
GRIDBENCH: RESOURCE PERFORMANCE RANKING AND AUDITING IN

COMPUTATIONAL GRIDS

George P. Tsouloupas

University of Cyprus, 2009

Over the recent years the area of Grid Computing has seen an astonishing growth.
Grid infrastructures have become the platform of choice for large-scale eScience. The
world’s largest Grid infrastructure – EGEE – currently comprises 300 sites distributed
around the world, petabytes of storage capacity and CPU’s in excess of 80,000. The dif-
ferent computing resources in these heterogeneous infrastructures gather impressive and
unprecedented computational potential, yet, in order to utilize them, users need mecha-
nisms for selecting the right resources for the right job. Users and Virtual Organization
administrators also need end-to-end mechanisms to evaluate the performance of resources
and audit resources according to their advertised performance. This can be a complicated
process, and when large infrastructures are involved, it becomes unmanageable and pro-
hibitively tedious in the absence of specialized tools.

Performance ranking in a large, shared, heterogeneous and dynamic environment is a
complex task because it needs to be done in an efficient and unobtrusive way. At the same
time, it has to address many different types of application that come from several Virtual
Organizations.

The thesis presents several contributions in the field of resource performance evalu-
ation of computational Grids. A first contribution is the proposal of a methodology for
puttingcorrect,meaningfulandcontextualizedperformance information at the user’s dis-
posal, thus facilitating therankingof computational resources based on customizable cri-
teria. Contextualization is achieved by enriching the measurements with metadata about
when,where,howand in many casesunder what circumstancesthe measurement is ob-
tained. The thesis proceeds to propose a user-driven approach for ranking resources by
employing custom ranking functions.

A second contribution is the introduction ofGridBench; an extensible tool that has
been designed and implemented in the context of this thesis and along the lines of the
aforementioned methodology. It allows for context-augmented performance evaluation
using several types of benchmarks, ranging from synthetic micro-benchmarks to real-
world parallel applications. GridBench features a user-friendly graphical interface that
facilitates the invocation of tests and benchmark and the collection, archival and analysis
of results. The thesis also introduces a simple, easily obtainable CPU cache metric with
very good correlation to real application performance.

A main contribution is the introduction of a methodology for ranking resources based
on an application specific combination of low-level, easily obtained metrics. An impor-
tant component of GridBench,SiteRank, implements this methodology and enables the
interactive user-driven creation of custom ranking functions.

Geo
rge

 P
. T

so
ulo

up
as

George P. Tsouloupas––University of Cyprus, 2009

The methodology and tools are applied through several experiments to the largest pro-
duction Grid infrastructure in existence today. Among the arguments of the thesis is that
the use of evidence-based “measured” data, in contrast to the “quoted” data advertised in
information services by resource owners, is imperative. The existing de facto approach for
selecting resources according to performance is shown to be insufficient and unreliable.

Geo
rge

 P
. T

so
ulo

up
as

GRIDBENCH: RESOURCE PERFORMANCE RANKING AND AUDITING IN

COMPUTATIONAL GRIDS

George P. Tsouloupas

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the

University of Cyprus

Recommended for Acceptance

by the Department of Computer Science

June, 2009

Geo
rge

 P
. T

so
ulo

up
as

c© Copyright by

George P. Tsouloupas

All Rights Reserved

2009Geo
rge

 P
. T

so
ulo

up
as

APPROVAL PAGE

Doctor of Philosophy Dissertation

GRIDBENCH: RESOURCE PERFORMANCE RANKING AND AUDITING IN

COMPUTATIONAL GRIDS

Presented by

George P. Tsouloupas

Research Supervisor

Dr. Marios D. Dikaiakos

Committee Member
Dr. Paraskevas Evripidou

Committee Member
Dr. Yiannakis Sazeides

Committee Member
Dr. Eleni Karatza

Committee Member
Dr. Beniamino Di Martino

ii

Geo
rge

 P
. T

so
ulo

up
as

University of Cyprus

June, 2009

iii

Geo
rge

 P
. T

so
ulo

up
as

ACKNOWLEDGEMENTS

Over the rather long road to this thesis I have received support and encouragement

from many people. My advisor, Prof. Dikaiakos, patiently supported me in my academic

life. My family, especially my wife Aphrodite, supported me and endured my balancing

act of concurrently going through the PhD study, the bringing up of two children and the

starting of a business.

I owe my sincere thanks to Prof. Dikaiakos for his guidance and patience. I thank him

for the constructive criticism that was given when necessary and his constant contribution

and input. Most importantly I thank him for his insistence on high quality research work

and his refusal to accept anything less.

During my employment at the High Performance Computing systems Laboratory I

had the pleasure of the company of many wonderful people with which I had many sci-

entific and personal discussions on issues ranging from processors to politics. I’d like to

thank, in no particular order, Maria, Wei, Kyriakos, Christiana, Eleni, Koula, Marilena,

Asterios, Nicolas and Nicolas, for their input and all the good times that we had together.

During my time at the HPCL, I have had the blessing of working for several excellent

research projects and I’ve had the chance to travel and make friends that I hope will be life-

long. CrossGrid the first project I was involved in proved to be an invaluable experience. I

have met and worked with literally hundreds of people. I had the pleasure of collaborating

very closely, and to published work with Alfredo Tirado Ramos, Marcus Hardt, Ariel

iii

Geo
rge

 P
. T

so
ulo

up
as

Garcia. Working as “foot-soldiers” around the time that the first Grid infrastructures were

becoming a reality, laid the foundations for a firm understanding of the ins and outs of

the Grid, down to the hairy details. I would like to thank Harald Kornmayer for our

discussions.

Of all the people that have contributed for me to make it this far, the bulk of the thanks

should go to my wife. She has had to put up with my long hours, and she managed to see

light at the end of tunnel even when I could not.

iv

Geo
rge

 P
. T

so
ulo

up
as

CREDITS

1. G. Tsouloupas, M. Dikaiakos, “GridBench: A Tool for Benchmarking Grids.” In
Proceedings of the 4th International Workshop on Grid Computing (Grid2003),
pages 60-67, Phoenix, Arizona, 17 November 2003, IEEE Computer Society

2. G. Tsouloupas, M. D. Dikaiakos. “GridBench: A Workbench for Grid Benchmark-
ing.” In Advances in Grid Computing - EGC 2005. European Grid Conference,
Amsterdam, The Netherlands, February 14-16, 2005, Revised Selected Papers, Lec-
ture Notes in Computer Science, vol. 3470, pages 211-225, Springer, June 2005

3. E. Kenny, B. Coghlan, G. Tsouloupas, M. Dikaiakos, J. Walsh, S. Childs,
D.O’Callaghan and G. Quigley, “Heterogeneous Grid Computing: Issues and Early
Benchmarks.” InComputational Science - ICCS 2005, 5th International Confer-
ence, Atlanta, GA, USA, May 22-25, 2005, Proceedings, Part III. Lecture Notes in
Computer Science, vol. 3516, pages 870-874, Springer, May 2005.

4. A. Tiramo-Ramos, G. Tsouloupas, M. Dikaiakos , P. Sloot, “Grid Resource Selec-
tion by Application Benchmarking: a Computational Haemodynamics Case Study.”
In Computational Science - ICCS 2005, 5th International Conference, Atlanta, GA,
USA, May 22-25, 2005, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 3514, pages 534-543, Springer, May 2005.

5. G. Tsouloupas and M. D. Dikaiakos, “Ranking and Performance Exploration of
Grid Infrastructures: An Interactive Approach.”Proceedings of the 7th IEEE/ACM
International Conference on Grid Computing, Barcelona, September 28th-29th 2006.

6. G. Tsouloupas and M. D. Dikaiakos. “Characterization of Computational Grid Re-
sources Using Low-level Benchmarks.”Proceedings of the 2nd IEEE International
Conference on e-Science and Grid Computing, Amsterdam, Dec. 4-6, 2006.

7. G. Tsouloupas, M. D. Dikaiakos, “GridBench: A Tool for the Interactive Per-
formance Exploration of Grid Infrastructures”Journal of Parallel and Distributed
Computing, Elsevier, vol. 67 (2007), pp 1029-1045

8. G. Tsouloupas, M. D. Dikaiakos, “Grid Resource Ranking using Low-level Per-
formance Measurements.”,The 13th International Euro-Par Conference, Rennes,
France, August 28-31, 2007, Lecture Notes in Computer Science, Springer, 2007,
pp.467-476.

iv

Geo
rge

 P
. T

so
ulo

up
as

Technical Reports and other Grid-Related Publications

9. J. Marco, R. Marco, D. Rodriguez, J. Salt, S. Gonzales, J. Sanchez, A. Fuentes,
J. Gomes, M. David, J. Martins, L. Bernardo, M. Hardt, A. Garcia, P. Nyczyk, A.
Ozjeblo, P. Wolniewicz, A. Padee, M. Bluj, C. Fernadez, J. Fontan, A. Gomez, I.
Lopez, Y. Cotronis, V. Floros, G. Tsouloupas, W. Xing, M. Dikaiakos et al., “First
Prototype of the CrossGrid Testbed.”Grid Computing. First European Across-
Grids Conference, Santiago de Compostela, Spain, February 2003, Revised Papers,
Lecture Notes in Computer Science series, vol. 2970, pages 67-77, Springer, 2004

10. A. Garcia, M. Hardt and G. Tsouloupas. “Simplified Deployment of a LCG clus-
ter via LCFG-UML”. In Computing in High Energy and Nuclear Physics (CHEP)
2004, 2004.

11. M. Georgiadou, G. Tsouloupas, M. Dikaiakos, A. Tsapalis, C. Alexandrou, “Run-
ning QCD Computations on the Grid”,Technical Report TR-2004-02, Department
of Computer Science, University of Cyprus, July 2004

12. J. Gomes; M. David; J. Martins; L. Bernardo; A. Garcia; M. Hardt; H. Kornmayer;
J. Marco; D. Rodriguez; I. Diaz; D. Cano; J. Salt; S. Gonzalez; J. Sanchez; F.
Fassi; V; Lara; P. Nyczyk; P. Lason; A. Ozieblo; P. Wolniewicz; M. Bluj; K.
Nawrocki; A. Padee; W. Wislicki; C. Fernandez; J. Fontan; Y. Cotronis; E. Floros;
G. Tsouloupas; W. Xing; M. Dikaiakos ; J. Astalos; B. Coghlan; E. Heymann; M.
Senar; C. Kanellopoulos; A. Tirado-Ramos and D.J. Groen: Experience with the
International Testbed in the CrossGrid Project, in Advances in Grid Computing -
EGC 2005. European Grid Conference, Amsterdam, The Netherlands, February
14-16, 2005, Revised Selected Papers, Lecture Notes in Computer Science, vol.
3470, pages 98-110, Springer, June 2005.

13. M. D. Dikaiakos, A. Artemiou, and G. Tsouloupas. “Towards a Universal Client
for Grid Monitoring Systems.” InCDROM Proceedings of the 11th International
Workshop on High-Level Parallel Programming Models and Supportive Environ-
ments, 20th IEEE International Parallel and Distributed Processing Symposium,
(IPDPS 2006), April 25-29, 2006, Rhodes, Greece. IEEE Computer Society, 2006

14. G. Tsouloupas, M. Dikaiakos, “Characterization of Computational Grid Resources
Using Low-level Measurements.” Technical Report TR-2004-05, Department of
Computer Science, University of Cyprus, October 2004

15. G. Tsouloupas, M. Dikaiakos, “Grid Resource Ranking using Low-level Perfor-
mance Measurements” Technical Report TR-07-02, Department of Computer Sci-
ence, University of Cyprus, February 2007

v

Geo
rge

 P
. T

so
ulo

up
as

TABLE OF CONTENTS

Chapter 1: Introduction 1

1.1 A Typical Grid Infrastructure . 2

1.2 Problem Statement. 3

Chapter 2: Grid Resource Ranking and Performance Evaluation 12

2.1 Related Work . 12

2.1.1 Performance Evaluation, Benchmarking and the Scope of this Work 13

2.1.2 Infrastructure Performance Monitoring. 15

2.1.3 Grid Benchmarking. 18

2.2 The Grid Context . 21

2.3 Key Challenges . 23

Chapter 3: Context-augmented performance measurements: GBDL 26

3.1 Contextualizing resources. 26

3.2 The GridBench Definition Language. 29

3.2.1 Scope . 29

3.2.2 Syntax. 30

3.3 Translating GBDL for execution. 40

3.4 Machine State Monitoring During Measurement. 41

Chapter 4: Grid-Resource Performance Evaluation in Production Environ-

ments 45

vi

Geo
rge

 P
. T

so
ulo

up
as

4.1 GridBench. 45

4.2 Goals and Requirements. 46

4.2.1 Executing Benchmarks. 46

4.2.2 Managing invocations. 48

4.2.3 Organizing and sharing metadata and results. 49

4.2.4 Benchmark customizations and extensions. 50

4.2.5 Middleware Independence. 51

4.2.6 Data analysis . 51

4.2.7 Putting collected information into use. 51

4.2.8 Functional and user-friendly interface. 52

4.3 System Design. 52

4.3.1 Server-side components. 53

4.3.2 Client-side components: The GridBench Browser. 59

4.3.3 Benchmarks. 65

4.4 Performance Evaluation and Auditing Using GridBench. 76

4.4.1 Application Performance. 77

4.4.2 User-driven Resource Ranking. 80

Chapter 5: Performance Ranking of Grid Resources 83

5.1 Application Performance: A more in-depth look. 86

5.1.1 The Application. 87

5.1.2 Using GridBench . 88

5.1.3 Results. 89

vii

Geo
rge

 P
. T

so
ulo

up
as

5.2 SiteRank. 95

5.2.1 Auditing and the deficiencies in current approaches. 96

5.2.2 The Ranking Methodology. 101

5.2.3 Metrics . 103

5.3 Experimentation. 108

Chapter 6: Summary and Conclusion 114

6.1 Putting performance measurements in context.. 115

6.2 A tool for performance evaluation and testing. 116

6.3 Auditing resource performance: The argument for using measured, end-

to-end user-obtained metrics.. 118

6.4 The c512k metric and it’s correlation to actual application performance.. 119

6.5 A methodology for computational resource ranking.. 120

6.6 Taking This Work Further. 122

6.6.1 Wider Application Scope. 122

6.6.2 Applying the proposed ranking to scheduling. 122

6.6.3 Furthering on Auditing . 122

6.6.4 Parallel versus High-Throughput Applications. 123

6.6.5 Extending the Tool. 123

Appendix A: GBDL Definition and Examples 125

Bibliography 134

viii

Geo
rge

 P
. T

so
ulo

up
as

LIST OF FIGURES

1 Basic Grid infrastructure architecture.. 2

2 A more detailed (but by no means complete) Grid architecture.. 22

3 GridBench Component communication.. 30

4 Top: A schematic overview of GBDL; shown in rounded boxes are the

main parts of a GBDL document.Bottom: A real example of GBDL

definition, showing aflops micro-benchmark definition that requires 2

CPU’s on 2 separate worker-nodes atce101.grid.ucy.ac.cy.. 31

5 Workflow definition of the GGF AIGB benchmark “VP”shown in Fig-

ure 6. 37

6 The AIGB VP benchmark.. 38

7 Definition of an instance of the High Performance Linpack benchmark.

(Several parameters omitted to conserve space.). 38

8 Monitoring machine state during a benchmark. 42

9 Monitoring a CPU benchmark execution, using the JIMS monitoring ser-

vice. 43

10 GridBench components.. 53

11 A UML sequence diagram describing the basic Controller functionality. . 54

12 Middleware plugin functionality.. 55

13 Monitor plugin functionality.. 56

ix

Geo
rge

 P
. T

so
ulo

up
as

14 The list on the left is a list of tests/benchmarks that are integrated into

GridBench. The list on the right shows the currently available resources

and their status in terms of busy/free CPU’s.. 60

15 Information plugin and CE-test plugin functionality. 61

16 (a) Resource browser, showing the state of resources from the EGEE

test-bed that “advertise” support for MPI (MPICH run-time environment;

(b) The resource renderer;(c) Top: Information index sources selection.

Middle: Querying for specific Virtual Organizations.Bottom:Specifying

run-time environment support. 62

17 Benchmark configuration panel.. 64

18 The interface for querying the results and selecting which results to render. 65

19 Generation of charts from historical data. The result shown is from a

memory cache benchmark.. 66

20 POVRay rendering of thebenchmark.pov benchmark scene.. 76

21 Results for the parallel Artificial Neural Network training application ker-

nel. The number of CPU’s is indicated next to the resource name and the

completion times are sorted (best-performing first).. 78

22 Results for the VERTLQ kernel from the air pollution simulation appli-

cation. The number of CPU’s is indicated next to the resource name and

the completion times are sorted (best-performing first).. 79

23 Results for the “bstream” kernel, showing iteration times on a set of four

resources. 80

x

Geo
rge

 P
. T

so
ulo

up
as

24 Snapshot of the ranking module.. 81

25 Ranking of SE Europe resources by putting more emphasis on CPU or

main-memory performance.. 82

26 Segmented medical data from the abdominal aorta, accessible via Grid

Storage Elements functioning as medical repositories.. 88

27 The performance of the kernel at a set of sites using 2, 4, 8 and 12 CPU’s. 91

28 Scalability as it is measured at four sites. Lower iteration times are better. 92

29 Impact of MPI communication on runtime. 29(a) Iteration and commu-

nication times using 2 CPU’s on the same (dual) Worker Node (1x2), and

1 CPU on each of 2 Worker Nodes. 29(b) Iteration and communication

times using 2 CPU’s on each of 2 (dual) Worker Nodes (2x2), and 1 CPU

on each of 4 Worker Nodes (4x1).. 93

30 Completion times of the BStream kernel using different numbers of CPU’s

on several resources.. 94

31 Performance distribution of resources by different performance criteria.. . 96

32 How thequotedperformance metrics in Informations Systems relate to

actual application performance.. 97

33 How themeasuredperformance metrics in Informations Systems relate

to actual application performance.. 98

34 How the quoted performance metrics in Informations Systems relate to

actuall application performance.. 99

35 The ranking process.. 101

xi

Geo
rge

 P
. T

so
ulo

up
as

36 Rank Estimategeneration process outline.. 103

37 Typical result ofcachebench. 105

38 Heterogeneous resources yield different results that are difficult to compare106

39 The area under the size/bandwith curve. 107

40 Correlation Matrix for thepovrayapplication. 109

41 Rank Estimate for thepovray application 110

42 Measuredpovray performance on 159 resources of the EGEE infrastruc-

ture. 111

43 Rank Estimate for thesiscapplication on the EGEE infrastructure.. . . . 112

44 Structure of a GBDL document.. 116

45 The GridBench user interface.. 117

46 How the quoted performance metrics in Informations Systems relate to

actuall application performance.. 119

47 The ranking process workflow. 121

xii

Geo
rge

 P
. T

so
ulo

up
as

Chapter 1

Introduction

Grids have emerged as wide-scale, distributed infrastructures that comprise heteroge-

neous computing and storage resources, and support resource sharing in dynamic, multi-

institutional Virtual Organizations (VO’s) [33, 34, 35]. Grids are quickly gaining pop-

ularity, especially in the scientific sector, where projects likeEGEE(Enabling Grids for

E-sciencE) and theOpen Science Gridprovide the infrastructure that accommodates large

experiments with thousands of scientists, tens of thousands of computers, and petabytes

of storage [30, 51]. As an example, at the time of this writing, EGEE assembles over 300

sites around the world with more than 80,000 CPU’s and about 5PB of storage, supporting

over 80 Virtual Organizations and an increasing number of large-scale applications from

a variety of disciplines resulting to an average of 300,000 jobs per day [30].

There are several, loosely defined, categories of Grids such asComputational Grids

which focus on high-performance and high-throughput computing,Data-Grids that put

emphasis on data storage and replication,Scavenger Gridswhich target idle cycles on

1

Geo
rge

 P
. T

so
ulo

up
as

2

non-dedicated user workstations. While Grids come in all shapes and sizes what is de-

scribed herein assumes an architecture that resembles the one presented in Figure 1. It is

the structure adopted by numerous projects like [20, 30, 44, 51].

1.1 A Typical Grid Infrastructure

Figure 1: Basic Grid infrastructure architecture.

In this architecture, a Grid Virtual Organization (VO) is made up of a set of geo-

graphically distributed sites (resources). Each site contains a Computing Element (the

Gatekeeper in Globus [3] terminology) which manages a set of “Worker Nodes” for per-

forming computations. A site may contain a “Storage Element” which is an interface to

mass storage. Typically the Computing Element and Worker Nodes have direct (Local

Area Network) access to mass storage on the Storage Element that is close to it (e.g. via

Network File System). The Grid VO also contains some VO services such as a resource

broker , an information service, VO membership server etc. The Sites are connected via

shared wide-area links.

Geo
rge

 P
. T

so
ulo

up
as

3

1.2 Problem Statement

Over the last decade, Grids have grown in size at an admirable rate. An increasing

number of resources are put at Grid users’ disposal, more applications are ported to the

Grid, an increasing number of large-scale scientific experiments target the Grid asthe

platform for their computational needs, while an increasing number of users collaborate

to form Virtual Organizations (VO’s). This explosion of the Grid in terms of size comes

at the cost of users having to deal with this vast, dynamic and heterogeneous infrastruc-

ture. Users, be they real end-users or automated resource brokers, need to pick resources

that are best suited for specific needs and applications.The selection is generally based

on functionality and performance. This raises the problems of:(i) How does one test,

monitor and characterize a large, distributed and volatile system such as the Grid, in a

way that imposes minimal disruption?and(ii)How can this characterization help users

rank resources so that they can identify the right ones?

While there have been considerable advances in the area of Grid information, moni-

toring and scheduling systems (See for instance [32, 74, 36, 11, 19, 63]), the fundamental

problem of picking the right resources remains. If the user has little constraints on if/when

his jobs finish and cost is of no relevance, then this is not much of an issue. If Grid re-

sources come at a price, or the user needs resources to be carefully selected in terms of

their performance capacity, the users is left with the difficult task of effectively identi-

fying the right resources. The task is difficult enough when the infrastructure is static

and stable, but the problem is worsened in the case of numerous, volatile and frequently

changing resources.

Geo
rge

 P
. T

so
ulo

up
as

4

Automated decision makers, i.e. Grid schedulers or Resource Brokers, somewhat sim-

plify the task of identifying the right resources, but the source of the problem remains:

current systems lack the information source that will deliver performance information

about the participating resources. Work has already been done in this direction (see Chap-

ter 2 for systems such asNWS,GRASPandDiPerf) but none of these systems addresses

the problem of lack of detailed, accurate and descriptive information about theperfor-

mancecapabilities of the candidate resources. Be it by an end-user or a Resource Broker,

when a selection needs to be made among candidate resources there are two important

pieces of information that need to be accessible:(i) Which of these resources are actually

operational, and(ii) how do they compare in terms of performance.

The classification of resources into operational ones and non-operational ones is not

straight forward. The operational status of a resource could be classified at different

levels. At a first level, the resource/host must be up and reachable; this can be determined

using most Grid monitoring tools. At a second level, the resource must be able to execute

jobs that require some functionality; this is accomplished by testing tools. Finally, the

resource must be running at full capacity. This can be viewed as the “non-degraded” state

or even that the resource is operating at a level that conforms to a service-level agreement;

this requires more advanced performance monitoring tools.

In order to determine which resources are operational at any time, most Grids in exis-

tence today have some sort of testing system implemented that provides some information

about the operational status of the resources (see Chapter 2). Acknowledging that it is

practically impossible tofully test such a complex system, these testing systems do have

Geo
rge

 P
. T

so
ulo

up
as

5

somefundamentalshort-comings in that they are almost never designed to be end-to-end

(i.e. they usually run as daemons, not as jobs by end-users), but more importantly they

usually overlook problems such as degraded performance because they simply state if a

specific function works or not. In order to compare resources in terms of performance

capability, today one has to to rely on what resource providers claim by publishingstatic

performance information in Grid Information Services. This information is usually man-

ually provided by resource administrators and may not reflect the actual capabilities of

the resources. This is due to many reasons, ranging from inaccuracy to failure to reflect

internal changes at the resource. What is needed, is a more reliable and accurate resource

performance characterization and auditing approach.

