
DEPARTMENT OF COMPUTER SCIENCE

CONTEXT-AWARE RECOMMENDATION-BASED EDUCATIONAL TOOL FOR

ENHANCING THE HIGH LEVEL SOFTWARE MODELLING PROCESS WITH

DESIGN PATTERNS

GEORGE A. SIELIS

A DISSERTATION

SUBMITTED TO THE UNIVERSITY OF CYPRUS

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

NOVEMBER, 2016

GEORGE A. S
IELIS

c© GEORGE A. SIELIS, 2016

ii

GEORGE A. S
IELIS

VALIDATION PAGE

Doctoral Candidate: George A. Sielis

Doctoral Thesis Title: Context-aware Recommendation-based Educational Tool for enhanc-

ing the High Level Software Modelling Process with Design Patterns

The present Doctoral Dissertation was submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy at the Department of Computer Science and was approved on

the 17th of November, 2016 by the members of the Examination Committee.

Examination Committee:

Research Supervisor

Dr. George A. Papadopoulos, Professor, University of Cyprus

Research Co-supervisor

Dr. Aimilia Tzanavari, Associate Professor, University of Nicosia

Committee Member
(Chairman)

Dr. George Pallis, Assistant Professor, University of Cyprus

Committee Member

Dr. George Samaras, Professor, University of Cyprus

Committee Member

Dr. Paris Avgeriou, Professor, University of Groningen

Committee Member

Dr. Spiridon Likothanassis, Professor, University of Patras

iii

GEORGE A. S
IELIS

DECLARATION OF DOCTORAL CANDIDATE

The present doctoral dissertation was submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy of the University of Cyprus. It is a product of original work of

my own, unless otherwise mentioned through references, notes, or any other statements.

George A. Sielis

iv

GEORGE A. S
IELIS

CONTEXT-AWARE RECOMMENDATION-BASED EDUCATIONAL TOOL FOR

ENHANCING THE HIGH LEVEL SOFTWARE MODELLING PROCESS WITH

DESIGN PATTERNS

GEORGE A. SIELIS

University of Cyprus, 2016

ABSTRACT (IN GREEK)

Η παρούσα Διατριβή ασχολείται με την διερεύνηση της χρήσης Αλγορίθμων Υπολογι-

σμού Συστάσεων, και συγκεκριμένα τη χρήση των συστημάτων δημιουργίας και προβολής

συστάσεων που λαμβάνουν υπόψιν τις παραμέτρους περιεχομένου (Context Aware Recommen-

dation Systems). Η διερεύνηση των συστημάτων αυτών διευρίνεται στην εξέταση της χρήσης

Συστημάτων Υπολογισμού Συστάσεων σε Εργαλεία Δημιουργικής Ανάπτυξης και στο κατα

πόσο επηρεάζουν την Δημιουργική διαδικασία. Μέσα από την εξέταση των πιο πρόσφατων

ερευνητικών αποτελεσμάτων στις ερευνητικές περιοχές της Αναγνώρησης Περιεχομένου, Ερ-

γαλείων Δημιουργικής Ανάπτυξης και των Συστημάτων Υπολογισμού Συστάσεων, το πρώτο

μέρος της Διατριβής, προσδοκεί να εντοπίσει και να περιγράψει την σχέση των πιο πάνω συ-

στημάτων και μεθόδων με διαδικασίες που εφαρμόζονται στην Τεχνολογία Λογισμικού και

συγκεκριμένα τον σχεδιασμό Υψηλού Επιπέδου Μοντέλων Λογισμικού. Με την εφαρμογή

των ευρημάτων αυτών στη διδασκαλία της Τεχνολογιας Λογισμικού, θα διαφανεί η σημαντι-

κότητα στη χρήση των Συστημάτων Συστάσεων και θα αποτελέσει σημαντικό εργαλείο για

νέους Μηχανικούς Λογισμικού.

v

GEORGE A. S
IELIS

Το δεύτερο μέρος της Διατριβής επικεντρώνεται στο σχεδιασμό, την ανάπτυξη και την

αξιολόγηση του πρωτότυπου λογισμικού που αναπτύχθηκε στα πλαίσια της Διατριβής αυτής

και ονομάζεται ArchReco.΄Ενα εκπαιδευτικό εργαλείο που χρησιμοποιεί Συστάσεις παραγόμε-

νες από παραμέτρους Περιεχομένου και συστήνει Σχεδιαστικά Πρότυπα για την υποστήριξη

των χρηστών (φοιτητές ή επαγγελματίες Μηχανικούς) που θέλουν να βελτιώσουν τις σχεδια-

στικές τους ικανότητες, και βοηθά να μάθουν τα υπάρχοντα Σχεδιαστικά Πρότυπα που εφαρ-

μόζονται στην Τεχνολογία Λογισμικού. Το πρωτότυπο λογισμικό χρησιμοποιεί τεχνολογίες

Σημασιολογικής ανάλυσης και αναπαράστασης καθώς και ανάλυση με βάση το περιεχόμενο για

την παροχή «μη εξατομικευμένων» συστάσεων Σχεδιαστικών Προτύπων. Το λογισμικό προ-

σβλέπει στην εύκολη πρόσβαση, και συνεπώς στην εκμάθηση των Σχεδιαστικών Προτύπων

συνδυάζοντας την θεωρητική και πρακτική εφαρμογή των προτύπων σε διαγράμματα σχεδία-

σης. Παράλληλα, θέτει τις βάσεις για περαιτέρω ανάλυση και εφαρμογή πρόσθετων τύπων

συστάσεων όπως οι συστάσεις για σύνθεση ομάδας ή οργάνωση εργασιών στον τομέα της

Τεχνολογίας Λογισμικού. Η Διατριβή κλείνει με την αξιολόγηση του πρωτότυπου λογισμικού

και την ανάλυση των αποτελεσμάτων, υπό το πρίσμα των ερευνητικών ερωτημάτων που έχουν

τεθεί. Παρουσιάζει τα συμπεράσματα που προκύπτουν από την έρευνα αυτή, καθώς και τις

προοπτικές της σε σχέση με άλλες ερευνητικές περιοχές.

vi

GEORGE A. S
IELIS

ABSTRACT

The research described in this dissertation deals with the investigation of Recommendation

Algorithms and in particular Context Aware Recommender Systems, in Creativity Support Tools

and their influence on the creativity process. Through the analysis of the state of the art in Con-

text Awareness, Creativity-Support Tools and Recommendation Systems, the first part of the dis-

sertation aims to identify and describe the close connection to these with Software Engineering

processes and more specifically the design of High Level Software Models. Applying the findings

in the area of Software Engineering Education through the usage of Context-Aware Recommen-

dations to support an Educational and Training tool for learning Design Patterns in High Level

Software Models, proves the importance of such Recommendations in processes like these and

potentially constitutes added value to modelling tools that target new Software Engineers.

The second part of the dissertation focuses on the design, development and evaluation of a

software Prototype, named ArchReco, an educational tool that employs Context-aware Recom-

mendations of Design Patterns, to support users (CS students or professionals) who want to im-

prove their design skills when it comes to training on High Level Software models. The tool’s

underlying algorithms take advantage of Semantic Web technologies, and the usage of content-

based analysis for the computation of non-personalized recommendations for Design Patterns.

The recommendations’ objective is to support users in functions such as find the most suitable

Design Pattern to use according to the working context, as well as learn the objectives and usage

of each Design Pattern. Moreover, it sets the basis for further analysis and implementation of

additional types of Context Aware Recommendations, related to other fields of research, such as

group composition or task scheduling in Software Engineering. The dissertation concludes with

vii

GEORGE A. S
IELIS

the ArchReco prototype evaluation, and the results’ analysis with respect to the defined research

objectives. Moreover, it elaborates the conclusions of this research work and discusses the future

research challenges.

viii

GEORGE A. S
IELIS

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor George A. Papadopoulos who provided his guid-

ance and support throughout the progress of my dissertation.

I want to thank my co-advisor, Dr. Aimilia Tzanavari who supported and guided me from the

beginning throughout the end of this dissertation. With her help, guidance and encouragement,

Aimilia provided me with the tools to complete my dissertation.

I am grateful to my parents, Andreas and Xenia, and my sister Demetra for being always on

my side, and always believe in me. Their love and support was always a strong motivation for me

to complete my dissertation.

My friends who directly or indirectly helped to the completion of this thesis: Nearchos, Chris-

tos, Andrea and Nandia, who read the dissertation and provided feedback, comments, corrections

and suggestions for the improvement of my thesis. My closest friends Antonis, Demetris, Marios,

Makis, George, Yiannos, and Christos for their persistent support.

Finally, I want to thank my loving wife Polymnia for her continuous and tireless support, her

endless faith and undoubted believe in me. My wonderful daughters Eva, Andrea and Danae who

are lightening my life.

ix

GEORGE A. S
IELIS

Dedicated to my loving wife Polymnia, my children Eva, Andrea and Danae

and also to

Constantinos Paraskevas and Socratis Kanaris.

x

GEORGE A. S
IELIS

TABLE OF CONTENTS

Chapter 1: Introduction 1

1.1 Motivation . 3

1.2 Thesis Statement . 5

1.3 Approach . 5

1.3.1 Research Goals . 6

1.4 Definitions . 7

1.5 Declaration and Credits . 9

1.5.1 Additional publications relevant to the thesis 9

1.6 Structure of the Thesis . 10

Chapter 2: Related Work 12

2.1 Introduction . 12

2.2 Context Awareness and Creativity . 12

2.3 Context Aware Recommendation Systems . 14

2.4 Design Patterns in Software Engineering . 16

2.5 Beyont the current State-of-the-Art . 20

Chapter 3: Context Awareness 22

3.1 Introduction . 22

3.2 An overview in Context Awareness . 24

3.3 Context Representation . 26

3.3.1 Types of Human Knowledge . 28

3.3.2 Knowledge Representation languages and models 29

xi

GEORGE A. S
IELIS

3.4 Context Frameworks . 37

3.5 Functional Architecture for Context Awareness Systems 40

3.6 Context Reasoning Techniques . 43

3.6.1 Non-Symbolic Context Reasoning Techniques 43

3.6.2 Symbolic Context Reasoning Techniques 44

3.6.3 Hybrid Context Reasoning Techniques 48

3.7 Existing Context Reasoning Technologies . 49

3.7.1 Context abstraction using rule-based reasoning engines 49

3.7.2 Ontology-based inference engines . 51

3.7.3 Topic Maps Technologies . 53

3.8 Context Storage and Retrieval . 54

3.9 Examples of Context Awareness Applications 55

3.10 Conclusions . 58

Chapter 4: Recommender Systems Review: Types, Techniques and Applications 60

4.1 Introduction . 60

4.2 Recommendation Systems . 62

4.3 Recommendation Filtering Techniques/Algorithms 62

4.3.1 Types of Recommendation Systems . 62

4.3.2 Functional Architecture of Recommender Systems 63

4.3.3 Recommendation filtering techniques 65

4.3.4 Similarity Distance . 69

4.4 Categories of Recommendation Systems . 71

4.4.1 Content-Based Recommendations . 71

xii

GEORGE A. S
IELIS

4.4.2 Collaborative Recommendations . 73

4.4.3 Knowledge-based recommendations . 78

4.4.4 Trust-based Recommendations . 81

4.4.5 Context-Aware Recommendation Systems 83

4.5 Popular Recommendation Systems . 86

4.6 Recommendation Frameworks-Engines . 88

4.7 Evaluation for Recommendation Systems . 91

4.7.1 Evaluation Metrics for Recommendation Systems 92

4.8 Conclusions . 97

Chapter 5: Creativity and Creativity Support Tools 99

5.1 Introduction . 99

5.2 Creativity Models . 100

5.3 Types of creativity . 102

5.3.1 Computational Creativity Research . 105

5.4 Creativity Techniques . 107

5.5 Creativity Support Tools . 108

5.6 Contextual Elements for Creativity . 111

5.6.1 Description of Contextual Elements . 111

5.7 A Generic Context Aware Recommender System 115

5.7.1 System Architecture . 116

5.7.2 Reasoning Method . 117

5.8 Conclusions . 121

Chapter 6: Framing the problem - A Survey in Software Design Process and Tools 122

xiii

GEORGE A. S
IELIS

6.1 Introduction . 122

6.2 Software Engineering Design Tools - Overview 123

6.3 Survey Design and Analysis . 128

6.3.1 Survey Design . 129

6.3.2 Software Architecture Design Experience 130

6.3.3 Project Management . 131

6.3.4 Further Analysis . 133

6.4 Discussion . 136

Chapter 7: Design Patterns Ontology Model - Design, Analysis, Implementation 138

7.1 Introduction . 138

7.2 Modeling Software Design Model as Creativity process 139

7.2.1 The Software Design Model . 140

7.3 Design Patterns Ontology Model . 145

7.3.1 Categorization of Design Patterns . 147

7.4 Implementation of the model - Used Semantic Web Tools 148

7.4.1 Implementation of the Semantic Interoperability library 151

7.5 Semantic web Data Mapping . 152

7.6 Conclusions . 157

Chapter 8: Design and development of the Design Patterns Context Aware Recom-

mendation System 159

8.1 Introduction . 159

8.2 Context Aware Recommendations . 160

8.2.1 Comparison with the Generic Recommendation System (Chapter 5) 160

xiv

GEORGE A. S
IELIS

8.2.2 Requirements definition . 162

8.2.3 Contextual Elements Used the Software Engineering Training prototype . 163

8.3 Recommendation Methods . 164

8.3.1 Text-Based Recommendations for Design Patterns 165

8.3.2 Utility Based Recommendation for Design Patterns 165

8.4 Architecture of the Context Aware Recommendation System 166

8.4.1 Collection of Data . 167

8.4.2 Filtering the Data . 168

8.4.3 Ranking and presentation of the Data 169

8.5 Conclusions . 170

Chapter 9: ArchReco Software Prototype 171

9.1 Introduction . 171

9.2 Requirements definition . 172

9.3 ArchReco prototype . 172

9.3.1 ArchReco usage . 173

9.3.2 ArchReco Prototype as a Design Patterns Training Tool 174

9.4 Prototype Implementation . 176

9.4.1 System Architecture . 179

9.5 ArchReco prototype description . 181

9.5.1 Canvas . 181

9.5.2 Left Panel/Module . 182

9.5.3 Right panel/module . 186

9.5.4 Bottom Panel . 188

xv

GEORGE A. S
IELIS

Chapter 10: Evaluation 189

10.1 Introduction . 189

10.2 Evaluation Frameworks . 190

10.2.1 Evaluation Methodology . 191

10.3 Evaluation setup . 192

10.3.1 Pre-test questionnaire . 193

10.3.2 Post-task questionnaire . 196

10.3.3 Post-test questionnaire . 199

10.3.4 Screen Capturing Videos - Results . 204

10.3.5 Evaluation of the Context Aware Recommendation Algorithms 206

10.4 Conclusions . 207

10.4.1 Results summary . 208

Chapter 11: Discussion - Future Research Challenges 211

11.1 Summary of contributions . 211

11.2 Future work . 215

11.3 Research Challenges . 217

11.3.1 Algorithmic . 217

11.3.2 Applications . 218

Bibliography 220

APPENDICES 245

Appendix A: Survey Questions 246

A.1 Demographic Data . 246

xvi

GEORGE A. S
IELIS

A.2 Project Management . 246

A.3 Software Design . 247

A.4 Creation of new Ideas . 248

Appendix B: Semantic Web Code-Samples 249

B.1 Sample of Dynamic Model Creation using data from MySQL DB 249

B.2 Sample of Dynamic Model Creation using data from XML file 250

B.3 SPARQL examples . 251

Appendix C: Ontology Models - Visualizations 256

C.1 Creativity Ontology Visualised Model using Protege 256

C.2 Creativity merged with SE entities Ontology Visualised Model using Protege . . . 256

C.3 Class Hierarchy of the merged ontology model 256

C.4 Completed ontology model with data properties and relations included 256

Appendix D: ArchReco Evaluation Questionnaire 261

D.1 Demographic Data . 261

D.2 Pre-test questionnaire . 262

D.3 Post-task questionnaire . 262

D.4 Post-test questionnaire . 262

xvii

GEORGE A. S
IELIS

LIST OF TABLES

1 Strengths and Weaknesses of Collaborative Filtering techniques categories 77

2 Strengths and Weaknesses of the Different Types of Recommendation Systems . . 98

3 Set of factors for each recommendation type . 119

4 Software Engineering Design Tools Attributes 125

5 Pearson’ s correlations between questions -Subset table 135

6 Software Design phases as Creativity processes 141

7 Semantic Analysis of the Creativity-Software Design model (triples) 143

8 Profile of participants (N=28) . 194

9 Pre-Test responses for the participants’ experience 195

10 Post-Task questions . 197

11 Pre-Test and Post-Task means comparison based on profession 198

12 Post-Test questions for Usefulness . 200

13 Usefulness means comparison for Students and Professionals 201

14 Post-Test questions for Functionality . 202

15 Post-Test questions for Design Patterns Training & Educational character of the

Recommender system . 203

xviii

GEORGE A. S
IELIS

LIST OF FIGURES

1 Research Roadmap . 7

2 Object Oriented Model Example . 35

3 Reasoning Engine Functional Stages . 41

4 Context Reasoning Engine-Functional Architecture 42

5 Functional Recommendation Systems Architecture 64

6 Creativity Contextual Model . 114

7 Context Aware Recommender System Architecture 116

8 Sample of the intgrated model between Creativity and Software Design 143

9 Design Patterns Ontology Model Based on the GoF templating 146

10 Semantic Web Usage . 156

11 Context Aware Recommendation System Component Architecture 167

12 ArchReco Diagram Sample . 177

13 ArchReco Prototype . 177

14 ArchReco System Architecture . 179

15 ArchReco Components Communication . 180

16 ArchReco interface divided in areas . 181

17 ArchReco Left Side Panel/Module . 183

18 ArchReco Left Side Panel/Module - Shapes Palette 185

19 ArchReco Right Side Panel/Module . 187

20 ArchReco bottom Panel/Module (Text - Based Recommendation Algorithm) . . . 188

21 ArchReco bottom Panel/Module (Utility - Based Recommendation Algorithm) . . 188

22 Creativity Ontology Model Created in Protege Ontology Editing tool 257

xix

GEORGE A. S
IELIS

23 Creativity merged with SE entities Ontology Model Created in Protege Ontology

Editing tool . 258

24 Class Hierarchy of the merged ontology model in Protege Ontology Editing tool . 259

25 Completed ontology model with data properties and relations visualized in Protege

Ontology Editing tool . 260

xx

GEORGE A. S
IELIS

Chapter 1

Introduction

A creativity outcome is a sequence of thoughts and actions that lead to a novel adaptive pro-

duction [97]. Plucker and Beghetto [131] define creativity as the interplay between ability and

process by which an individual or a group produces an outcome or product that is both novel and

useful as defined within some social context. Having assumed that creativity is an attribute that

we all have, we reach the conclusion that it is necessary to find ways and means to assist in out-

sourcing this property. Creativity is a characteristic that can be cultivated, while being different

for people in terms of the level of its development. Cultivating and expressing the creative ability

can be achieved through help and guidance. One approach to achieve this is through the use of

Creativity Support Tools (CSTs). Creativity Support Tools are software systems that can emulate

a realistic creative process by offering users the ability to record thoughts and ideas with the use

of ICT means. The utilization of the existing CSTs is bounded to the replacement of the conven-

tional means of collecting ideas, such as the paper or the whiteboard, with corresponding virtual

environments, but they also offer the users the possibility to collaborate with other people from a

distance.

1

GEORGE A. S
IELIS

High Level Software Design is by definition a creative process. Software Engineering pro-

cesses combine a set of competencies, knowledge background and creativity. Design and devel-

opment of software tools is not always a straightforward procedure; especially during the last few

decades when the Software Engineering processes and methodologies are rapidly changing. Fast

internet and easy access to data retrieval forces Software Engineers to be up-to-date and well in-

formed for new technological achievements, otherwise it is hard for them to be productive and,

most importantly, innovative. This becomes more difficult for inexperienced Engineers who have

recently acquired the degree in question. A common practice that new Engineers use is the web

searching for finding new Software Engineering practices and methodologies. In most cases, this

becomes time-consuming and confusing for them because of the plethora of information that ex-

ists, the uncertainty for the correctness, the lack of centralization and the unstructured form of the

information in the web. This is what Recommendation Systems and in particular Context Aware

Recommendation Systems are trying to solve.

This research aims to reinforce the importance of Creativity Support Tools (CSTs) and, more

specifically, Software Engineering related CSTs with the addition of more advanced functionality.

Generally, CSTs are the basis for strengthening the creative capacity and they can also be used for

the cultivation of the creative ability. At this stage, these tools lack the mechanisms that can create

the necessary stimulus to the user, which would make the user more productive in the process

of creativity [157]. Such mechanisms are the Recommendation Systems for the support of the

creativity process such as the recommendations of people to collaborate with, related problems

or solutions, related ideas or related resources such as articles, images or videos. Recommen-

dation systems are systems that belong to the information filtering systems family. In general,

Recommendation systems seek to predict the rating or the preference that a user would give to an

2

GEORGE A. S
IELIS

item. The addition of “Context” as additional factor to be taken into account can become a useful

enhancement for such systems.

1.1 Motivation

The motivation for this work is driven from the notion that Creativity and Innovation are

keys to success for any business, or individuals who are able to learn and create innovative solu-

tions. The rapid technological changes that can be seen during the last few years, as well as the

new methodologies that are used in Software Engineering, make the continuous learning of these

methodologies difficult, especially for new inexperienced Software Engineers.

The complexity of the Software Design process, in most cases is related to the incomplete

requirements specifications or the lack of knowledge in specific design and programming method-

ologies, such as Design Patterns. In general, software designers can be classified into beginners,

with little experience all the way through to the very experienced. This research work derives

from the need of new Software Engineers and more specifically Computer Science or Engineering

students, to be assisted in overcoming the feeling of uncertainty when designing software models

using Design Patterns. Based on [113], “a design pattern is a description of a recurring problem

in an environment that includes a description of the solution to that problem, in such a way that

the solution can be used many times over, without ever doing it the same way twice”. Therefore, it

is believed that supporting Software Engineering students in learning the Design Patterns within

a Creativity Supported environment can significantly enhance the Software Engineering design

process.

Existing Software Design tools are lacking aiding mechanisms for the support of new de-

signers in finding and applying Design Patterns to High Level Software models based on input

3

GEORGE A. S
IELIS

requirements written in physical language and taking into account the relevant context of a work-

ing problem. In the existing literature there are reported attempts to produce recommendations

for Design Patterns such as [70],[65],[190] but none of the examined articles took the context into

account, nor had they produced a complete prototype solution for specific target groups such as

CS or SE students.

Shneiderman et al [153] identify the requirements that software tools must support for the en-

hancement of the creative process. Based on this study, software development and in particular

development of user interfaces must pay attention to users’ facilitation so that these can be produc-

tive and also more innovative. The enhancement of creative process can be achieved by offering

users more effective searching of intellectual resources, improved collaboration among teams and

more rapid discovery processes between the proposed requirements like the simplicity on design.

Based on [117], the first is that creativity support tools must be “self-revealing” so what can be

done is clear to users; the second is the need to enable users not only to compose artefacts, but to

also think of what to compose as artefacts.

Based on the abovementioned statements, this thesis argues that Software Engineering Stu-

dents can become more creative by using a creative environment, which can support them in

learning and, at the same time, applying the Design Patterns. Due to the large amount of existing

Design Patterns, the use of Recommendation mechanisms that can reveal and retrieve Design Pat-

terns from more than one data source, for a given problem is higly important. This work examines

the usage of Context Aware Recommendations with the usage of Semantic Web technologies for

the development of a software prototype tool, which will follow the creativity principles in order to

support the learning and training of Design Patterns and High Level Software Design to Software

Designers.

4

GEORGE A. S
IELIS

1.2 Thesis Statement

This thesis contends that the existing Software Engineering Modeling tools do not support the

training of Software Engineering or Computer Science students in learning the Design Patterns.

They also lack creativity aiding mechanisms which would support users in learning and practicing

the Design Patterns by taking the context of a given problem or a given requirement into account.

The main contribution of this thesis is twofold: First, the definition of the necessary contextual

models that can be used for the development of the Context Aware Recommendation system taking

into consideration the Creativity and Software Engineering principles. Second, the development of

a software prototype tool which will apply the developed Context Aware Recommendation system

for assisting the students in learning and at the same time practicing the High Level Software

design with the use of Design Patterns.

1.3 Approach

The work presented in this thesis has both theoretical and practical aspects. The theoretical as-

pect consists of the comprehensive examination of the topics that constitute the research statement

which are the Context Awareness, Recommendation Systems and Creativity. The practical aspect

consists of the development of the design and implementation of the Creativity Conceptual model,

the Software Engineering conceptual model, their usage for the development of a Context Aware

Recommendation Algorithm and finally the development of the software prototype that will apply

the designed Recommendation System for Design Patterns for learning and practicing the High

Level Software Design.

In particular, the research goals and the methods that will be used are listed in the rest of this

section.

5

GEORGE A. S
IELIS

1.3.1 Research Goals

Based on the thesis statement that was set, the following research goals and objectives have

been determined:

• Define the contextual elements of the creativity process and use the defined elements for the

design of the Creativity conceptual model

• Confirmation of the Software Engineering needs regarding the Creativity and the Context

Aware recommendations as aiding mechanisms from Software Engineering professionals

• Define the conceptual model for Software Engineering processes as an extension of the

Creativity conceptual model

• Design and implement the Context Aware Recommendation engine

• Develop the Software Design training prototype with the support of Context Aware Recom-

mendations of Design patterns

• Design the evaluation plan that will examine the results concerning:

– The usability of the prototype

– The usefulness of the prototype

– The educational character of the prototype

– The accuracy and validity of the Context Aware Recommendation System

– User satisfaction and experience by using the existing recommendation algorithms and

the proposed recommendation algorithm.

– Impact of the prototype and the supported recommendations in regards to the user’s

creativity

6

GEORGE A. S
IELIS

Figure 1: Research Roadmap

In Figure 1 we depict the road-map followed for the completion of this thesis.

1.4 Definitions

In this section some of the most used terms that are used in this thesis are defined:

7

GEORGE A. S
IELIS

• High Level Software Design - Briand et al. [25] define High Level Software Design as

“a collection of module and subroutine interfaces related to each other by means of USES

and IS COMPONENT OF relationships. Precise and formalized information on module or

subroutine bodies is not yet available at the stage of High Level Design”.

• Context - Dey et. al [46], define context as “any information that can be used to charac-

terize the situation of an entity. An entity is any information that is considered relevant

to the interaction between a user and an application including the user and applications

themselves”

• Creativity - A creativity outcome is a sequence of thoughts and actions that lead to a novel

adaptive production [97]. Plucker [131] define creativity as the interplay between ability

and process by which an individual or a group produces an outcome or product that is both

novel and useful as defined within some social context.

• Creativity Support Tools - Tools that are considered as means for the enhancement of cre-

ativity beyond the classic creativity producing methods. Creativity Support Tools are soft-

ware tools that can provide guidance and facilitate the creativity process for users, by mon-

itoring the process and the produced results [144].

• Recommendation Systems - Recommender or Recommendation Systems (RS) are software

tools in applications or websites that suggest information (e.g. items, people, news articles)

that might be of interest to the end user, taking into account various types of knowledge and

data, such as the user’s preferences, actions, tasks and contextual information.

8

GEORGE A. S
IELIS

• Recommendation system for software engineering (RSSE) - Is a software application that

provides information items estimated to be valuable for a software engineering task in a

given context [61].

• Design Patterns - Alexander [5] defines Design Patterns as a well-known and frequently

used software engineering problem-solving discipline, which has emerged from the object-

oriented community.

• Semantic web - The Semantic Web provides a common framework that allows data to be

shared and reused across application, enterprise, and community boundaries [191].

1.5 Declaration and Credits

The work presented in this thesis is, to the best of my belief, original and has been written by

the author, except as acknowledged below. Also, I declare that the material presented in this thesis

has not been previously submitted for a degree at this or any other university.

1.5.1 Additional publications relevant to the thesis

A large part of this thesis consists of work that was authored or co-authored by myself and

already published as well while some parts of this work are submitted and are reviewed for publi-

cation.

The work presented in chapter 3 was originally presented in [156] which was a joint work with

Morpheus (Netherlands), University of Hildescheim (Germany), University of Aalbourg (Den-

mark) and University of Piraeus (Greece). The part that is presented in this thesis are the result of

my personal work.

9

GEORGE A. S
IELIS

The work presented in chapter 5 contains input from the work presented in [157], while chapter

4 contains my personal work that was published in [160]. Part of the work presented in chapter

4 was authored by myself and co-authored by Christos Mettouris, Roger M. G. Dols and Quintin

Siebers [155]. The parts presented in the chapter are the results of my personal work.

The work referred to the survey in Software Engineering Design Processes and Tools is work

that was performed by myself and it is registered as a technical report [159]. The use of the cre-

ativity conceptual model and its extention by the Design Patterns model consist of personal work

that was presented in [161]. The prototype that was developed for the aims of this work consist of

personal work and it is presented in [158] while additional work regarding the Context Aware Rec-

ommendation for Design Patterns and the evaluation results from the user based evaluation related

to the developed prototype of this work are submitted in ACM SAC International conference, and

Journal for Software Engineering and Development respectively.

The papers I have authored or co-authored during the course of my doctoral dissertation were

supervised by my research advisors, George A. Papadopoulos and Aimilia Tzanavari.

1.6 Structure of the Thesis

The rest of this thesis is organized as follows.

Chapter 2 presents the work related to this thesis. This chapter presents the most relevant

research findings from the existing literature and concludes with the discussion of how this thesis

goes beyond the current state-of-the-art.

Chapter 3 presents the literature with respect to context awareness, the methods and the tools

for representing the context.

Chapter 4 presents the Recommendation Systems, the types of recommendation systems the

existing tools and their applications.

10

GEORGE A. S
IELIS

Chapter 5 surveys the literature in regards to the creativity models and the several creativity

models as they were defined through the years, and it also presents the examination of some of

the most known creativity support tools examining whether they support context aware recom-

mendations. Additionally, it presents the work that has been done for modeling the creativity and

presents the work that was done for the development of a generic Context Aware Recommendation

mechanism for creativity.

Chapter 6 presents the user based survey that was performed for the identification of the Soft-

ware Engineering needs in regards to recommendations support and the ease of process creativity

with the use of existing Software Modelling tools and processes.

Chapter 7 uses the creativity conceptual model that is presented in chapter 5 and the findings in

chapter 6 to extend the conceptual model of creativity by the addition of the Software Engineering

process concepts and define the model that will be used for the development of the Context Aware

Recommendation tool for the recommendation of Design Patterns.

Chapter 8 presents the Context Aware Recommendation for Design Patterns the post and pre

filtering techniques that were used in combination to the Semantic Web technologies.

Chapter 9 presents the ArchReco prototype as a complete solution including the Context

Aware recommendation tool from chapter 8.

Chapter 10 presents the ArchReco user based evaluation setup and execution and depicts the

evaluation results.

Finally, this thesis concludes with chapter 11. This chapter resumes results of this thesis, and

it lists a number of directions for future work.

11

GEORGE A. S
IELIS

Chapter 2

Related Work

2.1 Introduction

This chapter examines the work that is related to the research topics that the current thesis

deals with. The research presented in the current thesis involves three research topics, Context

Awareness, Recommendation Systems and Creativity, while the domain of application of the com-

bination of the three is Software Engineering. Therefore, the current chapter presents the related

work found in the existing literature related to combinations of the aforementioned topics.

2.2 Context Awareness and Creativity

Context awareness in Computer Science could be defined as the recognition of the user’s

environment parameters, which will subsequently act as impulse that activates the corresponding

function. Schilit et al. [144] attempted to define context by specifying three categories: computing

context, user context and physical context.

Chen et al. [33] extended this definition by adding the time context element. The definitions

given by [33] and [144] have a common limitation: they do not specifically state the boundaries for

12

GEORGE A. S
IELIS

considering information as context or not [74]. Context aware recommender systems concerned

researchers extensively. Adomavicius [3] identifies two approaches for the recommendation sys-

tems content-based and collaborative recommendations. Park [125] proposes a context aware

recommendation system which uses Bayesian networks and the Utility theory for the recommen-

dation of appropriate music with respect to the context. Elahi [53] presents a recommender system

which collects information from users’ web searches for the improvement of content on visited

pages. Very little work relating recommender systems to Creativity can be found in the literature,

but several resources about Creativity and the modelling of Creativity process can be found, such

as [168],[149],[8] and [152].

The second constructive part of this section is creativity which can be used in many disci-

plines. Many scientists have attempted to allocate meaning to the creative process and its potential

outcomes. Plucker [131] defines creativity as the interplay between ability and process by which

an individual or a group produces an outcome or product that is both novel and useful as defined

within some social context. Schneiderman et al. [153] support that creativity is the development of

a novel product that has some value to the individual and to a social group. Cougar [39] perceives

creativity at three levels: as a discovery method through the idea generation, as an invention

with the development of ideas, and as innovation with the transformation of ideas into services

[87]. Atman [8] and Schneiderman [152] conceptualize creativity as a sequence of steps with

variants. Simulating the creativity steps, along with applying creativity techniques, produces the

software tools known as Creativity Support Tools (CST). In [131] creativity process perceived as

a two stages process: “preparation” and “ideation”. This two-stage process highlights the steps of

creativity defined in [152] in a more concrete way. This grouping of the steps into two stages facil-

itates the specification of each step’s context attributes and therefore their grouping in “primary”

13

GEORGE A. S
IELIS

and “secondary” entities, following the transformation proposed by [169]. This transformation

has actual value for the design of context awareness ontology.

Tsatsou et al. [179] propose a hybrid recommendation system which combines ontological

knowledge with content-extracted linguistic information. In a more domain specific application,

[151] and [163] propose a recommender system in a learning platform which aims to the facili-

tation in finding resources and learning material. In the same way, an e-commerce recommender

system aims to stimulate the curiosity of the user to view products that belong in the area of his

interests. Research work presented by [176], presents seven advantages of the usage of recom-

mender systems. The usage of a recommender system for the enhancement of creative process

highlights two of the advantages identified by [176]: Effectiveness and efficiency. The work pre-

sented in [157] proved the lack of context awareness and particularly the absence of recommender

systems, from the most known creativity support tools. Regarding knowledge dissemination and

distribution at the workplace, many studies have shown that interpersonal help seeking is the most

important strategy people employ so as to acquire knowledge at their workplaces. Beham et al.

[17] presented the APOSDLE People Recommender Service, a service based on an underlying

domain model and on the APOSDLE User Model to support interpersonal help seeking at the

workplace. Similarly, Sie et al. [154] recommend knowledgeable persons for Creativity and net-

worked innovation based on user profiles, position in the organization, power relationships and

creativity. It is a utility-based recommendation approach.

2.3 Context Aware Recommendation Systems

Context Aware Recommendation systems are proven that they produce good quality recom-

mendations, especially due to the personalization they provide. Taking into account contextual

14

GEORGE A. S
IELIS

elements that are associated with the user model of a particular domain offers a high level of per-

sonalization. Abbas et al. [1] surveyed the usage of Context Aware Recommendation systems that

are using Computational Intelligence techniques such as Fuzzy sets, Artificial Neural Networks,

Evolutionary programming, Swarm Intelligence and Artificial Immune Systems.

The key in Context Aware Recommendation Systems is the identification of the information

that can be used as context, as well as to weigh how significant each contextual factor is for the

recommendations. The dramatic growth of Social networks created a new perspective in personal-

ized information as contextual information, since personalization does not only depend on a user’s

ratings but also on the similarities between the shared information within a network. The shared

information is usually related to actions, interests, social behaviors or knowledge background that

can be collected from the social network activities such as the “likes”, “share”, “join”, “follow”

etc. By using the collection of such information, the user interests are determined and an algo-

rithmic framework for retrieving semantic data based on user interests from multiple sources is

provided in [195]. The proposed framework retrieves the interests of a user from several social

networks that the user belongs to, and acts as a recommender system that recommends interests

based on what a user is doing at the time in the system. This way, user interests which may vary

in several social networks are integrated and ranked. Berkovski et al. [19] support that the use of

social network activities and the user interaction social networking can lead to more accurate per-

sonalized news feeds, but can also create similarity models that can personalize the users within

cooperative mobile environments that incorporate different contextual conditions and individual

user characteristics. Lane et al. [92] use the latter for the creation of similarity graphs extracted

from the users’ social networking activities in combination with the training data searching and

classification models between individuals, in order to produce personalized classification models.

15

GEORGE A. S
IELIS

2.4 Design Patterns in Software Engineering

In the last decades Software Engineering became a hot topic for research and the research

results taken from related works were directly applied by the industry. The rapid changes in tech-

nology and the way that Software Engineering principles and techniques are influenced by these

changes, the specification on which tools should be used or not, as well as a complete analysis

of Software Engineering life-cycle principles such as design, specification, verification, produc-

tion and management are presented in [63]. Similar research such as [26] and [150] examines

the Software Engineering methods techniques and applied tools for Software Engineering. One

major challenge that concerned Software Engineering researchers but also professional engineers,

was the usage of Design patterns in Software Design, especially the reverse engineering for the

recovery of design patterns. Examples of such techniques can be found in [69],[178],[98],[50].

The recovery of Design Patterns was mainly focused on the identification, with high accuracy,

and the usage of Design Patterns that were applied in existing software tools. Most importantly,

research in Software Engineering focused on the Software Engineering life-cycle models like in

[21], [115], [142] and [16]. The complexity of tasks that Software Engineering process, has led to

the need of assisting tools and aiding functionality in the Software Engineering tools. Robilalard

et.al in [137] give an overview on Recommender Systems for Software Engineering describing

what are they, what can they do, and how are they used in the process of Software Engineering.

Design Patterns is a well known and frequently used subject in Software Engineerinng re-

search. In the following paragraphs we elaborate how Design Patterns are used in the several

disciplines of the Software Engineering research.

16

GEORGE A. S
IELIS

Design Patterns in Software Architecture Design - In the literature one can find two types

of patterns related to Software Engineering, the Architectural Patterns and Design Patterns. De-

sign Patterns were introduced by Alexander [5] as Software Engineering problems that may occur

repeatedly, and they are associated with a solution that can be used to solve a problem every time

it occurs within a current context that the problem exists. Architectural patterns are similar but

with a wider scope. For example, more than one design patterns can be applied for specific Archi-

tectural patterns. Most of the publications related to Architectural Patterns focus in Architectural

Styles and Views. Design patterns in terms of Software Architecture Design are generally met in

papers related to the Architectural Decisions [198]. In a more general perspective, Architecture

design [55] presents design patterns as part of the 4 views, which the Architecture Knowledge

Management (AKM) is consisted. Zimmerman et al. [197] elaborates the combination of pat-

tern and decision-centric design in Software Architecture Design while [72] presents methods for

documenting decisions with patterns.

Appart from the fact that Design Patterns are part of Software Architecture Knowledge Man-

agement and considered a very important Architectural Decision point, this work is not focusing

on defining the context of a design pattern through the very complex Architectural Decision Mak-

ing process analysis, as this is presented in [198]. The context aware recommendation mechanisms

of the current work are following the assumption that the Architectural decisions already exist and

the Software Engineer is able to proceed to the High Level Modelling design and therefore be used

by the developers for coding the designed components.

Design Patterns Recovery - After the Design Patterns usage in Software Engineering ma-

tured enough several frameworks and software platforms were developed with the use of Design

Patterns. As mentioned in [134] the flexibility in software maintenance and re-usability motivated

several researchers to develop Design Patterns recovery techniques. Examples of such techniques

17

GEORGE A. S
IELIS

can be found in [69],[178],[98],[50]. The recovery of Design Patterns mainly aims to identify with

high accuracy the Design Patterns that were used in existing software tools. The current work aims

to achieve the opposite result, which is to recommend the most suitable patterns to use for a Soft-

ware tool. The recovery techniques, however, are useful for the current work especially for the

evaluation of the current work’s proposed tool. Scenarios from existing frameworks implemented

following specific Design Patterns can be used by the proposed prototype of this thesis, as a proof

for its accuracy and usefulness. In addition, Design Patterns recovery techniques can be used for

the creation of datasets of Design Patterns for which the lack of such datasets consists of a known

problem at the current stage of this work.

Design Patterns & Recommendation Systems - In the latest years, Design Patterns for Soft-

ware Architecture design are increasing in number with new patterns appearing to cover general

functionalities or more dedicated domains (e.g., mobile application design, or user interface de-

sign). Some previous research has focused on providing recommendations on the appropriate

usage of Design Patterns. Gueheneuc et.al [70] proposed a methodology of recommending design

patterns through the textual analysis of each pattern into the most important words and computing

the similarity distance between those words and the words of the query given by the user. Gomes

et al. [65] proposed a Case Based Reasoning (CBR) Recommendation system for the recommen-

dation of Design Patterns based on previous experiences using a Design Patterns Knowledge Base

and related taxonomies. A similar system developed by [190] that recommends patterns using

the Implicit Culture Framework (ICF). The recommendations are produced based on the users’

previous actions, based on conventional Information Retrieval and CBR methods. Palma et al. in

[124] propose a Design Patterns Recommendation (DPR) framework, which recommends patterns

based on predefined questions that the designers have to answer, and based on the given answer

the framework has a weighting mechanism for the selection of the appropriate pattern. The initial

18

GEORGE A. S
IELIS

identification of patterns that can be used through the DPR framework [124] are selected through

LUCENE indexing and Term Frequency - Inverse Document Frequency (TF-IDF) filtering of a

given query and the intent description of each pattern.

Formalization and Reasoning of Design Patterns - Formalization of Design Patterns refers

to the techniques and methodologies that were developed for the representation of Design patterns.

In that aspect, in the existing literature several approaches can be found. In particular, there

are research papers that refer to the ontological representation, graphical representation, UML

representations of Design Patterns or to Design Patterns Specification Languages that are used for

their representation. Bottoni et al. [24] present a visual and formal approach to the specification

of patterns, supporting pattern analysis and pattern-based model completion. The approach is

based on graphs, morphisms and operations from category theory and exploits triple graphs to

annotate model elements with pattern roles. Dong et al. [49] provide a method of formalizing

the representation of Design patterns with the use of extended UML language by adding UML

annotations aiming to represent the roles that an operation/attribute plays in addition to the roles a

class plays in a Design Pattern.

Software Engineering Educational and Training Tools - SimSE [118] is a computer-based

environment that facilitates the creation and simulation of realistic game-based software simula-

tion models. SimSE is used as an educational software environment providing the students with

a platform through which they can interact with many different aspects of the software process

in a practical manner. SimSE is a single-player game in which the user/player has the role of the

project manager who must manage a team of developers for the completion of tasks for a software

engineering project.

In Mancoridis et. al [103] work, a combination of two Software Engineering Educational

tools are presented: The Object Oriented Turing (OOT) and Star. The software tool presented in

19

GEORGE A. S
IELIS

this work is targeted for Unix Users and specifically learners who are designing software using

the Turing programming language. More specifically, it is a programming environment enhanced

by a set of tools tools for editing, high-speed compiling, linking, executing, and debugging OOT

programs, as well as browsing the Unix file system.

Another Game Based Educational tool for Software Engineering Training is presented in

[184]. In the work presented in [184], the importance of games in education is emphasized and the

education of the complex course of Software Engineering through a Game Development Frame-

work (GDF) is being targeted. The difference between the GDF and other game-based educational

tools is the fact that the framework is used to create games. This means that the students are learn-

ing the Software Engineering concepts through the game development by writing their own games

for particular requirements that they are given.

2.5 Beyont the current State-of-the-Art

Through the examination of articles which are most relevant to this thesis, it becomes obvious

that we can find related work to the partial topics that the current work is involved but we cannot

find any work that combines all topics together. For example, the combination of Creativity with

Context Aware recommendations in the topic of Software Engineering was not met in any of the

examined articles. Although there is no direct literature work on the thesis statement, the existing

literature has several research results regarding the individual research topics that the current thesis

deals with.

With the examined research work it is confirmed that there is no previous work that presents the

Contextual modelling of Creativity used for the production of Context Aware Recommendations,

nor a combination of the Creativity Contextual model in relation to Software Engineering. In the

existing literature, attempts for producing Recommendations of Design Patterns have been made

20

GEORGE A. S
IELIS

in the past [70], [65], [190], but they differ with this work as for the type of Recommendations,

since the context is taken into account; the range of the recommended Design Patterns, since

they are focusing on the GoF Design Patterns [59] only; and the lack of a complete solution with

specific purpose of use, that targets Software Engineering and Computer Science students.

The originality of the current thesis is met by: 1. the design and definition of the Creativity

Contextual model; 2. the design and definition of the Software Engineering contextual model as

an extension of the creativity process; 3. the design and implementation of the Context Aware

recommendations of Design Patterns; 4. the use of Semantic Web technologies for the retrieval

of Design Patterns from multiple data sources and filter them based on the context of a working

problem, and finally 5. design and development of a software solution that integrates the models

and the algorithms of this thesis, aiming to contribute to the Software Engineering education and

training topic.

In the next three chapters more comprehensive analysis for the three research areas, Context

Awareness, Creativity and Recommendation Systems are presented, where each individual topic

is analyzed regarding their supported tools, models and methodologies.

