
ADAPTIVE AND DYNAMIC ARGUMENTATION

Evgenios Hadjisoteriou

University of Cyprus, 2016

People use argumentation to make decisions in daily life, such as which product to buy, which

film to watch, or which hotel to stay in. In this thesis we study adaptive and dynamic argumenta-

tion for decision making where decisions need to adapt to personal preferences and dynamically

changing problem environment. We study how logic-based reasoning about actions and change

(RAC) with its problems of temporal projection and qualification can be formalized in terms of

argumentation. In particular, the earlier work of translating the language E for RAC into a logic-

based argumentation framework (AF) is extended by introducing new types of arguments for (i)

backward persistence and (ii) persistence from observations. Our framework is always consistent

and it maintains a representation of the world for any time point and time period. This frame-

work enables adaptation over time and allows dynamic changes in the problem environment to be

handled over time.

We illustrate this by formalizing the details of the decision problem of choosing a hotel to stay

at according to users’ preferences and purposes of going on a trip. A first implementation of the

decision problem ‘Hotel for ME’ using the Gorgias argumentation system is developed. This is

used to study the approaches’ adaptability and flexibility of recommendations under a dynamic

environment.

A new way to formalizing and computing argumentation through matrices is also studied.

Abstract AF is interpreted in terms of matrix multiplication and we present matrix operation al-

gorithms that can answer whether a given set of arguments is part of an argumentation extension

Evg
en

ios
 H

ad
jiso

ter
iou

Evgenios Hadjisoteriou––University of Cyprus, 2016

under the various semantics of AF. This has been implemented in a program called ASSA that

finds stable extensions and ASSAG that finds the grounded extension of any AF and allows the

user to add or remove arguments or attacks while the application is running. The properties of

dynamic argumentation are examined through empirical experiments using these systems.

Evg
en

ios
 H

ad
jiso

ter
iou

ADAPTIVE AND DYNAMIC ARGUMENTATION

Evgenios Hadjisoteriou

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the

University of Cyprus

Recommended for Acceptance

by the Department of Computer Science

May, 2016Evg
en

ios
 H

ad
jiso

ter
iou

c© Copyright by

Evgenios Hadjisoteriou

All Rights Reserved

2016

Evg
en

ios
 H

ad
jiso

ter
iou

APPROVAL PAGE

Doctor of Philosophy Dissertation

ADAPTIVE AND DYNAMIC ARGUMENTATION

Presented by

Evgenios Hadjisoteriou

Research Supervisor
Antonis C. Kakas

Committee Member
Constantinos Pattichis

Committee Member
Nikos Karacapilidis

Committee Member
Pavlos Moraitis

Committee Member
Yannis Dimopoulos

University of Cyprus

May, 2016

ii

Evg
en

ios
 H

ad
jiso

ter
iou

“If a man empties his purse into his head no man can take it from him. An investment in knowledge

pays the best interest.”

Benjamin Franklin

iii

Evg
en

ios
 H

ad
jiso

ter
iou

ACKNOWLEDGEMENTS

I would like to thank the following people who have helped me complete this thesis:

• My Supervisor: Antonis C. Kakas

For encouraging me through the entire process and calling attention to all of the interesting

tangents. Just like a pro athlete must have a training regiment, Dr. Kakas’ ideas and self-

assignments were an inspiration.

• My Family: Clelia, Styliana, Artemis, and Giorgos

For providing loving support. Their patience and understanding was my motivation.

• My Parents: Giorgos, Meropi

For being there for me and helping me find the strength to continue whenever I had reserva-

tions.

• My Closest Friends and Fellow Students

For being there for me with helpful comments and suggestions, especially Michael A. Geor-

giou who helped me with the implementation of ASSA and ASSAG.

iii

Evg
en

ios
 H

ad
jiso

ter
iou

CREDITS

Publications that lead to this thesis:[38] [40] [35] [39] [36] [37].

iv

Evg
en

ios
 H

ad
jiso

ter
iou

TABLE OF CONTENTS

Chapter 1: Introduction 4

Chapter 2: A Review of Argumentation 9

2.1 Introduction . 9

2.2 Abstract Argumentation . 11

2.2.1 Semantics . 14

2.3 Preference-based Argumentation . 18

2.4 Dynamic Argumentation . 24

Chapter 3: Time-based Argumentation Frameworks for Decision Making 26

3.1 Introduction . 26

3.1.1 Related Work . 29

3.2 Parameterized Argumentation - Theoretical Framework 32

3.3 An Example Application: ‘Hotel for ME’ . 37

3.3.1 Representing the Problem in our AF . 39

3.3.2 Formalization of the Application ‘Hotel for ME’ 43

3.4 Implementation: ‘Hotel for ME’ . 46

3.4.1 Evaluation . 53

3.5 Summary . 64

Chapter 4: Adaptation Over Time 66

4.1 Introduction . 66

4.2 A Brief Review of Language E . 71

4.3 Argumentation Formulation . 76

v

Evg
en

ios
 H

ad
jiso

ter
iou

4.4 Formal Results . 87

4.5 Qualification Extensions . 91

4.6 Related Work and Summary . 99

Chapter 5: Computing Dynamic Argumentation 104

5.1 Introduction . 105

5.1.1 Related Work . 106

5.2 Matrix Approach to Argumentation . 108

5.2.1 Theory and Algorithms . 115

5.2.2 Implementation Systems . 122

5.3 Dynamic Argumentation . 128

5.3.1 Summary . 132

Chapter 6: Conclusion and Future Work 134

Bibliography 139

APPENDICES 144

Appendix A: Proofs 145

A.1 Chapter 4 Proof . 145

A.2 Chapter 5 Proof . 152

Appendix B: Parametric Space for Hotels 153

Appendix C: Original Event Calculus 154

C.0.1 Deriving the End Points . 156

C.1 Frame and Qualification Problem . 157

vi

Evg
en

ios
 H

ad
jiso

ter
iou

Appendix D: Codes 158

D.1 Code: ‘Hotel for ME’ . 158

D.2 Code: Main sections of ‘ASSA’ . 163

D.3 Code: Main sections of ‘ASSAG’ . 165

Appendix E: ‘Hotel for ME’ Queries 169

E.1 Single User Dynamic World: Question 1 . 169

E.2 Single User Dynamic World: Question 2 . 170

E.3 Single User Dynamic World: Question 3 . 170

E.4 Single User Dynamic World: Question 4 . 171

E.5 Single User Dynamic World: Question 5 . 172

E.6 Single User Dynamic World: Question 6 . 173

Appendix F: Table of Basic Notations 175

vii

Evg
en

ios
 H

ad
jiso

ter
iou

LIST OF TABLES

1 Table of Abbreviations . 3

2 Complexity of Problems Relating to AFs . 18

3 Number of Solutions at Different Time Points 1 62

4 Number of Solutions at Different Time Points 2 63

5 Table of Basic Notations . 176

viii

Evg
en

ios
 H

ad
jiso

ter
iou

LIST OF FIGURES

1 Attack . 12

2 Argument a is Acceptable wrt S . 13

3 Self Attacking . 14

4 Undecidable is Necessary . 16

5 Extensions Overview . 17

6 Fixed User Dynamic World . 54

7 Fixed User Fixed World . 56

8 Fixed User Fixed World More Information 1 . 57

9 Fixed User Fixed World More Information 2 . 58

10 Discrete Hotels at Time 0 . 64

11 Parking Domain . 70

12 Example Domains . 74

13 Example Domains and Arguments . 85

14 Examples . 87

15 Domain QD1 . 93

16 Qualification Explanations for Domain QD2 . 95

17 Qualification Explanation H for Domain QD2 96

18 Qualification Explanation H
′

for Domain QD2 97

19 A Simple AF . 110

20 Adjacency Matrix of Figure 19 . 110

21 Figures 19 and 20 Show Respectively the Directed Graph and Matrix Representa-

tion of Example 16 . 110

ix

Evg
en

ios
 H

ad
jiso

ter
iou

22 A More Complicated AF . 111

23 Adjacency Matrix of Figure 22 . 111

24 Figure 22 Shows Example 17’s Directed Graph and 23 Captures its Adjacency

Matrix . 111

25 Example for Grounded Extension . 122

26 Average Runtime Correct Answers Based on ICCMA’15 Competition 125

27 Example for Grounded Extension After the First Pass 127

28 ASSAG is of Polynomial Complexity . 127

29 Experiment for Grounded Extension . 128

30 Hotels . 153

31 After Update (3) . 155

32 Conclusion . 155

33 Identical . 156

34 Exclusive . 156

35 Incompatible . 156

36 Yale Shooting Problem . 157

37 Single User Dynamic World: Question 1 . 170

38 Single User Dynamic World: Question 2 . 171

39 Single User Dynamic World: Question 3 . 171

40 Single User Dynamic World: Question 4 . 172

41 Single User Dynamic World: Question 5 . 173

42 Single User Dynamic World: Question 6 . 174

x

Evg
en

ios
 H

ad
jiso

ter
iou

1

I dedicate my thesis work to my wife Clelia who was always there for me. My children

Styliana, Artemis, and Giorgo who helped me keep all in good measure.

Evg
en

ios
 H

ad
jiso

ter
iou

2

Notation Meaning

AF Argumentation Framework

AI Artificial Intelligence

cont. continues

DeLP Defeasible Logic Programming

et al. et alii

EC Event Calculus

e.g. exempli gratia meaning ‘for example’

etc. et cetera

i.e. id est meaning ‘that is’

iff if and only if

LPwNF Logic Programming without Negation as Failure

NA Negative Assumption

NBP Negative Backwards Persistence

NFP Negative Forward Persistence

NGB Negative Backwards Generation

NGF Negative Forward Generation

NO Negative Observation

PA Positive Assumption

PBP Positive Backwards Persistence

PFP Positive Forward Persistence

PGB Positive Backwards Generation

PGF Positive Forward GenerationEvg
en

ios
 H

ad
jiso

ter
iou

3

PO Positive Observation

resp. respectively

RAC Reasoning about Actions and Change

s.t. such that

wrt with respect to

Table 1: Table of Abbreviations

Evg
en

ios
 H

ad
jiso

ter
iou

Chapter 1

Introduction

“Skill in photography is acquired by practice and not by purchase.”

Percy W. Harris

Argumentation is all around us and a child’s most frequent question is ‘Why?’. Generally,

humans are trying to answer questions as an attempt to find reasons behind behavior. Starting

from ancient Greece, India, and China, argumentation reasoning invaded peoples’s lives [68].

Aristotle, with his methodology and proof through mathematics, initiated this field. Philosophers

and rhetoricians observed some errors-fallacies in reasoning when trying to use arguments, helping

for the birth of this field. Under any given scenario, humans must make decisions that depend on

the current state of the world, the current needs, and the final goal. Argumentation can be used to

explain the choices that people make, or to evaluate potential choices.

Researches in the field changed their goals continuously indicating that this area started to

evolve rapidly. One of the goals was to form premises to reach reasonable-correct conclusions.

Leibniz, Boole, Turing and others tried to add computation as a new category in reasoning. Their

vision was that artificial intelligence (AI) can be formalized with a machine and much effort was

4

Evg
en

ios
 H

ad
jiso

ter
iou

5

distributed to finding a way to simulate rational behavior. To understand someone’s behavior, one

must put themselves in the other person’s place. Initially, this is how scientists tried to approach

this matter; they also looked for a way to formalize rational behavior through mathematics [68].

At that time, deductive logic did not help to solve these kinds of problems. New approaches

were needed. Hamblin (1970) thought of argumentation more as a reasoning process since it in-

volves interaction. Hamblin’s idea was as follows:

Two parties discuss an issue. The first party is trying to convince the other party that their con-

clusion (which conflicts with the other party’s conclusion) is correct. The way to do this is by

using premises that may be acceptable by the other party but that end in conflict to the final state-

ment of the other party. Many groups adapted this way of thinking and argumentation became a

mechanism for interacting with others.

Recent developments combine argumentation techniques with AI. These fields (non-monotonic

reasoning and multi agent systems) are currently expanding rapidly. Argumentation interacts

through a notion called attacking relation between arguments. By understanding argumentation,

individuals can learn more about themselves and can defend and express their thoughts and opin-

ions in a conversation.

Decision making systems through argumentation have been studied in depth in recent years [29,

3, 30]. Given a set of alternative choices, arguments are constructed for and against [24]. By priori-

tizing these arguments through a technique (e.g. arithmetic evaluation), decision-making problems

can be solved. As an evolving area, new systems obey rules in a better way than ever before and

are heading into simulating human decision-making behavior. Argumentation-based agents [44]

develop an architecture where hierarchies and preferences are given through argumentation. Mod-

ules exist that separated priorities into different high level schemas that can dynamically change

under the agents operating environment. World view shows the outside world that helps the agent
Evg

en
ios

 H
ad

jiso
ter

iou

6

adapt and decide what the next action will be. These decisions are based on the agent’s motivations

and needs.

Overall Goal of This Thesis: Adaptive systems can help people with their everyday tasks.

Living in a constantly changing world, with incomplete information, people need to solve every-

day problems. These problems, no matter how small or insignificant they are, can often be bother-

some. Old systems that operate in a predefined way, despite the user or the operating conditions,

are outdated. Agent software needs to be (1) autonomous, (2) able to operate in uncertain and

dynamic environments, (3) adaptive and able to change dynamically when new changes appear

in the world, and (4) consider the users’ preferences and needs before deciding or recommending

something useful to the user.

The aim of this thesis is to use argumentation to study adaptive and dynamic decision making.

In this thesis by dynamic decision making and dynamic argumentation we mean how argumenta-

tion changes as the dynamics of the world changes. In a problem environment with changes hap-

pening over time, by dynamic argumentation we mean how the argumentation reasoning adapts

to these changes or the environment. The thesis attempts to answer the question of whether real

life problems can be mapped onto this abstract framework to create adaptive, personalized, and

dynamic systems, and how arguments are parameterized and become valid or not in time in our

working environment. Argumentation is used to keep track of the continually changing world, and

to decide what option to follow given the current state of the world and the operating user. The

world’s view is required for decision making as a reference and a point to use for the argumentation

process.

Evg
en

ios
 H

ad
jiso

ter
iou

7

Argumentation

Decision Making
Current

World View

We aim to construct an adaptive, personalized, decision-making computational mechanism [44]

that can operate in any environment. It should be able to adapt dynamically and present solutions

to the user based on the current state of the world as well as the user’s needs. Argumentation is

the main functioning tool that is used in this study to construct recommendations, as it is closer to

human behavior and can justify the conclusion.

We study how a dynamically changing world can be modeled using argumentation that can

adapt to changes in the environment and to new information provided. We have re-examined

the argumentation reformulation of language E and introduced backwards persistence as well as

forward persistence arguments to deal uniformly with the frame and qualification problems. This

has enabled us to extend in a meaningful way domains that the language E could not interpret when

observations are included in the narrative. This argumentation interpretation corresponds to the

unknown occurrences of events that could resolve potential inconsistencies between properties

at different time points. Our extended argumentation framework comes closer to the original

Event Calculus and shows how this could be extended to include observations. Using this we also

provide a general parameterized argumentation based formulation of an adaptive and dynamic

decision problem. To apply this theory, an application was created for hotel booking called ‘Hotel

for ME’.
Evg

en
ios

 H
ad

jiso
ter

iou

8

Finally, although this was not the main intent, a matrix approach to computing argumentation

is studied. The thesis describes how argumentation is computed with the help of graph theory and

matrix multiplication, using theorems from these fields to optimize the results. We will develop

algorithms and systems that compute the stable and grounded extension(s) of a given AF.

The overall focus of this work is divided into three parts: (1) Using abstract argumentation

as a basis (Chapter 2), the problem is described in general and real-life problems for decision

making are mapped from an argumentation point of view (Chapter 3). (2) By extending already

existing work (see Chapter 4) adaptation over time is captured. (3) Finally, the theoretical part is

applied by implementing a method for computing argumentation through matrices (Chapter 5) and

trying to capture dynamic changes with different parameters under different time points. Chapter 6

concludes the thesis.

Evg
en

ios
 H

ad
jiso

ter
iou

Chapter 2

A Review of Argumentation

“Notebook. No photographer should be without one.”

Ansel Adams

2.1 Introduction

In AI, reasoning is done through a process of proof. For a proof to be acceptable, all premises

should be valid in order to accept the conclusion. In courts, lawyers use facts to prove whether

a person is guilty or not. In mathematics, proofs stand on theories that are proven to be correct;

these theories stand on grounded premises that are assumed correct and acceptable to everyone.

To justify the statements, arguments are used to directly imply and support the final statement or

trigger another statement that will imply and support the final statement. This way of thinking

is captured for example through the modus ponens rule A←B B
A . Unfortunately, in real-life sce-

narios where knowledge is uncertain, contradictory conclusions may be derived. Arguments may

contradict the final statement or the premises that lead to the goal. Which premises are valid will

always depend on the working environment and on the person who must make this decision.

9

Evg
en

ios
 H

ad
jiso

ter
iou

10

For example, one would argue that no parent will deny water to his or her child. But what if the

water is dirty and the child will become infected with an illness after drinking it? No person should

yell at, or in an extreme case kill another person, but what if you are in a state of war? Another

example is that in the context of reasoning about triangles by two mathematicians, argument a

may be ‘the sum of the three angles in a triangle is less than 180o’, while argument b is ‘the sum

of the three angles in any triangle is equal to 180o’. These two statements are both correct; the

first argument is correct in hyperbolic geometry, while the second argument is correct in Euclidian

geometry. To make a decision, it is necessary to know as much information as possible and the

decision will depend on the working environment and the personal needs and preferences relevant

to this decision.

Argumentation is a process of reasoning, where given the current state of the world and, the

available options, conclusions can be made. Conclusions are the result of ‘winning’ arguments

that are time dependent, and a specific value is given depending on the persons involved with these

arguments. For these situations, argumentation can help with the identification of information that

may be missing in real-life problems, and thus help with the decision making task. If we associate

argumentation with dialog then it can help us manage conflicts of opinion, conflicts of interest,

and personal dilemmas.

