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Sensors and wireless sensor networks are being deployed around the world, measuring local

and global environmental conditions. Their advanced sensing functionalities enable context-aware

ubiquitous platforms, middleware and applications to proliferate.

Residences are transformed into smart homes, incorporating embedded sensors and pervasive

technology. Moreover, residential smart meters, smart power outlets and smart appliances have

appeared in the market, facilitating electricity metering and control of individual electrical appli-

ances, extending homes into smart energy-aware environments. Smart metering provides energy

awareness to home residents, and new generations of energy recording devices transform the en-

ergy conservation initiatives inside the smart home into a simple task.

In an idealized vision of a fully integrated smart home, all the operations of a house can be

efficiently controlled by a unified smart ubiquitous application. However, we are far from realizing

this scenario. A main barrier is the proliferation of incompatible standards and protocols used by

various device manufacturers, which makes the smooth integration of appliances from different

vendors a complex process. Having a heterogeneous ecosystem of devices, implies that even the

development of simple applications requires advanced programming skills and considerable time.

In recent years, technologies like short-range wireless communications, RFID and real-time

localization are becoming largely common, allowing the Internet to penetrate into the real world

of physical objects. The Internet of Things allows household devices that live inside smart homes

And
rea

s K
am

ila
ris



Andreas Kamilaris––University of Cyprus, 2012

to seamlessly communicate through the Internet while the forthcoming Web of Things ensures

interoperability at the application level through standardized Web technologies and protocols.

In this thesis, we exploit these new technological possibilities to bring smart homes towards

the Web, achieving high interoperability and flexibility. By employing standardized, well-known,

reliable and scalable Web techniques, hardware and software heterogeneity between the embedded

devices of the smart home can be addressed.

We present the development of a Web-based application framework for smart homes, sup-

porting concurrent interaction from multiple family members. By employing intermediate request

queues, associated with the physical devices of the smart home, our analysis shows that we can

mask transmission failures and faults that occur in the wireless environment, thus enhancing the

performance of smart home operations by means of fast retransmissions, load balancing and re-

quest priority techniques. In our analysis, we also derive formulas for estimating the response time

of requests and for setting the request queue retransmission interval, an important design parame-

ter of the system. In this way, reliability and timely responses from the devices are ensured.

We demonstrate that, by using the Web as application layer, flexible applications for smart

homes can be built, on top of heterogeneous embedded devices, with little effort. In this con-

text, Web mashups may be extended into physical mashups, by exploiting real-world services

offered by physical devices and combining them using the same tools and techniques of classic

Web mashups. Urban mashups may also be developed, for adapting to the high dynamics and

unpredictability of a future urban environment.

We address many issues related to Web-enabling household devices, from their local discovery

and service description to the uniform interaction with them. Our technical evaluation indicates

that the process of Web-enabling physical devices offers satisfactory performance, mainly in terms
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of response time and energy consumption, while modern Web techniques such as Web caching and

event-based Web messaging can contribute in facilitating smart home operations.

The initiative of enabling smart homes to the Web unfolds novel applications. By means of

these pervasive applications, it is demonstrated that Web-based smart homes have the potential to

provide flexible solutions to challenges such as home automation, energy awareness and energy

conservation. At first, we show how we can extend our framework into an energy-aware Web

application. We explain how we can easily define energy-efficient smart rules, by following the

physical mashup paradigm.

Afterwards, we demonstrate the feasibility of merging Web-based smart homes with online

social networking platforms. This merging can help social groups such as families, workers and

friends, to interact with their common physical environment through their favorite social network-

ing application. Moreover, to motivate people to become more energy-aware and reduce their

electrical consumption, we created a social competition between neighboring flats in large resi-

dential blocks. Our findings show that people react positively in such energy-saving initiatives.

In a similar context, we introduce Social Electricity, a Facebook application allowing people to

compare their domestic electricity footprint with their friends and their neighbors in a wide scale.

Social Electricity has been awarded the first prize in a prestigious international competition about

green ICT applications. In general, social comparisons have the potential to increase the environ-

mental awareness of citizens, helping them to understand their consumption and save energy.

Then, we illustrate how Web-based smart homes can be seamlessly integrated to the forth-

coming smart grid of electricity. We propose an architecture for enabling the interaction between

smart homes and smart grid controllers, through the Web. This architecture is used in two case
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studies we performed. In the first, demand response programs from electric utilities can be har-

nessed through the Web, to schedule electricity-related tasks in low-tariff hours of the day. In the

second, a load shedding scenario is considered for maintaining frequency stability by removing

intentionally small loads from energy-aware smart homes that participate in the smart grid.

Finally, we consider some issues beyond the smart home environment, which involve the

generalization of the application framework for other indoor and outdoor pervasive scenarios, the

global, real-time discovery of environmental services through the Web and also the advanced infer-

ence of environmental knowledge in urban environments, following the urban mashup paradigm.

We briefly touch upon security both inside the smart home environment and between the home

and third parties, defining some basic guidelines that need to be followed.

Our work constitutes a research towards a flexible, interoperable, energy-efficient and sustain-

able digital future. Smart homes have the potential to effectively contribute in this effort, using the

Web as a platform.
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Chapter 1

Introduction

Embedded physical devices, such as household appliances are becoming smarter and smarter.

They are equipped with embedded microprocessors and wireless transceivers, offering limited

communication capabilities and providing smart behavior. Everyday objects are fitted with small,

cheap mobile processors, sensors and actuators.

Sensors and wireless sensor networks are being deployed in smart home solutions, measuring

with precision the environmental conditions inside the home environment. Their advanced sensing

functionalities and their increasing accuracy enable the development of smart home applications

that offer advanced automation. Residences are transformed into smart homes, incorporating em-

bedded sensors and actuators, and pervasive technology.

This merging of computing with physical objects introduces the concept of information appli-

ances [20], defined as devices or machines, designed to perform some specific functionality but

are usable, at the same time, for the purposes of computing. Typical examples of computing de-

vices inclue smart phones, embedded sensors and actuators, radio-frequency identification (RFID)

chips and smart cards. As Donald A. Norman [122] points out, ”the trend in computing is towards

1
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simplicity through specialization”. This trend seems to justify Mark Weiser’s vision of the Dis-

appearing Computer [175], according to which ”the most profound technologies are those that

disappear. They weave themselves into the fabric of everyday life until they are indistinguishable

from it”. These augmented appliances, when interconnected, they can form wireless networks,

extending residential areas into smart pervasive environments.

In the near future, homes will offer new automation possibilities to their residents, increas-

ing their comfort level. Changes will happen to the way people live and interact with their home

environments, when technology recedes into the background of their lives, when information pro-

cessing is thoroughly integrated into everyday objects and activities. For example, coffee machines

appeared that are able to prepare coffee automatically, according to user preferences. Fridges that

offer dedicated programming interfaces for their control are being produced.

By now, residential smart meters have been introduced in our lives as sensor devices that

measure in small time intervals the energy consumption of a house. Moreover, smart power outlets

are devices that measure the consumption of individual electrical appliances and control their

operation in real-time. It is expected that soon, smart appliances would handle automatically

their intended operation and function optimally in order to save energy and perform their task

effectively. They may even take advantage of the functionality of the forth-coming smart grid of

electricity to synchronize their operation with its current state. For example, they may respond

to pricing signals and decide when it is most economical to operate. In general, the practice of

equipping smart homes with smart meters, smart appliances and smart power outlets, enables

the extension of smart homes into energy-aware environments. Towards this end, this thesis will

analyze the environment described above and investigate and offer effective solutions.

The rest of the chapter is organized as follows: Section 1.1 states the problems encountered in

this thesis and the motivation for addressing them while Section 1.2 explains the general approach
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for tackling those issues. Then, Section 1.3 discusses the reasoning for adopting some particular

approaches and technologies. Section 1.4 identifies the unique contribution of the thesis while

Section 1.5 acknowledges the scientific contribution of other researchers to this thesis. Finally,

Section 1.6 lists publications of the author relevant to the thesis and Section 1.7 discusses the

general organization of the thesis.

1.1 Problem Statement and Motivation

In an idealized vision of a fully integrated smart home, all the operations of the house can

be efficiently controlled by a smart ubiquitous application. However, we are far from realizing

this scenario. A main barrier is the proliferation of incompatible standards and protocols used by

various device manufacturers, which makes the smooth integration of appliances from different

vendors a very complex process. Some well-known solutions for home automation are X10, KNX,

ZigBee, digitalSTROM, Z-Wave, INSTEON, Wavenis, CEBus and LonWorks. Each of these tech-

nologies has an important portion of the global home automation market. Having a heterogeneous

ecosystem of devices, implies that even the development of simple applications requires advanced

programming skills and a considerable amount of time.

Embedded technology, based on multi-hop wireless communications, is being integrated lately

in smart environments such as smart homes. However, even though this technology is becoming

mature and highly reliable, it still faces issues such as device failures, transmission losses and

unexpected delays. Home residents and family members have advanced needs, demanding direct

access to their home devices easily and fast. These people may need to interact simultaneously

with their smart home environment. Moreover, smart home applications that target home automa-

tion and energy conservation cannot tolerate faults and errors. Hence, application frameworks for
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smart homes need to compensate problems at the physical, ad hoc, resource-constrained environ-

ment and also to support multiple users who may interact concurrently with their smart home.

Reliability and time performance are crucial in multi-user smart home applications that deal

with the safety of the house and its tenants or health scenarios. For example, faulty electrical

appliances may need to be turned off immediately, to avoid the possibility of fire or the alarm must

be triggered when a thief breaks into the house. In this case, support for prioritized requests and

load balancing are important mechanisms that could address such issues, as we will be analyzing

later in the thesis.

Furthermore, application development from third parties and end users for automating home

environments is currently a complicated procedure, since the user needs to study and understand

the vendor-specific proprietary protocols and technologies employed in each smart home solution.

For example, X10, KNX, Z-Wave and ZigBee define specific wireline or wireless communications

protocols for interacting with physical devices that operate with these standards.

Open, standardized approaches or flexible techniques for encouraging and facilitating the cre-

ation of smart ubiquitous applications, by home residents who can have very little or even no

programming experience, do not normally exist. The access barrier that allows people to develop

their own composite applications must be lowered.

Technological advancements such as sensor networks, short-range wireless communications

and RFID allow the Internet to penetrate in embedded computing. The Internet of Things (IoT)

[62, 115] was proposed a decade ago for connecting physical devices at the network level. Recent

efforts for porting the Internet protocol (IP) stack on embedded devices [49, 86] and the intro-

duction of IPv6, which provides extremely large addressing capabilities, are expected to facilitate

the merging of the physical and the digital world through the Internet, where everyday objects are

uniquely addressable and interconnected.
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Porting the TCP/IP stack on embedded devices caused the initial concerns of the academic

community, whether this would be feasible in terms of performance. These concerns centred

on critical scenarios with heavy workloads and minimal response times, as even milliseconds of

delay or message transmission failures are unacceptable. Furthermore, some concerns involved

whether the IP overhead could affect the energy behavior of home devices. Of course, residents

would not be willing to change frequently the batteries of their wireless sensors and actuators.

We shall show later in this thesis that the IoT has only a small impact on the performance of

physical devices, which is compensated by the benefits acquired for reasons of flexibility and

interoperability. Besides, as we would also show, this impact becomes negligible when we employ

some basic techniques of the Web of Things.

Building upon the notion of the IoT, the Web of Things (WoT) was recently proposed [178, 76],

promising to seamleslly interconnect devices and their functionalities. The WoT reuses well-

accepted and understood Web principles to interconnect the expanding ecosystem of embedded

devices. While the IoT focuses on interconnecting heterogeneous devices at the network layer, the

WoT can be seen as a promising practice to achieve interoperability at the application layer. It is

about taking the Web as we know it and extending it so that anyone can plug devices into it.

The WoT follows the concept of resource-oriented architectures and REpresentational State

Transfer (REST) [59, 142], proposing the use of uniform patterns, influenced by the HTTP proto-

col, for managing and communicating with pervasive smart home devices. REST is an architec-

tural style that defines how to properly use HTTP as an application protocol.

While this could provide enhanced interoperability between heterogeneous devices and ser-

vices, a common belief is that Web standards are inappropriate for building pervasive applications.

In addition, many issues arise for enabling the devices in a dynamic, plug and play way to the Web.

Issues such as local device discovery, service description, uniform and transparent interaction with
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embedded devices, sharing of their services, notifications in event-based scenarios etc. need to be

addressed effectively and efficiently.

Finally, Web-enabled smart homes have a crucial role to play in current and future technolog-

ical and societal challenges. Energy awareness of home residents, energy conservation through

advanced automation and social approaches, the forth-coming integration of smart homes to the

smart grid of electricity, even the contribution of smart homes towards the digitization of the urban

environment are some of the many challenges which are encountered by smart homes and their

residents. This important role of smart homes in relation to the physical and urban environment

needs to be investigated, highlighted and promoted. Technologies, protocols and architectures

need to be defined, which permit the smooth and flexible adaptation of smart home solutions to

these challenges, ensuring satisfactory levels of security and user privacy. Numerous case studies

need to be developed to illustrate the above and hence encourage the adoption of Web technologies

in smart homes.

Given the above, the main research challenges encountered in this PhD thesis, for which solu-

tions will be sought, are:

• Heterogeneity of hardware and software of smart home solutions and technologies, as

well as incompatible, vendor-specific approaches for home automation.

• Support of multiple family members who may interact concurrently with their smart home

environment.

• Failures concerning device unavailability and message transmission losses, which may hap-

pen in the unpredictable embedded home environment and decrease the reliability of the

smart home operations.
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• Possible degradation of performance, caused by utilizing the IoT for interconnecting

physical devices and their services, mainly due to the IP overhead of exchanged messages.

• Performance in terms of response time, especially in scenarios involving house safety and

health applications.

• Energy consumption performance of embedded home devices, in particular when they

incorporate the IP stack.

• Complicated, vendor-specific closed smart application development, not based on any

standards or well-known techniques.

• Issues encountered during the process of dynamically enabling physical devices and their

services to the Web.

• The role of smart homes in current and future technological and societal challenges

and the flexible adaptation of smart homes to these challenges.

1.2 General Approach

In this thesis, in order to address heterogeneity of home embedded devices and smart home

technologies, we examine whether the Web can constitute an effective and efficient application

layer in future smart homes. Since the Web is ubiquitous and it scales particularly well, we believe

it can be harnessed for achieving interoperability in the smart home environment. Furthermore,

according to related work [105, 65, 16], an IP-based approach for home automation can offer

equivalent performance with related traditional home automation standards, while concepts from

the Web bring convenience to developers and users.
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Our experimental results and prototypes presented through this thesis, suggest that the WoT

is not only a suitable, but actually a desirable medium to build powerful and reliable domestic

applications, which match the requirements of future smart homes. REST may be suitable for

smart home environments due to its simplicity and flexibility [73]. Embedded devices inside the

smart home may expose their functionalities as RESTful Web services, facilitating the interaction

with them through standardized HTTP calls.

We exploit the fact that wireless sensor networks (WSN) can provide nowadays a reliable

and extensible solution for real-world deployments in smart homes and we take advantage of

their wireless, multi-hop networking capabilities to investigate the feasibility of developing smart

home applications, which are based on wireless technology. We focus on wireless communications

inside the home environment as they constitute a flexible, plug and play approach to accommodate

ad hoc networks of sensors, actuators, smart meters and smart power outlets. Their deployment

does not require any extensive modifications in existing buildings.

The recent progress in embedded computing makes it possible to run IPv6 applications directly

on sensor nodes [49, 86]. Wireless sensor networking based on Internet protocols, is promoted

due to the development of IPv6 over Low power Wireless Personal Area Networks (6LoWPAN).

6LoWPAN [107] is an adaption layer that allows efficient IPv6 communication over the IEEE

802.15.41 standard. 6LoWPAN proposes a new integration level towards the Web, and ensures

interoperability among IP-based embedded devices [16].

The development of a 6LoWPAN-enabled WSN, directly integrated into the IPv6-based future

Internet is a feasible task [147, 182]. Therefore, sensors and actuators inside the smart home envi-

ronment may be transformed into embedded Web servers, satisfying the requests of the residents

through the HTTP protocol. 6LoWPAN offers numerous benefits to wireless sensor installations
1http://www.ieee802.org/15/pub/TG4.html
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including the easy interconnection with other IP networks, the reuse of the existing Internet in-

frastructure, the application of well-known Internet technologies in the ubiquitous environments

and the use of existing power monitoring and diagnostic tools.

Comparing IPv6/6LoWPAN with various existing technologies for smart homes (X10, KNX,

ZigBee and digitalSTROM), an IPv6-based WSN, being part of the ever-expanding IP ecosystem,

is mature and future-proof, with low cost, easy installation using wireless sensors and actuators,

auto-configurable, offering wide-scale connectivity, natural user interaction and medium secu-

rity [105]. Furthermore, a comparison of IPv6/6LoWPAN with ZigBee, Z-Wave, INSTEON and

Wavenis, in terms of physical characteristics, communication modes, networking and security

concludes that IP-based solutions offer enhanced quality, security, and interoperability [65].

Recently, Wi-Fi, as an enabling technology for IP-connectivity of embedded devices was ex-

plored in [157]. According to the authors, Wi-Fi technology is feasible for the IoT considering

the power consumption of devices, the impact of interference and the range performance. Even

though Wi-Fi supports only a star topology, an experimental deployment in the paper shows that

a single access point can cover a typical home environment adequately. According to the authors,

Wi-Fi may be considered as a candidate option for enabling the IoT. As future work, we could

compare the performance of Wi-Fi and 6LoWPAN in home environments.

Furthermore, online social networking has become a fundamental part of people’s everyday

lives, transforming the Web 2.0 into a social Web, in which human social capabilities are boosted.

The next big challenge for the Web, after its massive utilization by humans, is to interconnect the

physical world. Physical devices, enhanced with embedded microcontrollers, could be an essential

part of the future Web as they are rapidly being integrated into our lives. Smart homes operating
And
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with Web technologies could be adapted with little effort, to support interaction with social net-

working sites, for sharing the status of the house as well as individual home devices/services,

between family members and other tenants.

Online social networking could be also utilized for establishing energy competitions between

neighboring houses and flats. In addition, it could be used for electricity-related comparisons,

to help people understand their electricity footprint, i.e. the amount of electrical energy they

consume. In such applications, social norms have the potential to motivate people to acquire more

sustainable behaviors [12]. Residents in general tend to learn from their neighbors and friends,

and receive encouragement and support.

Moreover, increasing energy demands and environmental concerns influenced initiatives to-

wards a more rational utilization of electrical energy. Thus, traditional electricity grids are planned

to be converted into modern smart grids. A smart grid represents the future electricity grid, en-

hanced with Information and Communication Technology (ICT), applied to generation, delivery

and consumption of electric power. The smart grid vision requires near real-time communication

and synchronization with energy-aware smart homes, to establish its goals for effective and effi-

cient energy management and distribution. To enable this vision, a common ground needs to be

specified, a common language understood by all smart homes, facilitating in-home and home-to-

grid communication. Also in this case, the Web, as a scalable, pervasive and flexible platform,

could be an appropriate solution for such a wide-scale interconnection.

Finally, in order to enable the vision of interoperable smart homes operating with Web tech-

nologies, reliability and performance need to be ensured. Especially when considering specific

smart home applications dealing with safety, health, advanced automation and energy-related pro-

grams of the smart grid, reliable message exchange between home devices in satisfactory amounts
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of time must be guaranteed. These guarantees may be obtained by employing intermediate re-

quest queues, installed as mediators between the smart home application and the physical devices.

Shaman [148] was an early gateway system that included request queues for the communication

with resource-constrained devices. This gateway system partly motivated this work, in regard

to the request queue mechanism (see Chapter 6), integrated inside an application framework for

smart homes (see Chapter 4). The analysis provided helps in the selection of the appropriate

design parameters for the request queue mechanism, such as the retransmission interval timer.

1.3 Reasoning about Web of Things and REST

The great success of the Web as a global platform for information sharing educates that sim-

ple and loosely-coupled approaches offer a high degree of scalability, robustness and evolvability.

This success is partly due to an open and uniform interface, which enables non-experts to de-

velop interactive applications rapidly. Unlike most protocols used in embedded computing, Web

standards are widely used in the Internet, being highly flexible.

Using a Web-based approach for home automation offers several benefits, such as wide-spread

deployment of Web browsers and ubiquitous HTTP support in programming and scripting lan-

guages. Residents can employ any computing device to manage their smart home (e.g. mobile

phones, tablets, smart TVs, PCs, home routers, smart meters), provided these devices has access

to the Internet/Web. Open access to home devices and their environmental context through Web

services, using open and simple standards (e.g. XML, HTTP, JSON) enables information to be

reused across independent systems, lowering the access barrier that allows people to develop their

own composite applications. People may combine ubiquitous services towards home automation

following the classical Web mashup techniques, enabling the Internet/Web to reach out into the

real world of smart homes.
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REST is considered a suitable architectural style to enable the communication with home resi-

dents and physical devices. It can guarantee interoperability and a smooth transition from the Web

to home environments. A resource-oriented environment facilitates the residents’ efforts in regard

to configuring their smart homes. Tasks that include browsing for home devices, linking them

together, searching for their services and interacting with them, combining their functionality,

become easier and more standardized through resource-oriented architectures.

Undoubtedly, many standards offer interoperability between heterogeneous machines. Their

main difference from REST is that they include a rather complicated set of protocols and guide-

lines for interaction between devices, while REST suggests to use merely the HTTP protocol and

basic Web principles to address heterogeneity. A recent study [73] compares REST with its main

opponent, Big Web services (WS-*) [13]. The study suggests that REST is easier to learn and

understand, more lightweight, flexible and scalable, better for heterogeneous environments while

WS-* has better security features, but is more complex to be used, being more appropriate for

business applications. The validity of this comparison is reinforced by the work in [130].

Although WS-* is in general inappropriate for pervasive computing, recently the WS-* com-

munity introduced the Devices Profile for Web Services (DPWS)2, defined as a minimal set of

implementation constraints to enable secure WS-* messaging, discovery, description, and event-

ing on resource-constrained devices. DPWS is aligned with Web services technology and in-

cludes numerous extension points allowing for seamless integration of device-provided services in

enterprise-wide application scenarios. Related to DPWS, the Web Services for Devices (WS4D)3

is a recent initiative, bringing WS-* technology to the application domains of industrial automa-

tion, home entertainment, automotive systems and telecommunication systems. WS4D offers
2http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
3http://ws4d.e-technik.uni-rostock.de/
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toolkits that comply with the DPWS protocol and a software tool to create device mashups called

WS4D-PipesBox [19]. The fact that WS-* community realized the need to support the world

of embedded devices towards interoperability is of course very positive. A comparison between

REST and DPWS/WS4D would be an interesting task, as future work. Still, we prefer REST

as it models the actual operation of the Web in ubiquitous scenarios such as smart homes, while

WS-*-based protocols use the Web merely as the transport protocol.

Extensible Messaging and Presence Protocol (XMPP)4 is an open XML-based communica-

tions technology that could be applied, however, it is heavy for use with embedded devices. JXTA

[158] is another alternative, but it is more of an overlay network, not directly related to the con-

cept of the Web. CoAP [150] is a tailored implementation of REST for constrained environments,

which could be considered in the future when it possibly becomes more mature.

1.4 Contribution

In this thesis, the main contribution is the development of an application framework for smart

homes and the presentation of an inclusive approach for developing smart home applications based

on reusing Web standards. Even though a number of energy-related applications are discussed, we

do not present a novel technology for energy efficiency. The main innovation lies in the fact that

existing Web technologies are combined to develop a generic smart home application framework

that can be easily adapted to future technological and societal challenges.

To address heterogeneity of home devices and smart home technologies, this work examines

whether the Web, as a highly ubiquitous, reliable and scalable platform, can constitute an effective

and efficient application layer for future smart home solutions. As the Web is pervasive in our ev-

eryday lives, with well-trusted and understood protocols and techniques, its potential utilization is
4http://xmpp.org/
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investigated, for achieving interoperability in the home environment. A number of representative

applications are developed to exemplify the power of the proposed framework and approach.

Specifically, the applicability of employing Web technologies in the smart home environment

is examined from various aspects:

• The development of a RESTful application framework for smart homes using Web tech-

niques (see Chapter 4).

• The issues encountered during the Web-enablement of home devices, including device dis-

covery, service description and uniform interaction with them. (see Chapter 5).

• A technical evaluation showing that the application of Web technologies in recourse-constrained

home environments may offer satisfactory performance, in terms of response times and bat-

tery lifetime of the embedded devices of the smart home (see Chapter 7).

• Online social networking of the smart home, for sharing home devices between family

members and for performing comparisons of electrical consumption between neighbors and

friends (see Chapter 8).

• Integrating energy-aware smart homes to the smart grid of electricity (see Chapter 9).

• Considering technological and societal challenges beyond the smart home (see Chapter 10).

Our research study is unique -to our knowledge- in the sense that it explores the applicability

of the WoT in a real-life scenario, such as a smart home environment. Most of the previous

studies in the domain of the WoT [159, 72] focused on defining the foundational blocks of a Web

of physical things. In this work, the focus is to propose a flexible application framework, and to

solve numerous issues that appear when applying the WoT in a smart home environment, towards
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achieving flexibility and interoperability between heterogeneous home devices and services, in

order to ensure acceptable performance inside this wireless indoor space.

A generic application framework for smart homes was developed, supporting the management

of Web-enabled physical devices and the efficient interaction with multiple home residents, re-

motely through the Web (see Chapter 4). This framework bridges heterogeneous devices and the

Web, regardless of the actual communication protocol used natively by the devices. The layered

design of the framework, integrating threads and request queues for managing the communication

with physical devices, allows effective handling of failures, which are possible in the embedded

environment of home devices. In case transmission failures occur, fast retransmissions ensure

reliability and acceptable performance.

The use of request queues as a mechanism to administer the interaction with embedded devices

constitutes a novel characteristic in smart home middleware (see Chapter 6). Request queues offer

enhanced reliability and fault tolerance, supporting multiple tenants simultaneously as well as pri-

oritized requests. Load balancing is used to increase the battery lifetime of devices while concepts

from queuing theory allow better designs of the queues and the setting of design parameters, and

offer approximate estimations about the time needed for satisfying incoming requests.

The application framework presents a unique architecture, based on resource-oriented archi-

tectures and REST, for discovering, searching and interacting with heterogeneous embedded de-

vices over the Web. This capability is useful, but not sufficient to develop complete applications

for end users. Hence, the framework supports smart application development over REST, follow-

ing the physical mashup paradigm (see Section 4.2.6), enabling home residents to easily access,

program and integrate devices and environmental data into their own Web applications. Residents

can manually implement their own small programs in any programming language that supports

And
rea

s K
am

ila
ris



16

HTTP (e.g. Java, Python, PHP, AJAX), in the form of physical mashups. Physical mashup pro-

gramming is a concept first mentioned in [75], which we applied specifically for smart home

environments. We adapted physical mashups for highly-dynamic and mobile urban environments,

proposing urban mashups (see Section 4.2.7), defined as opportunistic service-centric physical

mashups, validated only when the local environmental conditions support the sensor-based Web

services declared by these mashups.

The application framework was then extended into a Web-based generic, graphical applica-

tion for smart homes, where all interactions with embedded devices are done via standard HTTP

requests (see Section 4.3). Since many residents are not expected to have any experience in pro-

gramming, we also give them the opportunity to develop their own smart rules through a physical

mashups editor (see Section 4.3.4). Our aim is to bring the development of home automation

applications closer to Web developers, but also to facilitate the creation of simple applications by

end users, tailored to their needs.

Furthermore, a 6LoWPAN-based WSN was deployed in a real environment and home devices

were transformed into embedded Web servers, exposing their capabilities as RESTful Web ser-

vices (see Chapter 5). This effort was also performed, in parallel to this work, in [182, 147]. It

is a common secret that porting the TCP/IP stack on resource-constrained devices creates degra-

dation of their overall performance. However, our evaluation efforts (see Chapter 7) indicate that

the employment of Web techniques can mitigate or even cancel this performance penalty. More

specifically, enhanced Web techniques such as HTTP caching and event-based Web messaging

can contribute in increasing the performance and scalability of smart applications, reducing the

response time and power consumption of sensor devices, preserving their battery lifetime. These

findings are missing from related work.
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Moreover, our contribution involves a number of case studies for demonstrating how the Web

behavior of smart homes can be exploited for facing environmental, societal and energy-related

issues, which are encountered in the modern cities where the majority of people lives. We demon-

strate, through the implementation of various pervasive applications, how flexible and easy smart

application development becomes, when using the Web as an application protocol.

The integration of online social networking to Web-enabled smart homes provides a social

shape to smart home applications (see Chapter 8). By means of the mechanisms offered by so-

cial networking sites, family members can share the status of their smart home and allow shared

interactions with home devices and their services (see Section 8.1).

Social influence, as an important parameter for energy awareness and conservation, was con-

sidered in a social competition for energy conservation between neighboring flats in large blocks

of flats (see Section 8.2). The findings of the competition were encouraging, because people de-

creased their electrical consumption significantly during the testing period.

Social Electricity is a promising, novel Facebook application that permits people to compare

their electricity footprint with their friends, to understand whether they consume more electricity

than they should (see Section 8.3). This application has been awarded the first prize in an in-

ternational competition for sustainable applications (2nd ITU Green ICT Application Challenge),

organized by the International Telecommunications Union (ITU), which is the United Nations spe-

cialized agency for ICT protocols and technologies. Social Electricity is currently being deployed

around Cyprus and hundreds of Cypriot citizens are using it to perceive the ”semantics” of their

consumed energy.

The possibilities created when Web-based, energy-aware smart homes communicate in near

real-time with the smart grid are examined in Chapter 9, and an architecture for the flexible integra-

tion of smart homes to the grid through the Web is proposed (see Section 9.1). The potential of this
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Web-based architecture is demonstrated through the development of two applications that exploit

these new capabilities of smart homes, towards an intelligent grid. Demand response is harnessed

to schedule electricity-related tasks for future execution (see Section 9.2) and load shedding is

employed to reduce the total load for avoiding outages (see Section 9.3).

Finally, our contribution is extended to some issues beyond the smart home environment. The

future (expected) abundance of Web-enabled sensors would imply the need for efficient techniques

for globally discovering them. To solve this problem using the existing Internet infrastructure, we

explore the exploitation of the Domain Name System (DNS) as a scalable, ubiquitous, real-time

directory mechanism for embedded devices (see Section 10.3).

Web-enabled home devices of future smart homes, mainly those offering sensing capabilities,

could be shared through the Web under a participatory-based crowdsourcing scheme, for auto-

matic knowledge retrieval in the urban environment (see Section 10.4). UrbanRadar is a mobile

application we developed, which uses urban mashups as a core element for location-based environ-

mental awareness (see Section 10.4.2). Through this case study, we aim to promote the important

role of Web-enabled smart homes towards shaping the digital, real-time future cities.
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1.6 Publications

A list of publications stemming from the work in this thesis, is provided in Appendix A.

1.7 Thesis Overview

This thesis is organized as follows: Chapter 2 presents general background information, neces-

sary in order to understand the concepts presented in this work. This information covers embedded

sensor technology, the IoT and the WoT, as well as REST and resource-oriented architectures. It

also covers protocols and techniques used on the Web for event-based messaging and for message

exchange using standardized data formats.

Chapter 3 lists the important related work in the field, including state of the art in ubiquitous

middleware, smart homes, smart metering, the IoT, the WoT and large-scale sensor platforms.

Special focus is given on middleware and smart home solutions that integrate Web technologies.

After, Chapter 4 describes a Web-based application framework for smart homes, designed

using Web technologies, in order to address the problem of heterogeneity in home environments.

Requirements for future smart homes are listed and the general architecture of the framework is

discussed. A graphical application for smart homes, built on top of the application framework is

presented, and various case studies are provided, based on the physical mashup paradigm.

Chapter 5 presents the issues encountered during the process of Web-enabling the embedded

device of a smart home. Various aspects are addressed, including the discovery of the devices, the

description of their services, the interaction patterns with them etc.
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Then, Chapter 6 analyzes the behavior of the request queue mechanism, focusing on the fast

retransmission functionality. Potential benefits of employing intermediate request queues are dis-

cussed and various of these benefits are demonstrated experimentally.

Chapter 7 depicts the use of Web techniques for enhancing the performance of home devices,

mainly in terms of their response times and their energy consumption. Event handling and a

streaming network are two scenarios also evaluated in this chapter.

Afterwards, Chapter 8 presents some pervasive applications, enabled when combining Web-

enabled smart homes and online social networking sites. These applications include: an appli-

cation for sharing home devices and services between family members; a social competition for

energy conservation in blocks of flats; and a Facebook application for comparison of electrical

consumption between friends.

Chapter 9 considers the integration of energy-aware smart homes to the smart grid of electricity

by means of the Web. An architecture is proposed for this interconnection and two case studies are

considered. The first exploits the demand response program of the grid to execute energy-related

tasks in low-tariff hours of the day and the second employs load shedding for reducing the total

load of the grid in case outages are possible to occur.

Chapter 10 introduces research issues which are beyond smart home environments. These is-

sues involve extending the application framework for other real-life scenarios, a real-time, global

search engine for the physical world as well as advanced knowledge retrieval in urban environ-

ments. This chapter discusses also some basic security aspects both inside the smart home and

between the house and other Web entities.

Finally, Chapter 11 concludes the thesis by discussing the general findings, identifying open

issues, giving a general outlook of the future potential of Web-enabled smart homes and proposing

future work in the field.
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Chapter 2

Background Information

In this chapter, we provide some background information to help the reader understand the

concepts and the technologies discussed in this proposal. At first, Section 2.1 provides general

information about embedded sensor technology. More precisely, Sections 2.1.1 and 2.1.2 give a

description of the embedded sensor and actuator devices we employ for building a smart home,

namely sensor motes, residential smart meters and smart power outlets. Afterwards, Section 2.1.3

discusses the formation of wireless sensor networks, by exploiting the wireless capabilities of

embedded devices, while Section 2.1.4 presents some well-known operating systems for sensor

motes, namely TinyOS and Contiki. Then, Sections 2.1.5 and 2.1.6 explain IEEE 802.15.4, ZigBee

and 6LoWPAN, which are popular standards for low-power wireless communications. Section 2.2

introduces the concept of the Internet of Things and Section 2.3 shows how this concept can be

extended for establishing a Web of Things. After, Section 2.4 gives an overview of resource-

oriented architectures and REST, which constitute an important element for building a true Web

of physical devices. Section 2.5 provides well-known data formats that are used for message

exchange on the Web, as well as MIME types, as a popular standard that describes the structure of

messages on the Internet, and Section 2.6 explains the available protocols for push/pull messaging

22
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on the Web. Finally, Section 2.7 lists specifically the various technologies adopted at each chapter

of the thesis.

2.1 Embedded Sensor Technology

This section provides an overview of the technological advancements in embedded sensor

technology. The section begins with a description of embedded sensor devices, residential smart

meters and smart power outlets, and continues with defining wireless networks of sensor and

actuator devices. Finally, various wireless protocols for resource-constrained environments are

discussed, involving IEEE 802.15.4, ZigBee and 6LoWPAN.

2.1.1 Sensor Devices

Recent advances in micro-electro-mechanical systems technology, wireless communications,

and digital electronics have enabled the development of low-cost, low-power, multi-functional

sensor nodes that are small in size and communicate untethered in short distances [11].

Sensors can measure with high accuracy environmental conditions such as temperature and

humidity or physical events such as pressure and motion. The reader can graphically see such a

sensor device (Tmote Sky sensor mote) in the left of Figure 2.1. In the right of the same figure, the

internal design of this sensor platform is presented. Tmote Sky motes have the same architecture

and design as Telosb motes [134].

Such platforms are ideal for low power, relatively high data-rate sensor network applications

designed with the dual goal of fault tolerance and development ease. They boast a large on-chip

RAM size, IEEE 802.15.4 radio and an integrated on-board antenna, providing range in theory

up to 125 meter. However, in practice, when obstacles exist such as walls or trees, their radius

reaches only 20-30 meters. This is also the case for indoor environments such as smart homes,
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Figure 2.1: A Tmote Sky physical sensor device and its internal design.

as it is shown in our analysis and evaluation efforts in Chapters 6 and 7. Sensor motes also offer

a number of integrated peripherals, including ADC and DAC, timers, I2C, SPI and UART bus

protocols, as well as performance-boosting DMA controllers.

2.1.2 Residential Smart Meters and Smart Power Outlets

In the latest years, residential smart meters have gained popularity. Electrical smart meters

measure the consumption of electrical energy in houses and buildings, in frequent intervals and

communicate that information at least daily back to the utility for monitoring and billing purposes.

Smart meters are a fundamental element of the future smart grid of electricity. However, smart

metering does not only affect the future development of the smart grid, but also motivates the

rational management of the electrical consumption in houses and buildings. It is planned that

every home in Britain will be equipped with smart meters by 20201.

Smart power outlets are wireless devices that measure the consumption of individual electrical

appliances and control their operation in real-time. They may form multi-hop wireless networks

inside the home environment, to propagate the electricity-related measurements to a central smart

home application. Another category of smart devices, which are associated with electrical con-

sumption are smart appliances. These devices are an important element in realizing the benefits
1http://news.bbc.co.uk/2/hi/business/8042716.stm
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of smart grid technologies. They have the potential to significantly improve the stability and op-

erational efficiency of the electrical grid with limited impact on the lives of the residents. Their

main operation involves responding to pricing signals from the grid, and decide when it is most

economical to execute their task.

According to various scientific studies [37, 179], timely electrical consumption feedback

through smart metering, is believed to reduce electrical consumption by a fraction of 5-15%.

Enabling residents to analyze and monitor their electricity footprint in real-time using intuitive

visualization tools, allows intelligent and efficient energy management. In some cases, analytical

feedback (per room/electrical appliance) can reduce energy consumption up to 20% [138].

The American Council for an Energy-Efficient Economy (ACEEE) reviewed more than 36

different residential smart metering and feedback programmes internationally. This is one of the

most extensive studies of its kind. Their conclusion was that ”to realise potential feedback-induced

savings, smart meters must be used in conjunction with in-home displays and well-designed pro-

grammes that successfully inform, engage, empower and motivate people” [97].

There are near universal calls from both the energy industry and consumer groups for a na-

tional social marketing campaign to help raise awareness of smart metering and give customers

the information and support they need to become more energy efficient, and what changes they

must make to realize the potential of proposed smart meters.

Residential smart meters are placed where the home connects to the power grid, measuring

the total energy consumption of the house. Figure 2.2 (left) presents a typical residential smart

meter, installed on the main supply of the house. Figure 2.2 (right) shows a commercial smart

power outlet. These outlets need to be plugged on electrical appliances in order to measure their

electrical consumption and manage their operation.
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Figure 2.2: A typical residential smart meter (left) and a smart power outlet (right).

Whole-home residential smart metering products available in the market include Wattson2,

Onzo3 and Current Cost4. Device-specific smart power outlets include Kill A Watt5 and Ploggs6.

A comparison between electrical smart meters and smart power outlets, considering their overall

accuracy is presented in [111].

2.1.3 Wireless Sensor Networks

A WSN consists of spatially distributed autonomous sensors, which cooperatively monitor

physical or environmental conditions, such as temperature, humidity, sound, vibration, pressure,

motion, pollutants etc. [11].

Each sensor runs a multi-hop routing algorithm, where intermediary nodes function as for-

warders, relaying data packets to a base station (sink). Base stations have much more computa-

tional, energy and communication resources and act as gateways between sensor nodes and the
2http://www.diykyoto.com/uk
3http://onzo.com/
4http://www.currentcost.com/
5http://www.p3international.com/products/special/p4400/p4400-ce.html
6http://www.plogg.co.uk/
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end users. The topology of WSN can vary from a simple star network to an advanced multi-

hop wireless mesh network. The propagation technique between the hops of the network can be

routing or flooding.

The main characteristics of WSN include: power consumption constraints for nodes using bat-

teries or energy harvesting; ability to cope with node and communication failures; node mobility;

heterogeneity of nodes; scalability to large deployments; ability to withstand harsh environmental

conditions; and ease of use.

WSN play a key role in enabling high-precision sensor and actuation systems in houses, build-

ings and surrounding spaces by providing a reliable, cost-effective and extensible solution. Their

equipment can be placed in existing as well as new structures, without significant changes in the

current infrastructure. Common applications of WSN involve forest fire detection, air pollution

monitoring, health monitoring, industrial control, agriculture and greenhouse monitoring. WSN

can also be deployed in inaccessible rural areas where human transition is difficult e.g. forests,

jungles and volcano.

In Figure 2.3, we can observe a deployment of a WSN on an active volcano [177]. In this

particular deployment, wireless sensor nodes detect seismic events and route them, through the

wireless network to a base station.

2.1.4 Operating Systems for Sensor Devices

A number of operating systems for embedded devices and especially sensor motes have been

developed during the last 10-15 years. The most well-known are TinyOS and Contiki.

TinyOS [110] is a free and open-source, component-based operating system and platform,

targeting WSN. It is an embedded operating system, written in the nesC programming language

as a set of cooperating tasks and processes. It basically started as a collaboration between the
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Figure 2.3: A deployment of a WSN for volcano monitoring [177].

University of California, Berkeley and Intel Research, and has since grown to a be an international

consortium, the TinyOS Alliance.

TinyOS applications are written in nesC, which is actually a dialect of the C programming

language, optimized for the memory limitations of sensor networks. TinyOS programs are built

out of software components, which are connected to each other using interfaces. Interfaces con-

tain definitions of commands and events. Components must implement the events they use and

the commands they provide. TinyOS provides interfaces and components for common hardware

abstractions such as packet communication, routing, sensing, actuation and storage. A general

idea of the programming model can be seen in Figure 2.4.

TinyOS is completely non-blocking: it has one stack. Therefore, all I/O operations that last

longer than a few hundred microseconds are asynchronous and have a callback. TinyOS uses

nesC’s features to link these callbacks, called events, statically. A TinyOS component can post a
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Figure 2.4: General programming model of TinyOS.

task, which the OS will schedule to run later. Tasks are non-preemptive and run in first in, first out

(FIFO) order. This simple concurrency model is typically sufficient for I/O-centric applications,

but its difficulty with CPU-heavy applications led to the development of TOSThreads, a thread

library for the OS.

Contiki [47] is also an open-source, highly portable, multitasking operating system for memory-

efficient networked embedded systems and wireless sensor networks. It is mainly designed for

microcontrollers with small amounts of memory. A typical Contiki configuration is 2 kilobytes

of RAM and 40 kilobytes of ROM. For communication within a wireless sensor network, Contiki

uses the RIME [46] low-power radio networking stack. The RIME stack implements sensor net-

work protocols ranging from reliable data collection and best-effort network flooding to multi-hop

bulk data transfer and data dissemination.

Contiki is written in the C programming language and consists of an event-driven kernel, on

top of which application programs can be dynamically loaded and unloaded at run time. Contiki

processes use lightweight protothreads [48] that provide a linear, thread-like programming style

on top of the event-driven kernel. In addition to protothreads, Contiki also supports per-process

optional multithreading and interprocess communication using message passing.
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To provide a long sensor network lifetime, it is crucial to control and reduce the power con-

sumption of each sensor node. Contiki provides a software-based power profiling mechanism that

keeps track of the energy expenditure of each sensor node. Being software-based, the mechanism

allows power profiling at the network scale without any additional hardware. Contiki’s power

profiling mechanism is used both as a research tool for experimental evaluation of sensor network

protocols and as a way to estimate the lifetime of a network of sensors.

A full installation of Contiki includes the following features: a multitasking kernel; optional

per-application pre-emptive multithreading; protothreads; TCP/IP networking, including IPv6;

Windowing system and GUI; networked remote display using Virtual Network Computing; a small

Web browser; a personal web server; and a simple telnet client.

Other, less popular operating systems for embedded devices include MANTIS [21], Nano-RK

[2] and LiteOS [1].

2.1.5 IEEE 802.15.4 and ZigBee

IEEE 802.15.4 [54] is the proposed standard for low-rate wireless personal area networks. It

defines the physical and media access control layer of these networks (based on the OSI model).

It operates in three frequency bands as shown in Table 2.1.

IEEE 802.15.4 is designed for wireless sensor applications that require short-range commu-

nications, to maximize the battery lifetime of sensor devices. The main features of the standard

include activation and deactivation of the radio transceiver, energy detection within the current

channel, link quality indication for received packets, channel selection, clear channel assessment

(CCA), and transmitting as well as receiving packets across the physical medium. Other important

features include real-time suitability by reservation of guaranteed time slots, collision avoidance

through CSMA/CA and integrated support for secure communications.
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ZigBee [36, 54] is a specification for a suite of high-level communication protocols using

small, low-power digital radios based on the IEEE 802.15.4 standard for personal area networks.

ZigBee technology offers low data rates, low power consumption and low cost, proposing a wire-

less networking protocol targeted for automation and remote control applications. ZigBee builds

upon the physical layer and medium access control defined in IEEE802.15.4 standard (2003 ver-

sion). The specification completes the standard by adding four main components: network layer;

application layer; ZigBee device objects (ZDOs); and manufacturer-defined application objects

which allow for customization and integration.

IEEE 802.15.4 committee started working on a low data rate standard some decades ago.

Then, the ZigBee Alliance and the IEEE decided to join forces and ZigBee is the commercial

name for this technology. ZigBee targets radio-frequency (RF) applications that require long

battery lifetime, low data rate and secure networking. It operates in the industrial, scientific and

medical (ISM) radio bands: 868 MHz in Europe, 915 MHz in the USA and Australia, and 2.4

GHz worldwide. Data transmission rates vary from 20 to 900 kilobits/second.

ZigBee has been developed to meet the growing demand for robust multi-hop wireless net-

working between numerous low-power devices. ZigBee devices are often used in a mesh network-

ing topology, to transmit data over longer distances, passing them through intermediate devices

to reach more distant ones. This allows ZigBee networks to be formed in a decentralized, ad-hoc

manner, without centralized control.

In the industry, ZigBee is being used for next generation automated manufacturing, embed-

ding small transmitters in large numbers of embedded devices, in order to exchange wirelessly

sensory observations in a multi-hop fashion. Lately, ZigBee has developed standards for specific

applications such as home and building automation, and the smart grid.
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Table 2.1: 802.15.4 physical layer.

Frequency (MHz) Modulation Channels No. Bit rate(Kbps)

868-868.6 BPSK 1 20

902-928 BPSK 10 40

2400-2483.5 16-ary QPSK 16 250

Other standards based on IEEE 802.15.4 are WirelessHART and 6LoWPAN. WirelessHART

[5] is intended for low power, 2.4 GHz operation, expecting a huge need for wireless instrumen-

tation. WirelessHART is compatible with all existing devices, tools and systems. WirelessHART

is reliable, secure, and energy-efficient, supporting mesh networking, channel hopping, and time-

synchronized messaging. Network communication is secure with encryption, verification, au-

thentication, and key management. 6LoWPAN is an adaption layer that allows efficient IPv6

communication over IEEE 802.15.4. We will further discuss 6LoWPAN in the next subsection.

2.1.6 6LoWPAN

Integrating IP with embedded devices and WSN has a number of important benefits. Those

benefits include the easy interconnection with other IP networks, the reuse of the existing Internet

infrastructure, the application of well-known IP-based technologies in ubiquitous environments

and the use of existing power monitoring and diagnostic tools. The challenge in supporting IP

protocols in WSN is to overcome the limitations experienced by sensor networks like lower power

consumption, low duty cycles, limited bandwidth and reduced reliability.

To address these limitations, IETF created the 6LoWPAN working group, which aims to de-

velop the support of IPv6 over the standard IEEE 802.15.4, in order to import well-known capabil-

ities of IPv6, such as Neighbor Discovery (ND) and Mobile IP (MIPv6) into low-power devices. A
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Low-power Wireless Personal Area Network (LoWPAN) is a simple, low-cost communication net-

work that allows wireless connectivity in applications with limited power and relaxed throughput

requirements. A LoWPAN typically includes devices that work together to connect the physical

environment to real-world applications.

IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) [119, 107], as stated

before, is an adaption layer that allows efficient IPv6 communication over IEEE 802.15.4. It

defines a LoWPAN frame format for IPv6 data packets and a simple header compression scheme

which uses shared context information. Also, mesh-based packet delivery is briefly addressed.

The most well-known operating systems for sensors offer already 6LoWPAN implementa-

tions, for transforming sensor motes into IPv6-enabled devices. These implementations are blip

for TinyOS and uIPv6 for Contiki.