21

GEORGE A. S
IELIS

Chapter 3

Context Awareness

3.1 Introduction

The last few years, Context Awareness has been an active area of research. The importance of

context awareness focuses on the automated services that can be offered from computing systems

to users. In the literature, the word “context” is defined as the set of facts or circumstances sur-

rounding a situation or event. Research in context aware systems approached in several disciplines

and tested through the adjustment of its several research findings in several areas of application

such as learning, mobile computing and ubiquitous computing. It is at least intriguing to notice that

very few published articles relate context awareness with creativity. The design and implementa-

tion of context aware models usually aim to support and facilitate computing processes either by

using adaptation methods or by providing recommendations to the end user, based on contextual

parameters. In research areas such as e-learning, social networking and creativity the definition

of contextual parameters are usually related to behavioral, social or psychological theories. The

extensive use of e-learning systems and the evolution of the social network applications, during

the last years, led to the study and implementation of several context aware models for learning

and social networking that are currently used in such systems. Although context awareness was

22

GEORGE A. S
IELIS

studied extensively for learning and social networking, very little work is acknowledged regarding

the use of context awareness in creativity and more specifically the use of context awareness in

Creativity Support Tools. This verification became a motivation to us, for a further study of the

Context Awareness, Creativity and Creativity Support Tools topics, in order to track the open is-

sues and the challenges in combining the topics. In addition to that, this chapter examines whether

contextual elements for creativity could be defined and used for modelling the context of Cre-

ativity. The fulfillment of this task will lead to future studies, answering research questions and

hypothesis such as ”What is the impact of CA in collaborative creativity process”,”Is CA enhanc-

ing creativity?”, ”Can we create adaptive collaborative creativity support interfaces and what

contextual parameters do we have to take into account?”. Therefore, it is important to define how

Context Awareness and Creativity are perceived.

Context awareness in computer science could be defined as the recognition of the user’s en-

vironment parameters, which will subsequently become the impulse for the activation of the cor-

responding functioning. Schilit, et al. [144] attempted to define context by specifying three cat-

egories: computing context, user context and physical context. Chen et al. [33] extended this

definition by adding the time context element. The definitions given by [144] and [33] have a

common limitation: they do not specifically state the boundaries for considering information as

context or not [74]. A first solution to this problem was given in [46] by limiting the context to

all information that is relevant to the interaction between user and application: “Context is any

information that can be used to characterize the situation of an entity. An entity is a person,

place, or object that is considered relevant to the interaction between a user and an application

including the user and applications themselves”. The problem with this definition was that it

was not specific enough as to what can be considered as context, thus every application could

be in a sense described as context-aware. Therefore, the definition of context required an upper

23

GEORGE A. S
IELIS

and a lower bound to only include information that is strictly relevant and necessary to perform

context-awareness. This definition is given by [74]:

“Context characterizes the actual situation in which the application is used. The situ-
ation is determined by information which distinguishes the actual usage from others,
in particular characteristics of the user (user’s location task at hand, etc.) and in-
terfering physical or virtual objects (noise level, nearby resources etc.). Thereby, we
only refer to information as context that can actually be processed by an application
(relevant information), but that is not mandatory for its normal functionality (auxil-
iary information).”

This chapter aims to examine the area of context awareness in regards to the technologies,

the methods and the several frameworks that they were developed. More specifically, the rest of

this chapter refers to the examination of several context technologies, methods and techniques that

can be found in the literature, with the perspective of the selection of the most suitable ones for

their future application to the creativity context information management and creativity support

implementations.

3.2 An overview in Context Awareness

From the definition of context and the categorization of context given in the introduction it is

concluded that a context awareness application has two ways of using context. The first is with

the automatic adaptation of context according to the discovered context, and the second is the dy-

namic “on the fly” updating of context in the user’s profile for future use [32]. Most of the context

awareness applications are using the human computer interaction and the interaction of the envi-

ronmental conditions that the user is surrounded, to collect information and create or retrieve the

corresponding context. Through the years several context awareness applications have been de-

veloped and in general, the context awareness systems can be implemented in several ways. The

implementation approach depends on special requirements and conditions that characterize the

24

GEORGE A. S
IELIS

overall system on which the context aware system will be applied for. The use of context aware-

ness systems is located in their ability to adapt a computer system to both the surrounding physical

environment and the virtual environment of computing platforms and computing networks [189].

This is the approach of context awareness systems in Ubiquitous computing. One other approach

is the Autonomic Computing [88] approach which refers to self-management systems that require

only high-level human guidance, and they have the ability to manage and protect their own re-

sources. The last, and more related to the functional architecture approach, is the traditional one

which focuses on how, when and where humans and computers interact [109].

The notion of how, when and where humans and computers interact leads to the definition of

the contextual elements which constitute the basic elements for the design and implementation of

any kind of context aware application. The context elements are the necessary actions, events, or

signals that a context aware application needs to start functioning. For example, [45] separates

the context of learning in three kinds: Digital context, Device context and Learner Information

Context, but each context type can be correlated to different context elements in order to function

in a proper way.

The interaction between a context aware application and the physical environment must be

expressed by a bridging model that describes the real world entities and their interactions [73].

Usual input/output methods, such as the keyboard and the mouse, are considered as simple forms

of contextual elements. More complex context aware applications use hardware or software imple-

mentations as contextual elements, depending on the kind of context they represent. An example of

two different approaches of context aware applications that use hardware and software contextual

elements are presented in [73] and [146] respectively. For example, the platform presented in [73],

uses sensors and telemetry software to collect environmental data. It contains five components, a

location system, a data model for the real world entities description, a persistent distributed system

25

GEORGE A. S
IELIS

for the data model representation, resource monitoring for the communication between network

equipment and information status, and also a spatial monitoring service which enables event based

location-aware applications. The context elements for the contained components are implemented

with sensors which are based on radio-based techniques (e.g. GPS), electromagnetic methods

(e.g. interference from monitors and metal structures, imaging detectors). The elements imple-

mentations are described through three resource monitoring classes: Machine activity (keyboard

activity), Machine resources (CPU usage, memory usage), Network point-to-point bandwidth and

latency.

In yet another approach, [46] proposed four different categories, focusing on the user perspec-

tive: identity, location, status, and time. Schmidt [146] describes an e-learning ontology-based

platform which accomplishes the context acquisition by defining workflow systems, human re-

sources systems, web browsers and office applications as contextual elements. Wang et al. [186]

refined the definition of context for the area of education, by specifying six dimensions: identity,

spatio-temporal, facility, activity, learner and community.

The context elements can be characterized as the main context entities, which they are parted

by several other entities. The contextual elements can be viewed as “Concepts” for a context aware

approach and their containments the “Entities” that construct a detailed contextual model.

3.3 Context Representation

Based on the context definition, context is any information that determines and characterizes

the situation of an entity. An entity can be a user/person, a place, an object or a virtual object like

noise level, or a resource location. Context entities can be structured into three domains: the user

domain, the computer domain and the environment domain [172]. In a context-aware application

the three domains are interacting between each other and in particular, the context data that can

26

GEORGE A. S
IELIS

be collected as an ensemble of the context data for an entity. The disaggregation of a context

domain into entities aims at the facilitation of setting rules for the representation of the context.

In this case it is quite challenging to find a way to separate the context and organize it in a proper

way. This way, the desired representations of all the kinds of context are able to interact with

an entity. By the division of entities in domains and since the context data can be retrieved from

various entities [172] the context information can be described in internal and external features

that represent the context. The internal features are used to describe characteristics that exist inside

the entity or its domain. The external features are those which describe the context information

that can be retrieved. The features of an entity may have a significant type, e.g. string, real,

vector, etc. The value of an entity’s feature can also represent one other entity. Usually mark-

up languages with standard notations are used to represent the context to the clients, through the

usage of categorization and classification of the contextual information. For example, e-sticky [27]

is a context aware application that uses the Standard Generic Mark-up Language (SGML). In the

latter work, it is mentioned that it is necessary to make representation of contextual information

as easy as the development of a web page in HTML. It also emphasizes the importance in taking

advantage of the syntax used within mark-up languages as well as the usage of DTD (Document

Type Definition), that defines the tags and the way they “fit” together. The DTD is an easy method

that allows the author to define new tags, or augment existing ones [27] and can be used for the

representation of particular contextual fields.

In the rest of this section, the types of human knowledge are presented. Additionally, some

of the well-known knowledge representation languages, also used as contextual representation

models, are defined.

27

GEORGE A. S
IELIS

3.3.1 Types of Human Knowledge

Knowledge is the understanding of a subject area [51]. It includes concepts and facts about a

subject area, relations between them and mechanisms of how to combine them to solve problems

in specific areas. The types of human knowledge became an object of research in Cognitive

psychology. Based on the acknowledged identifications of the human types, while several AI

systems implemented many of them.

Procedural knowledge is the knowledge of how to accomplish a task or solve a problem.

Typical types of procedural knowledge are the rules, problem-solving strategies, agendas and pro-

cedures. An example of Procedural knowledge is a Java programmer. An expert may have knowl-

edge of a specific algorithm and how this can be implemented in multiple languages. However, a

Java programmer knows how to implement the algorithm using the Java programming language

only. Procedural knowledge is commonly referred as “know-how”.

Declarative knowledge describes what is known about a topic or about a problem. This de-

scription is expressed in declarative sentences or indicative propositions. Declarative knowledge

describes concepts and objects using statements. These statements may express facts or specific

attributes like true or false.

Meta-knowledge is the knowledge of pre-existed knowledge. It is used to decide what other

knowledge is best suited to solve an already solved problem, or what other knowledge is relevant

or irrelevant to the problem.

Heuristic knowledge is the set of rules that guide the problem solving process on the basis of

previous experience in solving problems, individual intuition and skills, and a good understanding

of the problem.

28

GEORGE A. S
IELIS

Structural knowledge describes mental models and the organization of problems, solutions

and their respective spaces. In other words, it contains the relationships between different pieces

of knowledge from other categories.

Inexact and uncertain knowledge characterizes problems, topics and situations in which infor-

mation is imprecise, unavailable, incomplete, random or ambiguous. It is often described in terms

of a priori, a posteriori and conditional probabilities of events.

Commonsense knowledge is the collection of information and facts that an ordinary person is

expected to know. McCarthy [108] defines commonsense knowledge as the term which is used to

denote a vast amount of human knowledge about the world which cannot be put easily in the form

of precise theories. Humans usually rely on this kind of knowledge when they face an incomplete

characterization of a problem they are trying to solve or they lack more appropriate knowledge.

Ontological knowledge is an essential supplement to knowledge about a specific domain, de-

scribing the categories of things of a domain and the terms that people use to describe them [166].

The types of ontological knowledge overlap with the types of the other categories of knowledge,

like i.e. declarative and structural knowledge.

3.3.2 Knowledge Representation languages and models

Key-Values Languages: Key-value coding is a mechanism for accessing objects’ properties

indirectly. They use strings to identify properties, rather than through invocation of an accessor

method or through direct access using instance variables. Key-Value models are the simplest

data structure for context modelling and they are frequently used in various service frameworks.

Usually, key-value pairs are used to describe the capabilities of a service. Schilit et al. [144] used

the key- value representation for modelling context.

29

GEORGE A. S
IELIS

An example of key-values implementation is given for the Redis (http://redis.io/) project which

supports lists as values. A key-value model stores data to caching systems, where they are repre-

sented in form of a map between keys and values. For the better understanding, a coding example

using key-values values (listing 3.1) demonstrates the method of modeling the social news in Red-

dit (http://www.reddit.com/) project. The key-value store contains keys representing objects with

a unique reference (identifiers) and these objects represent news from social news sites.

Listing 3.1: Example of Key-values supporting lists.

i d = i n c r Nex t Id => 1

s e t news_ur l_ < id > ‘ ’ h t t p : / / f o o b a r . org ’ ’

s e t n e w s _ t i t l e _ < id > ‘ ’My f o o b a r s t o r y ’ ’

push myLis t 1

i d = i n c r Nex t Id => 2

s e t news_ur l_ < id > ‘ ’ h t t p : / / a n t i r e z . ne t ’ ’

s e t n e w s _ t i t l e _ < id > ‘ ’ The b log you r e a d i n g now ’ ’

push myLis t 2

Key-values models are useful for the implementation of dimensional models, and their us-

ability is located due to their ability to insulate dimensions from changes to source systems and

enabling historical versions of dimension members. Key-values have poor query performance es-

pecially for dimensional queries in RDBMS (Relational Data Base Management Systems). Key-

Values Modelling is simple, but not very efficient for more sophisticated data structuring purposes.

They require the exact matching in order to support retrieval context algorithms and they do not

support inheritance.

30

GEORGE A. S
IELIS

The key-values strengths are located in their simplified high performance joins, their reduced

I/O operations, and the RDBMS optimizations. They can be used to simplify high performance

joins by using a key value to simplify the join between a fact and a dimension table. The use

of natural language keys, increases the width of a fact table, so a data page which is used by an

RDBMS to store indexes, stores fewer fact table rows. This increases the I/O operations. Key-

values help the enabling of optimizing mechanisms of an RDBMS and specifically for dimensional

RDBMS models, e.g. bitmap indexing.

Key-values modeling methods can become useful for models that need high implementation

performance. Their optimization mechanisms are good, but at the same time very complex. In

context aware applications the performance issues are considered as secondary. Context aware

systems, usually put in priority the management of data and knowledge information so that a

system can identify its environment parameters with accurate computations.

Markup Scheme Modeling Languages: All mark-up based models use a hierarchical data

structure consisting of mark-up tags with attributes and content. The content of the mark-up tags

is defined within other mark-up tags. The mark-up schemes are usually used to collect information

for profiles. The context information profile building is usually using the Standard Mark-up Lan-

guage (SGML), the super class of all the mark-up languages like XML. Multiple examples of such

profiles exist like the Composite Capabilities / Preferences Profile (CC/PP) and User Agent Profile

(UAProf) [171]. The Mark-up Scheme models are well-structured and well-formed models. The

tags containing the data information and the data attributes are represented as a node tree under

one root element. Mark-up schemes are characterized for the well hierarchical structure form they

have.

Listing 3.2: XML example.

31

GEORGE A. S
IELIS

< peop le >

< person >

<name>Joe < / name>

<age >30 </ age >

</ per son >

< person >

<name>Rob </ name>

<age >29 </ age >

</ per son >

</ peop le >

Modelling the context using mark-up languages has advantages and disadvantages. The use

of mark-up languages offers the flexibility to a programmer to write her own mark-up language

and there are not limitations in a restricted set of tags. The freedom offered in writing new tags,

facilitates the representation of a model. The power of mark-up scheme models is not located only

in the freedom in creating new tags but also in the ability of setting rules within the tags for the

representation of data descriptions and data relationships. Human readability of the models can

also be included as an advantage of the Mark-up models. They can be used as validation tools,

define exchange formats and be used for the development of exchange data applications.

However, the mark-up scheme models have several weaknesses that make their selection for

modelling the context prohibitive. Firstly mark-up schemes are very tied to the logic and language

of HTML. The presentation of mark-up scheme model’s data with other languages (e.g.java) is

more difficult and complex. Secondly, searching for information in the data is tough. The fact that

a mark-up language is content-based language and case sensitive, states difficult the information

32

GEORGE A. S
IELIS

searching. For example, if we search for “Joe” in the example provided (listing 3.2), to find the

result, there must be an extract matching of the search keyword and the model’s data fields. If the

model is very large, then the processing is becoming more difficult. Third, the GUI is embedded

in the data, and therefore a change on the presentation method of the data requires its complete

recoding. The most important weakness of mark-up scheme models is tracked to the difficulty to

express non-hierarchical relationships, making the data management of such model hard.

Graphical Models: Murphy [116] states that Graphical models are a marriage of probability

theory and graph theory. Probabilistic graphical models are graphs in which nodes represent

random variables, and the arcs represent conditional independence assumptions. Therefore, they

provide a compact representation of joint probability distributions. In the literature we can find

two types of graphical models. The directed (e.g. Bayesian Networks) and the undirected (Markov

Random Fields) graphical models. Directed is the graph in which a direction is shown for every

arc. On the contrary, undirected is the graph in which a direction is not shown for every arc. One

other type of graphical modeling is the Unified Modelling Language (UML). UML is a modelling

context language which is structuring the context modelling based on UML diagrams. UML

diagram is the partial graphical representation of a system’s model which also contains semantics

documentation, such as written use cases that drive the model elements and diagrams. UML

diagrams represent two different views of a system model [80], the static and the dynamic view.

The static view, also known as structural, emphasizes the static structure of the system using

attributes, objects, operations and relationships. The structural view includes class diagrams and

composite structure diagrams. Dynamic view, also known as behavioral, emphasizes the dynamic

behavior of the system by showing collaborations among objects and changes to the internal states

of objects. This view includes sequence diagrams, activity diagrams and state machine diagrams.

33

GEORGE A. S
IELIS

The graphical context representation models are more or less related to computational intelli-

gence algorithms, data mining and classification algorithms. These types of modeling are facili-

tating the use of computational parameters for the production of statistical results. In the area of

context awareness they have been used extensively especially for context awareness applications

that are supported by artificial intelligence adaptation or reasoning methods. The UML graphical

models are somehow differentiated from the statistical use of these models. The representation of

concepts in the form of classes, objects and attributes to represent conceptual models, as well as

the representation of models using semantics offer a different perspective of the graphical models.

UML diagrams in combination to the UML language can be used as a mixture of mark-up scheme

models and the ontology-based models that they will be described later in this subsection.

A context graphical model was introduced by [78] as an ORM extension (Object Role Ex-

tension) with differences from the classic ORM. Its differences are the basic modelling concepts,

facts, and the involvement of the fact types and roles of a domain that an entity belongs. Hen-

ricksen et al. [78] extended the ORM to allow fact types to be categorized, according to their

persistence and source, either as static or as dynamic. The latter ones are further distinguished

depending on the source of the facts as either profiled, sensed or derived types [171].

Object Oriented Models: An Object Oriented model is based on a collection of objects like for

example the E-R model. Object oriented context modelling approaches are using the benefits of

the object oriented programming possibilities: encapsulation and re-usability. With these charac-

teristics of object oriented programming, problems raised with the dynamic context in ubiquitous

environments are covered and the details of context processing are encapsulated on an object level

and hence hidden to other components. We can see the use of an OOM in figure. 2 The figure

represents an Object Oriented Database Model which forms an Object Oriented Database Manage-

ment System. The OO Management System is the connection between the programming and the

34

GEORGE A. S
IELIS

Figure 2: Object Oriented Model Example

data modelling within an OO environment. Object database permits developers to model complex

data easily and capture the relationships in a natural way.

As it is shown in figure 2 the data are modeled as object types. An object represents a class

with associated attributes and the meta-data like relationships, constraints, etc. of the class. Every

object inherits the parent object type. The inheritance of the object types allows the evolution of

types easier and increase the application scalability.

Logic-Based Modelling languages: Logic-based models have a high degree of formality.

Typically, facts, expressions and rules are used to define a context model. In these systems the

context/knowledge is defined as facts expressions and rules. The contextual information is usually

added to, updated in and deleted from a logic based system in terms of facts. Every formal logic

has a clearly defined syntax that determines how sentences are built in the language, and seman-

tics that determines the meanings of sentences, and an inference procedure that determines the

sentences that can be derived from other sentences. Propositional logic, First Order logic, Knowl-

edge Interchange Format (KIF) and Description logics are some of the Logic based modelling

languages or group of languages. In table 3 we provide an example of KIF language for better

understanding.

35

GEORGE A. S
IELIS

Listing 3.3: KIF example.

(f o r a l l ((? x P)) (Q ? x)) ; ‘ ’ A l l P a r e B’ ’

(e x i s t ((? x P)) (n o t (Q ? x)) ; ‘ ’ Some P i s n o t Q’ ’

P r e s i d e n t 802 Thomas J e f f e r s o n ;

a r e c o r d i n t h e d a t a b a s e o f p r e s i d e n t s

In the example shown in listing 3.3 we can see that KIF includes both its syntax and its se-

mantics.

Modelling the context refers to two kinds of modelling, modelling the data and modelling the

Knowledge representation. When talking about data and knowledge modelling it is not difficult to

understand that we refer to repository mechanisms in which data are organized and controlled with

the use of modelling languages. At this point we will describe the modelling data schemas and the

ontology models, two of the most known and commonly used models Ontologies and Database

Schemas.

Ontology-Based Models: According to [67] Ontology is a specification of a conceptualization.

Hendler [77] defines ontology as a set of knowledge terms, including the vocabulary, the semantic

interconnections and some simple rules of inference for some particular topic. In a more general

definition, ontology is the representation of the knowledge over a specific domain using the con-

cepts that describe the domain and associations between the concepts with the use of semantics.

Ontologies provide a number of useful features for intelligent systems, knowledge representation

and knowledge engineering processes such as, usage of vocabularies, taxonomies, content theory,

knowledge sharing and reuse.

36

GEORGE A. S
IELIS

Vocabulary is the list of terms in a subject area. A vocabulary in ontologies contains a finite

list of terms that they are denoted with the same identifier. Hence the terms of a vocabulary can

be easily processed by a machine. Part of a vocabulary in ontologies is the thesauri which provide

additional semantics in the form of synonym relationships between terms.

Taxonomy is a hierarchical categorization or classification of entities within a domain based

on common ontological characteristics. Ontologies provide taxonomies in a machine readable and

machine processable form [60].

Content theory is the identification of classes of objects, their relations and concept hierarchies

in an elaborative way using ontology representation languages.

Knowledge sharing and Reuse refers to the ability of the ontologies to be reused in several

applications. Every ontology provides a description of the concepts and relationships that can

exist in a domain and that can be shared and reused among intelligent agents and applications

[60].

Ontologies are a very promising instrument for modeling contextual information due to their

high and formal expressiveness and the possibilities for applying ontology reasoning techniques.

Based on an evaluation of an ontology-based context model in [171], it is concluded that ontolo-

gies can be characterized as expressive models that fulfill most of the designers’ requirements.

Examples of such requirements are: simplicity, flexibility, extensibility, generality, and expres-

siveness.

3.4 Context Frameworks

Bardram [14] presents the JCAF – Java Context Awareness Framework which is a java based

context-awareness infrastructure and programming API for creating context-aware computer ap-

plications. JCAF is a distributed, service oriented, event based and secure infrastructure. JCAF

37

GEORGE A. S
IELIS

relies on having a set of distributed context services that cooperate in a loosely coupled peer-

to-peer or hierarchical fashion. JCAF’ s architecture is modifiable, event based and secure. It

is modifiable and extensible at runtime and not at design and compilation time. JCAF services,

monitors, actuators, and clients can be added to the JCAF runtime infrastructure while running.

Although JCAF is based on a peer-to-peer model, it does not support automatic discovery of peers

or a super-peer. The communication is based on Java RMI (Remote Method Invocation), but it

however supports various sensors for monitoring locations and base classes for describing relevant

entities used in context awareness applications [168].

Salber et al. [140] present the Context toolkit. The Context toolkit addresses the distinc-

tions between context and user inputs. It enables application developers to build context aware

applications, by introducing three main abstractions, widgets, aggregators and interpreters. A

widget is a component that is responsible for acquiring directly from a sensor. The aggregators

can be considered as meta-widgets, taking all capabilities of widgets and they also aggregate con-

text information of real world entities and act as a gateway between applications and widgets.

Interpreters transform low-level information into higher level information that is more useful to

applications. All of the components share a common communications mechanism (XML over

HTTP) that supports the transparent distribution.

In Burkle et al. [30] an agent-based infrastructure is presented which provides integration and

collaboration of autonomous, context aware services in a heterogeneous environment. It describes

the Computers in the Human Interaction loop (CHIL) agent infrastructure and how the objectives

of the proposed architecture were achieved. Kasim et al. introduce an architecture based on

the Model-View-Controller for the development of interactive context aware applications. With

the MVC architecture and its capabilities the architecture attempts to make the communication

between the user and application more intelligible in several ways.

38

GEORGE A. S
IELIS

The Context Fusion Networks (CFN) was proposed in [34]. It allows context aware applica-

tions to select distributed data sources and compose them with customized data-fusion operators

to a directed acyclic information fusion graph. Such a graph represents how an application com-

putes high-level understandings of its execution context from low level sensory data. CFN was

implemented by a prototype named Solar, a flexible, scalable, mobility-aware, and self-managed

system for heterogeneous and volatile ubiquitous computing environments which first described in

[139] and it consists of a set of functionally equivalent nodes, coded Planets, which peer together

to form a service overlay using a distributed hash table (DHT) based P2P routing protocol such as

Pastry.

RCSM (http://dpse.asu.edu/rcsm/RCSM-software.html) is a middle-ware supporting context

sensitive applications based on an object model on which context sensitive applications are mod-

eled as objects. It supports a special language for the support of situation awareness requirements

and thus it provides situation awareness functionality. Based on the runtime situation analysis

RCSM generates application-specific objects based on the context data that RCSM retrieves from

its sources.

A project which provides infrastructure for the development of context-aware and pro-active

applications is the AWARENESS. Awareness framework refers to health-care domain applications

and more specifically applications in mobile networks for the health-care applications domain.

It provides generic components and manages context, security and identity using web services

infrastructure.

Gu et al. [68] present the SOCAM framework which is a middle-ware which supports context

modeling and reasoning based on OWL and its implementation is based on RMI.

The ESCAPE [177] framework is a web services-based context management system for team

work and disaster management. ESCAPE services are designed for a front-end of mobile devices

39

GEORGE A. S
IELIS

and the back-end of high end systems. The front-end part includes components support for context

sensing and sharing that are based on web-services and executed in an ad-hoc network of mobile

devices. The back-end includes a web service for storing and sharing context information among

different front-ends.

3.5 Functional Architecture for Context Awareness Systems

Context reasoning is referred to as the task of using context data in an intelligent way [119].

The reasoning for context aware applications has been approached from multiple perspectives

and views. Through the research in reasoning problems, one of the main tasks was to define

a functional architecture for the context reasoning procedures in context aware systems. The

attempt to create systems which deduce the relevant information, from a bigger pool of context

data led to the creation of a formal model of the context reasoning architecture. The reasoning

in context aware applications is performed by an individual engine which is adapted to a context

aware system. This engine can have the form of a prototype, a middle-ware application or can be

a component of a system.

To explain the functional architecture of a reasoning engine we will describe it as a single

component within an overall architecture for context aware computing system. This is the same

way [123] are exploring a reasoning engine named “ReaGine” through a general overview of it.

Padovitz et al. [123] tracked five basic functional steps during the reasoning process taken by

“ReaGine” as illustrated in Figure 3.

Reasoning starts when information arrives to the reasoning engine either as raw data or as

basic reasoned context, then the information is checked for low level discrepancies. Following

this, the data are synthesized according to concepts drawn in the conceptual model, and then the

engine checks for conflicts (e.g. ambiguous situations or situations that cannot coexist) at the

40

GEORGE A. S
IELIS

Figure 3: Reasoning Engine Functional Stages

conceptual level. Conflicting situations are dealt with in an additional verification phase for the

resolution or the verification of the true situation’s nature. At the final stage, the verified situations

are composed of more complex situations and compared with policies predefined by the system

designers.

In a more general view the reasoning engine receives the context data as raw data which

is called “low level context” and the engine transforms it to “higher level contexts”, which are

combinations of lower level data sources [119]. The low level data are collected according to the

actions or events coming from sensors or middle-ware software APIs defining the context data

sources. The low level data are processed and mapped to high level context which is the data

output of the engine.

The Event Collector engine is the engine which collects events and generates event notifica-

tions described according to an event model [93]. According to [93] event notification engines are

using matching approaches like the matching based on simple flat, the hierarchical topic-based

41

GEORGE A. S
IELIS

Figure 4: Context Reasoning Engine-Functional Architecture

event models or a graph structured event model. The simple flat matching and the hierarchical

topic-based event models are fast but they do not allow expressive subscriptions and sophisticated

content-based matching. Graph-structured event model represents the different subscriptions as a

direct acyclic graph in which the set of nodes in the graph is the set of possible subscription and

notification categories [91].

The Context Data Monitoring engines are related with the context inference engines that are

described in the following sections. These engines use context reasoning techniques for the re-

trieval of context information.

The Adaptation Engine contains the functions and the formulas used by the system to make

decisions for the adaptations results. The adaptation results are computed and extracted from

the Adaptation Engine based on the user’s profile, history or any other parameter influencing the

adaptation result.

42

GEORGE A. S
IELIS

3.6 Context Reasoning Techniques

In the literature there are numerous references for the role of context reasoning. Context

reasoning, as it is described by the five functional stages of the reasoning engine, could be built as

an ordered list composed of each event followed by any created reasoning events, including any

predictions created by the engine as part of its process [106]. Thus, context reasoning has a very

important role as part of the architecture of a context system. The context reasoning is responsible

for the detection of possible errors, for the completion of missing values and for the decision of

the quality and the validity of the sensed data. Its importance is focused on the responsibility of

transformation of raw context data into meaningful information, and the extraction of decisions

that may lead to actions.

In order to make the context reasoning tasks achievable, researchers deployed context rea-

soning techniques such as Ontological Reasoning, Rule Based Reasoning, Distributed Reasoning,

Case Based Reasoning, Offline Reasoning and Probabilistic Reasoning. These techniques are sep-

arated and distinguished in Non-Symbolic reasoning Techniques and Symbolic Techniques which

will be presented in the following sections. The classification of these techniques to symbolic or

non-symbolic is depended on the methods of representation of the reasoning events and situations.

The methods of representation might be deterministic by using symbols and regular expressions

(Symbolic) or non deterministic using probabilistic methods (Non-Symbolic).

3.6.1 Non-Symbolic Context Reasoning Techniques

Non-symbolic reasoning techniques use probabilistic methods and machine learning algo-

rithms for the prediction of the proposed data. The architecture requirements of systems sup-

porting learning algorithms for reasoning are not determined only by algorithms; they are also

43

GEORGE A. S
IELIS

determined by data sets and the interaction of algorithms within a larger system [40]. The archi-

tectural drivers based on the algorithm characteristics given by [40] are:

• Probabilistic Relational Model: Probabilistic Computation, large densely connected graphs,

indirection over graph nodes, varying granularity, load balancing, trade off error for latency

• SATisfiability – based planner: Parallel tree traversal symbolic matching, partial results

sharing and communication, any time solutions etc.

• Support Vector Machine Classification: Variable precision arithmetic on sparse vectors,

flexible caching, computational density etc.

Non-Symbolic reasoning techniques are commonly used for the development of cognitive

systems which are used to solve problems that are too difficult to be solved optimally or exactly

so the use approximations and no zero error rates [40].

3.6.2 Symbolic Context Reasoning Techniques

Symbolic reasoning techniques are expressed with symbols. A very simple form of symbolic

reasoning can be expressed as a single-case based simulation where each variable can have a

single constant value only, and the association of an expression with each variable at each point

of execution [20]. Consider listing 3.4 as an example of a symbolic simulation. When introducing

symbolic simulation techniques, Blank et al. [20], mention that the symbolic expressions (like

the example of listing 3.4) presume a large number of cases for the provision of faster and more

reliable results. In the same work they also give a number of the ingredients and problems of

symbolic simulation:

1. the number of simulation steps is finite and limited

44

GEORGE A. S
IELIS

2. for the process of substitution the particular semantics of the function symbols involved do

not care

Ontological Reasoning, Action-based Reasoning, Distributed Reasoning and Case-based Reason-

ing techniques can all be considered as Symbolic forms of reasoning.

Listing 3.4: Example of Symbolic Simulation [41].

i n t t e s t (i n t x , i n t y)

{

i n t z=x∗y ;

i f (z <0)

{

/ / Throw e x c e p t i o n

}

i f (x<y)

{

i n t temp=x

x=y ;

y=tmp ;

}

i n t s q r y =y∗y ;

r e t u r n z∗z− s q r y ∗ s q r y ;

}

45

GEORGE A. S
IELIS

An Ontological Reasoning example is CARE [4]. CARE is a framework supporting on-line

ontological reasoning for Context Aware Internet Services. The contextual data of the framework

is managed by different entities (i.e. user, network operator, service provider). The context data is

collected and managed by a certain entity and it is expressed by means of references to ontological

classes and relations. The context management and reasoning is achieved by the declaration of

policies in the form of rules over the collected data. Other examples of ontological reasoning are

PELLET [165] and Racer Pro [71].

Action-based Reasoning - Action-based policies are undoubtedly the most popular ones and

are used in different domains related to networks and distributed systems, such as computer net-

works, active databases, and expert systems. An action policy consists of situation-action rules,

which specify exactly what to do in certain situations.

Fuzzy Rules - A possibility to introduce a more human-like way of thinking in rule-based

reasoners is enabled by fuzzy logic [185] and fuzzy rules. Instead of having rules that are evalu-

ated to either true or false (binary logic), fuzzy logic allows for multi-valued logic with different

degrees of truth. Thus, instead of having IF-THEN-ELSE rules we have IF-THEN rules (with-

out ELSE), or equivalent constructs, such as fuzzy associative matrices that allow multiple rules

to be evaluated and assigned different degrees of truth for the same case. A typical fuzzy rule

is defined in the following format: IF variable IS property THEN decision, where variables are

linguistic rather than mathematical and properties take fuzzy rather than numerical values. Thus

a fuzzy variable for temperature may take values such as very hot, hot and cold rather than a spe-

cific number in Celsius or Fahrenheit. The fuzziness of properties along with the AND, OR and

NOT operations of Boolean logic that also exist in fuzzy logic, allow as to assign scalar values to

adaptation decisions depending on the antecedent of our rule.

46

GEORGE A. S
IELIS

Goal-based Reasoning - The benefit of goal-based policies for system administrators is that

they are relieved from the task of defining actions (required in Action Based techniques), usually

requiring a very detailed knowledge of the system. Under goal-based policies, the system itself

must reason about a sequence of actions able to satisfy the goal.

Utility Functions - In the context of self-adaptive computing, one of the main needs is a way

to detect the best variant among each possible state that the system is allowed to assume at a given

time. Utility functions can be used in order to map each possible state of the system into a scalar

value, so that it is possible to select automatically a new state for the system by selecting the

configuration that provides the best utility value. They are mathematical equations that based on

some input from the environment can assess the suitability of different adaptation alternatives.

Case-based reasoning - Case-based reasoning is the process of solving problems based on

the solutions of similar past problems. The process is formalized as a four-step process:

1. Retrieve: Given a target problem, retrieve cases from memory relevant to solving it. A case

consists of a problem, its solution, and, typically, annotations about how the solution was

derived.

2. Reuse: Map the solution from the previous case to the target problem.

3. Revise: Having mapped the previous solution to the target situation, test the new solution in

the real world (or a simulation) and, if necessary, revise.

4. Retain: After the solution has been successfully adapted to the target problem, store the

resulting experience as a new case in memory.

Several Case Based reasoning applications were built, like in [101], which provides guidance for

architectural design and adapts existing designs for new buildings. “AskJef” is an application using

47

GEORGE A. S
IELIS

multimedia technology for storing and presenting cases to the user. Other Case Based Reasoning

applications are Casecad [102] and Archie-II [48].

Distributed reasoning - Distributed reasoning systems are the systems composed of sepa-

rate modules (agents) and asset of communication paths between them. The separate modules

might be individual reasoning sub paths implemented as Rule Based, Case Based or Ontological

based reasoning systems. These modules can communicate between them and their combination

is creating a distributed reasoning system. An example of Distributed reasoning system DRAGO

[147] a distributed reasoning Architecture for semantic web, which is implemented with multiple

semantically related ontologies presented with different methods (Description Languages).

3.6.3 Hybrid Context Reasoning Techniques

Hybrid reasoning techniques combine two or more of the presented Symbolic or non-Symbolic

Techniques. A very common combination of techniques is the integration of rule-based and case-

based reasoning. The benefit of this combination is the creation of a new scheme which is derived

from the individual schemes, e.g. rules derived from cases and vice versa [132]. Prentzas [132]

supports that the integration of hybrid reasoning techniques is distinguished in two categories: ef-

ficiency improving and accuracy improving methods. A hybrid approach is presented in [132], but

also by [58] and [62]. Prentzas [132] proposed a hybrid reasoning approach integrating Symbolic

rules with neuro-computing giving preeminence to the symbolic component. This approach is

based on the example of hybrid approach given by [64] which refers to the creation of an effective

scheme combining three types of knowledge representation formalisms: symbolic rules, neural

networks and cases. Another hybrid reasoning approach was proposed in [52]. Their proposal

is based on a relational model and an ontology-based approach for the creation of rules. The

48

GEORGE A. S
IELIS

proposed hybrid context model, HCoM, suggests separating context data management from con-

text knowledge management, process them separately and then put the results together for better

reasoning and decision support in a context aware environment.

3.7 Existing Context Reasoning Technologies

The various context reasoning techniques that were presented in the previous section can be

implemented using a number of different technologies such as:

• The rule-based reasoning engine technologies for context reasoning

• The ontology-based reasoning technologies

• The Topic Maps technology

3.7.1 Context abstraction using rule-based reasoning engines

Rule-based reasoning is performed through the conversion of context data into ‘’facts” and

the creation of rules to obtain new facts to be converted back as new context information. The

functioning of a rule-based reasoning engine can be summarized as follows:

1. A Context Reasoning Provider is used for the creation of specific context reasoning sessions

and their activation on specific context reasoning situations. It manages “WHEN” a context

session is created.

2. Context Abstraction Rules are created to capture “HOW” the abstract context information

collected by the Context Reasoning Provider is used to make the context data information

more specific.

3. The context information is translated in facts to represent knowledge and to activate context

abstraction rules.

49

GEORGE A. S
IELIS

4. The new rules derived from the context abstraction rules are converted back to the context

representation and made available as new context information

Taveter [174] in an attempt to give a definition for the Business Rules they specified the types

of Business Rules that exist in the literature. These types are extracted and applied to a model and

formalize the types of rules. The types mentioned in [174] can be used to define the types of rules

used for the definition of an abstract rule based reasoning engine. The types of rules are:

• Integrity constraints: Integrity constraint rule is an assertion that is based on the evolved

states and the transition histories of a system viewed as a discrete dynamic system [183]

Constraints can be expressed as IF-THEN statements in programming languages or as ex-

plicit assertion statements supported by programming languages such as C++, or Java 2.

• Derivation rules: Derivation rules allow the derivation of knowledge from other knowledge

by an inference or a mathematical equation [183]

• Reaction rules: The Reaction Rules define the behaviour of a system by stating the con-

ditions under which actions must be taken. These conditions are expressed in response to

perceived environment events and communication events [183].

Wagner [183] gives examples of the methods of modelling and representing the rules with

UML (Unified Modelling Language), SQL database queries and XML based languages. For the

implementation of the rule based reasoning, several rule based engines and technologies are avail-

able, like Mandarax [47], ILOG (http://www.ilog.com/) and Jess [57] Mandarax [47], is an open

source java library for business rules, including the representation, persistence, exchange, man-

agement and processing of rule bases. In Mandarax rules are presented as clauses. The clauses

consist of a body which is the prerequisite of a rule and a head which is the consequence of a rule.

50

GEORGE A. S
IELIS

Both of the clauses are facts which themselves consist of terms and predicates associating those

terms. Terms can be constants, variables or complex terms.

ILOG (http://www.ilog.com/) is a rule engine and programming library used for the combina-

tion of rule based and object oriented programming for the adjustment of business rules to new

and existing applications. ILOG rule is composed of a header, a condition part and an action part.

The header defines the name of the rule, its priority and packet name. The condition part of the

rule defines the conditions that must be met such that the rule is eligible for execution. The action

part specifies the activities to be carried out when the rule is fired. The ILOG engine can directly

parse and output XML representation allowing the management of rules by standard XML tools.

Jess [57] is one of the most popular rule engines. It is a Java library which offers differ-

ent levels of APIs for the creation of reasoning sessions, load facts and rules and run reasoning

algorithms. Jess implements the RETE reasoning algorithm to fire rules and derive new facts.

3.7.2 Ontology-based inference engines

In this subsection a number of ontology-based inference engines will be described. The de-

scribed engines will be F-OWL, OWL inference engine based on XSLT and JESS, Jena 2, SWRL

rules from Protégé, BaseVIsor, RacerPro, FaCT++, Pellet and KAON2. F-OWL is an ontology

inference engine for the Web Ontology Language OWL. The engine is using the Flora2 advanced

object oriented knowledge base language which translates a unified language of F-Logic, HiLog

and translation Logic into the XSB deductive engine. FOWL is reasoning using the ontology

model defined by the standard OWL language. FOWL has been used as ontology reasoner in

a number of intelligent prototypes like CoBra, TAGA and REI. OWL inference engine based on

XSLT and JESS is an inference engine which is using the JESS rule engine and XSLT style sheets.

JESS has the ability to “reason” using knowledge supplied in the form of declarative rules, and

51

GEORGE A. S
IELIS

for the translation to Jess rules using the JESS for OWL some kind of “adapters” are needed. The

code provided by the project helps to load OWL ontologies and annotations into JESS, transform-

ing them into rules and facts. Then using CLIPS (syntax) inference rules for the ontology are

created. The code is organized as follows:

• OWL Meta model: description of OWL meta-model in JESS language and directly loaded

into the JESS engine.

• Ontology Stylesheet: an XSLT style sheet that transforms an OWL schema into a set of

JESS assertions based on the OWL Meta model. The resulted assertions can be loaded into

the JESS engine.

• Annotation Stylesheet: an XSLT style sheet which transforms an OWL annotations file into

a set of JESS assertions based on OWL meta-model. The resulted assertions can be loaded

into the JESS engine.

Jena 2 is an inference subsystem which allows a range of inference engines or reasoners to be

plugged into Jena. The engines are used to derive additional RDF assertions which are entailed

from some base RDF together with any optional ontology information and the axioms and rules

associated with the reasoner. With this mechanism, languages like RDFS and OWL can be sup-

ported. With the support of these languages, the additional facts to be inferred from instance data

and class descriptions is allowed. Jena2 includes the predefined reasoners for RDFS, OWL-Lite,

DAML and other generic reasoners for user defined rules.

SWRL rules from Protégé is an inference engine with a more complete solution related with

Semantic Web. SWRL Bridge which provides the necessary the infrastructure to incorporate rule

engines into Protégé - OWL for the execution of SWRL rules, is an add-in to the engine. The

interaction with this bridge is achieved through a user interface called SWRLJessTab.

52

GEORGE A. S
IELIS

BaseVIsor is a forward-chaining inference engine based on the Rete network optimized for

the processing of RDF triples. It has been developed to process RuleML and R-Entailment rules.

It is a Rule Based system implementing a Rete based algorithm solution. The difference with JESS

and CLIPS is the fact that the user-defined types cannot be arbitrary list structures but simple data

structures in order to increase efficiency of rules pattern matching.

RacerPro is a core inference engine for the semantic web. It has two APIs that are used by

network clients like OilEd, the visualization tools RICE and the ontology development environ-

ment Protégé 2. The Racer server supports the standard DIG protocol via HTTP and a TCP based

protocol with extensive query facilities. It supports the web ontology languages DAML+OIL,

RDF and OWL.

FaCT++ is a description logic reasoner written in C++. It can be used with applications

supporting OWL-DL via the DIG standard; it uses a tableaux decision procedure to solve SHOIQ

description logic and supports simple data types.

3.7.3 Topic Maps Technologies

Topic Maps technology is part of the ISO standards of the semantic web technologies. The

ISO standard of Topic Maps is formally known as ISO 13250. In general, topic maps are used

in semantic web applications for finding and exchanging information using topics. Topic Maps

are designed for the enhancement of navigation and information retrieval. This is achieved by the

addition of semantics into the resources and their representation as context data sets [75].

Wrightson [192], through the description of Topic Maps mentions the distinguished differ-

ences of a topic map and ontologies. Ontologies are used for the description of shared common

understanding aspects, like objects or relations between them. A topic map is used for the rep-

resentation of the ontologies by linking the resources belonging to them. In other words, a topic

53

GEORGE A. S
IELIS

map is the collection of topics, associations and scopes [170]. The consisting parts of a topic as

they are introduced by [170] are the subject which gives the generic sense of a topic, the reification

which is the act for the creation of a topic, the subject identity which is used to specify the relation

between subjects, the subject indicator which is a resource indicated by the topic and finally, the

topic characteristics which are the name, the role the occurrence or the associations of a topic.

Topic Maps technology is used for the integration of several Topic Maps standards. Topic Maps

APIs, Query standards, Constraint standards [165], are:

• TMAPI (Topic Maps Application Programming Interface)

• ISO:1848 TMQL (Topics Map Query Language)

• ISO 19756: TMCL (Topic Maps Constraint Language)

• XTM (XML Topic Maps)

In the research work of [75], three Topic Maps Tools categories were identified: Topic Maps

Engines, Topic Maps Navigators and Topic Maps Editors.

3.8 Context Storage and Retrieval

Advances in context awareness research made the creation and development of context storage

and retrieval, mandatory. The need for adaptation methods and the generation of recommendations

within a computing system indicated that such a system is context aware. The dynamic change

of data, on runtime, the storage and retrieval of data guided the research world to find solutions

based on the context technologies they integrated. Siljee et al. [162], divide the concept of context

awareness in three phases:

1. Monitoring of the environment,

54

GEORGE A. S
IELIS

2. Interpretation of the data (being monitored) through the context model and

3. Adaptation of the system to the changed context.

These three phases predicated the interaction with a repository of the context data and the integra-

tion of mechanisms for the update, storage and retrieval of them. In a more detailed analysis, Siljee

et al. [162], are tracking the different aspects in the process of retrieving the context information.

These aspects are identified as initiative, timing, history, and information presentation.

Initiative is the process of context information retrieval using context-push and context-pull.

With context-push, the context information is retrieved without the need of send request to the

system every time the information is needed. With context-pull, when the system needs context

information it explicitly request for the needed information.

Timing includes the event driven and periodic methods of context information retrieval. Event

driven method requests for context information when some event occurs. Periodic method requests

or retrieves context information in certain scheduled points in time.

History includes the absolute and relative methods. Absolute method context information is

taken in absolute points without using previous information. Relative is based on the difference of

context information over time, thus the previous stored information is used.

Information presentation is divided in explicit and implicit. The explicit method does not need

any context model and it uses the needed information as it is. By implicit method, the system

refers to the context information based on its input data and thus a context model is needed.

3.9 Examples of Context Awareness Applications

In this section we will attempt to show how the context awareness technologies described

in section two enable the production of Context Aware applications. Context Aware applications

55

GEORGE A. S
IELIS

cover a wide spectrum of different research areas of computer science and information technology.

Therefore, we will attempt to show how the context awareness technologies are enabled through

context awareness applications in the several research areas.

