
INTERACTIVE DIFFUSE GLOBAL ILLUMINATION DISCRETIZATION METHODS

FOR DYNAMIC ENVIRONMENTS

Athanasios Gaitatzes

University of Cyprus, 2012

Global illumination still finds limited use in interactive applications due to the overwhelming

computational cost of solving for the transport of light in dynamic scenes, which is normally es-

timated in graphics through the Rendering equation. The solutions proposed in this dissertation

are based on approximations that concentrate on discretization methods of the problem domain.

First we considered the creation of a discretized representation of the visibility function around an

object, as the exact visibility computation is expensive to compute in real-time. Then we exam-

ined the creation of a discretized representation of the incoming light in order to estimate diffuse

interactions from multiple light bounces. Finally, we investigated the creation of a discretized

representation of the scene geometry and use it for accelerating the above process.

For accelerating the visibility computation of the lighting equation in dynamic scenes com-

posed of rigid objects, we pre-computed the visibility as seen from the environment, onto the

bounding sphere surrounding the object and encoded it into maps. The visibility function is en-

coded by a four-dimensional visibility field that describes the distance of the object in each direc-

tion for all positional samples on a sphere around the object. Thus, we are able to speed up the

calculation of most algorithms that trace visibility rays to real-time frame rates.

In order to estimate the diffuse interactions of light in dynamic environments we examined the

creation of a discretized representation of the incoming light. We used a Virtual Point Light illu-

mination model, representing indirect lighting as direct illumination from a cloud of point lights,

Atha
na

sio
s G

ait
atz

es

Athanasios Gaitatzes––University of Cyprus, 2012

on the volume representation of a complex scene. Unlike other dynamic VPL-based real-time ap-

proaches, our method handles occlusion (shadowing and masking) caused by the interference of

geometry and is able to estimate diffuse inter-reflections from multiple light bounces in addition

to energy from emissive materials.

As the bottleneck of the VPL-based approach was the volume generation of the scene, we

investigated the discretization of the geometry of dynamic environments. We developed two real-

time surface voxelization algorithms and a volume data caching structure, the Volume Buffer,

which encapsulates functionality, storage and access similar to a frame buffer object, but for three-

dimensional scalar data. The Volume Buffer can accumulate up to 1024 bits of arbitrary data per

voxel, as required by the specific application. The efficient voxelization algorithm enables the

fast generation of arbitrary scalar volume data attributes and is easy to integrate into existing

frameworks, thus being able to produce illumination from multiple light bounces.

Additionally, we introduced the concept of Incremental Voxelization for the multi-valued,

scalar volume rasterization of fully dynamic scenes. Where current image-based voxelization

algorithms repeatedly regenerate the volume using the deferred geometry image buffers of a sin-

gle frame, we incrementally update the existing voxels and therefore, produce a more complete

voxelization of the scene, offering improved quality and stability at a small overhead.

Atha
na

sio
s G

ait
atz

es

INTERACTIVE DIFFUSE GLOBAL ILLUMINATION DISCRETIZATION METHODS

FOR DYNAMIC ENVIRONMENTS

Athanasios Gaitatzes

M.S. Computer Science, Purdue University, 1991

B.S., Computer Science, Purdue University, 1989

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the

University of Cyprus

Recommended for Acceptance

by the Department of Computer Science

August, 2012Atha
na

sio
s G

ait
atz

es

c⃝ Copyright by

Athanasios Gaitatzes

All Rights Reserved

2012

Atha
na

sio
s G

ait
atz

es

APPROVAL PAGE

Doctor of Philosophy Dissertation

INTERACTIVE DIFFUSE GLOBAL ILLUMINATION DISCRETIZATION METHODS

FOR DYNAMIC ENVIRONMENTS

Presented by

Athanasios Gaitatzes

Research Supervisor
Dr. Yiorgos Chrysanthou

Committee Member
Dr. Constantinos Pattichis

Committee Member
Dr. Pedro Trancoso

Committee Member
Dr. Andreas Lanitis

Committee Member
Dr. Celine Loscos

University of Cyprus

August, 2012

iii

Atha
na

sio
s G

ait
atz

es

DEDICATION

On September 22nd 2009 at 4:40 in the morning, a girl and a boy came into this world pre-

maturely at 28 weeks and 2 days. They weighed only about 1200gr each. From their first mo-

ments they were struggling to survive in the neonatal intensive care unit of the hospital ''Mother''

at Amarousio of Attica Greece, under the supervision of an excellent team of doctors. My wife

Zografia and I, decided to name our beautiful girl Eustratia-Angela, after her grandfather and our

little boy George-Angelos, after his grandfather and grandmother.

I would like to dedicate this research to my daughter Eustratia-Angela.

I wish I had the opportunity to get to know her.

Little boy George-Angelos remained in the neonatal intensive care unit until the 21st of De-

cember. He is now about 30 months old and in very good health.

iv

Atha
na

sio
s G

ait
atz

es

ΑΦΙΕΡΩΣΗ

Στις 22 Σεπτεμβρίου 2009 στις 4:40 το πρωί, ένα κοριτσάκι και ένα αγοράκι γεννήθηκαν

πρόωρα στις 28 εβδομάδες και 2 ημέρες. Ζύγιζαν μόνο 1200γρ. το καθένα. Από την πρώτη

στιγμή που γεννήθηκαν, αγωνίζονται να επιβιώσουν στη μονάδα εντατικής θεραπείας νεογνών

του νοσοκομείου ''Μητέρα'' στο Αμαρούσιο Αττικής υπό την επίβλεψη μιας εξαιρετικής ομάδας

γιατρών. Η γυναίκα μου Ζωγραφιά και εγώ, αποφασίσαμε να ονομάσουμε το όμορφο κοριτσάκι

μας Ευστρατία-Αγγέλα, όπως λένε τον παππού της και το αγοράκι μας Γιώργο-Άγγελο, όπως λένε

τον παππού και τη γιαγιά του.

Θα ήθελα να αφιερώσω αυτή την έρευνα στην κόρη μου Ευστρατία-Αγγέλα.

Θα ήθελα να είχα την ευκαιρία να την γνωρίσω.

Ο μικρός Γιώργος-Άγγελος παρέμεινε στην μονάδα εντατικής θεραπείας νεογνών μέχρι την

21η Δεκεμβρίου. Είναι τώρα περίπου 30 μηνών και χαίρει άκρας υγείας.

v

Atha
na

sio
s G

ait
atz

es

ACKNOWLEDGEMENTS

I would like to thank everyone who has helped and supported me throughout my Ph.D. expe-

rience.

First, I would like to express my sincere appreciation to my dissertation supervisor, Profes-

sor Yiorgos Chrysanthou. I am very grateful for his continuous and inspiring guidance during

my studies. His valuable comments, suggestions and continuous encouragement were key to the

successful completion of this dissertation.

Furthermore, I would like to express my gratitude to Professor Georgios Papaioannou for

increasing my passion for this field and for his exhilarating conversations and help whenever I

needed it.

I would also like to thank my other co-authors Andreadis Anthousis and Pavlos Mavridis for

their insightful conversations.

Finally and most importantly, I wish to express my gratitude to my family and specially my

wife Zografia, for her unwavering support, patience and understanding throughout the years of

this dissertation.

vi

Atha
na

sio
s G

ait
atz

es

CREDITS

The work presented in this dissertation appeared or has been submitted in the following jour-

nals, conferences and books:

Journals

• Gaitatzes A., Chrysanthou Y., Papaioannou G.: “Presampled Visibility for Ambient Occlu-

sion”. In Journal of WSCG (2008).

http://wscg.zcu.cz/WSCG2008/Papers 2008/journal/B07-full.pdf

• Gaitatzes A., Papaioannou G., Chrysanthou Y.: “Incremental Image-based Voxelization for

Real-time Indirect Illumination”, Submitted for publication.

Book Chapters

• Gaitatzes A., Papaioannou G.: “Progressive Screen-space Multi-channel Surface Voxeliza-

tion”, In Wolfgang Engel (ed.) GPU Pro 4: Advanced Rendering Techniques, AK Peters /

CRC Press. (2013).

http://www.crcpress.com/product/isbn/9781466567436

International conferences

• Papaioannou G., Gaitatzes A., Christopoulos D.: “Efficient Occlusion Culling using Solid

Occluders”. In Proc. of the 14-th International Conference in Central Europe on Computer

Graphics, Visualization and Computer Vision, (WSCG) (2006).

http://wscg.zcu.cz/WSCG2006/Papers 2006/full/G79-full.pdf

vii

Atha
na

sio
s G

ait
atz

es

http://wscg.zcu.cz/WSCG2008/Papers_2008/journal/B07-full.pdf
http://www.crcpress.com/product/isbn/9781466567436
http://wscg.zcu.cz/WSCG2006/Papers_2006/full/G79-full.pdf

• Koniaris C., Gaitatzes A., Papaioannou G.: “An Automated Modeling Method for Multiple

Levels of Real-Time Trees”. In Proc. of the First International IEEE Conference in Seri-

ous Games and Virtual Worlds, (VS GAMES) (2009). http://www.computer.org/

portal/web/csdl/doi/10.1109/VS-GAMES.2009.15

• Gaitatzes A., Andreadis A., Papaioannou G., Chrysanthou Y.: “Fast Approximate Visibility

on the GPU using pre-computed 4D Visibility Fields”. In Proc. of the 18-th International

Conference in Central Europe on Computer Graphics, Visualization and Computer Vision,

(WSCG) (2010). http://graphics.cs.aueb.gr/graphics/docs/papers/

aowscg2010.pdf

• Gaitatzes A., Mavridis P., Papaioannou G.: “Interactive Volume-based Indirect Illumination

of Dynamic Scenes”. In Proc. of the 13-th International Conference on Computer Graphics

and Artificial Intelligence, (3IA) (2010).

Also in Plemenos D., Miaoulis G. (eds.) Intelligent Computer Graphics, Studies in Compu-

tational Intelligence, 2010, vol. 321, pp. 229–245. Springer Berlin / Heidelberg.

http://www.springerlink.com/content/e763tt336vh10852/

• Mavridis P., Gaitatzes A., Papaioannou G.: “Volume-based Diffuse Global Illumination”.

In Proc. of the 2010 International Conference on Computer Graphics, Visualization, Com-

puter Vision and Image Processing, (CGVCVIP) (2010). http://www.iadisportal.

org/digital-library/volume-based-diffuse-global-illumination

• Gaitatzes A., Mavridis P., Papaioannou G.: “Two Simple Single-pass GPU methods for

Multi-channel Surface Voxelization of Dynamic Scenes”. In Proc. of the 19-th Pacific Con-

ference on Computer Graphics and Applications - Short Papers, pp. 31–36, (PG) (2011).

http://diglib.eg.org/EG/DL/PE/PG/PG2011short/031-036.pdf

viii

Atha
na

sio
s G

ait
atz

es

http://www.computer.org/portal/web/csdl/doi/10.1109/VS-GAMES.2009.15
http://www.computer.org/portal/web/csdl/doi/10.1109/VS-GAMES.2009.15
http://graphics.cs.aueb.gr/graphics/docs/papers/aowscg2010.pdf
http://graphics.cs.aueb.gr/graphics/docs/papers/aowscg2010.pdf
http://www.springerlink.com/content/e763tt336vh10852/
http://www.iadisportal.org/digital-library/volume-based-diffuse-global-illumination
http://www.iadisportal.org/digital-library/volume-based-diffuse-global-illumination
http://diglib.eg.org/EG/DL/PE/PG/PG2011short/031-036.pdf

TABLE OF CONTENTS

List of Tables xiv

List of Algorithms xvi

List of Figures xvii

Chapter 1: Introduction 1

1.1 Motivation . 1

1.2 Scope . 3

1.3 Contributions . 4

1.4 Organization . 7

Part I Background and Related Work 11

Chapter 2: Theoretical Background 13

2.1 The Physics of Light Transport . 14

2.2 Basic radiometric quantities . 16

2.3 Bidirectional Reflectance Distribution Function 20

2.4 The Rendering Equation . 21

2.5 Programmable Hardware Evolution . 23

2.5.1 Vertex Processing Unit . 24

2.5.2 Pixel Processing Unit . 27

2.5.3 Geometry Processing Unit . 28

2.6 Deferred Shading . 28

ix

Atha
na

sio
s G

ait
atz

es

Chapter 3: Related Work 31

3.1 Methods that use Pre-computations . 32

3.1.1 Lightmaps . 32

3.1.2 Precomputed Radiance Transfer . 33

3.2 Methods that Simplify the Lighting Equation 34

3.2.1 Ambient Occlusion . 34

3.2.1.1 Ambient Occlusion on the GPU - Screen Space AO 36

3.2.1.2 Field Computations around an Object 38

3.3 Methods that Discretize the Scene Geometry . 38

3.3.1 Radiosity . 39

3.3.2 Voxelization . 40

3.3.2.1 Geometry-based Surface Voxelization 41

3.3.2.2 Image-based Surface Voxelization . 42

3.4 Methods that Discretize the Light Representation 43

3.5 Brute Force Methods . 48

3.5.1 Ray-Tracing . 48

3.5.2 Real-time Ray-Tracing on the GPU . 50

Part II Discretization of Visibility – Ambient Occlusion and

Secondary Light Bounces 53

Chapter 4: Fast approximate Visibility using pre-computed 4D Visibility Fields 55

4.1 Motivation . 55

4.2 Overview . 55

4.3 Introduction . 56

x

Atha
na

sio
s G

ait
atz

es

4.4 Overview of the Visibility Fields . 59

4.4.1 Visibility Field Computation . 60

4.4.2 Visibility Field Indexing . 62

4.4.3 Selecting Samples around the Object . 63

4.4.4 Sampling a Hemisphere of Directions 63

4.5 Visibility Fields on the GPU . 65

4.5.1 Ambient Occlusion . 65

4.5.2 Ray tracing . 66

4.6 Implementation & Evaluation on the CPU . 67

4.6.1 Ambient Occlusion . 67

4.6.1.1 Storage and Error Considerations . 67

4.6.1.2 Using the 8-bit maps . 68

4.6.1.3 Further Memory Optimization . 69

4.7 Implementation & Evaluation on the GPU . 71

4.7.1 Ambient Occlusion . 72

4.7.2 Ray tracing . 77

4.8 Limitations . 82

4.9 Summary . 83

Part III Discretization of Illumination – Virtual Point Light Methods 85

Chapter 5: Interactive Volume-based Indirect Illumination of Dynamic Scenes 87

5.1 Motivation . 87

5.2 Overview . 87

5.3 Introduction . 88

xi

Atha
na

sio
s G

ait
atz

es

5.4 Mathematical Background . 89

5.4.1 Review of Spherical Harmonics . 89

5.4.2 Radiance Transfer . 90

5.5 Method Overview . 91

5.5.1 Real-Time Voxelization . 94

5.5.2 Iterative Radiance Distribution . 96

5.5.3 Final Illumination Reconstruction . 97

5.6 Implementation & Evaluation . 99

5.7 Discussion . 104

5.8 Summary . 105

Part IV Discretization of Geometry – Voxelization Methods 107

Chapter 6: Two Simple Single-pass GPU methods for Multi-channel

Surface Voxelization of Dynamic Scenes 109

6.1 Motivation . 109

6.2 Overview . 109

6.3 Introduction . 110

6.4 Overview of Voxelization methods . 112

6.4.1 Geometry Shader Triangle Slicing . 113

6.4.2 Pixel Shader Fragment Clipping . 115

6.5 Implementation . 117

6.6 Performance & Evaluation . 120

6.7 Discussion . 126

6.8 Summary . 128

xii

Atha
na

sio
s G

ait
atz

es

Chapter 7: Incremental Image-based Multi-valued Voxelization for

Global Illumination 131

7.1 Motivation . 131

7.2 Overview . 131

7.3 Introduction . 132

7.4 Overview of Voxelization method . 137

7.4.1 Clean-up phase . 139

7.4.2 Injection phase . 142

7.4.3 Single-pass Incremental algorithm . 142

7.5 Incremental Voxelization for Lighting . 144

7.6 Implementation . 145

7.7 Performance & Evaluation . 146

7.8 Optimizations . 155

7.9 Limitations . 155

7.10 Discussion & Summary . 157

Chapter 8: Conclusion 159

8.1 Summary of Contributions . 159

8.2 Thoughts about Future Work . 162

Bibliography 165

Author Index 175

xiii

Atha
na

sio
s G

ait
atz

es

LIST OF TABLES

1 The visibility fields algorithm applied to several different types of models and their

respective CPU timings (using machine type 1). In the above images we used 256

sample rays with a concentric map sampling distribution. The ambient occlusion

computation is done using the 4226 / 32x32 maps. 71

2 Time measurements of our test scenes in milliseconds. Only the voxelization and

propagation times are relevant to our work. The total rendering time includes the

direct lighting computation and other effects and is given as a reference. Note that

higher grid sizes are prohibitive using the current hardware. 100

3 Running time (in ms) for the construction of a half-float (16bit) single channel

Occupancy Volume buffer for the two surface voxelization methods, based on the

number of vertices that the geometry shader outputs. The third column gives the

actual grid sizes as tight volume grids are generated dynamically. The last column

reports the number of the resulting voxels. 121

4 Comparison of the running time (in ms) for the bunny model for a floating (32bit)

four channel buffer and different sizes of multiple render targets (MRTs). 124

5 Comparison of the running time (in ms) and number of voxels produced by differ-

ent approaches. 125

6 Comparison of the running time on various types of hardware of the bunny model

at 1283 resolution. 126

7 Comparison of the running time for 16- and 32-bit floating point buffers and 15

geometry shader vertices output. 127

xiv

Atha
na

sio
s G

ait
atz

es

8 Voxelization timings (in ms) of various scenes and methods. VP stands for Vox-

elPipe and GS is the Geometry Slicing method of Gaitatzes et al. with 11 output

vertices. IV stands for Incremental Voxelization. We present the total (injection +

cleanup) performance values of our 2D textures implementation using an injection

grid proportional to the volume size, which is our algorithm’s worst case as can be

seen from the red plot of Figure 73. 152

9 Comparison of a full voxelization. We record the normalized (with respect to the

mesh bounding box diagonal) average Hausdorff distance (percent). Mesh X is

the original mesh to be voxelized and Y is the point cloud consisting of the voxel

centers of the voxelization using IV (column 3) and a geometry-based full scene

voxelization (column 4). 153

xv

Atha
na

sio
s G

ait
atz

es

LIST OF ALGORITHMS

1 Pseudo-code for Visibility Fields computation at preprocessing time. 59

2 Pseudo-code for Ambient Occlusion rendering using Visibility Fields during real-

time processing. 60

3 Fragment shader pseudo-code for Ambient Occlusion rendering, using Visibility

Fields. 65

4 Pseudo-code for Scene Voxelization . 95

5 Geometry Shader used for triangle slicing (Z-Pass). (ECS: Eye Coordinate Space) . 116

6 Geometry and Pixel Shaders used for triangle rasterization (Z-Pass). (ECS: Eye

Coordinate Space, NDC: Normalized device Coordinates). 120

7 Incremental Voxelization pseudo-code using Camera G-buffers. 139

xvi

Atha
na

sio
s G

ait
atz

es

LIST OF FIGURES

1 Photograph of a scene exhibiting global illumination effects like multiple diffuse

and specular bounces, caustics and scattering. In this dissertation we are inter-

ested in simulating effectively diffuse illumination i.e. the green arrows. (Image

courtesy of Tobias Ritschel). 2

2 The visibility fields algorithm applied to several different types of models in order

to compute inter-ambient occlusion (1st & 2nd images) and intra-object ambient

occlusion rendered on the GPU (3rd & 4th images). 5

3 Final images with direct and indirect lighting. 6

4 Multi-valued voxelization of several models showing the albedo channel. 7

5 Side-by-side comparison of a single-frame image-based voxelization (left inset)

vs. incremental image-based voxelization (right inset). The curtains that are hid-

den behind the colonnade do not obstruct the light in the case of the single-frame

voxelization. 8

6 A series of voxelizations of the dragon model at 1283 resolution showing the nor-

mals channel. The voxelization is incrementally updated over several frames as

the camera moves around the model. 8

7 Visible spectrum . 14

8 Spectral sensitivity curves V (λ) and V ′(λ) for the human eye. 15

9 The radiant power Φ of a light source is given by its total emitted radiation. 16

10 Definition of solid angle . 17

11 Typical directional distribution of radiant intensity for an incandescent bulb. . . . 18

12 Definition of radiance . 19

xvii

Atha
na

sio
s G

ait
atz

es

13 Determining the intensity at a point on a surface. 20

14 The OpenGL R⃝ 1.0 graphics rendering pipeline; no programmable stages. 23

15 The OpenGL R⃝ 4.1 graphics rendering pipeline; the programmable stages are in

purple. 24

16 Images from demos showing the capabilities of the hardware which translates in

better image quality; courtesy of NVIDIA R⃝ . 25

17 NVIDIA GPU Shader Processors . 26

18 Peak GFLOPS Chart . 26

19 Memory Bandwidth Chart . 27

20 G-buffers used for Deferred Shading. 29

21 Light mapping example. 33

22 An object under area lighting, without self-shadowing and with self-shadowing 33

23 Ambient occlusion example courtesy of Morgan McGuire. 35

24 Radiosity examples from Cornell University. 39

25 Photon mapping examples courtesy of Henrik Wann Jensen. 43

26 Ray-tracing example. 49

27 A hemisphere of rays emanating from the bounding sphere towards the object is

precomputed for a large number of sample points on the sphere. 57

28 Volume texture of a visibility field. Row by row each map is placed into a slice of

the volume texture thus minimizing the volume space requirements. As a result a

5123 volume will hold four 2562 maps per slice. 57

29 The distance from the surface to the object is split into distance d1 (i.e. surface

to object bounding-sphere ray intersection) and distance d2 (bounding-sphere to

object ray intersection, retrieved from the appropriate visibility map). 60

xviii

Atha
na

sio
s G

ait
atz

es

30 512x512 visibility maps of a model of a cow (top) and a cube with a hole in it

(bottom). Using uniform Sampling of rays (left), Rejection Sampling (middle),

Concentric Map Sampling (right). Different (θ, ϕ) to (s, t) mappings, produce

different visibility maps. 61

31 Diagram of visibility computation for intra-object occlusion. 62

32 Sampling a hemisphere of rays. (a) Polar Mapping of rays, (b) Rejection Sam-

pling, (c) Concentric Map Sampling. 64

33 4 bytes per ray for storage (left), 1 byte per ray for storage (right). There are no

obvious visible differences, when the visibility fields are used for ambient occlusion. 67

34 The image differences between the Reference image and the visibility map meth-

ods, show that using Concentric map sampling produces much better quality re-

sults as compared to Uniform sampling. Image differences are exaggerated by a

factor of 5. 69

35 Cumulative table using 256 sample rays from each vertex of the tessellated cor-

ner (3x33x33) with a concentric map sampling distribution. The numbers under

the images correspond to the preprocessing time, the run-time ambient occlusion

computation on the CPU in seconds (using machine type 2) and the RMS error

compared to the Reference image of Figure 34. 70

36 Using the 1 bit per direction optimization method with 4226 occlusion maps (po-

sitional samples) of size 64x64 and Concentric map sampling of 256 rays we get

results which are comparable with the corresponding image from Figure 35, giv-

ing an RMS error of 4.4030. 72

xix

Atha
na

sio
s G

ait
atz

es

37 Inter-object ambient occlusion (close-up) of a bunny model using the visibility

fields method with 256 rays per pixel implemented on the GPU. We report the

draw time and the RMS error. On the bottom right the reference image rendered

on the GPU using 256 rays per pixel in 7126 ms. The model itself is rendered

using fixed-pipeline direct rendering. 73

38 The draw time (left) and the RMS error (right) of the bunny model (39000 tris)

plotted against different rays/pixel versus the size of the visibility maps. We ob-

serve that the frame draw time is not dependant on the number of visibility maps

used or their size but rather on the amount of rays used. 74

39 The GPU visibility fields algorithm applied to several different types of models in

order to compute inter-ambient occlusion. We used 4226 64x64 visibility maps,

requiring 16.5 MB of space and 121 rays per pixel. The models themselves are

rendered using fixed-pipeline direct rendering. 75

40 Intra-object ambient occlusion rendered on the GPU using 16642 64x64 visibility

maps requiring 65 MB of space and 121 rays per pixel. 76

41 A scene of the Sponza Atrium with a bunny (38889 tris), a cow (92864 tris) and an

elephant (157160 tris) rendered in three passes (one per object) with the visibility

fields algorithm using 4226x64x64 maps and rendering in 2.5 frames per second. . 77

42 Close-up of the bunny ears rendered using the visibility fields method for the gen-

eration of soft shadows using 3 lights and 20 shadow ray samples on the GPU. We

report the required time, the RMS error and the total space requirements. 78

43 Reference image of the bunny, rendered using the BVH method with 3 lights and

256 rays per pixel taking 913,210 ms on the GPU. On the right, close-up of the ears. 79

xx

Atha
na

sio
s G

ait
atz

es

44 Soft shadow of the horse (96966 tris) using 1 light rendered using the visibility

fields and 20 shadow ray samples. In contrast the reference image, using the BVH

method and 256 shadow ray samples, on the CPU required 760012 ms and on the

GPU 322100 ms. 80

45 Close-up of a more complex scene using 3 point lights and 20 shadow ray samples

rendered in 3268 ms using the visibility fields method. The BVH GPU method for

sharp shadows takes 48047 ms. 81

46 Polished reflection of the bunny (39000 tris) using 4 rays per reflective pixel. From

left to right: close-up views of our visibility fields GPU method where we report

the draw time, the RMS error and the space requirements. Last is the reference

image using the BVH method and its draw time. 81

47 Polished reflection of an elephant (157160 tris) using 4 rays per reflective pixel.

From left to right: close-up views of our visibility fields GPU method where we

report the draw time, the RMS error and the space requirements. Last is the refer-

ence image using the BVH method and its draw time. 82

48 Inter-ambient occlusion of a cane (elongated object) rendered on the GPU using

121 rays per pixel. On the left using 4226 128x128 maps and on the right using

16642 128x128 maps. (The image brightness is doubled for clarity) 83

49 Several environments voxelized into a 643 grid. Column 1: a model of 10,220

triangles (Arena). Column 2: a model of 109,170 triangles (Knossos). Column 3:

the Sponza II Atrium of 135,320 triangles (cross section depicted). All buffers are

floating point and have values ∈ [-1,1]. As such when viewing the buffers some

black voxels may appear (see the normals map) indicating negative values. 93

xxi

Atha
na

sio
s G

ait
atz

es

50 Slice-based voxelization (left) and composition of the three sub-volume passes

into one voxelized volume (right). 95

51 Radiance Gathering Illustration (a). The radiance for the center voxel is gathered

from the values stored at the voxels of the surrounding cells. Radiance shooting

(b) in the radiance propagation procedure is equivalent to radiance gathering (c). . 97

52 Simplified example of the propagation and light reflection process. 98

53 Test scene solution. From left to right: reference solution computed with ray-

tracing (indirect illumination only), our solution (indirect illumination only) and

final image with direct and indirect lighting. 101

54 Room scene solution; (a) lit with Direct lighting only. (b) Radiosity with 64 it-

erations. (c) Direct and indirect illumination using our method. (d) The indirect

illumination using light propagation volumes [54]. (e) Reference radiosity using

2-bounce path tracing. (f) Reference final image using path tracing. 102

55 Sponza Atrium II scene solution. From left to right: direct lighting, indirect illu-

mination only and final image with direct and indirect lighting. 103

56 Arena scene solution. From left to right: direct only lighting, indirect illumination

using our method and final image with direct and indirect lighting. 103

57 Knossos scene solution. From left to right: direct lighting, radiosity using our

method and final image with direct and indirect lighting. 104

58 Axial voxelization pass (left) and composition of the three sub-volume passes into

one voxelized volume (right). 112

xxii

Atha
na

sio
s G

ait
atz

es

59 Voxelization of the Knossos model (109170 triangles) into a 1283 grid. The vol-

umes in the order that they appear are the occupancy volume, the albedo volume,

the normals volume and the lighting volume and the 2nd order spherical harmonics

volume of the direct illumination (R component). 114

60 Voxelization of the Sponza II model (219305 triangles) into a 1283 grid; cross

section depicted here. 114

61 Voxelization of the Dragon model (871414 triangles) into a 1283 grid. 115

62 Geometry shader triangle slicing. The incoming triangles are sliced into stripes

and each stripe is rasterized into the associated layer. (See Algorithm 5) 117

63 The six possible triangle strip configurations with respect to the volume grid. (See

Algorithm 5) . 118

64 Pixel shader clipping method. The Geometry shader rasterizes each triangle into

all the volume slices it intersects and the Pixel shader discards the fragments based

on their depth (See Algorithm 6). 119

65 Visual comparison of the geometry shader triangle slicing method and the pixel

shader clipping methods for the bunny model at 1283 volume resolution. Re-

sult with 11 output vertices. Gray voxels are common to both method variations.

Green voxels are only present in the geometry shader triangle slicing, while red

voxels are only generated by the pixel shader clipping. The total number of differ-

ent voxels amounts to 33 which is about 0.15% of variation. 123

66 Comparison of the voxelization using the pixel shader clipping method at 2563

volume resolution with 3, 6, 9 and 12 geometry shader vertices output. The num-

ber of voxels produced are 52382, 87690 and 89696 (complete voxelization) for

3, 6, 9 and above geometry shader output vertices, respectively. 124

xxiii

Atha
na

sio
s G

ait
atz

es

67 Top: Image-based voxelization after one step of the process having injected the

camera and light buffers. Middle: Voxelization of the scene after the camera has

moved for several frames. Bottom: Example of resulting global illumination. . . . 135

68 Incremental Voxelization (IV) of a scene. Red voxels correspond to image-based

voxelization using image buffers from the current frame only, while other colors

refer to voxels generated during previous frames using IV. Right: Volume-based

global illumination results using the corresponding volumes. IV achieves more

correct occlusion and stable lighting. 136

69 Schematic overview of the algorithm. During the cleanup phase each voxel is

tested against the available depth images. If the projected voxel center lies in front

of the recorded depth, it is cleared; otherwise it is retained. During the injection

phase, voxels are “turned-on” based on the RSM-buffers and the Camera-based

depth buffer. 138

70 Cleanup stage: Voxels beyond the boundary depth zone are retained (orange),

while voxels closer to the buffer center of projection are rejected (red). Voxels

that correspond to the depth value registered in the buffer must be updated (green). 141

71 Comparison of the voxelization of the Crytek Sponza II Atrium. (a), (b) Single

frame image-based voxelization from two distinct viewpoints where it is not pos-

sible to capture all environment details as no information exists in the buffers. (c)

Incremental Voxelization (IV) produced over several frames. (d) Complex illumi-

nation using IV. (e), (f) Indirect lighting buffers corresponding to the single frame

voxelization of (a) and (b). (g), (h) IV indirect lighting buffers (of the voxelization

in c). 147

xxiv

Atha
na

sio
s G

ait
atz

es

72 Image-based voxelization of a dynamic scene containing an articulated object us-

ing only camera-based injection. 148

73 Top: Running time (in ms) for the cleanup and injection stages against different

volume resolutions for the Crytek Sponza II Atrium model. We used a single

G-buffer (camera) as input and 1 MRT (4 floats) as output. Injection is measured

for three different grid sizes, one being proportional to the volume side. Bottom:

Total incremental voxelization times. Note that the performance of the optimized

Incremental Voxelization is identical to that of the cleanup stage. 150

74 Multi-channel voxelization performance for the Crytek Sponza II Atrium model,

using 1 MRT (emitting 4 floating point values) and 4 MRTs (emitting 16 floating

point values) in the GPU fragment shader stage. 151

75 A series of voxelizations of the dragon model at 1283 resolution showing the nor-

mal vectors. The voxelization is incrementally updated and improved over several

frames as the camera moves around the model. 154

76 The decreasing Hausdorff distance between the original dragon model and the

computed Incremental Voxelizations of Figure 75. 154

77 Correct indirect shadowing effects and color bleeding: Stale voxels from one view

(behind the tank) are effectively invalidated in other views (reflective shadow map). 156

78 Scene with dynamic geometry, highlighting the shadowing effects of the tank

model, as it moves towards the user, on the right wall of the tunnel. 156

79 Scene with dynamic lighting. Sequence of a side-by-side comparison of a single-

frame image-based voxelization (left images) vs. incremental image-based vox-

elization (right-images). The curtains that are hidden behind the colonnade do not

obstruct the light in the case of the single-frame voxelization. 158

xxv

Atha
na

sio
s G

ait
atz

es

80 Diagram indicating the correlation of the Discretization methods used in this dis-

sertation. The blue rectangles indicate the application domains. 160

xxvi

Atha
na

sio
s G

ait
atz

es

Chapter 1

Introduction

This research has been conducted in the context of computer graphics, in particular in the field

of realistic image synthesis. The goal of this research is to develop new algorithms that improve

the quality of the illumination in large and fully dynamic complex environments or accelerate the

expensive computation of existing algorithms, leading to as realistic illumination effects as possi-

ble in shorter computation time. The results of this work are applicable to real-time applications

in order to produce as realistic illumination effects as possible.

1.1 Motivation

One track of computer graphics research is interested in creating images of arbitrary environ-

ments so that they are indistinguishable from photographs (i.e. photo-realistic rendering). The

time required to generate one of these images is an important factor when we consider interactive

three-dimensional worlds that are rendered in real-time like video-games or virtual reality recon-

structions. The most involved part in this process is the simulation of light transport which adds

important cues in the perception of virtual environments and is very time consuming.

1

Atha
na

sio
s G

ait
atz

es

2

Figure 1: Photograph of a scene exhibiting global illumination effects like multiple diffuse and

specular bounces, caustics and scattering. In this dissertation we are interested in simulating

effectively diffuse illumination i.e. the green arrows. (Image courtesy of Tobias Ritschel).