Humans base decisions on criteria such as utility, cost, and references. There are two methods

for making decisions: (a) optimization algorithms that evaluate criteria, and choose among alter-

native choices, and (b) argumentation based approaches that mimic human behavior of persuasion.

The former procedure is formal and mainly suited to large problems such as how to optimize lo-

gistics, how to deliver items within a country, and how to deliver a company’s merchandise by

optimizing different variables. The latter is not as optimized as it is qualitative and mainly suitable

for decisions that are dynamic, such as environments that are continuously changing. Case (b) is
Evg

en
ios

 H
ad

jiso
ter

iou

11

mostly preferred for decisions and recommendations in environments that continuously change,

as they can easily adapt. Case (a) is much harder, as adapting to changes means continuously

changing the optimization algorithms.

Using argumentation theory to draw conclusions, one can: 1) Use a knowledge base to form

arguments and determine how these arguments are in conflict and attack each other. The result

is then an argumentation framework, that can be represented as a directed graph. 2) Based on

this AF and some predefined rules, determine which arguments are accepted (these are called

argumentation extensions). 3) Draw conclusions based on the set of accepted arguments.

Abstracting the structure that arguments have and their attacking relationship is introduced in

Section 2.2, where certain notions that are introduced by Dung [24] are discussed.

2.2 Abstract Argumentation

“Laugh on laugh on my freind

Hee laugheth best that laugheth to the end.”

Anonymous Jacobean student play, in ‘The Christmas Prince’

Ceratin basic background notions that were introduced by Dung [24] are reviewed, such as

acceptable, conflict-free, and complete extension. Every AF can be represented by a directed

graph where nodes represent arguments and arrows represent attacks on arguments. Dungs AF is

general, as no assumption is made about the way that arguments are built or the properties that the

attacking relation has. Due to its generality, many researchers have adopted this way of thinking

and use this representation as a base.

An abstract AF is defined as a pair 〈A,R〉, where A is a set of arguments and R ⊆ A × A

is a binary relation on A, called the attack relation. The set A may contain a finite or infinite
Evg

en
ios

 H
ad

jiso
ter

iou

12

a• //// •b

Figure 1: Attack

amount of arguments. Since our study is only interested in real-life problems, it is restricted to AF

with finite arguments. Having a set of arguments where some arguments attack others, which of

them can be accepted by a rational agent? To do this, the attackers should be examined, as well as

the attackers’ attackers. For this reason, an ‘attacking relation’ is applied to the AF to evaluate the

‘winning’ arguments under different attacking relations.

Let a, b be two arguments and S be a set of arguments. attacks(a, b) (often written as (a, b) ∈

R) means that the argument a attacks the argument b, or that b is attacked by a (see Figure 1)

and attacks(S, b) (we will often write (S, b) ∈ R), which means that the argument a ∈ S s.t.

attacks(a, b) holds. In addition, a defeats b can be written instead of a attacks b. Arguments and

attacking relations in an abstract AF do not have a specific structure. An AF can be represented

as a directed graph where nodes represent the arguments and the edges represent the attacks. A

simple example of an AF is shown in Figure 1.

The set S is said to be conflict-free if arguments a, b ∈ S s.t. (a, b) ∈ R do not exist (i.e. no

self-attacking).

Definition 1 (Taken from Dung [24]) • An argument a ∈ A is acceptable wrt a set of argu-

ments S iff for each argument b ∈ A: if (b, a) ∈ R then (S, b) ∈ R.

• A conflict-free set of arguments S is admissible iff each argument in S is acceptable wrt S,

that is, S is conflict-free and defends itself.Evg
en

ios
 H

ad
jiso

ter
iou

13

S •

•
•

••

•

•

•

•

•
•

•

••

•

•

•c4
��
���

���:

•c3
���

���
��:

•c1�
��
��
��

���1

•c2XXXXXXXXXz

◦b1��
���

��:

◦b2
�
�
�
�
�
�
�
���

◦b3
HHHHj

◦b4 �
�
��
�*
•a

Figure 2: Argument a is Acceptable wrt S

Informally speaking, an argument a is acceptable wrt set S if S can counterattack all attacks

on a (see Figure 2). Additionally, set S is admissible if it is acceptable and no self-attacking

occurs. From the above definition it follows that ∅ is admissible for any AF.

Example 1 Let AF = 〈A,R〉, where {a, b, c} ∈ A are three arguments s.t.

{(a, b), (b, c)} ⊆ R.

In Example 1, argument a is acceptable wrt S = {a, c} and {(a, c), (c, a)} /∈ R. Intuitively,

when accepting a wrt S , S should be not be self-attacking and must be acceptable.

Lemma 1 (Fundamental lemma) Let S be an admissible set of arguments, and a, a′ be two ac-

ceptable arguments wrt S. Then:

(1) S ′
= S ∪ {a} is admissible, and

(2) a
′

is acceptable wrt S ′

If argument a is acceptable wrt S, then S can counter attack all of the attacks on a. Therefore,

the arguments bi ∈ S, ∀i ∈ {1, 2, . . . , n} exist, which counter attack any attack on a. Any other

superset S ′
, s.t. S ⊂ S ′

still contains the bi arguments ∀i ∈ {1, 2, . . . , n}. Thus, a is still
Evg

en
ios

 H
ad

jiso
ter

iou

14

a
%%

Figure 3: Self Attacking

acceptable wrt S ′
. Set S helps an argument to be acceptable wrt it, but it also has to fulfill the

conflict free conditions (i.e., it cannot be self-attacking).

2.2.1 Semantics

Semantics in AF can be found in terms of extensions [24] or by labellings [17]. Extensions

are discussed first.

Dung [24] studied the mathematics of three types arguments sets: preferred extensions, stable

extensions, and grounded extensions. A set of arguments is called a preferred extension if it

is a maximal admissible set of arguments that attacks all arguments that are attacking the set.

Furthermore, a set of arguments S that attacks all arguments that do not belong to S is called a

stable extension. It follows that every stable extension is a preferred extension but every preferred

extension is not a stable extension. For example, the AF shown in Figure 3 has the empty set as a

preferred extension but the empty set is not stable.

The function FAF : 2A → 2A of an AF 〈A,R〉 is called the characteristic function. The

domain of FAF is a set of arguments S ⊆ A and the range is the set of all acceptable arguments

wrt S. The least fixed point of the characteristic function is called a grounded extension. There

is only one grounded extension. To construct a grounded extension, one must start from the empty

set and arguments that are only attacked by arguments that were already defended against are

added.Evg
en

ios
 H

ad
jiso

ter
iou

15

Definition 2 • A conflict-free set of arguments S is called a stable extension iff every argu-

ment not in S is attacked by an argument in S .

• An admissible set S of arguments is a complete extension iff S contains all of the arguments

that it defends.

Definition 3 Let AF = 〈A,R〉 be an AF. The grounded extension is the minimal fix point of

the characteristic function FAF .

By definition of the grounded extension, the grounded extension is the smallest complete

extension. Additionally, it holds that the grounded extension is equal to the intersection of all

complete extensions. Preferred extensions are admissible extensions. Given an AF, all admissible

extensions are found and the extension with the maximal arguments (wrt set-inclusion) is the

preferred extension. A preferred extension is a maximal complete extension.

Another way to find the semantics of an AF is with the labelling approach [17, 84]. Both

the labelling approach and the extension-based approach achieve the same goal, which is to find

the semantics of an AF. The thesis introduces both approaches, as the researches believe that in

different instances, each approach may have an advantage of clearly illustrating a point. Both

approaches are related, as shown in [53, 5] where a mapping relation is described. Given an AF

and its labell, the extension set is equivalent to the sets of arguments that are labelled in and vice

versa.

For the labelling approach, each argument receives a labell, which is either in, out, or undec,

for arguments that are acceptable, not acceptable, and undecidable, respectively, based on the

following definition:

Definition 4 Let 〈A,R〉 be an AF and L be a function s.t.

L : A 7→ {in, out, undec}. We say that L is a complete labelling iff it satisfies:
Evg

en
ios

 H
ad

jiso
ter

iou

16

b

a

33

c

``

Figure 4: Undecidable is Necessary

• ∀a ∈ A, L(a) = out iff ∃ b ∈ A s.t. ((b, a) ∈ R and L(b) = in)

• ∀a ∈ A, L(a) = in iff ∀ b ∈ A s.t. ((b, a) ∈ R then L(b) = out)

• ∀a ∈ A, L(a) = undec iff ∃ b ∈ A s.t. ((b, a) ∈ R and L(b) 6= out) and @ c ∈ A s.t.

((c, a) ∈ R and L(c) = in)

Informally, labelling an argument in means the argument is accepted, labelling an argument

out means that the argument has not been accepted (i.e., rejected) and labelling the argument

undec means that the argument cannot be accepted or rejected. Each argument then receives

exactly one labell. Thus:

• an argument is labelled in iff all its attackers are labelled out

• an argument is labelled out iff it has at least one attacker that is labelled in

• an argument is labelled undec iff none of the attackers is labelled in and not all of the

attackers are labelled out

Example 2 This example shows that the labell undec is needed. Let 〈A,R〉 be an AF, where

A = {a, b, c} and R = {(a, b), (b, c), (c, a)} as illustrated in Figure 4. Here, only one labelling

function exists, L, with L(a) = undec, L(b) = undec and L(c) = undec.
Evg

en
ios

 H
ad

jiso
ter

iou

17

stable
extension

is a

##
semi-stable
extension

is a

##

ideal
extension

is a

��

preferred
extension

is a

##

grounded
extension

is a
{{

complete
extension

is a

��
admissible
extension

is a

��
conflict-free

extension

Figure 5: Extensions Overview

The grounded labellings that are considered a sceptical approach are examined. For every

AF, there is always exactly one grounded extension. To find the grounded extension, all of

the complete labellings must be selected. The grounded extension is the set with the minimal

(wrt set-inclusion) arguments labelled in. The grounded extension is also conflict-free, which

means that the grounded extension is actually the smallest complete extension. As an attempt

to minimize arguments labelled in, arguments labelled out are also minimized and therefore,

arguments labelled undec are maximized. Thus, grounded semantics selects from the complete

extensions the one extension with minimal in and out and maximal undec.

Many semantics have been established, such as grounded (yield exactly one unique extension),

complete, preferred, stable, semi-stable [16], and ideal [25], and all of them come with certain

properties [24, 5, 25]. An overall view of all of the extensions is shown in Figure 5. Table 2, taken

from [8] shows the complexity of certain problems relating to AF.
Evg

en
ios

 H
ad

jiso
ter

iou

18

Description Complexity

Is S admissible? P

Is S preferred? CO-NP -complete

Is S stable? P

Does 〈A,R〉 have a stable ext? NP -complete

Is argument a accepted credulously? NP -complete

Is argument a accepted sceptically? Πp
2-complete

Table 2: Complexity of Problems Relating to AFs

2.3 Preference-based Argumentation

In preference-based argumentation abstract AFs are realized with rules and priorities and pref-

erences on rules. Here is an example to illustrate this statement:

Example 3 (Hotel booking) Let John be a doctor who wants to book a hotel for a medical con-

ference talk. John wants to book a hotel that is near the conference and has good sports facilities.

Available options for this trip include all of the hotels near the conference area with good sport

facilities. Arguments for and against each exist that can filter out available options. If a hotel is

closer to our user’s profile, it will be preferred to other hotels that are farther away. Suppose that

John likes hotel A better than hotel B or hotel C, and hotel B better than hotel C. Under this

structure, John should choose hotel A.

In this simple example, argumentation can be used to express the relation between the three

hotels. If a preferred rule such as the relation ‘better than’ is introduced then:

Hotel A is ‘better than’ hotel B,

Hotel B is ‘better than’ hotel C, and
Evg

en
ios

 H
ad

jiso
ter

iou

19

Hotel A is ‘better than’ hotel C.

Since hotel A is ‘better than’ the other hotels, hotel A should be chosen.

There are other ways to express this preference. Suppose that values are assigned to each

hotel, A(100), B(75) and C(50). Through this arithmetic method, hotel A is still chosen since it

has a higher score. More complex systems can assign negative values to options as well.

Under any dilemma, humans create arguments that will help them reach a final conclusion;

these arguments may conflict. For instance, in the context of reasoning about hotel booking,

argument a may be associated with the statement: ‘Hotel A costs $150 per night because it says

that on their website’, while argument b with the statement ‘Hotel A costs $50 per night if you

enter the discount code Black-Friday-Rocks’. Here argument b attacks argument a based on the

price and therefore argument b is preferred.

A well-known form of argumentation is Logic Programming without Negation as Failure

(LPwNF) where, as its name implies, it does not use negation as failure but only explicit nega-

tion [46, 22, 43]. For this reason, in order to prove a literal a, a proof for amust exist. Additionally,

if a counter attack on a exists, then it must be counterattacked. Argumentation theory in LPwNF

consists of a set of rules L← l1, l2, . . . , ln (in the background monotonic logic (L,`)), where L is

the head of the rule and l1, l2, . . . , ln is the body of the rule that may be positive or negative literals.

` is obtained by the repeated application of the modus ponens rule s.t. L←l1,l2,...,ln l1,l2,...,ln
L .

LetG,W be two non empty sets of argument rules and T0 be the background theory. G attacks

W iff there exists a literal l and sets G1 ⊆ G and W1 ⊆W s.t:

(i) T0 ∪G1 `min
1l and T0 ∪W1 `min ¬l

(ii) if there exist r
′ ∈ G1, r ∈W1 s.t r

′
< r then there exist r

′ ∈ G1, r ∈W1 s.t r < r
′
.

1T0 ∪X `min a iff T0 ∪X ` a and there does not exist X
′
⊂ X s.t. T0 ∪X

′
` aEvg

en
ios

 H
ad

jiso
ter

iou

20

Let G be a set of arguments derived only by `, i.e. modus ponens rule. G is admissible iff:

(i) T0 ∪ S does not derive a literal l and its complement ¬l and

(ii) for any G
′ ⊆ A if G

′
attacks G then G attack G

′
.

This attacking relation is defined s.t. a set of arguments would attack another if it derives a

contrary conclusion and its argument rules in doing so are not weaker than the opposing argument

rules. One of the main benefits of LPwNF is that it supports credulous or sceptical reasoning

and has an argumentation-theoretic characterization.

Gorgias is a system that implements LPwNF combining also and abduction. It is a logic

programming language that uses argumentation without negation as failure. Default reasoning is

modeled by rules and a priority relation among rules. It can reason based on any given information

that in many cases may be incomplete, based on preferences and policies defined by the developer.

The output for a given query is followed by a set of rules called Delta that works as traced back

user rules. Thus, we can justify any final decision by showing the path that was followed to reach

the final conclusion. Additionally, Gorgias system is an admissible system where it produces

only admissible answers. If such an admissible answer does not exist, then it does not return an

answer (i.e., acts in a sceptical way).

Defeasible logic programming (DeLP) [15] is a non-monotonic knowledge representation

language that is based on facts, and strict and defeasible rules. The language has two different

negations: 1) classical negation, which is used for representing contradictory knowledge and 2)

negation as failure, which is used for representing incomplete information.

Decisions can be made in an environment with incomplete or missing information. DeLP

is applicable in a real-world environment; thus, it can operate under contradictory rules. A pri-

ority binary relation shows the stronger rule and this is where conclusions are drawn. As new

information arrives, new rules are created, and priorities may change as rule strength is altered.
Evg

en
ios

 H
ad

jiso
ter

iou

21

Informally, a defeasible logic theory is a collection of rules that allows us to reason about a set

of facts or known truths, and reach a set of defeasible conclusions. Because multiple conflicting

rules may be applicable to any given situation, a defeasible logic theory also includes a relation

for resolving these conflicts.

There are three kinds of rules: 1) strict rules, where if the body becomes true then the head

also becomes true, 2) defeasible rules, which represent conclusions that hold in most cases, and

3) defeaters, which are strict rules having as a head its negation. These rules have the follow-

ing priority among them: strict rules are stronger than defeasible rules, which are stronger than

defeaters.

A computational framework that provides recommendations based on argumentation tech-

niques through the use of qualitative analysis is presented in [20]. The argumentation based tool

that they have used is DeLP [32], adding to their framework the advantage of handling dynamic

domains with incomplete information and still retrieving sound conclusions. Users’ preferences

are constructed/modeled by the use of facts, strict rules, and defeasible rules. Based on existing

knowledge and through a priority relation, they managed to hierarchically place preferences of

the user with an AF. Thus, the recommendations to the users are found through an argumentation-

based technique.

In [20], the authors found that 1) “existing recommender systems are incapable of dealing

formally with the defeasible nature of users’ preferences in complex environments” and 2) “The

quantitative approaches (measures of similarity between objects or users) adopted by most exist-

ing recommender systems do not have a clean underlying model. This makes it hard to provide

users with a clear explanation of the factors and procedures that led the system to come up with

certain recommendations. As a result, serious trustworthiness issues may arise”. Furthermore,Evg
en

ios
 H

ad
jiso

ter
iou

22

they continue by stating that a fundamental problem found in recommender systems techniques is

determining which items are relevant to the users’ needs.

Belief revision is a process of changing beliefs as new information arrives. It is related to

AI for the design of rational agents. When an agent operates in a changing environment with

uncertainty, new information can arrive through observations or interaction with other agents.

After the new information becomes available, agents have to revise their beliefs. Argumentation

deals with strategies that agents employ for their own reasoning, as well as strategies for how to

change the belief of other agents. Thus, argumentation and belief revision are perceived as two

sides of the same coin.

Frameworks in belief revision consist of a language L. Logical formulas ai ∈ L are used to

represent knowledge. A complete set of connectives on formulas can be used to construct more

complex formulas. The theory in [2] is abstract. The ways that belief revision can be applied

in argumentation, as described in [[68], Chapter 17] are as follows: (1) changing by adding or

deleting an argument(s) (or a set of arguments), (2) changing the attack or defeat relation among

arguments, (3) changing the status beliefs as conclusions of arguments, and (4) changing the type

of argument from strict to defeasible or vice versa. After observing what the result would be

when some changes occur, the system can be better understood, including how it operates, and

can ultimately be used for a beneficial purpose.