Based on a list of features that a context awareness application must support [13] [14] [128],

the following three categories of context are identified: 1) presentation of information and services

to a user; 2) automatic execution of a service; and 3) tagging of context to information for later

retrieval. Bontas [23] introduced a list of examples that show the variety of context usage forms in

computer science like Domain Classification, Natural Language Processing, Information Integra-

tion and Mobile Computing. Taking into consideration the examples given by [23] for each form

of context usage in Computer Science and the categorization of context, it becomes apparent that

context-awareness is not solely a characteristic of computer applications of a particular domain

exclusively; rather it can be applied in several domains in different ways.

The area of health care research appears as one of the interests for a potential testing area

of tools and frameworks which support context awareness. Examples of such tools are Vocera

communication System [167] and MobileWORD—Mobile Electronic Patient Record [89]. Vo-

cera [167] is a communication badge system for mobile users has from a push to call button and

a small text screen, as well as voice dialing capabilities based on voice recognition. It allows

hands-free conversations, voice messages and it is biometrically secured with speaker verification.

It delivers the data directly to the users without the need to use a distance device, like a phone or a

PC. The MobileWARD is a hospital prototype which supports the morning tasks in a hospital ward

and it is able to display patients’ profiles and information. The information and the functionality

presented by the application depend on the nurse’s location and the time of the day. Other context

awareness examples in the health-care sector are Context-aware mobile communication—CICESE

56

GEORGE A. S
IELIS

[56], Intelligent hospital software [111]. CICESE is a context aware mobile communication appli-

cation which is used by hospital workers to carry out their tasks. Its contextual elements include:

location, delivery timing, role reliance, artefact location and state.

As ubiquitous computing is a post-desktop model of human computer interaction, this area of

computing research deals with the mobile computing, wearable computing, with the aim of such

research applications to locate and serve the user. The basic mechanism of context awareness

computing in this area is summarized in [2] into four steps:

1. Collect information on the user’s physical, informational or emotional state.

2. Analyze the information, either by treating it as an independent variable or by combining it

with other information collected in the past or present.

3. Perform some action based on the analysis.

4. Repeat from Step 1, with some adaptation based on previous iterations.

An example application presented by [2] is the CyberGuide application which uses the capabilities

of the Personal Digital Assistant (PDA) to locate the position of a user, and give them directions

and information for sights, restaurants or hotels that are close to them. The CyberGuide is an

event-driven model where components act as event sources.

Tarasewich [173], presents the principles of mobile commerce and states that designing suc-

cessful m-commerce applications and their interfaces, is dealing with context. As a step beyond

the traditional wired web-commerce today the commerce research is taking advantage of the mo-

bile applications, like PDAs, Bluetooth technologies, etc. With mobile computing, people might

be anywhere, any time. The e-commerce area could solve the problem of mobile users by just de-

termining the location of users. But this is something more complex. Mobile application’s use can

vary continuously because of changing circumstances and differing user needs [173]. This is the

57

GEORGE A. S
IELIS

reason behind the need of creating context models in mobile commerce research area. Chen et al.

[32] give a summary of a context awareness application. They describe the application proposed

by [7] which determines the location of a customer within a store, and gives the customer infor-

mation about the items, such as how to locate them, point out items on sale, make comparative

price analysis.

In learning, the adoption of context awareness is not a new idea. It has been demonstrated in

learning systems for quite some time. Classical methods, as those encountered in early intelligent

tutoring systems [54] and student modeling [29] can all be regarded as context-aware approaches

used as adaptation methods [29]. They support the idea that the problem in adaptive interfaces is

located in the complexity of the interfaces used in such applications. Adaptive interfaces can be

the starting point for the determination of the significance of the existence of context awareness in

e-learning applications. The usual e-learning applications are not supporting adaptation methods,

thus users with different abilities, web experience, knowledge and background get the same pages

in the same context [29]. Recent Adaptive Educational Systems, most of them web-based [28],

promise to offer adaptation with respect to the presentation of the learning material, the navigation

support, the curriculum sequencing and support in problem solving. One of the methods used for

establishing adaptivity and adaptability is context awareness. However, the proposed exploitation

of contextual information from a broad spectrum as a means of enabling the best possible support

in collaborative learning that aims at creative knowledge building is a novel and promising area.

3.10 Conclusions

The chapter presented a comprehensive literature review analysis for the topic of Context

Awareness. The analysis presented the current most known and mot used Context based tech-

nologies. It presented the methods for modelling and representation of Context. It presented the

58

GEORGE A. S
IELIS

frameworks and tools that are commonly used for modelling and representation of Context and de-

picted several examples of Context Aware research articles. The findings of the chapter include the

Context reasoning methods and examples of Context reasoning that can be found in the existing

literature.

59

GEORGE A. S
IELIS

Chapter 4

Recommender Systems Review: Types, Techniques and Applications

4.1 Introduction

Recommender or Recommendation Systems (RS) are software tools in applications or web-

sites that suggest information (e.g. items, people, news articles, etc.) that might be of interest to

the end user, taking into account various types of knowledge and data, such as the user’s pref-

erences, actions, tasks, context, etc. In most cases these systems use computational methods to

analyze users’ past actions and decisions, along with other user-related or task-related informa-

tion, to offer useful, usually personalized recommendations for an individual user. The motivation

behind this is to alleviate the information overload problem, by bringing to surface what is most

relevant, interesting to the user, filtering out anything what is not. Examples can be seen in many

well-known e-commerce websites such as Amazon.com, which promotes products, such as prod-

ucts that were last examined or purchased by a user, or products that have been rated or reviewed

by other users. In addition to that, there are cases where the recommendations are the result of

a combination of factors that are difficult to determine accurately. In such cases, a variety of

alternative methods are employed to generate recommendations.

60

GEORGE A. S
IELIS

Recommendation systems belong to the information filtering systems family and, therefore,

seek to predict the rating or the preference that a user would give to an item. Thus the com-

mon methodology that the recommendation systems follow, is to determine the relation between

three types of modeling, user, rating and item, in order to produce recommendations. All rec-

ommendation algorithms and their variations are following this model for the computation of

recommendations.

This chapter includes a comprehensive critical review of the different types of recommender

systems, their typical architecture and the algorithms used for generating recommendations, while

at the same time identify their strengths and weaknesses. Some of the most popular recommen-

dation systems are described, and finally, the challenging topic of evaluation of RS is discussed.

It outlines the possible approaches to assess the accuracy, usefulness and user satisfaction from

recommendations. In existing literature, Recommendation Systems, are classified into three cat-

egories based on the type of recommendation filtering method they use: Content-based filtering

recommendation systems, Collaborative recommendation systems and Hybrid approaches. For

each one of them, several algorithms, filtering techniques and applications can be found. The rec-

ommendation systems research community is one of the largest and most active ICT communities,

with continuous inputs and findings in the topic.

Internet is a huge source of information where almost everything can be found. Nevertheless,

this information is not structured and it does not have any kind of organization to facilitate users

to find exactly what they are searching for. The expansion of the web made the information struc-

ture and consequently the information filtering more complex. This complexity occurs because

more factors related to the information have been introduced. Such factors are the social, psy-

chological, behavioral and other factors related to the users who receive or create the information.

Recommendation systems are mechanisms that are used for filtering and removing the irrelevant

61

GEORGE A. S
IELIS

information based on how each user perceives the information. In other words, recommendation

systems take into account the preferences of a particular user, they compare it to what other users

with similar preferences liked or disliked, and try to predict the information that satisfies user the

most. Based on this logic, several recommendation algorithms have been implemented and used

in commercial as well as research recommendation tools.

4.2 Recommendation Systems

The current chapter approaches recommendation systems through the presentation of recom-

mendation types, the filtering methods, the well-known recommendation frameworks and the most

common recommendation algorithms’ evaluation metrics.

4.3 Recommendation Filtering Techniques/Algorithms

In general, recommendation systems refer to the production of recommendations for a user,

where these recommendations are useful to the user for the accomplishment of a task. This task

might be related to web pages navigation, find items to buy, explore learning resources, find people

to socialize with or collaborate with. The types of recommendations are usually domain and task

depended and consequently context depended. In this section, the high level recommendation

systems architecture is described, as well as the several recommendation techniques that can be

used for the development of recommendation systems. The defined techniques are later used to

describe how they can be adopted by each particular recommendation filtering method.

4.3.1 Types of Recommendation Systems

Content-based are the recommendations that a user receives based on their own past prefer-

ences. Content-based recommendation systems produce recommendations by filtering data, taking

62

GEORGE A. S
IELIS

into account mainly textual parameters. These systems use the words of the saved texts as filtering

features and they learn user’s profile based on the presence of features in objects that the user has

rated. A content-based filtering system selects items, based on the relation between the content

of the items and the user’s preferences. These preferences are filtered by a collaborative filtering

system that chooses items based on the relevance between people with similar preferences.

Collaborative recommendations are recommendations given to the user based on the similarity

of the taste and preferences that other people have in relation to an active user. Collaborative fil-

tering systems try to predict the utility of items for a particular user, based on the items previously

rated by other users [3].

Hybrid recommendations are the recommendations produced by combining the collaborative

and content-based methods. The hybrid approaches aim to overcome certain limitations that the

first two approaches may have when they are applied individually [11] [15].

4.3.2 Functional Architecture of Recommender Systems

A recommender system consists of cyclic functioning procedures that are divided in the fol-

lowing four steps:

1. The collection of data

2. Filtering the data

3. Rank the recommended items

4. Presentation of the data to the user

By the completion of the last four procedural steps a recommender system aims at two tasks.

Firstly, the production of recommendations and secondly, use the users feedback after the delivery

63

GEORGE A. S
IELIS

Figure 5: Functional Recommendation Systems Architecture

of the recommendations to them, so the process can be repeated and produce new recommenda-

tions as it is depicted in Figure 5.

Collection of data - The collection of data correlates directly with the data model that is used

within a software application. The data is usually defined based on the overall design of a soft-

ware application and the contextual information that a software application collects and processes

into further computations. The data model usually depends on the domain that a recommender

system is built for. The storage and representation handling methods of the data model can be de-

signed using “knowledge representation” or “context representation” methods, such as relational

databases or semantic web representation methods.

The collection of data depends on the type of data, and the recommendation filtering tech-

niques that a recommendation system uses. For example, for the recommendation of items, such

as products, the data model is usually designed in the form of statistical analysis that takes into

account the frequency of views, likes or dislikes of products. On the contrary, for the recommen-

dation of articles or news-feeds, data model usually collects semantic meta-data relations, such as

keywords. Thus, data model design is directly related to the recommendation filtering techniques

64

GEORGE A. S
IELIS

that a recommendation system adopts. Based on the selected techniques the recommendation

systems are classified in the corresponding type that they belong.

Filtering the data - As mentioned, above the recommendation filtering techniques depend on

the type of the processing data and the type of the produced recommendations. The recommen-

dation filtering techniques are divided into three categories according to the type of data they use

for the computation of recommendations, as well as the used computational algorithm methods.

The three categories are the Content-based Filtering (CBF), the Collaborative Filtering (CF) and

the Hybrid Filtering (HF) techniques.

Ranking Algorithms and Representation of recommendations - Data collection and pro-

cess by the recommendation filtering techniques, produce a set of recommendations that fulfill the

design rules that are set, based on the design requirements, of a recommendation system. The last

that a recommendation system has to complete is the presentation of the produced set of recom-

mended items to the final recipients, the users. At this point, recommended items must be ranked

based on the computed users’ preferences. A recommendation is considered successful when the

highest in priority recommendation offered to a user is closer to the user’s interests or preferences,

and when the recommended item is actually useful to the user.

4.3.3 Recommendation filtering techniques

TF-IDF - One of the most-known and most-used content-based filtering techniques is the TF-

IDF (Term Frequency - Inverse Document Frequency) measure [141]. TF-IDF measure is defined

as follows: For total number of documents N that can be recommended to users keyword ki

65

GEORGE A. S
IELIS

appears in ni of them. If fi,j is the number of times that kj appears in document dj then TFi,j is

the term frequency of keyword ki in document dj and it is defined as

TFi,j =
fi,j

max
z
fz,j

(1)

Keywords used in equation 1 may appear in many documents, and keywords in that case are

not useful for the distinction between a relevant and an irrelevant document. For that reason,

the inverse document frequency (IDFi) is used in combination with the simple term frequency

(TFi,j). The IDFi is defined as

IDFi = log (
N

ni
) (2)

Finally, TD-IDF weight for each keyword kj in each particular document dj is defined as

wi,j = TFi,j × IDFi (3)

and the content for each document dj is defined as

Content(dj) = (w1j ,, wkj) (4)

Naive Bayes - Naive Bayes algorithm is a machine learning probabilistic algorithm and be-

longs to the general class of Bayesian Classifiers. Bayesian Classifiers construct their models

based on previous observations, which are used as training data. The Bayesian method estimates

the a-posteriori probability of document d belonging in class c which is the probability P (c|d).

The a-posteriori probability is computed based on the a-priori probability P (c) which is the prob-

ability of observing a document in class c, the probability P (d|c), which is the probability of

66

GEORGE A. S
IELIS

observing the document d given the class c and the probability P (d), which is the probability of

observing the instance d. The Bayesian theorem is expressed as:

P (c|d) = P (c)P (d|c)
P (d)

(5)

and a document is classified using the class with the highest probability

c = argmaxci
P (cj)P (d|cj)

P (d)
(6)

Rocchio’s algorithm - Rocchio’s Algorithm applies the relevance feedback technique, which

helps users to incrementally refine queries based on previous search results. Rocchio’s algorithm

represents documents as vectors, so that documents with similar content have similar vectors.

Each component of such a vector corresponds to a term in the document, typically a word. The

weight of each component is computed using the TF-IDF term weighting scheme. Learning, is

achieved by combining document vectors (of positive and negative examples) into a prototype

vector for each class in the set of classes C. To classify a new document d, the similarity between

the prototype vectors and the corresponding document vector that represents d are calculated for

each class (for example by using the cosine similarity measure). Then d is assigned to the class

whose document vector has the highest similarity value. A formal representation of Rocchio’s

algorithm is depicted in [96] by the following equation:

ωki = β
∑

|dj∈POSi|

ωkj

|POSi|
− γ

∑
|dj∈NEGi|

ωkj

|NEGi|
(7)

Where ωkj is the TF-IDF weight of the term tk in document dj , POSi and NEGi are the

set of positive and negative examples in the training set for the specific class cj , β and γ are

control parameters that allow setting the relative importance of all positive and negative examples.

67

GEORGE A. S
IELIS

To assign a class c to a document dj , the similarity between each prototype vector ci and the

document vector dj is computed, and c will be the ci with the highest value of similarity.

Decision Trees - A decision tree is a collection of nodes arranged as a binary tree. The arcs

of the tree represent decisions and the nodes contain the classified objects. For example, for the

classification of an item, the root is the starting point where the value of the item is set, with the

possible decision values as the arcs coming out of this value. The decision arcs can take values,

such as true or false. For each decision value the tree expands containing new children nodes,

which contain new decisions until a leaf is reached. For the case of a true - false decision tree, if

the decision referring to the root node is true, then the right child path is followed, and if it is false,

the left child path is followed. This is repeated for each child node until a leaf is reached. A leaf

is the last child node of the path and this contains the classification value of the item.

Construction of a decision tree requires the selection of values for each node that a tree in-

cludes. The selection of the node values can be achieved in many ways, and the task of the

selection is based on the arrangement of nodes into positive and negative values related to the

decisions. The division of nodes into positive and negative can be done in multiple levels, where

each level consists of an individual decision that routes to the final one that classifies an item.

The decision tree classifiers tend to take a long time to construct. For example, the usage of

decision trees in recommendation systems presumes one tree per user. This makes the construction

and the classification of an item a high-complexity process, since each tree has to look through

all item profiles and consider many different decision values. Therefore, decision trees method is

usually used for small size problems.

68

GEORGE A. S
IELIS

4.3.4 Similarity Distance

The recommendation systems tend to use similarity measures to classify or group recommen-

dation results together (clustering). In existing literature, several recommendation techniques that

apply different similarity algorithms either to classify or to cluster objects, can be found. The se-

lection of such algorithms usually differs in the type of recommendation that an engine produces.

For example, the selection regarding the expected recommendations are user-based or item-based.

In the part that follows, the most commonly used similarity distance methods are presented.

k-NN nearest Neighbors similarity - The training examples are vectors in a multidimensional

feature space, each with a class label. The training phase of the algorithm consists only of storing

the feature vectors and class labels of the training samples. In the classification phase, k is a user-

defined constant, and an unlabelled vector (a query or test point) is classified by assigning the label

which is most frequent among the k training samples nearest to that query point.

Pearson correlation based similarity - measures the tendency of two series of numbers,

paired one to one to move together. The Pearson correlation is a number that corresponds to each

pair of numbers and its value belongs to the range between -1 and 1. The Pearson correlation

measure shows how a number in one series is relatively large when the corresponding number in

the other series is high, and vice versa. It measures the tendency of the numbers to move together

proportionally, such that there is a roughly linear relationship between the values in one series

and the other [122]. The Pearson correlation value is close to 1 when this tendency is high and

when it appears to be little relationship, the value is close to 0. When it appears to be an opposing

relationship, for example when one series of numbers are high and the other series of numbers are

low, then the value is close to -1.

69

GEORGE A. S
IELIS

Euclidean distance - The similarity between items is measured based on the Euclidean dis-

tance between the items. In this case, the items are represented as points in a space of many

dimensions whose coordinates are the defined preference values. This similarity measures the

Euclidean distance d between two points. The use of this value alone does not consist of a valid

similarity metric since larger values means more distant and, therefore, less similar items [122].

Cosine similarity measure - In the multidimensional space the preferences related to an item

are the coordinates of a point. The cosine similarity measure uses the geometric representation

of the similarity between the items by measuring the angle between lines that start from the

(0, 0, 0, ..., 0) point of the multidimensional space to the point that corresponds to items. So,

for instance, for two items there will be two lines having the (0, 0, 0, ..., 0) as common point and

their similarity is computed based on the angle which is created by the two lines. Two items are

similar when the angle is relatively small and the similarity becomes weaker while the angle is

growing [122].

Spearman correlation distance - is a variant of the Pearson correlation distance. Spearman

correlation computation is based on the relative rank rather than the original preference values.

For example, in a list of recommended items the least preferred item’s preference by a user is

overwritten with 1 and the next least preferred item’s preference value is changed to 2, and so

on. With this method, the recommendation system preserves the essence of the preference values

using their ordering, but removes information about how much more each item was liked than the

previous one [122].

Tanimoto coefficient - The Tanimoto coefficient completely ignores the preferences values.

The method computes the similarity distance as the ratio of the size of intersection to the size

of the union of their preferred items. In other words, when two users’ items completely overlap,

the result is 1.0 and when they have nothing in common, it is 0.0. The value is never negative.

70

GEORGE A. S
IELIS

Similarly to Tanimoto coefficient, there is another similarity metric called log-likelihood. Log-

likelihood is more of an expression of how unlikely it is for two users to have so much overlap,

given the total number of items and the particular items that each user has a preference for [122].

4.4 Categories of Recommendation Systems

The recommendation filtering techniques and the method that each recommender system em-

ploys in the several domains of application, can divide recommendation systems into categories.

In this section, the most common categories of recommendation systems are presented, as well as

examples of applications where they are used. In addition, an attempt to identify each recommen-

dation type’s main strengths and limitations, which are summarized at the end of the section at

Table 2 .

4.4.1 Content-Based Recommendations

As already mentioned, content-based recommendations are taking into account the textual

information that is used to describe an item. Thus, content-based methods are using text compar-

ison algorithms. The usual methodology used for implementing content-based recommendations

is the combination of content-based filtering techniques and collaboration-based filtering tech-

niques. Although this combination classifies those recommendations into the hybrid recommen-

dation models, the use of content-based techniques will be discussed in the current paragraph in

particular. Pazzani [130] separates the content-based recommendations into a two-phase method-

ology; firstly, is the recommendation of items to a user based on the description analysis of the

item in relation to the interests of a particular user and secondly, the implementation of strategies

for the representation of items, the creation of user profiles that contain description of the types of

71

GEORGE A. S
IELIS

items that the user likes or dislikes and finally strategies for the comparison of the user profile to

some referenced characteristics.

Lops et. al [96] provides a high level of architecture that the content-based recommender

systems can adopt. Based on this architecture, the content-based recommender systems follow a

three-step process, in which for every step, specific components must be developed. The three

steps of the process are the Content Filtering, the Profile Learner and the Filtering Component.

Strengths

User Independence - The computation of content-based recommendations is taking into ac-

count the active user’ s profile and the individual ratings provided by the active user. Collaborative

recommendation methods use other users’ ratings to provide recommendations to the active user

based on what other users liked or viewed. In Content-based Recommendations exploit solely

rating results and these results are used for the construction of each particular user’ s own profile.

Transparency - Content-based recommendations are produced in a transparent way. The meth-

ods, the factors or the rules that are used to the computation of the recommendations are usually

provided to the user in the form of questions or interactive tools that they collect information from

the user in order to adapt the recommendations on her preferences. Thus, recommendation results

are usually delivered to users with additional information explaining why and how an item was

recommended.

New Item - Content-based recommender systems can recommend items that have not been

rated by other users yet. The content-based recommendations can analyze the new item’s seman-

tics and use them in the recommendation filtering methods directly.

Weaknesses

Limited Content Analysis - The content-based recommendations are directly connected to

the information that describes an item. This information might be the item’s description, the

72

GEORGE A. S
IELIS

item’s meta-data or any other information that can be used as item’s “profile” information. The

more information data an item contains, the more accurate recommendations can be produced.

In reality, this is very difficult to achieve because of the unlimited existing data sources, such as

web resources or digital libraries. This makes defining the level of relevance or identifying the

structure of the content information, which is retrieved from different sources, hard.

Over-Specialization - The content-based recommendations are usually produced based on the

comparisons between items that they have already rated. This causes the limitation in producing

recommendations of unexpected items. This is also called the serendipity problem [96] to high-

light the tendency of content-based recommendation systems to produce recommendations with a

limited degree of novelty.

New User - Content-based recommendation systems are using the user profile attributes and

the ratings collected by each particular user to produce their recommendations. Therefore, when

just a few ratings are available for a new user, it is very difficult for the system to use the new

user’s profile to produce reliable recommendations.

4.4.2 Collaborative Recommendations

Terveen [175] defines Collaborative Filtering as the exploration of techniques for matching

people with similar interests and then produce recommendations on this basis. This approach

prerequisites the participation of many people, the existence of an easy way in which people are

able represent their interests and finally, the adopted algorithms must have the ability to match

people with similar interests. Collaborative Filtering Recommendation systems are commonly

applied to systems that are used by communities of users who are able to express preferences

for items. The recommendations produced by those systems are based on the users’ preference

similarities. For example, for an on-line bookstore user A and user B have similar tastes in

73

GEORGE A. S
IELIS

books because they rated a particular book highly. Then if a user C rates the same book with

a high score then user C most probably likes the books that A and B liked as well. In other

words, Collaborative Filtering is based on relationships between users, where these relationships

are created based on their preferences.

Collaborative recommendation algorithms are classified in two categories based on the recom-

mendation technique each algorithm is applied with. The two categories are the memory-based

and the model-based recommendation algorithms. In memory-based algorithms, the entire set

of data of a space S is processed in order to create recommendations. On the contrary, model-

based recommender algorithms use a subset of an entire set of data to produce recommendations.

Memory-based algorithms in their majority correlate with Collaborative Filtering in combination

with Content-based filtering techniques, and model-based algorithms are usually used in Rule-

based or Hybrid filtering recommendation systems which are presented later in this chapter.

Schafer [143] mentions that Collaborative Filtering is more effective in domains with certain

properties and groups. Their properties are defined regarding the distribution of data, the under-

lying meaning and the data persistence. These properties are considered necessary for the imple-

mentation of Collaborative Filtering algorithms. This, however, does not presume the existence of

all properties as a whole.

Data distribution contains properties related to the amount of data that surrounds the items or

the users and which they can be used for the computation of recommendations based on them.

For example, the number of items, the number of ratings for items, the number of users rating the

items and the ratings of multiple items by users are properties belonging in the Data distribution

group [143].

The grouping of properties based on the Underlying meaning, contains properties that are

related to the taste and the preferences of users, in relation to items. It contains properties that

74

GEORGE A. S
IELIS

represent data regarding the commodity of tastes between users within a community of users,

the similarity of tastes/preferences of users in relation to items and, finally, it contains properties

related to the homogeneity of the items that are used by the recommendation systems.

The Data Persistence grouping is taking into account properties that are related to the time

period that the data become relevant and, consequently, valid for producing relevant recommenda-

tions. These properties are related to the items persistence since, in some cases, items are changing

rapidly, e.g. the news that are changing every day and also the taste persistence, like in example

the changing of taste in books or music.

The use of properties that a recommendation technique is using, in combination with the se-

lected technique can distinguish the Collaborative Filtering in Memory-based and Model-Based

Collaborative Filtering recommendation systems. As mentioned above, the Memory-based Col-

laborative Filtering uses the entire or sample of the user-item relationship to generate a prediction.

Every user is part of a group of people with similar interests, and thus in memory-based Collabo-

rative Filtering a usual methodology to use is the finding of users similar to the active user (called

neighbors). Based on the preferences of the users who belong in the neighborhood Collabora-

tive Filtering, then generate preference relationships and recommendations. From the described

techniques in the previous paragraph, in memory-based recommendation filtering techniques the

similarity distance techniques used to measure the distances between the users’ preferences can

be included. By including these, it is possible to cluster or classify users into groups based on

their preferences. Model-based recommendation techniques use more complex computations,

which are based on data modelling and probabilistic models. The model-based techniques use

machine-learning algorithms and training data, to produce intelligent predictions based on the

trained data-models. Examples of model-based recommendation techniques are the Bayesian rec-

ommendations and Rocchio’s algorithm based recommendations.

75

GEORGE A. S
IELIS

A comparison between Model-based and Memory-based recommendation algorithms is de-

picted in Table 1, which summarizes the strengths and weaknesses between the two categories of

Collaborative Filtering techniques.

Strengths

One of the strengths of the Collaborative Filtering recommendations is its ability to collect

information about the produced recommendations. The Collaborative Filtering techniques use all

the data that is related to an item and thus, after the recommendation is computed the data related

to each item could be used as explanatory information presented to the user. This helps the user

understand why an item is recommended to them and how the recommended item can be used.

Easy creation and usage - Collaborative Filtering algorithms in some cases might be complex

especially in the probabilistic and AI ones. In contrast to that, the development of a Collaborative

Filtering Recommendation system is more easily created and used. This is because there is no

need to transform or adjust the data that will be analyzed by the recommender system since this

is done by the algorithms applied. Thus, a Collaborative Filtering algorithm can be very easily

applied to a recommendation engine.

New data can be added easily and incrementally. In CF the data are used as input to the

CF algorithms to be used for the computations of the recommendations. The collection of the

data is based on the data model that a system is using and it has nothing to do with the CF

algorithms. Therefore, new data can be easily added in a recommendation system and the new

data will participate in the CF executions without the need for modifications to the algorithms.

Weaknesses

Data Sparsity - Collaborative Filtering recommendation systems usually analyze large datasets

for the production of recommendations. In many cases, the relations between users and items

appear to be extremely sparse especially in the cases of a new item or a new user. This problem is

76

GEORGE A. S
IELIS

Table 1: Strengths and Weaknesses of Collaborative Filtering techniques categories

Collaborative filtering

techniques

Strengths Weaknesses

Model Based Is highly scalable regardless of

the amount of data

Most calculations are done off-

line so that may be highly so-

phisticated and scalable

A list of recommendations is

produced very quickly

The results are not so accurate

because the data used in the pro-

cessing is a subset of the com-

plete dataset

New data cannot easily be used

in the computations because the

large amount of data that is al-

ready involved in the calcula-

tions can rarely overlap

Memory Based High level of accuracy because

of the use of the complete

dataset

The implementation of these al-

gorithms is simple because the

results of these algorithms must

be produced fast

All the data correspond to ”real

time” situation

Sensitive to profile injection at-

tacks

All calculations must be made

on-line

The cold start situations are very

common

They appear to have perfor-

mance problems because of the

growing volume of data which

are stored in memory.

77

GEORGE A. S
IELIS

also known as Cold Start problem [194] [3]. In such cases it is very difficult to find similar users or

similar items because of the lack of information of the new entered user or item which can cause

the lack of recommendations or the inaccurate recommendation results.

Scalability - Collaborative Filtering is using the whole set of data for generating recommen-

dations. The continuous growth of data repositories is usually causing scalability problems since

for large repositories the filtering is done through millions of items. The problem of scalability is

mostly observed in web-based recommendation systems where the rabid increment of data repos-

itories is huge and, therefore, the scalability problems reflect in problems related to the time of

execution and problems related to the accuracy of the recommendations.

Grey Sheep - Refers to the users whose opinions do not agree or disagree with the groups

of users belonging in a system. Therefore, those users cannot benefit from collaborative filtering

since the lack of relationships between a Grey Sheep and the other users of the system makes the

production of recommendations difficult.

Synonymy - Refers to the tendency of some items that are similar or the same, to appear with

different names. In these cases, it is noticed that these items are stored as different items and they

are treated as individual items instead of one common item.

Shilling Attacks - In a recommendation system where everyone can give the ratings, people

may give lots of positive ratings for their own items and negative ratings for their competitors. It is

often necessary for the collaborative filtering systems to introduce precautions to discourage such

kind of manipulations.

4.4.3 Knowledge-based recommendations

Although that the most used recommendation systems are the collaborative filtering recom-

mendations and the content-based systems (especially for commercial purposes), there are cases

78

GEORGE A. S
IELIS

that the two types of recommender systems are not so convenient to use. More specifically, in

cases where a lack of ratings exists or in cases where the recommendations are expected to be the

outcome of explicit requirements from complex domains, it is difficult to use the two recommen-

dation systems mentioned above. For example, five year-old-ratings for computer systems might

be rather inappropriate for content-based recommendations, or a complex query for car searching

with explicit requirements such as “black car with maximum price x” cannot be used by the typ-

ical, collaborative or content-based recommendation systems [82]. These limitations can be dealt

by using recommendation systems known as Knowledge-based recommendation systems which

do not directly use the ratings given by the users, but try to predict the ratings through similarity

metrics between the users and the items related with them, or with the use of recommendation

rules that take into account the requirements that the user explicitly inputs. Knowledge-based

recommendation systems produce results through interactive methodologies. The usual method-

ology used is the presentation of recommendations produced by content-based similarities based

on the input given by the users and then reproduction of recommendations based on refined input

given by the users. Burkle [30] characterizes these systems as conversational systems that guide

the user in a personalized way to interesting objects or useful objects in a large space of possible

options or that produce such objects as output. Knowledge-based recommendation systems are

characterized by the “short term” information retrieval. Their common attribute is the fact that

the recommendations generated are filtered through existing databases or knowledge bases which

are not dynamically changed because of ratings or recent preferences. Therefore, they are mostly

used in systems where the users are visiting to get the information needed and once they get the

expected results, they might not use the recommendation system again (e.g. find a car and after

buying the car they do not search again for cars).

79

GEORGE A. S
IELIS

Knowledge-based recommendation systems are divided into two subcategories: 1) Case Based

Reasoning Systems and 2) Constrained Based Systems. Both types are based on producing recom-

mendations by filtering existing items in a knowledge base, with different attributes by limiting the

recommended subset to include items that are closer to the user’s preferences. The two knowledge-

based algorithms differ in the interaction methods they use to collect the information needed to

filter the main set of items into the most relevant subset of items. For a better understanding, the

two types of knowledge-based recommender systems are described below.

Case Based Systems - Case-Based Recommendation systems are based on the case-based

reasoning. Their reasoning relies on the similarity between an existing case and the solutions

that already exist in a database. The interaction with a CBR System consists of four steps cycle

Retrieve, Reuse, Revise and Retention [43]. The interaction starts by the definition of a Case which

is the description of the requested target with the use of query attributes. The query attributes are

defined by the user. After the definition of the case, the next step is the retrieval of previous cases

that can solve the current case. Then the user can select one of the recommended solutions as the

one which is closer to their initial preferences (reuse) and then revise their query based on the last

selection. This can be repeated until the recommendation results are closer to the initial case and

the user can retain the best solution provided by the system.

Constrained-Based Systems - Based on a given set of preferences by the user, Constraint

Based Systems provide a set of possible solutions including explanations as to why these solutions

were selected. A Constrained Satisfaction Problem as it is defined in [82], is described by three

sets of variable V , D and C. V is a set of the customer requirements combined with a set of

product properties. For example, customer requirements can be the maximum and minimum price

of a product which denotes the price range of a product that the user is searching for. A product

80

GEORGE A. S
IELIS

property can be the CPU speed which denotes a computer system property or the max-storage

which denotes a property for a hard drive, usb or any other storage device.

As mentioned in [82], Constraints set can be of three types: Compatibility Constraints, Filter

conditions and Product constraints. Compatibility Constraints define the allowed property defini-

tions that a user can set; Filter conditions define the relationships between the user properties and

the product properties and Product constraints define the currently available product assortment.

Strengths

• The repetitive interaction helps the user to get the most relevant to the initial task results

• Provision of recommendations without being necessary to create user profile

Weaknesses

• Cold Start is one of the problems. Without an existing database it is not possible to ably a

knowledge based recommender system

• The results are not ranked. The priority of the results can be based on explicit properties

given by the user and not based on the similarity between the results or based on the user

preferences.

• Re-use of existing solutions is not used to build user-to-user relations because of the short

term usage of the systems

4.4.4 Trust-based Recommendations

Trust-based recommendations (TR) are an enhancement of the classical recommendation tech-

niques that attempted to improve the accuracy of the recommendation results taken from the well-

known collaborative filtering techniques. The logic behind TR is the use of graphs representing

81

GEORGE A. S
IELIS

the relation between users and items based on their connection on particular attributes. TRs are

commonly used in social networks where a huge number of users are connected within the net-

work and usually the users are connected because of a reason or an attribute. O’Doherty [120]

mentions “trust has been shown important improvements to the traditional techniques. The dif-

ferentiation between the trust-enhanced methods is the acquisitions of trust values between pairs.”

The enhancement of trust-based techniques in relation to the traditional collaborative techniques

considers the replacement of the similarity measure used in the formulas, with the trust factor

between pairs of users. This factor is used as a weight factor for the ratings of items during the

computation of recommendations r(u, i) where u is the user and i is the item.

For better understanding of the Trust Recommender Systems we present some of the trust

enhanced techniques and recent research works related to TR systems.

Trust – Based weighted mean:

ru,i =

∑v∈RT

v tu,vrv,i∑v∈RT

v tu,v
(8)

The Trust-Based weighted mean present the trust between users’ u and v as a weight value in

place of the similarity measure between users’ u and v. Trust-based Collaborative Filtering

ru,i = mean(ru) +

∑v∈RT

v tu,v(rv,i−mean(ru))∑v∈RT

v tu,v
(9)

This formula is a refinement of the Resnick’s formula where the Pearson’s Correlation Coeffi-

cient is replaced be the trust factor t as a ratings weight factor. Trust filtered mean

ru,i =
i

|RT |

v∈RT∑
v

rv,i (10)

82

GEORGE A. S
IELIS

This equation presents a trust-filtering method, whereby the users who rated item i are filtered

according to their trust values, where only the users who are trusted above a certain threshold are

used in the computation of predicting a rating. Using these users, we then take a simple average

of their ratings for item i. This method provides results according to the idea that “users are more

likely to accept recommendations from their most trusted friends” [120].

In the existing literature more techniques and trust-based enhancement can be found such as

“Ensemble Trust” [181] and Trust-filtered collaborative filtering [121].

Strengths

• High accuracy recommendations, better than the usual collaborative filtering techniques

• Better results in relation to the satisfaction and coverage

Weaknesses

• Cold start is one of the problems that Trust algorithms can face, since there must be a

network with the corresponding associations between the users.

• The evaluation results are analogous to the size of the network and the associations between

the members of the network. So the evaluation results differ according to the dataset size.

4.4.5 Context-Aware Recommendation Systems

Context Awareness in Recommendation Systems involves the use of data that characterizes

an entity in order to use them as contextual information for the computation of recommendations,

wherever this is needed. Through the general overview in Recommender Systems, it became

noticeable that the major effort in building recommendation systems is the well-modeled infor-

mation that the Recommendation Systems for their computations. Using the latter as a principle

for the development of Recommendation Systems, Context Awareness is used as a means for the

83

GEORGE A. S
IELIS

collection of the valuable information that characterizes entities within a system. Adomavicius

[3] correlates the context with topics that are related with Recommender Systems, such as Data

Mining, e-Commerce Personalization, Ubiquitous and mobile Context Aware Recommender Sys-

tems and Information Retrieval aiming to demonstrate the need of Context within Recommender

Systems.

Context Aware Recommendation Systems (CARS) depend on how well the context is mod-

eled and, for that reason, there are several context modeling and context representation techniques.

These techniques are used in modeling the contextual information in Recommender Systems but

with the modifications that each particular recommender system requires in order to use this infor-

mation to generate recommendations for the domain that the system will be applied to. Recom-

mendation Systems, in general, produce their recommendations with the use of relations between

users and items by measuring the similarity distances between the users or by taking into account

the ratings that the users give to items. CARS include additional information in their computations,

that which is related to the users or the items but that is not visible by the users. Such information

is the user’s demographic data, the time of data retrieval and any other information that might

influence the recommendation results. To facilitate understanding, an example that describes the

contextual model of a Collaborative Filtering Recommendation System is given by [3]. In this

example, a common Collaborative Filtering Recommendation System for the recommendation of

movies uses the ratings of the movies given by the users. In that simplified form the Ratings of the

movies are modeled in a two-dimensional space as the cross product between Users and Movies

as

Users×Movies→ Rating (11)

84

GEORGE A. S
IELIS

If we consider that there is additional information that can influence the ratings such as the

Theater where the movies are shown, the time that the movies were produced or viewed by the

users, the social background of the user, the language that a user prefers and any other information

that is related to the movies and the users, then this additional information is considered as context

and transforms the rating computation from a two dimensional space into a multidimensional

space where the Rating of a movie is changing into:

Users×Movies× Context→ Rating (12)

In other words, the key in CARS is the identification of the information that can be used as

context, as well as the estimation of how significant each contextual factor is for the recommen-

dations.

Strengths

• Context Aware Recommendation systems can use or remove particular contextual factors

that can improve the quality of the recommendations.

• Context filtering produces more targeted recommendations. For example recommendations

that take into account contextual factors, such as location and time will be modified accord-

ingly.

Weaknesses

• High complexity that depends on the number of contextual factors involved in the compu-

tations.

85

GEORGE A. S
IELIS

4.5 Popular Recommendation Systems

Collaborative filtering approaches are the most commonly used in existing commercial tools.

In general, the correlation of items to users or the correlation between users’ preferences offers

qualitative and accurate recommendations. Two of the most known commercial tools that use

collaborative filtering methods are the Amazon.com and the Netflix.com. The two of them con-

sist of (probably) the largest user-items rating databases and their recommendation systems is

always state of the art in the current topic. The common attribute in the collaborative filtering

recommendations is the fact that the recommendations are using ratings for the computation of

recommendations. The ratings vary to the rating correlation they use for example item-to-item

or user-to-item correlations which are used to predict a single user’s preferences. In the existing

literature, several content-based recommendation systems, also exist. The application of content-

based recommendations usually differs on the domain that they are developed for and based on the

domain the produced recommendations is also different. In this paragraph we will depict some of

the existing recommendation systems:

Amazon.com - Amazon has one of the best recommendation engines. It uses the so-called

correlation matrix to generate associations between users and items and thus associations between

items to items. Amazon introduced the recommendation methods “Users who bought this they also

bought. . . ” or “Users who viewed this also viewed this. . . ”. Amazon is a commercial platform

that trades products of several domain contexts such as books, electronics, housing material, etc.

Netflix.com - is a movie-rating platform on which users can rate movies they have already seen

and get recommendations of movies they will probably like. The main association attribute that the

Netflix recommendation engine is using is the rating that each user gives for each particular movie.

86

GEORGE A. S
IELIS

Based on the user-item collaborative filtering, Netflix applies other variations of collaborative

filtering algorithms aiming to the accuracy of the recommendation results.

Letizia [95] is a web browser agent which tracks the user’s browsing behavior such as the

links, searches or requests for help, and tries to anticipate what items may be of interest to the

user. Letizia builds a personalized model consisting of keywords related to the user’s interests.

The keywords are collected from the meta-data that each visited HTML page contains. Using

the collected keywords it then relies on implicit feedback given by the user to infer the user’s

preferences. A problem on Letizia is the lack of natural language capabilities that can extract

grammatical and semantic information. The use of such language capabilities would improve the

recommendations accuracy.

Personal WebWatcher [112] is a system that observes users in the web and suggests pages

they must be interested in. It also uses the “visited documents” included in the ‘visited pages’

to create a user model by considering the “visited” documents as a successful suggestion and

the ‘not visited’ ones as unsuccessful. Personal WebWatcher uses two Machine Learning clas-

sification algorithms for modeling the users’ interests, the Bayesian and the k-Nearest. By the

experiments described in [112] a problem that was found using the Personal WebWatcher was that

the increment of the data vector size influences the accuracy of the recommendations negatively.

Syskill & Webert, [130] [129] identifies informative words from Web pages to use as Boolean

features, and learns a Naive Bayesian classifier to determine the interestingness of pages. Syskill

& Webert system was designed as an aiding tool that determines whether a page on a topic is

interesting for the user or not.

ifWeb [6] is a content-based recommender system which supports the user in executing spe-

cific tasks without imposing specific solutions or decisions. ifWeb uses two recommendation

87

GEORGE A. S
IELIS

operations, the navigation and document search operation. For the navigation operation the sys-

tem collects web documents, it analyzes and classifies them in a structured representation of the

documents that have been accessed by the user. For the document search the system autonomously

performs an extended navigation in the web retrieves and classifies web documents based on a spe-

cific document pointed by the user. The model used by ifWeb is constituted by a set of attribute-

value pairs corresponding to the structured part of the documents such as host, size, number of

images, etc. and a weighted semantic network whose nodes correspond to terms (concepts) found

in documents and where arcs link terms which co-occurred in some document.

Amalthea [114] is a multi-agent ecosystem that assists users in coping with information over-

load in the World Wide Web and, in particular, it tries to identify potential sites of interest to the

user based on the user’s model. Amalthea uses machine-learning algorithms to learn the user’s

habits and interests, and adapt its recommendation results to the user’s interests. Amalthea uses

a combination of two keyword based representation of documents, which are the weighted vector

representation and evolutionary mechanisms which they are used for ranking the results based on

the fitness measurements of the system.

4.6 Recommendation Frameworks-Engines

The development of a recommendation engine is a highly complex process. A recommenda-

tion system depends on the type, the domain of its application and the context that each recom-

mender system is applied to. The development of a single algorithm and its recommendations

results presentation is only one part of the overall process and probably the most important one.

Yet when a recommendation algorithm is designed with the aim to be applied in a commercial

application is, it really needs the development of a complete recommendation framework to sup-

port all the partial development pieces that such an engine includes. From the practical point of

88

GEORGE A. S
IELIS

view, this is not necessary because of the existence of frameworks that contain all the necessary

parts of a recommendation system and the developer’s work is only focused on the implementation

of the premised recommendation algorithm. The most common methodology that a recommen-

dation system engineer must follow is to design a recommendation algorithm and apply it in an

existing recommendation framework or engine, in order to evaluate it and modify it according to

the final needs of the application. The next step is to reduce the designed algorithm and apply

it into a real world application using the appropriate modifications based on the context of the

application. Therefore, for the development of a recommendation system of any type, it is a good

practice to find an existing recommendation framework on which the algorithm will be developed

and applied, and then find the appropriate transformation method in order to apply it to the final

application. In this section, some of the most-known recommendation engines and frameworks

will be depicted.

Apache Mahout (http://mahout.apache.org/)– is an open source machine learning library. Ma-

hout is mainly implements recommendation algorithms (in particular collaborative filtering algo-

rithms), clustering and classification algorithms. Mahout is written in java and it is open and

scalable so developers extend or use the existing algorithms.

Lenskit (http://lenskit.grouplens.org/) – is an open source toolkit for building, researching and

studying recommendation systems. It is written in java and it is a very flexible tool for applying

a new recommendation algorithm. Lenskit is a great tool for experimenting and evaluating al-

gorithms using different evaluation strategies. One of the minors that lenskit has is the lack of

documentation especially for new developers in the topic of recommendation systems.

EasyRec (http://easyrec.org/)– EasyRec is a web based recommendation engine by which any

web page can add recommendations through integration to easyrec via web services. EasyRec

as an open source application can be setup on a dedicated server where a web application can

89

GEORGE A. S
IELIS

be built as an extension of EasyRec or integrate the web page with EasyRec via predefined web

services. EasyRec supports collaborative filtering recommendations and gives the flexibility to the

developer to define and set customized recommendation filtering rules.

IwebProj [105] – IwebProj is a java based recommendation engine which offers to the de-

veloper the flexibility to develop recommendation applications. It guides the developer through

already implemented applications of different kinds such as collaborative based and content-based

applications. For the development of a new recommendation application IwebProj offers the cor-

responding API and libraries to accomplish that.

jCollibri (http://gaia.fdi.ucm.es/research/colibri/jcolibri) – jCollibri is an open source java

based Case Based Reasoning framework. jCollibri provides a reference platform for the devel-

opment of CBR applications. It is well structured and scalable so developers can develop CBR

applications easy and fast. It also provides the CBR studio which offers to the developers stan-

dardized CBR templates which guide developers to setup a CBR application with minimum coding

effort. jCollibri divides the lifecycle of a CBR application into standard coding parts for the facil-

itation of the programming of each particular phase and it has in its core application an extensible

recommendation engine with a number of implemented recommendation algorithms.

By the selection of a recommendation algorithm or filtering method it is a good practice to

also select a good recommendation framework to develop the algorithm. In the existing literature,

there is a variety of recommendation algorithms and methods which are different in the quality of

their recommendations, which lead to the satisfaction or un-satisfaction of the end users accord-

ing to the task they have to accomplish. Therefore, the above recommendation methods support

functionality for the evaluation of recommendation algorithms using specific evaluation metrics.

