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ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

Περίληψη

Τμήμα Πληροφορικής

Κατανόηση του νευρωνικού κώδικα μέσω της μελέτης των αιτιών της

πυροδότησης

Αχιλλέας Κουτσού

´Οταν αναφερόμαστε στον νευρωνικό κώδικα εννοούμε τους μηχανισμούς με τους οπο-
ίους οι νευρώνες και τα νευρωνικά δίκτυα μετατρέπουν πληροφορίες σε ακολουθίες
από πυροδοτήσεις. Η ανακάλυψη και κατανόηση αυτών των μηχανισμών είναι ϑεμελι-
ώδη βήματα προς την κατανόηση των μεθόδων με τις οποίες ο εγκέφαλος κωδικοποιεί,
αποκωδικοποιεί και επεξεργάζεται πληροφορίες. Βασικός παράγοντας προς την επίλυ-
ση του προβλήματος του νευρωνικού κώδικα είναι η δυνατότητα να προσδιορίσουμε τον
τρόπο λειτουργίας ενός νευρώνα: αν δηλαδή λειτουργεί ως χρονικός συναθροιστής δυνα-
μικών (temporal integrator) ή ανιχνευτής ταυτόχρονων δυναμικών (coincidence detector).
Γενικότερα, αυτό το πρόβλημα μπορεί να εκφραστεί με όρους χρονικών κλιμάκων της
επεξεργασίας σημάτων από τον νευρώνα. Μπορούμε να το επιλύσουμε μετρώντας την
χρονική ακρίβεια με την οποία ένας νευρώνας διακρίνει διαφορετικά ερεθίσματα. Αυτή
η προσέγγιση γενικεύει την έννοια του τρόπου λειτουργίας του νευρώνα από τους δύο
εναλλακτικούς τρόπους λειτουργίας σε ένα συνεχές φάσμα λειτουργιών, στα άκρα του
όποιου βρίσκονται οι δύο ακραίοι τρόποι λειτουργίας: η χρονική συνάθροιση δυναμι-
κών και η ανίχνευση ταυτόχρονων δυναμικών. Η παρούσα διατριβή προτείνει διάφορες
μεθόδους για την επίλυση του προβλήματος του νευρωνικού κώδικα και συγκεκριμένα
τις χρονικές κλίμακες με τις οποίες οι νευρώνες επεξεργάζονται πληροφορίες. Συγκε-
κριμένα, ο σκοπός της διατριβής αυτής είναι να παρουσιάσει μεθόδους με τις οποίες
μπορούμε να υπολογίσουμε τον τρόπο λειτουργίας ενός νευρώνα μέσω προσομοιώσεων
και μέσω των υπολογισμών αυτών να κατανοήσουμε τους τρόπους με τους οποίους ο
τρόπος λειτουργίας ενός νευρώνα ορίζεται από τις ενδογενείς και εξωγενείς ιδιότητες
του.

Η πρώτη μας συνεισφορά στην επίλυση του προβλήματος είναι η ανάπτυξη μιας μεθόδου
που υπολογίζει τον τρόπο λειτουργίας ενός νευρώνα μέσω της κλίσης της εκπόλωσης
του δυναμικού της μεμβράνης του, πριν την πυροδότηση ενός δυναμικού ενεργείας. Δε-
ίχνουμε ότι η μέθοδός μας μπορεί να προσδιορίσει το βαθμό συγχρονισμού που είναι
υπεύθυνος για την πυροδότηση δυναμικών ενεργείας σε ένα απλό μοντέλο νευρώνα και
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περιγράφουμε πώς η μέτρηση αυτή είναι ισοδύναμη με τον τρόπο λειτουργίας του νευ-
ρώνα. Χρησιμοποιώντας αυτή τη μέθοδο, δείχνουμε ότι ο τρόπος λειτουργίας ενός νευ-
ρώνα με μηχανισμό μερικής επαναπόλωσης, όταν πυροδοτεί ακανόνιστα σε πολύ ψηλές
συχνότητες, είναι κατά κύριο λόγο χρονικός συναθροιστής δυναμικών με μικρή χρονι-
κή σταθερά διαρροής δυναμικού και χαμηλό κατώφλι. Επιπλέον, συμπεραίνουμε ότι
σε πολύ υψηλές συχνότητες πυροδότησης, το συνεχές φάσμα λειτουργιών του νευρώνα
μικραίνει, καθώς οι ορισμοί των δύο άκρων συγκλίνουν μέχρι τα δύο άκρα να γίνουν
δυσδιάκριτα. Στη συνέχεια, διερευνούμε πώς ο συγχρονισμός στην είσοδο του νευρώνα
συσχετίζεται με τον τρόπο λειτουργίας του και, κυριότερα, πώς αυτή η σχέση διαμορ-
φώνεται από τις ιδιότητες του νευρώνα και των εισερχομένων ακολουθιών δυναμικών
ενεργείας. Ανακαλύπτουμε ότι η σχέση μεταξύ συγχρονισμού στην είσοδο και τρόπου
λειτουργίας καθορίζεται κυρίως από το πλάτος της εκπόλωσης που προκαλεί μία ενια-
ία, συγχρονισμένη άφιξη δυναμικών ενεργείας από τους προσυναπτικούς νευρώνες του
κυττάρου και οποιαδήποτε άλλα χαρακτηριστικά των εισόδων, όπως ο ρυθμός άφιξης
δυναμικών, δεν επηρεάζει τον τρόπο λειτουργίας.

Επίσης αναπτύσσουμε μία μέθοδο για τον υπολογισμό των παραμέτρων του σήματος
εισόδου ενός απλού μοντέλου νευρώνα, κάτω από ορισμένες προϋποθέσεις. Μέσα από
αυτές τις παραμέτρους, μπορούμε να ανασχηματίσουμε το σήμα στην είσοδο του νευρώνα
και να εξαγάγουμε συμπεράσματα για τον βαθμό συγχρονισμού των δυναμικών ενεργείας
στην είσοδο και, κατ´ επέκταση, τον τρόπο λειτουργίας. Αυτή η μέθοδος αναδιαμόρ-
φωσης του σήματος στην είσοδο διαφέρει από την μέθοδο που βασίζεται στην κλίση
του δυναμικού της μεμβράνης στον τρόπο με τον οποίο περιγράφεται η συμπεριφορά
του νευρώνα: ϑεωρεί ότι το σήμα εισόδου αποτελείται από περιοδικές εκπυρσοκρο-
τήσεις συσχετισμένων δυναμικών ενεργείας, με μικρές τυχαίες αποκλίσεις στους χρόνους
πυροδοτήσεων, το οποίο προσομοιώνουμε με τη χρήση ενός ϑορυβώδους ημιτονοειδο-
ύς κύματος. Δείχνουμε ότι όταν οι υποθέσεις μας ισχύουν, η μέθοδος μας μπορεί να
υπολογίσει τις παραμέτρους του σήματος εισόδου με πολύ υψηλή ακρίβεια.

Τέλος, μελετάμε τη χρονική ακρίβεια της ανίχνευσης ταυτόχρονων δυναμικών σε ένα
μορφολογικά ανακατασκευασμένο μοντέλο νευρώνα. Η έρευνα αυτή επικεντρώνεται
στην ανακάλυψη των μηχανισμών μάθησης που επιτρέπουν στο κύτταρο να μάθει να
διακρίνει ζεύγη δυναμικών ενεργείας με μικρές διαφορές στο χρόνο άφιξής τους στην
είσοδο. Γενικότερα, διερευνούμε τα όρια της ικανότητας του νευρώνα να διακρίνει αυ-
τού του είδους σήματα και τον τρόπο με τον οποίο αυτά τα όρια επηρεάζονται από
τις διάφορες ιδιότητες των σημάτων στην είσοδο. Η ανάλυσή μας δείχνει ότι, για το
μοντέλο που χρησιμοποιήθηκε στην έρευνά μας, η ακρίβεια δεν είναι αρκετά ψηλή ώστε
να μπορεί ο νευρώνας να διακρίνει μικρές διαφορές (της τάξης των μερικών χιλιοστών
του δευτερολέπτου) στις καθυστερήσεις μεταξύ ζευγών δυναμικών ενεργείας στην είσο-
δο. Δείχνουμε επίσης ότι η ευαισθησία του νευρώνα σε ζεύγη δυναμικών ενεργείας στην
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είσοδο με ψηλή ακρίβεια στους χρόνους καθυστερήσεων μεταξύ τους, μειώνεται όταν η
μεμβράνη είναι εκπολωμένη από ένα σταθερό ρεύμα.

´Οπως φαίνεται από τα αποτελέσματα και τις συνεισφορές μας, δεν παρέχουμε οριστικές
απαντήσεις στο ερώτημα του τρόπου λειτουργίας του νευρώνα. Αντί αυτού, φτάνουμε
σε γενικά συμπεράσματα σχετικά με τους τρόπους με τους οποίους ο τρόπος λειτουργίας
ενός νευρώνα ορίζεται από διάφορες ιδιότητες του νευρώνα και της συμπεριφοράς του.
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UNIVERSITY OF CYPRUS

Abstract
Department of Computer Science

Understanding the neural code through exploration of the causes of �ring

by Achilleas Koutsou

The neural code refers to the mechanisms with which single cells and networks of neurons
transform information into sequences of spike trains. Discovering and understanding these
mechanisms is fundamental to understanding information encoding, decoding and processing
in the brain. A key aspect of solving the problem of the neural code is the ability to deter-
mine the operational mode of a single cell: whether it is a temporal integrator or a coincidence

detector. More generally, this problem is a question of time scales of neural processing and
in particular, it can be solved by identifying the temporal precision with which a neuron can
distinguish between stimuli. This approach generalises the idea of a binary operational mode
to a continuum which lies between the two extremes—temporal integration and coincidence
detection.

This thesis proposes a number of methods for addressing the problem of the neural code and
more speci�cally the time scales of neural processing, which de�ne the operational mode of
neurons. In particular, the purpose of this thesis is to provide methods with which the oper-
ational mode of simulated single neurons can be measured and through these measurements,
understand the ways in which the operational mode is shaped by features of the neuron and
its input. We present methods which we developed to identify the operational mode of sin-
gle neurons, by observing their behaviour under simulated conditions. We aim to understand
how the operational mode is de�ned by the the intrinsic and extrinsic properties of a cell being
observed.

Our �rst contribution towards solving this problem is the development of a measure of the
operational mode which depends on observations of the slope of the membrane potential of
the neuron immediately prior to �ring. We show that our measure can identify the degree
of synchrony that is responsible for �ring spikes in a simple neuron model and describe how
this measurement is equivalent to the operational mode. Using this measure, we show that
the operational mode of a neuron with partial somatic reset, when �ring highly irregular spike
trains at high rates, is primarily a temporal integrator with short leak time constant and low
threshold. In addition, at very high rates, the continuum of operational modes shrinks as the
de�nitions of the two extremes converge and they become indistinguishable.

Ach
ille

as
 K

ou
tso

u

http://www.ucy.ac.cy
http://www.cs.ucy.ac.cy


We then investigate how input synchrony relates to the operational mode and more impor-
tantly, how this relationship is shaped by the properties of the neuron and the input spike
trains. We �nd that the relationship between input synchrony and operational mode is pri-
marily determined by the amplitude of depolarisation caused by a single, synchronous arrival
of spikes from a pre-synaptic population and that other features of the input, such as spike
rates, do not a�ect the operational mode.

We also developed a method for estimating the parameters of the input of a simple neuron
model, under certain assumptions. Through these parameters, we can reconstruct the input
signal driving the neuron and make inferences about the degree of synchrony driving the cell
and by extension, the operational mode. This input reconstruction technique di�ers from the
membrane potential slope-based measure in the way that the neuron’s behaviour is formalised:
the input is assumed to be composed of periodic bursts of correlated spike volleys, with small
random deviations in spike times, which we simulate using a noisy sine wave. We show that
when our assumptions hold, our method can determine the parameters of the input signal with
very high accuracy.

Finally, we investigate the temporal precision of coincidence detection in a morphologically
reconstructed neuron model. Our work focuses on discovering learning mechanisms that allow
the cell to learn to distinguish input spike pairs with small di�erences in delays. More generally,
we investigate the limits of the ability of the neuron to distinguish such signals and the way
in which these limits are a�ected by various properties of the input. Our analysis revealed
that, for the model used in our work, the precision is not high enough to distinguish between
small di�erences (on the order of a few milliseconds) in delays between input spikes. We also
show that the neuron’s sensitivity to precise input spike pairs is reduced when the membrane
is depolarised by a constant background current.

As seen by the results and our contributions, we did not actually provide a de�nitive answer
to the question of which operational mode neurons employ. Instead, as indicated above, we
arrived at general conclusions regarding the ways in which the operational mode is de�ned by
various properties of the neuron and its behaviour.Ach
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Chapter 1

Introduction

Computational neuroscience aims to discover and understand the computational properties of

the brain, from the single neuron, to the entire nervous system, by using techniques from

computer science and mathematics in combination with the knowledge gained from the ex-

perimental areas of neuroscience [1]. The two �elds coexist in a mutually bene�cial relation-

ship, as better understanding of the computational and functional aspects of neurons and their

networks, advances both our understanding of the brain (bene�ting neuroscience) and addi-

tionally, inspires new techniques for problem solving and arti�cial intelligence (AI) (which

bene�ts computer science).

Neuroscience, in the most general terms, is the study of the brain, its structural organisation

and its function [2]. Traditionally, such an endeavour alludes to biological sciences and as such,

neuroscience appeared initially as an interdisciplinary specialty of molecular and cell biology,

which later evolved into a stand-alone �eld [3]. While biological disciplines form the experi-

mental basis for the production of knowledge in the �eld, abstraction is key to understanding

the high level processes of such a complex system. The complexity of any nervous system and

in particular, the human nervous system has often required the application of methods and

techniques beyond the scope of experimental data analysis [4]. In the same way that �elds

such as physics require a separation into experimental and theoretical branches, neuroscience

developed a requirement for theoretical frameworks to model and explain experimental data,

as well as extrapolate beyond them [1, 4–6].

Computer science, electronic engineering, mathematics and physics form the computational

and theoretical approaches to neuroscience and are concerned with the theoretical aspects of

1
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Chapter 1. Introduction 2

information processing by neural systems. Such studies often involve single neuron or net-

work modelling, from detailed descriptions of action potential (AP) generation [7] to simpli-

�ed, abstract and analytically tractable models [8–13] which allow for mathematical and com-

putational analysis of large, complex networks of neuron models. Modelling studies of neural

behaviour have, in recent years, expanded to the level of entire arti�cial brain simulations [14]

in an attempt to closely simulate and analyse the mammalian brain.

A major goal of modelling projects and in fact, one of the fundamental issues of the entire

computational neuroscience �eld, is the problem of understanding the neural code [4, 15].

The neural code involves the mechanisms, both biological and computational, that the brain

uses to represent information and carry out high level functions. We aim to build upon exist-

ing knowledge concerning the processing of information in the nervous system and address

one of the key issues of the neural code, which is the role of the temporal structure of spike

trains. The aim of this project is to use single neuron models in order to develop methods for

identifying the time scales of single neuron processing. In particular, we aim to measure the

e�ects of temporally synchronous inputs on the behaviour of a neuron and develop methods

for identifying the causes of �ring, with respect to the temporal structure of the input signal

or spike trains. Additionally, we aim to measure the temporal precision of AP generation and

the �delity with which a cell is able to distinguish spike pairs. This will provide us with a

better understanding of the temporal aspect of neural processing, which is an important part

of understanding the neural code in general. Our models should be simple enough to allow

for analytical and computational study and complex enough to make meaningful predictions

about the processing capabilities of real neurons. In order for our conclusions to be useful, our

underlying assumptions must be biologically plausible and experimentally con�rmable.

1.1 Computational neuroscience

Computational neuroscience relies on methods of mathematics and computer science to inves-

tigate and understand the information processing functions of the nervous system [5]. How-

ever, there are two approaches to this goal: one is that mathematical and computational models

are used to simulate single neuron and neural network behaviour in detail, as well as analyse

related data. The other approach is a conceptual one, in that the brain is viewed and analysed

as an abstract, computing device, providing researchers with the ability to describe neural
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Chapter 1. Introduction 3

function within existing or new theoretical frameworks which allow alternative analytical ap-

proaches [4, 6].

In essence, this distinction is a matter of abstraction. The �rst approach mentioned above,

deals with descriptive, low-level modelling and statistical analysis. Models that fall into this

category often attempt to describe every (known) detail that relates to the neural function being

studied. Such approaches however risk making the model as hard to understand as the nervous

system itself. On the other hand, the second approach attempts to abstract only the important

underlying principles responsible for computation, providing a theoretical framework for high-

level analysis. In such cases, the analytical tractability of the models provides scalability and

allows for more conceptual problems to be studied, such as the computational properties and

limitations of large neural networks [5, 16].

Terms such as theoretical neurobiology [17, 18] and theoretical neuroscience [4] are also used

to refer to work which falls in the same scope of computational neuroscience, therefore these

terms are often considered to be synonymous. The term computational neuroscience did not

appear until 1987 [1, 5, 19], where a symposium was held in order to discuss and de�ne the

�eld and in essence, the term itself. However, in retrospect, a number of scienti�c achievements

have been recognised as the historical roots of this �eld. More speci�cally, the earliest and

one of the most widely used models of a single neuron is the integrate-and-�re (I&F) model,

introduced by Lapicque [8] in 1907, which models a neuron as an electric circuit consisting of a

parallel capacitor and resistor. The simplicity and analytical tractability of the model, coupled

with its ability to predict �ring frequencies when the neuron is under constant stimulation,

are the main reasons for its continued popularity. Additionally, the fact that the mechanisms

for generating APs in neurons were not known at the time, exempli�es the ability of abstract

models to capture high level operation, without requiring a full understanding of low level

(e.g., molecular) mechanisms [8, 12].

A much greater understanding of neural operation and more speci�cally, AP generation came

from the work of Hodgkin and Huxley [7] which described the generation and trajectory of an

AP using a model consisting of four ordinary di�erential equations, describing the change in

conductance of ion channels on the neuron’s membrane [7]. This has been described as one of

the most important breakthroughs in neuroscience, as it provided a framework for modelling

work that continues to in�uence the �eld to this day [20].
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Chapter 1. Introduction 4

The next historical breakthrough in the �eld of information processing in neural systems was

the discovery and understanding of certain aspects of visual processing. In particular, Hubel

and Wiesel [21] discovered that individual cells in the visual cortex respond to changes in the

light intensity of speci�c areas of the visual �eld, called the neuron’s receptive �eld. More

importantly, they discovered that neurons that respond to motion of the same orientation, are

organised in columns which span all layers of the cortex [21]. This discovery was a major

indication that vertical columns of neurons in the cortex form discrete functional units, which

hold neurons that share similar functionality and properties [4, 16].

Following these experimental discoveries, the �eld developed a theoretical foundation for the

study of neurons’ computational aspects [4, 17, 18, 22]. Researchers began integrating dis-

ciplines from mathematics and engineering such as dynamical systems [23, 24], information

theory [15, 25–27] and stochastic processes [28–30].

As it is evident from the history of discoveries described above and the evolution of the �eld

into a multidisciplinary area, the current state of research in the �eld takes advantage of both

theoretical and experimental approaches, which should (ideally) complement each other. For

example, the Journal of Computational Neuroscience1 encourages the submission of combined

experimental and theoretical work. It emphasises the requirement of biological relevance in

theoretical work and inversely, relevance of computational function in experimental work.

Similarly, other related journals also highlight their coverage of both theoretical and experi-

mental work related to understanding information processing in the brain, such as Biological

Cybernetics2, which focuses on promoting the cooperation between life sciences and theoret-

ical disciplines, and Frontiers in Computational Neuroscience3, which is primarily focused on

modelling and theoretical studies but is open to experimental studies which relate to theoreti-

cal conclusions. Other publications which focus on the �eld and emphasise the integration of

theoretical and experimental work, as well as the multidisciplinary nature of the �eld include

Network: Computation in Neural Systems4 and Neural Computation5. The Journal of Mathemat-

ical Neuroscience6 focuses on using mathematics to understand the fundamental mechanisms

responsible for experimentally observed behaviours in neuroscience at all scales. Therefore,
1see http://www.springer.com/biomed/neuroscience/journal/10827
2subtitled “Advances in Computational Neuroscience”; http://www.springer.com/biomed/

neuroscience/journal/422
3http://www.frontiersin.org/computational_neuroscience/about
4http://informahealthcare.com/page/Description?journalCode=net&
5http://www.mitpressjournals.org/page/about/neco
6http://www.mathematical-neuroscience.com/

Ach
ille

as
 K

ou
tso

u

http://www.springer.com/biomed/neuroscience/journal/10827
http://www.springer.com/biomed/neuroscience/journal/422
http://www.springer.com/biomed/neuroscience/journal/422
http://www.frontiersin.org/computational_neuroscience/about
http://informahealthcare.com/page/Description?journalCode=net&
http://www.mitpressjournals.org/page/about/neco
http://www.mathematical-neuroscience.com/


Chapter 1. Introduction 5

although the �eld is primarily considered to have a theoretical focus, it also remains relevant

to the experimental aspects of neuroscience.

The main contributions of this project focus on investigating the problem of the neural code

by observing the behaviour of the membrane potential of a model neuron. This approach is

based on several suggestions and observations made throughout the relevant literature. The

membrane potential and its derivative provide information regarding synchronisation of �r-

ing [31, 32] and the trajectory of the membrane potential can be used to infer speci�c features

of the input [33, 34]. It has been suggested that studying the reverse correlation of the mem-

brane potential may be more informative than the spike triggered average (STA) stimulus for

investigating neural operational modes [35]. In an intuitive sense, it can be argued that the tra-

jectory of the intracellular, sub-threshold membrane potential in general should provide more

information about the input, than the �ring statistics (rate mean and variance) of the neuron.

The former represents the neuron’s internal state, which is directly a�ected by the input, while

the latter is a discrete representation of super-threshold activity. More speci�cally, the neu-

ron’s internal state (the membrane potential) is determined by the neuron’s physiology (cell

type, ionic conductances, etc.) and pre-synaptic input. If we assume that the physiology of a

neuron under study is known, it should be possible infer speci�c properties of the input (e.g.,

synchrony), given the membrane potential time course of the neuron. In addition to the above,

the thesis includes an investigation into the temporal precision of input spike pair discrim-

ination in a detailed, biophysical compartmental model. This investigation aims to measure

the smallest time di�erence between two spikes that are detectable by the neuron (i.e., that

change a property of the response) and investigate ways in which the cell can learn to respond

to speci�c time di�erences.

1.2 Thesis outline

Chapter 2 reviews the literature on the problem of the neural code (Section 2.1) and in particular

the existing literature on the sub-problem of neural operational modes (Section 2.2) and neural

synchrony (Section 2.3). Within the scope of neural synchrony, the development and use of

spike time distance measures is also reviewed. The chapter concludes with a review of methods

of input reconstruction and inference, which is relevant to our research into the causes of �ring

of neurons (Section 2.4).
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Chapter 1. Introduction 6

Chapter 3 presents the development and application of a method for estimating the degree of

synchrony driving a neuron using measurements of the membrane potential and in particular,

the slope of the membrane potential shortly prior to threshold crossing. Through this esti-

mation of the causes of �ring, inferences can be made regarding the operational mode of the

neuron under study. The chapter concludes with a discussion of the results, the implications

of the measure regarding the problem of the neural code, as well as limitations and assump-

tions of the measure. The work presented in this chapter was the topic of a paper published in

Neural Computation [36].

Chapter 4 describes a comparative study between the measure presented in Chapter 3 and a

measure of spike time distance. Spike time distances measure the similarity (i.e., synchrony)

between a pair or set of spike trains, while the measure presented in the previous chapter

determines the degree of synchrony that is relevant to �ring, which is an indicator of the oper-

ational mode. In this chapter, the synchrony between the input spike trains driving a neuron

is calculated and the results are compared with the input synchrony estimated by the measure

presented in the previous chapter. The comparison allows us to analyse how di�erent proper-

ties of the neuron and its inputs shape the relationship between absolute input synchrony and

operational mode. The chapter concludes with a discussion on the signi�cance of the results

and the value of the relationship between the measures. The work presented in this chap-

ter is the topic of a paper submitted to a special issue on the Application of mathematics in

neuroscience in the Mathematical Biosciences and Engineering and is currently under review.

Chapter 5 presents a method for inferring the input parameters of a simple neuron model

driven by periodic input, simulating regular cycles of increased synchrony, by observing the

�ring behaviour of the cell. As with the previous measure which relied on the slope of the mem-

brane potential to estimate input synchrony, this method aims to infer the degree of synchrony

driving a neuron, without observing the input spike trains directly. The chapter concludes with

a discussion on the accuracy of the results and a description of the limitations and assumptions

of the method. The work presented in this chapter was the topic of a paper published in Brain

Research [37].

Chapter 6 describes a case study on the use of coincidence detection and input correlations

in synaptic plasticity and input selectivity. We simulated a reconstructed layer 5 pyramidal

neuron model, driven by spike pairs of �xed inter-spike delay, which were regarded as sin-

gle events from a pair of correlated spike trains. This setup allowed us to study the e�ects of
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Chapter 1. Introduction 7

correlated inputs that temporally coincide on a speci�c part of the neuron’s dendrite or soma,

after propagating along the membrane. This chapter deviates from the previous work on iden-

tifying input synchrony and measuring the prevalence of one operational mode over another.

The relevance of this chapter to the rest of the thesis is in the evaluation of a realistic model’s

ability to distinguish between coincident spike pairs with millisecond temporal di�erences.

The chapter concludes with an analysis of the neuron’s ability to distinguish temporally pre-

cise inter-spike delays, the implications of these limits on the temporal precision of the neural

code, and the potential for learning such �ne temporal di�erences. The work presented in this

chapter was the topic of a paper which has been recently accepted to BioSystems subject to

minor revisions [38].

The main part of the thesis concludes in Chapter 7, with an overview of the results, the conclu-

sions and their implications for the production of new knowledge, with respect to the initial

objectives of the thesis project.

Finally, Chapter 8 presents future extensions and adaptations of the presented methods, in

order to make them more generally applicable and overcome limitations. It also discusses

potential new avenues of research that could build upon the work described in the thesis.
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Chapter 2

Literature review

2.1 The neural code

The problem of the neural code can be summarised by the following two questions, illustrated

in Figure 2.1:

(i) How is information (e.g., environmental stimulus, behaviour, thoughts) encoded into

spike trains? This is the problem of neural encoding.

(ii) How does the organism “read” spike trains in order to extract the contained information?

This is the problem of neural decoding.

More speci�cally, the �rst question addresses the importance of understanding how the infor-

mation processed by neurons is transformed into spike trains and propagated to the higher

layers of the central nervous system (CNS) and more importantly, which aspects of the spike

trains encode that information. By understanding this mechanism, one could predict the re-

sulting neural activity given a speci�c stimulus, or generate arti�cial neural activity in order to

represent a stimulus (e.g., for an arti�cial sensory prosthetic). The second question addresses

the opposite process, i.e., inferring the stimulus or information from the resulting spike trains.

This would allow us to read spike trains in order to fully understand not only the relevant ex-

ternal stimuli that caused them, but higher brain functions such as abstract thought, language

and memory. These two problems are opposite sides of the same coin, since both result in a

detailed understanding of the brain’s information processing mechanisms. In particular, both

questions involve the discovery of the relationship between speci�c attributes of spike trains

8
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Chapter 2. Literature review 9

Figure 2.1: Neural encoding illustrated by the images from left to right (a-d). (a) An object
in the environment (b) is observed which causes (c) neurons in the brain to �re (d) a series of
spikes, which represent the object, or a certain property of the object. Neural decoding is the
problem of taking (d) the spike train and using knowledge of how (c) neurons operate to infer

(b) the observation of (a) the objects.

(e.g., spike rate) and the corresponding attributes of the information they encode (e.g., light

intensity).

The earliest and most commonly accepted proposed encoding mechanism for neurons is the

rate code [39–44]. According to the rate coding model, neurons encode all the available in-

formation on the average rate of �ring. This concept was introduced as early as 1926 [39, 40]

when the discharge rate of motor and sensory neurons was found to be correlated with the

force exerted by the relevant muscle (for motor neurons) and the intensity of the stimulus (for

sensory neurons) [40, 41]. In many cases repeated representations of the same stimulus results

in di�erent patterns of spike trains being produced by the same neurons, while the average �r-

ing rates remain relatively constant [45–47]. This variability is often considered to be noise, i.e.,

random activity of neurons that is not associated with encoding. This noise may result from

stochastic properties of spike generation, stochastic synaptic transmission or other sources of

background randomness [10, 48]. A rate code is considered to be robust to such noise sources,

since temporal jitter can alter the relative timing of individual spikes, but not the overall �ring

rate.

Contrary to the rate code model, there exists a substantial body of work which supports the

hypothesis that variability in the discharge patterns of neurons is functionally signi�cant, as

opposed to being simply noise [49–52]. Theoretically, temporal codes which rely on precise
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temporal spike patterns or multi-neuron correlations are much more e�cient encoders of in-

formation, since in such cases, information can be encoded on various attributes of the spike

train’s timing and does not rely solely on the spike rate [53, 54]. Conversely, when spike trains

are irregular and vary across repetitions of the same stimulus, the average rate of �ring cannot

be e�ectively extracted during any isolated trial [42, 55]. In other words, spike train analyses

that rely on inter-trial averages tend to ignore the fact that the organism does not have access

to such statistics and must make decisions based on a single trial’s response.

Complementary to single neuron codes are population codes which take into account the com-

bined activity of multiple cells [56–59]. Multi-neuron activity has been proposed as a plausible

explanation to several issues surrounding the neural code. The binding problem, as it is often

called, refers to the problem of relating speci�c perceived features in a stimulus environment

to the corresponding objects. Coordinated multi-neuron activity can explain how feature bind-

ing is achieved [60, 61]. Additionally, studies have shown that groups of motor neurons use a

voting strategy such that the resulting movement is a weighted sum of the activity of a neural

ensemble in which each neuron has a preferred direction [56, 57].

Theoretical analysis of the neural code and spike trains in particular relies heavily on the fact

that the �ring of a spike is a stereotyped all-or-none event which, as mentioned above, means

that spike trains can be analysed as a series of indistinguishable events. This allows spike trains

to be treated and analysed as stochastic point processes [28, 29] and all the related mathematical

formalisms can be applied. For instance, the �ring rate can be described as the �rst passage

time of the membrane potential to the threshold. Spike trains can be compared in terms of

their �ring rate, inter-spike interval distributions and correlated event times.

