
THE DATA-DRIVEN MULTITHREADING VIRTUAL MACHINE

Samer Arandi

University of Cyprus, 2011

Since the advent of digital computers, chip designers built faster computers by relying on im-

provements in fabrication technologies and architectural/organizational optimizations. However,

the inability of the sequential model to tolerate long latencies (manifested mainly in the Memory

Wall) combined with the Power and Instruction Level Parallelism (ILP) Walls problems eventually

rendered this approach ineffective.

The envisaged solution was to switch to multi-core architectures. This switch was an engi-

neering effort that did not address the long memory latencies and the complexity of the designs.

In addition, this switch elevated concurrency as a major challenge as it became evident that new

concurrent models/paradigms are needed to efficiently utilize the resources of multi-core chips.

The Data-flow model is a formal model that can handle concurrency and tolerate memory and

synchronization latencies. Data-Flow systems can also be simpler and thus more power efficient

than conventional systems.

In this thesis, we propose re-visiting the Data-flow model and adopting it as the basis for

an execution model that efficiently exploits the resources of multi-core architectures. We design

and implement a virtual machine supporting the Data-Driven Multithreading (DDM) model of

execution, which combines Dynamic Data-Flow concurrency with efficient sequential execution,

on multi-core architectures. We refer to this virtual machine as the Data-Driven Multithreading

Virtual Machine (DDM-VM). The DDM-VM also supports execution on a cluster of multi-core

Sam
er

Aran
di

Samer Arandi––University of Cyprus, 2011

nodes. We develop a number of alternative approaches facilitating the programming of the DDM-

VM, in addition to a number of optimizations for improving the performance.

The evaluation of the DDM-VM for both single nodes and clusters demonstrates that the VM

scales well and tolerates latencies and synchronization overheads efficiently, achieving very good

performance and outperforming other similar state-of-the-art systems.

The main contribution of this thesis is the design, implementation and optimization of a virtual

machine that efficiently exploits data-flow concurrency on commercial multi-cores and delivers

high-performance comparing favorably with similar systems. The rest of this thesis contributions

are:

• The development of the DDM-VM, an efficient virtual machine that supports DDM execu-

tion on multi-core architectures. It utilizes Data-Flow concurrency for scheduling threads

and efficient sequential execution within a thread, while optimizing the context manage-

ment of the Dynamic Data-Flow tagging system. The virtual machine has two individually

optimized implementations: The DDM-VMs tailored for homogeneous multi-cores and the

DDM-VMc tailored for heterogeneous multi-cores. The latter is developed for heteroge-

neous multi-core architectures with a host/accelerator organization and a software-managed

memory hierarchy. The DDM-VMc is also a high-performance implementation of DDM.

When comparing its performance with two similar state-of-the-art systems using a number

of computationally-intensive benchmarks, the DDM-VMc outperforms both systems and

achieves 88% of the theoretical peak performance for one of the benchmarks. For the same

benchmark the DDM-VMc execution on a cluster of 4 machines achieves 0.44 TFLOPs.

Sam
er

Aran
di

Samer Arandi––University of Cyprus, 2011

• The development of a fully-automated software prefetching cache with variable cache block

sizes and explicit data locality optimizations for handling explicitly-managed memory hier-

archies.

• The development of the support for distributed DDM execution. The DDM-VM is the first

DDM implementation supporting distributed DDM execution across a cluster of multi-core

nodes.

• The development of the support for runtime dependency resolution using specialized I-

Structures. The DDM-VM is the first DDM implementation that supports parallel execution

of code that contains producer-consumer dependencies that are only resolved at runtime

while utilizing compile-time resolution at the same time. This permits taking advantage of

the strengths of both approaches and expands the class of programs that can be mapped to

the DDM model. It also has the potential to improve the programmability and enhance the

yield of compilation methods generating data-flow code.

• The development of a number of performance optimizations and monitoring & visualization

tools.

Sam
er

Aran
di

THE DATA-DRIVEN MULTITHREADING VIRTUAL MACHINE

Samer Arandi

A Doctor of Philosophy Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the

University of Cyprus

Recommended for Acceptance

by the Department of Computer Science

November, 2011

Sam
er

Aran
di

c© Copyright by

Samer Arandi

All Rights Reserved

2011Sam
er

Aran
di

APPROVAL PAGE

Doctor of Philosophy Dissertation

THE DATA-DRIVEN MULTITHREADING VIRTUAL MACHINE

Presented by

Samer Arandi

Research Supervisor
Professor Paraskevas Evripidou

Committee Chair
Dr. Pedro Trancoso

Committee Member
Professor Ian Watson

Committee Member
Dr. Yiannakis Sazeides

Committee Member
Dr. Costas Kyriacou

University of Cyprus

November, 2011

ii

Sam
er

Aran
di

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Professor Skevos Evripidou for

his continuous support for me both personally and professionally. I am grateful for his patience,

guidance and immense knowledge and experience. He has taught me various valuable things

through out the period of my studies and made sure I am always on the right track with his deep

intuitions and infallible advice. It was a privilege and a pleasure having him as my advisor.

I would also like to warmly thank Dr. Pedro Trancoso for his invaluable help and support

since the first day of my studies. Thanks for the sincere encouragement, inspiring opinions and

insightful discussions.

It is a pleasure to extend my gratitude to the rest of the committee members: Professor Ian

Watson, Dr Yannakis Sazeides and Dr. Costas Kyriacou for their encouragement and insightful

comments.

I would also like to thank all my colleagues whom I had the pleasure to work and collaborate

with: Thank you George Michael, Andreas Diavastos, Petros Panayi and Kyriacos Stavrou.

I gratefully acknowledge the financial support of the Cyprus Research Promotion Foundation

which made my Ph.D. work possible.

There are so many people whose support and friendship I have enjoyed during the course

of my Ph.D. I would like to sincerely thank my friends: Sandy Ayas, George Michael, Maria

Efthemio, Maria Charalambous, Nuno Martins, Petros Panagyi and Kyriacos Stavrou. Thanks for

helping me during my stay in Cyprus and for making my time here a very enjoyable one.

iii

Sam
er

Aran
di

Last but not least, I would like to thank my family. My parents: Dr. Najeh Arandi and Samar

Arandi for their unconditional love, support and -most importantly- patience, during the past 5

years and for all that they did for me throughout my life, which I cannot reward them back for, no

matter what I do or how hard I try. Whatever I am today, its because of them. I would also like to

thank my younger brother and sister Ayman and Samah for their love and encouragement and my

little nieces Gazal and Masa for all the happiness they brought into our lives.

iv

Sam
er

Aran
di

TABLE OF CONTENTS

Chapter 1: Introduction 1

1.1 Introduction . 1

1.2 Motivation . 2

1.3 Problem Statement - Hypothesis . 4

1.4 Approach . 4

1.5 Thesis Contributions . 5

1.6 Performance Evaluation . 7

1.6.1 Methodology . 7

1.6.2 Results . 8

1.7 Thesis Outline . 15

Chapter 2: Background and Related Work 16

2.1 Introduction . 16

2.2 Background Information . 17

2.2.1 From Monolithic to Multi-core Architectures 17

2.2.2 Data-flow Architectures . 27

2.3 Related Work . 35

2.3.1 Threaded Abstract Machine (TAM) . 35

2.3.2 Star Superscalar (StarSs) . 36

2.3.3 Sequoia . 36

2.3.4 Concurrent Collections . 37

2.3.5 Open Multi-Processing (OpenMP) . 37

2.3.6 Cilk . 39

v

Sam
er

Aran
di

2.3.7 Intel Threading Building Blocks (TBB) 40

2.3.8 Streaming Platforms . 40

2.3.9 Software Caches on the Cell . 40

2.3.10 Self-Distributing Virtual Machine (SDVM) 42

2.4 Data-Driven Multithreading . 44

2.4.1 The Data-Driven Network of Workstations 46

2.4.2 Thread Flux . 49

2.4.3 The Data-Driven Multithreading Virtual Machine 52

Chapter 3: The Data-Driven Multithreading Virtual Machine (DDM-VM) 54

3.1 Introduction . 54

3.2 The Data-Driven Multithreading Virtual Machine (DDM-VM) 55

3.3 The Data-Driven Virtual Machine for the Cell (DDM-VMc) 58

3.3.1 Motivation and Design Rationale . 60

3.3.2 The Thread Scheduling Unit (TSU) . 62

3.3.3 The TSU-Processor Interface . 66

3.3.4 The Scheduling Policy . 69

3.3.5 Execution Termination . 74

3.4 Software CacheFlow (S-CacheFlow) . 77

3.4.1 S-CacheFlow Structures . 78

3.4.2 S-CacheFlow Operations . 80

3.4.3 Allocation and Eviction . 84

3.4.4 Exploiting Data Locality . 86

3.4.5 Distributed CacheFlow . 93

vi

Sam
er

Aran
di

3.4.6 Adaptive Multi-buffering/Prefetching 95

3.5 The Data-Driven Multithreading Virtual Machine for Symmetric Multi-cores (DDM-

VMs) . 99

3.5.1 The Thread Scheduling Unit (TSU) . 100

3.5.2 TSU-Processor Interface . 103

3.5.3 Handling concurrent access of the TSU structures 103

Chapter 4: Distributed Data-Driven Execution 105

4.1 Overview . 107

4.2 The Distributed Thread Scheduling Unit (TSU) 108

4.2.1 The TSU Structures . 108

4.2.2 The TSU Operations . 109

4.2.3 The Network Interface Unit (NIU) . 109

4.3 The Memory Address Space and the Program Data 114

4.3.1 Data Forwarding and CacheFlow Operations 116

4.4 Distributed Execution Termination . 119

4.4.1 Explicit Termination Approach . 120

4.4.2 Implicit Termination Approach . 120

Chapter 5: Programming Methodology and Optimizations 125

5.1 Introduction . 125

5.2 Dynamic Data-flow . 125

5.3 Data-Driven Multithreading (DDM) . 126

5.4 DDM-VM Programming Methodology . 130

5.4.1 The Low-Level Interface: DDM-VM Macros 132

vii

Sam
er

Aran
di

5.4.2 Identifying the Boundaries of DDM Threads 134

5.4.3 DDM Dependency Graph and Context Maintenance 135

5.4.4 DDM Dependency Graph Creation and Execution 136

5.4.5 Programming Example - LU Decomposition 140

5.5 Supporting Distributed DDM Execution . 148

5.5.1 DDM-VM Macros . 148

5.5.2 Data Distribution . 148

5.5.3 LU Decomposition - Distributed Version 149

5.6 DDM-VM Optimizations . 156

5.6.1 Consumer Updating Optimizations . 156

5.6.2 Eliminating Redundant Dependencies 160

5.6.3 Resource Management . 162

5.6.4 Synchronization Memory Organization 164

5.7 T-Flux Directives . 169

5.8 GCC Auto-Parallelization . 170

5.9 Monitoring and Visualization Tools . 175

Chapter 6: Runtime Dependency Resolution 179

6.1 Introduction . 179

6.2 I-Structures . 179

6.3 Run-time Dependency Resolution with I-Structures 180

6.4 Example . 182

6.5 The I-Structure Implementation . 183

6.6 Hopscotch Hashing algorithm . 184

viii

Sam
er

Aran
di

6.7 Discussion . 185

Chapter 7: Evaluation 187

7.1 Introduction . 187

7.2 The DDM-VMc Evaluation . 187

7.2.1 Experimental Setup . 188

7.2.2 Optimizations Evaluation . 190

7.2.3 General Performance Evaluation . 194

7.2.4 Problem Size . 200

7.2.5 Distributed DDM-VMc Execution . 204

7.3 The DDM-VMs Evaluation . 207

7.3.1 Thread Granularity . 209

7.3.2 Input Size . 209

7.3.3 Overall Performance . 209

7.3.4 Runtime Dependency Resolution . 210

7.3.5 Distributed DDM-VMs Execution . 215

Chapter 8: Future Work and Conclusion 220

8.1 Future Work . 220

8.1.1 Concurrent Collections Source-to-Source Compiler 220

8.1.2 Supporting Dynamic Scheduling in Distributed Execution 223

8.1.3 Supporting Prefetching on the DDM-VMs 225

8.2 Conclusion . 226

Bibliography 229

ix

Sam
er

Aran
di

Appendices 239

Appendix A: Distributed Data Management Runtime Calls 239

Appendix B: TFlux Directives 241

Appendix C: Monitoring and Visualization Tools 245

C.1 DDM Execution Events . 245

C.1.1 Optimizations . 250

C.2 TSU Structures Utilization and Statistics . 250

C.3 Supporting Distributed DDM Execution . 252

x

Sam
er

Aran
di

LIST OF TABLES

1 The DDM-VM Macros . 137

2 DDM-VM I-Structure Macros . 183

3 The benchmarks suite characteristics - DDM-VMc 189

4 The benchmarks suite characteristics - DDM-VMs 208

5 Distributed DDM-VMs Execution Results - Summary 218

6 The TSU Events . 245

7 Thread Execution Events . 246

8 DDM Trace File Format . 248

xi

Sam
er

Aran
di

LIST OF FIGURES

1 Growth in processor performance since the mid-1980 relative to the VAX 11/780

measured by the SPECint benchmark (Figure from Hennessy & Patterson [93]) . . 2

2 A five-stage pipeline with ideal execution of seven instructions 18

3 A comparison between the sizes of a 50nm transistor and the Influenza virus.

Table on the right shows the number of transistors available/predicted on a chip

up to 2018 (information from Intel). 21

4 (a) Area and Power comparison for four generations of the alpha processor (b)

Performance comparisons for a number of heterogeneous & homogeneous config-

urations (figure and data from [69]) . 23

5 The Cell Processor Architecture . 24

6 Different multithreading approaches (a) Blocked Multithreading (b) Interleaved

Multithreading (c) Simultaneous Multithreading (SMT) 30

7 DDM Node . 45

8 The D2NOW Architecture (Figure from[71]) . 47

9 The TSU internal structure (Figure from [71]) 47

10 The TSU with the basic prefetch CacheFlow policy (Figure from [71]) 48

11 The TFlux Platform (Figure from [113]) . 49

12 TFluxHard chip with 4 cores (Figure from [113]) 51

13 TFluxSoft system executing on a system with n CPUs (Figure from [113]) 51

14 The TFluxCell system (Figure from [113]) . 52

15 The two implementations of the DDM-VM architecture (a) DDM-VMs (b) DDM-

VMc . 57

xii

Sam
er

Aran
di

16 The Architecture of the DDM-VMc . 59

17 The TSU Structures in Main Memory . 64

18 DDM-VMc TSU Activities . 67

19 Two schedules using the static and modulo policies differently with a drastic ef-

fects on parallelism . 71

20 RoundRobin and Dynamic Scheduling Policies 73

21 DDM program of two parallel loops with inlet & outlet threads 75

22 S-CacheFlow Allocation Example: the contents of the Remote Cache Lookup

Directory (RCLD) & the Cache Directory (CD) 80

23 S-CacheFlow Algorithm - Pre-Thread Operations (shaded parts are executed on

the SPE in the Distributed S-CacheFlow implementation) 83

24 Allocation and eviction in the S-CacheFlow algorithm) 87

25 An Example of a DDM-VM program Utilizing Locality. (a) no locality (b) with

locality . 91

26 The extended FQ . 94

27 DDM-VMc SPE runtime activities . 96

28 Comparison of execution time with and without prefetching 98

29 The Architecture of the DDM-VMs . 99

30 The TSU Structures in the DDM-VMs . 101

31 The DDM-VMs TSU and Runtime Activities 102

32 The Distributed DDM-VM Architecture . 106

33 NIU Information Table . 110

34 NIU Messages . 111

35 TSU Activities on the PPE - Main and Auxiliary PPE Threads 113

xiii

Sam
er

Aran
di

36 Distributed DDM-VMs TSU & Runtime Threads Activities on All the Cores in

the System . 115

37 Data Forwarding Example . 118

38 Distributed Termination Detection - Probe Initiation and Token Forwarding 121

39 Distributed Termination Detection - Token Processing 123

40 The Vector Dot Product (a) Original Program (b) U-Interpreter Dynamic Data-

Flow Graph . 127

41 Accessing Thread structures using a combination of the meta-data and the dy-

namic context in DDM . 128

42 The Vector Dot Product DDM Dependency Graph (a) Detailed view (b) High-level

view . 129

43 The DDM-VMc Programming Toolchain . 131

44 The Blocked Matrix Multiplication Application (a) The original code of the appli-

cation (b) Dependencies across the dynamic invocations of the DDM threads . . . 133

45 The code for the DDM threads using the DDM-VM macros 135

46 Initialization, graph creation, graph execution and post-execution code 138

47 The Flow of a DDM-VM Program Execution 139

48 DFPL definition macros . 139

49 Scheduling policy definition macros . 140

50 The DDM-VM Blocked LU decomposition application - Original program code . 141

51 The DDM-VM Blocked LU decomposition application - Dependency graph . . . 142

52 The DDM-VM Blocked LU decomposition application - Dependency graph among

the dynamic threads invocations . 143

xiv

Sam
er

Aran
di

53 The DDM-VM Blocked LU decomposition application - The code of the DDM

threads . 145

54 The DDM-VM Blocked LU decomposition application. (a) The DFPL definition

macros (b) The main() function . 146

55 Memory Layout for the LU Program - a System with Two Nodes and a 4x4

Blocked Matrix . 150

56 Distributed DDM-VM LU Program - main() function 151

57 Distributed DDM-VM LU Program - DFPL Definition 153

58 Distributed DDM-VM LU Program - gather data() function 154

59 The code of THREAD 2 of the blocked matrix multiplication DDM-VM program,

shown previously in Figure 45, after applying the incremental update optimization 158

60 The code of THREAD 1 of the blocked matrix multiplication DDM-VM program,

shown previously in Figure 45, after applying the compound update optimization . 158

61 The code of diag, front and down threads of the blocked LU decomposition DDM-

VM program, shown previously in Figure 53, after applying the compound update

optimization . 159

62 The DDM-VM Blocked LU decomposition application after optimization. (a) The

main() function code (b) The code of the DDM threads (c) The DFPL definition

macros (d) the dependency graph . 161

63 Resource Management - Throttling with limit set to 2 163

64 Resource Management - Partitioning a program into DDM blocks 164

65 Access Mechanisms in the Three SM Implementations 165

66 SM Allocation in Distributed DDM Execution 168

67 LU Decomposition - Using the extended TFlux directives 171

xv

Sam
er

Aran
di

68 The structure of the generated worker function 174

69 The Event Tracing System (ETS) . 175

70 Visualization Tool Screenshot - Distributed DDM Execution 177

71 State Transitions for I-Structure Elements . 180

72 DDM-VM Program with Run-time Determined Dependencies 182

73 Resource management control - Effect of Firing Queue (ExFQ) size and Loop

Throttling on performance . 191

74 Effect of the different Synchronization Memory implementations on performance . 192

75 Effect of locality on performance . 193

76 Effect of thread granularity and S-CacheFlow vs. Distributed S-CacheFlow 196

77 S-CacheFlow vs. Distributed S-CacheFlow - MatMult SPE runtime execution

activities . 197

78 DDM-VMc latency tolerance . 198

79 Effect of problem sizes on performance . 199

80 Comparison of DDM-VMc and CellSs Performance for the MatMult and Cholesky

applications . 202

81 Comparison of DDM-VMc and Sequoia Performance for the MatMult and Conv2D

applications . 203

82 Distributed DDM-VMc Execution - Speedup . 205

83 GFLOPs performance results for MatMult and Conv2D 206

84 Effect of thread granularity on performance . 210

85 Effect of problem sizes on performance . 211

86 DDM-VMs overall performance . 212

xvi

Sam
er

Aran
di

87 Speedup comparison: runtime-determined dependencies (R-D) v.s. runtime &

compile-time determined dependencies (RC-D) v.s. compile-time determined de-

pendencies (C-D) approaches . 214

88 Execution time comparison: execution time using the runtime-determined depen-

dencies approach v.s. the runtime-determined & compile-time determined depen-

dencies approach normalized to the execution time using the compile-time deter-

mined dependencies approach . 216

89 Distributed DDM-VMs Execution (System-1) - Speedup 217

90 Distributed DDM-VMs Execution (System-2) - Speedup 218

91 The blocked Matrix Multiplication application. (a) Textual representation of the

CnC program (b) Graphical representation of the CnC program. (c) Equivalent

DDM dependency graph. 221

92 Performance comparison between the macro-coded and compiler-generated ver-

sions of the matrix multiplication program . 222

93 Format of the Events Summary file - DDM-VMc 247

94 Visualization Tool Screenshot . 249

95 Utilization File Format . 251

xvii

Sam
er

Aran
di

Chapter 1

Introduction

1.1 Introduction

Since the advent of digital computers, in the early 1940s, the computer architecture field has

been dominated by the sequential model of execution. Advocates of parallel processing have be-

ing predicting the end of sequential computing and the shift to parallel processing [12] since the

1960s. However, chip designers have been using the exponentially increasing number of transis-

tors (predicated by Moore’s Law) to postpone the shift indefinitely, by designing more complex

processors with larger cache sizes and continuously increasing the clock frequency.

However, the inability of the sequential model to tolerate long latencies (manifested mainly in

the Memory Wall problem [132] referring to the widening gap in performance between the proces-

sor and the memory) combined with the Power Wall [129] and the Instruction Level Parallelism

(ILP) Wall [129] problems eventually rendered this approach ineffective. The Power Wall refers

to the prohibitive increase in power consumption and generated heat resulting from the complex-

ity of the designs, and the ILP Wall refers to the scarce degree of exploitable Instruction Level

Parallelism (targeted by such designs). Figure 1 shows the slow down in performance gains due

to these problems.

1

Sam
er

Aran
di

2

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e
rf

o
rm

a
n
c
e
 (

v
s
.
V

A
X

-1
1
/7

8
0
)

25%/year

52%/year

20%/year

• VAX : 25%/year 1978 to 1986

• RISC + x86: 52%/year 1986 to 2002

• RISC + x86: 20%/year 2002 to 2005
Figure 1: Growth in processor performance since the mid-1980 relative to the VAX 11/780 mea-
sured by the SPECint benchmark (Figure from Hennessy & Patterson [93])

The envisaged solution was to utilize lower frequencies and use the silicon state to pack more

cores on a chip [90]. These chips are known as Chip-Multiprocessors (CMP) or Multi-core Pro-

cessors. Multi-core processors can be either homogeneous, consisting of similar cores or het-

erogeneous, consisting of cores with different properties. The motivation behind heterogeneous

design is two folds [69]: First, it results in a more efficient utilization of the cores through better

adaptation to the diversity of applications. The second advantage comes from a more efficient

use of the die area for a given thread-level parallelism, which allows for a more power and area

efficient design.

1.2 Motivation

The switch to multi-cores was an engineering effort that did not address the fundamental issues

that caused the previously stated problems: the long memory latencies (it actually exacerbates it

as we will show shortly) and the complexity of the designs (Out-of-Order execution and large

caches) that caused the power wall.

Sam
er

Aran
di

3

Moreover, this switch elevated concurrency as a major issue in utilizing the increasing number

of cores on a single-chip, as it soon became evident that traditional programming and execution

models do not allow for efficient utilization of the large number of resources now available on a

single chip. This task is even more complex on heterogeneous multi-core architectures, as dif-

ferent types of resources need to be individually optimized in order to achieve maximum global

performance.

Another challenge facing the new multi-core designs is the Memory Wall, as even with lower

clock rates, the problem manifests itself due to the increasing number of cores compared to the

available resources dedicated for memory on the chip. This gets worse as the number of cores on

the die increases [85]. One of the techniques applied to combat the memory wall is to utilize fast

explicitly-managed on-chip memories in addition to the slower off-chip memory in the system.

This technique is utilized by various stream processors such as the Stanford Merrimac [32] and

Imagine [65] processors and modern parallel architectures such as the NVIDIA G80 [89] and the

IBM Cell/B.E [63].

Using explicitly-managed memory hierarchies offers a great opportunity for increasing the

performance by efficiently utilizing the memory resources, but at the same time poses a consid-

erable challenge, as it typically requires the programmer to explicitly manage all data transfers

between on-chip and off-chip memories, manage data allocation in the on-chip local memories,

and guarantee a coherent view of the data. This further aggravates the problem of utilizing con-

currency on multi-core architectures.

The Data-flow model [33, 11, 131] is a formal model that can handle concurrency in a dis-

tributed manner and tolerate memory and synchronization latencies efficiently, since an operation

in data-flow is scheduled to execute when its data is ready. Moreover, the semantics of data-flow

avoids the need for synchronization constructs like locks, barriers and busy-waiting. Dynamic

Sam
er

Aran
di

4

Data-flow can expose the maximum degree of parallelism in a program as it only enforces true

dependencies. Thus, the Data-flow model does not suffer from the limitations of the sequential

model, mainly, the inability to tolerate memory latencies. Furthermore, Data-Flow systems can be

simpler and more power efficient than conventional systems. Consequently, data-flow based mod-

els are a competitive candidate as the execution models for exploiting the resources of multi-core

architectures.

1.3 Problem Statement - Hypothesis

In this thesis, we try to explore a Data-Flow based execution model for the efficient utilization

of the resources of multi-core architectures.

1.4 Approach

We follow an evolutional path by utilizing Dynamic Data-Flow on conventional Multi-core

systems. We advance the state-of-the art of the Data-Driven Multithreading (DDM) model, which

combines the distributed concurrency of the Data-Flow model with the efficient execution of the

Control-Flow model.

The goal of this thesis is the design, implementation and optimization of a virtual machine

supporting the DDM model of execution on multi-core systems. The virtual machine has two

implementations, the first is designed for homogeneous multi-cores and the second is designed for

heterogeneous multi-cores with a host/accelerator organization that utilize a software-managed

memory hierarchy. A representative example of such architectures is the powerful Cell/B.E. pro-

cessor. The virtual machine also supports distributed DDM execution on a cluster of multi-core

nodes.

We summarize the goals of the proposed virtual machine:

Sam
er

Aran
di

5

• The implementation of a data-driven execution model on homogeneous and heterogeneous

multi-cores (intra-node DDM).

• The implementation of automatic management of software-managed memory hierarchies

through the development of a prefetching software cache utilizing data-driven caching poli-

cies.

• Supporting data-driven execution across distributed multi-core nodes (inter-node DDM).

The proposed virtual machine hides the low-level details of the parallel resources of the under-

lying machine and uses a unified representation for DDM programs. The VM, composed of the

Thread Scheduling Unit (TSU) and the supporting runtime, handles the tasks of thread scheduling,

synchronization and execution instantiation implicitly. A special prefetching software cache based

on data-driven caching policies is developed to handle software-managed memory hierarchies.

We provide a number of alternative approaches for programming the virtual machine. The

programmer can use a set of C macros that expand into calls to the VM or utilize a number of

compiler directives with the aid of a preprocessor tool. Two other compilation tools are under

development. The first utilizes the GCC compiler and the second utilizes the CnC declarative

parallel programming language. We also provide monitoring and debugging tools to help with ap-

plication development. A suite of 10 benchmarks was ported and used for performance evaluation

and comparison with state-of-the-art systems.

1.5 Thesis Contributions

The main contribution of this thesis is the design, implementation and optimization of a virtual

machine that efficiently exploits Data-Flow concurrency on conventional/commercial multi-cores

and outperforms other existing systems. The rest of the contributions include:

Sam
er

Aran
di

6

• Contribution 1: Development of the Data-Driven Multithreading Virtual Machine (DDM-

VM), an efficient virtual machine that supports Data-Driven Multithreading execution on

homogeneous multi-cores and heterogeneous high-performance multi-core systems. The

DDM-VM utilizes DDM scheduling for exploiting the resources of multi-core architectures

and tolerating synchronization and memory latencies. The DDM-VM has the following

properties:

– It adheres to the formal dynamic data-flow constructs as described by the U-Interpreter.

– It has two individually optimized implementations: The DDM-VMs tailored for ho-

mogeneous multi-cores and the DDM-VMc tailored for heterogeneous multi-cores.

– The DDM-VMc is a high-performance implementation of DDM that achieves better

performance than similar state-of-the-art systems. It is also the first DDM implemen-

tation optimized for heterogeneous multi-core architectures with a host/accelerator

organization and a software-managed memory hierarchy.

• Contribution 2: Development of Software CacheFlow (S-CacheFlow), a fully-automated

software prefetching cache with variable cache block sizes and explicit data locality opti-

mizations for handling explicitly-managed memory hierarchies. Two implementations of

the S-CacheFlow are developed and evaluated. The implementation that distributes part the

data transfer tasks to the cores (distributed S-CacheFlow) is adopted as the default due to its

performance advantage.

• Contribution 3: Development of the support for distributed DDM execution. The DDM-

VM is the first DDM implementation supporting distributed DDM execution across a cluster

of multi-core nodes. Previous implementation either supported distributed DDM execution

across single-processor nodes [73] or DDM execution within a multi-core node [113].

Sam
er

Aran
di

7

• Contribution 4: Development of the support for runtime dependency resolution using spe-

cialized I-Structures. The DDM-VM is the first DDM implementation that supports parallel

execution of code that contains producer-consumer dependencies that are only resolved at

runtime. The developed approach introduces a helper/proxy thread that resolves such depen-

dencies at runtime and updates the consumer(s) accordingly with the help of an I-Structure.

This permits taking advantage of the strengths of both compile-time and run-time depen-

dency resolution simultaneously and expands the class of programs that can be mapped to

the DDM model. It also has the potential to improve the programmability and enhance the

yield of compilation methods generating data-flow code.

• Contribution 5: Development of a number of performance optimizations and monitoring

& visualization tools.

Programming both implementations of the VM is done via a unified programming interface

-utilizing C macros that hides most of the low-level differences of the underlying architectures.

This interface is the target of a number of tools that facilitate the programming of the DDM-VM

and provide various alternative approaches.

1.6 Performance Evaluation

1.6.1 Methodology

We evaluate the two implementations of the DDM-VM for both single-node and distributed

multi-node execution. The benchmark suite used in the evaluation consists of ten applications fea-

turing kernels widely used in scientific and image processing applications. All of the benchmarks

are coded in C using the DDM-VM macros and compiled using the compilers available from the

IBM Cell SDK V2.1 in the case of the DDM-VMc implementation and the GCC 4.4.3 compiler in

Sam
er

Aran
di

8

the case of the DDM-VMs. The DDM-VMc implementation runs on a Sony Playstation 3 (PS3)

machine with Linux. For the evaluation of the distributed execution we used a cluster of 4 PS3

machines.

The DDM-VMs implementation runs on a 12-core machine composed of two six-core AMD

Opteron processors. For the evaluation of the distributed execution we use two clusters (to test

different configurations of nodes/cores-per-node):

1. The first is composed of two 12-core machines (System-1 cluster)

2. The second is composed of four 4-core machines (System-2 cluster)

1.6.2 Results

1.6.2.1 DDM-VMc Evaluation

• Optimizations Evaluation: To evaluate the effects of resource management and locality

and synchronization memory optimizations on the performance, we use the MatMult and

Cholesky benchmarks as two case studies. The first application is a representative of appli-

cations with a simple dependency graph and the second is a representative of applications

with a complex dependency graph. Moreover, both applications are computationally inten-

sive and performance-sensitive. The result of this evaluation is used to guide the perfor-

mance optimization for all the benchmarks in the rest of the evaluation.

– Effect of Resource Management: To assess the DDM-VM resource management

control mechanisms (both at the TSU level and at the program level) we have exe-

cuted two sets of experiments for both benchmarks. In the first, we have varied the

size of the TSU’s Extended Firing Queue (ExFQ) and in the second, we have utilized

Loop Throttling and varied the limit on the number of concurrent invocations of the

Sam
er

Aran
di

9

throttled threads. The results show that both mechanisms are effective in controlling

the concurrency.

– Effect of Locality Optimizations: We compare the performance of the benchmarks

with and without the locality optimization. The results demonstrate that utilizing local-

ity improves the performance for both applications. The main source of improvement

is the reduced demand of the private Local Store (LS) memory space, which permits

fitting the data of more threads, thus allowing the TSU better chance to prefetch data

and overlap latencies with computation. This result demonstrates the deep implica-

tions the size of the LS memory has on the execution behavior and consequently the

importance of taking into account the size of the working set when choosing the gran-

ularity of the threads.

– Effect of Synchronization Memory Organization: As the operation of the Syn-

chronization Memory is critical for the performance of DDM execution, we evaluated

3 different SM implementations. The results show that the direct implementation,

which preallocates the SM entries achieves the best performance. The associative im-

plementation, which allocates the entries on demand performs 2nd best on average.

The performance of the hybrid implementation, which attempts to conserve the allo-

cations by re-using SM entries depends on the execution pattern (locality of the SM

updates) of the executed application.

• General Performance Evaluation:

– Effect of Thread Granularity and Software CacheFlow Implementations:

Sam
er

Aran
di

10

Thread Granularities

The results show that the performance improves as the threads granularity increases.

As higher granularities amortize better the scheduling overheads of the TSU and S-

CacheFlow operations and -further- allow DDM-VMc to hide the latency of data trans-

fers through prefetching/multi-buffering.

S-CacheFlow Implementations

The distributed S-CacheFlow implementation (which distributes part the data trans-

fer tasks to the SPE cores) performs better than the basic S-CacheFlow on all of the

benchmarks in general. The advantage of the distributed implementation is clear when

the number of cores is higher, as it precludes the PPE from becoming a bottleneck due

to the demand of the S-CacheFlow.

– Effect of Problem Size:

To assess the effect of the program size on performance we have executed the bench-

marks for different problem sizes. The results show that the system generally scales

well across the range of the benchmarks achieving almost linear speedup for the large

problem sizes, as large problem sizes result in longer execution time, which amortizes

initialization and parallelization overheads.

– Concurrency and Latency Tolerance: To evaluate the potential of the DDM-VMc

in exploiting concurrency and tolerating synchronization and memory latencies, we

have performed a number of experiments in which we limit the number of threads

that can be scheduled concurrently to 1 (purely sequential scheduling of DDM-VM

applications), 2 and 3. We compare the results with a normal (non-DDM) sequential

Sam
er

Aran
di

11

program. The results show that enabling the scheduling and execution of multiple con-

current threads permits the TSU to overlap the scheduling and data transfers latencies

(via prefetching) with the execution of the threads. This illustrates that DDM-VMc ef-

fectively leverages the decoupling of synchronization and computation for maximum

tolerance of latencies.

– GFLOPs Performance and Comparison: To examine the efficiency of the DDM-

VMc we report the GFLOPs performance results of three computationally intensive

applications, MatMult, Cholesky and Conv2D and compare them with the CellSs [18,

94] and Sequoia[41] platforms that target the Cell processor.

∗ The results show that MatMult and Conv2D scale almost linearly for the large

problem size and achieved 132 GFLOPs (88% of the theoretical peak perfor-

mance) and 77 GFLOPs, respectively on 6 SPEs. The Cholesky application

achieves a speedup of 5 out of 6 despite its complex dependency graph, yield-

ing 101 GFLOPs for the large problem size.

∗ Comparing the performance with CellSs for MatMult and Cholesky, DDM-VMc

achieves an average of 42% and 112% performance improvement for MatMult

and Cholesky, respectively. Moreover, DDM-VMc achieves the best improvement

v.s. CellSs for the smaller problem sizes, which indicates that it introduces less

overhead for exploiting concurrency.

∗ Comparing the performance with Sequoia for MatMult and Conv2D, DDM-VMc

achieves an average of 12% and 25% performance improvement for MatMult and

Conv2D, respectively.

Sam
er

Aran
di

12

The results indicates the efficiency of the DDM-VMc and its ability to outperform

other platforms on the Cell.

• Distributed DDM-VMc Execution: The results of evaluating the distributed DDM-VMc

execution on a four PS3 cluster shows that:

– The system achieves an average of 80% of the maximum possible speedup when uti-

lizing various number of SPEs per node for all the benchmarks on the largest input

size.

– As the input size increases the system scales better: the average speedup (on all the

benchmarks) utilizing all the SPEs is 13.4 out of 24 for the smaller input size and

16.54 out of 24 for the larger input size. This is expected as larger problem sizes allow

for amortizing the overheads of the parallelization.

– Compared to single-node execution larger input sizes and larger granularities are needed

in general for the system to scale due to the additional latencies introduced by the net-

work data and synchronization messages transfer.

– When utilizing all the SPEs on the four nodes the system delivers an impressive 0.44

TFLOPs for the MatMult benchmark and 178 GFLOPs for the Conv2D benchmark

(the two computationally intensive benchmarks), which demonstrates the efficiency of

the distributed execution on the DDM-VMc.

1.6.2.2 DDM-VMs Results

Overall, the results of the DDM-VMs evaluation confirm the findings of the DDM-VMc eval-

uation:

Sam
er

Aran
di

13

• Effect of Thread Granularity: When executing the benchmarks with varying thread gran-

ularities, the results show that the performance improves as the granularity increases, since

higher granularities amortize better the scheduling overheads of the TSU.

• Effect of Input Size: When executing the benchmarks for various problem sizes. The

performance improves as the input size increases, since larger problem sizes result in longer

execution time, which amortizes initialization and parallelization overheads.

• Overall Performance: The results of executing all the benchmarks demonstrate that over-

all, the system scales well over the range of the benchmarks and achieves - when utilizing

all the cores - an average speedup of 9.6 out of 11 (the maximum possible speedup is 11

since we reserve one core out of the 12 for the execution of the TSU), which indicates the

efficiency and scalability of the system.

• Runtime Dependency Resolution Evaluation: We evaluate our technique for handling

runtime-determined dependencies by studying the effect of the overheads of the I-Structure

operations on the performance. We compare the performance of 3 versions of a subset of

the benchmarks for various thread granularities. The first version utilizes the compile-time

approach for resolving the dependencies. The second version combines both approaches

and the third utilizes the runtime approach.

The results demonstrate that:

– The best performance is delivered by the version utilizing the compile-time approach,

followed by the one utilizing the combination of the compile-time and runtime ap-

proaches.

Sam
er

Aran
di

14

– The performance loss (relative to the compile-time version) is higher for lower gran-

ularities and decreases as we increase the granularity. For example, when using 10

cores in one of the applications, the performance loss when utilizing the runtime ap-

proach for all the dependencies is 43% for the smallest granularity compared to 13.6%

for the largest granularity. When utilizing a combination of the two approaches the

loss is 14.8% for the smallest granularity compared to 2.2% for the largest granularity.

The same observation applies to the rest of the benchmarks.

– Utilizing run-time dependency resolution (for part or all of the data dependencies in

the evaluated programs) achieves acceptable performance compared to the compile-

time approach, whilst utilizing thread granularities in the range we normally utilize in

DDM-VM programs.

• Distributed DDM-VMs Execution: The results of evaluating the distributed DDM-VMs

execution on the System-1 and System-2 clusters confirm the findings of the distributed

DDM-VMc evaluation:

– The system achieves an average of 80% and 84% of the maximum possible speedup

when utilizing various number of cores per node for the largest input size on System-1

and System-2 clusters, respectively.

– The system scales better as the input size increases.

– Larger input sizes and granularities (compared to single-node execution) are needed

for the system to scale.

Sam
er

Aran
di

15

1.7 Thesis Outline

In Chapter 2 we present background information followed by a review of the related work.

Chapter 3 presents the architecture of the DDM-VM and its two implementations. The chapter also

describes the design and implementation of the prefetching software cache utilized for handling

software-managed memory hierarchies. In Chapter 4 we describe the support for distributed DDM

execution across a cluster of multi-core nodes. Chapter 5 presents the programming methodology

and tool-chain utilized with the DDM-VM, in addition to a number of optimizations employed

to improve the performance of the DDM-VM. In Chapter 6 we describe the support for runtime

dependency resolution. The evaluation results for the two DDM-VM implementations for both

single-node execution and distributed execution are presented in Chapter 7. Finally, the conclusion

and future work are presented in Chapter 8.

Sam
er

Aran
di

Chapter 2

Background and Related Work

2.1 Introduction

In this chapter we present background information and related work focusing on multi-core

architectures and data-flow. For multi-core architectures, we follow the evolution of computer

architectures from monolithic to multi-core. The debut of the multi-core architectures and the

reasons behind it are then presented. We highlight heterogeneous multi-core designs and present

the motivation behind this approach and the advantages it promises in respect to power and area

efficiency compared to the homogeneous designs. We also illustrate some of the current heteroge-

neous processors and systems, focusing on the Cell/B.E. heterogeneous processor. We illustrate

some of its unique features like the explicitly-managed private memories of its cores.

Following that, we review the data-flow model proposed in the early 70’s by Jack Dennis and

highlight its strengths and weaknesses. We follow its evolution from the static & dynamic data-

flow architectures into the hybrid data-flow/control-flow and multithreading architectures. Finally,

we review state-of-art work related to the topic of this thesis.

16

Sam
er

Aran
di

17

2.2 Background Information

2.2.1 From Monolithic to Multi-core Architectures

The trend in the last two decades for achieving high-performance was driven by the increase

in the operating frequency and extracting more instruction-level parallelism (ILP) by exploiting

sophisticated hardware techniques like Out-of-Order & Superscalar execution [118, 110, 49]. This

was feasible due to the exponentially increasing number of transistor predicted by Moore’s Law

[84]. This trend enabled the engineers to come up with very complex designs and use large sizes

of cache. Although successful for several years this strategy hit many walls: the memory, power,

complexity and ILP walls [132, 90, 129]. We present more details on these issues in the subsequent

sections.

2.2.1.1 Pipelining Processors

With the success of the Reduced Instruction Set Computer (RISC) architectures in the early

80’s, most of the RISC machines utilized pipelining to improve performance. Pipelining exploits

parallelism between instructions (Instruction Level Parallelism - ILP) to increases the instruction

throughput, which translates into a reduction in the total execution time of the application. How-

ever, the ideal potential of pipelining is hardly achieved [93] due to imbalances in the time of the

different pipeline stages, the overhead introduced by pipelining and the different pipeline hazards

that result from limited hardware resources (structural hazards) or the properties of the executed

program (data and control hazards). Figure 2 illustrates the state of a five-stage pipeline with the

ideal execution of seven instructions.

To improve the performance of pipelining many techniques, both software and hardware, are

deployed. Resource duplication and functional unit pipelining are utilized to reduce structural

Sam
er

Aran
di

18

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction execution in 5-stage pipeline

IF
IF

IFIF
IF

IFIF
IF

IFIF
IF

IFIF
IF

IFIF
IF

IFIF
IF

IFIF
IF

IFIF
IF

IFIF
IF

IF
Execution

clock

Figure 2: A five-stage pipeline with ideal execution of seven instructions

hazards. Forwarding and Software Scheduling are utilized to reduce data hazards. The former,

forwards the results of some functional units as direct inputs for other units in the pipeline to

avoid a stall. The latter -utilized by the compiler- re-arranges instructions so as to increase the

distance between dependent instructions. The compiler can also schedule instructions to reduce

the effect of branches (the source of control hazards) by filling the branch delay slot usefully which

avoids the stall that would have been needed waiting for the result of the branch to be calculated.

Branch prediction is utilized by the compiler to reduce control hazards. This involves static

prediction of branches where the branch is always assumed to be taken or not-taken and then a

restart of the pipeline if the prediction result was wrong. Most of the previous techniques are

utilized with unrolling which also reduces the number of branches in a loop and consequently the

number of control hazards.

Due to the limited accuracy of static prediction most of the recent processors utilize dynamic

branch predication techniques implemented in hardware. In its simplest form dynamic prediction

employs a branch history table that records the results of a branch and indexes it by hashing the

Sam
er

Aran
di

19

address of the branch instruction. More sophisticated schemes are also utilized which correlate

the results of other recent (nearby) branches as well.

2.2.1.2 Dynamic Scheduling

Dynamic scheduling (or out-of-order execution) allows the hardware to re-arrange the order

of instruction execution to reduce the effects of hazards without breaking the data dependencies

between the instructions of the program. This scheme has the advantage that it allows the pro-

cessor to tolerate events like a cache-miss by executing other non-dependent instructions while

waiting for the data to arrive. It also can handle the cases where the compiler cannot reason about

the dependency at compile time. As dynamic scheduling introduces the potential for name depen-

dencies: Write-After-Read and Write-After-Write (WAR and WAW), register renaming is utilized

to handle this issue by renaming all destination registers including those of pending read or write

instructions referring to an earlier instruction.

2.2.1.3 Hardware-based Speculation

Hardware-based speculation is a technique that reduces the effect of control hazards further

than what branch predication can do. It speculates the outcome of branches and executes the

program as if the speculation guess was correct. To support the ability to recover the state of

the processor in case the speculation was not correct, instructions are allowed to finish execution

however, committing their results to the register file is delayed until after the outcome of the branch

is determined.Sam
er

Aran
di

20

2.2.1.4 Multi-issue Architectures

Multiple-issue processors try to improve performance by issuing more than one instruction

per cycle. These processors can be classified into two types:

1. Statically/Dynamically Scheduled Superscalar Processors

2. Very Long Instruction Word (VLIW) Processors

The first issues multiple numbers of instructions per cycle, while the second issues a fixed

number of instructions packed into one Mega instruction per cycle. Both the static issue super-

scalars and the VLIW processors rely on the compiler for scheduling the program instructions.

Dynamically scheduled superscalars add hardware to the issue and commit logic of the pipeline

to support multiple issue and multiple commit of instructions per cycle.

2.2.1.5 Power and ILP Walls

As more transistors continuously became available to designers more aggressive wider-issue

superscalars were built. The transistors were also used to increase the size of the caches and the

clock frequency was continually increased. Figure 3 depicts a table of the number of the transis-

tors available on a chip every year including a prediction for the years to come. This provided an

incremental increase in the performance for a decade, however, this increased the complexity of

the designs and demanded more power, increased the leakage problems and generated more heat.

This lead to higher costs for thermal packaging, fans, electricity and air conditioning. Moreover,

higher-power systems increase the chances of failures [69]. Wall has shown in a seminal paper

[129] that the degree of ILP rarely exceeds seven even assuming the most ambitious hardware con-

figuration for a superscalar (this is especially true for integer programs). The envisaged solution

for these problems was to use the silicon estate to scale the number of cores on chip by putting

Sam
er

Aran
di

21

2004 2006 2008 2010 2012 2014 2016 2018

Feature

Size

90nm 65nm 45nm 32nm 22nm 16nm 11nm 8nm

Billions

Transis

2 4 8 16 32 64 128 256

Influenza VirusTransistor

Figure 3: A comparison between the sizes of a 50nm transistor and the Influenza virus. Table on
the right shows the number of transistors available/predicted on a chip up to 2018 (information
from Intel).

more processors on the same die [90] and shift the focus to extracting Thread Level Parallelism

(TLP).

2.2.1.6 Chip Multiprocessors

Microprocessors incorporating more than one processor on the same chip are known as Chip-

Multiprocessors (CMP) or Multi-core Processors. One way to classify multi-cores is as Homo-

geneous and Heterogeneous (or asymmetric) multi-cores. Exampels of homogeneous multi-cores

include Intel’s Core 2 Duo [57] and Core 2 Quad [58], AMD’s Athlon 64 X2 [59] and Turion

64 X2 [60], IBM’s Power5[64], and SUN’s T1 Niagara[67]. All these processors are homoge-

neous multi-core processors with two to eight cores per chip. Currently, the parallelism offered by

these processors is mostly exploited for throughput computing. While current multi-core designs

achieve acceptable speedups partially due to the effective shared secondary cache, these designs

are not expected to scale to many cores. Intel has made available a new experimental 48-core SCC

processor [54] and demonstrated another proof of concept 80-core processor [61]. This ushers the

beginning of what is called by many as the Many-Core era.Sam
er

Aran
di

22

2.2.1.7 The Memory Wall

The dramatic difference between the exponential rate of improvement in microprocessor speed

and the exponential rate of improvement in memory speed, in favour of the former, and the con-

sequent result this has on the performance of computer system is commonly referred to as the

Memory Wall. This problem is one of the well-studied fundamental problems in computer archi-

tecture [132, 82].

The move to multi-core architectures did not solve this problem, as even with lower clock rates,

the memory wall manifests itself due to the increasing number of cores compared to the available

resources dedicated for memory channels. The constrained resources (power and area budget)

limit the the number of available independent channels into memory (which affects latency), and

the speed and width of those channels (which affects bandwidth). This gets worse as the number

of cores on the die increases [85].

2.2.1.8 Heterogeneous Multi-cores

Heterogenous multi-cores offer advantages over homogenous multi-cores in areas of Power

and Throughput and allow for mitigating the effects of Amdahl’s Law [69]. Different applica-

tions require different sets of resources. Indeed, it is very common that the very same application

requires different resources during different phases of its execution. Heterogeneous multi-cores

provide a better match for the varying requirements & characteristics of applications, which leads

to an efficient utilization of the size of the chip and its power consumption. The parts of appli-

cations requiring the power-hungry, complex out-of-order execution with branch-predication and

sophisticated speculation techniques, run on the cores suitable for that. The other parts requiring

less control-flow and more computational and data processing capabilities run on other types of

cores, for example, cores with SIMD capabilities. It has been shown that using heterogeneous

Sam
er

Aran
di

23

Core Peak Power Average Power Performance
(normalized IPC)

EV4 4.97 3.73 1.0

EV5 9.83 6.88 1.3

EV6 17.8 10.68 1.87

EV8 92.88 46.44 2.14

(b)(a)

EV8

Figure 4: (a) Area and Power comparison for four generations of the alpha processor (b) Perfor-
mance comparisons for a number of heterogeneous & homogeneous configurations (figure and
data from [69])

multi-cores improves energy efficiency per instruction by four to six times [48]. Executing the

serial portions of a program, which are the portions limiting the amount of parallelism accord-

ing to Amdalh’s Law, on the fast but relatively area and power-inefficient core, and the parallel

portions on a larger number of smaller simpler cores, can maximize the ratio of performance to

power dissipation [69]. Figure 4-a depicts a comparison in the area and power budget of four

generations of the alpha processor. Figure 4-b demonstrates the primary benefit of heterogeneity

as it shows that the heterogeneous architecture configuration generally provides the highest per-

formance across all levels of thread parallelism. An analytical evaluation of the effect of Amdahl’s

law on homogeneous and heterogeneous multi-cores [53] demonstrated the potential of heteroge-

neous multi-cores in achieving speedups much greater than what homogeneous multi-cores can

obtain.

It is relevant to note that the previous discussion of heterogeneous multi-cores focuses on

tightly coupled heterogeneous multi-cores, which could be seen as a point in a wider spectrum

of heterogeneous processors that vary in the degree of coupling between the cores. Some of the

processors have the cores tightly coupled on the same chip (like the Cell/B.E. processor [63]), or

Sam
er

Aran
di

24

SPU

SXU

LS

MFC

SPE 1

SPU

SXU

LS

MFC

SPE 2

SPU

SXU

LS

MFC

SPE 3

...