90

GEORGE A. S
IELIS

4.7 Evaluation for Recommendation Systems

Shani [148], separate the recommendation systems evaluation in three experimental levels.

The separation of the evaluation into levels facilitates the evaluation of Recommender Systems by

comparing them to each other. The evaluation levels depend on attributes and characteristics that

each system has. Moreover, the type of evaluation that can be applied to recommender systems de-

pend on the data model that a recommender system is using, the domain that the Recommendation

System refers to and the type of the expected results. Thus, Shani [148] separate the evaluation

of Recommendation Systems into the following three levels: off-line experiments, user studies

and online evaluation. In the same work it is highlighted that for each recommendation system

evaluation experiment setup it is important to follow the following basic guidelines:

• Before running an experiment a hypothesis must be formed

• When comparing candidate algorithms on certain hypothesis, all variables that are not tested

will stay fixed

• When drawing conclusions from experiments, the extracted conclusions must be able to

generalize beyond the immediate context of the experiments.

The evaluation of Recommendation Systems is the proof that the developed system and its

recommendation algorithm produce the desirable recommendations. Thus, the evaluation process

must be taken into account from the design phase of a Recommendation System to its final de-

velopment. The awareness of how a Recommender System will be applied, aids to design the ap-

propriate evaluation experiment that corresponds to what the Recommendation System is focused

on. For example, there are Recommendation Systems that target the accuracy of their results and

others that target the users’ satisfaction. This is why the above three guidelines are important for

the facilitation of the Evaluation of the Recommendation Systems.

91

GEORGE A. S
IELIS

4.7.1 Evaluation Metrics for Recommendation Systems

Recommendation systems aim at offering alternative selections related to the context of the

working environment or application that is the recommendation system is applied on, as well as

based on the user preferences and actions. A successful recommendation is the recommendation

that got selected by the user but at the same time satisfied her/him. The satisfaction of the user

can vary according to what the user wants to achieve. For example, on a movies recommendation

system a user may select to see the description of several recommended movies but only one or

two of them can satisfy their taste. In this example, the task is to find a movie to see. In a project

management software a recommendation system can be used to produce recommendations of

people for the formulation of a working group. In this case, the task is obviously different and the

satisfaction factor becomes more complex, since satisfaction factor becomes a variable that can

change in the future. In this section, several evaluation metrics that are traditionally used for the

recommender systems evaluation, are examined.

4.7.1.1 Prediction based metrics - Accuracy metrics

Para et al. define the prediction metrics as the metrics which are used to compare which

Recommender System makes fewer mistakes when inferring how a user will evaluate a proposed

recommendation. The common usage of recommendation algorithms is to analyze the user’s

data and produce recommendations based on the similarity of an active user and others, or based

on the similarity of the user’s preferences and the preferences of other users. Considering that

this production of recommendations, in this manner, are based on numerical computations, the

recommendation results are the outcome of several equations which are applied to specific data

models. In such cases, the interest in evaluating the algorithms is focused on the validity of the

computations, and the closeness of the recommendation results according to the user preferences.

92

GEORGE A. S
IELIS

We can consider these results to be the most “logical results” that a recommender system can

produce. Therefore, the evaluation metrics which are used are straightforward since the evaluation

can be done using the same datasets as input into different similarity algorithms.

Based on [44] “accuracy metrics measure the quality of nearness to the truth or the true value

achieved by a system” and usually accuracy is measured using the following expression.

accuracy =
number of successful recommendations

number of recommendations
(13)

A more flexible metric used as a prediction metric is the Mean Absolute Error (MAE). MAE

measures the average absolute standard deviation between each predicted rating and each user’s

real selections. For better understanding we depict the MAE equations as they are used in [127].

MAE =
N∑
i=1

|pi − ri|
N

(14)

Where pi is the predicted rating ri is the actual rating andN is the total number of predictions.

For cases with larger deviances from the actual ratings the Means Squared Error MSE is used

instead of MAE.

MSE =
N∑
i=1

(pi − ri)2

N
(15)

4.7.1.2 Information Retrieval Related Metrics

Information Retrieval refers to the recommendation of items based on their content. Such

recommendations might be documents which are recommended with the use of tag based filtering

methods. The metrics used for the evaluation of such recommendations does not rely on the user’s

preference through ratings but in most of the cases the metrics which are used rely mostly on the

93

GEORGE A. S
IELIS

usefulness of the recommendation or the user’s satisfaction. The most commonly used metrics are

the recall and precision or the Discounted Cumulative Gain (DCG).

According to [104], precision is the fraction of recommended items which are relevant and it

is expressed as

Precision =
|relevant items recommended|

|items in the list|
(16)

Recall is defined in [104] as the fraction of relevant recommendations that are presented to the

user and it is expressed as

Recall =
|relevant items recommended|

|relevant items|
(17)

The recommender systems produce a list of recommendations which are subsets of a larger

set of data. The precision is the rate of the recommended subset in relation to the overall list of

items and recall is the rates the actual relevance of the recommended items in comparison to items

which are already known or characterized as relevant. The necessity of knowing the relevant

items in order to be able to compute the recall metric led [79] to characterize recall as useless

for the evaluation of a Recommender System. Overcoming the latter characterization for recall,

recall is useful in cases where the evaluation of Recommender Systems is done with the use of

datasets for which the recommended items and the user preferences already exist. Therefore, in

such cases recall in combination with precision can give valid results according to the accuracy

of the recommended items but not so valid results regarding the user’s satisfaction and the actual

relevance of the recommended items for a particular user.

Discounted Cumulative Gain (DCG) [83][84] - Discounted Cumulative Gain is used for mea-

suring the effectiveness of recommendation items based on their order of appearance. Usually, the

94

GEORGE A. S
IELIS

recommended items are presented ranked from the most to the less relevant. DCG is using the

ranked recommended items by using two assumptions; firstly that the highly relevant items are

more useful for the user (of any relevance level) when appearing at the top of the recommended

items list and, secondly that highly relevant documents are more useful than marginally relevant

documents [83].

Discounted Cumulative Gain is defined as:

DCG =

p∑
i

2reli−1

log2(1 + i)
(18)

Where p is the position of the item in the ranked list and reli is the graded relevance of the

item at the position i.

Maximum Margin Matrix Factorization (MMMF) - MMMF is an effective method used for

the estimation of the rating functions by taking advantage of the collaborative effects such as

rating patterns from other users which are used to estimate ratings for the current user [188].

The features extraction with the use of the MMMF method is domain specific. For instance, the

extraction of features used for the recommendation of books is not the same as the features used

for the recommendation of movies.

The definition of the MMMF method given by [136] is: “Given a partially observed n × m

matrix Y , let us find a matrixX of the same size that provides ‘best’ approximation for unobserved

entries of Y with respect to a particular loss function, such as sum squared loss for real-valued

matrices, 0/1 loss or its surrogates such as hinge loss for binary and ordinal matrices, and so on.”

4.7.1.3 Diversity, Novelty and Coverage

The evaluation of recommender systems is usually related to accuracy. Thus, most recom-

mender systems are measuring their success using precision and recall to prove the correctness of

95

GEORGE A. S
IELIS

the results, but this is not always what a user expects from a recommender system. A well-designed

recommender system with high accuracy in its results usually gives recommendations that the user

is aware of. For example, in a movie recommendation system if the user likes Steven Spielberg

movies, then the recommender system will include in the recommendation list all movies directed

by Steven Spielberg. From the accuracy point of view, this is correct and the recommendation

list can be considered successful. From the user’s perspective this is not always the expected re-

sult. The user will consider a recommendation list as successful if it contains movies that they

are not aware of but at the same time are satisfying her tastes [110]. Therefore, apart from ac-

curacy, it is also very important for a recommendation system to produce useful and satisfying

recommendations. Measuring usefulness and satisfaction regarding the recommendation results

is a challenging research topic since both metrics are linked to the subjective opinion of each

particular user and also depend on the context supporting these recommendations.

For the differentiation between accuracy and satisfaction or the accuracy and usefulness, three

new metrics have been introduced. These are the Diversity, Novelty and Coverage. The novelty of

a piece of information generally refers to how different is the piece with respect to “what has been

previously seen”, by a specific user, or by a community as a whole [31]. Diversity generally applies

to a set of items, and is related to how different the items are with respect to each other. Coverage

refers to the percentage of items, part of the problem domain, that a recommender system can

produce for a user or a group of users. Ziegler et. al [196] propose the Intra-List Similarity for

measuring the diversity of a recommendation list. Intra-List Similarity takes into account any kind

of features and it is defined as:

ILS(Pwi) =

∑
bk∈ϑPwi

∑
be∈ϑPwi,bk 6=be

c0(bk, be)

2
(19)

96

GEORGE A. S
IELIS

Where c0(bk, be) is the similarity between the two items bk and be and Pwi is the intra-list

similarity of a list. The algorithm presented in the same work denote that by using the Intra-List

similarity formula, if the positions of recommendations in a Top-N list Pwi rearranged the Pwi

Intra-List recommendation is not affected.

4.8 Conclusions

By reviewing the recommendation systems types and filtering techniques we can see that re-

search in the topic of recommendation systems is challenging and at the same time very interest-

ing. The plurality of algorithms and recommendation filtering methods can be used for different

types of recommendations based on the domain they are applied for. The selection of particular

methods to apply in a recommendation system is based on the desired recommendation results.

Thus, the development of a recommendation algorithm must be accompanied by the correspond-

ing evaluation metrics. This chapter gave readers an introduction to the area, through the overview

of the types of recommendation systems, the frameworks they can use for development and the

metrics that can be used for recommendations evaluation. Specifically, it addressed the following

main topics: presentation of the functional architecture of a recommendation system; the types

of recommendation systems that exist; the filtering and similarity methods used by recommender

systems; some of the most-known frameworks that can be used for the development of recom-

mendation systems and also the most important evaluation methods and metrics that can be used

for evaluating the recommendation systems. We concluded the chapter with a subjective selection

of topics considered as emerging challenges, elaborating on possible future directions of recom-

mender systems research.

97

GEORGE A. S
IELIS

Table 2: Strengths and Weaknesses of the Different Types of Recommendation Systems

RS Type Strengths Weaknesses

Collaborative

filtering

Participation of all data in the fil-

tering process

Easy Creation and usage

Addition of new data easily and

incrementally

Data sparsity

Scalability

Grey Sheep

Synonymy

Shilling Attacks

Knowledge Based The repetitive interaction with

the user helps the user to get the

most relevant to the initial task

results

Provision of recommendations

without being necessary to cre-

ate user profile

Cold Start

Recommendation results rank-

ing

Re-use of existing solutions is

not used to build user to user re-

lations.

Trust Based High accuracy recommenda-

tions, better than the usual

collaborative filtering tech-

niques

Better results in relation to the

satisfaction and coverage

Cold start

The evaluation results are analo-

gous to the size of the network

and the associations between the

members of the network.

Context Aware Quality of the recommendations.

Targeted recommendations.

High Complexity

98

GEORGE A. S
IELIS

Chapter 5

Creativity and Creativity Support Tools

5.1 Introduction

From the beginning of 19th century, psychology researchers were concerned with the investi-

gation of creativity. The artistic evolution and the scientific achievements of the epoch generated

an abundance of questions about creativity, such as where creativity comes from; why some peo-

ple are more creative than others; whether creativity can be modelled; what the relation between

creativity and intelligence is. These questions established creativity as a research topic which

continues to generate extensive investigation. The psychological approach to creativity research

produced theoretical creativity models. Today, researchers use these psychological creativity fun-

damentals to link the study of creativity with other research areas such as education and computer

sciences. One of the challenges in current creativity research is to further explore the impact that

technology can have in this area. It is necessary to understand creativity and its dimensions in

order to construct computational models.

In order to define computational methods that can support and enhance creativity with the

use of the computer, it is important to track down the creativity types, creativity levels, steps

of the creative process, and human factors influencing creativity. The development of cooperative

99

GEORGE A. S
IELIS

computer systems and the facilitation in creating social networks using the Internet, in conjunction

with the aforementioned, can identify creativity techniques. The creativity support tools can easily

simulate these techniques.

5.2 Creativity Models

One of the aims of the current chapter is to define and to design a generic conceptual model

for creativity. To achieve this task, it is necessary to examine the several creativity models from

the literature and to clarify its aspects in order to identify its constructive parts.

Dewey (1910) modelled creativity through an empirical state of view as a combination of

five actions: Wallas (1926) modelled the process of creativity as a four-step process preparation,

incubation, illumination and verification; Guildford (1950) argued that the Wallas model could

not satisfactorily describe the creativity process; Barron (1988) gave a psychological perspective

to creativity and his model consisted of four-step definition of creativity.

Dewey’s (1926) described one of the earliest models for creativity. He described the process

of problem-solving as a combination of five-action steps [168]. In his attempt to give an emotional

tone to the steps, he defines the first step as the feeling of difficulty, the second as the identification

and the localization of the difficulty, third step as the consideration of the possible solutions, fourth

step as the evaluation of the consequences of the found solutions, and the fifth step as the selection

of a solution as the accepted one.

Later Wallas studied the writings of creative people and generated a model for the process of

creativity, which consisted of four steps. The Wallas model until today,is concerned with descrip-

tion of the creative process. Wallas goes beyond the Dewey’s sequencing to include unconscious

processing and the experienced “Aha” described by many creators. The first step of the model is

the preparation, the incubation, the illumination and the verification. During the preparation phase,

100

GEORGE A. S
IELIS

the creator is able to gather information about the problem in order to come up with the best ideas.

During the incubation, the creator does not consciously think about the problem and goes about

other activities, while at some level the mind continues to consider the problem or question. The

illumination is associated with the “Aha” experience. At this point, the ideas suddenly fit together

and the solution becomes clear. The verification step is used to check the practicality, effectiveness

and appropriateness of the solution.

Guildford (1950) believes that creativity is in all of us and can be measured with a psychomet-

ric approach using paper and pencil tasks. Based on Guildford’s work, Torrance (1974) developed

the Torrance Tests of Creative Thinking. The creative tests are of two types; those that involve

cognitive affective skills and those that attempt to tap into a personality syndrome [149]. A model

of creativity closed to the Wallas model is defined by Barron (1988). Barron gives a psychological

perspective to creativity and his model consists of a four-step definition of creativity: Conception,

Gestation, Parturition and Bringing up the baby.

In most recent research outcomes related to creativity, Atman et al. [8] proposed nine design

steps that are more relevant to engineering and that are being increasingly used in the commercial-

product design life-cycle:

• Problem definition

• Information gathering

• Generation of ideas

• Modelling

• Feasibility Analysis

• Evaluation

101

GEORGE A. S
IELIS

• Decision

• Communication

• Implementation

Finally Schneiderman [152] proposed the eight steps of creativity:

• Searching & browsing digital libraries

• Consulting with peers & mentors

• Visualizing data & processes

• Thinking by free associations

• Exploring solutions, What if tools

• Composing artifacts & performances

• Reviewing & replaying session histories

• Disseminating results

5.3 Types of creativity

The examination of the different creativity models reveals the multidimensional character of

creativity. Thus, it is hard to describe creativity with an explicit definition and several definitions

can be found in the existing literature, with variations. Therefore, creativity is a sequence of steps

or actions, and the type of creativity depends on the strategy or pattern which is used by people in

order to achieve creativity.

Cougar [39] perceives creativity at three levels: as discovery - idea generation, as invention

- development of ideas, and as innovation - transformation of ideas into services [87]. Sternberk

102

GEORGE A. S
IELIS

[169] correlates creativity to investment theory. This work points to the requirements of creativity

in relation to the investment theory. Thus, creativity requires a confluence of six distinct, but

interrelated resources: intellectual abilities, knowledge, styles of thinking, personality, motivation,

and environment. Sternberk [169] identifies the intellectual skills as follows: a) the synthetic

skill to see problems in new ways and to escape the bounds of conventional thinking, b) the

analytic skill to recognize which of one’s ideas are worth pursuing and which are not, and c) the

practical contextual skill to know how to persuade others to acknowledge the value of one’s ideas.

Knowledge about a field can result in a closed and entrenched perspective of past knowledge. This

can help or it can hinder creativity.

Thinking styles are decisions about how to deploy the skills available to a person. It helps

a person to become a major creative thinker. It is a person’s ability to think globally as well

as locally, distinguishing among the important questions and the non-important ones. Personal-

ity attributes have a great importance for creative functioning. Personality attributes, according

to [169], can be considered as the willingness to take sensible risks, the willingness to tolerate

ambiguity and self-efficacy.

Motivation is also essential for creativity. Motivation is not something inherent in a person.

Therefore, the motivation can relate to the domain and the interests of a person. When a person has

the background knowledge and is interested on a topic, working in a certain area, can be considered

as motivation. The final resource for creativity given by [169] is the environment. Environment

which is supportive and rewarding of creative ideas can enhance creativity. The environment can

offer the creative thinker the internal resources and environmental support that can help the person

become more creative.

Unsworth [180] defines 4 types of creativity based on two dimensions the “driver type” and

the “problem type”: Expected creativity, Proactive creativity, Responsible creativity, Contributory

103

GEORGE A. S
IELIS

creativity. “The driver type” is based on the desire of people to be creative. The initialization of

the wish for creativity is either a personal choice or is due to external demands. For example, the

wish to be creative or to achieve a goal represents an internal driver for creativity. The “Problem

type” is related to the categorization of a problem. The examination in problem-finding research

elaborates to the degree to which the problem has been formulated before the creator begins the

process. These two dimensions, according to [180], define the types of creativity that may exist.

• Expected creativity: Expected creativity is the creativity that is brought via an external

expectation but with a self-discovered problem.

• Proactive creativity: This occurs when individuals, driven by internal motivators, actively

search for problems to solve.

• Responsible creativity: The category in which the individual has the least control over

problem-solving choices.

• Contributory creativity: A type of creativity that is self-determined and is based upon a

clearly formulated problem.

Kirton [100] discovered that people fall into two broad families which represent creative style:

1. People who prefer to take ideas and improve them. These people are fairly cautious, practi-

cal and use standard approaches. They prefer incremental innovation. Their motto is to do

things better.

2. People who prefer to find new ideas by sometimes overturning concepts. These people

challenge and can be risky and abrasive. They are into “big bang” innovation. Their motto

is to do things differently.

104

GEORGE A. S
IELIS

These two families are characterized as Innovators and Adaptors respectively. The Kirton KAI

tool [100] determines the creativity style, not the ability of being creative. The Kirton’s theory is

based on a psychometric approach which classifies the people in the two teams. The categorization

is based on the range of the psychometric tests scores. There is a range of continuum scores from

32 to 160 with a population average 96. People who score above 96 are innovators, while those

who score less than 96 are adaptors. The degree of each depends on how far the individual is away

from the average.

Innovators tend to view problems and novel stimuli in unconventional frameworks and thereby

see those problems in a new way. They tend to search a broader cognitive space in problem-

solving, decision-making, and other creative activities, and prefer generating multiple possibilities

in those activities. Moreover, they tend to be more ready to accept and to initiate change, especially

if the change arises from unexpected sources.

Adaptors have a weak tendency to incorporate a broader framework into their approach to a

problem, decision, or other creative challenge. Adaptors tend to cope with novelties (new unex-

pected stimuli) by assuming that the outset that a relevant paradigm has the power to resolve the

problem posed by the perception of such novelties. Adaptors tend to dominate mature organiza-

tions at any given time and a change like this can become a threat to them.

5.3.1 Computational Creativity Research

As already mentioned, creativity research is related to the Computers Science research. In

the existing research articles, there are several references for computational creative projects. Do-

mains of research such as the interactive music creation, collaborative media creation and explo-

ration, creative writing and the domain of scientific visualization, include paradigms of computa-

tional research in combination with creativity.

105

GEORGE A. S
IELIS

In the domain of interactive music creation MySong [164] automatically chooses chords to ac-

company a vocal melody. MySong research project generates music using an alternative method-

ology compared to the usual artistic method. MySong application trains a Hidden Markov Model,

using a music database and uses that model to select chords for new melodies. The added value

of the application regarding the creativity is localized on the facilitation in creating music without

any musical instrument knowledge background.

Chan and Chew [36] present an automatic style-specific accompaniment. This work pro-

poses general quantitative methods and metrics for the evaluation and visualization of machine-

generated style-specific accompaniment results. ChuckCk [36] programming language combines

music with machine learning algorithms. It is a high-level audio-programming language in which

the programming model promotes a strong awareness of time and concurrency and provides low-

level access over time and concurrency.

The domain of creative writing [81] presents RiTa toolkit. RiTa Toolkit for Computational Lit-

erature is a suite of open source components, tutorials and examples providing support for a range

of tasks related to the practice of creative writing and programmable media. Riedl [135] presents

a story-generating application, which uses artificial intelligence to model the story generation as

a model. The application views the story generation as a problem-solving activity in which the

problem is to create an artifact that achieves particular desired effects on an audience.

Studying the research articles describing the above tools, what is noticeable is that all of the

above are focusing into Artificial Intelligence techniques in order to produce creative results. None

of them is approaching creativity with methods that can simulate end user’s creativeness. The

outcome of those tools is mainly facilitating users without the appropriate knowledge background

in a specific domain to produce a creative result. For example, MySong [164] generates chords

for a given vocal melody and makes it unnecessary for the users to have musical instruments

106

GEORGE A. S
IELIS

knowledge. The current research work approaches creativity as an interactive process. That means

that creative result must be formulated by the end user. The role of a creativity support tool must

be supportive. It is based on the factors and the concepts of creativity knowledge background

of the user. Thus, creative support tool usage is based on the user’s input in order to generate

recommendations that will make the user become more creative when they lack ideas.

In addition to the creativity research projects analysis, we tried to examine some other of the

most known commercial creativity support tools. The usual utilization of creativity support tools

is the simulation of the creativity process in the way that it is defined by a creativity technique.

Usually this constitutes a straight forward procedure, not for the support or the enhancement of

creativity, but to make the computer behave as a substitute of paper or white-board. The most

known creativity support tools like Comapping, Mind Meister, etc. substantiate the latter.

5.4 Creativity Techniques

Today, several creativity techniques are used for the development of the creativity support

tools (http://www.mycoted.com). There exist more than 170 known creativity techniques;

however, many of them are rarely used in existing creativity support tools. The existing techniques

can be grouped according to the result which can be produced from their use. A simple group-

ing of the techniques is given in (http://www.mycoted.com), where techniques are used

forProblem Definition, Idea Generation, Idea Selection, Idea Implementation, Processes.

• Problem Definition is used to clearly define a problem, redefine a problem or specify all the

aspects describing a problem. Creativity techniques used for Problem Definition are As-

sumption Busting, Backwards Forwards Planning, Chunking, Five Ws and H and Multiple

redefinition.

107

GEORGE A. S
IELIS

http://www.mycoted.com
http://www.mycoted.com

• Idea Generation is the process of creating ideas. Creativity techniques used for Idea Gener-

ation are Brainstorming and Taking Pictures.

• Idea Selection is the process of converting the ideas into solutions. Creativity techniques

used for Idea Selection are Anonymous voting, Consensus Mapping, Idea Advocate and

Sticking dots.

• Idea Implementation is the process of making the ideas reality.

• Processes are the schemes and techniques which look at the overall process from start to

finish like Free Writing, Creative Problem Solving, Synectics and Thinkx.

An alternative grouping for creativity techniques is proposed in [66]. Based on the fact that

one of the aspects characterizing a creativity technique is the applicability to the current usage

context, in [66] it is proposed that the grouping of creativity techniques based on the usability of

a technique according to the current context. Two criteria categories of the context factors are

defined; hard criteria and soft criteria. The hard criteria include the physical requirements, single

and group technique and emotions. Soft criteria include the web usable, time and data/technique.

5.5 Creativity Support Tools

Research in creativity led to the development of the creativity support tools as means for

the enhancement of creativity beyond the classic psychometric methods. Creativity support tools

can provide guidance and facilitate the creativity process for the users by monitoring the pro-

cess and the produced results [145]. Creativity support tools are used to simulate the creativity

techniques and to create environments which guide the users in order for them to become more

creative. Throughout the years, a lot of creativity techniques have been proposed. Based on these

108

GEORGE A. S
IELIS

techniques, or a combination of them, a lot of creativity tools were proposed and developed. Con-

sidering the fact that people react differently to each creativity technique and aiming to find how

creativity support tools could enhance the creativity of a person, in this work an evaluation of the

existing creativity tools was made. With the evaluation of the existing tools we aim to track the

characteristics supported, and find the missing points which would enhance the creativity process.

The following creativity support tools were evaluated:

Comapping (http://www.comapping.com): Comapping is a web-based application

that is mostly used for quick and intelligent problem-solving. It supports team collaboration for

solving a problem, even if the teams are separated by geographical or time-zones. It supports

real-time collaboration and asynchronous sharing. The supported techniques of comapping are:

Brainstorming, Mind Mapping (left to right) and Problem Solving. It supports the importing and

exporting of data from and to other creativity tools, in formats like Freemind, Mindmanager and

MeadMap, as well as Microsoft office formats like rich text, presentations, excel, etc. The maps

can be downloaded and stored for offline usage. The meta-model supported is the left to right

mapping.

Mind Meister (http://www.mindmeister.com): Mind Meister is a web-based applica-

tion that supports Mind mapping and Collaborative Brainstorming techniques. It supports import-

ing and exporting from Freemind and Mind Manager Creativity tools. It exports data in GIF, JPG

and PNG format images, in rich text and PDF formats. It also publishes password protected maps.

The meta-model used in Mind Meister is traditional directional maps. It also supports real-time

collaboration.

Google Docs (http://docs.google.com): Google docs are used for the creation of

text documents within the web browser. The user interface resembles the typical word processor.

The created documents can be shared with other users and can be collaboratively authored. The

109

GEORGE A. S
IELIS

http://www.comapping.com
http://www.mindmeister.com
http://docs.google.com

documents can be saved on the local machine of the user, or uploaded from the local hard drive to

the user’s account. They can be exported as PDF, HTML, csv, ods, txt and xls formats. Through the

Google docs tool the user can discuss with other team members, as well as publish the document

on a given URL.

MindManager 8 (http://www.mindjet.com): MindManager 8 uses the mind-mapping

creativity technique. Several features are supported by MindManager 8 thus making it an inter-

active visual creativity application. It interacts with Microsoft office tools like MS Word and MS

Outlook, and offers the user the ability to view and edit Microsoft files directly within the tool.

Web Services for the addition of data to the created maps are supported. The user can collect

data from Google, Yahoo, Amazon and more. It supports embedded web browser and a database

linker to Oracle, MySQL, DB2, MSSQL Server, Access, Excel, CSV and text files. It exports the

map as PDF, image, web page, mpx and Mindjet Player file format. It gives the user the ability

to create a group and organize a meeting with other participants. The selected users are selected

from the user’s contact list. MS Word files, MS Outlook Tasks and MPX files can be imported and

processed. It can be used as a single-user application or as a real-time collaborative application

using file exchange.

Thinkature (http://thinkature.com/): It supports Mind Mapping, Collaborative Brain-

storming and Idea Organization. With Thinkature the user is able to use a white-board to write

ideas. He/she is able to take notes during the creativity process. The composition of a group of

users for collaboration is supported. The selected users can be found from the user’s contact list.

The members of a group can communicate via chat. A user can add images to the map and use

various coloring and fonts formatting, drag and drop topics. The meta-model used is Mind Map

structure. Importing and exporting functionality is not supported.

110

GEORGE A. S
IELIS

http://www.mindjet.com
http://thinkature.com/

TRIZ (http://en.wikipedia.org/wiki/TRIZ): TRIZ is a methodology, tool set,

knowledge-based and model-based approach for generating innovative ideas and solutions for

problem solving. It provides tools and methods for use in problem formulation, system analysis,

failure analysis, and patterns of system’s evolution. The TRIZ approach for problem-solving is

based on finding the best previously well-solved problem and propose the analogous solutions with

the minimum harmful effects. It includes several methods and tools such as, 40 Inventive princi-

ples which are used for the solution of contradictions, contradiction Matrix, which is a database of

known solutions (principles), Technical contradiction method, Physical contradiction method etc.

TRIZ is using ARIZ (a program for the exposure and solution of contradictions); Su-Field Analy-

sis (produces a structural model of the initial technological system, exposes its characteristics, and

with the help of special laws, transforms the model of the problem).

5.6 Contextual Elements for Creativity

From the existing studies in the area of creativity, it is possible to identify the context of

creativity. Based on the definition given for creativity, the significance of the user (or group of

users), social environment and task as contextual elements in formulating a creativity process are

transparent. Each one of these elements constitutes information and includes attributes that can be

perceived as individual entities. The combination of these entities leads to the overall context of

the creativity process.

5.6.1 Description of Contextual Elements

The following entities are considered as “primary” [157] context entities. A description for

each “primary” context entity is given as follows:

111

GEORGE A. S
IELIS

http://en.wikipedia.org/wiki/TRIZ

User: This may include someone’s competences, preferences, etc. This information defines

the profile of a user. This profile can, for example, be used in creating balanced teams or in estab-

lishing the qualification to perform a task. User modeling follows an approach of standard based

modeling suggested in [74] based on a combination of open specifications for learner profiles such

as IEEE PAPI and IMS LIP, where the user’s learning activities are recorded in performance mea-

surements and portfolios. User modeling is mainly used to formulate a profile. The profile defines

the user’s role in the creative process and thereby the context in which someone functions. The

context for user in the recommendation system can be the combination of the user’s actions, at-

tributes as well as their associations with the other context entities that are subsets of the contextual

elements.

Social Environment: This concerns the social background of users and the social environment

in which the learning takes place. This possibly includes information such as group composition,

roles played in the group, etc. The generation of an idea is usually an individual process followed

by knowledge transfer to other people, or knowledge received by others. The collaborative process

is often used as an internal process in team-groups, companies or organizations. Therefore, the

conceptualization of Social Environment demands the formulation of the appropriate associations

between other entities in regards to the social background of the user. The social background of

a user can be constructed based on the knowledge background, in domain specific subjects/areas,

the social role, the expertise and social attributes such as the language and the location. The social

role and the social background of a user constitute important context factors that influence the final

recommendation of a user to be included in a team’s creative session.

System: This may include information such as the software or platform used at a given time.

Mixing tools and automatically tweaking system functions should result in a platform which can be

used in various settings. Some settings require a more formalized environment and other settings

112

GEORGE A. S
IELIS

require an informal environment. In both cases, a creative process will be facilitated. The system

context element can be defined by the following attributes:

• Connection Speed: the connection speed influences the collaborative procedure, and is im-

portant to the proposed resources type. (E.g. multimedia, real time Skype conversations,

etc.)

• Type of device accessing: The user may access Creativity Support Tool from a PC, tablet,

or smart phone.

• 3rd Party applications: possible plug-in requirements or possible integration with external

web services

Task (also referred to as “ideation”): Information about a task including which project it concerns,

the specific activity, the objective, the owner and the stakeholders of a task. Ideation is the most

important element of the creative process. The overall model of contextualization of creativity

aims to facilitate successful ideation. The task can be defined through the associations of the

aforementioned context elements with contextual entities which are influencing the “ideation”.

The enhancement of the creative process with the use of Context Awareness of the creative

process converges to the Task. The analysis and identification of the creativity contextual elements

guided the design of the creativity conceptual model in the form of ontology schema. The designed

ontology model used for the development of a context aware recommender tool in a generic form

that could be applied in creativity support tools. The designed ontology for Creativity process is

depicted in figure 6.

In this attempt additional to the aforementioned contextual elements, two more context enti-

ties, “Keywords” and “Domains” were formalized.

113

GEORGE A. S
IELIS

Figure 6: Creativity Contextual Model

114

GEORGE A. S
IELIS

In figure 6 the importance of these two context entities can be realized by noticing the several

semantic association types they have. Keywords: This is an entity used to semantically describe

and characterize other entities. For example, a user may be characterized as a “programmer” or

“doctor”, while an idea may be characterized as “SOS” or “Theoretical”. Domains: This is an

entity used to provide the field(s) to which the entity belongs. For example, a user that holds a

PhD in Human Computer Interaction may have “HCI” as his domain.

5.7 A Generic Context Aware Recommender System

In addition to the creativity analysis and creativity conceptual model, the current chapter, also

refers to the implementation of a generic Context Aware Recommendation system. The system is

used for the generation of recommendations (e.g. people to collaborate with, relevant resources,

relevant ideas, related projects etc.) during the creativity process and it was applied and tested

within a creativity-support platform, named idSpace. The aim of the recommendations was the

enhancement of the users in their learning ability and the collaboration with experts, access rele-

vant resources or elaborate ideas from previous related creativity sessions.

The context awareness recommender system is designed based on the concepts of creativity

as they were defined at the beginning of this chapter. The contextual elements are analyzed into

several contextual entities that influence or stimulate the creativity of a user. For the design of

the contextual model of the creativity process, the recommendation system is supported by the

ontology schema of figure 6.

115

GEORGE A. S
IELIS

Figure 7: Context Aware Recommender System Architecture

5.7.1 System Architecture

The context awareness recommender system described in this work acts as an implicit context

awareness recommender system, in the aspect that it needs input from the user to function. It pro-

vides recommendations upon user’s demand or automatically; either way, the recommendations

are based on data the user has inputted and which are relevant to the context of the project. The

user is able to select among a number of recommendation types, which are made available accord-

ing to the phase of the creativity process that is active at the given time. For example, during the

phase of formatting a creativity group, the “recommendation of users” is enabled. After selecting

the preferred recommendation type, the user has the option to provide additional input in the form

of keywords to facilitate the recommendation process. The recommender system calculates the

recommendations based on the data in the topic map concerning the project and the additional

keywords provided by the user, if any.

The four recommendation types supported by the recommender system are: Recommendation

of users, Recommendation of resources, Recommendation of solutions, and Recommendation of

ideas.

116

GEORGE A. S
IELIS

The reasoning method used relies on the semantics. It is based, on one hand, on the keywords

given as input by the user upon requesting recommendations and, on the other hand, on the key-

words and domains that describe the current session. The latter data are provided by the moderator

during the “project creation” phase and are considered to characterize the entire project. By using

the aforementioned dataset, the Wrapper queries the topic map to find all entities of the requested

type that are associated with this dataset. The wrapped data are then forwarded to the Adaptation

Manager, which is responsible for making adaptation decisions according to the refined context.

More specifically, in the Adaptation Manager the context information is retrieved, based on the

predefined context factors, and the overall wrapped data are filtered. The filtered context data are

parsed according to the adaptation method, ranked and finally presented to the end user as ranked

recommendations.

5.7.2 Reasoning Method

The reasoning method described in this paragraph is an approach that the current thesis in-

troduces. It uses a combination of technologies and methods such as the Topic Maps technology

[126] and the Utility Theory [86]. Each recommendation type’s software package receives all

necessary input from the topic map and the user, computes the recommendations and presents

them to the user. The packages, although providing recommendations of different type each, were

designed based on the same structure, the same architecture and the same reasoning method. Each

recommendation type has the following characteristics:

• Its recommendations are based on a set of factors. Each factor utilizes one or more ontology

entities such as keywords, domains and problem statements (figure 7) to determine a set of

recommendations.

117

GEORGE A. S
IELIS

• Each recommendation x is evaluated in regards to a factor i by using a Fitness Function

fi(x). The Fitness Function shows how relevant a recommendation is in respect to a factor.

• To allow end-users specify the importance of each factor, according to their personal pref-

erences, weighted values were used. One weight Wi applies to each factor i, determining

the factor’s relevance or, in other words, significance in the recommendation. The user

can choose among three possible values: “high relevance”, “medium relevance” or “low

relevance”.

• The Relevance FunctionR(x) [86] is an equation of contextual factors and relevance weights

that computes the relevance score of each recommendation, based on which their rank of

appearance is determined:

R(x) =
W1f1(x) +W2f2(x) +W3f3(x) + ...WNfN (x)∑N

i=1WiN
(20)

where N : number of Factors and W : weights with values 1 (low importance), 2 (medium

importance) or 3 (high importance)

As it was previously explained, each recommendation type is based on a set of factors. These

factors are ontology entity types, for example “keywords”, “problems”, “domains”, etc. Depend-

ing on the recommendation type, the recommender system examines all instances within the ap-

propriate entity types and measures their relevance to the given problem to be solved, in order to

opine which are the most relevant to be recommended. The relevance is being measured by using

ontology associations. If an instance of such an entity type is highly associated with an active

session, then it is highly recommended by the recommender system. The instance and the current

idSpace session are highly associated if they have a number of common keywords and domains.

The more common data they have, the more associated they are considered to be.

118

GEORGE A. S
IELIS

Table 3: Set of factors for each recommendation type

Recommendation type Factors

Recommendation of users Related keywords

Related domains

User’s previous work

User’s competences

User’s user role

User’s social role

Recommendation of resources Related keywords

Related domains

Related Problems

Related Solutions

Related Ideas

Recommendation of Solutions Related Keywords

Related Domains

Related Problem Statements

Related Problems

Recommendation of Ideas Related Keywords

Related Domains

Related Problems

Related Solutions

Related Resources

User’s Competence

119

GEORGE A. S
IELIS

For example, let us consider the recommendation of users. In this type of recommendation,

the factors that play a role are related keywords, related domains, user’s previous work, user’s

competences, user’s user role and user’s social role. For each of these factors a fitness function

exists that indicates how relevant that factor is to the overall recommendation. For the purposes of

this example let us consider only the keywords and domain factors with weights 3 and 2 respec-

tively for two different users, user A and user B. The fitness functions for these factors indicate

the percentage of common keywords and domains that these users have with the current project.

Thus, the more common data a user has with the project, the higher the fitness will be, resulting

in a higher score in the Relevance Function R(x). Let’s suppose that the project has 10 keywords

and 4 domains and that the number of common data user A has with the project is 4 keywords and

1 domain and user B 3 keywords and 2 domains. The fitness functions for the keywords (fkey)

and the domains (fdomain) will be:

fkeyuserA = 40% or 0.4

fdomainuserA = 25% or 0.25

fkeyuserB = 30% or 0.3

fdomainuserB = 50% or 0.5

The relevance function will be:

User A : R(x) =
3 ∗ 0.4 + 2 ∗ 0.25

5 ∗ 2
= 0.17 (21)

User B : R(x) =
3 ∗ 0.3 + 2 ∗ 0.5

5 ∗ 2
= 0.19 (22)

The result is that user B is more relevant to the project than user A, and thus the recommender

system will recommend user B.

120

GEORGE A. S
IELIS

5.8 Conclusions

This chapter elaborated on the concepts of Creativity through the various models for creativity

as they were shaped trough time. The most important models that are relevant to the current

research are the models defined by Atman [8] and Schneiderman [152]. The steps defined by

the last two, consist of the basis for the design and development of the Creativity conceptual

model. Moreover, in this chapter the Creativity techniques were presented and as an extension

to the techniques a set of the most known Creativity Support Tools was examined in terms of the

supporting and aiding mechanisms offered to the users. Through the examination of the tools, the

lack of supporting mechanisms and, in particular, the lack of recommendation mechanisms was

noticed. Based on Creativity analysis and the observation that the existing Creativity Support Tools

are lacking of recommendation systems, this chapter also presented the design of the Creativity

Ontology based on the Creativity contextual elements that were extracted from the analysis, as

well as the development of a generic purpose Context Aware Recommendation System.

121

GEORGE A. S
IELIS

Chapter 6

Framing the problem - A Survey in Software Design Process and

Tools

6.1 Introduction

Software engineering projects are complex processes which, apart from the implementation

of a project, require proper planning and management of a complete project life-cycle. The cycle

of planning and implementation of such software tools became one of the most important Soft-

ware Engineering research subjects, where the Software Design process phases and models were

individually studied. Boehm et al. [22] present the several Software Engineering process models

from the 1950’s to twentieth century models such as SAGE, Software Crafting, Waterfall models

and Agile methods. Ideally, the proposed models should be the combined result of research and

actual experience; however in reality this does not always happen. This is due to many reasons, the

study of which has led to the survey that this chapter presents. In particular, the objective of this

work is the collection of information regarding possible needs that Software Engineers may have

through the usage of Software Engineering Design Tools. It will be possible to examine possible

122

GEORGE A. S
IELIS

enhancements for these tools, especially in terms of the Software Engineering life-cycle processes

for Design, Management and Execution of Software Engineering projects.

The survey aimed towards the collection of opinions from experts in Software Engineering

regarding the existing Software Engineering Design tools that they use. The survey also aimed

towards finding possible flaws of the tools regarding the Collaborative Design. The work presented

in this chapter was motivated by the notion that applying Context Aware Recommendations to the

tools that professional Software Engineering Designers use, would enhance the overall process of

preparation and execution of a Software Design project. Therefore, the survey objective was to

track the experiences regarding the designers’ needs, as well as additions they would like to have in

the existing tools; for example, Social Networking features or Context Aware Recommendations

support.

.

6.2 Software Engineering Design Tools - Overview

This section examines some of the most known Software Engineering Design Tools. The

examined tools were evaluated in regards to their supported modules, the social attributes they have

and the types of recommendations they possibly support. In this overview, a list of commercial and

open source tools were examined, the most of which were tools that the experts who participated

in the survey stated that they use.

Eclipse - Eclipse is an Open Source IDE which provides a universal complete toolset for de-

velopment. Several of the tools/modules included in eclipse are used specifically for Software

Architecture Design projects. One of the most complete Eclipse sub-projects is the Eclipse Mod-

eler which promotes the evolution and promotion of model-based development technologies, by

the provision of a unified set of modeling frameworks, tooling, and standards implementations. It

123

GEORGE A. S
IELIS

supports team-working tools, giving the flexibility to a team of developers to share their code and

automatically commit code in version-control systems. Eclipse can be used for Software Architec-

ture Design through the sub-projects and the plugins that can be installed to it, but is mostly used

as a development IDE. It supports Code Generation for Java, C++ and C programming languages

and it can use additional modeling tools as separate eclipse installation modules. Such examples

are UML tools, Object Constraint Language (OCL) expression tools and Eclipse Modeling Frame-

work (EMF) - based implementations. Eclipse is a desktop application which can connect to code

repositories for sharing and version-controlled code projects.

Microsoft Visio - is a 2D drawing tool on which the end user is able to draw diagrams. It

supports drawing of shapes for several types of diagrams such as flowcharts and ER diagrams.

It does not support any type of recommendations or social modules. It is a commercial desktop

application which offers the flexibility to the user to extract the diagrams in several format types

such as xml files and images.

Enterprise Architect - A UML-based software which can dynamically simulate software

behavior, state models, confirm process design and specify triggers, events and constraints. Enter-

prise Architect offers the tools to create and debug embedded solutions or build domain specific

custom solutions. It is based on open standards like UML, BPMN and SysML, and supports en-

terprise architecture frameworks like TOGAF and UPDM. It offers team based repositories and

version control tools.

MagicDraw - MagicDraw supports the UML 2 meta-model, the latest XMI standard for data

storage and the most popular programming languages for implementation such as Java, C++,

Csharp, CL (MSIL) and CORBA IDL programming languages), database schema modeling, DDL

generation and reverse engineering facilities. MagicDraw offers tools which can be used to deploy

a Software Development Life Cycle (SDLC) environment that best suits the needs of a business. It

124

GEORGE A. S
IELIS

offers an Open API giving the flexibility to developers to integrate MagicDraw with applications

that work together. It can also be integrated with other products such as IDEs, requirements de-

sign tools, testing tools, estimation tools, Multi-valued Decision Diagrams, databases, and others.

MagicDraw offers a teamwork server so developers can simultaneously work on the same model.

Table 4: Software Engineering Design Tools Attributes

Software C/ OS Supported Design

functionality

Supported recom-

mendations

Supported Social

Attributes

D/

W

Eclipse OS UML tools, EMF

based projects, OCL

expressions

Code Generation

for Java, C++ and

C

Code Sharing be-

tween a team

D

Microsoft

Visio

C Diagram design with

the use of shapes

None None D

Enterprise

Architect

C UML, BPMN and

SysML, Enterprise

architecture frame-

works like TOGAF

and UPDM

None Team based repos-

itories and version

control tools

D

Enterprise

Architect

C UML, BPMN and

SysML, Enterprise

architecture frame-

works like TOGAF

and UPDM

None Team based repos-

itories and version

control tools

D

125

GEORGE A. S
IELIS

Magic Draw C UML 2 metamodel,

the latest XMI stan-

dard for data storage

and programming lan-

guages development,

database schema

modeling, DDL gen-

eration and reverse

engineering facilities

Data Definition

Language (DDL)

generation

Server for real-time

modeling by team

D

ArgoUML OS UML for Class di-

agrams, Statechart

diagrams, Activity

diagram, Use Case di-

agrams, Collaboration

diagrams, Deploy-

ment diagrams and

Sequence diagrams

Design Critics None D,

W

IBM rational C UML based on role,

model, life-cycle

phase, and current

task, BPMN2, Model

reporting, etc.

None Hosted by IBM

Cloud

D,

W

126

GEORGE A. S
IELIS

Yaoqiang

BPMN

C BPMN 2.0 diagrams Spell checks, au-

tomatically gener-

ates BPMN2.0 di-

agram interchange

information

None D

ER Studio C UML 2.0 diagrams Pre-defined pat-

terns and templates

for new projects

None D

StarUML - StarUML is an open source project that aims to develop fast, flexible, extensi-

ble, featureful, and freely-available UML/MDA platform running on Win32 platform. StarUML

project is used for the development of software models. StarUML is mostly written in Delphi;

however it supports multi-lingual projects without being tied to specific programming language.

Any programming languages can be used to develop StarUML such as C/C++, Java, Visual Basic,

Delphi, JScript, VBScript, C# and VB.NET.

ArgoUML - ArgoUML is an Open Source UML modeling tool. It can be used to design Class

diagrams, Statechart diagrams, Activity diagram (including Swimlanes), Use Case diagrams, Col-

laboration diagrams, Deployment diagrams (includes Object and Component diagram in one) and

Sequence diagrams. It offers XMI and OCL support, reverse engineering module, as well as de-

sign critics. Design critics are generated by embedded agents. The agents analyze the design as

the designer is working, and suggest possible improvements such as syntax errors, reminders to

return to parts of the design that need finishing, style guidelines and advices of expert designers.