Of notable interest is the approach of the spike-triggered average (STA) stimulus (also known

as the reverse correlation between spike train and stimulus) [15, 26, 42, 62]. This is a relatively

direct approach to the second question posed above, i.e., the problem of decoding. Generally,

the STA is the average stimulus in all time windows of a �xed length preceding each spike in

a trial (Figure 2.2). In other words, it is the average of all inputs that caused a response spike

and can be interpreted as the meaning of a single spike, in terms of the sensory stimulus, or the

stimulus current generated by pre-synaptic �ring. Additionally, such an analysis can indicate

the stimulus selectivity of a neuron, as any deviation of the STA from the overall average

stimulus shows a preference of the neuron towards the speci�c stimulus [42].

Ach
ille

as
 K

ou
tso

u
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Figure 2.2: Schematic representation of the calculation of the spike-triggered average (STA)
stimulus. The waveform (top row) represents the time varying stimulus which is aligned with
the response spikes (second row) �red by a neuron driven by that stimulus. The graph at the
bottom of the �gure is the average of all stimulus waveforms within a short time period prior
to each response spike. These time periods are represented as dashed boxes on the stimulus,
which are aligned with the �red response spikes. Image taken from Gerstner and Kistler [16].

An interesting approach to the problem of the neural code is analysing spike trains in terms of

their information content using information theory [25]. In general, information theory can

be used to determine the amount of information �owing through a communication channel.

In the case of neural systems, the communication channel is a network of neurons. Such anal-

ysis relies on speci�c assumptions about the neural code which can be con�rmed, or refuted,

when theoretical results accurately predict, or support experimental behaviour. For instance,

in the motion-sensitive neuron of the �y, time-dependent input signals produce variable spike

trains which can carry twice the information of a constant rate, noisy response to constant

stimuli [46]. Deco and Schürmann [63, 64] used a simple neuron model to generate spike

trains in response to various signals. The study focused on demonstrating how information

theory can be applied to analyse the amount of spikes required to distinguish between signal

inputs of varying similarity. Such a method can be used to measure the time-scales of process-

ing in neurons, by estimating the time required to process and convey enough information

to distinguish between di�erent stimuli. With respect to the problem of the neural code, in

certain studies it has been noted that information theory does not con�rm the existence of a

temporal code [27, 65] while in others, rate codes proved insu�cient in carrying the informa-

tion contained in the known stimulus [52, 66]. However, it should be noted that estimates of

information depend greatly on the experimenter’s choice of stimuli and selecting the appro-

priate stimulus set is not trivial [27, 67, 68]. Regardless of the di�culties, information theory

has proven to be a very useful means of investigating the information processing capabilities

and limitations of biological neural systems and conversely, its application to neuroscience has

helped information theory evolve by providing it with new directions of research [69].
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2.2 Neural operational modes

Coincidence detection & temporal integration

It is evident from Section 2.1 that there is a great debate within the computational neuroscience

community concerning what is perhaps the most fundamental aspect of the �eld: the mecha-

nisms used by neurons to encode information into spike trains. In 1982 it was proposed that

neurons in the cortex may act as coincidence detectors rather than temporal integrators [70].

Temporal integration implies that neurons operate as integrate-and-�re devices, �ring a re-

sponse after a certain number of pre-synaptic spikes (on average) arrive at the neuron’s in-

put [43, 71]. Under this assumption, the temporal structure of pre-synaptic spike trains is lost

in the integration process of the post-synaptic neuron. The �ring rate of the post-synaptic

neuron encodes the intensity (i.e., the rate) of the joint pre-synaptic activity. On the other

hand, coincidence detection implies that the �ring of a neuron is a result of synchronous ar-

rival of multiple input spikes and that temporally dispersed spike trains are unable (or less

likely) to cause a neuron to �re [72, 73]. While it is relatively straightforward to show that

a passive model neuron can be excited by both temporally dispersed and precisely coincident

activity [31, 74, 75], the existence of the latter has great implications for the nature of the

neural code [35, 72, 73, 76]. In particular, if coincidence detection was indeed found to be the

dominant mode of operation in certain neurons, it would indicate an increased signi�cance of

precise timing in spike trains, which greatly reinforces and supports the existence of temporal

codes, as opposed to rate codes [72, 73, 76].

The debate surrounding the matter of the two encoding schemes, coincidence detection and

temporal integration, was fuelled in 1992 and 1993 when William Softky and Christof Koch

published an analysis of cortical cell recordings which showed that the particular neurons

�re highly irregular spike trains in response to constant visual stimuli [72, 73]. While the

irregularity found in spike trains was not an original discovery on its own [39–42], the (near

Poissonian) high levels of variability, indicated by a coe�cient of variation (CV) between 0.5

and 1.0, at rates up to 300 Hz, contradicted the notion that cortical cells operate as integrate-

and-�re devices. More speci�cally, an integrator �ring at such high rates, produces much

more regular spike trains, a result that is evident by simulations of leaky integrate-and-�re

(LIF) model neurons with biologically realistic parameter values (and in particular, a membrane

leak time constant within the range of realistic values, 10 to 50 ms) [35, 73, 77].
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From this analysis it follows that either cortical cells are selective of synchronous (i.e., coinci-

dent) activity at their input [73], or that a number of the underlying assumptions about neural

operation and connectivity are inaccurate, or both. Certain explanations for the observed ir-

regularity focused on the single neuron and in particular, weak re-polarisation (i.e., partial

reset) [35, 77, 78] and variable threshold [79, 80], while others considered strong inhibition in

cortical cells [43, 71, 81, 82], network e�ects [83–87] or the temporal structure of excitatory

input [88, 89].

Additionally, the discovery of such highly variable spiking at high rates inspired a number

of publications regarding methods of measuring the level of variability [see 90, for a review].

The reason for this arose from the realisation that the classical measurement, the coe�cient of

variation (CV), is very sensitive to rate changes and may overestimate the variability in cases

where the underlying rate �uctuates [47, 48, 90, 91]. Initially, Holt et al. [48] proposed the

localised coe�cient of variation (CV2), which measures the variability between adjacent inter-

spike intervals (ISIs). This makes the metric robust to �ring rate changes in long recordings.

Other localised measures of variability, which also rely on the variability between adjacent

ISIs are the local variation (LV) [92], the IR [93] and the spiking irregularity measure SI [94].

In particular, the LV metric was developed in order to distinguish between multiple motor

neurons based on their spiking irregularity, measured by the metric. The LV was shown to

be a reliable identi�er of individual neurons [92]. The IR metric was developed for a similar

purpose as the LV and was also successful in identifying speci�c types of neurons based on

their spiking irregularity [93]. These authors also mentioned that the IR overestimates the

irregularity of a spike train when there are very fast rate variations, but is robust to slower

rate �uctuations [93]. The SI metric is used under the assumption that the intervals of a spike

train follow a gamma distribution. The metric is used to estimate the shape parameter of the

distribution, which corresponds to the spike train’s irregularity [94]. In a review article where

these local measures of irregularity were compared by measuring the irregularity of a group

of spike trains with known �uctuating rates, the most reliable metric was shown to be the

CV2 [90].

Christodoulou and Bugmann [77] compared some of the proposed solutions to the problem

of high irregularity at high rates. They criticised the lack of proof of exact Poisson type �r-

ing of other studies [43, 78, 81, 82, 89, 95, 96] and proved that only the partial somatic reset

mechanism [35] reproduced the experimental �ring statistics adequately. However, in their

critique, these authors made some strong assumptions about the experimental data and the
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related statistics [77]. The authors tested alternative mechanisms and assumptions based on

their ability to �t Poisson-like statistics in three ways: (i) CV vs mean inter-spike interval (ISI)

curve that �ts the corresponding theoretical curve for a Poisson spike train with refractory

period, (ii) exponentially distributed ISIs, and (iii) independence between ISIs (shown using an

autocorrelation test). While these tests are indeed required to prove that a stochastic point

process is of Poisson type, the original experimental data did not meet these statistical re-

quirements either [72, 73]. In particular, Christodoulou and Bugmann [77] rejected the idea of

strong inhibition being an explanation of highly variable �ring at high rates [43, 71, 97] based

on tests (i) and (iii) above. However, Softky and Koch [73] showed only that experimental

data is “approximately consistent with a description of spiking as a Poisson process” (i.e., the

experimental data is close to the theoretical CV vs mean ISI curve for a Poisson process with

refractory period) and did not attempt to show independence of ISIs [72, 73]. Furthermore,

it has often been noted that cortical spike trains are not completely described by a Poisson

process [98–102]. Therefore, a hypothesis for the causes of highly variable �ring at high rates

cannot be rejected for not �tting Poisson statistics exactly.

During the discussion regarding the causes of high �ring variability at high rates, the impor-

tance of the existence of such high variability received much less attention. Discovering the

mechanisms of simple single neuron models that are able to reproduce experimental statis-

tics became more important than the function of the phenomenon itself. While it is clearly

desirable to discover the mechanism underlying the behaviour, since it could lead to a better

understanding of its function, the implications of its existence were given less attention. Addi-

tionally, it should be reiterated that Softky and Koch [72, 73] discovered that the variability was

only observable in vivo, while in vitro stimulation always produced regular spiking. It is curi-

ous then how a great proportion of the studies of this phenomenon focused on single neuron

mechanisms [35, 77–80] and its input [43, 71, 81, 82], while network e�ects were considered

less frequently [83–86]. Correlated, even synchronous, activity has been observed throughout

the nervous system [50, 103–110] while Softky and Koch [73] assumed that the input to corti-

cal cells is always of Poisson type and that high rate small excitatory post-synaptic potentials

(EPSPs) create a near DC current input to cortical neurons.

A very interesting view on the matter of neural spiking activity is that the two operational

modes, coincidence detection and temporal integration, are opposite extremes on the same

continuum [31, 51, 74, 75, 111]. This notion supports that temporal integration occurs when

a neuron receives temporally dispersed input spike trains and coincidence detection occurs
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when input spikes are highly synchronised. The ability of neurons to spike in response to both

synchronous and asynchronous activity suggests that the underlying operational mode is not

dependent on an attribute of the neuron itself (such as selectivity to coincidences), but rather

it is a result of the level of synchrony at the input. This can be understood by considering

the quantitative di�erences between a rate (or spike count) code and a precise temporal code.

While the former relies on averaging spike rates across relatively long periods of activity, or

counting the number of spikes in long temporal windows, the latter relies on the same process

but with a temporal window being only wide enough to contain a single spike, e�ectively

increasing the importance of the precise time of �ring of each individual spike (Figure 2.3).

The implication of this point of view is that it is counterproductive to speak of temporal inte-

gration and coincidence detection and by extension, rate and temporal codes, as clearly distin-

guishable alternatives. While there is a clear conceptual distinction between the two modes,

it is important to keep in mind that between them lies a continuum of encodings based on the

temporal precision and accuracy of spike generation. Therefore, it is more useful to speak of

temporal precision in terms of the time scales required to distinguish responses to di�erent

external stimuli [112–116] (see Section 2.3 subsection on Spike train distances).

It has been identi�ed experimentally and subsequently studied theoretically, that in the au-

ditory system, the temporal precision is of the order of microseconds [117–122]. This means

that neurons in the auditory system operate primarily as coincidence detectors, with a high

sensitivity to precisely timed synchronous arrival of input spikes. For neurons with membrane

time constants between 10 to 20 ms, as is found in the visual cortex, the temporal precision is

considered to be between 1 to 3 ms [117].

Additionally, it is useful to de�ne the neural modes of operation and encoding schemes in

terms of the temporal characteristics of the input [31, 74, 75, 123]. Of particular interest is

the concept of pulse packets [74, 124, 125], which provides a way to formalise the degree of

synchrony at the input of a neuron and directly a�ects the resulting operational mode. More

speci�cally, a pulse packet describes the combined activity of a number of neurons in terms of

two parameters: (i) the number of neurons that �red and contributed to the packet (i.e., the total

number of spikes in the packet) and (ii) the temporal dispersion of the spiking activity. Using

this formalism, a low temporal dispersion (i.e., high synchrony) results in a high reliability

of response [31, 75], which means that highly synchronised spike trains are more likely to

propagate their precise temporal structure to the next layer. Therefore, highly synchronised
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Figure 2.3: Two spike trains (A and B) with the same number of spikes (9 in total) may be
considered identical or di�erent depending on the size and positions of the bins of a binning
procedure. The �rst bin size is equal to the length of the spike trains, which makes the spike
trains appear identical. With smaller bin sizes, the di�erence between the two spike trains be-
comes more apparent until the bin size is only large enough to contain a single spike, in which
case the spike trains can be represented by binary strings, where 1 represents the occurrence

of a spike and 0 the absence.
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input which de�nes coincidence detection, raises the signi�cance and reliability of the temporal

precision of spike trains. In other words, the existence of synchrony in the input suggests

temporal codes.

2.3 Synchrony

The importance of synchrony in neural processing is a heavily studied topic. Synchronous

activity can reliably propagate through neural layers [123, 126–128], which suggests that in-

formation may be encoded on more precise time scales than the general rate codes. Recently,

the concept of synchrony receptive �elds was introduced theoretically [129], which is de�ned

as a set of stimuli that cause a pair (or group) of neurons to �re synchronously. Such a mecha-

nism is closely related to theories of the role of synchrony in neural binding [60, 61]. Detecting

convergent synchronous activity (i.e., synchronous �ring with a common, post-synaptic cell

or population) and measuring it can be very useful in discovering the prevalence and e�ects

of such a phenomenon.

A great number of experimental studies con�rm the existence of synchronous activity in var-

ious parts of the brain, such as the olfactory bulb [106], hippocampus [104], somatosensory

cortex [105], auditory cortex [107], visual cortex [50, 109], and retina [103, 108, 110]. As we

argued at the end of Section 2.2, synchronous activity between neurons in a network causes

downstream neurons to behave as coincidence detectors, assuming the downstream neurons

are driven by the synchronous activity directly, which provides strong evidence of temporal

coding mechanisms. Therefore, any search for spike synchrony in a network of neurons is

synonymous with a search for temporal encoding schemes and the temporal precision of the

encoding performed by any given neuron can be expressed in terms of its input spike train

synchrony and vice versa.

Identifying synchrony and more importantly, quantifying the levels of synchrony in neural

circuits is not a trivial task however [130–135]. Given any pair or group of active neurons,

there is always an amount of observable coincident spiking due to random chance. In other

words, even under the assumption that inter-neuron �ring times are independent (i.e., no cor-

related activity), there is always an expected amount of synchronous activity. This expected
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level of synchrony naturally increases as the �ring rates of the neurons under observation in-

crease [134]. High amounts of observable synchrony between large ensembles of neurons with

high activity is therefore not necessarily of any signi�cance.

However, there is a point to be made on the subtle di�erence between a neural ensemble spiking

in synchrony and coincidence detection at the single neuron level. In particular, the former

implies the latter if the synchronous activity, or at least part of it, converges onto a neuron

which can cause a repetition of spike patterns in subsequent layers, as in the so called syn�re

chain [70, 74, 123, 130, 136]. A syn�re chain de�nes a speci�c network structure. It is a feedfor-

ward network of layered neurons, where each neuron in a given layer connects only to neurons

in the next. Activity in syn�re chains can propagate with tight synchrony throughout subse-

quent layers, depending on the size of the layer and the connectivity of the network [74, 130].

If precise spike patterns are used to encode information, the information is preserved by the

precise repetition of patterns in subsequent layers. As with synchronous activity in general,

identifying syn�re chain activity embedded in large networks still poses a challenge. The exis-

tence of repeating patterns of activity does help to support the arguments for the existence of a

feed-forward, strongly connected structure, but even if such activity is signi�cantly more than

expected by chance, it does not prove the existence of the particular connectivity associated

with syn�re chains [130, 137].

As mentioned above, syn�re chain activity is hard to detect and even harder to prove [130, 137].

Precise temporal spike trains are not alone su�cient to prove coincidence detection or a tem-

poral code. In order to address the matter of precise spike train propagation and successfully

identify coincidence detection, the detailed interplay between input spike train statistics, so-

matic integration and spike generation mechanisms need to be studied at the intracellular level.

Spike train distance

Measures of spike train distance are a family of methods for calculating the dissimilarity (dis-

tance) between two or more spike trains [113, 114, 138–144]. Such measurements for spike

trains are useful for quantifying the di�erences and similarities of spike timings across a num-

ber of trials with common stimuli [114], or measuring the spike time synchrony within a neural

sub-population [139, 140, 142, 143]. The distance measured by these methods is equivalent to

the inverse of the synchrony of the spike times. In most cases, these measures operate on two

spike trains, calculating the di�erence between the times of individual spikes between the pair.
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They evaluate to 0 when a pair of spike trains is identical and the value increases as the spike

times in each spike train diverge.

The Victor-Purpura spike train distance (V-P), is a measure of the dissimilarity between two

spike trains expressed as the cost of converting one spike train to another, in a similar fash-

ion to the more general edit-length distance for sequences of characters or symbols [141]. The

measure assigns a cost of 1 for adding or removing a spike and a parameter cost q (with units

s−1) for shifting a spike along the time axis. The algorithm computes the minimum cost for

transforming one spike train into another. Removal and addition of a spike is less costly than

shifting, when the time di�erence between two spikes (∆t) is greater than 2∆tq. The param-

eter q therefore controls the temporal precision assumed by the measure. For q = 0 s−1, the

V-P distance becomes a simple spike count measure, since shifting spikes is free and therefore

the cost of converting a spike train into any other is de�ned simply by the cost of adding or

removing spikes. As q increases, the measure becomes increasingly sensitive to precise spike

timing.

The van Rossum distance has a similar nature to the V-P distance but uses a more straight-

forward algorithm to compute the distance [113]. The algorithm to compute the van Rossum

distance between two spike trains is simply composed of a convolution of the spike trains

(where a spike train is represented as a sequence or sum of Dirac delta functions, eqn. 2.1)

with an exponential kernel with time constant τc (eqn. 2.2). The purpose of the kernel is to re-

semble the shape of a post-synaptic potential or current. The �nal distance between the spike

trains is the integral of the di�erence between the two convolved functions (eqn. 2.3).

forig(t) =
M∑
i

δ(t− ti) (2.1)

f(t) =

M∑
i

H(t− ti)e−(t−ti)/τc (2.2)

D(f, g) =
1

τc

∞∫
0

[f(t)− g(t)]2dt (2.3)

The parameter τc serves the same function as the q parameter of the V-P distance, though with

inverse e�ect. In other words, for large values (τc →∞) the measure computes the di�erence

in spike counts, and for small values (τc → 0) the distance increases as spike trains di�er in

precise spike timing.
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The SPIKE-distance, a time resolved and time-scale independent metric, relies on instantaneous

di�erences between nearby spikes from two spike trains and constructs a temporal pro�le of

di�erences between the spike sequences [142]. Single valued di�erences between a pair of

spike trains are calculated as the integral of the temporal pro�le. The SPIKE-distance is a

parameter-free measure, which is advantageous when no assumptions can be made about the

temporal precision of the spike trains being analysed.

More recently, Rusu and Florian [144] introduced the modulus-metric, a spike train metric

inspired by the Pompeiu-Hausdor� distance [145, 146] between two nonempty, compact sets.

The modulus metric computes the distances between two spike trains using the di�erence

between the time-resolved distances between all times t and the closest spike in each spike

train for the duration of the spike trains [144]. The behaviour of the modulus-metric is similar

to the SPIKE-distance since they are both parameter-free and both construct a temporal pro�le

of spike coincidences and distances, the integral of which is computed as a spike-train distance.

When analysing multiple spike trains, the aforementioned measures can be used to calculate

the average pairwise distance. Pairwise calculations however scale fast (on the order of N2,

where N is the number of spike trains), making such calculations infeasible for even a few

dozen spike trains. A variant of the SPIKE-distance for multiple spike trains, the multivariate

SPIKE-distance, can be calculated using the standard deviation of spike times following or

preceding a point in time, which scales linearly with N [142].

2.4 Input reconstruction and inference

A neuron’s behaviour is generally thought to be a function of its intrinsic properties and the

input that is driving it. In modelling studies, the intrinsic properties are represented by the

neural parameters (e.g., membrane leak time constant), which often have direct biological in-

terpretation. Input parameters depend on the modelling technique used for the input. Most

commonly, inputs are modelled as either a time-varying input current or a sum of Dirac delta

pulses [16]. Reconstructing a neuron’s input involves observing the neuron’s behaviour (ei-

ther the spiking activity or the intracellular voltage), knowing the values of the intrinsic neural

parameters and estimating the parameters or the waveform of the input.

The STA, mentioned in Section 2.1 can be used as part of an input reconstruction method. After

calculating the STA waveform of a neuron based on the �ring activity and the known input
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signal, an estimate of unknown input signals can be constructed by convolving the spikes �red

by the same neuron at a di�erent time, with the calculated STA waveform [15, 16].

Other methods however, based on maximum likelihood estimation, do not assume any known

input and use the membrane voltage to estimate input parameters [34, 147–149]. These studies

use a stochastic di�usion model, based on the Ornstein-Uhlenbeck process [150] and estimate

the drift (µ) and variance/noise (σ) parameters of the stochastic process that models the input

signal.

Lansky [147] developed a maximum likelihood estimator for the Ornstein-Uhlenbeck model,

assuming constant values for the parameters. Kobayashi et al. [34] developed a similar method

for estimating the time-varying input parameters (µ(t) and σ(t)) and achieved high accuracy,

as long as the variation of the parameters was slow. Bibbona et al. [149] measured the bias

of input parameter estimators when applied to single samples of observed trajectories (i.e., a

single inter-spike interval) of the membrane potential. This single-shot estimation procedure

assumes that the values of the parameters, µ and σ are constant for the duration of the ISI.

Iolov et al. [151] assumed a sinusoidal input signal and described a method for estimating the

parameters of the input by binning and averaging estimates at appropriate time shifts, such

that intervals that shared similar parameter values were averaged together.

Generally, input estimation methods require simplifying assumptions for the model and the na-

ture of the input. The LIF or one of its variants is used as a model of neural behaviour, which

allows for analytical treatment. Input estimation, i.e., reversing the integration process per-

formed by the model, becomes feasible due to the passive integration performed by the model,

especially when intrinsic neural parameters are known. Conversely, such estimations are less

successful on more complex models, where active conductances and the interplay between

various ionic channels create nonlinear interactions between input signals and membrane tra-

jectories. Despite the simplicity of the LIF and its variants, it is widely regarded as a useful tool

for analysing neural behaviour and input estimation methods can help us develop methods

for decoding the stimulus, after observing the resulting behaviour of the internal state of the

neuron.
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Chapter 3

Determining the causes of �ring

using the membrane potential slope

One of the general aims of this thesis is to develop methods for analysing single neuron ac-

tivity, with the speci�c goal of discovering the temporal precision of the neural code. More

speci�cally, it aims at distinguishing between the two operational modes, temporal integra-

tion and coincidence detection, as they were presented in Section 2.2. This follows from the

work of Bugmann et al. [35], who used the STA stimulus of a simple model neuron, the LIF with

partial somatic reset (LIFwPR), in order to determine the dominant operational mode. After

failing to provide conclusive evidence towards either one of the proposed mechanisms, these

authors suggested using reverse correlations of the spike train and membrane potential of the

speci�c neuron, which is where this thesis begins.

The realisation that the operational mode of a single neuron is a function of the temporal statis-

tics of its input, rather than an intrinsic neural mechanism (see Section 2.2), and the suggestion

that the time course of the membrane potential may hold evidence towards determining the

operational mode of the single neuron, drove the project towards looking at evidence of input

parameters projected onto the internal state of the neuron itself and particularly, the intracel-

lular membrane potential. Previous studies have investigated the correlation between input

synchrony and membrane potential slope [31]. A similar, analytical study also identi�ed the

dependence of a neuron’s �ring rate on the derivative of the membrane potential as a mech-

anism for inter-neuron synchronisation [32]. We used this knowledge to identify evidence of

22
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Chapter 3. Determining the causes of �ring using the membrane potential slope 23

high levels of input synchrony at a neuron’s input, by looking at the shape and rise time of the

membrane potential prior to the �ring of a spike.

This quanti�cation required de�ning the two operational modes in terms of input synchrony

and in e�ect, in terms of the membrane potential slope. This way, the slope of the membrane

potential resulting from completely synchronous (denoting coincidence detection) and dis-

persed input (denoting temporal integration) could be determined. Any subsequent pre-spike

membrane potential slope, resulting from partially synchronous activity, could be normalised

and expressed as a value within a bounded range, where 0 denotes temporal integration and 1

denotes coincidence detection.

3.1 Neuron models

Despite the criticism described in Section 2.2 concerning the possibly incorrect assumptions

of the Poisson-like nature of neural �ring, we still consider the partial reset variant of the

LIF a very accurate spike generator model, because it �ts accurately the experimental CV vs

mean �ring ISI curve for high �ring rates [35, 73, 77]. Therefore, the method was to be used

to quantify the relative contribution of each operational mode to the �ring of highly irregular

spikes at high rates, as analysed and presented by Softky and Koch [72, 73, see also Section 2.2

of this thesis]. The standard LIF (with total reset) is used as a baseline model for developing

and generalising the methodology and for further investigations into the operational mode and

the e�ects of pre-synaptic synchrony.

3.2 LIF and LIFwPR neuron models

The LIF model is described by the following di�erential equation:

τm
dV

dt
= −V (t) + Vrest +RI(t) (3.1)

where τm is the membrane leak time constant, Vrest is the resting potential,R is the resistance

and I(t) is the time-dependent input. The input is usually modelled either as a time-varying

function or a sum of spike trains that cause instantaneous jumps. In the former case, I(t) is

modelled as an input current and in the latter, R is removed and I(t) is composed of a sum of
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Chapter 3. Determining the causes of �ring using the membrane potential slope 24

Nin pre-synaptic spike trains, which �re spikes (In(t)) that cause instantaneous jumps of size

∆Vs in the membrane potential (eqn. 3.2).

I(t) =

Nin∑
n=1

∆VsIn(t) (3.2)

In our work, we use the latter formalism of multiple super-imposed spike trains (see Sec-

tion 3.3). AP �ring is modelled explicitly by resetting the membrane to a �xed value Vreset
when the potential V (t) reaches a �xed threshold Vth. A reset parameter β is used to control

the value of Vreset which also controls the model variant we use [35] (eqn. 3.3).

Vreset = β(Vth − Vrest) + Vrest (3.3)

For β = 0, we have Vreset = Vrest which makes the model behave as the standard (total reset)

LIF. Setting 0 < β < 1, causes Vrest < Vreset < Vth which means that the membrane potential

is set to a higher value than rest after a spike is �red. We call the second variant the partial

reset model (LIFwPR) [35]. After reset, the integration of inputs continues, but the threshold

(and �ring mechanism) is disabled for a refractory period tr . This method of simulating the

refractory period, as well as the value for the parameter (2 ms), were taken from Bugmann

et al. [35] for compatibility with their results and analysis regarding the highly irregular �ring

at high rates.

3.3 Input generation

Synaptic inputs were modelled in all cases as realisations of a Poisson process (i.e., intervals

were exponentially distributed). The input population was characterised by �ve parameters,

two of which relate to synchrony. The non-synchrony parameters are (i) the number of input

spike trains (Nin), (ii) the average rate of the inputs (fin) and (iii) the level of depolarisation

caused by each spike on the membrane potential (∆Vs, the synaptic weight). In addition, the

two parameters which de�ne the level of synchrony are (iv) Sin, which denotes the proportion

of spike trains which are synchronous and (v) σin, which is the standard deviation of a normally

distributed random variable that is used to apply Gaussian jitter to each individual spike in

each of the identical spike trains. The parameter ranges were chosen such that our measure

is investigated in the entire operational mode range of the LIF model. More speci�cally, spike

trains are generated as follows:
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Chapter 3. Determining the causes of �ring using the membrane potential slope 25

1. Generate one Poisson spike train, with rate fin for the length of the simulation T .

2. Copy the generated spike train SinNin−1 times, giving a total of SinNin identical spike

trains (where SinNin is rounded to the nearest integer).

3. For each spike in all spike trains generated so far, shift its time by a random variate

drawn from a normal distribution X ∼ N (0, σ2in).

4. Generate (1− Sin)Nin Poisson spike trains, giving a total of Nin input spike trains.

Figure 3.1 shows four sample input cases. The raster plots show the e�ect of the two variables

Sin and σin on the overall synchrony of the spike trains. During a simulation, each input spike

causes an instantaneous jump of ∆Vs in the post-synaptic neuron’s membrane potential.

The maximum value for σin of 4 ms (see Table 3.1 for ranges and values for all parameters)

was chosen such that it is high enough to reduce synchrony signi�cantly, even for cases where

Sin = 1.

Note that, while various input parameter ranges were investigated for the LIF model, the pa-

rameters of the LIFwPR model are constant (Table 3.1). These values were taken from Bug-

mann et al. [35] who investigated the LIFwPR model and determined the parameter values

which cause highly irregular high rate �ring. Therefore, an investigation of the parameters of

the LIFwPR model is not necessary, as we employ the speci�c model solely to investigate its

sub-threshold membrane potential trajectories in the highly irregular high �ring rate regime.

Our work in this chapter focused exclusively on excitatory inputs. This simplifying assumption

allowed us to de�ne more clearly the e�ects of synchronous activity on the membrane potential

trajectory in a more predictable fashion. Even though it has been demonstrated [152] that

increasing inhibition leads to greater membrane potential �uctuations in addition to reducing

the mean membrane potential, the e�ects of inhibition on the slope of the membrane potential

were not studied in this part of the thesis.

Table 3.1 gives a list of all the parameter values and ranges used for the LIF and LIFwPR sim-

ulations.
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(a) Sin = 0.2, σin = 0 ms
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(c) Sin = 0.8, σin = 0 ms
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(d) Sin = 0.8, σin = 3 ms

0.0 0.2 0.4 0.6 0.8 1.0

t (s)

Figure 3.1: Four sample input cases showing the e�ects of the two synchrony parameters Sin
& σin (see text for details) on the overall temporal structure of the input spike trains. For all
three cases, Nin = 50 and T = 1 s. The �rst raster plot (a) shows a mostly random set of
spike trains, with only 20 % of the spike trains being completely synchronised (Sin = 0.2).
The second plot (b) shows the e�ects of jitter (σin = 3 ms) on a set of spike trains with low
synchrony (Sin = 0.2). The third plot (c) shows a much higher degree of synchrony with
80 % of the spike trains being identical (Sin = 0.8). The fourth plot (d) shows the e�ects of
high jitter (σin = 3 ms) on spike trains with 80 % synchrony (Sin = 0.8). Comparing (c) to
(d), while it is apparent by the vertical columns of aligned spikes that there is a high amount of
synchrony in both, the existence of Gaussian jitter in (d) makes the overall spike trains more

noisy and the columns are less pronounced.

