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This thesis proposes a novel computational model of internal conflict which aims to 

provide further understanding on this highly complex and perplexing condition of the 

human brain. In particular, the purpose of this thesis is to identify specific factors which 

influence and enable internal conflict to be resolved by self-control behaviour. 

Individuals are likely to experience an internal conflict when evaluating the same 

outcomes of choice along distinct dimensions or criteria. A value conflict of this sort can 

be resolved as if it was a result of strategic interaction between rational subagents of the 

brain. The particular setting for this interaction is a well-studied theoretical game, the 

Iterated Prisoner’s Dilemma, where the mutual cooperation outcome of the game 

corresponds to the behaviour of self-control. The computational system developed for the 

purposes of this thesis realises this particular view of internal conflict by implementing 

two spiking neural networks as two agents competing in the Iterated Prisoner’s Dilemma, 

where the agents pursue individual value maximisation through simultaneous but 

independent learning.  

This high-level game theoretical approach to the problem of internal conflict 

incorporates at the same time biological realism  through  the employed neuronal model, 
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the process of learning, as well as by relating the agents and their actions in the game 

with particular brain regions and their functioning. In particular, the spiking neural 

networks comprise of leaky integrate-and-fire neurons, while the learning process is 

implemented by reinforcement of stochastic synaptic transmission as well as by reward-

modulated spike-timing-dependent plasticity with eligibility trace. Moreover, the action 

of cooperation and defection by each agent maps to a greater relative activity of fronto-

parietal and limbic system areas respectively. 

As demonstrated through numerous simulations, the artificial neuronal system 

behaved efficiently in the game theoretical framework because the learning agents 

implemented the optimum result for the system through consistent mutual cooperation. 

Therefore self-control behaviour can indeed be learned (since it corresponds to mutual 

cooperation), and as showed by further results, it is enhanced by strong reward-correlated 

memory. Moreover, the ability of the agents to adopt optimal counter strategies as a 

response to their competitor’s, enabled the identification of particular value structures 

that characterise internal conflicts of low and high intensity that promote or hinder the 

attainment of self-control behaviour.  

In the process of obtaining the results which are relevant to the problem of self-

control behaviour and internal conflict, this thesis work applied for the first time spiking 

neural agents combined with biological plausible reinforcement learning in a highly 

demanding multiagent task. In addition, further results with our system showed that high 

firing irregularity at high rates enhances learning. 
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Chapter 1 

Introduction 

 

Decisions are drawn and actions are performed on the conscious and the subconscious 

level, defining the perspective of ourselves to us and the ones around us. Understanding 

ourselves requires understanding the way we decide and act. Sometimes it is quite easy to 

make sense of our decisions and sometimes it is not. Many of our actions are executed out 

of pure biological need; we drink water, eat, sleep, make love etc., and although they 

sometimes need some serious planning before executed, no real choice is given to 

whether they should be executed or not. Additionally, quite often decisions are drawn 

based on pure preference ordering. For example I could easily tell why I choose beef over 

chicken or chicken over salad for dinner, as these choices depend on my personal taste 

preferences. If I were on diet however, the decision would not be that obvious. We 

regularly find ourselves in situations where we have to decide between alternatives which 

elicit conflicting preference orderings if evaluated according to different criteria. If I were 

on diet, I would still prefer the taste of beef, but at the same time I would prefer a fitter 

version of me. Such a situation involves an intra-personal conflict, making the decision 

more difficult and complex to make. Whether I give in to temptation by having the beef 

or exhibit self-control by eating a lower-calorie meal, I could equally justify my decision. 

But even if people are very good at justifying or making excuses for their decisions when 
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experiencing an internal conflict, it is quite obscure how they truly come to these 

decisions, which internal processes underlay their decisions and which factors influence 

them.  

Internal conflicts are experienced by everyone on an everyday basis since 

individuals regularly find themselves in situations where they have to choose between an 

alternative
 
with a higher overall value and a more tempting but ultimately

 
inferior option. 

These contradicting alternatives elicit internal conflicts for the individual in so many 

different contexts. For example should I go out and have fun or stay home and finish 

some pending work? Or should I buy this cool gadget or save some money for the loan 

deposit?  Should I order this delicious greasy burger or stick to a lower calorie meal in 

order to loose some weight? These are just a few examples of dilemmas faced by people 

among many. Of course different dilemmas apply to different people in quality and 

intensity. Not everybody needs to loose weight and even if he/she does, the intensity of 

the dilemma differs on whether he/she needs to loose 5kg or 20kg. In addition, the timing 

of the dilemma influences our choices as it is easier to resist temptation at one instant and 

very difficult at another. The fact is that we all experience internal conflicts at some point 

however small or big.  

Maybe the most severe and challenging cases of internal conflict are presented 

during cases of addiction. The addicts experience full-blown internal conflicts, where 

decisions are often of life and death significance. However, the fact that in most cases 

addicts decide in favour of the short-term temptation not only challenges human 

rationality but at the same time raises questions on the power these individuals have on 

the outcome of such conflicts altogether. It is mind boggling to understand why smokers 

keep smoking even when they do not feel like smoking, knowing at the same time that 
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they consciously degrade their biological system. To smoke or not to smoke involves a 

dilemma, an internal conflict that shutters the brain, making the decision very difficult to 

make and the temptation to resist, and if not so, leaves the individual wondering about 

his/her decisions, actions and self. 

No matter the intensity and the context of an internal conflict, individuals are 

faced with a dilemma between competing alternatives with different temporal values. 

Optimal decision making requires that the individual chooses the option which obtains the 

larger payoff in the long run; a behaviour known as self-control. In our examples, 

choosing to finish work, not to buy the cool gadget and eating the low fat meal would 

correspond to self-control behaviour as it goes along with the general definition of self-

control which is to resist a smaller-sooner (SS) administered reward over a larger-later 

(LL) one (Rachlin, 1995). In other words, self-control would correspond to resist fun, 

unnecessary expenditure and food indulgence (examples of SS) over professionalism, 

better financial and physical fitness (examples of LL) respectively.  

The current research thesis proposes a novel computational model of internal 

conflict. The model is designed after integrating relevant knowledge from such diverse 

areas such as psychology, game theory, cognitive and computational neuroscience. It 

aims at providing some further understanding on this highly complex and perplexing 

function of the human brain. Most importantly, the proposed model serves as a tool which 

is employed for the purposes of identifying the factors which influence and enable 

internal conflict to be resolved by self-control behaviour. 

The presented work adopts the view that internal conflict can be resolved as if it 

was a result of strategic interaction between rational subagents of the brain (Kavka, 1991). 

The setting for this interaction is a well studied game, the iterated version of the 
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Prisoner’s Dilemma (PD) (Rappoport and Chammah, 1965), whereas the Cooperate-

Cooperate (CC) outcome of the game corresponds to the behaviour of self-control. The 

computational system developed for the purposes of this research thesis realizes this 

particular view of internal conflict by implementing two spiking neural networks as two 

agents competing in the iterated PD (IPD). 

We implement this game theoretical view of internal conflict in a biologically and 

psychologically relevant computational model of spiking neural networks that learn 

through biologically plausible learning algorithms. Learning is implemented by 

reinforcement of stochastic synaptic transmission (Seung, 2003) as well as by reward-

modulated spike-timing-dependent plasticity (STDP) with eligibility trace (Florian, 2007). 

The model does not intend to reproduce in detail the actual brain regions that are involved 

in an internal conflict. Too much information is missing with respect to the precise 

identity and function of the regions that enable and influence this highly complex state of 

mind. Given that, we believe that a high-level computational model which implements the 

brain as a functionally decomposed learning system, and involves internal conflicts as 

prescribed by game theory, would help us to acquire a better understanding of the big 

picture of internal conflict (and how it can be resolved), which is currently obscure. 

However, our computational model does not disregard important experimental findings 

(e.g. McClure et al., 2004) with respect to internal conflict and the brain areas involved. 

The identified brain regions and their functions were integrated in our game theoretical 

computational model by providing a plausible view of how the competing agents and 

these brain regions might relate. However no real subagents are presupposed. It is just 

helpful to explain and understand internal value conflicts as if they are represented by 

distinct rational internal agents. 
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Which factors influence and enable internal conflicts to be resolved by self-

control behaviour? When is more likely for an individual to exhibit self-control? Why 

sometimes we excess on sweets while dieting does not begin on Mondays? These and 

similar questions will be pursued in search of self-control through computational 

modelling of internal conflict. 

 

1.1 Thesis Outline 

Chapter 2 reviews the literature on self-control and internal conflict as well as related 

aspects of decision making and intertemporal choice. It reviews relevant theoretical 

models of internal conflict and self-control with special emphasis on the model we 

implement. It presents related work and compares it with our approach to the 

computational modeling of internal conflict. The chapter ends by reviewing 

reinforcement learning on spiking neural networks. 

 Chapter 3 explains the design of the computational system with respect to its 

architecture and the IPD implementation. Moreover it presents the learning algorithms 

that are employed for the purposes of the research as well as their testing for correct 

implementation. It finishes by investigating the hypothesis that high firing irregularity at 

high rates enhances learning. 

 Chapter 4 presents simulations of internal conflict. It begins by describing how we 

overcame initial problems and continues by presenting results that demonstrate the ability 

of the system to exhibit self-control behaviour. Results are presented for both 

implemented learning algorithms. Moreover, it explores with additional simulations 

whether high firing irregularity at high rates enhances learning. Aris
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 Chapter 5 investigates how the structure of internal value conflict influences the 

attainment of self-control behaviour. Experiments employ constant payoff structures that 

do not change during the duration of the game, as well as varying payoff structures, in 

order to simulate time related changes in the value systems of internal agents. 

 Finally, Chapter 6 overviews the computational model of internal conflict and the 

obtained results, lists the major contributions of this thesis work and suggests future 

directions.    
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Chapter 2 

Literature Review 

 

2.1 Theory of Self-Control, Internal Conflict and Intertemporal Choice 

The self can be perceived as a goal directed hierarchical system, where goals are 

internally specified according to value systems (Scheier and Carver, 1988). However, the 

presence of more than one established value systems can divide the interest within a 

single individual and give rise to intra-personal conflict (Livnat and Pippenger, 2006). 

When experiencing an internal conflict, self-control behaviour can be employed and 

could be justified as one’s desire to maximise long term reward (Barkley, 1997; Kanfer 

and Karoly, 1972; Mischel, 1996). Self-control is the exertion of control over the self by 

the self in order to prevent or inhibit its dominant response (Muraven et al., 1999). It is a 

behaviour during which a person is required to control his/her thoughts, emotions or 

actions that would otherwise automatically have or do. To exercise self-control requires 

to override or inhibit pre-existing automatic processes, which are quite robust and 

efficient and hence resistant to change (Muraven et al., 1999). The most essential feature 

of self-control behaviour is that it postpones immediate gratification in order to attain 

delayed but more valuable outcomes (Mischel et al., 1989). Rachlin (1995) also provided 

a broad definition of self-control based on that distinctive feature by saying that self-

control can be defined as choosing a large delayed reward over a small immediate one. 
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Although this definition is quite general, it provides simplicity and consistency in 

defining a highly complex and perplexing behaviour as the majority of self-control 

problems can be translated into problems of delayed gratification. For the purposes of this 

thesis self-control is defined as such. 

According to Ariely (2002), and Rachlin (2000), we recognise that we have self-

control problems and try to solve them by precommitment behaviour. Precommitment 

behaviour can be seen as a desire by people to protect themselves against a future lack of 

willpower or as a strategy employed in order to avoid the experience of a subsequent 

internal conflict. Precommitment is more formally defined as making a choice now with 

the specific aim of denying (or at least restricting) oneself future choices (Rachlin, 1995). 

A typical example of precommitment is putting an alarm clock away from your bed, to 

force you to get up to turn it off. The effect of precommitment behaviour is the same as if 

self-control behaviour was exercised without the individual necessarily experiencing an 

internal conflict. Precommitment requires that people know which of the alternatives is 

best for them in the long run so that they precommit to the one with the highest payoff. 

According to experiments by Richmond et al. (2003), the brain’s ability to recognise or 

predict future rewards is built in and past experience enhances this ability. 

 Internal conflict is manifested in many experiments of animal behaviour. For 

example, when a rat is offered both a reward (food) and penalty (electric shock) at a 

location, it oscillates at a certain distance from it, given certain parameters of reward and 

penalty (Miller, 1944). This oscillation is observed due to conflicting tendencies that co-

exist at a dynamic equilibrium (Brown, 1948; Miller, 1944). The attribution of internal 

conflict to the rat implies the existence of two agents: one whose goal is to satisfy hunger 

and another whose goal is to avoid danger (Livnat and Pippenger, 2006). Animals also 
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express internal conflict in the form of ambivalence, exhibiting both aggression and 

courtship when approached by a female in their territory or by simultaneously peaking 

and incubating a painted egg that has been placed in their nest (Tinbergen, 1952). These 

results reveal that conflicting behaviours can co-exist and may be independent.   

In humans, internal conflict is experienced on an everyday basis, in different 

contexts and intensities. Although it is very difficult to describe, we all know the 

annoying, unresting feeling when trying to decide between competing alternatives. In 

order to understand how people resolve such conflicts, scientists study decision making 

by employing either formal models like expected utility theory (von Neumann and 

Morgenstern, 1947) and prospect theory (Kahneman and Tversky, 1979) or reason-based 

models. Formal models make use of numerical values which are attached to the different 

alternatives and decision is characterised by value maximisation. In reason-based models, 

decision is justified according to the balance of reasons and arguments for and against the 

different alternatives. Although the two types of models do not contradict each other, 

different disciplines study decision making using one or the other type. For example, 

economic theory and management theory employ formal models in experimental studies 

of preference and in standard economic analyses whereas reason-based models explain 

decisions informally in the absence of experimental data as in business and law case-

studies or in the interpretation of historic and political decisions. 

However neither of the two models is sufficient to explain decisions in certain 

cases of internal conflict. For example it is often hard to assign values to alternatives, 

especially when involved in complex, real-life decision making. Moreover, even if values 

could be attached to the different alternatives, it would be impossible to reach a decision 

based on pure preference ordering in cases where more than one value system is in effect. 
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Food for instance can be valued either for the taste or nutritional value and these 

valuations could be quite contradicting. When both value systems are taken into account 

(e.g., when on diet) a choice of a certain food over another cannot be explained based on 

value ordering since an explanation should satisfy both value systems which are 

concurrently in effect. On the other hand, reason-based models have similar limitations in 

such cases as the analysis would result in contradicting reasons for competing options. In 

addition, people do not always know the actual reasons that guide their decisions and can 

come up with false explanations when asked to account for their decisions (Nisbett and 

Wilson, 1977), as every decision can be easily rationalised after it was taken.  

Internal conflict has been mostly studied with respect to intertemporal choice 

tasks, where numerous experiments were conducted in order to understand decision 

making in cases where immediate and delayed rewards were competing for selection. 

Intertemporal choice is concerned with tradeoffs among outcomes occurring at different 

points in time (Frederick et al., 2002). Figure 2.1 illustrates a choice between a smaller-

sooner (SS) reward, available at time t2 and a larger-later (LL) reward, available at t3. The 

ability to wait for the superior option is also known as delay of gratification (Mischel et 

al., 1989). 

Future gains and losses are discounted when facing a choice between a smaller 

immediate gain or loss and a larger future one (Ainslie, 1975; Ainslie, 2001). The thin 

lines subtended from points SS and LL are temporal discount functions indicating the 

effect of increasing the delay of the reward. 
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Figure 2.1: Delay of gratification  

The figure illustrates a choice between a smaller-sooner (SS) reward, available at time t2 

and a larger-later (LL) reward, available at t3. Notice that when SS is available at time t2, 

its value is greater than the discounted value of LL. A person exhibits self control when 

s/he does not gather the available reward and waits for the bigger one (based upon 

Rachlin, 1995). 

 

Several studies (Loewenstein and Prelec, 1992; Ainslie, 1975; Herrnstein, 1981; 

Mazur, 1987) have proposed hyperbolic functions in order to describe the phenomenon of 

temporal discounting, departing from the initial exponential function originally proposed 

by Samuelson (1937) in his ‘discounting utility’ model. Experiments have shown that the 

exponential model cannot account for their findings and most importantly for the 

decreasing discount rates, as observed in numerous studies (Thaler 1981; Benzion et al., 

1989; Pender, 1996; Frederick et al., 2003). Results showed that discount rates decline as 

one looks further into the future, which also means that the discount function should 

flatten out more than the exponential. Or conversely as shown in Figure 2.1, the closer 

you get to a reward, the faster its current value increases. A consequence of the 

decreasing discount rates is the reversal of preferences which was also experimentally 

observed (Herrnstein 1990; Kirby and Herrnstein, 1995) and is depicted in Figure 2.1 by 
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the crossing of the hyperbolic discount functions at some point between t1 and t2. At time 

t1, the value of the larger-later (LL) reward exceeds the smaller-sooner reward (SS). 

However at t2 when SS would be immediately available, the value of SS exceeds LL 

value.  

Self control behaviour is exhibited when one chooses LL even when SS is freely 

available and has a higher immediate value than LL. The possibility that LL might not be 

available in the future due to uncertainty does not change the analysis. The value of LL 

represents the expected value of the reward, taking into account the risk it entails. The 

case where the risk is so great such that at t1 the value of LL becomes lower than the 

value of SS, does not concern us since the choice of SS is obvious. 

In contrast to the exponential model, the hyperbolic model accounts both for the 

decreasing discount rates and the reversal of preferences. However none of the two 

models incorporates the plethora of experimental findings, which reveal some other 

important aspects of intertemporal choice, such as the absolute magnitude effect (Thaler 

1981, Ainslie and Haendel 1983; Loewenstein, 1987; Benzion et al., 1989; Kirby and 

Marakovic, 1995; Kirby, 1997) and the gain loss asymmetry (Loewenstein 1987; 

Loewenstein and Prelec, 1992; Benzion et al.,1989). 