Another relevant work is the work of Bench-Capon [9]. They extend the AF that was in-

troduced by Dung by allowing values to be associated with each argument. In this way, some

arguments can be ‘stronger’ than other arguments wrt a certain value that the argument is as-

signed, and so the success of an attack between conflicting arguments will depend on these values.

Their value based AF assigns a value to each argument through a function. This function takes

the audience into consideration, and as a result prioritizes arguments based on an attack relation
Evg

en
ios

 H
ad

jiso
ter

iou

23

and on a notion of relative strength, that is assigned by the value function. Therefore, it may not

be sufficient to say that an argument attacks another argument if the value that is assigned to the

attacker is less than the value that is assigned to the argument under attack. A value-based AF

often written as VAF = 〈A,R,V, val, pref〉, where A is a set of arguments and R ⊆ A×A is a

binary relation onA, V is a non empty set of values, val is a function that associates each element

from A to an element from V , and pref ⊆ V × V . In the value-based AF, a ∈ A attacks b ∈ A

iff: 1) (a, b) ∈ R and 2) (val(b), val(a)) /∈ pref . As discussed later, parametric argumentation is

used in the thesis, which has similar properties to the value based AF.

When an agent is trying to overcome a difficult situation, its sensors receive information, from

which s/he tries to reach a judgment. Neither classical logic, deductive logic, inductive logic,

or abduction are sufficient tools to help the agent reach a conclusion, as even the most detailed

information is incomplete. In cases that are similar to this one, the agent must overcome these

limitations. S/he needs a combination of logic and tools that are able to reason despite incomplete

information and uncertainty.

Argumentation has been proven to be an effective approach to complex problems. Argumen-

tation constructs arguments and evaluates them based on priorities. This process can help an agent

make a decision in dynamic environments where missing information or uncertainty exists. Thus,

argumentation is a process of creating strategies to change other agents’ goals and protect their

own. Argumentation can be used in a negotiation, (where an agent tries trough a dialectical pro-

cess to make the best deal possible through a dialectical process), inquiry (when agents are not

familiar with a subject but they have to find proof or destroy one), deliberation (when agents are

trying to find a common ground on which to act), and information seeking (where agents seek

knowledge from other agents through dialectical process).Evg
en

ios
 H

ad
jiso

ter
iou

24

The researches believe that argumentation is still evolving and that many areas need more

exploration. There will always be room for another AF as a new way of reasoning with incomplete

information. This way can either be constructed from scratch or it can be a hybrid approach from

the already existing frameworks.

AI combines logic, computation, mathematics, argumentation, and human behavior. Modern

applications [29, 31] use AI in order to decide which action to choose. These decision problems

must update their knowledge base continually to provide legitimate information. With the rapid

growth of the internet, it became interesting to study problems from a human perspective. After

approaching each user individually by observing their needs, preferences, and habits, targeted,

adaptive, and personalized decision-making suggestions became necessary.

2.4 Dynamic Argumentation

We have seen that an abstract AF is defined as a pair 〈A,R〉, whereA is a set of arguments and

R is a binary relation onA, called the attack relation. Many semantics have been established, and

all of them come with certain properties [24, 5, 25]. With dynamic argumentation, arguments and

the attack relation for each AF are studied in depth, and properties are then found that can evaluate

semantics faster based on these properties. By knowing all arguments and their attacking relation,

we can evaluate and predict the system’s behavior. In a problem environment with changes hap-

pening over time, by dynamic argumentation we mean how the argumentation reasoning adapts to

these changes or the environment.

Dynamic argumentation has been receiving much attention as an agent work in dynamic envi-

ronments and changes happen continually. If a change happens then the world changes and some

arguments and attacks may be influenced. How the acceptability of an argument affects other ar-

guments is studied in [12]. On an abstract AF, since arguments and attacks on arguments are the
Evg

en
ios

 H
ad

jiso
ter

iou

25

only components, one of the following steps can be taken:

1) Add an argument or a set of arguments,

2) Remove an argument or a set of arguments,

3) Add an attack or a set of attacks,

4) Remove an attack or a set of attacks, and

5) Combination of the above.

Having an AF and its extensions, when a change takes place and alters the framework; it is not

necessary to evaluate from scratch the new extensions. For example, an isolated set of arguments

that is not affected by the change, all of its arguments that were a part of an extension will still be

a part of that extension after the change [6]. In additions, even when the set is affected, dynamic

argumentation uses the existing extension set to evaluate the new extensions faster.

Other questions that may arise are: 1) Can we find the acceptability of arguments without

computing all extensions [61, 11]? This question was asked in the ICCMA’15 competition. 2)

What is the minimal change that can happen so that an argument a still belongs to the extensions

[[68], Chapter 17]?

In Section 5.3 we present a matrix-based theory that takes under consideration existing eval-

uations of the AF. When the AF is updated after a change to a new AF, the old knowledge is

considered to find faster the new extensions.

Evg
en

ios
 H

ad
jiso

ter
iou

http://argumentationcompetition.org/index.html

Chapter 3

Time-based Argumentation Frameworks for Decision Making

“A person who won’t read has no advantage over one who can’t read.”

Mark Twain

3.1 Introduction

Decision theory is a theory about choosing options according to some criteria. Having a set of

options, which one should be chosen to solve a task? Is there more than one acceptable solution?

The process of choosing the best options among a set of alternatives under the current working

environment was used by philosophers and rhetoricians [73], economists (how to maximize profit

or minimize loss), psychologists (how to mimic human behavior [59]), doctors (what is the best

treatment or how to make a medical diagnosis [34]), and computer scientists (how to optimize a

solution [30]). Humans follow rules to find valid alternative paths in order to reach their goals.

By prioritizing these rules, the ‘best’ option(s) will eventually stand out and by backtracking to

critical points of the procedure, the end results can be justified or other solutions to the problem

can be found that will be optimal or sufficient.

26

Evg
en

ios
 H

ad
jiso

ter
iou

27

Many problems have more than one solution and can be solved by a decision theory process:

(1) Shall I wear my coat today? This decision depends on future knowledge I do not have the

answer to right now. (2) I am looking for a car to buy. Shall I buy this one? This offer I found

looks intriguing but if I search a little bit more I might find a better offer. When will the searching

procedure stop? (3) Nobody likes being bold. Taking one hair out of my head will not make me

bold. If I continue doing this, a point in time will come where I will have no hair. (4) The judge

has to decide if this person is guilty or not. (5) Three examiners have to decide if this person

should retake the exams. What if they have different opinions? There should be a process that

provides a solution to this problem when followed.

People experience dilemmas every day, mainly because of missing information. These deci-

sion problems take the working environment into consideration and choose the best alternative op-

tion(s) [29, 55]. When a solution already exists, decision theory problems can help us optimize this

solution [30], where some other systems can provide the reasoning behind each decision [44, 31].

Each user has a unique personal profile consisting of the user’s preferences and needs at the

time point where the decision has to be made. Therefore, under different time points, the user will

make decisions that may differ. Each decision problem is stigmatized and driven by the parameter

spaces that define what holds in the current snapshot of the world; it can qualify options based

on pragmatic considerations. Additionally, qualified options must also be filtered by the user’s

needs. In this way, by prioritizing and filtering options that best suit the user can be identified.

Newly developed methods and systems should be adaptive as choices are feasible, (i.e., under

different circumstances, different choices may qualify) and should also be personalized as the

recommended choices should be suited to the user.

Shall I wear a coat today? This question is driven by the goal that I do not want to be cold at any

point of the day, and is based on each person’s preferences, (i.e., one person may want to wear the
Evg

en
ios

 H
ad

jiso
ter

iou

28

coat when the temperature is less than 17oC and another person when it is windy). The decision

is also based on the current state of the world, whether it is spring, summer, autumn, or winter.

Newly developed decision theory systems must be able to suggest options under any working

environment and adapt dynamically to a continually changing world, recommend option(s) despite

uncertainty and missing information, and justify the end decision at any time point [44, 31].

The following example is adapted from [34, 30] and summarizes these notions and captures

the challenge of trying to solve these types of problems.

Example 4 (Medical. Adapted from [34, 30]) Doctor J has patients p1, . . . , pn. Each patient

has symptoms placing an illness higher in a hierarchy over another. Possible illnesses form the

general parametric space. Based on the patients’ medical history, this taxonomy is now restruc-

tured as it might fit the patient best. The new hierarchy is the special personal profile of the patient.

What test should the doctor perform next in order to recommend the best medicine? Tests are en-

abled by the physical world (i.e., we do not have this expensive machinery in this clinic (argument

against) or this test does not take long to perform; argument for). When new tests are performed

and new information arrives, the knowledge base is extended. New preconditions may then be

satisfied supporting medicine A or disfavoring it. Clearly, Doctor J has to make a decision in the

end and recommend an action.

Argumentation with parameters were assigned to each option. This approach takes us closer to

the value based AF [9]. Our attacking relation is assigned based on the priorities of each parameter,

where the attacking relation on the value based AF is assigned by combining and analyzing the

values that each option has.Evg
en

ios
 H

ad
jiso

ter
iou

29

3.1.1 Related Work

This subsection concentrates on existing work for decision making and the rest of this chapter

will study how we extend this work by introducing time-based argumentation.

Recommender systems [71, 69] are software systems that help users make decisions based on

(1) past behavior and (2) relevant history of other similar users by suggesting available alterna-

tives [70]. Information over the internet expands rapidly and users find it hard to make decisions

over the plethora of information available. A filtering of information technique can help users

overcome the information overload problem.

A recommendation is considered good when the user decides to follow it. Many techniques

exist that perform different types of filtering. Filtering is based on probabilities, machine learning

combined with probability algorithms, and filtering based on keywords [72]. Other techniques

analyze user’s likes and dislikes [66] while others place users in similar groups [77]. Mainly,

filtering techniques are separated into the following groups: (a) collaborative filtering that in-

fers the preferences of an individual user based on the behavior and preferences of similar users,

(b) content-based filtering that infers that users’ preferences persist through time and recom-

mendations are built on similar items that the user liked in the past, and (c) hybrid filtering is a

combination of technique (a) and (b) [4].

Recommender systems are techniques where a specific user and a set of options will provide

suggestions. These suggestions are qualified after a decision-making process, such as deciding

what goods to buy, film to watch, or music to listen. Two types of recommendation exist: (1)

Those that are non-personal and disregard whether the user is a man, woman, child or adult; the

system will suggest the most popular options. (2) Personalized recommendation systems stand onEvg
en

ios
 H

ad
jiso

ter
iou

30

previous actions, analyze user’s habits and needs, and suggest targeted recommendations through-

out a procedure. Early recommender systems [55] placed users into groups based on past behavior.

If a user in a group of similar users liked a product either because they rated it with a high score or

left a positive comment, the system would have recommended this product to all other users under

that group. Extending this procedure, if user A agreed with user B in the past, then some of users

B’s preferences would interest user A.

The internet evolves rapidly and new products emerge quickly, making them difficult to track.

In addition, existing web-sites have grown and new web-sites have created that have made this

tracking procedure difficult for the users to follow all of the suggested options. Therefore, increas-

ing the amount of choices is not the best strategy and targeted options may be the best solution.

The users should be studied and all of their relevant actions should be taken into consideration

in order to find possible recommendations. More advanced filtering methods for more targeted

recommendations were then created. If the users searched for a new product, this new informa-

tion was blended with previous information and a new profile of the user was constructed, which

resulted in new, more focused recommendations.

Recommender systems are used over the web, and include web-sites such as amazon, YouTube,

ebay, IMDb. These online applications are implemented in many ways including through argu-

mentation; Example 6 illustrates this statement. Similar problems on decision making can also

be formalized through argumentation. Any system that can construct admissible semantics, tak-

ing into consideration the users profile and special needs, can produce a solution to our problem.

Recommender systems follow a procedure to recommend an action. If this action can be easily

‘digested’ by the user, it is more likely to be appreciated. Companies want users to follow options

that they provide, making these systems a powerful tool in their hands.Evg
en

ios
 H

ad
jiso

ter
iou

http://www.amazon.com
http://www.youtube.com
http://www.ebay.com
http://www.imdb.com

31

Recommender systems have many capabilities and advantages and serve a variety of applica-

tions, but still require further improvements as these techniques are not optimal. At his time point,

many limitations exist, because recommender systems process is complex and multi-variable.

These systems must consider much information and analyze many variables, even for the sim-

plest recommendation. Many recommender systems’ recommendations rely on users with similar

interests or the overall user ranking system. As stated in [20], recommender systems find it diffi-

cult to perform qualitative inference on the final recommendations and to deal with the defeasible

nature of users preferences. Many recommendations are based on preferences that similar users

may have, resulting in weak statements that rationally justify why the new user should buy or

consider the new recommended product [42], and trustworthiness issues may arise. One more

disadvantage of content-based recommender systems is that if two different items are represented

by the same set of features (i.e., are represented by the same list as they are similar) then these

items are not distinguishable.

On the other hand, these problems have been addressed through defeasible AFs. For a recom-

mendation to be made, information about each user is needed. Usually older products are preferred

as a ranking value likely exists. Therefore, a lack of data, which is common in real-world envi-

ronment, may reflect ineffective recommendations. Furthermore, keeping track of new products

is a difficult procedure. Another disadvantage is the change in user preferences, as a user may be

looking for a book to read today, but tomorrow the same user may be looking for a present.

The advantage of the approach that is presented here is that it is flexible and can evolve as time

passes and factors become more or less important. With this modularity, a mechanism for handling

relatively new knowledge can easily be accommodated. New priority relations can then be applied

to obtain new results whenever needed. Moreover, argumentation handles recommendations in aEvg
en

ios
 H

ad
jiso

ter
iou

32

qualitative way. Therefore, recommendations can change from day-to-day because a new special

offer may occur that reflects the active user.

3.2 Parameterized Argumentation - Theoretical Framework

The aim of this sections is to formalize a decision problem using standard notions from argu-

mentation in AI [24, 68]. Decision making is explored in terms of argumentation. This section

shows the link that each option has to different parameter spaces (e.g., parameters based on the

working environment and the users’ mental conditions). Arguments can then be constructed to

prioritize these options and as a result, find the ‘winning’ options. Since the state of the world

continually changes and the knowledge base is updated fast, the need for dynamic systems that

can handle these updates and deliver a good representation of the world is introduced. Technolo-

gies that can support this type of reasoning and adjust dynamically based on the operating user and

the pragmatic truths of the world are desired. Allowing these technologies to be part of the user’s

decision process will help with overcoming difficult situations. Old technologies that operate in

the same way no matter who the user is or do not take the working environment into consideration

need to be developed further.

The last decade’s argumentation has been widely used for single agents and for multi-agent

systems, and manages to play an important role in the implementation of these technologies. Cur-

rently, agent software is autonomous and uses argumentation to make decisions in uncertain and

constantly changing environments in order to present only relevant results to the user. Further-

more, these agents can interact with other agents to exchange information and in activities such as

negotiation, cooperation, and dialogue.

The thesis describes the development of an adaptive and personalized system that can help the

user throughout the decision process. This is done by selecting admissible choices in an AF [24].
Evg

en
ios

 H
ad

jiso
ter

iou

33

An abstract AF that adapts dynamically to the changes of the world and the users’ preferences is

described. In this AF, each option is time dependent and each user has different needs that may

change as time passes. Therefore, the users’ preferences are also time dependent.

Using argumentation, an action is computed, recommended and explained, or the best option

is chosen from a set of exclusive alternatives. Our argumentative decision-making process is

influenced by the working environment and the user’s preferences. To preserve persistence, this

theory is base on the AF of language E [48], and is extended [35, 38, 40, 39] to accommodate

arguments based on property observations, and arguments for backwards persistence. Given a

time line, priorities for arguments and observations are introduced to manage and maintain a good

representation of the world. Ultimately, the system should suggest options under the extended

working conditions, followed by a report that justifies how the system reached that conclusion.

To compute and explain the selected decisions, Gorgias1 argumentative-based system was

used to produce the ‘winning’ options with an explanation-report that was generated on the work-

ing process. A time model agent was used that applies argumentation on more than one level to

decide and recommend new options to the user. As time passes, new knowledge arrives. This

knowledge must be understood to be represented in the AF and extract conclusions. Therefore,

our system should be able to adapt dynamically to a continually changing environment. To accom-

plish this, when the world changes arguments, for and against options are enabled. Thus, there are

arguments that may support or attack an option as time changes.

Definition 5 (Options) In a decision problem there is a set of alternatives, O, called the options

of the problem.

Options are parameterized based on ontological problem parameters and pragmatic parame-

ters.
1http://www.cs.ucy.ac.cy/˜nkd/gorgias/

Evg
en

ios
 H

ad
jiso

ter
iou

http://www.cs.ucy.ac.cy/~nkd/gorgias/
http://www.cs.ucy.ac.cy/~nkd/gorgias/

34

Definition 6 (General Parameter Space of an Option) LetPj be ontological hierarchies for op-

tion o, and let Pp be the pragmatic set characterizing o. The general parameter set of an option is

the set, P =
⋃
∀ j
Pj ∪ Pp.

Users’ have preferences and needs. For any parameter in any parametric space, a labelling

function can be applied, such that parameters are mapped to the set S = {1, 0,−1} based on user

preferences. Parameters that a user is interested in are labelled as 1, −1 for the parameters that

the user shows no interest in, and 0 are those parameters that have not yet been specified by the

user (i.e., that are unknown). A total order on this labelling is then applied to reveal user’s special

preferences.

