* 7.9, Ph *H*), 7.33-7.29 (2H, m, Ph *H*), 7.11 (1H, d, *J* 8.1, Ph *H*), 3.88 (3H, s, OCH₃); δ_{C} (75 MHz; CDCl₃) 176.3 (s), 160.4 (s), 139.8 (s), 131.0 (d), 128.2 (s), 119.7 (d), 118.2 (d), 112.7 (s), 112.4 (d), 108.5 (s), 55.6 (OCH₃); *m*/*z* (EI) 296 (M⁺+2, 96%), 294 (M⁺, 100), 267 (28), 265 (29), 185 (22), 171 (28), 158 (12), 146 (16), 128 (8), 114 (17), 108 (11), 92 (10), 77 (11), 69 (11), 63 (17), 51 (8).

3-Bromo-5-(4-methoxyphenyl)isothiazole-4-carbonitrile 67

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 4-iodoanisole (70.2 mg, 0.3 mmol) gave the *title compound* **67** (60 mg, 81%) as colorless needles, mp 131–131.5 °C (from cyclohexane), R_f 0.29 (Hexane/DCM, 1:1); (found: C, 44.8; H, 2.3; N, 9.4. C₁₁H₇BrN₂OS requires C, 44.8; H, 2.4; N, 9.5%); λ_{max} (DCM)/nm 230 (log ε 3.41), 288 (3.29), 319 (3.57); ν_{max} /cm⁻¹ 2922w, 2849w, 2226w (C=N), 1601s, 1572w, 1526w, 1489s, 1462w, 1439w, 1398m, 1335s, 1314m, 1265s, 1238w, 1186s, 1123w, 1038s, 1020m, 951w, 831s, 797w, 764w; δ_{H} (300 MHz; CDCl₃) 7.75 (2H, d, *J* 8.6, Ph *H*), 7.04 (2H, d, *J* 8.7, Ph *H*), 3.89 (3H, s, OCH₃); δ_{C} (75 MHz; CDCl₃) 176.1 (s), 162.8 (s), 139.7 (s), 129.0 (d), 119.7 (s), 115.2 (d), 113.2 (s), 107.0 (s), 55.6 (OCH₃); *m*/*z* (EI) 296 (M⁺+2, 100%), 294 (M⁺, 97), 281 (17), 279 (17), 253 (11), 251 (11), 171 (28), 146 (12), 114 (12), 108 (8), 77 (6), 69 (7), 63 (12), 51 (6).

3-Bromo-5-(2,4-dimethoxyphenyl)isothiazole-4-carbonitrile 68

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 1-iodo-2,4-dimethoxybenzene (79.2 mg, 0.3 mmol) gave the *title compound* **68** (60 mg, 73%) as colorless needles, mp 226–227 °C (from cyclohexane/EtOH), R_f 0.18 (Hexane/DCM, 1:1); (found: C, 44.4; H, 2.7; N, 8.5. C₁₂H₉BrN₂O₂S requires C, 44.3; H, 2.8; N, 8.6%); λ_{max} (DCM)/nm 236 (log ε 3.73), 288 inf (3.58), 293 (3.61), 341 (3.97); ν_{max} /cm⁻¹ 2982w, 2940w, 2847w, 2218m (C=N), 1612m, 1578w, 1514w, 1481s, 1437w, 1427w, 1395m, 1321s, 1300w, 1271s, 1236w, 1217s, 1182w, 1138m, 1038m, 1016s, 947m, 826s, 816s, 799m; δ_{H} (500 MHz; CD₂Cl₂) 8.42 (1H, d, *J* 8.9, Ph *H*-6), 6.80 (1H, dd, *J* 8.9, 2.3, Ph *H*-5), 6.68 (1H, d, *J* 8.9, 1.3, Ph *H*-3), 4.09 (3H, s, OCH₃), 3.96 (3H, s, OCH₃); δ_{C} (125 MHz; CD₂Cl₂) 165.0 (s), 159.3 (s), 128.9 (d), 117.9 (s), 115.7 (s), 113.4 (s), 111.2 (s), 110.3 (s), 107.3 (d), 98.7 (d), 56.3 (OCH₃), 56.2 (OCH₃); *m*/z (EI) 326 (M⁺+2, 90%), 324 (M⁺, 100), 311 (8), 309 (8), 283 (10), 281 (10), 245 (58), 230 (13), 217 (21), 212 (47), 201 (19), 187 (12), 174 (12), 163 (10), 159 (11), 133 (8), 100 (7), 88 (8), 75 (7), 69 (23), 63 (12), 51 (8).

3-Bromo-5-(4-hydroxyphenyl)isothiazole-4-carbonitrile 69

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 4-iodophenol (66 mg, 0.3 mmol) gave the *title compound* **69**(55.3 mg, 79%) as colorless plates, mp 163–166 °C (from cyclohexane), R_f 0.14 (DCM); (found: C, 42.6; H, 1.7; N, 9.8. C₁₀H₅BrN₂OS requires C, 42.7; H, 1.8; N, 10.0%); λ_{max} (DCM)/nm 231 (log ε 3.99), 288 inf (3.98), 313 (4.15); ν_{max} /cm⁻¹ 3229br & w (OH), 2232w (C=N), 1603m, 1585m, 1524w, 1493s, 1435m, 1393m, 1371m, 1360w, 1337m, 1287m, 1248m, 1219m, 1179s, 1130w, 1119w, 1032m, 1009w, 953w, 835s, 818s, 779m; δ_{H} (300 MHz; CDCl₃) 7.70 (2H, d, *J* 8.5, Ph *H*), 7.00 (2H, d, *J* 8.7, Ph *H*), 6.06 (1H, br s, OH); δ_{C} (75 MHz; CDCl₃) 176.3 (s), 159.5 (s), 139.8 (s), 129.2 (d), 119.6 (s), 116.8 (d), 113.4 (s), 106.8 (s); *m/z* (EI) 282 (M⁺+2, 97%), 280 (M⁺, 100), 254 (7), 252 (6), 201 (13), 173 (26), 157 (42), 146 (13), 143 (13), 114 (9), 102 (9), 88 (10), 65 (21), 63 (10), 51 (6).

3-Bromo-5-(2-nitrophenyl)isothiazole-4-carbonitrile 70

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 1-iodo-2nitrobenzene (74.7 mg, 0.3 mmol) gave the *title compound* **70** (69 mg, 89%) as light yellow plates, mp 144.5–146.5 °C (from cyclohexane), R_f 0.14 (Hexane/DCM, 1:1); (found: C, 38.6; H, 1.4; N, 13.5. C₁₀H₄BrN₃O₂S requires C, 38.7; H, 1.3; N, 13.6%); λ_{max} (DCM)/nm 232 (log ε 3.91), 250 (3.99), 266 (4.02); ν_{max} /cm⁻¹ 3092w, 3073w, 3059w, 2855w, 2234w (C=N), 1572w, 1518s, 1472m, 1391w, 1341s, 1236m, 1148w, 1092w, 1024w, 961w, 854m, 822m, 795m; δ_{H} (300 MHz; CDCl₃) 8.29 (1H, dd, *J* 7.6, 1.8, Ph *H*), 7.87-7.77 (2H, m, Ph *H*), 7.54 (1H, dd, *J* 7.0, 2.1, Ph *H*); δ_{C} (75 MHz; CDCl₃) 172.5 (s), 147.3 (s), 138.4 (s), 134.0 (d), 132.6 (d), 132.1 (d), 126.0 (d), 121.9 (s), 113.1 (s), 111.1 (s); *m*/*z* (EI) 311 (M⁺+2, 20%), 309 (M⁺, 19), 237 (6), 235 (7), 230 (9), 186 (16), 184 (22), 183 (13), 182 (100), 150 (17), 114 (24), 104 (18), 102 (52), 90 (12), 76 (19), 75 (10), 63 (9), 51 (8).

3-Bromo-5-(3-nitrophenyl)isothiazole-4-carbonitrile 71

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 1-iodo-3nitrobenzene (74.7 mg, 0.3 mmol) gave the *title compound* **71** (64 mg, 83%) as colorless needles, mp 148–149 °C (from cyclohexane), R_f 0.14 (Hexane/DCM, 1:1); (found: C, 38.7; H, 1.2; N, 13.5. C₁₀H₄BrN₃O₂S requires C, 38.7; H, 1.3; N, 13.6%); λ_{max} (DCM)/nm 232 (log ε 3.91), 250 (3.99), 266 (4.16); ν_{max} /cm⁻¹ 3075w (Ar CH), 2232w (C=N), 1614w, 1530s, 1504m, 1476m, 1458w, 1387w, 1352s, 1335s, 1288w, 1246w, 1105w, 1047m, 966w, 912w, 887m, 810m, 789m; δ_{H} (300 MHz; CDCl₃) 8.52 (1H, s, Ph *H*), 8.40 (1H, d, *J* 8.1, Ph *H*), 8.08 (1H, d, *J* 7.7, Ph *H*), 7.78 (1H, dd, *J* 7.9, 7.9, Ph *H*); δ_{C} (75 MHz; CDCl₃) 172.8 (s), 148.2 (s), 139.6 (s), 132.4 (d), 130.8 (d), 128.0 (s), 126.0 (d), 122.0 (d), 111.4 (s), 109.5 (s); *m/z* (EI) 311 (M⁺+2, 61%), 309 (M⁺, 60), 265 (12), 263 (13), 253 (10), 251 (10), 184 (100), 172 (10), 158 (28), 157 (21), 140 (19), 139 (15), 120 (14), 114 (56), 113 (12), 100 (14), 99 (17), 93 (17), 88 (14), 82 (16), 76 (27), 75 (24), 74 (19), 69 (30), 63 (17), 51 (18).

3-Bromo-5-(4-nitrophenyl)isothiazole-4-carbonitrile 72

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 1-iodo-4nitrobenzene (74.7 mg, 0.3 mmol) gave the *title compound* **72** (76 mg, 98%) as colorless plates, mp 135.5–136.5 °C (from cyclohexane), R_f 0.14 (Hexane/DCM, 1:1); (found: C, 38.7; H, 1.2; N, 13.4. C₁₀H₄BrN₃O₂S requires C, 38.7; H, 1.3; N, 13.6%); λ_{max} (DCM)/nm 228 (log ε 3.67), 288 (4.14); v_{max} /cm⁻¹ 3096w (Ar CH), 2922w, 2851w, 2235w (C=N), 1595w, 1572w, 148 1514s, 1481w, 1470w, 1391w, 1337s, 1310w, 1244w, 1179w, 1105w, 1053w, 1036w, 1009w, 853m, 837m, 818m; $\delta_{\rm H}(300 \text{ MHz}; {\rm CDCl}_3)$ 8.42 (2H, d, *J* 8.9, Ph *H*), 7.95 (2H, d, *J* 8.9, Ph *H*); $\delta_{\rm C}(75 \text{ MHz}; {\rm CDCl}_3)$ 173.6 (s), 150.0 (s), 140.8 (s), 133.1 (s), 129.0 (d), 125.5 (d), 112.4 (s), 110.7 (s); *m*/*z* (EI) 311 (M⁺+2, 100%), 309 (M⁺, 96), 281 (29), 279 (28), 265 (7), 263 (7), 253 (20), 251 (19), 185 (12), 184 (97), 183 (10), 172 (14), 158 (29), 157 (17), 146 (12), 145 (12), 140 (16), 139 (12), 120 (13), 114 (47), 76 (14), 69 (20), 63 (11), 51 (10).

5-(4-Amino-3-nitrophenyl)-3-bromoisothiazole-4-carbonitrile 73

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 4-iodo-2nitroaniline (79.2 mg, 0.3 mmol) gave the *title compound* **73** (33.4 mg, 41%) as orange needles, mp 254–257 °C (from cyclohexane), R_f 0.42 (DCM); (found: C, 36.8; H, 1.5; N, 17.3. C₁₀H₅BrN₄O₂S requires C, 36.9; H, 1.6; N, 17.2%); λ_{max} (DCM)/nm 230 (log ε 4.29), 270 (4.24), 333 (4.35), 401 (3.71); ν_{max} /cm⁻¹ 3455w and 3337m (NH₂), 2234w (C=N), 1632m, 1603w, 1557m, 1497s, 1468w, 1425w, 1396m, 1368w, 1356w, 1323m, 1256s, 1236m, 1188m, 1082w, 1043m, 1016w, 989w, 968w, 901w, 885w, 818m, 779w; δ_{H} (300 MHz; DMSO-*d*₆) 8.55-8.53 (1H, m, Ph *H*), 8.10 (2H, br s, N*H*₂), 7.79-7.74 (1H, m, Ph *H*), 7.19-7.14 (1H, m, Ph *H*); δ_{C} (75 MHz; DMSO-*d*₆) 174.5 (s), 148.2 (s), 139.5 (s), 133.7 (d), 129.9 (s), 125.1 (d), 120.7 (d), 113.5 (s), 113.3 (s), 105.9 (s); *m*/*z* (EI) 326 (M⁺+2, 100%), 324 (M⁺, 98), 309 (12), 307 (10), 280 (19), 278 (19), 268 (11), 266 (12), 253 (19), 251 (20), 201 (12), 199 (39), 172 (26), 171 (21), 155 (15), 145 (23), 139 (11), 128 (13), 120 (11), 114 (11), 113 (10), 91 (14), 88 (11), 76 (9), 63 (19), 52 (34).

3-Bromo-5-(pyridin-2-yl)isothiazole-4-carbonitrile 74

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 2-iodopyridine (61.5 mg, 0.3 mmol) gave the *title compound* **74** (63 mg, 95%) as colorless plates, mp 132.5-135 °C (from cyclohexane/DCM), R_f 0.11 (DCM); (found: C, 40.6; H, 1.4; N, 15.8. C₉H₄BrN₃S requires C, 40.6; H, 1.5; N, 15.8%); λ_{max} (DCM)/nm 229 (log ε 3.23), 272 inf (3.35), 294 (3.61), 335 inf (2.82); ν_{max} /cm⁻¹ 2957w, 2926w, 2853w, 2230w (C=N), 1734w, 1580w, 1522w, 1456s, 1437m, 1393w, 1377w, 1329s, 1288m, 1260m, 1233w, 1155w, 1101w, 1059w, 1038s, 991m, 966w, 885w, 827m, 800m, 783s; δ_{H} (300 MHz; CD₂Cl₂) 8.67 (1H, d, *J* 4.5, Py *H*), 8.25 (1H, d, *J* 7.9, Py *H*), 7.96 (1H, dd, *J* 7.9, 7.7, Py *H*), 7.49 (1H, dd, *J* 7.5, 5.1, Py *H*); δ_{C} (75 MHz; CD₂Cl₂) 176.9 (s), 150.8 (d), 146.6 (s), 139.5 (s), 138.4 (d), 127.1 (d), 149

120.7 (d), 113.3 (s), 107.1 (s); *m*/*z* (EI) 267 (M⁺+2, 32%), 265 (M⁺, 33), 205 (8), 187 (12), 186 (100), 149 (9), 97 (9), 85 (12), 83 (11), 79 (100), 78 (96), 71 (16), 69 (19), 57 (26), 51 (36).

3-Bromo-5-(pyridin-3-yl)isothiazole-4-carbonitrile 75

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 3-iodopyridine (61.5 mg, 0.3 mmol) gave the *title compound* **75** (61 mg, 95%) as colorless needles, mp 121–123 °C (from cyclohexane), R_f 0.11 (DCM); (found: C, 40.7; H, 1.6; N, 15.6. C₉H₄BrN₃S requires C, 40.6; H, 1.5; N, 15.8%); λ_{max} (DCM)/nm 227 (log ε 4.26), 276 (4.69); ν_{max} /cm⁻¹ 3028w (Py CH), 2228w (C=N), 1585m, 1566w, 1539w, 1504w, 1477m, 1456w, 1412m, 1391w, 1358w, 1341w, 1327m, 1250m, 1194w, 1186w, 1134w, 1057w, 1026m, 1016w, 955w, 826s, 804s, 783w; δ_{H} (300 MHz; CDCl₃) 8.98 (1H, s, Py *H*-2), 8.82 (1H, d, *J* 4.7, Py *H*), 8.24 (1H, d, *J* 7.7, Py *H*), 7.69 (1H, dd, *J* 6.3, 6.3, Py *H*-5); δ_{C} (75 MHz; CDCl₃) 173.3 (s), 152.7 (d), 147.9 (d), 139.4 (s), 135.5 (d), 124.5 (d), 123.6 (s), 112.7 (s), 109.5 (s); *m*/*z* (EI) 267 (M⁺+2, 48%), 265 (M⁺, 47), 186 (100), 159 (16), 154 (16), 142 (7), 127 (14), 115 (6), 100 (13), 93 (8), 88 (10), 78 (16), 75 (17), 69 (16), 51 (23).

3-Bromo-5-(pyridin-4-yl)isothiazole-4-carbonitrile 76

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 4-iodopyridine (61.5 mg, 0.3 mmol) gave the *title compound* **76** (77 mg, 95%) as colorless needles, mp 113–115 °C (from cyclohexane/DCM), R_f 0.11 (DCM); (found: C, 40.7; H, 1.5; N, 15.6. C₉H₄BrN₃S requires C, 40.6; H, 1.5; N, 15.8%); λ_{max} (DCM)/nm 228 (log ε 3.73), 272 (4.06); v_{max} /cm⁻¹ 3040w and 3015w (Ar CH), 2922w, 2235w (C=N), 1597m, 1551w, 1518m, 1487m, 1454w, 1435w, 1412s, 1385w, 1342s, 1325s, 1242m, 1225w, 1098w, 1074m, 1038s, 995w, 974w, 833s, 818s, 783m; δ_{H} (500 MHz; CD₂Cl₂) 8.85 (2H, br s, Py *H*), 7.63 (2H, d, *J* 5.8, Py *H*); δ_{C} (125 MHz; CD₂Cl₂) 173.4 (s), 151.6 (d), 140.2 (s), 134.2 (s), 121.0 (d), 112.1 (s), 110.2 (s); *m*/*z* (EI) 267 (M⁺+2, 72%), 265 (M⁺, 74), 186 (100), 159 (32), 154 (17), 132 (12), 115 (12), 101 (13), 100 (17), 88 (27), 78 (29), 75 (33), 69 (28), 63 (13), 58 (12), 51 (86).

3-Bromo-5-(pyrazinyl)isothiazole-4-carbonitrile 77

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with iodopyrazine (62 mg, 0.3 mmol) gave the *title compound* **77** (48 mg, 72%) as colorless needles, mp 125.5-126.5 °C (from cyclohexane/DCM), R_f 0.14 (DCM/Hexane, 4:1); (found: C, 36.1; H, 1.1; N, 21.0. C₈H₃BrN₄S requires C, 36.0; H, 1.1; N, 21.0%); λ_{max} (DCM)/nm 230 150

(log ε 3.88), 268 (3.88), 296 (4.36); v_{max}/cm^{-1} 3065w (Ar CH), 2232w (C=N), 1530w, 1450m, 1412m, 1379w, 1335m, 1296m, 1250m, 1171m, 1074w, 1030s, 1013s, 966m, 858m, 833s, 787m; $\delta_{\rm H}(500 \text{ MHz}; \rm CD_2\rm Cl_2)$ 9.48 (1H, s, Ar *H*), 8.80 (1H, d, *J* 2.2, Ar *H*), 8.71 (1H, br s, Ar *H*); $\delta_{\rm C}(125 \text{ MHz}; \rm CD_2\rm Cl_2)$ 173.3 (s), 147.7 (d), 145.0 (d), 142.3 (s), 141.2 (d), 139.9 (s), 112.5 (s), 108.0 (s); *m*/*z* (EI) 267 (M⁺+1, 86%), 265 (M⁺, 95), 187 (12), 186 (93), 183 (19), 159 (33), 154 (17), 139 (8), 115 (11), 108 (14), 100 (10), 93 (11), 88 (19), 83 (11), 82 (11), 78 (20), 75 (18), 69 (24), 51 (52).

3-Bromo-5-(indol-5-yl)isothiazole-4-carbonitrile 78

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 5-iodo-1*H*-indole (72.9 mg, 0.3 mmol) gave the *title compound* **78** (50 mg, 66%) as colorless needles, mp 233–235 °C (from cyclohexane/EtOH), R_f 0.43 (DCM/Hexane, 4:1); (found: C, 47.5; H, 1.9; N, 13.9. C₁₂H₆BrN₃S requires C, 47.4; H, 2.0; N, 13.8%); λ_{max} (DCM)/nm 230 (log ε 4.03), 275 (4.19), 327 (4.01); ν_{max} /cm⁻¹ 3308bw (NH), 3105w (Ar CH), 2228w (C=N), 1748w, 1611m, 1520m, 1501m, 1466s, 1450w, 1425m, 1393s, 1350w, 1341m, 1313s, 1246w, 1171w, 1144w, 1103m, 1072w, 1028s, 955w, 914w, 887m, 874m, 826s, 810s, 793m; δ_{H} (500 MHz; CD₂Cl₂) 11.12 (1H, br s, N*H*), 8.03 (1H, br s, Ar *H*), 7.52-7.45 (2H, m, Ar *H*), 7.29 (1H, br s Ar *H*), 6.54 (1H, br s, Ar *H*); δ_{C} (125 MHz; CD₂Cl₂) 178.5 (s), 138.9 (s), 138.1 (s), 128.2 (s), 127.2 (d), 120.0 (d), 119.9 (d), 118.1 (s), 113.4 (s), 112.7 (d), 106.0 (s), 102.5 (d); *m/z* (EI) 305 (M⁺+2, 97%), 303 (M⁺, 100), 197 (29), 191 (10), 180 (66), 166 (14), 153 (15), 139 (12), 116 (12), 112 (12), 89 (24), 88 (11), 63 (18), 51 (7).

3-Bromo-5-(indol-7-yl)isothiazole-4-carbonitrile 79

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 7-iodoindole (73 mg, 0.3 mmol) gave the *title compound* **79** (39 mg, 52%) as colorless needles, mp 174-176 °C (from cyclohexane/DCM), R_f 0.43 (DCM/Hexane, 4:1); (found: C, 47.4; H, 1.9; N, 13.8. C₁₂H₆BrN₃S requires C, 47.4; H, 2.0; N, 13.8%); λ_{max} (DCM)/nm 233 (log ε 5.0), 266 (4.92), 350 (4.76); v_{max} /cm⁻¹ 3364w (NH), 2928w, 2853w, 2236w (C=N), 1601w, 1584w, 1522w, 1485w, 1437w, 1414w, 1389w, 1337s, 1273w, 1258w, 1217w, 1179w, 1107w, 1088m, 1072w, 978w, 932w, 907w, 883w, 849w, 799s; δ_{H} (300 MHz; CD₂Cl₂) 8.63 (1H, br s, N*H*), 7.87 (1H, d, *J* 7.9, Ar *H*), 7.49 (1H, d, *J* 7.5, Ar *H*), 7.38 (1H, br s, Ar *H*), 7.28 (1H, dd, *J* 7.7, 7.5, Ar *H*), 6.71 (1H, br s, Ar *H*); δ_{C} (75 MHz; CD₂Cl₂) 174.8 (s), 140.1

(s), 132.6 (s), 130.2 (s), 129.9 (s), 127.8 (s), 126.2 (d), 125.5 (d), 123.2 (d), 120.6 (d), 112.8 (s), 111.0 (s), 104.1 (d); *m/z* (EI) 305 (M⁺+2, 100%), 303 (M⁺, 97), 224 (50), 223 (10), 197 (19), 180 (58), 166 (8), 153 (12), 139 (9), 112 (16), 99 (9), 89 (18), 63 (9), 51 (6).

3-Bromo-5-(thien-2-yl)isothiazole-4-carbonitrile 80

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 2-iodothiophene (63 mg, 0.3 mmol) gave the title compound **80** (63 mg, 93%) as colorless plates, mp 134-135 $^{\circ}$ C (from cyclohexane, lit.,³⁶ 134-135 $^{\circ}$ C) identical to an authentic sample.

3-Bromo-5-(thien-3-yl)isothiazole-4-carbonitrile 81

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 3-iodothiophene (63 mg, 0.3 mmol) gave the *title compound* **81** (62 mg, 92%) as colorless plates, mp 135-138 °C (from cyclohexane), R_f 0.58 (Hexane/DCM, 1:1); (found: C, 35.6; H, 1.0; N, 10.4. C₈H₃BrN₂S₂ requires C, 35.4; H, 1.1; N, 10.3%); λ_{max} (DCM)/nm 228 (log ε 3.91), 282 (4.24), 291 inf (4.22); v_{max} /cm⁻¹ 3100w and 3077w (Ar CH), 2230w (C=N), 1522m, 1503w, 1479w, 1427w, 1377w, 1358w, 1327m, 1207w, 1103w, 1043m, 991w, 901w, 862w, 822w, 785s; δ_{H} (300 MHz; CDCl₃) 8.11 (1H, br s, thienyl C-2-*H*), 7.54 (1H, br s, thienyl C-*H*), 7.48 (1H, d, *J* 5.1, thienyl C-*H*); δ_{C} (75 MHz; CDCl₃) 170.1 (s), 139.5 (s), 128.6 (d), 127.6 (s), 127.4 (d), 125.6 (d), 113.0 (s), 107.4 (s); *m/z* (EI) 272 (M⁺+2, 100%), 270 (M⁺, 86), 191 (63), 164 (11), 147 (84), 139 (7), 133 (14), 127 (17), 120 (13), 94 (10), 88 (11), 82 (14), 69 (28), 58 (18), 51 (7).

3-Bromo-5-(3-bromophenyl)isothiazole-4-carbonitrile 82

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 3-bromoiodobenzene (84.9 mg, 0.3 mmol) gave the *title compound* **82** (83 mg, 97%) as colorless plates, mp 107.5–109.5 °C (from cyclohexane), R_f 0.59 (Hexane/DCM, 1:1); (found: C, 34.9; H, 1.1; N, 8.1. C₁₀H₄Br₂N₂S requires C, 34.9; H, 1.2; N, 8.1%); λ_{max} (DCM)/nm 230 (log ε 3.46), 238 inf (3.37), 277 (3.68); ν_{max} /cm⁻¹ 3075w and 3053w (Ar CH), 2236w (C=N), 1558w, 1508m, 1472m, 1406w, 1387m, 1335s, 1310w, 1269w, 1240w, 1099w, 1076w, 1040s, 993w, 970w, 962w, 905m, 837m, 793s; δ_{H} (300 MHz; CDCl₃) 7.85 (1H, s, Ph *H*-2), 7.72 (2H, d, *J* 7.9, Ph *H*-4 & 6), 7.45 (1H, dd, *J* 7.9, 7.9, Ph *H*-5); δ_{C} (75 MHz; CDCl₃) 174.5 (s), 140.0 (s), 135.2 (d), 131.4 (d), 130.3 (d), 128.9 (s), 125.9 (d), 123.9 (s), 112.3 (s), 109.2 (s); *m/z* (EI)

346 (M⁺+4, 46%), 344 (M⁺+2, 100), 342 (M⁺, 48), 265 (21), 264 (11), 263 (21), 185 (12), 184 (84), 157 (14), 140 (10), 126 (9), 120 (12), 114 (17), 99 (12), 76 (24), 75 (27), 63 (8), 51 (13).

3-Bromo-5-(2-chloropyridin-4-yl)isothiazole-4-carbonitrile 83

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 2-chloro-4-iodopyridine (71.8 mg, 0.3 mmol) gave the *title compound* **83** (58 mg, 78%) as colorless plates, mp 95–96 °C (from cyclohexane), R_f 0.17 (Hexane/DCM, 1:1); (found: C, 36.1; H, 0.9; N, 13.9. C₉H₃BrClN₃S requires C, 36.0; H, 1.0; N, 14.0%); λ_{max} (DCM)/nm 228 (log ε 3.85), 270 (4.14); ν_{max} /cm⁻¹ 3048w (Ar CH), 2237w (C=N), 1587s, 1535w, 1501m, 1462s, 1373m, 1335s, 1312w, 1242w, 1142m, 1094m, 1053s, 988w, 966w, 885m, 856w, 833s, 806m; δ_{H} (300 MHz; CD₂Cl₂) 8.62 (1H, d, *J* 5.1, Py *H*-6), 7.66 (1H, s, Py *H*-3), 7.59 (1H, d, *J* 5.1, Py *H*-5); δ_{C} (75 MHz; CD₂Cl₂) 171.9, 153.5, 151.8 (Py CH), 140.7, 137.3, 122.2 (Py CH), 120.3 (Py CH), 112.0, 111.1; *m*/*z* (EI) 303 (M⁺+4, 26%), 301 (M⁺+2, 100), 299 (M⁺, 71), 266 (31), 264 (32), 263 (17), 220 (19), 185 (20), 184 (20), 158 (11), 100 (9), 88 (8), 85 (11), 76 (11), 75 (11), 69 (10), 51 (12).

3-Bromo-5-(2-bromopyridin-4-yl)isothiazole-4-carbonitrile 84

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 2-bromo-4-iodopyridine (85.2 mg, 0.3 mmol) gave the *title compound* **84** (75 mg, 87%) as colorless plates, mp 113.5–114.5 °C (from cyclohexane/DCM), R_f 0.17 (Hexane/DCM, 1:1); (found: C, 31.5; H, 0.8; N, 12.1. C₉H₃Br₂N₃S requires C, 31.3; H, 0.9; N, 12.2%); λ_{max} (DCM)/nm 228 (log ε 4.09), 271 (4.23); ν_{max} /cm⁻¹ 3069w and 3044w (Ar CH), 2235w (C=N), 1584m, 1530w, 1504w, 1458s, 1371m, 1333s, 1304w, 1240w, 1138m, 1088m, 1049s, 986w, 964w, 885m, 845m, 833s, 802m, 764m; δ_{H} (300 MHz; CDCl₃) 8.62 (1H, d, *J* 5.1, Py *H*-6), 7.78 (1H, s, Py *H*-3), 7.62 (1H, d, *J* 5.1, Py *H*-5); δ_{C} (75 MHz; CDCl₃) 171.1 (s), 151.8 (d), 143.8 (s), 140.6 (s), 136.4 (s), 125.4 (d), 119.8 (d), 111.6 (s), 110.7 (s); *m*/*z* (EI) 347 (M⁺+4, 15%), 345 (M⁺+2, 27), 343 (M⁺, 14), 266 (38), 264 (36), 185 (14), 158 (9), 133 (6), 132 (7), 100 (6), 94 (5), 76 (9), 69 (7), 51 (8).

3-Bromo-5-(7-chloroquinolin-4-yl)isothiazole-4-carbonitrile 85

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 7-chloro-4-iodoquinoline (86.9 mg, 0.3 mmol) gave the *title compound* **85** (82 mg, 94%) as colorless needles, mp 170.5–172 °C (from cyclohexane/EtOH), R_f 0.15 (DCM); (found: C, 44.7; H, 1.4; N, 11.9. C₁₃H₅BrClN₃S requires C, 44.5; H, 1.4; N, 12.0%); λ_{max} (DCM)/nm 232 (log ε 4.36), 247 (4.03), 274 inf (3.81); ν_{max} /cm⁻¹ 3080w (Ar CH), 2924w, 2853w, 2230w (C=N), 1605m, 1574m, 1558w, 1551w, 1508m, 1483m, 1418m, 1387w, 1366w, 1337m, 1294w, 1254w, 1242w, 1190w, 1169w, 1130m, 1074m, 1055m, 989w, 961w, 885s, 858w, 841w, 818s, 802m, 773w; δ_{H} (300 MHz; CDCl₃) 9.08 (1H, d, *J* 4.2, Ar *H*), 8.26 (1H, s, Ar *H*), 7.78 (1H, d, *J* 8.9, Ar *H*), 7.65 (1H, d, *J* 8.9, Ar *H*), 7.49 (1H, d, *J* 4.1, Ar *H*); δ_{C} (75 MHz; CDCl₃) 171.4 (s), 150.7 (d), 149.0 (s), 139.7 (s), 137.0 (s), 132.7 (s), 129.7 (d), 129.6 (d), 125.2 (d), 122.8 (s), 121.7 (d), 113.5 (s), 111.1 (s); *m*/z (EI) 353 (M⁺+4, 29%), 351 (M⁺+2, 100), 349 (M⁺, 78), 272 (20), 270 (54), 243 (38), 235 (60), 208 (21), 163 (6), 135 (13), 100 (9), 99 (22), 75 (13), 74 (13), 69 (6), 63 (6), 51 (5).

3-Bromo-5-(5-bromoindol-7-yl)isothiazole-4-carbonitrile 86

Similar treatment of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) with 5-bromo-7-iodoindole (96 mg, 0.3 mmol) gave the *title compound* **86** (32 mg, 34%) as yellowish plates, mp 174.5–176.5 °C (from cyclohexane/EtOH), R_f 0.67 (DCM); (found: C, 37.6; H, 1.3; N, 10.8. $C_{12}H_5Br_2N_3S$ requires C, 37.6; H, 1.3; N, 11.0%); λ_{max} (DCM)/nm 230 (log ε 3.46), 270 (3.25), 350 (2.91); ν_{max} /cm⁻¹ 3366m (NH), 2228w (C=N), 1576m, 1518m, 1485m, 1462w, 1429w, 1406w, 1393w, 1329m, 1314s, 1269w, 1252w, 1217w, 1128w, 1101m, 1074w, 976m, 943w, 883m, 862w, 847m, 797m, 768s; δ_H (500 MHz; CD₂Cl₂) 8.0 (1H, s, Ar *H*), 7.55 (1H, d, *J* 1.4, Ar *H*), 7.41 (1H, dd, *J* 2.9, 2.9, Ar *H*), 6.68 (1H, dd, *J* 3.0, 2.1, Ar *H*); δ_C (125 MHz; CD₂Cl₂) 172.8 (s), 139.9 (s), 131.3 (d), 131.2 (s), 127.3 (d), 127.25 (d), 125.1 (d), 112.9 (s), 112.1 (s), 112.0 (s), 110.5 (s), 103.5 (s); *m*/*z* (EI) 385 (M⁺+4, 50%), 384 (M⁺+2, 13), 383 (M++1, 100), 382 (M⁺, 8), 304 (7), 302 (7), 224 (11), 223 (69), 196 (10), 195 (7), 169 (5), 152 (17), 112 (14), 98 (10), 63 (5).

3,3'-Dibromo-5,5'-biisothiazole-4,4'-dicarbonitrile 63

To a stirred solution of 3-bromoisothiazole-4-carbonitrile **48** (47 mg, 0.25 mmol) in MeCN (1 mL) at *ca*. 20 °C, AgF (63 mg, 0.5 mmol) was added. To this mixture Pd(Ph₃P)₂Cl₂ (35 mg, 0.05 mmol) was then added and the mixture was heated at *ca*. 82 °C until no starting material 154

remained (TLC). The reaction mixture was left to cool to *ca*. 20 °C and adsorbed onto silica. Chromatography (DCM/hexane, 3:2) gave the *title compound* **63** (63 mg, 67%) as yellowish plates, mp (DSC onset) 286 °C (from PhCl), R_f 0.33 (Hexane/DCM, 1:1); (found: C, 25.5; N, 14.7. C₈Br₂N₄S₂ requires C, 25.6; N, 14.9%); λ_{max} (DCM)/nm 229 (log ε 4.6), 293 (4.9); ν_{max} /cm⁻¹ 2230w (C=N), 1458s, 1327s, 1269w, 1040s, 887w, 800s; δ_{C} (75 MHz; CD₂Cl₂) 159.1 (s), 138.6 (s), 112.5 (s), 111.4 (s); *m/z* 378 (M⁺+4, 43%), 377 (M⁺+3, 9), 376 (M⁺+2, 100), 374 (M+, 47), 297 (8), 295 (8), 271 (7), 269 (7), 253 (8), 251 (7), 233 (6), 216 (20), 190 (8), 169 (5), 146 (9), 139 (26), 137 (25), 126 (11), 120 (11), 108 (28), 100 (13), 94 (50), 88 (10), 82 (29), 70 (24), 64 (34), 58 (12).

3-Chloro-5-phenylisothiazole-4-carbonitrile 87

To a stirred solution of 3-chloroisothiazole-4-carbonitrile **47** (36 mg, 0.25 mmol) in MeCN (1 mL) at *ca*. 20 °C, AgF (63 mg, 0.5 mmol), Ph₃P (6.5 mg, 10 mol%), and iodobenzene (55 μ L, 0.5 mmol) were added. To this mixture Pd(Ph₃P)₂Cl₂ (8.8 mg, 5 mol%) was then added and the mixture was heated at *ca*. 82 °C until no starting material remained (TLC). The reaction mixture was left to cool to *ca*. 20 °C and adsorbed onto silica. Chromatography (Hexane/DCM, 3:2) gave the title compound **87** (63.6 mg, 96%) as colorless needles, mp 87-88 °C (from cyclohexane, lit.,³⁵ 87-88 °C) identical to an authentic sample.

3,3'-Dichloro-5,5'-biisothiazole-4,4'-dicarbonitrile 22

To a stirred solution of 3-chloroisothiazole-4-carbonitrile **47** (36 mg, 0.25 mmol) in MeCN (1 mL) at *ca.* 20 °C, AgF (63 mg, 0.5 mmol) was added. To this mixture $Pd(Ph_3P)_2Cl_2$ (35 mg, 0.05 mmol) was then added and the mixture was heated at *ca.* 82 °C until no starting material remained (TLC). The reaction mixture was left to cool to *ca.* 20 °C and adsorbed onto silica. Chromatography (DCM/Hexane, 3:2) gave the title compound **22** (63 mg, 67%) as colorless needles, mp 243-244 °C (from PhH, lit.,³⁶ 244-245 °C) identical to an authentic sample.

9.4 Compounds related to Chapter 4

3-Amino-5-phenylpyrazole-4-carbonitrile 89 (see Table 7)

To a stirred mixture of 3-chloro-5-phenylisothiazole-4-carbonitrile **87** (50 mg, 0.23 mmol) in DMSO (1 mL), protected with CaCl₂ drying tube at *ca*. 20 °C, hydrazine monohydrate (1.9 mL, 0.046 mol) was added. The reaction mixture was kept at this temperature until no starting material remained (by TLC) and was then poured onto crushed ice and extracted (Et₂O). The organic extracts were combined, dried and adsorbed onto silica. Chromatography (Hexane/Et₂O, 3:7) gave the title compound **89** (39 mg, 92%) as a white powder, mp 194-195 °C (lit., ¹⁴⁶ 200 °C) (from EtOH/H₂O) identical to an authentic sample.

3-Amino-5-phenylpyrazole-4-carbonitrile 89 (Table 8)

A mixture of 3-chloro-5-phenylisothiazole-4-carbonitrile **87** (50 mg, 0.23 mmol) and anhydrous hydrazine (2 mL), protected with $CaCl_2$ drying tube was stirred at *ca*. 20 °C until no starting material remained (TLC). The reaction mixture was then poured onto crushed ice. The precipitate which formed was collected by filtration to afford the title compound **89** (42 mg, 99%) as a white powder, mp 194-195 °C (lit.,¹⁴⁶ 200 °C) (from EtOH/H₂O) identical to that described above.

3-Amino-5-phenylpyrazole-4-carbonitrile 89 (from 3-bromoisothiazole 62)

Similar treatment of 3-bromo-5-phenylisothiazole-4-carbonitrile **62** (61 mg, 0.23 mmol) and anhydrous hydrazine (2 mL) gave the title compound **89** (42 mg, 100%) as a white powder, mp 194-195 $^{\circ}$ C (lit., ¹⁴⁶ 200 $^{\circ}$ C) (from EtOH/H₂O) identical to that described above.

3-Amino-5-phenylpyrazole-4-carbonitrile 89 (from 3-iodoisothiazole 23)

Similar treatment of 3-iodo-5-phenylisothiazole-4-carbonitrile **23** (72 mg, 0.23 mmol) and anhydrous hydrazine (2 mL) gave the title compound **89** (41 mg, 98%) as a white powder, mp 194-195 °C (lit., ¹⁴⁶ 200 °C) (from EtOH/H₂O) identical to that described above.

3-Methoxy-5-phenyl-1H-pyrazole-4-carbonitrile 96

A mixture of 3-methoxy-5-phenylisothiazole-4-carbonitrile **90** (46 mg, 0.23 mmol) and anhydrous hydrazine (2 mL), protected with a $CaCl_2$ drying tube, was stirred at *ca*. 20 °C until no starting material remained (TLC). The reaction mixture was then poured onto crushed ice 156 and extracted (EtOAc). The organic extracts were combined, dried and adsorbed onto silica. Chromatography (hexane/EtOAc, 1:1) gave the *title compound* **96** (25 mg, 52%) as colorless needles, mp 181-182 °C (from EtOH); (found: C, 66.4; H, 4.6; N, 21.0. C₁₁H₉N₃O requires C, 66.3; H, 4.6; N, 21.1%); λ_{max} (EtOAc)/nm 262 (log ε 2.97); ν_{max} /cm⁻¹ 3183w (NH₂), 3119w, 3017w, 2961w (Ar CH), 2853w (Ph CH), 2818w (Ph CH), 2232m (C=N), 1589w, 1568w, 1537s, 1512s, 1493m, 1458w, 1444w, 1418s, 1331w, 1258w, 1196w, 1158w, 1142m, 1131m, 1040w, 1011m, 961w, 920w, 777m, 751w, 725s, 713m; δ_{H} (300 MHz; DMSO-d₆) 13.33 (1H, br s, N*H*), 7.81-7.70 (2H, m, Ph C*H*), 7.62-7.46 (3H, m, Ph C*H*), 3.95 (3H, s, C*H*₃); δ_{C} (75 MHz; DMSO-d₆) 164.5 (s), 147.2 (s), 130.4 (d), 129.3 (d), 126.7 (s), 126.2 (d), 114.0 (s), 74.1 (s), 56.45 (CH₃); *m*/*z* (EI) 199 (M⁺, 100%), 198 (M⁺-1, 53), 170 (38), 156 (7), 142 (12), 127 (50), 115 (11), 104 (75), 100 (29), 77 (C₆H₅⁺, 83), 63 (15), 51 (58). Further elution (EtOAc, 100%) gave 3-amino-5-phenyl-1*H*-pyrazole-4-carbonitrile **89** (20 mg, 48%) as a white powder, mp 194-195°C (lit., ¹³ 200 °C) (from EtOH/H₂O) identical to an authentic sample.

3-Hydroxy-5-phenyl-1H-pyrazole-4-carbonitrile 97

Similar treatment of 3-hydroxy-5-phenylisothiazole-4-carbonitrile **91** (47 mg, 0.23 mmol) with anhydrous hydrazine gave after chromatography (Hexane/Et₂O, 7:3) the *title compound* **97** (41 mg, 97%) as colorless needles, mp 141.5-143.5 °C (from pentane/EtOH); (found: C, 64.8; H, 3.9; N, 22.6. C₁₀H₇N₃O requires C, 64.9; H, 3.8; N, 22.7%); λ_{max} (MeOH)/nm 237 (log ε 4.42), 260 inf (4.41), 296 inf (4.26), 312 inf (4.12), 326 inf (3.87); v_{max} /cm⁻¹ 3333w & br (OH), 2957w (Ph CH), 2924m (Ph CH), 2853w (Ph CH), 2203w (C=N), 1643m, 1589m, 1514w, 1485m, 1449w, 1433w, 1377w, 1275w, 1123w, 1098w, 1072w, 1030w, 970w, 918w, 860w, 797w, 766w, 743w, 725s; δ_{H} (300 MHz; DMSO-d₆) (1 peak missing) 13.28 (1H, br s, N*H* or O*H*), 7.76-7.61 (5H, m, Ph C*H*); δ_{C} (300 MHz; DMSO-d₆) 173.8 (s), 168.6 (s), 131.7 (d), 129.7 (d), 128.1 (s), 126.9 (d), 113.4 (s), 93.0 (s); *m*/*z* (EI) 185 (M⁺, 24), 128 (42), 121 (11), 104 (30), 91 (50), 86 (67), 77 (C₆H₅⁺, 100), 57 (38), 51 (41).

3-(N-Benzylamino)-5-phenyl-1H-pyrazole-4-carbonitrile 98

Similar treatment of 3-benzylamino-5-phenylisothiazole-4-carbonitrile **93** (67 mg, 0.23 mmol) with anhydrous hydrazine gave after chromatography (Hexane/Et₂O, 7:3) the *title compound* **98** (34 mg, 54%) as pale yellow plates, mp 206-208 °C (from EtOH); (found: C, 74.4; H, 5.1; N, 20.4. C₁₇H₁₄N₄ requires C, 74.4; H, 5.1; N, 20.4%); λ_{max} (MeOH)/nm 209 (log ε 3.20), 237 157

(3.11); $v_{\text{max}}/\text{cm}^{-1}$ 3360m (NH), 3184w, 3150w, 3105w, 3086w (Ph CH), 3055w (Ph CH), 3028w (Ph CH), 2951w, 2918w, 2884w, 2837w, 2803w, 2218s (C=N), 1587m, 1570s, 1524m, 1495m, 1466w, 1452m, 1429w, 1350m, 1327w, 1306w, 1234w, 1196w, 1161w, 1130w, 1080m, 1058w, 1030w, 986w, 959w, 916w, 837w, 797w, 770m, 731s; $\delta_{\text{H}}(300 \text{ MHz}; \text{DMSO-d}_6)$ 12.62 (1H, br s, N*H*), 7.78 (2H, d, *J* 7.2, Ph *H*), 7.51-7.30 (8H, m, Ph *H* and N*H*), 7.25-7.21 (1H, m, Ph *H*), 4.40 (2H, d, *J* 6, C*H*₂); $\delta_{\text{C}}[75 \text{ MHz}; \text{DMSO-d}_6$ with Cr(acac)₃] (1 peak missing) 156.2 (s, w & br), 150.95 (s, w & br), 139.45 (s), 129.5 (d), 129.0 (d), 128.3 (d), 127.3 (d), 126.9 (d), 125.9 (d), 116.0 (s), 70.0 [s, w & br], 46.2 (CH₂); *m*/z (EI) 274 (M⁺, 24%), 197 (M⁺-C₆H₅, 8), 170 (4), 127 (6), 104 (4), 91 (C₆H₅CH₂⁺, 100), 77 (C₆H₅⁺, 12), 51 (7). Further elution (Et₂O, 100%) gave 3-amino-5-phenyl-1*H*-pyrazole-4-carbonitrile **89** (14 mg, 33%) as a white powder, mp 194-195 °C (lit., ¹³ 200 °C) (from EtOH/H₂O) identical to an authentic sample.