Delay of gratification is the ability to wait for a delayed reward in the presence of 

an immediate inferior option. Mischel and his colleagues performed a series of 

experiments over the years (for review and findings reported below see Mischel et al., 

1989) using the same subjects in order to investigate the psychological processes that 

enable delay of gratification and how the presence or absence of this ability in the early 

years of an individual’s life correlates with future behaviour. When 4-year olds were 

offered to either wait for a preferred treat (candy or toy) or accept an inferior one 
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immediately or by terminating waiting time, findings surprisingly showed that attention to 

rewards either by exposure to the actual rewards during delay or by thinking about the 

rewards, consistently and substantially decreased the time they could wait. On the other 

hand, children managed to wait more through distractive ‘fun’ thoughts (as were 

instructed beforehand), by covering their eyes, by looking away from rewards and by 

other self-imposed distraction mechanisms. Despite that, attention to reward promoted 

delay of gratification when subjects were exposed to symbolic representations of the 

preferred reward (e.g., real size picture of the reward). In addition, focusing on abstract 

qualities and associations of the reward induced an increase in the waiting time as 

opposed to the case where the focus was on arousing qualities (e.g., taste of eating or 

playing with). Finally and surprisingly, one of the longest mean waiting times was 

observed when children were asked to think about the arousing qualities of comparable 

control objects (for example children waiting for marshmallows who had been cued to 

think about the salty, crunchy taste of pretzels) instead of their abstract qualities. Findings 

which support that children can be taught to suppress impatience by manipulation of 

thought were also presented in a later study (Metcalfe and Mischel, 1999). A recent study 

on students’ delay of gratification (Bembenutty, 2009) also showed that the behaviour is 

enhanced with the use of self-regulated learning strategies like reminding themselves of 

their overall values and goals. In addition, the behaviour was accounted on “the relative 

value and expectation of success of engaging in delayed versus immediate activities 

typically faced by students”. While commenting on the findings, Pychyl (2009) wrote: 

“To the extent that the students feel that they will succeed at a task that is valuable to 

them, they don't perceive the task as aversive (an emotional response, not an issue of 

utility per se) and approach the task rather than avoid it. If students find the task aversive 
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(typically because they feel a lack of competence or self-efficacy), their focus will be on 

short-term emotional repair, and they "give in to feel good" by engaging in the alternative 

task at the expense of their long-term goals”. In the current thesis we believe that an 

emotional response is always evoked in an internal conflict task such as in delay of 

gratification, that can shape but also dynamically change the values (in terms of expected 

utility, as in Chapter 5) attached to the alternatives. The outcome of the behaviour cannot 

be solely attributed to either of the two processes, but instead should be accounted on the 

interplay of the two.   

Recent research on the neural mechanisms that underlie intertemporal choice 

revealed that such behaviors result from competition between several neural networks of 

the human brain that interact with each other during a decision (McClure et al., 2004; 

McClure et al., 2007; Wittmann et al., 2007). A neuroimaging study by McClure et al. 

(2004) has shown that immediate rewards activate paralimbic areas, including the ventral 

striatum, medial orbitofrontal cortex, and medial prefrontal cortex whereas the lateral 

prefrontal cortex and posterior parietal cortex are engaged uniformly by intertemporal 

choices irrespective of delay. Furthermore, the relative engagement of the two systems is 

directly associated with subjects' choices, with greater relative fronto-parietal activity 

when subjects choose longer term options. Tanaka et al. (2004) also showed that choices 

of collecting immediate rewards activated lateral orbitofrontal cortex and striatum, 

whereas the dorsolateral prefrontal cortex and inferior parietal cortex were activated when 

subjects chose to obtain large future rewards. In general, these studies demonstrated that 

two separate neural systems are involved in such decisions; parts of the limbic system 

associated with the midbrain dopamine system, including paralimbic cortex, are 

preferentially activated by decisions involving immediately available rewards and fronto-
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parietal areas are involved when choosing large future options. However, in contrast to 

the previous results, the subjective value of monetary rewards was shown to be 

represented by a single system (Kable and Glimcher, 2007), irrespective of delay upon 

delivery. 

All the aforementioned studies investigated intertemporal choice with respect to 

immediate and future rewards and gains. When it comes to immediate and future losses, 

Xu et al. (2009) suggested that a common fronto-parietal network is used to discount both 

future gains and losses and its neural activity is stronger during loss discounting, 

indicating an asymmetric discounting with respect to gains and losses and a possible 

explanation of why future losses are discounted less steeply than future gains. In addition, 

the insula, thalamus and dorsal striatum were more activated during intertemporal choices 

involving losses, suggesting that the enhanced sensitivity to losses may be driven by 

negative emotions.  

All the above neuroimaging studies (except maybe for the case of Kable and 

Glimcher, 2007) are consistent with the view that decision making incorporates several 

competing neural networks (De Martino et al., 2006; McClure et al., 2004b; Sanfey et al., 

2003; Sanfey et al., 2006). Moreover, according to O’Reilly and Munakata (2000), the 

higher cognitive functions are not based on the action of individual neurons in a limited 

area, but on the outcome of the integrated action of the brain as a whole. Given the 

complexity of decision making with respect to internal conflict and the scope of this 

thesis, we chose to model the brain from a top-down perspective as a functionally 

decomposed system where attention is primarily focused on the competition between 

constructing modules. However, while the design of the system follows a top-down Aris
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approach, its function is defined and controlled by variables affected by learning in the 

neuronal level in a bottom-up approach. 

 

2.2 Models of Self-Control  

What follows is an overview of some dual-process models relevant to self-control as well 

as specific models designed to account for self-control behaviour. What is common in 

almost every model of self-control is that it involves a conflict. Adam Smith in his book 

“Theory of moral sentiments” (1759) describes a conflict between reason and passion, 

Thaler and Shefrin (1981) propose a two-self model of myopic doer versus far-sighted 

planner, Smolensky (1988) suggests a top-level conscious processor for effortful 

reasoning and an intuitive processor for intuitive problem solving whereas Christianity 

promotes a constant battle between good and evil. Whether self-control is a “fruit of the 

Holy Spirit” (Paul to Galatians (5:22-23)), is currently unknown, but the evidence of the 

duality that is associated with self-control is scientifically prominent.   

Considering these models we could say that self-control is a certain way of 

resolving the conflict in the presence of two processes or ‘entities’ and more specifically 

in a way that promotes future well being for the individual as opposed to immediate 

gratification. However both of these processes could be employed for the purposes of 

either outcome. For example consider individuals like addicts who often engage reason in 

order to construct elaborate plans for acquiring their dose. In such a case, the process that 

corresponds to reason, the far-sighted planner or the top-level conscious processor is 

working towards immediate gratification.  

Carver and Scheier (1998; 1982) propose an abstract model of self-control based 

on self-regulation of behaviour through feedback. Self-control corresponds to the operate 
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phase of self-regulation, where the operate phase refers to any sort of action that seeks to 

reduce discrepancies between a perceived aspect of self and a standard. To exercise self-

control is thus to change the self in order to maintain conformity to a standard. The model 

is diagrammatically shown in Figure 2.2. Although the model is quite general and can be 

applied in various self-control contexts, it lacks neurobiological realism as it does not 

justify the existence, or provides a correspondence of its components in the real brain. 

 

 

Figure 2.2: An abstract behavioural model of self-regulation 

Output behaviour has certain effects on the environment. Input information about the 

effects of the behaviour on the environment is compared with a standard (moral or other) 

in order to determine whether the standard is maintained and change the behaviour (if 

needed) accordingly (adapted from Carver and Scheier, 1998).  

 

From the viewpoint of cognitive neuroscience, a model of self-control can 

described as in is Figure 2.3 (Raclin, 2000). The model tries to integrate the neuronal 

mechanisms that underlie the behaviour and is summarised as follows. Information 

providing the current state of the environment comes into the cognitive system (arrow 1) 

located in the higher centre of the brain, which represents the frontal lobes associated 

with rational behaviour such as analytic thinking, planning and control. This information 

combines with signals from the lower brain, representing the limbic system (including 
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memory from the hippocampus) that is associated with emotion and action selection. This 

travels back down to the lower brain and finally results in behaviour (arrow 2), which is 

rewarded or punished by stimuli entering the lower brain (arrow 3).  

  

 

Figure 2.3: A model of self-control behaviour as an internal process, from the 

viewpoint of cognitive neuroscience 

Information comes into the cognitive system (Arrow 1). This combines with the 

messages from the lower brain and memory and a choice is made, which results in 

behaviour (Arrow 2). The behaviour is finally reinforced (Arrow 3) (based upon 

Rachlin, 2000). 

  

 In the model, self-control behaviour is exhibited according to an interplay between 

the higher brain and the lower brain processes. Although this is consistent with the 

previously reviewed neuroimaging findings that identified both brain regions engaging in 

a self-control task, the model fails to provide any information on the dynamics, the 

qualitative and quantitative elements of the interplay that will enable self-control 

behaviour to emerge. The model is maybe too general and abstract that could also 

describe cases of decision making other than self-control.  

The next model under consideration is the self-control strength model (Muraven 

and Baumeister, 2000). According to this model, the ability to exhibit self-control relies 

on a limited resource, or self-control strength, and all different self-control operations 
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draw on that same resource. In their previous study, Muraven et al. (1998) demonstrated 

that participants’ performance was impaired in a self-control task that followed an initial 

one. In addition, the impairment was found even if the two tasks were completely 

different in context. The model’s view of self-control resembles a muscle that its short-

term ability decreases after exertion but at the same time repeated exercise strengthens it 

in the long-run. In another study (Muraven et al., 1999), a group of students was asked to 

regularly perform some easy self-control tasks for two weeks. These participants showed 

significant improvements on self-control compared with participants who did not practice 

self-control. 

The model provides a powerful and useful analogy to self-control. The idea that 

self-control resembles a muscle that its exertion depletes a limited resource makes 

specific predictions with respect to self-control failure. In particular, people should tend 

to fail at self-control when recent demands and exertions have depleted their resource. 

Although Muraven et al. (1999) did not specify the nature of the limited resource on 

which self-control relies on, recent research (Gailliot and Baumeister, 2007) indicates that 

this resource is glucose. The study showed that reduced blood glucose and poor glucose 

tolerance (reduced ability to transport glucose to the brain) induced lower performances 

in self-control tasks. 

The final model under consideration is provided by Kavka (1991). It is noted that 

despite the fact that it is an abstract, game theoretical model of internal conflict, it is 

thoroughly discussed in the remaining of this section as it encapsulates important aspects 

of internal conflict and is the one which inspired the implementation of our computational 

model.  Aris
tod
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 Remember that in the beginning of this chapter we stated that the self can be 

perceived as a goal-directed hierarchical system, where goals are internally specified 

according to value systems (Scheier and Carver, 1988). In addition, the presence of more 

than one established value systems can divide the interest within a single individual and 

give rise to intra-personal conflict (Livnat and Pippenger, 2006). Self-control problems 

arise because human nature is not always rational as perceived in the context of economic 

theory which assumes rational utility agents (von Neumann and Morgenstern, 1947), 

otherwise the choice of the large delayed reward would have always been practiced. It is 

more appropriate to refer to human nature as multi-rational in the sense that the brain, as 

in the case of intra-personal conflict, can be viewed as a society of conflicting subagents 

(Minsky, 1985), each one of them selfishly seeking reward accumulation given its 

individual goal. In addition, it has been shown analytically, in a game theoretical context 

that an optimal brain can be composed of conflicting “selfish” agents (Livnat and 

Pippenger, 2006). Given all the above, a model that proposes that internal conflicts are 

resolved as if they were a result of strategic interaction among goal-directed subagents 

(Kavka, 1991), makes sense.  

 The model was used by Kavka (1991) to provide a psychological picture of how 

individuals who experience internal conflicts end up with suboptimal outcomes. In the 

current thesis work, we utilise this game theoretical view of internal conflict to investigate 

all the possible outcomes with respect to how a conflict is resolved with more emphasis 

on the optimal outcome which corresponds, as we will show below, to self-control 

behaviour. 

 For the purpose of an example of internal conflict consider the following case of 

conflicting value systems. A student faces a dilemma whether he or she should stay at 
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home and finish a project that is to be submitted the following morning or go to the pub 

and celebrate a friend’s birthday.  

Possible options can be: 

a. Go to the pub and have fun. 

b. Stay home and study. 

c. Go to the pub for a quick drink and go back home and study. 

d. Do nothing about it (preserve Status quo) or do something different. Other possible d 

outcomes could be staying at home but not be able to study or go to the pub and 

having a miserable time because of guilty feelings.  

Now assume that these conflicting desires (or dimensions of evaluation) are represented 

by two distinct subagents; the academic-conscious agent and the fun-conscious agent. The 

student’s academic-conscious agent orders these options according to their value as 

b>c>d>a, whereas the fun-conscious agent evaluates them as a>c>d>b. Although the 

underlying mechanisms performed in the student’s real brain are highly complex and the 

knowledge about them is incomplete, the final decision of the student depends crucially 

on these assigned values. A realistic approach would be to suggest that such inner 

conflicts are resolved as if they were a result of strategic interaction among goal-directed 

subagents (Kavka, 1991). As Kavka (1991) stresses out, the validity of the model does 

not presuppose the existence of real subagents. The role of the internal agents is to help us 

understand how suboptimal outcomes with respect to internal conflicts are 

psychologically plausible. In other words, even if real subagents do not exist, treating 

internal conflicts as an interaction between internal rational agents will help us understand 

aspects of internal conflict such as the importance of the payoff structure on how the 

conflict is resolved. 
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According to Kavka (1991), in situations of intra-personal conflict, each of the 

subagents can either insist on getting their way or compromise to a choice that benefits 

the organism as a whole. According to our example, their interaction can be analysed and 

represented by theoretical games as in Table 2.1. 

 

 Academic Agent 

 Compromise Insist 

Compromise c b    Fun Agent 

Insist a d 

  

Table 2.1: Game theoretical representation of strategic interaction between 

subagents with conflicting value systems 

Each agent can either “Compromise” (C) or “Insist” (I). There are four possible 

outcomes a, b, c and d or IC, CI, CC, II respectively, that result from the agents’ 

combined choices.  

 

 The academic-conscious subagent can insist on staying at home and studying 

throughout the night or compromise to a choice involving less studying. On the other 

hand, the fun-conscious subagent can insist on partying throughout the night or 

compromise to a less fun outcome. If both agents decide to “Compromise” then the 

student goes to the pub for a quick drink and then goes back home and studies. This 

corresponds to the c outcome which is the second best outcome for each agent but the 

maximum for the individual as a whole. This outcome represents the case where the 

individual exhibited self-control. Although one would think that self-control would 

correspond to the b outcome, where the student stays home and studies, this would 
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maximise the payoff for the academic agent but not for the individual as a whole.  In the 

case where any of the student’s subagents decides to “Insist” in order to pursue its most 

preferred outcome (a for the fun agent and b for the academic agent), then there is the risk 

of ending up in the worse situation d if the other agent also decides to “Insist”. Finally, if 

one decides to “Compromise” in order to achieve its second best outcome c, it also has to 

bear in mind that if the other agent chooses to “Insist” then the outcome will be the least 

preferred (b for the fun agent and a for the academic agent). The formal analysis of the 

game specifies that the d outcome is the only Nash equilibrium (Nash, 1950) of the game, 

so both agents will receive the inferior value of the d outcome whereas they could have 

achieved a superior in value c outcome, if they both “Compromised”. Therefore, if the 

student’s agents were faced by this dilemma for only one time and knew that this is the 

only time they would interact, they would have both “Insisted” and the student would 

preserve Status Quo or do something different. The possibility of obtaining an outcome 

other than the suboptimal outcome d lies in the fact that these agents are probably going 

to interact for an unspecified number of times. 

Moreover, consider the payoff matrix of Table 2.2 where the four outcomes are 

replaced by the values that each subagent assigns to each outcome. The analysis remains 

the same; a and b are the most preferred outcomes for the fun and academic agent 

respectively, but c outcome is the best outcome for the individual as a whole (4+4 > 5+(-

3)). Self-control behaviour is exercised by an individual in order to achieve a higher 

overall payoff which here would correspond to the c outcome where the individual gains 

8 (4+4) compared to 2 (5+ (-3)), i.e., the total payoff for a or b outcome. In addition, 

these values are not absolute in the sense that a different set of subagents might apply 

different values to the same outcomes, thus the payoff matrix of Table 2.2 is just one of 
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an infinite number of possible matrices. However, the structure of the payoffs of any 

given matrix should preserve the agents’ outcomes ordering.  

 

 Academic Agent 

 Compromise Insist 

Compromise 4, 4 (c) -3, 5 (b)     Fun  Agent 

Insist 5, -3 (a) -2, -2 (d) 

 

Table 2.2: The payoff matrix of the interaction  

Payoff for the fun agent is shown first. Notice that the outcome ordering for each agent 

is preserved as b (5) > c (4) > d (-2) > a (-3) for the academic agent and a (5) > c (4) > d 

(-2) > b (-3) for the fun agent.  

 

This game theoretical representation of strategic interaction between subagents 

with conflicting value systems is based on a well studied theoretical game known as the 

Prisoner’s Dilemma (PD) (Rappoport and Chammah, 1965),  which has been used to 

model human cooperation (Axelrod and Hamilton, 1981) as well as intra-personal conflict 

(Kavka, 1991). In its standard one-shot version, the scenario of the PD unfolds as follows. 

Two people are arrested by the police under suspicion of a crime. They are kept into 

separate rooms where the investigator visits each one of them to offer the same deal: if 

one testifies for the prosecution against the other and the other remains silent, the betrayer 

goes free and the silent accomplice receives a major conviction. If both remain silent, 

both prisoners are sentenced for a minor charge. If each betrays the other, each receives a 

medium sentence. Each prisoner must make the choice of whether to betray the other or 

to remain silent. Both care much more about their personal freedom than about the 
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welfare of their accomplice. However, neither prisoner knows for sure what choice the 

other would make. 

 

 Column Player 

 Cooperate Defect 

Cooperate     R, R   S, T   Row Player 

Defect     T, S P, P 

 

Table 2.3: Payoff matrix for the Prisoner’s Dilemma  

Payoff for the Row player is shown first. The game is defined by: Temptation to Defect 

(T) must be better than the Reward for Mutual Cooperation (R), which must be better 

than the Punishment for Mutual Defection (P), which must be better than the Sucker’s 

payoff (S) (Rule: T>R>P>S) (see text for further description).  

 

The PD is a game summarised by the payoff matrix of the Table 2.3. There are 

two players Row and Column. Each player has the choice of either “Cooperate”(C) 

(remain silent in the prison example) or “Defect” (D) (betray the other). For each pair of 

choices, the payoffs are displayed in the respective cell of the payoff matrix of Table 2.3. 

Payoff for the Row player is shown first. R is the “reward” payoff given when both 

cooperate. P is the “punishment” that each receives if both defect. T is the “temptation” 

that each receives if one by his/her own defects and S is the “sucker” payoff that one 

receives if he or she by his/her own cooperates. The only condition imposed to the 

payoffs is that they should be ordered such that T>R>P>S. Note that in general, game 

theory assumes rational players in the sense that each player wants to maximise his or her 

own payoff. In addition, each player knows the other is rational, knows that the other 
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knows he or she is rational, etc.  In game theoretical terms, DD is the only Nash 

equilibrium outcome (Nash, 1950), whereas the cooperative CC outcome is the only 

outcome that satisfies Pareto optimality (Pareto, 1906).  The “dilemma” faced by the 

players in any valid payoff structure is that, whatever the other does, each one of them is 

better off by defecting than cooperating. But the outcome obtained when both defect is 

worse for each one of them than the outcome they would have obtained if both had 

cooperated. In the latter interpretation, the “Compromise”-“Compromise” (CC) outcome 

corresponds to the self-control outcome which is the best for the organism (if we add up 

the two values) and the second best for each agent. Note also that since DD is the only 

Nash equilibrium outcome of the game, then CC can not be obtained given that the game 

is played only once. Apart from the payoff structure, the game specifies that one round of 

the game consists of the two players (agents) choosing their action simultaneously and 

independently and then informed about the outcome.  