Global Illumination is the light propagation through a 3D environment and its interaction

with all the scene geometry. In contrast to direct or local illumination where only one bounce of

light is considered, global illumination considers several bounces. Global illumination methods

in interactive applications are still of limited use due to the overwhelming computational cost of

the solution of the Rendering equation (see Equation 1). Although the equation is very general,

it does not capture every aspect of light reflection. Effects like phosphorescence (i.e. the light is

absorbed at one moment in time and emitted at a different time), fluorescence (i.e. the absorbed

and emitted light have different wavelengths), interference (i.e. interaction of light sources) and

subsurface scattering (i.e. the spatial locations for incoming and reflected light are different) can

not be handled. The simulation of global illumination is a very costly process, as the interaction

of light among all surfaces within a scene has to be taken into account several times, in order to

achieve an accurate computation of direct and indirect illumination. In this interaction of light and

Atha
na

sio
s G

ait
atz

es

3

geometry the key problem is computing the visibility or occlusion of one surface from another.

This is an expensive computation which we will try to accelerate using discretization approaches.

Soft shadows, color bleeding, caustics, refractions and all other phenomena related to the

interaction of light with the environment (see Figure 1) greatly enhance the visual perception of

a scene. Determining the combined effect for several types of light transport (i.e. direct and

indirect light, shadows and indirect shadows), has not been a real-time task so far. In addition

when the environment is dynamic i.e. when the objects or the light sources in the environment

are allowed to move, this task becomes even more difficult. Currently physically accurate global

illumination can not be recomputed at real-time frame rates. The development of new techniques

that accelerate the process of simulating global illumination effects can lead to higher realism in

real-time or interactive applications, which require high frame rates.

With the rapid development of graphics hardware, global illumination has become increasingly

attractive even for fully dynamic scenes. To this end we have developed a set of algorithms and

techniques for rendering global illumination effects using graphics hardware. These algorithms

not only result in real-time or interactive performance but also generate comparable quality to

previous works.

1.2 Scope

The main objective of this work is to research methods and techniques that accelerate global

illumination and produce visually plausible and realistic results for dynamic environments. The

main issues that have been identified with existing work can be classified into:

• Performance of real-time algorithms

• Size of data sets

• Amount of pre-processing time (if-any)

Atha
na

sio
s G

ait
atz

es

4

• Amount of extra storage (usually generated at pre-processing time) required during the ex-

ecution of the real-time algorithm

To address these issues, this research will focus primarily on discretization techniques and

how these can be further accelerated by the GPU in an attempt to improve and rectify problems

of previous methods though acknowledging the risk of introducing extra errors. We will deal pri-

marily with two genres of algorithms. First, we will look at geometry-based ambient occlusion

and ray tracing methods. Under this category we are interested in discretization methods that

accelerate the visibility function computation as it is one of the most expensive computation for

solving the rendering equation. Then, we will address volume-based global illumination methods

in an attempt to improve and rectify problems of previous methods. We will investigate discretiza-

tion techniques that provide multi-valued surface voxelization data by either using geometry- or

image-based voxelization, in order to accelerate arbitrarily complex illumination calculations such

as ambient occlusion and diffuse indirect illumination from multiple light bounces.

In this investigation we will consider environments, including articulated objects and de-

formable geometry, that can change arbitrarily and dynamically in each frame. We will consider

illumination that originates from a single point and spreads outward in all directions (point lights)

in addition to illumination that originates from a single point and spreads outward in a coned

direction (spot lights).

1.3 Contributions

In this research work we have made contributions in the following areas:

• Discretization of Visibility (i.e. Ambient Occlusion). The most expensive aspect in the com-

putation of ambient occlusion is the calculation of the visibility function which is also a problem

Atha
na

sio
s G

ait
atz

es

5

Figure 2: The visibility fields algorithm applied to several different types of models in order to

compute inter-ambient occlusion (1st & 2nd images) and intra-object ambient occlusion rendered

on the GPU (3rd & 4th images).

shared by other rendering methods. In order to accelerate the visibility function computation, we

proposed a pre-computation, for each object in the scene, of the visibility information, as seen

from the environment, onto the bounding sphere surrounding the object. The visibility function

was encoded by a four-dimensional visibility field that described the distance of the object in each

direction for all positional samples on a sphere around the object. Thus, we were able to speed up

the calculation of most algorithms that trace visibility rays to real-time frame rates. The method

has several advantages over the previous work. First the displacement maps are pre-calculated

faster and stored as grayscale textures. Then, during the real-time simulation the time to access the

displacement values is constant and in addition, the displacement maps contain information that

is transformation invariant. Finally the method can handle several different cases like intra-object

occlusion and inter-object occlusion but also shadow and reflection rays in the case of ray-tracing,

cases which previous work [63], [70] could not handle (see Figure 2).

• Discretization of Illumination (i.e. Volume-based Global Illumination). In order to synthesize

photo-realistic images we need to capture the complex interactions of light with the environment.

Light follows many different paths distributing energy among the object surfaces. We proposed a

Atha
na

sio
s G

ait
atz

es

6

Figure 3: Final images with direct and indirect lighting.

real-time algorithm to compute the global illumination of dynamic scenes with complex dynamic

illumination. We used a Virtual Point Light illumination model on the volume representation of the

scene over Light Propagation methods. The method has several advantages over previous work

[54]. It takes into account indirect occlusion (shadowing and masking) caused by the interfer-

ence of geometry and is able to estimate diffuse inter-reflections from multiple light bounces thus

producing more accurate illumination while always maintaining a high frame rate (see Figure 3).

• Discretization of Geometry (i.e. Voxelization). As an increasing number of rendering and ge-

ometry processing algorithms relies on volume data to calculate anything from effects like global

illumination or visibility information, a fast and efficient computation of this volume in real-time

is imperative. Voxelization was also one of the bottlenecks of the Light Propagation Volumes

method. We propose two real-time and simple-to-implement surface voxelization algorithms and

a volume data caching structure, the Volume Buffer, which encapsulates functionality, storage and

access similar to a frame buffer object, but for three-dimensional scalar data. The Volume Buffer

can rasterize primitives in 3D space and accumulate up to 1024 bits of arbitrary data per voxel, as

required by the specific application. The method is much faster to compute than previous methods

[11], [25] that perform rasterization-based voxelization by using the rendering pipeline (GPU). It

Atha
na

sio
s G

ait
atz

es

7

also has the ability to store arbitrary data on each voxel (up to 1024 bits when using 8 MRT) (see

Figure 4).

In addition, we introduced the concept of Incremental Voxelization for the multi-valued, scalar

volume rasterization of fully dynamic scenes (geometry, materials and lighting) and demonstrated

its application in the context of volume-based global illumination (see Figure 5). Where current

image-based voxelization algorithms [55] repeatedly regenerate the volume using the deferred

geometry image buffers of a single frame, we incrementally update the existing voxels using a

depth-buffer re-projection scheme and therefore, produce a more complete voxelization of the

scene. Incremental Voxelization can be used for multi-attribute volumes and complex dynamic

scenes (see Figure 6).

The Incremental Voxelization framework will be publicly available from the website of the author

under the appropriate paper.

(http://www.virtuality.gr/gaitat/en/publications.html).

1.4 Organization

In this section we outline the structure of this dissertation and summarize its contents. In

Chapter 2 we give the theoretical background of global illumination and the Rendering equation.

In addition, we present the evolution of programmable hardware. Then in Chapter 3 we present

Figure 4: Multi-valued voxelization of several models showing the albedo channel.

Atha
na

sio
s G

ait
atz

es

http://www.virtuality.gr/gaitat/en/publications.html

8

Figure 5: Side-by-side comparison of a single-frame image-based voxelization (left inset) vs.

incremental image-based voxelization (right inset). The curtains that are hidden behind the colon-

nade do not obstruct the light in the case of the single-frame voxelization.

Figure 6: A series of voxelizations of the dragon model at 1283 resolution showing the normals

channel. The voxelization is incrementally updated over several frames as the camera moves

around the model.Atha
na

sio
s G

ait
atz

es

9

an overview of the existing related methods for solving the problem. In Chapter 4 we create

a discretization of the visibility function by clustering together visibility rays, which is directly

applicable to ambient occlusion and ray tracing calculations where exact ray hits are not critical,

such as soft shadow rays (see [29] and [30]). In Chapter 5 we create a discretization of the light in

the scene using Virtual Point Light methods by generating maps from the perspective of the light

sources and injecting the samples of these maps into a volume while at the same time creating

an additional volume that would hold the occlusion / visibility of the geometry in the scene (see

[31] and [71]). Finally, in Chapters 6 and 7 we create a discretization of the scene geometry using

an intermediate regular approximation in order to store lighting and geometry data and simulate

indirect illumination (see [32], [33]). We conclude this dissertation and discuss some future work

in Chapter 8.

Atha
na

sio
s G

ait
atz

es

Atha
na

sio
s G

ait
atz

es

Part I

– Background and Related Work –

Atha
na

sio
s G

ait
atz

es

Atha
na

sio
s G

ait
atz

es

Chapter 2

Theoretical Background

One requirement for a scene to have any semblance of photorealism is the appearance of ob-

jects within a scene exhibiting influence over each other. Global illumination (GI) is an important

factor in creating realistic scenes. A key role of Global Illumination is to provide visual cues about

the geometric relationship of objects in an image. The goal in Global Illumination is to compute

all possible light interactions in a given scene and thus obtain a truly photo-realistic image. All

combinations of diffuse and specular reflections and transmissions must be accounted for. Hard to

achieve effects such as color bleeding, caustics and refractions must be included in a global illu-

mination simulation. However, global illumination is very costly and only recently has it become

viable to render scenes with global illumination effects at interactive frame rates by exploiting the

parallelism and programmability of modern Graphics Processing Units (GPU).

In order to understand how to simulate global illumination effects we must first understand

the behavior of light. In addition, we must have a good comprehension of the operations of the

hardware and the new programmable possibilities that each new generation has to offer.

13

Atha
na

sio
s G

ait
atz

es

14

Figure 7: Visible spectrum

2.1 The Physics of Light Transport

Light is a form of energy manifesting itself as electromagnetic radiation and is closely related

to other forms of electromagnetic radiation such as radio waves, radar, microwaves, infrared and

ultraviolet radiation and X-rays.

The only difference between the several forms of radiation is in their wavelength. Radiation

with a wavelength between 380 and 780 nanometers forms the visible part of the electromag-

netic spectrum and is therefore referred to as light. The eye interprets the different wavelengths

within this range as colors moving from red, through orange, green, blue to violet as wavelength

decreases. Beyond red is infrared radiation, which is invisible to the eye but detected as heat.

At wavelengths beyond the violet end of the visible spectrum (see Figure 7) there is ultraviolet

radiation that is also invisible to the eye. White light is a mixture of visible wavelengths, as is

demonstrated for example by a prism which breaks up white light into its constituent colors.

Under daylight conditions, the average normal sighted human eye is most sensitive at a wave-

length of 555 nm, resulting in the fact that green light at this wavelength produces the impression

Atha
na

sio
s G

ait
atz

es

15

of highest “brightness” when compared to light at other wavelengths. The spectral sensitivity

function (see Figure 8) of the average human eye under daylight conditions (photopic vision) is

defined by the CIE spectral luminous efficiency function V (λ). Only in very rare cases, the spec-

tral sensitivity of the human eye under dark adapted conditions (scotopic vision), defined by the

spectral luminous efficiency function V ′(λ), becomes technically relevant. By convention, these

sensitivity functions are normalized to a value of 1 in their maximum.

As an example, the photopic sensitivity of the human eye to monochromatic light at 490 nm

amounts to 20% of its sensitivity at 555 nm. As a consequence, when a source of monochromatic

light at 490 nm emits five times as much power (expressed in watts) than an otherwise identical

source of monochromatic light at 555 nm, both sources produce the impression of same “bright-

ness” to the human eye.

Figure 8: Spectral sensitivity curves V (λ) and V ′(λ) for the human eye.

Atha
na

sio
s G

ait
atz

es

16

2.2 Basic radiometric quantities

The whole discipline of optical measurement techniques can be roughly subdivided into the

two areas of photometry and radiometry. Whereas the central problem of photometry is the deter-

mination of optical quantities closely related to the sensitivity of the human eye, radiometry deals

with the measurement of energy per time emitted by light sources or impinging on a particular

surface.

To compute the distribution of light energy in a scene we need to understand the physical

quantities that represent light energy. Radiometry is the area of study involved in the physical

measurement of light and provides a set of mathematical tools to describe light transport. All

radiometric quantities are wavelength dependent but we will not make this dependency explicit.

Radiant energy, denoted by the symbol Q, is emitted from a light source or reflected from a

surface and is transferred through space as photons. Radiant energy is the total energy emitted as

radiation of all wavelengths in a defined period of time and is measured in J (Joules).

The fundamental radiometric quantity is radiant power (Figure 9), also called flux. It is de-

noted by the symbol Φ and is expressed in Joules/sec (J/s), or more commonly Watts (W). Radiant

power expresses the total amount of energy that flows from/to/through a surface or region of space

Figure 9: The radiant power Φ of a light source is given by its total emitted radiation.

Atha
na

sio
s G

ait
atz

es

17

Figure 10: Definition of solid angle

per unit time.

Φ = dQ/dt

For example, we can say that a light source emits 50 Watt radiant power, or that 20 Watt of radiant

power is incident on a table.

Radiant power does not specify the size of the light source or the receiver surface, nor does it

include a specification of the distance between the light source and the receiver. If a light source

emits uniformly in all directions, it is called an isotropic light source. Total emission from light

sources is generally described in terms of flux.

In order to define intensity, we first need to define the notion of a solid angle (Figure 10). Solid

angles are just the extension of two-dimensional angles in a plane to an angle on a sphere. The

planar angle is the total angle subtended by some object with respect to some position. Consider

the unit circle; if we project an object onto the circle, some length of the circle will be covered by

its projection. This arc length is the angle subtended by the object and is measured in radians. The

solid angle extends the 2D unit circle to a 3D sphere. The solid angle ω subtended by a surface

patch A is defined as the area of the projection A′ of A on the surface of a sphere of radius r,

Atha
na

sio
s G

ait
atz

es

18

divided by r2. Solid angles are measured in steradians. An entire sphere subtends a solid angle of

4π and a hemisphere subtends 2π steradians.

We can now define intensity. Radiant intensity (Figure 11), is denoted by the symbol I and is

expressed in Watts/steradians. It describes the radiant power density per unit of solid angle ω in a

certain direction.

I = dΦ/dω

The energy emitted or reflected from a point may be restricted to certain directions or it may be

spreading equally in all directions. In general, radiant intensity depends on spatial direction.

Figure 11: Typical directional distribution of radiant intensity for an incandescent bulb.

Radiance (Figure 12) is the most important quantity in global illumination algorithms because

it is the quantity that captures the “appearance” of objects in a scene. It is denoted by the symbol

L and is expressed in Watts/(steradians · m2). Radiance is defined as the radiant power density

per unit solid angle leaving or entering an infinitesimal area dA from a certain direction, per unit

projected surface area in that direction.

L =
dΦ

dωdA⊥ =
dΦ

dωdA cos θ

Thus, it is the limit of the measurement of incident light at the surface as a cone of incident

directions of interest dω becomes very small and as the local area of interest on the surface dA

Atha
na

sio
s G

ait
atz

es

19

also becomes very small. Due to the solid angle, radiance is inversely proportional to the square

of the distance from the light source.

Irradiance is denoted by the symbol E and is expressed in Watt/m2. It describes the amount of

radiant power impinging from all directions upon a surface per unit area. Irradiance arriving at a

surface varies according to the cosine of the angle of incidence of illumination, since illumination

is over a larger area and smaller incident angles (Lambert’s Law).

E = dΦ/dA

For example, if 50 Watt radiant power is incident on a surface which has an area of 1.25 m2,

the irradiance at each surface point is 40 Watt/m2 (assuming the incident power is uniformly

distributed over the surface).

Similarly radiant exitance, denoted by the symbol M, also called radiosity, denoted by the

symbol B, is expressed in Watt/m2. It describes the exitant radiant power per unit surface area.

M = B = dΦ/dA

For example, consider a light source, of area 0.1 m2, which emits 100 Watts. Assuming that the

power is emitted uniformly over the area of the light source, the radiant exitance of the light is

1000 Watt/m2 at each point of its surface.

Figure 12: Definition of radiance

Atha
na

sio
s G

ait
atz

es

20

Figure 13: Determining the intensity at a point on a surface.

The interested reader can find more detailed information in [35], Illingworth [47], Dutre et

al. [21], Pharr et al. [85] and Theoharis et al. [107].

2.3 Bidirectional Reflectance Distribution Function

We are interested in the relationship between the incident light from a certain direction onto

a surface and the reflected light in another direction as well as the transmitted light through

the object. This relationship is captured by the Bidirectional Reflectance Distribution Function

(BRDF) [78]. The BRDF (Figure 13) depends on many parameters; lighting and observation di-

rections, wavelength, shadow casting, the optical properties of the object, reflectivity, absorption,

emission, etc. In practice, it can only be approximated and is also well known to the remote-

sensing and modern painting communities. The BRDF associates the outgoing radiance dLr in

direction (θr, ϕr) to the irradiance dEi from the incident direction (θi, ϕi)

BRDF =
dLr(θr, ϕr)

dEi(θi, ϕi)

Essentially the BRDF captures the fact that objects look differently when seen from different

angles or when illuminated from different directions.

Atha
na

sio
s G

ait
atz

es

21

2.4 The Rendering Equation

In order to accurately model light in an environment, the energy transfer has to be evaluated on

each surface location. The Rendering equation, proposed by Kajiya [52], associates the outgoing

radiance Lo(x, ω⃗o) from a surface point x along a particular viewing direction ω⃗o, with the intrinsic

light emission Le(x, ω⃗o) at x and the incident radiance from every direction ωi in the hemisphere

Ω centered above x, using a Bidirectional Reflectance Distribution Function (BRDF) [78] that

depends only on the material properties and the wavelength of the incident light. The hemisphere-

integral form of the Rendering equation can be written as:

Lo(x, ω⃗o) = Le(x, ω⃗o) + Lr(x, ω⃗o)

Lr(x, ω⃗r) =

∫
Ω

Li(x, ω⃗i) fr(x, ω⃗i → ω⃗r) (ω⃗i · n⃗) dω⃗i

Lo(x, ω⃗o) = Le(x, ω⃗o) +

∫
Ω

Li(x, ω⃗i) fr(x, ω⃗i → ω⃗o) (ω⃗i · n⃗) dω⃗i (1)

More specifically:

Lo(x, ω⃗o) is the outgoing radiance at position x, along direction ω⃗o

Le(x, ω⃗o) is the emitted radiance at position x, along direction ω⃗o

Lr(x, ω⃗o) is the reflected radiance at position x, along direction ω⃗o

Li(x, ω⃗i) is the incoming radiance at position x, along direction ω⃗i

fr(x, ω⃗i → ω⃗o) is the BRDF of the surface at point x, expressing how much of the in-

coming light arriving at x along direction ω⃗i is reflected along the out-

going direction ω⃗o

(ω⃗i · n⃗) is the attenuation of incoming light due to incident angle∫
Ω

... dω⃗i is an integral over the hemisphere Ω of incoming directions

Ω is the hemisphere domain centered around position x

Atha
na

sio
s G

ait
atz

es

22

The above integral takes into account all of the incoming light and computes the reflected light.

It takes into account all light paths such as those that contribute to caustics and global illumination.

Solving Equation (1) for all surfaces simultaneously would result in the computation of the lighting

in the observed environment. Of course, as Equation (1) implies, an infinite number of points and

incident paths are required for its solution so the outgoing radiance is approximately estimated

using numerical methods. All Global Illumination algorithms rely on this concept and can be

thought of as special cases of the solution to the general Rendering equation.

Long before the actual mathematical formulation of the problem, many algorithms had started

to appear in order to solve the problem. Two general sets of algorithms exist in order to simulate

Global Illumination; light path tracing algorithms (to account for ray-tracing, forward ray-tracing,

photon mapping, path and beam tracing etc.) and radiosity algorithms. Ambient occlusion meth-

ods simplify the above equation and only mimic global illumination effects. These techniques for

accurately simulating Global Illumination generate realistic results but their rendering times are

slow. Timings are often measured in minutes per frame. Their real-time counterparts should be

able to produce Global Illumination effects in milliseconds.

A few years ago, dedicated graphics hardware solely excelled at drawing triangles with filled

textures. But gaming has been the dominant force in pushing the advancement of computer graph-

ics technology. This relationship is indirectly reciprocated when advanced graphics techniques

work their way into the game production pipeline. With advancements in computer graphics and

the introduction of programmable graphics boards, methods for simulating global illumination in

real-time began to arise. It is now possible to execute custom pieces of code on graphics hardware,

taking advantage of the parallelism of the current system architectures. These new architectures

are being used today in order to advance the computations of Global Illumination into the real-time

realm.

Atha
na

sio
s G

ait
atz

es

23

2.5 Programmable Hardware Evolution

Graphics hardware acceleration is a rapidly evolving area (see Figure 16). In August 1999

the first Graphics Processing Unit (GPU) [116] was introduced to the consumer level hardware

market. It integrated the entire graphics pipeline in one graphics chip and supported user pro-

grammability for some stages. In 2001, the first chip with custom programmable features was in-

troduced but required developers to use assembly language. In addition, the programmable vertex

and pixel shader pipelines used separate parts on the chip, creating mostly throughput problems.

Then in 2006 a unified architecture model was introduced in addition to a C-like interface for pro-

gramming. After this, the programmable function pipeline has been widely supported in graphics

hardware to replace the previous fixed function pipeline. Currently the newest GPU hardware have

become very flexible and easy to program via a graphics API, such as OpenGL R⃝ [96] (see Fig-

ure 15) or Direct3D [117]. The advancements of the GPU has been driven by the evolution of

the so called Shader Model (SM), a set of features that must be supported by the programmable

shader units of the GPU. The first ”modern” graphics hardware supporting programmable shading

was SM 1.0 (NVIDIA R⃝ GeForce 3 (NV20) [118], Direct3D 8.0 [117]). Programmable shading

evolved with more and more flexibility up to todays SM 5.0 (NVIDIA R⃝ GeForce GTX480 [120],

Direct3D 11.0 [5]). The interested reader can find more details on the evolution of these shader

models and the commodity graphics hardware in general in Akenine-Moller et al. [1].

Figure 14: The OpenGL R⃝ 1.0 graphics rendering pipeline; no programmable stages.
Atha

na
sio

s G
ait

atz
es

24

Figure 15: The OpenGL R⃝ 4.1 graphics rendering pipeline; the programmable stages are in purple.

In Figure 17, we see the increase on the number of shader processors each graphics card has.

Simply put, shader processors are good at executing a set of the same instructions very fast. Thus,

scalability is almost guaranteed when a card with more processors is used along with a sensible

memory access scheme. In Figure 18 we see the GFLOPS performance chart as well as the

Memory Bandwidth chart (Figure 19) for the NVIDIA GPUs compared to the Intel CPUs. It is

clear that the Intel processor can not match the graphics chip’s parallel processing performance.

2.5.1 Vertex Processing Unit

Vertex shaders (VS) are run once for each vertex given to the graphics processor, including

adjacent vertices in input primitive topologies with adjacency. The purpose is to transform each

vertex’s 3D position in virtual space to the 2D coordinate at which it appears on the screen (as

well as a depth value for the Z-buffer). Vertex shaders can perform per-vertex operations such

as transformations, skinning, morphing and per-vertex lighting but cannot create new vertices.

Vertex shaders always operate on a single input vertex and produce a single output vertex. The

vertex shader stage must always be active for the pipeline to execute. If no vertex modification or

transformation is required, a pass-through vertex shader must be created. The output of the vertex

shader goes to the next stage in the pipeline, which is either a geometry shader if present or the

rasterizer otherwise.

Atha
na

sio
s G

ait
atz

es

25

2000, GeForce 2, 25M Transistors 2002, GeForce 4, 63M Transistors

2003, GeForce FX, 125M Transistors 2004, GeForce 6, 220M Transistors

2005, GeForce 7, 302M Transistors 2006, GeForce 8, 681M Transistors

2008, GeForce GTX 280, 1.4B Transistors 2010, GeForce GTX 480, 3.0B Transistors

Figure 16: Images from demos showing the capabilities of the hardware which translates in better

image quality; courtesy of NVIDIA R⃝Atha
na

sio
s G

ait
atz

es

26

2004 2006 2008 2010 2012

0

500

1,000

1,500

8800 GTX
GTX 280

GTX 480

GTX 680

N
um

be
ro

fp
ro

ce
ss

or
s

Figure 17: NVIDIA GPU Shader Processors

2004 2006 2008 2010 2012

0

500

1,000

1,500

2,000

2,500

3,000

8800 GTX

GTX 280

GTX 480

GTX 680

Intel Core i7-975 XE

G
FL

O
PS

NVIDIA
Intel

Figure 18: Peak GFLOPS ChartAtha
na

sio
s G

ait
atz

es

27

2004 2006 2008 2010 2012

0

50

100

150

200

8800 GTX

GTX 280

GTX 480

GTX 680

Intel Core i7-3960XG
B

/s
ec

NVIDIA
Intel

Figure 19: Memory Bandwidth Chart

2.5.2 Pixel Processing Unit

The pixel shader (PS), also known as fragment shader, enables rich shading techniques such as

per-pixel lighting, post-processing effects and other phenomena. A pixel shader is a program that

combines constant variables, texture data, interpolated per-vertex values and other data to produce

per-pixel outputs. They can alter the depth of the pixel (for Z-buffering) or output more than one

color if multiple render targets (MRT) are active. The rasterizer stage invokes a pixel shader once

for each pixel covered by a primitive. Typically, a hardware implementation runs a pixel shader

on multiple pixels (for example a 2x2 grid).

A pixel shader alone cannot produce very complex effects, because it operates only on a single

pixel, without knowledge of a scene’s geometry. Pixel shader input data includes vertex attributes

of the primitive being rasterized, that can be interpolated (linearly, or with centroid sampling), or

evaluated at pixel shader center locations with or without perspective correction, or can be treated

as per-primitive constants.

Atha
na

sio
s G

ait
atz

es

28

2.5.3 Geometry Processing Unit

The geometry shader (GS) is an optional shader stage which was introduced in Direct3D 10

and OpenGL R⃝ 3.2; formerly available in OpenGL R⃝ 2.0+ with the use of extensions. Unlike vertex

shaders, which operate on a single vertex, this type of shader operates on a single primitive at a

time and emits one or more output primitives, all of the same type, which are then processed

like an equivalent primitive specified by the application. The geometry shader takes as input the

transformed attributes of all the vertices that belong to the primitive, possibly with adjacency

information. The shader can then emit a new set of transformed vertices, arranged into primitives,

which are rasterized and their fragments ultimately passed to a pixel shader. The original primitive

is discarded after geometry shader execution. Geometry shader programs are executed after vertex

shaders. Typical uses of this shader include point sprite generation, geometry tessellation, shadow

volume extrusion and single pass rendering to a cube map.

2.6 Deferred Shading

Standard rendering in a GPU starts from the input geometry and passes through the whole

pipeline in order to generate the final result. We call such a rendering process forward rendering.

In forward rendering, the shading computation in a pixel shader will be executed for all the pixels

from rasterization. However, only the visible pixels will appear in the final result. Hence, the

shading computations for the discarded pixels is wasteful. Motivated by this, a deferred shading

technique has been proposed. Deferred shading postpones shading calculations for a pixel until

the visibility of that pixel is completely determined. As such, only pixels that contribute to the

final image are shaded.

Atha
na

sio
s G

ait
atz

es

29

Albedo Normals Depth

Lighting Indirect Illumination Final Image

Figure 20: G-buffers used for Deferred Shading.

The usual implementation of deferred shading contains two passes. In the first pass, the scene

geometry properties, such as position, normal, material, etc, are rendered into intermediate buffer

storage to be combined later. These buffers are called geometry buffers (g-buffers), as shown in

Figure 20. When generating the g-buffers in modern GPUs, we rely on the multiple render targets

(MRT) technique to avoid redundant vertex transformations. In the second pass, a simple full-

screen quad is rendered to invoke the shading computation in a pixel shader. All the g-buffers can

be read by the pixel shader that computes the final shading in the image.

Deferred shading can achieve high performance by saving unnecessary shading computations.

It can also provide simpler management of complex lighting resources, ease of managing other

complex shader resources and the simplification of the software rendering pipeline. As a result,

deferred shading has been widely used in video games. Because of the use of MRTs with floating

Atha
na

sio
s G

ait
atz

es

30

point format, when generating g-buffers the memory bandwidth of deferred shading is higher than

that of forward rendering. We refer the interested reader to Policarpo [86] for more details.

Atha
na

sio
s G

ait
atz

es

Chapter 3

Related Work

There are several ways to approach the problem of simulating the global light in an environ-

ment. First, we can pre-compute the approximate lighting in an environment. Second, we can

simplify the lighting equation itself thus reducing the computational complexity or simplify our

scene geometry or lights in order to reduce the required computations. Finally, we can use brute

force methods that in the past were extremely slow but with the hardware of today can parallelize

quite easy.

We give emphasis on the related work regarding the lighting equation simplification which is

pertinent to our work; namely two areas that both share the computation of the visibility function;

the acceleration of stochastic ray-tracing algorithms and the acceleration of the computation of

ambient occlusion. We present related work for both non-GPU methods and GPU methods. In

addition we present various field computations around an object that are used for accelerating

different types of algorithms.

In addition we explore geometry simplification type of algorithms like volume-based global

illumination methods and present the founding work on which we base our research. We focus

31

Atha
na

sio
s G

ait
atz

es

32

on geometry- and image-based voxelization methods that simplify considerably the environment

geometry thus speeding-up the computation of global illumination.

Related to Deferred rendering [94], a screen-space, or image-space technique, only takes in-

formation into account which can be obtained from a rasterization pass that takes place before

computing the global illumination approximation. As such, the information consists of fragment

depths, positions, normals, tangent spaces etc. Based only on screen-space data, such techniques

then can compute a variety of illumination effects. In most cases, these algorithms do not only

consider a single pixel, but also the neighborhood of a pixel to compute its shading and suffer

from view-dependent artifacts.

3.1 Methods that use Pre-computations

In order to pre-compute the approximate lighting in an environment several schemes can be

used. Kavan et al. [59] use vertex baking. During pre-processing they pre-compute the lighting at

each vertex and then at runtime interpolate the values of nearby vertices using continuous least-

squares.

3.1.1 Lightmaps

Similarly, light-maps (first used by John Carmack’s Quake engine, see Figure 21) allows light-

ing information to be pre-calculated and stored into a map. Thus, complex shading calculations

are reduced to simple texture lookups. Any Global Illumination method, including complex view-

independent lighting models, can be used to generate the maps. After the light-maps have been

generated, the texture to be lit and the light-map are blended together when applied to the polygon

to produce the final effect. Among the positive aspects of the method are the very good image

quality that it produces, since it supports multiple bounces. In addition the method has relatively

Atha
na

sio
s G

ait
atz

es

33

moderate memory budget requirements since the light-maps can be stored at a lower resolution,

because view-independent lighting, changes more slowly than texture detail. On the negative side

light-maps do not support dynamic lighting conditions or dynamic objects unless the maps are

recomputed.

Figure 21: Light mapping example.

3.1.2 Precomputed Radiance Transfer

Usually any pre-computation method does not support dynamic lighting conditions or dynamic

objects. On the contrary, the precomputed radiance transfer method, introduced by Peter-Pike

Sloan et al. [100], supports dynamic distant lighting at the expense of storage and the method of

Figure 22: An object under area lighting, without self-shadowing and with self-shadowing. Image courtesy

of Peter-Pike Sloan.

Atha
na

sio
s G

ait
atz

es

34

Kristensen et al. [64] which supports local lighting. A preprocessing step is performed over an

object’s surface to create a set of radiance transfer functions, which represent transfer of arbitrary,

low-frequency incident lighting into exiting radiance. These transfer functions can include effects

from shadows and inter-reflections from the object onto itself and are stored at each vertex of an

object. At runtime, these preprocessed transfer functions are applied to the incident lighting of the

scene to produce the final, outgoing radiance at every vertex (see Figure 22). Because both the

lighting and the transfer functions are expressed using a set of orthonormal basis functions, the

whole shading integral becomes reduced into a dot product of vectors for diffuse surface objects,

or into a matrix multiplication and dot product afterwards for glossy surface objects. Among the

positive aspects of PRT is that it supports dynamic lighting environments but at the expense of

very large auxiliary data requirements. On the negative side it only supports static objects.

3.2 Methods that Simplify the Lighting Equation

Assuming that a surface is lit by a uniform lighting environment beyond the influence of the

geometry, is one way to simplify the Rendering equation that leads to the Ambient Occlusion

genre of algorithms.

3.2.1 Ambient Occlusion

Simplifying the Rendering equation by assuming that a surface is lit by a uniform lighting

environment beyond the influence of the geometry in a hemisphere above point x leads to:

A(x, n⃗) =
1

π

∫
Ω

V (x, ω⃗o)(ω⃗o · n⃗)dω⃗o (2)

where V (x, ω⃗o) is an empirical function that maps distance from surface point x to the closest

surface along direction ω⃗o to visibility values between 0 (no visibility) and 1.

Atha
na

sio
s G

ait
atz

es

35

Ambient Occlusion (AO) (see Figure 23) was first introduced in 1998 by Zhukov and Iones et

al. [124] [48]. AO is the attenuation of ambient light due to the occlusion of nearby geometry i.e.

it computes how a surface point is actually exposed to this indirect diffuse light and declares the

brightness of a surface point to be functionally dependent on the amount of surrounding geometry

occluding its visible hemisphere. It imitates global illumination effects regarding the occlusion of

surface points by the surrounding scene-geometry and does not try to simulate the interplay of in-

cident and reflected light. The algorithm, depending on the size of the scene, could run in real-time

producing adequate results. For off-line rendering, ambient occlusion is usually pre-computed at

each vertex of the model and stored either as vertex information or into a texture. For real-time ren-

dering, recent work by Kontkanen et al. [63] suggests storing ambient occlusion as a field around

moving objects and projecting it onto the scene as the object moves. The interactions of multiple

dynamically moving rigid objects can be combined in real-time. Zhou et al. [123] approximate the

ambient occlusion by computing a field around an object that describes the shadowing effects of

the model at points around it. The field is represented by Haar Wavelets or Spherical Harmonics

making it more accurate than the method of Kontkanen et al. but also more expensive to calculate.

Figure 23: Ambient occlusion example courtesy of Morgan McGuire.

Atha
na

sio
s G

ait
atz

es

36

Malmer et al. [70] surround the object with a regular 3D grid, pre-computing ambient occlusion

at the center of each grid cell with high memory costs for moderately complex scenes.