IBM rational - General modeling with the industry’s most robust support for UML 2.2 and a

configurable modeling environment that can be tailored to expose “just enough” UML based on

127

GEORGE A. S
IELIS

role, model, life-cycle phase, and current task. It supports BPMN2, including interchange with

products supporting BPMN2 standards compliance, like WebSphere Business Modeler. It sup-

ports the following: Requirements integration, with end-to-end traceability and impact analysis;

Model analysis and metrics with the use of extensible query and analysis frameworks; Model

reporting with BIRT; Rich SCM integrations; model compare-merge, and extensible team mod-

eling framework; rapid development of custom software factories; fast creation of UML-based,

domain-specific modeling languages tailored to a problem and solution domains; use of graphi-

cal mapping tools for quick development of model-to-model transformations; and finally, use of

exemplar-driven pattern capture tools combined with a rich JET authoring environment to quickly

develop model-to-text/code transformations. It can be integrated with several products that belong

to the IBM Rational products group.

A summary of the attributes and the tools’ supported functionalities are depicted in Table 4.

Analyzing the attributes and the characteristics of the examined Software Design tools, the lack

of aiding mechanisms, such as Recommendations that can help engineers in fulfilling Software

Engineering tasks, and the lack of social collaborative functionality were revealed. A usual argu-

ment that is commonly used to excuse the lack of these attributes, is that since the existing tools

do not support them then most probably, there is no need for them to exist. However, the survey

results proved the exact opposite result. The rest of this chapter describes the overall survey design

and presents its outcomes that lead to the conclusion that aiding functionalities and features are

necessary for Software Design tools.

6.3 Survey Design and Analysis

The survey was designed for a particular target group, the Software Engineers. Software

Engineering is an applied by professionals topic, with a strong relation between industry and

128

GEORGE A. S
IELIS

academic research. Therefore, the collection of data given by experts in Software Engineering is

of paramount importance. The survey design and the most important outcomes of the survey are

presented in the following sections.

6.3.1 Survey Design

The survey was designed as a web-based survey, while the overall design was structured based

on the following four axles: 1. Software Design Experience, 2. Project management, 3. Software

Design Tools and 4. Development of new Ideas. The first axle contained a group of questions for

the collection of data that demonstrate the participants’ experience in Software Engineering. The

second axle contained a group of questions related to the preparation and management of Software

Design projects based on the participants’ working experiences. The third group of questions

refers to the Software Design Tools that the participants currently use and the tools that they

were aware of (Table 4). It contains questions that can lead to conclusions regarding the modules

they have in supporting the process of design, composition of group, the supporting resources

and the social attributes they support or not. In this question group, participants were also asked

questions related to their perception on how the inclusion of specific additional modules, related

to the objective of this work, such as Context Aware Recommendations and Social functionality.

The fourth group of questions contained questions regarding the flexibility the participants have in

developing or promoting new ideas within their working environment. The complete question-set

that was given to the participants can be found in appendices A.1,A.2,A.3 and A.4

This survey was sent via web to professionals from the industry and experienced Computer

Science Researchers. In total, 28 professionals from both industry and academia responded to

the survey, from which 14 belong to the private sector (11 International Private Corporate - NCR

Corporation, 1 Small Medium Enterprise - KResearch Ltd. and 2 Self-employed), 1 belongs to

129

GEORGE A. S
IELIS

the public Sector and 13 belong to the Research/Academic sector. The age range of the partici-

pants was 26 years old to 55 years old. The mean age between all participants, was 35.3 years

old. In particular, the survey was performed by 12 Software Developers, 1 Software Architect, 3

Software Development Team Leaders, 2 Project Managers, 1 Manager of Software Development

Department, 5 Research Associates, 3 Academic Professors and 1 System Administrator.

In the rest of this section the responses received per question-group are based on a selection

of the most important ones. For each question-group the most valuable statistical results are

elaborated.

6.3.2 Software Architecture Design Experience

For the confirmation of the participants’ experience in the topic of Software Design, the first

part of the survey asked the participants to provide their demographic data, their affiliation and

their role in the organization they are working.

As expected, the analysis of the demographic data in relation to the participants’ experience

showed that their age is linear to the experience they have in Software Design projects. The

experience threshold age seems to be the age of 35. Participants with age less than 35 seem to

have 1 or 2 years of experience, while users with age greater than 35 have more than 4 years

of experience in the topic. This is also analogous to the active participation of participants in

Software Architecture Design projects. The participants who stated that they have more than

4 years of experience in the topic, participated actively in fewer than 5 projects while the rest

participated in more projects. The younger participants who stated that they have 1 to 2 years

of experience in the topic, actively participated in 1 to 3 projects. However, the participation in

projects, in relation to the experience appeared as not linear or analogous. This probably happens

because each project has unknown factors that cannot be taken into account for the comparisons

130

GEORGE A. S
IELIS

and produce safe conclusions. Example of such factors could be the unknown time duration of

each project. In total, 60% of the participants have more than 4 years of experience and 80% of the

participants have more than 3 years of experience, which gives an added value to the participants’

opinions.

6.3.3 Project Management

The project Management group of questions contained 10 questions which aimed towards the

collection of information regarding the management of project-handling. The project handling

includes the project setup in regards to the resource allocation, the assistance and the factors that

each participant takes into account for the team formulation before the beginning of a new project.

The main task of the current question-group was the examination of how a project is designed

and structured, in real-working environments in comparison to the theoretical project management

models. Additionally, identification of which factors are taken into account for the formulation of

a working team and the collection of the supporting material, can facilitate the progression of

a new Software Design project. The participants were also asked how they would perceive the

existence of context-related recommendations during the process of design and preparation of

a new project. Moreover, participants were asked to give their opinions as to what would they

consider as the most important recommendations that would facilitate the design process.

Participants were also asked how many projects they usually run at the same time. As ex-

pected the professionals’ responses showed their huge effort of work. The 75% of the participants

declared that they run 2-4 projects the same time and 17.86% of them run 5 and more projects at

the same time.

The participants were asked to prioritize the team members’ attributes which are taken into

account in order to assign them a new Software Design project. They had 5 options to prioritize:

131

GEORGE A. S
IELIS

Experience, Knowledge Background, Social Background, Development competencies and Team-

work mentality. The prioritized results are as follows: As first priority attribute 35.71% of the

participants selected “Experience” while the 32.14% selected the “Knowledge Background”. It is

noticeable that 21.43% believe that “Development competencies” is the most important attribute

and must be the first in the list. A smaller percentage 10.71% believe that team work mentality

is the most important one. None of the participants believe that Social Background is the most

important attribute. More specifically “Social Background” classified by the 89.29% as the least

important attribute, 3.57% as the fourth attribute in the list 3.57% as third and 3.57% as second. In

a very similar way, 35.71% of the participants selected “Experience” as a second attribute in the

list and 25% the “Knowledge Background” attribute. 21.43% of the participants believe that the

second most important attribute is the “Development competencies” and 14.2% the “Teamwork

mentality”.

Most of the participants believe that “Development competencies” must be the third in priority

attribute with the percentage of 39.29%, 25% classify “Knowledge Background” as the third most

significant attribute and 14.29% the “Experience”. As fourth in the list, the 53.57% of the partici-

pants classify the “Teamwork mentality” while 17.86% and 14.29% the “Knowledge Background”

and “Development competencies” responsively. 10.71% classified “Experience” as fourth in the

list. Having the above results the priority list based on the complete set of answers given is the

following:

1. Experience

2. Knowledge Background

3. Development Competencies

4. Teamwork mentality

132

GEORGE A. S
IELIS

5. Social Background

The above-mentioned priority list raises several discussion issues. Firstly, it is obvious that the

opinions vary. A surprisingly huge percentage of participants classified Social Background as the

less important attribute. Indeed Experience can be considered as the most important factor that

someone takes into account before deciding to include someone in a project. But, what happens if

a person is highly experienced but cannot communicate because of language (Social background

attributes) or cannot accept other colleagues opinions (teamwork mentality attributes)? In addition

to these, some of the listed attributes are encapsulated. Experience and Development Competen-

cies prerequisite the Knowledge Background, Development Competencies are improved through

Experience.

6.3.4 Further Analysis

Aiming to correlate the formal Software Engineering Life-cycle models with the real activities

taken by professionals during the setup of a project, participants were asked to describe three steps

they take for the preparation of the project. All participants completed the three steps questions;

however answers differed. The steps they described are all correct but the sequence was different.

Based on that, it is clear that the participants are aware of the process life-cycle steps but are not

following a formal process for the preparation of a new project.

Based on this, we can conclude that even if the experts in Software Architecture Design are

aware of the steps for a Software Engineering life-cycle process, they do not follow the correct

sequence or the “formal” sequence of steps.This probably happens because professionals do not

give attention in following typical procedures in setting up a new project. They rather pay attention

in executing tasks fast. In most of the cases this can cause problems in the process of the execution

133

GEORGE A. S
IELIS

because of errors. The typical procedure can be considered time-consuming, but at the same time

it is necessary for the correct design and setup of a new project.

The ovarall analysis of the results used the Pearson’s correlation method [18] in finding the

most significant relations between the answers given for particular questions. A sample of the

correlated questions showing the correlation coefficient (r) and the significance value p is shown

on Table 5.

Using the full set of correlated questions and the most statistically significant ones (r < 0.05)

the following outcomes were reached:

Collaboration during the design process

• The participants usually collaborate with other people during the Software Design process

but in most cases they prefer to collaborate with people they know. At the same time, the

plurality of them believe that it is very important for them to get recommendations of people

to collaborate with.

• During the Software Design process they involve people or teams from abroad, but they

usually work with local teams. (Lack of real time collaboration tools)

• The characteristics taken into account for the selection of colleagues to collaborate with

in priority order are: 1. Experience, 2. knowledge Background, 3. Development com-

petencies, 4. Teamwork Mentality and 5. Social Background (Contextual factors for the

recommendation of people to collaborate with).

Access to other projects to use them as reference

• Most of the participants denoted that it is difficult for them to find related projects in order

to use them as references. Others mentioned that it is easy for them to find related projects.

134

GEORGE A. S
IELIS

Table 5: Pearson’ s correlations between questions -Subset table

Question 1 Question 2 p r

Years of experience In how many

projects had active

role

0.632 .000

Position in the

company

Use similar

projects rec-

ommendations

0.470 .042

Type of organiza-

tion

How easy id to

access related

projects

0.378 .047

People who

worked in projects

remotely

Collaboration with

other experts

0.396 .037

How easy is to find

other people

Do you always

know the people

involved

0.683 .000

Recommendation

of web url’s

Recommendation

of Similar projects

0.474 .004

When the participants were asked how they find related projects the answers were: web

(Google), asking other people, email to professional teams.

• When participants were asked if they want to have access to other projects, almost all of

them answered positively. Contrary to that, almost all of them hesitated to share their

135

GEORGE A. S
IELIS

projects in public networks, but are positive to share their projects in a closed network

(i.e. Intranet)

Software Engineering project setup

• The participants were asked to write in free text three steps of setting up a new Software

Design project. The conclusion that came out is that there is a need to formalize the steps

following a project lifecycle model. The answers given can be considered as correct but

vary in regards to the sequence of steps as they were given by each individual.

Ease of developing a new idea as new project

• More than 50% of the participants answered that it is difficult for them to develop a new

idea as a new project or to promote a new idea within their organization.

Helpful resources

• The participants believe that the following additional resources would be helpful during

the Software Design process: Documentation related to the project (75%), Similar/Related

projects (67,86%), Experts in the area of Software Design (60,71%), Recommended web

resources (32,14%), Images (17,86%) and Other (7,14%).

6.4 Discussion

The results of the survey presented in this work lead to the conclusions that there the tools

that are currently used by Software Engineering experts lack the aiding and assisting functionality

such as Context Aware Recommendations and Social related functionality. From the analysis of

the results it is obvious that the Software Engineering professionals support the development and

integration with the existing tools of such functionalities. The usage of Context Aware Recom-

mendation tools in Software Design software can become a great enhancement for the Software

136

GEORGE A. S
IELIS

Design projects setup, design and management by taking into account the prioritized results for

the recommendation types that the participants mentioned. Additionally, the accessibility and

availability of executed projects raised social concerns that can be investigated in more depth in

the future. This should take into account responses like “I would like to access other projects” but

“I would not like others to access my projects”. The outcomes of this survey revealed challenges

worth investigating for future research in the topic of Software Engineering, and in particular in

the Software Design assisting software tools.

137

GEORGE A. S
IELIS

Chapter 7

Design Patterns Ontology Model - Design, Analysis, Implementation

7.1 Introduction

From the analysis for Creativity in Chapter 5 it is obvious that creativity process is not a

straight-forward process. On the contrary, it is characterized by dimensions that may vary depend-

ing on the domain that it is applied to. Creativity tools integrated with context aware recommender

systems can positively influence the creativity process. Context aware recommendations such as

recommendations of users for collaboration or resources related to the context of a creative project,

but also other recommendations related to particular creativity phases, can facilitate the creativity

process. Therefore, the creativity process can be approached in two ways: first the development of

a generic Creativity Support Tool for the development of professional networks targeted in solving

problems and producing innovative ideas; second, the development of a context aware recommen-

dation algorithm, which will have the flexibility to analyze the most important contextual factors

for each phase of the creativity process, and therefore, produce useful recommendations that fos-

ter the professionals’ creative ability. Nevertheless, wideness of creativity topic, makes the design

of a research plan very complex and in most of the cases difficult to implement. For example, a

creativity process may be an art session, a book conversation or the development of a web site.

138

GEORGE A. S
IELIS

Using the survey analysis that was presented in chapter 6, a decision to frame the problem into

a particular creativity-related problem was taken. This topic is the Software Design (SD) process,

on which users must select the most suitable Design Pattern in order to describe a Software Design

problem in a High Level Software diagram model. Software Design is by definition a creative

process while it is executed in phases by individuals or groups of experts. More specifically, the

problem of designing High Level Software Models by using Design Patterns. It is approached as

part of the Software Engineering Education and Training point of view, were the target group is

limited to students who can creatively learn the Design Patterns through practice.

This chapter focuses on the design of an ontology model that represents the process of High

Level Software Diagrams design, with the use of Design Patterns. The objective of the current

chapter is met through the extension of the already defined Creativity ontology model, with the

addition of new entities and relations for its adjustment to the Software Design process. The new

ontology model represents the Software Design process and also contains the Design Patterns

attributes. The new design, aims to the usage of the model by recommendation algorithms for

providing recommendations of the most relevant Design Patterns, based on the user’s input. Using

the Design Patterns recommendations, users will be able to learn, discover and apply the Design

patterns into diagrammatic design models.

7.2 Modeling Software Design Model as Creativity process

Modelling the Software Design process as Creativity process enhanced by Context Aware

Recommendations consists of a combination of the following two models: 1. The General model

for Creativity and 2. The Software Design model, which demonstrates the Software Design life-

cycle. For the first model a comprehensive analysis was done in Chapter 5. Therefore, the rest

of this section is focused on the design of the Software Design Model and the representation of

139

GEORGE A. S
IELIS

Design Patterns. Moreover, it describes how the designed model is integrated to the Creativity

model that was defined in chapter 5.

7.2.1 The Software Design Model

In the existing literature, several software development models can be found such as the Water-

fall [12], ETVX [9], Prototype, Spiral [182], V-model [187], Agile methodologies such as Scrum

[138] and Unified Process Model. Following the comparison between models that was presented

in [115], it is supported that the most commonly used models are the Waterfall and the Spiral

while Agile models are also increasingly applied during the last years. The difference between

models such as Waterfall and Spiral, in comparison to Agile models is mainly observed on the

sequence of application of their phases during a Software Design process life-cycle. On the one

hand, Waterfall and Spiral models use the strict sequential completion of phases, setting as a

necessary condition to proceed into a next phase, the completion of the previous one. In Agile

approaches there is more freedom in the completion of tasks, which belong to the several phases

of a Software Design life-cycle. For modelling the Software Design process, the Waterfall model

was selected as a guiding model. It was used for the specification of the process phases and the

semantic representation for the Software Design life-cycle. The waterfall process phases are listed

as follows:

• Requirements specification

• Design

• Construction (implementation or coding)

• Integration

• Testing and debugging (validation)

140

GEORGE A. S
IELIS

• Installation

• Maintenance

Each particular phase of the Software Design model can be considered as an individual creative

process, that can be executed by individuals or through collaboration of peers. Considering each

particular phase as individual creative process, makes the definition of context for each phase

possible. Following the contextual factors as they were defined in Creativity model (Chapter 5),

Table 6 is formulated.

Using the Creativity contextual entities and the table 6, it is possible to analyze in a more

comprehensive way a new Contextual model through the revision of the general Creativity model

enhanced with the Software Design attributes (entities). The initial Contextual model for Creativ-

ity is depicted in a visualized form in Appendix C.1.

Table 6: Software Design phases as Creativity processes

Phase Users Types of ideas

expected

Resource Mate-

rial

Tools

Requirements

specification

Individual or

Group

Text based

ideas. New

ideas or modify

ideas entered

by other team

members.

Resources entered

by group members.

Requirements from

similar projects.

Links,

Videos,

Images

Resource repository,

Chat, Recommendations

of users, Recommenda-

tions of related projects,

Recommendations of

related requirements.

Recommendation of

actions.

141

GEORGE A. S
IELIS

Design Individual or

Group

Schematic

design with

comments e.g.

UML diagrams

Images, Tutorials,

White papers, De-

sign Patterns

Recommendations of re-

sources, recommendation

of experts, Drawing tool,

UML editor, canvas de-

signer etc.

Coding Individual or

Group

Classes and

methods of im-

plementation,

coding Design

Patterns

Programming language

IDEs.

Testing Individual or

Group

Testing method-

ologies, testing

scenarios, unit-

tests

Maintenance Individual or

Group

Maintenance

actions

Figure 8 depicts an example of how Creativity model interprets between the phases of Software

Design model.

Following the intersection of the creativity model between each phase, the conceptual model

that combines the above-mentioned partial models was designed. Through the conceptual model

and using the following attributes and entities relations the ontology model was designed. Ta-

ble 7 shows the triples that were used for the semantic representation of the Software Design

- Creativity Design model. The extension of the base Creativity Model to the final Ontology

142

GEORGE A. S
IELIS

Figure 8: Sample of the intgrated model between Creativity and Software Design

model that includes the Software Engineering entities and relations are depicted through visual-

izations in Appendices C.1 and C.2. Appendix C.3 shows the overall ontology structure through

the classes/entities hierarchy and the the data and object properties while in appendix C.4 the final

visualization of the ontology model including the data and object property relations is shown.

Table 7: Semantic Analysis of the Creativity-Software Design

model (triples)

Domain Property range

ProjectCreator createProject Project

Project projectCreatedBy ProjectCerator

ProjectGroupMember isMemberOf ProjectGroup

143

GEORGE A. S
IELIS

Project isDividedInto Phases

RequirementsDefinition isPhaseOf Project

Design isPhaseOf Project

Implementation isPhaseOf Project

Project IsConsideredAs CreativityProject

RequirementsDefinition IsConsideredAs CreativityProject

Design IsConsideredAs CreativityProject

CreativityProject isRelatedTo DigitalResources

CreativityProject ContainIdeas Ideas

Ideas areContainedBy GroupMembers

GroupMembers isExecutedBy GroupMembers

CreativityProject createIdeas Ideas

Ideas areCreatedby GroupMembers

CreativityProject isExecutedBy GroupMembers

GroupMembers Execute CreativityProject

Group hasmembers GroupMembers

GroupMembers areMembersof Group

Project hasTitle String

Project hasDescription String

Project belongsToTopic String

ProblemStatement hasStatement String

Project isDigitalResource DigitalResource

144

GEORGE A. S
IELIS

Idea isDigitalResource DigitalResource

Book isDigitalResource DigitalResource

ResearchPaper isDigitalResource DigitalResource

Idea hasContent String

CreativityTechnique hasName String

CreativityProject usesTechnique creativityTechnique

Project hasProjectGroup Group

Group isGroupOf Project

Requirements hasrequirement String

Design hasDesignParts String

Testing hasTestingComments String

Definition and design of the Software Design Ontology Model as an extension of the Creativ-

ity Contextual model, in combination with the definition of the Software Design phases analysis,

and the survey results that were presented in previous chapter, led to the decision to approach

the following examination: how context aware recommendations affect the particular creativity

process in software design and particular the Design phase. The approach had two tasks to ac-

complish: First, the development of a Design module where users would be able to design high

level Software Design models, and second, the recommendation of Design patterns as a separate

model.

7.3 Design Patterns Ontology Model

For the definition of the Design Patterns Ontology Model, Design Patterns were analyzed into

contextual elements that characterize and define them. A helpful resource that was used for this,

145

GEORGE A. S
IELIS

was the GoF description template, used in [59]. In this template, each Design Pattern is described

based on its Intent, Consequences, Implementation, Known uses, Motivation and Collaborators.

For each Design Pattern additional features were used as contextual elements, such as the image

of a Design Pattern, a generic descriptive UML diagram for the pattern, urls with information for

the pattern and documents related to a pattern. Combining the Design Patterns ontology model

with the Creativity model, made also possible the collection of additional contextual information,

such as, the problem/project that is used for, the user who used it, the type of application that the

model was designed for etc.

Definition of the Design Patterns characteristics and attributes was the first step for definition

of the model’s concepts and contextual information. For the Design Patterns semantic represen-

tation, the specification of the semantic relations between the entities should also be defined. The

triples, used for the model definition and representation are shown in table 7. A sample of the

Design Patterns model is shown in figure 9.

Figure 9: Design Patterns Ontology Model Based on the GoF templating

146

GEORGE A. S
IELIS

Moreover, the design patterns are not limited to the GoF [59], but there are several categories

of Design Patterns which are used for specific application types. The application types are also

defining the Architectural patterns that are available, and by the selection of an Architectural

Pattern, Design Patterns are filtered based on the selected Architecture.

7.3.1 Categorization of Design Patterns

Last years, technology trends change rapidly and the development methodologies are also in-

fluenced by these changes. In general, there is a notion that any coding method, which is used

more than three times in the same way, can be considered as Design Pattern. Increment of tech-

nologies, and development of new applications of different types, makes identification of coding

methodologies as Design Patterns, difficult to handle and hard to follow. In particular, it is very

difficult for young engineers who do not have the necessary experience in coding and more specif-

ically, usage of Design Patterns. Taking this into consideration, categorization of Design Patterns

becomes necessary. Filtering the patterns based on Architectural pattern or the type of applica-

tion they can be applied to, becomes a useful tool for Software Developers. Until recently, the

only set of patterns that was used were the GoF Design Patterns [59], which are categorized in

this thesis, as “Operational” Design Patterns. Nowadays more design patterns exist, and they are

exponentially increased since coding Patterns for smart phone applications, web services, web

applications, new data storage methods (e.g. NoSQL) and also UI Design Patterns exist.

Taking into account the several Architectural Patterns that exist, associations between Design

Patterns and Architectural patterns or associations between Design Patterns and design principles

have been identified.

The Architecture types are defined based on the application type they are usually applied

for. For example, this work defines four Architecture types based on the well-known application

147

GEORGE A. S
IELIS

types: Desktop, Mobile, Service Oriented and Web Based applications. Each Architecture type

can have one or more architectures associated to corresponding application type. For example, for

web applications the Architectural patterns of MVC, MVP, MVVM can be applied, for Mobile

application the MVVM pattern is commonly used, and for web services the Model-Controller

(MC) may be used. The architectural patterns can be related with more than one Architecture

types. The differentiation of Architectural patterns based on the associated application types, also

influences the availability of Design Patterns per Architectural pattern or application type. For

example, UI Design patterns are not used for Web Service implementations but they can be used

for mobile applications that use web services.

Therefore, the designed model uses five categories of Design Patterns Antipatterns, Classic

(GoF), Enterprise Application Architecture Patterns, MVC and User Interface Design Patterns.

For each category there are subcategories of Design Patterns such as:

• Classic (GoF) hasSubcategories Behavioral, Creational, and Stractural

• Antipatterns hasSubCategories Software Design Antipatterns

• Enterprise Application Architecture Patterns hasSubcategories Data Source Architectural

Patterns, Object Relational Behavioural Patterns, Object Relational Metadata Mapping Pat-

terns, Object Relational Structural Patterns

• User Interface hasSubcategories Yahoo UI and similar repositories of UI Design Patterns

7.4 Implementation of the model - Used Semantic Web Tools

Modeling the Design Patterns and in general the Software Design process as a continuation

of the Creativity process in the form of ontologies, was a selection made after the analysis of the

different types of modeling the context that was analyzed in previous chapter. Modeling with the

148

GEORGE A. S
IELIS

use of semantics and in particular with the use of ontologies offer a big advantage, which is the

retrieval of data from several, more than one, data sources, with different data structures and it

becomes possible to map them into a single structure model which is the ontology model. This

makes easier the finding and filtering of data from several sources with semantic web based query

language and the use of semantics. That means that by adding new data sources into our model

will only need the mapping of a given schema to the corresponding entities of our model and it

will not be necessary to adjust the used queries to filter and retrieve the data that are passed to the

implemented algorithms.

Therefore, a set of Semantic web technologies and frameworks were used for the design and

implementation of the models presented in this chapter. Firstly, for the design of the ontology

model Protege Semantic web tool was used. Protege is an ontology builder with a rich tool-set

with visual and text based representation of the ontology models. With Protege an ontology model

can be built by defining the conceptual entities (classes), the object attributes, functional attributes

and the semantic relations between them. Protege exports the designed models in OWL (Ontology

Web Language), which then can be parsed and used based on the needs of any application that uses

the model (sample is given in listing 7.1). Second, the Jena Framework was used. Jena is an open

source Semantic Web framework written in Java language. Jena framework is probably the most

known, complete and well defined framework for the development of Semantic Web Applications.

It includes build-in reasoners and semantic web query languages for the development of Semantic

Web based applications. As a third tool for the development of model SPARQL (Semantic Parsing

Query Language) was used. SPARQL used as the semantic Web Query Language for the retrieval

and filtering of data that are parsed through the designed model. The Semantic Web Cycle is as

as follows: Design of the ontology Model; Consume data via web services or direct connection to

internal or external Databases; Map the consumed data to the corresponding Entities of the model,

149

GEORGE A. S
IELIS

Reasoning of the retrieved data and generation of a unified data model in-memory (using Jena);

Query the data with SPARQL queries using semantics.

Listing 7.1: Sample of the Ontology Model in OWL

<owl : O b j e c t P r o p e r t y r d f : a b o u t ="& d e s i g n _ p a t t e r n s ; C a t e g o r i z e d I n ">

< r d f s : domain r d f : r e s o u r c e ="& d e s i g n _ p a t t e r n s ; p a t t e r n " / >

< r d f s : r a n g e r d f : r e s o u r c e ="& d e s i g n _ p a t t e r n s ; p a t t e r n _ c a t e g o r y " / >

< r d f s : r a n g e r d f : r e s o u r c e ="& d e s i g n _ p a t t e r n s ; p a t t e r n _ s u b c a t e g o r y " / >

</ owl : O b j e c t P r o p e r t y >

<owl : O b j e c t P r o p e r t y r d f : a b o u t ="& d e s i g n _ p a t t e r n s ; SubCategoryOf ">

< r d f s : r a n g e r d f : r e s o u r c e ="& d e s i g n _ p a t t e r n s ; p a t t e r n _ c a t e g o r y " / >

< r d f s : domain r d f : r e s o u r c e ="& d e s i g n _ p a t t e r n s ; p a t t e r n _ s u b c a t e g o r y " / >

</ owl : O b j e c t P r o p e r t y >

<owl : O b j e c t P r o p e r t y r d f : a b o u t ="& d e s i g n _ p a t t e r n s ; a r c h i t e c t u r e I s T y p e O f ">

< r d f s : domain r d f : r e s o u r c e ="& d e s i g n _ p a t t e r n s ; a r c h i t e c t u r e " / >

< r d f s : r a n g e r d f : r e s o u r c e ="& d e s i g n _ p a t t e r n s ; a r c h i t e c t u r e _ t y p e " / >

</ owl : O b j e c t P r o p e r t y >

<owl : O b j e c t P r o p e r t y r d f : a b o u t ="& d e s i g n _ p a t t e r n s ; h a s S t y l e ">

< r d f s : domain r d f : r e s o u r c e ="& d e s i g n _ p a t t e r n s ; p a t t e r n " / >

< r d f s : r a n g e r d f : r e s o u r c e ="& d e s i g n _ p a t t e r n s ; p a t t e r n _ s t y l e s " / >

</ owl : O b j e c t P r o p e r t y >

150

GEORGE A. S
IELIS

7.4.1 Implementation of the Semantic Interoperability library

The implementation of the semantic analysis, data retrieval and filtering is done with the use

of Jena framework [85]. The implementation mechanism is as follows: The designed ontologies,

used by ArchReco prototype, are loaded in memory and a definition of the vocabulary used by

each ontology, and their defined uri’s are declared. For any external data-source, an endpoint url

is used to access the included data (i.e Web Services, XML files or external Databases). The

external retrieved data are loaded in the memory of the system, and the data are transformed into

“in-memory models” with the use of a “data-to-rdf” mechanism that is implemented in the system.

The created virtual rdf’s are mapped to the Ontology models through configurations (for the time

being, by the developer) and a set of SPARQL queries that parse the Ontology models retrieve and

filter the data from the defined external sources. Figure 10 depicts the representation of the overall

life-cycle of the data exchange in regards to the semantic mapping and representation.

For the evaluation of the Semantic model and the usage of the multiple data-sources it was nec-

essary to import data from more than two sources and execute the implemented SPARQL queries

to ensure that data are retrieved properly. During the evaluation a limitation was extracted, the

lack of open, public accessible web services for existing Design Patterns repositories. In order to

test the designed semantic model, data were collected from multiple Design Patterns repositories,

either using crawling functionality or by hand, and the collected data stored in local database and

xml files. The testing data sources applied in the designed model and a set of SPARQL queries

were executed. For the current version of the prototype, the collected data were transferred in the

ontology file, as part of the release package making possible the off-line data retrieval, filtering

and reasoning, and thus, avoiding cold-start problems.

151

GEORGE A. S
IELIS

Examples of dynamic in memory creation from database and xml files as two different data-

sources are depicted in B.1 and B.2. The semantic web data retrieval and usage life-cycle is

depicted in figure 10

7.5 Semantic web Data Mapping

Data may exist in different data repositories having different structure and identification labels.

The commonality between the data that exist in the repositories is the content and more specifically

the scope of the content. For the better understanding the following example is given: Most of the

systems have users registered in their databases. The name used for the entity “Users” may differ

between the systems and it depends on the developer who defined the corresponding table (if it is

a relational DB), the collection (if it is a NoSQL db), the tag (if it is an xml notation). Common

names given to the entities are “User” without the ending “s”, “SystemUsers”, “UsersData” etc.

Independently to the storage engine and the name that was used to define the Users the content

and the scope of their existence is the same, they store the users’ data. Therefore, for the creation

of a system that collects the user data from all the repositories that contain users’ data this can

be achieved with the use of an ontology model, the data retrieval mechanism from the several

end-points and the corresponding mapping of the retrieved datasets to the unified ontology model.

Continuing the “Users” example, the modeling and mapping will be as shown in Listing 7.2.

Listing 7.2: Mapping sample

/ / D e f i n i t i o n o f t h e r e p o s i t o r i e s u r i ’ s

@pref ix myapp : < h t t p : / / www. mynewsystemontology . com / o n t o l o g y #> .

@pref ix d a t a f r o m s q l : < h t t p : / / www. s q l d a t a . com / s q l−da ta−mapping−model#> .

152

GEORGE A. S
IELIS

@pref ix datafrommongo : < h t t p : / / www. mongodata . com / mongo−da ta−

mapping−model#> .

@pref ix da ta f romxml : < h t t p : / / www. xmlda t a . com / xml−da ta−mapping−model#> .

/ / D e f i n i t i o n o f t h e s e m a n t i c a l l y d e f i n e d p r o p e r t i e s t h a t

/ / a l l models c o n t a i n

myapp : hasName a owl : D a t a t y p e P r o p e r t y .

d a t a f r o m s q l : hasName a owl : D a t a t y p e P r o p e r t y .

datafrommongo : hasName a owl : D a t a t y p e P r o p e r t y .

da t a f romxml : hasName a owl : D a t a t y p e P r o p e r t y .

d a t a f r o m s q l : Use r sDa ta r d f s : s u b C l a s s O f myapp : Use r s .

d a t a f r o m s q l : h a s F i r s t N a m e r d f s : s u b P r o p e r t y O f myapp : hasName .

.

.

Using the example in 7.2 it is shown that the data coming from external sources are trans-

formed into virtual models and for each one of them a uri is defined. Then we define a prefix for

each particular Uri and we map the data objects and the data properties to the ones that the main

ontology contains. With the above transformations and mapping it becomes possible to create

queries that refer to the main ontology model and retrieve data from all external data sources that

were transformed in the system.

Listing 7.3 depicts part of the mapping configuration that was used for the data retrieval from

MySql DB and XML files from the Appendix examples B.1 and B.2.

153

GEORGE A. S
IELIS

Listing 7.3: Mapping sampl used in ArchReco Semantic Interoperability Layer

S t a n d a r d i m p o r t s t a t e m e n t s

@pref ix r d f : < h t t p : / / www. w3 . org /1999/02 /22− r d f−syn t ax−ns #> .

@pref ix r d f s : < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#> .

@pref ix owl : < h t t p : / / www. w3 . org / 2 0 0 2 / 0 7 / owl#> .

@pref ix xsd : < h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#> .

SWRL i m p o r t s

@pref ix r u l e m l : < h t t p : / / www. w3 . org / 2 0 0 3 / 1 1 / r u l e m l #> .

@pref ix s w r l : < h t t p : / / www. w3 . org / 2 0 0 3 / 1 1 / s w r l #> .

@pref ix s w r l b : < h t t p : / / www. w3 . org / 2 0 0 3 / 1 1 / s w r l b #> .

Domain i m p o r t s

@pref ix s a d L a t e s t : < h t t p : / / s c s t . com / o n t o l o g y #> .

@pref ix c s t a p p : < h t t p : / / www. c s t a p p l i c a t i o n . com / o n t o l o g y #> .

@pref ix : < h t t p : / / h t t p : / / www. s c s t . com / sad−c s t−mapping#> .

s a d L a t e s t : hasName a owl : D a t a t y p e P r o p e r t y .

s a d L a t e s t : hasEmai l a owl : D a t a t y p e P r o p e r t y .

c s t a p p : hasName a owl : D a t a t y p e P r o p e r t y .

c s t a p p : hasEmai l a owl : D a t a t y p e P r o p e r t y .

c s t a p p : h a s P r o f e s s i o n a owl : D a t a t y p e P r o p e r t y .

c s t a p p : h a s E d u c a t i o n a owl : D a t a t y p e P r o p e r t y .

c s t a p p : hasUsername a owl : D a t a t y p e P r o p e r t y .

154

GEORGE A. S
IELIS

c s t a p p : hasShortCV a owl : D a t a t y p e P r o p e r t y .

c s t a p p : spe ak sLa ngua g e s a owl : D a t a t y p e P r o p e r t y .

c s t a p p : l i v e s I n C o u n t r y a owl : D a t a t y p e P r o p e r t y .

c s t a p p : worksInCompany a owl : D a t a t y p e P r o p e r t y .

c s t a p p : p r o j e c t T i t l e a owl : D a t a t y p e P r o p e r t y .

c s t a p p : h a s D e s c r i p t i o n a owl : D a t a t y p e P r o p e r t y .

c s t a p p : h a s S t a t e m e n t a owl : D a t a t y p e P r o p e r t y .

c s t a p p : be longsToTop ic a owl : D a t a t y p e P r o p e r t y .

c s t a p p : hasKeywords a owl : D a t a t y p e P r o p e r t y .

c s t a p p : h a s R e l a t e d T o p i c s a owl : D a t a t y p e P r o p e r t y .

c s t a p p : hasMember a owl : D a t a t y p e P r o p e r t y .

c s t a p p : P e r s on r d f s : s u b C l a s s O f s a d L a t e s t : P e r so n .

c s t a p p : hasName r d f s : s u b P r o p e r t y O f s a d L a t e s t : hasName .

c s t a p p : hasEmai l r d f s : s u b P r o p e r t y O f s a d L a t e s t : hasEmai l .

c s t a p p : h a s P r o f e s s i o n r d f s : s u b P r o p e r t y O f s a d L a t e s t : h a s P r o f e s s i o n .

c s t a p p : h a s E d u c a t i o n r d f s : s u b P r o p e r t y O f s a d L a t e s t : h a s E d u c a t i o n .

c s t a p p : hasUsername r d f s : s u b P r o p e r t y O f s a d L a t e s t : hasUsername .

c s t a p p : hasShortCV r d f s : s u b P r o p e r t y O f s a d L a t e s t : hasShortCV .

c s t a p p : spe ak sLa ngua g e s r d f s : s u b P r o p e r t y O f s a d L a t e s t : sp ea ksLa ng uag es .

c s t a p p : l i v e s I n C o u n t r y r d f s : s u b P r o p e r t y O f s a d L a t e s t : l i v e s I n C o u n t r y .

c s t a p p : worksInCompany r d f s : s u b P r o p e r t y O f s a d L a t e s t : worksInCompany .

c s t a p p : P r o j e c t r d f s : s u b C l a s s O f s a d L a t e s t : P r o j e c t .

c s t a p p : h a s T i t l e r d f s : s u b P r o p e r t y O f s a d L a t e s t : h a s T i t l e .

155

GEORGE A. S
IELIS

c s t a p p : h a s D e s c r i p t i o n r d f s : s u b P r o p e r t y O f s a d L a t e s t : h a s D e s c r i p t i o n .

c s t a p p : h a s S t a t e m e n t r d f s : s u b P r o p e r t y O f s a d L a t e s t : h a s S t a t e m e n t .

c s t a p p : be longsToTop ic r d f s : s u b P r o p e r t y O f s a d L a t e s t : be longsToTop ic .

c s t a p p : hasKeywords r d f s : s u b P r o p e r t y O f s a d L a t e s t : hasKeywords .

c s t a p p : h a s R e l a t e d T o p i c s r d f s : s u b P r o p e r t y O f s a d L a t e s t : h a s R e l a t e d T o p i c s .

Figure 10: Semantic Web Usage

156

GEORGE A. S
IELIS

7.5.0.1 SPARQL queries - samples for context based data filtering

In this section, some of the functions that created for the retrieval of Design Patterns data using

category as contextual information are depicted. In this case, “category” is used as input parameter

in these functions. In listings B.3 and B.4 that can be found in Appendix B, the related SPARQL

queries are depicted. In the examples shown, the definition of a SPARQL query is based on the uri

prefixes, which point the models on which the SPARQL query refers to. In our case two prefixes

are used: the “dp” prefix that defines the ontology model of the Design Patterns and the second

one, “rdf”, a semantic web standard prefix that points to an rdf schema which can be used for

the semantic representation of relations between ontology entities/classes. The SPARQL queries

are very similar to SQL queries but with different syntax and they are based on the semantic

representations that a semantic model has. The SPARQL queries can be expressed in physical

language in the way it is written, since the semantic relations can be used to translate a query into

a physical language expression and vice versa. For example, in listing B.3 the pattern name is

known and based on this it is possible to retrieve the category name that the particular pattern

belongs to. The structure of the model is as follows: The Design Pattern belongs to a subcategory

of a category of Design patterns. Therefore the Design Pattern’s name is used as the basis for the

query construction. The SPARQL query in listing B.3 can be expressed as:

“The pattern with name z which is categorized in a subcategory that is subcategory of a cate-

gory and has category name x, Return the x.”

7.6 Conclusions

In this chapter the Design Patterns contextual model was defined. The produced model inte-

grated with the Creativity contextual model that was presented in chapter 5. With this integration,

157

GEORGE A. S
IELIS

the created model (in the form of Ontology) consists of the main conceptual model on which the

Context Aware Recommendation system of ArchReco prototype, is built. In addition to that, the

current chapter presented the “semantic web interoperability mechanism” through samples of se-

mantic web queries. The chapter that follows, describes how the defined conceptual model is used

for the development of the Context Aware Recommendation system for the computation of Design

Patterns recommendations.

Moreover, the semantic interoperability mechanism that is presented consists of a reusable

and extensible component. For the aims of the current thesis the component was developed as

java library component but for future usage it is worth noticing, that the semantic interoperability

mechanism is also implemented in the form of a web service, which can be adjusted and used for

other projects on different research topics.

158

GEORGE A. S
IELIS

Chapter 8

Design and development of the Design Patterns Context Aware

Recommendation System

8.1 Introduction

Reusability based on existing knowledge, assists Software Engineers in designing well-structured

and well-defined High Level Software (HLS) Design Models [25]. This thesis deals with reusabil-

ity through Design Patterns [5]. The plethora of Design Patterns and the several combinations

between Design Patterns, makes Design Patterns training mandatory, and their correct usage in

real problems, a challenging task. The objective of this chapter, is to introduce the thesis’s ap-

proach for the Design Patterns recommendations. The recommendation system, belongs to the

Context Aware Recommendation Systems that were described in chapters 3 and 4 respectively.

The current chapter describes the developed Context Aware Recommendation engine, its archi-

tecture design and its filtering/reasoning methods. The design and implementation of the Context

Aware Recommendation System is done for its integration with the ArchReco software prototype.

Its usage of the system aims to the users’ assistance to find the most suitable Design Patterns that

159

GEORGE A. S
IELIS

can be used for a given problem during the High Level Software Design modeling. With the rec-

ommendation of Design Patterns, users will be able to learn their content and select and apply

them.

8.2 Context Aware Recommendations

The definition of the contextual elements in combination with their semantic representation as

ontology models is used. For the development of the recommendation engine, for the ArchReco

prototype, implements two recommendation methodologies, pure Text-based and Utility-based

Context Aware Recommendations. For the design and development of the system, findings from

previous chapters were used. In particular, the recommendation methods that applied were pre-

sented in chapter 4; the contextual model and the semantic interoperability component that were

presented in chapter 7; designed and developed the Context Aware Recommendation System us-

ing the experience gained in chapter 5, from the generic Recommendation System for Creativity

development.

8.2.1 Comparison with the Generic Recommendation System (Chapter 5)

The generic Recommendation System that was presented in chapter 5, was a proof that pro-

viding recommendations based on the designed Creativity Contextual model was valid. However,

its development was also a chance to identify and track a number of problems and flaws, that

should be avoided in a future development attempt. Some of the found problems were related

to usability and also related to several development dependencies. First, semantics and semantic

modeling was not properly used. Even the fact that the system was built based on a semantic

model (designed using the Topic Maps technology), it was not taking advantage of the semantic

technology and its advantages. For example, the system was not able to access and retrieve data

160

GEORGE A. S
IELIS

from multiple data-sources due to the semantic web platform that was used (Ontopia platform).

The designed ontology, was used as a repository for storing input data and the developed queries

for reasoning and filtering of data were executed with direct access to the stored content. In gen-

eral it is not recommended to “write” data into ontology from the application level. The wrong

operations and the limitations described, happened for two reasons: due to the specific Topic Maps

technology and the Ontopia platform that was used as a Content Management System. In addition

to the data access and retrieval, from external data sources, limitations there were problems with

the design of the model, due to lack of experience at the time of the development. The overall

filtering and reasoning that the Recommendation system was using was designed based on the

“keywords” and “domains” that should describe any input that was referred to an entity. The

keywords and domains should be defined from two parts, the users who were adding content and

the users who were requesting recommendations. The lack of keywords or domains for an input

would make data of the repository unreachable. Since, the recommendations were produced based

on keywords and domains that the user should provide upon the recommendation request, caused

usability problems and accuracy problems. User should be aware of keywords or domains in order

to receive any kind of recommendations.

The experiences earned from the development and usage of the generic recommendation sys-

tem (chapter 5), led to the requirements definition for the ArchReco prototype’s Context Aware

Recommendation System. The objectives for the ArchReco Context Aware recommendation Sys-

tems were based on three axes: 1. Minimization of the users’ input, 2. Automatic recommendation

triggering and 3. Ability to provide Recommendation of items coming from more than one data-

sources.

161

GEORGE A. S
IELIS

8.2.2 Requirements definition

Using the outcomes of the generic implementation that was attempted in chapter 5 and the

needs that were extracted in chapter 6, it became possible to define the requirements for the im-

plementation of the Context Aware recommendation system of Design patterns. The requirements

for the recommendation system are as follows:

• Development of a content based Context Aware Recommendation System.

• Delivery of recommendations of Design patterns coming from more than one repository

• Give the flexibility to the user to interract with the recommender in order to receive better

results.

• Development of an extensible recommendation system on which more than one algorithms

will be possible to be applied.

The particular requirements were met as follows:

• The developed recommendation system is focusing on the content than in producing rec-

ommendations based on ratings (collaborative filtering). The system is using the content of

Design patterns that is coming from external or internal sources as individual documents

which are indexed and analyzed for the computation of recommendations. Additionally, the

system takes into account the input given by the users in free text and not only based on

“keywords” and “domains” like in 5. The use of semantic web technologies in combina-

tion to the automatic indexing and filtering makes the input that the user has to create more

creative and more simplified.

• The system uses the semantic interoperability component which was adjusted to the needs

of the current thesis as it was described in chapter 7.

162

GEORGE A. S
IELIS

• The recommendation system implements the Utility based Context Aware Recommendation

algorithm as post-filtering method, where the user is able to define weights of importance

for specific contextual elements and adjust the recommendation results based on the corre-

sponding preferences.

• The current system implements two recommendation methods and it can apply other al-

gorithms in the case that it is needed. The semantic model that is used can be extended

without modifying or influencing the current semantic queries and computations that the

current system uses.