Definition 7 (labelling function) Given user U, let o be an option and P be its general parameter

space. For each Pi ⊆ P there is a labelling function:

• fU : Pi → 1 iff user is interested in parameter pi, also denoted by pUi (1)

• fU : Pi → 0 iff parameter pi is unspecified, also denoted by pUi (0)

• fU : Pi → −1 iff user is specifically not interested in parameter pi, also denoted by pUi (−1)

Labelling parameters is not an easy task, but it can be retrieved either by explicitly asking the

user or implicitly through the user’s actions. The labelling function f can be applied to construct

three subsets of parameters for the user since each parameter can be mapped to one of the pa-

rameters of S = {−1, 0, 1}. The thesis is primarily interested in the set containing parameters

pUi (1).

To construct priorities, the constructed sets are considered by the labelling function. Set pUi (1)

is preferred over the sets pUi (−1) and pUi (0). Priorities are also allowed among the set pUi (1),Evg
en

ios
 H

ad
jiso

ter
iou

35

which means that if a user likes both parameters both are labelled 1, but amongst two of these, this

priority relation stimulates a preferred option. The formal definition of this is presented below.

Building options can conflict with each other. An argument for one option may attack argu-

ments for other conflicting option; this depends on the strength of the arguments. Throughout this

conflicting relation, a stronger argument can attack any other argument that is not as strong and

can counter attack any potential attack from weaker arguments. As a result, any decision-making

process may end when the winning argument stands out.

Arguments can be built for each option. Based on the user’s special personal profile, arguments

are built for or against an option.

Definition 8 (Arguments) Let U be a user. We denote by arg(o;Sup(o);Par(o)) an argument

built to support option o, where Sup(o) is a set of conditions {c1, c2, . . . , ck} that can be evaluated

in the external environment of the application, and these take the value of true or false and are

time dependent. Par(o) is a set of constraints on the options that are time dependent. There is a

labelling function that picks o and maps it to two different sets: a) Par ontologically these are the

characteristics of the option and b) Sup pragmatically must hold in the world for this option to be

enabled.

Definition 9 (Priority over arguments for user U) Let U be a user with profile

ProfU = {[pUi (1)], [pUi (0)], [pUi (−1)]} and arg1(o1;Sup1;Par1), arg2(o2;Sup2;Par2) two

arguments where o1 and o2 are in conflict. If both sets Sup1 and Sup2 hold in the decision

environment, then arg1 ≥u arg2 if Par1 wu Par2, where wu is defined under the labelling

function and the personal priorities of the user as a partial order priority on pUi (1) and it is time

dependet.Evg
en

ios
 H

ad
jiso

ter
iou

36

To explain Definition 9, let Klelia be a user that tries to find a hotel to stay in, with profile:

ProfKlelia = {[pool], [], []}. Klelia specified that she is interested in hotels with a pool, and she

has given no information on what she dislikes. Let hotel1 and hotel2 be two hotels with a pool

that are in conflict and arg1(hotel1; []; [pool under construction]), where arg2(hotel2; []; []). Even

though both hotels support the need of Klelia, which is a pool, arg2 ≥u arg1 since Par1 wu Par2

as the pool in hotel1 is under construction.

Arguments may support an option or be against it. Direct attacks come from the user’s special

personal profile, as it consists of contradicting sets: the 1 and the −1 labelled set. Indirect attack

exists as more than one alternatives exist, and the support of one argument under the scope of an

option is an attack under the scope of a different option. In addition, under the working conditions

that are included in each argument through the Sup set, an option may cease to qualify. Therefore,

prioritizing arguments is an important step, and through an admissibility process, these qualified

options are focused and an option is recommended to the user.

Definition 10 (Attacks) Let arg1(o1;Sup1;Par1) and arg2(o2;Sup2;Par2) be two arguments.

arg1 attacks arg2 if o1 and o2 are in conflict and arg1 ≥u arg2.

Depending on the problem and the number of the admissible solutions, attacks may be strict

in order to focus on the winning option. Each user is treated as a special and unique entity, and for

this reason different users may receive a different recommendation. As each user has their own

parametric space where options are prioritized, even when two options for different users may be

admissible, one option may be suggested to one user over another user, as these parametric spaces

may prioritize one option over the other in different ways. This adds one last step of hierarchy

to the options, which results in a personalized recommendation. The qualified options are the

solutions, and the recommended options of the system.Evg
en

ios
 H

ad
jiso

ter
iou

37

Definition 11 (Solution) Let U be a user with profile ProfU . Let O = {o1, o2, . . . , on} be the

set of options that are supported by at least one argument where the arguments Sup holds in the

decision environment. We say that oi is a solution if it is admissible.

3.3 An Example Application: ‘Hotel for ME’

People stay in hotels for many reasons, including work or pleasure, with family or alone; hotels

exist to serve their needs. Each user is different and at a specific time point the needs of the user

may vary. Every hotel offers services differently from other hotels. As time passes, the support

of arguments for the various options of hotels may change and new information may override old

information. As a result, the options’ strengths and weaknesses change.

In this study, argumentation and priority relation among arguments were used to allow dy-

namic manipulation over the changing world. The applications became personalized since the user

profiles were analyzed, including needs and habits by extracting them through a set of queries. As

implemented onGorgias, all of the rules and priorities that were used to reach the final conclusion

were managed in an attempt to convince the user to follow a recommended option.

A concrete way to understand the problem was studied through an application that helps the

user decided which hotel to stay in. This system to recommend the option that best suit the user

from the available options. The decision-making process and maintaining good representation

of the world that keeps track of all changes, described in Chapter 4, both use argumentation.

Therefore, argumentation is used to keep a track of the world and to decide what option to follow

given the current state of the world.

As shown in the following Figure, for this system to provide a recommendation, the user

and their needs that are given as an input must be known. The decision-making process usesEvg
en

ios
 H

ad
jiso

ter
iou

38

argumentation with the restrictions and the constraints that the working environment has in order

to provide an admissible recommendation as an output.

Argumentation
Input

User

Decision Making
Current

World View

Output

Hotels{A,B,R}

Example 5 (Hotel Booking) Artemis needs to book a hotel next month. She has to choose among

several hotels. Which one should she choose? What if some hotels have special offers? Suppose

that hotel A offers special rates during the weekend. Our system should be able to update its

knowledge base and preserve this new information for the predefined weekend. Also when the

weekend ends it should be able to check if the offer ended and update again appropriately. Existing

knowledge must be preserved as it is part of the underlying knowledge base of the hotels. In this

way the world remains the same until new knowledge causes an update.

The thesis shows how these kind of real-life problems are translated through the AF and how

dynamically changing environment are handled. For this matter, a hotel booking problem was

mapped onto the AF, and is presented in Section 3.3.2.

Example 6 (Hotel Booking cont.) Hotels are the available options, that are parameterized: Op-

tions = {o1, . . . , on}. Each hotel has different facilities, unique location, and special offers that

are mapped to this hotel through its parameter space. Therefore, options can be seen as follows:Evg
en

ios
 H

ad
jiso

ter
iou

39

Options = {o1(p11 , p21 , . . . , pk1), . . . , on(p1n , p2n , . . . , pkn)}, where p1, p2, . . . , pk are parame-

ters. Parameters can be time dependent (e.g., (a) every Tuesday it is Italian night, (b) the swim-

ming pool is under construction for the next two days), where we can clearly see that they are time

dependent.

Defining different spaces: (a) option space and (b) user preference space that constantly

changes over time (dynamic environments). Under the abstract theoretical framework, argu-

mentation techniques can be used to reach a final conclusion.

3.3.1 Representing the Problem in our AF

Here, how the problem can be represented our AF of Section 3.2 is presented. Specifi-

cally, the AF and language of Gorgias [1, 64] is used to demonstrate how these representations

can be implemented. In Gorgias [64], arguments are built from rules. Rules have the form

rule(Label,Head,Body), where Label is the name of the rule. Head and Body are the head

and body of the rule respectively, and can be a positive or a negative program fluent. With operators

neg/1 and complement/2, a contradictory conclusion can be defined in the program. The predi-

cate prefer/2 was used, which defines priorities among theLabels (i.e., prefer(Label1, Label2)

shows that if Label1 and Label2 are in conflict, Label1 is preferred.

Given a program, queries can be written through the predicate prove(Query,Delta). Gorgias

will then try to compute an answer which will be Y es or No. When the answer is Y es, all rules

and priorities that were used to reach to this answer will be shown to the user under the variable

Delta.

An example is presented where a user tries to choose a hotel to stay at (see Listing 3.1).

There are three facts that are labelled f1 o(X), f2 o(X) and f3 o(X), two rules that are labelled

r1 o(X) and r2 o(X) and one priority rule that is labelled pr1 (X). A rule labelled f1 o(X)

Evg
en

ios
 H

ad
jiso

ter
iou

40

has as a head the fluent hotel(X) and states that there are twenty hotels. There are also rules

with the heads fluent special rates(X) and crowded(X). Hotels X ∈ [1, 3] ∪ [10, 13] have

special rates, while hotels X
′ ∈ [2, 7]∪ [12, 17] are crowded. Rule labelled r1 o(X) has as a head

the fluent stay in hotel(X). This rule becomes active when its body, the fluents hotel(X) and

special rates(X) become true. The rule labelled r2 o(X) contradicts the rule labelled r1 o(X)

as their heads contradict each other. Among contradictory arguments, those from rule r2 o(X)

are preferred, as described by the priority rule labeled pr1 (X).

Listing 3.1: Hotel Booking (Simple)

% H o t e l example

r u l e (f 1 o (X) , h o t e l (X) , []) :− between (1 , 2 0 ,X) .

r u l e (f 2 o (X) , s p e c i a l r a t e s (X) , [h o t e l (X)]) :−

between (1 , 3 ,X) ; be tween (1 0 , 1 3 ,X) .

r u l e (f 3 o (X) , crowded (X) , [h o t e l (X)]) :−

between (2 , 7 ,X) ; be tween (1 2 , 1 7 ,X) .

r u l e (r 1 o (X) , s t a y i n h o t e l (X) , [h o t e l (X) , s p e c i a l r a t e s (X)]) .

r u l e (r 2 o (X) , neg (s t a y i n h o t e l (X)) , [h o t e l (X) , crowded (X)]) .

r u l e (p r 1 (X) , p r e f e r (r 2 o (X) , r 1 o (X)) , []) .

Listing 3.2: Answers for Listing 3.1

?−prove ([s t a y i n h o t e l (X)] , D e l t a) .Evg
en

ios
 H

ad
jiso

ter
iou

41

X = 1 ,

D e l t a = [f 1 o (1) , f 2 o (1) , f 1 o (1) , r 1 o (1)] ;

X = 10 ,

D e l t a = [f 1 o (1 0) , f 2 o (1 0) , f 1 o (1 0) , r 1 o (1 0)] ;

X = 11 ,

D e l t a = [f 1 o (1 1) , f 2 o (1 1) , f 1 o (1 1) , r 1 o (1 1)] ;

f a l s e .

To identify what hotels one can stay in, Gorgias is asked to build admissible arguments

for the option ‘stay in hotel(X)′. When the query prove([stay in hotel(X)], Delta) is asked

(Listing 3.2) Gorgias presents an answer followed by a bag of rules and priorities that are used

to reach this answer. These rules are given as an explanation in Delta. For example, hotels

X ∈ {1, 10, 11} qualify and are presented by Gorgias when all solutions are required. The set

of qualified options can be narrowed down by adding more rules, as shown in the extended exam-

ple (see Listing 3.3). Three more facts f4 o(X), f5 o(X), and f6 o(X) are added that separate

hotels in two areas. Hotels X ∈ [1, 10] belong to area 1, while hotels X ∈ [11, 20] belong to

area 2. Furthermore, the body of the rule labelled r1 o(X) is extended and contains the fluent

near(X, 2). Thus, all suggested hotels will be constructed from the first example (Listing 3.1)

that is also in area 2 (see Listing 3.4).

Listing 3.3: Hotel Booking (Extended)

% H o t e l example e x t e n d e d

r u l e (f 1 o (X) , h o t e l (X) , []) :− between (1 , 2 0 ,X) .

r u l e (f 2 o (X) , s p e c i a l r a t e s (X) , [h o t e l (X)]) :−
Evg

en
ios

 H
ad

jiso
ter

iou

42

between (1 , 3 ,X) ; be tween (1 0 , 1 3 ,X) .

r u l e (f 3 o (X) , crowded (X) , [h o t e l (X)]) :−

between (2 , 7 ,X) ; be tween (1 2 , 1 7 ,X) .

r u l e (f 4 a (A) , a r e a (A) , []) :− between (1 , 2 ,A) .

r u l e (f 5 o (X,A) , n e a r (X,A) , [h o t e l (X) , a r e a (A) ,A= 1]) :−

between (1 , 1 0 ,X) .

r u l e (f 6 o (X,A) , n e a r (X,A) , [h o t e l (X) , a r e a (A) ,A= 2]) :−

between (1 1 , 2 0 ,X) .

r u l e (r 1 o (X) , s t a y i n h o t e l (X) , [h o t e l (X) ,

s p e c i a l r a t e s (X) , n e a r (X , 2)]) .

r u l e (r 2 o (X) , neg (s t a y i n h o t e l (X)) , [h o t e l (X) , crowded (X)]) .

r u l e (p r 1 (X) , p r e f e r (r 2 o (X) , r 1 o (X)) , []) .

Listing 3.4: Answers for Listing 3.3

?−prove ([s t a y i n h o t e l (X)] , D e l t a) .

X = 11 ,

D e l t a = [f 4 a (2) , f 1 o (1 1) , f 6 o (1 1 , 2) , f 1 o (1 1) ,

f 2 o (1 1) , f 1 o (1 1) , r 1 o (1 1)] ;

f a l s e .Evg
en

ios
 H

ad
jiso

ter
iou

43

Gorgias can be used in web applications with several benefits. By adding priorities through

preferred rules, options can be qualified that are based on the user’s profile, needs, and habits. As

a result, the ‘stronger’ options are identified.

In summary, with this type of application, argumentation is used to (1) construct a system that

can preserve knowledge and accept new observation [48, 38, 40], (2) extend the knowledge base

dynamically, and make decisions that best suit the user.

3.3.2 Formalization of the Application ‘Hotel for ME’

In this subsection, the application problem of ‘Hotel for ME’ is formalized through argumen-

tation based on the general theory that is presented in Section 3.2.

Definition 12 (Decision problem) Recommend amongst a set of available hotels, those that best

suit the user’s needs and preferences.

Definition 13 (Options) A set of available hotels with any information that characterizes this

hotel, e.g. oi = {hoteli, cyprus, area, facilities, children care, near}.

In this decision problem, the options are the hotels. Each hotel has some parameters that

characterize it including: 1) area it is in - whether it is near Nicosia, Larnaca, Limasol, Paphos or

Troodos and 2) its facilities - whether the hotel has a pool, a playground, or a conference room and

whether it is crowded. To solve this problem, existing parametric spaces that can be used for this

problem are identified. If such parametric spaces did not exist, then they were built. Parametric

spaces should be complete and able to be updated if there is an area that does not cover. For this

example, the parametric space that was built was used as it is shown in Figure 30 in Appendix B

that covers the most important factors for our simple implementation application. This space was

built studying online hotel booking web-cites such as trip advisor2 .
2https://www.tripadvisor.com/

Evg
en

ios
 H

ad
jiso

ter
iou

https://www.tripadvisor.com/
https://www.tripadvisor.com/

44

Users also need to be parameterized by their needs and preferences to differentiate them from

each other. This includes information such as the area that they are interested in, Nicosia, Larnaca,

Limasol, Paphos, or Troodos, or if they are traveling for business or pleasure. It is also includes

who they travel with, whether they are alone, with friends or family, and if they have children.

Hotels are parameterized based on ontology parameters and pragmatic parameters.

Definition 14 (Ontological class) Let Pj ,∀j be ontological hierarchies for a hotel. This class

categorizes the features that a hotel offers.

Ontological Classes: Examples are P1 = Sports Facilities, P2 = Children Care P3 = Nightlife,

and P4 = Food.

Definition 15 (Pragmatic class) Let Pp be the pragmatic hierarchies for a hotel. This class cate-

gorizes what holds for one hotel at a specific time point.

Pragmatic Classes: Examples are availability, pool is not under construction, and hotel has

special rates.

Hotels are then placed in these parametric spaces, and together they form the general parameter

space of a hotel. Certain pragmatic classes should be assigned with a higher priority. For example,

if a hotel does not have rooms available then no matter how good of a fit it is to a specific user, it

should not be recommended.

Users express their needs and preferences to allow the labelling of each parameter of a hotel.

If a parameter is labelled 1 then the user shows interest, if it is labelled −1 then the user shows no

interest. This can be done through a short dialogue with the user; this is discussed below in the

next subsection.Evg
en

ios
 H

ad
jiso

ter
iou

45

Definition 16 (Labelling function) Given a user, U, and P , its general parameter space, sets

pUi (1), pUi (0) and pUi (−1) that partly characterize the user, where: pUi (1) is a set of parame-

ters that the user is interested in, pUi (−1) is a set of parameters that the user is not interested in,

and pUi (0) are all parameters that are not included in the sets pUi (1) and pUi (−1).

These preferences are then prioritized, and if a parameter is preferred by the user then all hotels

that have this parameter in their parameter space will be favorable. Arguments are then built in a

way that can prioritize hotels that suit the user’s preferences and needs. In this way, recommended

hotels will make sense to each user. When an argument supports a hotel, different arguments may

exist that attack it by an argument of higher priority for another hotel.

Definition 17 (Arguments) arg(o;Sup(o);Par(o)) is an argument that us built to support each

hotel o. Sup(o) is a set of timed fluents of properties of the hotel and Par(o) is a set of conditions

that hold or do not hold under a given time period.

For example, the following argument shows a hotel with the name hotel1 that has a pool, a

conference room, and at time 1, the pool of the hotel is under construction.

arg(hotel1; []; [pool under construction at t = 1]). Among the existing arguments an attack

relation that depends on the time point one argument will qualify over the other.