 The Iterated Prisoner’s Dilemma (IPD) is a game where the one-shot PD is played 

consecutively by two players. The design of the game requires an extra rule such that the 

cooperative outcome remains Pareto optimal. Namely, 2R>T+S guarantees that the 

players are not collectively better off by having each player alternate between 

“Cooperate” and “Defect”. 

 For the purposes of the current work we model the infinitely iterated version of 

the game where the same game is repeated for an unspecified amount of rounds. The 

infinitely repeated version suits the interpretation of intra-personal conflict more 

realistically as the two internal agents compete with each other for more than one time 

and additionally they do not have any valid reason to believe that the next time they come 

into conflict would be the last time they will ever compete with each other. The formal 
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analysis of the infinitely iterated version shows that there are multiple equilibria including 

the CC (self-control) outcome (as opposed to the one-shot version where CC is 

unattainable), which now constitutes the best possible long-term outcome both for the 

organism and the agents individually. The latter is true because the possible outcome 

where one agent always “Defects” and the other “Cooperates” can never be sustained. 

 

2.3 Related Work: Similarities and Differences with our Proposed Model  

The proposed research builds on a recently awarded PhD (Banfield, 2006, supervised by 

Dr Christodoulou), where non-biologically realistic neural networks simulated self-

control behaviour through competition in the IPD, as well as the effect of precommitment. 

The schematic model of Figure 2.3 was implemented as two feed forward multilayer 

perceptron type networks simulating two players, representing the higher and lower 

centres of the brain, competing against each other in the IPD game using reinforcement 

learning. It was a network architecture of two networks exhibiting different behaviours to 

represent the higher versus lower cognitive functions, as depicted in Figure 2.3. The 

higher brain centre (which is seen as far-sighted) is implemented with the Temporal 

Difference weight update rule (Sutton, 1998) with a lookup table whereas the lower brain 

centre (which is seen as myopic) is implemented with the Selective Bootstrap weight 

update rule (Widrow et al., 1973). The research made the theoretical premise that the 

higher and lower brain functions cooperate, i.e., work together, which is in contrast to the 

traditional view of the higher brain functioning as a controller overriding the lower brain. 

Given this model, precommitment behaviour can be viewed as resolving some internal 

conflict between the functions of the lower and the higher centres of the brain by 

restricting or denying future choices and hence can be thought of as resolving an internal 
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conflict by prevention. It does this by biasing future choices to the larger, but later reward. 

By applying a differential bias to the payoff matrix of the IPD, the precommitment effect 

was simulated in the computational model. The results showed that increasing the 

precommitment effect increases the probability of cooperating with oneself in the future 

(Christodoulou et al., 2009). 

 The current thesis shares some obvious similarities with Banfield’s (2006) work 

but also has significant differences, particularly in the way we interpreted the problem of 

self-control in our computational models. The theme of our work is the same: modelling 

internal conflict in a functionally-decomposed computational system of two networks that 

competed in the IPD. In our work this same set-up is used to implement a different 

abstract model.  The current system implements Kavka’s (1991) model where the 

competition is between internal subagents of the brain, as opposed to Rachlin’s (2000) 

model where competition is between the higher and lower centres of the brain. The 

difference is conceptually fundamental since we believe that a subagent of the brain 

makes use of both brain regions. In the work of Banfield (2006), when applying the 

example of the student (which we use as well, see Section 2.2), the hypothesis is made 

that each agent (fun and academic) corresponds to each brain region. In our work each 

agent corresponds to both regions where the action of cooperation corresponds to a 

stronger activation by the fronto-parietal regions and the action of defection corresponds 

to a stronger activation by the limbic areas. So in our model, as shown in Figure 2.4, the 

competition is between higher and lower processes of the brain within each subagent and 

also between subagents and not just between the two processes.  Aris
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Figure 2.4: A schematic view of internal conflict as modelled by our computational 

model 

Each agent can access brain areas concerning the valuation of both immediate and 

delayed rewards. Competition in the system (shown by arrows) exists between higher 

(delayed reward valuations) and lower processes (immediate reward valuations) of the 

brain within each subagent and also between subagents who serve distinct goals.  

  

Another important difference is that in the student’s example we use conceptually 

different options that correspond to different cells in the payoff matrix. This is not a 

problem of the particular example since it would apply to any example and displays a 

diverse notion with respect to self-control. Although the current thesis work and the work 

of Banfield (2006) agree that mutual cooperation (CC outcome) corresponds to the self-

control outcome, in Banfield’s (2006) example self-control corresponds to the student 

staying home and study. If we believe however that this is the best outcome for the 

academic agent why then the outcome where he stays at home but not able to study (when 

academic agent defects and the fun agent cooperates) has a greater payoff (correctly, as 

prescribed by the rules of the IPD)? Here lays a contradiction. Given our interpretation, 

self-control should not be the best outcome for any of the two subagents, but the best long Aris
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term outcome for the organism as a whole. This makes the payoffs in the payoff matrix of 

the game to be consistent with the outcomes in the student’s example. 

Moreover, in the current thesis we do not attempt to model self-control by 

precommitment while using the IPD since by definition precommitment is exercised in 

order to prevent a subsequent internal conflict (by restricting the available actions) 

whereas the IPD models the internal conflict itself. Therefore, in this thesis we investigate 

self-control behaviour only when experiencing an internal conflict.  

A final difference is that although we implement the same multiagent 

reinforcement learning task (IPD), we use different kind of networks and learning 

algorithms. The competing agents in our work are implemented through biologically 

realistic spiking neural networks which learn through biologically plausible learning 

algorithms as opposed to the case of Banfield (2006), where classic artificial neural 

networks and standard machine learning algorithms are employed. 

 

2.4 Reinforcement Learning on Spiking Neural Networks 

In contrast to the case of traditional neural networks, it is only recently that reinforcement 

learning (RL) (Sutton and Barto, 1998) has been successfully applied to spiking neural 

networks. These schemes achieve learning by utilising various biological properties of 

neurons whether this is neurotransmitter release (Seung, 2003), spike timing (e.g. Florian, 

2007) or firing irregularity (Xie and Seung, 2004). Their degree of experimental 

justification varies and it needs to be further assessed; nevertheless all these methods are 

biologically plausible and constitute the basis of successful RL application on 

biologically realistic neural models. A popular implementation of RL on spiking neural 

networks is achieved by modulating spike-timing-dependent synaptic plasticity (STDP) 
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with a reward signal (Faries and Fairhall, 2007; Florian, 2007; Izhikevich, 2007; 

Legenstein et al., 2008; Pfister et al., 2006). STDP is the change in synaptic efficacy 

which occurs according to the relative timing of pre- and postsynaptic spikes and has 

been experimentally observed. (Markram et al., 1997; Bi and Poo, 1998; Dan and Poo, 

2004). Typically, STDP causes the potentiation of a synapse when the postsynaptic spike 

follows the presynaptic spike within a time window of the order of milliseconds, and the 

depression of the synapse when the order of the spikes is reversed (Hebbian STDP). It is 

also antisymmetric, because the sign of the modification reverses when the relative timing 

reverses. Experiments have also found synapses with anti-Hebbian STDP (opposite sign 

modifications in comparison to Hebbian STDP), as well as synapses with symmetric 

STDP (Dan and Poo, 1992; Bell et al., 1997). 

Other examples of RL on spiking neural networks include Seung’s reinforcement 

of stochastic synaptic transmission (2003) as well as reinforcement of irregular spiking 

(2004), where the learning rules perform stochastic gradient ascent on the expected 

reward by correlating the neurotransmitter release probability and the fluctuations in 

irregular spiking respectively with a reward signal. Vasilaki et al. (2009) uses a policy 

gradient method with a Hebbian bias whereas Potjans (2009) in a different study, a 

spiking neural network implements an actor-critic TD learning agent. These algorithms 

were shown to be able solve simple tasks like the XOR problem (Seung, 2003; Florian, 

2007). In addition, reward-modulated STDP could learn arbitrary spike patterns (Faries 

and Fairhall, 2007) or precise spike patterns (Legenstein et al., 2008) as well as temporal 

pattern discrimination (Legenstein et al., 2008) and could be used in simple credit 

assignment tasks (Izhikevich, 2007). In the current thesis work we employ Seung’s (2003) Aris
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reinforcement of stochastic synaptic transmission and Florian’s (2007) reward-modulated 

STDP with eligibility trace. 

 To the best of our knowledge this is the first time that these algorithms are tested 

in a complex Multiagent Reinforcement Learning (MARL) task, as the IPD.  In MARL 

the problem lies in the dynamic environment created by the presence of more than one 

learning agent. Such an environment is affected by the actions of all agents, thus, for a 

system to perform well, the agents need to base their decisions on a history of joint past 

actions and on how they wish to influence future ones. In MARL there could be different 

kinds of situations: fully competitive or adversarial (which could be modelled with zero-

sum games), fully cooperative or coordinative (which could be modelled with team 

games), and a mixture of both (which could be modelled with general-sum games) such 

as the IPD. MARL has been an active and intense research area over the last years, during 

which numerous successful learning algorithms have been designed. Some examples of 

well known learning algorithms that however do not concern application in spiking neural 

networks include minimax-Q (Littman, 1994), Nash-Q (Hu and Wellman, 2003) and FoF-

Q (Friend-or-Foe Q) (Littman, 2001).  

Choosing the right spiking neuron model, when building a spiking neural network 

is extremely important (Izhikevich, 2004). In our case, given the complexity of our 

spiking neural network system, the LIF neuron model (Lapique, 1907; Stein, 1967) was 

chosen as the basic node of each spiking neural network, due to its simplicity and 

computational effectiveness compared to the more biologically detailed conductance-

based models like the Hodgkin and Huxley model (1952) or even spiking neuron models 

of intermediate complexity like the Izhikevich model (2003) (used in a spiking network 

model by Arena et al.(2009)) or the model proposed by Christodoulou et al. (2002) or the 
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McGregor model (McGregor and Oliver, 1974; McGregor, 1987) (used in a network of 

spiking neurons by Lin et al. (1998) and by Swiercz et al. (2006)). 
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Chapter 3 

Computational Model of Internal Conflict: 

System Design and Testing 

 

3.1 Overview 

In order to investigate the behaviour of self-control, we propose a novel computational 

model of internal conflict. The model integrates for the first time knowledge from such 

diverse areas such as psychology, game theory, neuroscience and computational 

neuroscience and is applied on a multiagent reinforcement learning task. Given related 

work in the respective areas, a computational model of interpersonal conflict is proposed 

where we implement two spiking neural networks as two players, learning simultaneously 

but independently, competing in the Iterated Prisoner’s Dilemma (IPD) game. In this 

chapter we present the system’s design with respect to its architecture and the IPD 

implementation. Moreover, we present the learning algorithms that are employed for the 

purposes of training the spiking neural networks as well as their testing for correct 

implementation. We finish by investigating our hypothesis that high irregularity at high 

firing rates enhances learning. 
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3.2 A Computational Model for Internal Conflict 

The model simulates competition between internal agents of the brain. Kavka (1991) 

proposed that these agents compete in a certain game theoretical interaction, the IPD. The 

payoff structure of the game is the key for choosing this particular game to model internal 

conflict (for details see Chapter 2). In my opinion this is a simple, elegant, consistent and 

powerful way to model such a highly complex state of mind. The model captures the 

essential feature of self-control, given that the agents are required to postpone immediate 

gratification in order to attain delayed but more valuable outcomes. The choice of short 

term versus long term reward is represented in the structure of the payoff matrix of the 

IPD (Table 3.1). The action of defection yields the best possible immediate payoff in the 

case of unilateral defection by any of the two agents. Therefore each agent is tempted to 

Defect in order to collect the greater immediate payoff. However the case where one 

agent repeatedly Defects and the other Cooperates can never be sustained as the best 

response by the agent who unilaterally Cooperates is also to Defect in the succeeding 

rounds of the game such that to avoid the Sucker’s payoff provided by unilateral 

cooperation. In such a case, the two agents will end up receiving the penalty of mutual 

defection. Therefore, none of the agents can attain long term reward maximisation 

through the action of defection because although it is possible to receive maximum 

immediate payoff through unilateral defection, it will trigger a behaviour of mutual 

defection which is far from an optimal one. In contrast, repeated mutual cooperation is 

stable. The agents repeatedly receive their second best immediate payoff, and refrain from 

defecting because they know that if they deviate to unilateral defection in order to gather 

the best immediate payoff then the other agent will also Defect in the succeeding rounds, 

as explained. Consequently, long term reward maximisation for each agent can only be 
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attained through mutual cooperation where the agents constantly receive their second best 

immediate payoff. Therefore, the action of cooperation corresponds to long term 

maximisation and the action of defection to short term maximisation. For these reasons, 

the choice of long term versus short term reward is implemented in our computational 

model through modelling the choice between the actions of cooperation and defection 

respectively. 

These goal-driven agents (e.g., fun, knowledge, taste, fitness etc.) are rational, 

meaning that they pursue long term maximisation of their individual expected payoff. For 

the purposes of the current thesis the word “rational” is used in the economic context of 

utility theory, as specified in the previous sentence, and it is not used to mean reasoning, 

which implies syntax. Therefore, the implemented agents are rational, meaning that they 

‘selfishly’ pursue reward maximization according to their own value systems that satisfy 

their individual goals, giving no interest on the well being of the other agent or the 

organism as a whole. Fortunately the well being of the organism is in line with their 

individual well being in the long run. This is because the agents can achieve long term 

payoff maximisation only through mutual cooperation which maximises payoff for the 

whole system as well. As Livnat and Pippenger (2006) analytically showed, an optimal 

brain can be composed of internal competing agents. Optimality in the case of internal 

conflict is the behaviour of self-control that can be attained if the agents follow a 

compromising strategy in their interaction through mutual cooperation. 

Each of the internal agents or subagents of the brain is implemented in our 

computational system by a spiking neural network. Brain image studies identified two 

separate brain systems involved in decisions under internal conflict, one composed of 

limbic system areas and one of fronto-parietal ones (e.g. McClure et al., 2004). The 
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former is activated when decisions involve only immediate available rewards and the 

latter is activated irrespective of the delay of the rewards. Therefore it would be tempting 

to map each one of these spiking neural networks to each one of these neural systems. 

However, that would also mean that each agent would correspond to only one of these 

systems. Nevertheless, the limbic system has been shown to be activated only when 

considering immediate rewards whereas the agents in the IPD are required to consider 

both the immediate and the long term rewards.  Therefore, even if it made sense to 

consider areas of the limbic system mapping to an agent, it would also make sense for 

that agent to respond only and always to the immediate reward and hence always to 

defect in the game. This would have catastrophic consequences since the best response to 

an “always Defect” strategy would be “always Defect” and would make the self-control 

outcome (mutual cooperation) unattainable. Hence, if we believe that self-control is 

possible in cases of internal conflict, and the IPD models this internal competition, such a 

mapping is defective. 

Another reason for avoiding mapping each network to only one brain region 

becomes clear if we consider individuals like addicts who often engage reason in order to 

construct elaborate plans so as to acquire their dose. Even if drug taking can be regarded 

as an immediate gratification behaviour, the agent whose goal is drug consumption 

employs top-level processes alongside the low-level ones. Therefore we can not consider 

such an agent to be represented solely by the limbic system areas. 

For all the above reasons, in our model (unlike the model of Banfield, 2006) each 

agent does not correspond to particular brain regions in a constricted sense. Decision 

making with respect to internal conflict involves the participation of many brain regions 

and the understanding of such a complex interaction necessitates further investigation. 
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However, experimental findings with respect to intertemporal choice (e.g. McClure et al., 

2004) should not be disregarded. These findings are integrated in our model in the 

process of action selection. More specifically, for each network the action of cooperation 

corresponds to a stronger activation by the higher brain (since cooperation achieves 

delayed gratification) and the action of defection corresponds to a stronger activation by 

the lower brain (as defection yields immediate gratification). In addition, given that the 

decision of the subjects depends on the relative activation of the engaged systems, each 

network in our model decides whether to cooperate or defect according to the relative 

activation of its output units.   

Therefore in our approach (unlike that of Banfield, 2006), the competition 

between the higher and lower processes of the brain has two dimensions; competition of 

cooperation and defection within each agent, but also across the agents where the final 

decision by the system depends on the overall competition between cooperation and 

defection. In our system this is implemented by the competition between the output units 

of each network whose relative activation is responsible for action selection and across 

the networks that compete in the IPD whose combined output activations determines the 

overall outcome. Therefore, although we implement Kavka’s theoretical model of internal 

conflict where the competing agents have similar nature (as both agents implement both 

the higher and the lower processes of the brain through the actions of cooperation and 

defection respectively), the model does not contradict overall competition between higher 

and lower processes of the brain as for example in McClure’s (2004) experimental work 

or in Rachlin’s (2000) theoretical model.  

The model’s architecture is depicted in Figure 3.1. Each network has a multilayer 

perceptron type architecture with a hidden layer of 60 leaky Integrate-and-Fire (LIF) 

Aris
tod

em
os

 C
lea

nth
ou

s



 

 

39 

 

neurons (Lapique, 1907; Stein, 1967) and an output layer consisting of 2 LIF neurons. 

The two networks share a common input layer of Poisson spike trains. Each network has 

full feed-forward connectivity between its three layers. The output layer is also the 

decision layer as the decision whether to cooperate or defect at a given round of the game 

is taken according to the relative activation of the two units. In general, the system’s 

simple architecture shares very little with the complex structure of the brain, nevertheless 

in the course of this thesis we will try to demonstrate that it exhibits essential features of a 

highly complex behaviour of the human brain.  

The networks learn simultaneously but separately where each network seeks to 

maximise its own accumulated reward. The game is simulated through an iterative 

procedure which starts with a decision by the artificial agents, continues by feeding this 

information to the agents, during which learning takes place, and ends by a new decision. 

The agents take their first decision randomly. During each learning round, the 

input to the system is presented for 500ms and encodes the decisions the two networks 

had during the previous round. This means that after round k, the outcome of the game (at 

round k) is fed into the system for 500ms and the learning variables are changed 

accordingly. For example, if at a given round network I chooses to defect (D) and 

network II to cooperate (C), then during the next learning round the networks will receive 

input that encodes the defect-cooperate (DC) outcome.  

The decision of each network is encoded in the input, by the firing rate of two 

groups of Poisson spike trains. The first group will fire at 40Hz if the network cooperated 

and at 0Hz otherwise. The second group will fire at 40Hz if the network defected and at 

0Hz otherwise. Consequently, as shown in Figure 3.2, the total input to the networks Aris
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during each round is represented by four groups of Poisson neurons, two groups for each 

network, where each group fires at 40Hz or 0Hz accordingly. 

 

 

Figure 3.1: Computational model of internal conflict: representing two internal 

agents competing with each other 

Two individual spiking neural networks with multilayer architecture receive a 

common input, depicted in the middle of the figure. Each network (left and right) has 

two layers that make feed forward connections between three layers of neurons; the 

60 input neurons, 60 leaky integrate-and-fire hidden neurons and 2 leaky integrate-

and-fire output neurons. The networks have full connectivity, though only some 

connections are shown for clarity. Neurons are randomly chosen to be either 

excitatory or inhibitory. The two networks simulate the conflicting agents. Actions 

for each agent are decided according to the relative activation of each network’s 

output neurons. 
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Figure 3.2: The input to the model  

Four groups of Poisson spike trains encode the outcome of the game during the last 

round by firing at 40 or 0 HZ accordingly. For each network the first group will fire at 

40Hz if the network cooperated and at 0Hz otherwise. The second group will fire at 

40Hz if the network defected and at 0Hz otherwise. Each presentation lasts for 500ms. 