3-Morpholino-5-phenyl-1*H*-pyrazole-4-carbonitrile 99

A mixture of 3-morpholino-5-phenylisothiazole-4-carbonitrile 94 (62 mg, 0.23 mmol) and anhydrous hydrazine (2 mL) was heated to ca. 80 °C until no starting material remained (TLC). The reaction mixture was allowed to cool to ca. 20 °C, poured onto crushed ice and extracted (Et₂O). The organic extracts were combined, dried and adsorbed onto silica. Chromatography (Et₂O/Hexane, 7:3) gave the *title compound* **99** (35 mg, 59%) as colorless needles, mp 184.5-185 °C (from EtOH); (Found: C, 66.2; H, 5.5; N, 21.9. C₁₄H₁₄N₄O requires C, 66.1; H, 5.55; N, 22.0%); λ_{max} (MeOH)/nm 207 (log ε 3.15), 211 (3.11), 235 (3.04), 254 inf (2.98); v_{max}/cm⁻¹ 3214w&br (NH), 2960w (Ph CH), 2917w (Ph CH), 2860w and 2832w (CH₂), 2218s (C=N), 1565m, 1512s, 1495s, 1456m, 1436w, 1377m, 1305m, 1287m, 1281m, 1264w, 1239w, 1151m, 1121s, 1072w, 1052w, 1045w, 1030w, 968s, 917s, 858w, 844m, 777s; $\delta_{\rm H}(300)$ MHz; CD₂Cl₂) 7.75-7.71 (2H, m, Ph H), 7.53-7.50 (3H, m, Ph H), 3.82 (4H, dd, J 4.8, CH₂N), 3.42 (4H, dd, J 5.6, 4.1, CH₂O); δ_{C} (75 MHz; DMSO-d₆) (1 peak missing) 160.1 (s, w & br), 148.1 (s, w & br), 129.9 (s), 129.1 (d), 128.3 (s), 126.4 (d), 116.4 (s), 76.4 [s, w & br], 65.5 (CH₂O), 48.0 (CH₂N); *m/z* (EI) 254 (M⁺, 91%), 239 (35), 223 (17), 196 (67), 169 (23), 140 (10), 127 (15), 104 (100), 77 (C₆H₅⁺, 48), 57 (29). Further elution (Et₂O, 100%) gave 3amino-5-phenyl-1*H*-pyrazole-4-carbonitrile **89** (16 mg, 38%) as a white powder, mp 194-195 °C (lit.,¹³ 200 °C) (from EtOH/H₂O) identical to an authentic sample.

3,5-Diphenyl-1*H*-pyrazole-4-carbonitrile 100

A mixture of 3,5-diphenylisothiazole-4-carbonitrile **95** (45 mg, 0.23 mmol) and anhydrous hydrazine in a sealed tube, was introduced into a preheated Wood's metal bath at 150 °C and was stirred until no starting material remained (TLC). The reaction mixture was then allowed to cool to *ca.* 20 °C, poured onto crushed ice and extracted (EtOAc). The organic extracts were combined, dried and evaporated to afford the title compound **100** (26 mg, 83%) as colorless needles, mp 220.5-221.5 °C (lit.,³²⁶ 230 °C) (from EtOH); $\lambda_{max}(t$ -BuOMe)/nm 208 (log ε 3.42), 248 (3.45); v_{max}/cm^{-1} 3181 br & w (NH), 3024w (Ph CH), 2228m (C=N), 1564w, 1486m, 1450w, 1444m, 1431w, 1402w, 1319w, 1297w, 1279w, 1254w, 1137m, 1074m, 1027w, 1002w, 964s, 918w, 777s, 733m, 717s; $\delta_{H}(300 \text{ MHz}; \text{CDCl}_3)$ 10.82 (1H, br s, N*H*), 7.92-7.89 (4H, m, Ph *H*), 7.55-7.48 (6H, m, Ph *H*); $\delta_{C}(75 \text{ MHz}; \text{DMSO-d}_6)$ 153.1 (s), 148.6 (s), 130.9 (d), 129.3 (d), 126.6 (d), 115.8 (s), 109.4 (s), 85.4 (s); m/z (EI) 245 (M⁺, 100%), 216 (10), 189 (6), 142 (4), 122 (5), 115 (6), 104 (7), 94 (7), 77 (C₆H₅⁺, 21), 63 (5), 51 (13).

3-(Benzylideneamino)-5-phenyl-1*H*-pyrazole-4-carbonitrile 101 (see Scheme 46)

A mixture of 3-amino-5-phenyl-1*H*-pyrazole-4-carbonitrile **89** (50 mg, 0.27 mmol) and PhCHO (1 mL, 9.72 mmol) was stirred at *ca*. 20 °C until no starting material remained (TLC). The reaction mixture was diluted with Et₂O and extracted with saturated solution of sodium bisulfate to remove unreacted benzaldehyde. The organic extracts were combined, dried and evaporated to give the *title compound* **101** (53 mg, 72%) as yellow plates, mp 174-175 °C (from EtOH); (found C, 74.9; H, 4.4; N, 20.5. C₁₇H₁₂N₄ requires C, 75.0; H, 4.4; N, 20.6%); λ_{max} (*t*-BuOMe)/nm 205 (log ε 4.35), 228 (4.22), 263 (4.18); ν_{max} /cm⁻¹ 3202w & br (NH), 3119w (Ph CH), 3059w (Ph CH), 3030w (Ph CH), 2232m (C=N), 1620s, 1599w, 1574m, 1493m, 1458m, 1429w, 1348w, 1314w, 1296w, 1275w, 1213m, 1159w, 1111m, 1078w, 1001w, 984w, 972m, 922w, 876w, 849w, 800w, 777w, 760s; δ_{H} (300 MHz; DMSO-d₆) 14.05 (s, 1H, N*H*), 9.08 (s, 1H, N=*CH*), 8.01 (d, 2H, *J* 6.9, Ph *H*), 7.88 (d, 2*H*, *J* 6.9, Ph *H*), 7.68-7.50 (m, 6H, *J* 7.2, Ph *H*); δ_{C} (75 MHz; DMSO-d₆) 163.7 (d), 147.7 (s), 134.9 (s), 134.5 (s), 132.7 (s), 130.1 (d), 129.4 (d), 129.2 (d), 129.0 (d), 126.2 (d), 125.6 (d), 114.7 (s), 83.2 (s); m/z (EI) 272 (M⁺, 11%), 271 (M⁺-1, 11), 184 (15), 172 (51), 155 (5), 128 (11), 115 (12), 104 (11), 91 (PhCH₂⁺, 100), 77 (C₆H₅⁺, 20), 65 (14).

1-Benzyl-3-(dibenzylamino)-5-phenyl-1*H*-pyrazole-4-carbonitrile 102 (see Scheme 46)

To a stirred mixture of 3-amino-5-phenyl-1*H*-pyrazole-4-carbonitrile **89** (50 mg, 0.27 mmol) and potassium hydroxide (182 mg, 3.24 mmol) in DMF (2 mL) at ca. 20 °C, benzyl bromide (32 μ L, 0.27 mmol) was added. The reaction mixture was held at this temperature until no starting material remained (TLC). The mixture was diluted with EtOAc and extracted (H_2O). The organic extracts were combined, dried and adsorbed onto silica. Chromatography (Hexane/EtOAc, 7:3) gave 3-(N-benzylamino)-5-phenyl-1H-pyrazole-4-carbonitrile 98 (24 mg, 33%), mp 206-208 °C (from EtOH), identical to that described above. Further elution (EtOAc, 100%) gave the *title compound* **102** as colorless needles (23 mg, 57%), mp 118.5-120.5 °C (from EtOH); (found C, 81.9; H, 5.7; N, 12.2. C₃₁H₂₆N₄ requires C, 81.9; H, 5.8; N, 12.3%); λ_{max} (EtOAc)/nm 253 (log ε 3.52); v_{max} /cm⁻¹ 3077w (Ph CH), 3042w (Ph CH), 2854w, 2217m (C=N), 1607w, 1586w, 1527m, 1495w, 1474m, 1453m, 1451m, 1436w, 1400w, 1367m, 1359m, 1324w, 1288w, 1266w, 1228w, 1211w, 1180w, 1154w, 1140w, 1098w, 1074w, 1041w, 1030w, 1016w, 1003w, 968w, 936w, 919w, 904w, 846w, 833w, 779s, 758s, 749s, 731m, 719m; δ_H(300 MHz; CDCl₃) 7.99-7.97 (2H, d, J 6, Ph H), 7.49-7.18 (16H, m, Ph *H*), 7.10-7.03 (2H, m, Ph *H*), 5.11 (2H, s, NCH₂Ph), 4.28 [4H, s, N(CH₂Ph)₂]; $\delta_{\rm C}$ (75 MHz; CDCl₃) (1 peak missing) 154.9 (s), 151.6 (s), 136.1 (s), 135.7 (s), 131.1 (s), 129.1 (d), 128.9 (d), 128.7 (d), 128.6 (d), 127.9 (d), 127.8 (d), 127.0 (d), 126.3 (d), 115.1 (s), 84.1 (s), 57.3 (CH₂), 51.5 (CH₂); *m*/*z* (EI) 454 (M⁺, 9%), 363 (M⁺-PhCH₂, 7), 199 (40), 170 (9), 143 (7), 116 (8), 91 (PhCH₂⁺, 100), 77 ($C_6H_5^+$, 6), 74 (14), 65 (19).

3-(N-Benzylamino)-5-phenyl-1H-pyrazole-4-carbonitrile 98 (See Scheme 46)

To a stirred mixture of 3-(benzylideneamino)-5-phenyl-1*H*-pyrazole-4-carbonitrile **101** (30 mg, 0.11 mmol) in MeOH (2 mL) under argon at *ca*. 0 °C, NaBH₄ (68.2 mg, 0.22 mmol) was added in one portion. The reaction left to warm to *ca*. 20 °C until no starting material remained (TLC). The reaction mixture was diluted with EtOAc and extracted (H₂O). The organic extracts were combined, dried and evaporated to afford the *title compound* **98** (30 mg, 100%) as pale yellow plates, mp 206-208 °C (from EtOH), identical to that described above.

3-Amino-5-phenyl-1*H*-pyrazole-4-carbonitrile 89 (see Scheme 46)

In a suspension of 3-(*N*-benzylamino)-5-phenyl-1*H*-pyrazole-4-carbonitrile **98** (30 mg, 0.11 mmol) in H₂O at *ca.* 20 °C, MeOH (176 μ L, 5%) was added. The reaction mixture held at this temperature until no starting material remained (TLC) and was then diluted with H₂O and 160

extracted with EtOAc. The organic extracts were combined, dried and evaporated to afford the title compound **89** (20 mg, 99%), as a white powder, mp 194-195 $^{\circ}$ C (lit., ¹⁴⁶ 200 $^{\circ}$ C) (from EtOH/H₂O) identical to an authentic sample.

3-Amino-5-*m*-tolyl-1*H*-pyrazole-4-carbonitrile 120

A mixture of 3-chloro-5-*m*-tolylisothiazole-4-carbonitrile **103** (54 mg, 0.23 mmol) and anhydrous hydrazine (2 mL), protected with a CaCl₂ drying tube, was stirred at *ca*. 20 °C until no starting material remained (TLC). The reaction mixture was poured onto crushed ice and exracted (EtOAc). The organic extracts were combined, dried and adsorbed onto silica. Chromatography (Hexane/EtOAc, 7:3) gave the *title compound* **120** (44 mg, 97%) as colorless needles, mp 194.5-195.5 °C (from EtOH); (found: C, 66.6; H, 5.0; N, 28.2. C₁₁H₁₀N₄ requires C, 66.6; H, 5.1; N, 28.3%); λ_{max} (MeOH)/nm 209 (log ε 2.76), 231 (2.52), 255 (2.45); ν_{max}/cm^{-1} 3365w and 3299w (NH₂), 3279w, 3206m and 3184m (NH), 3139w, 3101w, 3060w, 3050w and 3012w (Ph CH), 2959w and 2912w (CH₃), 2226s (C=N), 1646m, 1575m, 1534s, 1506m, 1483m, 1398w, 1344w, 1168w, 1082m, 1017w, 984w, 898w, 882w, 854m, 786s, 747s, 727s; δ_{H} (300 MHz; DMSO-d₆) 12.18 (1H, s, N*H*), 7.63-7.55 (2H, m, Ph C*H*), 7.39-7.29 (1H, br m, Ph C*H*), 7.24-7.16 (1H, br m, Ph C*H*), 6.44 (2H, br s, N*H*₂), 2.34 (3H, s, C*H*₃); δ_{C} (75 MHz; DMSO-d₆) 154.7 (s, w & br), 150.0 (s, w & br), 137.9 (d), 131.9 (s, w & br), 129.3 (s, w & br), 128.7 (d), 126.2 (d), 122.8 (d), 116.2 (s), 69.6 (s), 21.1 (CH₃); *m/z* (EI) 199 (M⁺+1, 16), 198 (M⁺, 100%), 197 (M⁺-1, 16), 180 (9), 170 (4), 155 (8), 142 (4), 115 (3), 91 (2), 77 (1).

3-Amino-5-(2-methoxyphenyl)-1H-pyrazole-4-carbonitrile 121

Similar treatment of 3-amino-5-(2-methoxyphenyl)isothiazole-4-carbonitrile **104** (58 mg, 0.23 mmol) with anhydrous hydrazine (2 mL) gave the title compound **121** (47 mg, 95%) as pale yellow plates, mp 179-180 °C (lit.,³²⁷ 192 °C) (from EtOH); (found: C, 61.7; H, 4.8; N, 26.1. C₁₁H₁₀N₄O requires C, 61.7; H, 4.7; N, 26.1%); λ_{max} (MeOH)/nm 213 (log ε 3.13), 259 (2.83), 287 inf (2.73); ν_{max} /cm⁻¹ 3413w (NH₂), 3326w and 3295w (NH), 3186w (Ph CH), 2211m (C=N), 1636m, 1602w, 1587m, 1558m, 1524m, 1484m, 1457m, 1449w, 1432w, 1307w, 1269m, 1251m, 1187w, 1167w, 1120w, 1071m, 1023m, 969m, 945w, 807w, 768s, 752m, 706m; δ_{H} (300 MHz; DMSO-d₆) tautomeric mixture of isomers 12.43 (1H, br s, N*H*), 12.11 (1H, br s, N*H*), 7.50-7.35 (4H, m, Ph C*H*), 7.20-7.10 (2H, m, Ph C*H*), 7.10-6.95 (2H, m, Ph C*H*), 6.27 (2H, br s, N*H*₂), 5.50 (2H, br s, N*H*₂), 3.80 (6H, s, C*H*₃); δ_{C} (75 MHz; DMSO-d₆) 161

156.6 (s), 153.8 (s, w & br), 149.4 (s, w & br), 130.7 (s, w & br), 129.6 (s, w & br), 120.6 (d), 115.8 (s), 111.8 (d), 73.5 (s, w & br), 73.50 (s, w & br), 55.4 (OCH₃); m/z (EI) 214 (M⁺, 100%), 198 (5), 185 (11), 171 (9), 155 (4), 144 (11), 129 (6), 116 (11), 101 (5), 89 (11), 77 (C₆H₅⁺, 5), 63 (4).

3-Amino-5-(3-methoxyphenyl)-1H-pyrazole-4-carbonitrile 122

Similar treatment of 3-amino-5-(3-methoxyphenyl)isothiazole-4-carbonitrile **105** (58 mg, 0.23 mmol) with anhydrous hydrazine (2 mL) gave the *title compound* **122** (44 mg, 90%) as colorless needles, mp 132-133 °C (from EtOH); (found: C, 61.6; H, 4.7; N, 26.0. C₁₁H₁₀N₄O requires C, 61.7; H, 4.7; N, 26.1%); λ_{max} (MeOH)/nm 219 (log ε 3.21), 255 (2.89), 290 inf (2.66); ν_{max} /cm⁻¹ 3428w (NH₂), 3349w, 3218w (NH), 3165w (Ph CH), 2962w, 2936w, 2914w and 2833w (CH₃), 2211s (C=N), 1637s, 1614m, 1604m, 1597m, 1583m, 1520s, 1462m, 1430m, 1350m, 1316w, 1287m, 1275w, 1230s, 1183w, 1144w, 1106w, 1091w, 1049s, 1000m, 991m, 892m, 880w, 849m, 789m, 783m, 762w, 733m; δ_{H} (300 MHz; DMSO-d₆) 12.21 (1H, s, NH), 7.38-7.34 (3H, m, Ph CH), 6.97 (1H, br s, Ph CH), 6.49 (2H, br s, NH₂), 3.78 (3H, s, OCH₃); δ_{C} (75 MHz; DMSO-d₆) 159.3 (s), 154.6 (s), 149.8 (s), 133.4 (s), 129.8 (d), 117.9 (d), 116.3 (s), 114.1 (d), 110.9 (d), 69.5 (s), 55.0 (OCH₃); m/z (EI) 214 (M⁺, 100%), 199 (3), 185 (22), 171 (12), 158 (6), 142 (14), 129 (6), 116 (12), 107 (8), 102 (4), 89 (11), 88 (7), 77 (C₆H₅⁺, 7), 63 (7), 51 (4).

3-Amino-5-(4-methoxyphenyl)-1*H*-pyrazole-4-carbonitrile 123

Similar treatment of 3-amino-5-(4-methoxyphenyl)isothiazole-4-carbonitrile **106** (58 mg, 0.23 mmol) with anhydrous hydrazine (2 mL) gave the title compound **123** (42 mg, 94%) as colorless needles, mp 170.5-171.5 °C (lit.,³²⁸ 183-186 °C) (from EtOH); (found: C, 61.6; H, 4.6; N, 26.1. C₁₁H₁₀N₄O requires C, 61.7; H, 4.7; N, 26.1%); λ_{max} (MeOH)/nm 207 (log ε 3.01), 262 (2.84); v_{max} /cm⁻¹ 3464w, 3427w (NH₂), 3362w, 3321w (NH), 3179w (Ph CH), 2219w and 2206m (C=N), 1653w, 1627m, 1613m, 1587w, 1532s, 1509w, 1502w, 1489m, 1482m, 1434m, 1292m, 1261s, 1253s, 1189m, 1159w, 1138w, 1065w, 1024m, 1011w, 968w, 829s, 803w, 780w, 737m, 714w; δ_{H} (300 MHz; DMSO-d₆) 12.08 (1H, s, N*H*), 7.74-7.72 (2H, d, *J* 8.4, Ph C*H*), 7.05-7.02 (2H, d, *J* 8.1, Ph C*H*), 6.41 (2H, s, N*H*₂), 3.79 (3H, s, OC*H*₃); δ_{C} (75 MHz; DMSO-d₆) 159.6 (s), 154.7 (s), 149.8 (s), 127.1 (d), 124.7 (s), 116.4 (s), 114.2 (d), 69.3 (s), 55.2 (OCH₃); m/z (EI) 214 (M⁺, 100%), 199 (30), 185 (3), 171 (17), 157 (3), 143 (6), 129 (3), 116 (8), 114 (5), 107 (4), 89 (7), 77 (C₆H₅⁺, 3), 63 (4).

3-Amino-5-(thien-3-yl)-1H-pyrazole-4-carbonitrile 124

Similar treatment of 3-amino-5-(thien-3-yl)isothiazole-4-carbonitrile **107** (52 mg, 0.23 mmol) with anhydrous hydrazine (2 mL) gave the *title compound* **124** (41 mg, 94%) as colorless needles, mp 224.5-225.5 °C (from EtOH); (found: C, 50.5; H, 3.2; N, 29.4. C₈H₆N₄S requires C, 50.5; H, 3.2; N, 29.4%); λ_{max} (MeOH)/nm 210 (log ε 3.05), 263 (2.93); ν_{max} /cm⁻¹ 3419w and 3341w (NH₂), 3226w (NH), 3163w, 3111w, 3028w, 2966w (Ph CH), 2898w (Ph CH), 2838w (Ph CH), 2213s (C=N), 1634s, 1596m, 1559w, 1521s, 1456m, 1379m, 1339m, 1272w, 1081w, 1003s, 891m, 860m, 814w, 784s, 723s; δ_{H} (300 MHz; CDCl₃/drop of DMSO-d₆) (1 peak missing), 7.75 (1H, s, thienyl CH), 7.45 (1H, d, J 4.8, thienyl CH), 7.24-7.22 (1H, m, thienyl CH), 4.86 (2H, s, NH₂); δ_{C} (75 MHz; DMSO-d₆) 154.1 (s), 146.7 (s), 133.5 (s), 126.9 (d), 125.5 (d), 121.9 (d), 116.3 (s), 69.4 (s); *m*/*z* (EI) 190 (M⁺, 100%), 161 (14), 148 (9), 134 (12), 121 (3), 108 (3), 95 (4), 90 (4), 76 (3), 63 (4).

3-Amino-5-(2-chlorophenyl)-1*H*-pyrazole-4-carbonitrile 125³²⁹

Similar treatment of 3-amino-5-(2-chlorophenyl)isothiazole-4-carbonitrile **108** (59 mg, 0.23 mmol) with anhydrous hydrazine (2 mL) gave the title compound **125** (42 mg, 87%) as colorless needles, mp 184-189 °C (from EtOH); (found: C, 55.0; H, 3.1; N, 25.7. C₁₀H₇N₄Cl requires C, 54.9; H, 3.2; N, 25.6%); λ_{max} (MeOH)/nm 212 (log ϵ 3.15), 228 inf (2.94), 267 inf (2.44); v_{max}/cm^{-1} 3198m (NH₂), 3183m (NH), 3173w and 3166w and 3159w (Ph CH), 2225m (C=N), 1647w, 1636w, 1624w, 1582w, 1565m, 1555w, 1532m, 1528m, 1500m, 1490w, 1473w, 1465w, 1457w, 1437w, 1395w, 1324w, 1282w, 1259w, 1254w, 1168w, 1104w, 1081m, 1058m, 1045w, 986m, 972w, 879, 851w, 830w, 788m, 777w, 769w, 755s, 729s, 720s; δ_{H} (300 MHz; DMSO-d₆) 12.215 (1H, s, NH), 7.58-7.45 (4H, m, Ph CH), 6.45 (2H, s, NH₂); δ_{C} (75 MHz; DMSO-d₆) 153.5 (s), 149.8 (s), 132.1 (s), 131.45 (d), 130.5 (d), 129.7 (d), 129.2 (s), 127.1 (d), 115.1 (s), 72.9 (s); δ_{C} (75 MHz; DEPT-135, DMSO-d₆) 131.45 (Ph CH), 130.5 (Ph CH), 129.7 (Ph CH), 127.1 (Ph CH); *m*/z (EI) 218 (M⁺, 100%), 220 (32), 189 (6), 183 (M⁺-Cl, 5), 176 (11), 155 (17), 126 (27), 114 (8), 100 (23), 87 (8), 77 (C₆H₅⁺, 22), 63 (15), 51 (25).

3-Amino-5-(3-chlorophenyl)-1H-pyrazole-4-carbonitrile 126

Similar treatment of 3-amino-5-(3-chlorophenyl)isothiazole-4-carbonitrile **109** (59 mg, 0.23 mmol) with anhydrous hydrazine (2 mL) gave the *title compound* **126** (45 mg, 90%) as colorless needles, mp 211-212 °C (from EtOH); (found: C, 55.0; H, 3.3; N, 25.6. C₁₀H₇N₄Cl requires C, 54.9; H, 3.2; N, 25.6%); λ_{max} (MeOH)/nm 256 (log ε 3.18), 275 inf (3.06); ν_{max} /cm⁻¹ 3362w (NH₂), 3303w (NH), 3295w, 3199m, 3169m, 3140w, 3127w and 3095w (Ph CH), 3069w (Ph CH), 3048w (Ph CH), 2227s (C=N), 1642m, 1582m, 1565m, 1532s, 1500m, 1474m, 1437w, 1423w, 1406w, 1396w, 1343w, 1314w, 1168w, 1104w, 1082m, 987m, 907w, 879m, 811w, 787s, 777m, 744m, 728s; δ_{H} (300 MHz; DMSO-d₆) 12.37 (1H, s, N*H*), 7.79-7.74 (2H, m, Ph C*H*), 7.53-7.44 (2H, m, Ph C*H*), 6.5 (2H, s, N*H*₂); δ_{C} (75 MHz; DMSO-d₆) 155.2 (s), 147.9 (s), 133.5 (s), 131.5 (s), 130.8 (d), 128.5 (d), 125.1 (d), 124.1 (d), 116.0 (s), 70.1 (s); m/z (EI) 218 (M⁺, 100%), 220 (33), 189 (12), 176 (7), 162 (20), 153 (6), 1127 (26), 114 (13), 99 (24), 85 (18), 77 (C₆H₅⁺, 23), 63 (18), 57 (53).

3-Amino-5-(4-chlorophenyl)-1H-pyrazole-4-carbonitrile 127

Similar treatment of 3-amino-5-(4-chlorophenyl)isothiazole-4-carbonitrile **110** (59 mg, 0.23mmol) with anhydrous hydrazine (2 mL) gave the title compound **127** (46 mg, 92%) as colorless needles, mp 209-212 °C (lit.,³³⁰ 212 °C) (from EtOH); (found: C, 55.0; H, 3.2; N, 25.5. C₁₀H₇N₄Cl requires: C, 54.9; H, 3.2; N, 25.6%); λ_{max} (MeOH)/nm 209 (log ε 3.11), 238 inf (3.07), 257 (3.13); ν_{max} /cm⁻¹ 3344w (NH₂), 3296w, 3201m (NH), 3138w and 3122w and 3071w and 3045w (Ph CH), 2958w, 2917w, 2849w, 2223s (C=N), 1647w, 1605w, 1582w, 1531s, 1489s, 1424w, 1420w, 1383w, 1347w, 1341w, 1173w, 1139w, 1097m, 1086m, 1016w, 967w, 825s, 817m, 769m, 733s; δ_{H} (300 MHz; DMSO-d₆) 12.24 (1H, s, NH), 7.82-7.79 (2H, m, Ph CH), 7.55-7.52 (2H, m, Ph CH), 6.54 (2H, s, NH₂); δ_{C} (75 MHz; DMSO-d₆) 154.7 (s), 148.8 (s), 133.1 (d), 130.9 (d), 128.8 (d), 127.2 (d), 116.1 (s), 69.4 (s); *m*/z (EI) 220 (M⁺+2, 13%), 218 (M⁺, 39), 189 (4), 176 (4), 153 (4), 126 (12), 111 (16), 99 (14), 85 (29), 77 (C₆H₅⁺, 11), 71 (47), 63 (6), 57 (91).

3-Amino-5-(3-nitrophenyl)-1*H*-pyrazole-4-carbonitrile 128³²⁸ and 3-amino-5-(3-aminophenyl)-1*H*-pyrazole-4-carbonitrile 129

Similar treatment of 3-amino-5-(3-nitrophenyl)isothiazole-4-carbonitrile **111** (61 mg, 0.23 mmol) with anhydrous hydrazine (2 mL) gave two products. Chromatography (Hexane/Et₂O, 3:2) gave the title compound **128** (38 mg, 72%) as yellow plates, mp 251-252 °C (from 164

EtOH); (found C, 52.5, H, 3.0, N, 30.6. C₁₀H₇N₅O₂ requires C, 52.4; H, 3.1; N, 30.6%); λ_{max} (MeOH)/nm 234 (log ε 3.08), 254 (3.10); v_{max} /cm⁻¹ 3460w (NH₂), 3428w, 3396w, 3360w, 3207w (Ph CH), 2924w (Ph CH), 2854w (Ph CH), 2213m (C≡N), 1652m, 1627m, 1616m, 1597w, 1576w, 1532m, 1516m, 1511m, 1498m, 1351s, 1110w, 1072w, 998w, 900w, 893w, 879w, 822w, 798w, 792w, 748w, 736w, 715s; $\delta_{\rm H}$ (300 MHz; DMSO-d₆) 12.42 (1H, s, NH), 8.61 (1H, dd, J 1.7, 1.65, Ph CH), 8.23 (2H, m, Ph CH), 7.76 (1H, t, J 8.1, Ph CH), 6.65 (2H, s, NH₂); $\delta_{\rm C}(75 \text{ MHz}; \text{DMSO-d}_6)$ 154.9 (s), 148.1 (s), 147.7 (s), 133.5 (s), 131.5 (d), 130.5 (d), 123.1 (d), 119.7 (d), 115.8 (s), 69.6 (s); *m/z* (EI) 229 (M⁺, 100%), 183 (18), 156 (13), 141 (4), 129 (21), 114 (14), 101 (7), 99 (4), 77 ($C_6H_5^+$, 7), 63 (4). Further elution (Et₂O, 100%) gave 3-amino-5-(3-aminophenyl)-1H-pyrazole-4-carbonitrile **129** as colorless needles (13 mg, 28 %), mp > 300 °C (from EtOH); (found: C, 60.4; H, 4.5; N, 35.2. $C_{10}H_9N_5$ requires C, 60.3; H, 4.55; N, 35.2%); λ_{max} (MeOH)/nm 207 (log ε 2.55), 265 (3.17); v_{max} /cm⁻¹ 3447m. 3330m (NH₂), 3250m, 3210m (NH), 2918w (Ph CH), 2851w (Ph CH), 2209s (C≡N), 1647s, 1636s, 1596s, 1517s, 1463m, 1448m, 1437m, 1333w, 1307w, 1265w, 1242w, 1074m, 1014w, 1008w, 926w, 900w, 878w, 797m, 727s; $\delta_{\rm H}(300 \text{ MHz}; \text{DMSO-d}_6)$ 12.18 (1H, s, NH), 7.08 (1H, t, J 7.6, Ph CH), 6.97 (1H, s, Ph CH), 6.91 (1H, d, J 7.5, Ph CH), 6.59 (1H, d, J 7.5, Ph CH), 6.11 $(2H, s, NH_2)$, 5.22 $(2H, s, C_6H_4 NH_2)$; $\delta_C(75MHz; DMSO-d_6)$ 148.8 (s), 131.7 (s), 129.1 (d), 128.7 (d), 128.6 (d), 116.1 (d), 114.5 (s), 113.4 (s), 111.0 (s), 71.0 (s); m/z (EI) 199 (M⁺, 100%), 170 (19), 155 (10), 143 (14), 116 (9), 99 (6), 89 (7), 77 ($C_6H_5^+$, 4), 63 (6), 57 (5).

3-Chloro-5-(2,6-dimethylphenyl)isothiazole-4-carbonitrile 112

A stirred mixture of 3,5-dichloroisothiazole-4-carbonitrile **11** (100 mg, 0.56 mmol), 2,6-dimethylphenylboronic acid (226 mg, 1.51 mmol), KF (179 mg, 3.07 mmol), Pd(OAc)₂ (6 mg, 5 mol%) and 18-crown-6 (74 mg, 0.28 mmol, 0.5 equiv.) in dry and degassed DMF (2 mL) under an argon atmosphere, was heated to *ca*. 110 °C, until no starting material remained (TLC). The mixture was allowed to cool to *ca*. 20 °C, diluted with DCM and washed with H₂O. The organic layer was separated, dried and adsorbed onto silica. Chromatography (Hexane/DCM, 1:1) gave the *title compound* **112** (42 mg, 30%) as colorless needles, mp 73-74 °C (from cyclohexane); (found: C, 58.2; H, 3.5; N, 11.3. C₁₂H₉ClN₂S requires C, 58.0; H, 3.6; N, 11.3%); λ_{max} (DCM)/nm 228 (log ε 2.71), 268 (2.59), 298 (2.46); v_{max} /cm⁻¹ 2235w, 1514w, 1507w, 1463w, 1448w, 1420w, 1388w, 1381w, 1344m, 1309w, 1226w, 1169w, 1104w, 1043w, 833m, 811w, 779s, 737w, 723w, 705w; $\delta_{\rm H}$ (300 MHz; CDCl₃) 7.35-7.30 (1H,

m, Ph CH), 7.2-7.18 (2H, m, Ph CH), 2.18 (6H, s, CH₃); $\delta_{\rm C}$ (75 MHz; CDCl₃) 176.9 (s), 150.5 (s), 136.1 (s), 130.9 (d), 128.2 (d), 125.7 (s), 110.8 (s), 109.4 (s), 20.2 (CH₃); m/z (EI) 250 (M⁺+2, 27%), 248 (M⁺, 71), 233 (4), 213 (M⁺-Cl, 100), 206 (6), 186 (36), 169 (10), 159 (9), 153 (12), 147 (7), 140 (17), 127 (16), 115 (20), 103 (12), 93 (27), 77 (C₆H₅⁺, 50), 63 (31), 51 (35).

3-Amino-5-(2,6-dimethylphenyl)-1H-isothiazole-4-carbonitrile 130

A mixture of 3-chloro-5-(2,6-dimethylphenyl)isothiazole-4-carbonitrile **112** (61 mg, 0.23 mmol) and anhydrous hydrazine (2 mL), protected with a CaCl₂ drying tube, was stirred at *ca*. 20 °C until no starting material remained (TLC). The reaction mixture was poured onto crushed ice and extracted (EtOAc). The organic extracts were combined, dried and adsorbed onto silica. Chromatography (Hexane/EtOAc, 7:3) gave the *title compound* **130** (39 mg, 70%) as pale yellow crystals, mp 145 °C (from EtOH/H₂O); (found: C, 62.9; H, 4.8; N, 18.4. C₁₂H₁₁N₃S requires C, 62.9; H, 4.8; N, 18.3%); λ_{max} (*t*-BuOMe)/nm 206 (log ε 3.99), 305 (3.92); v_{max} /cm⁻¹ 3408m and 3320w (NH₂), 3215w (NH), 2920w (CH₃), 2230m (C≡N), 1641m, 1551s, 1486m, 1464w, 1429w, 1396w, 1382w, 1313w, 1261w, 1227w, 1165w, 1117w, 1096w, 1037w, 964w, 892w, 843m, 776s, 743m, 725m; δ_{H} (300 MHz; DMSO-d₆) 7.35-7.30 (1H, m, Ph CH-4), 7.24-7.21 (2H, m, Ph CH-3 & 5), 6.96 (2H, br s, NH₂), 2.13 (6H, s, *CH₃*); δ_{C} (75 MHz; DMSO-d₆) 173.7 (s), 164.9 (s), 136.15 (s), 129.95 (d), 127.8 (d), 127.3 (s), 112.7 (s), 96.5 (s), 19.6 (*C*H₃); *m*/z (EI) 229 (M⁺, 100%), 214 (8), 211 (10), 197 (6), 186 (18), 172 (8), 160 (9), 140 (8), 127 (9), 115 (10), 77 (C₆H₅⁺, 8), 63 (5).

3-Chloro-5-(N-morpholino)isothiazole-4-carbonitrile 113

In a stirred mixture of 3,5-dichloroisothiazole-4-carbonitrile **11** (0.5 g, 2.8 mmol) in EtOH (50 mL) at *ca*. 20 °C, protected with a CaCl₂ drying tube, morpholine (0.49 g, 5.60 mmol) was added and the reaction mixture stirred at this temperature until no starting material remained (TLC). The precipitate which formed was collected by filtration to afford the *title compound* **113** (577 mg, 90%) as colorless needles, mp 129-129.5 °C (from cyclohexane); λ_{max} (DCM)/nm 229 (log ε 2.0), 280 (1.9); ν_{max} /cm⁻¹ 2978w, 2914w, 2870w, 2210m (C=N), 1558s, 1537s, 1506w, 1483s, 1466w, 1441m, 1387w, 1354w, 1341w, 1308m, 1294s, 1275m, 1250w, 1117s, 1065w, 1057w, 982m, 951s, 903w, 800m, 789m; δ_{H} (300 MHz; CDCl₃) 3.87-3.84 (4H, t, *J* 5.1, CH₂O), 3.60-3.57 (4H, t, J 4.9, CH₂N); δ_{C} (75 MHz; CDCl₃) 179.4 (s), 150.3

(s), 113.9 (s), 85.8 (s), 65.5 (*C*H₂O), 49.5 (*C*H₂N); *m/z* (EI) 231 (M⁺+2, 38%), 229 (M⁺, 100), 214 (10), 194 (6), 171 (85), 164 (12), 144 (25), 109 (84), 82 (16), 57 (34).

3-Amino-5-(N-morpholino)-1H-pyrazole-4-carbonitrile 131

Similar treatment of 3-chloro-5-(*N*-morpholino)isothiazole-4-carbonitrile **113** (53 mg, 0.23 mmol) with anhydrous hydrazine (2 mL) gave the title compound **131** as colorless needles, mp 98.5-99.5 °C (from EtOH); (found C, 49.7; H, 5.8; N, 36.3. C₈H₁₁N₅O requires C, 49.7; H, 5.7; N, 36.3%); $\lambda_{max}(t$ -BuOMe)/nm 210 (log ε 3.08), 232 inf (2.72), 259 inf (2.10); v_{max}/cm^{-1} 3381m, 3337w, 3275w, 3219w, 3177m, 3024w, 2951w, 2876w and 2832w (CH₂), 2207s (C=N), 1668s, 1624s, 1607s, 1541s, 1520m, 1493s, 1445m, 1369m, 1335w, 1317w, 1310w, 1288w, 1269w, 1254m, 1186w, 1138w, 1115s, 1074w, 1047w, 1026m, 999w, 912s, 853w, 777w, 731m; $\delta_{H}(300 \text{ MHz}; \text{DMSO-d}_6)$; 11.07 (1H, s, NH), 6.12 (2H, s, NH₂), 3.66 (4H, br s, CH₂N), 3.12 (4H, br s, CH₂O); $\delta_{C}(75 \text{ MHz}; \text{DMSO-d}_6)$ 168.6 (s), 154.2 (s), 116.35 (s), 65.5 (CH₂O), 62.0 (s), 47.9 (CH₂N); m/z (EI) 193 (M⁺, 73%), 178 (26), 162 (11), 149 (5), 135 (100), 122 (3), 108 (28), 92 (8), 80 (16), 79 (18), 66 (27), 57 (9).

3,5-Diamino-1*H*-pyrazole-4-carbonitrile 132

A mixture of 5-amino-3-chloroisothiazole-4-carbonitrile **20** (37 mg, 0.23 mmol) and anhydrous hydrazine (2 mL) was stirred at *ca*. 20 °C for 5 min until no starting material remained (TLC). The reaction mixture was poured onto crushed ice and the aqueous mixture was then evaporated. The residue obtained was passed through a short pad (2 cm) of silica that was then washed well with *t*-BuOMe. Removal of the volatiles gave the title compound **132** (24 mg, 84%) as colorless needles, mp 170-171 °C, (lit.,³³¹ 169-170 °C) (from EtOH); $\lambda_{max}(t$ -BuOMe)/nm 276 (log ε 3.41); v_{max} /cm⁻¹ 3236w, 3212w and 3050w (NH), 1683m, 1666s, 1648m, 1631w, 1544s, 1437w, 1367m, 1289m, 1253s, 1117m, 1049m, 984w; $\delta_{H}(300 \text{ MHz};$ DMSO-d₆) 8.94 (1H, s, NH), 4.13 (2H, s, NH₂); $\delta_{C}(75 \text{ MHz}; \text{DMSO-d}_{6})$ 175.2 (s), 169.5 (s), 168.9 (s), (1 peak missing); *m*/*z* (EI) 123 (M⁺, 12%), 97 (M⁺-CN, 11), 83 (11), 74 (9), 69 (14), 57 (30), 55 (21).

3-Amino-1*H*-pyrazole-4-carbonitrile 133

A mixture of 3-chloro-5-hydrazinoisothiazole-4-carbonitrile **114** (40 mg, 0.23 mmol) in anhydrous hydrazine (2 mL), was stirred at *ca*. 110 °C until no starting material remained (TLC). The reaction mixture was allowed to cool to *ca*. 20 °C, poured onto crushed ice and extracted (EtOAc). The organic extracts were combined, dried and adsorbed onto silica. Chromatography (Hexane/EtOAc, 1:1) gave 3,5-diamino-1*H*-pyrazole-4-carbonitrile **132** (25 mg, 86%) as colorless needles, mp 170-171 °C, (lit.,³³¹ 169-170 °C) (from EtOH), identical to that described above. Further elution (EtOAc, 100%), gave 3-amino-1*H*-pyrazole-4-carbonitrile **133** (3 mg, 13%) as a colorless powder, mp 173-174 °C (lit.,³³² 172 °C); $\delta_{\rm H}(300 \text{ MHz}; \text{DMSO-d}_6)$ 12.05 (1H, s, N*H*), 7.64 (2H, br & w, N*H*₂), 6.30 (1H, s, *CH*), identical to an authentic sample.

3-Amino-5-(N-phenylamino)-1H-pyrazole-4-carbonitrile 134

A mixture of 3-chloro-5-(*N*-phenylamino)isothiazole-4-carbonitrile **115** (54 mg, 0.23 mmol) and anhydrous hydrazine (2 mL), was stirred at *ca*. 110 °C until no starting material remained (TLC). The reaction mixture was allowed to cool to *ca*. 20 °C and was poured onto crushed ice. The aqueous mixture was then evaporated and the residue obtained was passed through a short pad (2 cm) of silica that was then washed well with *t*-BuOMe. Removal of the volatiles gave the title compound **134** (41 mg, 91%) as pink plates, mp 195-196 °C (lit.,³³³ 205 °C) (EtOH/cyclohexane); $\lambda_{max}(t$ -BuOMe)/nm 206 (log ε 3.54), 222 inf (3.43), 263 (3.49), 367 (1.73); ν_{max}/cm^{-1} 3463w, 3374w and 3304w (NH₂), 3202w, 3142w (Ph CH), 2214m (C≡N), 1624m, 1605m, 1582m, 1566m, 1547s, 1499m, 1483m, 1450w, 1395w, 1306w, 1246m, 1178w, 1130w, 1069w, 1051w, 1028w, 995w, 897w, 856w, 839w, 818w, 752m; $\partial_{H}(300 \text{ MHz}; \text{DMSO-d}_6)$ 11.14 (1H, br s, N*H*), 8.31 (1H, br s, N*H*Ph), 7.44 (2H, app d, *J* 5.7, Ph *H*-2 & 6), 7.16 (2H, app t, *J* 7.2, Ph *H*-3 & 5), 6.75 (1H, app t, *J* 7.2, Ph *H*-4), 6.25 (2H, br s, N*H*₂); $\delta_{C}(75 \text{ MHz}; \text{DMSO-d}_6)$ 152.85 (s, br & w), 150.8 (s, br & w), 142.6 (s), 128.4 (d), 119.0 (d), 116.0 (d), 115.2 (s), 63.1 (s, br & w); m/z (EI) 199 (M⁺, 56%), 170 (11), 169 (12), 144 (16), 129 (4), 117 (6), 104 (4), 98 (6), 92 (C₆H₆N⁺, 4), 77 (C₆H₅⁺, 23), 67 (7), 66 (9), 51 (17).

5-(N-Benzylamino)-3-chloroisothiazole-4-carbonitrile 116

To a stirred mixture of 3,5-dichloroisothiazole-4-carbonitrile **11** (500 mg, 2.80 mmol) in EtOH (20 mL) at *ca.* 0 °C, protected with a CaCl₂ drying tube, benzylamine (612 μ L, 5.60 mmol) was added. The reaction mixture was allowed to warm to *ca.* 20 °C and stirred for 24 h until 168

no starting material remained (TLC). The precipitate which formed was collected by filtration to afford the *title compound* **116** (627 mg, 90%) as colorless needles, mp 159.5-161.5 °C (from cyclohexane); $\lambda_{max}(t$ -BuOMe)/nm 228 (log ε 2.93), 269 (3.08); v_{max}/cm^{-1} 3245m (NH), 3123w, 3008w, 2862w, 2225m (C=N), 1582s, 1479s, 1454m, 1363m, 1351m, 1339w, 1296m, 1224w, 1072w, 1026s, 991w, 958w, 923w, 858w, 828w, 781m, 756s, 701s; $\delta_{H}(300 \text{ MHz}; \text{ CDCl}_3)$ 7.44-7.32 (5H, m, Ph *H*), 6.84 (1H, br s, N*H*), 4.39 (2H, d, *J* 5.4, C*H*₂); $\delta_{C}(75 \text{ MHz}; \text{ CDCl}_3)$ 179.4 (s), 148.2 (s), 134.0 (s), 129.1 (d), 128.8 (d), 128.0 (d), 112.6 (s), 85.95 (s), 51.3 (*C*H₂); m/z (EI) 251 (M⁺+2, 13%), 249 (M⁺, 34), 91 (PhCH₂⁺, 100), 77 (C₆H₅⁺, 10), 65 (53), 51 (12).

3-Amino-5-(N-benzylamino)-1H-pyrazole-4-carbonitrile 135

Similar treatment of 5-(*N*-benzylamino)-3-chloroisothiazole-4-carbonitrile **116** (57 mg, 0.23 mmol) with anhydrous hydrazine (2 mL) gave the title compound **135** (45 mg, 92%) as a colorless powder, mp 142-143 °C (lit.,³³⁰ 142 °C) (from EtOH); $\lambda_{max}(t$ -BuOMe)/nm 236 (log ε 4.50), 250 inf (4.34), 294 inf (3.95), 336 inf (3.61); v_{max}/cm^{-1} 3395w, 3335w, 3248w (NH), 3175w (Ar CH), 3129w (Ar CH), 2955w (Ar CH), 2922m (Ar CH), 2853w, 2205s (C=N), 1612s, 1595m, 1560m, 1531m, 1499m, 1452m, 1416w, 1368w, 1348m, 1304w, 1248w, 1213w, 1142w, 1109w, 1080w, 1040w, 1028w, 984w, 804w, 754m, 721m; $\delta_{H}(300 \text{ MHz}; \text{DMSO-d}_6)$ 10.68 (1H, s, N*H*), 7.28-7.19 (5H, m, PhC*H*), 6.30 (1H, s, N*H*), 5.73 (2H, s, N*H*₂), 4.24 (2H, s, C*H*₂); $\delta_{C}(75 \text{ MHz}; \text{DMSO-d}_6)$ 155.7 (s), 154.7 (s), 141.3 (s), 128.85 (d), 128.1 (d), 127.3 (d), 116.9 (s), 55.7 (s), 46.7 (CH₂); *m*/z (EI) 213 (M⁺, 6%), 149 (4), 123 (4), 106 (8), 98 (8), 91 (PhCH₂⁺, 71), 83 (8), 77 (C₆H₅⁺, 9), 65 (15), 57 (22).

3-Amino-5-methoxy-1H-pyrazole-4-carbonitrile 136

A mixture of 3-amino-5-methoxyisothiazole-4-carbonitrile **117** (45 mg, 0.23 mmol) and anhydrous hydrazine (2 mL) was stirred at *ca*. 20 °C until no starting material remained (TLC) and then poured onto crushed ice and extracted (EtOAc). The organic extracts were combined, dried and adsorbed onto silica. Chromatography (hexane/EtOAc, 1:1) gave 3-chloro-5hydrazinoisothiazole-4-carbonitrile **114** (12 mg, 30%) as colorless needles, mp 151-152 °C (lit.,³² 150 °C) (from cyclohexane), identical to an authentic sample. Further elution (EtOAc, 100%) gave the title compound **136** (32 mg, 65%) as colorless needles, mp 173-174 °C, (lit.,³³⁴ 160-161 °C) (from pentane-EtOH); $\lambda_{max}(t$ -BuOMe)/nm 221 (log ε 2.72); v_{max}/cm^{-1} 3414w and 3337w (NH₂), 3225w, 3115w, 3105w, 3024w, 2992w, 2951w, 2895w and 2812w 169 (CH₃), 2210s (C=N), 1634m, 1601w, 1568m, 1516s, 1458w, 1416m, 1368w, 1275w, 1196w, 1136w, 1105m, 1014w, 978w, 799m, 719m; $\delta_{\rm H}(300 \text{ MHz}; \text{DMSO-d}_6)$ 11.06 (1H, br s, N*H*), 6.37 (2H, br s, N*H*₂), 3.75 (3H, s, C*H*₃O); $\delta_{\rm C}(75 \text{ MHz}; \text{DMSO-d}_6)$ 162.7 (s), 154.1 (s), 115.4 (s), 60.7 (s), 56.0 (*C*H₃O); *m*/*z* (EI) 138 (M⁺, 100%), 137 (M⁺-1, 41), 123 (M⁺-CH₃, 18), 109 (20), 93 (12), 81 (12), 67 (43), 66 (38).