Priorities and attacks amongst arguments can then be given by applying Definitions 9 and 10

in Section 3.2. To illustrate this, let arg1(hotel1; []; [pool under construction at t = 1]) and

arg2(hotel2; []; [pool under construction at t = 2, conference room under construction])

be two arguments. For this example, hotel1 attacks hotel2 at time 2, regarding the parameter

pool and hotel2 attacks hotel1 at time 1 for the same parameter. Similarly, hotel1 attacks hotel2

regarding the parameter conference room at all time points as hotel1 has a conference room and

hotel2’s conference room is under construction.
Evg

en
ios

 H
ad

jiso
ter

iou

46

The hotel that this system will recommend is the one that tries to satisfy all of the criteria. Since

the admissible qualified hotels that are recommended depend on the user’s needs and preferences,

each user will receive different recommendations.

3.4 Implementation: ‘Hotel for ME’

The parametric spaces for the hotels were studied. The following tree (see Figure 30 in Ap-

pendix B) is the result of this process. The application ‘Hotel for ME’ was implemented as shown

in Appendix D. Here, how such a problem that is given in an abstract AF is realized and how it

can be implemented in a theoretical level is shown. In this application, users try to find hotels

in Cyprus by providing information that will define their needs and preferences. Based on this

information, the user’s parametric space is created, and with the existing parametric spaces of the

hotels they are matched in the best way possible (this is dependent on the attack relation of the

program) to the hotels. Hotel(s) fulfilling these predefined constrains will be suggested to the user

as a recommendation.

First we create the profile of the user based on facts. Rules are then created in a form that

Gorgias can handle. Based on argumentation and a priority relation embedded in Gorgias,

we prioritize potential recommendation. Based on priorities and the user’s needs Gorgias will

then suggest the ‘winning’ option. The benefit of using Gorgias is that all rules used to reach a

conclusion are presented to the user which can then be reevaluated if the active user desires.

To empirical test our approach we have presented a ‘benchmark’ application. The narrative

for this application is as follows: There are 500 hotels throughout Cyprus (see fact f1 o(H)3).

Hotels {1, . . . , 100} are in Nicosia, hotels {101, . . . , 200} are in Larnaca, hotels {201, . . . , 300}
3Referring rules and facts can be found in Appendix DEvg
en

ios
 H

ad
jiso

ter
iou

47

are in Limasol, hotels {301, . . . , 400} are in Paphos, and hotels {401, . . . , 500} are in Troodos

(see facts f5 a(A), f6 n(H,A), . . . , f10 n(H,A)), and these are the available options.

For each time point or time period, the state of the world must be known. For this system,

twelve time points (see fact f2 t(T)) have been introduced, where each one represents a month of

the year. For example, time 1 is January and time 8 is August. At different time points or time pe-

riods, hotels parametric spaces may change. For example, one hotel may be expensive throughout

the entire year, but if it offers special rates then it becomes less expensive (see rule r1 s(H,T)).

Each area has a different cool season; for example, during the winter, the destination Troodos is

preferred whereas during spring it is not. Of course this is also relevant to the state of the hotel

(see rule r2 cs(H,T)) as each hotel is crowded at different time points (see facts r3 c(H,T) and

r4 c(H,T)). In addition, some hotels have pools (see fact f11 p(H,T)) but during the winters

months, the pools at Troodos, where the water in the pools is frozen are not usable. Thus during

these months, these hotels are considered not to have pools (see fact f12 p(H,T)), and if the pool

is under construction then the hotel is considered to be without a pool until the pool is fixed. The

conference rooms and the playground are similar. Some hotels may have conference rooms or a

playground (see rules f11 cr(H,T) and r13 p(H,T)), but if the conference room or the play-

ground is under maintenance then the hotel is not consider to have these facilities. In addition, as

mentioned above, in Troodos during the winter months no one can use the playgrounds since they

are covered with snow (see rules f12 cr(H,T), r14 p(H,T) and r15 p(H,T)). Finally, some

hotels offer entertainment during the night (see rule r16 n(H,T,A)), and among these hotels

some have bad reputations (see rule r17 n(H,T,A)).

By including time as part of this system, it can handle the dynamic changes and updates of each

hotel separately and manage to maintain a good representation of the world. Each option can also

be time dependent. Ontological class of parameters contains information of the following type:
Evg

en
ios

 H
ad

jiso
ter

iou

48

whether the hotel offers special rates and at what time point, whether it is a cool season, the area

of the hotel, whether the hotel has a pool and a playground, whether the hotel offers entertainment

at night, and whether it has a conference room. It also contains the following information about

the user: the reason for visiting; and whether they are traveling with family, alone, or with friends.

Pragmatic class of parameters relates to the following information: the availability of the hotel,

whether the hotel is crowded, whether the pool, the conference room, or the playground is under

construction and whether the hotel has a bad reputation for its entertainment at night.

To test the system we have a preparation phase of a ‘dialogue’ with the user. The user is

asked to provide relative and personal information, such as the time period, the area of interest,

the reason for visiting, and who will travel with the user (if any exists). Through this question, the

profile of the user is constructed. Using argumentation through the Gorgias system we compute,

recommend by deciding amongst a set of available hotels which ones best suit the user needs but

also the working environment. We use the following questions to Gorgias:

Question 1: prove([hotel for me(U,H, T,A,R,W)], Delta).

Question 2: prove([hotel for me1(U,H, T,A,R,W,L1)], Delta).

Question 3: prove([hotel for me2(U,H, T,A,R,W,DL1)], Delta).

Question 4: prove([hotel for me3(U,H, T,A,R,W,DL1, L2)], Delta).

Question 5: prove([hotel for me4(U,H, T,A,R,W,L1, L2)], Delta).

Question 6: prove([hotel for me5(U,H, T,A,R,W,L1, L2, L3)], Delta).

where U = User and can take one of the following values [klelia, alexandros, john, christos, gior-

gos], H = Hotel and can be a hotel between values [1,500], T = Time point that takes the values

[1,12] and we think of it as the months of a year where 1 represents January and 12 represents

December, A = Area and can take one of the following values [nicosia, larnaca, limasol, paphos,

troodos], R = Reason for visiting that is either business or pleasure, W = traveling with and can
Evg

en
ios

 H
ad

jiso
ter

iou

49

take on of the following values [alone, family(children(N)), friends], where N takes the values

[0,5]. Additionally, users can specify what they like, L1 and L2, and what they do not like DL1

and these can be one of these parameters: special rates(H,T), cool season(H,T), crowded(H,T),

pool(H,T), play ground(H,T), good nightlife(H,T,A). With that explained, question 2 is used when

user specifically know one parameter the recommended hotels must have while question 3 is used

when user can specify three parameters that the recommended hotels must have. Similarly for all

other questions.

For the purpose of the experiment an agent was constructed that, under the conditions of the

world, is able to recommend the ‘best’ option based on the user’s needs. There are five users:

U = {Klelia, Alexandros, John, Christos, Giorgos}. To understand what the users’ needs and

preferences are we ask the following questions:

1) Who is the user?

2) Reason of your visit? (Business or Pleasure)

3) Who do you travel with? (alone, family(children(N)),friends)

4) Are there any specific parameters that a hotel must have (in order to be considered as an option)?

5) Is there more than one parameter that hotel must have?

6) Are there any specific parameters that a hotel must not have?

Needs: n1 = area, n2 = special rates, n3 = cool season, n4 = crowded, n5 = pool, n6 =

conference room, n7 = playground.

To find the parameters that the user is interested in, questions 1,2,5, and 6 are used, and to find

which parameters the user is not interested in, question 3 is used. Question 4 allows the users to

specify one parameter that they like and one that they do not like.

Based on the user’s question, arguments are built for or against an option. Options to be

qualified must first satisfy the Sup class; they must hold in the snapshot of the world for this option
Evg

en
ios

 H
ad

jiso
ter

iou

50

to be enabled. For example, for question 1, all hotels that satisfy at least one of the parameters

that are specified by the user will be qualified, and question 2 allows higher priority in the options

that the parameter L1 specifies. Question 5 allows higher priority in two parameters, L1 and L2,

that users show interest in, while question 6 allows higher priority in three parameters that are

specified by the user (L1, L2, and L3). Question 3 allows higher priority in a parameter that the

user specifies that he or she does not like (DL1), whereas question 4 allows higher priority in one

parameter that the user does not like (DL1), and in one that the user likes (L2).

The user’s preferences are turned into priorities over arguments for the different hotels de-

pending on their parameters as formulated in general is Section 3.3.

This implementation has two main variables: the users personal interest and time based on a

single user. This is so that we can examine how this system can adapt to personal interest and

dynamically adjust to the working environments. Examples are shown below, where under the

same time point or time period, this system may suggest different hotels for different users since

they have different needs that are provided as an input to the system (see Listing 3.5); for a single

user, the system may recommend different hotels at different times. This happens because at

different time points, different constraints hold that the world is changing (see Listing 3.6).

Listing 3.5: Test 1: Different Users

% User k l e l i a

?− f i n d a l l (H, p rove ([h o t e l f o r m e (k l e l i a , H, 5 , n i c o s i a , b u s i n e s s ,

f a m i l y (c h i l d r e n (3)))] , D e l t a) , Bag) , l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Bag = [1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 1 1 | . . .] ,

N u m b e r o f s o l u t i o n s = 3 3 .Evg
en

ios
 H

ad
jiso

ter
iou

51

% User g i o r g o s

?− f i n d a l l (H, p rove ([h o t e l f o r m e (g i o r g o s , H, 1 , paphos , p l e a s u r e ,

f a m i l y (c h i l d r e n (1)))] , D e l t a) , Bag) , l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Bag = [3 0 1 , 302 , 303 , 304 , 305 , 306 , 307 , 308 , 3 0 9 | . . .] ,

N u m b e r o f s o l u t i o n s = 4 5 .

Listing 3.6: Test 2: Single User Different Time Points

% At t i m e 1

?− f i n d a l l (H, p rove ([h o t e l f o r m e (k l e l i a , H, 1 , l a r n a c a , p l e a s u r e ,

f a m i l y (c h i l d r e n (0)))] , D e l t a) , Bag) , l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Bag = [1 0 1 , 102 , 147 , 148 , 149 , 156 , 157 , 158 , 1 5 9 | . . .] ,

N u m b e r o f s o l u t i o n s = 1 2 .

% At t i m e 8

?− f i n d a l l (H, p rove ([h o t e l f o r m e (k l e l i a , H, 8 , l a r n a c a , p l e a s u r e ,

f a m i l y (c h i l d r e n (0)))] , D e l t a) , Bag) , l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Bag = [1 0 1 , 102 , 103 , 104 , 147 , 148 , 149 , 156 , 1 5 7 | . . .] ,

N u m b e r o f s o l u t i o n s = 1 4 .

To test the approach we have also experiment with different attack relations by changing the

priority among arguments, which will result in new recommendations. As we have seen from

Listing 3.5 and Listing 3.6, Gorgias provides a sufficient recommendation, and more solutions

can be requested. Different priority over the parametric arguments resulting in the fact that the

attack relations of Gorgias changes are shown below in Listing 3.7:Evg
en

ios
 H

ad
jiso

ter
iou

52

Listing 3.7: Test 3: Different Priority Over the Parametric Arguments

% Q u e s t i o n 2

?− f i n d a l l (H, p rove ([h o t e l f o r m e 1 (a l e x a n d r o s , H, T , n i c o s i a , p l e a s u r e ,

a lone , poo l (H, T))] , D e l t a) , Bag) , l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Bag = [7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 | . . .] ,

N u m b e r o f s o l u t i o n s = 2 0 3 .

% Q u e s t i o n 3

?− f i n d a l l (H, p rove ([h o t e l f o r m e 2 (a l e x a n d r o s , H, T , n i c o s i a , p l e a s u r e ,

a lone , p l a y g r o u n d (H, T))] , D e l t a) , Bag) ,

l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Bag = [2 4 , 24 , 25 , 25 , 26 , 26 , 28 , 28 , 2 9 | . . .] ,

N u m b e r o f s o l u t i o n s = 1 6 .

% Q u e s t i o n 4

?− f i n d a l l (H, p rove ([h o t e l f o r m e 3 (a l e x a n d r o s , H, T , n i c o s i a , p l e a s u r e ,

a lone , p l a y g r o u n d (H, T) , poo l (H, T))] , D e l t a) , Bag) ,

l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Bag = [2 4 , 24 , 25 , 25 , 26 , 26 , 28 , 28 , 2 9 | . . .] ,

N u m b e r o f s o l u t i o n s = 1 6 .

% Q u e s t i o n 5

?− f i n d a l l (H, p rove ([h o t e l f o r m e 4 (a l e x a n d r o s , H, T , n i c o s i a , p l e a s u r e ,

a lone , poo l (H, T) , g o o d n i g h t l i f e (H, T , n i c o s i a))] , D e l t a) , Bag) ,
Evg

en
ios

 H
ad

jiso
ter

iou

53

l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Bag = [7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 | . . .] ,

N u m b e r o f s o l u t i o n s = 2 0 3 .

% Q u e s t i o n 6

?− f i n d a l l (H, p rove ([h o t e l f o r m e 5 (a l e x a n d r o s , H, T , n i c o s i a , p l e a s u r e ,

a lone , poo l (H, T) , g o o d n i g h t l i f e (H, T , n i c o s i a) , s p e c i a l r a t e s (H, T))] ,

D e l t a) , Bag) , l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Bag = [7 , 7 , 8 , 8 , 9 , 9 , 10 , 10 , 3 1 | . . .] ,

N u m b e r o f s o l u t i o n s = 4 8 .

As shown in Listing 3.7, question 2, gives priority to the need for a pool, provides 203 answers,

and question 5, which allows user to pick two needs (for this example pool and nightlife) also

provides 203 answers. Therefore, all 203 answers from question 2 have a good nightlife. Question

6 is more focused with 48 answers, as users pick three of their most favorite needs (for this example

special rates are also added). Questions 3 and 4 allow user to say which need they do not want

(for this example playground) and the latter question allows user to specify one need that they like

the most (for this example a pool). Both question 3 and 4 produce 16 solutions. Adding negative

information to the system significantly reduces the number of solutions.

3.4.1 Evaluation

To evaluate this approach, an experimentation process is used to study i) how well it adapts

when the world changes and ii) how well it focuses with more information from the user. Here theEvg
en

ios
 H

ad
jiso

ter
iou

54

1

6

11

1,384
1,300

1,463
1,189

921
1,071

1,095
1,131

1,014
1,000

1,314
1,147

Ti
m

e
Po

in
ts

Number of Solutions

Figure 6: Fixed User Dynamic World

information is categorized in different ways: a) how much information, b) whether the information

is prioritized or not and c) whether the information is positive as well as negative.

Evaluation 1 - Fixed user dynamic world: The program is first run to show that at different

time points, which indicates that the world is different, the number of solutions that are produced

by the system vary. To accomplish this result, the user, the type of question, the type of attack, and

finally the information provided are fixed. For this example, question

prove([hotel for me(alexandros,H, T,A,R,W)], Delta) is used and all solutions are counted.

The only parameters that vary are time and number of solutions produced, which are depicted on

Figure 6. More tests have been produced, where the priority may vary and these results can be

found in Appendix E.

Question 1: Matching parameters at a general level when time changes (see Listing E.1).

Question 2: Allowing higher priority for one parameter that the user likes (see Listing E.2).

Question 3: Allowing higher priority for one parameter that the user does not like (see Listing E.3).

Question 4: Allowing higher priority for one parameter that the user does not like and in one pa-

rameter that the user likes (see Listing E.4).

Question 5: Allowing higher priority for two parameters that the user likes (see Listing E.5).
Evg

en
ios

 H
ad

jiso
ter

iou

55

Question 6: Allowing higher priority for three parameters that the user likes (see Listing E.6).

Questions 1,2,5, and 6 are based on one of the priorities and have attack relations that were

created, as they do not accept negative information, whereas questions 3 and 4 concern a different

attack relation that allows negative information. Specifically, question 3 only allows negative

information and question 4 is a combination of these two attack relation that allows both positive

and negative information from the user. Question 1, which embodies the first attacking relation,

assigns the same priority to all of the parameters. Our second attack relation is performed through

questions 2, 5, and 6, where the user assigns higher priority to certain predefined parameters. The

parameters that are assigned to have a higher priority amongst the remaining parameters are then

assigned to have the same priority amongst them. Finally, the questions 3 and 4 are the third

attacking relations, where a user can assign parameters that they do not like.

Evaluation 2 - Many users, fixed world: The question was fixed to a specific time point

where the world was frozen to be the same for any user. For example consider time 5 and users to

seeking a hotel in Cyprus.

The first user, user1 = Klelia, is traveling in Nicosia for pleasure with her family, including

three children, and wants a hotel with a playground. The question that is used here is question 1:

prove([hotel for me1(klelia,H, 5, nicosia, pleasure, family(children(3)),

play ground(H, 5))], Delta), and all of the recommendations are counted and listed. The 17

recommendations for Klelia are: {1, 2, 3, 4, 5, 8, 9, 10, 32, 33, 34, 35, 36, 37, 38, 39, 40}.

The second user user2 = Christos is traveling alone in Larnaca for pleasure and wants a hotel

with a good nightlife. The question used here is question 1:

prove([hotel for me1(christos,H, 5, larnaca, pleasure, alone,Evg
en

ios
 H

ad
jiso

ter
iou

56

Attack 1 Attack 2 Attack 3

200

400

600

800

1,000

#
So

lu
tio

ns

Figure 7: Fixed User Fixed World

good nightlife(H, 5, larnaca))], Delta) and all of the recommendations were counter and listed.

The five recommendations for Christos are: {101, 102, 103, 104, 105}.

When questions are different the number of solutions will differ as well as the recommended

hotels. For this evaluation method a bar chart was not necessary.

Evaluation 3 - Fixed user, fixed world, different attack relations: For this, we fixed the user

and run question 1, which embodies the first attacking relation where it assigns the same priority

to all of the parameters. For this test, the way that the systems behave at all time points was tracked

and for this reason, many graphs (see Appendix E) were created based on the type of question that

was asked, which can then be compared. In Figure 7, a summary of these results is presented.