 

For any given round there are always two groups of 40Hz Poisson spike trains, 

preserving thus a balance at the firing rates of the output neurons at the beginning of 

learning. Therefore, any significant difference in the firing rate of the output neurons at 

any time should be induced only by learning and not due to differences in the firing rates 

of the driving input. 

 At the end of each learning round the networks decide whether to cooperate or 

defect for the next round of the game. Decisions are carried out according to the value 

500ms 
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that each agent assigns to the two actions, and these values are reflected in the firing rates 

of the output neurons. The value of cooperation for networks I and II is taken to be 

proportional to the firing rate of output neurons 1 and 3 respectively. Similarly, the value 

of defection for network I and II is taken to be proportional to the firing rate of output 

neurons 2 and 4 respectively. At the end of each learning round the firing rates of the 

competing output neurons are compared, for each network separately, and the decisions 

are drawn. 

 As stated, decisions for each agent are drawn according to the relative aggregate 

activation of its output units where the one unit responds to future rewards (since it 

evaluates the action of cooperation) and the other to the immediate rewards (since it 

evaluates the action of defection). The respective set-up is chosen so that it is consistent 

with findings in intertemporal choice experiments (McClure et al., 2004; Tanaka et al., 

2004) where action was drawn according to the relative activation of two competing 

systems; one comprising fronto-parietal areas which is involved in evaluating future 

options and parts of the limbic system which are preferentially activated by decisions 

involving immediately available rewards. Thus we could think of the firing rates of the 

two output neurons as a reflection of the activation of these neural systems. 

When the two networks decide their play for the next round of the IPD, they each 

receive a distinct payoff given their actions and according to the payoff matrix of the 

game (Table 3.1). The payoff each network receives as a result of their combined actions 

at the game also serves as the global reinforcement signal (scaled down) that will train the 

networks during the next learning round and thus guide the networks to their next 

decisions. The payoffs are scaled down when administered as reinforcements to the 

networks in order to incorporate the distinction between signals given by the environment 
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and how these signals are internally processed. The scaled down payoffs combined with a 

small learning rate ensure that changes on the variables controlled by learning are made in 

a smooth and gradual way. 

 

 Agent II 

 Cooperate Defect 

Cooperate     4, 4   -3, 5      Agent I 

Defect     5, -3 -2, -2 

 

Table 3.1: Payoff matrix of the interaction  

The agents are competing in the IPD according to this particular payoff structure. 

Payoff for the Agent I is shown first. Mutual cooperation is the best outcome for the 

system as a whole whereas unilateral defection brings the best outcome for the 

defector.   

  

 For example, if the outcome of the agents was a CD, then according to the payoff 

matrix network I should receive a payoff of -3 for cooperating and network II a payoff of 

+5 for defecting. As stated, the reinforcement signal is specified according to the 

aggregate activation of the output units at the end of a learning round since the decision of 

the agents whether to cooperate or defect depends on the aggregate relative activation of 

each network’s output units. This reinforcement is constant in value during the next 

500ms of learning and is applied in the timestep following the spikes of the output 

neurons, as prescribed by the original learning algorithms (Seung, 2003; Florian, 2007). 

In addition, each network is reinforced for every spike of their output neuron that was 

“responsible” for the decision at the last round and therefore for the payoff received. 
Aris

tod
em

os
 C

lea
nth

ou
s



 

 

44 

 

Hence in the CD case, network I would receive a constant penalty of -3 (scaled down to -

1.3) that is applied for every spike of output neuron 1 (remember that the firing rate of 

output neuron 1 reflects the value that network I has for the action of cooperation) and 

network II would receive a constant reward of +5 (scaled down to 1.5) applied for every 

spike of output neuron 4 (remember that the firing rate of output neuron 4 reflects the 

value that network II has for the action of defection). 

Since the learning algorithms work with positive and negative reinforcements, it is 

necessary that the payoff matrix contains both positive and negative values. The networks 

therefore learn through global reinforcement signals which strengthen the value of an 

action that elicited a reward and weaken the value of an action that results in a penalty. 

It should be stressed out that the training of the system is not performed in the 

conventional way when one assumes reinforcement learning. A typical procedure would 

be to present the input for a given amount of time and observe the output, then compute 

the payoff, present the same input again and apply learning according to the computed 

payoff. In our case, we present the input for a given amount of time (which encodes the 

agents’ last decisions) and at the same time reinforce the system according to the payoff 

which is computed according to the agents’ last decisions. We believe that despite that 

our system learns in a non conventional way, our training scheme is more appropriate in 

the case of a game theoretical interaction such as the IPD. With our training scheme, 

learning is always on-line and the agents directly learn whether to cooperate or defect as a 

best response to the other agent’s action rather than associate specific inputs to specific 

outputs. For example, if the outcome of a given round is CD then reinforcement is 

administered such that the action of defection for both agents is promoted (since 

according to the payoff matrix of the game, agent 1 receives maximum penalty for 
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cooperating and agent 2 receives maximum reward for defecting). Therefore, learning 

will induce a DD output which is not optimal but it makes sense in game-theoretical 

terms as it is the best response of both agents to the other agent’s action. If training was 

performed according to the typical way, then in the case of having CD as an input with no 

learning taking place, a possible output could also be a CC for which both agents should 

receive positive rewards (according to the payoff matrix of the game) when learning is 

subsequently applied. Consequently, learning could associate a CC output for the CD 

input which is the optimum and preferred outcome for the system in terms of accumulated 

reward, but it is unrealistic in game theoretical terms, when considering best responses by 

the agents. Our aim is to induce a strong CC behaviour between the agents but in a way 

that is realistic and consistent with game theory and not just maximise the reward of the 

system.  

Figure 3.3 shows how training is performed during two learning rounds. Suppose 

that the networks’ last decision was a DC. The input to the system encodes this decision 

by four groups of Poisson spike trains firing either at 40 Hz or 0 Hz. For a DC input the 

second and third group fire at 40 Hz. This input is presented for 500ms with simultaneous 

learning taking place where constant reinforcement is administered according to the DC 

previous outcome. Reinforcement is applied in the timestep following every output spike 

of the neurons responsible for that decision which in this case are output neurons 2 and 3. 

At the end of the 500ms the aggregate activation of the output neurons for each network 

is compared and the new decision of the networks is drawn. In our example, output 

neuron 2 and 4 had a greater total activation therefore the networks’ new decision is DD. 

Therefore, the new input to the system is the one encoding the DD outcome where the 

second and fourth group fire at 40 Hz. Constant reinforcement is administered for 500ms 
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according to the DD outcome and therefore applied in the timestep following spikes of 

output neurons 2 and 4. At the end of the 500ms the new outcome is drawn which in our 

example is a CC since the aggregate activation of output neurons 1 and 3 were greater.  

 

 

Figure 3.3: Sample training procedure 

The figure presents sample training for two learning rounds. Four groups of Poisson spike trains 

feed the system with input that encodes the networks’ last decision (active groups are shown in 

gray). Shown next are the four output neurons and their activity, two for each network. At the end 

of the learning round decisions are drawn where greater activation for each network is shown in 

gray. Arrows show how the outcome of the learning round is translated into the next input. 
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3.3 Learning Algorithms Employed for Training the Agents  

Reward maximization for each agent is enabled by learning. The current work employs 

reward-modulated STDP with eligibility trace (Florian, 2007) and reinforcement of 

stochastic synaptic transmission (Seung, 2003). Both algorithms are derived as an 

application of the online partially observable Markov decision process (OLPOMDP) 

reinforcement learning (Baxter et al., 2001) algorithm and also keep a record of the 

agents’ recent actions through the eligibility trace. In reward-modulated STDP the agent 

is regarded to be the neuron that acts by spiking and the parameter that is optimised is the 

synaptic connection strength. On the other hand, in reinforcement of stochastic 

transmission the synaptic connection strengths are constant, the agent is regarded to be 

the synapse itself that acts by releasing a neurotransmitter vesicle and the parameter that 

is optimised is one that regulates the release of the vesicle. To the best of our knowledge 

this is the first time that these algorithms are applied to a demanding MARL task. 

 

3.3.1 Reward-modulated STDP with Eligibility Trace 

In reward-modulated STDP with eligibility trace (Florian, 2007) the modulation of 

standard antisymmetric STDP with a reward signal leads to RL. The synaptic efficacies 

exhibit Hebbian STDP when the network is rewarded and anti-Hebbian when punished, 

allowing the network to associate an output to a given input only when accompanied by a 

positive reward and disassociate one when accompanied by a punishment, permitting thus 

the exploration of better strategies. Moreover it involves a biological plausible variable, 

the eligibility trace (Klopf, 1982) that serves as a decaying memory of the correlations 

between recent pre- and postsynaptic spike pairs.  Aris
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According to Florian (2007) in reward-modulated STDP with eligibility trace, the 

efficacy of the synapse from neuron j to i is changed according to equation 3.1: 

( ) ( )   ( ) ( )ij ij ijw t t w t t r t t z t tδ γ δ δ δ+ = + + +     (3.1) 

where γ is the learning rate, δt is the duration of a time step, r is the global reward signal 

and z is the eligibility trace which is modified according to equation 3.2: 

( ) ( ) ( ) /ij ij ij zz t t z t tδ β ζ τ+ = +     (3.2) 

β is a discount factor between 0 and 1, ζ is a notation for the change of z resulting from 

the activity in the last time step and τz is the time constant for the exponential decay of z. 

At time t, ζ is computed by the following set of equations (3.3-3.5) where the variable P
+

ij  

tracks the influences of presynaptic spikes and the variable P
-
ij tracks the influence of 

postsynaptic spikes. The time constants τ+ and τ- determine the ranges of interspike 

intervals over which synaptic changes occur and according to the standard antisymmetric 

STDP model, A+ and A- are positive and negative constant parameters respectively. 

Finally fi(t) is 1 if neuron i has fired at time step t or 0 otherwise. 

  ( ) ( ) ( )ij ij i ij jt P f t P f tζ + −= +     (3.3) 

( ) ( ) exp( / ) ( )ij ij jP t P t t t f tδ δ τ+ +

+ += − − + Α     (3.4) 

( ) ( ) exp( / ) ( )ij ij iP t P t t t f tδ δ τ− −

− −= − − +Α     (3.5) 

The networks are composed of integrate-and-fire neurons with resting potential ur = -70   

mV, firing threshold θ = -54 mV, reset potential equal to the resting potential and decay 

time constant τ = 20 ms. These are the same values as used in the simulations by Florian 

(2007). We also used the same dynamics for the neurons’ membrane potential given by 

equation 3.6: Aris
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( ) [ ( ) ]exp( / ) ( )i r i r ij j

j

u t u u t t u t w f t tδ δ τ δ= + − − − + −∑     (3.6) 

The membrane potential was reset to ur when surpassed θ. We used τ+ = τ- = 20 ms, A+=1 

and A- =-1, δt = 1 ms, γ = 0.7 x 10
-4

 and unless specified, τz =25 ms.    

 

3.3.2 Reinforcement of Stochastic Synaptic Transmission  

In reinforcement of stochastic synaptic transmission, Seung (2003) makes the hypothesis 

that microscopic randomness is harnessed by the brain for the purposes of learning. The 

model of the hedonistic synapse is developed along this hypothesis. Briefly, within the 

framework of the model, each synapse acts as an agent who pursues reward maximisation 

through the actions of releasing or not a neurotransmitter. Synapses effectively learn by 

computing a stochastic approximation to the gradient of average reward. Moreover, if 

each synapse behaves hedonistically then the network as a whole behaves hedonistically, 

pursuing reward maximisation. 

Upon arrival of a presynaptic spike, a synapse can take two possible actions with 

complementary probabilities; release a neurotransmitter with probability p or fail to 

release with probability 1 - p. The release parameter q is monotonically related to p by the 

sigmoidal function given by equation 3.7: 

1

1 q
p

e
−

=
+

    (3.7) 

Each synapse keeps a record of its recent actions through a dynamical variable, the 

eligibility trace (Klopf, 1982) which signifies when a synapse is eligible for 

reinforcement by keeping a record of the synapse’s recent actions with respect to 

neurotransmitter release. It increases by 1- p with every release and decreases by –p with 
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every failure. Otherwise it decays exponentially with a given time constant. When a 

global reinforcement signal is given to the network, it is subsequently communicated to 

each synapse which modifies its release probability according to the nature of the signal 

(reward or penalty) and its recent releases and failures. Learning is driven by modifying q 

according to the rule given by equation 3.8:  

   q h ēη∆ = × ×    (3.8) 

where η is the learning rate, h is the reinforcement signal and ē the eligibility trace. 

Each network has a hidden layer of 60 neurons and an output layer of 2 neurons, 

all modelled with the leaky integrate-and-fire equation (3.9): 

 ( ) ( )
i

L i L ij i ij

j

dV
C g V V G V E

dt
= − − − −∑   (3.9) 

 

where VL= -74 mV, gL= 25 nS and C= 500 pF. The differential equations are integrated 

using an exponential Euler update with a 0.5 ms time step. When the membrane potential 

Vi reaches the threshold value of -54 mV, it is reset to -60mV (values as in the numerical 

simulations by Seung, 2003). The reversal potential Eij of the synapse from neuron j to 

neuron i is set to either 0 or -70 mV, depending on whether the synapse is excitatory or 

inhibitory. The synaptic conductances are updated via ∆Gij= Wij rij where rij is the 

neurotransmitter release variable that takes the value of 1 with probability equal to the 

probability that the synapse from neuron j to i releases a neurotransmitter (when j spikes) 

and 0 otherwise (Seung, 2003). In the absence of presynaptic spikes Gij decays 

exponentially with time constant τs = 5 ms. Wij are the “weights” which do not change 

over time and are chosen randomly from an exponential distribution with mean 14nS for 

excitatory synapses and 45nS for inhibitory synapses. 
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3.4 Testing the Learning Algorithms for Correct Implementation 

The learning algorithms were tested for correct implementation in the classic benchmark 

problem of XOR. The XOR function performs the following mapping between two 

binary inputs and one binary output: {0, 0}→ 0; {0, 1}→ 1; {1, 0}→ 1; {1, 1}→ 0. The 

network architecture for testing the two algorithms was the same as the one Seung (2003) 

and Florian (2007) used for the same problem i.e, a feedforward neural network with 60 

input neurons, 60 hidden neurons and one output neuron. Each layer had full feed-

forward connectivity to the next one. Neurons were randomly selected to be either 

excitatory or inhibitory.  The first 30 input neurons encoded the first binary input and the 

rest the second input. The input “1” was encoded by a Poisson spike trains firing at 40 Hz, 

while the input “0” was represented by the absence of spiking. Each input presentation 

({0, 0}, {0, 1}, {1, 0}, {1, 1}) lasted 500 ms. 

The training was accomplished by presenting the inputs and then delivering 

reward or punishment to the synapses, according to the activity of the output neuron. 

More specifically the network was rewarded for every output spike when the input was 

either {0, 1} or {1, 0} and punished for every output spike when the input was {0, 0} or 

{1, 1}.  In other words, training promoted output activation when desired and suppressed 

it otherwise. As in Florian (2007), we considered that the networks are able to solve the 

XOR problem, if at the end of an experiment, the output firing rate for the input pattern 

{1, 1} was lower than the output firing rates for the patterns {0, 1} or {1, 0}. The output 

firing rate for the input pattern {0, 0} was always 0, as a result of the rate coding of the 

input patterns (as in Florian, 2007). Before learning took place, the network naturally 

responded with more output spikes to input {1, 1} than to {0, 1} or {1, 0} since all 60 

input neurons were firing at 40 Hz. 
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As shown in Figure 3.4 the network managed to compute the XOR function with 

reward- modulated STDP with eligibility trace (Florian, 2007) as well as with 

reinforcement of stochastic synaptic transmission (Seung, 2003). The synapses changed 

during (synaptic weight and release probability respectively) learning in such a way as to 

increase the reward received by the network, by suppressing or enhancing the output 

activation for the input patterns accordingly. 
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Figure 3.4: Learning the XOR computation 

 Average firing rate of the output neuron after learning, for the four different XOR input 

patterns. Both algorithms managed to efficiently compute the function although 

reinforcement of synaptic transmission performed better. (i) The first chart corresponds to 

learning with reward modulated STDP with eligibility trace. The learning rate is set to 

0.00007 and the eligibility trace time constant τz to 25ms. (ii) The second chart shows the 

performance of reinforcement of stochastic synaptic transmission. The learning rate is set 

to 0.3 and the eligibility trace time constant τz to 20ms.  
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3.5 Investigating the Performance of Reward-Modulated STDP with Eligibility 

Trace: Does High Firing Irregularity Enhance Learning? 

In the course of investigating the performance of modulated STDP with eligibility trace 

we explored the hypothesis that high firing irregularity at high rates would enhance 

learning. We believed that this is possible as high firing irregularity will lead to more 

accurate correlations between pre-synaptic and postsynaptic spike timings and 

reinforcement signals. If firing is regular, then it is possible for two identical spike pairs 

to be associated with opposite in sign reinforcement signals, confusing thus the direction 

of the plasticity for a given synapse. High firing irregularity prevents this unnecessary 

competition by weakening this possibility and thus preventing a possible corruption of the 

learning algorithm. 

 In order to better understand how regularity may destroy learning, we should 

observe the how the dynamics of the variables used by reward-modulated STDP with 

eligibility trace affect the synaptic strength, as presented in Figure 3.5. fj shows a 

presynaptic regular spike train, fi shows a postsynaptic regular spike train, the variable 

P
+

ij  tracks the influences of presynaptic spikes and the variable P
-
ij tracks the influence of 

postsynaptic spikes. In addition zij is the eligibility trace, ζij is a notation for the change of 

zij and finally wij is the synaptic strength. For more details regarding how the variables are 

computed and associated with each other please see Section 3.3.1 or the original paper 

(Florian, 2007). Figure 3.5 shows how the synaptic strength changes with time for two 

regular presynaptic and postsynaptic spike trains. The problem of such a case is evident if 

we observe the synaptic strength which oscillates around a given value until the sign of 

the reinforcement changes when it continues to oscillate around another value. Therefore, 

for the time period where a constant reward or penalty is administered, the effect of any 
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pre-post spike pair is cancelled out by the next one and the value of the synaptic strength 

remains effectively constant, destroying thus learning during that period of time.  

 

Figure 3.5: Effect of regularity in the value of the synaptic strength 

An illustration of the dynamics of the variables used by reward-modulated STDP with 

eligibility trace and the effects on the synaptic strength when spike trains are regular. fj 

shows a presynaptic spike train, fi shows a postsynaptic spike train, P
+

ij  tracks the 

influences of presynaptic spikes, P
-
ij tracks the influence of postsynaptic spikes, zij is the 

eligibility trace, ζij is a notation for the change of zij and wij is the synaptic strength. Ths 

figure is a modified version of the one presented in the original paper for the learning 

algorithm (Florian, 2007) and is modified by us in order to explain how regularity can 

degrade learning. 