Among the positive aspects of AO is that it is cheaper to compute than Global Illumination, it

produces good results and it can be computed in multiple spaces. On the negative side it is still

not cheap to compute well and it is not very well suited for high frequency lighting.

3.2.1.1 Ambient Occlusion on the GPU - Screen Space AO

Ambient occlusion (AO) computation on the GPU was first used by Bunnell [6], who approx-

imates the AO by modelling the receiver surface as disk-based occluders (i.e. surface discretiza-

tion) and evaluates the ambient occlusion caused by the disks using an analytic method. He uses

a heuristic method to combine the shadows cast from multiple disks into a noise free image but

requires high tessellation of scene geometry and a big pre-computation step.

Screen Space Ambient Occlusion (SSAO) represents a class of algorithms, which compute

occlusion in image-space (screen-space). SSAO is always computed after the visibility (z-buffer)

test has been done and the actual visible pixels have been determined. This makes SSAO very effi-

cient but also limits the occlusion to surface points that can be seen by the camera. The algorithm

is implemented as a pixel shader, analyzing the scene depth buffer which is stored in a texture.

For every pixel on the screen, the pixel shader samples the depth values around the current pixel

and tries to compute the amount of occlusion from each of the sampled points. In its simplest

implementation, the occlusion factor depends only on the depth difference between sampled point

and current point.

Shanmugam et al. [97] compute ambient occlusion as a post-processing pass, based on a depth

buffer from the eyes point of view. They split the AO computation into two phases, one for high

frequency near detail and another phase for low frequency detail with a wider search. The second

Atha
na

sio
s G

ait
atz

es

37

phase allows large objects to inter-occlude as they pass next to each other. Their approach requires

no scene-dependent pre-computations. On the downside, over occlusion artifacts might show up

when multiple neighboring spheres contribute occlusion to the same pixel.

Mittring [75] does a full screen post-processing pass where z-buffer data is sampled around

each pixel and an AO value is computed based on depth differences. Sampling occurs randomly

in a sphere around each pixel and AO is proportional to the number of sampled occluders. This

view-dependent approach is fast, requires minimal or no pre-calculation, but cannot model AO

correctly, because depth discontinuities, such as object edges and buffer boundaries, produce pop-

ping effects.

The Horizon-based AO by Bavoil et al. [4] uses the surfaces angle of elevation to approximate

AO. They compute this angle by summing up the tangent and the horizon angle in view space for

a predefined set of screen directions and choose the most representative one. The method is an

improved form of SSAO as it produces better quality results but in terms of peformance its costs

more than SSAO.

Ambient Occlusion Volumes by McGuire [73] compute analytic occlusion per polygon for

dynamic geometry. Because some polygons may be double counted, the method approximates the

aggregate occlusion using a compensation map.

Volumetric Obscurance by Loos et al. [67] improves upon the SSAO technique by making

better use of each depth buffer sample; instead of treating them as point samples (with a simple

binary comparison between the depth buffer and the sampled depth), each sample is treated as

a line sample (taking full account of the difference between the two values). It is similar to a

concurrently developed method of Volumetric Ambient Occlusion by Szirmay-Kalos et al. [106].

Both techniques can be applied to most SSAO implementations to improve quality or increase

performance.

Atha
na

sio
s G

ait
atz

es

38

Among the positive aspects of Screen Space approaches is that it requires no preprocessing

or pre-computation and that it easily integrates into existing rendering pipelines. In addition all

computations are independent of the scene polygon count thus generating dynamic real-time oc-

clusion effects. Among its negative aspects are the viewpoint dependency, as objects outside the

view frustum are not considered and the noisy computed occlusion. In addition the computational

effort is dependent on the screen resolution.

3.2.1.2 Field Computations around an Object

The work of Avneesh Sud et al. [103] [104] for computing the discretized 3D Euclidian dis-

tance to the surface of a primitive is used for speeding up interactive collision and distance queries

types of algorithms. In the work of Huang et al. [46] in a pre-computation stage the object is

separated into convex segments each one surrounded by an oriented bounding box (OBB). The

OBB is split into cells, each one recording a reference to the primitive that is intersected by a ray

through this cell (traversal field). The multiple OBBs are needed in order to allow inter-reflections.

Due to the fact that the number of OBBs and their corresponding traversal fields depends on the

complexity of the original model, memory consumption may rise significantly.

3.3 Methods that Discretize the Scene Geometry

The use of a regular or hierarchical space discretization in global illumination is not new.

Several non-real-time algorithms in the past have utilized volume-based acceleration methods

and volume data caching to increase their performance. In the past two years, both the porting

of global illumination algorithms to the GPU and the inception of new, real-time methods for

approximating indirect lighting have gained significant interest from the research community and

the game industry.

Atha
na

sio
s G

ait
atz

es

39

Figure 24: Radiosity examples from Cornell University.

In order to avoid using all the tiny triangles in a scene we can simplify the environment ge-

ometry or the light representation in order to reduce the number of required computations for

simulating Global Illumination. Radiosity and Voxelization are two methods that provide geomet-

ric scene simplification.

Radiosity based methods in voxel space have addressed the illumination problem, like Greger

et al. [40] and Chatelier et al. [10] but their results were not computed in real-time and had large

storage requirements. Modern advances of the same approach, Kaplanyan [54], yielded much

faster results than before, but ignored indirect occlusion and secondary light bounces.

3.3.1 Radiosity

In 1984 Goral et al. [38] introduced the radiosity algorithm (see Figure 24) as a solution to

the Global Illumination problem. Radiosity handles a scene by splitting up geometry into a series

of sub-patches. It then uses linear equations to calculate how illumination travels from a light

source and across these patches. Radiosity though, just like ray-tracing, only simulated part of the

Global Illumination equation and did not account for effects like specular and mirror reflections

and transmission. It was therefore often complemented by a ray-tracing method to fill in some of

the specular effects.

Atha
na

sio
s G

ait
atz

es

40

Radiosity represents the rate at which energy leaves a surface i.e. the total power emitted

in every direction from a surface area. It is therefore ideally suited to model the (uniformly)

diffused outgoing light from a small surface area. Radiosity methods create a closed energy system

where every polygon emits and/or bounces some light at every other polygon. It calculates how

light energy spreads through the system. The solution is found by solving a linear system for

radiosity of each “surface”, dependent on the emissive properties of the surface and the relation

to other surfaces (form factors). The final output is a polygon mesh with pre-calculated colors

for each vertex or even light maps (texture atlases, see 3.1.1). Among its positive aspects is

the view-independent real-time display after initial calculation and inter-object interaction effects

like soft shadows, indirect lighting and color bleeding. Among its negative aspects are the large

computational and storage costs and the difficulty to represent non-diffuse light like mirrors and

shiny objects as these effects tend to be “blurry” i.e. not sharp without good surface subdivision.

In addition, if anything moves in the scene then the form factors need to re-computed.

3.3.2 Voxelization

A voxel represents a single sample, or data point, on a regularly-spaced, three dimensional

grid. This data point can consist of a single piece of data, such as opacity, or multiple pieces of

data, such as surface normal vector and color. Work has been presented on binary voxelization

by Eisemann et al. [22] and Forest et al. [27], on solid voxelization by Eisemann et al. [23] and

Schwarz et al. [95] and on surface voxelization by Crassin et al. [16] and Schwarz et al. [95]

among others.

Atha
na

sio
s G

ait
atz

es

41

3.3.2.1 Geometry-based Surface Voxelization

In the domain of geometry-based voxelization many algorithms with various properties have

been devised. Among the most relevant real-time approaches are variations of the XOR slicing

method that was first presented by Chen et al. [11] and Fang et al. [25]. The algorithm renders the

geometry once for each slice of the volume grid, each time restricting the clipping volume to this

slice. It requires watertight models and multiple passes over the geometry, once for each texture

slice per sweep axis in order to correctly assign the geometry into voxels.

Dong et al. [20] encode binary voxels in separate bits of multiple multi-channel render targets,

allowing to treat many slices in a single rendering pass. A fragment’s depth is used to derive

the voxel and its bit is set via additive alpha blending. They also consider all three volume axes

as sweep directions and each triangle is submitted for rendering in one of the directional passes,

according to the dominant direction of its normal. Unfortunately, for dynamic scenes the per-

formance is influenced by the required triangle pre-sorting. Eisemann et al. [22] presented an

extension to this approach achieving higher performance. Their method, taking advantage of the

same efficient encoding, uses the RGBA-channels of a texture as a binary mask to encode the

boundary of the scene geometry. The depth of a fragment is used as an indicator as to which bit

in the mask has to be set by using the more robust bitwise or-blending. The resulting representa-

tion though, frequently exhibits holes as only one viewing direction is considered in the original

implementation.

Forest et al. [27] suggest a hierarchical volumetric representation by offering an extension to

Dong et al. [20] method. Furthermore, Zhang et al. [122] proposed to use a conservative rasteriza-

tion approach to capture more details of the scene geometry. Another method based on slicing was

presented by Crane et al. [15]. They used the geometry shader to intersect all triangles of the scene

Atha
na

sio
s G

ait
atz

es

42

with each plane of the three dimensional grid to successively fill each layer. Schwarz et al. [95]

directly build a hierarchical volume representation using a GPGPU triangle processing algorithm.

It can achieve sparse, high resolution voxelization but it is complex, requires GPGPU architec-

tures and GPU context switching. Pantaleoni [80] presents a programmable pipeline to perform

geometry-based triangle voxelization. He also uses a GPGPU triangle processing algorithm and

requires Shader Model 5 GPUs in order to execute.

3.3.2.2 Image-based Surface Voxelization

In addition to the fact that performance of geometry-based voxelization algorithms depends

heavily on the size of the geometry, several approaches do not allow for the storage of multi-

channel scalar data at the location of each voxel (i.e. Dong et al. [20] and Eisemann et al. [22]).

On the other hand, image-based techniques guarantee constant, low running time but sacrifice

voxelization quality in terms of completeness of volume set, manifested as partial voxelization or

inconsistent sample density.

One of the first depth-buffer-based voxelization method by Karabassi et al. [57], performed

a fast volume rasterization of arbitrary geometry but could not voxelize correctly the cavities of

objects. Passalis et al. [83] proposed a depth-peeling multi-directional generalization of the above

technique, lifting its concavity restrictions. Unfortunately, their algorithm requires a number of

depth layers equal to the scene depth complexity in each sweeping direction, rendering it practical

mostly for single object voxelization.

Thiedemann et al. [108] introduced an interactive volume-based global illumination method,

where the spatial occupancy and color data are generated by injecting a geometry texture atlas con-

taining point samples of the polygonal geometry. The method relies on the generation of geometry

images of the objects prior to voxelization and produces fast and view-independent voxelization

Atha
na

sio
s G

ait
atz

es

43

but requires model preprocessing and extra storage for the texture atlas and is sensitive to the point

sampling rate and surface deformations.

Mavridis et al. [72] adopted a similar volume population approach, where occupancy and

direct illumination of the geometry are injected into the volume as vertices of the tessellated ge-

ometry. Supplementary points are generated by injecting the view camera and RSM G-buffers

into the volume.

Similarly, Kaplanyan et al. [55] populate their voxelization by injecting the view camera and

RSM G-buffers into the volume. In their method geometry significant to the visibility determina-

tion, is ignored as it resides outside the view frustum.

3.4 Methods that Discretize the Light Representation

In 1996 Henrik Wann Jensen [50] proposed the photon mapping method (see Figure 25) that

decoupled the geometry from the illumination solution which was represented in a spatial data

structure called the photon map. This decoupling proved to be quite powerful as the Rendering

equation’s terms could be calculated separately and stored into separate photon maps. It was

also the reason that photon mapping was very flexible as parts of the Rendering equation could be

Figure 25: Photon mapping examples courtesy of Henrik Wann Jensen.

Atha
na

sio
s G

ait
atz

es

44

solved using other techniques. Photon mapping has also been extended to account for participating

media effects such as sub-surface scattering and volume caustics.

The algorithm worked in two passes; the first pass would emit from the light sources a user-

specified amount of photons into the scene. These photons would bounce for a pre-determined

number of times, until they were absorbed or until they exited the scene. Each time a photon (i.e.

a ray carrying a predetermined amount of radiant power) intersected a surface, the incident power

was recorded and the reflected (attenuated) power was retransmitted to the environment using a

stochastic path tracing scheme. The course of each photon was terminated when the photon no

longer represented substantial power or when a user-defined termination criterion was met. The

spectral attributes of the transmitted photon energy were modulated as the photon interacted with

the wavelength-dependent material attributes of the surfaces (e.g. iridescence, color bleeding).

The second pass would basically sample each pixel in the scene, with a ray tracer and calculate

how much each photon hit contributed to that pixel’s color and illumination. Among its positive

aspects is that the preprocessing step is view-independent, so it only needs to be re-calculated if

the lighting or positions of objects in the scene change. Among its negative aspects are its high

computational cost and the re-evaluation of the photon map once changes are made to the scene. In

addition, phenomena such as diffraction, interference and polarization still can not be accurately

simulated.

McGuire et al. [74] computed the first bounce of the photons using rasterization on the GPU,

continues the photon tracing on the CPU for the rest of the bounces and finally scatters the illumi-

nation from the photons using the GPU. Since part of the photon tracing still runs on the CPU, a

large number of parallel cores are required to achieve interactive frame-rates.

The Irradiance Volume, which was first introduced by Greger et al. [40], regards a set of single

irradiance samples, parameterized by direction, storing incoming light for a particular point in

Atha
na

sio
s G

ait
atz

es

45

space (i.e. the light that flowed through that point). The method had large storage requirements as

neither an environment map nor spherical harmonics were used for the irradiance storage. With a

set of samples they approximated the irradiance of a volume, which was generally time-consuming

to compute but trivial to access afterwards. With an irradiance volume they efficiently estimated

the global illumination of a scene.

The idea of Instant Radiosity, introduced by Keller [60], approximates the indirect illumination

of a scene using a set of Virtual Point Lights (VPLs). VPLs are points in space that act as light

sources and encapsulate light reflected off a surface at a given location. A number of photons

are traced from the scene light sources into the scene and VPLs are created at surface hit points,

then the scene is rendered, as lit by each VPL. The major cost of the original method is the

calculation of shadows from a potentially large number of point lights but since it does not require

any complex data structures it is a very good candidate for a GPU implementation. Lightcuts by

Walter at al. [112] reduce the number of the required shadow queries by clustering the VPLs in

groups and using one shadow query per cluster, but the performance is still far from real-time. As

instant radiosity algorithms are only used to compute the indirect illumination of a scene they have

to be combined with the direct illumination in order to create a high quality lighting environment.

Reflective Shadow maps (RSMs), introduced by Dachsbacher et al. [18], is a collection of

maps that capture information of surfaces visible from a light source. The RSM is then sampled

to choose surfaces that will be used as VPLs. Normal vectors, position and outgoing flux of the

lit surface samples are stored in an RSM along with the standard depth image of a conventional

shadow map. In the original method, indirect light at a surface point is estimated by projecting it

on the RSM of each light source and sampling the VPL data in image-space in a disk centered at

the projected coordinate pair. The cumulative contribution of the VPLs is measured, but without

taking scene occlusion into account. To achieve interactive frame rates, screen-space interpolation

Atha
na

sio
s G

ait
atz

es

46

is required and the method is limited to the first bounce of indirect illumination. Many variations of

the RSM algorithm have been proposed such as the VPL splatting version by the same authors [19]

or its multiresolutional extension by Nichols et al. [77]. Imperfect Shadow Maps algorithm by

Ritschel et al. [91] use a point based representation of the scene to efficiently render extremely

rough approximations of the shadow maps for all the VPLs in one pass. They achieve interactive

frame rates but indirect shadows are smoothed out considerably by the imperfections and the low

resolution of the shadow maps.

Ritchell [92] extends previous methods for screen-space ambient occlusion calculation by

Shanmugam et al. [97] and introduces a method to approximate the first indirect diffuse bounce

of the light by only using information in the 2D frame buffer. This method has a very low compu-

tational cost but the resulting illumination is hardly accurate since it depends on the projection of

the (visible only) objects on the screen.

The concept of interpolating indirect illumination from a cache was introduced by Ward et

al. [114]. Accurate irradiance estimates are computed using ray-tracing on a few surface points (ir-

radiance sample points) and for the remaining surface points fast interpolation is used. Wang [113]

presents a method to calculate the irradiance sample points in advance and implements the algo-

rithm on the GPU. The method is accurate but it achieves interactive frame rates only in very

simple scenes.

Nijasure [79] uses spherical harmonics to store the incoming radiance of the scene in a uniform

grid structure. The surfaces are rendered by interpolating the radiance from the closest grid points.

This method supports multiple bounces and indirect occlusion but it’s very expensive because it

requires the complete scene to be rendered in a cube map for the radiance estimation on each grid

point.

Atha
na

sio
s G

ait
atz

es

47

In the Light Propagation Volumes method (LPV) [54] and its multi-scale extension by Ka-

planyan et al. the Cascaded Light Propagation Volumes [55] (CLPV), RSM-generated virtual

point lights are “injected” into a volume texture. A set of points corresponding to a sparse sam-

pling of the RSM depth image is transformed to world space and finally to volume-clip space of

a texture-encoded volume buffer. Rendering of the transformed points results in the rasterization

of the VPLs in the appropriate locations in this volume buffer. Subsequently, the method uses

an iterative propagation scheme to transfer energy from voxel to voxel, taking into account oc-

clusion caused by blocking voxels (CLPV). Blocking voxels are marked by storing any available

depth information from the RSMs as well as from the camera depth map into a separate occlu-

sion (geometry) volume. The method achieves high performance for a relatively small number of

propagation iterations with respect to the volume size, but suffers from popping artifacts due to

view-dependent occlusion information.

Thiedemann et al. [108] using the injection method mentioned above, propose an optimized

ray marching scheme for intersecting the gathering rays with the volume data. At each hit voxel,

the RSMs are looked up to determine its visibility from the source and subsequently its normal

and the incident light. The method can be used to perform near-field single-bounce indirect light

estimation and VPL-based computation of indirect illumination.

Mavridis et al. [72] after the volume population (as mentioned before), use ray marching at

a voxel level to simulate global illumination with multiple bounces at a cost proportional to the

volume size and the sampling distance.

Atha
na

sio
s G

ait
atz

es

48

3.5 Brute Force Methods

As a brute-force method, ray-tracing has been too slow to consider for real-time applications.

As the compute power of hardware increases and programmable architectures are introduced, new

algorithms are being developed in order to bring ray-tracing to real-time.

3.5.1 Ray-Tracing

In 1980 Whitted [115] described a ray-tracing algorithm (see Figure 26) which facilitated for

shadows, reflections and refractions. Ray tracing works by shooting a ray from the viewer’s eye

into the scene, where it either leaves that scene or hits another object. If a ray is intercepted by an

object, it generates up to three new types of rays: reflection, refraction and shadow. A reflected ray

continues on in the mirror-reflection direction from the surface. It is then intersected with objects

in the scene; the closest object it intersects is what will be seen in the reflection. Refraction rays

traveling through transparent material work similarly, with the addition that a refractive ray could

be entering or exiting a material. To further avoid tracing all rays in a scene, a shadow ray is used

to test if a surface is visible to a light. If a ray hits a surface at some point which faces a light, a ray

is traced between this intersection point and the light. If any opaque object is found in between

the surface and the light, the surface is in shadow and so the light does not contribute to its shade.

Ray-tracing can accurately represent specular global highlights in a scene by tracing light

rays from the eye to the pixel and into the scene. Rays recursively bounce off objects in the

scene and accumulate a color for a specific pixel. Among its positive aspects are the inter-object

light interactions like shadows, reflections and refractions (light through glass, etc.). But the

lighting effects tend to be abnormally sharp, without soft edges, unless more advanced (sampling)

techniques are used.

Atha
na

sio
s G

ait
atz

es

49

Figure 26: Ray-tracing example.

Despite all the benefits of ray-tracing, it is still far from flawless. One problem associated

with ray-tracing and computer graphics in general, is aliasing. This is due to the fact ray-tracing

samples a scene at regularly spaced intervals and ignores everything in between. The problem with

sampling is that each pixel of the display represents one single light ray. This creates aliasing and

unnaturally sharp images. The solution is to send multiple rays through each “pixel” and average

the returned colors together. Several methods exist to this affect like “direct super-sampling”

where each pixel is split into a grid and rays are send through each grid point, “adaptive super-

sampling” (by Whitted [115]) where each pixel is split only if it’s significantly different from its

neighbors and “jittering” or “stochastic sampling” (by Cook [14]) where rays are send through

randomly selected points within the pixel and the extremely jarring effect of aliasing is reduced to

noise, which is easily tolerated by the human eye.

Despite adding a whole new repertoire of effects, stochastic sampling does not fix ray-tracing’s

most glaring drawback as a solution to Global Illumination. Ray tracing only solved part of the

problem, in that it only simulates direct illumination and backward specular transmission (i.e.

reflection and refraction from the camera) and completely ignores scattering, diffusion and light

convergence (caustics).

Atha
na

sio
s G

ait
atz

es

50

Traditionally ray-scene intersection is accelerated through the use of hierarchical data struc-

tures. Bounding Volume Hierarchies [37] [93] [13], Voxel Grids [101] [28], Hierarchical Grids

[62] [9] [51], Octrees [36], Binary Space Partitioning Trees [105], kd-Trees [44] [76] [68] [3] [49]

are just a few.

Recently, a new set of algorithms have been developed for interactive ray-tracing and ray-

tracing of dynamic scenes. The work of Wald et al. [110] and [111] demonstrates real-time ray-

tracing for small scenes using in-expensive off-the-shelf PCs with SIMD floating point extensions

and cluster architectures. Parker et al. [82] demonstrates real-time ray-tracing for larger scenes

on shared memory multiprocessor machines. The main issue of these algorithms that accelerate

spatially coherent rays, is that their speedup on secondary ray intersection tests is limited.

3.5.2 Real-time Ray-Tracing on the GPU

Most GPU ray-tracing methods accelerate already established mechanisms for limiting the

number of intersection tests.

Carr et al. [7], Purcell et al. [89], [88], Karlsson et al. [58] and Christen et al. [12] implemented

a streaming ray-triangle kernel on the GPU, fed by buckets of coherent rays and proximate geom-

etry organized by a CPU process. However, there was a frequent communication of results from

the GPU to the CPU over a narrow bus, negating much of the performance gained from the GPU

kernel. Streaming geometry to the GPU became quickly the bottleneck.

To improve the performance of the GPU ray-tracing, different acceleration structures have

been widely adopted, such as the incorporation of kd-trees by Havran [43] and Ernst et al. [24].

However, these approaches had limited performance; by far not reaching the frame rates of the

CPU based ray tracers. The main problem was the limited GPU architecture. Only small kernels

Atha
na

sio
s G

ait
atz

es

51

without branching were supported. In addition a stack was usually required, which was poorly sup-

ported on GPUs. Foley et al. [26] presented two implementations of a stack-less kd-tree traversal

algorithm for the GPU, namely kd-restart by Kaplan [53] and kd-backtrack. Foley showed, that

on graphics hardware, there are scenes for which a kd-tree yields far better performance than a

uniform grid. Although better suited for the GPU, the high number of redundant traversal steps

led to relative low performance.

Besides grids and kd-trees there are also several other approaches that use a BVH as an accel-

eration structure on the GPU. Carr et al. [8] implemented a limited ray tracer on the GPU that was

based on geometry images but it required careful parameterization of the geometry. It could only

support a single triangle mesh without sharp edges. The acceleration structure was a predefined

bounding volume hierarchy which could not adapt to the topology of the object. To alleviate the

need for a stack Thrane et al. [109] presented stack-less traversal algorithms for a BVH. They

conclude that on the GPU, the bounding volume hierarchy traversal method is up to 9 times faster

than that of a uniform grid and a kd-tree. Also, the technique proves the simplest to implement

and the most memory efficient.

Horn et al. [45] reduced the number of redundant traversal steps of kd-restart by adding a short

stack. With their implementation on modern GPU hardware they achieved a high performance of

1518M rays/s for moderately complex scenes. At the same time, Popov et al. [87] presented a par-

allel, stack-less kd-tree traversal algorithm without the redundant traversal steps of kd-restart but

with a poor GPU utilization of below 33%. With over 16M rays/s, their GPU ray tracer achieved

similar performance as CPU based ray tracers. However, both GPU ray-tracing implementations

demonstrated only medium-sized, static scenes. Gunther et al. [41] presented a BVH based GPU

ray-tracing method for large models achieving close to real-time rates using hard shadows.Atha
na

sio
s G

ait
atz

es

Atha
na

sio
s G

ait
atz

es

Part II

– Discretization of Visibility –

Ambient Occlusion and Secondary Light Bounces

Atha
na

sio
s G

ait
atz

es

Atha
na

sio
s G

ait
atz

es

Chapter 4

Fast approximate Visibility using pre-computed 4D Visibility Fields

4.1 Motivation

One of the most intensive parts for the calculation of the Rendering equation (see Equation 1)

is the computation of the visibility term. Ray based solutions to the rendering problem have been

popular for over two decades. An enormous amount of work has been done by researchers in order

to accelerate the tracing of rays, especially through the use of spatial acceleration structures and

is still a very active field of research. However, such methods typically have a non-constant cost

for ray-intersections. Ambient occlusion computation and real-time ray tracing are just two of the

fields where the fast computation of the visibility queries is very important.

4.2 Overview

We will create a discretization of the visibility function by clustering together visibility rays

thus accelerating the computation of visibility in dynamic scenes. This approximation is directly

applicable to secondary diffuse illumination (i.e. ambient occlusion) and ray tracing calculations

where exact ray hits are not critical (i.e. soft shadow rays). The main idea of the technique is to

55

Atha
na

sio
s G

ait
atz

es

56

pre-compute for each object in the scene its associated four-dimensional field that describes the

visibility in each direction for all positional samples on a sphere around the object, we call this a

displacement field. We are able to speed up the calculation of algorithms that trace visibility rays

to near real time frame rates. The storage requirements of the technique, amounts from one byte

to one bit per ray direction making it particularly attractive to scenes with multiple instances of the

same object, as the same cached data can be reused, regardless of the geometric transformation

applied to each instance.

4.3 Introduction

Ambient occlusion is defined as the attenuation of ambient light due to the occlusion of nearby

geometry. It gives perceptual clues of depth, curvature and spatial proximity and thus is important

for realistic rendering. It is a technique that approximates the effect of indirect global illumination

and does not yet try to simulate the interplay of incident and reflected light. In Ambient occlusion

the indirect component can be computed as:

A(x, n⃗) =
1

π

∫
Ω

V (x, ω⃗o)(ω⃗o · n⃗)dω⃗o (3)

where V (x, ω⃗o) is an empirical function that maps distance from surface point x to the closest

surface along direction ω⃗o to visibility values between 0 (no visibility) and 1. By tracing rays

outward from a given surface point x over the hemisphere around the normal n⃗, ambient occlusion

measures the amount that a point is obscured from light. This average occlusion factor is used to

simulate soft-shadowing.

Ray tracing is a general and versatile algorithm that performs image synthesis by shooting rays

through each pixel, finding the closest intersection with the scene geometric entities. The generic

Atha
na

sio
s G

ait
atz

es

57

Figure 27: A hemisphere of rays emanating from the bounding sphere towards the object is pre-

computed for a large number of sample points on the sphere.

backwards ray-tracing algorithm is capable of capturing both local illumination and basic indirect

specular effects such as mirror-like reflections and refraction.

Figure 28: Volume texture of a visibility field. Row by row each map is placed into a slice of the

volume texture thus minimizing the volume space requirements. As a result a 5123 volume will

hold four 2562 maps per slice.

Atha
na

sio
s G

ait
atz

es

58

We propose a method for the discrete representation, pre-calculation and storage of distance

measurements on rigid objects. The encoded distances can be queried at run time to efficiently

calculate accurate ambient occlusion and soft shadowing effects. It accelerates the ray-object

intersection test and in turn the computations of the visibility function of the lighting equation,

by separating the task in two subtasks. First, at preprocessing time, we construct on the CPU the

visibility field (Figure 27). It stores the intersection distances of a hemisphere of rays originating

from sample points on the bounding sphere of an object and directed towards the model itself. We

construct one map for each sample point (Algorithm 1). Then, at run time, when a ray from the

environment towards an object (or vise versa) intersects its bounding sphere, we perform a simple

ray-sphere intersection test and recover from the pre-computed maps the rest of the ray distance

for the ray-object intersection test.

In the GPU implementation version, after the construction of the visibility maps, we compactly

fit them in one volume texture for easy access on the GPU (Figure 28). In addition, all mesh

information (i.e. coordinates, normals and materials) are stored in maps and passed on to the

GPU. Taking advantage of the shader units parallelism we demonstrate significant performance

gains.

The advantage of the method is that the bulk of the computation is moved to a preprocessing

stage. The results are stored in compact gray-scale textures; 1 byte per ray direction for the com-

putation of ambient occlusion and soft shadows and 4 bytes per ray direction for the computation

of reflection in ray-tracing, providing for each object a constant size of additional information,

independent of the complexity of the original model. Then the real-time algorithm performs a

simple intersection test with the bounding sphere of the object and a constant-time map lookup

(see Section 4.4.2).

Atha
na

sio
s G

ait
atz

es

59

Algorithm 1: Pseudo-code for Visibility Fields computation at preprocessing time.

generate bounding sphere sample points;
generate samples of hemisphere of rays;
for all bounding sphere sample points (u, v) do

align hemisphere of rays to normal at (u, v);
for all rays (θ, ϕ) do

if ray intersects the object then
normalize the distance; // i.e. divide by 2 * R
record distance in visibility map;

else
record distance in visibility map as 2 * R;

We show that, in applications such as ambient occlusion, maps that use 1-byte of storage per

ray give almost the same result as maps that use 4-bytes of storage space. If the model changes

level of detail the same maps can still be used. In addition, the visibility maps contain information

that is transformation invariant. As such, no additional information has to be computed when the

rigid object is geometrically transformed in the environment. For dynamic scenes with rigidly

moving objects, visibility fields accelerate the computation of the approximation of the indirect

lighting term of the Rendering equation to real-time frame rates as well as the computation of soft

shadows and reflection in ray-tracing. The performance of this approach does not depend on the

polygon count to a large extent; instead, it is directly related to the number of visible pixels shaded

by the GPU. This is a significant advantage over existing approaches. In addition, our acceleration

structure is flat by nature and thus more suited to the GPU architecture.

4.4 Overview of the Visibility Fields

In this section we describe the general idea of visibility fields, while in the next section we

show their application for ambient occlusion.

Our method bears some similarity to the parameterization of Huang et al. [46] where each ray

was described as a vector of the parametric incident location (u, v) on the bounding volume and its

Atha
na

sio
s G

ait
atz

es

60

Algorithm 2: Pseudo-code for Ambient Occlusion rendering using Visibility Fields during
real-time processing.

generate hemisphere of ray samples;
for each occlusion receiver object do

for all points x on the occlusion receiver surface do
for all emanating rays do

if ray intersects bounding sphere of occluder object then
discretize intersection point (u, v);
discretize ray (θ, ϕ);
access distance in visibility map;

use distance for occlusion approximation;
compute occlusion at x;

corresponding incoming direction (θ, ϕ). However, we introduce our visibility field encoding pre-

computation where using a similar parameterization, we store the distance from the entry point on

the bounding volume to the surface of the object. We further discuss the sampling techniques used

and the storage requirements of our method along with the compression scheme.

4.4.1 Visibility Field Computation

Figure 29: The distance from the surface to the object is split into distance d1 (i.e. surface to object

bounding-sphere ray intersection) and distance d2 (bounding-sphere to object ray intersection,

retrieved from the appropriate visibility map).

Atha
na

sio
s G

ait
atz

es

61

The main idea of encoding visibility fields into maps is as follows (Algorithm 1). Consider

a rigid object possibly moving through a scene. At a preprocessing step, from a discreet set of

sample points on the bounding sphere, described as spherical coordinates (u, v), a hemisphere of

rays is cast around the inward normal direction (Figure 29). For each ray (u, v, θ, ϕ), the closest

distance between the bounding volume and the model surface is found and recorded as a compact

integer value after being normalized by twice the sphere radius. Thus, for each sample point (u,

v) a visibility gray-scale map is obtained (Figure 30) that represents the distance traveled along

the ray in the direction (θ, ϕ) before hitting the model surface. We define the visibility field of the

object to be the collection of all visibility maps generated from all sample points on the bounding

sphere of the object.

Figure 30: 512x512 visibility maps of a model of a cow (top) and a cube with a hole in it (bottom).

Using uniform Sampling of rays (left), Rejection Sampling (middle), Concentric Map Sampling

(right). Different (θ, ϕ) to (s, t) mappings, produce different visibility maps.
Atha

na
sio

s G
ait

atz
es

62

4.4.2 Visibility Field Indexing

During the real-time part of the execution (Algorithm 2) an incident ray to the object, intersects

its bounding sphere and the distance between the ray origin and the intersection point is recorded.

The intersection point q is transformed into the object coordinate system: q′ = M � 1 · q, where

M is the transformation matrix with respect to the reference frame of the ray. Depending on the

sampling on the surface of the sphere (see Section 4.4.3), the inverse function is applied to q′ in

order to get the closest corresponding point (u, v) on the sphere for which we have a visibility

map and therefore the index of the corresponding visibility map. Next we need to find the corre-

sponding (θ, ϕ) of the incident ray. Depending on the ray sampling method (see Section 4.4.4),

the appropriate inverse function is applied to the ray, thus recovering the (θ, ϕ) values of the ray.

We can now index into the visibility field for the given ray (u, v, θ, ϕ) and extract the distance

information which is then added to the intersection distance above and this is our approximated

distance value of the ray origin from the object’s surface.

A special case arises when the rays originate from the object being queried for visibility.

As we can see in Figure 31, when a ray originates on the object at point p0, the distance d1 in

direction � � →p0p1 is computed and compared to distance d2 in direction � � →p1p0 which is extracted from

the visibility map at point p1. If d1 is greater than d2 then point p0 is occluded.

Figure 31: Diagram of visibility computation for intra-object occlusion.

Atha
na

sio
s G

ait
atz

es

63

4.4.3 Selecting Samples around the Object

We need to sample entry points on the surface of the bounding volume of the object from

where the rays originate in order to generate the visibility maps. The method selected must also

have a quick inverse function that can convert an intersection point into the nearest sample. In

addition it should distribute the samples over the bounding volume as evenly as possible.