8.2.3 Contextual Elements Used the Software Engineering Training prototype

The context elements that were selected and used by the recommendation engine are defined

as follows:

“Project” - Project refers to the description of the project that a diagram is created for. The

project is defined by a “Title” and a “Description”. The definition of the project with its title and

description is a high level definition of the problem that the diagram solves.

“Application type” - The type of application is used for the selection of the most suitable set

of Architectural templates that can be applied in the diagram. The type is used for the selection

of the most suitable Architecture generic diagram that can be applied and the Architectural layers

are used as contextual filtering elements when a diagrammatic shape is added in each layer.

“Architecture types” - Architecture types and their diagrammatic generic templates are defined

based on the application type they are usually applied for. Like for example we identify four

Architecture types based on the well known application types: Desktop, Mobile, Service Oriented

and Web Based applications. Each Architecture type can have one or more architectures that can

be applied for the development of each corresponding type. For example for web applications the

163

GEORGE A. S
IELIS

Architectural patterns of MVC, MVP, MVVM can be applied, for Mobile application the MVVM

pattern is too common and for web services the Model-Controller may be used. The Architectural

patterns can be related with more than one Software Architecture type.

“Shapes” - Each particular shape that exists in the palette has a specific type. The type of

the shape defines the type of Design Patterns that may be referred to based on the categorization

of the Design Patterns that was described in this section. For each shape user is able to add text

describing a requirement and the recommended Design Patterns for the specific shape will be the

most suitable for solving the described requirement.

“Structure of shapes” - As contextual information the structure of the shapes within a diagram

is also taken into account. For a particular shape description the system is also able to collect

the descriptions that were given for “parent” or “child” shapes that are connected with it. This is

manly used for the Utility based algorithm only when the user requires the participation of other

shapes in the recommendation filtering.

“User” - User is the main contextual entity of the system. User is the person who defines the

overall design of a diagram; gives the input text that is used for the recommendation filtering; and

is the entity that takes the decisions regarding the selection of a recommended Design Pattern or

not, to apply in the diagram.

8.3 Recommendation Methods

As already mentioned, ArchReco prototype is integrated with two different Recommendation

methods that use contextual information to produce recommendations of Design Patterns.

164

GEORGE A. S
IELIS

8.3.1 Text-Based Recommendations for Design Patterns

Text Based recommendations are triggered when user writes a description into a diagram

shape. The input is based on physical language text, which is processed in the following way:

the shape has a specific type such as Data operation, Server Side operation or User Interface op-

eration. Based on the shape’s type a pre-filtering [37] [38] on the Design Patterns is done with

the use of SPARQL queries and the produced subset of Design Patterns is processed into an in-

dexing mechanism (using LUCENE Framework [107]) which handles each pattern’s attribute as

indexed document. Then with the use of the TF-IDF [193] algorithm and the cosine similarity the

input text is analysed and compared with the indexed attributes of the Design Patterns subset and

produce the recommendation ranked list, based on the calculated similarity.

8.3.2 Utility Based Recommendation for Design Patterns

Similar to the first method, Utility-based Recommendation uses text filtering for the computa-

tion of the recommendations but not only the text is taken as input for a shape but also the text of

the connected parent shapes, the connected children shapes, the title and the problem definition/de-

scription of the diagram. Additionally, the recommendations are computed and ranked based on

the utility of each Design Pattern for the context that it is retrieved. The utility is changing dy-

namically since its computation depends on the weight of each contextual factor. The weights for

each factor are defined by the user and thus the user may adjust the recommendations on her own

preferences.

For the Utility Based method, four contextual factors were selected; the given title of the

project, the general description (problem to solve), the parent shapes and the child shapes of the

selected shape that the recommendations refer to. For each contextual factor the users are able to

define weight of importance and also can modify the text for every factor until the results satisfy

165

GEORGE A. S
IELIS

the user’s preferences. The Utility function is computed by equation 23 and the form by which the

users can define the contextual factors weights of importance.

U =

N∑
i=1

wi ∗ fi
N

(23)

The two methods have commonalities in regards to the pre-filtering methodology but differ in

the post filtering, since the post filtering mechanism is applied only for the Utility-based method.

Therefore the context in each particular case differs and the output result is changed regarding

the items as well as the ranked list of presentation. In the rest of this section the pre-filtering and

post-filtering methods are described.

8.4 Architecture of the Context Aware Recommendation System

The Context Aware Recommendation System developed as individual component that accepts

input based on a specific request and returns a result-set based on the algorithm and filtering

method that it is triggered. Following that design, it offers the flexibility for extensibility of the

component as well as the transferability of the component for its integration to other applications.

The component designed and developed following the functional Architecture that was presented

in chapter 4, defined by the following four layers:

1. Collection of data

2. Filtering data

3. Ranking of the recommended items

4. Presentation of recommended items to the user

The recommendation system’s architecture is depicted in figure 11.

166

GEORGE A. S
IELIS

Figure 11: Context Aware Recommendation System Component Architecture

8.4.1 Collection of Data

The collection of data is a result between the interaction of the users’ input in combination

to the Semantic Interoperability layer that collects data from the defined data sources through the

designed ontology model. The data are collected through the ontology model and the input of the

user defines the context that will be taken into account by the component in order to trigger the

corresponding filtering method that the system supports. The collection of the data and the way

the system retrieves the data through the Semantic Interoperability layer is described in chapter 7.

167

GEORGE A. S
IELIS

8.4.2 Filtering the Data

For the filtering of the data the system supports two filtering methods: the pre-filtering and

post-filtering. Each particular method is triggered based on the selected by the user method and

they are functioning as follows:

8.4.2.1 Pre-filtering

For the pre-filtering method the filtering factor that is taken into account is the type of the

shape that it is used for the description of a requirement within the diagram. Using a specific

type for a shape defines which subset of Design Patterns categories or subcategories should be

retrieved using the Ontology model. For example for a “Server Side” requirement shape, after

adding it to the canvas and giving to it a requirement description, a SPARQL query is executed

retrieving from all defined data-sources through the ontology model all categories that contain

Server Side Design Patterns, such as the “Classic (Gang of Four - (GoF)), the Antipatterns” and

the “Enterprise Application Architecture Patterns” and their subcategories. The retrieved subset

of Design Patterns is then indexed as virtual documents having as content the descriptions of their

attributes descriptions as they are defined by the corresponding source of retrieval. Then, the text

that was given by the user as a requirement description is filtered by removing the stop words

and vectorized. The created vector is used as input to the TF-IDF algorithm and using the cosine

similarity it returns the most relevant Design Patterns ranked based on the number of common

words found in each Design Pattern’s attributes.

In the case of the Text-based method, the text that is taken into consideration during the com-

putation, is only the shape’s description. In the case of Utility-based method additional text is

used, taken from the additional contextual elements that the user defined from the interface, such

as the Title of the diagram, its description, the parent shapes text and the children shapes text. For

168

GEORGE A. S
IELIS

the Text-based filtering method the results are directly presented to the user. For the Utility-based

method the results are passed into a post filtering mechanism that performs additional filtering

based on the weights of importance that the user defined for each participating contextual factor.

8.4.2.2 Post-filtering

The pre-filtering results in combination with the LUCENE indexing and the TF-IDF algorithm

return a list of results ranked based on the number of common words that were found for each

Design Pattern. With the Utility based method that is used in ArchReco prototype the user is

able to define for a set of pre-defined contextual factors the weight of importance that each factor

may have in the computation and if the factor should be included in the computation or not. The

weights of the context factors and their text inputs are passed into the recommendation engine

and then the content is used for the pre-filtering and the weights are used for the post-filtering

computations.The list of Design Pattern results that is produced by the pre-filtering is now re-

ranked based on the weights of importance and thus the utility value of each Design Pattern. The

computation used for the utility given in equation 23 defines a new rank for the Design Patterns

results which reflect to the user’s opinion regarding the utility of each Design Pattern.

8.4.3 Ranking and presentation of the Data

After the filtering methods are executed the data are ranked based on the number of word

“hits” of words and the similarity method that is used by the TF-IDF algorithm in the case of

pre-filtering; and based on the utility function results in the case of post filtering. The results are

returned by the component in the form of a ranked list to the presentation layer, the ArchReco

software, and presented to the users.

169

GEORGE A. S
IELIS

8.5 Conclusions

his chapter described the Context Aware Recommendation Component and how this is used in

ArchReco prototype. It described the high level architecture of the component which is designed

following the recommendation Systems functional architecture that was presented in chapter 4. It

describes the methods that were used for both pre-filtering and post-filtering methods and how the

analysis of the content is performed.

170

GEORGE A. S
IELIS

Chapter 9

ArchReco Software Prototype

9.1 Introduction

The thesis statement that was set in chapter 1 defined two objectives for this thesis: “First the

definition of the necessary contextual models that can be used for the development of the Context

Aware Recommendation system that will take into account the Creativity and Software Engineer-

ing principles”, and “second the development of a software prototype tool which will apply the

developed Context Aware Recommendation System (CARS) for assisting the students in learning

and at the same time practicing the High Level Software design with the use of Design Patterns”.

From the previous chapters the first objective was met through the definition and design of the con-

textual model for Creativity and the Creativity in combination to Software Engineering concepts,

and more specifically the design patterns. The second objective is a combination between the

defined models, the implemented semantic interoperability layer (chapter 7), the Context Aware

recommendation system for Design patterns (chapter 8) and the findings from chapters 3, 4 and 5.

This chapter consists of the work related to the second objective of this thesis. It presents the

ArchReco software prototype which is the result of the work presented in the previous chapters.

171

GEORGE A. S
IELIS

ArchReco is a software prototype that was implemented following the creativity models given by

[8] and [152] and integrating the models and components that were presented in chapters 7 and 8.

9.2 Requirements definition

The requirements that were set for the design and development of the ArchReco prototype

were set based on the thesis statement objectives. The requirements that were set are the following:

• Development of a Creative environment were user will be able to design High Level Soft-

ware Diagrams.

• Support of the user by providing Context Aware Recommendations of Design patterns.

• Offering the ability to extract the designed model in transferable formats (e.g. xml based

files)

9.3 ArchReco prototype

ArchReco is a Software Design prototype tool which can be used for the design of HLS Dia-

grams. High Level Software Design is defined in [25] as “a collection of module and subroutine

interfaces related to each other by means of USES and IS COMPONENT OF relationships. Pre-

cise and formalized information on module or subroutine bodies is not yet available at the stage

of High Level Design”. The tool provides components such as the design canvas, design shapes

palette, and the Context Aware Recommendation mechanism that provides recommendations of

Design Patterns during the design process. ArchReco is a java based application supported by

Semantic Web technologies such as Jena Framework, SPARQL query language, MySql Database

engine (whenever it becomes necessary) and OWL for the representation of the conceptual models

that are used by the prototype.

172

GEORGE A. S
IELIS

9.3.1 ArchReco usage

ArchReco prototype is a software tool that can be used for the design of diagrams with the use

of shapes (drag ‘n drop to the canvas component) and for each shape users are able to provide de-

scriptions to the purpose of use describing their functional purpose in physical language text. Each

shape has a type which is related to the requirement type that it can be used for. The prototype

also provides a set of pre-defined Architectural templates, with generic information and structure

so the user is able to enrich the design by adding shapes of different types on particular architec-

tural layers. The shape types in combination to the Architectural templates (different subsets of

templates per application type i.e. Web, Desktop, Mobile application) and the provided input text,

by the user, consist part of the contextual information that is used for the data filtering and the

production of the most relevant Design Pattern recommendations. ArchReco was designed and

developed for particular target group, CS or Computer Engineering students, who want to learn

how to design HLS Diagrams and in particular, learn the Design Patterns and their usage. For

that reason, CARs of Design Patterns is an important enhancement that aims to the provision of

support to the students who use the tool in training and learning by practice the Design Patterns

coming from multiple repositories that are defined.

Retrieval of different Design Patterns types, known or new ones, presumes the accessibility to

several Design Pattern repositories for the collection of their surrounding information in a struc-

tured and unified form. For that reason a number of ontologies have been introduced (Design

Patterns, user, software project ontologies), for the modeling of the Design Patterns, and the con-

textual elements in a structured form. Using the ontology models, a semantic analysis engine was

built for querying the retrieved data with the use of SPARQL query language. The most important

ontology model for the computation of Design Patterns recommendation is the Design Patterns

173

GEORGE A. S
IELIS

ontology. Design Patterns ontology contains data following the Design Patterns attributes struc-

ture that is commonly used for the Gang of Four (GoF) [59] patterns. More specifically, Design

Patterns are structured in terms of the Intent, Motivation, Applicability, Structure, Participants,

Collaborations, Consequences, Implementation, Known Uses and Related Patterns. Design Pat-

terns are grouped in categories based on their usual usage type like for example “Data”, “UI” or

“Operational” Design Patterns.

9.3.2 ArchReco Prototype as a Design Patterns Training Tool

The objective that the ArchReco prototype aimed to meet is the training of Computer Science

and Computer Engineering students in learning the Design Patterns through practice. The Context

Aware Recommendations is the aiding tool that was used for achieving the task. The overall

design of the prototype was done based on the assumption that the users of the system do not know

UML, since UML design is used for functional design and demands a good level of programming

language knowledge and experience in similar modelling tools. Additionally, the tool is designed

to offer aiding tools other than the Context Aware recommendations for Design Patterns. By

the initialization of a diagram model/project users are able to define the problem they want to

transform into a model, define the type of application that the High Level Design is about, such

as Web, Mobile, Web Service or Desktop Application and the nature of the application such as

if it will be a static or dynamic content application. Using the input given by the beginning of a

new design the initializing input is analyzed and a list of Architectural templates for the defined

application types is presented. For example, for a dynamic Web-based application the list with the

Architectural Patterns contains the MVC (Model View Controller), MVVM (Model View - View

Model), MVP (Model View Presenter) and other Architectural Patterns that are commonly used

174

GEORGE A. S
IELIS

for Web Applications are presented. For each Architectural Pattern there is a complete description

coming from the existing related literature and an image that describes its high level design.

The prototype consists of four areas/panels. In these panels the following modules exist: A

palette with custom shapes (not UML shapes), a canvas, the diagram model details and panel with

three tabs that contain the Design Patterns recommendation results, the Architectural Patterns and

a set of Design Principles. The shapes of the palette have names that help the user to understand

the purpose that they can be assigned for and each shape triggers a specific semantic pre-filtering

mechanism based on their usage. The recommendation tabs on the right panel are automatically

expanded and provide information according to the performed actions. For example, when the

user defines the type of the application, the Architectural Patterns tab is expanded containing

the selected type related Architectural Patterns, and when a shape is dragged in the canvas, the

Recommendations of Design Patterns tab expands, containing the recommended patterns that are

produced based on the user’s textual input. The automatic expansion of the tabs aimed to attract

the user’s attention when an action is performed and make the user to select the recommended

patterns and study their provided content. For each Pattern Architectural or Design, the user is

able to add them in the canvas by pressing a button.

The ability to design diagrams on predefined Architectural diagrams over the canvas in com-

bination with the Context Aware Recommendations for the Design Patterns offer the users an

environment where they can design a high level software diagram based on a given problem with-

out the need for advanced knowledge in Software Design modelling. The given environment

offers accessibility to Design Patterns information for learning without being necessary to search

the web. Additionally, the use of context for the recommendation of Design Patterns gives the

opportunity to the users to examine a minimized set of Design Patterns that is produced based

on the problem description, the specific task description and the type that a shape of the diagram

175

GEORGE A. S
IELIS

has. The designed diagram then can be extracted in several formats from which one of them is

in *.XMI an XML based modelling language which can later be transformed into a uml diagram.

The transformation of the XMI language into UML is not included in the scope of this work. A

sample of the expected diagram is depicted in figure 12. A sample XMI exported file is shown in

listing 9.1. ArchReco prototype is depicted in figure 13.

Listing 9.1: XMI diagram
<mxGraphModel >

< r o o t >

<mxCell i d ="0" / >

<mxCell i d ="1" p a r e n t ="0" / >

<mxCell i d =" Model " p a r e n t ="1" s t y l e =" shape =hexagon " v a l u e =" Model "

v e r t e x ="1" >

<mxGeometry as =" geomet ry " h e i g h t = " 1 0 0 . 0 " wid th = " 5 8 0 . 0 "

x = " 4 0 . 0 " / >

</ mxCell >

<mxCell i d ="View " p a r e n t ="1" s t y l e =" I n t e r f a c e ; swimlane " v a l u e ="View "

v e r t e x ="1" >

<mxGeometry as =" geomet ry " h e i g h t = " 1 8 0 . 0 " wid th = " 5 8 0 . 0 "

x = " 4 0 . 0 " y = " 1 3 0 . 0 " / >

</ mxCell >

</ r o o t >

</ mxGraphModel >

9.4 Prototype Implementation

The prototype design tool was developed as a graph editor that is built on the basis of the

jGraph framework [10]. The prototype enhanced by functionality that supports recommendations

for Design Patterns in runtime, during the design of Software Architecture Diagrams. The rec-

ommendation algorithms and the methods of presenting the recommendation results were built as

individual components and integrated with the basic graph editor tool, which exists in the jGraph

package. Generally speaking, the Software Architecture prototype is a complete graph editor

consisted of the following modules/components:

176

GEORGE A. S
IELIS

Figure 12: ArchReco Diagram Sample

Figure 13: ArchReco Prototype

• Graph Editor Canvas where the designer is able to design Architecture Diagrams (Support

of styling and editing the diagrams).

177

GEORGE A. S
IELIS

• Palette of diagram components where all the diagram components exist and the designer is

able to drag to and drop the components in the canvas.

• Architecture Diagram Information Area where the designer can write the meta-data infor-

mation of the working model such as a description or a title.

• Diagram Actions Area module, which is changing according to the selected recommenda-

tion algorithm. In this area the designer is able to see information of the selected nodes

(from the designed diagram) or interact with the tool according the recommendation algo-

rithm requirements. The input parameters that are required based on the selected algorithm

are described in a following section with the description of each particular context-aware

recommendation method.

• Recommendation of Design Patterns Area module: In this area the Design Patterns Recom-

mendation results are shown. It is structured in such a way that the designer by selecting a

recommended pattern can acquire full knowledge of its characteristics and its generic UML

diagram, and he is also able to insert the selected pattern in the diagram by pressing a button.

For the development of the implemented components that were integrated with the prototype

software a combination of methods were used. For example, for modeling the data, two ontolo-

gies were defined and used in combination with the database engine SPARQL ontology query

language, as well as dynamic transformation of data into an ontology based description language,

whenever this was necessary. The use of semantic web technologies, especially for modeling the

data, was done for two reasons: Firstly, for re-usability reasons, since the conceptual model that

was defined can be reused for the development of similar applications. Secondly, semantic web

technologies offer the flexibility to retrieve data from multiple sources, handle and structure the

way it suits the application and easily query the data to retrieve the necessary information. For the

178

GEORGE A. S
IELIS

aim of this work, two ontologies were defined and designed; the Design Patterns Ontology model

and a second ontology for modeling the context based on the contextual elements identified for

the current domain of work: Software Architecture Design.

9.4.1 System Architecture

As mentioned before the ArchReco prototype was implemented in Java programming lan-

guage using the JSwing framework. The application is developed as a desktop application that is

consisted of three parts, the Core, Integration Layer (Integration of the partial components) and

the presentation layer. The overall architecture is depicted in figure 14.

Figure 14: ArchReco System Architecture

The Core layer contains the core functionality of the system, such as the data bus of the system

for transferring messages and data between the components or between the layers. The Core also

contains the Object Definitions for entities that exist in the system.

179

GEORGE A. S
IELIS

The Integration Layer contains the Semantic Interoperability Component and the Context

Aware Recommendation engine. Each component is responsible for the processing of the data and

the operations they perform according to the role they have in the system as they were described

in the previous chapters. The Context Aware recommendation engine is also able to exchange data

between the view layer and the core, especially in the case of the post-filtering process.

The View layer contains the JSwing components that are used for the presentation of the

software to the user. With the presentation layer users are able to provide input to to the system

which then will be processed by the other two architectural layers.

Figure 15: ArchReco Components Communication

In figure 15 the communication between the components is depicted. As it is shown the indi-

vidual components or modules are able to exchange data between each other and all functionality

180

GEORGE A. S
IELIS

is passed through the ArchReco prototype. In this figure a database is also used for the storage of

persistent data related to the interaction between the prototype and the users, but database is not a

dependency for the software so it can also operates offline.

9.5 ArchReco prototype description

This section aims to present the ArchReco prototype through its interface modules and how

users are able to interact with each particular module.

ArchReco’s interface is divided in 4 main panels (figure 16) which are implemented as indi-

vidual modules: the canvas, the left panel/module, the righ panel/module and the bottom panel.

Figure 16: ArchReco interface divided in areas

9.5.1 Canvas

In the central panel there is the canvas module on which the user is able to draw diagrams using

the diagramming palette on the left side. From the right side module additional automated designs

181

GEORGE A. S
IELIS

can be added to the canvas through specific actions according to the provided recommendations in

each case.

9.5.2 Left Panel/Module

The Left module (figure 17) contains a set of input controls that the user has to complete before

or during the design of a diagram.

9.5.2.1 Configure Diagram

In the left panel there are 2 tabs. In the first tab “Configure Diagram” the user can describe the

pattern to be created. A diagram is considered as a new project for which the title has to be de-

clared, the type of application (whether it is web, mobile application etc.) and general description.

The input given in the provided controls are taken into account in the recommendations filter-

ing. These given input can be modified any time during the design process by pressing the “Edit

information” button and “Save”.

In the field “Algorithm” there are three options from which two of them are active at this

stage. Default option is “TextBased” and the second is the active selection “UtilityBased”. This

field addresses the algorithm used by the system for the creation of recommendations of Design

Patterns while creating a diagram. The recommendations are generated based on the description

given by the designer in every shape that the user adds in the chart. The descriptions of shapes

depend on how designer describes a shape regarding the purpose the shape serves in the diagram.

By “UtilityBased” algorithm, the user is able to determine the weight of importance for certain

factors which are taken into account for the creation of recommendations of Design Patterns. By

choosing the “UtilityBased” the lower panel displays the corresponding controls that the user can

182

GEORGE A. S
IELIS

Figure 17: ArchReco Left Side Panel/Module

interract with, and affect the results of recommendations which are given for a selected shape on

the canvas.

183

GEORGE A. S
IELIS

9.5.2.2 Diagram Palettes

As shown in the figure 18 the palette contains nine shapes that can be used for the design of a

diagram. Each shape is different depending on its name and what each one of them represents. The

type of shape plays a role in what kind of design patterns will be recommended, which are related

to the requirement that the shape describes. For example a “server side requirement” may have

the description of a server side operation and the given recommendations for Design Patterns will

be related to the server side operations of the High Level Diagram design. In a “UI requirement”

Design patterns related to the on the appearance of the system will be recommended such as - UI

patterns design (client side).

In particular the shapes are described as follows:

• Server Side Requirement - Used to describe features that will run the server. Recom-

mended Design patterns are related design patterns used to implement functions in the sever

plane as e.g. GoF Design patterns.

• UI Requirements - Is used to describe functions will be performed in the client. It may be

a description of a simple user interface widget or module such as horizontal menu.

• View Template - Used as a container for more than one UI Requirements. It can be consid-

ered as a separate page which can contain many UI elements.

• Data Requirement - Used for requirement description related to data.The system proposes

patterns design on methods used to design databases or writing data to static files. According

to the given description a list of Data related Design Patterns is recommended.

• General - This shape can be used for the description of a general requirement that is related

to all types of design patterns such as Data, UI, Server Side related Design Patterns.

184

GEORGE A. S
IELIS

Figure 18: ArchReco Left Side Panel/Module - Shapes Palette

185

GEORGE A. S
IELIS

• Class - Used when we want to show in the diagram a representation of a specific class which

will help the developer understand a particular function/operation on the diagram.

• Package - General-purpose container which can be used for grouping shapes or partial

diagrams

• Attribute - It can be used for the description of features that will be supported by the

designed system. It can also be used to mark or remark will help the developer to better

understand some design functionalities.

• Operation - Description of a function derived from external program or web service.

9.5.3 Right panel/module

The right panel (figure 19) contains three tabs. Architecture templates, Recommended Design

Patterns and Recommended Design Principles.

• Architecture templates - It contains descriptions Architectural patterns which correspond

to the several types of applications. In the left panel in the tab “Configure Diagram” when

choosing application type and selecting the application type, Architecture Templates auto-

matically correspond to each type. For each architecture template the user is able to read

and understand the description of the architecture or is able to apply it to the canvas. In

some cases architecture.

• Recommended Design Patterns - This tab presents the recommended Design Patterns.

Recommendations are presented automatically depending on the selected shape in the dia-

gram. The selection criteria of the proposed design patterns is the type of the selected shape,

the description of each shape, as to what it serves, and in case of use of Utility-Based Algo-

rithm, the criteria and weights specified by the user. For each design pattern, the user can

186

GEORGE A. S
IELIS

Figure 19: ArchReco Right Side Panel/Module

read the description of available features and design representation if any. Also a pattern

design can be automatically added to the diagram by connecting edge in design element that

is pre-selected by the user pressing the “Add button pattern”.

• Recommended Design Principles - Design principles that are registered in the system for

optional usage and learning.

187

GEORGE A. S
IELIS

9.5.4 Bottom Panel

At the bottom panel (figures 20 and 21) the selected shapes information is shown. For each

selected item apart from the automated received recommendations, the user can request to receive

recommendations by pressing the button “Get Recommendation of Design Patterns”. The button

is commonly used for shapes such as e.g. General or Class which does not automatically trigger

the mechanism proposals for patterns design.

Figure 20: ArchReco bottom Panel/Module (Text - Based Recommendation Algorithm)

By changing the recommendation algorithm to Utility-Based a list of contextual controls is

displayed (figure 21). The controls are used by the users to modify the recommended results

based on the weights that each contextual element may have.

Figure 21: ArchReco bottom Panel/Module (Utility - Based Recommendation Algorithm)

188

GEORGE A. S
IELIS

Chapter 10

Evaluation

10.1 Introduction

The development of the ArchReco prototype and its integration with the Context-Aware Rec-

ommendations for Design Patterns was given to representative users for testing, aiming to collect

feedback and at the same time be able to track possible limitations for future improvements. Ad-

ditionally, the evaluation’s objective was to examine how users perceive the prototype in terms of

its educational character, its usefulness and usability. Therefore, the software was given to users

who were asked to execute a specific task remotely (i.e. not in a lab environment), capturing their

sessions in video form, for further analysis regarding their interaction while they were performing

the task. In particular, with the evaluation process and the questionnaires given, the evaluation

resulted in a significant set of results regarding the objectives set by the evaluation planning. The

evaluation plan was designed based on relevant evaluation methodologies that can be found in [94]

[35] [42] [99].

The ArchReco prototype was developed and designed as a Software Engineering Educational

and Training tool for the support of users in learning Design Patterns by practice as part of the

process of the design of high level software diagrammatic models. The evaluation of the prototype

189

GEORGE A. S
IELIS

was setup as a remote test and targeted students and researchers who actively involved in Software

Engineering and Software Design. The prototype developed as a stand-alone application but that

was not a restrictive factor carrying out the test remotely. To make sure that the task given to the

participants was completed in a proper way and to be able to track their reactions while they were

using the software, the test sessions were captured in video form. The participants were asked

to submit the video upon completion of their individual test sessions. Additionally, related help

material was provided to them such as tutorial for the prototype and also help functionality such as

“Help” button and “Information” links internally in the software. With the session videos captured,

it became feasible to measure times of reactions, possible difficulties related to the interface design

and examine the overall usage of the tool and the produced Context Aware Recommendations in

designing the High Level Software Diagram with the usage of Design Patterns.

For the design, planning and execution of the evaluation, a number of related evaluation frame-

works were examined. The examined frameworks that guided the current evaluation design are

presented in the following subsection.

10.2 Evaluation Frameworks

ResQue [133], is an evaluation framework that stands for recommender System’s Quality of

user experience. It is a complete evaluation framework for the evaluation of recommender systems

from user’s perspective. It measures the quality of the recommended items based on the system’s

usability, usefulness, interface and qualities, user satisfaction and the influence of these qualities

on users’ behavioral intentions. The framework contains 20 questions measuring the latter metrics

and those questions are the result of a large survey that determined them as the most important

questions that user preferences depend on.

190

GEORGE A. S
IELIS

Hayes et al. [76] propose an evaluation framework which is based on the idea of system utility

by comparing how a recommendation strategy performs against another. With this framework the

setup evaluation presumes the existence of a common dataset, a common interface and the mech-

anism to change the recommendation strategy, aiming by this to measure the user’s satisfaction

according to the used recommendation strategy.

Knijnenburg [90], believe that user experience is an ill-defined concept that lacks well-developed

assessments methods and metrics. Therefore, they suggest an evaluation framework which dis-

tinguishes between objective system aspects (algorithms, user interface features etc.), subjective

system aspects (user’s perceptions of the objective system aspects) and interactions (user behav-

ior). The subjective system aspects are measured with questionnaires and they are expected to

mediate the influence of the objective system aspects on the user experience. The framework is

focused on the distinction between attitude and behavior and more specifically the experience and

interaction. The experience signifies the users’ evaluation of the system and it is measured with

the use of questionnaires that are divided into the evaluation of the system, as system experience,

the evaluation of the decision process process experience and the evaluation of the final decisions

outcome experience. Interaction is the observable behavior of the user.

10.2.1 Evaluation Methodology

The methodology used for the ArchReco prototype evaluation was mostly based on the ResQue

framework [133]. The questionnaire presented in [133], was the most complete and relevant to

the objectives set for the ArchReco evaluation, due to the evaluation of the Context Aware Rec-

ommendations as individual component of the system, but also the usage of the prototype as a

191

GEORGE A. S
IELIS

complete solution supported by the recommendation systems. The design of the evaluation ques-

tionnaires, for both, pre-test and post-test were designed using 5-likert scale type questions [94],

grouped based on the guidelines that were revealed from [133].

The evaluation methodology, designed based on the collection of opinions from Computer

Science, Computer Engineering students and researchers for the qualitative analysis of the results

regarding usefulness, functionality and the recommendation tool’s usage. The lack of a satisfac-

tory number of valid users at the University of Cyprus led to the design and setup of the evaluation

as remote evaluation (non-controlled) by which the sessions were monitored through screen cap-

turing videos during the evaluation process. For the confirmation that the evaluation participants

were valid for the evaluation a pre-test questionnaire for the collection of data regarding their

profession, year of studies and Design Patterns knowledge background was prepared. A valid

evaluation result would be considered a session which would be complete the given task, by de-

signing a complete High Level Diagram based on the task’s requirements and most importantly

include in the diagram a valid number of Design Patterns.

10.3 Evaluation setup

The evaluation process designed as follows: The participants were asked to sign a Non-

Disclosure form by adding their emails in an on-line form and by accepting the terms of the evalu-

ation they were able to proceed to a web-page where they had to complete 5 steps. 1.Complete the

demographics data questionnaire, 2.Download and open the prototype, 3. Perform a given task

with the prototype, 4. Answer a post-test questionnaire and 5. Send the screen capturing video to

us. The evaluation request was given to Computer Science and Computer Engineering students

of the Computer Science Department of University of Cyprus and the Computer Engineering and

Informatics of the University of Patras. Additionally Computer Engineering researchers of the

192

GEORGE A. S
IELIS

Institute of Information Technology (ITI/CERTH) in Greece were also participated. In total 28

responses were received where 23 (83.9%) were from men and 5 (17.1%) were from women. The

task that the participants asked to perform was “to design the high level diagram for a web based

electronic bookstore showing the CRUD operations of the system using the MVC architecture and

definition of the most suitable Design Patterns at the three architectural layers”. The evaluation

can still be accessed at the following URL: http://www.cs.ucy.ac.cy/~sielis.

10.3.1 Pre-test questionnaire

As mentioned above the evaluation was performed by 28 people from which 23 were men and

5 were women. The participants were mostly students and researchers with Computer Science

(75%) or Computer Engineering (25%) background, from Cyprus (71.4%) and Greece(28.6%).

Their ages were between 22 and 38 years and more specifically 53.6% had ages between 20-25,

35.7% between 26-31 years old, 7.1% between 32-37 years old and 3.6% between 38-43 years

old. More detailed descriptions for the participants are shown in Table 8. (See also Appendices

D.1 and D.2)

Before the execution of the task the participants were also requested to rate their experience

in using relevant tools, Design Patterns knowledge and experience in using Design patterns. A

summary with the given responses and the standard deviations are depicted in Table 9. As it is

shown in Table 9 the experience in using relevant tools and in general their experience in Design

Patterns and Software Engineering design was low. The high standard deviation for the three

questions lead to the conclusion that the responses were spread in relation to the calculated mean

value. Therefore, using the three questions we tried to correlate the responses with some individual

variables and explore how the results of these questions are correlated and possibly influence

results from the post test questionnaire that we analyze later in this section. We examined the

193

GEORGE A. S
IELIS

http://www.cs.ucy.ac.cy/~sielis

Table 8: Profile of participants (N=28)

Item Frequency Percentage

Gender
Male 23 82.1%

Female 5 17.9%

Age

20-25 15 53.6%

26-31 10 35.7%

32-37 2 37.1%

38-43 1 3.6%

Profession

Student (Bsc) / (Msc) 12 42.9%

Computer Scientist 6 21.4%

Computer Engineer 8 28.6%

Researcher 2 7.1%

Nationality
Greek 8 28.6%

Cypriot 20 71.4%

Location

Nicosia(CY) 16 57.1%

Patra(GR) 3 10.7%

Salonica(GR) 3 10.7%

Larnaca(CY) 4 14.3%

Limassol(CY) 1 3.6%

Leeds(UK) 1 3.6%

Educational Level

Bsc 12 42.9%

Msc 11 39.3%

PhD 5 17.9%

194

GEORGE A. S
IELIS

correlations between the questions from table 9 based on the Individual grouping variables such

as the gender, age, profession,nationality, location and year of studies.

Table 9: Pre-Test responses for the participants’ experience

Question Mean St. Deviation

PreTest-Q1. Please rate your experience with

Software Design tooling, understood as sys-

tems that promote, accelerate and facilitate

the design of Software Design Models?

1.75 0.441

PreTest-Q2. Please rate your level of experi-

ence in Software Design

2.821 0.8630

PreTest-Q3. Please rate your knowledge of

Design Patterns

2.571 1.26

PreTest-Q4. Please rate your experience in

using Design Patterns

2.821 1.105

The Pearson’s coefficient correlation showed with statistical significance 0.024 at the p<0.05,

relation between profession and the “Experience using Design Patterns”. Moreover, statistical

significance 0.0001 at the p<0.01 level between profession and “Knowledge of Design Patterns”

was also found. There is also statistical significance 0.048 between location and “Experience in

Software Design”, “Nationality” and “Experience in Software Design” (sig = 0.021 and p<0.05),

“Nationality” and “Knowledge of Design Patterns” (sig=0.031 and p<0.05), “Gender” and “Ex-

perience using Design Patterns” (sig=0.037 and p<0.05) and finally correlation between “Edu-

cational background” and “Experience using Design Patterns” (sig=0.003 and p<0.01). In table

9, one would expect to see the correlation between “Age” and “Experience”. Surprisingly we

195

GEORGE A. S
IELIS

notice that there is not a statistical significance between age and experience, but there is a statisti-

cal significance between educational background and experience. Additionally, profession is also

correlated with experience in using Design Patterns, which is normal since the participants were

mostly B.Sc. and M.Sc. students and researchers who most probably use Design Patterns more

frequently. A very important correlation regarding the experience in using Design Patterns as well

as the knowledge of Design Patterns is the location in combination with the educational back-

ground. Most of the participants with Cypriot nationality have Computer Science background and

most of the Greek participants have Software Engineering background. Therefore, it is possible

to excuse this due to the difference in the methodologies used in teaching the Design Patterns in

Computer Science and Computer Engineering schools and therefore this is reflected in the usage

of Design Patterns in their practical usage.

10.3.2 Post-task questionnaire

After the execution of the given task, the participants were asked to rate how they perceived

the given scenario, in order to reach into conclusions whether the task was easy and understand-

able. The participant asked to rate 5 questions regarding the given task. The means and standard

deviations for each question are shown in Table 10. (See also appendix D.3)

The post-task results give an initial indication of how the users perceived the task and give

the direction on how to proceed with the rest of the analysis taking into account the pre-test and

post-test data results. For more clarity in the analysis of the results the mode values, the rate

with the highest frequency for each question, is also depicted. From the mean and mode values it

becomes obvious that the ease of the task has a mean value above the average rating. The mode

values give us a hint on what was the actual tendency of how the users perceived the task. In

questions Qa and Qb we notice that the average is 3.714 and the mode is 3. Having a standard

196

GEORGE A. S
IELIS

Table 10: Post-Task questions

Question Mean St. Deviation Mode

Qa. Overall, I am satisfied with the ease of

completing the task

3.714 1.013 3

Qb. Overall, I am satisfied with the

amount of time it took to complete the task

3.250 1.076 3

Qc. Overall, I believe I learned new De-

sign Patterns with the use of the software

3.286 0.089 4

Qd. Overall, I believe I learned where and

how Design Patterns can be used

3.536 0.838 4

Qe. I believe I learned new things for De-

sign Patterns

3.321 0.9049 4

deviation close to 1, denote the existence of responses that have some distance from the mean

value and probably need further investigation. Responses for question Qa are dependent on the

experience and the confidence of the users in the Software Design topic and the knowledge they

have in Design Patterns. Therefore, an examination of the relation between the Qa and profession

or experience will be done. Question Qb has to do with the availability of the users in time to

execute the task. On the evaluation setup there was not a time limitation since the evaluation was

done remotely. But the completion of the task by reading and understanding the content that is

provided to the user for each particular Design Pattern needs time. To reach into safe conclusions

regarding the time and what was the mean time of executing the tasks will be analyzed in the rest

of this section through the analysis of the screen capturing videos that received by the users. By

the execution of a single task it was not expected from the users to learn the Design Patterns but

197

GEORGE A. S
IELIS

the evaluation test was a mean to get familiar with the tool and identify its training character. The

average mean value for Qe 3.324 and with mode value 4 is very encouraging but the high standard

deviation attracts the attention for further analysis

To reach into more safe conclusions that will help analyzing the post-test results a grouping of

the users based on their profession was made. Due to the small sample of users, for the analysis

of the results, the users were grouped in students and professionals since the participants who

declared profession other than students can be considered as professionals. With this grouping

it is manageable to compare the mean values for the experience they, using the pre-test and the

post-task questionnaire responses. The same comparison is also used for the post-test question-

naire and the evaluation of each particular question group that will be described for the post-test

questionnaire responses.

The results comparing the means of the corresponding groups, students and professionals,

regarding their experience in using similar tools and the experience they have in using Design

Patterns in comparison to the post-task responses means are shown in Table 11.

Table 11: Pre-Test and Post-Task means comparison based on profession

Profession Value Pre

Test-

Q1

Pre

Test-

Q2

Pre

Test-

Q3

Pre

Test-

Q4

Qa Qb Qc Qd Qe

Students
Mean 1.833 2.500 2.417 2.333 3.750 3.250 3.417 3.583 3.500

St.deviation 0.389 0.674 1.083 0.651 1.215 1.138 0.900 0.793 1.000

Professionals
Mean 1.687 3.063 3.188 2.688 3.688 3.250 3.188 3.500 3.188

St.deviation 0.479 0.929 0.910 1.400 0.873 1.065 0.910 0.834 0.834

198

GEORGE A. S
IELIS

10.3.3 Post-test questionnaire

The post test questionnaire (see appendix D.4) was organized to have questions which would

return results in regards to the Usefulness, Satisfaction, Usability and the training of the Design

Patterns through the recommendations. The post-test analysis begins with the presentation of the

results regarding the Usefulness of the prototype in table 12. From the results it is shown that

the general perception for the ArchReco is positive and the majority of the users find the software

Useful. From table 12 it is shown that the tool was not evaluated with high scores on questions

related to its effectiveness in completing a task fast (Q1 and Q4) but it received high scores in

questions such as Q2, Q5 and Q7 where the users identified the usefulness in understanding the

Design Patterns and enhancement of the produced diagrams since the tool gives the possibility for

additions to the diagram that goes beyond the existing knowledge in the topic. The low scores in

the speed of completing tasks may be created for three reasons. The first is the unfamiliarity with

the software and the completion of the task in the first use may caused delays, the second reason

is because ArchReco as a training tool provides content for the Design patterns that need time to

read and understand, and third in most of the cases professionals who have adequate background

in Software Design and Design Patterns may prefer to apply their knowledge directly in a designed

model instead of reading, learning and afterwards applying the Design Patterns into a Diagram.

Taking into account the character of the tool and the latter considerations, it can be concluded that

the prototype is generally perceived as useful first as a training tool but without the limitation to

be used as a professional tool too. It is important to see how the perception of the usefulness of the

tool was rated by the two groups of users, the Students and the professionals which will declare

the aforementioned thoughts.

199

GEORGE A. S
IELIS

Table 12: Post-Test questions for Usefulness

Question Mean St. Deviation Mode

Q1. Using the tool in Designing Soft-

ware models would enable me to ac-

complish tasks more quickly

3.464 1.036 3

Q2. Using the tool would improve my

understanding in using Design Patterns

in a high level software design model

3.643 0.911 4

Q3. Using the tool in Designing Soft-

ware models would increase my pro-

ductivity

3.643 0.869 4

Q4. Using the tool to identify the

most suitable Design Patterns would

enhance my effectiveness on the job

1.714 0.713 2

Q5. Using the tool would make easier

the process of Software Design

3.643 0.989 4

Q6. I would find the tool useful in De-

signing Software diagrams

3.929 0.940 4

Q7. The outcome of the tool would be

beneficiary for the software developers

who will implement the diagram into

an actual application

3.786 0.7868 4

200

GEORGE A. S
IELIS

From table 13 it is noticeable that both groups have similar mean values in their responses.

Small differences are noticed in questions Q4 and Q6. For Q4 the closeness in mean values from

both groups shows that the low rating of the tool as a mean for completing task faster is most

probably because of the recognition of the tool as training tool that takes time for studying the

recommended content and not as a productive tool that will limit the time for completing tasks.

At the same time both teams believe that ArchReco would be a useful tool for designing Software

Design Models (Q6) with the highest mean coming from the Students group.

Table 13: Usefulness means comparison for Students and Professionals

Profession Value Q1 Q2 Q3 Q4 Q5 Q6 Q7

Students
Mean 3.417 3.583 3.583 1.833 3.833 4.000 3.833

St.deviation 0.900 0.793 0.668 0.834 1.029 0.954 0.577

Professionals
Mean 3.500 3.687 3.687 1.625 3.500 3.875 3.750

St.deviation 1.155 1.014 1.014 0.619 0.966 0.957 0.939

Table 14 presents the results that were collected in regards to the functionality supported by

ArchReco and how the users rated the supported functionality. The most important results from ta-

ble 14 are coming from two questions the Q10 and Q13. The users are describing their experience

with ArchReco as positive while the context sensitive support is considered crucial. Moreover the

users believe that ArchReco supports them in being more creative during the design process. In

many cases during the design process users are searching the web for finding content and doc-

umentation for the creation of their models. The recommendations offered by ArchReco reduce

the time of searching by giving the necessary knowledge material for well known design patterns

within the environment and the users can decide how to use them in a creative way within the

working environment of the software.

201

GEORGE A. S
IELIS

Table 14: Post-Test questions for Functionality

Question Mean St. Deviation Mode

Q8. Archreco can effectively support

the creation of High Level Software de-

sign model

3.750 0.645 4

Q9. ArchReco can effectively support

the representation and management of

Software Design components

3.643 0.869 4

Q10. The context-sensitive support

(i.e. recommendations) is crucial to the

ArchReco process

3.571 0.742 4

Q11. Using ArchReco tool supports

me in being more creative during the

design process

3.536 0.838 4

Q12. ArchReco tool enhances the out-

come of the High Level diagram design

3.500 0.638 4

Q13. I describe my experience with

ArchReco tool in general as positive

3.679 0.904 4

From the table 15 the results show that the users recognized the training value of the ArchReco

prototype and the enhancement of the design process by the Context Aware Recommendations

support. This is tracked on Question Q23 where almost all testers recognized the tool and the

usage of the recommender system as educational. Comparing the mean values between students

and professionals we notice that on Q23 there is an equality on their means (4.083 and 4.063

202

GEORGE A. S
IELIS

respectively). This shows that the tool is recognized as a training tool with training enhancements

for the design process from all users experienced and not experienced. We noticed though, some

unexpected results by comparing the means between Students and Professionals. The mean value

for Students group (3.417) was lower than the Professionals (4.000) for question 15 where the

same noticed for question Q20 where Students mean value was 3.083 and the Professionals mean

rating value was 3.438. One would expect the opposite results. The most logical explanation on

that result is maturity in recognizing new valuable knowledge due to the experience they have in

working with similar tools. Moreover the students in most of the cases need more multimedia

designs to learn something fast and less content to study. That was also part of the comments

we received from some students that we were able to talk with. ArchReco though is a research

prototype and these comments are tracked down to be taken into account fin future releases of the

software.