 

In addition, if we consider the whole period of learning we observe another 

oscillation since the average change induced in the synaptic strength by the reward is later 
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cancelled out by the penalty and the value of the average synaptic strength is equal to its 

starting value, meaning that no learning took place. Here we presented a case where the 

magnitude of the reward equals the magnitude of penalty; this causes the synaptic 

strength to oscillate around its starting value. However, even in the case where the reward 

was unequal to penalty the synaptic strength would still oscillate around a given value, 

different from its starting one this time, but again learning would be degraded. Overall, 

regularity impairs learning because it makes the value of the synaptic strength to oscillate. 

We achieved the required high firing irregularity of the LIF neuron by employing 

the partial reset mechanism. It has been shown (Bugmann, Christodoulou and Taylor, 

1997; Christodoulou and Bugmann, 2001) that a LIF neuron model with partial somatic 

reset is a very good candidate for reproducing the observed highly irregular firing at high 

rates by cortical neurons (Softky and Koch, 1992, 1993). 

In the current simulations, a high output firing rate of approximately 100Hz was 

targeted and achieved for both systems (with or without the partial somatic reset 

mechanism in their LIF neurons), which is within the high rate bound in which cortical 

cells in vivo fire irregularly as identified by Softky and Koch (1992, 1993). This was done 

by providing greater input frequency to the system comprising of LIF neurons with total 

reset, in order to compensate for the increased output firing rate in the other system due to 

the partial reset in its LIF neurons. Note that no direct comparison can be made between 

this system of total somatic reset and the one in section 3.4 (Figure 3.4 (i)) because of the 

different input frequencies. 

The partial somatic reset mechanism works as follows: when the membrane 

potential u(t) surpasses the firing threshold θ, then instead of being reset to the resting 

potential urest, it is reset to a level u(t) = urest + β(θ- urest), where β ιs the reset parameter, 
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with a value between 0 and 1. For the purposes of our study we used β = 0.91; this value 

of the reset parameter was chosen as it was found to produce the observed high firing 

irregularity at high rates by cortical neurons (Bugmann, Christodoulou & Taylor, 1997; 

Christodoulou & Bugmann, 2001). More specifically, in Christodoulou & Bugmann 

(2001), it was showed that with the somatic reset value set at β = 0.91, the firing 

interspike intervals (ISIs) at high rates are: (i) exponentially distributed and (ii) 

independent; in addition, in Bugmann, Christodoulou & Taylor (1997), it was 

demonstrated that the coefficient of variation (CV) vs mean firing ISI curve with β = 0.91 

shows a close similarity, firstly with the experimental one (Softky and Koch, 1992, 1993) 

and secondly with the theoretical curve for a random spike train with discrete time steps 

and a refractory time. In the respective simulations in this thesis the CV was 

approximately equal to 0.85. Therefore, with the choice of the reset parameter β set to 

0.91, the firing ISIs are purely temporally irregular (and there are no bursts, that could 

increase the firing variability), which fulfills our aim to investigate whether high firing 

irregularity enhances learning. Thus β = 0.91 is the optimal reset value parameter for our 

purpose and there is no need to see the performance for other reset value parameters, 

apart of course for β = 0. 

As it can be seen by the results for the XOR problem (Figure 3.6), even though 

both types of network learned the XOR function, the network with the partial somatic 

reset mechanism in its LIF neurons performed much better in the task, than the one 

comprising of LIF neurons with total reset. In particular, the former type of network 

displayed more qualitative results than the latter, as it managed to consistently suppress 

more the output firing rate for input pattern {1, 1}, leading to a bigger difference between 

the output firing rates for input pattern {1, 1} and input patterns {0, 1} or {1, 0}. More 
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specifically, in the network consisting of LIF neurons equipped with partial reset, the 

suppression of the output firing rate for input pattern {1, 1} reached 63% of the average 

output firing rates for input patterns {0, 1} and {1, 0}, while the respective suppression 

percentage of the network having LIF neurons with total reset reached only 10%. 

Results show that when LIF neurons fire at high rates then the performance of a 

spiking neural network in computing the XOR function increases when the partial 

somatic reset mechanism is used in conjunction with the modulated STDP algorithm 

(Florian, 2007). This is due to the high irregular firing of the LIF neurons that enabled the 

algorithm to perform more accurate correlations between pre-synaptic and postsynaptic 

spike timings and reinforcement signals. 
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Figure 3.6: Effect of increased firing irregularity on learning the XOR computation 

Average firing rate of the output neuron after learning, for the four different XOR input 

patterns with the LIF neurons of the network having either total somatic reset (i), or partial 

reset with β = 0.91 (ii). In both problems the networks learn with reward-modulated STDP 

with eligibility trace (Florian, 2007), whose time constant, τz is set to 25ms for all networks 

and the learning rate to 0.00007. 
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Chapter 4 

Simulating Internal Conflict 

 

4.1 Overview 

In Chapter 3 we described how we developed a computational model of internal conflict 

that implements the view (Kavka, 1991) that internal conflict can be resolved as if it was 

a result of strategic interaction between rational agents. The setting for this interaction is a 

well studied game, the IPD. We begin by describing how we overcame initial problems 

and continue by presenting results that demonstrate the ability of the system to exhibit 

self-control behaviour. Results are presented separately for the two implemented 

algorithms; first we present the results when learning was implemented by reinforcement 

of stochastic synaptic transmission (Seung, 2003) and continue by showing results 

obtained by reward-modulated STDP with eligibility trace (Florian, 2007). Moreover, we 

explore whether high firing irregularity at high rates in conjunction with the latter 

algorithm can improve the results of the system in this complex MARL task, as it did for 

the simple XOR problem in the previous chapter. 
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4.2 Reinforcement of Stochastic Synaptic Transmission 

For the system configuration described in Chapter 3 a single game of the IPD consists of 

200 rounds during which the two networks seek to maximise their individual accumulated 

payoff by cooperating or defecting at every round of the game. The following simulations 

involve implementation of the game where the agents learn through reinforcement of 

stochastic synaptic transmission (Seung, 2003). The learning rate used in the following 

simulations is 0.1. 

It should be noted that the CC outcome is the best immediate outcome for the 

system as a whole, and it also maximises long-term reward for both the system and the 

agents individually. In addition, for the purposes of this thesis the consistent and 

persistent choice of the CC outcome during the IPD, specifies whether the agents 

exercised self-control behaviour. When we applied the algorithm as described in Chapter 

3, in such a way as to reinforce only the actions that elicited a given outcome (for 

example if the outcome was CD, the action of cooperation for network I and the action of 

defection for network II were reinforced during the following learning round), the agents 

did not show the ability required to learn how to cooperate. The respective simulation 

results are shown in Figure 4.1. 

The accumulated payoff is calculated by adding together the payoff each agent 

received according to the payoff matrix represented in Table 3.1 (Chapter 3). For example 

if at a given round the outcome was CC, then a total 4+4=8 will be added on the 

accumulated payoff. For the DC and CD outcome the total added payoff is 2 and for DD 

is -4. Given this, the system could achieve a maximum of 1600 (200 rounds × 8) if the 

two networks cooperated all the time. Results show that the system accumulated a total 

reward of less than 550 because of a low cooperative result (shown in Figure 4.2). The 
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CC outcome occurred only 31.5% of the time, which is a bit more than if it had occurred 

by chance (25%). This is because the agents did not learn how to cooperate in order to 

maximise their long-term reward and the system performed sub-optimally. 
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Figure 4.1: Total accumulated payoff, gained by both networks during the IPD 

The system failed to accumulate a high payoff as it gained less than 550 out of a 

maximum 1600 (solid line). The agents did not learn to cooperate. The theoretically 

best performance is shown for comparison (dot-dashed line). 

 

A closer examination revealed that at the end of each learning round both output 

neurons of each network exhibited approximately the same firing rate. This effect was 

due to lack of competition in the decision layer. Remember that training during a learning 

round aimed at modifying the activation of just the output neuron that was responsible for 

the decision. However, a single global reinforcement induced a parallel and similar 

alteration in the activity of the output neuron which was not intended to be altered during 

the learning round. This was happening because the activity of the neurons in the hidden 
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layer could not be prevented for changing the activity of both output neurons as (i) these 

hidden neurons feed to both output neurons and (ii) the subset of the synapses from the 

hidden layer to the output neuron whose activity was not intended to change were held 

fixed during the learning round, making them unable to neutralise the effect of the altered 

activation in the hidden layer. Therefore, any changes in the activity of the hidden layer 

due to learning, were propagated in the activity of both output neurons. The problem was 

tackled by enhancing the contrast between the activation of the output neurons through 

introducing additional global reinforcement signals that were administered alongside the 

original. These signals were also constant during the 500ms and were applied to the 

networks in the timestep following every spike of the output neurons that were not 

“responsible” for the decision at the last round. Overall during a learning round, each 

network receives global, constant and opposite in sign reinforcements that are applied for 

spikes of both of its output neurons. These two opposite in sign signals effectively push 

the activation of the output neurons in opposite directions, enhancing thus the contrast in 

their firing. The activation of the units in the hidden layer is now changed according to 

the activation of both of the output units and in addition, all the synapses from the hidden 

layer to both output neurons are now modified such that to control the activation of both 

output neurons in order to maximise received reward and minimise received penalty. For 

example in the CD outcome, an additional constant reward of +1.15 is applied to network 

I for every spike of output neuron 2 and an additional constant penalty of -1.15 is applied 

to network II for every spike of output neuron 3 (see figure 3.1 for output neuron 

numbering). The value of 1.15 applies to all outcomes and is chosen to be small and equal 

for all outcomes such that: (i) any changes to the values of the agents’ actions (reflected Aris
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in the activation of the output neurons) are primarily induced by the reinforcement signals 

provided by the payoff matrix and (ii) the IPD payoff rules are not violated.  
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Figure 4.2: The outcome frequencies after 200 rounds of the IPD 

The cooperative outcome (CC) occurred only 31.5%. The agents did not follow a 

particular strategy and chose their action in a random non-reward-maximizing 

manner. The CD outcome occurred 21.5%, the DC 26% and the DD 21%. 

   

In effect, these opposite in sign signals update the value of the action that was not 

chosen by each network and can be justified as an additional feedback to the agents for 

their performance in the previous round. Overall during a learning round, each network 

receives global, constant and opposite in sign reinforcements that are applied in the 

timestep following spikes of both of its output neurons. One of the two signals is due to 

the payoff matrix of the game and its purpose is to “encourage” or “discourage” the 

action that elicited reward or penalty and the other signal is complementary and is 

purpose is to “encourage” or “discourage” the action that could have elicited reward or 

penalty if it had been chosen in the previous round of the game. Table 4.1 summarizes all 

the administered reinforcements.  
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 Output 1 Output 2 Output 3 Output 4 

CC +1.4 -1.15 +1.4 -1.15 

CD -1.3 +1.15 -1.15 +1.5 

DC -1.15 +1.5 -1.3 +1.15 

DD +1.15 -1.2 +1.15 -1.2 

  

Table 4.1: Overview of the reinforcement signals  

The table summarises the reinforcement signals (as applied on the equations) which the 

two networks receive during a learning round, according to all possible outcomes of a 

given round of the game. The reinforcement is administered for every spike of output 

neurons 1 to 4 (see figure 3.1 for output neuron numbering). 

 

Figure 4.3 and 4.4 show the system’s performance when additional reinforcement 

signals were incorporated into the learning algorithm. The simulation was identical to the 

previous one apart from the enhanced reinforcement administration scheme. The 

difference in performance is evident. The networks accumulated a total payoff of almost 

1500 by cooperating 91% of the times. The results reveal that the agents learned to 

maximize long term reward through cooperative behaviour. According to the 

interpretation of the game the two subagents of the brain managed to engage in 

compromising behaviour and achieve self-control. It has to be noted that the CC outcome 

not only persisted during the final rounds of the simulations, but it also did not change 

after a point due to the system’s dynamics that were evolved by that point in time in such 

a way to produce CC consistently. Unless specified the following simulations are carried 

out with extra reinforcement administration. Aris
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Figure 4.3: Simulating internal conflict through reinforcement of stochastic 

synaptic transmission 

 The system’s performance during the IPD with (solid line) and without (dotted 

line) the extra reinforcement administration. The performance increased 

dramatically when extra global signals were given as a feedback to the agents. The 

agents managed to engage in mutual cooperation and therefore exhibited self-

control behaviour. The theoretically best performance is shown for comparison 

(dot-dashed line). 

 

As explained in Chapter 3, the eligibility trace is a dynamical variable used to 

integrate time related evens and is utilized in the current algorithm as a memory for each 

synapse’s past actions with respect to releasing a neurotransmitter. The eligibility trace 

time constant regulates the decay of the variable and signifies for how long these events 

affect the variable regulated by learning (i.e probability of the neurotransmitter release in 

this case). In other words, a synapse with greater eligibility time constant has a stronger 

memory on its past actions than a synapse with smaller eligibility time constant, and 

employs this memory in order to decide whether to increase or decrease the 
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neurotransmitter release probability given the reinforcement it receives. A neuron 

equipped with such synapses can therefore be considered to have a memory on these 

actions and so a network with such neurons can be considered to have a memory on these 

actions as well. 
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Figure 4.4: Game percentage outcomes with extra reinforcement. The outcomes 

after 200 rounds of the IPD. The cooperative outcome (CC) was successfully learned 

and occurred most of the times (91%). The other outcomes took place at the beginning 

of learning in small percentages. CD occurred 4%, DC 3.5% and DD 1.5%. The 

differences in the percentages respective to the ones obtained without extra 

reinforcement (Figure 4.3) are statistically significant using a one-tailed z-test at 95% 

confidence interval.  

 

Therefore, the network employs this memory through its synapses in order to 

maximise the reward and so we can claim that the netwotks have reward-directed 

memory. The effect is the same as if the networks had a memory of the actions of 

cooperation and defection with respect to the reward accumulation and decided whether 

to cooperate or defect such that they maximised reward. For these reasons, a network 

comprising synapses with high eligibility trace time constants is used to implement a 
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subagent with stronger memory and a network with low eligibility trace time constants to 

implement a subagent with weaker memory.  

The following simulations are carried out in order to investigate the effect of the 

networks’ memory on attaining the cooperative behaviour and thus the effect of the 

agent’s memory on achieving self-control behaviour. 
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Figure 4.5: The eligibility time constant effect 

The eligibility trace time constant effect (with extra reinforcement) when the spiking 

NNs learn with reinforcement of stochastic synaptic transmission. The system 

collected a much higher total reward when the eligibility trace time constant of both 

networks was equal to 20ms (solid line) compared to 2ms (dotted line). The 

theoretically best performance is shown for comparison (dot-dashed line). 

 

Two simulations were performed with the synapses of the two networks having 

different eligibility trace time constants. The values for both networks were set to 20ms 

and 2ms for the two simulations respectively. Therefore, during the first simulation both 

networks have a “strong memory” whereas in the second they have a “weak memory”. 
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The performance of the system for all simulations is shown in Figure 4.5. The 

difference in the system’s performance is obvious and significant. When the system was 

configured with 20ms eligibility trace time constants, the accumulated payoff is much 

higher than the one with 2ms; this results from the difference in the cooperative outcome. 

With the eligibility trace time constants set at 20ms the two networks learned quickly to 

cooperate in order to maximise their long-term reward and achieved the CC outcome 182 

out of the 200 times. On the contrary, when the system was configured with “weak 

memory”, learning took effect much later during the game (after the 100th round) and 

thus the system exhibited much less cooperation (120 out of 200). However, the system 

with both configurations eventually managed to learn how to cooperate.  

Results show that networks’ memory influences the cooperative outcome of the 

game in the sense that it could delay it to a great extent. However, a weak memory does 

not destroy learning as the networks eventually learned to cooperate. On the other hand, 

the administration of extra reinforcement was vital for learning the desired behaviour, no 

matter the memory strength of the agents. 

.  

4.3 Reward-Modulated STDP with Eligibility Trace 

The following simulations implement the IPD where the agents learn through reward 

modulated STDP with eligibility trace (Florian, 2007). The simulations aim to investigate 

the capability of the spiking NNs to cooperate in the IPD or equivalently, under the 

interpretation of the game, to investigate the capability of the simulated subagents to 

exhibit self-control. It is noted that unless specified the learning rate used in the 

simulations is 0.7 × 10
-4

. The learning rate must be very small since the networks are 

reinforced for every spike of their output neurons. Therefore a small learning rate 
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combined with small reinforcement signals ensure that changes on the variables 

controlled by learning are made in a smooth and gradual way. 

As shown in the previous simulations, the administration of additional, opposite in 

sign, global reinforcement signals proved to be vital for the successful training of the 

competing agents that attained the cooperative outcome. We therefore tested the 

importance of this additional reinforcement administration, for the performance of the 

system when trained with reward-modulated STDP with eligibility trace (Florian, 2007). 

Figure 4.6 shows that the implementation of the game was successful when the additional 

reinforcement signal was administered.  
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Figure 4.6: Simulating internal conflict through reward-modulated STDP with 

eligibility trace: the effect of the extra reinforcement administration 

The system performed much better when extra global reinforcement signals were given as 

a feedback to the agents (solid line). In contrast, it accumulated a very small total payoff 

when no additional signals were given (dotted line). The theoretically best performance is 

shown for comparison (dot-dashed line). Aris
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The cooperative outcome was often attained after a relatively short training period, 

which enhanced the accumulation of reward by the system. This reveals that after a 

certain point the networks successfully learned to resist the temptation payoff provided by 

defection in order to maximise their long-term reward through cooperation, enabling thus 

reward maximisation by the system as well. The system’s performance corresponds to the 

conflict being solved by self-control behaviour. However, the system performed badly 

when no extra reinforcement was given. 
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Figure 4.7: Game percentage outcomes with extra reinforcement (i) vs. no extra 

reinforcement (ii)  

Eligibility trace time constant is set to 25 ms for both simulations. The cooperative outcome 

(CC) was satisfactory learned and occurred 88% of the times in the case where additional 

reinforcement was signaled to the agents. The other outcomes resulted in small percentages. 

(CD=5%, DC=1%, DD=6%). With no extra reinforcement mutual cooperation (CC) 

occurred only 28%, similar to the CD and DD case (30% and 27.5 respectively) whereas 

DC outcome was at 14.5%. The differences in the percentages are statistically significant 

using one-tailed z-tests at 95% confidence interval. 

 

Figure 4.7 shows the outcomes obtained in the game during the two simulations. 

The agents cooperated 88% of the times when the extra reinforcement was introduced. Aris
tod

em
os

 C
lea

nth
ou

s



 

 

70 

 

The performance deteriorated significantly when no additional reinforcement signals 

were administered to the networks since the cooperation level fall 60 percentage units 

(from 88% to 28%) and the defection level increased 21.5 percentage units (from 6% to 

27.5%). The results with the current learning scheme are in line with our previous results 

with regards to the effectiveness of the additional reinforcement in the attainment of a 

cooperative behaviour. The administration of extra reinforcement is thus vital for a high 

accumulated payoff by the spiking NN agents; therefore all the subsequent simulations 

are carried out with extra reinforcement administration. 