Element Interconnect Bus

Main Memory

MIC

L2

L1

PXU

PPU

SPU

SXU

LS

MFC

SPE 8

BIC

I/O

Devices

Figure 5: The Cell Processor Architecture

on the same board like the onboard graphic cards (and old FPU accelerator), or communicating

through I/O as in modern desktops equipped with powerful graphic cards like the nVidia G80 [89]

series, or as in the Clearspeed [55] and the Imagine Stream processor [7] boards, or even cou-

pling the cores across the network as in various Visualization Clusters. Heterogeneous processors

application domains include numerous fields like HPC, image & video processing, medical imag-

ing, gaming & graphics, weather forecasting, financial, cryptographic and network processing.

In the following section we focus on the architecture of the Cell/B.E. processor, a heterogeneous

multi-core processor developed by IBM, Sony and Toshiba.

2.2.1.9 The Cell/B.E. Heterogeneous Multi-core

The Cell Broadband Engine processor (Cell/B.E. or Cell for short) [63] is a heterogeneous

multi-core chip composed of one general-purpose RISC processor called the Power Processor

Element (PPE) and eight fully-functional SIMD co-processors called the Synergistic Processor

Elements (SPE) communicating through a high-speed ring bus called the Element Interconnect

Bus (EIB). Figure 5 illustrates the architecture of the Cell processor.

Sam
er

Aran
di

25

The PPE has two levels of cache and is designed to run the operating system and act as a

coordinator for the other cores (SPEs) in the system. The SPE is a RISC processor with 128-bit

SIMD organization that is capable of delivering 25.6 GFLOPs in single-precision. It has its own

256KB software-controlled local store (LS) memory. The SPE can only execute instructions and

access data existing in its LS. The data has to be explicitly fetched by the programmer from main

memory via the asynchronous Direct Memory Access (DMA) engine of each SPE’s Memory Flow

Controller (MFC) unit.

The Address Space and Communication Infrastructure

The Cell architecture defines two separate memory address spaces: the main memory shared

address space and the Local Store private address space. The general purpose PPE core accesses

the main memory address space normally through the L1 & L2 hardware cache hierarchy. On the

other hand, the SPE cores can only execute code and access data that reside in their private LS

memory.

The communication between the two address spaces is managed explicitly by the programmer

using software via DMA calls. In addition to the DMA calls that is used for large granularity com-

munication (128 byte to 32 MB per message), the Cell provides small granularity communication

mechanisms (1 to 4 32-bit messages) called mailboxes and signals.

The Cell processor design adopts a weakly consistent data storage model that allows storage

accesses to be re-ordered dynamically [5], which provides an opportunity for improved overall

performance and reduced memory latency. However, this requires that programs explicitly order

accesses to storage if they want stores to occur in the program order. This is achieved using special

fencing and barrier instructions.

Sam
er

Aran
di

26

Programming the Cell Processor

A typical Cell program consists of two sets of source files, one set for the part of the program

running on the PPE and another set for the part running on the SPEs. Both sets of files are

compiled separately with different compilers and at link-time all the binaries of the SPEs are

embedded inside the PPE binary. At run-time the programmer code in the PPE program creates

a specialized pthread for each SPE and loads the image of the SPE binary into the corresponding

pthread and starts its execution on the SPE. The programmer is required to explicitly manage the

allocation of data in the constraint LS and handle the data-communication between the LS of the

SPEs and the main memory, in addition to the synchronization tasks. Moreover, the limited size

of the LS demands efficient utilization

Discussion

The Cell is a high-performance processor with nine cores that is capable of delivering 256

GFLOPs. However, harnessing its power is not trivial. A suitable execution model that efficiently

exploits its resources and accommodates its unique properties is required. The model must address

the heterogeneity of its nine cores and its novel architecture elements, especially its software-

controlled memory hierarchy and communication infrastructure.

Sam
er

Aran
di

27

2.2.2 Data-flow Architectures

The data-flow model is a formal model of execution that was proposed by Jack Dennis [33] in

the early 70’s as an alternative to the control-flow model. This model is functional (computations

have no sides effects) and asynchronous (the only condition for executability is data availability).

The advantages of the Data-flow model is its distributed concurrency control -as there is no central

point of control- and its ability to expose the maximum inherent parallelism in a program, as

it inflicts the least constraints on execution, i.e., the only condition for an instruction to start

executing is the availability of its input data. These advantages allow Data-flow architectures

to tolerate the synchronization and memory latencies and extract more parallelism compared to

traditional control-flow architectures.

Programs in the data-flow model may be represented as a graph where nodes represent instruc-

tions and arcs represent data paths. Each instruction has an opcode, slots for holding operands val-

ues, and the destination instructions address field(s). Tokens carry data values and travel along the

arcs from the producer instruction to the consumer one(s). When all the operands of an instruction

are present the instruction is enabled and -thus- deemed executable.

2.2.2.1 Static and Dynamic Data-flow Architectures

Data-flow architectures can be classified according to the way the model handles storage-per-

arc or re-entrance. Static Data-flow Architectures or Single-Token-Per-Arc (proposed by Dennis

[34]) allow -at most- one token to be present at any arc, while Dynamic Data-flow Architectures

(proposed by Arvind et al. [13, 11, 14] and Watson & Gurd [130]) allow more than a token to be

present, and so, use a tag to identify the logical position of the token in the arc.

Despite the promise of exploiting more parallelism than Static Data-flow Architectures, Dy-

namic Data-flow Architectures suffered from a number of shortcomings: token-matching proved

Sam
er

Aran
di

28

to be a very expensive operation given the fine-grain level data-flow works at. The Associative

memory that would be ideally used for that purpose proved infeasible and the use of the more

practical hashing techniques was not fast enough. The Explicit Token Store (ETS) was developed

within the Monsoon data-flow processor [92] to eliminate the need for the associative memory

by allocating a separate memory frame (called activation frame) for each activation of a loop or

re-entrant code block. The activation frame holds the synchronization information of instructions

within the code block. As access to locations within the activation frame is performed through

offsets relative to a pointer to that frame, there is no need for associative memory searching. The

ETS principle was also applied in other data-flow machines like the Eplilon-2 [47] where it was

called Direct Matching.

2.2.2.2 Hybrid Data-flow Architectures

Despite the proposed Explicit Token Store/Direct Matching technique, the per-instruction

token-matching and fine-grained context switching at the level of each instruction, which made

it not possible to use registers, resulted in poor performance when executing sequential code com-

pared to conventional control-flow architectures. These problems in addition to the inefficient

handling of data structures (like arrays) prevented pure data-flow architectures from delivering the

expected performance gains. To address these problems a number of proposals emerged where

data-flow and control-flow architectures converged to form hybrid architectures [75] utilizing tech-

niques from both principles. One of the ways to classify these hybrid architectures is as: Threaded

data-flow [92, 47, 104], Large-grain data-flow [88, 29, 28, 79, 86, 40] or RISC data-flow [109].
Sam

er
Aran

di

29

2.2.2.3 Multithreaded Architectures

One of the roots of multithreading is the data-flow model [117], as combining the instruction-

level context switching with sequential scheduling can be seen as an evolution of the hybrid data-

flow architectures towards Multithreading. In particular, Threaded data-flow and Large-grain data-

flow can be classified as non-blocking multithreaded architectures [108], since data-flow principles

are utilized to start the execution of the non-blocking threads. And once a thread starts executing

it will execute to completions without suffering any long memory or synchronization latencies.

To describe the different multithreading architectures we will use the classification adopted by

[108, 117]. Multithreading Architectures can be classified as implicit or explicit. Implicit architec-

tures refer to ones that can execute several concurrent threads from a single sequential program.

This can be done with the help of a compiler (statically) or dynamically by the hardware. Implicit

multithreading is applied to increase the performance of a single program thread. Examples of Im-

plicit Architectures include the Multiscalar Processors [111, 128], the Trace Processors [101, 126],

the Speculative Multithreaded Processor [80, 121] and the Speculative Data-Driven Multithread-

ing (SDDM) [102].

Explicit Multithreading Architectures, on the other hand, refer to architectures that execute

threads of the same or different processes concurrently. These architectures aim at increasing

the performance of a multiprogramming workload (sometimes on the expense of single thread

performance). Examples of Explicit Multithreading Architectures are Interleaved, Blocked and

Simultaneous Multithreading (SMT) Architectures.Sam
er

Aran
di

30

T
h

re
a
d

T
im

e
 (

P
ro

ce
s
s
o

r
c
yc

le
s
)

Latency
T

h
re

a
d

s

T
im

e
 (

P
ro

ce
s
s
o

r
c
yc

le
s
)

Context

switch2

1

1

1

1

1

2

2

31 21

T
h

re
a

d
s

T
im

e
 (

P
ro

ce
s
s
o

r
c
y
c
le

s
)

Context switch

2

2

1

1

3

4

431 2

T
h

re
a

d
s

T
im

e
 (

P
ro

ce
s
s
o

r
c
y
c
le

s
)

2

2

1

1

3

4

431 2

2

2

1

1

4

2

1

4 4

Issue Slots

T
h

re
a

d

T
im

e
 (

P
ro

c
e

s
s
o

r
c
y
c
le

s
)

Issue Slots

T
im

e
 (

P
ro

c
e

s
so

r
c
y
c
le

s)

Issue Slots

1

T
h

re
a

d
s 431 2

1 1 1 1

1 1 1 1

1 1 1 1

1

1 1 1 1

2 2 2

3 3 3

324 4

34 1 1

31 2 4

(a) (b) (c)

Figure 6: Different multithreading approaches (a) Blocked Multithreading (b) Interleaved Multi-
threading (c) Simultaneous Multithreading (SMT)

Blocked and Interleaved Multithreading:

The distinction between Blocking and non-Blocking architectures derives from the notion of

blocking v.s non-blocking threads. A non-blocking thread executes until completion without in-

terruption, i.e., without blocking the processor pipeline due to remote memory, cache misses or

synchronization latencies. This is achieved by starting the execution of the thread only when

all input operands are ready. Thus a program is compiled into (relatively small) threads activat-

ing each other in a producer-consumer manner. Threaded Data-flow and Large-grain Data-flow

architectures are examples of non-blocking multithreading architectures. Examples of proces-

sor utilizing the Blocking Multithreading approach are, the MIT Sparcle processor [6] and the

Rhamma processor [50]. In Interleaved Architectures on every cycle an instruction is fetched

from a different thread and fed into the pipeline of the processor, thus the processor performs a

context switch after executing each instruction. This approach tolerates memory latency, however,

it comes at the expense of degrading single-thread performance. Examples of well-known inter-

leaved multithreaded processors include the Heterogeneous Element Processor (HEP) [74], the

Cray Multithreaded Architecture (MTA) and the SB-PRAM prototype processor.

Sam
er

Aran
di

31

Simultaneous Multithreading

The Simultaneous Multithreading (SMT) approach combines multithreading with superscalar

techniques by providing several hardware contexts and register sets on the processor and issu-

ing instructions from several threads simultaneously. This allows tolerating the latencies when

executing one thread by issuing instructions from the other threads. Note that interleaving and

blocked multithreading techniques are most efficient when applied to scalar RISC or VLIW pro-

cessor [117]. On the other hand, SMT is more efficient with superscalar architectures as it takes

advantage of ILP and TLP at the same time. This allows SMT to achieve superior performance for

multi-threaded/multi-program applications as the TLP can be exploited from threads of the same

applications or threads from different applications. Figure 6-c illustrates an example of the SMT

approach.

Two early SMT processors are The SMT processor proposed at the University of Washington

[124, 38, 123] and the Multithreaded Superscalar Processor [125, 107] from the University of Karl-

sruhe. Examples of commercial processors utilizing the SMT technology include the (cancelled)

Alpha 214614 (EV8) [35], Intel Hyperthreading [122], IBM Power5 [64] and Intel Nehalem.

2.2.2.4 Recent Data-flow Projects

Many of the techniques that originated in the Data-flow computational model have found

their way into modern processor architectures (e.g. out-of-order execution [93] and non-blocking

threads) and compiler technologies (e.g. Single Static Assignments (SSA) [31] and register re-

naming). A brief overview of some of the recent projects related to Data-flow is given next. In

Section 2.3 we review state-of-the-art work that is directly related to the work of this thesis.

Sam
er

Aran
di

32

Scheduled Data-flow

Scheduled Data-flow (SDF) [66] is a non-blocking decoupled memory/execution multithreaded

architecture. A program in SDF is compiled and partitioned into non-blocking computation

threads and memory-access threads. Data of the computation threads is preloaded into enabled

register contexts prior to execution and results are post-stored from the registers into memory after

the execution completes. Instructions within a computation thread adhere to the single-assignment

rules of data-flow albeit using a conventional control-flow like sequencing. A separate unit, called

Synchronization Pipeline (SP), handles pre-load and post-store operations, while execution is un-

dertaken by the Execution Pipeline (EP). A simple Scheduled Unit (SU) handles the tasks of

scheduling threads and allocating the corresponding memory frames, synchronization counters

and register sets.

Decoupled Threaded Architecture - Clustered

The Decoupled Threaded Architecture - Clustered (DTA-C) [44] is an architecture that is

based on the SDF architecture [66] with the addition of the concept of clusterizing resources. As

the name implies the architecture is composed of a set of clusters or tiles. Internally, each cluster

consists of one or more Processing Elements (PEs) and a Distributed Scheduler Element (DSE).

The set of all DSEs constitutes the Distributed Scheduler (DS) responsible for assigning threads at

runtime. All clusters are connected via a complex inter-cluster network. Elements within a cluster

are connected via a faster, less complex intra-cluster network. Each processing element contains

pipelines, frame memory, register file and local scheduler.

As in SDF each thread has a unique continuation and a frame which holds its data. However,

scheduling of threads is done on two levels: among the PEs within the cluster and across clusters.

Sam
er

Aran
di

33

The Local Scheduler (inside each PE) and the Distributed Scheduler are responsible for assigning

continuations and frames to the threads and for keeping track of processor usage in order to balance

the load in the system.

The EDGE Architectures

The Explicit Data Graph Execution Architecture (EDGE) [24] proposes a new ISA that sup-

ports direct instruction communication that expresses the data-flow graph the compiler generates.

This allows the hardware to deliver the output of a producer instruction directly as an input to

consumer instruction(s) rather than writing it back to a shared namespace (memory or temporary

registers). Thus, exposing a higher degree of concurrency and achieving a more power-efficient

execution as no complex hardware is needed to discover data-dependencies dynamically at run-

time. A program is partitioned by the compiler into hyper-blocks comprising a large number of

instructions. An instruction doesn’t encode its source operands, but rather, the compiler specifies

the location of where the produced results will be routed according to the consumer instructions.

Each hyperblock is executed atomically in parallel on an array of functional units (ALUs).

The WaveScalar Architecture

The WaveScalar [116, 115] is a data-flow ISA and execution model designed for scalable low-

complexity/high-performance processors. It is composed of a large number of processing nodes

surrounded by intelligent cache banks that hold the current working set of instructions. Instruc-

tions execute in-place and explicitly communicate with its dependent instructions in a data-flow

fashion. The WaveScalar compiler breaks the control-flow graph of a program into single-entrance

directed acyclic blocks of instructions called waves (example of a wave is a loop iteration). Each

Sam
er

Aran
di

34

wave is tagged via a distributed tagging mechanism using special instructions to differentiate be-

tween different dynamic instances of a wave.

Fuce: The Continuation-based Multithreading Processor

The Fuce processor [8] is based on the data-flow-like continuation-based multithreading model,

which is optimized for the execution of Thread Level Parallelism (TLP). A Thread is defined as

a block of instructions that work on registers (except for loads and stores) and execute without

interruption until completion. Each thread is associated with a synchronization counter which is

decremented upon receiving special events called continuations (initiated by other threads). When

the counter reaches zero the thread becomes ready for execution. The processor comprises mul-

tiple Thread Execution Units (TEU) and one Thread Activation Controller (TAC), which controls

the scheduling of the threads.

Programs are written in a high-level programming language called CML, which is based on C

and is extended with a set of special words and thread-related instructions.

Sam
er

Aran
di

35

2.3 Related Work

In this section we review work directly related to the topic of this thesis. We mainly focus on

state-of-the-art work.

2.3.1 Threaded Abstract Machine (TAM)

The Threaded Abstract Machine (TAM) [28] is a parallel self-scheduling execution model

that is based on Data-Flow. A TAM program consists of a collection of blocks, where each block

consists of several non-blocking threads that enable other threads and generate asynchronous mes-

sages. Each block is associated with an activation frame that provides storage for the local vari-

ables in addition to the resources required for the synchronization and scheduling of threads. Data

and control dependencies are enforced using synchronization counters within the frame. A syn-

chronizing thread is associated with an entry count that is decremented by threads forks and posts.

The thread is enabled when the count reaches zero. The entry count value, thread forks and posts

are all controlled by the compiler. The TAM employs a threaded machine language (called TL0)

and implements a compilation path from the Id90 programming language to TL0. The TL0 code

is used as a machine independent intermediate form that can be used to generate C in addition to

other targets.

The data-driven scheduling approach employed by the DDM model is similar to that of the

TAM. However, as noted in [71], the main difference between the two is that in the case of the

TAM thread synchronization and scheduling are controlled entirely by the compiler and directly

carried out by the code of the threads, however, in the case of the DDM model (and consequently

the DDM-VM) these operations are carried out by the Thread Scheduling Unit.

Sam
er

Aran
di

36

2.3.2 Star Superscalar (StarSs)

Star Superscalar (StarSs) [18, 94, 96] is a parallel programming platform that targets sym-

metric multiprocessors and multi-cores, the Cell processor and GPUs. It schedules annotated

tasks at run-time based on data-dependencies. StarSs focuses on the ease of programmability and

portability and utilizes a source-to-source compiler and a number of runtime libraries. Unlike the

approach adopted by our work, where we build the dependency graph statically if possible, StarSs

always builds its task dependency graph at run-time. This approach incurs extra overheads as it

resolves the dependencies at run-time even if they can be resolved at compile-time. Moreover, this

approach makes only part of the dependency graph available to the scheduler and consequently a

fraction of the concurrency opportunities in the applications is visible at any time. In section 6.1 we

demonstrate how the DDM-VM utilizes both compile-time and run-time dependency resolution

to gain the benefits of both approaches. Performance comparisons with the Cell implementation

of the StarSs platform is found in the Evaluation Chapter of this thesis.

2.3.3 Sequoia

Sequoia [41] is a programming language that facilitates the development of memory hierar-

chy aware parallel programs. It provides a source-to-source compiler and a runtime system for

multi-cores and clusters of multi-cores including the Cell processor. Unlike our proposed ap-

proach, however, Sequoia requires the programmer to use special language constructs and types

and focuses on portability. It also uses a hierarchical/recursive task execution paradigm rather than

one based on data-dependencies. Performance comparisons with the Cell implementation of this

platform is found in the Evaluation Chapter of this thesis.

Sam
er

Aran
di

37

2.3.4 Concurrent Collections

Concurrent Collections [22, 23] is a high-level parallel programming language that is based

on the separation of concerns concept. It allows domain experts who have deep expertise in their

respective domain but lack knowledge in parallel programming to express their programs in high-

level declarative constructs. A tuning expert who has knowledge in parallel programming can

optimize these programs for the underlying target machine.

A program is described declaratively in terms of computational steps that communicate via

data items that satisfy the dynamic single assignment property. Steps and items are uniquely

identified by tags. The code of the steps can be written using imperative languages like C or java.

Unlike DDM that has data-dependence relationships only, CnC represents both data-dependence

and control-dependence. Furthermore, resolving the dependencies in CnC is performed at runtime,

while in the DDM-VM the dependency resolution is performed at compile-time and if this is not

possible, it can be also performed at run-time as will be described in Section 6.1. Furthermore, in

the Future Work Chapter we describe a preliminary effort for a CnC to DDM compiler, which is

motivated by the the matching between DDM and CnC.

2.3.5 Open Multi-Processing (OpenMP)

Open Multi-Processing (OpenMP) [2] is a widely-utilized parallel programming API standard

that supports shared-memory programming on multiple platforms. It consists of a run-time li-

brary and a set of compiler directives utilized to identify sections of code that can be parallelized.

OpenMP traditionally targets loop-based parallelism and so we believe that our approach is more

general and targets problems with a higher granularity. Furthermore, OpenMP relies on a fork-

join model of execution, while our approach relies on data-flow techniques and producer-consumer

Sam
er

Aran
di

38

synchronization for the scheduling of threads, which allows it to represent a wider-set of problems

and provide better performance for irregular code.

The introduction of the OpenMP 3.0 specification tried to address these shortcomings by ex-

tending the standard with the concept of tasks to accommodate irregular applications. This in-

creased the class of programs that can be handled by OpenMP, however, it still doesn’t allow

the explicit specification of general dependencies amongst tasks, which our model naturally does.

Recent efforts [16] within the OpenMP community have been made in this direction, however, it

is not yet part of the formal specification. We find these efforts as an indication of the growing

recognition of the community towards the benefits of data-flow based programming and schedul-

ing techniques.

OpenMP Compiler for the Cell

The IBM Research Compiler targeting the Cell architecture [39] ports the OpenMP standard

to the Cell processor. It manages the execution and synchronization of the parallelized code and

handles data transfers via a compiler-controlled software cache. In addition to the aforementioned

differences between our approach and OpenMP in general, our approach on the Cell relies on

data-flow techniques and data-flow caching policies to schedule threads and prefetch & manage

their data. Moreover, because our proposed approach relies for compilation on the available Cell

platform compilers it can benefit from the latest optimizations and vectorization techniques pro-

vided by this compiler or any other to optimize the code of the DDM threads that will run on the

Cell cores.
Sam

er
Aran

di

39

2.3.6 Cilk

Cilk [21] is a parallel programming extension to the C language that adds a few keywords

for facilitating parallelism. The keywords are mainly used to spawn functions as asynchronous

parallel tasks and synchronize amongst the tasks using a barrier-like join method. When removing

the Cilk-specific keywords from a program the result is still a valid sequential C program. Cilk

programs are preprocessed to C and then compiled and linked to a runtime library.

The programmer is responsible for identifying the task functions that can run in parallel and

is also responsible for synchronizing amongst the tasks. The run-time manages the scheduling of

the tasks using a work-stealing scheduling policy. At runtime, Cilk programs can be viewed as

directed acyclic graph (DAG) that unfolds dynamically as the program executes. Cilk employs

a special consistency model that is called DAG consistency [20], which is a relaxed consistency

model defined on the DAG of the tasks that make the parallel computation. Under this model, a

read can see a write only if there is some serial execution order consistent with the dependencies

of the DAG (a read always respects the dependencies in the DAG). Thus, the writes performed

by a task are seen by its successors, but tasks that are incomparable in the DAG may or may not

see each other’s writes. In this thesis we employ a similar concept for maintaining the memory

consistency.

The fork-join approach adopted by Cilk is very well-suited for expressing recursive algorithms

(e.g., divide-and-conquer), however, unlike our approach Cilk does not rely on data dependencies

for the scheduling of tasks (neither at compile-time nor run-time), which misses part of the poten-

tial parallelism in many programs. Indeed, it has been shown that Cilk cannot efficiently schedule

workloads in dense linear algebraic algorithms [62].

Sam
er

Aran
di

40

2.3.7 Intel Threading Building Blocks (TBB)

Intel Threading Building Blocks (TBB) [95] is a C++ template library developed by Intel to

facilitate parallel programming. It abstracts the low-level parallel resources of the machine and the

threading mechanism by providing a set of data structures and algorithmic skeletons that supports

the execution of tasks. It also provides a set of concurrent containers (queues, vectors, hashmaps,

etc) and synchronization constructs (mutex constructs and atomic operations).

Similar to Cilk, the TBB runtime implements a tasks-stealing scheduling policy and adopts a

fork-join approach for the creation and management of tasks. Consequently, it suffers the same

shortcomings as Cilk.

2.3.8 Streaming Platforms

RapidMind [56] is a programming model that provides a set of APIs, macros and specialized

data types to write streaming-like programs that targets general multi-cores and advanced GPUs

and the Cell. It was recently integrated into Intel’s data parallelism platforms. Cell-Space [87]

is a framework for developing streaming applications on the Cell using a high-level coordination

language out of components in a component library. It provides a runtime that handles scheduling,

data transfers and load-balancing. Compared to the streaming approaches, we place our approach

as a more general one, as it doesn’t require the use of any streaming abstraction and can be used

for a wider range of applications.

2.3.9 Software Caches on the Cell

In this section we review a number of the software caches that have been proposed for manag-

ing the local store memories of the SPE cores on the Cell processor. Please refer to Section 2.2.1.9

for an overview of the Cell processor.

Sam
er

Aran
di

41

A hierarchical, hybrid software-cache architecture to manage and optimize data transfers on

the Cell has been proposed in [45]. At compile time, the memory accesses patterns are classified

into two types: high-locality and irregular. Memory references are then directed into using cache

structures optimized according to each types. This cache architecture allows the compiler to en-

able high-level loop optimizations and transformations to improve the performance and reduce the

overhead of the software cache. In [26] direct buffering and software cache techniques are inte-

grated to manage data transfers on the Cell efficiently using both techniques in the same program.

It uses compile-time analysis and runtime time maintenance to achieve their goal.

The Multidimensional Software Cache (MDSC) is a software cache for scratch-pad based sys-

tem that targets the Cell processor. The MDSC is optimized for applications that has a working-set

that doesn’t fit entirely in the cache and ones that access multi-dimensional data structures. It does

so by storing 1- to 4-dimensional blocks in the cache and indexing the cache blocks by the matrix

indices rather than using linear memory addresses. This minimizes memory transfer time (as it

groups memory requests) and the number of cache access since it exploits the multidimensional

access behaviour of the program. The cache supports a fully-associative or a set-associative or-

ganization and a FIFO or round-robin replacement policy. The evaluation of the MDSC doesn’t

account for parallel execution and doesn’t address the problem of coherence. To utilize MDSC,

data accesses in the program has to be manually replaced by special API calls.

Along with the software cache in [39], all of the aforementioned software caches perform

cache directory operations on the SPE, in contrast with our proposed software cache, in which

these operations are performed on the PPE and overlapped with the execution of code on the SPEs

to hide the operations overheads. Moreover, our software cache enables data re-use and maintains

coherency utilizing a mechanism that avoids expensive update/invalidate operations by using a

simple Directed Acyclic Graph (DAG) consistency model. Most notably, our proposed software

Sam
er

Aran
di

42

cache is utilized at the scheduling and data management levels and contains elements specific to

DDM.

Lee et al. [77] developed a software cache for the Cell processor, which supports a coherent

globally shared memory view at the page-level utilizing a centralized lazy release consistency.

The programmer uses a set of macros and runtime calls that support an SPMD-style programming

model. Each read/write access in the SPE code is replaced by a runtime call to check whether the

data is available in the local store, and to automatically fetch it if it’s not. Similar to our approach

the tasks of synchronization and coherence are managed by the PPE. An evolution of this work

[76] extends the proposed technique to implement a software shared virtual memory (SVM) sys-

tem for heterogeneous multi-core accelerator clusters with explicitly managed memory hierarchies

that are connected with an interconnection network. The target cluster consists of a single man-

ager node and many compute nodes. A coherence and consistency protocol, called hierarchical

centralized release consistency (HCRC) is proposed to provide a shared memory software SVM

system across the system.

2.3.10 Self-Distributing Virtual Machine (SDVM)

The Self-Distributing Virtual Machine (SDVM) is an adaptive, self-configuring and self-distributing

virtual machine that manages the execution of tasks on a clusters of heterogeneous nodes. It adopts

a decentralized peer-to-peer structure and emphasizes the ability to handle different configurations,

systems and resource types. It also automatically adapts to changes in the system resources. The

SDVM also supports a self-managed scheduling approach and supports the migration of code and

data within the cluster.

Programs are composed of a number of micro-threads. Each micro-thread consists of a num-

ber of instruction and is associated with one or more micro-frames. The micro-frames contain the

Sam
er

Aran
di

43

micro-thread data and pointers to the micro-frames that require results generated by the micro-

thread. Once all the argument data in a micro-frame is ready the associated micro-thread can

execute.

The SDVM comprises two layers: execution and communication. Both are composed of a

number of modules or managers. The execution layer manages the execution of the micro-threads

after their associated micro-frames are ready and when the required resources are available. It also

passes the resulting arguments destined for the consumer micro-frames.

The communication layer manages the exchange of messages between the nodes in the cluster.

Most importantly, it handles messages related to the exchange of data objects amongst the nodes.

Each data object in the system is associated with a home-site directory that keeps track of the

physical location of the data object as it is moved and/or replicated. When requesting access

to a non-local data object, its directory is queried to find the current location and a request is

forwarded to that location. When writing to one copy of a data object, the home site is informed

so as to update all the copies with the new value.

The SDVM supports the addition and removal of nodes from the cluster at any time. It also

supports migration of code and data between the nodes and utilizes a check-point mechanism to

recover from failures.

The SDVM shares a number of similar concepts with our work, most importantly it adopts

a data-availability approach for the scheduling of threads and supports execution on a cluster of

nodes. However, the current design of the SDVM doesn’t target multi-core nodes. Furthermore,

it is more of a middle-ware that targets loosely coupled machines forming a cluster, which makes

it more suitable to the domains of large-clusters and grid computing due to the high-overhead

involved during the execution.

Sam
er

Aran
di

44

2.4 Data-Driven Multithreading

The Data-Driven Multithreading (DDM) [73] is a non-blocking multi-threading model that

combines the benefits of the Data-Flow model in exploiting concurrency with the highly efficient

sequential processing of the commodity microprocessors. The core of the DDM model is the

Thread Synchronization Unit (TSU), which is responsible for the scheduling of threads at run-

time based on data availability. Scheduling based on data availability can effectively tolerate

synchronization and communication latencies.

A DDM program consists of several threads of instructions. The threads have Producer-

Consumer relationships and are grouped into DDM Blocks. A DDM block is equivalent to a

loop or a function in high-level languages. The TSU schedules a thread to run only after all the

producers of this thread have completed execution, which ensures that all the data this thread needs

is available. Once the execution of a thread starts, instructions within a thread are fetched by the

CPU sequentially in control-flow order, thus exploiting any optimization available by the CPU

hardware.

The threads are identified by the ThreadId and Context. The context uniquely identifies the

dynamic invocations of each thread. At compile-time a program is partitioned into the synchro-

nization graph and the code of the threads. Every node in the graph represent one thread along

with the associated template.

The synchronization template of the thread specifies the following attributes:

• The Instruction Frame Pointer (IPF): points to the address of the first instruction of the

thread.

• The ReadyCount (RC): a value equal to the number of producer-threads this thread needs

to wait until starting to execute.

Sam
er

Aran
di

45

Thread Synchronization Unit (TSU)

Synchronization Memory

(SM)

0?

Graph

Memory

(GM)

Ready Queue (RQ)

Ack. Queue (AQ)

Thread

0032

0031

0033

0034

1

1

3

1

1

3

1

1

3

1

1

3

1

Thread

0032

0100

0108

011C

0122

3A000033

0033

0037

3A00

3A00

3A000032

0034

0036

0000

0033

0031

0033

0034

IFP DFPCon1 Con2

S
n
o
o
p
in
g
 U
n
it

31

32

36 33

34

Threads Dependency Graph

L2 Cache

Memory

Processor

L1 Cache

PC Motherboard

Figure 7: DDM Node

• The Data Frame Pointer List (DFPL): a list of pointers to the data inputs/outputs assigned

for the thread.

• The Consumer List (CL): a list of this thread’s consumers that is used to determine which

ReadyCount values to decrement after the thread completes its execution.

Figure 7 illustrates a DDM node. The Graph Memory (GM) in the TSU holds the synchro-

nization templates of all the threads. The Synchronization Memory (SM) holds the Ready Count

values for each thread invocation. The TSU communicates with the processor via two queues. The

processor reads the address of the next thread to execute from the Ready Queue (RQ) and stores

the information of completed threads in the Acknowledgement Queue (AQ). The TSU fetches the

completed threads from the AQ, finds their consumers in the GM and then updates the Ready

Count of the consumers in the SM. If the Ready Count of any consumer becomes zero, it it is

deemed executable and so is inserted in the RQ where it awaits for execution.

DDM can improve the locality by implementing deterministic data prefetching using data-

driven caching policies called CacheFlow [72]. CacheFlow policies include firing a thread for

execution only if the code and data of the thread are present in the cache. Furthermore, blocks

Sam
er

Aran
di

46

associated with threads scheduled to execute in the near future are not replaced until the thread

finishes its execution. Results of applying CacheFlow have shown that CacheFlow reduces cache

misses considerably, even on caches of small sizes [72].

The DDM model had two implementations: the Data-Driven Network of Workstations (D2NOW)

[73] and Thread Flux TFlux [113]. The work presented in this thesis is the third implementation

of DDM.

2.4.1 The Data-Driven Network of Workstations

The first implementation of DDM was the Data-Driven Network of workstations (D2NOW)

[73]. D2NOW was a simulated cluster of distributed machines augmented with a hardware Thread

Scheduling Unit (TSU), which exhibited tolerance to long memory and communication latencies.

The TSU was attached to the COAST (Cache On A STick) L2 Cache slot of Pentium workstations

and thus it had an implicit snooping interface to the Pentium microprocessor. Figure 8 illustrates

the architecture of the D2NOW.

The Thread Scheduling Unit (TSU)

The TSU (shown in Figure 9) comprises three units: the Thread Issue Unit (TIU), the Post

Processing Unit (PPU) and the Network Interface Unit (NIU). The PPU is responsible for updating

the Ready Count of the consumer threads. The TIU is responsible for scheduling threads deemed

executable by the PPU. The NIU is responsible for the communication between the TSU and the

interconnection network. The Network Interface Unit (NIU) consists of the Transmit Unit and the

Receive Unit.

Sam
er

Aran
di

47

In
te

rc
on

ne
ct

io
n

 N
et

w
or

k

Main Memory
L2 Cache

Processor

Workstation 1

C
O

A
S

T
 S

lo
t

MotherboardAdd-on Card

TSU

TIUPPUNIU

Main Memory
L2 Cache

Processor

Workstation N

C
O

A
S

T
 S

lo
t

MotherboardAdd-on Card

TSU

TIUPPUNIU

Figure 8: The D2NOW Architecture (Figure from[71])

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

Network Interface
Unit (NIU)

Thread Synchronization Unit (TSU)
Post Processing Unit

(PPU) Thread Issue Unit (TIU)

PPU Control Unit

Synchronization
Memory

Graph
Memory

Ack. Queue

Main Memory DMA

TIU Control Unit

Processor Cache

Firing Queue

Waiting
Queue

TxQ

RxQ

NetQ

Prefetch
Unit

Figure 9: The TSU internal structure (Figure from [71])

Sam
er

Aran
di

48

L2
Cache

Thread#Index

Waiting Queue
(WQ)

Firing Queue (FQ)

IFPIndexThread #

Post Processing Unit
Ready ThreadsAck. Queue

Thread Issue Unit

IFP DFP 1 DFP 2

RqIndx RqIptrRqTNum

DFP Select Unit

Prefetch
Unit

Graph Memory (GM)

Processor L1
Cache

Figure 10: The TSU with the basic prefetch CacheFlow policy (Figure from [71])

CacheFlow

D2Now exploited short-term optimal cache placement and replacement policies to further im-

prove the performance. Three implementations of the CacheFlow policy were examined.

• The Basic Prefetch CacheFlow: the data of the threads scheduled for execution in the near

future is perfetched into the cache. Once the prefetching for a thread finishes, it is placed in

the Firing Queue (FQ) and where it awaits for its turn to be executed. Figure 10 illustrates

the hardware of the basic CacheFlow policy

• CacheFlow with Conflict Avoidance: the prefetched data belonging to threads waiting in

the FQ is protected from eviction until the corresponding threads are executed.

• CacheFlow with Thread Reordering: the sequence of executable threads is re-ordered before

they are inserted in the FQ to takes advantage of locality.

Sam
er

Aran
di

49

C & DDM directivies

Preprocessor

Unmodified C Compiler

TSU 1 TSU 2 TSU 3 TSU n

DDM Binary

Kernel 1 Kernel 2 Kernel 3 Kernel n...

TSU Group

Unmodified Operating System

Unmodified ISA Hardware

Runtime Support

Figure 11: The TFlux Platform (Figure from [113])

The Evaluation of the D2NOW showed that overall, it proved to be a promising architecture

as it effectively hides synchronization and communication latency. In addition, the CacheFlow

policy reduces significantly the cache miss ratio, resulting in close-to-linear speedups.

2.4.2 Thread Flux

Thread Flux (TFlux) [113, 112] is a platform that supports the DDM model of execution

independently of the underlying architecture. It provides a runtime support that is built on top of

a commodity operating system. TFlux is composed of a collection of entities in a layered design

that abstracts the details of the underlying machine. Figure 11 depicts the layered design of the

TFlux system. The most important components are the Runtime Support and the TSU Group.

The Runtime Support runs on top of an unmodified Unix-based Operating System and shields the

details of the particular implementation of the TSU. The functionality of the runtime is supported

by simple user-level processes called the Kernels, which manage the execution of the thread and

the communication with the TSU.

Sam
er

Aran
di

50

The TSU Group is a single unit that is responsible for the scheduling of threads based on data

availability. It comprises a global part common to all the cores in the system and TSU units that

serve each core individually.

TFlux Toolchain

TFlux provides a preprocessor supporting a set of compiler directives that facilitate developing

DDM programs. Applications are easily ported to TFlux by augmenting C code with the directives.

The preprocessor automatically generates TFlux code, which includes all the necessary calls to

the TFlux runtime system. The code can be compiled using any commodity C compiler, thus

producing binaries for any ISA.

TFlux Implementations

TFlux has 3 implementations:

• TFluxHard

TFluxHard is a shared memory Chip Multiprocessor augmented with a hardware implemen-

tation of the TSU Group. The TSU Group is attached to the system network as a memory-

mapped device. The communication between the TSU and the CPU is performed via the

Memory-Mapped Interface (MMI). The Grouping of multiple TSUs (each servicing one

core) into one single unit aims at decreasing the additional interconnection cost. Figure

12 presents a TFluxHard chip configured with 4 cores. TFluxHard was evaluated using a

simulated machine, which was built using the Simics full-system simulator [78].

• TFluxSoft

Sam
er

Aran
di

51

CPU

CPU

TSU Group Global State

TSU

1

TSU

2

TSU

3

TSU

4

CPUCPUCPUCPU

Cache Cache Cache Cache

System Network
S
h
a
re
d
 M
e
m
o
ry

TSU Group

Figure 12: TFluxHard chip with 4 cores (Figure from [113])

Global

TSU

Local TSU

TFlux Kernel

DDM Binary

Local TSU

TFlux Kernel

DDM Binary

Local TSU

TFlux Kernel

DDM Binary

...

CPU1: DDM Node CPU2: DDM Node CPUn-1: DDM Node CPU n: TSU Emulator

Figure 13: TFluxSoft system executing on a system with n CPUs (Figure from [113])

This implementation primarily targets commodity multi-core processors with a single shared

address space and a hardware cache coherency. The TSU is implemented as a software

module that executes on one of the cores of the processor. This module emulates the func-

tionalities of the hardware TSU and so it is called the TSU Emulator. To avoid overloading

the core that provides the TSU functionality, part of the operations is distributed to be exe-

cuted by local TSUs or kernels. Figure 13 depicts the execution of the TFluxSoft system on

a system with n CPUs.

• TFluxCell

This implementation targets the Cell Processor and has the TSU Emulator running on the

PPE core and the threads on the SPE cores. Part of the communication between the kernels

running on the SPEs and the TSU on the PPE is implemented using DMA calls and the rest

using the fine-grain mechanisms of mailboxes and signals. The following scheme was used

for transferring the produced/consumed data amongst the threads. When a thread finishes

execution, the produced data is exported to a shared buffer in main memory and before the

Sam
er

Aran
di

52

TFlux

Kernel

SPE 1

TFlux

Kernel

SPE 2

TFlux

Kernel

SPE 3

TFlux

Kernel

SPE 8

...

PPE
TSU Emulator

Figure 14: The TFluxCell system (Figure from [113])

consumer thread starts, this data is imported from the buffer into the Local Store (LS) of

the SPE where the consumer thread will be executing. Figure 14 illustrates the TFluxCell

system.

The evaluation of TFlux showed that the achieved speedup is close to linear. Most importantly,

the speedup results are stable across the various platforms, thus indicating that TFlux allows ex-

ploiting the benefits of DDM on different commodity systems.

2.4.3 The Data-Driven Multithreading Virtual Machine

The work presented in this thesis is the third implementation of the Data-Driven Multithread-

ing model, in which we advance its state-of-the art by designing, implementing and optimizing

the Data-Driven Multithreading Virtual Machine (DDM-VM).

D2NOW utilized a hardware TSU and supported distributed DDM execution on a cluster of

single processor nodes, while DDM-VM supports distributed DDM execution on a cluster of

multi-core nodes. D2NOW utilized CacheFlow to optimize the performance, while DDM-VM

uses the concept of CacheFlow to implement a prefetching software cache for the automatic man-

agement of software-managed memory hierarchies.

The software implementations of the TFlux platform and the DDM-VM utilize a software

TSU, however, DDM-VM supports distributed DDM execution on clusters of multi-core nodes. It

Sam
er

Aran
di

53

further develops a prefetching software cache for software-managed memory hierarchies on het-

erogeneous multi-cores. DDM-VM also applies further performance optimizations and compares

favorably with state-of-the-art similar systems. Finally, DDM-VM supports runtime dependency

resolution, which expands the class of programs that can be mapped to the DDM model and has

the potential to improve the programmability.

Sam
er

Aran
di

Chapter 3

The Data-Driven Multithreading Virtual Machine (DDM-VM)

3.1 Introduction

The Data-Driven Multithreading Virtual Machine (DDM-VM) is a parallel software platform

that supports Data-Driven execution on conventional control-flow multi-core systems. The Data-

Driven Multithreading model combines the latency tolerance and distributed concurrency mecha-

nisms of the data-flow model with the efficient execution of the control-flow model. The DDM-

VM utilizes DDM scheduling for exploiting the resources of multi-core architectures and tol-

erating synchronization and memory latencies. It employs data-flow concurrency for scheduling

threads and efficient sequential execution of instructions within a thread. The scheduling of threads

is orchestrated by the Thread Scheduling Unit (TSU), which is implemented as a software module

running on one of the cores. The TSU is aided by the runtime that supports DDM execution on the

rest of the cores. The DDM-VM targets homogeneous and heterogeneous multi-core architectures

with software-managed memory hierarchies. A software prefetching cache based on data-driven

caching policies is employed for handling the software-managed memory hierarchies. The DDM-

VM supports DDM execution within a single multi-core node and across multiple multi-core nodes

connected using an off-chip network.

54

Sam
er

Aran
di

55

In this chapter we present the architecture of the DDM-VM and describe its two implemen-

tations. In addition, we highlight the design and implementation the Software CacheFlow (S-

CacheFlow) developed for managing the memory hierarchy in the DDM-VMc.

This chapter describes the support for DDM execution within a multi-core processor or a node.

Extending the DDM-VM design to support distributed DDM execution across multiple nodes is

described in Chapter 4. Details of the programming methodology and tools are given in Chapter

5.

3.2 The Data-Driven Multithreading Virtual Machine (DDM-VM)

The Data-Driven Multithreading Virtual Machine (DDM-VM) is a virtual machine that sup-

ports DDM execution on homogeneous and heterogeneous multi-core systems. DDM-VM virtu-

alizes the parallel resources of the underlying machine and uses a unified representation for DDM

programs. The representation is flexible enough to incorporate additional information needed to

optimize the DDM execution for different target architectures. The DDM-VM composed from the

Thread Scheduling Unit (TSU) and the runtime system, handles the tasks of thread scheduling,

execution instantiation and data management implicitly.

DDM-VM programs are mapped into the code of the DDM threads and the synchronization

graph or meta-data of the threads, such as the ReadyCount (RC) and the consumer/producer

dependency relationships of each threads. The virtual machine uses the meta-data to schedule

threads based on data-availability; a thread is scheduled for execution when all its producers fin-

ish execution. The scheduling of threads is interleaved with their execution, thus shortening the

critical path of the application. In the case of architectures with a software-managed memory

hierarchy the DDM-VM prefetches the thread data from the main memory to the cache of the

processor before starting its execution.

Sam
er

Aran
di

56

Thread Scheduling Unit (TSU)

The cornerstone of supporting DDM execution is the implementation of the Thread Scheduling

Unit (TSU) responsible for scheduling threads dynamically based on data-availability. The DDM-

VM implements the TSU as a software module running on one of the cores in the system, leaving

the rest of the cores for threads execution. Previous implementations of DDM have realized the

TSU as a hardware module attached on the COAST (Cache On A STick) interface [73], a simulated

memory-mapped hardware module [113], and as a software module [113] similarly to this work.

Naturally, the overheads of a software implementation (in terms of the cost of the TSU operations)

is larger when compared to a hardware one. However, a software implementation allows obtaining

the benefits of DDM execution on existing off-the-shelf systems without changing the underlying

architecture or adding new hardware components. In addition, the overlapping of the TSU work

with the execution of threads reduces such overheads, especially when increasing the granularities

of the threads, as will be demonstrated in the Evaluation Chapter.

The DDM-VM architecture has two implementations: The Data-Driven Multithreading Vir-

tual Machine for the Cell (DDM-VMc) and the Data-Driven Multithreading Virtual Machine for

Symmetric Multi-cores (DDM-VMs). Figure 15 depicts both implementations. We describe both

implementations in the following sections.

Sam
er

Aran
di

57

(b)

(a)

SPU

SPE 8

...

BUS

PPU

DDM

Thread

Execution

TSU +

S-CacheFlow

Execution

The DDM-VMc

PPE

Main Memory

DDM-VMc

Runtime

The DDM-VMs

Core 1 Core 2

...

Bus

Main Memory

Core n

TSU
DDM Thread

Execution

DDM-VMs

Runtime

TSU Memory

Structures

TSU Memory

Structures

Program

Data

Program

Data

LS

I/O

I/O

Network

Other

Nodes

Network

Other

Nodes

DDM Thread

Execution

DDM-VMs

Runtime

SPU

DDM

Thread

Execution

DDM-VMc

Runtime

LS

SPE 1

Cache Hierarchy

Figure 15: The two implementations of the DDM-VM architecture (a) DDM-VMs (b) DDM-VMc

Sam
er

Aran
di

58

3.3 The Data-Driven Virtual Machine for the Cell (DDM-VMc)

The Data-Driven Virtual Machine for the Cell (DDM-VMc) is the DDM-VM implementation

targeting heterogeneous multi-cores with a host/accelerator organization and a software-managed

memory hierarchy. The Cell Broadband Engine processor [63] (Cell/B.E. or Cell for short) is the

principal representative example of such architectures and thus has been chosen as the target for

this implementation. For a detailed description of the architecture of the Cell processor please

refer to 2.2.1.9.

The Thread Scheduling Unit (TSU) is implemented as a software module running on the PPE

core. The execution of the program threads takes place on the SPE cores. The communication

between the TSU and the executing threads is facilitated via DMA calls. A software prefetching

cache module in the TSU, called Software CacheFlow (S-CacheFlow), manages data transfers

and prefetching automatically. Thread scheduling and S-CacheFlow operations running on the

PPE are interleaved with the execution of threads on the SPEs, thus shortening the critical path

of the application. All these operations are implemented by the runtime requiring no intervention

from the programmer. Figure 16 illustrates the architecture of the DDM-VMc.

Sam
er

Aran
di

59

C
o
m
m
o
n
 T
S
U
 S
tr
u
c
tu
re
s

S
M

A
Q

C
L

S
P
E
0
 S
tr
u
c
tu
re
s

S
P
E
7

S
tr
u
c
tu
re
s

..
.

F
Q

C
D

P
/W

Q

R
C
L
D

C
Q

T
S
U
 M
e
m
o
ry
 S
tr
u
c
tu
re
s

D
D
M
C
o
m
m
a
n
d
..
.

D
D
M
C
o
m
m
a
n
d
..
.

D
D
M
C
o
m
m
a
n
d
..
.

C
D

R
C
L
D

C
Q

D
D
M
C
o
m
m
a
n
d
..
.

D
D
M
C
o
m
m
a
n
d
..
.

D
D
M
C
o
m
m
a
n
d
..
.

R
C
?
=
0

..
.

P
P
E

S
P
E
 7

S
P
E
 0

D
D
M
 P
ro
g
ra
m

D
D
M
 T
h
re
a
d
 i
:

C
o
m
p
u
ta
ti
o
n

...

D
D
M
 T
h
re
a
d
 i
+
1
:

...

D
M
A
 C

a
ll

D
M
A
 C

a
ll

D
M
A
 C

a
ll

R
e
s
t
o
f
M
a
in
 M
e
m
o
ry

P
ro
g
ra
m
 D
a
ta

...
D
M
A
 C

a
ll

R
u
n
ti
m
e
 c
a
lls

...

D
D
M
-V

M
c
S
P
E
 R

u
n
ti
m
e
 C

o
d
e

R
C
L
D
 (
C
a
c
h
e
 L
o
o
k
u
p
)

D
D
M
 C

a
c
h
e

C
o
m
m
a
n
d
 B
u
ff
e
r

D
D
M
C
o
m
m
a
n
d
_
T
h
re
a
d
F
in
is
h
..
.

D
D
M
C
o
m
m
a
n
d
_
T
h
re
a
d
F
in
is
h
..
.

D
D
M
C
o
m
m
a
n
d
_
T
h
re
a
d
F
in
is
h
..
.

D
D
M
-V

M
c
P
P
E
 R
u
n
ti
m
e

T
h
re
a
d
 S
y
n
c
h
ro
n
iz
a
ti
o
n

U
n
it
 (
T
S
U
)

+

S
-C

a
c
h
e
F
lo
w

E
x
e
c
u
ti
o
n

C
o
m
p
u
ta
ti
o
n

R
u
n
ti
m
e
 c
a
lls

R
u
n
ti
m
e
 c
a
lls

R
u
n
ti
m
e
 c
a
lls

Notify TSU

Cache Lookup

Ready Threads info

M
a
in
 M
e
m
o
ry

G
M

P
B

F
Q

P
/W

Q
P
B

Fi
gu

re
16

: T
he

A
rc

hi
te

ct
ur

e
of

th
e

D
D

M
-V

M
c

Sam
er

Aran
di

60

In the following subsections we present the motivation behind our work on the Cell and the

rationale of the design, followed by a detailed description of the implementation of the Thread

Scheduling Unit (TSU) and the TSU-Processor interface. The Software CacheFlow implementa-

tion is described in 3.4.