Auditing refers to determining the operational status of Grid resources, in terms of

functionality, performance, reliability and availability. Meaningful auditing requires that,

in addition to functionality testing, one must also address performance, reliability and

availability in order to expose resources that operate in a degraded state. The main prob-

lems in doing this are:

• Since meaningful auditing implies relevant measurements (i.e. that are of interest to

users), one must identify the right metrics that would satisfy the majority of users.

On the other hand, users should also be able to define “personalized” tests.

• The underlying infrastructure is large, highly distributed and volatile. Being large

and highly distributed makes auditing difficult by making it costly to obtain mea-

surements. Also, deploying and administering auditing experiments in a large dis-

tributed architecture is tedious and time-consuming and sometimes non-trivial. The

Geo
rge

 P
. T

so
ulo

up
as

6

underlying infrastructure is volatile both in terms of resources entering and leaving

the Grid, and in terms of internal changes in the resources (such as hardware up-

grades, middleware upgrades or even minor changes in configuration that could

have non-trivial effects on performance). This volatility further complicates mat-

ters since measurements soon become outdated and need to be repeated. One major

factor contributing to this is that machines in large clusters are generally phased

out in a period of three years, with about one third of the machines replaced each

year. Furthermore clusters are sometimes internally re-structured with machines

of different capabilities being dedicated to different queues. Decidingwhen it’s

necessary to take a new measurement is of key importance.

• There are considerable restrictions to job deployment, mainly in terms of the time

resource providers or users are willing to spend auditing the system.

• Knowing exactly what is being measured, and being able to correctly interpret the

results is not straight-forward because the Grid employs resource sharing at differ-

ent levels; resource sharing is in fact one of the main ideas behind the Grid. The

Grid runs thousands of jobs concurrently, resources (i.e. clusters) run several con-

current jobs and, in many cases, processes from different jobs may share the same

communication channel, memory controller or even CPU. Given the absence of a

comprehensive way of expressing policy (e.g. a resource provider declaring pre-

cisely how a job from a given user will run at his site), one way of addressing this is

by measuring “end-to-end” performance. Furthermore, even if policies of this kind

Geo
rge

 P
. T

so
ulo

up
as

7

were somehow uniformly expressed, the problem of validating that the policies are

honored still remains.

• Since it is not easy (or cost-effective) to lock down a resource for measurement,

auditing measurements, especially in the form of light-weight benchmarks, can be

affected by the current state of the resource (i.e. other running jobs). There have to

be mechanisms to detect invalid measurements (e.g. the collection and analysis of

monitoring information) and filter out the “bad” measurements.

• Some tests or light-weight benchmarks will need to be tuned according to individual

resource attributes. Doing this manually when faced with a large set or resources is

not really feasible; it needs to somehow be automated.

• It would be beneficial to perform auditing at different levels so that a more complete

picture is provided. Considering the architecture described in the introduction, one

could perform auditing at the worker-node level, the resource/Computing-Element

level, or even at the Grid or VO level. A form of hierarchical auditing could for

example expose that a resource gets a low auditing “score” due to the performance

of one specific mis-configured worker-node.

Resource monitoring and testing has been recognized as a vital activity in Grid sys-

tems. Thus, current large infrastructures such as the EGEE [30] employ a multitude

of testing and monitoring tools. At the time of writing the EGEE employsat leastthe

SFT [58], gstat [37] and gridice [5]. While running a set of monitoring tools provides

Geo
rge

 P
. T

so
ulo

up
as

8

useful information to Grid users and operators, it raises strong and valid concerns regard-

ing the cost of running all of these tools. What’s more, delivering resource performance

characterization and auditing on a large system like the Grid, imposes additional prob-

lems to the problems already faced by Grid Monitoring/Information systems which stem

from the largely distributed nature of the Grid. The important difference is that the cost

of obtaining the performance characterization itself is by no means negligible, since it

may hold up the resource for a considerable amount of time if care is not taken1 . As

an example, the EGEE infrastructure has, at the time of writing, 300 resources centers

(i.e. clusters). Running a set of tests and benchmarks (CPU, memory, disk, network and

MPI [48] measurements) that may very well occupy 16 CPU’s for about 1 hour, would

result in the system spending about300× 16× 1 = 4, 800 CPU-hours each time the mea-

surements are taken. If the system is measured once a week that would result in about

250,000 CPU-hours per year; if the system is measured once a day that would lead to

about 3-4 million CPU-hours per year. Currently infrastructures such as EGEE are tested

mainly using very basic functionality tests [58]. These tests run eight times a day, on

one worker-node and take about 30 minutes. The fact that the tests are run every 3 hours

indicates the need to maintain up-to-date information. Furthermore, most of the resources

provide several job queues, where each could arguably be considered a separate resource,

raising the number or resources to another order of magnitude. Each queue provides po-

tentially a different type of hardware or software, and usually widely different policies.

Users are mapped to one or more of the queues depending on the VO they belong to,

1Reading a machine attribute for monitoring, e.g. CPU load, usually takes just a system call that returns
under a second, while measuring just a few performance aspects even with reduced confidence using a
benchmark takes at least a couple of minutes

Geo
rge

 P
. T

so
ulo

up
as

9

therefore a user belonging to one VO has a totally different view of the infrastructure

than a user belonging to another VO. The view is different because(i) different sites may

or may not support a given VO,(ii) a site may expose a very different set of resources

depending on the VO to which the user belongs, and(iii) VO-specific quotas.

The problem can be summarized in the following questions:(i) What information is

required for a resource ranking that takes into account performance, reliability and other

metrics; Can this substantially improve the resource allocation process?(ii) How will

this information be obtained?(iii) How will this information be kept up-to-date in a cost-

efficient way?(iv) How is can this information be used to provide effective ranking and

auditing of Grid resources?

The statement of the problem is simple enough: Given a large, dynamic set of re-

sources and a set of tests, obtain measurements by executing the tests, and then update

the measurements as needed in order to provide automated ranking/auditing. To accom-

plish this one must address the various problems mentioned earlier; i.e. determinewhen

to invoke a test based on a set of factors, respect a strict budget, tailor test parameters

to individual resources and user requirements, filter results based on a measure of their

validity and aggregate metrics based on a hierarchy that reflects the infrastructure. At the

same time, coordinate automated invocation of tests in parallel with the interactive invoca-

tion of tests by end-users and take into account the ranking “preferences” of users when

performing automated ranking. All of these need to be done in a way that is scalable,

end-to-end, and minimally disruptive to the infrastructure.

Geo
rge

 P
. T

so
ulo

up
as

10

An important issue faced by users of large-scale Grids is the selection of the specific

set of resources upon which to dispatch a Grid job. In state-of-the-art Grid infrastruc-

tures, resource selection is based on thematchmakingapproach introduced by the Condor

project [55] adapted to multi-domain environments and Globus; it has been extended to

cover aspects such as data access and workflow computations, interactive Grid comput-

ing, and multi-platform interoperability [9, 45]. Matchmaking produces a ranked list of

resources that are compatible to submitted resource requests.

In current Grid systems, resource selection and ranking decisions are typically based

on a combination of static and dynamic monitoring information regarding the number

of CPU’s of each resource, their nominal speed, the nominal size of main memory, the

number of free CPU’s, available bandwidth, etc. This information is retrieved from Grid

information services like the Monitoring and Discovery System of Globus [22] or R-

GMA [19, 57]. This approach works well in cases where the main consideration of

end-users is to allocate sufficient numbers of idle CPU’s in order to achieve a high job-

submission throughput with opportunistic scheduling [54].

In several scenarios, however, the reliance on simple matchmaking is not enough:

practical experience from the operations of production Grid facilities like CrossGrid [38]

and EGEE [30] has shown that many users wish to select and rank the resources upon

which to dispatch their jobs, adapting the selection criteria to their preferences in a dy-

namic and interactive manner; Also, that VO operators want to audit the delivered per-

formance, the availability, and the configuration status of their providers’ computing re-

sources in an end-to-end fashion. In such cases, the information published by resource

Geo
rge

 P
. T

so
ulo

up
as

11

providers and Grid monitoring systems is not of sufficient detail, scope, and accuracy.

Grid users need, instead, the capability to define and configure on-demand various kinds

of tests, tailored to the structure and the characteristics of individual resources and to

their application requirements. Grid users need also the capability to easily administer

such tests and to analyze test results in an interactive fashion.

However, inherent characteristics of Grids, like the virtualization of resources, the

layered structure of the Grid architecture, and resource heterogeneity, render the develop-

ment of a reliable, interactive performance exploration environment a challenging task.

Geo
rge

 P
. T

so
ulo

up
as

Chapter 2

Grid Resource Ranking and Performance Evaluation

This chapter consists of an overview of related work and the key challenges that Grid

resource ranking and performance evaluation poses. Section 2.1 provides an overview of

related work. It delves specifically into work that is related toGrid performance evalua-

tion with a focus onconputationalperformance. Section 2.3 outlines four key challenges:

Scale and complexity,Volatility, Heterogeneityand Virtualization. In terms of perfor-

mance evaluation, they pose the main challenges inherent in Grids and that need to be

addressed.

2.1 Related Work

The GridBench tool and the work presented in this thesis relate to two general areas:

(i) infrastructure performance monitoring and testing platforms and(ii) Grid benchmark-

ing and performance evaluation. These areas are outlined in sub-sections 2.1.2 and 2.1.3.

Before we proceed, it would be beneficial to elaborate on the scope of this work with

regard to performance evaluation and benchmarking.

12

Geo
rge

 P
. T

so
ulo

up
as

13

2.1.1 Performance Evaluation, Benchmarking and the Scope of this Work

Performance evaluation and benchmarking have applications and requirements that

are directly dependent on the perspective of interested party. A consumer in an effort

to buy a desktop with a good price/performance ratio, a computer gamer with high 3D

acceleration requirements, a researcher in computer architecture or a chip manufacturer

evaluating their architecture, or an engineer out to buy a computational cluster, all have

different perspectives, requirements and expectations from a benchmark. In the context

of the Grid, where users or resource brokers must select resources in a heterogeneous dy-

namic environment the problems (outlined in Sections 1.2 and 2.3) and requirements (Sec-

tion 4.2) differ.

One example were perspectives may differ is the issue of “reproducibility”. Repro-

ducibility is generally accepted as the attribute of agoodbenchmark; it is in fact one of

the main principles of the scientific method. Researchers strive to achieve it even when

the nature of the measurement makes it difficult to reliably reproduce [39]. If we were to

enforce reproducibility in the Grid setting we would have to do away with key features

and aspects of the Grid, such as dynamicity and the shared nature of resources. If we

did this, measurements would have little value given the motivations behind measuring

performance of Grid resources; these are the issues that we needed to address in the first

place. From the point of view of the Grid user, the actual “experienced” measurements

–even in a statistical sense– obtained in an end-to-end fashion, is preferred over “repro-

ducible” measurements.

Geo
rge

 P
. T

so
ulo

up
as

14

Somewhat related to reproducibility isaccuracy. Exhaustive and accurate measure-

ments that address individual aspects of a CPU’s architecture are probably overkill, as

this usually comes with a high overhead of running relatively large suites of benchmarks

(e.g. 25 benchmarks just for CPU in SPEC2006). It becomes more of an overkill if

what is required is a ranking of the performance of resources and not their “absolute”

performance.

Long-standing and recognized work such as the EEMBC [29] benchmarks, the SPEC [62]

benchmarks and SPLASH [59, 75] address many areas of benchmarking, with a wide

scope. It is important to pay attention tothis influential work, and how it has evolved, in

order to get a grasp on what is widely considered important, even though they are not

directlyapplicable in the Grid context.

Another emerging work from a multi-disciplinary group of researchers is the ‘Thirteen

Dwarfs” [8]. This is an extension of previous work, the “Seven Dwarfs” [17]. The goal

of this work is to capture patterns of computation and communication common to a class

of “important” applications. The current “dwarfs”(1) Dense Linear Algebra,(2) Sparse

Linear Algebra,(3) Spectral Methods,(4) N-Body Methods,(5) Structured Grids,(6) Un-

structured Grids,(7) MapReduce,(8) Combinational Logic,(9) Graph Traversal,(10)Dy-

namic Programming,(11)Backtrack and Branch-and-Bound,(12)Graphical Models and

(13) Finite State Machines. While being implementation independent, they present a

method for capturing the common requirements of classes of applications [13]. This is

rather exciting work, as it aims to address the issue of finding a suite of codes that could

characterize a large portion of applications.

Geo
rge

 P
. T

so
ulo

up
as

15

2.1.2 Infrastructure Performance Monitoring

“Performance monitoring” is distinct from generic infrastructure monitoring tools.

Monitoring tools that can be applied to the Grid are in abundance [40, 28, 58, 36, 5] but

they mostly address network performance, monitoring and status; they are not covered

here. Performance monitoring tools actively invoke some test/workload and observe the

outcome. This is in contrast to generic monitoring tools which simply read machine at-

tributes and report them. One approach to infrastructure performance monitoring is the

one taken by theGrid Assessment Probes[15] (GRASP). These probes test and measure

performance of basic Grid functions such as job submission, file transfers, and perfor-

mance of Grid Information Services. The GRASP employ 3 types of probe: the3-Node

probe, theCircle probeand theGather probe. The 3-Node probe is meant to represent

a pipelined application and involves:(1) the transfer of a 100MB file for aDatabase

Nodeto a Compute Nodeand(2) the processing of this data at theCompute Nodegen-

erating another file which is then transferred to aResults Node. TheCircle probe, which

is meant to represent an application performing a token passing-passing operation around

Grid sites, involves sending a 100MB file around a ring of processes. TheCircle probe

performs data-integrity validation at each step, and finally compares the original file with

the resultant file at the originating node, as soon as the loop is closed. TheGather probe

is similar to the3-Node probe, the difference being the existence of multiplesource nodes

instead of onedatabase node. The tool aims to test basic Grid functionality, so in that

sense it is more of a “testing” tool than a performance measurement tool. Yet, as the three

probessuggest, the GRASP can be used to evaluate performance for the perspective of

Geo
rge

 P
. T

so
ulo

up
as

16

data-transfer intensive Grid applications; it is not clear if/how this can provide insight that

can be directly applied to ranking resources according to performance.

An approach similar to the one taken by GRASP, without the emphasis on data-

transfer, but with an emphasis onserviceperformance, is the approach taken byDiPerF [27].

DiPerF is a Distributed Performance-testing Framework, that aims to automateservice

performance evaluation. It coordinates a pool of machines that test a target service, col-

lects and aggregates performance metrics, and generates performance statistics for service

“fairness” and service throughput. The DiPerF framework consists of two main compo-

nents: thetestersand thecontroller. The controller receives the “client code” and the

address of the target service and is responsible for starting and coordinating thetesters

in order to carry out the experiment. The DiPerF framework reports the following met-

rics: (1) Service response time– the time taken to “serve” a request minus the network

latency and the duration of execution of the “client code”;(2) Service throughput– num-

ber of successful job completions in a short time interval;(3) Offered load– concurrent

service requests per second;(4) Service utilization– ratio of satisfied requests for one

client (tester) to the total number of requests; finally(5) Service Fairness– the ratio of

jobs completed to service utilization. This work focuses on measuring the performance of

services and it is highly geared for that; it applies a workload of service requests. It is un-

clear if there is some way to use this to deliver metrics about the computational resource

itself, not the service that provides the interface to the resource.

Employing an architecture similar to DiPerF, theInca test harness and reporting

framework [61] is a system that aims to automate the testing of resources, automate

Geo
rge

 P
. T

so
ulo

up
as

17

resource data collection, perform resource verification and monitor service agreements.

Inca constitutes of a centralcontrollerand a set ofreporters. Additionally, the Inca frame-

work includes adistributed controllerwhich resides on the Grid resource (e.g. periodic

measurements are handled locally and need not involve the centralized controller). Inca

is employed by the TeraGrid [64] project for monitoring and performance data collection.

Similarly, a more direct, strictly testing and very system-specific approach is the one

taken by theSite Functional Tests(SFT) [58]. The SFT’s are tests that are periodically

executed in order to evaluate the functionality of different middleware at Grid sites par-

ticipating in EGEE [30]. The tests are scheduled to run several times daily using a simple

cron job. Both Inca and the SFT are highly geared towards their respective specific infras-

tructures, and employ middleware specific tests that test such things as job-submission,

file replication and the accessibility of services.

On the borderline betweentestingandbenchmarkingtools, theApplication Control

and Monitoring Environment (ACME) [50] is a system intended to facilitate the tasks

of benchmarking, testing and management of Internet-scale systems. The ACME con-

sists of two parts: the ENgine for TRiggering Internet Events (ENTRIE), and the Internet

Sensor In-Network aGgregator (ISING). A user can create an XML definition and invoke

ENTRIE, which generates events (based on timers, completion events and sensor events)

and passes them to ISING. ISING utilizes a tree-structured overlay network to aggregate

sensor data and provide measurements. From the point of view of benchmarking, the
Geo

rge
 P

. T
so

ulo
up

as

18

environment can be used to automatically invoke large numbers of jobs and take mea-

surements, but no specific benchmarks are proposed. Also this approach (as well as the

ones of GRASP, DiPerf and INCA) does not target end-to-end tests.

Infrastructure Monitoring tools such as theNetwork Weather Service [74] (NWS)

can provide useful real-time information of several system aspects, and while most mon-

itoring tools do measure network latency and bandwidth between distributed Grid re-

sources, they do not address computational performance of the monitored resources.

NWS has “CPU sensors” which can provide measurements of CPU “availability”, but

this is different from benchmarking in that it provides only the “instantaneous” capacity

of a machine, not what can be expected of the machine in terms of performance. NWS is

best known for its forecasting capabilities which are based on past measurements.

2.1.3 Grid Benchmarking

One way to evaluate the performance of a system as a whole is by taking measure-

ments through the application of a workload. Workloads are either real (i.e. taken from

an actual live production environment) or synthetic. There are arguments for both sides

as to which is preferable. The main argument for synthetic workloads is increased re-

producibility and easier to control experiments, yet a synthetic workload may not reflect

reality. The synthetic workload is the approach taken by GrenchMark [42]. GrenchMark

is a framework for synthetic grid workload generation and submission. It is extensible by

allowing the inclusion of new types of grid application in the workload generation and it

Geo
rge

 P
. T

so
ulo

up
as

19

allows workload parameterization. It contains a component that can process the gener-

ated workload units and create job descriptions targetted at specific Grid middleware. The

focus is on the performance of the Grid system as a whole and not on the performance of

the constituting resources.

TheALU Intensive Grid Benchmarks [23] (AIGB) aim to measure the performance

of Grids via pre-defined work-flows using the established NAS Parallel Benchmarks [10]

as computational kernels. The AIGB, which are endorsed by the Global Grid Forum Grid

Benchmarking Research Group, define a set of data-flow graphs (DFG’s). The four data-

flow graphs - “Embarrassingly Distributed”, “Helical Chain”, “Visualization Pipeline”

and “Mixed Bag” - represent four main types of Grid applications. TheEmbarrass-

ingly Distributed(ED) DFG represents high-throughput applications, such as parameter

sweeps, that are made up of large sets of independent tasks. TheHelical ChainDFG rep-

resents long-running simulation applications in the form of work-flows. Each task in the

HC DFG/work-flow depends on the successful completion of the previous task, which

results in a linear DFG. TheVisualization PipelineDFG represents applications where

the (intermediate) results are visualized as they are produced while the simulation is in

progress. Finally, theMixed BagDFG is very similar to the Visualization Pipeline but

focuses on asymmetry by introducing different amounts of computation and the transfer

of different amounts of data between tasks. The AIGB are pencil-and-paper specifica-

tions describing several problem-sizes or “classes”. This approach aims to capture the

performance of Grids as several scales by varying both the amount of computation per-

formed by each task as well as the size of the DFG. In contrast to the AIGB, the work

Geo
rge

 P
. T

so
ulo

up
as

20

presented here focuses on testing and lightweight benchmarking for the functional status

and performance characterization of Grid resources, while the AIGB are pencil-and-paper

definitions of workflow-type applications.

The focus of the GridBench tool that is described in the following sections, is rather

different from what is described above. DiPerF and GRASP focus onserviceand file-

transfer performance and do not address computational resource performance. Inca and

the SFT are testing frameworks that were not specifically designed for computational

performance evaluation; thus, they do not address the computational performance of a

Grid site. Most importantly, these testing tools do not provide direct interactivity with the

user, and are generally not targeted at the user. The measurements are mostly set up by a

central administrator and the end-users can simply review reports that are published on a

web-page.

Related to the use of benchmarking for ranking resources on the Grid for the purpose

of resource selection, benchmarking as a data-source for resource-brokering is explored

in [2]. This work suggests the application ofweightsto different resource attributes and

the use ofapplication benchmarksto obtain a ranking that can eventually be used for

resource brokering; this has also been suggested in previous work of the author [66]. In

contrast, this work enables users to interactively obtain their own custom measurements,

and to specify their own custom ranking functions that make use of an extensible set of

low-level metrics.
Geo

rge
 P

. T
so

ulo
up

as

21

Table 1: Grid Performance Evaluation: Overview of Related Work

GRASP DiPerf Inca AIGB GrenchMark Dwarfs GridBench

Interactive/user-driven •
User End-to-end ◦ • ◦ • ◦ •
Test-Centric • • • •
Service-Centric • • • • •
Repository/Hist. data • • •
Analysis •
Grid Workloads • • • •
Infrastructure Independent • • • •
Computational Performance • • • •
Detailed Context •

Table 2.1.3 provides an overview of related efforts in Grid Performance valuation.

While not aiming to be comprehensive in terms of the functionality and focus of the dif-

feren related works, it does provide a comparison of GridBench with the rest of the tools

or approaches. A full dot “•” denotes that the tool supports the functionality. GridBench

pre-dates all of the related tools (AIGB is not a tool), yet as seen in the table, GridBench

still differs in three main areas:User End-to-end,AnalysisandDetailed Context. With

regards toUser End-to-end, some efforts are marked with “◦” to denote that while there is

no explicit mention for the specific functionality in the tool’s literature, it could probably

be easily modified to support it.

2.2 The Grid Context

This work assumes a Grid infrastructure consisting of a set of geographically dis-

tributed, heterogeneous Grid sites connected over a shared network (e.g. the Internet) and

supporting several Virtual Organizations (VO’s). In Figure 2 a model of this infrastructure

is presented, inspired by the architecture of large-scale Grid testbeds such as LCG [44],

Geo
rge

 P
. T

so
ulo

up
as

22

Figure 2: A more detailed (but by no means complete) Grid architecture.

EGEE [30] and CrossGrid [38]. A Grid site comprises a cluster ofWorker Nodes(WN),

which are typically off-the-shelf PC’s or server-class machines, interconnected via a high-

speed local area network. Access to a Grid site is provided through aComputing Element

(CE), a node that hosts the site’s job submission, queuing, VO management and account-

ing capabilities. Typically, a site also comprises aStorage Element(SE), which is an

interface to mass storage. Each site also hosts aMonitoring Agent(MA), which collects

information from local operating systems, configuration files and cluster-management

systems, and publishes it through a Grid-wide Information Service.

The operation of the Grid infrastructure is supported by a number of central services,

such as the Grid Information Service and the Resource Broker. TheGrid Information

Service(GIS) publishes information essential to the operation of the infrastructure: static
Geo

rge
 P

. T
so

ulo
up

as

23

descriptions of resources, services, software, and applicable policies, and dynamic repre-

sentations of resource status, performance, and availability. TheResource Broker(RB)

undertakes the matchmaking between resource requests and available resources.

A user can initiate Grid-job submission through aUser Interface(UI) machine, which

hosts the necessary middleware components and services, and serves as user gateway to

the Grid. To this end, the user needs to have proper security credentials and be a member

of a supported Virtual Organization. VO membership specifies the resources that will be

assigned to user jobs, according to the access rights and usage policies that CE’s apply

for the various VO’s.