In reward-modulated STDP with eligibility trace, the latter serves as a decaying 

memory of the relation between recent pre- and postsynaptic spike pairs.  Its time 

constant signifies the length of time that a given event (in this case a spike pair) affect the 

variable regulated by learning (in this case the synaptic strength). By applying the same 

reasoning as in section 4.2, a network comprising synapses with high eligibility trace time 

constants is used to implement a subagent with stronger memory and a network with low 

eligibility trace time constants to implement a subagent with weaker memory.  

The following simulations are carried out in order to investigate the effect of the 

networks’ memory on attaining the cooperative behaviour and thus the effect of the 

agent’s memory on achieving self-control behaviour. Three simulations were performed 

with the neurons of the two networks having different eligibility trace time constants. The 

values for both networks were set to 25ms and 2ms respectively for the two simulations, 

whereas during the third one, one network was configured with 25ms and the other with 

2ms. Therefore, during the first simulation the agents had a strong memory, in the second 

they had a weak memory and in the third one agent had strong and the other had weak Aris
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memory. The performance of the system for all simulations is shown in Figure 4.8 and 

the respective outcomes are shown in Figure 4.9.  
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Figure 4.8: The eligibility trace time constant effect with reward-modulated 

STDP  

The system collected a much higher total reward when the eligibility trace time 

constant of both networks was equal to 25ms (solid line) compared to 2ms (dotted 

line). The system performed in between when one network was configured with 

25ms and the other with 2ms (dashed line). The theoretically best performance is 

shown for comparison (dot-dashed line). 

 

The difference in the system’s performance is evident. When the system was 

configured with 25ms eligibility trace time constants, the accumulated payoff was much 

higher than in the case where the system was configured with 2ms eligibility trace time 

constants. During the former simulation, the agents engaged in a behaviour of mutual 

cooperation whereas in the latter they primarily defected. With the eligibility trace time 

constants set at 25ms the two networks learned quickly to cooperate in order to maximise 

their long-term reward and achieved a total payoff of 1379 with the CC outcome chosen 
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88% of the times. On the contrary, when the system was configured with weak memory 

(2ms eligibility trace time constant for both agents), the system exhibited much less 

average cooperation (50%) and a total payoff of 534.  
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Figure 4.9: Game percentage outcomes  

Average outcomes after 200 of the IPD when both networks have a strong memory (Top), 

weak memory (Bottom) and when one has strong and the other weak (Middle). Eligibility 

trace time constant is set to 25 ms for a strong memory and 2ms for a weak memory. The 

cooperative outcome (CC) was satisfactory learned and occurred 88% of the times in the 

case of strong memory agents whereas cooperation level diminished significantly (also 

statistically significantly using a one-tailed z-test at 95% confidence interval) when one 

of the agents or both had a weak memory (49% and 50% respectively).   
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The system performed slightly better in the final simulation where one network 

had a strong memory and the other had a weak one. It accumulated a total payoff of 720 

compared to the 534 of the “memoryless” networks. However, the cooperation remained 

at the same low level (49%). 

The difference in the accumulated payoff occurs due to the difference in the DD 

and CD outcome rather than in the CC outcome. In the case of strong memory vs. weak 

memory, increased CD outcome reveals that the strong memory agent was trying to 

engage in a cooperative behaviour by playing C but the weak memory could not ‘realise’ 

and thus chose to aim for the temptation payoff by playing D. Later on the strong memory 

agent adjusted and changed its strategy by playing D as a best response to the other agent. 

In the case where both agents had a weak memory they both aimed for the temptation 

payoff and thus engaged in a behaviour of stronger mutual defection (DD outcome was 

38%). Only the system with the strong memory configuration managed to exhibit high 

cooperation levels.  

 

4.4 Further Investigation of the Performance of Reward-Modulated STDP with 

Eligibility Trace: Does High Firing Irregularity Enhance Learning? 

In Section 3.5 of Chapter 3 we made the hypothesis that high firing irregularity at high 

rates enhances learning. We showed that when LIF neurons fire highly irregularly at high 

rates then, the performance of a spiking neural network (trained with reward-modulated 

STDP (Florian, 2007)) is significantly better. The high firing irregularity at high rates was 

achieved by the use of the partial somatic reset mechanism on every LIF neuron of the 

network. We believe that this is due to the high irregular firing achieved by the LIF 

neurons that enabled the algorithm to perform more accurate correlations between pre-
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synaptic and postsynaptic spike timings and reinforcement signals (for more details 

please see Section 3.5). 

 In this section we carry on by testing our hypothesis in a much more complex 

MARL task such as the IPD. As in Section 3.5 we made sure that prior learning, the 

output neurons in both systems, with and without partial somatic reset, fire at the same 

experimentally observed high frequency of 100 Hz, by having different input frequencies 

for the two systems. This was done to ensure that any difference in the performance is 

due to the high irregularity enabled by partial reset and not to the increased output firing 

that would also be enabled by partial reset. It is noted that the output firing rate was 

influenced by learning in the duration of the experiments, but not to a great extent and in 

the same manner for the two systems throughout the simulations. 

The results of both simulations in the IPD multiagent RL task are shown in Figure 

4.10. With both configurations the system learns to cooperate, but when each of the 

competing networks of the system comprises of LIF neurons equipped with the partial 

somatic reset mechanism, the accumulated payoff is much higher than when there is total 

reset after each firing spike; this results from the difference in the cooperative outcome. 

With the partial reset the two networks learned quickly to reach very strong cooperation 

in order to maximise their long-term reward and achieved the CC outcome 61% of the 

time on average. On the contrary, with total reset, learning is not as strong, which is 

evident by the fact that the system exhibited much less cooperation (39% of the time on 

average).  
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Figure 4.10: Effect of increased firing irregularity on the performance of the 

system when implementing the IPD 

Average accumulated reward with the LIF neurons of both networks having either 

partial somatic reset at 91% of threshold (solid line) or total reset (dotted line). For 

both networks the eligibility trace time constant τz is set to 25ms and the learning 

rate to 0.0007.  

 

 

4.5 Discussion 

4.5.1 Internal Conflict and Self-Control Behaviour 

Overall, results obtained by both employed algorithms show that self-control behaviour 

can be learned.  The simulated internal agents achieved through learning to postpone 

immediate gratification in favour of a superior outcome in the long run. Our results are in 

line with the analytical work of Livnat and Pippenger (2006), who showed that an optimal 

brain can be composed of internal competing agents. Optimality in the case of internal 

conflict is the behaviour of self-control that can be attained if the internal agents follow a 

compromising strategy in their interaction. Therefore our results show that self-control Aris
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behaviour could be a learned maximising strategy employed by a reward maximising 

brain in the presence of competing internal agents. 

  In addition, results show that for individuals that experience a particular internal 

conflict in a recurrent manner, self-control behaviour can be learned through correct 

associations between actions and outcomes. More specifically, an individual that 

experiences the same internal conflict for a number of times, is more likely to learn how 

to practise self-control on the specific matter as the recurrent experience will enable the 

individual to associate the actions aiming at immediate gratification with the suboptimal 

obtained outcome (DD). In other words the individual will learn that the best outcome 

cannot be obtained by insisting on acquiring the best immediate available option of either 

competing ‘self’ as by insisting can cause future unavailability of that option (CD or DC 

can cause an extended DD outcome due to punishment by the other ‘self’) or can result in 

an unintended immediate outcome if both of the subagents insist on getting their way 

(DD).   

In addition, recurrent experience enables the endurance of self-control behaviour 

once established, since it allows the system to acquire an appreciation of the accumulated 

reward obtained by executing self-control behaviour consistently. In our computational 

model the appreciation of the accumulated reward is reflected in the consistent activation 

of the specific output units such that to enable persistent mutual cooperation. Therefore, 

in addition to experimental findings that showed a greater fronto-parietal activity in 

subjects who chose long-term rewards in intertemporal choice tasks (e.g. McClure et al., 

2004), our results suggest that people who consistently and efficiently practise self-

control in their everyday lives should have a greater respective neural activity induced by Aris
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the appreciation towards the overall accumulated reward resulted from consistent practice 

of self-control behaviour.      

 Simulations revealed that the reward-correlated memory of the competing agents, 

facilitated by the variable of eligibility trace and its time constant, is also important in the 

process of learning self-control behaviour since the memory is employed by the agents in 

choosing their actions such that to maximise their individual reward. Agents with stronger 

memory were able to learn fast that mutual cooperation elicits the highest long-term 

payoff and adjusted their strategies such that to collect it. On the other hand, agents with 

very low memory were not always able to learn to cooperate and in the cases they did, it 

took longer. In addition, they demonstrated high percentages of mutual defection 

revealing an ‘eagerness’ to collect the immediate payoff and an inability to learn that 

defection does not pay off in the long term; the agents behaved in a myopic manner. 

Finally, in the simulation where one agent had strong memory and the other had weak, 

increased frequency of CD outcome shows that the one with the strong memory was 

exploring cooperation while the other primarily defected. In this situation, the one with 

the shorter memory accumulated a higher total individual payoff due to collection of the 

Temptation payoff. The short-memory agent exploited the strong-memory agent until the 

latter also changed its strategy to defection.  

If we assume that some internal subagents are more myopic than others 

(distinguished by the time they usually wait in order to collect the rewards), then results 

suggest that myopic subagents (e.g. satisfy-hunger or taste agent) are more likely to 

exploit subagents that are less myopic and are willing to compromise (e.g. physical 

fitness agent). This might provide a psychological plausible picture of why we sometimes 

excess on sweets while dieting does not begin on Mondays. 
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Overall, results with respect to the effect of eligibility trace time constant show 

that strong reward-directed memory is important for the attainment of self-control 

behaviour. As in our computational model, this kind of memory might not concern the 

actual actions performed by the individual, but it might be implicitly present in the 

organism for optimization purposes. However its reward-driven nature enables 

maximisation by the individual through the performed actions as if the individual had an 

explicit memory of these actions.  

  

4.5.2 High Firing Irregularity and Learning  

In general, the findings from our experiments in the XOR and the IPD tasks, suggest that 

the increased firing irregularity at high rates, which results from the introduction of the 

partial somatic reset mechanism at every LIF neuron of these networks, enhances the 

learning capability of both systems. This is due to the increased suppression of the output 

firing rate for input pattern {1, 1} in relation to the output firing rates for input patterns {0, 

1} or {1, 0} in the XOR problem and the resulting accumulation of higher cooperative 

reward in the IPD task. More specifically, this high firing irregularity at high rates 

enhances reward-modulated STDP with eligibility trace. We believe that this is due to 

more accurate correlations between pre-synaptic and postsynaptic spike timings and 

reinforcement signals. If firing is regular, then it is possible for two identical spike pairs 

to be associated with opposite in sign reinforcement signals, confusing thus the direction 

of the plasticity for a given synapse. High firing irregularity prevents this unnecessary 

competition by weakening this possibility and thus preventing a possible corruption of the 

learning algorithm. We have also observed that the increased levels of temporal Aris
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irregularity only have ‘positive’ effects, because they either increase the speed in a 

successful learning episode, or reverse a failed learning episode into a successful one. 

It has to be noted that other variant implementations of RL on spiking neural 

networks by modulating STDP with a reward signal (apart from Florian, 2007), like for 

example Izhikevich (2007), Faries and Fairhall (2007) and Legenstein, Pecevski and 

Maass (2008), could equally well be used for obtaining the results presented in this 

research thesis. In general, the use of LIF neurons with the partial somatic reset 

mechanism is very important, as apart from its precise modelling of the high firing 

irregularity of cortical neurons at high firing rates (Bugmann, Christodoulou and Taylor, 

1997; Christodoulou and Bugmann, 2001), it also enhances learning. 

The results regarding learning and high firing irregularity are indeed important 

and have been accepted for publication in a relevant scientific journal (Christodoulou and 

Cleanthous, 2010). However, no direct comparisons can be made between results 

presented in sections 4.3 and 4.4 as simulations in Section 4.4 aimed at a different output 

firing that was enabled with different input frequencies for the two systems. For 

subsequent simulations we will not employ partial somatic reset on the LIF neurons 

because such biological realism is superfluous in the scope of this research thesis as the 

output units in the system correspond in an abstract way to aggregate activation by neural 

systems involved in internal conflict and not to a particular neuron as such.    
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Chapter 5 

Exploring the Structure of Internal Conflict 

 

5.1 Overview 

In the previous chapter we simulated internal conflict as a competitive interaction 

between rational subagents where the conflict structure was represented by the payoff 

matrix of the IPD. All the simulations used a particular structure of the payoff matrix 

where the payoffs of the competing agents were symmetric and constant throughout the 

simulations. In the current chapter we explore how the structure of internal value conflicts, 

as represented by the payoff structure of the game, influences the attainment of self-

control behaviour. We attempt this by constructing a variety of payoff matrices that 

correspond to different internal conflict contexts and apply them to our computational 

model in order to investigate how they affect the cooperative outcome. Experiments 

employ constant payoff structures that do not change during the duration of the game as 

well as varying payoff structures in order to simulate time related changes in the value 

systems of internal agents. All simulations presented in this chapter were performed by 

employing reward modulated STDP with eligibility trace and the results. 
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5.2 Simulating Internal Conflict Scenarios with Constant Payoff Structures 

The previous results involved a payoff matrix (Table 3.1) which represented an internal 

conflict of low to moderate intensity. This is so because the Temptation payoff is just 

slightly higher than the payoff for mutual cooperation and also because the Sucker’s 

payoff is slightly lower than the payoff for mutual defection. In other words, the agents 

were less tempted to defect and less afraid to cooperate. As we showed, internal agents 

competing in this context were able to learn to exhibit self-control by compromising and 

therefore accumulate superior long term reward. How would the agents respond if the 

conflict was more intense? In order to answer this question two more sets of experiments 

were performed with the two new payoff structures shown below (together with old one 

for comparison). For simplicity, payoff matrices in Figure 5.1 contain the reinforcement 

signals as applied directly on the equations of the learning algorithm. Payoff matrix (i) in 

Figure 5.1 is the same as the one used in all simulations of Chapter 4 and is presented 

here for comparison to the new ones.  

Both the Temptation and the Sucker’s payoff of Agent II (column player) were 

modified accordingly in order to reflect a situation where an individual experiences a 

greater internal conflict. The Temptation payoff reflects how much the immediate 

gratification outcome yields whereas the Sucker’s payoff signifies the cost of obtaining 

the least immediate gratification. The Temptation payoff was increased from 1.5 to 7 for 

the one experiment and then to 14 for the other whereas the Sucker payoff was decreased 

from -1.3 to -5 and then to -12. As a result, the agents’ payoffs are more divergent for the 

CD and DC outcomes increasing thus the conflict between them. 
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(i) Agent II 

 Cooperate Defect 

Cooperate     1.4, 1.4   -1.3, 1.5      Agent I 

Defect    1.5, -1.3 -1.2, -1.2 

 

(ii) Agent II 

 Cooperate Defect 

Cooperate    1.4, 1.4   -1.3, 7      Agent I 

Defect     1.5, -5 -1.2, -1.2 

                

(iii) Agent II 

 Cooperate Defect 

Cooperate     1.4, 1.4   -1.3, 14      Agent I 

Defect     1.5, -12 -1.2, -1.2 

 

Figure 5.1: Payoff matrices representing different intensities of internal conflict  

The top matrix (i) is the original matrix used in the simulations of Chapter 4 and 

corresponds to an internal conflict of moderate intensity whereas the second (ii) 

corresponds to a strong internal conflict and the third (iii) to an extreme conflict similar 

to that experienced in cases of addiction. Differentiation in conflict intensity is 

implemented by modifying the payoffs in the CD and DC outcome for Agent II. Payoffs 

are shown as applied on the equations of the learning algorithm. 

 

Moreover, the modifications in both directions promote the choice of defection for 

the column player as the individual is more tempted to go for the greater immediate 

payoff by defecting as well as to avoid the Sucker payoff by also defecting. Payoff matrix 

(ii) and (iii) of Figure 5.1 model a strong and an extreme internal conflict respectively. 
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The payoffs for the column player in the second matrix are so high compared to the 

original matrix that we could think of it as representing an extreme case of value system 

similar to that of addiction. Another point to note is that the game still obeys the rules of 

the Iterated Prisoner’s Dilemma despite the fact that the payoffs for the two players are 

not symmetric anymore. 

The results for the original payoff matrix as well as for the two new ones are 

shown in Figure 5.2. In general, the system behaved as anticipated. The column player 

indeed defected more in the strong internal conflict scenario and defected even further in 

the extreme conflict scenario as reflected in the increased percentage of the CD outcome. 

As a response to this, the row player also learned to defect in order to secure the payoff 

gained from mutual defection, which is better than the Sucker’s payoff, increasing thus 

the DD outcome. Notice that the row player learned to efficiently adopt its strategy in the 

face of a new strategy by the column player showing thus flexibility of the system. As a 

result of the above the cooperative outcome decreased significantly. More specifically the 

CC outcome was 86% during the simulation that modeled an internal conflict of low 

intensity and decreased to 50% during the strong conflict while it decreased even further 

to 30% during the extreme conflict whereas the CD outcome increased from 5% to 25% 

and then to 30% respectively. The DD outcome also increased from 4% to 25% and then 

to 40%. It is important to note that the synaptic changes during the extreme conflict 

scenario were very drastic and persisting due to the very high magnitudes of the new 

payoffs, and as a result they hindered learning to a great extent even from the initial 

stages of the simulation. These changes might relate to the extreme and persisting 

neuroadaptations caused by addictive substances but more on that subject will follow in 

Section 5.3. 
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Figure 5.2: IPD outcomes for different intensities of internal conflict  

Average outcomes after 200 rounds of the IPD simulating a (i) moderate, (ii) strong and (iii) 

extreme internal conflict. Outcomes for (i) are CC= 88%, CD= 5%, DC= 1%, DD= 6%, for 

(ii) are CC= 50%, CD= 25%, DC= 0%, DD= 25% and for (iii) are CC= 30%, CD= 30%, 

DC= 0%, DD= 40%. It is noted that apart from the payoff matrix, the system for the three 

simulations is configured in an identical manner. Learning rate is set to 0.00007 and the 

eligibility trace time constant is set to 25ms. The decrease in the CC outcome from case (i) 

to cases (ii) and (iii) is statistically significant using a one-tailed z-test at 95% confidence 

interval whereas the increase in the DD percentage from case (i) to (ii) and from (ii) to (iii) 

is also statistically significant using a one-tailed z-test at 95% confidence interval. 

 

The previous two simulations represented conflict between value systems of 

different importance to the individual as reflected in the magnitudes of the payoffs that 
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each outcome yields. Overall, Agent I expects small gains and losses from the different 

outcomes compared to Agent II who expects greater gains and losses. Therefore, the 

value system served by Agent II is more important to the individual. For the purposes of 

the following simulations we modified the Temptation as well as the Sucker’s payoff for 

Agent I (row player) in the exact same manner as we did for Agent II in the previous two 

simulations. The new payoff matrices are shown in Figure 5.3. As a result, the following 

simulations implement two agents with equally important value systems (symmetric 

payoffs) and an increased motivation to defect. 