A fairly straightforward choice are the spherical coordinates which have a fairly easy to com-

pute inverse function. However, the samples in this method are concentrated more towards the

poles of the sphere.

A common bounding shape that is used to sample the contained geometry is a axis-aligned

bounding box (AABB). During the real-time simulation we would perform fast ray-box intersec-

tions. Special care though is needed as the AABBs are not transformation invariant and their

oriented bounding boxes (OBB) counterparts require more operations.

As most sampling methods deal with sampling over a sphere, if the same methods were used

to sample over a cube there would be a high concentration of samples near the vertices of the cube.

We opted for Slater’s [99] method, which generates uniformly distributed points on a hemi-

sphere using the triangle subdivision method. The same can be used to cover the full sphere as

well. At the same time he suggests a constant time inverse function so, when an environment

ray intersects the bounding sphere of the object, we can immediately associate this intersection

point with one of the pre-generated visibility maps, in order to retrieve the angle and distance

information.

4.4.4 Sampling a Hemisphere of Directions

There are several methods that deal with the uniform sampling of rays distributed over a hemi-

sphere. The method selected must be able to uniquely discretize its samples so that they can be

Atha
na

sio
s G

ait
atz

es

64

Figure 32: Sampling a hemisphere of rays. (a) Polar Mapping of rays, (b) Rejection Sampling, (c)

Concentric Map Sampling.

stored in the visibility maps. In addition there must exist an inverse function that converts the

visibility map entries back into sample space.

One method is to use spherical coordinates where a direction in the hemisphere is given by

two angles (θ, ϕ). But as can be seen in Figure 32a the rays generated are concentrated towards

the cap of the hemisphere producing a good cosine term (close to 1.0) but they are not equally

spaced.

In the rejection sampling method (Figure 32b) uniformly distributed points are selected inside

a unit disk by selecting points inside the [� 1, 1]2 square and rejecting the points that fall outside the

unit disk. Using Malley’s method [69] the samples are projected on the disk up to the hemisphere

above it, producing a cosine distribution of rays. Using this method, about 21.5% of the samples

are rejected and so the corresponding space in the visibility map remains unused.

Shirley et al. [98] suggest a concentric map (Figure 32c) sampling method that maps samples

in the square [� 1, 1]2 to the unit disk {(x, y) | x2 + y2 ≤ 1} by mapping concentric squares to

concentric circles. The map preserves fractional area, it is bi-continuous and has low distortion.

Combined with Malley’s method where samples on the unit hemisphere have density proportional

to the cosine term, it provides the best solution.

Atha
na

sio
s G

ait
atz

es

65

4.5 Visibility Fields on the GPU

4.5.1 Ambient Occlusion

Directional ray samples on a reference hemisphere aligned with the z-axis are pre-computed

and stored in a texture for passing to the GPU. In the fragment shader (Algorithm 3), the pre-

computed ray directions are transformed according to the local normal vector and intersected

with the bounding sphere of each occluder. We are able to handle both rays originating outside

and inside the bounding sphere for inter-object and intra-object occlusion respectively. The only

difference in the computation is the respective step to compute the final ray-object intersection

distance at line 3 of Algorithm 3.

The indexing of the visibility fields is executed entirely on the GPU as is the Monte Carlo

ray casting to evaluate the resulting ambient occlusion. The visibility maps are compacted and

stored into a single 3D texture as slices, as shown in Figure 28. As the number of positional

samples (i.e. visibility maps) can exceed the maximum volume texture dimension supported by

the hardware, we compact as many visibility maps on each 2D slice of the volume as the texture

hardware permits.

Algorithm 3: Fragment shader pseudo-code for Ambient Occlusion rendering, using Visi-
bility Fields.

for all emanating rays do
if ray intersects bounding sphere of occluder object then

discretize intersection point (u, v);
discretize ray (θ, ϕ);
access distance in visibility field volume;

use distance for occlusion approximation;
compute occlusion at pixel x;

Atha
na

sio
s G

ait
atz

es

66

4.5.2 Ray tracing

For our proof-of-concept case study, we wanted to further improve ray-tracing timings of

an already fast ray tracer. We used the method of Amit Ben-David et al. [2] that implemented

both a CPU and a fast GPU ray tracer by exploiting a BVH acceleration structure that has been

proven to work better in some cases [41] and is better suited for dynamic scenes. We did not

replace the primary ray intersection tests because the regularity of the ray distribution emphasized

the sampling pattern on the bounding sphere. Furthermore GPU rasterization provides better

timings for the primary rays pass. In conjunction with the fact that for complex (and therefore time

consuming) scenes with elaborate materials, most time is spend on secondary rays, we applied the

visibility fields method only to secondary rays, including shadow rays. To capture the intricate

reflection effects of non-perfect reflection surfaces and to highlight the advantage of our method

when intersection tests increase significantly, we extended the implementation to stochastic ray-

tracing.

As in the case of the ambient occlusion computation, the rays are stored in a 2D map but this

time are re-computed for each running pass. For the ray-object intersection the visibility maps

are used in a fragment shader on the GPU (similar to Section 4.5.1) along with the additional pre-

computed maps of normals. The generated fragments correspond to intersection test results and

the fragment shader returns the intersection point and distance to the actual surface as extracted

from the visibility field. These results are used for shading or for spawning secondary rays for the

next ray-tracing iteration.

Atha
na

sio
s G

ait
atz

es

67

4.6 Implementation & Evaluation on the CPU

We have implemented the visibility fields algorithm on an Intel Pentium 4 desktop PC running

at 3.4GHz with 1GB RAM and an NVIDIA R⃝ Quadro FX5500 GPU with 1GB video memory

(machine type 1) and an Intel dual Xeon running at 3.0GHz with 4GB RAM and the same graphics

board (machine type 2).

The implementation does not utilize the GPU for the indexing calculations. The method is a

generic ray casting implementation, used in this case for ambient occlusion and as such can not be

compared with other specialized GPU implementations.

4.6.1 Ambient Occlusion

4.6.1.1 Storage and Error Considerations

A 256x256 map stores the distance to the object for 65536 ray directions emanating from one

sample. If that map was to store the values as floats it would require 262144 bytes of storage

space while storing them as unsigned chars it would require 65536 bytes. In addition, if lossless

Figure 33: 4 bytes per ray for storage (left), 1 byte per ray for storage (right). There are no obvious

visible differences, when the visibility fields are used for ambient occlusion.

Atha
na

sio
s G

ait
atz

es

68

compression is used (e.g. run length encoding) then on average less storage would be required.

In application areas where integral calculations are performed over the samples or accuracy is not

imperative, lossy compression could be used to further reduce the storage requirements. Given

that it is essential to keep the storage requirements to a minimum we opted to use unsigned chars

for storage as it was found in ambient occlusion approximations that there was little to no gain in

visual quality from using floats as can be seen in Figure 33. If higher accuracy is desired one can

consider storing more bytes per sample.

4.6.1.2 Using the 8-bit maps

In our examples we used a large number of cast rays per vertex (256) and achieved interactive

results that would otherwise be impossible (Figure 1). The complexity of the visibility field method

is O (Nr) where Nr is the number of rays.

We have run several experiments in order to evaluate the method and establish which of the

sampling method is the preferred.

As we can see in Figure 34 choosing a concentric map sampling distribution for the rays

produces much better results than the uniform sampling of rays. As such, we opted to use this

method in producing the rest of the results.

In Figure 35 we see images of the ambient occlusion solution produced using 4 different

resolutions for the concentric map sampling for the ray directions and 3 resolutions for the po-

sitional samples on the bounding sphere around the object. Here, as expected, we see that cost

of computing the visibility field is a function of the sampling resolutions while the cost of using

it for ambient occlusion is almost independent of the object complexity. By looking at the root

mean square (RMS) error, we observe that it drops quickly as we increase the positional samples.

In addition, we observe that as we increase the directional samples, the error does not decrease

Atha
na

sio
s G

ait
atz

es

69

Reference image using Ray
Casting and 256 rays

Using 1122 visibility maps
(positional samples) of size
64x64 and Uniform sampling
of 256 rays

Using 1090 visibility maps of
size 64x64 and Concentric
map sampling of 256 rays

Figure 34: The image differences between the Reference image and the visibility map methods,

show that using Concentric map sampling produces much better quality results as compared to

Uniform sampling. Image differences are exaggerated by a factor of 5.

significantly. So a good compromise between memory use and accuracy would be to use the

4226 / 32x32 maps.

In Figure 1, we see the method applied to different types of models. We observe that the cost

of using the visibility maps increases very little as we go to higher complexity models. The only

exception is the multiple model case, where we have inter-object interactions. The bunny is a

caster, the corner is a receiver and the other two objects are both casters and receivers. So the

results are justified by the increase of rays cast by about 30 times.

4.6.1.3 Further Memory Optimization

When objects are further away from the viewer, the approximate ambient occlusion calculated

previously, can be further optimized in terms of texture space required. Instead of storing into

the map the distance between the bounding sphere and the object, we can store only the visibility

Atha
na

sio
s G

ait
atz

es

70

Visibility field directional samples
32 x 32 64 x 64 128 x 128 256 x 256

Vi
si

bi
lit

y
fie

ld
po

si
tio

na
ls

am
pl

es

80

1.10 / 0.0933 / 5.2605 4.11 / 0.0941 / 5.2339 15.34 / 0.0949 / 5.2091 60.80 / 0.0959 / 5.2041

29
0

3.96 / 0.0946 / 2.8207 14.60 / 0.0958 / 2.4118 54.42 / 0.0981 / 2.3153 213.75 / 0.1016 / 2.2914

10
90

14.06 / 0.0987 / 1.0653 51.23 / 0.1022 / 1.0318 193.25 / 0.1079 / 1.0294 772 / 0.1152 / 1.02871

42
26

54.8 / 0.1083 / 0.6772 204.3 / 0.1112 / 0.6315 925.0 / 0.1150 / 0.6209 3039.7 / 0.1219 / 0.6185

Figure 35: Cumulative table using 256 sample rays from each vertex of the tessellated corner

(3x33x33) with a concentric map sampling distribution. The numbers under the images correspond

to the preprocessing time, the run-time ambient occlusion computation on the CPU in seconds

(using machine type 2) and the RMS error compared to the Reference image of Figure 34.Atha
na

sio
s G

ait
atz

es

71

Lemon Tree Bunny Igea Multiple Objects

Model

Triangles 26.3K 39K 67.2K 142.3K

Rays cast 836,352 836,352 836,352 26,444,800

Ray casting time 196.2 s 331.1 s 616.35 s 4286.8 s

Pre-processing 99.54 s 54.79 s 243.76 s 334.6 s

AO calculation 0.24 s 0.228 s 0.204 s 4.692 s

Table 1: The visibility fields algorithm applied to several different types of models and their re-

spective CPU timings (using machine type 1). In the above images we used 256 sample rays with

a concentric map sampling distribution. The ambient occlusion computation is done using the

4226 / 32x32 maps.

of the geometry in the given ray direction. This is a binary value, thus the method saves about

87.5% in texture space. The distance used in this case is the average distance of the sample points

towards the object in the direction of the normal at the given sample point. In Figure 36 we can

see the comparable results.

4.7 Implementation & Evaluation on the GPU

We implemented the real-time part of the above algorithm using the OpenGL R⃝ Shading Lan-

guage (GLSL) [61] on a 32bit Intel Core 2 Quad Q6600 at 2.4GHz CPU and 4GB of main memory

equipped with a GeForce GTS8800 GPU with 512MB of video memory. The window size was

set to 512x512 for a total of 262144 pixels.

Atha
na

sio
s G

ait
atz

es

72

Figure 36: Using the 1 bit per direction optimization method with 4226 occlusion maps (posi-

tional samples) of size 64x64 and Concentric map sampling of 256 rays we get results which are

comparable with the corresponding image from Figure 35, giving an RMS error of 4.4030.

4.7.1 Ambient Occlusion

For most of the test runs the active pixels were about 200000 as only 75% of the window was

rendered (the rest being black).

To acquire a reference image against which to compare our acceleration method in speed but

mainly in image quality, we implemented ambient occlusion on the GPU using the uniform grid

acceleration structure (see Figure 37 bottom-right).

We observe (in Figure 37) that the RMS error of the images compared to the reference image

of the bunny, is very low and the achievable draw time, even for large models, is real-time. Based

on the RMS error using 4226 64x64, visibility maps gives the same results as using maps of size

16642 32x32. We also infer from Figure 38 that the draw time is unaffected by the number of

maps used thus the space required for the visibility maps depends only on the image quality that

we would like to achieve.

Atha
na

sio
s G

ait
atz

es

73

Visibility field directional samples
32 x 32 64 x 64 128 x 128

Vi
si

bi
lit

y
fie

ld
po

si
tio

na
ls

am
pl

es

10
90

81.2 ms, RMS error 0.59578 82.7 ms, RMS error 0.58886 82.9 ms, RMS error 0.58606

42
26

83.2 ms, RMS error 0.45392 83.3 ms, RMS error 0.42404

16
64

2

84.2 ms, RMS error 0.42054 reference image

Figure 37: Inter-object ambient occlusion (close-up) of a bunny model using the visibility fields

method with 256 rays per pixel implemented on the GPU. We report the draw time and the RMS

error. On the bottom right the reference image rendered on the GPU using 256 rays per pixel in

7126 ms. The model itself is rendered using fixed-pipeline direct rendering.Atha
na

sio
s G

ait
atz

es

74

Figure 38: The draw time (left) and the RMS error (right) of the bunny model (39000 tris) plotted

against different rays/pixel versus the size of the visibility maps. We observe that the frame draw

time is not dependant on the number of visibility maps used or their size but rather on the amount

of rays used.

In Figure 39 we show the application of our algorithm for the generation of inter-occlusion

for several large models while maintaining the interactive nature of the algorithm. We achieve

between 260 and 600 million rays per second, which is well above todays maximum performance

reported by Horn et al. [45].

In Figure 40 the visibility fields were used for the generation of intra-object occlusion but

because the ray sphere intersection algorithm always succeeds at finding an intersection (worst

case since we are inside the bounding sphere of the object) the rendering times are up to 4 times

slower than the inter-object occlusion case. Still the performance rate is above the one reported

by Horn et al. [45]. We also observe that more visibility maps are required in this case in order

to render a believable image. We attribute this to the fact that multiple rays, with small angular

differentiation, originating on close points on the object, hit the same sample point on the objects

bounding sphere. Thus, the same visibility map is used and the occlusion result looks grainy.

When more maps are used the problem is alleviated.

Atha
na

sio
s G

ait
atz

es

75

Bunny: 38889 triangles
Preprocessing time: 0.28 hours
Draw time: 39.4 ms
Rate: 614.21 M rays/s

Horse: 96966 triangles
Preprocessing time: 1.58 hours
Draw time: 73.3 ms
Rate: 330.15 M rays/s

Cow: 92864 triangles
Preprocessing time: 2.69 hours
Draw time: 59.3 ms
Rate: 408.09 M rays/s

Dragon: 255138 triangles
Preprocessing time: 15.91 hours
Draw time: 93.3 ms
Rate: 259.37 M rays/s

Figure 39: The GPU visibility fields algorithm applied to several different types of models in order

to compute inter-ambient occlusion. We used 4226 64x64 visibility maps, requiring 16.5 MB of

space and 121 rays per pixel. The models themselves are rendered using fixed-pipeline direct

rendering.

Atha
na

sio
s G

ait
atz

es

76

Igea: 67170 triangles
Preprocessing time: 2.87 hours
Draw time: 202 ms
Rate: 119.8 M rays/s

Santa: 75777 triangles
Preprocessing time: 1.06 hours
Draw time: 183 ms
Rate: 132.2 M rays/s

Elephant: 157160 triangles
Preprocessing time: 21.02 hours
Draw time: 400 ms
Rate: 60.5 M rays/s

Super Shape: 261120 triangles
Preprocessing time: 52.37 hours
Draw time: 330 ms
Rate: 73.3 M rays/s

Figure 40: Intra-object ambient occlusion rendered on the GPU using 16642 64x64 visibility maps

requiring 65 MB of space and 121 rays per pixel.Atha
na

sio
s G

ait
atz

es

77

Figure 41: A scene of the Sponza Atrium with a bunny (38889 tris), a cow (92864 tris) and an

elephant (157160 tris) rendered in three passes (one per object) with the visibility fields algorithm

using 4226x64x64 maps and rendering in 2.5 frames per second.

In Figure 41 we show the Sponza Atrium rendered with several large polygon models inside it.

The resulting draw time is contributed to the rendering method that uses one pass for each caster

model. Just before each caster model is drawn, we enable subtractive blending (with OpenGL R⃝

blend equation GL FUNC REVERSE SUBTRACT), in effect, removing colour from the image.

The poor draw time is also attributed to the fact that non-visible pixels (the Sponza Atrium has a

lot of non-visible geometry) are not culled before the fragment shader is executed on the GPU.

Even though the visibility fields method is only an approximation, it does a very good job at

preserving image quality given the low memory requirements and achieved draw time.

4.7.2 Ray tracing

In Figures 42 and 43 we show a close-up of the bunny ears of using the visibility fields method.

We show that very good results of soft shadows can be achieved while using 20 shadow ray

Atha
na

sio
s G

ait
atz

es

78

Visibility field directional samples
32 x 32 64 x 64 128 x 128 256 x 256

Vi
si

bi
lit

y
fie

ld
po

si
tio

na
ls

am
pl

es

10
90

347.0 ms, RMS error 6.00,

1.064 MB

347.7 ms, RMS error 4.85,

4.258 MB

348.1 ms, RMS error 4.66,

17.031 MB

348.5 ms, RMS error 4.59,

69.760 MB

42
26

348.0 ms, RMS error 5.95,

4.127 MB

348.5 ms, RMS error 4.82,

16.508 MB

348.7 ms, RMS error 4.44,

66.031 MB

16
64

2

348.5 ms, RMS error 5.94,

16.252 MB

348.6 ms, RMS error 4.80,

65.00 MB

Figure 42: Close-up of the bunny ears rendered using the visibility fields method for the generation

of soft shadows using 3 lights and 20 shadow ray samples on the GPU. We report the required time,

the RMS error and the total space requirements.Atha
na

sio
s G

ait
atz

es

79

Figure 43: Reference image of the bunny, rendered using the BVH method with 3 lights and 256

rays per pixel taking 913,210 ms on the GPU. On the right, close-up of the ears.

samples along with 4226 64x64 visibility maps (i.e. 16.51MB of memory) as the visual quality is

much better than the 1090 maps.

In Figure 44 we show a soft shadows rendering of a horse using various types of visibility

maps to realise that their RMS error is similar. We can conclude that using the 1090 64x64 low-

resolution maps is sufficient to get a very good approximation of the result. Comparing the timings

with those of the bunny model we observe that the cost of using the visibility maps does not depend

on the underlying geometry of the objects.

In Figure 45 we render a slightly more complex scene using 3 light sources of radius 2. As

in the previous cases, the rendering time is almost completely affected by the primary rays which

perform triangle intersection tests. Our method completes the rendering in 3268 ms, of which

70% is for the shadow rays. It produces a very good approximation of soft shadows using 20

shadow rays per pixel. For the total of 11,838,600 shadow rays, this corresponds to 1.9323 10 � 4

ms per shadow ray which is a very encouraging result. In the corresponding BVH GPU method to

produce sharp shadows using just 1 shadow ray per pixel, the draw time is 48047 ms to compute

Atha
na

sio
s G

ait
atz

es

80

Visibility field directional samples
64 x 64 128 x 128

Vi
si

bi
lit

y
fie

ld
po

si
tio

na
ls

am
pl

es

10
90

321.6 ms, RMS error 4.701 321.7 ms, RMS error 4.212

42
26

321.8 ms, RMS error 4.364 322.7 ms, RMS error 3.815

Figure 44: Soft shadow of the horse (96966 tris) using 1 light rendered using the visibility fields

and 20 shadow ray samples. In contrast the reference image, using the BVH method and 256

shadow ray samples, on the CPU required 760012 ms and on the GPU 322100 ms.

the final image. Of that time 70% is used for the 591930 shadow rays yielding 5.682 10 � 2 ms per

shadow ray.

In Figures 46 and 47 we use the visibility fields algorithm to render non-perfect-mirror re-

flections. The polished reference image is rendered with 4 rays for each reflective pixel leading to

slower rendering times. However, we notice from the images and the RMS factor that the reflected

sub region of our method is much closer to the result of the brushed metal reference image than

the perfect mirror reference image. This strengthens our position that the proposed method is suit-

able for stochastic ray-tracing, as the quality of the rendered image is comparable to the reference

Atha
na

sio
s G

ait
atz

es

81

Figure 45: Close-up of a more complex scene using 3 point lights and 20 shadow ray samples

rendered in 3268 ms using the visibility fields method. The BVH GPU method for sharp shadows

takes 48047 ms.

4226 32x32 maps, 440 ms,
4.555 RMS error, 16.508 MB

4226 64x64 maps, 441 ms,
4.480 RMS error, 66.031 MB

reference image: 5530 ms

Figure 46: Polished reflection of the bunny (39000 tris) using 4 rays per reflective pixel. From left

to right: close-up views of our visibility fields GPU method where we report the draw time, the

RMS error and the space requirements. Last is the reference image using the BVH method and its

draw time.Atha
na

sio
s G

ait
atz

es

82

4226 32x32 maps, 1897 ms,
9.392 RMS error, 16.508 MB

4226 64x64 maps, 1900 ms,
8.137 RMS error, 66.031 MB

reference image: 112910 ms

Figure 47: Polished reflection of an elephant (157160 tris) using 4 rays per reflective pixel. From

left to right: close-up views of our visibility fields GPU method where we report the draw time,

the RMS error and the space requirements. Last is the reference image using the BVH method

and its draw time.

image. Furthermore, the rendering time, even using 4 rays per reflective pixel, is very close to

ray-casting without secondary rays.

4.8 Limitations

The visibility fields method is not very well suited for elongated models (see Figure 48). The

occlusion produced, even when using 16642 maps is pretty grainy. In addition models that are

highly concave would fail to produce accurate visibility maps as it would not be possible to record

all of the tight concavities of the model. Surrounding the model with more spheres could be a

solution to this limitation even though this would require additional texture space.

Atha
na

sio
s G

ait
atz

es

83

Figure 48: Inter-ambient occlusion of a cane (elongated object) rendered on the GPU using 121

rays per pixel. On the left using 4226 128x128 maps and on the right using 16642 128x128 maps.

(The image brightness is doubled for clarity)

4.9 Summary

We have presented the visibility fields, a discretization of the visibility around an object, that

can be used for secondary diffuse illumination (i.e. ambient occlusion) and ray tracing calculations

where exact ray hits are not critical (i.e. soft shadow rays). We have shown how it can be used

for an interactive inter-object ambient occlusion approximation computation. For the intra-object

occlusion case the number of required maps is large and the draw time needs improvement when

the model covers a lot of pixels on the screen. In a game environment though, where several

models exist on the screen and their coverage is not very big, the intra-object occlusion method

can be used even for high triangle count models.

The method especially favors large model data sets, where we maintain a constant computation

time, independent of the model complexity. Our method is robust, has a relatively small memory

footprint against comparable existing methods and the time required to generate the visibility maps

depends only on the complexity of the occluder geometry. In addition, the number and resolution

Atha
na

sio
s G

ait
atz

es

84

of the maps used in the visibility fields can be adjusted depending on the required accuracy and the

available memory. The same maps can be used for both inter- and intra-object ambient occlusion

computation.

Furthermore, our algorithm can be applied to ray-tracing calculations where exact ray hits are

not critical, for example for shadow and secondary ray intersection tests, such as soft shadow rays

and Monte Carlo ray-tracing.

We have shown that in the above mentioned cases the production of the desired image is ac-

celerated while the results remain close to the reference images. The hybrid method we propose

favors large model data sets as in ambient occlusion. This result is expected as all triangle inter-

section tests for shadow and secondary rays are replaced with constant time operations. In this

way rendering time is affected mostly by the primary rays that give us the visibility of the scene.

In the next chapter we will discuss the discretization of the illumination in an environment into

a volume that will assist us in generating in real-time diffuse global illumination.

Atha
na

sio
s G

ait
atz

es

Part III

– Discretization of Illumination –

Virtual Point Light Methods

Atha
na

sio
s G

ait
atz

es

Atha
na

sio
s G

ait
atz

es

Chapter 5

Interactive Volume-based Indirect Illumination of Dynamic Scenes

5.1 Motivation

In order to synthesize photo-realistic images we need to capture the complex interactions

of light with the environment. Light follows many different paths distributing energy among

the object surfaces. This interplay between light and object surfaces can be classified as local

illumination and global illumination. Local illumination algorithms take into account only the

light which arrives at an object directly from a light source. Global illumination algorithms, on

the other hand, take into account the entire scene, where the light rays can bounce off the different

objects in the environment or be obstructed and absorbed.

5.2 Overview

We present a real-time algorithm to compute the global illumination of dynamic scenes with

complex dynamic illumination. We will create a discretization of the light in the scene using

a Virtual Point Light (VPL) illumination model on the volume representation of the scene by

generating maps from the perspective of the light sources and injecting the samples of these maps

87

Atha
na

sio
s G

ait
atz

es

88

into a volume while at the same time creating an additional volume that would hold the occlusion

/ visibility of the geometry in the scene. Unlike other dynamic VPL-based real-time approaches,

our method handles occlusion (shadowing and masking) caused by the interference of geometry

and is able to estimate diffuse inter-reflections from multiple light bounces.

5.3 Introduction

In the previous chapter we presented a discretization of the visibility function by clustering

together intersection rays. In this chapter we will discretize the illumination of the scene using a

Virtual Point Light method.

We propose a method that produces photo-realistic images of diffuse, dynamic environments

in real-time, by estimating the slowly varying global illumination at discrete locations in the

environment and applying the results on the scene geometry. This way, we can capture shad-

owing effects as well as diffuse inter-reflections from multiple secondary light bounces. The

method we propose uses a uniform discretization of the scene, incorporating geometry informa-

tion in the discretization structure. Instead of using the shadow map data as virtual point lights

(VPLs) [18] [19] [54], our method performs a complete scene voxelization and is thus able to

include occlusion information along with any direct, indirect and self-emitted illumination. Fur-

thermore, it is capable of calculating global illumination from multiple light bounces and include

energy from emissive materials in the process.

Scene voxelization describes the process of turning a scene representation consisting of dis-

crete geometric entities (e.g. triangles) into a three-dimensional regular spaced grid. Each cell of

the grid encodes specific information about the scene. Depending on the type of voxelization, this

information can be different. In the case of a binary voxelization, a cell stores whether geometry

Atha
na

sio
s G

ait
atz

es

89

is present in this cell or not. The cells can be represented by single bits in a bitmask. In a multi-

valued voxelization, the cell can also store information like material or normals. Furthermore,

voxelization can be divided into boundary or solid voxelization. Boundary voxelization encodes

the object surfaces only, whereas solid voxelization captures the interior of a model as well.

Both full occlusion and emissive materials were not handled by previous methods. Also, the

most successful approaches either could not handle secondary bounces or could do so at a great

penalty in terms of computation cost and/or severe irradiance storage interference.

5.4 Mathematical Background

5.4.1 Review of Spherical Harmonics

The spherical harmonics (SH) are a set of orthonormal basis functions defined over a sphere,

in the same manner that the Fourier series is defined over an N -dimensional periodical signal.

The Spherical Harmonic (SH) functions in general are defined on imaginary numbers, but since

in graphics we are interested in approximating real functions over the sphere (i.e. light intensity

fields), we use the real spherical harmonics basis. Given the standard parameterization of points on

the surface of the unit sphere into spherical coordinates (sin θ cosϕ, sin θ sinϕ, cos θ)→ (x, y, z)

the real SH basis functions of order l is defined as:

Y m
l (θ, ϕ) =



√
2Km

l cos(mϕ)Pm
l (cos θ) m > 0

√
2Km

l sin(� mϕ)P � m
l (cos θ) m < 0

K0
l P

0
l (cos θ) m = 0

(4)

where l ∈ R+, � l ≤ m ≤ l, Pm
l is the associated Legendre polynomial and Km

l is the scaling

factor to normalize the functions which is defined as:

Km
l =

√
(2l + 1)

4π

(l � |m|)!
(l + |m|)!

(5)

Atha
na

sio
s G

ait
atz

es

90

The spherical harmonics possess several important properties, such as rotation invariance. This

means that the SH approximation f of a spherical function f rotated by some rotation operator R

is the same regardless of the order of application of the rotation: rotating the SH projection of f

gives the same approximation as rotating f and then projecting it. This prevents aliasing artifacts

from occurring while rotating functions and means that we can simply rotate the projection of a

function instead of re-projecting a rotated function.

Similar to the Fourier series expansion, a function on the sphere f(θ, ϕ) can be represented in

terms of spherical harmonics coefficients fl,m as:

f(θ, ϕ) =

∞∑
l=0

l∑
m= � l

fl,mY m
l (θ, ϕ) (6)

A signal over a sphere is approximately reconstructed using a a truncated SH series, by pro-

jecting the initial function f onto a finite set of SH coefficients up to order l = n, l ∈ N. Typically,

in computer graphics a maximum order of 6 is used.

Additionally, because of orthnormality, the integral of two reconstructed spherical functions

that have been projected in the SH basis is reduced to the inner product of the vectors of their SH

coefficients. For band-limited SH functions of order n, the integral becomes:

∫
f̃(θ, ϕ)g̃(θ, ϕ) =

n∑
l=0

l∑
m= � l

fl,mgl,m (7)

5.4.2 Radiance Transfer

In order to accurately model light in an environment, the energy transfer has to be evaluated on

each surface location. The Rendering equation (see Equation 1), proposed by Kajiya [52], asso-

ciates the outgoing radiance Lo(x, ω⃗o) from a surface point x along a particular viewing direction

ω⃗o, with the intrinsic light emission Le(x, ω⃗o) at x and the incident radiance from every direction

ωi in the hemisphere Ω above x, using a BRDF that depends only on the material properties and

Atha
na

sio
s G

ait
atz

es

91

the wavelength of the incident light. The hemisphere-integral form of the Rendering equation can

be written as:

Lo(x, ω⃗o) = Le(x, ω⃗o) +

∫
Ω

Li(x, ω⃗i)fr(x, ω⃗i → ω⃗o)cos(θ)dω⃗i (8)

where fr(x, ω⃗i → ω⃗o) is the bidirectional reflectivity distribution function of the surface at point

x, expressing how much of the incoming light arriving at x along direction ω⃗i is reflected along

the outgoing direction ω⃗o. Li(x, ω⃗i) is the light arriving along direction ω⃗i.

If we group the cosine term and fr into a single transfer function T, (Sloan et al. [100]), which

expresses how point x responds to incoming illumination, then Equation 8 becomes:

Lo(x, ω⃗o) = Le(x, ω⃗o) + Lr(x, ω⃗o) = Le(x, ω⃗o) +

∫
Ω

Li(x, ω⃗i)T (x, ω⃗i → ω⃗o)dω⃗i (9)

The above generic energy transfer equation can be used in fact to model any variation of

the Rendering equation. In our case, where a point in space (voxel center) is illuminated, it

is more convenient to consider an integral over the entire sphere surrounding the voxel center.

Furthermore, the voxel center can behave as a spherical particle, receiving energy with maximum

flow from every direction. Therefore, the cosine term is dropped as the projected solid angle

towards the emitting location along ω⃗i always equals dω⃗i.

Using the orthonormality property of the SH function basis (Equation 7) and considering for

the moment only the reflected radiance, the integral in Equation 9 can be approximated with a

finite set of terms as:

Lr(x, ω⃗o) ≈
n∑

l=0

l∑
m= � l

Ll,mTl,m (10)

5.5 Method Overview

We have extended the work of Kaplanyan [54], in order to take into account occlusion in the

light transfer process and secondary light bounces. Our method is based on the full voxelization

Atha
na

sio
s G

ait
atz

es

92

of the geometry instead of the injection of only the relfection shadow map points (VPLs) in a

volume grid. This way, the presence of geometry that is unlit by the direct illumination is also

known and light interception and reflection is possible. The voxelization records — among others

— direct illumination and scalar occupancy data, thus enabling the indirect illumination from

emissive materials and the transmission through transparent elements.

Our method consists of three stages. First the scene (or a user-centered part of it) is discretized

to a voxel representation. Next, the radiance of each voxel is iteratively propagated in the volume

and finally, during image rendering, the irradiance of each surface point is calculated by sampling

the radiance from the nearest voxels.

To this effect, we use several 3D volume buffers. An accumulation volume buffer is used for

the storage of radiance samples when light bounces off occupied voxels. This buffer is sampled

during the final rendering pass to reconstruct the indirect illumination. For each color band it

stores a spherical harmonic representation of the radiance of the corresponding scene location (4

coefficients encoded as RGBA float values). It is initialized with zero radiance. For the iterative

radiance distribution, a propagation volume buffer is used (see Section 5.5.2). The propagation

buffer stores a spherical harmonic representation of the radiance to be propagated in the next

propagation iteration. It is initialized with the radiance from the first bounce VPLs (direct illu-

mination). Both the accumulation and the propagation buffers are read and write buffers. Our

algorithm also reads information from one more read-only volume buffer that contains informa-

tion about the scene normals and surface albedo (see Figure 49 (b) and (c)). Average normals and

space occupation (scalar voxelization value, also accounting for transparency) are compacted into

a single voxel value.

To discretize our scene in real-time, we create a uniform spatial partitioning structure (voxel

grid - see Section 5.5.1) on the GPU, where we store the geometry and radiance samples. We

Atha
na

sio
s G

ait
atz

es

93

Figure 49: Several environments voxelized into a 643 grid. Column 1: a model of 10,220 triangles

(Arena). Column 2: a model of 109,170 triangles (Knossos). Column 3: the Sponza II Atrium of

135,320 triangles (cross section depicted). All buffers are floating point and have values ∈ [-1,1].

As such when viewing the buffers some black voxels may appear (see the normals map) indicating

negative values.

Atha
na

sio
s G

ait
atz

es

94

inject VPLs in our voxel space, which are essentially hemispherical lights with a cosine falloff.