3.3.1 Motivation and Design Rationale

A close examination of the Cell processor design and the DDM model reveals a matching on

many levels that motivated our work on the Cell.

Core Specialization

The specialization of the Cell cores between control and execution, matches the decoupling of

synchronization and execution adopted by the DDM model. This led us to map the TSU to run

on the general purpose PPE core, while leaving the SIMD SPE cores to execute the threads. This

is an efficient utilization of the Cell heterogeneous resources, since the PPE is already used for

controlling execution on the Cell, as it runs the Operating System, acts as a coordinator for the

other cores (SPEs), and provides them with various services. One can look at the TSU services

as an additional kernel service. Another point to consider here is that the PPE -as a general

purpose processor- is well-suited for executing the code of the TSU that heavily uses branches

and control-flow structures, while the threads are well-suited to run on the SIMD SPE cores,

which are optimized for executing computational loads.

Software-managed Memory Hierarchy

Another motivating factor was the software-managed memory hierarchy, which is challenging

to manage but offers a great opportunity for improving performance. This organization allows

Sam
er

Aran
di

61

deterministic execution at the SPEs once the required data resides in the LS memory, as no cache

misses is encountered. Therefore, optimal performance is achieved by increasing the time the

SPEs are working on data in their near LS and diminishing the time spent waiting for data to

come from the far main memory. This is usually achieved using techniques like double buffering,

in which the programmer splits the program data into multiple sets and work on one set while asyn-

chronously fetching the next one from main memory. This interleaving between computation and

data communication is the principal way the Cell tries to avoid the Memory Wall. Nevertheless,

a considerable effort from the programmer is required to structure the code to take advantage of

this technique. If the data-driven prefetching policies employed with DDM is applied to the local

store, double-buffering will be achieved automatically with no programmer intervention. In fact,

this capability of controlling the LS memory by software allows DDM more control, compared to

conventional hardware caches, to get the maximum potential of its pre-fetching techniques. More

details on the management of the memory hierarchy of the Cell is presented in Section 3.4.

Context-switching Overheads

Finally, because each SPE core supports a single program context at any time, conventional

context-switching at the level of the O.S. is very expensive [5]. Each SPE has 128 by 128-bit

register file, DMA command queue status, and 256 KB LS memory that ought to be (at least

partially) saved. Therefore, a self-managed approach is advised for handling concurrent execution

within the same application. The DDM model provides this by default, since the scheduling of

DDM threads is done internally by the TSU incurring no context-switching and appearing to the

O.S as a run-to-completion type of execution.

After presenting the motivation behind our work, we proceed to describe the implementation

details of the DDM-VMc.

Sam
er

Aran
di

62

3.3.2 The Thread Scheduling Unit (TSU)

The Thread Scheduling Unit (TSU) is the core of the DDM model. It holds the meta-data of

the threads and use it to schedule the threads dynamically at runtime based on data-availability.

It also manages the prefetching of each thread data using the Software CacheFlow module. In

this section we present the implementation details of the TSU. We describe the memory structures

holding the TSU state and the TSU operations.

The TSU Memory Structures

As the TSU runs on the PPE, the structures holding the thread meta-data and the state of the

TSU are allocated in main memory. Part of the structures are common for all the SPEs and the

rest are allocated per SPE. The common TSU structures include:

The Graph Memory (GM): holds the synchronization template of each thread. This includes:

the thread identifier (ThreadId), Instruction Frame Pointer (IFP), Consumers List, number of Data

Frame Pointers, the Ready Count (RC) value and the thread attributes. The attributes include: the

scheduling policy to use for the thread along with a scheduling value, the SM implementation to

use (3 different implementations are available: direct, associative and hybrid), a mask value used

when the direct implementation is selected, and the arity of the thread specifying the loop nesting

level for threads implementing loops. The final part of the template is held in the Consumer List

(CL) auxiliary table. Note that the template holds the number of DFPs, the values of the DFPs (the

addresses of the input/output data), however, are retrieved at runtime by calling a helper-function.

The Consumer List (CL): The GM entry contains two fields, Con1 and Con2, which can hold

the thread identifier for one or two consumers. If the thread has more than two consumers, the

CL holds the list of consumer threads for that thread. In that case, Con1 is set to zero and Con2

is set to point to the entry of the first consumer in the CL. Each consumer entry points to the next

Sam
er

Aran
di

63

one and the entry of the last consumer has the value of next set to -1. This is an optimization as

previous DDM work has shown that most threads have two consumers [73].

The Synchronization Memory (SM): holds the RC values for each invocation of a DDM

thread. The SM entries are uniquely indexed using the context of the invocations. The RC value

in the GM entry is used to initialize the RC entries in the Synchronization Memory. As the per-

formance of the SM is critical to the overall system performance, we have utilized three different

implementations of the SM. Details of the implementations are presented in Section 5.6 and their

performance evaluation is presented in Section & 7.2.2.2.

The Acknowledgement Queue (AQ): holds requests to decrement the RC of one or more

invocations of consumer threads. The requests are enqueued when a producer thread finishes

execution. The request include the consumer identifier, context, the operation flags, two values

used when updating multiple invocations and the updated value by which the consumer(s) RC is

decremented (set to 1 by default).

The per-SPE TSU structures include:

The Command Queue (CQ): holds the DDM Commands sent by the executing threads. The

commands inform the TSU that a thread has finished execution and indicate the consumer thread(s)

invocation(s) to decrement their RC. The entries hold information similar to the ones in the AQ

entries. However, the consumer id field indicates the order of the consumer thread in the CL (the

first, second, third consumer, etc.) as opposed to the consumer id field in the AQ which holds the

ThreadId of the consumer. Moreover, the OP field carries an extra flag which indicates that the

currently executing thread has finished execution.

The Waiting Queue (WQ): holds the information of threads which RC reached zero and are

waiting for prefetching to start. This includes the ThreadId and context.

Sam
er

Aran
di

64

TSU Structures in Main Memory

Common Structures

Graph Memory

Consumer List

TID next

TID IFP Con1 Con2 DFPNum RC Sched_method Sched_value SM_method SM_mask arity

Thread_1 … Thread_N

0:

1:

…

N

RC RC

Synchronization Memory

...

Waiting Queue

TID Context

Per-SPE Structures

Acknowledgment Queue

consumer_id Context OP Value1 Value2 UpdateValue

TID Context

Priority Waiting

Queue
Pending Buffer

TID Context IFP Tag

Firing Queue

TID Context IFP

Command Queue

consumer_id Context OP Value1 Value2 UpdateValue

Valid EAddr Size Dirty UserNum Ref-Count

Cache Directory Remote Cache Lookup Directory

TID Context DFPIndex LSAddr Prop EAddr Size

Figure 17: The TSU Structures in Main Memory

The Priority Waiting Queue (PWQ): this queue is identical to the WQ, however, its entries

have a higher-priority. It holds the information of threads that were dequeued from the WQ but

their prefetching was not started due to unavailable space in the LS.

The Pending Buffer (PB): holds information of threads whose prefetching is started (by is-

suing DMA transfers) and are waiting for its completion. Each entry records the information of

the thread along with a unique 5-bit tag used for checking the completion of the DMA transfers.

In the distributed configuration of S-CacheFlow (described in 3.4), this buffer is moved to the LS.

The Firing Queue (FQ): holds the information of threads whose data has been prefetched

into the LS and are ready to execute. This includes the ThreadId, IFP and the context. In the

distributed configuration of S-CacheFlow (described in 3.4). This queue is moved to the LS.

The structures required for the operation of the S-CacheFlow are allocated in main memory as

well. This includes the Cache Directory (CD) and the Remote Cache Lookup Directory (RCLD),

Sam
er

Aran
di

65

which are allocated per-SPE. Detailed description of these structures is presented in 3.4. Figure 17

depicts the TSU structures in main memory.

The LS memory of the SPEs (shown at Figure 16) holds (i) the code of the DDM threads

linked with the VM runtime library and (ii) the rest of the S-CacheFlow structures including the

part of the LS which holds the data of the DDM threads. We refer to this LS part as the DDM

Cache.

3.3.2.1 Thread Execution and TSU Operations

Thread Execution

The DDM thread execution takes place on the SPEs and consists of two types of operations

or phases: computation and synchronization. The synchronization operations are performed by

the runtime on the SPE, which communicates with the TSU via the TSU-Processor interface. In

particular, the runtime sends simple messages or DDM commands (will be defined shortly) to the

corresponding TSU Command Queue (CQ) in main memory. Moreover, when a thread finishes

execution, the runtime fetches the information of the next thread to execute from the corresponding

FQ in main memory. A detailed description of the TSU-Processor interface is presented in the

following section.

TSU Operations

The TSU running on the PPE core performs 3 main activities continuously until the termina-

tion of the program:

• Executes the commands in the CQs

• Decrement the RC of consumer threads

Sam
er

Aran
di

66

• Execute the S-CacheFlow

The activities and the TSU structures affect by each one are illustrated in Figure 18.

The TSU processes the commands in the CQs of all the SPEs in a round-robin fashion. The

commands inform the TSU that the current executing thread on that SPE has finished. The com-

mands also relay the information of which consumer thread(s) invocation(s) to decrement their

RC. This information is enqueued as requests in the AQ.

The TSU processes the AQ requests to decrement the RCs and if any RC reaches zero, the

corresponding thread invocation is scheduled for execution on the SPE core that is selected by the

scheduling policy. This is done by inserting the thread information into the Waiting Queue (WQ)

pertaining to the selected SPE. If the WQ is full the RC update operation is undone and no entry is

removed from the AQ. Moreover, if a certain threshold of consecutive WQ insertions is reached,

the TSU stops processing the AQ entries and starts processing the WQ entries. This priorities the

prefetching of thread data and consequently ensures that more threads are ready for execution. We

have set the threshold value empirically and permit controlling it using a configuration file.

Threads in the WQ are then processed by the S-CacheFlow module, which transfers the data

each thread requires to the LS of the SPE along with the information needed to access this data,

like the LS address where the data is transferred and its size. Once the transfers complete the

thread is deemed ready to execute and its information is moved into the Fire Queue (FQ). Should

the FQ becomes full, the execution of the S-CacheFlow module is not invoked.

3.3.3 The TSU-Processor Interface

The TSU-Processor interface specifies the communication mechanism to use between the core

executing the TSU and the ones executing the threads, i.e., between the PPE and SPEs. This

Sam
er

Aran
di

67

i is Last SPE No

i++

Yes

i = 0

DDM-VMc TSU Activities

Execute Commands in CQ of SPEi

remove entries in CQi

add entries in AQ

Decrement Consumer Threads

remove entries in AQ

decrement RC in SM

add entries in WQi=scheduling_policy();

Execute S-CacheFlow for SPEi

remove entries in WQi

add/remove entries in PWQi

add/remove entries in PBi

modify entries in CDi

add entries in RCLDi

add entries in FQi

Termination detected

i = 0

No

Start the TSU Execution

TSU Finished Execution

Yes

FQi is Full

Yes

No

Figure 18: DDM-VMc TSU Activities

Sam
er

Aran
di

68

communication is abstracted by the virtual machine and implemented using the Cell low-level

communication infrastructure. This interface performs two main tasks:

• Informing the TSU that the currently executing thread has finished execution and the con-

sumer thread(s) invocation(s) to decrement their RC

• Providing the execution cores with the information of the next ready thread to execute

Next we discuss the Cell low-level communication mechanisms utilized by the interface and

present the interface implementation details.

Low-level Communication Mechanisms

The Cell provides small granularity communication mechanisms (1 to 4 32-bit messages) via

mailboxes and signals and coarse ones (128 byte to 32 MB per message) via DMA calls. We have

opted for the latter as the basic communication mechanism in the interface for two main reasons:

First, the size of the information exchanged when performing the main communication tasks is

multiple times larger than 4-bytes. Second, when checking for the arrival of messages or data, it

is more efficient for the PPE to poll a flag in main memory (set or cleared by DMA) than a flag in

a mailbox or signal [5] (as the latter is an I/O operation).

TSU-Processor Interface - First Task

The first TSU-Processor interface task is implemented by sending simple messages or DDM

commands to the TSU. The commands are first stored in a local Command Buffer in the LS of

the SPE and then the buffer is copied into the Command Queue (CQ) associated with this SPE

in main memory via DMA calls. We have utilizes an efficient circular CQ that requires minimal

synchronization operations between the SPEs and the PPE. Instead of continuously issuing DMA

Sam
er

Aran
di

69

calls to read the value of the queue head pointer in main memory by the runtime on the SPE so as

to calculate the correct size of the queue, we only do this when the runtime finds the queue nearly

full. At that point, an asynchronous DMA call is issued to read these values from main memory.

This call is overlapped with threads execution, thus greatly reducing its cost. Using this scheme

the SPEs get a slightly old perception of the size of the CQ in main memory, however, continuous

DMA transfers are avoided.

TSU-Processor Interface - Second Task

The second task consists of retrieving the next ready thread information. This includes the

ThreadId, IFP and context of the thread, in addition to the S-CacheFlow information related to the

thread data in the LS. This task is performed via DMA calls that fetch this information from the

FQ and the S-CacheFlow structures in main memory into the LS.

The runtime takes advantage of the ability to issue asynchronous DMA calls to overlap sending

of commands and data to main memory with thread execution. This well-known technique is

called multi-buffering. We describe how we implemented it in Section 3.4.6. Referring back to

Figure 16, the thick arrows represent the data movement and the various information exchanges

taking place through the TSU-Processor interface in the DDM-VMc.

3.3.4 The Scheduling Policy

So far we have discussed how and when a thread is deemed executable and the subsequent

events occurring before and after execution. However, another important aspect of the process

of scheduling is where to allocate or map the threads, which can have a considerable effect on

performance in data-flow systems [43].

Sam
er

Aran
di

70

In the presence of enough information on the parallel program characteristics (e.g. task exe-

cution time, task communication and task dependencies) scheduling can be performed statically

at compile-time [70]. In the absence of such information, however, it is performed dynamically at

runtime [51, 19]. Scheduling techniques also vary in terms of locality-awareness, handling of task

dependencies and the involved overheads but the common goal is -in general- reducing the overall

execution time of the program, commonly called the makespan.

Supported Scheduling Policies

The DDM-VMc implements a number of scheduling policies that permit the programmer/compiler

to control the mapping of threads to the SPE cores. The default policy distributes the threads in-

vocations among the SPEs in a way that maximizes load-balancing. We denote this policy as the

dynamic scheduling policy. The other implemented policies include the static, round-robin, and

modulo policies. The static policy distributes the invocations of a specific thread to a specific

SPE. The round-robin policy distributes the invocations of threads across the SPEs in a round-

robin fashion. The modulo policy uses the context, uniquely distinguishing each thread invocation

modulo the number of SPE cores to select the target SPE. This is a commonly used scheduling

technique in data-flow systems that was -according to Gaudiot [43]- initially used in [46] .

The scheduling policies are assigned per-thread allowing for maximum flexibility. The DDM-

VMc also supports using a custom policy, which gives the programmer/compiler the flexibility to

implement a scheduling policy based on data locality or the dependency graph of the program or

any other criteria.
Sam

er
Aran

di

71

<0,0>

<0,1>

<0,2>

<0,N>

<0>

<1,0>

<1,1>

<1,2>

<1,N> <M,N>

<M,0>

<M,1>

<M,2>

…
.

….

….

….

….

….

…
.

…
.

<2,0>

<2,1>

<2,2>

<2,N>

…
.

<3,0>

<3,1>

<3,2>

<3,N>

…
.

<4,0>

<4,1>

<4,2>

<4,N>

<5,0>

<5,1>

<5,2>

<5,N>

…
.

…
.

….

….

….

….

P0 P1 P2 P0 P1 P2 P2

P0

T1 invocations

T2 invocations

<0,0>

<0,1>

<0,2>

<0,N>

<0>

<1,0>

<1,1>

<1,2>

<1,N> <M,N>

<M,0>

<M,1>

<M,2>

….

….

….

….

….

<2,0>

<2,1>

<2,2>

<2,N>

<3,0>

<3,1>

<3,2>

<3,N>

<4,0>

<4,1>

<4,2>

<4,N>

<5,0>

<5,1>

<5,2>

<5,N>

….

….

….

….

P0

P1

P2

P2

P0

T
im
e

Schedule 1

Schedule 2

T
im
e

static policy

static policy

modulo

policy using

the upper

part of the

context

modulo

policy using

the lower

part of the

context

Parallel

execution

of Thread2

invocations

No

Parallelism

Figure 19: Two schedules using the static and modulo policies differently with a drastic effects on
parallelismSam

er
Aran

di

72

Scheduling Example - Static and Modulo Policies

Figure 19 demonstrates two schedules each using the static and modulo policies to map the

invocations of two DDM threads, representing two nested loops, to 3 SPEs. We label the dynamic

invocations of the two threads with the value of the <context> distinguishing each invocation. As

each invocation of Thread 2 corresponds to one iteration of the inner loop in the original program,

its context is depicted as <i,j> where i is the loop index of the outer loop and j is the loop index

of the inner loop. The arrows represent the dependencies amongst the threads invocations.

In the first schedule, Thread 1 is assigned a static policy that maps its invocations (it has one

invocation) to SPE0 (abbreviated as P0). Thread 2 is assigned a modulo scheduling policy that

uses the upper part of context (the outer loop index) to distributed the invocations in a modulo

fashion on the 3 SPEs. This is equivalent to distributing the corresponding outer loop iterations in

a cyclic manner across the SPEs. In the second schedule the modulo policy uses the lower part of

the context (the inner loop index), instead of the upper, for the distribution of the invocations.

It is clear that the first schedule enables parallel execution while the second one hampers it,

which underlines the importance of selecting an appropriate scheduling policy.

Scheduling Example - Dynamic and RoundRobin Policies

Figure 20 demonstrates the roundrobin and dynamic scheduling policies used for an arbitrary

program with multiple different threads. As time is relevant in the case of these two policies, the

length of the threads rectangles represent their execution duration. The vertical distance between

the dependency arrows start and end represent the time needed for performing the following tasks:

informing the TSU that a thread has finished, decrementing the RC of its consumers, fetching the

data of ready threads and eventually inserting the thread in the FQ. For simplicity we assume that

Sam
er

Aran
di

73

P0

P2 P0

P2 P0 P1

P0

P1

P0

P2

P0

P1 P2P0

P0

P2 P0 P1

P1 P2

P0

P0

P1

(a) (b)

Round Robin Scheduling Dynamic Scheduling

waiting for an

availble unit

P2

P1
thread execution

duration

P1

time needed to:

inform the TSU that the

thread finished,

decrementing RC, fetch

data, insert thread in FQ

Figure 20: RoundRobin and Dynamic Scheduling Policies

these steps are accomplished in a constant time and that the scheduling decision is made mid-way.

The empty dashed rectangles represent waiting time for an execution unit to become available.

In part (a) of Figure 20 the roundrobin policy is used for all the threads. This policy keeps

a common counter value initialized to zero (the id of the first core) and every time a scheduling

decision is required the current value of the counter is returned as the core identifier and the counter

is then incremented by one. In part (b) of the figure the dynamic scheduling policy is used for all

the threads. This policy selects the SPE core with the least load, which is the core with the least

number of entries in the WQ, PWQ, PB and FQ combined, thus promoting better load-balancing.

Both policies result in different schedules as shown in the figure.

Discussion

The roundrobin policy requires no information of the core status and aims at distributing the

threads among the cores uniformly. The dynamic policy takes the load status in consideration

Sam
er

Aran
di

74

and so in the case of scheduling threads with similar execution durations, it provide optimal per-

formance. However, when the execution duration vary greatly among the threads, an optimal

schedule might not be achieved. This can be seen in the figure as the dynamic policy results in a

longer total execution time compared to the roundrobin policy. To optimize the dynamic policy,

profiling can be used to assign weights that reflect the execution duration of threads.

Specifying the scheduling policy to use with each thread and defining custom scheduling poli-

cies are described in detail in Chapter 5.

3.3.5 Execution Termination

Detecting termination of programs in the data-flow execution model is different from that on

the control-flow model. In the latter instructions have a complete ordering that makes this task

straight-forward. In the former, however, the availability of data governs the order of execution

making this task more involving.

Explicit Termination Approach

The initial approach we used for detecting the termination was to designate a specific invo-

cation of a thread as the last executed one in the program and once the TSU is informed of the

completion of this invocation execution terminates. When splitting the graphs of big DDM pro-

grams into sub-graphs called DDM blocks, each block is assigned an inlet thread responsible for

loading the meta-data of the block threads into the TSU, and an outlet thread that runs only after

all the threads in the block has finished execution. The designated last program thread in this

case would be one that is enabled when all the outlet threads of the program DDM blocks finish

execution.

Sam
er

Aran
di

75

<1> <2> <N-1><0> ….. …..

outlet

….. …..

<M-1><2><1><0>

inlet

….. …..

Parallel loop (do-all)

N iterations
Parallel loop (do-all)

M iterations

Thread 2

invocations}{Thread 1

invocations

Figure 21: DDM program of two parallel loops with inlet & outlet threads

Implicit Termination Approach

In a later stage of this work, we opted for a more general and implicit approach, in which

we terminate once all the queues of the TSU are empty and there exists no pending operations

in-flight. This approach requires no change to programs using the first one as termination would

still be detected after the execution of the last outlet thread as before.

Comparison

The advantages of the second approach are: First, it is implicit; it requires no involvement from

the programmer or compilation tool to specify the thread invocation designated as the last. More

importantly, it avoids introducing extra dependencies in the cases where such a last thread doesn’t

exist in the program. Reducing dependencies can improve the performance of the program as these

extra dependencies result in extra TSU work to decrement the RCs. Figure 21 shows an example

of a DDM program implementing two parallel loops with N and M iterations, respectively. To

detect termination according to the first approach an outlet thread is introduced, however, N+M

extra dependencies are added to the program so that the outlet thread executes only after all the

program thread invocations finish execution. If the second approach is used, the outlet thread

would not be required (and so the extra dependencies are not needed) and termination will still be

Sam
er

Aran
di

76

detected when all the threads invocations in the program finish. Moreover, in distributed DDM

execution (discussed in Chapter 4), the extra dependencies required by the first approach might

generate extra network messages as the invocations might be executing across all the nodes in the

system. One shortcoming of this approach is that when it is utilized, it is difficult to distinguish

between successful completion and abnormal termination.

On the other hand, the first approach is more appropriate in the cases where multiple DDM

applications are to be scheduled by the same TSU and so detecting the termination of each appli-

cation separately is desirable. Furthermore, in certain cases (as will be demonstrated in Chapter

5) extra dependencies are introduced to control the amount of parallelism exposed in the program,

in these cases using the first approach comes at almost no cost.

The DDM-VM supports both approaches: if an arbitrary thread invocation is specified as

the last one, termination occurs when that invocation finish, otherwise termination is decided

according to the second approach. Selecting the approach to use is based on the properties of the

application.

Sam
er

Aran
di

77

3.4 Software CacheFlow (S-CacheFlow)

In this section we present the design and implementation details of the Software CacheFlow

(S-CacheFlow), a prefetching software cache developed as part of the TSU for the management

of the memory hierarchy in the DDM-VMc. We describe the structures and operations of the S-

CacheFlow and illustrate the various techniques and optimizations we implemented for improving

the performance.

Multi-core architectures with software-managed on-chip memories [55, 65, 63, 30, 127, 54]

introduce private address spaces and rely on software to manage data transfers, which can be

both complex and error-prone [105]. This tasks is more challenging on the Cell because the LS

is a constrained memory resource demanding efficient utilization. Moreover, having the LS as

software-controlled renders many techniques applied to preserve coherency in hardware-caches

prohibitively expensive. To handle these challenges, DDM-VMc utilizes the CacheFlow [72]

policy to implement Software CacheFlow (S-CacheFlow): a fully automated prefetching software

cache with variable cache block sizes that is extended with locality optimizations. Moreover, S-

CacheFlow maintains consistency using data-flow synchronization in a technique similar to DAG

Consistency [20]; it prefetches input data from main memory to the LS before the thread starts

execution and writes-back produced data to main memory after the thread finishes execution. S-

CacheFlow support explicit locality, which avoids expensive cross-SPE coherence operations.

CacheFlow is a data-driven cache management policy utilized with DDM to improve the per-

formance by ensuring that the data a thread requires is in the cache before the thread is fired

for execution. The original implementation of CacheFlow [72] targeted machines with hardware

Sam
er

Aran
di

78

caches to implicitly improve the performance of DDM execution by reducing cache misses. How-

ever, in this work CacheFlow is applied in a new context, that is, to manage the memory hierarchy

in multi-core architectures with software-managed memories like the Cell.

Next, we describe the structures and operations of the S-CacheFlow module in the TSU.

3.4.1 S-CacheFlow Structures

To implement S-CacheFlow on the Cell a portion of the LS memory of each SPE, typically

(96-128)KB, is pre-allocated and divided into cache blocks. We refer to this portion as the DDM

Cache. The size of the blocks can vary to match each application characteristics but must be in

multiples of 128B, which is the cache-line size and the minimum granularity for DMA transfers on

the Cell processor. Note that transfers of smaller sizes are allowed, nevertheless, a bus bandwidth

of a full 128B is consumed. Therefore, DMA throughput is maximized if transfers are at least

128B [5].

The per-SPE S-CacheFlow structures allocated in main memory consist of the Cache Direc-

tory (CD) and the The Remote Cache Lookup Directory (RCLD). The structures are depicted in

Figure 17.

3.4.1.1 The Cache Directory (CD)

The CD holds the state of the cache blocks. It maps an address range in the main memory

address space into one in the LS private address space. Each input/output data of a thread is

allocated at least one cache block and data instances larger than one cache block are allocated in

consecutive blocks. This setup simplifies all the CD operations and improves the performance of

the cache.

Sam
er

Aran
di

79

Each entry corresponds to one cache block or more (depending on whether the size field is

equal to 1 or more). Each entry is composed of the following fields:

• Valid: indicates if the block(s) contain valid data.

• EAddr: the main memory address (Effective Address in the Cell terminology) of the block(s)

data .

• Size: the size of the data associated with this entry in terms of cache blocks.

• Dirty: indicates if the block(s) data has been modified when kept in the LS for re-use.

• UserNum: the number of threads (waiting to execute or currently executing) that are refer-

ring to the cache block(s).

• reference-count: value needed for exploiting locality, it specifies the number of remaining

re-uses of the block(s) before they are flushed to main memory or invalidated.

Note that the index of each entry indicates the cache block number in the DDM cache and

consequently its LS address.

3.4.1.2 The Remote Cache Lookup Directory (RCLD)

The RCLD holds the lookup information needed by the runtime on the SPE. The most impor-

tant information is the LS address where the data was allocated. Each RCLD entry is composed

of the following fields:

• TID: ThreadId of the thread whose data is associated with this entry.

• context: the context specifying the exact invocation of the thread.

• DFPIndex: indicates for which DFP this data belongs (the first, second, etc.)

Sam
er

Aran
di

80

Cache Directory (CD)
Valid EAddr Size Dirty

1 0x57ff00 2 0 Allocation of

blocks:[i,i+1]

blocks:[i+2,i+3]

Block i

...
...

1 0x264100 2 0

Block i+1

Block i+2

Block i+3

UsersNum

1

1

Ref-Count

-1

-1

Remote Cache Lookup Directory (RCLD)

TNum Contex DFPIndex LSAddr Prop

1 0 0 0x1f80 0

1 0 1 0x2f00 1

EAddr

0x57ff00

Size

256

0x264100 256

Figure 22: S-CacheFlow Allocation Example: the contents of the Remote Cache Lookup Direc-
tory (RCLD) & the Cache Directory (CD)

• LSAddr: the address of the data in the LS

• Prop: properties of the data. This indicates if the data access is for reading, writing or both

and whether the data associated with this entry must be written-back to main memory after

the thread finishes execution.

• EAddr: the main memory address of the data. This is required for writing-back produced

data to main memory after the thread finishes execution.

• Size: the size of the data in bytes. This is required for writing-back produced data to main

memory after the thread finishes execution.

Allocation Example

Figure 22 illustrates the state of the CD and RCLD after the data allocation for a DDM thread

that requires reading data at main memory address 0x0057ff00 of size 256 bytes and writing data

at main memory address of 0x00264100 of size 256 bytes. In this example the cache block size is

assumed to be 128B and the data is allocated in blocks:[i,i+3] of the cache.

3.4.2 S-CacheFlow Operations

In this section we describe the S-CacheFlow operations. We logically divide the operations

into those preceding a thread execution and those after.

Sam
er

Aran
di

81

3.4.2.1 Pre-Thread Execution

TSU Operations

At runtime the S-CacheFlow module in the TSU dequeues the entries of threads from the WQ

and retrieves the information of the thread input/output data by calling a helper-function. The

retrieved information includes a list of DFP tuples describing the input/output data. The tuple

consists of the following elements:

• Main memory address

• Size

• Properties

The properties specify whether the data access is for reading, writing or both, in addition

to other flags and the reference-count used for exploiting data locality. S-CacheFlow uses the

retrieved information to allocate the thread data in the DDM Cache at the SPE where the thread

is scheduled to run by consulting the CD. If the allocation is successful, the LS addresses of the

allocated cache blocks are returned. The returned addresses along with the tuples list constitute

all the information needed for both data fetching and -later- cache lookup.

In particular, S-CacheFlow uses this information to issues DMA calls for transferring the data

from main memory to the LS by placing requests in the Proxy Command Queue of the MFC of the

target SPE. The RCLD directory entries in main memory are populated and transferred via DMA

calls to the LS. The issued DMA calls (for both data and RCLD entries) pertaining to the same

thread are assigned a unique 5-bit tag that is stored in association with the thread information in

a special buffer called the PendingBuffer (PB). The status of the issued DMA calls in the PB are

checked periodically for completion via special synchronization instructions that make use of the

Sam
er

Aran
di

82

tag. Any thread whose DMA calls are completed is moved from the PB into the FQ indicating

that it is ready for execution. Figure 23 depicts this part of the S-CacheFlow operations.

SPE Runtime Operations

The runtime on the SPE fetches the information of the next thread to execute from the FQ and

then uses the ThreadId and context of the thread as keys to find the associated RCLD entries so as

to assign the pointers used to access the data. This is required because data belonging to different

threads can be present in the LS due to prefetching. Note that because the number of the RCLD

entries is limited, this cache lookup operation is very quick and efficient.

3.4.2.2 Post-Thread Execution

SPE Runtime Operations

After the thread finishes execution its output (modified) data is written-back to the main mem-

ory via DMA calls to maintain data consistency. However, when exploiting data locality modified

data is not written-back immediately, but rather kept in the LS to be re-used by consumer threads

scheduled to run on the same SPE core. A special flag in the Prop field of the RCLD entries of

output data informs the runtime whether to write-back this data to main memory or not. A detailed

discussion of exploiting locality in S-CacheFlow is presented in 3.4.4.

TSU Operations

When the TSU is notified that a thread finished execution, the S-CacheFlow performs a number

of house-keeping tasks. It decrements the UserNum counter in the CD entries associated with the

cache blocks allocated by the thread. If the UserNum counter of a certain entry reaches zero, the

associated blocks are considered free and the CD entry is invalidated (the valid and dirty bits are

Sam
er

Aran
di

83

Dequeu thread info from

the Queue

Get all DFPs of the thread

(call helper-function)

Get address/size/prop

of each DFP

Try to allocate data of all

DFPs in the DDM cache

Allocation

success for all

DFPs

Issue DMA Calls to Writeback

evicted dirty blocks (if any)

from LS to MM

Yes

Issue DMA Calls to Fetch DFP

data from MM to LS + Issue

DMA Calls to copy Lookup

information to LS

record all issued DMAs in the

PendingBuffer (PB)

Entry ID = ThreadID

WQ has any

Thread info

Yes

PB has any entry

that all DMAs have

completed

Partial

allocation

success

Restore

Cache State

Yes

No

Move to FQ Thead info with

ThreadID = Entry ID

Yes

No

No

Save cache state

PrioWQ has

any thread info
No

Enqueu thread

into PrioWQ

No

No

Yes

-Consult Cache

Directory

-Block Eviction

-Block Allocation

-Block Reuse

TSU Work

FQ is full

Yes

Thread has data

Yes

Move Thread to FQ

No

Consecutive

failures >

threshold
No

Disable

S-CacheFlow

Yes

Pending

Threads >

threshold
Yes

S-CacheFlow Algorithm

CacheFlow

is enabled

No

Yes

No

Figure 23: S-CacheFlow Algorithm - Pre-Thread Operations (shaded parts are executed on the
SPE in the Distributed S-CacheFlow implementation)

Sam
er

Aran
di

84

cleared). This default behaviour is overridden in the case of blocks that are kept in the cache for

re-use to take advantage of locality. Finally, the entries of the RCLD associated with the thread

are also cleared.

In the following section we describe the S-CacheFlow allocation and eviction procedures in

more detail.

3.4.3 Allocation and Eviction

3.4.3.1 Allocation Procedure

Each input/output data of a thread is allocated at least one cache block. S-CacheFlow checks

first if the address of the data in main memory is properly aligned according to the following

alignment requirements and guidelines of the Cell:

• DMA transfers of 16B or greater must be aligned on a 16B boundary (both the local store

and main memory addresses)

• DMA transfers of 1, 2, 4, or 8 bytes are supported but must be naturally aligned (the starting

local store and main memory addresses must be divisible by the size of the transfer and have

the same local store and memory address offsets with a 16-byte block).

• DMA throughput is maximized if transfers are at least 128B, and transfers greater than or

equal to 128B should be aligned to 128B.

Typically, Cell programmers are encouraged to aligned their data on 128B boundaries and

since S-CacheFlow allocates data in blocks of 128B or multiples of this size, all the alignment

requirements are satisfied and the optimal performance is achieved. However, if the user data is

not aligned properly, the data address pointers are fixed to start at the nearest 128B aligned address.

Sam
er

Aran
di

85

The actual start of the data is recorded along with the actual size and used later when populating

the RCLD entries.

After the alignment step, S-CacheFlow checks if the data re-use optimization (described in

the next section) is enabled for this input data and if so, it tries to find if the data already exists

in the LS by looking up the address in the CD. If the address is found (cache hit), it is returned

and no allocation takes place. If the address is not found (cache miss) or re-use is not enabled,

S-CacheFlow tries to find free cache blocks to allocate.

Locating Free Blocks

To optimize the process of finding free cache blocks an auxiliary bitmap directory is main-

tained as an array of bytes. Each bit corresponds to the state (free or allocated) of one cache block

in the LS. Due to its smaller size (compared to the CD) the bitmap directory allows finding free

blocks more efficiently. For example, if the value of one byte in the array is zero, it indicates the

availability of the corresponding eight consecutive free cache blocks. Naturally, all operations on

the CD are reflected on the bitmap directory to keep it updated.

3.4.3.2 Eviction Procedure

When the allocation procedure fails to find free blocks, a simple cache eviction policy is in-

voked. The policy prohibits evicting any cache block that has the UserNum in the associated CD

entry greater than zero. This guards against evicting cache blocks of threads that are currently exe-

cuting or in the FQ. Note that in the original implementation of CacheFlow eviction of such blocks

would have caused a cache-miss affecting the system performance, but in the Cell implementation

the result would be an invalid data in the cache.

Sam
er

Aran
di

86

In the case of evicting dirty block(s) (the dirty field in the CD is set), the dirty block(s) address

is recorded. Later on, at the data fetching stage, additional DMA calls are inserted to write-back

those cache blocks from the LS to main memory before the DMA calls fetching the data have

effect. Enforcing this ordering is done using fencing synchronization commands. If no blocks

are found for eviction the allocation fails. Figure 24 illustrates an overview of the allocation and

eviction procedure.

3.4.3.3 Allocation Failure

If S-CacheFlow fails to allocate data for any of the inputs/outputs of a thread, it is not processed

further and another thread in the WQ is processed. However, to avoid thread starvation this thread

is inserted into the Priority Waiting Queue (PWQ) which has a higher-priority and so will be

checked first by the TSU on the next TSU cycle.

In the case of partially successful allocations (where only a subset of the thread data has been

allocated due to LS space shortage) the effect of the partial allocations on the state of the S-

CacheFlow must be rolled back. To this end, S-CacheFlow keeps track of all the changes made

by the allocation and eviction procedure in a special log buffer that is used to revoke all changes

in case of failure. The buffer is flushed upon successful allocation of all the data of a thread.

When the consecutive allocation failures reaches a certain threshold (typically occurs when the

LS is full), the S-CacheFlow module is disabled to reduce its overheads. It is only enabled when

a thread finishes execution and its associated LS memory is freed.

3.4.4 Exploiting Data Locality

S-CacheFlow exploits locality whenever multiple threads invocations scheduled to execute on

the same SPE access the same data, by keeping the blocks of this data in the LS instead of writing

Sam
er

Aran
di

87

Found free blocks

to allocate?

Found blocks to

evict?

Evict blocks &

record evicted

blocks information

allocate blocks &

record allocated

blocks information

Allocation

Success?

Yes

Yes

Last DFP?

Yes

No

No

(Allocation

Failed)

No

Yes

Get DFP information

No

Data already

in Cache?

No

Record existing

blocks information

Yes

Fix data alignment

Record actual data start

and size

Consult CD

back to S-CacheFlow

Allocation invoked

by S-CacheFlow

Re-use enabled

for this data

No

Yes

Figure 24: Allocation and eviction in the S-CacheFlow algorithm)

Sam
er

Aran
di

88

it back to main memory. In addition to the benefit of saving the memory bandwidth, this can

result in conserving the LS space, as the data of more threads can fit simultaneously in the LS if

such threads share the same input data. This increases the amount of parallelism and improves the

system performance.

The cases that benefit from data locality are: (i) data produced by a producer thread and kept

in the LS to be re-used by consumer threads accessing this data for reading and scheduled to run

on the same SPE or (ii) data located at main memory (either produced during the initialization

stage or produced by a thread and written-back to main memory) and fetched into the LS for read

access by a thread and then kept there to be re-used by other threads reading the same data.

3.4.4.1 The Data Re-use Mechanism

Producer Thread Side

In either of the two cases utilizing data locality, a special flag (DATA KEEP) is set in the

properties of the DFP associated with the producer thread data that is expected to be re-used. In

the first case, the flag causes the S-CacheFlow to instruct the runtime on the SPE to not write the

data back to main memory. This is achieved by setting the same flag in the Prop field of the RCLD

entry associated with the data. Moreover, the dirty field of the CD entry associated with the data

is set to make sure the data will be written-back to memory at the end of the program or when the

blocks are selected for eviction. Finally, when the thread finishes execution the CD entry is not

invalidated. Similarly, in the second case the CD entry is not invalidated when the thread finishes

execution, however, the dirty field is not set.

Sam
er

Aran
di

89

Consumer Thread Side

The consumer threads expected to re-use the data have another special flag (DATA REUSE) set

in the properties of the DFP of the consumed data. The flag causes the S-CacheFlow to perform a

lookup on the CD at the time of allocation as described previously in Section 3.4.3. If the lookup

operation results in a hit, the address of the re-used data in the LS is returned and no allocation or

fetching of data occurs. Additionally, the UserNum field in the CD entry associated with the data

is incremented and only decremented when the thread finishes execution.

This explicit locality scheme minimizes overheads typically associated with software caches as

only data with the DATA REUSE flag results in expensive lookup operations on the CD. Moreover,

since this lookup will be a hit in most cases, the overhead is offset by the benefits of the re-use.

3.4.4.2 Preserving Consistency

When employing locality care must be taken in some of the cases where it is necessary to spec-

ify ”when” to write-back data kept for re-use to main memory to guarantee cross-SPE coherence.

For example in the case we keep produced data that (after an arbitrary number of re-uses) is needed

by consumer threads running on different SPEs. To handle this, the following two techniques can

be used:

• explicitly inserting ”writes” in the graph of the program to make sure data is written-back

to main memory before it is required by any consumer running on a different SPE.

• assigning a reference-count value for every such data to ensure that the data is written-back

to main memory after a specific number of ”re-uses” on the current SPE.

Sam
er

Aran
di

90

Setting the Reference-count

Since the main goal is to write-back the produced data before a consumer on another SPE

reads it, we set the value of the reference-count to the number of expected reads occurring on the

current SPE before a read will occur on any other SPE.

In the cases where we allow in-place-updates i.e. writing to the same address more than once

(to optimize accumulation operations) we have an additional concern: ensuring that when a write

occurs on an SPE, no valid copy of the data exists anywhere. In this case the value of the reference-

count is set to the number of expected reads occurring on the current SPE before a read or write

occurs on any other SPE.

Figure 25 shows an example of a simple DDM-VM program utilizing locality. The program is

composed of 4 threads. The first three threads are mapped to SPE0 and the last to SPE1. Thread

T1 produces a value A that is consumed by all the iterations of thread T2, in addition to threads

T3 and T4. The figure also illustrates the data transfers between the LS and the main memory that

occur before or after every thread finishes execution, as a dashed arrow to the right of the thread.

In part (a) of the figure, data re-use is not exploited and so once A is produced by T1, it is written

back to the main memory and for each iteration of T2, A is fetched from main memory every time

and the same applies to T3 and T4. In part (b) of the figure data re-use on the value A is enabled by

adding the KEEP flag for the corresponding DFP of T1 and the REUSE flag for the corresponding

DFPs of T2 and T3. Note that the reference-count value is set to N+1, which is the number of

expected reads/re-uses on SPE0 before the read on SPE1 (by T4) occurs. This guarantees that A is

written back to main memory once T3 finish execution and so T4 will read the correct value of A

from main memory. It is clear that utilizing data re-use in this example eliminates N+1 transfers

from main memory to the LS.

Sam
er

Aran
di

91

T1 W(A)

T2 R(A)

T3
R(A)

W(B)

N

iterations

T4
R(A)

R(B)

SPE0 SPE1

T1
W(A)|KEEP

Ref-cnt=N+1

T2 R(A)|REUSE

T3
R(A)|REUSE

W(B)

N

iterations

T4
R(A)

R(B)

SPE0 SPE1

Main Memory to LS

LS to Main Memory

(a)

(b)

Figure 25: An Example of a DDM-VM program Utilizing Locality. (a) no locality (b) with locality

Sam
er

Aran
di

92

Discussion

The drawback of the reference-count technique is that if a cache block is evicted before its

reference-count has expired due to the eviction policy, its reference-count must be saved in a

special buffer in the TSU and restored when the block is brought back again at the next re-use.

Moreover, this technique is conservative; if we cannot determine the value of the reference-count

at compile time using the measures we mentioned, we don’t apply it. If no reference-count is

assigned when using re-use, S-CacheFlow reverts to the first technique i.e. it assumes that the

programmer inserted the appropriate ”writes” wherever needed.

At the end of program execution the S-CacheFlow module checks the CD of all the SPEs and

flushes all dirty block to main memory.

We have found that in many cases exploiting locality requires utilizing neither technique as

the threads in these cases re-use data that was initialized at startup and not modified again or data

produced and consumed on the same SPE and so it was enough to be flushed at the end of execution

by the runtime. In such cases it was merely enough to add the DATA KEEP and DATA REUSE

flags appropriately and the rest was managed by the VM.

3.4.4.3 Preserving the Allocation Order

Exploiting locality requires that the order in which threads have their data allocated and the

order in which the threads are executed be the same. This is necessary in the cases where a thread

B re-uses data that will be fetched to the LS by a thread A that finished its data allocation before B

but hasn’t executed yet. If the execution order is changed and B executes before A, it would access

data that hasn’t been fetched to the LS yet. The ordering is achieved by assigning a sequence

number to threads according to the order they are inserted in the PB and checking this sequence

Sam
er

Aran
di

93

before executing the thread on the SPE. This ordering only applies to execution and doesn’t affect

prefetching, i.e. DMA calls fetching data can be issued out-of-order.

3.4.5 Distributed CacheFlow

The evaluation of the initial implementation of the DDM-VMc & S-CacheFlow scaled well

for up to 4 SPE cores, but for a higher count of cores the PPE became a bottleneck. Our anal-

ysis revealed that a major source of overhead was the tasks of issuing a large number of DMAs

and periodically checking their completion, which overloaded the PPE core. The reason is that

the PPE had to communicate with the MFC to perform these tasks. This type of communication

is implemented through the Memory-Mapped I/O (MMIO) interface and hence is expensive. To

solve this problem we have modified the S-CacheFlow implementation and moved the DMA man-

agement to the portion of the runtime that runs on the SPEs. This proved more advantageous as

the SPEs are more efficient at enqueuing DMA requests (smaller issuing latency and less over-

head on the internal bus). Furthermore, the DMA command queue holding SPE-initiated DMAs

is twice as deep compared to the proxy MFC command queue holding PPE-initiated DMAs [5].

Finally, distributing this task on the cores improves the scaling and reduces the pressure on the

PPE core. We refer to this new implementation as the Distributed S-CacheFlow (not to be con-

fused with distributed DDM execution on multiple nodes). Evaluation of both implementations is

presented in the Evaluation Chapter and the results clearly show the advantages of the distributed

implementation. Next, we describe the Distributed S-CacheFlow implementation by highlighting

the changes that was made to the TSU and the TSU-Processor interface in due.
Sam

er
Aran

di

94

Primary Entry

DFP0 information (cache lookup & writing produced data to MM)

List of DMA information for fetching data from MM->LS

Or evicting dirt blocks from LS->MM

DMA0 information

DMAM-1 information

Extended Firing Queue

TID IFP Context DPFNum | TransNum

EAddr0 LSAddr0 Size0 Mode0

DMA List entries

… … … …

EAddrN-1 LSAddrN-1 SizeN-1 ModeN-1

DMA List information

EAddr0 LSAddr0 Size0 Mode0

… … … …

EAddrM-1 LSAddrM-1 SizeM-1 ModeM-1

Figure 26: The extended FQ

CacheFlow Structures

The PB and FQ are moved to the SPE runtime structures allocated in the LS. The RCLD is

extended to record the information of the DMA calls in addition to its original function of holding

the LS data pointers. In a final refinement we merged the FQ with the RCLD to avoid storing

redundant information given the limited size of the LS. Each entry in the resulting structure that

we call the Extended FQ (ExFQ) holds a primary sub-entry recording the thread information

(ThreadId, IFP, context, number of DFPs and number of transfers), followed by secondary sub-

entries recording the cache lookup information for each input/output in addition to all the DMA

information for that input/output (source address, destination address, size, flags). Remember that

one input/ouput data could require multiple DMA calls. Figure 26 depicts the new ExFQ.

S-CacheFlow Operations

Under the new implementation, threads in the WQ are processed by the S-CacheFlow module

that performs all the tasks of allocation as before, however, instead of issuing the DMA calls it

only inserts an ExFQ entry with the primary and secondary information. The TSU then issues

a DMA call to transfer the ExFQ entries to the SPE and another one to set a flag in the LS. A

fencing operation ensures that the flag is only set after the first DMA call completes. The runtime

on the SPE periodically checks the flag and when it is set, it accesses the corresponding ExFQ

Sam
er

Aran
di

95

entry information, it issues the DMA calls using a unique tag for the DMAs pertaining to that

entry and adds the tag to the PB. The tags in PB are checked periodically and when the DMAs

complete the corresponding ExFQ entry is consulted again to get the IFP, context and the LS

pointers information and the execution of the thread starts. When a thread finishes execution

activities proceed as before without a change, except that the runtime consults the ExFQ instead

of the RCLD when writing produced data to main memory. Figure 27 depicts the activities of the

SPE runtime.

3.4.6 Adaptive Multi-buffering/Prefetching

Multi-buffering is a technique in which the programmer partitions the application data into

multiple sets and then re-organize his code to work on one set while asynchronously fetching the

next one(s) from main memory. This interleaving between computation and data transfer is one

of the main techniques utilized in the Cell to overcome the Memory Wall. This is made possible

by the ability of the MFC units to issue a DMA call and check their completion asynchronously.

However, a considerable effort from the programmer is required to structure his code to take

advantage of multi-buffering.

S-CacheFlow takes advantage of the MFC facilities to issue multiple DMAs for the data be-

longing to multiple threads without waiting for the transfers to complete. This allows the prefetch-

ing of the data whenever possible, and hides the latency of the data transfers with the execution of

other threads. Therefore, it effectively achieves an automatic and transparent multi-buffering that

adapts to the number of ready threads and the LS space limitation.

Moreover, when a thread finishes execution the DMAs copying the DDM commands to the

CQ and the ones writing-back produced data to main memory are issued asynchronously and the

execution of the next ready thread commences without waiting for the DMAs to finish. Thus,

Sam
er

Aran
di

96

ExFQ Entry i

flag is set?

No

Last entry

No

i++

Yes

PendingEntries > 0 No

Issue DMA calls to Write evicted

dirty blocks (if any) to MM

Issue DMA calls to Fetch data

from MM to LS

Add DMAs tag to entry i in the PB

Yes

Clear the flag

PendingEntries++

PB Entry i tag

is valid?

i++

No

Last entry

Yes

PB Entry i tag

DMAs completed
No

NoYes
Get the ThreadId, IFP,

Context of ExFQ Entry i

Set data access pointers

according to the LS

addersses in the ExFQ

Entry i

Start executing the thread

(jmp to IFP)

Yes

Yes

D
a
ta
 P
re
fe
tc
h
in
g

/M
u
lt
i-
B
u
ff
e
ri
n
g

Thread Execution

Issue DMA calls that

write-back produced data to

MM (use information in

ExFQ entry i)

Issue DMA calls that

send DDM commands to the

corresponding CQ in the TSU

Access ExFQ Entry i

Thread has

data
Yes

Add special (no data)

tag to

entry i in the PB

No

i = 0

i = 0

Special (no

data) tag
No

Get the ThreadId, IFP,

Context of ExFQ Entry i

Yes

DDM-VMc SPE Runtime Activities

Figure 27: DDM-VMc SPE runtime activities

Sam
er

Aran
di

97

overlapping the LS to main memory DMA transfers with execution to further tolerate latencies.

The only requirement is that the data transfers DMAs complete before the ones copying the DDM

commands that notify the TSU that the thread finished execution. This is achieved using fencing

synchronization commands that enforce this ordering.

Figure 28 demonstrates the benefits of prefetching/multi-buffering and the overlapping of

DMA transfers with the execution of threads by comparing the execution time for four threads

with and without prefetching. The figure shows that when utilizing prefetching/multi-buffering

the total execution time decreases as the latency of DMA transfers (for both data and commands)

is overlapped with the execution of the threads. The figure assumes that after executing a thread,

there exist at least one thread (whose data is ready for prefetching) in the ExFQ.