Blip 2.0 [38], the Berkeley low-power IP stack, is an implementation in TinyOS of a number

of IP-based protocols. Using blip/TinyOS, multi-hop IP networks may be formed, consisting of

different motes communicating over shared protocols.

uIPv6 [50] is an open-source TCP/IP stack, capable of being used with tiny 8- and 16-bit mi-

crocontrollers. It was initially developed by Adam Dunkels of the Networked Embedded Systems

group at the Swedish Institute of Computer Science, initially called uIP. In October 2008, Cisco,

Atmel and SICS announced a fully compliant IPv6 extension to uIP, called uIPv6

A comparison of IPv6/6LoWPAN and ZigBee is provided in Table 2.2. Obviously, 6LoWPAN

offers more capabilities than ZigBee, supporting a larger number of sensor devices, better data

rates, low cost and higher connectivity.And
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Table 2.2: Comparison of IPv6/6LoWPAN and ZigBee.

ZigBee IPv6/6LoWPAN

Network size 216 264 per subnet

Data rate 20..250kb/s 250kb/s..1Gb/s

Interface App. gateway UDP, TCP, RESTful Web

Maturity 2004 1998

Costs medium low

Installation overhead low low

Connectivity medium high

Security medium (AES) medium (AES)

2.2 The Internet of Things

New technologies like short-range wireless communications, RFID and real-time localization

are now becoming largely common, allowing the Internet to penetrate into the real world of phys-

ical objects. The introduction of IPv6 [39, 143], the efforts for porting the IP stack on embedded

devices [49, 86] and the definition of 6LoWPAN (see Section 2.1.6) enable the vision of the In-

ternet of Things [62, 115], which refers to a network of objects, where all things are uniquely and

universally addressable, identified and managed by computers. It is a collection of technologies

that make it possible to connect things like sensors and actuators to the Internet.

A formal definition of the IoT is the following: ”The Internet of Things is an integrated part of

the Future Internet and could be defined as a dynamic global network infrastructure with self con-

figuring capabilities based on standard and interoperable communication protocols where physical
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and virtual things have identities, physical attributes, and virtual personalities and use intelligent

interfaces, and are seamlessly integrated into the information network.7”

Figure 2.5: The Internet Of Things vision.

The IoT aims at extending current Internet, which includes billions on nodes, into the every-

day world, employing trillions of Internet-enabled nodes. These nodes include sensors, actuators,

smart meters, smart power outlets, information appliances, RFID tags etc. These embedded de-

vices will be harnessed in a broad range of applications, such as building and industrial automa-

tion, smart metering, logistics etc. The IoT vision is depicted in Figure 2.5.
7http://www.internet-of-things.eu/
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The specific characteristics of the IoT are still under research. Preferences such as its architec-

ture, size, complexity, time and space issues, as well as the ambient intelligence and autonomous

control of this novel concept are still in a premature level.

Current applications of the IoT are found in logistics (RFID tags), smart homes (ZigBee/6LoWPAN),

large-scale platforms for sensor data (Cosm [82], Paraimpu8), in business cards (QR codes) etc.

2.3 The Web of Things

Extending the concept of the IoT, the Web of Things [178, 76] is a notion where everyday

devices and sensors are connected by fully integrating them to the Web, as shown in Figure 2.6.

Based on the success of the Web 2.0, this concept is about reusing well-accepted and understood

Web standards to connect constrained devices.

Figure 2.6: The Web Of Things vision.
8http://paraimpu.crs4.it/
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The WoT introduces many benefits in the ubiquitous computing society. It brings a new appli-

cation development paradigm, where applications can be easily built on top of embedded devices,

utilizing the same techniques used in Web development, for example Web mashups that involve

physical things (see Sections 4.2.6 and 4.2.7). Furthermore, many features of the Web can by

employed very easily. These features include searching, securing, blogging, caching, linking,

bookmarking etc. Finally, the Web has proved to be a highly scalable and ubiquitous platform,

and researchers believe it is appropriate for interconnecting millions of embedded devices and

everyday objects under uniform and interoperable interfaces.

The WoT practice mainly follows three steps:

1. Connect embedded devices to the Internet, through IPv4 or IPv6 (see Section 2.1.6).

2. Embed Web servers on these devices.

3. Model the services, offered by these devices, in a resource-oriented way (see Section 2.4).

4. Expose these services as RESTful Web resources (see Section 5.2.3).

Actually, the Web-enabling process can be performed in two ways. Either through embedding

Web servers directly on physical devices (indicated way) or by employing gateways, which per-

form protocol translation, from the TCP/IP protocol to the dedicated protocol used by the physical

device (e.g. Bluetooth, ZigBee). Gateways are used when it is not possible to integrate the TCP/IP

protocol stack to embedded devices (e.g. RFID tags, QR codes). Smart meters and smart power

outlets do not yet support the direct embedding of Web servers on them, however, this is expected

to change in the near future.

Directly embedding Web servers on sensors is a recent development [147, 182]. Examples of

embedded Web servers that can be integrated in resource-constrained devices are NanoHTTPD

[52] and the Nokia mobile Web server [26].
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The important properties of the WoT can be summarized as follows:

• It uses HTTP as an application protocol rather than as a transport protocol as done in the

world of WS-* Web Services [13].

• It exposes the synchronous functionality of smart objects through a REST interface and

respects the blueprints of resource-oriented architectures (see Section 5.2.3).

• It provides the asynchronous functionality (i.e. events) of smart objects through the use of

largely accepted Web syndication standards such as Atom or server-push Web mechanisms

such as Comet (see Section 2.6).

Open research questions of the WoT include: local/global discovery of physical devices and

services; complete description of these services using standardized languages and semantic tech-

niques; uniform interaction with embedded devices using standard protocols; and asynchronous,

Web-based interaction with devices that sense the environment for sporadic events.

2.4 REST and Resource-oriented Architectures

A fundamental part of the WoT is to design services offered by physical devices, using stan-

dardized, uniform techniques. In order to do that, WoT engineers suggested the adoption of Web

services and more specifically the utilization of REST.

Web services have been extensively used during the last few years to provide integration across

heterogeneous, distributed systems. Web services tend to fall into one of two camps: Big Web

services (WS-*) and RESTful Web services. WS-* [13] are a set of complex standards and speci-

fications for enterprise application integration. They form the foundational elements for building

service-oriented architectures (SOA), introducing new possibilities for large-scale software design

and software engineering.
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More recently, RESTful Web services [142] have attracted many researchers, engineers and

software developers. The notion of REST has been conceptualized in Roy Fielding’s PhD thesis

[59]. Rather than being a technology or standard, REST is an architectural style which basically

explains how to properly use HTTP as an application protocol. REST advocates in providing

services directly based on the HTTP protocol itself. An application programming interface (API)

fulfilling the REST architectural style is said to be RESTful.

Beyond the basic design criteria provided in Roy Fielding’s thesis, the REST community has

been working on refining the notions to create resource-oriented architectures (ROA), in order to

provide and connect together services on the Web. Because of the underlying simplicity of this

architecture, it could be adapted in order to interconnect the physical world and, in particular,

embedded devices. Basically a ROA is about four concepts:

• Resources. A resource in a ROA is anything important enough to be referenced and linked

by other resources. It can be seen as an entity that provides some service.

• Their Names. A resource has to be addressable, i.e. it needs to have a uniform resource

identifier (URI) that uniquely identifies it. This concept is known as the requirement for

addressability of RESTful API.

• Links between them. Thanks to the hyperlinking structure of the Web, resources can be

connected to one another. This is the requirement for connectedness of RESTful API.

• Their Representations. Resources can be represented using various formats. The most

common one for resources on the Web is (X)HTML, due to its intrinsic support for browsing

and human readability. However, when machine readability is required, XML and JSON are

often chosen (see Section 2.5). Note that JSON is a data interchange format which stands

as a lightweight alternative to the sometimes too verbose XML.
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REST proposes the use of a uniform interface. Resources can only be manipulated by the

methods specified in the HTTP standard. Amongst these verbs, four are most commonly used:

• GET is used to retrieve a representation of a resource. Concretely, sending a GET request

along with the URI http://.../sensors/officeLamp/Illumination would return the light level

currently observed by officeLamp.

• POST represents an insert or update of a resource.

• PUT is a method to alter the state of a resource. As an example, it could be used to change

the state of an actuator. Sending a POST request to http://.../actuators/bedroomLamp

/Light with the parameter state=on, causes the effect of bedroomLamp to be turned on.

• DELETE is used to delete resources.

Comparing the two trends in Web Services, WoT engineers concluded that RESTful Web

services are more appropriate for resource-constrained, ad hoc environments [130, 73]. Thanks

to their simplicity, the use of a uniform interface and the wide availability of HTTP libraries and

clients, RESTful services are truly loosely coupled. This means that services based on RESTful

API can be reused and recombined in a quite straightforward manner.

2.5 Exchange Data Formats on the Web

Exchange of data between two or more applications on the Internet/Web needs to be on a

machine-readable form. Many data formats have been proposed, all aiming at the optimization of

different aspects (speed, overhead, generality). In the following subsections, we describe the most

popular data formats which are employed in machine-to-machine (M2M) communication on the

Web. In addition, we explain some basic things about MIME types, which compose a fundamental

standard that describes the structure of messages on the Internet.
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2.5.1 XML

Extensible Markup language (XML) [23] provides a simple way of how data can be repre-

sented in textual form where meta-tags enclose the data item. XML is a markup language that de-

fines a set of rules for encoding documents in a format that is both human- and machine-readable.

Figure 2.7 shows an example XML listing two embedded devices: a sensor mote and a smart

power outlet. Together with an XSL style-sheet that acts as a grammar describing how to read the

XML, almost any kind of data can be encoded.

<? xml version = ’1.0’ encoding = ’utf-8’ ?>

<devices>

<device>

<name>Living Room Sensor</name>

<type>Telosb Sensor Mote</type>

</device>

<device>

<name>Television</name>

<type>Plogg Smart Power Outlet</type>

</device>

</devices>

Figure 2.7: Example XML with a list of physical devices.

2.5.2 JSON

JavaScript Object Notation (JSON) [70] is a data format that claims to be human-readable

and at the same time easy to be parsed for machines. It is derived from the JavaScript scripting

language for representing simple data structures and associative arrays, called objects.
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As opposed to XML, JSON tries to remove some meta-tags, to minimize the amount of char-

acters used for the serialization of an object or data. Although everything in JSON is represented

as a JSONObject there are two basic subtypes/structures to distinguish:

• Key/Value pairs. A chunk of data is stored into the JSON data structure together with a

lookup key (comparable to a hash-map).

• Lists. A series of data values stored comma-separated within ”[” and ”]”.

Figure 2.8 shows a JSON object (devices) holding a list of two JSON objects (device). Thanks

to its simplicity, readability and efficiency JSON has become a vastly accepted data format for the

transmission of character data. For almost any programming language there exist JSON libraries

to parse and encode JSON objects. Finally, in order to define the structure of JSON data, JSON

Schema is a specification for a JSON-based format.

2.5.3 Multipurpose Internet Mail Extensions

Multipurpose Internet Mail Extensions (MIME) [69] is a standard that describes the structure

of messages on the Internet. Originally, MIME was invented to embody any kind of data into

emails (e.g. images, video, audio), but today it is applied to other areas as well (e.g. HTTP, search

meta-data). MIME categorizes format and encoding into types called Internet Media Types or

simply MIME types.

The Internet Assigned Numbers Authority (IANA) maintains a list of all the official MIME

types9. Nonetheless, Web applications are allowed to define their own types. Types contain sub-

types to further organize and classify. For example, a MIME type for an image encoded as png

9http://www.iana.org/assignments/media-types/index.html
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{

"devices": [

{

"name": "Living Room Sensor",

"type": "Telosb Sensor Mote",

},

{

"name": "Television",

"type": "Plogg Smart Power Outlet",

}

}

Figure 2.8: Example JSON object with a list (devices) of two JSON objects (device) holding both

two key/value pairs.

is expressed with image/png, an audio in mp3 with audio/mp3. Within a MIME document, the

MIME type is specified with the keyword Content-type.

Documents that use MIME have a header and a body. The body contains the payload (the

encoded document(s)) and the header maintains instructions how the payload has to be interpreted.

Figure 2.9 shows a sample document encoded as MIME.

2.6 Web Messaging Protocols

The HTTP protocol functions as a request-response protocol in a client-server computing

model. It is an example of client pull technique, a style of network communication where the

initial request for data originates from the client, and then is responded by the server. However,

HTTP does not seem suited for applications that involve event-driven scenarios. In such scenarios,
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MIME-version: 1.0

Content-type: multipart/mixed; boundary ="multipartBoundary"

A MIME message containing two documents. One as XML, one as plain text .

--multipartBoundary

Content-type: text/plain

This document is encoded as plain text .

--multipartBoundary

Content-type: text/xml; charset=UTF-8

<document> This is an XML document.</document>

--multipartBoundary

Figure 2.9: MIME encoded document.

push technology is considered more suitable. Server push [60] describes a style of Internet-based

communication where the request for a given transaction is initiated by the publisher.

Considering WSN applications, the request/response nature of the HTTP protocols is some-

times inappropriate. Hence, the development of event-driven applications directly over the Web

has been enabled by means of Web push tools and techniques. In the following subsections, we

present these different push methods for event-driven Web messaging, after we introduce pull-

based syndication on the Web.

2.6.1 Web Syndication

Content syndication is a basic form of Web messaging. Feed formats such as as RSS10, or the

more well-defined Atom standard, have become popular formats for exchanging machine-readable

data over the Web.
10http://www.rssboard.org/rss-specification
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The Atom Syndication Format [123] is an XML language used for Web feeds, while the Atom

Publishing Protocol (AtomPub) [67] is a simple HTTP-based protocol for creating and updating

Web resources. Atom offers a convenient way to deal with time-ordered data, thus is particularly

suited for storage, querying and retrieval of stored information. However, Atom suffers from the

pulling mode that prevents one to build event-driven applications.

2.6.2 Publish/Subscribe Systems

Publish/subscribe (pub/sub) systems [56] are common and widely used in distributed comput-

ing and large enterprise applications. Highly scalable implementations of brokers with a variety

of features are available for existing protocols such as JMS11 or AMQP12.

XMPP [145] is an XML-based messaging protocol widely used for chat servers. It is based

on a decentralized network of servers that provide a multi-hop routing delivering messages from

one client to the other. Only recently, sensor networks have began to explore pub/sub messaging

to enable complex and interoperable applications that scale. MQ Telemetry Transport (MQTT) is

a very lightweight pub/sub messaging transport, ideal for mobile applications because of its small

size, low power usage, minimized data packets, and efficient distribution of information to one or

many receivers MQTT-S [87] is a messaging protocol designed specifically for WSN.

2.6.3 Comet

An alternative type of Web applications that attempts to eliminate the limitations of the tra-

ditional HTTP polling has become increasingly popular. This model, called Comet (also called

HTTP streaming or server push), enables a Web server to push data back to the browser without
11http://java.sun.com/products/jms/
12http://amqp.org
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the client requesting it explicitly. A few of these techniques are BOSH13, Bayeux14, or reverse

HTTP15, and numerous implementations to support server-side eventing are available.

Since traditional Web browsers were not designed with server-based events in mind, Comet

is a hack implemented through several specification loopholes, each with different benefits and

drawbacks. One general idea is that a Web server does not terminate a connection after the re-

sponse data has been served to a client, but leaves it open to send further events immediately to

one or multiple clients. Comet servers and clients frequently use named channels or topics which

are useful when different objects want to send data to a number of interested parties.

The advantage of Comet is that clients can get real-time notifications from servers with a

standard Web browser, even behind firewalls or NAT. The growing need for a push-based com-

munication model is further supported by the introduction of Web Sockets and server-sent events

introduced in the upcoming HTML 5 specification.

2.6.4 Web Hooks

Web hooks are another solution for HTTP eventing that enable users to receive events and

data in real-time from applications, through user-defined callbacks over HTTP. Once an event

occurs, the application will POST data to the callback URLs specified by the users at subscription

time. Web hooks enable Web applications to synchronize data with other applications, but also

to process, filter or aggregate data from different sources and to notify people. This requires that

parties who want to be notified must implement a Web server where notifications will be posted.

This mechanism remains a clean solution, unlike the hacks used by Comet, but on the other hand,
13http://xmpp.org/extensions/xep-0124.html
14http://svn.cometd.org/trunk/bayeux/bayeux.html
15http://www.reversehttp.net
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Web hooks cannot be used when the client does not possess a network address as is the case when

the client is behind NAT or a firewall.

An interesting recent project is RestMS16, which offers a RESTful interface to the Advanced

Message Queuing Protocol (AMQP), and defines the behavior of a set of feed, join, and pipe types

that provide an AMQP-interoperable messaging model. PubSubHubbub17 is a lightweight and

open server-to-server publish/subscribe protocol based on Web hooks, as an extension to Atom

and RSS. Servers can get near-instant notifications when a topic (feed URL) they are interested in

has been updated.

2.7 Summary of the Technologies Adopted

In this section, we describe how the various technologies, listed in this chapter, have been

used in order to implement, test or evaluate the Web applications, case studies, installations and

deployments that are presented through this thesis.

At first, concepts from the WoT and especially the use of REST and resource-oriented archi-

tectures have been harnessed in Chapter 4 to design the general architecture of the application

framework for smart homes. XML and JSON are the message exchange formats selected to inter-

act with the physical devices of the smart home.

In Chapter 5, embedded sensor technology is employed to explore and demonstrate the Web-

enablement process of home devices. More specifically, sensor motes and smart power outlets
16http://www.restms.org
17http://pubsubhubbub.googlecode.comAnd
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are used to develop a smart home ecosystem for the IoT. These devices form wireless sensor net-

works inside the home environment, functioning using operating systems dedicated to resource-

constrained devices. The physical and media access control layers of these devices operate ac-

cording to the IEEE 802.15.4 standard while 6LoWPAN is the enabling technology for integrating

the IP protocol with these embedded devices.

The WoT and REST are used to model the services offered by these devices in a resource-

oriented way, transforming them into tiny Web servers. Except from the Web-based request-

response model, sporadic events are pushed from the physical devices to interested third parties

(e.g. the application framework), using event-based Web messaging protocols.

Then, Chapter 6 employs sensor motes to analyze the behavior of the request queue mechanism

and to identify potential benefits of using request queues in order to manage the interaction with

home devices.

Chapter 7 also uses sensor motes in a multi-hop topology to explore the influence of using

Web techniques for enhancing the performance of smart home operations, mainly in terms of the

response times with the embedded devices and for reducing their energy consumption, preserving

their battery. Event handling through Web messaging protocols is also evaluated in this chapter.

Finally, Chapters 8, 9 and 10 present interesting ICT applications for the IoT/WoT, using sen-

sor motes and smart power outlets in proof-of-concept case studies. The communication with

social networking sites, smart grid controllers and Web directories for environmental services is

achieved through the Web, using RESTful interaction patterns while message exchange is per-

formed using XML and JSON data formats.And
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Related Work

From the invention of embedded technology many decades ago until today, numerous re-

searchers and developers envisioned, designed and developed ubiquitous applications, to trans-

form physical environments into smart spaces. Creating digital representations of the physical

world is still an open research question, with a plethora of enabling drivers in the latest years,

both in hardware and software. Hardware drivers include RFID technology, embedded sensors

and actuators, QR codes, smart meters, smart power outlets, even nano-sensors. Software drivers

involve middleware and frameworks for supporting interaction with pervasive areas, as well as op-

erating systems and libraries that facilitate communication with smart devices. In this chapter, we

focus mainly on software-based research that targets middleware, frameworks and applications

for ubiquitous computing and smart home environments. In the following sections, we present

considerable work in the field, focusing mostly on research in smart homes. At the end of each

section, we explain the contribution of this thesis in relation to the research area in the section

under study.
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The chapter is organized as follows: Section 3.1 begins with a general overview of ubiquitous

middleware and Section 3.2 discusses some early approaches for enabling smart home environ-

ments. Section 3.3 identifies pervasive applications that include a request queue mechanism to

achieve their goal while Section 3.4 describes efforts that consider smart metering for energy

awareness. Then, Section 3.5 mentions projects that aim to achieve energy efficiency in smart

homes and buildings and Section 3.6 reviews enabling technologies and solutions for the vision

of an Internet of Things. Section 3.7 presents various middleware which are inspired by the Web

principles and Section 3.8 refers to large-scale, Web platforms for sensor devices and services.

Afterwards, Section 3.9 depicts various developments and prototypes for creating a Web of phys-

ical things and, finally, Section 3.10 presents initiatives for the development of smart homes by

employing Web technologies.

3.1 Ubiquitous Middleware

Ubiquitous computing (UbiComp) is a post-desktop model of human-computer interaction in

which information processing has been thoroughly integrated into everyday objects and activities

[175]. Increased context-awareness, provided by high-precision embedded sensor devices, created

a culture around ubiquitous applications and services.

Factors such as the high availability of sensor devices and their reduced costs, the extended

research performed in algorithms for WSN (covering a broad range of issues such as routing,

congestion control, fault tolerance etc.), as well as the existence of open-source, scalable oper-

ating systems for sensors and sensor networks led to the development of numerous ubiquitous

middleware platforms [33, 53]. These platforms targeted different areas such as industrial control,

environmental monitoring, transportation, logistics, health monitoring etc.
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One of the most popular and complete ubiquitous platforms is Gaia [144]. Gaia applies the

concepts of a traditional operating system to middleware, in order to manage physical devices in a

distributed, physical space. It constitutes an experimental middleware infrastructure that supports

the development and execution of portable pervasive applications. Aura [152] is an architectural

framework, similar to Gaia, but it mainly focuses on supporting mobile users, who are moving

around different environments. The philosophy of Aura is that users’ tasks are considered first-

class entities inside the ubiquitous computing environment. Shaman [148] is a gateway system

that enables low-power devices to be part of wider networks. Its novel architecture motivated the

implementation efforts of many UbiComp researchers.

Thesis contribution:

The application framework for smart homes (see Chapter 4) is considered a middleware for

ubiquitous computing, targeting smart home environments. Its novelty lies on its smart layered

design using threads and request queues for handling the communication with home embedded

devices. Innovative features of the framework include multi-user support, reliability and fault

tolerance, as well as satisfactory performance in terms of response time, because of a fast retrans-

mission mechanism and a caching system. The Web-based architecture of the framework ensures

interoperability between heterogeneous smart appliances.

3.2 Smart Homes

Some ubiquitous middleware platforms focused on home environments, transforming resi-

dences into smart homes. The majority of them examined the integration of technology and ser-

vices through home networking for automation and a better quality of life.
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Context-awareness in households includes home environmental conditions, such as tempera-

ture, humidity and illumination, as well as information about the residents such as their location,

mobility tracking and inhabitant behavior.

The Intelligent Home [109] is a simulated intelligent home environment, populated with ap-

pliance agents. These agents interact and coordinate to perform home tasks efficiently by sharing

resources. The House n [90] is a living laboratory for the home, with an integrated ubiquitous sen-

sor architecture. The vision of this project was to develop a teaching home, to study technology

that motivates behavior change in context.

The Aware Home [101] is another example of a living laboratory for ubiquitous computing

research. The technology used includes human position tracking through ultra-sonic sensors, RF

technology and video, recognition through floor sensors and vision techniques.

Microsoft’s EasyLiving [24] is a middleware for building intelligent home environments based

on XML messaging, integrating geometric knowledge of people, devices and places. The adaptive

house [120] allows the home to program itself by observing the lifestyle of inhabitants and then

learning to predict their needs, by means of neural networks.

The Gator Tech smart house [84] develops and deploys extensible smart house technologies,

employing a service-oriented OSGi framework that facilitates service composition. This work

incorporates RFID tags, which are attached to electrical devices, to automatically recognize when

plugging the devices into outlets and also a smart floor, which serves as a position-only location

system. Figure 3.1 is a snapshot of this smart house, where many elements of the house present

smart behavior.

The MavHome project [183] employs a hierarchical hidden Markov model for recognizing

the activities and behavior of the inhabitants and controlling adaptively the environment, includ-

ing lights, fans, and mini-blinds. Following a different approach, iDorm [42] also focuses on
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Figure 3.1: The Gator Tech smart house.

automating a living environment, however, instead of a Markov model, it models inhabitant be-

havior by learning fuzzy rules that map sensor state to actuator readings representing inhabitant

actions. The setting is a campus dorm environment, which is automated using fuzzy rules learned

through observation of inhabitant behavior.

Finally, the work performed in [155] demonstrates that ubiquitous, simple sensor devices can

be used to recognize activities of daily living from real homes. It is an early attempt to recog-

nize activities of interest such as toileting and bathing, by means of naive Bayes classifiers, with

detection accuracies ranging from 25% to 89%, depending on the evaluation criteria used.
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Thesis contribution:

While the presented approaches focus on home automation as well as activity and behavior

recognition, our application framework for smart homes (see Chapter 4) focuses on addressing the

heterogeneity of home embedded devices in terms of hardware and software, ensuring reliabil-

ity, fault tolerance, acceptable performance and support for multiple residents who may interact

simultaneously with their smart home.

3.3 Using Request Queues in Pervasive Computing

Various pervasive applications employed queues for handling the management of requests

and for providing Quality of Service (QoS) guarantees regarding service execution. A popular

platform for messaging handling is Apache ActiveMQ1, which is a messaging broker platform

that employs message queues for supporting public/subscribe architectures, load balancing and

fault tolerance etc.

A middleware using FIFO M/M/m queues to offer dynamic adaptation to applications includ-

ing multiple users and servers was presented in [27]. A certain level of QoS may be maintained

by adding redundant servers and by performing bandwidth balancing between the servers. The

work in [173] considers a delay-tolerant mobile sensor network (DFT-MSN) for pervasive in-

formation gathering. A DFT-MSN is an occasionally connected network that may suffer from

frequent partitions. In this work, each sensor has a data queue that contains data messages ready

for transmission when an opportunity appears. The proposed queue management scheme takes

into account fault tolerance and signifies how important the messages are, to develop simple and

efficient data delivery schemes.
1http://activemq.apache.org/
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Concurrent event detection for consistency checking of pervasive context in asynchronous

environments is achieved in [85], by using message queues for modeling the pervasive application

as a loosely-coupled message-passing system. Shaman [148] is a gateway for sensor devices

that uses request queues to handle incoming/outgoing messages from/to the sensor devices. The

architecture of Shaman influenced the design of the application framework for smart homes, which

is proposed in this thesis.

A scheduling algorithm to complete executing tasks within predetermined time deadlines and

constraints, when multiple processors (e.g. Web servers) are available to execute these tasks was

described in [88]. The scheduler is modeled as a global request queue that forwards requests

to the local waiting queue of each processor. Similarly, a middleware service addressing the

timely provisioning of mobile services in critical pervasive environments was proposed in [128],

considering client/server lifetimes, server current load and periodic service requests. Specifically,

the scheduler service of each mobile server manages FIFO request queues, which are scheduled

according to the classical round robin algorithm.

Finally, the work in [181] targets home environments, by modeling all the tasks of the home

network as a combination of handling events. Priority management is achieved by assigning pri-

orities to the events while an event kernel handles priorities using multi-level priority queues,

prioritized event dispatching threads and an event scheduler.

Thesis contribution:

Our request queue mechanism (see Chapter 6) differs from related work by directly associating

request queues with embedded devices that are deployed inside smart homes. This queuing mech-

anism provides reliability and offers numerous potential benefits to pervasive applications that
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operate inside the home environment, such as priority-based request execution and load balanc-

ing. Shaman [148] presents a similar concept, however, the use of the queues is only rudimentary,

without any analysis of the queuing behavior. On the contrary, our work involves a detailed anal-

ysis of the request queue mechanism and the setting of design parameters (e.g. the request queue

retransmission interval).

3.4 Smart Metering for Energy Awareness

As already mentioned in Section 2.1.2, there exist two prevalent approaches for household

energy monitoring: whole-home by means of residential smart meters; and device-specific moni-

toring by using smart power outlets.

Whole-home approaches are used to measure the total energy consumption of the house. In

[79, 114], circuit-level power measurements are used to separate aggregated data into device-

level estimates, with accuracy more than 90%. ViridiScope [102] places inexpensive sensors near

electrical appliances to estimate their power consumption. Through experiments in a real house,

ViridiScope shows that it estimates end-point power consumption within 10% error.

The study in [154] combines office and domestic energy usage and aggregates this usage to

estimate the electricity footprint of people. It is one of the first studies that attempts to create

electrical consumption profiles of citizens, analyzing their energy demands, both at home and at

work. According to the study, 55% savings in an office is possible, from just a more rational duty

cycling scheme of the desktop machines and the display units.

Google PowerMeter [66] uses energy information provided by utility smart meters and energy

monitoring devices, to assist users in viewing their home’s energy consumption online, in inter-

active graphs. Google recently announced that it has discontinued this project. Microsoft Hohm

[117] gives online recommendations to residents for home energy efficiency.
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The eMeter [116] employs a smart electricity meter to provide real-time feedback of the total

consumption of a house on a mobile phone. The system can disaggregate overall electricity con-

sumption by forcing the users to manually switch specific devices on or off, in synchronization

with the mobile application. In Figure 3.2, a user is measuring in real-time the power consumption

of his electrical appliances, through his mobile phone.

Figure 3.2: The eMeter mobile application [116].

Device-specific techniques plug smart power outlets in individual electrical appliances. ACme

[93] is a high-fidelity AC metering network that uses wireless sensor nodes equipped with digital

energy meters to provide accurate energy measurements of single devices. EnergieVisible [43]

employs smart meters to visualize in real-time the energy consumption of the appliances that

are connected to the meters, in a Web-based interface, converting the process of monitoring and

comparing electrical consumption of home appliances into an easy task (see Section 4.3.3).

EnergyLife [91] utilizes a mobile application to provide electricity consumption feedback and

conservation tips. The Energy Aware Smart Home [92] allows users to use their mobile phones as

magic lenses to view and analyze the energy consumption of their appliances just by pointing on

them with the phone’s camera.

PowerPedia [176] envisions a collaborative energy encyclopedia. PowerPedia encourages

users to compare the consumption of their electrical appliances to those of others. Thus, it helps
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users to better estimate the consumption of their appliances and take effective countermeasures

to save energy. WattBot [132] performs analytical energy monitoring by utilizing multiple clamp

meters. Each clamp meter monitors a separate circuit of the home electrical network.

Smart metering includes not only electricity monitoring but also monitoring of other resources

such as water and gas. For example, HydroSense [61] is a low-cost, easily-installed, single-point

sensor of pressure within a home’s water infrastructure. It supports identification of activities

inside the home that involve water and also estimation of the amount of water being used at each

activity with 97.9% aggregate accuracy. Figure 3.3 depicts this pressure sensor. GasSense [32]

analyzes the acoustic response of a home’s gas regulator, being able to sense both the individual

appliance at which gas is currently being consumed as well as an estimate of the amount of gas

flow. Initial results show that GasSense has an average accuracy of 95.2% in identifying individual

appliance usage.

Figure 3.3: The HydroSense prototype pressure sensor implementation [61].And
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Thesis contribution:

Our application framework for smart homes (see Section 4.2) integrates Ploggs smart power

outlets (see Section 5.1.2) and enables them to the Web (see Section 5.2), in order to monitor the

electrical consumption of individual electrical appliances and control their operation by switching

them on/off, through a Web API and also by means of a Web graphical interface (see Section

4.3.2). Moreover, the functionality of the electrical appliances of the smart home may be pro-

grammed and automated by using physical mashups (see Section 4.2.6) or through a graphical

mashups editor (see Section 4.3.4). Smart metering is also employed in a social competition for

energy conservation in neighboring flats (see Section 8.2).

Furthermore, the vision of PowerPedia [176] may be parallelized with the concept of Social

Electricity Facebook application (see Section 8.3). However, while PowerPedia focuses on sharing

the energy profile of various electrical appliances, Social Electricity aims at sharing and comparing

the energy consumption of people in a social networking application.

3.5 Energy-Efficiency in Smart Homes

Energy-efficient techniques for smart homes and buildings basically combine smart metering

with local environmental context to gain advanced automation and save energy.

iPower [162] adjusts devices to automatically reduce unnecessary energy consumption by

means of WSN and power-line control devices. Sensors are deployed in each room to monitor

the usage of electric appliances and to help the control server to determine if there are electric

appliances that can be turned off to reduce unnecessary energy consumption. The general archi-

tecture of the X10-based system is shown in Figure 3.4.
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Figure 3.4: The system architecture of iPower [162].

Following a similar direction, the work in [18] creates profiles of the behaviors of house res-

idents through presence detection by means of infrared sensors. Then, it automatically optimizes

energy consumption and cost by means of a prediction algorithm, while guaranteeing the required

comfort level. When users change their habits due to unpredictable events, the system is able to

detect wrong predictions by analyzing in real time information from sensors and modifying system

behavior accordingly.

The authors in [55] deploy a wireless camera sensor network to obtain occupancy and usage

patterns in a building, in order to intelligently control the lighting and HVAC system and save

energy. It is stated that their system estimates occupancy with an accuracy of 80%. Occupancy

estimates and usage patterns allow a 14% reduction in HVAC energy usage.

Context-aware power management (CAPM) is explored in [83]. User location is harnessed to

effectively manage energy-consuming devices in a building. The objective of CAPM is to mini-

mize the overall energy consumption while maintaining good user-perceived device performance.
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Experiments show that it is possible to get 6% savings, but these savings are highly dependent on

user behavior. By adding more sensors to improve context inference, the overall energy consump-

tion can actually increase.

A thermostat that is aware about the current location of the user through the global posi-

tioning system (GPS) sensor of his mobile phone is proposed in [78], and may lead to savings

of 7% for households that do not regularly use the temperature setback afforded by manual and

programmable thermostats. The authors discuss that these savings may be obtained without re-

quiring any change in occupant behavior or comfort level, and the technology can be implemented

affordably by exploiting the ubiquity of mobile phones.

The work in [171] examines the potential of user-created policies and their application to

develop a system that supports the user in gaining awareness about energy consumption habits

and saving potentials, without compromising his standard of living. An interesting aspect of this

work is the categorization of system-level policies as tariff-dependent policies (taking into account

the information on pricing schemes published by utilities), device-dependent policies (permanent,

stand-by, ad-hoc devices), and threshold-dependent policies (policies based on limits put on certain

environmental conditions).

Finally, two high-profile sustainable home deployments are described in [113]. The goals of

these deployments are to help residents to gain awareness of resource use, facilitate efficient con-

trol of house systems and to encourage conservation in daily activities. Their criteria in designing

these smart homes are: real-time feedback; contextually appropriate information presentation; in-

dividual and social motivation; control; aesthetics; and familiarity. Figure 3.5 is a snapshot of the

user interface, developed to inform the residents in detail about their resource consumption, giving

them incentives to save electricity and water.
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Figure 3.5: Resource-aware user interface of a sustainable home deployment [113].

Thesis contribution:

Even though this thesis does not claim to offer an effective approach for energy conservation

in smart homes, various applications and case studies are presented through the thesis, which may

help people to conserve electricity, mainly by means of energy awareness. Examples include a

graphical Web interface for real-time feedback of the consumption of individual electrical appli-

ances (see Section 4.3.3) and a Web application for developing smart rules for energy conservation

(see Section 4.3.4). In addition, encouraging findings for energy saving are obtained from a social

competition in blocks of flats (see Section 8.2), while Social Electricity, as a Facebook appli-

cation for social comparisons of energy consumption, provides interesting initial feedback from

consumers of electricity (see Section 8.3). Finally, potential savings may be achieved by means

of a task scheduler that exploits the demand response program of the smart grid for programming

energy-related tasks in low-tariff hours of the day (see Section 9.2).

And
rea

s K
am

ila
ris



63

3.6 Enabling the Internet of Things

Many projects are inspired from the notion of the IoT and try to interconnect the physical world

with the Internet. The work in [174] augments physical objects with RFID tags, to create virtual

representations of these objects. The project JXTA [158] specifies a standard set of protocols

for ad hoc, pervasive, peer-to-peer computing. It can run on a wide range of devices including

servers, PCs, and memory-constrained embedded devices. JXTA is among the first real attempts

to Internet-enable physical objects.

Social devices [169] are special kinds of augmented objects that use the Internet in order to

promote socialization, look smarter and better serve users. A typical example, shown in the left

side of Figure 3.6, is a prototype umbrella which is able to obtain current weather conditions

through communication with surrounding rain sensors, being also able to download the weather

forecast from the Internet, in order to provide better advice to the user. The umbrella reacts when

the user leaves home without taking it, by issuing a synthesized voice alert.

Figure 3.6: The aware-umbrella prototype [169] (left) and a tea kettle prototype [94] (right).
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Internet-connected physical smart objects are also presented in [168]. As an example, a real-

widget embodies the capabilities of computer-based widgets into the real world. The iCompass is

a device that acts like a compass, but instead of pointing North, it points to a zone of a background

dial card that represents some concrete Internet information. iCompass and example weather dial

cards are depicted in Figure 3.7.

Figure 3.7: The iCompass and example weather dial cards [168].

Flexeo [166] is a flexible architecture for connecting wireless sensor networks to the Internet,

by distributing the intelligence and the decision making process in different layers. The Flexeo

architecture is demonstrated in some prototypes, for industrial and user activity monitoring sce-

narios. The work in [94] describes how home appliances might be enhanced to improve user

awareness of energy usage. The authors believe that electricity usage reduction is a challenge that

is best met through the design of interfaces that allow users to better control their appliances and

inform them of their actions. A fully functional prototype tea kettle with a socially-aware interface

is presented, which exploits its rotating base to inform indirectly home occupants about electricity

load conditions from a number of interconnected households to achieve electricity load balancing.

We can observe this kettle in the right side of Figure 3.6.
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Tales of Things2 is a tagging service that uses QR codes and RFID tags to enable people to

attach stories and memories to physical objects. The scanning of readable and writable tags allows

stories to be replayed and added. My2Cents [98] is a community-based mobile application that

supports online consumer opinions and feedback about retail products, by combining the concept

of microblogging with mobile product recognition. Finally, Fosstrak3 is an open-source RFID

software platform for discovering and managing RFID-based information.

Thesis contribution:

This thesis contributes to the IoT research through the implementation of an IPv6/6LoWPAN

wireless network of sensor devices and its deployment inside a proof-of-concept smart home (see

Chapters 6 and 7). Our evaluation efforts indicate that an Internet-based strategy, using the IPv6

protocol, offers acceptable performance in smart homes involving IPv6-enabled sensor devices.

Applications concerning social networking of the smart home (see Chapter 8), integration of smart

homes to the smart grid (see Chapter 9), global discovery of environmental services through DNS

(see Section 10.3) as well as knowledge inference in the urban environment (see Section 10.4),

constitute interesting demonstrations of the IoT (and respectively the WoT) in real-life scenarios.

3.7 Web-Based Ubiquitous Middleware

The following middleware applications differ from the ubiquitous middleware platforms listed

in Section 3.1, as they have been designed and implemented using Web technologies,

TinyREST [112] is a gateway that follows the REST principles, to enable sensor networks to

the Web. Its main drawback is that it violates REST by introducing the extra verb SUBSCRIBE.
2http://www.talesofthings.com/
3https://code.google.com/p/fosstrak/
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pREST [45] is a similar effort, which defines a RESTful protocol to bring the simplicity and

holistic view of data and services on the Web to pervasive systems. Following this direction, the

work in [153] focuses on the scalable discovery of heterogeneous sensor devices on the Web,

augmenting the proposed discovery mechanism with semantic Web elements.

Prehofer et al. [135, 164] describe a Web-based middleware for smart spaces, which strongly

relies on technologies used in Internet services. In the local smart space, the Zeroconf mDNS

mechanism is used to support service registration and discovery. In [136], the previous Web-based

middleware is extended with a flexible access control mechanism on top of OpenID and OAuth,

a search engine that can collaborate with existing service and network discovery mechanisms, as

well as delivery context client interfaces (DCCI), which constitute an emerging W3C standard that

can be used to share context information locally. Its general concept of an IP-based smart space is

displayed in Figure 3.8.

Figure 3.8: Smart Space: Local IP network with smart devices acting as proxies [135, 164, 136].

Thesis contribution:

Our application framework for smart homes (see Section 4.2) constitutes another middleware

that operates using Web technologies, following REST principles. It differs from related work

And
rea

s K
am

ila
ris



67

by adopting a layered design, using request queues as a mechanism to handle the interaction

with the smart home ecosystem. Furthermore, it offers some additional features such as a Web

graphical interface (see Section 4.3) and an open API that promotes the development of physical

mashups (see Section 4.2.6). Techniques such as fast retransmissions, caching, load balancing and

support for prioritized requests enhance the performance of the framework and ensure reliability

in the ubiquitous environment of smart homes. Finally, event-based messaging in a Web-based

ubiquitous environment is supported by the application framework (see Section 5.2.4) and it is an

issue not considered in related work.

3.8 Web-based Large-Scale Sensor Platforms

Online, Web-based, global sensor infrastructures have appeared in the last decade, to accom-

modate the large volumes of sensory data that are being produced by Web-enabled sensors and

actuators worldwide. These infrastructures act as data brokerage platforms, managing millions of

data points per day from thousands of individuals and companies around the world. They enable

people to share, discover and monitor in real-time sensor, energy and environmental data from

objects, sensors and buildings that are connected to the Internet, around the world.

These platforms promote the Web-enablement of sensors and allow the propagation of sensory

readings to interested third parties. Sensors are presented inside satellite maps, in the absolute

position where they are located. These sensors can be fixed or mobile.

The most well-known, active platforms available today are Cosm [82], Paraimpu4, ThingSpeak

[4], Sen.se [3] and SenseWeb [146]. A snapshot of Cosm can be seen in Figure 3.9. In this

snapshot, a large number of sensors can be observed in the absolute position where they are located
4http://paraimpu.crs4.it/
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around the world. A key feature of some of these online directories is that they provide open Web

API that urge the development of smart applications.

Figure 3.9: A snapshot of Cosm [82].

A drawback of these infrastructures is their centralized nature, with a single point of failure.

Decentralized approaches have been also proposed such as IrisNet [63], which uses a hierarchical

architecture for a worldwide sensor Web. G-Sense [131] is a peer-to-peer system for global sensing

and monitoring. These approaches, although more robust and scalable, have not been largely

adopted yet by the public. Moreover, sensor discovery is still a challenging issue.

Other platforms target specific types of embedded devices. For example, Tales of Things5 is a

Web platform where people link their physical objects via small printable tags known as QR codes.

The EPCglobal Network6 is a community of trading partners engaged in capturing, sharing, and

discovering Electronic Product Codes (EPC) of products, stored on RFID tags.
5http://talesofthings.com/
6http://www.gs1.org/epcglobal
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Thesis contribution:

Social Electricity Facebook application (see Section 8.3) can be considered a Web-based large-

scale platform for sensory measurements related to electricity consumption. This data, acquired

by thousands electrical meters in Cyprus, is shared between Cypriot citizens to perceive their

electricity footprint. Electricity-related data is currently provided off-line every two months by

the Electricity Authority of Cyprus, but in the future it could be provided by smart meters in

near real-time. Social Electricity maintains a social character, allowing people to compare their

electrical consumption through online social networking.

3.9 Enabling the Web of Things

In this section, related efforts for creating and developing a WoT are listed. One of the first

projects envisioning Web presence for physical elements was the Cooltown project [103]. In this

project, each thing, place and person has an associated Web page with relevant information.

Priyantha et al. [137] use WS-* [13] to enable a WSN. Undoubtedly, WS-* are not very

energy-efficient for operation in constrained environments, since they employ heavy SOAP/XML

payloads in messaging. The work in [68] quantifies this statement in terms of time and energy.

A recent study [73] compares REST with WS-*, to conclude that REST is more suitable for

embedded environments

A path towards the integration of things into the Web is discussed in [178], where physical

objects are made available through RESTful principles. As pointed out, no need for any additional

API or descriptions of resource/function would be necessary when embedded devices are Web-

enabled by design. This is one of the first projects envisioning the WoT.
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Following these guidelines, Yazar et al. [182] implement an IP-based sensor network system

where nodes communicate their information using RESTful Web services. Similarly, Schor et al.

[147] develop a 6LoWPAN-enabled WSN, directly integrated into the IPv6-based future Internet.

Sensor nodes offer RESTful APIs while service discovery is based on Apple’s mDNS proposal.

Figure 3.10 presents the general architecture for the integration of 6LoWPAN-enabled sensors

with the IPv6 backbone and with existing non IP-enabled devices.

Figure 3.10: Architecture of a 6LoWPAN-enabled WSN [147].

Guinard et al. [75] introduce the concept of physical mashups, which builds on the success

of Web 2.0 mashup applications to develop a similar approach for integrating real-world devices

to the Web, allowing them to be easily combined with other virtual and physical Web resources.

The authors demonstrate this concept by using sensors capable of monitoring and controlling the

energy consumption of household appliances, offering a RESTful API to their functionality. A

nice prototype application is an ambient meter, which changes its color according to the energy

consumption at the place where it is located.

A framework for the development of physical mashups through mobile phones is proposed in

[71]. The proposed framework is shown in Figure 3.11 and is composed of four main parts: Web-

enabled devices tagged with small 2D bar-codes, to be identifiable from mobile phones; virtual
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services on the Web; the mashup server framework; and the mobile mashup editors, which allow

users to create their mashups in an easy manner.

Figure 3.11: A physical mashups mobile framework [71].

Trifa et al. [160] build a location-aware infrastructure for embedded devices using Web-

enabled gateways. By linking gateways together, one can create a hierarchical structure of physical

locations that can be used to search for mobile devices based on their location and dynamic in-

formation, and not only on keywords. WebPlug [127] is a framework for the WoT that proposes

new resource-oriented concepts for interacting with real-world objects, such as typed resources,

collections of sensory values, meta-URLs for addressing past versions of a resource, history of

sensor readings, observable resources, arithmetic expressions, evaluators and pollers for push-

functionality for non-observable resources.

Web approaches for generating and accessing product memories are discussed in [149]. A

product memory is an RFID-based mechanism that provides a digital diary of the complete product

life cycle of individual products. Sharing of physical things between people that know and trust

each other is proposed in [44]. Trust is delegated from the owner of some physical devices to

his online contacts, which are discovered from his social networking structures, by exploiting the

open, Web API of social networking sites.
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Dyser [125] and Snoogle [172] are search engines that enable finding real-world entities such

as sensor devices in real-time. Web-based publish/subscribe messaging for sensor infrastructures,

based on push techniques modeled through REST, is proposed in [161].

SOAM [167] is a model for the creation of pervasive smart objects that use semantic Web

technologies. These smart objects manage three different types of information structures: context

information; capabilities; and constraints. XML schemas, RDF and OWL ontologies, and adapta-

tion profiles are employed to exchange, represent and process information. SOAM is an effort to

create a model for automatic environment adaptation to user preferences.

The work in [74] integrates the global EPC Information Services Standard (EPCIS) network

into the Web by designing a RESTful architecture for the EPCIS. Using this approach, each query,

tagged object, location or RFID reader gets a unique URL that can be linked, exchanged in emails,

browsed, bookmarked etc.

Finally, guidelines for architecting a mashable WoT are provided in [76]. The authors discuss

several prototypes, implemented using Web principles to connect physical devices to Web. In

Figure 3.12, a general framework is provided for the Web integration of embedded devices.

Figure 3.12: Web integration of embedded devices using gateways (left) or directly (right) [76].
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Thesis contribution:

This thesis is closely related to the concepts of the WoT. Our application framework for smart

homes (see Section 4.2) is an application of the WoT in a smart home environment, enhanced with

advanced features such as a request queue mechanism, for increasing the reliability and perfor-

mance of WoT-related smart home operations. The procedure of Web-enabling home devices (see

Chapter 5) addresses important open research issues, such as local device discovery and service

description. The concept of physical mashups, proposed in [75] is extended and adapted in this

thesis for smart homes. This is achieved by exposing the functionality of the smart home and its

home devices as an open Web API and also through the development of a Web-based graphical

mashups editor (see Section 4.3.4). Physical mashups are further extended into urban mashups,

to comply with the dynamics of urban environments (see Section 4.2.7). Furthermore, our work

discusses the practice of sharing Web-enabled home devices through online social networking (see

Section 8.1) This concept is similar to the work in [44]. However, that work targets mainly the

authentication and access control of Web users, who may share and interact with physical devices,

while our application penetrates in social networking sites, to propose a shared, social experience

between members of a smart home.