3.4 Pre-spike membrane potential slope

The de�nition of the operational modes had to take into account the partial somatic reset mech-

anism, which only partially re-polarises the membrane potential after a spike is �red. Since

this mechanism a�ects the internal state of the model neuron (i.e., the membrane potential),

our method should account for arbitrary post-spike reset levels.

Our method should produce a normalised value within a bounded range. We designed the mea-

sure such that the range of values is [0, 1]. The value is calculated by normalising the slope of

the membrane potential preceding each spike. The normalisation requires de�ning the bounds
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Symbol Description Value for
LIF

Value for
LIFwPR

Units

Vth Firing threshold 15 15 mV
Vrest Neuron resting potential 0 0 mV
Vreset Neuron reset potential 0 0 mV
R Membrane resistance 10 10 kΩ
τm Membrane leak time constant 10 10 mV
tr Refractory period 2 2 ms

∆Vs Synaptic weight 0.1 to 2.0 0.16 mV
Nin Number of input spike trains 30 to 200 50 —
fin Input spike frequency 20 to 700 150 to 300 Hz
Sin Input synchrony degree 0 to 1 0 to 1 —
σin Gaussian jitter 0 to 4 0 to 4 ms

Table 3.1: Parameter symbols and value ranges for the models used throughout this chapter.
Many of the parameters share a common value; we list them explicitly for completeness.
The ranges of the input rates were chosen accordingly to study the entire obtainable �ring

frequency range.

of the membrane potential slope associated with each operational mode, which in turn requires

precise de�nitions of the operational modes themselves. We de�ne the upper and lower slope

bounds for the normalisation as the slopes that would result from highly synchronised and

highly dispersed input spikes respectively. This follows from previous work which indicates

that precisely synchronised input results in the neuron operating as a coincidence detector,

while completely dispersed input is associated with temporal integration [31, 74, 75, 111].

The following equations are used to calculate the bounds of the membrane potential slope

associated with completely synchronised (eqn. 3.4) and completely dispersed (eqn. 3.5) input

spike trains respectively:

Ui = [Vth − (Vrest + (Vreset − Vrest)E)]w−1 (3.4)

Li = [Vth − (Vrest + IV (1− E))]w−1 (3.5)

E = e−
∆ti−w
τm (3.6)

IV =
Vth − Vreset
1− e−

∆ti
τm

(3.7)

where w is a method parameter called the coincidence window, ∆ti is the duration of the ISI

preceding the ith output spike (∆ti = ti − ti−1), and IV is the constant input (expressed as

a voltage — current times resistance is implied) required to �re at the end of the ISI, starting

from Vrest. E is a common term that is used to calculate the e�ect of the membrane leak from
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the start of an ISI up to the start of the coincidence window, ∆ti − w.

The coincidence window w de�nes the maximum temporal distance between a pair of spikes

that are considered to be coincident. Smaller values of w increase the temporal precision of

the assumed neural code. For instance, for w = 5 ms, any number of spikes which arrive

within 5 ms prior to the �ring of a spike are considered to have arrived synchronously. This

will be re�ected in the slope value associated with coincidence detection, Ui (eqn. 3.4), which

will regard any membrane potential changes within 5 ms prior to a spike as instantaneous.

The value of the membrane potential slope associated with temporal integration, Li (eqn. 3.5),

assumes that under conditions where there is no synchronous activity, the membrane potential

of the neuron rises almost steadily from the reset potential (Vreset) to spike threshold (Vth),

during the entire duration of the inter-spike interval (∆ti).

The requirement for a coincidence window parameter is twofold. First, since inputs to the LIF

model are modelled as instantaneous jumps, the trajectory of the membrane potential is dis-

continuous. The coincidence window allows us to calculate the rate of change of the membrane

potential from the start of the window to the end, ignoring the discontinuity of the trajectory.

The second reason is somewhat conceptual. Coinciding or synchronous events almost never

occur simultaneously (to an arbitrarily high temporal precision), therefore the precision of

temporal coincidence is di�erent for each case. For instance, synchrony can be de�ned as two

events within at most 2 ms of each other if time-scales are small and processing is considered

to be fast. In other cases this temporal di�erence can be larger, e.g., 5 ms or even 10 ms. The

w parameter allows us to measure synchrony using di�erent de�nitions of temporal precision.

The choice of value depends on the temporal precision of a given neuron, which is usually

considered to depend on the leak time constant (shorter time constants make a neuron more

sensitive to coincidences which implies a higher precision). As mentioned in Section 2.2, the

temporal precision for neurons with membrane time constants between 10 to 20 ms is consid-

ered to be between 1 to 3 ms [117]. We use a membrane leak time constant of 10 ms, as our

study originated from data and models of neurons of the visual system [35, 73] and therefore

we use a temporal window of length 2 ms.

The bounds are used to linearly normalise the slope of the measured pre-spike membrane

potential. Using the coincidence window de�ned for the bound de�nitions w, we calculate the

average rate of change of the membrane potential between ti and ti−w, which is the slope of
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Figure 3.2: Example membrane potential trace V (t) for the LIFwPR model (blue solid line).
The pre-spike windows (w) are shown as red rectangles. The related secant lines are shown as
dashed blue lines starting fromw = 2 ms before each spike (ti−w) and ending at the threshold
(Vth, represented by the dashed black line) at the time of each spike (ti). The two grey curves
represent the upper and lower bounds. The lower bound (low slope) corresponds to the curve
starting at the post-spike reset potential (in this case, Vreset = 13.65 mV) and ending at the
point where the potential crossed the threshold (Vth = 15 mV). The upper bound (high slope)
corresponds to the curve which decays from the post-spike reset potential for the duration
of the ISI. The two bounds correspond to the theoretical trajectory of the membrane in the
presence of constant input for the lower bound and completely synchronised inputs, with no

background activity, for the upper bound.

the secant line that intersects the membrane potential curve at the start and end of the window

w (Figure 3.2), as shown in eqn. 3.8.

The slope of the secant line of the membrane potential prior to each spike is calculated as the

di�erence of membrane potentials between the start and end of the coincidence window, over

the duration of the window (Figure 3.2, eqn. 3.8):

mi =
V (ti)− V (ti − w)

w
, (3.8)

where V (t) denotes the membrane potential at an arbitrary time t. Note that V (ti) denotes

the membrane potential at the time of �ring of the i-th spike, in other words, during threshold
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crossing and therefore V (ti) = Vth always. The resulting value is subsequently normalised

between Ui and Li:

Mi =
mi − Li
Ui − Li

(3.9)

Finally, the mean Mi of an entire simulation is calculated to characterise the simulation’s be-

haviour as a whole:

M =
1

Nsp

Nsp∑
i=1

Mi, (3.10)

whereNsp is the total number of spikes �red in the given simulation run. Since the bound cal-

culations involve the preceding ISI of each spike, the value ofM for the �rst spike is calculated

using the start of the simulation (t0 = 0 ms), assuming the initial voltage is equal to the reset

potential (V (0) = Vreset) and the input spike trains begin driving the neuron from the start of

the simulation (stimulus onset is at t0), both of which hold for our simulations. Alternatively,

the calculation may consider only the Nsp − 1 intervals between all �red spikes.

We refer to the method described in this section, as well as the value it measures, as the Nor-

malised Pre-Spike Slope, or NPSS for short.

3.5 Results for LIF

The six images in Figure 3.3 show results of simulations of the LIF neuron for various parameter

combinations (see �gure caption for details). The parameters were chosen to demonstrate how

the NPSS behaves under sub- and supra-threshold stimulation. The plots show the mean NPSS

of the membrane potential (M) for all combinations of Sin and σin within the value ranges

speci�ed in Table 3.1. Each M value represents the meanM for all spikes �red during T = 10 s

of simulated time.

M reaches the maximal value of 1 in the lower right hand corner, which corresponds to com-

pletely synchronised input spike trains (Sin = 1) with no jitter (σin = 0 ms). As expected, less

synchronised spike trains (lower Sin values, i.e., moving left on the plot) decrease the value

of M. The correlation between Sin and M, when σin = 0 ms, shows a near perfect positive

linear relationship, with a correlation coe�cient of ρS,M = 0.99 (clearly shown in Figure 3.4a).

Similarly, increasing the amount of jitter (higher σin values, i.e., moving up on the image) also

decreases the value of M. The correlation coe�cient between σin and M, when Sin = 1, is
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(a) Nin = 100,∆Vs = 0.1 mV, fout = 5 Hz
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(b) Nin = 50,∆Vs = 0.2 mV, fout = 100 Hz
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(c) Nin = 60,∆Vs = 0.3 mV, fout = 10 Hz
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(d) Nin = 60,∆Vs = 0.5 mV, fout = 70 Hz
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(e) Nin = 200,∆Vs = 0.1 mV, fout = 10 Hz
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(f) Nin = 60,∆Vs = 0.5 mV, fout = 400 Hz
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Figure 3.3: The normalised pre-spike membrane potential slope (NPSS, M) for a LIF neuron
model with total reset. For each plot, the �ring rate of the LIF neuron is kept constant by
calibrating the rate of the input spike trains at each data point. All the input spike trains
were calibrated simultaneously and always shared the same mean rate. The parameters for

the plots were as follows:
(a) Nin = 100,∆Vs = 0.1 mV, fout = 5 Hz

(b) Nin = 50,∆Vs = 0.2 mV, fout = 100 Hz
(c) Nin = 60,∆Vs = 0.3 mV, fout = 10 Hz
(d) Nin = 60,∆Vs = 0.5 mV, fout = 70 Hz
(e) Nin = 200,∆Vs = 0.1 mV, fout = 10 Hz
(f) Nin = 60,∆Vs = 0.5 mV, fout = 400 Hz

The horizontal axis shows the proportion of synchronised spike trains (Sin ∈ [0, 1]), while the
vertical axis shows the amount of jitter applied to the synchronous spikes (σin ∈ [0, 4] ms).
The colour indicates the value of M for the simulation, as shown by the colour-bar on the

right hand side.
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Figure 3.4: Normalised pre-spike membrane potential slope (M) for (a)σin = 0 plotted against
the full range of Sin values and (b) Sin = 1 plotted against full range of σin. The dots and
blue line represent measured data points for the LIF neuron �ring at 70 Hz (corresponding to
Figure 3.3d), while the black dashed line represents perfect linear correlation for comparison.

ρσ,M = −0.95 indicating a very high, negative linear relationship (Figure 3.4b). These values

correspond to a desired fout = 70 Hz (corresponding to Figure 3.3d).

Deviations of M from the trend in the measurements of the NPSS (Figures 3.3 and 3.4) are due

to randomness in the input spike trains, which cause random �uctuations of the membrane po-

tential. This in turn causes pre-spike membrane potential slopes that do not follow the typical

relationship between the slope and the parameters used to generate the synchronous inputs.

However, the slope is still correlated with the degree of input synchrony; the randomness af-

fects the correlation between the input synchrony parameters (Sin & σin) and the degree of

synchrony in the generated input spike trains. Although the averaging is used to remove such

variations (Eqn. 3.10), deviations may occur frequently and appear in the �nal results.

The results shown in Figures 3.3 and 3.4 as well as the aforementioned strong correlation be-

tween the input parameters and M indicate that the NPSS can reliably detect and measure the

input synchrony which was relevant to the �ring of response spikes. The method maintained a

high reliability for a wide range of the input parameter values, i.e., the number of spike trains

(Nin), the desired �ring rate (fout) and the membrane potential rise per spike (∆Vs). How-

ever, the robustness of this correlation depends on the input regime, i.e., the strength of the

input volleys with respect to the �ring threshold. In particular, this correlation between input

synchrony and measured M is robust as long as the synchronous volleys are supra-threshold,

Nin∆Vs ≥ (Vth − Vrest). The relationship between input synchrony and M, in other words,

the relationship between input synchrony and operational mode, and the way in which it is
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a�ected by various properties of the neuron and the neuron’s activity, is investigated in depth

in Chapter 4.

3.5.1 Upper- and lower-bound convergence at high �ring rates

Of particular interest is the case where the LIF neuron is driven by high rate inputs causing it

to �re at extremely high rates. Figure 3.3f shows the measured synchrony of a LIF neuron with

fout = 400 Hz. Comparing this plot to the others of Figure 3.3, it is evident that the value of

M remains very high for all con�gurations.

This behaviour (Figure 3.3f) is due to the mean �ring ISI approaching (in duration) to the

coincidence window. More speci�cally, if an ISI is equal to the coincidence window ∆ti = w,

then the values of the two bounds (eqns. 3.4 and 3.5) become equal. This occurs because in such

circumstances, the �ring of a spike due to integration of inputs within a period equal to the ISI

is equivalent to �ring solely from input spikes arriving within a period w. We can investigate

the divergent behaviour between the two modes as a function of the ISI (∆ti) and coincidence

window (w).

In order to grasp the intuition behind this phenomenon, let us �rst consider the case where a

�ring ISI is equal to the coincidence window, i.e., ∆ti = w. In this case, it is clear from eqns. 3.4

and 3.5 that Ui = Li, i.e., the two operational modes are described by the exact same slope

value and are therefore identical and indistinguishable.

More generally, at very high �ring rates the ISIs are much shorter than the membrane leak time

constant (∆ti � τm). In such cases, the solution of eqn. 3.1 for constant input given below

V (t) = Vrest + IR
(

1− e−
t−t0
τm

)
, (3.11)

can have its leak term replaced by an approximation of the term’s Taylor series expansion as

shown in eqn. 3.12.

e−
t−t0
τm ≈ 1− t− t0

τm
(3.12)

Therefore, from eqns. 3.11 and 3.12, the membrane potential equation of the LIF model is sim-

pli�ed and approximated by eqn. 3.13.

V ′(t) = Vrest +
I(t− t0)

C
(3.13)
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where V ′(t) signi�es the membrane potential of the approximating model and C is the capac-

itance of the membrane.

This approximating model is the perfect (i.e., non-leaky) Integrate-and-Fire neuron model (PIF),

which simply integrates post-synaptic inputs, without losing any of its charge over time. We

then use eqns. 3.11 and 3.13 to calculate the relative di�erence between the two models as a

function of the ISI (∆ti). The relative di�erence is measured at the beginning of the pre-spike

coincidence window, because the membrane potential at this time determines the slope of the

secant line associated with that speci�c spike (see eqn. 3.8 and Figure 3.2a). Therefore, the

relative di�erence for any given ISI is calculated as the di�erence between the two models at

the beginning of the coincidence window, i.e., ti − w (eqn. 3.14).

dti,w =
|V (ti − w)− V ′(ti − w)|

V (ti − w)
(3.14)

where V (t) and V ′(t) are given by eqns. 3.11 and 3.13 respectively. The relative di�erence

is used as a measure of dissimilarity between the two models and by extension, it measures

the distinguishability between the two operational modes. Therefore, the relative di�erence d

represents the level of divergence between the LIF and PIF.

Alternatively, we can look at the behaviour of the two bounds U and L as a function of the

ISI and observe the rate of their convergence as the interval is decreased. More speci�cally,

the ratio of the lower bound eqn. 3.5 to the upper bound eqn. 3.4, LU , can show us how fast the

lower bound approaches the upper bound for decreasing ISI.

Figure 3.5a shows the relative di�erence d (eqn. 3.14), as a function of the ISI (∆ti) at high

�ring rates, for a coincidence window w = 2 ms. Similarly, Figure 3.5b shows the ratio of the

bounds L
U , for the same scenario. Note that changing the value of w shifts both curves along

the horizontal axis, i.e., increasing the value moves the curve to the right and decreasing the

value moves the curve to the left. The �gures show that at high �ring rates, the LIF and perfect

integrator converge, as d gets closer to 0 and therefore the two models become indistinguish-

able. Similarly, the ratio between the two bounds approaches 1, as described in the beginning

of this section, indicating that the two operational modes are also indistinguishable.
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Figure 3.5: (a) Relative di�erence d between the LIF and the perfect integrator models and
ratio of lower bound to upper bound (LU ) as a function of �ring ISI (∆ti), for window w =
2 ms (solid lines). For details on the derivation of the di�erence d see eqn. 3.14. The three
points marked in each graph correspond to the �ring rates of the simulations which produced
Figure 3.3b, (100 Hz), Figure 3.3d (70 Hz), Figure 3.3f (400 Hz). As we are interested in the
relative di�erence and convergence of the bounds at high �ring rates, the graph does not
show values corresponding to �ring rates lower than 50 Hz. Note that changing the value w
shifts both curves along the horizontal axis, i.e., increasing the value moves the curves to to

the right and decreasing the value moves the curve to the left.

3.6 Results for LIFwPR

We also measured the normalised pre-spike membrane potential slope of a model neuron ex-

hibiting highly irregular �ring at high rates. We used the LIFwPR, with neuron and input

parameter values identical to the model by Bugmann et al. [35]. The inputs to the neuron con-

sisted of 50 Poisson spike trains and each input spike caused a depolarisation of the neuron’s

membrane potential by ∆Vs = 0.16 mV. We used a reset parameter value of β = 0.91 as it

has been shown to be the only value that can produce purely temporally irregular �ring (with

no bursting activity that can increase the �ring variability) [35, 77]. This is compatible with

the high �ring irregularity at high rates observed in cortical neurons [72, 73].

The results (Figure 3.7) show the value of M being below 0.35 for the entire range of �ring

rates and below 0.2 for rates below 300 Hz. Each �ring rate was achieved by varying input

rates within physiological ranges. These results suggest that neurons �ring highly irregularly

at high rates operate mainly as temporal integrators.

In Bugmann et al. [35], it was suggested that temporal integration and �uctuation detection

(i.e., coincidence detection) can coexist and cause irregular �ring, which was indicated by the

ISI of a LIFwPR neuron driven by a �uctuating input current being signi�cantly shorter than

the ISI of the same neuron driven by a constant input current (of the same average value).
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The current results however indicate that there is a strong dominance of temporal integration

and the relatively small contribution of coincidence detection in the �ring of spikes is not

su�ciently high to be distinguishable from the e�ects of the temporal integration process.

This indicates that coincidence detection is not necessary for producing highly irregular �ring

at high rates (as was suggested by Softky and Koch [72, 73]) and that temporal integration on

its own is su�cient for such a purpose, provided the neuron does not completely repolarise.

3.6.1 Compatibility of results with original analysis

Our results are not incompatible with the analysis by Softky and Koch [73]. In their work,

these authors express the threshold in number of input pulses, Nth, necessary to raise the

neuron’s membrane potential from rest to discharge. We can use the de�nition of Nth in the

same way and describe our model in terms of the di�erence in potential between threshold

and rest, divided by the depolarisation per spike:

Nth =

⌈
Vth − Vrest

∆Vs

⌉
(3.15)

where dxe denotes the ceiling of x (i.e., the smallest integer not less than x). This is done in

order to make our results comparable with their analysis, which showed how the coe�cient

of variation (CV) varied as a function of the time constant τm and Nth, as seen in Figure 3.6.

Assuming that Vreset ≥ Vrest (which holds for any model with a reset parameter β ≥ 0),

for any given time where V (t) ≥ Vreset, the model neuron can be expressed in terms of an

equivalent model with e�ective resting potential V ′rest = Vreset and e�ective time constant τ ′m
(the prime signi�es a parameter or variable of the equivalent model). From this, it follows that

N ′th ≤ Nth, since V ′rest ≥ Vrest:

N ′th =

⌈
Vth − V ′rest

∆Vs

⌉
= dNth(1− β)e (3.16)

Substituting for the parameter values used in our simulations, i.e., Vth = 15 mV, Vrest = 0 mV

and ∆Vs = 0.16 mV, the original value ofNth is 94. For V ′rest = 13.65 mV however, which is

the reset value of the LIFwPR model (β = 0.91), the e�ective number of input spikes required

to �re a spike N ′th is reduced to just 9.
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Figure 3.6: Contour plot of CV for leaky integrator for discrete values of τm (shown as τ in
the �gure) and Nth, when the mean output ISI is 5 ms. Image taken from Softky and Koch

[73]

The e�ective time constant’s value τ ′m should be such that (assuming the inputs are the same

for both models) the rate of change of the membrane potential for the equivalent model should

be equal to that of the original model, dV
dt

=
dV ′

dt
. Since the two models share the same input,

we can calculate τ ′m by ignoring the input terms of the two models and equating the leak term

of eqn. 3.1 with the leak term of the equivalent model (eqn. 3.17):

τ ′m
dV ′

dt
= −V (t) + V ′rest (3.17)

Comparing eqns. 3.1 and 3.17, replacing the e�ective resting value V ′rest with the original reset

value Vreset and solving for τ ′m gives eqn. 3.18:

τ ′m = τm
V (t)− Vreset
V (t)− Vrest

(3.18)

Therefore the value of the e�ective time constant τ ′m changes as a function of the membrane

potential V (t). For our simulations, we can calculate the range of values that τ ′m takes, �rst

by substituting the parameter values we used, i.e., τm = 10 ms, Vrest = 0 mV and Vreset =

13.65 mV and then by calculating τ ′m for the known range of V (t) using eqn. 3.18. Thus, for

our simulations τ ′m = 10 ms(V (t)− 13.65 mV)/V (t).

Ach
ille

as
 K

ou
tso

u



Chapter 3. Determining the causes of �ring using the membrane potential slope 38

Since the e�ects discussed here are relevant for membrane potential levels above the reset po-

tential, we calculate the range of τ ′m for membrane potential values betweenV (t) ∈ [Vreset, Vth] =

[13.65 mV, 15 mV] giving respective τ ′m ∈ [0 ms, 0.9 ms].

Therefore, for the LIFwPR, when the input is constantly high enough to keep the membrane

potential above the reset potential, the e�ective number of spikes required to reach thresh-

old becomes Nth = 9 and the e�ective membrane time constant becomes a function of the

membrane potential and �uctuates within the range τm ∈ [0, 0.9] (with the parameter values

used to get the results shown in Figure 3.7). This result describes theoretically how a model

behaving primarily as an integrator, such as the LIFwPR, can �re at such high variability at

high rates. With the partial reset mechanism, the LIFwPR neuron’s membrane potential stays

very close to the spike threshold between successive �rings (i.e., during an ISI), assuming the

neuron is spiking at high enough rates. More importantly, the membrane potential is almost

always above the reset potential Vreset after the �rst spike is �red. With this in mind, we

have shown that when the LIFwPR neuron is driven by su�ciently frequent arriving inputs,

it operates equivalently to a neuron with an e�ective resting potential V ′rest equal to the reset

potential Vreset, a very short e�ective time constant (τ ′m ≤ 0.9 ms), and a very low e�ective

threshold (N ′th = 9).

Our results are thus in accord with the analysis by Softky and Koch [73] who showed that for

low Nth values and sub-millisecond membrane time constant τm, a LIF neuron operating as a

temporal integrator can �re highly irregularly at high rates (Figure 3.6) [73]. From the above

analysis, we can therefore conclude that the LIFwPR model, which models the incomplete

post-spike re-polarisation of a neuron, can be used for (i) reducing the e�ective number of

input spikesN ′th required to cause a spike and (ii) decreasing the e�ective membrane leak time

constant τ ′m such that a neuron can �re highly irregularly at high rates, in accordance with

experimental recordings.

3.7 Discussion

This chapter establishes the correlation between input synchrony and the slope of the mem-

brane potential prior to �ring. This depends on normalising the slope between two bounds.

Our results suggest a strong correlation between pre-spike membrane potential slope and

pre-synaptic synchrony levels, that allows us to infer the degree of response-relevant input
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Figure 3.7: The normalised pre-spike membrane potential slope (M) for a LIF neuron model
with partial somatic reset �ring highly irregularly at rates up to ∼ 470 Hz (ISI ≈ 2.1 ms).

synchrony under certain assumptions, namely the existence of excitation only and of supra-

threshold volleys. In a theoretical study, Stein [10] showed that the slope of the membrane

potential is inversely proportional to the variance of the �ring ISIs, for a neuron driven by

Poisson inputs. Goedeke and Diesmann [32] showed that the membrane potential, as well as

its derivative, de�ne the response of a LIF model to synchronised inputs. They analytically

studied the dynamics of the behaviour of a LIF neuron, both in isolation and in homogeneous

networks and concluded that the synchronisation between neurons depends both on the mem-

brane potential and its derivative. While these studies prove the existence of a correlation be-

tween membrane potential and �ring statistics of both individual neurons and networks, our

own work establishes a speci�c correlation measure between membrane potential and input

statistics. As such, the two results may be considered complimentary.

However, a potential correlation between �ring and input statistics is most likely not as straight-

forward to investigate, since both the membrane potential �uctuations and the �ring ISI dis-

tribution are a�ected by multiple parameters of the stimulus. Synchrony in the pre-synaptic

activity of a neuron can a�ect its �ring rate [153] and irregularity [154]. However, these e�ects

are not consistent and depend heavily on the state of the neuron. More precisely, the output

�ring rate is a non-monotonic function of the correlation among excitatory inputs [153]. Ad-

ditionally, the �ring variability depends heavily on other factors besides the degree of input
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correlations [154]. The NPSS relies on the assumption that changes in input parameters are

re�ected in the trajectory of the membrane potential, while similar changes may not a�ect the

distribution of �ring ISIs in a consistent manner.

Our work is more closely related to Kisley and Gerstein [31] and more recently to DeWeese

and Zador [33] and Kobayashi et al. [34], in that we establish a relationship between membrane

potential properties and properties of the input spike trains, in order to infer the latter from

measurements of the former. DeWeese and Zador [33] analysed membrane potential dynamics

to infer properties of the input population. Similarly, Kobayashi et al. [34] developed an algo-

rithm to estimate the time-varying input rates of the pre-synaptic population by studying the

membrane potential of the neuron. The correlation between membrane potential slope and

input synchrony was studied by Kisley and Gerstein [31]. The work presented in this chapter

relies on this correlation to provide a measure of the response-relevant input synchrony, which

relates to the operational mode of the neuron. In particular, the NPSS provides a measure of

the relative contribution of temporal integration and coincidence detection to the �ring of a

spike, or the operation of a neuron in general.

The choice of the duration of the coincidence window, i.e., the value ofw, is an important aspect

of the NPSS. It has to be noted that the e�ect of this variable on the temporal precision of �ring

has also been the subject of theoretical study [120, 122]. As mentioned in Section 3.4, the value

of this parameter should re�ect the time that is regarded as the maximum temporal distance

between two events that are considered to be coincident (2 ms in our case). The only limit for

the duration of the coincidence window is the time step of the simulation (here 0.1 ms) or more

generally, the temporal resolution of the data being analysed. However, the smaller the value

of w, the stricter the de�nition of coincident activity becomes, which in turn produces lower

M values, unless the input spike trains are completely synchronised. This provides a degree of

�exibility for the NPSS that allows it to be adapted to various levels of temporal resolution.

For our simulations, we set the coincidence window to w = 2 ms since, as mentioned in Sec-

tion 2.2, for neurons with membrane time constants within the range of 10 to 20 ms, a temporal

code with accuracy in the range 1 to 3 ms is theoretically possible [117]. By setting the width

of the coincidence window to 2 ms, we e�ectively attempt to measure the level of synchrony of

the input spikes that caused each response, under the assumption that the temporal precision

of coincidence detection is 2 ms. Higher precision has also been identi�ed in experiments on

a CA1 hippocampal pyramidal neuron [155]. In their experiments, Losonczy and Magee [155]
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observed that the cell is sensitive to coincidences with a precision of up to 0.1 ms. As men-

tioned above, setting w to such a small value would greatly a�ect our results, by signi�cantly

reducing the values measured by the NPSS. Such a strict de�nition of coincidences would nat-

urally translate to a very strict de�nition of coincidence detection, making it much less likely

that the neuron is operating in an operational mode other than temporal integration, for even

the slightest amount of jitter.

The meaning of the value for the duration of the coincidence window can be intuitively under-

stood in terms of the cost parameter found in spike train distance measures [see 112, 114, 142,

as well as the relevant subsection of Section 2.3 on spike train distances], which controls the

sensitivity of the metric to spike count and spike timing, i.e., the assumed resolution of the

temporal code. Spike train distances measure the distance between two spike trains by calcu-

lating the minimum cost of transforming one spike train into the other by adding, removing

or shifting spikes. By manipulating the cost parameter, one can control the measured distance

between two given spike trains. For instance, with a small cost parameter value, two very dif-

ferent spike trains will be measured as having a small distance, i.e, they are considered similar

by the metric due to the low cost of shifting spikes. Conversely, with a high cost parameter

value, two similar spike trains will be measured as having a large distance, i.e., they are consid-

ered dissimilar by the metric, due to the high cost of shifting spikes. While the NPSS measures

the response-relevant synchrony of the input spike trains of a neuron and by extension, the

operational mode of that neuron, the spike train distances measure the distance, or similarity

between a pair or group of spike trains directly. However, both types of metrics can be used in

di�erent circumstances to measure the temporal precision of the neural code.

While similar work exists on measuring spike train correlations and synchrony, either by di-

rectly observing the spikes �red from a population of neurons [133, 135], or by identifying

synchronous activity in local �eld potentials [156], the NPSS di�ers in that it only responds

to such correlations between spike trains converging into a single neuron, when they are re-

sponsible for the triggering of response spikes. In particular, the NPSS explicitly calculates the

degree of input synchrony directly preceding a response spike and implicitly considers any

previous activity by taking into account the potential at the start of the coincidence window

w in the calculation. The higher the potential of the neuron’s membrane at the start of the co-

incidence window, the lower the relative contribution of the synchronous spike trains within

the coincidence window would be to the response. Consequently, the slope of the membrane

potential within the coincidence window is low, denoting a higher contribution of temporal
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integration. In this way, the NPSS is only concerned with the input statistics that a�ect the

neuron’s own spiking, in other words, it is sensitive to the response-relevant statistics of the

input. It is this particular feature which links our measure’s estimation of response-relevant

input synchrony to the underlying operational mode. The operational mode of a neuron is

not de�ned solely by the synchrony of the spike trains it receives, but also by whether or not

that synchronous activity causes �ring. We refer to this distinction as the di�erence between

actual synchrony and utilised synchrony. The actual synchrony is the synchrony between a set

of spike trains, determined by the amount of coincident spikes in relation to the total amount

of spikes (coincident versus non-coincident, or synchronous versus random). The utilised syn-

chrony is determined by the way in which the actual synchrony a�ects the neuron’s spiking,

whether coincident spikes are able to cause �ring, or non-coincident spikes are also required.