3-Chloro-5-hydrazinylisothiazole-4-carbonitrile 114 (via 5-phenoxyisothiazole 118)

A mixture of 3-chloro-5-phenoxyisothiazole-4-carbonitrile **118** (54 mg, 0.23 mmol) and anhydrous hydrazine (2 mL) was stirred at *ca*. 20 °C until no starting material remained (TLC) and then poured onto crushed ice and extracted (DCM). The organic extracts were combined and evaporated to afford the title compound **114** (34 mg, 85%) as colorless needles, mp 151-152 °C (lit.,³² 150 °C) (from cyclohexane), identical to that described above.

3-Chloro-5-hydrazinylisothiazole-4-carbonitrile 114 (via 5-thiophenoxyisothiazole 119)

A mixture of 3-chloro-5-phenoxyisothiazole-4-carbonitrile **119** (58 mg, 0.23 mmol) and anhydrous hydrazine (2 mL) was stirred at *ca*. 20 °C until no starting material remained (TLC) and then poured onto crushed ice and extracted (DCM). The organic extracts were combined and evaporated to afford the title compound **114** (36 mg, 90%) as colorless needles, mp 151-152 °C (lit., 32 150 °C) (from cyclohexane), identical to that described above.

3-Chloro-5-hydrazinylisothiazole-4-carbonitrile 114 (via 3,5-dichloroisothiazole 11)

A mixture of 3,5-dichloroisothiazole-4-carbonitrile **11** (41 mg, 0.23 mmol) and anhydrous hydrazine (2 mL) was stirred at *ca*. 20 °C until no starting material remained (TLC) and then poured onto crushed ice and extracted (DCM). The organic extracts were combined and evaporated to afford the title compound **114** (40 mg, 100%) as colorless needles, mp 151-152 °C (lit.,³² 150 °C) (from cyclohexane), identical to that described above.

3-Amino-5-phenyl-1*H*-pyrazole 141

A mixture of 3-chloro-5-phenylisothiazole **137** (45 mg, 0.23 mmol) and anhydrous hydrazine (2 mL) was stirred at *ca*. 20 °C until no starting material remained (TLC). The reaction mixture was then poured onto crushed ice and extracted (EtOAc). The organic extracts were combined, dried and adsorbed onto silica. Chromatography (hexane/EtOAc, 7:3) gave the title compound **141** (26 mg, 70%) as colorless needles, mp 124-126 °C (lit.,³³⁵ 125 °C) (from 170

EtOH); $\lambda_{max}(t$ -BuOMe)/nm 206 (log ε 4.13) 222 inf (3.98), 254 inf (3.74); v_{max}/cm^{-1} 3327w, 3219m (NH), 3042w (NH₂), 2938w (Ph CH), 1697m, 1649s, 1593s, 1562s, 1501s, 1435w, 1366m, 1281m, 1265m, 1113w, 1016m, 945w, 922w; $\delta_{H}(300 \text{ MHz}; \text{ DMSO-d}_{6})$ 2 peaks missing, 7.64-7.26 (3H, m, Ph CH), 5.77 (1H, s); $\delta_{C}(75 \text{ MHz}; \text{ DMSO-d}_{6})$ 153.0 (s), 145.4 (s), 132.0 (s), 128.5 (d), 127.2 (d), 124.6 (d), 87.2 (s); m/z (EI) 159 (M⁺, 17%), 130 (5), 116 (5), 103 (3), 77 (C₆H₅⁺, 6), 74 (21), 58 (2).

Reaction of 4-bromo-3-chloro-5-phenylisothiazole 138 with anhydrous hydrazine (see Table 11)

A mixture of 4-bromo-3-chloro-5-phenylisothiazole 138 (63 mg, 0.23 mmol) and anhydrous hydrazine (2 mL) was heated to *ca*. 110 °C until no starting material remained (TLC). The reaction mixture was allowed to cool to ca. 20 °C, poured onto crushed ice and extracted (EtOAc). The organic extracts were combined, dried and adsorbed onto silica. Chromatography (Hexane/EtOAc, 9:1), gave 3-chloro-5-phenylisothiazole 137 (9 mg, 20%) as colorless needles, mp 50-51 °C (lit.,³⁷ 50-51 °C) (from pentane), identical to an authentic sample. Further elution (Hexane/EtOAc, 9:1) gave the 3-amino-4-bromo-5-phenylisothiazole 142 (32 mg, 55%) as pale yellow plates, mp 123-124 $^{\circ}$ C (lit., ³³⁶ 126 $^{\circ}$ C) (from cyclohexane); $\lambda_{\rm max}$ (DCM)/nm 265 (log ε 4.33); $v_{\rm max}$ /cm⁻¹ 3446w (NH₂), 3286w, 3186w, 3171w, 3051w (Ph CH), 1623m, 1549w, 1498m, 1464w, 1444w, 1416m, 1333w, 1312w, 1080m, 1029w, 942w, 912w, 844s, 822w, 750s; $\delta_{\rm H}$ (300 MHz; CDCl₃) 7.64-7.60 (2H, m, Ph CH), 7.51-7.46 (3H, m, Ph CH), 4.37 (2H, br s, NH₂); $\delta_C(75 \text{ MHz}; \text{CDCl}_3)$ 162.1 (s), 160.6 (s), 130.4 (s), 130.4 (d), 129.4 (d), 128.6 (d), 94.6 (s); m/z (EI) 256 (M⁺+2, 100%), 254 (M⁺, 99), 208 (5), 175 (M⁺-Br, 6), 148 (8), 133 (31), 128 (39), 121 (13), 104 (5), 101 (7), 89 (28), 77 (C₆H₅⁺, 16), 63 (9), 51 (19). Further elution (hexane-EtOAc, 9:1) gave 4-bromo-3-hydrazinyl-5-phenylisothiazole 143 (10 mg, 16%) as colorless needles, mp 135.5-137.5 °C (from cyclohexane); (found C, 40.1; H, 2.9; N, 15.6. C₉H₈BrN₃S requires C, 40.0; H, 3.0; N, 15.5%); λ_{max} (DCM)/nm 263.3 (log ε 2.76); v_{max}/cm⁻¹ 3300m (NH), 3242m, 3205w, 3058w and 3026w (Ph CH), 1622w, 1559s, 1516s, 1447w, 1343m, 1168w, 1148w, 1080m, 1030m, 974w, 937w, 908w, 858m, 831w, 813w, 743s; δ_H(300 MHz; DMSO-d₆) 7.84 (1H, br s, NH), 7.65-7.58 (2H, m, Ph H), 7.58-7.50 (3H, m, Ph H), 4.72 (2H, br s, NH₂); $\delta_{\rm C}$ (75 MHz; DMSO-d₆) 164.5 (s), 159.0 (s), 130.0 (d), 129.6 (s), 129.2 (d), 127.9 (d), 92.5 (s); m/z (EI) 271 (M⁺+2, 100%), 269 (M⁺, 90), 242 (9), 240 (9), 208 (16), 206 (M^+ -H₃N₂S, 16), 173 (6), 161 (24), 148 (8), 133 (19), 128 (41), 127 171

(55), 121 (28), 115 (7), 102 (8), 101 (10), 100 (10), 89 (25), 77 ($C_6H_5^+$, 28), 63 (10). Further elution (EtOAc, 100%), gave 3-amino-5-phenyl-1*H*-pyrazole **141** (2.5 mg, 6%) as colorless needles, mp 124-126 °C (lit., ³³⁵ 125 °C) (from EtOH) identical to that described above.

Stability of 4-bromo-3-hydrazinyl-5-phenylisothiazole 143 (Table 12)

A mixture of 4-bromo-3-hydrazinyl-5-phenylisothiazole 143 and degassed DCM (1 mL) was stirred at *ca*. 20 °C under an argon atmosphere. After 3 d the reaction mixture was adsorbed Chromatography (Hexane/EtOAc, 9:1) gave 3-amino-4-bromo-5onto silica. phenylisothiazole **142** (11 mg, 56%) as pale yellow plates, mp 123-124 °C (lit., ³³⁶ 126 °C) (from cyclohexane) identical to that described above. Further elution (Hexane/EtOAc, 9:1) gave 3-amino-5-phenylisothiazole 144 (5.6 mg, 43%) as colorless needles, mp 190-192 °C (lit., ³³⁶ 194 °C) (from cyclohexane) λ_{max} (DCM)/nm 264 (log ε 4.41); v_{max} /cm⁻¹ 3300w. 3240w. 3206w (NH₂), 3059w, 3024w (Ph CH), 1701w, 1622m, 1558s, 1518s, 1497m, 1462w, 1441w, 1422w, 1395w, 1342w, 1167w, 1080m, 1030w, 974w, 907w, 858m, 833w, 818w, 750s, 743s, 729w; δ_H(300 MHz; CDCl₃) 7.55-7.52 (2H, m, Ph CH), 7.42-7.40 (3H, m, Ph CH), 6.73 (1H, s, isothiazole H-4), 4.66 (2H, s, NH₂); $\delta_{\rm C}(75 \text{ MHz}; \text{CDCl}_3)$ 167.2 (s), 165.1 (s), 131.1 (s), 130.3 (s), 129.6 (d), 126.8 (d), 108.9 (s); *m/z* (EI) 176 (M⁺, 100%), 159 (2), 148 (2), 134 (5), 128 (47), 121 (5), 102 (10), 89 (10), 77 ($C_6H_5^+$, 12), 74 (16), 63 (5), 51 (8). Further elution (EtOAc, 100%) gave the starting 4-bromo-3-hydrazinyl-5-phenylisothiazole 143 identical to an authentic sample. Similar procedure was followed using an oxygen atmosphere.

Reaction of 4-bromo-3-hydrazinyl-5-phenylisothiazole 143 with anhydrous hydrazine (see Table 13)

A mixture of 4-bromo-3-hydrazinyl-5-phenylisothiazole **143** and anhydrous hydrazine (2 mL) was heated to *ca*. 110 °C until no starting material remained (TLC). The reaction mixture was poured onto crushed ice and extracted (EtOAc). The organic extracts were combined, dried and adsorbed onto silica. Chromatography (Hexane/EtOAc, 1:1) gave 3-amino-5-phenylisothiazole **144** (16 mg, 39%) as colorless needles, mp 190-192 °C (lit.,³³⁶ 194 °C) (from cyclohexane), identical to that described above. Further elution (EtOAc, 100%) gave 3-amino-5-phenyl-1*H*-pyrazole **141** (18 mg, 50%) as colorless needles, mp 124-126 °C (lit.,³³⁵ 125 °C) (from EtOH) identical to that described above.

Reaction of 3-chloro-4,5-diphenylisothiazole 139 with anhydrous hydrazine (see Table 14)

A stirred mixture of 3-chloro-4,5-diphenylisothiazole 139 (50 mg, 0.185 mmol) and anhydrous hydrazine (2 mL) in a sealed tube, was introduced into a preheated Wood's metal bath at 150 °C and held at this temperature until no starting material remained (TLC). The mixture was allowed to cool to ca. 20 °C and poured onto crushed ice and extracted (EtOAc). The organic layer separated, dried and adsorbed onto silica. Chromatography (Hexane/EtOAc, 9:1) gave 3-amino-4,5-diphenylisothiazole 145 (18 mg, 39%) as colorless needles, mp 130-131 °C. (lit.,³⁷ 130-131 °C) (from cyclohexane), identical to an authentic sample. Further elution (Hexane/EtOAc 1:1) gave 3-hydrazinyl-4,5-diphenylisothiazole 146 as colorless needles, mp 124.5-125.5 °C (from cyclohexane). (found C, 67.45; H, 5.0; N, 15.75; C₁₅H₁₃N₃S requires: C, 67.4; H, 4.9; N, 15.7%); $\lambda_{max}(DCM)/nm 230 (\log \varepsilon 3.32), 265 (3.14); v_{max}/cm^{-1}$ 3337w, 3294w, 3142w, 1600w, 1576w, 1557w, 1542w, 1495m, 1464w, 1438w, 1357w, 1272w, 1156w, 1080w, 1057w, 986w, 975w, 968w, 874w, 772m, 54s, 735m; $\delta_{\rm H}(300 \text{ MHz})$; DMSO-d₆) 7.39-6.98 (10H, m, Ph CH), 6.98 (1H, s, NH), 4.77 (2H, s, NH₂); $\delta_{\rm C}$ (75 MHz; DMSO-d₆) (1 peak missing) 167.0 (s), 161.3 (s), 132.9 (s), 131.6 (d), 130.8 (d), 129.9 (d), 129.8 (d), 129.7 (d), 128.8 (d), 123.0 (s); m/z (EI) 267 (M⁺, 100%), 249 (55), 236 (9), 218 (18), 204 (10), 190 (9), 178 (17), 165 (15), 152 (7), 121 (26), 104 (5), 89 (9), 77 ($C_6H_5^+$, 27), 63 (6), 51 (16). Further elution (EtOAc, 100%) gave 3-amino-4,5-diphenyl-1H-pyrazole 147 as colorless needles, mp 144-145 °C (lit., ³³⁷ 147-148 °C) (from EtOH); λ_{max} (*t*-BuOMe)/nm 232 (log ε 3.83), 242 inf (3.81), 257 inf (3.79); v_{max}/cm^{-1} 3360w, 3345w, 3252w, 3163w (NH₂), 2903w (Ph CH), 1603w, 1587w, 1568w, 1533w, 1520w, 1501m, 1476w, 1441w, 1425w, 1323w, 1312w, 1244w, 1180w, 1098w, 1072w, 1016m, 964w, 914w, 847w, 835w, 781m, 772m, 746m, 731m; $\delta_{\rm H}$ (300 MHz; DMSO-d₆) 11.93 (1H, br s, NH), 7.35-7.13 (10H, m, Ph CH), 4.55 (2H, br s, NH₂); $\delta_{\rm C}$ (75 MHz; DMSO-d₆) (3 peaks missing) 133.6 (s), 129.1 (d), 128.4 (d), 128.2 (d), 127.35 (d), 127.1 (d), 125.6 (d), 103.4 s, (w & br); m/z (EI) 235 (M⁺, 100%), 218 (4), 206 (5), 190 (9), 178 (10), 165 (14), 152 (6), 139 (3), 128 (6), 117 (7), 104 $(14), 89 (11), 77 (C_6H_5^+, 24), 63 (10), 51 (21).$

3,5-Diphenylisothiazole 148

A stirred mixture of 4-bromo-3,5-diphenylisothiazole **149** (73 mg, 0.23 mmol) and anhydrous hydrazine (2 mL) in a sealed tube, was introduced into a preheated Wood's metal bath at

200 °C and was held at this temperature until no starting material remained (TLC). The reaction mixture was allowed to cool to *ca*. 20 °C and poured onto crushed ice to afford the title compound **148** as a white precipitate, mp 80-81 °C (lit.,³⁷ 80-81 °C) (from pentane), identical to an authentic sample.

4-Amino-3,5-diphenylpyrazole 152

A mixture of 4-amino-3,5-diphenylisothiazole **151** (50 mg, 0.2 mmol) and anhydrous hydrazine (2 mL) was stirred at *ca*. 150 °C until no starting material remained (TLC). The reaction mixture was then allowed to cool to *ca*. 20 °C, poured onto crushed ice and extracted (EtOAc). The organic extracts were combined, dried and adsorbed onto silica. Chromatography (Hexane/EtOAc, 1:1) gave the title compound **152** (9.4 mg, 20%, based on recovered starting material) as colorless needles, mp 200-202 °C (lit.,³³⁸ 208 °C) (from EtOH); v_{max} /cm⁻¹ 3229w, 3211w, 3192w, 3055w, 2955w, 2924w, 2853w, 1730w, 1607m, 1587w, 1495m, 1458m, 1439m, 1364w, 1315w, 1294w, 1287w, 1221w, 1177m, 1074m, 1026m, 953s, 914m, 765s; δ_{H} (300 MHz; DMSO-d₆) 12.78 (1H, s, N*H*), 7.76-7.32 (10H, m, Ph C*H*), 4.0 (2H, s, N*H*₂); *m*/*z* (EI) 235 (M⁺, 100%), 220 (8), 132 (17), 117 (6), 104 (81), 77 (50), 51 (19), identical to an authentic sample.

5,5'-Diphenyl-1H,1'H-3,3'-bipyrazole-4,4'-dicarbonitrile 161

A mixture of 5,5'-diphenyl-3,3'-biisothiazole-4,4'-dicarbonitrile **160** (50 mg, 0.14 mmol) and anhydrous hydrazine (2 mL) was stirred at *ca*. 110 °C until no starting material remained (TLC). The reaction mixture was then allowed to cool to *ca*. 20 °C, poured onto crushed ice and extracted (EtOAc). The organic extracts were combined, dried and adsorbed onto silica. Chromatography (Hexane/EtOAc, 7:3) gave the *title compound* **161** (29.5 mg, 65%) as a pale yellow powder, mp > 300 °C (from EtOH); $\lambda_{max}(t$ -BuOMe)/nm 206 (log ε 4.43), 241 (4.32), 263 (4.32); ν_{max}/cm^{-1} 3191m, 3119w, 3026w (Ph CH), 2952w, 2924w, 2237s (C=N), 1636w, 1559w, 1491w, 1475m, 1398w, 1368w, 1300w, 1279w, 1076m, 1039m, 1015m, 956s, 914w, 799m, 765m, 707m; $\delta_{H}(300 \text{ MHz}; \text{DMSO-d}_{6})$ 7.92-7.90 (4H, m, Ph C*H*), 7.66-7.59 (6H, m, Ph C*H*); $\delta_{C}(75 \text{ MHz}; \text{DMSO})$ 149.6 (s), 146.5 (s), 131.4 (d), 130.3 (d), 127.6 (d), 127.3 (s), 115.5 (s), 87.1 (s); *m/z* (EI) 336 (M⁺, 60%), 307 (4), 280 (6), 251 (4), 194 (3), 177 (8), 149 (18), 127 (9), 104 (10), 89 (6), 77 (C₆H₅⁺, 36), 64 (9), 57 (11) (Found: M⁺, 336.1134. C₂₀H₁₂N₆ requires *M*, 336.1123).

Reaction of 3-chloro-5-phenylisothiazole 87 with methylhydrazine

A mixture of 3-chloro-5-phenylisothiazole-4-carbonitrile 87 (50 mg, 0.23 mmol) and methylhydrazine (1 mL) was stirred at ca. 20 °C until no starting material remained (TLC). The reaction mixture was then poured onto crushed ice and extracted (EtOAc). The organic layer was separated, dried and adsorbed onto silica. Chromatography (Hexane/EtOAc, 1:1) gave 3-(1-methylhydrazinyl)-5-phenylisothiazole-4-carbonitrile 165 (22 mg, 42%) as yellow needles, mp 129.5-131 °C (from cyclohexane); (found C, 57.4; H, 4.2; N, 24.3. C₁₁H₁₀N₄S requires C, 57.4; H, 4.4; N, 24.3%); λ_{max} (DCM)/nm 275 (log ε 2.88), 332 (2.19); v_{max} /cm⁻¹ 3324w (NH), 3219w, 3061w (Ph CH), 2975w, 2940w, 2222m (C≡N), 1629m, 1536s, 1502m, 1457w, 1446w, 1430w, 1404m, 1386w, 1337w, 1272m, 1249w, 1195w, 1180w, 1120m, 1080w, 1041m, 1030m, 1001w, 968w, 933m, 915w, 855s, 820m, 755s, 722s; $\delta_{\rm H}(300 \text{ MHz})$; CDCl₃) 7.73-7.70 (2H, m, Ph CH), 7.51-7.49 (3H, m, Ph CH), 4.02 (2H, br s, NH₂), 3.32 (3H, s, CH₃); $\delta_{\rm C}$ (75 MHz; CDCl₃) 176.3 (s), 168.9 (s), 131.1 (d), 129.3 (d), 128.7 (s), 127.5 (d), 115.2 (s), 94.8 (s), 43.0 (CH₃); m/z (EI) 230 (M⁺, 100%), 214 (22), 201 (4), 187 (11), 159 (5), 153 (8), 128 (15), 121 (60), 114 (5), 104 (12), 77 ($C_6H_5^+$, 20). Further elution (EtOAc, 100%) gave 3-amino-1-methyl-5-phenyl-1H-pyrazole-4-carbonitrile 166 (12 mg, 27%), as colorless needles, mp 158-159 °C (lit., 207 158 °C) (from EtOH), found C, 66.7; H, 5.1; N, 28.3. $C_{11}H_{10}N_4$ requires C, 66.65; H, 5.1; N, 28.3 %; λ_{max} (EtOAc)/nm 252 (log ε 2.95); v_{max} /cm⁻¹ 3381m, 3311w (NH₂), 3213w (NH), 3034w (Ph CH), 2946w, 2220m (C=N), 1638m, 1557m, 1533m, 1499m, 1479w, 1448w, 1428w, 1396w, 1314w, 1285w, 1248w, 1153w, 1078w, 1030w, 1002w, 931w, 896w, 854w, 779m, 771m, 741w, 715w, 700s; $\delta_{\rm H}(300 \text{ MHz}; \text{CDCl}_3)$ 7.52-7.43 (5H, m, Ph CH), 4.07 (2H, s, NH₂), 3.68 (3H, s, CH₃); $\delta_{\rm C}$ (75 MHz; CDCl₃) 155.9 (s), 148.0 (s), 130.1 (d), 129.1 (d), 128.8 (d), 126.9 (s), 114.35 (s), 79.1 (s), 37.2 (CH_3); m/z(EI) 198 (M⁺, 100%), 183 (1), 170 (5), 155 (9), 143 (2), 128 (17), 115 (2), 101 (5), 88 (2), 77 $(C_6H_5^+, 15), 63(3), 51(9).$

tert-Butyl 3-(4-cyano-5-phenylisothiazol-3-yl)carbazate 169

A mixture of 3-iodo-5-phenylisothiazole-4-carbonitrile **23** (100 mg, 0.32 mmol), *tert*-butyl carbazate (84 mg, 0.64 mmol), CuI (61 mg, 0.32 mmol), Cs₂CO₃ (125.2 mg, 0.38 mmol), and 1,10-phenanthroline (6 mg, 0.03 mmol) in anhydrous DMF (4 mL) was stirred at 80 °C for 0.5 h. The reaction mixture was allowed to cool to *ca*. 20 °C, diluted with water and extracted with DCM (4 × 25 mL). The organic extracts were combined, adsorbed onto silica and chromatographed (Hexane/DCM, 3:7) to afford the *title compound* **169** (71 mg, 70%) as a colorless solid, mp 129.2-130.2 °C (from cyclohexane); (Found: C, 57.0; H, 5.1; N, 17.7. $C_{15}H_{16}N_4O_2S$ requires C, 56.9; H, 5.1; N, 17.7%); v_{max}/cm^{-1} 3350w, 3239w, 2972w, 2932w, 2216w (C=N), 1722s (C=O), 1526m, 1501m, 1481m, 1456w, 1395w, 1369m, 1358m, 1275m, 1254m, 1219m, 1157s, 1067w, 1049w, 1036w, 1001w, 964w, 935w, 880w, 847m, 797m, 770s, 758w, 725w; $\delta_H(300 \text{ MHz}, \text{CDCI3})$ 7.73-7.70 (2H, m, Ph C*H*), 7.53-7.47 (3H, m, Ph C*H*), 6.83 (1H, s, N*H*), 6.64 (1H, s, N*H*), 1.49 (9H, s, C*H*3); *m*/*z* (EI) 316 (M⁺, 1%), 260 (35), 242 (16), 216 (M⁺ - Boc, 100), 200 (7), 128 (8), 121 (21), 77 (11), 57 (99).

3,3'-Thiobis(5-phenylisothiazole-4-carbonitrile) 171

Similar treatment of 3-iodo-5-phenylisothiazole-4-carbonitrile **23** (100 mg, 0.32 mmol), *tert*butyl carbazate (84 mg, 0.64 mmol), CuI (61 mg, 0.32 mmol), Cs₂CO₃ (125.2 mg, 0.38 mmol), and 1,10-phenanthroline (6 mg, 0.03 mmol) in anhydrous DMF (4 mL) gave the *title compound* **171** (88 mg, 70%) as a colorless solid, mp 244-245 °C (from cyclohexane), found: C, 59.7; H, 2.5; N, 13.9. C₂₀H₁₀N₄S₃ requires C, 59.7; H, 2.5; N, 13.9%; λ_{max} (DCM)/nm 231 (log ε 3.02), 286 (3.22); ν_{max} /cm⁻¹ 3057w (Ar CH), 2228m (C=N) 1512w, 1483s, 1445m, 1377w, 1327m, 1240w, 1194w, 1105w, 1045m, 1024w, 999w, 955w, 916w, 829m, 799w, 756s; δ_{H} (300 MHz, CDCl3) 7.80-7.77 (2H, m, Ph *H*), 7.61-7.52 (3H, m, Ph *H*); δ_{C} (75 MHz, CDCl3) 176.4 (s), 158.7 (s), 132. 1 (d), 129.8 (d), 127.5 (d), 127.48 (s), 112.4 (s), 107.3 (s); *m/z* (EI) 401 (M⁺, 100%), 184 (6), 159 (10), 141 (8), 127 (17), 121 (16), 114 (9), 90 (11), 77 (22), 57 (13), 51 (11).

176

9.5 Compounds related to Chapter 5

3,5-Diphenyl-4*H*-1,2,6-thiadiazin-4-one 172; Typical Suzuki-Miyaura procedure (Table 16)

A stirred mixture of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol), phenylboronic acid (73.2 mg, 0.60 mmol, 2.2 equiv), K₂CO₃ (75.5 mg, 0.546 mmol, 2 equiv) and Pd(Ph₃P)₄ (15.8 mg, 0.0137 mmol, 5 mol%) in dioxane/H₂O (5:3, 0.8 mL) was heated at *ca.* 100 °C until no starting material remained (TLC). The reaction mixture was then allowed to cool to rt, diluted with DCM (10 mL), dried (Na₂SO₄) and adsorbed onto silica. Chromatography (Hexane/DCM, 1:1) gave the *title compound* **172** (65.1 mg, 91%) as yellow needles, mp 119-120 °C (from EtOH), R_f 0.49 (Hexane/DCM, 1:1); (found: C, 67.7; H, 3.8; N, 10.4. C₁₅H₁₀N₂OS requires C, 67.7; H, 3.8; N, 10.5%); λ_{max} (DCM)/nm 237 (log ε 3.06), 248 inf (3.01), 348 (3.28); ν_{max} /cm⁻¹ 3053w, 2924w, 2853w, 1624s, 1614s, 1601w, 1489w, 1443m, 1354m, 1285w, 1269m, 1159w, 1101w, 1076w, 1030w, 1001w, 914w, 845w, 808w, 797w; δ_{H} (500 MHz; CDCl₃) 8.16 (4H, d, *J* 6.5, Ph *H*), 7.52-7.46 (6H, m, Ph *H*); δ_{C} (125 MHz; CDCl₃) 165.3 (s), 160.9 (s), 134.5 (s), 131.1 (d), 128.9 (d), 128.3 (d); *m/z* (EI) 266 (M⁺, 37%), 135 (100), 103 (26), 91 (7), 77 (26), 63 (3), 51 (12).

3,5-Di(o-tolyl)-4H-1,2,6-thiadiazin-4-one 173

Similar treatment of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol) with *o*-tolylboronic acid (81.6 mg, 0.60 mmol) gave the *title compound* **173** (75.4 mg, 94%) as yellow needles, mp 144-145 °C (from cyclohexane), R_f 0.13 (Hexane/DCM, 7:3); (found: C, 69.2; H, 4.7; N, 9.3. $C_{17}H_{14}N_2OS$ requires C, 69.4; H, 4.8; N, 9.5%); $\lambda_{max}(DCM)/nm$ 330 (log ε 3.93); v_{max}/cm^{-1} 3017w, 2988w, 2926w, 1628s, 1616m, 1601w, 1470w, 1452w, 1429w, 1379w, 1341w, 1298w, 1275s, 1260s, 1200w, 1157w, 1117w, 1040w, 997w, 939w, 862w, 851w, 812w; $\delta_H(500 \text{ MHz}; \text{CDCl}_3)$ 7.42 (2H, d, *J* 8.0, Ph *H*), 7.37 (2H, dd, *J* 7.5, 7.5, Ph *H*), 7.29-7.26 (4H, m, Ph *H*), 2.33 (6H, s, CH₃); $\delta_C(125 \text{ MHz}; \text{CDCl}_3)$ 165.8 (s), 163.7 (s), 136.5 (s), 134.6 (s), 130.7 (d), 130.1 (d), 129.0 (d), 125.7 (d), 20.3 (CH₃); m/z (EI) 294 (M⁺, 26%), 169 (12), 149 (100), 116 (55), 89 (17), 77 (4), 69 (5), 63 (5), 51 (4).

3,5-Di(*m*-tolyl)-4*H*-1,2,6-thiadiazin-4-one 174

Similar treatment of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol) with *m*-tolylboronic acid (81.6 mg, 0.60 mmol) gave the *title compound* **174** (73 mg, 91%) as yellow needles, mp 145-147 °C (from cyclohexane), R_f 0.35 (Hexane/DCM, 7:3); (found: C, 69.3; H, 4.7; N, 9.6. C₁₇H₁₄N₂OS requires C, 69.4; H, 4.8; N, 9.5%); λ_{max} (DCM)/nm 244 (log ε 3.13), 351 (3.46); v_{max} /cm⁻¹ 3024w, 2918w, 1632s, 1624s, 1603w, 1576w, 1487w, 1460w, 1416w, 1331s, 1269s, 1186w, 1180w, 1128w, 1096w, 1047w, 997w, 920w, 891w, 880w, 856w, 822w, 804w, 764s; δ_H (500 MHz; CDCl₃) 7.95 (2H, d, *J* 8.0, Ph *H*), 7.36 (2H, dd, *J* 7.8, 7.8, Ph *H*), 7.31 (4H, d, *J* 7.5, Ph *H*), 2.43 (6H, s, CH₃); δ_C (125 MHz; CDCl₃) 165.4 (s), 161.0 (s), 137.9 (s), 134.5 (s), 131.9 (d), 129.4 (d), 128.2 (d), 126.1 (d), 21.5 (CH₃); *m/z* (EI) 294 (M⁺, 73%), 149 (100), 146 (15), 117 (43), 91 (24), 65 (11), 51 (4).

3,5-Di(*p*-tolyl)-4*H*-1,2,6-thiadiazin-4-one 175

Similar treatment of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol) with *p*-tolylboronic acid (81.6 mg, 0.60 mmol) gave the *title compound* **175** (79.5 mg, 99%) as yellow needles, mp 202-204 °C (from cyclohexane), R_f 0.35 (Hexane/DCM, 7:3); (found: C, 69.4; H, 4.8; N, 9.5. C₁₇H₁₄N₂OS requires C, 69.4; H, 4.8; N, 9.5%); λ_{max} (DCM)/nm 201 (log ε 4.80), 358 (4.12); ν_{max} /cm⁻¹ 3037w, 2978w, 1626s, 1607m, 1504w, 1462w, 1400w, 1331s, 1306w, 1256m, 1186m, 1136w, 1125w, 1040w, 1020w, 999w, 885w, 833s, 779s, 743m, 729m; δ_{H} (500 MHz; CDCl₃) 8.11 (2H, d, *J* 8.0, Ph *H*), 7.29 (2H, d, *J* 8.5, Ph *H*), 2.44 (6H, s, CH₃); δ_{C} (125 MHz; CDCl₃) 165.5 (s), 160.4 (s), 141.5 (s), 131.9 (s), 129.0 (d), 128.9 (d), 21.5 (CH₃); m/z (EI) 294 (M⁺, 35%), 149 (100), 146 (6), 117 (24), 91 (17), 65 (5).

3,5-Di(2-methoxyphenyl)-4H-1,2,6-thiadiazin-4-one 176

Similar treatment of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol) with 2-methoxyphenylboronic acid (91.3 mg, 0.60 mmol) gave the *title compound* **176** (77.4 mg, 87%) as yellow needles, mp 128.5-129 °C (from cyclohexane), R_f 0.47 (Hexane/DCM, 1:1); (found: C, 62.4; H, 4.2; N, 8.6. C₁₇H₁₄N₂O₃S requires C, 62.6; H, 4.3; N, 8.6%); λ_{max} (DCM)/nm 322 (log ε 4.02); ν_{max} /cm⁻¹ 2961w, 2938w, 2832w, 1649m, 1595m, 1582w, 1497m, 1481m, 1458m, 1439w, 1429w, 1346w, 1298m, 1267s, 1248w, 1234w, 1184w, 1163w, 1119m, 1045w, 1026s, 1001w, 862w, 808m; δ_H (500 MHz; CDCl₃) 7.45-7.40 (4H, m, Ph *H*), 7.05 (2H, dd, *J* 7.5, 7.5, Ph *H*), 6.99 (2H, d, *J* 8.0, Ph *H*), 3.84 (6H, s, OCH₃); δ_C (125 MHz; CDCl₃) 163.3 (s), 163.3 (s), 157.2 (s), 131.6 (d), 130.1 (d), 125.0 (s), 120.8 (d), 111.5 178

(d), 55.9 (OCH₃); *m*/*z* (EI) 326 (M⁺, 41%), 295 (12), 193 (13), 165 (100), 137 (29), 132 (42), 119 (33), 104 (16), 91 (33), 77 (7), 63 (9).

3,5-Di(3-methoxyphenyl)-4H-1,2,6-thiadiazin-4-one 177

Similar treatment of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol) with 3-methoxyphenylboronic acid (91.3 mg, 0.60 mmol) gave the *title compound* **177** (78.3 mg, 88%) as yellow needles, mp 66-67 °C (from cyclohexane), R_f 0.55 (Hexane/DCM, 7:3); (found: C, 62.6; H, 4.3; N, 8.6. $C_{17}H_{14}N_2O_3S$ requires C, 62.6; H, 4.3; N, 8.6%); $\lambda_{max}(DCM)/nm$ 352 (log ε 3.96); v_{max}/cm^{-1} 2943w, 2832w, 1732m, 1692w, 1626m, 1601m, 1582m, 1489m, 1466w, 1450w, 1429m, 1337m, 1287m, 1275m, 1244s, 1221m, 1200w, 1177m, 1159s, 1128w, 1086w, 1045m, 995w, 943w, 918w, 889w, 860m, 824w, 793w, 760s, 743w, 723m; $\delta_H(500 \text{ MHz}; \text{CDCl}_3)$ 7.77 (2H, d, *J* 8.0, Ph *H*), 7.71 (2H, s, Ph *H*), 7.38 (2H, dd, *J* 8.0, 8.0, Ph *H*), 7.05 (2H, d, *J* 8.0, Ph *H*), 3.89 (6H, s, OCH₃); $\delta_C(125 \text{ MHz}; \text{CDCl}_3)$ 165.3 (s), 160.5 (s), 159.4 (s), 135.7 (s), 129.3 (d), 121.5 (d), 117.5 (d), 113.8 (d), 55.4 (OCH₃); m/z (EI) 326 (M⁺, 52%), 270 (53), 268 (87), 266 (54), 189 (20), 187 (20), 166 (12), 165 (100), 161 (28), 135 (11), 133 (41), 108 (42), 103 (16), 90 (8), 82 (35).

3,5-Di(4-methoxyphenyl)-4H-1,2,6-thiadiazin-4-one 178

Similar treatment of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol) with 4-methoxyphenylboronic acid (91.3 mg, 0.60 mmol) gave the *title compound* **178** (76.5 mg, 86%) as yellow needles, mp 169-171 °C (from cyclohexane), R_f 0.55 (Hexane/DCM, 1:1); (found: C, 62.4; H, 4.1; N, 8.5. $C_{17}H_{14}N_2O_3S$ requires C, 62.6; H, 4.3; N, 8.6%); $\lambda_{max}(DCM)/nm$ 380 (log ε 4.15); v_{max}/cm^{-1} 2963w, 2914w, 2841w, 1620s, 1595s, 1572w, 1503m, 1462w, 1441w, 1410w, 1331w, 1306m, 1265w, 1244s, 1180s, 1138m, 1121w, 1032m, 1011w, 995w, 870w, 841s, 827w, 812m, 781m; $\delta_H(500 \text{ MHz}; \text{CDCl}_3)$ 8.22 (4H, d, *J* 9.0, Ph *H*), 6.97 (4H, d, *J* 8.5, Ph *H*), 3.87 (6H, s, OCH₃); $\delta_C(125 \text{ MHz}; \text{CDCl}_3)$ 165.7 (s), 161.8 (s), 159.4 (s), 130.8 (d), 127.5 (s), 113.6 (d), 55.4 (OCH₃); m/z (EI) 326 (M⁺, 51%), 165 (100), 150 (21), 133 (31), 122 (8), 103 (9), 90 (10), 63 (5).

3,5-Di(2-chlorophenyl)-4H-1,2,6-thiadiazin-4-one 179

Similar treatment of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol) with 2-chlorophenylboronic acid (93.8 mg, 0.60 mmol) gave the *title compound* **179** (73.4 mg, 80%) as yellow needles, mp 110-112 °C (from cyclohexane), R_f 0.10 (Hexane/DCM, 7:3); (found: C, 53.7; H, 2.4; N, 8.4. $C_{15}H_8Cl_2N_2OS$ requires C, 53.8; H, 2.4; N, 8.4%); $\lambda_{max}(DCM)/nm$ 324 (log ε 3.92); ν_{max}/cm^{-1} 3011w, 2926w, 1638s, 1589w, 1503w, 1476w, 1437w, 1425w, 1346w, 1294w, 1273w, 1242w, 1074w, 1055w, 1042w, 999w, 945w, 847w, 802w; $\delta_H(500 \text{ MHz}; \text{CDCl}_3)$ 7.48-7.47 (4H, m, Ph *H*), 7.41 (2H, dd, *J* 7.5, 7.5, Ph *H*), 7.37 (2H, dd, *J* 7.3, 7.3, Ph *H*); $\delta_C(125 \text{ MHz}; \text{CDCl}_3)$ 163.5 (s), 162.5 (s), 133.9 (s), 132.7 (s), 131.3 (d), 130.4 (d), 129.9 (d), 126.8 (d); m/z (EI) 301 (M⁺+2-Cl, 35%), 299 (M⁺-Cl, 100), 171 (32), 169 (85), 139 (15), 137 (39), 134 (19), 111 (8), 102 (26), 90 (4), 75 (19), 57 (5), 50 (8).

3,5-Di(3-chlorophenyl)-4H-1,2,6-thiadiazin-4-one 180

Similar treatment of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol) with 3-chlorophenylboronic acid (93.8 mg, 0.60 mmol) gave the *title compound* **180** (74 mg, 81%) as yellow needles, mp 148-149 °C (from cyclohexane), R_f 0.38 (Hexane/DCM, 7:3); (found: C, 53.8; H, 2.5; N, 8.3. C₁₅H₈Cl₂N₂OS requires C, 53.8; H, 2.4; N, 8.4%); λ_{max} (DCM)/nm 350 (log ε 4.05); v_{max} /cm⁻¹ 3076w, 1624m, 1614m, 1572w, 1493w, 1476w, 1423w, 1414w, 1344w, 1287w, 1258w, 1163w, 1098w, 1082w, 1024w, 999w, 878w, 854w, 822w, 810w, 772s; δ_{H} (500 MHz; CDCl₃) 8.19 (2H, s, Ph *H*), 8.09 (2H, d, *J* 8.0, Ph *H*), 7.48 (2H, d, *J* 8.0, Ph *H*), 7.41 (2H, dd, *J* 8.0, 8.0, Ph *H*) ; δ_{C} (125 MHz; CDCl₃) 164.7 (s), 159.5 (s), 135.7 (s), 134.4 (s), 131.3 (d), 129.5 (d), 129.0 (d), 127.1 (d); m/z (EI) 336 (M⁺+2, 16%), 334 (M⁺, 21), 171 (35), 169 (100), 149 (5), 139 (8), 137 (27), 134 (7), 111 (9), 102 (14), 75 (12), 51 (5).

3,5-Di(4-chlorophenyl)-4*H*-1,2,6-thiadiazin-4-one 181

Similar treatment of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol) with 4-chlorophenylboronic acid (93.8 mg, 0.60 mmol) gave the *title compound* **181** (81.1 mg, 89%) as yellow needles, mp 220-222 °C (from cyclohexane), $R_{\rm f}$ 0.38 (Hexane/DCM, 7:3); (found: C, 53.9; H, 2.4; N, 8.3. C₁₅H₈Cl₂N₂OS requires C, 53.8; H, 2.4; N, 8.4%); $\lambda_{\rm max}$ (DCM)/nm 356 (log ε 4.20); $v_{\rm max}$ /cm⁻¹ 3071w, 2930w, 1618m, 1591m, 1489w, 1474w, 1396w, 1342w, 1271w, 1180w, 1090m, 1015w, 1001w, 829m, 787s; $\delta_{\rm H}$ (500 MHz; CDCl₃) 8.16 (4H, d, *J* 8.5, Ph *H*), 7.44 (4H, d, *J* 8.5, Ph *H*); $\delta_{\rm C}$ (125 MHz; CDCl₃) 165.0 (s), 159.6 (s),

137.6 (s), 132.7 (s), 130.4 (d), 128.6 (d); *m*/*z* (EI) 336 (M⁺+2, 21%), 334 (M⁺, 28), 170 (9), 169 (100), 139 (11), 137 (34), 111 (10), 102 (17), 75 (13).

3,5-Di(3-nitrophenyl)-4H-1,2,6-thiadiazin-4-one 182

Similar treatment of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol) with 3-nitrophenylboronic acid (136.7 mg, 0.82 mmol) gave the *title compound* **182** (62.3 mg, 64%) as yellow needles, mp 176-177 °C (from cyclohexane), R_f 0.53 (Hexane/DCM, 7:3); (found: C, 50.6; H, 2.2; N, 15.8. $C_{15}H_8N_4O_5S$ requires C, 50.6; H, 2.3; N, 15.7%); $\lambda_{max}(DCM)/nm$ 213 (log ε 4.28), 348 (4.10); ν_{max}/cm^{-1} 3094w, 1634m, 1611w, 1510s, 1476w, 1433w, 1343s, 1283m, 1267w, 1090w, 910w, 903w, 878w, 847w, 812w, 797w, 752w, 727s, 694w; $\delta_H(500 \text{ MHz}; \text{CDCl}_3)$ 8.81 (2H, s, Ph *H*), 8.31 (2H, d, *J* 8.0, Ph *H*), 8.09 (2H, d, *J* 7.5, Ph H), 7.45 (2H, dd, *J* 8.0, Rh *H*); $\delta_C(125 \text{ MHz}; \text{CDCl}_3)$ 164.4 (s), 158.9 (s), 148.2 (s), 135.3 (s), 134.8 (d), 129.5 (d), 125.9 (d), 124.2 (d); m/z (EI) 356 (M⁺, 27%), 180 (100), 134 (37), 107 (9), 102 (9), 90 (23), 75 (8), 63 (9), 51 (5).

3,5-Di(thien-3-yl)-4H-1,2,6-thiadiazin-4-one 183

Similar treatment of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol) with 3-thienylboronic acid (76.7 mg, 0.60 mmol) gave the *title compound* **183** (74.4 mg, 98%) as yellow needles, mp 167-169 °C (from cyclohexane), R_f 0.40 (Hexane/DCM, 7:3); (found: C, 47.5; H, 2.1; N, 10.0. C₁₁H₆N₂OS₃ requires C, 47.5; H, 2.2; N, 10.1%); λ_{max} (DCM)/nm 373 (log ε 3.08); v_{max} /cm⁻¹ 3136w, 1628m, 1512m, 1460w, 1422w, 1319m, 1258w, 1196w, 1161m, 1119w, 1080w, 939w, 908w, 899w, 883m, 851w, 843w, 822m, 776s, 729m, 721m, 710m; δ_{H} (500 MHz; CDCl₃) 8.89 (2H, d, *J* 3.0, thienyl *H*-2), 7.84 (2H, d, *J* 5.0, thienyl *H*-4 or 5); δ_{C} (125 MHz; CDCl₃) 163.8 (s), 155.4 (s), 136.3 (s), 131.7 (d), 127.7 (d), 125.1 (d); *m*/*z* (EI) 278 (M⁺, 58%), 141 (100), 109 (30), 97 (7), 83 (5), 64 (5), 45 (21).

3,5-Di(thien-2-yl)-4H-1,2,6-thiadiazin-4-one 184

Similar treatment of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol) with 2-thienylboronic acid (104.8 mg, 0.82 mmol) gave the *title compound* **184** (68.3 mg, 90%) as yellow needles, mp 175-177 °C (from cyclohexane); $R_{\rm f}$ 0.42 (Hexane/DCM, 7:3); (found: C, 47.5; H, 2.1; N, 10.1. C₁₁H₆N₂OS₃ requires C, 47.5; H, 2.2; N, 10.1%); $\lambda_{\rm max}$ (DCM)/nm 261 181

(log ε 4.03), 327 (3.74), 369 inf (4.11), 388 inf (4.30), 406 (4.40), 430 (4.31); $v_{\text{max}}/\text{cm}^{-1}$ 3103w, 1614s, 1574w, 1504m, 1450m, 1410s, 1385s, 1350w, 1263m, 1223m, 1080m, 1045m, 997m, 914w, 874m, 853s, 814m, 787w, 739s, 731s, 716s; $\delta_{\text{H}}(500 \text{ MHz}; \text{CDCl}_3)$ 8.28 (2H, d, J 4.0, thienyl *H*-3), 7.64 (2H, d, *J* 5.0, thienyl *H*-5), 7.19 (2H, dd, *J* 4.5, 4.0, thienyl *H*-4); $\delta_{\text{C}}(125 \text{ MHz}; \text{CDCl}_3)$ 161.3 (s), 154.1 (s), 136.4 (s), 133.2 (d), 132.1 (d), 127.7 (d); m/z (EI) 278 (M⁺, 49%), 141 (100), 114 (6), 109 (36), 97 (8), 83 (6), 71 (11), 64 (7), 58 (14).

3,5-Diphenyl-4H-1,2,6-thiadiazin-4-one 172; Typical Stille procedure (Table 17)

To a stirred mixture of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol) and $(Ph_3P)_2PdCl_2$ (9.6 mg, 0.0137 mmol) in MeCN (2 mL) at *ca*. 20 °C protected with a CaCl₂ drying tube, tributylphenyltin (220 mg, 0.60 mmol) was added. The mixture was then heated to *ca*. 100 °C until no starting material remained (by TLC). The reaction mixture was then cooled to *ca*. 20 °C and adsorbed onto silica. Dry flash chromatography (Hexane/DCM, 7:3) gave the title compound **172** (68 mg, 95%) as yellow needles, identical to that described above.