2.3 Key Challenges

To support the selection and ranking of resources using configurable on-demand tests

in the context described above, one needs to address a number of challenges that arise

from the inherent characteristics of Grids (an extensive discussion on these challenges

can be found in [24]):

Scale and complexity:The multi-layered structure of Grids suggests that the observed

performance of Grid resources is affected by several factors:(i) The capacity of local Grid

sites and inter-connecting networks;(ii) The performance and overhead of libraries and

services providing Grid applications with support for communication, synchronization,

bulk data transfer, database querying, and other higher-level Grid programming abstrac-

tions;(iii) The performance and overhead of Grid services supporting job submission and

Geo
rge

 P
. T

so
ulo

up
as

24

management, such as workload management systems, resource brokers, and Grid infor-

mation services, and(iv) the reliability and robustness of Grid middleware and services.

Therefore, the selection and ranking of Grid resources needs to address the numerous

observable aspects of the Grid architecture that affect the functionality and performance of

resources. Administering such tests, collecting and interpreting measurements on large-

scale Grids can be a tedious, time-consuming, and costly process, especially if one needs

to evaluate a substantial fraction of available resources distributed across multiple admin-

istrative domains.

Volatility: With numerous organizations, sites, and resources participating in a Grid in-

frastructure, the infrastructure is typically in a continuous change as different sites add

or withdraw resources, conduct hardware or software upgrades, re-configure their hard-

ware or middleware, suspend their operation due to failures, etc. Additional sources of

volatility are the open wide-area networks, which are used to interconnect Grid sites and

which are shared with millions of Internet users. Access policies that some Grid sites ap-

ply, allowing the dynamic co-allocation of multiple Grid jobs on the same Worker Node,

further complicate the situation. Grid volatility can have non-trivial effects on the consis-

tency of the performance delivered to users by Grid resources; it complicates testing and

evaluation of Grids since measurements can be irrelevant or soon become out-dated.

Heterogeneity: Typically, different sites of a Grid infrastructure host resources that dif-

fer in architecture, configuration, performance capacity, etc. Often, even the clusters of

individual Grid sites are non-homogeneous. Resource testing has to be adapted to the

attributes of individual Grid resources to provide meaningful measurements. Also, the

Geo
rge

 P
. T

so
ulo

up
as

25

derived measurements should expose the levels and the impact of heterogeneity to the

service that end-users get from the Grid [43, 56].

Virtualization: One of the key goals of Grid Computing is the virtualization of dis-

tributed resources. Virtualization, combined with the open nature of Grids and the lack of

central administrative control therein, complicates the interpretation of test measurements

and the reliability of derived conclusions. For instance, many CE’s support several job

queues, with each queue providing access to a potentially different type of hardware or

software and possibly serving a different VO. Consequently, users belonging to different

VO’s may have a totally different view of the infrastructure’s performance.

Geo
rge

 P
. T

so
ulo

up
as

Chapter 3

Context-augmented performance measurements: GBDL

A number by itself has little meaning; this holds true, of course, for performance mea-

surements as well. For example, the measurement1, 242 MFlop/s, while it may be clear

to some that it is some sort of performance metric for some machine, it is essential that this

measurement is put into context. First, it is important to knowwhereandhow this mea-

surement was obtained. As a first, obvious step, one can start by specifying{Resource X,

Benchmark A, 1, 242MFlop/s}. By introducing thiscontextthe measurement becomes

useful. To make this information even more useful, especially in a Grid setting, one must

provide a lot more information. The purpose of this chapter is to detail my approach for

defining Grid resource performance measurements and putting them into context.

3.1 Contextualizing resources

Taking a closer look, while keeping the architecture of the Grid in mind, the spec-

ification of Resource Xand Benchmark Ais rather vague: GridResource Xprobably

26

Geo
rge

 P
. T

so
ulo

up
as

27

encapsulates a cluster, and quite possibly, this cluster is heterogeneous (i.e. it contains

heterogeneous nodes). This implies that the measurement could in fact reflect the per-

formance of any one of the heterogeneous nodes. Moreover the Grid is of a dynamic

nature; resources are added, removed, upgraded and reconfigured. Thevirtualizationof

resources together with the dynamicity of the Grid call for a more detailed description of

the context in which the measurement was taken.

While context of a measurement can be arbitrarily complex. The context that ac-

companies a performance measurement on the Grid should encode information about the

following: (i) the definition of a specific test or benchmark invocation with specific pa-

rameters (thewhat); (ii) the target resources (thewhere);(iii) the time of execution (the

when);(iv) the status of the target machines during execution collected through monitor-

ing (thestate); and, obviously,(v) the resulting metrics (theresult).

Specifying exactly how a benchmark is to be executed on the target resource is essen-

tial for reliable evaluation of the result. A meaningful analysis or performance compari-

son is only valid if one knowswhat was executed, such aswhich benchmark with which

parametersandwhich work-load.

Thevirtualizationof resources bears a strong impact on an effort to evaluate the per-

formance of resources. Depending on the type of Grid infrastructure at hand, there can

be several layers of virtualization. Taking the most common type of computational Grid

as an example, a computational task (i.e. a job) is simply “submitted to the Grid”. The

Grid, or rather the Grid services such as the Resource Broker, hide the underlying Grid

Geo
rge

 P
. T

so
ulo

up
as

28

resources, providing the first level of virtualization. The job is propagated to a Grid com-

putational resource, which itself encapsulates a set of computational nodes – usually a

cluster – providing a second level of virtualization. To account for this, information on

wherea measurement was performed must be maintained in the measurement’s context.

The level of detail that should be maintained depends on required level of detail of the

performance evaluation and analysis, i.e. an in-depth analysis of performance generally

requires a detailed context.

Large Grids are quite dynamic in several respects. Maintainingwhena measurement

is taken is important for two reasons:

• Measurements taken at one point in time may not reflect the performance of a re-

source as it is continuously reconfigured or updated.

• The behavior of a resource of a time may convey a lot of useful information, such

as reliability or predictability of performance.

Capturing thestateof the machine under measurement is also important since it can

help explain the results. The fact that Grid paradigm leaves all of the resource’s policy

and configuration at the discretion of the resource provider on the one hand, and thevirtu-

alizationof resources on the other, result in cases where odd performance-wise behavior

of resources is hard to explain. It is often the case that resources (intentionally or unin-

tentionally) allow several independent jobs to run on the same hardware, thus seriously

affecting the performance of individual jobs. Maintaining the state of a machine during

the time that a measurement is taken can provide a lot of insight. Obtaining machine state

to a high level of detail is quite difficult since one has to account for a lot of the machine

Geo
rge

 P
. T

so
ulo

up
as

29

internals. Nevertheless, even simple monitoring of CPU and main-memory usage can

provide a lot of information.

To address these issues and requirements, I have introduced the GridBench Definition

Language, which is the subject of the following section.

3.2 The GridBench Definition Language

The GridBench Definition Language (GBDL) has been introduced in order to describe

the measurement’s context. GBDL is an XML-based language that encodes basic infor-

mation required to describe and execute tests and benchmarks. Moreover, it maintains

the context of the measurements since it supports the annotation of test or benchmark

definitions with performance-related metadata representing the conditions of a particular

experiment and the metrics derived from that experiment.

Instead of using an existing job description language, such as RSL[3] or JDL[52],

GBDL was introduced in order to:(i) allow for a standardized definition of tests and

benchmarks that is independent of the underlying middleware platforms used to execute

them;(ii) enable the specification of the monitoring information that should be collected

during a benchmark execution from an available Grid monitoring system; and(iii) serve

as a container for the context-augmented results.

3.2.1 Scope

GBDL documents drive the operations of the GridBench Controller and its interac-

tions with other components and services. Furthermore, GBDL is used to represent raw

Geo
rge

 P
. T

so
ulo

up
as

30

Figure 3: GridBench Component communication.

measurements derived from GridBench tests, and to annotate those measurements with

metadata necessary for the processing, aggregation, and interpretation of metrics. Com-

munication between GridBench components is performed through the exchange of GBDL

documents (see Figure 3). GBDL documents are stored in the GridBench Archiver.

A complete GBDL document includes the definition of a test or benchmark invo-

cation with specific parameters, the target resources under testing, a time-stamp of the

experiment undertaken, the status of the target machines during execution as captured by

monitoring systems, and the resulting metrics.

3.2.2 Syntax

A high-level structure of GBDL documents is presented in Figure 4-top. According to

the GBDL syntax, the top-level XML element in a GBDL document is the<testmark>.

Geo
rge

 P
. T

so
ulo

up
as

31

< t e s t m a r k name=” f l o p s ”
xmlns=” h t t p : / / g r i d b e n c h . ucy . org /

d e f i n i t i o n ”
i d =” 1135002331003036000 ”
t s t a r t =” ” d u r a t i o n =” ” node=” ”
v a l i d a t e =” no ”>

<p a r a m e t e r name=”RB”
t ype =” con f ”>rb101 . g r i d . ucy . ac . cy< /

p a r a m e t e r>
<p a r a m e t e r name=” l oops ”

t ype =” u s e r ”>100< / p a r a m e t e r>
<r e s o u r c e name=” ce101 . g r i d . ucy . ac . cy ”

cpucoun t =”2 ”
wncount=”2 ” />

< / t e s t m a r k>

Figure 4:Top: A schematic overview of GBDL; shown in rounded boxes are the
main parts of a GBDL document.Bottom: A real example of GBDL definition,
showing aflopsmicro-benchmark definition that requires 2 CPU’s on 2 separate
worker-nodes atce101.grid.ucy.ac.cy.Geo
rge

 P
. T

so
ulo

up
as

32

<testmark> elements assemble all information that is related to a GridBench experi-

ment and contain the set of other XML elements shown schematically in the tree-structure

of Figure 4-top. An example of a GBDL definition is given in Figure 4-bottom. The ele-

ments on the left side of the tree-structure of Figure 4(a) (parameter,credential,

resource, monitor, memo, testmark, andconstraint) specify the configura-

tion of a test, i.e., the operations that need to be undertaken in order to launch a test and

derive meaningful measurements. The elements on the right (info,metrics, log,

andstatus entries) correspond to information produced or retrieved during the execu-

tion of a test on a Grid; this information is embedded in the document during and upon

completion of the execution. The following sub-sections outline the different elements of

the language and describe their syntax, semantics and usage.

3.2.2.1 Thetestmark element

The <testmark> element is the top-level element of a GBDL document. It is the

element that encompasses the context and the outcome of a test or a benchmark. Further-

more, a<testmark>, can contain nested<testmark> elements, mainly useful for the

definition of work-flow benchmarks.

The<testmark> element defines the following attributes:

• id: A unique identifier for the<testmark>.

• name: A name for the test or benchmark .

• jobtype: The type of job that will be used to execute the benchmark. I can take the

values ofMPI or plain.

Geo
rge

 P
. T

so
ulo

up
as

33

• wfid: An identifier for the<testmark> to be used in defining workflows. It is

referenced by thewfref attribute of the<constraint> element.

3.2.2.2 Theparameter element

The<parameter> element enables the definition of any parameters that GridBench

needs to pass to the underlying middleware or to the testing codes. GBDL currently

supports two types ofparameter elements:

conf parameters are middleware-specific and act as directives to the underlying middle-

ware in order to configure the submission of a test as a Grid job. For example, in

the following definition the<parameter> element states which Resource Broker

(RB) to use for submitting the benchmark.

<p a r a m e t e r name=”RB”
t ype =” con f ”>rb101 . g r i d . ucy . ac . cy< / p a r a m e t e r>

user parameters are test-specific and initialize the input parameters of the test executable.

For example, specifying the number of loops to run in a specific benchmark.

<p a r a m e t e r name=” l oops ”
t ype =” u s e r ”>100< / p a r a m e t e r>

3.2.2.3 Themetric element

Measurements derived from GridBench experiments are represented as the<metric>

element of GBDL. This element accepts anode attribute, associating the represented

measurement with the name of the resource under measurement, and aname attribute,

which specifies the type of the measurement. Nested inside<metric> is the<value>

Geo
rge

 P
. T

so
ulo

up
as

34

element, which encodes the actual values of a measurement. The following is an example

from the “flops” micro-benchmark; It shows the “MFLOPS(1)” metric (623.5 MFlop/s)

measured on thewn113.grid.ucy.ac.cyWorker Node.:

<m e t r i c node=”wn113 . g r i d . ucy . ac . cy ” name=”MFLOPS(1) ”>

<va lue u n i t =”MFLOP/ s ”>623.5426< / va l ue>
< / m e t r i c>

Some results are in the form of vectors rather than single scalar metric values. For ex-

ample, the cache benchmark produces a series of values that state the memory bandwidth

using arrays of progressively larger size:

<m e t r i c node=”wn113 . g r i d . ucy . ac . cy ” name=” cache−w r i t e ”>
<v e c t o r name=” s i z e ”>256 384 512 768 . . . 134217728< / v e c t o r>
<v e c t o r name=” bandwid th ”>1999.2 2202.2 2328.6 . . . 488 .5< /

v e c t o r>
< / m e t r i c>

3.2.2.4 Thecredential element

The<credential> element carries the credentials of the user submitting a test to a

Grid, such an x509 proxy certificate, in hexadecimal form.

3.2.2.5 Theresource element

The<resource> element specifies the resources that are targeted by the enclosing

<testmark>. For example, this element can define the name of a Grid site, the number

of CPU’s to be requested from that site, and how the CPU’s should be distributed on that

site’s Worker-Nodes. To this end, the element has three associated attributes:cpucount,

wncount, andname. The GridBench Controller extracts information from the contents

Geo
rge

 P
. T

so
ulo

up
as

35

and attributes of the<resource> element in order to configure accordingly the job

submitted for execution through a job submission service.

3.2.2.6 Themonitor element

The<monitor> element provides directives on what to monitor during benchmark

execution; it can contain a monitoring system-dependent query and a specification of the

monitoring system that will execute this query. The contents of a<monitor> element

are interpreted and executed by a corresponding plug-in of the GridBench Controller.

3.2.2.7 Theconstraint element

It is worth noting that, according to the GBDL syntax, a<testmark> element

may contain other nested<testmark> elements. The combination of nesting with

<constraint> elements allows for the definition of tests of arbitrary complexity, such

as workflow-like benchmarks. The<constraint> element accepts atype attribute,

which is used to distinguish betweencorequisite andprerequisite constraints,

and awfref attribute, which is used to point to an associated<testmark> compo-

nent. Acorequisite constraint means that the<testmark> containing this con-

straint should be startedafter the test specified bywfref has started its execution. A

prerequisite constraint means that the testmark containing this constraint should be

started after the termination of the execution of the testmark specified bywfref. An exam-

ple of a workflow1 definition in GBDL is given in Figure 5. This workflow corresponds

1This work-flow is from the “Visualization Pipeline” benchmark of the ALU-Intensive Grid Bench-
marks [23].

Geo
rge

 P
. T

so
ulo

up
as

36

to the workflow illustrated in Figure 6. In the given example there are three kernels (BT,

MG and FT) the order of execution is specified by assigning a uniquewfid for each nested

testmark and referring to it bywfref attribute in theconstraintelements.

A constraintof type corequisitemeans that the testmark containing this constraint

should be started after the testmark specified bywfref starts. Aconstraintof type pre-

requisitemeans that the testmark containing this constraint should be started after the

testmark specified bywfref terminates.

Figure 7 shows the GBDL description for a High-Performance Linpack benchmark

execution once101.grid.ucy.ac.cy using 16 CPU’s.

The GBDL syntax also provides a number of elements that can be used to encode and

represent additional semi-structured information that is useful for the visualization and

analysis of GridBench measurements.

3.2.2.8 Theinfo element

The <info> element assembles information about the characteristics of resources

under testing in terms of name-value pairs; for example, a testmark running on dualAMD

Opteronworker-node would contain:

< i n f o name=” cpu model ” va l ue =”AMD Opteron (tm) P r o c e s s o r 246 ” />

< i n f o name=” cpu coun t ” va l ue =”2 ” />

3.2.2.9 Thememo element

The <memo> element holds a short description of the test defined by the enclosing

testmark.

Geo
rge

 P
. T

so
ulo

up
as

37

< t e s t m a r k name=”VP” wf id=” 1135076543003036000 ”>

< t e s t m a r k name=”BT” wf id=”BT1” j o b t y p e =”MPI”>
. . .

< / t e s t m a r k>
< t e s t m a r k name=”MG” wf id=”MG1” j o b t y p e =”MPI”>

. . .
<c o n s t r a i n t w f r e f =”BT1” t ype =” c o r e q u i s i t e ”>
< / t e s t m a r k>

< t e s t m a r k name=”FT” wf id=”FT1” j o b t y p e =”MPI”>
. . .

<c o n s t r a i n t w f r e f =”MG1” t ype =” c o r e q u i s i t e ”>
< / t e s t m a r k>
< t e s t m a r k name=”BT” wf id=”BT2” j o b t y p e =”MPI”>

. . .
<c o n s t r a i n t w f r e f =”BT1” t ype =” p r e r e q u i s i t e ”>

< / t e s t m a r k>
< t e s t m a r k name=”MG” wf id=”MG2” j o b t y p e =”MPI”>

. . .
<c o n s t r a i n t w f r e f =”BT2” t ype =” c o r e q u i s i t e ”>

< / t e s t m a r k>
< t e s t m a r k name=”FT” wf id=”FT2” j o b t y p e =”MPI”>

. . .
<c o n s t r a i n t w f r e f =”MG2” t ype =” c o r e q u i s i t e ”>
<c o n s t r a i n t w f r e f =”FT1” t ype =” p r e r e q u i s i t e ”>

< / t e s t m a r k>
< t e s t m a r k name=”BT” wf id=”BT3” j o b t y p e =”MPI”>

. . .
<c o n s t r a i n t w f r e f =”BT2” t ype =” p r e r e q u i s i t e ”>

< / t e s t m a r k>
< t e s t m a r k name=”MG” wf id=”MG3” j o b t y p e =”MPI”>

. . .
<c o n s t r a i n t w f r e f =”BT3” t ype =” c o r e q u i s i t e ”>

< / t e s t m a r k>
< t e s t m a r k name=”FT” wf id=”FT3” j o b t y p e =”MPI”>

. . .
<c o n s t r a i n t w f r e f =”MG3” t ype =” c o r e q u i s i t e ”>
<c o n s t r a i n t w f r e f =”FT2” t ype =” p r e r e q u i s i t e ”>

< / t e s t m a r k>
< / t e s t m a r k>

Figure 5: Workflow definition of the GGF AIGB benchmark “VP”shown in Fig-
ure 6.

Geo
rge

 P
. T

so
ulo

up
as

38

Figure 6: The AIGB VP benchmark.

< t e s t m a r k name=”HPL”
xmlns=” h t t p : / / g r i d b e n c h . ucy . org / d e f i n i t i o n ”
i d =” 11350023837373000 ”
t s t a r t =” ”
d u r a t i o n =” ”
node=” ”
j o b t y p e =”MPI”>

<p a r a m e t e r name=” p r o b l e ms i z e ”
t ype =” u s e r ”>180< / p a r a m e t e r>

<p a r a m e t e r name=” b l o c k s ”
t ype =” u s e r ”>40< / p a r a m e t e r>

<p a r a m e t e r name=”p ”
t ype =” u s e r ”>4< / p a r a m e t e r>

<p a r a m e t e r name=”q ”
t ype =” u s e r ”>4< / p a r a m e t e r>

<p a r a m e t e r name=” t h r e s h o l d ”
t ype =” u s e r ”>16 .0< / p a r a m e t e r>

. . .
<p a r a m e t e r name=”L1”

t ype =” u s e r ”>0< / p a r a m e t e r>
<p a r a m e t e r name=” memal ignment ”

t ype =” u s e r ”>8< / p a r a m e t e r>
<r e s o u r c e

name=” ce101 . g r i d . ucy . ac . cy :2119 /\
jobmanager−l cgpbs−dteam ”

cpucoun t =” 16 ” />
< / t e s t m a r k>

Figure 7: Definition of an instance of the High Performance Linpack benchmark.
(Several parameters omitted to conserve space.)

Geo
rge

 P
. T

so
ulo

up
as

39

3.2.2.10 Thelog element

The <log> elements are used for keeping the history of a specific testmark execu-

tion in the form of entries that log specific activities of GridBench components during

GridBench experimentation. These entries are inserted by the GridBench components

(identified in theorigin attribute) as they process the GBDL document. For example:

< l og t ime =” 113500233 ”
o r i g i n =” C o n t r o l l e r ”>Reques t r e c e i v e d< / l og>

< l og t ime =” 113500235 ”
o r i g i n =”LCG−p l u g i n ”>Job s u b m i t t e d t o RB< / l og>

3.2.2.11 Thestatus element

The<status> element reflects the current status of execution of a test. It can take

the values ofpending,failed, done,warn andvalid. When the GBDL definition is first

created, the value of this tag is set topending. Upon successful completion the value

is set todone, and in the case of a failed test the value is set tofailed. When the test

finishes successfully and thevalidateattribute is set toyes, the output of the test will be

validated for correctness. Validation of the result of a test, is performed by invoking a

script based on a naming convention. Depending on the outcome of the script the content

of the<status> element will be updated towarnor valid accordingly.Geo
rge

 P
. T

so
ulo

up
as

40

3.3 Translating GBDL for execution

GBDL encodes the basic information that is required for executing the test or bench-

mark job and obtaining the measurement. Different middleware require different Job

Definition Languages such as RSL and JDL. Consider the following GBDL definition:

GBDL

<benchmark name=” epwhe ts tone ” d a t e =” 20031209105938 ” t ype =” mpi ”>

< l o c a t i o n>
<r e s o u r c e name=” ce01 . l i p . p t ”

cpucoun t =”8 ” jobmanager=” jobmanager−pbs ” />
< / l o c a t i o n>
<p a r a m e t e r name=” e x e c u t a b l e ” t ype =” a t t r i b u t e ”

da taType =”0 ”>epwhe ts tone< / p a r a m e t e r>
<p a r a m e t e r name=” execpa th ” t ype =” a t t r i b u t e ”

da taType =”0 ”> / op t / cg / g r i d b e n c h / b in< / p a r a m e t e r>
<p a r a m e t e r name=” s t a g ee x e c u t a b l e ” t ype =” a t t r i b u t e ”

da taType =”0 ”>manual< / p a r a m e t e r>
<p a r a m e t e r name=” n loops ” t ype =” va lue ”

dataType =”0 ”>10000< / p a r a m e t e r>
< / benchmark>

The information included in the execution definition of the benchmark can be put

into middleware specific definitions. The following definition is in the syntax of the Job

Definition Language employed by EGEE:

JDL

A u t o m a t i c a l l y Genera ted by GridBench
StdOutpu t = ” s t d . ou t ” ;
S t d E r r o r = ” s t d . e r r ” ;
Arguments = ” 10000 ” ;
Inpu tSandbox ={ ” / op t / cg / g r i d b e n c h / b in / epwhe ts tone ”} ;
E x e c u t a b l e = ” epwhe ts tone ” ;
JobType = ” mpich ” ;
NodeNumber = 8 ;
OutputSandbox ={ ” s t d . ou t ” , ” s t d . e r r ”} ;
Requ i rements = o t h e r . CEId == ” ce01 . l i p . p t / jobmanager−pbs ” ;

Geo
rge

 P
. T

so
ulo

up
as

41

Another example of translation to a middleware specific language is the following,

which specifies how to execute the benchmark on a Globus 2 infrastructure, using the

Resource Specification Language.

RSL

&(resou rceManage rCon tac t =” ce01 . l i p . p t ”)
(e x e c u t a b l e =$(GLOBUSRUNGASSURL)

/ op t / cg / g r i d b e n c h / b in / epwhe ts tone)
(j o b t y p e =mpi)
(coun t =8)
(a rguments =10000)

Further examples can be found in Appendix A.

3.4 Machine State Monitoring During Measurement

Monitoring the resources under test, in other words collecting some important aspects

machine state, can provide considerable insight. First, the collected data can be used to

investigate why certain results are not as expected. For example, a specific measurement

may be noticeably lower that previous measurements of the same resource. By observing

the amount of used memory and swap usage one may determine the cause of the problem,

i.e. other processes taking up large amount of memory. Second, the data can be used to

filter results based on some criteria. For example one could filter based on whether the

resource is being shared between jobs.