Chapter 4, studies this relationship in more depth.

The simulation method for the absolute refractory period described in Section 3.2 di�ers from

the traditional method of clamping the membrane potential to Vrest or Vreset for the duration

tr . In our simulations, the membrane potential is allowed to evolve freely during tr , but the

comparison with the �ring threshold is not performed, e�ectively disabling the �ring mech-

anism. This method is used in models with a partially resetting [35] or non-resetting [80]

membrane potential following a spike. This has several implications for the �ring behaviour

of the model. It allows for ISI lengths of exactly tr , which occurs when the membrane potential

reaches Vth during the tr period following a spike and remains above threshold until the end

of the refractory period. When this occurs, the neuron �res immediately when the threshold

is reactivated at the end of the refractory period. With the traditional simulation method, the

smallest ISI is determined by the absolute refractory period, plus a small duration required for

the membrane potential to reach threshold from Vrest, once the membrane potential integra-

tion is reactivated (i.e., the clamping is disabled). This rise time delay is generally determined

by the membrane leak time constant (τm). Moreover, using this method of simulating the re-

fractory period results in a model that behaves in the same way as a model with no refractory

period, as long as the smallest ISI is ≥ tr . When this holds, the e�ect of the refractory period

(i.e., the disabling of the threshold) has no impact on the �ring of the neuron, in addition to the

refractory period having no e�ect on the behaviour of the membrane potential. Our choice of

parameter value for the refractory period (tr = 2 ms) follows from our usage of the LIFwPR

model [35] and our goal of reproducing and analysing the behaviour of a model neuron �ring

highly irregular spike trains at very high rates. The duration and simulation method of the
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refractory period has little impact on our results, however. The slope bounds de�ned for the

NPSS can very easily be adjusted to account for a refractory period, assuming it is known, by

subtracting its duration (tr) from the duration of the ISI (∆ti) during the bound calculations

(see eqns. 3.4–3.7).

One of the motivations for the work presented in this chapter was to determine the operational

mode responsible for the �ring of the highly irregular spike trains at very high rates. In partic-

ular, we were interested in the operational mode of the LIF model with partial reset (LIFwPR),

which adds a simple modi�cation to the spiking mechanism of a simple model and has been

shown to accurately reproduce the �ring statistics of experimentally recorded data [35, 77].

Similarly, models which implement a variable threshold, such as the Multi-timescale Adaptive

Threshold (MAT) model [80], can reproduce a wide variety of �ring characteristics and accu-

rately predict spike times. While studying the LIFwPR model, Bugmann et al. [35] showed

that the partial reset mechanism is functionally equivalent to a model with a totally resetting

membrane potential and a time varying threshold (LIFwVT), where the threshold decreases

immediately following a spike and increases to its original value over time. This di�ers from

the behaviour of the MAT model, which has a non-resetting membrane potential and a variable

threshold which increases immediately following a spike and decays to its original value over

time. The three models (LIFwPR, MAT and LIFwVT) can behave equivalently when the im-

mediate change in threshold is set accordingly across all models and the decay constant of the

threshold is equal to the membrane leak time constant. This implies that our use of the LIFwPR

model and slope bound equations can be used to study the dynamics of all of these models,

with appropriate modi�cations. However, it should be noted that the MAT model allows for

modi�cation of its �ring dynamics by manipulating the decay rate of the threshold, which is

an extra parameter that has no equivalency in the LIFwPR model. More speci�cally, when

the threshold decay constant of the MAT model is constant and equal to the membrane leak

time constant and the reset parameter of the LIFwPR corresponds to the increase in threshold

of the MAT model, the two models behave very similarly. The equivalence between the two

models does not hold when the threshold decay constant is not equal to the membrane leak

time constant.

The methods and results presented in this chapter were published in Neural Computation in

2012 [36].
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Chapter 4

The relation between stimulus

synchrony and the operational mode

of a neuron

In this chapter, we investigate the relation between the operational mode, as determined by

the NPSS and the spike time distance of the spike trains driving the neuron, as measured by the

SPIKE-distance (see Section 2.3). Our goal is to determine the circumstances under which in-

put synchrony directly determines operational mode (i.e., high synchrony causes coincidence

detection while low synchrony causes temporal integration) and more importantly, to inves-

tigate how the properties of the input (number of inputs, rate), combined with the properties

of the neuron itself (synaptic weight, membrane leak time constant and threshold) a�ect this

relationship.

We chose to use the SPIKE-distance measure [142] for the reasons described in Section 2.3.

More speci�cally, the SPIKE-distance and in particular the multivariate variant of the measure,

is more suitable than other spike time distance measures for measuring the distance between

multiple (i.e., more than two) spike trains. Spike time distance measures such as the Victor-

Purpura (V-P) distance [141], the van Rossum distance [113], and the modulus metric [144],

operate on spike train pairs. Calculating the distance between multiple spike trains using these

measures involves taking the average of all pairwise distances, which scales with the square

of the number of spike trains (number of pairs between N spike trains = N(N − 1)/2). This

is true for the original (bivariate) version of the SPIKE-distance as well. Calculating the spike

44
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distance between N spike trains becomes infeasible when N is on the order of hundreds of

spike trains, as used in this chapter. The multivariate SPIKE-distance scales linearly, since it

only uses the standard deviation of the times of spikes around a certain time t in its calculation

(see Section 4.1.1 below and in particular eqn. 4.1).

In addition to the lower computational complexity, the SPIKE-distance is parameter free, as

opposed to the V-P and van Rossum measures. The V-P measure is parameterised by a cost

parameter which de�nes the cost (distance) between nearby spikes (in units of cost per sec-

ond). The van Rossum measure is parameterised by a time constant which a�ects the expo-

nential convolution window used in the calculation of the distance. These two parameters are

inversely related and in both cases they are used to control the temporal sensitivity of the mea-

sures. In other words, the values of the parameters control whether the measures assume a rate

code or a temporal code. In this chapter, we aim to understand the relationship between the

operational mode and the input synchrony, across the whole continuum of operational modes.

The SPIKE-distance measure is more appropriate for this case since it makes no assumptions

about the underlying operational mode, or neural code.

Finally, the SPIKE-distance is time-scale independent. Calculation of the distance involves

scaling the measurements using the instantaneous mean ISI around a certain point in time,

which results in the measure removing any dependence on the time scales or �ring rates of

the underlying spike trains. This is more compatible with the way the NPSS calculates the

operational mode. The calculation of the membrane slope bounds accounts for the di�erent

bounds that are theoretically achievable given the length of a speci�c ISI (see eqns. 3.4 and 3.5).

The subsequent normalisation of the slope using the bounds (eqn. 3.8) therefore removes the

dependence of the slope measurement on the ISI and by extension, the spike rate.

Generally, the meaning of the two measures can be interpreted as actual synchrony for the

SPIKE-distance versus utilised synchrony for the NPSS. In the former case, the SPIKE-distance

is derived directly from the spike trains and is a measure of the synchrony between them, unaf-

fected by spike rates (it is time-scale independent) or the properties of the neuron. On the other

hand, the NPSS is a measure of how the neuron utilises the synchrony in the input, whether

synchronous spike trains are solely responsible for causing response spikes, no coincidences

are responsible for causing response spikes, or any combination in between. An important dis-

tinction is that the SPIKE-distance is measured on the input spike trains directly, i.e., the spike

times are used as inputs into the calculation. The SPIKE-distance measures actual synchrony:
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it is the degree synchrony that is measured by applying a method on the spike trains. On the

other hand, the NPSS is measured on the membrane potential of the neuron, i.e., it analyses

the behaviour of the membrane potential while the neuron is being driven by the input spike

trains. The NPSS measures utilised synchrony: it is the degree of synchrony that a�ects the

trajectory of the membrane potential after it has been integrated (utilised) by the neuron. The

term utilised in this context should not be confused with the idea of utility in any higher level

function. It is simply meant to refer to the degree of synchrony that is responsible for causing

response spikes. In other words, we are referring to the degree of input synchrony that is e�ec-

tive in causing responses, as opposed to the degree of synchrony that appears at the input. The

degree of utilised synchrony measured by the NPSS de�nes the neural mode: full synchrony

utilisation de�nes coincidence detection, while no synchrony utilisation de�nes temporal in-

tegration and intermediate values de�ne the operational mode continuum. The purpose of this

chapter is to investigate how the input and neuron parameters determine the degree of utilised

synchrony, i.e., the operational mode, in relation to the actual input synchrony.

4.1 Methods

The overall methodology used is as follows:

1. Generate spike trains with parameter values (number of spike trains Nin, spike fre-

quency fin, fraction of synchronous spike trains Sin and jitter σin) randomised within

the ranges de�ned in Table 4.1.

2. Use the spike trains to drive a neuron model, causing it to �re. The weight (depolarisation

caused per spike, ∆Vs) is also randomised and shown in Table 4.1.

3. Calculate the NPSS as described in Section 3.4 [36].

4. Calculate the multivariate SPIKE-distance (DS) [142] between the generated (input)

spike trains using the method described in Section 4.1.1 below.

5. Compare the NPSS with DS . See Section 4.1.2.

For step 1, inputs were generated as in Section 3.3. Table 4.1 shows input related parame-

ter values and ranges (Nin, fin, Sin, σin). In step 2, we use the leaky integrate-and-�re (LIF)

model, as described in Section 3.2, with total reset (Vrest = Vreset). The neuron parameters are
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Symbol Description Value or range Units

Nin Number of input spike trains 30 to 400 —
fin Input spike frequency 50 to 100 Hz
∆Vs Synaptic weight 0.1 to 1.0 mV
Sin Input synchrony degree 0 to 1 —
σin Gaussian jitter 0 to 4 ms
Vth Firing threshold 15 mV
Vrest Neuron resting and reset potential 0 mV
τm Membrane leak time constant 10 ms

Table 4.1: Parameter symbols and value ranges

duplicated in Table 4.1 for completeness. In step 3, we calculate the NPSS after running the LIF

neuron with the generated inputs from step 1 for 5 s of simulated time.

4.1.1 SPIKE-distance

The multivariate SPIKE-distance (step 4) is calculated using the method described in [142] and

Section 2.1.3 of the cited paper in particular. For any time t, the spike distance is:

Sm(t) =
σ
[
t
(n)
P (t)

]
n
〈X(n)

F (t)〉n + σ
[
t
(n)
F (t)

]
n
〈X(n)

P (t)〉n
〈X(n)

ISI(t)〉2n
, (4.1)

Where 〈X(n)
P (t)〉n and 〈X(n)

F (t)〉n are the average intervals to the previous and following

spikes respectively, across all Nin spike trains. σ
[
t
(n)
P (t)

]
n

and σ
[
t
(n)
F (t)

]
n

are the standard

deviations of the spike times of the previous and following spikes respectively, across all Nin

spike trains. Finally, 〈X(n)
ISI(t)〉n is the average ISI across the Nin spike trains, around time t.

t
(n)
P = max(t

(n)
i |t

(n)
i ≤ t) (4.2)

t
(n)
F = min(t

(n)
i |t

(n)
i > t) (4.3)

X
(n)
P = t− t(n)P (4.4)

X
(n)
F = t

(n)
F − t (4.5)

X
(n)
ISI = t

(n)
F − t

(n)
P (4.6)

Figure 4.1 shows an illustration of the quantities involved in the calculation of the SPIKE-

distance and eqns. 4.2–4.6.
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Chapter 4. Relation between stimulus synchrony and operational mode 48

Figure 4.1: Illustration of the values used in the calculation of the SPIKE-distance. The �gure
shows two spike trains (1: blue and 2: red) with four and two spikes respectively. The dashed
black line represents the time (t) for which the local synchrony is being calculated. t(n)P is
the time of the last spike preceding time t for spike train n. t(n)F is the time of the �rst spike
following time t for spike train n. X(n)

P is the time di�erence between t and t(n)P and X(n)
F

is the time di�erence between t and t(n)F . X(n)
ISI is the duration of the interval around t, i.e.,

it is the time interval between t(n)P and t(n)F . ∆t
(n)
P is the time di�erence between t(n)P and

the nearest spike in the other spike train and similarly for ∆t
(n)
F . These last two values are

not used in the calculation of the multivariate SPIKE-distance, which we use in this chapter.
Image taken from Kreuz [157].

4.1.2 Comparison

Comparisons between the NPSS and the SPIKE-distance are made on averages across each

simulation. More speci�cally, for the NPSS we use the arithmetic mean (eqn. 3.10) and for the

SPIKE-distance, the integral over time,

DS =
1

T

T∫
t=0

Sm(t)dt. (4.7)

Numerically, the SPIKE-distance was computed at intervals for t of 1 ms and the integral was

calculated using the trapezoidal rule. The interval was chosen based on trials where the SPIKE-

distance was calculated using decreasing values of dt, on the same set of spike trains. During
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Chapter 4. Relation between stimulus synchrony and operational mode 49

these trials, the DS followed an asymptotic trajectory, with minimal change for values of dt

below several ms. The value of 1 ms was also chosen to be small enough so that no interval

can contain two spikes and it is large enough so that computation was fast, as smaller values

increase the number of computations required.

4.2 Results

Our results initially focus on the relationship between the NPSS and the SPIKE-distance for

all simulations. We look at the e�ect of several parameters and properties of the simulation

on the relationship between the two measures and discuss the cause and implications of the

value of the parameter in question. We then generalise our conclusions regarding the e�ect of

synchrony on the operational mode.

For the following analysis, we introduce two features of the model: the asymptotic threshold-

free potential (V∞) and the volley peak potential (∆v). The asymptotic threshold-free potential

is the asymptotic temporal mean of the membrane potential in the absence of a spike threshold

and is calculated as follows:

V∞ = Ninfin∆Vsτm + Vrest. (4.8)

The volley peak potential is the increase in potential at the membrane of the neuron when a

completely synchronous volley arrives from all input spike trains and is calculated as follows:

∆v = Nin∆Vs. (4.9)

4.2.1 E�ect of jitter (σin)

Figure 4.2a shows the relationship between the NPSS and the multivariate SPIKE-distance for

each simulation. The NPSS (M) indicates the operational mode by measuring the degree of

utilised synchrony and ranges from 0 to 1. M = 0 indicates that there is no synchrony re-

sponsible for the �ring of the neuron, while M = 1 means that the neuron �res solely due to

synchronous spike trains. The SPIKE-distance (DS) indicates the average spike distance be-

tween the input spike trains, which is an inverse measure of synchrony. DS = 0 indicates that

all spike trains are synchronous (identical) while larger numbers indicate less synchrony. In
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Figure 4.2: NPSS (M) vs SPIKE-distance (DS) with the colour of each point showing the
degree of applied jitter (σin). High values mean high degrees of applied jitter (up to 4 ms)
which makes spike volleys wider, while low values indicate that volleys are tighter and more
synchronous, with 0 ms indicating that all spikes in a volley are simultaneous. (a) shows all
points while the three smaller �gures split the point into subsets depending on the value of

σin. (b) σin = 0 ms. (c) 0 ms < σin ≤ 2 ms. (d) σin ≥ 2 ms.

our simulations, the maximum value of DS approached 0.5, which is in accordance with the

values shown in Kreuz et al. [142]. The data consists of 253 simulations where no jitter was

added to synchronous spike trains (σin = 0 ms) and 1012 simulations with jitter falling within

the value ranges shown in Table 4.1 (1265 total). Figures 4.2b and 4.2d show the same data, split

into three cases, depending on the degree of jitter. For Figure 4.2b, σin = 0 ms, for Figure 4.2c,

0 ms < σin ≤ 2 ms and for Figure 4.2d, 2 ms ≤ σin (up to 4 ms). In all three �gures, the colour

of each point represents the value of jitter applied, denoted by the colour bar on the right-hand

side.

In Chapter 3, we noted that increasing jitter from 0 to 4 ms, causes the operational mode to

shift from coincidence detection to temporal integration. This is especially apparent in cases

where volleys are supra-threshold (∆v > Vth − Vrest, see below) and pre-synaptic �ring is

completely synchronised (Sin = 1). In such cases, the value of σin can cause the neuron to
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operate as a pure coincidence detector (if σin = 0 ms, M = 1) or a pure temporal integrator

(if σin ≥ 4 ms, M = 0). The data presented in Figure 4.2 generalises this conclusion, since

as the jitter increases, the data points tend to stay closer to the upper left part, where the

SPIKE-distance is high (DS > 0.2) and the NPSS is low (M < 0.6). This is expected, since

lower synchrony, caused by higher jitter, causes the neuron to operate as a temporal integrator,

regardless of any other behaviour or parameter. It is especially apparent in Figure 4.2d, which

shows the results with high jitter. The e�ect of increasing the amount of jitter is the reduction

of points in the lower right corner, i.e., high synchrony and coincidence detection are not

possible. This is also accompanied by an increase in points in the upper left corner or even

the middle-left side, which indicates that the high amount of jitter causes the NPSS to measure

temporal integration, even though there is some degree of synchrony measured by the SPIKE-

distance.

4.2.2 E�ect of threshold-free potential (V∞)

Figure 4.3 shows the same data as Figure 4.2, with the colour of each point representing the

asymptotic, threshold-free potential. This term is the asymptotic value of the neuron’s mem-

brane potential, assuming an absence of a spiking threshold. If it is higher than the spike

threshold, response spikes are generated almost surely, while if it is sub-threshold, response

spikes are generated only if there is enough noise (either in the input, or intrinsic to the neu-

ron) causing random �uctuations that could drive the potential above threshold. The three

smaller sub�gures, Figures 4.3b and 4.3c, separate the points into three categories, based on

the relationship between V∞ and the neuron’s spike threshold Vth. For Figure 4.3b, V∞ < Vth,

for Figure 4.3c, Vth ≤ V∞ < 2Vth and for Figure 4.3d, V∞ ≥ 2Vth.

It is interesting to note the tighter concentration of points in Figure 4.3d. This sub�gure shows

the relationship between M andDS for very high values of the asymptotic membrane potential

This indicates that the input drive is very high, causing the neuron to �re at high �ring rates. As

mentioned in Section 3.5.1, as �ring rates increase, the range of slope values shrinks, making

the two extremes indistinguishable once the �ring rate becomes very high. What appears

in Figure 4.3d is the trend towards overestimation of input synchrony by the NPSS, i.e., the

points start concentrating in the upper right hand corner, where the spike distance is high

(input synchrony is low) yet the NPSS measures high M value, close to coincidence detection.

This is the phenomenon that occurs in Figure 3.3f.
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Figure 4.3: NPSS (M) vs SPIKE-distance (DS) with the colour of each point showing the
asymptotic threshold-free potential (V∞, see eqn. 4.8). (a) shows all points while the three
smaller �gures split the point into subsets depending on the value of V∞ with respect to the

spike threshold (Vth). (b) V∞ < Vth. (c) Vth ≤ V∞ < 2Vth. (d) V∞ ≥ 2Vth.

4.2.3 E�ect of volley peak potential (∆v)

Similarly, Figure 4.4 shows the same data again, but with the colour of each point representing

the peak voltage change caused by a synchronous volley (when no jitter is applied). The three

smaller sub�gures, Figures 4.4b–4.4d, separate the points into three categories, based on the

relationship between ∆v and the neuron’s spike threshold Vth. For Figure 4.4b, ∆v < Vth −
Vrest, for Figure 4.4c, Vth ≤ ∆v < 2(Vth − Vrest) and for Figure 4.4d, ∆v ≥ 2(Vth − Vrest).

4.2.4 Integration of coincident volleys

The data points in Figure 4.2b that do not follow the trend seen in the other points of the same

sub�gure (points where M ≈ 0.5 and Ds < 2) are of particular interest. This deviation is

caused by sub-threshold values for the asymptotic potential (V∞) and more importantly the

volley peak (∆v). This is evident in Figures 4.3b, 4.3c, 4.4b and 4.4c, which show the behaviour
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Figure 4.4: NPSS (M) vs SPIKE-distance (DS) with the colour of each point showing the peak
depolarisation of a fully synchronous volley (∆v , see eqn. 4.9). (a) shows all points while the
three smaller �gures split the point into subsets depending on the value of ∆v with respect
to the spike threshold (Vth). (b) ∆v < Vth − Vrest. (c) Vth ≤ ∆v < 2(Vth − Vrest). (d)

∆v ≥ 2(Vth − Vrest).

occurring for low values of V∞ and ∆v . Even more clearly, the phenomenon is exempli�ed in

Figures 4.5a, 4.6a and 4.6b, which show how the operational mode is determined by varying

degrees of input synchrony when both the asymptotic potential (V∞) and the volley peak (∆v)

are below threshold. More speci�cally, when ∆v < Vth − Vrest, coincidence detection cannot

occur, even for Sin = 1, since a single spike volley cannot bring the neuron to �re from rest. In-

stead, the neuron may integrate multiple spike volleys in order to reach the �ring threshold and

in that case, the NPSS measures a balance of integration and coincidence detection (M ≈ 0.5).

The points that appear at M ≈ 0.5 and DS = 0 on the �gures are examples of this occur-

rence: the input spike trains were completely synchronous (Sin = 1) and there was no jitter

(σin = 0 ms), which results in a SPIKE-distance of zero, but the neuron behaves in a manner

signi�ed by the middle of the operational mode continuum, where neither pure coincidence

detection nor temporal integration is taking place. In this case, we describe the behaviour of

the neuron as integrating coincidences, to denote that high degrees of synchrony are driving the
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Figure 4.5: NPSS (M) vs SPIKE-distance (DS) with the colour of each point showing the degree
of applied jitter (σin). Each subplot is separated based on the relationship of the asymptotic
threshold-free potential (V∞) and the volley peak (∆v) to the spike threshold (Vth). (a) Sub-
threshold asymptotic potential and sub-threshold peak: V∞ < Vth & ∆v < Vth − Vrest. (b)
Sub-threshold asymptotic potential and supra-threshold peak: V∞ < Vth & ∆v ≥ Vth−Vrest.
(c) Supra-threshold asymptotic potential and supra-threshold peak: V∞ ≥ Vth & ∆v ≥ Vth−

Vrest.

neuron, but multiple volleys are required to �re. In terms of the aforementioned actual versus

utilised synchrony, the input spike trains have very high degrees of actual synchrony, but the

neuron utilises this synchrony in a di�erent way. Instead, the high synchrony in a single volley

is only utilised to bring the membrane potential up to a certain level below threshold, before

subsequent volleys are integrated to raise the membrane potential above threshold and trigger
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4.2.5 Coincidence detection

Our results also show the necessary circumstances for a neuron to operate as a coincidence

detector. Coincidence detection is measured by the NPSS when M ≈ 1. We know that co-

incidence detection only occurs for high values of Sin and in fact, pure coincidence detec-

tion only occurs when Sin = 1. This is fundamental to our interpretation of the continuum

of operational modes. For any value Sin < 1, there are Nin(1 − Sin) random spike trains

that contribute to the depolarisation of the membrane across each inter-spike interval. There-

fore, a response spike cannot be �red as a result of coincident inputs only; there is always

a degree of depolarisation that occurred before the coincidence window w and is part of the

interval’s integration period. By looking at each �gure, we can determine how each of the

other parameters and variables (σin, V∞, ∆v) a�ect the possibility of achieving pure coinci-

dence detection. From Figure 4.2 it is apparent that coincidence detection only occurs when

σin = 0 ms (see, Figure 4.2b), while Figure 4.3 shows that the asymptotic potential, V∞, has

no e�ect on the ability of a neuron to operate as a coincidence detector. Finally, Figure 4.4

shows that coincidence detection requires supra-threshold volley peaks, ∆v ≥ Vth − Vrest.

The above is summarised in Figure 4.5, which shows that coincidence detection occurs when

∆v ≥ Vth−Vrest and σin = 0 ms (dark blue points in lower-right corner), but V∞ can be either

supra- or sub-threshold (Figures 4.5b and 4.5c). Examples of pure coincidence detection occur-

ring can also be seen in the sample con�gurations in Figure 4.6. Figures 4.6c and 4.6d show two

cases where the asymptotic potential is sub-threshold and the volley peak is supra-threshold

(V∞ = 10 mV,∆v = 20 mV for Figure 4.6c and V∞ = 12.5 mV,∆v = 25 mV for Figure 4.6d)

and in both cases, M = 1 when Sin = 1, DS = 0 and σin = 0 ms. The same holds for Fig-

ures 4.6e and 4.6f, which show two cases where the asymptotic potential and the volley peak are

supra-threshold (V∞ = 25 mV,∆v = 25 mV for Figure 4.6e and V∞ = 20 mV,∆v = 40 mV

for Figure 4.6f).

4.2.6 E�ect of input parameter values (Nin, fin,∆Vs)

The �gures for separate parameter con�gurations in Figure 4.6 illustrate how the individual

parameters of the neuron and the input have little e�ect on the relationship between the NPSS

and the SPIKE-distance and it is in fact the volley peak’s relation to the spike threshold that

mostly de�nes the relationship. The relationship of the asymptotic potential to the threshold

mainly determines the number of spikes that are �red when there is little or no synchrony.
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Cases where the asymptotic potential is sub-threshold and there is no synchrony simply pro-

duce very few spikes or none at all. Cases where no spikes were �red were discarded and

therefore do not appear in any of the results. Each pair of �gures in Figure 4.6 shows very

similar behaviour between them, suggesting that speci�c parameter values (Nin, fin,∆Vs), or

speci�c values for V∞ & ∆v are not important for the interaction between SPIKE-distance and

NPSS, but the relative value of ∆v towards the threshold is the most important factor.

4.2.7 Summary of results

In all �gures, the horizontal axis represents the value of the average NPSS (M) and the vertical

axis represents the value of the integral of the SPIKE-distance over the entire duration of each

simulation (DS). The location of each point on a �gure tells us the degree of synchrony in the

input and how that synchrony is being utilised by the neuron. Points in the upper-left part of

the plot denote cases where the input is mostly random (DS is high) and the neuron is simply

integrating random input spikes (M is low). This is the most common case, since it occurs both

when Sin is low and when Sin and σin are both high.

Points in the upper-right part denote cases where the input is mostly random (DS is high) but

the neuron is performing coincidence detection. This case is rare and is caused by the SPIKE-

distance measuring low spike train synchrony due to a large number of random spike trains,

but the NPSS measures coincidence detection because the neuron is responding primarily to

coincidences. A clear example of this occurrence can be seen in Figure 4.6c, where M ≈ 0.9

and DS ≈ 0.4. Similar occurrences can also be seen in Figures 4.6d and 4.6f. In such cases,

DS is high due to the large number of random spike trains in the input increasing the spike

time distance. Even though Sin = 0.8 & σin = 0 ms in the case of the aforementioned point

in Figure 4.6c, which means that 80 % of spike trains are identical, the large value of Nin =

200 creates enough random spike trains for the SPIKE-distance to measure high overall spike

distance. On the other hand, the NPSS measures a dominance of coincidence detection, due

to the high synchrony driving the neuron. As mentioned above, this can also occur when

the �ring rate is very high and the two operational modes begin to converge, making them

indistinguishable.

Even less common are points in the lower-left part of the plot. This area denotes cases where

the input is highly synchronous (DS is high) but the neuron performs mostly temporal integra-

tion (M is low). Such cases can occur, theoretically, when the inputs are highly synchronised
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(b) Nin : 50, fin : 100 Hz,∆Vs : 0.2 mV
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(c) Nin : 200, fin : 50 Hz,∆Vs : 0.1 mV
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(d) Nin : 50, fin : 50 Hz,∆Vs : 0.5 mV
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(e) Nin : 50, fin : 100 Hz,∆Vs : 0.5 mV
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(f) Nin : 400, fin : 50 Hz,∆Vs : 0.1 mV
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Figure 4.6: NPSS (M) vs SPIKE-distance (DS) for speci�c con�gurations ofNin, fin and ∆Vs,
across the full range of synchrony parameters, Sin ∈ [0, 1] (0.1 step size) and σin ∈ 0 to 4 ms
(1 ms step size). The colour of each point shows the degree of applied jitter (σin). The dashed
lines connect points which share the same value of σin and are ordered based on the value of
Sin. Each subsequent point on a given line, starting from the top left, has a higher value of
Sin. The values of the asymptotic potential and the volley peak for each sub�gure are:

(a) V∞ = 10 mV and ∆v = 10 mV,
(b) V∞ = 10 mV and ∆v = 10 mV,
(c) V∞ = 10 mV and ∆v = 20 mV,

(d) V∞ = 12.5 mV and ∆v = 25 mV,
(e) V∞ = 25 mV and ∆v = 25 mV,
(f) V∞ = 20 mV and ∆v = 40 mV.

Therefore, each pair of �gures correspond to one of the three cases shown in Figure 4.5: (a)
and (b) correspond to the �rst case (Figure 4.5a) where both the asymptotic potential and the
volley peak are sub-threshold, (c) and (d) correspond to the second case (Figure 4.5b) where
the asymptotic potential is sub-threshold and the volley peak is supra-threshold, and (e) and
(f) correspond to the third case (Figure 4.5c) where both the asymptotic potential and the

volley peak are supra-threshold.
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(Sin ≈ 1 & σin ≈ 0), the volley peak is very low (∆v � Vth−Vrest), but the input rate of each

spike train (fin) is very high. The result of this, is an extreme case of the aforementioned be-

haviour of integrating coincidences, where the coincidences (synchronous volleys) cause very

small depolarisation (low peak), but they are frequent enough to drive the membrane potential

above threshold and cause response spikes. In terms of operational mode, this is equivalent to

temporal integration, even though the spike trains at the input are highly synchronised. The

results in this chapter do not show occurrences of this case (e.g., points in the lower-left corner)

since that would require extremely high (biologically implausible) input spike rates.

The fourth and �nal case is represented by the lower-right part of the plot, where the input

spike trains are highly synchronised (DS is low) and the neuron is performing coincidence

detection (M is high). As mentioned in Section 4.2.5, high input synchrony, which occurs

when Sin is high and σin is low, causes the neuron to operate as a coincidence detector only

when the volley peak is supra-threshold (∆v > Vth − Vrest).

