
ADVANCES IN SAT-BASED PLANNING

Andreas Sideris

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the

University of Cyprus

Recommended for Acceptance

by the Department of Computer Science

February, 2015

DEPARTMENT OF COMPUTER SCIENCE

And
rea

s S
ide

ris

c© Copyright by

Andreas Sideris

All Rights Reserved

2015And
rea

s S
ide

ris

APPROVAL PAGE

Doctor of Philosophy Dissertation

ADVANCES IN SAT-BASED PLANNING

Presented by

Andreas Sideris

Research Supervisor
Yannis Dimopoulos

Committee Member
Antonis Kakas

Committee Member
Carmel Domshlak

Committee Member
Hector Geffner

Committee Member
Elpida Keravnou Papailiou

University of Cyprus

February, 2015

ii

And
rea

s S
ide

ris

DECLARATION OF DOCTORAL CANDIDATE

The present doctoral dissertation was submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy of the University of Cyprus. It is a product of original work of

my own, unless otherwise mentioned through references, notes, or any other statements.

Andreas Sideris

...

iii

And
rea

s S
ide

ris

iv

ΕΞΕΛΙΞΕΙΣ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΔΡΑΣΗΣ ΒΑΣΙΖΟΜΕΝΟ ΣΤΗ ΠΡΟΤΑΣΙΑΚΗ

ΛΟΓΙΚΗ

Ο σχεδιασμός δράσης είναι ένα δύσκολο πρόβλημα. Ακόμα και στις πιο απλές του μορφές

είναι υπολογιστικά δυσεπίλυτες ('intractable'). Παρόλο που είναι απίθανος ο

αποτελεσματικός (ως προς χρόνο) σχεδιασμός δράσης στη γενική περίπτωση, εντούτοις

αποτελεσματικές ευρετικές μέθοδοι και αποδοτικοί αλγόριθμοι διάχυσης περιορισμών

είναι πολύτιμες τεχνικές για την επίλυση μεγάλων προβλημάτων σχεδιασμού δράσης.

Πράγματι, πολλά μοντέρνα συστήματα σχεδιασμού δράσης μετατρέπουν το πρόβλημα

σχεδιασμού δράσης σε πρόβλημα επίλυσης περιορισμών, όπως π.χ. προτασιακή λογική,

και στη συνέχεια το λύνουν με αλγορίθμους προτασιακής λογικής (SAT solvers),

περιορισμών ή ψευδό-προτασιακης λογικής ('Pseudo-boolean'). Πολλά άλλα συστήματα

λογισμικού επιλύουν το πρόβλημα κατευθύνοντας την αναζήτηση με αποτελεσματικές

ευρετικές μεθόδους που εξάγονται αυτόματα από το ίδιο το πρόβλημα.

Στα πλαίσια αυτής της διατριβής υλοποιήσαμε πρώτα το σύστημα SMP, ένα νέο τρόπο

κωδικοποίησης των προβλημάτων σχεδιασμού δράσης σε προτασιακή λογική (SAT).

Αποδεικνύουμε τόσο θεωρητικά αλλά και πειραματικά ότι οι μηχανισμοί διάχυσης

περιορισμών των μοντέρνων επιλυτών προτασιακής λογικής διαχέουν τους περιορισμούς

πολύ αποδοτικότερα στο SMP από άλλους τρόπους κωδικοποίησης. Επιπλέον, με τη χρήση

λογισμικού που υλοποιήσαμε, βρίσκουμε επιπρόσθετους δυαδικούς περιορισμούς που

ισχύουν σε προβλήματα σχεδιασμού δράσης για τους οποίους παραθέτουμε ισχυρές

πειρατικές ενδείξεις η προσθήκη τους στο SMP δεν προσφέρει υπολογιστικά οφέλη. Στη

συνέχεια η κωδικοποίηση του SMP χρησιμοποιήθηκε σαν βάση στην ανάπτυξη του

And
rea

s S
ide

ris

v

συστήματος σχεδιασμού δράσης PSP. Το σύστημα PSP μεγιστοποιεί το πλήθος των στόχων

(goals) που επιτυγχάνονται σε ένα περιορισμένο χρονικό ορίζοντα, επαναλαμβάνοντας τη

διαδικασία για διαδοχικά μεγαλύτερους ορίζοντες. Παρά την αδυναμία του PSP να

εγγυηθεί ότι οι λύσεις είναι βέλτιστές (ως προς το μήκος τους) όπως το σύστημα SMP,

εντούτοις υπολογίζει σχέδια δράσης καλής ποιότητας για προβλήματα που δεν μπορούν να

επιλυθούν από τον SMP ή άλλα συστήματα σχεδιασμού δράσης (που παράγουν βέλτιστες

λύσεις) τα οποία βασίζονται σε προτασιακούς επιλυτές.

Ένα βασικό μειονέκτημα του συστήματος PSP είναι η περιορισμένη του αποδοτικότητα σε

προβλήματα μεγάλου μεγέθους. Αυτό οφείλεται στο ότι οι κωδικοποιήσεις μεγάλων

προβλημάτων σχεδιασμού δράσης είναι συχνά πολύ δύσκολες για τους προτασιακούς

επιλυτές. Αυτό ισχύει για όλα τα συστήματα σχεδιασμού δράσης που βασίζονται στην

μέθοδο της διαδοχικής επέκτασης του ορίζοντα δράσης, αφού το μέγεθος των

κωδικοποιήσεων μεγαλώνει όσο μεγαλώνει και ο ορίζοντας. Η αδυναμία αυτή

αντιμετωπίζεται από το σύστημα PSP-H το οποίο επεκτείνει το σύστημα PSP με δύο

αποδοτικές τεχνικές που αποσυνθέτουν το πρόβλημα σε μικρότερα υποπροβλήματα ώστε

τα προβλήματα προτασιακής ικανοποιησιμότητας που προκύπτουν να μην είναι

υπερβολικά μεγάλα. Η πρώτη τεχνική μετατρέπει το πρόβλημα σχεδιασμού δράσης σε μια

σειρά προβλημάτων δυαδικής βελτιστοποίησης, σε κάθε ένα από τα οποία ο στόχος είναι

να μεγιστοποιηθεί το πλήθος των στόχων (goals) που μπορούν να ικανοποιηθούν εντός

ενός περιορισμένου ορίζοντα (μήκος πλάνου). Αυτή η τεχνική συνδυάζεται με μια δεύτερη

τεχνική που κατευθύνει την αναζήτηση για κάθε υποπρόβλημα σε μια κατάσταση όπου

ικανοποιούνται όλοι οι στόχοι του αρχικού προβλήματος. Τα πειραματικά μας

αποτελέσματα αποδεικνύουν ότι το PSP-H είναι ένας ανταγωνιστικός αλγόριθμος

σχεδιασμού δράσης .

And
rea

s S
ide

ris

ADVANCES IN SAT-BASED PLANNING

Planning is a difficult problem. Even in its simplest forms it is computationally intractable.

Although it is unlikely to be able to plan efficiently in the general case, good heuristics and strong

constraint propagation methods are valuable techniques for tackling large planning problems. In-

deed, some modern planners transform planning into a constraint satisfaction problem, such as a

boolean formula, and then solve it by invoking a satisfiability, constraint or pseudo-boolean solver.

Many other planners solve the problem by guiding the search using powerful heuristics that are

automatically extracted from the planning domain.

In the context of this work we first implemented SMP, a novel way of transforming a planning

domain into a propositional boolean formula (SAT). We prove both theoretically and experimen-

tally that the constraint propagation engines of the modern SAT solvers propagate the constraints

much more efficiently in SMP than in previous transformations. We also provide strong experi-

mental evidence that the addition of more implied non-redundant binary constraints to SMP does

not improve the planning times. We then use the SAT encoding of SMP in the PSP planner. PSP

seeks to maximize the number of goals that can be achieved using the solve and expand method.

Although PSP cannot guarantee optimality as SMP, it often generates sub-optimal plans of high

quality for planning problems that are beyond the reach of SMP and other optimal SAT-based plan-

ners. A drawback of the PSP planner is its limited scalability, as the instances that arise from large

planning problems are often too hard for SAT solvers. This holds true for all planners based on the

solve and expand method, as the size of the SAT instance grows monotonically with the planning

horizon. To address this problem we developed the PSP-H planning system, that extends PSP

by combining two powerful techniques that aim at decomposing a planning problem into smaller

subproblems, so that the instances that need to be solved do not grow prohibitively large. The first

technique turns planning into a series of boolean optimization problems, each seeking to maximize

vi

And
rea

s S
ide

ris

the number of goals that are achieved within a limited planning horizon. This is coupled with a

second technique that directs search towards a state that satisfies all goals. Experimental results

demonstrate that PSP-H is a competitive planning algorithm.

vii

And
rea

s S
ide

ris

ACKNOWLEDGEMENTS

First of all I want to thank my research advisor, associate professor Yannis Dimopoulos for

his constant support, guidance and patience for all the (many) years towards the fulfilment of this

Ph.D. thesis. After fourteen years of collaboration and tens of thousands of source code lines with

Yannis Dimopoulos, starting when I was an undergraduate student, I do consider Yannis not only

an advisor and a mentor but also a very good friend.

I also thank the members of my examination committee professors Antonis Kakas, Elpida

Keravnou Papailiou, Carmel Domshlak and Hector Geffner for their participation.

I also thank Stefanos Stylianou for implementing an early minimal prototype version of the

PSP planning system in his final year project.

I would also like to thank my good friend Dr. Kyriakos Christou for his valuable help with the

latex editor.

I want to thank assistant professor Loizos Michael for some fruitful discussions we had re-

garding this research during the Knowledge Representation and Reasoning 2014 conference in

Vienna.

I want to thank my parents Georgios and Salomi for their constant support and love.

Finally I would like to express my gratitude and love to my wife Maria for her patience and

support during all these years. She proved that family, full time work, and research are not (totally)

incompatible. I also want to apologise to my three children Giorgos, Sotiroula and Michalis for

the times I was too busy to spend precious time with them.

viii

And
rea

s S
ide

ris

DEDICATION

To my wife Maria and my three children Giorgos, Sotiroula and Michalis

ix

And
rea

s S
ide

ris

CREDITS

The publications that lead to this thesis are: [111] [112] [113]

x

And
rea

s S
ide

ris

TABLE OF CONTENTS

Chapter 1: Introduction 1

1.1 Planning . 1

1.2 Motivation . 2

1.3 Thesis structure . 4

Chapter 2: Constraint Satisfaction and Propositional Satisfability 6

2.1 Constraint satisfaction problems and constraint propagation 6

2.1.1 Constraint Propagation Methods . 7

2.1.2 Backtracking Search Algorithms for deciding consistency 12

2.1.3 Solving Constraint Optimization Problems 15

2.2 Satisfiability of propositional formulas . 16

2.2.1 Resolution and restricted forms of resolution 17

2.2.2 SAT and CSP . 18

2.2.3 State of the art SAT solvers: non-chronological backjumping and learning 19

2.2.4 Tractable subclasses and decomposition 23

2.3 Pseudoboolean Optimization . 24

2.4 Summary . 26

Chapter 3: Propositional Planning 28

3.1 Representations and Solutions of propositional planning 28

3.1.1 Set-Theoretic Representation . 29

3.1.2 State-Variable Representation . 32

3.2 Problem hardness and efficient solutions . 36

xi

And
rea

s S
ide

ris

3.2.1 Factored Planning . 36

3.2.2 Syntactic and Structural restrictions . 37

3.3 Planning algorithms . 40

3.3.1 The Graphplan planner . 40

3.3.2 Graphplan and Constraint Satisfaction 44

3.3.3 Graphplan and SAT: The BLACKBOX, SATPLAN and MaxPlan planning

systems . 44

3.3.4 Madagascar planner . 46

3.3.5 State Space Planners . 48

3.3.6 Partial Order Planners (POP). CPT and eCPT planners 58

3.4 Summary . 63

Chapter 4: Constraint Propagation in Propositional Planning.

The SMP system 65

4.1 Introduction . 66

4.2 Satisfiablity Encodings of Planning . 68

4.2.1 Direct and Action based encodings . 69

4.2.2 Long-Distance Mutual Exclusion . 72

4.2.3 Indirect encodings. SASE and SOLE planners 76

4.3 The relative strength of the encodings . 77

4.3.1 Comparing encodings . 77

4.3.2 Comparison of direct encodings . 78

4.3.3 Comparison of action based encodings 81

4.4 Londex Propagation in Propositional Planning 83

xii

And
rea

s S
ide

ris

4.4.1 londex1 propagation in SATPLAN06 87

4.4.2 londex1 Propagation in BB-31 Encoding 95

4.4.3 londex1 Propagation in SATPLANmax 96

4.4.4 londexm Propagation in SATPLANmax 101

4.5 Experimental evaluation . 105

4.6 Binary Constraints in Planning as Satisfiability 107

4.6.1 Prevail constraints . 107

4.6.2 Automatically computed binary constraints 113

4.6.3 Experimental findings . 115

4.6.4 Utility of the extra constraints . 117

4.7 Conclusions . 118

Chapter 5: Propositional Planning as Optimization

The PSP planning system 120

5.1 Introduction . 121

5.2 Pseudo-boolean optimization and planning . 122

5.3 The PseudoSATPLAN Algorithm . 125

5.3.1 Optimization part . 125

5.3.2 Satisfaction part . 131

5.3.3 Improving the solution . 133

5.4 Experimental evaluation . 133

5.5 Implementation issues of PseudoSATPLAN System 138

5.6 Conclusions . 141

xiii

And
rea

s S
ide

ris

Chapter 6: Heuristic Guided Optimization for Propositional Planning

The PSP-H planning system 142

6.1 Introduction . 143

6.2 Planning as satisfiability and Pseudo-boolean optimization 146

6.3 Heuristic Guidance in Optimization . 146

6.3.1 Fact Constraint Relaxation . 151

6.4 The PSP-H algorithm . 153

6.4.1 Preprocessing part . 153

6.4.2 Optimization part . 153

6.4.3 Satisfaction part . 159

6.5 Experimental evaluation . 160

6.6 Conclusions . 165

Chapter 7: Conclusions and Future Research 166

7.1 Summary of Research Contribution . 166

7.2 Future Research . 169

Bibliography 173

xiv

And
rea

s S
ide

ris

LIST OF TABLES

1 Number of problems solved by each encoding in different domains. 105

2 Run times in seconds for different encodings of problems. A dash indicates CPU

timeout. 106

3 Types of binary clauses searched in various domains. F/F and F/A denote fact,fact

and fact,action pairs respectively. The postfix 0 denotes pairs of literals that refer

to the same time step. The postfixes -/-, etc. refer to the polarity of the clauses. An

entry Y means that the domain contains clauses of the corresponding type, and N

means the opposite. 116

4 Impact of the binary constraint discovered by ImpBinPlan on the performance

of SMP. The first column refers to the domain, where the numbers X and Y in

ProbX-HorY designate the problem number and the planning horizon respec-

tively. The numbers in column ”dist” are the values for parameter dist, explained

in section 4.6.2, whereas under ”# F/A clauses” is the number of binary constraints

found in each domain. Finally, the last two columns provide the run times in sec-

onds for SMP without (”Time W/O”) and with (”Time W”) the constraints found

by ImpBinPlan. 118

5 Number of problems solved by SMP and PSP in different domains. PSP was run

with ip = 0.25, np = fp = 0.5 and strat 0 and 1 (two last columns respectively). 134

6 Number of problems solved in 12 domains by PSP with different combinations of

parameter values. X-Y -Z-W in the first line denotes a PSP run with parameter

values ip = X , np = Y , fp = Z, strat = W . 135

xv

And
rea

s S
ide

ris

7 Sums of the lengths of plans generated by PSP with different parameter values.

For each run the left column contains the sum of the lengths of the first plans that

are computed, and the right column the sum of the lengths of the best plans. . . . 136

8 Number of problems solved by PSP with different values for the back stepping

parameter. The values for the last three columns, taken from left to right, are

pu = 1, pu = 0.85 and pu = 0.70. 137

9 Comparison of plan length and cpu time of SMP and PSP on the hardest problems

solved by SMP. The columns for SMP contain the plan length (left column) and

cpu time. For each PSP run the four columns are as follows: the first two are the

length and cpu time for the first plan, and the other two the length and cpu time

for the best plan computed by PSP. Value 3600 means that the cpu time limit was

reached, and PSP execution was aborted. 138

10 Number of problems solved by the planners within a 3600 seconds CPU limit. The

second column lists the number of problems tried in each domain. The fifth and

sixth column refer to two runs of PSP-H with different parameter values, while

the last column combines their results are explain in the paper. An empty entry

indicates that the specific parameter setting does not apply to this domain, and a

star marks insolvability of some problems due to high memory usage. 162

11 Sums of the solution length (number of parallel steps) and in parentheses the sums

of the number of actions for the largest five problems in each domain. In the last

line the total counts for all domains except Storage. 164

xvi

And
rea

s S
ide

ris

LIST OF FIGURES

1 Summary of the comparison between consistecies AC and Strong PC. A → B

means that the consistencyA is stringly stronger thanB and the dashed line means

that are incomparable. The stronger relation is transitive. 11

2 Implication Graph (figure from [127]) . 20

3 The planning graph for horizon 4 for the problem of example 1. For better readi-

ness in Ci T , Move(T, Li, Lj),Load(T,Ci, Lj) and UnLoad(T,Ci, Lj) are il-

lustrated as in Ci, Mv(Li, Lj),Ld(Ci, Lj) and Un(Ci, Lj) respectively. Precon-

dition edges are represented by lines and add (delete) edges by arrows (dashed

arrows). Goals are noted in bold. No-op actions (presented as NOP at time steps

1 and 2) of time steps 3 and 4 are not presented for better readiness. 43

4 The different part of the SAT encoding in PSP-H. 151

xvii

And
rea

s S
ide

ris

Chapter 1

Introduction

1.1 Planning

A planning problem is the task of coming up with a sequence of actions that achieve a goal

[108]. Planning comes in many forms [47, 45]. Finding a plan that will be executed in a determin-

istic world is quite different than planning in the presence of non-determinism. On the other hand,

computing an optimal plan can be more difficult than finding an arbitrary plan. The situation can

be further complicated when actions have different durations and incur different costs. Moreover a

general-purpose planner for a wide range of domains is likely to be built differently from a system

for a specific domain.

One way of dealing with automated planning is to transform it to a Constraint Satisfaction

Problem (CSP) and solve it with a general constraint solver. Constraint Satisfaction (CS) is used

in practice for solving hard problems arising in many different fields such as robotics, economics,

bioinformatics, engineering, scheduling, computer vision, routing and many others. Loosely

speaking, the idea of CS is to provide systems where problems from various fields of expertise

can be expressed in a simple and intuitive language. The input of the general system is a set of

variables, a set of possible values for each of these variables, and a set of relations (constraints)

1

And
rea

s S
ide

ris

2

that must simultaneously hold for their values. Although the user does not provide any information

on how the problem is to be solved (CS can be seen as a language for declarative programming),

the solver of the CS system computes a solution, i.e. a mapping of variables to values such that

no constraint is violated, or reports that no solution exists.

A special case of CSP is SAT, where the variables are propositional variables that can be either

true or false, and the constraints are propositional logic formulae that need to be satisfied. One of

the approaches to automated planning is to cast a planning problem as a CSP or SAT, and invoke a

solver that generates a plan. The way a planning problem is transformed into a CSP (or SAT), is of

paramount importance for the success of the approach. Moreover, solving a CSP usually involves

a combination of different techniques such as good methods for reasoning with constraints, known

as constraint propagation, heuristics, and exploitation of problem structure.

On the other hand, state-based heuristic search planning, a different approach to solving plan-

ning problems, has seen tremendous progress over the last years, with heuristic planners becoming

gradually more effective than CS/SAT based systems. Indeed, many problems that are unsolvable

by the best SAT-based planners are easy for heuristic search systems. From a practical perspective,

this thesis contributes some ideas towards bridging part of the gap in the effectiveness between

SAT-based and heuristic planners.

1.2 Motivation

In this thesis we investigate classical or propositional planning, which is planning in its sim-

plest form. In classical planning the world is finite and deterministic and actions are executed as

outlined by the plan (actions cannot fail). The actions have no durations or costs, and the state

of the problem is changed only by the actions of the plan in a deterministic way. Moreover the

initial state of the problem is fully known. Classical planning may seem ’simple’ or ’naive’ for

And
rea

s S
ide

ris

3

the real world. Indeed, it is hard to imagine realistic problems with no uncertainty at all or with

actions without costs or durations. However even classical planning is not an easy problem as it

is PSPACE-complete in general, and NP-complete for a fixed planning horizon [26]. Hence, solv-

ing classical planning requires sophisticated methods. Moreover, techniques that prove useful in

solving classical planning can form the basis for deriving algorithms for more complex problems.

The use of CSP or SAT is a ’standard’ method for solving NP-complete problems. This is

true for planning as well. Indeed, from the early days of automated planning many planners

followed the general approach of translating planning into CSP or SAT, that is then given as

input to a general-purpose solver. However, despite its intuitive appeal, current implementation of

this general idea has serious limitations, that can be addressed by devising stronger propagation

methods as well as techniques and heuristics that exploit problem structure. This is exactly the

approach that is taken in this thesis. More precisely:

1. We study how SAT models of planning interact with the underlying solver, especially with

the constraint propagation engine of the solver and explain differences in their performance.

The idea is to propose improved models that exhibit better behaviour due to better interac-

tion with the solver.

2. We study how the structure of a planning problem can be exploited in solving these prob-

lems. For instance, the SAT theory corresponding to a planning problem is ”layered”, where

layers correspond to different time points.

3. We investigate ways of incorporating ideas from heuristic search in the SAT models for

planning. This seems an obvious direction since the best (sub-optimal) classical planners

available use powerful heuristics that are automatically extracted from the problem to guide

the search rapidly from the initial state of the problem to a state that satisfies the goals.

And
rea

s S
ide

ris

4

1.3 Thesis structure

Chapters 2 and 3 present notations, background knowledge and relevant research in the field,

whereas chapters 4,5 and 6 are the core of this Ph.D. thesis and its research contribution. Conclu-

sions and future directions are presented in chapter 7.

Chapter 2 presents preliminaries, definitions and background knowledge on constraint satis-

faction and propositional satisfiability.

Chapter 3 introduces notations, background knowledge and the research performed in propo-

sitional planning that is relevant to our work. Some related work that is very close to ours is

presented instead in the appropriate chapters 4,5 or 6 respectively.

Chapter 4 presents the SMP planning system. SMP employs a new encoding and builds on

the SATPLAN framework [76], coupled with the SAT solver precosat [16]. We describe in detail

the encoding, prove theoretical results that reveal its strength, and provide experimental results

that demonstrate its practical value. We also provide experimental results suggesting that implied

non-redundant binary constraints that are added in the SAT theory do not improve planning times.

Chapter 5 describes the PSP planning system. PSP uses the SMP translation of the planning

problem and extends the planning as propositional satisfiability (the SATPLAN framework) to

planning as pseudo-boolean optimization. The approach follows the classic solve and expand

method of the SATPLAN framework, but at each step it seeks to maximize the number of the

problem goals that can be achieved. The PSP algorithm is described in detail and experimental

results are provided.

Chapter 6 is devoted to additional improvements implemented in the PSP-H planning system.

PSP-H extends the PSP by combining two powerful techniques that aim at decomposing a plan-

ning problem into smaller subproblems. The first technique, incremental goal achievement, turns

And
rea

s S
ide

ris

5

planning into a series of boolean optimization problems, each seeking to maximize the number of

goals that are achieved within a limited planning horizon. This is coupled with a second technique,

called heuristic guidance, that directs search towards a state that satisfies all goals. The PSP-H

algorithm is described in detail and experimental results are provided.

Conclusions and directions for future research work are presented in chapter 7. We briefly

describe some ideas that could further improve the performance of the implemented planners, as

well as the quality of the plans.

And
rea

s S
ide

ris

Chapter 2

Constraint Satisfaction and Propositional Satisfability

2.1 Constraint satisfaction problems and constraint propagation

Constraint Satisfaction (CS) has been applied to solve hard real world problems Constraint

Satisfaction Problems (or CSP) that arise in many different fields [107, 122] such as robotics

[117], business (nurse scheduling [28] and agriculture [2]), bioinformatics [8], electricity and fluid

(water and oil) networks [114] , and vehicle routing [27]. The idea of CS is to render possible for

the scientist of the field to input in a CS solver the variables of the system he/she is studying,

the possible values of these variables (domains), and relations (constraints) that must hold for the

possible values of the variables, and to find a solution: a mapping of variables to values such that

no constraint is violated. In this section we give the definitions as they are presented by Christian

Bessiere in [107], chapter 3.

Definition 1 A constraint satisfaction problem (CSP) P , is a triple P =< X,D,C > where X

is an n-tuple of variables X =< x1, x2, · · · , xn >,D is the n-tuple D =< D1, D2, · · · , Dn > of

domains corresponding to variables (i.e. ∀i ∈ [1 . . . n], xi takes a value from the domain Di) and

C is a τ -tuple of constraints C =< c1, c2, · · · , cτ > over the values of the variables. A constraint

6

And
rea

s S
ide

ris

7

cj is a pair cj =< RSj , Sj > where RSj is a relation on the variables of the Sj ⊆ X which is

the scope of c, Sj = scope(c). RSj is a subset of the Cartesian product over the domains D of

variables in Sj . The scope (or scheme) of a ci ∈ C is denoted as X(ci).

Definition 2 A constraint satisfaction problem P =< X,D,C > is a binary constraint satisfac-

tion problem if for all ci ∈ C, |X(ci)| = 2.

An assignment A for a problem P =< X,D,C > is the mapping of some of the variables of

X to a value from their respective domains D. The assignment is partial if not all the variables are

mapped to a value, and total otherwise. A constraint cj ∈ C is satisfied by an assignment A if the

projection ofA over the scope of cj is a subset ofRSj . An assignmentA of a problem is a solution

to the problem P if and only if it is total and all the constraints of the problem are satisfied.

Solving Constraint Satisfaction Problems is computationally hard (NP-complete) in the gen-

eral case. A special case of CSP is SAT , where all the variables are propositions, and all the

constraints are propositional formulas.

2.1.1 Constraint Propagation Methods

Constraint propagation methods are one of the more - if not the most - central concept in

constraint programming. The idea is to infer new constraints by reasoning on the state of the

problem already known, reducing the space that remains to be explored in order to find a solution

faster. For example assume a CSP P =< X,D,C > such that x1, x2 ∈ X , Dx1 , Dx2 ∈ D,

Dx1 = Dx2 = [1 . . . 10] and ci ∈ C, ci = x1 + x2 < 5. If the value 2 is assigned to variable

x1, then any value k ∈ Dx2 , k ≥ 4 can be correctly removed from the domain Dx2 since the

constrained ci would be violated for any value equal or greater than 4 when x1 = 2 . Thus

Dx2 is correctly updated (or filtered) to Dx2 = [1...3]. This value removal, often called ”domain

And
rea

s S
ide

ris

8

filtering”, is a powerful method for propagating constraints, as it reduces the size of the search

space.

Definition 3 A CSP problem P =< X,D,C > is General Arc Consistent (GAC) if and only

if all its constraints c in C are General Arc Consistent. A constraint c in C of P is General Arc

Consistent (GAC) if each value d of each variable v in scope(c) is consistent with the rest variables

v1, v2, · · · , vr of scope(c). A constraint c with scope(c) = {v, v1, . . . , vr} is consistent if there

exist values d, d1, . . . dr , d ∈ Dv, di ∈ Dxi∀i ∈ [1 . . . r] such that the assignment (or tuple)

(v, d), (v1, d1), (v2, d2), · · · , (vr, dr) does not violate c. The tuple (v1, d1), (v2, d2), · · · , (vr, dr)

is a support for (v, d)

Enforcing GAC on a CSP problem P is performed by removing any value of the domain of

a variable that is not supported in a constraint of the problem until a fixed point is reached, or an

empty domain is found. In the latter case the problem P has no solution. It turns out however

that enforcing GAC on (non-binary) CSP’s is an intractable problem (unless P=NP). Indeed for

a CSP with domain size bounded by d the best complexity that can be achieved for an algorithm

enforcing GAC is O(erdr) where r is the largest arity for a constraint and e is the number of

constraints in the problem [107].

Since it is computationally hard to enforce GAC (especially maintain GAC during search)

in practise weaker propagation methods are usually defined for non-binary CSP. A propagation

method M1 is strictly stronger than another propagation method M2 (M2 is weaker than M1) iff

M1 prunes as many values as M2 in all CSP problems and there exists at least one CSP problem

in which M1 prunes more values than M2. For example Bound Consistency (BC) is a weaker

propagation method than GAC. Bound Consistency ’bounds’ the domain of a variable (provided

that the domain is a well-defined ordered set) by removing the maximum and minimum values

And
rea

s S
ide

ris

9

from a domain if they are not supported. More formally (the definition is similar to bound(D) of

[107] and as in [36]):

Definition 4 A CSP problem P =< X,D,C > is Bound Consistent (BC) if and only if all its

constraints c in C are Bound Consistent. A constraint c in C of P is Bound Consistent (BC) if

the value minDx and maxDx of each variable v in scope(c) is consistent with the rest of the

variables of scope(c).

Enforcing BC on a CSP problem P is done by removing the minimum and maximum values

of the domain of a variable that are not supported in a constraint of the problem until a fixed point

is reached, or an empty domain is found. Although enforcing BC on general CSP problems is

again intractable [107] it is usually much more efficient making a CSP problem BC than GAC.

The GAC defined in definition 3 for binary constraint satisfaction problems is often named

as Arc Consistency (AC). It is extensively studied and used by most solvers for binary constraint

satisfaction problems. Two efficient algorithms that enforce AC on binary CSPs are AC6 and

AC2001 [107]. For a binary CSP with e constraints and domain size bounded by d the time

complexity for both algorithms is O(ed2) and their space complexity is O(ed) [107].

For binary constraint satisfaction problems more general forms of consistency have been in-

troduced than Arc Consistency, such as the Path Consistency and Inverse Path Consistency [107],

that belong to the general family of (i, j)-consistency. Arc Consistency also belongs to the family

of (i, j)-consistency.

Definition 5 A CSP problem P =< X,D,C > is (i,j)-consistent if for any consistent assign-

ment to values for any set Xi, Xi ⊆ X and |Xi| = i there exists a consistent assignment to values

for any set Xj , Xj ⊆ X ,|Xj | = j and Xj ∩Xi = ∅.

And
rea

s S
ide

ris

10

The time complexity of (i,j)-consistency is exponential in i.j. For i = 1 these methods are

’domain filtering’ (they remove values from the domains of variables), but due to their high com-

putational cost are rarely used in practice for large j. Enforcing (i,j)-consistensy needs exponential

space in i since constraints of arity i must be added in the problem in order to forbid the inconsis-

tent tuples. For this reason they are seldom used for small j and large i as well. Arc Consistency

is the (1,1)-consistency. Path Consistency is the (2,1)-consistency and Inverse Path Consistency is

the (1,2)-consistency. Methods that attempt to reduce the computational burden by restricting the

consistency checks to a subset of the variables, include the Restricted Path Consistency (RPC),

Max-Restricted Path Consistency (maxRPC) and Neighborhood Inverse Consistency (NIC) [107].

Their definitions can be found in [107].

Definition 6 A CSP problem P =< X,D,C > is strong (i,j)-consistent if it is (x,y)-consistent

∀x, 1 ≤ x ≤ i and ∀y, 1 ≤ y ≤ j

It holds that a CSP problem P =< X,D,C > is globally consistent (satisfiable) iff it is strong

(|X|,1)-consistent.

A consistency propagation method that is strictly stronger than Arc Consistency and is used

in practise but does not belong to the family of (i,j)-consistency is the Singleton Arc Consistency

(SAC). In the definition below P |xi=v is the problem that is derived from the problem P , P =<

X,D,C > when the value v,v ∈ Dxi is assigned to variable xi, xi ∈ X .

Definition 7 A CSP problem P =< X,D,C > is Singleton Arc Consistent (SAC) if for all

xi ∈ X and for all v ∈ Dxi the problem P |xi=v is Arc Consistent.

Enforcing SAC to a problem is achieved by repeatedly assigning a value to a variable from

its domain and examining if the resulting problem is AC, otherwise the value is removed from

And
rea

s S
ide

ris

11

the domain of the variable. The iteration halts when a fixed point or an empty domain is found

(for a problem without a solution). For a problem with n variables e constraints and a domain

size bounded by d, Bessiere and Debruyne [14, 15] proved that the time complexity of SAC is

O(end3). They proposed an (optimal) algorithm (SAC-Opt) of time complexity O(end3) and

space complexity O(end2) [107]. Another algorithm for SAC, is the SAC-SDS (SDS is for Shar-

ing Data Structures) is of time complexity O(end4) and space complexity O(n2d2) [107]. A

family of singleton propagation methods strictly stronger than SAC can be defined in the obvious

way by replacing the AC in the definition of SAC with a strictly stronger propagation method.

For example replacing AC with Path Consistency (PC) in the definition 7 yields the Singleton

Path Consistency (SPC) propagation method. Obviously SPC is strictly stronger than SAC and

computational harder since PC is strictly stronger and computational harder than AC.

Figure 1 (as it is presented in [107]) summarizes the result for the qualitative comparison for

the pruning power for Strong Path Consistency, (Strong PC), Restricted Path Consistency (RPC),

Max-Restricted Path Consistency (maxRPC), Neighborhood Inverse Consistency (NIC), Singleton

Arc Consistency (SAC), Path Inverse Consistency (PIC) and Arc Consistency (AC). The formal

proofs can be found in [34].

Figure 1: Summary of the comparison between consistecies AC and Strong PC. A → B means
that the consistencyA is stringly stronger thanB and the dashed line means that are incomparable.
The stronger relation is transitive.

And
rea

s S
ide

ris

12

Global Constraints [107, 36] are constraints that constrain all the variables of a CSP prob-

lem. They are semantically redundant in the sense that they can be expressed as the conjunction

of simpler constraints. For example consider a CSP problem P containing n variables that are

constrained to have pairwise different values. This obviously can be expressed by n(n−1)
2 binary

constraints xi 6= xj , ∀i, j ∈ [1 . . . n] and i 6= j. This can be expressed equivalently by the

global constraint alldifferent(x1, . . . , xn). Not only this is obviously better from a software

engineering point of view, it is also better for constraint propagation. The reason is that there exist

algorithms for enforcing BC [91] and GAC [107] on alldifferent(x1, . . . , xn) constraint that run

in low polynomial time. Other global constraints that are widely used are the GlobalCardinality-

Constraint, sum and knapsack constraints [107].

2.1.2 Backtracking Search Algorithms for deciding consistency

The most usual way to find a solution to a CSP problem P (P =< X,D,C >), especially if

completeness is needed, is with a backtracking search algorithm. A backtracking search algorithm

for solving a CSP problem [107, 36] can be seen as performing a depth-first traversal to a search

tree.

Backtracking algorithms vary in the way backtrack is performed on dead-ends. In its simplest

and earlier versions backtracking is performed chronologically, where the algorithm backtracks in

the previous level in the search tree from the level of the dead-end [107, 36]. Newer versions of

backtracking algorithms for CSP problems can backtrack (or backjump) deeper in the tree, using

a conflict analysis mechanism, such as conflict-sets or no-goods [35], to preserve completeness.

Conflict-directed backjumping (CBJ) [107] in CSP solvers is achieved with no-goods or conflict-

sets. The standard definition of no-good (or conflict set) was given in [35], as an assignment

set that is not contained in any solution. Informally the conflict-directed backjumping works as

And
rea

s S
ide

ris

13

follows: For each variable v of the problem is associated a conflict-set, say conflictset[v] ini-

tially ∅. Each time a variable v′ is responsible for eliminating a value from the domain of v

due to assignment or propagation, conflictset[v] is updated to conflictset[v] ∪ {v′}. As the

search proceeds, if for a variable say i no value can be assigned then the algorithm backjumps

to the highest level over all variables of conflictset[i], say j and it updates the conflictset[j] to

(conflictset[j]∪conflictset[i]\{j}). Completeness is reserved since if a dead-end is also found

at j, the algorithm will backjump as high as the variable being in conflict with either i or j. The

negation of the assigned values of variables in conflict can be stored as no-goods since they are

inconsistent with any possible solution of the problem. This may help the propagation algorithm

as the search proceeds. The backtracking strategy is combined with a constraint propagation algo-

rithm to produce a family of CSP solvers. For example maintaining arc consistency on constraints

with at least one uninstantiated variable in combination with conflict directed backjumping is the

MAC-CBJ [107]. There are however two drawbacks in storing no-goods: Learning no-goods at

each dead-end is too space-consuming and in may eventually slow down the propagation algo-

rithm since it has to do a lot more consistency checks. Therefore two commonly used methods

are storing relatively small no-goods, or periodically removing some of the no-goods based on a

measure, such as the branches that passed since the last time they were used in propagation.

[67] implements a CSP algorithm that maintains consistency not in the separate constraints

of the problem, but in conjunction of constraints that are grouped together using a heuristic mea-

sure. Obviously enforcing GAC in the conjunction of constraints may achieve more propagation

than enforcing GAC on each constraint separately. Experiments showed improvement for some

problems over the usual GAC. The idea of no-goods is further expanded in [68] to generalized

no-goods. The main idea is that except of combining only assignments in a no-good and forbid-

ding them from happening again, in a similar manner not assignments are considered as a no-good

And
rea

s S
ide

ris

14

(general no-good). A general no-good combines not assignments that are pruned by the constraint

propagation along with normal assignments. General no-goods (g-nogoods) have the ability to

store the same information as an exponential number of usual no-goods and they propagate much

better. Experiments showed that g-nogoods in a CSP solver decreased significantly runtimes for

crossword puzzles, planning and scheduling CSPs over the usual no-good scheme.

Another important feature of backtracking CSP algorithms is the heuristic that is used to

pick the next variable and the value to branch on. The dom heuristic picks the next variable to

instantiate having the less values in its domain. Other heuristics are dom+deg and dom/deg. The

heuristic dom + deg [107] picks a variable following dom heuristic, but it breaks ties in favour

of the variable maximizing deg, where deg is the number of constraints of the problem involving

this variable and at least one other unassigned variable. The heuristic dom/deg [107] divides for

each variable its dom value by the value deg and picks the variable minimizing this score. An

extension of this heuristic is the dom/wdeg [23] heuristic. Before search a weight associated with

each constraint is initialized to one. As the search proceeds any time that a constraint becomes

inconsistent its weight is incremented. The heuristic dom/wdeg picks the variable that minimizes

the division of the size of its domain (dom) divided by the sum of weights of constraints of the

problem involving this variable and at least one other unassigned variable (wdeg). The dom/wdeg

seemed to perform very well in a variety of problems. The intuition behind all these heuristics is

to pick a variable that is the most likely to fail first. Two of the most well known heuristics in the

literature to select a value to assign to a variable are the ’promise’ [107] heuristic and the ’min-

conflicts’ [107] heuristic. Given a variable x, the promise (min-conflicts) heuristic picks the value

that after constraint propagation the product (sum) of the sizes of the domains of the remaining

uninstantiated variables is maximized.

And
rea

s S
ide

ris

15

2.1.3 Solving Constraint Optimization Problems

One of the most common (complete) algorithms for CSP problems with objective functions is

the branch and bound. For example in integer linear programming (ILP) the domains of all vari-

ables are subsets of Z, the constraints are arithmetical linear inequalities and the objective function

(to be minimized) is the scalar product of a weight vector of real or integer numbers with the vari-

ables of the problem P (P =< X,D,C >). The algorithm initializes a global variable I that

holds the best solution found so far to∞ and each time it finds a solution, as in a usual CSP, using

backtracking and constraint propagation (usually maintaining bound consistency for arithmetic

domains), it updates I to min(I, f(X)), where f(X) is the value of the objective function for the

current solution. The value of I is used during search to prune the domains of the variables and to

backtrack. For a partial assignment on say k (k < |X|) variables X1, X2, · · · , Xk of X , before

assigning to an unassigned variable Xk+1 a value v from its domain, it is checked that f(X ′) < I

(assuming that all domains are positive integers as well as the weights else the check would be a

little more complex), where X ′ is the partial assignment on the variables X1, X2, · · · , Xk, Xk+1.

If the inequality does not hold, then the domain DXk+1
of variable Xk+1 can be soundly updated

to DXk+1
= DXk+1

\ {v}.

In CSP (and other hard) problems it is common to use relaxations. A relaxation is performed

by relaxing the constraints of the problem P to obtain a more easy problem P ′ that can be solved

efficiently. The gain (in CSP context) is that it can guide the search in the original problem

e.g. used as a heuristic, it may filter some domains of unassigned variables or it may prune

entire subtrees reducing therefore the search space. It can also be used for approximations. A

common example is the integer linear programming problem (ILP) with an objective function to

minimize. While being an NP-complete problem, if the integrality constraints are relaxed and each

And
rea

s S
ide

ris

16

variable vi can take a real number value in [min(Dvi) · · ·max(Dvi)] then the problem is a Linear

Programming (LP) problem which can be solved very efficiently in polynomial time (e.g. [83]).

For example using a branch and bound algorithm to solve an ILP (minimization) problem, a

relaxation of the corresponding linear programming (LP) problem is solved on each assignment of

a variable (for the unassigned variables) which gives a value to the objective function f∗. f∗ is the

minimum value that can be achieved in the ILP problem as well when instantiating the rest of the

variables, since Z ⊂ R. Assuming the value of the best found (integer) solution to be I , if I ≤ f∗

the entire subtree can be safely pruned since no better solution can be found when instantiating

the rest of the variables to an integer value. Moreover the solution of the dual LP problem of the

relaxation can be used for domain filtering , by propagating inequalities [59].

2.2 Satisfiability of propositional formulas

SAT-solving is used to solve many hard problems of the real world. It is used in a variety of

applications [18] such as bounded model checking for hardware [17] and software verification [32,

63], combinatorial designs [126], Satisfiability Modulo Theories [5, 48], product configuration

[115] and planning.

The propositional satisfiability problem (or SAT) is a special case of a constraint satisfaction

problem, where all the variables have as domain the {True, False}, and all the constraints are

propositional formulas. Propositional formulas are propositions connected with the logical con-

nectives ¬(not),∨(or),∧(and) and −→ (implies). A propositional formula is in Conjunctive

Normal Form (CNF) if is a conjunction of clauses, where a clause is a disjunction of literals. A

literal is a propositional variable or its negation.