3,5-Di(fur-2-yl)-4*H*-1,2,6-thiadiazin-4-one 185

Similar treatment of of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol) with 2-(tributylstannyl)furan (224 mg, 0.60 mmol) gave the *title compound* **185** (61 mg, 92%) as yellow needles, mp 167-168 °C (from cyclohexane); R_f 0.30 (Hexane/DCM, 7:3); (found: C, 53.6; H, 2.5; N, 11.5. C₁₁H₆N₂O₃S requires C, 53.7; H, 2.5; N, 11.4%); λ_{max} (DCM)/nm 250 (log ε 3.14), 288 (2.70), 319 inf (2.89), 329 (2.96), 381 (3.53), 394 (3.53), 415 (3.48); ν_{max} /cm⁻¹ 3165w, 3132w, 3115w, 1628s, 1560m, 1483s, 1439w, 1400m, 1350w, 1306w, 1287m, 1223w, 1213w, 1200w, 1165w, 1142w, 1082w, 1045s, 1016s, 997m, 918w, 883s, 866m, 835m, 785s, 773s; δ_{H} (500 MHz; CDCl₃) 7.88 (2H, d, *J* 3.5, furyl *H*), 7.68 (2H, br s, furyl *H*), 6.62 (2H, dd, *J* 3.3, 1.3, furyl *H*); δ_C (125 MHz; CDCl₃) 159.9 (s), 149.7 (s), 147.7 (s), 146.3 (d), 119.9 (d), 112.8 (d); *m*/*z* (EI) 246 (M⁺, 82%), 125 (100), 97 (14), 93 (16), 70 (13), 64 (10), 51 (4).

3,5-Di(N-methylpyrrol-2-yl)-4H-1,2,6-thiadiazin-4-one 186

Similar treatment of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol) with 1-methyl-2-(tributylstannyl)pyrrole (222 mg, 0.60 mmol gave the *title compound* **186** (68 mg, 93%) as yellow needles, mp 171-172 °C (from PhH); $R_{\rm f}$ 0.30 (Hexane/DCM, 7:3); (found: C, 182

57.4; H, 4.4; N, 20.5. $C_{13}H_{12}N_4OS$ requires C, 57.3; H, 4.4; N, 20.6%); $\lambda_{max}(DCM)/nm$ 232 (log ε 3.76), 261 (3.98), 407 (4.37), 430 inf (4.24); v_{max}/cm^{-1} 3121w, 3107w, 2996w, 2949w, 1618s, 1522m, 1485s, 1462m, 1406s, 1362m, 1313m, 1267w, 1223w, 1148w, 1097w, 1061s, 1043w, 903w, 872w, 849w, 822w, 789w, 741s, 733s, 710s; $\delta_{H}(500 \text{ MHz}; \text{CDCl}_3)$ 7.59 (2H, dd, *J* 4.0, 2.0, pyrrole *H*-5 or 3), 6.83 (2H, dd, *J* 2.0, 2.0, pyrrole *H*-3 or 5), 6.21 (2H, dd, *J* 4.0, 2.5, pyrrole *H*-4), 3.94 (6H, s, *CH*₃); $\delta_{C}(125 \text{ MHz}; \text{CDCl}_3)$ 162.5 (s), 152.0 (s), 130.0 (d), 126.8 (s), 119.1 (d), 108.1 (d), 38.3 (NCH₃); m/z (EI) 272 (M⁺, 87%), 138 (100), 123 (5), 110 (10), 106 (47), 97 (4), 78 (8), 64 (4), 52 (5).

3,5-Bis(5-bromothien-2-yl)-4H-1,2,6-thiadiazin-4-one 187

To a stirred mixture of 3,5-di(thien-2-yl)-4*H*-1,2,6-thiadiazin-4-one **184** (0.50 g, 1.80 mmol) in glacial AcOH (5 mL) cooled to *ca.* 13-15 °C using an ice-water bath, Br₂ (0.57 g, 3.60 mmol) was added and the mixture was kept at *ca.* 15 °C for 7 h until no starting material remained (by TLC). The reaction mixture was allowed to warm to *ca.* 20 °C and diluted with water and extracted with DCM. The organic layer was separated, dried (Na₂SO₄), evaporated on rotary evaporator with the bath's temperature not exceeding 35 °C and then adsorbed onto silica. Dry flash chromatography (Hexane/DCM, 7:3) gave the *title compound* **187** (80%) as yellow needles, mp 200-203 °C (from cyclohexane); R_f 0.50 (Hexane/DCM, 7:3) (found: C, 30.4; H, 0.8; N, 6.4. C₁₁H₄Br₂N₂OS₃ requires C, 30.3; H, 0.9; N, 6.4%); λ_{max} (DCM)/nm 269 (log ε 3.80), 345 (3.62), 384 inf (3.90), 402 inf (4.11), 421 (4.22), 445 (4.18); v_{max} /cm⁻¹ 3090w, 1604m, 1582m, 1508w, 1439w, 1402s, 1387m, 1055w, 999w, 808s, 783m, 743m; $\delta_{\rm H}$ (500 MHz; CD₂Cl₂) 161.4 (s), 153.4 (s), 137.3 (s), 132.4 (d), 131.3 (d), 122.6 (s); *m*/*z* (EI) 438 (M⁺+4, 53%), 436 (M⁺+2, 89), 434 (M⁺, 45), 221 (100), 219 (94), 189 (37), 187 (37), 178 (4), 177 (3), 140 (47), 108 (16), 96 (28), 82 (15), 69 (12), 64 (30), 57 (11).

3,5-Bis[(2,2'-bithien)-5-yl]-4H-1,2,6-thiadiazin-4-one 188

To a stirred mixture of 3,5-bis(5-bromothien-2-yl)-4*H*-1,2,6-thiadiazin-4-one **187** (0.10 g, 0.23 mmol) and $(Ph_3P)_2PdCl_2$ (37 mg, 0.045 mmol) in MeCN (4 mL) at *ca*. 20 °C protected with a CaCl₂ drying tube, 2-(tributylstannyl)thiophene (371 mg, 0.99 mmol) was added. The mixture was heated to *ca*. 100 °C (reflux) until no starting material remained (by TLC). The reaction mixture was then cooled to *ca*. 20 °C and adsorbed onto silica. Dry flash chromatography 183

(Hexane/DCM, 7:3) gave the *title compound* **188** (95%) as red-brown plates, mp 164-167 °C (from PhH); $R_{\rm f}$ 0.70 (Hexane/DCM, 1:1); (found: C, 51.7; H, 2.2; N, 6.5. C₁₉H₁₀N₂OS₅ requires C, 51.6; H, 2.2; N, 6.6%); $\lambda_{\rm max}$ (DCM)/nm 231 (log ε 4.02), 292 (4.12), 358 (3.92), 399 inf (4.08), 451 inf (4.41), 477 (4.53), 498 inf (4.51); $\nu_{\rm max}$ /cm⁻¹ 3109w, 1616m, 1608m, 1495w, 1431s, 1414m, 1387s, 1356w, 1329w, 1227m, 1161w, 1047m, 997w, 839s, 808s, 783m, 739s; $\delta_{\rm H}$ (500 MHz; CDCl₃) 8.14 (2H, d, *J* 4.0, thienyl *H*), 7.36 (2H, d, *J* 3.5, thienyl *H*), 7.31 (2H, d, *J* 4.5, thienyl *H*), 7.25 (2H, d, *J* 4.0, thienyl *H*), 7.06 (2H, dd, *J* 5.0, 4.0, thienyl *H*); $\delta_{\rm C}$ (125 MHz; CDCl₃) 161.3 (s), 153.2 (s), 145.1 (s), 136.9 (s), 134.4 (s), 133.0 (d), 128.2 (d), 125.9 (d), 125.0 (d), 124.2 (d); *m*/*z* (EI) 442 (M⁺, 100%), 223 (62), 191 (62), 159 (9), 146 (11), 121 (14), 69 (8).

3,5-Bis(5'-bromo-[2,2'-bithiophen]-5-yl)-4H-1,2,6-thiadiazin-4-one 189

To a stirred mixture of 3,5-bis[(2,2'-bithien)-5-yl]-4*H*-1,2,6-thiadiazin-4-one **188** (0.50 g, 0.23 mmol) in glacial AcOH (5 mL) cooled to *ca.* 13-15 °C using an ice-water bath, Br₂ (23.6 µl, 0.46 mmol) was added and the mixture was kept at *ca.* 15 °C for 7 h until no starting material remained (by TLC). The reaction mixture was allowed to warm to *ca.* 20 °C and diluted with water and extracted with DCM. The organic layer was separated, dried (Na₂SO₄), evaporated on rotary evaporator with the bath's temperature not exceeding 35 °C and then adsorbed onto silica. Dry flash chromatography (Hexane/DCM, 7:3) gave the *title compound* **189** (80%) as dark orange powder, mp 276-277 °C (from PhCl); $R_{\rm f}$ 0.53 (Hexane/DCM, 7:3) (found: C, 38.1; H, 1.4; N, 4.8. C₁₉H₈Br₂N₂OS₅ requires C, 38.0; H, 1.3; N, 4.7%); $\lambda_{\rm max}$ (DCM)/nm 296 (log ε 2.08), 376 (3.17), 482 (3.72), 500 inf (3.69); $\nu_{\rm max}/{\rm cm^{-1}}$ 3075w (Ar CH), 1616m, 1506w, 1441s, 1427m, 1354w, 1292w, 1275w, 1236m, 1219w, 1171w, 1142w, 1128w, 1076w, 1047w, 972w, 883w, 872w, 806m, 777s, 745w, 729w; The sample was insoluble in common deuterated solvents and NMR data could not be collected. *m/z* (EI) 604 (M⁺+4, 2%), 602 (M⁺+2, 9), 600 (M⁺, 13), 522 (19), 520 (14), 271 (12), 269 (11), 223 (14), 191 (13), 177 (9), 146 (22), 91 (6), 69 (7).

3,5-Bis(4-dodecylthiophen-2-yl)-4H-1,2,6-thiadiazin-4-one 190

To a solution of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol) in MeCN (2 mL) at rt, were added (4-dodecylthiophen-2-yl)trimethylstannane (249 mg, 0.60 mmol) and $Pd(Ph_3P)_2Cl_2$ (9.6 mg, 0.014 mmol) and the reaction was heated at reflux until no starting material remained (TLC). The reaction mixture was then left to cool at rt, diluted (DCM) and 184

adsorbed onto silica. Chromatography (Hexane/DCM, 7:3) gave the *title compound* **190** (156 mg, 93%) as yellow needles, mp 65.5-67 °C (from pentane); R_f 0.70 (Hexane/DCM, 7:3); (found: C, 68.4; H, 8.8; N, 4.5. C₃₅H₅₄N₂OS₃ requires C, 68.4; H, 8.9; N, 4.6%); λ_{max} (DCM)/nm 229 (log ε 3.40), 265 (3.59), 356 inf (3.36), 382 (3.65), 399 inf (3.75), 415 (3.82), 439 (3.81); v_{max} /cm⁻¹ 2955w, 2918s, 2851m, 1616m, 1464m, 1412m, 1393w, 1341w, 1250w, 1236w, 1225w, 1200w, 1188w, 1103w, 953w, 876w, 864m, 816w, 791w, 764w; δ_{H} (500 MHz; CDCl₃) 8.11 (1H, s, thienyl *H*), 7,24 (1H, s, thienyl *H*), 2.67-2.62 (2H, m), 1.26 (20H, br s), 0.88 (3H, t, *J* 11.0, CH₃); δ_{C} (125 MHz; CDCl₃) 161.5 (s), 153.9 (s), 144.2 (s), 136.3 (s), 133.3 (d), 128.6 (d), 31.91, 30.5, 30.4, 29.7, 29.65, 29.6, 29.4, 29.35, 29.3, 22.7, 14.1 (CH₃); *m*/z (EI) 615 (M⁺+1, 41%), 614 (M⁺, 100), 460 (24), 306 (10), 276 (7), 168 (5), 155 (10), 149 (13), 137 (10), 125 (11), 122 (43), 111 (16), 109 (14), 97 (29), 95 (19), 83 (22), 71 (28), 57 (49).

3,5-Bis(5-bromo-4-dodecylthiophen-2-yl)-4H-1,2,6-thiadiazin-4-one 191

To a stirred solution of 3,5-bis(4-dodecylthiophen-2-yl)-4*H*-1,2,6-thiadiazin-4-one **190** (100 mg, 0.16 mmol) in THF (4 mL) at rt was added NBS (64 mg, 0.36 mmol) and stirred in dark overnight. The reaction mixture was then diluted (DCM), washed (H₂O) and dried (Na₂SO₄) to give the *title compound* **191** (103 mg, 83%) as yellow platess, mp 102-104 °C (from pentane); $R_{\rm f}$ 0.70 (Hexane/DCM, 7:3); (found: C, 54.5; H, 6.6; N, 3.7. C₃₅H₅₂Br₂N₂OS₃ requires C, 54.4; H, 6.8; N, 3.6%); $\lambda_{\rm max}$ (DCM)/nm 272 (log ε 3.33), 363 (3.23), 415 inf (3.66), 430 (3.75), 455 (3.73); $v_{\rm max}$ /cm⁻¹ 2955w, 2922s, 2851m, 1597s, 1576w, 1535w, 1458m, 1441m, 1422s, 1381m, 1348w, 1339w, 1215w, 1188w, 1123w, 1088w, 1022w, 858m; $\delta_{\rm H}$ (500 MHz; CDCl₃) 7.90 (1H, s, thienyl *H*), 2.60 (2H, t, *J* 7.8), 1.62 (2H, t, *J* 7.0), 1.33-1.26 (19H, m), 0.88 (3H, t, *J* 6.7, CH₃); $\delta_{\rm C}$ (125 MHz; CDCl₃) 161.1 (s), 152.8 (s), 143.1 (s), 135.0 (s), 132.3 (d), 119.8 (s), 31.9, 29.7, 29.6, 29.55, 29.5, 29.4, 29.35, 29.2, 22.7, 14.1 (CH₃); *m/z* (EI) 776 (M⁺+4, 9%), 774 (M⁺+2, 50), 772 (M⁺, 75), 693 (10), 579 (6), 499 (5), 458 (10), 345 (15), 308 (12), 202 (21), 162 (7), 154 (8), 135 (7), 122 (22), 97 (9), 83 (7), 71 (12), 69 (19), 57 (46).

3,5-Bis(phenylethynyl)-4*H*-1,2,6-thiadiazin-4-one 193; Typical Sonogashira procedure (Table 18)

To a stirred mixture of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol), CuI (5.2 mg, 0.0273 mmol) and (Ph₃P)₂PdCl₂ (9.6 mg, 0.0137 mmol) in MeCN (2 mL) at *ca*. 20 °C protected with a CaCl₂ drying tube, phenylacetylene (61.3 mg, 0.60 mmol) and Et₃N (151.4 μ L, 1.09 mmol) were added. The mixture was then heated to *ca*. 100 °C until no starting material remained (by TLC). The reaction mixture was then cooled to *ca*. 20 °C and adsorbed onto silica. Dry flash chromatography (Hexane/DCM, 7:3) gave the *title compound* **193** (62 mg, 73%) as yellow needles, mp 187-188 °C (1,2-DCE, fridge); *R*_f 0.38 (Hexane/DCM, 7:3); (found: C, 72.5; H, 3.2; N, 8.8. C₁₉H₁₀N₂OS requires C, 72.6; H, 3.2; N, 8.9%); λ_{max} (DCM)/nm 248 (log ε 3.35), 264 (3.28), 283 inf (3.12), 336 inf (3.29), 382 (3.64), 388 (3.62), 401 (3.63), 420 inf (3.46); v_{max} /cm⁻¹ 2197m (C=C), 1641s, 1570w, 1493m, 1462w, 1443w, 1349s, 1310w, 1283w, 1212w, 1173w, 1129m, 1069w, 1026w, 996w, 976w, 924w, 915w, 880w, 835m, 763s; δ_{H} (500 MHz; CDCl₃) 7.66 (2H, d, *J* 8.0, Ph *H*), 7.40 (1H, dd, *J* 8.0, 7.0, Ph *H*); δ_{C} (125 MHz; CDCl₃) 162.5 (s), 147.9 (s), 132.8 (d), 130.6 (d), 128.6 (d), 120.8 (s), 102.3 (s), 83.7 (s); *m/z* (EI) 314 (M⁺, 40%), 159 (100), 127 (53), 115 (8), 100 (10), 88 (3), 76 (6), 63 (4), 51 (4).

3,5-Bis(thien-3-ylethynyl)-4H-1,2,6-thiadiazin-4-one 194

Similar treatment of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol) with 3-ethynylthiophene (64.8 mg, 0.60 mmol) gave the *title compound* **194** (60.8 mg, 69%) as yellow plates, mp > 300 °C (dec.) (1,2-DCE, fridge); R_f 0.35 (Hexane/DCM, 7:3); (found: C, 72.5; H, 3.2; N, 8.8. C₁₉H₁₀N₂OS requires C, 72.6; H, 3.2; N, 8.9%); λ_{max} (DCM)/nm 257 (log ε 3.38), 346 (3.40), 381 (3.65), 396 (3.63), 405 (3.65), 425 (3.58); v_{max} /cm⁻¹ 3102w, 2922w, 2853w, 2199s (C=C), 1643s, 1456w, 1362m, 1339m, 1277w, 1227w, 1204w, 1119w, 1001m, 959w, 943w, 868m, 835w, 804m, 781s; δ_{H} (500 MHz; CDCl₃) 7.81 (2H, dd, *J* 2.8, 1.3, thienyl *H*), 7.35 (2H, dd, *J* 5.0, 3.0, thienyl *H*), 7.30 (2H, dd, *J* 5.0, 1.0, thienyl *H*); δ_{C} (125 MHz; CDCl₃) 162.5 (s), 147.8 (s), 133.2 (d), 130.1 (d), 126.1 (d), 120.1 (s), 97.6 (s), 83.8 (s); *m*/*z* (EI) 326 (M⁺, 34%), 165 (100), 133 (80), 121 (13), 107 (5), 94 (6), 69 (9), 63 (5), 58 (11).

3,5-Bis(pyridin-3-ylethynyl)-4*H*-1,2,6-thiadiazin-4-one 195

Similar treatment of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (50 mg, 0.273 mmol) with 3-ethynylpyridine (62 mg, 0.60 mmol) gave the *title compound* **195** (58.7 mg, 68%) as yellow/brown plates, mp (dec.) (DCE/EtOH) DSC (onset) 232.2 °C (peak) 235.0 °C; R_f 0.30 (^tBuOMe); (found: C, 64.7; H, 2.5; N, 17.7. C₁₇H₈N₄OS requires C, 64.6; H, 2.6; N, 17.7%); λ_{max} (DCM)/nm 230 (log ε 3.67), 236 inf (3.66), 245 inf (3.63), 264 inf (3.57), 278 inf (3.54), 327 inf (3.42), 373 inf (3.80), 381 (3.82), 385 inf (3.76), 397 (3.76), 411 inf (3.61); v_{max} /cm⁻¹ 3063w, 2203s (C=C), 1638s, 1580w, 1560w, 1479s, 1460w, 1416w, 1406m, 1356s, 1331w, 1312w, 1223w, 1188w, 1140w, 1121w, 1045w, 1022m, 989w, 972w, 962w, 833m, 814s; δ_{H} (500 MHz; CDCl₃) 8.88 (2H, s, pyridyl *H*), 8.67 (2H, d, *J* 4.0, pyridyl *H*), 7.95 (2H, ddd, *J* 4.5, 2.0, 2.0, pyridyl *H*), 7.36 (2H, dd, *J* 5.0, 3.0, pyridyl *H*); δ_C (125 MHz; DMSO) 162.4 (s), 152.1 (d), 150.7 (d), 147.0 (s), 139.5 (d), 124.0 (d), 117.3 (s), 95.8 (s), 86.5 (s); *m/z* (EI) 316 (M⁺, 49%), 160 (100), 128 (48), 116 (7), 107 (5), 101 (23), 76 (16), 50 (8).

3-Chloro-5-(ethynylferrocenyl)-4*H*-1,2,6-thiadiazin-4-one 196 and 3,5-Bis(ethynylferrocenyl)-4*H*-1,2,6-thiadiazin-4-one 197

Similar treatment of 3,5-dichloro-4H-1,2,6-thiadiazin-4-one 24 (50 mg, 0.273 mmol) with ethynylferrocene (124.8 mg, 0.60 mmol) gave after chromatography (Hexane/DCM, 1:1) the *title compound* **196** (69.6 mg, 10%) as purple needles, mp (dec.) onset 159.9 °C peak 166.4 °C (DSC) (cyclohexane); R_f 0.40 (Hexane/DCM, 1:1); (found: C, 50.5; H, 2.4; N, 7.8. C₁₅H₉ClFeN₂OS requires C, 50.5; H, 2.5; N, 7.9%); λ_{max}(DCM)/nm 230 (log ε 4.75), 268 (4.82), 357 (4.93), 524 (4.15); v_{max}/cm^{-1} 3100w, 2195s (C=C), 1643s, 1485w, 1433w, 1408w, 1321m, 1252w, 1240w, 1126m, 1105w, 1057w, 1036m, 1028w, 1001w, 945m, 847w, 824m, 802s; m/z (EI) 358 (M⁺+2, 43%), 356 (M⁺, 100), 293 (4), 266 (7), 235 (32), 210 (11), 183 (5), 178 (28), 156 (10), 152 (10), 146 (21), 121 (39), 114 (30), 97 (19), 56 (36). Note: Pure compound 196 was unstable in solution preventing the collection of NMR data. Further elution (Hexane/DCM, 1:2) gave the *title compound* **197** (24.6 mg, 17%) as purple solid, mp (dec.) onset 243.9 °C peak 253.3 °C (DSC); Rf 0.33 (Hexane/DCM, 1:1); (found: C, 61.1; H, 3.4; N, 5.2. $C_{27}H_{18}Fe_2N_2OS$ requires C, 61.2; H, 3.4; N, 5.3%); $\lambda_{max}(DCM)/nm$ 230 (log ε 4.75), 268 (4.82), 357 (4.93), 524 (4.15); $v_{\text{max}}/\text{cm}^{-1}$ 2193s (C=C), 1639m, 1508w, 1435w, 1341m, 1281w, 1246w, 1153w, 1105m, 1053w, 1028w, 999w, 978w, 812s; $\delta_{\rm H}(500 \text{ MHz};$ CDCl₃) 4.67 (1H, dd, J 1.8, 1.8, Cp H), 4.41 (1H, dd, J 2.0, 2.0, Cp H), 4.29 (1H, s, Cp H); 187

 $\delta_{\rm C}(125 \text{ MHz}; {\rm CDCl}_3)$ 162.9 (s), 147.3 (s), 104.8 (s), 81.7 (s), 72.8 (d), 70.7 (d), 70.6 (d), 61.6 (s); *m*/*z* (EI) 530 (M⁺, 100%), 322 (4), 284 (8), 265 (14), 235 (39), 209 (3), 186 (5), 152 (9), 121 (34), 97 (16), 71 (2), 56 (19).

3-Chloro-5-hydroxy-4H-1,2,6-thiadiazin-4-one 198

To a stirred mixture of 3,5-dichloro-4*H*-1,2,6-thiadiazin-4-one **24** (1.00 g, 5.46 mmol) in THF at rt, was added LiOH (523 mg, 21.8 mmol) and the reaction mixture was refluxed until no starting material remained (TLC). The reaction mixture was diluted with DCM, washed (H₂O), dried (Na₂SO₄) and adsorbed onto silica. Chromatography (t-BuOMe/EtOH, 9:1) gave the *title compound* **198** (743 mg, 83%) as yellow plates, mp 99-100 °C (from cyclohexane/drops of DCM), R_f 0.43 (*t*-BuOMe/EtOH, 9:1); (found: C, 21.8; H, 0.7; N, 17.0. C₃HClN₂O₂S requires C, 21.9; H, 0.6; N, 17.0%); λ_{max} (DCM)/nm 230 (log ε 2.62), 277 (2.86), 288 (2.70), 345 (3.21); ν_{max} /cm⁻¹ 3530br w and 3416w (OH), 1830w, 1607s (C=O), 1560w, 1503m, 1445w, 1373w, 1317s, 1231w, 1217s, 962w, 874m, 841s; δ_{H} (500 MHz; CDCl₃ + DMSO-*d*₆) 5.68 (1H, br s, O*H*); δ_{C} (125 MHz; CDCl₃ + DMSO-*d*₆) 158.4 (s), 157.8 (s), 146.1 (s); *m/z* (EI) 166 (M⁺+2, 41%), 164 (M⁺, 97), 138 (10), 136 (27), 129 (5), 121 (12), 101 (8), 95 (43), 93 (100), 86 (13), 75 (100), 70 (18), 62 (22), 58 (42), 54 (42).

3-Chloro-5-trifluoromethanesulfonoxy-4H-1,2,6-thiadiazin-4-one 199

To a stirred mixture of 3-chloro-5-hydroxy-4*H*-1,2,6-thiadiazin-4-one **198** (1.00 g, 6.10 mmol) in DCM at *ca.* 0 °C, was added triethylamine (0.93 mL, 6.70 mmol) and trifluoromethanesulfonic anhydride (2 mL, 12.2 mmol) and the reaction mixture was left to warm to *ca.* 10 °C until no starting material remained (TLC). Dilution (DCM), adsorption on silica and chromatography (Hexane/DCM, 7:3) gave the *title compound* **199** (1.41 g, 78%) as colorless needles, mp 58-59 °C (from pentane), R_f 0.28 (Hexane/DCM, 7:3); (found: C, 16.2; N, 9.5. C₄ClF₃N₂O₄S₂ requires C, 16.2; N, 9.4%); λ_{max} (DCM)/nm 298 (log ε 3.01), 321 (3.28); ν_{max} /cm⁻¹ 1659m, 1495w, 1423m, 1294w, 1229s, 1217s, 1125s, 1030w, 941m, 862m, 822m; δ_C (125 MHz; CDCl₃) 156.0 (s), 154.4 (s), 146.0 (s), 118.3 (q, ¹J_{CF} 319.2, *C*F₃); *m/z* (EI) 298 (M⁺+2, 10%), 296 (26), 227 (4), 204 (4), 147 (5), 143 (42), 121 (5), 119 (5), 115 (24), 95 (12), 93 (34), 74 (26), 69 (100), 54 (10).

3-Bromo-5-chloro-4H-1,2,6-thiadiazin-4-one 200

To a stirred solution of 3-chloro-5-trifluoromethanesulfonoxy-4*H*-1,2,6-thiadiazin-4-one **199** (1.00 g, 3.37 mmol) in acetone at rt, was added tetraethylammonium bromide (0.78 g, 3.71 mmol) and the reaction mixture was heated at reflux until no starting material remained (TLC). The reaction mixture was then cooled to rt, diluted (DCM), washed (H₂O), dried (Na₂SO₄) and adsorbed onto silica. Chromatography (Hexane/DCM, 7:3) gave the *title compound* **200** (766 mg, 100%) as yellow needles, mp 103-104 °C (from cyclohexane), R_f 0.33 (Hexane/DCM, 7:3); (found: C, 15.9; N, 12.3. C₃BrClN₂OS requires C, 15.8; N, 12.3%); λ_{max} (DCM)/nm 305 inf (log ε 3.03), 328 (3.26); v_{max} /cm⁻¹ 1655s (C=O), 1620w, 1493w, 1254w, 1239w, 1225w, 1211w, 1061w, 1044m, 1024w, 851w, 824w; δ_C (125 MHz; CDCl₃) 157.4 (s), 147.8 (s), 143.6 (s); *m*/*z* (EI) 230 (M⁺+4, 28%), 228 (M⁺+2, 100), 226 (M⁺, 78), 167 (11), 165 (12), 147 (10), 139 (35), 137 (34), 123 (22), 121 (65), 119 (9), 95 (34), 93 (89), 86 (11), 81 (8), 79 (8), 58 (62), 54 (37).

3-Chloro-5-iodo-4H-1,2,6-thiadiazin-4-one 201

To a stirred solution of 3-chloro-5-trifluoromethanesulfonoxy-4*H*-1,2,6-thiadiazin-4-one **199** (1.00 g, 3.37 mmol) in acetone at rt, was added potassium iodide (671 mg, 4.04 mmol) and the reaction mixture was stirred at this temperature until no starting material remained (TLC). The reaction mixture was then diluted (DCM), washed (H₂O), dried (Na₂SO₄) and adsorbed onto silica. Chromatography (Hexane/DCM, 7:3) gave the *title compound* **201** (803 mg, 87%) as yellow needles, mp 113-114.5 °C (from cyclohexane), R_f 0.33 (Hexane/DCM, 7:3); (found: C, 13.2; N, 10.3. C₃IClN₂OS requires C, 13.1; N, 10.2%); λ_{max} (DCM)/nm 230 inf (log ε 2.70), 312 inf (3.00), 328 (3.02); ν_{max} /cm⁻¹ 1652s (C=O), 1485w, 1477w, 1425w, 1292w, 1242m, 1213m, 1126w, 1059w, 1026m, 943w, 862w, 845w, 824w, 808w; δ_C (125 MHz; CDCl₃) 157.5 (s), 143.5 (s), 127.8 (s, *C*-5); *m*/*z* (EI) 276 (M⁺+2, 36%), 274 (M⁺, 95), 185 (26), 159 (8), 153 (8), 149 (22), 147 (62), 127 (79), 121 (25), 119 (52), 95 (36), 93 (100), 86 (47), 58 (92), 54 (60).

3-Chloro-5-(thien-2-yl)-4*H*-1,2,6-thiadiazin-4-one 202; Typical Stille procedure (Table 19)

To a stirred solution of 3-chloro-5-trifluoromethanesulfonoxy-4*H*-1,2,6-thiadiazin-4-one **199** (65.0 mg, 0.22 mmol) in PhH (2 mL) at rt, was added 2-(tributylstannyl)thiophene (70 μ L, 0.22 mmol) and Pd(Ph₃P)₂Cl₂ (7.7 mg, 0.011 mmol) and the mixture was stirred at this 190

temperature until no starting material remained (TLC). The reaction mixture was then diluted (DCM) and adsorbed onto silica. Chromatography (Hexane/DCM, 7:3), gave the *title compound* **202** (43 mg, 85%) as yellow needles, mp 123-124 °C (from cyclohexane), R_f 0.39 (Hexane/DCM, 7:3); (found: C, 36.5; H, 1.2; N, 12.1. C₇H₃ClN₂OS₂ requires C, 36.4; H, 1.3; N, 12.1%); λ_{max} (DCM)/nm 259 inf (log ε 2.82), 275 (2.93), 363 (3.29), 380 inf (3.21); ν_{max} /cm⁻¹ 3125w, 3105w, 3092w and 3078w (Ar CH), 1657w, 1634s (C=O), 1543w, 1510w, 1481w, 1447w, 1420m, 1406m, 1369m, 1346w, 1298w, 1219m, 1182m, 1175m, 1128w, 1072w, 1053w, 1016m, 974w, 941w, 864m, 841m, 829m; δ_{H} (500 MHz; CDCl₃) 8.29 (1H, dd, *J* 4.0, 1.0, thienyl *H*), 7.69 (1H, dd, *J* 5.0, 1.0, thienyl *H*), 7.20 (1H, dd, *J* 4.8, 4.3, thienyl *H*); δ_{C} (125 MHz; CDCl₃) 159.4 (s), 153.0 (s), 151.2 (s), 135.9 (s), 134.2 (d), 133.4 (d), 128.2 (d); *m*/z (EI) 232 (M⁺+2, 38%), 230 (M⁺, 91), 141 (52), 123 (21), 121 (60), 109 (36), 95 (37), 93 (100), 71 (13), 64 (9), 58 (24).

3-Chloro-5-(fur-2-yl)-4H-1,2,6-thiadiazin-4-one 203

Similar treatment of 3-chloro-5-trifluoromethanesulfonoxy-4*H*-1,2,6-thiadiazin-4-one **199** (65.0 mg, 0.22 mmol) with 2-(tributylstannyl)furan (69.3 μ L, 0.22 mmol) gave the *title compound* **203** (35.8 mg, 76%) as yellow needles, mp 110-111 °C (from cyclohexane), *R*_f 0.28 (Hexane/DCM, 7:3); (found: C, 39.2; H, 1.4; N, 13.0. C₇H₃ClN₂O₂S requires C, 39.2; H, 1.4; N, 13.1%); λ_{max} (DCM)/nm 270 (log ε 2.87), 344 inf (3.31), 354 (3.35), 371 inf (3.24); *v*_{max}/cm⁻¹ 3144w (Ar CH), 1721w, 1628m (C=O), 1558w, 1485m, 1435w, 1396m, 1337w, 1327w, 1219m, 1183m, 1088w, 1045m, 1022w, 1013w, 932w, 901w, 881w, 849s, 760s; δ_{H} (500 MHz; CDCl₃) 7.88 (1H, d, *J* 3.5, furyl *H*), 7.71 (1H, br s, furyl *H*), 6.63 (1H, dd, *J* 3.5, 1.5, furyl *H*); δ_{C} (125 MHz; CDCl₃) 158.4 (s), 151.2 (s), 148.2 (s), 147.2 (d), 146.9 (s), 121.1 (d), 113.1 (s); *m*/*z* (EI) 216 (M⁺+2, 35%), 214 (M⁺, 86), 125 (29), 123 (21), 121 (53), 97 (10), 95 (28), 93 (100), 70 (10), 64 (12).

3-Chloro-5-(1-methyl-1H-pyrrol-2-yl)-4H-1,2,6-thiadiazin-4-one 204

Similar treatment of 3-chloro-5-trifluoromethanesulfonoxy-4*H*-1,2,6-thiadiazin-4-one **199** (65.0 mg, 0.22 mmol) with 1-methyl-2-(tributylstannyl)pyrrole (72.6 μ L, 0.22 mmol) gave the *title compound* **204** (47 mg, 94%) as yellow needles, mp 174-176 °C (from cyclohexane), *R*_f 0.23 (Hexane/DCM, 7:3); (found: C, 42.4; H, 2.7; N, 18.6. C₈H₆ClN₃OS requires C, 42.2; H, 2.7; N, 18.5%); λ_{max} (DCM)/nm 288 (log ε 3.06), 371 (3.43), 385 inf (3.31); v_{max} /cm⁻¹ 3175w 191

and 3129w (Ar CH), 1641s (C=O), 1560w, 1526m, 1495m, 1466w, 1437w, 1425m, 1412m, 1398w, 1369w, 1329w, 1267m, 1251w, 1179m, 1094m, 1076m, 1042m, 986w, 895w, 858m, 845m, 816w; $\delta_{\rm H}(500 \text{ MHz}; \text{CDCl}_3)$ 7.74 (1H, dd, *J* 4.3, 2.0, pyrrolyl *H*), 7.90 (1H, dd, *J* 2.0, 2.0, pyrrolyl *H*), 6.23 (1H, dd, *J* 4.0, 2.5, pyrrolyl *H*), 3.94 (3H, s, NCH₃); $\delta_{\rm C}(125 \text{ MHz}; \text{CDCl}_3)$ 159.4 (s), 150.8 (s), 149.5 (s), 132.1 (d), 125.6 (s), 121.6 (d), 108.9 (d), 38.7 (NCH₃); m/z (EI) 229 (M⁺+2, 29%), 227 (M⁺, 76), 138 (56), 123 (12), 121 (22), 110 (16), 106 (100), 105 (35), 95 (15), 93 (43), 78 (14), 64 (6), 55 (5).

3-(Fur-2-yl)-5-(thien-2-yl)-4*H*-1,2,6-thiadiazin-4-one 205

To a stirred solution of 3-chloro-5-(thien-2-yl)-4H-1,2,6-thiadiazin-4-one **202** (50.0 mg, 0.22) mmol) in MeCN (2 mL) at rt, was added 2-(tributylstannyl)furan (83 µL, 0.264 mmol) and Pd(Ph₃P)₂Cl₂ (7.7 mg, 0.011 mmol) and the mixture was heated at reflux until no starting material remained (TLC). The reaction mixture was then allowed to cool to rt, diluted (DCM) and adsorbed onto silica. Chromatography (Hexane/DCM, 7:3) gave the *title compound* 205 (50.7 mg, 88%) as yellow needles, mp 141.5-143.5 °C (from cyclohexane), R_f 0.39 (Hexane/DCM, 7:3); (found: C, 50.5; H, 2.4; N, 10.6. C₁₁H₆N₂O₂S₂ requires C, 50.4; H, 2.3; N, 10.7%); $\lambda_{max}(DCM)/nm$ 255 (log ε 3.26), 339 inf (3.01), 384 inf (3.56), 399 (3.64), 422 (3.54); $v_{\text{max}}/\text{cm}^{-1}$ 3165w, 3136w, 3115w and 3100w (Ar CH), 1624s (C=O), 1560m, 1504w, 1481s, 1408s, 1395s, 1375s, 1335w, 1279w, 1173w, 1147w, 1074w, 1053w, 1042w, 1026m, 997w, 926w, 881m, 870m, 854w, 839w, 822m, 761m; $\delta_{\rm H}(500 \text{ MHz}; \text{CDCl}_3)$ 8.26 (1H, dd, J 3.8, 1.3, thienyl H), 7.94 (1H, dd, J 3.5, 0.5, furyl H), 7.69 (1H, dd, J 2.0, 0.5, furyl H), 7.65 (1H, dd, J 5.0, 1.0, thienyl H), 7.20 (1H, dd, J 4.0, 1.0, thienyl H), 6.63 (1H, dd, J 3.5, 1.5, furyl H); $\delta_{\rm C}(125 \text{ MHz}; \text{CDCl}_3)$ 160.6 (s), 154.2 (s), 149.6 (s), 147.8 (s), 146.3 (d), 136.2 (s), 133.4 (d), 132.1 (d), 127.7 (d), 119.9 (d), 112.8 (d); m/z (EI) 262 (M⁺, 89%), 141 (47), 125 (100), 109 (20), 97 (15), 93 (15), 70 (14), 64 (12), 58 (9).

3-(1-Methyl-1H-pyrrol-2-yl)-5-(thien-2-yl)-4H-1,2,6-thiadiazin-4-one 206

Similar treatment of 3-chloro-5-(thien-2-yl)-4*H*-1,2,6-thiadiazin-4-one **202** (50.0 mg, 0.22 mmol) with 1-methyl-2-(tributylstannyl)pyrrole (87.1 μ L, 0.264 mmol) gave the *title compound* **206** (53.3 mg, 88%) as yellow needles, mp 114.5-115.5 °C (from cyclohexane), *R*_f 0.31 (Hexane/DCM, 7:3); (found: C, 52.3; H, 3.2; N, 15.4. C₁₂H₉N₃OS₂ requires C, 52.3; H, 3.3; N, 15.3%); λ_{max} (DCM)/nm 260 (log ε 3.82), 344 inf (3.62), 378 (3.97), 381 (3.98), 420 inf (3.89), 432 (3.91); v_{max} /cm⁻¹ 3152w and 3059w (Ar CH), 2997w, 2945w, 1647w, 1614s 192

(C=O), 1524w, 1506w, 1489m, 1464w, 1447w, 1410m, 1422m, 1373m, 1366m, 1296m, 1269w, 1242w, 1217w, 1136w, 1096w, 1067m, 1049m, 1034w, 978w, 895w, 872m, 856w, 845w, 837w, 822w; $\delta_{\rm H}(500 \text{ MHz}; \text{CDCl}_3)$ 8.19 (1H, d, *J* 4.0, thienyl *H*), 7.77 (1H, dd, *J* 4.0, 1.5, pyrrolyl *H*), 7.59 (1H, d, *J* 5.0, thienyl *H*), 7.17 (1H, dd, *J* 4.3, 4.3, thienyl *H*), 6.87 (1H, br s, pyrrolyl *H*), 6.24 (1H, dd, *J* 3.8, 2.8, pyrrolyl *H*), 3.97 (3H, s, NCH₃); $\delta_{\rm C}(125 \text{ MHz}; \text{CDCl}_3)$ 161.9 (s), 153.2 (s), 152.4 (s), 136.8 (s), 132.4 (d), 131.2 (d), 131.0 (d), 127.5 (d), 126.5 (s), 120.5 (d), 108.5 (d), 38.6 (NCH₃); *m*/*z* (EI) 275 (M⁺, 95%), 141 (100), 138 (64), 109 (21), 106 (30), 97 (7), 78 (8), 64 (5), 58 (6).

3-(Fur-2-yl)-5-(1-methyl-1*H*-pyrrol-2-yl)-4*H*-1,2,6-thiadiazin-4-one 207

Similar treatment of 3-chloro-5-(fur-2-yl)-4*H*-1,2,6-thiadiazin-4-one **203** (47 mg, 0.22 mmol) with 1-methyl-2-(tributylstannyl)pyrrole (87.1 μ L, 0.264 mmol) gave the *title compound* **207** (57 mg, 100%) as yellow needles, mp 87.5-90.5 °C (from cyclohexane), *R*_f 0.18 (Hexane/DCM, 7:3); (found: C, 55.5; H, 3.5; N, 16.1. C₁₂H₉N₃O₂S requires C, 55.6; H, 3.5; N, 16.2%); λ_{max} (DCM)/nm 257 (log ε 2.88), 323 inf (2.65), 330 (2.67), 378 (3.05), 420 inf (2.91), 429 (2.93); ν_{max} /cm⁻¹ 3165w, 3134w and 3113w (Ar CH), 2949w, 1622s, 1611s (C=O), 1562w, 1524m, 1485s, 1466m, 1423m, 1412s, 1391m, 1368w, 1310s, 1279w, 1269w, 1246w, 1217w, 1180w, 1155w, 1146w, 1096w, 1082w, 1067s, 1047m, 1013w, 984w, 930w, 893w, 887w, 872w, 841w, 822w, 789w, 762m; δ_{H} (500 MHz; CDCl₃) 7.83 (1H, dd, *J* 3.5, 0.5, furyl *H*), 7.72 (1H, dd, *J* 4.3, 1.8, pyrrolyl *H*), 7.66 (1H, dd, *J* 1.5, 0.5, furyl *H*), 6.88 (1H, dd, *J* 4.5, 2.3, pyrrolyl *H*), 6.60 (1H, dd, *J* 3.5, 2.0, furyl *H*), 6.25 (1H, dd, *J* 4.5, 2.5, pyrrolyl *H*), 3.96 (3H, s, NCH₃); δ_{C} (125 MHz; CDCl₃) 161.2 (s), 152.5 (s), 149.0 (s), 148.1 (s), 145.7 (d), 131.0 (d), 126.4 (s), 120.4 (d), 118.7 (d), 112.6 (d), 108.5 (d), 38.6 (NCH₃); *m*/z (EI) 259 (M⁺, 84%), 208 (7), 138 (49), 130 (6), 125 (100), 110 (10), 106 (40), 105 (19), 97 (11), 95 (9), 93 (12), 78 (8), 70 (12), 64 (10), 51 (5).

5,5'-(Thiophene-2,5-diyl)bis[3-(thien-2-yl)-4H-1,2,6-thiadiazin-4-one] 208

To a stirred solution of 3-chloro-5-(thien-2-yl)-4*H*-1,2,6-thiadiazin-4-one **202** (50.0 mg, 0.22 mmol) in MeCN (2 mL) at rt, was added 2,5-bis(tributylstannyl)thiophene (60.6 μ L, 0.11 mmol) and Pd(Ph₃P)₂Cl₂ (7.7 mg, 0.011 mmol) and the mixture was heated to reflux until no starting material remained (TLC). During the reaction, an orange precipitate was formed. The reaction mixture was then allowed to cool to rt, filtered and the solid collected washed with

hexane (10 mL) and then pentane (2 mL) and dried under vacuum to afford the *title compound* **208** (39 mg, 76%), as a red powder, mp DSC (onset) 288.0 °C (peak) 292.3 °C; (found: C, 45.6; H, 1.7; N, 11.7. C₁₈H₈N₄O₂S₅ requires C, 45.7; H, 1.7; N, 11.9%); λ_{max} (DCM)/nm 268 (log ε 3.48), 383 (3.31), 456 inf (3.48), 475 (3.62), 504 (3.58); v_{max} /cm⁻¹ 3115w (Ar CH), 1622s (C=O), 1506m, 1435w, 1412m, 1376s, 1364m, 1339w, 1329w, 1269m, 1240w, 1223w, 1215w, 1078w, 1047m, 880w, 870w, 854m, 827m, 808w, 765w; δ_{H} (500 MHz; CDCl₃) 8.35 (1H, d, *J* 3.0, thienyl *H*), 8.27 (1H, s, thienyl *H*), 7.74 (1H, d, *J* 4.0, thienyl *H*), 7.25 (1H, dd, *J* 8.0, 4.0, thienyl *H*); δ_{C} (125 MHz; CDCl₃) could not be collected owing to poor solubility; *m/z* (EI) 472 (M⁺, 66%), 335 (15), 303 (17), 236 (4), 198 (5), 166 (25), 141 (100), 134 (6), 109 (21), 97 (5), 71 (7), 64 (5), 58 (5).

5,5'-(Thiophene-2,5-diyl)bis[3-(1-methyl-1*H***-pyrrol-2-yl)-4***H***-1,2,6-thiadiazin-4-one] 209** Similar treatment of 3-chloro-5-(1-methyl-1*H*-pyrrol-2-yl)-4*H*-1,2,6-thiadiazin-4-one **204** (50.0 mg, 0.22 mmol) with 2,5-bis(tributylstannyl)thiophene (60.6 μ L, 0.11 mmol) gave the *title compound* **209** (47 mg, 92%) as a red solid, mp DSC (onset) 266.4 °C (peak) 270.9 °C; (found: C, 51.5; H, 3.0; N, 17.9. C₂₀H₁₄N₆O₂S₃ requires C, 51.5; H, 3.0; N, 18.0%); λ_{max} (DCM)/nm 270 (log ε 3.31), 385 inf (3.12), 414 (3.14), 471 inf (3.30), 491 (3.41), 518 (3.39); ν_{max} /cm⁻¹ 3123w, 2947w, 1728w, 1678w, 1620m, 1572m, 1524m, 1487m, 1464m, 1423s, 1416s, 1369w, 1341w, 1306m, 1263m, 1227w, 1198w, 1153m, 1094w, 1074m, 1065m, 980w, 895w, 870w, 822w, 781m, 773m; δ_{H} (500 MHz; CDCl₃) 8.16 (1H, br s, pyrrolyl *H*), 7.81 (1H, br s, pyrrolyl *H*), 6.94 (1H, br s, pyrrolyl *H*), 6.26 (1H, br s, pyrrolyl H), 3.98 (3H, s, NCH₃); δ_{C} (125 MHz; CDCl₃) could not be collected owing to poor solubility; *m/z* (EI) 466 (M⁺, 100%), 332 (19), 300 (28), 262 (7), 233 (6), 198 (13), 183 (6), 166 (28), 138 (91), 110 (11), 106 (34), 78 (5).