The following section (Section 4.3) discusses these cases further and relates them back to the

results in the previous chapter (Chapter 3).

4.3 Discussion

This section serves as a discussion on the results of the NPSS as a whole, which includes the

development and evaluation of the measure’s behaviour in relation to the input synchrony

parameters—presented in Chapter 3—and the results of the analysis of the measure’s relation-

ship to the SPIKE-distance—presented in this chapter.

The work presented in this thesis has so far focused solely on excitatory inputs which caused

the neuron to �re a response, in order to infer the degree of response-relevant synchrony

speci�cally. This simplifying choice was made to establish the viability of the slope of the

membrane potential in inferring pre-synaptic synchrony. The potential inclusion of inhibitory

inputs in our models would require our methods, namely the slope bound calculations, to

account for the e�ects of inhibition on the range of potentials the membrane can acquire.

More speci�cally, inhibition can drive the membrane potential below Vrest, which can cause

pre-spike membrane potential slopes with higher values than the upper bound (see eqn. 3.4).

Furthermore, slope values smaller than the lower bound are possible, albeit rare. This can occur

in cases where the membrane potential increases rapidly, early during the ISI and remains very

Ach
ille

as
 K

ou
tso

u



Chapter 4. Relation between stimulus synchrony and operational mode 59

close to the threshold until �ring occurs. In such a case, the membrane potential at the start of

the coincidence window, V (t−w), could potentially be higher than the value calculated by the

lower bound (see eqn. 3.5), since the lower bound assumes a reverse exponential shaped curve

(i.e.,−e−x) that increases from Vreset at t = 0 s and hits Vth at t = ∆ti. For short ISIs, this value

can be quite low compared to the threshold at t = ∆ti − w. In the cases where this occurred

in our analysis, the normalised slope (which resulted in a negative number) was bound to 0,

i.e., a clipping procedure was introduced after the values are rescaled by the normalisation

procedure.

Generally, a neuron can operate in a sub- or supra-threshold input regime. The di�erent in-

put regimes are generally de�ned in terms of the asymptotic time-averaged membrane po-

tential V∞ (eqn. 4.8) in the absence of a threshold. If V∞ < Vth, the neuron is operating

in a sub-threshold regime and spikes are caused by �uctuations which can brie�y drive the

membrane potential above threshold. Conversely, if V∞ > Vth, the neuron is operating in

a supra-threshold regime and spikes are �red quite regularly and inevitably by the integra-

tion of inputs [16]. However, we can also de�ne the total contribution of a fully synchronous

(Sin = 1, σin) volley as ∆Vv (eqn. 4.9). Given these two properties, we can de�ne four condi-

tions, which based on their relationship with the �ring threshold and separate 4 cases:

1. Case where ∆Vv < Vth − Vrest and V∞ < Vth.

This is analogous to a true sub-threshold regime where spikes are �red only in cases where

two or more volleys arrive close enough for their combined contribution to reach the threshold.

In other words, output spikes are caused by �uctuations in the arrival times of sub-threshold

volleys. When these relations hold, the NPSS will not produce a value of M = 1, even if the

inputs are highly synchronous (DS = 0), due to the contribution of each individual volley

being sub-threshold as well as the lack of general supra-threshold input drive. Spikes in such

cases are caused with very low probability and depend on the timing of individual volleys and

spikes, i.e., the �uctuations in the input. Figures 3.3a, 4.6a and 4.6b corresponds to this case.

2. Case where ∆Vv > Vth − Vrest and V∞ < Vth.

In this case, the NPSS will be able to achieve a value of 1 (if DS = 0), regardless of the fact

that V∞ < Vth. Although this may correspond to a sub-threshold regime, with respect to the

asymptotic potential, the presence of supra-threshold volleys makes �ring of spikes a certainty,
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as long as σin is small enough and we can therefore refer to it as a supra-threshold volley regime.

Figures 3.3c, 3.3e, 4.6c and 4.6d correspond to this case.

3. Case where ∆Vv < Vth − Vrest and V∞ > Vth.

In this interesting case, spikes are �red almost surely due to the neuron being in a supra-

threshold regime, in the general sense (the asymptotic potential is supra-threshold), but the

NPSS will never achieve M = 1, due to the contribution of each individual volley being sub-

threshold. Therefore, although the input is supra-threshold, in terms of the contribution of

single volleys it is operating in a sub-threshold volley regime. While the spikes within a single

volley may coincide (highly synchronous volley, i.e., DS ≈ 0), the total dispersion between all

the spikes that caused the neuron to �re is high. Instances of this case are rare, since the combi-

nation of a low volley peak and a supra-threshold asymptotic potential implies a very high rate

of input (fin), outside the range of biologically plausible values. However, the relationship be-

tween the NPSS and the SPIKE-distance in this case, is very similar to the behaviour of case 1,

since the volley peak potential is the most important factor in determining the relationship

between the two measures. Figure 3.3b corresponds to this case.

4. Case where ∆Vv > Vth − Vrest and V∞ > V th.

In this case, the mean drive is very high as well as the depolarisation caused by individual

volleys. The behaviour of the NPSS is the same as for case 2, as the mean drive has little e�ect

on the measure as long as ∆Vv is high enough to consistently cause a response. The NPSS

however will behave unpredictably when the asymptotic potential is strong enough to cause

very high �ring rates, as has been already discussed (see Section 3.5.1). Figures 3.3d, 3.3f, 4.6e

and 4.6f correspond to this case.

In summary, the relationship between input synchrony (DS) and operational mode (M) is more

dependent on the relationship between ∆Vv and Vth, and is only slightly a�ected by the mean

drive V∞. When volleys have a total contribution which is sub-threshold (cases 1 and 2) then

M < 1 even when Sin = 1, σin = 0 ms and therefore DS = 0. In such cases, we use the term

integration of coincidence to describe the behaviour of the neuron, which is an operational mode

that is characterised by a balance of temporal integration and coincidence detection and lies

somewhere in the middle of the operational mode continuum. The value of M (for a single

inter-spike interval) re�ects the total dispersion between all the contributing spikes, across

multiple spike volleys, not the dispersion between spikes within a single volley. This re�ects
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the fact that the response can be caused by a number of volleys, each of which consists of

completely synchronised spikes, but whose total inter-synchrony is much lower. This empha-

sises the di�erence between input synchrony in the traditional sense, which we measure with

the SPIKE-distance, and the response-relevant input synchrony, which we measure with the

NPSS. This re�ects the same separation between actual and utilised synchrony, discussed in

Section 3.7. The operational mode of a neuron is determined by the temporal dispersion of all

the spikes that were responsible for the neuron’s �ring [31, 75].

The methods and results presented in this chapter have been submitted to a special issue on

the Application of mathematics in neuroscience in the Mathematical Biosciences and Engineering

journal and the manuscript is pending review.
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Chapter 5

Input synchrony estimation for the

Ornstein Uhlenbeck LIF

The Ornstein-Uhlenbeck (OU) model is a continuous approximation and a stochastic variant

of the LIF [158–162], where the input is characterised by a stochastic Ornstein-Uhlenbeck pro-

cess [150]. The behaviour of the membrane potential is described by the following stochastic

di�erential equation:

dV (t) =

(
−V (t)− Vrest

τm
+ µ

)
dt+ σdW (5.1)

where W is a standard Wiener process and µ and σ characterise the input. The input pa-

rameters µ and σ represent the mean and variance of the stochastic input respectively. The

noisy input of the model is the di�usion approximation of many (tens of thousands) uncorre-

lated, Poissonian spike trains, where each spike contributes a small amount to the membrane

depolarisation [163].

While this model does not add complexity over the LIF model, it allowed us to reformulate

the stimulus to account for inhibition, which was lacking from the work up to this point and

limited the applicability of the methods. In addition, the previous methods required de�ning

a temporal window within which the pre-spike slope was averaged for each response spike.

This was necessary due to the trajectory of the LIF’s membrane potential being discontinuous.

The length of the window a�ected the interpretation of the results, since any spikes arriving

within that time prior to a response spike were regarded as completely synchronous by the

method.

62
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Symbol Description Value or range Units

τm Membrane leak time constant 10 ms
Vth Firing threshold 10 mV
Vrest Neuron resting and reset potential 0 mV
µa Amplitude of µ(t) signal 0.2 to 2.0 mV/ms
µ0 µ(t) o�set (baseline) 0.2 to 2.0 mV/ms
σa Amplitude of σ(t) 0 to 1.0 mV/

√
ms

σ0 σ(t) o�set (baseline) 0 to 1.0 mV/
√

ms
f Frequency of sine waves 5 to 20 Hz
h Simulation time step 0.1 ms

Table 5.1: Parameter symbols and value ranges.

5.1 Operational mode of the Ornstein Uhlenbeck LIF

Due to the nature of the input of the OU model, simulating synchronous volleys of varying

intensity required that we de�neµ and σ as time-dependent functions that replicate such input.

The input was therefore modelled using sine waves to describe both µ(t) and σ(t) (eqns. 5.2

and 5.3).

µ(t) = µ0 + µa sin(2πtf) (5.2)

σ(t) = σ0 + σa sin(2πtf) (5.3)

where µ0 and σ0 are the sine wave o�sets, µA and σA are the amplitudes and f is the frequency

of the sine wave envelope. The �nal model has the following form:

dV (t) = −(V (t)− Vrest)
τm

dt+ µ(t)dt+ σ(t)dW (5.4)

This way, by controlling the amplitude, frequency and o�set of the waves, we can approximate

the e�ect of periodic volleys of increased activity, which arise from synchronous volleys of

spikes (see Section 5.1.1). The peaks of µ(t) represent the increased mean activity of the input,

while the peaks of σ(t) represent the increased variance of the input signal which accompanies

a spike volley. The two waves are always synchronised and the o�set of sigma must always

be greater or equal to the amplitude (σ0 ≥ σA) in order to avoid negative σ(t) values, as

that would produce high noise at the low µ(t) phases, due to σ acting as an absolute factor

on the Wiener process (i.e., positive and negative σ values have the same e�ect). Parameter

descriptions and values used in this work can be found in Table 5.1.
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Chapter 5. Input synchrony estimation for the Ornstein Uhlenbeck LIF 64

It is useful to de�ne two ranges for the values of the input signal µ(t), with respect to the

threshold Vth. Supra-threshold input refers to the input activity when µ(t)τm ≥ Vth, at a given

time t. At these values, the neuron will �re even in the absence of noise. On the other hand,

sub-threshold input refers to the input activity when µ(t)τm < Vth. Even though in these

cases the neuron never �res in the absence of noise, noise-induced �ring may occur.

Our approach begins by determining the frequency of the oscillations of the input rates. Know-

ing the frequency of the input sine wave allows us to identify the intervals of low and high

activity, which represent the background and synchronous input intervals respectively. By

applying initially existing input estimation methods [149], we obtain a discrete, yet noisy, re-

construction of the input signal and noise. The values at each interval of the period of the

input can then be more accurately determined by calculating the mean of the estimated values

that fall within the same interval of the input signal period.

5.1.1 Comparison of LIF with OU model

We initially compared the behaviour of the two models—the LIF used in previous chapters

and the OU used in this chapter—to determine how well the sinusoidal input of the OU ap-

proximates the synchronous input spike trains of the LIF. In order to determine the range of

parameters and conditions in which the OU model with sinusoidal inputs can reproduce the

behaviour of the LIF driven by synchronous input volleys, we derived the relationship between

the models’ parameters and validated our results through simulations.

Due to the nature of the inputs used in this chapter, i.e., sinusoidal drive and noise, the corre-

sponding inputs to the LIF needed to contain periodic synchronous volleys with a wide disper-

sion (high σin, see eqn. 5.5). This high value was necessary to create a (short) overlap between

the tails of the distributions that are centred on each volley peak. To create a continuous se-

quence of volleys aligned with the peaks of the corresponding sine wave, the synchronous

volley times (tS) were calculated based on the input sine wave frequency (eqn. 5.6). The input

spike trains needed to be separated into two groups, the Poisson inputs that drive the mem-

brane potential to a baseline voltage and the synchronous inputs that �re in volleys. In order

to control the relative contribution of these two groups, we can manipulate two parameters:

(i) the number of spike trains in each group (NP for the Poisson group and NS for the syn-

chronous group) or (ii) the depolarisation per spike (i.e., the synaptic weight) from each group

(∆VP and ∆VS respectively). For simpli�cation, we chose to keep the number of spike trains
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Chapter 5. Input synchrony estimation for the Ornstein Uhlenbeck LIF 65

constant and manipulate only the weights. This choice was made to allow for inhibitory in-

puts, where necessary, which we would achieve with negative weights. The Poisson input

group acts as a background voltage which keeps the membrane almost constantly depolarised

(or hyperpolarised). The background input equivalent in the OU model is the minimum value

of the sinusoidal drive (µ0−µa) and so the weight of the Poisson inputs (∆VP ) is analogous to

this value (eqn. 5.7). The rest of the input spike trains (∆VS) make up the synchronous inputs

and their weight is analogous to the sine wave amplitude (eqn. 5.8).

σin = (5f)−1 (5.5)

tS =
n+ 0.25

f
: n ∈ Z (5.6)

∆VP =
µ0 − µa
NP f

(5.7)

∆VS =
µa
NSf

(5.8)

All other parameters (Vrest, Vreset, τm) are common between models and were naturally set to

the same values in each case.

The validation procedure was performed in two steps. First we removed the threshold (i.e., the

neurons did not spike) and we determined the equivalence of the two models by measuring the

di�erence between the membrane voltage traces. Looking at the membrane potential in the

absence of spiking was necessary in order to avoid large membrane potential deviations caused

by mismatched spike times. The di�erence between the two traces was calculated using two

values, the maximum deviation (DV , eqn. 5.9) and the root mean square (RMS) of the di�erence

at each simulated time step (RV , eqn. 5.10).

DV = max
h
|VLIF (h)− VOU (h)| (5.9)

RV =

√√√√ 1

H

H∑
h=1

(VLIF (h)− VOU (h))2 (5.10)

where h indicates the iteration through simulation time steps and H is the total number of

time steps.

For the second step we set the threshold to several di�erent values (below the maximum value

of the membrane potential) and the SPIKE-distance was measured, using the spike train dis-

tance measure described in Chapter 4.
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The results of our validation indicate that the derived relationships between the input param-

eters are accurate, as long as the sinusoidal noise is not very high (σ(t) < 1.0 mV/
√

ms).

When the sinusoidal noise was low, the maximum RMS di�erence was 1.6 mV and the maxi-

mum deviation from all simulations was 4 mV (approximate values). Note that the maximum

depolarisation of the membrane in these cases was 35 mV (for the max RMS) and 25 mV (for

the max deviation). When the threshold was enabled, causing spiking, the SPIKE-distance was

no larger than 0.14, which is very low when compared to the ranges studied in Chapter 4.

Higher values of σ(t), caused by either large σa or σ0, cause the simulations to deviate sub-

stantially, since the nature of the inputs we use for the LIF does not allow for controlling of the

noise in the same manner as in the OU model. It is theoretically possible to approximate this

type of noise by reducing the number of inputs to the LIF (NP and NS), which would result

in an increase in input weights (eqns. 5.7 and 5.8). With this change, individual input spikes

would cause larger �uctuations of the membrane potential, which should produce behaviour

similar to the potential of the OU model with high noise parameter values. This high degree

of accurate reproduction is beyond the scope of the current section however. We only aim to

show that an approximate reproduction of the behaviour of the LIF driven by synchronous in-

puts and Poisson background spike trains is possible using an OU model driven by sinusoidal

mean drive and noise.

Figure 5.1 shows two examples of the similarity between the two models. For each example,

we show the membrane potential trace with and without the threshold enabled, totalling four

comparisons. One example was chosen for having high similarity (small di�erences), by keep-

ing the noise in the OU model low, while the other was chosen to show the e�ects of high

noise on the similarity between the two models. The parameter values of each case and the

measured errors (DV , RV , and DS) are listed in the �gure’s caption.

5.2 Estimation of frequency

The frequency of the sine wave f can be estimated using the power spectral density (PSD) of the

spike train [164]. The PSD is calculated as the Fourier transform of the binned autocorrelation

of the spike times. The frequency component of the PSD with the highest power (the spectral

peak) provides estimates of the underlying frequency of the sine wave.
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Figure 5.1: Membrane potential traces for two con�guration pairs. Each con�guration pair
consists of one simulated run without a �ring threshold ((a) & (c)), in order to compare the
voltage trace directly, and a simulated run with the �ring threshold enabled ((b) & (d)), in
order to compare the spike train distance. In all �gures, the blue trace represents the voltage
of the OU model and the green trace represents the voltage of the LIF model. The parameters
of the LIF model were derived from the parameters of the OU using the equations described

in Section 5.1.1.
(a) Parameters: µa = 0.5 mV/ms, µ0 = 1.0 mV/ms σa = 0.1 mV/

√
ms, σ0 = 0.1 mV/

√
ms

f = 10 Hz, no threshold.
Voltage trace di�erences: DV = 1.4 mV, RV = 0.5 mV

(b) Parameters are the same as (a) but with Vth = 10 mV.
Spike time distance: DS = 0.035

(c) Parameters: µa = 0.5 mV/ms, µ0 = 1.0 mV/ms σa = 0.1 mV/
√

ms, σ0 = 0.5 mV/
√

ms
f = 20 Hz, no threshold.

Voltage trace di�erences: DV = 4.4 mV, RV = 1.2 mV
(d) Parameters are the same as (c) but with Vth = 10 mV.

Spike time distance: DS = 0.06
The �rst con�guration pair ((a) & (b)) has low noise (σ) values and the di�erences between
the voltage traces as well as the spike times are therefore very small. On the other hand, for
the second con�guration pair ((c) & (d)) the di�erences between the voltage traces and spike

times are relatively high, due to the high σ values used in the OU model.
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The estimation of the frequency assumes that the input is periodic, with constant frequency

throughout the duration of the observed data. In addition, the binning introduced during the

calculation of the autocorrelation introduces an implicit rounding in the estimated frequency

values. A side e�ect of this rounding is the removal of any small errors that may have occurred

in the frequency estimation had the precision been �ner. For the results in this paper, we used

a bin width of 1 ms, which made bins small enough to include at most one spike per bin.

5.3 Estimation of µ

Figure 5.2 shows the steps of the estimation of µ(t). The noisy input signal (Figure 5.2a) pro-

duces spikes at the output of the neuron (Figure 5.2b). From the spike train and the discrete

observations of the membrane potential, we can obtain estimates of the input signal µ(t) (Fig-

ure 5.2c, eqn. 5.11). The estimated values are aligned to a single period (Figure 5.2d, eqn. 5.12)

and subsequently binned and averaged (Figure 5.2e, eqn. 5.13), to produce the �nal estimates

of the input signal.

The estimation of the parameters for µ(t) relies on estimation methods found in the literature.

More speci�cally, we use the µ estimation method in Bibbona et al. [149]:

µ̂i =
Vth

τmKi(1− e
−h
τm )

+
1

τmKi

Ki−1∑
k=1

V i
k (5.11)

where Ki = Ti/h, Ti is the ith ISI and h is the discretisation step (i.e., the simulation time

step). V i
k is the discrete membrane potential trace during the ith ISI.

By applying eqn. 5.11 to the entire simulation’s membrane potential and spike train, we can cal-

culate µ̂i for each ISI during a simulation, which results in a sequence of tuplesX = {(ti, µ̂i)},
where ti is the time of the ith spike and µi is the average membrane potential during the time

interval of the ith ISI (Figure 5.2c). The sequence X represents a discrete reconstruction of

µ(t), with discretisation bins having the length of each respective ISI.

Using the estimated frequency of the input sine wave f̂ , each µ̂ is aligned to the start of their

respective period:

G = {(φi, µ̂i)|φi ≡ ti mod f̂−1 ∧ (ti, µ̂i) ∈ X}. (5.12)
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The setG groups all estimated values into a single period length, where φi is the period-aligned

spike time (Figure 5.2d). The period is separated into N bins and the estimated values in each

bin are averaged to produce a sequence of average binned estimated values:

µ̂b =

∑
i
µ̂i
[
b/(f̂N) < φi ≤ (b+ 1)/(f̂N)

]
∑
i

[
b/(f̂N) < φi ≤ (b+ 1)/(f̂N)

] (5.13)

where b ∈ {0, 1, . . . , N − 1} and the square brackets are Iverson brackets [165] yielding 1 if

the condition in square brackets is satis�ed and 0 otherwise.

The binning and averaging removes estimation inaccuracies arising from the input noise σ(t)

(Figure 5.2e).

5.3.1 Estimation of µp

The sequence of µ̂b values represents a noiseless, partial reconstruction of a single period of

the input signal µ(t). From this, it is straightforward to extract the peak of the input signal

µp = µ0 + µa by taking the maximum of the µ̂b values.

5.3.2 Estimation of µ0

As the aim of this work is to estimate the degree of input synchrony, it is important to know

how high the peak activity µp is, compared to the baseline value. In other words, the amplitude

of the signal µa represents the increase in input spike rates during a synchronous volley, or a

brief synchronised increase in input rates.

For supra-threshold baseline values (µ0τm > Vth), µ̂0 can be estimated from the mean of the

reconstructed period:

µ̂0 =
1

N

N−1∑
b=0

µ̂b (5.14)

Applying the same method to cases where µ0τm < Vth is not as reliable (see Section 5.5).
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Figure 5.2: µ estimation procedure. (a): Input signal with noise, i.e., µ(t)+σ(t)W (t). (b): Out-
put spike train of the neuron. (c): Estimated µ values resulting from the estimator given by
eqn. 5.11. (d): The same estimated values from panel C, aligned to a single period length, using
eqn. 5.12. (e): The averages of the estimates from panel D (dots connected with solid line) that
fall within the same bin, as described in eqn. 5.13. In all panels, the dashed grey line represents

the original, noiseless input signal µ(t).

5.4 Estimation of σ

While our focus is on input synchrony estimation, which involves the changes in the input

population’s �ring rate µ(t), the same procedure used in the estimation of the µ parameters

can be applied to the corresponding noise σ parameters. We therefore use a similar procedure

to estimate the parameters of σ(t) (σ0 and σa) based on the σ2 estimation method in Bibbona

et al. [149]:

σ̂2i =
2

Ki − 1

Ki∑
k=1

[
V i
k − µ̂iτm + (µ̂iτm − V i

k−1)e
−h/τm

]2
τm(1− e−2h/τm)

(5.15)
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where the symbols have the same meaning as the ones of eqn. 5.11.

eqn. 5.11 (which estimates individual µ values) is replaced by eqn. 5.15 (which estimates indi-

vidual σ2 values) and the rest of the procedure (i.e., eqn. 5.12 eqn. 5.13) is followed again, with

the square root of the σ2 estimates replacing their µ counterparts.

5.4.1 Estimation of σp and σ0

For obtaining σ̂p and σ̂0 from the reconstructed trajectory of σwe follow the same procedure as

for µ̂. The maximum value corresponds to estimates of the peak σp, while the average provides

estimates for the baseline σ0.

5.5 Results

Simulations were run using the input parameter values and value ranges shown in Table 5.1.

Parameter combinations were chosen such that data from all valid con�gurations were gen-

erated. Discarding simulations which did not produce enough output spikes (i.e., when the

output rate is less than 1 Hz) resulted in data from 14048 simulations, which were run for 5 s

of simulated time each.

Parameter values covered the supra- and sub-threshold ranges, for both the baseline of the

signal µ0 and the peak µp. As expected, cases where the peak of the signal is sub-threshold

(i.e., µpτm < Vth) were much less likely to produce spikes, since threshold crossings in such

cases are dependent on the amplitude of the noise. Only 564 of the simulations have a sub-

threshold µp.

For each estimated parameter, we calculate the relative estimation error as |x−x̂|/x and report

the mean relative error εx, averaged over all simulations which share the same parameter value.

Where the correct value is zero (x = 0), the error is taken to be the value of x̂.

Average estimation errors are summarised in Table 5.2, separated into sub-threshold signal

peak (µpτm < Vth), supra-threshold peak with sub-threshold baseline (µ0τm < Vth ≤ µpτm)

and supra-threshold baseline (µ0τm ≥ Vth).
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Parameter εx for µpτm < Vth εx for µ0τm < Vth ≤ µpτm εx for µ0τm ≥ Vth εx (overall)

µp 0.33 0.10 0.05 0.08
µ0 0.35 0.43 0.07 0.20
µa 0.89 0.24 0.19 0.28
σp 0.19 0.09 0.05 0.07
σ0 0.27 0.18 0.08 0.12
σa 0.29 0.25 0.14 0.18

Table 5.2: Parameter estimation errors (relative) for sub-threshold signal peak, supra-
threshold peak with sub-threshold baseline and supra-threshold baseline. The number of
simulations for each range is 564 (4 %) for µpτm < Vth, 4844 (34 %) for µ0τm < Vth ≤ µpτm

and 8640 (62 %) for µ0τm ≥ Vth (total simulations: 14048).
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Figure 5.3: Histograms of (a) relative and (b) absolute estimation errors from ∼3500 realisa-
tions of the frequency estimator for each value of f ∈ {5, 10, 15, 20} (in Hz). The total number
of simulations was 14048. Note that due to the very low number of cases with nonzero es-
timation error, the vertical axis has a logarithmic scale. The µ and σ parameters (baselines
and amplitudes) varied across their entire ranges, found in Table 5.1. It should be noted that
the number of misestimated instances is only 66 and the average relative estimation error is

εf < 0.01.

5.5.1 Frequency estimation results

Figure 5.3 shows the results of the frequency estimation. Figure 5.3a shows a histogram of the

relative frequency estimation errors (εrf = |f − f̂ |/f ) and Figure 5.3b shows a histogram of

the absolute estimation errors (εaf = |f − f̂ |). The histograms are shown using a logarithmic

scale due to the very low number of nonzero estimation errors.

The average relative estimation error is εf < 0.01. Of the 14048 samples used, only 66 had

a non-zero estimation error. The high amount of perfect estimates is a result of the rounding

that occurs during the calculation of the PSD, as mentioned in Section 5.2, which removes any
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Figure 5.4: The triangles represent µ0 and µa values for simulations where the frequency
estimation failed. The frequency for simulations with values represented by the points was

estimated perfectly.

small deviations from the true value that may have occurred if a smaller bin size had been used.

The small number of misestimations deviate substantially from the correct values.

It is important to understand when misestimations occur and to be able to predict whether it is

possible to estimate the underlying frequency with no prior knowledge of the input. From our

investigation of the simulated data, it became apparent that the frequency estimation failed

when the amplitude of the input sine wave µa was very small compared to the baseline µ0 (see

Figure 5.4).

However, since prior knowledge of the input parameters is not assumed, the prediction of

whether the frequency estimation will succeed or not, should rely on the e�ects that the com-

bination of µ parameters have on the �ring of the neuron. The high-µ0/low-µa combination

does not allow for the underlying frequency to be estimated because in such cases, the �uctu-

ations of the input sine wave are very small (low amplitude). The �ring becomes very regular

and does not re�ect the subtle variations in the input �ring rates. We can use the �ring vari-

ability, commonly measured using the coe�cient of variation (CV) of the ISIs, to test whether

the estimation of the frequency of the input �uctuations (if any) has a high probability of fail-

ing. Figure 5.5 (top) shows the frequency estimation error of each simulation εf as a function

of its CV. Figure 5.5 (bottom) shows the probability of misestimated frequencies conditioned
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Figure 5.5: Top: CV of the �ring ISIs vs the frequency estimation error. Bottom: Normalised
(conditional) CV distribution of simulations with non-zero εf . High relative estimation errors
occur only at low CV values (regular �ring) and with higher probability in the range [0.1–0.3],
which are caused by the input sine wave having very subtle �uctuations around its baseline

value.

on the CV. The �gures clearly show that not only is the frequency estimation error larger for

CVs between 0.1 and 0.3, but misestimations are also more probable in that same range.

5.5.2 µ̂ estimation results

Using the estimated frequencies f̂ , we began the reconstruction of the input signal µ̂i, as de-

scribed in Section 5.3. Figure 5.6 shows the result of applying eqn. 5.11 to a single simulation’s

generated data (see caption for parameter values). This corresponds to Figure 5.2c of the illus-

trated methodology.

The data shown in Figure 5.6 has been truncated to 1 second for clarity. Figure 5.7 shows the

application of eqn. 5.12 to the µ̂i data shown in Figure 5.6, which corresponds to Figure 5.2d.

The data is then binned and averaged (eqn. 5.13) to produce Figure 5.8, which corresponds to

Figure 5.2e. We used N = 10 bins for all data in this study. The number was chosen such

that the bins were large enough to contain enough spikes for the averaging process, but small

enough to avoid containing both the high and low parts of the sine wave. In addition, it is best

Ach
ille

as
 K

ou
tso

u



Chapter 5. Input synchrony estimation for the Ornstein Uhlenbeck LIF 75

0.0 0.2 0.4 0.6 0.8 1.0
t (sec)

1.0

1.5

2.0

2.5

3.0

3.5

m
V
/m

s
µ̂

µ(t)

Figure 5.6: µ̂i for a single simulation with parameters µ0 = 1.6 mV/ms, µa = 0.4 mV/ms,
σ0 = 0.4 mV/

√
ms, σa = 0.4 mV/

√
ms and f = 5 Hz. The dots connected with the solid

line represent the estimated trajectory of the input signal, while the dashed grey line is the
actual input sine wave. The results in this �gure correspond to the step in the estimation

procedure shown in Figure 5.2c.

if the number of bins is chosen such that N/2 is odd, so that there is a bin centred on each

peak (positive and negative) of the sine wave. This ensures that all spikes around the peak

of the sine wave fall within one bin, and slightly increases the estimation accuracy for µ̂p.

From the binned data, we can extract the estimates for µp (max(µ̂b), Figure 5.9a), µ0 (eqn. 5.14,

Figure 5.9b), and subsequently estimate µ̂a = µ̂p − µ̂0 (Figure 5.9c).

The average relative error between the actual and estimated values for the peak of the input

signal is εµp = 0.08. The average relative estimation error for the baseline value is εµ0 = 0.2. It

should be noted however that this includes supra- and sub-threshold values of µ0. Taking each

case individually, the estimator is very reliable for supra-threshold values εµ0τm≥Vth = 0.07

but as expected, it has a very high error for sub-threshold values εµ0τm<Vth = 0.43. Since the

estimation of the amplitude relies on all other estimated parameters, each estimated value is

a�ected by all previous errors. Its average relative error is εµa = 0.28 (see Table 5.2 for full

results).
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Figure 5.7: µ̂i grouped into a single period length based on f̂ . This is the same data used for
Figure 5.6. The results in this �gure correspond to the step in the estimation procedure shown

in Figure 5.2d.