And
rea

s S
ide

ris

17

2.2.1 Resolution and restricted forms of resolution

The simplest and perhaps the oldest algorithm for inference in propositional logic is resolution

[59]. Given a formula F = {c1, c2, · · · , cn} in CNF form resolution iteratively picks two clauses

ci and cj from F that have a common literal, say p, in one clause ci being positive and in clause cj

being negative, and adds the resolvent clause cr = (ci \{p})
⋃

(cj \{¬p}) in the SAT theory until

a fixed point is reached or the empty clause is derived. Resolution will return an empty clause

if and only if the SAT theory is unsatisfiable. Unit resolution and Binary resolution are special

cases of resolution. Unit resolution resolves two clauses if at least one of the resolvent clauses

is a unit clause (contains only one literal) and binary resolution resolves two clauses if at least

one of the resolvent clauses is a binary clause (contains two literals). Unit Propagation (UP) is

the most common propagation algorithm in SAT solvers. It repeatedly applies Unit resolution in

the input SAT theory until closure. The Fail Literal Detection Rule (FL-rule) [43] assigns the

value true (false) to an unvalued literal l of a theory T if UP (T ∪ {¬l}) (UP (T ∪ {l})) derives

the empty clause. Fail Literal Propagation (FL-prop) is the propagation method that repeatedly

applies the FL-rule until closure. Two restricted forms of binary resolution are BinRes [6] and

Krom-subsumption resolution (KromS) [119]. BinRes resolves two clauses only if the resolvent

clauses are both binary. Krom-subsumption resolution resolves a binary clause ci = xy with a

clause of the form cj = ¬xyC (where x, y are literals and C is a clause) and adds the resolvent

clause cr = yC which subsumes the clause cj . The propagation method BinRes-prop (KromS-

prop) applies the BinRes (Krom-subsumption) resolution rule in a SAT theory until a fixed point

is found or the empty clause is derived.
And

rea
s S

ide
ris

18

2.2.2 SAT and CSP

There are a number of works for translating a problem from CSP formulation to SAT and

vice versa, for example [123, 13] and [37]. Dimopoulos and Stergiou present in [37] two standard

widely studied ways of translating a binary CSP to SAT the Direct encoding and Suuport encoding

and three standard ways of translating a SAT to CSP the Literal encoding, Dual encoding and Non-

Binary encoding.

To translate a (binary) CSP to SAT using the direct encoding or the support encoding for each

value a for each variable xi of the CSP is introduced a propositional variable xia. For each variable

xi ∈ X with a domain D(xi), |D(xi)| = d there is an at-least-one clause xi1 ∨ . . .∨ xid to ensure

that xi takes a value. They are also (optional) at-most-one clauses to ensure that each variable xi

takes at most once value from its domain: For each i, a, b such that a 6= b and {a, b} ⊆ D(xi)

is added a clause ¬xia ∨ ¬xib. The difference between the direct encoding and support encoding

lies in the clauses that are added to express the constraints of the CSP: For each binary constraint

C on variables {xi, xj} and for each a, b such that the tuple < (xi, a), (xj , b) > is not allowed in

direct encoding a binary clause ¬xia∨¬xjb is added, whereas in support encoding the constraints

are captured by clauses that express the supports that values have in the constraints. For all values

a ∈ D(xi) the clause xjb1 ∨ . . . ∨ xjbs ∨ ¬xia is added where xjb1 , . . . , xjbs are the propositional

variables corresponding to the s supporting values of a in D(xi) The support encoding is a better

translation than direct encoding in respect to the propagation achieved. For example enforcing

AC (SAC)in the CSP can achieve more propagation than UP-prop (FL-prop) in direct encoding

whereas AC (SAC) are equivalent to UP-prop (FL-prop) in support encoding in respect to the

propagation achieved.

And
rea

s S
ide

ris

19

To translate a SAT problem T to (binary) CSP using the Literal encoding for each clause

ci ∈ T a variable vi is introduced, and D(vi) consists of those literals satisfying ci. For each pair

of clauses ci, cj in T such that exists a literal l ∈ ci and ¬l ∈ cj a binary constraint is posted

in the CSP for the variables vi (that corresponds to the clause ci) and vj (that corresponds to

the clause cj). This constraint forbids the incompatible assignments for the two variables (e.g.

(vi, l) and (vj ,¬l)). The translation of T to (binary) CSP under the Dual encoding turns out to

be stronger than Literal encoding with respect to the propagation achieved. For example there is

a direct correspondence between AC (SAC) and UP-prop (FL-prop) in literal encoding but AC

(SAC) achieve more propagation than UP-prop (FL-prop) in the Dual encoding.

2.2.3 State of the art SAT solvers: non-chronological backjumping and learning

One of the first practical algorithms for the SAT problem is the Davis-Putnam algorithm [108],

although the version implemented in most solvers is the 2-years later version called Davis-Putnam,

Logemann and Loveland (DPLL). It is a chronological backtracking algorithm , branching on all

unassigned variables recursively to true and false, and it performs Unit Propagation (UP) on each

assignment. DPLL either finds that the SAT problem is unsatisfiable after building the whole tree,

or finds a total satisfiable assignment of the variables.

There are more than two dozen of SAT solvers entering the SAT competitions every year that

are based on DPLL along with some new important features such as the two watch literals scheme,

conflict-learning and backjumping. Details can be found in [18] , [86] and [84].

The main algorithm for SAT solving that is used in most modern solvers is called ’conflict

driven clause learning’ (CDCL). The basic difference from DPLL is that instead of branching

on a variable p and its negation, CDCL branches only on the one side (not necessarily always

the same), (or assumes p=false), and if a contradiction is found then a literal that resolves this

And
rea

s S
ide

ris

20

contradiction is forced (it may be p=true, but not necessarily), and a ’conflict clause’ or ’learnt-

clause’ is learned (a no-good) and stored. The clause is the ’reason’ for the conflict, and may be

used later for propagation.The most usual constraint propagation method used in SAT solvers is

the Unit propagation (UP). A notable exception is the SAT solver 2CLS+EQ [7] which implements

a stronger propagation method similar to Fail Literal propagation.

Figure 2: Implication Graph (figure from [127])

The most significant clause learning mechanisms of CDCL-based solvers use the implication

graph, which is better illustrated graphically. Figure 2 is a typical implication graph (as presented

in [127]). An implication graph [127] is a directed acyclic graph (DAG), with each vertex repre-

senting a variable assignment, a positive (negative) variable means it is assigned to true (false) (e.g.

V16 is assigned to true and V5 to false). The incident edges in the graph of each vertex correspond

And
rea

s S
ide

ris

21

to the reasons that lead to an assignment. In the parenthesis next to each variable is the decision

level at which was assigned its value either because it was the decision of that level, or because it

was implied by UP at that level. The incident edges in the graph of each vertex correspond to the

reasons that lead to an assignment. The implication graph is used when a conflict is found after

the decision is unit propagated. Since a conflict is found this implies that a variable is assigned

by UP to be true and false (variable V18 in the figure). Obviously the only interesting vertices in

the implication graph are the ones which are connected through a path to one of the conflicting

variables, the rest of the vertices (and edges) are irrelevant. In an implication graph a vertex a

dominates vertex β iff any path from the decision variable of the current decision level (the pink

variable V11 in the figure) to β must go through a. A Unique Implication Point (UIP) is a vertex of

the current decision level that dominates both conflicting variables, for example V11, V2, V10 in the

figure. A UIP is a single reason for the conflict. UIPs are sorted from the conflicting variables to

the decision variable (which by definition is always a UIP, the last-UIP) as first-UIP, second-UIP,

· · · , last-UIP.

A conflict clause is derived by a bipartition in the implication graph, having all the decision

variables on one side (the reason side) and the conflicting variables on the other side (the conflict

side). All vertices of the reason side with at least one edge in the cut comprise the reason of the

conflict and deduce a conflict clause (a no-good). Each cut corresponds to a valid conflict clause.

However in order for the conflict clause to be an asserting clause (i.e. there is a unique literal of

the current level (the blue vertices in the figure and the pink)), a partition needs to have exactly

one UIP (it holds that one always exists - the decision variable) on the reason side, and all vertices

assigned after this on the other side. The first-UIP cut and the last-UIP cut are showed in figure

2. The respective clauses are {V10,¬V8, V17,¬V19} and {¬V11, V6, V13,¬V4,¬V8, V17,¬V19}

with the asserted literals V10 and ¬V11 respectively. In [127] different learning schemes were

And
rea

s S
ide

ris

22

experimentally evaluated and first-UIP showed to be the best - perhaps because the asserting literal

is as much close to conflict as possible. Chaff, Siege and MINISAT all use the first-UIP.

Different heuristics for deciding the next variable to branch on are used in different solvers.

Some of these heuristics are MOMS, Jeroslow-Wang, VSIDS and VMTF. MOMS heuristic chooses

the literal with Maximum number of Occurrences in Minimum Size clauses. Jeroslow-Wang

heuristic chooses the variable with the maximal score JW (l), where JW (l) is calculated as:

JW (l) =
∑
l∈c

2−|c| , where l, c stand for literal and clause respectively.

VSIDS (Variable State Independent Decaying Sum) is probably the first heuristic suited for

CDCL solvers introduced in solver chaff [87]. It increases the score of each variable in a new

conflict clause, dividing scores periodically. In this way variables relevant to recent conflicts are

preferred. This idea is usually used in heuristics of CDCL solvers. MINISAT’s [40] heuristic

is similar to VSIDS, but no distinction is made between positive and negative variables because

MINISAT branches only on negative values . VMTF (Variable Move To Front) is the heuristic

used by the siege solver [109]. Despite being very easy to implement and very cheap to compute

it is experimentally proved to be very efficient, perhaps one of the best among CDCL solvers. A

score for each literal is maintained, initially set to the occurrences of the literals in formula. A

list W with the variables of the input formula is created before search and is sorted such as v0 is

before v1 if score(v0) + score(¬v0) > score(v1) + score(¬v1). Each time a clause c is learned,

the scores of literals in c are increased by one and eight of the variables (corresponding to literals)

in c are moved in W so they are put in the front in arbitrary order (if |c| < 8 then all |c| variables

are moved). When a decision is made the nearest to the front variable v in W that is not singleton

is picked, and is set to true (false) if score(v) > (<)score(¬v), ties being broken randomly.

CDCL SAT solvers may record a big number of conflict clauses until they terminate, causing

memory problems or even slowing down the propagation, hence they usually have a mechanism to

And
rea

s S
ide

ris

23

delete periodically some of the learnt clauses. Another feature of most of the CDCL SAT-solvers is

the restart mechanism. After a criterion is satisfied before the algorithm terminates, the algorithm

throws away the partial assignment (except from level 0) and starts from the beginning, usually

maintaining (some) of the learnt clauses. For example siege restarts every 16000 conflicts.

2.2.4 Tractable subclasses and decomposition

Two tractable subclasses of the SAT problem are the 2-SAT and the renamable Horn clauses.

2-SAT is a formula for which it holds that the maximum arity of a clause is 2. 2-SAT is solved

in polynomial time with the use of the implication graph of the formula [88]. The Horn clauses

are clauses that contain at most one positive literal. Proving satisfiability for a formula containing

only Horn clauses is a polynomial time problem [38]. Renamable Horn clauses is a set of clauses

that can be transformed to Horn clauses, by replacing zero or more variables with their negation.

A SAT formula can be decided if it is a renamable Horn (and if it is to be renamed) in polynomial

time (e.g. [59]), hence satisfiability for Renamable Horn clauses is still polynomial.

[4] presents algorithms for reasoning with partitions for propositional and first-order-logic

(FOL). Two kind of algorithms are presented to query an already partitioned logical theory (both

for propositional and FOL) based on message-passing over the separators of partitions, one for-

ward passing and one backward (query driven) passing. Extended theoretical results and proofs

are presented proving a time complexity exponential in the size of larger partition and a space

complexity exponential in the size of largest separator over the partitions. An algorithm (called

LINEAR-PART-SAT) for a partition SAT formula is presented again with a time complexity ex-

ponential in the number of variables of the largest partition, and a space complexity exponential in

the product of largest path in the partition tree multiplied with the maximum separator (common

variables number) over all connected partitions. Finally the paper presents a greedy polynomial

And
rea

s S
ide

ris

24

algorithm (Split-Thy) that separates a SAT theory in partitions (as those described above assumed

by LINEAR-PART-SAT).

[78] presents two algorithms combining Hypergraph decomposition with a SAT solver in or-

der to solve real-world SAT instances more efficiently.The hypergraph’s vertices are the clauses

of the problem, and the hyperedges are variables connecting the clauses (hypervertices) that con-

tains them (positive or negative). A separator created in this work for the hypergraph H is a set

of hyperedges (hence a separator corresponds to set of variables) that when removed from the

hypergraph create k unconnected partitions H1, H2, · · · , Hk , and for each one of them it holds

that it contains 15%-85% of the nodes of the initial hypergraph. Two methods are tested: creating

a separator before search (ESD) and creating separators dynamically during search (DSD). ESD

proved experimentally to perform quite well in runtimes, whereas DSD did not - although fewer

decisions were made by the solver it did not pay off the overhead of separating at each step.

2.3 Pseudoboolean Optimization

A pseudo Boolean (PB) formula is a special case of CSP. A PB formula is a set of Pseudo

Boolean (PB) constraints, where a PB constraint is an inequality of the form
∑
aixi ≥ b, where

xi is a boolean variable (a {0, 1} variable) and ai, b integers. The Pseudoboolean Optimization

problem is the optimization problem of maximizing (or minimizing) a linear objective function on

(some) of the variables of a PB formula subject to the constraints of the formula being true.

Since PB optimization problems are a special case of Integer Linear Programming they are

usually solved by Operational Research (OR) methods such as Integer Linear Programming (ILP)

[125, 124] (ILP) solvers. Three PB optimization solvers that utilise logical reasoning methods are

the Pueblo solver [110], bsolo [85] and MiniSat+ [41].

And
rea

s S
ide

ris

25

The Pseudo Boolean solver bsolo [85] integrates lower bound estimation procedures (as-

suming minimization) to discover bounds on the variables of the optimization function in or-

der to prune the search space, adds cutting planes (Knapsack constraints) and performs non-

chronological backtracking when a conflict is found. Two lower bound estimation procedures

were tested: 1) the Linear Programming Relaxation (LPR) and 2) Lagrangian Relaxation (LGR).

The Linear Programming Relaxation was experimentally verified to perform by far better than

LGR or in case none of the two methods is used. Moreover LPR is used in the heuristic of the

bsolo solver: Branching is restricted to variables with non-integer values in the LP solution. The

variable picked is the one with the value closest to 0.5. In case more than one variable have value

0.5 in the LP solution, then the VSIDS heuristic of Chaff [87] is used.

Pueblo [110] is a hybrid method for solving Pseudo Boolean (PB) satisfiability and optimiza-

tion problems. A pseudo Boolean constraint is expressed as a linear 0-1 inequality with positive

integer coefficients. Pueblo combines cutting-plane analysis (and addition) to the formula from

ILP with clause learning of SAT when finding an inconsistency to learn a no-good and decide the

backtrack level. Experiments on benchmarks demonstrated better results than with ILP and SAT

solvers alone (when the PB is translated to a SAT instance), showing the effect of combining the

two methods.

MiniSat+ [41] is a Pseudo Boolean (PB) satisfiability solver that uses the SAT solver MiniSat

[40] to solve the PB problem. It first ignores the optimization PB function f(.), translates the

PB inequalities to an equivalent CNF propositional formula and invokes MiniSat to solve the

SAT problem. If the propositional formula is satisfiable and the objective function for the found

assignment is f(.) = k, it then adds the inequality f(.) < k (assuming minimization) to PB

formula, translates to CNF and invokes the SAT solver again. This is done until the MiniSat

finds an unsatisfiable formula, and therefore the solution is the last found with the last score. Our

And
rea

s S
ide

ris

26

work for PSP and PSP-H planning systems presented in chapters 5 and 6 respectively use the

translation module of MiniSat+ to translate the PB formula to CNF.

There are three ways that translate the PB-constraints to equivalent CNF clauses implemented

in MiniSat+ [41], using BDD trees, adders and sorters. We briefly describe the first method of

BDD trees, since it is the method we use in this thesis and we refer to [41] for the description

of the other two methods. This method first translates the PB-constraint into a BDD tree, and

then converts the BDD into clauses with the introduction of auxiliary variables. It is proved that

the translation with BDDs maintains arc-consistency but in the worst case yields translations of

exponential size. However when the PB-constraints are restricted to cardinality constraints, as in

the PSP planning system, the size becomes polynomial: more precisely a cardinality constraint

x1 + x1 + . . .+ xn ≥ k results in a BDD tree with (n− k + 1) ∗ k nodes. The translation of the

PB-constraint to a BDD tree is done by a straightforward procedure using dynamic programming

which is very efficient for few variables. After the BDD tree is built it is treated as a circuit of ITE

(if-then-else gates). As a circuit representation [41] it uses the reduced boolean circuits (RBC)

[1]. The BDD tree is translated to clauses using the Tseitin transformation [118], which is a lin-

ear transformation of propositional formulas to CNF clauses. For the purposes of minisat+ a

propositional formula is considered as a single-output, tree-shaped circuit. The idea of the trans-

formation is to introduce a new auxiliary variable for each output of each gate. For example for the

OR(a, b) it introduces a new variable x for the output and CNF clauses are added corresponding

to the relation x↔ (a ∨ b).

2.4 Summary

In this chapter were briefly presented the most significant elements of constraint satisfaction,

propositional satisfiability and pseudoboolean optimization. The two most important elements

And
rea

s S
ide

ris

27

are constraint propagation and heuristics. Heuristic is the method of the solver that picks the

next variable/value to branch on, based on an easily computable estimation of the ’goodness’ of

each potential choice. A constraint propagation (CP) algorithm infers new constraints from the

current partial assignment of the problem. A CP method is stronger from another if it infers

more constraints. In the context of this work we invented a new way to translate the planning

problems into propositional satisfiability formulas, the SMP presented in chapter 4. We formally

prove that Unit Propagation, the constraint propagation mechanism in the vast majority of modern

SAT solvers, achieves more propagation when SMP translation is used than other translations

in the literature. This theoretical result is of practical use too, since better constraint propagation

yields better runtimes as well, as our experiments on many different benchmark planning problems

revealed. In chapters 5 and 6 we considered the planning problem as a Pseudoboolean optimization

problem where the objective function is the maximization of the goals that are attained, subject

to the constraints of the SMP translation. Experimental results revealed the practical use of the

approach.

And
rea

s S
ide

ris

Chapter 3

Propositional Planning

Propositional (or classical) planning is planning in simplest form. As we noted in chapter 1, in

propositional planning the world is finite and deterministic, actions have no durations or costs and

are always executed as outlined by the plan. Moreover the state of the problem is changed only by

the actions of the plan in a deterministic way and the initial state of the problem is fully known.

The description of a propositional planning problem consists of two parts: The domain and

the problem. The domain is the ’abstraction’ that describes how the actions change the state of

the world. The domain specifies a high level description of the preconditions and effects of each

action, as well as the set of all propositional symbols that model the world. The problem specifies

the initial state and the goals of the problem. A planner takes as input both the domain and the

problem.

3.1 Representations and Solutions of propositional planning

There are a number of ways to represent a classical planning problem, for example Ghallab,

Nau and Traverso in [47] define the set-theoretic representation, the classical representation and

the state-variable representation:

28

And
rea

s S
ide

ris

29

1. In a set-theoretic representation each sate of the world is represented as a set of propositions.

Each action is represented as a syntactic expression of propositions that specifies when the

action is applicable and what is the effect of the action i.e. what proposition(s) will add or

remove in the following state.

2. In a classical representation actions and states are similar to ones in set-theoretic represen-

tation. The difference is that first-order literals and logical connectives are used, instead of

propositions as in the set-theoretic approach.

3. In a state-variable representation each state is represented by a tuple of n state (or multi-

value) variables {x1, . . . , xn}. Each state variable xi is associated with a finite domain. At

each state the state variable xi takes exactly one variable from its domain, or the ’undefined’

value. A partial function that maps this tuple to another tuple of values of the n state

variables is used to represent each action.

Each of the above representations has the same expressive power and can be easily transformed

to any of the other [47]. We give the formal definitions of the set-theoretic representation as close

to [47], whereas we follow the formalisms in [12] for the state-variable representation. The clas-

sical representation is not used elsewhere in this thesis, therefore we do not give any definitions.

Formal definitions for classical representation can be found in [47].

3.1.1 Set-Theoretic Representation

Definition 8 A set-theoretic planning domain on a finite set of propositional symbols L is a re-

stricted state-transition system Σ = (S,A, γ) such that:

• S ⊆ 2L. i.e. each state s ∈ S is a subset of L. A proposition p holds in state s iff p ∈ s.

And
rea

s S
ide

ris

30

• Each action a ∈ A is a triple a = {pre(a), add(a), del(a)}where pre(a) ⊆ L, add(a) ⊆ L

and del(a) ⊆ L. Moreover add(a) ∩ del(a) = ∅. The sets pre(a) , add(a) and del(a) are

called the preconditions, add effects and delete effects of action a respectively. The action a

is applicable to a state s if it holds that pre(a) ⊆ s.

• The set of states S has the property that if s ∈ S then for all the actions a that are applicable

to s, (s \ del(a)) ∪ add(a) ∈ S. Informally this means that any action applicable to a state

will produce another state.

• The state transition is defined as:

γ(s, a) =


(s \ del(a)) ∪ add(a) if a is applicable to s

undefined otherwise

Definition 9 A set-theoretic planning problem is a triple P = (Σ, s0, g) where:

• s0 is the initial state and so ∈ S.

• g ⊆ L is a set of propositions called the goal propositions. For any state s that is a goal

state it holds that g ⊆ s. The set of all goal states is denoted as Sg.

Definition 10 A sequential plan π is a sequence of actions π = 〈a1, . . . , ak〉. The length of the

the plan π is denoted as |π| and |π| = k, where k is the number of actions in the plan . The state

that is produced by applying the plan π on a state s is the state that is produced if all the actions

of π are applied on s in the order specified in π (from first to last):

γ(s, π) =



s if k = 0

γ(γ(s, a1), 〈a2, . . . , ak〉) if k > 0 and a1 is applicable to s

undefined otherwise

And
rea

s S
ide

ris

31

Definition 11 A sequential (or serial or total order) plan π is a solution (or valid (sequential)

plan) for a planning problem P = (Σ, s0, g) if γ(s0, π) ∈ Sg. The plan π is a sequential optimal

plan if there exists no valid plan π′ for P such that |π′| < |π|.

It is often the case that some actions of a sequential plan can be executed simultaneously

without affecting the soundness of the plan. For example in a logistics domain the two actions of

loading two different packages in two different trucks can be executed simultaneously. However

an action that loads a package cannot be executed simultaneously with an action that unloads the

same package in a valid plan because they interfere.

Definition 12 Two (different) actions A1 and A2 interfere whenever any of the sets del(Ai) ∩

add(Aj) and del(Ai) ∩ pre(Aj) is non-empty ∀i, j ∈ {1, 2} and i 6= j.

The state transition for a set of actions A to a state s is defined as:

γ(s,A) =


(s \ (

⋃
a∈A

del(a))) ∪ (
⋃
a∈A

add(a)) if ∀a ∈ A is applicable to s

undefined otherwise

Definition 13 A parallel plan π is a sequence of sets of actions π = 〈A1, . . . , Ak〉. The (parallel)

length of the the plan |π| = k, where k is the number of action sets that are executed in parallel.

The state that is produced by applying the plan π on a state s is the state that is produced if all the

action sets of π are applied on s in the order specified in π (from first to last):

γ(s, π) =



s if k = 0

γ(γ(s,A1), 〈A2, . . . , Ak〉) if k > 0 and ∀a ∈ A1 is applicable to s

undefined otherwise

Definition 14 A parallel plan π , π = 〈A1, . . . , Ak〉 is a solution (or valid (parallel) plan) for a

planning problem P = (Σ, s0, g) if γ(s0, π) ∈ Sg and ∀Ai ∈ π, such that |Ai| > 1 it holds that

And
rea

s S
ide

ris

32

∀(ax, ay) ∈ Ai × Ai, ax 6= ay, ax and ay do not interfere. The plan π is an optimal parallel plan

or step optimal if there exists no valid parallel plan π′ for P such that |π′| < |π|.

It is useful to note that a step optimal parallel plan π = 〈A1, . . . , Ak〉 for a problem may have

more actions (
∑
Ai∈π

|Ai|) than another sub-optimal plan. This is not the case in sequential plans

where actions are executed sequentially. Sometimes parallel plans are also named as partial order

plans in the literature since the actions of the plan are partially ordered, and not totally ordered as

in sequential plans.

The combination of the definitions of set-theoretic planning domain and set-theoretic planning

problem in definitions 8 and 9 respectively fully define a planning problem instance. However this

combination cannot be used as an input to a planner because it explicitly gives all the members of

γ and S that are exponential in the size of the problem. Therefore the statement of the problem

P = (I, A,G) is used instead. I is the initial state (denoted as s0 in definition 9), G is the set of

goals (denoted as g in definition 9) and A is the set of actions. It is easy to see that the statement

is linear with respect to the size of the problem. Any new states that are computed by the planner

due to the execution of an action(s) are created ’on the fly’.

3.1.2 State-Variable Representation

The definition of the State-Variable representation or multi-valued state representation of the

planning problem that is presented is the SAS+ of [12, 64]. The definition also corresponds to

the statement of the problem in State-Variable representation of [47]

Definition 15 A SAS+ problem (or instance) is defined as a tuple Π = 〈V,O, s0, s∗〉 with com-

ponents defined as follows:

And
rea

s S
ide

ris

33

• V = {v1, . . . , vn} is a set of state variables. For each state variable vi ∈ V is associated a

finite discrete domain Dvi . The extended domain D+
vi of vi is defined as Dvi ∪ {u}, where

u stands for the undefined value. The total state space and partial state space are implicitly

defined as SV = Dv1 × . . .×Dvn and SV + = D+
v1 × . . .×D

+
vn . s[vi] denotes the value of

variable vi in state s.

• O is a set of operators Each operator o ∈ O is a triple 〈pre, post, prv〉where pre, post, prv ∈

SV
+, denote the pre-condition, post-condition and prevail-condition respectively. Every op-

erator o = 〈pre, post, prv〉 ∈ O is subject to the restrictions R1 and R2 where:

(R1) ∀v ∈ V if pre[v] 6= u then pre[v] 6= post[v] 6= u and

(R2) ∀v ∈ V , post[v] = u or prv[v] = u

• s0 ∈ SV + denotes the initial state of the problem.

• sg ∈ SV + denotes the goal state of the problem.

Restriction R1 ensures that a variable cannot become undefined if was made defined before by

an operator. Restriction R2 ensures that the prevail-condition of an action never defines a variable

which is affected by the operator. Prevail-condition of an operator must hold (as pre-conditions) in

order that the action can be executed, but are not affected by the operator as the pre-conditions. For

example an operator load for loading a cargo in a truck in a specific location has as pre-condition

the location of the cargo since the new location of the cargo after the operator is executed will

change to in the truck. In contrast the location of the truck is a prevail-condition since it is not

affected by the execution of the action. For the SAS+ action o = 〈pre, post, prv〉 ∈ O its

pre-condition, post-condition and prevail-condition are denoted by pre(o), post(o) and prv(o)

respectively.

And
rea

s S
ide

ris

34

For a SAS+ problem Π = 〈V,O, s0, s∗〉 a variable s ∈ V is defined in a state s ∈ SV + if

s[v] 6= u (where u is the undefined value). The state s is subsumed (or satisfied) by state t, noted

as s v t, if s[v] = u or s[v] = t[v] . This notion (v) is extended to whole states:

Definition 16 For a SAS+ problem Π = 〈V,O, s0, s∗〉 for any two states s, t ∈ SV +,

s v t if ∀v ∈ V it holds that s[v] = u or s[v] = t[v]

Definition 17 For a variable v ∈ V and two values x, y ∈ Dv such that x = u or y = u the

operation x t y is defined as:

x t y =


x if y = u

y if x = u

The above operation is extended to states as:

Definition 18 For two states s, t ∈ SV + , (s t t)[v] = s[v] t t[v],∀v ∈ V .

Definition 19 For a set of operators O the set of all operator sequences over O is defined recur-

sively as:

Seqs(O) = {〈〉} ∪ {〈o〉;ω|o ∈ O} and ω ∈ Seqs(O)}

where ; is the concatenation operator. All members P ∈ Seqs(O) are called plans.

Definition 20 For two given states s, t ∈ SV +, s⊕ t denotes that t updates s and is defined such

that ∀v ∈ V

(s⊕ t)[v] =


t[v] if t[v] 6= u

s[v] otherwise

And
rea

s S
ide

ris

35

The state that results from applying a sequence of actions to a state s is given by function γ

that is recursively defined as:

γ(s, 〈〉) = s,

γ(s, (ω; 〈o〉)) =


γ(s, (ω))⊕ post(o) if (pre(o) t prv(o)) v γ(s, (ω))

⊥ otherwise

where ⊥∈ SV + is the state such as ⊥ [v] = u,∀v ∈ V .

Definition 21 The relation Valid is defined recursively as the ternary relation V alid ⊆ Seqs(O)×

SV
+ × SV

+ for any sequence of actions 〈o1, . . . , ok〉 ∈ Seqs(O) and any states s, t ∈ SV
+,

V alid(〈o2, . . . , ok〉, s, t) if either of the following two conditions is true

1. k = 0 and t v s or

2. k > 0, pre(o1) t prv(o1) v s and V alid(〈o2, . . . , ok〉, (s⊕ post(o1)), t).

A plan 〈o1, . . . , ok〉 ⊆ Seqs(O) is a solution (or valid sequential plan) for the SAS+ problem

Π = 〈V,O, s0, s∗〉 if V alid(〈o1, . . . , ok〉, s0, s∗).

An action in the SAS+ formalism is an instantiation of an operator. Given an action a, type(a)

denotes the operator that a instantiates.

Definition 22 A partial-order (or parallel) plan is defined as the tuple 〈A,≺〉 where A is a set of

actions (i.e. instantiations of operators) and ≺ is a strict partial order on the set A. The partial-

order plan 〈A,≺〉 is a solution of the SAS+ planning instance Π if for each topological sort

〈a1, . . . , an〉 of 〈A,≺〉, it holds that 〈type(a1), . . . , type(an)〉 is a solution of Π.

Two very important structures for the State-Variable variable representation are the Domain

Transition Graph (DTG) and the Causal Graph. Their definitions follow [51].

And
rea

s S
ide

ris

36

Definition 23 Consider a planning problem in the SAS+ with a set variable V . The domain

transition graph Gv (DTG) of the variable v ∈ V is the digraph with vertex set D+
v and contains

an arc(d, d′) (d′ 6= u where u is the undefined value) iff there is an operator 〈pre, post, prv〉

where either pre[v] = d or pre[v] = u, and post[v] = d′ .

Definition 24 Let Π = 〈V,O, s0, S∗〉 a planning problem in the SAS+. Its causal graph is the

digraph (V,A) containing an arc(x, y) iff x 6= y and there exists an operator o ∈ O such that

post[y] 6= u and either prv[x] 6= u or post[x] 6= u.

3.2 Problem hardness and efficient solutions

The classical planning problem is PSPACE-complete [26] in general, and NP-complete for a

pre-determined finite bound plan length [26]. There are a number of works that study this theoret-

ical complexity. Two kinds of such works are decomposing the planning problem as in factored

planning, and identifying special cases of planning domains which are polynomial solvable. The

two approaches are briefly presented in this subsection.

3.2.1 Factored Planning

Factored planning was first presented in [3] by Amir and Engelhardt, although similar ideas

in planning are much older, based on hierarchical planning. The idea in factored planning is

to separate the planning domain in different components (or subdomains or factors -hence the

name) which loosely interact, organized in a tree-structure. Then planning is done in each factor

separately and finally the plans of the factors are synthesized to a plan for the whole domain.

Planning in a subdomain can be done by any planner. The challenge in factored planning is how

to factor the domain in different factors, how to organize these factors and how to plan using these

factors, especially how to synthesize the solution. Since factors are organized in a tree structure,

And
rea

s S
ide

ris

37

it’s easy to see that the worst time complexity becomes exponential in the size of the largest factor

plus the size of interactions between the factors. Two specific algorithms that follow this approach

are PartPlan [3] and LID-GF[25]. Both algorithms use tree decomposition, with the actions being

distributed among all the factors. Planning is performed recursively, by computing all possible

plans in all the subtrees of a factor, and then the subplans are merged, and planning proceeds in

the current factor. This is performed from the leaves factors up to the root factor where the final

plan (if any) will be returned. Although algorithms report good theoretical results, [25] especially

reports worst case complexity being exponentially better from [3], there are no experiments on

benchmarks for neither of the algorithms. Moreover minimum plan length is not guaranteed and

excessive memory is needed for many planning domains.

[77] presents the factor planning algorithm dTreePlan, which is the first algorithm for factored

planning with backtracking. dTreePlan is a complete optimal (in respect to planning horizon)

planner and it uses a decomposition tree to factorize the planning domain, using a tool based on

hypergraph partitioning. The nodes of the hypergraph are the actions of the problem and two

nodes are in the same hyperdge if they share at least one common variable (e.g. a precondition).

The hypergrpaph is recursively balanced bi-partitioned and planning is performed starting from

the root factor, from a factor to children factors. Experiments using the planning as satisfiability

approach (with SAT solver chaff) proved quite promising.

3.2.2 Syntactic and Structural restrictions

There are some special cases of propositional planning that are provably solvable in polyno-

mial time. An approach to find such subclasses of propositional planning is enforcing a number of

’restrictions’ on the planning domains and then devising dedicated deterministic polynomial plan-

ning algorithms for these classes of planning domains. There are two types of such restrictions, the

And
rea

s S
ide

ris

38

syntactic restrictions and the structural restrictions. Algorithms for syntactic restricted problems

assume the SAS+ representation of the problem and syntactic restrictions on the definition of the

problem. Bäckström and Klein [11] described four syntactical restrictions Post-unique (P), Unary

(U) , Binary (B) and Single-valued (S). A problem is P iff for each value for all state variables of

the problem, there is at most one action having it as post-condition, and is U iff all actions change

the value of only one state variable in their post-conditions. The problem isB iff all state variables

have domain of size two and S if there do not exist two actions that have as a prevail condition

different (both defined) values of the same state variable.

Bäckström and Klein [11] proved that optimal planning of SAS+ − PUBS class can be

performed in time O(m3), where SAS+ − PUBS are problems under P ,U ,B,S restrictions and

m is the number of state variables of the problem. Relaxing the restrictionB, Bäckström presented

a polynomial planning algorithm [10, 9] for SAS+−PUS optimal planning with time complexity

O(m2n), where n bounds the domain size of state variables. Bäckström and Nebel present a

polynomial algorithm for SAS+ − US (sub-optimal) planning in [12] with a time complexity

O(|M |4|A|) where M is the set of state variables and A is the set of operators of the problem.

Planning under structural restrictions [64] again assumes the SAS+ formalism, but this time

the restrictions are on the Domain Transition Graph (DTG) of each state variable. Five structural

restrictions are defined with respect to the DTGs of the problem: Interference-safeness (I), Acyclic-

ity (A) with the variants A+ and A− depending on the restrictions and Prevail-order-preservation

(O). A+ is more restrictive and A− less restrictive than Acyclicity (A). A SAS+ planning problem

is restricted from any of the above structural restrictions if all the DTGs of the problem satisfy

the restriction. The definitions of the five restrictions are found in [64]. A complete algorithm of

time complexity in O(|V |2|O|2M5) is presented in [64] that tests if a SAS+ problem satisfies the

IAO structural restrictions and then finds a plan (if the IAO restrictions are satisfied) in a time

And
rea

s S
ide

ris

39

complexityO(|V |3|O|2M5) , where V andO are the sets of state variables and (grounded) actions

respectively and M is the largest domain size among all the state variables of the problem.

Brafman and Domshlak [24] present another tractable subclass of STRIPS planning. As-

suming again the multivalued variables representation of the problem they present a non-trivial

tractable planning algorithm for plan generation for this subclass of planning problems. For this

class of problems the Unary (U) and Binary (B) syntactical restrictions hold, together with the

restriction that the causal graph of the problem is a polytree (a causal graph is a polytree if the

induced undirected graph is acyclic) with indegree of all nodes in the graph bounded by a constant

k. The authors present a sound and complete algorithm (procedure FORWARD-CHECK) for this

class of problems that returns false if a plan does not exist. Otherwise the algorithm first topo-

logical sorts the causal graph and then calculates the valid changes in values for all variables and

the order they must be conducted from the root to the leafs in a plan. Then FORWARD-CHECK

passes as input this order and the operators needed for the changes in a modified deterministic

Partial Order Planner (POP-PCG) that finds a plan in linear time (without backtrack). The time

complexity of FORWARD-CHECK is O(|V |2k+322k+2) for a problem with a state variable set

V . Another important result proved in [24] is that plan generation for STRIPS planning problems

under the Unary (U) syntactical restriction and acyclic causal graph is provably intractable (harder

than NP).

And
rea

s S
ide

ris

40

3.3 Planning algorithms

3.3.1 The Graphplan planner

Graphplan [20] builds a structure called the planning graph of a planning problem and then

searches for a subgraph that satisfies certain conditions in order to be a valid solution (valid plan

of the problem).

3.3.1.1 The planning graph: Reachability and mutual exclusion relations

A planning graph [20, 47] of a classical (propositional) grounded planning problem is a com-

pact representation of the state space of the problem. It is a directed layered graph with two kind

of nodes and three kinds of edges. The layers (also called levels) of the graph alternate between

proposition levels and action levels, containing proposition and action nodes respectively. The

first level of the planning graph is a proposition level containing the propositions that are in the

initial state of the problem. Then a layer with all applicable actions is added (these having all

their preconditions in the previous layer), then a layer with propositions that are the add-effects

of actions in previous layer, and so on. The levels from the earliest to the latest are propositions

that are possibly true at time 1 and actions that are possibly executable at layer 1, propositions

that are possibly true at layer 2 and actions possibly executable at layer 2 and so on. The three

kind of edges are precondition edges, add-edges and delete-edges. Precondition edges connect

actions of layer i with their preconditions in level i and add-edges (delete-edges) connect actions

of level i with the propositions of level i+ 1 in their add-list (delete-list). A special kind of action,

a ’dummy’ No-op(p) action is added for each proposition p to resolve the frame problem, having

empty delete-list, and preconditions and as add-effects the set {p}.

And
rea

s S
ide

ris

41

One of the powerful features of the planning graph is the ability to find and propagate (some)

mutually exclusive (mutex) relations between actions and propositions of the same level. Two

facts are mutually exclusive in a layer if they cannot be simultaneously true in any valid plan,

whereas two actions are mutually exclusive in a layer if they cannot be simultaneously executed

in any valid plan. More formally:

Definition 25 Two actions A1, A2 of a planning problem P = {I, A,G} are mutually exclusive

(or mutex) at planning graph layer t if they interfere or ∃p1 ∈ pre(A1) and ∃p2 ∈ pre(A2) such

that facts p1, p2 are mutually exclusive at layer t− 1 for all valid layers of the planning graph.

Definition 26 Two propositions p1, p2 of a planning problem P = {I, A,G} are mutually ex-

clusive (or mutex) at layer t of the planning graph if any action A in the planning graph of layer

t − 1 such that p1 ∈ add(A1) is mutually exclusive with all the actions A1, . . . , An such that

p2 ∈ add(Ai), 1 ≤ i ≤ n of layer t− 1 for all valid layers of the planning graph.

Recall from definition 12 that two actions interfere if the one deletes a precondition or an

add effect of the other. The mutexes are propagated in the planning graph from the initial state

to the final layer of the planning graph. Starting from layer 1, the only possible mutex pairs are

interference actions. At layer 2 two propositions are marked as a mutex pair if each action in

layer 1 that has the one proposition as an add-effect is mutex with each one of the actions having

the other proposition as an add-effect. The pairs of actions that are marked as mutexes at layer

2 are those that interfere, or a precondition of the one is marked as a mutex with a precondition

of the other. The marking of the mutex pairs of facts and actions proceeds in this way from one

graphplan layer to the next. The size of the planning graph is polynomial and is built in polynomial

time in respect to the size of the problem [20]. A planning graph ’levels off’ at a layer l, if l is

the first layer for which it holds that all the facts and actions of layer l exist in layer l − 1 and all

And
rea

s S
ide

ris

42

the mutex relations for facts and actions of layer l − 1 exist in layer l as well. All the layers of

the planning graph that follow l are the same both for variables and edges. A planning graph for a

small example problem is illustrated below.

Example 1 Assume a small problem domain containing one truck with a crane, two containers

and two locations. The truck can move from one location to the other location, load a container

if the container is in the same location as the truck and the truck is empty, and unload it to the

location of the truck provided the container is loaded in the truck. The truck can hold only one

container. At the initial state the truck T is in location L2 whereas both containers are in location

L1. The goal is to transfer both containers C1, C2 from location L1 to location L2. More formally

this problem P , P =< I,A,G > is defined as follows:

I = {at C1 L1, at C2 L1, at T L2}

G = {at C1 L2, at C2 L2} and

A = {Move(T, L1, L2),Move(T, L2, L1),

Load(T,C1, L1), Load(T,C2, L1), Load(T,C1, L2), Load(T,C2, L2),

UnLoad(T,C1, L1), UnLoad(T,C2, L1), UnLoad(T,C1, L2), UnLoad(T,C2, L2),

where the action descriptions are:

pre(Move(T, Li, Lj)) = del(Move(T, Li, Lj)) = {at T Li}, add(Move(T, Li, Lj)) =

{at T Lj } for all i, j ∈ {1, 2}, i 6= j.

pre(Load(T,Ci, Lj)) = {at Ci Lj , at T Lj}, del(Load(T,Ci, Lj)) = {at Ci Lj}

add(Load(T,Ci, Lj)) = {in Ci T} for all i, j ∈ {1, 2}.

pre(UnLoad(T,Ci, Lj)) = {at Ci Lj , in Ci T}, del(UnLoad(T,Ci, Lj)) = {in Ci T}

add(UnLoad(T,Ci, Lj)) = {at Ci Lj} for all i, j ∈ {1, 2}.

Figure 3 illustrates the planning graph for this example.