The VPLs are then approximated by a low-order spherical harmonic coefficients representation

(see Figure 49 (d) and (e) respectively). Similar to Kaplanyan [54], we use an iterative diffusion

approach on the GPU to propagate energy within space. In contrast to [54] though, since we obtain

the space occupation information from the voxelization (not-just VPLs), energy is propagated

only in void space, from one voxel boundary to the next. The propagated radiance is reflected on

occupied (voxelized) volume grid points and accumulated at these locations in the accumulation

buffer (see Section 5.5.2). The new propagation direction is determined by the stored average

voxel normal of the occupied voxel.

During the rendering pass (see Section 5.5.3), for each fragment, the volume is queried as a

texture and the closest texels (accumulated irradiance) are used to estimate the global illumination

at that point in the scene.

5.5.1 Real-Time Voxelization

Instead of applying one of the fast binary GPU voxelization methods, such as Eisemann’s et

al. [23], we use a variant of Chen’s et al. algorithm [11] because we need to store multi-channel

scalar data in each voxel. More specifically, we use the same steps as Chen’s algorithm, for the

slicing of the volume. The main difference is that we do not use the originally proposed XOR

operation because in practice, very few models are watertight and many volume attributes cannot

be defined for interior voxels. Therefore, our method produces only volume shells.

In brief, for every volume slice (see Algorithm 4), a conventional scan-conversion of the scene

geometry takes place and the generated fragments correspond to the voxels of this slice (Fig-

ure 50). Rasterization is incremental and requires that the slope of the dependent variable on the

increment is less than 1. As far as the scan conversion of a polygon onto the (slice-oriented) view

Atha
na

sio
s G

ait
atz

es

95

Figure 50: Slice-based voxelization (left) and composition of the three sub-volume passes into

one voxelized volume (right).

plane is concerned, there are no holes generated but when the fragments are stored as voxels, dis-

continuities along the Z-axis occur (slicing direction). The XOR operation indirectly solved this

problem (by filling in the missing fragments) but in our case this is not an option. The problem

is solved by repeating the scan-conversion process 3 times, once for each primary axis. This way,

we ensure that the depth-discontinuity in one orientation of the view plane will be remedied in one

of the two others (see Figure 50 (right)).

Algorithm 4: Pseudo-code for Scene Voxelization

generate a bounding box of the scene;

for i← 1 to N volume slices do
define a voxel-deep, thin orthogonal viewing frustum along X-axis;
execute 2D scan conversion for all object faces;
store result in slice i of volume buffer-X;

repeat above loop for Y and Z axes;

combine the three temporary volumes, buffer[XYZ], into one final volume keeping the
MAX value for each corresponding cell in all three volumes;

Atha
na

sio
s G

ait
atz

es

96

During the above 3-way voxelization, the radiosity of each grid cell is computed using direct

illumination (complete with shadows and emissive illumination). Three buffers on the GPU are

needed to store the temporary volume results of the three slicing procedures (one for each differ-

ent orientation of the object). Finally, those three volumes are combined into one buffer, using

the MAX frame buffer blending operation. The maximum radiocity of each cell is stored as a

spherical harmonic representation. These values will be used as the initial radiance distribution in

the propagation buffer for the iterative radiance distribution.

5.5.2 Iterative Radiance Distribution

Once we have injected the VPLs into the initial 3D volume, we need to propagate their ini-

tial radiance to their neighboring voxels. The propagation stage consists of several sequential

iterations performed entirely on the GPU. Each iteration represents one discrete step of radiance

propagation in the (empty) 3D volume. We effectively perform radiance shooting at each volume

location by gathering radiance instead from each one of the voxel’s neighbors (see Figure 51) and

interpolating the weighted sum of the corresponding directional contributions on the GPU.

Similar to [54], we split the integral of radiance gathering (Equation 9 for spherical integra-

tion domain) into six sub-domains corresponding to the six sides of the receiving voxel. Instead

of considering only unobstructed propagation, though, the transfer function Tj→i, between the

neighboring voxel j and the current voxel i, is split into a geometric (transfer) term Tcone(j) and a

reflective term Tr(j). The four Tcone(j) coefficients are pre-computed from the six rotated spherical

harmonic functions of a 90-degree cone. Tr(j) is used for the deflection of the incident radiance.

When voxel i corresponds to void space, radiance is propagated in the direction from voxel

j to i. This means that when no obstacle is encountered, Tr(j) coefficients are equal to 1. On

the other hand, when voxel i is occupied, the spherical harmonic function of the incident radiance

Atha
na

sio
s G

ait
atz

es

97

Figure 51: Radiance Gathering Illustration (a). The radiance for the center voxel is gathered from

the values stored at the voxels of the surrounding cells. Radiance shooting (b) in the radiance

propagation procedure is equivalent to radiance gathering (c).

from voxel j should be mirrored with respect to the plane that is perpendicular to the plane of

reflection and parallel to the average normal direction stored in the volume buffer. This requires

two SH rotations and a mirroring operation. See [65] for details on the rotation of real spherical

harmonics. For speed and simplicity though, this operation is replaced by a mirror reflection on

the voxel boundary, i.e. along one of the three primary axes. Therefore, the four coefficients of

Tr(j) are 1 except the one corresponding to the mirror direction. Taking into account the above

factors, the gathering operation becomes:

∫
S

Li(x, ω⃗i)T (x, ω⃗i → ω⃗o)dω⃗i =
6∑

j=1

1∑
l=0

l∑
m=� l

L(j),l,mTcone(j),l,mTr(j),l,m (11)

Figure 52 demonstrates the propagation and radiance accumulation process.

5.5.3 Final Illumination Reconstruction

During the final rendering pass, the irradiance at each surface point is computed from the inci-

dent radiance Li that is stored in our uniform grid structure (accumulation buffer). The irradiance

Atha
na

sio
s G

ait
atz

es

98

E at point x can be derived by integrating the definition of incident radiance over the hemisphere

above x:

E(x) =

∫
Ω

Li(x, ω⃗i)cosθdω⃗i (12)

where θ is the angle between the surface normal and the incident radiance direction ωi. The

integration domain is the hemisphere Ω defined by the surface normal nx at point x.

In order to include the color filtering at the final gathering stage as well as the material emis-

sion, we can estimate the radiosity B(x). For diffuse surfaces, B(x) is given by the following

hemisphere-integral equation, after multiplying Equation 8 with π (and hense Li):

B(x) = Be(x) +
ρ(x)

π

∫
Ω

Bi(x, ω⃗i)cosθdω⃗i (13)

where ρ(x) is the albedo of the surface. If we change the integration domain to the full sphere Ω′,

the previous equation can be rewritten as follows:

B(x) = Be(x) +
ρ(x)

π

∫
S

Bi(x, ω⃗i)T (nx, ω⃗i)ωi (14)

Figure 52: Simplified example of the propagation and light reflection process.

Atha
na

sio
s G

ait
atz

es

99

where the function T is defined as follows:

T (nx, ω⃗i) =


cos θ, θ < π/2

0, θ > π/2

(15)

This change of the integration domain is necessary because we are going to use spherical

harmonics, which are defined over the sphere and not the hemisphere.

Equation 14 is directly evaluated per pixel to give the final indirect lighting. In our algorithm

the radiance L is tri-linearly interpolated from the stored values in the uniform grid structure.

From the eight closest grid points only the ones corresponding to occupied voxels are considered

for interpolation. Li is already stored and interpolated in spherical harmonic representation. We

also build a spherical harmonic representation for the function T , as described in [54] and the

integral is calculated per pixel as a simple dot product, as shown in Equation 7.

5.6 Implementation & Evaluation

We have integrated the above algorithm in a real-time deferred renderer using OpenGL R⃝ and

the OpenGL R⃝ Shading Language (GLSL) [61]. Our proof of concept implementation uses a 2nd

order spherical harmonic representation, since the four SH coefficients, map very well to the four

component buffers supported by the graphics hardware. All results were rendered on an Intel

Core i7 860 at 2.8GHz with 8GB of RAM and equipped with an NVIDIA R⃝ GeForce GTX285

GPU with 1GB of video memory at 512x512 pixels with a 323 grid size. It should be noted here

that, excluding the final interpolation stage, the performance of the indirect lighting computation

in our method does not depend on the final screen resolution, but only on the voxel grid size and

the number of propagation steps. This is a big advantage over instant radiosity methods, like

imperfect shadow maps.

Atha
na

sio
s G

ait
atz

es

100

Triangles Grid size Iterations Voxelization Propagation Total
(ms) (ms) (ms)

test scene 48 323 11 10 12 22

room 704 323 64 3 61 69

arena 10219 323 12 3 13 21

sponza 66454 323 11 10 11 28

Table 2: Time measurements of our test scenes in milliseconds. Only the voxelization and prop-

agation times are relevant to our work. The total rendering time includes the direct lighting com-

putation and other effects and is given as a reference. Note that higher grid sizes are prohibitive

using the current hardware.

Table 2 shows comprehensive time measurements for all the scenes detailed below. All scenes

are considered to have fully dynamic geometry and lighting conditions. In all cases our algorithm

achieves real-time frame rates and sufficient accuracy in the reproduction of the indirect diffuse

illumination, even though our implementation is not optimized in any way.

We have found that the propagation stage of our method is limited by the available memory

bandwidth and not the computational speed. This is to be expected, since the propagation kernel

requires 52 floating point reads and 8 floating point writes per color band. To save memory

bandwidth we do not store the diffuse color of the surfaces in the voxel structure, but after the

first light bounce we consider it constant and equal to 0.5 for each color band.

Figure 53 shows a direct comparison of our algorithm with a reference solution on a simple

test scene. We can see that our method reproduces the shape and the properties of the indirect

illumination in the reference solution.

Figure 54 shows a room lit through a set of open windows. This is a challenging scene for

global illumination algorithms, because only a small region on the left wall is directly lit by the

Atha
na

sio
s G

ait
atz

es

101

sun and the majority of the lighting in the room is indirect. We can see that the simple light propa-

gation method completely fails to reproduce the indirect lighting in the room, since it is not taking

into account secondary light bounces and occlusion. At least two bounces of indirect lighting are

required to get meaningful results in this case. In our method, when a grid of size N is used,

the distance between the walls of the room is also N , so kN propagation steps are required to

compute k bounces of indirect illumination. This is a worst case scenario, as in typical scenes

light interaction from one end of the scene to the other is not required. In this particular case

we have used 64 propagation steps to simulate two bounces of light on a 323 grid. The resulting

illumination is visually pleasing, giving high contrast on the edge of the walls and the staircase.

Since our algorithm takes indirect occlusion in consideration, the area below the staircase is cor-

rectly shadowed. We observe some artifacts below the windows, due to the imprecision of the

spherical harmonics and the fact that the grid cell on this area covers both the edge of the wall

and the empty space inside the window. Even with a number of propagation steps this high, our

Figure 53: Test scene solution. From left to right: reference solution computed with ray-tracing

(indirect illumination only), our solution (indirect illumination only) and final image with direct

and indirect lighting.

Atha
na

sio
s G

ait
atz

es

102

Figure 54: Room scene solution; (a) lit with Direct lighting only. (b) Radiosity with 64 iterations.

(c) Direct and indirect illumination using our method. (d) The indirect illumination using light

propagation volumes [54]. (e) Reference radiosity using 2-bounce path tracing. (f) Reference

final image using path tracing.

method maintains easily an interactive frame-rate since the propagation stage takes only 61 ms to

complete.

A nice characteristic of our method is the predictable performance of the propagation stage.

We can easily calculate the time for the propagation step for each individual voxel. This time

is constant and independent from the scene complexity. It should be noted of course that the

performance may be constant and predictable, but the same is not true for the accuracy and the

quality of the resulting illumination.

Atha
na

sio
s G

ait
atz

es

103

Figure 55: Sponza Atrium II scene solution. From left to right: direct lighting, indirect illumina-

tion only and final image with direct and indirect lighting.

Figure 55 shows the Sponza Atrium II, a typical scene in the global illumination literature.

The right part of the scene is directly lit by the sun, the left one is lit only indirectly. As we can

see, using only eleven propagation steps our method successfully reproduces the low-frequency

indirect illumination which is dominant on the left part of the scene with very few visible artifacts.

Figure 56 shows an enclosed arena scene, a typical outdoor scene in video games. Twelve

propagation steps are used in this case and we can see that the resulting indirect illumination

greatly improves the visual quality of the final image.

Figure 56: Arena scene solution. From left to right: direct only lighting, indirect illumination

using our method and final image with direct and indirect lighting.

Atha
na

sio
s G

ait
atz

es

104

5.7 Discussion

A nice feature of our method is that for scenes with static or smoothly changing geometry

and lighting conditions, the cost of the indirect illumination can be amortized among many frames

without introducing any visible artifacts. In other words, the rate of indirect lighting updates can

be reduced to meet the final performance goals. For scenes with good temporal coherence —

hence, with slow illumination changes — it is possible to perform the 3-way voxelization in an

interleaved manner (one direction per frame). In this case the volume is completely updated after

three frames but the voxelization cost is reduced by a factor of three.

Since voxelization is a rough discretization of the scene geometry, secondary shadows from

small scale geometric details cannot be reproduced accurately by our method. Higher voxel reso-

lutions can always be used, but with a performance hit. Also, due to graphics hardware limitations,

we only used second order spherical harmonics, which they do not have sufficient accuracy to rep-

resent high frequency indirect light. This is not crucial if the direct illumination covers large parts

of a scene yielding only very low-frequency indirect shadows in the first place. Interestingly, im-

perfect shadow maps have exactly the same issue (but for different reasons) but we think that our

Figure 57: Knossos scene solution. From left to right: direct lighting, radiosity using our method

and final image with direct and indirect lighting.

Atha
na

sio
s G

ait
atz

es

105

method is preferable since it does not require the maintenance of a secondary point based scene

representation and the performance is mostly independent from final image resolution.

The performance and quality of our method depends on two parameters: the volume resolution

and the number of iterations. Empirically, we have found that a grid size of 32 is sufficient in most

cases. For outdoor scenes we have found that a low iteration count (around 12) is sufficient but

for indoor ones a much higher iteration count is required (around 64) to accurately simulate the

bouncing of the light inside the building.

5.8 Summary

We have presented a new method for the computation of indirect diffuse light transport in

dynamic environments in real-time using a discretization of the illumination in the scene. Unlike

previous work, our method takes in to account indirect occlusion and secondary light bounces.

We have demonstrated that our method gives good results in a variety of test cases and always

maintains a high frame rate.

Since the test results showed that the voxelization step is relatively costly, in the future we

intent to introduce a much faster voxelization scheme. Furthermore, the possibility of a more

accurate but still manageable radiance deflection mechanism will be investigated. Finally, another

interesting direction of research is to extend this method to take specular light transport in to

account.

In the next chapter we will discuss the discretization of the scene geometry that will assist us

in accelerating further more the method just presented.

Atha
na

sio
s G

ait
atz

es

Atha
na

sio
s G

ait
atz

es

Part IV

– Discretization of Geometry –

Voxelization Methods

Atha
na

sio
s G

ait
atz

es

Atha
na

sio
s G

ait
atz

es

Chapter 6

Two Simple Single-pass GPU methods for Multi-channel

Surface Voxelization of Dynamic Scenes

6.1 Motivation

An increasing number of rendering and geometry processing algorithms relies on volume data

to calculate anything from effects like global illumination or visibility information. So a fast and

efficient computation of this volume in real-time is imperative. Volume-based Global illumination

uses an intermediate regular approximation of the geometry in order to store lighting and geometry

data.

6.2 Overview

We present two real-time and simple-to-implement surface voxelization algorithms and a vol-

ume data caching structure, the Volume Buffer, which encapsulates functionality, storage and

access similar to a frame buffer object, but for three-dimensional scalar data. The Volume Buffer

can rasterize primitives in 3D space and accumulate up to 1024 bits of arbitrary data per voxel, as

109

Atha
na

sio
s G

ait
atz

es

110

required by the specific application. The strengths of our methods is the simplicity of the imple-

mentation resulting in fast computation times and very easy integration with existing frameworks

and rendering engines.

6.3 Introduction

In the previous chapter we presented a discretization of the illumination of the scene using a

Virtual Point Light method. In this chapter we will discretize the scene geometry so that the Global

illumination calculations become independent of the scene complexity. In addition, a volume-

based technique provides access to the full-scene data in the local-only context of a shaded pixel

which is important in computing Global illumination effects.

Volume representation of polygonal models is an important basic operation for many appli-

cations in computer graphics and related areas. Polygonal models, for example, have often been

substituted by volume representations to remove unnecessary complexity for certain calculations,

to provide a uniform sampling of the underlying data, to structure multi-resolution information in

an easily and rapidly accessible manner or to enhance the models with additional data. Voxeliza-

tion methods have been used in domains as diverse as global illumination computation [108], [55],

fluids simulation [15] and ambient occlusion computation [81] [84], [73] [106] collision detec-

tion [66], procedural terrain generation [34] and rigid body simulation [42].

Surface voxelization describes the process of turning a scene representation consisting of dis-

crete geometric entities (e.g. triangles) into a three-dimensional regular spaced grid that captures

the surface of the scene. Each cell of the grid encodes specific information about the scene. In the

case of binary voxelization, a cell represented by single bits in a bit-mask stores whether geome-

try is present in it or not. In a multi-valued voxelization, occupancy is extended to represent the

(scalar) coverage of a voxel by the geometry and can also store additional spatial information.

Atha
na

sio
s G

ait
atz

es

111

An increasing number of real-time rendering and geometry processing algorithms relies on

volume data to calculate anything from global illumination approximations or visibility queries.

We present a voxelization algorithm and volume data-caching structure, the Volume Buffer, which

encapsulates functionality, storage and access similar to a frame buffer object, but for three-

dimensional data. The Volume Buffer can rasterize primitives in 3D space and accumulate up

to 1024 bits of arbitrary data per voxel, as required by the specific application, by using up to 8

floating point render targets, as necessary (where 8 is currently the maximum available number

of MRTs). The strength of our method is the simplicity of the implementation (about 15 lines

of geometry shader code and 1 line of pixel shader code - see Section 6.4.2) resulting in fast

computation times and a very easy integration with existing engines and rendering frameworks.

Our multi-channel voxelization algorithm runs entirely on the GPU and can generate volume

data from arbitrary complex and dynamic models in real-time. The proposed volume sampling

technique is not limited to providing an occupancy volume representation of the scene, but also a

complete attribute set for complex calculations (i.e. in global illumination calculations an albedo

buffer, a normal buffer, a direct lighting buffer can be generated). This way heavy computations

are disassociated from the surface representation data, thus making the method suitable for both

primitive-order and screen-order rendering, such as deferred rendering. We do not require water-

tight models nor is our method dependent on the depth complexity of the scene.

As real-time applications that utilize voxelization techniques increase lately, they can directly

benefit from the use of our methods that offer fast discretization of complex polygonal represen-

tations.

Atha
na

sio
s G

ait
atz

es

112

Figure 58: Axial voxelization pass (left) and composition of the three sub-volume passes into one

voxelized volume (right).

6.4 Overview of Voxelization methods

The goal of our voxelization method is to reduce the rasterization and unnecessary clipping

operations over the entire volume grid, while sending the geometry from host to device only once

per slicing direction. To this end, we regard a slice-order voxel fragment generation along a

principal axis.

A volume covering the extents of the scene is created and updated at every frame or whenever

the environment changes. In order to sample the triangles coherently, we take three perpendicular

volume sweep planes and each triangle is selectively rasterized only to the plane of maximum

projection (i.e. to the direction where its normal is mostly aligned with). Therefore the primitives

are rasterized only once. This ensures that the triangles’ surface is densely sampled.

The main operation in both proposed voxelization methods is the clipping or “slicing” of the

incoming triangles against the boundaries of each volume slice. The difference between the two

Atha
na

sio
s G

ait
atz

es

113

methods is where the triangle clipping operation takes place. In the first method (see Section 6.4.1)

each triangle is clipped against the current volume slice, in a geometry shader, allowing only the

valid parts of the triangle to go through for rasterization. In the second method (see Section 6.4.2)

each triangle is rasterized in each volume slice it intersects and the fragments are further clipped

in the pixel shader.

The final volume is generated from the fusion of the three intermediate passes into a single

multi-buffer (see Figure 58) by using the MAX blending operation. We substituted the OR oper-

ation commonly used in binary voxelization, as in our case, we deal with scalar data. Since all

fragments have to be treated, face culling and z-test are disabled and hence no z-buffer is attached

to the frame buffer object. All volume multi-channel attributes are computed and rendered simul-

taneously (e.g. occupancy, albedo, normals etc.) using multiple render targets into corresponding

volume buffers (see Figures 59, 60 and 61).

We take advantage of the OpenGL R⃝ extension for layered rendering. It allows a geometry

shader to write to the build-in special variable gl Layer thus enabling the rendering of primitives

to arbitrary volume texture layers computed at run time and eliminating the multiple passes over

the incoming data or the restriction to record only a binary volume representation in one pass.

6.4.1 Geometry Shader Triangle Slicing

To assign the geometry (or parts thereof) to the appropriate buffer layer (see Figure 62) we

intersect each triangle with the Eye Space Coordinates (ECS) of the volume slices of each axial

sweep. If the triangle is aligned with the major axis of the specific pass, its vertices are sorted

in ascending order. If the triangle is contained within one slice (Figure 63, Case A) the triangle

is exported as is and the exit condition is met. Otherwise, we clip the triangle’s edges against

the planes perpendicular to the major axis (slice boundaries), producing a surface strip for each

Atha
na

sio
s G

ait
atz

es

114

Figure 59: Voxelization of the Knossos model (109170 triangles) into a 1283 grid. The volumes

in the order that they appear are the occupancy volume, the albedo volume, the normals volume

and the lighting volume and the 2nd order spherical harmonics volume of the direct illumination

(R component).

Figure 60: Voxelization of the Sponza II model (219305 triangles) into a 1283 grid; cross section

depicted here.

Atha
na

sio
s G

ait
atz

es

115

Figure 61: Voxelization of the Dragon model (871414 triangles) into a 1283 grid.

slice that the polygon intersects. At each step, we decide on the configuration of the triangle (see

Figure 63) and whether a triangle split needs to occur or not. At each split, a quad-shaped triangle

strip is being generated and rasterized to the appropriate volume layer (see Algorithm 5). The

pixel shader is virtually empty, computing just the multi-channel data that an application requires.

We have expanded the simple for-loop construct, which could have been used in order to slice

the model triangles, in order to achieve higher performance in the geometry shader.

6.4.2 Pixel Shader Fragment Clipping

The second algorithm is very simple as the geometry shader does not do any triangle clipping.

Rather the method relies on fragment rejection in the pixel shader.

For each directional voxelization, each triangle in the scene passes from a geometry shader

(see Algorithm 6) where, if it is aligned to the current sweeping direction, it is rasterized into

all the volume slices that it intersects. The slice boundaries are computed in Normalized Device

Atha
na

sio
s G

ait
atz

es

116

Algorithm 5: Geometry Shader used for triangle slicing (Z-Pass). (ECS: Eye Coordinate
Space)

Input: v1, v2, v3 - the△ vertices
Data: z slice thickness (in volume sweep ECS)
Result: △ sliced into stripes and rasterized into the appropriate volume layer. New � is

emitted with generated vertices v1L, v1R, v2L and v2R per slice.

if△ not aligned with Z-axis then return

sort vertices according to Z-axis.
if winding of△ is altered then

change order of emitted attributes

layer← minimum slice index for the first vertex
slice← current slice depth in ECS

if v3 depth is ≥ slice then CASE A
Emit△ v1, v2, v3→ layer
return

if v2 depth is ≥ slice then v1L← v1R← v1
else v1L← v2 ; v1R← v1

v2L, v2R← Intersect Edges (slice)
Emit � v1R, v1L, v2L, v2R→ layer

repeat
slice += z thickness ; layer ++
v1L← v2L ; v1R← v2R

if v2 depth is ≥ slice then CASE B
v2L, v2R← Intersect Edges (slice)

else
if v3 depth is < slice then

if v2 depth was ≥ slice then CASE C
v2L← v2 ; v2R← v3

else CASE D
v2L← v2R← v3

else
if v2 depth was < slice then CASE E

v2L, v2R← Intersect Edges (slice)
else CASE F

v2L, v2R← Intersect Edges (v2 depth)
Emit � v1R, v1L, v2L, v2R→ layer
v1L← v2L; v1R← v2R
v2L, v2R← Intersect Edges (slice)

Emit � v1R, v1L, v2L, v2R→ layer
until v3 depth < sliceAtha

na
sio

s G
ait

atz
es

117

Figure 62: Geometry shader triangle slicing. The incoming triangles are sliced into stripes and

each stripe is rasterized into the associated layer. (See Algorithm 5)

Coordinates (NDC) and passed to the pixel shader where fragments are discarded if their depth is

outside these boundaries. The process is demonstrated in Figure 64.

6.5 Implementation

In order to create the data storage structure, we generate on the GPU a uniform spatial par-

titioning structure in real-time. For the voxelization, the user has the option to request several

attributes to be computed and stored into floating point buffers for later use. Among them are sur-

face attributes like albedo and normals, but also dynamic lighting information and radiance values

Atha
na

sio
s G

ait
atz

es

118

strip

v1

v2

v3

v1L

ni

v1R

v2Rv2L
si

0

1

2

3

4

5

6

7

8

Case A

Case B

Case C Case D Case E Case F

Triangle contained
within one slice

Strip intersecting
first edge pair

Strip intersecting
second edge pair

Both v and v
inside strip

Only v inside
strip

Only v inside
strip

2 23 3

Figure 63: The six possible triangle strip configurations with respect to the volume grid. (See

Algorithm 5)

in the form of low-order spherical harmonics (SH) coefficients representation (either monochrome

radiance or separate radiance values per color band).

Each Volume Buffer is attached to a frame buffer object and through the multiple render tar-

gets mechanism, we store the user-requested attributes on all buffers simultaneously. For each

voxel, the albedo is computed from the surface material information. The lighting information

is determined using direct illumination, complete with shadows and emissive illumination. The

radiance of the corresponding scene location is calculated and stored as a 2nd order spherical har-

monic representation for each voxel. For each color band, four SH coefficients are computed and

Atha
na

sio
s G

ait
atz

es

119

Figure 64: Pixel shader clipping method. The Geometry shader rasterizes each triangle into all the

volume slices it intersects and the Pixel shader discards the fragments based on their depth (See

Algorithm 6).

encoded as RGBA float values, since the four SH coefficients map very well to the four component

buffers supported by the graphics hardware. Since many works in the literature as well as practical

implementations of shading algorithms rely on the spatial storage of radiance fields in the form of

Spherical Harmonics, the later have been included in our test implementation in order to show the

Atha
na

sio
s G

ait
atz

es

120

Algorithm 6: Geometry and Pixel Shaders used for triangle rasterization (Z-Pass). (ECS:
Eye Coordinate Space, NDC: Normalized device Coordinates).

Input: v1, v2, v3 - the△ vertices
Data: z slice thickness and z volume min (in volume sweep ECS)
Result: △ rasterized into the appropriate volume layer.

/* Geometry Shader */

flat out zMin, zMax // directed to pixel shader

if△ not aligned with Z-axis then return

sliceMin←min triangle z � z volume min/z slice thickness
sliceMax←max triangle z � z volume min/z slice thickness

for slice between sliceMin and sliceMax do
zMin← min depth of slice in NDC
zMax← max depth of slice in NDC
layer← slice
Emit△ v1, v2, v3→ layer

/* Pixel Shader */

flat in zMin, zMax

if frag depth not between (zMin, zMax) then discard
else write data to volume

applicability of our methods. The interested reader should refer to [90], [100] and [39] for further

information.

6.6 Performance & Evaluation

We have integrated the multi-channel voxelization algorithm in a real-time deferred renderer

using OpenGL R⃝ and the OpenGL R⃝ Shading Language (GLSL) [61]. We tested our methods

for multiple models and various voxel grid resolutions. The results, reported in the following

tables, were obtained on an Intel Core i7 860 at 2.8GHz with 8GB of RAM and equipped with an

NVIDIA R⃝ GeForce GTX285 GPU with 1GB of video memory.

We compare our two methods based on the number of vertices that a geometry shader can

output as the running times can vary greatly even for small changes to the number of requested

output vertices. The number of vertices emitted from the geometry shader triangle slicing method

Atha
na

sio
s G

ait
atz

es

121

M
od

el
G

ri
d

G
ri

d
M

em
or

y
G

eo
m

et
ry

sl
ic

in
g

Pi
xe

lc
lip

pi
ng

Vo
xe

ls

si
ze

ac
tu

al
(M

B
)

ve
rt

ic
es

ou
t

ve
rt

ic
es

ou
t

(K
)

7
11

15
19

6
9

12
15

B
un

ny
64

3
53
×

64
×

41
1.

06
1.

74
1.

79
2.

03
2.

51
1.

13
1.

15
1.

28
1.

58
5.

3
12
83

10
6×

12
8×

82
8.

49
2.

37
2.

38
2.

66
3.

19
1.

71
1.

72
1.

86
2.

16
22

69
45

1
25
63

21
3×

25
6×

16
5

68
.6

4
5.

92
5.

97
6.

43
6.

98
4.

92
4.

98
5.

12
5.

48
89

.6
tr

ia
ng

le
s

51
23

42
5×

51
2×

33
0

54
7.

85
28

.2
28

.6
29

.3
30

.1
26

.9
27

.3
27

.5
27

.8
–

K
no

ss
os

64
3

52
×

23
×

64
0.

58
3.

04
3.

09
3.

39
3.

98
1.

82
1.

84
2.

03
2.

45
9.

7
12
83

10
4×

46
×

12
8

4.
67

3.
85

3.
86

4.
26

4.
92

2.
45

2.
46

2.
68

3.
14

45
10

91
68

25
63

20
8×

93
×

25
6

37
.7

8
6.

46
6.

55
6.

95
7.

71
4.

86
4.

91
5.

11
5.

60
19

6
tr

ia
ng

le
s

51
23

41
6×

18
5×

51
2

30
0.

63
20

.8
8

20
.9

4
21

.5
9

22
.5

8
18

.3
3

18
.4

3
18

.7
5

19
.2

8
80

0

Sp
on

za
II

64
3

39
×

27
×

64
0.

51
3.

99
4.

03
4.

52
5.

38
2.

88
2.

91
3.

24
4.

01
20

12
83

79
×

54
×

12
8

4.
17

5.
10

5.
13

5.
78

6.
74

3.
53

3.
57

3.
94

4.
79

10
0

21
93

05
25
63

15
7×

10
7×

25
6

32
.8

1
8.

38
8.

40
9.

26
10

.6
6

5.
93

6.
02

6.
48

7.
51

44
5

tr
ia

ng
le

s
51
23

31
5×

21
4×

51
2

26
3.

32
21

.9
2

22
.0

1
23

.0
3

24
.8

6
18

.4
4

18
.6

4
19

.2
3

20
.5

1
19

80

D
ra

go
n

64
3

64
×

62
×

29
0.

88
69

.1
70

.6
71

.3
72

.0
70

.0
71

.2
74

.1
74

.9
5.

4
12
83

12
8×

12
3×

57
6.

85
75

.4
75

.8
76

.0
76

.3
75

.1
75

.4
75

.8
76

.2
22

.5
87

14
14

25
63

25
6×

24
7×

11
4

55
.0

0
77

.1
77

.5
77

.8
78

.3
76

.9
77

.3
77

.6
78

.0
93

tr
ia

ng
le

s
51
23

51
2×

49
3×

22
9

44
1.

00
88

.1
88

.7
89

.4
90

.3
88

.3
89

.1
89

.6
90

.4
–

Ta
bl

e
3:

R
un

ni
ng

tim
e

(i
n

m
s)

fo
rt

he
co

ns
tr

uc
tio

n
of

a
ha

lf
-fl

oa
t(

16
bi

t)
si

ng
le

ch
an

ne
lO

cc
up

an
cy

Vo
lu

m
e

bu
ff

er
fo

rt
he

tw
o

su
rf

ac
e

vo
xe

liz
at

io
n

m
et

ho
ds

,b
as

ed
on

th
e

nu
m

be
r

of
ve

rt
ic

es
th

at
th

e
ge

om
et

ry
sh

ad
er

ou
tp

ut
s.

T
he

th
ir

d
co

lu
m

n
gi

ve
s

th
e

ac
tu

al
gr

id
si

ze
s

as
tig

ht
vo

lu
m

e
gr

id
s

ar
e

ge
ne

ra
te

d
dy

na
m

ic
al

ly
.T

he
la

st
co

lu
m

n
re

po
rt

s
th

e
nu

m
be

ro
ft

he
re

su
lti

ng
vo

xe
ls

.

Atha
na

sio
s G

ait
atz

es

122

is 3 + 4n (we detect the emittance of a triangle and do not produce a degenerate quad) and from

the pixel shader clipping method is 3n, where n is the number of slices that a triangle spans.

We observe (see Table 3) that both methods have approximately the same running speed and

produce the same number of voxels. The pixel shader clipping method achieves slightly better

results but when the number of triangles that need to be processed increases (i.e. Dragon model)

then the two methods are equivalent.

The quality of the voxelization depends on the number of volume slices each triangle spans.

The smaller the limit of output vertices of the geometry shader, the higher the probability that the

triangle will be partially sliced, resulting in empty voxels. However, due to the fact that triangles

are selectively processed in the volume sweep plane of maximum projection, this is seldom the

case.

Figures 59 60 61 depict the multi-channel voxelization of several models, (closed surfaces but

also open environments with no watertight surfaces).

In Figure 65 we visually compare the voxelization of the two methods. The difference (red /

green voxels) is attributed to the rasterization process even though a conservative approach did not

yield better results probably because our tested models did not have any sub-pixel triangles.

In Figure 66 we compare the voxelization of the pixel shader clipping method for various ge-

ometry shader output vertices. If we request too few output vertices from the geometry shader (eg.

3 vertices) then holes start to appear in the voxelization. A higher output vertex count gradually

remedies this issue. In many effects, such as in the case of diffuse global illumination (e.g. vir-

tual point light injection), a high vertex output limit would not be necessary, since even a sparse

or incomplete volume representation can still work satisfactorily due to the low-frequency nature

of secondary diffuse light transport. On the contrary, fluid effects (e.g. water) require a higher

Atha
na

sio
s G

ait
atz

es

123

Figure 65: Visual comparison of the geometry shader triangle slicing method and the pixel shader

clipping methods for the bunny model at 1283 volume resolution. Result with 11 output vertices.