Table 15: Post-Test questions for Design Patterns Training & Ed-

ucational character of the Recommender system

Question Mean St. Devi-

ation

Mode

Q14. AerchReco offers Stimulating possibilities to explore

new Design Patterns

3.536 0.792 4

Q15. ArchReco helps in choosing useful Design patterns

to apply in a Software Design diagram

3.750 0.799 4

Q16. I feel that I learned to work creatively using the

ArchReco tool

3.571 0.836 4

203

GEORGE A. S
IELIS

Q17. I found ArchReco tool helpful to support us go over

and over new Design Patterns until I found a suitable one

to apply in my model

3.750 0.881 4

Q18. I found the recommendation of Design Patterns use-

ful

3.750 0.881 4

Q19. The information provided for each pattern was suffi-

cient

3.643 0.678 4

Q19. The information provided for each pattern was suffi-

cient

3.643 0.678 4

Q20. Recommendations for Design Patterns helped me

learn new patterns

3.286 0.976 4

Q21. Some of the Design Patterns are familiar to me 3.321 0.863 3

Q22. The items recommended to me are novel and inter-

esting

3.357 0.731 4

Q23. The recommender system is educational 4.071 0.899 5

Q24. The recommendation System provides an adequate

way for me to express my preferences

3.429 0.836 4

Q25. I became familiar with the recommendation system

very quickly

3.536 0.999 4

10.3.4 Screen Capturing Videos - Results

From the 28 evaluation participants 11 of them sent their screen capturing videos for analy-

sis. The videos that were not sent were mostly because they could not send the file due to their

204

GEORGE A. S
IELIS

large size, since the received files are approximately 28-30MB each. The received files though

were thoroughly analysed in order to examine the actions of the users while they were execut-

ing the tasks. From the videos it was managed to confirm that the participants followed the task

instructions and that they used both Context Aware recommendation algorithms to receive rec-

ommendations of Design Patterns and they used the recommendation results to take decisions for

applying the recommendations in their diagram design models. The mean time for executing the

tasks was 35.06 minutes with maximum 47 minutes and minimum 17 minutes. Each one of the

participants, followed the instructions that were given by the evaluation web-page and they started

by the configuration of the diagram that was asked to design. By the definition of the diagram type

the architectural patterns were appearing on the right site of the software and from the videos we

saw that almost all of them went through the descriptions of all web based architectural patterns

description, even if the requested one was clearly mentioned in the task that was the MVC. They

all used the add “Architectural pattern to canvas” button and they continued to the diagram design

without further investigation of the Architectural Pattern Design. Then they started building the

diagram using the palette shapes for each particular Architectural layer using the provided shapes

from the palette and when the recommendations were appearing users were going through all the

list of patterns that it was provided to them. Some of them were pressing the “More” button and

they were continuing their study with more Design Patterns. From the videos it was possible to see

the time that they were spending for reading the information for each Design Pattern. The mean

time was calculated to be between 2-5 minutes per Design Pattern and in all videos it is shown

that participants applied in their diagrams 2 (minimum) to 9 (maximum) Design Patterns. In most

of the Design Patterns the testers were reading the descriptions provided in the small placeholder

that by default presents the Pattern’s data and for specific patterns they were opening the large

window to read the content. In most of the cases the Patterns that were viewed in large window

205

GEORGE A. S
IELIS

were the ones that were selected to be included in the diagrams. For the UI related diagrams the

image provided seemed to be enough for selection since they had the minimum time of reading

before they add them in the diagram. Further analysis on the videos, also gave us some indications

for improvements where most of them were related to the Interaction with the software and the

User Experience. Some of the users were trying to drag the Design Patterns in the canvas which is

currently not supported. The Recommended Patterns are currently presented in the form of links

that the user has to select to see the information and their addition to the canvas is done with the

use of a button. It was noticed that in some cases this was confusing for the users and it will be

an improvement that will be changed in future releases. Also some attributes of specific Design

Patterns like “implementation” or “code example” was not containing enough information and the

users were reloading the specific info tab to get content. The lack of content for specific attributes

of patterns happened because of the lack of this information from the source that was initially

retrieved and therefor in cases like this it is better to hide the empty Design Pattern attributes when

this is happening.

10.3.5 Evaluation of the Context Aware Recommendation Algorithms

The overall evaluation of the recommendation algorithms was done through the opinions col-

lected by the users via the questionnaires and more specifically the results presented in table 15.

The accuracy of the algorithms is not a representative measurement especially for software tools

that the most important factor for evaluation is the subjective opinion of the users. Accuracy

though remains an important factor to take into account. In the current release of the prototype the

work focused on the usage of non-personalized content based recommendations. The reason for

not proceeding into personalized recommendations at the current phase of the work was a decision

that should be taken in order to focus this evaluation on the training impact of the prototype and

206

GEORGE A. S
IELIS

its design functionality and not confuse the users by asking them to provide ratings for the Design

Patterns. Therefore, for the non-personalized Context Aware Recommendations at the current re-

lease of ArchReco prototype we used samples of input data that was collected by the evaluation

participants and we used them as comparison dataset for the computation of Precision – Recall

measurements for the two recommendation algorithms.

For the Text-Based algorithm the precision is estimated close to 60% and the recall is estimated

to be 8.57%. the high precision is showing that there is a high percentage of relevant recommended

Design Patterns but the selected (recall) value is not so high. The result varies based on the

wording of the input text. The more descriptive is the text then the results are also more accurate.

This is shown by the computation of the precision recall of the Utility based algorithm using four

contextual factors. For the Utility based algorithm the algorithm run respectively and for every

repetition on factor was removed from the calculation. The minimum number of factors that were

used was two. The results received are: with four factors were p=100%, r=14.286% respectively,

with three factors p=66.67% r= 11.429%, two factors p=33.33%, r=2.857%. It is obvious that the

more contextual factors used in the computations the better results are received. Additionally, the

weights for each particular factor influence the ranking of the results and therefore the recall value

of the results.

10.4 Conclusions

The methodology used for the evaluation of ArchReco software prototype was based on the

evaluation framework as it was defined by ResQue evaluation framework presented in [133]. The

evaluation framework was used as a guideline for the collection of opinions regarding the useful-

ness, the supported functionality and the educational character of the context aware recommenda-

tion tool. The evaluation of the software was difficult to be performed in a controlled environment

207

GEORGE A. S
IELIS

due to the lack of an adequate number of users who could perform the tests. Therefore, the eval-

uation test performed remotely to specific user groups, students and researchers from Computer

Science and Computer Engineeering University Departments in Greece and Cyprus.

The collected results were analyzed and described based on the pre-test questionnaires that

evidenced the validity of the participants and the screen capturing videos that showed the design

process in the way each user used ArchReco to complete the given task. In particular, through the

demographic data it was confirmed that users who performed the evaluation test were Computer

Science or Computer Engineering, students and researchers. Using the same data, the prior level

of knowledge in Design Patterns and usage of similar Software design or modelling tools was

also confirmed. Based on these data, knowledge level and experiences in using Design Patterns

and similar tools created two groups of users, professionals and students. The two groups were

used for the collection of qualitative results that were used to reach into safe conclusions, through

comparisons of the responses to the pre and post-test (5-likert scale questions) questionnaires.

Additionally, the screen capturing videos were used to extract conclusions regarding the usage

and the creative outcomes of the evaluation, through the observations of how each user interacted

with the system. The observations were mainly based on the time needed to perform the given

task, the time that each pattern was studied, whether the recommended design patterns were used

and finally what was the final diagram result.

10.4.1 Results summary

The collection of the results in combination with the qualitative analysis that the current chap-

ter presented, are summarized as follows:

• The development of such tools using Creativity principles and models is valid and at the

same time important. Using the Creativity model providing creativity support tools such as

208

GEORGE A. S
IELIS

a graphical representation of diagrams, as well as the provision of existing knowledge in

the form of recommendations can help and guide the users to create High Level Software

diagrams independent to the prior knowledge on the Design Patterns but mostly based on

the background they have in Software Requirements definition. Using the screen capturing

videos during the evaluation sessions it was obvious that the selection of the shapes and the

descriptions given by the users were valid requirements definitions based on the evaluation

task that the users had to perform. The mean time of reading the recommended Design

Patterns as well as the selection of patterns for the designed diagrams showed that users

were helped on the creation of diagrams and at the same time on the selection of appropriate

Design Patterns to use in the designed diagrams.

• ArchReco software is Useful. The ratings given by the users, professionals and students

regarding the usefulness of the tool produced results higher than the average rating values.

The results showed that the tool perceived as useful, and with added value for the training of

Design Patterns. ArchReco supported functionality facilitates the learning and understand-

ing of Design Patterns as well as the creative usage of the patterns.

• The Recommendation tool has educational character and its context sensitive functionality

in combination with the semantic interoperability support saves time from searching De-

sign Patterns. All participants perceived the recommendation tool as helpful and training

tool. The participants denoted that they learned new Design Patterns using the ArchReco

Software and in particular the Context Aware Recommendation System.

The usage of the creativity model and the computation of Design Patterns recommendations based

on the creativity principles showed that the combination of Context Aware Recommendation tools

209

GEORGE A. S
IELIS

and Creativity can produce knowledge that can facilitate the design of High Level Software mod-

els. At the same time, it created an infrastructure for the creation of additional types of recommen-

dations that can be created and measured in future experiments within a controlled environment

i.e. laboratory sessions with specific creativity metrics. The results received by ArchReco eval-

uation confirmed the validity of the software as a training and supportive tool for the topic of

Software Engineering topic. It proved that it can be used as a comparison tool for further in-

vestigations regarding Creativity measurements and the selection of more contextual factors that

can enhance the creativity ability of the users who will use ArchReco or similar Software Design

tools. Moreover, the small dataset of Design Patterns that was used to measure the accuracy of

the non-personalized recommendations, based on precision and recall metrics, are motivating the

development of personalized Context Aware Recommendation system for the improvement, not

only the usefulness of the tool, but also the accuracy of the recommended Design Patterns, while

designing Software models.

210

GEORGE A. S
IELIS

Chapter 11

Discussion - Future Research Challenges

This chapter concludes the thesis by summarizing its research contributions and by providing

a discussion for the future work and the key research challenges.

11.1 Summary of contributions

The main goal of this thesis was the development of a software prototype that could be used

by Computer Science or Computer Engineering students for the learning of the Design Patterns

through practice. The aim was to provide a creative environment for the users which would provide

to them context aware recommendations of design patterns so they would facilitated in learning

the patterns, design a High Level Software diagram and at the same time stimuli their creativity

during the design process. In this respect this thesis presented the procedure followed to reach into

the result which was the design and development of the ArchReco software prototype that meets

the requirements that were set for this thesis. Through the user based evaluation and the qualitative

analysis of the results, ArchReco can be considered as the basis for further research. The research

contributions of this thesis are summarized by chapter in the remainder of this section.

211

GEORGE A. S
IELIS

Chapter 2 presented the related to this thesis work. It examined the related work in regards

to the topics that this thesis deals with. It revealed the lack of relevant work that combines the

combination of the topics of Creativity, Context Awareness, Recommendation systems and their

application in Software Engineering processes such as the recommendation of Design Patterns.

Furthermore the related work showed that there are not Software Engineering education and train-

ing tools that use these topics and technologies in the form of a complete solution like ArchReco

prototype.

Chapter 3 presented the literature with respect to context awareness, the methods and the tools

for representing the context. The chapter went through the most well known methods, tools and

frameworks that are used for modeling and applying the context. It provided a set of method-

ologies and techniques from which the most suitable to the current research were selected and

applied. Based on the methods of modeling the context the Semantic representation with the use

of Ontologies was selected. The examination of the frameworks that are commonly used for the

representation of context led to the selection of Jena framework and the use of Protege tool that

were used for defining and representing the models of this thesis.

Chapter 4 presented the Recommendation Systems, the types of recommendation systems and

some of the most known recommendation tools and algorithms. The chapter helped in specifying

the type of recommendations that ArchReco should use, for the time being, the non personalized

content based recommendations. With the selection of the type of recommendations ArchReco

should provide the algorithms and methods were also provided and defined through the analysis

of this chapter. The analysis of the filtering techniques and the importance of analyzing the context

highlighted the TF-IDF algorithm and the content based filtering methods that were used for the

pre-filtering and post-filtering methods that were applied in chapter 8.

212

GEORGE A. S
IELIS

Chapter 5 surveyed the literature in regards to the creativity models and the several creativity

models as they were defined through the years. It also presented the examination of some of the

most known creativity support tools in regards to the possibility of support of any kind of context

aware recommendations. The chapter presented the work that was done for modeling the creativity

and the work that was done for the development of a generic Context Aware Recommendation

mechanism for creativity. The chapter showed that the current, most known, Creativity Support

tools lack of recommendation mechanisms. It also used for the definition of the most important

contextual entities of creativity that were used for the composition of Creativity contextual model.

The outcomes of the creativity analysis led to the development of a generic recommendation tool,

based on the Creativity contextual model, which was used as reference for the development of the

Context Aware recommendation tool for the ArchReco prototype.

Chapter 6 linked the theory of the first chapters with the applied work that would follow. It pre-

sented the user based survey that was performed for the identification of the Software Engineering

needs in regards, to recommendations support and the ease of process creativity with the use of ex-

isting Software Modelling tools and processes. It showed that the current tools do not support the

recommendation mechanisms not only for educational but also for the commercial usage of thees

tools. From the participants responses it was concluded that recommendation mechanisms would

enhance the existing tools and processes, which contributed in the decision for implementing the

ArchReco software for the support of fresh Engineers in learning the Design Patterns within a

creative environment. The survey framed the wide range of creativity scope, into the specific need

for a specific creative problem related to the Software Design process.

Chapter 7 used the creativity conceptual model of the chapter 5 and in combination with the

findings of chapter 6 it presented an extended conceptual model which included the Software

213

GEORGE A. S
IELIS

Engineering process concepts. It defined the model that would later be used for the development

of the Context Aware Recommendation tool for the recommendation of Design Patterns.

Chapter 8 presented the work that has been done for the development of the Context Aware

Recommendation for Design Patterns. It explained the the post and pre-filtering techniques that

were used in combination to the Semantic Web technologies. It elaborated the techniques and the

algorithms that were used and it depicted a set of examples of how the recommendation system

takes into account the context with the use of semantics in order to produce recommendations of

Design Patterns, coming from more than one data repository.

Chapter 9 presented the ArchReco software prototype as a complete solution including the

Context Aware recommendation tool from chapter 8. It presented how the prototype can be used

providing its usefulness as an educational and training tool for Engineering students, it presented

the overall system architecture and it described the user interface and the functions it supports.

This chapter consists of the integration of the overall work presented in this thesis and it describes

how the ArchReco software prototype meets the objectives that were set by the thesis statement.

Chapter 10 presented the ArchReco user based evaluation setup and execution. The results

collected by the evaluation are analyzed and presented using a qualitative results analysis. With the

evaluation analysis the usefulness, usability, and educational character of the tool in combination

with the Context Aware Recommendation tool were extracted. The results become an evidence of

the validity of the work presented in this thesis and they state the need for further research in the

topic and opens the route for future work.

The achievements and contributions of this thesis are summarized in the following list:

• Identification of the Creativity most important entities based on the various creativity models

literature review.

214

GEORGE A. S
IELIS

• Design of the Creativity contextual model and representation of the model as an Ontology.

• Development of a generic context aware recommendation tool, a first attempt for producing

recommendations for a Creative process.

• Identification of the needs of Software Design process (in terms of creativity) by surveying

professionals in the topic of Software Design.

• Adjustment of the generic creativity ontology model to the Software Design process and

design of a new contextual model for Software Design as a Creative process model.

• Design of a Design Patterns Context Aware Recommendation System, which accepts as

input physical language text, analyzes the context of a working problem and provides rec-

ommendations of Design Patterns.

• Design and development of a Semantic Interoperability mechanism which can retrieve De-

sign Patterns from multiple repositories using the created ontology models.

• Design and development of the ArchReco prototype, a solution that integrates the aforemen-

tioned outcomes into a complete solution. The prototype consists of a complete Software

Design tool that can be used for the education and training of CS or SE students for learning

the Deign Patterns within a creative context.

11.2 Future work

The current version of Archreco Software supports the provision of non-personalized content

based context aware recommendations of Design Patterns. It is important for the future to also ex-

amine the personalized context aware recommendations of Design Patterns. From the evaluation

215

GEORGE A. S
IELIS

that was performed the users perceived in a positive way the tool and its supported recommen-

dations, which is a hint for improving the recommendations and provide more personalized ones.

The personalized recommendations presume the inclusion of the “rating” factor for each Design

Pattern. The challenge here is tracked n the fact that a Design Pattern can be recommended several

times for different types of diagrams and for different context and the user may rate the recom-

mended pattern with a different value every time it is recommended. Taking that into consideration

the focus of a future evaluation moves from the usefulness, and satisfaction of a set of recommen-

dations, to the accuracy of recommendations. Therefore, in the future personalization must be

included in the overall recommendation mechanism and using the ratings of the users attempt

different kinds of personalized algorithms for the computation of personalized context aware rec-

ommendations. Moreover the use of personalized recommendations for different types of context

opens new challenges in relation to the optimal contextual elements that can be used by the rec-

ommendation mechanism. For example a Design Pattern was rated by 5 for diagram A and by 2

for diagram B. What was the difference between the two? Is there any rating pattern in regards to

the context or the content? Part of the personalization task is work that is began and it is work in

progress. A personalization component is built where the users are able to provide personal data,

diagrams they created and Design Patterns they used for each diagram. The component is still

under development and will soon be integrated with ArchReco software.

In addition to the above, for the future it is planned to create related taxonomies and thesaurus

to be used for the content analysis during the semantic filtering of the users input. The input

required from the users is free text in most of the cases and the input is processed through indexing

and TF-IDF analysis. The existence of taxonomies or thesaurus containing domain specific words,

it is assumed that would improve the accuracy of the recommendations.

216

GEORGE A. S
IELIS

Furthermore, future work will also be focused on the creation and delivery of more recom-

mendation types other than the Design Patterns like for example users that can take responsibility

of a task, group composition and supporting reading material like documents or research papers.

Finally, as future work it is planned to improve the appearance of the software and more

specifically it is planned to transfer to software into an on-line version. ArchReco was build as

a desktop application for the aims of this research and used as a proof of concept. The tool will

be more usable and easily accessible in the case of an on-line version which will support all the

aforementioned objectives.

11.3 Research Challenges

Using the future work objectives of the previous section as the basis for the research chal-

lenges, the remaining section will approach the possible challenges in two axes: Algorithmic and

Applications. The research challenges are identified based on the current work and the possibility

of using the current software prototype for further investigations.

11.3.1 Algorithmic

For the algorithmic the following research topics can be further investigated and examined:

• Examination of more recommendation algorithms for the content based recommendations

taking into account the contextual information of entities for a given problem. That means

the definition of the context and analysis of methods that prove that the selected contextual

information is trustfully valuable for the recommendations.

217

GEORGE A. S
IELIS

• Examination of using Genetic Algorithms and Evolutionary programming for the optimiza-

tion of the Utility Function in terms of the weights of the contextual elements that participate

in the Utility function equation.

• Examination of using Matching Algorithms, a research topic that belongs to the Game The-

ory area of research, for generating recommendations based on voting between users within

a working group. It can be considered as a transformation of the existing methodology that

this thesis currently used, with the traditional Recommendation Algorithms, into gamefica-

tion methods and comparison between the two approaches.

11.3.2 Applications

• User Experience and UI principles is an active research topic in Recommendation Systems.

The combination of Recommendation Systems with Creativity can be further investigated

in terms of the User Interfaces design, Recommendations Delivery (Information provided

by the recommendation systems) and the interaction between user and Recommendation

System.

• Examination of using Context Aware Recommendation algorithms and the Creativity Mod-

els in other domains such as Multimedia design and Graphics.

• Cloud-based applications is one of the most used research topics during the last few years.

Data collection and data transformation for the usage with Data Mining algorithms is a

challenging area for further investigation. The usage of Archreco or similar tool and by

taking advantage of the collected data in the cloud can create a huge repository for De-

sign Patterns, their usage, and by taking advantage of the users preferences based on their

contextual information, apply algorithms for domain specific recommendation algorithms,

218

GEORGE A. S
IELIS

training data sets or Computational Intelligence algorithms that would be applied in related

Software Engineering research topics.

• IoT applications is an other commonly used topic of the last years research. One of the chal-

lenges that IoT applications deal today is the existence of several communication protocols

between the “Things” and the “Cloud”. The challenge is mainly located on the lack of a

common communication language between the two layers and thus the difficulty in trans-

ferring data from a physical network to multiple cloud applications. The semantic interop-

erability service can be used for this transformation and create a common communication

language through the convergence of the transferred messages through a unified ontology

model. The applicability of such mechanism can be accompanied with a tool like ArchReco

software that through the graphic representation of a communication network topology can

provide Design Patterns recommendations for the implementation of the communication

protocols through a semantic web layer in order to reach specific cloud-based applications.

• A challenging approach for further research would be the examination of emotions as con-

textual factors for the production of recommendations based on the user’s emotions. The

design of emotions based model in combination with the creativity model and the devel-

opment of emotions-based Context Aware recommendation system is challenging task that

can be further investigated.

219

GEORGE A. S
IELIS

Bibliography

[1] A. Abbas, L. Zhang, and S. U. Khan, “A survey on context-aware recommender systems

based on computational intelligence techniques,” Computing, vol. 97, no. 7, pp. 667–690,

2015.

[2] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton, “Cyberguide:

A mobile context-aware tour guide,” Wireless networks, vol. 3, no. 5, pp. 421–433, 1997.

[3] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender systems: a

survey of the state-of-the-art and possible extensions,” Knowledge and Data Engineering,

IEEE Transactions on, vol. 17, no. 6, pp. 734–749, June 2005.

[4] A. Agostini, C. Bettini, and D. Riboni, “Experience report: ontological reasoning for

context-aware internet services,” 2006.

[5] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language: Towns,

Buildings, Construction, ser. Center for Environmental Structure Berkeley, Calif:

Center for Environmental Structure series. OUP USA, 1977. [Online]. Available:

https://books.google.com.cy/books?id=hwAHmktpk5IC

220

GEORGE A. S
IELIS

https://books.google.com.cy/books?id=hwAHmktpk5IC

[6] F. A. Asnicar and C. Tasso, “ifweb: a prototype of user model-based intelligent agent for

document filtering and navigation in the world wide web,” in Sixth International Conference

on User Modeling, 1997, pp. 2–5.

[7] A. Asthana, M. Cravatts, and P. Krzyzanowski, “An indoor wireless system for personalized

shopping assistance,” in Mobile Computing Systems and Applications, 1994. Proceedings.,

Workshop on. IEEE, 1994, pp. 69–74.

[8] C. J. Atman, J. Turns, M. Cardella, and R. S. Adams, “The design processes of engineering

educators: Thick descriptions and potential implications,” in Expertise in Design: Design

Thinking Research Symposium, vol. 6. Citeseer, 2003.

[9] M. A. Awais, “Requirements prioritization: Challenges and techniques for quality software

development,” Advances in Computer Science: an International Journal, vol. 5, no. 2, pp.

14–21, 2016.

[10] J. Bagga and A. Heinz, in Graph Drawing, ser. Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2002, vol. 2265, pp. 459–460. [Online]. Available:

http://dx.doi.org/10.1007/3-540-45848-4_45

[11] M. Balabanović and Y. Shoham, “Fab: Content-based, collaborative recommendation,”

Commun. ACM, vol. 40, no. 3, pp. 66–72, Mar. 1997. [Online]. Available:

http://doi.acm.org/10.1145/245108.245124

[12] S. Balaji and M. S. Murugaiyan, “Waterfall vs. v-model vs. agile: A comparative study on

sdlc,” International Journal of Information Technology and Business Management, vol. 2,

no. 1, pp. 26–30, 2012.

221

GEORGE A. S
IELIS

http://dx.doi.org/10.1007/3-540-45848-4_45
http://doi.acm.org/10.1145/245108.245124

[13] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware systems,” Interna-

tional Journal of Ad Hoc and Ubiquitous Computing, vol. 2, no. 4, pp. 263–277, 2007.

[14] J. E. Bardram, “The java context awareness framework (jcaf)–a service infrastructure

and programming framework for context-aware applications,” in Pervasive computing.

Springer, 2005, pp. 98–115.

[15] C. Basu, H. Hirsh, and W. Cohen, “Recommendation as classification: Using social and

content-based information in recommendation,” in In Proceedings of the Fifteenth National

Conference on Artificial Intelligence. AAAI Press, 1998, pp. 714–720.

[16] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Gren-

ning, J. Highsmith, A. Hunt, R. Jeffries et al., “Manifesto for agile software development,”

2001.

[17] G. Beham, B. Kump, T. Ley, and S. Lindstaedt, “Recommending knowledgeable people in

a work-integrated learning system,” Procedia Computer Science, vol. 1, no. 2, pp. 2783–

2792, 2010.

[18] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation coefficient,” in Noise

reduction in speech processing. Springer, 2009, pp. 1–4.

[19] S. Berkovsky, J. Freyne, and G. Smith, “Personalized network updates: Increasing social

interactions and contributions in social networks,” in User Modeling, Adaptation, and

Personalization, ser. Lecture Notes in Computer Science, J. Masthoff, B. Mobasher,

M. Desmarais, and R. Nkambou, Eds. Springer Berlin Heidelberg, 2012, vol. 7379, pp.

1–13. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-31454-4_1

222

GEORGE A. S
IELIS

http://dx.doi.org/10.1007/978-3-642-31454-4_1

[20] C. Blank, H. Eveking, J. Levihn, and G. Ritter, “Symbolic simulation techniques-state-of-

the-art and applications,” in hldvt. IEEE, 2001, p. 45.

[21] B. W. Boehm, “A spiral model of software development and enhancement,” Computer,

vol. 21, no. 5, pp. 61–72, May 1988.

[22] B. Boehm, “A view of 20th and 21st century software engineering,” in Proceedings of the

28th International Conference on Software Engineering, ser. ICSE ’06. New York, NY,

USA: ACM, 2006, pp. 12–29. [Online]. Available: http://doi.acm.org/10.1145/1134285.

1134288

[23] E. P. Bontas, “Context representation and usage for the semantic web: A state of the art,”

Technical Report B-04-30, 2004.

[24] P. Bottoni, E. Guerra, and J. de Lara, “Formal foundation for pattern-based modelling,”

in Fundamental Approaches to Software Engineering, ser. Lecture Notes in Computer

Science, M. Chechik and M. Wirsing, Eds. Springer Berlin Heidelberg, 2009, vol. 5503,

pp. 278–293. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-00593-0_19

[25] L. C. Briand, S. Morasca, and V. R. Basili, “Defining and validating measures for

object-based high-level design,” IEEE Trans. Softw. Eng., vol. 25, no. 5, pp. 722–743, Sep.

1999. [Online]. Available: http://dx.doi.org/10.1109/32.815329

[26] S. Brinkkemper, “Method engineering: engineering of information systems development

methods and tools,” Information and software technology, vol. 38, no. 4, pp. 275–280,

1996.

[27] P. J. Brown, J. D. Bovey, and X. Chen, “Context-aware applications: from the laboratory to

the marketplace,” Personal Communications, IEEE, vol. 4, no. 5, pp. 58–64, 1997.

223

GEORGE A. S
IELIS

http://doi.acm.org/10.1145/1134285.1134288
http://doi.acm.org/10.1145/1134285.1134288
http://dx.doi.org/10.1007/978-3-642-00593-0_19
http://dx.doi.org/10.1109/32.815329

[28] P. Brusilovsky, “Developing adaptive educational hypermedia systems: From design mod-

els to authoring tools,” in Authoring tools for advanced technology Learning Environments.

Springer, 2003, pp. 377–409.

[29] P. Brusilovsky, L. Pesin, and M. Zyryanov, “Towards an adaptive hypermedia component

for an intelligent learning environment,” in Human-computer interaction. Springer, 1993,

pp. 348–358.

[30] A. Burkle, W. Muller, U. Pfirrmann, M. Schenk, N. Dimakis, J. Soldatos, and L. Poly-

menakos, “An agent-based architecture for context-aware services supporting human in-

teraction,” in Proceedings of the 2006 IEEE/WIC/ACM international conference on Web

Intelligence and Intelligent Agent Technology. IEEE Computer Society, 2006, pp. 146–

152.

[31] P. Castells and S. Vargas, “Novelty and diversity metrics for recommender systems: Choice,

discovery and relevance,” in In Proceedings of International Workshop on Diversity in Doc-

ument Retrieval (DDR), pp. 29–37.

[32] C.-T. Chen, Y. C. Cheng, and C.-Y. Hsieh, “Towards a pattern language approach to

establishing personal authoring environments in e-learning,” in Proceedings of the Sixth

Conference on IASTED International Conference Web-Based Education - Volume 2, ser.

WBED’07. Anaheim, CA, USA: ACTA Press, 2007, pp. 13–18. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1323159.1323162

[33] G. Chen, D. Kotz et al., “A survey of context-aware mobile computing research,” Technical

Report TR2000-381, Dept. of Computer Science, Dartmouth College, Tech. Rep., 2000.

224

GEORGE A. S
IELIS

http://dl.acm.org/citation.cfm?id=1323159.1323162

[34] G. Chen, M. Li, and D. Kotz, “Design and implementation of a large-scale context fusion

network,” in Mobile and Ubiquitous Systems: Networking and Services, 2004. MOBIQUI-

TOUS 2004. The First Annual International Conference on. IEEE, 2004, pp. 246–255.

[35] J. P. Chin, V. A. Diehl, and K. L. Norman, “Development of an instrument measuring user

satisfaction of the human-computer interface,” in Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, ser. CHI ’88. New York, NY, USA: ACM,

1988, pp. 213–218. [Online]. Available: http://doi.acm.org/10.1145/57167.57203

[36] C.-H. Chuan and E. Chew, “Evaluating and visualizing effectiveness of style emulation in

musical accompaniment.” in ISMIR, 2008, pp. 57–62.

[37] V. Codina, F. Ricci, and L. Ceccaroni, “Semantically-enhanced pre-filtering for context-

aware recommender systems,” in Proceedings of the 3rd Workshop on Context-awareness

in Retrieval and Recommendation. ACM, 2013, pp. 15–18.

[38] V. Codina, F. Ricci, and L. Ceccaroni, “Distributional semantic pre-filtering in context-

aware recommender systems,” User Modeling and User-Adapted Interaction, vol. 26, no. 1,

pp. 1–32, 2016.

[39] J. D. Couger, Creative problem solving and opportunity finding. boyd & fraser publishing

company, 1995.

[40] S. Crago, J. McMahon, C. Archer, K. Asanovic, R. Chaung, K. Goolsbey, M. Hall,

C. Kozyrakis, K. Olukotun, U. OReilly et al., “Cearch: Cognition enabled architecture,”

in Proceedings of the Tenth Annual High Performance Embedded Computing Workshop,

Lexington, MA, 2006.

225

GEORGE A. S
IELIS

http://doi.acm.org/10.1145/57167.57203

[41] C. Csallner, N. Tillmann, and Y. Smaragdakis, “Dysy: Dynamic symbolic execution for

invariant inference,” in Proceedings of the 30th international conference on Software engi-

neering. ACM, 2008, pp. 281–290.

[42] F. D. Davis, “Perceived usefulness, perceived ease of use, and user acceptance of

information technology,” MIS Q., vol. 13, no. 3, pp. 319–340, Sep. 1989. [Online].

Available: http://dx.doi.org/10.2307/249008

[43] R. L. De Mantaras, D. McSherry, D. Bridge, D. Leake, B. Smyth, S. Craw, B. Faltings,

M. L. Maher, M. T COX, K. Forbus et al., “Retrieval, reuse, revision and retention in case-

based reasoning,” The Knowledge Engineering Review, vol. 20, no. 03, pp. 215–240, 2005.

[44] F. H. del Olmo and E. Gaudioso, “Evaluation of recommender systems: A new approach,”

Expert Systems with Applications, vol. 35, no. 3, pp. 790–804, 2008.

[45] M. Derntl, K. Hummel et al., “Modeling context-aware e-learning scenarios,” in Pervasive

Computing and Communications Workshops, 2005. PerCom 2005 Workshops. Third IEEE

International Conference on. IEEE, 2005, pp. 337–342.

[46] A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual framework and a

toolkit for supporting the rapid prototyping of context-aware applications,” Hum.-

Comput. Interact., vol. 16, no. 2, pp. 97–166, Dec. 2001. [Online]. Available:

http://dx.doi.org/10.1207/S15327051HCI16234_02

[47] J. Dietrich, “The mandarax manual,” Institute of Information Sciences & Technology,

Massey University, New Zealand, 2003.

[48] E. A. Domeshek, J. L. Kolodner, and C. M. Zimring, “The design of a tool kit for case-based

design aids.” Springer, 1994, pp. 109–126.

226

GEORGE A. S
IELIS

http://dx.doi.org/10.2307/249008
http://dx.doi.org/10.1207/S15327051HCI16234_02

[49] J. Dong, Y. Sheng, and K. Zhang, “Visualizing design patterns in their applications and

compositions,” Software Engineering, IEEE Transactions on, vol. 33, no. 7, pp. 433–453,

July 2007.

[50] J. Dong, Y. Zhao, and Y. Sun, “A matrix-based approach to recovering design patterns,” Sys-

tems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, vol. 39,

no. 6, pp. 1271–1282, Nov 2009.

[51] J. Durkin and J. Durkin, Expert systems: design and development. Prentice Hall PTR,

1998.

[52] D. Ejigu, M. Scuturici, and L. Brunie, “Hybrid approach to collaborative context-aware

service platform for pervasive computing,” Journal of computers, vol. 3, no. 1, pp. 40–50,

2008.

[53] M. Elahi, “Context-aware intelligent recommender system,” in Proceedings of the 15th

international conference on Intelligent user interfaces. ACM, 2010, pp. 407–408.

[54] W. Etienne, “Artificial intelligence and tutoring systems,” 1987.

[55] R. Farenhorst and R. de Boer, “Knowledge management in software architecture: State of

the art,” in Software Architecture Knowledge Management, M. Ali Babar, T. Dingsøyr,

P. Lago, and H. van Vliet, Eds. Springer Berlin Heidelberg, 2009, pp. 21–38. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-02374-3_2

[56] J. Favela, A. I. Martinez-Garcia et al., “Context-aware mobile communication in hospitals,”

Computer, no. 9, pp. 38–46, 2003.

[57] E. Friedman-Hill et al., “Jess, the rule engine for the java platform,” 2008.

227

GEORGE A. S
IELIS

http://dx.doi.org/10.1007/978-3-642-02374-3_2

[58] S. I. Gallant, Neural network learning and expert systems. MIT press, 1993.

[59] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable

Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,

Inc., 1995.

[60] D. Gaševic, D. Djuric, and V. Devedžic, Model driven architecture and ontology develop-

ment. Springer Science & Business Media, 2006.

[61] M. Gasparic and A. Janes, “What recommendation systems for software engineering

recommend: A systematic literature review,” Journal of Systems and Software, vol. 113,

pp. 101 – 113, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0164121215002605

[62] A. Z. Ghalwash, “A recency inference engine for connectionist knowledge bases,” Applied

Intelligence, vol. 9, no. 3, pp. 201–215, 1998.

[63] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering, 2nd ed.

Upper Saddle River, NJ, USA: Prentice Hall PTR, 2002.

[64] A. R. Golding and P. S. Rosenbloom, “Improving accuracy by combining rule-based and

case-based reasoning,” Artificial Intelligence, vol. 87, no. 1, pp. 215–254, 1996.

[65] P. Gomes, F. Pereira, P. Paiva, N. Seco, P. Carreiro, J. Ferreira, and C. Bento,

“Using cbr for automation of software design patterns,” in Advances in Case-Based

Reasoning, ser. Lecture Notes in Computer Science, S. Craw and A. Preece, Eds.

Springer Berlin Heidelberg, 2002, vol. 2416, pp. 534–548. [Online]. Available:

http://dx.doi.org/10.1007/3-540-46119-1_39

[66] P. Grube and K. Schmid, “idspace d2. 1 state of the art in tools for creativity,” 2008.

228

GEORGE A. S
IELIS

http://www.sciencedirect.com/science/article/pii/S0164121215002605
http://www.sciencedirect.com/science/article/pii/S0164121215002605
http://dx.doi.org/10.1007/3-540-46119-1_39

[67] T. R. Gruber, “Toward principles for the design of ontologies used for knowledge sharing?”

International Journal of Human-Computer Studies, vol. 43, no. 5â6, pp. 907 – 928, 1995.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/S1071581985710816

[68] T. Gu, H. K. Pung, and D. Q. Zhang, “A middleware for building context-aware mobile

services,” in Vehicular Technology Conference, 2004. VTC 2004-Spring. 2004 IEEE 59th,

vol. 5. IEEE, 2004, pp. 2656–2660.

[69] Y.-G. Gueheneuc and G. Antoniol, “Demima: A multilayered approach for design pattern

identification,” Software Engineering, IEEE Transactions on, vol. 34, no. 5, pp. 667–684,

Sept 2008.

[70] Y.-G. Gueheneuc, Y.-G.heneuc and R. Mustapha, “A simple recommender system for de-

sign patterns.”

[71] V. Haarslev, K. Hidde, R. Möller, and M. Wessel, “The racerpro knowledge representation

and reasoning system.” Semantic Web, vol. 3, no. 3, pp. 267–277, 2012.

[72] N. Harrison, P. Avgeriou, and U. Zdun, “Using patterns to capture architectural decisions,”

Software, IEEE, vol. 24, no. 4, pp. 38–45, July 2007.

[73] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The anatomy of a context-

aware application,” Wireless Networks, vol. 8, no. 2/3, pp. 187–197, 2002.

[74] M. Hartmann and G. Austaller, “Context models and context awareness,” in Handbook

of Research on Ubiquitous Computing Technology for Real Time Enterprises, 2008,

pp. 235–256. [Online]. Available: http://www.igi-global.com/Bookstore/Chapter.aspx?

TitleId=21771

229

GEORGE A. S
IELIS

http://www.sciencedirect.com/science/article/pii/S1071581985710816
http://www.igi-global.com/Bookstore/Chapter.aspx?TitleId=21771
http://www.igi-global.com/Bookstore/Chapter.aspx?TitleId=21771

[75] A. Hatzigaidas, A. Papastergiou, G. Tryfon, and D. Maritsa, “Topic map existing tools: a

brief review,” in ICTAMI 2004 (International Conference on Theory and Applications of

Mathematics and Informatics), 2004.

[76] C. Hayes, P. Massa, P. Avesani, and P. Cunningham, “An on-line evaluation framework

for recommender systems,” in In Workshop on Personalization and Recommendation in

E-Commerce (Malaga. Springer Verlag, 2002.

[77] J. Heflin and J. Hendler, “Dynamic ontologies on the web,” in AAAI/IAAI, 2000, pp. 443–

449.

[78] K. Henricksen, J. Indulska, and A. Rakotonirainy, “Generating context management in-

frastructure from high-level context models,” in In 4th International Conference on Mobile

Data Management (MDM)-Industrial Track. Citeseer, 2003.

[79] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluating collaborative fil-

tering recommender systems,” ACM Transactions on Information Systems (TOIS), vol. 22,

no. 1, pp. 5–53, 2004.

[80] J. Holt, UML for Systems Engineering: watching the wheels. IET, 2004, vol. 4.

[81] D. C. Howe, “Rita: creativity support for computational literature,” in Proceedings of the

seventh ACM conference on Creativity and cognition. ACM, 2009, pp. 205–210.

[82] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich, Recommender systems: an intro-

duction. Cambridge University Press, 2010.

[83] K. Järvelin and J. Kekäläinen, “Ir evaluation methods for retrieving highly relevant doc-

uments,” in Proceedings of the 23rd annual international ACM SIGIR conference on Re-

search and development in information retrieval. ACM, 2000, pp. 41–48.

230

GEORGE A. S
IELIS

[84] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of ir techniques,” ACM

Transactions on Information Systems (TOIS), vol. 20, no. 4, pp. 422–446, 2002.

[85] A. Jena, “A free and open source java framework for building semantic web and linked data

applications,” Available online: jena. apache. org/(accessed on 28 April 2015), 2015.

[86] K. Kakousis, N. Paspallis, and G. A. Papadopoulos, “Optimizing the utility function-based

self-adaptive behavior of context-aware systems using user feedback,” in On the move to

meaningful internet systems: OTM 2008. Springer, 2008, pp. 657–674.

[87] A. Karapidis, A. Kienle, and H. Schneider, “Creativity, learning and knowledge manage-

ment in the process of service development–results from a survey of experts,” in Proceed-

ings of I-Know, 2005, pp. 432–440.

[88] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer, vol. 36,

no. 1, pp. 41–50, 2003.

[89] J. Kjeldskov and M. B. Skov, “Supporting work activities in healthcare by mobile electronic

patient records,” in Computer Human Interaction. Springer, 2004, pp. 191–200.

[90] B. P. Knijnenburg, M. C. Willemsen, Z. Gantner, H. Soncu, and C. Newell,

“Explaining the user experience of recommender systems,” User Modeling and User-

Adapted Interaction, vol. 22, no. 4-5, pp. 441–504, Oct. 2012. [Online]. Available:

http://dx.doi.org/10.1007/s11257-011-9118-4

[91] J. Kulik, “Fast and flexible forwarding for internet subscription systems,” in Proceedings of

the 2nd international workshop on Distributed event-based systems. ACM, 2003, pp. 1–8.

231

GEORGE A. S
IELIS

http://dx.doi.org/10.1007/s11257-011-9118-4

[92] N. D. Lane, Y. Xu, H. Lu, A. T. Campbell, T. Choudhury, and S. B. Eisenman, “Exploiting

social networks for large-scale human behavior modeling,” IEEE Pervasive Computing,

vol. 10, no. 4, pp. 45–53, 2011.

[93] G. Lee, T. Naganuma, and S. Kurakake, “Efficient matching in a context-aware event noti-

fication system for mobile users,” Proceedings Distributed Event-Based Systems, 2005.

[94] J. R. Lewis, “Ibm computer usability satisfaction questionnaires: Psychometric evaluation

and instructions for use,” Int. J. Hum.-Comput. Interact., vol. 7, no. 1, pp. 57–78, Jan.

1995. [Online]. Available: http://dx.doi.org/10.1080/10447319509526110

[95] H. Lieberman et al., “Letizia: An agent that assists web browsing,” IJCAI (1), vol. 1995,

pp. 924–929, 1995.

[96] P. Lops, M. de Gemmis, and G. Semeraro, “Content-based recommender systems:

State of the art and trends,” in Recommender Systems Handbook, F. Ricci, L. Rokach,

B. Shapira, and P. B. Kantor, Eds. Springer US, 2011, pp. 73–105. [Online]. Available:

http://dx.doi.org/10.1007/978-0-387-85820-3_3

[97] T. I. Lubart, “Models of the creative process: Past, present and future,” Creativity

Research Journal, vol. 13, no. 3-4, pp. 295–308, 2001. [Online]. Available:

http://dx.doi.org/10.1207/S15326934CRJ1334_07

[98] A. D. Lucia, V. Deufemia, C. Gravino, and M. Risi, “Design pattern recovery through

visual language parsing and source code analysis,” J. Syst. Softw., vol. 82, no. 7, pp.

1177–1193, Jul. 2009. [Online]. Available: http://dx.doi.org/10.1016/j.jss.2009.02.012

[99] A. M. Lund, “Measuring usability with the use questionnaire,” Usability interface, vol. 8,

no. 2, pp. 3–6, 2001.

232

GEORGE A. S
IELIS

http://dx.doi.org/10.1080/10447319509526110
http://dx.doi.org/10.1007/978-0-387-85820-3_3
http://dx.doi.org/10.1207/S15326934CRJ1334_07
http://dx.doi.org/10.1016/j.jss.2009.02.012

[100] K. M., Accessed: 2016. [Online]. Available: http://pubs.acs.org/subscribe/archive/ci/31/

i11/html/11hipple_box3.ci.html

[101] M. L. Maher and A. G. de Silva Garza, “Developing case-based reasoning for structural

design,” IEEE Intelligent Systems, no. 3, pp. 42–52, 1996.

[102] M. L. Maher and A. G. de Silva Garza, “Case-based reasoning in design,” IEEE Intelligent

Systems, no. 2, pp. 34–41, 1997.

[103] S. Mancoridis, R. C. Holt, and M. W. Godfrey, “Tool support for software engineering

education,” Department of Computer Science, University of Toronto, Tech. Rep., 1994.

[104] C. D. Manning, P. Raghavan, H. Schütze et al., Introduction to information retrieval. Cam-

bridge university press Cambridge, 2008, vol. 1.

[105] H. Marmanis and D. Babenko, Algorithms of the intelligent web. Manning Greenwich,

2009.

[106] B. E. Mastenbrook and E. G. Berkowitz, “Representing symbolic reasoning.” in MAICS.

Citeseer, 2003, pp. 96–101.

[107] M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in Action, Second Edition: Covers

Apache Lucene 3.0. Greenwich, CT, USA: Manning Publications Co., 2010.

[108] J. McCarthy, “Concepts of logical ai,” in Logic-based artificial intelligence. Springer,

2000, pp. 37–56.

[109] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. Cheng, “A taxonomy of composi-

tional adaptation,” Rapport Technique numéroMSU-CSE-04-17, 2004.

233

GEORGE A. S
IELIS

http://pubs.acs.org/subscribe/archive/ci/31/i11/html/11hipple_box3.ci.html
http://pubs.acs.org/subscribe/archive/ci/31/i11/html/11hipple_box3.ci.html

[110] S. M. McNee, J. Riedl, and J. A. Konstan, “Being accurate is not enough: How accuracy

metrics have hurt recommender systems,” in CHI ’06 Extended Abstracts on Human

Factors in Computing Systems, ser. CHI EA ’06. New York, NY, USA: ACM, 2006, pp.

1097–1101. [Online]. Available: http://doi.acm.org/10.1145/1125451.1125659

[111] S. Mitchell, M. D. Spiteri, J. Bates, and G. Coulouris, “Context-aware multimedia com-

puting in the intelligent hospital,” in Proceedings of the 9th workshop on ACM SIGOPS

European workshop: beyond the PC: new challenges for the operating system. ACM,

2000, pp. 13–18.

[112] D. Mladenic and B. A. P. Webwatcher, “Machine learning used by personal webwatcher,”

1999.

[113] A. Mouasher and J. M. Lodge, “The search for pedagogical dynamism–design patterns and

the unselfconscious process,” Educational Technology & Society, vol. 19, no. 2, pp. 274–

285, 2016.

[114] A. Moukas, “Amalthaea information discovery and filtering using a multiagent evolving

ecosystem,” Applied Artificial Intelligence, vol. 11, no. 5, pp. 437–457, 1997.

[115] N. M. A. Munassar and A. Govardhan, “A comparison between five models of software

engineering,” IJCSI, vol. 5, pp. 95–101, 2010.