And
rea

s S
ide

ris

43

Figure 3: The planning graph for horizon 4 for the problem of example 1. For better readi-
ness in Ci T ,Move(T, Li, Lj),Load(T,Ci, Lj) andUnLoad(T,Ci, Lj) are illustrated as in Ci,
Mv(Li, Lj),Ld(Ci, Lj) and Un(Ci, Lj) respectively. Precondition edges are represented by lines
and add (delete) edges by arrows (dashed arrows). Goals are noted in bold. No-op actions (pre-
sented as NOP at time steps 1 and 2) of time steps 3 and 4 are not presented for better readiness.

3.3.1.2 Extending the planning graph and searching for solutions

The Graphplan planner builds an initial planning graph of k levels, where k is the minimum

number of levels (propositions and actions) such that in the last layer (after the actions of level

k− 1) all goals of the problem are present and not mutex. Then the planner searches the planning

graph using a backwards-chaining strategy to find a solution subgraph. It searches the graph level

by level, that is, starting from the goals at time t, it searches all the actions (including No-ops) of

time t − 1 having these goals as an add-effect. If such a set of actions is found (without any pair

of them being mutex) supporting the goals, then their preconditions at time t− 1 become the new

goals and the algorithm searches actions that support them at time t − 2 and so on, until a set of

actions in time 1 is found. An action is not selected if it is mutex with all actions making a goal true

ahead in the list. If no solution is found after searching the planning graph, the graph is extended

with another level extending the graph with actions applicable to the previous goal layer, and then

a layer with their postconditions being the new layer. Then the extended graphplan is searched

And
rea

s S
ide

ris

44

for a solution. While searching the graph if a set of (sub)goals at a time point t is found to be

unsolvable it is stored in a hash table indexed on t as a ’no-good’ (a method called memoization)

in order to be used later for pruning. These no-goods are also used for the termination condition

of the graphplan planner, when a plan does not exist [20].

3.3.2 Graphplan and Constraint Satisfaction

In [65] the planning graph structure is considered as a dynamic CSP (DCSP) with variables

being the propositions of the planning graph. A dynamic CSP is an extension of the CSP such

that each variable of the problem is associated with an activity flag, indicating whether a variable

is active or not. An implementation in LISP of CSP techniques was built over graphplan concep-

tualized as the described DCSP problem, including explanation-based learning, dynamic variable

ordering, forward checking and non chronological backtracking, yielding to speedups over when

those techniques were not used.

In [81] the planning graph is directly compiled to a CSP, but the action mutexes that are added

correspond only to the actions that interfere, not to competing needs. It is shown (both theoretically

and in practice) that by enforcing an initial (2, 2)-consistency the (binary) constraints added are

a strict superset of the constraints that correspond to the action mutex constraints. Experimental

results using a general CSP solver showed a significantly better performance in most benchmarks

over Graphplan planner.

3.3.3 Graphplan and SAT: The BLACKBOX, SATPLAN and MaxPlan planning systems

An approach similar to the compilation of the planning graph to a CSP is the compilation of

the planning graph to SAT. The first work in this context is due to Kautz & Selman in [72] back

to 1992. In [73] the same authors achieved orders of magnitude speedups over Graphplan (which

And
rea

s S
ide

ris

45

was one of the best optimal domain independent planners at that time) in many domains by using

the local search SAT algorithm walksat. A combination of Graphplan and SATPLAN (SATPLAN

is the framework for planning in SAT regardless of the SAT solver) was created in the Blackbox

system [75].

There has been extensive research regarding what is considered to be a ’good’ (automatic)

translation of a planning domain to a SAT theory. Besides the obvious need for a correct translation

regarding soundness and completeness, a translation is considered better than another if leads in

an improvement of the solution times when employed by a modern SAT solver. Compilations

are often characterised by a tradeoff between the number and size of clauses and the number of

variables. Usually keeping the number of variables low increases the number or size of clauses and

vice versa. After the innovative work in [72], the ’classical’ paper is considered to be [71], where

various translations of propositional planning domains to SAT are presented and theoretically

analyzed. In [42] more encodings from those in [71] are described, as the result of an automatic

translator implementation. In the community today more translations are based on translating the

planning graph of the problem, as in Blackbox, SATPLAN and MaxPlan planners. There are some

works explaining the planning graph construction and ’connecting’ the planning graph with other

encodings of the problem. In [44] Geffner proves that there is an exact correspondence between the

computation of the planning graph and the iterative computation of prime implicates of size one

and two over the logical encoding of the problem with the goals removed. In [99] Rintanen proves

that the construction of the planning graph is covered by a restricted form of clause learning (of

clauses of size 2) on the logical parallel encoding of the problem (again with the goals removed).

Blackbox [75] was the first system that combined Graphplan and SATPLAN. In Blackbox,

Graphplan creates a planning graph, and then either a SAT solver or the Graphplan algorithm

And
rea

s S
ide

ris

46

solves the problem. In fact, when the system was first released it used a variety of SAT solvers,

such as the systematic solvers satz and rel sat and the local search SAT solver walksat.

The SATPLAN framework is one of the best optimal domain-independent planners available

today. The general idea is to first construct the planning graph, then translate this graph into a SAT

theory, which is solved by a SAT system. There are differences in the compilations of the planning

graph to SAT. For example SATPLAN in 2004 considered only action variables [72], whereas in

2006 competition SATPLAN used a different SAT compilation with action and fact variables.

The new SMP encoding implemented in the context of this research, which is described in next

chapter, speeds-up the planning procedure. Different encodings are presented in detail in chapter

4.

MaxPlan [128] is a another system based on SATPALN framework. MaxPlan achieves opti-

mality in the opposite direction: It first finds a suboptimal plan invoking a fast suboptimal heuristic

planner (the Fast Forward) and then it repeatedly reduces the makespan of the plan finding a plan

for each one until it proves unsatisfiability. The search engine is a SAT solver that is ’customized’

(based on minisat solver [40]) to perform better in planning domains under 2004 SAT encoding

that it uses. Among other features it employs a different heuristic (preferring variables in non-

binary unsatisfied clauses), and implied binary clauses (long distance mutual exclusion - londexes

[30]). We study extensively londexes [30] in chapter 4.

3.3.4 Madagascar planner

The Madagascar planner [102, 101] is also based on the well known framework of planning as

satisfiability [72]. The most significant feature of the planner is a novel heuristic used in the SAT

solver, that exploits the underlying structure of the planning problem.

And
rea

s S
ide

ris

47

The variable selection mechanism is based on the simple property that all plans share: All

problem goals must be made true by actions, as well as the preconditions of these actions must be

made true by (other) actions unless they are true in the initial state. The first step in the selection

of a decision variable is to find the earliest time point at which a goal (or subgoal) l for time t can

become and remain true. This is done by going backwards from t to time point t′ < t for which

one from the three cases below holds:

1. An action that makes true l is taken. In this case the plan has an action that makes l true.

2. Literal l is false and is either true or unassigned thereafter. In this case an action that makes

l true in t′ + 1 is chosen, and is used as the new decision variable.

3. The third case is that the initial state is reached and l is in the initial state, hence nothing is

done in this case.

This simple heuristic was experimentally proved to speed up SAT planning for satisfying in-

stances, but did not performed so well for unsatisfied instances against the VSIDS heuristic of the

CDCL planner. The overhead to calculate the heuristic is not much greater than VSIDS. Refine-

ments implemented in this heuristic include a (sub)goal ordering based on an estimation of which

(sub)goal is most likely to be true first. The earliest a (sub)goal is estimated to be true, the higher

the priority that is assigned. Moreover an action ordering is implemented. For an action a of a

time point t the action ordering is based on the number of time points t′ following t such that the

variable a in t′ is unassigned. The action with the minimal score is then selected. Rintanen also

experimented with computation of several actions: that is, computing a set of some fixed number

of actions and then picking randomly one of them.

The encoding that is used in Madagascar planner is the ∃-step encoding [103]. In traditional

encodings (called ∀-step encodings in [103]), actions that interfere cannot be true in the same

And
rea

s S
ide

ris

48

parallel step and therefore are constrained using binary constraints (mutexes) in the encoding.

The ∃-step encoding relaxes the traditional encodings by requiring that there is at least one total

ordering of the parallel actions and hence the encoding is linear in the number of action effects.

The planner also uses powerful invariant algorithms as in [100] to discover any invariants (facts

that are in initial state and will remain true after any number of actions) to further reduce the

encoding.

The planning procedure used in the planner is not the usual solve and expand method [72] for

increasing planning horizons, but instead is the algorithm B formalised in [97] with parameter

γ = 9
10 . The algorithm interleaves the solution of several horizon lengths simultaneously and the

satisfiability test for a formula of horizon n can be started (and also completed) before a test for

a horizon less than n ends. This is important since the algorithm is not stuck in large unsatisfied

formulas. Algorithm B allocates CPU time to formulae Φ1,Φ2, · · · ,Φn for different planning

horizons proportional to γn. At any given time n is at most 20. If some instance of a horizon say

k is proved unsatisfiable, the algorithm immediately discards any threads for horizons less than k

and starts new threads. The planner plans for horizon lengths being integer products of 5, that is

0,5,10 and so on.

Experiments that were performed proved the effectiveness of the planner. The planner proved

to lift the efficiency of SAT-based planning close to the same level with earlier best planners. In

chapter 6 we experimentally compare Madagascar planner with our planner PSP-H which also

uses SAT-solving to solve the planning subproblems that arise in the planning problems.

3.3.5 State Space Planners

The simpler and older planners are the state-pace planners. They are actually search algorithms

that perform a search in the state-space of the problem. Many modern state space planners (some

And
rea

s S
ide

ris

49

of which will be presented in this section), enhanced with powerful heuristics, are among the best

available planners.

3.3.5.1 Forward and Backward Search

There are two ’traditional’ ways to search for a plan in the state space, forward search and

backward search. Given a planning problem with the descriptions of operators and a planning

domain with an initial state S0 and a goal setG, forward search begins from S0 and moves forward

trying to reach a goal state. It begins with the empty plan; if G ⊆ S0, then the goals of the

problem are satisfied and no plan is needed, else it expands S0 via an action(s) to a state S′ (this

is a branching point). A plan is found if a state is reached being a superset of all problem goals.

Backwards search searches for a plan in the opposite direction, from the goals to the initial state.

3.3.5.2 Heuristics for Forward state-space planning: Relaxation Methods

Most of the heuristics developed for forward search-state planners are based on the rational

intuition to proceed forward ’as close to goals as possible’. Since classical planning is PSPACE-

complete more domain-independent heuristics are derived from approximations, or relaxations, of

the planning problem. The most common and useful domain-independent relaxation [45] is the

delete-relaxation. The delete-relaxation maps a propositional planning problem P = (I, A,G)

to the problem P+ = (I, A′, G) where the set of actions A′ is the same as the set of actions A

but ∀α′ ∈ A′ the del(α′) is set to ∅. Although optimal planning for P+ is NP-hard, sub-optimal

planning is polynomial [26]. Two heuristics based on the idea of delete-relaxation are the additive

and the max heuristics [45]. For a problem P = (I, A,G) the additive heuristic of a state of the

problem s is defined as:

hadd(s) =
∑
g∈G

hadd(g; s)

And
rea

s S
ide

ris

50

where:

hadd(p; s)) =


0 if p ∈ s

min
a∈Add(p)

(1 + hadd(Pre(a); s)) otherwise

and

hadd(Pre(a); s) =
∑

p∈Pre(a)
hadd(p; s)

In the expressions above hadd(p; s) is the estimated cost of achieving fact p from s, Pre(a)

represents the preconditions of action a and Add(p) the actions having p in their add effects.

The max heuristic hmax(s) is defined exactly as above with the difference that the
∑

operator is

replaced with the operator max. Although the hmax is admissible and hadd is not, variations of

hadd are used in many planners such as in [22, 116]. The reason is that hmax is less informative

than hadd and therefore is seldom used in practice. Another heuristic that is extremely simple and

works surprisingly well for some domains as the visitall is the number of unachieved goal heuristic

(hug(s)) that simply counts the number of unachieved problem goals in the state s. Many state-

planners exploit the graphplan structure to calculate heuristics, such as the HSP planning system

[21] and Fast Forward (FF) [55, 57]. Any of these heuristics can be used to evaluate states in a

forward search planner built as a heuristic search algorithm , such as Best-First Search, A∗ and

Hill Climbing [45].

Katz et al. [70] proved tractable fragments of STRIPS planning when the delete lists are

set to ∅ for some (instead of all as in delete-relaxation) of the actions of the problem. In the

red-black relaxation of the problem (in the state-variable representation) Π = 〈V,O, s0, s∗〉 the

set of variables V is divided to two disjoint sets, the ’red’ variables V R that take the relaxed

semantics and the ’black’ variables V B that take the regular semantics. Any action a affecting a

state variable v updates s[v] to s[v] = (s[v] ∪ post(a)[v]) if v ∈ V R and to s[v] = {post(a)[v]}

And
rea

s S
ide

ris

51

if v ∈ V B . Katz et al. in [70] proved two tractable fragments under the red-black relaxation.

The first one requires a fixed number of black state variables and fixed domain size for each

one of them. The planning algorithm for this fragment is exponential in
∏

v∈V B

|Dv| which is

usually too large to be used in practice. The second result they proved in the same work is that

plan existence for red black relaxation of a problem Π is tractable if Π is reversible and the size

of the largest strongly connected component of its black causal graph (the subgraph of causal

graph over the V B variables) is bounded by a constant. The red black relaxation problem Π

is reversible if for any reachable state s from s0, ∀v ∈ V B there exists an action sequence ω

such that γ(s, (ω))[v] = s0[v]. This result also cannot be used in practice because tractability is

proved for plan existence and testing reversibility for Π is co-NP-hard. In a later work [69] the

authors relaxed the (above) definition of reversibility of a red black planning problem to the weaker

definition of RSE-invertible. This (weaker) definition is based on the existence for any action a

affecting a black variable of an ’inverse’ action a′ . The red black problem is RSE-invertible if

all v ∈ V B are RSE-invertible, and a problem can be verified to be RSE-invertible in polynomial

time. The authors proved that plan generation for a red black RSE-invertible planning problem

with acyclic black causal graph is polynomial. They implemented an algorithm based on the

above result inside the FastDownward framework (a state space planner) that for each candidate

successor state s builds (and polynomially solves) a red black relaxation for the problem in order

to calculate the heuristic score of s. Experiments on the domains from the IPC showed better

runtimes and reduced search spaces of the red-black relaxation than the delete relaxation.

3.3.5.3 Landmarks

Informally a landmark is a fact that must be true at a time point in any valid plan of a problem.

Obviously initial conditions and goals are trivially landmarks. If f is found to be a landmark, then

And
rea

s S
ide

ris

52

if f being true implies that f ′ must be true at some point before f in any valid plan, then f ′ is also

a landmark and the order relation f ′ < f holds. An action landmark is an action that is present in

any valid plan of a problem.

Hoffmann, Porteous and Sebastia first introduced landmarks in [90, 58]. Because finding all

landmarks is PSPACE-complete [90], approximations are usually used. [90, 58] presents a two

step backchaining process that identifies (some) of the landmarks and (some) of the orders be-

tween them. The landmarks and their orders are stored in a directed acyclic graph, the landmarks

generation graph (LGG). In a first step the LGG graph is computed from the goals backwards to

the initial facts. The goals are the first candidate landmarks. Then for any candidate landmark L′,

any fact L′′ that has not yet been processed and is in the intersection of the preconditions of the

’earliest’ (closest to initial state) actions that have L′ as an add effect is added as a candidate land-

mark with the edge L′′ → L′ in the LGG graph. After the first step, in a second step any candidate

landmark L (and its incident edges) is removed from the graph if the relaxed planning problem

without actions having L as an add effect and ignoring all the delete lists from rest of the actions is

unsolvable. After computing the LGG graph, in [58] the landmark graph was used in conjunction

with FastForward (FF) and LPG [46] planners (that were state of the art at the time) to speed up

planning. First the LGG graph is computed, and then the LGG graph passes the landmarks as

disjunctive goals to the base planner (LPG or FF) which runs as an independent procedure. All the

leafs of the LGG graph (nodes without incoming edges) are passed as a disjunctive goal to the base

planner, and are removed from the LGG (and their incident edges). The algorithm iterates until

LGG becomes empty, and then the original goals of the problem are passed to the base planner.

Experimental results on various domains showed improved performance in runtimes against the

base planners without using the landmarks graph, but often with longer plans.

And
rea

s S
ide

ris

53

Zhu and Givan in [129] use the planning graph to find causal landmarks of a planning problem

in polynomial time. A fact landmark is causal if any solution plan contains an action having

this fact as a precondition. In order to find causal landmarks, a planning graph is build, but

more information (instead of only mutex fact/actions pairs), called labels, that are sets of action

landmarks and facts landmarks are propagated during the extension of the planning graph. They

used landmark extraction with some enhancements that are described in the paper in a heuristic

planner they called LC. LC achieved slightly worse times when FastForward planner (FF) (being

the state of the art at that time) performed well, but was much faster when FF performed badly.

In [95] Richter, Helmert and Westphal use landmarks to derive a pseudo-heuristic and combine

it with other heuristics in a search framework with remarkable results in planning time, as well as

in planing quality (shorter plans). Their approach is based on the SAS+ formalism [12] of the

planing problem, and they find landmarks in a similar way as in [89] but different in a few ways.

The algorithm is adapted to SAS+, and they use a different approximation for first achievers

as well as a more general approach to find disjunctive landmarks (with maximum set size 4) as

described in [89]. Moreover, by using the DTG′s of the SAS+ formalism, they discover more

landmarks. If for a variable v every path in the corresponding DTG from the value of v in the

initial state towards a landmark value d′ passes through a value d then d is also a landmark and

d is ordered before d′, noted as d < d′. Finally the order A < B holds for any two landmarks

A and B already found if B is not found to be possibly before A [89] (where possibly before is

an approximated sufficient condition). The use of the landmarks found in the pseudo-heuristic is

presented in section 3.3.5.6.

Karpas and Domshlak in [66] present the usefulness of landmarks in a best-first search algo-

rithm for cost-optimal planning (actions in cost-optimal planning are associated with non-negative

And
rea

s S
ide

ris

54

costs). The authors used the method described in [95] to approximate landmarks and their order-

ing, in conjunction with action landmarks in [129]. Their system, the LM-A* planning system,

was experimentally found to be very effective for cost-optimal planning.

3.3.5.4 FastForward planner

The FastForward planner (FF) [55, 57] is a forward search state space planner. The heuristic

of FF [55, 57], hFF (s) evaluates the state s by building a graphplan with an initial state s and

counts the number of all actions (not the No-ops) to reach all the goals of the problem. The

FF planner starts from the initial state and uses enforce hill climbing to find a state with better

evaluation than the current state (starting from initial state). On a state s, it evaluates all the direct

successors, where a direct successor of a state s is a state that is produced by the execution of an

applicable action. In the case that none has a better heuristic score from current, it looks at all the

two-step successors and so on until a better state s is found, and the path of actions from s to s′ is

added to the plan. If FF gets stuck in a local minima it switches to weighted A∗[108] from scratch

(replans from the initial state). Two other techniques of the FF planner that are used to prune the

search space in the enforced hill climbing are the helpful actions and added goal deletions. The set

of helpful actions H(s) of a state s is defined as H(s) := {α|pre(α) ⊆ s, add(α) ∩G1(s) 6= ∅}

where G1(s) is the set of goals that is constructed by the relaxed graphplan at time step 1 with

initial state (at time step 0) the state s. During enforced hill climbing, if the current state is s, the

only successors that are considered are those that emerge from actions of the set H(s). The added

goal deletions technique eliminates any state s from the expansion list if in the relax solution

plan from s there is an action that deletes a goal (in action’s not relax version). The FastForward

planner was experimentally proved to be among the fastest planners of its time for many different

domains.

And
rea

s S
ide

ris

55

3.3.5.5 FastDownward planner

The FastDownward planner (FD) [52, 53] shares some similarities with the FF planning sys-

tem. FastDownward like FF planner is a state space forward search (or progression) planner.

However in contrast to other state space planners which use the propositional representation of the

planning, FD translates the input (the translation procedure is described in [39]) in a sate-variable

representation. FastDownward prior to search exploits this representation by using hierarchical

decompositions of planning tasks in order to build the causal graph to compute a heuristic func-

tion, the causal graph heuristic. In order to compute the causal graph heuristic, first a relaxed

acyclic graph is computed from the actual causal graph. Then the computation of the causal graph

heuristic is performed by traversing the graph in a top down direction starting from the goal vari-

ables without causal predecessors. The algorithm for calculating the heuristic is based on the

Dijkstra’s algorithm for the single-source shortest path problem. Since the algorithm for calculat-

ing the heuristic is an approximation, it can be the case that the heuristic score of a non-dead end

state is found to be (wrongly)∞. This happens rarely in practice therefore FD treats these states

as dead ends. However if all states have score ∞ FD implements a sound method to verify that

they are real dead ends. If they are, it reports that the problem is unsolvable, otherwise it swhiches

to the FastForward heuristic. Details for the computation of the heuristic can be found in [51].

The heuristic score is used to perform search in three different search algorithms, greedy best

first search algorithm, multi-heuristic best-first search and focused iterative-broadening search.

The system also supports the use of preferred operators (helpful actions) as in FF system in an

orthogonal manner with the causal graph heuristic. Greedy best first search is the standard algo-

rithm [108] modified with a technique to mitigate the effects of wide branching. Multi-heuristic

best-first search is a variation of greedy best first search that uses multiple heuristic estimators

And
rea

s S
ide

ris

56

including the heuristic of FastForward, maintaining separate open lists for each one. Focused

iterative-broadening search instead of using heuristic estimators focuses on a limited operator set

derived from the causal graph in order to reduce the set of search possibilities.

3.3.5.6 LAMA planner

The LAMA planner [96, 94] is a highly optimised implementation of a forward heuristic

search planner that builds on the FastDownward planning system. LAMA is a state of the art

in propositional planning. Its core feature is the use of a pseudo-heuristic based on the landmarks,

in combination with a variant of the FastForward heuristic [55, 57]. LAMA (as the FastDown-

ward system) consists of three separate components: I) The translation module that transforms

the input PDDL problem into state variables representation, II) the knowledge compilation mod-

ule that builds the Domain Transition Graphs and other structures that will be used in search, and

III) the search module that performs the actual planning. The two first modules are used in other

planners as well, such as the PSP-H planning system implemented in the context of this thesis and

presented in chapter 6.

The method for finding ladmarks in LAMA planner is briefly described in section 3.3.5.3

as it appears in [95]. LAMA uses landmarks in heuristic search to estimate the goal distance

from a state s. This number is estimated as l̂ = n − m + k where n is the total number of

landmarks, m is the number of landmarks that are accepted, and k is the number of accepted

landmarks that are required again. A landmark is accepted in a state (and will remain accepted

in all successor states) if it is true in that state and all landmarks ordered before it are accepted in

the predecessor state. An accepted landmark is required again in state s if it is not true in s and is

the greedy-necessary predecessor of a landmark which is not accepted. This heuristic was used in

the FastDownward framework [52] in combination with a variant of hFF heuristic and preferred

And
rea

s S
ide

ris

57

operators (an operator is preferred if it achieves an acceptable landmark) in an orthogonal manner.

Experimental results in a variety of domains verified the improvement both in planning time as

well as plan quality (shorter plans) against not using landmark information but also against older

ways of using landmarks, as in [58].

There are two algorithms for heuristic search implemented in LAMA planner:

1. A greedy best-first search that finds a solution as quickly as possible.

2. A weighted A* search which allows a balance between speed and solution quality.

The greedy-best first search always expands the state with minimal heuristic score among all

candidate states, breaking ties in favour of states that are reached by cheaper operators. Details for

the planner as well as the extensive experimental results showing the effectiveness of the planner

are found in [96].

3.3.5.7 PROBE planner

The PROBE planner [80, 79] is a standard, complete forward search Greedy Best First Search

(GBFS) planner that employs the usual additive heuristic to expand a new state. The key difference

from GBFS is that before expanding a new state it launches a ’probe’ from the current state to reach

the problem goals. A probe is a sound polynomial procedure that starting from a state attempts to

reach the goals through a sequence of actions (plan). If the probe reaches the goals the PROBE

planner returns the plan, whereas in the case that the probe fails, each state visited by the probe

procedure is added to the open list of the algorithm and a state is selected using the additive

heuristic.

The probe procedure first approximates the landmarks and their order from the starting state

towards the goals in a very similar manner as the LAMA planner. Then it tries to find a sequence

And
rea

s S
ide

ris

58

of actions (without search) from the next unachieved landmark to the following in the order. The

selection of actions is done in a greedily way, trying to find the most ’suitable’ action without

violating any commitments. An implementation of the PROBE planner in C++ experimentally

proved to be competitive with the state of the art planner LAMA. Moreover a single probe from the

initial state solved 683 out of 980 problems of previous planning competitions (in 2011) without

any search, which compares well with the 627 problems solved by the FF planner.

3.3.6 Partial Order Planners (POP). CPT and eCPT planners

Partial order planners (POP) plan in a different way from state-space planners. Their search

space is not the state space of the problem. The search space of POP planners is the plan space.

Initially a ’plan’ which is invalid either because actions are missing or the order of actions is

inconsistent etc. is created, and gradually the plan is refined by adding actions and reordering

them in the plan until a valid plan is found, if one exists.

3.3.6.1 Causal links, threats, partial orders and partial order planning

A partial plan is a tuple [47] π = (A,<,B,L), where:

• A = {a1, a2, · · · , ak} is a set of (partially) instantiated planning operators.

• < is a set of binary ordering constraints on variables of A.

• B is a set of binding constraints on the variables of A.

• L is a set of causal links of the form ai[p]aj (followed the symbolism in [121] instead of

[47]) such than {ai, aj} ⊆ A, (ai < aj) ∈<, p ∈ pre(aj) ∩ add(ai) and the binding

constraints for actions ai and aj appearing in p are in B.

And
rea

s S
ide

ris

59

The plan space is the space of partial-plans, and searching the plan-space corresponds to per-

forming refinement operations. These refinement operations are 1) add an action to A, 2) add an

ordering constraint in <, 3) add a binding constraint in B and 4) add a causal link in L. An action

ak threatens a causal link ai[p]aj if ai < ak and ak < aj and ak has a delete effect p or an add

effect q such that p and q are inconsistent under the binding constraints. A flaw in a partial plan

π = (A,<,B,L) is either a subgoal i.e. a problem goal or the precondition of an action in the

plan without a causal link, or a threat to a causal link. A plan π = (A,<,B,L) is a solution-plan

(a valid plan to the problem) iff 1) the < and B constraints are consistent, and 2) it has no flaws.

A partial order planner (POP), or Partial Order Causal Link (POCL) planner may be implemented

as a backtracking algorithm. The POP maintains a list of the flaws of the problem that is trying to

resolve, which are open goals needed to be supported (a fact is supported if an action in A adds

it) and threats. Initially the flaws list contains the goals of the problem. At each recursive step a

flaw is selected, and the algorithm branches to all possible ways of resolving the flaw, e.g. adding

causal links, ordering or binding constraints. The preconditions of any new actions added become

open goals and are added to the flaws list with any new threats. A valid plan is found if the flaws

list becomes ∅.

3.3.6.2 Heuristics for POP planners

POP planners choose a flaw that must be resolved, and a resolver to resolve that flaw. Obvi-

ously, this corresponds to a search in an AND/OR tree with alternating levels of flaws and resolvers

where AND branches are the flaws (since all must be resolved) and OR branches are the resolvers

(since only one is needed to resolve a flaw) [47]. Hence a heuristic for selecting a flaw to be re-

solved is the Fewest Alternatives First (FAF) heuristic that is selecting the flaw with least resolvers

(as being the most constraint one) [47]. A simple heuristic for choosing a resolver is selecting the

And
rea

s S
ide

ris

60

revolver that minimizes |gπ| when applied, where gπ is the set of propositions in the partial plan

π without causal links [47]. A more informative heuristic, that is based on a relaxation calculated

by building the planning graph of the problem before search, is described in [47].

3.3.6.3 Constraint propagation for optimal partial order temporal planning

Vidal and Geffner implemented two Optimal Temporal Partial Order Causal Link (POCL)

planners, the CPT [121] and the more extended eCPT [120] systems. The main differences/contributions

in their approach over the standard POP planning framework (as was briefly described) is the en-

hancement with new powerful pruning mechanisms, being able to propagate constraints and prune

domains for actions that are not part of the active partial plan. These propagation methods are pow-

erful enough so that many of the classical planning benchmarks in the 2nd and 3rd International

Planning Competitions were solved backtrack-free, with run times competitive to other state of

the art solvers of that time as BLACKOX and SATPLAN for propositional planning domains (all

action durations are set to 1 in the CPT and eCPT to ’simulate’ classical planning). Although

other components of the planners such as branching and heuristics are interesting and significant,

they are not presented here and details are found in [120, 121].

eCPT planning system is a temporal POP planning system built over the POCL framework.

Each action is realized as a Strip operator with add-list, delete-list and precondition-list and with

a constant integer duration. The basic formulation of eCPT can be described in four parts, prepro-

cessing, variables, constraints and branching.

At preprocessing phase the heuristic values h2T (α) and h2T ({p, q}) for each action and each

pair of atoms are computed as in [50], providing lower bounds for the starting time of α and the

starting time of the pair {p, q} (the calculation of the family of tractable heuristics hm can be

found in [49]). h1T is used to calculate minimum distances between actions: For two actions α

And
rea

s S
ide

ris

61

and α’, a lower bound approximation for the starting times of α and α’ denoted as dist(α, α′), is

calculated and stored.

Variables and their domains are of four kinds:

1. T (α) :: [0,∞] encodes the starting time of action α (being in [0 · · ·∞])

2. S(p, α) encodes the action supporting the precondition p of action αwith domain all actions

of the planning problem having p as an add effect

3. T (p, α) :: [0,∞] encodes the starting time of S(p, α)

4. InP lan(α) :: [0, 1] indicating ifα is in the plan (T (Start) is set to zero, and InP lan(Start)

as well as InP lan(End) are set to true at initialization)

Constraints basically correspond to disjunction rules and precedences or their combination, to

temporal constraints being propagated by bounds consistency. Constraints are of five kinds:

1. Bounds: stating that for each action α

T (Start) + δ(Start, α) ≤ T (α) and T (α) + δ(α,End) ≤ T (End). (where δ(α′, α) is

defined as dur(α′) + dist(α′, α) and dur(α) is the duration of action α in the problem

specification)

2. Preconditions: stating that

T (α) ≥ min
α′∈D[S(p,α)]

(T (α′) + δ(α′, α)) (where D(X) denotes the domain of variable X).

T (α) ≥ T (p, α) + min
α′∈D[S(p,α)]

δ(α′, α)

T (α′) + δ(α′, α) > T (α)→ S(p, α) 6= α′

3. Causal link constraints: stating for all actions α and p being a precondition of α that is

e-deleted by action α’, then

And
rea

s S
ide

ris

62

(T (α′) + dur(α′) + min
α′′∈D[S(p,α)]

dist(α′, α′′) ≤ T (p, α))
∨

(T (α) + δ(α, α′) ≤ T (α′))

4. Mutex constraints: stating that for effect interfering actions [120, 121] α and α′:

(T (α) + δ(α, α′) ≤ T (α′))
∨

(T (α′) + δ(α′, α) ≤ T (α))

5. Support constraints: relating T (p, α) and S(p, α) by

S(p, α) = α′ → T (p, α) = T (α′)

T (p, α) 6= T (α′)→ S(p, α) 6= α′

min
α′∈D[S(p,α)]

T (α′) ≤ T (p, α) ≤ max
α′∈D[S(p,α)]

T (α′)

Except for the above constraints, a number of other constraint propagators is used in eCPT.

These are impossible supports, unique supports, distance boosting, qualitative precedences and

action landmarks. Impossible supports may eliminate at preprocessing time actions from the

domains of S(p, α) variables. For example if action α′ may support the precondition p of action

α which has another precondition p′ being e-deleted by α′ (hence must be re-established), and all

other actions supporting p′ are incompatible with causal link α′[p]α, then α′ cannot be a support

of α and S(p, α) is updated to S(p, α) \ {α′}. In unique supports binary constraints of the form

S(p, α) 6= S(p, α′) are posted for actions α and α′ both having p as a precondition and as a

delete effect. The lower bounds on the distances of actions α, α′ computed at preprocessing

(indicated as dist(α, α′)) can be ’boosted’ (hence the name distance boosting). For example

although the distance of action putdown(b1) and pickup(b1) (b1 being a block in a block domain)

is dist(α, α′) = 0, it can be safely updated to dist(α, α′) = 1, since action pickup(b1) cancels

putdown(b1) (an action α cancels action α′ if every fact added by α′ is e-deleted by α and every fact

added by α is a precondition of α′). eCPT planner along with temporal precedences incorporates

qualitative precedences for actions α, α′ of the form α < α′ for all actions, even those not in the

And
rea

s S
ide

ris

63

plan. The transitive closure of the qualitative constraints is being kept as an invariant in the planner

and is used to further propagate constraints with the use of the following two inference rules : 1)

for an action α′ in the plan adding a precondition p of action α if α ≺ α′ then S(p, α) 6= α′ and

2) for an action α′ adding a precondition p of action α and an action b in the plan that e-deletes

p: if α′ ≺ b and b ≺ α then S(p, α) 6= α′. eCPT planner includes action landmarks at the

preprocessing step, that are approximated by building a relaxed planning graph for each action.

An action α is a landmark if removing it from the domain makes a goal unreachable. If when

removing action b the action landmark α becomes unreachable then b is also an action landmark

and moreover they are ordered as b ≺ α.

3.4 Summary

In this chapter the most significant elements of propositional planning were briefly presented.

We presented some necessary preliminary definitions and properties of propositional planning

problems and their solutions, but we emphasised on the presentation of propositional planners and

the key elements that these planners share. Such planners are the Graphplan planner, planners

that translate the planning graph in CSP or SAT, state space (or heuristic) planners and partial

order planners. The work in this thesis is related to planning as satisfiability framework, that is

building a planning graph, translate it to SAT and invoke a SAT solver in order to find a plan

for successively larger planning horizons until a plan is found. More precisely, the SMP planner

presented in chapter 4 follows the general planning as satisfiability framework but translates the

problem to SAT in a novel more efficient way (wrt constraint propagation and runtimes of SAT

solving). The new ideas for planning as pseudoboolean optimization in chapters 5 and 6 also

rely on the SMP translation and SAT solving. Heuristics in state space planners usually rely on

relaxations, for example the delete relaxation. The PSP-H planner implemented in the context of

And
rea

s S
ide

ris

64

this work presented in chapter 6 is an attempt to incorporate ideas, such as the relaxation, from

heuristic search planners into SAT-based planners (as is PSP-H).

And
rea

s S
ide

ris

Chapter 4

Constraint Propagation in Propositional Planning.

The SMP system

In this chapter we present a comparison between different encodings of planning as satisfia-

bility wrt the constraint propagation they achieve in a modern SAT solver. This analysis explains

some of the differences observed in the performance of different encodings, and leads to some in-

teresting conclusions. For instance, the BLACKBOX encoding achieves more propagation than the

one of SATPLAN06, and therefore is a stronger formulation of planning as satisfiability. More-

over, our investigation suggests a new more compact and stronger model for the problem, called

SAT-MAX-PLAN (abbreviated as SMP). The SMP encoding is a strict superset of the strongest

among the three BLACKBOX encodings, which is the BB-31. SMP dominates all the encodings of

SATPLAN06 and BLACKBOX wrt unit propagation, as we formally prove in this chapter. We also

prove that in SMP many of the londex constraints are redundant in the sense that they do not add

anything to the constraint propagation achieved by the model. Experimental results suggest that

the theoretical results obtained are practically relevant. Finally we investigate experimentally the

effects of adding more implied non-redundant binary constraints to the SAT encoding (in SMP),

and we found strong evidence suggesting that it does not bring substantial gains wrt run times.

65

And
rea

s S
ide

ris

66

4.1 Introduction

As discussed in Chapter 3, after many years of research, there exist nowadays many differ-

ent encodings of propositional planning as satisfiability, including those of BLACKBOX [75] and

SATPLAN06 [76]. In most of the studies these formulations are compared experimentally, and

little is known about their theoretical underpinnings and the reasons that render one model better

than the other. This thesis presents a first theoretical analysis that compares some of these encod-

ings and explains important reasons that contribute to the differences which are observed in their

performance.

Our investigation is based on the simple observation that the planning as satisfiability frame-

work regards the planning problem as a Constraint Satisfaction one. Therefore, constraint propa-

gation is a central notion. Stronger forms of propagation derive more variable values, and there-

fore lead to more pruning of the search space than weaker ones. If the computational cost of the

constraint propagation procedure is low, the reduction of the search space usually translates into

better run times. On the other hand, the addition of constraints that do not contribute to constraint

propagation very often degrade the performance of systems, as they slow down the propagation of

constraints as well as other techniques that may be employed in a modern SAT solver such as the

clause learning.

This work compares different planning encodings wrt the unit propagation they achieve, the

standard constraint propagation method employed in almost all modern SAT solvers. Roughly

speaking, a planning model is stronger than another if it is able to propagate more variable values.

Moreover, one encoding is more compact than some other if it achieves the same propagation but

with a strict subset of the clauses. The clauses that are contained in the less compact encoding are

redundant wrt unit propagation.

And
rea

s S
ide

ris

67

Our analysis reveals some interesting relationships. The most unexpected is probably that the

BLACKBOX encoding is stronger than the one used in SATPLAN06. Based on our theoretical

results we propose a new encoding of planning as satisfiability, called SAT-MAX-PLAN (abbre-

viated as SMP), that achieves more propagation than all other models, and it does so with a set of

clauses that contains no redundancy.

We also study the propagation power of long distance mutual exclusion constraints (londex),

as introduced in the MAXPLAN system [30], and show that they indeed strengthen the model of the

SATPLAN06 encoding. More precisely, we prove that SATPLAN06 can propagate londex type

information forward through the layers of the propositional theory, i.e. from variables that refer

to a time point to variables that refer to some later time point. However, SATPLAN06 fails to

do the same backwards, and therefore adding londex type constraints to SATPLAN06 encodings

improves propagation. However, we show that londex constraints do not increase the propaga-

tion of the SMP encoding, and are therefore redundant in this new model. This is not the case

for the type of londexes introduced in [29] that are stronger than those introduced in [30]. We

prove that are not redundant in SMP encoding, and hence are not redundant in BLACKBOX and

SATPLAN06 encoding as well.

In the experimental part we compare SMP, BLACKBOX, and SATPLAN06 in a number of

domains from planning competitions. It turns out that SMP outperforms both other encodings,

whereas between the two, BLACKBOX has an advantage over SATPLAN06. We also show that

SMP compares favorably to the more recent SASE planner [60, 61, 62]. In fact, SMP coupled

with the SAT solver precosat [16], can solve more problems than the all other planners, and

presents a notable advancement of the state-of-the-art of planning as satisfiability. Moreover, it

shows that the theoretical results of this work are of practical relevance. We also provide strong

And
rea

s S
ide

ris

68

experimental evidence that adding more implied not redundant (wrt to Unit Propagation in SMP)

binary constraints does not yield better run times.

To the best of our knowledge the only other studies close to the spirit of this work are [44] and

[99]. However, the focus there is on understanding mutexes and londexes, and explaining how

they can be derived by a modern SAT solver. Our investigation is complementary to the above,

and explains what, when and why constraints improve performance.

4.2 Satisfiablity Encodings of Planning

In this section we discuss some of the most successful models of planning as satisfiability for

optimal parallel planning. They include different encodings supported by the planning systems

BLACKBOX, SATPLAN06, and SATPLAN04. We also discuss the more recent works of split

action model of [106, 104] and the SASE encoding [60, 61, 62] based on the multi-valued repre-

sentation of variables. We assume STRIPS planning problems P =< I,G,A > as presented in

Chapter 3. Recall that each action a ∈ A has preconditions pre(a), add effects add(a), and delete

effects del(a).

All these systems use information that is derived from the planning graph of the problem. Part

of the information that is extracted has the form of mutually exclusive pairs, or mutexes, as defined

in section 3.3.1.1. The satisfiability encodings can be divided in three categories according to the

semantics of the variables that are used in the SAT model of a planning problem.

1. Direct encoding. In a planning graph, each level corresponds to a different time point, while

inertia is captured by noop actions that encode persistence. In the SAT model of a planning

problem time-stamped propositional atoms (or variables) represent the action and facts of

the problem. An atom A(T), where A is an action, corresponds to the decision of whether

And
rea

s S
ide

ris

69

action A is taken or not at time T , and analogously for variables of the form f(T) where f

is a fact.

2. Action based encoding. In the SAT model of a planning problem time-stamped propositional

atoms (or variables) from the planning graph represent the action of the problem. As in the

direct encoding, an atom A(T), where A is an action (including noop actions as in direct

encoding), corresponds to the decision of whether action A is taken or not at time T .

3. Indirect encoding. In this category the variables are not directly mapped to a time-stamped

fact or action. In the split action model of [106, 104] each time-stamped fact is mapped

to variable, but each time-stamped action is presented as a conjunction of more than one

variables. Moreover, there are auxiliary variables. In the SASE encoding [60, 61, 62]

each time-stamped action is mapped to variable, but there is a variable mapped to a time-

stamped legal transition from one fact to another, both being values of the same multi-valued

variable of the SAS+ representation of the problem. Auxiliary variables are also used in

this encoding in order to reduce the number of clauses.

4.2.1 Direct and Action based encodings

In the direct encoding the variables correspond to time stamped facts f(T) and time stamped

actions A(T), whereas in action based encoding the variables correspond only to time stamped

actions A(T). More precisely, in direct encodings the variables that are added emerge from the

three rules below, whereas in action based encodings the variables emerge only from the second

rule. Initial and final state are implicitly encoded in action based encodings.

1. Unit clauses for the initial and final state.

And
rea

s S
ide

ris

70

2. An action variable A(T) is added to the theory if for each p ∈ pre(A), p exists in the

planning graph in layer T , and there is no pair p1, p2 ∈ pre(A) s.t. p1 and p2 are marked

as mutex in the layer T of the planning graph.

3. A proposition variable p(T) is added to the theory if some action variable A(T − 1) is in

the theory, with p ∈ add(A).

To facilitate our study we first introduce a new encoding called Graphplan-direct, that is direct

translation of the planning graph structure into propositional logic. All the direct encodings that we

investigate in the rest of this work are subsets of the clause set of the Graphplan-direct formulation.

The clauses of the Graphplan-direct encoding are the following (1-8).