Monitoring of the resources sub-systems (CPU, RAM, Disk bandwidth etc.) can be

accomplished in different ways. One way that has proved useful is the invocation of a

Geo
rge

 P
. T

so
ulo

up
as

42

Figure 8: Monitoring machine state during a benchmark

custom script that runs in parallel with the job and collects data directly from the Operat-

ing System. Monitoring services can also be used provided the underlying infrastructure

allows it.

To illustrate the problem, one can take an example where the execution of an em-

barassingly parallel (MPI) benchmark was giving suspicious results. Figure 8 shows

the CPU usage (user-time) collected during the application execution (i.e. between the

30,000ms mark and the 80,000ms mark).

As indicated by the very high CPU usage on some of the nodes prior to the beginning

of the measurement (indicated as “Approximate benchmark duration”), some nodes were

putting all of their CPU time into this application, some others were busy doing other

things. It is known for a fact that the application itself, being embarassingly parallel, treats

all nodes equally and is not responsible for this kind of behavior. The point that can be

drawn out of this is that the measurement is not necessarily indicative of the performance

Geo
rge

 P
. T

so
ulo

up
as

43

Figure 9: Monitoring a CPU benchmark execution, using the JIMSmonitoring
service.

of the resource. This is not to say that the measurement is useless, only that it cannot be

taken for face-value. Such analysis is the subject of following chapters.

Referring to an actual example, with real performance measurements may provide

an even better understanding. Figure 9(top) shows an example of monitored bench-

mark execution where the results are invalid due to non-exclusive use of the resources

by the benchmark. Figure 9(bottom) shows the CPU usage (automatically collected by

the JIMS[12] monitoring system) while Figure 9(top) shows the measurements. In Figure

9(bottom) there is significant CPU usage on two of the three worker nodes before and

after the “gray” area, which indicates the duration of the benchmark execution.2 As a

2Values of 200% for CPU usage are due to the worker nodes having dual CPU’s. The benchmark was
executed with two processes on each worker node

Geo
rge

 P
. T

so
ulo

up
as

44

result, the measured performance ofcagnode34andcagnode35severely suffers, as shown in

Figure9(top), due to CPU usage by other applications.

Geo
rge

 P
. T

so
ulo

up
as

Chapter 4

Grid-Resource Performance Evaluation in Production

Environments

The task of performance evaluation in large, production Grid environments goes well

beyond invoking a set of benchmarks on a few resources. In fact the overhead and com-

plexity of obtaining useful results in large, live Grid environments has been a key chal-

lenge and motivation behind this work.

4.1 GridBench

The GridBench platform was designed and implemented with these issues in mind.

The general goals and requirements of this platform can be summarized in the following:

1. Provide the ability to execute benchmarks and tests on an underlying Grid infras-

tructure;

2. Manage potentially hundreds of thousands of benchmark invocations;

45

Geo
rge

 P
. T

so
ulo

up
as

46

3. Collect and organize the results and allow them to be easily shared among users;

4. Provide mechanisms to easily customize or add new benchmarks;

5. Provide extension points for the easy integration of different Grid middleware, with-

out the need for new benchmark definitions or implementations;

6. Enable users to analyze results and create performance comparison charts;

7. Allow users to utilize the results and apply that knowledge in order to improve the

performance of their applications of the performance of the Grid altogether;

8. Appeal to end-users and Grid administrators alike via a user-friendly interface.

The next section goes into more detail about why these general goals and requirements

are important, and how the platform goes about addressing them.

4.2 Goals and Requirements

4.2.1 Executing Benchmarks

While seemingly trivial, benchmark execution in a Grid environment poses several

subtle challenges. Before a user can test or measure the performance of resources be-

longing to her VO, she must first obtain the set of target resources, i.e. perform resource

discovery. Resource discovery is handled differently in different Grids, therefore a tool

that tackles benchmark execution should also address resource discovery. This usually

implies an integration with Grid information services. Sometimes this implies several

Geo
rge

 P
. T

so
ulo

up
as

47

different services, or even communicating to resources directly in order to obtain a com-

plete enough picture of the Grid.

Next, it is important for such a tool to be able to handle deployment. Deployment

of software in Grids ismainly handled in two ways:(i) pre-installing the software on

all worker-nodes belonging to all Grid sites, and(ii) staging, i.e. putting in place, the

required files just before invoking the processes. Deployment by pre-installation, is a

good fit for applications that are active for long periods of time, and requires considerable

overhead in keeping track of what is installed where, overhead in establishing agreements

with resources owners in order to allocate special storage locations. Staging the files just

before execution is a better fit for testing and benchmarking since it maximizes flexibility

and minimizes overhead, especially if the frequency of running tests or benchmarks is

not very high. A tool to benchmark Grids must be able to handle staging of executables

and configuration files using different middlewares, regardless of the level of file-staging

support of the middleware.

Since the tool is meant to be used by Grid users, it is preferable that users wouldnot

need to install the grid middleware on their personal computers in order to be able to run

benchmarks and analyze results.1

Finally, and most importantly, the execution of benchmarks should be carried out

in a end-to-end fashion. Tests performed in ways other than how a regular user job is

actually executed may not sufficiently test the system. Benchmarking metrics obtained

not by using regular job pathways may – and probablywill not – reflect the performance

1The important implication of this is that depending on the architecture and the availability of inter-
faces or API’s of the underlying infrastructure, the system under consideration will need to provide proxy
services.

Geo
rge

 P
. T

so
ulo

up
as

48

experienced by end users. It is essential that a tool the performs benchmarks does so in

an end-to-end fashion, representing the performance that is to be experienced by the user.

4.2.2 Managing invocations

A Grid testing and benchmarking tool should be able to manage numerous concurrent

benchmark invocations. To this end, the status of benchmarking jobs needs to be mon-

itored, through integration with several job-submission and information services. This

is important for two reasons:(i) In order to determine possible problems with the in-

frastructure; and(ii) enable the execution of simple workflows such asinvoke - wait for

completion- fetch output, and more complex workflows such as workflow benchmarks.

For large benchmarking experiments, such as benchmarks involving numerous jobs,

or benchmarks involving workflows, it is important that the system has at least some

components that run as adaemonin order to manage benchmark executions, thus freeing

up the users client machine.

The tool should handle the fetching and verification of benchmark/test output. While

the verification of the outputs of tests and benchmarks is usually an application specific

task, some tests should be performed on the results to ensure that the results valid. As

a simple example, following a failure on a Grid node the job may return partial results.

As it is many times the case, the job may return a status of success even if there was a

failure on the node. Moreover the tool should allow benchmark-specific verification of

the output.

Geo
rge

 P
. T

so
ulo

up
as

49

Closely related with the verification and validity of the results is the monitoring re-

sources during benchmark execution. In traditional benchmarking of high performance

computers, or benchmarking in general for that matter, it is generally accepted that the

machine under measurement should be otherwise idle. That is the machine should be

doing nothing else other than running the benchmark itself. In a live, running production

grid where resources and not under the users control this is difficult to ensure. On the

other hand, if one is to be consistent with the end-to-end representative measurements

goal, this exclusive execution of benchmarks on otherwise idle machines is not desirable.

Reserving a node for benchmarking, while it may give more reproducible results, may not

capture the performance that is most likely to be experienced by users running in a real

grid setting with quotas, restrictions different queue allocations etc. Capturing the state of

the target node during benchmark execution, as explained in the previous chapter, could

help explain performance results. In cases where the peak performance of resources is

required the collected monitoring data can be used to filter results, e.g. when the CPU

load right before and after the execution is not negligible.

4.2.3 Organizing and sharing metadata and results

Once the performance or test data is collected, it must be organized into a usable, eas-

ily searchable form. This form must be scalable as to accommodate results from bench-

mark invocations that could run in to the hundreds of thousands.

It is also desirable to be able to share results between users so as to minimize the

number of benchmark executions. One way to accomplish this is by the implementation

Geo
rge

 P
. T

so
ulo

up
as

50

of a central repository for results, which can be consulted before determining that a new

benchmark execution is needed. It is important that these data are well described by

metadata.

4.2.4 Benchmark customizations and extensions

A tool that is to be used for Grid testing and benchmarking needs to be flexible and

extensible in order to cope with an infrastructure like the Grid. The main reason why

this is important lies in the heterogeneity of the infrastructure. The tool needs to flexible

and extensible enough to address different platforms, operating systems or architectures.

A tool would need to address this in a reasonable manner by enabling the user toeasily

define and execute benchmarks for heterogeneous resources, while at the same time al-

lowing the tuning of tests or benchmarks for different resources. Tuning of benchmarks

can be manual, i.e. specifically defined by the user for a given set of resources, or au-

tomatic, where the tool infers benchmark or test parameters based on a given resource’s

attributes.

Another reason why flexibility and extensibility are so important is the rapidly evolv-

ing infrastructure, especially in terms of the middleware. From one perspective this is in

fact adding to the heterogeneity of the system since not all resources upgrade or migrate

to different middleware at the same time. Flexibility and extensibility go beyond the easy

definition or tuning of benchmarks, it goes right to the core of the tool which should be

designed with middleware-independence in mind.

Geo
rge

 P
. T

so
ulo

up
as

51

4.2.5 Middleware Independence

There are already several core middleware that drive Grid infrastructures. A tool that

is strictly tied to any one of them would not be applicable to many infrastructures that

employ a different middleware. But, more subtly, a tool that is not middleware indepen-

dent to some extent would sooner or later be obsolete due to the rapid evolution of Grid

middleware.

4.2.6 Data analysis

Beyond the invocation of tests and the collection of results, a Grid benchmarking tool

should allow for basic data analysis. This is in addition to the ability to export result in

a usable form for further processing, for example in an advanced statistics software. The

goal is, of course, not to re-implement the functionality of statistics software package, but

to be able to simplify the cycle of “experiment – analyze – make decision”.

The ability to query a large archive of results is essential, since the size of the data-

set depends directly on the size of the Grid, the frequency of invocation and the amount

of retained history. The ability to query result is a requisite for the key functionality of

constructing intuitive charts in order to compare resource performance.

4.2.7 Putting collected information into use

The tool needs mechanisms for putting the collected information into use. This refers

mainly to the ability to perform resource selection based on specificperformanceaspects

but also on the detection of several problems pertaining toavailability anddependability.

Geo
rge

 P
. T

so
ulo

up
as

52

4.2.8 Functional and user-friendly interface

Generally a tool which targets end-users of the grid should be user-friendly and func-

tional. The main areas of concern in this specific type of tool is the easy invocation of

jobs on multiple sites in parallel; the ability to have a clear view of what is going on, i.e.

job monitoring; and finally, the user-friendly data analysis via the easy construction of

performance charts.

“GridBench” was designed and implemented based on these requirements. The fol-

lowing section details the GridBench design.

4.3 System Design

GridBench employs a client-server architecture using web-services. The GridBench

server comprises:(i) the GridBenchController, which manages the testing process by

interacting with Job Submission Services, Resource Brokers, and Grid Information Ser-

vices;(ii) theCrawler, which automates the performance exploration of a whole infras-

tructure, and(iii) theArchiver, which undertakes the storage, management, and provision

of test templates and of derived measurements.

The GridBench client comprises:(i) the GridBenchBrowser, which provides a graph-

ical framework through which an end-user can visualize the status of Grid resources, and

interact with GridBench;(ii) aConfiguration Module, which supports the interactive con-

figuration of GridBench tests;(iii) an Analysis Module, which supports the processing,

visualization and interactive manipulation of collected metrics, and(iii) the SiteRank,

which implements the models used to rank Grid resources.

Geo
rge

 P
. T

so
ulo

up
as

53

Figure 10: GridBench components.

GridBench is implemented in Java and employs Tomcat. The tool has been designed

with extensibility in mind, both in terms of easy integration of new tests and benchmarks

and in terms of integration with new middleware. The system design is modular and

makes extensive use of plug-ins to provide integration with various middleware.

4.3.1 Server-side components

4.3.1.1 The GridBench Controller Web-service

TheController component has the task of managing test and benchmark executions.

Most of the Controller’s functionality is implemented in the form ofmiddleware plugins.

The diagram in Figure 11 describes the Controller functionality in a series of steps.

The steps are given below (the numbers correspond to the numbered arrows in the UML

diagram in Figure 11):

Geo
rge

 P
. T

so
ulo

up
as

54

Figure 11: A UML sequence diagram describing the basic Controller function-
ality

(1) The Controller receives a benchmark description in the form of GBDL. This will

originate from the Client or the Crawler;

(2,3)TheMiddleware Plugintranslates the GBDL to a middleware-specific job descrip-

tion, which is in the syntax and format required by the underlying middleware;

(4) The Controller determines all monitoring that needs to be performed, which is spec-

ified by themonitor elements of the GBDL. Using thetypeandqueryattributes of the

monitor, the correct monitoring plugin is invoked.

(5) Monitoring data collection is started. In the event where the test or benchmark is put

in the target-resource’s local queue, synchronization of monitoring data collection and

the actual benchmark execution is performed by job-status monitoring. Depending on the

type of monitoring, steps 4 and 5 may come after step 6;

(6) The benchmark job is then submitted using theMiddleware plugin;

(7) The job status is monitored by polling until the job finishes and the result retrieved;

Geo
rge

 P
. T

so
ulo

up
as

55

(8) The results of the benchmark in the form ofmetricelements and its associated mon-

itoring data are incorporated into the the GBDL. If theresourcename was not specified

explicitly in the test specification, theresourceelement is also updated, indicating the

exact location where the job ran;

(9) Finally, the resulting GBDL is passed to the Archiver, concluding the Controller’s role

as it relates to this specific execution.

Figure 12: Middleware plugin functionality.

4.3.1.2 Middleware Plugins

Middleware Plugins (Figure 12) allow the GridBench framework to work with differ-

ent underlying middleware. It is assumed that the underlying middleware supports basic

operations such as copying (staging) files, submitting a job for execution and retrieving

the result. The plugins mainly deal with(i) job description compilation (e.g. RSL for

Globus),(ii) job submission and job status monitoring,(iii) file staging and(iv) result

retrieval. Plugins for Globus and the LCG/gLite middleware are provided in the current

implementation.

Geo
rge

 P
. T

so
ulo

up
as

56

Figure 13: Monitor plugin functionality.

Based on the job submission mechanism selected when theController service is in-

voked, the GridBench Controller must interface with the underlying middleware mainly

for submitting the job and getting the job status. Integration with diverse underlying Grid

middleware is accomplished by the use of the Middleware Plugin Interface.

Interface Definition

String GetJobDescription(String gbdl)

Returns a middleware-specific job description (e.g. RSL for the Globus middelware)

that reflects the provided GBDL benchmark description.

String execute(String gbdl,boolean async)

Execute the provided GBDL returning a middleware-specific job ID. If the boolean

asyncis true then the method returns immediately after the job issubmitted. If the value

of asyncis false then the method returns upon completion of the benchmark.

Geo
rge

 P
. T

so
ulo

up
as

57

String getJobStatus()

Returns a middleware-independent job status which can be one of:

waiting : The benchmark is waiting to be submitted to the underlying middleware;

submitted : The benchmark has been submitted using the specified mechanism;

running : The benchmark has started running;

error : The benchark is in a error state;

done: The benchmark has finished;

String getError()

Returns a middleware-dependent description of the error as reported by the underlying

middleware or the empty string in case of no error.

The return string has the following format:

<job−s t a t u s> <s t a t u s from midd leware>

As shown above, the middleware-specific status is also provided following the generic

job status given by the Controller. The purpose of this is to provide a more descriptive job

status and help debugging.

String getJobResult()

Returns the textual output of the benchmark (usually comprised of XML fragments).

Geo
rge

 P
. T

so
ulo

up
as

58

4.3.1.3 Monitor Plugins

Monitor Plugins (Figure 13) are connectors to existing monitoring systems. They

are employed by theController to collect monitoring information during test/benchmark

execution. The user specifies what monitoring data is to be collected, as well as the start-

time and finish-time of data collection. The start and end-times can be absolute times,

or relative to the start and end-times of the actual test/benchmark execution. Initially,

the GBDL contains a monitoring system specific query that the monitoring plugin can

interpret and connect to the monitoring system. In the absence of monitoring systems, the

tool allows the collection of certain system attributes locally on the target resource (such

as CPU-load and swap usage) during execution of the benchmark job.

4.3.1.4 The GridBench Archiver Web-service

TheArchiverallows the storage and retrieval of results generated by executions of the

GridBench Benchmark Suite through the GridBench Framework. The Archiver provides

a simple interface that includes:(i) Storing a GBDL document,(ii) retrieving a GBDL

document by it’s ID, and(iii) retrieving a set of results based on an SQL query. The

XML is transformed to relational data, where elements in the XML become records in

the database tables by mapping table fields to XML elements.Geo
rge

 P
. T

so
ulo

up
as

59

4.3.1.5 The GridBench Crawler

In many cases it is desirable to have the system perform tests and simple benchmarks

periodically and make the results available to users.2 This provides an initial body of

results, which the user can complement with her own executions. This allows for more

meaningful analysis of the resources’ availability and dependability, since the measure-

ments taken by users are generally too sparse to be very useful in this context. The crawler

monitors the Grid Information Services for the list of resources and periodically invokes

tests on the ones that are available. The crawler runs as a daemon and needs to be provided

with: (i) credentials with which to invoke tests,(ii) a set of GBDL definitions that are to

be invoked periodically, and(iii) the period with which they are invoked. Benchmarks

and tests submitted by the crawler are handled by the GridBench Controller as regular

benchmark submissions.

4.3.2 Client-side components: The GridBench Browser

In order to facilitate interactive, on-demand testing and benchmarking, GridBench

provides a user-friendly graphical interface that simplifies the definition and execution

of benchmarks and tests, as well as the browsing of results. Additionally, it provides

tools for result analysis through the easy construction of custom graphs from archived

results. Figure 14 shows the main graphical user interface for the definition of

benchmarks. Observe the list of available test/benchmarks (the list on the left) and the

available resources (the list on the right). The resource list shows resources retrieved from

2Care should be taken to make sure that the results obtained through automated execution are represen-
tative of the user’s VO.

Geo
rge

 P
. T

so
ulo

up
as

60

Figure 14: The list on the left is a list of tests/benchmarks that are inte-
grated into GridBench. The list on the right shows the currently available
resources and their status in terms of busy/free CPU’s.

one or more Grid Information Systems, with details about each resource’s composition,

such as free/busy CPU’s and Worker nodes, dual/single CPU machines etc. Additionally

a set of tests can be performed on each resource. In Figure 14 one can see tests such as the

“Queue”, “QSTAT” and “MPI” tests. Tests involving multiple sites (e.g. using MPICH-

G2) can also be performed. Such tests are useful for detecting configuration problems

as well as connectivity/firewall issues. More tests (e.g. targeting other local queuing

systems) can be easily added by implementingCE Test-Plugins.

4.3.2.1 CE Test Plugins

CE Test Plugins (Figure 15) encapsulate invocations of tests in order to(i) integrate

them directly into the GridBench browser -shown in Figure 16(b)–, and(ii) provide a

level of abstraction of local job manager systems employed by different Grid sites. For

example, querying for the queue status at a site with a specific local job manager (such

Geo
rge

 P
. T

so
ulo

up
as

61

as PBS or LSF) requires a specifically crafted GBDL. Thetest-plugindetermines the

type of local job manager and based on that, submits the right GBDL to the site. The

test-pluginalso updates the status of a test in the GridBench Browser by updating the

<status>element in the GBDL, to show whether the test is successful, failed or pending.

CE Test-plugins can be added to the browser by implementing a simple Java interface.

Figure 15: Information plugin and CE-test plugin functionality

4.3.2.2 Information Plugins

Information Plugins (Figure 15) are used by the GUI to retrieve information about

Grid resources. The Information Plugin retrieves data from Grid Information Systems

(GIS) and populates a data-structure (CE objects) that holds information about resources.

The CE objects contain a subset of the information specified in the GLUE schema for

MDS [4, 6], as well as additional information about individual Worker-Nodes (such as

state and number of CPU’s in each Worker-Node). The CE objects are then used for

rendering resource information on the GUI. The CE objects are also used to automate

Geo
rge

 P
. T

so
ulo

up
as

62

the creation of GBDL definitions, since they contain details on site configuration (e.g.

configuration of CPU’s on Worker-Nodes and local queue type).

(a)

(b)

(c)

Figure 16: (a) Resource browser, showing the state of resources from the
EGEE test-bed that “advertise” support for MPI (MPICH run-time environment;
(b) The resource renderer;(c) Top: Information index sources selection.Mid-
dle: Querying for specific Virtual Organizations.Bottom: Specifying run-time
environment support.

Information displayed in theresource browser(Figure 16(a)) is obtained by querying

one or more information systems (Figure 16(c)-top). The information for each resource is

displayed in graphical form and contains a rendering of the status of CPU’s and the con-

figuration of CPU’s into worker-nodes. Figure 16(b) shows the resource renderer where

(1) is the resource name;(2) is the local queue type,(3) shows CPU organization and

status;(4) shows the default queue status;(5) shows a test in progress (blue);(6) shows

a successful test (green);(7) shows a failed test (red);(8) shows a test not run;(9) shows

Geo
rge

 P
. T

so
ulo

up
as

63

Free/Total CPU’s; and(10) shows Free/Total WN’s (updated after the invocation of the

“queue test”CETestplugin). In the rendering of the status of the local resource queue,

the user’s jobs are shown in a different color. The different test-plugins and their status

are –whenever possible– displayed in real time, enhancing interactivity. The resource

browser allows for multiple selections of resources to act as drop-targets for invoking a

benchmark or test on a set of resources. The browser allows for the user to limit her view

based on VO (Figure 16(c)-middle), or support of a specific run-time environment (Fig-

ure 16(c)-bottom). Defining and executing a test or benchmark is as easy as dragging a

benchmark onto one of the resources (shown in Figure 14).

4.3.2.3 The Configuration Module:

The heterogeneity of resources sometimes requires that the test is tailored to the spe-

cific resource under test. The tuning may be quite trivial, such as setting the number

of CPU’s to be used, or it can be more complex such as setting up several memory or

network parameters to configure a benchmark. The user has the opportunity to tune test

parameters prior to execution via a configuration panel (Figure 17). The benchmark con-

figuration panel is a GUI front-end that customizes a GBDL template document. Namely,

the module allows the tuning of parameters to the benchmark, the definition of the target

resource(s) and the definition of what is to be monitored during execution.

4.3.2.4 The Analysis Module:

The Analysis Module has the main functionality of presenting results, and allowing

the user to query the underlying relational database that holds the contectualized results.

Geo
rge

 P
. T

so
ulo

up
as

64

Figure 17: Benchmark configuration panel.

A use query is in the form of a standard SQL Query. For example:

SELECT benchmark . i d from benchmark , r e s o u r c e , p a r a m e t e r
WHERE r e s o u r c e . b id =benchmark . i d

AND p a r a m e t e r . b id =benchmark . i d
AND benchmark . name= ’ epwhe ts tone ’
AND p a r a m e t e r . name= ’ n loops ’
AND p a r a m e t e r . va lue>10000000} ;

This query will provide all the available results for all resources where “epwhetstone”

has been executed with an “nlopps” paremeter greater than 10000000.

The user can easily construct graphs as the ones in the results section by browsing

results (metrics) previously archived in the database (Figure 18,19). The interface enables

the user to perform custom queries on the archived results and to select the results that

Geo
rge

 P
. T

so
ulo

up
as

65

Figure 18: The interface for querying the results and selecting which results to
render.

are relevant and of interest. The user can then use the metrics included in the results to

interactively build charts. The analysis/graphing module can handle several metric types

and present each metric on anappropriatechart.

4.3.3 Benchmarks

The GridBench suite offers three categories of benchmarks:micro-benchmarks,micro-

kernelsandapplication kernels. The purpose of having these three categories of bench-

marks is essentially the introduction of different points of view of Grid performance.

Geo
rge

 P
. T

so
ulo

up
as

66

Figure 19: Generation of charts from historical data. The result shown is from a
memory cache benchmark.

Micro-benchmarks aim to measure a single performance factor of a system . They are

good for identifying the basic performance properties of each of the four levels mentioned

previously, i.e. grid constellations, sites, resources within a site (e.g. individual worker

nodes) and Grid services. What constitutes “basic performance properties” is somewhat

subjective and depends on the level of the architecture one is trying to measure. In gen-

eral, these basic performance measurements are low-level measurements; for example,

a file transfer between two sites when measuring a Grid constellation, or the achievable

floating point operations per second (in a tight loop) when measuring a CPU. Each basic

performance property is measured by “stress testing” of a simple operation invoked in

isolation with the least possible dependence on other performance aspects.