Sam
er

Aran
di

98

T1 Execution T2 Execution T3 Execution T4 Execution

…..

z DMA transfer Duration

Issue DMA transfer Duration

Thread Execution Duration

T1 Execution T2 Execution T3 Execution T4 Execution

T1 Data (LS->MM)

T1 Data (LS->MM)

T1 Commands (LS->MM)

T1 Commands (LS->MM)

T2 Data (MM->LS)

T2 Data (MM->LS)

T1 Data (MM->LS)

T1 Data (MM->LS)

T2 Data (LS->MM)

T3 Data (MM->LS)

T2 Data (LS->MM)

T3 Data (MM->LS)

T2 Commands (LS->MM)

T2 Commands (LS->MM)

T3 Data (LS->MM)

T4 Data (MM->LS)

T3 Data (LS->MM)

T4 Data (MM->LS)

T3 Commands (LS->MM)

T3 Commands (LS->MM)

T1 Data (MM->LS)

T2 Data (MM->LS)

T1 Data (MM->LS)

T2 Data (MM->LS)

T1 Commands (LS->MM)

T1 Data (LS->MM)

T1 Commands (LS->MM)

T1 Data (LS->MM)

T3 Data (MM->LS)

T3 Data (MM->LS)

T2 Data (LS->MM)

T2 Commands (LS->MM)

T4 Data (MM->LS)

T2 Data (LS->MM)

T4 Data (MM->LS) T3 Data (LS->MM)

T3 Data (LS->MM)

T3 Commands (LS->MM)

T2 Commands (LS->MM) T3 Commands (LS->MM)

T4 Data (LS->MM)

T4 Commands (LS->MM)

T4 Data (LS->MM)

T4 Commands (LS->MM)

w
a
it
in

g

Time

Execution without prefetching

/Multi-buffering

Execution with prefetching

/Multi-buffering

Runtime Work Duration

MM: Main Memory

LS: Local Store

Figure 28: Comparison of execution time with and without prefetchingSam
er

Aran
di

99

Common TSU Structures

SM CL

TSU Memory Structures

RC?=0

...

Core 0

Core N-1

Core 1

DDM Program

DDM Thread i :

Computation

DDM Thread i+1 :

...

Rest of Main Memory

Program Data

...

Runtime calls

...

DDM-VMs Core Runtime Code
DDM-VMs Runtime

Thread

Synchronization

Unit (TSU)

Computation

Runtime calls

Runtime calls

Runtime calls

Main Memory

GM

Core N-1 Structures

FQ WQ

AQ

Core 1 Structures

FQ WQ

AQ

...

C
a
c
h
e
 H

ie
ra
rc
h
y

Next Thread Info

Thread Finished

C
a
c
h
e
 H

ie
ra
rc
h
y

Figure 29: The Architecture of the DDM-VMs

3.5 The Data-Driven Multithreading Virtual Machine for Symmetric Multi-cores (DDM-

VMs)

The DDM-VMs is the DDM-VM implementation targeting homogeneous multi-core systems.

The DDM-VMs is composed of two main parts: The first is the TSU, which runs as a software

module on one of the cores. The second consists of the runtime threads spawned on the rest of

the cores to manage the execution of the DDM threads and the communication with the TSU.

The communication is performed by changing the state of the TSU structures allocated in main

memory. Figure 29 illustrates the architecture of the DDM-VMs.

The task of implementing the DDM-VMs was accomplished by using the main part of the

DDM-VMc implementation and adapting it for homogeneous multi-core architectures. This effort

was accomplished in collaboration with George Michael as the goal of his undergraduate thesis

[83]. Adapting the DDM-VMc to implement the DDM-VMs was possible as the two implemen-

tations share the basic functionality of the TSU. The main differences between the two implemen-

tations stem from the differences between the two underlying targeted architectures. The TSU in

Sam
er

Aran
di

100

the DDM-VMc implementation runs on the PPE core which has a separate address space from

the SPE cores executing the threads. This is in contrast with the the DDM-VMs where all the

cores share the same address space. Moreover, the DDM-VMc implements a prefeching software

cache for managing the memory hierarchy of the Cell, while the memory hierarchy is managed by

hardware in the DDM-VMs. These differences prompted the modification of parts of the internal

implementation of the TSU in addition to changing the interface between the execution cores &

the TSU.

In the next section we describe briefly the structures and operations of the TSU and the TSU-

Processor interface and highlight the differences in comparison with the DDM-VMc implementa-

tion.

3.5.1 The Thread Scheduling Unit (TSU)

The TSU Memory Structures

The TSU structures are allocated in main memory. Part of the structures is common for all the

cores and the rest are per core. The common structures include: the Graph Memory (GM), the

Consumer List (CL) and the Synchronization Memory (SM).

The per-core structures include: the Acknowledgement Queue (AQ), the Waiting Queue

(WQ) and the Firing Queue (FQ). Note that the Command Queue (CQ), the Priority Waiting

Queue (PWQ) and the Pending Buffer (PB) along with the structures required for the operation

of the S-CacheFlow are not needed in the case of the DDM-VMs. Note that the AQ is allocated

per-core and the FQ has been extended to record the information of the thread input/output data.

This information is needed for supporting distributed DDM execution, in which part of the thread

data could be allocated dynamically by the TSU (as will be described in the following chapter).

Sam
er

Aran
di

101

TSU Structures in Main Memory

Common Structures

Graph Memory

Consumer List

Acknowledgment Queue

TID next

TID IFP Con1 Con2 DFPNum RC Sched_method Sched_value SM_method SM_mask arity

Thread_1 … Thread_N

0:

1:

…

N

RC RC

Synchronization Memory

...

consumer_id Context OP Value1 Value2 UpdateValue

Waiting Queue
Firing Queue

TID Context

Per-Core Structures

IFP Context DFPNum

Addr0 Size0 Mode0

… … …

AddrN-1 SizeN-1 ModeN-1

Figure 30: The TSU Structures in the DDM-VMs

Figure 30 depicts the structures of the TSU. For a full description of the information held in the

structures refer to 3.3.2.

DDM Thread Execution

The execution of the DDM threads takes place on the system cores as described previously

in 3.3.2.1. The only difference is related to the TSU-Processor interface used by the runtime to

notify the TSU that a thread finished execution and to retrieve the information of the next ready

thread. This is presented in the next section.

The TSU Operations

The TSU runs on one of the cores and operates as described previously in 3.3.2.1, however,

the TSU processes the AQ entries without first executing the commands in the CQs, as the CQs

is not needed in the DDM-VMs. Furthermore, the S-CacheFlow data allocation and eviction

Sam
er

Aran
di

102

i is Last Core No

i++

Yes

i = 1

DDM-VMs TSU Activities

Decrement Consumer Threads

remove entries in AQ

decrement RC in SM

add entries in

WQi=scheduling_policy();

Move Ready Threads to FQ of Corei

remove entries in WQi

add entries in FQi

Termination detected

i = 1

No

Start the TSU Execution

TSU Finished Execution

Yes

FQi is Full

Yes

No

FQi Entries

available?
No

Yes

Get the IFP, Context of the

next thread to execute

Start executing the

Thread (jmp to IFP)

Thread Execution

Inform the TSU of the

consumer invocation(s)

to decrement their RC

add entries in AQi

Inform the TSU the

thread finished

DDM-VMs Runtime Thread Activities

Set data access pointers

according to the addresses in

the FQ Entry

Figure 31: The DDM-VMs TSU and Runtime ActivitiesSam
er

Aran
di

103

operations that take place before moving a thread from the WQ to the FQ is not performed since

those operations are managed by the processor memory controller hardware in the DDM-VMs.

Figure 31 illustrates the activities of the TSU and the runtime threads in addition to the effects of

each activity on the TSU structures.

3.5.2 TSU-Processor Interface

As a reminder, we list the main tasks performed by the TSU-Processor interface:

1. Informing the TSU that the currently executing thread has finished execution and specifying

the consumer thread(s) invocation(s) to decrement their RC

2. Providing the execution cores with the information of the next ready thread to execute

The two tasks are implemented by accessing the related TSU structures in main memory di-

rectly: The AQ in the first task and the FQ in the second task. Because this access is concurrent

a mechanism that keeps the state of the TSU structures consistent is required. We describe this

mechanism next.

3.5.3 Handling concurrent access of the TSU structures

The two TSU structures that required protection due to concurrent access by both the TSU and

runtime threads are the AQ and the FQ. Initially we resorted to adding a lock on each access to

the two queues. However, due to the observed overheads of the locking mechanism we utilized a

number of optimizations the resulted in removing the locking completely. The optimizations are

based on the following observation: In almost all the cases (except for one in the AQ) the only

conflict that arises between the TSU and each of the runtime threads when accessing the head

or tail queue pointers in both structures, is a reader/writer conflict. This type of conflict allows

Sam
er

Aran
di

104

utilizing an optimization that avoids locking altogether at the expense of losing a small part of the

queue space.

Optimizing the FQ Access

The head of the FQ pertaining to a certain core is only accessed by the TSU for reading, when

checking the size of the FQ before inserting a new entry. On the other hand, the runtime thread

on that core accesses the head for reading/writing when removing an entry from the FQ. The key

insight is that even if we don’t lock when accessing the head, the worst case would be the TSU

reading an old value of the head and consequently assuming a size of the FQ that is less than

the actual one. This assumption lasts for the duration of one TSU cycle (one complete check of

all the TSU structures) before the updated real value is eventually seen by the TSU. The effect

of this momentarily assumption on performance is negligible compared to the benefit gained by

removing the locking operation. The same observation applies to the tail of the FQ except that it is

the runtime thread this time that potentially sees an older value. A similar optimization technique

was employed by the TFlux platform [113].

Optimizing the AQ Access

Originally we utilized one common AQ for all the cores (similar to the design of the DDM-

VMc). This results in a multiple-writers/single-reader conflict on the common head pointer (the

multiple writer being the runtime threads from all the cores). This type of conflict precludes us

from applying the previously mentioned optimization and so a lock is unavoidable. To resolve

this, we split the AQ internally into multiple AQs, one per core. Hence, the runtime thread on

each core writes to its associated AQ and the TSU processes multiple AQs instead of only one.

This enabled us to apply the same optimization as the FQ and remove the locking operations.

Sam
er

Aran
di

Chapter 4

Distributed Data-Driven Execution

In this chapter we describe the extension of the DDM-VM to support DDM execution across

a number of multi-core nodes (a cluster) connected over an off-chip network. Each node is an

independent multi-core machine running an operating system and capable of executing multiple

DDM threads concurrently. A Shared Global Address Space is supported across all the nodes

in the system. Figure 32 illustrates an overview of the distributed DDM-VM architecture. This

chapter highlights the extensions and modifications of the DDM-VM design to support distributed

DDM execution.

105

Sam
er

Aran
di

106

T
h

e
 D

is
tr

ib
u

te
d

 D
D

M
-V

M
 A

rc
h

it
e
c
tu

re

..
.

B
u

s

..
.

B
u

s

..
.

B
u

s

C
o

re
N
-1

D
D

M

T
h

re
a

d

E
x

e
c

u
ti

o
n

D
D

M
-V

M

R
u

n
ti

m
e

D
D

M

T
h

re
a

d

E
x

e
c
u

ti
o

n

D
D

M
-V

M

R
u

n
ti

m
e

C
o

re
1

..
.

C
o

re
0 T
S

U

+
C

a
c

h
e

F
lo

w

T
S

U

+
C

a
c

h
e

F
lo

w

C
o

re
N
-1

C
o

re
1

C
o

re
0

C
o

re
N
-1

C
o

re
1

C
o

re
0

D
D

M

T
h

re
a
d

E
x
e

c
u

ti
o

n

D
D

M
-V

M

R
u

n
ti

m
e

D
D

M

T
h

re
a

d

E
x

e
c

u
ti

o
n

D
D

M
-V

M

R
u

n
ti

m
e

D
D

M

T
h

re
a

d

E
x

e
c

u
ti

o
n

D
D

M
-V

M

R
u

n
ti

m
e

D
D

M

T
h

re
a

d

E
x

e
c
u

ti
o

n

D
D

M
-V

M

R
u

n
ti

m
e

T
S

U

+
C

a
c
h

e
F

lo
w

S
W

.
o

r
H

.W
 C

a
c
h

e
 H

ie
ra

rc
h

y
S

W
.
o

r
H

.W
 C

a
c
h

e
 H

ie
ra

rc
h

y
S

W
.
o

r
H

.W
 C

a
c
h

e
 H

ie
ra

rc
h

y

M
a
in

 M
e
m

o
ry

T
S

U

S
tr

u
c
tu

re
s

I/
O

M
a

in
 M

e
m

o
ry

T
S

U

S
tr

u
c

tu
re

s

I/
O

M
a
in

 M
e
m

o
ry

T
S

U

S
tr

u
c

tu
re

s

I/
O

L
o

c
a
l

A
p

p
li
c

a
ti

o
n

D
a

ta

L
o

c
a

l

A
p

p
li

c
a

ti
o

n

D
a
ta

L
o

c
a
l

A
p

p
li

c
a

ti
o

n

D
a
ta

N
e
tw

o
rk

D
D

M

T
h

re
a

d
s

 D
a
ta

D
D

M

T
h

re
a

d
s

 D
a

ta
D

D
M

T
h

re
a
d

s
 D

a
ta

G
lo

b
a

l
A

d
d

re
s

s
 S

p
a

c
e

 (
s

h
a

re
d

)

N
o
d
e
0

N
o
d
e
1

N
o
d
e
M
-1

Fi
gu

re
32

:T
he

D
is

tr
ib

ut
ed

D
D

M
-V

M
A

rc
hi

te
ct

ur
e

Sam
er

Aran
di

107

4.1 Overview

The inherent tolerance for latencies of the DDM model allows extending the execution across

multiple distributed nodes with minimal overheads. This is achieved by tolerating inter-node

latencies resulting from data and synchronization communications with the execution of threads.

The main difference between single-node and distributed/multi-node DDM execution is the

introduction of remote memory accesses resulting from producer and consumer threads running

on different nodes. To this end, we employ data forwarding, in which the data produced by a

thread is forwarded to the node where the consumer is scheduled to run. We facilitate this by

supporting a Shared Global Address Space across all the nodes. A special TSU module: The

Network Interface Unit (NIU) is implemented to handle the low-level communication operations.

In terms of the distribution of threads across the cores of the system nodes, this work explores

a static scheme, in which the mapping is determined at compile time and does not change during

the execution. This simplifies the scheduling and data management tasks and, in the presence of

an accurate knowledge of the threads execution loads, can lead to a very efficient and balanced

parallel execution. It is important to note that a static distribution only specifies where the thread

will be scheduled once its ready, however, when the thread is ready is decided based on data-

availability.

The benefit of this approach extends to programmability, as aside from the distribution of

program data in the GAS across the nodes at startup and gathering the results after the program

execution, distributed DDM-VM programs are fundamentally the same as single-node ones.

Next, we highlight the additions and modifications to the TSU structures & operations that

are required for supporting distributed execution. Following that we describe the management of

Sam
er

Aran
di

108

the memory address space and the program data in detail and conclude by re-visiting program

termination in the context of distributed execution.

4.2 The Distributed Thread Scheduling Unit (TSU)

The DDM-VM runtime adopts a distributed organization consisting of multiple TSU units

(one per node1) communicating across the network to coordinate the overall DDM execution. As

shown in Figure 32.

4.2.1 The TSU Structures

The Graph Memory (GM) holds the meta-data of all the program threads on all the nodes. As

an optimization, for each node, we only load the meta-data of the threads that are expected to ex-

ecute on that node. The Synchronization Memory (SM) on the other hand requires extra attention

as the allocation of SM entries of a thread is directly influenced by the assigned scheduling policy.

We discuss this issue in detail in Section 5.6.4. The rest of the TSU structures remain unchanged,

however, we added 2 new structures to support distributed execution:

The Distributed Acknowledgement Queue (AQ)

This queue holds decrement RC requests coming from the TSUs on the remote nodes.

Forward Table (FT)

This table holds the address and size of the data that will be forwarded to remote nodes.
1node: multi-core processor

Sam
er

Aran
di

109

4.2.2 The TSU Operations

When the TSU is notified that a thread finished execution, it queries the scheduling policy for

the (ThreadId,context) of each consumer invocation to get the identifier of the core this invocation

is mapped to. If the core is on the same node, an entry is inserted in the AQ of the local node

TSU. However, if the core belongs to a remote node, a message containing the invocation (Threa-

dId,context) is sent to the remote node. When the message is received, a request to decrement the

RC of that invocation is enqueued in the distributed AQ on that node. In addition to the request

message, the data produced by the thread is also forwarded to the remote node.

The TSU on each node continuously checks the local AQ(s) and the distributed AQ to decre-

ment the RC of threads invocations. Once the RC of a specific thread invocation reaches zero, its

information is moved into the WQ and the rest of the activities proceed as described in 3.3.2.1

& 3.5.1, save the additional steps required for managing the forwarding of produced data to con-

sumers running on remote nodes as will be detailed in Section 4.3.1.

4.2.3 The Network Interface Unit (NIU)

The TSUs on all the nodes communicate and cooperate to perform the various synchronization

and data management tasks. To support this communication a new software module is added to

the TSU: The Network Interface Unit (NIU). The NIU was used in [73] to support communication

amongst distributed single-processor nodes, however it was implemented as a hardware module.

In this work the NIU is implemented as a software module that relies on the underlying network

hardware interface. Initially, we have considered using MPI [36] for handling the low-level net-

work connectivity in the NIU, however, due to the expected overheads of invoking an external

library and our need for customized communication, we have developed our own optimized con-

nectivity layer using non-blocking TCP sockets.

Sam
er

Aran
di

110

NIU Information Table����� ���� �� �	
��� � �����
 ����� � ������ ���� �� ���� ���� �� ����
���������� �	�������������� � � ������ ���� �� ���� ���� �� ����
���������� �	����������������� � ����
��������� ��� ����
������ !"#$% &' ()*+$" &,$* - .
Figure 33: NIU Information Table

The NIU is responsible for managing the network initialization, establishing connections with

the other nodes in the system and providing communication services to the TSUs during the ex-

ecution. The NIU also supports distributing/gathering data across the global address space in the

system at startup and post-execution of the DDM-VM program.

Network Initialization

Upon executing a distributed DDM-VM application, a special script is invoked on the root

node and the name of the DDM-VM executable is passed along with a peerlist file as parameters.

The peerlist file includes the IP addresses of all the nodes in the system. The programmer can

also control how many cores to utilize per node in the file. After parsing the peerlist file the script

copies the DDM-VM executable and peerlist file to the nodes and the executable is started on each

node. The first task at the application startup is the initialization of the DDM-VM runtime, which

invokes the network initialization procedure in the NIU.

In the initialization stage the NIU on each node establishes connections with all the other

nodes. For each node two non-blocking sockets are allocated, one for sending (outgoing socket)

and one for receiving (incoming socket). Once the connections are established through the sockets,

the NIUs exchange information related on the number of cores utilized for DDM execution on each

node. This information is maintained in a table and used later by the TSU to specify on which

node each core is located. Figure depicts this table 33.

Sam
er

Aran
di

111����������	
������� ���
�������
������������
��������
������
��������������� ��������������� !"#$%&$'"()*++",* -"$%.!!/)00

NIU Message

Message

Header

Command_Type:

MSG_UPDATE_RC

MSG_DATA

MSG_TOKEN

MSG_SHUTDOWN

MSG_CONFIRM_SHUTDOWN

MSG_DEALLOCATE

Message

Content

MSG_UPDATE_RC

MSG_TOKEN

MSG_SHUTDOWN

MSG_DEALLOCATE

*field is not always present

123456789 :;123<7=<>?:@ABCD57EBCD57 FG?;C<7BCD57HIC<C Message

Content

Message

Content

Message

Content

Message

Content

JKLMMNOLPQNRSTUUVKWWMSG_DATA

Data Message

ContentXYZ[\]^_`a_b]MSG_CONFIRM_SHUTDOWN
Message

Content

Figure 34: NIU Messages

4.2.3.1 NIU Services

The NIU abstracts the underlying network and provides the TSU with a simple communication

interface. The TSU uses the interface to exchange:

• Synchronization commands or messages: the most important one is the request to decrement

the RC of a specific consumer invocation.

• Data forwarding: when a thread produces data that is needed by a consumer on a remote

node, the TSU passes the data to the NIU to forward it to the remote node.

The NIU is implemented in away that tolerates the latencies of network communication by

overlapping its work and data transfers with threads execution and the rest of the TSU work. The

NIU module is naturally split into two main independent sub-units:

Sam
er

Aran
di

112

• The send sub-unit: responsible for sending commands and forwarding data to remote nodes.

Both commands and data are first encapsulated in a simple message with a header describ-

ing the content, before they are sent through the outgoing socket associated with the remote

node. The sending operation returns when the messages have been stored in the O.S. net-

work layer buffers.

• The receive sub-unit: responsible for receiving and processing the messages sent from re-

mote nodes. It continuously polls the incoming sockets corresponding to the rest of the

nodes in a round-robin fashion. The received messages are processed according to their

type. Figure 34 illustrates the format and contents of the different NIU messages. In the case

of decrement RC request commands (MSG UPDATE RC), the information of the message

is inserted as an entry in the distributed AQ. The rest of the command types are explained

in the subsequent sections.

The overlapping of the work of both sub-units in relation to the rest of the tasks in the system

depends on the DDM-VM implementation, as will be described next.

4.2.3.2 The Distributed DDM-VMc

In the DDM-VMc implementation the PPE is the only core that have access to I/O and operat-

ing system services. Thus, both sub-units are executed on the PPE, however, the receive sub-unit

is launched in an auxiliary thread running in parallel to the main thread executing the rest of the

TSU work. Hence, we take advantage of the fact that the PPE is a SMT processor supporting two

hardware threads [63].

Sam
er

Aran
di

113

i is Last SPE No

i++

Yes

i = 0

DDM-VMc TSU Activities

Execute Commands in CQ of SPEi

add/remove entries in CQi

Decrement Consumer Threads

remove entries in local and

distributed AQ

decrement RC in SM

add entries in WQi=scheduling_policy();

Execute S-CacheFlow for SPEi

remove entries in WQi

add/remove entries in PWQi

add entries in the FTi

add entries in ExFQi

Termination_Flag
i = 0

Start the TSU Execution

TSU Finished Execution

Yes

ExFQi is Full

Yes

No

Add entries in local AQ

Local consumer Yes

Message

Received

Probe Initiation &

token forwarding

No

Move forwarded data

if any to main memory

Add entries in the

distributed AQ

MSG_UPDATE_RC

Yes

Yes

MSG_DATA

No

Move forwarded data

to main memory

Yes

MSG_SHUTDOWN

Send MSG_CONFIRM_SHUTDOWN

to root node

Termination_Flag = true

Yes

MSG_CONFIRM_SHUT

DOWN

Decrement

confirm_counter

Yes

MSG_DEALLOCATE

Deallocate

Temporary Buffer

Yes

No

No

No

MSG_TOKEN

Process Token

Yes

confirn_counter

== 0

Termination_Flag=true

Yes

No

Termination

Detected

Send MSG_SHUTDOWN

to all nodes

Set confirm_counter

= number of nodes-1

Yes

No

No

Send MSG_DATA and/or

MSG_UPDATE_RC to remote nodes

Remove entries from the FTi

No

Auxiliary TSU Thread
Main TSU Thread

No

(only on

non-root nodes)

(only on

root node)

invoke send

sub-unit

receive

sub-unit

Figure 35: TSU Activities on the PPE - Main and Auxiliary PPE Threads

Sam
er

Aran
di

114

The send sub-unit is directly invoked by the TSU and so it runs in the context of the main

thread, while the receive sub-unit is concurrently processing incoming messages. This is illus-

trated in Figure 35. The right side box in the figure shows the activities performed by the main

TSU thread, which runs concurrently with the left side box showing the activities of the auxiliary

thread. Utilizing this design we overlap the work of the receive sub-unit with the work of the TSU

and the send sub-unit, in addition to overlapping the work of the NIU in general with the execution

of the threads on the SPEs.

4.2.3.3 The Distributed DDM-VMs

In the DDM-VMs implementation the receive sub-unit is launched in an auxiliary thread (that

is pinned to the same core running the TSU) similar to the DDM-VMc, therefore yielding similar

benefits. However, unlike the the DDM-VMc, we further distribute the work of the send sub-unit

across the cores. This is possible because the services of the send sub-unit are invoked by the

DDM-VM runtime threads on the cores, which unlike the Cell SPEs, have access to I/O and O.S.

system services. This distribution removes the tasks of the send sub-unit from the critical path of

the TSU. Figure 36 illustrates the main TSU thread, the auxiliary TSU thread running the receive

sub-unit and the activities of the runtime threads, which invoke the services of the send sub-unit.

Finally, a lock was added on accessing the outgoing socket in the send sub-unit, since more than

one runtime thread might require sending a message to the same destination node simultaneously.

4.3 The Memory Address Space and the Program Data

The DDM-VM supports a Distributed Shared Memory (DSM) [100] abstraction in which part

or all of the main memory address space on each node is mapped to the Global Address Space

(GAS) of the DSM. An address referring to the GAS consists of the ordered pair (node id,local address).

Sam
er

Aran
di

115

i is Last Core No

i++

Yes

i = 1

Main TSU Thread

Decrement Consumer Threads

remove entries in AQ

decrement RC in SM

add entries in

WQi=scheduling_policy();

Prepare ReadyThreads for Corei

remove entries in WQi

add entries in the FTi

add entries in FQi

Termination

detected

i = 1

No

Start the TSU Execution

TSU Finished Execution

Yes

FQi is Full

Yes

No

FQi Entries

available?
NoYes

Get the IFP, Context of the

next ready thread

Start executing the

Thread (jmp to IFP)

Thread Execution

Inform TSU thread

finished

Inform the TSU of

consumer invocation(s)

to decrement their RC

add entries in AQi

Runtime Thread

Local consumer

Send MSG_DATA and/or

MSG_UPDATE_RC to remote

nodes

Remove entries from

the FTi

Yes

No

Set data access pointers

according to the addersses in

the FQ Entry i

Message

Received

Probe Initiation &

token forwarding

No

Move forwarded data

if any to main memory

Add entries in the

distributed AQ

MSG_UPDATE_RC

Yes

Yes

MSG_DATA

No

Move forwarded data

to main memory

Yes

MSG_SHUTDOWN

Send MSG_CONFIR_SHUTDOWN

to root node

Termination_Flag = true

Yes

MSG_CONFIRM_SHUT

DOWN

Decrement

confirm_counter

Yes

MSG_DEALLOCATE

Deallocate

Temporary Buffer

Yes

No

No

No

MSG_TOKEN

Process Token

Yes

confirm_counter

== 0

Termination_Flag=true

Yes

No

Termination

Detected

Send MSG_SHUTDOWN

to all nodes

Set confirm_counter

= number of nodes-1

Yes

No

No

Auxiliary TSU Thread

(only on

non-root nodes)

,

receive

sub-unit

Figure 36: Distributed DDM-VMs TSU & Runtime Threads Activities on All the Cores in the
System

Sam
er

Aran
di

116

The first component refers to the node identifier and the second refers to a conventional main mem-

ory address on that node. Figure 32 illustrates the GAS across the system nodes.

Coherence-management operations typically associated with DSM systems [100] are not re-

quired between the nodes, because produced data is forwarded to consumers running on remote

nodes. Coherence operations are only required within each node’s memory hierarchy and so it is

either managed by hardware in the DDM-VMs implementation or by the S-CacheFlow module in

the DDM-VMc implementation.

The mapping of the program data into the GAS depends on the assignment of the program

threads. The data of a certain invocations is mapped to the part of the GAS belonging to the

node where this invocations is scheduled to run. The movement of data between producers and

consumers running on different nodes during the execution is managed automatically by the DDM-

VM without the intervention of the programmer.

A number of runtime calls facilitate the allocation and release of the data in the GAS. The

calls also abstracts the distribution and gathering of data amongst the nodes. These calls internally

invoke the services of the NIU to move the data between the main memories of the nodes.

4.3.1 Data Forwarding and CacheFlow Operations

DDM-VM employs data forwarding [99, 68] for tolerating data communication latency across

the nodes. The node where a producer thread executes forwards the produced data to the remote

node where a consumer thread is scheduled to execute, as soon as the producer thread finishes

execution. This increases the chance of hiding the communication latency and eliminates the need

for remote read operations, which results in reducing the total communication cost since remote

read operations are usually more costly that remote write operations [71]. This also eliminates

coherence management operations as previously mentioned.

Sam
er

Aran
di

117

The forwarding of data completes before decrementing the RC of the consumer thread. Conse-

quently, when a thread RC reaches zero, its data is guaranteed to reside in its node main memory.

This allows us to use our intra-node data management techniques without a change except for two

additional operations needed to manage the data forwarding, which are described next.

Data Forwarding - Preparation

The first operation is introduced upon moving a thread entry from the WQ to the FQ. The

address of each of the thread output data (produced data) is examined. If the address refers to a

memory location on the local node then the thread is processed as before without a change. If the

address refers to a location on a remote node (which indicates that the thread has a consumer on

that node), a temporary buffers is allocated to hold the data and an entry is added into the Forward

Table (FT). The following steps describe this procedure in detail:

• A temporary buffer is allocated on the local node with a size equal to the size of the output

data

• The output data address is replaced by the temporary buffer address

• A data forward entry is added to the FT in the TSU. The entry contains: the address of the

temporary buffer (the source of the data forward), the original output data address on the

remote node (the destination of the data forward) and the size of the forwarded data.

After that the execution of the TSU activities (including the S-CacheFlow tasks on the DDM-

VMc) proceed as before without a change. It is important to note that after the thread finishes

execution the produced data exists in the the temporary buffer.

Sam
er

Aran
di

118

T1

A B

T2

D

C

T4T3

E

F G H

T6T5

T1

A B

T2

D

C

T4T3

E

F H

T6T5

E

G

Node 0 Node 1 Node 2

temp

temp

forward
forward

forwardforward

(a) (b)

Node 0

Figure 37: Data Forwarding Example

Data Forwarding - Transfer

The second data forwarding operation is introduced after the thread finishes execution. For

every remote consumer of the thread, the TSU checks the FT for data forward entries heading to

the same remote node. Once found, the forwarded data and the decrement RC request messages

are then sent via the NIU services as explained in 4.2.3.1. To reduce the number of messages and

efficiently utilize the network bandwidth we bundle the forwarded data with the decrement RC

request into one message. When this compound message is received at the remote node, the data

is copied to the main memory first and then the decrement RC request is inserted in the distributed

AQ. In addition, a message (MSG DEALLOCATE) is sent back to the source node to release the

allocated temporary buffer.

Sam
er

Aran
di

119

Multiple Remote Consumers

The DDM-VM supports threads that produce data consumed by multiple remote consumers

running on different nodes. In this case a list of output addresses is provided (instead of only one)

and the DDM-VM forwards the data to all the locations in the list by creating an FT entry for each

remote address. Note that in this case one temporary buffer is allocated and used as the source of

all the data forwards. If any of the addresses in the list is located on the same node (one of the

consumers is a local one), the TSU uses this address as the source of the data forwards and no

temporary buffer is allocated.

Data Forwarding Example

Figure 37 shows an example of a simple DDM-VM program comprising 6 DDM threads. In

part (a) the program is running on a single node and so no data forwarding is required as all the data

is allocated in the main memory of the same node. In part (b) of the figure the program threads are

mapped across 3 nodes. Data items E, G and H produced by threads T1, T3 and T4 respectively,

are consumed by threads running on remote nodes and so must be forwarded once the producing

threads finish execution. The data forwards are shown in thick arrows and the temporary buffers

allocated to hold the produced data are shown in dashed boxes. Note that in the case of data item

H, because it is also consumed by one thread on the same node, no temporary buffer is allocated.

4.4 Distributed Execution Termination

The two termination detection approaches described in 3.3.5 need to be revisited in the context

of distributed DDM execution.

Sam
er

Aran
di

120

4.4.1 Explicit Termination Approach

The first explicit approach that designates a specific thread invocation as the last executed

one is still valid, albeit with a simple extension. The TSU that is notified that the last thread

invocation finished execution informs the root node, which broadcast a termination message

(MSG SHUTDOWN) to the rest of the TSUs. The TSUs respond with a shutdown confirma-

tion message (MSG CONFIRM SHUTDOWN) to the root and so a graceful complete system

termination is achieved.

4.4.2 Implicit Termination Approach

The second implicit approach, however, requires additional work to adapt for distributed ex-

ecution given the lack of complete knowledge of the global state. Detecting termination in this

manner falls under the distributed termination problem [42], which is one of the fundamental

problems of distributed execution. Numerous solution have been proposed for this problem [81].

We select a solution based on the algorithm proposed by Dijkstra and described in detail in [106],

as it requires minimal message exchange and can be implemented as an extension of the second

approach.

The algorithm assumes termination when: the state of all the nodes is passive (idle) and no

messages are on their way in the system. The purpose of the algorithm is to enable one of the

nodes, say node 0 (the root), to detect that this state has been arrived at. The algorithm is described

as follows:Sam
er

Aran
di

121

Probe Initiation & Token Forwarding

TSU is idle

Idle: all queues are empty and

there are no pending operations

Node.Id == 0

Yes

Probe_In_Progress

Yes

Token.color = white

Token.counter = 0

Probe_In_Progress = true

No

Token.counter +=

Node.counter

Token_Exist

No

Send Token to Node i-1

Node.color = white

Node.color == black

Yes

Token.color = black

Token_Exist=false

Yes

No

Yes

No

No

Probe Initiation

Token Forwarding

Node.counter: total number of

messages sent by the node

Node.color is initially white

Node.coutner is initially 0

Figure 38: Distributed Termination Detection - Probe Initiation and Token ForwardingSam
er

Aran
di

122

The Algorithm:

• Every node maintains a message counter c. The counter is incremented when a message is

sent and decremented when a message is received. The total sum of the counters on all the

nodes equals the number of messages pending in the network.

• When node 0 initiates a detection probe, it sends a token with a value 0 to node N-1. Every

node i keeps the token until it becomes passive; it then forwards the token to node i-1

increasing the token value by c.

• A color is assigned to each node and token (initially all are white). When a node receives a

message, the node turns black. When a node forwards the token, the node turns white. If a

black node forwards the token, the token turns black, otherwise the token keeps its color.

• When node 0 receives the token again, termination is concluded if: (i) node 0 is passive and

white, (ii) the token is white, and (iii) the sum of the token value and c is 0. Otherwise, node

0 may start a new probe.

In our implementation the state passive refers to the state when all the TSU queues are empty

and there exists no pending in-flight operation. Moreover, initiating a probe occurs whenever the

root node becomes passive and no previously initiated probe is in progress. Once termination is

detected on the root node a termination message is broadcast to the rest of the TSUs to achieve a

graceful termination as described in the first approach. Sending and receiving token messages are

performed via the NIU services.

Figure 38 and 39 depict the two parts of the implemented algorithm. Both parts are executed

by the the Auxiliary TSU thread. The first figure illustrates the part executed at every cycle of the

Sam
er

Aran
di

123

Node.Id == 0

TSU is idle

Token.color ==

black

Network_Messages

== 0

Network_Messages =

Token.counter + Node.counter

No Termination

Detected

Yes

Yes

Yes

No

Termination

Detected

No

Yes

TSU is idle

No

Node.color == black

Yes

No

Yes

Token.color=black

Send Token to Node i-1

Node.color=white

store token

Token_exist=true

No

No

Token.counter+=

Node.counter

Node.counter: total number of

messages sent by the node

Process Token

Idle: all queues are empty and

there are no pending operations

Node.coutner is initially 0

Figure 39: Distributed Termination Detection - Token ProcessingSam
er

Aran
di

124

auxiliary thread and the second illustrates the part executed when a token is received from another

node.

Sam
er

Aran
di

Chapter 5

Programming Methodology and Optimizations

5.1 Introduction

In this chapter we present the programming methodology and tool-chain utilized with the

DDM-VM and provide a number of programming examples. We also propose a technique for

handling programs containing dependencies that cannot be uncovered at compile-time. Further,

we present a number of optimizations employed to improve the performance of the DDM-VM.

We also describe the support for distributed DDM execution and conclude the chapter by demon-

strating the monitoring and visualization tools. Part of the work in this chapter has been presented

in [9].

5.2 Dynamic Data-flow

The Data-Flow execution model [34, 13, 130] relies on the availability of input data for the

execution of each operation (as opposed to a program counter in the Control-flow model). This

allows it to tolerate memory and synchronization latencies and provide a distributed concurrency

control mechanism. Moreover, the side-effect free semantics of this model allows it to expose

125

Sam
er

Aran
di

126

all the parallelism in a program, as it enforces partial ordering that corresponds to the true data

dependencies.

Dynamic data-flow architectures [13, 11, 130] (as opposed to static data-flow ones) allow loop

iterations and subprogram invocations to proceed in parallel via the tagging of data tokens.

The DDM-VM utilizes the distributed synchronization mechanism of dynamic Data-Flow as

described by the U-Interpreter [11]. Each data value is associated with a unique tag; a Token

V[c,s,i] is made up of the value V and the tag [c,s,i], ”c” is the context identifier, ”s” is the des-

tination address and ”i” is the iteration identifier. The U-interpreter provides a formal distributed

mechanism for the generation and management of the tags at execution time.

We briefly explain the basic principles of the U-Interpreter with the aid of the inner product

example shown in Figure 40-a, the corresponding dynamic Data-Flow graph is shown in Figure 40-

b. The [L] operator in Figure 40-b creates a new loop context by adding a loop identifier to the tag

and initializing it to zero. Every time a token goes around in the loop the [D] operator increments

the iteration part of the tag. T1 part of Figure 40-a demonstrates the process of tag creation for

the first iteration of the loop. Note that in dynamic Data-Flow an actor can fire only when inputs

with identical tags are available at all its input ports. The whole process is repeated until the loop

predicate evaluates to false, the switch actor then routes the last token to the [D−1] operator which

restores the iteration part of the tag to zero and then the [L−1] operator remove the loop identifier

added by the [L] operator thus restoring the tag it had before entering the loop.

5.3 Data-Driven Multithreading (DDM)

In the DDM model, the tagged token matching operations are reduced into virtual memory

translations and implemented as updates to the RC entries in the Synchronization Memory (SM)

Sam
er

Aran
di

127

< SIZET F

0

L

+1

D

selsel

AB

*

append

mult_res

i

new i

T F

0

L

result

+

sel

Mult_res

new result

D-1

L-1

T1T2T3

(b)(a)

result = 0 ;

for (i=0 ; i < SIZE ; i++)

{

mult_res[i]= A[i]*B[i];

result=result+mult_res[i];

}

0[c.0]

0[c.0]

1[c.0]

0[c]

D

Figure 40: The Vector Dot Product (a) Original Program (b) U-Interpreter Dynamic Data-Flow
Graph

structure allocated in main memory. The tag manipulation operators are implemented by the

runtime.

A DDM program is represented as a number of re-entrant, inter-dependent DDM threads,

along with each thread’s meta-data (or synchronization template in DDM terminology). The

threads are identified by the ThreadId and Context. The context corresponds to the tag of the

U-Interpreter and uniquely identifies dynamic invocations of each thread. The context records the

effect of re-entrance and so when mapping loops into DDM threads we derive the value of the

context from the nested loop indices.

All structures are allocated and mapped to the virtual memory space. The dynamic context

is combined with static meta-data to uniquely identify each thread Ready Count (RC) entry and

its input and output data. Figure 41 shows an example of how the context value of a specific

instance of thread 1 (instance with context = 15) is used to access its RC entry in the Synchro-

nization Memory. Moreover, the base addresses of the two arrays accessed by thread 1 (A and

Sam
er

Aran
di

128

A

Values
A[0] A[1] … A[15] .. A[N-1]

RC

2

2

...

1

…

2

������ � ������ � ��������� 	Synchronization Memory
�� ���������	������ Graph Memory

Data Frame Pointer List

Processor Memory
0x30a

1 15

Thread Context

the base address of the thread’s input data

data for thread instance (context=15)

0x31f

��� RC

1

1

...

1

…

1

RC

-

-

...

-

…

-

the base address of the thread’s input data
data for thread instance (context=15)

B

Values
B[0] B[1] … B[15] .. B[N-1]

��� ��� ���� ���� ��� !" ���#
1 0xfadc 2 0 2 0

2 0xfbcc 3 0 2 5

… … … … … …

$%%& '()*
0x30a 1

0x31f -1

…. ….

Figure 41: Accessing Thread structures using a combination of the meta-data and the dynamic
context in DDMSam

er
Aran

di

129

result[contex]result[contex]

Context Context
Context Context

A[m]A[m] B[m]B[m]

Mult_res[m]Mult_res[m]

m

SIZE

SIZE

i

add

F T

A B

mul

A[i[context]] B[i[context]]

mult_res[i[context]]

add

result[contex]

ret

F T

ret

0

SIZE

T1

T3

0

m
Context

++

Context

T2

Context

0

1

T1

T2

T3

(b)(a)

Figure 42: The Vector Dot Product DDM Dependency Graph (a) Detailed view (b) High-level
view

B) are retrieved from the GM and combined with the context to access the values for the specific

instantiation instance.

Vector Dot-Product Example

Back to the earlier vector dot product program, Figure 42 depicts the equivalent DDM graph

that is composed of three threads T1, T2 and T3. The outer loop is implemented by DDM thread

T1 and the two operations in the body of the loop are implemented by threads T2 and T3, re-

spectively. Figure 42-a illustrates a detailed view of the graph. Solid arrows represent data de-

pendencies and actual movement of data instances between the threads. Dotted arrows represent

only data dependencies amongst the threads. Shaded rectangles represent operations, non-shaded

single rectangles represent static values and non-shaded multiple rectangles represent dynamic

values.

Sam
er

Aran
di

130

Thread T1 generates the values of the loop index i. The shaded portion of T1 generates the

context value and corresponds to the [D] operator of the U-interpreter of Figure 40-b. The reader

will notice that in this example the context value is identical to the loop index value. In such cases

we can omit the extra graph that generates the context and use the loop index for both. However,

in the general case we need to generate the context values that correspond to each invocation of

the loop and in recursive constructs. As mentioned previously, the context value is used by the

program threads to access the data value(s) corresponding to each invocation.

Thread T2 performs the multiplication and uses the value of i as an index to the input and

output vectors. T2 then notifies the TSU to update the readycount of the invocation of thread T3

consuming the produced value. Thread T3 accumulates the multiplication of the two vectors in

result and informs the TSU to update the readycount of the next invocation of T3. When the loop

predicate evaluates to false result contains the vector dot product value.

5.4 DDM-VM Programming Methodology

The success of any alternative execution model depends on many factors, but the foremost are

the programmability and the efficiency of the resulting programs. To this end, we have a number

of alternative approaches for programming the DDM-VM:

1. Macro-based: this is a low-level interface for programming the virtual machine that utilizes

a set of C macros. This interface serves as the target for the rest of the approaches. It permits

the expert programmer total control of the DDM-VM program.

2. T-Flux preprocessor: utilizes the TFlux directives and preprocessor tool originally devel-

oped in [113]. A subset of the directives is extended to generate the DDM-VM macros.

This work is a collaborative effort with the TFlux team.

Sam
er

Aran
di

131

Macros

Expansion

DDM Threads Code

+

Calls to run-time

Dependency Graph

+

Initialization & Clean-up

+

Calls to run-time

SPU Compiler

(gcc or xlc)

PPU Compiler

(gcc or xlc)

DDM-VMc runtime

spu library object

SPU Linker

(gcc or xlc)

+

PPU Embedd.

PPU Linker

(gcc or xlc)

spu

obj file(s)

ppu

obj file(s)

DDM-VMc runtime

ppu library object

Cell executable

spe source file(s)

ppe source file(s)

Cell SDK Compilers

CnC to DDM

Compiler

DDM-VMcDDM-VMc Programming

Toolchain

GCC

Parallelizing

Compiler

C Program

+ DDM

Macros

CnC

Program

Sequential

C Program

C Program

+ TFlux*

Pragmas

TFlux

Preprocessor

DDM Threads Code

+

Calls to run-time

+

Dependency Graph

+

Initialization & Clean-up

+

Calls to run-time Compiler

GCC

DDM-VMs runtime

library object

GCC Linkerobj file(s)

binary executable

source file(s)

Commodity Compilers

DDM-VMs

DDM-VM Internal

Representation

Under-development &

Future work

Available Tools

Figure 43: The DDM-VMc Programming Toolchain

3. GCC-based auto-parallelizing compiler: utilizes the GCC compiler to automatically gen-

erate code targeting the DDM-VM. This project is a collaboration effort that is still under

development with encouraging preliminary results.

4. CnC-to-DDM compiler: utilizes the CnC [22, 23] declarative parallel programming lan-

guage to generate the DDM-VM macros with the help of a compilation tool. We describe

this approach in detail in the Future Work Chapter.

We explain the programming in this chapter using the macro-based approach, as it is the one

we used to develop the applications and is the most detailed interface, however, we expect the

programmers to use the other approaches for writing DDM-VM programs.

The resulting code of the DDM-VM program, which is generated by any of the approaches

is compiled using the target platform compilers and linked with the DDM-VM runtime. In the

Sam
er

Aran
di

132

case of the DDM-VMc the Cell SDK compilers are used. In the case of the DDM-VMs the GCC

compiler of the underlying architecture is used. Figure 43 shows an overview of the DDM-VM

toolchain.

5.4.1 The Low-Level Interface: DDM-VM Macros

DDM-VM represents DDM programs using a set of C macros that expand into calls to the

DDM-VM runtime. The macros are described in Table 1 and perform the following tasks:

• Identify thread boundaries

• Create the dependency graph of the threads

• Manage the dependency graph & the updating of consumers

The process of mapping a program using the DDM-VM macros is explained with the aid of

the blocked matrix multiplication. The code of the original program is depicted in Figure 44-a.

We chose the width of matrix B to be equal to one block for simplification.

Sam
er

Aran
di

133

f
l
o
a
t

*
A
[
M
]
[
N
]
;

f
l
o
a
t

*
B
[
N
]
;

f
l
o
a
t

*
C
[
M
]
;

i
n
t

m
a
i
n
(
)

{
/
/

D
a
t
a

i
n
i
t
i
l
i
z
a
t
i
o
n

g
o
e
s

h
e
r
e
,

.
.
.

f
o
r

(
i
=
0
;

i
<
M
;

i
+
+
)

{
f
o
r

(
j

=

0

;

j

<
N
;

j
+
+
)

M
u
l
t
A
d
d
_
B
l
o
c
k
(
C
[
i
]
,
A
[
i
]
[
j
]
,
B
[
j
]
)
;

/
/

C
[
i
]
<
-
C
[
i
]
+
A
[
i
]
[
j
]
*
B
[
j
]

} /
/
p
o
s
t

e
x
e
c
u
t
i
o
n

c
o
d
e
,

u
s
i
n
g

r
e
s
u
l
t
s
.
.
.

}

(a
)

B
lo
c
k
e
d
 M
a
tr
ix
 M
u
lt
ip
li
c
a
ti
o
n

x
=

B
C

A

M

N

D
D
M
 T
h
re
a
d
s
 D
y
n
a
m
ic
 I
n
v
o
c
a
ti
o
n
s
 D
e
p
e
n
d
e
n
c
ie
s

in
it
ia
liz
a
ti
o
n

<
0
,0
>

<
0
,1
>

<
0
,2
>

<
0
,N
>

<
0
>

<
1
,0
>

<
1
,1
>

<
1
,2
>

<
1
,N
>

<
M
,N
>

<
M
,0
>

<
M
,1
>

<
M
,2
>

….

…
.

…
.

…
.

…
.

…
.

….

….

(b
)

<
2
,0
>

<
2
,1
>

<
2
,2
>

<
2
,N
>

….

<
3
,0
>

<
3
,1
>

<
3
,2
>

<
3
,N
>

….

<
i,
j>

G
e
n
e
ra
te
 i
 v
a
lu
e
s

T
h
re
a
d
_
2

in
v
o
c
a
ti
o
n
s

im
p
le
m
e
n
ti
n
g

th
e
 i
n
n
e
r

lo
o
p

a
n
d
 i
ts

b
o
d
y

T
h
re
a
d
_
1

im
p
le
m
e
n
ti
n
g
 t
h
e

o
u
te
r
lo
o
p

M
u
lt
ip
lie
s
 b
lo
c
k
 A
[i
][
j]
 w
it
h
 b
lo
c
k
 B
[j
]
a
n
d
 a
d
d
 t
h
e
 r
e
s
u
lt

to
 C
[i
]
a
n
d
 o
v
e
rw
ri
te
s
 i
t.
 I
t
h
a
s
 a
 d
e
p
e
n
d
e
n
c
y
 o
n

in
s
ta
n
c
e
 <
i,
j-
1
>

B
S
IZ
E

in
s
ta
n
ti
a
ti
o
n
s

w
it
h

j
=
 0

(P
a
ra
lle
l

in
v
o
c
a
ti
o
n
s
)

in
v
o
c
a
ti
o
n
s
 w
it
h
 i
 =
 0

(d
e
p
e
n
d
e
n
t
in
v
o
c
a
ti
o
n
s
)

Fi
gu

re
44

: T
he

B
lo

ck
ed

M
at

ri
x

M
ul

tip
lic

at
io

n
A

pp
lic

at
io

n
(a

)T
he

or
ig

in
al

co
de

of
th

e
ap

pl
ic

at
io

n
(b

)D
ep

en
de

nc
ie

s
ac

ro
ss

th
e

dy
na

m
ic

in
vo

ca
tio

ns
of

th
e

D
D

M
th

re
ad

s

Sam
er

Aran
di

134

5.4.2 Identifying the Boundaries of DDM Threads

Figure 44-b depicts one possible mapping of this application to a DDM-VM program. The

outer for loop is mapped into a DDM thread called THREAD 1 and the inner loop and its body

are mapped into a DDM thread called THREAD 2. We execute the multiplications in blocks, two

blocks multiplied at a time, since in the case of the DDM-VMc the limited space of the Local

Store (LS) memory precludes us from executing the entire row times the column. In the case of

the DDM-VMs, we are free to use this program organization or opt for one that multiplies the

entire row with the entire column since the memory limitation doesn’t exist. Each instance of

THREAD 2 calls the MultAdd Block kernel that performs the operation C[i]=C[i]+A[i][j]*B[j].

This multiplication-accumulation introduces a dependency between the successive iterations of

the inner loop. Thus, no parallelism can be exploited by unraveling this loop. For that reason the

index generation of the inner loop and its body are merged into a single DDM thread (THREAD 2).

This is an optimization that avoids the overhead of having a thread that generates the loop indices

for a sequential loop.