The fixed time = 5, the ‘imaginary’ x-axis represents the attacking relation, and the ‘imaginary’

y-axis represents the number of solutions. These results were taken from Figure 37, Figure 39,

and Figure 41 respectively. Attack 2 that allows negative information gives more focused results.

Evaluation 4 - Fixed user, fixed world, more information from user: In this test, the user

was fixed and all questions were run in order to compare questions 1,2,5, and 6 between them andEvg
en

ios
 H

ad
jiso

ter
iou

57

1 2 3 4 5 6 7 8 9 10 11 12

0

50

100

150

200

N
um

be
ro

fS
ol

ut
io

ns

Question 3 Question 4

Figure 8: Fixed User Fixed World More Information 1

to compare question 3 with question 4. Again, all time points were compared and this is the reason

that all results are shown in Appendix E and only the comparison is discussed here.

The demonstrated tests shows us that by allowing higher priority to more than one parameter,

the solutions are more focused and in many cases no solution is reached. As the user provides

more information to the system, available solutions are narrowed down. Furthermore, allowing a

specific profile to the user is incorrect. For the application ‘Hotel for ME’, question 4 or 5 seems

to be more appropriate. The bar chars that are presented in this section are a summary of the bar

charts that are presented in Appendix E. The number of solutions may seem high, but the questions

that were asked here are general. The area, the reason for visiting, and who the user travels with

are left as variables and can be instantiated with any parameter that can be instantiated with them.

We now present an example where the user Alexandros specifies how parameters H = hotel,

A = area, R = reason for visiting, and W = traveling with will be instantiated when the question is

asked. The program was run at different time points to show that the application ‘Hotel for ME’

is time dependent and to understand how fast solutions are narrowed down in a realistic setting ofEvg
en

ios
 H

ad
jiso

ter
iou

58

1 2 3 4 5 6 7 8 9 10 11 12

0

500

1,000

1,500

N
um

be
ro

fS
ol

ut
io

ns

Question 1 Question 2 Question 5 Question 6

Figure 9: Fixed User Fixed World More Information 2

a user providing incrementally more information to the system. In this way, a good understanding

is obtained of how much information is necessary and whether negative information can focus the

solutions.

Question 1: In this general question, our user Alexandros wants to find a hotel in Nicosia at

time 5. He travels alone for pleasure. This query is shown in Listing 3.8.

Listing 3.8: Time 5: Realistic Example for Question 1

?− f i n d a l l (H, p rove ([h o t e l f o r m e (a l e x a n d r o s , H, 5 , n i c o s i a ,

p l e a s u r e , a l o n e)] , D e l t a) , Bag) , l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Bag = [7 , 7 , 8 , 8 , 9 , 9 , 10 , 10 , 2 4 | . . .] ,

N u m b e r o f s o l u t i o n s = 3 6 .

If the user now provides more information and specifically asks for hotels with similar charac-

teristics as before, but also with pool at time 5, the question in Listing 3.9 is provided. The number

of solutions did not change from question 1 to question 2. Therefore, all of the available hotels at

time 5 that where recommended in question 1 have a pool.
Evg

en
ios

 H
ad

jiso
ter

iou

59

Listing 3.9: Time 5: Realistic Example for Question 2

?− f i n d a l l (H, p rove ([h o t e l f o r m e 1 (a l e x a n d r o s , H, 5 , n i c o s i a , p l e a s u r e ,

a lone , poo l (H , 5))] , D e l t a) , Bag) , l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Bag = [7 , 7 , 8 , 8 , 9 , 9 , 10 , 10 , 2 4 | . . .] ,

N u m b e r o f s o l u t i o n s = 3 6 .

This knowledge is extended, as the user also requests hotels with similar facilities to question

2, but with special rates at time 5. Listing 3.10 depicts these results. Available solutions are

narrowed down as expected; from 36 hotel recommendations, 28 were left. If the user had asked

for a good nightlife instead of a special rates then the solutions would have not have been narrowed

down, as indicated in Listing 3.11. This is surprising as one would expect the number of solutions

to be reduced as a user provides more information. Instead, the user receives the same solutions

from question 1 and question 5. Asking for a hotel with a pool is common in our database of

hotels and this is the reason that the number of recommendations remain the same. As expected,

running the question with the user seeking a hotel with a pool, special rates, and a good nightlife

at time 5 will generate 28 solutions. These solutions are the same as those shown in Listing 3.11.

Listing 3.10: Time 5: Realistic Example 1 for Question 5

?− f i n d a l l (H, p rove ([h o t e l f o r m e 4 (a l e x a n d r o s , H, 5 , n i c o s i a , p l e a s u r e ,

a lone , poo l (H, 5) , s p e c i a l r a t e s (H , 5))] , D e l t a) , Bag) ,

l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Bag = [7 , 7 , 8 , 8 , 9 , 9 , 10 , 10 , 3 1 | . . .] ,

N u m b e r o f s o l u t i o n s = 2 8 .

Listing 3.11: Time 5: Realistic Example 2 for Question 5Evg
en

ios
 H

ad
jiso

ter
iou

60

?− f i n d a l l (H, p rove ([h o t e l f o r m e 4 (a l e x a n d r o s , H, 5 , n i c o s i a , p l e a s u r e ,

a lone , poo l (H, 5) , g o o d n i g h t l i f e (H, 5 , n i c o s i a))] , D e l t a) , Bag) ,

l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Bag = [7 , 7 , 8 , 8 , 9 , 9 , 10 , 10 , 2 4 | . . .] ,

N u m b e r o f s o l u t i o n s = 3 6 .

Finally, the attack relation is run, which allows negative information, through questions 3 and

4. If a user asks for a hotel without playground, eight results are obtained (see Listing 3.12), a

question is asked with negative information as before and with one parameter that the user wants,

such as good nightlife, pool, or special rate, eight eight, and two recommendations are obtained,

respectively. Therefore, as positive parameters are more likely to be offered by many hotels, it is

beneficial to obtain negative information.

Another way for narrowing down the recommendations from the system is to guide the infor-

mation that the user provides. As demonstrated, many hotels have similar parameters, and these

parameters may differ wrt specific details. A query can be created that will be dynamic, in the

sense that the program can be run as the information is provided by the user. Given the last exam-

ple where the user does not want hotels with playgrounds if the user provides one parameter that

they prefer, as demonstrated previously, the recommendations will be the same whether the user

asks for a good nightlife or a pool. Since this information in known beforehand, it can be uses

as an advantage. Since the solutions will not be more focused if such information is provided,

the user can be asked if they want special rates instead. If the answer is yes then two solutions

remain, as shown above. However, if user says no, this information can be used to narrow down

the solutions because instead of having one negative piece of information, there are two negative

pieces of information.Evg
en

ios
 H

ad
jiso

ter
iou

61

Listing 3.12: Time 5: Realistic Example for Question 3

?− f i n d a l l (H, p rove ([h o t e l f o r m e 2 (a l e x a n d r o s , H, 5 , n i c o s i a , p l e a s u r e ,

a lone , p l a y g r o u n d (H, 5))] , D e l t a) , Bag) ,

l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Bag = [2 4 , 25 , 26 , 28 , 29 , 30 , 31 , 3 1] ,

N u m b e r o f s o l u t i o n s = 8 .

In a case where this system does not provide any recommendations a meta-level, a query can be

applied that can inform the user that no hotels are found and ask the user to alter the information

that has been provided. Other hotels can be recommended, even if they do not meet all of the

criteria that is provided by the user. In this case, what criteria each recommendation has can be

clearly indicated, leaving the user to make decisions from there.

Until this point, random data for the hotel database has been used. Our Tables 3 and 4 may

show that the application recommends many hotels, but after investigating these results the rec-

ommended solutions do not differ, as the recommended hotels have similar parameter spaces. We

have also prepared another hotel database for the application ‘Hotel for ME’ (see Appendix D) to

accept time 0; at this time point, arithmetic progression was added to indicate which hotels offer

special rates (1, 3, 5, . . .), a cool season (2, 5, 8, . . .), pool (5, 9, 13, . . .), have a conference room

(2, 7, 12, . . .), and have a playground (4, 7, 10, . . .). The program ran again at time 0 and the results

in Listing 3.13 and the Bar Chart in Figure 10 were obtained. Here, as more information is pro-

vided, the number of solutions becomes more focused, and at the end, only one recommendation

remains.

Listing 3.13: Time 0: Discrete Hotels

% At Time 0Evg
en

ios
 H

ad
jiso

ter
iou

62

Time Questions % of solution loss

Q1 Q2 Q5 Q6 Q1 to Q2 Q2 to Q5 Q5 to Q6

1 1384 1232 458 66 11% 63% 86%

2 1300 1028 426 82 21% 59% 81%

3 1463 1157 482 226 21% 58% 53%

4 1189 949 483 321 20% 49% 34%

5 921 843 530 226 8% 37% 57%

6 1071 1021 455 0 5% 55% 100%

7 1095 1044 450 0 5% 57% 100%

8 1131 1059 501 0 6% 53% 100%

9 1014 934 414 0 8% 56% 100%

10 1000 925 456 0 8% 51% 100%

11 1314 1199 548 88 9% 54% 84%

12 1147 1056 538 131 8% 49% 76%

Average 11% 53% 81%

Table 3: Number of Solutions at Different Time Points 1

?− f i n d a l l (H, p rove ([h o t e l f o r m e (a l e x a n d r o s , H, 0 , n i c o s i a , b u s i n e s s ,

f a m i l y (c h i l d r e n (4)))] , D e l t a) , Bag) , l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Bag = [1 , 3 , 5 , 7 , 9 , 11 , 13 , 15 , 1 7 | . . .] ,

N u m b e r o f s o l u t i o n s = 5 0 .

?− f i n d a l l (H, p rove ([h o t e l f o r m e 1 (a l e x a n d r o s , H, 0 , n i c o s i a , b u s i n e s s ,Evg
en

ios
 H

ad
jiso

ter
iou

63

Time Questions % of solution loss

Q3 Q4 Q3 to Q4

1 58 12 79%

2 207 51 75%

3 61 26 57%

4 180 142 21%

5 124 110 11%

6 132 128 3%

7 72 72 0%

8 68 68 0%

9 46 46 0%

10 6 6 0%

11 13 13 0%

12 0 0 0%

Average 21%

Table 4: Number of Solutions at Different Time Points 2

f a m i l y (c h i l d r e n (4)) , poo l (H , 0))] , D e l t a) , Bag) ,

l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Bag = [5 , 9 , 13 , 17 , 21 , 25 , 29 , 37 , 4 1 | . . .] ,

N u m b e r o f s o l u t i o n s = 2 1 .

?− f i n d a l l (H, p rove ([h o t e l f o r m e 4 (a l e x a n d r o s , H, 0 , n i c o s i a , b u s i n e s s ,Evg
en

ios
 H

ad
jiso

ter
iou

64

Question 1

Question 2

Question 5

Question 6

50

21

4

1
Solutions

Figure 10: Discrete Hotels at Time 0

f a m i l y (c h i l d r e n (4)) , p oo l (H, 0) , p l a y g r o u n d (H, 0))] , D e l t a) , Bag) ,

l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Bag = [1 3 , 37 , 61 , 8 5] ,

N u m b e r o f s o l u t i o n s = 4 .

?− f i n d a l l (H, p rove ([h o t e l f o r m e 5 (a l e x a n d r o s , H, 0 , n i c o s i a , b u s i n e s s ,

f a m i l y (c h i l d r e n (4)) , poo l (H, 0) , p l a y g r o u n d (H, 0) ,

c o n f e r e n c e r o o m (H, 0))] , D e l t a) , Bag) , l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Bag = [3 7] ,

N u m b e r o f s o l u t i o n s = 1 .

3.5 Summary

In this Chapter we show how real-life problems such as personalized and adaptive hotel book-

ing can be formalized. We first formalize the general problem in time based preference argumen-

tation. Then we study specifically an application, ‘Hotel for ME’, and show how it operates in aEvg
en

ios
 H

ad
jiso

ter
iou

65

time-based AF for decision making. Under different time points, the current state of the world,

and the user’s needs our system is able to adapt and make decisions that are relevant to the user.

Through evaluations, we show that our system qualifies options based on the user, the pragmatic

considerations, and the user’s preferences. Argumentation techniques and predefined priority re-

lations can be applied to qualify one option over another.

Evg
en

ios
 H

ad
jiso

ter
iou

Chapter 4

Adaptation Over Time

“Do not fear mistakes. There are none.”

Miles Davis

4.1 Introduction

The need to have a dynamic system is more obvious by what has already been discussed in

previous Chapters. As the world changes and the user’s needs as time passes by may change,

systems that are able to keep track of these changes and are able to adapt dynamically are needed.

Additionally, arguments may not cease to exist but their strength may be altered at different time

points, thus, new systems should be able to prioritized arguments and attacks on arguments. This

is what we will discuss in this Chapter.

We have created in an abstract level a system based on argumentation, that keeps track of the

world and based on different time points, different values are then given to each option. In this

way changes over time can now be tracked and under the user needs, and the options parameter

space one option will be stronger over another option under a given time period. Adaptation over

66

Evg
en

ios
 H

ad
jiso

ter
iou

67

time is handled through argumentation. Therefore, we will use argumentation on decision making

but also for tracking decisions over time. Based on the ‘Hotel for ME’ example, available options

can then be prioritized and narrowed down.

Specifically, we have created an argumentation based formulation of the action language E

for RAC, extending an existing based argumentation based formulation of E to accommodate

arguments based on property observations, and arguments for backwards persistence. Given a

time line, we introduce priorities on arguments and observations to manage and to always have a

good representation of the world.

RAC has been an important problem in the development of AI. Starting with the early and

foundational work of the Situation and Event Calculi [58, 51] there has been a wide interest in

understanding and solving the central problems that underly RAC, namely the frame, ramification

and qualification problems leading to several ‘action languages’ such as theA, C and E languages

[33, 57, 48] and the fluent calculus [79].

The relatively recent realization that non-monotonic reasoning can be addressed using argu-

mentation (e.g. [45, 24, 13, 10]) has led to the study of RAC through argumentation in works such

as [49, 82]. Hence given some narrative information we can use argumentation to capture tempo-

ral projection from this and general knowledge about the causal laws of our problem domain. As

shown in [49], where the language E ([48]) for RAC was formalized in terms of argumentation,

default persistence over time can be captured by assigning higher priority to arguments that are

based on later events over arguments based on earlier events.

We extend this argumentation based formulation of language E by introducing arguments

based on property observations that one typically finds in any given narrative. We will also in-

troduce in the framework new arguments for backward persistence. This will allow us to recover

and also extend language E , giving a semantic meaning to domains that cannot be interpreted
Evg

en
ios

 H
ad

jiso
ter

iou

68

under E . With this form of backward persistence the extended interpretation of the language E

comes closer to the spirit of the original Event Calculus (EC) [51] which also includes notions

for backward temporal conclusions. Our work can thus also be seen as a way of increasing the

expressiveness of the original EC by allowing for example positive but also negative observations.

We will be mainly concerned with domains that language E cannot give models and exogenous

qualification is required. From a purely technical point of view we extend the argumentation

formulation of language E giving a semantics to domains where E fails to do so. From a conceptual

point of view we aim to address the qualification problem in RAC (see e.g. [78]) in a natural

and modular way. This will rely on capturing a relative strength between arguments where, for

example, arguments based on observations are stronger than other types of arguments.

RAC is an area that is concerned with the study of how (some of) the properties of our problem

domain, normally called Fluents, change when new information is acquired such as the occurrence

of Actions and how this view of the problem world is affected by the explicit observation of some

properties holding or not at a particular stage (or time) in the flow of change. The change is

governed by domain specific causal laws that describe how the particular properties (or fluents)

of interest are generated or terminated by actions and the domain independent principle of frame

inertia that properties do not change but rather persist, unless some action occurrence causes them

to change via some causal law. The main aim of the reasoning is then to maintain, normally under

the case of incomplete information, an accurate view of the problem world as things occur and/or

are observed with the passage of time given in a specific narrative of interest.

To illustrate the types of problems that will concern us and the general approach that we will

follow let us consider a standard example in RAC, that has the name the ‘Car Park Domain’ [50].

This domain when expressed in the language E contains one action constant ParkingCar and one

property fluent CarInParkingSpace together with the causal law that ‘parking the car causes
Evg

en
ios

 H
ad

jiso
ter

iou

69

the car to be in the parking space’. This causal law together with the specific narrative information

that we park the car at time 4 and that later at time 8 we observe that the car is not where it was

parked, is represented by the following domain description:

ParkingCar initiates CarInParkingSpace (∆1)

ParkingCar happens-at 4 (∆2)

¬CarInParkingSpace holds-at 8 (∆3)

For domains like this, where a fluent (e.g. CarInParkingSpace) changes its truth value

without any known causal explanation, language E does not have a model. Our extended AF

of the language E that includes arguments for observations and for backwards persistence will

allow arguments for both truth values of the fluent within the time interval (4, 8). Forwards per-

sistence from the action ParkingCar (∆2) that initiates CarInParkingSpace for every time

point t > 4 (∆1) comes into conflict with backwards persistence from the observation argument

¬CarInParkingSpace (∆3). Allowing the same priority between conflicting forward persis-

tence and backwards persistence arguments will give the natural interpretation of unknown value

for the fluent CarInParkingSpace for every t ∈ (4, 8).

Pictorially, the way our AF behaves as we update the domain description for the parking

domain example, is illustrated in Figure 11 where KB denotes the domain description, PC the

action ParkingCar and CPS the fluentCarInParkingSpace. The arrows in the pictures show

the different arguments (for the fluent CSP and its negation) that exist in each case.