5,5'-(Thiophene-2,5-diyl)bis(3-chloro-4H-1,2,6-thiadiazin-4-one) 210

To a stirred mixture of 3-chloro-5-trifluoromethanesulfonoxy-4*H*-1,2,6-thiadiazin-4-one **199** (65.0 mg, 0.22 mmol) in PhH (2 mL) at rt, was added 2,5-bis(tributylstannyl)thiophene (60.6 μ L, 0.11 mmol) and Pd(Ph₃P)₂Cl₂ (7.7 mg, 0.011 mmol) and the reaction mixture stirred at this temperature until no starting material remained (TLC). The mixture was then diluted (DCM) and adsorbed onto silica. Chromatography (Hexane/DCM, 1:1) gave the *title compound* **210** (16.6 mg, 40%) as yellow plates, mp DSC (onset) 261.2 °C (peak) 262.6 °C, *R*_f 0.36 (Hexane/DCM, 1:1); (found: C, 32.0; H, 0.5; N, 14.7. C₁₀H₂Cl₂N₄O₂S₃ requires C, 31.8; 194

H, 0.5; N, 14.9%); λ_{max} (DCM)/nm 265 inf (log ε 2.99), 291 (3.26), 299 inf (3.24), 318 inf (3.18), 384 inf (3.43), 409 inf (3.60), 422 (3.69), 445 (3.66); v_{max} /cm⁻¹ 2938w, 1630s (C=O), 1520w, 1449w, 1327m, 1180m, 1069w, 988w, 964w, 866w, 849w, 835m; δ_{H} (500 MHz; CDCl₃) 8.15 (1H, s, thienyl *H*); δ_{C} (125 MHz; CDCl₃) 160.0 (s), 151.7 (s), 150.6 (s), 140.9 (s), 131.7 (d); *m*/*z* (EI) 380 (M⁺+4, 12%), 378 (M⁺+2, 41), 376 (M⁺, 53), 315 (4), 287 (7), 255 (11), 166 (13), 149 (4), 134 (12), 123 (37), 121 (100), 99 (6), 95 (36), 93 (93), 86 (4), 70 (10), 64 (9), 57 (9).

5,5'-Dichloro-4H,4'H-[3,3'-bi(1,2,6-thiadiazine)]-4,4'-dione 211

To a stirred solution of 3-chloro-5-iodo-4*H*-1,2,6-thiadiazin-4-one **201** (64.9 mg, 0.22 mmol) in PhH (2 mL) was added Bu₃SnH (65 μ L, 0.242 mmol) and Pd(OAc)₂ (2.5 mg, 0.011 mmol) and the reaction mixture was heated at reflux until no starting material remained (TLC). The reaction mixture was then allowed to cool to rt, diluted (DCM) and adsorbed onto silica. Chromatography (Hexane/DCM, 1:1) gave the *title compound* **211** (27 mg, 83%) as pale yellow needles, mp 121-122 °C (cyclohexane), R_f 0.33 (Hexane/DCM, 1:1); (found: C, 24.3; N, 18.9. C₆Cl₂N₄O₂S₂ requires C, 24.4; N, 19.0%); λ_{max} (DCM)/nm 285 inf (log ε 2.97), 320 (3.28), 332 (3.25); ν_{max} /cm⁻¹ 1665m, 1651s (C=O), 1520w, 1503w, 1269m, 1252w, 1148s, 1045m, 881w, 858m, 843w, 826w, 804m, 762w; δ_C (125 MHz; CDCl₃) 158.4 (s), 154.7 (s), 154.3 (s); m/z (EI) 298 (M⁺+4, 8%), 296 (M⁺+2, 31), 294 (M⁺, 42), 235 (6), 233 (15), 207 (9), 205 (21), 177 (7), 175 (15), 166 (4), 123 (14), 121 (38), 95 (37), 93 (100), 84 (9), 70 (5), 64 (4), 58 (19).

5,5'-Di(thien-2-yl)-4H,4'H-[3,3'-bi(1,2,6-thiadiazine)]-4,4'-dione 212

To a stirred solution of 5,5'-dichloro-4*H*,4'*H*-[3,3'-bi(1,2,6-thiadiazine)]-4,4'-dione **211** (65.0 mg, 0.22 mmol) in MeCN (2 mL) at rt, was added 2-(tributylstannyl)thiophene (153.7 μ L, 0.484 mmol) and Pd(Ph₃P)₂Cl₂ (7.7 mg, 0.011 mmol) and the reaction was heated at reflux until no starting material remained (TLC). The reaction mixture was then allowed to cool to rt, diluted (DCM) and adsorbed onto silica. Chromatography (Hexane/DCM, 1:1) gave the *title compound* **212** (57 mg, 67%) as yellow needles, mp DSC (onset) 203.5 °C (peak) 204.8 °C (from cyclohexane), $R_{\rm f}$ 0.55 (Hexane/DCM, 1:1); (found: C, 43.2; H, 1.5; N, 14.3. C₁₄H₆N₄O₂S₄ requires C, 43.1; H, 1.6; N, 14.4%); $\lambda_{\rm max}$ (DCM)/nm 269 (log ε 3.35), 378 (3.59), 384 inf (3.57); $v_{\rm max}$ /cm⁻¹ 3102w, 3075w, 1639m, 1618m, 1516w, 1504w, 1481w, 1445m, 105

1416m, 1408s, 1379m, 1346w, 1260w, 1223w, 1188w, 1094w, 1076w, 1057w, 866m, 853w, 841w, 822m, 800w, 770w; $\delta_{\rm H}(500 \text{ MHz}; \text{CDCl}_3)$ 8.32 (1H, dd, *J* 4.0, 1.0, thienyl *H*), 7.69 (1H, dd, *J* 5.0, 1.0, thienyl *H*), 7.20 (1H, dd, *J* 5.0, 4.0, thienyl *H*); $\delta_{\rm C}(125 \text{ MHz}; \text{CDCl}_3)$ 161.1 (s), 157.9 (s), 156.0 (s), 136.1 (s), 134.4 (d), 133.5 (d), 128.2 (d); *m*/*z* (EI) 390 (M⁺, 100%), 281 (28), 280 (37), 253 (12), 217 (5), 201 (22), 195 (4), 173 (17), 141 (86), 116 (26), 112 (16), 109 (56), 97 (9), 84 (20), 71 (13), 64 (8), 58 (15).

5,5'-Bis(1-methyl-1H-pyrrol-2-yl)-4H,4'H-[3,3'-bi(1,2,6-thiadiazine)]-4,4'-dione 213

Similar treatment of 5,5'-dichloro-4*H*,4'*H*-[3,3'-bi(1,2,6-thiadiazine)]-4,4'-dione **211** (65.0 mg, 0.22 mmol) with 1-methyl-2-(tributylstannyl)pyrrole (160 μ L, 0.484 mmol) gave the *title compound* **213** (59 mg, 70%) as orange plates, mp 265-267 °C (from PhH), *R*_f 0.30 (Hexane/DCM, 1:1); (found: C, 50.1; H, 3.1; N, 21.8. C₁₆H₁₂N₆O₂S₂ requires C, 50.0; H, 3.2; N, 21.9%); λ_{max} (DCM)/nm 279 (log ε 3.55), 380 (3.60), 401 (3.53); ν_{max} /cm⁻¹ 3121w and 3105w (Ar CH), 2951w, 1603s (C=O), 1526m, 1489m, 1464m, 1439w, 1416m, 1406m, 1373w, 1331w, 1314w, 1275m, 1233w, 1184m, 1105w, 1096m, 1065s, 1040w, 893m, 866m, 824m, 783w, 760s; δ_{H} (500 MHz; DMSO-*d*₆) 7.46 (1H, dd, *J* 4.0, 1.5, pyrrolyl *H*), 7.26 (1H, dd, *J* 3.0, 1.5, pyrrolyl *H*), 6.20 (1H, dd, *J* 4.0, 2.5, pyrrolyl *H*), 3.94 (3H, s, NC*H*₃); δ_{C} (125 MHz; DMSO-*d*₆) 161.2 (s), 157.0 (s), 152.6 (s), 132.3 (d), 125.1 (s), 120.2 (d), 108.3 (d), 38.0 (NCH₃); *m*/*z* (EI) 384 (M⁺, 72%), 278 (8), 250 (18), 245 (5), 222 (5), 217 (7), 198 (11), 170 (18), 138 (59), 116 (28), 112 (18), 106 (100), 84 (8), 78 (12), 70 (5), 64 (4), 52 (5).

9.7 Compounds related to Chapter 7

3,5-Diphenyl-4H-1,2,6-thiadiazin-4-ol 214

To a stirred suspension of 3,5-diphenyl-4*H*-1,2,6-thiadiazin-4-one **172** (100 mg, 0.376 mmol) in MeOH (4 mL) at *ca.* 20 °C, was added NaBH₄ (28.4 mg, 0.75 mmol) and the mixture was placed to a preheated oil bath at *ca.* 50 °C until no starting material remained (TLC). The mixture was then diluted (DCM), washed (H₂O) and dried (Na₂SO₄) to give the *title compound* **214** (98 mg, 97%) as yellow flakes, mp 75-77 °C (from pentane), R_f 0.60 (DCM); (found: C, 67.0; H, 4.6; N, 10.3. C₁₅H₁₂N₂OS requires C, 67.1; H, 4.5; N, 10.4%); λ_{max} (DCM)/nm 240 inf (306), 246 (3.07), 277 inf (2.91), 348 (3.03); ν_{max} /cm⁻¹ 3356w, 3310w, 3260w (OH), 3059w (Ar CH), 1703w, 1493w, 1445s, 1385m, 1360s, 1265s, 1234w, 1200m, 1182w, 1157w, 1070s, 1040w, 1020s, 969s, 932m, 910w, 847m; δ_{H} (500 MHz; CDCl₃) 7.99-7.97 (1H, m, Ph *H*), 7.47-7.46 (1H, m, Ph *H*), 6.07 (1H, s, CHOH); δ_C (125 MHz; CDCl₃) 150.3 (s), 136.6 (s), 130.6 (d), 128.8 (d), 126.8 (d), 52.4 (d, CHOH); m/z (EI) 268 (M⁺, 7%), 267 (M⁺-1, 7), 252 (21), 251 (6), 221 (100), 220 (43), 149 (25), 137 (11), 135 (9), 121 (7), 116 (14), 103 (36), 77 (36), 51 (18).

3,5-Dithien-2-yl-4H-1,2,6-thiadiazin-4-ol 215

Similar treatment of 3,5-dithien-2-yl-4*H*-1,2,6-thiadiazin-4-one **184** (105 mg, 0.376 mmol) in MeOH/DCM (1:1, 4 mL) gave the *title compound* **215** (103 mg, 98%) as yellow needles, mp 110-112 °C (from cyclohexane), R_f 0.50 (DCM); (found: C, 47.2; H, 2.8; N, 9.9. C₁₁H₈N₂OS₃ requires C, 47.1; H, 2.9; N, 10.0%); λ_{max} (DCM)/nm 269 (log ε 3.23), 285 inf (3.10), 381 (3.33), 389 (3.32), 406 inf (3.19); ν_{max} /cm⁻¹ 3480w, 3292brw (OH), 3088w (Ar CH), 1533m, 1425s, 1373w, 1352w, 1287w, 1250w, 1246m, 1088w, 1063m, 1022w, 999s, 926m, 916m, 907w, 856m, 847s, 795w; δ_{H} (500 MHz; CDCl₃) 7.63 (2H, d, *J* 3.5, thienyl *H*), 7.50 (2H, d, *J* 5.0, thienyl *H*), 7.12 (2H, dd, *J* 4.5, 4.5, thienyl *H*-4), 5.91 (1H, s, CHOH); δ_{C} (125 MHz; CDCl₃) 146.1 (s), 142.9 (s), 130.6 (d), 127.9 (d), 126.4 (d), 54.0 (d); *m*/z (EI) 280 (M⁺, 25%), 263 (6), 233 (2), 171 (8), 142 (35), 127 (4), 115 (6), 112 (6), 110 (100), 97 (5), 84 (17), 71 (8), 64 (11), 58 (11), 49 (12).

4-Methyl-3,5-diphenyl-4H-1,2,6-thiadiazin-4-ol 216

To a stirred solution of 3,5-diphenyl-4*H*-1,2,6-thiadiazin-4-one **172** (100 mg, 0.376 mmol) in THF (4 mL) at *ca*. 0 °C protected from moisture with a CaCl₂ drying tube, was added MeLi (0.33 mL, 1.5 mmol) and the mixture was left to come to *ca*. 10 °C until no starting material remained (TLC). The mixture was then diluted (DCM), washed (H₂O), dried (Na₂SO₄) and adsorbed onto silica. Chromatography (Hexane/DCM, 1:1) gave the *title compound* **216** (95.6 mg, 90%) as pale yellow needles, mp (DSC) onset 122.9 °C, peak 123.3 °C (from cyclohexane), R_f 0.33 (Hexane/DCM, 1:1); (found: C, 68.2; H, 5.1; N, 9.8. C₁₆H₁₄N₂OS requires C, 68.1; H, 5.0; N, 9.9%); λ_{max} (DCM)/nm 235 (log ε 3.23), 248 inf (3.14), 284 (3.01), 340 (3.03); v_{max} /cm⁻¹ 3333brw (OH), 3055w (Ar CH), 2992w, 1491w, 1439m, 1369m, 1273m, 1179m, 1155w, 1078w, 1057m, 1032w, 1001w, 982w, 947w, 926w, 841w, 818m, 768s, 762s; δ_H (500 MHz; CDCl₃) 7.82 (4H, d, *J* 7.5, Ph *H*), 7.42-7.37 (6H, m, Ph *H*), 2.43 (1H, s, O*H*), 1.66 (3H, s, C*H*₃); ω_c (EI) 282 (M⁺, 7%), 267 (2), 263 (2), 239 (5), 179 (31), 160 (4), 146 (7), 136 (100), 109 (9), 104 (27), 85 (4), 77 (20), 71 (6), 57 (8), 51 (9).

4-Methyl-3,5-dithien-2-yl-4H-1,2,6-thiadiazin-4-ol 217

Similar treatment of 3,5-dithien-2-yl-4*H*-1,2,6-thiadiazin-4-one **184** (105 mg, 0.376 mmol) gave the *title compound* **217** (103 mg, 98%) as yellow plates, mp 32-34 °C, R_f 0.33 (Hexane/DCM, 1:1); (found: C, 49.1; H, 3.4; N, 9.7. C₁₂H₁₀N₂OS₃ requires C, 49.0; H, 3.4; N, 9.5%); λ_{max} (DCM)/nm 277 (log ε 4.23), 354 (3.90), 429 (3.95); v_{max} /cm⁻¹ 3433brw (OH), 3100w and 3076w (Ar CH), 2976w, 1697w, 1647w, 1541m, 1520w, 1418s, 1356m, 1267m, 1229m, 1211w, 1169m, 1078w, 1047s, 976w, 949w, 905w, 851s, 812w, 779w; δ_{H} (500 MHz; CDCl₃) 7.87 (2H, d, *J* 4.0, thienyl *H*), 7.42 (2H, d, *J* 5.0, thienyl *H*), 7.05 (2H, dd, *J* 4.5, 4.5, thienyl *H*-4), 3.04 (1H, s, CO*H*CH₃), 1.62 (1H, s, CH₃); δ_{C} (125 MHz; CDCl₃) 150.4 (s), 139.5 (s), 130.4 (d), 130.1 (d), 127.7 (d), 66.8 (s), 19.9 (CH₃); *m/z* (EI) 294 (M⁺, 49%), 279 (15), 251 (7), 185 (23), 170 (4), 142 (100), 116 (9), 109 (24), 84 (12), 71 (7), 58 (7).

(3,5-Diphenyl-4H-1,2,6-thiadiazin-4-ylidene)methane 218

To a stirred solution of 4-methyl-3,5-diphenyl-4*H*-1,2,6-thiadiazin-4-ol **216** (50 mg, 0.18 mmol) in PhMe (2 mL) at *ca*. 20 °C was added *p*-TSA (3.4 mg, 0.018 mmol) and the mixture was heated at *ca*. 110 °C (preheated oil bath) until no starting material remained (TLC). The reaction mixture was then allowed to cool to *ca*. 20 °C, diluted (DCM) and adsorbed onto 198

silica. Chromatography (Hexane/DCM, 7:3) gave the *title compound* **218** (42.8 mg, 90%) as yellow plates, mp 66.5-67.5 °C (from cyclohexane), R_f 0.70 (Hexane/DCM, 1:1); (found: C, 72.7; H, 4.7; N, 10.7. $C_{16}H_{12}N_2S$ requires C, 72.7; H, 4.6; N, 10.6%); λ_{max} (DCM)/nm 247 (log ε 3.42), 333 (3.09), 392 (2.84); v_{max} /cm⁻¹ 3053w (Ar CH), 2955w, 2924w, 2853w, 1593w, 1576w, 1531m, 1489m, 1472w, 1441m, 1396w, 1352s, 1277m, 1175m, 1076m, 1028w, 999w, 989m, 968w, 918s, 851w, 841w, 831w, 781s; δ_H (500 MHz; CDCl₃) 7.82-7.81 (4H, m, Ph *H*), 7.45-7.43 (6H, m, Ph *H*), 5.59 (2H, s, CH₂); δ_C (125 MHz; CDCl₃) 158.2 (s), 137.2 (s), 130.2 (d), 128.6 (d), 128.5 (s), 127.5 (d), 117.3 (=CH₂); m/z (EI) 264 (M⁺, 84%), 263 (100), 185 (4), 160 (67), 134 (6), 115 (42), 109 (5), 103 (11), 89 (14), 77 (18), 63 (10), 58 (9), 51 (14).

(3,5-Dithien-2-yl-4*H*-1,2,6-thiadiazin-4-ylidene)methane 219

Similar treatment of 4-methyl-3,5-dithien-2-yl-4*H*-1,2,6-thiadiazin-4-ol **217** (53 mg, 0.18 mmol) gave the *title compound* **219** (47.7 mg, 96%) as orange plates, mp 66.5-67 °C (from pentane, fridge), R_f 0.70 (Hexane/DCM, 1:1); (found: C, 52.2; H, 2.8; N, 10.1. C₁₂H₈N₂S₃ requires C, 52.1; H, 2.9; N, 10.1%); λ_{max} (DCM)/nm 254 inf (log ε 3.44), 273 (3.61), 299 inf (3.39), 382 (3.57), 395 (3.59); v_{max} /cm⁻¹ 3100w and 3075w (Ar CH), 1591w, 1520m, 1504w, 1425s, 1352w, 1337w, 1271w, 1231m, 1055m, 955m, 943w, 926m, 920m, 905w, 851s; δ_{H} (500 MHz; CDCl₃) 7.65 (2H, dd, *J* 3.4, 1.3, thienyl *H*), 7.46 (2H, dd, *J* 5.3, 1.2, thienyl *H*), 7.07 (2H, dd, *J* 5.0, 4.0, thienyl *H*-4), 5.96 (2H, s, CH₂); δ_{C} (125 MHz; CDCl₃) 149.6 (s), 141.4 (s), 130.3 (d), 128.4 (s), 127.4 (d), 127.3 (d), 114.8 (CH₂); *m*/*z* (EI) 276 (M⁺, 100%), 243 (6), 231 (4), 192 (5), 167 (13), 140 (8), 121 (19), 109 (9), 97 (7), 77 (14), 69 (7), 58 (9).

Bromo(3,5-diphenyl-4H-1,2,6-thiadiazin-4-ylidene)methane 220

To a stirred solution of (3,5-diphenyl-4*H*-1,2,6-thiadiazin-4-ylidene)methane **218** (50 mg, 0.19 mmol) in CCl₄ (2 mL) at *ca*. 20 °C, was added NBS (33.8 mg, 0.19 mmol) and stirred until no starting material remained. Then the reaction mixture was adsorbed onto silica and chromatography (Hexane/DCM, 7:3) gave the *title compound* **220** (52 mg, 80%) as yellow plates, mp 97.5-98.5 °C (from pentane, fridge), R_f 0.74 (Hexane/DCM, 7:3); (found: C, 56.0; H, 3.2 N, 8.2. C₁₆H₁₁BrN₂S requires C, 56.0; H, 3.2; N, 8.2%); λ_{max} (DCM)/nm 246 (log ε 3.51), 350 (3.24), 381 inf (3.08), 397 (3.04); v_{max} /cm⁻¹ 3055w (Ar CH), 1574w, 1506w, 1491w, 1443w, 1341m, 1308w, 1281w, 1238w, 1173w, 1161w, 1074w, 1028w, 1007w, 995w, 974w, 922w, 841m, 802w, 793w, 716s; δ_H (500 MHz; CDCl₃) 7.98-7.96 (2H, m, Ph *H*), 7.85

(1H, dd, *J* 7.5, 1.3, Ph *H*), 7.48-7.46 (6H, m, Ph *H*), 6.85 (1H, s); $\delta_{\rm C}(125 \text{ MHz}; \text{CDCl}_3)$ (1 quaternary missing) 153.2 (s), 152.0 (s), 135.7 (s), 130.8 (d), 130.1 (d), 130.1 (s), 129.0 (d), 128.7 (d), 127.8 (d), 127.4 (d), 110.4 (d, CHBr); *m*/*z* (EI) 344 (M⁺+2, 11%), 342 (M⁺, 11), 263 (778), 185 (6), 160 (100), 133 (11), 131 (17), 116 (17), 114 (21), 109 (13), 89 (9), 77 (18), 65 (6), 51 (12).

Dichloro(3,5-diphenyl-4H-1,2,6-thiadiazin-4-ylidene)methane 221

3,5-Diphenyl-4*H*-1,2,6-thiadiazin-4-one **172** (100 mg, 0.365 mmol), Ph₃P (393.5 mg, 1.50 mmol) and CCl₄ (1 mL) were placed in a MW reactor (250 W) and heated to *ca.* 140 °C (70 PSI) for 1 h. The reaction mixture was then allowed to cool to *ca.* 20 °C, diluted (DCM) and adsorbed onto silica. Chromatography (Hexane/DCM, 7:3) gave the *title compound* **221** (118.9 mg, 95%) as yellow plates, mp 154-156 °C (from pentane), R_f 0.75 (Hexane/DCM, 7:3); (found: C, 57.8; H, 3.0; N, 8.3. C₁₆H₁₀Cl₂N₂S requires C, 57.7; H, 3.0; N, 8.4%); λ_{max} (DCM)/nm 247 (log ε 3.41), 257 inf (3.37), 358 (3.19); v_{max} /cm⁻¹ 3059w (Ar CH), 1574w, 1506w, 1489w, 1443m, 1317m, 1296m, 1246w, 1177w, 1138w, 1076w, 1026w, 928s, 914w, 878s, 843w, 781s, 768s; δ_H (500 MHz; CDCl₃) 7.93 (4H, d, *J* 7.5, Ph *H*), 7.50-7.43 (6H, m, Ph *H*); δ_C (125 MHz; CDCl₃) 148.1 (s), 134.8 (s), 130.4 (d), 128.9 (d), 127.4 (d), 126.2 (s), 121.2 (s); *m*/*z* (EI) 336 (M⁺+4, 4%), 334 (M⁺+2, 17), 332 (M⁺, 26), 299 (13), 297 (36), 294 (33), 262 (27), 215 (6), 196 (35), 194 (100), 185 (36), 183 (56), 159 (11), 152 (6), 148 (20), 139 (9), 130 (18), 121 (6), 113 (23), 109 (9), 103 (6), 77 (22), 63 (12), 51 (18).

Dibromo(3,5-diphenyl-4H-1,2,6-thiadiazin-4-ylidene)methane 222

3,5-Diphenyl-4*H*-1,2,6-thiadiazin-4-one **172** (100 mg, 0.365 mmol), Ph₃P (393.5 mg, 1.50 mmol), CBr₄ (249 mg, 0.73 mmol) and dry PhH (1 mL) were placed in a sealed tube and heated to 150 °C for 7 h until no starting material remained (TLC). After the reaction was finished, the reaction mixture was diluted with DCM and adsorbed onto silica. Chromatography (Hexane/DCM, 7:3) gave the *title compound* **222** (144.2 mg, 91%) as yellow plates, mp (DSC) onset 151.7 °C, peak 153.5 °C (from pentane), R_f 0.75 (Hexane/DCM, 7:3); (found: C, 45.6; H, 2.4; N, 6.6. C₁₆H₁₀Br₂N₂S requires C, 45.5; H, 2.4; N, 6.6%); λ_{max} (DCM)/nm 245 (log ε 3.33), 261 (3.38), 361 (3.19); v_{max} /cm⁻¹ 3057w (Ar CH), 1557w, 1508w, 1487w, 1441m, 1315s, 1294m, 1277w, 1175m, 1134m, 1076w, 1032w, 1024w, 1009w, 997w, 920w, 862s, 856m, 779s, 766s; δ_{H} (500 MHz; CDCl₃) 7.96 (4H, d, *J* 7.5, Ph *H*), 7.50-7.42 (6H, m, Ph *H*); δ_{C} (125 MHz; CDCl₃) 149.1 (s), 134.3 (s), 133.6 (s), 130.4 (d), 128.9 200

(d), 127.6 (d), 91.9 (s); *m*/*z* (EI) 424 (M⁺+4, 7%), 422 (M⁺+2, 17), 420 (M⁺, 7), 343 (7), 341 (7), 262 (100), 216 (6), 159 (17), 131 (13), 113 (18), 109 (10), 77 (15), 63 (8), 51 (16).

3,5-Diphenyl-4H-1,2,6-thiadiazine-4-thione 223

To a stirred solution of 3,5-diphenyl-4*H*-1,2,6-thiadiazin-4-one **172** (100 mg, 0.375 mmol) in xylene (4 mL) was added P₂S₅ (83.5 mg, 0.188 mmol) and the reaction mixture was heated at *ca.* 139 °C until no starting material remained (TLC). The reaction mixture was then allowed to cool to *ca.* 20 °C, filtered through a pad of silica gel and washed with hexane (30 mL) to remove xylene and then elution with Hexane/DCM (7:3), to give the *title compound* **223** (72 mg, 68%) as yellow needles, mp 109.5-110 °C (from pentane/DCM, at *ca.* 0 °C), *R*_f 0.65 (Hexane/DCM, 7:3); (found: C, 63.8; H, 3.5; N, 9.9. C₁₅H₁₀N₂S₂ requires C, 63.8; H, 3.6; N, 9.9%); λ_{max} (DCM)/nm 235 inf (log ε 3.43), 253 (3.57), 416 (3.37); v_{max} /cm⁻¹ 3030w (Ar CH), 1578w, 1466w, 1435w, 1425w, 1329m, 1319m, 1290w, 1271w, 1177w, 1152s, 1072w, 1030w, 1001w, 910w, 824m, 773m; δ_{H} (500 MHz; CDCl₃) 7.84 (4H, d, *J* 7.5, Ph *H*), 7.46-7.42 (6H, m, Ph *H*); δ_{C} (125 MHz; CDCl₃) 191.6 (s, *C*=S), 169.0 (s), 137.7 (s), 130.6 (d), 128.3 (d), 127.9 (d); *m/z* (EI) 282 (M⁺, 52%), 281 (M⁺-1, 100), 204 (4), 179 (8), 141 (5), 135 (13), 121 (22), 103 (41), 89 (15), 77 (19), 76 (19), 63 (6), 51 (12).

3,5-Dithien-2-yl-4H-1,2,6-thiadiazine-4-thione 224

Similar treatment of 3,5-dithien-2-yl-4*H*-1,2,6-thiadiazin-4-one **184** (104 mg, 0.375 mmol) gave the *title compound* **224** (50 mg, 45%) as bright green needles, mp 134-136 °C (from cyclohexane), R_f 0.75 (Hexane/DCM, 7:3); (found: C, 44.9; H, 2.0; N, 9.5. $C_{11}H_6N_2S_4$ requires C, 44.9; H, 2.1; N, 9.5%); λ_{max} (DCM)/nm 296 (log ε 3.35), 454 (3.15); v_{max} /cm⁻¹ 3088w (Ar CH), 1491w, 1412s, 1391w, 1350s, 1306s, 1260m, 1223w, 1211w, 1161s, 1136w, 1113w, 1078w, 1071w, 1057w, 947w, 914w, 874w, 851m, 839w, 802s; δ_H (500 MHz; CDCl₃) 8.29 (2H, dd, *J* 4.0, 1.0, thienyl *H*), 7.56 (2H, dd, *J* 5.0, 1.5, thienyl *H*), 7.15 (2H, dd, *J* 4.5, 4.0, thienyl *H*); δ_C (125 MHz; CDCl₃) 181.7 (s, *C*=S), 160.3 (s), 139.1 (s), 133.6 (d), 132.7 (d), 126.9 (d); *m*/z (EI) 294 (M⁺, 100%), 293 (93), 261 (5), 210 (4), 185 (12), 147 (7), 141 (26), 139 (25), 127 (12), 115 (14), 109 (80), 95 (24), 71 (16), 69 (18), 58 (14).

2-(3,5-Diphenyl-4H-1,2,6-thiadiazin-4-ylidene)malononitrile 225

To a stirred solution of 3,5-diphenyl-4*H*-1,2,6-thiadiazine-4-thione **223** (100 mg, 0.355 mmol) in PhCl (2 mL) was added TCNE (54.6 mg, 0.426 mmol) and the reaction mixture was heated at *ca.* 132 °C until no starting material remained (TLC). The reaction mixture was then allowed to cool to *ca.* 20 °C, diluted (DCM) and adsorbed onto silica. Chromatography (Hexane/DCM, 1:1), gave the *title compound* **225** (35.6 mg, 79%) as yellow needles, mp (DSC) onset 213.2 °C, peak 214.5 °C (from pentane/DCM, 0 °C), R_f 0.40 (Hexane/DCM, 1:1); (found: C, 68.9; H, 3.2; N, 17.7. C₁₈H₁₀N₄S requires C, 68.8; H, 3.2; N, 17.8%); λ_{max} (DCM)/nm 261 (log ε 3.31), 381 (2.91), 445 (3.07); v_{max} /cm⁻¹ 3046w (Ar CH), 2218m (C=N), 1512s, 1491w, 1477s, 1439s, 1343s, 1277m, 1177w, 1159w, 1103w, 1078w, 1028w, 999w, 966w, 939w, 920w, 837w, 818s, 797m, 775m; δ_{H} (500 MHz; CDCl₃) 7.87 (4H, br s, Ph *H*), 7.59 (6H, br s, Ph *H*); δ_{C} (125 MHz; CDCl₃) 150.4 (s), 142.7 (s), 134.7 (s), 132.1 (d), 129.5 (d), 127.8 (d), 111.8 (s, *C*=N), 79.0 [s, *C*(C=N)₂]; *m*/z (EI) 314 (M⁺, 23%), 288 (5), 210 (9), 177 (16), 167 (15), 149 (100), 138 (9), 125 (7), 121 (10), 113 (14), 111 (14), 105 (10), 99 (12), 97 (17), 93 (10), 84 (41), 77 (12), 71 (41), 57 (56), 51 (21). Further elution (DCM) gave a mixture of two purple compounds which could not be separated or characterized.

2-(3,5-Diphenyl-4*H*-1,2,6-thiadiazin-4-ylidene)malononitrile 225 and 3,5-Diphenyl-4*H*-1,2,6-thiadiazine-4-thione oxide 226

To a stirred solution of 3,5-diphenyl-4*H*-1,2,6-thiadiazine-4-thione **223** (100 mg, 0.355 mmol) in PhMe (2 mL) was added TCNEO (61.3 mg, 0.426 mmol) and the reaction mixture was heated at *ca*. 110 °C until no starting material remained (TLC). The reaction mixture was then allowed to cool to *ca*. 20 °C, diluted (DCM) and adsorbed onto silica. Chromatography (Hexane/DCM, 1:1), gave the *title compound* **225** (88 mg, 79%) as yellow needles, mp (DSC) onset 213.2 °C, peak 214.5 °C (from pentane/DCM, 0 °C), identical to that described above. Further elution (Hexane/DCM, 1:1) gave the *title compound* **226** (13.2 mg, 12%) as red flakes, mp 124-125.5 °C (from pentane/EtOH, at *ca*. 0 °C), *R*f 0.50 (Hexane/DCM, 1:1); (found: C, 60.3; H, 3.3; N, 9.3. C₁₅H₁₀N₂OS₂ requires C, 60.4; H, 3.4; N, 9.4%); λ_{max} (DCM)/nm 251 (log ε 3.18), 284 (3.02), 426 (2.90); ν_{max} /cm⁻¹ 3059w (Ar CH), 1483w, 1437w, 1321m, 1302w, 1269w, 1165w, 1142w, 1082s, 1074m, 1030w, 999w, 986w, 922w, 841w, 793m, 770m; δ_{H} (500 MHz; CDCl₃) 7.95 (2H, d, *J* 7.0, Ph *H*), 7.77-7.75 (2H, m , Ph *H*), 7.56-7.47 (6H, m, Ph *H*); δ_{C} (125 MHz; CDCl₃) 166.0 (s), 153.5 (s), 153.45 (s), 136.2 (s), 135.1 (s), 132.0 (d), 131.1 (d), 129.3 (d), 128.4 (d), 128.0 (d), 127.3 (d); *m*/z (EI) 298 (M⁺, 100%), 281 (75), 269 (202)

(15), 265 (15), 249 (8), 220 (11), 205 (7), 190 (11), 175 (21), 167 (8), 149 (13), 146 (10), 135
(15), 121 (31), 103 (38), 89 (10), 77 (49), 63 (11), 51 (29).

2-(3,5-Dithien-2-yl-4H-1,2,6-thiadiazin-4-ylidene)malononitrile 227

Similar treatment of 3,5-dithien-2-yl-4*H*-1,2,6-thiadiazine-4-thione **224** (105 mg, 0.355 mmol) gave the *title compound* **227** (91.5 mg, 79%) as red needles, mp 217-220 °C (from cyclohexane), R_f 0.25 (Hexane/DCM, 7:3); (found: C, 51.4; H, 1.8; N, 17.1. C₁₄H₆N₄S₃ requires C, 51.5; H, 1.9; N, 17.2%); λ_{max} (DCM)/nm 259 inf (log ε 3.45), 281 (3.63), 422 (3.41), 484 (3.29); v_{max} /cm⁻¹ 3111w and 3094w (Ar CH), 2218m (C=N), 1520m, 1505s, 1452m, 1439m, 1418s, 1348m, 1337w, 1287w, 1248w, 1225w, 1109w, 1057w, 907w, 858m, 851m, 828w, 816m; δ_{H} (500 MHz; CDCl₃) 7.66 (2H, d, *J* 5.0, thienyl *H*), 7.58 (2H, d, *J* 3.5, thienyl *H*), 7.19 (2H, dd, *J* 4.3, 4.3, thienyl *H*-4); δ_{C} (125 MHz; CDCl₃) 142.7 (s), 142.0 (s), 138.0 (s), 133.0 (d), 129.7 (d), 128.0 (d), 111.8 (*C*=N), 78.6 (s); *m/z* (EI) 326 (M⁺, 100%), 293 (44), 277 (4), 249 (4), 217 (7), 171 (60), 149 (12), 144 (12), 127 (12), 115 (8), 109 (46), 97 (8), 82 (11), 69 (29), 58 (23).

Ethyl 2-(3,5-diphenyl-4H-1,2,6-thiadiazin-4-ylidene)acetate 228

To a stirred solution of 3,5-diphenyl-4*H*-1,2,6-thiadiazin-4-thione **223** (100 mg, 0.355 mmol) in PhMe (4 mL) at *ca.* 20 °C was added ethyl diazoacetate (56 μ L, 0.533 mmol) and the reaction mixture was stirred at this temperature until no starting material remained (TLC). The reaction mixture was then diluted with DCM (20 mL) and adsorbed onto silica. Chromatography (Hexane/DCM, 1:1) gave the *title compound* **228** as yellow plates, mp (DSC) onset 82.0 °C, peak 84.0 °C (from pentane, at *ca.* 0 °C), *R*_f 0.41 (Hexane/DCM, 1:1); (found: C, 67.7; H, 4.9; N, 8.3. C₁₉H₁₆N₂O₂S requires C, 67.8; H, 4.8; N, 8.3%); λ_{max} (DCM)/nm 242 (log ε 3.61), 253 inf (3.58), 276 inf (3.40), 380 (3.39), 385 inf (3.36); v_{max} /cm⁻¹ 3059w (Ar CH), 2982w, 2938w, 2901w, 1703s (C=O), 1599w, 1512w, 1489w, 1472w, 1439m, 1395w, 1368w, 1354m, 1315w, 1267s, 1180w, 1153w, 1123w, 1078w, 1036m, 1007w, 966w, 930w, 876m, 833w, 806w, 776m; δ_{H} (500 MHz; CDCl₃) 7.96 (2H, d, *J* 5.0, Ph *H*), 7.89 (2H, d, *J* 7.0, Ph *H*), 7.48 (3H, br s, Ph *H*), 7.42-7.40 (3H, m, Ph *H*), 3.72 (2H, q, *J* 7.0, C*H*₂), 0.93 (3H, t, *J* 7.5, 7.0, C*H*₃); δ_{C} (125 MHz; CDCl₃) 165.3 (s), 152.3 (s), 152.2 (s), 137.8 (s), 135.5 (s), 132.1 (s), 130.7 (d), 130.0 (d), 129.0 (d), 128.7 (d), 128.0 (d), 126.0 (d), 116.6 (d, CHCO₂Et), 60.8

(CH₂), 13.7 (CH₃); *m*/*z* (EI) 336 (M⁺, 21%), 307 (9), 291 (6), 262 (100), 216 (3), 204 (2), 185 (9), 160 (55), 133 (8), 121 (5), 116 (13), 109 (10), 103 (7), 89 (8), 77 (19), 65 (7), 51 (8).

3,3',5,5'-Tetraphenyl-4*H*,4'*H*-4,4'-bi(1,2,6-thiadiazine) 229 and 4-hydrazono-3,5diphenyl-4*H*-1,2,6-thiadiazine 230

To a stirred solution of 3,5-diphenyl-4*H*-1,2,6-thiadiazin-4-thione **223** (100 mg, 0.355 mmol) in EtOH (4 mL) at ca. 20 °C was added hydrazine monohydrate (26.7 mg, 0.533 mmol) and the reaction mixture was heated at reflux until no starting material remained (TLC). The reaction mixture was then diluted with DCM (20 mL), washed (H₂O), dried (Na₂SO₄) and adsorbed onto silica. Chromatography (Hexane/DCM, 1:1) gave the title compound 229 (35.6 mg, 40%) as yellow plates, mp 262-263 °C (from cyclohexane); (found: C, 71.4; H, 4.7; N, 11.1. $C_{30}H_{22}N_4S_2$ requires C, 71.7; H, 4.4; N, 11.1%); $\lambda_{max}(DCM)/nm$ 239 (log ε 4.03), 265 (4.08), 282 inf (3.79), 330 (3.58), 382 (3.70), 397 (3.71); $v_{\text{max}}/\text{cm}^{-1}$ 3059w (Ar CH), 1530w, 1516w, 1491w, 1443m, 1342w, 1323w, 1296m, 1275w, 1261w, 1225w, 1200w, 1179w, 1159w, 1101w, 1076w, 1036w, 1016w, 968w, 922w, 893w, 791m, 768m, 752s; $\delta_{\rm H}$ (500 MHz; $CDCl_3$) 7.59-7.57 (4H, m, Ph H), 7.35-7.27 (6H, m, Ph H), 6.02 (1H, s); $\delta_C(125 \text{ MHz}; CDCl_3)$ 147.7 (s), 136.5 (s), 130.5 (d), 128.4 (d), 126.3 (d), 25.4; *m/z* (EI) 251 (M⁺, 100%), 149 (15), 126 (6), 121 (36), 104 (21), 89 (8), 77 (23), 51 (10). Further elution (DCM) gave the *title* compound 230 (41.8 mg, 42%) as orange plates, mp 1324-136 °C (from pentane); (found: C, 64.2; H, 4.2; N, 19.9. C₁₅H₁₂N₄S requires C, 64.3; H, 4.3; N, 20.0%); λ_{max}(DCM)/nm 251 (log ε 3.30), 278 (3.10), 345 (3.05), 407 (2.73); $v_{\text{max}}/\text{cm}^{-1}$ 3402m (NH₂), 3289w, 3213w, 3053w (Ar CH), 1620w, 1566w, 1508w, 1491m, 1441m, 1352s, 1285w, 1180w, 1157w, 1126w, 1103w, 1076w, 1032w, 991w, 966w, 918w, 841m, 806w; $\delta_{\rm H}$ (500 MHz; CDCl₃) 8.05-8.03 (2H, m, Ph *H*), 7.68-7.66 (2H, m, Ph *H*), 7.51-7.44 6, m, Ph *H*), 5.51 (2H, s, NH₂); $\delta_{C}(125 \text{ MHz}; \text{CDCl}_{3})$ 155.5 (s), 149.5 (s), 135.9 (s), 134.6 (s), 130.7 (d), 130.4 (d), 130.2 (s), 129.0 (d), 128.4 (d), 128.2 (d), 127.1 (d); *m/z* (EI) 280 (M⁺, 100%), 264 (20), 135 (56), 132 (14), 119 (12), 108 (9), 103 (36), 91 (8), 77 (36), 74 (38), 65 (8), 51 (16).

204

9.8 Compounds related to Chapter 8

Ethyl 4-(2-bromophenyl)-6-methoxy-1,5-naphthyridine-3-carboxylate 237; Typical procedure (see Table 23, entry 1)

Ethyl 4-bromo-6-methoxy-1,5-naphthyridine-3-carboxylate 235 (310 mg, 1 mmol), K₂CO₃ (279 mg, 2 equiv), Pd(dppf)Cl₂·DCM (41 mg, 0.05 mmol) and 2-bromophenylboronic acid (264 mg, 1.8 mmol) were dissolved in dioxane/H₂O (3:1) (2 mL). The stirred mixture was heated to reflux (preheated oil bath) and refluxed for 2 h until the reaction was finished (TLC), before it was allowed to cool to ca. 20 °C. It was diluted (DCM, 20 mL), dried (Na₂SO₄), filtered and adsorbed onto silica gel. Dry flash chromatography (Hexane/t-BuOMe, 4:1) gave the *title compound* **237** (378 mg, 98%) as colorless cubes mp 80-81 °C (DCM/pentane), $R_{\rm f}$ 0.60 (Hexane/t-BuOMe, 8:2); (found: C, 55.7; H, 3.8; N, 7.3. C₁₈H₁₅BrN₂O₃ requires C, 55.8; H, 3.9; N, 7.2%); $\lambda_{max}(DCM)/nm$ 231 (log ε 4.01), 264 (3.14), 333 (3.36); v_{max}/cm^{-1} 1703s, 1612m, 1498m, 1402m, 1338m, 1255m, 1110m, 840m, 748s; $\delta_{\rm H}(500 \text{ MHz}; \text{CD}_2\text{Cl}_2)$ 9.28 (1H, s, Naph H-2), 8.27 (1H, d, J 9.0, Naph H-7), 7.69 (1H, d, J 7.9, Ar H), 7.40 (1H, ddd, J 7.4, 7.4, 1.3, Ar H), 7.30 (1H, ddd, J 8.5, 7.6, 1.7, Ar H), 7.21 (1H, dd, J 7.6, 1.6, Ar H), 7.17 (1H, d, J 9.2, Ar H), 4.15 (2H, q, J 7.1, OCH₂), 3.70 (3H, s, OCH₃), 1.05 (3H, t, J 7.1, CH₃); δ_C(125 MHz; CD₂Cl₂) 166.0 (s), 162.7 (s), 148.5 (d), 147.3 (s), 144.3 (s), 140.4 (d), 140.0 (s), 138.5 (s), 132.2 (d), 130.9 (d), 129.4 (d), 126.9 (d), 126.3 (s), 123.2 (s), 118.3 (d), 61.8 (OCH₂), 54.0 (OCH_3) , 13.9 (CH_3) ; m/z (EI) 308 $(M^++1, 21\%)$, 307 $(M^+-Br, 100)$, 279 (75), 247 (8), 236 (12), 191 (14), 164 (12).

4-(2-Chlorophenyl)-6-methoxy-1,5-naphthyridine-3-carboxylate 238

(307 mg, 90%) as colorless plates, mp 67-69 °C (pentane), R_f 0.60 (Hexane/*t*-BuOMe, 8:2); (found: C, 63.2; H, 4.4; N, 8.1. $C_{18}H_{14}CIN_2O_3$ requires C, 63.1; H, 4.4; N, 8.2%); $\lambda_{max}(DCM)/nm$ 236 (log ε 4.03), 261 (3.63), 270 (3.61), 282 inf (3.49), 327 (3.49), 339 (3.46); v_{max}/cm^{-1} 2992w, 2941w, 1705s (C=O), 1612m, 1562w, 1501m, 1479w, 1464w, 1433w, 1402s, 1366m, 1339s, 1321s, 1290m, 1261s, 1256m, 1223m, 1206m, 1180w, 1134m, 1113m, 1059w, 1034s, 1018m, 999w, 932w, 868w, 843s, 812w, 775m, 760m; $\delta_H(500 \text{ MHz}; \text{CD}_2\text{Cl}_2)$ 9.28 (1H, s, Naph *H*-2), 8.27 (1H, d, *J* 9.0, Naph *H*-7), 7.50 (1H, dd, *J* 7.7, 1.4, Ar *H*), 7.39 (1H, ddd, *J* 7.5, 7.5, 1.8, Ar *H*), 7.36 (1H, ddd, *J* 7.5, 7.5, 1.5, Ar *H*), 7.24 (1H, dd, *J* 7.3, 1.9, Ar *H*), 7.17 (1H, d, *J* 9.2, Naph *H*-8), 4.15 (2H, q, *J* 7.1, OCH₂), 3.70 (3H, s, OCH₃), 1.05 (3H, 205 t, *J* 7.2, *CH*₃); $\delta_{C}(125 \text{ MHz}; CD_{2}Cl_{2})$ 166.1 (s), 162.8 (s), 148.5 (d), 145.8 (s), 144.2 (s), 140.4 (d), 140.1 (s), 136.3 (s), 133.3 (s), 131.1 (d), 129.4 (d), 129.1 (d), 126.6 (s), 126.3 (d), 118.3 (d), 61.8 (OCH₂), 54.0 (OCH₃), 13.9 (CH₃); *m*/*z* (EI) 308 (MH⁺-Cl, 20%), 307 (M⁺-Cl, 100), 280 (14), 279 (68), 264 (17), 247 (12), 236 (8), 226 (7), 219 (8), 201 (5), 191 (10), 165 (5), 164 (11), 113 (5).

Ethyl 4-(2,3-dichlorophenyl)-6-methoxy-1,5-naphthyridine-3-carboxylate 239

(373 mg, 99%) as colorless cubes, mp 107-108 °C (pentane), R_f 0.30 (Hexane/*t*-BuOMe, 8:2); (found: C, 57.5; H, 3.9; N, 7.3. C₁₈H₁₄Cl₂N₂O₃ requires C, 57.3; H, 3.7; N, 7.4%); λ_{max} (DCM)/nm 232 (log ε 3.94), 261 (3.32), 269 (3.28), 327 (3.27), 339 (3.25); v_{max} /cm⁻¹ 3046w (Ar CH), 2990w, 2941w, 1713s (C=O), 1612m, 1499s, 1479w, 1450w, 1402m, 1371w, 1339m, 1323s, 1277m, 1261m, 1225m, 1180w, 1144m, 1117m, 1038m, 1018m, 991w, 941w, 848m, 816m, 789m, 773w; δ_{H} (300 MHz; CD₂Cl₂) 9.30 (1H, s, Naph *H*-2), 8.27 (1H, d, *J* 9.3, Naph *H*-7), 7.57 (1H, dd, *J* 7.8, 1.8, Ar *H*), 7.31 (1H, dd, *J* 7.8, 7.8, Ar *H*), 7.18 (1H, d, *J* 9.0, Naph *H*-8), 7.14 (1H, dd, *J* 7.5, 1.5, Ar *H*), 4.16 (2H, q, *J* 7.0, OCH₂), 3.69 (3H, s, OCH₃), 1.07 (3H, t, *J* 7.1, CH₃); δ_{C} (75 MHz; CD₂Cl₂) 165.7 (s), 162.9 (s), 148.6 (d), 145.4 (s), 144.4 (s), 140.4 (d), 139.9 (s), 138.8 (s), 132.8 (s), 131.7 (s), 129.9 (d), 129.2 (d), 127.1 (d), 126.0 (s), 118.6 (d), 61.9 (OCH₂), 54.0 (OCH₃), 13.9 (CH₃); *m*/z (EI) 378 (M⁺+2, 0.2%), 376 (M⁺, 0.2), 343 [(M⁺+2)-Cl, 36], 341 (M⁺-Cl, 100), 333 (2), 331 (4), 315 (17), 313 (61), 298 (10), 278 (7), 270 (11), 254 (7), 225 (7), 198 (8), 189 (4), 162 (8), 126 (5), 99 (5), 63 (9).