[116] K. Murphy, “A brief introduction to graphical models and bayesian networks,”

http://www.cs.ubc.ca/ murphyk/Bayes/bayes.html, 1998, Último acesso: 08/12/05.

[117] K. Nakakoji, Y. Yamamoto, M. Akaishi, and K. Hori, “Interaction design for scholarly

writing: Hypertext representations as a means for creative knowledge work,” New Review

of Hypermedia and Multimedia, vol. 11, no. 1, pp. 39–67, 2005.

234

GEORGE A. S
IELIS

http://doi.acm.org/10.1145/1125451.1125659

[118] E. O. Navarro and A. van der Hoek, “Comprehensive evaluation of an educational software

engineering simulation environment,” in Software Engineering Education Training, 2007.

CSEET ’07. 20th Conference on, July 2007, pp. 195–202.

[119] P. Nurmi, M. Przybilski, G. Lindén, and P. Floréen, “A framework for distributed activity

recognition in ubiquitous systems.” in IC-AI, 2005, pp. 650–655.

[120] D. O’Doherty, S. Jouili, and P. Van Roy, “Towards trust inference from bipartite social

networks,” in Proceedings of the 2nd ACM SIGMOD Workshop on Databases and Social

Networks. ACM, 2012, pp. 13–18.

[121] J. O’Donovan and B. Smyth, “Is trust robust?: an analysis of trust-based recommendation,”

in Proceedings of the 11th international conference on Intelligent user interfaces. ACM,

2006, pp. 101–108.

[122] S. Owen, R. Anil, T. Dunning, and E. Friedman, Mahout in action. Manning Shelter

Island, 2011.

[123] A. Padovitz, S. W. Loke, A. Zaslavsky, and B. Burg, “Towards a general approach for rea-

soning about context, situations and uncertainty in ubiquitous sensing: Putting geometrical

intuitions to work,” in 2nd International Symposium on Ubiquitous Computing Systems

(UCS’04), Tokyo, Japan, 2004.

[124] F. Palma, H. Farzin, Y.-G. Guéhéneuc, and N. Moha, “Recommendation system for

design patterns in software development: An dpr overview,” in Proceedings of the

Third International Workshop on Recommendation Systems for Software Engineering,

ser. RSSE ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 1–5. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2666719.2666720

235

GEORGE A. S
IELIS

http://dl.acm.org/citation.cfm?id=2666719.2666720

[125] H.-S. Park, J.-O. Yoo, and S.-B. Cho, “A context-aware music recommendation system us-

ing fuzzy bayesian networks with utility theory,” in Fuzzy systems and knowledge discovery.

Springer, 2006, pp. 970–979.

[126] J. Park, S. Hunting, and D. C. Foreword By-Engelbart, XML Topic Maps: creating and

using topic maps for the Web. Addison-Wesley Longman Publishing Co., Inc., 2002.

[127] D. Parra and S. Sahebi, “Recommender systems: Sources of knowledge and evaluation

metrics,” in Advanced Techniques in Web Intelligence-2. Springer, 2013, pp. 149–175.

[128] J. Pascoe, “Adding generic contextual capabilities to wearable computers,” in Wearable

Computers, 1998. Digest of Papers. Second International Symposium on. IEEE, 1998, pp.

92–99.

[129] M. Pazzani and D. Billsus, “Learning and revising user profiles: The identification of inter-

esting web sites,” Machine learning, vol. 27, no. 3, pp. 313–331, 1997.

[130] M. J. Pazzani, J. Muramatsu, D. Billsus et al., “Syskill & webert: Identifying interesting

web sites,” in AAAI/IAAI, Vol. 1, 1996, pp. 54–61.

[131] J. A. Plucker and R. A. Beghetto, “Why creativity is domain general, why it looks domain

specific, and why the distinction does not matter.” 2004.

[132] J. Prentzas and I. Hatzilygeroudis, “Integrating hybrid rule-based with case-based reason-

ing,” in Advances in case-based reasoning. Springer, 2002, pp. 336–349.

[133] P. Pu, L. Chen, and R. Hu, “A user-centric evaluation framework for recommender

systems,” in Proceedings of the Fifth ACM Conference on Recommender Systems, ser.

RecSys ’11. New York, NY, USA: ACM, 2011, pp. 157–164. [Online]. Available:

http://doi.acm.org/10.1145/2043932.2043962

236

GEORGE A. S
IELIS

http://doi.acm.org/10.1145/2043932.2043962

[134] G. Rasool and D. Streitferdt, “A survey on design pattern recovery techniques,” J. Comp.

Sci, vol. 8, no. 2, 2011.

[135] M. O. Riedl, “Vignette-based story planning: Creativity through exploration and retrieval,”

in Proceedings of the 5th International Joint Workshop on Computational Creativity, 2008,

pp. 41–50.

[136] I. Rish and G. Tesauro, “Active collaborative prediction with maximum margin matrix fac-

torization.” ISAIM, vol. 2008, p. 20, 2008.

[137] M. Robillard, R. Walker, and T. Zimmermann, “Recommendation systems for software

engineering,” IEEE Software, vol. 27, no. 4, pp. 80–86, July 2010.

[138] P. Rola, D. Kuchta, and D. Kopczyk, “Conceptual model of working space for agile (scrum)

project team,” Journal of Systems and Software, vol. 118, pp. 49–63, 2016.

[139] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location, and routing

for large-scale peer-to-peer systems,” in Middleware 2001. Springer, 2001, pp. 329–350.

[140] D. Salber, A. K. Dey, and G. D. Abowd, “The context toolkit: aiding the development of

context-enabled applications,” in Proceedings of the SIGCHI conference on Human Factors

in Computing Systems. ACM, 1999, pp. 434–441.

[141] G. Salton, Automatic Text Processing: The Transformation, Analysis, and Retrieval of In-

formation by Computer. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,

Inc., 1989.

[142] W. Scacchi, “Process models in software engineering,” Encyclopedia of software engineer-

ing, 2001.

237

GEORGE A. S
IELIS

[143] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, “Collaborative filtering recom-

mender systems,” in The adaptive web. Springer, 2007, pp. 291–324.

[144] B. Schilit, N. Adams, and R. Want, “Context-aware computing applications,” in

Proceedings of the 1994 First Workshop on Mobile Computing Systems and Applications,

ser. WMCSA ’94. Washington, DC, USA: IEEE Computer Society, 1994, pp. 85–90.

[Online]. Available: http://dx.doi.org/10.1109/WMCSA.1994.16

[145] B. Schilit, N. Adams, and R. Want, “Context-aware computing applications,” in Mobile

Computing Systems and Applications, 1994. WMCSA 1994. First Workshop on. IEEE,

1994, pp. 85–90.

[146] A. Schmidt and C. Winterhalter, “User context aware delivery of e-learning material: Ap-

proach and architecture,” Journal of Universal Computer Science, vol. 10, no. 1, pp. 28–36,

2004.

[147] L. Serafini and A. Tamilin, “Drago: Distributed reasoning architecture for the semantic

web,” in The Semantic Web: Research and Applications. Springer, 2005, pp. 361–376.

[148] G. Shani and A. Gunawardana, “Evaluating recommendation systems,” in Recommender

systems handbook. Springer, 2011, pp. 257–297.

[149] P. Sharma, “Teaching creativity-a systematic viewpoint,” Enhancing curricula, pp. 330–

342, 2002.

[150] M. Shaw and D. Garlan, Software architecture: perspectives on an emerging discipline.

Prentice Hall Englewood Cliffs, 1996, vol. 1.

238

GEORGE A. S
IELIS

http://dx.doi.org/10.1109/WMCSA.1994.16

[151] L.-p. Shen and R.-m. Shen, “Ontology-based learning content recommendation,” Interna-

tional Journal of Continuing Engineering Education and Life Long Learning, vol. 15, no.

3-6, pp. 308–317, 2005.

[152] B. Shneiderman, “Creating creativity: user interfaces for supporting innovation,” ACM

Transactions on Computer-Human Interaction (TOCHI), vol. 7, no. 1, pp. 114–138, 2000.

[153] B. Shneiderman, G. Fischer, M. Czerwinski, M. Resnick, B. Myers, L. Candy, E. Edmonds,

M. Eisenberg, E. Giaccardi, T. Hewett et al., “Creativity support tools: Report from a us na-

tional science foundation sponsored workshop,” International Journal of Human-Computer

Interaction, vol. 20, no. 2, pp. 61–77, 2006.

[154] R. L. Sie, M. Bitter-Rijpkema, and P. B. Sloep, “A simulation for content-based and utility-

based recommendation of candidate coalitions in virtual creativity teams,” Procedia Com-

puter Science, vol. 1, no. 2, pp. 2883–2888, 2010.

[155] G. A. Sielis, C. Mettouris, A. Tzanavari, G. A. Papadopoulos, R. M. G. Dols,

and Q. Siebers, “A context aware recommender system for creativity support

tools,” J. UCS, vol. 17, no. 12, pp. 1743–1763, 2011. [Online]. Available:

http://dx.doi.org/10.3217/jucs-017-12-1743

[156] G. A. Sielis, A. Tzanavari, R. Dols, G. Hopmans, P. Dolog, K. Schmid, P. Grube,

A. Kouloumbis, and S. Papavasiliou, “D3. 1–description of context awareness in idspace,”

2008. [Online]. Available: http://dspace.ou.nl/bitstream/1820/1662/1/idSpace%20D3.1%

20final%20%20EC%2028-11-2008.pdf

[157] G. A. Sielis, A. Tzanavari, and G. A. Papadopoulos, “Enhancing the creativity process

by adding context awareness in creativity support tools,” in Universal Access in

239

GEORGE A. S
IELIS

http://dx.doi.org/10.3217/jucs-017-12-1743
http://dspace.ou.nl/bitstream/1820/1662/1/idSpace%20D3.1%20final%20%20EC%2028-11-2008.pdf
http://dspace.ou.nl/bitstream/1820/1662/1/idSpace%20D3.1%20final%20%20EC%2028-11-2008.pdf

Human-Computer Interaction. Applications and Services, 5th International Conference,

UAHCI 2009, Held as Part of HCI International 2009, San Diego, CA, USA,

July 19-24, 2009. Proceedings, Part III, 2009, pp. 424–433. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-02713-0_45

[158] G. A. Sielis, A. Tzanavari, and G. A. Papadopoulos, “Archreco: Software architecture de-

sign tool enhanced by context aware recommendations for design patterns,” in Proceedings

of the 2015 European Conference on Software Architecture Workshops. ACM, 2015, p. 67.

[159] G. A. Sielis, A. Tzanavari, and G. A. Papadopoulos, “Investigating the state-of-the-art in

software architecture design tools and their support in personalized recommendations: A

survey in software architecture process, tools and practices,” University of Cyprus, Tech.

Rep. UCY-CS-TR-15-1, 2015.

[160] G. A. Sielis, A. Tzanavari, and G. A. Papadopoulos, “Recommender systems review of

types, techniques, and applications,” Encyclopedia of Information Science and Technology,

Third Edition, Mehdi Khosrow-Pour (ed), IGI Global, 2015, chapter 714, pp. 7260–7270,

2015.

[161] G. A. Sielis, A. Tzanavari, and G. A. Papadopoulos, “A social creativity support tool

enhanced by recommendation algorithms: The case of software architecture design,” in

Knowledge, Information and Creativity Support Systems. Springer, 2016, pp. 457–466.

[162] B. Siljee, I. Bosloper, and J. Nijhuis, “A classification framework for storage and retrieval

of context,” in KI-04 Workshop on Modelling and Retrieval of Context, CEUR, vol. 114.

Citeseer, 2004.

240

GEORGE A. S
IELIS

http://dx.doi.org/10.1007/978-3-642-02713-0_45

[163] B. Simon, Z. Miklós, W. Nejdl, M. Sintek, and J. Salvachua, “Smart space for learning: A

mediation infrastructure for learning services,” in Proceedings of the Twelfth International

Conference on World Wide Web, 2003, pp. 20–24.

[164] I. Simon, D. Morris, and S. Basu, “Mysong: automatic accompaniment generation for vocal

melodies,” in Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems. ACM, 2008, pp. 725–734.

[165] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical owl-dl

reasoner,” Web Semantics: science, services and agents on the World Wide Web, vol. 5,

no. 2, pp. 51–53, 2007.

[166] J. F. Sowa, “Knowledge representation: logical, philosophical, and computational founda-

tions,” 1999.

[167] V. Stanford, “Beam me up, doctor mccoy [pervasive computing],” Pervasive Computing,

IEEE, vol. 2, no. 3, pp. 13–18, 2003.

[168] A. J. Starko, Creativity in the classroom: Schools of curious delight. Routledge, 2013.

[169] R. J. Sternberg, Handbook of creativity. Cambridge University Press, 1999.

[170] G. M. Steve Pepper, “Xml topic maps (xtm) 1.0, topicmaps.org specification,” August 2001.

[171] T. Strang and C. Linnhoff-Popien, “A context modeling survey,” in In: Workshop on Ad-

vanced Context Modelling, Reasoning and Management, UbiComp 2004 - The Sixth Inter-

national Conference on Ubiquitous Computing, Nottingham/England, 2004.

241

GEORGE A. S
IELIS

[172] J.-Z. Sun and J. Sauvola, “Towards a conceptual model for context-aware adaptive ser-

vices,” in Parallel and Distributed Computing, Applications and Technologies, 2003. PD-

CAT’2003. Proceedings of the Fourth International Conference on. IEEE, 2003, pp. 90–

94.

[173] P. Tarasewich, “Designing mobile commerce applications,” Communications of the ACM,

vol. 46, no. 12, pp. 57–60, 2003.

[174] K. Taveter and G. Wagner, “Agent-oriented enterprise modeling based on business rules.”

Springer, 2001, pp. 527–540.

[175] L. Terveen and D. W. McDonald, “Social matching: A framework and research agenda,”

ACM transactions on computer-human interaction (TOCHI), vol. 12, no. 3, pp. 401–434,

2005.

[176] N. Tintarev and J. Masthoff, “A survey of explanations in recommender systems,” in Data

Engineering Workshop, 2007 IEEE 23rd International Conference on. IEEE, 2007, pp.

801–810.

[177] H.-L. Truong, L. Juszczyk, A. Manzoor, and S. Dustdar, Escape–an adaptive framework

for managing and providing context information in emergency situations. Springer, 2007.

[178] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. Halkidis, “Design pattern detection

using similarity scoring,” Software Engineering, IEEE Transactions on, vol. 32, no. 11, pp.

896–909, Nov 2006.

[179] D. Tsatsou, F. Menemenis, I. Kompatsiaris, and P. C. Davis, “A semantic framework for

personalized ad recommendation based on advanced textual analysis,” in Proceedings of

the third ACM conference on Recommender systems. ACM, 2009, pp. 217–220.

242

GEORGE A. S
IELIS

[180] K. Unsworth, “Unpacking creativity,” Academy of management review, vol. 26, no. 2, pp.

289–297, 2001.

[181] P. Victor, M. De Cock, and C. Cornelis, Trust and Recommendations. Boston,

MA: Springer US, 2011, pp. 645–675. [Online]. Available: http://dx.doi.org/10.1007/

978-0-387-85820-3_20

[182] K. Wagatsuma, T. Harada, S. Anze, Y. Goto, and J. Cheng, “A supporting tool for spiral

model of cryptographic protocol design with reasoning-based formal analysis,” in Advanced

Multimedia and Ubiquitous Engineering. Springer, 2016, pp. 25–32.

[183] G. Wagner, “How to design a general rule markup language,” in In Invited talk at the Work-

shop XML Technologien für das Semantic Web (XSW 2002. Citeseer, 2002.

[184] A. I. Wang and B. Wu, “An application of a game development framework in higher

education,” Int. J. Comput. Games Technol., vol. 2009, pp. 6:1–6:12, Jan. 2009. [Online].

Available: http://dx.doi.org/10.1155/2009/693267

[185] P. Wang, “The interpretation of fuzziness.” IEEE transactions on systems, man, and cy-

bernetics. Part B, Cybernetics: a publication of the IEEE Systems, Man, and Cybernetics

Society, vol. 26, no. 2, pp. 321–326, 1995.

[186] Y.-K. Wang, “Context awareness and adaptation in mobile learning,” in Wireless and Mobile

Technologies in Education, 2004. Proceedings. The 2nd IEEE International Workshop on.

IEEE, 2004, pp. 154–158.

[187] T. Weilkiens, J. G. Lamm, S. Roth, and M. Walker, “B: The v-model,” Model-Based System

Architecture, pp. 343–352, 2016.

243

GEORGE A. S
IELIS

http://dx.doi.org/10.1007/978-0-387-85820-3_20
http://dx.doi.org/10.1007/978-0-387-85820-3_20
http://dx.doi.org/10.1155/2009/693267

[188] M. Weimer, A. Karatzoglou, Q. V. Le, and A. Smola, “Maximum margin matrix factor-

ization for collaborative ranking,” Advances in neural information processing systems, pp.

1–8, 2007.

[189] M. Weiser, “Ubiquitous computing,” Computer, no. 10, pp. 71–72, 1993.

[190] M. Weiss and A. Birukou, “Building a pattern repository: Benefitting from the open,

lightweight, and participative nature of wikis.”

[191] W3C Semantic Web Activity, World Wide Consortium (W3C) Std., 2016. [Online].

Available: https://www.w3.org/2001/sw/

[192] A. Wrightson, “Topic maps and knowledge representation,” February 2001.

[193] H. C. Wu, R. W. P. Luk, K. F. Wong, and K. L. Kwok, “Interpreting tf-idf term weights as

making relevance decisions,” ACM Transactions on Information Systems (TOIS), vol. 26,

no. 3, p. 13, 2008.

[194] K. Yu, A. Schwaighofer, V. Tresp, X. Xu, and H.-P. Kriegel, “Probabilistic memory-based

collaborative filtering,” IEEE Transactions on Knowledge and Data Engineering, vol. 16,

no. 1, pp. 56–69, 2004.

[195] Y. Zeng, N. Zhong, X. Ren, and Y. Wang, “User interests driven web personalization based

on multiple social networks,” in Proceedings of the 4th International Workshop on Web

Intelligence & Communities, ser. WI&C ’12. New York, NY, USA: ACM, 2012,

pp. 9:1–9:4. [Online]. Available: http://doi.acm.org/10.1145/2189736.2189749

[196] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen, “Improving recommendation

lists through topic diversification,” in Proceedings of the 14th international conference on

World Wide Web. ACM, 2005, pp. 22–32.

244

GEORGE A. S
IELIS

https://www.w3.org/2001/sw/
http://doi.acm.org/10.1145/2189736.2189749

[197] O. Zimmermann, U. Zdun, T. Gschwind, and F. Leymann, “Combining pattern languages

and reusable architectural decision models into a comprehensive and comprehensible de-

sign method,” in Software Architecture, 2008. WICSA 2008. Seventh Working IEEE/IFIP

Conference on, Feb 2008, pp. 157–166.

[198] O. Zimmermann, “Architectural decision identification in architectural patterns,” in

Proceedings of the WICSA/ECSA 2012 Companion Volume, ser. WICSA/ECSA

’12. New York, NY, USA: ACM, 2012, pp. 96–103. [Online]. Available: http:

//doi.acm.org/10.1145/2361999.2362021

245

GEORGE A. S
IELIS

http://doi.acm.org/10.1145/2361999.2362021
http://doi.acm.org/10.1145/2361999.2362021

Appendix A

Survey Questions

A.1 Demographic Data

1. What is your age?

2. How do you define the type of organization you are working for? Answer Count Percentage

3. What is your position / role in the organization?

4. How many years of experience in Software Design do you have?

5. In how many projects you had active role in Software Design?

6. In the projects that you participate, do you collaborate with other experts?

7. Have you ever worked with a team remotely on Software Design?

A.2 Project Management

1. How many projects do you usually run at the same time?

2. Please arrange in a priority order the attributes of your employees that you take into account

before you assign to them a new project.

246

GEORGE A. S
IELIS

3. When a new project is about to start can you roughly describe three steps for the preparation

of the project?

4. Do you usually involve resources from other departments of other teams in abroad into your

projects?

5. Do you always know the people you invite for collaboration?

6. During the design and preparation of the project how important would be for you to receive

recommendations of people that can get involved into your project, by the system?

7. How easy is it for you to find other people to ask them to join a project that you manage?

8. Please describe how you can find other people to join your projects.

9. What kind of additional resource material would you consider as helpful during the process

of the Software Architecture Design?

10. How easy is it for you to have access to other projects created by other teams so you can use

them as reference?

A.3 Software Design

1. Do you use Software Design modeling tools?

2. Can you name some of the Software Design Modeling Tools that you are aware of?

3. Do you usually use the Software Modeling Tools in cooperation with other colleages?

4. Please name some Software Modeling Tools which support collaboration of peers

5. Would you agree in sharing your Software Design projects with other people in your com-

pany?

247

GEORGE A. S
IELIS

6. Would you agree in sharing your Software Design projects with other people in your com-

pany?

7. Would you agree in sharing your Software Design projects with other people in a public

network?

8. How important is it for you to have access to Software Design projects that other people

created?

9. Do you usually use other Software Design projects as reference to your project?

10. How easy is for you to find projects related to yours to use them as reference source?

11. Which methods you use to find related projects?

12. Are you satisfied with the methods you use to find reference projects?

13. In the process of collaboration between you and your team, which functionality do you

believe that would facilitate the process of Software Design?

A.4 Creation of new Ideas

1. How easy is for you to create a new project based on a new idea that you have?

2. How easy is for a member in your team to process a new idea as a new project?

248

GEORGE A. S
IELIS

Appendix B

Semantic Web Code-Samples

B.1 Sample of Dynamic Model Creation using data from MySQL DB

Listing B.1: Sample dynamic Model creation from mysql DB
R e s u l t S e t r e s = conn . S e l e c t Q u e r y (" SELECT ∗ FROM CST_users ") ;

w h i l e (r e s . n e x t ())

{

S t r i n g i d = r e s . g e t S t r i n g (" i d ") ;

S t r i n g User= r e s . g e t S t r i n g (" f i r s t n a m e ") +" _ "+

r e s . g e t S t r i n g (" l a s t n a m e ") ;

S t r i n g usrName= r e s . g e t S t r i n g (" username ") ;

S t r i n g p r o f e s s i o n = r e s . g e t S t r i n g (" p r o f e s s i o n ") ;

S t r i n g e d u c a t i o n = r e s . g e t S t r i n g (" e d u c a t i o n ") ;

S t r i n g l a n g u a g e s = r e s . g e t S t r i n g (" l a n g u a g e s ") ;

S t r i n g e m a i l = r e s . g e t S t r i n g (" e m a i l ") ;

S t r i n g s h o r t c v = r e s . g e t S t r i n g (" s h o r t c v ") ;

S t r i n g c o u n t r y = r e s . g e t S t r i n g (" c o u n t r y ") ;

S t r i n g company= r e s . g e t S t r i n g (" company ") ;

w r i t e r . o p e n I n d i v i d u a l (" " , id , " j " , " Pe r so n ") ;

i f (n u l l != userName)

{

w r i t e r . a d d L i t e r a l (" r d f s " , " l a b e l " , userName , " xsd : s t r i n g ") ;

w r i t e r . a d d L i t e r a l (" j " , " hasName " , userName , " xsd : s t r i n g ") ;

w r i t e r . a d d L i t e r a l (" r d f s " , " l a b e l " , usrName , " xsd : s t r i n g ") ;

249

GEORGE A. S
IELIS

w r i t e r . a d d L i t e r a l (" j " , " hasUsername " , usrName , " xsd : s t r i n g ") ;

w r i t e r . a d d L i t e r a l (" j " , " h a s P r o f e s s i o n " , p r o f e s s i o n , " xsd : s t r i n g ") ;

w r i t e r . a d d L i t e r a l (" j " , " h a s E d u c a t i o n " , e d u c a t i o n , " xsd : s t r i n g ") ;

w r i t e r . a d d L i t e r a l (" j " , " spe aksLangu ages " , l a n g u a g e s , " xsd : s t r i n g ") ;

w r i t e r . a d d L i t e r a l (" j " , " hasEmai l " , emai l , " xsd : s t r i n g ") ;

w r i t e r . a d d L i t e r a l (" j " , " hasShortCV " , s h o r t c v , " xsd : s t r i n g ") ;

w r i t e r . a d d L i t e r a l (" j " , " l i v e s I n C o u n t r y " , c o u n t r y , " xsd : s t r i n g ") ;

w r i t e r . a d d L i t e r a l (" j " , " worksInCompany " , company , " xsd : s t r i n g ") ;

}

w r i t e r . c l o s e I n d i v i d u a l () ;

}

B.2 Sample of Dynamic Model Creation using data from XML file

Listing B.2: Sample dynamic Model creation from XML File
F i l e f X m l F i l e = new F i l e (" a l l D a t a U p T o P r o j e c t T a s k s . xml ") ;

D o c u m e n t B u i l d e r F a c t o r y d b F a c t o r y =

D o c u m e n t B u i l d e r F a c t o r y . n e w I n s t a n c e () ;

DocumentBui lde r d B u i l d e r = d b F a c t o r y . newDocumentBui lder () ;

Document doc = d B u i l d e r . p a r s e (f Xm l F i l e) ;

doc . ge tDocumentElement () . n o r m a l i z e () ;

NodeLi s t n L i s t = doc . getElementsByTagName (" row ") ;

f o r (i n t temp = 0 ; temp < n L i s t . g e t L e n g t h () ; temp ++)

{

Node nNode = n L i s t . i t em (temp) ;

i f (nNode . getNodeType () == Node .ELEMENT_NODE)

{

Element eElement = (Element) nNode ;

w r i t e r . o p e n I n d i v i d u a l (" " , eElement . getElementsByTagName (" u s e r _ i d ") . i t em (0) . g e t T e x t C o n t e n t ()

. r e p l a c e A l l (" [−+ . ^ : , \ "] " , " ") , " j " , " P e r so n ") ;

i f (n u l l != eElement . getElementsByTagName (" u s e r _ i d ") . i t em (0) . g e t T e x t C o n t e n t () . r e p l a c e A l l (" [−+ . ^ : ,] " , " "))

{

w r i t e r . a d d L i t e r a l (" r d f s " , " l a b e l " , eElement . getElementsByTagName (" user_name ") . i t em (0) . g e t T e x t C o n t e n t ()

. r e p l a c e A l l (" [−+ . ^ : , \ " =] " , " ") , " xsd : s t r i n g ") ;

w r i t e r . a d d L i t e r a l (" j " , " hasName " , eElement . getElementsByTagName (" r e a l n a m e ") . i t em (0) . g e t T e x t C o n t e n t ()

. r e p l a c e A l l (" [−+ . ^ : , \ " =] " , " ") , " xsd : s t r i n g ") ;

w r i t e r . a d d L i t e r a l (" r d f s " , " l a b e l " , eElement . getElementsByTagName (" user_name ") . i t em (0) . g e t T e x t C o n t e n t ()

. r e p l a c e A l l (" [−+ . ^ : , \ " =] " , " ") , " xsd : s t r i n g ") ;

w r i t e r . a d d L i t e r a l (" j " , " hasUsername " , eElement . getElementsByTagName (" user_name ") . i t em (0) . g e t T e x t C o n t e n t ()

. r e p l a c e A l l (" [−+ . ^ : , \ " =] " , " ") , " xsd : s t r i n g ") ;

250

GEORGE A. S
IELIS

w r i t e r . a d d L i t e r a l (" j " , " h a s P r o f e s s i o n " , " " , " xsd : s t r i n g ") ;

w r i t e r . a d d L i t e r a l (" j " , " h a s E d u c a t i o n " , " " , " xsd : s t r i n g ") ;

w r i t e r . a d d L i t e r a l (" j " , " spe aksLangu ages " , " en " , " xsd : s t r i n g ") ;

w r i t e r . a d d L i t e r a l (" j " , " hasEmai l " , " " , " xsd : s t r i n g ") ;

w r i t e r . a d d L i t e r a l (" j " , " hasShortCV " , eElement . getElementsByTagName (" peop l e_ re sume ") . i t em (0) . g e t T e x t C o n t e n t ()

. r e p l a c e A l l (" [−+ . ^ : , \ " = \ n] " , " ") , " xsd : s t r i n g ") ;

w r i t e r . a d d L i t e r a l (" j " , " l i v e s I n C o u n t r y " , " " , " xsd : s t r i n g ") ;

w r i t e r . a d d L i t e r a l (" j " , " worksInCompany " , " " , " xsd : s t r i n g ") ;

}

w r i t e r . c l o s e I n d i v i d u a l () ;

}

}

w r i t e r . c l o s e () ;

B.3 SPARQL examples

Listing B.3: SPARQL query for retrieval of Design Pattern’s Category
p r o t e c t e d S t r i n g g e t C a t e g o y O f P a t t e r n (S t r i n g p a t t e r n)

{

S t r i n g c a t = " " ;

S t r i n g q u e r y S t r i n g =

"PREFIX dp : <" + o n t V o c a b u l a r y . Base . g e t S t r i n g () + "> \ n " +

"PREFIX r d f s : < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#> \ n " +

"SELECT ? x "

+ "WHERE { "

+ "? p a t dp : hasPa t t e rnName \ " " + p a t t e r n + " \ " . \ n "

+ "? p a t dp : C a t e g o r i z e d I n ? s u b c a t e g o r y . \ n "

+ "? s u b c a t e g o r y dp : SubCategoryOf ? c a t e g o r y . \ n "

+ "? c a t e g o r y dp : hasCategoryName ? x . \ n "

+ " } " ;

Query que ry ;

Que ryExecu t ion q u e r y E x e c u t i o n ;

R e s u l t S e t r s ;

que ry = Q u e r y F a c t o r y . c r e a t e (q u e r y S t r i n g) ;

q u e r y E x e c u t i o n = Q u e r y E x e c u t i o n F a c t o r y . c r e a t e (query , _model) ;

r s = q u e r y E x e c u t i o n . e x e c S e l e c t () ;

251

GEORGE A. S
IELIS

w h i l e (r s . hasNext ()) {

Q u e r y S o l u t i o n s o l u t i o n = r s . n e x t S o l u t i o n () ;

RDFNode c a t e g o r y ;

/ / Resource a r c h i t e c t u r e , a r c h i t e c t u r e _ t y p e ;

c a t e g o r y = s o l u t i o n . g e t L i t e r a l (" x ") ;

c a t = ex t r ac tVa lueFromNode (c a t e g o r y) ;

}

r e t u r n c a t ;

}

Listing B.4: SPARQL query for retrieval of Design Patterns for specific category
p r o t e c t e d L i s t < P a t t e r n > g e t D e s i g n P a t t e r n s B y C a t e g o r y (S t r i n g [] categoryName)

{

L i s t < P a t t e r n > t o R e t u r n = new A r r a y L i s t < P a t t e r n > () ;

S t r i n g q u e r y S t r i n g = " " ;

f o r (i n t i =0 ; i <categoryName . l e n g t h ; i ++)

{

i f (ca tegoryName [0] = = " A l l ")

{

q u e r y S t r i n g =

"PREFIX dp : <" + o n t V o c a b u l a r y . Base . g e t S t r i n g () + "> \ n " +

"PREFIX r d f s : < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#> \ n " +

"SELECT ? s u b c a t e g o r y "

+ "? c a t e g o r y "

+ "? p a t t e r n "

+ "? p a t t e r n _ n a m e "

+ "? i n t e n t "

+ "WHERE { "

+ "? c a t e g o r y dp : hasCategoryName ? x . \ n "

+ "? s u b c a t e g o r y dp : SubCategoryOf ? c a t e g o r y . \ n "

+ "? p a t t e r n dp : C a t e g o r i z e d I n ? s u b c a t e g o r y . \ n "

+ "? p a t t e r n dp : " + o n t V o c a b u l a r y . hasPa t t e rnName . t o S t r i n g () + " ? p a t t e r n _ n a m e . \ n "

+ "? p a t t e r n dp : " + o n t V o c a b u l a r y . h a s I n t e n t . t o S t r i n g () +" ? i n t e n t . \ n "

+ " } " ;

}

e l s e

{

252

GEORGE A. S
IELIS

q u e r y S t r i n g =

"PREFIX dp : <" + o n t V o c a b u l a r y . Base . g e t S t r i n g () + "> \ n " +

"PREFIX r d f s : < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#> \ n " +

"SELECT ? s u b c a t e g o r y "

+ "? c a t e g o r y "

+ "? p a t t e r n "

+ "? p a t t e r n _ n a m e "

+ "? i n t e n t "

+ "WHERE { "

+ "? c a t e g o r y dp : hasCategoryName \ " " + categoryName [i] + " \ " . \ n "

+ "? s u b c a t e g o r y dp : SubCategoryOf ? c a t e g o r y . \ n "

+ "? p a t t e r n dp : C a t e g o r i z e d I n ? s u b c a t e g o r y . \ n "

+ "? p a t t e r n dp : " + o n t V o c a b u l a r y . hasPa t t e rnName . t o S t r i n g () + " ? p a t t e r n _ n a m e . \ n "

+ "? p a t t e r n dp : " + o n t V o c a b u l a r y . h a s I n t e n t . t o S t r i n g () +" ? i n t e n t . \ n "

+ " } " ;

}

S t r i n g pa t t e rnName ;

S t r i n g i m p l e m e n t a t i o n ;

S t r i n g _ i n t e n t ;

S t r i n g _AlsoKnownAs ;

S t r i n g _ C o l l a b o r a t o r s ;

S t r i n g _Consequences ;

S t r i n g _KnownUses ;

S t r i n g _ M o t i v a t i o n ;

S t r i n g _ P a r t i c i p a n t s ;

S t r i n g _ R e l a t e d P a t t e r n s ;

S t r i n g _SampleCode ;

S t r i n g _ S t r u c t u r e ;

S t r i n g _Example ;

S t r i n g _Image ;

S t r i n g _Ca tego ry ;

S t r i n g _SubCategory ;

Query que ry ;

Que ryExecu t ion q u e r y E x e c u t i o n ;

R e s u l t S e t r s ;

que ry = Q u e r y F a c t o r y . c r e a t e (q u e r y S t r i n g) ;

q u e r y E x e c u t i o n = Q u e r y E x e c u t i o n F a c t o r y . c r e a t e (query , _model) ;

253

GEORGE A. S
IELIS

r s = q u e r y E x e c u t i o n . e x e c S e l e c t () ;

w h i l e (r s . hasNext ()) {

Q u e r y S o l u t i o n s o l u t i o n = r s . n e x t S o l u t i o n () ;

RDFNode p a t t e r n _ n a m e ;

RDFNode implement , AlsoKnownAs , c o l l a b o r a t o r s , co ns eq ue ns e s , knownUses , m o t i v a t i o n , p a r t i c i p a n t s ,

r e l a t e d P a t t e r n s , sampleCode , s t r u c t u r e , example , image , i n t e n t ;

Resource p a t t e r n , s u b c a t e g o r y , c a t e g o r y ;

c a t e g o r y = s o l u t i o n . g e t R e s o u r c e (" c a t e g o r y ") ; / / L i t e r a l means t h e p r o p e r t y v a l u e

s u b c a t e g o r y = s o l u t i o n . g e t R e s o u r c e (" s u b c a t e g o r y ") ;

p a t t e r n = s o l u t i o n . g e t R e s o u r c e (" p a t t e r n ") ;

p a t t e r n _ n a m e = s o l u t i o n . g e t L i t e r a l (" p a t t e r n _ n a m e ") ;

_Ca tego ry = s t r i p T y p e (ex t r ac tVa lueFromNode (

g e t F i r s t N o d e (

_model . l i s t O b j e c t s O f P r o p e r t y (

c a t e g o r y ,

g e t P r o p e r t y (o n t V o c a b u l a r y . hasCategoryName))))) ;

_SubCategory = s t r i p T y p e (ex t r ac tVa lueFromNode (

g e t F i r s t N o d e (

_model . l i s t O b j e c t s O f P r o p e r t y (

s u b c a t e g o r y ,

g e t P r o p e r t y (o n t V o c a b u l a r y . hasSubCategoryName))))) ;

pa t t e rnName = ex t r ac tVa lueFromNode (p a t t e r n _ n a m e) ;

P a t t e r n p= e x t r a c t P a t t e r n (p a t t e r n) ;

i m p l e m e n t a t i o n =p . g e t I m p l e m e n t a t i o n () ;

_ i n t e n t = p . g e t I n t e n t () ;

_AlsoKnownAs=p . getAlsoKnownAs () ;

_ C o l l a b o r a t o r s =p . g e t C o l l a b o r a t o r s () ;

_Consequences =p . g e t C o n s e q u e n c e s () ;

_Example=p . ge tExample () ;

_Image=p . ge t Image () ;

_KnownUses=p . getKnownUses () ;

_ M o t i v a t i o n =p . g e t M o t i v a t i o n () ;

_ P a r t i c i p a n t s =p . g e t P a r t i c i p a n t s () ;

_ R e l a t e d P a t t e r n s =p . g e t R e l a t e d P a t t e r n s () ;

_SampleCode=p . getSampleCode () ;

_ S t r u c t u r e =p . g e t S t r u c t u r e () ;

254

GEORGE A. S
IELIS

t o R e t u r n . add (new P a t t e r n I m p l (pa t te rnName , _ i n t e n t , i m p l e m e n t a t i o n , _AlsoKnownAs , _ C o l l a b o r a t o r s , _Consequences ,

_KnownUses , _ M o t i v a t i o n , _ P a r t i c i p a n t s , _ R e l a t e d P a t t e r n s , _SampleCode ,

_ S t r u c t u r e , _Example , _Image , _Category , _SubCategory)) ;

}

}

r e t u r n t o R e t u r n ;

}

255

GEORGE A. S
IELIS

Appendix C

Ontology Models - Visualizations

C.1 Creativity Ontology Visualised Model using Protege

The visualized ontology model is shown in figure 22

C.2 Creativity merged with SE entities Ontology Visualised Model using Protege

The visualized ontology model is shown in figure 23

C.3 Class Hierarchy of the merged ontology model

The ontology model structure and class hierarchy is shown in figure 24

C.4 Completed ontology model with data properties and relations included

The final visualized ontology model is shown in figure 25

256

GEORGE A. S
IELIS

Figure 22: Creativity Ontology Model Created in Protege Ontology Editing tool

257

GEORGE A. S
IELIS

Figure 23: Creativity merged with SE entities Ontology Model Created in Protege Ontology Edit-

ing tool

258

GEORGE A. S
IELIS

Figure 24: Class Hierarchy of the merged ontology model in Protege Ontology Editing tool

259

GEORGE A. S
IELIS

Figure 25: Completed ontology model with data properties and relations visualized in Protege

Ontology Editing tool

260

GEORGE A. S
IELIS

Appendix D

ArchReco Evaluation Questionnaire

D.1 Demographic Data

1. Please write your Student Card Registration Number - AM. (It will be used only as a refer-

ence to the evaluation session logs for comparison of the results)

2. Profession

3. Location

4. Nationality

5. Gender

6. Age

7. Educational Background

8. Year of Studies

261

GEORGE A. S
IELIS

D.2 Pre-test questionnaire

1. Please rate your experience with Software Design tooling, understood as systems that pro-

mote, accelerate and facilitate the design of Software Design Models?

2. Please rate your level of experience in Software Design

3. Please rate your knowledge of Design Patterns

4. Please rate your experience in using Design Patterns

D.3 Post-task questionnaire

1. Overall, I am satisfied with the ease of completing the task

2. Overall, I am satisfied with the amount of time it took to complete the task

3. Overall, I believe I learned new Design Patterns with the use of the software

4. Overall, I believe I learned where and how Design Patterns can be used

5. I believe I learned new things for Design Patterns

D.4 Post-test questionnaire

1. Using the tool in Designing Software models would enable me to accomplish tasks more

quickly

2. Using the tool would improve my understanding in using Design Patterns in a high level

software design model

3. Using the tool in Designing Software models would increase my productity

262

GEORGE A. S
IELIS

4. Using the tool to identify the most suitable Design Patterns would enhance my effectiveness

on the job

5. Using the tool would make easier the process of Software Design

6. I would find the tool useful in Designing Software diagrams

7. The outcome of the tool would be beneficiary for the software developers who will imple-

ment the diagram into an actual application

8. ArchReco tool can effectively support the creation of high level Software Design Model.

9. ArchReco tool can effectively support the representation, and management of Software De-

sign Components.

10. The context-sensitive support (i.e. recommendations) is crucial to the ArchReco design

process.

11. Using ArchReco tool supports me in being more creative during the design process

12. ArchReco tool enhances the outcome of the High Level diagram design.

13. I describe my experience with ArchReco tool in general as positive.

14. ArchReco tool offers stimulating possibilities to explore new Design Patterns.

15. ArchReco tool helps in choosing useful Design Patterns to apply in an Software Design

diagram.

16. I feel that I learned to work creatively using the ArchReco tool.

17. I found ArchReco tool helpful to support us to go over and over new design patterns till we

found a suitable one to apply in our design model.

263

GEORGE A. S
IELIS

18. I found the recommendation of Design Patterns useful

19. The information provided for each pattern was sufficient

20. Recommendations of Design Patterns helped me learn new patterns.

21. Some of the recommended items are familiar to me

22. I am not familiar with the items that were recommended to me

23. The items recommended to me are novel and interesting

24. The recommender system is educational.

25. The recommender system helps me discover new Design Patterns

26. I could not find new design patterns through the recommender

27. The items recommended to me took my personal context requirements into consideration.

28. The recommender provides an adequate way for me to express my preferences

29. I became familiar with the recommender system very quickly.

30. The recommended items effectively helped me find the ideal Design Patterns

264

GEORGE A. S
IELIS

	 Introduction
	Motivation
	Thesis Statement
	Approach
	Research Goals

	Definitions
	Declaration and Credits
	Additional publications relevant to the thesis

	Structure of the Thesis

	 Related Work
	Introduction
	Context Awareness and Creativity
	Context Aware Recommendation Systems
	Design Patterns in Software Engineering
	Beyont the current State-of-the-Art

	 Context Awareness
	Introduction
	An overview in Context Awareness
	Context Representation
	Types of Human Knowledge
	Knowledge Representation languages and models

	Context Frameworks
	Functional Architecture for Context Awareness Systems
	Context Reasoning Techniques
	Non-Symbolic Context Reasoning Techniques
	Symbolic Context Reasoning Techniques
	Hybrid Context Reasoning Techniques

	Existing Context Reasoning Technologies
	Context abstraction using rule-based reasoning engines
	Ontology-based inference engines
	Topic Maps Technologies

	Context Storage and Retrieval
	Examples of Context Awareness Applications
	Conclusions

	 Recommender Systems Review: Types, Techniques and Applications
	Introduction
	Recommendation Systems
	Recommendation Filtering Techniques/Algorithms
	Types of Recommendation Systems
	Functional Architecture of Recommender Systems
	Recommendation filtering techniques
	Similarity Distance

	Categories of Recommendation Systems
	Content-Based Recommendations
	Collaborative Recommendations
	Knowledge-based recommendations
	Trust-based Recommendations
	Context-Aware Recommendation Systems

	Popular Recommendation Systems
	Recommendation Frameworks-Engines
	Evaluation for Recommendation Systems
	Evaluation Metrics for Recommendation Systems

	Conclusions

	 Creativity and Creativity Support Tools
	Introduction
	Creativity Models
	Types of creativity
	Computational Creativity Research

	Creativity Techniques
	Creativity Support Tools
	Contextual Elements for Creativity
	Description of Contextual Elements

	A Generic Context Aware Recommender System
	System Architecture
	Reasoning Method

	Conclusions

	 Framing the problem - A Survey in Software Design Process and Tools
	Introduction
	Software Engineering Design Tools - Overview
	Survey Design and Analysis
	Survey Design
	Software Architecture Design Experience
	Project Management
	Further Analysis

	Discussion

	 Design Patterns Ontology Model - Design, Analysis, Implementation
	Introduction
	Modeling Software Design Model as Creativity process
	The Software Design Model

	Design Patterns Ontology Model
	Categorization of Design Patterns

	Implementation of the model - Used Semantic Web Tools
	Implementation of the Semantic Interoperability library

	Semantic web Data Mapping
	Conclusions

	 Design and development of the Design Patterns Context Aware Recommendation System
	Introduction
	Context Aware Recommendations
	Comparison with the Generic Recommendation System (Chapter 5)
	Requirements definition
	Contextual Elements Used the Software Engineering Training prototype

	Recommendation Methods
	Text-Based Recommendations for Design Patterns
	Utility Based Recommendation for Design Patterns

	Architecture of the Context Aware Recommendation System
	Collection of Data
	Filtering the Data
	Ranking and presentation of the Data

	Conclusions

	 ArchReco Software Prototype
	Introduction
	Requirements definition
	ArchReco prototype
	ArchReco usage
	ArchReco Prototype as a Design Patterns Training Tool

	Prototype Implementation
	System Architecture

	ArchReco prototype description
	Canvas
	Left Panel/Module
	Right panel/module
	Bottom Panel

	 Evaluation
	Introduction
	Evaluation Frameworks
	Evaluation Methodology

	Evaluation setup
	Pre-test questionnaire
	Post-task questionnaire
	Post-test questionnaire
	Screen Capturing Videos - Results
	Evaluation of the Context Aware Recommendation Algorithms

	Conclusions
	Results summary

	 Discussion - Future Research Challenges
	Summary of contributions
	Future work
	Research Challenges
	Algorithmic
	Applications

	Bibliography
	APPENDICES
	 Survey Questions
	Demographic Data
	Project Management
	Software Design
	Creation of new Ideas

	 Semantic Web Code-Samples
	Sample of Dynamic Model Creation using data from MySQL DB
	Sample of Dynamic Model Creation using data from XML file
	SPARQL examples

	 Ontology Models - Visualizations
	Creativity Ontology Visualised Model using Protege
	Creativity merged with SE entities Ontology Visualised Model using Protege
	Class Hierarchy of the merged ontology model
	Completed ontology model with data properties and relations included

	 ArchReco Evaluation Questionnaire
	Demographic Data
	Pre-test questionnaire
	Post-task questionnaire
	Post-test questionnaire