 

(i) Agent II 

 Cooperate Defect 

Cooperate    1.4, 1.4   -5, 7      Agent I 

Defect     7, -5 -1.2, -1.2 

 

(ii) Agent II 

 Cooperate Defect 

Cooperate    1.4, 1.4   -12, 14      Agent I 

Defect     14, -12 -1.2, -1.2 

 

Figure 5.3: Payoff matrices when simulating intense internal conflict between two agents 

who are strongly motivated to defect.  

 (i) Both agents have Temptation and Sucker’s payoff equal to 7 and -5 respectively. (ii) Both 

agents have Temptation and Sucker’s payoff equal to 14 and -12 respectively. Payoffs for 

mutual cooperation and defection are 1.4 and -1.2 respectively for both agents on both payoff 

matrices. 
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Figure 5.4: IPD outcomes when simulating intense internal conflict between two 

agents who are strongly motivated to defect.  

Average outcomes after 200 rounds of the IPD when (i) both agents have Temptation 

and Sucker’s payoff equal to 7 and -5 respectively and (ii) the agents have Temptation 

and Sucker’s payoff equal to 14 and -12 respectively. Payoffs for mutual cooperation 

and defection are 1.4 and -1.2 respectively for both agents on both simulations. When 

both agents have equal strong motivation to defect then the bigger the motivation (as 

reflected in higher Temptation and lower Sucker’s payoff), the lower the cooperative 

outcome and the higher the mutual defection. The decrease in the CC outcome as well 

as the increase in the DD outcome from case (i) to (ii) is statistically significant using a 

one-tailed z-test at 95% confidence interval. 

 

Results presented in Figure 5.4 show the outcomes of the game after 200 rounds 

of the IPD (Subfigure (i) corresponds to the simulation with the Payoff matrix (i) of 

Figure 5.3 and Subfigure (ii) corresponds to the simulation with the Payoff matrix (ii) of 

Figure 5.3). Overall, results show (Figure 5.4) that when both agents have equal strong 

motivation to defect then the bigger the motivation (as reflected in higher Temptation and 

lower Sucker’s payoff), the lower the cooperative outcome and the higher the mutual 

defection. Results are more interesting when compared to the case where only one of the 

agents was motivated to defect. Results in Figure 5.4 show that both agents could not 
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escape temptation and they both insisted in getting their way, resulting thus in a 

behaviour of increased mutual defection compared to the respective cases (Figure 5.2) 

where only one of the agents had strong motivation to defect. The cooperative outcome 

was not influenced to a great extent; the increase in DD is due to a decrease in CD rather 

than a decrease in CC. DC outcomes also increased compared to Figure 5.2 as Agent I has 

also strong motivation to defect. However they remain in low levels due to presence of 

another “defector”. Note also that given that the CC outcome stayed at the same levels 

and DD is more costly to the system than CD or DC, then we can infer that the system is 

worse off when both agents are strongly motivated to satisfy maximum immediate 

gratification rather than when only one of the subagents is motivated even though strong 

mutual cooperation is not attained in any of the two cases. Therefore, one could say that it 

is more costly for the individual to experience an internal conflict between two value 

systems that are equally important with large respective values attached to immediate 

gratification rather than when only one of the value systems is as such, even though self-

control behaviour is not attained in any of the two cases. 

The results reveal that the structure of the payoff matrix is highly important for the 

outcome of the game. In addition, it is shown that the payoff matrix of the IPD is very 

powerful in abstractly representing complex settings with respect to an individual’s 

internal conflict and in addition the system can efficiently exploit this powerful 

representation in order to simulate an individual’s respond to the intensity of internal 

conflict. Now given that we achieved to simulate a situation where an individual faces a 

strong internal conflict, results showed that learning solely is not sufficient to overcome 

the conflict in a self-controlled manner, especially in cases where conflicting desires or 

value dimensions are equally important and immediate gratification yields much more 
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than the single self-control outcome (CC) (not self-control behaviour which is the 

consistent and persistent choice of CC). Instead, the simulated individual is likely to give-

in to temptation or even more likely, according to Kavka’s (1991) interpretation, to 

preserve the Status Quo (DD outcome) and thus satisfy neither of the two internal 

subagents. 

Considering the previous results, it would be interesting to see how cooperative 

behaviour would change with respect to the other outcomes, by ‘boosting’ appreciation 

towards the cooperative outcome. This was done during the following simulation by 

using the payoff matrix presented in the table below (Table 5.1). It is the same as the one 

used in one presented in Figure 5.3 (i), but with increased payoffs for the outcome of 

mutual cooperation.  

 

 Agent II 

 Cooperate Defect 

Cooperate 6, 6 -5, 7 Agent I 

Defect 7, -5 -1.2, -1.2 

 

Table 5.1: Payoff matrix with equally important value systems and increased 

mutual cooperation payoff 

The table summarises the context of internal conflict. It is an intense conflict due to the great 

difference between the individual payoffs of the agents in the CD and DC case but with also 

increased payoffs for mutual cooperation so that appreciation for mutual cooperation can be build 

up easily.  
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Results presented in Figure 5.5 (ii) show that the system managed to cooperate 

more compared to the case where the payoffs for mutual cooperation were low (shown in 

Figure 5.5 (i) for comparison, corresponding to the Payoff matrix (i) of Figure 5.3 ). In 

addition, the difference results mainly from a decrease in the DD outcome rather than 

from a decrease in CD or DC outcome which is more beneficial for the system, as a CD 

or DC outcome provides a positive overall reinforcement whereas DD a negative. Once 

more the system behaves in a way that makes sense, and therefore reinforces our idea that 

building up appreciation for the cooperative outcome can be beneficial in cases of intense 

conflict.  
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Figure 5.5: IPD outcomes when simulating intense internal conflict with equally 

important value systems but increased mutual cooperation payoff 

Average outcomes after 200 rounds of the IPD when (i) mutual cooperation payoffs were low and 

(ii) mutual cooperation payoffs were high. CC percentage increased compared to (i) from 48% to 

59% while the DD percentage decreased from 34% to 24%. The respective increase and decrease 

are statistically significant using a one-tailed z-test at 95% confidence interval.  

  

Although this kind of internal value structure is preferable and beneficial to the 

individual, compared to the one that reflects intense conflict but with low immediate self-

control payoff, it is also more rare in real life situations of internal conflict. Usually 
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people can not appreciate self-control behaviour from single self-control actions in the 

presence of big immediate temptations, because of the small immediate payoff provided 

by self-control. These small self-control payoffs combined with high temptation payoffs 

limit their ability of practicing self-control long enough such that an appreciation is built 

up. In such a case, is there a way of inducing an appreciation for self-control behaviour 

early on, without having to exercise self-control too many times? As we saw, that would 

mean that the payoffs delivered from exercising self-control should for some reason 

increase dramatically. But how can the payoffs increase if the outcome delivering these 

payoffs remains the same? One plausible hypothesis is that payoffs could increase not in 

their objective value as such, but in the way they are perceived by the individual. Our 

results are supported by findings (Metcalfe and Mischel, 1999) that showed that children 

can be taught to suppress impatience by manipulation of thought. Moreover, a recent 

study on students’ delay of gratification (Bembenutty, 2009) also showed that the delay is 

enhanced with the use of self-regulated learning strategies like reminding themselves of 

their overall values and goals. In addition, such perceptual changes might be possible to 

be induced by drug administered psychiatric treatment but this is only a hypothesis. The 

importance of this result lies in the identification of an internal value structure that can 

improve self-control behaviour. The specification of how to attain such a structure is out 

of the scope this research. 
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5.3 Introducing Time in the Modelling of Internal Conflict: Simulations with 

Varying Payoff Structures   

Although in the previous section we identified internal value structures which either 

support or hinder self control behaviour, one of the big questions persists; how can the 

simulated individual achieve self-control behaviour when experiencing a strong internal 

conflict, or at least improve the low self-control outcome of the previous simulations? 

Before we could move on we should first have a closer look at the current experimental 

procedure. So far, all simulations involve stationary implementations of the IPD in the 

sense that the payoff structures are fixed within the duration of a game. The two 

subagents compete for a given number of rounds in the IPD with a constant payoff matrix 

assuming thus fixed value systems. It is certain that such a constant representation of 

value systems for the two subagents is unrealistic in the sense that in real life the value 

systems shift all the time either because of internal or external causes. Consider our 

example where the student needs to decide whether to go to the pub or stay home and 

study. The conflict aroused by such a situation and its outcome are modelled by a single 

round of the IPD. In the course of its academic career, the student will face such a 

dilemma for an unspecified number of times, as modelled by the total rounds of the IPD. 

However it is not necessary that the student will have the same value systems every time 

s/he faces the dilemma. It is very likely that the student’s value systems would have 

changed, during the time interval between two such situations. After all, time changes 

preferences. In addition, the value systems might alter on the spot as the decision is 

carried out. Imagine that as the student tries to decide what to do, s/he is informed that 

most of her/his friends are not going to the pub or s/he remembers a ‘D’ marked exercise 

on the course s/he has to attend the next morning. Both events will shift the student’s 
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value systems. The first shift is due to an external cause initiated by the environment 

whereas the second one is due to an internal cause initiated by memory and emotions; 

however both causes enable the shift of the value systems. 

The variable of time which always exists in real life scenarios and make the 

situations dynamic, although it is implicitly present in our computational system in the 

form of changes made to the variables affected by learning, or simply represented through 

time constants, it is absent in the representation of conflict itself. Therefore in order to 

integrate time in our computational model of internal conflict, the payoff matrix of the 

game should dynamically change simultaneously with the ongoing competition of the 

agents in the IPD. The value of such simulations would be to identify how alterations in 

the payoff structures, within the duration of a single game, affect the behaviour of the 

agents. Therefore we will be able to investigate how dynamic changes in the subagents’ 

value systems might enable the transition from a non self-controlled behaviour to a self-

controlled one. 

Our first attempt to actively incorporate the effect of time was by applying the law 

of decreasing marginal utility (Gossen, 1854) on the payoff matrix of the game. This law 

comes from utility theory in economics and states that any additional unit of consumption 

of a good or a service yields less additional utility, a measure for satisfaction, than the 

previous unit.  For example, imagine you have a bag of chocolates; the additional 

pleasure that you get from eating another chocolate is likely to be less than the pleasure 

received from eating the previous one. In an internal conflict scenario, a smoker who tries 

to decrease smoking for instance, enjoys the first cigarette of the day much more than the 

second and subsequent cigarettes as well as the prevention of smoking the first cigarette is 

much more painful than a subsequent one. In any case, in order to apply the law of 
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decreasing marginal utility in our model it would require that the Temptation payoff once 

consumed should induce a decrease to the Temptation payoff itself in the rounds that 

follow, and also an increase to the Sucker’s payoff since the loss of not consuming the 

good would not be as severe now. 

With regards to the simulation, the law of decreasing marginal utility was applied 

by gradually transforming the payoff matrix of the game from a very intense-conflict 

structure (Payoff matrix (iii) in Figure 5.1) to a low-conflict structure (Payoff matrix (i) in 

Figure 5.1) while the agents competed in the IPD. The game started with the intense-

conflict matrix in the first round which was then transformed at the subsequent rounds, 

moving closer each time to the low-conflict matrix until it reached it at the final round of 

the game. As a result, the payoff matrix of the game changed, changing thus the agents’ 

interaction setting, progressively from intense-conflict to low-conflict. The law of 

decreasing marginal utility is applied to all different goods and services, but at the same 

time the exact function that models this decrease is good/service-specific, and it differs 

from individual to individual. For these reasons a simple general linear transformation is 

chosen which captures the essential feature of the law, although many other functions 

could have been used. The purpose of the simulation was to establish whether the agents’ 

behaviour would transform from a non self-controlled behaviour to a self-controlled one 

by the parallel ongoing transformation of the payoff matrix, given that the end matrix 

induced self-control behaviour when used in the static case. 

Results obtained from this simulation were no different than the results obtained 

where the intense-conflict matrix was constant throughout the game (subfigure (iii) in 

Figure 5.2) and so there is no point in presenting them again. The linear transformation of 

the agents’ preferences that took place along with the ongoing competition in the IPD was 
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not sufficient to alter their behaviour. The change in the agents’ preferences or likenesses 

with respect to the possible outcomes, as reflected in the alteration of the payoff matrix of 

the game, did not induce a change in the agents wants as reflected in their respective 

decisions about the outcomes. We repeated the simulation where the starting matrix 

represented also an intense conflict but of a lesser magnitude (Payoff matrix (ii) in Figure 

5.1), but again we observed no differentiation in the agents’ performance. 

In order to understand why the suboptimal behaviour induced by the intense 

conflict structure could not be reverted by a less intense payoff matrix, we should have a 

closer look at the training of the system. At the beginning of the simulation, the extreme 

value of the Temptation payoff and Sucker’s payoff for Agent II induced a bias towards 

defection by the respective agent. The response of Agent I to the Agent’s II defecting 

strategy would be either to Cooperate, something that would reinforce even more the 

action of defection by Agent II (since a CD outcome would still provide the best available 

reward for Agent II, despite the fact that the value of the Temptation payoff decreases as 

the game progresses), or adopt the best response to Agent’s II strategy and Defect as well. 

In the latter case, where both agents Defect, one would expect that at some point in the 

game the agents would revert their strategies to mutual cooperation, as mutual defection 

would provide a constant penalty to both agents. However, Agent I is not biased towards 

the action of defection to the same extent as Agent II because of the much lower value of 

the Temptation payoff Agent I receives. Therefore, the synaptic changes required for 

Agent I to revert from defection to cooperation are much smaller compared to these 

required for Agent II. As a result, Agent I reverts to cooperation sooner than Agent II and 

the action of defection is again positively reinforced for the agents, especially for Agent II 

who receives once again the Temptation payoff (due to the CD outcome). Overall, this 
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cycle of behaviour prevents the agents from establishing a mutual cooperative behaviour 

despite the fact that the payoff matrix is transformed from intense-conflict to low-conflict.  

One would expect that a change in likeness would affect a change in wants as we 

people usually act as rational utility agents. However this is not the case when it comes to 

intense cases of internal conflict as addiction. A person who is addicted to a given 

substance continues to consume that substance even in the absence of any pleasure 

initially provided by that substance (Fischman, 1989; Fischman and Foltin, 1992; Lamb et 

al., 1991). The dissociation between ‘wanting’ and ‘liking’ is central in modern addiction 

theory (Berger et al., 1996; Berridge and Robinson, 1998; Brauer and Dewit, 1996, 1997; 

Ohuoha et al., 1997; Robinson and Berridge, 1993) and provides justification for the 

‘irrational’ choices made by addicts (Robinson and Berridge, 2000). According to 

incentive-sensitization theory (Robinson and Berridge, 2000) drugs not only produce long 

lasting changes to the neural systems “normally involved in the process of incentive 

motivation and reward”, but also these changes make the reward systems sensitized 

(hypersensitive) to drugs and drug associated stimuli. According to this theory, the 

sensitised systems do not mediate the hedonic aspect of drugs (drug ‘liking’), but instead 

they mediate a subcomponent of reward they refer to as incentive salience (drug 

‘wanting’). The initial euphoric effects of drugs induce neuroadaptations to the systems 

responsible for seeking that reward. Even in the absence of pleasure on a later stage, the 

adaptations made to seek the reward remain and guide the individual’s actions.  

Similarly in our computational model, the initial high reinforcement signals of the 

intense-conflict matrix induced great changes to the system’s effective variables that 

drove the system in non self-control behaviour which persisted even when the payoff 

matrix changed. This is because the variables were affected to a greater extent by learning 
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at the initial stages of the game since the values of the Temptation and Sucker’s payoff 

were much greater in magnitude. Thus, in analogy to the real neurobiological system we 

could say that our system was initially sensitised by the great Temptation and Sucker’s 

Payoff towards the action of defection which persisted for the whole duration of the game 

irrespective of the payoff matrix used at the different stages of the game. 

The next simulation aims at investigating the self-control strength model 

(Muraven and Baumeister, 2000). According to this model, the ability to exhibit self-

control relies on a limited resource, or self-control strength, and all different self-control 

operations draw on that same resource. Their study (Muraven et al., 1998) showed that 

participants’ performance was impaired in a self-control task that followed an initial one. 

In addition, the impairment was found even if the two tasks were completely different in 

context. The model’s view of self-control resembles a muscle whose short-term ability 

decreases after exertion, but at the same time repeated exercise strengthens it in the long-

run. In another study (Muraven et al., 1999), a group of students was asked to regularly 

perform some easy self-control tasks for two weeks. These participants showed 

significant improvements on self-control compared with participants who did not practice 

self-control. 

Inspired by the study of Muraven et al. (1999), we tried to investigate whether a 

low-conflict matrix could serve as an exercise that would enhance the system’s overall 

performance in a more demanding task. More specifically, both a low-conflict (Payoff 

Matrix (i) in Figure 5.1) and a very intense-conflict (Payoff Matrix (iii) in Figure 5.1) 

payoff structures were used in the simulation such that they interchanged each other every 

ten rounds of the game. The agents’ competition started with the low-conflict matrix as 

the payoff matrix of the game and was kept constant for ten consecutive rounds, by which 
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time it was replaced by the intense conflict-matrix for another ten rounds. The game’s 

procedure continued in the same manner by changing between the two matrix structures 

where the low-conflict matrix served as a self-control exercise for the demanding intense-

conflict task that followed. 
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Figure 5.6: Exercising self-control similar to a body muscle helps resolving intense 

internal conflicts.  

Average outcomes after 200 rounds of the IPD with (i) constant intense-conflict payoff 

structure and (ii) when intense-conflict payoff structure interchanged with a low-conflict 

payoff structure. Practicing self-control on the low-conflict structure improved the 

ability of the simulated individual to resolve a more intense internal conflict through 

self-control. The increase in the CC outcome as well as the decrease in the DD outcome 

from case (i) to (ii) is statistically significant using a one-tailed z-test at 95% confidence 

interval. 

Results (Figure 5.6) demonstrate a significant increase in the cooperative outcome 

compared to the simulation where only the intense-conflict matrix was used and a 

decrease in the respective CD and DD outcomes. The CC outcome now resulted 63% of 

the times compared to the previous 30% whereas both the CD and DD outcomes dropped 

from 30% and 40% respectively to just 18%. In the case where only the intense-conflict 

matrix was used, the large absolute values of the Temptation and Sucker payoff induced a 

premature sensitization of the respective agent towards the immediate payoff which is 
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attained through defection. Learning in that case worked against mutual cooperation as it 

induced great synaptic changes that promoted defection from the column agent very early 

on in the learning process. As a result the system could not effectively learn to exploit 

long-term payoff and resulted in high percentages of the CD and DD outcomes.  On the 

other hand, the intervention of the low-conflict matrix during the simulation enabled the 

system to discover and ‘appreciate’ the value of mutual cooperation with respect to a 

greater long-term payoff. Learning took place in a smoother and more effective way 

allowing the system to explore the different strategies and choose the one that will benefit 

it the most in the long run.  Our findings not only agree with the theory that perceives 

self-control as a quality that can be exercised (Muraven et al., 1999), but also provide a 

possible interpretation for it. Practising self-control builds up an appreciation for the long-

term, accumulated payoff provided by self-control. In addition, this appreciation is 

enabled by learning that takes place more effectively in an easy self-control task where it 

is easier to resist temptation and prevent sensitisation by the immediate payoff. Once the 

appreciation is built, then it is easier to employ self-control in more difficult tasks, even 

outside the context that has been practiced. 
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Chapter 6 

Conclusions and Future Work 

 

6.1 Overview of the Computational Model of Internal Conflict 

The current research thesis proposes a novel computational model of internal conflict. 