1. Unit clauses for the initial and final state.

2. A(T)→ f(T), for every action A and fact f s.t. f ∈ pre(A).

3. A(T)→ f(T + 1), for every action A and fact f s.t. f ∈ add(A).

4. A(T)→ ¬f(T + 1), for every action A and fact f s.t. f ∈ del(A).

5. f(T) → A1(T − 1) ∨ . . . ∨ Am(T − 1), for every fact f and all actions Ai, 1 ≤ i ≤ m

(including the noops) s.t. f ∈ add(Ai).

6. ¬f(T)→ A1(T − 1) ∨ . . . ∨Am(T − 1) ∨ ¬f(T − 1), for every fact f and all actions Ai,

1 ≤ i ≤ m s.t. f ∈ del(Ai).

7.1 ¬A1(T) ∨ ¬A2(T), for every pair of actions A1, A2 such that the set del(A1) ∩ pre(A2) is

non-empty.

7.2 ¬A1(T)∨¬A2(T), for every pair of actions A1, A2 such that the set del(A1)∩ add(A2) is

non-empty.

And
rea

s S
ide

ris

71

7.3 ¬A1(T) ∨ ¬A2(T), if there is a pair of facts f1 ∈ pre(A1), f2 ∈ pre(A2) such that f1, f2

are mutually exclusive at time T .

8 ¬f1(T) ∨ ¬f2(T), for every pair of facts f1, f2 that are mutex at time T .

The set of clauses below (9) is used only in the action based encodings. All the action based

encodings presented in this work are subset of clauses 7.1,7.2,7.3 and 9

9 A(T) → A1(T − 1) ∨ . . . ∨ Am(T − 1), for every fact f such that f ∈ pre(A) and all

actions Ai, 1 ≤ i ≤ m (including the noops) s.t. f ∈ add(Ai).

The first system that employed information derived from the planning graph in the proposi-

tional encoding of a planning problem was BLACKBOX [75]. BLACKBOX (version 43) supports

different encodings, three of which we investigate here and denoted by BB-7, BB-31, and BB-32.

Each of them is obtained by selecting the appropriate value (7, 31, or 32) of parameter axioms. The

set of clauses of each of these encodings (which is a subset of the clauses of the Graphplan-direct

model) is the following.

1. BB-7: Clauses 1, 2, 5, 7.1, 7.2, 7.3

2. BB-31: Clauses 1, 2, 3, 4, 5, 7.1, 8

3. BB-32: Clauses 1, 2, 3, 4, 5, 7.1, 7.2, 7.3, 8

Similarly to BLACKBOX, SATPLAN06 also supports different encodings. Two of them are di-

rect encoding (mixed action/fact models), and the other two are action-based encodings (only ac-

tions). They are denoted by SATPLAN06-1, SATPLAN06-2, SATPLAN06-3 and SATPLAN06-4,

and are obtained by setting the encoding parameter to value 1 to 4 respectively. Each of them con-

tains the following clauses (again numbers refer to the Graphplan-direct model). The first two are

direct encoding and the last two action based.

And
rea

s S
ide

ris

72

1. SATPLAN06-4: Clauses 1, 2, 5, 7.1, 7.2, 8

2. SATPLAN06-3: Clauses 1, 2, 5, 7.1, 7.2, 7.3, 8

3. SATPLAN06-1: Clauses 7.1, 7.2, 9

4. SATPLAN06-2: Clauses 7.1, 7.2, 7.3, 9

In action based encodings the initial facts and the goals are implicit encoded in the model.

For example for encoding of a planning horizon T for each goal g of time T there is a clause

A(T−1)∨. . .∨Am(T−1) (including the noop) for all actionsAi, 1 ≤ i ≤ m (including the noops)

s.t. g ∈ add(Ai). Also for all actions in the first layer it holds that each of their preconditions

are in the initial facts. The propositional theory that results from the above encodings, for a fixed

number of time steps Tmax, is given as input to a SAT solver. Any time step T ≤ Tmax, is a valid

time point.

4.2.2 Long-Distance Mutual Exclusion

The mutual exclusion information that is derived from the planning graph in the previous

encodings concerns facts or actions that refer to the same time, i.e. are binary clauses of the form

¬a(T)∨¬b(T). This information has been generalized in [30], where binary clauses on variables

that refer to different time points, i.e. binary clauses ¬a(T) ∨ ¬b(T + k), were introduced in the

SAT model.

The Long-Distance Mutual Exclusion (londex) method of [30], is based on the state variable

representation or multi-valued domain formulation (MDF), presented in section 3.1.2 of chapter

3, in which a planning domain is defined over a set X = (x1, . . . , xn) of multi-valued variables,

where each xi has an associated finite domain Di. If x is a multi-valued variable from X and v a

And
rea

s S
ide

ris

73

value from its domain, x = v denotes the assignment of v to x. To associate such an assignment

x = v with a boolean fact f , we use the notation f = MDF (x, v).

For every multi-valued variable in a planning problem, the method of [30] builds the domain

transition graph (DTG), from which the fact distances are computed. We call londex1 this type

of londexes between values of a MDF variable, that are computed using only the DTG of that

variable. In [29] stronger londexes are computed with the use of a combination of DTGs. We call

this type of londexes londexm. The central notion of londexes is that of the distance between two

facts f1, f2 in a DTG Gx, denoted by ∆Gx(f1, f2).

Definition 27 Given a DTG Gx, the distance from a fact f1 = MDF (x, v1) to another fact

f2 = MDF (x, v2), denoted by ∆Gx(f1, f2), is defined as the minimum distance from vertex v1

to vertex v2 in Gx.

4.2.2.1 Long-Distance Mutual Exclusion on a single DTG: londex1

Based on fact distances, londex1 constraints for facts and actions are derived. In the following,

t(f) denotes the time step at which fact f is true, and t(a) the time step at which an action is

chosen. Moreover, we say that an action a is associated with a fact f if f appears in pre(a),

add(a) or del(a).

Definition 28 (Fact Londex) Given two boolean facts f1 and f2, that correspond to two nodes in

a DTG Gx, such that ∆Gx(f1, f2) = r, then there is no valid plan in which 0 ≤ t(f2)− t(f1) < r.

There are two classes of actions londex constraints that are defined below.

Definition 29 (Class A Action Londex) If actions a and b are associated with a fact f , they are

mutually exclusive if one of the following holds:

And
rea

s S
ide

ris

74

1. f ∈ add(a), f ∈ del(b), and t(a) = t(b)

2. f ∈ del(a), f ∈ pre(b), and 0 ≤ t(b)− t(a) ≤ 1

Definition 30 (Class B Action Londex) If action a is associated with fact f1 and action b with fact

f2, and it is invalid to have 0 ≤ t(f2)− t(f1) < r according to fact londex constraints, then a and

b are mutually exclusive if one of the following holds:

1. f ∈ add(a), f ∈ add(b), and 0 ≤ t(b)− t(a) ≤ r − 1

2. f ∈ add(a), f ∈ pre(b), and 0 ≤ t(b)− t(a) ≤ r

3. f ∈ pre(a), f ∈ add(b), and 0 ≤ t(b)− t(a) ≤ r − 2

4. f ∈ pre(a), f ∈ pre(b), and 0 ≤ t(b)− t(a) ≤ r − 1

4.2.2.2 Long-Distance Mutual Exclusion on multiple DTGs: londexm

In [29], Chen et al. extend the idea of londexes. Instead of using only the DTG that contains

the two facts f1 and f2 in order to compute the minimum distance between them, they use multiple

DTGs in an attempt to find possibly stronger londexm constraints. The idea is that some of the

facts that are preconditions in actions of the shortest(s) path(s) from f1 to f2 in their DTG graph

G1 may belong to a different DTG graph G2, and the distance between them in G2 imposes a

minimum distance strictly greater than the one enforced by G1 in the londex1 definition. In this

case graph G1 depends on G2 because there is an action a that enables a transition in G1 using a

precondition from G2.

For example assume f1 and f2 in G1 with ∆G1(f1, f2) = 3 and let their shortest path be ξ =

f1 −→ v1 −→ v2 −→ f2. Suppose that the set of actions that change value from f1 to v1 have the

common precondition p, whereas from v2 to f2 have the common precondition p′, and both belong

And
rea

s S
ide

ris

75

to a DTG graph G2 and it holds that ∆G2(p, p′) = 4. Obviously, the minimum distance from f1 to

f2 can be soundly updated to γ(f1, f2) = min(max(∆G1(f1, f2),∆G2(p, p′) + 1)) = 5. In case

G2 depends on another DTG G3, this can be used in the same manner in G2, possibly leading to

a stronger constraint for the distance between f1 and f2. For a transition from v to w in a DTG w

(v) is a successor (predecessor) of v (w). The set of successors and predecessors of v is denoted

by succ(v) and pred(v) respectively. Moreover, the set of shared preconditions of actions of the

transition from v to w is denoted by P(v, w). Function γ, for f1 and f2, is defined recursively as:

γ(f1, f2) = min
v∈succ(f1),w∈pred(f2)

{max(max
p∈P(f1,v),p′∈P(w,f2)

{γ(p, p′)}+ 1,∆G(v, w) + 2)}

To capture the relation between the DTG graphs in the computation of γ function, the method

of [29] employs the Causal Graph along with a cycle breaking mechanism, as Causal Dependency

Graph is not acyclic in the general case.

In order to find more londexm constraints, distances are enhanced with bridge analysis. For

instance, assume that in the above example there exist facts f ′1, f
′
2 in G1 such that any path in G1

from f ′1 to f ′2 visits f1 and f2 in this order. The pair of facts f1, f2 is a bridge pair (hence the

name) for the pair of facts f ′1 and f ′2. The minimum distance from f ′1 to f ′2 can be soundly updated

(improved) to: ∆G1(f ′1, f1) + γ(f1, f2) + ∆G1(f2, f
′
2).

The distances found by the calculation of γ function and the bridge analysis are used to derive

fact and action londexm constraints in a similar manner as was described previously in subsection

4.2.2.1 for facts and actions. Due to the large number of londexm clauses Chen et al. [29]

alter the unit propagation mechanism of the SAT solver to create on the fly only the londexm

constraints that are needed for unit propagation, instead of creating all londexm clauses before

search and adding them in the SAT theory. Experiments on planning benchmarks revealed better

solution times when using londexm (than only londex1 and no londex at all) for SATPLAN04

and SATPLAN06 encodings.

And
rea

s S
ide

ris

76

4.2.3 Indirect encodings. SASE and SOLE planners

Two indirect encoding schemes for parallel (step-optimal) planning are the SAS+ based en-

coding SASE of Huang, Chen and Zhang [60, 61, 62] in the SASE planner and the split action

encoding of the SOLE planner of Robinson et al. [106, 104]. Both planners follow the solve and

expand method of the SATPLAN framework.

SASE [60, 61, 62] encoding is based on state variables representation. The variables of the

SASE encoding are either actions for a time step (layer) of the plan (as in direct and action encod-

ings) or transitions between values for each state variable of the problem for a time step. Huang et

al. used several methods to reduce the size of the encoding, exploiting that variables representing

actions of the same transition, as well as transitions of the same state variable, are cliques. The

trivial encoding of n clique variables uses O(n2) (mutex binary) clauses. They used the compact

representation of Rintanen [98] instead, that encodes a clique of n variables using O(n. log2 n)

auxiliary variables but only O(n. log2 n) binary clauses (instead of O(n2)). They also omit the

addition of clauses representing an action clique for a transition if is a subset of another clique

for another transition as redundant. For any transition that can be made true only by one action

the variable of action is replaced with the one of its transitions in the encoding since are logically

equivalent. Our experimental results show that SMP planner performs better than SASE.

The idea of indirect representations of actions in order to reduce the number of action variables

is not new. In fact a split action representation was implemented by Kautz and Selman [72] in

their first attempt to solve planning as a satisfiability problem (for sequential planning). The

major difficulty in split action representations of actions arises in parallel planning where many

(not mutex) actions may be executed in a single time step. The first split action encoding for

parallel step-optimal planning is introduced by Robinson et al. [106, 104] in the SOLE planner.

And
rea

s S
ide

ris

77

SOLE planner is the extension of an older work of the same authors [105] where they present an

encoding in PARA-L planner. Their encoding in [105] permits parallel action execution only if

interference between actions does not occur.

The variables in the SAT compilation in [106, 104] are time stamped facts (as in direct en-

coding) and time stamped ground conditions for actions as they emerge from a planning graph for

a planning horizon. An action is true in a time step if all the variables representing the ground

conditions of the action at that time step are true. There are also auxiliary (time stamped) vari-

ables that are used to represent action mutexes of the same operator. Additional auxiliary (time

stamped) variables are used in auxiliary clauses to ensure that whole instances of operators of the

problem are executed. The authors did not provide publicly any binaries or source code therefore

we did not perform any experiments for SOLE planner.

4.3 The relative strength of the encodings

In this section we investigate the relative constraint propagation strength of encodings defined

on the same variables. More specifically, we compare the relative constraint propagation power

of BLACKBOX and the direct SATPLAN06 encodings with respect to each other, and then we

compare the two action based encodings of SATPLAN06 encodings.

4.3.1 Comparing encodings

As noted earlier, almost all state-of-the-art SAT solvers employ Unit propagation for constraint

propagation. In the following, UP (T) denotes the closure of theory T under Unit Propagation.

The notion of UP-redundancy plays a central role in our analysis, and is defined as follows.

Definition 31 The binary clause l1 ∨ l2 is UP-redundant wrt a theory T iff either l1 ∨ l2 ∈ T or

lj ∈ UP (T ∪ {¬li}), for i 6= j and i, j ∈ {1, 2}.

And
rea

s S
ide

ris

78

Below, several notions regarding the relative strength of propositional theories wrt binary

clauses are defined.

Definition 32 Theory T1 is at least as strong as theory T2 wrt UP and binary clauses, denoted by

T1 ≥UP T2, iff every clause of T2\T1 is binary and UP-redundant wrt T1.

Theory T1 is strictly stronger than theory T2 wrt UP and binary clauses, denoted by T1 >SUP T2,

iff T1 ≥UP T2 or T1 ⊃ T2 and T2 6≥UP T1.

Theory T1 is more compact than theory T2 wrt UP and binary clauses, denoted by T1 >C T2, iff

T1 ≥UP T2 and T1 ⊂ T2.

4.3.2 Comparison of direct encodings

It is easy to see that the encodings are related as follows: for any (STRIPS) planning problem

P , SATPLAN06-4(P) ⊂ SATPLAN06-3(P) ⊂ BB-32(P), and BB-7(P) ⊂ SATPLAN06-3(P).

The following proposition shows that some of the mutex clauses are UP-redundant in some en-

codings.

Proposition 1 The set of clauses 7.3 is UP-redundant wrt any propositional encoding that contains

the set of clauses 2 and 8.

Proof Let ¬A1(T) ∨ ¬A2(T) be a clause with A1 and A2 two actions such that there is a pair

of facts f1 ∈ pre(A1), f2 ∈ pre(A2) such that f1, f2 are mutually exclusive at level T . We will

show that ¬A2(T) ∈ UP (TP ∪ {A1(T)}). From A1(T) and clause A1(T) → f1(T) we obtain

f1(T). Since the theory contains axioms 8, it must contain the clause ¬f1(T) ∨ ¬f2(T). From

this clause and f1(T) we obtain ¬f2(T), form which, together with A2(T)→ f2(T) we conclude

¬A2(T). The proof of ¬A1(T) ∈ UP (TP ∪ {A2(T)}) is symmetric.

And
rea

s S
ide

ris

79

A direct consequence of the above proposition is the following relation between the two direct

SATPLAN06 encodings.

Corollary 1 For any planning problem P , SATPLAN06-4(P) >C SATPLAN06-3(P).

Another result that is stated formally below can be used to simplify theories that contain clause

sets 3 and 4.

Proposition 2 The set of clauses 7.2 is UP-redundant wrt any propositional encoding that contains

the set of clauses 3 and 4.

Proof Let ¬A1(T)∨¬A2(T) be a clause withA1 andA2 two actions such that at least one of the

sets del(A1)∩add(A2) and del(A2)∩add(A1) is non-empty. Assume that del(A1)∩add(A2) 6= ∅

(the other case is symmetric) and let f ∈ del(A1) ∩ add(A2). We will show that ¬A2(T) ∈

UP (TP ∪ {A1(T)}). The theory contains a clause of the form A1(T)→ ¬f(T + 1) from which

¬f(T + 1) is derived. From this and clause A2(T)→ f(T + 1), ¬A2(T) is concluded.

A direct consequence of the above proposition is that encoding BB-32 can be simplified by

removing clauses 7.2. Similarly, by proposition 1, clauses 7.3 can also be omitted. Therefore, the

following corollary is immediate.

Corollary 2 For any planning problem P , BB-31(P) >C BB-32(P).

A similar observation holds for the Graphplan-direct encoding. By removing the UP-redundant

clauses 7.2 and 7.3 we obtain SATPLANmax encoding which is a direct encoding and contains the

following clauses:

• SATPLANmax: Clauses 1, 2, 3, 4, 5, 6, 7.1, 8.

And
rea

s S
ide

ris

80

On the other hand, the set of clauses 8 is not UP-redundant wrt to any encoding that contains

any of the other clauses (i.e. 1 to 7.3). From this we conclude that, for all problems P , BB-31(P)

>SUP BB-7(P). Similarly clause sets 3 and 4 are not UP-redundant wrt to any other clause,

and therefore, BB-31(P) >SUP SATPLAN06-4(P). Hence, it seems that from the implemented

encodings of planning as satisfiability, BB-31 is the strongest. Finally, SATPLANmax(P) >SUP

BB-31(P), for any problem P , due to the existence of clause set 6. We collect these results in the

following corollary.

Corollary 3 For any planning problem P ,

• BB-31(P) >SUP BB-7(P)

• BB-31(P) >SUP SATPLAN06-4(P)

• SATPLANmax(P) >SUP BB-31(P)

Note, that the SATPLANmax encoding uses only one set of mutex actions, namely set 7.1.

However, it is possible that a clause is included in several sets of mutex clauses, each for a dif-

ferent reason. Therefore, a mutex pair of actions that belongs to set 7.1 may also belong to other

mutex sets that are UP-redundant. The size of clause set 7.1 of SATPLANmax, can be reduced

by omitting all clauses of this set that also belong to sets 7.2 or 7.3. Furthermore, all mutex

action clauses on actions A1 and A2 and time T that contain add effects p1 and p2 respectively

such that p1 and p2 are mutex at time T + 1 can also be omitted. We call the resulting encoding

SAT-MAX-PLAN, or SMP for short.And
rea

s S
ide

ris

81

4.3.3 Comparison of action based encodings

It is easy to see that the encodings are related as follows: for any planning problem P ,

SATPLAN06-1(P) ⊂ SATPLAN06-2(P). We prove via an example that SATPLAN06-2(P) is

a stronger encoding than SATPLAN06-1(P).

Consider a planning domain P with an action mv(i, j) that moves an object from location i to

location j if |i−j| = 1, and assume locations 1 ≤ l ≤ 3. Assume that in the initial state the object

is at location 1. The sets of clauses of SATPLAN06-1(P) and SATPLAN06-2(P) are as follows.

To represent the initial state, we assume the dummy time point -1 for which all actions

are false except noop(1,−1). The sets of clauses associated with P are the following. Note

that if a clause exists in two types of clauses is presented only once. For example the clause

¬mv(2, 3, T) ∨ ¬mv(1, 2, T) is in 7.2 and 7.3

Clauses 7.1

¬mv(1, 2, T) ∨ ¬noop(1, T), ¬mv(2, 3, T) ∨ ¬noop(2, T)

¬mv(2, 1, T) ∨ ¬noop(2, T), ¬mv(3, 2, T) ∨ ¬noop(3, T)

¬mv(2, 3, T) ∨ ¬mv(2, 1, T)

Clauses 7.2

¬mv(1, 2, T) ∨ ¬mv(2, 3, T)

¬mv(1, 2, T) ∨ ¬mv(2, 1, T),¬mv(2, 3, T) ∨ ¬mv(3, 2, T)

Clauses 7.3

¬mv(3, 2, T) ∨ ¬mv(1, 2, T)

¬mv(2, 1, T) ∨ ¬mv(3, 2, T), ¬mv(1, 2, T) ∨ ¬noop(2, T)

¬mv(1, 2, T) ∨ ¬noop(3, T), ¬mv(2, 1, T) ∨ ¬noop(1, T)

¬mv(2, 1, T) ∨ ¬noop(3, T), ¬mv(2, 3, T) ∨ ¬noop(1, T)

And
rea

s S
ide

ris

82

¬mv(2, 3, T) ∨ ¬noop(3, T), ¬mv(3, 2, T) ∨ ¬noop(1, T)

¬mv(3, 2, T) ∨ ¬noop(2, T), ¬noop(1, T) ∨ ¬noop(2, T)

¬noop(1, T) ∨ ¬noop(3, T), ¬noop(2, T) ∨ ¬noop(3, T)

Clauses 9 for T ≥ 0

¬mv(1, 2, T) ∨mv(2, 1, T − 1) ∨ noop(1, T − 1)

¬mv(2, 1, T) ∨mv(1, 2, T − 1) ∨mv(3, 2, T − 1) ∨ noop(2, T − 1)

¬mv(2, 3, T) ∨mv(1, 2, T − 1) ∨mv(3, 2, T − 1) ∨ noop(2, T − 1)

¬mv(3, 2, T) ∨mv(2, 3, T − 1) ∨ noop(3, T − 1)

¬noop(i, T) ∨ noop(i, T − 1) ∨mv(i− 1, i, T − 1) ∨mv(i+ 1, i, T − 1) for valid values of i

Assume now the theory T 06−1
P of SATPLAN06-1 encoding and the action mv(2, 1, 3). It is

easy to see that UP (T 06−1
P ∪ {mv(2, 1, 3)}) includes the literals that are derived by propagation

form the initial state

¬mv(2, 1, 0),¬mv(2, 3, 0), ¬mv(3, 2, 0) ¬noop(2, 0), ¬noop(3, 0) from (9)

¬mv(3, 2, 1), ¬noop(3, 1) from (9)

From mv(2, 1, 3) we derive ¬noop(2, 3) and ¬mv(2, 3, 3) via the rules 7.1 and ¬mv(1, 2, 3)

from 7.2. No other inference is possible. Note however that for theory T 06−2
P of SATPLAN06-

2 encoding and S = {¬mv(3, 2, 3),¬noop(1, 3),¬noop(3, 3)} it holds that S ⊆ UP (T 06−2
P ∪

{mv(2, 1, 3)}), whereas S ∩UP (T 06−2
P ∪ {mv(2, 1, 3)}) = ∅. This leads to the following result.

Proposition 3 The set of clauses 7.3 is not UP-redundant wrt encodings on the set of clauses 7.1,

7.2 and 9.

A direct consequence of the above proposition is the following relation between the two action

SATPLAN06 encodings.

And
rea

s S
ide

ris

83

Corollary 4 For any planning problem P , SATPLAN06-2(P) >SUP SATPLAN06-1(P).

Although in SATPLAN06-2 encoding of the problem can be derived better constraint propaga-

tion than in SATPLAN06-1 through unit propagation, the run-times tell a very different story. Both

encodings were implemented and experimentally tested in the predecessor of SATPLAN06, the

SATPLAN04. In that work, where SATPLAN06-1 and SATPLAN06-2 are called ”skinny action-

based encoding” and ”non-skinny action-based encoding” respectively, SATPLAN06-1 proved to

be much faster than SATPLAN06-2, due to large size of the theories encoded in SATPLAN06-

2 encoding. Moreover SATPLAN06-2 caused memory problems in large problems from many

domains due to the large number of 7.3 action mutexes.

4.4 Londex Propagation in Propositional Planning

From the STRIPS encoding P of a planning problem, we can construct its state variable rep-

resentation PM , using a translation M as those described e.g. in [54]. For each state variable

(or multi-valued variable) X of PM with domain DX , we denote by X(v) the fact in its STRIPS

representation P that corresponds to the assignment of value v ∈ DX to variable X . Moreover,

X(v, T) denotes the atom (in the planning graph and the propositional theory) that represents

the truth value of X(v) at time T . In order to abstract away from the details of the particular

method that is used to construct the multi-valued representation of a STRIPS domain, and there-

fore simplify our discussion, we make some, we believe, natural assumptions about the domains

we consider.

Definition 33 A multi-valued translation method M that translates STRIPS problems into their

multi-value representation, satisfies the domain compatibility assumption if for every STRIPS

problem P and its multi-valued representation PM the following conditions hold:

And
rea

s S
ide

ris

84

1. LetX be a multi-valued variable of PM with domainDX andA any action of P . IfX(vi) ∈

add(A) for vi ∈ DX , then X(vj) ∈ del(A) ∩ pre(A) for some vj ∈ DX with i 6= j.

2. If X is a multi-valued variable of PM with domain DX , then the initial state assigns true to

exactly one fact of the form X(vi) for vi ∈ DX .

We can now prove that for translations that satisfy the domain compatibility assumption,

Graphplan marks as mutex all facts that refer to the different values of a multi-valued variable.

Proposition 4 Let PM be the translation of a STRIPS problem P under a translation method M

that satisfies the domain compatibility assumption. If X is a multi-valued variable of PM with

domain DX , in the planning graph all pairs of facts of the from X(vi), X(vj), with vi, vj ∈ DX

and i 6= j, are mutex in all its levels where they both appear.

Proof We prove the claim inductively on planning graph levels.

Base case. Assume that both X(vi) and X(vj) appear on (fact) level 1 of the planning graph.

We prove that they are marked as mutually exclusive by Graphplan. Suppose first that one of

X(vi) and X(vj), say X(vi), appears in the initial state (fact level 0). Since X(vj) appears on

level 1, there must be some actions Avj1 , . . . , A
vj
n such that X(vj) ∈ add(A

vj
c) and X(vi) ∈

del(A
vj
c) ∩ pre(Avjc), for 1 ≤ c ≤ n. On the other hand, X(vi) appears on level 1 because of

noopX(vi). Observe that noopX(vi) is mutex with all actions Avjc in the preceding action level,

and therefore X(vi) and X(vj)) are marked as mutex at level 1.

Assume now that X(vt) appears in the initial state, and therefore, by the domain compatibility

assumption, none ofX(vi) andX(vj) does. Then, there must be two sets of actions, Avj1 , . . . , A
vj
n

and Avi1 , . . . , A
vi
m, such that X(vj) ∈ add(A

vj
c), X(vt) ∈ del(A

vj
c) ∩ pre(Avjc), for 1 ≤ c ≤ n,

and X(vi) ∈ add(Avid), X(vt) ∈ del(Avid) ∩ pre(Avid), for 1 ≤ d ≤ m. Observe that every action

And
rea

s S
ide

ris

85

A
vj
c deletesX(vt) which is a precondition of all actionsAvid . Therefore, every actionAvjc is mutex

with every action Avid . Hence, X(vi) and X(vj) are also marked as mutex at fact level 1.

Inductive hypothesis. Assume that for some planning graph level k, Graphplan marks as mutex

all pairs of facts of the form X(vi), X(vj), with vi, vj ∈ DX .

Inductive step. We prove that the same holds for graph level k + 1 for all pairs of facts of the

form X(vi), X(vj), with vi, vj ∈ DX . Let Avic be an action such that X(vi) ∈ add(Avic), and Avjd

an action such that X(vj) ∈ add(A
vj
d).

First assume that Avic and Avjd are the Noop actions NoopX(vi) and NoopX(vj) respectively.

Obviously X(vi) ∈ pre(NoopX(vi)) and X(vj) ∈ pre(NoopX(vj)). By the inductive hypothesis

X(vi) and X(vj) are marked as mutex at layer k, hence actions NoopX(vi) and NoopX(vj) are

marked as mutex at layer k (since their preconditions are mutex). Now assume that only one of

the actions Avic and Avjd is a Noop. Without loss of generality let Avic = NoopX(vi). By the

domain compatibility assumption, there is a fact X(vd) ∈ del(A
vj
d) ∩ pre(Avjd), with vd ∈ DX .

Assume first that vi 6= vd. From the inductive hypothesis we know that X(vi), X(vd) are mutex

at fact level k, therefore actions NoopX(vi) and Avjd are mutex at action level k. if vi = vd, then

pre(NoopX(vi)) ∩ del(A
vj
d) = {X(vi)}, therefore NoopX(vi) and Avjd are again mutex since

pre(NoopX(vi)) ∩ del(A
vj
d) 6= ∅.

Now assume that neither of the actions Avic and Avjd is a Noop. By the domain compatibil-

ity assumption, there are facts X(vc) ∈ del(Avic) ∩ pre(Avic), X(vd) ∈ del(A
vj
d) ∩ pre(Avjd),

with vc, vd ∈ DX . Assume first that vc 6= vd. From the inductive hypothesis we know that

X(vc), X(vd) are mutex at fact level k, therefore actions Avic and Avjd are mutex at action level k.

On the other hand, if vc = vd, then pre(Avic) ∩ del(Avjd) 6= ∅, therefore Avic and Avjd are again

mutex. Therefore, any pair of actions Avic and Avjd that adds X(vi) and X(vj) respectively is

mutex at level k. Hence, X(vi), X(vj) is marked as mutex at level k + 1.

And
rea

s S
ide

ris

86

A similar result is proven for actions that have multi-valued variables in their add effects.

Proposition 5 Let PM be the translation of a STRIPS problem P under a translation method

M that satisfies the domain compatibility assumption. If X is a multi-valued variable of PM

with domain DX , in the planning graph all pairs of action Ai, Aj (including noops) such that

X(vi) ∈ add(Ai), X(vj) ∈ add(Aj), for vi, vj ∈ DX , are mutex in all its levels where they both

appear.

Proof We prove that Ai, Aj are marked mutually exclusive at any planning graph level k where

they both appear. First assume that both Ai, Aj are Noops. Then Ai = Noop(X(vi)) and Aj =

Noop(X(vj)). It holds that pre(Noop(X(vi))) = {X(vi)} and pre(Noop(X(vj))) = {X(vj)}.

By proposition 4 X(vi) and X(vj) are marked as mutex at all layers, hence Noop(X(vi)) and

Noop(X(vj)) are also marked as mutex at all layers because they have mutex preconditions.

Now assume that at least one of Ai, Aj is not a Noop. Let X(vpi) ∈ pre(Ai) and X(vpj) ∈

pre(Aj), with vpi , v
p
j ∈ DX . Assume first that vpi = vpj . Then, if none of Ai, Aj is a noop,

X(vpi) ∈ del(Ai) ∩ del(Aj), and therefore each of these actions deletes the precondition of the

other. Hence they will be marked as mutex at all levels. If one of these action, say Ai, is a noop,

then again Aj deletes its preconditions, and therefore again Ai, Aj are mutex. Assume now that

vpi 6= vpj . By proposition 4 we know that X(vpi) and X(vpj) are marked mutually exclusive at all

level they both appear, therefore Ai, Aj are also marked as mutex.

In the rest of the chapter we assume that londex constraints are generated from the multi-valued

representation of a planning domain by a translation method that satisfies the domain compatibility

assumption. Moreover, we assume that londex constraints are translated into clauses in a straight-

forward manner, i.e. a Class A action londex on actions A1 and A2 translates into a set of binary

clauses ¬A1(T) ∨ ¬A2(T + 1) for all valid time points.

And
rea

s S
ide

ris

87

4.4.1 londex1 propagation in SATPLAN06

In the following we analyze the effects of various londex constraints on the constraint prop-

agation of a UP based SAT solver. The notions of forward and backward redundancy that are

defined below are central in our analysis.

Definition 34 A clause of the form ¬p(T)∨¬q(T +k) that corresponds to a londex constraint of

a planning problem P is forward UP-redundant wrt to an encoding TP of P if ¬q(T + k) ∈

UP (TP ∪ {p(T)}). Similarly, the clause is backward UP-redundant wrt to TP if ¬p(T) ∈

UP (TP ∪ {q(T + k)}).

We start by analyzing the effects of londex constraints of Class A. This class contains con-

straints that refer to actions that cannot be executed in parallel, as well as constraints that relate

actions that are one time step apart. Note that action mutexes that refer to the same time point are

included in SATPLAN06 encoding, therefore we do not consider them. For the other type of Class

A londex constraints, we show below that they are forward UP-redundant wrt the SATPLAN06-4

model, which we refer to as SATPLAN06 encoding.

Proposition 6 LetA1,A2 be actions (including noops) and f a fact of a planning problem P such

that f ∈ del(A1) and f ∈ pre(A2). The set of clauses ¬A1(T)∨¬A2(T + 1), for all valid points

T , is forward UP-redundant wrt the SATPLAN06 encoding of the problem.

Proof Let TP be the SATPLAN06 encoding of a problem P . We prove that ¬A2(T + 1) ∈

UP (TP ∪ {A1(T)}). Let Af1 , A
f
2 , . . . , A

f
k be the actions that contain f in their add effects (in-

cluding noop). Theory TP contains the clauses

1. ¬A2(T + 1) ∨ f(T + 1)

2. ¬f(T + 1) ∨Af1(T) ∨Af2(T) ∨ . . . ∨Afk(T)

And
rea

s S
ide

ris

88

3. A set of binary clauses of the form ¬A1(T) ∨ ¬Afi (T), 1 ≤ i ≤ k.

FromA1(T) and the set of clauses (3) above, UP derives the set of unit clauses¬Afi (T), 1 ≤ i ≤ k

From these clauses and clause (2), UP entails the unit clause ¬f(T + 1) and from clause (1)

¬A2(T + 1). Therefore ¬A2(T + 1) ∈ UP (T ∪ {A1(T)}).

We investigate now long distance constraints for facts, and show that they are also forward

UP-redundant wrt the SATPLAN06 encoding.

Proposition 7 Let X be a multi-valued variable of a planning problem P with domain DX , and

TP the SATPLAN06 encoding of P . Then, for any two values vi, vj ∈ DX and k ≥ 0 such that

∆GX
(vi, vj) > k, the set of clauses ¬X(vj , T + k)∨¬X(vi, T) is forward UP-redundant wrt TP

for all valid time points T . Furthermore, for all actions Aj such that X(vj) ∈ pre(Aj), the set of

clauses ¬Aj(T + k) ∨ ¬X(vi, T) is also forward UP-redundant.

Proof We prove inductively on k that ¬X(vj , T + k) ∈ UP (TP ∪ {X(vi, T)}) for all vj s.t.

∆GX
(vi, vj) > k. Moreover, we show within the same inductive proof, that ¬Aj(T + k) ∈

UP (TP ∪ {X(vi, T)}) for all actions Aj such that X(vj) ∈ pre(Aj) and ∆GX
(vi, vj) > k.

Base case. We prove that the theorem holds for k = 0, that is, if ∆GX
(vi, vj) > 0, ¬X(vj , T) ∈

UP (TP ∪ {X(vi, T)}). First note that ∆GX
(vi, vj) > 0 holds for all vi, vj ∈ DX , j 6= i. By

proposition 4, TP contains the clauses ¬X(vi, T) ∨ ¬X(vj , T), for all vi, vj ∈ DX , j 6= i.

Therefore, ¬X(vj , T) ∈ UP (TP ∪ {X(vi, T)}). Furthermore, if Aj is an action such that

X(vj) ∈ pre(Aj), then TP contains the clause ¬Aj(T) ∨ X(vj , T). From this clause and

¬X(vj , T) ∈ UP (TP ∪ {X(vi, T)}), we conclude that ¬Aj(T) ∈ UP (TP ∪ {X(vi, T)}).

And
rea

s S
ide

ris

89

Inductive hypothesis. Assume that for some k ≥ 0, ¬X(vj , T + k) ∈ UP (TP ∪ {X(vi, T)})

holds for all facts X(vj) such that ∆GX
(vi, vj) > k. Furthermore, ¬Aj(T + k) ∈ UP (TP ∪

{X(vi, T)}) for all actions Aj such that X(vj) ∈ pre(Aj) and ∆GX
(vi, vj) > k.

Inductive step. We prove first that ¬X(vj , T + k + 1) ∈ UP (TP ∪ {X(vi, T)}) holds for all

facts X(vj) such that ∆GX
(vi, vj) > k + 1. Let Aj1, A

j
2, . . . , A

j
m be the actions that have X(vj)

in their add effects. Then TP contains the clause

¬X(vj , T + k + 1) ∨Aj1(T + k) ∨Aj2(T + k) ∨ . . . ∨Ajm(T + k) ∨ noopX(vj , T + k).

Since ∆GX
(vi, vj) > k + 1, implies ∆GX

(vi, vj) > k, by the inductive hypothesis ¬X(vj , T +

k) ∈ UP (TP ∪{X(vi, T)}). From this and the binary clause ¬noopX(vj , T +k)∨X(vj , T +k)

we conclude ¬noopX(vj , T+k) ∈ UP (TP ∪{X(vi, T)}). Assume now that there is some action

Ajc, for 1 ≤ c ≤ m, such that ¬Ajc(T + k) 6∈ UP (TP ∪ {X(vi, T)}), and let X(vb), vb ∈ DX ,

be a precondition of Ajc. Then, it can not be the case that ∆GX
(vi, vb) > k, because then, by

the induction hypothesis, ¬Ajc(T + k) ∈ UP (TP ∪ {X(vi, T)}). Therefore, ∆GX
(vi, vb) ≤ k.

Then there must exist a path in GX from vi to vb of length at most k, and an arc from vb to vj ,

therefore ∆GX
(vi, vj) ≤ k + 1. However, this contradicts the assumption ∆GX

(vi, vj) > k + 1.

Therefore, it must be the case that ¬Ajc(T + k) ∈ UP (TP ∪ {X(vi, T)}), for all 1 ≤ c ≤ m.

Hence, ¬X(vj , T + k + 1) ∈ UP (TP ∪ {X(vi, T)}).

We now prove that ¬Aj(T + k + 1) ∈ UP (TP ∪ {X(vi, T)}) for all actions Aj such that

X(vj) ∈ pre(Aj) and ∆GX
(vi, vj) > k + 1. From the first part of the proof we know that

¬X(vj , T + k+ 1) ∈ UP (TP ∪{X(vi, T)}). Moreover, theory TP contains the clause ¬Aj(T +

k+ 1)∨X(vj , T +k+ 1). Therefore, ¬Aj(T +k+ 1) ∈ UP (TP ∪{X(vi, T)}). This completes

the proof.

And
rea

s S
ide

ris

90

The results that follow show that all forms of Class B action londex constraints are forward

UP-redundant. The proofs of these propositions give some insight into the propagation taking

place in a UP-based SAT solver.

Proposition 8 Let X be a multi-valued variable of a planning problem P with domain DX , TP

the SATPLAN06 encoding of P , and v1, v2 ∈ DX such that ∆GX
(v1, v2) > k. If A1, A2 are

actions (including noops) such that X(v1) ∈ pre(A1) and X(v2) ∈ pre(A2), then the set of

clauses ¬A2(T + k) ∨ ¬A1(T) is forward UP-redundant wrt to TP for all valid time points.

Proof We show that ¬A2(T + k) ∈ UP (TP ∪ {A1(T)}). Theory TP contains the clauses

¬A1(T)∨X(v1, T) and ¬A2(T+k)∨X(v2, T+k). Therefore,X(v1, T) ∈ UP (TP ∪{A1(T)}).

By proposition 7, ¬X(v2, T + k) ∈ UP (TP ∪ {X(v1, T)}, and therefore ¬X(v2, T + k) ∈

UP (TP ∪{A1(T)}). By clause ¬A2(T +k)∨X(v2, T +k), we obtain ¬A2(T +k) ∈ UP (TP ∪

{A1(T)}).

Proposition 9 Let X be a multi-valued variable of a planning problem P with domain DX , TP

the SATPLAN06 encoding of P , and v1, v2 ∈ DX such that ∆GX
(v1, v2) > k. If A1, A2 are

actions (including noops) such that X(v1) ∈ add(A1) and X(v2) ∈ add(A2), then the set of

clauses ¬A2(T + k) ∨ ¬A1(T) is forward UP-redundant wrt to TP for all valid time points.

Proof We prove inductively on k that ¬A2(T +k) ∈ UP (TP ∪{A1(T)}) for any pair of actions

A1, A2 such that X(v1) ∈ add(A1) and X(v2) ∈ add(A2) and ∆GX
(v1, v2) > k.

Base case: We prove first the case k = 0. Note that ∆GX
(v1, v2) > 0 for all v1, v2 ∈ DX ,

j 6= i. Therefore, we must show that ¬A2(T) ∈ UP (TP ∪ {A1(T)}) for any pair of actions

A1, A2 such that X(v1) ∈ add(A1) and X(v2) ∈ add(A2) with v1 6= v2. Assume first that

X(vp) ∈ pre(A1)∩pre(A2) for vp ∈ DX . ThenX(vp) ∈ del(A1)∩del(A2), therefore ¬A2(T)∨

¬A1(T) ∈ TP . Assume now that X(v1p) ∈ pre(A1) and X(v2p) ∈ pre(A2) with v1p, v
2
p ∈ DX

And
rea

s S
ide

ris

91

and v1p 6= v2p . Theory TP contains the clauses ¬A2(T) ∨X(v2p, T) and ¬A1(T) ∨X(v1p, T). By

proposition 4, it also contains the clause ¬X(v1p, T) ∨ ¬X(v2p, T). From these clauses it follows

that ¬A2(T) ∈ UP (TP ∪ {A1(T)}).

Inductive hypothesis. Assume that for some k ≥ 0, ¬A2(T + k) ∈ UP (TP ∪ {A1(T)})

holds for all pairs of actions A1, A2 such that X(v1) ∈ add(A1) and X(v2) ∈ add(A2) and

∆GX
(v1, v2) > k.

Inductive step: We prove that ¬A2(T + k + 1) ∈ UP (TP ∪ {A1(T)}) holds for all pairs of

actions A1, A2 such that X(v1) ∈ add(A1) and X(v2) ∈ add(A2) and ∆GX
(v1, v2) > k + 1.

Let X(v2p) ∈ pre(A2) with v2p ∈ DX , and let Apc2 , 1 ≤ c ≤ n, be the set of actions that have

X(v2p) in their add effects. Clearly, ∆GX
(v1, v

2
p) > k. From the inductive hypothesis we know

that ¬Apc2 (T + k) ∈ UP (TP ∪ {A1(T)}) for all 1 ≤ c ≤ n. Moreover, theory TP contains the

clause ¬X(v2p, T + k + 1) ∨Ap12 (T + k) ∨ . . . ∨Apn2 (T + k). Therefore, ¬X(v2p, T + k + 1) ∈

UP (TP ∪ {A1(T)}). From this, and the clause ¬A2(T + k + 1) ∨X(v2p, T + k + 1) we obtain

¬A2(T + k + 1) ∈ UP (TP ∪ {A1(T)}).