5.5.3 σ̂ estimation results

Figures 5.10a–5.10c show the estimates σ̂p, σ̂0 and σ̂a for the parameter ranges shown in Ta-

ble 5.1. The overall, average estimation errors are εσp = 0.07, εσ0 = 0.12 and εσa = 0.18.

As expected, the estimates were more reliable when the input signal µ(t) was supra-threshold

at the peak (i.e., µpτm ≥ Vth) and especially when the baseline of the signal was also supra-

threshold (i.e., µ0τm ≥ Vth). Table 5.2 shows the full set of estimation errors.

5.5.4 Frequency misestimation

Since all parameter estimates rely on the frequency, in order to align estimated values to the

length of a single period, we also studied the e�ect that frequency misestimations have on

the subsequent estimates. Figure 5.11 shows εµp , the average estimation error for µp, given

a frequency misestimation αf for all samples. µp estimates were calculated using incorrect

frequencies calculated as (1 + αf )f .
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Figure 5.8: µ̂b: the binned average of the estimates seen in Figure 5.7 for N=10 bins, i.e., the
width of each bin is 20 ms. The results in this �gure correspond to the step in the estimation

procedure shown in Figure 5.2e.

As Figure 5.11 shows, εµp is very sensitive to errors in the estimation of the frequency. This

signi�es the importance of accurately identifying the intervals of synchronous activity, as fre-

quency misestimations disrupt the averaging of estimates that occur within the same intervals

of the period.

5.6 Discussion

Our methods rely on estimating the frequency of the periodic synchronised activity from the

power spectrum of the �red spikes, which allows us to align estimates based on the length

of the period. As mentioned in Section 5.1, the methods presented in this chapter rely on ex-

isting estimation methods for stationary inputs. The existing methods rely on the membrane

potential trace during an inter-spike interval [149]. Using these estimators, we initially obtain

a noisy discrete reconstruction of the supra-threshold input signal. We adapt the estimators

to time-varying (sinusoidal) inputs by binning the response spikes and aligning bins based on

the input period. This may also extend to sub-threshold ranges in cases where noise-induced
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Figure 5.9: Estimated vs actual µ parameters. (a): µp estimates. εµp
= 0.08. (b): µ0 estimates.

εµ0 = 0.20. (c): µa estimates. εµa = 0.28.

�ring occurs, with less accuracy. From the reconstructed input we subsequently obtain accu-

rate estimates of the input signal and noise by averaging individual estimates that fall within

corresponding intervals of each period. The use of estimators for stationary inputs causes the

method to assume that the input within each bin is stationary, which provides a good approx-

imation as long as the bin width is small enough.

Even though the binning and alignment of input estimates is similar to the methodology pre-

sented in [151], in their work they assumed the sine wave frequency (f ) was known and their

model only used stationary noise (σ). These authors binned the spike intervals of the neuron,

with each bin representing a discrete phase shift of the input signal, and represented all points

within each bin by the midpoint of their respective bin. One further fundamental di�erence

of our work, however, is that our binning procedure is performed after the estimation of the

input signal parameters and the binning is used to align and obtain averages of the estimates.

The estimation procedure, in our case, is performed on the original spike time intervals.

The accuracy of our method is based on several underlying assumptions regarding the model
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Figure 5.10: Estimated vs actual σ parameters. (a): σp estimates. εσp
= 0.07. (b): σ0 estimates.

εσ0 = 0.12. (c): σa estimates. εσa = 0.18.

and its input. We simulate periodic synchronous input volleys using a sinusoidal signal. Our

method therefore assumes that the input signal can be accurately described by a sine wave and

also that this sine wave represents a sudden increase in synchronous excitatory input �ring

rates. The requirement that the oscillations are caused by an increase in excitation can be tested

by deducing the excitatory and inhibitory input rates from the estimated µ and σ values [34,

166]. More generally, it is important to note that synchronous inputs are not always accurately

represented by sinusoidal oscillations. The sine wave is an appropriate model for periodic

synchronous volleys of excitatory inputs, with relatively large variance between spike times

within the volley. When spike times are highly correlated however [see for example Figure

1c, in 33], the membrane potential responds with near-instantaneous jumps. Additionally, the

model’s explicit threshold function assumes that the threshold is constant, which is a common

assumption when working with models of reduced complexity, like the LIF. The method we

used to estimate the input parameters assumes a constant input signal across an entire spike

train. By using this method to estimate the parameters for individual inter-spike intervals,

we implicitly assume that the input during each interval can be approximated by a constant
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Figure 5.11: εµp
vs αf . The average estimation error for the peak of the input, assuming the

frequency has been misestimated. αf is a �xed error ratio applied to all samples in the data.

current with added constant noise.

Our frequency estimation method requires that the amplitude of the input spike rates µa is

large compared to the baseline input rate µ0, so that the observable �uctuations in the �ring

frequency re�ect the input sine wave. This requirement can be tested by measuring the CV of

the neuron’s �ring. Lower CV values increase the probability of the estimation failing, since

regular �ring provides no information about input rate changes.

It is interesting to note that the sinusoidal nature of our inputs causes stochastic resonance to

occur in our model. Stochastic resonance in neurons occurs when a sub-threshold input signal

(µ(t)τm < Vth) causes �ring due to the �uctuations caused by the added noise (σ(t)) (i.e., noise-

induced �ring), when in fact �ring would not occur had the signal been noiseless [167, 168].

From our results (see Table 5.2) we can see that �ring does indeed occur when the signal is

sub-threshold, but the estimation accuracy in such cases is low.

Alternative input parameter estimation methods, such as the Bayesian method developed by
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Kobayashi et al. [34, 169] and the state-space method by Kim and Shinomoto [170] do not re-

quire estimating the frequency of the input sine wave in the case of sinusoidal inputs, but they

do assume that the input variability is low. When estimating inputs that vary signi�cantly, the

estimation error increases with the variability (e.g., amplitude of the sine wave). In our case, the

estimation error is lower for larger amplitudes and in fact, more variable input causes higher

output variability, which increases the accuracy of the frequency estimation (see Figure 5.5).

In the course of exploring the model and methods, it was not possible to �nd a way to estimate

the input signal with the same level of accuracy without a frequency estimation �rst. We may

therefore consider our method as an alternative to all other methods and complementary to

the Bayesian method [34] which estimates the input parameters accurately when no assump-

tions about the input’s variability can be made, or when the input is known to be smooth. Our

method however provides a good input estimation accuracy when the input is known to be si-

nusoidal with large amplitude and high variability and when the aforementioned assumptions

hold.

The dependence of the method’s accuracy on the underlying input sine wave frequency may

hint at an underlying phenomenon. It may suggest that information in the brain is transmitted

via synchronous regular signals. This is likely related to the idea that information is encoded

in spike times relative to the oscillatory signal [49]. In other words, the inability to accurately

reconstruct the input signal without knowing the frequency of the oscillations, may suggest

that the information in the signal itself depends on this frequency.

This method may be considered an extension of the NPSS as well as an attempt to address

some of its shortcomings. The NPSS was limited by the fact that the e�ects of inhibition were

not accounted for. The current measure overcomes this limitation by treating input synchrony

as a brief increase in the �ring rates of the summed input population. Inhibition is implicit

in the sinusoidal input, which models the pre-synaptic population activity as a single input

signal. However, the input estimator described in this chapter is not a direct estimator of the

operational mode, as it estimates actual input synchrony, not utilised input synchrony. The

degree of utilised input synchrony can be inferred from our results by observing the �ring

times with respect to the period of sinusoidal input signal.

By estimating the baseline and peak values of the input rates (µ0 and µp) we e�ectively obtain

a measure of the synchronous modulations in pre-synaptic spike rates. Our previous work also

required the use of a temporal window that directly preceded a spike, within which all input
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spikes were regarded as coincident. This required determining (or making an assumption for)

the timescale on which a neuron processes information, as any temporal information was lost

within the window length. The method presented here requires only one parameter selection,

the number of averaging bins N , the e�ect of which is negligible on the results and has no

e�ect on their interpretation, as long as the bin size is small enough to not contain both the

high and the low parts of the sine wave. As mentioned above, it is good to select N such that

N/2 is odd, in order to have a bin centred on the peak of the sine wave. Given this requirement,

we suggest that at least N = 6 should be used.

In the case of non-periodic inputs, our estimates would introduce large amounts of error, since

the methodology assumes periodic input when grouping spikes based on their relative position

in the sine wave period. In such a case, the frequency estimator could be replaced by a peak

detector that could detect peaks in the �ring rate of the neuron. Using such a method, the

spike intervals could then be grouped based on their relative timing within each inter-peak

interval, rescaled to a single, common length. This would again assume that the input during

each interval is sinusoidal, but with varying frequency. If, on the other hand, this assumption

does not hold, the individual estimates of µi could be grouped based on the instantaneous �ring

rate, such that estimated values that fall within periods with similar �ring rates are grouped

together and averaged.

Although our focus is on estimating the degree of synchrony at the input, which is represented

by the magnitude of change of µ(t), we can use the same method to estimate the noise σ(t). In

our model, we use noise to represent variability in �ring rates of the input population. How-

ever, since noise in neural systems can induce synchronisation [171], the ability to estimate

the noise driving a neuron, or population, may be useful in studying this phenomenon.

The methods and results presented in this chapter were published inBrain Research in 2013 [37].
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Chapter 6

Can a biophysical model of a

pyramidal neuron learn time delays

between the spikes from di�erent

input neurons?

In this chapter, we investigate the ability of a pyramidal neuron to learn to distinguish, with

high precision, correlated input spikes of varying delays. Our goal is to discover a learning

mechanism that allows the cell to reinforce pairs of synapses that activate with very speci�c

time delays between them (on the millisecond scale), while not reinforcing other synapses on

the same dendritic tree. A side e�ect of our analysis is the measurement of the precision with

which such a mechanism can function and an investigation into the properties that de�ne or

a�ect this precision.

The detection of sequences of sensory inputs with speci�c short time delays (e.g., velocity

sensitive motion detection or decoding of the �ring of Geniculate lagged cells, see [172]) is a

function of biological systems. Sequence detectors are usually modelled as coincidence detec-

tors that exploit appropriate delays of asynchronous individual input to cause a coincidence

after the arrival of the last input of the sequence (see for example [173]). Given the adaptability

of neural systems, the question arises as to whether learning mechanisms exist that develop

appropriate coincidence detectors and then stabilize them during use.

83
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The widely used Spike Timing Dependent Plasticity (STDP) [174–178] learning rule normally

requires the post-synaptic neuron to �re a spike and will reinforce all synapses with inputs

arriving shortly before that spike. Synapses on distant dendrites whose earlier inputs also

contribute to the spike undergo a much weaker reinforcement than proximal dendrites and

end up disappearing when resource limitations are considered in the model, as proposed by

Letzkus et al. [179]. Branco et al. [173] have shown that, on the contrary, synapses at various

distances from the soma stay strong and contribute to sequence-speci�c neuronal responses.

They did that by activating a succession of synapses by optical uncaging and noted that if the

uncaging sequence moves from distal to proximal synapses, the soma showed a higher increase

in potential than if the sequence moved away from the soma. Given the results by Branco et al.

[173], it should be possible to reinforce synapses at any distance.

In this chapter, we are interested in reinforcing pairs of synapses that are separated by a propa-

gation time delay corresponding to the arrival time di�erence of spikes from two di�erent input

neurons. We initially examined whether a detector based on dendritic propagation delays in a

biophysical model of a pyramidal neuron [179] can be developed in a bottom-up, unsupervised

fashion, i.e., without the soma �ring a prior spike to trigger learning on pre-synaptic inputs,

following a hypothesis formulated by Bugmann and Christodoulou [180]. A bottom-up ap-

proach is in the spirit of experiments conducted by Marom and Shahaf [181] showing learning

without supervisory spiking by the target. The examined mechanism is based on non-linear

summation of synaptic EPSPs and their e�ects, as described for example in Denham and Den-

ham [182], followed by the backpropagation of the summed EPSP to the dendrites, triggering a

learning mechanism at the originating synapse. Simulating this initial approach revealed that

the learning mechanism appears to be insu�ciently sensitive to di�erences in time delays. This

lead to the development of a second approach using a backpropagating AP.

In the second approach, a background input current is added to the neuron (at the somatic

compartment), to allow the coincidence of pairs of small EPSPs to generate a spike that can

then activate learning mechanisms when backpropagating. That background current can be

seen as a “learning-enable” signal that is activated when the organism decides that there is a

need to learn the current input situation. These processes are designed to allow learning of

weights in conditions where they are initially too weak to induce output spikes.

A key element of both approaches is the assumption that inputs from each pre-synaptic neu-

ron initially target several pre-existing synapses at various positions on the dendrite. These
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synapses have a probabilistic behaviour and will activate at most one at a time, thus probing

various dendritic propagation times [180]. The learning rule should then select synaptic pairs

separated by the appropriate distance and reinforce them.

This approach di�ers from the supervised approach used by van Leeuwen [183] who assumes

synaptic relocation along the dendritic tree, or the model by Hüning et al. [184] that assumes

delay modi�cation. The principle of selection of existing synapses is also used by Gerstner

et al. [185], where time-di�erences between pre- and post-synaptic spikes determine weight

changes, or the work by Eurich et al. [186] who use a Hebbian learning rule depending on

correlations between pre- and post-synaptic activity within a certain time window. Senn et al.

[187] also proposed the use of stochastic synapses, for adapting synaptic delays. Note that

the problem treated here is di�erent from that of detecting temporal patterns in a single input

spike train, like in Hunzinger et al. [188], or global oscillations in multiple spike trains like

in Kerr et al. [189]. In the context of dendritic delays selection, in this chapter we examine the

capability of a pyramidal neuron to provide a learning signal selective enough to certain input

time di�erences. In this chapter, we use the term learning to refer to synaptic plasticity and

in particular, synaptic plasticity that reinforces a speci�c neural behaviour. Here, the neural

behaviour we aim to reinforce is the identi�cation of precise input delays between synaptic

pairs. Moreover, the use of the term learning should not be confused with learning as a higher

cognitive function, but only as a mechanism for making a single cell sensitive to particular

input signals.

6.1 Methods

6.1.1 Overview

Figure 6.1 shows a simpli�ed sketch of our model’s architecture. Four synapses attach to a

neuron’s dendrite at increasing distances from the soma. The synapse that is closest to the

soma, synapse B, originates from pre-synaptic neuron B. The rest of the synapses, A1, A2 and

A3, originate from pre-synaptic neuron A.

Pre-synaptic neurons A and B �re the same spike trains with a �xed time delay, ∆t. In other

words, whenever neuron A �res at a time t, B �res at t + ∆t. In this chapter, we aim at

reinforcing synapse A2. We consider two scenarios (Figure 6.1):
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Soma

BA1A2A3

cΔt

Back-propagating EPSP

Back-propagating action potential

Figure 6.1: Schematic of our model’s architecture consisting of a simple neuron with 4
synapses. B is a proximal synapse, while synapses A1–3 are at increasing distances from
the soma. All A-synapses originate from the same pre-synaptic neuron (neuron A) and B
originates from a di�erent one (neuron B). See the text for an explanation of the two back-

propagation diagrams.

(i) An EPSP from A2 arrives at B after ∆t time, thus coinciding with the time the EPSP at

B is created. The coinciding EPSPs are ampli�ed, creating an increase in post-synaptic

potential at B, which travels back to the A-synapses.

(ii) The EPSPs from A2 and B coincide at their arrival at the soma and trigger a somatic spike,

creating a back-propagating AP which travels back to the synapses.

In both cases, the back-propagating potential is expected to cause weight changes in the active

synapses (i.e., the synapses that have recently been active).

The purpose of both scenarios is to make the post-synaptic neuron sensitive to the �ring delay

between pre-synaptic neurons A and B, by reinforcing only synapse B and the corresponding

A-synapse whose distance from B is such that the EPSP from A coincides with the EPSP from

B, at location B. In other words, if c is the propagation speed and ∆t is the �ring delay between

pre-synaptic neurons A and B, the learning mechanism should reinforce an A-synapse that is
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at a distance c∆t from synapse B. In all our scenarios, the A-synapse that is located at the

ideal distance from B will be labelled A2. Our methods require that synapses are stochastic

with a low probability of release [187, 190, 191], since synapses A1, A2 and A3 all originate

from the same pre-synaptic neuron, but should receive individual reinforcement. By setting

the release probability su�ciently low, we can consider that the probability of having two or

more A-synapses active at the same time is negligible.

The main di�erence between the two approaches is the lack of somatic spiking in the �rst

approach. The �rst scenario relies on the ampli�cation and backpropagation of a potential,

caused by the coinciding EPSPs at the dendritic location of synapse B. Plasticity, in this sce-

nario, would occur as a result of the changes caused along the dendrite by the backpropagating

ampli�ed EPSP, in the absence of somatic spiking. The second scenario follows a more tradi-

tional approach to learning, where the coinciding EPSPs trigger a somatic AP that is able to

cause synaptic changes based on a STDP-type learning rule.

6.1.2 Model

For our simulated experiments, we used the NEURON simulation environment [192] using a

reconstructed layer 5 pyramidal neuron model, originally built by Stuart and Spruston [193].

This model was modi�ed by Letzkus et al. [179] to account for active properties, by including

voltage-gated ion channels at the following densities (in pS µm−2):

• Soma: gNa = 3000, gKv = 30, gKa = 0.06, gKca = 2.5, gKm = 2.2, gCaT = 0.0003.

• Dendrites: gNa = 40, gKv = 30, gKa = 0.03, gKca = 2.5, gKm = 0.05, gCaT = 0.0003.

• Distal dendrites (> 600 µm from the soma): gNa = 40, gKv = 30, gKa = 0.03, gKca =

2.5, gKm = 0.05, gCaT = 0.001, gCa = 1.25 (slow high-voltage activated calcium).

• Axon: gNa = 30 000, gKv = 400.

This model, in principle, is able to generate dendritic calcium spikes, however these are not

produced in the scenarios simulated in this chapter. The speci�c membrane resistance was

15 kΩ cm2, the membrane capacitance was 1 µF cm−2 (giving a 15 ms time constant), the axial

resistance was 125 Ω cm. Somatic resting potential, in the absence of any background current,

was −79 mV and the AP threshold was −63 mV. We further modi�ed the resulting model by

Letzkus with the addition of synaptic locations and their weights.
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A2

A1

B

s

Figure 6.2: Synaptic locations on a morphological reconstructed neuron model. The grey
location, indicated by S is the location of the soma.

Synapses were placed along the main branch of the dendrite at increasing distances, as shown

in Figure 6.2. Excitatory post-synaptic currents (EPSCs), produced due to AMPA (α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid) receptors, were modelled as double exponentials

with a rise time τrise = 0.2 ms, a decay time τdecay = 2 ms and a maximum amplitude (the

weight of the synapse). Each synapse also contained NMDA (N-Methyl-D-Aspartate) receptors,

with a NMDA-AMPA ratio of 0.2, as in Letzkus et al. [179]. The NMDA component was simu-

lated with a kinetic model, developed and described in Kampa et al. [194], and was part of the

model taken from Letzkus et al. [179]. Potentials were recorded at the dendritic compartment

of each synapse as well as at the soma.

6.1.3 Synaptic weights and scaling

As mentioned in the beginning of this chapter, our second approach relies on a constant back-

ground current that raises the resting potential of the neuron, such that two coinciding EPSPs

would trigger an AP at the soma, but a single EPSP should not. The current is applied directly

to the somatic compartment of the model. These requirements de�ne a range of background

current amplitudes (0.22 to 0.24 nA) and we use this range to explore the behaviour of the

neuron. For each value of the current amplitude, a di�erent set of synaptic weights is required.
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The e�ect of the current amplitude on the results is discussed in Section 6.2.2.4. The �gures

shown in this section illustrate the behaviour for an example case of 0.222 nA constant back-

ground current, which raises the e�ective resting potential to −72.5 mV (6.5 mV higher than

the default rest).

Synaptic weights were scaled such that an EPSP from any of the synapses had the same peak

depolarisation level at the soma. The reason for the uniform scaling of synaptic weights was to

make the e�ective di�erence at the soma between speci�c pairs of EPSPs depend only on the

propagation delay of the potential and the input spike time di�erence. This re�ects the results

of Häusser [195] showing that the amplitude of the EPSP arriving at the soma is independent

of the distance of the originating synapse.

The value range for the weights was assumed to be continuous (double precision �oating point

values, in nA) and no bounds were set on the value of the weight for each synapse. However,

this does not mean that the weights were practically unbounded. If a synapse was strong

enough to trigger a somatic spike on its own, i.e., without the need for a second, coincident

EPSP, the weight would be considered too high. The values of the weights were therefore lim-

ited with respect to the peak depolarisation an EPSP from a synapse can cause at the soma. This

was a limiting factor during synaptic scaling and background current amplitude calibration,

but was not a relevant consideration during our investigation into the theoretical reinforce-

ment of synapses due to synaptic plasticity. While investigating the strength of reinforcement

caused by various plasticity rules, we assumed a continuous, unbounded range for the synaptic

weights.

Figure 6.3 shows the weight of each synapse after the calibration was complete. The e�ects of

the background current on the scaled weights can be seen in �gure Figure 6.4. Figure 6.4a shows

the potential recorded at the soma for four EPSPs, evoked separately at each of the synaptic

locations with a constant background current applied (top) or not applied (bottom). Figure 6.4b

shows the peak depolarisation caused at the soma by an EPSP from each synapse, with (top

line) and without (bottom line) the background current applied. These values are calculated

by subtracting the e�ective resting potential, i.e., the membrane potential immediately before

the EPSP is triggered, from the peak potential reached during the EPSP. Figure 6.4c shows

the time when the peak potential was reached, both with (top line) and without (bottom line)

the background current applied. The results show that adding a background current has three

e�ects on the EPSPs:
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Figure 6.3: Example of synaptic weights after scaling. Weights (excitatory post-synaptic peak
currents) were scaled to produce a depolarisation of 1 mV at the soma when a constant back-
ground current is applied with an amplitude of 0.222 nA. The symbols used to represent each
point will be used in certain �gures in this chapter to reference each synaptic location: B •,

A1 �, A2 �, A3 N.
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Figure 6.4: (a) Depolarisation at soma for EPSPs evoked at each synaptic location with a
constant background current of 0.222 nA (top) and without (bottom). (b) Peak potential at the
soma with background current (blue, solid line) and without (red, dashed line). The peak is
measured as the di�erence between the maximum potential reached when the EPSP is evoked
and the e�ective resting potential (i.e., the resting potential immediately before the EPSP is
triggered). (c) Time to peak (peak time minus onset of EPSP) at the soma with background

current (blue, solid line) and without (red, dashed line).
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• It shifts the voltage upwards, as expected, but also increases the depolarisation caused

by an EPSP. This e�ect becomes a little stronger with greater distance from the soma

(Figure 6.4b).

• It increases the time required for the EPSP to reach its peak at the soma (Figure 6.4c).

• It also a�ects the shape of the EPSPs arriving at the soma, with the expected widening

with distance largely being eliminated (in Figure 6.4a, top curve, the width at 95 % of

the height is for B: 7.1 ms, A1: 7.1 ms, A2: 7.1 ms and A3: 7.3 ms). Note that, without

background current, EPSP peaks are narrower and show the usual distance dependence

(in Figure 6.4a, lower curve, the width at 95 % of the height is for B: 2.4 ms, A1: 2.8 ms,

A2: 3.2 ms and A3: 3.6 ms).

These e�ects have also been observed in in vitro studies on cortical and hippocampal pyra-

midal cells [196–200]. Fricker and Miles [198] suggest that when the membrane potential is

depolarised, the activation of inward currents tends to increase the amplitude of EPSPs and

prolongs their decay.

6.1.4 Simulation procedure

Only two synapses were considered in each simulation. The assumption in our model is that

synapses are probabilistic with low activation probability and we examine the cases where

at most only one of the A-synapses is active at a time, along with B. Therefore, activation of

synapses was induced in pairs of one of the A synapses and the B synapse, with a delay ∆t,

in order to examine the AP �ring behaviour for separate instances of stimulus arrival. The

simulation was run for 1 s before evoking any EPSPs at the synapses, to allow the potential to

stabilise from initial conditions. This was especially required in the case where background

current was applied. The background current is always applied directly to the somatic com-
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Figure 6.5: Integral of the NMDA conductance during the activation of a pair of synapses,
Ai, B. The conductance was recorded at the location of the A-synapse (Ai) in each case.
The symbols at the peak of each curve represent the three synaptic locations, A1, A2 and A3

respectively. No background current was added in this scenario.

6.2 Results

6.2.1 Approach 1: Backpropagating coincident EPSPs

In this section we report on a simulation of the forward propagation of an EPSP from A2, its

coincidence with an EPSP generated by an input at B and then the backpropagation of the

resulting coincident EPSP to A2. In order to evaluate the expected degree of reinforcement of

synapse Ai, we calculate the integral of the NMDA conductance at that synaptic location, as

in Letzkus et al. [179]. Figure 6.5 shows the integral of the NMDA conductance (normalised to

the maximum) across a range of input delays (∆t) after a pair of input spikes activated a pair

of synapses. For each simulation, one A-synapse was activated followed by an activation of

synapse B after a delay of ∆t. The order of synapse activation was reversed (B A) for negative

∆t. The NMDA conductance was recorded at the location of the A-synapse being activated

and the integral over the entire simulation time was calculated (see Figure 6.5).

As Figure 6.5 shows, the integrated NMDA conductance for each synapse peaks at di�erent

delays, corresponding to the dendritic propagation times from each A-synapse to B. The max-

imum conductance, used to normalise the conductance change, was taken to be the integral of
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Table 6.1: Normalised integral of the NMDA conductance for speci�c input delays ∆t. Each
value is the delay which maximises the integral at one of the three locations, 0.8 ms for A1,

1.6 ms for A2, and 2.6 ms for A3.

∆t
0.8 ms 1.6 ms 2.6 ms

A1 1.0000 0.9997 0.9997
A2 0.9997 1.0000 0.9999
A3 0.9997 0.9996 1.0000

Figure 6.6: NMDA conductance learning rule. The �gure shows the degree of synaptic plas-
ticity as a function of the NMDA conductance integral. Image taken from Letzkus et al. [179].

the conductance at the synapse when the two synapses are activated with a delay that matches

the propagation delay of the EPSP between the synaptic locations. This is what we refer to

as the ideal time delay, for this scenario. However, the di�erence in conductance integrals

between synapses, for a given time delay, are very small. For instance, when the input de-

lay is such that it maximises the integral at A2, i.e., ∆t = 1.6 ms, spike pairs (A1 B) and

(A3 B) have normalised NMDA conductance integrals of 0.9997 and 0.9996 respectively (see

Table 6.1). A learning rule which is based on the integral of the NMDA conductance, as in

Letzkus et al. [179], would apply reinforcements with minute di�erences between synapses,

for delays −1 to 3 ms (Figure 6.6). This can be seen in Figure 6.5, where all curves are above

0.995 within the aforementioned range of delays. Ideally, in order for the neuron to learn
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to respond to a speci�c spike delay which corresponds to the propagation delay between A2

and B (∆t = 1.6 ms), the reinforcement at that delay should be signi�cantly di�erent for each

synapse, such that A2 receives a signi�cantly stronger reinforcement when activated compared

to A1 or A3. Our results show that this is not the case. Backpropagating coincident EPSPs are

therefore unlikely to provide su�ciently strong di�erentiating signals.

Given this result, we have investigated a di�erent approach using backpropagating APs instead

of EPSPs. This is the topic of the next section.

6.2.2 Approach 2: Backpropagating action potential

Here we examine the idea that, by adding a background input current to the neuron, the two

small coincident EPSPs become able to cause a spike that then triggers learning mechanisms

when backpropagating to the recently active synapses. As learning by backpropagating APs

is well documented, the main issue dealt with in this section is the appropriate generation of

that AP. Again, we focus on learning at synapse A2, ignoring B.

Figure 6.7 shows two ways in which AP generation is a�ected by the application of a constant

background current to the soma. Figure 6.7a shows how the width of the �ring domain grows

with increased background current. Each pair of curves show the minimum and maximum

input delays (the delay between activation of an A-synapse and synapse B) that trigger a so-

matic spike across a range of background current amplitudes, for each synaptic pair (Ai B).

Background currents below 0.22 nA do not raise the e�ective resting potential high enough to

enable a somatic spike, even when EPSPs coincide perfectly at the soma. Background currents

above 0.227 nA, which would drive the spike domain outside the range−20 to 20 ms, were not

considered. Figure 6.7b shows the e�ect of increasing the background current on the somatic

spike delay (the time of the somatic spike minus the time of the second EPSP’s onset). For each

synaptic pair (Ai B), the optimal input delay was used (see Section 6.2.2.3 for calculations and

Table 6.2 for the values).

6.2.2.1 Relative timing conditions for action potential generation

To measure the selectivity of the coincidence detection mechanisms, we ran simulations where

we varied the time delay between spike arrival time at an A-synapse and synapse B. In the

example shown in Figure 6.8 (background current with amplitude 0.222 nA), the neuron �res
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Figure 6.7: (a) E�ect of the background current amplitude on the range of input delays that
cause a response. Input delays outside the range−20 to 20 ms were not considered. (b) E�ect
of the background current amplitude on the somatic spike time for (Ai B) spike pairs. For
each pair, the optimal input delay was used (A1: 1.8 ms, A2: 3.8 ms, A3: 6.5 ms). The dashed
vertical line in both �gures indicates the background current amplitude of 0.222 nA used
as an example throughout this chapter. The number of samples on both �gures have been

decimated for clarity.