Applications that exploit social networking infrastructures for device sharing and energy aware-

ness (see Chapter 8), as well as applications dealing with the integration of smart homes to the

smart grid (see Chapter 9), global discovery of environmental services through DNS (see Section

10.3) and knowledge inference in the urban environment (see Section 10.4), can be considered

demonstrations of the applicability of the WoT in the real world.

Finally, important contribution in this thesis is the experimental evidence that by employing

Web techniques in IPv6-based smart home deployments (e.g. Web caching, event-based Web
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messaging), satisfactory performance may be achieved (see Chapter 7), which is equivalent or

even better than native (and more optimized) techniques (such as simulated REST).

3.10 Smart Homes and the Web

The increasing acceptance of the WoT and the potential created from the practice of Web-

enabling physical devices and everyday objects, inspired researchers to apply the Web principles

in the smart home domain. At first, smart home projects incorporated WS-* for interactions with

household devices. In [10], an infrastructure for domestic networks based on WS-* is proposed, to

address device heterogeneity. The author considers the role of Web services for interoperability of

home appliances, after listing different scenarios for home automation, such as the X10 protocol

and closed gateways from remote service providers. The concept of this approach is displayed in

Figure 3.13.

Figure 3.13: WS-* based home architecture in [10].

In a similar study, a service-oriented architecture for smart home environments, based on Open

Services Gateway Initiative (OSGi) and mobile agent technology is proposed in [180]. The main

architecture is a peer-to-peer model based on multiple OSGi platforms, in which service-oriented
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mechanisms are used for system components to interact. Mobile agent technology is applied to

augment this interaction and is mainly intended for dynamic situations.

The survey in [65] presents the current emerging architectures and technologies, suitable for

wireless home area networks. ZigBee, Z-Wave, INSTEON, Wavenis, and IP-based solutions

(6LoWPAN) are thoroughly investigated and compared, in terms of physical characteristics, com-

munication modes, networking, security etc. As stated in the survey ”the increasing functionali-

ties of some solutions and convergence toward IP suggest that future smart home applications will

benefit from enhanced quality, security, and interoperability”.

In another related survey [105], IPv6 and 6LoWPAN are preferred over a number of existing

technologies for smart homes (X10, KNX, ZigBee and digitalSTROM). This comparison is shown

in Table 3.1. As the authors note, IPv6-based WSN is mature and future-proof, with low cost, easy

installation using wireless embedded devices, auto-configurable, offers wide-scale connectivity,

natural user interaction and security. The authors claim that Internet technology, utilizing IPv6,

can become the future standard in home automation.

Table 3.1: Home automation solutions in comparison to IPv6 [105].

X10 KNX ZigBee dS IPv6 (6LoWPAN)

Network size 28 216 216 216 264 per subnet

Data rate 20b/s 9.6kb/s 20..250kb/s 200b/s 250kb/s..1Gb/s

Interface custom solutions App. gateway App. gateway Web services UDP, TCP, RESTful Web

Maturity 1975 2002 (1990) 2004 2010 1998 (1969)

Costs low high medium medium low

Installation overhead low high low medium low

Connectivity low medium medium medium high

Security none high (EIBsec) medium (AES) low medium (6LoWPAN AES only)And
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Thesis contribution:

A main contribution of this thesis is the development of an application framework for smart

homes (see Section 4.2), developed using Web technologies, following the principles of REST and

resource-oriented architectures. It is one of the first -to our knowledge- ubiquitous middleware

for smart homes, which employs Web techniques by design to achieve interoperability among

heterogeneous home devices and smart home solutions. A similar concept was proposed in [10],

however, the author suggests WS-* for interacting with information appliances. Their work is

more theoretic, without an evaluation. Nonetheless, there is strong evidence to let us believe

that REST is more suitable for such an initiative [73, 68]. We demonstrate that by exposing the

smart home as an open Web API, physical mashups can be developed for automating the home

environment (see Section 4.2.6), promoting application development by end users with increased

flexibility and ease of use. Finally, by installing a Web cache on the framework, the performance

of the smart home operations is enhanced (see Chapter 7).
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Chapter 4

Building a Web-based Application Framework for Smart Homes

This chapter presents the general architecture and methodology for creating Web-based smart

home middleware and applications. At first, Section 4.1 identifies some general requirements for

building smart home applications. Then, Section 4.2 explains the design and implementation of

a Web-oriented application framework for smart homes and defines physical and urban mashups,

demonstrating through examples how simple and elegant smart application development becomes,

by employing the mashup paradigm. Finally, Section 4.3 discusses the extension of the applica-

tion framework into a flexible, Web-based smart home application with a graphical interface and

presents two graphical applications, one for detailed energy monitoring through real-time feed-

back from electrical appliances and another for creating smart rules, using the physical mashup

example, in order to automate the home environment towards energy conservation.

4.1 Requirements for Future Smart Homes

We believe that future generations of embedded devices will be much more ubiquitous, highly

integrated in our everyday lives, massively deployed in home environments. This would create

the need for a greater degree of flexibility in order to be manageable. We envision three distinct
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interaction possibilities with home devices that cover the most important use cases that should be

supported in future smart homes:

• Ad hoc interaction. Users directly access sensors and actuators on demand (in a request-

response model).

• Continuous monitoring. Devices stream data at regular intervals (e.g. smart meters that

measure energy consumption of electrical appliances).

• Event-based messaging. Events are sent sporadically when something important happens

(e.g. indication of fire). Devices must send data only if the phenomenon occurs and this as

quickly as possible.

Future smart homes shall be open and accessible for simultaneous users (family members),

who could pull easily the data they need directly through the Web, and use them right away in

their own applications. We propose a list of requirements that most of the existing smart home

application frameworks for embedded devices lack, and will be needed in large-scale, open, and

heterogeneous smart home environments. We divide these requirements in three distinct cate-

gories: requirements for home devices; requirements concerning the design and development of

the application framework; and requirements about performance. Requirements concerning home

devices will be considered in Chapter 5, during the process of enabling them to the Web.

Device-Specific Requirements:

• Multi-hop wireless communication between home devices, forming a wireless sensor and

actuator network in the smart home.

• Plug and play functionality of home devices. Devices should operate seamlessly in the

home environment, as soon as they are turned on, whether they are stationary or mobile,
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indoor or outdoor. There must be standardized methods and techniques for discovering them

locally, describing their services, communicating with them, even sharing them between

family members, friends or colleagues.

• Ad hoc interaction with home devices. The framework needs to interact with devices and

their services with minimal prior knowledge about them, without requiring to install drivers

or specific applications.

• Uniform access to heterogeneous embedded devices. Devices expose their services in well-

understood, easily accessible, clean and open API. This enables their smooth integration in

smart home applications. The ubiquitous space becomes a cloud where any device can be

individually accessed in standardized ways.

Application Framework Design Requirements:

• Particularities of resource-constrained environments get abstracted, offering limited

reliability (not always reachable devices, variable QoS, device mobility, device failure).

• Masking transmission failures to/from the embedded devices, supporting fast retransmis-

sions. This procedure should be invisible to the Web client.

• Data from embedded devices is open and easily exported into third-party applications

in standard formats (e.g. XML, JSON). All devices and applications shall speak the same

language.And
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• Interoperable programming interface that provides the primitives to end users with little

programming experience to perform advanced tasks. This would allow developers, tech-

savvy users, researchers, even end users to employ any programming language they are

familiar with, to develop their own smart rules and automate their home environment.

• Graphical user interfaces that allow the management and control of home devices, as

well as interaction with their services easily and fast, by home residents who may have no

programming experience. Composition of pervasive services can be promoted by graphical

editors that allow the creation of smart rules for home automation. Schedulers can program

tasks for future execution and notifications can be triggered in cases when important events

are sensed.

• Real-time feedback. Concerning electrical appliances in particular, the smart home needs

to inform residents in real-time about their state and energy consumption, permitting users

to switch them on/off to save energy. Electricity consumption data should be available in

standard formats.

• Layered architecture and flexible design based on well-known methods and technologies.

Such design would facilitate, promote and accelerate the development of smart applications,

tailored to solve specific challenges in home environments, such as energy awareness and

conservation and environmental awareness.

• Lightweight implementation. The framework must have a small memory footprint, to be

easily installed on an existing computing machine of the smart home e.g. a computer, tablet,

router, embedded PC, even a smart meter. Also the protocols which will be running on the

embedded devices of the home environment need to be as light as possible.
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• Direct access for residents to their home environment. Users should be able to access

and use their home devices without the need for installing additional software. This would

ensure the usability of the framework and it would minimize the entry barriers for users.

• Concurrent, multi-resident support through the Web. Residents should be able to interact

simultaneously with their household appliances, without loss of requests due to concurrency

in the embedded space of home devices.

• Support for prioritized requests from home residents or from the application framework.

Requests marked as critical need to be satisfied as fast as possible, because their execu-

tion is urgent. These urgent requests can include turning off of a faulty appliance to avoid

electricity leakage or even fire.

• Support for streaming events to interested third parties. The framework must be capable

of monitoring the home environment for events and informing users, who may be interested

in these events, efficiently and fast. The streaming mechanism must be scalable, allow-

ing multiple events to be sensed simultaneously, but also it should support multiple home

residents, acting as subscribers, who may want to be informed urgently about these events.

Performance Requirements:

• Small waiting times for concurrent requests from various home residents that target the

same home devices. Techniques such as load balancing could be employed for reducing

waiting times for residents.

• Reliability in regard to request satisfaction. Requests need to eventually be satisfied, even

though previous requests may be served and/or transmission failures occur in the wireless

medium.
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• Acceptable performance in terms of response times from embedded devices. Especially

since home devices might be multiple hops away from the framework and they can incor-

porate the TCP/IP stack (for interoperability reasons), smart techniques must be employed

for achieving satisfactory performance, comparable to traditional smart home technologies.

Response times must be less than a second, even when numerous home residents interact

with their home environment. Even in scenarios including high percentages of transmission

failures, fast retransmission mechanisms could be considered for masking these failures.

• Satisfactory battery lifetime of embedded devices. Home devices must not consume much

energy during their operation. Residents would not be willing to change batteries every

some days or weeks. We expect that, even in heavy workloads, the batteries should last at

least for a few months before total discharge.

• Acceptable performance in terms of push times. This concerns requiring minimum time

for forwarding events from the application framework to interested subscribers, such as

home tenants and third-party Web applications. Even in the presence of numerous simulta-

neous subscribers (e.g. 20-50), push times must remain less than a second, regardless of the

number of events generated by home devices every second.

• Extensibility. The system needs to evolve with minimal coupling between all of its compo-

nents (devices, users, applications etc.). Adding, removing or even updating devices should

have minimum influence over the home area network.

• Scalability in terms of home residents and requests. The framework must be highly scal-

able regarding the number of requests from home tenants. It needs to support large numbers

of simultaneous users, who may interact concurrently with their home devices. Even though

typical families consist of 5-10 members, the application framework should support also
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larger numbers of users and requests, e.g. up to 100 requests/minute. This would increase

the flexibility of the application framework to be used in the future also in smart building

scenarios with numerous tenants/workers. Supporting tens of users covers also the case that

each home tenant employs various Web agents to monitor remotely specific aspects of his

house, taking clever and informed decisions according to local environmental conditions.

• Scalability in terms of home devices. The framework needs to support tens or hundreds of

embedded devices. Normally, 10-50 home devices could be available nowadays in some

smart home environment, however, perhaps these numbers would change in the future.

Hence, a few hundreds of devices should be supported by the application framework.

4.2 Application Framework General Architecture

In this section, an application framework for smart homes is described, based on the require-

ments defined in Section 4.1. This framework achieves a Web-oriented interaction with the home

environment (see Section 2.3), following the principles of REST and resource-oriented architec-

tures (see Section 2.4). The reasoning for selecting these design guidelines is discussed in Section

1.3. We explain below the general design and implementation of the framework, assuming the

presence of Web-enabled household appliances (see Chapter 5) and Web clients (home residents),

who may interact simultaneously with their smart home environment.

The application framework follows a modular architecture and it is composed of three prin-

cipal layers: device layer is responsible for interaction and management of embedded devices;

control layer is the central processing unit of the system; and presentation layer has the duty of

presenting the available devices and their corresponding services to Web users, through their Web

browser. In Figure 4.1, the framework’s general architecture is illustrated.
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Request Queue

Request Queue

Figure 4.1: Application framework architecture.

In device layer, the Driver module holds the technology-specific drivers that are used to enable

the interaction with embedded devices. As soon as this module discovers a new local device (see

Section 5.2.1), a new thread is automatically created, dedicated to the task of representing the

newly discovered device. Each thread keeps track of the static and dynamic properties of the

device it represents, such as its health status (through aliveness checks) and a list of the resources

it offers, inside a Resource Registry. Upon reception of a response from a device through the driver

module, this response is forwarded to the appropriate thread, in order to be further forwarded to

the Web client, who created the respective request. Using threads for devices simplifies their

management, increases their performance and keeps the implementation logic simple.
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Hence, after discovery, every operation associated to some embedded device is executed in

its own thread environment and behaves independently of its underlined hardware specifications

and physical characteristics. Inside each device thread, information is stored concerning device

description as well as a list of the services supported by the device. The specific services supported

by the home devices that are used in our experiments are presented in Chapter 5, Table 5.1.

Since resource-constrained devices are generally unreliable, a Request Queue is integrated

to each device thread (see Chapter 6). This queue supports multiple concurrent users, allowing

simultaneous Web requests to target the same physical device. Every new request made for a

service supported by the device, should be temporarily stored inside that queue. Requests are

stored in a FIFO manner (extensions to include priorities are presented in Section 6.4.5) and are

transmitted sequentially. As soon as a response arrives in the queue for a previous-made request,

a new request is returned from the queue and is transmitted for execution at the device.

If a response does not arrive in a predefined time interval, it is retransmitted to the device in

order to mask away possible losses of messages in the unpredictable wireless medium. If after a

predefined number of retransmission attempts no response is received, then the embedded device

is considered unavailable and it is removed from the system. The time a request will stay in the

queue and be executed depends on many factors, such as the device type, its throughput, processing

power and network load.

The Devices module, also located inside the device layer, is the ”official representative” of

the embedded devices to the upper layers of the application framework. Higher layers are directly

informed by querying that module about all the necessary information about the devices connected

to the system. It maintains a list of all the devices which are bound to the system, as well as all the

information covering the services they offer, inside a Device Registry. In other words, it offers an

abstract way of reaching the home devices by means of a simple API.
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The control layer is the soul of the system. It holds the Core module, which runs on the

background all the time, maintains system’s threads, initializes all the framework’s modules and

checks that everything operates according to its specifications.

The presentation layer represents the access point to the framework from the Web. It is the

layer responsible for the interaction with Web users. It is separated from the rest of the system

since it is the most extendable part of it. A Web server allows Web clients to interact with their

smart environment using any Web browser. A REST Engine provides REST support to the Web

server. The REST engine has been developed using Restlet1, which is a REST framework for the

Java platform. Therefore, the Web clients can interact with any resource through a RESTful API,

by means of their Web browser.

Thanks to the links between the resources, tenants can easily explore available devices and

their corresponding services via the Web. They can find the desirable devices and service by

clicking links, as they would browse Web pages. Figure 4.2 presents a general representation

of the devices of the smart home in XML format, inside a Web browser. In the figure, three

sensor devices are listed, deployed in different rooms of the smart home (bedroom, kitchen and

the living room). Moreover, three smart power outlets are available, connected to a television,

a washing machine and a radio. Different representations may be selected (e.g. XML, JSON,

HTTP), depending on the needs of the tenants.

The framework is implemented in Java because of the versatility and portability of the lan-

guage, which allows the framework to run on virtually any device that has a Java Virtual Machine

(JVM). It can be considered lightweight as it needs only 2.7 megabytes for its full installation

(including needed libraries, drivers and JAR files). Hence, it could be integrated inside almost any

computing device of the house, even a router or the mains smart meter.
1http://www.restlet.org/

And
rea

s K
am

ila
ris



87

Figure 4.2: A XML representation of home devices inside a Web browser.

The most common system architecture consists of an application framework covering a smart

home or a flat. However, in larger-scale indoor scenarios such as a smart building, perhaps an ap-

plication framework would be responsible for the whole building, in case it could reach effectively

all the embedded devices of the building (directly or indirectly through some multi-hop wireless

protocol). Another approach would be to place various application frameworks in different com-

puting machines inside the building, allowing the frameworks to interact and collaborate through

Web protocols. This possibility is demonstrated in [160].
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Appendix B holds the implementation details of the framework, concerning mainly the Java

classes of the application. Moreover, Appendix C lists the main parameters that affect the frame-

work’s operation and need to be set wisely. The installation procedure of the application frame-

work on some computing machine is described in Appendix D. Finally, the source code of the

application framework has been released on the NetRL website2 and on GitHub3.

4.2.1 Supporting Various Device Types

The flexible design of the application framework promotes and facilitates the support of vari-

ous device types and embedded smart home technologies. Heterogeneous home devices only need

to implement the methods specified in the driver module, which is located in the device layer of

the framework. The general architecture of the driver module is provided in Figure 4.3.

As the figure shows, this module holds the technology-specific libraries that are used to enable

interaction with heterogeneous home devices, such as sensor motes, smart power outlets and RFID

readers. For each device type, a different software library is added on the driver module, as a Java

class that implements the abstract interface Driver. Thus, each embedded technology needs to

implement the functionality listed in Figure 4.4.

The method startDevice performs all the initializations needed to enable communication with

some device type, while the messageReceived method is responsible for receiving messages from

embedded home devices. The two sendMessage methods deal with transmitting messages from

the framework to the home devices, either in the discovery/description procedure of the device

(see Section 5.2) or in invoking some sensing/actuation service offered by the device.

Hence, by implementing these 4 simple methods, the application framework may support any

embedded technology for smart homes, including existing popular smart home solutions such
2http://www.netrl.cs.ucy.ac.cy/index.php?option=com content&task=view&id=76&Itemid=54
3https://github.com/andreaskami/homeweb
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Figure 4.3: The architecture of the Driver module.

as X10, KNX, ZigBee, 6LoWPAN, digitalSTROM, Z-Wave etc. Appendix E shows example

libraries needed for communicating with Telosb sensor motes and Ploggs smart power outlets (see

Section 5.1).

4.2.2 Supporting Multiple Home Devices

To examine the capabilities of the application framework in terms of supporting and managing

numerous embedded home devices, we created an emulated scenario, in which multiple virtual

devices are assumed to be available inside some smart home environment.

Each device is discovered by the driver module of the application framework, and a new

thread dedicated to this newly-found device is created. We experimented with different numbers

of devices, considering that the framework has been installed on a typical laptop (Intel Core Duo

Dual Core 2.2 GHz). This is actually the computer type on which the framework runs, for the
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public class NewDeviceType extends Driver{

// the initializations of NewDeviceType are performed here

public abstract void startDevice();

// receive a new message from NewDeviceType

public abstract void messageReceived

(String message) throws IOException {}

// send a message in DISCOVERY and DESCRIPTION mode

public abstract void sendMessage(

String id, char type, String content) throws IOException;

// send a service request in NORMAL OPERATION mode

public abstract void sendMessage

(String id, char type, Request request) throws IOException;

}

Figure 4.4: The abstract methods that need to be implemented by each home device type, in order

to be supported by the application framework.

purpose of the experiments performed in the thesis. For better experimentation, we also installed

the framework on a small server (Intel Core i5-3570K Quad Core 3.4 GHz), which is of course a

more powerful computing machine. We considered 4 different performance metrics to assess the

scalability of the framework in regard to supporting multiple devices. These metrics are:
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Table 4.1: Support of multiple home devices on a typical laptop.

Device No. Disc. Time Resp. Time Main Page Resp. Time Devices Info Memory

10 0.63 s 50 ms 92 ms 10.2 KB

50 5.20 s 726 ms 1119 ms 65.5 KB

100 13.29 s 942 ms 2262 ms 196.6 KB

200 38.17 s 3455 ms 4981 ms 1.7 MB

300 58.80 s 5183 ms 7183 ms 3.8 MB

400 78.16 s - - 4.3 MB

1. Device Discovery and Information Parsing Time. This includes the time needed to discover

the devices and parse their service description information (see Sections 5.2.1 and 5.2.2).

2. Main Page Response Time. The time needed to load an XML representation of the smart

home environment inside a Web browser, listing all the available home devices.

3. Response Time of Devices Page. The time needed to load XML-based service description

information of some specific, randomly-chosen home device.

4. Memory. The memory allocated to the application framework during its operation, to sup-

port the threads of the physical devices that have been discovered.

The results of our experiment may be observed in Table 4.1 for the laptop case and in Table

4.2 for the server case, considering a number of devices ranging from 10 to 400. Discovery and

main page response times are displayed also in Figure 4.5. Obviously, the server machine operates

much better than the laptop, giving much better discovery and response times. This improvement

in performance is around 30-35% when devices are up to 100 and reaches 50% in some cases,

e.g. when devices are equal to 200. The application framework, when installed on the laptop, may
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Table 4.2: Support of multiple home devices on a small server.

Device No. Disc. Time Resp. Time Main Page Resp. Time Devices Info Memory

10 0.81 s 32 ms 55 ms 196.6 KB

50 3.75 s 487 ms 761 ms 262 KB

100 9.11 s 665 ms 1739 ms 458 KB

200 14.82 s s 1659 ms 2470 ms 2.3 MB

300 29.50 s 3507 ms 5730 ms 5.1 MB

400 64.91 s 10604 11924 6.0 MB

support up to 300 devices, with few seconds response times. When installed on the server, it can

support up to 400 devices, with response times of around 10 seconds.
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Figure 4.5: Discovery and response times at the application framework in the presence of multiple

home devices.
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As the number of devices increases, the response times grow as well. As Figure 4.5 shows,

the increase in discovery times is almost exponentially, both in the laptop and the server case,

while response times grow linearly with an increasing gradient. This increase in response times is

partly due to the thread environment, which has quite demanding computational needs in Java. By

observing the response times, we consider that the framework installed on a laptop may effectively

support around 100 devices, and installed on a small server around 200 devices. Larger numbers

cause the system to malfunction.

Memory requirements are increased as the number of devices grows, and a few megabytes are

needed when 300-400 devices exist in the home environment. These memory requirements are

rather small, considering the capabilities of computing devices nowadays.

Finally, the time needed to discover the devices and parse their service description information

(see Sections 5.2.1 and 5.2.2) is considered satisfactory, taking into account that around 1 minute

time is enough to discover 300 devices in the laptop case and 400 devices in the server case.

However, this time is only indicative, since other parameters would influence discovery time in a

real-life scenario, as for example the throughput and bandwidth capabilities of the device acting

as the base station (see Section 2.1.3). A small real-life experiment considering the discovery time

of Telosb sensor motes (see Section 5.1.1) is presented in Section 5.2.1.

4.2.3 Synchronous/Asynchronous Operation

One of the major criticisms against the use of REST in the area of smart homes spans from

the fact that HTTP was designed for synchronous requests. This model does not generally suit the

requirements of most sensor network applications, including smart homes. However, we managed

to overcome this issue by mapping normal HTTP request, coming from Web clients (home tenants)
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at the Web server module of the application framework, to an asynchronous operation which

happens on the device layer of the framework.

Synchronizers were employed, in order to transform asynchronous behavior into a synchronous

one. For each client Web request, the framework creates a new REST thread, associated with a

unique message token (requestID). This message token is encapsulated into the original Web re-

quest and the request is forwarded to the thread of the relevant home device. There, it obtains a

lock on a unique synchronizer token, labeled using the token.

As soon as the response from the embedded device arrives, the synchronizer lock searches for

the request with the respective message token, and the appropriate waiting thread that represents

the Web request is awakened. In this way, the HTTP response is then sent back to the initial client.

The duration of time needed to complete the Web request is highly dependent of the capabilities

of the home device that is invoked, as well as the load at the request queue of the thread that

represents this particular device (see Section 6.2). Figure 4.6 shows the sequence diagram for this

synchronous/asynchronous translation.

The whole synchronous/asynchronous operation may be summarized as follows:

1. The HTTP request from a resident (Web client) obtains a unique message token (requestID).

2. Together with the message token, the request is sent asynchronously to the thread of the

appropriate home device (Device Thread).

3. The request is forwarded from the device thread to the associated physical device.

4. The request obtains a lock on its REST thread, using the token, and puts itself to sleep.

5. The response message arrives at the device thread from the physical home device.

6. The framework awakes the REST thread of the Web request that has the correct token.
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Figure 4.6: Transition between (synchronous) Web operation and (asynchronous) smart home

operation and vice-versa.

7. The response is forwarded from the REST thread to the home tenant who created the request.

8. The HTTP response message is forwarded back to the initial resident.

Example code for implementing the sync/async translation is listed in Appendix F.

4.2.4 Handling Failures

Handling device and transmission failures, as well as offering reliability, are important re-

quirements for the application framework (see Section 4.1).And
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An important mechanism for masking transmission failures are the request queues. Each home

device is associated with one request queue, which manages the communication between the phys-

ical device and the home residents. These queues have the capability to ”sense” when a trans-

mission failure occurs and retransmit the message back to the device, to avoid message losses.

The home device is considered unavailable in case after a predefined number of retransmission

attempts no response is received. An analysis of the request queue mechanism and its fast retrans-

mission property, together with potential general benefits, acquired when employing intermediate

queues, are presented in Chapter 6.

A mechanism for recognizing fast device failures (which may happen due to empty battery, ob-

stacles in message forwarding etc.) has been developing by performing regular Aliveness Checks.

These checks are light requests issued to the home devices, in order to determine if they are still

alive and operate normally. Through these checks, failed messages due to device unavailability

are effectively reduced. A default time interval of 5 minutes is considered for performing these

aliveness checks. This time interval must be specified with care: long intervals would reduce the

ability for device failure recognition while small intervals would increase the energy consumption

of the home devices. Of course, every time a normal response is received from a device, for a

previously made service request from a home resident, the framework is confident that the device

operates normally and the aliveness timer resets. Hence, aliveness checks are not necessary in

cases of high traffic from tenants.

Finally, a mechanism for masking device failures has been implemented, which masks failures

by searching for relevant services from other home devices of the same type that exist in the same

room of the house, in order to satisfy some resident’s request. In this case, the framework, instead

of immediately producing an error message to the Web client who made the request, seeks for

another physical device that offers the same service. In case a suitable device is found, then the
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request is forwarded immediately to the request queue of that device. When the response arrives, it

is forwarded to the corresponding tenant, without him noticing the device failure. This mechanism

works only when heterogeneous home devices become interoperable through the use of REST.

4.2.5 Web Caching

Porting the IPv6 stack on sensor devices slightly increases their energy consumption and de-

creases their performance in terms of response times (see Chapter 7). However, these issues may

be minimized by exploiting the HTTP caching feature.

In general, a Web cache is an intermediary between Web servers and clients, monitoring in-

coming requests and saving copies of the responses for itself. In case there are subsequent requests

for the same URL, the cached response is harnessed, instead of asking the origin server for it again.

A lightweight Web cache is included on the application framework. In this case, Web servers

are the sensor devices, Web clients are the residents of the smart home and a gateway cache is

installed on the framework. The caching mechanism may be used only for GET requests since they

are requests that do not alter the state of some resource, according to the REST specifications. The

cache uses the expiration model, which is a way for the server to say how long a requested resource

stays fresh. Cache freshness time defines the validity of some historical sensory measurement, as

measured by some embedded home device, in order to employ the cache for satisfying some

request, instead of querying the physical device again.

Thus, whenever a client requests a GET service, offered by some specific device which was

recently invoked by another client (e.g. the time since this last measurement is less than the

cache freshness time), the result is automatically retrieved from the cache, instead of transmitting

the request to the physical device again. This is called a cache hit, since the measurement is
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successfully retrieved from the cache. In case the cache does not contain a fresh answer, this

would be a cache miss.

The amount of time some measurement is considered valid (cache freshness time) is set on

the application framework by some user-defined parameter (see Appendix C). At the technical

evaluation in Sections 7.2 and 7.3, this parameter is set to 10 seconds by default. Obviously, a

larger amount of time implies more cache hits, however, the results may not be as fresh. On the

contrary, smaller cache validity times mean more fresh results but also increased cache misses.

These statements are validated experimentally in Section 7.2.2, where increased traffic produces

larger percentages of cache hits and decreased response times. The relationship between cache

freshness time and response times is also evaluated in this section.

4.2.6 Case Study: Physical Mashups for Smart Homes

The flexibility of the application framework, achieved by following REST principles, facili-

tates the development of smart applications, in the form of Web mashups. For example, with a few

lines of code a database could be created and used, where all the data received from the devices

would be automatically saved.

Web mashups are Web resources that include content and application functionality through

reuse and composition of existing resources. They can be parallelized with Business Process

Execution Language (BPEL)4, which is the formal language for service composition in WS-* [13].

When Web mashups employ physical devices and services, they can be extended into physical

mashups [75]. Physical mashups exploit real-world Web services, offered by physical devices,

combining them using the same tools and techniques of classic Web mashups. Our application

framework adapts and applies the physical mashup practice in the smart home environment.
4http://www.oasis-open.org/committees/wsbpel/
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Our framework supports the creation of physical mashups and advanced rules very simply, in

any programming language that supports HTTP such as Perl, PHP, JavaScript etc. They may

be developed even by inexperienced home residents, who can reuse the functionality of their

household information appliances in a uniform and easy way. Physical mashups may be combined

easily with Web content, to offer a true Web experience to the real world. For example, residents

may share their home devices through online social networking (see Section 8.1) or charge an

electric vehicle in low-tariff time periods (see Section 9.1). Tenants may receive an email when

the door of their house or their fridge is left open, or they can post to Twitter the song they are

currently listening on their Hi-Fi system.

In Figure 4.7, we can observe a function written in JavaScript, in just 13 lines, which imple-

ments a locker on a virtual door that only unlocks when the right RFID tag is presented to the

tikitag device, which is coupled with the framework (located at localhost in port 8080).

Figure 4.8 displays a shell script that implements a distributed rule on sensor motes, in just

seven lines of code. This rule checks the temperature of the room, measured by sensor8 and if it

is less than 20 degrees Celsius, then the green LED of sensor5 is automatically turned on.

To demonstrate how simpler programming becomes by employing physical mashups and

REST, we provide in Appendix G the code written in Java, to achieve the same result. In the

former case, only seven lines of code are needed, while in the latter, 50 lines of code need to be

used. In case the sensors are not IPv6-enabled, this distributed rule would need approximately 200

lines to be executed.

4.2.7 Case Study: Urban Mashups

In order to illustrate more advanced, extended capabilities of the mashup paradigm for the real

world, we present below a case study of real-life mashups which target urban environments.
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function getHttpRequest() {

var xmlhttp = null;

xmlhttp.open(’GET’, ’http://localhost:8080/tikitag/tags’, true);

xmlhttp.onreadystatechange = function() {

if(xmlhttp.readyState == 4 && xmlhttp.status == 200) {

var items = eval(’(’ + xmlhttp.responseText + ’)’);

var secret_key = "04:BA:4A:B9:23:25:80";

for (var i=0; i<items.length; i = i + 1) {

if (items[i].t == secret_key)

$(’locked’).innerHTML = "Door is unlocked!";

}

if (!unlocked)

$(’locked’).innerHTML = "Door still locked.";

}

}

xmlhttp.send(null);

}

Figure 4.7: Sample JavaScript code that checks a number of RFID tags in order to find the right

one to unlock the door.And
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function check {

if [ $? -le 20 ] ; then

curl -d "color=GREEN" -X POST localhost:8080/sensors/sensor5/Light/

fi

}

curl -s -X GET localhost:8080/sensors/sensor8/Temperature/ $1

check;

Figure 4.8: Sample shell script that implements a distributed rule on sensor motes.

Web-enabled smart homes have the capability to publicly expose the functionality of their

sensor devices as open Web API. Home owners could permit this, in order to help other citizens to

get better informed about the environmental conditions that exist in the urban environment where

they live. This environmental awareness would then assist people to have a better quality of life,

by avoiding polluted or highly crowder or even dangerous areas.

Physical mashups can not be directly applied in urban environments, since these dense en-

vironments are characterized by high mobility and unpredictability. Sensor devices appear and

disappear all the time, without any notice.

Thus, in order to adapt to these highly dynamic landscapes, urban mashups are proposed,

defined as opportunistic physical mashups that are validated only when the local environmental

conditions support the sensor-based Web services, which are declared by these mashups. Urban

mashups are service-centric, meaning that they focus on the services offered by sensor devices

and not on the sensors themselves. This happens because a large number of similar sensor devices
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may be deployed inside some area, offering the same service. When encountering any of these

sensors, the mobile user can be well informed about the service of interest.

Classic Web mashups target advanced functionality on Web sites, achieved by combining Web

services. On the other hand, physical mahups deal mostly with the actuation of some physical Web

service, triggered when some environmental conditions (defined by relevant Web services) are

met. They can well be used in home and building automation scenarios. Urban mashups exploit

Web services, offered by sensor devices that are installed in the nearby area, to acquire increased

knowledge about the overall local environmental status.

An example urban mashup is displayed in Figure 4.9. In this example, a sensor measuring the

levels of noise, a pollution sensor and a street camera combine their services in order to infer the

traffic conditions that exist at the center of Zurich.

Figure 4.9: An example urban mashup showing how traffic can be derived from related sensory

measurements.
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While the mobile user is wandering in some urban area, it is very likely that only partial

information about local environmental conditions will be available. Therefore, his urban mashups

would not be fully executed, but only validated with some probability.

This probability depends on the effect of each sensory service to the overall inference about

the occurrence of some more complex event. Thus, the impact of each physical service needs to be

translated into some weight. For example, in the urban mashup of Figure 4.9, noise affects traffic

with a weight of 0.4 (intuitively with 40% probability).

Urban mashups can be modeled as a directed acyclic graph with weights, where weights rep-

resent the probabilities for the event’s actualization. Extending this directed graph, more complex

relationships can be created and automatic inference about more advanced environmental condi-

tions can be achieved. For example, traffic combined with weather conditions could trigger the

suggestion (to some citizen) of using public transportation to go to work. This example is illus-

trated in Figure 4.10, assuming that traffic affects bus recommendation with weight of 0.6 while

the weather conditions have an influence of 0.4 to the validation of this mashup. A user-defined

probability threshold decides whether we should notify the user about a possible triggering of a

mashup, which corresponds to some event. This threshold relates to the sensitivity associated with

some urban mashup triggering.

A number of relevant parameters influence the effectiveness of the inference process. These

parameters can be the distance of each sensor device from the mobile user, the altitude of each

sensor from the point of interest, the accuracy of each device and the number of sensors offering

the same service. This last parameter can be parallelized to GPS services, whose accuracy depends

on the number of available satellites.

Since urban mashups are suitable mostly for mobile users, it is more appropriate to be sup-

ported by mobile applications. Thus, mobile applications could support urban mashups, in order
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Figure 4.10: An extended urban mashup demonstration, recommending bus to go to work.

to assist people in their everyday lives. We will discuss the development of such an application,

called UrbanRadar, in Section 10.4.2.

Undoubtedly, supporting urban mashups is not a trivial task, because the sensor devices sup-

porting environmental services need to be globally discovered in real-time, through the Web. The

WoT has not yet defined any protocols for automatic discovery of Web-enabled physical services.

In other words, a search engine for the physical world is currently unavailable. Dyser [126] and

Snoogle [172] are two early approaches proposed for real-time search for physical entities such as

sensor devices. However, they need a long way before they become efficient, popular and massive

engines for the real world. A novel pervasive technique for automatic discovery of Web-enabled

environmental services is proposed in Section 10.3.

Until the Web community adopts a scalable, efficient approach for global discovery of en-

vrironmental services, the UrbanRadar mobile application (see Section 10.4.2) harnesses online,

large-scale sensor directories to achieve urban environmental awareness.
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4.3 A Graphical Application for Smart Homes

In this section, we describe the extension of the Web-oriented application framework into a

Web-based graphical application for smart homes, where all interactions with embedded devices

are done via standard HTTP requests. We explain its extended architecture as well as the graphical

user interface (GUI) we implemented for facilitating the interaction with the embedded devices of

the home environment.

4.3.1 Extended Architecture

To enable a true Web-based smart home application, the architecture of the application frame-

work was extended to support a graphical application. The classical client-server model was fol-

lowed, by placing the framework’s functionality on the server side and the graphical application

on the client side. The extended system can be observed in Figure 4.11.

Figure 4.11: Extended architecture of the Web-based smart home.
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The client application offers a Web-based, interactive GUI in AJAX, in order to abstract the

home automation procedure. It is developed with Google Web Toolkit (GWT)5. Graphs that illus-

trate sensory and electrical consumption data are produced by means of Google Chart Tools6.

Client-server communication is based on HTTP calls. The application framework exposes its

RESTful interface as a Web API, which is utilized by the client application to interact with the

embedded devices of the smart home. Response messages from the server are encapsulated in

open, well-known formats such as JSON and XML.

4.3.2 Interfaces of the Smart Home Application

The client application is split into various graphical interfaces. Devices interface lists the

available sensor devices, Services presents the services offered by some home device while Re-

quest Builder is an easy way to create Web-based requests for a device just by filling a form.

Events interface enables notifications to be triggered when some event happens. A notification

can be performed through SMS, email or through a Web hook7 (see Section 2.6.4). For example,

the resident may program the sending of an email as soon as the humidity in some room of the

house exceeds 60%.

Furthermore, Physical Mashups interface allows the easy creation of mashups in a few clicks

e.g. to switch off the air conditioner, when the temperature reaches 25 degrees Celsius (see Section

4.3.4). Task Scheduling allows the automatic execution of some service in a future time. This

interface is used in Section 9.2 to exploit the demand response program of a virtual smart grid and

program the execution of electricity-related tasks in hours of the day with low tariffs, as these are

defined by electric utilities in order to balance the total energy demand.
5http://code.google.com/intl/en-EN/webtoolkit/
6https://developers.google.com/chart/
7www.webhooks.org/
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Finally, Profile interface manages all the previously created event notifications and mashups,

allowing residents to view, edit or delete their smart rules, while Settings interface holds all the

general configurations of the application, including an option to automatically query sensor de-

vices in specified intervals.

Figure 4.12 shows a snapshot of the graphical application, in which the services offered by a

particular device are presented. In this case, a Telosb sensor mote (see Section 5.1.1) is shown,

offering four different services: temperature, humidity and illumination sensing services; and

actuation of its three LEDs. The user can view the current state of each service just be hovering

over it with the mouse pointer. In the figure, the current temperature value is displayed.

Figure 4.12: Snapshot of the Web-based smart home application.

4.3.3 Case Study: Energy Awareness through Real-Time Feedback

By understanding the electricity footprint they consume, residents will be able to make intelli-

gent choices about energy. Through detailed energy monitoring, electricity-wasting actions can be
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avoided and energy-inefficient devices can be managed better or be replaced. We further adapted

our smart home application to allow residents to view their electricity footprint via a Web interface.

We employed smart power outlets (see Section 5.1.2), associated with the electrical appliances of

the house, and we exposed their functionalities as RESTful Web services (see Chapter 5, Table

5.1, Resources 5-6) to develop a physical mashup in combination with Google Chart Tools.

Through the Web, home residents can switch off electrical appliances, if they forgot them on

when they hastily left the house. Residents can associate the energy consumption of their electrical

appliances with the actual tariffs from their electric utilities, translating kilowatt hours (kWh) into

money. In such a way, the user is not confused with difficult to understand measurement units.

Figure 4.13: Detailed electrical consumption distribution of home’s electrical appliances.

Historical data about energy and costs are aggregated into graphs that present useful remarks

about the yearly, monthly and weekly consumption in the whole house or per appliance. By

comparing their actual electricity footprint with previous ones, citizens can be aware in real-time

if their actions are energy- and cost-efficient. By determining the impact of their actions in a timely

fashion, they can evolve a sustainable, greener behavior. Figure 4.13 presents a typical snapshot of
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the client graphical application, in which the distribution of the energy consumption and the costs

of the electrical appliances in a typical home are presented in a pie chart. Figure 4.14 denotes the

electricity footprint of individual household electrical appliances on a daily basis for the current

week. Monthly and yearly view of historical information is also available.

Figure 4.14: Detailed electrical consumption historical information of electrical appliances.

To further illustrate the flexibility of Web-enabling smart meters, we adapted the EnergieVisi-

ble project [43], to operate in accordance to our smart power outlets. EnergieVisible is a mashup

developed by GWT that plots sensor data in real-time from energy meters, and illustrates how

user interaction with energy data can be simply developed on top of a Web interface. Since the

operation of EnergieVisible includes polling continuously data from a RESTful server, we simply

needed to point it to our application framework. It works directly as long as devices offer their

data using the correct JSON syntax. The EnergieVisible application, connected in real-time to our

application framework and the smart power outlets, is shown in Figure 4.15.And
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Figure 4.15: The EnergieVisible Web interface [43] connected to our application framework.

4.3.4 Case Study: Energy-Efficient Smart Rules

When the resident receives timely information about the environmental context of his home

(e.g. temperature, light, motion), together with real-time data of the consumption of his electrical

devices, he can take clever decisions to control their operation in an automated, energy-efficient

way. Offering to a resident the means to actively take part in energy-saving initiatives could help

him to substantially decrease his overall consumption [138]. Each person has unique behavioral

patterns and the potential to configure his home energy usage effectively to suit his needs.

To promote energy efficiency, we developed a graphical mashup editor, through which a res-

ident can create his own smart rules to automate his house in the form of physical mashups in

just a few clicks, using operations such as greater than, if/then, and/or, etc. He can combine en-

vironmental sensory measurements with services offered from his electrical appliances, such as

sensing in real-time their energy consumption and switching them on/off (see Section 5.2.3). Each

habitant maintains his own profile, being able to view, edit and delete his mashups.

A snapshot of the mashup editor is provided in Figure 4.16, demonstrating an example mashup.

It is assumed that a resident has the bad habit to turn off the lights when he goes to sleep but to
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forget the television and the DVD player on. As soon as a sensor device placed in the living room

senses reduced illumination, then the television and the DVD player are automatically turned off.

By creating this mashup, this tenant can avert this habit, which costs him energy and money.

Figure 4.16: An example of a physical mashup at the physical mashups editor.

More advanced mashups could also reveal undesirable events such as electricity leakage or

unexpectedly high temperatures, and countermeasures can be automatically taken, such as to turn

off immediately faulty appliances and minimize the possibility of fire.

Home appliances, when exposed as Web resources (see Chapter 5), can be combined seam-

lessly with content and services provided through the Web. The mashup editor supports the blend-

ing of the smart home with the Web. For example, the user can employ a weather forecast ser-

vice, provided by a reliable organization through the Web (e.g. World Weather Online8, Yahoo

Weather9), to adjust the temperature of his house in a future time. In case the outside temperature

is predicted to substantially increase after some hours, the user can exploit this information to turn

off the electric heating automatically before this increase happens.

8http://www.worldweatheronline.com/
9http://weather.yahoo.com/
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Chapter 5

Web-Enabling Home Devices

The WoT envisions Web presence for physical things in general and home devices in particular.

According to this vision, home devices are supposed to offer plug and play functionality, operating

seamlessly in the home environment as soon as they are turned on, whether they are stationary or

mobile, indoor or outdoor. Standardized methods and techniques need to be used for discovering

these devices, describing their services, communicating with them, even sharing them and their

services between family members, friends or colleagues.

Moreover, embedded devices could form a mesh network in the smart home, where messages

would be propagated through multi-hop wireless communications between the devices. Smart

home frameworks and applications could interact with them in an ad hoc manner, with minimal

prior knowledge about them, without requiring to install drivers or specific applications. Finally,

home devices shall expose their services in well-understood, easily accessible, clean and open

interfaces, facilitating their integration in smart home applications, which could access them in a

uniform and standardized way. In the following sections, we show how we suggest establishing

Web presence for home devices, addressing the requirements posed by the general concept of the

WoT, applied specifically for smart home environments.

112
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The rest of the chapter is organized as follows: Section 5.1 presents the embedded devices

that were employed in our smart home deployment and experiments, namely Telosb sensor motes

and Ploggs smart power outlets. Then, Section 5.2 discusses various issues encountered during

the process of Web-enabling these resource-constrained devices. The approaches used to address

these issues are explained with regard to the general operation of the application framework for

smart homes (see Section 4).

5.1 Embedded Devices for the Smart Home

The embedded devices involved for enabling a Web-based smart home include sensor motes

and smart power outlets. These devices are employed in the experimental deployment of a smart

home, used for analysis and evaluation reasons in Chapters 6 and 7, as well as in Chapters 8, 9

and 10, during various case studies that demonstrate the potential of Web-enabled smart homes.

These two device types are presented in the following subsections.

5.1.1 Sensor Motes

Telosb sensor motes [134] are equipped with a 250kbps, 2.4GHz, IEEE802.15.41-compliant

Chipcon CC2420 Radio, integrated onboard antenna and a 8MHz TI MSP430 microcontroller with

10 kB RAM. These motes integrate by default temperature, humidity and illumination sensors,

but can also support other sensors (e.g. noise, pollution, electromagnetism, occupancy). A Telosb

mote is shown in the left side of Figure 5.1.
1http://www.ieee802.org/15/pub/TG4.htmlAnd
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The sensor motes were programmed using TinyOS 2.x2, which is an operating system de-

signed for low-power wireless devices (see Section 2.1.4). By means of Blip3, which is an imple-

mentation of the 6LoWPAN stack for TinyOS, the default sensing capabilities of the motes were

exposed as RESTful Web services, transforming them into embedded Web servers. Hence, their

sensing services can be accessed using standard HTTP requests under a RESTful interface.

Through 6LoWPAN (see Section 2.1.6), an IPv6-enabled multi-hop WSN may be formed,

consisting of Telosb motes. Thus, by deploying these devices inside the smart home, the environ-

mental conditions inside the house can be sensed in real-time, while the multi-hop topology would

enable the wireless propagation of the measurements from the remote sensors to the base station.

In the case of our Web-based smart home environment, the base station would be attached

to the computing machine that hosts the application framework for smart homes. Guidelines

concerning installation of the TinyOS software on the Telosb motes are provided in Appendix H.

5.1.2 Smart Power Outlets

Ploggs are smart power outlets that sense the energy consumption of electrical appliances. We

selected Ploggs4 as the power outlet devices in our smart home deployment as they have a high

accuracy of electricity measurements, with an average error around 2%, according to [111].

A Plogg can be attached to any electrical appliance or device that uses a standard mains socket

plug. Its hardware is based on Ember’s EM357 ZigBee wireless technology and Teridian’s 6511

metering chip. They use a proprietary firmware based on the ZigBee protocol, being capable

of forming a mesh network. Therefore, through the ZigBee chip, Ploggs can create a wireless,

multi-hop smart metering network inside a smart home.
2http://www.tinyos.net/
3http://smote.cs.berkeley.edu:8000/tracenv/wiki/blip
4http://americannewsreport.com/plogg-mains-plug-measures-real-consumer-use-of-household-appliances-889901
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They can transmit with high accuracy energy consumption measurements in a user-defined

interval, with one minute as the default value. Furthermore, they allow the control of a connected

electrical appliance remotely, by switching it on/off. External transducers can be factory-fitted to

Plogg devices to provide whole-home consumption measurements, by plugging them to the mains

supply. We can observe a Plogg smart power outlet in the right side of Figure 5.1.

Figure 5.1: A Telosb sensor mote (left) and a Plogg smart power outlet (right).

Since Ploggs are programmed with a firmware that can not be easily changed, they may not be

enabled directly to the Web. Thus, they are enabled indirectly, through the application framework,

by developing Java drivers to communicate with them through a REST interface. Nonetheless,

we estimate that future generations of smart meters could actually run a full Web server on-board,

thus enabling direct, non-mediated interaction with other peers in the same WSN, such as sensor

motes, forming a single Web-based multi-hop wireless network. ACme [93] is an early effort

towards this vision.

5.2 Addressing Issues for Web-Enablement of Devices

The task of enabling physical devices, sensors, actuators, smart meters and smart power out-

lets to the Web, has various issues that need to be addressed. At first, the local discovery of these
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devices in some pervasive environment such as a smart home needs to be performed. Then, the

capabilities and the functionality offered and supported by the devices must be described in a

standardized way, to facilitate service invocation by third-party applications. After, the interac-

tion possibilities with the devices shall be enabled, using uniform and standardized approaches.

Interaction could follow a request-response manner, similar to the classical client-server model,

or obey to a push-based technique, to support event-based scenarios with events triggered only

sporadically. Finally, the possibility of sharing Web-enabled home devices and services between

family members, friends or colleagues through the Web is also considered.