Gray voxels are common to both method variations. Green voxels are only present in the geometry

shader triangle slicing, while red voxels are only generated by the pixel shader clipping. The total

number of different voxels amounts to 33 which is about 0.15% of variation.

vertex output limit in order to produce dense volumes as the granularity of the volume affects the

simulation as a whole.

The results were acquired using the most naive draw method, namely display lists for caching

of the OpenGL R⃝ commands. We consider arbitrary dynamic polygonal models and we assume

that we are drawing a triangle soup.

Apart from the occupancy buffer, where virtually no computations are involved, the construc-

tion speed of the rest of the buffers depends on the computations that are involved in their creation.

Table 4 lists the minimum required time to write to 1, 2 or 3 multiple render targets without per-

forming any computations.

Atha
na

sio
s G

ait
atz

es

124

Grid size Geometry slicing Pixel clipping
15 vertices output 9 vertices output

MRTs used MRTs used
1 2 3 1 2 3

643 2.36 2.54 2.70 1.33 1.33 1.52

1283 3.22 4.12 5.18 2.90 2.90 3.96

2563 10.2 17.4 25.1 15.8 15.9 24.3

Table 4: Comparison of the running time (in ms) for the bunny model for a floating (32bit) four

channel buffer and different sizes of multiple render targets (MRTs).

For the sake of comparative examination (see Table 5), we implemented a version of the

method by Fang et al. [25]. Their algorithm, using a variation of the XOR slicing method, renders

the geometry once for each slice of the volume grid, each time restricting the clipping volume to

this slice. We implemented a modified version of the method, that supports multi-channel data and

renders the geometry only once. The main difference is that we do not use the originally proposed

XOR operation because in practice, very few models are watertight and many volume attributes

Figure 66: Comparison of the voxelization using the pixel shader clipping method at 2563 volume

resolution with 3, 6, 9 and 12 geometry shader vertices output. The number of voxels produced

are 52382, 87690 and 89696 (complete voxelization) for 3, 6, 9 and above geometry shader output

vertices, respectively.

Atha
na

sio
s G

ait
atz

es

125

Model Grid Fang et al. Eisemann et al.
size time (ms) # voxels time (ms) # voxels

Bunny
643 20.3 5.5K 0.171 2.1K
1283 40.8 22.2K 0.174 18.6K

(69451 tris)
2563 83.5 90.3K 0.21 145.4K
5123 181 – 0.61 1124K

Knossos
643 49.9 9.8K 0.42 2.8K
1283 99.8 45.7K 0.44 26.9K

(109168 tris)
2563 201 198.5K 0.51 190.3K
5123 409 823.6K 0.83 151K

Sponza II
643 77.4 20.2K 0.73 6.6K
1283 155 102K 1.09 60K

(219305 tris)
2563 310 452.3K 2.53 408.3K
5123 629 2090K 7.11 3283K

Dragon
643 3206 5.7K 35.1 1.5K
1283 7710 23.2K 35.3 11.2K

(871414 tris)
2563 – 94.5K 36.5 91.9K
5123 – – 38.8 739.6K

Table 5: Comparison of the running time (in ms) and number of voxels produced by different

approaches.

cannot be defined for interior voxels. The big difference in the running times is attributed to the

number of passes that Fang et al. do over the geometry data which increases their timings espe-

cially for large models. As per the quality of the voxelization we produce approximately the same

number of voxels.

In addition we show the timing results for our implementation of Eisemann et al. [22] binary

occupancy-only voxelization method but from three viewpoints instead of one in order to reduce

the number of holes produced. Still, even though the running time is the fastest of all, the quality of

the results is not very good. We attribute this to the fact that multiple voxelizations from different

directions assumes (in our implementation) a cube as a bounding volume of the scene, wasting lots

of empty space and reducing the number of useful voxels. In addition the method cannot take into

Atha
na

sio
s G

ait
atz

es

126

GPU Geometry slicing Pixel clipping
15 vertices output 9 vertices output

G 105M 51.2 ms 30.8 ms

GTS 9800M 13.5 ms 6.33 ms

GTX 285 2.66 ms 1.72 ms

Table 6: Comparison of the running time on various types of hardware of the bunny model at 1283

resolution.

account partial occupancy or transparency. Our method works with an arbitrary and thus tighter

bounding box.

Table 6 shows the improvement in the running time of our methods on different GPUs.

6.7 Discussion

The decision for the choice of method depends mostly on the GPU architecture. Implementa-

tions for non-unified architectures may favor the geometry shader approach (see Section 6.4.1), if

the pixel shader cores are intensively used and vice versa. For unified architectures, the expected

load in terms of triangle count is indicative of the best approach. Furthermore, certain GPU im-

plementations do not favor the execution of complex geometry shaders with large output primitive

streams. Our pixel shader approach (see Section 6.4.2) is very simple to implement but produces

a lot of fragments in the geometry shader. These are rejected in the pixel shader but on architec-

tures with small bandwidth, this could be an issue. It is a reason to favor the first method which

produces exactly the fragments that are going to be rasterized in the final volume slices.

For scenes with slow or gradual animations, the three directional voxelization steps could be

interleaved, recalculating only one axis pass in each frame, further reducing the volume buffer

creation time by a factor of 3.

Atha
na

sio
s G

ait
atz

es

127

Model Grid half-float buffer float buffer
size (16bit) (32bit)

Bunny
643 2.03 ms 2.04 ms

1283 2.66 ms 2.80 ms

2563 6.43 ms 7.25 ms

Table 7: Comparison of the running time for 16- and 32-bit floating point buffers and 15 geometry

shader vertices output.

A general improvement in many volume generation techniques, applicable in our method as

well is, in order to reduce the time to construct the data structure one could also sort the scene

primitives into two sets of static and dynamic geometry. This way, two volume buffers would be

created, one for static and one for dynamic geometry. The static volume buffer could be created

once and would not be updated again. The dynamic volume buffer would get updated at each

draw frame. In practice, most parts of a three-dimensional environment are static and therefore,

the respective volume buffer would only be updated after a triggered event of a change in one of

the light sources. This method can alleviate the constant updates of a more generic volume buffer

at the expense of extra texture space to store a separate volume buffer for the static geometry.

For some applications using a 32-bit floating point buffer might be too large for storing external

data. In that case, a 16-bit buffer could be used with negligible quality degradation but higher

performance. (as can be seen in Table 7).

On current hardware with OpenGL R⃝ implementations with version less than 4.0 the user can-

not set the BlendEquation of each sub-buffer (ColorAttachment) individually. As a result we had

to choose one BlendEquation for all four sub-buffers. We chose the GL MAX operator which

would compute the correct results for the albedo and the normals buffers. For the lighting and

Atha
na

sio
s G

ait
atz

es

128

SH buffers it would be ideal to use the GL FUNC ADD operator that would produce additive

blending results which would of course be correct when multiple lights were present in the scene.

The geometry shader architecture requires that triangle n is processed after triangle n � 1 has

completed its processing. New geometry shader features include instancing, which provides a

performance increase when the order of primitives in the stream doesn’t matter. As OpenGL R⃝ 4.0

hardware becomes pervasive, these limitation will be overcome.

Finally for rasterization based voxelizations the use of intermediate buffers is unavoidable

when using the GPU. For voxel grids of arbitrary size (per dimension), current hardware archi-

tectures do not allow the viewport transformation to be part of the programmable pipeline. The

geometry shader output must be in clip space coordinates (CSC) against which the driver will per-

form polygon clipping. As a result we need three viewport transformations that direct the triangle

fragments to the appropriate volume grid slice. In addition, in voxel grids of equal dimension

where the above problem is mitigated, the layered rendering mechanism requires layers to be

parallel to each other enforcing again three axial passes of the voxel space.

6.8 Summary

We presented two methods for the surface discretization of dynamic scenes which along with

the discretization of the illumination in an environment (previous chapter) achieve real-time per-

formance for the simulation of Global illumination effects in dynamic environments where both

the scene geometry and the lighting conditions can change.

The two strong points of the methods are the ability to generate multi-channel data at high

performance and their simplicity in implementation and integration into existing frameworks in

order to create anything from effects like global illumination or visibility computations.

Atha
na

sio
s G

ait
atz

es

129

In the next chapter we will discuss the discretization of the scene geometry in image space

that will improve the overall image quality of image-based Global Illumination methods.

Atha
na

sio
s G

ait
atz

es

Atha
na

sio
s G

ait
atz

es

Chapter 7

Incremental Image-based Multi-valued Voxelization for

Global Illumination

7.1 Motivation

An increasing number of rendering and geometry processing algorithms relies on volume data

to provide fast access to a uniform sampling of the geometry from any stage in the graphics

pipeline. Recently, volume representations have been extensively used for the simulation of global

illumination effects and fast view-dependent techniques have been also implemented in commer-

cial graphics engines.

7.2 Overview

We introduce the concept of Incremental Voxelization for the multi-valued, scalar volume ras-

terization of fully dynamic scenes (geometry, materials and lighting) and demonstrate its applica-

tion in the context of volume-based global illumination. Where current image-based voxelization

algorithms repeatedly regenerate the volume using the deferred geometry image buffers of a sin-

gle frame, the proposed method incrementally updates the existing voxels using a depth-buffer

131

Atha
na

sio
s G

ait
atz

es

132

re-projection scheme and therefore, produces a more complete voxelization of the scene. Incre-

mental Voxelization can be used for multi-attribute volumes and complex dynamic scenes. It offers

improved quality and stability over non-incremental image-based methods at a very small over-

head. Furthermore, image-based volume updates can be distributed across time as well as space,

achieving a controllable cost amortization of existing voxelization techniques.

7.3 Introduction

In the previous chapter we presented a discretization of the full scene geometry so that the

Global illumination calculations become independent of the scene complexity. In this chapter

we will discuss an image-based approach that improves previous non-incremental approaches by

producing a more complete volume representation of the scene geometry thus producing more

accurate Global illumination effects.

Volume representation of polygonal models is an important basic operation for many appli-

cations in computer graphics and related areas. Polygonal models, for example, have often been

substituted by volume representations to remove unnecessary complexity for certain calculations,

to provide a uniform sampling of the underlying data, to structure multi-resolution information

in an easily and rapidly accessible manner or to enhance the models with additional data. Vox-

elization methods have been used in many domains of computational science, engineering and

computer graphics with applications ranging from global illumination simulation [108], [55], flu-

ids simulation [15] and ambient occlusion computation [81], collision detection [66], procedural

terrain generation [34] and rigid body simulation [42].

Real-time voxelization has reached a point where the binary (occupancy) volume representa-

tion of a 100K-triangle model can be generated in less than 5 ms at a resolution of 2563. However,

when the per frame time budget is limited due to other, more important operations that must take

Atha
na

sio
s G

ait
atz

es

133

place while maintaining a high frame rate, the fidelity of full-scene voxelization has to be traded

off for less accurate but faster techniques. This is especially true for video game applications,

where many hundreds of thousands of triangles must be processed in less than 2-3ms.

Among other applications, an increasing number of techniques for real-time global illumina-

tion effects rely on volume data, as they allow the fast, out-of-order access to spatial data from any

deferred shading graphics pipeline stage as in Thiedemann et al. [108], Mavridis et al. [72] and

Kaplanyan et al. [55]. Typical volumes produced for global illumination and other effects include

multiple scalar attributes, such as albedo, spherical harmonics coefficients of incident light, nor-

mal vectors etc. Common to these techniques is the use of a deferred shading strategy to render

and capture image-based spatial data, such as geometric occlusion (i.e. occupancy). Typically,

data from the virtual camera view are stored in multiple deferred rendering targets (MRTs, e.g.

depth, albedo, normals, lighting etc.) and similar data are obtained from the view point of one or

more light sources (RSMs by Dachsbacher et al. [18]). These data are subsequently combined and

embedded (or injected) in the volume representation of the scene, as for instance in Kaplanyan et

al. [55] and [56].

Image-based volume generation methods provide very fast and guaranteed response times

compared to geometry-based techniques but suffer from view dependency. More specifically,

any technique that is performed entirely in image-space (as in deferred shading) considers only

geometry that has been rendered into the depth buffer and thus has the following strong limitations.

First, it ignores geometry located outside the field of view and second it ignores geometry that is

inside the view frustum but is occluded by other objects. Yet these geometry parts may have

a significant influence to the desired final result (see for example our indirect illumination case

study). Essentially, in single-frame image-based voxelization, the only volume samples that can

be produced in each frame are the ones that are visible in at least one of the images available

Atha
na

sio
s G

ait
atz

es

134

in the rendering pipeline (view camera MRTs and light RSMs). Each time the (camera or light)

view changes, a new set of sample points become available and the corresponding voxels are

generated from scratch to reflect the new available image samples. Thus, the generated volume

will never contain a complete voxelization of the scene. This leads to significant frame-to-frame

inconsistencies and potentially inadequate volume representation for the desired volume-based

effect, especially when the coverage of the scene in the available image buffers is limited.

On the other hand, adopting a more robust, full-scene geometry- or slicing-based voxelization

cannot result in a predictable and - most importantly - controllable upper limit in the voxelization

time for a particular volume granularity, across different 3D data. However, this is a critical aspect

in the design of modern real-time rendering engines, where the time that can be dedicated to

voxelization is usually less than the required time of current full-scene multi-channel voxelization

methods.

To alleviate the problems of image-based voxelization techniques, but maintain their benefit of

controllable, fixed execution time relative to full-scene volume generation methods, we introduce

the concept of Incremental Voxelization and a corresponding incremental image-based volume

generation algorithm. The volume representation is progressively updated and improved to include

the newly discovered voxels and discard the set of invalid voxels, which are not present in any of

the current image buffers (see Figures 67 and 68). Using the already available camera and light

source buffers, a combination of volume injection and voxel-to-depth-buffer re-projection scheme

continuously updates the volume buffer and discards invalid voxels, incrementally constructing

the final voxelization. The buffers used are common to most deferred real-time rendering engines,

i.e. view camera G-buffers (depth, albedo, normals) plus direct lighting and the corresponding

light RSM buffers. Thus, the voxelization does not incur any additional rasterization cost, as it

simply re-uses existing information.

Atha
na

sio
s G

ait
atz

es

135

Figure 67: Top: Image-based voxelization after one step of the process having injected the camera

and light buffers. Middle: Voxelization of the scene after the camera has moved for several frames.

Bottom: Example of resulting global illumination.

The algorithm is lightweight and operates on complex dynamic environments where geometry,

materials and lighting can change arbitrarily. As is the case with most image-based techniques,

the algorithms’ performance is largely independent of geometric complexity and is dominated by

the fill rate of the target volume buffers. The accuracy and spatial coverage of the voxelization

depends on the specific trajectories of the camera and lights but improves as the user interacts with

the environment.

Atha
na

sio
s G

ait
atz

es

136

Figure 68: Incremental Voxelization (IV) of a scene. Red voxels correspond to image-based vox-

elization using image buffers from the current frame only, while other colors refer to voxels gen-

erated during previous frames using IV. Right: Volume-based global illumination results using the

corresponding volumes. IV achieves more correct occlusion and stable lighting.

Compared to single-frame image-based voxelization, our method provides:

• Improved volume coverage (completeness) over non-incremental methods, as demonstrated

by our global illumination case study, while maintaining its high performance merits.

• The ability to perform lazy or spatially and temporally scattered volume updates, thus fur-

ther amortizing the voxelization cost among the frames.

With respect to full-scene multi-valued voxelization solutions, the benefits of incremental vox-

elization include:

• Predictable, controllable and bound execution time.

• Reuse of data that are already available to a real-time deferred shading application; thus the

voxelization does not incur any additional rasterization cost.

It is important to note that full-scene voxelization methods, especially geometry-based ones,

are in general more robust and accurate. However, our algorithm offers a flexible solution,

Atha
na

sio
s G

ait
atz

es

137

performance-wise, that helps bridge the gap between the image-based and full-scene volume

generation classes of techniques. Incremental voxelization targets mostly rendering engines and

deferred shading frameworks rather than stand-alone volume generation applications and frame-

works, whose demands in terms of accuracy are completely different. Still, as demonstrated by

the Hausdorff distance evaluation of our results relative to the initial geometry (Table 9), the rep-

resentation accuracy is more than satisfactory for most use scenarios.

We demonstrate our technique by applying it as an alternative voxelization scheme for the

light propagation volumes diffuse global illumination method of Kaplanyan et al. [55]. However,

being a generic multi-attribute scalar voxelization method, it can be used in any other real-time

volume generation problem.

7.4 Overview of Voxelization method

When only occupancy of volume cells is required, geometric binary voxelization algorithms

such as Eisemann et al. [22] provide a sufficiently accurate and fast solution. However, many

techniques or measurements, such as global illumination estimation methods, rely on scalar or

multidimensional data.

In order to be able to take advantage of the merits of an image-based volume data generation

scheme (simplicity, geometry-independence, speed) and at the same time be able to produce more

stable and valid volume data, we propose an Incremental Voxelization scheme based on the camera

multiple render targets (MRTs), the light source RSM buffers [18] or any other available buffer

that includes depth information and the volume representation attributes. As the user interacts

with the environment, dynamic objects move or light information changes, new voxel data are

accumulated into the initial voxelization data structure and old voxels are invalidated or updated if

their projection in any of the image buffers proves inconsistent with the available recorded depth.

Atha
na

sio
s G

ait
atz

es

138

Volume from previous frame

Clean-up phase Injection phase

Cleared voxels

New voxels

Voxels from older

frames

Stale voxels

Depth buffer

Actual surface

Figure 69: Schematic overview of the algorithm. During the cleanup phase each voxel is tested

against the available depth images. If the projected voxel center lies in front of the recorded depth,

it is cleared; otherwise it is retained. During the injection phase, voxels are “turned-on” based on

the RSM-buffers and the Camera-based depth buffer.

In each frame, two things occur: First, in a cleanup stage, the volume is swept voxel-by-voxel

and the center of each voxel is transformed to the eye-space coordinate system of the buffer and

tested against the available depth image value, which is also projected to eye-space coordinates. If

the voxel lies closer to the image buffer viewpoint than the recorded depth, the voxel is invalidated

and removed. Otherwise, the current voxel attributes are maintained. The update of the volume is

performed by writing the cleared or retained values into a separate volume in order to avoid any

atomic write operations and thus make the method fast and a very broadly applicable one. At the

end of each cleanup cycle, the two volume buffers are swapped. After the cleanup phase, samples

from all the available image buffers are injected into the volume (similar to the LPV method [54]).

When multiple image buffers are available, the cleanup stage is repeated for each image buffer,

using the corresponding depth buffer as input for voxel invalidation. Each time, the currently

Atha
na

sio
s G

ait
atz

es

139

Algorithm 7: Incremental Voxelization pseudo-code using Camera G-buffers.

Vprev ← current attribute volume Vcurr

foreach depth buffer Zi do
foreach voxel pv ∈ Vcurr do

Vcurr(pv)← Cleanup (Zi, Vprev,pv)

foreach attribute & depth buffer pair (ai, Zi) do
Inject i-th buffer in Vcurr

/* returns the updated attribute a at p */ function Cleanup (depth buffer Z, previous
attribute volume V, voxel position p)

av ← V (p)
p′← projection of p to eye-space
ze← Z(p′) depth value projected to eye-space

if p′
z > ze + b then return 0

else return av

updated (read) and output (written) buffers are swapped. The current image buffer attributes are

then successively injected in the currently updated volume. The whole process is summarized in

Figure 69 and in Algorithm 7.

7.4.1 Clean-up phase

Throughout the entire voxelization process, each voxel goes through three state transitions:

“turn-on”, “turn-off” and “keep”. The “turn-on” state change is determined during the injection

phase. During the clean-up stage we need to be able to determine if the state of the voxel will

be retained or turned off (cleared). For each one of the available depth buffers, each voxel center

pv is transformed to eye-space coordinates p′
v; accordingly the corresponding image buffer depth

Z(p′) is transformed to eye-space coordinates (ze) using the equation:

ze =
2 · n · f

(f � n) · zNDC � (f + n)
(16)

where zNDC is the value of the depth buffer Z(p′) transformed into NDC space and n, f corre-

spond to the near and far values of the image buffer currently used (see Listing 7.1).

Atha
na

sio
s G

ait
atz

es

140

i n vec3 v o x e l p o s i t i o n , v o x e l t e x c o o r d ;
un i fo rm f l o a t v o x e l r ; / / v o x e l r a d i u s
un i fo rm sampler3D vol shR , vol shG , vol shB , v o l n o r m a l s ;

void main (void)
{

vec4 v o x e l p o s w c s = vec4 (v o x e l p o s i t i o n , 1 . 0) ;
vec3 v o x e l p o s c s s = PointWCS2CSS (v o x e l p o s w c s . xyz) ;
vec3 v o x e l p o s e c s = PointWCS2ECS (v o x e l p o s w c s . xyz) ;
vec3 z b u f f e r s s = MAP � 1To1 0To1 (v o x e l p o s c s s) ;
f l o a t d e p t h = SampleBuf (z b u f f e r , z b u f f e r s s . xy) . x ;
vec3 z b u f f e r c s s = vec3 (v o x e l p o s c s s . xy , 2 . 0∗ depth � 1 . 0) ;
vec3 z b u f f e r e c s = PointCSS2ECS (z b u f f e r c s s) ;

vec3 voxe l mf wcs = v o x e l p o s w c s . xyz + v o x e l r ∗ vec3 (1 . 0) ;
voxe l mf wcs = max (voxe l mf wcs ,

v o x e l p o s w c s . xyz + v o x e l h a l f s i z e) ;
vec3 voxel mb wcs = v o x e l p o s w c s . xyz + v o x e l r ∗ vec3 (� 1 . 0) ;
voxel mb wcs = min (voxel mb wcs ,

v o x e l p o s w c s . xyz � v o x e l h a l f s i z e) ;
vec3 v o x e l m f e c s = PointWCS2ECS (voxe l mf wcs) ;
vec3 v o x e l m b e c s = PointWCS2ECS (voxel mb wcs) ;
f l o a t b i a s = d i s t a n c e (v o x e l m f e c s , v o x e l m b e c s) ;

vec4 s h R v a l u e = SampleBuf (vol shR , v o x e l t e x c o o r d) ;
vec4 s h G v a l u e = SampleBuf (vol shG , v o x e l t e x c o o r d) ;
vec4 s h B v a l u e = SampleBuf (vol shB , v o x e l t e x c o o r d) ;
vec4 n o r m a l v a l u e = SampleBuf (v o l n o r m a l s , v o x e l t e x c o o r d) ;

i f (v o x e l p o s e c s . z > z b u f f e r e c s . z + b i a s) { / / d i s c a r d
n o r m a l v a l u e = vec4 (0 , 0 , 0 , 0) ;
s h R v a l u e = s h G v a l u e = s h B v a l u e = vec4 (0 , 0 , 0 , 0) ;

}

/ / keep
g l F r a g D a t a [0] = n o r m a l v a l u e ;
g l F r a g D a t a [1] = s h R v a l u e ;
g l F r a g D a t a [2] = s h G v a l u e ;
g l F r a g D a t a [3] = s h B v a l u e ;

}

Listing 7.1: Cleanup phase fragment shader

Atha
na

sio
s G

ait
atz

es

141

,1,2,3ez1
z

2
z 3
z

1
v

2
v

3
v

b

x

y

z

Figure 70: Cleanup stage: Voxels beyond the boundary depth zone are retained (orange), while

voxels closer to the buffer center of projection are rejected (red). Voxels that correspond to the

depth value registered in the buffer must be updated (green).

Expressing the coordinates in the eye reference frame (Figure 70), if p′
v,z > ze the voxel must

be cleared, as it crosses the recorded depth boundary in the image buffer. However, the spatial

data are quantized according to the volume resolution and therefore a bias b has to be introduced

in order to avoid rejecting boundary samples. Since the depth comparison is performed in eye-

space, b is equal to the voxel’s pv radius (half diagonal) clamped by the voxel boundaries in each

direction. Therefore the rejection condition becomes:

p′
v,z > ze + b (17)

The example in Figure 70 explains the cleanup and update state changes of a voxel with respect

to the available depth information in an image buffer. All voxels in the figure correspond to the

same image buffer sample with eye-space value ze,1,2,3. Voxel v1 is rejected (cleared) because z1

is greater than ze,1,2,3 + b. Voxel v2 must be updated since it lies within the boundary depth zone

[ze,1,2,3 � b, ze,1,2,3 + b]. Finally, voxel v3 is retained, since it lies beyond the registered depth

value.

Atha
na

sio
s G

ait
atz

es

142

7.4.2 Injection phase

In the injection phase, a rectangular grid of point primitives corresponding to each depth image

buffer is sent to a vertex shader which offsets the points according to the stored depth. The points

are subsequently transformed to world space and finally to volume-clip space. If world space or

volume clip-space coordinates are already available in the buffers, they are directly assigned to the

corresponding injected points. The volume clip-space depth is finally used to determine the slice

in the volume where the point sample attributes are accumulated (see Listing 7.2). At the end of

this stage, the previous version of the scene’s voxel representation has been updated to include a

partial voxelization of the scene based on the newly injected point samples. The resolution of the

grid of 2D points determines how much detail of the surfaces represented by the depth buffer is

transferred into the volume and whether or not the geometry is sparsely sampled. If too few points

are injected, the resulting volume will have gaps. This may be undesirable for certain application

cases, such as the LPV method [54] or ray-marching algorithms.

7.4.3 Single-pass Incremental algorithm

In order to transfer the geometric detail present in the G-buffers to the volume representation

and ensure a dense population of the resulting volume, a large resolution for the grid of injected

points must be used. However, the injection stage involves rendering the point grid using an

equal number of texture lookups and, in some implementations, a geometry shader. This has

a potentially serious impact on performance (see Figure 73), especially for multiple injection

viewpoints.

We can totally forgo the injection phase of the algorithm and do both operations in one stage.

Using the same notation as before, the logic of the algorithm remains practically the same. If the

projected voxel center lies in front of the recorded depth (i.e. p′
v,z > ze + b), it is still cleared. If

Atha
na

sio
s G

ait
atz

es

143

/ / Ver t ex � Shader S t a g e

f l a t o u t vec2 t e x c o o r d ;
un i fo rm sampler2D z b u f f e r ;

void main (void)
{

t e x c o o r d = g l V e r t e x . xy ;
f l o a t d e p t h = SampleBuf (z b u f f e r , t e x c o o r d) . x ;

/ / s c r e e n space � � > c a n o n i c a l s c r e e n space
vec3 p o s c s s = MAP 0To1 � 1To1 (vec3 (g l V e r t e x . xy , d e p t h)) ;

/ / c a n o n i c a l s c r e e n space � � > o b j e c t space
vec3 pos wcs = PointCSS2WCS (p o s c s s) ;

/ / wor ld space � � > c l i p space
g l P o s i t i o n = g l M o d e l V i e w P r o j e c t i o n M a t r i x ∗

vec4 (pos wcs , 1 . 0) ;
}

/ / Geometry � Shader S t a g e

l a y o u t (p o i n t s) i n ;
l a y o u t (p o i n t s , m a x v e r t i c e s = 1) o u t ;

un i fo rm i n t v o l d e p t h ;
f l a t i n vec2 t e x c o o r d [] ;
f l a t o u t vec2 g t e x c o o r d ;

void main (void)
{

g t e x c o o r d = t e x c o o r d [0] ;

g l P o s i t i o n = g l P o s i t i o n I n [0] ;
g l L a y e r = i n t (v o l d e p t h ∗ MAP � 1To1 0To1 (g l P o s i t i o n . z)) ;

Emi tVer t ex () ;
}

Listing 7.2: Injection phase using a geometry shader to select the destination slice of the volume
for the point samples.

Atha
na

sio
s G

ait
atz

es

144

the projected voxel center lies behind the recorded depth (i.e. p′
v,z < ze � b), the voxel is retained;

otherwise it is turned-on (or updated) using the attribute buffers information. The last operation

practically replaces the injection stage.

As we are effectively sampling the geometry at the volume resolution instead of doing so

at higher, image-size-dependent rate and then down-sampling to volume resolution, the resulting

voxelization is expected to degrade. However, since usually depth buffers are recorded from multi-

ple views, missing details are gradually added. Comparison of the method variations and analysis

of their respective running times is given in Section 7.7.

7.5 Incremental Voxelization for Lighting

As a case study, we applied incremental voxelization to the problem of computing indirect illu-

mination for real-time rendering. When using the Incremental Voxelization technique for lighting

effects, as in the case of the Light Propagation Volumes algorithm of Kaplanyan [54] or ray march-

ing techniques (Thiedemann et al. [108], Mavridis et al. [72]), the volume attributes must include

occlusion information (referred to as geometry volume in [54]), sampled normal vectors, direct

lighting (VPLs) and optionally surface albedo in the case of secondary indirect light bounces.

Direct illumination and other accumulated directional data are usually encoded and stored as low-

frequency spherical harmonic coefficients (see Sloan et al. [100]).

Virtual Point Lights (VPLs) are points in space that act as light sources and encapsulate light

reflected off a surface at a given location. In order to correctly accumulate VPLs in the volume,

during the injection phase, a separate volume buffer is used which is cleared in every frame in

order to avoid erroneous accumulation of lighting. For each RSM, all VPLs are injected and addi-

tively blended. Finally, the camera attribute buffers are injected to provide view-dependent dense

samples of the volume. If lighting from the camera is also exploited (as in our implementation),

Atha
na

sio
s G

ait
atz

es

145

the injected VPLs must replace the corresponding values in the volume, since the camera direct

lighting buffer provides cumulative illumination. After the cleanup has been performed on the pre-

vious version of the attribute volume Vprev, non-empty voxels from the separate injection buffer

replace corresponding values in Vcurr. This ensures that potentially stale illumination on valid

volume cells from previous frames is not retained in the final volume buffer.

7.6 Implementation

The Incremental Voxelization method runs entirely on the GPU and has been implemented

on a deferred shading platform using basic OpenGL R⃝ 3.0 operations on an Intel Core i7 860 at

2.8GHz with 8GB of RAM and equipped with an NVIDIA R⃝ GeForce GTX285 GPU with 1GB

of video memory. We have implemented two versions of the buffer storage mechanism in order to

test their respective speed. The first uses 3D volume textures along with a geometry shader that

sorts injected fragments to the correct volume slice. The second unwraps the volume buffers into

2D textures and dispenses with the expensive geometry processing (respective performance can

be seen in Figure 73).

The texture requirements are two volume buffers for ping-pong rendering (Vprev, Vcurr). Each

volume buffer stores N -dimensional attribute vectors a and corresponds to a number of textures

(2D or 3D) equal to ⌈N/4⌉, for 4-channel textures. For lighting applications an additional N -

dimensional volume buffer is required, for the reasons explained in Section 7.5. In our implemen-

tation we need to store surface normals and full color spherical harmonics coefficients for incident

flux in each volume buffer, which translates to 3× 4 textures in total.

In order to create the data storage structure, we generate on the GPU a uniform spatial par-

titioning structure in real-time. For the voxelization, the user has the option to request several

Atha
na

sio
s G

ait
atz

es

146

attributes to be computed and stored into floating point buffers for later use. Among them are sur-

face attributes like albedo and normals, but also dynamic lighting information and radiance values

in the form of low-order spherical harmonics (SH) coefficients representation (either monochrome

radiance or full color encoding i.e. separate radiance values per color band). In our implemen-

tation the radiance of the corresponding scene location is calculated and stored as a 2nd order

spherical harmonic representation for each voxel. For each color band, four SH coefficients are

computed and encoded as RGBA float values, since the four SH coefficients map very well to the

four component buffers supported by the graphics hardware.

The following sections provide an evaluation of the Incremental Voxelization method in terms

of robustness, performance and usability and compare the proposed method against other modern

techniques, as necessary.

7.7 Performance & Evaluation

In terms of voxelization robustness, our algorithm complements single-frame image-based

voxelization and supports both moving image viewpoints and fully dynamic geometry and light-

ing. In Figure 71, a partial volume representation of the Crytek Sponza II Atrium model is

generated at a 643 resolution and a 1282-point injection grid using single-frame and Incremen-

tal Voxelization. (a) and (b) are the single-frame volumes from two distinct viewpoints. (c) is

the Incremental Voxelization after the viewpoint moves across several frames. Using the partial

single-frame volumes for global illumination calculation, we observe abrupt changes in lighting

as the camera reveals more occluding geometry (e.g. left arcade wall and floor - insets (e) and (f)).

However, the situation is gradually remedied in the case of Incremental Voxelization, since newly

discovered volume data are retained for use in following frames (insets (g) and (h)).

Atha
na

sio
s G

ait
atz

es

147

(b)

(d)

(f)

(h)

(a)

(c)

(e)

(g)

Figure 71: Comparison of the voxelization of the Crytek Sponza II Atrium. (a), (b) Single frame

image-based voxelization from two distinct viewpoints where it is not possible to capture all envi-

ronment details as no information exists in the buffers. (c) Incremental Voxelization (IV) produced

over several frames. (d) Complex illumination using IV. (e), (f) Indirect lighting buffers corre-

sponding to the single frame voxelization of (a) and (b). (g), (h) IV indirect lighting buffers (of

the voxelization in c).

Atha
na

sio
s G

ait
atz

es

148

Figure 72: Image-based voxelization of a dynamic scene containing an articulated object using

only camera-based injection.

Figure 72 demonstrates Incremental Voxelization in a dynamic environment. In particular,

it shows an animated sequence of a scene with moving and deformable objects, as well as the

corresponding voxelization from the camera viewpoint. Notice how the wall behind the closed

door is not initially present in the volume, but after the door opens, it is gradually added to the

volume and remains there even after the door swings back. The same holds for the geometry

behind the animated character.

The top of Figure 73 shows a decomposition of the total algorithm running time into the

cleanup and injection stage times respectively versus different volume buffer resolutions for three

different injection grid sizes. For fixed injection grid resolutions, we have observed that injection

times are not monotonically increasing with respect to volume size, as one would expect. The

performance also decreases when the buffer viewpoint moves close to geometry. We attribute

this to the common denominator of both cases, namely the fact that pixel overdraw is induced,

as points are rasterized in the same voxel locations. This is particularly evident in the blue curve

of the 642 injection stage graph of Figure 73 (left inset). Note that this behavior is an inherent

attribute of injection techniques in general; image-based voxelization methods depend heavily

Atha
na

sio
s G

ait
atz

es

149

on the sampling rate used. When this rate is incompatible with the voxel space resolution, holes

might appear (under-sampling). To ensure adequate coverage of the voxel grid, dense image-space

point samples are drawn, which in turn leads to overdraw problems in many cases. One can use

an injection grid proportional to the volume resolution, which partially alleviates the overdraw

issue but in turn decreases performance as can be seen in the red curve of the injection graph of

Figure 73.