Micro-kernel benchmarks are benchmarks that usually employ a computational ker-

nel which is usually a synthetic kernel. In this context, asynthetickernel is defined as

Geo
rge

 P
. T

so
ulo

up
as

67

one that has been specifically designed to measure performance, versus one that is de-

rived from a real application. Micro-kernel benchmarks are therefore generic High Per-

formance Computing /High Throughput Computing kernels which include general and

often-used kernels in Grid/Cluster environments. Their aim is to measure several perfor-

mance aspects of a system collectively.Application or application-kernel benchmarks

are derived from real applications, e.g. CrossGrid applications, and will resemble the

originating application. They aim to measure the characteristics of “representative” appli-

cations by capturing high-level metrics such as completion time, throughput and speedup.

4.3.3.1 Micro-benchmarks

Micro-benchmarks generally produce low-level metrics. There are numerous distinct

low-level aspects of a resource that can be measured but it is a reasonable assumption to

make that the resource’s performance depends mainly on the performance of its CPU’s,

the performance of its memory and caches, the performance of its interconnects and I/O

performance. Of course there is a wealth of other factors affecting machine performance

ranging from Operating System robustness to fitness for running a specific application.

With respect to micro-benchmarks, it was a deliberate choice to initially focus on this

set of low-level metrics, keeping in mind the easy inclusion of more metrics as deemed

necessary. In terms of specific low-level metrics the following were chosen:(i) Floating

Point or Integer Operations Per Secondfor CPU performance,(ii) Bytes per secondfor

writing and reading to and from main memory,(iii) Bandwidth for evaluating the ma-

chine’s interconnects and(iv) I/O bandwidthfor evaluating disk performance (shared or

Geo
rge

 P
. T

so
ulo

up
as

68

Table 2: Metrics and Benchmarks

Factor Metric Delivered By

CPU Operations per second (mixture of floating
point and integer arithmetic)

EPWhetstone

CPU FP Floating Point Operations per second EPFlops
CPU INT Integer Operations per second EPDhrystone
memory sustainable memory bandwidth in MB/s

(copy,add,multiply,triad)
EPStream

memory Available physical memory in MB EPMemsize
cache memory bandwidth using different memory

sizes in MB/s
CacheBench

Interconnect latency and bisection bandwidth MPPTest
I/O disk latency and bandwidth b eff io

local storage). These metrics are easily understood and well-established for evaluating

their respective performance factor.

In order to deliver the required metrics, six benchmarks are employed:

(i) EPWhetstone,(ii) EPFlops, (iii) EPDhrystone,(iv) EPStream,(v) CacheBench,

(vi) MPPTest,(vii) b eff io.

EPWhestone

EPWhestone is a simple adaptation of the traditional Whetstone CPU benchmark [21]

so that it runs in parallel on a set of CPU’s at the same time. It is implemented in C, and

uses MPI for collecting the final measurements from each process(communication time

is excluded from measurements). Each process runs independently of the others with

no communication taking place until the very end, when each process reports the final

result. Each process performs a mixture of operations, such as integer arithmetic, floating

point arithmetic, function calls, trigonometric and other functions. The benchmark gets

Geo
rge

 P
. T

so
ulo

up
as

69

the current time usinggettimeofday(), runs for a few seconds,calculates the wall-clock

time difference and reports the rate at which these operations were performed on average.

The “EP” prefix denotes the “embarrassingly parallel”nature of its execution. The sum

of the results of all the processes (operations per second) is then reported as the CPU

performance of the whole resource. Just as with the other benchmarks, it is imperative

that for the duration of the execution, the only process imposing substantial load on the

CPU is the EPWhetstone process, especially since the results are calculated using wall-

clock time. The typical execution time is less than10 seconds.

EPFlops

EPFlops is a floating-point CPU benchmark adapted from the “flops” benchmark [1].

It is modified so that it runs simultaneously on a set of CPU’s using MPI. It measures the

performance of a CPU’s floating-point operations in different “mixes” of floating-point

operations. The benchmark employs a set of 8 modules, where each module is made up

of a different mix of operations. Different combinations of the 8 modules yield a set of

four metrics (“ratings”) with different ratios of each of the four floating-point operations.

The benchmark tries to maximize register usage in order to be as independent as possible

from the performance of the memory sub-system. It is implemented in C. Table 3 gives

a summary of the distribution of floating-point operations in the four metrics delivered

by the “EPFlops” benchmark. For example, themflops-2metric does 152 operations per

loop. Out of the 152 operations, 58 (38.2%) are additions, 14 (9.2%) are subtractions, 66

(43.4%) are multiplications, and 14 (9.2%) are divisions.

Geo
rge

 P
. T

so
ulo

up
as

70

Table 3: Metrics returned by the “EPFlops” benchmark and the
operation counts in each reported metric.

Metric name FADD FSUB FMUL FDIV Total

mflops-1 21 (40.4%) 12 (23.1%) 14 (26.9%) 5 (9.6%) 52
mflops-2 58 (38.2%) 14 (9.2%) 66 (43.4%) 14 (9.2%) 152
mflops-3 62 (42.9%) 5 (3.4%) 74 (50.7%) 5 (3.4%) 146
mflops-4 39 (42.9%) 2 (2.2%) 50 (54.9%) 0 (0.0%) 91

EPDhrystone

EPDhrystone is an integer operations benchmark, adapted from the C version of the

“dhrystone” benchmark [73]. It is modified so that it runs simultaneously on a set of

CPU’s using MPI. Dhrystone is based on a workload from an extensive set of applica-

tions, but does not target numerical computations. It focuses on “systems programming”

applications which perform mainly integer operations. As before, the benchmark has

been adapted to run concurrently on a set of CPU’s using MPI. The benchmark returns

the accumulated result from all the processes in ”dhrystones” per second.

EPMemsize

EPMemsize is a platform independent benchmark that aims to measure memory ca-

pacity. It is written in C and it runs simultaneously on a set of CPU’s using MPI. It first

determines the maximum amount of memory that can be allocated. It then proceeds to

determine the maximum amount of memory that can be allocatedin physical memory.

The size of physical memory available is important to memory-intensive applications that

profit from allocating as much memory as possible while avoiding the use of slow swap

Geo
rge

 P
. T

so
ulo

up
as

71

memory. Detecting the physical memory in the machine in a platform-independent way

may not depend on any system-specific system call to get the memory size. More impor-

tantly, the value that is returned by a “getfree memory()” or ‘gettotal memory()” system

call is many times not the real amount of physical memory that can be allocated by an

application; the system kernel, services, other processes, as well as filesystem caches

also hold up memory. The benchmark operates by accessing memory until a substantial

delay occurs (determined by a configurable delay threshold). The process is performed

repeatedly and the maximum amount of memory allocated without incurring swapping is

returned.

EPStream

EPStream is a simple adaptation of the C implementation of the well-known STREAM

memory benchmark [46] so that it runs in parallel on a set of CPU’s at the same time.Again,

each process runs independently of the others with no communication taking place until

the very end, when each process reports the final result using MPI. The STREAM bench-

mark measures the sustainable local memory bandwidth (MB/s). It is a simple synthetic

benchmark program and in addition to providing memory bandwidth it also gives an idea

of the corresponding computation rate for simple vector kernels. The STREAM bench-

mark measures bandwidth while performing four operations:copy,scale,sumandtriad.

Table 4 outlines each operation.
Geo

rge
 P

. T
so

ulo
up

as

72

Table 4: The STREAM benchmark Operations
Name Operation

copy a[i]=b[i]
scale a[i]=q*b[i]
sum a[i]=b[i]+c[i]
triad a[i]=b[i]+q*c[i]

It is imperative that for the duration of the execution, the only process imposing sub-

stantial load on the CPU or Main memory is the EPStream process (results are calculated

using wall-clock time). The typical execution time is less than 10 seconds.

CacheBench

CacheBench [49] is a benchmark aiming at evaluating the performance of the local

memory hierarchy of a machine. Similarly to the previously described benchmarks,an in-

stance of CacheBench is invoked on each CPU of the resource (i.e. cluster) under study.

The benchmark is implemented in C and performs a set of operations –read,write,read-

/modify/write,memset()andmemcopy()–varying the underlying array size thus exposing

the performance of the (potentially multi-level) cache. The operations at each size run for

a configurable amount of time(default is 2 seconds) and the average bandwidth (MB/s) is

reported. Table4.3.3.1 outlines each operation. While this benchmark produces a similar

metric to the STREAM benchmark, it runs for a longer time since it takes measurements

at different memory sizes (executions are typically in the order of 5 minutes). The time

it takes to finish depends strictly on the input parameters. It also focuses on the perfor-

mance of memorycachesproviding insight to the different levels of cache available to the

CPU’s.

Geo
rge

 P
. T

so
ulo

up
as

73

Table 5: The CacheBench Operations
Name Operation

read register=m[i]
write m[i]=register++

read/write m[i]=m[i]++
memset() (system call)

memcopy() (system call)

Since this benchmark runs considerably longer than the EPStream benchmark, it was

initially infered that it would make sense to invoke it when need arises (i.e. the user is ex-

plicitly interested in cache performance, and the sustained memory bandwidth produced

by EPStream is not adequate). As experimentation progressed, it was discovered that the

cache had substantially more effect than theEPStreambenchmark could capture, and a

new metric (c512k, analyzed in the next chapter) needed to be introduced. As with the

other benchmarks, it is imperative that for the duration of the execution, the only pro-

cess imposing substantial load on the CPU or Main memory is the CacheBench process

(results are calculated using wall-clock time).

MPPTest

MPPTest [39] is a benchmark that tests MPI communication speeds by various ways

and provides a variety of options for a detailed performance analysis. MPPtest is platform

and MPI implementation independent and can therefore be used with any MPI implemen-

tation. MPPtest aims to make reproducible measurements of MPI performance and results

are claimed by the MPPTest creators to be reproducible since the reported measurements

Geo
rge

 P
. T

so
ulo

up
as

74

are the minimum of several runs. For the purpose of resource characterization it is desir-

able to have a focused set of measurements and to this end, only two measurements are

performed:(i)bisection bandwidth and(ii) the “scatter” (broadcast) collective operation.

The typical execution time is in the order of minutes (depending on the measurement

detail)and results are calculated using wall-clock time.

b eff io

The beff io benchmark is included in order to evaluate the shared I/O performance

of (shared) storage at a resource (site). This benchmark is used “to achieve a charac-

teristic average number for the I/O bandwidth achievable with parallel MPI-I/O applica-

tions” [53]. B eff io produces a metric given in Megabytes per second, which represents

the average obtained by performing several storage access patterns. Access patterns in-

clude: (i) Multiple processes read/write data scattered in a file;(ii) Multiple processes

read/write adjacent data;(iii) Multiple processes read/write data in separate files; and

(iv) each of the multiple processes accesses data in a different segment of a segmented

file (a detailed description of the access patterns can be found in [53]). Given that shared

disk I/O is usually performed over the network, the results obtained by this benchmark

may be correlated with the results obtained by the MPPTest benchmark. The benchmark

is implemented in C.Geo
rge

 P
. T

so
ulo

up
as

75

4.3.3.2 Micro-kernel benchmarks

High Performance Linpack

HPL [26] is one of the most widely known benchmarks in HPC; HPL now ranks

the TOP500 [25] super-computers. The HPL benchmark solves a dense system of linear

equations by Gaussian elimination. It is MPI-based and in order to perform its basic

computations it utilizes either of two libraries, the Basic Linear Algebra Subprograms or

the Vector Signal Image Processing Library.

4.3.3.3 Application benchmarks

Bstream

Bstream is a blood-flow simulation code aimed as a pre-operative support decision

system for vascular surgeons. The blood-flow simulation is part of an interactive Grid

application that involves processing of 3D data obtained from MRI scanners, operation

planning (such as a bypass), simulation, and finally blood-flow visualization [60]. Shown

here is the computationally intensive part of the application, which is based on a lattice

Boltzmann solver and uses MPI. This code was instrumented to measure elapsed time for

each iteration, and integrated into GridBench.Geo
rge

 P
. T

so
ulo

up
as

76

Figure 20: POVRay rendering of thebenchmark.pov bench-
mark scene.

POVRay

A photorealistic rendering (ray-traycing application) “Persistence of Vision”. Version

3.6 of the application is used and applied to a scene file,banchmark.pov (Figure 20),

composed by the POVRay developers and is explicitly intended for benchmarking.

4.4 Performance Evaluation and Auditing Using GridBench

The GridBench software has been released for testing and experimentation, and has

been used by application developers and infrastructure operators on top of production-

level, large-scale Grid infrastructures, such as CrossGrid, GridIreland and EGEE. This

section, describes a number of different use-cases that were demonstrated with Grid-

Bench.

Geo
rge

 P
. T

so
ulo

up
as

77

4.4.1 Application Performance

In the first use-case, GridBench users are interested in deploying high-performance

computing applications on a Grid. To this end, they seek to explore the relative perfor-

mance and scalability of different Grid resources, according to the performance behavior

of the computationally intensive kernels of their applications. To explore this scenario in

the context of the CrossGrid testbed, kernels extracted from three real scientific applica-

tions deployed on CrossGrid [38] were used:

1. High Energy Physics ANN Training: This kernel is taken from a parallel Artificial

Neural Network training application. The architecture of the code is based on a

client-server model and the code is loosely-coupled [31].

2. Air Pollution Simulation: The VERTLQ kernel comes from the STEM-II Eulerian

numerical model that is used for the simulation of air pollutant factors. The parallel

(very tightly-coupled) version of the code [47] was used.

3. Blood-flow Simulation: The “bstream” kernel is extracted from a medical appli-

cation for pre-operative planning of vascular reconstruction. It is a tightly-coupled

code that involves blood-flow simulation using a Lattice Boltzmann method in 3-D

artery models [60].

One of the primary design goals of GridBench is the easy inclusion of new tests,

benchmarks or kernels. The required steps are:(i) Create a new GBDL description tem-

plate and add it to the Archiver database;(ii) Create a “parameter handler” (usually a

Geo
rge

 P
. T

so
ulo

up
as

78

simple shell script);(iii) Optionally instrument the code of the kernel to generate addi-

tional metrics. The following is the new GBDL description template required to integrate

“bstream” into GridBench:

< t e s t m a r k name=” bs t ream11 ”>
<pa r a m e t e r name=” i t e r a t i o n s ”

t ype =” u s e r ”>40< / p a r a m e t e r>
<p a r a m e t e r name=” Reynolds ”

t ype =” u s e r ”>20< / p a r a m e t e r>
<p a r a m e t e r name=” d a t ai d ”

t ype =” u s e r ”>tube38x40x40< / p a r a m e t e r>
< / t e s t m a r k>

This description specifies theiterations,Reynoldsanddata id application-specific param-

eters. Once this specification is inserted into GridBench, the user can invoke it through the

GridBench Browser by dragging the newly created template onto a set of resources. The

general steps taken: 1) Retrieve previously archived results for this kernel; 2) Benchmark

the resources for which there are no archived results; 3) Compare the results (Figures 21,

22 and 23).

Figure 21: Results for the parallel Artificial Neural Network
training application kernel. The number of CPU’s is indicated
next to the resource name and the completion times are sorted
(best-performing first).

Geo
rge

 P
. T

so
ulo

up
as

79

Figure 22: Results for the VERTLQ kernel from the air pollution
simulation application. The number of CPU’s is indicated next
to the resource name and the completion times are sorted (best-
performing first).

If the user wishes to study the scalability of different Grid clusters for the particular

application of interest, he just has to invoke the corresponding kernel-benchmark on a

subset of the available resources, using different CPU-count parameters. The resulting

metrics are archived in the database (along with possibly pre-existing metrics) and made

available for analysis. Figure 21 shows results from the ANN kernel while Figure 22

shows results from VERTLQ. The results are sorted by completion time – i.e. best per-

formance – thus effectively providing a ranking of the resources. The number of CPU’s

used is indicated next to the resource name. The user can then make decisions based on

these results and answer questions like “Should I use 4 CPU’s or 8 CPU’s from site A?”,

or “Should I use 4 CPU’s from site A or 6 CPU’s from site B?”.

If additional metrics are desired, the instrumentation of codes is application-specific

and usually involves trivial modification of the source code to obtain timings at a fine

level (see next sub-section). In the case of the “bstream” kernel, the application performs

iterations which are controlled by a main loop. In total, about ten lines of code were

Geo
rge

 P
. T

so
ulo

up
as

80

Figure 23: Results for the “bstream” kernel, showing iteration
times on a set of four resources.

added in order to time each iteration and output the following metrics onto the standard

output (in addition to the default “completion time” metric):

<m e t r i c name=” i t e r a t i o n t i m e s ” node=” c l u s t e r . u i . sav . sk ”>

<va lue u n i t =” s ”>0.079617 0.079529 0.079511 0.079498
. . . 0 .094326< / va l ue>

< / m e t r i c>

4.4.2 User-driven Resource Ranking

The second use-case considers two users, each with a different application and dif-

ferent requirements in terms of performance. They require a performance-ranked set of

resources3 tailored to their needs. UserA has an application that heavily relies onmem-

ory performance, while userB has an application that relies heavily onCPU performance.

In terms of low-level CPU and memory metrics, the tool providesMflops4anddhry for

floating-point and integer CPU performance respectively, andTriad for main memory

performance. Utilizing measurements stored in the archive, each user can interactively

construct aranking functionfrom within the GridBench GUI as in Figure 24.

Obtaining the right coefficients to determine the weight of each metric in an application-

specific ranking is described in detail in [71]. For the purpose of this scenario it is assumed

3The results shown are taken from the EGEE South-East Europe Region

Geo
rge

 P
. T

so
ulo

up
as

81

Figure 24: Snapshot of the ranking module.

that the user has some insight as to how the different low-level metrics relate to the per-

formance of the application at hand.

User A with a preference on memory performance assigns higher coefficients for

memory and lower coefficients for CPU producing a ranking functionRA:

RA = 0.8 · Mflops4mean + 0.2 · dhrymean + 4.0 · Triadmean

UserB, on the other hand, chooses to put more weight on CPU rather than on memory.

In RA the memory metric is given four times the weight of the CPU metrics (0.8+0.2).

The opposite is used inRB. This produces a different ranking functionRB:

RB = 3.2 · Mflops4mean + 0.8 · dhrymean + 1.0 · Triadmean

Geo
rge

 P
. T

so
ulo

up
as

82

(a) (b)

Figure 25: Ranking of SE Europe resources by putting more emphasis on CPU
or main-memory performance.

Figure 25(a) is the result of ranking functionRA, while Figure 25(b) is the result of

the modified ranking functionRB. The resulting composite performance metric varies

considerably; a resource that ranks8th in RA, ranks1st in RB.

Admitedly, the coefficients used here are rather arbitrary. The goal was to illustrate

their use and how thay can affect the ranking. An appropriate way of deducing the coef-

ficients is presented in the next chapter.

Geo
rge

 P
. T

so
ulo

up
as

Chapter 5

Performance Ranking of Grid Resources

Matching between resource requests and resource offerings is one of the key consid-

erations in Grid computing infrastructures. Currently, the implementation of matching

is based on thematchmakingapproach introduced by the Condor project [55], adapted

to multi-domain environments and Globus, and extended to cover aspects such as data

access and work-flow computations, interactive Grid computing, and multi-platform in-

teroperability. Matchmaking produces a ranked list of resources that are compatible to

the submitted resource requests. Ranking decisions are based on published information

regarding the number of CPU’s of each resource, their nominal speed, the nominal size of

main memory, the number of free CPU’s, available bandwidth, etc. This information is

retrieved from Grid information services such as the Monitoring and Discovery Service

of Globus, or the BDII of EGEE.

83

Geo
rge

 P
. T

so
ulo

up
as

84

This approach works well in cases where the main consideration of end-users is to al-

locate sufficient numbers of idle CPU’s in order to achieve a high job-submission through-

put with opportunistic scheduling. In several scenarios, however, reliance on matchmak-

ing is not sufficient; for instance, when end-users wish to “shop around” for Grid comput-

ing resources before deciding where to deploy a high-performance computing application,

or when Virtual Organization (VO) operators want to audit the real availability and con-

figuration status of their providers’ computing resources. In such cases, the information

published by resource providers and Grid monitoring systems does not provide sufficient

detail and accuracy. The need for control over which resources are chosen to run a VO’s

applications is very real. For example, EGEE developed a system [18] forwhitelisting

andblacklisting, in other words including and excluding resources. The tool involved the

insertion of a “proxy” Information Index where certain “bad” or very low performance

resources are blacklisted, or some known “good” resources arewhitelisted. The tool was

in the right direction, but lacked the important functionality of actually helping the user

determine which were the good or bad resources (it was, in fact, geared towards Grid

administrators). Grid users need instead the capability to interactively administer bench-

marks and tests, retrieve and analyze performance metrics, and select resources of choice

according to their application requirements. GridBench was designed to provide Grid

users with such atest-drivingfunctionality. As described in earlier chapters it is essen-

tially a framework for evaluating the performance of Grid resources interactively. Grid-

Bench facilitates the definition of parameterized execution of various probes on the Grid,

while at the same time allowing for archival, retrieval, and analysis of results [68, 69, 72].

Geo
rge

 P
. T

so
ulo

up
as

85

GridBench comes with a suite of open-source micro-benchmarks and application kernels,

which were chosen to test key aspects of computer performance, either in isolation or

collectively (CPU, memory hierarchy, network, etc.) [70].

This chapter provides a more in-depth view of application performance, and presents

SiteRank, a component developed on top of GridBench to support the user-driven ranking

of computational Grid resources. SiteRank enables Grid users to easily construct and

adapt ranking functions that:

1. Take as arguments performance metrics derived with the low-level benchmarks

of GridBench [70]; the selection of these metrics can be done manually or semi-

automatically by the end-user, through the user interface of GridBench.

2. Combine the selected metrics into a linear model that takes into account the par-

ticular requirements of the application that the user wishes to execute on the Grid

(e.g., memory vs. floating-point performance bound). Using a ranking function,

Grid users can derive rankings of Grid resources that are tailored to their specific

application requirements.

Furthermore, I demonstrate the use of SiteRank in the ranking of the computational

resources of EGEE, which is the largest production-quality Grid in operation today. To

this end, I examine two alternative applications running on EGEE: povray, a ray-tracing

application, and SimpleScalar, a simulator used for hardware-software co-verification and

micro-architectural modeling. The results show that SiteRank functions can provide an

accurate ranking of EGEE resources, in accordance to the different requirements that

each application has. Furthermore, it is evident that the careful selection of the low-level

Geo
rge

 P
. T

so
ulo

up
as

86

metrics used in the linear model is important for the construction of accurate ranking

functions.

Section 5.1 outlines one approach in understanding application performance and rank-

ing resources, while Section 5.2 introduces SiteRank and its ranking methodology. Sec-

tion 5.3 describes the use of SiteRank in the ranking of EGEE resources for the two

selected applications: povray and SimpleScalar.

5.1 Application Performance: A more in-depth look

Resource selection in Grid environments is a crucial problem. Regardless of who per-

forms the resource selection, be it users or automated systems (i.e. schedulers or resource

brokers), the decision makers are faced with the difficult task of matching/mapping jobs

to resources. Previous work on the specification of resources and services in complex

heterogeneous computing systems and metacomputing environments in general [14] and,

particularly, in grid environments [16], has led to a better understanding of the issues.

Nevertheless, in many cases there is a need for addressing application-specific character-

ization of the resources available. Employing an application introduced in the previous

sections, the pre-operative support/ blood-flow simulation solver, it can be shown that

GridBench can be used toeasilyobtain measurements that can be used to select the right

resources on which to schedule instances of the application. In the following sub-section

I present the results of performing a number of experiments to investigate the levels of

performance offered by hardware resources distributed across a subset of a computational

Grid. The application, and support on correctly instrumenting it were kindly provided by

Geo
rge

 P
. T

so
ulo

up
as

87

a team of fellow researchers at the University of Amsterdam. These experiments show

how one can rank resources based on a benchmark derived from the blood-flow simula-

tion kernel. The work presented here is in collaboration with researchers at the University

of Amsterdam [66].