5.2.1 Local Device Discovery

A crucial aspect in embedded computing involves the discovery of physical devices in some

physical environment. The adopted local device discovery protocol was motivated from WS-

Discovery5, which is a multicast discovery protocol that uses SOAP/XML messages to locate

WS-* services on a local network.

This protocol was adapted for RESTful Web services by transmitting a single URL instead of

a heavy SOAP/XML payload in the multicast message. This URL points to a Web page, where

the services offered by the device are described. Home devices declare their presence in the home

environment in frequent time intervals (e.g. every 30 seconds), until they are bound to some smart

home application, such as our application framework for smart homes. The idea of associating

Uniform Resource Locators (URLs) with physical devices for describing their functionality was

first mentioned in [103].

When an embedded device joins the IPv6 network, it announces its existence through the

multicast message. The application framework listens at the pre-specified multicasting channel
5http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html
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Figure 5.2: Device discovery protocol.

for incoming discovery requests. As soon as it receives a new request, it responds to the newly

found sensor device by an acknowledgment message. Then, the framework creates a new thread,

dedicated to this device, and updates the device registry. On the other hand, when the device

receives the acknowledgment, it begins to operate normally as an embedded Web server, accepting

requests from the framework. Figure 5.2 depicts this device discovery process.

Through this discovery protocol, a plug and play approach for automatically including home

devices in the smart home is achieved. Figure 5.3 provides the end-to-end time needed at the

device discovery procedure, from the time when multiple devices announce simultaneously their

presence at a smart home environment until they are registered to the application framework and

an acknowledgment confirmation message is transmitted to each device.
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In this small experiment we performed, the devices were deployed in a star topology, 5 meters

distance from the application framework. Less than a second was needed from the time some sen-

sor mote was switched on, until it was discovered by the framework, even when 10 sensor motes

were switched on at the same time. This indicates that our local device discovery mechanism is

scalable and operates with satisfactory performance.
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Figure 5.3: Device discovery with multiple simultaneous Telosb sensor motes.

The proposed discovery protocol is actually a lighter version of WS-Discovery, which is used

in WS-* for locating local services. By transmitting a single URL that points to the service de-

scription information of the device, instead of a heavy SOAP/XML message, our protocol becomes

much more efficient and scalable.

Our proposed protocol looks similar to Multicast DNS (mDNS) [29], which is a protocol that

provides the ability to perform DNS-like operations on a local network in the absence of any

conventional unicast DNS server. mDNS uses API similar to unicast DNS but implemented over

And
rea

s K
am

ila
ris



119

a multicast protocol. Our protocol operates in a similar way, based on multicasting, however it is

simpler and as reliable as mDNS. Instead of using DNS-like operations, only a URL is transmitted

through a HTTP message, which describes the services of some local device in a standardized

way (see next section). A similar protocol to mDNS is DNS-based Service Discovery (DNS-SD)

[28], which proposes using standard DNS programming interfaces, servers and packet formats to

browse a network for services. Specifically, it uses DNS SRV, TXT, and PTR records to advertise

Service Instance Names. Our protocol is similar also to DNS-SD, avoiding the DNS-based actions

by sending a single URL.

More complex protocols that could be adopted include Simple Service Discovery Protocol

(SSDP) [64] and Service Location Protocol (SLP) [80]. SSDP is a network protocol based on IP

for advertisement and discovery of network services and presence information. It is the basis of the

Universal Plug and Play (UPnP) discovery protocol and is intended for use in residential or small

office environments. Services are announced by the hosting system with multicast addressing to a

specifically designated IP multicast address and port number. SSDP is a HTTP-like protocol and

works with NOTIFY and M-SEARCH methods. We argue that these methods violate the RESTful

environment we propose.

SLP is another service discovery protocol for local networks using URL schemes, attributes

and service types, as well as query types to locate services. SLP has three different roles for de-

vices, depending on whether they announce or search for services. SLP also employs multicasting

for locating services. We believe that SLP adds to the total complexity of the home ecosystem,

by using protocol-specific schemes to describe services. Our protocol performs a similar job with

less complexity, following merely principles of the well-known HTTP protocol.
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5.2.2 Service Description

In general, embedded devices need to describe their functionality in order to allow the invo-

cation of their services by third-parties. In a smart home scenario, home devices need to describe

their services to the application framework, to enable seamless interaction with family members,

through the Web. Service description must be performed in a standardized, Web-based way, to

increase the interoperability between heterogeneous service providers and consumers.

We adopted Web Application Description Language (WADL)6, which is an XML-based file

format that provides a machine-readable description of HTTP-based Web applications. WADL is

intended for applications that are based on the existing architecture of the Web, and it is meant as a

platform- and language-independent way of describing services, to promote reuse of applications.

It can be seen as the RESTful equivalent of Web Services Description Language (WSDL)7, which

is the standard for describing SOAP-based WS-* Web services [13]. WADL is considered a Web-

based method to perform resource description, in order to achieve high interoperability between

heterogeneous home devices and services. WADL promotes application reuse, since it constitutes

a flexible way of describing Web services.

WADL is used to model the services (resources) provided by embedded home devices, and

the relationships between them. Each home device maintains its own WADL file in some URL,

which could be specified by the device manufacturer. Obviously, all devices of the same type,

may share the same WADL file. A device encapsulates the link to its WADL file in the URL that

is transmitted to the application framework in the local device discovery procedure (see Section

5.2.1).
6http://wadl.java.net/
7http://www.w3.org/TR/wsdl
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Example WADL files for the Telosb sensor motes and Plogg smart power outlets, are shown

in Appendix I. Figure 5.4 displays a WADL description file for a Plogg smart power outlet inside

a Web browser, through the application framework. In the figure, this Plogg is associated with a

washing machine and offers two services: real-time feedback of the electrical consumption of the

appliance and the capability of switching it on/off. Whenever a Web user (e.g. home resident)

wishes to interact with some device of his smart home, he only needs to follow the guidelines

specified at its WADL file. In this way, automatic M2M interaction may also be supported.

As soon as the framework discovers a new device, it parses the discovery message transmitted

by the device to find the URL that points to the associated WADL file. By parsing the WADL

file, the framework can be informed about the services offered by the device, as well about how to

invoke them (e.g. URIs, parameters, return values). This information is then stored at the resource

registry of each device’s thread.

An emulated scenario that considers the time needed to discover and parse the WADL-based

service description information of hundreds of virtual home devices by the application framework

was presented in Section 4.2.2. In this experiment, the main source of delay was the time needed

to parse the WADL files of the home devices. However, this delay was very small, since 1 minute

time was enough to discover 300 devices in a laptop case and 400 devices in a server case. Hence,

the service description procedure scales very well with hundreds of simultaneous home devices.

Relevant languages for describing sensor information include Sensor Model Language (Sen-

sorML)8 and Extended Environments Markup Language (EEML)9. However, these languages

focus mostly on describing sensory measurements, and not on explaining how to invoke some

particular service offered by a physical device.
8http://www.opengeospatial.org/standards/sensorml/
9http://www.eeml.org/
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Figure 5.4: A WADL description file for a Plogg smart power outlet.

Microformats10, as a set of simple, open data formats built upon existing and widely adopted

standards, are simple ways to add information to a Web page by embedding semantic information

using mostly the class attribute of the HTML language. Search engines and Web parsers can then

parse these sites and get informed about the semantics of information. Microformats could be
10http://microformats.org/
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Table 5.1: RESTful services offered by Web-enabled embedded home devices.

No. Device Resource Description MIME Verb Parameters

1 Telosb Temperature Measurement in Celcius text/plain GET -

2 Telosb Humidity Percentage of humidity text/plain GET -

3 Telosb Light Set RGB LEDs on sensor board text/plain PUT color (char)

4 Telosb Illumination Illumination levels in Lux text/plain GET -

5 Plogg Electricity Instant consumption in Watts JSON GET -

6 Plogg Switch Switches an appliance on/off text/plain PUT mode (String)

possibly used in the future, for description of devices and services on the Web. However, they are

more suitable for the global discovery and description of Web-enabled devices (see Section 10.3),

and not their local discovery/description in smart home environments.

5.2.3 Request-Response Interaction

The typical interaction pattern between home residents and physical devices is the request-

response model, similar to the classical client-server model used at the Web. Since the principles

of the WoT are followed and REST is proposed for interaction with embedded devices, the services

offered by these devices may be modeled as Web resources, identified by URI. Resources can only

be manipulated by the methods specified in the HTTP standard (e.g. GET, PUT, POST, DELETE),

under a uniform interface.

Concerning the embedded devices employed in our smart home deployment (see Section 5.1),

namely Telosb sensor motes and Plogg smart power outlets, their capabilities and functionali-

ties are exposed as RESTful Web services, to facilitate the uniform and standardized interaction

between home devices and smart home applications, such as our application framework. This

REST-based modeling of the services of home devices is provided in Table 5.1.
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5.2.4 Event-Based Messaging

Since home devices (mainly Telosb sensor motes) operate as tiny Web servers, interaction with

them follows the classical client-server model employing pull technology, in which the request for

the transmission of information is initiated by the client, which is the application framework in our

case. This means that the application framework must ask the devices in frequent intervals about

their measurements. This model is appropriate for ad hoc interactions with sensors and actuators

and for environmental monitoring which happens on demand. However, the client-server model

is not efficient in event-based scenarios. These scenarios include events that are triggered only

sporadically when something important happens e.g. detection of fire or the opening of a door.

Push technology describes a style of Internet-based communication where the service request

is initiated by the publisher, which is the home device in our case. Push technique is inspired from

Web-based publish/subscribe communication.

To support event-based messaging, we build upon recent developments in Web push tech-

niques (see Section 2.6) and extend them for embedded devices with a RESTful messaging sys-

tem, in order to efficiently integrate event-driven services to our smart home environment. We use

the RESTful Message System (RMS) [161], which is a lightweight publish/subscribe messaging

suited for embedded devices. RMS proposes a lightweight alternative for messaging, suited for

home devices that monitor the home environment for events. It is a push technique, implying that

communication is initiated by the physical devices and not by a smart home application.

RMS is applied to the IPv6-enabled sensor motes, by enhancing them with a simple RESTful

API to use the eventing system. In case the application framework (subscriber) wants to receive

notifications about an event from a sensor mote (publisher), it creates a new subscription by POST-

ing an HTTP request to the mote. Whenever a new event is sensed, it will be POSTed back to this
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subscriber at a callback URL, specified by the subscriber at the subscription message. Hence,

devices inform the framework only when something important happens. Receiving events in real-

time through user-defined callbacks over HTTP, is the notion of Web hooks (see Section 2.6.4).

5.2.5 Device/Service Sharing

Sharing of Web-enabled embedded devices and pervasive services between family members,

friends or colleagues is an important issue. We argue that this can be achieved by harnessing

online social networking sites. Blending online social entertainment with control of the home

environment can give incentives to people, for adopting sustainable lifestyles.

Figure 5.5: General architecture for developing pervasive social networks.

Since the application framework exposes its functionality and the home devices under a REST-

ful API, it is easy to develop physical mashups including the household appliances of the smart
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home inside a social networking application. The Web 2.0 technologies provided by social net-

working sites can be utilized to transform the interaction with the smart home into a shared, social

experience. The general architecture for enabling service sharing of home devices through online

social networking is presented in Figure 5.5. It consists of the following three components:

• The physical devices that are Web-enabled, directly through embedded Web servers or by

means of gateways. The devices/gateways offer RESTful Web services for interaction with

them (see Section 5.2.3) and Web-based device discovery and service description patterns

(see Sections 5.2.1 and 5.2.2). These devices can be sensors, actuators, RFID tags, smart

meters, smart power outlets etc.

• The social networking sites (SNS), which provide Web-based open API, supporting the

application development from third-party developers. Pervasive SNS applications are de-

veloped following the mashup example, extending Web mashups into physical mashups,

enabling home devices to be integrated to the social structures of the SNS.

• A Web server (e.g. our application framework for smart homes) that hosts pervasive SNS

applications, maintaining at the same time connectivity with physical devices/gateways.

The Web server needs to have a precise view of the smart home environment it represents,

in order to automatically add/remove ad hoc devices that appear/disappear frequently.

In certain occasions, especially when sensor devices are involved, their sensory readings can

be automatically stored in some repository. In these cases, WS-* can also be used, for interaction

between the Web server and the repository.

By utilizing Web services, interoperability with most SNS is guaranteed, since the majority of

SNS offer open API that are based on the Web service paradigm. The possibility of giving a social

texture to smart home applications is demonstrated in Section 8.1.

And
rea

s K
am

ila
ris



Chapter 6

Request Queues for Enhanced Performance of Smart Home

Operations

Although wireless communications are becoming mature, transmission failures are a common

happening, especially in indoor environments. These failures range from 1-5% in well-defined

topologies, to even 20% in ad hoc scenarios where some embedded devices are mobile [40, 184].

Our observations indicate that typical smart home deployments with static topologies of devices

experience around 3-5% of transmission failures.

Obviously, these failures degrade the performance of in-home operations, reducing the relia-

bility of the system. Guarantees cannot be made regarding satisfaction of requests and thus high

unpredictability is present. Nevertheless, transmission failures may be masked in part, by using

intermediate request queues, which may be used for better managing the interactions with embed-

ded devices. This is in concept similar to the TCP protocol in IP, which offers reliable transmission

over an unreliable channel.

We define request queues as FIFO queues, installed on middleware applications for smart

homes (e.g. our application framework) in order to handle the requests coming from the tenants,

targeting the embedded devices of the house. Each device is associated with its own request queue,
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while the FIFO property can offer fairness between tenants who concurrently invoke services

offered by some particular device. Additionally, request queues enable multiple simultaneous

requests, which are placed in the queue until they can be serviced, rather than being lost.

In this chapter, we examine the use of request queues as a suitable data structure for enhanc-

ing the performance of pervasive applications that target home automation. We consider request

queues as a mechanism for supporting multiple home residents, who may concurrently interact

with their smart space, as well as to use the queues for masking in part transmission failures, of-

fering enhanced reliability and fault tolerance to the home environment. Moreover, request queues

can also be designed with different service disciplines, e.g. load balancing and priorities, in accor-

dance with application needs.

We need to stress the difference between intermediate request queues and queues that may

be integrated on embedded devices. While the latter case could be used for offering support for

requests from multiple home members, it would not provide any guarantees in case transmission

failures occur. Moreover, various other benefits may be obtained by means of intermediate request

queues. These benefits are discussed in Section 6.4.

We need to note that the use of request queues does not directly contribute towards the evo-

lution of smart homes towards the Web. Nonetheless, it is crucial to address reliability and per-

formance issues in smart home environments that host resource-constrained, embedded home de-

vices. Besides, Section 4.2.3 shows that the synchronous operation at the Web can be combined

seamlessly and smoothly with the asynchronous operation of the application framework and the

request queue mechanism.

The rest of the chapter is organized as follows: Section 6.1 describes the experimental setup

employed for configuring the request queue mechanism for good performance and for evaluating
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potential applications that exploit the queing environment. Then, Section 6.2 analyzes theoreti-

cally the behavior and general functionality of the request queues, identifying potential advantages

of employing queues. After, Section 6.3 investigates the setting of the retransmission interval to

enhance the performance of the queues while Section 6.4 evaluates potential smart home applica-

tions that may be developed when request queues are used. Finally, Section 6.5 summarizes the

findings of the analysis performed in this chapter, concerning the request queue mechanism.

6.1 Experimental Setup

This section explains the experimental setup used to properly adjust and configure the request

queue mechanism, as well as to evaluate and test various applications of the queuing system.

6.1.1 Modeling User Behavior

In order to analyze the behavior of the request queues, realistic traffic from Web clients needs

to be created. An emulated scenario was implemented, including multiple virtual Web clients, who

interact with the sensor devices of their home space through the Web. The behavior of these clients

was simulated by creating software agents who reside on the same computer as our application

framework. Therefore, network delay is negligible. Using Restlet, we assigned a unique TCP

socket to each agent. The operations of each agent include the random selection of a sensor mote,

as well as the random invocation of a RESTful Web service offered by the device.

The arrival rate of Web clients at the framework is modeled by the exponential distribution.

The exponential distribution is preferred to simulate real-world applications that deal with the

occurrence of events, as for example the arrival of telephone calls or customers at a bank. The

parameter λ denotes the arrival rate of the clients. For example, when λ = 2, this means that two

clients arrive at the framework every second.
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Given the nature of arriving customers, it is commonly accepted that the exponential distri-

bution models the arrival of tenants’ requests quite realistically and rationally. Furthermore, this

is very desirable, as given the mathematical nature of the exponential distribution, a number of

quite simple relationships can be derived for several performance measures based on knowing the

arrival and service rate at each device.

6.1.2 Experimental Deployment in a Smart Home

During the analysis efforts, the application framework has been installed on a typical laptop

(Intel Core Duo Dual Core 2.2 GHz), inside an experimental one-bedroom smart home. A wire-

less network of Telosb sensor motes was employed during the analysis, to sense the environmental

conditions in a proof-of-concept smart home deployment. A sensor mote was plugged in one of

the USB ports of the laptop to serve as a base station (see Section 2.1.3), for forwarding/receiving

through the serial-over-USB port IEEE 802.15.4 wireless packets exchanged between the applica-

tion framework and the remote Telosb motes.

Transmission power was set at -25 dBm, giving a transmission range of approximately 5 me-

ters. The size of the 6LoWPAN messages was 128 bytes each. Each test has duration of 5 minutes.

Telosb sensor devices were equipped with temperature, humidity and illumination sensors (see

Section 5.1.1). Their sensing capabilities were exposed as RESTful Web services (see Section

5.2.3), transforming them into embedded Web servers.

We experimented mainly with a small number of motes (2-4 motes), deployed in a star topol-

ogy inside the home environment, with 5 meters distance from the base station and from each

other. This experimental setup is displayed in Figure 6.1. For demonstration purposes, in Section

6.4.1 we also considered a 3-layered WSN of sensor motes in a 2-3-4 topology.
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We stress the fact that only a small number of devices was selected in order to test the request

queue mechanism in an exigent case, in which high workload would exist targeting only a limited

number of motes. Therefore, the request queue of each device would be effectively loaded with

numerous consecutive requests. Increasing the number of motes serving a predefined workload

results in distributing evenly the load between the devices, decongesting their request queues.

Figure 6.1: Experimental setup (single-hop star topology).

6.1.3 Parameters, Performance Metrics and Assumptions

Before proceeding to analyze the behavior of the request queue mechanism, we list here all

the parameters, symbols, metrics and assumptions we include in our analysis procedure and ex-

periments.
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6.1.3.1 Parameters and Symbols

At first, the parameters and symbols we use are the following:

• Arrival Rate λ. The arrival rate of tenants’ requests at the application framework, defined

in requests per second.

• Round Trip Time (RTT). The average amount of time from the wireless transmission of a

request until the arrival of the response. This is actually the service time of the queue.

• Request Queue Size Sq. The current size of the request queue, i.e. the number of requests

waiting their turn to be executed. This number does not take into account the request being

currently executed.

• Retransmission Interval α. The fixed timeout a request queue waits for a response from

an embedded device, for a previously made request. After this timeout interval elapses,

the request is retransmitted to the device for a number of retransmission attempts. If no

response is received after all attempts, then the device is considered unavailable.

• Maximum Retransmission Attempts n. The maximum number of retransmission attempts

before a home device is defined as unavailable.

• Probability of Transmission Failures pf . The probability of a transmission failure dur-

ing request transmission from the application framework or a response transmission by the

physical device.

• Residual Service Time R. This is the remaining time of the request being executed, if any.

It is always less or equal the RTT time.
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6.1.3.2 Performance Metrics

Furthermore, we list the performance metrics we use in order to assess the overall performance

of the request queue mechanism:

• Average Request-Response Time or Response Time. The average amount of time needed

from the creation of a request by a Web client to the arrival of the response, transmitted by

a sensor device.

• Waiting Time q. The amount of time a request waits at the queue for its turn.

• Scalability of home residents. Effective and reliable communication with multiple home

residents, interacting with their devices simultaneously through the application framework.

Typical numbers of home residents are 5-10, however, workloads of up to 100 request-

s/minute should be supported by the framework. This covers the case when each home

resident uses different, personalized and intensive applications towards home automation

and increased comfort.

• Reliability. Includes the reliable delivery of request messages from home residents to their

home devices and vice-versa. Reliability involves no messages losses due to transmission

failures and collisions.

6.1.3.3 Assumptions

Finally, a list of all the assumptions considered during analyzing the operation of the request

queues is shown below:

• We assume that Telosb sensor motes and their services have already been discovered by

the application framework. Thus, the minor delays associated with discovering the devices
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and parsing their associated WADL files for understanding their functionality (see Sections

5.2.1 and 5.2.2), are not included in the experiments.

• Sensor devices are static during the tests without any mobility in the nearby area.

• The motes do not use any duty cycling for conserving energy, but they are always listening

for incoming requests.

• Extra transmission failures are simulated randomly during the tests, based on the uniform

distribution. Thus, subsequent transmission failures are not correlated. Since the sensor

motes are placed in a predefined distance from the base station and from each other, the

uniform distribution may simulate quite well any transmission failures that occur during the

operation of the system.

• Possible interferences due to neighboring nodes (e.g. collisions in accessing the wireless

medium) are not taken into account. We assume that any such collisions are random.

6.2 Analysis of the Request Queue Mechanism

The application framework associates each home device with a request queue, for supporting

simultaneous tenants to send concurrently HTTP requests to them. The request queues have the

responsibility of forwarding requests to the devices sequentially, according to the request time of

arrival. As soon as a response arrives, the corresponding request is removed and the next request

is forwarded to the head of the queue.

Figure 6.2 illustrates the operation of the request queue mechanism. Home tenants may pose

simultaneously Web requests to some home embedded device with a request arrival rate λ. These

requests enqueue at the request queue of the device and wait q time for their turn, in order to be

transmitted to the physical device. Service rate is the average number of tenants served per second
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Figure 6.2: The intuitive behavior of the request queue mechanism.

by the device. The service time of the queue involves the time from which the request leaves the

queue, it is satisfied by the sensor mote, and the response is received back at the device thread. We

label this time as round-trip time (RTT).

Incoming requests need to wait in the queue for their turn, in order to be executed. Figure 6.3

shows a snapshot of the request queue load during a typical framework’s operation, as recorded

using the setup discussed in Section 6.1, for 3 different scenarios of arrival rates λ, of requests

per second. These request rates can be considered high for typical smart home scenarios with

few inhabitants, however, they are selected in order to stress test the system. As expected, as the

arrival rate of requests increases, the size of the queue is increased as well. This size may be up

to 4, when λ equals 1.5 and up to 7, when λ = 2. Obviously, the arrival rate λ of home residents

affects significantly the request queue size. This can be observed in Figure 6.4, where the average

size of the request queue of some sensor device is provided, for different values of λ. As the figure
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shows, the size of the queue grows linearly with a small gradient in low traffic, until the arrival

rate becomes 1.5. From this point, as the rate λ increases, the size of the queue grows with a

significantly larger gradient. This is a possible sign of overloading the queue (see Section 6.2.2),

and is as expected in theory.
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Figure 6.3: Load at the request queue of some sensor device during its operation.

Of course, a large size of the request queue implies a larger waiting time for incoming resi-

dents’ requests. This waiting time at the queue can be a significant source of delay, as depicted

in Figure 6.5 for the case when λ = 2.5, in a heavily loaded scenario. As the different mea-

surements show, requests need to wait a few seconds when the size of the queue is more than 2.

Hence, reducing the waiting time of requests is expected to have a major impact on the system’s

performance and on the satisfaction of the home tenants.
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Figure 6.4: Average size of the request queue of some sensor device for different arrival rates.

Moreover, during the framework’s operation, in case some transmitted request/response mes-

sage is lost, the queue waits some amount of time and then it retransmits the message. This

retransmission feature aims at enhancing the reliability and robustness of the application frame-

work. However, this comes at the expense of additional delay, which is influenced by the design

parameters, as we discuss below. A comprehensive state diagram of the request queue mecha-

nism, including the retransmission feature, is shown in Figure 6.6. In the figure, all the states of

the queue, as well as possible events/actions and transitions are provided.

In the following subsections, we perform some basic theoretical analysis of the request queue

mechanism, identifying some potential advantages of adopting a queuing-based model for man-

aging the interaction with home devices. For example, we may estimate the response time needed
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Figure 6.5: Waiting times of the requests at the request queue of some sensor device for λ = 2.5.

at some time in order to satisfy a request or monitor whether the request queues are becoming

overloaded.

6.2.1 Estimating Potential Response Times

An important aspect is the capability of predicting the average response time, needed for

satisfying some request. Obviously, in the case of no transmission failures:

Average Response T ime = q +RTT (1)

In case transmission failures occur, average response time increases according to the equation:

Average Response T ime = q +RTT + α · pf · (
1− pn−1

f

1− pf
) (2)
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Figure 6.6: A simplistic state diagram of the request queue mechanism.

Considering that the waiting time q of some specific request equals the residual time R of

the request being executed and the response times of all other Sq requests waiting already at the

queue, we can define q as:

q = Sq ·RTT +R+ (Sq + 1) · α · pf · (
1− pn−1

f

1− pf
) (3)

We take into account that any request waiting at the queue has a certain probability of trans-

mission failure(s), including the current request at the head of the queue being executed. Hence,

the average response time may be calculated according to the following equation:
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Average Response T ime = (Sq + 1) ·RTT +R+ (Sq + 2) · α · pf · (
1− pn−1

f

1− pf
)) (4)

R is estimated by recording the dequeue time of the request being executed and subtracting

this time from the average RTT time. Equation 4 will be evaluated experimentally in Section 6.4.3.

6.2.2 Avoiding Overloading the Request Queues

The stability condition of each request queue may be roughly estimated by observing the

arrival rate of incoming requests λ. To achieve stability, it must be ensured that service time

is less than the inter-arrival time, i.e. RTT < 1
λ . In our experiments in Section 6.3.1 (with

RTT = 530 ms), this implies that λc = 1.88 for each sensor device, i.e. the arrival rate λ must

be always smaller that λc to avoid overloading the queues.

In case λ exceeds the critical value λc, a ”harsh” strategy would be to start dropping requests,

e.g. last arriving requests at the queue, or random requests already in the queue, or even adopt

other measures. Some initial discussion of a number of measures, such as load balancing and

support for prioritized requests appear in later sections (see Sections 6.4.4 and 6.4.5). However, a

comprehensive strategy is beyond the scope of this thesis.

In theory, this may be generalized for n devices, assuming that requests are distributed uni-

formly to them. In this case, the total arrival rate λmay reach n ·λc requests per second. However,

in practice, such large arrival rates cannot be supported because of other factors affecting the sys-

tem’s behavior such as the framework’s processing delay and the transmission throughput of the

sensor mote acting as the proxy between the Web and the physical environment (base station).

In a real-world setting, the stability condition might be more appropriate to be averaged over

a relatively large period of time, e.g. every 30 minutes or some hours, to avoid dropping requests

in unexpected rush hours that last only some minutes.
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6.2.3 Considering other Measures of Interest

By observing the operation of the queues and the service capabilities of home devices, various

measures of interest may be calculated. For example, the utilization of the device is the arrival

rate at the device multiplied by the average RTT time. The expected number of clients equals the

average response time multiplied by the arrival rate at the home device (Little’s law).

While such calculations are based on observations and experience, more theoretically accurate

results could be obtained by applying principles from queuing theory. For example, by observing

the RTT times of some sensor mote, a histogram of the response times may be obtained. This

histogram could indicate the service rate of the device, which may follow any general statistical

distribution. Assuming that the arrival rate of tenants is derived from the exponential distribution

(see Section 6.1.1), using Kendall’s notation, the queuing model of this particular device may be

defined as a M/G/1 queue [34].

Hence, by applying Pollaczek-Khinchin (PK) formula, the expected number of Web clients

using the system can be inferred. Then, an application of Little’s theorem provides the average

time spent in the queue by the clients. More advanced, queuing theory could define the average

expected waiting times, the distribution of the length of the busy periods, the distribution of the

sojourn and waiting times, the distribution of the number of arrivals during the service time etc.

Nonetheless, this theoretic analysis is left for future work.

6.3 Configuring Request Queues for Enhanced Performance

The amount of time from a transmission loss of a request/response message until its retrans-

mission is crucial for the system’s performance, since fast retransmissions would increase the

service rate of the requests. However, retransmissions that happen too early may encounter the
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likely event that the original request message had already been served, but the response has not ar-

rived back yet. Such premature timeouts could cause unnecessary additional loading that increases

collisions in a loaded system, thus leading to system inefficiencies.

Hence, fine-tuning the request queue retransmission interval is important for the framework’s

operation. In the following subsections, the main focus is to analyze the queue behavior, and

properly set the value of the retransmission interval. We refer to the request queue retransmission

interval parameter as α.

6.3.1 Searching for an Effective Retransmission Interval

The average RTT of each sensor mote participating in the experimental setup may be derived

through sampling. Figure 6.7 presents the histogram of some sensor node deployed in one-hop

distance from the base station. In this case, the average RTT time in the one-hop communication

with the motes is 530 ms with a standard deviation around 70. Having this in mind, if α < RTT ,

numerous useless retransmissions would happen, deteriorating the overall system performance.

This can be observed in Figure 6.8. Hence, we only examine values of α ≥ RTT . However,

since useless retransmissions still exist, even with slghtly larger values of α, we increase α until

retransmissions are effectively reduced near to zero. This happens when α is about 600 ms.

We need to note that when α is less than 600 ms, the system does not operate correctly. The

percentage of (unnecessary) retransmission attempts in relation to the total number of client re-

quests grows exponentially as α decreases since the queue incorrectly believes that the request

messages keep failing. In the special case when α = RTT , false retransmission attempts reach

18%, or in total 54 redundant retransmissions when λ = 1 in 5 minutes simulation time. Con-

tinuous retransmissions cause the sensor devices to malfunction, reduce their battery lifetime and

increase the overall loading of the system.
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Figure 6.7: Histogram of RTT times of some sensor mote in one-hop distance.
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Figure 6.8: Retransmission attempts in low values of the request queue retransmission interval.

And
rea

s K
am

ila
ris



144

The experimental setup for investigating the parameters affecting the retransmission interval

of the request queue involved two sensor devices. A small number of devices was selected, as

the aim was to observe the queues when having considerable load. The first experiment studies

the effect of transmission failures on the request queues, using λ = 1. By default, the transmis-

sion failures in our deployment are around 3-5%, so we emulated additional failures by manually

dropping packets at the driver module. Figure 6.9 presents the response times in relation to the

retransmission interval α, considering different percentages of failed transmissions.
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Figure 6.9: The effect of transmission failures on the request queues.

As transmission failures increase, response times are also increased, but not at an alarming

rate. In all scenarios of different percentages of message failures, α = 600 ms yields the best

response times. As the parameter α increases, response times are increased as well. An important

thing to notice is that as the percentage of transmission failures increases, the slopes of the graphs

become larger. This fact denotes that the request queue mechanism becomes more important

And
rea

s K
am

ila
ris



145

when transmission failures exist in some home environment, since the proper adjustment of the

retransmission interval parameter affects more significantly the response times.

The next experiment examines the retransmission interval α in varied workload. In this and

the next experiments, the default case of 3-5% transmission failures is used. This is realistic for

typical smart building environments. The results of this experiment are displayed in Figure 6.10.
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Figure 6.10: The effect of varied workload on the request queues.

Low traffic implies a small percentage of retransmissions. Thus, the influence of the request

queue in the overall system performance is small. However, as the traffic increases, the retrans-

mission interval α becomes more important, especially when λ = 2. Also in this experiment, as

expected, the most appropriate value for α is 600 ms.And
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6.3.2 An Equation for Setting the Retransmission Interval

Considering that the average RTT time in the experimental setup is 530 ms with a standard

deviation equal to 70 (see Figure 6.7), we assert that an appropriate value of α equals the RTT

time plus its standard deviation value.

To examine whether this assumption is valid, we performed a last experiment, investigating

the influence of RTT time on the request queue, as shown in Figure 6.11 for λ = 1. To increase

RTT time, we programmed the TinyOS application which was installed on the sensor devices to

wait an extra delay before transmitting a response back to the framework.
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Figure 6.11: The effect of round trip time on the request queue.

As the RTT delay increases, a good choice for the value of α remains the RTT time plus

some ”safety margin”. This safety margin can be related to the standard deviation. Therefore, we

recommend that the α value should be set according to the following equation:

α = RTT + c · St. Deviation (5)
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where the parameter c allows the system to choose being more or less cautious. In a static de-

ployment of home devices, similar to our emulated experimental setup, c could be equal to 1. In a

dynamic case with mobile devices and changing topologies, c could take larger values. We discuss

about this scenario in Section 6.3.3.

Of course, RTT times and standard deviation values are learned from the device thread after

observing the physical device for some amount of time. Therefore, the best approach is to set

initially α to a larger value, leaving a safety margin to avoid producing continuous retransmissions.

During the device operation, the value of α may be fine-tuned accordingly, by considering the

observed RTT times.

6.3.3 Support for Moving Objects and Dynamic Environments

The experimental setup described in Section 6.1 focuses on a static deployment of embedded

devices inside a smart home. Hence, the average RTT times of the sensor motes were stable

and constant. However, in a dynamic scenario with mobile devices and fast changing topologies,

highly varying RTT times could be observed.

In this case, to estimate RTT, one could adopt exponential weighting, the approach used at

the TCP retransmission timer mechanism [170]. Both a dynamic topology of devices in an indoor

environment and the Internet are characterized by unpredictability and dynamic network changes.

Therefore, RTT could be set according to the TCP equation:

RTTest = (1− β) ·RTTest + β ·RTTsample (6)

whereRTTest is a smoothed RTT time, influenced by past RTT samples,RTTsample is the current

measurement of RTT and 0 ≤ β ≤ 1.
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Similarly, standard deviation could be defined according to the TCP equation:

RTTdev = (1− γ) ·RTTdev + γ · |RTTsample −RTTest| (7)

where RTTdev represents RTT variation or approximately the standard deviation and 0 ≤ γ ≤ 1.

The parameters β and γ define the memory capability of the system, to remember the history

of measurements and slowly adapt to changes in RTT and standard deviation values. For fairly

stable environments, these values could be set close to 0, while in more dynamic environments

closer to 1.0. Obviously, if more smoothing is required, e.g. in case RTT changes frequently,

lower values of β and γ may be selected. In TCP, a typical value of β is 0.125 and of γ is 0.25.

Finally, the parameter c in Equation 5 was set equal to 1 in the static case. However, in a

dynamic scenario with mobile devices and fast changing topologies, c should take larger values, to

adapt more easily to the possibly highly varying RTT times of the embedded devices. Nonetheless,

experimenting with these parameters to adapt to dynamic environments is beyond the scope of this

thesis, due to the highly varying characteristics of different application scenarios.

6.4 Potential Benefits of Using Request Queues

By using request queues at the application framework for managing the communication with

embedded devices, numerous benefits can be obtained. For example, request queues could be used

for offering load balancing between embedded devices, for supporting prioritized requests and for

providing some indications about the execution time of future requests, based on the queue load

and status. We list and investigate some of these benefits in the following subsections.

6.4.1 Multi-Client Support

By employing request queues, multiple tenants may interact simultaneously with their home

environment. Even though their requests could be delayed in increased traffic conditions, it is
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guaranteed that they would eventually be satisfied. The average response times in varied workload

are depicted in Figure 6.12, both for a single-hop and a 3-hop topology. The single-hop case

involves 4 sensor motes in a star topology while the 3-hop case involves a 3-layered 2-3-4 topology

(see Chapter 7, Figure 7.1), querying only the 4 leaf nodes for their services.
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Figure 6.12: Average response times in different traffic conditions.

As the figure denotes, the multi-hop topology causes additional delays of around 200 ms to

satisfy the requests. Heavy workload increases response times by 18-20% in the single-hop case

and 14-17% in the multi-hop topology, while the increase is almost linear. This is an indication

that response times scale well as the traffic increases. This fact suggests that hundreds of tenants

may be supported by the application framework with acceptable performance.And
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6.4.2 Avoiding Transmission Failures

As mentioned earlier, transmission failures are successfully masked by means of the request

queues. As soon as a failure is ”suspected” by the queue (e.g. a lost request/response message or a

delayed response is sensed by the retransmission timer), the request is immediately retransmitted

to the device. Hence, the system becomes more reliable and robust, with a small penalty on

response times due to the retransmission attempts.

Figure 6.13 displays the response times in different percentages of transmission failures. In

light workload, transmission failures do not affect significantly the response times. However, in

heavy workloads, transmission failures cause the response times to grow almost exponentially.

Nonetheless, even in the extreme scenario of 30% of failures, all requests are eventually satisfied,

in near double time than in the 0% case.
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Figure 6.13: Average response times in different percentages of transmission failures.
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6.4.3 Estimation of Response Times

In Section 6.2.1, we discussed theoretically how response times may be estimated when the

request queue is at a certain state. This estimation is enabled by Equation 4. Here we investigate

experimentally whether this equation may be adopted for this purpose.
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Figure 6.14: Estimation of response times Vs Actual response times.

The estimated response times, as well as the actual response times for some execution of the

emulation are provided in Figure 6.14. In this scenario, only one sensor device was used with

an arrival rate of residents equal to 2.5, in order to overload the request queue of the device and

take a snapshot of its operation in high traffic. The default case of 3-5% transmission failures was

adopted. As the figure shows, the estimation of response times behaves very well, with the model

following the trends fairly accurately, except in cases when transmission failures happen. In this

case, the response times are underestimated. Smaller errors are due to RTT deviations. In general,
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the average estimation error is 12.38% when the request queue size is up to 2, and it increases to

14.60% when the request queue size becomes up to 6, since it is more possible for transmission

failures to occur.

6.4.4 Load Balancing for Serving High Traffic

Another possibility to effectively serve increasing traffic would be to employ multiple (redun-

dant) sensor devices. An equivalent example from real life concerns a queue at a bank, which

employs a number of employees, in order to serve efficiently its customers. In this case, a module

acting as a load balancer may be considered for managing a network of queues. This module

could be placed on the application framework between the driver module and the device threads.

To demonstrate this capability of using request queues, we implemented a load balancer using

Algorithm 1.

Algorithm 1 A simple algorithm for load balancing.
1: Whenever a new request appears for service s, estimate the potential response time (see Sec-

tion 6.2.1) for every device that offers the service s.

2: Forward the request to the embedded device that offers the least estimated response time.

A naive approach would be to select the device with the currently smallest queue size. How-

ever, each device type has a different service rate, while even devices of the same type may be in

different hop-distance from the base station (varying RTT times). Hence, it is better to consider

request forwarding based on Equation 4.

The results of the execution of this simple load balancing mechanism in varied workload can

be observed in Figure 6.15, by employing 4 sensor motes in a star topology. In low traffic, the load

balancer does not make much difference, since the requests are effectively served by the devices,

even when they are randomly selected. There exists a small improvement of performance, around
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Figure 6.15: Waiting times for requests when using a load balancer.

4-6%. However, in increased traffic, the load balancer forces the incoming requests to be balanced

evenly among the available devices. Thus, waiting times at the queues are decreased and the

overall response times are effectively decreased. This decrease reaches almost 11%.

Load balancing may also increase the battery lifetime of the embedded devices, because the

requests are distributed uniformly among them, In this way, the overloading of some device with

requests is avoided and its battery is maintained for a larger time period.

6.4.5 Handling Priorities

The use of request queues may support prioritized requests without much effort. Priorities are

considered in cases when an order of importance or urgency needs to be maintained. Typical cat-

egories of priorities may be low, normal and high. High-priority requests are the most important,

while low-priority requests the least significant.
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In smart home applications, using prioritized requests may be beneficial when some urgent

operation needs to be performed as fast as possible. This operation may involve triggering the

alarm when a thief breaks into the building or switching off an electric appliance that consumes

excessive amounts of energy.

The request queues may be easily transformed into priority queues by converting the queues

into priority heaps. A key characteristic of binary heaps is that they keep at the head of their binary

tree the request that has the highest priority. The algorithm we used for defining priorities in the

home ecosystem is described in Algorithm 2.

Algorithm 2 An algorithm for supporting priorities.
1: Assign a priority to each request (low, normal or high).

2: Each prioritized request is translated into an integer value by the application framework, ac-

cording to the following formula: low=1, normal=5 and high=10.

3: The priority heap selects for execution the request with the highest priority number.

4: To avoid starvation of low-priority requests, the priorities of all waiting requests are increased

by 1 at every round, i.e. at a successful execution of some request.

To test the priority queuing mechanism, the emulation described in Section 6.1 was employed

with 2 motes. Figure 6.16 shows the response times of the prioritized requests according to the

current size of the heap when each request appeared. This emulation was performed by setting

λ = 3, including 10% high-priority requests, 10% low-priority and the rest with normal priority.

According to the figure, high-priority requests are executed first, with waiting times less than 2

seconds even when the heap has a size equal to 9. On the contrary, low-priority requests need much

more time to be executed, reaching 10 seconds in some cases. Table 6.1 shows the load conditions

of the priority heap at each priority category. As expected, high-priority requests remain the least
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Figure 6.16: Waiting times for requests with different priorities and priority heap conditions.

time in the heap, between 1-3 rounds. Low-priority requests stay in average 5 rounds in the heap,

while normal-priority requests fluctuate between low- and high-priority requests.

Table 6.1: Priority heap load conditions at the different priority categories.

Priority Min. Heap Load Max. Heap Load Avg. Heap Load St. Deviation

Low 1 12 5.40 3.808

Normal 1 9 3.24 2.421

High 1 3 1.44 1.003

The average waiting times of the priority categories when changing the percentage of high-

priority requests are presented in Figure 6.17. As the number of high-priority requests increases,

their waiting time is likewise slightly increased. This happens because a few high-priority requests

might enter the queue concurrently. In such cases, a time priority is followed and the high-priority

requests appearing later need to wait those appearing earlier. As the percentage of high-priority
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requests increases, also the waiting times of the low- and normal-priority requests are increased.

This occurs since the high-priority requests are executed first, delaying the execution of lower-

priority requests.
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Figure 6.17: Average waiting times for different percentages of high-priority requests.

Figure 6.17 indicates that the waiting time of high-priority requests scales well, as their per-

centage increases. This happens by forcing lower-priority requests to stay longer in the queue, with

an exponential growth of their waiting time, as high-priority requests are increased. Algorithm 2

may be easily extended to support more layers of priorities.

Offering support for priorities is not a native feature of the Web, even though it may be sup-

ported in the future. Nevertheless, priorities constitute an important feature in smart home appli-

cations that support multiple users and experience high traffic. They can be employed internally

by the application framework, e.g. to favor the requests coming from specific family members or
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those marked by the users as more important in some rule-based smart home application, similar

to the one in Section 4.3.4.

6.5 Summary of the Request Queue Mechanism Analysis

This chapter examined request queues as a data structure for handling the interactions with em-

bedded devices in a smart home. An analysis of their functionality was performed and potential

advantages were identified and discussed. Properly setting the request queue retransmission inter-

val is important for the efficient operation of the queuing system. Request queues may constitute

a promising mechanism for enhancing smart home applications with numerous benefits.

Generally, request queues become more useful in scenarios with multiple, concurrent users

and an increased percentage of transmission failures at the home space. They may be well used

in scenarios that demand support of prioritized requests and they can serve high traffic through

load balancing and device redundancy. Request queues can be considered as a dynamic, adaptive

system that handles failures in the home environment providing certain reliability.

Furthermore, we identified the similarity between the retransmission interval time and the

retransmission mechanism used at the TCP protocol. This fact encourages further research that

concerns applying Internet principles in smart home applications for added performance, including

probably moving objects and more dynamic environments.

Finally, the use of queues enables the detailed analysis of the system by employing queuing

theory. Queuing theory could answer more complicated questions and be exploited to provide

some guarantees and QoS indications to home tenants.And
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Chapter 7

Evaluating Web Techniques for Enhancing Smart Home Performance

In this chapter, a technical evaluation of an IPv6-based solution for Web-enabled smart homes

is performed. This evaluation focuses mainly on Telosb sensor motes (see Section 5.1.1), as they

are expected to accept heavy workloads due to their continuous monitoring operation. The perfor-

mance of sensor motes reflects the operation of any Web-enabled embedded device, including our

Ploggs smart power outlets (see Section 5.1.2).

In general, smart meters, smart power outlets and smart appliances do not demand high per-

formance, as their primary goal is to inform the system in pre-defined, relatively slow intervals

about the energy consumption of electrical appliances or the total consumption of the smart home.

Smart power outlets and smart appliances are used also for controlling individual appliances, but

this operation is expected to happen sporadically, for example when some energy-efficient smart

rule is validated through the physical mashups editor (see Section 4.3.4) or when the smart home

needs to urgently switch off some electrical appliances in a load shedding scenario (see Section

9.3). Nevertheless, in Section 9.2 we provide an evaluation of Ploggs in terms of response times, in

a case where the smart home exploits the demand response program of the smart grid to schedule

tasks in low-tariff hours.
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Our technical evaluation spans three different scenarios. In the first, request/response inter-

action is explored, following an emulation where a large family interacts with the smart home

through the Web. An IPv6-enabled WSN is deployed in an experimental smart home, considering

both a single-hop star topology and a tree topology with multi-hop communication between sensor

motes. In the second, the energy consumption of sensor motes is investigated, by measuring the

energy performance of the 6LoWPAN-enabled WSN both in request-response and event-based

messaging. Finally, the third scenario examines streaming of sensor measurements, where events

are continuously triggered with high frequency and need to be forwarded (pushed), from the ap-

plication framework (publisher) to third-party applications (subscribers).

By evaluating request-response, event-based and streaming messaging, all the three interaction

possibilities with home devices are met, as specified in Section 4.1, where the requirements for

smart homes are defined. These three interaction patterns cover the most important and popular

use cases that shall be supported in future smart home applications.

The rest of the chapter is organized as follows: Section 7.1 describes the experimental setup

during the evaluation procedure and the performance metrics used. Then, Section 7.2 examines

the response times of the sensor motes in a request-response interaction model. Afterwards, Sec-

tion 7.3 considers the energy performance of the sensor motes, both in a request-response and a

event-based messaging scenario and, finally, Section 7.4 evaluates the behavior of the system in a

streaming case, where streaming events need to be forwarded to interested home tenants.

7.1 Experimental Setup

In the following evaluation scenarios, both a single-hop and a multi-hop topology are exam-

ined and compared. The single-hop case is similar to the experimental setup used during the
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analysis of the request queue mechanism (see Section 6.1). It involves a star topology inside an

experimental home environment and it can be graphically observed in Figure 6.1.

On the other hand, the multi-hop case concerns a tree topology with 3 layers, in a 2-3-4

formation of sensor devices. In this case, sensor motes have 5 meters distance from their parent

node and from each other. This topology is depicted in Figure 7.1. We stress the fact that only

the 4 leaf nodes, located in a 3-hop distance from the base station are used for satisfying requests.

This happens to stress the operation of the system, taking into account the extra multi-hop delay.

Figure 7.1: Experimental setup (multi-hop).

Similar to the experimental setup in Section 6.1, realistic traffic from Web clients was emulated

by programming multiple virtual Web clients interacting with the sensor devices of their smart

home through the Web. These clients are modeled as software agents residing on the same laptop
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as the application framework. Thus, network delay is negligible. Their arrival rate λ follows the

exponential distribution. Each test has duration of 5 minutes. All the assumptions considered

during this technical evaluation are listed in Section 6.1.3.3.

We note that although our emulation assumes multiple residents making continuous requests

to their smart home devices, in real life these requests could come from agents of the residents,

residing in some remote location(s) and interacting with the home environment for monitoring

purposes. In this case, a M2M communication would be enabled, with each resident having one

or more agents guarding the house for possible abnormalities.

7.1.1 6LoWPAN Vs Simulated REST

For comparison reasons, we also programmed our Telosb sensor motes without 6LoWPAN

support, using the native programming model of TinyOS, still following the REST architectural

style. Thus, we developed simulated REST, which is a light, simulated version of REST without

the IPv6 overhead. In simulated REST, the device discovery procedure employed is simplistic and

not based on any Web standards. Obviously, simulated REST is more efficient, because it uses the

native messaging stack of TinyOS without the IPv6 burden. From now on, the 6LoWPAN-based

WSN is referred to as 6LoWPAN REST and the version without the IPv6 support as Simulated

REST. In our evaluation efforts in the following sections, we measure the performance also for

simulated REST, in order to develop effective and reliable comparisons.