Ethyl 4-(2,4-dichlorophenyl)-6-methoxy-1,5-naphthyridine-3-carboxylate 240

(323 mg, 86%) as colorless cubes, mp 82-83 °C (pentane), $R_{\rm f}$ 0.29 (Hexane/t-BuOMe, 8:2); (found: C, 57.5; H, 3.7; N, 7.4. $C_{18}H_{14}Cl_2N_2O_3$ requires C, 57.3; H, 3.7; N, 7.4%); $\lambda_{\rm max}$ (DCM)/nm 232 (log ε 3.66), 261 inf (2.87), 270 inf (2.76), 329 (2.95), 339 (2.93); $v_{\rm max}$ /cm⁻¹ 2986w, 2941w, 1712s (C=O), 1612m, 1595w, 1570w, 1557w, 1501s, 1464m, 1435w, 1404s, 1366m, 1340m, 1321s, 1281s, 1267s, 1248m, 1225m, 1207m, 1180w, 1138s, 1115m, 1099m, 1057m, 1034m, 1016m, 1001w, 932w, 866m, 845s, 833s, 814m, 791m, 775m; $\delta_{\rm H}$ (300 MHz; CD₂Cl₂) 9.30 (1H, s, Naph *H*-2), 8.26 (1H, d, *J* 9.0, Naph *H*-7), 7.55 (1H, d, *J* 2.1, Ar *H*), 7.37 (1H, dd, *J* 8.3, 2.1, Ar *H*), 7.25-7.20 (2H, m, Ar & Naph *H*), 4.19 (2H, q, *J* 7.2, OC*H*₂), 3.72 (3H, s, OC*H*₃), 1.11 (3H, t, *J* 7.1, C*H*₃); $\delta_{\rm C}$ (75 MHz; CD₂Cl₂) 165.8 (s), 162.9 (s), 148.4 (d), 144.8 (s), 144.2 (s), 140.3 (d), 139.9 (s), 135.1 (s), 134.3 (s), 134.1 (s), 132.0 (d), 129.0 (d), 126.7 (d), 126.3 (s), 118.6 (d), 62.0 (OCH₂), 54.1 (OCH₃), 14.0 (CH₃); *m/z* (EI) 343 [(M⁺+2)-206 Cl, 33%], 341 (M⁺-Cl, 100), 333 (3), 331 (5), 315 (19), 313 (63), 298 (14), 278 (5), 270 (7), 253 (7), 225 (9), 198 (11), 190 (4), 163 (3), 147 (5), 124 (3), 99 (4), 80 (5).

Ethyl 4-[2-chloro-4-(trifluoromethyl)phenyl]-6-methoxy-1,5-naphthyridine-3-carboxylate 241

(377 mg, 92%) as colorless prisms, mp 90-91 °C (pentane), R_f 0.29 (Hexane/*t*-BuOMe, 8:2); (found: C, 55.6; H, 3.3; N, 6.6. C₁₉H₁₄ClF₃N₂O₃ requires C, 55.6; H, 3.4; N, 6.8%); λ_{max} (DCM)/nm 233 (log ε 3.71), 272 (2.83), 325 (2.97), 340 (2.89); v_{max} /cm⁻¹ 2986w, 2945w, 1713m (C=O), 1612m, 1499m, 1472w, 1406w, 1391w, 1368w, 1343w, 1323s, 1288w, 1271m, 1254w, 1227w, 1209w, 1177s, 1138s, 1117w, 1082m, 1063w, 1036w, 1015w, 1003w, 934w, 897w, 868w, 843m, 814w; δ_{H} (300 MHz; CD₂Cl₂) 9.33 (1H, s, Naph *H*-2), 8.28 (1H, d, *J* 9.0, Naph *H*-7), 7.80 (1H, s, Ar *H*), 7.64 (1H, d, *J* 8.1, Ar *H*), 7.39 (1H, d, *J* 8.1, Ar *H*), 7.20 (1H, d, *J* 9.0, Naph *H*-8), 4.17 (2H, q, *J* 7.1, OCH₂), 3.68 (3H, s, OCH₃), 1.06 (3H, t, *J* 7.1, CH₃); δ_C (75 MHz; CD₂Cl₂) 165.6 (s), 163.0 (s), 148.6 (d), 144.5 (s), 144.4 (s), 140.7 (s), 140.4 (d), 139.7 (s), 134.1 (s), 131.6 (d), 131.2 (q, ²*J*_{CF} 33.2, F₃CC), 125.9 (q, ³*J*_{CF} 3.8, F₃CC_qCH), 122.3 (q, ³*J*_{CF} 3.8, F₃CC_qCH), 123.1 (q, ¹*J*_{CF} 269.8, F₃C), 118.8 (d), 62.0 (OCH₂), 54.1 (OCH₃), 13.8 (CH₃); *m/z* (EI) 411 (M⁺+H, 0.5%), 409 (M⁺-H, 1), 376 (MH⁺-Cl, 22), 375 (M⁺-Cl, 100), 365 (4), 347 (70), 332, (10), 315 (4), 304 (6), 294 (5), 287 (4), 259 (5), 232 (6), 80 (4), 64 (2).

Ethyl 4-(2-chloro-4-methylphenyl)-6-methoxy-1,5-naphthyridine-3-carboxylate 242

(299 mg, 84%) as colorless cubes, mp 69-71 °C (pentane), R_f 0.35 (Hexane/t-BuOMe, 8:2); (found: C, 64.1; H, 4.7; N, 7.7. C₁₉H₁₇ClN₂O₃ requires C, 64.0; H, 4.8; N, 7.9%); λ_{max} (DCM)/nm 237 (log ε 4.18), 250 inf (3.90), 258 inf (3.78), 267 inf (3.67), 329 (3.77); v_{max} /cm⁻¹ 2982w, 2943w, 2853w, 1726s (C=O), 1609m, 1574w, 1493s, 1468w, 1433w, 1402m, 1368m, 1341m, 1283m, 1259s, 1223s, 1207m, 1140m, 1138m, 1111m, 1059w, 1038w, 1024m, 993w, 943w, 878w, 851m, 829m, 818w, 772m; δ_{H} (500 MHz; CD₂Cl₂) 9.25 (1H, s, Naph *H*-2), 8.26 (1H, d, *J* 9.0, Naph *H*-7), 7.33 (1H, s, Ar *H*), 7.17 (1H, d, *J* 9.0, Naph *H*-8), 7.13-7.11 (2H, m, Ar *H*), 4.17 (2H, q, *J* 7.2, OCH₂), 3.73 (3H, s, OCH₃), 2.43 (3H, s, CH₃), 1.09 (3H, t, *J* 7.2, CH₃); δ_{C} (125 MHz; CD₂Cl₂) 166.2 (s), 162.7 (s), 148.4 (d), 145.9 (s), 144.2 (s), 140.9 (d), 140.3 (s), 139.8 (s), 133.0 (s), 132.9 (C_q), 130.9 (d), 129.6 (d), 127.1 (d), 126.9 (s), 118.2 (d), 61.8 (OCH₂), 54.0 (OCH₃), 21.3 (CH₃), 14.0 (CH₃); *m/z* (EI) 322 (MH⁺- Cl, 19%), 321 (M⁺-Cl, 100), 311 (4), 293 (53), 278 (11), 261 (4), 250 (6), 240 (4), 233 (6), 205 (6), 178 (3), 151 (3), 138 (3), 127 (2).

Ethyl 4-(2-chloro-4-methoxyphenyl)-6-methoxy-1,5-naphthyridine-3-carboxylate 243

(335 mg, 90%) as colorless cubes, mp 97-99 °C (pentane), R_f 0.23 (Hexane/t-BuOMe, 8:2); (found: C, 61.1; H, 4.6; N, 7.4. C₁₉H₁₇ClN₂O₄ requires C, 61.2; H, 4.6; N, 7.5%); λ_{max} (DCM)/nm 234 (log ε 4.11), 248 inf (3.77), 259 inf (3.67), 269 inf (3.55), 288 (3.39), 326 (3.55); v_{max} /cm⁻¹ 2984w, 2943w, 2907w, 2832w, 1726s (C=O), 1609s, 1572w, 1506w, 1491s, 1464w, 1427m, 1402m, 1368w, 1339m, 1310w, 1277m, 1260s, 1236s, 1217s, 1206s, 1182w, 1136m, 1109m, 1043m, 1036m, 1018m, 991w, 943w, 889m, 878w, 851s, 831s, 772m; δ_{H} (300 MHz; CD₂Cl₂) 9.23 (1H, s, Naph *H*-2), 8.25 (1H, d, *J* 9.0, Naph *H*-7), 7.17 (2H, d, *J* 8.4, Ar *H*), 7.07 (1H, d, *J* 3.9, Ar *H*), 6.92 (1H, dd, *J* 8.4, 3.6, Ar *H*), 4.18 (2H, q, *J* 7.0, OCH₂), 3.87 (3H, s, OCH₃), 3.75 (3H, s, OCH₃), 1.11 (3H, t, *J* 7.2, CH₃); δ_{C} (75 MHz; CD₂Cl₂) 166.2 (s), 162.7 (s), 160.3 (s), 148.2 (d), 145.7 (s), 144.0 (s), 140.4 (s), 140.2 (d), 133.9 (s), 131.9 (d), 128.0 (s), 127.1 (s), 118.3 (d), 114.4 (d), 112.4 (d), 61.8 (OCH₂), 56.0 (OCH₃), 54.0 (OCH₃), 14.0 (CH₃); *m*/*z* (EI) 338 (MH⁺-Cl, 25%), 337 (M⁺-Cl, 100), 327 (5), 309 (42), 294 (13), 277 (3), 265 (4), 251 (8), 241 (3), 221 (3), 213 (3), 178 (3), 151 (4), 99 (3).

Ethyl 4-(2-chloro-4-fluorophenyl)-6-methoxy-1,5-naphthyridine-3-carboxylate 244

(320 mg, 89%) as colorless cubes, mp 75-77 °C (pentane), R_f 0.35 (Hexane/t-BuOMe, 8:2); (found: C, 60.1; H, 3.9; N, 7.8. C₁₈H₁₄ClFN₂O₃ requires C, 59.9; H, 3.9; N, 7.8%); λ_{max} (DCM)/nm 233 (log ε 3.88), 261 (3.32), 271 (3.29), 325 (3.20), 339 (3.14); v_{max} /cm⁻¹ 3048w, 2986w, 1730s (C=O), 1611m, 1572w, 1495s, 1470w, 1435w, 1402m, 1369w, 1339m, 1273s, 1234m, 1213m, 1200m, 1182w, 1144w, 1113w, 1036w, 1016m, 991w, 945w, 899m, 853s, 820w, 804w, 774m; δ_H (300 MHz; CD₂Cl₂) 9.28 (1H, s, Naph *H*-2), 8.26 (1H, d, *J* 9.0, Naph *H*-7), 7.30-7.11 (4H, m, Ar *H*), 4.18 (2H, q, *J* 7.1, OCH₂), 3.72 (3H, s, OCH₃), 1.10 (3H, t, *J* 9.0, CH₃); δ_C (75 MHz; CD₂Cl₂) 165.9 (s), 164.2 (s), 161.9 (d, ¹J_{CF} 249.2, FC), 148.5 (d), 144.9 (s), 144.3 (s), 140.4 (d), 140.1 (s), 134.1 (d, ³J_{CF} 10.6, FCCHCCl), 132.1 (d, ⁴J_{CF} 3.8, FCCHCHC_q), 132.4 (d, ³J_{CF} 9.1, FCCHCH), 126.6 (s), 118.5 (d), 116.5 (d, ²J_{CF} 25.7, FCCH), 113.7 (d, ²J_{CF} 21.9, FCCH), 61.9 (OCH₂), 54.0 (OCH₃), 14.0 (CH₃); *m*/z (EI) 325 (M⁺-Cl, 100%), 315 (5), 297 (55), 282 (13), 265 (7), 254 (7), 244 (7), 237 (6), 223 (3), 209 (8), 182 (11), 156 (3), 131 (5), 80 (3).

Ethyl 4-(2,5-dichlorophenyl)-6-methoxy-1,5-naphthyridine-3-carboxylate 245

(345 mg, 92%) as colorless cubes, mp 85-86 °C (pentane), R_f 0.35 (Hexane/*t*-BuOMe, 8:2); (found: C, 57.3; H, 3.7; N, 7.5. C₁₈H₁₄Cl₂N₂O₃ requires C, 57.3; H, 3.7; N, 7.4%); λ_{max} (DCM)/nm 232 (log ε 3.74), 261 inf (2.93), 268 inf (2.84), 328 inf (3.01), 340 inf (2.99); ν_{max} /cm⁻¹ 2990w, 2957w, 2905w, 1711s (C=O), 1612m, 1558w, 1497s, 1456m, 1431w, 1402s, 1379w, 1368m, 1339m, 1317s, 1275m, 1263m, 1252m, 1225m, 1207m, 1177w, 1140m, 1128m, 1113m, 1094m, 1055m, 1032m, 1011w, 988w, 883w, 870w, 849s, 824m, 814m; δ_{H} (500 MHz; CD₂Cl₂) 9.31 (1H, s, Naph *H*-2), 8.27 (1H, d, *J* 9.0, Naph *H*-7), 7.45 (1H, d, *J* 8.7, Ar *H*), 7.38 (1H, d, *J* 8.4, Ar *H*), 7.27 (1H, s, Ar *H*), 7.19 (1H, d, *J* 9.0, Naph *H*-8), 4.20 (2H, q, *J* 6.7, OCH₂), 3.73 (3H, s, OCH₃), 1.11 (3H, t, *J* 7.1, CH₃); δ_{C} (125 MHz; CD₂Cl₂) 165.7 (s), 162.9 (s), 148.5 (d), 144.5 (s), 144.4 (s), 140.4 (d), 139.8 (s), 138.0 (s), 132.1 (s), 131.9 (s), 130.9 (d), 130.3 (d), 129.3 (d), 126.1 (s), 118.7 (d), 62.0 (OCH₂), 54.1 (OCH₃), 14.0 (CH₃); *m*/*z* (EI) 343 [(M⁺+2)-Cl, 40%], 341 (M⁺-Cl, 100), 333 (2), 331 (4), 315 (24), 313 (60), 298 (17), 278 (5), 270 (12), 253 (6), 225 (8), 198 (9), 147 (4), 99 (3), 80 (4).

Ethyl 4-[2-chloro-5-(trifluoromethyl)phenyl]-6-methoxy-1,5-naphthyridine-3-carboxylate 246

(377 mg, 92%) as colorless cubes, mp 89-90 °C (pentane), R_f 0.47 (Hexane/t-BuOMe, 8:2); (found: C, 55.6; H, 3.1; N, 6.8. C₁₉H₁₄ClF₃N₂O₃ requires C, 55.6; H, 3.4; N, 6.8%); λ_{max} (DCM)/nm 232 (log ε 3.70), 262 (3.02), 271 (2.98), 329 (3.00), 341 (2.99); v_{max} /cm⁻¹ 2990w, 2947w, 1724m (C=O), 1611m, 1574w, 1495m, 1437w, 1400m, 1371w, 1344m, 1325m, 1300w, 1287m, 1263s, 1219m, 1206w, 1167m, 1148m, 1125s, 1113m, 1080s, 1040w, 1018m, 989w, 928w, 876w, 845m, 833m, 816w, 793w; δ_{H} (300 MHz; CD₂Cl₂) 9.34 (1H, s, Naph *H*-2), 8.29 (1H, d, *J* 9.0, Naph *H*-7), 7.66 (2H, s, Ar *H*), 7.56 (1H, s, Ar *H*), 7.20 (1H, d, *J* 9.0, Naph *H*-8), 4.17 (2H, q, *J* 7.5, OCH₂), 3.68 (3H, s, OCH₃), 1.06 (3H, t, *J* 7.4, CH₃); δ_{C} (75 MHz; CD₂Cl₂) 165.6 (s), 163.0 (s), 148.6 (d), 144.5 (s), 144.1 (s), 140.4 (d), 139.8 (s), 137.4 (s), 129.8 (d), 127.9 (q, ²*J*_{CF} 33.0, F₃CC), 128.9 (s), 128.4 (q, ³*J*_{CF} 3.7, F₃CCCH), 126.3 (q, ³*J*_{CF} 3.7, F₃CCCH), 126.0 (q, ¹*J*_{CF} 246.0, F₃C), 122.7 (s), 118.7 (d), 62.0 (OCH₂), 54.0 (OCH₃), 13.9 (CH₃); *m*/*z* (EI) 376 (MH⁺-Cl, 22%), 375 (M⁺-Cl, 100), 365 (4), 347 (70), 332 (11), 315 (4), 304 (6), 294 (5), 287 (4), 259 (5), 232 (6), 80 (4).

Ethyl 3-(2-chloropyrid-3-yl)-6-methoxy-1,5-naphthyridine-3-carboxylate 247

(220 mg, 64%) as colorless cubes, mp 120-122 °C (pentane), R_f 0.77 (*t*-BuOMe); (found: C, 59.4; H, 4.1; N, 12.3. C₁₇H₁₄ClN₃O₃ requires C, 59.4; H, 4.1; N, 12.2%); λ_{max} (DCM)/nm 232 (log ε 3.69), 263 (3.07), 328 (3.01), 338 (3.00); v_{max} /cm⁻¹ 3044w, 2986w, 2945w, 2907w, 1722s (C=O), 1611m, 1572w, 1557w, 1495s, 1479w, 1449w, 1429w, 1395s, 1371w, 1341m, 1281m, 1261m, 1234s, 1215m, 1179w, 1146w, 1115m, 1074w, 1015m, 974w, 851m, 810m, 773m; δ_{H} (500 MHz; CD₂Cl₂) 9.38 (1H, s, Naph *H*-2), 8.50 (1H, br s, Ar *H*), 8.32 (1H, d, *J* 9.0, Naph *H*-7), 7.66 (1H, d, *J* 7.4 Ar *H*), 7.43-7.41 (1H, m, Ar *H*), 7.24 (1H, d, *J* 9.2, Naph *H*-8), 4.24-4.22 (3H, m, OCH₂), 3.74 (3H, s, OCH₃), 1.13 (3H, t, *J* 7.0, CH₃); δ_{C} (125 MHz; CD₂Cl₂); 165.6 (s), 162.9 (s), 149.8 (s), 149.0 (d), 148.6 (d), 144.5 (s), 143.9 (s), 140.4 (d), 139.8 (s), 139.7 (d), 133.1 (s), 125.9 (s), 122.0 (d), 118.8 (d), 62.0 (OCH₂), 54.1 (OCH₃), 14.0 (CH₃); *m*/*z* (EI) 309 (MH⁺-Cl, 19%), 308 (M⁺-Cl, 100), 298 (3), 280 (69), 252 (7), 237 (4), 227 (4), 220 (3), 206 (4), 192 (5), 165 (6), 138 (3), 126 (2), 114 (2), 100 (2), 87 (2).

Ethyl 4-(3-chloropyrid-4-yl)-6-methoxy-1,5-naphthyridine-3-carboxylate 248

(220 mg, 64%) as colorless needles, mp 95-97 °C (pentane), R_f 0.77 (*t*-BuOMe); (found: C, 59.5; H, 4.3; N, 12.2. C₁₇H₁₄ClN₃O₃ requires C, 59.4; H, 4.1; N, 12.2%); λ_{max} (DCM)/nm 229 (log ε 3.31), 249 (2.82), 261 inf (2.85), 267 (2.87), 318 (2.97), 327 (2.97); ν_{max} /cm⁻¹ 2982w, 2922w, 1726m (C=O), 1612w, 1587w, 1566w, 1499m, 1464w, 1433w, 1402m, 1371w, 1339m, 1288m, 1263m, 1225m, 1207w, 1180w, 1138w, 1121m, 1096s, 1024m, 980w, 932s, 901s, 854m, 818w, 770w; δ_{H} (500 MHz; CD₂Cl₂) 9.35 (1H, s, Naph *H*-2), 8.70 (1H, s, Ar *H*), 8.56 (1H, s, Ar *H*), 8.28 (1H, d, *J* 9.0, Naph *H*-7), 7.21-7.19 (2H, m, Ar *H*), 4.19 (3H, q, *J* 6.6, OC*H*₂), 3.69 (3H, s, OC*H*₃), 1.09 (3H, t, *J* 7.0, C*H*₃); δ_{C} (125 MHz; CD₂Cl₂); 165.3 (s), 163.0 (s), 149.2 (d), 148.6 (d), 147.3 (d), 144.8 (s), 144.5 (s), 143.0 (s), 140.4 (d), 139.3 (s), 131.3 (s), 125.5 (s), 125.3 (d), 118.9 (d), 62.1 (OCH₂), 54.1 (OCH₃), 13.8 (CH₃); *m*/z (EI) 309 (MH⁺-Cl, 19%), 308 (M⁺-Cl, 100), 298 (3), 280 (65), 252 (7), 237 (4), 227 (4), 206 (4), 192 (5), 165 (5), 138 (2), 114 (2).

Ethyl4-(2-bromophenyl)-6-oxo-5,6-dihydro-1,5-naphthyridine-3-carboxylate249;Typical procedure (Table 24)

To a stirred solution of ethyl 4-(2-bromophenyl)-6-methoxy-1,5-naphthyridine-3-carboxylate **237** (187 mg, 0.5 mmol) and NaI (255 mg, 1.5 mmol) in MeCN (1 mL) was added dropwise TMSCl (314 μ L, 2.5 mmol). An orange suspension formed in the reaction mixture which was 210

then refluxed for 1-2 h until the reaction was finished (TLC). The reaction was diluted with H₂O (10 mL) and Na₂S₂O₂ (25 mg) was added. The mixture was extracted (DCM, 15 mL), dried (Na₂SO₄), filtered and adsorbed onto silica gel. Dry flash chromatography (*t*-BuOMe) gave the *title compound* **249** (130 mg, 70%) as colorless plates, mp 201-203 °C (*t*-BuOMe), $R_{\rm f}$ 0.36 (*t*-BuOMe, 8:2); (found: C, 54.5; H, 3.9; N, 7.3. C₁₇H₁₃BrN₂O₃ requires C, 54.7; H, 3.5; N, 7.5%); $\lambda_{\rm max}$ (DCM)/nm 233 (log ε 3.10), 349 (2.68); $v_{\rm max}/{\rm cm}^{-1}$ 1718m (C=O), 1666s (NHC=O), 1317m, 1213m, 1141m, 1028w, 900w, 852m, 758m; $\delta_{\rm H}$ (500 MHz; CD₂Cl₂) 9.08 (1H, s, Naph *H*-2), 8.33 (1H, br s, N*H*), 8.01 (1H, d, *J* 9.8, Naph *H*-7), 7.77 (1H, dd, *J* 7.9, 1.1, Ar *H*), 7.50 (1H, ddd, *J* 7.5, 7.6, 1.1, Ar *H*), 7.43 (1H, ddd, *J* 8.0, 7.6, 1.7, Ar *H*), 7.23 (1H, dd, *J* 7.6, 1.6, Ar *H*), 6.84 (1H, d, *J* 9.8, Naph *H*-8), 4.11 (2H, q, *J* 7.1, OCH₂), 1.03 (3H, t, *J* 7.1, CH₃); $\delta_{\rm C}$ (125 MHz; CD₂Cl₂) 165.0 (s), 161.6 (s), 146.4 (d), 142.0 (d), 140.4 (s), 135.5 (s), 133.9 (d), 133.8 (s), 132.7 (s), 131.5 (d), 130.8 (d), 128.8 (d), 128.1 (d), 126.3 (s), 123.5 (s), 62.0 (CH₂), 13.9 (CH₃); *m*/z (EI) 373 (M⁺+1, 1%), 372 (M⁺, 2), 293 (M⁺-Br, 35), 266 (11), 220 (5), 192 (9).

Ethyl 4-(2-chlorophenyl)-6-oxo-5,6-dihydro-1,5-naphthyridine-3-carboxylate 250

(150 mg, 81%) as colorless needles, mp 130-132 °C (*t*-BuOMe), $R_{\rm f}$ 0.35 (*t*-BuOMe); (found: C, 62.2; H, 4.0; N, 8.6. C₁₇H₁₃ClN₂O₃ requires C, 62.1; H, 4.0; N, 8.5%); $\lambda_{\rm max}$ (DCM)/nm 235 (log ε 3.89), 262 (3.51), 271 (3.50), 338 inf (3.37), 348 (3.48), 363 (3.36); $\nu_{\rm max}$ /cm⁻¹ 3036w, 2990w, 2953w, 2926w, 1715m (C=O), 1661s (NHC=O), 1605m, 1580w, 1487w, 1450w, 1431w, 1366m, 1325m, 1314m, 1250w, 1234w, 1207m, 1138m, 1109m, 1059w, 1022w, 930w, 856w, 826w, 768m; $\delta_{\rm H}$ (500 MHz; CD₂Cl₂) 9.07 (1H, s, Naph *H*-2), 8.45 (1H, br s, NH), 8.01 (1H, d, *J* 9.8, Naph *H*-7), 7.59 (1H, dd, *J* 8.1, 1.0, Ar *H*), 7.51 (1H, ddd, *J* 7.6, 7.9, 1.8, Ar *H*), 7.46 (1H, ddd, *J* 7.5, 7.6, 1.2, Ar *H*), 7.24 (1H, dd, *J* 7.6, 1.6, Ar *H*), 6.84 (1H, d, *J* 9.8, Naph *H*-7), 4.80 (2H, dq, *J* 7.2, 1.6, OC*H*₂), 1.03 (3H, t, *J* 7.2, C*H*₃); $\delta_{\rm C}$ (125 MHz; CD₂Cl₂) 165.1 (s), 161.6 (s), 146.3 (d), 142.0 (d), 140.3 (s), 134.0 (s), 133.8 (s), 132.9 (s), 131.7 (s), 131.5 (d), 130.7 (d), 130.6 (d), 128.2 (d), 128.1 (d), 126.6 (s), 62.0 (OCH₂), 13.9 (CH₃); *m/z* (EI) 330 (M⁺+2, 3%), 328 (M⁺, 6), 293 (M⁺-Cl, 69), 265 (100), 247 (7), 219 (8), 192 (11), 164 (6), 139 (3), 113 (6), 63 (3).

Ethyl 4-(2,3-dichlorophenyl)-6-oxo-5,6-dihydro-1,5-naphthyridine-3-carboxylate 251

(166 mg, 92%) as colorless plates, mp 171.5-172.5 °C (*t*-BuOMe), R_f 0.38 (*t*-BuOMe); (found: C, 56.4; H, 3.3; N, 7.6. C₁₇H₁₂Cl₂N₂O₃ requires C, 56.2; H, 3.3; N, 7.7%); λ_{max} (DCM)/nm 232 (log ε 3.59), 250 inf (3.01), 259 inf (2.88), 268 inf (2.75), 337 inf (3.03), 349 (3.15), 362 (3.04); v_{max} /cm⁻¹ 2978w, 2932w, 1724m (C=O), 1665s (NHC=O), 1607w, 1578w, 1487w, 1450w, 1418w, 1395w, 1379w, 1325w, 1304m, 1281w, 1217m, 1144m, 1117m, 1098w, 1047w, 1026w, 972w, 928w, 851m, 783m; δ_H (500 MHz; CD₂Cl₂) 9.10 (1H, s, Naph *H*-2), 8.59 (1H, br s, N*H*), 8.02 (1H, d, *J* 9.8, Naph *H*-7), 7.67 (1H, d, *J* 8.0, Ar *H*), 7.41 (1H, dd, *J* 7.8, 7.8, Ar *H*), 7.15 (1H, d, *J* 7.6, Ar *H*), 6.84 (1H, d, *J* 9.8, Naph *H*-8), 4.13 (2H, m, OCH₂), 1.05 (3H, t, *J* 7.1, CH₃); δ_C (125 MHz; CD₂Cl₂) 164.8 (s), 161.7 (s), 146.5 (d), 142.0 (d), 140.6 (s), 134.7 (s), 134.1 (s), 133.6 (s), 132.7 (s), 132.5 (s), 132.0 (d), 129.0 (d), 128.9 (d), 128.2 (d), 126.1 (s), 62.1 (OCH₂), 13.9 (CH₃); m/z (EI) 364 (M⁺+2, 3%), 362 (M⁺, 5), 329 (20), 327 (M⁺-Cl, 63), 317 (5), 301 (36), 299 (100), 281 (6), 264 (20), 253 (7), 226 (13), 207 (7), 198 (4), 191 (6), 173 (5), 164 (8), 147 (8), 138 (6), 127 (4), 113 (7), 99 (6), 64 (5), 57 (7).

Ethyl 4-(2,4-dichlorophenyl)-6-oxo-5,6-dihydro-1,5-naphthyridine-3-carboxylate 252

(150 mg, 83%) as colorless plates, mp 155-156.5 °C (*t*-BuOMe), R_f 0.38 (*t*-BuOMe); (found: C, 56.4; H, 3.3; N, 7.8. C₁₇H₁₂Cl₂N₂O₃ requires C, 56.2; H, 3.3; N, 7.7%); λ_{max} (DCM)/nm 233 (log ε 3.61), 259 inf (2.99), 268 inf (2.90), 338 inf (3.04), 349 (3.15), 362 (3.04); v_{max} /cm⁻¹ 3090w, 3032w, 2941w, 1732m (C=O), 1707m, 1659s (NHC=O), 1603w, 1557w, 1481w, 1447w, 1379w, 1368w, 1327m, 1310w, 1296m, 1206w, 1144m, 1130m, 1115w, 1099w, 1059w, 1030w, 1016w, 997w, 856m, 835w, 822w, 773w, 760w; δ_H (500 MHz; CD₂Cl₂) 9.09 (1H, s, Naph *H*-2), 8.82 (1H, br s, N*H*), 8.02 (1H, d, *J* 9.9, Naph *H*-7), 7.62 (1H, s, Ar *H*'-3), 7.45 (1H, d, *J* 8.2, Ar *H*'-5), 7.19 (1H, d, *J* 8.1, Ar *H*'-6), 6.83 (1H, d, *J* 9.8, Naph *H*-8), 4.15 (2H, q, *J* 7.0, OC*H*₂), 1.10 (3H, t, *J* 7.1, C*H*₃); δ_C (125 MHz; CD₂Cl₂) 164.9 (s), 161.9 (s), 146.4 (d), 142.1 (d), 140.5 (s), 136.7 (s), 134.8 (s), 133.0 (s), 132.9 (s), 131.7 (d), 130.6 (d), 130.5 (s), 128.6 (d), 128.2 (d), 126.4 (s), 62.2 (OCH₂), 14.0 (CH₃); *m*/z (EI) 364 (M⁺+2, 8%), 362 (M⁺, 12), 329 (29), 327 (M⁺-Cl, 82), 319 (5), 317 (7), 301 (40), 299 (100), 283 (3), 281 (8), 264 (18), 253 (10), 236 (4), 225 (18), 207 (5), 200 (4), 191 (8), 179 (3), 164 (10), 147 (11), 138 (7), 113 (8), 99 (5), 87 (4), 63 (6).

Ethyl 4-[2-chloro-4-(trifluoromethyl)phenyl]-6-oxo-5,6-dihydro-1,5-naphthyridine-3carb-oxylate 253

(158 mg, 80%) as colorless cubes, mp 189-191 °C (*t*-BuOMe), $R_{\rm f}$ 0.51 (*t*-BuOMe); (found: C, 54.5; H, 3.0; N, 7.0. C₁₈H₁₂ClF₃N₂O₃ requires C, 54.5; H, 3.1; N, 7.1%); $\lambda_{\rm max}$ (DCM)/nm 234 (log ε 4.06), 263 (3.57), 269 (3.53), 339 inf (3.56), 349 (3.66), 362 (3.54); $v_{\rm max}$ /cm⁻¹ 3019w, 2986w, 2941w, 2851w, 1724m (C=O), 1665s (NHC=O), 1605m, 1487w, 1450w, 1395m, 1368w, 1321s, 1287w, 1204m, 1171m, 1134s, 1080m, 1065m, 1020w, 883m, 864m, 839m, 800w, 775w; $\delta_{\rm H}$ (300 MHz; CD₂Cl₂) 9.13 (1H, s, Naph *H*-2), 8.61 (1H, br s, N*H*), 8.04 (1H, d, *J* 9.8, Naph *H*-7), 7.88 (1H, br s, Ar *H*'-3), 7.73 (1H, d, *J* 7.9, Ar *H*'-5), 7.41 (1H, d, *J* 7.9, Ar *H*'-6), 6.84 (1H, d, *J* 9.8, Naph *H*-8), 4.12 (2H, q, *J* 7.1, OC*H*₂), 1.05 (3H, t, *J* 7.1, C*H*₃); $\delta_{\rm C}$ (75 MHz; CD₂Cl₂) 164.7 (s), 162.1 (s), 146.4 (d), 142.0 (d), 140.6 (s), 136.1 (s), 134.9 (s), 133.4 (q, ²*J*_{CF} 33.5, F₃CC), 133.0 (s), 132.7 (s), 131.6 (d), 128.2 (d), 127.6 (q, ³*J*_{CF} 3.8, F₃CCCH), 126.1 (s), 123.7 (q, ¹*J*_{CF} 272.8, F₃C), 124.9 (q, ³*J*_{CF} 3.5, F₃CCCH), 62.3 (OCH₂), 13.8 (CH₃); *m*/z (EI) 398 (M⁺+2, 3%), 396 (M⁺, 8), 361 (M⁺-Cl, 50), 351 (5), 333 (100), 315 (7), 287 (7), 260 (9), 241 (4), 232 (4), 207 (4), 192 (3), 181 (3).

Ethyl 4-(2-chloro-4-methylphenyl)-6-oxo-5,6-dihydro-1,5-naphthyridine-3-carboxylate 254

(127 mg, 74%) as colorless cubes, mp 164-166 °C (*t*-BuOMe), R_f 0.40 (*t*-BuOMe); (found: C, 63.3; H, 4.4; N, 8.1. C₁₈H₁₅ClN₂O₃ requires C, 63.1; H, 4.4; N, 8.2%); λ_{max} (DCM)/nm 234 (log ε 3.83), 261 (3.30), 268 (3.25), 339 inf (3.27), 349 (3.37), 360 (3.25); ν_{max} /cm⁻¹ 2941w, 2870w, 1732m (C=O), 1717m, 1665s (NHC=O), 1605w, 1558w, 1541w, 1506w, 1485w, 1447w, 1395w, 1381w, 1366w, 1327w, 1310w, 1204m, 1113m, 1061w, 1028w, 982w, 966w, 934w, 883w, 849m, 818m, 802w; δ_H (300 MHz; CD₂Cl₂) 9.06 (1H, s, Naph *H*-2), 8.18 (1H, br s, N*H*), 8.01 (1H, d, *J* 9.9, Naph *H*-7), 7.42 (1H, s, Ar *H*'-2), 7.27 (1H, dd, *J* 7.8, 0.6, Ar *H*'-5), 7.12 (1H, d, *J* 7.8, Ar *H*'-6), 6.86 (1H, d, *J* 9.9, Naph *H*-8), 4.12 (2H, q, *J* 7.1, OC*H*₂), 2.45 (3H, s, C*H*₃), 1.06 (3H, t, *J* 7.1, C*H*₃); δ_C (75 MHz; CD₂Cl₂) 165.1 (s), 161.6 (s), 146.3 (d), 142.3 (s), 142.1 (d), 140.3 (s), 134.2 (s), 133.4 (s), 133.0 (s), 131.2 (d), 130.4 (d), 129.0 (d), 128.4 (s), 128.0 (d), 126.8 (s), 62.1 (OCH₂), 21.3 (CH₃), 13.9 (CH₃); *m/z* (EI) 344 (M⁺+2, 4%), 342 (M⁺, 7), 307 (M⁺-Cl, 79), 297 (6), 279 (100), 261 (7), 251 (3), 233 (9), 205 (12), 192 (3), 179 (3), 152 (4), 139 (3), 126 (9), 103 (4), 89 (3), 77 (3), 63 (3).

Ethyl 4-(2-chloro-4-methoxyphenyl)-6-oxo-5,6-dihydro-1,5-naphthyridine-3-carboxylate 255

(159 mg, 89%) as colorless plates, mp 169-171 °C (*t*-BuOMe), R_f 0.23 (*t*-BuOMe); (found: C, 60.1; H, 4.1; N, 7.8. C₁₈H₁₅ClN₂O₄ requires C, 60.3; H, 4.2; N, 7.8%); λ_{max} (DCM)/nm 240 (log ε 4.22), 259 inf (3.95), 268 inf (3.80), 286 (3.60), 341 inf (3.99), 348 (4.05), 358 inf (3.97); v_{max} /cm⁻¹ 2970w, 1736m (C=O), 1713m (C=O), 1662s (NHC=O), 1605m, 1560w, 1497w, 1485w, 1450w, 1367m, 1329m, 1310w, 1290m, 1227s, 1204m, 1142m, 1119w, 1051m, 1038m, 1018w, 862m, 853m, 812w, 775w, 764w; δ_{H} (300 MHz; CD₂Cl₂) 9.05 (1H, s, Naph *H*-2), 8.32 (1H, br s, N*H*), 8.01 (1H, d, *J* 9.9, Naph *H*-7), 7.15-7.12 (2H, m, Ar *H*), 7.01 (1H, dd, *J* 8.4, 2.4, Ar *H*), 6.84 (1H, d, *J* 9.9, Naph *H*-8), 4.14 (2H, q, *J* 7.1, OCH₂), 3.89 (3H, s, OCH₃), 1.08 (3H, t, *J* 7.2, CH₃); δ_C (75 MHz; CD₂Cl₂) 165.2 (s), 161.8 (s), 161.6 (s), 146.3 (d), 142.0 (d), 140.2 (s), 134.5 (s), 133.9 (s), 133.3 (s), 131.4 (d), 128.0 (d), 127.1 (s), 123.2 (s), 116.1 (d), 114.3 (d), 62.0 (OCH₂), 56.3 (OCH₃), 14.0 (CH₃); *m*/z (EI) 360 (M⁺+2, 3%), 358 (M⁺, 8), 323 (M⁺-Cl, 80), 315 (2), 313 (6), 295 (100), 280 (6), 252 (9), 242 (6), 236 (6), 224 (4), 207 (6), 179 (9), 152 (4), 125 (5), 99 (5), 75 (4), 63 (3).

Ethyl 4-(2-chloro-4-fluorophenyl)-6-oxo-5,6-dihydro-1,5-naphthyridine-3-carboxylate 256

(170 mg, 98%) as colorless cubes, mp 169-170 °C (*t*-BuOMe), $R_{\rm f}$ 0.38 (*t*-BuOMe); (found: C, 59.0; H, 3.4; N, 8.0. C₁₇H₁₂ClFN₂O₃ requires C, 58.9; H, 3.5; N, 8.1%); $\lambda_{\rm max}$ (DCM)/nm 234 (log ε 3.55), 251 inf (2.99), 259 inf (2.88), 267 inf (2.76), 339 inf (3.03), 348 (3.13), 362 (3.01); $\nu_{\rm max}$ /cm⁻¹ 3173w, 3103w, 3032w (Ar CH), 2990w, 2941w, 1715m (C=O), 1667s (NHC=O), 1605m, 1555w, 1493m, 1452w, 1391m, 1369m, 1328m, 1312m, 1263w, 1217m, 1198m, 1134m, 1105w, 1049w, 1024m, 899m, 851m, 824w, 760m; $\delta_{\rm H}$ (500 MHz; CD₂Cl₂) 9.08 (1H, s, Naph *H*-2), 8.67 (1H, br s, N*H*), 8.02 (1H, d, *J* 9.8, Naph *H*-7), 7.36 (1H, d, *J* 8.5, Ar *H*), 7.23-7.20 (2H, m, Ar *H*), 6.82 (1H, d, *J* 9.9, Naph *H*-8), 4.14 (2H, q, *J* 6.9, OC*H*₂), 1.09 (3H, t, *J* 7.1, C*H*₃); $\delta_{\rm C}$ (125 MHz; CD₂Cl₂) 165.0 (s), 163.8 (d, ¹*J*_{CF} 251.0, FC), 161.8 (s), 146.4 (d), 142.1 (d), 140.5 (s), 135.1 (d, ³*J*_{CF} 10.8, FCCHCCl), 133.1 (d, ⁴*J*_{CF} 5.4, FCCHCHC*q*_q), 132.1 (d, ³*J*_{CF} 9.0, FCCHCH), 128.1 (d), 128.0 (s), 126.7 (s), 118.2 (d, ²*J*_{CF} 25.3, FCCH), 115.7 (d, ²*J*_{CF} 21.7, FCCH), 62.2 (OCH₂), 14.0 (*C*H₃); *m*/z (EI) 348 (M⁺+2, 4%), 346 (M⁺, 11), 311 (M⁺-Cl, 71), 301 (6), 283 (100), 265 (14), 237 (14), 210 (21), 191 (5), 182 (10), 157 (5), 131 (10), 105 (3), 81 (3).

Ethyl 4-(2,5-dichlorophenyl)-6-oxo-5,6-dihydro-1,5-naphthyridine-3-carboxylate 257

(176 mg, 97%) as colorless cubes, mp 160-161.5 °C (*t*-BuOMe), $R_{\rm f}$ 0.57 (*t*-BuOMe); (found: C, 56.1; H, 3.3; N, 7.8. C₁₇H₁₂Cl₂N₂O₃ requires C, 56.2; H, 3.3; N, 7.7%); $\lambda_{\rm max}$ (DCM)/nm 232 (log ε 3.70), 259 inf (2.95), 268 inf (2.82), 339 inf (3.10), 348 (3.20), 362 (3.08); $v_{\rm max}$ /cm⁻¹ 2959w, 2924w, 2851w, 1726m (C=O), 1667s (NHC=O), 1607w, 1578w, 1557w, 1489w, 1470w, 1454w, 1406w, 1381m, 1325m, 1292w, 1207m, 1136m, 1103m, 1057w, 1034w, 972w, 872w, 947m, 818m; $\delta_{\rm H}$ (500 MHz; CD₂Cl₂) 9.11 (1H, s, Naph *H*-2), 8.51 (1H, br s, NH), 8.02 (1H, d, *J* 9.8, Naph *H*-7), 7.55-7.49 (2H, m, Ar *H*), 7.26 (1H, s, Ar *H*), 6.86 (1H, d, *J* 9.9, Naph *H*-8), 4.16 (2H, q, *J* 7.0, OCH₂), 1.09 (3H, t, *J* 7.1, CH₃); $\delta_{\rm C}$ (125 MHz; CD₂Cl₂) 164.7 (s), 161.7 (s), 146.5 (d), 142.0 (d), 140.6 (s), 134.0 (s), 133.5 (s), 132.7 (s), 132.6 (s), 132.4 (s), 131.9 (d), 131.5 (d), 130.7 (d), 128.3 (d), 126.1 (s), 62.2 (OCH₂), 13.9 (CH₃); *m*/z (EI) 364 (M⁺+2, 6%), 362 (M⁺, 10%), 329 (42), 327 (M⁺-Cl, 87), 319 (5), 317 (9), 301 (54), 299 (100), 283 (3), 281 (7), 264 (26), 255 (9), 226 (17), 207 (4), 198 (3), 191 (6), 164 (4), 147 (4), 138 (2), 113 (2).

Ethyl 4-[2-chloro-5-(trifluoromethyl)phenyl]-6-oxo-5,6-dihydro-1,5-naphthyridine-3carboxylate 258

(182 mg, 92%) as colorless plates, mp 201-203.5 °C (*t*-BuOMe), $R_{\rm f}$ 0.57 (*t*-BuOMe); (found: C, 54.5; H, 3.0; N, 6.9. C₁₈H₁₂ClF₃N₂O₃ requires C, 54.5; H, 3.1; N, 7.1%); $\lambda_{\rm max}$ (DCM)/nm 232 (log ε 3.56), 263 (3.22), 270 (3.21), 283 inf (3.09), 338 inf (3.03), 348 (3.13), 362 (3.01); $\nu_{\rm max}$ /cm⁻¹ 3036w, 2967w, 1724m (C=O), 1668s (NHC=O), 1609m, 1578w, 1487w, 1381m, 1327s, 1296s, 1209m, 1169s, 1123s, 1084s, 1057w, 1034m, 972w, 934w, 872w, 845m, 837m; $\delta_{\rm H}$ (300 MHz; CD₂Cl₂) 9.13 (1H, s, Naph *H*-2), 8.70 (1H, br s, N*H*), 8.02 (1H, d, *J* 9.9, Naph *H*-7), 7.80-7.75 (2H, m, Ar *H*), 7.53 (1H, d, *J* 0.6, Ar *H*), 6.82 (1H, d, *J* 9.6, Naph *H*-8), 4.12 (2H, dq, *J* 7.2, 1.5, OC*H*₂), 1.03 (3H, t, *J* 7.2, C*H*₃); $\delta_{\rm C}$ (75 MHz; CD₂Cl₂) 164.7 (s), 162.0 (s), 146.6 (d), 142.1 (d), 140.7 (s), 138.1 (s), 133.1 (s), 132.8 (s), 132.6 (s), 131.4 (d), 130.7 (q, ²*J*_{CF} 32.9, F₃CC), 128.2 (m, CH), 128.1 (q, ³*J*_{CF} 3.8, F₃CCCH), 126.1 (q, ¹*J*_{CF} 272.8, F₃C), 62.2 (OCH₂), 13.8 (CH₃); m/z (EI) 398 (M⁺+2, 8%), 396 (M⁺, 22), 361 (M⁺-Cl, 84), 353 (3), 351 (9), 333 (100), 315 (9), 313 (8), 287 (10), 264 (3), 260 (12), 241 (7), 232 (4), 226 (3), 207 (4), 192 (4), 181 (3).

Ethyl 4-(2-chloropyrid-3-yl)-6-oxo-5,6-dihydro-1,5-naphthyridine-3-carboxylate 259

(137 mg, 83%) as colorless cubes, mp 194-196 °C (*t*-BuOMe), R_f 0.09 (*t*-BuOMe); (found: C, 58.4; H, 3.7; N, 12.7. C₁₆H₁₂ClN₃O₃ requires C, 58.3; H, 3.7; N, 12.7%); λ_{max} (DCM)/nm 217 (log ε 4.15), 348 (3.30); ν_{max} /cm⁻¹ 1724m (C=O), 1697s (NHC=O), 1602m, 1556w, 1402w, 1384m, 1305w, 1220m, 1141m, 1076m, 1026m, 856w; δ_H (500 MHz; CD₂Cl₂) 9.96 (1H, br s, NH), 9.14 (1H, s, Naph *H*-2), 8.62 (1H, d, 2.0, Ar *H*), 8.06 (1H, d, *J* 9.8, Naph *H*-7), 7.62 (1H, d, *J* 7.4, Ar *H*), 7.47 (1H, d, *J* 6.2, Ar *H*), 6.79 (1H, d, *J* 9.8, Naph *H*-8), 4.17 (2H, q, *J* 6.8, OC*H*₂), 1.11 (3H, t, *J* 7.2, C*H*₃); δ_C (125 MHz; CD₂Cl₂) 164.8 (s), 162.6 (s), 150.8 (d), 150.5 (s), 146.6 (d), 142.1 (d), 140.7 (s), 139.8 (d), 133.0 (s), 132.5 (s), 129.1 (s), 128.1 (d), 126.1 (s), 123.4 (d), 62.2 (OCH₂), 14.0 (CH₃); *m*/*z* (EI) 329 (M⁺, 11%), 294 (M⁺-Cl, 95), 284 (7), 266 (100), 256 (4), 248 (6), 238 (9), 221 (10), 193 (15), 167 (11), 140 (7), 114 (8), 100 (3), 96 (4), 87 (7), 62 (6).