Proposition 10 Let X be a multi-valued variable of a planning problem P with domain DX , TP

the SATPLAN06 encoding of P , and v1, v2 ∈ DX such that ∆GX
(v1, v2) > k. If A1, A2 are

actions (including noops) such that X(v1) ∈ pre(A1) and X(v2) ∈ add(A2), then the set of

clauses ¬A2(T + k − 1) ∨ ¬A1(T) is forward UP-redundant wrt to TP for all valid time points.

Proof We first prove the claim for k = 0 with a direct proof, and then we use induction to show

that the result holds for all k > 0.

For k = 0 we prove that for any pair of actions A1, A2 such that X(v1) ∈ pre(A1) and

X(v2) ∈ add(A2) with v1, v2 ∈ DX , it holds that ¬A1(T) ∈ UP (TP ∪ {A2(T − 1)}). Let

X(v2p) ∈ pre(A2) for v2p ∈ DX and assume first that v2p = v1. Therefore X(v1) ∈ pre(A2), and

And
rea

s S
ide

ris

92

by domain compatibility assumption X(v1) ∈ del(A2). Note that A2 cannot be a noop because

del(A2) 6= ∅. Theory TP contains the clause ¬X(v1, T)∨Ae11 (T − 1)∨ . . .∨Ae1n (T − 1), where

Ae1c , 1 ≤ c ≤ n, are the actions that have X(v1) in their add effects. Since del(A2)∩ add(Ae1c) 6=

∅, theory TP contains the clauses ¬A2(T − 1) ∨ ¬Ae1c (T − 1), for 1 ≤ c ≤ n. Therefore,

¬Ae1c (T − 1) ∈ UP (TP ∪ {A2(T − 1)}). From this and the clause that relates ¬X(v1, T) and

Ae1c , we obtain ¬X(v1, T) ∈ UP (TP ∪ {A2(T − 1)}) from ¬A1(T) ∈ UP (TP ∪ {A2(T − 1)})

follows, since theory TP contains the clause ¬A1(T) ∨X(v1, T).

Now assume that X(v2p) ∈ pre(A2) and v2p 6= v1. Let again Ae1c , 1 ≤ c ≤ n, be the actions that

have X(v1) in their add effects. By the domain compatibility assumption, for each action Ae1c ,

1 ≤ c ≤ n (except the noop), there is an associated precondition value vp′ for X (v1 6= vp′).

For each of the above actions Ae1c , 1 ≤ c ≤ n say Ay such that v2p = vp′ it holds that the mutex

clause ¬Ay(T − 1)∨¬A2(T − 1) is contained in theory TP since del(Ay)∩ pre(A2) 6= ∅, hence

¬Ay(T − 1) ∈ UP (TP ∪ {A2(T − 1)}). For each of the above actions Ae1c , 1 ≤ c ≤ n, say Az ,

such that v2p 6= vp′ , it holds by proposition 4 that the mutex clause ¬X(vp′ , T−1)∨¬X(v2p, T−1)

is in TP . Since the clauses ¬A2(T − 1)∨X(v2p, T − 1) and ¬Az(T − 1)∨X(vp′ , T − 1) are also

in TP it holds for each such action ¬Az(T − 1) ∈ UP (TP ∪ {A2(T − 1)}). For a similar reason

¬noop(v1, T−1) ∈ UP (TP∪{A2(T−1)}) (since {¬noop(v1, T−1)∨X(v1, T−1),¬X(v2p, T−

1) ∨ ¬X(v1, T − 1)} ⊂ TP). From these results and the clause that relates ¬X(v1, T) and Ae1c ,

we obtain ¬X(v1, T) ∈ UP (TP ∪{A2(T −1)}) from which ¬A1(T) ∈ UP (TP ∪{A2(T −1)})

follows, since theory TP contains the clause ¬A1(T) ∨X(v1, T).

We prove now by induction on k, that if A1, A2 are actions such that X(v1) ∈ pre(A1) and

X(v2) ∈ add(A2) and ∆GX
(v1, v2) > k, for k > 0, then ¬A2(T +k−1) ∈ UP (TP ∪{A1(T)}).

Base case. We prove that the result holds for k = 1, i.e. if A1, A2 are actions such that

X(v1) ∈ pre(A1) and X(v2) ∈ add(A2) and ∆GX
(v1, v2) > 1, then ¬A2(T) ∈ UP (TP ∪

And
rea

s S
ide

ris

93

{A1(T)}). Let againX(v2p) ∈ pre(A2) for v2p ∈ DX . From clause ¬A1(T)∨X(v1, T) we obtain

that X(v1, T) ∈ UP (TP ∪ {A1(T)}), and from the fact mutex clauses we derive ¬X(v2p, T) ∈

UP (TP ∪{A1(T)}), provided that v2p 6= v1, which gives ¬A2(T) ∈ UP (TP ∪{A1(T)}). Assume

now that v2p = v1. By the definition of DTG’s since there is an action (A2) with precondition v1

(since v2p = v1) and an add effect v2, then it would hold that ∆GX
(v1, v2) = 1 contradicting the

assumption ∆GX
(v1, v2) > 1, hence v2p = v1 cannot hold.

Inductive hypothesis. Assume that for some k > 0, ¬A2(T + k − 1) ∈ UP (TP ∪ {A1(T)})

holds for all pairs of actions A1, A2 such that X(v1) ∈ pre(A1) and X(v2) ∈ add(A2) and

∆GX
(v1, v2) > k.

Inductive step: We prove that ¬A2(T +k) ∈ UP (TP ∪{A1(T)}) holds for all pairs of actions

A1, A2 such that X(v1) ∈ pre(A1) and X(v2) ∈ add(A2) and ∆GX
(v1, v2) > k + 1. Let

v2p ∈ pre(A2) with v2p ∈ DX , and let Apc2 , 1 ≤ c ≤ n, be the set of actions that have X(v2p) in

their add effects. Note that v2p 6= v1, because otherwise ∆GX
(v1, v2) = 1, which contradicts that

∆GX
(v1, v2) > k + 1, with k > 0. Since v2p 6= v1 we have that ∆GX

(v1, v
2
p) > k. From the

inductive hypothesis we know that ¬Apc2 (T + k − 1) ∈ UP (TP ∪ {A1(T)}) for all 1 ≤ c ≤ n.

Because theory TP contains the clause ¬X(v2p, T + k)∨Ap12 (T + k− 1)∨ . . .∨Apn2 (T + k− 1),

we conclude that ¬X(v2p, T +k) ∈ UP (TP ∪{A1(T)}). From this, and the clause ¬A2(T +k)∨

X(v2p, T + k) we obtain ¬A2(T + k) ∈ UP (TP ∪ {A1(T)}).

Proposition 11 Let X be a multi-valued variable of a planning problem P with domain DX , TP

the SATPLAN06 encoding of P , and v1, v2 ∈ DX such that ∆GX
(v1, v2) > k. If A1, A2 are

actions (including noops) such that X(v1) ∈ add(A1) and X(v2) ∈ pre(A2), then the set of

clauses ¬A2(T + k) ∨ ¬A1(T − 1) is forward UP-redundant wrt to TP for all valid time points.

And
rea

s S
ide

ris

94

Proof We prove inductively on k that ¬A2(T + k) ∈ UP (TP ∪ {A1(T − 1)}) for any pair of

actions A1, A2 such that X(v1) ∈ add(A1) and X(v2) ∈ pre(A2) and ∆GX
(v1, v2) > k.

Base case. For k = 0 we prove that for any pair of actionsA1, A2 such thatX(v1) ∈ add(A1)

andX(v2) ∈ pre(A2) with v1, v2 ∈ DX , it holds that ¬A2(T) ∈ UP (TP ∪{A1(T −1)}). By the

domain compatibility assumption, there exists a fact variable X(v1p) of GX being a precondition

of A1. If v1p = v2, then it holds that X(v2) ∈ del(A1), and since X(v2) ∈ pre(A2) it holds that

¬A2(T) ∈ UP (TP ∪ {A1(T − 1)}) due to proposition 6. Assume v1p 6= v2. Theory TP contains

the clause ¬X(v2, T) ∨ Ae11 (T − 1) ∨ . . . ∨ Ae1n (T − 1), where Ae1c , 1 ≤ c ≤ n, are the actions

that have X(v2) in their add effects. It holds that none of the actions Ae1c , 1 ≤ c ≤ n is A1,

since X(v1) ∈ add(A1) and X(v1) 6= X(v2). By the domain compatibility assumption, for each

action Ae1c , 1 ≤ c ≤ n (except the noop), is associated a precondition value vp′ of X (v2 6= vp′).

For each of the above actions Ae1c , 1 ≤ c ≤ n say Ay such that v1p = vp′ it holds that mutex

clause ¬Ay(T − 1)∨¬A1(T − 1) is contained in theory TP since del(A1)∩ pre(Ay) 6= ∅, hence

¬Ay(T − 1) ∈ UP (TP ∪ {A1(T − 1)}). For each of the above actions Ae1c , 1 ≤ c ≤ n say Az

such that v1p 6= vp′ , it holds by proposition 4 that the mutex clause ¬X(vp′ , T−1)∨¬X(v1p, T−1)

is in TP . Since the clauses ¬A1(T − 1)∨X(v1p, T − 1) and ¬Az(T − 1)∨X(vp′ , T − 1) are also

in TP , it holds for each such action ¬Az(T − 1) ∈ UP (TP ∪ {A1(T − 1)}). For a similar reason

¬noop(v2, T−1) ∈ UP (TP∪{A1(T−1)}) (since {¬noop(v2, T−1)∨X(v2, T−1),¬X(v1p, T−

1) ∨ ¬X(v2, T − 1)} ⊂ TP). From these results and the clause that relates ¬X(v2, T) and Ae1c ,

we obtain ¬X(v2, T) ∈ UP (TP ∪{A1(T −1)}) from which ¬A2(T) ∈ UP (TP ∪{A1(T −1)})

follows.

Inductive hypothesis. Assume that for some k ≥ 0, ¬A2(T + k) ∈ UP (TP ∪ {A1(T − 1)})

holds for all pairs of actions A1, A2 such that X(v1) ∈ add(A1) and X(v2) ∈ pre(A2) and

∆GX
(v1, v2) > k.

And
rea

s S
ide

ris

95

Inductive step: We prove that ¬A2(T + k + 1) ∈ UP (TP ∪ {A1(T − 1)}) holds for all

pairs of actions A1, A2 such that X(v1) ∈ add(A1) and X(v2) ∈ pre(A2) and ∆GX
(v1, v2) >

k + 1. Let Apc2 , 1 ≤ c ≤ n, be the set of actions that have X(v2) in their add effects, and

v2pc , 1 ≤ c ≤ n the associated precondition in X for each such action (by domain compatibility

assumption). Clearly, ∆GX
(v1, v

2
pc) > k, 1 ≤ c ≤ n. From the inductive hypothesis we know

that ¬Apc2 (T + k) ∈ UP (TP ∪ {A1(T − 1)}) for all 1 ≤ c ≤ n. Because theory TP contains the

clause ¬X(v2, T +k+1)∨Ap12 (T +k)∨ . . .∨Apn2 (T +k), we conclude that ¬X(v2, T +k+1) ∈

UP (TP ∪ {A1(T)}). From this, and the clause ¬A2(T + k + 1) ∨X(v2, T + k + 1) we obtain

¬A2(T + k + 1) ∈ UP (TP ∪ {A1(T − 1)}).

4.4.2 londex1 Propagation in BB-31 Encoding

It has been shown earlier that londexes are forward UP-redundant in the SATPLAN06 encod-

ing. Since BB-31 >SUP SATPLAN06, londexes are forward UP-redundant in BB-31 encoding as

well. In this section we provide a counter example showing that in the BB-31 encoding, londex

constraints are not backwards UP-redundant.

Consider a simple planning domain on 3 locations and a standard move action mv(i, j) for

moving an object from location i to location j, with j = i+1. Predicate pi denote that the object is

at location i. The DTG of the only variable of this domain is G(V,E) = ({p1, p2, p3}, {(p1, p2),

(p2, p3)}) and it holds that ∆G(p1, p3) > 1. Let TP be the BB-31 encoding of this domain. If

BB-31 is backwards UP-redundant for fact londexes then it must hold ¬p1(T − 1) ∈ UP (Tp ∪

{p3(T)}) for any time steps T . We show that this is not the case.

Assuming TP is defined on a time horizon such that all clauses on time steps T and T − 1 are

complete, its clauses, for suitably defined values of i, are the following.

And
rea

s S
ide

ris

96

¬pi(T) ∨mv(i− 1, i, T − 1) ∨Noopi(T − 1)

¬mv(i− 1, i, T) ∨ pi−1(T)

¬Noopi(T) ∨ pi(T)

¬mv(i− 1, i, T − 1) ∨ pi(T)

¬Noopi(T − 1) ∨ pi(T)

¬mv(i− 1, i, T − 1) ∨ ¬pi−1(T)

¬pi(T) ∨ ¬pj(T), ¬mv(i, i+ 1, T) ∨ ¬Noopi(T)

The set UP (TP ∪ {p3(T)}), for any valid point T , contains the following literals:

¬p1(T),¬p2(T),¬mv(1, 2, T−1),¬Noop1(T−1),¬Noop2(T−1),¬mv(1, 2, T),¬mv(2, 3, T),

¬Noop1(T),¬Noop2(T).

It can be verified that no other inferences are possible by unit propagation, thus ¬p1(T − 3) 6∈

UP (Tp ∪ {p5(T)}). This leads to the following result.

Proposition 12 The londex constraints are not UP-redundant wrt the BB-31 encoding.

Similar results can be proved for action londexes. Moreover since BB-31 >SUP SATPLAN06

londex constraints are not backwards UP-redundant in SATPLAN06 encoding as well.

4.4.3 londex1 Propagation in SATPLANmax

In this section we prove that in the SATPLANmax encoding all londex1 constraints are UP-

redundant in both directions, forward and backwards.

It was proved earlier that (clauses that correspond to) londexes (londex1) are forward UP-

redundant in the SATPLAN06 encoding. Since SATPLANmax >SUP SATPLAN06, lon-

dexes are forward UP-redundant in SATPLANmax as well.

And
rea

s S
ide

ris

97

Proposition 13 Let X be a multi-valued variable of a planning problem P with domain DX ,

TP the SATPLANmax encoding of P , and v1, v2 ∈ DX such that ∆GX
(v1, v2) > k. The set

of clauses ¬X(v2, T + k) ∨ ¬X(v1, T) is backward UP-redundant wrt to TP , for all valid time

points.

Proof We prove inductively on k that ¬X(v1, T) ∈ UP (TP ∪ {X(v2, T + k)}).

Base case. For k = 0, it follows from proposition 4 that X(v1) and X(v2) are marked

mutually exclusive on all planning graph levels, therefore TP contains the clause ¬X(v2, T) ∨

¬X(v1, T). Hence ¬X(v1, T) ∈ UP (TP ∪ {X(v2, T)}).

Inductive hypothesis. Assume that for any pair of facts X(v1), X(v2) and some k ≥ 0 with

∆GX
(v1, v2) > k, it holds that ¬X(v1, T) ∈ UP (TP ∪ {X(v2, T + k)}).

Inductive step. We show that for any pair of facts X(v1), X(v2) with ∆GX
(v1, v2) > k+ 1, it

holds that ¬X(v1, T) ∈ UP (TP ∪ {X(v2, T + k + 1)}).

By the definition of the DTG, in GX = (V,E) containing variables X(v1) and X(v2) with

∆GX
(v1, v2) > k + 1, there exist (other) variables X(v21), X(v22), . . . , X(v2n)

such that {(v1, v21), . . . , (v1, v2n)} ⊂ E, ∆GX
(v1, v2i) = 1 and by inductive hypothesis

∆GX
(v2i, v2) > k for X(v2i) ∈ {X(v21), X(v22), . . . , X(v2n)}. For any variable X(v2i) ∈

{X(v21), X(v22), . . . , X(v2n)}, there exists the associated set of actions {Av2i1 , Av2i2 , . . . , Av2imv2i
}

(noop(X(v2i)) 6∈ {Av2i1 , Av2i2 , . . . , Av2imv2i
}) each one having X(v2i) as an add effect, and due

to domain compatibility assumption X(v1) as a precondition and delete effect. It holds that

{¬Av211 (T) ∨ X(v21, T + 1), . . . ,¬Av21mv21
(T) ∨ X(v21, T + 1), . . . ,¬Av2n1 (T) ∨ X(v2n, T +

1), . . . ,¬Av2nmv2n
(T)∨X(v2n, T + 1)} ⊂ TP and {¬X(v1, T)∨X(v1, T + 1)∨Av211 (T)∨ . . . ∨

Av21mv21
(T) ∨ . . . ∨Av2n1 (T) ∨ . . . ∨Av2nmv2n

(T)} ⊂ TP .

Since ∀X(v2i) ∈ {X(v21), X(v22), . . . , X(v2n)} it holds that ∆GX
(v2i, v2) > k, by the induc-

tive hypothesis it holds that ¬X(v21, T + 1),¬X(v22, T + 1), . . . ,¬X(v2n, T + 1) ∈ UP (TP ∪

And
rea

s S
ide

ris

98

{X(v2, T +k+1)}). These literals are further (unit) resolved with the binary clauses ¬Av211 (T)∨

X(v21, T+1), . . . ,¬Av21mv21
(T)∨X(v21, T+1), . . . ,¬Av2n1 (T)∨X(v2n, T+1), . . . ,¬Av2nmv2n

(T)∨

X(v2n, T+1), giving {¬Av211 (T), . . . ,¬Av2nmv2n
(T)} ⊆ UP (TP∪{X(v2, T+k+1)}). The clause

¬X(v1, T)∨X(v1, T+1)∨Av211 (T)∨ . . .∨Av21mv21
(T)∨ . . .∨Av2n1 (T)∨ . . .∨Av2nmv2n

(T) is further

resolved to the binary clause ¬X(v1, T) ∨ X(v1, T + 1). But because ∆GX
(v1, v2) > k (since

∆GX
(v1, v2) > k + 1), by the inductive hypothesis it holds that ¬X(v1, T + 1) ∈ UP (TP ∪

{X(v2, T + k + 1)}), which further resolves the binary clause ¬X(v1, T) ∨ X(v1, T + 1) to

¬X(v1, T).

We now prove that any of the six categories of defined action londexes is backward UP-

redundant in SATPLANmax encoding

Proposition 14 Let A1, A2 be actions and f a fact of a planning problem P such that f ∈

add(A1) and f ∈ del(A2), and TP the SATPLANmax encoding of P . The set of clauses

¬A1(T) ∨ ¬A2(T), for all valid points T , is backward UP-redundant wrt the SATPLANmax

encoding of the problem.

Proof For each valid value point T the clauses ¬A1(T) ∨ f(T + 1), ¬A2(T) ∨ ¬f(T + 1) are

in TP . Obviously {¬A2(T)} ⊆ UP (TP ∪ {A1(T)}) and {¬A1(T)} ⊆ UP (TP ∪ {A2(T)}).

Proposition 15 LetA1,A2 be actions and f a fact of a planning problem P such that f ∈ del(A1)

and f ∈ pre(A2), and and TP the SATPLANmax encoding of P . The set of clauses ¬A1(T −

1)∨¬A2(T), for all valid points T , is backward UP-redundant wrt the SATPLANmax encoding

of the problem.

Proof For each valid value point T the clauses ¬A1(T − 1)∨¬f(T), ¬A2(T)∨ f(T) are in TP ,

therefore {¬A1(T − 1)} ⊆ UP (TP ∪ {A2(T)}).

And
rea

s S
ide

ris

99

Proposition 16 Let X be a multi-valued variable of a planning problem P with domain DX , TP

the SATPLANmax encoding of P , and v1, v2 ∈ DX such that ∆GX
(v1, v2) > k, k ≥ 0. If

A1, A2 are actions such that X(v1) ∈ add(A1) and X(v2) ∈ add(A2), then the set of clauses

¬A2(T) ∨ ¬A1(T − k) is backward UP-redundant wrt to TP for all valid time points.

Proof Since X(v1) ∈ add(A1), X(v2) ∈ add(A2) for each valid value point T the clauses

¬A1(T) ∨X(v1, T + 1) and ¬A2(T) ∨X(v2, T + 1) are in TP . Obviously {X(v2, T + 1)} ⊆

UP (TP ∪ {A2(T)}) , and hence by proposition 13 it holds that

{¬X(v1, T+1),¬X(v1, T), . . . ,¬X(v1, T+1−k)} ⊆ UP (TP∪{A2(T)}). Literals¬X(v1, T+

1),¬X(v1, T), . . . ,¬X(v1, T+1−k) are further (unit) resolved with the binary clauses¬A1(T)∨

X(v1, T+1),¬A1(T−1)∨X(v1, T), . . . ,¬A1(T−k)∨X(v1, T+1−k) giving {¬A1(T),¬A1(T−

1), . . . ,¬A1(T − k)} ⊆ UP (TP ∪ {A2(T)}).

Proposition 17 Let X be a multi-valued variable of a planning problem P with domain DX , TP

the SATPLANmax encoding of P , and v1, v2 ∈ DX such that ∆GX
(v1, v2) > k, k ≥ 0. If

A1, A2 are actions such that X(v1) ∈ add(A1) and X(v2) ∈ pre(A2), then the set of clauses

¬A2(T) ∨ ¬A1(T − k − 1) is backward UP-redundant wrt to TP for all valid time points.

Proof Since X(v1) ∈ add(A1), X(v2) ∈ pre(A2) for each valid value point T the clauses

¬A1(T)∨X(v1, T + 1) and ¬A2(T)∨X(v2, T) are in TP . Obviously {X(v2, T)} ⊆ UP (TP ∪

{A2(T)}) , and hence by proposition 13 it holds that {¬X(v1, T), . . . ,¬X(v1, T−k)} ⊆ UP (TP∪

{A2(T)}). Literals ¬X(v1, T), . . . ,¬X(v1, T − k) are further (unit) resolved with the binary

clauses ¬A1(T − 1) ∨ X(v1, T), . . . ,¬A1(T − k − 1) ∨ X(v1, T − k) giving {¬A1(T −

1), . . . ,¬A1(T − k − 1)} ⊆ UP (TP ∪ {A2(T)}).

Proposition 18 Let X be a multi-valued variable of a planning problem P with domain DX , TP

the SATPLANmax encoding of P , and v1, v2 ∈ DX such that ∆GX
(v1, v2) > k, k ≥ 0. If

And
rea

s S
ide

ris

100

A1, A2 are actions such that X(v1) ∈ pre(A1) and X(v2) ∈ add(A2), then the set of clauses

¬A2(T) ∨ ¬A1(T − k + 1) is backward UP-redundant wrt to TP for all valid time points.

Proof Since X(v1) ∈ pre(A1), X(v2) ∈ add(A2) for each valid value point T the clauses

¬A1(T)∨X(v1, T) and¬A2(T)∨X(v2, T+1) are in TP . Obviously {X(v2, T+1)} ⊆ UP (TP∪

{A2(T)}) , and hence by proposition 13 it holds that {¬X(v1, T+1),¬X(v1, T), . . . ,¬X(v1, T+

1−k)} ⊆ UP (TP ∪{A2(T)}) . Literals ¬X(v1, T +1), . . . ,¬X(v1, T +1−k) are further (unit)

resolved with the binary clauses¬A1(T+1)∨X(v1, T+1),¬A1(T)∨X(v1, T), . . . ,¬A1(T+1−

k)∨X(v1, T+1−k) giving {¬A1(T+1),¬A1(T), . . . ,¬A1(T−k+1)} ⊆ UP (TP ∪{A2(T)}).

Proposition 19 Let X be a multi-valued variable of a planning problem P with domain DX , TP

the SATPLANmax encoding of P , and v1, v2 ∈ DX such that ∆GX
(v1, v2) > k, k ≥ 0. If

A1, A2 are actions such that X(v1) ∈ pre(A1) and X(v2) ∈ pre(A2), then the set of clauses

¬A2(T) ∨ ¬A1(T − k) is backward UP-redundant wrt to TP for all valid time points.

Proof Since X(v1) ∈ pre(A1), X(v2) ∈ pre(A2) for each valid value point T the clauses

¬A1(T) ∨ X(v1, T) and ¬A2(T) ∨ X(v2, T) are in TP . Obviously {X(v2, T)} ⊆ UP (TP ∪

{A2(T)}) , and hence by proposition 13 it holds that {¬X(v1, T), . . . ,¬X(v1, T−k)} ⊆ UP (TP∪

{A2(T)}). Literals ¬X(v1, T), . . . ,¬X(v1, T − k) are further (unit) resolved with the binary

clauses ¬A1(T) ∨X(v1, T), . . . ,¬A1(T − k) ∨X(v1, T − k) giving

{¬A1(T),¬A1(T − 1), . . . ,¬A1(T − k)} ⊆ UP (TP ∪ {A2(T)}).

By combining the results of this and the previous section, we obtain the following property for

the SATPLANmax encoding.

Theorem 1 Let P be STRIPS planning domain and TP its SATPLANmax encoding. All clauses

that correspond to londex1 constraints derived from P are UP-redundant wrt TP .

And
rea

s S
ide

ris

101

Note that the above result holds for SMP as well, as it is a simplification of SATPLANmax

obtained by removing UP-redundant clauses.

4.4.4 londexm Propagation in SATPLANmax

By theorem 1, all londex1 constraints are UP-redundant in SATPLANmax (and SMP). In this

section we provide a counter example showing that this does not hold for the stronger form of

londexes londexm presented in [29].

Assume a simple planning domain where a truck transports a package between three locations

p1, p2, p3. Furthermore, assume three move actions mv(p1, p2),mv(p2, p3),mv(p3, p1) for the

truck, as well the action schemata ld(pi) and unld(pi), for loading and unloading respectively the

package at location pi . Predicates t(pi) and c(pi) denote that the truck and the package respec-

tively are at location pi, whereas c(r) denotes that the package is in the truck. The corresponding

noops are denoted by nooppi , noopci , and noopcr .

Obviously the problem can be presented by two multi-valued variables, TRUCK andPACKAGE.

The first corresponds to the location of the truck and the second to the location of the package.

Their domains areDTRUCK = {t(p1), t(p2), t(p3)} andDPACKAGE = {c(p1), c(p2), c(p3), c(r)}.

For example TRUCK = t(p1) expresses that the truck is at location p1, whereas PACKAGE =

c(r) expresses that the package is in the truck. The DTG graphs for the two state variables are:

GTRUCK(V,E) ≡ {{t(p1), t(p2), t(p3)}, {(t(p1), t(p2)), (t(p2), t(p3)), (t(p3), t(p1))}} and

GPACKAGE(V,E) ≡ {{c(p1), c(p2), c(p3), c(r)},

{(c(p1), c(r)), (c(p2), c(r)), (c(p3), c(r)), (c(r), c(p1)), (c(r), c(p2)), (c(r), c(p3))}}.

The shortest distance from c(p1) to c(p3) in GPACKAGE is ∆GPACKAGE
(c(p1), c(p3)) = 2

achievable by action ld(p1) followed by the action unld(p3), and from t(p1) to t(p3) in GTRUCK

is ∆GTRUCK
(t(p1), t(p3)) = 2 achievable by action mv(p1, p2) followed by action mv(p2, p3). It

And
rea

s S
ide

ris

102

is easy to see that for both DTG graphs it holds that there is only one action from any transition

from any value of the state variable to another. Since there is a (directed) edge (TRUCK,PACKAGE)

in the causal graph and TRUCK = t(p1), TRUCK = t(p3) are prevail conditions of ld(p1) and

unld(p3) respectively, the shortest distance from c(p1) to c(p3) is given by the γ function as

defined in [29] (presented in section 4.2.2.2):

γ(c(p1), c(p3)) = min(max(∆GPACKAGE
(c(p1), c(p3)),∆GTRUCK

(t(p1), t(p3)) + 1)) = 3.

Since γ(c(p1), c(p3)) = 3, if londexm clauses are UP-redundant wrt SATPLANmax, then

in the SATPLANmax encoding TP for the above problem, it must hold that ¬c(p3, T + 2) ∈

UP (TP ∪ {c(p1, T)}) and ¬c(p1, T − 2) ∈ UP (TP ∪ {c(p3, T)}) for all time steps T .

Assuming TP is defined on a time horizon such that all clauses on time steps T and T − 1 are

complete, its clauses are the following.

Add axioms – clauses 5 :

¬t(p1, T) ∨mv(p3, p1, T − 1) ∨ noopp1(T − 1)

¬t(p2, T) ∨mv(p1, p2, T − 1) ∨ noopp2(T − 1)

¬t(p3, T) ∨mv(p2, p3, T − 1) ∨ noopp3(T − 1)

¬c(r, T) ∨ ld(p1, T − 1) ∨ ld(p2, T − 1) ∨ ld(p3, T − 1) ∨ noopcr(T − 1)

¬c(pi, T) ∨ unld(pi, T − 1) ∨ noopci(T − 1)

Delete axioms – clauses 6 :

t(p1, T) ∨mv(p1, p2, T − 1) ∨ ¬t(p1, T − 1)

t(p2, T) ∨mv(p2, p3, T − 1) ∨ ¬t(p2, T − 1)

t(p3, T) ∨mv(p3, p1, T − 1) ∨ ¬t(p3, T − 1)

c(r, T) ∨ ¬c(r, T − 1) ∨ unld(p1, T − 1) ∨ unld(p2, T − 1) ∨ unld(p3, T − 1)

c(pi, T) ∨ ¬c(pi, T − 1) ∨ ld(pi, T − 1)

Add effect – clauses 3 :

And
rea

s S
ide

ris

103

¬mv(p1, p2, T − 1) ∨ t(p2, T), ¬noopp2(T − 1) ∨ t(p2, T)

¬mv(p2, p3, T − 1) ∨ t(p3, T), ¬noopp3(T − 1) ∨ t(p3, T)

¬mv(p3, p1, T − 1) ∨ t(p1, T), ¬noopp1(T − 1) ∨ t(p1, T)

¬ld(pi, T − 1) ∨ c(r, T), ¬noopcr(T − 1) ∨ c(r, T)

¬unld(pi, T − 1) ∨ c(pi, T), ¬noopci(T − 1) ∨ c(pi, T)

Delete effect – clauses 4 :

¬mv(p1, p2, T − 1) ∨ ¬t(p1, T)

¬mv(p2, p3, T − 1) ∨ ¬t(p2, T)

¬mv(p3, p1, T − 1) ∨ ¬t(p3, T)

¬ld(pi, T − 1) ∨ ¬c(pi, T)

¬unld(pi, T − 1) ∨ ¬c(r, T)

Preconditions – clauses 2 :

¬mv(p1, p2, T) ∨ t(p1, T), ¬mv(p2, p3, T) ∨ t(p2, T), ¬mv(p3, p1, T) ∨ t(p3, T)

¬Nooppi(T) ∨ t(pi, T)

¬ld(pi, T) ∨ c(pi, T), ¬noopci(T) ∨ c(pi, T)

¬ld(pi, T) ∨ t(pi, T)

¬unld(pi, T) ∨ c(r, T), ¬noopcr(T) ∨ c(r, T)

¬unld(pi, T) ∨ t(pi, T)

Mutex facts – clauses 8 :

¬t(pi, T) ∨ ¬t(pj , T),∀i, j ∈ {1, 2, 3}, i 6= j

¬c(pi, T) ∨ ¬c(pj , T),∀i, j ∈ {1, 2, 3}, i 6= j

¬c(pi, T) ∨ ¬c(r, T),∀i ∈ {1, 2, 3}

Mutex actions – clauses 7.1 :

¬mv(p1, p2, T) ∨ ¬ld(p1, T), ¬mv(p2, p3, T) ∨ ¬ld(p2, T)

And
rea

s S
ide

ris

104

¬mv(p3, p1, T) ∨ ¬ld(p3, T)

¬mv(p1, p2, T) ∨ ¬unld(p1, T), ¬mv(p2, p3, T) ∨ ¬unld(p2, T)

¬mv(p3, p1, T) ∨ ¬unld(p3, T)

¬ld(pi, T) ∨ ¬nooppi(T), ¬unld(pi, T) ∨ ¬noopcr(T)

¬mv(p1, p2, T) ∨ ¬noopp1(T), ¬mv(p2, p3, T) ∨ ¬noopp2(T)

¬mv(p3, p1, T) ∨ ¬noopp3(T)

The literals that can be inferred by unit propagation of c(p1, T), and are therefore elements of

UP (TP ∪ {c(p1, T)}) are the following (in parentheses the number that specifies the family of

clauses from which the literal is derived):

¬c(p2, T)(8),¬c(p3, T)(8),¬c(r, T)(8),

¬ld(p2, T)(2),¬ld(p3, T)(2),¬unld(p1, T)(2), ¬unld(p2, T)(2),¬unld(p3, T)(2),

¬noopc2(T)(2),¬noopc3(T)(2),¬noopcr(T)(2),

¬ld(p1, T − 1)(4),¬ld(p2, T − 1)(3),¬ld(p3, T − 1)(3),¬unld(p2, T − 1)(3),¬unld(p3, T −

1)(3),¬noopc2(T − 1)(3),¬noopc3(T − 1)(3),¬noopcr(T − 1)(3),

¬c(p2, T − 1)(6),¬c(p3, T − 1)(6),¬c(p2, T + 1)(5),¬c(p3, T + 1)(5),

¬noopc2(T − 1)(2),¬noopc3(T − 1)(2),¬noopc2(T + 1)(2),¬noopc3(T + 1)(2),

¬ld(p2, T + 1)(2),¬ld(p3, T + 1)(2),¬unld(p2, T − 2)(3),¬unld(p3, T − 2)(3).

Since it holds that ¬c(p3, T + 2) 6∈ UP (TP ∪ {c(p1, T)}), the londexm clause ¬c(p1, T) ∨

¬c(p3, T + 2) is not forward UP-redundant in Tp. Therefore the following result.

Proposition 20 The londexm clauses are not UP-redundant wrt the SATPLANmax encoding.

Note that the above results holds for SMP as well, as SMP⊂ SATPLANmax. Since SATPLANmax

>SUP BB-31 and BB-31 >SUP SATPLAN06, clauses londexm are not UP-redundant for BB-31

and SATPLAN06 encodings as well (the relation >SUP is transitive).

And
rea

s S
ide

ris

105

Domain Problems SP-SI BB-SI SMP-SI SP-PR BB-PR SASE-PR SMP-PR
Depots 22/22 16 16 18 17 17 17 19
DriveLog 20/20 16 16 16 17 17 17 17
Zenotravel 20/19 15 15 16 15 15 16 16
Freecell 20/20 4 4 6 5 5 6 6
Satellite 36/24 17 17 17 17 18 18 18
Pathways 30/30 9 9 10 12 12 16 16
Trucks 30/30 5 6 8 7 7 10 11
Pipes 50/31 17 23 23 15 24 25 27
Storage 30/30 15 15 15 15 15 15 16
TPP 30/30 27 28 28 28 29 30 30
Elevators 30/30 9 9 12 12 13 14 14
ScanAnalyser 30/23 17 17 19 15 16 18 18
Sokoban 30/30 2 2 4 2 5 2 7
Transport 30/21 11 11 12 11 11 13 13
Total 408/360 180 188 204 188 204 217 228

Table 1: Number of problems solved by each encoding in different domains.

4.5 Experimental evaluation

In this section we present the results of the experimental comparison of various encodings

discussed earlier, in domains from planning competitions. Our implementation is an extension of

the SATPLAN06 system with new encodings for BLACKBOX and SMP as well as the integration

of precosat. Hence, all experiments are runs of the same system with different values for the

parameters encoding and solver. The experiments were run on an IBM X3650 with Intel Xeon

processors at 2.0 GHz and 32GB of RAM, running under CentOS 5.2.

Table 1 presents the number of problems solved with different combinations of encodings and

SAT solvers, within a CPU time limit of 2500 seconds. The encodings compared are SATPLAN06

(encoding SATPLAN06-4), BLACKBOX (encoding BB-31), and SMP. We also conducted experi-

ments of SASE planner with the same time limit. The SAT solvers that are used are siege [109]

and precosat [16] version 236, a newer system that seems to outperform Siege and many other

solvers that we have tested on a large number of planning domains. In Table 1 (as well as Table

And
rea

s S
ide

ris

106

Domain-Problem SMP BB SP
Depots-11 176 1674 2134
DriveLog-16 897 1156 2453
Zenotravel-15 84 307 383
Pathways-17 971 980 1940
Trucks-8 161 637 1140
TPP-21 1580 1908 2554
Pipes-12 189 348 1429
Transport-4 81 312 563
Sokoban-13 474 1869 -
Elevator-21 2099 2424 -
ScanAnalyser-8 59 208 -

Table 2: Run times in seconds for different encodings of problems. A dash indicates CPU timeout.

2) SATPLAN06 is denoted by SP, BLACKBOX by BB, whereas siege by SI and precosat by

PR.

The entries under ”Problems” in Table 1 are of the form p/q, where p is the total number of

problems contained in each domain, and q the number of problems for which either one of the

methods found a solution, or they all reached their CPU limit and terminated without a solution.

Hence, p− q is the number of problems that were not solved by any of the systems due to memory

problems at parsing or solving time.

Table 2 presents characteristic run times of different encodings on some of the hardest prob-

lems that have been solved by both BLACKBOX and SMP. All times were obtained with precosat as

the underlying SAT solver, and a CPU time limit of 3600 seconds.

The relative performance of the different encodings, as depicted in Tables 1 and 2, is con-

sistent with the theoretical results obtained in earlier sections. Indeed, BLACKBOX outperforms

SATPLAN06, whereas SMP dominates all other encodings. Moreover, solution times improve

when precosat instead of siege is used as the SAT solver.

And
rea

s S
ide

ris

107

4.6 Binary Constraints in Planning as Satisfiability

In the spirit of this work, a natural question arises: Can we identify new families of binary

clauses that are useful in achieving more propagation, and therefore speeding-up the solving in

the planning as SAT framework? As the vast majority of SAT-solvers use unit propagation as their

constraint propagation method, we are interested only in non UP-redundant binary clauses.

There are two approaches to answer this question:

I. Identify analytically new kinds of binary clauses that have a intuitive meaning for planning

and are not UP-redundant.

II. Discover implied clauses automatically, with the use of suitable off-line tool.

In the following we explore both options. Regarding the automated clause discovery, the

goal is not to develop a preprocessing tool to be used in plan generation, but rather an off-line

explorative system that may reveal new useful binary clauses. In other words, the question to be

answered here is whether useful constraints exist, rather than how they can be found efficiently.

Clearly, if such constraints do not exist, there is no motive in devising efficient algorithms for

computing them.

4.6.1 Prevail constraints

According to the state-variable representation (see Chapter 3), a prevail condition of an action

is a value of a state variable that is required by the action in ordered to be applicable, but is not

changed by that action. In STRIPS representation, a prevail condition is defined as follows:

Definition 35 A fact f is a prevail condition of an action A =< pre(A), add(A), del(A) > if

f ∈ pre(A) ∧ f 6∈ del(A).

And
rea

s S
ide

ris

108

If an action is applied at a time step, all its prevail conditions must be true at the next step.

The intuition for this is that since action A is applied at time T , then its prevail condition f must

also be true at time step T (since f ∈ pre(A)). Since f is true at time step T , in order for f to be

false at time T + 1, an action A′ such that f ∈ del(A′) must be applied at time step T (in order to

delete the fact f). But any such action A′ interferes with action A (since f ∈ (del(A′)∩ pre(A)))

and since A is true at time step T , A′ is false at time step T . We prove this intuition formally in

next proposition.

Proposition 21 LetA be an action of a planning problem P , and f a prevail condition ofA. Then

for all the valid time steps T the binary clause ¬A(T) ∨ f(T + 1) is an implied clause of the

SATPLANmax encoding of P .

Proof Let A1, . . . , An be all the actions of the problem P deleting f (f ∈ del(Ai) for all 1 ≤

i ≤ n), and Tp the SATPLANmax translation of P . It holds for the set of clauses C = {¬A(T) ∨

f(T), f(T+1)∨A1(T)∨. . .∨An(T)∨¬f(T),¬A(T)∨¬A1(T), . . . ,¬A(T)∨¬An(T)} that C ⊂

Tp. It is easy to verify that f(T + 1) ∈ UP (C∪ {A(T)}) hence f(T + 1)) ∈ UP (Tp ∪ {A(T)})

since C ⊂ Tp, therefore ¬A(T) ∨ f(T + 1) is an implied constraint of Tp, which is also forward

UP-redundant.

We prove next that the implied clause ¬A(T) ∨ f(T + 1) is not backward UP-redundant wrt

the SATPLANmax encoding.

Proposition 22 Let A be an action of a planning problem P , f a prevail condition of A and Tp

the SATPLANmax translation of P . Then, for all the valid time steps T the implied binary clause

¬A(T) ∨ f(T + 1) is not backward UP-redundant wrt the theory Tp.

And
rea

s S
ide

ris

109

Proof Assume a planning problem P with two persons P1 and P2 and three rooms R1, R2 and

R3 with a light switch only in R1. Any of the persons can switch on the light provided she is

in room R1. Only P1 can move, and the only valid moves are from R1 to any of the other two

rooms. Initially the switch is off and the two persons are in room R1. There are four actions:

The actions TuOn(P1) and TuOn(P2) with semantics that the person P1 or P2 turns the switch

on respectively. The other two actions are MvR(P1, R2) and MvR(P1, R3) with semantics that

the person P1 moves to room R2 or to room R3 respectively. The goal is to turn the switch on.

Obviously there are two optimal plans of a planning horizon one with just one action, any of the

persons to turn on the switch. The problem (STRIPS) description is P =< I,G,A > where:

I = {inroom(P1, R1), inroom(P2, R1), switchoff}

G = {switchon} and

A = {TuOn(P1), TuOn(P2),MvR(P1, R2),MvR(P1, R3)}

where the action descriptions are:

pre(TuOn(P1)) = {inroom(P1, R1), switchoff}, add(TuOn(P1)) = {switchon}

and del(TuOn(P1)) = {switchoff}

pre(TuOn(P2)) = {inroom(P2, R1), switchoff}, add(TuOn(P2)) = {switchon}

and del(TuOn(P2)) = {switchoff}

pre(MvR(P1, R2)) = {inroom(P1, R1)}, add(MvR(P1, R2)) = {inroom(P1, R2)}

and del(MvR(P1, R2)) = {inroom(P1, R1)}

pre(MvR(P1, R3)) = {inroom(P1, R1)}, add(MvR(P1, R3)) = {inroom(P1, R3)}

and del(MvR(P1, R3)) = {inroom(P1, R1)}

From the action descriptions above it holds that the fact inroom(P1, R1) is a prevail con-

dition of action TuOn(P1), since inroom(P1, R1) ∈ pre(TuOn(P1)) and inroom(P1, R1) 6∈

del(TuOn(P1)).