The details of the memory usage of Telosb sensor motes are given in Table 7.1. The size of

the 6LoWPAN messages is 128 bytes while the size of messages in simulated REST is 80 bytes.

The memory footprint of the 6LoWPAN REST software is larger than the simulated REST code,

due to the additional libraries of Blip.

And
rea

s K
am

ila
ris



162

Table 7.1: Memory usage of Telosb sensor motes.

Module Memory Footprint

6LoWPAN REST TinyOS Software 40,604 Bytes

Simulated REST TinyOS Software 29,860 Bytes

6LoWPAN REST Message Size 128 Bytes

Simulated REST Message Size 80 Bytes

7.1.2 Performance Metrics

In the following tests, we focus on the following performance metrics:

• Average Request-Response Time or Response Time. The average amount of time needed

from the creation of a request by a Web client to the arrival of the response, transmitted by

a sensor device.

• Push Time. The average amount of time needed to forward events from the application

framework to interested third parties.

• Cache Hits. The serving of a request through the Web caching mechanism (see Section

4.2.5), instead of transmitting the request to the physical home device, through the wireless

medium of the home environment.

• Energy Consumption. The energy consumed by the home devices during their operation

in Joules.

• Scalability of home residents. Support for multiple, simultaneous home residents (and re-

quests) by the application framework. These residents may interact concurrently with their
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home devices. Although typical families consist of 5-10 members, the application frame-

work should support also larger numbers of users/requests, e.g. up to 100 requests/minute.

This would cover the case that some home tenants employ Web agents that monitor the

house and take informed decisions for home automation.

• Scalability in terms of topologies of home devices. Effective and reliable communication

both in a single-hop star topology as well as in a multi-hop tree topology in the home

wireless network.

• Reliability. It is about the reliable delivery of request messages from home residents to their

home devices and vice-versa. Reliability involves no messages losses due to transmission

failures and collisions.

7.2 Response Times in Request-Response Interaction

In this first experiment, the performance of the request-response interaction in the smart home

is evaluated, in terms of response times. As mentioned before, 2 different topologies are consid-

ered to test the system, namely a single-hop star topology and a multi-hop tree topology. In both,

the existence of a large family is assumed, interacting with the smart home (see Section 7.1).

Multiple virtual residents are interacting with the IPv6/6LoWPAN-enabled sensor motes of

their smart home through the Web. Selection of sensor motes and RESTful Web services is per-

formed randomly by the residents. Various tests are performed with variable numbers of residents,

ranging from 10 to 120. Assuming that each resident performs 1 request per minute, residents are

modeled by varying the arrival rate λ. In this modeling, an arrival rate of λ = 1 means that 60

residents interact with their house every minute.
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7.2.1 A Single-Hop Topology

In this case, a single-hop topology is investigated, employing 4 IPv6-enabled sensor motes.

Figure 7.2 shows the results obtained from the experiment using 6LoWPAN REST, as well as the

results obtained when considering simulated REST, without the IPv6 overhead. In both cases,

the increase in response time as λ increases is almost linear, however with lesser increase for

6LoWPAN REST. In particular, for the case of 6LoWPAN REST, there is an increase of 30% for

a 10-fold increase of λ from 0.2 to 2.0, whereas for simuated REST there is an increase of about

265% for the same 10-fold increase in λ. This observation is an indication that 6LoWPAN REST

scales well as the traffic increases.

Still, simulated REST is of course much more efficient, especially in light workload. In this

case, simulated REST is almost four times faster than 6LoWPAN REST. In heavy workload (e.g.

λ = 2) the difference in performance is not so clear, being less than 1.5 times. This happens

because the 6LoWPAN implementation based on Blip is more stable and reliable than simulated

REST and operates faster. Hence, the performance difference is mainly due to the IPv6 burden

during the message transmission/reception at the 6LoWPAN REST case.

Even though simulated REST outperforms 6LoWPAN REST in normal conditions, this is

not the case when HTTP caching is used1 (see Section 4.2.5). Examining Figure 7.2, we can

also observe the results when the Web cache of the application framework is set for 10 seconds

freshness time. In light workload scenarios, the Web cache does not influence response time
1Web caching is used for the 6LoWPAN REST case. A cache could also be employed for simulated REST, with

effective potential improvements in response time. However, the main goal here is to evaluate the influence of Web

techniques in IPv6-based smart home deployments, considering also the simulated REST option for better comparisons

and understanding. Besides, a Web cache may be installed very easily by using a plethora of different available im-

plementations on the Web e.g. Apache Cache Control, while it needs to be developed from scratch for a customized

solution such as simulated REST
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Figure 7.2: Response times in request-response interaction at a single-hop topology.

significantly, since cache hits are minimum. However, as the workload becomes heavier, the

percentage of cache hits increases and the average response time is effectively reduced. In the

special case when the arrival rate λ reaches 1.4, 6LoWPAN REST with 10 seconds caching needs

less time than simulated REST. This time difference becomes 2.2 times bigger in the highest-traffic

test where λ = 2. Furthermore, the decrease in response time in the caching-based case is almost

linear as λ increases. In particular, there is a decrease of about 56% for a 10-fold increase of λ

from 0.2 to 2.0. This is another indication that 6LoWPAN REST scales even better when Web

caching is employed, even for minimal freshness times of some seconds.

The efficiency in response times using Web caching depends on the percentage of cache hits

at each test. The correlation between cache hits and the arrival rate λ is depicted in Figure 7.3 (1

Hop). Higher traffic causes more cache hits since the application framework saves the responses in

its cache, while answering requests from home tenants. Subsequent related requests, which occur
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Figure 7.3: Cache success based on the arrival rate λ.

only seconds after a similar request has been satisfied (due to the increased traffic), are served

through the caching mechanism.

Obviously, Web caching offers good scalability to the home ecosystem, both in terms of sup-

porting numerous Web clients and sensor motes. Of course, cache hits and performance would

have been increased if we used a larger cache freshness time. This depends on the specific require-

ments of each application. We will consider this correlation between cache hits and freshness time

in the next scenario that involves a multi-hop topology.

7.2.2 A Multi-Hop Topology

In most cases, 6LoWPAN-based single-hop topologies do not cover adequately smart home

environments, since the indoor range of a typical sensor mote is 20-30 meters. Perhaps, in the

future, Wi-Fi technology would offer sufficient coverage using only a single access point [157].
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Since singe-hop deployments are currently insufficient, in this section we evaluate the response

times of our Web-based IPv6/6LoWPAN-enabled WSN also in a multi-hop setup.

The 4 IPv6-enabled sensor motes used in the experiments at the single-hop case, are placed

now as leaf nodes in a 3-hop distance from the base station in a 2-3-4 topology, as shown in Figure

7.1. We note that this topology has been selected to stress test the operation of the WSN and the

application framework in heavy workload.

The results of this experiment can be observed in Figure 7.4. The response times are less than

a second, even in the highest-traffic test. The multi-hop environment causes additional delays of

around 170-200 ms for 6LoWPAN REST and 110-140 ms for simulated REST, compared to the

single-hop tests. In both cases, as λ increases, an almost linear increase of response times occurs,

reaching 24% in 6LoWPAN REST and 127% in simulated REST, for a 10-fold increase of λ from

0.2 to 2.0, indicating a scalable behavior of 6LoWPAN REST.

Similar to the single-hop scenario, 6LoWPAN REST with 10 seconds caching executes faster

than simulated REST, as soon as the arrival rate λ reaches and exceeds the value of 1. This

happens in lower traffic conditions compared to the single-hop case, where λ needed to reach 1.4.

A possible explanation is that the additional delays caused by the multi-hop environment make the

caching mechanism more significant and effective.

Cache hits in correlation to the arrival rate λ, are shown in Figure 7.3 (3 Hops). Similar to

the single-hop case, increased traffic produces a larger percentage of cache hits. As the cache

hits increase, the response time is effectively decreased. This fact indicates good scalability of the

system, also in the multi-hop topology, since numerous simultaneous Web requests can be handled

in a few hundreds of milliseconds. Comparing with the single-hop case, we may conclude that

cache hits do not depend on the sensor topology, being rather random for each different test,

depending merely on workload.
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Figure 7.4: Response times in request-response interaction at a multi-hop topology.

Cache hits are directly related to cache freshness time. This statement is reinforced by ob-

serving Figure 7.5. According to the figure, as freshness time increases, the cache hits increase

as well. This increase is higher between 10-25 seconds of freshness time and becomes smaller in

larger values of freshness time (e.g. 40-60 seconds). In all the three scenarios involving different

arrival rates, the graphs of the percentages of cache hits follow similar patterns. The percentage

of cache hits may reach 90%, when considering freshness times around a minute. Obviously, this

is a really high percentage that guarantees good performance in terms of response times.

A large positive correlation exists between the freshness interval and the successful request sat-

isfaction through the caching mechanism. Definitely, there is a trade-off in using larger freshness

time because although the cache hits are increased and the overall response times are reduced, the

cached sensory measurements become older. The exact value of freshness time may be properly

selected by considering the specific requirements of the smart home application scenario.
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Figure 7.5: Cache hits in relation to the cache freshness time.

A more precise relationship between the cache freshness time and the response times may be

perceived by viewing Figure 7.6. Apparently, as the freshness time increases, the average response

time is effectively decreased. This happens since the percentage of cache hits increases, as we saw

in Figure 7.5, and the framework serves the request through the caching mechanism instead of

querying the physical home devices, which may be located multiple hops away from the base

station. When increasing the default value of 10 seconds freshness time by 5-30 seconds, the

request time is linearly reduced with a large gradient.

Further increases of the freshness time, beyond 40 seconds, cause only small further reductions

to the response time. This observation is useful when considering the configuration parameters in

specific smart home applications (see Appendix C), as the freshness time is much more effective

when its value ranges between 10 and 40 seconds. Similar patterns hold for all the three tests using

different arrival rates. As before, larger workload augments the significance and effectiveness of
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Figure 7.6: Response times in relation to the cache freshness time.

the caching mechanism. Overall, time-critical applications could exploit the caching mechanism

to achieve minimum response times. As Figure 7.6 shows, freshness times of 60 seconds cause

the average response time to diminish to only 100 ms, which is considered appropriate even for

the most demanding smart home applications.

Finally, since the coverage of the wireless multi-hop network is important in large-home de-

ployments, we decided to deploy our sensor motes also in larger distances from their parent nodes,

in order to study the role of distance in response times. More specifically, we considered additional

distances of 10 and 15 meters at the 2-3-4 topology of the 6LoWPAN REST WSN.

The results are shown in Figure 7.7. When the distance is increased by 5 meters, the response

times are also increased by 65-109 ms. This accounts for an increase 8-12%. In case the distance

is increased by 10 meters, response times are increased by 154-190 ms or 18-24% from the default

case. Obviously, distance plays an important role in the performance of the system. However, even
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in case of 15 meters distance and λ = 2, response times can be considered acceptable, reaching

just a little more than a second. Definitely distance affects the communication properties of the

network, by stronger effects of signal reflection, scattering and fading.
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Figure 7.7: Response times in different distances at a multi-hop topology.

7.3 Energy Performance of Sensor Devices

In this section, the energy performance of 6LoWPAN REST in comparison to simulated REST

is studied, by using the Avrora simulator [156]. Since Avrora simulates programs written for AVR

microcontrollers, we adapted our code for Telosb sensors to run on Micaz motes. The power

profiles of both mote types are listed in [134].And
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7.3.1 Energy Consumption in Request-Response Interaction

The energy-related evaluation efforts focused on the multi-hop tree topology of the sensor

network, as it constitutes the most realistic scenario towards a real deployment in a smart home.

Similar to Section 7.2.2, only the leaf nodes of the 3-hop topology were examined. Those are the

sensors that satisfied the Web requests from home residents. We ran the same tests, assuming 5

meters node distance and 5 minutes execution time.

The energy consumption of a leaf sensor mote is displayed in Figure 7.8. The graph is for a

single sensor but similar results have been obtained for the other leaf sensors. Furthermore, the

simulation results for intermediate sensor motes in the multi-hop topology follow a similar pattern.
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Figure 7.8: Energy consumption in request-response interaction at a multi-hop topology.

Observing the figure, we can observe that the difference in energy consumption between

6LoWPAN REST and simulated REST is small, around 2-12%. This variance happens due to

the probabilistic selection of sensor motes by the residents. 6LoWPAN REST consumes more
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energy due to the 6LoWPAN overhead in packet size (see Table 7.1). Both in 6LoWPAN REST

and simulated REST, the consumption increases almost linearly.

When 6LoWPAN REST employs 10 seconds caching, it becomes much more energy-efficient

than both 6LoWPAN REST and simulated REST, in workloads exceeding λ = 0.5. Energy

efficiency reaches 50%, in heavy workloads. In light workload, efficiency is still considerable,

fluctuating around 15-25%. This experiment indicates that 6LoWPAN REST with caching scales

particularly well as the traffic increases.

We need to note that the results depend greatly on the transmission power setting. At some

power settings, receiving (or idle listening) may consume more than transmitting. In this experi-

ment, the link layer of the sensor nodes does not use any duty cycling, but it is always listening

by default. The fact that sleep modes were not considered explains the rather increased values of

energy consumption in the tests.

7.3.2 Energy Consumption in Event-Based Messaging

To test the proposed push technique for event-based Web messaging (see Section 5.2.4), a

scenario was created, in which sensor motes informed the application framework as soon as the

levels of illumination fell below a certain threshold. The framework was configured to POST a

subscription HTTP request to the motes offering illumination services and supported the RESTful

Message System [161]. Whenever the percentage of light in some room was significantly reduced,

this event was POSTed back to the framework (subscriber) at a pre-specified callback URL.

We manually forced these events to be triggered, by turning the lights on/off. Considering

the multi-hop scenario in Figure 7.1, around 400-440 ms were needed from the time the lights

were turned off, until the event notification reached the application framework from a leaf node.
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Obviously, in a pull scenario, event notification could last seconds or even minutes, depending on

the polling frequency of the framework.

We used the Avrora simulator to compare the energy consumption of 6LoWPAN REST when

RMS was employed (push technique, see Section 5.2.4) and when the framework periodically

polled the sensor motes for newly sensed events (pull technique). We simulated the triggering of

a fall in illumination levels once every 5 minutes. Therefore, the motes supporting RMS informed

the framework every 5 minutes about these events while, in the pull case, the framework was

forced to ask the sensors every 30 seconds about a possible new event.
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Figure 7.9: 6LoWPAN energy performance comparison in push- and pull-based messaging.

Figure 7.9 presents the results of this simulation, for some hours of operation. To provide a

better overall picture, we also show the simulation results for Blink and Oscilloscope2. From the
2Blink and Oscilloscope are two well-known TinyOS applications. Blink is a simple application that blinks the

3 mote LEDs. It tests that the boot sequence and millisecond timers are working properly. The three LEDs blink at

1Hz, 2Hz, and 4Hz. Oscilloscope is a simple data-collection demo. It periodically samples the default sensor with 4Hz
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figure, we can see that 6LoWPAN REST with RMS consumes considerably less energy than the

classic pull technique. This difference is around 23%. Comparing with Blink and Oscilloscope,

the energy consumption in the 6LoWPAN cases is 3-4 times less. This happens because blinking

the LEDs of the sensor motes is very energy-demanding. More precisely, blinking the LEDs is

responsible for 60-75% of the total energy consumed by the motes during their operation.

In general, our simulation measurements are linear. In real life this would not be true, as the

battery would slowly discharge over time [100]. Thus, the supplied voltage would decrease, as

well would decrease the consumed current and therefore the consumed energy. Unfortunately, the

Avrora simulator does not take into account battery discharging. However, for 10 hours simulation

time, the voltage drop is negligible.

Assuming that sensor motes operate with two typical AA batteries, they consume around 18,72

kJ. According to our simulation results based on Avrora, sensors with 6LoWPAN REST and RMS

would be able to operate for 2 months and 23 days, while 6LoWPAN REST without RMS only

for 2 months and 3 days. Under this assumption, sensors with Blink would operate for 17 days

and 9 hours while sensors with Oscilloscope application for 20 days and 2 hours.

Nevertheless, through RMS push technique, smaller delays and better energy conservation are

obtained, as we avoid polling the devices with continuous request messages. Of course, these

results are dependant on the frequency of event reporting. However, some generalization can

be made considering that events are supposed to happen only sporadically. We note that these

calculations are not realistic since the link layer of the sensor nodes does not use any duty cycling

for saving energy during sleep times. Though, the findings are useful for comparison purposes.

sampling rate and broadcasts a message over the radio every 10 readings, blinking at the same time the green LED of

the mote.
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7.4 Push Times in a Streaming-Based Interaction

In this last scenario, the IPv6/6LoWPAN-enabled WSN and the application framework were

tested in a streaming application. The sensor motes were programmed to perform streaming of

temperature measurements with frequency of 1 message per second. Since it was not adequate to

test only the ability of the framework in terms of receiving those messages, we decided to extend

the structure of the framework in order to provide enhanced eventing functionality.

We created a simple topic-based publish/subscribe infrastructure [56] with push [60] technol-

ogy (see Section 2.6.2). RMS could also be used (see Section 5.2.4), however, RMS is more

suitable for event-based communication between sensor devices.

Considering the experimental setup in Section 6.1.2, we used a second laptop, where we also

installed the application framework, and attached to it a sensor mote acting as a base station. We

settled this laptop near to the first one, connected to the same local-area network (LAN), in a

distance where its base station would be able to sense the messages that were transmitted from

the remote sensor motes to the first laptop. This second laptop, as soon as it started, it expressed

its interest to the first, through a POST request, for events of topic Temperature. The extended

experimental setup is shown in Figure 7.10. A single-hop star topology was considered, with

each sensor mote in close distance from the base station, since the main aim was to examine the

forwarding capability of the framework to interested third parties. Various sensor motes were

used, ranging from 1 to 12.

The notion of Web Hooks (see Section 2.6.4) was followed to facilitate event notification.

In the request payload, a callback URI was added, to indicate where possible events would be

forwarded. From now on, whenever there was a transmission of a measurement about temperature,

this message was considered as a new event and it was forwarded through the LAN from the first
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Figure 7.10: Experimental setup in the streaming scenario.

laptop (publisher) to the second (subscriber). The time difference between the moment the second

laptop senses (through its base station) the event and the moment the very same event is received

through the Web is measured and the results in regard to push time are presented in Figure 7.11,

with a variable number of motes and correspondingly events/second.

From the figure, it may be inferred that the framework performs well also in the case of a

streaming-based wireless network with reasonable workload. In all the cases, the delay increases

almost linearly, which indicates limited scalability. In particular, all events need less than 60 ms

to be pushed from the publisher to the subscriber. This time delay can be considered tolerable,

even for emergency and highly time-critical deployments. Obviously, this delay would be larger

if the subscriber was not in the same LAN as the publisher or if there was a multi-hop topology.

Nonetheless, the results indicate the ability of the home ecosystem to handle a large amount of

simultaneous streaming data effectively.
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Figure 7.11: Push performance of streaming sensor measurements.

This experiment indicates that the application framework is scalable in terms of managing

simultaneous streaming data from numerous sensor motes. Moreover, the framework has the

capability of forwarding this data to an interested third party in minimum time and reliably (no

message losses were observed). However, it would be also interesting to study the scalability of the

application framework with respect to the number of subscribers, i.e. when numerous third-party

applications may request this streaming data at the same time. For example, family members could

observe the status of their smart home environment while at work from other Web applications,

which would receive streaming data from the application framework.

To explore the support of multiple subscribers, we configured the second (remote) application

framework to simulate Web clients that subscribe to the events produced by the (first) applica-

tion framework. Hence, each streaming message would be forwarded to the second framework

multiple times, but to different channels. These Web clients ranged from 10 to 80 and could be
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parallelized with home residents. These numbers are considered satisfactory, even for large houses

with numerous members. Three different tests were performed, involving 3, 6 and 9 sensor motes

(and respectively messages per second).

Figure 7.12 presents the results of this experiment. In small numbers of subscribers (e.g.

less than 50), push times grow linearly and the system scales well. However, as the number

of subscribers increases significantly, the amount of time needed to forward the events to them

grows with a larger gradient. In the specific case of 9 messages/second, push time grows almost

exponentially. This means that the forwarding capability of the framework does not scale for

hundreds of subscribers. Nevertheless, this is rarely the case in typical smart home applications.

Highly demanding scenarios could include 5-10 physical devices performing streaming of

their sensory measurements and 10-50 interested tenants receiving those measurements. In such

scenarios, the push-based forwarding performance of the application framework operates well,

with push times less than a second. As the traffic increases, both in terms of sensor motes and

subscribers, push times increase and may reach 3 seconds in the highest workload, which can still

be considered a satisfactory amount of time in less critical applications.

We note that typical smart home scenarios would involve only few interested tenants, probably

less than 10. In these typical cases, the performance in terms of event forwarding is considered

very acceptable.

7.5 Summary of the Experimental Results

This section summarizes the results obtained during the evaluation procedure in this chapter.

We note that the experimentation performed was not comprehensive, but nonetheless we will

attempt to generalize our conclusions based on these limited experiments.
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Figure 7.12: Push performance of forwarding streaming measurements to multiple subscribers.

A general finding from this effort is that the IoT is feasible for smart home deployments. Our

experimental setup using IPv6-enabled sensor motes, operating with 6LoWPAN, behaved well

and reliably, with acceptable performance in terms of response times and energy consumption.

This performance of 6LoWPAN REST was comparable to that of simulated REST, which is a

light, simulated version of REST without the IPv6 overhead.

Of course, simulated REST outperformed its opponent due to its optimized structure without

the IPv6 burden. The situation changed when concepts of the WoT were employed, and especially

Web caching. By using Web caching, the response times of the 6LoWPAN-enabled sensor devices

were decreased significantly, falling below those of simulated REST when certain traffic was

observed at the home environment. A similar finding was observed also when evaluating the

energy consumption of the devices.
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The experimental results are dependent on the specific sensor network topology. However,

some generalization can be made, considering that the transition from a single-hop topology to a

multi-hop topology of 3 layers of sensor devices did not affect significantly the results, which

presented a similar pattern in both cases. According to the results observed, we believe that

the application framework may support few tens of home devices without serious effects on the

system’s performance. Moreover, few tens of tenants may be reliably and efficiently supported,

assuming that each tenant makes in average 1 request per minute to some of his home devices.

Another concept of the WoT which has the potential to improve the performance in some

smart home applications is event-based Web messaging. Instead of polling continuously the sensor

devices for possible events, events are pushed to the application framework only when something

important happens.Through this approach, notification times were improved and the lifetime of

the devices was extended.

Finally, we showed how the application framework behaved in a streaming-based interaction

with home devices, when the streaming data needed to be forwarded to interested third parties,

such as tenants using remote smart home Web applications. The experimental results showed that

the forwarding capability of the framework was acceptable in typical smart home scenarios, but

with scalability problems in large-scale applications involving hundreds of subscribers. Neverthe-

less, this is not the case for normal smart homes.

We need to note that the presented results are applicable for the considered scenarios. To

increase confidence, further experimentation is needed, however, this comes at a very big expense

in resources, human and otherwise. Future work will explore better the generalization of the

results, as well as the scalability capabilities of the system, including different topologies and

larger numbers of physical devices, mobility of devices inside the smart home environment, and

support of hundreds or millions of simultaneous home residents.
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Chapter 8

Blending Online Social Networking with Web-based Smart Homes

Online social networking sites have penetrated deeply in our lives, enabling collaboration

and sharing on the Web. Two-thirds of the world’s Internet population visit social networking or

blogging sites, accounting for almost 10% of all Internet time [6]. Social networking has become

a fundamental part of the global online experience, transforming the Web 2.0 into a social Web,

in which human social capabilities are boosted. Currently, Facebook is the world’s most popular

SNS with more than 800 million active users.

The flexible Web-based architecture of the application framework enables the integration of

online social networking sites towards the development of social applications that target home

environments. The smart home functionality can be seamlessly blended with the operation of

SNS, following the physical mashups example (see Section 4.2.6).

The chapter is organized as follows: Section 8.1 describes how sharing of home devices and

services between online friends can be enabled through Facebook. After, Section 8.2 examines

a social competition in blocks of flats towards energy conservation, exploiting social norms to

influence people to save energy. Finally, Section 8.3 presents Social Electricity, which is a novel
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Facebook application that allows people to understand their electrical consumption by means of

social comparisons with their online friends, as well as local comparisons with their neighbors.

8.1 Sharing Home Devices through Social Networking

The popularity of online social networking motivated our efforts to examine the possibilities

of leveraging existing online social networking infrastructures in order to transform the interaction

with the smart home into a shared, social experience. Our goal is to extend the social relationships

between people to social relationships with their home devices and services.

As the application framework exposes its functionality as a RESTful API, it is easy to develop

a physical mashup that involves the household appliances of a smart home in a social networking

application. The Web 2.0 technologies provided by SNS can be used to develop a smart home that

presents social behavior. The general architecture for sharing home devices through online SNS

is described in Section 5.2.5.

8.1.1 Implementation

We selected Facebook1 as our experimental SNS because it has a stable open API that provides

rich possibilities to application developers. We installed an Apache2 HTTP server on a typical lap-

top, hosting the Facebook application. The application was implemented in HTML and PHP using

the Facebook SDK for PHP library3, in order to utilize Facebook open API4 through PHP. The

Facebook application’s HTML code was enriched with Facebook Markup Language (FBML)5.
1http://www.facebook.com/
2http://httpd.apache.org/
3http://developers.facebook.com/docs/reference/php/
4Open API is deprecated by Facebook, replaced by Graph API (http://developers.facebook.com/docs/reference/api/).

Applications written with Open API are not supported anymore.
5http://developers.facebook.com/docs/reference/fbml/
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FBML is an evolved subset of HTML with some elements added that are specific to Facebook

and facilitate the building of social applications. Graph generation of the energy consumption of

electrical appliances was achieved via Phplot6, which is a simple graph library, written in PHP.

Finally, a MySQL7 database was installed on the Web server, serving as a permanent storage unit.

The Facebook application is split into six different interfaces. Status presents the latest mea-

surements offered by available sensor devices deployed at the smart home (e.g. Telosb sensor

motes), Devices lists all the connected devices, Services records the RESTful Web services of-

fered by these devices, Interaction provides the means to users to interact with actuators (e.g.

Plogg smart power outlets), Eventing allows the user to subscribe to events and finally Profile is

the section where a user can manage his current event subscriptions.

In Figure 8.1, a snapshot of Social Home Facebook application is provided, in which the

environmental conditions and the instant energy consumption of the electrical appliances inside

the smart home are graphically listed. We may observe that the application is embedded to the

user’s profile by design. Whenever the user logs in his Facebook account, with a single click from

his main Web page (Wall), he can connect to his home environment.

The owner of the application can share his home devices with his friends or his family easily,

just by adding them in a Facebook group. Groups let people to share things only with their

favorite contacts. For demonstration purposes, we created the Facebook group Social Family,

which operates privately. Solely the administrator of the group (owner of the smart home), can

approve requests for new members (residents of the house) to join the group. Only authenticated

users in Facebook, who are authorized by the home owner to be members of that group, can fully
6http://phplot.sourceforge.net/
7http://www.mysql.com/
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Figure 8.1: A snapshot of Social Home Facebook application.

manipulate the application. Therefore, user authentication and authorization is acquired with little

effort, by reusing basic Facebook mechanisms.

Moreover, residents can subscribe to events, triggered when the environmental conditions in-

side the smart home exceed some threshold. For example, they can subscribe for events of type

Temperature, when it exceeds 30 degrees Celsius for a specific timeframe. In such case, they can

be notified by means of the notification mechanisms provided by Facebook API: through an up-

date of their status; through a new post on their Wall; through a new note in their Notes; or through

an email, sent to the email address with which they are registered in Facebook.
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In Figure 8.2, the publication of a new event is displayed, posted on the user’s Wall for the pre-

vious subscription example. A new measurement of Temperature of 33 degrees Celsius caused the

validation of the user’s subscription and the triggering of the appropriate notification mechanism.

Figure 8.2: A snapshot of the user’s Wall with a notification about an event.

8.1.2 Benefits from Social Smart Home Applications

Numerous technical benefits may be obtained when combining the functionality of a smart

home with online social networking. At first, the authentication mechanisms of SNS can be lever-

aged to achieve user authentication with just a few lines of code. User authentication would then

allow the creation of authorization schemes for each user category. Some SNS even offer the pos-

sibility of creating private groups of users. Solely the administrators of these groups can approve

requests for new members to join. Therefore, a role-based authorization mechanism can be built

without much effort. For example, we exploited this functionality to allow the owner of the smart

home to restrict access to his family members, in order to fully manipulate their house through the

SNS application.
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In addition, notification mechanisms can be easily developed, when using a SNS that supports

notification triggering through its API. We demonstrated this possibility through a content-based

publish/subscribe eventing infrastructure. With little effort, family members were able to sub-

scribe to selective events by specifying some constraints. Users can be notified through various

notification methods, depending on the available mechanisms of the SNS. For urgent notifications,

users can even be informed through SMS, in case they register their mobile phones.

Through the proposed social approach, smart homes can be transformed into interoperable,

shared spaces. Social Home Facebook application constitutes a challenge for various Web ap-

plications, to gain social perspective through integration with the social structures of SNS. For

example, in a medical application scenario, such an integration would allow real-time, direct in-

teraction between the doctor and his patients and it would facilitate the monitoring of critical

parameters under a social environment.

As well, the practice of creating smart home applications with a social context, promotes shar-

ing of physical devices and services between family members. Such applications could increase

the awareness of residents about their home environment, helping them to acquire more sustain-

able behaviors. SNS users could find it easier to accept and use such applications, as they become

blended with their overall online experience.

We believe that social networking infrastructures are mature enough in order to be utilized

in general for giving a social shape to pervasive Web applications. We envision physical things

as social entities just like human beings and we believe that their socialization will help them

blend smoothly with the future Web. Perhaps the future would reveal a Devicebook, in which re-

lationships between people would be extended to relationships with physical objects and services.
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Evrythng8 is a company already working towards this vision, aiming to design a Facebook for

everyday devices and physical things.

8.2 A Social Competition in Blocks of Flats for Energy Conservation

Buildings consume a large proportion (around 70%) of the world’s total electrical energy [57].

More than 30% of all greenhouse gas emissions can be attributed to houses and buildings. Hence,

energy-saving initiatives need to examine the rational energy management in houses and buildings.

In general, people are willing and capable to adapt their behavior to energy-saving lifestyles if

given the necessary feedback, support and incentives. Especially the influence of the community

by means of comparisons with other people’s consumptions, has the potential to drive residents

towards a more persistent behavioral change [31]. Social norms can motivate people to question

their behavior, if they discover it is not ”normal” [12].

Moreover, residents generally tend to learn from their neighbors, and receive encouragement

and support. Receiving daily feedback and taking energy-saving actions in a social context can

increase people’s effectiveness [51].

8.2.1 Implementation

To motivate people become more aware about energy and reduce their electrical consumption,

we created a social competition between neighboring flats in large residential blocks.

Ploggs smart power outlets were employed (see Section 5.1.2), equipped with external current

transformers for loads up to 100 Ampere, for acquiring the electrical consumption of each flat in

real-time. A Plogg was attached to the mains meter of every flat, communicating wirelessly in

frequent intervals (every minute) the electricity data in JSON format to a laptop computer that
8http://evrythng.net
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received them by means of a Telegesis USB stick. We installed on the computer the applica-

tion framework for smart homes (see Section 4.2). The framework was responsible to parse the

electricity-related data, extract the important information and forward them to a Web server and

a Microsoft SQL Server database. The Web server was developed in C# and ASP.NET, tightly

coupled to the online database. The Web site included a forum, where people could communicate

and exchange tips about energy saving practices and techniques. A Facebook application was

also created to show real-time information about the competition, as well as a Facebook group, in

which residents were encouraged to discuss about the study. The system infrastructure is shown

in Figure 8.3.

Figure 8.3: System infrastructure at the social competition in a block of flats.

Through the Web server, residents could authenticate themselves and get informed in real-time

about their overall ranking in the competition, according to their electricity footprint. They could
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also view their historical electrical consumption at the previous days of the competition, as well

the overall electricity consumed by the block. All information about electricity is translated to

money costs, based on the current tariffs of the electric utility.

Our aim was to motivate tenants to reduce their own energy consumption, but also to acquire

energy awareness for the whole block, contributing to the overall reduction of energy. People gen-

erally respect the sense of social engagement and coherence and this helps them keep commitment

over time [129]. In our case, the block’s community becomes engaged to the goal of reducing the

total electricity consumed. We did not want to inform people in real-time about their consumption,

to focus our study mostly on the social competition as a way to save energy.

For those residents who were not familiar with the Web, we updated the ranking of the com-

petition every day in a notice box located at the main lobby, along with brief reports about the

energy performance of the building. We argue that when activities become pervasive, integrated

into daily life, strong participation in social actions is more likely [108].

We decided to elect the winning flat, as the flat reducing most effectively its electrical con-

sumption. To mitigate the possibility that residents could consume much energy in the first few

days just to reduce it then and win the competition, we asked them for their electricity bills in pre-

vious months. By analyzing the bills, we had a complete report of each flat’s energy performance.

Our award to the winning flat was a real-time energy monitor from Current Cost9. These smart

meters are convenient in installation and use. The duration of the competition was one month for

each block. After the competition, we distributed questionnaires to the residents to assess their

commitment in the competition.
9http://www.currentcost.com/And
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Table 8.1: Age distribution of residents.

No. Block Flats Residents 18-25 26-35 36-45 46-55 56+

1 Suburban 6 10 2 6 2 - -

2 Urban 20 29 10 12 4 3 -

8.2.2 Case Study in Blocks of Flats

Our case study included two blocks of flats. The first is at a suburb, having 10 flats and the

second in an urban area, having 20 flats. In the following subsections, the findings of the case

study in these blocks are discussed.

8.2.2.1 A Block of Flats at a Suburban Area

The first block had 10 flats and was located at a suburban area, 10 Km from the city. Six

flats accepted to participate in the competition, counting in total 10 residents. The ages of the

participants are listed in the first row of Table 8.1. The total energy performance of the block, as a

summation of the consumption of all the participating flats, is depicted in Figure 8.4.

Observing the figure, we can see the strong correlation of daily temperature to the energy

consumption of the building. This is clear evidence that a considerable percentage of consumed

electricity is utilized for heating.

Because of the high dependencies to temperature, safe conclusions about the energy savings

due to the competition can not be extracted. However, we can just mention, by comparing the first

two weeks of the study with the last two, that the energy consumption in the last two weeks is

reduced by 260 kWh or 26%. Furthermore, in days with similar temperature (e.g. days 10 and

25), the energy consumption towards the end of the month is reduced by 22%.
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Figure 8.4: Everyday electrical consumption of the whole suburban block.

The study at this block was conducted in February, 2010 with average monthly temperature

11.60◦ Celsius and humidity around 63%. Comparing with the electricity bills of the flats in

January, 2010, as shown in Figure 8.5, most of the flats have reduced their electricity footprint

effectively. Flats located on higher floors needed more heating and consumed more electricity.

Considering that the average monthly temperature in January was very similar to February,

around 11.56◦ Celsius with humidity 67%, we believe that the social competition has influenced

most of the flats to reduce their consumption. The average reduction of energy is 11.90%.

The winners of the competition were a couple around 30 years old, living in flat 303, who

reduced their electrical consumption by 41%! They both found this competition as a first-class

opportunity to save money.And
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Figure 8.5: Consumption comparison of each flat with the previous month at the suburban block.

8.2.2.2 A Block of Flats at an Urban Area

The second block had 20 flats and was located in an urban area, near the city center. All

flats, counting 29 residents, accepted to participate in the study. Most residents were young and

educated people, and they were excited with the idea. The ages of the residents are listed in the

second row of Table 8.1. The energy performance of the block is presented in Figure 8.6.

Also in this case, energy consumption is strongly correlated to temperature conditions. Com-

paring the first two weeks of the study with the last two, the energy consumption in the last two

weeks is reduced by 1,091 kWh or 33%. Since in the second week of the competition there was

a significant drop in temperature for 5 days, our findings can not be accurate. We can notice that

in days with similar temperature (e.g. days 7 and 26), the energy consumption towards the end of

the month is considerably reduced, of the order of 13%.
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Figure 8.6: Everyday electrical consumption of the whole urban block.

This study was conducted in March, 2010 with average monthly temperature 13.00◦ Celsius

and humidity around 59%. In Figure 8.7, the consumption of each flat is compared with the

consumption at the previous month (February, 2010), as indicated at their electricity bills.

From the figure, we can observe that most flats have reduced their consumption significantly.

Impressively, the average energy reduction reaches 27.74%. An important factor for this reduction

is the average increase of temperature in this month by 2◦ Celsius. Once more, residents leaving on

the third floor needed more heating and consumed more energy. A 31-years-old woman, staying

at flat 303, was the winner of this competition. She managed to reduce her electricity footprint by

43%, and she was really proud of this, because she believed she helped protecting the environment.And
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Figure 8.7: Consumption comparison of each flat with the previous month at the urban block.

8.2.3 Analysis, Statistics and Discussion

Our findings suggest that social competitions can influence residents to reduce their consump-

tion remarkably. We discuss in the following subsections our general observations and experiences

from the case study.

8.2.3.1 Suburban Vs Urban Block of Flats

Comparing the block at the urban location with that at the suburb, average energy savings in

the urban case were 2.4 times more. People at the suburban block consumed in average 11% more

energy compared to the urban block. However, temperature strongly affected this fact. Residents

at the urban block were more positive about the competition. Since a large proportion of them
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were highly educated students, it was easier for them to understand and accept the motivation and

terms of the competition, inspiring also the other residents to pay more attention to it.

8.2.3.2 Demographic Analysis

In Figure 8.8 (left), we can study the residents’ distribution of ages, in relation to their en-

ergy consumption. Examining the figure, older people (ages 46-55) consume more electricity10.

This probably happens because they spend more of their time at home. However, this age group,

together with the age group 26-35, are mostly influenced by the competition, reducing their con-

sumption by 32%. It is more convenient for people that spend much time at home, to observe and

analyze their consumption, taking countermeasures. For example, students may be sometimes

busy with their studies, not having in these periods much free time in order to give a high priority

for reducing their consumption.
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Figure 8.8: Electrical consumption Vs Age distribution of residents (left). Electrical consumption

Vs Sex of residents (right).

Comparing the sex of the residents, as shown in Figure 8.8 (right), females tend to con-

sume more electricity. This is logical, as they usually spend more time at home, having energy-

demanding habits (e.g. washing and drying their hair, preparing food). Nonetheless, women
10We discuss this finding with some reservation because of the small sample of older people involved in the study.
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contribute more in saving energy, reaching 30% reductions, while men around 20%. In general,

females were more interested in the competition than males.

We then compared the electrical consumptions, according to the number of residents at each

flat. This comparison is illustrated in Figure 8.9 (left). Obviously, more tenants at each flat implies

more consumption. While this difference is more significant when comparing flats having one

or two residents, reaching 44%, it becomes very small between flats of two and three residents,

around 4%. Concerning energy-savings, flats with one tenant achieved most savings, nearing 30%.

We believe it is easier for someone living alone to develop his own energy-efficient practices.

These observations indicate that future energy-saving campaigns could place a high priority on

one-bedroom flats, as the margin of potential savings is much bigger.
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Figure 8.9: Electrical consumption Vs Number of residents per flat (left). Electrical consumption

Vs Income of residents. (right).

Our final comparison, presented in Figure 8.9 (right), is about the income of the residents,

in relation to their consumption. People with no income are students, financially-dependent on

their families. As expected, tenants with high income consumed more energy. We assume that

they are not willing to sacrifice their comfort just for saving money. On the contrary, residents

with low income consume less than half the energy of their high-income neighbors. This group

of people had the least savings in the competition, perhaps because they had already tried to
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save energy in the past to reduce their costs. Even though residents with high income consumed

increased electricity, maintaining high-comfort levels, their percentage of energy savings reached

30%. Most of them were motivated because of environmental reasons and not because of saving

money. This observation suggests that future practices should try to influence people from the

upper classes, by giving them incentives about protecting the environment.

8.2.3.3 General Statistics

Generally, 72% of the tenants stated that they were actively involved with the social competi-

tion, which helped them acquire a more sustainable lifestyle. 94% believed that this competition

will influence them to save energy in the future. 69% of them consider that the method of com-

paring consumption with neighbors is a promising way for saving energy.

48% of people used the Web site for being updated about the competition. All residents also

checked the information placed everyday in their notice boxes. Younger people preferred to use

the Web in order to get informed, however, older people found much more practical the notice

box. Perhaps, this inconvenience of older people using technology needs to be considered when

researchers design energy feedback systems in the future.

Unfortunately, the online forum was not utilized by the residents for exchanging energy-saving

tips. The Facebook application was used by six residents or 15% of people, who preferred to be

informed about the competition while amusing through online social networking.

Asking the residents whether they wanted to be informed in real-time about their electricity

footprint, 89% were positive. From them, 88% were willing to buy a product that would show

them their energy consumption in real-time. They would invest at most 70 Euro for such a product.

Some of them were surprised when we explained to them that this is possible at these costs. Some

people did not even know that such products exist.
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8.2.3.4 Suggestions from Residents

We also asked the tenants for suggestions concerning more effective feedback about energy

consumption. The most popular suggestion concerned feedback through SMS, sent by the utility

once per day. Daily feedback through email was another interesting suggestion. Some people re-

quested that the electric utilities should provide more detailed electricity bills. Still, 61% believed

that a social competition is more effective than what they suggested.

Finally, all residents agreed that the government must give smart incentives to people to save

energy. According to them, these incentives could be similar competitions with awards from the

utilities, scalar pricing schemes that reward green flats and houses while punishing energy-wasting

buildings, more pervasive and real-time energy feedback techniques and grants from the utilities

or the government for renewable energy systems and green lighting.

8.2.3.5 Discussion

Our findings were very positive, however, they just constitute the product of a small case study

and it can not be considered safe to extract conclusions about the general population. Furthermore,

the selected months of the study have prevented a solid analysis of the results, due to large fluctua-

tions of temperature. Future studies need to select months in which temperature is not as dominant

factor in the energy consumption of residents.

A main drawback of our approach is related to the necessity of having costly real-time energy

monitoring devices installed in the flats, which is not a common practice nowadays. Neverthe-

less, the smart grid11 suggests the massive deployment of smart meters in residences (see Section

2.1.2), for real-time acquisition of household electrical consumption. Hence, the practice of social

competitions complies with the future smart grid, as the Ploggs smart power outlets we employed
11http://smartgrid.ieee.org/ieee-smart-grid
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could be replaced by residential smart meters. Accordingly, such social competitions for saving

energy could be enabled by the electric utilities in the near future.

This study conforms to the broader vision of smart neighborhoods, defined as groups of build-

ings (e.g. blocks of flats) mimicking living systems, collaborating inside the future smart cities.

Similar to living systems in nature, buildings will act collectively in relation to the ecosystem

(e.g. neighborhood) they reside in. This will help to address safety, health-related or sustainability

issues in the city, such as energy conservation and reduction of carbon emissions.

8.3 Energy Awareness through Social Comparisons

Smart meters are currently being deployed, or planned to be deployed, worldwide. One of the

expected promising benefits is to provide timely overall electrical consumption feedback, helping

people to become more energy-aware and control their electricity footprint. However, still people

can not clearly consider quantitatively how much energy they consume. They do not possess the

proper metrics to define whether their total consumption is low, average or high. This happens

because each area, city or country has different tariffs and varied weather and physical conditions.

A promising way to understand the semantics of consumed energy is to compare it with the

amount consumed by relatives, friends and neighbors. In this case, SNS are the ideal platforms for

such comparisons, as they maintain a highly accurate graph of the social networks of their users.

8.3.1 Social Electricity Facebook Application

To demonstrate whether energy awareness can be reinforced by social comparisons, we cre-

ated Social Electricity12, which is a Facebook application that allows people to perform com-

parisons of their electrical consumption. Social Electricity aims to make citizens aware of their
12https://apps.facebook.com/socialelectricity/
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energy consumption, by means of comparisons with the corresponding electrical consumption of

their friends, as well as with the total consumption in the street/neighborhood/village/city/country

where they live. By effective and realistic comparisons, the consumers may perceive their energy

behavior and take steps to reduce their electricity and carbon footprint.

We collaborated with the Electricity Authority of Cyprus (EAC)13, which is the only electri-

cal utility in Cyprus. EAC delegated us with anonymous access to the domestic consumption in

Cyprus, categorized according to the address of their consumers. This data includes the measure-

ments of all electricity meters deployed in domestic premises around the country, collected every

two months. More frequent updates are yet not possible, because EAC has still not upgraded its

electrical meters to smart meters (see Section 2.1.2).

Respecting the privacy of Cypriot citizens, the electricity measurements were aggregated at a

street level (address, postal code, city). Thus, it is not possible to derive the analytic consumption

of some specific residence. However, residents are encouraged to add by themselves their exact

monthly electrical consumption, and compare it with their local neighborhood or their friends.

A snapshot of Social Electricity is provided in Figure 8.10. As we can see from the figure,

users can see their friends and their associated energy consumption in their current place of stay,

tagged on the map of Cyprus,. When people connect to the application for first time, they are

asked to select their address, offering them the option to keep their place of stay private, if they

wish. Friends with higher consumption are displayed in red color while friends with better energy

behavior are displayed in green.

In general, Social Electricity supports the following functionalities:

• It allows people to compare their electricity footprint with that of their neighborhood/vil-

lage/town, to perceive if their own consumption is low, average or high.
13http://www.eac.com.cy/
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Figure 8.10: A snapshot of Social Electricity Facebook application.

• It associates electrical consumption with actual costs, enabling users to have a more mean-

ingful view of their energy profile.

• It promotes sharing of peoples’ electricity consumption figures with their friends at a street

level. It can transform the procedure of saving energy into a social game.

• It gives useful tips to people in order to reduce their energy consumption and increase their

overall environmental awareness.

• It provides useful statistics about the most energy-efficient streets, villages and cities near

the user’s location. Thus, it helps people to acquire region awareness, inspired to take

actions for helping the local community maintain a better future ranking. This capability is

depicted in Figure 8.11.
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• It offers statistics about the least efficient areas near the user’s place of stay. Hence, people

may start questioning their behavior, in case they discover that their area is energy-hungry.

• Statistics are given concerning the areas with the least/most energy consumption in the

whole of Cyprus. Users may select the province or minimum/maximum number of houses,

and view statistics about the least/most energy-efficient villages of the country.

• Users may observe the electrical consumption of their street in previous months and com-

pare it with the present street consumption. They can perform this historical comparison

also in relation to their Facebook friends, to observe their friends’ street energy behavior

and compare it with the behavior of their street.

• Finally, users may examine their street’s consumption in the same month in previous years

and compare it with the current street consumption. This comparison may also include the

street energy behavior of their friends. This option is shown in Figure 8.12.

Social Electricity aims to be extended into a healthy competition, where each user competes

with his friends for less consumed energy. People from the same area are encouraged to cooperate

to reduce the overall consumption and improve the green ranking of their area.

We need to note that without the existence of SNS, pervasive applications like Social Electric-

ity, which require social content, would not be practical. It would be extremely difficult to acquire

the social networks of people. In addition, promoting the application would be a time-consuming

and expensive process.And
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Figure 8.11: A snapshot of Social Electricity showing local electricity statistics.

8.3.1.1 Implementation

The Web server hosting the application was developed using Visual Studio 2010 and Microsoft

Silverlight14. The electricity consumption data have been stored on a Microsoft SQL server while

the connection between the Web server and the database server has been achieved using WS-*

Web Services [13]. Bing Maps permit people to view on maps their friends, in the location where

they live, together with the average energy consumption in their locations. Translation of street
14http://www.microsoft.com/silverlight/
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Figure 8.12: A snapshot of Social Electricity showing historical energy information of the same

month in previous years, in regard to the user’s street, comparing also with a friend’s street.

addresses into absolute physical locations (longitude, latitude) has been enabled by the valuable

help of GeoPostcodes15.

8.3.2 Preliminary Evaluation

Primarily, Social Electricity was deployed locally, at the Computer Science department of

the University of Cyprus. The initial sample comprised of 72 students of the department, who
15http://www.geopostcodes.com/
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were asked to use the application. The majority of them already had a Facebook account, since

Facebook is popular among students. Two weeks after the release of the application, we asked

the participants about their impressions. The methodology was elementary, involving only small

chats and personal interviews.

Not surprisingly, people were impressed by the capabilities of the application. They found

it really entertaining to compare their local energy consumption with that of their friends. We

even listened to some students teasing their colleagues about the poor energy performance in their

street. We considered this teasing as a positive step towards saving energy in the future.