Figure 44-b illustrates the dynamic invocations of the DDM threads with their dependencies

represented as arrows. Each invocation is labelled with its context. For example since THREAD 2

invocations represent two-level nested loop iterations, the context of each invocation is composed

of the two loop indicies <i,j>.

The corresponding code of the DDM-VM program threads is shown in Figure 45. The macros

DVM THREAD START and DVM THREAD END mark the boundary of the threads. The former

macro also assigns the unique thread identifier (ThreadId) and the latter informs the TSU that

Sam
er

Aran
di

135

e

DVM_THREAD_START(TID_THREAD_1);

for (i = 0 ; i < M ; i++)

DVM_UPDATE(CONS1,OP_SET_CONTEXT,MAKE_CONTEXT_D(i,0));

DVM_THREAD_END();

DVM_THREAD_START(TID_THREAD_2);

DVM_LOOKUP(float *,A);

DVM_LOOKUP(float *,B);

DVM_LOOKUP(float *,C);

GET_CONTEXT_D(DVM_CONTEXT,i,j);

MultAdd_Block(C,A,B);

if (j < N-1)

DVM_UPDATE(CONS1,OP_SET_CONTEXT,MAKE_CONTEXT_D(i,j+1));

DVM_THREAD_END();

Figure 45: The code for the DDM threads using the DDM-VM macros

the thread finished execution. The DVM CONTEXT is a variable set by the runtime to the cur-

rent value of the context. The GET CONTEXT macro is used to retrieve the context components

corresponding to the values of the two loop indices i and j.

The DVM LOOKUP(TYPE,VAR) macro is used to retrieve the address of one data input/output

of the thread. It stores the address in the pointer variable VAR after type-casting it to TYPE. In the

case of the DDM-VMc using this macro is required as it gets the address of the data in the LS.

When running the application on the DDM-VMs, however, this macros is optional (as the data

can be accessed directly in the main memory space), except in the case of threads accessing dy-

namically allocated data, which can occur in distributed DDM execution. In general, it is advised

to always use the DVM LOOKUP macros so as to unify DDM-VM programs regardless of the

underlying architecture.

5.4.3 DDM Dependency Graph and Context Maintenance

The DVM UPDATE macro informs the TSU to decrement the readycount of the thread con-

sumers. It specifies the dynamic invocation of the consumer to update by designating the context

Sam
er

Aran
di

136

value of that invocation using the MAKE CONTEXT macro in combination with a number of

operators. The last two macros are used to implement the U-Interpreter context operators.

The for loop in the body of THREAD 1 implements the [D] operator by incrementing the

loop index i. For every value of i, the thread invokes the DVM UPDATE macro and passes the

OP SET CONTEXT operator as a parameter which implements the U-Interpreter [L] operator.

This operator creates the context of the invocations of THREAD 2 by informing the TSU to update

the readycount of the first invocation of every group of the dependent invocations of THREAD 2.

Each invocation of THREAD 2 multiplies one block from A with one block from B and adds

the result to one block from C before storing the final result in that block. The DVM UPDATE

macro at the end informs the TSU to decrement the RC of its consumer, i.e., the next dependant

invocation of THREAD 2. Note that the DVM UPDATE macros correspond to the dependency

arrows depicted in Figure 44-b.

5.4.4 DDM Dependency Graph Creation and Execution

Sam
er

Aran
di

137

Ta
bl

e
1:

T
he

D
D

M
-V

M
M

ac
ro

s

D
V

M
_

C
O

N
T

E
X

T
a

va
ri

ab
le

 s
et

 b
y

th
e

ru
nt

im
e

to
 p

ro
vi

de
 a

cc
es

s
to

 th
e

cu
rr

en
t v

al
ue

 o
f

th
e

th
re

ad
 c

on
te

xt
.

M
A

K
E

_
C

O
N

T
E

X
T(
…

)
/G

E
T

_
C

O
N

T
E

X
T

(…
)

cr

ea
te

/r
et

ri
ev

e
th

e
va

lu
e

of
 th

e
co

nt
ex

t.
T

he
 v

al
ue

 c
ou

ld
 h

av
e

si
ng

le
, d

ou
bl

e
or

 tr
ip

le
 a

ri
ty

T

hr
ea

d
Sc

he
du

lin
g

P
ol

ic
y

D
V

M
_

S
T

A
R

T
_

S
C

H
E

D
U

L
E

(
T
H
R
E
A
D
_
I
D

)

D
V

M
_

S
E

T
_

S
C

H
E

D
U

L
E

(
C
o
r
e
I
D

)
D

V
M

_
E

N
D

_
S

C
H

E
D

U
L
E

()

ov
er

ri
de

s
th

e
de

fa
ul

t s
ch

ed
ul

in
g

po
lic

y
an

d
co

nt
ro

ls
 to

 w
hi

ch
 c

or
e

th
e

in
vo

ca
ti

on
s

of
 th

e
th

re
ad

ar

e
sc

he
du

le
d.

D
V

M
_S

C
H

E
D

U
L

IN
G_

P
O

L
IC

Y
_

S
T

A
R

T(
)

D

V
M

_
S

C
H

E
D

U
L

IN
G

_
P

O
L
IC

Y
_

E
N

D
()

th

e
tw

o
m

ac
ro

s
de

cl
ar

e
th

e
st

ar
t a

nd
 e

nd
 o

f
th

e
sc

he
du

lin
g

he
lp

er
 f

un
ct

io
n

ca
lle

d
by

 th
e

T
SU

,
re

sp
ec

tiv
el

y.
 A

ll
 th

e
sc

he
du

li
ng

 p
ol

ic
y

m
ac

ro
s

m
us

t b
e

de
fi

ne
d

be
tw

ee
n

th
e

tw
o

m
ac

ro
s.

E

xe
cu

ti
on

D
V

M
_

E
X

E
C

U
T

E(
)

St
ar

ts
 th

e
ex

ec
ut

io
n

of
 th

e
T

SU
 a

nd
 th

e
sc

he
du

li
ng

 o
f

th
re

ad
s

to
 e

xe
cu

tio
n

un
its

. I
t r

et
ur

ns
 a

ft
er

al

l t
he

 lo
ad

ed
 D

D
M

 th
re

ad
s

ha
ve

 f
in

is
he

d
ex

ec
ut

io
n

 D
D

M
-V

M
 m

ac
ro

s
O

pe
ra

ti
on

D

D
M

 T
hr

ea
d

B
ou

nd
ar

ie
s

D

V
M

_
T

H
R

E
A

D
_

S
T

A
R

T(
T
H
R
E
A
D
_
I
D
)

id

en
tif

ie
s

th
e

fi
rs

t i
ns

tr
uc

tio
n

of
 th

e
th

re
ad

 a
nd

 a
ss

ig
ns

 th
e

th
re

ad
 id

en
tif

ie
r

 D
V

M
_

T
H

R
E

A
D

_
E

N
D(
)

•
in

fo
rm

s
th

e
T

SU
 th

at
 th

e
th

re
ad

 h
as

 f
in

is
he

d
ex

ec
ut

io
n

•
re

lin
qu

is
he

s
co

nt
ro

l t
o

th
e

ru
nt

im
e

to
 e

xe
cu

te
 th

e
ne

xt
 r

ea
dy

 th
re

ad

D
V

M
_

L
O

O
K

U
P(
T
Y
P
E
,
N
A
M
E
)

re
tr

ie
ve

s
th

e
ad

dr
es

s
of

 o
ne

 in
pu

t/
ou

tp
ut

 o
f

th
e

th
re

ad
. I

n
th

e
ca

se
 o

f
th

e
D

D
M

-V
M

c
it

pe
rf

or
m

s
D

D
M

 C
ac

he
 L

oo
ku

p
to

 g
et

 th
e

ad
dr

es
s

of
 th

e
da

ta
 in

 th
e

L
S

D
D

M
 D

ep
en

de
nc

e
G

ra
ph

 C
re

at
io

n
D

V
M

_
S

E
T

_
T

H
R

E
A

D
_
T

E
M

P
L
A

T
E

(

T
H
R
E
A
D
_
I
D
,

C
O
N
S
1
,
C
O
N
S
2
,

R
E
A
D
Y
_
C
O
U
N
T
,

N
U
M
B
E
R
_
O
F
_
D
F
P
s
,

S
C
H
E
D
_
M
O
D
E
,
S
C
H
E
D
_
V
A
L
U
E
,

A
R
I
T
Y
,

S
M
_
M
E
T
H
O
D
,
S
M
_
V
A
L
U
E
)

cr
ea

te
s

an
d

lo
ad

s
th

e
th

re
ad

 s
yn

ch
ro

ni
za

ti
on

 te
m

pl
at

e
co

ns
is

tin
g

of
: t

he
 th

re
ad

 id
en

tif
ie

r,
 th

e
co

ns
um

er
s

(i
f

th
e

th
re

ad
 h

as
 m

or
e

th
an

 tw
o

co
ns

um
er

s
C

O
N

S1
 =

 0
 a

nd
 C

O
N

S2
 is

 a
 p

oi
nt

er
 to

a

lis
t o

f
co

ns
um

er
s)

, t
he

 r
ea

dy
co

un
t v

al
ue

, t
he

 n
um

be
r

of
 D

FP
s,

 th
e

sc
he

du
lin

g
po

lic
y

fo
r

th
e

th
re

ad
, t

he
 a

ri
ty

 w
hi

ch
 in

di
ca

te
s

th
e

lo
op

 n
es

tin
g

le
ve

l f
or

 th
e

th
re

ad
 a

nd
 th

e
Sy

nc
hr

on
iz

at
io

n
M

em
or

y
(S

M
)

m
et

ho
d

to
 u

se
.

C
ac

he
F

lo
w

D
V

M
_

S
T

A
R

T
_

D
F

P
L

(T
H
R
E
A
D
_
I
D

)

D
V

M
_

S
E

T
_

D
F

P
(A
D
D
R
,
S
I
Z
E
,
F
L
A
G

)
D

V
M

_
E

N
D

_
D

F
P

L
()

as
si

gn
s

th
e

in
fo

rm
at

io
n

of
 th

e
D

FP
L

: t
he

 a
dd

re
ss

 a
nd

 s
iz

e
of

 th
e

in
pu

t/
ou

tp
ut

 d
at

a
of

 th
e

th
re

ad
.

T
he

 f
la

g
fi

el
d

sp
ec

if
ie

s
th

e
di

re
ct

io
n

of
 d

at
a

ac
ce

ss
 (

in
, o

ut
 o

r
in

ou
t)

 a
nd

 th
e

re
-u

se
 f

la
g

w
he

n
ex

pl
oi

tin
g

lo
ca

lit
y.

D
V

M
_

S
E

T
_

R
E

F
C

O
U

N
T

()
as

si
gn

s
th

e
re

fe
re

nc
e-

co
un

te
r

va
lu

e
fo

r
da

ta
 it

em
s

th
at

 w
ill

 b
e

re
-u

se
d

w
he

n
ex

pl
oi

ti
ng

 lo
ca

lit
y

D
V

M
_

C
A

C
H

E
F

L
O

W
_

D
F

P
L

_
S

T
A

R
T

()
D

V
M

_
C

A
C

H
E

F
L

O
W

_
D

F
P

L
_

E
N

D
()

th

e
tw

o
m

ac
ro

s
de

cl
ar

e
th

e
st

ar
t a

nd
 e

nd
 o

f
th

e
D

FP
L

 h
el

pe
r

fu
nc

ti
on

 c
al

le
d

by
 th

e
T

SU
,

re
sp

ec
tiv

el
y.

 A
ll

 th
e

D
FP

 m
ac

ro
s

m
us

t b
e

de
fi

ne
d

be
tw

ee
n

th
e

tw
o

m
ac

ro
s.

D

D
M

 D
ep

en
de

nc
e

G
ra

ph
 M

ai
nt

en
an

ce
 a

nd
 C

on
te

xt
 M

an
ag

em
en

t
D

V
M

_
U

P
D

A
T

E(
C
O
N
S
,
O
P
,
V
A
L
U
E
)

•
in

fo
rm

s
th

e
T

SU
 w

hi
ch

 s
pe

ci
fi

c
 in

vo
ca

tio
n

of
 a

 c
on

su
m

er
 to

 d
ec

re
m

en
t i

ts
 r

ea
dy

co
un

t
w

he
n

th
e

th
re

ad
 f

in
is

he
s

ex
ec

ut
io

n
•

im
pl

em
en

ts
 th

e
U

-I
nt

er
pr

et
er

 c
on

te
xt

 m
an

ip
ul

at
io

n
op

er
at

or
s

•
in

 th
e

ca
se

 o
f

th
e

D
D

M
-V

M
c

an
y

pr
od

uc
ed

 d
at

a
is

 e
xp

or
te

d
to

 m
ai

n
m

em
or

y
be

fo
re

ex

ec
ut

in
g

th
e

up
da

te

D
V

M
_

U
P

D
A

T
E

_
M

U
L

T
IP

L
E(
C
O
N
S
,
V
A
L
U
E
1
,
V
A
L
U
E
2
)

in
fo

rm
s

th
e

T
SU

 to
 d

ec
re

m
en

t t
he

 r
ea

dy
co

un
t o

f
m

ul
tip

le
 in

vo
ca

tio
ns

 o
f

a
co

ns
um

er
 th

re
ad

.
D

V
M

_
U

P
D

A
T

E
_

T
H

R
E

A
D
(
T
H
R
E
A
D
_
I
D
,
V
A
L
U
E
)

D
V

M
_

U
P

D
A

T
E

_
T

H
R

E
A

D
_

M
U

L
T

IP
L

E
(
C
O
N
S
,
V
A
L
U
E
1
,
V
A
L
U
E
2
)

th
e

tw
o

m
ac

ro
s

in
fo

rm
 th

e
T

SU
 to

 d
ec

re
m

en
t t

he
 R

C
 o

f
on

e
sp

ec
if

ic
 th

re
ad

 in
vo

ca
ti

on
 o

r
m

ul
ti

pl
e

on
es

, r
es

pe
ct

iv
el

y.
 T

he
 m

ac
ro

s
ar

e
us

ed
 w

it
h

th
re

ad
s

th
at

 c
on

su
m

e
in

iti
al

iz
ed

 d
at

a.

Sam
er

Aran
di

138

float *A[M][N];
float *B[N];
float *C[M];
int main()
{
// Data initilization goes here
// THREAD_1 DDM thread template

DVM_CREATE_THREAD_TEMPLATE(TID_THREAD_1, //TID/IFP
TID_THREAD_2,0, //consumers

1, //readycount=1

0, //DFPNum=0

DVM_DYNAMIC,0, //scheduling Mode

DVM_ARITY_0, //nesting-level=0

DVM_ASSOCIATIVE,0);//Associative SM

// THREAD_2 DDM thread template

DVM_CREATE_THREAD_TEMPLATE(TID_THREAD_2, //TID/IFP
TID_THREAD_2,0, //consumers

1, //readycount = 1

3, //DFPNum = 3

DVM_CUSTOM,0, //Scheduling Mode

DVM_ARITY_2, //nesting-level=2

DVM_ASSOCIATIVE,0);//Associative SM

DVM_UPDATE_THREAD(TID_THREAD_1,0); // update the
// readycount of thread THREAD_1 (becomes zero)

//comes back after all threads finish}

DVM_EXECUTE(); // start the execution of the TSU, only

Figure 46: Initialization, graph creation, graph execution and post-execution code

Figure 46 depicts the code that runs before and after the execution of the DDM threads in the

program. After data initialization, the programmer uses the DVM CREATE THREAD TEMPLATE

macro to load the synchronization template of each DDM thread into the TSU. The template is

described in detail in Section 3.3.2.

The programmer then uses the DVM UPDATE THREAD macro (which is a variant of DVM UPDATE

that informs the TSU to decrement the RC of a specific thread directly) to decrement the RC of

THREAD 1 making it ready for execution, before calling the DVM EXECUTE macro which starts

the execution of the TSU and the scheduling of threads to the cores. This macro returns only when

termination is detected, after which the results can be accessed for processing or storing into files,

etc. Figure 47 illustrates the general flow of a DDM-VM program.

The Threads Data

One of the parameters of the the DVM CREATE THREAD TEMPLATE macro sets the num-

ber of entries in the Data Frame Pointer List (DFPL) of the thread. However, the information of

Sam
er

Aran
di

139

DVM_EXECUTE()

• Access Results
• I/O
• Cleanup

• VM initialization
• Data initialization, I/O

• Creation of the dependency
graph & loading it into the TSU

• Updating the RC of threads
consuming initialized data

DDM-VM Program Execution

Figure 47: The Flow of a DDM-VM Program Execution

e

// DFPL definitions

DVM_CACHEFLOW_DFPL_START();//start of function called by TSU

int i,j;

DVM_START_DFPL(TID_THREAD_2); // start of DFPL definition

GET_CONTEXT_D(DVM_CONTEXT,i,j);

DVM_SET_DFP(A[i][j],BSIZE*BSIZE*4,DATA_IN);

DVM_SET_DFP(B[j],BSIZE*BSIZE*4,DATA_IN);

DVM_SET_DFP(C[i],BSIZE*BSIZE*4,DATA_IN|DATA_OUT);

DVM_END_DFPL(); // end of DFPL definition

DVM_CACHEFLOW_DFPL_END(); // end of function called by TSU

Figure 48: DFPL definition macros

the DFPL itself is encoded by another set of macros shown in Figure 48. The macros specify the

address, size and flags for the data of the thread. The flags indicate if the data is accessed for read

(DATA IN), write (DATA OUT) or both (DATA IN|DATA OUT). The DVM SET REFCOUNT

macro is used for assigning the reference-count values when utilizing data locality. The informa-

tion of the data is directly extracted from the original code. The only difference is that the loop

indices used to index the data arrays are replaced by the corresponding components of the context.

The information of the DFPL is always required in the case of the DDM-VMc. In the case of

the DDM-VMs it is required for supporting data forwarding in distributed execution as will be

demonstrated in Section 5.5.

Sam
er

Aran
di

140

e

// Optional Scheduling policy definition

DVM_SCHEDULING_POLICY_START();//start of function called by TSU

int i,j;

DVM_START_SCHEDULE(TID_THREAD_2);

GET_CONTEXT_D(DVM_CONTEXT,i,j);

DVM_SET_SCHEDULE(i%NUMBER_OF_CORES);

DVM_END_SCHEDULE();

DVM_SCHEDULING_POLICY_END(); //end of function called by TSU

Figure 49: Scheduling policy definition macros

Scheduling Policy

Assigning one of the scheduling policies (described in 3.3.4) to a thread is done via the 6th

and 7th parameters of the DVM CREATE THREAD TEMPLATE macro. For example to select

a dynamic scheduling policy the value DVM DYNAMIC is passed as a parameter to the macro.

If a custom scheduling policy is to be implemented the programmer passes the DVM CUSTOM

instead and encodes the policy using a number of macros which specify the Identifier of the core

to which a thread is scheduled. Figure 49 illustrates an example of a scheduling policy that assigns

invocations of THREAD 2 with the same value of i to the same core in a modulo fashion.

The macros encoding the DFPL and scheduling policy are defined outside the code of the

main. These macros expand to helper functions invoked by the TSU at runtime to retrieve the

information they encode.

5.4.5 Programming Example - LU Decomposition

In this section we present the mapping of another more complex DDM-VM application: The

blocked LU decomposition. The code of the original program is shown in Figure 50. The code

is composed of five nested loops that perform four basic operations on a blocked matrix. For

demonstration purposes we choose the following indicative names for the computational kernels

performing the operations: diag, front, down and comb.

Sam
er

Aran
di

141

float AA[ROW*COL];

float *A[TILE][TILE];

...

int i, j, k;

for (k=0; k<TILE; k++){ // Loop1

diag(A[k][k]);

for (j=k+1; j<TILE; j++) // Loop2

front(A[k][k], A[k][j]);

for (j=k+1; j<TILE; j++) // Loop3

down (A[k][k], A[j][k]);

for (j=k+1; j<TILE; j++) // Loop4

for (i=k+1; i<TILE; i++) // Loop5

comb(A[j][k], A[k][i], A[j][i]);

}

Figure 50: The DDM-VM Blocked LU decomposition application - Original program code

Threads Mapping

Each of the four operations is mapped into one DDM thread and each invocation of the four

threads produce one block of the matrix. The loops implementing the control-flow in the original

application are mapped into five DDM threads named corresponding to the loop number.

The left side of Figure 51 shows the blocks produced by each of the operation threads (the

producing thread name or first letter of the name is used to label the block) for the first iteration

of LU decomposition corresponding to one iteration of the outermost loop of the original code. In

every iteration, one invocation of the diag thread takes as input the diagonal block that corresponds

to the iteration number to produce its new value. The invocations of the front thread produces the

remaining blocks on the same row as the diagonal block. For each one of those block, it takes

as input the result of the diag in addition to the current block to produce its new value. The

down thread invocations operate in a similar fashion to produce the remaining blocks on the same

column as the diagonal block. The comb thread invocations produce the rest of the blocks for that

LU iteration. For every block it produces, it takes as input three blocks: the first is the current

block, the second is one of the blocks produced by the front thread (in particular the block on the

same column as the first block) and the third is one of the blocks produced by the down thread (in

Sam
er

Aran
di

142

diag

Blocked LU decomposition (4x4 Block Matrix)

diag

downfront

comb

Loop_1

Loop_2 Loop_3Loop_4

Loop_5

f f f

d

d

d

c c c

c c c

c c c

f:front

d:down

c:comb

Figure 51: The DDM-VM Blocked LU decomposition application - Dependency graph

particular the block on the same row as the first block). It multiples the second and third blocks

and adds the result to the first block to produce the final resulting block. The arrows in the figure

indicate the input blocks needed by each thread invocation to produce its result.

Dependency Graph

This computational pattern is repeated in the next LU iteration on a subset of the resulting ma-

trix that excludes the first row and column and continues for as much iterations as the diagonal tiles

of the matrix. This results in dependencies between the thread invocations pertaining to the same

LU iteration and at the same time between those and the ones pertaining to the previous iteration.

The right side of Figure 51 depicts the dependency graph of all the program threads. This graph

only captures a static view of the dependencies among the threads. The graph shown in Figure 52

depicts the dependencies amongst the dynamic invocations of the threads for the first two LU iter-

ations. Each thread invocation is labelled with the value of its context. As mentioned previously,

the invocation context value is derived from the values of the loop indices of the corresponding

loop iteration.

Sam
er

Aran
di

143

<0>

<0,1> <0,2> <0,3>

<0,1,1> <0,1,2> <0,1,3> <0,2,1> <0,2,2> <0,2,3> <0,3,1> <0,3,2> <0,3,3>

<0,1> <0,2> <0,3>

DDM Threads Dynamic invocations Dependencies

<context>

<context>

<context>

<context>

diag invocations

front invocations

RC = 2

RC = 3

RC = 3

RC = 4

<1>

<1,2> <1,3>

<1,2,2> <1,2,3> <1,3,2> <1,3,3>

<1,2>
<1,3>

LU iter 0

LU iter 1

Data Dependency on

initialized data
Data dependence

…..

control

dependence

down invocations

comb invocations

Figure 52: The DDM-VM Blocked LU decomposition application - Dependency graph among the
dynamic threads invocationsSam

er
Aran

di

144

Threads Code

The code of the DDM threads is shown in Figure 53. The DVM THREAD START and The

DVM THREAD END marks the boundaries of the threads. The DVM LOOKUP macros are used

to retrieve the addresses of the input/output data and the GET CONTEXT macro retrieves the

components of the context related to the corresponding loop iteration. Each of the threads call

the computational kernel responsible for performing the operation on the input/output blocks.

The DVM UPDATE macro is used to inform the TSU of the consumer invocation to decrement

their RC. Each call of this macro corresponds to one solid dependency arrow in Figure 53. The

DVM UPDATE macros at the end of the comb thread implement a switch actor, which depending

on the context of the invocation it updates a different consumer.

Threads Data and the Main Function

The macros defining the Data Frame Pointer List (DFPL) information and the main() of the ap-

plication are shown in Figure 54-a & b, respectively. The latter includes the DVM SET THREAD TEMPLATE

macros which creates and loads the meta-data of the threads into the TSU and the DVM UPDATE THREAD

macros used to decrement the RC of threads consuming initialized data. Each call of the DVM UPDATE THREAD

macros corresponds to one of the dashed dependency arrows in Figure 52.

Discussion

It is imperative to note that the code of the DDM threads is directly extracted from the origi-

nal program code, including the macros defining the Data Frame Pointer (DFP) information. The

only part that is not directly manifested in the original code is the information regarding what

consumer invocation(s) to update once a thread invocation finishes. This is implemented by the

Sam
er

Aran
di

145

DVM_THREAD_START(TID_DIAG);

DVM_LOOKUP(float *,T);

GET_CONTEXT_S(DVM_CONTEXT,k);

diag(T); // T=A[k][k]

if (k < TILES-1)

for (j=k+1 ; j < TILES ; j++){

DVM_UPDATE(CONS1,OP_SET_CONTEXT_MAKE_CONTEXT_D(k,j));

DVM_UPDATE(CONS2,OP_SET_CONTEXT_MAKE_CONTEXT_D(k,j));

}

DVM_THREAD_END();

DVM_THREAD_START(TID_FRONT);

DVM_LOOKUP(float *,T);

DVM_LOOKUP(float *,P);

GET_CONTEXT_D(DVM_CONTEXT,k,j);

front(T,P); //T=A[k][k] P=A[k][j]

for(i=k+1; i < TILES ; i++)

DVM_UPDATE(CONS1,OP_SET_CONTEXT,MAKE_CONTEXT_T(k,i,j));

DVM_THREAD_END();

DVM_THREAD_START(TID_DOWN);

DVM_LOOKUP(float *,T);

DVM_LOOKUP(float *,Q);

GET_CONTEXT_D(DVM_CONTEXT,k,j);

down(T,Q); // T=A[k][k], Q=A[j][k]

DVM_THREAD_START(TID_COMB);
DVM_LOOKUP(float *,P);

DVM_LOOKUP(float *,Q);

DVM_LOOKUP(float *,S);

GET_CONTEXT_T(DVM_CONTEXT,k,j,i);

comb(P,Q,S); // P=A[j][k], Q=A[k][i], S=A[j][i]

If (j == k+1 && i == k+1) //update DIAG

DVM_UPDATE(CONS2,OP_SET_CONTEXT,MAKE_CONTEXT_S(k+1));

else if (j == k+1) //update FRONT

DVM_UPDATE(CONS3,OP_SET_CONTEXT,MAKE_CONTEXT_D(j,i));

else if (i == k+1) //update DOWN

DVM_UPDATE(CONS4,OP_SET_CONTEXT,MAKE_CONTEXT_D(i,j));

else //update COMB

DVM_UPDATE(CONS1,OP_SET_CONTEXT,MAKE_CONTEXT_T(k+1,j,i));

DVM_THREAD_END();

DVM_THREAD_START(TID_LOOP_1);
for(k=0; k < TILE ; k++){

DVM_UPDATE(CONS1,OP_SET_CONTEXT,MAKE_CONTEXT_S(k));

DVM_UPDATE(CONS2,OP_SET_CONTEXT,MAKE_CONTEXT_S(k));

DVM_UPDATE(CONS3,OP_SET_CONTEXT,MAKE_CONTEXT_S(k));

DVM_UPDATE(CONS4,OP_SET_CONTEXT,MAKE_CONTEXT_S(k));
}

DVM_THREAD_END();

DVM_THREAD_START(TID_LOOP_3);

GET_CONTEXT_S(DVM_CONTEXT,k);

for(j=k+1; k < TILE ; k++)

DVM_UPDATE(CONS1,OP_SET_CONTEXT,MAKE_CONTEXT_D(k,j));

DVM_THREAD_END();

for(i=k+1; i < TILES ; i++)

DVM_UPDATE(CONS1,OP_SET_CONTEXT,MAKE_CONTEXT_T(k,j,i));

DVM_THREAD_END();

DVM_THREAD_START(TID_LOOP_5);

GET_CONTEXT_D(DVM_CONTEXT,k,j);

for(i=k+1; k < TILE ; k++)

DVM_UPDATE(CONS1,OP_SET_CONTEXT,MAKE_CONTEXT_T(k,j,i));

DVM_THREAD_END();

DVM_THREAD_START(TID_LOOP_4);

GET_CONTEXT_S(DVM_CONTEXT,k);

for(j=k+1; k < TILE ; k++)

DVM_UPDATE(CONS1,OP_SET_CONTEXT,MAKE_CONTEXT_D(k,j));

DVM_THREAD_END();

DVM_THREAD_START(TID_LOOP_2);

GET_CONTEXT_S(DVM_CONTEXT,k);

for(j=k+1; k < TILE ; k++)

DVM_UPDATE(CONS1,OP_SET_CONTEXT,MAKE_CONTEXT_D(k,j));

DVM_THREAD_END();

Figure 53: The DDM-VM Blocked LU decomposition application - The code of the DDM threads

Sam
er

Aran
di

146

float AA[ROW*COL];
float *A[TILES][TILES]; // TILES = ROW/BSIZE;
int main(int argc, char **argv)
{
// data initialization

// runtime initialization

int short ConsumerList_comb[]={THREAD_COMB,THREAD_DIAG,THREAD_FRONT,THREAD_DOWN};
int short ConsumerList_loop_1[]={THREAD_LOOP_4,THREAD_LOOP_2,THREAD_DIAG,THREAD_LOOP_3};

DVM_CREATE_THREAD_TEMPLATE(THREAD_DIAG ,2,2,THREAD_FRONT,THREAD_DOWN,1,DVM_RROBIN,0,DVM_ARITY_1,
SM_PERFECT, MAKE_CONTEXT_S(make_mask(TILE-1)));

DVM_CREATE_THREAD_TEMPLATE(THREAD_FRONT ,3,1,THREAD_COMB,0 ,2,DVM_RROBIN,0,DVM_ARITY_2,
SM_PERFECT,MAKE_CONTEXT_D(make_mask(TILE-1),make_mask(TILE-1)));

DVM_CREATE_THREAD_TEMPLATE(THREAD_DOWN ,3,1,THREAD_COMB,0 ,2,DVM_RROBIN,0,DVM_ARITY_2,
SM_PERFECT,MAKE_CONTEXT_D(make_mask(TILE-1),make_mask(TILE-1)));

DVM_CREATE_THREAD_TEMPLATE(THREAD_COMB ,4,4,0,ConsumerList_Comb ,3,DVM_RROBIN,0,DVM_ARITY_3,
SM_PERFECT,MAKE_CONTEXT_T(make_mask(TILE-1),make_mask(TILE-1),make_mask(TILE-1)));

DVM_CREATE_THREAD_TEMPLATE(THREAD_LOOP_1 ,1,4,0,ConsumerList_loop_1 ,0,DVM_RROBIN,0,DVM_ARITY_0,
SM_PERFECT,MAKE_CONTEXT_S(make_mask(1)));

DVM_CREATE_THREAD_TEMPLATE(THREAD_LOOP_2 ,1,1,THREAD_FRONT ,0,0,DVM_RROBIN,0,DVM_ARITY_1,
SM_PERFECT,MAKE_CONTEXT_S(make_mask(TILE-1)));

DVM_CREATE_THREAD_TEMPLATE(THREAD_LOOP_3 ,1,1,THREAD_DOWN ,0,0,DVM_RROBIN,0,DVM_ARITY_1,
SM_PERFECT,MAKE_CONTEXT_S(make_mask(TILE-1)));

DVM_CREATE_THREAD_TEMPLATE(THREAD_LOOP_4 ,1,1,THREAD_LOOP_5,0,0,DVM_RROBIN,0,DVM_ARITY_1,
SM_PERFECT,MAKE_CONTEXT_S(make_mask(TILE-1)));

DVM_CREATE_THREAD_TEMPLATE(THREAD_LOOP_5 ,1,1,THREAD_COMB,0,0,DVM_RROBIN,0,DVM_ARITY_2,
SM_PERFECT,MAKE_CONTEXT_D(make_mask(TILE-1),make_mask(TILE-1)));

DVM_UPDATE_THREAD(THREAD_DIAG,0);

for (j=1 ; j < TILE ;j++)
{

DVM_UPDATE_THREAD(THREAD_FRONT,MAKE_CONTEXT_D(0,j));
DVM_UPDATE_THREAD(THREAD_DOWN ,MAKE_CONTEXT_D(0,j));
for(i=1 ; i < TILES ; i++)

DVM_UPDATE_THREAD(THREAD_COMB ,MAKE_CONTEXT_T(0,j,i);
}

DVM_UPDATE_THREAD(THREAD_LOOP_1,0);

DVM_EXECUTE(); // this will block until all threads finish execution

// verification, use results here

}

(a)

e

DVM_CACHEFLOW_DFPL_START();
DVM_START_DFPL(THREAD_DIAG)
GET_CONTEXT_S(DVM_CONTEXT,k);
DVM_SET_DFP((void*)A[k][k],BS*BS*sizeof(float),DATA_READ|DATA_WRITE);

DVM_END_DFPL()

DVM_START_DFPL(THREAD_FRONT)
GET_CONTEXT_D(DVM_CONTEXT,k,j);
DVM_SET_DFP((void*)A[k][k],BS*BS*sizeof(float),DATA_READ);
DVM_SET_DFP((void*)A[k][j],BS*BS*sizeof(float),DATA_READ|DATA_WRITE);

DVM_END_DFPL()

DVM_START_DFPL(THREAD_DOWN)
GET_CONTEXT_D(DVM_CONTEXT,k,j);
DVM_SET_DFP((void*)A[k][k],BS*BS*sizeof(float),DATA_READ);
DVM_SET_DFP((void*)A[j][k],BS*BS*sizeof(float),DATA_READ|DATA_WRITE);

DVM_END_DFPL()

DVM_START_DFPL(THREAD_COMB)
GET_CONTEXT_T(DVM_CONTEXT,k,j,i);
DVM_SET_DFP((void*)A[j][k],BS*BS*sizeof(float),DATA_READ);
DVM_SET_DFP((void*)A[k][i],BS*BS*sizeof(float),DATA_READ);
DVM_SET_DFP((void*)A[j][i],BS*BS*sizeof(float),DATA_READ|DATA_WRITE);

DVM_END_DFPL()
DVM_CACHEFLOW_DFPL_END();

(b)

Figure 54: The DDM-VM Blocked LU decomposition application. (a) The DFPL definition
macros (b) The main() function

Sam
er

Aran
di

147

the DVM UPDATE macros and the consumer identifier and context information they convey. This

information is extracted by analyzing the data consumed/produced by the different threads, a task

that can be performed manually by the programmer or automatically by the compiler using tech-

niques similar to the ones utilized in [98]. In the Section 5.8 we present the ongoing efforts

on the automatic generation of DDM code using the GCC compiler. In Section 6.1, we present

a technique that can be used when it is not possible to extract the dependency information at

compile-time.

Programs with this level of complexity are hard to express using current parallel programming

models and languages. The programmers would either resort to complex parallel synchronization

constructs like locks, semaphores and barriers or use a more automated approach like OpenMP,

which cannot extract all the parallelism in such applications. On the other hand, the data-driven

approach adopted by DDM-VM can naturally express the parallelism in the program. Even if this

approach requires the programmer to reason about the program and analyze the dependencies (in

the absence of a compilation tools), the programmer is spending his or her time thinking in terms

of the algorithm itself as opposed to the low-level parallelization details, the synchronization con-

structs or race conditions, etc. Moreover, in the case of architectures with software-managed

memory hierarchy, the programmer is relieved from tackling the issues of data allocation & move-

ment in the memory hierarchy and structuring the code to benefit from double buffering, etc. All

this underscore the benefits of the programming approach we are proposing in this work.Sam
er

Aran
di

148

5.5 Supporting Distributed DDM Execution

In this section we discuss the support for distributed DDM execution. We re-visit the elements

of the programming methodology and discuss the changes needed to support distributed execution.

5.5.1 DDM-VM Macros

Supporting distributed execution introduces two minor changes to the DDM-VM macros. The

first is more of a restriction than a change, which is related to the scheduling policies that can be

assigned to threads. As explained in Section 4.1 the work in this thesis explores a static thread

mapping scheme. Consequently, the programmer can use the static and modulo scheduling poli-

cies in a distributed DDM-VM program. In addition, the custom policy can be used as long as the

defined mapping does not change at runtime. The rest of the policies (i.e. dynamic and roundrobin)

are not supported.

The second change is related to the macro that encodes the thread DFP information. The

address field in the macro is changed to refer to a GAS address instead of a conventional memory

address, i.e., it is composed of the ordered pair (node id,local address). Moreover, a new field

called forward-list is added to the macro to support forwarding the produced data to multiple nodes

in the case of threads that have multiple remote consumers. The GAS addresses in the forward-list

are stored at runtime in the Forward Table (FT) inside the TSU.

5.5.2 Data Distribution

Distributed execution entails the distribution of the program data across the nodes. In partic-

ular, the data of a certain invocations must be mapped to the part of the GAS located on the node

where this invocations is scheduled to run.

Sam
er

Aran
di

149

The DDM-VM provides a set of runtime library calls that help with the initial allocation/distribution

of data. Furthermore, the runtime facilitates the gathering of data at a specific node after the pro-

gram finishes execution, which is typically desired for processing the results or exporting them

to disk. These calls internally invoke the services of the NIU to move the data between the main

memories of the nodes. The calls are partly inspired by the ones provided by P-GAS languages

like Unified Parallel C (UPC)[25] as they tackle the same issues of allocation and data distribu-

tion within a global address space. However, we only provide a subset of the abstractions these

languages provide, as they typically utilize specialized compilers that perform many automatic

operations on the data to support such abstractions. However, the subset we provide is sufficient

to perform all the tasks at hand. The calls are categorized into three types: data allocation, data

movement and utility routines. Please refer to Appendix A for a detailed description of these

runtime calls.

Overall, programming for distributed execution is fundamentally the same as within a node,

however, more attention is given to the distribution of data and threads across the cores since the

cost of communication is much larger than that in the case of single-node execution.

Next, we re-visit the LU decomposition DDM-VM program and adapt it to support distributed

DDM execution.

5.5.3 LU Decomposition - Distributed Version

The principal concern when adapting programs for distributed execution is the distribution of

thread invocations and data across the nodes. In the case of the LU program, the majority of the

program threads are assigned the modulo policy to spread the invocations across all the cores in

the system. Therefore, almost all of the matrix blocks are required on all the nodes. Hence, we

apply a commonly utilized technique in distributed programming, in which we allocate a copy of

Sam
er

Aran
di

150

Global Address Space (shared)

Node 1 Node 0

A

AA
AA

A

Main Memory Main Memory

data matrix

(copy 0)

data matrix

(copy 1)

(pointer matrix)(pointer matrix)

Figure 55: Memory Layout for the LU Program - a System with Two Nodes and a 4x4 Blocked
Matrix

the matrix on each node. This simplifies the initial distribution step into the mere copying of the

matrix from the root node (after loading the matrix from disk) to the rest of the nodes. Note that

since the matrix copies are allocated in the GAS, they are visible to all the nodes and every node

allocates an auxiliary pointer matrix to reference all the copies. Figure 55 shows an example of

the data layout for the LU program on a system with two nodes and a 4x4 blocked matrix. For

every node, AA is the blocked matrix holding the data and A is the auxiliary pointer matrix holding

pointers to both the local copy of AA and the remote one on the other node.

Figure 56 depicts the code of the main() function. Comparing the code of the main in this

figure to the one illustrated previously in Figure 54-b, three changes in the code can be noticed,

which we highlight using shaded boxes. The first is the addition of a data distribution step that

takes place after the initialization. In this step the data matrix is distributed and the addresses are

communicated across the nodes. The second change is the setting of the scheduling policy of the

threads to static and modular, since the previously assigned roundrobin policy is not supported in

distributed execution. The third change is the addition of a gather data() function, which purpose

will be explained further on.

Sam
er

Aran
di

151

float AA[ROW*COL]; // local array holding the data, TILES = ROW/BSIZE; BSIZE: the block dimension
g_address ***A; // auxiliary pointer matrices
int main(int argc, char **argv)
{
// data initialization

// runtime initialization

my_id = GetNodeId();

// exchange the pointers among the nodes

for (n = 0 ; n < nodes_num ; n++)
for (m = 0 ; m < nodes_num ; m++)

if (m != n) // I don’t want to send to myself!

for (i = 0 ; i < TILES ; i++)
dvm_move(A[n][i],A[m][i],TILES*sizeof(g_address));

// copy the data array from the root to the rest of the nodes

for (n = 1 ; n < nodes_num ; n++)
dvm_move(A[0][0][0],A[n][0][0],ROW*COL*sizeof(float));

int short ConsumerList_comb[]={THREAD_COMB,THREAD_DIAG,THREAD_FRONT,THREAD_DOWN};
int short ConsumerList_loop_1[]={THREAD_LOOP_4,THREAD_LOOP_2,THREAD_DIAG,THREAD_LOOP_3};

DVM_CREATE_THREAD_TEMPLATE(THREAD_DIAG ,…,DVM_STATIC,0,…);
DVM_CREATE_THREAD_TEMPLATE(THREAD_FRONT ,…,DVM_MODULAR,MASK_INDX,…);
DVM_CREATE_THREAD_TEMPLATE(THREAD_DOWN ,…,DVM_MODULAR,MASK_INDX,…);
DVM_CREATE_THREAD_TEMPLATE(THREAD_COMB ,…,DVM_MODULAR,MASK_CNTX,…);

DVM_CREATE_THREAD_TEMPLATE(THREAD_LOOP_1,…,DVM_STATIC,0,…);
DVM_CREATE_THREAD_TEMPLATE(THREAD_LOOP_2,…,DVM_MODULAR,MASK_INDX,…);
DVM_CREATE_THREAD_TEMPLATE(THREAD_LOOP_3,…,DVM_MODULAR,MASK_INDX,…);
DVM_CREATE_THREAD_TEMPLATE(THREAD_LOOP_4,…,DVM_MODULAR,MASK_INDX,…);
DVM_CREATE_THREAD_TEMPLATE(THREAD_LOOP_5,…,DVM_MODULAR,MASK_INDX,…);

DVM_UPDATE_THREAD(THREAD_DIAG,0);

for (j=1 ; j < TILE ;j++)
{

DVM_UPDATE_THREAD(THREAD_FRONT,MAKE_CONTEXT_D(0,j));
DVM_UPDATE_THREAD(THREAD_DOWN ,MAKE_CONTEXT_D(0,j));
for(i=1 ; i < TILES ; i++)

DVM_UPDATE_THREAD(THREAD_COMB ,MAKE_CONTEXT_T(0,j,i);
}

DVM_UPDATE_THREAD(THREAD_LOOP_1,0);

DVM_EXECUTE(); // this will block until all threads finish execution

gather_data(0); // collect gather the results from all the nodes to the root node

// verification, use results here
}

distribution of data

gathering of data

Using static and

modulo policies

Figure 56: Distributed DDM-VM LU Program - main() functionSam
er

Aran
di

152

Data Forwarding

The forwarding of data between producers and remote consumers during the execution is

performed automatically by the DDM-VM, however, the programmer is responsible for assigning

the addresses of the produced data on the remote node for the DDM-VM to be able to perform this

task. The programmer conveys this information in the DFPL macros specifying the input/output

of the threads.

To facilitate this task we adopt the following simple convention: every producer that poten-

tially has multiple remote consumers forwards the produced data to all the nodes via the for-

ward list parameter of the DFP macro. The DDM-VM is cleverly designed so that only the for-

wards that correspond to actual remote consumers are executed. This is applied when the RC

request is to be sent to a remote consumer. The TSU checks the Forward Table (FT) and only the

forwards with a destination address belonging to the remote node are piggy-backed in the same

message. When the thread finishes execution the TSU discards any redundant forwards. Using

this simple technique the forwarding mechanism is tremendously simplified without suffering any

overheads. Figure 57 illustrates the DFPL definition macros for the LU application. The figure

is better understood when compared with Figure 54-a of the single-node LU application. The

only differences (indicated via shaded boxes) are the addition of the forward list parameter to the

extended variant of the DVM SET DFP, which we call DVM SET DFP EX and the use of GAS

addresses instead of conventional memory addresses to refer to data. The forward list parameter

is filled using the fill forward list function.Sam
er

Aran
di

153

e

void fill_forward_list(int row,int col,int my_id,int total_nodes)
{

int count = 0;

for (n=0; n< total_nodes; n++)
if (n != my_id)

forward_list[count++]=A[n][row][col];

SetNull(&forward_list[count]); // the forward list is null terminated
}

DVM_CACHEFLOW_DFPL_START();
int my_id = GetNodeId(); // returns node_id of the local node
int total_nodes = GetNodesCount(); // returns total number of nodes in the system

DVM_START_DFPL(THREAD_DIAG)
GET_CONTEXT_S(DVM_CONTEXT,k);
fill_forward_list(k,k,my_id,total_nodes);
DVM_SET_DFP_EXA[my_id][k][k],BS*BS*sizeof(float),DATA_READ|DATA_WRITE,forward_list);

DVM_END_DFPL()

DVM_START_DFPL(THREAD_FRONT)
GET_CONTEXT_D(DVM_CONTEXT,k,j);
DVM_SET_DFP(A[my_id][k][k],BS*BS*sizeof(float),DATA_READ);
fill_forward_list(k,j,my_id,total_nodes);
DVM_SET_DFP_EX(A[my_id][k][j],BS*BS*sizeof(float),DATA_READ|DATA_WRITE,forward_list);

DVM_END_DFPL()

DVM_START_DFPL(THREAD_DOWN)
GET_CONTEXT_D(DVM_CONTEXT,k,j);
DVM_SET_DFP(A[my_id][k][k],BS*BS*sizeof(float),DATA_READ);
fill_forward_list(j,k,my_id,total_nodes);
DVM_SET_DFP_EX(A[my_id][j][k],BS*BS*sizeof(float),DATA_READ|DATA_WRITE,forward_list);

DVM_END_DFPL()

DVM_START_DFPL(THREAD_COMB)
GET_CONTEXT_T(DVM_CONTEXT,k,j,i);
DVM_SET_DFP(A[my_id][j][k],BS*BS*sizeof(float),DATA_READ);
DVM_SET_DFP(A[my_id][k][i],BS*BS*sizeof(float),DATA_READ);
fill_forward_list(j,k,my_id,total_nodes);
DVM_SET_DFP_EX(A[my_id][j][i],BS*BS*sizeof(float),DATA_READ|DATA_WRITE,forward_list);

DVM_END_DFPL()
DVM_CACHEFLOW_DFPL_END();

function to fill

the forward_list

Get current node_id & total number of nodes

fill the forward_list

pass the forward_list parameter

Figure 57: Distributed DDM-VM LU Program - DFPL DefinitionSam
er

Aran
di

154

void gather_data(int root_id)

{

int i,j,k,core_id,node_id,my_id,cores_count;

my_id = GetNodeId();

cores_count = GetCoresCount();

for (k = 0 ; k < DIM ; k++)

for (i = k+1 ; i < DIM ; i++)

{

// this is for the front thread

core_id = i % cores_count; // get the core to which the invocation of front that

// produced this tile is scheduled

node_id = GetCoreNodeId(core_id); // get the node which this core belongs to

// get this tile if it was produced by other node than the root and its not a diagonal tile

if (node_id != root_id && i != k)

dvm_move(A[node_id][k][i],A[root_id][k][i],BSIZE*BSIZE*sizeof(DATA_TYPE));

// this is for the down thread

core_id = i % cores_count; // get the core to which the invocation of down that

// produced this tile is scheduled

node_id = GetCoreNodeId(core_id); // get the node which this core belongs to

// get this tile if it was produced by other node than the root and its not a diagonal tile

if (node_id != root_id && i != k)

dvm_move(A[node_id][i][k],A[root_id][i][k],BSIZE*BSIZE*sizeof(DATA_TYPE));

}

}

Figure 58: Distributed DDM-VM LU Program - gather data() function

Gathering Data

Gathering the result data into the root is performed by the gather data() function called right

after the DDM EXECUTE macro in the main() function shown at Figure 56. The code of this

function is depicted in Figure 58. This function iterates over the tiles of the matrix and copies

the tile from the node where it was lastly updated to the corresponding tile position on the matrix

located on the root node.

The function makes use of the modulo % operator to find out the core where each tile was

produced and then using the GetCoreNodesId() utility function determines if the core belongs

to a node other than the root and if so the tile is copied.

The rest of the DDM-VM program including the code of the threads and the dependency graph

is not changed. Moreover, this program supports any number of nodes and any number of cores

Sam
er

Aran
di

155

per node without the need for any change. In fact, this program runs normally on a single-node as

well.

Sam
er

Aran
di

156

5.6 DDM-VM Optimizations

In this section we discuss some of the optimizations deployed to improve the DDM-VM per-

formance and manage the system resources.

5.6.1 Consumer Updating Optimizations

Incremental Update Optimization

If we examine the code of THREAD 2 in Figure 45 we notice that each invocation of this thread

(except for the last one) updates the consuming invocation that corresponds to the iteration with the

same outer-loop index and the next inner loop index. In other words the consumer invocation has

the same context value as the producer invocation except for the lower part, which is at a distance of

+1. This pattern occurs frequently in threads implementing loops where the consumer invocation

corresponds to the next inner or outer loops iteration. In such cases instead of creating the whole

context value every time and communicating it to the TSU we use a set of operators that inform

the TSU the relation between the producer invocation and the consumer invocation so that the

TSU deduces the value of the latter. This optimization can be utilized when the size of the context

is large and the communication mechanism between the cores and the TSU is expensive. The

DVM UPDATE(CONS,OP,VALUE) macro implements this optimization via the OP and VALUE

parameters. The possible values of OP parameters include:

• OP SET CONTEXT: informs the TSU to decrement the RC of consumer CONS with a

context equal to VALUE, i.e., the optimization is not applied here.

• OP INC INDX: informs the TSU to decrement the RC of of consumer CONS with a context

that is equal to the current producer thread context except that the part corresponding the to

the most-inner loop is incremented by VALUE+1. This is used with threads that has an arity

Sam
er

Aran
di

157

of 1, 2 or 3, i.e., threads implementing one-level loop, two-level or three-level nested loops.

The reason we increment by Value+1, is so that in the default case (when VALUE=zero) the

increment amount is 1, which is the more general case.

• OP INC CNTX: informs the TSU to decrement the RC of of consumer CONS with a context

that is equal to the current producer thread context except that the part corresponding the

to the outer-most loop is incremented by VALUE+1. This is used with threads that has an

arity of 2 or 3.

• OP INC INDX2: informs the TSU to decrement the RC of of consumer CONS with a

context that is equal to the current producer thread context except that the part corresponding

the to the 2nd most-inner loop is incremented by VALUE+1. This is used with threads that

has an arity of 3.