And
rea

s S
ide

ris

110

The clauses of the SATPLANmax translation Tp of the above problem P for horizon one are

(where the last argument of fact/action denotes the time step):

Initial conditions – clauses 1 :

inroom(P1, R1, 0), inroom(P2, R1, 0), switchoff(0)

Add axioms – clauses 5 :

¬switchon(1) ∨ TuOn(P1, 0) ∨ TuOn(P2, 0)

¬inroom(P1, R1, 1) ∨ noopinroom(P1,R1)(0)

¬inroom(P2, R1, 1) ∨ noopinroom(P2,R1)(0)

¬inroom(P1, R2, 1) ∨MvR(P1, R2, 0)

¬inroom(P1, R3, 1) ∨MvR(P1, R3, 0)

¬switchoff(1) ∨ noopswitchoff (0)

Delete axioms – clauses 6 :

inroom(P1, R1, 1) ∨MvR(P1, R2, 0) ∨MvR(P1, R3, 0) ∨ ¬inroom(P1, R1, 0)

inroom(P2, R1, 1) ∨ ¬inroom(P2, R1, 0)

switchoff(1) ∨ TuOn(P1, 0) ∨ TuOn(P2, 0) ∨ ¬switchoff(0)

Add effect – clauses 3 :

¬TuOn(P1, 0) ∨ switchon(1), ¬TuOn(P2, 0) ∨ switchon(1)

¬MvR(P1, R2, 0) ∨ inroom(P1, R2, 1), ¬MvR(P1, R3, 0) ∨ inroom(P1, R3, 1)

¬noopinroom(P1,R1)(0) ∨ inroom(P1, R1, 1)

¬noopinroom(P2,R1)(0) ∨ inroom(P2, R1, 1)

¬noopswitchoff (0) ∨ switchoff(1)

Delete effect – clauses 4 :

¬TuOn(P1, 0) ∨ ¬switchoff(1)

¬TuOn(P2, 0) ∨ ¬switchoff(1)

And
rea

s S
ide

ris

111

¬MvR(P1, R2, 0) ∨ ¬inroom(P1, R1, 1)

¬MvR(P1, R3, 0) ∨ ¬inroom(P1, R1, 1)

Preconditions – clauses 2 :

¬TuOn(P1, 0) ∨ inroom(P1, R1, 0), ¬TuOn(P2, 0) ∨ inroom(P2, R1, 0)

¬TuOn(P1, 0) ∨ switchoff(0), ¬TuOn(P2, 0) ∨ switchoff(0)

¬MvR(P1, R2, 0) ∨ inroom(P1, R1, 0)

¬MvR(P1, R3, 0) ∨ inroom(P1, R1, 0)

¬noopinroom(P1,R1)(0) ∨ inroom(P1, R1, 0)

¬noopinroom(P2,R1)(0) ∨ inroom(P2, R1, 0)

¬noopswitchoff (0) ∨ switchoff(0)

Mutex facts – clauses 8 :

¬switchon(1) ∨ ¬switchoff(1)

¬inroom(P1, R1, 1) ∨ ¬inroom(P1, R2, 1)

¬inroom(P1, R1, 1) ∨ ¬inroom(P1, R3, 1)

¬inroom(P1, R2, 1) ∨ ¬inroom(P1, R3, 1)

Mutex actions – clauses 7.1 :

¬TuOn(P1, 0) ∨ ¬TuOn(P2, 0)

¬TuOn(P1, 0) ∨ ¬MvR(P1, R2, 0)

¬TuOn(P1, 0) ∨ ¬MvR(P1, R3, 0)

¬TuOn(P1, 0) ∨ ¬noopswitchoff (0)

¬TuOn(P2, 0) ∨ ¬noopswitchoff (0)

¬MvR(P1, R2, 0) ∨ ¬noopinroom(P1,R1)(0)

¬MvR(P1, R3, 0) ∨ ¬noopinroom(P1,R1)(0)

And
rea

s S
ide

ris

112

Goals – clauses 1 :

switchon(1)

It is easy to verify that

UP (Tp ∪ {¬inroom(P1, R1, 1)}) =

{inroom(P1, R1, 0), inroom(P2, R1, 0), switchoff(0), switchon(1),

inroom(P2, R1, 1),¬switchoff(1),¬noopswitchoff (0),

noopinroom(P2,R1)(0),¬inroom(P1, R1, 1),¬noopinroom(P1,R1)(0)},

hence ¬TuOn(P1, 0) 6∈ UP (Tp ∪ {¬inroom(P1, R1, 1)}). From this it follows that the implied

clause ¬TuOn(P1, 0) ∨ inroom(P1, R1, 1) is not backward UP-redundant in the theory Tp.

Proposition 23 LetA be an action of a planning problem P , f a prevail condition ofA, and Tp the

SATPLANmax translation of P . The implied binary clause ¬A(T)∨f(T+1) is not UP-redundant

wrt Tp and valid time step T .

Proof Follows directly from proposition 22.

Note that the above results holds for SMP as well since SMP >C SATPLANmax. Since

SATPLANmax >SUP BB-31 and BB-31 >SUP SATPLAN06, propositions 22 and 23 hold for

BB-31 and SATPLAN06 encodings as well (the relation >SUP is transitive).

Proposition 23 implies that prevail constraints can be, in principle, useful when added to the

SATPLANmax translation of a problem since they can achieve more propagation for a SAT solver

that uses unit propagation as its constraint propagation method. Another interesting side effect

when adding these constraints, is that many action mutexes can become UP-redundant and hence

can be removed from the theory. When a prevail constraint ¬A(T) ∨ f(T + 1) is added to the

And
rea

s S
ide

ris

113

encoding, if there is an action A′(T) such that A′(T) is mutex in the theory with A(T), then

the action mutex constraint ¬A(T) ∨ ¬A′(T) can be safely removed (because it’s UP-redundant)

if A′ deletes f or if it adds an f ′ which is mutex with f at layer T + 1. For example in the

above example if we add the prevail constraint ¬TuOn(P1, 0)∨ inroom(P1, R,1) then the action

mutexes clauses ¬TuOn(P1, 0)∨¬MvR(P1, R2, 0) and ¬TuOn(P1, 0)∨¬MvR(P1, R3, 0) can

be safely removed as UP-redundant.

We implemented a version of the SMP encoding that at all layers all the prevail constraints

for all the (no NOOPs) actions are added, and any action mutexes that become UP-redundant

are removed. This new encoding can be selected by the user by providing a suitable value for

the parameter encoding of the system. Our experiments showed better planning times of about

10-20% for the problems of all domains, except Trucks where we get a speed-up of about 50%,

and all the action mutexes are removed as UP-redundant.

4.6.2 Automatically computed binary constraints

Binary constraints may speed up SAT-based planning provided that they enhance the constraint

propagation in the underlying solver. For instance, in the SMP encoding there are at least two type

of meaningful clauses that we formally proved that are not UP-redundant: the prevail constraints

(section 4.6.1) presented in this work, and the londexm constraints of [29] discussed in 4.2.2.2.

We implemented ImpBinPlan, a tool that finds automatically non UP-redundant binary constraints.

ImpBinPlan must be seen as an exploratory tool for the discovery of new families of clauses,

rather as a preprocessing method that targets directly to reduce plan times. In fact, as it will come

apparent later, ImpBinPlan is a very slow tool.

Our aim is to find ’general’ clauses: for example, londexm and prevail clauses are general as

they can be found in many domains. Moreover, they should not be depended on the initial state or

And
rea

s S
ide

ris

114

goals of a specific problem, but merely on the structure of the domain. As with SMP, ImpBinPlan

takes as input a domain and a problem description. For this reason, all goals are removed from the

SMP encoding of the problem that is analyzed. On the other hand, as ImpBinPlan builds on tools

developed within the SATPLAN framework, there is no easy way to remove the initial conditions.

For this reason we follow an ’indirect’ approach: Suppose we want to find binary constraints in a

domain for a planning horizon k. We build a planning graph of l + k layers, where l is the first

layer where the graph plan levels off. Then we take the sub-graph from layer l to l+k and translate

it to SMP encoding (without any goals). There is another reason for this approach. Since theory

TP , derived as explained, contains only leveled-off layers, any clause at each layer is an exact

copy of one in the previous layers. For example if there is a mutex fact clause ¬f1(l) ∨ ¬f2(l) at

layer l then ¬f1(l + i) ∨ ¬f2(l + i),∀i ∈ [1, . . . , k] ∈ TP . It is not hard to prove that due to this

’symmetry’ of the clauses over layers, if an implied clause v1(x) ∨ v2(y) is found, then is safe to

conclude that v1(x+ d) ∨ v2(y + d) is also an implied clause for d > 0.

ImpBinPlan takes as input a SMP theory TP , and a number of (user-defined) parameter values.

Assume that the first layer of TP is l and the last is l+ k. At a high level, the algorithm iteratively

selects all pairs of variables x1, x2 (x1 6= x2). For each pair x1, x2 and a user-defined layer

distance dist it tests for each of the four clauses (for the four possible polarities) c1 = x1(l) ∨

x2(l+dist), c2 = x1(l)∨¬x2(l+dist), c3 = ¬x1(l)∨x2(l+dist) and c4 = ¬x1(l)∨¬x2(l+dist)

if they are implied clauses. For any clause ci, i ∈ {1, 2, 3, 4} found to be an implied clause, dist

is increased by one, and the process repeats until a non-implied clause is found or dist = k. The

user can choose to omit from implication testing any of the four polarities. Moreover, the user can

select any subset of the set of four combinations that can be generated depending on whether the

literals x1, x2 of the implied clause corresponds to a fact or an action. This is sensible since facts

are substantially fewer than action in most domains, and actions are usually tightly coupled with

And
rea

s S
ide

ris

115

facts through propagation. Any implied clauses found are stored in an queue in the order they are

found.

The algorithm tests if a clause is implied by adding to the theory the unit clauses for the

opposite polarity, and then running a SAT-solver (we used precosat [16] version 236). For

testing the four clauses c1, c2, c3, c4 of the previous paragraph, the corresponding theories T 1
P =

TP∪{¬x1(l),¬x2(l+dist)}, T 2
P = TP∪{¬x1(l), x2(l+dist)}, T 3

P = TP∪{x1(l),¬x2(l+dist)}

and T 4
P = TP ∪ {x1(l), x2(l + dist)} are generated. Obviously ci is implied if and only if T ip

is inconsistent for i ∈ {1, 2, 3, 4}. The user can impose a cut-off time limit to the SAT solver

for each test performed in a pair of variables and distance. Every time the solver times out, the

corresponding clause is considered non-implied by the algorithm, and the algorithm proceeds to

the next pair of variables.

In the final step, ImpBinPlan reads the queue with the implied clauses (in FIFO order). For the

read clause c, if it is not UP-redundant wrt TP , TP is updated to TP ∪ {c}. This is done to avoid

the insertion (or discovery) of implied clauses that are not UP-redundant and hence not useful.

We note that the set of implied clauses found (the non-UP redundant) is not neccesarily a minimal

one with respect to the implied clauses found by ImpBinPlan in the first step. The UP-redundancy

test for a clause c is straightforward. If c = ¬x1(l) ∨ ¬x2(l′) then c is UP-redundant wrt TP if

¬x1(l) ∈ UP (TP ∪ {x2(l′)})
∧
¬x2(l′) ∈ UP (TP ∪ {x1(l)})

4.6.3 Experimental findings

We conducted a number of experiments with the ImpBinPlan constraint discovery tool in

different planning domains with the following two objectives

• Identify other forms of binary clauses that may be present in planning domains and are not

UP-redundant.

And
rea

s S
ide

ris

116

Domain F/F/0 F/A/0 F/F/-/- F/F/+/- F/F/+/+ F/A/-/-
Freecell N N Y N N Y
Path N N Y N N Y
Barman N Y Y N N Y
Trucks N N Y N N Y
Visit N N N N N N
Sokobahn N N Y N N Y
Transport N N Y N N Y
Openstacks N N Y N N Y
Pipes N N Y N N Y
Storage N N Y N N Y

Table 3: Types of binary clauses searched in various domains. F/F and F/A denote fact,fact and
fact,action pairs respectively. The postfix 0 denotes pairs of literals that refer to the same time
step. The postfixes -/-, etc. refer to the polarity of the clauses. An entry Y means that the domain
contains clauses of the corresponding type, and N means the opposite.

• Determine experimentally whether these constraints improve SAT solving.

The type of binary clauses sought are shown in Table 3. All clauses are of the form ¬p(T) ∨

¬q(T + k), where p and q are literals, and k ≥ 0. Therefore, the discovered clauses are a

generalization of the londexes of [29], that are restricted to negative fact literals. The exact value

of k is domain dependent, and explained below.

The F/F columns correspond to binary clauses of the form f1 ∨ f2 where f1 and f2 are literals

that correspond to facts, whereas F/A denotes clauses of the form f ∨ a where f and a are fact

and action literals respectively. The +/- notation refers to the polarity of the literals in the clause,

e.g. F/F/+/- corresponds to clauses of the form f1 ∨ ¬f2 where f1 and f2 are fact atoms. For the

fact,action pairs ImpBinPlan was only run for clauses where both of its literals are negative. This

restriction is due to computational considerations that are explained later. The second and third

column in Table 3, i.e. F/F/0 and F/A/0 correspond to the binary clauses on literals that refer to

the same time point. For F/F/0, all four different literal polarities have been tried. For F/A/0 only

And
rea

s S
ide

ris

117

clauses with literals with opposite polarities were searched. Finally, an entry Y in the table means

that the corresponding type of binary clauses is present in the domain, and N the opposite.

The findings presented in Table 3, are based on runs with relatively small problems from the

domains that are considered. This is a restriction imposed by the complexity of the problem.

Indeed, there are domains that, even for small problems, induce hundreds of thousands or millions

of clauses. To answer the question of whether each such clauses is implied, a SAT problem

needs to be solved. As a result, in some domains, finding all binary constraints requires running

ImpBinPlan for several weeks.

The first conclusion that follows from the experiments is that no new implied binary clauses

on fact variables were found, except for those that are on two negative fact literals. On the other

hand, almost all domains (except for Visit that no additional clause was found) have londex

constraints that are on negative fact literals. Probably the most interesting finding is the existence

of binary constraints on one fact and one action literal. Interestingly, these binary clauses appear in

almost all domains. The question that needs to be answered next is whether these new constraints

can improve the search for a plan.

4.6.4 Utility of the extra constraints

In order to determine the effects of the discovered binary clauses on the performance on SMP,

we conducted experiments on various domains. The constraints found by ImpBinPlan were added

to SMP, along with the standard clauses of the encoding. Then, the run times of SMP with and

without the extra binary clauses are compared.

The results are presented in Table 4, and refers to SAT instances derived from planning prob-

lems with a fixed planning horizon. The column under ”# F/A clauses” lists the number of binary

clauses of the form ¬f(T) ∨ ¬A(T + dist) found by ImpBinPlan. Note that f is a fact atom and

And
rea

s S
ide

ris

118

Problem dist # F/A clauses Time W/O Time W
Barman-Prob8-Hor49 25 1943092 604 756
Barman-Prob9-Hor49 25 2179572 988 1240
Sokoban-Prob8-Hor119 16 1178280 655 601
Sokoban-Prob9-Hor195 16 2062693 292 288
Storage-Prob16-Hor10 8 287640 208 228
Storage-Prob17-Hor11 8 472837 1394 3680
Openstacks-Prob7-Hor30 11 62353 838 1108
Openstacks-Prob8-Hor30 7 159289 1259 1484
Pathways-Prob9-Hor18 12 60256 632 505

Table 4: Impact of the binary constraint discovered by ImpBinPlan on the performance of SMP.
The first column refers to the domain, where the numbers X and Y in ProbX-HorY designate
the problem number and the planning horizon respectively. The numbers in column ”dist” are
the values for parameter dist, explained in section 4.6.2, whereas under ”# F/A clauses” is the
number of binary constraints found in each domain. Finally, the last two columns provide the run
times in seconds for SMP without (”Time W/O”) and with (”Time W”) the constraints found by
ImpBinPlan.

A and action atom, whereas the value for parameter dist that has been used in each run is listed

in the second column. The experimental results seem to imply that the new family of constraints

that were found fail to improve significantly the performance of the underlying solver. In fact, in

some cases they degrade the run time considerably.

4.7 Conclusions

In this chapter we compared different encodings of planning as satisfiability wrt the propaga-

tion they achieve in a modern SAT solver. Our theoretical results explain some of the differences

observed in the performance of various planners. One interesting finding is that BLACKBOX en-

coding is stronger than the one of SATPLAN06. Thus, new encodings of planning as satisfiability

need to be compared with both systems. Another practical outcome of our results is SMP, a new

encoding that renders londex constraint (on a single DTG) redundant, and seems to offer perfor-

mance improvements in a number of domains. Finally, we investigate the effects of adding more

And
rea

s S
ide

ris

119

implied binary constraints to the SAT encoding, and showed experimentally that this does not

bring substantial gains.

And
rea

s S
ide

ris

Chapter 5

Propositional Planning as Optimization

The PSP planning system

Planning as Satisfiability, that was presented in the previous chapters, is an important approach

to optimal propositional planning. Although optimality is highly desirable, for large problems it

comes at a high, often prohibitive, computational cost.

This chapter extends planning as propositional satisfiability to planning as pseudo-boolean opti-

mization. The approach has been implemented in a planner called PseudoSATPLAN, that follows

the classic solve and expand method of the SATPLAN algorithm, but at each step it seeks to maxi-

mize the number of goals that can be achieved. The utilization of the achieved goals at subsequent

steps opens up the possibility of implementing various strategies. The method essentially splits

a planning problem into smaller subproblems, and employs various techniques for solving them

fast. Although PseudoSATPLAN cannot guarantee the optimality of the generated plans, it aims

at computing solutions of good quality. Experimental results show that PseudoSATPLAN can

generate parallel plans of high quality for problems that are beyond the reach of the existing im-

plementations of optimal planning as satisfiability framework.

120

And
rea

s S
ide

ris

121

5.1 Introduction

The SATPLAN approach [75], is a successful approach to optimal STRIPS planning. Although

it generates (parallel) plans with optimal makespan, optimality comes at a high computational

cost. The question that naturally arises is whether it is possible to maintain the general idea of

formulating planning as a boolean constraint satisfaction problem, but at the same time generate

suboptimal plans, trading optimality for efficiency and scalability.

This work answers the above question in the affirmative. It presents a new planning system,

called PseudoSATPLAN, or PSP for short, that follows the classic solve and expand approach

and works in two parts. During the first part, called optimization part, PSP seeks to maximize

the number of goals that can be achieved within a fixed planning horizon. If this number is

smaller than some user supplied value, the planning horizon is extended and the procedure iterates.

As soon as a plan that attains the specified number of goals is found, PSP enters its, second,

satisfaction part. The actions of the plan that is returned as the result of the optimization part are

used to identify a new initial state and, consequently, a new planning problem, that is solved by a

simple call to the classic SATPLAN algorithm. The concatenation of the two plans is a solution to

the original problem.

The goals that are attained during the optimization part are added to the problem as interme-

diate facts, that must be established in the plan that is being generated. In terms of the underlying

propositional satisfiability problem that needs to be solved, these facts are unit clauses. The prop-

agation that they trigger yields a smaller, and usually easier, SAT instance. The optimization part

is divided in three optimization phases. These phases differ mainly in the degree of use of these

And
rea

s S
ide

ris

122

intermediate goals; as the planning horizon increases and the associated optimization problem be-

comes more difficult, the number of intermediate goals that are added to the theory increases as

well.

There are several possibilities regarding the treatment of these intermediate goals, each yield-

ing a different plan search strategy. When PSP applies the fixed goals strategy, it searches for

plans in which any intermediate goal that has been achieved in previously computed solutions, is

required to be true at the time step it was first established. In contrast, the sliding goals strategy,

moves the intermediate goals towards later time points, at a pace that can be defined by the user.

Finally, in order to generate plans of good quality, PseudoSATPLAN employs a technique called

back stepping, as well as a plan improvement mechanism.

Experimentation in twelve domains from various planning competitions shows that the method

can solve 65 more problems than SMP, presented in the previous chapter, one of the most efficient

implementations of the planning as satisfiability approach. To a great extent the success of the

method can be attributed to a strong SAT model of planning such as SMP, as well as the availability

of powerful SAT solvers such as precosat [16].

PseudoSATPLAN is directly applicable to planning for conjunctive goals. The great majority

of the publicly available domains and problems, including those of the Planning Competitions,

belong to this class. Nevertheless, there are ways to extend the applicability of the techniques

employed by PSP to a broader range of problems. As this work is a first investigation of the

planning as optimization framework, these more advanced techniques fall outside its scope.

5.2 Pseudo-boolean optimization and planning

This section introduces the main tools and techniques that are used in PseudoSATPLAN. Our

analysis refers exclusively to STRIPS planning.

And
rea

s S
ide

ris

123

As we did in Chapter 4, we assume STRIPS planning problems P =< I,G,A > as presented

in Chapter 3. Recall that each action a ∈ A has preconditions pre(a), add effects add(a), and

delete effects del(a). Recall that a (Linear) Pseudo-boolean constraint (PB-constraint) is an in-

equality of the form
∑
aixi ≥ b, where xi is a boolean variable, and ai, b integers as presented

in Chapter 2. A PB-constraint is the generalization of a clause. Indeed, a propositional clause

x1 ∨ . . . ∨ xm ∨ ¬xm+1 ∨ . . .¬ ∨ xn, where each xi is an atom, translates into the PB-constraint

x1 + . . . + xm − xm+1 − . . . − xn ≥ m − n + 1. Following this translation, the clauses of the

SMP encoding presented in Chapter 4 translate to PB formulas as shown below:

1. Unit clauses for the initial state.

Translates to: f(0) ≥ 1 in PB.

2. A(T)→ f(T), for every action A and fact f s.t. f ∈ pre(A).

Translates to: −A(T) + f(T) ≥ 0 in PB.

3. A(T)→ f(T + 1), for every action A and fact f s.t. f ∈ add(A).

Translates to: −A(T) + f(T + 1) ≥ 0 in PB.

4. A(T)→ ¬f(T + 1), for every action A and fact f s.t. f ∈ del(A).

Translates to: −A(T)− f(T + 1) ≥ −1 in PB.

5. f(T) → A1(T − 1) ∨ . . . ∨ Am(T − 1), for every fact f and all actions Ai, 1 ≤ i ≤ m

(including the noops) s.t. f ∈ add(Ai).

Translates to: −f(T) +A1(T − 1) + . . .+Am(T − 1) ≥ 0 in PB.

6. ¬f(T)→ A1(T − 1) ∨ . . . ∨Am(T − 1) ∨ ¬f(T − 1), for every fact f and all actions Ai,

1 ≤ i ≤ m s.t. f ∈ del(Ai).

Translates to: +f(T)− f(T − 1) +A1(T − 1) + . . .+Am(T − 1) ≥ 0 in PB.

And
rea

s S
ide

ris

124

7.1 ¬A1(T) ∨ ¬A2(T), for every pair of mutex actions A1, A2 such that the set del(A1) ∩

pre(A2) is non-empty.

Translates to: −A1(T)−A2(T) ≥ −1 in PB.

8 ¬f1(T) ∨ ¬f2(T), for every pair of facts f1, f2 that are mutex at time T .

Translates to: −f1(T)− f2(T) ≥ −1 in PB.

PseudoSATPLAN generates the PB formulation of a planning problem by translating its

SMP model into a set of inequalities, following the direct method described above.

Note that we deliberately do not translate the goals of the SMP model into inequalities ∀g ∈ G,

g(T) ≥ 1, where T is the planning horizon since we do not want to commit to all the goals to be

true in the final state. Instead we want to maximize the number of goals that can be satisfied. We

do that by defining the appropriately objective function fG:

For a problem with a set of goals G = {g1, . . . , gk}, the objective function fG is defined on

the set of temporally extended goals as

max : fG(g1(T), . . . , gk(T)) =
∑
gi∈G

gi(T)

where T is the planning horizon. This is the underlying PBO model employed by the algorithms

described in the following sections.

The performance of minisat+, as well as a few other PB optimizers that were tested, on

problems arising from planning are rather unsatisfactory. Therefore, PseudoSATPLAN em-

ploys minisat+ only as a system that translates PB constraints into CNF using the BDD trees

method that was briefly presented in chapter 2 section 2.3, and the resulting problems are solved

by precosat. More details are given in the next section.

And
rea

s S
ide

ris

125

5.3 The PseudoSATPLAN Algorithm

The PSP-plan algorithm presented in Algorithm 1 is the main planning procedure of PseudoSATPLAN.

It takes as input a planning problem P =< I,G,A >, a number of parameters (the most impor-

tant listed in the Require statement of the algorithm) that are discussed below, and returns a plan.

PSP operates in two parts, the optimization and the satisfaction part.

5.3.1 Optimization part

In the optimization part, PSP (lines 1-17, Algorithm 1) operates in an optimize and expand

mode, seeking for a plan that maximizes the number of goals that are achieved within a fixed

planning horizon. If this number is lower than a user supplied value, PSP extends the plan-

ning horizon. The procedure iterates until the number of goals that are achieved reaches the

desired value. In order to mitigate the computational burden associated with this optimization

task, PseudoSATPLAN adds intermediate goals that are elements of the goal set G of the orig-

inal planning problem, and need to be established at various time points in the plan that will be

generated. These goals are introduced as unit clauses in the underlying propositional model of the

problem, and through constraint (unit) propagation, yield simpler theories.

Moreover, the optimization part of PseudoSATPLAN is divided into three phases, called ini-

tial, intermediate and final optimization phase respectively. These phases differ mainly in the way

the intermediate goals are generated and used. The basic idea here is that the intermediate goals

become increasingly more useful as the plan length increases and, consequently, the correspond-

ing optimization problems that need to be solved become more difficult.

And
rea

s S
ide

ris

126

Algorithm 1 PSP-Plan
Require: P =< I,G,A >: planning problem

ip, np, fp: fraction of goals for each phase
iptime, nptime, fptime: optimization timeout
pu: back stepping parameter
strat: sliding goals parameter
impr: plan improvement flag
imprtime: plan improvement timeout

Return: plan
1: init-process(ip, iptime, solution);
2: achieved := goals achieved by solution;
3: if |achieved| < b|G| ∗ npc then
4: repeat
5: extend planning graph and build PB problem model;
6: update-goal-constraints(achieved, strat);
7: solvePBO(b|G| ∗ npc, nptime, solution, achieved);
8: until |achieved| ≥ b|G| ∗ npc
9: end if

10: if |achieved| < b|G| ∗ fpc then
11: repeat
12: extend planning graph and build PB problem model;
13: update-goal-constraints(achieved, strat);
14: solvePBO(|achieved|+ 1, fptime,
15: solution, achieved);
16: until |achieved| ≥ b|G| ∗ fpc
17: end if
18: extract plan from solution;
19: plan′:= initial bpu ∗ len(plan)c steps of plan;
20: I ′:= state obtained after executing plan′ on I;
21: call SMP (I ′, G,A, plan′′);
22: plan = conc(plan′, plan′′);
23: if impr then
24: return improve-plan(plan, imprtime);
25: else
26: return plan;
27: end if
And

rea
s S

ide
ris

127

Algorithm 2 init-process

Require: ip, iptime;
Return: achieved;

1: run Graphplan until all goals are reachable and non-mutex;
2: repeat
3: build PB problem model;
4: solvePBO(b|G| ∗ ipc, iptime, solution, achieved);
5: if solution = ∅ then
6: extend planning graph;
7: end if
8: until solution 6= ∅
9: return achieved;

The initial optimization phase (line 1, Algorithm 1) computes a plan that achieves a subset of

the problem goals whose size is determined by the value of parameter ip, a real number between 0

and 1 (or percentage). No intermediate goals are used during this phase. This phase is realized by

procedure init-process which is described in Algorithm 2. It first runs Graphplan until all

goals are reachable and non mutually exclusive (line 1, Algorithm 2). It then builds the problem

model (line 3), and invokes the main optimization procedure solvePBO (line 4) which will be

explained later in this section. This procedure is asked, through its first parameter, to find a plan

that attains a subset of goals of size at least b|G| ∗ ipc. If no solution that attains a goal set of

the required cardinality exists, the planning graph is extended (line 6) and a new PBO problem is

solved. The procedure iterates until a solution that accomplishes the specified number of goals is

found.

PseudoSATPLAN then enters the intermediate optimization phase (lines 2-9, Algorithm 1).

First, the goals that are contained in the solution returned by the initial optimization phase of the

algorithm, initialize the set of achieved goals (line 2, Algorithm 1). This is a set of temporally

annotated facts g(T), where T refers to the time that g must be assigned true in the solution. After

the end of the first phase, this time point T is initialized to the current planning horizon. The aim

of this optimization phase is to extend the set of goals that are attained (the elements of achieved)

And
rea

s S
ide

ris

128

Algorithm 3 update-goal-constraints

Require: achieved, strat;
Return: achieved;

1: if strat = 0 then
2: for g(T) ∈ achieved do
3: add unit clause g(T) to problem model;
4: end for
5: else
6: achieved′ := ∅;
7: for g(T) ∈ achieved do
8: if Tlast mod strat = 0 and T 6= Tlast then
9: achieved′ := achieved′ ∪ {g(T + 1)};

10: else
11: achieved′ := achieved′ ∪ {g(T)};
12: end if
13: end for
14: achieved := achieved′;
15: for g(T) ∈ achieved do
16: add unit clause g(T) to problem model;
17: end for
18: end if

with new elements until its cardinality reaches b|G| ∗ npc, where np is an input parameter, again

a real number between 0 and 1. As in the previous phase, each time this task fails, the planning

horizon is extended (line 5). The difference here is that the elements of achieved become part

of the planning problem as intermediate goals. They are introduced in the planning problem by

procedure update-goal-constraints, presented in Algorithm 3. The time point at which

they must be true is specified by the value of the input parameter strat, that determines the goal

handling strategy. The fixed goals strategy applies when strat = 0 (lines 1-4, Algorithm 3). Then,

any solution must assign true to the element of achieved at the time point associated with them

when they first entered set achieved. Any value for strat different than 0 yields a sliding goals

strategy (lines 5-18, where Tlast in line 8 denotes the current planning horizon). According to

this strategy, intermediate goals are shifted periodically from their current to the next time point.

The frequency of this shift operation is determined by the value of parameter strat. Goals are

And
rea

s S
ide

ris

129

shifted if Tlast modulo strat is 0. For example if start = 5 and the algorithm first entered in the

intermediate optimization phase at layer 26, the shift operations of goals would occur for planning

horizons Tlast = 30, 35, 40, . . . etc. Higher values of the strat parameter (slow/infrequent goal

shifting) usually lead to better run times, whereas lower values (fast/frequent goal shifting) yield

shorter plans. When a shift occurs, the set achieved, as well as the problem model, are modified

accordingly (lines 14-17, Algorithm 3).

The set of goals that are attained during the optimization part is further expanded in the next,

final optimization phase (lines 10-17, Algorithm 1). The lower bound on the cardinality of this

goal set (the elements of which are in direct correspondence with those of the set achieved) for

this phase is b|G| ∗ fpc. The input parameter fp is a real number between 0 and 1, as ip and np

parameters. PseudoSATPLAN extends achieved incrementally by requiring that at each time

point its size is increased by one (line 14, Algorithm 1). The new goals that are collected along the

way are introduced by update-goal-constraints (line 13) to the problem model as dic-

tated by the goal handling strategy. The final optimization phase concludes the optimization part

of PSP. The optimization part of PseudoSATPLAN relies to a great extent on the effectiveness

of the underlying optimization algorithm that is employed. Therefore, it deserves a closer look.

Procedure solvePBO, outlined in Algorithm 4, optimizes fG(·) for a given plan length, by

repeated calls to precosat solver. The input lower bound on the value of the objective function

is expressed via a constraint (line 1, Algorithm 4), and the whole problem translates into a CNF

theory by minisat+, that is given as input to precosat (lines 2-3). When a solution that

assigns true to m (with m ≥ bound) of the goals is found, solvePBO attempts to improve it

(line 4-11). To this end a new PB problem is solved, using the same technique as before. This

time the problem contains the constraint fG(·) ≥ m + 1 instead of fG(·) ≥ bound. Since at a

previous iteration fG(·) ≥ m was solved with a solution fG(·) = m adding the fG(·) ≥ m + 1

And
rea

s S
ide

ris

130

Algorithm 4 solvePBO
Require: bound, timeout, achieved;
Return: solution, achieved;

1: add constraint fG(·) ≥ bound to problem;
2: run minisat+ to convert PB problem into a SAT theory T ;
3: find solution for T by calling precosat;
4: solution′ = ∅ ;
5: while solution 6= ∅ and not timeout do
6: update achieved;
7: add constraint fG(·) ≥ |achieved|+ 1 to problem;
8: run minisat+ to convert PB problem into a SAT theory T ;
9: solution′ = solution;

10: find solution for T by calling precosat;
11: end while
12: if solution 6= ∅ then
13: return solution and achieved;
14: else
15: return solution′ and achieved;
16: end if

constraint aims at solving a more difficult problem that is finding a better solution in respect to the

objective function fG(·). The procedure iterates until the solution cannot improve further. The

input parameter timeout imposes a time limit on the optimization algorithm. No such limit applies

to the search for the first solution (line 3). The optimization procedure solvePBO is invoked in

all the three phases of the optimization part (initial part line 5 Algorithm 2, intermediate and final

parts line 7 and 14 respectively, Algorithm 1) of PseudoSATPLAN.

For each of the three phases initial optimization phase, intermediate optimization phase, and

final optimization phase of the optimization part, the user can provide a time limit (one for each

part), postponeip, postponenp and postponefp respectively. (We do not present these in the pseudo

code of the algorithm in order to keep the pseudo code as readable as possible). For any of the

phases that its termination condition is satisfied, that is the number of goals to achieve according to

parameters, if the total time the algorithm spend on that phase is less than the time limit parameter

then the algorithm will insist on that phase. For example if postponenp is set to 120 seconds by

And
rea

s S
ide

ris

131

the user and b|G| ∗ npc + 1 goals are found true in 40 seconds of execution time of intermediate

optimization phase, the PSP algorithm will remain in the intermediate phase although b|G| ∗

npc + 1 > b|G| ∗ npc for another 80 seconds, trying to satisfy even more goals. The rationale

is that if the algorithm spends little execution time in any of the three optimization phases, it

might be worthwhile to insist in this phase since is possible to satisfy even more goals before

proceeding to the next phase. However we did not use this feature (as are the default parameters in

the PSP algorithm) in our experiments, since we did not find any significant advantage in general.

During the implementation of the PSP we experimented with an alternative version of the al-

gorithm. In this version the order of the two later phases of the optimization phase intermediate

optimization phase and final optimization phase are executed in reverse order. The order in this

version of the phases of the optimization part are: initial optimization phase, final optimization

phase and intermediate phase as these phases where explained before in this section. In fact the

PSP system implements this order if the user sets the parameter optpriority to 2. The default

value is 1 and implements the optimization part in the ’normal’ order initial optimization phase,

intermediate phase and final optimization phase as it is presented in algorithm 1. We experimen-

tally found that the default version of the algorithm PSP performs better in all large problems

from a variety of domains.

5.3.2 Satisfaction part

The outcome of the optimization part is a solution that achieves at least b|G| ∗ fpc of the

problem goals. This is the input to the satisfaction part (lines 18-22, Algorithm 1), that first

extracts an initial plan from the solution (line 18, Algorithm 1). Then, depending on the value of

parameter pu, which is called the back stepping parameter, computes a new plan that contains the

first bpu ∗ len(plan)c steps of the original plan (line 19), where len is a function that returns the

And
rea

s S
ide

ris

132

length of the plan. The purpose of this back stepping operation (if considered in conjunction with

the next steps of the algorithm in lines 21 and 22) is to slightly mitigate the greedy behavior of the

planning procedure. Indeed, PSP tends to generate plans that include actions which lead to the

achievement of a subset of the goals, and ignores other actions that could possibly contribute to

the achievement of other goals which are not included in this subset. The experimental evaluation

has shown that this back stepping technique can improve the quality of the generated plans.

At this point PSP-plan formulates a new planning problem whose initial state is the one that

is obtained after the execution of the actions that belong to the part of the plan which has been

selected in the previous step of the algorithm (line 20). The final state and the actions remain the

same as in the original problem. The new planning problem is solved by the SMP planner (line

21). The idea here is that, for sufficiently high values for the fp parameter, finding a plan for the

new problem (using SMP or any other system) is expected to be a task that is substantially easier

than that of finding a plan for the original problem. This is because the initial state of the new

problem is obtained after the execution of actions which belong to a plan that achieves a subset of

the goals. This intuition has been verified experimentally.

The result plan′′ that is returned by SMP is concatenated with the previous plan′, computed at

the end of the optimization part of PSP-plan. Recall that plan′′ is a set of actions that transform

state I ′ to the final state, whereas plan′ transform the original initial state into I ′. Therefore their

concatenation is a first valid plan for the original problem (line 23).

Any of the parts or phases of the planning process can be omitted by selecting suitable values

for the input parameters of the PSP-plan algorithm. For instance, by setting np = fp the final

optimization phase is omitted.

And
rea

s S
ide

ris

133

5.3.3 Improving the solution

If the user so wishes, PSP can attempt to improve this first solution plan. This task is carried

out by procedure improve-plan (line 24), which when successful, returns a new improved

(i.e. shorter) plan, otherwise it returns the plan. Procedure improve-plan is implemented

by repeated calls to SMP, that first searches for a plan of length len(plan) − 1. If successful,

improve-plan then searches for a plan with length len(plan)− 2, etc. The process terminates

when either the user supplied timeout value imprtime is reached or an optimal plan is found. A

plan of length len(plan) = l is proved to be optimal in the obvious way: SMP proves that the

theory for the planning problem with horizon l − 1 is unsatisfiable.

5.4 Experimental evaluation

This section presents the results of a preliminary experimental evaluation of PseudoSATPLAN,

in domains from various planning competitions. All experiments were run on a server with 24

X5690 cores at 3.47GHz running under CentOS. A CPU timeout of 3600 seconds was used in all

experiments, and the values for the optimization timeout parameters iptime, npitme and fptime

were set to 40, 80 and 80 seconds respectively. In the following, the string X-Y -Z-W denotes a

set of PSP runs with parameter values ip = X , np = Y , fp = Z, strat = W .

Table 5 provides some initial results for PseudoSATPLAN, and a comparison with SMP. The

entries under SMP are the number of problems solved in each domain by SMP within the timeout

limit, whereas the entries under 25-50-50-0 and 25-50-50-1 are the number of problems solved by

PSPwith parameter values ip = 0.25, np = fp = 0.5 (i.e. the final optimization phase is omitted)

and strat = 0 and strat = 1 respectively. It is interesting that although not at its full strength,

And
rea

s S
ide

ris

134

Domain Problems SMP 25-50- 25-50-
50-0 50-1

Depots 22 20 22 22
DriverLog 20 17 18 18
Zenotravel 20 16 19 19
Freecell 20 6 9 9
Satellite 36 18 20 20
Pathways 30 17 27 26
Storage 30 17 20 21
Elevators 30 14 20 20
ScanAnalys 30 20 20 20
Transport 30 13 19 20
Visitall 20 12 16 14
Barman 20 8 15 15
Total 308 178 225 224

Table 5: Number of problems solved by SMP and PSP in different domains. PSP was run with
ip = 0.25, np = fp = 0.5 and strat 0 and 1 (two last columns respectively).

already PSP achieves a remarkable increase of 47 (or about 25%) in the number of problems that

are solved.

Table 6 provides a more detailed comparison of the effects of the values of different parameters

on the performance of PseudoSATPLAN. Firstly note that increasing the value of the fp param-

eter up to 70% (i.e. asking that the outcome of the optimization part is a plan that achieves 70%

of the goals), with a relative increase of the np value, improves the effectiveness of PSP. Higher

values for fp do not seem to result in any gain. Moreover, the optimal value for the search strategy

parameter strat depends on the values of the other parameters. In any case, the best values for

strat are in the range between 2 and 5. Finally, the best value combination for the parameters of

PseudoSATPLAN is 30-50-70-5, for which it achieves an impressive increase of 66 (37%) in the

number of solved problems compared to SMP.

And
rea

s S
ide

ris

135

Domain 25-50- 30-45- 30-45- 30-45- 30-45- 30-50- 30-50- 30-50- 30-50- 30-50- 30-50-
0-3 60-0 60-2 60-4 60-5 70-0 70-1 70-2 70-3 70-4 70-5

Depots 22 22 22 22 22 22 22 22 22 22 22
DriverLog 19 18 20 20 19 20 19 19 19 19 20
Zenotravel 19 18 19 19 19 18 19 18 18 18 18
Freecell 9 9 9 9 9 9 9 9 9 9 9
Satellite 20 20 20 20 20 20 20 20 20 20 20
Pathways 26 25 26 25 24 27 25 27 28 26 26
Storage 23 23 24 24 23 26 23 25 27 26 27
Elevators 21 22 23 24 22 23 21 22 23 23 24
ScanAnalys 20 20 20 20 20 20 21 22 22 22 22
Transport 22 18 20 20 19 18 19 19 20 20 20
Visitall 16 16 16 16 15 16 16 16 16 16 16
Barman 19 15 16 19 18 15 15 16 16 20 20
Total 236 226 235 238 230 234 229 235 240 241 244

Table 6: Number of problems solved in 12 domains by PSP with different combinations of pa-
rameter values. X-Y -Z-W in the first line denotes a PSP run with parameter values ip = X ,
np = Y , fp = Z, strat = W .

The remaining of this section discusses the issue of the quality of the plans generated by

PseudoSATPLAN. The comparison is performed on the parameter value combinations 30-45-

60-4, 30-50-70-3, 30-50-70-4, and 30-50-70-5 that yield the highest numbers of solved problems.

While these runs were performed with the back stepping parameter set to 1, the result of the runs

with pu = 0.85 (i.e. 85% of the plan that is returned by the optimization phase is used) for the

combination 30-50-70-5 (denoted as 30-50-70-5-PU85) are also reported.