Social Electricity becomes useful only when people enrich their Facebook profile with infor-

mation about their place of stay. Some students complained that their friends did not appear on the

map as they did not fill in yet their (general) address details. However, this phenomenon occurred

only at the first 2-3 days, before a large number of students utilized the application.

Comparing their own consumption with that of their neighborhood allowed students to quan-

tify their electricity footprint more precisely. 70% of the students reported that Social Electricity

helped them become more aware of the energy they consume. Around 18% admitted they had

a high electricity bill and they promised to consume energy more rationally in the future. One

student particularly, realized after using the application that he had a faulty electricity meter. He

contacted EAC immediately to replace it.

The initial success of Social Electricity might have depended on the sample’s young age, which

covers students 17-25 years old. A large deployment (see Section 8.3.3) would include people

from other ages, whose friends might not be actively involved with Facebook. Nonetheless, these

initial findings were encouraging to proceed with a deployment around the whole of Cyprus.
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8.3.3 Large-Scale Deployment

Social Electricity was made available to the public officially on the 1st of August, 2012. This

timing was selected because of the sensitive summer period, when the electricity demands in

Cyprus are at the highest. Thus, our aim is that the application will influence Cypriots to consume

electrical energy more rationally. In collaboration with EAC, we started monitoring the energy

behavior of Cypriot citizens to consider whether this approach has contributed in increasing their

energy awareness, and how much it has influenced them to save energy and money.

In September 2012, the application was awarded the first prize in the 2nd ITU Green ICT

Application Challenge16. This prize is considered particularly important, taking into account the

status and size of this organization (193 member countries and over 700 members from companies

and academic institutes).

This success facilitated the promotion activities of the project, since extensive details about

the award and the Facebook application were published in local newspapers, Web blogs and mag-

azines, radio and the TV. A TV channel even organized a full reportage17 dedicated to the project,

explaining to people how to use it. After only 4 months, the application has been used by more

than 1,000 Cypriot citizens (in a country of 300,000 domestic premises) and its Facebook page18

has more than 1,300 friends/supporters.

Current work on the project includes the development of mobile applications in iOS (iPhone

mobile phones and iPad tablets) and Android-based mobile phones. These applications are ex-

pected to broaden our user community. After numerous requests from Cypriots, we decided to

develop a version of Social Electricity without the dependency on Facebook, in order to accom-

modate Cypriot citizens who do not possess a Facebook account. This version of the application
16http://www.itu.int/ITU-T/climatechange/greenict/201206/index.html
17http://www.ant1iwo.com/oikonomia/2012/08/11/to-magiko-application-toy-reymatos-video/ (in Greek)
18https://www.facebook.com/SocialElectricity
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will be simpler, containing information about local energy consumption as well as general statis-

tics about the consumption around Cyprus.

We also started sending personalized newsletters to our users, whenever there is an update of

the electricity consumption data, to give them stimuli to reuse our application. These newsletters

contain information about their latest consumption, in comparison to their respective consump-

tion before a year, accompanied with a happy/sad emoticon as depicted in Figure 8.13, in case

their consumption has been decreased/increased accordingly. Concerning our latest newsletter

(November, 2012), from the category of people whose consumption was increased, 30% of the

users checked the application when they received the newsletter. while this happened for a per-

centage of 32% of the users whose consumption was reduced.

Figure 8.13: Happy/sad bulb sent to the users of Social Electricity in a monthly newsletter.

In collaboration with EAC, we started examining various ways to further promote the appli-

cation among the Cypriot consumers of electricity. Our future actions concern the sending of an

informative leaflet, accompanied with the electricity bill of each domestic premise, embedding

the application on the official website of the authority and giving some awards to local communi-

ties and villages that effectively reduce their overall electrical consumption. These awards could

involve lower billing of the local consumers, prizes and small gifts to people, such as real-time

energy monitors. Future activities in regard to the project are listed in Section 11.5.
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8.3.4 Evaluation

A full evaluation of the project is currently underway. This evaluation includes both question-

naires, sent to the citizens who are using the application, as well as focus groups of people who

would be encouraged to discuss different aspects of Social Electricity. Focus groups would be

divided in the following 4 categories:

• Students who live in Cyprus with their parents and do not pay any electricity bills.

• Students who live in Cyprus alone and pay their electricity bills by themselves.

• Low-income citizens who work and live in Cyprus.

• High-income citizens who work and live in Cyprus.

The foundational pillars of the evaluation include the following themes: usefulness, effec-

tiveness, acceptance, motivations, privacy and potential. Based on these pillars, the evaluation

procedure aims to assess the significance and potential of the project. In parallel, a statistical anal-

ysis of the energy conservation achieved will be performed, focusing in areas in which the users

of the social application live.

The first part of the evaluation procedure, namely the distribution of questionnaires to current

users of the application has already been accomplished, In total, 190 subjects participated in the

study. To increase the overall participation, we offered 6 energy meters to some of our subjects

after a lottery. We present here the feedback and reaction of the subjects, in regard to our questions.

8.3.4.1 Usefulness and Potential

From our 190 subjects, 44% found the application very useful, while 36% just useful. In total,

80% believe in the usefulness of Social Electricity and this is a very positive fact. 55% of the
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users were positively affected by the application to become more energy-aware. Probably these

are users who realized an increased electrical consumption at their home, in comparison to others.

A percentage around 16% believed that their energy consumption is high, in comparison to

their neighborhood and their friends. 61% believed they had an average consumption while 23%

a low consumption. The percentage of users with low consumption is larger than those with high,

because in general people that engage in such applications are more environmentally-aware.

78% of the users declared they perceived their energy behavior through the application and

understood whether they consume low, medium or high amounts of electrical energy. A significant

percentage of 62% claimed that their consumption was reduced in regard to the same period last

year. This is another positive fact indicating the usefulness of Social Electricity, however, we need

to take into account that there is an overall decrease in electrical consumption around Cyprus, due

to the financial crisis. This decrease is around 10%.

57% are aware of their ”green” and ”red” friends, as they appear on the map of Cyprus, tagged

where they live. This is a sign that a fruitful discussion for energy conservation may have occurred

between them. The incentives of using the application are the following (the subjects could select

multiple options): 48% from curiosity, 71% for preserving the environment, 71% for financial

reasons and only 14% for their responsibility as citizens.

We also asked the subjects for their opinion about the most effective incentives for energy

reduction. The most popular answer was a discount on their electricity bills, offered by their

electric utility. Other suggestions included more frequent feedback for their consumption and

competitions for energy savings.

Concerning the relation between the usefulness of the application with time, 61% believe that

the application is mostly useful today. 28% believe it will be more useful in 1-2 years, while 11%
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in more than 2 years. It is worth-mentioning that 39% envision the usefulness of the application

in the coming years, probably in combination to the introduction of smart meters in our lives.

Impressively, a percentage of 64% believe that Social Electricity will help them to reduce their

electrical consumption by more than 10%. 10% believe in 1-5% reductions and 26% in 6-10%

decrease of consumption. It is highly encouraging that our users are convinced that the application

will contribute in their strategies for conserving electricity in the future.

Interestingly, 69% agree that this application could be extended for comparisons in inter-

country level, between citizens of different countries. Related to this, 63% are interested to com-

pare their electricity footprint with their Facebook friends who reside in another country. Such

comparisons could reveal behavioral patterns and attitudes of people from different cultures.

8.3.4.2 Privacy

A large part of the questionnaire was devoted to privacy aspects, as they constitute crucial is-

sues in Social Electricity because of the sharing of personal information among Facebook friends.

69% of our users are willing to share their personal consumption among their friends, towards

more effective comparisons. 77% believe that the application respects their privacy. However, the

rest 23% is an important group of people who have some concerns about the overall privacy.

More specifically, 30% are concerned with the possibility that information about their energy

consumption in neighborhood level could be revealed to third parties. People are also concerned

with some specific features of the application. For example, 22% believe their privacy is affected

by showing the location where they live on the map of Cyprus to their online friends. 15% are

concerned about sharing the consumption of their neighborhood with their friends and 11% about

sharing historical data of their neighborhood’s consumption.
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Figure 8.14: Privacy concerns of users of Social Electricity in regard to with whom to share their

electricity data in neighborhood level (top-left), house level (top-right) and detailed consumption

of their electrical appliances (bottom).

Obviously, a large group of users classify privacy issues as important in terms of sharing

their electrical consumption among their friends. To identify the ”tolerance” levels of our users

in regard to sharing electricity data, we asked them to inform us with whom they are willing to

share the electrical consumption of their neighborhood, that of their house as well as the detailed

consumption of their home appliances. The different available categories of people for sharing

this data are: only me; family members; relatives; close friends; all friends; and everyone. Their

answers are depicted in Figure 8.14.

As the results show, users have different sharing preferences depending on the sensitivity level

of their electricity data. While around 20% are willing to share their electricity data with relatives
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in all the three cases, they are reluctant to share this information with all of their friends or with

everyone else. A large percentage of users trust the other members of their family and 32% are

willing to share with them even details of their electrical appliances’ consumption. A smaller

percentage of 19% wish to share their detailed consumption with close friends and this percentage

is increased in house or neighborhood data. This means that some users do not trust their close

friends, in order to share with them their personal electricity footprint. It is remarkable that from

the more general to the more specific consumption data, an increasing percentage of users trust

only themselves for viewing these values. This percentage starts from 15% in neighborhood level

and increases up to 25% in level of electrical appliances.

Summing up, the results from our online questionnaires are positive and encouraging about the

usefulness and potential of Social Electricity. Privacy concerns constitute an important parameter

we need to pay attention, since our users are reluctant to share their personal information with

their online friends or with everyone. We plan to dedicate significant effort in improving privacy

aspects in the coming enhancements of the application. We suggest that an effective solution for

ensuring privacy would be to adopt an approach similar to that of Google+19, according to which

users could categorize their friends in ”privacy circles”. Then, users would be able to associate

varying sensitivity levels with each of their circles, and share different aspects of electricity data

with each of them (e.g. neighborhood data with all friends, home data with close friends and

relatives, electrical appliances with family members).

19https://plus.google.com/
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Chapter 9

Integrating Web-Enabled Smart Homes to the Smart Grid

Increasing energy demands, depletion of natural resources and rising costs make energy con-

servation a universal problem with tremendous environmental, political and social implications.

Predictions denote that by the year 2030, the global energy demand will double, rising up the

energy-related green gas emissions by 55% [89].

This high energy demand cannot be accommodated by current electricity grids. Most of the

electricity grids around the world have been built many decades ago, to meet the energy require-

ments of the society at that time. They are being incrementally upgraded, but these upgrades may

not be completely adequate for the future grid, in addition to the green concerns.

Increasing demand and environmental concerns influenced initiatives towards a more rational

utilization of electrical energy. This goal can be best achieved when the electric utilities are fully

aware in real-time about the electrical consumption and the demands of their customers. The grid

becomes intelligent when it manages to deliver electricity from suppliers to consumers, supported

by two-way digital communications and a smart metering system, in a fault-tolerant, secure and

more reliable manner. This vision is believed to convert traditional electricity grids into modern
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smart grids. A smart grid1 is a network of networks that has come to describe the future electricity

grid, enhanced with ICT and smart metering, applied to generation, delivery and consumption of

electric power.

Electricity smart metering (see Section 2.1.2) involves measuring the electrical consumption

of a house in frequent intervals and communicating that information at least daily back to the

utility for monitoring and billing purposes. Smart metering would definitely affect the future

development of the smart grid. In the near future, smart appliances would take advantage of the

smart grid’s functionality to synchronize their operations with its current state. For example, they

may respond to pricing signals and decide when it is most economical to operate. An intermediate

step before utilizing smart appliances could be the use of smart power outlets, for measuring the

consumption of electrical appliances and controlling their operation in real-time.

Undoubtedly, these new technological advancements offer new possibilities for effective en-

ergy management and conservation in smart homes. Especially, when combined with the op-

erations of the smart grid, these capabilities could offer great potential towards a coordinated,

large-scale plan for energy efficiency.

Since current smart home solutions are vendor-specific and heterogeneous, and because this

trend is expected to continue in the future, in order to enable the smart grid vision a common

ground needs to be specified, i.e. a common language understood by all domestic premises, facil-

itating in-home and home-to-grid real-time interaction and communication. We anticipate that the

Web is an appropriate solution for such a wide-scale interconnection (see Sections 1.2 and 1.3).

This chapter is organized as follows: Section 9.1 provides the architecture for the integration

of energy-aware smart homes to the smart grid via the Web, emphasizing on the smart home en-

vironment. Through a proof of concept deployment and the emulation of a smart grid scenario,
1http://smartgrid.ieee.org/ieee-smart-grid
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(near) real-time Web-based communication between the smart home and the grid is enabled, while

some interesting applications related to the smart grid are investigated, from a smart home per-

spective. More specifically, in Section 9.2 the dynamic pricing program of the grid is exploited to

schedule electricity-related tasks for a future time and in Section 9.3 load shedding is studied, as

a technique to reduce total consumption for avoiding outages. Finally, Section 9.4 discusses other

potential applications such as peak leveling and fault tolerance.

We note that the focus is on the ICT infrastructure that could be used for enabling flexible,

reliable and efficient integration of smart homes to the smart grid. The proposed architecture

targets the non-critical systems of the power grid. It is expected that the Supervisory Control

and Data Acquisition (SCADA) system of the grid will be on a separate architecture/network.

A SCADA system is an industrial control system used to monitor and control electrical power

transmission and distribution.

9.1 Connecting Smart Homes to the Smart Grid

Smart homes become energy-aware by employing smart power outlets, for controlling the

operation of electrical appliances in real-time. Our experimental smart home uses Ploggs (see

Section 5.1.2) to achieve management of electrical appliances. Connecting energy-aware smart

homes to the smart grid creates a new potential for saving energy and money.

The Web-based interaction between smart homes and the smart grid could be facilitated by

utilizing intermediary devices called smart grid controllers. Each controller would be responsible

for some houses or neighborhoods. More powerful grid controllers could manage larger areas

such as villages and small towns. Smart grid controllers could maintain a hierarchical structure

for fault tolerance and scalability. For example, controllers at higher levels (i.e. closer to the smart

grid system) could be used for administering controllers at lower levels (i.e. closer to the customer
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Table 9.1: Web API of a Web-based smart home for interaction with the smart grid.

No Resource URL REST Verb MIME Type Parameter (Type)

1. HouseName/electricity GET JSON -

2. HouseName/reduceconsumption POST text/plain reduction (Integer)

3. HouseName/increaseconsumption POST text/plain maxincrease (Integer)

premises). Low-level controllers would be able to communicate in a timely manner with each

house while high-level controllers could interact with the main grid through a SCADA system.

The overall system architecture is depicted in Figure 9.1.

We need to note that these smart grid controllers represent domestic controllers and should

be separated from the main electricity infrastructure. It is also important to note that our focus is

on integrating energy-aware smart homes to the smart grid, enabling flexible interaction patterns

between them, and not on the operation of the smart grid and its controllers. The controllers could

have specialized software for performing the grid’s operations. An example implementation of

a smart grid controller for emulating the behavior of the smart grid in a scenario involving load

shedding is described in Section 9.3.

As mentioned in Section 4.2, the functionality of a smart home would be exposed as a Web

API, by using the Web-based application framework for smart homes. Therefore, controllers

can only interact with the house through the functions specified by this API. Vice versa, electric

utilities could have their own Web API to inform the smart homes and smart appliances about

current/projected tariffs. A simple Web API for Web-based smart homes, targeted to enable remote

management and control by electric utilities is proposed in Table 9.1.And
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Figure 9.1: System architecture for integrating energy-aware smart homes to the smart grid

through the Web.

This API would allow the utility to get informed about the total electrical consumption of the

house (GET electricity), ask the smart home to reduce its consumption because an outage is pos-

sible (POST reduceconsumption) or allow the house to increase its consumption when the total

load is in safe margins (POST increaseconsumption). The targeted quantity of reduced consump-

tion is specified by the parameter reduction and it is defined in Watts. Similarly, the maximum

allowed quantity of (increased) consumption is specified by the parameter maxincrease and it is

also defined in Watts.And
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The responses from these HTTP requests are in standardized formats. The POST requests for

reducing/increasing consumption are satisfied through a plain-text response, indicating a ACK/-

NACK, while the GET request triggers a JSON response, including information such as consump-

tion in kWh, instant consumption in Watt and a timestamp.

By following the physical mashup paradigm (see Section 4.2.6), home owners could automate

their home very easily, combining electrical appliances with RESTful Web services offered by

their electric utility. Through the Web, residents may pull easily the data they need from an

open API offered by their electric utility, and use them right away in their own applications, in

any programming language that supports HTTP. We list below a PHP script that implements a

physical mashup in only six lines of code, which checks the current hometariff and starts charging

automatically a plug-in hybrid electric vehicle (PHEV) as soon as the tariff falls below the defined

LOW TARIFF limit.

<?php

$tariff=http_get("UtilityAddress/hometariff/");

if($tariff <= LOW_TARIFF){

$req=new HttpRequest("HomeAddress/PHEV/Switch/");

$req->setOptions(array(state=>"ON"));

$req->send();

$response = $http_req->getResponseBody();

}

?>

Figure 9.2: Sample PHP code that checks the current energy tariff and charges automatically an

electric vehicle.
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We assume in this example that the utility exposes as a Web API information about its current

tariffs. Offering real-time information is not infeasible for electric utilities. Recently, 3 utilities

in California announced that they allowed their consumers to access their utility data through the

Web. This initiative was called the Green Button [124].

It is crucial for the healthy operation of the smart grid to be assured that all HTTP calls to

energy-aware smart homes would be executed reliably and on time. The application framework

guarantees the successful execution of all Web requests by using a request queue for each smart

power outlet and a fast retransmission mechanism (see Chapter 6).

To ensure the urgent execution of the requests that are made by the smart grid, the applica-

tion framework supports also a priority mechanism (see Section 6.4.5). Hence, requests coming

from the smart grid could be labeled as ”high-priority requests”, obtaining a prioritized execution,

regardless of the current load at the request queues of the Ploggs smart power outlets.

Respecting the privacy of the consumers, the smart home may act as a ”black box”, allowing

the smart grid to make requests to assure its proper operation but, at the same time, leaving the

full control and responsibility on how to satisfy these requests to the residents, aiming to maintain

a high comfort level at a reasonable expense. In such a way, people’s privacy and the healthy

operation of the grid can be balanced.

The important question then becomes how to handle a request from the utility for reducing

the overall electrical consumption. The most obvious approach would be to rely on the residents

to assign priorities to their electrical devices. However, this may become inflexible and would

complicate the whole procedure for the customers, who may have changing priorities and may

not be willing to participate in such smart grid programs. An alternative approach would be to

categorize devices according to their use patterns. Hence, we separate household devices into

three broad categories. Permanent devices, which should never be turned off such as a fridge,
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on-demand devices, which are utilized by home residents spontaneously, in order to accomplish a

momentary task such as a toaster and schedulable devices, which are devices that are supposed to

accomplish some specific task, but their operation is not momentarily urgent and can be postponed

for a future time such as a dishwasher.

We focus mainly on schedulable devices since their operation can be postponed for low-

demand and respectively low-tariff periods of the day. These appliances could be immediately

turned off, in case there is a prompt call from the utility to reduce urgently the domestic energy

consumption. Thus, customers are just required to identify which of their home devices are con-

sidered schedulable. Then, the application framework targets this device category to postpone use,

in case there is a necessity. In the scenario when no schedulable devices consume energy and there

is an urgent need for reduction, then on-demand devices would be selected.

It is trivial for the application framework to consider which devices are used on-demand, by

observing their consumption patterns. Concerning permanent devices, the fridge is a special case

as it could be turned off for some minutes without a problem. In addition, air conditioners and the

electric heater could be special cases of on-demand devices whose operation may be postponed

for some minutes.

In a complete smart grid scenario, different policies could have effect concerning the remote

management of smart homes from the grid. Service-level agreements (SLA) could be used for

assuring smooth supply of electricity and different customer pricing schemes could be applied.

For example, ”gold customers” could pay a small extra fee for avoiding requests for possible

reduction of electrical supply in peak periods.And
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9.2 Case Study: Exploiting Demand Response

A significant feature of the smart grid is demand response (DR). DR is about offering dynamic

tariffs, according to supply conditions. Dynamic tariffs can be received in real-time, when utilities

provide Web API to automatically disseminate them to the homes of their consumers. The DR

capability would allow users to cut their energy bills by telling low-priority devices to harness

energy only when it is cheapest. Since household appliances account for 50-90% of the residential

consumption, their rational management is important for the efficient operation of the grid.

9.2.1 Implementation

The graphical Web application built on top of the application framework (see Section 4.3),

includes also a task scheduling mechanism, for programming the execution of some pervasive

service in a future time. We adapted this task scheduler, to support the DR feature from electric

utilities. Hence, the residents are able to program actions to be executed automatically in low-

tariff hours. A low tariff is specified as a lower percentage from the basic tariff, which is offered

by the utility. As an example, the resident can program the electric water heater to heat water for

a shower, when the tariff is 10% less than normally.

Furthermore, the resident is able to adjust the task scheduling procedure, according to his own

preferences. He can define a maximum amount of waiting time, in case tariff does not fall below

the specified limit in that time window. In this case, the task can start right after. The resident can

also specify the execution of a task to be performed in morning, afternoon or night time. Finally,

he can set the duration of each task, forcing the application to switch the corresponding electrical

appliance off, as soon as the task completes.

To assess the feasibility of enabling energy-aware smart homes to the DR feature of the smart

grid, we created a simulated scenario. We developed a Web server that simulates a (low-level)
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smart grid controller, supporting DR functionality for EAC. A RESTful Web service was included,

for informing the customers in real-time about the utility’s current tariffs using RSS Web feeds.

These tariffs, although simulated, aim to reflect the actual energy loads/demands of the country.

Figure 9.3 presents the total electricity demand in Cyprus, at a typical winter day. We assume

that the power plants of EAC are able to operate in 4 different modes for generating electric power.

These modes reflect the average electricity demands when dividing a winter day into morning,

afternoon, early night and late night. These four modes can also be observed in the figure.
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Figure 9.3: Total electricity demand at a typical winter day in Cyprus.

To produce dynamic tariffs, correlated to electricity demand patterns, this simple equation was

used:

Tariff = α ·BasicTariff · ( InstantDemand
AverageDemand

) (8)
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where α is a coefficient used to weight the prices according to differences in demands. Using

this equation with α = 1, dynamic tariffs are produced that give incentives to consumers to utilize

their electrical appliances in non-peak hours. These tariffs fluctuate around the basic home tariff,

as shown in Figure 9.4.
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Figure 9.4: Real-time tariffs based on electricity demand.

9.2.2 Proof of Concept Deployment

Ploggs smart power outlets were used to create a wireless smart metering network inside an

experimental smart home. Each Plogg was associated with some specific electrical appliance, in

order to control its operation. The experimental setup is shown in Figure 9.5. In the figure, 5 hops

are needed from the Plogg that acts as the base station, to reach the Plogg which monitors and

controls the television.
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A typical real-life scenario was considered. Most washing machines allow a user to define a

preferred operation mode and start the washing in a future time. We programmed such a washing

machine, through the task scheduling mechanism, to start the washing when the tariff is 5% less

than its normal price. We tested the execution time of this task, by placing the washing machine

and its corresponding Plogg in different hops from the application framework.

Living Room

Kitchen

Bathroom

Bedroom

Laundry Room

Energy-aware 
Smart Home
Application

Figure 9.5: Experimental setup in demand response application.

Figure 9.6 illustrates the results of this experiment. The wireless network of the smart power

outlets needs approximately 0.8-1.6 seconds to switch on the washing machine, which is consid-

ered an acceptable amount of time. Switching off the electrical device, after it has performed its

task, requires around 1.2-2.7 seconds. This delay is caused by the firmware and the hardware
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components of Ploggs. Since the task scheduling mechanism will operate for control scenarios

with low workload, our results in regard to task execution times, are considered satisfactory.
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Figure 9.6: Task scheduling performance for switching on/off the washing machine.

9.2.3 Potential Savings

A new potential for saving energy and money is created by integrating energy-aware smart

homes to the smart grid. We attempt to estimate this potential, considering that household appli-

ances account for a significant percentage of the overall residential consumption.

As mentioned in Section 9.1, home devices span three categories: permanent, on-demand and

schedulable devices. We are mostly interested in schedulable devices as they are devices that can

be programmed to operate during low-tariff periods of the day. These devices can fully harness

the DR feature of the smart grid. Therefore, electric utilities can save energy by better managing

their load conditions and residents can save money by using electricity when it is cheapest.
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Table 9.2: A list of schedulable electrical appliances and possible savings.

Device Consumption (kWh) Duration Month Freq. Tariff Reduction in e

10% 20% 30%

Hair Dryer 2.1 (1.5 - 2.5) 35 min 25 0,63 1,27 1,9

Electric Mixer 1.3 (0.8 - 1.5) 20 min 8 0,07 0,14 0,22

Electric Iron 2.8 (2.4 - 3.0) 2 h 8 0,93 1,85 2,78

Electric Oven 2.7 (2.5 - 3.0) 60 min 26 1,45 2,91 4,36

Water Heater 3.0 30 min 20 0,62 1,24 1,86

Dishwasher 1.5 (1.3 - 2.0) 40 min 22 0,46 0,91 1,37

Washing Machine 2.6 (2.0 - 3.0) 1 h 40 min 16 1,44 2,87 4,31

Clothes Dryer 3.6 (3.0 - 4.3) 50 minutes 11 0,68 1,37 2,05

Total Possible Savings 6,28 12,56 18,84

Electric Vehicle 3.3 8 hours 10 5,46 10,93 16,39

9.2.3.1 A Survey for Schedulable Devices

We performed a small-scale, telephone-based survey to identify schedulable electrical appli-

ances. We discussed with 20 housewives and we posed to them the following question: ”if your

electric utility offered cheaper tariffs at some hours of the day, which tasks, handled by your elec-

trical appliances, would you schedule for these hours?”. We also asked them about the duration of

each task per day, translated into operational time of the appliance and also the monthly frequency,

in which they perform this task. Their responses are listed in Table 9.2.

We used average values for task duration and monthly frequency. These values depend on

many parameters such as weather conditions (e.g. electric water heater), number of family mem-

bers (e.g. electric iron, washing machine), mentalities and habits of each society (e.g electric oven,
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dishwasher) etc. Surely, these values are not absolute but just indicative, in order to facilitate our

purpose of roughly estimating possible savings.

Observing the table, we can notice that some devices can be categorized both as schedulable

and on demand (e.g. hair dryer, electric mixer, electric oven). Eight housewives commented that

they were willing to use such devices according to low-tariff periods, in case this would save them

significant money.

9.2.3.2 Calculations for Money Savings

After identifying home schedulable devices, we located some popular products for each de-

vice type and we recorded their energy consumption in kilowatt-hours (kWh). We computed the

average values to derive typical consumption figures.

For our calculations, we used the home tariff offered by EAC in the period September-October

2012 (20,07 cent/kWh). In the last three columns of Table 9.2, we can view possible savings for

schedulable devices, when home tariff falls 10%, 20% or even 30%.

Devices such as the electric mixer do not contribute in money savings and there is no need

to schedule them for future time. However, devices such as the washing machine and the electric

oven could contribute more effectively, allowing monthly savings of more than e 1 each, when

tariff falls 10% and more than e 4, in case tariff falls 30%.

If we apply our optimized policy for all electrical appliances, monthly savings can be summed

around e 6 in 10% tariff reduction and up to e 19 in case of 30% reduction. Considering the fact

that the average monthly cost for electricity in houses around Cyprus is e 175, possible saving of

e 19 gives 10,85% reduction in the bill of a typical home.And
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A survey from Parks Associates2 remarks that ”over 80% of US households would pay up to

$100 for cost-saving equipment if it chopped at least 10% off their monthly electricity bills”. This

survey indicates a possible acceptance of our approach by home residents. This is only valid under

certain conditions such as effective tariff reductions by utilities.

An example killer application of the smart grid might be PHEV. It would be essential for the

healthy operation of the grid to force residents to charge their PHEV in low-demand periods of

the day (e.g. during the night). The last row of Table 9.2 shows possible savings when a typical

PHEV exploits real-time pricing. We assume that a typical PHEV needs approximately 8 hours of

charging in 3.3 kWh and provides driving range on batteries up to 150 miles3. Therefore, it would

need charging every 3-4 days to adequately support the needs of a family. In this case, monthly

savings can be more than e 10 when the tariff is reduced by 20%.

Since many schedulable devices are used only sometimes per month or some hours per day, it

is not necessary to buy a smart power outlet for each different device. By purchasing 5-10 outlets,

it may be enough to cover the daily needs of a family and schedule the operations of the devices

through the task scheduling mechanism in low-tariff hours of the day. In this way, this approach

would constitute a lower-cost investment.

Overall, DR is a promising capability of the smart grid. Energy-aware smart homes can ex-

ploit this functionality using the Web as an integration platform. This seamless interconnection has

the potential for significant energy and money savings, both for the electric utilities and the cus-

tomers, allowing Web-enabled electrical appliances to schedule their execution for low-demand

and respectively low-tariff periods.
2http://www.parksassociates.com/
3http://www.hybridcars.com/electric-car
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9.3 Case Study: Load Shedding

Load shedding [35] is an action taken to prevent frequency abnormal operation and is the last

resort to maintain frequency stability4, in case of contingency scenarios or autonomous-islanded

operation. Such a scenario could include the non-scheduled outage of a generation unit or a main

transformer. In this case, the non-served load previously served by the generator that currently ex-

periences an outage will be allocated to other online units, given that their loading can be extended,

remaining within the limits indicated by the manufacturer.

However, there are two unfortunate cases that might happen. First, the online generators may

not be able to accommodate/undertake the extra load because they are already highly loaded.

Secondly, online generation units might be able to accommodate the extra load (because they are

not fully loaded) but, depending on the magnitude of the loss of generation, the response rate of

their prime movers will not be in position to accommodate such a sudden increase in load, within

the time slot indicated in transmission system regulations.

In such cases, to avoid an under-frequency abnormal operation of the power system, the oper-

ator is forced to apply a low-frequency demand control action, removing intentionally loads from

service in order to prevent the total collapse of the system due to cascading events. This procedure

is the definition of load shedding and lasts until the frequency magnitude recovers at the desired

levels, when the rest of the online units are able to fully compensate the non-served load.

Load shedding is a procedure generally undertaken from the electric utility or the power sys-

tem operator in a centralized way. The aim in this case study is to exploit the proposed architecture

(see Section 9.1) and the functionalities provided by the Web API of Web-enabled energy-aware

smart homes (see Table 9.1), in order to achieve selective load shedding that can be performed in
4Retain frequency within the operational and statutory limits.
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a distributed manner, providing to the grid the capability of directly controlling domestic loads.

This is a major characteristic of the future grid not yet standardized and its precise implementation

has not yet been decided.

9.3.1 Implementation

The architecture described in Section 9.1 illustrates the path of the control messages and how

the control objective will be achieved, i.e. the frequency stability of the power system. Concretely,

the electric utility monitors the frequency of the power system almost in real time. In case of a

critical variation based on the frequency value and its rate of change, control messages are issued

from the utility control center to the high-level smart grid controllers, which order the low-level

grid controllers to reduce the power consumption of the area that they are responsible for (e.g. a

neighborhood). Then, the low-level controllers use the Web API of smart homes in a best-effort

manner, asking the houses to reduce their consumption based on their current electricity demand

and the condition of the grid.

Harnessing a smart home for these purposes has not yet been thoroughly explored by re-

searchers and it is expected to revolutionize the future grid’s structure and control. To demonstrate

this potential application of the smart grid, an emulated scenario of selective load shedding has

been implemented, employing three residential units in which the application framework for smart

homes (see Section 4.2) has been deployed, along with 4-5 Ploggs at each house, associated with

various electrical appliances of the house, mainly schedulable devices. The experimental setup is

displayed in Figure 9.7.

In the scenario under consideration, it is assumed that the residential units are located in an

islanded power system. A set of generators are committed and serve the total load of the system.
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Figure 9.7: The experimental setup used in the scenario of load shedding.

Without loss of generality, the system is modeled with a generator, a transmission line and a

variable load. The aim is to monitor the frequency stability of the system.

Virtual Phasor Measurement Units (PMUs) [133] are assumed, which are capable of measur-

ing both the frequency and its first derivative online in real-time. System parameters were iden-

tified by applying the Lyapunov Synthesis Method [58], based on a simple linear second-order

system frequency response (SFR) model [15]. Lyapunov Synthesis Method enables to identify the

parameters of the plant through a suitable Lyapunov function, in terms of state variables and time,

forcing this function to be at least negative semi-definite in order to obtain the desirable stability.
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Further, a (low-level) smart grid controller was simulated on Simulink5, and its main task was

to maintain the stability of the system by determining the optimal (per unit) amount of electric

load that should be shed to achieve frequency stability. The basic parameters of the simulation are

listed in Table 9.3.

Table 9.3: Parameters at the simulation of a smart grid controller.

Parameter Value

Simulator Time Step 0.27424 msec

Total Simulation time 150 sec

Sampling Rate for Domestic Consumption 350 msec

Total Number of HTTP requests 428

In the scenario under discussion, the grid experiences a sudden, non-scheduled increase in

load. This increase has been modeled as a step function change in demand. As a result, the

frequency of the power system starts to decline continuously. Three different cases are considered:

1. No load shedding takes place.

2. Load shedding is performed following the conventional practice that is applied by the vast

majority of power system operators worldwide.

3. An intelligent selective/soft load shedding is performed, exploiting the proposed system

architecture.

In the first case, the frequency decline is just monitored without taking any action. In the

second case, circuit breakers are activated, shedding load based on an approximate rule of thumb,

which indicates that the connected load magnitude should be decreased linearly in relation to the
5http://www.mathworks.com/products/simulink/
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frequency decline. For example, if the frequency decreases by 1%, then load magnitude would be

decreased by 2% [14]. Thus, when frequency declines 1% becoming 49.5 Hz, 2% of the load is

shed. At the frequency level of 49Hz, a 4% of the initial load is shed.

Finally, in the third case, the proposed algorithm was applied to determine when load shed-

ding should be performed and the amount of load that should be shed. Current consumption is

monitored in near real-time by the operator of the grid through the relevant smart grid controller,

which is responsible to aggregate the consumption of the houses it controls. The grid controller

obtains current consumption by issuing an HTTP GET electricity command to each smart home,

in regular time intervals of 100 ms. The total consumption, input to the simulated power system

as a load, has been derived from the current consumption of the three domestic units, multiplied

by a factor of 10,000. In this way, the emulated scenario has been scaled to an islanded grid.

Based on the total consumption, the current value of the grid’s electrical frequency and its rate

of change, the operator asks from the grid controller to shed the required amount of load. Then,

the controller asks from each house to shed a specific amount of load by issuing an HTTP POST

reduceconsumption command. The targeted amount of load to be shed at each home depends on

its current consumption. After that, the application framework decides which device(s) should

be switched off based on the policy employed (e.g. according to device category and its current

consumption). In this implementation, schedulable devices whose consumptions were closest

to the targeted reduction were preferred to be switched off. This is an iterative conversational

procedure that takes place until the targeted total amount of load is shed. As soon as the command

is successfully executed (an ACK has been received and the corresponding devices have been

switched off), the simulator is fed with the scaled amount of shed load.

Finally, when the grid is in a ”safe” condition again (the frequency has recovered in nor-

mal/desired limits), the controller starts progressively to issue HTTP POST increaseconsumption
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commands to the smart homes, to gradually add the load that has been previously curtailed, allow-

ing a maximum restoration in load at each house. Hence, the application framework switches on

the schedulable devices that had been previously switched off, allowing them to finish their task.

The three different phases of the proposed algorithm can be observed in Figure 9.7. In this

specific scenario, the grid controller monitors the electrical consumption of all the three houses

and, at some time, needs to perform load shedding in order to maintain frequency stability of the

system. Hence, it decides to issue HTTP POST commands to smart homes B and C to reduce their

instant consumption by 500 and 800 Watts respectively. Smart Home B responds to this command

by switching off the dishwasher and smart home C by switching off the electric iron. These are

schedulable devices whose operation may be postponed for a future time. Then, when the system

is stabilized again, the grid controller issues another POST command to smart homes B and C,

allowing them to increase their consumption by 600 and 1000 Watts respectively.

9.3.2 Evaluation

Figure 9.8 depicts the performance of the three different schemes in regard to the time response

of the frequency variation. When no load shedding is applied, the frequency declines exceeding

the permitted limits (of +/- 3 Hz), causing under-frequency abnormal operation. In this case, the

power grid will experience instability and cascading events will possibly follow, causing a total

blackout. Furthermore, devices such as induction motors can be damaged or even burned out at

low/under-frequency operation.

In the second case, when conventional practices regarding load shedding are performed, the

frequency exceeds the desired levels for four seconds and needs 35 seconds in total in order to

”absorb” the disturbance. After this critical time, frequency oscillations still exist, being reduced
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Figure 9.8: Load shedding using different practices.

with a small step. In this case, a set of customers would experience a total outage causing major

discomfort to them.

Finally, when our intelligent selective load shedding algorithm is applied, the frequency re-

mains at the desired levels during the whole emulation time. It recovers fast in the first 35 seconds

of the emulation and totally absorbs the disturbance after 50 seconds.

Moreover, because the intelligent algorithm is sensitive even at small frequency variations

and acts proactively, based on the frequency rate of change, it finally achieves a minimum total

amount of load to be shed. This is in contrast to the conventional practice in which a larger amount

of load needs to be shed in order to achieve the same control objective, i.e. to maintain the system

frequency in the desired levels. In addition, load restoration can be applied smoothly as soon as

the frequency experiences an upward trend, exceeding a certain threshold with certain momentum

(certain rise rate given by the positive time derivative of the frequency). In this way, the maximum

load is restored in minimal time.
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Our findings indicate that the load shedding application contributes to a more robust power

grid that controls frequency oscillations in a more effective and efficient way, preventing power

system instabilities and total outages of utility services. At the same time, it minimizes unexpected

outages and customer discomfort by minimizing the load to be shed and by restoring it faster than

the conventional practices do.

9.4 Other Potential Applications

In the following subsections, some other potential applications that could be enabled using

the proposed architecture are briefly described. These applications include peak leveling, fault

tolerance, billing and a distributed electricity market.

Peak Leveling/Shaving

Peak leveling/shaving is a process that aims to eliminate the demand in peak hours and to shift

it in non-peak demand periods. In this way, the demand curve is leveled, providing maximum

exploitation of the current utility infrastructure while the need for excessive spinning reserves is

reduced. For example, in the case of an expected peak hour (e.g. a world cup final), expensive

generators are supposed to be employed that are able to switch on fast and follow the load changes

quickly. However, this is costly for the utility, both in operations and expenses.

The proposed end-to-end architecture (see Section 9.1) aims to mitigate this situation by apply-

ing peak shaving, shifting the low-priority and reschedulable domestic loads to non-peak demand

hours, in the way of distributing evenly the produced energy throughout the day.

The approach described in Section 9.3 for load shedding could also be employed for peak

shaving. In addition, demand response programs could be utilized (see Section 9.2), using special

tariffs to influence consumer behavior.
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Fault Tolerance

An important characteristic of the smart grid is the timely detection and localization of faults.

The proposed architecture (see Section 9.1) has been designed in order to facilitate this task

through the hierarchical, distributed structure of the controllers.

The established end-to-end connections between the smart grid controller and each of the

smart home application frameworks provide in (near) real-time the customers’ consumption. In

addition, the HTTP POST requests issued by the controller, destined to the customer premises,

reveal information about the status of the house, for example if a command has been successfully

executed concerning shedding some amount of load.

In this way, the controllers can identify any abnormal behavior of the customers’ consumption

patterns and find out quickly which customers experience malfunctions or outages. Further, if the

smart home framework does not respond to the issued commands multiple times (the customer-

specific commands are re-sent until an ACK is received), this implies that the specific user expe-

riences a failure or violates the SLA contracted with the operator of the grid.

In such cases, the smart grid controller may send some additional requests to the home frame-

work in order to get informed about the status of the house and increase its awareness about the

situation. Hence, the customers who experience unavailability of some or all services will be au-

tomatically detected and will be associated with the faulty feeders. Then, the utility crews will

locate the fault and rush in immediately, reducing the duration of service unavailability (outage).

Their fast response would increase the reliability index of the utility company and generally

improve its severity-based indices. Indices including expected unserved demand per year and

expected unserved energy per year would be improved because of the faster faults restoration and

the early actions taken as a result of the enhanced situational awareness of the grid.
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Of course, there exist situations that could complicate fault localization. For example, a mas-

sive DoS attack on the customer premises and the smart grid controllers could hinder any efforts

for fault identification and solving. Security countermeasures such as firewalls could be employed

to prevent such attacks. A small discussion about security is performed in Section 10.5. Nonethe-

less, since the proposed architecture relies on the Internet/Web, fault tolerance in general can not

be guaranteed.

Billing

Billing is a major source of expenses by electric utilities since dedicated personnel must be

employed for reading the home meters manually, requiring the physical presence of an employee

at each house. The smart grid can provide long-term savings to the utility by providing automated

meter reading via frequent interactions with energy-aware smart homes, through the Web.

Considering the Web API offered by smart homes as provided in Table 9.1, it could be enough

for the utility to issue GET requests in frequent intervals (in magnitude of seconds/minutes), to get

informed about the instant domestic consumption. However, this pull-based technique would not

scale for millions of houses. Therefore, a push messaging technique based on a publish/subscribe

model (see Section 2.6), similar to the one used in Section 5.2.4, would be more appropriate.

Availability of timely billing information would help residents to become more aware about

their electricity footprint, giving them financial incentives to reduce their consumption.
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A Market for Generation/Consumption of Electricity

The use of domestic renewable electricity generators could become a trend in the future. These

generators would form decentralized energetic islands or microgrids. A microgrid consists of

many small, distributed energy resources, located near each other in the low-voltage distribution

system, connected to each other through some network.

Through this decentralized network architecture, smart homes may be capable of trading en-

ergy for money by means of market agents. These agents would represent electric devices, either

generators (e.g. photovoltaics, wind turbines), or loads (e.g. television, fridge).

Hence, real-time auctions about electricity could be developed among energy-aware smart

homes and the smart grid. According to the current generation and demand, smart homes would

sell/buy electrical energy in competing prices.

The proposed architecture defined in Section 9.1 could be employed for enabling a real-time

market for energy. The Web could become the platform for handling the message exchange be-

tween houses and the grid. More specifically, the Web API offered by smart homes, as shown

in Table 9.1, could be extended to support also market-related functionalities. For example, as-

suming that a smart home needs energy in some sunny day, its home market agent could query

another smart home that generates electricity from photovoltaics, asking about the price of pro-

duced energy. This could be achieved by issuing a GET energyprice request. In case a deal is

accomplished, this home agent could issue a POST energydemand command declaring the needed

amount of power. Of course, this is only a simple example, since a complete solution would

require money transactions between the two parties, intelligent algorithms for automating the pur-

chase of energy in competing prices and an infrastructure for offering the distributed generated

electricity to other houses.
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Chapter 10

Beyond the Smart Home Environment

This chapter presents challenges encountered in the research area of the WoT and are beyond

the smart home environment. These challenges relate to Web-enabled smart homes and their

functionalities in a significant degree, however, their application scenarios involve general and

larger-scale pervasive spaces, urban environments and global discovery of environmental services.

In all these scenarios, the research performed in this thesis about enabling smart homes to the Web

may be directly applied, to achieve the overall goals defined at each scenario. The smart home

constitutes a vital living cell in the ecosystems envisioned by these challenges. Also, in real

deployments within the home and beyond, issues of security and privacy need to be addressed.

The rest of the chapter is organized as follows: Section 10.1 discusses the extension of the

application framework for smart homes in larger-scale, mobile, ad hoc ubiquitous scenarios and

Section 10.2 explores augmenting other real-life pervasive applications, beyond smart homes, with

social characteristics. After, Section 10.3 aims to address a crucial issue at the WoT agenda, which

covers the global, real-time discovery of physical devices and environmental services through the

Internet/Web. Then, Section 10.4 explains how advanced knowledge inference could be achieved
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in urban environments, helping the citizens to enhance the quality of their everyday lives. Finally,

Section 10.5 considers some security aspects inside Web-based smart homes and beyond.

10.1 From Smart Homes to Smart Spaces

Probably the reader has already wondered whether the application framework for smart homes

(see Section 4.2), could be generalized for other pervasive scenarios, indoor or outdoor. Of course,

each different pervasive scenario includes specific requirements and has particular characteristics.

For example, some pervasive physical spaces might be characterized by high unreliability, in-

creased percentages of transmission and device failures, high mobility of sensors and actuators

etc. The interaction between the users and the embedded devices of the pervasive space might

involve any type of interaction (e.g. request/response, event-based, streaming).

The application framework has been designed with its primary focus being on indoor, home

environments. However, the framework is flexible enough to adapt to many different application

scenarios successfully, offering satisfactory performance. The requirements defined for its de-

velopment (see Section 4.1) are general enough, to allow the framework to be easily extendable

to support various real-life applications. A direct, straightforward application of the application

framework could be smart buildings with numerous tenants, visitors and workers. A real-life ap-

plication of the framework in an organic farm is presented in Section 10.2, in which the workers

of the farm monitor a farm’s greenhouse through the application framework. Since the framework

supports more than a hundred simultaneous users (assuming they are making 1 request per minute

to their home environment, see Sections 6.4.1 and 7.2), it could be well applied in scenarios in-

volving building automation.

Some important preferences and features of the application framework that facilitate its gen-

eral applicability in ubiquitous spaces are:
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• Robustness by identifying device failures fast through aliveness checks and masking these

failures by forwarding requests to relevant physical devices offering the same service (see

Section 4.2.4).

• Reliability by masking transmission failures to/from the embedded devices, supporting fast

retransmissions (see Section 6.4.2).

• Interoperability between heterogeneous physical devices and their services by following

REST architectural style (see Section 1.3).

• Various interaction possibilities with physical devices in a uniform manner (ad hoc interac-

tion, continuous monitoring and event-based messaging).

• Support for multiple users who may interact with the application framework simultaneously

(see Section 6.4.1).

• Graphical user interfaces for facilitating the management of the physical environment by

end users (see Section 4.3).

• Direct access for users to their physical space pervasively through the Web.

• Promoting application development by end users with little programming experience, through

the use of physical and urban mashups (see Sections 4.2.6 and 4.2.7).

• Load balancing for better serving high traffic (see Section 6.4.4).

• Support of prioritized requests, necessary in time-sensitive scenarios (see Section 6.4.5).

• Support of a caching mechanism, to reduce the burden of embedded devices (see Sections

4.2.5 and 7.2).
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• Acceptable performance in terms of request/response times, energy performance of physical

devices and push times (see Chapter 7).

Even though the previously listed features may promote the use of the application framework

in various pervasive scenarios, there are also some issues that need to be considered and addressed

before proceeding with such an initiative. At first, our evaluation efforts have focused on test

cases with arrival rates of 2 requests per second or at most 120 requests per minute. These test

cases cover typical smart homes and buildings hosting around tens or a hundred of home members

(assuming that all these members are active users of the relevant smart home application).

For larger-scale pervasive cases, especially outdoor, in which many hundreds or even millions

of users might need to be supported, the application framework may not be suitable. This esti-

mation is reinforced by observing the push time performance for forwarding streaming data to

interested subscribers (see Section 7.4). Push times grew exponentially when more than 60 sub-

scribers were involved. Of course, this statement is valid considering that the framework has been

installed only on a laptop computer during the evaluation efforts (see Section 7.1). Anyway, more

focused evaluation using better physical equipment must be performed, in order to determine the

scalability of the system in terms of user numbers.

Scalability issues concern also the supported number of physical devices. Our evaluation ef-

forts involved at most a multi-hop 2-3-4 topology with 9 sensor motes in total. Larger deployments

need to consider also larger numbers of sensor and actuator devices, as well as various topologies

and hop-distances of devices. As we mentioned during our evaluation attempts, we selected a

small number of sensor devices to stress test the system in high traffic and demanding conditions.

Our findings indicate that the application framework and the request queue mechanism behave

well in these conditions. Hence, it is mainly a matter of the 6LoWPAN protocol (see Section
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2.1.6) to support wireless, multi-hop networks with hundreds of embedded devices. A small ex-

periment performed in Section 4.2.2, indicated the capability of the framework to support a few

hundreds of devices, dependant on the computing device type on which it has been installed.