• OP NOP: informs the TSU to decrement the RC of of consumer CONS with a context that

is equal to the current producer thread context.

• OP FIN: informs the TSU that this update request is the last for the currently executing

thread and so the thread has finished execution. This flag is an optimization that piggy-

backs this notification on the update request. If this flag is not set by the programmer, the

DVM THREAD END() macro located at end of the thread code automatically informs the

TSU that the thread finished.

Note that if CONS is set to CONS NONE no update operation occurs. Moreover, VALUE can

be negative to cater for the cases when a loop proceeds in the reverse order. Figure 59 shows the

result of applying this optimization to the code of THREAD 2.

Sam
er

Aran
di

158

e

DVM_THREAD_START(TID_THREAD_2);

DVM_LOOKUP(float *,A);

DVM_LOOKUP(float *,B);

DVM_LOOKUP(float *,C);

GET_CONTEXT_D(DVM_CONTEXT,i,j);

MultAdd_Block(C,A,B);

DVM_UPDATE(CONS1,OP_INC_INDX,1);

if (j < N-1)

DVM_THREAD_END();

Figure 59: The code of THREAD 2 of the blocked matrix multiplication DDM-VM program,
shown previously in Figure 45, after applying the incremental update optimization

Compound Update Optimization

Another optimization with a more substantial effect on the performance is the compound up-

date optimization. To understand this optimization, we examine the code of THREAD 1 in Fig-

ure 45 and the code of the diag, front and down threads in Figure 53. We find that for each

iteration of the enclosing loop a call is made to the DVM UPDATE macro to update the RC of one

invocation of the consumer(s) threads. For every such call a message is sent to the TSU and an

entry is inserted in one of the TSU Queues. This pattern where consecutive invocations of a con-

sumer thread are updated occurs frequently in DDM-VM programs. To optimize this operation

the special macro DVM UPDATE MULTIPLE is provided to send a special request to the TSU

for decrementing multiple consecutive invocations of a consumer thread. The TSU manages this

special request internally in an optimized manner, which reduces overheads significantly. Using

this macro doesn’t change the semantics of the program nor the synchronization graph. Figure 60

shows the result of applying this optimization to the code of THREAD 1.

e

DVM_THREAD_START(TID_THREAD_1);

DVM_UPDATE_MULTIPLE(CONS1,MAKE_CONTEXT_D(0,0),

MAKE_CONTEXT_D(M-1,0);

DVM_THREAD_END();

Figure 60: The code of THREAD 1 of the blocked matrix multiplication DDM-VM program,
shown previously in Figure 45, after applying the compound update optimization

Sam
er

Aran
di

159

Figure 61 shows the result of applying this optimization to the code of the diag, front and

down threads.

e

DVM_THREAD_START(TID_DIAG);

DVM_LOOKUP(float *,T);

GET_CONTEXT_S(DVM_CONTEXT,k);

diag(T); // T=A[k][k]

if (k < TILES-1){

DVM_UPDATE_MULTIPLE(CONS1,MAKE_CONTEXT_D(k,k+1),

MAKE_CONTEXT_D(k,TILES-1));

DVM_UPDATE_MULTIPLE(CONS2,MAKE_CONTEXT_D(k,k+1),

MAKE_CONTEXT_D(k,TILES-1));

}

DVM_THREAD_END();

DVM_THREAD_START(TID_FRONT);

DVM_LOOKUP(float *,T);

DVM_LOOKUP(float *,P);

GET_CONTEXT_D(DVM_CONTEXT,k,j);

front(T,P); //T=A[k][k] P=A[k][j]

DVM_UPDATE_MULTIPLE(CONS1,MAKE_CONTEXT_T(k,k+1,j),

MAKE_CONTEXT_T(k,TILES-1 ,j));

DVM_THREAD_END();

DVM_THREAD_START(TID_DOWN);

DVM_LOOKUP(float *,T);

DVM_LOOKUP(float *,Q);

GET_CONTEXT_D(DVM_CONTEXT,k,j);

down(T,Q); // T=A[k][k], Q=A[j][k]

DVM_UPDATE_MULTIPLE(CONS1,MAKE_CONTEXT_T(k,j,k+1),

MAKE_CONTEXT_T(k,j,TILES-1));

DVM_THREAD_END();

Figure 61: The code of diag, front and down threads of the blocked LU decomposition DDM-VM
program, shown previously in Figure 53, after applying the compound update optimization

The DVM UPDATE MULTIPLE(CONS,VALUE1,VALUE2) takes three parameters, the first

one specifies the consumer thread and the 2nd and 3rd ones specify, respectively, the start and end

bounds of the consecutive range of consumer thread invocations to decrement their RC. The TSU

extracts the bounds from the two values according to the arity of the consumer thread. For exam-

ple the DVM UPDATE MULTIPLE macro in the optimized THREAD 1 code is used to decrement

the RC of the invocations of THREAD 2, which has an arity of 2, since it implements a two-level

nested loop. Therefore, the MAKE CONTEXT D macro is used to create the bound values of the

targeted invocations. The bounds specify invocations with the following consecutive context val-

ues: <0,0>,<1,0>,<2,0>,..., <M-1,0>. On the other hand, DVM UPDATE MULTIPLE macro

Sam
er

Aran
di

160

in the optimized code of the front thread is used to decrement the RC of the invocations of the

comb thread, which has an arity of 3. Therefore, the MAKE CONTEXT T macro is used to spec-

ify the invocations with the following consecutive context values:

<k,k+1,j>,<k,k+2,j>,<k,k+3,j>,...,<k,TILES-1,j>.

5.6.2 Eliminating Redundant Dependencies

As noted in Section 5.4.1 when mapping code containing loops to DDM threads, in many

programs, the loop indices directly correspond to the mapped threads context value. As the loop

indices are extracted from the context in this case, it is possible to remove the loop index main-

tenance code. In effect this results in removing the now redundant control-flow dependencies

originally driving the program execution, since the data-dependencies are enough to drive the

execution in the mapped program.

This optimization considerably cuts down the amount of dependencies in the program and

effectively the operations performed during the execution, thus possibly reducing the execution

time, power consumption and other system resources.

Upon revisiting The LU decomposition in Section 5.4.5, it is clear from studying the depen-

dency graph in Figure 52 that even if we remove the control-flow dependencies there is at least one

incoming data-dependence arrow at each thread invocation, i.e., the data-dependencies are enough

to drive the execution. To apply the proposed optimization, the threads implementing the loops

iterators (threads with the prefix LOOP) are removed and the the RC of the rest of the threads

(threads consuming and producing data) is reduced by 1 to account for the removed control-flow

dependency.

Figure 62 depicts the full code of the LU decomposition program after applying this optimiza-

tion in addition to the optimization of Section 5.6.1.

Sam
er

Aran
di

161

e

DVM_THREAD_START(TID_DIAG);
DVM_LOOKUP(float *,T);
GET_CONTEXT_S(DVM_CONTEXT,k);

diag(T); // T=A[k][k]

if (k < TILES-1){
DVM_UPDATE_MULTIPLE(CONS1,MAKE_CONTEXT_D(k,k+1),

MAKE_CONTEXT_D(k,TILES-1));
DVM_UPDATE_MULTIPLE(CONS2,MAKE_CONTEXT_D(k,k+1),

MAKE_CONTEXT_D(k,TILES-1));
}
DVM_THREAD_END();

DVM_THREAD_START(TID_FRONT);
DVM_LOOKUP(float *,T);
DVM_LOOKUP(float *,P);
GET_CONTEXT_D(DVM_CONTEXT,k,j);

front(T,P); //T=A[k][k] P=A[k][j]

DVM_UPDATE_MULTIPLE(CONS1,MAKE_CONTEXT_T(k,k+1,j),
MAKE_CONTEXT_T(k,TILES-1 ,j));

DVM_THREAD_END();

DVM_THREAD_START(TID_DOWN);
DVM_LOOKUP(float *,T);
DVM_LOOKUP(float *,Q);
GET_CONTEXT_D(DVM_CONTEXT,k,j);

down(T,Q); // T=A[k][k], Q=A[j][k]

DVM_UPDATE_MULTIPLE(CONS1,MAKE_CONTEXT_T(k,j,k+1),
MAKE_CONTEXT_T(k,j,TILES-1));

DVM_THREAD_END();

DVM_THREAD_START(TID_COMB);
DVM_LOOKUP(float *,P);
DVM_LOOKUP(float *,Q);
DVM_LOOKUP(float *,S);
GET_CONTEXT_T(DVM_CONTEXT,k,j,i);

comb(P,Q,S); // P=A[j][k], Q=A[k][i], S=A[j][i]

// switch actor

If (j == k+1 && i == k+1) //update DIAG
DVM_UPDATE(CONS2,OP_SET_CONTEXT,MAKE_CONTEXT_S(k+1));
else if (j == k+1) //update FRONT
DVM_UPDATE(CONS3,OP_SET_CONTEXT,MAKE_CONTEXT_D(j,i));
else if (i == k+1) //update DOWN
DVM_UPDATE(CONS4,OP_SET_CONTEXT,MAKE_CONTEXT_D(i,j));
else //update COMB
DVM_UPDATE(CONS1,OP_SET_CONTEXT,MAKE_CONTEXT_T(k+1,j,i));
DVM_THREAD_END();

(b) (d)

diag

downfront

comb

DVM_CACHEFLOW_DFPL_START();
DVM_START_DFPL(THREAD_DIAG)
GET_CONTEXT_S(DVM_CONTEXT,k);
DVM_SET_DFP((void*)A[k][k],BS*BS*sizeof(float),DATA_READ|DATA_WRITE);

DVM_END_DFPL()

DVM_START_DFPL(THREAD_FRONT)
GET_CONTEXT_D(DVM_CONTEXT,k,j);
DVM_SET_DFP((void*)A[k][k],BS*BS*sizeof(float),DATA_READ);
DVM_SET_DFP((void*)A[k][j],BS*BS*sizeof(float),DATA_READ|DATA_WRITE);

DVM_END_DFPL()

DVM_START_DFPL(THREAD_DOWN)
GET_CONTEXT_D(DVM_CONTEXT,k,j);
DVM_SET_DFP((void*)A[k][k],BS*BS*sizeof(float),DATA_READ);
DVM_SET_DFP((void*)A[j][k],BS*BS*sizeof(float),DATA_READ|DATA_WRITE);

DVM_END_DFPL()

DVM_START_DFPL(THREAD_COMB)
GET_CONTEXT_T(DVM_CONTEXT,k,j,i);
DVM_SET_DFP((void*)A[j][k],BS*BS*sizeof(float),DATA_READ);
DVM_SET_DFP((void*)A[k][i],BS*BS*sizeof(float),DATA_READ);
DVM_SET_DFP((void*)A[j][i],BS*BS*sizeof(float),DATA_READ|DATA_WRITE);

DVM_END_DFPL()
DVM_CACHEFLOW_DFPL_END();

float AA[ROW*COL];
float *A[TILES][TILES]; // TILES = ROW/BSIZE;
int main(int argc, char **argv)
{

// data initialization

// runtime initialization

int short ConsumerList[]={THREAD_COMB,THREAD_DIAG,
THREAD_FRONT,THREAD_DOWN};

DVM_CREATE_THREAD_TEMPLATE(THREAD_DIAG, 2,2,
THREAD_FRONT,THREAD_DOWN,1,
DVM_RROBIN,0,DVM_ARITY_1,
SM_PERFECT,
MAKE_CONTEXT_S(make_mask(DIM-1)));

DVM_CREATE_THREAD_TEMPLATE(THREAD_FRONT,3,1,
THREAD_COMB,0,2,
DVM_RROBIN,0,DVM_ARITY_2,
SM_PERFECT,

MAKE_CONTEXT_D(make_mask(DIM-1),make_mask(DIM-1)));

DVM_CREATE_THREAD_TEMPLATE(THREAD_DOWN, 3,1,
THREAD_COMB,0,2,
DVM_RROBIN,0,DVM_ARITY_2,
SM_PERFECT,

MAKE_CONTEXT_D(make_mask(DIM-1),make_mask(DIM-1)));

DVM_CREATE_THREAD_TEMPLATE(THREAD_COMB, 4,4,
0,ConsumerList_Comb,3,
DVM_RROBIN,0,DVM_ARITY_3,
SM_PERFECT,

MAKE_CONTEXT_T(make_mask(DIM-1),
make_mask(DIM-1),make_mask(DIM-1)));

DVM_UPDATE_THREAD(THREAD_DIAG,0);
DVM_UPDATE_THREAD_MULTIPLE(THREAD_FRONT,

MAKE_CONTEXT_D(0,1),MAKE_CONTEXT_D(0,TILES-1));

DVM_UPDATE_THREAD_MULTIPLE(THREAD_DOWN,
MAKE_CONTEXT_D(0,1),MAKE_CONTEXT_D(0,TILES-1));

DVM_UPDATE_THREAD_MULTIPLE(THREAD_COMB,
MAKE_CONTEXT_T(0,1,1),MAKE_CONTEXT_T(0,TILES-1,TILES-1));

DVM_EXECUTE();//block until all threads finish

// verification, use results here
}

(a) (b)

Figure 62: The DDM-VM Blocked LU decomposition application after optimization. (a) The
main() function code (b) The code of the DDM threads (c) The DFPL definition macros (d) the
dependency graph

Sam
er

Aran
di

162

It is important to note that in certain cases we do not employ this optimization even if it is

applicable. In the case of programs with data-dependencies that cannot be uncovered at compile

time, the technique we utilize for handling such programs (described in Chapter 6) requires the

existence of at least one explicit dependency. In many cases the only explicit dependency is a

control-flow dependency and so it cannot be removed. Moreover, we have found that, in general,

applying the loop throttling optimization (described in the next section) is more convenient and

straightforward to implement in the presence of the control-flow dependencies.

5.6.3 Resource Management

Unlike other techniques that have difficulty extracting parallelism, Dynamic Data-Flow based

techniques have the property of exposing the maximum potential parallelism which could over-

whelm the resources of the machine. This is a classical problem in Data-Flow execution [27, 103].

In DDM-VM the most critical resources are the TSU and the caches. DDM-VM controls the

amount of concurrency to match the available resources both implicitly by the TSU and explicitly

at the level of DDM-VM programs.

TSU Resource Management

The operations of the TSU matches the status of the TSU resources: TSU queues and struc-

tures. When the Extended Firing Queue (ExFQ) holding the information of ready threads is full

or the Local Store (LS) memory of a certain SPE is full, the S-CacheFlow module in the TSU is

disabled until some resources are freed. This type of control mechanism is transparent by default,

but can be controlled using the DDM-VM configuration files.

Sam
er

Aran
di

163

Resource Management in Programs

The programmer can apply a technique similar to loop throttling (bounding) [27] to limit

the number of thread invocations that are active concurrently. This technique is implemented by

introducing auxiliary dependencies in the program graph.

<0,0>

<0,1>

<0,2>

<0,N>

<0>

<1,0>

<1,1>

<1,2>

<1,N> <M,N>

<M,0>

<M,1>

<M,2>

…
.

….

….

….

….

….

…
.

…
.

<2,0>

<2,1>

<2,2>

<2,N>

…
.

<3,0>

<3,1>

<3,2>

<3,N>

…
.

<0,0>

<0,1>

<0,2>

<0,N>

<M>

<1,0>

<1,1>

<1,2>

<1,N>
<M,N>

<M,0>

<M,1>

<M,2>

….

….

….

….

….

<2,0>

<2,1>

<2,2>

<2,N>

<3,0>

<3,1>

<3,2>

<3,N>

<0> <1> <2> <3>

…
.

…
.

…
.

…
.

…
.

Thorttling

Limit=2

(a)
Figure 63: Resource Management - Throttling with limit set to 2

Figure 63 illustrates the dynamic dependency graph for the example in Figure 44 after applying

this technique on THREAD 1 implementing the outer loop. The limit value for the throttling is set

to 2 in this example. This value can be determined at run-time and adapted to the problem size

and number of execution units.

Another technique is to partition the program into DDM Blocks. A DDM block is equivalent

to a function or a loop body in the original program, and so, each block contains a subset of the

DDM threads in the program. This reduces the demand on the TSU resources as only a subset of

the DDM threads will be executing at a given time. Figure 64 illustrates the dependency graph of

a program that is split into three DDM blocks.
Sam

er
Aran

di

164

inlet thread

outlet threadoutlet thread

Block 0 Block 1

Block 2

inlet thread

outlet thread

inlet thread

inlet thread

Figure 64: Resource Management - Partitioning a program into DDM blocks

5.6.4 Synchronization Memory Organization

Dynamic Data-Flow execution involves the generation and consumption of tagged data to-

kens [11] in the system. In DDM all the tagged token matching operations are reduced into virtual

memory translations and implemented as updates to the Synchronization Memory (SM) structure

allocated in main memory. The SM holds the readycount values of the different invocations of the

DDM threads.

As the operation of the SM is critical for the performance of DDM execution, we have exper-

imented with 3 different implementations:

• Direct: Each invocation of a DDM thread is allocated a unique SM entry. The allocation

occurs at the time of creating the thread template. Accessing the entry at runtime is a direct

operation that uses part of the context to index the SM.

Sam
er

Aran
di

165

0 2 1 2 2 1Thread 1 (RC=3)

0 1 3 2 M-1 1Thread 2 (RC=2)

Thread N-1 …..

2 2 1 3 ... 3Thread 1 (RC=3)

1 1 2 2 ... 1Thread 2 (RC=2)

1 2

Thread ID Context

map

Thread N-1 …..

iteration 0 1 2 3 M...

1 2

Thread ID Context

hash

2 2 1 3 1 1 2 2 0 2 2 1 -1 -1 -1 -1

1 2

Thread ID Context

hash

2

...

1 0-30 2 0-30 2 (M-4)-(M-1)0
0

2 bitsn-2 bits

direct

associative

hybrid

Preallocated

RC array

Hashtable

Preallocated

RC buffer

Intermediate

entries

ThreadId

Context key

First iteration – Last iteration

4 4 3 -1

Figure 65: Access Mechanisms in the Three SM Implementations

• Associative: A standard hashtable is used to allocate the SM entries. The allocation is

performed as the execution proceeds. Accessing the entry is an associative operation.

• Hybrid: A pre-allocated buffer is used for holding the SM entries. Allocation and de-

allocation within the buffer are performed as execution proceeds. Accessing the entry is

performed using an associative operation that uses part of the context to locate a list of

entries in the buffer, followed by a direct operation using the remaining part of the context

to index the exact entry.
Sam

er
Aran

di

166

The Direct Implementation

The direct implementation involves the least runtime overhead for allocating and accessing

the SM entries. However, the programmer is required to provide information on the maximum

value the context of the thread would reach, which is typically conveyed from loop bounds. This

information is conveyed in the SM VALUE parameter of the DVM SET THREAD TEMPLATE

macro shown in Table 1. This parameter is a bit mask indicating the maximum value the different

parts of the context would reach (expressed as the closest power of 2 number). For example, a

thread implementing a two-level nested loop with the outer loop index ranging from 0 to 100 and

the inner loop index from 0 to 250 has a mask value of: 0x007f00ff. This assumes a 32-bit context

with the higher 16-bit representing the outer loop index and the lower 16-bit representing the

inner loop index. Thus, a 384 entry array is preallocated for holding the SM entries of this thread.

The mask is also used at runtime in combination with the thread invocation context to access the

corresponding SM entry. This method results in redundant allocations if the loop indices don’t

start from 0 or if the upper bound of the loop is not a power of 2. This can be avoided by providing

more information to the TSU on the exact number of entries to allocate and the exact bounds,

which would require storing more information and/or a separate interface for the allocation of

SM entries. We didn’t opt for this as the implemented method was largely adequate for all the

applications we ran.

The Associative Implementation

The associative implementation requires no information from the programmer and has no

bound on the size it can reach, but its performance depends on the associative search and the hash

function.

Sam
er

Aran
di

167

The Hybrid Implementation

The hybrid implementation takes advantage of locality to reduce the size of the SM by allo-

cating a list of entries at a time and most importantly re-using the entries within the preallocated

buffer. Increasing the number of entries per list increases the opportunity of benefiting from local-

ity, but at the same time increases the potential of using up the preallocated buffer if the updated

invocations are sparse (locality is poor). Each list is associated with a counter indicating the num-

ber of valid entries in the list. When the list is allocated the counter is initialized and every time

the value of an entry reaches zero the counter is decremented and once it reaches zero the list is

marked as free.

Figure 65 depicts the the mechanism to access an SM entry associated with a specific thread

invocation (Thread Id with context) in the three implementations. In this example, the hybrid

implementation utilizes four entries per list.

Supporting Distributed Execution

As mentioned in Section 4.2.1 distributed DDM execution makes the allocation of SM entries

more complex since the allocation spans multiple nodes in the system. The allocation of the SM

entries is directly influenced by the scheduling policy assigned to the thread. If a thread is assigned

the static or modulo policies, the TSU has enough information to handle the allocation for the three

SM implementation. Figure 66-a illustrates the allocation layout for a thread with 200 invocations

[0-199] that is assigned the modulo policy and the direct SM implementation, on a system that has

two nodes with 2 cores each. Because the number of nodes, the number of cores within a node,

the total range of the invocations and the modulo operator are available to the TSU, an efficient

allocation scheme is reached.

Sam
er

Aran
di

168

Synchronization Memory

Node 0

Thread_1

0:

1:

4:

…

197:

…

context

TSU Structures

RC

5:

196:

100

entries

Synchronization Memory

Thread_1

2:

3:

6:

…

199:

…

context

TSU Structures

RC

7:

198:

100

entries

Node 1

(a)

Synchronization Memory

Node 0

Thread_1

0:

1:

2:

…

199:

…

context

TSU Structures

100:

198:

100

Entries

(active)

RC

99:

…

101: 100

Entries

(unused)

Synchronization Memory

Thread_1

0:

1:

2:

…

199:

…

TSU Structures

100:

198:

100

Entries

(unused)

RC

99:

…

101: 100

Entries

(active)

Node 1

(b)

Synchronization Memory

Node 0

Thread_1

0:

1:

2:

…

99:

…

context

TSU Structures

RC

3:

98:

100

entries

0

99

first invocation

last invocation

(c)

Node 1

Thread_1 …

RC

100

entries

100

199

first invocation

last invocation

Synchronization Memory

TSU Structures

100:

101:

102:

…

199:

103:

198:

context

extra

info
extra

info

Figure 66: SM Allocation in Distributed DDM Execution

Sam
er

Aran
di

169

On the other hand, if the thread is assigned a custom policy, the three SM implementation

need to be re-examined: The associative implementation requires no change as the entries will

be allocated on-demand on the nodes where the corresponding thread invocations are mapped to

execute. The direct implementations, however, requires extra care as less information is available

to the TSU in this case. A simple technique would be to allocate the entire range of the SM entries

on each node although only part might be used. This greatly simplifies the DDM-VM program

but results in redundant allocations. A more optimized technique provides more information to

the TSU on the SM entries to allocate for each node so as to avoid redundant allocations. Figure

66-b & c illustrates the two techniques, respectively. The thread is assigned a custom schedule

that maps invocations [0-99] to node 0 and invocations [100-199] to node 1. The same reasoning

applies to the hybrid implementation albeit, with far-less redundant allocations. In the current

implementation of the DDM-VM we utilize the first simple technique with custom policies as it

requires no extra effort from the programmer.

5.7 T-Flux Directives

The 2nd implementation of DDM, the TFlux platform [113], offers a preprocessor tool [119,

114] that allows applications to be easily ported to TFlux by augmenting C code with a set of

compiler directives. The preprocessor generates code that contains calls to the TFlux runtime

system that can be compiled with commodity compilers.

As a collaborative effort with Andreas Diavastos from the TFlux team, the preprocessor tool

was extended to generate code that targets the DDM-VM. The generated code consists of C code

augmented with the DDM-VM macros.

Sam
er

Aran
di

170

We have utilized a subset of the original TFlux directives without modifications and extended

another subset to add the information needed for generating the macros. A full description of the

utilized TFlux macros is available in Appendix B.

To demonstrate programming with the directives we present the LU decomposition (previously

shown in Figure 5.4.5) coded using the extended TFlux directives in Figure 67.

The ddm kernel directive specifies utilizing 4 cores for executing the program threads.

The ddm startprogram and ddm endprogram directives specify the boundaries of the

program. The ddm block and ddm endblock directives specify the boundaries of the only

DDM block in the program.

The ddm thread directive marks the start of the threads and provides part of the meta-data

of the thread: The THREAD ID, the scheduling policy assigned to the thread, the RC and the arity

of the thread. It also specifies the thread input/output data. The ddm endthread marks the end

of the thread and specifies, via the update and cond update keywords, the THREAD ID and

context of the consumer threads which RC is to be decremented by the TSU. The @context

keyword and the @ operator are used to access the value of the context and create new context

values, respectively.

As shown in the figure the code is more compact and clear to read. The program is written in

one file including the thread input/output data definitions. The TFlux preprocessor generates one

file in the case of the DDM-VMs and two files in the case of the DDM-VMc (one file for the part

of the program running on the PPE and the other for the part running on the SPEs).

5.8 GCC Auto-Parallelization

The goal of this collaborative effort with Petros Panagyi and other researchers in the DDM

group is the automatic generation of DDM-VM code using the GNU Compilation Collection

Sam
er

Aran
di

171

e

@(@context,@context+1):

@(@context, TILES - 1):

bUpdate);

#pragma ddm thread TID_DOWN kernel(rrobin) readycount 2 arity 2
import(float *T:A[@context.1][@context.1]:BLOCK_SIZE);
import_export(float *Q:A[@context.0][@context.1]:BLOCK_SIZE);

down(T,Q);

#pragma ddm endthread update(TID_COMB,@(@context.1,@context.0,
@context.1+1):

@(@context.1,@context.0,

TILES-1);

TID_DOWN,

float AA[ROW*COL];
float *A[TILES][TILES]; // TILES = ROW/BS; BLOCK_SIZE=BS*BS*sizeof(float);
int main(int argc, char **argv)
{
// data initialization
// runtime initialization

#pragma ddm kernel 4

#pragma ddm startprogram

#pragma ddm block 1

#pragma ddm endblock

#pragma ddm update (TID_DIAG : @(0))
#pragma ddm update (TID_FRONT: @(0,1):@(0,TILES-1))
#pragma ddm update (TID_DOWN : @(0,1):@(0,TILES-1))
#pragma ddm update (TID_COMB : @(0,1,1):@(0,TILES-1,TILES-1))

#pragma ddm endprogram

// verification, use results here
}

#pragma ddm thread TID_DIAG kernel(rrobin) readycount 1 arity 1
import_export(float *T:A[@context][@context]:BLOCK_SIZE)

diag(T);

update = @context<TILE-1 ;

#pragma ddm endthread cond_update(TID_FRONT,@(@context,@context+1):
@(@context, TILES - 1):

update,

#pragma ddm thread TID_FRONT kernel(rrobin) readycount 2 arity 2
import(float *T:A[@context.1][@context.1]:BLOCK_SIZE)
import_export(float *P:A[@context.1][@context.0]:BLOCK_SIZE)

front(T,P);

#pragma ddm endthread update(TID_COMB,@(@context.1,@context.1+1,
@context.0):

@(@context.1,TILES-1,

@context.0);

#pragma ddm thread TID_COMB kernel(RROBIN) readycount 3 arity 3
import(float *P : A[@context.1][@context.0]:BLOCK_SIZE,

float *Q : A[@context.0][@context.2]:BLOCK_SIZE)
import_export(float *S : A[@context.1][@context.2]:BLOCK_SIZE)

comb(P,Q,S);

if (j == @contex.0+1 && @context.2 == @conetxt.0+1) //update DIAG
update_diag = 1;

else if (@context.1 == @context.0+1) //update FRONT
update_front = 1;

else if (@context.2 == @context.0+1) //update DOWN
update_down = 1;

else //update COMB
update_comb = 1;

#pragma ddm endthread cond_update(TID_DIAG :@(@context.1+1):update_diag,
TID_FRONT:@(@context.1,@context.0):update_front,

TID_DOWN :@(@context.2,@context.1):update_down ,

TID_COMB :@(@context.0+1,@conetxt.1,@context.0):update_comb);

Figure 67: LU Decomposition - Using the extended TFlux directives

Sam
er

Aran
di

172

(GCC) compiler. In particular, it utilizes the GCC’s GRAPHITE (GIMPLE Represented as Poly-

hedra with Interchangeable Envelopes) [97, 17, 120] framework, which adds high-level loop nest

optimizations in GCC, as the core analysis and transformation engine that is leveraged to imple-

ment a DDM-centric parallelization pass. This pass takes advantage of the existing GCC infras-

tructure and adds the necessary support for generating DDM threads with the appropriate calls to

the DDM-VM. We provide a brief description of the GRAPHITE pass in GCC, before presenting

the work on generating DDM code using GCC.

The GRAPHITE Infrastructure

The GRAPHITE pass in GCC performs the following tasks:

• Extracts the polyhedral model representation out of the GCC three-address GIMPLE repre-

sentation. This is performed in two stages:

1. The Static Control Parts (SCoPs) are first outlined from the control-flow graph. SCoPs

are Single-Entry-Single-Exit regions of the control-flow graphs. The only memory

references that are allowed within SCoPs are affine accesses on arrays.

2. The polyhedral representation is then constructed for each SCoP. The polyhedral in-

formation is attached to each basic block in a SCoP and consists of iteration domain,

schedule and data access functions. All these information is represented as systems of

affine equalities and inequalities that can be easily represented and manipulated.

• Performs various data dependence analyses, transformations and optimizations on the poly-

hedral model. This includes transformations like loop interchange, strip-mining, distribu-

tion and blocking.

Sam
er

Aran
di

173

• Generates the GIMPLE three-address code resulting from the applied transformations. The

iteration domains are converted into loops and conditionals, and data references are con-

verted into actual scalar and array accesses with all necessary address computations.

Implementing DDM support in GCC

The key to DDM code generation is the identification of DDM threads and the dependences

amongst the DDM thread invocations. To this end, the GRAPHITE framework is used as the

core analysis and transformation engine. A new GRAPHITE-to-GIMPLE translation scheme was

introduced to put the reconstructed SCoP in a DDM-compliant form.

The translation scheme is split into four major stages:

1. Reconstruction of imperative control structures and the recording of detailed information

about each created loop. The information is needed to convert a loop nest into a DDM

thread and to generate the necessary context manipulation and thread activation primitives.

2. Identification of the loops that should be converted into DDM threads. This was the most

complex task at hand. The utilized criteria depend on the properties of target architecture:

The amount of available storage, the size of the internal TSU queues and the optimal number

of concurrently active DDM invocations, etc.

3. Outlining of the qualified outermost loop(s) to a worker function and the insertion of the

corresponding DDM-VM runtime calls around the outlining point(s). The outlining stage

adapted the mechanism initially developed for OpenMP to be used for DDM.

4. Refinement of the outlined function to expose further threads.

The DDM code generation utilizes a scheme where all the DDM threads are outlined into

one worker function. This function consists of an initialization preamble and an infinite loop that

Sam
er

Aran
di

174

int threads_main (int coreid)

{

unsigned int raw_context;

unsigned int thread_id;

Init_RUNTIME(coreid);

while (1) {

Check_Fin (coreid);//ensures the TSU is notified of termination

GetNextThread (&thread_id, &raw_context, coreid);

switch (thread_id) {

case THREAD_1 :

// decode context

// execute thread body

break;

case THREAD_2 :

// decode context

// execute thread body

break;

...

default:

return thread_id;

}

}

}

Figure 68: The structure of the generated worker function

repeatedly requests ready threads information from the TSU. This request blocks until the TSU

returns the thread identifier and context of the ready thread. Following that one of the branches

of a switch statement is selected based on the thread identifier and the context components are

retrieved before the corresponding thread body is executed. Figure 68 shows the structure of the

worker function.

All the extracted thread meta-data are loaded at the site of the first outlining, which ensures

that the dependency graph has been completely loaded into the TSU before starting the execution

of the graph.

Preliminary Performance Evaluation

When comparing the performance of the sequential code with the parallel DDM-VM generated

code for the blocked matrix multiplication on an 8 core machine, the parallel code outperformed

the sequential by a factor of 2.4x. This result is very encouraging especially that it was achieved

without tuning and in the presence of overheads caused by redundant control structures. A detailed

description of this on-going effort is presented in [91].

Sam
er

Aran
di

175

DDM-VM

Application

DDM-VM

Compilation

Toolchain

ETS Flags

DDM-VM

threads run-time

TSU

ETS

ETS
Executable

execution

Visualization

Tool

events_summary.txt

utilization.txt events_log.ddt

Figure 69: The Event Tracing System (ETS)

5.9 Monitoring and Visualization Tools

The development and debugging of concurrent programs is a difficult and complex task. The

DDM-VM provides monitoring and visualization tools that make this task easier. In this section

we describe the Event Tracing System (ETS), which is the part of the DDM-VM encompassing

these tools.

The ETS records the most important events occurring during the execution of the DDM-VM

application. The events include TSU execution events and DDM Threads execution events. The

ETS also uses the collected information to provide statistics regarding the usage and utilization

of the different TSU structures. All this information provide an accurate understanding of the

system performance and execution details and allow the programmers to optimize the developed

DDM-VM applications.

The code of the DDM-VM is instrumented with a number of function calls implementing the

functionality of the ETS. The calls are enabled when linking with the debug version of the DDM-

VM runtime library. After the DDM-VM application finishes execution, the collected events and

Sam
er

Aran
di

176

statistics are processed and recorded in multiple log files. The first log file (events log.ddt) is used

as input to the Visualization Tool that displays the execution events in a time-line fashion. This

provides the programmer with a detailed account of the execution of DDM-VM applications and

help the programmer to optimize the application easily.

The other two log files report a summary of the execution events (events summary.txt) and the

utilization of the TSU structures and other statistics (utilization.txt). The provided information

gives insight into the performance of the different applications and the inner work of the TSU.

Activating the Event Tracing System introduces inevitable overheads to the execution of the

DDM-VM application. However, the ETS is implemented efficiently so as to minimize such

overheads. In addition, when linking to the release version of the runtime library the ETS system is

not activated and no overhead whatsoever is suffered. Furthermore, the user controls the activation

of specific parts of the ETS using a number of ETS flags passed as parameters when initializing the

runtime. This helps focus the tracing to the relevant parts and further reduce the overheads. Figure

69 illustrates an overview of the ETS system. The ETS also supports monitoring and visualizing

the events of distributed execution. Figure 70 depicts the Visualization Tool displaying the events

of the execution on 3 nodes.

Sam
er

Aran
di

177

Fi
gu

re
70

:V
is

ua
liz

at
io

n
To

ol
Sc

re
en

sh
ot

-D
is

tr
ib

ut
ed

D
D

M
E

xe
cu

tio
n

Sam
er

Aran
di

178

Please refer to Appendix C for a detailed description of the implementation and optimization

details of the ETS system, in addition to the format of the various generated statistics and log

files.

Sam
er

Aran
di

Chapter 6

Runtime Dependency Resolution

6.1 Introduction

A large class of programs exhibit a computational pattern in which the producer-consumer

dependencies cannot be determined at compile-time. This typically occurs in programs that utilize

pointers and so the addresses of the produced/consumed data are only determined at run-time.

We propose to a technique for representing this class of programs in DDM that makes use

of I-Structures [15] for handling the synchronization between the producer and consumer threads

in a split-phase manner, i.e. a request issued to an I-structure is independent in time from the

received response. Utilizing this technique we combine the efficiency of compile-time dependency

resolution with the flexibility of run-time dependency resolution.

6.2 I-Structures

An I-Structure [15] is a type of storage controller that obeys the single-assignment rule: Each

element is written only once but can be read multiple times. If a read request arrives for a storage

element that has not been written yet, the controller defers the read until a write arrives [10]. This

179

Sam
er

Aran
di

180

Absent

Waiting Present

Error

I-Fetch I-Store

I-Fetch I-Store

I-Fetch

I-Store

Figure 71: State Transitions for I-Structure Elements

property of I-Structures provides the synchronization needed for exploiting producer-consumer

parallelism without the risk of read-write races [10]. We use the same property to discover the

producer-consumer dependencies at runtime.

The basic idea in I-Structures is to add status bits to the storage cells in addition to a queue for

holding deferred reads. The status of each element or storage cell of the I-structure can be:

• present: the cell data is valid and can be freely read but any attempt to write to it will be

considered an error.

• absent: nothing has been written into the cell yet and no attempt has been made to read it.

A write operation is allowed.

• waiting: nothing has been written into the cell yet, but at least one read request was at-

tempted (deferred read). When this cell is written all the deferred reads must be satisfied.

A read operations on an I-Structure is commonly referred to as an I-Fetch and a write operation

as an I-Store [15]. Figure 71 illustrates the state transitions of the I-Structure cells.

6.3 Run-time Dependency Resolution with I-Structures

Assuming a program has been partitioned into a number of DDM threads. A problem arises

when part or all of the threads perform read operation(s) on data items whose address is resolved at

Sam
er

Aran
di

181

runtime. Although, other threads in the program potentially produce such data items, because the

address of the consumed data is only determined at runtime, establishing the producer-consumer

relationships amongst the threads is not possible at compile-time. To solve this problem we pro-

pose the following technique:

• For every thread t that performs at least one read operation on data items which address

is resolved at run-time a proxy thread t′ is introduced. Thread t′ replaces t in all the Con-

sumer Lists of its explicit producer threads, i.e., threads that are identified as its producers

at compile-time.

• The RC of t′ is set to the number of explicit producers of t. The RC of t is set to the number

of read operations performed on data items with run-time resolved addresses.

• For every such read a special I-Fetch request is issued by t′. The first parameter of the

I-Fetch is the address of the data to read, the second and third parameters are the thread

identifier and context of t. When the I-Fetch request is executed at runtime, it checks the

I-Structure for the data address, if the address exists, i.e. the data has been produced, a

request is sent to the TSU to decrement the RC of thread t. If the data was not produced yet,

the request is added into a pending list inside the I-Structure. Note that the I-Fetch in this

manner is faithful to the non-blocking property of DDM, i.e. it doesn’t cause a wait by the

issuing thread.

• For every thread producing data that is potentially read by t, a special I-Store request is

issued when the thread finishes execution. The I-Store registers the address of the produced

data in the I-Structure, which results in sending all the existing pending requests on that

address to the TSU.

Sam
er

Aran
di

182

T1 T2 T3 T4

T5

M N A[x] A[y]

A[?] A[...]

RC=2+1

T1 T2 T3 T4

T5`

M N A[x] A[y]

A[?]

A[...]

RC=2

I-Store(&A[x])

I-Store(&A[y])

I-Fetch(&A[?],T5<0>)

T5RC=1

I-Structure

D
e
cre

m
e
n
t R

C

D
e
c
re

m
e
n
t R

C

Decrement RC

Figure 72: DDM-VM Program with Run-time Determined Dependencies

It is important to note that in contrast with the traditional usage of I-Structures, we only keep

the addresses of the data in the I-Structure storage cells and the data itself resides in the conven-

tional memory. We explain this technique further with the help of an example.

6.4 Example

Figure 72 illustrates a synthetic example of a simple DDM-VM program composed of five

threads. In the upper part of the figure thread T5 consumes data items M and N produced by

threads T1 and T2, respectively. In addition, T5 consumes an element of the array A, however,

the exact address of the element (its array index) is determined at runtime. Array A elements

are produced by threads T3 and T4 and so it is only at runtime that the producer-consumer link

between one of the two threads and T5 is established. The problem is to ensure that T5 executes

Sam
er

Aran
di

183

Table 2: DDM-VM I-Structure Macros

DDM-VM I-Structure Macros

DVM_IFETCH(ADDR,THREAD_ID,CONTEXT)
Checks if ADDR exists in the I-Structure. If so a request to decrement the RC of the
invocation with thread identifier THREAD_ID and context=CONTEXT is inserted in
the AQ, otherwise the request is added to a pending list.

DVM_ISTORE(ADDR) Registers ADDR in the I-Structure. Any pending requests on this address are served.

DVM_ISTRCUT_INIT(SIZE,CORE_NUM)
Initializes the I-Structure and sets the initial size of the buckets and the number of
cores the will access the structure.

DVM_ISTRUCT_SHUTDOWN() Shuts down the structure and perform cleanup tasks

only after the array element it requires has been produced by either T3 or T4. The “?“ symbol in

the figure is used to indicate a value that is determined at runtime.

The lower part of the figure shows how this problem is solved using the proposed technique.

A new proxy thread T5′ is introduced and its RC is set to two. T5′ replaces T5 in the Consumer

Lists of T1 and T2. An I-Store operations is added at the end of T3 and T4 to register the address

of the produced element of array A. Moreover, an I-Fetch operation is added to T5′. When T1

and T2 finish execution, they notify the TSU, which decrements the RC of T5′ twice making it

zero. Consequently, T5′ executes, it evaluates the address of the requested element in A and issues

an I-Fetch on that address. If the address is found in the I-Structure (an I-Store with the address

of that element was executed previously by T3 or T4) a request to decrement the RC of T5 is

immediately sent to the TSU and once processed, T5 RC becomes zero and it runs. If the address

was not found, the request is enqueued in a pending list waiting to be sent to the TSU once the

corresponding I-Store operation occurs. Table 2 lists the two DDM-VM macros implementing the

I-Fetch and I-Store operations in addition to the macros needed for initializing and cleaning up the

I-Structure.

6.5 The I-Structure Implementation

The efficiency of the I-Structure implementation is central to this technique. In particular, the

operation of finding the entry corresponding to an arbitrary address, which incurs a non-trivial

Sam
er

Aran
di

184

overhead. One solution is to implement this search operation as a hashmap search. A similar

approach was used to implement the search in the I-Structure software cache described in [134].

This solution is a general one that can handle any type of accessed data (e.g. scalars, arrays, lists,

etc.) including recursive and dynamically allocated data, as each I-Structure entry is associated

with an arbitrary address. On the other hand, if the accessed data consists of arrays of a pre-

determined size, it is possible to utilize a different I-Structure organization consisting of an array

of preallocated entries, each corresponding to one array element. This removes the overhead of

the associative search on the expense of extra memory storage. In this work we explore the first

approach as it is more general.

The low-level design of the software I-Structure depends on the implementation of the DDM-

VM. In the DDM-VMc, due to the limited size of the Local Store (LS) memory on the SPE cores

executing the threads and the sharing of the same I-Structure across all the SPEs, the I-Structure

is allocated in main memory. Consequently the I-Fetch and I-Store operations are executed by the

general purpose PPE core running the TSU and so there is no concurrent access to the I-Structure

hashmap, which makes the design simpler. In the case of the DDM-VMs, however, the I-Fetch

and I-Store are performed by the runtime threads and so concurrent access to the hashmap occurs.

Although this complicates the design, it also permits a distributed implementation of the search

operation on the hashmap.

6.6 Hopscotch Hashing algorithm

To implement the I-Structure we used the Hopscotch Hashing algorithm [52] because it is

highly-scalable, it outperforms existing hashing algorithms on both single-core and multi-core

machines and most importantly it delivers good performance even when the hashmap is more than

90% full. This particular feature is very important in the case of I-Structures, as the addresses of

Sam
er

Aran
di

185

produced data are typically kept throughout the duration of the application execution, thus increas-

ing the density of the hashmap. We have leveraged this hashmap in our I-Structure implementation

and used the data address as the key to the stored hashmap entries. The entries have a presence

field (performing a similar function to the presence bit of a traditional I-Structure) and a head

pointer that holds a list of pending requests on the data address.

6.7 Discussion

The proposed technique has two shortcomings: (i) the inevitable overheads of the I-Structure

operations existing despite the optimized hashing algorithm (ii) and the fact that proxy threads

must execute the part of the original thread code that evaluates the address of the accessed data,

as this address is needed for the I-Fetch. Because this code is also executed by the original thread,

an issue arises if the code is expensive to execute twice or altogether impossible (for example if it

calls a random number generator).

To handle the first issue we employ an optimization that is applicable for the class of programs

in which it is possible to know, by analyzing the program, how many times an I-Fetch will refer

to a certain data address. For such cases we can assign a counter-value to the I-Structure entry

associated with that address. The counter is decremented for every I-Fetch operation on that entry

and once the counter reaches zero the entry is removed. This reduces the total number of hashmap

entries, consequently improving the search performance and reducing the overheads. The counter

value is assigned via the same I-Store registering the data address in the I-Structure.

To handle the second issue, we allow the code to be executed twice as long as it is possible and

inexpensive. Otherwise, we execute it once at the proxy thread and channel any results required

by the original thread as input data produced by the proxy thread. A combination of compilation

analysis and profiling can be used to select the appropriate approach for each program.

Sam
er

Aran
di

186

The proposed technique has many advantages. Not only does this technique allow handling

programs with run-time dependencies, but it does so while allowing compile-time dependencies

to be utilized at the same time. Thus, obtaining the benefits of both approaches.

Further, the technique is very beneficial for compilation techniques that target the generation

of data-flow code. Traditionally, when the compiler is unable to uncover the dependencies due

to the existence of pointers, for example, it falls back to running the code sequentially. How-

ever, leveraging this technique, the compiler can fall back to generating parallel code and leave

the discovering of dependencies to occur at runtime. Regardless of the involved overheads this

alternative is expected to yield -in many cases- substantially better performance than running the

code sequentially.

Finally, this technique improves the programmability of the DDM-VM. In the case of complex

code with complicated dependencies, the programmer can utilize this technique to quickly develop

and run the DDM-VM application without going through the most involving step, which is the

dependency analysis. Dependency analysis can be incorporated later to encode the dependencies

at compile-time for improving the performance. In fact, we envision an extension of this technique

that records the discovered dependencies at runtime so as to provide feedback for guiding the

uncovering of the dependencies and encoding them in the program.

Sam
er

Aran
di

Chapter 7

Evaluation

7.1 Introduction

In this Chapter we present the evaluation results for the two DDM-VM implementations for

both single-node execution and distributed/multi-node execution. We present the evaluation of

the DDM-VMc, followed by the evaluation of the DDM-VMs and conclude this chapter with a

summary of the findings.

7.2 The DDM-VMc Evaluation

In this section we present the evaluation of the DDM-VMc. The first part of this section

evaluates the effect of the Resource Management, Synchronization Memory Organization and

the Locality Exploitation on the performance using the MatMult and Cholesky benchmarks as

case studies. The second part presents a comprehensive performance evaluation using all the

benchmarks, which also includes a comparison with state-of-the-art systems targeting the Cell. In

the third part we present the evaluation of the distributed DDM-VMc execution.

187

Sam
er

Aran
di

188

7.2.1 Experimental Setup

The DDM-VMc runs on a Sony Playstation 3 (PS3) machine with Linux 2.6.23-r1 SMP OS

and the IBM Cell SDK version 2.1. The Cell processor powering the PS3 has 6 SPEs available

for the programmer out of the original 8 (one is reserved for the hypervisor and one is shutdown

to increase the yield). The cores run at 3200 MHz and have access to 256 MB of RAM. For the

evaluation of the distributed execution we used a cluster of four PS3 machines. The machines

were connected using an off-the-shelf Giga-bit Ethernet switch with a latency of approximately

250 µs.

The benchmark suite used in the evaluation consists of ten applications featuring kernels

widely used in scientific and image processing applications. The characteristics of the bench-

marks are presented in Table 3. For the benchmarks working on matrices, the matrices are dense

single-precision floating-point, except for the IDCT benchmark, which works on short integers.

All of the benchmarks were coded in C using the DDM-VM macros and compiled by the

compilers available from the IBM Cell SDK V2.1. All reported speedup results are relative to the

DDM execution time on one SPE core.

Sam
er

Aran
di

189

Ta
bl

e
3:

T
he

be
nc

hm
ar

ks
su

ite
ch

ar
ac

te
ri

st
ic

s
-D

D
M

-V
M

c

B
en

ch
m

ar
k

D
es

cr
ip

tio
n

A
ve

ra
ge

G
ra

nu
la

ri
ty

of
B

en
ch

m
ar

k
T

hr
ea

ds
Pr

ob
le

m
s

Si
ze

G
ra

nu
la

ri
ty

E
xe

cu
tio

n
Ti

m
e

Sm
al

l
M

ed
iu

m
L

ar
ge

X
L

ar
ge

X
X

L
ar

ge
M

at
M

ul
t

B
lo

ck
ed

M
at

ri
x

M
ul

tip
lic

at
io

n
64

x6
4

bl
oc

k
22

.1
µ

s
51

2x
51

2
10

24
x1

02
4

20
48

x2
04

8
30

72
x3

07
2

-
C

ho
le

sk
y

B
lo

ck
ed

C
ho

le
sk

y
Fa

ct
or

iz
at

io
n

(v
ec

to
ri

ze
d)

64
x6

4
bl

oc
k

22
µ

s
51

2x
51

2
10

24
x1

02
4

20
48

x2
04

8
30

72
x3

07
2

-
C

ho
le

sk
y-

S
B

lo
ck

ed
C

ho
le

sk
y

Fa
ct

or
iz

at
io

n
(s

ca
la

r)
64

x6
4

bl
oc

k
8.

2m
s

51
2x

51
2

10
24

x1
02

4
20

48
x2

04
8

30
72

x3
07

2
-

L
U

B
lo

ck
ed

L
U

D
ec

om
po

si
tio

n
64

x6
4

bl
oc

k
1.