The time required for a single-frame image-based voxelization (one G-buffer) equals the time

of our injection stage plus a very small overhead to clear the volume buffer, since the two opera-

tions are equivalent. Thus, the only difference in the execution time of Incremental Voxelization is

the cleanup stage time. With regard to the quality of the two methods, IV offers more stable and

accurate results as new viewpoints gradually improve the volume.

The total voxelization time (bottom inset of Figure 73) is the sum of the cleanup and injection

stages. As the cleanup stage performance depends only on the volume resolution and not on the

injection grid size, it vastly improves the voxelization quality compared to using only screen-

space injection from isolated frames, at a constant overhead per frame. Especially, when applied

to global illumination calculations, where small volumes are typically used, the version of the

algorithm that uses 2D textures (top-right inset) has a significantly lower execution footprint, as

it is not influenced by the geometry shader execution of the 3D textures version (top-left inset),

though both methods are affected by pixel overdraw during injection. Since the injection of large

point grids resulted in pixel overdraw in the target buffers, we experimented with different methods

for grid creation (linear, block or shifting stippled pattern) and found that it has no effect in pixel

overdraw.

Atha
na

sio
s G

ait
atz

es

150

1

10

15

T
im

e
 (

in
 m

s)
T

im
e

 (
in

 m
s)

Maximum volume side resolution

Cleanup

64
128

192
256

320
384

448
512

576

Maximum volume side resolution

 IV individual stage performance
 using 3D textures using 2D textures

64
128

192
256

320
384

448
512

576

0.5

5

0.1

0.05

Injection (1282)Injection (64 2)

Optimized (1-pass algorithm)

Injection (resolution2)

0.02

1

10
15

Maximum volume side resolution

64
128

192
256

320
384

448
512

576

0.5

5

0.1

0.05

0.02

 Total IV time (2D textures)

Figure 73: Top: Running time (in ms) for the cleanup and injection stages against different volume

resolutions for the Crytek Sponza II Atrium model. We used a single G-buffer (camera) as input

and 1 MRT (4 floats) as output. Injection is measured for three different grid sizes, one being

proportional to the volume side. Bottom: Total incremental voxelization times. Note that the

performance of the optimized Incremental Voxelization is identical to that of the cleanup stage.Atha
na

sio
s G

ait
atz

es

151

 32 64 128 256

8

7

6

5

4

3

2

1

0

T
o
ta

l
ti
m

e
 (

in
 m

s
)

Max. volume side resolution

Comparative multi-channel voxelization performance

16 channels

4 channels

Figure 74: Multi-channel voxelization performance for the Crytek Sponza II Atrium model, using

1 MRT (emitting 4 floating point values) and 4 MRTs (emitting 16 floating point values) in the

GPU fragment shader stage.

The performance of the optimized Incremental Voxelization is identical to that of the cleanup

stage as expected, since it is essentially a modified cleanup stage. It follows that the dual stage

version performance will always be slower than the optimized one.

The maximum volume resolution reported is due to hardware resource limitations on the num-

ber and size of the allocated buffers and not algorithm bounds.

In Table 8 we report the voxelization performance results for several scenes using our method

and the geometry-based scalar volume generation method of Pantaleoni [80] VoxelPipe, which

uses the general purpose compute pipeline. As the latter system exploits capabilities available

only on a Shader Model 5 GPU, we multiplied Pantaleoni’s reported timings by 1.5x (see Bench-

marks [102], [121]) which is roughly the improvement in the overall compute performance be-

tween the GeForce GTX285 (240 CUDA cores [119]) and the GeForce GTX480 (480 CUDA

cores [120]) GPUs. In addition, GPU implementations favor emitting 4 floats into an MRT and

there is no significant advantage of emitting just 1 float. GPGPU implementations on the other

Atha
na

sio
s G

ait
atz

es

152

hand have no such limitation so the comparison results of Table 8 in conjunction with the compara-

tive multi-channel performance of Figure 74 show from a 3x to a more than an order of magnitude

speed increase of our method vs. that of Pantaleoni’s.

Comparing our method with the geometry-based multi-channel full scene voxelization method

of Gaitatzes et al. [32], which, as ours, is based on the rendering pipeline (GPU), we show a big

speed improvement even when adding in the whole process the G-buffers creation time.

In Table 9 we report on the quality of our voxelization method. The camera was moved around

the mesh for several frames, in order for the algorithm to incrementally compute the best possible

voxelization. For several models and resolutions we show the Hausdorff distance (defined as

dH(X,Y) = max(d(X,Y), d(Y,X)) where d is the metric d(X,Y) = supx∈X infy∈Y d(x, y))

between the original mesh and the resulting voxelization using the IV method (see column 3).

Scene Grid VP GS G-buffers IV
size 1-float 4-floats creation 4-floats

Conference 1283 5.1 31.73
3.2

0.28
(282K tris) 5123 12.5 64.67 4.93

Dragon 1283 7.5 198.33
59

0.18
(871K tris) 5123 11.2 – 6.98

Turbine Blade 1283 11.9 265.7
121

0.14
(1.76M tris) 5123 15.2 – 5.37

Hairball
1283 23.0 436.2 0.33
3203 – – 198 4.04

(2.88M tris) 5123 58.4 – –

Table 8: Voxelization timings (in ms) of various scenes and methods. VP stands for VoxelPipe

and GS is the Geometry Slicing method of Gaitatzes et al. with 11 output vertices. IV stands for

Incremental Voxelization. We present the total (injection + cleanup) performance values of our

2D textures implementation using an injection grid proportional to the volume size, which is our

algorithm’s worst case as can be seen from the red plot of Figure 73.

Atha
na

sio
s G

ait
atz

es

153

Scene Grid Hausdorff
size % dH(X,Y)

Bunny
643 0.3289 0.2168
1283 0.1694 0.1091

(69.5K tris) 2563 0.1064 –

Dragon
643 0.3621 0.2565
1283 0.1878 0.1289

(871K tris) 2563 0.1256 0.0645

Turbine Blade
643 0.3457 0.2763
1283 0.1821 0.1424

(1.76M tris) 2563 0.1232 0.0697

Table 9: Comparison of a full voxelization. We record the normalized (with respect to the mesh

bounding box diagonal) average Hausdorff distance (percent). Mesh X is the original mesh to

be voxelized and Y is the point cloud consisting of the voxel centers of the voxelization using IV

(column 3) and a geometry-based full scene voxelization (column 4).

We notice that our voxelized object (voxel centers) is on average 0.1% different from the original

mesh. In addition, we report the Hausdorff distance between the original mesh and the geometry-

based full scene voxelization of Gaitatzes et al. [32] (see column 4). We observe that the difference

between the corresponding volumes is in the 0.01% range.

In Figure 75 we show a series of voxelizations of the dragon model using only the camera

G-buffers. In addition, we show the respective Hausdorff distance between the original dragon

model and the computed voxel centers (see plot in Figure 76). The voxelization is incrementally

updated and improved over several frames as the camera does a complete rotation around each of

the principal axis for an equal amount of frames. As the animation progresses, we observe that the

Hausdorff distance decreases as the process converges to a full voxelization.

Atha
na

sio
s G

ait
atz

es

154

(a) (b) (c)

Figure 75: A series of voxelizations of the dragon model at 1283 resolution showing the normal

vectors. The voxelization is incrementally updated and improved over several frames as the camera

moves around the model.

10 20 30 40 50 60 70 80

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Number of Frames

H
au

sd
or

ff
di

st
an

ce

max

mean

Figure 76: The decreasing Hausdorff distance between the original dragon model and the com-

puted Incremental Voxelizations of Figure 75.

Atha
na

sio
s G

ait
atz

es

155

7.8 Optimizations

The static parts of the scene (with respect to geometry, materials and lighting) can be vox-

elized once and the voxelization data reused thus escaping the continuous cost of the voxelization

process and possibly utilizing a more robust, geometry-based voxelization method. This improves

performance for dynamic scenes with large amounts of static geometry.

In addition, in scenes with dynamic geometry occupying only a small fraction of the volume

(a quite typical situation), currently the clean-up stage traverses all voxels, whereas only a small

amount of voxels are prone to become invalid. Restricting the clean-up stage to the volume region

containing moving geometry should result in significant speed-ups.

7.9 Limitations

One limitation of our method is that the clean-up phase will only remove invalid voxels that

are visible in any of the current image-buffers (camera MRTs and light RSMs). The visible invalid

voxels will be removed from the voxelization the next time they appear in the image buffers.

However, the correctness of the voxelization cannot be guaranteed for existing voxels that are not

visible in any buffer. For moving geometry, some incrementally generated voxels may become

stale, as shown in the case of the bottom right inset of Figure 69. Nevertheless, in typical dynamic

scenes, the stale voxels are often eliminated either in subsequent frames due to their invalidation

in the moving camera buffer or due to their invalidation in other views in the same frame (see

Figure 77).

Another limitation is that the extents of the voxelization region must remain constant through-

out volume updates; otherwise computations are performed with stale buffer boundaries. When

the bounding box of the scene is modified or the scene changes abruptly or it is reloaded, the

Atha
na

sio
s G

ait
atz

es

156

Figure 77: Correct indirect shadowing effects and color bleeding: Stale voxels from one view

(behind the tank) are effectively invalidated in other views (reflective shadow map).

Figure 78: Scene with dynamic geometry, highlighting the shadowing effects of the tank model,

as it moves towards the user, on the right wall of the tunnel.Atha
na

sio
s G

ait
atz

es

157

attribute volumes must be deleted and incrementally populated again. This is also the reason why

the Cascaded Light Propagation Volumes (CLPV) method of Kaplanyan et al. [55] could not take

advantage of Incremental Voxelization for the cascades near the user, as the method assumes that

they follow the user around, constantly modifying the current volume extents.

7.10 Discussion & Summary

We presented an image-based method to incrementally build a discretization of dynamic

scenes as demonstrated in Figure 78 and Figure 79. Our method achieves improved quality over

non-incremental methods, while it maintains the high performance merits of image-based tech-

niques.

In the same manner that Incremental Voxelization combines partial volumes distributed across

different locations, it can be adapted to handle volume samples distributed across time, achieving

a controllable cost amortization of existing voxelization techniques. This is easily implemented

by splitting the injection point grid into multiple point sets, which are injected in the volume in an

interleaved manner or by lazily updating regions of the volume when and where changes occur.

The Incremental Voxelization framework will be publicly available from the website of the au-

thor http://www.virtuality.gr/gaitat/en/publications.html under the ap-

propriate paper.

Atha
na

sio
s G

ait
atz

es

http://www.virtuality.gr/gaitat/en/publications.html

158

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 79: Scene with dynamic lighting. Sequence of a side-by-side comparison of a single-frame

image-based voxelization (left images) vs. incremental image-based voxelization (right-images).

The curtains that are hidden behind the colonnade do not obstruct the light in the case of the

single-frame voxelization.Atha
na

sio
s G

ait
atz

es

Chapter 8

Conclusion

The goal of this research was to develop new real-time algorithms that improve the quality

of the illumination in dynamic complex environments or accelerate the expensive computation

of existing algorithms using graphics hardware. To achieve this goal, we investigated some rea-

sonable approximations in order to find a visually plausible compromise between quality and

performance. We considered the creation of a discretized representation of the visibility function

around an object, as the exact visibility computation is expensive to compute in real-time. We

examined the creation of a discretized representation of the incoming light in order to estimate

diffuse interactions from multiple light bounces. Finally, we investigated the creation of a dis-

cretized representation of the scene geometry and used it for accelerating the above process. In

Figure 80 we show a diagram indicating the correlation between the Discretization methods that

were developed and analyzed in this dissertation.

8.1 Summary of Contributions

In Chapter 4, we presented an Ambient occlusion method that is a direct application of Visibil-

ity discretization as the hemisphere of infinite rays around a point is discretized to several samples.

159

Atha
na

sio
s G

ait
atz

es

160

Discretization methods
for Global Illumination

Discretization
of Visibility

Ambient
Occlusion

Secondary Light
Bounces

Discretization
of Geometry

Geometry-based
Voxelization

Discretization
of Lighting

Volume-based
Illumination

Image-based
Voxelization

Figure 80: Diagram indicating the correlation of the Discretization methods used in this disserta-

tion. The blue rectangles indicate the application domains.

In order to accelerate the visibility function computation in dynamic scenes composed of rigid non-

penetrating objects, we proposed a pre-computation, for each object in the scene, of the visibility

information, as seen from the environment, onto the bounding sphere surrounding the object. The

visibility function was encoded by a four-dimensional visibility field that described the distance

of the object in each direction for all positional samples on a sphere around the object. Thus, we

were able to speed up the calculation of most algorithms that trace visibility rays to real-time frame

rates. The method has several advantages over the previous work. First the displacement maps are

pre-calculated faster and stored as grayscale textures. Then, during the real-time simulation the

time to access the displacement values is constant and in addition, the displacement maps contain

information that is transformation invariant. Finally the method can handle several different cases

Atha
na

sio
s G

ait
atz

es

161

like intra-object occlusion and inter-object occlusion but also shadow and reflection rays in the

case of ray-tracing, cases which previous work [63], [70] could not handle.

In Chapter 5, we presented our efforts in simulating Global illumination by Discretizing the

illumination of the scene by using Virtual Point Light methods. In order to capture the complex

interactions of light with the environment, we proposed a real-time algorithm to compute the

global illumination of dynamic scenes with complex dynamic illumination. We used a virtual

point light (VPL) illumination model on the volume representation of the scene. The method

handled occlusion (shadowing and masking) caused by the interference of geometry and was able

to estimate diffuse inter-reflections from multiple light bounces. It has several advantages over

previous work [54]; by taking into account indirect occlusion and secondary light bounces we

were able to produce more accurate illumination while always maintaining a high frame rate.

In Chapter 6, we presented our efforts in Discretizing the geometry of the scene as it was

one of the bottlenecks of the Light Propagation Volumes method. As an increasing number of

rendering and geometry processing algorithms relies on volume data to calculate anything from

effects global illumination or visibility information, we proposed two real-time and simple-to-

implement surface voxelization algorithms, the Volume Buffer, which encapsulates functionality,

storage and access similar to a frame buffer object, but for three-dimensional scalar data. The

Volume Buffer can rasterize primitives in 3D space and accumulate up to 1024 bits of arbitrary

data per voxel, as required by the specific application. The method is much faster to compute than

previous methods [11], [25] that perform rasterization-based voxelization by using the rendering

pipeline (GPU). It also has the ability to store arbitrary data on each voxel (up to 1024 bits when

using 8 MRT).

In Chapter 7 we introduced the concept of Incremental Voxelization for the multi-valued, scalar

volume rasterization of fully dynamic scenes (geometry, materials and lighting) and demonstrated

Atha
na

sio
s G

ait
atz

es

162

its application in the context of volume-based global illumination. Where current image-based

voxelization algorithms [55] repeatedly regenerate the volume using the deferred geometry im-

age buffers of a single frame, we incrementally updated the existing voxels using a depth-buffer

re-projection scheme and therefore, produced a more complete voxelization of the scene. We

showed that incremental voxelization can be used for multi-attribute volumes and complex dy-

namic scenes. The Incremental Voxelization framework will be publicly available from the website

of the author http://www.virtuality.gr/gaitat/en/publications.html under

the appropriate paper.

8.2 Thoughts about Future Work

The first main area we would like to explore is the voxel representations of sparse scenes, as

in the work of Crassin et al. [17] but for fully dynamic and animated environments. This way we

will be able to avoid the computations required for empty voxels. A new scheme will be required

for the radiance deflection mechanism in the environment as to jump over void space until valid

voxels are found. Investigating non-rectangular grid structures might also be a promising research

direction.

In regards to the illumination of the scene itself, as we only considered illumination arriving

from point and spot lights, other types can be investigated like area lights and illumination arriving

from an environment map. For these cases a new Reflective shadow maps strategy would have to

be devised in order to correctly sample and create the required Virtual points lights of the scene.

Furthermore, the possibility of a more accurate but still manageable radiance deflection mech-

anism will be investigated to further enhance light propagation in large and dynamic environments.

Another interesting direction of research is to extend the Light Propagation Volumes method in

order to take into account the specular light transport which can not be currently addressed as

Atha
na

sio
s G

ait
atz

es

http://www.virtuality.gr/gaitat/en/publications.html

163

the energy propagation between neighboring cells requires repeated interpolation, which does not

allow light beams to maintain sharp profiles.

Since the lattice is relatively coarse in the Light Propagation Volumes method, light leaks

despite fuzzy blockers, as described in [55]. A better method for modeling blocking could im-

prove correctness and quality significantly. For instance, by adaptively increasing grid resolution,

blocking and propagation quality could be improved. Additionally, one could investigate differ-

ent packing structures where cells have fewer and/or more equidistant neighbors, which would

improve performance and quality, respectively.

In addition, in the same manner that Incremental Voxelization combines partial volumes dis-

tributed across different locations, it can be adapted to handle volume samples distributed across

time, achieving a controllable cost amortization of existing voxelization techniques. This can be

implemented by splitting the injection point grid into multiple point sets, which are injected in

the volume in an interleaved manner or by lazily updating regions of the volume when and where

changes occur.

Finally, the use of multiple G-buffers for Incremental Voxelization can be extended to other

domains like image-based Ambient Occlusion where a fast and accurate merging of the multiple

view combinations would have to be devised.

Atha
na

sio
s G

ait
atz

es

Atha
na

sio
s G

ait
atz

es

Bibliography

[1] Akenine-Möller, T., Haines, E., Hoffman, N.: Real-time Rendering, Third Edition. A. K.
Peters, Ltd. (2008) [23]

[2] Amit, B.D.: GPU Ray Tracing. Master’s thesis, Technion Israel Institute of Technology
(2007) [66]

[3] Arvo, J.: Linear time voxel walking for octrees 1(5) (1988). Available from http://
tog.acm.org/resources/RTNews/html/rtnews2d.html [50]

[4] Bavoil, L., Sainz, M., Dimitrov, R.: Image-space horizon-based ambient occlusion. In:
ACM SIGGRAPH Talks, SIGGRAPH ’08. ACM, New York, NY, USA (2008). URL
http://doi.acm.org/10.1145/1401032.1401061 [37]

[5] Blythe, D.: The Direct3D 10 system. ACM Transactions on Graphics 25(3), 724–734
(2006). DOI 10.1145/1141911.1141947. URL http://doi.acm.org/10.1145/
1141911.1141947 [23]

[6] Bunnell, M.: Dynamic Ambient Occlusion and Indirect Lighting. In: M. Pharr, R. Fer-
nando (eds.) GPU Gems 2 - Programming Techniques for High-Performance Graphics and
General-Purpose Computation, pp. 223–234. Addison-Wesley Professional (2005) [36]

[7] Carr, N.A., Hall, J.D., Hart, J.C.: The ray engine. In: ACM SIGGRAPH/Eurographics
Conference on Graphics Hardware (HWWS), pp. 37–46. Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland (2002) [50]

[8] Carr, N.A., Hoberock, J., Crane, K., Hart, J.C.: Fast GPU ray tracing of dynamic meshes
using geometry images. In: Proceedings of Graphics Interface (GI), pp. 203–209. Canadian
Information Processing Society, Toronto, Ont., Canada, Canada (2006) [51]

[9] Cazals, F., Drettakis, G., Puech, C.: Filtering, Clustering and Hierarchy Construction: A
New Solution for Ray Tracing Very Complex Environments. Computer Graphics Forum
14, 371–382 (1995) [50]

[10] Chatelier, P.Y., Malgouyres, R.: A low-complexity discrete radiosity method. Computers
& Graphics 30(1), 37–45 (2006). URL http://dx.doi.org/10.1016/j.cag.
2005.10.008 [39]

[11] Chen, H., Fang, S.: Fast voxelization of three-dimensional synthetic objects. Journal of
Graphics Tools 3(4), 33–45 (1998) [6, 41, 94, 161]

165

Atha
na

sio
s G

ait
atz

es

http://tog.acm.org/resources/RTNews/html/rtnews2d.html
http://tog.acm.org/resources/RTNews/html/rtnews2d.html
http://doi.acm.org/10.1145/1401032.1401061
http://doi.acm.org/10.1145/1141911.1141947
http://doi.acm.org/10.1145/1141911.1141947
http://dx.doi.org/10.1016/j.cag.2005.10.008
http://dx.doi.org/10.1016/j.cag.2005.10.008

166

[12] Christen, M., Engel, W.: Ray Tracing on GPU. Master’s thesis, Univ. of Applied Sciences
Basel, Switzerland (2005) [50]

[13] Clark, J.H.: Hierarchical geometric models for visible surface algorithms. Communica-
tions of the ACM 19(10), 547–554 (1976). URL http://doi.acm.org/10.1145/
360349.360354 [50]

[14] Cook, R.L.: Stochastic sampling in computer graphics. ACM Transactions on Graphics
5(1), 51–72 (1986). URL http://doi.acm.org/10.1145/7529.8927 [49]

[15] Crane, K., Llamas, I., Tariq, S.: Real-time Simulation and Rendering of 3D Fluids. In:
H. Nguyen (ed.) GPU Gems 3, chap. 30, pp. 723–739. Addison-Wesley Professional (2007)
[41, 110, 132]

[16] Crassin, C., Neyret, F., Lefebvre, S., Eisemann, E.: GigaVoxels: ray-guided streaming for
efficient and detailed voxel rendering. In: Symposium on Interactive 3D Graphics and
Games (I3D), pp. 15–22. ACM, New York, NY, USA (2009). URL http://doi.acm.
org/10.1145/1507149.1507152 [40]

[17] Crassin, C., Neyret, F., Sainz, M., Eisemann, E.: Efficient Rendering of Highly De-
tailed Volumetric Scenes with GigaVoxels. In: W. Engel (ed.) GPU Pro, pp. 643–677.
A K Peters (2010). URL http://maverick.inria.fr/Publications/2010/
CNSE10 [162]

[18] Dachsbacher, C., Stamminger, M.: Reflective shadow maps. In: Symposium on Interactive
3D Graphics and Games (I3D), pp. 203–231. ACM, New York, NY, USA (2005). URL
http://doi.acm.org/10.1145/1053427.1053460 [45, 88, 133, 137]

[19] Dachsbacher, C., Stamminger, M.: Splatting indirect illumination. In: Symposium on
Interactive 3D Graphics and Games (I3D), pp. 93–100. ACM, New York, NY, USA (2006).
URL http://doi.acm.org/10.1145/1111411.1111428 [46, 88]

[20] Dong, Z., Chen, W., Bao, H., Zhang, H., Peng, Q.: Real-time Voxelization for Complex
Polygonal Models. In: 12th Pacific Conference on Computer Graphics and Applications
(PG), PG ’04, pp. 43–50. IEEE Computer Society, Washington, DC, USA (2004). URL
http://portal.acm.org/citation.cfm?id=1025128.1026026 [41, 42]

[21] Dutre, P., Bala, K., Bekaert, P.: Advanced Global Illumination. A. K. Peters, Ltd., Natick,
MA, USA (2002) [20]

[22] Eisemann, E., Décoret, X.: Fast scene voxelization and applications. In: Symposium on
Interactive 3D Graphics and Games (I3D), pp. 71–78. ACM, New York, NY, USA (2006).
URL http://doi.acm.org/10.1145/1111411.1111424 [40, 41, 42, 125, 137]

[23] Eisemann, E., Décoret, X.: Single-pass GPU Solid Voxelization for Real-Time Applica-
tions. In: Proceedings of Graphics Interface (GI), vol. 322, pp. 73–80. Canadian Informa-
tion Processing Society, Toronto, Ontario, Canada (2008) [40, 94]

[24] Ernst, M., Vogelgsang, C., Greiner, G.: Stack Implementation on Programmable Graphics
Hardware. In: B. Girod, M.A. Magnor, H.P. Seidel (eds.) Vision, Modeling and Visu-
alization Conference (VMV), pp. 255–262. Aka GmbH (2004). URL http://dblp.
uni-trier.de/db/conf/vmv/vmv2004.html#ErnstVG04 [50]

Atha
na

sio
s G

ait
atz

es

http://doi.acm.org/10.1145/360349.360354
http://doi.acm.org/10.1145/360349.360354
http://doi.acm.org/10.1145/7529.8927
http://doi.acm.org/10.1145/1507149.1507152
http://doi.acm.org/10.1145/1507149.1507152
http://maverick.inria.fr/Publications/2010/CNSE10
http://maverick.inria.fr/Publications/2010/CNSE10
http://doi.acm.org/10.1145/1053427.1053460
http://doi.acm.org/10.1145/1111411.1111428
http://portal.acm.org/citation.cfm?id=1025128.1026026
http://doi.acm.org/10.1145/1111411.1111424
http://dblp.uni-trier.de/db/conf/vmv/vmv2004.html#ErnstVG04
http://dblp.uni-trier.de/db/conf/vmv/vmv2004.html#ErnstVG04

167

[25] Fang, S., Chen, H.: Hardware accelerated voxelization. Computers & Graphics 24(3), 433–
442 (2000). URL http://dx.doi.org/10.1016/S0097-8493(00)00038-8
[6, 41, 124, 161]

[26] Foley, T., Sugerman, J.: KD-tree acceleration structures for a GPU raytracer. In: ACM
SIGGRAPH/Eurographics Conference on Graphics Hardware (HWWS), pp. 15–22. ACM,
New York, NY, USA (2005). URL http://doi.acm.org/10.1145/1071866.
1071869 [51]

[27] Forest, V., Barthe, L., Paulin, M.: Real-time Hierarchical Binary-Scene Voxelization. Jour-
nal of Graphics, GPU and Game Tools 14(3), 21–34 (2009) [40, 41]

[28] Fujimoto, A., Tanaka, T., Iwata, K.: Arts: Accelerated Ray-Tracing System. IEEE Com-
puter Graphics and Applications pp. 16–26 (1986) [50]

[29] Gaitatzes, A., Andreadis, A., Papaioannou, G., Chrysanthou, Y.: Fast Approximate Vis-
ibility on the GPU using pre-computed 4D Visibility Fields. In: 18th International
Conference in Central Europe on Computer Graphics, Visualization and Computer Vi-
sion (WSCG) (2010). URL http://graphics.cs.aueb.gr/graphics/docs/
papers/aowscg2010.pdf [9]

[30] Gaitatzes, A., Chrysanthou, Y., Papaioannou, G.: Presampled Visibility for Ambient Oc-
clusion. In: 16th International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG) (2008). URL http://wscg.zcu.cz/
WSCG2008/Papers 2008/journal/B07-full.pdf [9]

[31] Gaitatzes, A., Mavridis, P., Papaioannou, G.: Interactive Volume-Based Indirect Illumi-
nation of Dynamic Scenes. In: D. Plemenos, G. Miaoulis (eds.) Intelligent Computer
Graphics 2010, Studies in Computational Intelligence, vol. 321, pp. 229–245. Springer
Berlin / Heidelberg (2010). URL http://www.springerlink.com/content/
e763tt336vh10852/ [9]

[32] Gaitatzes, A., Mavridis, P., Papaioannou, G.: Two Simple Single-pass GPU methods for
Multi-channel Surface Voxelization of Dynamic Scenes. 19th Pacific Conference on Com-
puter Graphics and Applications - short papers (PG) pp. 31–36 (2011). URL http:
//diglib.eg.org/EG/DL/PE/PG/PG2011short/031-036.pdf [9, 152, 153]

[33] Gaitatzes, A., Papaioannou, G.: Progressive Screen-space Multi-channel Surface Voxeliza-
tion. In: W. Engel (ed.) GPU Pro 4: Advanced Rendering Techniques. A. K. Peters, Ltd. /
CRC Press (2013) [9]

[34] Geiss, R.: Generating Complex Procedural Terrains Using the GPU. In: H. Nguyen (ed.)
GPU Gems 3, chap. 1, pp. 10–22. Addison-Wesley Professional (2007) [110, 132]

[35] Gigahertz-Optik, I.: Basic radiometric quantities (2011). URL http://www.
light-measurement.com/basic-radiometric-quantities/ [20]

[36] Glassner, A.S.: Space subdivision for fast ray tracing. IEEE Computer Graphics and Ap-
plications 4(10), 15–22 (1984) [50]

Atha
na

sio
s G

ait
atz

es

http://dx.doi.org/10.1016/S0097-8493(00)00038-8
http://doi.acm.org/10.1145/1071866.1071869
http://doi.acm.org/10.1145/1071866.1071869
http://graphics.cs.aueb.gr/graphics/docs/papers/aowscg2010.pdf
http://graphics.cs.aueb.gr/graphics/docs/papers/aowscg2010.pdf
http://wscg.zcu.cz/WSCG2008/Papers_2008/journal/B07-full.pdf
http://wscg.zcu.cz/WSCG2008/Papers_2008/journal/B07-full.pdf
http://www.springerlink.com/content/e763tt336vh10852/
http://www.springerlink.com/content/e763tt336vh10852/
http://diglib.eg.org/EG/DL/PE/PG/PG2011short/031-036.pdf
http://diglib.eg.org/EG/DL/PE/PG/PG2011short/031-036.pdf
http://www.light-measurement.com/basic-radiometric-quantities/
http://www.light-measurement.com/basic-radiometric-quantities/

168

[37] Goldsmith, J., Salmon, J.: Automatic Creation of Object Hierarchies for Ray Tracing. IEEE
Computer Graphics & Applications 7(5), 14–20 (1987). URL http://dx.doi.org/
10.1109/MCG.1987.276983 [50]

[38] Goral, C.M., Torrance, K.E., Greenberg, D.P., Battaile, B.: Modeling the interaction of
light between diffuse surfaces. In: 11th Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH), pp. 213–222. ACM, New York, NY, USA (1984). URL http:
//doi.acm.org/10.1145/800031.808601 [39]

[39] Green, R.: Spherical Harmonic Lighting: The Gritty Details. In: Archives of the Game De-
velopers Conference (2003). URL http://www.research.scea.com/gdc2003/
spherical-harmonic-lighting.pdf [120]

[40] Greger, G., Shirley, P., Hubbard, P.M., Greenberg, D.P.: The Irradiance Volume. IEEE
Computer Graphics and Applications 18(2), 32–43 (1998). URL http://dx.doi.
org/10.1109/38.656788 [39, 44]

[41] Günther, J., Popov, S., Seidel, H.P., Slusallek, P.: Real-time Ray Tracing on GPU with
BVH-based Packet Traversal. In: 2007 IEEE Symposium on Interactive Ray Tracing (RT),
pp. 113–118. IEEE Computer Society, Washington, DC, USA (2007). URL http://dx.
doi.org/10.1109/RT.2007.4342598 [51, 66]

[42] Harada, T.: Real-time Rigid Body Simulation on GPUs. In: H. Nguyen (ed.) GPU Gems 3,
chap. 29, pp. 705–722. Addison-Wesley Professional (2007) [110, 132]

[43] Havran, V.: Heuristic Ray Shooting Algorithms. Ph.D. thesis, Czech Technical University
in Prague (2000) [50]

[44] Havran, V., Bittner, J.: On Improving KD-Trees for Ray Shooting. In: 2002 International
Conference in Central Europe on Computer Graphics, Visualization and Computer Vision
(WSCG), pp. 209–217 (2002) [50]

[45] Horn, D.R., Sugerman, J., Houston, M., Hanrahan, P.: Interactive k-d tree GPU raytrac-
ing. In: Symposium on Interactive 3D Graphics and Games (I3D), pp. 167–174. ACM,
New York, NY, USA (2007). URL http://doi.acm.org/10.1145/1230100.
1230129 [51, 74]

[46] Huang, P., Wang, W., Yang, G., Wu, E.: Traversal fields for ray tracing dynamic scenes. In:
ACM Symposium on Virtual Reality Software and Technology (VRST), pp. 65–74. ACM,
New York, NY, USA (2006). URL http://doi.acm.org/10.1145/1180495.
1180510 [38, 59]

[47] Illingworth, V.: The Penguin Dictionary of Physics. Penguin (2001) [20]

[48] Iones, A., Krupkin, A., Sbert, M., Zhukov, S.: Fast, Realistic Lighting for Video Games.
IEEE Computer Graphics and Applications 23(3), 54–64 (2003). URL http://dx.
doi.org/10.1109/MCG.2003.1198263 [35]

[49] Jansen, F.W.: Data structures for ray tracing. In: Proceedings of a workshop (Eurographics
Seminars on Data structures for raster graphics, pp. 57–73. Springer-Verlag New York, Inc.,
New York, NY, USA (1986) [50]

Atha
na

sio
s G

ait
atz

es

http://dx.doi.org/10.1109/MCG.1987.276983
http://dx.doi.org/10.1109/MCG.1987.276983
http://doi.acm.org/10.1145/800031.808601
http://doi.acm.org/10.1145/800031.808601
http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf
http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf
http://dx.doi.org/10.1109/38.656788
http://dx.doi.org/10.1109/38.656788
http://dx.doi.org/10.1109/RT.2007.4342598
http://dx.doi.org/10.1109/RT.2007.4342598
http://doi.acm.org/10.1145/1230100.1230129
http://doi.acm.org/10.1145/1230100.1230129
http://doi.acm.org/10.1145/1180495.1180510
http://doi.acm.org/10.1145/1180495.1180510
http://dx.doi.org/10.1109/MCG.2003.1198263
http://dx.doi.org/10.1109/MCG.2003.1198263

169

[50] Jensen, H.W.: Global illumination using Photon maps. In: 7th Eurographics Workshop on
Rendering Techniques (EGSR), pp. 21–30. Springer-Verlag, London, UK (1996) [43]

[51] Jevans, D., Wyvill, B.: Adaptive Voxel Subdivision for Ray Tracing. In: Proceedings of
Graphics Interface (GI), pp. 164–72. Canadian Information Processing Society, Toronto,
Ontario (1989). Nested grid subdivision structures [50]

[52] Kajiya, J.T.: The rendering equation. In: 13th Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH), vol. 20, pp. 143–150. ACM, New York, NY, USA
(1986). URL http://doi.acm.org/10.1145/15922.15902 [21, 90]