The model integrates knowledge from such diverse areas such as psychology, game 

theory, neuroscience and computational neuroscience, while it is applied on a multiagent 

reinforcement learning task (IPD) with the aim to promote understanding in a 

psychological problem. More specifically, the system models internal conflict as a 

strategic interaction between internal rational subagents of the brain (Kavka, 1991), 

which can be optimally resolved through self-control behaviour. We implemented this 

simple, elegant and powerful game theoretical view of internal conflict in a 

neurobiologically relevant computational model of spiking neural networks that learn 

through biologically plausible learning algorithms. The model does not intend to 

reproduce in detail the actual brain regions that are involved in internal conflicts. Too 

much information is missing with respect to the precise identity and function of the 

regions that enable and influence this highly complex state of mind. Even if these regions 

were readily available to us and their function was understood in detail, it would probably 

take more than a lifetime to model in detail the actual brain in terms of its structure and 

function. In addition, the existence of a computational model in that case would have 
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been somehow redundant, as knowing in detail the actual brain would question the 

necessity for the existence of a computational model unless of course it would be for the 

purposes of creating artificial life. Whether this is possible or how distant this scenario 

lies, is a controversial issue out of the scope of this discussion. The current fact is that 

internal conflict and self-control behaviour are poorly understood. Given that, we believe 

that a high-level computational model that implements a game theoretical view of internal 

conflict, rather than an actual detailed reproduction of the brain areas involved, helps us 

to acquire a better understanding of the big picture of internal conflict (and how it can be 

resolved), which is currently obscure. However, our computational model does not 

disregard important experimental findings with respect to intertemporal choice (e.g., 

McClure et al., 2004), which is the context in which internal conflict generally resides 

and self-control behaviour could be exhibited. These identified regions and their functions 

were integrated in our game theoretical computational model by providing a plausible 

view of how the competing agents and these brain regions might relate. More specifically, 

we propose that each of these internal agents has access to, or “entail”, both regions that 

are involved in the valuations of delayed and immediately available payoffs (Figure 2.4). 

Competition in the model exists between higher (delayed reward valuations) and lower 

processes (immediate reward valuations) of the brain within each subagent, but also 

between subagents who represent distinct evaluation criteria (other than temporal). Their 

actions whether to choose the long term or the immediate reward are determined by the 

relative activation of these regions which is also consistent with experimental findings. It 

is noted that although it is a simple and abstract approach to modelling internal conflict, 

this is a novel view and the only view that allows internal conflict to be properly 

modelled by the IPD when including these brain regions in the interpretation. Other work 
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that also used the IPD to model internal conflict (Banfield, 2006; Rachlin, 2000), 

regarded that each agent should comprise either of the two brain regions, which is 

problematic as it suggests that the limbic system should consider long term rewards. In 

order to model internal conflict with the IPD it is required that both agents should 

consider long term and immediate rewards, therefore each agent should have access to 

both of these brain regions. 

Moreover, we regard that computational model is highly applicable to many real 

life situations due to the particular form of internal conflict that implements. We did not 

simply model internal conflict in the general context of intertemporal choice, even though 

it is highly present in our work since the agents are required to choose between long term 

superior rewards which are attained through self-control behaviour and immediate but 

smaller, in the long-run, rewards. In addition to the general context of intertemporal 

choice, our computational system models a particular form of internal conflict which 

resides in situations where a number of options can be evaluated along different 

dimensions of evaluation (as in the student’s example in Section 2.2). This particular 

form of internal conflict is quite common, experienced by all people in their everyday life 

as people are asked to decide between available options that can be evaluated along 

divergent criteria, rather than between immediate and long term payoffs as such. Of 

course some people could consciously decide on the options by considering long term 

versus immediate payoffs and this makes our model even more relevant. In general, our 

model is applicable to an unlimited number of real life situations because this particular 

game theoretical view of internal conflict models every situation of internal conflict as 

long as there are two dimensions of evaluation that induce different preference orderings 

(again as in the student’s example in Section 2.2). Moreover, the validity of the results 
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obtained by the model does not rely on the actual existence of internal subagents. Even if 

real subagents do not exist, thinking about and simulating internal value conflicts (in such 

evaluation-subordering situations) as if they were represented by rational subagents, can 

help us understand the dynamics and the variables that determine how these internal value 

conflicts are resolved. As Kavka (1991) put it “I do not claim that we are in fact 

composed of multiple distinct selves, each of which forms an integrated unit over time 

and has different dispositions or values from the other selves of the same individual. But I 

do think we can learn something about the structure and significance of internal value 

conflicts by treating different value-dimensions as represented by distinct rational 

subagents.” Overall, for all the reasons given above as well as for the results presented in 

this thesis and overviewed below (Section 6.2), we believe that the most valuable 

contribution of this thesis work is the computational model itself.    

 

6.2 Overview of Results Obtained by the Computational Model of Internal Conflict 

What follows is an overview of the results obtained by the computational model of 

internal conflict which was developed in the course of this thesis work.  

Overall, results obtained in Chapter 4 by both implemented algorithms, 

reinforcement of stochastic synaptic transmission (Seung, 2003) and reward-modulated 

STDP with eligibility trace (Florian, 2007), show that self-control behaviour can be 

learned. The system learned to establish a strong self-controlled behaviour, reflected by a 

strong CC outcome which was consistently and persistently obtained during the IPD. The 

simulated internal agents achieved through learning to postpone immediate gratification 

in favour of a superior outcome in the long run. Learning effectively regulated the 

activation of the output units such that to produce the self-control outcome. 
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Our computational results support the analytical work of Livnat and Pippenger 

(2006), which proposed that an optimal brain can be composed of “selfish” conflicting 

agents. This is the case, because the competing subagents in our system managed to learn 

to adopt the optimum strategy for themselves and the collective, maximising thus returns 

for the brain. Therefore our results further suggest that self-control behaviour is a learned 

maximising strategy employed by an optimal brain in the presence of conflicting value 

systems. 

In addition, results showed that recurrent experience helped the system to learn 

self-control behaviour through correct associations between the available actions and the 

outcomes in terms of gains in reward both in the short term and in the long run. Note that 

the difficulty in learning such associations in our system as in real life, lies in the fact that 

the same action may result in opposite outcomes. Moreover, recurrent experience allowed 

the system to acquire an appreciation of the accumulated reward, which was obtained by 

exercising self-control behaviour consistently. Appreciation in our system is enabled by 

learning through the consistent administration of positive reinforcement signals and is 

reflected by the activation of the specific output units such as to enable persistent self-

control behaviour. Therefore, in addition to experimental findings that showed a greater 

fronto-parietal activity in subjects who chose long-term rewards in intertemporal choice 

tasks (e.g., McClure et al., 2004), our results suggest that people who consistently and 

efficiently practise self-control in their everyday lives should have a greater respective 

neural activity induced by the appreciation towards the overall accumulated reward 

resulted from consistent practice of self-control behaviour.        

 Simulations revealed that the reward-correlated memory of the competing agents, 

facilitated by the variable of eligibility trace and its time constant, is also important in the 
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process of learning self-control behaviour since the memory is employed by the agents in 

choosing their actions such as to maximise their individual reward. Agents with stronger 

memory induced the best performance to the system since they learned to cooperate fast 

and therefore the system exhibited self-control behaviour quite early in the learning 

process. Agents with very low memory were not always able to learn how to cooperate 

and in the cases they did, it took longer. In addition, such agents demonstrated high 

percentages of mutual defection. Finally, in the simulation where one agent had strong 

memory and the other had weak, the performance of the system was somewhere in 

between. In addition the short-memory agent exploited the strong-memory agent by 

unilateral defection until the latter also changed its strategy to defection. Therefore, the 

short-memory agent accumulated a higher total individual payoff by pursuing in a myopic 

manner immediate gratification through the Temptation payoff. If we accept that some 

internal subagents are more myopic than others (distinguished by the time they usually 

wait in order to collect the rewards), then these results suggest that myopic subagents 

(e.g., satisfy-hunger or taste agent) are more likely to exploit subagents that are less 

myopic and are willing to compromise (e.g., physical fitness agent). This might provide a 

psychological plausible picture for example of why we sometimes excess on sweets while 

dieting does not begin on Mondays. 

Overall, results with respect to the effect of the eligibility trace time constant 

showed that strong reward-directed memory is important for the attainment of self-control 

behaviour. As in our computational model, this kind of memory might not concern the 

actual actions performed by the individual, but be implicitly present in the organism for 

optimisation purposes. However its reward-driven nature enables maximisation by the Aris
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individual through the performed actions as if the individual had an explicit memory on 

these actions.  

In Chapter 5, simulations revealed that learning and recurrent experience are not 

sufficient for the attainment of self-control behaviour when internal conflict is intense. 

While the gain from obtaining maximum immediate gratification (Temptation payoff), 

and the loss from obtaining the least immediate gratification (Sucker’s payoff) were 

getting higher, and therefore intensifying the conflict, the cooperative outcome was 

getting lower. In contrast, mutual defection was getting higher. The respective payoff 

structure promoted mutual defection whether only one of the agents had this particular 

payoff structure, or both. There was no significant difference in the cooperative outcome 

between the two cases. The difference was only in the percentage of mutual defection, 

which was higher in case where both agents had the respective structure. In cases where 

only one agent had this particular structure, results reveal increased percentages of 

unilateral defection from the same agent. In all cases, a relatively low immediate self-

control outcome (CC) restricted the agents from building a quick appreciation for the 

long-term accumulated payoff obtained from steady mutual cooperation and thus made 

the possibility of mutual cooperation even harder to achieve.  

These payoff structures characterise situations of internal conflict where, as shown 

by the simulations, self-control behaviour is very hard to achieve. More specifically, in 

cases where the structure of internal values along a given value-dimension is such that the 

most preferred present outcome yields much more than the present self-control outcome 

(e.g., smoking as opposed to not smoking for a single day) then it is very hard to resist the 

most preferred outcome for the sake of a long term reward. In that case it is likely that the 

most preferred outcome will be chosen and probably be collected (shown by increased 
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unilateral defection). On the other hand, if such a value structure exists in both 

dimensions of evaluation, then the outcome will probably not satisfy any of the two 

dimensions of evaluation as the individual will end up with a suboptimal outcome (shown 

by the increased mutual defection). The simulations help us understand the dynamics that 

influence the resolution of internal conflicts and can be used so as to avoid engaging 

ourselves in such situations where self-control is hard to achieve. 

In a particular, in a simulation of intense conflict, the computational system 

exhibited sensitization similar to the one induced on the real biological neural system by 

addictive substances, in the sense that it persisted in choosing a respective action even 

after the “likeness” about the respective outcome changed. 

Finally, the last simulation of Chapter 5 supports to the theory that perceives self-

control strength as a muscle that can be exercised (Muraven et al., 1999). 
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6.3 Contributions 

The presented thesis work contributed both to the problem of understanding internal 

conflict and self-control behaviour as well as to the more general area of spiking neural 

networks and reinforcement learning. We present below a list of the contributions 

resulted from this work. 

• The computational model of internal conflict: for its novelty and applicability as well 

for behaving consistently in a game theoretical framework. A version of the 

computational model appeared in Christodoulou et al. (2010) as well as in Cleanthous 

and Christodoulou (2010, 2009a, 2009b). 

• The results obtained by the system as presented in Section 6.2. Particular 

contributions as extracted from the respective results are:  

o Self-control behaviour can be learned. 

o Strong reward-directed memory is important for the attainment of self-control 

behaviour. 

o Learning and recurrent experience is not sufficient for the attainment of self-

control behaviour when internal conflict is intense. 

o The research identified several internal value structures that promote or hinder 

the attainment of self-control behaviour. 

o The study confirms through computational modelling that an optimal brain can 

be composed of conflicting “selfish” agents, as suggested in a relevant 

theoretical study (Livnat and Pippenger, 2006), since the artificial neuronal 

system implemented the optimum in a strategic interaction of “selfish” agents. 

Results further show that self-control behaviour is a learned maximising Aris
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strategy employed by an optimal brain in the presence of conflicting value 

systems. 

o Results support to the theory that perceives self-control strength as a muscle 

that can be exercised (Muraven et al., 1999). 

Some of these results have been published in Christodoulou et al. (2010), Cleanthous 

and Christodoulou (2010, 2009a, 2009b). 

• To the best of our knowledge, the current thesis work applies for the first time spiking 

neural agents combined with biological plausible reinforcement learning in a highly 

demanding multiagent task. In particular, it evaluates the effectiveness of reward 

modulated STDP and reinforcement of stochastic synaptic transmission in the 

general-sum game of the IPD. Results showed that both investigated learning 

algorithms exhibited ‘sophisticated intelligence’ in a non-trivial task. The spiking 

agents showed a capacity for playing the game along the lines of game theory in a 

way that resembles the behaviour of real players. During most simulations, the 

networks managed to adapt to the challenges of the game and make decisions 

according to the other player’s decisions in order to maximise their accumulated 

payoff. Most importantly, they “displayed intelligence” because when the game flow 

allowed for the Pareto optimum solution to be reached they “took advantage of the 

possibility” and settled to the solution by choosing cooperation for the rest of the 

game. These results have been accepted for publication (Vassiliades et al., 2010). 

• In general, from our experiments in both studied tasks, the XOR and the IPD, findings 

suggest that the increased firing irregularity at high rates, which results from the 

introduction of the partial somatic reset mechanism at every LIF neuron of the spiking Aris
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neural networks, enhances learning. Results showed increased suppression of the 

output firing rate for input pattern {1, 1} in relation to the output firing rates for input 

patterns {0, 1} or {1, 0} in the XOR problem and the resulting accumulation of higher 

cooperative reward in the IPD task. More specifically, this high firing irregularity at 

high rates enhances reward-modulated STDP with eligibility trace. We believe that 

this is due to more accurate correlations between pre-synaptic and postsynaptic spike 

timings and reinforcement signals. If firing is regular, then it is possible for two 

identical spike pairs to be associated with opposite in sign reinforcement signals, 

confusing thus the direction of the plasticity for a given synapse. High firing 

irregularity prevents this unnecessary competition by weakening this possibility and 

thus preventing a possible corruption of the learning algorithm. Given this 

justification, then the result should not apply exclusively for the learning algorithm 

implemented in this thesis (Florian, 2007) work but also to other variants of reward-

modulated STDP like in Izhikevich (2007), Faries and Fairhall (2007) and Legenstein, 

Pecevski and Maass (2008). These results have been accepted for publication 

(Christodoulou and Cleanthous, 2010a; 2010b). 

• The current work extended the reinforcement learning algorithms with additional, 

opposite in sign global reinforcement signals that were concurrently administered 

along with the signals prescribed by the original algorithms. The administration of 

additional global reinforcement signals, which increased competition at the neuronal 

and synaptic level, proved both novel and necessary for the high performance of the 

algorithms. These results have been accepted for publication (Vassiliades et al., 2010). Aris
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• The successful application of the learning algorithms to the IPD required high values 

of eligibility trace time constants for both networks. It follows that the extent to which 

the reinforcement applies to events happened in the past, determines the success of the 

learning algorithms. Results showed that reinforcement should apply to events over a 

longer period of time as that agents with a “stronger memory” configuration achieved 

the best cooperative result, indicating the importance of reward-directed memory in 

effective MARL. These results have been accepted for publication (Vassiliades et al., 

2010). 

 

6.4 Future Work 

The current research thesis aimed at providing some further understanding on the 

perplexing and highly complex behaviour of self-control and internal conflict through an 

abstract but at the same time biologically and psychologically relevant computational 

model of internal conflict. We believe that we contributed in the right direction given the 

aim of the thesis. However, several aspects concerning both internal conflict and the 

associated self-control behaviour need further investigation, explanation and 

understanding. We are confident that the present computational model can be a starting 

point for the development of a more sophisticated computational system that will 

integrate further knowledge from the related scientific areas such that to implement the 

problem in a more biologically and psychologically realistic way. 

 More specifically, an important upgrade to the system will be achieved when 

emotions are integrated into the decision process. In the current thesis emotions are 

implicitly involved by regarding that the values of the outcomes, as summarized by the 

payoff matrix of the game, are shaped partly because of the emotional states they elicit. A 
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real challenge is to investigate in more detail how exactly emotions are involved in the 

process of shaping these values and how they can affect the overall outcome of the 

conflict. In addition, integration of emotions could be achieved through extra signals that 

disturb the overall structure of the value systems during an ongoing simulation and thus 

enhance the dynamic elements of the system. A theory that might be considered for 

implementing is the somatic markers hypothesis (Damasio, 1996). According to the 

theory, when an individual faces a decision, each alternative elicits a bodily state – a 

somatic marker – that corresponds to an emotional reaction. These reactions are believed 

to influence decision-making even in the absence of conscious reasoning. For example, 

the somatic markers could be implemented in our system as an additional feedback that 

can differentiate the payoff matrix. 

 An equally important update will be obtained when additional structural and 

functional neurobiological realism is integrated into the system. At this stage, the most 

valuable enhancement would be a detailed incorporation of the signals to and from the 

simulated brain areas such that a more biologically realistic interplay between them is 

implemented. 

 As far as the existing computational model is concerned, more insight into the 

operation will be achieved by investigating the role of excitation and inhibition as well as 

their routes of action in the system, which leads to the observed behaviour. In addition, as 

suggested by one of the examiners, if one assumed immediate learning, it turns out that 

the system under our non-conventional training scheme behaves like a state machine, 

moving from state to state, e.g., CD or DC -> DD -> CC with CC as a stable fixed point. 

This interesting point should be further explored. Moreover, more experiments should be 

conducted using variable payoff matrices as well as it would be interesting to see whether 
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high firing irregularity enhances learning in other than STDP related learning algorithms 

such as in Seung’s reinforcement of stochastic synaptic transmission (Seung, 2003).  

 Furthermore, the relation between self-control behaviour and subjective 

experience (or “consciousness’’) could be investigated. According to Morsella et al. 

(2009) conflicts involving delay of gratification (Mischel et al., 1989), a self-control 

problem, lead to systematic changes in subjective experience. If we attempt to interpret 

our results though the theory developed by Morsella et al. (2009), then we could ask 

whether learning self-control behaviour has any impact on the perturbations in 

consciousness. In particular, one may wonder whether the transition from weak to strong 

self-control behaviour through learning could indicate a transition in the level 

consciousness. Our preliminary ideas on this issue have been presented in a conference 

(Christodoulou and Cleanthous, 2009). 
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