5.1.1 The Application

These benchmarking experiments employ a parallel solver from the Virtual Radiology

Explorer (VRE) Grid-based Problem Solving Environment (PSE), a type of integrated

collaborative environment [41] that includes simulation, interaction, and visualization

components for pre-treatment planning in vascular interventional and surgical procedures.

This PSE was developed by the University of Amsterdam and deployed within the Euro-

pean Crossgrid project [65]. The VRE contains an efficient parallel computational hemo-

dynamics solver [7] that computes pressure, velocities, and shear stresses during a full

systolic cycle. The simulator is based on the Lattice-Boltzmann method (LBM), a meso-

scopic approach for simulating fluid flow based on the kinetic Boltzmann equation [67].

The data used as input for the VRE can be obtained from several imaging techniques

used to detect vascular disorders. For instance, 3D data acquired by Computed Tomogra-

phy or Magnetic Resonance Imaging, or particularly Magnetic Resonance Angiography

for imaging blood vessels that contain flowing blood. To convert the medical scans into

meshes the solver can work with, the raw medical data is first segmented so that only the

arterial structures of interest remain in the data set (Figure 261).

1Image courtesy of the University of Amsterdam.

Geo
rge

 P
. T

so
ulo

up
as

88

Figure 26: Segmented medical data from the abdominal aorta, accessible via
Grid Storage Elements functioning as medical repositories.

Measurements are important for diagnoses. Clinical decision-making relies on evalua-

tion of the vessels in terms of the degree of narrowing for stenosis and dilatation (increase

over normal arterial diameter) for aneurysm. The selection of a bypass (its shape, length,

and diameter) depends on sizes and geometry of an artery.

5.1.2 Using GridBench

As described in the first section of this chapter, the main goal of GridBench is to

generate metrics that characterize the performance capacity of resources belonging to a

Virtual Organization (VO). In addition one can see how GridBench can be a used as a tool

for researchers that wish to investigate various aspects of Grid performance using well-

understood kernels that are representative of more complex applications deployed on the

Grid. In order to perform benchmarking measurements in an organized and flexible way,

GridBench provides a means for running benchmarks on Grid environments as well as

Geo
rge

 P
. T

so
ulo

up
as

89

collecting, archiving, and publishing the results. The framework allows for convenient

integration of new applications benchmarks into the suite, as well as the customization of

existing benchmarks through parameters.

5.1.3 Results

The application benchmark, the BStream kernel, is part of an interactive Grid appli-

cation that involves processing of 3D data, which makes it computationally expensive.

Shown here is the computationally intensive part of the application, which uses the Mes-

sage Passing Interface (MPI) for parallelization. This code was instrumented to measure

elapsed time for each iteration as well as the time spent on MPI communication, and in-

tegrated into GridBench2 . Dataset files from simple tube-like artery structures to aorta

segments containing bifurcartions. They were used to represent typical workload.

5.1.3.1 Resource Comparison

Figure 27(a) shows the measured iteration times of the BStream kernel on 13 sites

available in the testbed. In each case, the same workload was applied by using identical

input data and parameters. Figure 27(a) shows the results obtained by using 2 CPU’s in

each measurement. For the 2 CPU measurements, using 2 CPU’s on the same Worker

Node was preferred over using two CPU’s on two different Worker-Nodes. This is im-

portant, since it was found that this would seriously impact performance of this kernel

(Figure 29). Resourcescluster.ui.sav.skand loki01.ific.uv.esemploy single-CPU nodes

2The charts presented in this section were automatically generated using the GridBench Graphic User
Interface.

Geo
rge

 P
. T

so
ulo

up
as

90

while the majority of site employ dual-CPU Worker Nodes. In Figure 27(a) (as well as

the rest of the charts in Figure 27) one observes that iteration times remain fairly constant

throughout the duration of the computation. For the experiments, the application kernel

was set to run for 800 iterations, so it can be seen that right before the end of each run

(at around 760 to 780 iterations) a jump in performance of about 30% larger time per

iteration values is experienced in all nodes. This is mainly due to the design of the current

version of the kernel, where the first processor that started running gathers data from all

other processors before producing the final output3 . Nevertheless, iteration times remain

relatively invariant regardless of the number of iterations. For this reason it is reason-

able to assume that short run-time experiments (using a small number of iterations) are

representative of real-life experiments, in which larger iteration counts are used.

Figures 27(b), 27(c) and 27(d) show the performance of the kernel at a set of sites

using 4, 8 and 12 CPU’s respectively. Generally one observes a “downward” trend in-

dicating that the code is somewhat scalable, i.e. using a larger number of CPU’s at a

given site will yield a faster run-time, but more on scalability will be given in the next

sub-section.

5.1.3.2 Scalability

Figure 28 shows the scalability of the kernel as it is measured at four sites:cgce.ifca.org.es

(up to 12 CPU’s),cluster.ui.sav.sk(up to 12 CPU’s),xgrid.icm.edu.pl(up to 8 CPU’s) and

zeus24.cyf-kr.edu.pl(up to 8 CPU’s). It is quite interesting to observe that the different

3The new version of the BStream kernel, which is work in progress at the time of writing, has a different
design that addresses this issue.

Geo
rge

 P
. T

so
ulo

up
as

91

(a)

(b)

(c)

(d)

Figure 27: The performance of the kernel at a set of sites using 2, 4, 8 and 12
CPU’s

sites display a different scalability. For example, in Figure 28(a) the runtime is reduced

to less than 30% when going from 2 CPU’s to 8 CPU’s, while in Figure 28(b) the im-

provement is only just under 50%. Similarly, while in 28(a) there is approximately a 25%

improvement in runtime when going from 8 CPU’s to 12 CPU’s, in 28(b) there is only

marginal improvement. Scalabilityat each resourceneeds to be taken into consideration

for efficient resource selection.

Geo
rge

 P
. T

so
ulo

up
as

92

(a) (b)

(c) (d)

Figure 28: Scalability as it is measured at four sites. Lower iteration times are
better.

5.1.3.3 Communication measurements

The BStream kernel uses MPI for inter-process communication, which were com-

piled using the MPICH4 device. The code is highly coupled and it is expected that the

performance of the interconnect, i.e., the LAN connecting the cluster nodes will have a

considerable impact on the performance of the kernel. To investigate this, the BStream

code was instrumented to measure the time spent in communication4 . To isolate the

4The impact of the instrumentation was measured and was found to be insignificant.

Geo
rge

 P
. T

so
ulo

up
as

93

(a) (b)

Figure 29: Impact of MPI communication on runtime. 29(a) Iteration and com-
munication times using 2 CPU’s on the same (dual) Worker Node (1x2), and 1
CPU on each of 2 Worker Nodes. 29(b) Iteration and communication times us-
ing 2 CPU’s on each of 2 (dual) Worker Nodes (2x2), and 1 CPU on each of 4
Worker Nodes (4x1).

effect of the network, the code was executed using just two CPU’s on a dual-CPU Worker

Node (1x2)5 , using two CPU’s on two different (identical) Worker Nodes (2x1). This is

shown in Figure 29(a). Figure 29(b) shows a similar experiment using 4 CPU’s. In 29(a)

one observes that there is considerable difference in communication performance which

also impacts the time per iteration. On the other hand, in 29(b) it can be observed that

there is no significant difference when running in either mode, since the network is used

is both cases (both in 2x2 and in 4x1).Geo
rge

 P
. T

so
ulo

up
as

94

Figure 30: Completion times of the BStream kernel using different numbers of
CPU’s on several resources.

5.1.3.4 Decision-making

Figure 30 conveys a lot of useful information since it provides a ranking of run-times

on all of the resources available at the time. This ranking could be used directly in re-

source selectionespeciallyin cases where the relative CPU, Memory and network speeds

at each resource (site) are not known. For example, it appears that it is better to run the

code atzeus24.cyf-kr.edu.plusing 4 CPU’s than atcluster.ui.sav.skusing 8 CPU’s.

Through this set of results it can be deduced that ranking resources based on the

performance of a stripped-down and instrumented version of an application can give us

5The MPI library used was not optimized for SMP, and communication still went through the TCP/IP
stack.

Geo
rge

 P
. T

so
ulo

up
as

95

realistic resource rankings that reflect the performance of the application itself. Yet, while

this is a viable solution it is still an expensive one since the performance measurement is

application specific and the performance charecteristics many times prove quite different

between applications.

5.2 SiteRank

Computational resources on the Gridexhibit considerable variance in terms of dif-

ferent performance characteristics. This leads to non-uniform application performance

that significantly varies between applications. A quick survey of the distribution of per-

formance of grid resources yields the results in Fig. 31. It shows three histograms, each

showing the performance distribution of the same set of resources under different work-

loads , i.e. when different performance criteria are taken into account. For each workload,

the performance of 159 computational resources was measured and categorized into 22

bins; the frequencies were plotted in the histograms.

The three histograms are clearly dissimilar, even in the case of the microbenchmarks

c512kandmflops-4. Results frommflops-4resemble a Normal distribution whereas re-

sults from thepovrayrendering application and thec512kcache benchmark are skewed

in opposite directions.

The useful information that comes out of this is that there is a need for resource

performance to be characterized by several criteria. Grid resourcesdo exhibit distinct

performance characteristics, and the performance of a resource isnot always directly

Geo
rge

 P
. T

so
ulo

up
as

96

Figure 31: Performance distribution of resources by different performance crite-
ria.

proportional to another; the workload by which performance is measured will affect the

resource’s relative performance.

5.2.1 Auditing and the deficiencies in current approaches

One approach for ranking resources in terms of performance is the one taken by

the current (EGEE) infrastructure, which is to publish GlueHostBenchmarkSF00 (SPEC-

Float 2000 floating point performance metric) and GlueHostBenchmarkSI00 (SPEC-Int

Geo
rge

 P
. T

so
ulo

up
as

97

2000 integer performance metric) values for each site. These values are supplied by the

site administrators by manually entering these values in a configuration file. While ad-

ministrators are advised to include this data, they are not forced to do it. It is indicative

that at the time of data collection, over 21% of the resources were not publishing any

Spec-Int value and over 45% did not publish any Spec-FP value (usually quoted as “0”)

at all.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 500 1000 1500 2000 2500

S
S

 a
pp

. p
er

fo
rm

an
ce

SpecFP00

Measured SS Performance Vs Quoted SpecFP00

SF00

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 500 1000 1500 2000 2500

P
O

V
R

ay
 a

pp
. p

er
fo

rm
an

ce

SpecFP00

Measured POVRay Performance Vs Quoted SpecFP00

SI00

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

S
S

 a
pp

. p
er

fo
rm

an
ce

SpecInt00

Measured SS Performance Vs Quoted SpecInt00

SI00

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

P
O

V
R

ay
 a

pp
. p

er
fo

rm
an

ce

SpecInt00

Measured POVRay Performance Vs Quoted SpecInt00

SI00

(d)

Figure 32: How thequotedperformance metrics in Informations Systems relate
to actual application performance.

Geo
rge

 P
. T

so
ulo

up
as

98

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 1000 2000 3000 4000 5000 6000 7000

S
S

 a
pp

. p
er

fo
rm

an
ce

MFlops4

Measured SS Performance Vs Measured MFlops4

MFlops4

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

S
S

 a
pp

. p
er

fo
rm

an
ce

Dhry

Measured SS Performance Vs Measured Dhry

Dhry

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5e+09 1e+10 1.5e+10 2e+10 2.5e+10 3e+10 3.5e+10 4e+10 4.5e+10

S
S

 a
pp

. p
er

fo
rm

an
ce

c512k (cache perf.)

Measured SS Performance Vs Measured c512k(cache)

c512k

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 1000 2000 3000 4000 5000 6000 7000

P
O

V
R

ay
 a

pp
. p

er
fo

rm
an

ce

MFlops4

Measured POVRay Performance Vs Measured MFlops4

MFlops4

(d)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

P
O

V
R

ay
 a

pp
. p

er
fo

rm
an

ce

Dhry

Measured POVRay Performance Vs Measured Dhry

Dhry

(e)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 5e+09 1e+10 1.5e+10 2e+10 2.5e+10 3e+10 3.5e+10 4e+10 4.5e+10

P
O

V
R

ay
 a

pp
. p

er
fo

rm
an

ce

c512k (cache perf.)

Measured POVRay Performance Vs Measured c512k(cache)

c512k

(f)

Figure 33: How themeasuredperformance metrics in Informations Systems
relate to actual application performance.

Since the SPEC benchmarks are commercial, it is unlikely that Resource providers

or administrators will actually run the benchmarks on the specific machines. When the

valuesareprovided they are usually the number published by the vendor of the hardware,

a measurement probably obtained under quite different circumstances and in a very tuned

setting.

Even when actually supplied, values quoted by site administrators cannot be relied

upon; Figure 32 shows how the quoted performance metrics in Informations Systems

relate to actual application performance.6

6It is important to note that the benchmarks themselves are not criticized, not even their application in
this context. The SPECInt, SPECFloat and their variants are highly respected and appreciated and would

Geo
rge

 P
. T

so
ulo

up
as

99

Figure 33 show how themeasuredperformance metrics relate to application perfor-

mance. Regardless of the type of microbenchmark used, it is obvious that the metrics

correlate to the actual application performance (a detailed study on metric follows in later

sections).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 500 1000 1500 2000 2500

P
O

V
R

ay
 a

pp
. p

er
fo

rm
an

ce

SpecFP00

Measured POVRay Performance Vs Quoted SpecFP00

SI00

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 1000 2000 3000 4000 5000 6000 7000

P
O

V
R

ay
 a

pp
. p

er
fo

rm
an

ce

MFlops4

Measured POVRay Performance Vs Measured MFlops4

MFlops4

(b)

Figure 34: How the quoted performance metrics in Informations Systems relate
to actuall application performance.

Contrasting the two graphs, illustrates the effectiveness of aquoted metric (Fig-

ure 34(a)) in contrast to a measured metric (Figure 34(b)). The charts speak for them-

selves; Clearly, thequoted metric does a very poor job in justifying application perfor-

mance.

Another approach for obtaining a more realistic ranking of resources would be to run

the application itself on the resources, collect, analyze and make decisions based on the

probably do a much better job characterizing resources had they met the free/open-source criterion that
needs to be imposed.

Geo
rge

 P
. T

so
ulo

up
as

100

results. This has been the subject of Section 5.1. This, of course, would be a rather costly

endeavor for the following reasons:

• The number of applications that run on the grid is growing rapidly. Taking one

large infrastructure (EGEE) as example, the number of VO’s alone is over 100, and

each VO potentially has several applications in it’s toolkit.

• VO’s are usually mapped to different resources, so the performance experienced by

one VO can be quite different than that of another.

• Application performance is in some cases dependent on input parameters and data-

sets, thus further increasing the number of experiments that need to be done.

• The number of resources is growing, for example the EGEE infrastructure currently

spans around 300 sites having queues that are are well into the thousands.

• The infrastructure is volatile, new nodes enter and leave the grid, VO resource al-

locations change often, Grid resources are upgraded, re-configured and many times

mis-configured. This calls for repeated measurements in order to have up-to-date

information.

In order to overcome these problems, the number of measurements that need to be

taken has to be radically reduced. The methodology that follows tries to address exactly

these issues.
Geo

rge
 P

. T
so

ulo
up

as

101

5.2.2 The Ranking Methodology

The GridBench tool provides aSiteRank modulethat allows the user to interactively

and semi-automatically build aranking model. Aranking modelconsists offiltering,

aggregationandranking functions(Figure 35).

Figure 35: The ranking process.

Filtering refers to a user selection regarding which results will be included or excluded in

the ranking process.Attribute filteringallows the user to limit the selected set of measure-

ments to the ones that match certain criteria in the benchmark description. For example,

the user can limit the selection to a specific VO or to a specific type of CPU. The user

can also limit results based on the date and time they were obtained, thus limiting the

selection to recent results.

Aggregation allows the user to specify grouping of the measurements. The user can

specify whether each measurement will count equally towards the evaluation of a site,

Geo
rge

 P
. T

so
ulo

up
as

102

irrespective of which worker-node it was executed on. In this case, the reported metric

may possibly be less representative of the resource as a whole because some individual

worker-nodes may be over-represented. On the other hand, this will tend to be more repre-

sentative of what the user actually experiences once the resource’s policy is applied. The

Aggregationstep produces a set of statistics for each metric:mean,standard-deviation,

min,max,average-deviationandcount. During the aggregation step, the raw metrics are

normalized according to a base value. The base values are configurable; in these experi-

ments values from a typical 3.0GHz Xeon worker-node were used. For example, the value

of 1050.0 was used to normalize the Mflops4 metric. The aggregation step is also impor-

tant for the conversion of vector-type metrics, such as the ones produced by CacheBench

into scalars (see later description on thec512kmetric) so that they can be used in ranking

functions.

Ranking Function Construction: The end goal of this methodology is a ranked list of

computational resources that reflects the performance that users will experience running

a specific application. It involves establishing a relationship between application perfor-

mance and a set of low-level measurements. The process is illustrated in Figure 36, and

it is outlined by the following steps:

1. Sampling: Obtain low-level performance metrics~m for a small sample of re-

sources – typically 10-15% of the full-set of resources. For the same sample of

resources also obtain application performance measurements, i.e. application com-

pletion times. The application performance of this sample is denotedα where each

α = 1/(completion time).

Geo
rge

 P
. T

so
ulo

up
as

103

2. Ranking Function Generation: Determine aRanking FunctionR based on the

low-level metric data~m and application performanceα, so thatα = R(~m). This

involves the selection of the low-level metrics that closely correlate to this applica-

tion’s performance, followed by a linear fit of the data, i.e. multivariate regression.

3. Estimation: For the set of the remaining resources, obtain only low-level perfor-

mance metrics~M , and apply the ranking function in order to obtain an estimate of

the application performanceAest such thatAest = R(~M). SortingAest produces

theRank Estimation.

Figure 36:Rank Estimategeneration process outline.

Section 5.3 provides a complete experiment that illustrates this process in greater

detail.

5.2.3 Metrics

Selecting theright metrics to characterize the resources is of utmost importance in

order to adequately characterize the major computational characteristics that affect appli-

cation performance. In fact, agood set of metricsone that can adequately explain the

Geo
rge

 P
. T

so
ulo

up
as

104

Table 6: Metrics and Micro-Benchmarks.
Factor Metric Delivered By

CPU Floating-Point operations per second Flops
CPU Integer operations per second Dhrystone
Main memory sustainable memory bandwidth in MB/s

(copy,add,multiply,triad)
Stream

Main memory Available physical memory in MB Memsize
Cache memory bandwidth using different memory sizes in

MB/s
CacheBench

Disk (local) Disk bandwidth for read/write/rewrite bonnie++
Interconnect (MPI) latency, bandwidth and bisection bandwidth MPPTest

performance of several distinct applications. In the process of picking the right metrics

and the right benchmarks to deliver these metrics, the investigation was limited to freely

available tools that could be widely deployed and run. Keeping the number of metrics low

was a primary aim and, whenever possible, well-known metrics were favored. A more

detailed discussion on the benchmarks can be found in [70].

Table 5.2.3 shows a list of low-level metrics and the associated benchmarks.

The Flops benchmark yields 4 metrics,Mflops1,Mflops2,Mflops3andMflops4, each

consisting of different mixes of floating-point additions, subtractions multiplications and

divisions. Dhrystone yields thedhry integer performance metric. The STREAM mem-

ory benchmark yields thecopy,add,multiply andtriad metrics which measure memory

bandwidth using different operations.

5.2.3.1 The c512k cache metric

Because of the multi-level hierarchical structure of memory architectures –that involve

Level1, Level2, Level3 caches and sometimes beyond– and due to the fact that there are

numerous heterogeneous types of CPU’s in a typical Grid environment, there is a need

Geo
rge

 P
. T

so
ulo

up
as

105

to uniformly characterize cache without the assumption of availability of special cache

instruments. A widely accepted approach for cache performance measurement is the one

taken by cachebench [49].

In this empirical approach to determining some of the parameters of the memory

subsystem, the benchmark measures memory bandwidthB by allocating and accessing

progressively larger array sizess, the CacheBench benchmark produces a series of values

Bs wheres = 28, 29, 210 . . . 2n.

This is easiest to interpret in the form of a graph ofsizeversusbandwidth. An illus-

tration of such a graph is shown in Figure 37. It shows the memory bandwidth (y-axis)

as it is measured when accesing progressively larger allocated memory sizes. We observe

the first “knee” on the curve when the allocation of memory that is accessed exceeds the

first level of cache. The are typically more knees on the curve as the memory allocation

reaches subsequent levels of cache.

array size (log scale)

B
a
n
d
w

id
th

Figure 37: Typical result ofcachebench

Geo
rge

 P
. T

so
ulo

up
as

106

Figure 38 shows examples of cache measurement from different machines. They

are obviously different in both the actual size of the different levels of cacheand the

bandwidth.

array size (log scale)

B
a
n
d
w

id
th

Figure 38: Heterogeneous resources yield different resultsthat are difficult to
compare

Thec512k,c1M,c2M,c4M andc8M are introduced in order to be able to uniformly

compare cache performance. They are simple metrics that aim to characterize cache

from the point of view of applications with differnt memory foot-prints. We make the

assumption that application performance is proportinal to cache sizeand proportional

to cache bandwidth – perhaps not directly proportional in either case but proporional

nonetheless. The calculation of the metrics involves calculating the area under the curve

in specific intervals as shown in Figure 39.

Each of the metrics is calculated by summing up the product of the bandwidths and

respective sizes, thus we derive a metric that takes into account both the cache sizeand

Geo
rge

 P
. T

so
ulo

up
as

107

array size (log scale)

B
a
n
d
w

id
th

c512k

c1M

c2M

c4M

512k

Figure 39: The area under the size/bandwith curve

the cache speed (i.e. bandwidth) :
∑n

s=8
s × Bs. For example, summing up to 512kb, i.e.

∑
19

s=8
s×Bs yields thec512kmetric. This is done for sizes up to 512kb, 1Mb, 2Mb, 4Mb,

8Mb yielding the metricsc512k,c1M, c2M, c4M andc8M respectively. This is roughly

equivalent to taking theaverageof the measured bandwidths in the given range.

This approach alleviates the problem of looking up the cache size for the multitude of

CPU’s on the Grid, or detecting the cache sizes of a potentially multilevel cache, while at

the same time taking the cache bandwidth into account.Geo
rge

 P
. T

so
ulo

up
as

108

5.3 Experimentation

In this section I demonstrate the proposed methodology by automatically determining

a Ranking Function, obtaining aRanking Estimateand validating that the Ranking Esti-

mate is accurate by directly measuring the performance of the application. This is done

for two applications, on a set of about 230 sites that belong to the EGEE infrastructure.

Two serial applications were used:

• povray: The Povray v3.6 ray-tracing application using thebenchmark.povscene at

a 40x40 resolution.

• sisc: The SimpleScalar, computer architecture simulation using a sample data-set.7

For this experiment, I aimed at having between 2 and 3 measurements from each

computational resource. One noteworthy fact is that I could only obtain results for about

160 out of the 230 sites. This was partly due to errors and site unavailability, but also

due to exhausted quotas at some resources. I used the GridBench framework to obtain the

measurements. The process of integrating the two applications into GridBench including

the compilation took less than one hour and only needs to be performed once. The process

of actually running all the experiments took less than 10 minutes, although I did have to

7Limited execution privileges for the Virtual Organization through which I performed the experiments,
dictated that I use parameters resulting in short application completion times. This applied both topovray
and tosisc.

Geo
rge

 P
. T

so
ulo

up
as

109

wait for a day or so until the results from all the queued jobs were in. I then exported

these results into an open-source statistics software package8 (“R”).