Ethyl 4-(3-chloropyrid-4-yl)-6-oxo-5,6-dihydro-1,5-naphthyridine-3-carboxylate 260

(110 mg, 67%) as colorless needles, mp 161-163 °C (*t*-BuOMe); R_f 0.09 (*t*-BuOMe); (found: C, 58.2; H, 3.6; N, 12.7, C₁₃H₈ClN₃O requires C, 58.3; H, 3.7; N, 12.7%); λ_{max} (DCM)/nm 216 (log ε 4.16), 336 (3.47); v_{max} /cm⁻¹ 1714m (C=O), 1660s (NHC=O), 1602w, 1557w, 1371w, 1327m, 1215m, 1141m, 1091w, 1018m, 854m; δ_{H} (500 MHz; CD₂Cl₂) 9.56 (1H, br s, NH), 9.12 (1H, s, Naph *H*-2), 8.77 (1H, s, Ar *H*), 8.63 (1H, br s, Ar *H*), 8.02 (1H, d, *J* 9.8, Naph *H*-7), 7.19 (1H, d, *J* 2.1, Ar *H*), 6.77 (1H, d, *J* 9.9, Naph *H*-8), 4.14 (2H, q, *J* 6.8, OCH₂), 1.07 (3H, t, *J* 7.1, CH₃); δ_{C} (125 MHz; CD₂Cl₂) 164.6 (s), 162.4 (s), 150.6 (d), 148.8 (d), 146.5 (d), 142.1 (d), 140.8 (s), 140.4 (s), 132.3 (s), 131.7 (s), 131.5 (s), 128.3 (d), 125.6 (s), 125.1 (d), 62.4 (OCH₂), 13.8 (CH₃); *m*/*z* (EI) 329 (M⁺, 13%), 294 (M⁺-Cl, 77), 266 (100), 233 (9), 220 (3), 193 (9), 114 (10), 100 (5).

Ethyl 6-oxo-6*H*-indolo[3,2,1-*de*][1,5]naphthyridine-1-carboxylate 261 (Table 25, entry 1)

To a stirred solution of ethyl 4-(2-bromophenyl)-6-oxo-5,6-dihydro-1,5-naphthyridine-3carboxylate **249** (48 mg, 0.13 mmol), Cs₂CO₃ (85 mg, 0.26 mmol), CuI (2.5 mg, 0.013 mmol) in dioxane (1 mL) was added DMEDA (2.9 μ L, 0.026 mmol) and H₂O (4.5 μ L, 0.26 mmol). The stirred reaction mixture was refluxed (preheated oil bath) until the reaction was complete (TLC, 1 h) and then allowed to cool to *ca*. 20 °C. The mixture was diluted (DCM), dried (Na₂SO₄), filtered and adsorbed onto silica gel. Dry flash chromatography (*t*-BuOMe) gave the *title compound* **261** (32 mg, 85%) as light yellow needles mp 158-160 °C (EtOH), R_f 0.35 216 (*t*-BuOMe); (found: C, 70.0; H, 4.1; N, 9.5. $C_{17}H_{12}N_2O_3$ requires C, 69.9; H, 4.1; N, 9.6%); $\lambda_{max}(DCM)/nm 232$ inf (log ε 3.25), 244 (3.29), 250 inf (3.28), 263 inf (3.13), 269 inf (2.99), 305 (3.07), 314 (3.06), 363 inf (2.94), 378 (3.10), 398 (3.05); v_{max}/cm^{-1} 2957w, 2922 br m, 2853w, 1722m (C=O), 1692s (C=O), 1665m, 1622w, 1601w, 1582w, 1555w, 1483w, 1468w, 1441w, 1416m, 1391m, 1366w, 1342w, 1329w, 1294s, 1250m, 1217m, 1136s, 1109m, 1094m, 1055m, 1016w, 930w, 910w, 893w, 874w, 854w, 839m, 804w; $\delta_{H}(500 \text{ MHz; CD}_2Cl_2)$ 9.32 (1H, s, *H*-2), 8.95 (1H, d, *J* 7.9, *H*-8 or 11), 8.64 (1H, d, *J* 8.2, *H*-8 or 11), 7.98 (1H, d, *J* 9.8, *H*-4), 7.70-7.74 (1H, m, *H*-9 or 10), 7.51-7.54 (1H, m, *H*-9 or 10), 6.98 (1H, d, *J* 9.8, *H*-5), 4.58 (2H, q, *J* 7.2, OCH₂), 1.53 (3H, t, *J* 7.2, CH₃); $\delta_C(75 \text{ MHz; CDCl}_3)$ 165.3 (CO₂Et), 159.3 (NC=O), 147.8 (d), 140.2 (s), 139.2 (d), 138.5 (s), 132.2 (s), 132.0 (d), 130.6 (d), 130.4 (s), 128.3 (d), 126.0 (d), 123.5 (s), 121.2 (s), 116.7 (d), 62.1 (OCH₂), 14.5 (CH₃); *m/z* (EI) 293 (M⁺+1, 20%), 292 (M⁺, 100), 277 (7), 264 (36), 247 (60), 236 (21), 219 (26), 191 (25), 164 (22), 138 (7), 113 (4), 110 (7), 96 (8), 86 (5), 63 (4). The *title compound* could also be obtained microanytically pure without the use of chromatography, by filtering the dried solution through a short pad of silica, evaporation and recrystallisation.

Ethyl 9-chloro-6-oxo-6*H*-indolo[3,2,1-*de*][1,5]naphthyridine-1-carboxylate 262; Typical procedure for entries 4-20 (see Table 25)

To a stirred solution of ethyl 4-(2,4-dichlorophenyl)-6-oxo-5,6-dihydro-1,5-naphthyridine-3carboxylate **252**) (43 mg, 0.13 mmol), Cs₂CO₃ (85 mg, 0.26 mmol) in dioxane (1 mL)/ H₂O (2.4 μ L, 0.13 mmol) a deep blue solution of CuI (2.5 mg, 0.013 mmol) and DMCDA (4 μ L, 0.026 mmol) in dioxane (1 mL)/ H₂O (2.4 μ L, 0.13 mmol) was added. The stirred reaction mixture was refluxed (preheated oil bath) until the reaction was complete (TLC, 1 h) and then allowed to cool to *ca.* 20 °C. The mixture was diluted (DCM), dried (Na₂SO₄), filtered and adsorbed onto silica gel. Dry flash chromatography (*t*-BuOMe) gave the *title compound* **262** (28 mg, 74%) as bright yellow needles, mp 217.5-218.5 °C (EtOH), *R*_f 0.70 (*t*-BuOMe); (found: C, 62.5; H, 3.5; N, 8.5. C₁₇H₁₁ClN₂O₃ requires C, 62.5; H, 3.4; N, 8.6%); λ_{max} (DCM)/nm 231 (log ε 2.30), 243 inf (3.28), 252 inf (3.30), 256 (3.32), 266 (3.27), 274 (3.18), 307 inf (3.14), 315 (3.16), 348 inf (2.96), 361 (3.09), 378 (3.26), 398 (3.21); *v*_{max}/cm⁻¹ 3117w, 3069w, 3042w, 2992w, 1722m (C=O), 1692s (NC=O), 1624w, 1599w, 1555w, 1474w, 1429m, 1414m, 1395m, 1366w, 1323w, 1308m, 1288s, 1271m, 1250w, 1217w, 1196w, 1159m, 1105m, 1069w, 1053m, 1016w, 937w, 910w, 868m, 853m, 837s, 797m, 766m; $\delta_{\rm H}(300 \text{ MHz}; {\rm CD}_2{\rm Cl}_2)$ 9.39 (1H, s, *H*-2), 8.98 (1H, d, *J* 8.4, *H*-11), 8.73 (1H, d, *J* 1.8, *H*-8), 8.05 (1H, d, *J* 9.9, *H*-4), 7.55 (1H, dd, *J* 8.7, 2.1, *H*-10), 7.04 (1H, d, *J* 9.9, *H*-5), 4.61 (2H, q, *J* 7.1, OC*H*₂), 1.56 (3H, t, *J* 7.2, C*H*₃); $\delta_{\rm C}(125 \text{ MHz}; {\rm CD}_2{\rm Cl}_2)$ 165.5 (CO₂Et), 159.4 (NC=O), 148.2 (d), 140.9 (s), 139.9 (d), 139.1 (s), 137.9 (s), 132.9 (s), 130.6 (d), 129.5 (s), 129.4 (d), 126.5 (d), 122.6 (s), 121.4 (s), 117.0 (d), 62.5 (OCH₂), 14.5 (CH₃); *m/z* (EI) 328 (M⁺+2, 33%), 326 (M⁺, 100), 313 (3), 311 (8), 300 (11), 298 (32), 283 (20), 281 (55), 272 (5), 270 (14), 253 (32), 247 (4), 225 (24), 198 (13), 189 (10), 174 (5), 163 (9), 138 (10), 112 (6), 99 (7), 86 (5), 63 (5).

Ethyl 6-oxo-9-(trifluoromethyl)-6H-indolo[3,2,1-de][1,5]naphthyridine-1-carboxylate 263 (42 mg, 90%) as colorless needles, mp 187.5-189 °C (EtOH), $R_{\rm f}$ 0.68 (*t*-BuOMe); (found: C, 59.9; H, 3.0; N, 7.6. C₁₈H₁₁F₃N₂O₃ requires C, 60.0; H, 3.1; N, 7.8%); $\lambda_{\rm max}$ (DCM)/nm 230 (log ε 3.43), 243 (3.41), 251 (3.39), 265 (3.13), 274 (3.03), 298 (3.22), 307 (3.21), 365 inf (3.07), 378 (3.33), 398 (3.33); $\nu_{\rm max}$ /cm⁻¹ 2988w, 2924w, 2860w, 1717m (C=O), 1686m (C=O), 1608w, 1587w, 1558w, 1472w, 1420m, 1393w, 1368w, 1337s, 1290s, 1269s, 1246w, 1221w, 1213w, 1175s, 1150s, 1126s, 1109s, 1053s, 1007w, 989w, 935w, 914w, 897m, 878w, 837s, 814w, 807w; $\delta_{\rm H}$ (500 MHz; CD₂Cl₂) 9.38 (1H, s, *H*-2), 9.13 (1H, d, *J* 8.4, *H*-10 or 11), 8.94 (1H, s, *H*-8), 8.03 (1H, d, *J* 9.8, *H*-4), 7.78 (1H, d, *J* 8.4, *H*-10 or 11), 7.03 (1H, d, *J* 9.8, *H*-5), 4.59 (2H, q, *J* 7.1, OCH₂), 1.53 (3H, t, *J* 7.1, CH₃); $\delta_{\rm C}$ (125 MHz; CD₂Cl₂) 165.4 (*C*O₂Et), 159.5 (NC=O), 148.4 (d), 140.0 (s), 139.9 (d), 139.6 (s), 138.8 (s), 133.2 (q, ²*J*_{CF} 32.5, F₃CC), 131.0 (d), 129.2 (d), 129.0 (s), 126.9 (s), 124.4 (q, ¹*J*_{CF} 271.3, F₃C), 122.9 (q, ³*J*_{CF} 3.6, F₃CCCH), 122.1 (s), 114.1 (q, ³*J*_{CF} 3.9, F₃CCCH), 62.7 (OCH₂), 14.6 (CH₃); *m*/z (EI) 361 (M⁺+1, 21%), 360 (M⁺, 100), 345 (10), 332 (48), 315 (65), 304 (14), 287 (38), 259 (32), 247 (5), 232 (19), 209 (5), 180 (5), 157 (5), 144 (9), 130 (6), 87 (5), 57 (7).

Ethyl 9-methyl-6-oxo-6H-indolo[3,2,1-de][1,5]naphthyridine-1-carboxylate 264

(32 mg, 80%) as beige needles, mp 173.5-174.5 °C (EtOH), $R_{\rm f}$ 0.50 (*t*-BuOMe); (found: C, 70.6; H, 4.5; N, 9.1. C₁₈H₁₃N₂O₃ requires C, 70.6; H, 4.6; N, 9.2%); $\lambda_{\rm max}$ (DCM)/nm 232 (log ε 3.31), 246 inf (3.37), 256 (3.41), 263 inf (3.39), 273 (3.24), 309 (3.21), 318 (3.22), 350 inf (3.01), 365 inf (3.15), 380 (3.29), 400 (3.21); $v_{\rm max}$ /cm⁻¹ 3078w, 2980w, 2932w, 1707s (O-C=O), 1670s (N-C=O), 1665s (C=O), 1626m, 1605w, 1585w, 1557w, 1468w, 1429m, 1416m, 1395w, 1362w, 1335m, 1287s, 1250m, 1231m, 1150s, 1109s, 1099m, 1053m, 1022w, 955w, 881w, 849m, 837s, 802m; $\delta_{\rm H}$ (500 MHz; CD₂Cl₂) 9.28 (1H, s, *H*-2), 8.77 (1H, d, *J* 8.2, *H*-10 or 218

11), 8.45 (1H, s, *H*-8), 7.96 (1H, d, *J* 9.8, *H*-4), 7.31 (1H, d, *J* 8.2, *H*-10 or 11), 6.95 (1H, d, *J* 9.6, *H*-5), 4.56 (2H, q, *J* 7.1, OCH₂), 2.58 (3H, s, CH₃), 1.52 (3H, t, *J* 7.1, CH₃); $\delta_{\rm C}$ (125 MHz; CD₂Cl₂) 165.8 (*C*O₂Et), 159.7 (N*C*=O), 148.1 (d), 143.7 (s), 141.0 (s), 139.6 (d), 138.8 (s), 132.8 (s), 130.7 (d), 130.6 (s), 128.1 (d), 127.4 (d), 121.6 (s), 121.1 (s), 117.2 (d), 62.4 (OCH₂), 22.5 (*C*H₃), 14.6 (*C*H₃); *m*/*z* (EI) 308 (M⁺+1, 14%), 307 (M⁺, 62), 297 (5), 279 (100), 261 (6), 233 (9), 205 (13), 192 (4), 179 (4), 152 (6), 127 (9), 77 (6), 57 (6).

Ethyl 9-methoxy-6-oxo-6H-indolo[3,2,1-de][1,5]naphthyridine-1-carboxylate 265

(30.5 mg, 73%) as bright colored yellow needles, mp 187-188 °C (EtOH), R_f 0.45 (*t*-BuOMe); (found: C, 67.2; H, 4.5; N, 8.6. C₁₈H₁₄N₂O₄ requires C, 67.1; H, 4.4; N, 8.7%); λ_{max} (DCM)/nm 231 (log ε 3.36), 261 inf (3.34), 268 (3.43), 278 (3.50), 308 (3.10), 318 (3.12), 376 (3.29); ν_{max} /cm⁻¹ 2976w, 2945w, 1721s (C=O), 1694m (NC=O), 1624m, 1608m, 1557w, 1495m, 1470w, 1439m, 1418m, 1393m, 1369w, 1335w, 1292s, 1243s, 1186w, 1167w, 1150s, 1115m, 1099m, 1057m, 1032m, 1015w, 930w, 875w, 854w, 837s, 800w; δ_H (300 MHz; CD₂Cl₂) 9.27 (1H, s, *H*-2), 8.82 (1H, d, *J* 8.7, *H*-11), 8.18 (1H, d, *J* 2.4, *H*-8), 7.96 (1H, d, *J* 9.9, *H*-4), 7.04 (1H, dd, *J* 9.0, 2.4, *H*-10), 6.95 (1H, d, *J* 9.9, *H*-5), 4.56 (2H, q, *J* 7.1, OCH₂), 3.99 (3H, s, OCH₃), 1.52 (3H, t, *J* 7.1, CH₃); δ_C (125 MHz; CD₂Cl₂) 165.9 (s), 163.6 (s), 159.7 (s), 148.2 (d), 142.6 (s), 139.9 (d), 138.2 (s), 133.0 (s), 130.6 (s), 130.3 (d), 129.5 (d), 120.4 (s), 116.9 (s), 114.1 (d), 101.0 (d), 62.3 (OCH₂), 56.4 (OCH₃), 14.6 (CH₃); *m*/z (EI) 324 (M⁺+1, 11%), 323 (M⁺, 80), 295 (100), 277 (5), 263 (2), 252 (8), 249 (6), 207 (7), 179 (10), 125 (5), 99 (5), 75 (5), 57 (4).

Ethyl 9-fluoro-6-oxo-6H-indolo[3,2,1-de][1,5]naphthyridine-1-carboxylate 266

(28 mg, 70%) as colorless needles, mp 203-204.5 °C (EtOH), $R_{\rm f}$ 0.75 (*t*-BuOMe); (found: C, 65.9; H, 3.5; N, 8.9. C₁₇H₁₁FN₂O₃ requires C, 65.8; H, 3.6; N, 9.0%); $\lambda_{\rm max}$ (DCM)/nm 254 (log ε 3.60), 263 (3.58), 271 (3.52), 292 inf (3.37), 299 (3.40), 307 inf (3.34), 345 inf (306), 356 (3.22); $v_{\rm max}$ /cm⁻¹ 3042w, 2988w, 2918w, 1724m (C=O), 1694s, 1628w, 1607w, 1557w, 1541w, 1522w, 1472w, 1456w, 1435w, 1422m, 1396m, 1331w, 1314w, 1267w, 1233m, 1161w, 1150m, 1117w, 1105w, 1059w, 1015w, 934w, 878w, 856m, 843s, 831m, 802w, 768m; $\delta_{\rm H}$ (300 MHz; CD₂Cl₂) 9.34 (1H, s, *H*-2), 9.00 (1H, dd, ³*J*_{HH} 8.9, ⁴*J*_{HF} 5.6, *H*-11), 8.38 (1H, dd, ³*J*_{HF} 9.1, ⁴*J*_{HH} 2.5, *H*-8), 8.01 (1H, d, *J* 10.0, *H*-4), 7.26 (1H, ddd, ³*J*_{HF} 9.0, ³*J*_{HH} 9.0, ⁴*J*_{HH} 2.5, *H*-10), 6.99 (1H, d, *J* 9.8, *H*-5), 4.57 (2H, q, *J* 7.1, OC*H*₂), 1.52 (3H, t, *J* 7.2, C*H*₃); 219

 $\delta_{\rm C}$ (75 MHz; CD₂Cl₂) 165.6 (CO₂Et), 165.2 (d, ¹J_{CF} 250.9, FC), 159.5 (NC=O), 148.3 (d), 141.5 (d, ³J_{CF} 13.7, FCCHC_q, *C*-7a), 140.0 (d), 138.8 (s), 132.7 (s), 130.5 (d), 130.2 (d, ³J_{CF} 10.4, FCCHCH, *C*-11), 129.8 (s), 121.3 (s), 120.4 (s), 113.9 (d, ²J_{CF} 23.6, FCCH, *C*-8 or 10), 104.5 (d, ²J_{CF} 28.6, FCCH, *C*-8 or 10), 62.5 (OCH₂), 14.6 (CH₃); *m*/*z* (EI) 311 (M⁺+1, 20%) 310 (M⁺, 75), 295 (9), 282 (42), 265 (73), 254 (18), 237 (42), 209 (37), 182 (36), 158 (10), 156 (13), 131 (11), 119 (9), 106 (8), 81 (7), 57 (9).

Ethyl 10-chloro-6-oxo-6H-indolo[3,2,1-de][1,5]naphthyridine-1-carboxylate 267

(38 mg, 89%) as light yellow needles, mp 191-193 °C (EtOH), R_f 0.70 (*t*-BuOMe); (found: C, 62.4; H, 3.3; N, 8.5. C₁₇H₁₁ClN₂O₃ requires C, 62.5; H, 3.4; N, 8.6%); λ_{max} (DCM)/nm 399 (log ε 2.35), 381 (3.40), 306 (2.18), 228 (3.16); ν_{max} /cm⁻¹ 3115w, 3051w (Ar CH), 2983w, 2947w, 2859w, 1719m (C=O), 1679s (NC=O), 1624w, 1587w, 1557w, 1458w, 1439m, 1402m, 1387m, 1366w, 1329s, 1296s, 1254s, 1225w, 1198w, 1150s, 1121m, 1105w, 1074m, 1049w, 1016w, 991w, 941w, 897w, 856m, 847m, 829m, 806w, 766m; δ_H (300 MHz; CD₂Cl₂) 9.33 (1H, s, *H*-2), 8.95 (1H, d, *J* 2.1, *H*-11), 8.55 (1H, d, *J* 8.7, *H*-8), 7.99 (1H, d, *J* 9.9, *H*-4), 7.66 (1H, dd, *J* 8.7, 2.1, *H*-10), 6.98 (1H, d, *J* 9.9, *H*-5), 4.58 (2H, q, *J* 7.1, OC*H*₂), 1.54 (3H, t, *J* 7.2, C*H*₃); δ_C (75 MHz; CD₂Cl₂) 165.4 (CO₂Et), 159.2 (NC=O), 148.2 (d), 139.7 (d), 139.2 (s), 138.6 (s), 132.6 (s), 131.9 (d), 131.6 (s), 130.8 (d), 129.0 (s), 128.2 (d), 125.2 (s), 121.5 (s), 117.6 (d), 62.7 (OCH₂), 14.5 (CH₃); *m*/*z* (EI) 328 (M⁺+2, 42%), 326 (M⁺, 100), 300 (15), 298 (41), 283 (16), 281 (46), 272 (8), 270 (26), 253 (31), 247 (10), 225 (22), 198 (15), 190 (12), 163 (10), 149 (10), 138 (11), 126 (7), 112 (8), 99 (7), 88 (6), 63 (5).

Ethyl 6-oxo-10-(trifluoromethyl)-6H-indolo[3,2,1-de][1,5]naphthyridine-1-carboxylate

(44.5 mg, 95%) as beige needles, mp 188.5-190 °C (EtOH), $R_{\rm f}$ 0.70 (*t*-BuOMe); (found: C, 60.0; H, 3.0; N, 7.8. C₁₈H₁₁F₃N₂O₃ requires C, 60.0; H, 3.1; N, 7.8%); $\lambda_{\rm max}$ (DCM)/nm 231 (log ε 3.26), 234 inf (3.24), 241 inf (3.19), 250 inf (3.14), 260 inf (3.00), 270 inf (2.86), 299 (3.03), 307 (3.03), 344 inf (2.61), 359 (2.88), 376 (3.14), 394 (3.13); $\nu_{\rm max}$ /cm⁻¹ 3119w, 3057w, 2999w, 1713m (C=O), 1682m (NC=O), 1628w, 1612w, 1589w, 1560w, 1474w, 1449w, 1406m, 1393m, 1342m, 1323s, 1298s, 1260m, 1219w, 1200w, 1163s, 1144s, 1123s, 1101m, 1063m, 1049w, 1013w, 995w, 922w, 897w, 880w, 845s, 837m, 806w, 768m; $\delta_{\rm H}$ (500 MHz; CD₂Cl₂) 9.38 (1H, s, *H*-2 or 11), 9.32 (1H, s, *H*-2 or 11), 8.77 (1H, d, *J* 8.6, *H*-8 or 9), 8.03 (1H, d, *J* 9.8, *H*-4), 7.98 (1H, d, *J* 8.5, *H*-8 or 9), 7.01 (1H, d, *J* 9.8, *H*-5), 4.61 (2H, q, *J* 7.1, 220)

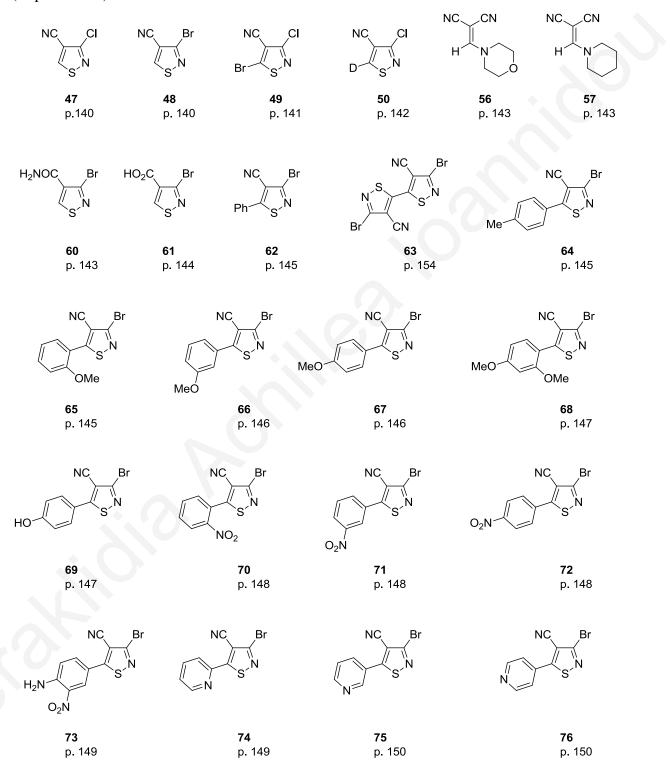
OC*H*₂), 1.55 (3H, t, *J* 7.1, *CH*₃); $\delta_{C}(125 \text{ MHz}; \text{CD}_{2}\text{Cl}_{2})$ 165.5 (*C*O₂Et), 159.5 (N*C*=O), 148.6 (d), 142.1 (s), 140.1 (d), 139.6 (s), 133.1 (s), 130.9 (d), 129.3 (s), 128.9 (q, ${}^{3}J_{CF}$ 3.3, F₃CC*C*H, *C*-9 or 11), 128.1 (q, ${}^{2}J_{CF}$ 32.5, F₃C*C*, *C*-10), 126.0 (q, ${}^{3}J_{CF}$ 4.2, F₃CC*C*H, *C*-9 or 11), 124.8 (q, ${}^{1}J_{CF}$ 272.6, F₃*C*), 124.3 (s), 121.8 (s), 117.3 (d), 62.9 (OCH₂), 14.5 (CH₃); *m*/*z* (EI) 361 (M⁺+1, 21%), 360 (M⁺, 100), 345 (11), 332 (54), 315 (70), 304 (13), 287 (34), 259 (32), 239 (4), 232 (17), 209 (7), 180 (4), 157 (5), 143 (8), 130 (5), 111 (3).

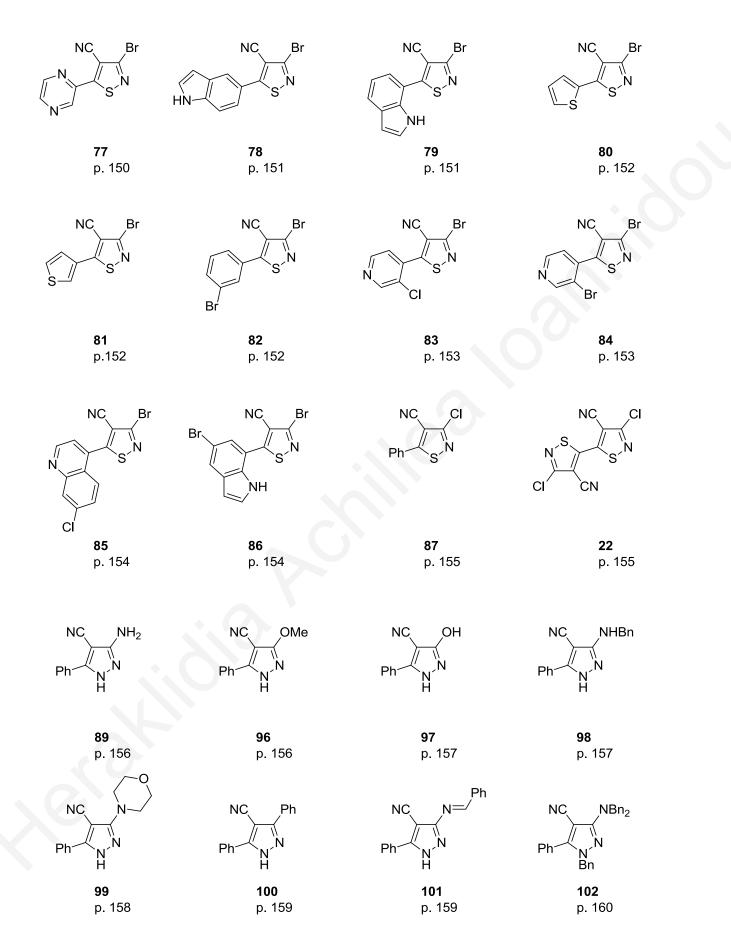
Ethyl 6-oxo-6H-pyrido[3',2':4,5]pyrrolo[3,2,1-de][1,5]naphthyridine-1-carboxylate 269

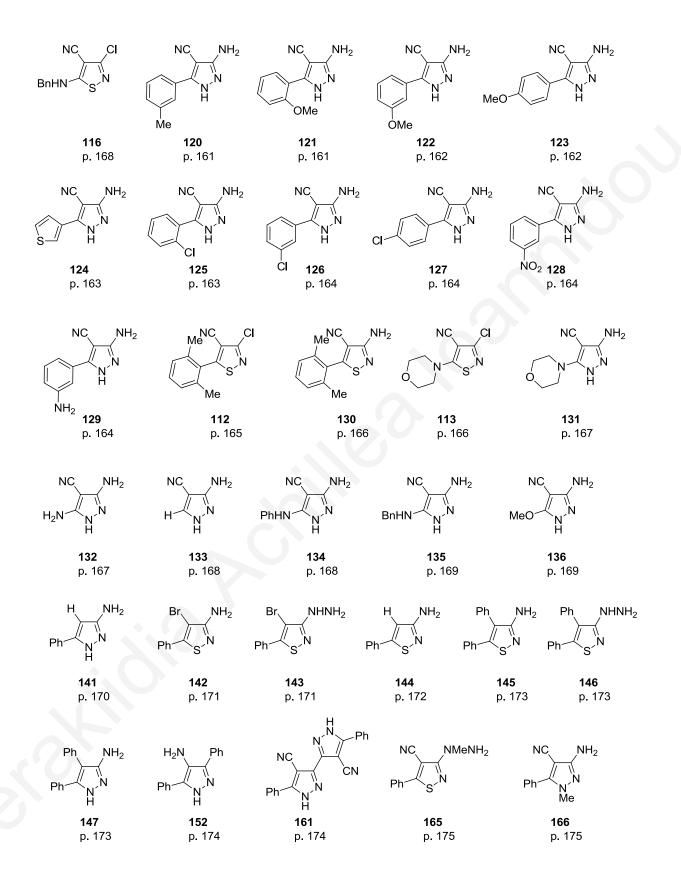
(26 mg, 69%) as a fine brown powder, mp (DSC) 263.6 °C (onset), peak 268.7 °C (EtOH), $R_{\rm f}$ 0.38 (MeOH/*t*-BuOMe, 1:9); (found: C, 65.6; H, 3.7; N, 14.2. C₁₆H₁₁N₃O₃ requires C, 65.5; H, 3.8; N, 14.3%); $\lambda_{\rm max}$ (DCM)/nm 238 (log ε 4.02), 254 inf (3.95), 257 (3.98), 284 (3.79), 294 (3.82), 328 inf (3.54), 340 (3.76), 354 (3.94), 365 (3.73), 372 (3.92); $v_{\rm max}$ /cm⁻¹ 3078w, 2924w, 2853w, 1690s (C=O), 1672s (C=O), 1632s, 1587w, 1483w, 1462w, 1435m, 1400m, 1337m, 1321w, 1298m, 1231m, 1190m, 1152w, 1115m, 1057m, 970w, 893w, 862m, 847m, 824m, 804m; $\delta_{\rm H}$ (500 MHz; CD₂Cl₂) 9.40 (1H, s, *H*-2), 9.37 (1H, dd, *J* 8.1, 1.8, *H*-11), 8.82 (1H, dd, *J* 4.8, 1.7, *H*-9), 8.02 (1H, d, *J* 9.8, *H*-4), 7.54 (1H, dd, *J* 8.1, 4.8, *H*-10), 7.03 (1H, d, *J* 10.0, *H*-5), 4.58 (2H, q, *J* 7.2, OC*H*₂), 1.52 (3H, t, *J* 7.2, C*H*₃); $\delta_{\rm C}$ (125 MHz; CD₂Cl₂) 165.6 (CO₂Et), 158.2 (NC=O), 153.3 (s), 151.7 (d), 148.2 (d), 139.8 (d), 139.6 (C_q), 137.5 (d), 131.9 (C_q), 131.8 (CH), 127.5 (C_q), 121.5 (d), 121.6 (s), 117.8 (s), 62.6 (OCH₂), 14.6 (CH₃); *m/z* (EI) 294 (M⁺+1, 21%), 293 (M⁺, 100), 265 (40), 248 (76), 237 (20), 220 (37), 192 (22), 165 (17), 138 (7), 114 (6), 96 (6), 87 (7), 63 (5).

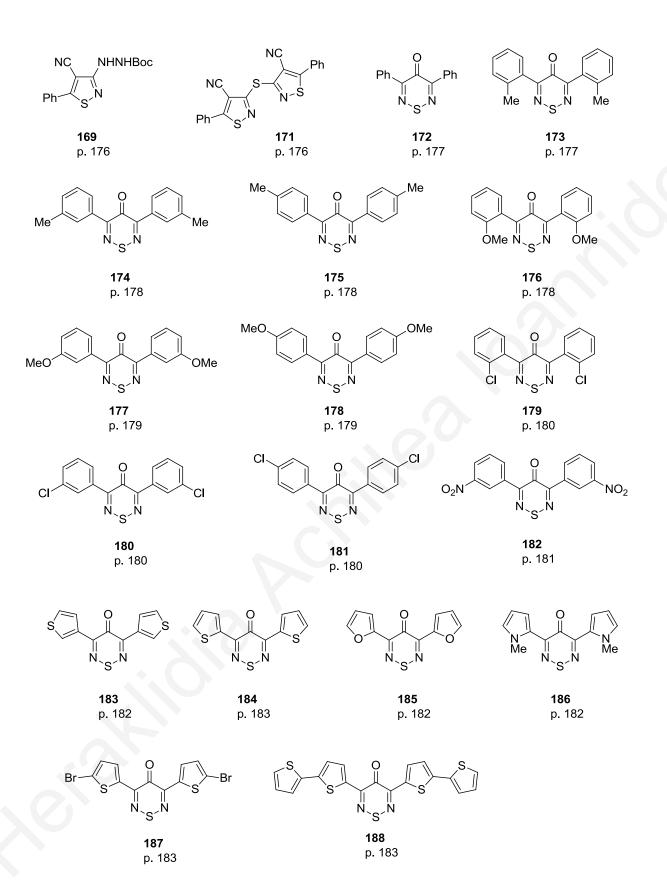
Ethyl 6-oxo-6H-pyrido[4',3':4,5]pyrrolo[3,2,1-de][1,5]naphthyridine-1-carboxylate 270

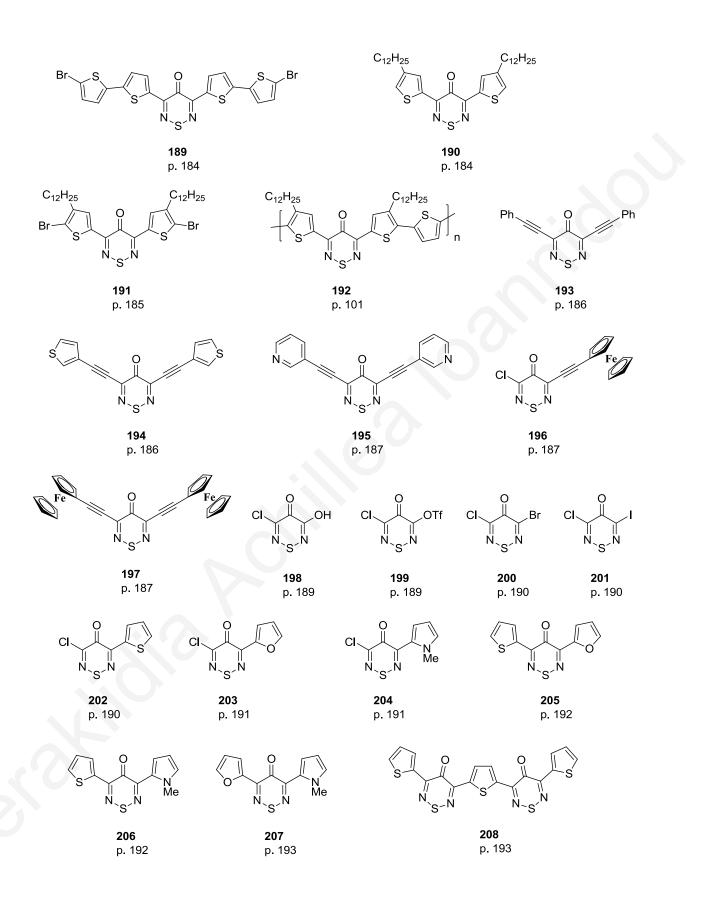
(21 mg, 56%) as a fine bright yellow powder, mp (DSC) 206.5 °C (onset), peak 213.6 °C (EtOH), $R_{\rm f}$ 0.34 (MeOH/*t*-BuOMe, 1:9); (found: C, 65.7; H, 3.7; N, 14.2. C₁₆H₁₁N₃O₃ requires C, 65.5; H, 3.8; N, 14.3%); $\lambda_{\rm max}$ (DCM)/nm 245 (log ε 2.98), 272 inf (2.98), 276 (2.99), 284 inf (2.97), 296 inf (2.88), 369 inf (2.52), 382 (2.76), 402 (2.77); $v_{\rm max}$ /cm⁻¹ 3034w, 2976w, 2918w, 1718s (C=O), 1688s (NC=O), 1624w, 1589w, 1553w, 1466w, 1427s, 1398w, 1368w, 1325m, 1308s, 1292m, 1265m, 1233w, 1204w, 1179w, 1134m, 1109w, 1059m, 1013w, 989m, 934w, 922w, 864m, 851s, 806w; $\delta_{\rm H}$ (500 MHz; CD₂Cl₂) 9.94 (1H, br s, *H*-8), 9.41 (1H, s, *H*-2), 8.82 (2H, br s, *H*-10 & 11), 8.05 (1H, d, *J* 10.0, *H*-4), 7.11 (1H, d, *J* 9.8, *H*-5), 4.60 (2H, q, *J* 7.2, OCH₂), 1.54 (3H, t, *J* 7.2, CH₃); $\delta_{\rm C}$ (75 MHz; CD₂Cl₂) 165.3 (CO₂Et), 159.0 (NC=O), 148.3 221

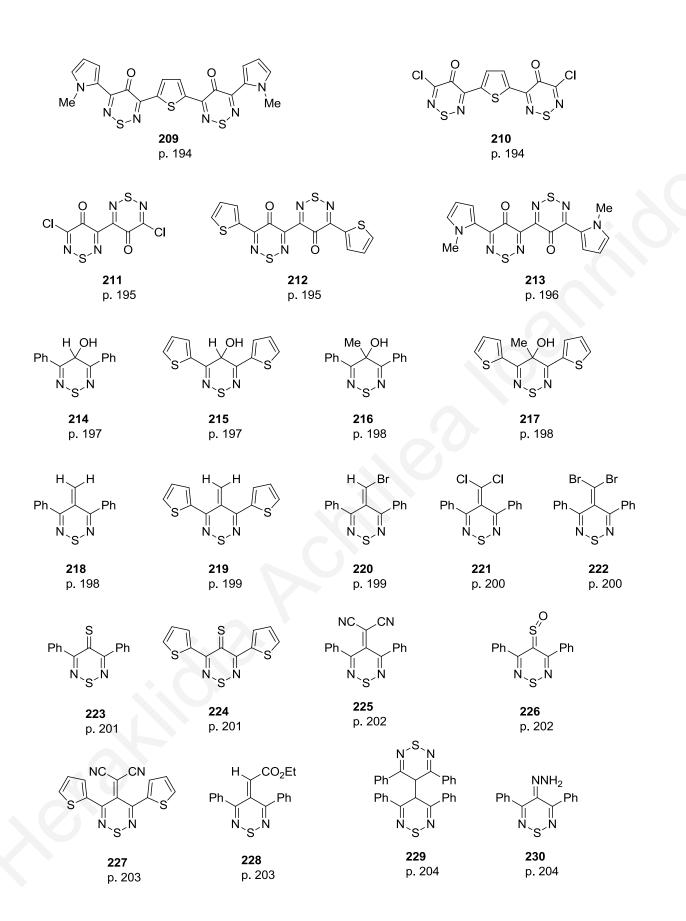

(d), 146.8 (d), 140.5 (s), 139.9 (d), 139.4 (d), 136.0 (s), 132.7 (s), 131.2 (d), 130.4 (s), 128.7 (s), 122.8 (s), 121.7 (d), 62.8 (OCH₂), 14.6 (CH₃); *m/z* (EI) 294 (M⁺+1, 20%), 293 (M⁺, 100), 265 (45), 248 (50), 237 (23), 220 (29), 192 (15), 165 (21), 138 (10), 110 (5), 87 (8), 63 (4).

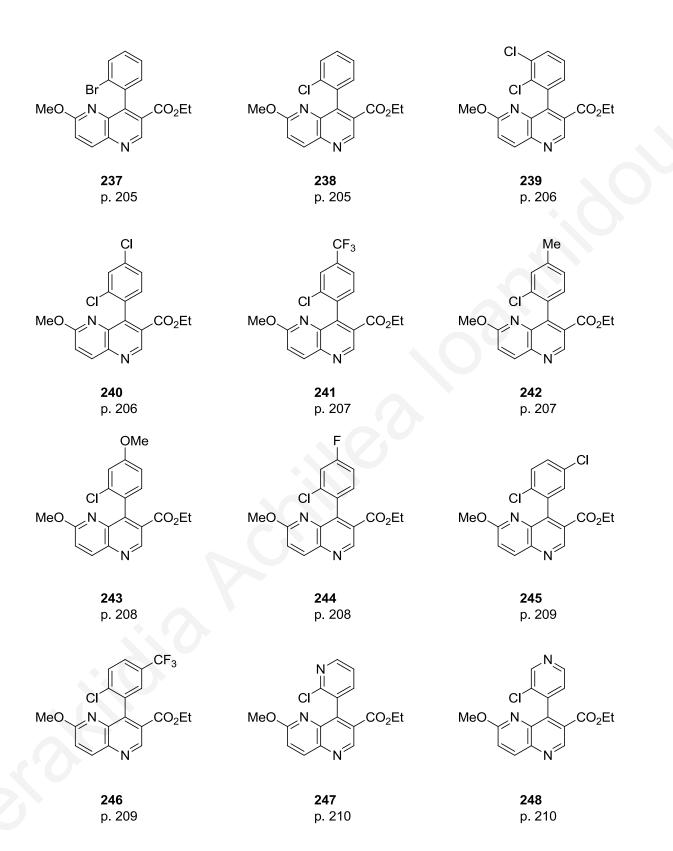

6-Oxo-6H-indolo[3,2,1-de][1,5]naphthyridine-1-carboxylic acid 271

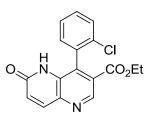

To a stirred suspension of ethyl canthin-6-one-1-carboxylate 261 (50 mg, 0.17 mmol) in DCM/methanol (9:1, 2 mL) at ca. 20 °C was added NaOH (27.2 mg, 0.68 mmol). After 24 h a yellow precipitate was formed. The solvent was then removed *in vacuo* to leave a residue which was dissolved in H_2O (5 mL), acidified using 5% HCl to give a precipitate that was collected by filtration, washed (H_2O) and air dried to give the *title compound* 271 as yellow plates (44 mg, 99%), mp >300 °C (EtOH), R_f 0.20 (MeOH/t-BuOMe, 1:9); (found: C, 68.1; H, 3.0; N, 10.5. $C_{15}H_8N_2O_3$ requires C, 68.2; H, 3.1; N, 10.6%); $\lambda_{max}(DCM)/nm$ 231 inf (log ε 3.60), 247 inf (3.70), 250 (3.70), 263 (3.65), 270 (3.60), 300 (3.47), 310 inf (3.43), 361 inf (3.29), 376 (3.44), 394 (3.37); v_{max}/cm⁻¹ 3042w, 2907w, 2776w, 1730m (C=O), 1713m, 1688s (NC=O), 1643m, 1632m, 1620m, 1591m, 1557m, 1470w, 1445w, 1418s, 1344w, 1329m, 1304s, 1250s, 1217s, 1143s, 1111w, 1101w, 1047w, 1022w, 989w, 937w, 895w, 835s, 808w, 770s; δ_H(500 MHz; DMSO-d₆) OH missing 9.08 (1H, s, H-2), 8.60 (1H, d, J 8.1, Ar H), 8.36 (1H, d, J 8.1, Ar H), 8.00 (1H, d, J 9.8, Ar H), 7.65 (1H, t, J 7.9, H-9 or 10), 7.45 (1H, t, J 7.6, *H*-9 or 10), 6.95 (1H, d, *J* 9.8, Ar *H*); δ_{C} (125 MHz; DMSO- d_{6}) 166.3 (*C*O₂H), 158.6 (N*C*=O), 147.2 (d), 139.2 (s), 139.1 (d), 138.0 (s), 131.7 (s), 131.5 (d), 130.1 (d), 128.7 (d), 127.7 (d), 125.5 (s), 122.9 (s), 121.3 (s), 115.7 (d); m/z (EI) 264 (M⁺, 100%), 247 (7), 236 (38), 219 (12), 191 (14), 164 (15), 139 (5), 132 (6), 113 (5), 104 (5), 95 (4), 88 (4), 63 (7).

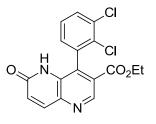

LIST OF COMPOUNDS PREPARED


Compound number in bold followed by page number where compound appears in Chapter 9 (Experimental).