Ach
ille

as
 K

ou
tso

u



Chapter 6. Learning time delays between the spikes from di�erent input neurons 96

B A1 A2 A3
Synapse location

20

15

10

5

0

5

10

15

20

In
p
u
t 

d
e
la

y
 (

∆
t)

Figure 6.8: Spike occurrence for the indicated combinations of input delay (∆t) and synapse
location for an example case with background current amplitude of 0.222 nA. The bigger dots
denote cases where a spike was �red, while the smaller ones show cases where no somatic
spike occurred. Negative delays denote cases where the B synapse triggered an EPSP before
the A-synapse. The leftmost column of dots represents simulations where both EPSPs were
triggered at the B synapse. The dashed grey lines correspond to the maximum and minimum
delays that cause a somatic AP according to the model described in Section 6.2.2.3. The dia-
mond shaped points on each column represent the optimal delay between each synapse and
synapse B for maximum depolarisation, which is the di�erence in peak times at the soma

between an A-synapse and synapse B (dAiB , third column of Table 6.2).

for a range of time delays, and cannot discriminate, in a binary way (which is by �ring or

not �ring) time di�erences shorter than around ±7 ms. The domain of �ring rises towards

more positive delays for more distant synapses, showing the e�ect of an increasing dendritic

propagation time. The rise and width of the �ring domain are explained in Section 6.2.2.3.

6.2.2.2 Action potential timing

Figure 6.9a shows the time of AP production relative to the input time. The somatic spike

delay (dS) was calculated as the somatic spike time (tS) minus the initiation time of the second

input spike, dS = tS − max(tA, tB), where tA and tB are the times of EPSP initiation from
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pre-synaptic neurons A and B respectively. The amplitude of the background current in all

cases was 0.222 nA.

On the right-hand side of the horizontal axis (which shows the input delay), positive delays

indicate that synapse B receives the last input. On the left-hand side, synapse A receives the

last input. The four curves show a lateral shift by a time slightly shorter than the di�erence

between the time-to-peak (Tp) delays of each individual EPSP (Figure 6.4). Table 6.2 in the next

section shows the time-to-peak (Tp) values. The lateral shift shows clearly that the dendritic

propagation time a�ects the response to inputs with di�erent time di�erence. However, it also

shows a very �at minimum that provides little di�erentiation between time di�erences close

to the di�erence in Tp between synapses. All AP production times are at least 22 ms after

the arrival of the last of the two inputs, due to the integration of long lasting NMDA currents

needed to cause �ring. They take around 2 to 3 ms to propagate back to an A-synapse, giving

a round-trip time of 24 ms or more.

6.2.2.3 Modelling the selectivity

Figure 6.8 shows that an AP is generated for a range of time di�erences of input spikes. To

explain the upper and lower boundaries of the domains of �ring, we have formulated a simple

model. The EPSPs arriving at the soma from B and from Ai (i = 1, 2, 3) cause a maximal

potential increase when their peaks are coincident. This occurs when the delay (dAiB) between

input spikes matches the di�erence in arrival times (di�erences in time to peak) at the soma:

dAiB = TpAi − TpB (6.1)

where TpAi and TpB are the times to peak for respectively inputs from Ai and B. When both

inputs arrive at B, the delay is zero (dBB = 0).

Now, let us assume that an exact coincidence is not needed and that the peaks are e�cient over

a given time window. A simple way to estimate this is to measure the duration Tw of the width

of the EPSP peak at, say, 95 % of its maximum height. The results are shown in Table 6.2. All

the peaks have a width of about 7 ms. So, the inputs can be desynchronized by ±7 ms and

still produce APs. More precisely, the maximum delay ∆tmax and minimum delays ∆tmin are

given by:
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Figure 6.9: (a) AP production time after the last input spike for the indicated synapses and
for di�erent delays between spike input at B and A. Positive delays correspond to the B in-
put occurring after the A input. The range of delays correspond to the ones in Figure 6.8.
(b) Example voltage traces for a single simulation where an AP was generated. The case
shown corresponds to the point in sub�gure (a) marked by the black asterisk (synapse A2,
∆t = 5 ms). The top panel shows the voltage at all three locations, A2, B and soma. The bot-
tom panel shows the depolarisation at dendritic locations B and A2 in an expanded ordinate,
for clarity. In sub�gure (b), the time of the input at synapse B corresponds to time 0. Both

sub�gures are sample cases with background current set at 0.222 nA.
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Table 6.2: Model Data and Results. The results ∆tmax and ∆tmin are shown on Figure 6.8.
Tp is the time-to-peak, i.e., the time when the EPSP reaches maximum depolarisation at the
soma. dAiB is the di�erence between the two peak times from Ai and B respectively. This
value is 0 when both EPSPs are triggered at B. Tw is the peak duration, which is measured as
the duration where an EPSP is above 95 % of its maximum height. ∆tmax and ∆tmin are the
calculated maximum and minimum delays that cause a somatic AP for an EPSP coming from a
given synapse, while coupled with an EPSP from B. All values on the table are in milliseconds.

Synapse Tp dAiB Delay from Figure 6.9a Tw ∆tmax ∆tmin

B 6.9 0 0 7.1 7.3 -7.3
A1 8.7 1.8 1.12 7.1 8.48 -5.92
A2 10.8 3.9 2.8 7.1 10 -4.4
A3 13.4 6.5 4.8 7.3 12.1 -2.5

∆tmax = dAiB + 0.5TwA + 0.5TwB (6.2)

∆tmin = dAiB − 0.5TwA − 0.5TwB (6.3)

It turns out that this simple model explains the behaviour of the domain of �ring times in

Figure 6.8 (dashed lines). To obtain the correct slope of the curves, we had to replace the delay

calculated from eqn. 6.1 with the actual best delay given by data in Figure 6.9a (see Table 6.2).

6.2.2.4 E�ect of background current on selectivity

In order to reinforce only one of the A-synapses (A2), the input pair (A2 B) should cause a

somatic spike, while the other pairs (A1 B) and (A3 B) should not. This requires the maximum

input delay ∆tmax for A2 to be smaller than the ∆tmin for A3, and for the minimum delay ∆tmin

for A2 to be larger than the ∆tmax for A1. This de�nes a very narrow domain of operation

due to the shallow slopes of the max and min model curves in Figure 6.8. Given the di�erence

between dA3B and dA1B (taken from Figure 6.9a and Table 6.2), the �ring domain at A2 cannot

be wider than ±0.92 ms.

We can show that such a selectivity is di�cult to achieve when membrane noise is taken into

account. Experimental data in low noise conditions show �uctuations of the membrane po-

tential re�ecting excitatory inputs by fast (15 to 30 ms) potential rise, followed by a slower
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(200 to 300 ms) decay to the average potential (estimated from Figure 2 in 201). We can there-

fore assume, as a �rst approximation, that the potential stays constant long enough for the

duration of one (Ai B) input sequence and the summation of the two EPSCs at the soma. Ac-

cording to Destexhe and Paré [201], the smallest observed voltage �uctuations have a standard

deviation of around 0.4 mV. Their data suggest a Beta distribution of potentials (Figure 6.10a).

B(V ) = C(
V

2.5
)
α−1

(1− V

2.5
)
β−1

(6.4)

where C is a normalisation constant ensuring that the integral of B(V ) is equal to 1 between

V = 0 and V = 2.5 mV.

We conducted a coarse �tting of the data and found a satisfactory match with values of α = 2

and β = 7. With a maximum �uctuation of 2.5 mV, as seen in Figure 2b in Destexhe and

Paré [201], this distribution yields a standard deviation of 0.4 mV and a peak at 0.5 mV, both

matching experimental values. In order to relate data on potential �uctuations to results of our

simulations, we calculated the equivalent background current I for each potential using the

locally (around 0.22 nA) linear relation found in our simulations:

V (I) = −72.66 [mV] + 55 [mV/nA]I (6.5)

For each current we then calculate the time window for �ring using eqn. 6.6 below, based on

Figure 6.7a for inputs at the A2 synapse. Figure 6.7a shows that the half range ∆t of delays

between an input at B and an input at A2 for which the neuron �res increases approximately

as:

∆t(I) =
15.5 [ms]

0.006 [nA]
(I − 0.22 [nA]) (6.6)

This is valid for currents above 0.22 nA and no �ring takes place below that current. The value

of the average half time window for currents between a base current I0 and the max current

I0 + ∆I2.5 corresponding to a potential increase of ∆I = 2.5 mV is calculated through:

∆t =

∫ V0+2.5mV
V0

∆t(I(V ))B(V )S(I(V ))dV∫ V0+2.5mV
V0

B(V )S(I(V ))dV
(6.7)

where S(I) is either 1 or 0, re�ecting whether the neuron can �re a somatic spike at the voltage

V or not. The integral of the distribution alone in the denominator of eqn. 6.7 is normally equal
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Chapter 6. Learning time delays between the spikes from di�erent input neurons 101

to 1, but if parts of the distribution fall below the voltage corresponding to 0.22 nA, there

cannot be �ring in that range and the integral in the denominator is needed for normalisation.

The denominator represents the fraction of cases where the voltage is above the minimum

needed for �ring. From eqn. 6.5 we �nd that a background current increase of 0.045 nA is

needed to increase the somatic membrane voltage by 2.5 mV. Therefore, we considered the

following two cases:

(i) The background current �uctuates between 0.22 nA and 0.265 nA.

(ii) The background current �uctuates between 0.20 nA and 0.245 nA.

The results are as follows: For case (i), on average, inputs to A and B need to be no more than

±30 ms away from the ideal time di�erence (the propagation time di�erence between the Ai
and B synapse, dAiB). For case (ii), on average, inputs need to be only within±10 ms, but there

is only a 7 % probability that the background voltage is high enough for inputs to generate a

spike. In the �rst case the potential (input current) is always su�cient to cause a spike if the

time interval between input spikes is within the �ring domain (input current > 0.22 nA). The

potential is often larger and allows for a large variation in timing. In the second case, the base

membrane potential is often (93 % of the time) below the minimum potential value (produced

by a current of 0.22 nA), and even inputs with the perfect time interval will not always be able

to cause �ring. In the few cases where the current is above 0.22 nA, the average time window

is still quite high, with ±10 ms. The more accurate the tuning of the somatic spike, the less

frequent that spike is. When we reduce I0 until the ideal window of ±0.92 ms is achieved

(I0 = 0.177 253 nA), the neuron is responsive in 2× 10−8 of cases, which is very close to

never. The image that emerges is that generating somatic spikes as a learning signal is almost

impossible.

6.2.2.5 E�ect of background current on frequency of learning feedback

We have also explored whether there is enough di�erence in somatic �ring probabilities to

provide a learning signal that di�erentiates A2 from A1 and A3. Ideally, the �ring probability

of the neuron when (A2 B) are activated should be signi�cantly higher than when (A1 B) and

(A3 B) are activated with the same input delay ∆t, for a given level of baseline background

current. Figure 6.10b shows the probability of �ring of all three pairs for input delay ∆t = 2 ms

across the full range of baseline input currents I0 that do not cause �ring with probability 1.
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Figure 6.10: (a) Distribution of membrane potential amplitudes above e�ective rest, i.e., the
minimum (baseline) resting potential of the membrane when the neuron is injected with a
�uctuating current. (b) Firing probability of the neuron as a function of the baseline injected
background current, I0. The probabilities are calculated using eqn. 6.7. The smaller �gures
on the right hand side show the lower and upper parts of the probability curves at di�erent
scale to emphasize the small di�erence between the two curves. In order to calculate the �ring
probability of (A1 B) and (A3 B), we set the minimum current required for �ring to 0.2205 nA,
instead of 0.22 nA, which is the minimum current required for �ring for those synaptic pairs

when the input delay is ∆t = 2 ms (seen in Figure 6.7a).

Since the noisy current causes �uctuations of the membrane voltage up to 2.5 mV (which

corresponds to current �uctuations up to 0.045 nA), the lowest baseline input current I0 that

has a non-zero probability of causing a spike, when (A2 B) are activated with an input delay

of ∆t = 2 ms, is 0.175 nA. The maximum I0 considered was 0.22 nA, since above this value

the probability of (A2 B) �ring is 1 (for ∆t = 2 ms). The input delay ∆t = 2 ms was chosen

as the ideal delay of (A2 B) in terms of �ring probability, since this is the only delay which

causes �ring for that synapse pair when the background current is 0.22 nA. In other words, it

is the leftmost point of the A2 curve on Figure 6.7a (0.22 mA, 2 ms). The �ring probabilities

for (A1 B) and (A3 B) are the same, since at ∆t = 2 ms, both synapse pairs require a minimum

background current of 0.2205 nA to trigger a somatic spike.

The curves in Figure 6.10b show that the di�erence in �ring probabilities is very small for the

full range of background current amplitudes. Is this di�erence too small to cause signi�cantly

higher reinforcement of A2 than A1 or A3? To address this, we have examined two extreme

cases:
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Chapter 6. Learning time delays between the spikes from di�erent input neurons 103

(i) The background current �uctuates between 0.195 nA and 0.24 nA.

(ii) The background current �uctuates between 0.220 nA and 0.256 nA.

For case (i) the probability of �ring for (A2 B) is 1.8 % and for (A1 B) and (A3 B) 1.5 %. This

means that (A2 B) triggers 20 % more spikes than the other two pairs. However, the response

frequency for all pairs is very low. In other words, although the relative di�erence in probabil-

ities is not negligible, (A2 B) would only trigger 3 more spikes than (A1 B) or (A3 B) for every

1000 input pairs.

In case (ii), the inverse problem occurs. The probability of �ring for (A2 B) is 100 % and for

(A1 B) and (A3 B) 99.6 %. In this case, the response frequency is high for all pairs, but the

di�erence in �ring probability is too small for A2 to gain a signi�cantly higher reinforcement

frequency. Therefore, it is unlikely that the �ring probability would a�ect the frequency of

reinforcement in a way which would di�erentiate A2 from the other two synapses.

6.3 Discussion

The aim of the work of this chapter was to examine whether it is possible to train a neuron

to detect input spikes from di�erent sources with speci�c delays. All mechanisms considered

attempted to exploit dendritic propagation times between pairs of synapses. This chapter has

focused on the possibility to generate appropriate training signals to reinforce pairs of synapses

with internal propagation time matching the external spike arrival time di�erence.

In the �rst approach, using backpropagating EPSPs, we found that even in the best case, where

the peak of an EPSP from A2 coincided perfectly with the peak of an EPSP at B, the di�erence

in integrated NMDA conductance was too small to be of practical use. Thus, the use of a

non-spiking approach as suggested in Bugmann and Christodoulou [180] is not e�ective in a

pyramidal neuron.

In the second approach, we generated a somatic AP in response to the coincidence of EPSPs

from synapses A and synapse B. Unfortunately, our work has revealed two problems: (1) In the

case of a noiseless constant background current at its minimum of 0.22 nA, the time window

for �ring appears to be smaller than the desired ±0.92 ms, but considering minimal noise as

observed by Destexhe and Paré [201] reveals that the practical time window is closer to±10 ms.

Triggering a spike only when the input time delay matches the propagation time delay of a
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Chapter 6. Learning time delays between the spikes from di�erent input neurons 104

speci�c synaptic pair is therefore impossible. (2) We then examined whether the probabilities

of producing an AP were su�ciently di�erent between synapse pairs (A1 B), (A2 B) and (A3 B).

We found that either (i) there is a di�erence but with a very low probability of an AP being

produced, or (ii) many APs are produced but their �ring probability does not di�erentiate

between synaptic pairs.

We also observed that there is a variation of the �ring time of the APs, depending on the dif-

ference between ideal input time di�erence and the actual one. In Figure 6.9a, this di�erence

is at most around 10 % for large input time di�erences, but around values relevant to distin-

guishing between A1, A2 and A3, the curves show little sensitivity to be exploited, for instance,

in a STDP-type learning rule. Furthermore, in the presence of noise, it is unlikely that these

somatic AP delays remain reliable indicators of input time delays.

Thus, there appears to be no usable signal to reinforce one A-synapse against all the others.

Although pyramidal neurons in the brain vary in electrical properties, e.g., with membrane

time constants ranging from 9 to 60 ms (15 ms in the model used in this chapter), they share

su�cient common structural properties [202] for these results to be of a general validity.

The selectivity of the neuron can be measured by the height of the row of dots in Figure 6.8. Our

example for a background current of 0.222 nA shows that APs are generated for delays between

the two input spikes varying typically by ±7 ms for any pair of synapses. Our computational

model proposes that the selectivity is related to the width of the EPSP arriving at the soma

(where width refers to some e�ective top part of the EPSP pro�le, estimated at around 95 %

of the height in our example). Even synapses attached directly to the soma show a width of

around±7 ms. One may ask if this is also the time window for coincidence detection. Without

background current, EPSPs arriving at the soma have much narrower peaks, around 3 ms vs

7 ms in our example (Table 6.2). However, our simulations show that, when the potential

rises towards the �ring threshold, EPSPs become wider. This raises the question of whether a

number of superposed narrow EPSPs actually stay narrow. This may be addressed in further

studies.

The methods and results presented in this chapter have been recently submitted as a paper to

BioSystems which has been accepted subject to minor revisions [38].
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Chapter 7

General Discussion & Conclusions

The research presented in this thesis addressed multiple aspects of the problem of identifying

the temporal precision of the neural code. This problem arises as a generalisation of the more

traditional distinction between temporal integration and coincidence detection, which have

been regarded as the two distinct neural operational modes [70, 76]. The generalisation used

throughout our research regards the two modes as opposing extremes of a continuum: tempo-

ral integration is characterised by low temporal precision and wide (long window) spike rate

averaging, while coincidence detection is characterised by high precision and narrow (short

window) spike binning (Section 2.2) [31, 51, 74, 75, 111]. More importantly, the operational

mode has direct implications for neural encoding mechanisms. Temporal integrators inte-

grate all incoming activity, causing a neuron to �re responses based on the average rate of

input spikes, a behaviour which characterises a rate code. Conversely, coincidence detectors

respond to precise spike timing coincidences and synchronous events, which characterises a

temporal code [75, 76, 111]. This generalisation of the two operational modes extends to the

coding schemes, which yields the concept of a continuum between rate and temporal coding.

The general contribution of the thesis is the development of tools and methods for determining

the operational mode of a neuron, through observations of its behaviour. While the results do

not provide de�nitive answers to the question of which operational mode neurons employ,

our methods provide general conclusions regarding the ways in which the operational mode

is de�ned by various properties of the neuron and its behaviour.

More speci�cally, our contributions towards solving the problem of understanding the neural

code, involved identifying where a neuron’s behaviour lies on the continuum of operational

105
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Chapter 7. General Discussion & Conclusions 106

modes. We also studied the ways in which the neural and input parameters a�ect the relation-

ship between input synchrony and operational mode, to further understand how a neuron’s

mode of operation is de�ned. A more general approach was developed and presented for infer-

ring the parameters that de�ne the entire signal driving a neuron, under the assumption that

it is sinusoidal, representing periodic bursts of correlated or synchronous activity. Finally, we

investigated ways in which a biophysical neuron model can learn (through synaptic plasticity)

to distinguish input spike pairs of �xed delay and the temporal precision of the distinguish-

ing mechanisms. The following list summarises the speci�c contributions that result from this

work:

• We developed the Normalised Pre-Spike membrane potential Slope (NPSS, Chapter 3),

which is a method for determining the degree of input synchrony that was responsi-

ble for the �ring of a neuron and is a measure of the operational mode of a neuron. It

depends on knowledge of a neuron’s intrinsic properties (membrane leak time constant,

resting potential, �ring threshold) and membrane voltage traces to determine, using the

slope of depolarisation prior to each spike, the strength of the input that was driving the

neuron at the time of �ring [36]. Using this method we determined that:

– A leaky integrate-and-�re neuron with partial reset �ring highly irregular spikes

at high rates is primarily a temporal integrator with short leak time constant and

low threshold.

– At very high �ring rates, the de�nitions of two operational modes converge and

the two modes become indistinguishable.

• We de�ned the distinction between actual input synchrony and utilised input synchrony

and determined the way in which neural and input properties a�ect the operational mode

of a neuron (Chapter 4). The former—actual input synchrony—can be measured using

spike train distance metrics, while the latter—utilised input synchrony—is analogous

to the operational mode and is therefore measured by the aforementioned method we

developed, the NPSS. The study of the relationship between the two types of synchrony

revealed that:

– Input synchrony directly determines the operational mode when a synchronous

input volley depolarises the membrane enough to �re a spike from rest.

– High synchrony brings a neuron’s operational mode to pure coincidence detection

only when (i) the synchronous volley causes a high enough depolarisation to cause
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Chapter 7. General Discussion & Conclusions 107

a response (∆v ≥ Vth) and (ii) spike volleys are highly synchronous (i.e., no jitter,

σin = 0 ms). These conditions are both necessary and su�cient for a neuron to

operate in a pure coincidence detection mode, as measured by the NPSS.

– The relationship between input synchrony and operational mode is not a�ected

signi�cantly by the asymptotic, threshold-free membrane potential.

– A neuron can operate in a mode between temporal integration and coincidence

detection when (i) it is driven by high degrees of (actual) input synchrony and (ii)

a single volley does not depolarise the membrane enough to �re from rest, but

multiple volleys arrive at high enough frequency to trigger an output spike. In

such cases, we de�ne the behaviour of the neuron as “integration of coincidences”,

since a high degree of coincidences occur at the input of the neuron, but multiple

highly synchronous volleys are integrated before the neuron �res.

• We developed a method for inferring the input parameters and by extension the degree

of input synchrony of a neuron driven by a periodic, sinusoidal signal (Chapter 5). The

method determines the frequency of the sine wave using the variation in spike frequency

of the neuron across time and by using previously developed input reconstruction meth-

ods for stationary signals, infers with high accuracy, the parameters of the sinusoidal

input [37].

• We developed a method for analysing the ability of a detailed reconstructed pyramidal

neuron to distinguish, or learn to distinguish, between pairs of input spikes separated

by temporal delays of varying width (Chapter 6). Our investigation determined that:

– The �ring domain (the range of delays between a pair of spikes that triggers a so-

matic response) is de�ned in part by the amplitude of a background current which

a�ects the resting potential of the neuron. More speci�cally, the higher the ampli-

tude, the wider the �ring domain of the neuron.

– For a neuron to learn to distinguish between input spike pairings of precise delay

(on the order of several milliseconds), a highly sensitive learning rule is required.

– A pyramidal neuron with a compact dendritic tree or short propagation times (fast

propagation speed), cannot learn to distinguish input time delays that vary by a

few milliseconds, as long as it �res at a reasonable rate (i.e., the �ring probability

is not very low).
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Chapter 7. General Discussion & Conclusions 108

7.1 NPSS: A measure of the operational mode

The NPSS, measures the degree of input synchrony that was responsible for �ring response

spikes in a LIF model neuron. It estimates this quantity by normalising the slope of the mem-

brane potential prior to �ring between two theoretical bounds, each of which represents either

the maximum or minimum obtainable voltage change in a small period. The maximum (upper)

and minimum (lower) slope bounds represent the voltage change that occurs from completely

synchronous and completely random (dispersed) input spikes causing the neuron to �re, re-

spectively.

Our method is based on the assumption that a neuron’s operational mode is solely determined

by the degree of synchrony responsible for triggering spikes. This is a safe assumption, since

in the presence of intrinsic neural properties which may determine the neuron’s operational

mode, the degree of input synchrony which causes a spike would re�ect the neuron’s pref-

erence for input spikes of that form. For example, a neuron with very short time constant

(τm � 10 ms), or low threshold (Nth � 5), would operate primarily (or even exclusively) as a

coincidence detector and the neuron’s sensitivity to coincidences (or insensitivity to uncorre-

lated input spikes) would be re�ected in the dominance of coincident input events in the short

time before each output spike.

We explicitly de�ned the bounds of the slope of the membrane potential for models with arbi-

trary reset potentials (i.e., models where Vreset is not necessarily equal to Vrest). Although the

bounds are general, we were interested in the case of partial reset in particular (Vreset > Vrest),

in order to study the case of high �ring variability at high rates, which a partial reset model is

able to accurately reproduce. Bugmann et al. [35] attempted to determine the causes of �ring

for this case using reverse correlations of the �ring and the input spike trains, but concluded

that the method was not a reliable indicator of the relative contribution of each mechanism

(temporal integration and coincidence detection) to the �ring of spikes. Using our method, we

were able to determine that the partial reset model, when driven by random, high-rate inputs

which cause it to �re highly irregular spike trains at high rates, is predominantly a temporal

integrator of incoming EPSPs. In accordance with the analysis by Softky and Koch [73], the

partial reset model operates as an equivalent temporal integrator with very low threshold and

very short membrane leak time constant.
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Our slope bound de�nitions also had an interesting implication. As the �ring rate of a neuron

increases, which causes �ring ISIs to become shorter, the two bounds converge to the same

value. Both bounds depend on a small time window preceding each output spike—called the

coincidence window—which de�nes a period within which all input spikes are considered syn-

chronised. When the �ring ISI is equal to the length of the coincidence window, the two bounds

become equal. The implication of this behaviour is that if the �ring rate is high enough, then

the two operational modes become indistinguishable. This can also be expressed intuitively.

If a �ring ISI is equal to or less than the de�ned coincidence window w, then all input spikes

that triggered the output spike arrived within w. Therefore, there is no distinction between

describing the neuron’s behaviour as integrating EPSPs for a period w or responding to a coin-

cidence of EPSPs in a period w. Conversely, when an ISI is much longer than w, the di�erence

between temporal integration and coincidence detection is de�ned by the degree of depolari-

sation that occurred prior to the start of the coincidence window, with respect to the length of

the ISI. For small enough coincidence window, such as in our case where w = 2 ms, this issue

only appears at unrealistically high �ring rates (above 400 Hz).

Given the existence of neurons with a very high sensitivity to highly precise coincidences, as

mentioned in Section 3.7, it would be bene�cial to investigate the e�ects of such small values

of w on the results and consider the implications of such high precision. Based on the way in

which the NPSS measures the operational mode, a very small value of w would result in small

values for M, meaning that the NPSS would measure a dominance of temporal integration for

even very low jitter or very high synchrony. This is by design, since as mentioned already,

the value of w should re�ect the maximum time between two spikes that may still be regarded

as coincident. If spikes are only regarded as coincident when they are within 0.1 ms of each

other, then the de�nition of coincidence detection becomes much stricter and it is less likely to

occur in the presence of noise.

7.2 Input synchrony and the operational mode

As mentioned in the previous section, our measure assumes that the operational mode is de-

termined by input synchrony. However, there is an important distinction between the degree

of synchrony between the neurons that are driving a single, post-synaptic cell and the degree

of synchrony between the spikes that are causing the post-synaptic neuron to �re spikes. We

label these two features actual and utilised input synchrony respectively. The latter of the two,
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utilised input synchrony, is what determines the operational mode of the neuron: high utilised

synchrony de�nes coincidence detection while low utilised synchrony de�nes temporal in-

tegration. We used a spike time distance metric to measure the actual input synchrony and

studied the relationship between the two features. Our goal was to determine how the neu-

ron’s intrinsic parameters, as well as the features of the input spike trains that are not relevant

to synchrony, shape the relationship between input synchrony and operational mode.

Our analysis revealed that input synchrony directly de�nes the operational mode when a single

synchronous volley of spikes from a pre-synaptic population is able to trigger a spike directly

from rest. This is caused by a large number of synchronised input spike trains or large synaptic

weights at the inputs (or both), such that when the pre-synaptic population �res in synchrony,

a response spike is almost surely triggered. This case is characterised by the NPSS measuring

1 when the spike time distance measures 0 and conversely, the NPSS measures 0 when the

spike time distance is near the maximum value (∼0.5). The relationship of the two measures

between these two extremes varies based on the method used to generate the synchronous

events. Our results and analysis show that high synchrony brings a neuron’s operational mode

to pure coincidence detection only when (i) the synchronous volley causes a high enough

depolarisation to cause a response (∆v ≥ Vth) and (ii) spike volleys are highly synchronous

(i.e., there is no jitter, σin = 0 ms). These conditions are both necessary and su�cient for a

neuron to operate in a pure coincidence detection mode, as measured by the NPSS.

When the peak depolarisation of synchronous spike volleys is not high enough to trigger a

spike, the relationship between the two measures follows the same trend as in the case de-

scribed above, but the degree of utilised synchrony is generally lower. In the extreme case

of absolutely synchronised inputs, the operational mode lies near the midpoint between tem-

poral integration and coincidence detection. This value re�ects the integration of multiple

synchronous volleys, which are required to trigger a spike.

We also examined whether the asymptotic threshold-free potential a�ects the relationship be-

tween the two measures, but found no apparent e�ects. This indicates that the frequency of

the input does not de�ne in any way the operational mode, as long as the input frequency is

high enough to cause spiking.
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7.3 Input synchrony of the Ornstein-Uhlenbeck LIF

In order to extend the NPSS and address some of its shortcomings, we studied the estimation

of input synchrony for a stochastic, di�usion LIF, which is based on the Ornstein-Uhlenbeck

process. This allowed us to develop methods for estimating the degree of input synchrony

and by extension the operational mode for a similar neuron under similar conditions to the

LIF, but with di�erent parameters and processes describing the input. We �rst derived the

correspondence between the parameters of the two models (LIF and OU), in order to show

that our choice of inputs is compatible with the pulse-packet-like input description we used

in Chapters 3 and 4. Our methods focused on estimating input parameters that allow us to

reconstruct the input signal driving the neuron. From the input signal or its parameters, we

can determine the actual input synchrony and subsequently infer the degree of utilised input

synchrony by observing the relationship between the neuron’s response and input.

The input signal was described by a sine wave with added noise. This caused behaviour which

is qualitatively similar to a neuron driven by periodic volleys of synchronous spikes. Our

methods adapted existing estimators which were developed to estimate input parameters for

stationary inputs signals. The main contribution of our adaptation was the estimation of the

frequency of the underlying sine wave that describes the input. Using the frequency, we were

able to obtain accurate estimates of the input parameters by aligning initial estimates of the

input signal and averaging points which fall within the same segment of the sinusoidal period.

The sinusoidal input signal was chosen as a way to emulate the pulse-packet formalisation used

in the previous chapters, Chapters 3 and 4, using the parameters of the OU model. Section 5.1.1

describes how each input parameter of the OU model with sinusoidal inputs translates to the

LIF with periodic pulse packets and random background inputs. However, our choice of input

signal also has implications relating to synchronous oscillations. In particular, oscillations

are considered to be instrumental for the synchronisation of neural �ring [203]. Additionally,

oscillations have been found to promote reliable propagation of synchronous signals along

neural pathways [204]. Our study of synchrony as a determinant of the operational mode is

therefore reinforced by the addition of oscillatory signal analysis, since the two phenomena

are closely related. While the sine wave frequencies used in our work (5 to 20 Hz) fall within

the range of physiological oscillations (theta waves: 4 to 8 Hz, alpha waves: 8 to 13 Hz, and

beta waves: 13 to 30 Hz), we did not aim to simulate a particular frequency band. Our results
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and methods are general enough that they can be used to analyse neural oscillations of any

frequency.