The data-set obtained by running the benchmarks on all the available computational

resources will be referred to from now on as thefull-set. Out of the full-set, I obtained a

random sample, henceforth referred to as thesample-set, with results from 24 resources

(15% of the full-set). Acorrelation matrixindicates which metrics are most correlated

Figure 40: Correlation Matrix for thepovrayapplication.

to application performance; this is shown in Figure 40. The problem of collinearity must

be taken into consideration when narrowing down the selection of metrics. As shown in

Figure 40 some metric groups are highly collinear, in such cases we eliminate the collinear

metrics by selecting one metric out of the group, i.e. the one with the highest correlation

to the application. In this example I keptMflops4and discardedMflops2,Mflops3and

dhry. Selecting theMflops4andc512kmetrics for building the Ranking Function, leads

to the next step, i.e. calculating thea andb coefficients in order to best satisfy:

8Use of the R software was limited to establishing the relationship between the low-level metrics and
application performance, and the validation of the results. All charts included in this chapter were created
using GridBench

Geo
rge

 P
. T

so
ulo

up
as

110

αpovray = a × Mflops4 + b × c512k

Outlier removal is achieved by performing a linear regression, and data-points that

fall more than two standard deviations away from the rest are filtered out. In this specific

example, 2 out of the 18 points were dropped. Linear regression is performed once again

using the filtered sample-set, which yields the coefficientsa = 0.94 (for Mflops4) and

b = 0.46 (for c512k). Finally, I apply this model on thefull-set in order estimate the

performance of the application:

~Apovray = 0.94 ~MMflops4 + 0.46 ~Mc512k

Povray −Rank Estimate

performance=1/(completion time)

N
o
rm

a
li
z
e
d
 S

it
e
 P

e
rf

.

Figure 41: Rank Estimate for thepovray application

Ordering the list of resources byApovray gives theRank Estimate. The Rank Estimate

is shown in Figure 41.

In order to test that the Ranking Estimate is accurate the performance of the applica-

tion was directly measured for the whole infrastructure. This is only necessary in order to

Geo
rge

 P
. T

so
ulo

up
as

111

Figure 42: Measuredpovray performance on 159 resources of the EGEE infras-
tructure.

validate the model and not part of the methodology. The measured performance is shown

in Figure 42.

The agreement between the Rank Estimate and the measured ranking can be statis-

tically tested by calculating therank correlation. There are several ways of doing this,

such as Kendall’sτ , which ranges from -1 to 1 and is also known as the “bubble-sort

distance”. Kendall’sτ yieldedτ = 0.90. Spearman’sρ, which again ranges from -1 to

1, yieldedρ = 0.977. Finally, Pearson’s correlation coefficient yielded 0.98. All three of

the statistics show that the two rankings are quite similar. Theτ statistic appears consid-

erably lower that the other two, due to the fact that the data-set contains a lot of resources

that are of almost identical performance. Extremely small fluctuations in measurement

are enough to change the ordering. Yet, since the performance of the resources is nearly

identical, so the reordering is not very significant. For this reason the author is inclined to

takeρ = 0.977 as the more representative measure.

Geo
rge

 P
. T

so
ulo

up
as

112

For the second application,sisc, the same methodology was used as well asthe same

sample-setthat was used in the previous case. The metrics dictated by the correlation

matrix aredhryandc512k. Performing the regression, outlier removal and then estimating

the metric coefficients yields:

~Asisc = 0.27 ~Mdhry + 0.18 ~Mc512k

Figure 43: Rank Estimate for thesisc application on the EGEE infrastructure.

The Ranking estimate is given in Figure 43. The correlation of estimated and actual

is again quire high with a value ofρ = 0.959. Thus, for both applications the ranking

of resources based on low-level measurements provides results that are very close to the

ranking produced by running the application itself.

Ranking based on derived models of low-level metrics, describes an alternative way

of choosing and ranking resources. I propose a semi-automated user-driven approach to

ranking Grid resources that employs user-specified metrics andranking functions.

The process of running benchmarks collecting and analyzing results and generating

ranked lists, would simply not be feasible if it had to be done manually, especially if it

Geo
rge

 P
. T

so
ulo

up
as

113

had to be done by the end user. Furthermore, users couldaudit verify the “advertised”

performance of a resource by running these light-weight benchmarks, or even detect prob-

lems at certain sites. Eventually, resource performance information will be coupled with

resource pricing information. Users will then be able to “shop around” and pick the right

resources (e.g. black-listing or white-listing) in order to influence the matchmaking pro-

cess is a way that benefits them. The SiteRank module of the GridBench tool allows

the user to interactively construct and modify ranking functions based on the collected

measurements. TheRanking Estimatehas proven to be quite accurate with a very high

correlation to measured application performance for at least two applications,povrayand

SimpleScalar.

In this chapter I have illustrated that current approaches to expressing the performance

of resources, such as publishing thequoted, not measured, GlueHostBenchmarkSF00 and

GlueHostBenchmarkSI00 metrics into the information system are not satisfactory, since

they do not correlate well with at least the two applications that I have investigated.

Geo
rge

 P
. T

so
ulo

up
as

Chapter 6

Summary and Conclusion

The work presented here has the distinct goal of providing a methodology that will

improve the way resource selection is performed as it pertains to computational resources

in Grid environments.

The main contributions of this work can be summarized in the following:

• An approach towardsputting performance measurements into contextin order to

effectively utilize measurements;

• Designed and implementeda tool for testing and performance evaluationof Grid

resources that is useful on real, large, state-of-the-art systems in production today;

• Illustrated how the current approach using quoted metrics can be flawed and con-

trasted against the argument of usingmeasured user-obtained metrics;

• Shown how an easily obtained metric,c512k(c1M , c2M), correlates well with the

investigated applications.

114

Geo
rge

 P
. T

so
ulo

up
as

115

• Proposed a powerful yet very simplemethodology for Grid computational resource

ranking;

6.1 Putting performance measurements in context.

For a metric or specific measurement to have any meaning, it needs to be put into

context, especially in a large dynamic system such as the Grid. A measurement, with

the associated context should at least contain(i) the definition of a specific test or bench-

mark invocation with specific parameters (thewhat); (ii) the target resources (thewhere);

(iii) the time of execution (thewhen);(iv) the status of the target machines during exe-

cution collected through monitoring (thestate); and, obviously,(v) the resulting metrics

(theresult).

GBDL (the GridBench Definition Language) is an XML-based language, introduced

in order to describe the measurement’s context. It encodes basic information required to

describe and execute tests and benchmarks. It enables the annotation of test or benchmark

definitions with performance-related metadata representing the conditions of a particular

experiment and the metrics derived from that experiment. The main goals of GBDL are

to:

• Allow for a standardized definition of tests and benchmarks that is independent of

the underlying middleware platforms used to execute them;

• Enable the specification of the monitoring information that should be collected dur-

ing a benchmark execution from an available Grid monitoring system;

• Serve as a container for the context-augmented results.

Geo
rge

 P
. T

so
ulo

up
as

116

Figure 44: Structure of a GBDL document.

A GBDL document contains the definition of a test or benchmark (testmark) invoca-

tion with specific parameters, the target resources under measurement, a time-stamp of

the experiment undertaken, the status of the target machines during execution as captured

by monitoring systems, and the resulting metrics.

Different middleware require different Job Definition Languages such as RSL, JDL

or JSDL. For this reason, GBDL encodes the basic required information for executing the

test or benchmark job and obtaining the measurement. The GBDL can then be translated

to the native description of the job as the specific middleware requires.

6.2 A tool for performance evaluation and testing

A system has been developed that aims to alleviate many of the complexities of testing

and benchmarking large numbers of Grid resources. The tools serves as a “virtual work-

bench” for performing test/benchmark experiments easily and interactively. The tool –

extensible via plugin mechanisms – allows for submitting tests and benchmarks, archiv-

ing specifications and results, and serves as an aid for the analysis of the resulting metrics.

The GridBench tool puts a set of tests, micro-benchmarks and kernel benchmarks at the

Geo
rge

 P
. T

so
ulo

up
as

117

users disposal and allows the easy tuning of the existing tests/benchmarks and the easy

addition of new ones. Users can drag-and-drop tests/benchmarks onto a graphical and

dynamic representation of grid resources, get feedback on the progress of execution, keep

track of the quality of the reported metrics, and combine fresh with historical results into

charts, all from the same user interface (Figure 45). Though the tool’s ranking module the

user can interactively follow a three-step process –filter, aggregate,rank– that allows for

flexible, user-driven ranking of resources.

Figure 45: The GridBench user interface.

Several use-case scenarios were presented which illustrate the functionality and ease

of use of the tool. One use-case illustrated how end-users and administrators can perform

test/benchmark experiments, both for resource selection and for determining the opera-

tional status of resources. Another use-case illustrated how a user or application developer

Geo
rge

 P
. T

so
ulo

up
as

118

can obtain results from new application-based benchmarks using the GridBench frame-

work. Another use-case presented a run-though of the functionality of the tool in terms

of interactive, user-driven ranking of resources using ranking functions.

These tasks would simply not be feasible if they had to be done manually, especially if

they had to be done by the end user. Users can now use this approach in the search for the

right resources on which to run their application, by testing and ranking resources by what

theyconsider important in terms of functionality or performance. Furthermore, users can

verify the “advertised” performance of a resource by running light-weight benchmarks.

Eventually, resource performance information will be coupled with resource pricing in-

formation. Users will then be able to “shop around” and pick the right resources, using

simple ranking functions/models that account for pricing information, in order to influ-

ence the matchmaking process is a way that benefits them.

6.3 Auditing resource performance: The argument for using measured, end-to-end

user-obtained metrics.

Resource performance is interesting to users and operators. This is indicated by the

fact that current Information Systems include such information in the form ofSPEC Int

2000andSPEC Float 2000values. Yet, the mechanisms by which these performance

metrics are obtained and published leaves a lot of room for error. For the purpose of

illustrating this, Figure 46 shows how the quoted metrics and measured metrics correlate

to application performance.

Geo
rge

 P
. T

so
ulo

up
as

119

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 500 1000 1500 2000 2500

P
O

V
R

ay
 a

pp
. p

er
fo

rm
an

ce

SpecFP00

Measured POVRay Performance Vs Quoted SpecFP00

SI00

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 1000 2000 3000 4000 5000 6000 7000
P

O
V

R
ay

 a
pp

. p
er

fo
rm

an
ce

MFlops4

Measured POVRay Performance Vs Measured MFlops4

MFlops4

(b)

Figure 46: How the quoted performance metrics in Informations Systems relate
to actuall application performance.

The spread of data-points in Figure 46(a) indicates the low correlation of the “ad-

vertised” metric (SPEC-Float) that resourcesclaim to have, to actual application perfor-

mance. Figure 46(b) shows a chart of actual application performance versus measured

performance (MFlops4). The correlation in this case, manifested as a low spread, is much

higher. This illustrates that the measured metrics are much more effective in justifying

application performance.

6.4 The c512k metric and it’s correlation to actual application performance.

Choosing the right metrics to collect is of vital importance, as an incomplete set of

metrics will yield poor characterization. For example, initial experiments did not include

metrics that characterize the memory cache. While collecting measurements about the

cache, the data was in a form that was rather difficult to integrate into a regular function.

Geo
rge

 P
. T

so
ulo

up
as

120

Also, it was initially falsely assumed that the cache effects would be largely accounted for

in other metrics. The initial results were not very encouraging; but including the cache

metrics, i.e.c512k, completely changed the situation.

By summing up the product of the bandwidths and respective sizes (obtained from

CacheBench) we derive a metric that takes into account both the cache sizeand the cache

speed :
∑n

s=8
s × Bs. This is done for sizes up to 512kb, 1Mb, 2Mb, 4Mb, 8Mb yielding

the metricsc512k,c1M, c2M, c4M andc8M respectively. Summing up to 512kb, i.e.

∑
19

s=8
s × Bs yields thec512kmetric.

The inclusion ofc512kas a candidate variable improved correlation considerably. In

one application,SimpleScalar, theρ rank correlation statistic was improved from from

approximatelyρ = 0.8 to ρ = 0.96 . This also reaffirms the wide-spread impression that

a well-sized, fast cache is essential to many computational applications.

6.5 A methodology for computational resource ranking.

The SiteRank module, an integral module of the GridBench tool, allows the user to

interactively build aranking model; the process is outlined in Figure 47.

In this methodologyfiltering generates a selection of results the form the basis of the

ranking model. The next setp,aggregationallows for grouping of the measurements. It

can be seen as a pre-processing step that will generate normalized representative metrics

for each resource, such as themean,standard-deviation,min,max,average-deviationand

count.

Geo
rge

 P
. T

so
ulo

up
as

121

Figure 47: The ranking process workflow

The last and most important step is theRanking Function Construction. It is itself

comprised of three steps:Sampling,Ranking Function GenerationandEstimation. In

a nutshell, once low-level metrics and application performance performance metrics are

collected for a sample of the resources, the measurements are used to derive a function that

is to become the ranking function. Variable selection is done by selecting variables (i.e.

low-level metrics) with the highest correlation with the performance of the application at

hand.

While the function can be arbitrarily complex and not necessarily linear, it has been

found that in the investigated scenarios a small number of metrics, and a linear fit of the

data suffices to produce a good ranking estimate. The goodness of the ranking statistically

evaluated by calculating Spearman’sρ. In the investigated scenarios Spearman’sρ gave

values of over 0.95, indicating that the rankestimateaccurately reflected theactualrank.

Geo
rge

 P
. T

so
ulo

up
as

122

6.6 Taking This Work Further

6.6.1 Wider Application Scope

In this thesis a small number of applications is investigated and the results yieled by

this methodology are encouraging. The investigation of more applications, especially ap-

plications that are not CPU or memory bound, is one direction to take. It is useful to

evaluate the extent to which the already described metrics provide sufficient characteriza-

tion.

6.6.2 Applying the proposed ranking to scheduling

Building on the work presented in this thesis, the application of user-driven ranking

functions in scheduling and resource allocation can be investigated in greater detail. This

could involve the inclusion of detailed performance metrics in existing Information Sys-

tems, and the extension of ranking criteria in existing Grid job description languages in

order to make use of this information.

6.6.3 Furthering on Auditing

The concept of auditing can be further investigated in several directions. One direction

could be the use of micro-benchmarks for automated evaluation of Grid “resource health”

and automated detection of degraded performance. For example, it has been observed

during experimentation that many Grid resources (i.e. clusters) exhibit varying degrees of

“internal uniformity”. This usually arises from upgrades of just a fraction of the machines

that make up the cluster, or simply by mixing machines of different capabilities into one

Geo
rge

 P
. T

so
ulo

up
as

123

cluster. This heterogeneity of cluster nodes will potentially considerably affect observed

application performance.

6.6.4 Parallel versus High-Throughput Applications

Grid infrastructures have been extensively considered as a fitting platform on which

to run parallel applications that are loosely or tightly coupled. An example of such an ap-

plication is given in Chapter 5 Section 5.1 and explained in detail in [66]. Technical and

other issues have somewhat impeded the widespread deployment of parallel applications

on Grids such as the EGEE. (One example of such problems is the complexity of effi-

ciently scheduling and queuing of MPI applications.) It is to be expected that deployment

of MPI applications will increase as the infrastructure is becoming more and more stable,

a trend also indicated by the establishment of the EGEE MPI working-group. Since paral-

lel applications/jobs obviously occupy more individual machines in clusters than regular

jobs, it becomes all the more important to effectively audit and evaluate the performance

of resources, as a single “bad” cluster-node will seriously affect overall application per-

formance. The application of the methodology proposed in this thesis can be investigated

in this context.

6.6.5 Extending the Tool

Currently, one part of SiteRank that involves the calculation of the correlation matrix

that effectively drives the variable selection process, is performed outside the GridBench

Geo
rge

 P
. T

so
ulo

up
as

124

interface (i.e. in a statistical package). This, together with an automated variable selec-

tion process, with specific attention to co-linearity of the metrics can greatly improve the

usability of the tool and streamline the process of user-driven ranking.

Geo
rge

 P
. T

so
ulo

up
as

Appendix A

GBDL Definition and Examples

GBDL Translation Examples

A sample GBDL document describing an execution of thecachebenchbenchmark.

<benchmark name=” cachebench ” d a t e =” 20040221195616 ”
t ype =” s i n g l e ” model=” f a l s e ” d e s c r i p t i o n =” ”>

< l o c a t i o n>
<r e s o u r c e name=” ce . g r i d . cesga . es ” cpucoun t =”2 ”

wncount=”1 ” jobmanager=” n u l l ” />
< / l o c a t i o n>
<p a r a m e t e r name=” e x e c u t a b l e ” t ype =” va lue ”

dataType =”0 ”>cachebench< / p a r a m e t e r>
<p a r a m e t e r name=” execpa th ” t ype =” va lue ”

dataType =”0 ”> / op t / cg / g r i d b e n c h / b in< / p a r a m e t e r>
<p a r a m e t e r name=” s t a g ee x e c u t a b l e ” t ype =” va lue ”

dataType =”0 ”>manual< / p a r a m e t e r>
<p a r a m e t e r name=” p a t t e r n ” t ype =” va lue ” dataType =”0 ”

>r ead w r i t e r e a d w r i t e memset memcopy< / p a r a m e t e r>
<p a r a m e t e r name=” inbe tween ” t ype =” va lue ”

dataType =”0 ”>1< / p a r a m e t e r>
<p a r a m e t e r name=” memlog2 ” t ype =” va lue ”

dataType =”0 ”>28< / p a r a m e t e r>
<p a r a m e t e r name=” t i m ei t e r ” t ype =” va lue ”

dataType =”0 ”>2< / p a r a m e t e r>
<p a r a m e t e r name=” r e p e a t ” t ype =” va lue ”

dataType =”0 ”>1< / p a r a m e t e r>
<p a r a m e t e r name=” cpucoun t ” t ype =” va lue ”

125

Geo
rge

 P
. T

so
ulo

up
as

126

dataType =”0 ”>2< / p a r a m e t e r>
<m e t r i c name=” memset ” t ype =” va lue ”>

<v e c t o r name=” hostname ”>g r i d 0 3 . g r i d . cesga . es< / v e c t o r>
<v e c t o r name=” s i z e ”>256 384 . . . 201326592 268435456< / v e c t o r>
<v e c t o r name=” memset ”>1006.9 1458.8 . . . 1 . 9 1 .8< / v e c t o r>

< / m e t r i c>
< / benchmark>

Geo
rge

 P
. T

so
ulo

up
as

127

EPStream

GBDL

<benchmark name=” eps t ream ” d a t e =” 20031209111612 ”>

< l o c a t i o n>
<r e s o u r c e name=” cgnode00 . d i . uoa . g r ”

cpucoun t =”8 ” jobmanager=” jobmanager−pbs ” />
< / l o c a t i o n>
<p a r a m e t e r name=” e x e c u t a b l e ” t ype =” a t t r i b u t e ”

da taType =”0 ”>eps t ream< / p a r a m e t e r>
<p a r a m e t e r name=” execpa th ” t ype =” a t t r i b u t e ”

da taType =”0 ”> / op t / cg / g r i d b e n c h / b in< / p a r a m e t e r>
<p a r a m e t e r name=” s t a g ee x e c u t a b l e ” t ype =” a t t r i b u t e ”

da taType =”0 ”>manual< / p a r a m e t e r>
< / benchmark>

JDL

A u t o m a t i c a l l y Genera ted by GridBench
StdOutpu t = ” s t d . ou t ” ;
S t d E r r o r = ” s t d . e r r ” ;
Arguments = ” ” ;
Inpu tSandbox ={ ” / op t / cg / g r i d b e n c h / b in / eps t ream ”} ;
E x e c u t a b l e = ” eps t ream ” ;
JobType = ” mpich ” ;
NodeNumber = 8 ;
OutputSandbox ={ ” s t d . ou t ” , ” s t d . e r r ”} ;
Requ i rements = o t h e r . CEId==” cgnode00 . d i . uoa . g r / jobmanager−pbs ” ;

RSL

&(resou rceManage rCon tac t =” cgnode00 . d i . uoa . g r ”)
(e x e c u t a b l e =

$(GLOBUSRUNGASSURL) / op t / cg / g r i d b e n c h / b in / eps t ream)
(coun t =8)
(j o b t y p e =mpi)Geo
rge

 P
. T

so
ulo

up
as

128

GB FTB

A file-transfer benchmark

GBDL

<benchmark name=” g b f t b ” d a t e =” 20031209113543 ” t ype =” s imp le ”>

< l o c a t i o n>
<r e s o u r c e name=” ce01 . l i p . p t ” cpucoun t =”1 ”

jobmanager=” jobmanager−pbs ” />
< / l o c a t i o n>
<p a r a m e t e r name=” e x e c u t a b l e ”

t ype =” a t t r i b u t e ” da taType =”0 ”>g b f t b< / p a r a m e t e r>
<p a r a m e t e r name=” execpa th ” t ype =” a t t r i b u t e ”

da taType =”0 ”> / op t / cg / g r i d b e n c h / b in< / p a r a m e t e r>
<p a r a m e t e r name=” s t a g ee x e c u t a b l e ”

t ype =” a t t r i b u t e ” da taType =”0 ”>manual< / p a r a m e t e r>
<p a r a m e t e r name=” s i z e ”

t ype =” va lue ” dataType =”0 ”>4096000< / p a r a m e t e r>
<p a r a m e t e r name=” measurements ”

t ype =” va lue ” dataType =”0 ”>10< / p a r a m e t e r>
<p a r a m e t e r name=” b u f f e rs i z e ”

t ype =” va lue ” dataType =”0 ”>4096< / p a r a m e t e r>
<p a r a m e t e r name=” t a r g e t ” t ype =” va lue ”

dataType =”0 ”>g s i f t p : / / a p e l a t i s . g r i d . ucy . ac . cy / tmp / g b f t b< /
p a r a m e t e r>

<p a r a m e t e r name=” t a r g e t 1 ” t ype =” va lue ”
dataType =”0 ”>g s i f t p : / / ce010 . f zk . de / tmp / g b f t b< / p a r a m e t e r>

<p a r a m e t e r name=” t a r g e t 2 ” t ype =” va lue ”
dataType =”0 ”>g s i f t p : / / xg001 . inp . demok r i t os . g r / tmp / g b f t b< /

p a r a m e t e r>
<p a r a m e t e r name=” t a r g e t 3 ” t ype =” va lue ”

dataType =”0 ”>g s i f t p : / / zeus24 . cyf−kr . edu . p l / tmp / g b f t b< /
p a r a m e t e r>

<p a r a m e t e r name=” t a r g e t 4 ” t ype =” va lue ”
dataType =”0 ”>g s i f t p : / / bee001 . i f i c . uv . es / tmp / g b f t b< / p a r a m e t e r>

<p a r a m e t e r name=” t a r g e t 5 ” t ype =” va lue ”
dataType =”0 ”>g s i f t p : / / c l u s t e r . u i . sav . sk / tmp / g b f t b< / p a r a m e t e r>

<p a r a m e t e r name=” t a r g e t 6 ” t ype =” va lue ”
dataType =”0 ”>g s i f t p : / / ce01 . l i p . p t / tmp / g b f t b< / p a r a m e t e r>
. . .