An important issue that may be encountered in general pervasive spaces is the possible mo-

bility of the embedded devices. The design of the request queue mechanism (see Section 6.2),

as well as our analysis and evaluation procedures assumed a static deployment of home devices

inside the house ecosystem. Also the equation for setting the request queue retransmission inter-

val (see Section 6.3.2) was selected based on a static placement of embedded devices. Merely a

general discussion about the support of moving objects and dynamic environments was provided

in Section 6.3.3, however, no further analysis was performed. Hence, mobility was not adequately

addressed in this thesis and might be an important requirement in specific pervasive scenarios.

To sum up, our application framework for smart homes offers numerous features and benefits

that enable its applicability in various pervasive scenarios. However, the framework is not suitable

to be employed in scenarios demanding high scalability, mainly in terms of users and in which

high mobility of physical devices is present. More detailed and analytical evaluation efforts need

to be performed to assess the ability of the application framework to scale to hundreds or millions

of users and physical devices.

10.2 Online Social Networking of the Physical World

The case studies performed in Chapter 8, indicate that social influence is important in influ-

encing people to save energy and to engage in sustainable lifestyles.

These studies suggest that online social networking platforms have the potential to support

pervasive applications that target the physical world, enhancing these applications with a social
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shape. Physical devices and environmental services can become ubiquitous inside social network-

ing sites, merged with the everyday social activities of users.

To further demonstrate this concept, we developed a case study in another real-life scenario

that focuses on environmental monitoring, beyond the smart home environment. RiverLand Dairy

Farm is the first organic farm in Cyprus, involving biological procedures to produce animal and

vegetable food products. The farm has numerous greenhouses. Monitoring the environmental

conditions inside the greenhouses is crucial for the proper growth of vegetables.

10.2.1 Implementation

We deployed the equipment described in Section 5.1, namely Telosb sensor motes and Plogg

smart power outlets in one of the farm’s greenhouses, in which tomatoes are grown. The intention

was to monitor through Facebook in real-time the temperature, humidity and illumination levels

at the greenhouse as well as the electricity footprint of a lamp that is placed inside it.

Social Farm Facebook application enabled the monitoring of the conditions at the greenhouse

by the workers of the farm, through Facebook. Social Farm and our application framework were

installed on a laptop that was also placed inside the greenhouse.

The farm employed eleven workers and we asked them to participate in our experimental

deployment by utilizing for two weeks the Social Farm application. Two workers, who were quite

old, kindly refused to participate as they had zero experience with computers. From the rest of

the nine workers who accepted to participate, five already owned a Facebook account and four of

them had never used a SNS before.

We harnessed Facebook groups as the mechanism to achieve access control. We created the

group FarmWorkers, which operated privately. Only the farm owner could approve join requests.
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We also included the eventing infrastructure described in Section 8.1.1, to allow workers to get

notified when something abnormal happened at the greenhouse.

10.2.2 Evaluation

After the two weeks, we asked from the workers to express their impressions in using our

application. The methodology used for the evaluation procedure was elementary, based on small

chats and personal interviews.

All of them found the application easy to be used. They agreed that the integration of physical

devices in SNS would promote sharing of sensory services. A worker even suggested a Face-

book application that targets health monitoring, where doctors would interact with their patients

monitoring, at the same time, the patients vital signs.

The workers who already owned a Facebook account were excited with the perspective of con-

trolling the greenhouse while amusing with their friends. The workers who did not have previous

experience in Facebook found it difficult to understand the notification methods and were not so

enthusiastic with this approach. Some complained that the notification methods are not very effec-

tive since the user must be online to be informed. Nonetheless, all the workers stated that Social

Farm increased their monitoring activity, making them more aware about the farm in general.

The owner of the farm, although he was one of the workers who did not previously possess

an account, was really satisfied with the application and showed interest to learn the costs needed

to fully automate his farm. He was excited with the possibility of delegating access, through the

FarmWorkers group to his friends/employees, to observe the status of his greenhouse.

Summing up this small study, the enhancement of pervasive real-life applications with social

elements seems to help people to engage in beneficial activities, such as monitoring a greenhouse
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for abnormalities. Blending working tasks with online social entertainment may give some incen-

tives to people, for adopting sustainable lifestyles.

10.3 Global Discovery of Environmental Services

In the future, Web-enabled sensor devices (see Section 5) are expected to constitute the large

majority of the Web population, and will be deployed around the world to measure with high

accuracy the physical environment. These devices will mainly be exposed to the Web by means

of Web-enabled smart homes, which would offer their functionalities as open Web API.

In general, there do not exist yet standardized, scalable and flexible ways to globally discover

Web-enabled embedded devices, based on their characteristics and capabilities. In other words, a

real-time search engine for the physical world is still unavailable. Dyser [125] and Snoogle [172]

are early efforts towards real-time discovery of physical entities, however, they either require

additional Web infrastructure or they do not scale for the Web. On the other hand, microformats1

suggest ways for making HTTP data available for indexing and searching, but their utilization for

global discovery of the WoT would augment our dependencies to commercial search engines.

We believe that service discovery of embedded sensor devices needs to be ubiquitous to the

users of the Web. The proposed solution must comply with existing Internet standards and should

not require major changes to the existing technical equipment and protocols. Users should be

able to discover environmental services simply by typing related keywords in their favorite Web

browser. In this way, discovery of physical devices may be similar to the way we discover Web

sites through search engines. In the following subsection, we present an approach for performing

real-time discovery of the WoT by using the existing Internet infrastructure.
1http://microformats.org/

And
rea

s K
am

ila
ris



249

10.3.1 Case Study: DNS-based Real-Time Discovery

We propose to exploit the existing Internet infrastructure to achieve real-time discovery of

physical devices and environmental services. We investigate utilizing the Domain Name Sys-

tem (DNS) as a scalable, pervasive, global meta-data repository for embedded devices, and its

extension for supporting location-based discovery of Web-enabled physical entities. DNS is a hi-

erarchical, distributed naming system for computers, whose main functionality is the translation

of domain names meaningful to humans into IP addresses meaningful to machines. Applying an

existing technology for the discovery of physical devices and services, especially one that has been

ubiquitous for decades, offers many advantages, including well-defined support, easy configura-

tion, experienced developers and users, as well as availability of open-source implementations.

The general idea of exploiting DNS for service discovery is not new. DNS-based Service

Discovery (DNS-SD) [28] proposes using standard DNS programming interfaces, servers and

packet formats to browse a network for services. Similarly, Multicast DNS (mDNS) [29] enables

to perform DNS-like operations on a local network in the absence of any conventional unicast DNS

server. Even though both protocols have been originally designed for device/service discovery in

local networks, DNS-SD has been extended to provide wide-area service discovery. However,

this functionality for service advertising is domain-centric, meaning that users are only able to be

informed about services offered in some particular domain. In contrast, our proposal is service-

centric, envisioning to enable global, real-time, location-based discovery of pervasive services,

offered by Web-enabled sensor devices. In the following subsections, we examine how to change

the organization of DNS to support location-based, real-time discovery of environmental services.And
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10.3.1.1 Device Registration

We propose the inclusion of a new top-level domain at the DNS, which is the env domain. This

domain is intended to support all embedded devices and environmental services which are enabled

to the Web and registered to the DNS. Specialized authoritative name servers may be responsible

for this domain. These .env domain name servers shall allow real-time registration of physical

devices and their (RESTful) Web services through Dynamic DNS (DDNS) [139].

In general, a particular service2 instance can be described in DNS using SRV [77] and TXT

[118] records. A SRV record has a name of the form:

< Instance > . < Service > . < Domain > (9)

and gives the target host and port where the service instance can be reached. The DNS TXT

record of the same name gives additional information about this instance, in a structured form

using key/value pairs

Whenever a Web-enabled sensor device becomes available on the Web, it would create a re-

quest to the .env DNS server, asking for registration. In this request, the device must specify its

name, location and the services it offers. The .env server could offer a Web API, allowing sensor

devices to POST their discovery details in HTTP requests. In case all information is provided, the

.env DNS server would acknowledge the request, assigning a fully qualified domain name to the

device, registering it in a SRV record.

Hence, each sensor device will be assigned a unique hostname that has the following format:

devicename. http. tcp.service.location.env (10)
2To avoid confusion, we note that by the notion of a ”service”, the DNS refers to the Internet protocols used to

interact with some domain. In the WoT (and in this thesis), services are meant as the Web-based functionalities offered

by Web-enabled sensor devices.
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Table 10.1: DNS record translation.

No Record Explanation Example Record/URL

1. SRV A device instance offering service at location device. http. tcp.pollution.nicosia.env

2. PTR Lists devices supporting service at location http. tcp.pollution.nicosia.env

3. A Translates a URL to a 32-bit IPv4 address device.pollution.nicosia.env

4. AAAA Translates a URL to a 128-bit IPv6 address device.pollution.nicosia.env

5. TXT Meta-data about the selected sensor device device. http. tcp.pollution.nicosia.env

where devicename is the user-friendly name of the sensor device (<Instance> portion of the SRV

record), service is the actual Web service offered by it and location is the absolute location of the

device. Service and location define the <Domain> portion, which becomes service.location.env.

The <Service> section is either http. tcp or http. udp.

A sensor device may offer various environmental services. Thus, multiple hostnames will be

created for this device, each for a different service. Since the WoT proposes a resource-oriented

architecture, services would be described with uniform resource identifiers (URIs) (see Section

5.2.3). This avoids ambiguities when users construct environmental URLs in their Web browsers.

10.3.1.2 Service Discovery

Service discovery begins when a user types in his Web browser a URL ending with the .env

label. Since the user may not be able to construct a URL similar to the one in (10), he could

ask about all sensor devices offering service and deployed in location. This would be achieved

by using the PTR DNS record type [118], as shown in Table 10.1, by specifying a query of the

form <Service>.<Domain>. In this case, DNS would respond to the PTR lookup with a list of

relevant <Instance> records.
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In case numerous relevant records exist, a technique such as round-robin DNS could be em-

ployed. Round-robin DNS is a technique for achieving load distribution and load balancing by

responding to requests from various clients according to an appropriate statistical model.

After the user receives the list of relevant instances, he can use any of them to construct a

query similar to the one shown in (10). By typing this URL in his Web browser, the DNS will

translate it to the actual IPv4/IPv6 address of the corresponding Web-enabled sensor device. This

translation is realized by using the A and AAAA DNS record types, as shown in Table 10.1. The

user can also use the TXT DNS record type to receive general characteristics/capabilities of some

sensor device, in case they are available.

When the IP address is resolved and the request is forwarded to the appropriate sensor device,

the device needs to respond with a description of its functionality. This is necessary in order to

understand the semantics of the device (e.g. indoor/outdoor, degree of accuracy, measurement

unit) and how to interact with it to get informed about the environmental conditions. Thus, a

description language must be defined, which declares the device semantics, but also explains the

interaction possibilities with it.

Example description languages that could be adopted are Extended Environments Markup

Language (EEML)3 and SensorML4. These are languages that describe the capabilities of sensor

devices, but do not describe effectively the interaction possibilities with them.

Thus, we propose to employ WADL (see Section 5.2.2), which is a platform- and language-

independent way of describing HTTP-based applications and services. After the user receives

the WADL description, he can construct the appropriate request, query the sensor device and get

informed about the environmental conditions in the selected location, in a well-known format such
3http://www.eeml.org/
4http://www.opengeospatial.org/standards/sensorml
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as XML or JSON. The whole device registration and device discovery procedure is provided in

Figure 10.1.

Figure 10.1: Environmental service discovery procedure using DNS.

Environmental service discovery may involve not only humans but also machines, for auto-

mated M2M communication. In this case, machines could discover useful services on demand,

and take decisions automatically based on current environmental conditions.

10.3.1.3 Freshness of Information

The idea of online directories for Web services (e.g. UDDI5 for WS-* Web services [13])

never worked, mainly because of information inconsistency and unavailability. Through DNS,

these inconsistencies can be avoided.
5http://uddi.org/pubs/uddi v3.htmAnd
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In general, the DDNS service allows the DDNS server to allocate a static hostname to a Web-

enabled physical device, and whenever the device is allocated a new IP address, this is communi-

cated to the DDNS provider by software running on the device.

Furthermore, Dynamic DNS Update Leases [30] constitutes a method of extending DDNS to

contain an update lease life, allowing a DNS server to perform DNS dynamic updates with an

attached lease time, that are automatically deleted unless renewed before the lease expires.

Hence, the name server ”forgets” after some time interval the registration of the sensor devices.

Devices may be forced to state frequently their operability to the DNS server, by re-registering,

e.g. every some hours. In this way, dynamic IP address assignment to devices could be supported

and also device unavailability could be identified in a relatively small delay.

10.3.1.4 Practical Issues

The proposed approach creates numerous practical issues that must be effectively addressed.

The general operation of the DNS is expected to be affected, mainly in terms of management,

security and increased traffic. Concerning management issues, since the DNS follows a hierarchi-

cal structure, the addition of the .env top-level domain is not expected to be a complicated task.

Availability of devices and services may be assured by DDNS update leases.

Partial reliability could be ensured by checking the IP addresses of the sensor devices, if they

fall in the locations claimed by them during the registration process. More reliability and trust

would be achieved if some user-based feedback system was applied for sensor devices and their

environmental services, similar to the way eBay works for rating its users.

User-based rating could be realized if sensor devices had a social presence on the Web. To-

wards this direction, the company Evrythng6 aims to create Web-based social profiles for physical
6http://evrythng.net/
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devices. It would then be easy for users to rate them, according to their quality of service. Such an

initiative would also provide more advanced privacy, allowing the owners of the devices to share

them only with their family, friends or everyone. In general, the social Web could be harnessed

for authenticating and authorizing users to interact with environmental services. We have already

developed such an application prototype for device/service sharing in Section 8.1.

Moreover, this approach requires unique device name assignment to sensor devices that offer

the same services and share the same location. Upon a conflict, the DNS server should automati-

cally select a new name for the device, typically by appending a digit at the end of its name. Since

the .env DNS server would constitute a distributed repository, the devicename assignment should

be visible to all .env name servers. Due to the massive amount of Web-enabled devices in the near

future, this could be the cause of high load to DNS. However, this issue may be mitigated by area-

or location-based assignment of devices to the .env DNS servers.

Another important issue concerns naming of services and locations. For example, locations are

named differently in each language (e.g. ”Lisbon” in English vs ”Lisboa” in Portuguese). To avoid

these ambiguities and guarantee uniqueness, electronic directory services such as X.5007 could be

used, where a distributed database would contain unique translations for services/locations.

Since the DNS system supports a built-in caching mechanism, this mechanism could be ex-

ploited to support caching of sensory data. During their registration, sensor devices would include

their latest measurements, stored in TXT resource records. These measurements could then be for-

warded to users who query the .env DNS server for a relevant service, while they are still fresh8.

Nonetheless, current DNS infrastructure can not tolerate such high loads.
7http://www.x500standard.com/
8Defining the freshness of measurements varies between devices and services.
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Finally, the whole system would be optimized by forcing the .env DNS server to return directly

the IP addresses of relevant sensor devices and not their hostnames. However, this may not be

practical since the IP addresses of the devices may change frequently while their hostnames remain

the same. Furthermore, some users might prefer to use some particular sensor devices they found

more reliable than others. By exchanging only IP addresses, this connection between Web clients

and sensor devices can not be maintained.

10.3.1.5 Implementation

To demonstrate the feasibility of this approach, we emulated our own .env DNS server using

BIND9, which is the most widely used DNS software on the Internet, which implements the DNS

standard. We also simulated hundreds to thousands of sensor devices, which declare their Web

presence to the DNS server. Each device offers some random environmental service and is located

at a random location around the world. We recorded the time needed by the .env DNS server to

answer PTR requests for random service.location.env requests by Web clients, when an increasing

number of sensors was registered to the DNS server. The results are presented in Figure 10.2.

As the figure shows, the average response times scale particularly well as the number of regis-

tered sensor devices is increased. In the case of 1 million registered devices, average response time

is only 16 ms. Network delay is negligible, since the Web clients in this experiment are located in

the same local network with the .env DNS machine.

Of course, our experiments with 1 million sensor devices are very small in relation to the

billions of physical devices that are expected to flood the Internet in the near future. According

to CISCO10, it is estimated that 50 billion devices will be connected to the Internet by 2020.
9https://www.isc.org/software/bind

10http://blogs.cisco.com/news/devices-devices-everywhere-infographic/
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Figure 10.2: Response times of an experimental .env DNS server for PTR requests.

Thus, more extended experimentation is needed in order to consider the scalability of the DNS

mechanism and its capability to support tens of billions of embedded devices.

10.3.1.6 Discussion

The procedure of discovering environmental services can be automated by selecting automati-

cally some sensor device from the list returned by the .env DNS server, parsing its WADL file and

constructing HTTP requests.

This process can even be personalized, by selecting only devices that meet particular user

preferences. For example, some users may wish to interact solely with devices having positive

online feedback or those belonging to well-known authorities such as governmental organizations.

User characteristics could be extracted from their online social networking status.
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Since the whole idea is participatory-based, only people who are willing to share their sensor

devices with the online community would do so. Smart homes that are enabled to the Web are

expected to have a fundamental role in enabling this concept. In the future, a culture could be

created around the concept of sharing environmental services with the rest of the world.

Even though this proposal targets environmental services, it could be well generalized to sup-

port any kind of physical devices and/or pervasive services. To achieve this, standardized ”domain

vocabularies” need to be created, for facilitating the construction of queries by end users. For

example, a user that wishes to park his car in Nicosia could just need to type in his Web browser

parking.cars.Nicosia.

Finally, defining extended environmental ontologies would encourage automatic information

retrieval, generalized inferences and advanced Web mashup development (including physical and

urban mashups) very easily. For example, when the temperature in Porto is obtained, then the

general temperature of Portugal can be automatically inferred.

To sum up, this section investigates in a preliminary level how the DNS could be extended to

support global discovery of environmental services. Our small research [96] indicates that it may

be feasible to achieve automatic, real-time discovery of sensor devices, by means of specialized

domain name servers. However, our thoughts constitute only a novel idea and it would require a

great willingness from Web engineers to be realized.

10.4 Advanced Knowledge Inference in Urban Environments

Urban environments are becoming largely crowded, hosting more citizens than they are able

to support. Already, urban areas host around 50% of the world’s population while the cities’

population is expected to double in the next 40 years [163]. The increasing urbanism creates

serious ambient problems that downgrade the quality of life of the citizens.
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In the future, home residents shall possess in their houses a considerable number of embedded

sensor devices, which would measure with high precision the local environmental conditions. The

real-time measurements of these sensor devices (except when they measure sensitive data) could

be shared by the local (or even the global) community. These measurements could be temperature,

humidity, radiation, electromagnetism, pollution, chemicals etc.

As the Web has effectively penetrated in our everyday lives, it can constitute a large-scale

and ubiquitous platform, for supporting these massive amounts of sensors that will flood cities in

the future. This future abundance of Web-enabled sensors needs to be harnessed toward benefit-

ing people. Web-enablement of smart homes and physical devices could offer an interoperable

city-scale ecosystem that involves heterogeneous physical devices and services, shared by home

owners. In this context, Web-enabled smart homes would constitute the foundational elements for

shaping the next-generation digital cities.

The WoT can be considered as a real-time platform, for supporting citizens to interact with

their cities, by means of Web-enabled sensors and actuators. Sensory services can help people to

ensure their health and safety, and also to trust their environment. Environmental awareness has

the potential to help people become active members of their urban landscape.

10.4.1 Web-based Global Sensor Discovery

City-scale environmental awareness can only function if sensor devices can be automatically

discovered along with their exact location. Standardized Web protocols for real-time sensor dis-

covery as well as a search engine for the WoT are currently unavailable. A novel pervasive tech-

nique for automatic discovery of Web-enabled environmental services is proposed in Section 10.3,

however, it is still in an experimental stage.
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As mentioned earlier in Section 10.3, approaches such as Dyser [126] and Snoogle [172] need

a long way before they become efficient engines for the real world. Their large acceptance and

popularity are hindered by the many security and privacy issues that need to be solved, before

convincing people to contribute with their own devices.

Until then, online global sensor directories can be employed for sensor discovery. One of the

most well-known directories available today is Cosm [82] (called Pachube until recently). Cosm

enables people to share, discover and monitor in real-time environmental data from sensors that

are connected to the Web, around the world. The main drawback of Cosm is its centralized nature.

Decentralized approaches such as IrisNet [63] use a hierarchical architecture for a global sen-

sor Web. More advanced, systems such as G-Sense [131] support a peer-to-peer infrastructure for

global sensing and monitoring. Although Cosm has the drawback of a single point of failure, it is

very popular, being employed by thousands of people and companies worldwide. Besides, it offers

a clean Web API that offers advanced services to developers and users. In the following subsec-

tion, we exploit the functionality of Cosm to develop a mobile application that exploits sensory

information to inform the citizens about the environmental conditions in their urban environment,

helping them to achieve advanced knowledge inference.

10.4.2 Case Study: UrbanRadar - Towards Real-Time Digital Cities

The quickly expanding ecosystem of Web-enabled sensor devices could flood the future cities

with massive sensory information about every possible aspect of everyday life. Location can be the

crucial element that would facilitate this filtering of abundant sensory information, since citizens

would be interested only in their nearby environmental conditions, while they are wandering inside

their cities. They can utilize their mobile phones to discover their exact position and discover
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through the Web nearby sensor devices, which are enabled to the Web by Web-based smart home

applications (e.g. the application framework for smart homes).

UrbanRadar11 [95] is a mobile application we developed that discovers, locates and interacts

with services, provided by Cosm-enabled sensors that are deployed in the vicinity of the user. It

is freely available for download in Cosm applications repository12. The exact user location can

be inferred from GPS services, offered by most new mobile phones13. Proximity is defined as a

circle with the user’s location at the center. The radius can range from tens/hundreds meters to

hundreds of kilometers. In highly dense areas such as big cities, a radius of tens meters could be

enough while in suburbs this radius can cover few kilometers.

Figure 10.3 illustrates the operation of UrbanRadar. The mobile phone represents the user’s

position and the red circle indicates the area of interest, in which the user can be informed about

sensory services. According to the figure, one Web-enabled Telosb sensor mote (see Section 5.1.1)

exists in this covered area, with which the user can interact and be informed about its sensing

services/measurements.

Moreover, the UrbanRadar application supports the creation and management of urban mashups

(see Section 4.2.7). Since every person perceives differently his environment, urban mashups

should be adjusted to the particular needs of each mobile user. Consequently, UrbanRadar has

been designed to allow users to create easily their own urban mashups.

The procedure of deriving the impact of each sensory service to the overall inference about the

occurrence of some mashup, depends on how each citizen understands his environment. Mobile

users are encouraged to specify themselves the impact of each physical service to the triggering of
11http://apps.pachube.com/pachuradar/
12https://cosm.com/apps
13In general, other localization techniques can be utilized (e.g. Wi-Fi positioning, localization based on GSM Cell

ID). We selected GPS because it provides high accuracy.
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Figure 10.3: The operation of UrbanRadar mobile application.

some urban mashup by defining weights, expressed using simple keywords such as high, medium,

low etc. Mobile users can also adjust the freshness time of each environmental measurement. For

example, a measurement of temperature could be valid for some hours while a measurement of

noise would be valid only for some minutes. Finally, users may define the sensitivity of each urban

mashup, to determine when they should be notified about a possible mashup triggering.

Overall, this application investigates the possibilities for advanced knowledge retrieval in ur-

ban pervasive environments by means of urban mashups. We believe that mobile applications such

as UrbanRadar can contribute in the active involvement of citizens with their urban landscape. By

interacting with their local environment, people would become more aware not only about their

house, but also about their town, ensuring a better quality of life. The concepts of UrbanRadar and

urban mashups can constitute drivers towards the vision of digital cities.
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10.5 Securing Web-Enabled Smart Homes

Security is a fundamental aspect in smart home solutions and it becomes even more important

when considering an open, Web-based environment. We need to note that this section only dis-

cusses some general aspects regarding assuring security in Web-based smart homes. These aspects

include defining some basic requirements for security, identifying some popular potential attacks

and considering security threads both in-home as well as between smart homes and third-party

applications, such as social networking sites (see Chapter 8), Web resources declared in physical

mashups (see Section 4.2.6) and low-level smart grid controllers for integrating smart homes to

the smart grid (see Chapter 9). A full study, which is beyond the scope of the current thesis, is

required in order to study in detail all the security issues that result in a Web-based architecture

for smart homes.

Security is a sensitive topic that does not tolerate any compromises. For example, since the

operation of smart appliances/smart power outlets (see Section 2.1.2) needs to be managed by

an energy-aware smart home application (e.g. the application framework for smart homes - see

Section 4.2), it needs to be ensured that these smart devices are managed by the appropriate home

application and not the application running on a neighboring home or by an attacker. Manage-

ment of these devices could cover important tasks such as turning on energy-consuming electrical

appliances during off-peak periods (see Section 9.2).

Moreover, the bidirectional Web-based communication between smart homes and third parties

(e.g. low-level smart grid controllers, social networking sites) requires a trustworthy communica-

tion environment, where each party trusts the other communicating party, as well as the correct-

ness, integrity and freshness of the received data. For instance, considering a smart grid scenario,

upon reception of pricing messages from the utility, the application framework for smart homes
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is assumed to take some actions (e.g. to charge an electric vehicle). If the pricing messages were

changed on-route, the application will possibly take wrong actions. This could cause financial

losses for the consumers, and even lead to a power outage (e.g. by sending fake low-cost tariffs

during peak-periods).

10.5.1 Requirements for Security and Potential Attacks

To provide secure communications in Web-enabled smart homes, the following basic security

services need to be guaranteed:

• Authentication. Ensures the identity that another party claims to be. For example, the

smart home application framework needs to be sure that some home member is the one who

attempts to interact with the home environment.

• Integrity. Ensures that stored or received data were not modified on-route. For instance,

the application framework needs to ensure the integrity of metering data received by smart

power outlets.

• Authorization. This service allows one party to verify that another authenticated party has

the right to do some actions or access some resources. For instance, the framework needs to

be sure that a tenant requiring access to some electrical appliance has the necessary rights.

• Confidentiality. Ensures that data is illegible to non-authorized parties. For instance, the

energy consumption information consumed by electrical appliances and transmitted to the

framework by smart power outlets needs to be encrypted, such as only the home residents

would be able to access it.

• Non-repudiation. This service prevents one party to deny sending a message or doing

some action. For example. in a demand response program of a smart grid scenario (see
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Section 9.2), assuming that a utility sends a pricing message with a low price Y but applies

a high price Z, it could not deny the fact that the low-price message was really sent by it.

Furthermore, the utility needs to be sure that a consumer could not contest a bill by denying

the sending of the corresponding energy measurement (see Section 9.4).

• Freshness. This service protects from replay attacks, where a valid message sent at time t,

is also sent in the future by the attacker. For instance, an attacker could replay events that

occur inside the smart home, such as the opening of a door or movement inside some room

of the house.

• Pairing. We need to guarantee that communications involve only authorized smart home

devices belonging to a smart home A, and not those of a neighboring smart home B. In

addition, smart devices of home A must be managed solely by the smart home application

deployed at smart home A. Also, we need to guarantee that the smart home application

in home A controls only its own home devices, and not those of a neighboring home B.

The pairing will definitely require some level of user interaction, depending on the I/O and

computational capabilities of the paired devices.

Unfortunately, the Web/HTTP does not provide a trusted communication environment, since

it offers poor built-in security mechanisms and, as a consequence, needs to rely on some extra

mechanisms to provide stronger security. For instance, HTTP is a potential target of several attacks

that could harm the proposed Web-based architecture, such as:

• Man-In-The-Middle (MITM) attack. An attacker successfully impersonates each com-

municating party (e.g. smart home framework and home devices) to the other party, and

injects, modifies or drops packets. This attack could target operations of the house such as

home automation, physical mashup execution, eventing, task scheduling etc.
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• Man-In-The-Browser (MITB) attack. This attach involves a malicious program (e.g. a

Trojan) that infects a Web browser and takes control of data entered by the user or data

retrieved from the Web server and displayed by the browser. This attack could harm the

user by displaying false statistics about his detailed energy consumption, and not the real

statistics provided by the actual smart meter/smart power outlets of the house.

• Denial of Service (DoS) Attack on HTTP. This kind of attack aims to make a service

or resource (e.g. a Web server) unavailable. For instance, this attack could target making

sensor and actuator embedded devices unavailable, breaking for example the security alarm

system of the house. A similar attack could be launched against the smart home framework,

making home automation operations unavailable at the victim smart homes.

10.5.2 Security Inside the Smart Home

Assuming all the in-home interactions are done through the Web, resource-constrained devices

such as sensors, actuators, smart power outlets and smart appliances shall run an embedded Web

server, in order to expose their capabilities as Web resources, accessible by the application frame-

work for smart homes. The main challenge becomes how to secure this Web-based interaction

against attacks, in such a resource-constrained environment.

Despite recent achievements in IP-enabling embedded devices, the WoT is not yet very com-

mon in embedded systems and devices. Additionally, using standard security protocols such as

Transport Layer Security (TLS) [41] or IPsec [99], does not yet constitute a popular practice in

embedded computing, due to the heavy induced costs on the device operation.

Recently, various efforts have been made to make security protocols feasible for resource-

constrained devices. Since the majority of smart home devices inside the house typically use

IEEE 802.15.4 at the PHY and MAC layers (see Section 2.1.5), they may use the cryptographic
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facilities provided by the MAC layer, and in particular the Advanced Encryption Standard (AES)

[9] algorithm to provide both encryption and data integrity. AES is a symmetric-key algorithm

that supersedes the Data Encryption Standard (DES). It is now used worldwide for encryption of

electronic data. For instance, 6LoWPAN [119, 107] employed the AES algorithm for achieving

effective in-home security. However, the key provisioning and key management are still open

issues, and need to be determined at higher layers.

As another example, CoAP [150], as a lightweight protocol for information transfer in sensor

networks that shares several similarities with HTTP, involved CoAP security for securing the home

environment. CoAP security [17] is based on the use of Datagram TLS (DTLS) [141] or IPsec for

securing the communication between the client (e.g. the smart home framework) and the server

(e.g. the home devices) at the transport and network layers.

DTLS is a variant of TLS that operates over UPD (TLS operates over TCP), and which allows

the establishment of a secure communication channel over which CoAP messages could transit.

Due to the constrained environment of physical devices, only a subset of encryption and hash

functions is assumed, in addition to the use of Elliptic Curve Cryptography (ECC) [81] instead

of classical public-key cryptography (e.g. RSA, DSA), due to its lower overhead in computation,

storage and bandwidth.

To sum up, secure communications inside the smart home environment may be enabled through

6LoWPAN or CoAP and secured by AES or DTLS. The 6LoWPAN/CoAP request/response mes-

sages are exchanged in a way similar to HTTP, in addition to an application-level acknowledgment,

since TCP is not used at the transport level for reliable data transfer. We strongly recommended

that future real-life deployments of energy-aware smart homes need to consider protocols that

provide secure communications, such as 6LoWPAN and CoAP.
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10.5.3 Security between the Smart Home and Third Parties

Securing the interaction between Web-based smart homes and third parties is important for

blending the Web-based home functionality with other Web entities and resources in a secure,

feasible and acceptable way. This interaction includes exposing the functionalities/services of-

fered by smart homes (see Section 5.2.3) as Web resources, accessed and utilized by third-party

applications. In addition, these remote applications may expose a set of information as resources,

accessed by smart homes via the Web. For example, an electric utility could provide its energy

tariffs as Web services in near real-time.

By leveraging the existing Web security mechanisms, several security issues inherent to such

Web-based interaction need to be addressed. Using HTTP Secure (HTTPS) [140] is one way

of protecting the communications between the two parties. HTTPS is HTTP layered over the

TLS protocol. The TLS protocol [41] fits between the application and the transport layer (mainly

TCP), and provides a number of security services over the Internet, such as cryptographic key-

exchange and per-session key establishment, mutual authentication, integrity, confidentiality, non-

repudiation and freshness.

TLS allows the establishment of a secure communication channel between a TLS-enabled

client and a TLS-enabled server, in which the server is first authenticated through a certificate (op-

tionally also the client), and then secret session keys are established using some key management

protocol. Once the communication channel is established, HTTP request/response messages may

be securely sent between the smart home application framework and the other Web entity.

Since the application framework for smart homes and the third-party application (e.g. a social

networking site, a low-level smart grid controller) play both the role of HTTP client/server, mutual

authentication through public-key certificate is mandatory for TLS use. Each smart home may
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obtain a pair of certified private/public keys from a trusted Certificate Authority (CA), with a

strong advice to keep the private key on a smart card, onto which all public-key cryptographic

operations are done, in order to avoid the private key disclosure.

For reinforcing smart home security, the equipment on which the framework is running should

not be visible or directly accessible from the outside. Furthermore, smart homes should be pro-

tected by a firewall, to prevent possible Denial of Service (DoS) attacks. In this way, the firewall

will be the first line of defense for the house, while the access to the resources provided by the

application framework could be easily done through redirection rules implemented at the fire-

wall. Moreover, other Web entities that interact with the smart home may also obtain certified

private/public keys, and securely disseminate their certificates to the respective smart homes.

Since the smart home application framework and the other Web-based parties are assumed to

be hosted in powerful machines, the overheads induced by the TLS protocol (e.g. computation,

transmission) could be affordable. However, if the home framework is running on a resource-

constrained computing device of the house (e.g. a home router, a smart meter), then the imple-

mentation of the whole TLS protocol could not be very efficient, because of increased memory

demands and expensive TLS cryptographic operations, especially during the hand-shake phase

for key-establishment. Hence, in this case, a trade-off exists between performance and sufficient

security when employing HTTPS.
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Conclusion

In this thesis, we investigated the general process needed in order to enable a smart home

environment to the Web. This Web-enabling procedure was examined from various aspects, having

in mind the relation of the smart home as an entity with important and influential actors of everyday

life, now and/or in the near future, such as online social networking, the smart grid of electricity

and the urban environment.

An important element in this thesis was the development of a Web-based application frame-

work for smart homes, which can constitute a foundational pillar towards enabling a true Web-

enabled home environment. The ”citizens” in the experimental smart home we implemented

were sensor motes, measuring the environmental conditions inside the rooms of the house and

smart power outlets, used to control electrical appliances and measure their electrical consump-

tion. These home devices provided the means towards automating our proof-of-concept house.

Their Web-enablement process, including their discovery, service description and interaction, was

a challenging procedure as the goal was to achieve a ”plug and play” ecosystem inside the house.

Overall, our proposal constitutes a flexible application-level solution for home automation,

based on combining existing Web technologies and reliable, well-studied Web techniques. Our

270
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work may be considered as a promising practice for home automation, supporting multiple simul-

taneous home residents. By following the physical mashup paradigm, our approach facilitates this

procedure and it is characterized by high interoperability, supporting heterogeneous home devices

and services. Through various case studies, we demonstrated that application development be-

comes flexible and easy by means of the application framework, by harnessing well-known and

understood Web principles.

An important enhancement in the functionality of the application framework was the inte-

gration of request queues, enabling multiple concurrent users and efficient management of the

communication with the physical devices of the smart home. A detailed analysis of the system

was performed and potential advantages were identified and discussed. A significant aspect of this

mechanism is the ability of fast retransmissions, in case transmission failures occur in the wire-

less medium of the home environment. This mechanism was used to mask effectively device and

transmission failures, increasing the robustness and fault tolerance of the application framework,

offering certain reliability.

The use of intermediate request queues, associated with embedded home devices, also facil-

itated the implementation of a priority-based request scheme, supporting prioritized requests for

time-critical tasks. Furthermore, load balancing was employed for better serving high traffic from

numerous, simultaneous home residents. Harnessing request queues encourages further system

analysis by employing some basic aspects from queuing theory.

Our technical evaluation efforts indicated that, by following the Web model, satisfactory per-

formance of household embedded devices can be achieved, in terms of response times and en-

ergy consumption. Our findings showed that IPv6/6LoWPAN can be well applied on sensor

motes without prohibitive overhead on the device operation. Especially when combined with
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Web caching, IPv6/6LoWPAN can even outperform (identical) applications that utilize the na-

tive messaging stack of TinyOS, concerning response times. Event-based Web messaging (push

communication), as well as Web caching, may be applied for preserving the battery lifetime of

sensor devices, while offering faster notifications in case events are triggered. Event forwarding in

the case of a streaming-based wireless sensor network also proved to operate efficiently, in small

numbers of physical devices and subscribers.

In general, our evaluation results showed that the application framework offers acceptable

scalability (for typical smart home scenarios), supporting large numbers of residents interacting

simultaneously with their home environment as well as numerous embedded home devices. Using

a typical laptop for hosting the framework, up to a hundred simultaneous tenants may be supported

with acceptable performance (assuming that each tenant makes one request per minute), while

much larger numbers of home members are not realistic for smart home scenarios. In addition, a

few hundreds of home devices may be effectively supported with satisfactory performance.

Furthermore, various interesting Web applications, relevant to smart homes were developed,

in order to encounter technological and societal challenges such as energy awareness and conser-

vation. These applications reused the functionality of Web-enabled smart homes, offered as a Web

API, with entities and resources available on the Internet/Web. For example, social networking

sites were used for sharing home devices and their services between family members, social com-

petitions were performed for increasing the energy awareness of residents that lived in blocks of

flats, and Social Electricity was presented, as a novel Facebook application that helps people to

understand their electricity footprint by means of social and local comparisons with their friends

and their neighborhood.
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As another demonstration, the integration of smart homes to the smart grid of electricity

through the Web was examined. Smart grid controllers could interact in real-time with Web-

based smart homes through their Web API, to achieve synchronized operation of smart homes

and the smart grid. In such an integration, residents would save money by exploiting the demand

response feature of the smart grid, for scheduling electricity-related tasks for low-tariff periods

of the day, while the smart grid could guarantee frequency stability of the system and prevent

frequency abnormal operation by employing load shedding.

Then, we explored how the Web-enabled smart home, as an important element in future digital

cities and societies, may contribute for addressing various challenges. Some of these challenges

include global discovery of environmental services in real-time through the Web and increased

environmental awareness and knowledge inference in the urban area. Another aspect beyond the

smart home research covers the extension of the application framework for smart homes, as a

powerful and flexible middleware for use in numerous pervasive scenarios.

Definitely, a great challenge for future smart homes is also security. Security in smart home

environments is a large topic and extended Web-based schemes need to be developed that involve

end-to-end security mechanisms that guarantee authentication, data integrity and confidentiality,

from the home devices to the application framework, and from the application framework to third-

party Web entities. We dedicated a small section discussing security inside the smart home and

beyond, touching briefly only some general aspects.

The rest of the chapter is organized as follows: Section 11.1 summarizes the contributions of

this thesis and Section 11.2 explains how the requirements for future smart homes, as defined in

Section 4.1, have been met through this work. Then, Section 11.3 discusses the overall potential of

smart homes developed using Web principles, presenting general perspectives of the general chal-

lenges that would appear in smart home research in the near future while Section 11.4 identifies
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some relevant open issues which have not been addressed in this dissertation and are important in

future initiatives. Finally, Section 11.5 defines future work in Web-enabled smart homes.

11.1 Summary of Thesis Contributions

In summary, the main achievements of these thesis are the following:

• The development of a Web-based application framework for smart homes.

– High interoperability and support of heterogeneous home devices and services.

– Support of multiple simultaneous home residents and hundreds of physical devices.

– Addressing robustness and reliability issues such as device and transmission failures.

– Promotion of easy and flexbile application development for smart homes by third par-

ties, following the physical mashup paradigm.

– Efficient and reliable management of the communication with home devices using

request queues.

– Support of prioritized requests and load balancing.

• Addressing issues that concern the Web-enablement of home devices, including their dis-

covery, service description, sharing and interaction.

• Evaluation efforts that indicate satisfactory performance of IPv6-enabled home devices, in

terms of response times and energy consumption.

• Improvement of performance of home devices by adopting Web techniques such as Web

caching and event-based Web messaging.

• Acceptable scalability for typical smart home scenarios, up to a hundred of home residents

an a few hundreds of embedded home devices.
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• Integration of smart home applications with online social networking sites, for sharing home

devices with the rest of the family, other relatives or close friends.

• Social competitions between neighboring houses targeting energy conservation.

• Social Electricity, as an innovative Facebook application that helps people to understand

their electricity footprint by means of social comparisons with their friends and and local

comparisons with their neighborhood.

• Demonstration of the integration of Web-based smart homes to the smart grid of electricity

through the Web, in order to enable energy-related applications such as demand response

and load balancing.

• Addressing (only) some basic, general aspects that concern security in the smart home en-

vironment and beyond.

• Finally, investigating how Web-enabled smart homes, as an important element in future

digital cities and societies, may contribute for addressing various real-life challenges.

Before proceeding, it is important to note that our proposal has also some limitations. At first,

the HTTP protocol implies a request-response interaction model (based on the classical client-

server pattern) for the communication with home devices. This is not the most suitable in event-

or streaming-based applications. We managed to address this issue by employing event-based

Web messaging through a pub/sub approach. Additionally, our analysis and evaluation efforts

assumed a static deployment of home devices. Mobility was not considered and it might be a

basic characteristic in some other pervasive scenarios. Finally, the application framework may not

scale for hundreds or millions of users. Although this was not a requirement in this thesis, it would
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be beneficial to assess experimentally the scalability capabilities of the framework, to determine

also its applicability in other pervasive application scenarios.

11.2 Meeting the Requirements for Future Smart Homes

In Section 4.1, we listed some requirements which are important in future smart home so-

lutions that aim to address the heterogeneity of home devices. These requirements concern the

interaction with the devices, the design and development of the application framework for smart

homes, as well as some performance constraints. In this section, we discuss how we met these

requirements through the work in this thesis, by listing each requirement with the corresponding

actions for addressing it:

• Multiple interaction possibilities with home devices. We have developed 3 different inter-

action patterns with physical devices: ad hoc interaction, through the classical client-server

model of the Web (see Section 5.2.3); event-based push messaging, when events are sent

only when something important happens (see Section 5.2.4); and continuous monitoring,

when devices stream data at regular intervals (see Section 7.4).

• Multi-hop wireless communication between home devices, forming a WSN in the home

environment. By adopting Telosb sensor motes and Ploggs smart power outlets (see Section

5.1), we have enabled an IPv6-based sensor and actuation network in a proof-of-concept

smart home deployment. 6LoWPAN and ZigBee were the underlined communication pro-

tocols used for multi-hop wireless communication inside the house.

• Plug and play home devices. We proposed and implemented Web-based patterns for auto-

matically discovering physical devices, describing their services, interacting uniformly with

them and sharing their functionalities through online social networking (see Section 5.2).
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• Ad hoc interaction with home devices. The design of the application framework for smart

homes facilitates the communication with physical devices/services just by implementing

some basic methods for sending/receiving messages to/from the devices (see Section 4.2.1).

• Uniform access to heterogeneous devices. This is achieved by transforming home devices

as embedded Web servers and by exposing their capabilities as RESTful Web services (see

Section 5.2.3).

• Particularities of resource-constrained environments get abstracted, offering some re-

liability. Achieved by handling these failures on the application framework for smart homes

(see Section 4.2.4).

• Masking transmission failures by means of request queues, associated with home devices

on the application framework (see Section 6.4.2).

• Data from devices is open, easily exported into third-party applications in standard formats

(e.g. XML, JSON). This was enabled through a RESTful modeling of the services offered

by home devices (see Section 5.2.3).

• Interoperable programming interfaces provide the primitives to end users to perform ad-

vanced tasks. Achieved by following the physical mashup example, promoting the creation

of smart home applications in any language supporting TCP/IP (see Section 4.2.6).

• Graphical user interfaces that facilitate the management and control of the smart home

environment have been developed, allowing interaction with home devices, development of

smart rules, task scheduling etc. (see Section 4.3).
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• Real-time feedback of the energy consumption of electrical appliances was achieved through

the use of Ploggs and by integrating graphical Web interfaces on top of the application

framework (see Sections 5.1.2 and 4.3.3).

• Layered architecture and flexible design of the application framework, based on Web

technologies and REST principles (see Section 4.2).

• The application framework has a lightweight implementation as it needs only 2.7 Mbytes

for its full installation (see Section 4.2).

• Direct access for residents to their home environment, through the Web (see Section 4.2).

• Support of multiple residents, who may interact simultaneously with the smart home

through the Web, is achieved by using request queues (see Section 6.4.1).

• Support for prioritized requests from home residents has been developed by extending

the (FIFO) request queues into priority heaps (see Section 6.4.5).

• Support for streaming events to interested Web-based third parties has been integrated on

the application framework, allowing multiple events to be sensed and forwarded simultane-

ously to multiple subscribers (see Section 7.4).

• Small waiting times for concurrent requests from various home residents are obtained

through load balancing and prioritized request execution (see Sections 6.4.4 and 6.4.5).

• Reliability in regard to request satisfaction is obtained by means of employing failure han-

dling mechanisms and request queues (see Sections 4.2.4 and 6.4.2).And
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• Acceptable performance in terms of response times from IPv6-enabled embedded de-

vices, which are in average less than a second even in high traffic from tens of home ten-

ants, has been achieved (see Section 7.2). By employing Web caching (see Section 4.2.5),

response times are further decreased.

• Battery lifetime of devices is prolonged by Web techniques such as Web caching and event-

based Web messaging (see Sections 4.2.5 and 5.2.4).

• Acceptable performance in terms of push times, which need to remain less than a second,

regardless of the number of subscribers/events per second. This requirement was partly

satisfied, obtaining push times of less than a second only when subscribers are less than 50

(see Section 7.4). Nonetheless, a larger number of subscribers is unlikely in typical houses.

• Extensibility. The system needs to evolve with minimal coupling between all of its compo-

nents (devices, users, applications etc.). The evaluation efforts in Chapter 7 indicate that the

system evolves with tens of residents interacting with their smart home while 6LoWPAN

may handle effectively increasing numbers of home devices. Different routing schemes may

increase the extensibility of the IPv6-based WSN even more [106].

• Scalability in terms of home residents and requests is partly supported by the application

framework (see Chapter 7), which handles effectively the operations needed when tens of

home tenants interact with the home environment.However, when hundreds of residents

are involved, the framework cannot satisfy their requests in satisfactory time. Thus, in its

current form, the application framework is not suitable for smart building scenarios with

hundreds of tenants/workers.
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• Scalability in terms of home devices is supported by the framework, considering a few

hundreds of embedded devices (see Section 4.2.2).

11.3 Discussion and Outlook

In this section, we discuss the general future potential of smart homes that operate using Web

technologies. As we demonstrated through various case studies, the Web-based operation of smart

homes may be seamlessly blended through the Web with third-party entities in order to solve soci-

etal, environmental and technological issues. These third-party entities include online networking

sites, the smart grid of electricity, online sensor directories, even the DNS system for global dis-

covery of environmental services. This interaction with Web entities can contribute in solving

problems that concern energy awareness, energy conservation, pervasive service discovery, shar-

ing of physical devices/services between friends etc.

It is important to note that in this thesis, we do not propose a new technology for advanced

home automation, nor an effective, optimized approach for energy conservation. Our focus is to

show how easy and elegant home automation can become, when employing Web technologies.

We claim that by some of the presented applications (e.g. energy-efficient smart rules, social com-

petitions in blocks of flats, Social Electricity Facebook application, exploiting demand response

program of the smart grid), our proposal can contribute in saving energy, but alone it would not be

capable of effectively reducing the overall electricity consumption. We recognize that home resi-

dents are not expected to have the expertise to design energy-efficient strategies, even though their

active involvement in energy-saving initiatives can engage them in sustainable lifestyles [138].

Nonetheless, our application framework for smart homes can be utilized as a flexible platform,

on top of which more advanced practices for energy-efficient home automation can be developed.

Classical optimization techniques, or even machine learning techniques such as for example neural
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networks could be applied, for the creation of advanced energy-saving schemes. Numerous Eu-

ropean projects [7, 8] started to employ artificial intelligence and machine learning for advanced

home automation. The application framework can sit between the physical home environment and

the intelligent algorithms, to facilitate home automation and energy conservation, by offering a

robust and reliable physical ecosystem, which may operate with satisfactory performance.

As we mentioned numerous times through this thesis, we envision smart homes as the foun-

dational elements of future smart neighborhoods and cities. Similar to living systems in nature,

houses would act collectively in relation to their ecosystem (e.g. neighborhood or even city) they

reside in. This will help to address safety, health-related or sustainability issues (e.g. reduction

of carbon emissions). As an example, embedded sensor devices, measuring with high accuracy

the physical environment, may expose their functionalities as Web services through Web-enabled

smart homes, and contribute in city-scale participation-based crowdsourcing programs for urban

environmental awareness, creating environmental maps around the urban area.