Suppose now that we extend the parking domain example by adding in the narrative another

observation at time 12 of the form:Evg
en

ios
 H

ad
jiso

ter
iou

70

4
PC

-�
CPS¬CPS

8
¬CPS

-�
¬CPS¬CPS

After update (∆3)

4
PC

-�
CPS¬CPS

8
After update (∆2)

4 8
KB initially contains (∆1)

Figure 11: Parking Domain

CarInParkingSpace holds at time 12 (∆4)

This will also result in an unknown value for the fluent CarInParkingSpace in the interval

(8, 12). This arises analogously from conflicting arguments based on the two observation argu-

ments (∆3) and (∆4). Forward persistence from ¬CarInParkingSpace (∆3) is equally strong

to backwards persistence from CarInParkingSpace (∆4) and hence we can build equally good

(or strong) arguments both for the truth and falsity of the fluent at any time point in this interval.

Finally, we note that by giving higher priority to conflicting forward persistence over backwards

persistence we will see that our framework can fully recover language E and hence in this respect

it forms a conservative extension of E .

The argumentation based formalization that we will develop in this Section is essentially a

preference based (see e.g. [63]) realization of an abstract AF [24] under the admissibility se-

mantics. Following the approach in [49] we will build the preference based AF in terms of logic

programming rules with a priority relation over these rules. Our work then can be seen as an ex-

ample where the general theory of argumentation, that has been extensively and widely developedEvg
en

ios
 H

ad
jiso

ter
iou

71

over the past two decades in AI (see e.g. [10, 67]), finds concrete application in addressing the

foundational problems of temporal persistence and knowledge qualification.

This synthesis of ideas opens up possibilities of extending the application of argumentation

from ‘static problems’ to variations of these where the problem environment is dynamically chang-

ing as new information becomes available. Using argumentation for reasoning about changes in

the problem’s world domain offers a principled way to manage the changes in the AF under which

the application problem is expressed, thus extending the use of argumentation from static to ‘dy-

namic problems’.

4.2 A Brief Review of Language E

Language E [48] is inspired by the EC [51]. As most other action languages, language E has

a set of action constants, AC, that name actions that can occur and a set of fluent constants, F ,

that name the different properties that can change in the problem domain. Fluent literals are either

positive or negative fluent constants. It also has a set of time points, T , s.t. for time points T1 and

T2, the notation T1 < T2 indicates that time point T1 comes before time point T2 and T1 6= T2.

The language uses three kinds of sentences or propositions defined as follows, where A is an

action constant, F is a fluent constant, T is a time point, L is a fluent literal and C is a set of fluent

literals:

1. c-propositions (c stands for causes), of the form ‘A initiates F when C’ or ‘A terminates

F when C’,

2. h-propositions (h stands for happens) of the form ‘A happens-at T ’,

3. t-propositions (t stands for time-point) of the form ‘L holds-at T ’.Evg
en

ios
 H

ad
jiso

ter
iou

72

The first type of sentence is used to express the causal laws of our domain (i.e., how action

occurrences generate a property or stop a property from holding). The other two types of sentences

are used to describe the particular narratives of interest. The first is used to state what actions have

occurred while the latter type of sentences, namely the t-propositions, which will also be called

observations, are used to represent properties of the world known to hold at particular time points.

A domain description D is a set of t-propositions, h-propositions and c-propositions. The

c-propositions form the background world knowledge of the domain and the t-propositions and

h-propositions the narrative of the domain.

The semantics of language E is given in terms of its models. These assign a truth value,

true or false to every fluent at every time point in the domain in a way that satisfies a set of

constraints which reflect the axiom of persistence of the truth value of fluents. The following

definitions (taken from [48]) formalize the notion of a model.

Definition 18 (Interpretation) Given a domain description D, an interpretation of D is a mapping

H : F × T 7→ {true, false}

where F is the set of fluent constants in D and T is the set of time points in E . A fluent literal F

(resp. ¬F) is satisfied at T by H iff H(F, T) = true (resp. H(F, T) = false).

An interpretation may or may not support the initiation or termination of a fluent property

depending on whether the preconditions in the causal laws of the domain description are satisfied

or not under the interpretation.

Definition 19 (Initiation-termination point) Given an interpretation H of a domain description D,

a time point T is an initiation (resp. termination) point of a fluent F in H in D when, D contains

a combination of a c-proposition ‘A initiates (resp. terminates) F when C’ and an h-proposition

‘A happens-at T ’, s.t. C at T is satisfied by the interpretation H .
Evg

en
ios

 H
ad

jiso
ter

iou

73

An interpretation is then a model when it satisfies the property of persistence, namely that,

within any time interval the truth value assigned by a model to any fluent remains the same or per-

sists, changing from false to true (resp. from true to false) only at an initiation (resp. termination)

point for that fluent that is supported by some action occurrence and associate causal law under

which the action changes the fluent.

Definition 20 (Model) Let D be a domain description. An interpretation H is a model of D iff

for every fluent constant F and time points T1, T2, T3 the following properties hold:

1. If there is no initiation-point or termination-point T2 for F in H in D s.t. T1 ≤ T2 < T3,

then H(F, T1) = H(F, T3).

2. If T1 is an initiation-point for F in H in D, and there is no termination-point T2 for F in H

in D s.t. T1 ≤ T2 < T3, then H(F, T3) = true.

3. If T1 is a termination-point for F in H in D, and there is no initiation-point T2 for F in H

in D s.t. T1 ≤ T2 < T3, then H(F, T3) = false.

4. For all t-propositions in D of the form ‘F holds-at T1’, H(F, T1) = true, and for all t-

propositions in D of the form ‘¬F holds-at T2’, H(F, T2) = false.

The property of persistence is expressed by the first three conditions with the second and third

condition also capturing the semantic meaning of the causal laws expressed by the c-propositions.

The fourth condition imposes the requirement that models must respect all the observations (t-

propositions) of fluents literals contained in the narrative of the given domain description.

The above definition of a model is a slightly extended definition of the original definition

in [48] that allows non-deterministic models when we have domains where there exist time

points that can be simultaneously initiation and termination points for the same fluent. For this
Evg

en
ios

 H
ad

jiso
ter

iou

74

D
′′

-F

T1
Obs F

-¬F

T2
Obs ¬F

D
′

-F

T1
A = In F

-¬F

T2
Obs ¬F

D

-F

T1
A = In F

-F

T2
Obs F

Figure 12: Example Domains

we have replaced, in the second and third condition of the original definition, the restriction on

the intermediate time point, T2, to be strictly greater than T1 (i.e., the restriction T1 < T2, by

T1 ≤ T2).

Given the notion of a model, entailment and consistency of formulae of the form ‘L holds-at

T ’, where L is a fluent literal are then defined in the usual way. Hence ‘L holds-at T ’ is consistent

in D iff there exists a model, M , of D s.t. M(F, T) = true when L = F and M(F, T) = false

when L = ¬F . Similarly, ‘L holds-at T ’ is entailed by D when the above holds for every model,

M , of D.

The following simple examples illustrate the (above variant of) language E . Let us consider

the domain descriptionsD,D
′

andD
′′

shown in Figure 12, whereA andB are an action constants

and T1 < T2 are two time points.

Example 7 (Domain D)

A initiates F

A happens-at T1

F holds-at T2Evg
en

ios
 H

ad
jiso

ter
iou

75

In domain D we have an initiation point at time T1 and at time T2 we observe F . Models of

language E , for domain D, require F to be true for all T > T1 whereas, for T
′ ≤ T1 a model can

assign F to be either true or false at all such time points. Suppose we replace the observation that

F holds at T2 with the observation that it does not hold, i.e. we have the domain D
′

given by:

Example 8 (Domain D
′
)

A initiates F

A happens-at T1

¬F holds-at T2.

Then this domain, which is similar to the car parking domain discussed in the introduction of

this Chapter, does not have any models. The generation of F holding onwards from T1 cannot be

reconciled with the observation of ¬F at T2. Similarly, for the domain D
′′
, given by:

Example 9 (Domain D
′′
)

F holds-at T1

¬F holds-at T2

language E is inconsistent and has no models. The persistence of F holding onwards from T1

cannot be reconciled with the observation of ¬F at T2. Finally, consider the domain D
′′′

given

by:

Example 10 (Domain D
′′′

)

A initiates F

B terminates F

A happens-at T1

B happens-at T1Evg
en

ios
 H

ad
jiso

ter
iou

76

We have two possible models for times after time T1. In one F holds true for all such time

points and in the other F is false for all time points after time T1. Hence if we extend this domain

with either of the observations that F holds-at T2 or ¬F holds-at T2 the extended domain remains

consistent.

4.3 Argumentation Formulation

The language E has been reformulated in terms of argumentation [49] within the preference-

based AF of logic programs with priorities, LPwNF , under its admissibility semantics [46, 22].

In this the information from t-propositions (observations) is not used in the argumentation pro-

cess but rather these observations are imposed as a-posteriori constraints on the argumentation

formulation.

We will extend this reformulation so that t-propositions are taken into account directly within

the argumentation. To do so we will generalize the original formulation by introducing new ar-

guments that are rooted or based on observations. In addition, we will use backward temporal

persistence arguments as well as forward ones to allow us to address the qualification problem.

To translate a given domain description D into an argumentation program in LPwNF , all

individual h- and c-propositions translations are included in the background theory as follows.

We will consider time to be discrete scalar.

Definition 21 (Background theory for D) The background theory for D is the theory B(D) given

by:

• for all time points T and T
′

and action constants A:

B(D) ` T ≤ T ′
iff T ≤ T ′

,

B(D) ` T < T
′

iff T < T
′
,Evg

en
ios

 H
ad

jiso
ter

iou

77

HappensAt(A, T) ∈ B(D) iff ‘A happens-at T ’ is in D, and

Observation(L, T) ∈ B(D) iff ‘L holds-at T ’ is in D.

• for each c-proposition ‘A initiates F when {L1, . . . Ln}’ in D, B(D) contains the rule

Initiation(F, t)← HappensAt(A, t),Λ(L1), . . . ,Λ(Ln), and

• for each c-proposition ‘A terminates F when {L1, . . . Ln}’ in D, B(D) contains the rule

Termination(F, t)← HappensAt(A, t),Λ(L1), . . . ,Λ(Ln)

where Λ(Li) = HoldsAt(Fi, t) if Li = Fi, and Λ(Li) = ¬HoldsAt(Fi, t) if Li = ¬Fi,

for any fluent constant Fi,

• B(D) contains no other rules.

The above definition is essentially the same as in [49] with the exception that the given ob-

servations are also added in B(D) and hence the whole narrative forms part of the background

knowledge. Any such background knowledge is then extended by the following logic program

rules and priorities between these to give the full argumentation logic program with priorities

corresponding to a given domain description.

Definition 22 (Argumentation program of D) The argumentation program corresponding to a do-

main D is AD ≡ (B(D),A, <) where:

• B(D), is the corresponding background knowledge of D.

• The set, A, consists of the following argument rules. For all time points t1, t2 and t s.t.

t1 < t < t2,

Evg
en

ios
 H

ad
jiso

ter
iou

78

Persistence: 1

HoldsAt(f, t2)← HoldsAt(f, t) PFP [f, t2; t]

HoldsAt(f, t1)← HoldsAt(f, t) PBP [f, t1; t]

¬HoldsAt(f, t2)← ¬HoldsAt(f, t) NFP [f, t2; t]

¬HoldsAt(f, t1)← ¬HoldsAt(f, t) NBP [f, t1; t]

Local Generation Arguments:

HoldsAt(f, t+ 1)← Initiation(f, t) PGF [f, t]

¬HoldsAt(f, t)← Initiation(f, t) NGB[f, t]

¬HoldsAt(f, t+ 1)← Termination(f, t) NGF [f, t]

HoldsAt(f, t)← Termination(f, t) PGB[f, t]

Local Observation Arguments:

HoldsAt(f, t)← Observation(f, t) PO[f, t]

¬HoldsAt(f, t)← Observation(¬f, t) NO[f, t]

Initial Assumptions:

HoldsAt(f, 0) PA[f, 0]

¬HoldsAt(f, 0) NA[f, 0]

• The priority (or strength of argument) relation, <, between these arguments is given as

follows. Let t, t∗, t1 and t2 be time points:

Set 1: If t1 < t2

PFP [f, t∗; t1] < NFP [f, t∗; t2] and NFP [f, t∗; t1] < PFP [f, t∗; t2],

1PFP (resp. PBP) stands for Positive Forward (resp. Backward) Persistence, NFP (resp. NBP) stands for
Negative Forward (resp. Backward) Persistence, PGF (resp. PGB) stands for Positive Forward (resp. Backward)
Generation, NGF (resp. NGB) stands for Negative Forward (resp. Backward) Generation, PO (resp. NO) stands for
Positive (resp. Negative) Observation and finally PA (resp. NA) stands for Positive (resp. Negative) Assumption.Evg
en

ios
 H

ad
jiso

ter
iou

79

PBP [f, t∗; t2] < NBP [f, t∗; t1] and NBP [f, t∗; t2] < PBP [f, t∗; t1].

Set 2: If t1 ≤ t2

NFP [f, t2 + 1; t1] < PGF [f, t2] and PFP [f, t2 + 1; t1] < NGF [f, t2].

Set 3: At 0,

PA[f, 0] < NO[f, 0] and NA[f, 0] < PO[f, 0].

Set 4: For any t,

NGB[f, t] < PO[f, t] and PGB[f, t] < NO[f, t].

PGF [f, t] < NO[f, t+ 1] and NGF [f, t] < PO[f, t+ 1].

Set 5: If t1 < t2

NFP [f, t2; t1] < PO[f, t2] and PFP [f, t2; t1] < NO[f, t2],

NBP [f, t1; t2] < PO[f, t1] and PBP [f, t1; t2] < NO[f, t1].

This definition introduces four different types of arguments and the relative strength between

them. These types of arguments express in a natural way the defeasible conclusions that we can

draw or support from the non-defeasible information in B(D).

Let us explain the various parts of this definition. Consider first the various arguments rules.

• Persistence Rules: These rules express the possibility of fluent properties persisting for-

ward and or backward in time. The first rule captures the forward persistence from a prop-

erty holding at t to holding at a latter point t2, while the second rule captures the backward
Evg

en
ios

 H
ad

jiso
ter

iou

80

persistence from a property holding at t to holding at an earlier point t1. The other two rules

are similar but for the persistence of properties not holding.

• Local Generation Arguments: These are argument rules for the causation of a property

by an event. The first rule says that the effect of an initiation point at time t starts at the

very next time point, while the second rules says that from this initiation point we have an

argument that its effect does not hold at the time of the event that generates the property.

Analogously for the following two rules based on termination points.

• Local Observation Arguments: Observations give directly arguments for fluents holding

or not at the time of observation.

• Initial Assumptions: Assumptions can only be introduced at time 0 and can be for a prop-

erty holding or not holding.

Let us now comment on the priority relation. We first note that the priority relation, <, in an

argumentation program is independent of the domain description, D. It is a universal relation that

will us capture the general principles of persistence and qualification.

• Set 1: The first set of priorities in the above definition make forward persistence arguments

that are based on a later time-point stronger than conflicting forward persistence arguments

that are based on an earlier time-point. Analogously, backward persistence arguments that

are based on earlier time points are stronger than conflicting backward persistence argu-

ments that are based on later time-points.

• Set 2: This set of priorities expresses the fact that the generation of effects is stronger than

opposing persistence.Evg
en

ios
 H

ad
jiso

ter
iou

81

• Set 3 - Set 5: The final three sets of priorities give, as expected, higher strength to observa-

tion arguments over any other type of conflicting arguments.

We note that included in the types of arguments are the two local generation arguments,

NGB[f, t] and PGB[f, t], which are not usually found in formulations of many RAC frameworks,

with a notable exception of the original EC. It is important though to stress that these arguments

only support the possibility for the occurrence of events and their initiation or termination of ef-

fects to affect the past. The argumentation formulation allows us to capture this possibility in

a weak form, by saying that there exists an argument for something holding in the past due to

the occurrence of events. Then depending on the priority we give to this argument over other

arguments, its effect on the semantics would vary. For example, as we will see below if we as-

sign forward persistence arguments to be stronger than these local generation arguments (or more

generally stronger than backwards persistence arguments) then these arguments do not have any

effect on the semantics (i.e., no maximal admissible extension can contain these local generation

arguments).

In the priority relation there is no priority between conflicting forward and backward argu-

ments. Such priorities can be additionally set when we wish to impose further properties on the

temporal reasoning. Finally, we note that the assumption arguments are not chosen to be weaker

than the conflicting backwards persistence arguments to allow the freedom of incomplete initial

states.

The semantics of these LPwNF argumentation programs is given through the standard ar-

gumentation notion (see [24, 46]) of maximally admissible subsets of the given argumentation

program, called admissible extensions, as follows.Evg
en

ios
 H

ad
jiso

ter
iou

82

Definition 23 (Background logic) The background monotonic logic is the tuple (L,`), where the

language L consists of all ground rules of the form l0 ← l1, l2, . . . , ln (n ≥ 0) that belong to

B(D) or A with each li a classical literal. l0 is called the head of the rule and l1, l2, . . . , ln is

called the body of the rule. ` is obtained by the repeated application of the modus ponens rule.

The above definition expresses formally the logical reasoning that allows the link of the back-

ground knowledge with the argument rules so that arguments supporting a fluent literal conclusion

can be constructed. These arguments are grounded on the narrative given in the domain description

D and translated in the corresponding background knowledge B(D).

Definition 24 (Argument) Let an argumentation program (B(D),A, <) be given. An argument

∆ is a subset of argument rules from A. An argument supports any conclusion derived under the

backround logic from B(D) ∪∆.

The attacking relation is then defined amongst sets of argument rules that have conflicting

conclusions by taking into account the priorities on the argument rules as given in Definition 22.

Definition 25 (Attack) Let G,W be two non-empty sets of argument rules. G attacks W iff there

exists a literal l of the form HoldsAt(f, t) or ¬HoldsAt(f, t) and sets G1 ⊆ G and W1 ⊆ W

s.t.:

(i) B(D) ∪G1 `min l
2 and B(D) ∪W1 `min ¬l

(ii) if there exist r
′ ∈ G1, r ∈W1 s.t. r

′
< r then there exist r

′ ∈ G1, r ∈W1 s.t. r < r
′
.