An interesting first result concerns the number of problems for which an optimal solution has

been found by PSP. For all the combination of values described in the preceding paragraph, this

number is as follows: Barman 8, Depots 19, DriverLog 17, Zenotravel 16, Freecell

6, Storage 17, Elevators 14, ScanAnalys 20, Transport 13, Visitall 12. A com-

parison of these numbers to the entries of the SMP column of Table 5, leads to the (not very

surprising) conclusion that in almost all these 10 domains PSP finds an optimal plan if SMP does.

And
rea

s S
ide

ris

136

Domain 30-45-60-4 30-50-70-3 30-50-70-4 30-50-70-5 30-50-70-5-PU85
Depots 455 308 458 302 450 303 469 305 398 302
DriverLog 300 215 282 216 300 215 307 215 252 215
Zenotravel 153 108 155 108 153 108 153 108 140 108
Freecell 159 137 159 131 159 131 161 130 147 130
Satellite 221 180 233 180 242 180 235 180 211 174
Pathways 596 450 571 444 560 446 580 445 521 444
Storage 300 270 304 271 307 273 325 272 294 267
Elevators 582 532 594 536 594 542 609 556 575 527
ScanAnalys 137 127 166 127 170 127 166 127 166 127
Transport 391 318 388 323 394 327 396 325 384 313
Visitall 525 487 535 487 533 487 538 486 528 488
Barman 781 758 773 748 781 733 790 777 778 696
Total 4600 3890 4618 3873 4643 3872 4729 3926 4394 3791

Table 7: Sums of the lengths of plans generated by PSP with different parameter values. For each
run the left column contains the sum of the lengths of the first plans that are computed, and the
right column the sum of the lengths of the best plans.

The only exception is Depots where PSP misses an optimal solution, and this happens irrespec-

tively of its parameter values.

In Satellite, PSP finds the same number of optimal solutions as SMP in most runs, and misses

only one optimal solution in the others. The situation is similar in Pathways with the difference

that run 30-45-60-4 finds the optimal solution for 13 problems, whereas SMP returns optimal plans

for 17.

The effect of the values of the parameters of PSP on the quality of the plan has been also

investigated, and the results are depicted in Table 7. The entries of this table refer to the sum

of the length of the plans returned for each domain by five different runs of PSP with different

parameter values. The first four runs are with pu = 1 (the back stepping parameter), whereas for

the last run pu = 0.85. To be meaningful, the comparison has been performed on problems that

are solved in all runs. For each PSP run, Table 7 contains two columns. The left sums the lengths

of the first plans generated by each PSP run for each problem and domain considered. The right

And
rea

s S
ide

ris

137

Domain 30-50 30-50- 30-50-
70-5-100 70-5-85 70-5-70

Depots 22 21 22
DriverLog 20 19 18
Zenotravel 18 18 19
Freecell 9 9 9
Satellite 20 19 20
Pathways 26 29 28
Storage 27 25 22
Elevators 24 23 20
ScanAnalys 22 22 21
Transport 20 18 19
Visitall 16 16 16
Barman 20 20 17
Total 244 239 231

Table 8: Number of problems solved by PSPwith different values for the back stepping parameter.
The values for the last three columns, taken from left to right, are pu = 1, pu = 0.85 and
pu = 0.70.

column is the sum of the lengths of the best plans generated by each PSP run.

A first conclusion is that the plan improvement phase results in a shortening of the plans of about

15%. Moreover, the length of the first generated plan increases with the value of parameter strat.

Finally, the back stepping technique fulfils its purpose as the plans that it generates are shorter.

As Table 8 reveals, the increased plan quality that comes with lower values for the back step-

ping parameter, has a negative impact on the number of solved problems. Indeed, for the combi-

nation of values 30-50-70-5 the total number of solved problems goes from 244 for pu = 1 to 239

for pu = 0.85, and further down to 231 for pu = 0.7.

Finally, Table 9 compares the plan length and computation time of SMPwith various PseudoSATPLAN

runs on the hardest problems solved by SMP. The time that PSP needs to generate the first solu-

tion is always lower than SMP’s cpu time. This difference can be several orders of magnitude (see

for instance the problems from the Visitall and Storage domains). The quality of the first

solution varies across the domains, but it seems that its length is always less than twice the length

And
rea

s S
ide

ris

138

Domain SMP 30-45-60-4 30-50-70-5 30-50-70-5-PU85
Depots-22 12 2773 22 1859 21 3600 19 895 17 3600 16 857 13 3600
DriverLog-16 18 477 29 352 18 1490 24 153 18 765 22 205 18 841
Zenotravel-16 7 358 11 140 7 737 11 189 7 857 10 181 7 717
Freecell-5 16 213 20 121 16 326 20 122 16 329 19 124 16 320
Satellite-19 12 605 15 75 12 772 17 107 12 811 15 108 12 738
Pathways-21 24 3041 36 519 24 3600 31 538 24 3545 26 536 24 3450
Storage-17 12 2080 13 6 12 1866 13 11 12 1687 13 15 12 1765
Elevators-21 21 1205 27 151 21 1856 26 164 21 1813 24 178 21 1357
ScanAnalys-9 15 3267 16 118 15 2433 17 29 15 2249 16 25 15 2269
Transport-5 19 802 25 192 19 2885 26 152 19 2984 24 194 19 2669
Visit-6-full 35 2767 38 11 35 2148 39 19 35 2142 37 30 35 2216
Barman-6 41 552 43 20 41 416 43 30 41 351 42 22 41 327

Table 9: Comparison of plan length and cpu time of SMP and PSP on the hardest problems solved
by SMP. The columns for SMP contain the plan length (left column) and cpu time. For each
PSP run the four columns are as follows: the first two are the length and cpu time for the first
plan, and the other two the length and cpu time for the best plan computed by PSP. Value 3600
means that the cpu time limit was reached, and PSP execution was aborted.

of the optimal plan. Moreover, the plan improvement step almost always (with the exception of

the problem from the Depots domain) returns the optimal solution within the cpu timeout. In

terms of cpu time, there are cases where SMP finds the shortest solution faster, and problems where

PseudoSATPLAN outperforms SMP. Finally, as noted before, the back stepping technique can

improve the quality of the generated plans.

Therefore, PseudoSATPLAN represents an important advancement over existing implemen-

tations of the planning as satisfiability idea. Indeed, PSP has been proven a powerful planning

system that is capable of solving hard planning problems by generating parallel plans of high

quality.

5.5 Implementation issues of PseudoSATPLAN System

The PSP system is a proof-of-concept implementation. There are two major drawbacks of the

current implementation of the system.

And
rea

s S
ide

ris

139

The first drawback is that the module that builds the planning graph. PSP is build over the

SATPLAN framework. More precisely, it is build as an extension of the SMP system [111], which

in turn builds on the SATPLAN [76] and BLACKBOX [75] systems. The module responsible for

building the graph is the one used by BLACKBOX [75], a system implemented fifteen years ago.

Some of the benchmarks in the IPC competitions available today are just too demanding for the

BLACKBOX system. For large problems of some domains the CPU time of PSP system is domi-

nated by the construction of the planning graphs for successively larger planning horizons than by

the actual search (solving PB constraints translated to CNF clauses) done by the precosat solver.

There are some ways to solve this problem. The first way is to rewrite the module for build-

ing the planning graph from scratch, as in other SAT-based planners, for example Madagascar

[101, 102]. Another way is to build the planning graph at a preprocessing step for a large planning

horizon x and store it in a file. Then at each iteration for a planning horizon y of the PSP system

(where y ≤ x) this file can be used (constraints corresponding to the time steps equal or less than

y with the addition of objective function) to build the PB theory. Such a large planning horizon

can be found by running a fast suboptimal planner such as LAMA planner [96, 94], or by simply

building a planning graph for a horizon considerably larger than the first layer that the planning

graph levels-off. Such ideas are implemented in Maxplan planner [31] described in chapter 3.

The second drawback is the optimization procedure solvePBO described in a previous sub-

section. Procedure solvePBO optimizes fG(·) for a given plan length, by repeated calls of the

precosat solver. At each iteration the SAT solver does not use anything from the solution

found in previous iterations: it tries to find a solution from scratch. Moreover minisat+ and

precosat solver use temporary files to communicate for the input problem, objective func-

tions, output solutions and mapping files for the variables. The time spent for manipulating

these files for large problems is an addition to the total plan time. To resolve these issues, in

And
rea

s S
ide

ris

140

a future version of the system the optimization procedure must be rebuild. As was described

before, minisat+ has as an underlying solver the outdated minisat solver. Since both

minisat+ and precosat solvers are open source systems, it is possible for the minisat+ sys-

tem to be altered to use precosat solver (or any other open source code state of the art SAT

solver at time) as the underlying solver. In this way the use of temporary files is not needed and,

more importantly, all the learnt clauses found at a previous iteration by the SAT solver can be used

at a next iteration. We believe that this could speed up the optimization procedure.

Another idea we want to investigate in a future implementation, is the possibility to use learnt

clauses found while solving for a planning horizon, in the successive encodings for larger plan-

ning horizons. Similar methods are implemented in the MAXPLAN planning system [30] that was

briefly presented in chapter 3 section 3.3.3. In this way the solver can use a learnt clause for con-

straint propagation without having to re-discover it, and this may speed up the search. Obviously

this must be done without affecting the soundness of the algorithm. For example consider two

SAT theories Θ1 and Θ2. Assume that a conflict driven clause learning (CDCL) SAT solver, for

example precosat, searches for a solution for Θ1 and learns a clause l. There is a unique trace-

able set of clauses C such that C ⊆ Θ1 and C being the reason for the learnt clause l. Obviously if

it holds that C ⊆ Θ2 then l must be a learnt clause (a no-good) in Θ2 as well, and we can soundly

solve Θ2 ∪ {l} instead of Θ2, since both the theories are logically equivalent. For the SMP en-

codings for a planning problem for two different planning horizons the clauses are the same up to

the layer of goals of the smaller planning horizon minus one. There are two key issues however

that must be considered: The translation of the planning graph is done to PB inequalities and then

to SAT. Therefore we must ensure that minisat+ translates a PB variable for the two different

planning horizons to the same SAT variable, otherwise we will need to map the SAT variables for

the two planning horizons. The other issue is the sliding goals strategy. Assume that for a planning

And
rea

s S
ide

ris

141

problem PSP system builds two SAT theories Θ1 and Θ2 for planning horizons x and y (y > x)

respectively. Also assume that there is a set C of unary clauses of intermediate goals at a layer k

such that C ⊂ Θ1. Since the goals ’slide’ it may hold that C 6⊂ Θ2 (because PSP slided C to a

layer t, k < t < y). Hence it is unsound to put a learnt clause in Θ2 if a clause in C was used by

the SAT solver when using Θ1 for its computation.

5.6 Conclusions

This chapter presented planning as (pseudo-boolean) optimization, a new method for propo-

sitional STRIPS planning, that has been implemented in a system called PSP. PSP is capa-

ble of solving planning problems that are beyond the reach of current implementations of the

SATPLAN approach (for optimal planning). Although it cannot guarantee the optimality of the

solutions it returns, PSP is not far behind those systems in terms of the number of problems that

it can solve optimally. Possible future developments in SAT solving or the modeling of planning

as a SAT problem can be directly imported into PSP and enhance its performance.

And
rea

s S
ide

ris

Chapter 6

Heuristic Guided Optimization for Propositional Planning

The PSP-H planning system

Planning as Satisfiability is an important approach to Propositional Planning. A serious draw-

back of the method is its limited scalability, as the instances that arise from large planning prob-

lems are often too hard for modern SAT solvers.

This work tackles this problem by combining two powerful techniques that aim at decompos-

ing a planning problem into smaller subproblems, so that the satisfiability instances that need to be

solved do not grow prohibitively large. The first technique, incremental goal achievement, turns

planning into a series of boolean optimization problems, each seeking to maximize the number of

goals that are achieved within a limited planning horizon. This is coupled with a second technique,

called heuristic guidance, that directs search towards a state which satisfies all goals. Heuristic

guidance is based on the combination of a number of constraint relaxation techniques of varying

strength.

142

And
rea

s S
ide

ris

143

Initial experiments with a system which implements these ideas demonstrate that enriching

propositional satisfiability based planning with these methods delivers a competitive planning al-

gorithm that is capable of generating plans of good quality for challenging problems in different

domains.

6.1 Introduction

Planning as Satisfiability [74, 76], that was presented in detail in previous chapters (chapter 3

and 4), is an important method for optimal propositional planning. The main idea is to translate a

planning problem into a series of propositional satisfiability instances, which are then solved by a

SAT solver. One of the advantages of the method is that it finds plans of optimal makespan. De-

spite the recent progress in SAT solving, and the development of strong propositional satisfiability

models for planning [29, 106, 61] presented in chapter 4, it often happens that the instances gen-

erated from planning problems, grow so large that they are unsolvable even by the most advanced

SAT solvers.

This motivated a number of recent attempts to improve scalability at the cost of sacrificing the

optimality of the generated solutions. One such example is Madagascar [102], that enhanced

a SAT solver with a planning specific variable selection heuristic, to generate suboptimal plans

quickly. Madagascar , that was briefly presented in section 3.3.4, extended the reach of the

planning as satisfiability framework by a large margin.

In a different spirit, the PSP system presented in chapter 5, introduced the idea of planning as op-

timization. PSP employs the increasing planning horizon technique, but unlike classic SATPLAN,

it maximizes the goals that are achieved within each horizon. In order to restrict the search space,

and therefore mitigate the computational burden, PSP adds goals that are achieved along the way

as intermediate goals in the problem model.

And
rea

s S
ide

ris

144

However, as the plan length can grow arbitrarily long, at some point it is expected that the

approaches of Madagascar and PSP will be confronted with performance difficulties. In the

work presented in this chapter we take a different path. The basic idea is to split a planning

problem into smaller subproblems, of a size that is not prohibitive for the underlying solver. It

turns out that the new method is capable of synthesizing plans that are more than two hundred

steps long.

PSP-H, the new planning system that is described in this chapter, shares with PSP the plan-

ning as optimization perspective, but it differs in a number of important ways. The first is the

incremental goal achievement which, at a high level, works as follows. PSP-H first generates a

sub-plan that, starting from the initial state, achieves a subset, of predefined size, of the problem

goals. The state that results after the execution of the actions of this sub-plan, called an intermedi-

ate state, becomes the new initial state, and a new sub-plan that satisfies a larger subset of goals is

computed. The procedure iterates until all goals are satisfied. It then links together the generated

sub-plans to produce a solution to the original problem. Therefore, instead of solving the original

planning problem, PSP-H solves a series of smaller subproblems.

The problem with this greedy approach is that it focuses on maximizing the number of achieved

goals in a restricted planning horizon, and it ignores completely goals that cannot be achieved

within this horizon. In order to overcome the limitations that this would place on the effective-

ness of the system, PSP-H is enhanced by a second technique called heuristic guidance, which

imposes an additional requirement on the intermediate states that are computed by the PSP-H al-

gorithm. The property that these states need to satisfy is that there must be a relaxed plan from

each such state to the final state. PSP-H employs three different relaxation methods that are all

based on ignoring some of the problem constraints, but they differ in their strength.

And
rea

s S
ide

ris

145

The first relaxation method is the well-known delete lists relaxation, whereas the second

method ignores all action mutexes. The last relaxation, which is stronger than the first but weaker

than the second, ignores action mutexes and uses a subset of the fact mutexes that are heuristi-

cally selected. Moreover, for certain classes of fact mutexes x1, . . . , xn, instead of the constraint∑n
i=1 xi <= 1, PSP-H adds the weaker inequality

∑n
i=1 xi <= k, for values of k that are

explained later.

PSP-H is implemented on top of the PSP system. Therefore, it combines the new ideas

introduced in this work with those of chapter 5, to deliver a competitive planning system. In-

deed, our experimental evaluation on a number of domains taken from planning competitions,

demonstrates that PSP-H can solve challenging problems. Moreover, a preliminary compari-

son with Madagascar and LAMA, a top performer in the last planning competition, shows that

PSP-H contributes viable ideas in the direction of bridging the performance gap between satisfia-

bility based and heuristic planners. We stretch that unlike LAMA, but similarly to Madagascar,

PSP-H can generate plans with parallel actions, a desirable feature in some application domains.

The experimental comparison of PSP-H with Madagascar shows that the new system can

solve more problems in some domains, and generate better quality solutions both in term of plan

length and number of actions. In fact, an important feature of PSP-H is that it can be directed,

through suitable parameters, either towards finding solutions fast or in the direction of generating

good quality plans.

It is important to note, that the techniques used in PSP-H and Madagascar are not exclusive of

each other. For instance, it seems possible to employ the ideas of Madagascar in the optimiza-

tion step of PSP-H in order to improve its performance in solving the subproblems.

And
rea

s S
ide

ris

146

6.2 Planning as satisfiability and Pseudo-boolean optimization

Again our analysis in this work is only for STRIPS planning problems. Recall that a (STRIPS)

planning problem P is defined as a triple P =< I,G,A >, where I is the set of facts that hold

in the initial state, G is the set of goals, and A is a set of actions. Each action A ∈ A has

preconditions, add effects and delete effects denoted by pre(A), add(A), and del(A) respectively.

We remind that a (Linear) Pseudo-boolean constraint (PB-constraint) is an inequality of the

form
∑
aixi ≥ b, where xi is a boolean variable, and ai, b integers, as presented in Chapter 2,

and a PB-constraint is the generalization of a clause. The propositional clause x1 ∨ . . . ∨ xm ∨

¬xm+1 ∨ . . .¬∨ xn, where each xi is an atom, translates into the PB-constraint x1 + . . .+ xm −

xm+1 − . . .− xn ≥ m− n+ 1.

The planning as satisfiability framework was presented in detail in previous chapters (chapter

3 and 4) and the pseudo-boolean optimization method of PSP planner was presented in chapter

5. In PSP-H we follow the same translation of the SMP encoding (presented in chapter 4) to PB

constraints as in the PSP planning system presented in section 5.2 of chapter 5.

6.3 Heuristic Guidance in Optimization

The incremental goal achievement technique of PSP-H is an extension of the planning as

optimization idea of PSP. The main computational task that is carried out by PSP-H is the solution

of a PBO problem, where the maximization objective is a function on fact variables associated

with the goals of the problem. For simplicity, assume for the moment, that the objective function

is the one used in PSP i.e. g1(T) + . . . + gk(T), for g1, . . . , gk goal atoms and T the planning

horizon. PSP-H is also supplied with an objective function value threshold thres. It starts with an

initial planning horizon o that is determined by information that is extracted from the underlying

And
rea

s S
ide

ris

147

planning graph, as in the classic SATPLAN system.

PSP-H solves the PBO with horizon o and obtains an optimal value f for the objective function.

If no solution exists, the planning horizon is set to o + 1, and the procedure repeats. If for some

horizon ob a solution is found with a value fb for the objective function such that fb ≥ thres, a

plan is extracted from the solution. Unlike PSP, the intermediate state I ′ that results after the

execution of the actions in the plan becomes the new initial state, and PSP-H repeats the process

with a new planning problem P ′ =< I ′, G,A >, where P =< I,G,A > and I are the original

problem and initial state respectively.

Finally, the objective value threshold thres is increased by an amount that is determined by

the value of the ith element of parameter restart rate array, where i− 1 is the number of sub-

problems solved at the time. The parameter restart rate array is a user supplied array of unique

values in the open real interval (0, 1) sorted in ascending order.

As the maximization objective is defined on the fact variables that correspond to goals, the

increase in the threshold translates into an increase in the number of goals that are achieved. Hence

the term incremental goal achievement. The process terminates when the value thres exceeds

another user supplied value finphase. The output of the above procedure is the concatenation of

the partial plans that are generated. Then PSP-H, similarly to PSP, enters the satisfaction part,

where the planning problem for the new initial state is solved by SMP. The returned plan, as in

PSP, is the concatenation of the plans in the optimization and satisfaction parts.

The periodic replacement of the initial state of the planning problem described above, is called

restart strategy. With the restart strategy PSP-H attempts to limit the length of the planning hori-

zon, and hence the size of the satisfiability instances that are solved by the system. For instance,

restart rate array = 〈0.25, 0.5, 0.75〉 results in a new restart each time PSP-H finds a state that

satisfies 25% more goals than the previous intermediate state, whereas restart rate array =

And
rea

s S
ide

ris

148

〈0.2, 0.4, 0.6, 0.8〉 means that the restarts in this case occur as soon as a new state is found, with

the number of attained goals 20% higher than that of the previous state. As the length of the

plans, and typically the related computational burden, usually increases with the number of goals,

relative low values for the differences of each element of the restart rate array from the next

element of the array usually translate into smaller problems and therefore better run times.

As it is often the case with greedy search methods, a difficulty with incremental goal achieve-

ment is that it tends to generate locally optimal plans, i.e. plans that maximize the number of

attained goals in the limited planning horizon, and ignores goals that are not achievable within

that horizon. This bias may lead to poor quality solutions, as well as insolvability when actions

interact in complex ways, as in planning with non-renewable resources.

To tackle this problem, PSP-H combines incremental goal achievement with a heuristic method

that is intended to account for the effort that is needed to achieve the remaining goals. This is ac-

complished by a problem model that consists of the usual layers of action and fact propositions

that correspond to different times, but it is divided in two parts: the constrained and the relaxed

part.

The constrained part is the standard PB model of the problem, i.e. a translation of the SMP encod-

ing into linear inequalities, as described in section 5.2. The relaxed part is also obtained from the

SMP encoding, but some of the constraints of the model are omitted. Moreover, the relaxed part is

further divided into three subparts that differ in the mutual exclusion information they contain.

• The action relaxation part is the SMP model without action mutex clauses, i.e. without the

set of constraints 7 as specified in section 4.2.1. This model is similar to the ”∃ encoding”

of [103].

And
rea

s S
ide

ris

149

• The intermediate or fact relaxation is a new type of relaxation introduced in this work. It is

less constrained (more relaxed) than the previous part, but more constrained (less relaxed)

than the next full relaxation part. As in the action relaxation, no action mutexes are present

here. Moreover, for each set of pairwise mutual exclusive facts, either the associated con-

straint is completely omitted, or a relaxed form of mutual exclusion is added, called weak

exclusion constraint. Specifically, for a set of pairwise mutex facts f1, . . . , fk and time

point T , the corresponding weak exclusion constraint is a cardinality constraint of the form

f1(T) + . . . + fk(T) ≤ N , where k > N ≥ 1. Note that this is a strict relaxation of the

mutual exclusion f1(T) + . . . + fk(T) ≤ 1 in the case that N > 1. More details on the

construction of the intermediate relaxation part are provided in the subsection 6.3.1.

• The full relaxation part contains neither action nor fact mutexes, i.e. both sets of clauses

7 and 8 are omitted. The clause sets 4 and 6 are also omitted as redundant. This part

corresponds to the well-known delete-lists relaxation heuristic that forms the basis of many

heuristic search planners.

The encoding is depicted graphically in Figure 4. It starts with the layers of the constrained

part, followed by the action relaxation and then the intermediate relaxation part, and ends with the

full relaxation layers. Goals are added as unit clauses in a final layer q + 1 (layer numbering is

taken from figure 4).

The fact variables that are associated with time point k and assigned true in a solution of a

problem, define a state sk. Obviously, sk can be reached from the initial state by a plan of length

k, and satisfies as many goals as possible. On the other hand, the final state is reachable from sk

in q + 1 − k relaxed steps. Therefore, while we seek to maximize the number of goals that are

satisfied in sk, at the same time we require that a relaxed plan of length q + 1 − k exists from

And
rea

s S
ide

ris

150

state sk to a state that satisfies all goals. Therefore, the heuristic part guides search towards states

that attain all goals. Hence the term heuristic guided optimization. Moreover, this strategy is

reinforced by shortening gradually the length of the relaxed part as we approach closer to a final

state. The next section describes how these ideas are implemented in the PSP-H planner.

The relaxed part is further exploited in the objective function of PSP-H which is more elab-

orate than that of PSP. For a planning problem with the set of goals G, the objective function

is

max : w1 ∗ (g1(k) + . . .+ g|G|(k)) +

w2 ∗ (g1(m) + . . .+ g|G|(m)) + w3 ∗ (g1(n) + . . .+ g|G|(n))).

Variable gi(k) is true if goal gi is true at time k, the last layer of the constrained part. Similarly,

variables gi(m) and gi(n) refer to the last layer of the action relaxation and intermediate relaxation

respectively. The coefficients w1, w2, and w3 are integer values provided by the user, who may

wish to assign ”importance” to the goals in different parts of the model. For instance a user may

want to implement a search strategy that favours goal achievement in the relaxed part. These three

values compose the weight vector in Algorithm 5, where it is denoted by weight vect. Any of

these values can be assigned the value 0.

Finally, it is very important to note that PSP-H overall approach relies on finding intermediate

states from which a final state is reachable by a relaxed plan. However, the existence of a relaxed

plan does not necessarily imply that there is a sound plan from the intermediate state that achieves

the goals of the problem. Indeed, the current version of the system does not employ any method

that is able to identify intermediate states that are deadlocks or dead-ends, i.e. states from which

the goals are unreachable. To mediate the problem, PSP-H resorts to outside assistance, namely

the Torchlight tool [56]. More specifically, before starting, PSP-H invokes Torchlight

And
rea

s S
ide

ris

151

Full

Relaxation

Constrained Part Relaxed Part

0 k m n q

Action

Relaxation

Intermediate

Relaxation

Figure 4: The different part of the SAT encoding in PSP-H.

that searches for dead-end states (with parameters -s 500 -d 20). If no dead-end state is

found (e.g. Torchlight returns Dead-end states: 0%) the domain is considered safe,

otherwise unsafe. For unsafe domains, PSP-H can employ the relaxation part more cautiously, as

explained in a following section.

6.3.1 Fact Constraint Relaxation

Fact constraint relaxation is one of the relaxation methods employed by PSP-H and imple-

mented in the intermediate part. Its construction is carried out as follows. PSP-H first invokes the

preprocessor of LAMA [96] to generate the multi-valued state representation of the problem. All

variables with less that 3 values in their domains are excluded from any further consideration. For

the rest of the variables, and from the information provided by LAMA preprocessor, PSP-H com-

putes for each variable v the shortest path (in terms of actions) between any pair of variable values,

and stores this information in the structure distances(v). Hence, distances(v)[xi, xj] is the min-

imum number of actions that are required for the values of v to change from xi to xj . If for some

variable v there is a pair of values such that there is no path from one to the other, this variable is

marked as a deadlock variable.

And
rea

s S
ide

ris

152

When the user invokes PSP-H, she may require, through a suitable parameter value, that

problems that are determined unsafe by Torchlight, are treated more cautiously, in a sense

explained at the end of this section. For safe domains, PSP-H, based on the distance information,

first identifies the counter variables. A variable with n different values is a counter variable if

exactly one pair of values have distance n − 1, two pairs of values have distance n − 2, etc. For

each counter variable v with values x1, . . . xn, PSP-H adds to the problem model the inequality∑n
i=1 xi <= 1. In the current version of PSP-H, in the presence of counter variables, no other

constraint is added to the intermediate relaxation part.

For safe domains that do not contain counter variables, PSP-H computes for each variable v

the maximum value of distances(v)[xi, xj] over all values xi, xj of v. If this value is less than 4,

the variable is removed. If no variables remain, PSP-H discards the intermediate relaxation part

all together, and, in the current implementation, aborts execution if the user enforced the inclusion

of that part through parameter values that are explained later.

Otherwise, for each remaining variable v with values x1, . . . , xn PSP-H add to the intermediate

part the constraint
∑n

i=1 xi ≤ k, where k is 3 if n <= 100 and 4 otherwise.

For unsafe domains, the user decides whether they are treated by PSP-H in the same way as

safe, or differently. In the alternative handling of unsafe domains, the length of the full relaxation

part is set by the system to one. Moreover, a mutex inequality of the form
∑n

i=1 xi ≤ 1 is added

to the intermediate relaxation part, where the xi’s are the values of a deadlock variable. Finally,

a similar constraint is added on the values of each variable that appears in an action that changes

the value of the deadlock variable. When in this configuration, we say that PSP-H is in the unsafe

mode.

And
rea

s S
ide

ris

153

6.4 The PSP-H algorithm

This section provides some more insight in the internal working of the system. The PSP-H al-

gorithm, presented in Algorithm 5, is the main procedure of the implemented planning system. It

takes as input a (STRIPS) planning problem problem = (I,G,A) and a number of parameters,

listed in the Require statement of the algorithm, and returns a plan. PSP-H algorithm operates

in three parts, the preprocessing, optimization and satisfaction parts.

6.4.1 Preprocessing part

The main task of the preprocessing part (lines 1-3, Algorithm 5) is carried out by pro-

cedure GraphPlan-relaxed (line 1). The procedure builds a planning graph for the relaxed

version of the input planning problem obtained by removing the delete-lists of all actions of the

original problem. The graph is expanded until all goals become reachable. As there are no delete

effects, finding a plan for the relaxed problem is an easy task. Based on the length of this plan

and the user supplied value of the parameter h init perc, PSP-H computes (line 2) the value of

variable h len, which determines the length of the full relaxation part (corresponding

to value q − n in figure 4) of the problem encoding.

6.4.2 Optimization part

The optimization part (lines 4-20 Algorithm 5) is the core of the PSP-H Algorithm. In

this part the problem is decomposed, using the incremental goal achievement and restart tech-

niques, into a series of subproblems which are successively solved by procedure optimize (line 6,

And
rea

s S
ide

ris

154

Algorithm 5 PSP-H

Require: problem = (I,G,A), finphase, h init perc, h red rate, r init perc1,
r init perc2 , reduce r red rate, weight vect = 〈w1, w2, w3〉, restart rate array;

Return: solution;
1: GraphPlan-relaxed(problem,plan);
2: h len := blength(plan) ∗ h init percc;
3: current best:=0; problem initial = problem; subplan:=0; I ′:=I; G′:=G;

Ginit:=G;
Plan1:=<>; previous f achieved score:=0;
achieved score:=0; r red rate:=1;

4: while true do
5: compute curr opt (problem,Ginit, weight vect,

restart rate array[subplan+ 1], finphase,
achieved score, boundopt, finscore);

6: optimize(problem, boundopt, h len, r init perc1,
r init perc2, r red rate, weight vect, plan);

7: achieved score :=achieved(plan); subplan := subplan+ 1;
8: Plansubplan := plan;
9: I ′:= state obtained after executing plan on I ′;

G′ := G′ \ {g|g ∈ I ′ ∩G′ and @a ∈ A such that g ∈ del(a)};
problem := (I ′, G′, A);

10: if achieved score ≥ finscore then
11: exit while
12: end if
13: fraction achieved score := (w1+w2+w3)∗(|Ginit|−|G′|)+achieved score

(w1+w2+w3)∗|Ginit|
14: if h len = 1 and fraction achieved score > previous f achieved score+h red rate

then
15: r red rate := r red rate ∗ reduce r red rate;

previous f achieved score := fraction achieved score;
16: end if
17: if h len > 1 and fraction achieved score > previous f achieved score+h red rate

then
18: h len := h len− 1;

previous f achieved score := fraction achieved score;
19: end if
20: end while
21: FinalPhase(problem initial,concat(Plan1, . . . , P lansubplan), solution);

And
rea

s S
ide

ris

155

Algorithm 5), presented in Algorithm 7, and discussed in a following paragraph. The decompo-

sition of the problem is controlled by the user supplied array parameter restart rate array, that

has been introduced in the previous section.

The optimization part starts with a call to procedure compute curr opt (line 5), presented in

algorithm 6, that returns two bounds, boundopt and finscore. The former, boundopt, is used

as a lower bound of the value of the objective function that must be returned by the call of the

procedure optimize (line 6), and the latter, finscore, is used as the threshold for the algorithm to

exit the optimization part (lines 10-11) and proceed to the satisfaction part (line 21).

Procedure compute curr opt takes as inputs values for the parameters

weight vect =〈w1, w2, w3〉, and finphase. The weight vect = 〈w1, w2, w3〉 corresponds to the

weights of the objective function in page 150, and finphase is a number in the open real interval

(0, 1) which is used in the computation of finscore (line 7). The other input parameters of

compute curr opt are problem, Ginit, restart and achieved score. The parameters problem

and achieved score are the current subproblem to be solved (line 9 of algorithm 5) and the score

of the solution of the previous subproblem (line 7 of algorithm 5) respectively. The parameter

restart is a number in the open real interval (0, 1), which is used in the computation of the lower

bound boundopt. In fact, restart is the user supplied ratio score for the next restart (line 5,

algorithm 5) of the main algorithm. Parameter Ginit is the set of goals in the initial problem.

Note that Ginit ⊇ G, where G is the set of goals in the problem. It may also be the case that

Ginit ⊃ G because at each restart, any goal that is in the initial state of the new subproblem but

not in the delete effects of any action of the problem can be removed from the goal list, as it cannot

be ’undone’ again (line 9 of algorithm 5). An example is the visitall domain where a robot, that

starts in the middle of a square two dimensional grid, must visit at least once all the squares of

the grid. This type of goals must not be taken into account in the objective function since they

And
rea

s S
ide

ris

156

will not be considered again, hence the subtraction of the term W G′ −W G in lines 3,5 and 7

in algorithm 6. If the score found in the previous solution in variable achieved score is equal or

greater than W G′ ∗ restart, then the next lower bound to restart is updated to achieved score+

1 − (W G′ −W G), otherwise it is updated to W G′ ∗ restart − (W G′ −W G) (lines 2-5

algorithm 6).

Algorithm 6 Procedure compute curr opt

Require: problem = (I,G,A), G′(⊇ G), weight vect = 〈w1, w2, w3〉,
restart, finphase, achieved score

Return: boundopt, finscore;
1: W G := (w1 + w2 + w3) ∗ |G|;
W G′ := (w1 + w2 + w3) ∗ |G′|;

2: if subplan > 1 and achieved score ≥W G′ ∗ restart then
3: boundopt := achieved score+ 1− (W G′ −W G);
4: else
5: boundopt := W G′ ∗ restart− (W G′ −W G);
6: end if
7: finscore := W G′ ∗ finphase− (W G′ −W G);
8: return boundopt, finscore;

Procedure compute curr opt (line 5) described in the previous paragraph calculates the boundopt

which is the lower bound passed to procedure optimize. Procedure optimize returns a plan (line

6) and the value of achieved score is updated with respect to this plan (line 7). The new plan is a

sub-plan (line 8) of the final solution that is synthesized by the algorithm in the FinalPhase (line

21). After the (sub)plan is found, PSP-H determines the state I ′ that is obtained by executing the

actions of this plan (line 9). Moreover any goals in the goal set that are in I ′, and there is no action

in the problem that deletes them, are removed, as they cannot be falsified (line 9). The new goal

set is G′. At this point PSP-H applies the restart strategy by replacing the previous initial state

with the new state I ′ and the previous set of goals with G′ in the new problem (line 9) that will be

solved in the next iteration of the optimization loop.

If the current value of the objective value reaches the value of variable finscore, computed by

And
rea

s S
ide

ris

157

procedure compute curr opt (line 5), PSP-H exits the while loop (lines 10-12) and moves to the

FinalPhase (line 21) of the satisfaction part explained in the following subsection. Otherwise

PSP-H returns to the top of the optimization loop, procedure compute curr opt computes a new

lower bound that is passed to procedure optimize, and the process iterates. Since the bound for a

subproblem is strictly greater than the score achieved by the solution of the previous subproblem,

successive solutions of subproblems converges towards a solution of the original problem.

As discussed previously, it is sensible that PSP-H uses the estimation provided by the heuristic

on the relaxed part more cautiously as the number of the remaining unsatisfied goals decreases.

PSP-H shortens the relaxed part dynamically as the planner approaches a final state. A (user-

defined) h red rate percentage threshold is used to shorten the relaxed part of the plan. If the

length of the full relaxation part (variable h len) is greater than 1, it leads to a reduction by one step

of the length of the full relaxation part, whenever the ratio of the objective function of

the solution to the global optimal in the current sub-problem (calculated at line 13) is h red rate

percent greater than the corresponding ratio of the solution found at the previous reduction of

the relaxed part (lines 17-19). However, if the condition holds for the score of the objective

function and h len is 1, the full relaxation part cannot be reduced further and the (user-defined)

reduce r red rate percentage is used to reduce the number of the layers of intermediate

relaxation part of relaxed part (lines 14-16).

Each subproblem is an optimization problem that is solved by procedure optimize (line 11,

Algorithm 5) presented in Algorithm 7. The procedure maximizes the score of the objective

function (or heuristic score) within a user-defined time bound in a minimal number of plan layers

for the input subproblem problem, subject to the constraint that the score of the solution is equal

or greater than its input parameter bound. Its parameters are h len, r init perc1, r init perc2,

r red rate and weight vect.

And
rea

s S
ide

ris

158

Algorithm 7 Procedure optimize
Require: problem, bound, h len,

r init perc1, r init perc2, r red rate, weight vect;
Return: plan;

1: Extend planning graph until all goals are reachable and not mutex;
2: pg len := number of layers of planning graph;
3: repeat
4: Translate planning graph into PSEUDOBOOLEAN constraints problem S;
5: Append bpg len ∗ r init perc1c layers of partially relaxed layers with all fact mutexes;
6: Append bpg len ∗ r init perc2 ∗ r red ratec layers of partially relaxed layers with weak

exclusion constraints over facts;
7: Append h len layers with no fact and action mutexes;
8: Add a layer of facts containing goals as unit constraints;
9: Convert layers into PSEUDOBOOLEAN constraints and append to S;

10: formulate-obj-fun(weight vect, OBFU);
11: solve(S,OBFU, bound, solution);
12: if solution = ∅ then
13: Extend planning graph by one layer; pg len := pg len + 1;
14: end if
15: until solution 6= ∅
16: Extract plan from solution
17: Return plan;

The procedure builds a planning graph until all goals are reachable and there is no pair of goals

that is marked as mutex. It then translates the pg len layers of this graph into a PseudoBoolean

constraint problem using the SMP encoding (lines 1-4, Algorithm 7). Then the layers of the relaxed

part (figure 4) according to the (user defined) parameters h len, r init perc1, r init perc2, and

r red rate are added from layer pg len + 1. First the bpg len ∗ r init perc1c layers of the

action relaxation part are added (line 5), then bpg len ∗ r init perc2 ∗ r red ratec layers of

intermediate relaxation (line 6) and then h len layers of full relaxation (line 7). The parameter

r red rate is the one that is reduced dynamically in PSP-H main algorithm (Algorithm 5 line

15) as explained in a previous paragraph, hence the added layers of intermediate relaxation are

reduced when r red rate is reduced. Finally, another layer is added containing the goals as unit

constraints (line 8). The added layers are converted to PseudoBoolean constraints and appended

to the initial problem S (line 9). The appropriate objective function (as it is presented in page

And
rea

s S
ide

ris

159

151) is formulated using the user defined weight vect as was described in a previous section,

and the procedure solve is invoked to solve the problem (lines 10-11). The procedure either finds

a valid plan for the problem with objective score equal or greater than the bound, or it fails. If

procedure solve finds a first solution it iteratively tries to find a solution with a better score until an

optimal solution is found or a (user defined) time limit is reached. If a solution is found, a plan is

extracted and returned (line 16-17), else the planning graph is extended by one layer and the whole

process repeats. As in the PSP planning system presented in chapter 5, the loop for optimizing

the objective function of procedure solve is done by successive calls of the minisat+[41] to

convert the PseudoBoolean constraints to CNF and then solving the problem by invoking the SAT

solver precosat[16]. The procedure is the same as the solvePBO of PSP system presented in

chapter 5, section 5.3.1 algorithm 4, with the only difference being the formulation of the objective

function.

6.4.3 Satisfaction part

The optimization part (line 4-20 Algorithm 5) halts when a solution is found with the

score of the objective function being at least finscore, where finscore is computed by function

compute curr opt (algorithm 6) as explained in the previous section. The plan found by the

optimization part is the concatenation of all the sub plans, found i.e.

plan = concatenate(Plan1, . . . , P lansubplan).

Then plan is passed as a parameter to procedure FinalPhase (as in PSP planner) of the

satisfaction part (line 21 Algorithm 5) which is presented in Algorithm 8. The plan

is executed on the initial state I of the original problem to obtain a new initial state I ′ (line 2

Algorithm 8). If not all goals are achieved in I ′ the SMP planner is invoked to find a plan plan′

for the planning problem from the new initial state I ′ that satisfies all goals of the original planning

And
rea

s S
ide

ris

160

Algorithm 8 Procedure FinalPhase

Require: problem = (I,G,A), plan
Return: solution;

1: plan′ :=<>;
2: I ′:= state obtained after executing plan on I;
3: if achieved < |G| then
4: SMP((I ′, G,A), plan′);
5: end if
6: solution := concat(plan, plan′)
7: return solution;

problem (lines 3-5). Finally the concatenation of plan and plan′ is the returned solution (lines

6-7) of the input planning problem that is the output of the PSP-H planner.

6.5 Experimental evaluation

PSP-H is a prototype system that has been implemented to test the techniques that are pre-

sented in this work. Similarly to PSP, it has been built on top of SATPLAN, from which it inherits

the very slow and memory demanding planning graph construction phase. This imposes serious

limitations on the size of the problem that can be solved by PSP-H. In fact, as we note later, in

many domains the current version of PSP-H spends more time in manipulating data structures

than in SAT solving.

PSP-H has been evaluated on a number of domains from various planning competitions and

compared with LAMA and Madagascar. We stretch here that PSP-H has been given an ad-

vantage over the other systems (especially LAMA) in this comparison. Indeed, in some domains,

problems which PSP-H cannot solve because of high memory demand, are excluded from the

comparison. While it seems that the other system can solve some of the the excluded problems,

it is uncertain that PSP-H would be able to solve them, were not memory consumption an ob-

stacle. Moreover, these experiments are not suitable for comparing the performance of the other

And
rea

s S
ide

ris

161

two planners. Nevertheless, our results clearly indicate the advantages and the viability of the

PSP-H approach in certain domains.

All experiments were run on a server with 24 X5690 cores at 3.47GHz running under CentOS.

For Madagascar we tested system Mp (version 0.999) which uses the planning specific variable

selection heuristic, and seems to yield the best overall results, according to [102]. Both LAMA and

Madagascar were run with their default parameters values, and a CPU cutoff limit of 3600

seconds. In fact LAMA aborts execution in many problems well before the runtime cutoff, as a

result of reaching the memory limit.

Due to the large number of parameters, PSP-H was initially run with tens of different combi-

nations for their values. Not surprisingly, its performance varies considerably with these values. In

this section we provide some representative results that demonstrate the capabilities and limitation

of the system.

In all experiments with PSP-H, procedure optimizewas terminated after 300 CPU seconds.