82
m

s
51

2x
51

2
10

24
x1

02
4

20
48

x2
04

8
30

72
x3

07
2

-
30

4
Y

-C
el

ls
28

.6
5µ

s
FD

T
D

2D
Fi

ni
te

D
iff

er
en

ce
Ti

m
e

D
om

ai
n

[1
33

]
60

8
Y

-C
el

ls
58

µ
s

30
4x

30
4

60
8x

60
8

12
16

x1
21

6
-

-
12

16
Y

-C
el

ls
11

6µ
s

R
K

4
4t

h
or

de
r R

un
ge

-K
ut

ta
(O

D
E

so
lv

er
)

va
ri

ab
le

va
ri

ab
le

51
2K

2K
3K

-
-

32
x3

2
bl

oc
k

12
.2

8µ
s

C
on

v2
D

9x
9

co
n v

ol
ut

io
n

fil
te

r
64

x6
4

bl
oc

k
48

.1
1µ

s
51

2x
51

2
10

24
x1

02
4

20
48

x2
04

8
30

72
x3

07
2

40
96

x4
09

6
96

x9
6

bl
oc

k
10

7µ
s

32
x1

6
bl

oc
k

12
.3

7µ
s

ID
C

T
In

v e
rs

e
D

is
cr

et
e

C
os

in
e

Tr
an

sf
or

m
64

x3
2

bl
oc

k
49

.2
1µ

s
51

2x
51

2
10

24
x1

02
4

20
48

x2
04

8
30

72
x3

07
2

40
96

x4
09

6
64

x6
4

bl
oc

k
98

.8
µ

s
Tr

ap
ez

Tr
ap

ez
oi

da
l r

ul
e

fo
ri

nt
eg

ra
tio

n
va

ri
ab

le
va

ri
ab

le
16

8K
st

ep
s

33
7K

st
ep

s
67

5K
st

ep
s

54
00

K
st

ep
s

10
80

0K
st

ep
s

M
at

A
dd

M
at

ri
x

A
dd

iti
on

64
x6

4
bl

oc
k

4.
6µ

s
25

6
ite

ra
-

tio
n

10
24

ite
ra

-
tio

n
40

96
ite

ra
-

tio
n

-
-

M
at

C
op

y
M

at
ri

x
C

op
y

64
x6

4
bl

oc
k

4.
6µ

s
25

6
ite

ra
-

tio
n

10
24

ite
ra

-
tio

n
40

96
ite

ra
-

tio
n

-
-

Sam
er

Aran
di

190

7.2.2 Optimizations Evaluation

In this section we evaluate the effect of the factors discussed in Section 5.6 on the performance

of DDM-VM programs. We use the MatMult and Cholesky benchmarks as case studies. The first

application is a representative of applications with a simple dependency graph and the second is

a representative of applications with a complex dependency graph. Moreover, both applications

are computationally intensive and performance-sensitive. The result of this evaluation is used to

guide the performance optimization for all the benchmarks in the rest of the evaluation sections.

7.2.2.1 Resource Management

To assess the DDM-VM resource management control mechanisms we have executed two sets

of experiments for both benchmarks. In the first, we have varied the size of the Extended Firing

Queue (ExFQ) and in the second, we have utilized Loop Throttling and varied the limit on the

number of concurrent invocations of the throttled threads. To neutralize the effect of the ExFQ on

the second set we have chosen a relatively large size for the ExFQ (ExFQ=6). Figure 73 depicts

the results.

In the first set of experiments, the results show that for both applications as the size of the

ExFQ increases the concurrency increases and the performance improves reaching its best when

the size is 3. The reason for this particular size is that the space allocated for the DDM Cache

on the LS of each SPE can fit at maximum the data of 3 concurrent invocations of the most

computationally intensive threads of the two applications. When the size increases beyond 3 the

surplus concurrency causes the performance to degrade. In the second set of experiments utilizing

loop throttling, a similar effect to the one in the first set is observed. The effect of throttling on

Cholesky is smaller in comparison to MatMult as only one out of the five threads in Cholesky was

throttled.

Sam
er

Aran
di

191

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

L
im
=
1

L
im
=
2

L
im
=
3

L
im
=
4

L
im
=
8

L
im
=
1
6

L
im
=
3
2

L
im
=
1

L
im
=
2

L
im
=
3

L
im
=
4

L
im
=
8

L
im
=
1
6

L
im
=
3
1

MatMult Cholesky

Series1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
Q
=
1

F
Q
=
2

F
Q
=
3

F
Q
=
4

F
Q
=
6

F
Q
=
8

F
Q
=
1
0

F
Q
=
1

F
Q
=
2

F
Q
=
3

F
Q
=
4

F
Q
=
6

F
Q
=
8

F
Q
=
1
0

MatMult Cholesky

Series1

E
x
e
c
u
ti
o
n
 T
im
e
 -
N
o
rm

a
li
z
e
d Effect of Varying the Size of FQ – 6 SPEs

E
x
e
c
u
ti
o
n
 T
im
e
 -
N
o
rm

a
li
z
e
d Effect of Varying the Loop Bound – 6 SPEs (FQ=6)

Figure 73: Resource management control - Effect of Firing Queue (ExFQ) size and Loop Throt-
tling on performanceSam

er
Aran

di

192

0

0.5

1

1.5

2

2.5

1 2 4 6

Direct

Associative

Hybrid

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 6

Direct

Associative

Hybrid

Number of SPEs

Number of SPEs

Matrix Multiplication (2048x2048)

Cholesky (2048x2048)
E
x
e
c
u
ti
o
n
 T
im

e
 -
N
o
rm

a
li
z
e
d

E
x
e
c
u
ti
o
n
 T
im

e
 -
N
o
rm

a
li
z
e
d

Figure 74: Effect of the different Synchronization Memory implementations on performance

TSU resource control mechanisms like setting the size of the ExFQ has a global effect that

applies to all the threads in the program, while loop throttling can be used to control individual

threads for fine tuning the performance.

7.2.2.2 Synchronization Memory (SM) Organization

To study the effect of the Synchronization Memory implementations on the performance, we

executed the two applications under the 3 different implementations. The results are illustrated at

Figure 74.

As expected the direct implementation achieves the best performance for both applications

as it incurs the minimum overhead for updating the SM entries. The associative implementation

performs 2nd best on average. The overhead of the associative updates in this implementation

Sam
er

Aran
di

193

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 6 1 2 4 6

MatMult (2048x2048) Cholesky (2048x2048)

Lim=3 - FQ=3 Lim=3 - FQ=3

locality-128Kb no locality-128Kb locality-96Kb

E
x
e
c
u
ti
o
n
 T
im
e
 -
N
o
r
m
a
li
z
e
d

Number of SPEs Number of SPEs

Figure 75: Effect of locality on performance

increases when the number of cores is high as the TSU is working more in that case. The hybrid

implementation performs very close to the direct and better than the associative for MatMult,

but performs less than the two other implementations for Cholesky. In MatMult the execution

of the threads proceeds consecutively generating regular patterns of updates to the SM which is

captured well by the re-use mechanism of hybrid. The Cholesky application has a much more

irregular pattern of execution which generates non-consecutive updates that cannot be captured

well. This results in more allocations and more associative searches that degrade the performance.

One possible improvement to the hybrid implementation is to utilize information on the expected

pattern of the threads execution to guide the re-use of entries.

7.2.2.3 Locality and Data Re-use Exploitation

To study the effect of exploiting locality, we executed the two applications with and without

locality. Figure 75 illustrates the results. The black and white bars depict the normalized execution

time for both cases. The improvement in performance when exploiting locality was achieved by

simply identifying the threads that can benefit from locality and adding the DATA KEEP and

DATA REUSE flags to their macros and the rest was automated by S-CacheFlow.

Sam
er

Aran
di

194

It is worthwhile to note that the main source of improvement is the reduced demand of the LS

space. Enabling locality for the MatMult, allows the data of 3 invocations of the thread performing

the multiplication to fit concurrently in the DDM cache, since one of the input blocks is re-used

by all 3 invocations. When locality is not enabled, the data of 2 invocations only can fit. Fitting

the data of more threads allows the TSU better chance to prefetch data and overlap latencies with

computation which improves the performance. The Cholesky application benefits similarly but to

a lesser degree as only one of the computational threads of the application can benefit from re-use.

To confirm our analysis we have executed both applications with locality enabled after reduc-

ing the size of the DDM Cache from 128KB to 96KB which has a similar effect on the number of

threads that can fit its data concurrently. The results represented by the shaded bar show that the

performance degrade in a fashion corresponding to the case when no locality is enabled.

The results demonstrate the deep implications the size of the LS memory has on the execution

behavior and consequently the importance of taking into account the size of the working set when

choosing the granularity of the threads.

7.2.3 General Performance Evaluation

In this section we present a comprehensive performance evaluation using all the benchmarks.

For all the benchmarks we have used the direct SM technique, enabled locality and used the

combination of ExFQ size and throttling limit value that produced the best performance.

We compare the two implementations of S-CacheFlow and study the effect of thread granular-

ity and input size on performance. We demonstrate the potential of the DDM-VMc in exploiting

concurrency and tolerating latencies and compare its performance with state-of-the-art systems.

Finally, we present the evaluation of distributed DDM-VMc execution.

Sam
er

Aran
di

195

7.2.3.1 Thread Granularity and S-CacheFlow Implementations

To assess the effect of thread granularity and the two S-CacheFlow implementations on perfor-

mance we executed the benchmarks under both implementations. Note that different benchmarks

have different thread granularities and for some of the benchmarks we have executed the same

benchmark with varying thread granularities. Table 3 reports this information for every bench-

mark. The speedup results are depicted in Figure 76. The baseline for the speedup is the best

execution out of the two implementations on one SPE.

Thread Granularities

The results show that the performance improves as the granularity increases. This is expected,

as higher granularities amortize better the scheduling overheads of the TSU and S-CacheFlow

operations and allow DDM-VMc to hide the latency of data transfers through prefetching/multi-

buffering. Applications with small granularity do not scale when the number of SPEs increases to

four and higher as the TSU is doing more work then and the computation is not sufficient to totally

overlap the TSU work. However, when the thread granularity is increased (for example using a

larger block size) the applications scale almost linearly. In certain cases, increasing thread gran-

ularities is bounded by the limited size of the LS, hence applications like MatAdd and MatCopy,

which have a poor computation/data ratio, cannot benefit from increasing the granularity as this

requires larger blocks that don’t fit.

S-CacheFlow vs. Distributed S-CacheFlow

Comparing the results of the two S-CacheFlow implementations, the distributed S-CacheFlow,

in general, performs as well as or better than the basic S-CacheFlow on all of the benchmarks. The

advantage of the distributed implementation is clear when the number of cores increases to 4 and

Sam
er

Aran
di

196

������
�

� � � � � � � � � � � � � � � ���	
������ ��	
������ ������ ���	���
��	�������� 	����������� !"

#
� � ! # � � ! # � � ! # � � ! #$%&'�() �* �+ $%&'�()#!*#!+ ,(-() �!* �!+ ,(-()#�.*#�.+

(/$0123,4%5 $0123,4%56789:;
<

7 8 : < 7 8 : < 7 8 : < 7 8 : <=>?@ ABC?DEFG HI JKLMDN
OPALQBDR?CS ALQBDR?CS

S
p
e
e
d
u
p

S
p
e
e
d
u
p

Number of SPEs Number of SPEs Number of SPEs Number of SPEs

Number of SPEs Number of SPEs Number of SPEs Number of SPEs

Number of SPEs Number of SPEs Number of SPEsNumber of SPEs

S
p
e
e
d
u
p

DS-CacheFlow S-CacheFlow

Figure 76: Effect of thread granularity and S-CacheFlow vs. Distributed S-CacheFlow

Sam
er

Aran
di

197

����������������������������
�	
 ��	 �	
 ��	 �	
 ��	 �	
 ��	� � �

������������������ ����� �� !�""#"$����� ����� %�&�'������()*�!��+� ,�-�.�* �/����� �
Number of SPEs

D
S
-C
F

D
S
-C
F

D
S
-C
F

D
S
-C
F

S
-C
F

S
-C
F

S
-C
F

S
-C
F

DS-CacheFlow(SPE)

Figure 77: S-CacheFlow vs. Distributed S-CacheFlow - MatMult SPE runtime execution activities

higher, as previously explained in section 4. It is worthy to note that both implementations perform

equally well for benchmarks that are not data-intensive (Trapez) or for the ones that have a large

enough granularity (e.g. LU) that allows the TSU to overlap the work of scheduling and data

management at higher number of cores.

Figure 77 depicts the average activities of the SPEs for the execution of MatMult under the

two S-CacheFlow implementations. For clarity we show only the upper 40% of the graph since

all the SPEs had average utilization higher than 60%. The results show that up to 4 SPEs, the

SPEs spend more than 90% on computational work. At six SPEs -however- the utilization drops

to 64% for the basic S-CacheF-low because the PPE becomes a bottleneck due to the demand of

the S-CacheFlow. The distributed implementation does not suffer from this and the time spent

executing the computational load is kept around 90%. As such, the distributed S-CacheFlow has

been adopted as the default for the DDM-VMc.
Sam

er
Aran

di

198

�������������������� ��	
��E
x
e
c
u
ti
o
n
 T
im
e
 (
N
o
rm
a
liz
e
d
)

Execution Time on 1 SPE
For all

benchmarks

Problem size:

Large

Sequential

DDM-1

DDM-2

DDM-3

Figure 78: DDM-VMc latency tolerance

7.2.3.2 Concurrency and Latency Tolerance

To evaluate the potential of DDM-VMc in exploiting concurrency and tolerating synchro-

nization and memory latencies, we have performed a number of experiments in which we limit

the number of threads that can be scheduled concurrently to 1 (purely sequential scheduling of

DDM-VMc applications), 2 and 3. We compare the results with a normal (non-DDM) sequential

program. Figure 78 depicts the results for five of our benchmarks.

The results show that when the limit is set to one (DDM-1) the TSU overhead is simply added

to the critical path. When the limit increases to 2 the performance improves as the TSU is able

to overlap the overhead of scheduling one thread with the execution of another. When the limit

is set to 3 the execution finishes in time less than the sequential, as the automatic prefetching

takes effect and, further, overlaps the latency of data transfers with the execution. The results

illustrate that DDM-VMc effectively leverages the decoupling of synchronization and computation

for maximum tolerance of latencies.

Sam
er

Aran
di

199

������� � � � � ��	
�����������
Number of SPEs

RK4

������� � � � � ������� !"#$#�%%Conv2D(64x64)

&'()*+, & (* , ',-*./01234 . 0 2 4 0.2560.25/.026/.023/063/0789:;<= 7 9 ; = 97;>?97;>879;?879;<89?<89@ABCDEF @ B D F GHIJKLKMNOPQPHRRFDTD

S
p

e
e
d

u
p

Number of SPEs

S
p

e
e

d
u

p

Trapez

STUVWXY S U W Y Z[\]^_̂ `a bcd c[eefghijkl f h j l mnopqrqstuvwvnxx
Cholesky

Mult

IDCT (64x64)

S
p

e
e
d

u
p

S
p

e
e
d

u
p

LU

Figure 79: Effect of problem sizes on performance
Sam

er
Aran

di

200

7.2.4 Problem Size

Figure 79 depicts the results of executing 8 of the benchmarks for the three problem sizes. The

results show that the system generally scales well across the range of the benchmarks achieving

almost linear speedup for the large problem sizes, as large problem sizes result in longer execution

time, which amortizes initialization and parallelization overheads. We expect DDM-VMc to scale

well in real life (scientific) applications since our benchmarks are representative of such appli-

cations and the typical real-world sizes employed for such application are bigger that our Large

problem size.

7.2.4.1 Overall Performance and Comparison

In this section, we report the GFLOPs performance results of three computationally intensive

applications, MatMult, Cholesky and Conv2D and compare them with the StarSs implementa-

tion targeting the Cell processor: CellSs [18, 94] and Sequoia [41] platforms that target the Cell

processor.

The result for CellSs were obtained by executing the MatMult and Cholesky applications

found in the latest release of CellSs platform V2.2 on a PS3. The two applications use the same

computational kernels we have used for our applications. For these results we have used the

following combination of parameters which produced the best performance. For the MatMult

application (ExFQ=3, Throttling Limit=8, Locality Enabled, Cache Size=128KB and using the

direct SM technique). For the Cholesky and Conv2D applications (ExFQ=3, Throttling Limit=3,

Locality Enabled, Cache Size=128KB and using the direct SM technique).

Figure 80 depicts the GFLOPs performance results for the MatMult and Cholesky applications

and compares the performance with CellSs. The results show that for the MatMult application

DDM-VMc performs very well achieving an average of 88% of the theoretical peak performance

Sam
er

Aran
di

201

for the 2048 size and an average of 86% and 76% for the 1024 and 512 sizes respectively, scaling

almost linearly on the first two sizes. The results for Cholesky are not as good as MatMult for the

smaller sizes due to the complex nature of the application, however when the size becomes 2048

the application scales very well achieving a speedup of 5 on 6 SPEs.

The comparison results in Figure 80 demonstrate that DDM-VMc outperforms CellSs for the

entire range for both applications. DDM-VMc achieves an average improvement of 80% for the

512 size, 28% for 1024 and 19% for the 2048 size for MatMult. An improvement of 213% for

512, 99% for 1024 and 23% for 2048 is achieved for Cholesky. We attribute this to the fact that

although CellSs schedules annotated tasks at run-time based on data-dependencies like our model,

in contrast with ours which creates the dependency graph statically, CellSs builds it at run-time.

This can contribute more delay to the critical path of the application than in our model. Moreover,

CellSs makes only part of the graph available to the scheduler and consequently a fraction of the

concurrency opportunities in the applications is visible at any time. DDM-VMc achieves the best

improvement v.s. CellSs for the smaller problem sizes, which indicates that it introduces less

overhead for exploiting concurrency.

Figure 81 compares the performance of DDM-VMc and Sequoia for the MatMult and Conv2D

applications. The results for Sequoia were obtained by executing the MatMult and Conv2D appli-

cations found in the latest release of Sequoia that targets the Cell (V0.9.5) on a PS3. To preserve

fairness we have used the same computational kernels used in the Sequoia applications for our

applications as well. The results show that DDM-VMc achieves an average of 25% and 12%

performance improvement for Conv2D and MatMult, respectively.

We find these results as an indication of the efficiency of the DDM-VMc and its ability to

perform favorably with other platforms on the Cell.

Sam
er

Aran
di

202

0

10

20

30

40

50

60

70

80

90

100

110

0 2 4 6

DDM-VMc

CellSs

0

10

20

30

40

50

60

70

80

90

100

110

0 2 4 6

DDM-VMc

CellSs

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6

Theoretical Peak DDM-VMc CellSs

0

10

20

30

40

50

60

70

80

90

100

110

0 2 4 6

DDM-VMc

CellSs

0

20

40

60

80

100

120

140

160

0 2 4 6

Theoretical

Peak

DDM-MVc

CellSs

Number of SPEs

MatMult(1024x1024)

Cholesky(2048x2048)

Cholesky(1024x1024)

Cholesky(512x512)

G
F

L
O

P
s

G
F

L
O

P
s

G
F

L
O

P
s

Number of SPEs

0

20

40

60

80

100

120

140

160

0 2 4 6

Theoretical

Peak

DDM-VMc

CellSs

0

20

40

60

80

100

120

140

160

0 2 4 6

Theoretical

Peak

DDM-VMc

CellSs

MatMult(2048x2048)

MatMult(512x512)

Number of SPEs

FQ=3 - Lim=3 – Locality – 128KB - direct FQ=3 - Lim=8 – Locality – 128KB - direct

Figure 80: Comparison of DDM-VMc and CellSs Performance for the MatMult and Cholesky
applications

Sam
er

Aran
di

203

�����������������
	�

� � � � �

���� �������

������������������������� � � � � !"# !$%&'()*+
,-,.,/,0,1,2,3,4,5,-,,--, , . 0 2 66789 7:;<=>?@A
BCBDBEBFBGBHBIBJBKBCBBCCB B D F H LLMNOMPQRSTUVW

XYXZX[X\X]X^X_X`X X Z \ ^ aabcdbefghijkl
mnmompmqmrmsmtmum m o q s vvwxywz{|}~���
����������������� � � � � ��������������Number of SPEs

Number of SPEs

MatMult (512x512)

Conv2D (2048x2048)

Conv2D (1024x1024)

Conv2D (512x512)

G
F
L
O
P
s

G
F
L
O
P
s

Number of SPEs

Number of SPEs

Number of SPEs

MatMult (2048x2048)

G
F
L
O
P
s

Number of SPEs

MatMult (1024x1024)

Figure 81: Comparison of DDM-VMc and Sequoia Performance for the MatMult and Conv2D
applicationsSam

er
Aran

di

204

7.2.5 Distributed DDM-VMc Execution

For the evaluation of distributed DDM-VMc execution we used a cluster of four PS3 nodes.

The benchmarks we executed contains applications that don’t communicate during the execution

(Conv2D, IDCT and MatMult), ones that communicate few values (Trapez) and ones with heavy

inter-node communication (LU and Cholesky). For all the benchmarks working on matrices we

have used blocks of 64x64 except for the Conv2D benchmark in which we used 96x96 blocks.

For the Cholesky benchmark we used scalar computational kernels instead of the vectorized ones

as the latter proved too fine-grained for the application to scale. We denote the version using the

scalar kernels as Cholesky-S. In our experiments we have utilized 1, 2, 4 and 6 SPEs per node,

which resulted in 4, 8, 16 and 24 total SPEs in the system, respectively. Moreover, we have used

two input sizes per benchmark. Figure 82 illustrates the speedup results.

The results show that for the largest input size the system achieves an average of 80% of the

maximum possible speedup for all the benchmarks, which is a very good result. Analyzing the

results further, it is clear that as the input size increases the system scales better: the average

speedup (on all the benchmarks) utilizing all the SPEs is 13.4 out of 24 for the smaller input size

and 16.54 out of 24 for the larger input size. This is expected as larger problem sizes allow for

amortizing the overheads of the parallelization. The limited main memory available on the PS3

nodes (256MB) precluded us from using larger input sizes. However, this limitation does not exist

on other commercial products powered by the Cell processor, thus allowing the DDM-VMc to

scale further on such systems.

Note that compared to single-node execution larger input sizes (on all the benchmarks) and

larger granularities (on Conv2D and Trapez) are needed for the system to scale due to the addi-

tional latencies introduced by the network data and synchronization messages transfer.

Sam
er

Aran
di

205

�������
����

���	
� ����	
� ���	
� ����	
� ��	
� ���	
������ ���� ��� ���� ��
���� ����� !��"#$"% &' (�� �)* # +, !�,� -./0 1�2�3� -./0 1�2�3�� -./0 1�2�3�� -./0 1�2�3

�������
����

��	
� ���	
� ��	
� ���	
� ���	
� ����	
�4�54675 �87�09: �	�;�<� ���� �� � -./0 1�2�3� -./0 1�2�3�� -./0 1�2�3�� -./0 1�2�3
Figure 82: Distributed DDM-VMc Execution - SpeedupSam

er
Aran

di

206

���������������������������
���

� � � �� �� �� ���	
�� ������ �� ����
������� � !"#$!"#%&'(&)*(+��,�-��,�.

������������������������
���

� � � �� �� �� ���	
�� ������ �� ����
/012#3 �4!56$4!56%789:�; +��<�-��<�.

Figure 83: GFLOPs performance results for MatMult and Conv2D

Figure 83 reports the GFLOPs performance results for the two computationally intensive

benchmarks MatMult and Conv2D.

The results illustrate that utilizing all the SPEs on the four nodes the system delivers an im-

pressive 0.44 TFLOPs for the MatMult benchmark and 178 GFLOPs for the Conv2D benchmark,

which demonstrates the efficiency of the distributed execution on the DDM-VMc.

Sam
er

Aran
di

207

7.3 The DDM-VMs Evaluation

In this section we present the evaluation of the DDM-VMs. We provide a comprehensive per-

formance evaluation using the benchmarks and examine the effect of thread granularity and input

size on performance. We also evaluate the performance of the runtime-determined dependency

resolution approach we propose. Finally, we present the evaluation of the distributed DDM-VMs

execution.

Experimental Setup

The DDM-VMs implementation runs on a 12-core machine composed of two Six-Core AMD

Opteron Processors with 64KB L1 D-Cache, 64KB L1 I-Cache, 1MB unfied L2 cache and 6MB

unified L3 cache and a 32 GB of RAM. The cores run at 800 MHz with the Ubuntu Linux 2.6.31

server edition as the OS.

We used the same benchmark suite used in the evaluation of the distributed DDM-VMc. The

characteristics of the benchmarks are presented in Table 4. Note that although the applications

are the same their characteristics (mainly the granularity) differ due to the vectorization of the

computational kernels in the case of the DDM-VMc and the fact that the code is compiled with

different compilers. Moreover, the systems used for evaluating the DDM-VMs has more main

memory compared to that on the PS3, which enables us to use larger input sizes.

All of the benchmarks were coded in C using the DDM-VM macros and compiled using the

GCC 4.4.3 compiler. All reported speedup results are relative to the execution time of the best

corresponding (non-DDM) sequential code on one core. Note that the maximum possible speedup

is 11, since we reserve one core out of the 12 cores for the execution of the TSU.

Sam
er

Aran
di

208

Ta
bl

e
4:

T
he

be
nc

hm
ar

ks
su

ite
ch

ar
ac

te
ri

st
ic

s
-D

D
M

-V
M

s

B
en

ch
m

ar
k

D
ec

ri
pt

io
n

A
ve

ra
ge

G
ra

nu
la

ri
ty

of
B

en
ch

m
ar

k
T

hr
ea

ds
Pr

ob
le

m
Si

ze
G

ra
nu

la
ri

ty
E

xe
cu

tio
n

Ti
m

e
Sm

al
l

M
ed

iu
m

L
ar

ge
X

L
ar

ge
X

X
L

ar
ge

Sy
st

em
-2

Sy
st

em
-1

8x
8

1
µ

s
1

µ
s

16
x1

6
8

µ
s

11
µ

s
M

at
M

ul
t

B
lo

ck
ed

M
at

ri
x

M
ul

tip
lic

at
io

n
32

x3
2

53
µ

s
72

µ
s

12
8x

12
8

51
2x

51
2

20
48

x2
04

8
40

96
x4

09
6

81
92

x8
19

2
64

x6
4

38
7

µ
s

52
8

µ
s

12
8x

12
8

33
33

µ
s

45
40

µ
s

8x
8

11
0

µ
s

14
0

µ
s

16
x1

6
53

5
µ

s
68

1
µ

s
M

at
M

ul
t

B
lo

ck
ed

M
at

ri
x

M
ul

tip
lic

at
io

n
-C

oa
rg

e-
gr

ai
ne

d
32

x3
2

19
20

23
09

12
8x

12
8

51
2x

51
2

20
48

x2
04

8
40

96
x4

09
6

81
92

x8
19

2
64

x6
4

72
50

µ
s

84
36

µ
s

12
8x

12
8

28
50

0
µ

s
36

35
0

µ
s

8x
8

1
µ

s
1

µ
s

16
x1

6
3

µ
s

4
µ

s
C

ho
le

sk
y

B
lo

ck
ed

C
ho

le
sk

y
Fa

ct
or

iz
at

io
n

32
x3

2
16

22
m

ic
ro

s
12

8x
12

8
51

2x
51

2
20

48
x2

04
8

40
96

x4
09

6
81

92
x8

19
2

64
x6

4
13

4
µ

s
18

2
µ

s
12

8x
12

8
91

6
µ

s
12

40
µ

s
8x

8
1

µ
s

1
µ

s
16

x1
6

8
µ

s
11

µ
s

L
U

B
lo

ck
ed

L
U

D
ec

om
po

si
tio

n
32

x3
2

52
µ

s
73

µ
s

12
8x

12
8

51
2x

51
2

20
48

x2
04

8
40

96
x4

09
6

81
92

x8
19

2
64

x6
4

38
0

µ
s

52
0

µ
s

12
8x

12
8

29
18

µ
s

39
75

µ
s

8x
8

10
µ

s
14

µ
s

16
x1

6
39

µ
s

54
µ

s
C

on
v2

D
9x

9
co

nv
ol

ut
io

n
fil

te
r

32
x3

2
15

7
µ

s
21

4
µ

s
12

8x
12

8
51

2x
51

2
20

48
x2

04
8

40
96

x4
09

6
81

92
x8

19
2

64
x6

4
62

6
µ

s
85

5
µ

s
12

8x
12

8
25

00
µ

s
34

16
µ

s
8x

8
le

ss
th

an
1µ

s
le

ss
th

an
1µ

s
16

x1
6

1
µ

s
1

µ
s

ID
C

T
In

v e
rs

e
D

is
cr

et
e

C
os

in
e

Tr
an

sf
or

m
32

x3
2

3
m

ic
ro

s
4

12
8x

12
8

51
2x

51
2

20
48

x2
04

8
81

92
x8

19
2

16
38

4x
18

38
4

64
x6

4
12

µ
s

17
µ

s
12

8x
12

8
49

µ
s

68
µ

s
Tr

ap
ez

Tr
ap

ez
oi

da
l R

ul
e

of
In

te
gr

at
io

n
va

ri
ab

le
va

ri
ab

le
va

ri
ab

le
16

8M
st

ep
s

33
7M

st
ep

s
67

5M
st

ep
s

13
50

M
st

ep
s

–

Sam
er

Aran
di

209

7.3.1 Thread Granularity

To assess the effect of thread granularity on performance we executed the benchmarks with

varying thread granularities for the large input size. Table 4 reports this information for every

benchmark. The speedup results are depicted in Figure 84. The baseline for the speedup is the

best sequential (non-DDM) execution among all the granularities.

The results demonstrate that the performance improves as the granularity increases, as higher

granularities amortize better the scheduling overheads of the TSU. This result confirms the find-

ings of 7.2.3.1.

7.3.2 Input Size

Figure 85 depicts the speedup results of executing the benchmarks for the small, medium and

large input sizes. For all the benchmarks working on matrices the 64x64 granularity is used. The

results demonstrate that as input sizes increases the performance improves. This is expected, as

large problem sizes result in longer execution time, which amortizes initialization and paralleliza-

tion overheads. This result confirms the findings of 7.2.4.

7.3.3 Overall Performance

Figure 86 depicts the speedup results of executing the large input size for the 64x64 granularity

for all the benchmarks.

The results of executing all the benchmarks demonstrate that overall, the system scales well

over the range of the benchmarks and achieves - when utilizing all the cores - an average speedup

of 9.6 out of 11 (the maximum possible speedup), which indicates the efficiency and scalability of

the system.

Sam
er

Aran
di

210

���������	���� �
� ��
�� ��
�� ��
�� �
� ��
�� ��
�� ��
�� �
� ��
�� ��
�� ��
����� �� ���������� �� ������� � �� !"# $ "%&'" ()* � �+,� �+,-� �+,-� �+,-� �+,-�� �+,-�� �+,-
���������	���� �
� ��
�� ��
�� ��
�� �
� ��
�� ��
�� ��
�� �
� ��
�� ��
�� ��
��.�/,-01 23425/46 23425/4����� �� � �+,� �+,-� �+,-� �+,-� �+,-�� �+,-�� �+,-

Figure 84: Effect of thread granularity on performance

7.3.4 Runtime Dependency Resolution

In this section we evaluate the approach we utilize for handling runtime-determined depen-

dencies. We study the effect of the overheads of the I-Structure operations on the performance by

comparing 3 versions of the MatMult, Cholesky and LU benchmarks:

• The first version utilizes the compile-time approach for resolving the dependencies in the

program.

• The second version combines both approaches; part of the dependencies are resolved at

compile-time and the rest are resolved at runtime (using I-Fetch and I-Store operations).

• The third version utilizes the runtime approach for resolving the dependencies.

Sam
er

Aran
di

211

���������	����
�� ������ ����
�� ������ ����
�� ������ �������� �� ������� ��� !� ""#$%#& $ '()*+ , -./ ������ ����
� ����
� ����
� ����
������
������

���������	����
�� ������ ����
�� ������ ����
�� ������ ����
�� ������ �����0��
12 3�43�45� 3�43�4 ���6�7� ��� !� � ����� ����
� ����
� ����
� ����
������
������

Figure 85: Effect of problem sizes on performanceSam
er

Aran
di

212

DDM-VMs – Overall Perfromance

���������	���� � � � � � � � � � 	 �� ��
��� �� ������ �� �����
����

���������	���� � � � � � � � � � 	 �� �������� �� �����
��

���������	���� � � � � � � � � � 	 �� �������� �� �����
�� !"�

���������	���� � � � � � � � � � 	 �� ��
��� �� ������ �� �����
� #� $%& '(

���������	���� � � � � � � � � � 	 �� �������� �� �����
)*+),$+-�

���������	���� � � � � � � � � � 	 �� �������� �� �����
)*+),$+

���������	���� � � � � � � � � � 	 �� ��
��� �� ������ �� �����
�.* /%0

Figure 86: DDM-VMs overall performance

Sam
er

Aran
di

213

We compare the performance of the 3 versions for various thread granularities (16x16, 32x32

and 64x64). The results are depicted in Figure 87. We refer to the 3 versions in the figures and the

subsequent text as C-D, CR-D and R-D, respectively. Note that for the MatMult benchmark, only

the first and third versions are available, as the threads in this program have one data dependency.

The results demonstrate that, as expected, the best performance is delivered by the version

utilizing the compile-time approach (C-D), followed by the version utilizing the combination of

the compile-time and runtime approaches (RC-D).

The results show that the performance loss (relative to the compile-time version) is higher

for lower granularities and decreases as we increase the granularity. For example, when using 10

cores in the Cholesky application, the performance loss when utilizing the runtime approach for

all the dependencies (R-D) is 43% for the smallest granularity (16x16) compared to 13.6% for

the largest granularity (64x64). When utilizing a combination of the two approaches (CR-D) the

loss is 14.8% for the smallest granularity compared to 2.2% for the largest granularity. The same

observation applies to the two other benchmarks. This is clearly demonstrated in Figure 88, which

depicts the execution time of the R-D and RC-D versions normalized to the execution time of the

C-D version.

The reason is that as we increase the granularity of the threads by increasing the size of the

blocks the threads operate on, the total number of blocks decreases and so does the total num-

ber of thread invocations. Consequently the number of I-Fetch and I-Store operations decreases,

thus reducing the overheads. Moreover, increasing the granularity of the threads amortizes the

I-Structure operations overheads.
Sam

er
Aran

di

214

����
���

�� �	
 �� �	
� � �	
� �� �	
� ��� �	
� �� �	
 �� �	
� � �	
� �� �	
� � �	
��� �� �	
 �� �	
� � �	
� �� �	
� � �	
�������� ����� �������������
� ���� �� � ! �� ! � !

"#$%
&'"

() *+, -) *+,. /) *+,. 0) *+,. (1) *+,. () *+, -) *+,. /) *+,. 0) *+,.) *+,.(1 () *+, -) *+,. /) *+,. 0) *+,.) *+,.(1'%2'% 3#23# %$2%$45
6 7889 :7

;<=>?
@;

AB CDE FB CDEG HB CDEG IB CDEG AJB CDEG AB CDE FB CDEG HB CDEG IB CDEG B CDEGAJ AB CDE FB CDEG HB CDEG IB CDEG B CDEGAJ@>K@> L<KL< >=K>=MNOMPQO
R STTU VS

LU

Cholesky

MatMult

1
0
 c
o
re
s

1
0
 c
o
re
s

1
0
 c
o
re
s

1
0
 c
o
re
s

1
0
 c
o
re
s

1
0
 c
o
re
s

1
0
 c
o
re
s

1
0
 c
o
re
s

Figure 87: Speedup comparison: runtime-determined dependencies (R-D) v.s. runtime &
compile-time determined dependencies (RC-D) v.s. compile-time determined dependencies (C-D)
approaches

Sam
er

Aran
di

215

The results demonstrate that utilizing the proposed technique (for part or all of the data de-

pendencies in the evaluated programs) achieves acceptable performance compared to the compile-

time approach, whilst utilizing thread granularities in the range we normally utilize in DDM-VM

programs.

7.3.5 Distributed DDM-VMs Execution

For the evaluation of distributed DDM-VMs execution we used two cluster: The first is com-

posed of two of the 12-core AMD machines described previously. We refer to this cluster as

System-1. The second is composed of four quad-core AMD machines running at 3000 MHz,

which have 64KB L1 D-Cache, 64KB L1 I-Cache, 2MB unified L2 cache and 6MB unified L3

cache and 4GB of RAM. We refer to this cluster as System-2. Both clusters are connected using

an off-the-shelf Giga-bit Ethernet switch with a latency of approximately 200 µs.

We used the same benchmarks used for evaluating the distributed DDM-VMc execution in

7.2.5. For all the benchmarks working on matrices we have used blocks of 128x128. In our

experiments we utilized 1, 4, 8 and 11 cores per node for System-1 cluster, which resulted in 2, 8,

16 and 22 total cores in the system, respectively. For the System-2 cluster we utilized 1, 2 and 3

cores per node, which resulted in 4, 8 and 12 total cores, respectively (remember that we always

reserve one core for the TSU execution and thus the maximum number of utilized cores is 11 on

the 12-core machine and 3 on the 4-core machine). We have used two input sizes per benchmark.

Figures 89 & 90 illustrate the speedup results for both clusters.

The results show that for the largest input size the system achieves an average of 80% and 84%

of the maximum possible speedup for the System-1 and System-2 clusters, respectively, which is

a very good result.

Sam
er

Aran
di

216

������������
��� ���� ��� ���� ��� �����	
�	 ��
�� 	�
	��������� ������ ���� �� � �!�"#� $�%
� ��&� � ��&�� � ��&�� ' ��&�� �� ��&��

(()*++)*,,)*
-./ -0./ -./ -0./ -./ -0./+12+1 3,23, 14214567 89:;<= >?@= A9 BC >DAEF= G9H

(()*++)*,,)*
-./ -./ -./+12+1 3,23, 14214IJKILMK7 89:;<= >?@= A9 BC >DAEF= G9H

Figure 88: Execution time comparison: execution time using the runtime-determined dependen-
cies approach v.s. the runtime-determined & compile-time determined dependencies approach
normalized to the execution time using the compile-time determined dependencies approach
Sam

er
Aran

di

217

���������������
����

���	
� ����	
� ���	
� ����	
� ���	
� ����	
������ ���� ������� �� ��������� !��"#$"% &' (���)* # +,�� -. # +/ !�/ ��	�0 1�2�3� �	�0 1�2�3�� �	�0 1�2�3�� �	�0 1�2��3
���������������
����

���	
� ����	
� ���	
� ����	
� ���	
� ����	
�4567 �86�09: � 	�;�<����� �� � �	�0 1�2�3� �	�0 1�2�3�� �	�0 1�2�3�� �	�0 1�2��3
Figure 89: Distributed DDM-VMs Execution (System-1) - SpeedupSam

er
Aran

di

218

�������
��

���	
� ����	
� ���	
� ����	
� ���	
� ����	
������ ���� ��� ���� �� ��������� !��"#$"% &' (���)* # +,�� -.# +/ !�/ � �	�0 1�2�3� �	�0 1�2�3�� �	�0 1�243
�������
��

���	
� ����	
� ���	
� ����	
� ���	
� ����	
�5678 �97�0:; �	�<�=� ���� �� � �	�0 1�2�3� �	�0 1�2�3�� �	�0 1�243
Figure 90: Distributed DDM-VMs Execution (System-2) - Speedup

Table 5: Distributed DDM-VMs Execution Results - Summary

System-1 Cluster System-2 Cluster
Smaller Input Size Larger Input Size Smaller Input Size Larger Input Size

Average Speedup Percentage 74% 80% 79% 84%
Average Speedup (utilizing all cores) 13.1/22 16/22 8.9/12 9.5/12

Similar to the results of the distributed DDM-VMc execution in 7.2.5, the system scales better

as the input size increases as this allows for amortizing the overheads of the parallelization. The

average speedup utilizing all the cores is 13.1 out of 22 for the smaller input size and 16 out of 22

for the larger input size for the System-1 cluster. The average speedup on the System-2 cluster is

8.9 out of 12 for the smaller input size and 9.5 out of 12 for the larger input size. The results are

summarized in Table 5.

Sam
er

Aran
di

219

As noted in 7.2.5 larger input sizes and granularities (compared to single-node execution) are

needed for the system to scale due to the additional latencies introduced by the network data and

synchronization messages transfer.

The Cholesky benchmark yields the least performance as its threads exchange data heavily

across the nodes and so is affected to a great extent by the large latency of the the network. The

LU benchmark similarly has a heavy inter-node data exchange, however, because its threads have

a larger granularity compared to Cholesky’s (for the same block size), the TSU has a better chance

of overlapping the network latencies, thus yielding better performance.

Sam
er

Aran
di

Chapter 8

Future Work and Conclusion

8.1 Future Work

The first focus of our future work is the further improvement of the the DDM-VM program-

ming toolchain. In addition to pursuing the efforts on the GCC auto-parallelizing compiler (de-

scribed in Section 5.8), we plan to develop a source-to-source compilation tool that facilitate using

the Concurrent Collections (CnC), a declarative parallel programming language, to program the

DDM-VM.

The second focus on the future work is the further improvement of the DDM-VM perfor-

mance. On this front we plan to support dynamic scheduling in distributed execution to improve

the performance of applications benefiting from load-balancing. Moreover, we target support-

ing prefetching on the DDM-VMs targeting architectures with hardware-managed memories that

support prefetching. We describe our future work efforts in detail in the following sections.

8.1.1 Concurrent Collections Source-to-Source Compiler

Concurrent Collections [22, 23] is a declarative parallel programming language, with similar

semantics to DDM. It allows programmers who lack experience in parallelism to express their

220

Sam
er

Aran
di

221

parallel programs as a collection of high-level computations called steps that communicate via

single-assignment data structures called items. Steps and items are uniquely identified by tags. The

major CnC constructs match the DDM constructs: the CnC steps correspond to the DDM threads,

as both represent the unit of execution and apply single-assignment across steps/threads while

allowing side-effects locally within a step/thread. The control and data dependence relationships

amongst the steps, manifested in the items and tags that are produced and consumed, correspond

to the producer-consumer relationships (the meta-data) of the DDM threads.

This correspondence facilitates translating CnC programs into DDM-VM programs. This al-

lows programmers to write their applications in CnC and efficiently handles the low-level details of

the parallel execution including the memory management on architectures with software-managed

memory hierarchy.

Tag Collection

< >

Item Collection

[]

Step Collection

()

Prod/Cons

relationship

control

relationship

Environment

Input/output

Blocked MatMult

CnC Program

//Item definitions

[int* A <PAIR>]; //Item A, points to a block in Memory

[int* B <PAIR>]; //Item B, points to a block in Memory

[int* C <TRIPLE>];//Item C, points to a block in Memory

// Tag definitions

<PAIR ITag>;

<TRIPLE MTag>;

//Prescriptions (control relationships) <TAG>::(STEP)

<ITag> :: (Iterator);

<MTag> :: (Multiply);

// Step produce/consume relationships

(Iterator)-><MTag>; // Iterator produces MTag

[A], [B], [C] -> (Multiply);//Multiply consumes A,B,C

(Multiply)->[C],<MTag>; // Multiply produces C

env -> <ITag>,[A],[B],[C];//initialization produces A,B,C

[C]-> env ; //post-execution code consumes C

C

BA

Multiply

Iterator

MTag

ITag

(a) (b)

T1

T2

(c)

DDM Thread

Prod/Cons

relationship

T

Blocked MatMult

DDM Threads

(Iterator)

(Multiply)

Figure 91: The blocked Matrix Multiplication application. (a) Textual representation of the CnC
program (b) Graphical representation of the CnC program. (c) Equivalent DDM dependency
graph.

To this end, a CnC source-to-source compiler is being developed, which parses the CnC pro-

gram and generates the corresponding DDM threads code and augments it with calls to the DDM-

VM runtime.

Figures 91-a and 91-b illustrate the textual and graphical representations of a CnC program

implementing the Blocked Matrix Multiplication. The program consists of two steps accessing

Sam
er

Aran
di

222

�������
�����������

� � � �
����	�
 ��
����������� �������

G
F
L
O
P
s

Number of SPEs

MatMult (2048x2048)

DDM-VMc Macros

CnC-to-DDM

Compiler

Figure 92: Performance comparison between the macro-coded and compiler-generated versions
of the matrix multiplication program

three items, in addition to two tags. Figure 91-c depicts the dependency graph of the equivalent

DDM program where each step was mapped into a DDM thread. The Figure also depicts the

dependencies between the threads. Next, we presents the preliminary evaluation results for the

CnC compiler.

Preliminary Results

We compare the performance of two versions of the Matrix Multiplication, one coded using

the DDM-VM macros vs. one generated using the preliminary version of the CnC compiler we

are developing. Both versions are run on the DDM-VMc and the results are depicted in Figure 92.

The results show that the compiler-generated version is performing on par with the macro-

coded one achieving an impressive 86.5 GFLOPS for 4 SPEs. When the number of SPEs is six the

performance of the compiler-generated version drops. We attribute this to an inefficient implemen-

tation of the hashmap structure we use to represent CnC data items in the generated program. A

Sam
er

Aran
di

223

more efficient implementation will be developed. Nevertheless, we find these preliminary results

very encouraging to pursue work in this direction.

8.1.2 Supporting Dynamic Scheduling in Distributed Execution

The work presented in this thesis explored a static scheme for distributing (or mapping) threads

to cores, in which the mapping is determined at compile time and does not change during the ex-

ecution. For the relatively small granularities of the utilized benchmarks threads, this scheme

delivers the best performance. In this section we discuss the planned support for dynamic distri-

bution, which can utilized for improving the performance of applications with much larger thread

granularities that benefit from load-balancing.

8.1.2.1 Thread Scheduling Unit (TSU)

TSU Structures

To support the dynamic mapping scheme the TSU allocates the following three structures:

1. Scheduling Table (ST): This structure keeps track of where each invocation of a thread has

been scheduled (on which node/core).

2. Load Table (LT): This structure has an entry per node. It records the number of threads

currently scheduled to run on that node, in addition to any other information that can be

used when taking the scheduling decision (for example power and thermal information).

3. Dynamic Data Directory (DDD): This structure keeps track of the addresses of the input

data associated with the thread invocations scheduled to execute on the current node.

Sam
er

Aran
di

224

TSU Operations

Whenever a decrement RC request in the AQ is processed, the TSU interrogates the ST to

get the identifier of the core where this invocation is scheduled. If the core is on the local node

the request is processed normally. If the core belongs to a remote node the request is forwarded

to that node. If no information on that invocation is available in the ST, the TSU requests infor-

mation from the other TSUs in the system. Once the information is received, it updates the ST

and forwards the request accordingly if needed. If all the TSUs have no information (this is the

first decrement RC request for that invocation) a scheduling decision is taken according to the

scheduling criterion (e.g. load-balancing). The decrement request is then forwarded accordingly

and the ST is updated and the rest of the TSUs are informed to update their LTs and possibly

their STs. Once a thread invocation finishes execution the rest of the nodes are informed to update

their tables. The NIU supports the exchanging of messages that is needed for implementing all the

previously described interactions amongst the nodes.

8.1.2.2 Program Data

The thread input/output data is allocated dynamically at runtime, because it is only then that the

core where each thread invocation is mapped, is specified. Consequently, instead of specifying the

GAS address, the Data Frame Pointer (DFP) describing the output data specifies: (i) the consumer

thread identifier and its context and (ii) an index specifying which consumer input this data maps

to (the first input, second input, etc). Similarly, instead of specifying the GAS address, the DFP

describing the input data merely specifies the index of the input data.

The only exception to the above are the threads that consume initialization data or ones that

write produced data at the end of the program into a previously allocated result buffer, as in these

cases the GAS address of the data is known apriori and so is directly specified in the DFP.

Sam
er

Aran
di

225

When a producer thread finishes execution, and the data is forwarded to a remote consumer

with the decrement RC request, the receiving node uses the message header field describing the

size of the forwarded data to dynamically allocates a buffer to hold the data in its memory. The

TSU associates the address of the data, with the consumer thread identifier & context and the data

input index in the Dynamic Data Directory table. When the RC of a consumer reaches zero, the

table is used to retrieve the addresses of this invocation data and the rest of the TSU activities

proceed as described previously. Once the thread finishes execution its associated table entries are

deallocated to minimize the size of the table.

8.1.3 Supporting Prefetching on the DDM-VMs

The current design of the S-CacheFlow module in the TSU supports prefetching for architec-

tures with software-managed memory hierarchies in the DDM-VMc implementation. To improve

the performance on architectures with hardware-managed caches, we target supporting prefetch-

ing on the DDM-VMs by applying the same CacheFlow principles. In such architectures the

S-CacheFlow allocation and eviction tasks are handled by the memory controller hardware, how-

ever, we have control over the prefetching of data into the cache. We discuss the support for

prefetching on x86 64-bit architectures without loss of generality.

The x86 64-bit family of processors supports a number of prefetching instructions [3, 1, 4].

Although the general behavior of such instructions is defined by the architecture, the processor

implementations can ignore or change how these instructions operate [37].

The most important factors to our implementation is the cache level affected by prefetching

and the configuration of that level (e.g. unified v.s. private or inclusive v.s. exclusive). One

important factor that must be taken in consideration is the effect of the hardware prefetchers,

which could interfere with the S-CacheFlow prefetching.

Sam
er

Aran
di

226

One fundamental aspect of the implementation is where to issue the prefetch instruction. This

can be issued by the TSU or by the runtime threads on the cores where the execution of the threads

is taking place. We anticipate the former would work only if the prefetch instruction loads the data

into a unified cache level (typically L2 and higher) and the latter would work in either case (unified

or private). For that reason our initial design opts for the latter. To issue the prefetches the runtime

uses the information of the thread input/output data in the ExFQ.

8.2 Conclusion

In this thesis we proposed adopting the Data-flow model as the basis for an execution model

that exploits the resources of multi-core architectures. We designed and implemented the DDM-

VM: a virtual machine that supports DDM execution on homogeneous and heterogeneous multi-

cores for both single-node and distributed/multi-node systems. The DDM-VM utilizes Data-Flow

concurrency for scheduling threads and efficient sequential execution within a thread, while opti-

mizing the context management of the Dynamic Data-Flow tagging system.

In the context of this work we also proposed the use of a data-driven prefetching software

cache for handling software-managed memory hierarchies. We presented the programming method-

ology and developed a number of alternative approaches facilitating the programming of the

DDM-VM, in addition to a number of optimizations for improving the performance. We also pro-

posed combining compile-time and run-time dependency resolution using helper/proxy threads

and special I-Structures. This expands the class of programs that can be handled by the DDM-

VM and has the potential to enhance the programmability and improve the yield of compilation

techniques generating data-flow code.

Sam
er

Aran
di

227

The evaluation demonstrates that the two implementations of the DDM-VM (for both single-

node and multi-node/cluster) scale well and tolerate latencies and synchronization overheads ef-

ficiently and achieve very good overall performance. When comparing the performance of the

DDM-VMc implementation with two similar state-of-the-art systems (StarSs and Sequoia) using

a number of computationally-intensive benchmarks, the DDM-VMc outperforms both systems and

achieves 88% of the theoretical peak performance for one of the benchmarks. For the same bench-

mark the distributed DDM-VMc execution on a cluster of 4 machines achieves 0.44 TFLOPs.

The main contribution of this thesis is that we have implemented Dynamic Data-Flow princi-

ples efficiently on off-the-shelf multi-core systems as a virtual machine that outperforms similar

systems and delivers high-performance. This result strengthens the case that hybrid models that

combine Data-Flow concurrency with efficient control-flow execution are candidates for adoption

as the basis of a new execution model for Multi-core systems.