[53] Kaplan, M.R.: Space-Tracing: A Constant Time Ray-Tracer. In: SIGGRAPH ’85 State of
the Art in Image Synthesis seminar notes, pp. 149–158. ACM, New York, NY, USA (1985)
[51]

[54] Kaplanyan, A.: Light Propagation Volumes in CryEngine 3. In: ACM SIGGRAPH
Courses. ACM, New York, NY, USA (2009) [xxii, 6, 39, 47, 88, 91, 94, 96, 99, 102, 138,
142, 144, 161]

[55] Kaplanyan, A., Dachsbacher, C.: Cascaded light propagation volumes for real-time indi-
rect illumination. In: Symposium on Interactive 3D Graphics and Games (I3D), pp. 99–
107. ACM, New York, NY, USA (2010). URL http://doi.acm.org/10.1145/
1730804.1730821 [7, 43, 47, 110, 132, 133, 137, 157, 162, 163]

[56] Kaplanyan, A., Engel, W., Dachsbacher, C.: Diffuse Global Illumination with Temporally
Coherent Light Propagation Volumes. In: W. Engel (ed.) GPU Pro 2: Advanced Rendering
Techniques. A K Peters Ltd (2011) [133]

[57] Karabassi, E.A., Papaioannou, G., Theoharis, T.: A fast depth-buffer-based voxelization
algorithm. Journal of Graphics Tools 4(4), 5–10 (1999) [42]

[58] Karlsson, F.: Ray tracing fully implemented on programmable graphics hardware. Master’s
thesis, Chalmers Univ. of Technology (2004) [50]

[59] Kavan, L., Bargteil, A.W., Sloan, P.P.: Least Squares Vertex Baking. Computer Graphics
Forum (Proceedings of EGSR 2011) 30(4), 1319–1326 (2011) [32]

[60] Keller, A.: Instant radiosity. In: 24th Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH), pp. 49–56. ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA (1997). URL http://doi.acm.org/10.1145/258734.258769
[45]

[61] Kessenich, J., Baldwin, D., Rost, R.: The OpenGL Shading Language. 3Dlabs, Inc. Ltd.,
1.2.8 edn. (2006) [71, 99, 120]

[62] Klimaszewski, K.S., Sederberg, T.W.: Faster Ray Tracing Using Adaptive Grids. IEEE
Computer Graphics and Applications 17(1), 42–51 (1997). URL http://dx.doi.
org/10.1109/38.576857 [50]

[63] Kontkanen, J., Laine, S.: Ambient occlusion fields. In: Symposium on Interactive 3D
Graphics and Games (I3D), pp. 41–48. ACM, New York, NY, USA (2005). URL http:
//doi.acm.org/10.1145/1053427.1053434 [5, 35, 161]

Atha
na

sio
s G

ait
atz

es

http://doi.acm.org/10.1145/15922.15902
http://doi.acm.org/10.1145/1730804.1730821
http://doi.acm.org/10.1145/1730804.1730821
http://doi.acm.org/10.1145/258734.258769
http://dx.doi.org/10.1109/38.576857
http://dx.doi.org/10.1109/38.576857
http://doi.acm.org/10.1145/1053427.1053434
http://doi.acm.org/10.1145/1053427.1053434

170

[64] Kristensen, A.W., Akenine-Möller, T., Jensen, H.W.: Precomputed local radiance transfer
for real-time lighting design. ACM Transactions on Graphics 24(3), 1208–1215 (2005).
URL http://doi.acm.org/10.1145/1073204.1073334 [34]

[65] Křivánek, J., Konttinen, J., Pattanaik, S., Bouatouch, K., Žára, J.: Fast approximation to
spherical harmonics rotation. In: ACM SIGGRAPH Sketches, p. 154. ACM, New York,
NY, USA (2006). URL http://doi.acm.org/10.1145/1179849.1180042
[97]

[66] Lawlor, O.S., Kalée, L.V.: A voxel-based parallel collision detection algorithm. In: 16th
International Conference on Supercomputing (ICS), pp. 285–293. ACM, New York, NY,
USA (2002). URL http://doi.acm.org/10.1145/514191.514231 [110, 132]

[67] Loos, B.J., Sloan, P.P.: Volumetric obscurance. In: Proceedings of the 2010 ACM SIG-
GRAPH symposium on Interactive 3D Graphics and Games (I3D), pp. 151–156. ACM,
New York, NY, USA (2010). URL http://doi.acm.org/10.1145/1730804.
1730829 [37]

[68] MacDonald, D.J., Booth, K.S.: Heuristics for ray tracing using space subdivision.
Visual Computer 6(3), 153–166 (1990). URL http://dx.doi.org/10.1007/
BF01911006 [50]

[69] Malley, T.J.V.: A shading method for computer generated images. Master’s thesis, Univer-
sity of Utah (1988) [64]

[70] Malmer, M., Malmer, F., Assarsson, U., Holzschuch, N.: Fast Precomputed Ambient Oc-
clusion for Proximity Shadows. Journal of Graphics Tools 12(2), 59–71 (2007). URL
http://artis.imag.fr/Publications/2007/MMAH07 [5, 36, 161]

[71] Mavridis, P., Gaitatzes, A., Papaioannou, G.: Volume-based Diffuse Global Illumina-
tion. In: International Conference on Computer Graphics, Visualization, Computer Vision
and Image Processing (CGVCVIP) (2010). URL http://graphics.cs.aueb.gr/
graphics/docs/papers/vbgi2010.pdf [9]

[72] Mavridis, P., Papaioannou, G.: Global Illumination using Imperfect Volumes. In:
International Conference on Computer Graphics Theory and Applications (GRAPP)
(2011). URL http://graphics.cs.aueb.gr/graphics/docs/papers/
GRAPP11 ImperfectVolumes.pdf [43, 47, 133, 144]

[73] McGuire, M.: Ambient occlusion volumes. In: Proceedings of the ACM SIGGRAPH
Symposium on High Performance Graphics (HPG), pp. 47–56. Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland (2010). URL http://portal.acm.org/
citation.cfm?id=1921479.1921488 [37, 110]

[74] McGuire, M., Luebke, D.: Hardware accelerated global illumination by image space photon
mapping. In: Proceedings of the ACM SIGGRAPH Symposium on High Performance
Graphics (HPG), pp. 77–89. ACM, New York, NY, USA (2009). URL http://doi.
acm.org/10.1145/1572769.1572783 [44]

[75] Mittring, M.: Finding next gen: CryEngine 2. In: ACM SIGGRAPH Courses, SIGGRAPH
’07, pp. 97–121. ACM, New York, NY, USA (2007). URL http://doi.acm.org/
10.1145/1281500.1281671 [37]

Atha
na

sio
s G

ait
atz

es

http://doi.acm.org/10.1145/1073204.1073334
http://doi.acm.org/10.1145/1179849.1180042
http://doi.acm.org/10.1145/514191.514231
http://doi.acm.org/10.1145/1730804.1730829
http://doi.acm.org/10.1145/1730804.1730829
http://dx.doi.org/10.1007/BF01911006
http://dx.doi.org/10.1007/BF01911006
http://artis.imag.fr/Publications/2007/MMAH07
http://graphics.cs.aueb.gr/graphics/docs/papers/vbgi2010.pdf
http://graphics.cs.aueb.gr/graphics/docs/papers/vbgi2010.pdf
http://graphics.cs.aueb.gr/graphics/docs/papers/GRAPP11_ImperfectVolumes.pdf
http://graphics.cs.aueb.gr/graphics/docs/papers/GRAPP11_ImperfectVolumes.pdf
http://portal.acm.org/citation.cfm?id=1921479.1921488
http://portal.acm.org/citation.cfm?id=1921479.1921488
http://doi.acm.org/10.1145/1572769.1572783
http://doi.acm.org/10.1145/1572769.1572783
http://doi.acm.org/10.1145/1281500.1281671
http://doi.acm.org/10.1145/1281500.1281671

171

[76] Naylor, B.: Constructing Good Partitioning Trees. In: Graphics Interface, pp. 181–191.
Canadian Information Processing Society, Toronto, Ontario, Canada (1993) [50]

[77] Nichols, G., Wyman, C.: Interactive Indirect Illumination Using Adaptive Multiresolu-
tion Splatting. IEEE Transactions on Visualization and Computer Graphics 16, 729–
741 (2010). URL http://doi.ieeecomputersociety.org/10.1109/TVCG.
2009.97 [46]

[78] Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsberg, I.W., Limperis, T.: Geometrical
considerations and Nomenclature for Reflectance. Tech. rep. (1977) [20, 21]

[79] Nijasure, M., Pattanaik, S., Goel, V.: Real-time Global Illumination on the GPU. Journal
of Graphics Tools 10(2), 55–71 (2005) [46]

[80] Pantaleoni, J.: VoxelPipe: a programmable pipeline for 3D voxelization. In: Proceedings
of the ACM SIGGRAPH Symposium on High Performance Graphics (HPG), pp. 99–106.
ACM, New York, NY, USA (2011) [42, 151]

[81] Papaioannou, G., Menexi, M.L., Papadopoulos, C.: Real-time Volume-Based Ambient Oc-
clusion. IEEE Transactions on Visualization and Computer Graphics 16, 752–762 (2010).
URL http://dx.doi.org/10.1109/TVCG.2010.18 [110, 132]

[82] Parker, S., Martin, W., Sloan, P.P., Shirley, P., Smits, B., Hansen, C.: Interactive ray tracing.
In: 1999 Symposium on Interactive 3D Graphics (I3D), pp. 119–126. ACM, New York,
NY, USA (1999). URL http://doi.acm.org/10.1145/300523.300537 [50]

[83] Passalis, G., Theoharis, T., Toderici, G., Kakadiaris, I.A.: General Voxelization Algorithm
with Scalable GPU Implementation. Journal of Graphics, GPU and Game Tools 12(1),
61–71 (2007) [42]

[84] Penmatsa, R., Nichols, G., Wyman, C.: Voxel-space ambient occlusion. In: Symposium
on Interactive 3D Graphics and Games (I3D). ACM, New York, NY, USA (2010). URL
http://doi.acm.org/10.1145/1730971.1730989 [110]

[85] Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2004) [20]

[86] Policarpo, F.: Deferred Shading Tutorial. Techniques 31, 32 (2005). URL
http://www710.univ-lyon1.fr/∼jciehl/Public/educ/GAMA/2007/
Deferred Shading Tutorial SBGAMES2005.pdf [30]

[87] Popov, S., Günther, J., Seidel, H.P., Slusallek, P.: Stackless KD-Tree Traversal for High
Performance GPU Ray Tracing. Computer Graphics Forum 26(3), 415–424 (2007). URL
http://dx.doi.org/10.1111/j.1467-8659.2007.01064.x [51]

[88] Purcell, T.J.: Ray Tracing on a Stream Processor. Ph.D. thesis, Department of Computer
Science, Stanford University, Stanford, CA (2004) [50]

[89] Purcell, T.J., Buck, I., Mark, W.R., Hanrahan, P.: Ray tracing on programmable graph-
ics hardware. In: 29th Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH), vol. 21, pp. 703–712. ACM, New York, NY, USA (2002). URL http:
//doi.acm.org/10.1145/566570.566640 [50]

Atha
na

sio
s G

ait
atz

es

http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.97
http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.97
http://dx.doi.org/10.1109/TVCG.2010.18
http://doi.acm.org/10.1145/300523.300537
http://doi.acm.org/10.1145/1730971.1730989
http://www710.univ-lyon1.fr/~jciehl/Public/educ/GAMA/2007/Deferred_Shading_Tutorial_SBGAMES2005.pdf
http://www710.univ-lyon1.fr/~jciehl/Public/educ/GAMA/2007/Deferred_Shading_Tutorial_SBGAMES2005.pdf
http://dx.doi.org/10.1111/j.1467-8659.2007.01064.x
http://doi.acm.org/10.1145/566570.566640
http://doi.acm.org/10.1145/566570.566640

172

[90] Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment
maps. In: 28th Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH), pp. 497–500. ACM, New York, NY, USA (2001). URL http://doi.acm.
org/10.1145/383259.383317 [120]

[91] Ritschel, T., Grosch, T., Kim, M.H., Seidel, H.P., Dachsbacher, C., Kautz, J.: Imperfect
shadow maps for efficient computation of indirect illumination. In: ACM SIGGRAPH
Asia Papers, vol. 27, pp. 1–8. ACM, New York, NY, USA (2008). URL http://doi.
acm.org/10.1145/1409060.1409082 [46]

[92] Ritschel, T., Grosch, T., Seidel, H.P.: Approximating dynamic global illumination in image
space. In: Symposium on Interactive 3D Graphics and Games (I3D), pp. 75–82. ACM,
New York, NY, USA (2009). URL http://doi.acm.org/10.1145/1507149.
1507161 [46]

[93] Rubin, S.M., Whitted, T.: A 3-dimensional representation for fast rendering of complex
scenes. In: 7th Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH), pp. 110–116. ACM, New York, NY, USA (1980). URL http://doi.acm.
org/10.1145/800250.807479 [50]

[94] Saito, T., Takahashi, T.: Comprehensible rendering of 3-D shapes. In: 17th Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 197–206. ACM, New
York, NY, USA (1990). URL http://doi.acm.org/10.1145/97879.97901
[32]

[95] Schwarz, M., Seidel, H.P.: Fast parallel surface and solid voxelization on GPUs. In: ACM
SIGGRAPH Asia Papers, SIGGRAPH ASIA ’10, pp. 179:1–179:10. ACM, New York, NY,
USA (2010). URL http://doi.acm.org/10.1145/1866158.1866201 [40, 42]

[96] Segal, M., Akeley, K.: The OpenGL Graphics System: A Specification (Version 1.2). Com-
puter (1998) [23]

[97] Shanmugam, P., Arikan, O.: Hardware accelerated ambient occlusion techniques on GPUs.
In: Symposium on Interactive 3D Graphics and Games (I3D), pp. 73–80. ACM, New York,
NY, USA (2007). URL http://doi.acm.org/10.1145/1230100.1230113
[36, 46]

[98] Shirley, P., Chiu, K.: A low distortion map between disk and square. Journal of Graphics
Tools 2(3), 45–52 (1997) [64]

[99] Slater, M.: Constant time queries on uniformly distributed points on a hemisphere. Journal
of Graphics Tools 7(1), 33–44 (2002) [63]

[100] Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in
dynamic, low-frequency lighting environments. In: 29th Conference on Computer Graph-
ics and Interactive Techniques (SIGGRAPH), pp. 527–536. ACM, New York, NY, USA
(2002). URL http://doi.acm.org/10.1145/566570.566612 [33, 91, 120, 144]

[101] Snyder, J., Barr, A.H.: Ray tracing complex models containing surface tessellations. In:
14th Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), vol. 21,
pp. 119–128. ACM, New York, NY, USA (1987). URL http://doi.acm.org/10.
1145/37401.37417 [50]

Atha
na

sio
s G

ait
atz

es

http://doi.acm.org/10.1145/383259.383317
http://doi.acm.org/10.1145/383259.383317
http://doi.acm.org/10.1145/1409060.1409082
http://doi.acm.org/10.1145/1409060.1409082
http://doi.acm.org/10.1145/1507149.1507161
http://doi.acm.org/10.1145/1507149.1507161
http://doi.acm.org/10.1145/800250.807479
http://doi.acm.org/10.1145/800250.807479
http://doi.acm.org/10.1145/97879.97901
http://doi.acm.org/10.1145/1866158.1866201
http://doi.acm.org/10.1145/1230100.1230113
http://doi.acm.org/10.1145/566570.566612
http://doi.acm.org/10.1145/37401.37417
http://doi.acm.org/10.1145/37401.37417

173

[102] Software, P.: Video Card Benchmarks (2012). URL http://www.
videocardbenchmark.net/high end gpus.html. [Online; accessed 18-
April-2012] [151]

[103] Sud, A., Govindaraju, N., Gayle, R., Manocha, D.: Interactive 3D distance field compu-
tation using linear factorization. In: Symposium on Interactive 3D Graphics and Games
(I3D), pp. 117–124. ACM, New York, NY, USA (2006). URL http://doi.acm.org/
10.1145/1111411.1111432 [38]

[104] Sud, A., Otaduy, M.A., Manocha, D.: DiFi: Fast 3D Distance Field Computation Using
Graphics Hardware. Computer Graphics Forum 23(3), 557–566 (2004) [38]

[105] Sung, K., Shirley, P.: Ray tracing with the BSP tree. In: Graphics Gems III, pp. 271–274.
Academic Press Professional, Inc., San Diego, CA, USA (1992) [50]

[106] Szirmay-Kalos, L., Umenhoffer, T., Toth, B., Szecsi, L., Sbert, M.: Volumetric Ambient
Occlusion for Real-Time Rendering and Games. IEEE Computer Graphics and Appli-
cations 30, 70–79 (2010). URL http://doi.ieeecomputersociety.org/10.
1109/MCG.2010.19 [37, 110]

[107] Theoharis, T., Papaioannou, G., Platis, N., Patrikalakis, N.M.: Graphics and Visualization:
Principles & Algorithms. A. K. Peters, Ltd., Natick, MA, USA (2007) [20]

[108] Thiedemann, S., Henrich, N., Grosch, T., Müller, S.: Voxel-based global illumination. In:
Symposium on Interactive 3D Graphics and Games (I3D), pp. 103–110. ACM, New York,
NY, USA (2011). URL http://doi.acm.org/10.1145/1944745.1944763
[42, 47, 110, 132, 133, 144]

[109] Thrane, N., Simonsen, L.O.: A comparison of acceleration structures for GPU assisted ray
tracing. Master’s thesis, University of Aarhus, Denmark (2005) [51]

[110] Wald, I., Slusallek, P., Benthin, C., Wagner, M.: Interactive Distributed Ray Tracing of
Highly Complex Models. In: 12th Eurographics Workshop on Rendering Techniques
(EGSR), pp. 277–288. Springer-Verlag, London, UK (2001) [50]

[111] Wald, I., Slusallek, P., Benthin, C., Wagner, M.: Interactive Rendering with Coherent Ray
Tracing. Computer Graphics Forum 20(3), 153164 (2001) [50]

[112] Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., Greenberg, D.P.: Lightcuts:
a scalable approach to illumination. ACM Transactions on Graphics 24(3), 1098–1107
(2005). URL http://doi.acm.org/10.1145/1186822.1073318 [45]

[113] Wang, R., Wang, R., Zhou, K., Pan, M., Bao, H.: An efficient GPU-based approach for in-
teractive global illumination. In: ACM SIGGRAPH Papers, pp. 1–8. ACM, New York, NY,
USA (2009). URL http://doi.acm.org/10.1145/1576246.1531397 [46]

[114] Ward, G.J., Rubinstein, F.M., Clear, R.D.: A ray tracing solution for diffuse interreflection.
In: 15th Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), pp.
85–92. ACM, New York, NY, USA (1988). URL http://doi.acm.org/10.1145/
54852.378490 [46]

Atha
na

sio
s G

ait
atz

es

http://www.videocardbenchmark.net/high_end_gpus.html
http://www.videocardbenchmark.net/high_end_gpus.html
http://doi.acm.org/10.1145/1111411.1111432
http://doi.acm.org/10.1145/1111411.1111432
http://doi.ieeecomputersociety.org/10.1109/MCG.2010.19
http://doi.ieeecomputersociety.org/10.1109/MCG.2010.19
http://doi.acm.org/10.1145/1944745.1944763
http://doi.acm.org/10.1145/1186822.1073318
http://doi.acm.org/10.1145/1576246.1531397
http://doi.acm.org/10.1145/54852.378490
http://doi.acm.org/10.1145/54852.378490

174

[115] Whitted, T.: An improved illumination model for shaded display. Communications of
the ACM 23(6), 343–349 (1980). URL http://doi.acm.org/10.1145/358876.
358882 [48, 49]

[116] Wikipedia: GeForce 256 — Wikipedia, The Free Encyclopedia (2002). URL http://
en.wikipedia.org/wiki/GeForce 256. [Online; accessed 18-April-2012] [23]

[117] Wikipedia: Microsoft Direct3D — Wikipedia, The Free Encyclopedia (2002). URL
http://en.wikipedia.org/wiki/Microsoft Direct3D. [Online; accessed
18-April-2012] [23]

[118] Wikipedia: GeForce 3 Series — Wikipedia, The Free Encyclopedia (2003). URL http:
//en.wikipedia.org/wiki/GeForce 3 Series. [Online; accessed 18-April-
2012] [23]

[119] Wikipedia: GeForce 200 Series — Wikipedia, The Free Encyclopedia (2009). URL
http://en.wikipedia.org/wiki/GeForce 200 Series. [Online; accessed
18-April-2012] [151]

[120] Wikipedia: GeForce 400 Series — Wikipedia, The Free Encyclopedia (2010). URL
http://en.wikipedia.org/wiki/GeForce 400 Series. [Online; accessed
18-April-2012] [23, 151]

[121] Wikipedia: Comparison of Nvidia Graphics Processing Units — Wikipedia, The Free En-
cyclopedia (2012). URL http://en.wikipedia.org/wiki/Comparison of
Nvidia graphics processing units. [Online; accessed 18-April-2012] [151]

[122] Zhang, L., Chen, W., Ebert, D.S., Peng, Q.: Conservative voxelization. Visual Com-
puter 23, 783–792 (2007). URL http://portal.acm.org/citation.cfm?id=
1283953.1283975 [41]

[123] Zhou, K., Hu, Y., Lin, S., Guo, B., Shum, H.Y.: Precomputed shadow fields for dynamic
scenes. ACM Transactions on Graphics 24(3), 1196–1201 (2005). URL http://doi.
acm.org/10.1145/1073204.1073332 [35]

[124] Zhukov, S., Iones, A., Kronin, G.: An Ambient Light Illumination Model. In: G. Drettakis,
N. Max (eds.) 9th Eurographics Workshop on Rendering Techniques (EGSR), pp. 45–56.
Springer-Verlag Wien New York (1998) [35]

Atha
na

sio
s G

ait
atz

es

http://doi.acm.org/10.1145/358876.358882
http://doi.acm.org/10.1145/358876.358882
http://en.wikipedia.org/wiki/GeForce_256
http://en.wikipedia.org/wiki/GeForce_256
http://en.wikipedia.org/wiki/Microsoft_Direct3D
http://en.wikipedia.org/wiki/GeForce_3_Series
http://en.wikipedia.org/wiki/GeForce_3_Series
http://en.wikipedia.org/wiki/GeForce_200_Series
http://en.wikipedia.org/wiki/GeForce_400_Series
http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units
http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units
http://portal.acm.org/citation.cfm?id=1283953.1283975
http://portal.acm.org/citation.cfm?id=1283953.1283975
http://doi.acm.org/10.1145/1073204.1073332
http://doi.acm.org/10.1145/1073204.1073332

Author Index

Akeley, Kurt . 23

Akenine-Möller, Tomas 23, 34

Amit, Ben-David . 66

Andreadis, Anthousis . 9

Arbree, Adam . 45

Arikan, Okan . 36, 46

Arvo, James .50

Assarsson, Ulf . 5, 36, 161

Bala, Kavita . 20, 45

Baldwin, Dave 71, 99, 120

Bao, Hujun .41, 42, 46

Bargteil, Adam W. 32

Barr, Alan H. 50

Barthe, Loic . 40, 41

Battaile, Bennett . 39

Bavoil, Louis . 37

Bekaert, Philippe . 20

Benthin, Carsten . 50

Bittner, Jiri . 50

Blythe, David . 23

Booth, Kellogg S. .50

Bouatouch, Kadi . 97

Buck, Ian . 50

Bunnell, Michael . 36

Carr, Nathan A. 50, 51

Cazals, Frédéric . 50

Chatelier, Pierre Y. 39

Chen, Hongsheng 6, 41, 94, 124, 161

Chen, Wei . 41, 42

Chiu, Kenneth . 64

Christen, Martin . 50

Chrysanthou, Yiorgos . 9

Clark, James H. 50

Clear, Robert D. 46

Cook, Robert L. 49

Crane, Keenan 41, 51, 110, 132

Crassin, Cyril . 40, 162

175

Atha
na

sio
s G

ait
atz

es

176

Dachsbacher, Carsten . . .7, 43, 45–47, 88, 110,

132, 133, 137, 157, 162, 163

Décoret, Xavier 40–42, 94, 125, 137

Dimitrov, Rouslan . 37

Dong, Zhao . 41, 42

Donikian, Michael . 45

Drettakis, George . 50

Dutre, Philip . 20

Ebert, David S. 41

Eisemann, Elmar 40–42, 94, 125, 137, 162

Engel, Wolfgang . 50, 133

Ernst, Manfred . 50

Fang, Shiaofen 6, 41, 94, 124, 161

Fernandez, Sebastian .45

Foley, Tim . 51

Forest, Vincent . 40, 41

Fujimoto, Akira . 50

Gaitatzes, Athanasios 9, 152, 153

Gayle, Russell . 38

Geiss, Ryan . 110, 132

Gigahertz-Optik, Inc. 20

Ginsberg, I. W. 20, 21

Glassner, A. S. 50

Goel, Vineet . 46

Goldsmith, Jeffrey . 50

Goral, Cindy M. 39

Govindaraju, Naga . 38

Green, Robin . 120

Greenberg, Donald P.39, 44, 45

Greger, Gene . 39, 44

Greiner, Günther . 50

Grosch, Thorsten . . . 42, 46, 47, 110, 132, 133,

144

Günther, Johannes . 51, 66

Guo, Baining . 35

Haines, Eric . 23

Hall, Jesse D. 50

Hanrahan, Pat 50, 51, 74, 120

Hansen, Charles . 50

Harada, Takahiro 110, 132

Hart, John C. 50, 51

Havran, Vlastimil . 50

Henrich, Niklas 42, 47, 110, 132, 133, 144

Hoberock, Jared . 51

Hoffman, Naty . 23

Holzschuch, Nicolas 5, 36, 161

Atha
na

sio
s G

ait
atz

es

177

Horn, Daniel Reiter 51, 74

Houston, Mike . 51, 74

Hsia, J. J. 20, 21

Hu, Yaohua . 35

Huang, Peijie . 38, 59

Hubbard, Philip M. 39, 44

Humphreys, Greg . 20

Illingworth, Valerie . 20

Iones, Andrej .35

Iwata, Kansei . 50

Jansen, Frederik W . 50

Jensen, Henrik Wann 34, 43

Jevans, David . 50

Kajiya, James T. 21, 90

Kakadiaris, Ioannis A. 42

Kalée, Laxmikant V. 110, 132

Kaplan, Michael R. 51

Kaplanyan, Anton xxii, 6, 7, 39, 43, 47,

88, 91, 94, 96, 99, 102, 110, 132, 133,

137, 138, 142, 144, 157, 161–163

Karabassi, Evaggelia-Aggeliki 42

Karlsson, Filip . 50

Kautz, Jan 33, 46, 91, 120, 144

Kavan, Ladislav . 32

Keller, Alexander . 45

Kessenich, John 71, 99, 120

Kim, M. H. 46

Klimaszewski, Krzysztof S.50

Kontkanen, Janne 5, 35, 161

Konttinen, Jaakko . 97

Kristensen, Anders Wang 34

Kronin, Grigorij . 35

Krupkin, Anton . 35

Křivánek, Jaroslav . 97

Laine, Samuli . 5, 35, 161

Lawlor, Orion Sky 110, 132

Lefebvre, Sylvain . 40

Limperis, T. 20, 21

Lin, Stephen . 35

Llamas, Ignacio 41, 110, 132

Loos, Bradford James . 37

Luebke, David . 44

MacDonald, David J. 50

Malgouyres, Rémy . 39

Malley, Thomas J. V. 64

Malmer, Fredrik 5, 36, 161

Atha
na

sio
s G

ait
atz

es

178

Malmer, Mattias 5, 36, 161

Manocha, Dinesh . 38

Mark, William R. 50

Martin, William . 50

Mavridis, Pavlos . 9, 43, 47, 133, 144, 152, 153

McGuire, Morgan 37, 44, 110

Menexi, Maria Lida 110, 132

Mittring, Martin . 37

Müller, Stefan 42, 47, 110, 132, 133, 144

Naylor, Bruce . 50

Neyret, Fabrice . 40, 162

Nichols, Greg . 46, 110

Nicodemus, F. E. 20, 21

Nijasure, Mangesh . 46

Otaduy, Miguel A. 38

Pan, Minghao . 46

Pantaleoni, Jacopo 42, 151

Papadopoulos, Charilaos 110, 132

Papaioannou, Georgios . 9, 20, 42, 43, 47, 110,

132, 133, 144, 152, 153

Parker, Steven . 50

Passalis, Georgios . 42

Patrikalakis, N. M. 20

Pattanaik, Sumanta 46, 97

Paulin, Mathias . 40, 41

Peng, Qunsheng .41, 42

Penmatsa, Rajeev . 110

Pharr, Matt . 20

Platis, N. 20

Policarpo, Fabio . 30

Popov, Stefan . 51, 66

Puech, Claude . 50

Purcell, Timothy John . 50

Ramamoorthi, Ravi . 120

Richmond, J. C. 20, 21

Ritschel, Tobias . 46

Rost, Randi . 71, 99, 120

Rubin, Steven M. 50

Rubinstein, Francis M. 46

Sainz, Miguel .37, 162

Saito, Takafumi . 32

Salmon, John . 50

Sbert, Mateu . 35, 37, 110

Schwarz, Michael . 40, 42

Sederberg, Thomas W. 50

Segal, Mark . 23

Atha
na

sio
s G

ait
atz

es

179

Seidel, Hans-Peter 40, 42, 46, 51, 66

Shanmugam, Perumaal 36, 46

Shirley, Peter 39, 44, 50, 64

Shum, Heung-Yeung . 35

Simonsen, Lars Ole . 51

Slater, Mel . 63

Sloan, Peter-Pike . 32, 33, 37, 50, 91, 120, 144

Slusallek, Philipp 50, 51, 66

Smits, Brian .50

Snyder, John 33, 50, 91, 120, 144

Software, PassMark . 151

Stamminger, Marc 45, 46, 88, 133, 137

Sud, Avneesh . 38

Sugerman, Jeremy .51, 74

Sung, Kelvin . 50

Szecsi, László . 37, 110

Szirmay-Kalos, László 37, 110

Takahashi, Tokiichiro . 32

Tanaka, Takayuki . 50

Tariq, Sarah . 41, 110, 132

Theoharis, Theoharis 20, 42

Thiedemann, Sinje . 42, 47, 110, 132, 133, 144

Thrane, Niels .51

Toderici, George .42

Torrance, Kenneth E. .39

Toth, Balazs . 37, 110

Umenhoffer, Tamas 37, 110

Vogelgsang, Christian . 50

Žára, Jiřı́ . 97

Wagner, Markus . 50

Wald, Ingo . 50

Walter, Bruce . 45

Wang, Rui . 46

Wang, Wencheng .38, 59

Ward, Gregory J. 46

Whitted, Turner . 48–50

Wikipedia . 23, 151

Wu, Enhua . 38, 59

Wyman, Chris . 46, 110

Wyvill, Brian .50

Yang, Gang . 38, 59

Zhang, Hongxin .41, 42

Zhang, Long . 41

Zhou, Kun . 35, 46

Zhukov, Sergej . 35

Atha
na

sio
s G

ait
atz

es

	Abstract
	Title Page
	Table of Contents
	List of Tables
	List of Algorithms
	List of Figures
	Chapter 1: Introduction
	Motivation
	Scope
	Contributions
	Organization

	Part I Background and Related Work
	Chapter 2: Theoretical Background
	The Physics of Light Transport
	Basic radiometric quantities
	Bidirectional Reflectance Distribution Function
	The Rendering Equation
	Programmable Hardware Evolution
	Vertex Processing Unit
	Pixel Processing Unit
	Geometry Processing Unit

	Deferred Shading

	Chapter 3: Related Work
	Methods that use Pre-computations
	Lightmaps
	Precomputed Radiance Transfer

	Methods that Simplify the Lighting Equation
	Ambient Occlusion
	Ambient Occlusion on the GPU - Screen Space AO
	Field Computations around an Object

	Methods that Discretize the Scene Geometry
	Radiosity
	Voxelization
	Geometry-based Surface Voxelization
	Image-based Surface Voxelization

	Methods that Discretize the Light Representation
	Brute Force Methods
	Ray-Tracing
	Real-time Ray-Tracing on the GPU

	Part II Discretization of Visibility – Ambient Occlusion and Secondary Light Bounces
	Chapter 4: Fast approximate Visibility using pre-computed 4D Visibility Fields
	Motivation
	Overview
	Introduction
	Overview of the Visibility Fields
	Visibility Field Computation
	Visibility Field Indexing
	Selecting Samples around the Object
	Sampling a Hemisphere of Directions

	Visibility Fields on the GPU
	Ambient Occlusion
	Ray tracing

	Implementation & Evaluation on the CPU
	Ambient Occlusion
	Storage and Error Considerations
	Using the 8-bit maps
	Further Memory Optimization

	Implementation & Evaluation on the GPU
	Ambient Occlusion
	Ray tracing

	Limitations
	Summary

	Part III Discretization of Illumination – Virtual Point Light Methods
	Chapter 5: Interactive Volume-based Indirect Illumination of Dynamic Scenes
	Motivation
	Overview
	Introduction
	Mathematical Background
	Review of Spherical Harmonics
	Radiance Transfer

	Method Overview
	Real-Time Voxelization
	Iterative Radiance Distribution
	Final Illumination Reconstruction

	Implementation & Evaluation
	Discussion
	Summary

	Part IV Discretization of Geometry – Voxelization Methods
	Chapter 6: Two Simple Single-pass GPU methods for Multi-channel Surface Voxelization of Dynamic Scenes
	Motivation
	Overview
	Introduction
	Overview of Voxelization methods
	Geometry Shader Triangle Slicing
	Pixel Shader Fragment Clipping

	Implementation
	Performance & Evaluation
	Discussion
	Summary

	Chapter 7: Incremental Image-based Multi-valued Voxelization for Global Illumination
	Motivation
	Overview
	Introduction
	Overview of Voxelization method
	Clean-up phase
	Injection phase
	Single-pass Incremental algorithm

	Incremental Voxelization for Lighting
	Implementation
	Performance & Evaluation
	Optimizations
	Limitations
	Discussion & Summary

	Chapter 8: Conclusion
	Summary of Contributions
	Thoughts about Future Work

	Bibliography
	Author Index