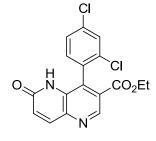


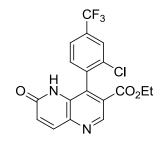






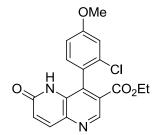
p. 210




250


p. 211

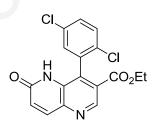
251 p. 212



253 p. 213

254

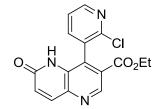
p. 213

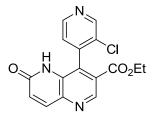

255

p. 214

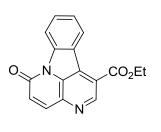
CI Н .CO₂Et 0

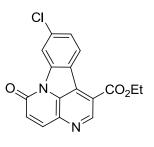
256


p. 214


257 p. 215

 F_3C CI Н CO₂Et 0

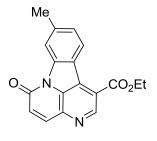

258 p. 215

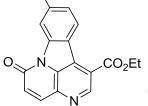

259 p. 216

260 p. 216



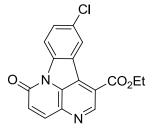
261 p. 216

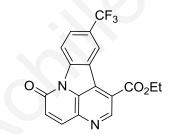



262 p. 217

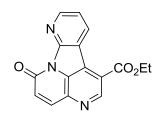
MeQ

263 p. 218

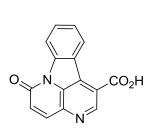

264 p. 218



265 p. 219



266 p. 219


268 p. 220

269 p. 221

267 p. 220

270 p. 221

271 p. 222

REFERENCES

- Roth, B. D.; Ortwine, D. F.; Hoefle, M. L.; Stratton, C. D.; Sliskovic, D. R.; Wilson, M. W.; Newton, R. S. *J. Med. Chem.* **1990**, *33*, 21.
- 2. Schester, A.; Birnbaum, L.; Ryan, J. J.; Constable, J. D. Environ. Res. 2006, 101, 419.
- 3. Baeyer, A.; Emmerling, A. Ber. Dtsch. Chem. Ges. 1870, 3, 514.
- 4. Hoppe, H.; Sariciftci, N. S. J. Mater. Res. 2004, 19, 1924.
- 5. Dews, P. D. Caffeine: Perspectives from Recent Research, Springer-Verlag, Berlin, 1984.
- 6. Fruton, J. S. *Molecules of Life*, Wiley-Interscience, 1972.
- IUPAC-IUBMB Joint Commission on Biochemical Nomenclature. "Nomenclature and Symbolism for Amino Acids and Peptides". Recommendations on Organic & Biochemical Nomenclature, Symbols & Terminology etc. Retrieved 2007-05-17.
- 8. Antonini, E.; Brunori, M. *Hemoglobin and Myoglobin in their Reactions with Ligands*, North-Holland, Amsterdam, 1971.
- 9. Woodward, R. B.; Ayer, W. A.; Beaton, J. M. J. Am. Chem. Soc. 1960, 82, 3800.
- 10. Paal, C. Ber. Dtsch. Chem. Ges. 1884, 17, 2756.
- 11. Knorr, L. Ber. Dtsch. Chem. Ges. 1884, 17, 2863.
- 12. Feist, F. Chem. Ber. 1902, 35, 1537.
- 13. Benary, E. Chem. Ber. 1911, 44, 489.
- 14. Sornay, R.; Meunier, J. M.; Fournari, P. Bull. Soc. Chim. Fr. 1971, 990.
- 15. Fuchs, B.; Belsky, Y.; Tartakovsky, E.; Zizuashvili, J.; Weinman, S. J. Chem. Soc., Chem. Commun. 1982, 778.
- 16. Halpern, J. Pure Appl. Chem. 2001, 73, 209.
- 17. Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133.
- 18. Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem. Int. Ed. 2009, 48, 9792.
- Brown, D. W.; Sainsbury, M. In *Isothiazoles in Science of Synthesis, Product Class 15*;
 Schaumann, E., Ed.; Georg Thieme: Stuttgart, 2002; Vol. 11; Chapter 11.15, p 507.
- Kang, Y. K.; Lee, K. S.; Yoo, K. H.; Shin, K. J.; Kim, D. C.; Lee, C.-S.; Kong, J. Y.;
 Kim, D. J. *Bioorg. Med. Chem. Lett.* 2003, 13, 463.
- 21. Layton, A. J.; Lunt, E. J. Chem. Soc. 1968, 611.

- Ashton, M. J.; Ashford, A.; Loveless, A. H.; Riddell, D.; Salmon, J.; Stevenson, G. V.
 W. J. Med. Chem. 1984, 27, 1245.
- 23. Wyeth, J. and Brother LTD, US Pat. 4,180,670, 1979.
- 24. Noeth, H.; Wrackmeyer, B. Chem. Ber. 1974, 107, 3070.
- 25. Sykes, P.; Ullah, H. J. Chem. Soc., Perkin Trans. 1 1972, 2305.
- Nakagawa, S. N.; Okumura, J.; Sakai, F.; Hoshi, H.; Naito, T. *Tetrahedron Lett.* 1970, 3719.
- 27. Givaudan Corporation, US Pat. 4,181,136, 1981.
- 28. Zlotin, S. G.; Kislitsin, P. G.; Luk'yanov, O. A. Russ. Chem. Bull. 1997, 46, 1792.
- 29. Mitsui Toatsu Chemicals, US Pat. 5,240,951 A1, 1993.
- 30. Bayer, *DE Pat.* 2,231,097, 1974.
- Zborovskii, Yu. L.; Smirnov-Zamkov, I. V.; Staninets, V. I. Zh. Org. Khim., 1984, 20, 1774.
- 32. Hatchard, W. R. J. Org. Chem. 1964, 29, 660.
- 33. Zlotinn S. G.; Kislitsin, P. G.; Luk'yanov, O. A. Russ. Chem. Bull., 1998, 47, 519.
- 34. Zlotinn S. G.; Kislitsin, P. G.; Luk'yanov, O. A. Russ. Chem. Bull., 1998, 47, 517.
- 35. Christoforou, I. C.; Koutentis, P. A.; Rees, C. W. Org. Biomol. Chem. 2003, 1, 2900.
- 36. Christoforou, I. C.; Koutentis, P. A. Org. Biomol. Chem. 2006, 4, 3681.
- 37. Christoforou, I. C.; Koutentis, P. A. Org. Biomol. Chem. 2007, 5, 1381.
- 38. Geevers, J.; Trompen, W. P. Recl. Trav. Chim. Pays-Bas 1974, 93, 270.
- Koutentis, P. A.; Rees, C. W.; White, A. J. P.; Williams, D. J. Chem. Commun. 2000, 303.
- 40. Koutentis, P. A.; Rees, C. W. J. Chem. Soc., Perkin Trans. 1 2000, 1089.
- Moody, C. J. In Polyoxa, Polythia and Polyaza Six-Membered Ring Systems in Comprehensive Heterocyclic Chemistry; Katritzky, A. R.; Rees, C. W. Eds.; Pergamon, Oxford, UK, 1984; Vol. 3.; p 1039.
- 42. Smalley, R. K. In 1,2,6-Oxadiazines and 1,2,6-Thiadiazines in Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. Eds.; Elsevier Science Ltd., Oxford, 1996; vol. 6; Chapter 6.16, p. 695.
- 43. Koutentis, P. A.; Rees, C. W. J. Chem. Soc., Perkin Trans. 1 2000, 2601.
- 44. Kalogirou, A. S.; Koutentis, P. A.; Rikkou, M. D. Tetrahedron 2010, 66, 1817.
- 45. Peake, C. J.; Harnish W. N.; Davidson, B. L. U.S. Pat. 4,097,594, 1978.
- 46. Koutentis, P. A.; Rees, C. W. J. Chem. Soc., Perkin Trans. 1 2000, 1081.

- 47. Emayan, K.; English, R. F.; Koutentis, P. A.; Rees, C. W. J. Chem. Soc., Perkin Trans. *1* **1997**, 3345.
- 48. Christoforou, I. C.; Koutentis, P. A.; Rees, C. W. *J. Chem. Soc., Perkin Trans. 1* 2002, 1236.
- 49. Assmann, L.; Kitagawa, Y.; Ishikawa, K.; Yamazaki, D.; Sawada, H.; Araki, Y.; Sakuma, H.; Kinbara, T.; Imanishi, K. *WO Pat.* 29 398, 2000.
- 50. Vivona, N.; Buscemi, S.; Frenna, V.; Cusmano, G. In *Adv. Heterocycl. Chem.*, ed. unknown 1993; vol. 56; ch. unknown, p. 49.
- 51. Christoforou, I. C.; Koutentis, P. A.; Michaelidou, S. S. ARKIVOC 2006, vii, 207.
- 52. Subramanian, L. R. In *Science of Synthesis;* Murahashi, S.-I. Ed.; Thieme Chemistry; 2004; vol. 19; Chapter 19.5.5, p. 173.
- 53. Lee, F. T.; Chung, Y.; Kim, K., J. Heterocycl. Chem., 1970, 7, 941.
- 54. Hatchard, W. R. US Pat. 3,155,679, 1964.
- 55. Davis, R. E. J. Phys. Chem. 1962, 66, 956.
- 56. Davis, R. E.; Cohen, A.; Louis, J. A. J. Am. Chem. Soc. 1963, 85, 3050.
- 57. Bartlett, P. D.; Davis, R. E. J. Am. Chem. Soc. 1958, 80, 2513.
- 58. Hartnedy, R. C.; Dittmer, D. C. J. Org. Chem. 1984, 49, 4752.
- Hudlicky, M. In *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I. Eds.; Pergamon Press, Oxford; 1991; vol. 8; Chapter 4.5, p 895.
- Sutherland, A. G. In *Comprehensive Organic Functional Group Transformations*; Roberts, S. M. Ed.; Katritzky, A. R.; Meth-Cohn, O.; Rees, C. W. Eds. In Chief; Elsevier, Oxford, 1995; vol. 1; p 1.
- 61. Zhang, Y.-M.; Gu, M.; Ma, H.; Tang, J.; Lu, W.; Nan, F.-J. Chinese J. Chem. 2008, 26, 962.
- 62. Libnow, S.; Wille, S.; Christiansen, A.; Hein, M.; Reinke, H.; Köckerling, M.; Miethchen, R. *Synthesis* **2006**, 496.
- 63. Wagner, F. F.; Comins, D. L. Eur. J. Org. Chem. 2006, 3562.
- 64. Thomsen, B.; Beeley, N.; Sekiguchi, Y. Bioorg. Med. Chem. Lett. 2005, 15, 2565.
- 65. Bastos, M. M.; Barbosa, J. P.; Pinto, A. C.; Kover, W. B.; Takeuchi, Y.; Boechat, N. J. *Braz. Chem. Soc.* **2001**, *12*, 417.

- Kanuma, K.; Omodera, K.; Nishiguchi, M.; Funakoshi, T.; Chaki, S.; Semple, G.; Tran, T.-A.; Kramer, B.; Hsu, D.; Casper, M.; Boarland, M. P. V.; McOmie, J. F. W. J. *Chem. Soc.* 1951, 1218.
- Gol'dfarb, Y. L.; Gromova, G. P.; Belen'kii, L. I. *Chem. Heterocycl. Compd.* **1986**, *22*, 663.
- 68. Gibson, H. W. Chem. Rev. **1969**, 69, 673.
- 69. Walsh, R. J. A.; Wooldridge, K. R. H. J. Chem. Soc., Perkin Trans. 1 1972, 1247.
- 70. Clarke, K.; Fox, W. R.; Scrowston, R. M. J. Chem. Soc., Perkin Trans. 1 1980, 1029.
- 71. Turnbull, M. D.; Smith, A. M.; Salmon, R. US Pat. 5,705,516, 1998.
- 72. Ioannidou, H. A.; Koutentis, P. A. *Tetrahedron* **2009**, *65*, 7023.
- 73. Saha, A. K.; Sarkar, A. US Pat. 5,051,030, 1991.
- 74. Li, C. J.; Chan, T. H. Tetrahedron Lett. **1991**, *32*, 7017.
- 75. CRC Handbook of Chemistry and Physics 75th Ed. 1994/95, 75th ed., editor Lide, D.R. CRC Press, Cleveland, OH, p. 9-52.
- 76. Johnson, T. B.; Hahn, D. A. J. Am. Chem. Soc. 1917, 39, 1255.
- 77. Hartman, W. W.; Roll, L. J. Org. Synth. 1943, 2, 418.
- 78. Corey, E. J.; Sneen, R. A. J. Am. Chem. Soc. 1956, 78, 6269.
- 79. House, H. O.; Larson, J. K. J. Org. Chem. 1968, 33, 61.
- Hassner, A.; Hoblitt, R. P.; Heathcock, C.; Kropp, J. E.; Lorber, M. J. Am. Chem. Soc. 1970, 92, 1326.
- 81. Di Vona, M. L.; Rosnati, V. J. Org. Chem. 1991, 56, 4269.
- 82. Rani, B. R.; Ubukata, M.; Osada, H. Bull. Chem. Soc. Jpn. 1995, 68, 282.
- 83. Schissler, D. O.; Thompson, S. O.; Turkevich, J. Discuss. Faraday Soc. 1951, 10, 46.
- 84. Gronowitz, S. Acta Chem. Scand. 1959, 13, 1045.
- 85. Yamanaka, H.; Oshima, R.; Teramura, K.; Ando, T. J. Org. Chem. 1972, 37, 1734.
- 86. Kowalik, J.; Kupczyk-Subotkowska, L.; Mastalerz, P. Synthesis 1981, 57.
- 87. Weiner, H.; Blum, J.; Sasson, Y. J. Org. Chem. 1991, 56, 4481.
- 88. Leitner, W.; Brown, J. M.; Brunner, H. J. Am. Chem. Soc. 1993, 115, 152.
- 89. Yu, J.; Spencer, J. B. Chem. Commun. 1998, 1935.
- 90. Gao, W.; Keith, J. A.; Anton, J.; Jacob, T. J. Am. Chem. Soc. 2010, 132, 18377.
- 91. Bouffard, J.; Eaton, R. F.; Müller, P.; Swager, T. M. J. Org. Chem. 2007, 72, 10166.
- Sazonov, P. K; Artamkina, G. A.; Khrustalev, V. N.; Antipin, M. Yu.; Beletskaya, I. P. *J. Organomet. Chem.* 2003, 681, 59.

- 93. Hirasawa, N.; Takahashi, Y.; Fukuda, E; Sugimoto, O.; Tanji, K.-i. *Tetrahedron Lett.*2008, 49, 1492.
- 94. Brace, N. O.; Van Elswyk, J. E. J. Org. Chem. 1976, 41, 766.
- 95. Brown, D.; Sainbury, M. In *Science of Synthesis*, Shaumann, E. Ed. Thieme: Stuttgart-New York, 2002; vol. 11; Chapter 15, p. 567.
- 96. Davis, R. E. J. Am. Chem. Soc. 1958, 80, 3565.
- 97. Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. J. Am. Chem. Soc. 2006, 128, 6790.
- 98. Jia, X.; Yang, D.; Zhang, S.; Cheng, J. Org. Lett. 2009, 11, 4716.
- 99. Yan, G.; Kuang, C.; Zhang, Y.; Wang, J. Org. Lett. 2010, 12, 1052.
- Cutrì, C. C. C.; Garozzo, A.; Siracusa, M. A.; Sarvà, M. C.; Tempera, G.; Geremia, E.;
 Pinizzotto, M. R.; Guerrera, F. *Bioorg. Med. Chem.* 1998, 6, 2271.
- Cutrì, C. C. C.; Garozzo, A.; Siracusa, M. A.; Sarvà, M. C.; Castro, A.; Geremia, E.; Pinizzotto, M. R.; Guerrera, F. *Bioorg. Med. Chem.* 1999, 7, 225.
- 102. Roger, J.; Požgan, F.; Doucet, H. J. Org. Chem. 2009, 74, 1179.
- 103. Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731.
- 104. Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174.
- 105. Campeau, L.-C.; Stuart, D. R.; Fagnou, K. Aldrichimica Acta 2007, 40, 35.
- 106. Roger, J.; Doucet, H. Org. Biomol. Chem. 2008, 6, 169.
- 107. Gottumukkala, A. L.; Derridj, F.; Djebbar, S.; Doucet, H. *Tetrahedron Lett.* **2008**, *49*, 2926.
- 108. Ackermann, L.; Vincente, R.; Born, R. Adv. Synth. Catal. 2008, 350, 741.
- 109. Gottumukkala, A. L.; Doucet, H. Adv. Synth. Catal. 2008, 350, 2183.
- Yokooji, A.; Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. *Tetrahedron* 2003, 59, 5685.
- 111. Masui, K.; Mori, A.; Okano, K.; Takamura, K.; Kinoshita, M.; Ikeda, T. Org. Lett.
 2004, 6, 2011.
- 112. Kobayashi, K.; Ahmed, M. S. M.; Mori, A. Tetrahedron 2006, 62, 9548.
- 113. Turner, G. L.; Morris, J. A.; Greaney, M. F. Angew. Chem., Int. Ed. 2007, 46, 7996.
- 114. Gottumukkala, A. L.; Doucet, H. Eur. J. Inorg. Chem. 2007, 3629.
- 115. Liégault, B.; Lapointe, D.; Caron, L.; Vlassova, A.; Fagnou, K. J. Org. Chem. 2009, 74, 1826.
- 116. Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904.

- 117. Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254.
- 118. Wang, C.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 4194.
- 119. Shabashov, D.; Daugulis, O. Org. Lett. 2005, 7, 3657.
- 120. Daugulis, O.; Zaitsev, V. G. Angew. Chem. Int. Ed. 2005, 44, 4046.
- 121. Campeau, L.-C.; Parisien, M.; Jean, A.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 581.
- 122. Shabashov, D.; Daugulis, O. Org. Lett. 2006, 8, 4947.
- 123. Lazareva, A.; Daugulis, O. Org. Lett. 2006, 8, 5211.
- 124. Yang, S.; Li, B.; Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129, 6066.
- 125. Voutchkova, A.; Coplin, A.; Leadbeater, N. E.; Crabtree, R. H. *Chem. Commun.* 2008, 6312.
- 126. Join, B.; Yamamoto, T.; Itami, K. Angew. Chem., Int. Ed. 2009, 48, 3644.
- 127. Karabelas, K.; Westerlund, C.; Hallberg, A. J. Org. Chem. 1985, 50, 3896.
- 128. Karabelas, K.; Hallberg, A. J. Org. Chem. 1986, 51, 5286.
- 129. Hirabayashi, K.; Mori, A.; Kawashima, J.; Suguro, M.; Nishihara, Y.; Hiyama, T. J. *Org. Chem.* **2000**, *65*, 5342.
- Mori, A.; Kawashima, J.; Shimada, T.; Suguro, M.; Hirabayashi, K.; Nishihara, Y. Org. Lett. 2000, 2, 2935.
- 131. Mori, A.; Sugie, A. Bull. Chem. Soc. Jpn. 2008, 181, 548.
- 132. Masui, K.; Ikegami, H.; Mori, A. J. Am. Chem. Soc. 2004, 126, 5074.
- 133. Kobayashi, K.; Sugie, A.; Takahashi, M.; Masui, K.; Mori, A. Org. Lett. 2005, 7, 5083.
- 134. Masuda, N.; Tanba, S.; Sugie, A.; Monguchi, D.; Koumura, N.; Hara, K.; Mori, A. *Org. Lett.* **2009**, *11*, 2297.
- 135. Mulhall, J. Br. J. Urol. 1997, 79, 363.
- 136. Rainer, G.; Kruger, U.; Klemm, K. Arzneim. -Forsch. 1981, 31, 649.
- 137. Vinge, E.; Bjorkman, S. B. Acta Pharmacol. Toxicol. 1986, 59, 165.
- 138. Kameyama, T.; Ukai, M.; Nabeshima, T. Chem. Pharm. Bull. 1978, 26, 3265.
- 139. Naito, T.; Yoshikawa, T.; Kitahara, S.; Aoki, N. Chem. Pharm. Bull. 1969, 17, 1467.
- 140. Heijnen, H.; Geuze, H. *Histochemistry* **1977**, *54*, 39.
- 141. Jungheim, L. N.; Sigmund, S. K.; Fisher, J. W. Tetrahedron Lett. 1987, 28, 285.
- 142. Elguero, J. In *Comprehensive Heterocyclic Chemistry*; Potts, K. T., Ed.; Katritzky, A. R.; Rees, C. W. Eds. in Chief; Pergamon: Oxford, 1984; Vol. 5; Chapter 4. 04, p. 167.

- 143. Elguero, J. In *Comprehensive Heterocyclic Chemistry II*; Shinkai, I., Ed.; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V. Eds. in Chief; Pergamon: Oxford, 1996; Vol. 3; Chapter 3.01, p. 1.
- Yet, L. In *Comprehensive Heterocyclic Chemistry III*; Joule, J. A., Ed.; Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K. Eds. in Chief; Elsevier: Oxford, 2008; Vol. 4; Chapter 4.01, p. 1.
- 145. Stanovnik, B.; Svete, J. In *Pyrazoles in Science of Synthesis Product Class 1*; Neier, R., Ed.; Georg Thieme Verlag: Stuttgart, 2002; Vol. 12, p. 15.
- 146. Dornow, A.; Schleese, E. Chem. Ber. 1958, 91, 1830.
- 147. Minkin, V. I.; Garnovskii, A. D.; Elguero, J.; Katritzky, A. R.; Denisko, O. V. Adv. Heterocycl. Chem. 2000, 76, 157.
- Elguero, J.; Marzin, C.; Katritzky, A. R.; Linda, P. *The Tautomerism of Heterocycles*; Academic: New York, NY, 1976; p. 55.
- 149. Chenon, M. T.; Coupry, C.; Grant, D. M.; Pugmire, R. J. J. Org. Chem. 1977, 42, 659.
- 150. Elguero, J.; Fruchier, A.; Pellegrin, V. J. Chem. Soc., Chem. Commun. 1981, 1207.
- 151. Claisen, L. Chem. Ber. 1909, 42, 59.
- 152. Schöttle, J. Chem. Ber. 1912, 45, 2340.
- 153. Cusmano, S. Gazz. Chim. Ital. 1939, 69, 594.
- 154. Cusmano, S. Gazz. Chim. Ital. 1940, 70, 86.
- 155. Cusmano, S. Gazz. Chim. Ital. 1940, 70, 227.
- 156. Cusmano, S. Gazz. Chim. Ital. 1940, 70, 235.
- 157. Cusmano, S. Gazz. Chim. Ital. 1940, 70, 240.
- 158. Bell, F. J. Chem. Soc. 1941, 285.
- 159. Musante, C. Gazz. Chim. Ital. 1942, 72, 537.
- 160. Musante, C. Gazz. Chim. Ital. 1943, 73, 355.
- 161. Gardner, T. S.; Smith, F. A.; Wenis, E.; Lee, J. J. Org. Chem. 1956, 21, 530.
- 162. Musante, C.; Fatutta, S. Gazz. Chim. Ital. 1958, 88, 879.
- 163. Fatutta, S. Gazz. Chim. Ital. 1959, 89, 964.
- 164. Adembri, G.; Camparini, A.; Ponticelli, F.; Tedeschi, P. J. Chem. Soc., Perkin Trans. 1 1977, 971.
- Adembri, G.; Camparini, A.; Donati, D.; Ponticelli, F.; Tedeschi, P. *Tetrahedron Lett.* 1978, 19, 4439.

- 166. Donati, D.; Fusi, S.; Ponticelli, F. J. Heterocycl. Chem. 1998, 35, 109.
- 167. Sviridov, S. I.; Vasil'ev, A. A.; Shorshnev, S. V. Tetrahedron 2007, 63, 12195.
- 168. Musante, C.; Stener, A. Gazz. Chim. Ital. 1959, 89, 1579.
- 169. Alberola, A.; Antolín, L. F.; Cuadrado, P.; González, A. M.; Laguna, M. A.; Pulido, F. J. Synthesis 1988, 203.
- 170. Zelenin, K. N.; Lagoda, I. V. Russ. J. Gen. Chem. 2000, 70, 1887.
- 171. Shaw, G. J. Chem. Soc. 1952, 3428.
- 172. Ponzio, G.; Carta-Satta, G. Gazz. Chim. Ital. 1930, 60, 150.
- 173. Boulton, A. J.; Roe, D. E.; Tsoungas, P. G. Gazz. Chim. Ital. 1981, 111, 167.
- 174. Knorr, L.; Reuter, B. Chem. Ber. 1894, 27, 1169.
- 175. Landesberg, J. M.; Olofson, R. A. Tetrahedron 1966, 22, 2135.
- 176. Hassan, M. E.; Magraby, M. A.; Aziz, M. A. Tetrahedron 1985, 41, 1885.
- 177. Wolf, J.; Schulze, B. Adv. Heterocycl. Chem. 2007, 94, 215.
- 178. Fürstenwerth, H. US Pat. 4,892,958, 1990.
- 179. Bigelow, L. A.; Eatough, H. Org. Synth. 1941, 1, 80.
- 180. Adams, A.; Slack, R. J. Chem. Soc. 1959, 3061.
- 181. Caton, M. P. L.; Martin, G. C. J.; Pain, D. L. J. Chem. Soc. Section C 1971, 776.
- 182. Lipnicka U.; Machon, Z. Acta Poloniae Pharmaceutica, 1997, 54, 207.
- 183. Krebs, H.-D. Aust. J. Chem. 1989, 42, 1291.
- 184. Joos, A.; Wirtz, W. US Pat. 3,657,261, 1972.
- 185. Davis, M.; Gordon, J. A. J. Chem. Soc., Perkin Trans. 1, 1972, 638.
- 186. Graubaum, H.; Lutze, G.; Ramm, M. *Phosphorus, Sulfur Silicon Relat. Elem.* 1993, 84, 83.
- 187. Guha, P. C.; Mukherji, S. P. Quart. J. Indian Inst. Sci. Sect. A, 1946, 9, 70.
- 188. Druey, J. CIBA US Pat. 2,484,785, 1948.
- 189. Furst, A.; Berlo, R. C.; Hooton, S. Chem. Rev. 1965, 65, 51.
- 190. Busch, M.; Schulz, K. Chem. Ber. 1929, 62, 1458.
- 191. Chattaway, F. D.; Aldridge, M. J. Chem. Soc., Trans. 1911, 99, 404.
- 192. Mangia, M. T. L.; Pelizzi, G. Gazz. Chim. Ital. 1976, 106, 769.
- Lipnicka, U.; Maczynski, M.; Artym, J.; Zimecki, M. Acta Poloniae Pharmaceutica 2009, 66, 501.
- 194. Lipnicka, U.; Jasztold-Howorko, I. Scientia Pharmaceutica, 2004, 74, 275.
- 195. Ueda, T.; Shibata, Y.; Sakakibara, J. J. Heterocycl. Chem. 1986, 23, 1773.

- 196. Ueda, T.; Shibata, Y.; Kato, Y.; Sakakibara, J. *Tetrahedron*, **1987**, *43*, 3917.
- 197. Fomum, Z. T.; Landor, S. R.; Landor, P. D.; Mpango, G. W. P. J. Chem. Soc., Perkin Trans. 1, 1981, 2997.
- 198. Liang, C.; Ma, T.; Cooperwood, J. S.; Du, J.; Chu, C. K. *Carbohydr. Res.* 1997, 303, 33.
- 199. Ephraim, F.; Piotrowski, H. Chem. Ber. 1911, 44, 386.
- 200. Pain, D. L.; Peart, B. J.; Wooldridge, K. R. H. In *Comprehensive Heterocyclic Chemistry*; Potts, K. T. Ed.; Katritzky, A. R.; Rees, C. W. Eds. In Chief; Pergamon: Oxford, 1984; vol. 6; Chapter 4.17, p. 131.
- Chapman, R. F. Peart, B. J. In *Comprehensive Heterocyclic Chemistry II*, Shinkai, I. Ed.; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V. Eds. In Chief; Pergamon: Oxford, 1996, vol. 3, Chapter 3.05, p. 319.
- 202. Lovas, F.J.; Suenram, R. D.; Stevens, W. J. J. Mol. Spectrosc. 1983, 100, 313.
- 203. van der Plas, H. C. Adv. Heterocycl. Chem. 1999, 74, 9.
- 204. Joshi, N. S.; Karale, B. K.; Bhirud, S. B.; Gill, C. H. J. Heterocycl. Chem. 2004, 41, 541.
- Patel, M.; Rodgers, J. D.; McHugh, R. J.; Johnson, B. L.; Cordova, B. C.; Klabe, R. M.; Bacheler, L. T.; Erickson-Viitanen, S.; Ko, S. S. *Bioorg. Med. Chem. Lett.* 1999, 9, 3217.
- Straub, A.; Stasch, J.-P.; Alonso-Alija, C.; Benet-Buchholz, J.; Ducke, B.; Feurer, A.;
 Fürstner, C. *Bioorg. Med. Chem. Lett.* 2001, 11, 781.
- 207. Peshkar, H. Pharm. Zentralhalle 1968, 107, 348.
- 208. Southwick, P. L.; Dhawan, B. J. Heterocycl. Chem. 1975, 12, 1199.
- 209. Wolter, M.; Klapars, A.; Buchwald, S. L. Org. Lett. 2001, 3, 3803.
- 210. Lim, Y.-K.; Choi, S.; Park, K.B.; Cho, C.-G. J. Org. Chem. 2004, 69, 2603.
- 211. Barluenga, J.; Moriel, P.; Aznar, F.; Valdés, C. Org. Lett. 2007, 9, 275.
- 212. Alonso, F.; Beletskaya, I. P.; Yus, M. Tetrahedron 2008, 64, 3047.
- 213. Espinet P.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 4704.
- 214. Merschaert, A.; Gorissen, H. J. Heterocycles 2003, 60, 29.
- 215. Yasuda, T.; Imase, T.; Nakamura, Y.; Yamamoto, T. Macromolecules 2005, 38, 4687.
- 216. Leblond, J.; Gao, H.; Petitjean, A.; Leroux, J.-C. J. Am. Chem. Soc. 2010, 132, 8544.

- 217. Tobe, Y.; Nakanishi, H.; Sonoda, M.; Wakabayashi, T.; Achiba, Y. Chem. Commun. 1999, 1625.
- 218. Abe, H.; Machiguchi, H.; Matsumoto, S.; Inouye, M. J. Org. Chem. 2008, 73, 4650.
- 219. Heller, M; Schubert, U. S. J. Org. Chem. 2002, 67, 8269.
- 220. Moreno-Mañas, M.; Pleixats, R.; Serra-Muns, A. Synlett 2006, 3001.
- 221. Darabantu, M.; Boully, M.; Turck, A.; Plé, N. Tetrahedron 2005, 61, 2897.
- 222. Brown, R. D.; Buchanan, A. S.; Humffray, A. A. Aust. J. Chem. 1965, 18, 1521.
- 223. Roques, B. P.; Florentin, D.; Callanquin, M. J. Heterocycl. Chem. 1975, 12, 195.
- 224. Florentin, D.; Fournié-Zaluski, M. C.; Callanquin, M.; Roques, B. P. J. Heterocycl. *Chem.* **1976**, *13*, 1265.
- 225. Briehn, C. A.; Schiedel, M.-S.; Bonsen, E. M.; Schuhmann, W.; Baüerle, P. Angew. Chem., Int. Ed. 2001, 40, 4680.
- 226. Tour, J. M. Chem. Rev. 1996, 96, 537.
- 227. Facchetti, A.; Yoon, M.-H.; Stern, C. L.; Katz, H. E.; Marks, T. J. Angew. Chem., Int. Ed. 2003, 42, 3900.
- 228. Izumi, T.; Kobashi, S.; Takimiya, K.; Aso, Y.; Otsubo, T. J. Am. Chem. Soc. 2003, 125, 5286.
- 229. Bailey, J. M.; Bit, R. A.; Demont, E. H.; Harrison, L. A.; Jones, K. L.; Smethurst, C. A. P.; Witherington, J. WO Pat. 146105, 2010.
- 230. Fuss, R. W.; Manero, J.; Schlosser, H.; Winger, R. US Pat. 5,847,149, 1998.
- 231. Heuberger, B. D.; Shin, D.; Switzer, C. Org. Lett. 2008, 10, 1091.
- 232. Crowley, J. D.; Leigh, D. A.; Lusby, P. J.; McBurney, R. T.; Perret-Aebi, L.-E.; Petzold, C.; Slawin, A. M. Z.; Symes, M. D. J. Am. Chem. Soc. 2007, 129, 15085.
- 233. Yamaguchi, Y.; Kobayashi, S.; Wakamiya, T.; Matsubara, Y.; Yoshida, Z.-i. Angew. Chem. Int. Ed. 2005, 44, 7040.
- Woods, C. R.; Benaglia, M.; Toyota, S.; Hardcastle, K.; Siegel, J. S. Angew. Chem. Int. Ed. 2001, 40, 749.
- 235. Orlandi, S.; Annunziata, R.; Benaglia, M.; Cozzi, F.; Manzoni, L. *Tetrahedron* 2005, 61, 10048.
- 236. Gaviña, P.; Tatay, S. Tetrahedron Lett. 2006, 47, 3471.
- 237. Hartung, C. G.; Backes, A. C.; Felber, B.; Missio, A.; Philipp, A. *Tetrahedron* 2005, 62, 10055.

- 238. Schauerte, H.; Allgeier, H.; Pleiss, M. A.; Augustin, M.; Peraus, G.; Stumm, G.;
 Wabnitz, P. US Pat. 2010/184780, 2010.
- Bouet, A.; Heller, B.; Papamicaël, C.; Dupas, G.; Oudeyer, S.; Marsais, F.; Levacher, V. Org. Biomol. Chem. 2007, 5, 1397.
- Rajadurai, C.; Ivanova, A.; Enkelmann, V.; Baumgarten, M. J. Org. Chem. 2003, 68, 9907,
- 241. Ioannidou, H. A.; Kizas, C.; Koutentis, P. A. Org. Lett. 2011, 13, 3466.
- 242. Choppin, S.; Gros, P.; Fort, Y. Org. Lett. 2000, 2, 803.
- 243. Billingsley, K.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3358.
- 244. Bolliger, J. L.; Frech, C. M. Chem. -Eur. J. 2010, 16, 4075.
- 245. Dupuis, C.; Adiey, K.; Charruault, L.; Michelet, V.; Savignac, M.; Genêt, J.-P. *Tetrahedron Lett.* 2001, 42, 6523.
- 246. Li, G.; Wang, E.; Chen, H.; Li, H.; Liu, Y.; Wang, P. G. Tetrahedron 2008, 64, 9033.
- 247. Kim, S.-H.; Rieke, R. D. Tetrahedron 2010, 66, 3135.
- 248. Finkelstein, H. Ber. Dtsch. Chem. Ges. 1910, 43, 1528.
- 249. Goshaev, M.; Otroshchenko, O. S.; Sdaykov, A. S. Russ. Chem. Rev. 1972, 41, 1046.
- 250. Murata, M.; Watanabe, S.; Masuda, Y. Synlett 2000, 1043.
- 251. Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.; Sreedhar, B. J. Am. Chem. Soc. 2002, 124, 14127.
- 252. Peake, C. J.; Harnish, W. N.; Davidson, B. L. US Pat. 4,100,281, 1978.
- 253. Peake, C. J.; Harnish, W. N.; Davidson, B. L. US Pat. 4,143,138, 1979.
- 254. Peake, C. J.; Harnish, W. N.; Davidson, B. L. US Pat. 4,201,780, 1980.
- 255. Portnoy, R. C. US Pat. 4,497,807, 1985.
- 256. Ioannidou, H. A.; Kizas, C.; Koutentis, P. A. Org. Lett. 2011, ASAP, DOI: 10.1021/ol2025235
- 257. Cava, M. P.; Lakshmikantham, M. V.; Hoffmann, R.; Williams, R. M. *Tetrahedron* 2011, 67, 6771.
- 258. Posner, G. H.; Loomis, G. L.; Sawaya, H. S. Tetrahedron Lett. 1975, 16, 1373.
- 259. Ioannidou, H. A.; Koutentis, P. A. Tetrahedron 2011, 67, 3348.
- 260. Linn, W. J.; Ciganek, E. J. Org. Chem. 1969, 34, 2146.
- 261. Koutentis, P. A.; Rees, C. W. J. Chem. Soc., Perkin Trans. 1, 1998, 2505.

- 262. Ogura, K.; Zhao, R.; Mizuoka, T.; Akazome, M.; Matsumoto, S. Org. Biomol. Chem.
 2003, 1, 3845.
- 263. Linde, H. F. G.; Kraemer, N.; Flohr, A. Archiv der Pharmazie, 1988, 321, 403.
- 264. Otani, T.; Takayama, J.; Sugihara, Y.; Ishii, A.; Nakayama, J. J. Am. Chem. Soc. 2003, 125, 8255.
- 265. Overberger, C. G.; Mallon, H. J.; Fine, R. J. Am. Chem. Soc. 1950, 72, 4958.
- 266. von Steinkopf, W.; Augestad-Jensen, H. Justus Liebigs Ann. 1922, 428, 154.
- 267. Haynes, H. F.; Nelson, E. R.; Price, J. R. Aust J. Res., Ser. A 1952, 5, 387.
- 268. Kardono, L. B. S.; Angerhofer, C. K.; Tsauri, S.; Padmawinata, K.; Pezzuto, J. M.; Kinghorn, A. D. J. Nat. Prod. 1991, 5, 1360.
- Ohmoto, T.; Koike, K. In *The Alkaloids*; Brossi, A., Ed.; Academic: New York, 1989;
 Vol. 36, Chapter 3, p 135.
- 270. Zapesochnaya, G.; Kurkin, V.; Okhanov, V.; Miroshnikov, A. Planta Med. 1992, 2, 192.
- 271. Saxton, J. E. Nat. Prod. Rep. 1991, 8, 251.
- 272. Ouyang, Y.; Koike, K.; Ohmoto, T. Phytochemistry, 1994, 6, 1543.
- 273. Mitsunaga, K.; Koike, K.; Tanaka, T.; Ohkawa, Y.; Kobayashi, Y.; Sawaguchi, T.;
 Ohmoto, T. *Phytochemistry* 1994, *3*, 799.
- 274. Chen, K. C. S.; Chang, H. L.; Chan, M. L.; Lee, S. S. J. Chin. Chem. Soc. 1993, 4, 403.
- 275. Ferreira, M. E.; Nakayama, H.; de Arias A. R.; Schinini, A.; de Bilbao, N. V.; Serna,
 E.; Lagoutte, D.; Soriano-Agatón, F.; Poupon, E.; Hocquemiller, R.; Fournet A. J. *Ethnopharmacol.* 2007, 109, 258.
- 276. Ferreira, M.-E.; Alain, F.; de Arias, A. R; Hocquemiller, R.; Poupon, E. US Pat. 2007/149461, 2007.
- 277. Takasu, K.; Shimogama, T.; Saiin, C.; Kim, H.-S.; Wataya, Y.; Brun, R.; Ihara, M., *Chem. Pharm. Bull.* **2005**, *53*, 653.
- 278. Kuo, P.-C.; Shi, L.-S.; Damu, A. G.; Su, C.-R.; Huang, C.-H.; Ke, C.-H.; Wu, J.-B.; Lin, A.-J.; Bastow, K. F.; Lee, K.-H.; Wu, T.-S. *J. Nat. Prod.* **2003**, *66*, 1324.
- 279. Kitagawa, I.; Mahmud, T.; Simanjuntak, P.; Hori, K.; Uji, T.; Shibuya, H., *Chem. Pharm. Bull.* **1994**, *42*, 1416.
- 280. O'Donnell, G.; Gibbons, S. Phytother. Res. 2007, 21, 653.
- 281. Ostrov, D. A.; Prada, J. A. H.; Corsino, P. E.; Finton, K. A.; Le, N.; Rowe, T. C. Antimicrob. Agents Chemother. 2007, 51, 3688.

- 282. Soriano-Agatón, F.; Lagoutte, D.; Poupon, E.; Roblot, F.; Fournet, A.; Gantier, J.-C.; Hocquemiller, R. J. Nat. Prod. 2005, 68, 1581.
- 283. Thouvenel, C.; Gantier, J.-C.; Duret P.; Fourneau C.; Hocquemiller R.; Ferreira M.-E.; de Arias A. R.; Fournet A. *Phytother. Res.* 2003, 17, 678.
- 284. He, W.; Van Puyvelde, L.; De Kimpe, N.; Verbruggen, L.; Anthonissen, K.; van der Flaas, M.; Bosselaers, J.; Mathenge, S. G.; Mudida, F. P. *Phytother. Res.* 2002, 16, 66.
- 285. Miyake, K.; Tezuka, Y.; Awale, S.; Li, F.; Kadota, S. Nat. Prod. Commun. 2010, 5, 17.
- 286. Ammirante, M.; Giacomo, R.; Martino, L.; Rosati, A.; Festa, M.; Gentiella, A.; Pascale, M. C.; Belisario, M. A.; Leone, A.; Turco, M. C.; Feo, V. *Cancer Res.* 2006, 8, 4385.
- 287. de Feo, V.; de Martino, L.; Santoro, A.; Leone, A.; Pizza, C.; Franceschelli, S.; Pascale, M. *Phytother. Res.* 2005, *19*, 226.
- 288. Chen, J.-J.; Fang, H.-Y.; Duh, C.-Y.; Chen, I.-S. Planta Medica 2005, 71, 470.
- 289. Murakami, C.; Fukamiya, N.; Tamura, S.; Okano, M.; Bastow, K. F.; Tokuda, H.; Mukainaka, T.; Nishino, H.; Lee, K.-H. *Bioorg. Med. Chem.* 2004, *12*, 4963.
- 290. Xu, Z.; Chang, F.-R.; Wang, H.-K.; Kashiwada, Y.; McPhail, A. T.; Bastow, K. F.; Tachibana, Y.; Cosentino, M.; Lee, K.-H. J. Nat. Prod. 2000, 63, 1712.
- 291. Pettit, G. R.; Singh, S. B.; Goswami, A.; Nieman, R. A. Tetrahedron 1988, 44, 3349.
- 292. Ohmoto, T.; Nikaido, T.; Koike, K.; Kohda, K.; Sankawa, U. *Chem. Pharm. Bull.*1988, 36, 4588.
- 293. Sung, Y.-I.; Koike, K.; Nikaido, T.; Ohmoto, T.; Sankawa, U. *Chem. Pharm. Bull.*1984, 32, 1872.
- 294. Brahmbhatt, K. G.; Ahmed, N.; Sabde, S.; Mitra, D.; Singh, I. P.; Bhutani, K. K. Bioorg. Med. Chem. Lett. 2010, 20, 4416.
- 295. Singh, V.; Hutait, S.; Batra, S. Eur. J. Org. Chem. 2009, 6211.
- 296. Condie, G. C.; Bergman, J. Eur. J. Org. Chem. 2004, 1286.
- 297. Condie, G. C.; Bergman, J. J. Heterocycl. Chem. 2004, 41, 531.
- 298. Giudice, M. R. D.; Gatta, F.; Settimj, G. J. Heterocycl. Chem. 1990, 27, 967.
- 299. Guzman, F.; Cain, M.; Larscheid, P.; Hagen, T.; Cook, J. M.; Schweri, M.; Skolnick,
 P.; Paul, S. M. J. Med. Chem. 1984, 27, 564.
- 300. Cain, M.; Campos, O.; Guzman, F.; Cook, J. M. J. Am. Chem. Soc. 1983, 105, 907.
- 301. Roessler, U.; Blechert, S.; Steckhan, E. Tetrahedron Lett. 1999, 40, 7075.

- Mitscher, L. A.; Shipchandler, M.; Showalter, H. D. H.; Bathala, M. S. *Heterocycles* 1975, 3, 7.
- 303. Li, J.-H.; Snyder, J. K. Tetrahedron Lett. 1994, 35, 1485.
- 304. Hagen, T. J.; Cook, J. M. Tetrahedron Lett. 1988, 29, 2421.
- 305. Hagen, T. J.; Narayanan, K.; Names, J.; Cook, M. J. Org. Chem. 1989, 54, 2170.
- 306. Benson, S. C.; Li, J. H.; Snyder, J. K. J. Org. Chem. 1992, 57, 5285.
- 307. Maarseveen, J. H. V.; Mulders, S. J. E.; Aben, R. W. M.; Kruse, C. G.; Scheeren, H. W. *Tetrahedron* 1995, *51*, 4841.
- 308. Markgraf, J. H.; Finkelstein, M.; Cort, J. R. Tetrahedron 1996, 52, 461.
- 309. Markgraf, J. H.; Snyder, S. A.; Vosburg, D. A. Tetrahedron Lett. 1998, 39, 1111.
- 310. Snyder, S. A.; Vosburg, D. A.; Jarvis, M. G.; Markgraf, J. H. *Tetrahedron* **2000**, *56*, 5329.
- Lindsley, C. W.; Wisnoski, D. D.; Wang, Y.; Leister, W. H.; Zhao, Z. Tetrahedron Lett. 2003, 44, 4495.
- Czerwinski, K. M.; Zificsak, C. A.; Stevens, J.; Oberbeck, M.; Randlett, C.; King, M.; Mennen, S. Synth. Commun. 2003, 33, 1225.
- 313. Suzuki, H.; Abi, M.; Ebihara, Y.; Gyoutoko, H.; Furuya, H.; Murakami, Y.; Okuno, H. *Synthesis* **2005**, 28.
- 314. Nourry, A.; Legoupy, S.; Huet, F. Tetrahedron Lett. 2007, 48, 6014.
- 315. Gollner, A.; Koutentis, P. A. Org. Lett. 2010, 12, 1352.
- 316. Miller, W. H.; Rouse, M. B.; Seefeld, M. A. WO Pat. 2006081178, 2006.
- 317. Olah, G. A.; Narang, S. C. Tetrahedron 1982, 38, 2225.
- 318. Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684.
- 319. Theodorou, V.; Skobridis, K.; Tzakos, A. G.; Ragoussis, V. Tetrahedron Lett. 2007, 48, 8230.
- 320. Harwood, L. M. Aldrichimica Acta 1985, 18, 25.
- 321. Lemieux, R. U.; Micetich, R. G. US Pat. 3,311,611, 1965.
- 322. Harris, J. A. US Pat. 3,330,853, 1967.
- 323. Linn, W. J. Org. Synth. 1973, 5, 103
- 324. Santilli, A. A.; Bruce, W. F.; Osdene, T. S. J. Med. Chem. 1964, 7, 68.
- 325. Sundaramoorthi, R.; Keenan, T. P. Synth. Commun. 2007, 37, 417.
- 326. Sprio, V.; Fabra, J. Gazz. Chim. Ital. 1956, 86, 1059.
- 327. Yoshinori, T.; Yoshiki, N.; Shinya, K.; Akira, A. Heterocycles 1987, 26, 613.

- 328. Traxler, P.; Bold, G.; Frei, J.; Lang, M.; Lydon, N.; Mett, H.; Buchdunger, E.; Meyer, T.; Mueller, M.; Furet, P. J. Med. Chem. 1997, 40, 3601.
- 329. Zhang, X.-H.; Weng, L.-H.; Ji, G.-Y. J. Chem. Crystallogr. 2000, 30, 789.
- 330. Kobayashi, S. Chem. Pharm. Bull. 1973, 21, 941.
- 331. Middleton, W. J.; Engelhardt, V. A. J. Am. Chem. Soc. 1958, 80, 2822.
- 332. Wellcome, B. US Pat. 2,759,949, 1955.
- 333. Yoshinori, T.; Yasumasa, H.; Mayumi, H.; Akira, H. J. Heterocycl. Chem. 1990, 27, 775.
- 334. Anderson, J. D.; Dalley, K. N.; Revankar, G. R.; Robins, R. K. J. Heterocycl. Chem. 1986, 23, 1869.
- 335. Seidel, O. J. Prakt. Chem. 1898, 58, 129.
- 336. Goerdeler, J.; Mittler, W. Chem. Ber. 1963, 96, 944.
- 337. Alberti, C. Gazz. Chim. Ital. 1947, 77, 398.
- 338. Ruccia, M. Ann. Chim. 1959, 49, 720.