We conclude this thesis by summarizing the contributions:

• The development of the Data-Driven Multithreading Virtual Machine (DDM-VM), an ef-

ficient virtual machine that supports Data-Driven Multithreading execution on multi-core

systems. The DDM-VM utilizes DDM scheduling for exploiting the resources of multi-

core architectures and tolerating synchronization and memory latencies. The VM has two

individually optimized implementations: The DDM-VMs tailored for homogeneous multi-

cores and the DDM-VMc tailored for heterogeneous multi-cores. Both implementations

utilize a unified programming representation and toolchain and implement a number of per-

formance optimizations. The DDM-VMc is a high-performance implementation of DDM

that achieves better performance than similar state-of-the-art systems. It is also the first

heterogeneous implementation of DDM. It is developed for heterogeneous multi-core ar-

chitecture with a host/accelerator organization and a software-managed memory hierarchy.

Sam
er

Aran
di

228

• The development of Software CacheFlow (S-CacheFlow), a fully-automated software prefetch-

ing cache with variable cache block sizes and explicit data locality optimizations for han-

dling explicitly-managed memory hierarchies.

• The development of the support for distributed DDM execution across an off-chip network.

The DDM-VM is the first DDM implementation supporting distributed DDM execution

across a cluster of multi-core nodes.

• The development of the support for runtime-determined dependency resolution using spe-

cialized I-Structures. The DDM-VM is the first DDM implementation that supports parallel

execution of code that contains consumer-producer dependencies that are only resolved at

runtime. Compile-time and run-time dependency resolution can be utilized simultaneously,

which combines the strengths of both approaches and expands the class of programs that

can be mapped to the DDM model. It also has the potential to improve the programmability

and enhance the yield of compilation methods generating data-flow code.

• The development of a number of performance optimizations and monitoring & visualization

tools.

Sam
er

Aran
di

Bibliography

[1] AMD64 Architecture Programmer’s Manual Volume 1: Application Programming, 3.09
edition, september 2003.

[2] May 2008. http://www.openmp.org.

[3] Intel 64 and IA-32 Architectures Optimization Reference Manual, june 2011.

[4] Software Optimization Guide for AMD Family 10h and 12h Processors, 3.13 edition, febru-
ary 2011.

[5] Maharaja (Raj) Pandian Eitan Peri Kurtis Ruby Francois Thomas Chris Almond Abra-
ham Arevalo, Ricardo M. Matinata. Programming the Cell Broadband Engine Architec-
ture: Examples and Best Practices. Number ISBN 0738485942. IBM Redbooks, 2008.

[6] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim, Donald Yeung, God-
frey D’Souza, and Mike Parkin. Sparcle: An evolutionary processor design for large-scale
multiprocessors. IEEE Micro, 13(3):48–61, 1993.

[7] Jung Ho Ahn, William J. Dally, Brucek Khailany, Ujval J. Kapasi, and Abhishek Das.
Evaluating the imagine stream architecture. In ISCA ’04: Proceedings of the 31st annual
international symposium on Computer architecture, page 14, Washington, DC, USA, 2004.
IEEE Computer Society.

[8] Satoshi Amamiya, Masaaki Izumi, Takanori Matsuzaki, Ryuzo Hasegawa, and Makoto
Amamiya. Fuce: the continuation-based multithreading processor. In CF ’07: Proceedings
of the 4th international conference on Computing frontiers, pages 213–224, New York, NY,
USA, 2007. ACM.

[9] Samer Arandi and Paraskevas Evripidou. Programming multi-core architectures using data-
flow techniques. In SAMOS ’10: Proceedings of the 10th International Conference on
Embedded Computer Systems: Architectures, Modeling and Simulation, Samos, Greece,
July 2010.

[10] Arvind and David E. Culler. Dataflow architectures. pages 225–253, 1986.

[11] Arvind and Kim P. Gostelow. The u-interpreter. Computer, 15(2):42–49, 1982.

[12] Arvind and Robert A. Iannucci. Two fundamental issues in multiprocessing. In 4th Inter-
national DFVLR Seminar on Foundations of Engineering Sciences on Parallel Computing
in Science and Engineering, pages 61–88, New York, NY, USA, 1988. Springer-Verlag
New York, Inc.

229

Sam
er

Aran
di

230

[13] Arvind and Vinod Kathail. A multiple processor data flow machine that supports general-
ized procedures. In ISCA ’81: Proceedings of the 8th annual symposium on Computer Ar-
chitecture, pages 291–302, Los Alamitos, CA, USA, 1981. IEEE Computer Society Press.

[14] Arvind and Rishiyur S. Nikhil. Executing a program on the mit tagged-token dataflow
architecture. IEEE Trans. Comput., 39(3):300–318, 1990.

[15] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures: data structures for parallel
computing. ACM Trans. Program. Lang. Syst., 11:598–632, October 1989.

[16] Eduard Ayguadé, Rosa M. Badia, Pieter Bellens, Daniel Cabrera, Alejandro Duran, Roger
Ferrer, Marc González, Francisco D. Igual, Daniel Jiménez-González, and Jesús Labarta.
Extending openmp to survive the heterogeneous multi-core era. International Journal of
Parallel Programming, 38(5-6):440–459, 2010.

[17] Cedric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, Olivier Temam, A Group,
and Inria Rocquencourt. Putting polyhedral loop transformations to work. In In Workshop
on Languages and Compilers for Parallel Computing (LCPC03), LNCS, pages 209–225,
2003.

[18] Pieter Bellens, Josep M. Pérez, Rosa M. Badia, and Jesús Labarta. CellSs: a Program-
ming Model for the Cell BE Architecture. In SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, page 86, New York, NY, USA, 2006. ACM.

[19] Pieter Bellens, Josep M. Perez, Felipe Cabarcas, Alex Ramirez, Rosa M. Badia, and Jesus
Labarta. Cellss: Scheduling techniques to better exploit memory hierarchy. Sci. Program.,
17(1-2):77–95, 2009.

[20] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson, and Keith H.
Randall. Dag-consistent distributed shared memory. In in Proceedings of the Eighth An-
nual ACM Symposium on Parallel Algorithms and Architectures (SPAA, pages 297–308,
1996.

[21] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime system. SIG-
PLAN Not., 30:207–216, August 1995.

[22] Zoran Budimlic, Aparna M. Chandramowlishwaran, Kathleen Knobe, Geoff N. Lowney,
Vivek Sarkar, and Leo Treggiari. Declarative aspects of memory management in the con-
current collections parallel programming model. In DAMP ’09: Proceedings of the 4th
workshop on Declarative aspects of multicore programming, pages 47–58, New York, NY,
USA, 2009. ACM.

[23] Zoran Budimlic, Aparna M. Chandramowlishwaran, Kathleen Knobe, Geoff N. Lowney,
Vivek Sarkar, and Leo Treggiari. Multi-core implementations of the concurrent collections
programming model. In CPC ’09: 14th Workshop on Compilers for Parallel Computing.
Springer, 2009.

[24] Doug Burger, Stephen W. Keckler, Kathryn S. McKinley, Mike Dahlin, Lizy K. John,
Calvin Lin, Charles R. Moore, James Burrill, Robert G. McDonald, William Yoder, and
the TRIPS Team. Scaling to the end of silicon with edge architectures. Computer,
37(7):44–55, 2004.

Sam
er

Aran
di

231

[25] Draper J. M. Culler D. E. Yelick K. Brooks E. Carlson, W. W. and K. Warren. Introduction
to upc and language specification. Technical report, University of California-Berkeley,
1999.

[26] Tong Chen, Haibo Lin, and Tao Zhang. Orchestrating data transfer for the cell/b.e. proces-
sor. In ICS ’08: Proceedings of the 22nd annual international conference on Supercomput-
ing, pages 289–298, New York, NY, USA, 2008. ACM.

[27] David E. Culler and Arvind. Resource requirements of dataflow programs. SIGARCH
Comput. Archit. News, 16(2):141–150, 1988.

[28] David E. Culler, Seth Copen Goldstein, Klaus Erik Schauser, and Thorsten von Eicken.
TAM - a compiler controlled threaded abstract machine. J. Parallel Distrib. Comput.,
18:347–370, July 1993.

[29] David E. Culler, Anurag Sah, Klaus E. Schauser, Thorsten von Eicken, and John
Wawrzynek. Fine-grain parallelism with minimal hardware support: a compiler-controlled
threaded abstract machine. In ASPLOS-IV: Proceedings of the fourth international confer-
ence on Architectural support for programming languages and operating systems, pages
164–175, New York, NY, USA, 1991. ACM.

[30] Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao. Tiny threads: A thread
virtual machine for the cyclops64 cellular architecture. In Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium (IPDPS’05) - Workshop 14
- Volume 15, IPDPS ’05, pages 265.2–, Washington, DC, USA, 2005. IEEE Computer
Society.

[31] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently computing static single assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991.

[32] William J. Dally, Francois Labonte, Abhishek Das, Patrick Hanrahan, Jung-Ho Ahn,
Jayanth Gummaraju, Mattan Erez, Nuwan Jayasena, Ian Buck, Timothy J. Knight, and
Ujval J. Kapasi. Merrimac: Supercomputing with streams. In Proceedings of the 2003
ACM/IEEE conference on Supercomputing, SC ’03, pages 35–, New York, NY, USA, 2003.
ACM.

[33] Jack B. Dennis. First version of a data flow procedure language. In Programming Sym-
posium, Proceedings Colloque sur la Programmation, pages 362–376, London, UK, 1974.
Springer-Verlag.

[34] Jack B. Dennis and David P. Misunas. A preliminary architecture for a basic data-flow
processor. SIGARCH Comput. Archit. News, 3(4):126–132, 1974.

[35] Keith Diefendorff. Compaq chooses smt for alpha. Microprocessor Report, 13(16), de-
cember 1999.

[36] Jack J. Dongarra, Rolf Hempel, Anthony J.G. Hey, and David W. Walker. A proposal for a
user-level, message-passing interface in a distributed memory environment, 1993.

[37] Ulrich Drepper. What every programmer should know about memory, 2007.

Sam
er

Aran
di

232

[38] Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, Rebecca L. Stamm, and Dean M.
Tullsen. Simultaneous multithreading: A platform for next-generation processors. IEEE
Micro, 17(5):12–19, 1997.

[39] Alexandre E. Eichenberger, Kevin O’Brien, Kathryn M. O’Brien, Peng Wu, Tong Chen,
Peter H. Oden, Daniel A. Prener, Janice C. Shepherd, Byoungro So, Zehra Sura, Amy
Wang, Tao Zhang, Peng Zhao, Michael Gschwind, Roch Archambault, Yaoqing Gao, and
Roland Koo. Using advanced compiler technology to exploit the performance of the Cell
Broadband EngineTM architecture. IBM Syst. J., 45(1):59–84, 2006.

[40] Paraskevas Evripidou and Jean-Luc Gaudiot. A decoupled graph/computation data-driven
architecture with variable-resolution actors. In ICPP (1), pages 405–414, 1990.

[41] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem, Mike Hous-
ton, Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken, William J. Dally, and Pat
Hanrahan. Sequoia: Programming the Memory Hierarchy. In SC ’06: Proceedings of
the 2006 ACM/IEEE conference on Supercomputing, page 83, New York, NY, USA, 2006.
ACM.

[42] Nissim Francez. Distributed termination. ACM Trans. Program. Lang. Syst., 2:42–55,
January 1980.

[43] Jean-Luc Gaudiot. On program decomposition and partitioning in data-flow systems. PhD
thesis, 1982. AAI8306041.

[44] Roberto Giorgi, Zdravko Popovic, and Nikola Puzovic. DTA-C: A decoupled multi-
threaded architecture for cmp systems. In SBAC-PAD, pages 263–270, 2007.

[45] Marc Gonzàlez, Nikola Vujic, Xavier Martorell, Eduard Ayguadé, Alexandre E. Eichen-
berger, Tong Chen, Zehra Sura, Tao Zhang, Kevin O’Brien, and Kathryn O’Brien. Hybrid
access-specific software cache techniques for the cell be architecture. In PACT ’08: Pro-
ceedings of the 17th international conference on Parallel architectures and compilation
techniques, pages 292–302, New York, NY, USA, 2008. ACM.

[46] Kim P. Gostelow and Robert E. Thomas. Performance of a simulated dataflow computer.
IEEE Trans. Comput., 29:905–919, October 1980.

[47] V. Gerald Grafe and Jamie E. Hoch. The epsilon-2 multiprocessor system. J. Parallel
Distrib. Comput., 10(4):309–318, 1990.

[48] Ed Grochowski, Ronny Ronen, John Shen, and Hong Wang. Best of both latency and
throughput. In ICCD ’04: Proceedings of the IEEE International Conference on Computer
Design, pages 236–243, Washington, DC, USA, 2004. IEEE Computer Society.

[49] Gregory F. Grohoski. Machine organization of the ibm risc system/6000 processor. IBM J.
Res. Dev., 34:37–58, January 1990.

[50] Winfried Grunewald and Theo Ungerer. Towards extremely fast context switching in a
block-multithreaded processor. EUROMICRO Conference, 0:0592, 1996.

[51] Babak Hamidzadeh, Lau Ying Kit, and David J. Lilja. Dynamic task scheduling using
online optimization. IEEE Trans. Parallel Distrib. Syst., 11:1151–1163, November 2000.

Sam
er

Aran
di

233

[52] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch hashing. In Proceedings of
the 22nd international symposium on Distributed Computing, DISC ’08, pages 350–364,
Berlin, Heidelberg, 2008. Springer-Verlag.

[53] Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore era. Computer,
41(7):33–38, 2008.

[54] Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Finan, Gregory Ruhl,
David Jenkins, Howard Wilson, Nitin Borkar, Gerhard Schrom, and et al. A 48-core ia-32
message-passing processor with dvfs in 45nm cmos. In in Proceedings of the International
Solid-State Circuits Conference, pages 108–109, Feb 2010.

[55] ClearSpeed Inc. Clearspeed’s csx processor architecture. Whiter Paper;
http://www.clearspeed.com/docs/resources.

[56] RapidMind Inc. Cell be porting and tuning with rapidmind: A case study. White Paper;
see http://www.rapidmind.net/case-cell.php.

[57] Intel. http://www.intel.com/products/processor/core2duo/index.
htm.

[58] Intel. http://www.intel.com/products/processor/core2quad/index.
htm.

[59] Intel. http://www.amd.com/us-en/Processors/ProductInformation/
0,,30_118_9485_13041,00.html.

[60] Intel. http://www.amd.com/us-en/Processors/ProductInformation/
0,,30_118_13909,00.html.

[61] Intel. Intel 80 cores by 2011. http://techfreep.com/
intel-80-cores-by-2011.htm.

[62] Jack J. Dongarra Jakub Kurzak, Hatem Ltaief and Rosa M. Badia. Lapack working note
213: Scheduling linear algebra operations on multicore processors. Technical Report UT-
CS-09-636, Computer Science Department, University of Tennessee, 2009.

[63] James A. Kahle, Michael N. Day, H. Peter Hofstee, Charles R. Johns, Theodore R. Maeurer,
and David Shippy. Introduction to the cell multiprocessor. IBM J. Res. Dev., 49(4/5):589–
604, 2005.

[64] Ron Kalla, Balaram Sinharoy, and Joel M. Tendler. Ibm power5 chip: A dual-core multi-
threaded processor. IEEE Micro, 24(2):40–47, 2004.

[65] Ujval Kapasi, William J. Dally, Scott Rixner, John D. Owens, and Brucek Khailany. The
Imagine stream processor. In Proceedings 2002 IEEE International Conference on Com-
puter Design, pages 282–288, September 2002.

[66] Krishna M. Kavi, Roberto Giorgi, and Joseph Arul. Scheduled dataflow: Execution
paradigm, architecture, and performance evaluation. IEEE Trans. Comput., 50(8):834–846,
2001.

Sam
er

Aran
di

234

[67] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara: A 32-way
multithreaded sparc processor. IEEE Micro, 25(2):21–29, 2005.

[68] David A. Koufaty, Xiangfeng Chen, David K. Poulsen, and Josep Torrellas. Data for-
warding in scalable shared-memory multiprocessors. IEEE Trans. Parallel Distrib. Syst.,
7:1250–1264, December 1996.

[69] Rakesh Kumar, Dean M. Tullsen, Norman P. Jouppi, and Parthasarathy Ranganathan. Het-
erogeneous chip multiprocessors. Computer, 38(11):32–38, 2005.

[70] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating directed
task graphs to multiprocessors. ACM Comput. Surv., 31(4):406–471, 1999.

[71] Costas Kyriacou. Data Driven Multithreading using Conventional Control Flow Micropro-
cessors. PhD thesis, Dept. of Computer Science, University of Cyprus, 2005.

[72] Costas Kyriacou, Paraskevas Evripidou, and Pedro Trancoso. Cacheflow: A Short-Term
Optimal Cache Management Policy for Data Driven Multithreading,. Proc. EuroPar-04,
pages 561–570, Aug. 2004.

[73] Costas Kyriacou, Paraskevas Evripidou, and Pedro Trancoso. Data-Driven Multithreading
Using Conventional Microprocessors. IEEE Trans. Parallel Distrib. Syst., 17(10):1176–
1188, 2006.

[74] James Laudon, Anoop Gupta, and Mark Horowitz. Interleaving: a multithreading tech-
nique targeting multiprocessors and workstations. In ASPLOS-VI: Proceedings of the sixth
international conference on Architectural support for programming languages and operat-
ing systems, pages 308–318, New York, NY, USA, 1994. ACM.

[75] Ben Lee and A. R. Hurson. Dataflow architectures and multithreading. Computer,
27(8):27–39, 1994.

[76] Jaejin Lee, Jun Lee, Sangmin Seo, Jungwon Kim, Seungkyun Kim, and Zehra Sura.
Comic++: A software svm system for heterogeneous multicore accelerator clusters. In
HPCA, pages 1–12, 2010.

[77] Jaejin Lee, Sangmin Seo, Chihun Kim, Junghyun Kim, Posung Chun, Zehra Sura, Jungwon
Kim, and SangYong Han. Comic: a coherent shared memory interface for cell be. In
Proceedings of the 17th international conference on Parallel architectures and compilation
techniques, PACT ’08, pages 303–314, New York, NY, USA, 2008. ACM.

[78] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav
Hållberg, Johan Högberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner. Sim-
ics: A full system simulation platform. Computer, 35:50–58, February 2002.

[79] Olivier Maquelin, Herbert H. J. Hum, and Guang R. Gao. Costs and benefits of multi-
threading with off-the-shelf risc processors. In Euro-Par ’95: Proceedings of the First
International Euro-Par Conference on Parallel Processing, pages 117–128, London, UK,
1995. Springer-Verlag.

[80] Pedro Marcuello, Antonio Gonza’lez, and Jordi Tubella. Speculative multithreaded proces-
sors. In International Conference on Supercomputing, pages 77–84, 1998.

Sam
er

Aran
di

235

[81] Friedemann Mattern. Algorithms for distributed termination detection. Distributed Com-
puting, 2:161–175, 1987.

[82] Sally A. McKee. Reflections on the memory wall. In Proceedings of the 1st conference on
Computing frontiers, CF ’04, pages 162–, New York, NY, USA, 2004. ACM.

[83] George Michael. DDM-VMS: Data-driven multithreading virtual machine for symmetric
multi-cores. Dept. of Computer Science, University of Cyprus, 2011. Undergraduate The-
sis.

[84] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8):114–117, April 1965.

[85] Richard Murphy. On the effects of memory latency and bandwidth on supercomputer ap-
plication performance. In Workload Characterization, 2007. IISWC 2007. IEEE 10th In-
ternational Symposium on, pages 35 –43, 2007.

[86] Shashank S. Nemawarkar and Guang R. Gao. Measurement and modeling of earth-manna
multithreaded architecture. In MASCOTS ’96: Proceedings of the 4th International Work-
shop on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems,
page 109, Washington, DC, USA, 1996. IEEE Computer Society.

[87] Maik Nijhuis, Herbert Bos, Henri E. Bal, and Cédric Augonnet. Mapping and synchro-
nizing streaming applications on cell processors. In HiPEAC ’09: Proceedings of the 4th
International Conference on High Performance Embedded Architectures and Compilers,
pages 216–230, Berlin, Heidelberg, 2009. Springer-Verlag.

[88] Rishiyur S. Nikhil, Gregory M. Papadopoulos, and Arvind. T: a multithreaded massively
parallel architecture. SIGARCH Comput. Archit. News, 20(2):156–167, 1992.

[89] NVidia. Nvidia’s geforce 8800 graphics processor. http://www.techreport.com/
reviews/2006q4/geforce-8800/index.x?pg=1.

[90] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang.
The case for a single-chip multiprocessor. SIGPLAN Not., 31(9):2–11, 1996.

[91] Petros K. Panayi, Zbigniew Chamski, Samer Arandi, George Michael, and Paraskevas
Evripidou. Automatic code generation for ddm-vm in gcc using graphite: A field report. In
In Proceedings of the GROW’11 Workshop, Chamonix, France, April 2011.

[92] Gregory M. Papadopoulos and David E. Culler. Monsoon: an explicit token-store architec-
ture. In ISCA ’90: Proceedings of the 17th annual international symposium on Computer
Architecture, pages 82–91, New York, NY, USA, 1990. ACM.

[93] David A. Patterson and John L. Hennessy. Computer architecture: a quantitative approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 4th ed. edition, 1990.

[94] Josep M. Pérez, Pieter Bellens, Rosa M. Badia, and Jesús Labarta. Cellss: Making it easier
to program the Cell Broadband Engine processor. IBM J. Res. Dev., 51(5):593–604, 2007.

[95] Chuck Pheatt. Intel threading building blocks. J. Comput. Sci. Coll., 23:298–298, April
2008.

Sam
er

Aran
di

236

[96] Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jesus Labarta. Hierarchical task-based
programming with starss. Int. J. High Perform. Comput. Appl., 23:284–299, August 2009.

[97] Sebastian Pop, Albert Cohen, Cdric Bastoul, Sylvain Girbal, Georges andr Silber, and Nico-
las Vasilache. Graphite: Polyhedral analyses and optimizations for gcc. In In Proceedings
of the 2006 GCC Developers Summit, page 2006, 2006.

[98] Sébastian Pop, Albert Cohen, Cdric Bastoul, Sylvain Girbal, P. Jouvelot, G.-A. Silber, and
N. Vasilache. GRAPHITE: Loop optimizations based on the polyhedral model for GCC.
In Proc. of the 4th GCC Developper’s Summit, pages 179–198, Ottawa, Canada, June 2006.

[99] David K. Poulsen and Pen-Chung Yew. Data prefetching and data forwarding in shared
memory multiprocessors. In Proceedings of the 1994 International Conference on Parallel
Processing - Volume 02, ICPP ’94, pages 280–280, Washington, DC, USA, 1994. IEEE
Computer Society.

[100] Jelica Protic, Milo Tomasevic, and Veljko Milutinovic. Distributed shared memory: con-
cepts and systems. Parallel Distributed Technology: Systems Applications, IEEE, 4(2):63
–71, summer 1996.

[101] Eric Rotenberg, Quinn Jacobson, Yiannakis Sazeides, and Jim Smith. Trace processors.
Microarchitecture, IEEE/ACM International Symposium on, 0:138, 1997.

[102] Amir Roth and Gurindar S. Sohi. Speculative data-driven multithreading. In HPCA ’01:
Proceedings of the 7th International Symposium on High-Performance Computer Architec-
ture, page 37, Washington, DC, USA, 2001. IEEE Computer Society.

[103] Carlos A. Ruggiero and John Sargeant. Control of parallelism in the manchester dataflow
machine. In Proc. of a conference on Functional programming languages and computer
architecture, pages 1–15, London, UK, 1987. Springer-Verlag.

[104] Shuichi Sakai, Yoshinori Yamaguchi, Kei Hiraki, Yuetsu Kodama, and Toshitsugu Yuba.
An architecture of a dataflow single chip processor. SIGARCH Comput. Archit. News,
17(3):46–53, 1989.

[105] Scott Schneider, Jae-Seung Yeom, Benjamin Rose, John C. Linford, Adrian Sandu, and
Dimitrios S. Nikolopoulos. A comparison of programming models for multiprocessors
with explicitly managed memory hierarchies. In PPoPP ’09: Proceedings of the 14th ACM
SIGPLAN symposium on Principles and practice of parallel programming, pages 131–140,
New York, NY, USA, 2009. ACM.

[106] Wolfgang Schreiner. On Engineering a Distributed Algorithm. RISC Report Series 98-20,
Research Institute for Symbolic Computation (RISC), University of Linz, Schloss Hagen-
berg, 4232 Hagenberg, Austria, December 1998.

[107] Ulrich Sigmund and Theo Ungerer. Identifying bottlenecks in a multithreaded superscalar
microprocessor. In In EuroPar ’96 Instruction Level Parallelism, volume 1124 of LNCS,
pages 797–800, 1996.

[108] Jurij Silc, Borut Robic, and Theo Ungerer. Asynchrony in parallel computing: From
dataflow to multithreading. Technical Report CSD-TR-97-4, 29, 1997.

Sam
er

Aran
di

237

[109] Jurij Silc, Borut Robic, and Theo Ungerer. Asynchrony in parallel computing: from
dataflow to multithreading. Parall. Distr. Comput. Practices, 1(1):57–83, 1998.

[110] James E. Smith and Andrew R. Pleszkun. Implementation of precise interrupts in pipelined
processors. In 25 years of the international symposia on Computer architecture (selected
papers), ISCA ’98, pages 291–299, New York, NY, USA, 1998. ACM.

[111] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar processors.
SIGARCH Comput. Archit. News, 23(2):414–425, 1995.

[112] Kyriakos Stavrou. The TFlux Platform: A Portable Platform for Data-Driven Multithread-
ing on Commodity Multiprocessor Systems. PhD thesis, Dept. of Computer Science, Uni-
versity of Cyprus, 2009.

[113] Kyriakos Stavrou, Marios Nikolaides, Demos Pavlou, Samer Arandi, Paraskevas Evripi-
dou, and Pedro Trancoso. TFlux: A Portable Platform for Data-Driven Multithreading on
Commodity Multicore Systems. In ICPP ’08: Proceedings of the 2008 37th International
Conference on Parallel Processing, pages 25–34, Washington, DC, USA, 2008. IEEE Com-
puter Society.

[114] Kyriakos Stavrou, Demos Pavlou, Marios Nikolaides, Panayiotis Petrides, Paraskevas
Evripidou, Pedro Trancoso, Zdravko Popovic, and Roberto Giorgi. Programming abstrac-
tions and toolchain for dataflow multithreading architectures. In ISPDC, pages 107–114,
2009.

[115] Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin. Wavescalar. In
MICRO 36: Proceedings of the 36th annual IEEE/ACM International Symposium on Mi-
croarchitecture, page 291, Washington, DC, USA, 2003. IEEE Computer Society.

[116] Steven Swanson, Andrew Putnam, Martha Mercaldi, Ken Michelson, Andrew Petersen,
Andrew Schwerin, Mark Oskin, and Susan J. Eggers. Area-performance trade-offs in tiled
dataflow architectures. SIGARCH Comput. Archit. News, 34(2):314–326, 2006.

[117] Ungerer T., Robic B., and Silc J. Multithreaded processors. Computer, 45(3):320–348,
2002.

[118] Robert M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. IBM
J. Res. Dev., 11:25–33, January 1967.

[119] Pedro Trancoso, Kyriakos Stavrou, and Paraskevas Evripidou. DDMCPP: The data-driven
multithreading c pre-processor. In In Proceedings of the 11th Annual Workshop on the
Interaction between Compilers and Computer Architecture (Interact-11), 2007.

[120] Konrad Trifunovic, Albert Cohen, David Edelsohn, Li Feng, Tobias Grosser, Harsha Jaga-
sia, Razya Ladelsky, Sebastian Pop, Jan Sjodin, and Ramakrishna Upadrasta. Graphite two
years after first lessons learned from real-world polyhedral compilation. In In Proceedings
of the GROW’10 Workshop, January 2010.

[121] Jordi Tubella and Antonio González. Control speculation in multithreaded processors
through dynamic loop detection. In HPCA ’98: Proceedings of the 4th International
Symposium on High-Performance Computer Architecture, page 14, Washington, DC, USA,
1998. IEEE Computer Society.

Sam
er

Aran
di

238

[122] Nathan Tuck and Dean M. Tullsen. Initial observations of the simultaneous multithreading
pentium 4 processor. In PACT ’03: Proceedings of the 12th International Conference on
Parallel Architectures and Compilation Techniques, page 26, Washington, DC, USA, 2003.
IEEE Computer Society.

[123] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, and Rebecca L.
Stamm. Exploiting choice: instruction fetch and issue on an implementable simultaneous
multithreading processor. SIGARCH Comput. Archit. News, 24(2):191–202, 1996.

[124] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multithreading:
maximizing on-chip parallelism. In ISCA ’98: 25 years of the international symposia
on Computer architecture (selected papers), pages 533–544, New York, NY, USA, 1998.
ACM.

[125] Theo Ungerer and Ulrich Sigmund. Evaluating a multithreaded superscalar microprocessor
versus a multiprocessor chip. In 4th PASA Workshop, Juelich, World Sc. Publ, pages 147–
159, 1996.

[126] Sriram Vajapeyam and Tulika Mitra. Improving superscalar instruction dispatch and is-
sue by exploiting dynamic code sequences. SIGARCH Comput. Archit. News, 25(2):1–12,
1997.

[127] Sriram R. Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe, Howard Wilson, James
Tschanz, David Finan, Anil Singh, Tiju Jacob, Shailendra Jain, Vasantha Erraguntla,
C. Roberts, Y. Hoskote, Nitin Borkar, and Shekhar Borkar. An 80-tile sub-100-w teraflops
processor in 65-nm cmos. Solid-State Circuits, IEEE Journal of, 43(1):29 –41, jan. 2008.

[128] T. N. Vijaykumar and Gurindar S. Sohi. Task selection for a multiscalar processor. In MI-
CRO 31: Proceedings of the 31st annual ACM/IEEE international symposium on Microar-
chitecture, pages 81–92, Los Alamitos, CA, USA, 1998. IEEE Computer Society Press.

[129] David W. Wall. Limits of instruction-level parallelism. In ASPLOS-IV: Proceedings of the
fourth international conference on Architectural support for programming languages and
operating systems, pages 176–188, New York, NY, USA, 1991. ACM.

[130] Ian Watson and John Gurd. A prototype data flow computer with token labelling. In
Proceedings of the ACM 1979 National Computer Conference, pages 623–628, 1979.

[131] Ian Watson and John Gurd. A practical data flow computer. Computer, 15:51–57, February
1982.

[132] William A. Wulf and Sally A. McKee. Hitting the memory wall: implications of the obvi-
ous. SIGARCH Comput. Archit. News, 23(1):20–24, 1995.

[133] Kane Yee. Numerical Solution of Inital Boundary Value Problems Involving Maxwell’s
Equations in Isotropic Media. IEEE Trans. Antennas and Propagation, 14(3):302–307,
1966.

[134] Wen yen Lin and Jean luc Gaudiot. The design of i-structure software cache system. In
Workshop on Multithreaded Execution, Architecture and Compilation, 1998.

Sam
er

Aran
di

Appendix A

Distributed Data Management Runtime Calls

• Data allocation

– address dvm all alloc(int node id,int data size)

Description
Allocates data of data size bytes in the main memory of node node id. This function
is collective i.e. all the nodes participate in calling this function. The function returns
the same GAS address on all the nodes.
Implementation

The node with identifier node id allocates the data and sends the allocated address to
the rest of the nodes and then it returns the address. All the other nodes wait to receive
the address and once received the address is retuned.

– g address dvm alloc(int data size)

Description
Allocates data of data size bytes in the main memory part of the GAS on the calling
node. This function is not collective and so it is similar to malloc() except that it
returns a GAS address. This function has a variant that allocates aligned data (used on
the DDM-VMc).
Implementation
This function internally calls malloc() and then returns the resulting GAS address.

– int dvm free(g address *addr)

Description
frees the data dynamically allocated by dvm all alloc(...) or dvm alloc(...). This func-
tion can be called collectively or by one node. As only the node that has the dynami-
cally allocated data in its space will free the data.
Implementation
This function checks if the address refers to a location on the calling node part of the
GAS and if so it calls free() otherwise it returns an error.

• Data Movement and Pointers Management

239

Sam
er

Aran
di

240

– int dvm move(g address* src, g address *dest, int size)

Description
Moves the data between two locations in the GAS. This is a collective function, but
only the nodes, which the source and destination data belong to are involved in the
transfer. If both the source and destination addresses occur on the same node a memcpy
is executed.
Implementation
The nodes having a node id corresponding with either the source or destination ad-
dress invoke the send and receive services of the NIU, respectively. If both source and
destination are on the same node memcpy is called.

– g address dvm local to global(int node id,void* addr) converts
a conventional memory address into a GAS address by concatenating it with the
node id.

– void* dvm global to local(g address *addr) converts the GAS address
into a conventional memory address by discarding the node id.

– int dvm is local(g address *addr) returns true if the GAS address refers
to a location on the local node memory.

– int dvm get node(g adderss *addr) returns the node id to which memory
the GAS address refers.

– int dvm is null(g address *addr) returns true if the GAS address is Null.

– int dvm set null(g address *addr) sets the GAS address to Null.

• Utility Routines

– int GetNodeId() returns the node id of the local node.

– int GetNodesCount() returns the total number of nodes in the system.

– int GetCoreNodesId(int core id) returns the node id of the node to which
the core with identifier core id belongs.

For full control over the the transfer of data among the nodes, the low-level NIU send and
receive calls can be used:

• int niu send to node(void* src,int data size,int node id)

• int niu receive from node(void*src,int data size,int node id)Sam
er

Aran
di

Appendix B

TFlux Directives

241

Sam
er

Aran
di

242

Number of Kernels

#pragma ddm kernel <number>

Definition specifies the <number> of the cores to use for thread execution. Specifying more
kernels than the number of physically available cores have a negative effect on
performance

Note Must be always defined at the beginning of the program

Generates The specified value is passed into the DDM-VM initialization routine

Start Program

#pragma ddm startprogram

Definition Specifies the start of the program

Note Variables defined before this directive are considered to be shared, unless the user
defines them otherwise

Generates DDM-VM initialization routine

End Program

#pragma ddm endprogram

Definition Specifies the end of the program

Generates DDM-VM shutdown routine

Start Block

#pragma ddm block <number>

Definition Specifies the start of the DDM block and assigns its identifier via <number>

Note Block identifiers must be consecutive numbers. A block can contain a maximum of
64 threads

Generates Inlet thread that contains all the DVM_SET_THREAD_TEMPLATE of all the
threads in the DDM block

End Block

#pragma ddm endblock

Definition Specifies the end of the DDM block

Purpose The end of a block must occur before the start of another block

Generates Outlet thread

• Unmodified Directives

The directives specify the start and end of the program and the DDM blocks. The directives also
assign the number of cores to utilize for the execution of the threads.

Sam
er

Aran
di

243

Start Thread

#pragma ddm thread <number> kernel (sched_mode, sched_value) readycount <number>

Definition Specifies the beginning of a thread and assigns the thread identifier, the scheduling

policy and its associated value and the RC

Generates DVM_CREATE_THREAD_TEMPLATE, DVM_SET_DFP, DVM_LOOKUP,
DVM_SET_REFCOUNT, DVM_THREAD_START

Optional keywords:

� arity <number> The arity of the thread
� import (addr : size : flag : expression : reference-count, ...) input DFPL information
� export (addr : size : flag : expression : reference-count, ...) output DFPL information
� import_export (addr : size : flag : expression : reference-count, ...) DFPL information of

data that is used as both input & output

End Thread

#pragma ddm endthread

Definition Specifies the end of the thread

Generates DVM_THREAD_END, DVM_UPDATE, DVM_UPDATE_MULTIPLE, calculates
the ConsumerList

Optional Keywords:

� update (consumerID, ...) Update the consumers with ThreadId= consumerID
� update (consumerID : value, ...) Update the consumers with ThreadId= consumerID and

context=value
� update (consumerID : value1 : value2, ...) Update the consumer invocations with

ThreadId=consumerID and context values ranging from value1 to value2
� cond_update (consumerID : expression, ...) Update the consumers with

identifier=consumerID if expression is TRUE
� cond_update (consumerID : value : expression, ...) Update the consumer invocation with

ThreadId=consumerID and context=value if expression is TRUE
� cond_update (consumerID : value1 : value2 : expression, ...) Update the consumer

invocations with identifier=consumerID and context values ranging from value1 to value2
if expression is TRUE

• Extended Directives

The following directives specify the boundaries of DDM threads and the producer-consumer relationships.
In addition, the directives update threads consuming initialized data & handle the context manipulations.

Sam
er

Aran
di

244

Update Thread

#pragma ddm update(ThreadId : context)

Definition Specifies the thread to decrement its RC

Note This directive is used typically at the beginning of a DDM-VM program to decrement
the RC of threads consuming initialized data

Generates DVM_UDATE_THREAD, DVM_UPDATE_THREAD_MULTIPLE

Variants:

� update (Thread_Id : value1 : value2) This variant updates a range of invocations with
context values from value1 to value2.

� cond_update (Thread_Id : value1 : expression) This variant performs the update if
expression is TRUE.

� cond_update (Thread_Id : value1 : value2 : expression) This variant performs the
multiple updates if expression is TRUE

Context Retrieval Operator

@context, @context.0, @context.1, @context.2

Definition These operators are used to access the value of the context inside the body of the
thread

Note This operator is replaced with the DVM_CONTEXT macro with the appropriate
GET_CONTEXT macro based on the arity of the thread

Generates GET_CONTEXT_S, GET_CONTEXT_D, GET_CONTEXT_T

Context Creation Operator

@(<number>) replaced by MAKE_CONTEXT_S(<number>)
@(<number>, <number>) replaced by MAKE_CONTEXT_D(<number>,<number>)
@(<number>,<number>,<number>) replaced by MAKE_CONTEXT_T(<number>,<number>, <number>)

Definition These operators are used to create the context values

Note This operator is replaced with the appropriate MAKE_CONTEXT based on the arity
of the thread

Generates MAKE_CONTEXT_S, MAKE_CONTEXT_D, MAKE_CONTEXT_T

Sam
er

Aran
di

Appendix C

Monitoring and Visualization Tools

C.1 DDM Execution Events

During the execution of the DDM application the Event Tracing System captures two main
types of events:

• TSU execution events

• DDM threads execution events

For every event, the event code and the start and end times are recorded. The timing of events
utilizes the hardware counters supported by the underlying architecture for maximum accuracy
and minimum overhead. In the case of the DDM-VMc because different timers are used in the
PPE and SPEs, the timers are synchronized to unify the time-line of all the events in the system.

TSU Execution Events

The TSU execution events record the different scheduling and synchronization operations oc-
curring in the TSU. The events codes are enumerated in Table 6.

The timing of the TSU events on the DDM-VMc utilizes the PPU hardware Time Base (TB)
Register. The value of the register is incremented every 12.5 nanoseconds which allows attain-
ing a high resolution and accurate timing. In the DDM-VMs implementation which ran on x86
machines we used the hardware Time Stamp Counter, which counts the number of cycles since
reset. The meaning of cycle depends on the processor manufacturer and the family but in general
its related to the internal processor clock.

Table 6: The TSU Events

Event TSU Operation
EVENT FIRST Event Tracing System Initialized
EVENT SETUP Setup Operation (data initialization, etc.)
EVENT PROCESS COMMAND TSU is processing commands in the CQ (DDM-VMc)
EVENT DECREMENT CONSUMER TSU is decrementing the consumers’ RC
EVENT CACHEFLOW TSU is performing CacheFlow work
EVENT LAST Event Tracing System shutdown

245

Sam
er

Aran
di

246

Table 7: Thread Execution Events

Event Thread Execution Operation
EVENT FIRST Event Tracing System Initialized
EVENT SETUP Setup operation (data initialization, etc.)
EVENT RESET MSG Reset the Command Buffer, ensures CQ slots are available (DDM-VMc)
EVENT COMMIT MSG Send the Command Buffer to the CQ in main memory (DDM-VMc)
EVENT COMPUTATION DDM thread execution
EVENT NEXT THREAD Get the next ready thread info. Includes data prefetching in the DDM-VMc

EVENT DATA EXPORT Exporting produced data to main memory (DDM-VMc)
EVENT LAST Event Tracing System shutdown

DDM Threads Execution Events

The DDM Thread Execution events record the different operations occurring during the exe-
cution of the DDM Threads on the cores. The events codes are enumerated in Table 7.

The timing of the DDM thread execution utilizes the SPU Decrementer Register. The value
of the register is decremented every 12.5 nanoseconds (on the Cell processor in the PS3), which
allows attaining a high resolution and accurate timing. In the DDM-VMs, the hardware Time
Stamp Counter is utilized .

Events Processing

The TSU events are stored in a special EventBuffer allocated in main memory. The thread
execution events are stored in a different EventBuffer allocated per core. In the DDM-VMs the
thread execution events are written directly into the per core EventBuffer. In the DDM-VMc the
thread execution events are stored in a small local EventBuffer in the LS. When this buffer becomes
full, it is automatically copied (via a DMA call) to the main memory EventBuffer pertaining to the
SPE. The sizes of the EventBuffers can be adjusted in the settings of the ETS system.

When the DDM-VM application finishes execution, all the EventBuffers are processed to
generate the DDM Events Summary log-file and the DDM Trace log-file.

Event Summary File

The DDM Event File (events summary.txt) reports the total time and percentage (relative to
the total application execution) for each event. This file is a text file that gives the user and
informative overview of the execution. The file reports a summary of the TSU execution events
followed by the DDM execution events of individual cores in addition to the average of all the
core events percentage and other useful information. The general format of the file is depicted
in Figure 93. The format shows is for the DDM-VMc. The format generated by the DDM-VMs

is a subset of this one since it doesn’t contain the information related to the S-CacheFlow work.
Moreover, instead of reporting the events duration in seconds, it is mainly performed in cycles due
to frequency scaling issues on the x86 architectures as will be explained next.

Trace File and the Visualization Tool

The DDM Trace file (events log.ddt) records detailed information of the events of the DDM
application for both the TSU and DDM thread execution. This file is the input to the Visualization
Tool. For every event two entries are recorded, one specifying the start time and one specifying

Sam
er

Aran
di

247

---------------- TSU Execution Event Summary ------------------

Events Timing Mode:[Accumulation|All]

Total Execution Duration:[x] seconds

Setup Time:[x] second

Total Execution Time without Setup:[x] seconds

The following is the time percentages (after subtracting the setup time)

ProcessCommand :[x%100] [x] seconds

Decrement Cons. :[x%100] [x] seconds

CacheFlow-Total :[x%100] [x] seconds

CacheFlow-Xfer Data :[x%100] [x] seconds

CacheFlow-Xfer Control :[x%100] [x] seconds

Other :[x%100] [x] seconds

---------------- Cores Execution Event Summary ------------------

Events Timing Mode:[Accumulation|All]

Longest Total Execution Time:[x] seconds Pertaining to Core[x]

Core:[0]

Total Execution Duration:[x] seconds

Setup Time:[x] seconds

Total Execution Time without Setup:[x] seconds

The following is the time percentages (after subtracting the setup time)

GetNextThread :[x%100] [x] seconds

Computation :[x%100] [x] seconds

DataExport :[x%100] [x] seconds

ResetMsg :[x%100] [x] seconds

CommitMsg :[x%100] [x] seconds

Other :[x%100] [x] seconds

Avg. loopings until data info is available to issue:[x] times

CacheFlow work :[x] seconds

Idle waiting for TSU:[x] seconds

Avg. number of pending entries upon execution :[x] entries

Core:[1]

Core:[2]

……

……

Core:[N-1]

---------------- Average For All Cores ------------------

Computation :[x%100]

GetNextThread :[x%100]

CacheFlow :[x%100]

MsgExchange :[x%100]

DataExport :[x%100]

Other :[x%100]

Figure 93: Format of the Events Summary file - DDM-VMc

Sam
er

Aran
di

248

Entry Size in Bytes
TSU Ticks Threshold 4
Cores Tick Threshold 4

HasTSU 4
HasCores 4

Number of Cores 4
Core0 Events Size (in bytes) 4
Core1 Events Size (in bytes) 4

... ...
CoreN-1 Events Size (in bytes) 4

Core0 Events Data Core0 Events Size
Core1 Events Data Core1 Events Size

... ...
CoreN-1 Events Data CoreN-1 Events Size

TSU Events Size 4
TSU Events Data TSU Events Size

Table 8: DDM Trace File Format

the end time. The format of the file is depicted in Table 8. The format accommodates any change
in the number of recorded events, number of cores involved and changes to the size of the events
which supports adding or modifying events in the system easily.

The Visualization Tool parses the DDM Trace file and displays the events visually in a time-
line fashion. This provides the programmer with a detailed account of the execution of DDM-VM
applications and help the programmer to optimize the application easily.

The displayed time-line spans the entire application execution. Each event is assigned a dis-
tinct color key and plotted on the time-line according to its start time and duration. The duration
is measured in the cycles of the counter used to record the events. Plotting the events is done by
mapping the event duration into pixels (smallest visual units on the screen). In the case of the
DDM-VMc every cycle is approx. 0.0125 µ seconds. In the case of the DDM-VMs this number
varies according to the frequency of the processor. Figure 94 depicts a screenshot of the Visual-
ization Tool for a DDM-VMc application.

The Visualization Tool allows the user to vary the resolution of detail that is visually presented.
This is equivalent to the Zooming feature found in most visual applications. This is achieved by
controlling the number of cycles that is mapped to a pixel. Using the Visualization Tool is very
intuitive. Using the File/Open menu command the user selects the DDM Trace file. The user can
use the Zoom In (+), Zoom Out(-) buttons to control the detail. The user can also manually control
the mapping value in the Editbox. The default value is 10.0. In the case of the DDM-VMc a scale
shows the length of the events in time units while in the case of the DDM-VMs this is shown in
cycles.

Sam
er

Aran
di

249

Fi
gu

re
94

:V
is

ua
liz

at
io

n
To

ol
Sc

re
en

sh
ot

Sam
er

Aran
di

250

C.1.1 Optimizations

Collecting information during the execution inevitably introduces overheads in any platform.
In the DDM-VM the overheads are a result of two main factors: calling the timing functions and
storing the event information in memory.

To address the first factor, we have used the most efficient method for timing by directly
accessing the hardware timing registers available on the underlying architecture without the in-
tervention of the Operating System. In the case of the Cell Processor the Base Time Register on
the PPE and the Decrementer on the SPE provide a very accurate and stable timing interfaces.
However, the timing on the DDM-VMs was less accurate as the utilized Time Stamp Counter is
affected by the frequency scaling employed for power-saving on the x86 multicores. Moreover,
timing discrepancies existed as the timers on the different cores are not synchronized. Therefore,
in the DDM-VMs log-files and visualization tools we report the timing information in terms of
cycles.

The second factor was more critical since for each event we record, we write to the Event-
Buffers in memory which affects the cache and consequently the performance. This applies to
the TSU events in the DDM-VMs and all the events on the DDM-VMs as the cache hierarchy is
hardware-controlled. To handle this issue we allow the program to selects between two modes of
event monitoring: Detailed and Accumulating.

Monitoring Modes

In the Detailed Mode the information of every event is recorded in the EventBuffer in main
memory as described before. In the Accumulating Mode, the timing of every event is not recorded
in the EventBuffer, but rather accumulated in a small buffer. This almost eliminates the frequent
writes to main memory, but the trace file used for the Visualization Tool is not generated. The
user can select between the two modes using the ETS flags at application startup. The flags also
controls enabling and disabling the various parts of the ETS to further reduce the overheads.

In the DDM-VMc implementation, handling this issue on the SPE was less problematic as the
LS memory on the SPE is software-controlled and so the overheads are deterministic. Copying the
events to main memory is not as frequent as in the case of the PPE since the events are first stored
in a local EventBuffer and only copied when the buffer is full. However as the size of this buffer
is not big (since the LS size is limited) many transfers to main memory will still occur. The main
overhead stems from waiting for the DMA transfer to finish since no subsequent events can be
recorded until the transfer has completed. This issue is resolved by using two local EventBuffers
and applying a double buffering approach to avoid the waiting, which resulted in diminishing the
overheads.

Although the events are recorded on different cores in the Cell processor the ETS synchronizes
the start of the timing so that the reference is unified and all the different events timings are
comparable.

C.2 TSU Structures Utilization and Statistics

The ETS provides information regarding the utilization of the internal TSU structures (both
the common and the per-core ones) allocated in main memory. The ETS keeps track of the alloca-
tion and de-allocation of entries that occurs during applications execution. Most importantly the

Sam
er

Aran
di

251

TSU Structures Size:

Total Size of Common TSU Structures :[x B]

Total Size of Private TSU Structures :[x B]

Total Size of Private CacheFlow Structures :[x B]

Total Overall Structures Size :[x B]

Shared TSU Structures Utilization

AQ Max[x] Reserved[512]

GM Max[x] Reserved[256]

CL Max[x] Reserved[256]

SM Max[x] Reserved[256]

Core[0] Structures Utilization:

WQ Max[x] Reserved[64]

PrioWQ Max[x] Reserved[32]

ExFQ Max[x] Reserved[8]

Core[1] Structures Utilization:

WQ Max[x] Reserved[64]

PrioWQ Max[x] Reserved[32]

ExFQ Max[x] Reserved[8]

……

……

Core[N-1] Structures Utilization:

WQ Max[x] Reserved[64]

PrioWQ Max[x] Reserved[32]

ExFQ Max[x] Reserved[8]

Figure 95: Utilization File FormatSam
er

Aran
di

252

number of maximum entries allocated per each TSU structure is reported. The utilization infor-
mation gives insight into the performance of the different applications and the inner work of the
TSU and allows us to have guidelines for selecting an optimal size for the TSU structures. The
general format of the DDM utilization file (called utilization.txt) is depicted in Figure 95.

C.3 Supporting Distributed DDM Execution

Extending the monitoring tools to support distributed execution involves the addition of two
operations. The first is synchronizing the timers across the nodes so as to have a meaningful dispo-
sition of the events of one node relative to the rest in the Visualization Tool. The synchronization
occurs at the runtime initialization stage. Right after the timers on the different cores within a
node are synchronized, a cross-node synchronization takes place via a simple barrier operation
implemented by exchanging network messages. Once a node exists from the barrier it records the
first event, which time is used later as a reference point. The rest of the Event Tracing System
activities proceed without a change generating the DDM Trace file, Event Summary file and Uti-
lization file as described previously. The only change is that the name of the file is appended with
the identifier of the node.

The second operation is performed by the execution script that collects the generated files on
all the nodes and stores them in one unified standard zip file that is saved to the root node. The zip
file is used as input to the Visualization Tool that accesses the DDM trace files of all the nodes to
display the execution events pertaining to all the nodes on the time-line. The user can also access
the zip file to extract the Event Summary and Utilization files on all the nodes.

Sam
er

Aran
di