Since we used estimators for stationary signals, our initial estimates assume that the input

signal during an ISI is stationary, which does not hold. However, this inaccuracy is averaged

out by our binning and averaging procedure.

Although our methods are tailored to estimate sinusoidal input signals with �xed frequency, a

similar technique can be used for varying frequencies or even random arrivals of synchronous

input volleys. In either case, a peak detector can be used to determine the times of the peaks

of the input signal and subsequently align estimates based on their relation to the peak.

Compared to the NPSS, the methods described in Chapter 5 do not require de�ning a coinci-

dence window, which a�ects both the results and the interpretation of the temporal precision

of the neuron. Additionally, the input parameter estimator is not a�ected by the existence of

inhibitory inputs, as opposed to the NPSS which assumes purely excitatory input spikes.

7.4 Learning temporal delays between input spike pairs

Coincidence detection in neurons allows for temporally precise signal propagation. Coincid-

ing EPSPs are more likely to trigger a response than temporally dispersed input spikes, which

implies that a neuron is able to signal the existence of precisely timed �ring in its pre-synaptic

population. In Chapter 6 we investigated possible mechanisms for a neuron to learn to distin-

guish between input spike pairs with a speci�c �xed delay, without learning spike pairs with

slightly di�erent delays. Our results suggest that it is not possible for a pyramidal neuron to

learn to distinguish time delays of the order of dendritic propagation time between synapses.

Our study of a biophysical model of a pyramidal neuron considered multiple learning mecha-

nisms and various features of the behaviour of the neuron which could, in principle, give rise

to signals that can distinguish between di�erent input time delays.

Firstly, a learning mechanism which relies on the changes in NMDA conductance at the synap-

tic site, in the presence of coincident inputs and in the absence of somatic spiking, was shown

to be insu�cient for producing a learning signal that is signi�cantly higher for the coincident

synaptic pair, when compared to other synaptic pairs.
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Secondly, methods relying on a somatic spike being generated also failed to provide a mecha-

nism for learning temporal delays. In the presence of somatic spiking, we examined:

(i) the range of input time delays, at each synaptic pair, which produce a somatic response

spike (we refer to this as the �ring domain);

(ii) the timing of the AP, relative to the input, for the full range of input time delays;

(iii) the e�ect of background current noise on the width of the �ring domain of each synaptic

pair;

(iv) the e�ect of background current noise on the �ring frequency (or �ring probability) of

the neuron for inputs from di�erent synaptic pairs.

None of these features provided a strong di�erentiating signal for di�erent input synapses.

More speci�cally:

(i) The �ring domain is not su�ciently distinct between synapses (i.e., the domains always

overlap).

(ii) APs are generated with delays that do not vary signi�cantly when triggered by di�erent

synapses, in the range of input delays considered by our study.

(iii) In the presence of noise, the average background current can be reduced to the point

where only current peaks cause �ring. In this case, the �ring domain is very narrow and

di�erentiated, but the probability of �ring becomes negligible.

A central issue underlying our results is the width of the �ring domain for all synapse pairs.

González et al. [205] showed that supra-linear responses can be obtained for delays up to 13 ms

between the activation of subsequent synapses. Similarly, we have observed that somatic re-

sponses can occur for input spikes with arrival delays beyond 20 ms. The goal of our work

in Chapter 6 revolves around �nding a case where spikes arriving at synapses (A2 B) within

∆t of each other cause a somatic response, but spikes arriving at (A1 B) or (A3 B) within the

same ∆t of each other do not. Our investigation found that this was not possible, for a very

wide range of values for ∆t, since, in accordance with the �ndings in González et al. [205],

delays up to 13 ms between subsequent synapses can cause a somatic response. In our case,

it was found that delays of this length (∼ 10 ms) either cause a somatic response or do not,
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regardless of which pair of synapses was activated. A neuron with di�erent morphology, or

di�erent biophysical properties, which has signi�cantly slower propagation speeds across its

dendritic tree, would likely be able to distinguish input time delays at much higher precision.

Several changes to the simulation setup can be made that may give rise to learning signals that

di�erentiate between the synaptic pairs. The NMDA/AMPA ratio used in our study was 0.2,

as it was in the original model [179]. This low value could be a possible explanation for the

lack of su�cient di�erence in the NMDA activation integrals between di�erent synaptic pairs.

Higher values, such as the 1.1 ratio found in neurons in layer 5 of the pre-frontal cortex [206]

would normally increase the NMDA activation integrals signi�cantly. This would likely cause

an ampli�cation in the NMDA peaks, which in turn would a�ect the normalised integrals

studied in the �rst scenario of Chapter 6. This change would most probably make the peaks

in Figure 6.5 easier to di�erentiate, since the peaks would be higher and more pronounced. If

the di�erentiation is high enough, i.e., the peaks are high and narrow, and the range of delays

that maximise the integral for each synaptic pair is unique, then the �rst scenario would be

successful in creating a di�erentiating learning signal for a speci�c pair of input synapses at a

speci�c time delay and our experiments would give positive results.

The change in NMDA/AMPA ratio would also a�ect the values of the normalised NMDA con-

ductance integrals, which we use to calculate the change in synapse weight based on a plas-

ticity rule, described in Section 6.2.1. In our analysis, we assumed that the maximum NMDA

conductance is the conductance change caused by coinciding EPSPs, which occurs when the

input time delay is equal to the dendritic propagation delay. However, higher conductance

changes would be possible with higher NMDA concentrations and even in our current model,

the assumed maximum is not necessarily the true maximum conductance. Since our model

has active conductances in the dendritic compartments, dendritic spikes are possible, which

would cause a non-linear increase in NMDA conductances. The large conductance integral

that would result from a dendritic spike would be a better candidate for the normalisation

maximum which would a�ect our analysis of the results of applying the plasticity mechanism.

However, in the current state of the model, this would not likely cause a di�erentiating signal.

We expect that, even though the increase in synaptic conductance in the presence of a dendritic

spike is non-linear, the relative changes in maximum conductance across all synapses would

be comparable. The resulting changes in synaptic strength would be similar for all synapses at

similar delays, which would result in the same lack of di�erentiability between synaptic pairs.

The major di�erence would be the synaptic weight change, as a higher maximum may cause
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the normalised NMDA integral to always fall within the negative part (depression) of the plas-

ticity rule. Regardless, the e�ect of dendritic spikes and the change in maximum conductance

integral should be investigated along with the change in NMDA/AMPA ratio.

The choice of synaptic pairs could also be a limiting factor. Synaptic groups could be studied

in the same way in order to enhance input cooperativity. In this case, instead of triggering EP-

SPs on two synapses, where the �ring times between the two are determined by a �xed delay,

each synapse could be replaced by a group of synapses, and the �ring between groups would

occur with the same �xed delays. Furthermore, this change would also remove the assump-

tion that multiple synapses originate from the same pre-synaptic neuron, an assumption with

little experimental evidence [207–209]. It should be noted, however, that this assumption can

be relaxed if we simply assume that each A-synapse originates from a di�erent neuron, but

all pre-synaptic neurons are correlated. In the case of synaptic groups, each synapse would

originate from a di�erent neuron and each synaptic group would connect a presynaptic pop-

ulation, which �res correlated spikes, to the postsynaptic neuron. We expect that this change

would cause a signi�cant ampli�cation in the potential at the synaptic location where mul-

tiple coincident EPSPs are triggered. This is due to the supra-linear depolarisation, which is

observed in cases where multiple synapses are active on the same dendritic compartment or

spine [210] and should amplify the di�erence in peak depolarisation between di�erent pairs

of synaptic groups. In turn, it would cause learning signals that are signi�cantly di�erent for

each synaptic group. This should provide a di�erentiating signal, regardless of the scenario ex-

amined (with or without somatic spiking). The inclusion of multiple synapses at each synaptic

location would have several implications for the experiments and the model. A number of

new variables would arise from this change, such as the number of synapses per location, the

density of the synapses, i.e., the proximity of each synapse to its neighbour, and the distribu-

tion of initial synaptic weights. Given this change, the calibration of synaptic weights could

be made only for cases where there is no background current, which would better conform

with the experimental data [195], since the background current may not be required given the

ampli�cation that would be caused by the multiple synapses. These variables would have to

be studied within the ranges found in the appropriate experimental literature and adjusted to

accommodate the goals of our scenarios.

All synapses in Chapter 6 were placed on the main branch (the apical stem) of the dendritic tree

(see Figure 6.2). Therefore, an EPSP triggered at any of the synapses caused a depolarisation

at the other synaptic sites as well. Placing synapses on di�erent branches of the dendritic
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tree should limit the e�ects of EPSPs between synapses. This would be particularly useful

when multiple synapses at each location are included, as mentioned above, since the ampli�ed

depolarisation caused by multiple coinciding synapses would need to be isolated from other

synaptic locations to avoid reinforcing all synaptic groups. If multiple synapses are kept at

the original locations, then the coincident �ring at one synaptic location would cause a large

depolarisation at all other synaptic locations as well, e�ectively making the production of a

di�erentiating signal harder, or even impossible.

An interesting issue to consider is the distribution and nature of the membrane potential noise,

used in Sections 6.2.2.4 and 6.2.2.5. Our calculations of the e�ect of noise on the behaviour of

the model assumed a voltage �uctuation distribution which was obtained from experimental

recordings [201]. It is unclear whether the noise recorded in these experiments represents so-

matic or synaptic noise. We believe it is more important to incorporate membrane potential

�uctuations that �t experimentally recorded data, with no assumption as to the source of the

�uctuations. Noise of a di�erent form or source would potentially follow a di�erent distribu-

tion and may allow for a greater di�erence between �ring domains and �ring probabilities.

The e�ect this change would have on our methods would solely depend on the distribution of

�uctuations. Di�erent sources and intensities of noise �uctuations could be studied, alongside

the changes mentioned above, to examine whether di�erentiation becomes feasible.

Given the biophysical neuron model used in this study, as long as it �res at a reasonable rate

(i.e., the �ring probability is not extremely low), the neuron shows little sensitivity to �uctua-

tions in input time delays on the order of the e�ective width of the EPSP.

7.5 Simulation, theory and experiment

7.5.1 Simulations

Various choices regarding the simulation of neurons a�ect the accuracy of the results. Here we

discuss the relevant simulation strategies of this thesis, which includes our choice of simulation

environments, di�erential equation solvers, and simulation time steps.

The time step of a simulation or data can have a signi�cant impact on methods and results [211].

Generally, the smaller the time step the more accurate the simulation, at the cost of longer run
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times and higher memory usage. The choice of di�erential equation solver also provides similar

trade o�s between accuracy and run time [211, 212].

In our simulations of LIF-type models, we maintained a simulation time step of 0.1 ms. All

such simulations were run in the Brian simulator using exact integration [213]. For the work

in Chapter 3 the simulations for the publication [36] were originally generated using a custom-

built simulator which used the fourth order Runge-Kutta method [36] and were reproduced in

Brian for this thesis. The simulations for Chapter 6 were run in NEURON [192] using an

integrator with adaptive time step called CVODE.

The exact integration method implies there is no error (i.e., deviation from an exact solution)

with respect to the evolution of the membrane potential, regardless of time step. However,

given that the simulator is time-driven (as opposed to event-driven), the simulation time step

a�ects the temporal resolution of spike generation. More speci�cally, spikes can only occur at

multiples of the time step. Our choice of 0.1 ms for the time step was chosen as a good balance

between the aforementioned accuracy and simulation run time and was kept throughout the

entire research project, both for simplicity and for compatibility between results. The CVODE

integrator used in NEURON allows the simulator to achieve very high accuracy by shrinking

the time step when necessary, while speeding up computations by growing the time step when

the model’s variables remain in steady states, or vary slowly.

7.5.2 Time scales: Theory and experiment

As with simulations, the temporal resolution of data from experiments is also a factor that

can a�ect results [214]. More importantly, when developing analysis methods, it should not

be assumed that the data discretization step is arbitrarily small. This is especially important

when working with simple models, such as the LIF, that lend themselves to analytical treat-

ment. Direct analysis of the behaviour of the OU, for example, is not uncommon and in fact,

it is regarded as one of the model’s advantages [158–162]. Similar analysis on digitized exper-

imental recordings may be infeasible, if the developed methods rely on data (voltage traces or

spike trains) of arbitrary precision.

In our work, the methods did not generally make any assumptions about the time scales of

the data. However, since all our LIF-based simulations used the same time step, as mentioned

above, this topic was not investigated during the research. It would be interesting to investigate
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the e�ect of di�erent time scales on our analysis and whether adjustments need to be made to

our methods.

7.5.3 Biological relevance of results and conclusions

In addition to the above discussion on the relevance of time scales in both theoretical and

experimental work, as well as the accuracy of simulations, we may examine the relevance of our

work to biology. The degree of biological relevance of our results depends on the corresponding

biological relevance of our models, the choice of parameter values and the assumptions made

by our methods.

The LIF models used in Chapters 3 and 4 are relatively simple and use various arti�cial mecha-

nisms (�ring, reset, refractoriness) to simulate the behaviour of real neurons. The relevance of

our methods is limited by the ability of such models to reproduce realistic membrane potential

trajectories and �ring statistics. However, they do provide a very good baseline for developing

methods which can then be extended to more realistic models and data. Parameter values were

chosen within the range of biologically plausible values and where appropriate, were adjusted

to produce realistic �ring statistics. For example, the LIFwPR model was chosen for its ability

to reproduce the highly variable high rate �ring observed in cortical neurons by Softky and

Koch [73].

However, in more recent years, it has been observed that high �ring variability at high rates

may not represent the usual behaviour of cortical neurons [215–219]. More speci�cally, phys-

iological �ring rates are usually much slower, in the range of 1 to 5 Hz, or at most on the order

of tens of Hz. Fortunately, this does not a�ect our methodology. The highly variable high rate

�ring served as our initial motivation for discovering the operational mode of neurons exhibit-

ing this behaviour, however the methods we developed are generally applicable, irrespective

of the underlying �ring rate of the cell. In fact, lower �ring rates make the NPSS in particular

more reliable, by widening the continuum between the two extreme operational modes.

More biologically relevant results could be obtained by directly applying our methods to exper-

imentally recorded data. Furthermore, spike trains from neurons known to employ a particular

encoding scheme, such as rate coders [39, 40], could be used to adjust the �ring statistics of our

models, or even calibrate the models to reproduce the spike times precisely. Fitting of mod-

els to experimental data could also extend to intracellular membrane potentials, which would
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increase the biological relevance of all aspects of our model (integration of potentials as well

as spiking). This would provide partial experimental validation for our methods as well as our

results.

7.6 General contributions

The general contributions of this thesis can be examined from di�erent aspects which re�ect

the multidisciplinary nature of the work. As mentioned in Chapter 1 and Section 1.1, com-

putational neuroscience relies on contributions from a number of �elds of study. Conversely,

contributions to computational neuroscience often feed back into the contributing �elds. In

this section, we discuss how our work contributes to computational neuroscience as a gen-

eral �eld, the closely related �eld of neuroinformatics, and also speci�c sub-�elds of computer

science.

Neuroinformatics involves research which intersects the �elds of neuroscience and computer

science. They generally involve:

• the development and application of computational methods for the study of brain;

• the application of advanced IT (information technology) methods to deal with the large

quantities and a highly complex neuroscienti�c data;

• the exploitation of our insights into the principles underlying brain function to develop

new IT technologies.

Our work falls under the �eld of computational neuroscience, which is represented by the �rst

category in the list above. We have developed methods for studying single neuron function in

order to gain insight into the ways in which information is encoded in the brain. Our methods

and results could produce future contributions towards the third category as well, since any

advancements in neural coding can lead to better computational methods, within the realm of

computational intelligence, machine learning or arti�cial intelligence.

7.6.1 Contributions computational neuroscience

The general goal of the work presented in this thesis is to gain a better understanding of the

neural code. In other words, the aim of this work is to improve our insight into how neurons
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encode and decode information. The speci�c goal of identifying the operational mode of neu-

rons and measuring the temporal precision of their integration and encoding, was speci�cally

aimed at addressing this general goal.

The problem of the neural code is a fundamental and integral issue of computational neuro-

science and neuroscience in general. Our work contributes towards solving it through the

development and analysis of methods that help us understand the temporal precision of sig-

nal encoding and propagation, by analysing neural behaviour, i.e., the relationship of neural

responses to their input, and framing the discussion around the problem of identifying the

operational mode. As described in Section 2.1, the identi�cation of operational modes relates

directly to the issue of rate codes vs temporal codes. Therefore, by developing methods of

studying neural operational modes, we are enhancing the body of available tools for under-

standing neural coding and directly contribute towards understanding the function and infor-

mation processing mechanisms of the brain, at the level of signal processing in single neurons.

7.6.2 Contributions to computer science

Neuroscience related contributions to computer science usually revolve around the �elds of

arti�cial intelligence, computational intelligence, and machine learning. While the terms ar-

ti�cial intelligence and computational intelligence are often used interchangeably, they di�er

slightly in meaning. Arti�cial intelligence is considered a more general term which implies

any intelligence that is not biological. Computational intelligence, on the other hand, suggests

a kind of intelligence that can be expressed through computational methods (e.g., arti�cial

neural networks, genetic/evolutionary algorithms, fuzzy logic).

The most proli�c and obvious contribution of computational neuroscience to computer science

is the study of arti�cial neural networks. While the earliest forms of arti�cial neural networks

were based on very simpli�ed abstractions of how neurons were thought to operate [220],

newer incarnations have been drawing more and more inspiration from our understanding of

biological neural networks and learning mechanisms [221–226].

In this context, understanding how neurons encode and decode information in the brain helps

researchers develop new neural network architectures and learning rules, in order to better

replicate biological functions. Such advancements could lead to computational intelligence
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techniques that can better emulate human behaviour and performance. Our work on opera-

tional modes and temporal precision could be used to understand the e�ects of di�erent modes

(on the temporal integration — coincidence detection continuum) on machine learning algo-

rithms. A common issue in the training and usage of such algorithms is the trade-o� between

generalisation and accuracy in, for example, classi�cation problems: higher accuracy makes

the classi�er more sensitive to di�erences between samples, while lower accuracy enhances

generalisation at the cost of higher classi�cation errors. In these cases, generalisation is desir-

able, as long as misclassi�cation is low.

Understanding the role of operational modes with respect to the sensitivity of a neuron to dis-

tinguishing signals (stimuli) in realistic neural networks, could bene�t the design of arti�cial

neural networks. Networks could be designed to adjust their sensitivity to di�erences between

signals, by shifting their mode of operation along the continuum. Such an endeavour would

bene�t directly from the work in this thesis, as it would require understanding how the op-

erational mode is de�ned and measured in simple spiking neuron models (Chapters 3 and 5),

in order to design neurons that can operate in a given mode as well as adjust it. It would also

bene�t from understanding the role that synchrony plays in a neuron’s mode of operation and

the ways in which this relationship can be enhanced, weakened, or generally a�ected by other

properties of the neuron model (Chapter 4), such that they can be used as parameters for de�n-

ing the mode of a node in the network. A neuron’s sensitivity to coincidences and its potential

ability to learn to distinguish between highly precise input signals (Chapter 6) could aid in

the design of the input signal encoding. It should, for instance, take into account the smallest

temporal shift between two signals that a neuron can detect to encode inputs into signals with

di�erences large enough for the neuron to distinguish and small enough to allow for a wide

input domain. In addition, hybrid networks can be designed, where neurons are separated

into groups whose nodes share the same properties, but di�er between subnetworks, such as

in Poirazi et al. [222, 224]. In this case, the di�erence between subnetworks would be the use of

di�erent operational modes which may allow the network to take advantage of the strengths

of both temporal integration and coincidence detection.

The study of all of the above issues would use our work as a foundation but would require

further research to assess their applicability and bene�t.

Ach
ille

as
 K

ou
tso

u



Chapter 7. General Discussion & Conclusions 122

7.7 Dissemination of PhD work

The research carried out during this PhD has been widely disseminated, both in publications in

refereed archival journals and by presentations in various conferences/workshops/meetings.

The publications in refereed archival journals are as follows:

• Achilleas Koutsou, Chris Christodoulou, Guido Bugmann, and Jacob Kanev. Distin-

guishing the causes of �ring with the membrane potential slope. Neural Computation,

24:2318–2345, 2012.

• Achilleas Koutsou, Jacob Kanev, and Chris Christodoulou. Measuring input synchrony

in the Ornstein-Uhlenbeck neuronal model through input parameter estimation. Brain

Research, 1536:97–106, 2013.

• Achilleas Koutsou, Guido Bugmann, Chris Christodoulou. On learning temporal cor-

relations between input neurons’ spikes in a biophysical model of a pyramidal neuron.

BioSystems, accepted subject to minor revisions, May 2015.

• Achilleas Koutsou, Jacob Kanev, Maria Economidou, Chris Christodoulou. Integrator or

coincidence detector — What shapes the relation of stimulus synchrony and the opera-

tional mode of a neuron?. Submitted to Mathematical Biosciences and Engineering, under

review, March 2015.

In addition to the above publications, which were a direct result of this PhD work, we have

been working in parallel on other very relevant topics related to neural coding, which resulted

in the following submission:

• Jacob Kanev, Achilleas Koutsou, Chris Christodoulou, and Klaus Obermayer. Integrator

or Coincidence Detector — a novel Measure based on the discrete Reverse Correlation

to determine a Neuron’s operational Mode. Submitted to Journal of Neurophysiology,

under review, June 2015.
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Part of this work has also been orally presented by the candidate as an invited lecture enti-

tled Distinguishing the causes of �ring with the membrane potential slope, at the Department

of Computational Neuroscience, Institute of Physiology of the Academy of Sciences, Prague,

Czech Republic.

The presentations of this work by the candidate in conferences/workshops/meetings are as

follows:

• Achilleas Koutsou, Chris Christodoulou, Jacob Kanev, and Guido Bugmann. Quanti�ca-

tion of the contribution of temporal integration and coincidence detection to the irregu-

larity of cortical neurons at high rates. Poster, STM2010 — Spike Train Analysis Workshop,

Plymouth, UK, June 2010.

• Achilleas Koutsou, Chris Christodoulou, Jacob Kanev, and Guido Bugmann. Causes

of �ring in cortical neurons revisited: Temporal integration vs coincidence detection.

Poster, AREADNE 2012: Research in Encoding And Decoding of Neural Ensembles, San-

torini, Greece, June 2010.

• Achilleas Koutsou and Chris Christodoulou. Measuring single neuron operational modes

using a metric based on the membrane potential slope. Oral presentation, 3rd Cyprus

Workshop on Signal Processing and Informatics, Nicosia, Cyprus, July 2010.

• Achilleas Koutsou, Chris Christodoulou, Guido Bugmann, and Jacob Kanev. Distinguish-

ing the causes of �ring with the membrane potential slope. 9th International Workshop

on Neural Coding, Limassol, Cyprus, October/November, 2010.

• Achilleas Koutsou, Chris Christodoulou, Guido Bugmann, and Jacob Kanev. Determining

pre-synaptic synchrony and neural operational modes using the membrane potential

slope. Poster, FENS (Federation of European Neuroscience Societies) — IBRO (International

Brain Research Organization) — Hertie Winter School, Obergurgl, Austria, January, 2012.

• Achilleas Koutsou, Petr Lánský, Jacob Kanev, and Chris Christodoulou. Input synchrony

estimation in the Ornstein-Uhlenbeck model through the slope of depolarisation at thresh-

old crossing. Oral presentation, 10th International Workshop on Neural Coding, Prague,

Czech Republic, September, 2012.
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• Achilleas Koutsou, Chris Christodoulou, Guido Bugmann, and Jacob Kanev. Understand-

ing the Neural Code through Exploration of the Causes of Firing. Research Work of Post-

graduate Students, Faculty of Pure and Applied Sciences, University of Cyprus, Nicosia,

Cyprus, November, 2012.

• Achilleas Koutsou, Jacob Kanev, Maria Economidou, and Chris Christodoulou. Compari-

son of synchrony measures and implications for inter-network neural connectivity. 11th

International Workshop on Neural Coding, Versailles, France, October 2014.

• Achilleas Koutsou, Guido Bugmann, and Chris Christodoulou. Learning temporal cor-

relations in input spike trains. 11th International Workshop on Neural Coding, Versailles,

France, October 2014.

Work on other relevant topics, which were not a direct result of this PhD work, was also

presented by the candidate in the following workshop:

• Jacob Kanev, Achilleas Koutsou, and Chris Christodoulou. Can discrete Response-Stimulus

Correlation distinguish Integration from Coincidence Detection? 10th InternationalWork-

shop on Neural Coding, Prague, Czech Republic, September, 2012.
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Future work

The primary general objective of this thesis was the study of the distinction between opera-

tional modes and ways to identify and measure where the behaviour of a neuron lies on the

continuum between temporal integration and coincidence detection. This involved studying syn-

chrony and its e�ect on the integration and �ring precision of neurons, within the context of

understanding the neural code and the time-scales of neural processing. This was achieved

through the development of methods of identifying and measuring response relevant input

synchrony from single cell observations. Further insight into the identi�cation and measure-

ment of synchrony and the e�ects it has on the operational mode of neurons can be achieved

by extending our existing work and generalising our methods to multi-neuron behaviour, net-

work behaviour and more realistic models.

Extending the NPSS

Alternative models

The NPSS can be adapted to study the behaviour of alternative models, such as the MAT model

mentioned in Chapter 3. Although the two models are equivalent under certain conditions, the

threshold decay parameter of the MAT model allows for di�erent dynamics when set to val-

ues other than the membrane leak time constant. In their paper, Kobayashi et al. [80] showed

how the MAT model’s parameters can be adjusted to accurately reproduce various spiking

characteristics, based on experimentally recorded data. The slope bounds of the NPSS could

125
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be adapted to apply to the membrane potential dynamics of the MAT model, namely the be-

haviour of the threshold and the lack of a post-spike reset of the membrane potential, in order

to determine the operational mode responsible for the �ring characteristics that it can repro-

duce. Furthermore, we could adapt the NPSS to analyse the behaviour of biophysical models.

For this, we would be unable to derive slope bounds analytically, as we did for the LIF model.

Rather, we would derive the upper and lower slope bounds by observing the model’s behaviour

under conditions of very high or no synchrony, respectively. The method would therefore be

more empirically based, but it would not rely on any single neuron model. Instead, it would

allow us to analyse the behaviour of any model, given that the model can be simulated with

inputs at both extremes of the continuum and with a variety of parameter con�gurations. This

would make our results and conclusions more compatible with biologically relevant conditions

and behaviour.

Inhibitory inputs

One of the drawbacks of the NPSS is its inability to analyse the behaviour of a neuron in the

presence of inhibitory inputs. As a �rst extension of the work presented in this thesis, it would

be interesting and useful to adapt the NPSS to measure the operational mode of neurons when

driven by varying degrees of inhibition, as well as the excitation that causes �ring. The method

can be modi�ed to account for the higher slopes which are caused by the membrane potential

being driven below rest. Also, we expect that the inclusion of inhibition will change the re-

lationship between input synchrony and operational mode, as the amplitude of synchronous

spike volleys required to cause output spikes will need to be higher when the membrane is

hyperpolarised. Generally, this extension will require rede�ning the slope bounds to account

for the e�ects of an inhibitory drive, which may require making assumptions about the nature

of inhibition, e.g., whether it is constant and how strong it is in relation to the excitation.

Experimentally recorded data

Another extension to the NPSS would be to adapt it to analyse recordings made from real

neurons. In this case, the estimation of the bounds of the slope would be based on empirical

observations of the range of the pre-spike slope, under di�erent conditions. This is necessary

since theoretical estimations of the maximum and minimum rate of change of the membrane

potential would be inaccurate for a real neuron. A preliminary study on this extension has
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already been performed, using intracellular data recorded in vivo while the cell was being

stimulated by a �uctuating current [162, 227]. In this preliminary work, ISIs were binned based

on their length and the bounds of the slopes were chosen for each bin separately, by observing

the highest and lowest recorded slopes for each binned ISI range. An important di�culty in the

adaptation of our method was the proper selection of the length of the coincidence window.

Since spike initiation in real neurons is not as rapid as in LIF models, the 2 ms window used

in our study is too short to capture a signi�cant part of the stimulus that drives the neuron to

�re. Since the length of the coincidence window a�ects both the results and the underlying

assumption of what we consider coincident, this issue requires more in depth study.

Extending the input parameter estimator

The input parameter estimators described in Chapter 5 can be extended to situations where

the frequency of the underlying sine wave of the input signal varies with time. Additionally,

the methods can be tested on more realistic, biophysical models, that are driven by spike trains

with oscillating �ring frequencies, in order to determine the accuracy of our methods in more

realistic circumstances.

Further investigation into learning temporal delays between in-

put spike pairs

A better understanding of the operational mode in real neurons could be achieved by extending

the work of Chapter 6. In particular, we could further investigate how the biophysical proper-

ties of di�erent types of neurons a�ect the precision of coincidence detection and determine

the necessary conditions for highly precise input delay learning and detection.

The operational mode of networks and single neurons within

them

A more general continuation of the project might involve simulating neural networks, which

exhibit synchronous activity by calibrating network parameters appropriately (e.g., external
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inputs, amount and strength of inhibitory connections) within the ranges of biologically plau-

sible values. This would allow us to probe individual neurons within the network as well as

observe the behaviour of populations of neurons, in order to ascertain how our existing results

hold when the simulated cell is embedded within a neural population. By observing single

neuron activity in networks using the NPSS, we might be able to determine the predictability

of synchronous activity within the network. This is closely related to the concept of syn�re

chains [70, 74, 123, 130], mentioned in Section 2.3, but could also be de�ned in more general

terms. For instance, at the single neuron level, the observed synchrony is expected to be de-

�ned as a function of (i) the overall synchrony in the network and (ii) the connectivity density

of the network [50]. In other words, synchronous activity in any network is expected to be

sustained and propagated to further layers only if the connectivity is strong enough to allow

it. The level of synchrony that can be sustained is expected to rely on the amount of connec-

tions from one layer to the next and the strength of that connectivity. Additionally, a network

study might investigate the precision with which synchrony is propagated through the net-

work, which aspects facilitate this propagation (e.g., connectivity patterns, variance between

synaptic delays, excitation-inhibition distribution) and which inhibit it.
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