< / benchmark>

Geo
rge

 P
. T

so
ulo

up
as

129

JDL

A u t o m a t i c a l l y Genera ted by GridBench
StdOutpu t = ” s t d . ou t ” ;
S t d E r r o r = ” s t d . e r r ” ;
Arguments = ” −s 4096000−n 10 −b 4096

g s i f t p : / / a p e l a t i s . g r i d . ucy . ac . cy / tmp / g b f t b
g s i f t p : / / ce010 . f zk . de / tmp / g b f t b
g s i f t p : / / xg001 . inp . demok r i t os . g r / tmp / g b f t b
g s i f t p : / / zeus24 . cyf−kr . edu . p l / tmp / g b f t b
g s i f t p : / / bee001 . i f i c . uv . es / tmp / g b f t b
g s i f t p : / / c l u s t e r . u i . sav . sk / tmp / g b f t b
g s i f t p : / / ce01 . l i p . p t / tmp / g b f t b
g s i f t p : / / cgnode00 . d i . uoa . g r / tmp / g b f t b
g s i f t p : / / a o c e g r i d . uab . es / tmp / g b f t b
g s i f t p : / / x g r i d . icm . edu . p l / tmp / g b f t b ” ;

Inpu tSandbox ={ ” / op t / cg / g r i d b e n c h / b in / g b f t b ”} ;
E x e c u t a b l e = ” g b f t b ” ;
OutputSandbox ={ ” s t d . ou t ” , ” s t d . e r r ”} ;
Requ i rements = o t h e r . CEId == ” ce01 . l i p . p t / jobmanager−pbs ” ;

RSL

&(resou rceManage rCon tac t =” ce01 . l i p . p t ”)
(e x e c u t a b l e =$(GLOBUSRUNGASSURL) / op t / cg / g r i d b e n c h / b in / g b f t b)
(a rguments = ”−s ” ” 4096000 ” ”−n” ” 10 ” ” −b” ” 4096 ”
” g s i f t p : / / a p e l a t i s . g r i d . ucy . ac . cy / tmp / g b f t b ”
” g s i f t p : / / ce010 . f zk . de / tmp / g b f t b ”
” g s i f t p : / / xg001 . inp . demok r i t os . g r / tmp / g b f t b ”
” g s i f t p : / / zeus24 . cyf−kr . edu . p l / tmp / g b f t b ”
” g s i f t p : / / bee001 . i f i c . uv . es / tmp / g b f t b ”
” g s i f t p : / / c l u s t e r . u i . sav . sk / tmp / g b f t b ”
” g s i f t p : / / ce01 . l i p . p t / tmp / g b f t b ”
” g s i f t p : / / cgnode00 . d i . uoa . g r / tmp / g b f t b ”
” g s i f t p : / / a o c e g r i d . uab . es / tmp / g b f t b ”
” g s i f t p : / / x g r i d . icm . edu . p l / tmp / g b f t b ”)Geo
rge

 P
. T

so
ulo

up
as

130

High-Performance Linpack

This benchmark executable requires that a file ”HPL.dat” is in the current working

directory. The classParameterHandlerhpl generates this file and makes it available for

staging to the target resource.

GBDL

<benchmark name=” s i t eh p l ” d a t e =” 20031209114921 ”>
< l o c a t i o n>
<r e s o u r c e name=” ce01 . l i p . p t ” cpucoun t =”2 ” jobmanager=”

jobmanager−pbs ” />
< / l o c a t i o n>
<p a r a m e t e r name=” e x e c u t a b l e ” t ype =” a t t r i b u t e ”>hp l< / p a r a m e t e r>
<p a r a m e t e r name=” execpa th ” t ype =” a t t r i b u t e ”> . . .< / p a r a m e t e r>
<p a r a m e t e r name=” s t a g ee x e c u t a b l e ” t ype =” a t t r i b u t e ”>manual< /

p a r a m e t e r>
<p a r a m e t e r name=” s t a g ef i l e ” t ype =” a t t r i b u t e ”>HPL . d a t< /

p a r a m e t e r>
<p a r a m e t e r name=” p r o b l e ms i z e ” t ype =” va lue ”>180< / p a r a m e t e r>
<p a r a m e t e r name=” b l o c k s ” t ype =” va lue ”>40< / p a r a m e t e r>
<p a r a m e t e r name=”p ” t ype =” va lue ”>1< / p a r a m e t e r>
<p a r a m e t e r name=”q ” t ype =” va lue ”>2< / p a r a m e t e r>
<p a r a m e t e r name=” t h r e s h o l d ” t ype =” va lue ”>16 .0< / p a r a m e t e r>
<p a r a m e t e r name=” p f a c t ” t ype =” va lue ”>1< / p a r a m e t e r>
<p a r a m e t e r name=” nbmin ” t ype =” va lue ”>2< / p a r a m e t e r>
<p a r a m e t e r name=” nd iv ” t ype =” va lue ”>2< / p a r a m e t e r>
<p a r a m e t e r name=” r f a c t ” t ype =” va lue ”>1< / p a r a m e t e r>
<p a r a m e t e r name=” b c a s t ” t ype =” va lue ”>0< / p a r a m e t e r>
<p a r a m e t e r name=” dep th ” t ype =” va lue ”>0< / p a r a m e t e r>
<p a r a m e t e r name=” swap ” t ype =” va lue ”>2< / p a r a m e t e r>
<p a r a m e t e r

name=” s w a p p i n gt h r e s h o l d ” t ype =” va lue ”>64< / p a r a m e t e r>
<p a r a m e t e r name=”L1” t ype =” va lue ”>0< / p a r a m e t e r>
<p a r a m e t e r name=”U” t ype =” va lue ”>0< / p a r a m e t e r>
<p a r a m e t e r name=” e q u i l i b r a t i o n ” t ype =” va lue ”>1< / p a r a m e t e r>
<p a r a m e t e r name=” memal ignment ” t ype =” va lue ”>8< / p a r a m e t e r>
<p a r a m e t e r name=” cpucoun t ” t ype =” a t t i r b u t e ”>2< / p a r a m e t e r>

< / benchmark>

Geo
rge

 P
. T

so
ulo

up
as

131

JDL

A u t o m a t i c a l l y Genera ted by GridBench
StdOutpu t = ” s t d . ou t ” ;
S t d E r r o r = ” s t d . e r r ” ;
Inpu tSandbox ={ ” / op t / cg / g r i d b e n c h / b in / hp l ” , ” / home / g e o r g e t /

HPL . d a t ”} ;
E x e c u t a b l e = ” hp l ” ;
JobType = ” mpich ” ;
NodeNumber = 2 ;
OutputSandbox ={ ” s t d . ou t ” , ” s t d . e r r ”} ;
Requ i rements = o t h e r . CEId == ” ce01 . l i p . p t / jobmanager−pbs ” ;

Geo
rge

 P
. T

so
ulo

up
as

132

GBDL DTD

<?xml ve rs i on= ’ 1 .0 ’ encod ing = ’UTF−8 ’ ?>
<!ELEMENT benchmark (l o c a t i o n , (m e t r i c| mon i to r | p a r a m e t e r|

benchmark)∗)>
<! ATTLIST benchmark

i d ID #REQUIRED
d a t e CDATA #REQUIRED
name CDATA #REQUIRED
model CDATA #REQUIRED
d e s c r i p t i o n CDATA #REQUIRED
t ype (mpi| s imp le| compos i te) #REQUIRED >

<!ELEMENT l o c a t i o n (r e s o u r c e)∗>
<! ATTLIST l o c a t i o n

a s s i g n e d (e x p l i c i t| sys tem) #IMPLIED >

<!ELEMENT p a r a m e t e r (#PCDATA)>
<! ATTLIST p a r a m e t e r

name CDATA #REQUIRED
dataType CDATA #IMPLIED
t ype (va l ue| l i s t | a t t r i b u t e | a t t r i b u t e l i s t) #REQUIRED >

<!ELEMENT m e t r i c (#PCDATA | v e c t o r)∗>
<! ATTLIST m e t r i c

name CDATA #REQUIRED
u n i t CDATA #REQUIRED
t ype (va l ue| r e f e r e n c e) #REQUIRED>

<!ELEMENT r e s o u r c e EMPTY >

<! ATTLIST r e s o u r c e
cpucoun t CDATA #REQUIRED
wncount CDATA #REQUIRED
jobmanagerCDATA #IMPLIED
name CDATA #IMPLIED >

<!ELEMENT v e c t o r (#PCDATA)>
<! ATTLIST v e c t o r

name CDATA #REQUIRED
u n i t CDATA #IMPLIED
u r l CDATA #IMPLIED >

<!ELEMENT c o n s t r a i n t (#PCDATA)>
<! ATTLIST c o n s t r a i n t

i d IDREF #IMPLIED
t ype (p r e r e q u i s i t e| c o r e q u i s i t e) #REQUIRED >

Geo
rge

 P
. T

so
ulo

up
as

133

<!ELEMENT mon i to r (v e c t o r∗)>
<! ATTLIST mon i to r

t ype (j ims| rgma) #REQUIRED
query CDATA #REQUIRED>

Geo
rge

 P
. T

so
ulo

up
as

Bibliography

[1] Al Aburto. flops.c version 2.0. ftp://ftp.nosc.mil/pub/aburto (accessed Oct. 2004),
1992.

[2] Enis Afgan, Vijay Velusamy, and Purushotham V. Bangalore. Grid resource broker
using application benchmarking. In Peter M. A. Sloot, Alfons G. Hoekstra, Thierry
Priol, Alexander Reinefeld, and Marian Bubak, editors,EGC, volume 3470 ofLec-
ture Notes in Computer Science, pages 691–701. Springer, 2005.

[3] Globus Alliance. The Globus Toolkit. http://www.globus.org.

[4] S. Andreozzi. GLUE Schema implementation for the LDAP data model. Technical
Report Technical Report. INFN/TC-04/16, Instituto Nazionale Di Fisica Nucleare,
September 2004.

[5] S. Andreozzi, N. De Bortoli, S. Fantinel, A. Ghiselli, G. Tortone, and C. Vistoli.
GridICE: A Monitoring Service for the Grid. InProceedings of the Third Cracow
Grid Workshop, pages 220–226, October 2003.

[6] S. Andreozzi et al. GLUE Schema Specification, version 1.2.
http://infnforge.cnaf.infn.it/projects/glueinfomodel/ (accessed Apr. 2005).

[7] A. M. Artoli, A. G. Hoekstra, and P. M. A. Sloot. Mesoscopic simulations of systolic
flow in the human abdominal aorta.Journal of Biomechanics, 39:873–884, 2005.

[8] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel
computing research: A view from berkeley. Technical Report UCB/EECS-2006-
183, EECS Department, University of California, Berkeley, Dec 2006.

[9] G. Avellino, Stefano Beco, B. Cantalupo, Alessandro Maraschini, F. Pacini, Mas-
simo Sottilaro, A. Terracina, D. Colling, F. Giacomini, E. Ronchieri, A. Gianelle,
M. Mazzucato, R. Peluso, Massimo Sgaravatto, Andrea Guarise, Rosario M. Piro,
Albert Werbrouck, Daniel Kouril, Ales Krenek, Ludek Matyska, M. Mulac, Jirı́
Posṕısil, Miroslav Ruda, Zdenek Salvet, J. Sitera, J. Skrabal, M. Vocu, M. Mezzadri,

134

Geo
rge

 P
. T

so
ulo

up
as

135

F. Prelz, Salvatore Monforte, and M. Pappalardo. The DataGrid Workload Manage-
ment System: Challenges and Results.Journal of Grid Computing, 2(4):353–367,
2004.

[10] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS Parallel Benchmarks.The
International Journal of Supercomputer Applications, 5(3):63–73, Fall 1991.

[11] Kazimierz Balos, Leszek Bizol, Michal Rozenau, and Krzysztof Zielilski. Inter-
operability architecture for grid networks monitoring systems. InProceedings of
Cracow Grid Workshop, pages 245–253, October 2003.

[12] Kazimierz Balos and Krzysztof Zielinski. JIMS - the Uniform Approach to Grid
Infrastructure and Application Monitoring. In4th Cracow Grid Workshop 2004,
December 2004.

[13] EECS Berkeley. Dwarf mine. http://view.eecs.berkeley.edu/wiki/DwarfMine.

[14] Matthias Brune, J̈orn Gehring, Axel Keller, Burkhard Monien, Friedhelm Ramme,
and Alexander Reinefeld. Specifying resources and services in metacomputing en-
vironments.Parallel Comput., 24(12-13):1751–1776, 1998.

[15] Greg Chun, Holly Dail, Henri Casanova, and Allan Snavely. Benchmark probes for
grid assessment. In18th International Parallel and Distributed Processing Sympo-
sium (IPDPS 2004), CD-ROM / Abstracts Proceedings, 26-30 April 2004, Santa Fe,
New Mexico, USA. IEEE Computer Society, 2004.

[16] Greg Chun, Holly Dail, Henri Casanova, and Allan Snavely. Benchmark probes
for grid assessment.Parallel and Distributed Processing Symposium, International,
18:276a, 2004.

[17] Phillip Colella. Defining software requirements for scientific computing. presenta-
tion,(URL unavailable).

[18] J. Coles. Grid Deployment and Operations: EGEE, LCG and GridPP.
In Proceedings of the UK e-Science All Hands Meeting 2005, 2005.
http://www.allhands.org.uk/proceedings/2005 (accessed Oct. 2005).

[19] A. Cooke, A.J.G. Gray, L. Ma, et al. R-GMA: An Information Integration Sys-
tem for Grid Monitoring. InOn The Move to Meaningful Internet Systems 2003:
CoopIS, DOA, and ODBASE, volume 2888 ofLecture Notes in Computer Science,
pages 462–481. Springer, 2003.

[20] CrossGrid. European CrossGrid Project. http://www.crossgrid.org (accessed April
2005).

[21] H. J. Curnow and B. A. Wichmann. A synthetic benchmark.The Computer Journal,
19(1):43–49, 1976.

Geo
rge

 P
. T

so
ulo

up
as

136

[22] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Ser-
vices for Distributed Resource Sharing. InProceedings 10th IEEE International
Symposium on High Performance Distributed Computing (HPDC-10’01), pages
181–194. IEEE Computer Society, 2001.

[23] R.F Van der Wijngaart and Michael Frumkin. Alu intensive grid benchmarks.
https://forge.gridforum.org/projects/gb-rgs, 2004.

[24] Marios D. Dikaiakos. Grid benchmarking: Vision, challenges, and current status.
Concurrency and Computation: Practice and Experience, 2006. In press (published
online in June 13, 2006).

[25] J. J. Dongarra, H. W. Meuer, and E. Strohmaier. TOP500 supercomputer sites.
Supercomputer, 11(2-3):133–163, June 1995.

[26] Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK benchmark:
Past, present, and future.Concurrency and Computation: Practice and Experience,
15:1–18, 2003.

[27] Catalin Dumitrescu, Ioan Raicu, Matei Ripeanu, and Ian Foster. Diperf: an auto-
mated distributed performance testing framework. InProceedings of the 5th Inter-
national Workshop on Grid Computing (GRID2004). IEEE, November 2004.

[28] e2emonit. Egee network performance monitoring. http://www.egee-
npm.org/e2emonit.

[29] EEMBC. The Embedded Microprocessor Benchmark Consortium.
http://www.eembc.org.

[30] EGEE. Enabling Grids for E-SciencE project. http://www.eu-egee.org (last ac-
cessed December 2008).

[31] O. Ponce et al. Training of neural networks: Interactive possibilities in a distributed
framework. In D. Kranzlm̈uller et al., editor,9th European PVM/MPI(LNCS), vol-
ume 2474, pages 33–40. Springer-Verlag, 2002.

[32] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke.
A Directory Service for Configuring High-Performance Distributed Computations.
In Proceedings of the 6th IEEE Symp. on High-Performance Distributed Computing,
pages 365–375. IEEE Computer Society, 1997.

[33] I. Foster and C. Kesselman. In I. Foster and C. Kesselman, editors,The Grid:
Blueprint for a New Computing Infrastructure, chapter 4: Concepts and Architec-
ture, pages 37–64. Elsevier, 2004.

[34] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. The Physiology of the Grid.
An Open Grid Services Architecture for Distributed Systems Integration. Technical
report, Open Grid Service Infrastructure WG, Global Grid Forum, June 2002.

Geo
rge

 P
. T

so
ulo

up
as

137

[35] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International J. Supercomputer Applications,
15(3):200–222, 2001.

[36] Ganglia. http://ganglia.sourceforge.net (accessed Apr. 2005).

[37] Ganglia. The Ganglia Monitoring Systems. http://ganglia.sourceforge.net, (ac-
cessed Sep 2005).

[38] J. Gomes and M. David et al. Experience with the International Testbed in the Cross-
Grid Project. InAdvances in Grid Computing - EGC 2005. European Grid Confer-
ence. Amsterdam, The Netherlands. February 14-16, 2005, Revised Selected Papers,
number 3470 in Lecture Notes in Computer Science, pages 98–110. Springer, June
2005.

[39] William Gropp and Ewing L. Lusk. Reproducible measurements of MPI perfor-
mance characteristics. InPVM/MPI, pages 11–18, 1999.

[40] Andreas Hanemann, Jeff W. Boote, Eric L. Boyd, Jérôme Durand, Loukik Kuda-
rimoti, Roman Lapacz, D. Martin Swany, Szymon Trocha, and Jason Zurawski.
Perfsonar: A service oriented architecture for multi-domain network monitoring.
In Boualem Benatallah, Fabio Casati, and Paolo Traverso, editors,ICSOC, volume
3826 ofLecture Notes in Computer Science, pages 241–254. Springer, 2005.

[41] E. N. Houstis, John R. Rice, and Randall Bramley, editors.Enabling Technologies
for Computational Science: Frameworks, Middleware and Environments. Kluwer
Academic Publishers, Norwell, MA, USA, 2000.

[42] Alexandru Iosup and Dick Epema. Grenchmark: A framework for analyzing, test-
ing, and comparing grids.ccgrid, 00:313–320, 2006.

[43] E. Kenny, B. Coghlan, G. Tsouloupas, M. Dikaiakos, J. Walsh, S. Childs,
D. O’Callaghan, and G. Quigley. Heterogeneous grid computing: Issues and early
benchmarks. InProc. ICCS 2005, volume Part III ofLNCS3516, pages 870–874,
Atlanta, USA, May 2005.

[44] LCG. Large Hadron Collider Computing Grid. http://lcg.web.cern.ch (accessed
Oct. 2004).

[45] Chuang Liu, Lingyun Yang, Ian Foster, and Dave Angelo. Design and Evaluation
of a Resource Selection Framework for Grid Applications. InProceedings of the
Eleventh IEEE International Symposium on High Performance Distributed Com-
puting (HPDC ’02), pages 63–72. IEEE Computer Society, 2002.

[46] John D. McCalpin.Sustainable Memory Bandwidth in Current High Performance
Computers. Advanced Systems Division Silicon Graphics, Inc., October 1995.

Geo
rge

 P
. T

so
ulo

up
as

138

[47] Jośe Carlos Mourĩno, David E. Singh, Marı́a J. Mart́ın, J. M. Eiroa, Francisco F.
Rivera, Ramon Doallo, and Javier D. Bruguera. Parallelization of the stem-ii air
quality model. InHPCN Europe, pages 543–546, 2001.

[48] MPI. MPI: A Message-Passing Interface Standard. http://www.mpi-
forum.org/docs/mpi-11.ps (accessed June 2006).

[49] Phillip J. Mucci and Kevin London. The cachebench report, 1998.

[50] David L. Oppenheimer, Vitaliy Vatkovskiy, Hakim Weatherspoon, Jason Lee,
David A. Patterson, and John Kubiatowicz. Monitoring, analyzing, and controlling
internet-scale systems with acme.CoRR, cs.DC/0408035, 2004.

[51] OSG. Open Science Grid. http://www.opensciencegrid.org, (accessed Sep 2005).

[52] Pacini. Job Description Language: Attributes Specification.
http://edms.cern.ch/document/590869/, May 2006.

[53] Rolf Rabenseifner, Alice E. Koniges, Jean-Pierre Prost, and Richard Hedges. The
parallel effective I/O bandwidth benchmark: beff io. In Christophe Cerin and Hai
Jin, editors,Parallel I/O for Cluster Computing, chapter 4, pages 107–132. Kogan
Page Ltd., February 2004.

[54] Rajesh Raman, Miron Livny, and Marvin H. Solomon. Matchmaking: Distributed
Resource Management for High Throughput Computing. InProceedings of the Sev-
enth IEEE International Symposium on High Performance Distributed Computing
(HPDC ’98), pages 140–147. IEEE Computer Society, 1998.

[55] Rajesh Raman, Miron Livny, and Marvin H. Solomon. Matchmaking: An extensible
framework for distributed resource management.Cluster Computing, 2(2):129–
138, 1999.

[56] Hassan Rasheed. Quantification of grid resource heterogeneity and impact on ap-
plication performance. Master’s thesis, Royal Institute of Technology (KTH), De-
partment of Electronic, Computer and Software Systems, July 2006.

[57] RGMA. R-GMA: Relational Grid Monitoring Architecture. http://www.r-gma.org/
(accessed Dec. 2004).

[58] EGEE SFT. Site Functional Tests (SFT). http://lcg-testzone-
reports.web.cern.ch/lcg-testzone-reports/sftestcases.html, (accessed Apr. 2005).

[59] Jaswinder P Singh, Wolf Weber, and Anoop Gupta. Splash: Stanford parallel ap-
plications for shared-memory. Technical report, Stanford University, Stanford, CA,
USA, 1992.

Geo
rge

 P
. T

so
ulo

up
as

139

[60] P.M.A. Sloot, A. Tirado-Ramos, A.G. Hoekstra, and M. Bubak. An interactive grid
environment for non-invasive vascular reconstruction. In2nd International Work-
shop on Biomedical Computations on the Grid (BioGrid’04), in conjunction with
Fourth IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGrid2004), Chicago, Illinois, USA, April 2004. IEEE.

[61] Shava Smallen, Catherine Olschanowsky, Kate Ericson, Pete Beckman, and Jen-
nifer M. Schopf. The inca test harness and reporting framework. InSC ’04: Pro-
ceedings of the 2004 ACM/IEEE conference on Supercomputing, page 55, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

[62] SPEC. Standard Performance Evaluation Corporation. http://spec.org.

[63] Alan Su, Francine Berman, Richard Wolski, and Michelle Mills Strout Y. Using
apples to schedule simple sara on the computational grid.International Journal of
High Performance Computing Applications, 13, 1999.

[64] TerraGrid. The TeraGrid Project. http://www.teragrid.org, (accessed May 2004).

[65] Alfredo Tirado-Ramos, Peter M. A. Sloot, Alfons G. Hoekstra, and Marian Bubak.
An integrative approach to high-performance biomedical problem solving environ-
ments on the grid.Parallel Comput., 30(9-10):1037–1055, 2004.

[66] A. Tiramo-Ramos, G. Tsouloupas, M. D. Dikaiakos, and P. Sloot. Grid Resource
Selection by Application Benchmarking: a Computational Haemodynamics Case
Study. InComputational Science - ICCS 2005, 5th International Conference, At-
lanta, GA, USA, May 22-25, 2005, Proceedings, Part I., volume 3514, pages 534–
543. Springer, May 2005.

[67] Francesca Tosi, Stefano Ubertini, S. Succi, and I. V. Karlin. Optimization strategies
for the entropic lattice boltzmann method.J. Sci. Comput., 30(3):369–387, 2007.

[68] G. Tsouloupas and M. D. Dikaiakos. GridBench: A Tool for Benchmarking Grids.
In Proceedings of the 4th International Workshop on Grid Computing (Grid2003),
pages 60–67. IEEE Computer Society, November 2003.

[69] G. Tsouloupas and M. D. Dikaiakos. GridBench: A Workbench for Grid Bench-
marking. InIn Advances in Grid Computing - EGC 2005. European Grid Confer-
ence. Amsterdam, The Netherlands. February 14-16, 2005, Revised Selected Papers,
number 3470 in Lecture Notes in Computer Science, pages 211–225. Springer, June
2005.

[70] George Tsouloupas and Marios D. Dikaiakos. Characterization of computational
grid resources using low-level benchmarks. InSecond IEEE International Confer-
ence on e-Science and Grid Computing., Amsterdam, Netherlands, December 2006.

Geo
rge

 P
. T

so
ulo

up
as

140

[71] George Tsouloupas and Marios D. Dikaiakos. Grid Resource Ranking using Low-
level Performance Measurements. Technical Report TR-07-02, Dept. of Computer
Science, University of Cyprus, February 2007. http://grid.ucy.ac.cy/reports/TR-07-
02.pdf.

[72] George Tsouloupas and Marios D. Dikaiakos. Gridbench: A tool for the interac-
tive performance exploration of grid infrastructures.J. Parallel Distrib. Comput.,
67(9):1029–1045, 2007.

[73] Reinhold P. Weicker. Dhrystone: a synthetic systems programming benchmark.
Commun. ACM, 27(10):1013–1030, 1984.

[74] R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A Distributed
Resource Performance Forecasting Service in Metacomputing.Journal of Future
Generation Computer Systems, 15(5-6):757–768, 1999.

[75] Steven C. Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder P. Singh, and Anoop
Gupta. The SPLASH-2 programs: Characterization and methodological consid-
erations. InProceedings of the Twenty Second Annual International Symposium on
Computer Architecture, pages 24–37, New York, 1995. ACM Press.

Geo
rge

 P
. T

so
ulo

up
as