Moreover, every time a new (improved) solution was found, the CPU cutoff limit is reset to 120

seconds. As with the other two systems, PSP-H was also run with a CPU cutoff limit of 3600

seconds.

The first column of Table 10, lists the domains of the experimental evaluation, with the name

they are known in the literature. The multi-value variable representation of the domains, as they

are discovered by LAMA, have different features that directly affect the constraints that are selected

by PSP-H for inclusion in the intermediate relaxation part. For Pipesworld and Satellite

the initial analysis of PSP-H removes all variables and therefore there is no intermediate relax-

ation part for problems in this domain. This is reflected in Table 10 by an empty entry for these

domains under the fifth column, that refers to a run of PSP-H that requires a non-empty inter-

mediate relaxation part. Among the other domains there are those with counter variables such as

And
rea

s S
ide

ris

162

Domain Number of LAMA Madag PSP-H PSP-H PSP-H
Problems R1 R2 R1/R2

Pipesworld 25 25 22 - 25 25
Satellite 22 22 22 - 22 22
Storage 29 20 29 28* 29 28
Openstacks 30 30 18 18 18 18
Elevators 30 30 30 30 30 30
Transport 19 19 19 18* 18* 18
Visitall 28 28 19 22 21 22
Barman 40 40 28 40 40 40
Total 223 214 187 156 203 203

Table 10: Number of problems solved by the planners within a 3600 seconds CPU limit. The
second column lists the number of problems tried in each domain. The fifth and sixth column
refer to two runs of PSP-H with different parameter values, while the last column combines their
results are explain in the paper. An empty entry indicates that the specific parameter setting does
not apply to this domain, and a star marks insolvability of some problems due to high memory
usage.

the Elevators and Transport, and others such as Storage and Visitall that contain

variable with many values. Recall that for the latter domains PSP-H adds to the intermediate

relaxation a relaxed mutex constraints of the form
∑n

i=1 xi ≤ k, where xi are the values of the

selected variables, and k an integer value.

Table 10 summarizes the number of problem solved by each system in the tested domains.

The second column lists the number of problems tested in each domain, as it was determined

by PSP-H’s memory consumption. As noted earlier, problems which exceed the memory capa-

bilities of PSP-H are excluded. The third and fourth column depict the problems solved within

the CPU cutoff limit by LAMA and Madagascar respectively. The next two column refer to

two different characteristic runs of PSP-H that direct the planner towards generating solutions

quickly. The parameter values for PSP-H-R1 are as follows. The action and intermediate re-

laxation parts were both set to 40%, and the initial length of the full relaxation part (parameter

h init perc) to 50%. Moreover, parameter restart rate array was set to restart rate array =

And
rea

s S
ide

ris

163

〈0.02, 0.04, . . . , 0.98〉 (i.e. frequency of restarts=2%), h red rate (rate of shortening of the relax-

ation part) to 15%, and finally reduce r red rate (the reduction rate of the intermediate relaxation

part) to 50%. Recall that this setting is not applicable to Pipesworld and Satellite.

In PSP-H-R2, the intermediate relaxation part was empty, whereas the action and final relax-

ation part were set 40% and 70% respectively. The rest of the parameters are similar to that of

PSP-H-R1 and their specific values are not of interest. What is important to note is that both runs

feature frequent restarts and long relaxation parts, thus making the satisfiability problems easier

for the underlying boolean optimizer.

Finally, in all runs reported in this work the weights (i.e. the coefficients w1, w2, w3 of the con-

strained, the action relaxation and the intermediate relaxation parts respectively) were set to 1, 0

and 0.

The last column of Table 10 combines the two PSP-H runs by putting together the results for

domains with intermediate relaxation part and those for domains without this part. A comparison

of that column for PSP-H with the one that correspond to LAMA, clearly shows that the heuristic

planner outperforms PSP-H. In fact, the only domain where PSP-H (and Madagascar) solves

more problems is Storage.

On the other hand PSP-H seems to be on par with Madagascar in Storage, Openstacks

and Elevators, and can solve more problems in Pipesworld. The advantage of PSP-H shows

clearly in the Visitall and Barman domains, and this is not accidental. The plans in these

domains are long, and it seems that the techniques employed by PSP-H address successfully this

problem, at least in certain cases. We note that the longest plan that PSP-H was able to synthesize

comes from Visitall and was 248 steps long.

Table 11 presents results about the quality of the plans that were generated by the systems for

the largest 5 problems in each domain. The numbers in parentheses are the sums of the number

And
rea

s S
ide

ris

164

Domain LAMA Madag PSP-H
R2

Pipesworld (167) 193 (432) 152 (281)
Satellite (366) 99 (457) 109 (527)
Storage - 450 (1339) 194 (725)
Openstacks (662) 448 (606) 396 (572)
Elevators (839) 428 (2056) 382 (1629)
Transport (341) 432 (1161) 220 (666)
Visitall (448) 535 (535) 447 (447)
Barman (814) 896 (1184) 561 (780)
Total (3637) 3031 (6431) 2267 (4902)

Table 11: Sums of the solution length (number of parallel steps) and in parentheses the sums of
the number of actions for the largest five problems in each domain. In the last line the total counts
for all domains except Storage.

of actions in all the 5 problems, whereas the numbers outside parentheses sum the parallel plan

lengths, and hence they are no meaningful for LAMA which generates sequential plans. The entries

under column PSP-H-R2 refer to the run that appears with the same name in Table 10, and has

been presented above.

The fist conclusion of this comparison is that PSP-H generates better quality plans than

Madagascar in all domains except for Satellite. In fact, in some domains such as Transport,

the difference in favor of PSP-H is substantial. On the other hand, in some domains with low or

no action parallelism, such as Openstacks, Visitall and Barman, PSP-H generates plans

that have less actions than those in the solutions found by LAMA. However, in domains with high

parallelism LAMA generates plans with considerably fewer actions than PSP-H.

PSP-H is controlled by a set of parameters that can be tuned to direct the system towards better

quality solutions. One way to accomplish that is by using shorter fully relaxed parts and longer

intermediate part. This yields better results, especially in domains with many inequalities in the

intermediate relaxation part. For instance, for a characteristic such run, the sum of the plan lengths

And
rea

s S
ide

ris

165

for the problems that appear in Table 11 are 182 for Transport and 300 for Elevators, an

improvement of more than 20%.

Finally, we note that although some of the domains listed above are unsafe for PSP-H. How-

ever, in the experimental evaluation the unsafe mode was not activated. On the other hand, it

seems that in a few other domains, the unsafe mode fails to avoid dead-ends, and PSP-H can only

solve a few problems. The most extreme case is that of the Pegsol domain, where it only solves

a couple of problems.

6.6 Conclusions

This work contributes a number of ideas towards addressing the issue of scalability of the

satisfiability-based approach to planning. Preliminary experiments with a prototype implemen-

tation of these ideas showed that the new approach can generate long plans of good quality in

challenging domains.

The line of research that is taken in this work can be extended in different directions. One

question that arises naturally, is whether there are other forms of constraints, stronger than the

mutexes, that can provide a more accurate relaxation. It is also important to investigate ways of

tuning PSP-H’s parameters automatically, based on information that is derived from the problem

domain. Not surprisingly, some initial experiments that are not presented here, showed that, do-

mains which are otherwise difficult for PSP-H, become substantially easier with a suitable choice

of parameter values.

Finally, we view this work as a first attempt to combine constraint solving with ideas from

heuristic search that have developed in planning.

And
rea

s S
ide

ris

Chapter 7

Conclusions and Future Research

In this chapter we present the summary of the contributions of the dissertation and we discuss

directions for future research based on the work that has been done so far.

7.1 Summary of Research Contribution

The contributions of this dissertation are in advancing the SAT-based propositional planning.

We introduced SMP, a novel way to encode the planning problem to propositional formulas (SAT),

that is experimentally found to be a significant improvement against other encodings when used in

the planning as satisfiability framework. Moreover, we explain our results analytically, by proving

that it achieves more propagation than other encodings. Then we used this encoding in a novel

method, planning as pseudo-boolean optimization. Our experimental results with an initial imple-

mentation of the method, the PSP planner, reveal to be an improvement against the planning as sat-

isfiability framework. We further expand the method of planning as pseudo-boolean optimization

in the PSP-H planner, which enhances the PSP planner, by two powerful techniques, incremental

goal achievement and heuristic guidance. Our experiments demonstrate that PSP-H planner is a

166

And
rea

s S
ide

ris

167

competitive planning system for propositional planning, that can find sub-optimal parallel plans

of good quality.

In summary, the contributions and the chapters and publications where they appeared are as

follows:

I We compared different encodings of the planning as satisfiability framework wrt to the

propagation they achieve in a modern SAT solver. Our investigation is limited to unit prop-

agation (UP), since the vast majority of modern SAT solvers use UP as their constraint

propagation mechanism. Based on these theoretical results, we explained some of the dif-

ferences observed in the performance of various planners based on the planning as satisfia-

bility framework. As one would expect, there is a link between their performance and the

(unit) propagation they achieve. Based on these results, we introduce a new encoding, the

SMP and we formally prove that SMP renders londex (on a single DTG) [30] implied binary

constraints redundant, in contrast to the other encodings that fail to propagate information

’backwards’. We conducted experiments in a number of domains, and verified that SMP of-

fers performance improvements. Finally, we used exhaustive search to find non-redundant

implied binary clauses for SAT encoding (SMP) in various domains, and showed experi-

mentally that adding them in the SAT theory does not bring substantial gains. We present

SMP in chapter 4 and in [111].

II We presented a novel method for propositional STRIPS planning, planning as (pseudo-

boolean) optimization and a first implementation of the method, called PSP system. PSP plan-

ner, follows the classic solve and expand approach, as most planners in the planning as sat-

isfiability framework. It works in two parts, the optimization part and satisfaction part. In

the optimization part, PSP seeks to maximize the number of goals that can be achieved for

And
rea

s S
ide

ris

168

successively extended planning horizons, until a plan is found that achieves a number of

goals that is equal or grater than some user supplied value. Then PSP enters the satisfaction

part. In the satisfaction part the plan that is found in the optimization part is used to iden-

tify a new initial state and hence a new planning problem which is solved by invoking the

SATPLAN algorithm (SMP encoding). The concatenation of the two plans is the solution

of the input planning problem. Any goals that are attained during the optimization part are

added to the problem as intermediate facts (unit clauses) that must be true, in order to prune

the search space. Finally, we implemented a user controlled strategy that ’slides’ the added

goals towards the planning horizon. Our experiments demonstrate that PSP is capable of

solving (sub-optimally) planning problems that are are unsolvable by SMP. The solutions

found by PSP are of high quality (wrt makespan). Finally at an optional post processing

step, PSP can improve the solution by successive calls of the SMP for smaller planning

horizons. In this way PSP can find optimal plans with runtimes close to the ones of SMP.

We present PSP in chapter 5 and in [112].

III We presented the PSP-H system that addresses the limited scalability of SMP and PSP.

PSP-H is built on PSP and hence it shares some similarities with it. First of all, PSP-H shares

with PSP the planning as pseudo-boolean optimization perspective and, as PSP, it also

works in an optimization and satisfaction part. However it extends PSP with two powerful

techniques in the optimization part, incremental goal achievement and heuristic guidance.

Incremental goal achievement is used to decompose the planning problem into a series of

boolean optimization problems. At each sub-problem the objective is to maximize the num-

ber of goals that are achieved for successively extended (by one) planning horizons, until a

user-defined number of goals is reached. Starting from the initial state, when a sub-problem

And
rea

s S
ide

ris

169

is solved in the way explained, the plan of this sub-problem is executed on its initial state

in order to identify a new initial state and hence a new sub-problem. In each sub-problem

PSP-H seeks to maximize a larger number of goals from the previous sub-problem. As in

PSP, when a user-defined number of goals is reached (or surpassed), PSP-H proceeds in

the satisfaction part which is the same as in PSP. The solution is the concatenation of all the

successive plans of the optimization part with the one of the satisfaction part. The second

technique, heuristic guidance, is used as a way to mitigate the greedy behavior of the above

decomposition method. Heuristic guidance imposes that from the initial states of all sub-

problems of the optimization part, there must be a relaxed plan to the final state of the input

problem. Three different relaxation methods are used that are based on ignoring some of

the problem constraints, but they differ in their strength. Our experimental evaluation on a

number of domains taken from planning competitions, demonstrates that PSP-H can solve

challenging problems. We present PSP-H in chapter 6 and in [113].

7.2 Future Research

There are several directions for future research, that can enhance the effectiveness of the ideas

presented in this thesis. First, the SMP planning system as other planners in the SATPLAN frame-

work, uses the BLACKBOX module to build the planning graph in order to extract the clauses.

As explained in section 5.5 some of the benchmarks in the IPC competitions are too demand-

ing for the BLACKBOX system, both in terms of time and memory. Therefore the module for

building the planning graph should either be implemented again, or more easily, it would be pos-

sible at a preprocessing step to build the planning graph just once for a large planning horizon,

store it in a file and reuse it for the successively larger makespans as explained in section 5.5 of

chapter 5. Moreover we would like to investigate a way to soundly keep (some) of the learnt

And
rea

s S
ide

ris

170

clauses found by the SAT solver for a planning horizon to the next planning horizons. Similar

ideas are implemented in MaxPlan [128] system. Our experiments revealed that we cannot ex-

pect substantial gains with more binary implied clauses. This however, leaves the possibility of

employing constraints of higher arity. For example assume a problem with 9 persons, a number

of locations and a car that can carry only 4 persons. Then it is easy to see that the constraint

pl1(t+ 1) + . . .+pl9(t+ 1)−pl1(t)− . . .−pl9(t) ≤ 4 is an implied constraint (where pli(t) denotes

that person i is at location l at time t). We would like to investigate ways to extract automati-

cally such constraints from domains and the effect that they may have when added (as equivalent

clauses, e.g. with the use of minisat+ translator) in SMP. Another interesting direction is the en-

hancement of a SAT solver (e.g precosat) with a planning specific heuristic, for example as in

the Madagascar planner [102, 101], or a planning specific propagation method. For example it

would be interesting to apply failed literal propagation only to a subset of the unassigned variables

in conjunction with unit propagation. Such a set could be for example only the facts that belong

to the same state variable v as a goal variable, or at a state variable v′ such that there is an edge

(v′, v) in the causal graph of the problem. Moreover any variable with a distance (in number of

layers) more than a threshold d from the planning horizon could be excluded. SAT is used in non

propositional planning as well, for example [92, 93, 82]. We conjecture that the methodology and

the theoretical analysis regarding the unit propagation that yielded to the SMP encoding can be

applied to devise more efficient SAT encodings for non propositional planning.

We consider the PSP as the ’predecessor’ of the PSP-H, since PSP-H is built on top of

PSP planner and is experimentally proved to be more efficient. Therefore it seems more reason-

able to focus future research on PSP-H rather than PSP. However, there is an idea that seems

worth investigating: In the current implementation in the optimization part, PSP attains the goals

that are found, and uses them in a ’slide’ strategy to prune the search space. The question that

And
rea

s S
ide

ris

171

arises is whether it is possible to use more or less information in a slide strategy. Intuitively, the

more (less) information should produce plans in less (more) time of worse (better) quality. For

example assume that the goals that are sliding are g1(t1), g2(t2), g3(t3), g4(t4), g5(t5) , where ti is

a time point, or equivalently g1(t1)+g2(t2)+g3(t3)+g4(t4)+g5(t5) = 5. An example of sliding

less information would be to slide the constraint g1(t1) + g2(t2) + g3(t3) + g4(t4) + g5(t5) ≥ 2

instead. Moreover in section 5.5 of chapter 5 we discussed in some detail ideas to improve the

implementation of PSP planner.

Since the PSP-H planner is built on top of the PSP planner, all the ideas that were discussed

in section 5.5 of chapter 5 that may improve the implementation of PSP planner are applicable for

PSP-H planner as well. An interesting question is to investigate ways to make more accurate the

relaxation method. Since the relaxation method is based on the absence of constraints, an idea is

to add some implied constraints in the relax part that are stronger than the mutexes, having always

in mind the trade off between accuracy and efficiency. We performed some initial experiments that

revealed that PSP-H’s efficiency depends heavily on the initial (user-defined) parameters. Indeed

domains which are otherwise difficult for PSP-H, become substantially easier with a suitable

choice of parameter values. Therefore we believe that is important to investigate ways of tuning

PSP-H’s parameters automatically, based on information that is derived from the structure of the

problem domain. This is also important because of the very large number of combinations of the

values of the parameters of PSP-H. Finally, since we view PSP-H as a first attempt to combine

constraint solving with ideas from heuristic search, we want to investigate the idea of closing the

gap even more: For example it would be interesting to throw a ’PROBE’ [80, 79] from the state

s at the end of the constrained part towards the goals. Information that would be extracted from

a probe that reaches a goal state can be used in a number of interesting ways, besides the obvious

one that is to return the plan that is found. For example assume that the length from s to the goal

And
rea

s S
ide

ris

172

state found by the probe is l. Since the plan found by the probe is sequential, it would make sense

to invoke SMP with s as an initial state for successively smaller planning horizons starting from

l − 1 in order to try to find an optimal plan from s to the goal state, improving the quality of the

plan found.

Finally recall that SMP, PSP and PSP-H planners use the SAT solver precosat[16] as a

black box, by just invoking its executable. Any advances in the SAT industry, such as a new more

efficient SAT solver, can be directly imported into our planners and enhance their performance.

Moreover any possible future developments in the modelling of planning as a SAT problem can

be directly imported into PSP and PSP-H planners in order to enhance their performance.

And
rea

s S
ide

ris

Bibliography

[1] Parosh Aziz Abdulla, Per Bjesse, and Niklas Eén. Symbolic reachability analysis based
on sat-solvers. In Tools and Algorithms for Construction and Analysis of Systems, 6th
International Conference, TACAS 2000, Held as Part of the European Joint Conferences on
the Theory and Practice of Software, ETAPS 2000, Berlin, Germany, March 25 - April 2,
2000, Proceedings, pages 411–425, 2000.

[2] A. Aggoun, Y. Gloner, and H. Simonis. Global constraints for scheduling in chip. In Invited
Industrial Presentation, JFPLC 99, 1999.

[3] Eyal Amir and Barbara Engelhardt. Factored planning. In IJCAI-03, Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, Au-
gust 9-15, 2003, pages 929–935, 2003.

[4] Eyal Amir and Sheila A. McIlraith. Partition-based logical reasoning for first-order and
propositional theories. Artificial Intelligence, 162(1-2):49–88, 2005.

[5] Alessandro Armando, Claudio Castellini, and Enrico Giunchiglia. Sat-based procedures
for temporal reasoning. In Biundo and Fox [19], pages 97–108.

[6] Fahiem Bacchus. Enhancing davis putnam with extended binary clause reasoning. In AAAI,
pages 613–619, 2002.

[7] Fahiem Bacchus. Enhancing davis putnam with extended binary clause reasoning. In
AAAI/IAAI-02, Proceedings of the Eighteenth National Conference on Artificial Intelligence
and Fourteenth Conference on Innovative Applications of Artificial Intelligence, July 28 -
August 1, 2002, Edmonton, Alberta, Canada. AAAI Press, 2002, pages 613–619, 2002.

[8] Rolf Backofen and Sebastian Will. A constraint-based approach to structure prediction
for simplified protein models that outperforms other existing methods. In Logic Program-
ming, 19th International Conference, ICLP 2003, Mumbai, India, December 9-13, 2003,
Proceedings, pages 49–71, 2003.

[9] Christer Bäckström. Computational complexity of reasoning about plans. Ph.D. thesis,
Linkö”ping University, Linkö”ping, Sweden, 1992.

[10] Christer Bäckström. Equivalence and tractability results for sas+ planning. In KR-92, Pro-
ceedings of the 3rd International Conference on Principles of Knowledge Representation
and Reasoning (KR’92). Cambridge, Massachusetts, October 25-29, 1992. Morgan Kauf-
mann, 1992, pages 126–137, 1992.

173

And
rea

s S
ide

ris

174

[11] Christer Bäckström and Inger Klein. Planning in polynomial time: the sas-pubs class.
Computational Intelligence, 7:181–197, 1991.

[12] Christer Bäckström and Bernhard Nebel. Complexity results for sas+ planning. Computa-
tional Intelligence, 11:625–656, 1995.

[13] Hachemi Bennaceur. The satisfiability problem regarded as a constraint satisfaction prob-
lem. In ECAI, pages 155–159, 1996.

[14] Christian Bessière and Romuald Debruyne. Theoretical analysis of singleton arc consis-
tency. In Proceedings ECAI’04 workshop on Modelling and Solving Problems with Con-
straints, Valencia, Spain, pages 20–29, 2004.

[15] Christian Bessière and Romuald Debruyne. Optimal and suboptimal singleton arc consis-
tency algorithms. In IJCAI-05, Proceedings of the Nineteenth International Joint Confer-
ence on Artificial Intelligence, Edinburgh, Scotland, UK, July 30-August 5, 2005, pages
54–59, 2005.

[16] Armin Biere. P{re,ic}oSAT@SC’09. In SAT Competition 2009, page
http://fmv.jku.at/precosat/, 2009.

[17] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic model
checking without bdds. In Tools and Algorithms for Construction and Analysis of Systems,
5th International Conference, TACAS ’99, Held as Part of the European Joint Conferences
on the Theory and Practice of Software, ETAPS’99, Amsterdam, The Netherlands, March
22-28, 1999, Proceedings, pages 193–207, 1999.

[18] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS
Press, February 2009.

[19] Susanne Biundo and Maria Fox, editors. Recent Advances in AI Planning, 5th European
Conference on Planning, ECP’99, Durham, UK, September 8-10, 1999, Proceedings, vol-
ume 1809 of Lecture Notes in Computer Science. Springer, 2000.

[20] Avrim Blum and Merrick L. Furst. Fast planning through planning graph analysis. Artifi-
cial Intelligence, 90(1-2):281–300, 1997.

[21] Blai Bonet and Hector Geffner. Planning as heuristic search: New results. In Biundo and
Fox [19], pages 360–372.

[22] Blai Bonet and Hector Geffner. Planning as heuristic search. Artif. Intell., 129(1-2):5–33,
2001.

[23] Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boosting sys-
tematic search by weighting constraints. In de Mántaras and Saitta [33], pages 146–150.

[24] Ronen I. Brafman and Carmel Domshlak. Structure and complexity in planning with unary
operators. J. Artif. Intell. Res. (JAIR), 18:315–349, 2003.

And
rea

s S
ide

ris

175

[25] Ronen I. Brafman and Carmel Domshlak. Factored planning: How, when, and when not.
In AAAI/IAAI-06, Proceedings, The Twenty-First National Conference on Artificial Intelli-
gence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, July
16-20, 2006, Boston, Massachusetts, USA. AAAI Press 2006, 2006.

[26] Tom Bylander. The computational complexity of propositional strips planning. Artificial
Intelligence, 69:165–204, 1994.

[27] Yves Caseau and François Laburthe. Heuristics for large constrained vehicle routing prob-
lems. J. Heuristics, 5(3):281–303, 1999.

[28] P. Chan, K. Heus, and G. Weil. Nurse scheduling with global constraints in chip: Gymnaste.
In In Practical Applications of Constraint Technology (PACT) 1998, London, UK, March
1998.

[29] Yixin Chen, Ruoyun Huang, Zhao Xing, and Weixiong Zhang. Long-distance mutual ex-
clusion for planning. Artif. Intell., 173(2), 2009.

[30] Yixin Chen, Zhao Xing, and Weixiong Zhang. Long-distance mutual exclusion for propo-
sitional planning. In IJCAI-07, Proceedings of the 20th International Joint Conference on
Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pages 1840–1845, 2007.

[31] Yixin Chen, Zhao Xing, and Weixiong Zhang. Long-distance mutual exclusion for propo-
sitional planning. In IJCAI, pages 1840–1845, 2007.

[32] David W. Currie, Xiushan Feng, Masahiro Fujita, Alan J. Hu, Mark Kwan, and Sreeranga P.
Rajan. Embedded software verification using symbolic execution and uninterpreted func-
tions. International Journal of Parallel Programming, 34(1):61–91, 2006.

[33] Ramon López de Mántaras and Lorenza Saitta, editors. Proceedings of the 16th Eureo-
pean Conference on Artificial Intelligence, ECAI’2004, including Prestigious Applicants of
Intelligent Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004. IOS Press, 2004.

[34] Romuald Debruyne and Christian Bessière. Domain filtering consistencies. J. Artif. Intell.
Res. (JAIR), 14:205–230, 2001.

[35] Rina Dechter. Enhancement schemes for constraint processing: Backjumping, learning,
and cutset decomposition. Artif. Intell., 41(3):273–312, 1990.

[36] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[37] Yannis Dimopoulos and Kostas Stergiou. Propagation in csp and sat. In CP-06, Twelfth In-
ternational Conference on Principles and Practice of Constraint Programming September
24-29, 2006 - Cit des Congrs - Nantes, France, pages 137–151, 2006.

[38] William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the satisfiability
of propositional horn formulae. J. Log. Program., 1(3):267–284, 1984.

[39] Stefan Edelkamp and Malte Helmert. Exhibiting knowledge in planning problems to mini-
mize state encoding length. In Biundo and Fox [19], pages 135–147.

[40] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In SAT 2003, pages 502–518,
2003.

And
rea

s S
ide

ris

176

[41] Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into SAT. Jour-
nal on Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, 2006.

[42] Michael D. Ernst, Todd D. Millstein, and Daniel S. Weld. Automatic sat-compilation of
planning problems. In IJCAI-97, Fifteenth International Joint Conference on Artificial
Intelligence, NAGOYA, Aichi, Japan, August 23-29, 1997, pages 1169–1177, 1997.

[43] J. W. Freeman. Imrpovements to propositional satisfiability search algorithms. Ph.D. the-
sis, 1995.

[44] Hector Geffner. Planning graphs and knowledge compilation. In Zilberstein et al. [130],
pages 52–62.

[45] Hector Geffner and Blai Bonet. A Concise Introduction to Models and Methods for Au-
tomated Planning. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2013.

[46] Alfonso Gerevini and Ivan Serina. Fast planning through greedy action graphs. In AAAI-
99, Proceedings of the Sixteenth National Conference on Artificial Intelligence, Orlando,
Florida, USA, July 1822, 1998, pages 503–510, 1999.

[47] Malik Ghallab, Dana Nau, and PaoloTraverso. AUTOMATED PLANNING. theory and
practice. ELSEVIER MORGAN KAUFMANN, 2004.

[48] Fausto Giunchiglia and Roberto Sebastiani. Building decision procedures for modal logics
from propositional decision procedure - the case study of modal K. In Automated Deduction
- CADE-13, 13th International Conference on Automated Deduction, New Brunswick, NJ,
USA, July 30 - August 3, 1996, Proceedings, pages 583–597, 1996.

[49] Patrik Haslum and Hector Geffner. Admissible heuristics for optimal planning. In Pro-
ceedings of the Fifth International Conference on Artificial Intelligence Planning Systems,
Breckenridge, CO, USA, April 14-17, 2000, pages 140–149, 2000.

[50] Patrik Haslum and Hector Geffner. Heuristic planning with time and resources. In Proc.
ECP-01, pages 121–132, 2001.

[51] Malte Helmert. A planning heuristic based on causal graph analysis. In Zilberstein et al.
[130], pages 161–170.

[52] Malte Helmert. The fast downward planning system. J. Artif. Intell. Res. (JAIR), 26:191–
246, 2006.

[53] Malte Helmert. Understanding Planning Tasks: Domain Complexity and Heuristic De-
composition. Springer-Verlag, Berlin, Heidelberg, 2008.

[54] Malte Helmert. Concise finite-domain representations for PDDL planning tasks. Artif.
Intell., 173(5-6):503–535, 2009.

[55] Jörg Hoffmann. Ff: The fast-forward planning system. AI Magazine, 22(3):57–62, 2001.

[56] Jörg Hoffmann. Analyzing search topology without running any search: On the connection
between causal graphs and h+. Journal of Artificial Intelligence Research, pages 155–229,
2011.

And
rea

s S
ide

ris

177

[57] Jörg Hoffmann and Bernhard Nebel. The ff planning system: Fast plan generation through
heuristic search. JAIR, Journal of Artificial Intelligence Research, 14:253–302, 2001.

[58] Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered landmarks in planning. J.
Artif. Intell. Res. (JAIR), 22:215–278, 2004.

[59] John Hooker. Logic-Based Methods for Optimization. Wiley - Intersciense Series in Dis-
crete Mathematics and Optimization, 2000.

[60] Ruoyun Huang, Yixin Chen, and Weixiong Zhang. A novel transition based encoding
scheme for planning as satisfiability. In Maria Fox and David Poole, editors, AAAI. AAAI
Press, 2010.

[61] Ruoyun Huang, Yixin Chen, and Weixiong Zhang. SAS+ planning as satisfiability. J. Artif.
Int. Res., 43(1):293–328, 2012.

[62] Ruoyun Huang, Yixin Chen, and Weixiong Zhang. Sas+ planning as satisfiability. CoRR,
abs/1401.4598, 2014.

[63] Franjo Ivancic, Ilya Shlyakhter, Aarti Gupta, and Malay K. Ganai. Model checking C
programs using F-SOFT. In 23rd International Conference on Computer Design (ICCD
2005), 2-5 October 2005, San Jose, CA, USA, pages 297–308, 2005.

[64] Peter Jonsson and Christer Bäckström. State-variable planning under structural restrictions:
Algorithms and complexity. Artificial Intelligence, 100(1-2):125–176, 1998.

[65] Subbarao Kambhampati. Planning graph as a (dynamic) csp: Exploiting ebl, ddb and other
csp search techniques in graphplan. JAIR, Journal of Artificial Intelligence Research, 12:1–
34, 2000.

[66] Erez Karpas and Carmel Domshlak. Cost-optimal planning with landmarks. In Craig
Boutilier, editor, IJCAI 2009, Proceedings of the 21st International Joint Conference on
Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, pages 1728–1733,
2009.

[67] George Katsirelos and Fahiem Bacchus. Gac on conjunctions of constraints. In CP-01,
Seventh International Conference on Principles and Practice of Constraint Programming,
Nov 26 - Dec 1, 2001 Coral Beach Hotel and Resort, Paphos, Cyprus, pages 610–614,
2001.

[68] George Katsirelos and Fahiem Bacchus. Generalized nogoods in csps. In AAAI/IAAI-05,
Proceedings, The Twentieth National Conference on Artificial Intelligence and the Seven-
teenth Innovative Applications of Artificial Intelligence Conference, July 9-13, 2005, Pitts-
burgh, Pennsylvania, USA, pages 390–396, 2005.

[69] Michael Katz and Jörg Hoffmann. Red-black relaxed plan heuristics reloaded. In Proceed-
ings of the Sixth Annual Symposium on Combinatorial Search, SOCS 2013, Leavenworth,
Washington, USA, July 11-13, 2013., pages 489–495, 2013.

[70] Michael Katz, Jörg Hoffmann, and Carmel Domshlak. Who said we need to relax all
variables? In Proceedings of the Twenty-Third International Conference on Automated
Planning and Scheduling, ICAPS 2013, Rome, Italy, June 10-14, 2013, pages 126–134,
2013.

And
rea

s S
ide

ris

178

[71] Henry A. Kautz, David A. McAllester, and Bart Selman. Encoding plans in propositional
logic. In KR-96, Proceedings of the Fifth International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’96), Cambridge, Massachusetts, USA, November
5-8, 1996. Morgan Kaufmann, 1996, pages 374–384, 1996.

[72] Henry A. Kautz and Bart Selman. Planning as satisfiability. In ECAI-92, 10th European
Conference on Artificial Intelligence, ECAI 92, Vienna, Austria, August 3-7, 1992. Proceed-
ings. John Wiley and Sons, Chichester, 1992, pages 359–363, 1992.

[73] Henry A. Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic
and stochastic search. In AAAI-96, Proceedings, The Thirteenth National Conference on
Artificial Intelligence, August 48,, 2006, Portland, Oregon, USA. AAAI Press 1996, pages
1194–1201, 1996.

[74] Henry A. Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic and
stochastic search. In AAAI, pages 1194–1201, 1996.

[75] Henry A. Kautz and Bart Selman. Unifying sat-based and graph-based planning. In IJCAI,
pages 318–325, 1999.

[76] Henry A. Kautz, Bart Selman, and Joerg Hoffmann. SATPLAN: Planning as satisfiability.
In Booklet of the 5th Planning Competition, 2006.

[77] Elena Kelareva, Olivier Buffet, Jinbo Huang, and Sylvie Thiébaux. Factored planning using
decomposition trees. In IJCAI, pages 1942–1947, 2007.

[78] Wei Li and Peter van Beek. Guiding real-world sat solving with dynamic hypergraph sep-
arator decomposition. In ICTAI-04, 16th IEEE International Conference on. Tools with
Artificial Intelligence. ICTAI 2004. 15-17 November 2004. Boca Raton, Florida, pages
542–548, 2004.

[79] Nir Lipovetzky. Structure and inference in classical planning. Ph.D. thesis, Universitat
Pompeu Fabra, Barcelona Spain, 2012.

[80] Nir Lipovetzky and Hector Geffner. Searching for plans with carefully designed probes. In
Proceedings of the 21st International Conference on Automated Planning and Scheduling,
ICAPS 2011, Freiburg, Germany June 11-16, 2011, 2011.

[81] Adriana Lopez and Fahiem Bacchus. Generalizing graphplan by formulating planning as a
csp. In IJCAI-03, Proceedings of the Eighteenth International Joint Conference on Artifi-
cial Intelligence, Acapulco, Mexico, August 9-15, 2003, pages 954–960, 2003.

[82] Qiang Lu, Ruoyun Huang, Yixin Chen, You Xu, Weixiong Zhang, and Guoliang Chen. A
sat-based approach to cost-sensitive temporally expressive planning. ACM TIST, 5(1):18,
2013.

[83] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming Third Edition.
Springer, 2008.

[84] Inês Lynce and João P. Marques Silva. An overview of backtrack search satisfiability algo-
rithms. Annals of Mathematics and Artificial Intelligence, 37(3):307–326, 2003.

And
rea

s S
ide

ris

179

[85] Vasco M. Manquinho and João P. Marques Silva. Effective lower bounding techniques for
pseudo-boolean optimization. In DATE, pages 660–665, 2005.

[86] David G. Mitchell. A sat solver primer. Bulletin of the EATCS, 85:112–132, 2005.

[87] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient sat solver. In DAC-01, Proceedings of the 38th Design
Automation Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001. ACM 2001,
pages 530–535, 2001.

[88] Christos Papadimitriou. Computational Complexity. Addison Welsey Longman, 1994.

[89] J. Porteous and S. (2002) Cresswell. Extending landmarks analysis to reason about re-
sources and repetition. In Proceedings of the 21st Workshop of the UK Planning and
Scheduling Special Interest Group (PLANSIG ’02), pages 42–45, 2002.

[90] Julie Porteous, Laura Sebastia, and Jorg Hoffmann. On the extraction, ordering, and usage
of landmarks in planning. 6th European Conference on Planning, 2001.

[91] Jean-Francois Puget. A fast algorithm for the bound consistency of alldiff constraints.
In Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth
Innovative Applications of Artificial Intelligence Conference, AAAI 98, IAAI 98, July 26-
30, 1998, Madison, Wisconsin, USA., pages 359–366, 1998.

[92] Masood Feyzbakhsh Rankooh and Gholamreza Ghassem-Sani. New encoding methods for
sat-based temporal planning. In Proceedings of the Twenty-Third International Conference
on Automated Planning and Scheduling, ICAPS 2013, Rome, Italy, June 10-14, 2013, 2013.

[93] Masood Feyzbakhsh Rankooh, Ali Mahjoob, and Gholamreza Ghassem-Sani. Using satis-
fiability for non-optimal temporal planning. In Logics in Artificial Intelligence - 13th Eu-
ropean Conference, JELIA 2012, Toulouse, France, September 26-28, 2012. Proceedings,
pages 176–188, 2012.

[94] Silvia Richter. Landmark-based heuristics and search control for automated planning (ex-
tended abstract). In Francesca Rossi, editor, IJCAI. IJCAI/AAAI, 2013.

[95] Silvia Richter, Malte Helmert, and Matthias Westphal. Landmarks revisited. In Dieter Fox
and Carla P. Gomes, editors, AAAI, pages 975–982. AAAI Press, 2008.

[96] Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-based anytime
planning with landmarks. J. Artif. Intell. Res. (JAIR), 39:127–177, 2010.

[97] Jussi Rintanen. Evaluation strategies for planning as satisfiability. In de Mántaras and
Saitta [33], pages 682–687.

[98] Jussi Rintanen. Compact representation of sets of binary constraints. In ECAI 2006, 17th
European Conference on Artificial Intelligence, August 29 - September 1, 2006, Riva del
Garda, Italy, Including Prestigious Applications of Intelligent Systems (PAIS 2006), Pro-
ceedings, pages 143–147, 2006.

[99] Jussi Rintanen. Planning graphs and propositional clause-learning. In KR, pages 535–543,
2008.

And
rea

s S
ide

ris

180

[100] Jussi Rintanen. Regression for classical and nondeterministic planning. In Malik Ghallab,
Constantine D. Spyropoulos, Nikos Fakotakis, and Nikolaos M. Avouris, editors, ECAI,
volume 178 of Frontiers in Artificial Intelligence and Applications, pages 568–572. IOS
Press, 2008.

[101] Jussi Rintanen. Heuristics for planning with sat. In David Cohen, editor, CP, volume 6308
of Lecture Notes in Computer Science, pages 414–428. Springer, 2010.

[102] Jussi Rintanen. Planning as satisfiability: Heuristics. Artif. Intell., 193:45–86, 2012.

[103] Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. Planning as satisfiability: parallel plans
and algorithms for plan search. Artif. Intell., 170(12-13):1031–1080, 2006.

[104] Nathan Robinson. Advancing planning-as-satisfiability. Ph.D. thesis, Griffith University,
Queensland Australia, 2012.

[105] Nathan Robinson, Charles Gretton, Duc Nghia Pham, and Abdul Sattar. A compact and
efficient SAT encoding for planning. In Proceedings of the Eighteenth International Con-
ference on Automated Planning and Scheduling, ICAPS 2008, Sydney, Australia, September
14-18, 2008, pages 296–303, 2008.

[106] Nathan Robinson, Charles Gretton, Duc Nghia Pham, and Abdul Sattar. SAT-based parallel
planning using a split representation of actions. In ICAPS, 2009.

[107] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of Constraint Programming.
ELSEVIER, 2006.

[108] Stuart Russel and Peter Norvig. Artificial Intelligence. A Modern Approach. Prentice Hall
Series in Artificial Intelligence, 1995.

[109] L. Ryan. Efficient algorithms for clause-learning sat solvers. In M.Sc. Thesis, Simon Fraser
University, 2003.

[110] Hossein M. Sheini and Karem A. Sakallah. Pueblo: A modern pseudo-boolean sat solver.
In DATE, pages 684–685, 2005.

[111] Andreas Sideris and Yannis Dimopoulos. Constraint propagation in propositional planning.
In ICAPS, pages 153–160, 2010.

[112] Andreas Sideris and Yannis Dimopoulos. Propositional planning as optimization. In ECAI,
pages 732–737, 2012.

[113] Andreas Sideris and Yannis Dimopoulos. Heuristic guided optimization for propositional
planning. In KR, pages 669–672, 2014.

[114] Helmut Simonis. Building industrial applications with constraint programming. In Con-
straints in Computational Logics: Theory and Applications, International Summer School,
CCL’99 Gif-sur-Yvette, France, September 5-8, 1999, Revised Lectures, pages 271–309,
1999.

[115] Carsten Sinz, Andreas Kaiser, and Wolfgang Küchlin. Detection of inconsistencies in com-
plex product configuration data using extended propositional sat-checking. In Proceedings
of the Fourteenth International Florida Artificial Intelligence Research Society Conference,
May 21-23, 2001, Key West, Florida, USA, pages 645–649, 2001.

And
rea

s S
ide

ris

181

[116] David E. Smith. Choosing objectives in over-subscription planning. In Zilberstein et al.
[130], pages 393–401.

[117] Richard S. Stansbury and Arvin Agah. A robot decision making framework using constraint
programming. Artif. Intell. Rev., 38(1):67–83, 2012.

[118] G. Tseitin. On the complexity of derivation in propositional calculus. Studies in Constr.
Math. and Math. Logic, 1968.

[119] A. van Gelder and Y. Tsuji. Satisfiability testing with more reasoning and less guessing. In
Cliques, Coloring and Satisfiability, pages 559–586, 1996.

[120] Vincent Vidal and Hector Geffner. Solving simple planning problems with more inference
and no search. In CP-05, International Conference onPrinciples and Practice of Constraint
Programming, October 1 - 5, 2005, Sitges, Barcelona, Spain, pages 682–696, 2005.

[121] Vincent Vidal and Hector Geffner. Branching and pruning: An optimal temporal pocl
planner based on constraint programming. Artificial Intelligence, 170(3):298–335, 2006.

[122] Mark Wallace. Practical applications of constraint programming. Constraints, 1(1/2):139–
168, 1996.

[123] Toby Walsh. Sat v csp. In CP, pages 441–456, 2000.

[124] Laurence A. Wolsey. Integer Programming. Wiley-Interscience Series in Discrete Mathe-
matics and Optimization, 1998.

[125] Laurence A. Wolsey and George L. Nemhauser. Integer and Combinatorial Optimization.
Wiley-Interscience Series in Discrete Mathematics and Optimization, 1999.

[126] H Zhang. Specifying latin squares in propositional logic. MIT Press, 1997.

[127] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik. Efficient
conflict driven learning in boolean satisfiability solver. In ICCAD, pages 279–285, 2001.

[128] Yixin Chen Zhao Xing and Weixiong Zhang. Maxplan: Optimal planning by decomposed
satisfiability and backward reduction. In ICAPS-06, Workshop on Constraint Satisfaction
Techniques for Planning and Scheduling Problems, June 6-10, 2006, Cumbria, UK, pages
53–56, 2006.

[129] Lin Zhu and Robert Givan. Landmark extraction via planning graph propagation. In IN
ICAPS DOCTORAL CONSORTIUM, 2003.

[130] Shlomo Zilberstein, Jana Koehler, and Sven Koenig, editors. Proceedings of the Fourteenth
International Conference on Automated Planning and Scheduling (ICAPS 2004), June 3-7
2004, Whistler, British Columbia, Canada. AAAI, 2004.
And

rea
s S

ide
ris