The Semantic Web is an important standard that could be applied in the future for advanced

interoperability between machines in smart home environments. The standard promotes common

data formats on the Web, including semantic content. Inside the local home environment, even

when numerous heterogeneous devices exist, semantic Web techniques are not necessary, although

their use would further contribute in M2M interoperability. However, when the smart home col-

laborates with third-party Web resources for large-scale application scenarios, the Semantic Web

would be suitable for avoiding ambiguities concerning pervasive services and sensory data.

Moreover, future smart homes are expected to upgrade their role and influence to the home

tenants. The augmented monitoring and sensing capabilities of home environments, combined

with enhanced artificial intelligence of smart home applications, would be used to understand the

habits, preferences and characteristics of residents. This understanding will then allow the smart
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home to adapt its operation to increase the comfort and safety of people, whilst assisting them

in saving energy. More advanced, this understanding of residents’ behavior could be blended

seamlessly with their everyday lives, through the technical equipment they use through the day.

The most common examples are their mobile phones, their cars and their computers at work.

For instance, the air conditioner in the family room may be sharing the temperature preference

information of some tenant with his car, for automatically adjusting the temperature inside the

vehicle while driving. The smart phone could follow the waking hours of the user to automatically

adjust its own alarm, to ensure that the user will wake up early enough to go to work. Or perhaps

the MP3 player will update its playlist according to the music preferences of the resident, as they

are derived by monitoring the home’s Hi-Fi system. In all these examples, the smart home will be

at the center of this connected world. A Web-based operation of the smart home would promote

its interoperability with the tenant’s everyday technical equipment.

According to a highly influential position paper about the changing role of pervasive middle-

ware [25], the trend in middleware is from discovery and orchestration to recommendation and

planning. This may be applied also for middleware targeting smart home environments. The

research challenges that need to be faced according to the paper are: a common model for repre-

senting generalized services and data; algorithms for distributed recommendation, planning and

orchestration; reasoning and learning from context; privacy-aware strategies for resource manage-

ment; and incentive programs for boosting participation.

Overall, we believe that the future in home automation is towards the Internet/Web. Web

technologies have the potential to become the future standards in home environments, towards an

interoperable ecosystem. Web-enabled smart homes will play a crucial role in the technological

challenges of the smart neighborhoods and cities of the future, and they could contribute signifi-

cantly to develop a sustainable, secure and reliable world.
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11.4 Open Issues

Although this work tried to study the Web-enablement of smart homes in a comprehensive

way, it was inevitable to leave some issues open for future research. Besides, the research area

around the WoT and home automation is very large, and numerous aspects remain to be addressed.

At first, security is a topic that needs more detailed analysis, considering the Web functionality

of smart homes. Security needs to be considered both in-home, in regard to the communication

with Web-enabled embedded devices but also between the smart home and third parties, such as

smart grid controllers and home residents who interact remotely with their house through the Web.

We discussed some basic aspects of security in Section 10.5.

Another important issue concerns privacy of the owners and users of the physical devices

and services of the smart home environment. Personalized schemes need to be developed that

respect the privacy of home tenants, giving them full control over the level of sharing personal data

with third parties, e.g. to share the consumption of their electrical appliances with their electric

utility. Concerning the Social Electricity project, we performed in Section 8.3.4.2 a small analysis

of the different privacy levels of people and their willingness to share their personal electrical

consumption data with different groups of people (e.g. family members, relatives, close friends).

We suggest the use of privacy circles, where tenants would be able to categorize their contacts in

them and associate a different privacy level to each circle. This is of course only a small measure

to increase the privacy of home owners. More effective measures are still needed.

An intelligent plan for energy conservation still needs to be developed inside a Web-enabled

smart home. While our proposal addresses heterogeneity of home devices, allowing reliable in-

teraction with them and easy development of smart home applications, optimization techniques
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and approaches from artificial intelligence need to be applied for the creation of advanced energy-

saving schemes that respect the comfort levels of the residents.

Another important aspect is the capability of devices to collaborate towards a global goal

without human intervention and control. This is one of the visions of M2M communications,

where home devices could exchange information automatically to achieve a common task, e.g. to

reduce the overall waste of energy. In such an advanced home ecosystem, even the existence of an

application framework for smart homes could be redundant.

Moreover, the semantics of the capabilities and services of physical devices need to be de-

scribed in a formal, uniform way, avoiding ambiguities. The Web-enabling process of devices

facilitates this task, since the services offered by the devices may be well described in standard-

ized formats such as WADL (see Section 5.2.2). However, the capabilities and characteristics of

each device still need to be described (e.g. indoor/outdoor, transmission range, battery lifetime)

as well as the measurements of their sensing modules (e.g. min/max values, scale, accuracy). Ex-

ample description languages for sensor measurements are EEML and SensorML. Concepts of the

Semantic Web1 can be employed for defining the semantics of pervasive home devices/services.

Something needed to effectively increase the popularity of smart home solutions is a killer

application, similar to the way online social networking increased the popularity of the Web. Many

believe that demand response programs from the smart grid would be the killer application we

seek. Nonetheless, it is still an open issue remaining to be addressed.

Finally, an issue that needs perhaps to be investigated is fairness. It must be ensured that home

automation would not favor those who have the financial capabilities to employ these solutions

over those who do not. Home technology should not create unfair advantages to high-income peo-

ple, but better focus on increasing the comfort levels of residents, offering advanced automation
1http://www.w3.org/standards/semanticweb/
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and more sustainable ways of life. As an example, we shall avoid a scenario in which high-tech do-

mestic premises are promoted by electric utilities as gold customers, participating in sophisticated

smart grid programs, while houses without these capabilities are ignored.

11.5 Future Extensions and Challenges

In this section, we define our future work efforts, based on the current work presented in this

thesis as well as the future challenges and requirements in the area of smart homes. Our main

future research directions are listed below.

Further Request Queue Analysis.

Request queues may be defined as a dynamic, adaptive system that handles failures in the home

environment providing certain reliability. The use of request queues enables the detailed analysis

of the system by employing queuing theory. Queuing theory could answer more complicated

questions such as the mean number of home tenants in the system or the mean waiting times. It

could also estimate the probability of the request queue to be in a certain state. More advanced,

queuing theory could define the distribution of the length of the busy periods, the distribution of

the sojourn and waiting times, the distribution of the number of arrivals during the service time

etc. This theoretic analysis is also a matter of future work.

Future work could also investigate task scheduling, which involves completing executing tasks

within predetermined time deadlines and constraints. For example, task scheduling could include

an efficient execution of the schedulable electrical appliances of the smart home (see Section

9.1), as soon as a tariff from the electric utility becomes lower than its normal price in a demand

response program from the smart grid (see Section 9.2). Request queues could handle reliably

these tasks by assigning high priorities to the electrical appliances that need to operate first.
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Finally, in this thesis, a device-centric approach was followed for request queues, i.e. every

home device was associated with a single queue. In future, a service-centric technique would

also be examined, in which a request queue would be implemented for identical services offered

by various physical devices. Services could be further categorized in room-level or even floor-

level in some smart home or building application. Through this approach, we expect that request

satisfaction will become more effective, since the most reliable devices that provide the lowest

response times would be selected. Moreover, caching mechanisms would operate better since

service-specific cache hits are expected to be increased (see Sections 4.2.5 and 7.2.2).

Support for Mobile Devices and Dynamic Environments.

In this thesis, we only considered a static deployment of sensors and actuators inside a home

environment. While this is the typical case for smart homes, it constitutes a limitation of our work,

as it hinders the transformation of the application framework for smart homes into a flexible tool,

adaptable for various pervasive application scenarios. Hence, in the future we will examine and

evaluate the behavior of the application framework when high mobility of home devices is present,

in a highly dynamic and ad hoc home environment. We note that mobility is now supported by

6LoWPAN [151], even though it is still an open issue under research.

We will definitely need to reconsider the request queue mechanism, and especially the request

queue retransmission interval (see Section 6.3.2). We note the similarity between the request queue

retransmission interval (see Equation 5) and the retransmission timer used at the TCP protocol (see

Section 6.3.3), as shown in the following equation:

α = RTTest + k ·RTTdev (11)
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RTTest is a smoothed RTT time, influenced by past RTT samples,RTTdev represents the RTT

variation and k is set to 4. The TCP retransmission mechanism takes into account the increased

unpredictability and variable response times that are observed on the Internet. Thus, an adap-

tive version of the setting of the request queue retransmission interval would be required. This

fact encourages future research that concerns further applying (and comparing) these well-studied

Internet principles in home environments for added performance.

Exploring the Scalability Capabilities of the Application Framework.

As we noted earlier, one of the limitations of our framework is the lack of scalability to hun-

dreds/millions of simultaneous home residents. This lack of scalability is partly due to the fact

that we installed the application framework during our evaluation efforts on a laptop computer and

not on some more powerful computing device (see Section 7.1). This relation between the frame-

work’s performance and the computing device type on which it runs is observed in the experiment

performed in Section 4.2.2, in which different discovery and response times are measured when

different computing devices are considered, namely the laptop computer and a small server.

Nevertheless, the current experimental setup indicates that the system does not scale well to

large numbers of home residents. Actually, this is not a problem for typical smart home scenar-

ios, but it prevents applying the application framework in other ubiquitous real-life applications.

Future work would examine the scalability capabilities of the application framework, in terms of

hundreds of concurrent home tenants. This would include installation of the application frame-

work in a more capable server machine, and possible code optimizations.

Finally, scalability in terms of the number of physical devices that may be supported by the

application framework is another aspect that could be investigated in the future. The experiment

in Section 4.2.2 indicates the capability of the framework to support a few hundreds of home
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devices effectively. Moreover, the 6LoWPAN protocol claims that it can support hundreds or

even millions of devices in the same subnet. Nonetheless, this scalability feature needs to be

proved experimentally, in relation to the operation of the application framework in presence of

high workload from Web clients, and also in presence of mobility.

Social Competitions in Neighborhoods.

The social competition for energy conservation in blocks of flats, presented in Section 8.2, had

positive initial findings that justify the development of further relevant case studies.

At first, future work needs to include larger case studies, involving also blocks of buildings in

more rural areas. Such studies need to be performed to validate the initial findings and consider

more confidently the effect of social norms on energy conservation. A longer period of observation

may also be interesting, in order to foster the learning effect of the participants.

Long-term influence on residents’ behavior is an important dimension not yet explored. For

example, considering energy awareness through real-time feedback, the saving effects are per-

sistent mostly when the feedback systems are present [165]. Thus, the influence of the social

competition at the blocks needs to be considered also in the coming months.

In this study, we tried to differentiate our social-based efforts for saving energy from real-time

feedback techniques. In such a way, we evaluated our approach without direct influence from

other factors. Future work could combine continuous energy feedback with a social competition,

to examine whether further savings could be achieved. Also, it would be interesting to consider if

any other incentives, other than the ”ranking and awards” approach, may be most efficient in such

social competitions.
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Enhancing the Features of Social Electricity.

To make Social Electricity (see Section 8.3) more interesting and useful to Cypriot citizens,

we plan to create the Social Comparisons program. This program would run on a volunteer basis,

counting on the contribution of Cypriot residents. It will be located in another menu, integrated

in Social Electricity main interface, encouraging people to add details about their characteristics

and preferences, taking into account the most important factors that affect domestic electricity

consumption. These factors could include the size of their home in square meters, the total resi-

dents of the house, the number of rooms, their heating/cooling equipment etc. In Appendix J we

list the most important factors we identified, after a small research, which affect significantly the

domestic energy consumption.

By assessing analytically the significance of each of these factors, we would then permit more

effective comparisons of energy consumption between people that share similar preferences. We

are in the process of collecting information from Cypriot residents about the characteristics of their

houses and we plan to correlate these characteristics with their electricity footprint in different

time periods of the year. We would definitely respect the privacy of citizens and we will use this

information anonymously, only for research purposes.

In general, we believe that Social Electricity constitutes a novel initiative worldwide and we

expect that its deployment around Cyprus would help us include a (more) complete analysis in

our study, including hundreds of citizens as subjects (see Section 8.3.3). We aim to transform this

application into a powerful, robust platform for future case studies related to energy awareness,

with an active community that is willing to participate in these future studies.And
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Online Social Networking of the Real World

Combining our social case studies together would be an interesting task. Such combinations

could provide advanced benefits to the people involved in such studies.

For example, Social Electricity (see Section 8.3.1) could be combined with the idea of social

competitions in neighborhoods (see Section 8.2). In this case, Social Electricity could be extended

into a platform for energy competitions among local neighborhoods. Such an application would

be more effective when electric utilities provide (near) real-time electricity measurements from

residential smart meters. Moreover, Social Electricity could be further blended with Social Farm

application (see Section 10.2), to achieve online sharing of the energy consumptions of farms

of similar type (dairy, greenhouse, etc.). In this way, such comparisons could be helpful in the

collaboration of the local industry to reduce overall power usage.

Finally, we plan also to extend our social applications into more general and valuable tools for

people, in order to support other real-life scenarios such as health monitoring.

A Graphical Content Management System for Smart Homes.

A radical-new idea concerning home automation would be the development of a graphical

content management system (CMS) for smart homes. Similar to well-known CMS for Web sites

(e.g. Joomla2 and Wordpress3), a CMS for Web-enabled smart homes could revolutionize home

automation practice, allowing end users with almost zero programming experience to configure

their house according to their needs.

This CMS for smart homes could be installed on top of the application framework, in some

computing device of the house (e.g. laptop computer, tablet, router, smart meter) and would
2http://www.joomla.org/
3http://wordpress.org/
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operate as a Web application. Of course, this vision needs great effort in order to be implemented,

and it requires the large contribution of programmers worldwide. However, this is exactly how the

most well-known CMS for Web sites worked, i.e. they developed their initial platform and then

encouraged users to build their own plug-ins, widgets and extensions.

Figure 11.1 visualizes an example graphical CMS for smart homes. Home tenants would

be able to upload photos of the rooms of their house and associate their electrical appliances

with embedded devices such as smart power outlets and RFID tags. They would also be able to

associate rooms of the house with sensor devices that measure the environmental context of the

rooms (e.g. noise, occupancy, temperature, illumination). Furthermore, residents could include

widgets from any Web resource and correlate them with specific spaces of their home environment.

For example, online weather forecast services could be employed (e.g. World Weather Online4,

Yahoo Weather5) or online social networking sites (e.g. Facebook, Twitter, LinkedIn), or even

electric utilities providing their current energy tariffs as widgets.

Futuristic examples cover the use of some board inside the house or even the fridge as a surface

for posting news from SNS or the user using the television in the living room for viewing streaming

content from YouTube. These examples could be enabled inside the CMS Web application on top

of the photos of the rooms of the house, as they would be uploaded by home tenants.

The Social Water Application.

Our comparisons regarding energy consumption can be well extended to include other re-

sources, such as gas and water. We focus mainly on water, as it is a valuable resource in Cyprus.

Since our country has yearly problems with drought, effective water conservation is particularly
4http://www.worldweatheronline.com/
5http://weather.yahoo.com/
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Figure 11.1: A snapshot of an example graphical CMS for smart homes.

important. Hence, we intend to develop Social Water Facebook application, following the general

concept of Social Electricity application.

Social Water could help people understand their consumption of water through comparisons

between their friends, their neighborhood, their village or city. We already started socializing

our intentions and had very positive initial feedback. Specifically, the research center Nireas6,

which performs research concerning water quality and conservation, appeared very interested in

our efforts and promised to bring us in touch with the main Waterboards of Cyprus7.
6http://nireas-iwrc.org/
7The Waterboards are the responsible governmental organizations for the management and distribution of water to

the residences. They can provide us with details regarding residential water usage.And
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Enhancing UrbanRadar Mobile Application.

Right now, we are in the process of enhancing the features of UrbanRadar mobile application

(see Section 10.4.2), to apply more advanced automated reasoning for deciding event triggering

and urban mashup execution. In the context of this application, simple rule-based automated rea-

soning such as fuzzy logic [104] can be directly applied. Moreover, it is expected that probabilistic

reasoning could provide in general more accurate results and may perhaps prove effective for our

model. In this case, the system can be represented as a probabilistic graphical model [22], through

which the formulated graph in Figure 4.10 can be used as a belief network [121]. Both fuzzy logic

and belief networks will be integrated into the mobile application and their reasoning performance

will be validated and compared through our future case studies.

To assess the potential of this application (and of the concept behind its development), we

plan to ”simulate” a digital city in a controllable environment. We selected the campus of the

University of Cyprus as our targeted urban environment and we are in the process of transforming

it into a high-tech space, by creating a number of useful environmental services, targeting students

who spend a considerable amount of their everyday lives there. Students will be encouraged to

build their own urban mashups, according to their needs and their perception of the environment.

After a three-months period, we will study the effectiveness of the urban mashup paradigm through

questionnaires and by observing the popularity of UrbanRadar among the people involved. During

the evaluation procedure, we will investigate the efficiency of the different parameters that could

affect urban mashups, to increase the overall accuracy of reasoning.And
rea

s K
am

ila
ris



Appendix A

Publications

We provide here a complete list of publications stemming from the work in this thesis. These

publications are categorized in journal papers, conference papers, book chapters, workshop papers

and technical reports.
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Smart Homes using Web Technologies. Journal of Ambient Intelligence and Smart Envi-
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Conferences

1. Andreas Kamilaris, Giannis Kitromilides and Andreas Pitsillides. Energy Conservation
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mental Services. In Proc. of the 8th International Conference on Web Information Systems
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3. Andreas Kamilaris, Diomidis Papadiomidous and Andreas Pitsillides. Lessons Learned

from Online Social Networking of Physical Things. In Proc. of the Sixth Interna-
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Appendix B

Application Framework Implementation Details

The application framework for smart homes (see Chapter 4) has been developed in Java using

the Eclipse1 development platform and it follows a modular architecture with three main layers:

1. Device layer, which administers embedded home devices.

2. Control layer, which initializes, controls and checks the framework.

3. Presentation layer, which maintains a Web server following the REST principles.

These three layers are implemented as Java packages and hold the Java classes of the applica-

tion framework. In other words, each Java class of the framework is categorized, according to its

purpose, in one of these three main packages. Below we list the (most important) classes of the

application, organized based on the main layer to which they belong.

1http://www.eclipse.org/
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Device Layer Classes:

• Devices. It represents all the devices that have been discovered in the home environment.

• Device. It is the thread responsible for managing the communication with some home

device.

• MessageQueue. It is responsible for implementing the request queue mechanism of each

device thread.

• Request. It defines the formats and types of the request messages exchanged between the

framework and the embedded devices.

• Response. It holds the response messages received from physical devices.

• Resources. Holds all the services offered by some device.

• Resource. A particular service offered by some device.

• Driver. Abstract class that defines a standardized interface for physical communication

with home devices.

• TinyosIPv6Driver. Driver class for enabling communication with IPv6-enabled sensor

motes, operating with TinyOS.

• TinyOSParser. Parses the request/response messages to/from TinyOS/IPv6-enabled sensor

motes.

• PloggMonitor. Responsible for the communication and management of Ploggs smart power

outlets.
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Control Layer Classes:

• Core. Acts the main dispatcher of the system, holds the main class for running the frame-

work. Responsible for all the initializations and for maintaining the application’s routines.

• Server. Maintains HTTP libraries, needed by the Web server.

• Constants. This class keeps all the parameters and configurations of the application frame-

work.

• AsyncToSync. Helper class for facilitating the transition between synchronous Web opera-

tion and asynchronous smart home functionality.

• WADLparser. Helper class used to parse the WADL files (see Section 5.2.2), which are

transmitted from the home devices during their discovery (see Section 5.2.1).

Presentation Layer Classes:

• Server. The Web server of the application framework.

• RESTApplication. Routes HTTP requests to the most appropriate Java classes to serve

them. It provides REST functionality to the framework.

• AbstractResource. Abstract class that generates representations of resources in the stan-

dard formats available (HTML, JSON, XML).

• DevicesResource. Creates a representation of the physical devices that are available in the

home environment.

• InvokeDeviceResource. Invokes a request by forwarding it to the appropriate physical

device. It sends the response then back to the Web client who created the request.
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These are the main classes that compose the application framework. Various smaller classes

exist, which only perform some minor tasks. Moreover, the application framework involves a

Simulation package, which includes classes related to the emulator that is used in the analysis and

evaluation procedure of this thesis (see Chapters 6 and 7). An abstract class diagram, displaying

the main classes of the framework as well as the relationships between them, is illustrated in Figure

B.1.

Figure B.1: A class diagram of the application framework.
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Appendix C

Application Framework Configuration Parameters

Here we list the configuration parameters that define the operation of the application frame-

work for smart homes (see Chapter 4). These parameters are adjusted inside the Constants class,

which is located at the package controlLayer.libraryCode.

• REQUEST RETRANSMISSION INTERVAL. Specifies the amount of time of the re-

quest queue retransmission interval α (see Section 6.2) in milliseconds.

• TRANSMISSION FAILURE. Defines the percentage of transmission failures during the

operation of the framework. It is used mostly for analysis/evaluation purposes.

• DEV ALIVENESS CHECK TIME. The interval (in minutes) between the aliveness checks

performed by the framework to determine if embedded devices are still alive and operate

correctly (see Section 4.2.4). Default value is 5 minutes.

• DEV MAX CACHE DELAY TIME. Defines cache freshness period (in seconds), i.e. the

amount of time a cached value remains fresh (see Section 4.2.5). The caching mechanism

suspends by setting this value equal to 0. Default value is 10 seconds.
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• DEV REQUEST MAX ATTEMPTS. Maximum number of retransmission attempts, in

case of transmission failures, before a home device is considered unavailable (see Section

6.2). A value of 5 is usually suitable for indoor environments and static topologies.

• FAILURE MASKING MECHANISM. A boolean parameter that decides whether to em-

ploy the failure masking mechanism in case of device failures (see Section 4.2.4).

• PRIORITIES. A boolean parameter that specifies whether the application framework em-

ploys prioritized requests (see Section 6.4.5).

• HIGH PRIORITY. The integer value assigned at a high-priority request, according to the

Algorithm 2. Similar parameters exist for normal- and low-priority requests.

• PROBABILITY HIGH PRIORITY. Percentage of incoming requests having high prior-

ity. Used mostly for analysis and evaluation purposes. Similar parameter exists for low-

priority requests. Obviously, the rest requests are labeled with normal priority.

• PLOGGS STREAMING DELAY. Defines the time interval between electricity measure-

ments of the Ploggs smart power outlets (see Section 5.1.2). Default value is 1 minute.

• PLOGGS DISCOVERY INTERVAL. Specifies the time interval (in seconds) for scan-

ning the house for new Ploggs smart power outlets. Default value is 5 minutes.
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Appendix D

Application Framework Installation Instructions

The application framework for smart homes (see Chapter 4) has been developed in Java us-

ing the Eclipse1 development platform. Hence, it is available as an Eclipse project and may

be imported very easily to the Eclipse SDK (File->Import->Existing Projects into Workspace).

The source code of the application framework has been released on the NetRL website2 and on

GitHub3. The framework is very lightweight, requiring only 2.7 Mbytes for its full installation.

The development of the framework and all the analysis and evaluation efforts have been performed

using Eclipse Galileo (Eclipse SDK version 3.5.2).

To run the Eclipse project of the application framework, a Java Running Environment (JRE)

must be installed on the computing device that hosts the application framework. Furthermore, the

Java Communications API4 needs to be installed to support serial-to-USB communication with

any embedded device that would act as the base station, enabling the communication with remote

wireless devices. A good tutorial for installing the Java Comm API is available at:
1http://www.eclipse.org/
2http://www.netrl.cs.ucy.ac.cy/index.php?option=com content&task=view&id=76&Itemid=54
3https://github.com/andreaskami/homeweb
4http://www.oracle.com/technetwork/java/index-jsp-141752.html
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http://www.agaveblue.org/howtos/Comm_How-To.shtml

The Eclipse project comes along various JAR files, which are needed for its proper operation.

These JAR files are:

• tinyos.jar - Used for support of TinyOS 2.x messaging.

• RXTXcomm.jar - Needed for the communication with the sensor mote acting as the base

station, from the serial-to-USB port.

• comm.jar - Also needed for the serial-to-USB communication.

• org.simpleframework.jar - Supports HTTP communication with Web entities and XML

parsing.

• org.restlet.jar - Supports the Restlet5 Java-based REST framework.

• org.json-2.0.jar - For JSON encoding/decoding and parsing.

• com.noelios.restlet.jar - Supports a Web server implementation.

Furthermore, the project includes a wadl folder, which holds the WADL description files used

to describe the services offered by Telosb motes and Ploggs smart power outlets (see Section 5.1).

After the Eclipse project of the application framework is properly imported in Eclipse, the user

can run the project as a Java application. The main class for running the Java application is the

Core class, located in Control Layer package. Before running the application, the user needs to

set some basic parameters, by navigating to Run->Run Configurations and selecting the project.

5http://www.restlet.org/

And
rea

s K
am

ila
ris

http://www.agaveblue.org/howtos/Comm_How-To.shtml


307

Then, when opening the Arguments tab, he must type the following information:

<Application Framework Name><Location>

<Domain Name or IP address><Port>{<Device Type><USB Port>}

Device Type specifies an embedded technology to be included in the current run of the frame-

work and USB Port defines the port of the device that acts as the base station. More than one

embedded technologies may be supported. An example setting of the parameters for running the

application framework, using both Telosb sensor motes and Ploggs outlets, is the following:

ApplicationFramewok UniversityOfCyprus localhost 8080

Telosb USB0 Ploggs USB1

Now you should be able to run successfully the application framework and automate your

house with reliability and satisfactory performance, with support for all your house members!
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Appendix E

Supporting Heterogeneous Device Types at the Application

Framework

Example libraries needed for communicating at the application framework with Telosb sensor

motes and Ploggs smart power outlets are provided in this appendix section. The case for Telosb

motes is shown in Listing E.1 and the Ploggs case in Listing E.2. We note that this source code is

not complete, containing the most important functionality for exchanging messages between the

framework and the physical devices.

These libraries are basically Java classes that implement the Driver abstract interface, which

is located inside the device layer of the framework. These libraries are then used by the driver

module, to enable physical communication with embedded home devices. The detailed operation

of the driver module is discussed in Section 4.2.1.

Listing E.1: Example libraries for communicating with Telosb sensor motes.

1 public class TinyOSDriver extends Driver implements MessageListener{

2

3 private MoteIF mote; // connects to base station sensor
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4 private short gateway_tinyOS_id; // app. framework id

5

6 public void startDevice() {

7 mote = new MoteIF(PrintStreamMessenger.err);

8 mote.registerListener(new SmartDeviceMsg(), this);

9 gateway_tinyOS_id = TINYOS_GATEWAY_ID; // (set to 1)

10 }

11

12 public void messageReceived(int dest_addr, Message msg){

13 SmartDeviceMsg smsg = (SmartDeviceMsg)msg;

14 int nodeid = (int) smsg.get_nodeid();

15 char subject = (char)smsg.get_subject();

16 short[] sdata = smsg.get_data();

17

18 switch(subject){

19 case ’D’:{ // device description message

20 char[] cdata = new char[sdata.length];

21 for(int i=0; i< sdata.length; i++)

22 cdata[i] = (char)sdata[i];

23 String data = new String(cdata);

24 TinyOSParser parser = new TinyOSParser();

25 parser.parseDeviceData(nodeid), data);

26

27 if(devices.containsDevice(nodeid) == false){

28 devices.addDevice(nodeid, new Device(nodeid,name,

29 description, location, keywords,

wadl_url));
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30 devices.startDevice(nodeid); }

31 this.sendMessage(nodeid, ’A’, new String()); }

32 case ’R’:{ // Service Response message

33 TinyOSParser parser = new TinyOSParser();

34 Response r = parser.parseResponseData(sdata);

35 int result = (int)smsg.get_result();

36 r.setDeviceID(new Integer(nodeid).toString());

37 r.setResult(new Integer(result));

38 devices.addResponseToDevice(nodeid, r); }

39 } }

40

41 public void sendMessage(String nodeid, char message_type, String

content){

42 SmartDeviceMsg smsg = new SmartDeviceMsg();

43 smsg.set_nodeid(gateway_tinyOS_id);

44 smsg.set_subject((short) message_type);

45

46 switch(message_type){

47 case ’H’: // Hello reply to device

48 case ’A’:{ // Ack message to sensor mote

49 synchronized(mote){

50 mote.send(Integer.parseInt(nodeid), smsg); }

51 } } }

52

53 public void sendMessage(String nodeid, char message_type, Request

req){

54 TinyOSParser parser = new TinyOSParser();
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55 SmartDeviceMsg smsg = new SmartDeviceMsg();

56 smsg.set_nodeid(gateway_tinyOS_id);

57 smsg.set_subject((short) message_type);

58 String content = parser.parseRequestData(req);

59

60 char[] cdata = content.toCharArray();

61 short[] sdata = new short[cdata.length];

62 for(int i=0; i< cdata.length; i++)

63 sdata[i] = (short) cdata[i];

64 smsg.set_data(sdata);

65 synchronized(mote){

66 mote.send(Integer.parseInt(nodeid), smsg);

67 } } }

Listing E.2: Example libraries for communicating with Ploggs smart power outlets.

1 public class PloggMonitor extends Driver implements

SerialPortEventListener, Runnable{

2

3 String comPort; // where the USB stick is located

4 OutputStream out;

5 ParseBuffer ps = new ParseBuffer();

6

7 public void startDevice (){

8 connect(comPort); // not shown here

9 discoverDevices(); // not shown here

10 }

11
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12 public void messageReceived(int dest_addr, Message msg){

13

14 String cmd;

15 Set<String> st = ps.Hdev.keySet();

16 Iterator<String> itr = st.iterator();

17 while (itr.hasNext()){

18 String id = itr.next();

19 cmd = "AT+UCAST:"+id+"=sv\r\n";

20 this.out.write(cmd.getBytes());

21 }

22 }

23

24 public void sendMessage(String nodeid, char messageType, Request

request){

25

26 String id = request.getDeviceID();

27 String cmd = "AT+UCAST:"+id+"=sv\r\n";

28 do{

29 this.out.write(cmd.getBytes());

30 } while (!ps.enddata);

31 String res = this.JSONprint(ps.getHash(), id); // not shown

here

32 Response r = new Response(id, request.getServiceName(),

request.getCommand(), res);

33 devices.addResponseToDevice(id, r);

34 }

35 }
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Appendix F

Synchronous/Asynchronous Translation

The following code shows some parts of the synchronous/asynchronous synchronization mech-

anism (see Section 4.2.3), which was installed on the application framework in order to map syn-

chronous HTTP requests, coming from Web clients (home tenants) at the Web server module of

the application framework, to asynchronous operations occurring at the device layer of the frame-

work, involving the physical interaction with home devices for satisfying the client requests.

The code has been developed in Java and it is embedded inside the Device class, which is the

class thread responsible for managing embedded home devices.

Listing F.1: Code for supporting synchronous/asynchronous operation at the application frame-

work for smart homes

1 package deviceLayer;

2

3 public class Device extends Observable

4 implements XMLRepresentable, Runnable {

5

6 // locking stuff...
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7 private static Long msgToken = new Long(1);

8

9 /**

10 * @return a token for the message id.

11 */

12 public static synchronized long getToken() {

13 synchronized (msgToken)

14 return msgToken++;

15 }

16

17 /**

18 * dispatch a response to the synchronizer.

19 * @param r the low level response.

20 */

21 public static synchronized void dispatchResponse(Response r) {

22 AsyncToSync lock = synchronizer.get(r.getRequestID());

23 if (null == lock)

24 return;

25

26 synchronized (lock) {

27 lock.setResponse(r);

28 lock.notifyAll();

29 }

30 }

31

32 /**
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33 * helper class to synchronize the async communication to tinyos/

ploggs

34 *

35 */

36 public class AsyncToSync {

37

38 /** my token. */

39 private final long token;

40

41 /** the response onto my request. */

42 private Response response = null;

43

44 /**

45 * constructor.

46 */

47 public AsyncToSync() {

48 token = Device.getToken();

49 }

50

51 /**

52 * @return my token.

53 */

54 public long getToken() {

55 return token;

56 }

57

58 /**
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59 * @return the response

60 */

61 public Response getResponse() {

62 return response;

63 }

64

65 /**

66 * @param response the response to set

67 */

68 public void setResponse(Response response) {

69 this.response = response;

70 }

71 };

72

73 /** a hash map containing the synchronizer objects. */

74 private static Map<Long, AsyncToSync> synchronizer =

75 new ConcurrentHashMap<Long, AsyncToSync> ();

76

77 // end of synchronizing

78

79 /* Handles responses from home devices by forwarding them to the

appropriate Web Client who made the Request */

80 public void handleResponse(Response r){

81 System.out.println("Handling normal Response for service:"+r.

getServiceName());

82 dispatchResponse(r);

83 }
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84

85 /* adds Request r in Request Message Queue */

86 public void addRequest(Request r){

87 this.msgQueue.addRequestMessage(r);

88 }

89

90 public String handle(org.restlet.data.Response response,

91 org.restlet.data.Request request) {

92

93 ... CODE THAT WAS OMITTED ...

94

95 Request re = new Request(deviceID,resourceName,method,params,

values, false,0);

96 Response r = waitSynchronous(re);

97 if (null == r) {

98 response.setEntity(new StringRepresentation(Constants.NACK));

99 } else {

100 log.debug(r.getResult());

101 response.setEntity(new StringRepresentation(r.getResult().

toString()));

102 }

103 return null;

104 }

105

106

107 public Response waitSynchronous(Request request) {

108 // handle a request with lock wait...
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109 AsyncToSync lock = new AsyncToSync();

110 synchronizer.put(lock.getToken(), lock);

111 try{

112 request.setRequestID(lock.getToken());

113 addRequest(request);

114 synchronized (lock) { lock.wait(); }

115 } catch (Exception e) {

116 e.printStackTrace();

117 synchronizer.remove(lock);

118 }

119 synchronizer.remove(lock.getToken());

120 return lock.getResponse();

121 }

122 }
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Appendix G

Sensor Programming without REST

We list the code that needs to be written in Java without employing REST, to achieve the same

result as the second physical mashup provided in Section 4.2.6, developed in shell scripting.

Listing G.1: Sensor programming in Java to implement a distributed rule on sensor motes.

1 try{

2 String deviceID = "sensor8";

3 URL url = new URL("http://[" + deviceID + "]/Temperature");

4 BufferedReader in = new BufferedReader(new

5 InputStreamReader(url.openStream()));

6 String str;

7 while ((str = in.readLine()) != null) {

8 output += str;

9 }

10 in.close();

11 }

12 } catch (Exception e) {

13
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14 }

15

16 char[] checkVal =output.toCharArray();

17 String temperature = "";

18

19 for(int i=0; i < checkVal.length; i++){

20 if(Character.isDigit(checkVal[i]))

21 temperature += checkVal[i];

22 else

23 // use only digits for temperature

24 }

25

26 if(temperature < 20){

27 String payload ="";

28 // Construct payload data

29 for(int i=0; i < request.getParameters().size(); i++){

30 if(i == 0)

31 payload = URLEncoder.encode(request.getParameters().get(i), "UTF

-8") + "=" + URLEncoder.encode((String)request.getValues().

get(i), "UTF-8");

32 else

33 payload += "&" + URLEncoder.encode(request.getParameters().get(i)

, "UTF-8") + "=" + URLEncoder.encode((String)request.

getValues().get(i), "UTF-8");

34 }

35 deviceID = "sensor5";

36 URL url = new URL("http://[" + deviceID + "]/Light");

And
rea

s K
am

ila
ris



321

37 URLConnection conn = url.openConnection();

38 conn.setDoOutput(true);

39 OutputStreamWriter wr = new OutputStreamWriter(conn.getOutputStream()

);

40 wr.write(payload);

41 wr.flush();

42 BufferedReader rd = new BufferedReader(new

43 InputStreamReader(conn.getInputStream()));

44 String line;

45 while ((line = rd.readLine()) != null) {

46 output += line;

47 }

48 // process output

49 wr.close();

50 rd.close();

51 }

In the physical mashup in Section 4.2.6, only seven lines of code were needed to implement

a distributed rule on sensor motes, for checking the temperature of the room and turning on some

LED it this temperature is less than 20 degrees Celsius. However, in Listing G.1, 50 lines of code

were used to perform the same task, employing two sensor motes.

In the scenario when the sensor motes are not IPv6-enabled, this distributed rule would need

approximately 200 lines to be executed. This happens because the 6LoWPAN stack makes the

following command possible:

URL url = new URL(”http://[” + deviceID + ”]/Temperature”);
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If not, a Java application would need to include also a TinyOS driver, implementing the Mes-

sageListener interface. It would also need a TinyOSParser class, to parse the contents of the

message to the appropriate form understood by the sensor mote. Additionally, it would need the

MoteIF class, for communicating with the mote, through the serial-to-USB port. We attach some

of the additional code needed below.

Listing G.2: Additional code in Java in case 6LoWPAN is not supported.

1 public void sendMessage(String nodeid, char message_type, String

payload) throws IOException{

2 private MoteIF mote;

3 TinyOSParser parser = new TinyOSParser();

4 SmartDeviceMsg smsg = new SmartDeviceMsg();

5 smsg.set_nodeid(FRAMEWORK_ID);

6 smsg.set_subject((short) message_type);

7 String content = parser.parseRequestData(payload);

8 switch(message_type){

9 case ’R’:{ // Service Request message

10 try {

11 char[] cdata = content.toCharArray();

12 short[] sdata = new short[cdata.length];

13 for(int i=0; i< cdata.length; i++)

14 sdata[i] = (short) cdata[i];

15 smsg.set_data(sdata);

16 synchronized(mote){

17 mote.send(Integer.parseInt(nodeid), smsg);

18 }

19 } catch (IOException e) {
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20 System.err.println("Cannot send Service Request Message to

mote");

21 e.printStackTrace();

22 }

23 break;

24 }

25 default:{

26 System.err.println("Unknown message subject. Sending failed."

);

27 }

28 }

29 }
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Appendix H

Programming Telosb Sensor Motes

For people who are not familiar with sensor programming, we list here all the necessary steps

needed in order to install IPv6/6LoWPAN support on Telosb sensor devices, transforming them

then into embedded Web servers. At first, one must install the latest version of TinyOS1 (currently

TinyOS 2.1.2). A Web page with simple instructions for installing TinyOS, as well some additional

needed libraries is the following:

http://www.tinyos.net/tinyos-2.x/doc/html/install-tinyos.html

After the necessary installations of TinyOS, as well as of tools, libraries and drivers for TinyOS

support, the software code for transforming sensor motes into embedded Web servers must be

installed. There are two different TinyOS programs: one that should be installed on the sensor

mote acting as the base station (forwarding requests between the application framework and the

remote sensor devices), and another that must be installed on the sensor motes which would be

deployed in the smart home environment to sense its environmental context.

The software for an IPv6-enabled base station in TinyOS 2.x, can be found under the directory:
1http://www.tinyos.net/
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{TinyOS Root Directory}/apps/IPBaseStation

To install the code on the sensor mote acting as the base station, a user must open a terminal

and type the command:

make platform blip install.1 bsl,/dev/ttyUSBx

where x is the USB port where the mote is plugged in, platform is the sensor device type being

used (e.g. telosb) and blip denotes that Blip2 libraries will be used. The number after the install

keyword, in this case 1, identifies the address of the base station. The assigned USB port for

each sensor mote can be found by typing the commad motelist. This command lists all the motes

connected to the USB ports of the system.

If the following information appear on the terminal screen, this means that the TinyOS code

has been successfully installed on the sensor mote.

installing telosb binary using bsl

tos-bsl --telosb -c /dev/ttyUSB0 -r -e -I -p build/telosb/main.ihex.out-1

MSP430 Bootstrap Loader Version: 1.39-telos-8

Mass Erase...

Transmit default password ...

Invoking BSL...

Transmit default password ...

Current bootstrap loader version: 1.61 (Device ID: f16c)

Changing baudrate to 38400 ...

Program ...

20886 bytes programmed.

Reset device ...

rm -f build/telosb/main.exe.out-1 build/telosb/main.ihex.out-1

2http://smote.cs.berkeley.edu:8000/tracenv/wiki/blip
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Afterwards, the base station needs to start its operation. This can be achieved through the

following two successive commands:

cd {TinyOS Root Directory}/support/sdk/c/blip/

sudo driver/ip-driver /dev/ttyUSB0 telosb

Information similar to the following should appear on your terminal as soon as you run this

command.

2012-08-16:22:19: INFO: Read config from ’serial_tun.conf’

2012-08-16:22:19: INFO: Using channel 15

2012-08-16:22:19: INFO: Retries: 1

2012-08-16:22:19: INFO: telnet console server running on port 6106

2012-08-16:22:19: INFO: created tun device: tun0

2012-08-16:22:19: INFO: interface device successfully initialized

2012-08-16:22:19: INFO: starting radvd on device tun0

Finally, all sensor motes, which will be deployed remotely in the smart home environment,

need to install the TinyOS code we developed, for transforming them into embedded IPv6-enabled

Web servers. The TinyOS source code for communicating with IPv6-enabled Telosb sensor motes

(as well as Ploggs smart power outlets) has been released on the NetRL website3 and on GitHub4.

In order to install the code on a sensor mote, the following command must be executed:

make platform blip install.y bsl,/dev/ttyUSBx

Remember to use a different y number for each sensor mote, avoiding the value 1, which is

reserved for the base station node. As before, x is the USB port onto which the mote is temporarily

plugged in (for the installation procedure).
3http://www.netrl.cs.ucy.ac.cy/index.php?option=com content&task=view&id=76&Itemid=54
4https://github.com/andreaskami/homeweb
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This is all! Now you can equip the sensor motes with batteries and deploy them inside the

smart home. They will start immediately to scan the environment for an application framework

(see the device discovery procedure in Section 5.2.1) and, as soon as they are bound to one, they

will begin sensing the environmental conditions that exist in the house area, namely temperature,

humidity and illumination.
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Appendix I

Example WADL Service Description Files

Two example WADL service description files are presented, one for Telos sensor motes and

one for Ploggs smart power outlets. The former case is shown in Listing I.1 and the latter in

Listing I.2.

Listing I.1: An example WADL file for a Telosb sensor mote.

1 <?xml version="1.0"?>

2 <application xmlns:xsd="http://www.w3.org/2001/XMLSchema"

3 xmlns:html="http://www.w3.org/1999/xhtml"

4 xmlns="http://wadl.dev.java.net/2009/02">

5 <grammars></grammars>

6 <resources base="http://localhost:8080/tinyOS/">

7 <resource path="Temperature">

8 <doc xml:lang="en" title="tinyOS Temperature Service">

9 The <html:i>tinyOS Client Code</html:i> provides Services

for motes’ Temperature sensing capabilities.

10 </doc>

11 <method name="GET" id="Temperature">
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12 <doc xml:lang="en" title="Measure Temperature in Celsius"/>

13 <request>

14 </request>

15 <response status="200">

16 <representation mediaType="text/plain" type="xsd:string">

17 <doc xml:lang="en" title="The Temperature sensed current

value"/>

18 </representation>

19 </response>

20 </method>

21 </resource>

22 <resource path="Humidity">

23 <doc xml:lang="en" title="tinyOS Humidity Service">

24 The <html:i>tinyOS Client Code</html:i> provides Services for

motes’ Humidity sensing capabilities.

25 </doc>

26 <method name="GET" id="Humidity">

27 <doc xml:lang="en" title="Measure Humidity in % value"/>

28 <request>

29 </request>

30 <response status="200">

31 <representation mediaType="text/plain" type="xsd:string">

32 <doc xml:lang="en" title="The Humidity sensed current

value"/>

33 </representation>

34 </response>

35 </method>
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36 </resource>

37 <resource path="Illumination">

38 <doc xml:lang="en" title="tinyOS Illumination Service">

39 The <html:i>tinyOS Client Code</html:i> provides services for

motes’ Radiation sensing capabilities.

40 </doc>

41 <method name="GET" id="Illumination">

42 <doc xml:lang="en" title="Measure Illumination in Lux value

"/>

43 <request>

44 </request>

45 <response status="200">

46 <representation mediaType="text/plain" type="xsd:string">

47 <doc xml:lang="en" title="The Illumination sensed current

value"/>

48 </representation>

49 </response>

50 </method>

51 </resource>

52 <resource path="Light">

53 <doc xml:lang="en" title="tinyOS Light Service">

54 The <html:i>tinyOS Client Code</html:i> provides Services

setting motes’ Leds.

55 </doc>

56 <method name="POST" id="Light">

57 <doc xml:lang="en" title="Set the RED/GREEN/BLUE Leds that are

on the sensor mote ON/OFF"/>
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58 <request>

59 <param name="color" type="xsd:character" required="true"

default="" style="query">

60 <doc xml:lang="en" title="Leds Color to switch on"/>

61 <option value="R"/><option value="G"/><option value="B"/>

62 </param>

63 </request>

64 <response status="200">

65 <representation mediaType="text/plain" type="xsd:string">

66 <doc xml:lang="en" title="Acknowlegment Value"/>

67 </representation>

68 </response>

69 </method>

70 </resource>

71 </resources>

72 </application>

Listing I.2: An example WADL file for a Plogg smart power outlet.

1 <?xml version="1.0"?>

2 <application xmlns:xsd="http://www.w3.org/2001/XMLSchema"

3 xmlns:html="http://www.w3.org/1999/xhtml"

4 xmlns="http://wadl.dev.java.net/2009/02">

5 <grammars></grammars>

6 <resources base="http://localhost:8080/plogg/">

7 <resource path="Electricity">

8 <doc xml:lang="en" title="Plogg Smart Meter Electricity Service">
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9 The <html:i>Electricity service</html:i> provides energy

consumption measurements in Watts and kWh.

10 </doc>

11 <method name="GET" id="Electricity">

12 <doc xml:lang="en" title="Measure electrical consumption in Watts

and kWh"/>

13 <request>

14 </request>

15 <response status="200">

16 <representation mediaType="application/json" type="xsd:string">

17 <doc xml:lang="en" title="The JSON value of the consumption

measurement of the connected electrical appliance"/>

18 </representation>

19 </response>

20 </method>

21 </resource>

22 <resource path="Switch">

23 <doc xml:lang="en" title="Plogg Smart Meter Switch Service">

24 The <html:i>Switch service</html:i>turns an electrical

appliance on/off.

25 </doc>

26 <method name="POST" id="Switch">

27 <doc xml:lang="en" title="Set the appliance ON/OFF"/>

28 <request>

29 <param name="mode" type="xsd:string" required="true"

default="" style="query">

And
rea

s K
am

ila
ris



333

30 <doc xml:lang="en" title="Switch on/off the appliance

"/>

31 <option value="On"/><option value="Off"/>

32 </param>

33 </request>

34 <response status="200">

35 <representation mediaType="text/plain" type="xsd:string">

36 <doc xml:lang="en" title="Acknowlegment Value"/>

37 </representation>

38 </response>

39 </method>

40 </resource>

41 </resources>

42 </application>
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Appendix J

Important Factors affecting Domestic Energy Consumption

After discussions with the Electricity Authority of Cyprus, electricians and providers of smart

home solutions, as well as tens of consumers of electricity in houses around Cyprus, we considered

the following parameters, as important factors that affect the electrical energy consumption in

domestic premises around the country:

• Premise space. The total physical area of the premise, in square meters.

• Number of Adults. The total number of adults living in the premise.

• Number of Children. The total number of children living in the premise.

• Number of Rooms. The total number of rooms in the premise.

• Area. Whether the premise s located at an urban/rural area or at the suburb of a city.

• Residence Status. Whether the premise is owned or rented.

• Type of House. Whether it is a house or an apartment/flat.

• Swimming Pool. Whether the premise has a swimming pool.
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• Jacuzzi/SPA. Whether the premise has a jacuzzi or a spa.

• Insulated. Whether the premise is insulated or not.

• Heating Type. Specifies the technique employed to heat the premise. For example, it can

be a central heating, halogen/gas heaters, a floor heating system, a fireplace etc.

• Cooling Type. Specifies the technique used to cool the premise. For example, it may be by

means of air conditioners, fans etc.

There exist of course numerous other significant parameters (e.g. the confort levels of people,

the time each tenant spends in his house), however, our intend is neither to complicate the collec-

tion procedure of this information from residents around Cyprus nor the data analysis process that

would follow.
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