Hence the attacking relation is defined by lifting the priorities from the level of single argument

rules to sets of these. For a set G of argument rules to attack another set W it must contain at least

one rule of higher priority than a rule in the attacked set W or otherwise the set W must (also) not

2B(D) ∪X `min l iff B(D) ∪X ` l and there does not exist X
′
⊂ X s.t. B(D) ∪X

′
` l

Evg
en

ios
 H

ad
jiso

ter
iou

83

contain any rule of higher priority than some rule in the attacking set G. In this way we ensure

that the attacking set is not ‘weaker’ than the attacked set as either it contains a stronger rule or

the two sets are non-comparable. Note that if a set is inconsistent (i.e., it derives both a literal and

its negation) then it attacks itself as the second condition in the definition of the attacking relation

is trivially satisfied.

The following definition introduces some technical conditions on sets of argument rules that

are more specific to the use of argumentation to the particular application of RAC.

Definition 26 (Closed, complete and compact) A set ∆ of argument rules is closed if all the

bodies of its rules are derived via ` from the background theory B(D) extended by ∆. ∆ is

complete if for any fluent f and time point t, ∆ ` HoldsAt(f, t) or ∆ ` ¬HoldsAt(f, t).

Finally, ∆ is compact if ∆ is closed and does not contain a pair of argument rules, PFP [f, t;]

and PBP [f, t;] or NFP [f, t;] and NBP [f, t;], for any fluent f and any time point t.

The condition of closeness is a technical condition to avoid considering unnecessarily argu-

ment sets that contain rules which cannot be used to support conclusions. Similarly, the com-

pactness property imposes a uniqueness of support for the conclusions drawn through persistence

arguments requiring that any such conclusion (timed fluent literal) is supported in a uni-directional

way, i.e. either by a forwards persistence or by backwards persistence but not (redundantly) by

both such arguments. These technical conditions are conditions that avoid redundancy and help

to simplify the framework and the proofs of its formal properties, particularly the link with the

model theory of language E when the two approaches coincide.

Finally, the property of completeness is a desired property for the semantics of the approach

so that the admissible extensions, that will define the semantics, are able to decide for any fluent

at any time point its status, i.e they can populate the whole time line with a decision on whetherEvg
en

ios
 H

ad
jiso

ter
iou

84

any fluent holds or not. This condition is also motivated by the technical consideration of relating

the semantics to the model theory semantics of the language E .

Definition 27 (Admissibility) Let D be a domain description and AD ≡ (B(D),A, <) its corre-

sponding argumentation program. Let S be a closed subset of A. Then S is admissible iff:

(i) B(D) ∪ S does not derive a literal l and its complement ¬l and

(ii) for any S
′ ⊆ A if S

′
attacks S then S attacks S

′
.

This is the standard definition of admissibility. A subset of arguments is admissible if it does

not derive both HoldsAt(f, t) and ¬HoldsAt(f, t) for any fluent and time point and therefore it

does not attack itself and it can counter-attack any subset of arguments that attacks it.

The semantics of domain descriptions is then given by putting these notions together to define

admissible extensions of the corresponding argumentation program.

Definition 28 (Admissible extension) Let D be a domain description and AD ≡ (B(D),A, <)

its corresponding argumentation program. Let S be a closed subset of A. Then ∆ = B(D)∪ S is

an admissible extension of AD iff S is a complete and compact admissible set.

We note that alternatively we could have omitted the explicit requirement of completeness and

replaced this with the maximality condition as we normally have with the preferred semantics of

argumentation. Nevertheless, remaining within the spirit of RAC and as complete extensions are

maximal it is natural to define the semantics only in terms of the complete admissible extensions

provided that complete extensions exist, which as we will see in the next Section, is indeed the

case. Complete admissible extensions then correspond more closely to the stable semantics of

argumentation as they cannot be extended consistently (i.e., without self-conflict) by any otherEvg
en

ios
 H

ad
jiso

ter
iou

85

D
′′

-F

T1
Obs F

�F

Tk Tk+1

-¬F

T2
Obs ¬F

�¬F

D
′

-F

T1
A = In F

�¬F -¬F

T2
Obs ¬F

�¬F

D

-F

T1
A = In F

�¬F -F

T2
Obs F

�F

Figure 13: Example Domains and Arguments

subset of argument rules that support a conclusion that is not already supported by the complete

extension.

Conclusions from an admissible extension are then drawn using the derivability relation, `,

given in Definition 23, with credulous conclusions those that can be derived from at least one

admissible extension and sceptical conclusions as those that are derived in every admissible ex-

tension.

To illustrate the above definition of the argumentation semantics let us consider our earlier ex-

ample domainsD (Example 7), D
′

(Example 8) andD
′′

(Example 9) within the AF defined above

(Figure 13). In domain D, for all T > T1 the strongest (and hence admissible) argument is for F

to hold through a local generation argument at T1 + 1 and then by forwards persistence arguments

at any other time after T1. Otherwise, from T2 onwards we can use the observation argument at T2

and forwards persistence arguments from this to support strongly F for times greater than T2. For

T
′ ≤ T1 we can have admissible arguments for F or its negation ¬F depending on the assumption

we make at the initial time point. Note also that the backwards persistence arguments for F from

T2 to some time point equal to or before T1 would not be stronger than the forwards persistence ofEvg
en

ios
 H

ad
jiso

ter
iou

86

¬F starting from time 0 through an assumption argument for ¬F . Nor would it be stronger than

the backwards negative generation argument for ¬F based on the initiation point T1 for F .

For the domain D
′′

the strongest argument for all time points T ≥ T2 is the observation

argument for ¬F at T2 combined with a forward persistence argument from T2 to any such time

point T . For times between T1 and T2 we have admissible arguments for either F or ¬F : at some

time point Tk, T1 ≤ Tk < T2, the fluent F changes from true to false at Tk+1. This indicates

that the given narrative has some missing information within this time interval that would explain

the change in F . Similar results hold for D
′

where also in this case there exists an admissible

extension where ¬F holds for all times T , s.t. T1 ≤ T ≤ T2. This captures the possibility that the

generation of F at T1 has failed through some exogenous qualification.

The examples that follow illustrate further the argumentation formulation. Let f be any fluent

and t, T time points:

Example 11 Let D1 be a domain with no h-propositions and t-propositions. The only possible

admissible extensions is for f (resp. ¬f) to hold for all times t as there does not exist a stronger

argument that attack the set S = {PA[f, 0], PFP [f, t; 0]}, for all t > 0. Possible attacks on S

contain the argument NA[f, 0] and S counterattacks it through PA[f, 0]. Admissible extensions

in this example domain are the same as the (maximally) admissible extensions of language E .

Example 12 Let D2 be a domain with no t-propositions containing h-propositions so that it nec-

essarily has two initiation points of f at t1, t2 s.t. t2 > t1. In this case, language E models require

f to hold for all T > t1. In our extended AF, f will hold for all T > t2 in all admissible extensions.

For time points T
′ ∈ (t1, t2] we can build an argument for f , ({PGF [f, t1], PFP [f, T

′
; t1 + 1]})

and an argument for its negation ¬f , ({NGB[f, t2], NBP [f, T
′
; t2]}) which are both admissible.

Hence between the two initiation points we cannot conclude that f is entailed, like language E ,Evg
en

ios
 H

ad
jiso

ter
iou

87

t
In F

--�
F F¬F

t2
In F

-�
F¬F¬F

0
D3

0 t
In F

--�
F F¬F

t2
D2

0 t t2
D1

‘Desert’
no t- and h-propositions

Figure 14: Examples

as f does not hold in all admissible extensions. We will see that our framework is closer to the

original EC in this respect. Also we will see that if we wish to fully recover language E we could

do this by assigning higher priority to forward persistence arguments over conflicting backwards

persistence arguments.

Note that if we additionally have in the domain D2 a termination point for f at time T
′′ ∈

(t1, t2) then the second type of argument sets that derives ¬f at points in between the two initi-

ation points before T
′′

would not be admissible anymore as it would be attacked by the stronger

backward persistence argument for f from T
′′
, namely from ({PGB[f, T

′′
], PBP [f, T

′
;T

′′
]}).

This can be understood as an indication that the given narrative in D2 has some missing informa-

tion between the time points t1 and t2 of the two initiation points.

4.4 Formal Results

In this Section we present a set of formal results that show the various properties that the

argumentation formulation given above has wrt persistence and qualification, how this formulationEvg
en

ios
 H

ad
jiso

ter
iou

88

gives meaning to any domain description theory and how it relates to and extends the original

model theoretic formulation of language E .

Firstly, as expected, we show that admissible extensions are consistent with the observations in

the given narrative. From now on we will consider only point-wise consistent domain descriptions

(i.e., domain descriptions that do not contain any pair of t-propositions of the form ‘f holds-at t’

and‘¬f holds-at t’).

Proposition 1 Let D be a point-wise consistent domain description and E an admissible exten-

sion of the corresponding argumentation program AD ≡ (B(D),A, <). Then E is consistent

with D, i.e. there does not exist a t-proposition, ‘f holds-at t’ (resp. ‘¬f holds-at t’) in D s.t.

E ` ¬HoldsAt(f, t) (resp. E `HoldsAt(f, t)).

Proof 1 see Appendix A.1.

This is a simple basic result that is needed for the main result of showing the existence of

admissible extensions for any description domain and for linking admissible extensions with the

models of language E , whenever such models exist. Indeed, it corresponds to the fourth condition

in the definition of a model of language E (see Definition 20).

The next result shows that the admissible extensions satisfy the important property of per-

sistence of derivation of fluent properties along the time line. Informally, it says that if between

two time points there is no information, either causal or observational in nature, that a fluent has

changed value then an admissible extension will derive a constant value for the fluent in this time

interval.

Lemma 2 Let D be a point-wise consistent domain description and E an admissible extension

of D. Let f be a fluent and tn < tm two time points s.t. there does not exist an initiation pointEvg
en

ios
 H

ad
jiso

ter
iou

89

nor a termination point for the fluent f in E 3 at any time t1 ∈ [tn, tm) nor there exists an

observation point for the fluent f in E at any time t2 ∈ (tn, tm). Then if E `HoldsAt(f, tn) and

E `HoldsAt(f, tm) hold or (respectively, E ` ¬HoldsAt(f, tn) and E ` ¬HoldsAt(f, tm) hold)

then E `HoldsAt(f, t) (respectively, E ` ¬HoldsAt(f, t)) holds, for every t ∈ [tn, tm].

Proof 2 see Appendix A.1.

Therefore the notion of admissibility in argumentation helps us to capture the requirement

of persistence. Admissible extensions must have this property of persistence as otherwise they

will have attacks that they cannot counter-attack. This plays an important role in showing the

next theorem which gives the central result of the argumentation formulation, namely that any

domain description D (with a countable narrative) is always consistent (i.e., there always exists an

admissible extension of the corresponding argumentation program of D).

Theorem 1 Let D be a point-wise consistent domain description with time structure that of the

natural numbers and a countable number of h-propositions and t-propositions. Then there exists

an admissible extension E of the corresponding argumentation program AD ≡ (B(D),A, <).

Proof 3 see Appendix A.1.

Hence any domain descriptionD is given a meaning under the above argumentation semantics.

For example, as we have seen above, the example domains D
′

(Example 8) and D
′′

(Example 9)

are consistent in our extended framework. These domains do not have any model in the language

E or an admissible extension in the earlier argumentation based reformulation of E in [49].

The formal link of our argumentation formulation of the language E with its original model

theoretic semantics is given by the following theorem.
3An initiation or termination point for a fluent f in an admissible extension E is defined as in Definition 19 where

now the preconditions C of the c-proposition are satisfied at T in E when the corresponding HoldsAT conclusions
are derived by E.

Evg
en

ios
 H

ad
jiso

ter
iou

90

Theorem 2 Let D be a point-wise consistent domain description with time structure that of the

natural numbers and a countable number of h-propositions. Then for every language E model,

M , of D there exists an admissible extension, E, of the corresponding argumentation program

AD ≡ (B(D),A, <) s.t. E corresponds to M (i.e., E `HoldsAt(f, T) iff M(f, T) = true and

E ` ¬HoldsAt(f, T) iff M(f, T) = false).

Proof 4 see Appendix A.1.

This theorem shows that when language E models exist then our AF always has a correspond-

ing admissible extension. Our formulation therefore forms a conservative extension of E .

The next theorem provides an interpretation of how the extended argumentation formulation

handles the qualification problem (see Appendix C.1) when it provides a semantics to any domain

description. It shows that an admissible extension E of any domain D can be interpreted as a

language E model of D or of D extended by some h-propositions of unknown events.

Theorem 3 Let D be a point-wise consistent domain description with a finite number of h-

propositions and t-propositions. For every admissible extension E of D there exists a domain D
′

obtained fromD by adding a (possibly empty) set of new h-propositions s.t. there exist a language

E model, M, of D
′

that corresponds to E (i.e., E `HoldsAt(f, t) (resp. E ` ¬HoldsAt(f, t)) iff

M(f, t) = true (resp. M(f, t) = false)).

Proof 5 see Appendix A.1.

For example consider the domain D
′′

(Example 9) where we observe F at time T1 and ¬F at

time T2. Then given any time point Tk ∈ (T1, T2) this domain has admissible extensions E where

F is derived for any time point between T1 up to Tk and ¬F is derived for all time points after

Tk up to T2. The domain D
′′

does not have any language E models. But by interpreting time Tk
Evg

en
ios

 H
ad

jiso
ter

iou

91

as a termination point for F through an unknown (in D) new action that can terminate F we can

‘explain’ within E the meaning given to D
′′

by the above admissible extensions in the extended

argumentation formulation of the language.

4.5 Qualification Extensions

In this Section we study in more detail how the argumentation semantics that we have provided

for action theories addresses the qualification problem. In particular, we will examine how it helps

us understand qualifications of action occurrences and how we can find, within the given domain

description, explanations for exogenous qualifications.

The argumentation formulation allows us to identify exogenous qualifications imposed by the

lack of information in the given narrative of the domain description.

Definition 29 Let D be a domain description and E an admissible extension of D s.t. there exist

time points t1, t2 with t1 < t2 and a fluent F so that the following conditions hold:

• The t-proposition ‘¬F holds-at t2’ (respectively ‘F holds-at t2’) belongs to D and there is

no t-proposition ‘F holds-at t’ (respectively ‘¬F holds-at t’) in D for any t s.t. t1 < t < t2.

• There exists an h-proposition ‘A happens-at t1’ and a c-proposition ‘A initiates F when C’

(respectively ‘A terminatesF whenC’) inD s.t. t1 is an initiation (respectively termination)

point for F in E, and there is no other initiation (respectively termination) point t for F in

E s.t. t1 < t < t2
4 .

• There exists no termination point for F at t in E s.t. t1 ≤ t < t2.
4For simplicity of presentation we are assuming that there can only be one generating (initiating or terminating)

action of a given fluent at any time point.Evg
en

ios
 H

ad
jiso

ter
iou

92

Then E is called an exogenous qualification extension on F at (t1, t2] of D. The exogenous

qualification is said to be based on the t-proposition ‘¬F holds-at t2’ (respectively ‘F holds-at

t2’).

Furthermore, if there does not exist a time point t ∈ (t1, t2) s.t. E ` HoldsAt(F, t) (re-

spectively E ` ¬HoldsAt(F, t)) then E is called an exogenous qualification of the action

occurrence of A at t1. Otherwise, E is an exogenous qualification of the persistence of F in

(t1, t2].

Qualification extensions are therefore separated into two types. In the first case the action

occurrence ofA at t1 is exogenously qualified failing to generate its effect and consequently in the

whole of the interval, (t1, t2], ¬HoldsAt(F, t) (respectively HoldsAt(F, t)) holds in E. In the

second case the action occurrence of A has succeeded to initiate its effect but its persistence was

terminated before t2 by some unknown exogenous event.

The above Definition of exogenous qualification captures instances of direct qualification in

the sense that the qualification is linked directly to the fluent through which the disparity between

what is observed and what is described by the domain and its semantic extensions, manifests

itself. The domain description implies that F (respectively ¬F) should hold at t2 but the opposite

i.e. ¬F (respectively F), is observed at t2. In the first case of an exogenous qualification of

an action, the failure of the action to produce its effect could be due to some exogenous reason

for (at least) one of the preconditions of the c-proposition through which F would be initiated

(respectively terminated), not to hold at the time t1 of the action occurrence. For example, consider

the following domain description, also depicted in Figure 15.Evg
en

ios
 H

ad
jiso

ter
iou

93

Example 13 (Domain QD1)

A initiates F when L

A happens-at T1

L holds-at T0

¬F holds-at T2

0
Obs L

T1
A

(L)

T2
Obs ¬F

-F

-� ¬F¬F

Figure 15: Domain QD1

All the admissible extensions of this domain are exogenous qualification extensions on F . In

particular, one of these extensions is an exogenous qualification of the action occurrence of A at

T1. But the failure of the action A to produce its effect F might be due to some other exogenous

reason for the precondition L, of the c-proposition that initiates F , not to hold at the time of

occurrence of A.

We can thus translate or explain the exogenous qualification of the action A at T1 endoge-

nously by the hypothesis that ¬L holds-at T1 and transfer the exogenous qualification of the

domain to the earlier persistence of L from T0 to T1. Indeed, if we add in QD1 this t-proposition

then the extended domain description does not anymore have an exogenous qualification exten-

sion for F between T1 and T2. Such extensions of a given domain description with additional
Evg

en
ios

 H
ad

jiso
ter

iou

94

t-propositions so that the exogenous qualification of actions is pushed back into the past in terms

of exogenous qualifications of preconditions of c-propositions will be called qualification expla-

nation domains and are defined as follows.

Definition 30 Given a domain description D and E an exogenous qualification extension of an

action occurrence A on F at t1 a qualification explanation domain for A at t1 is a domain D
′

obtained from D by adding a set H of t-propositions on the narrative time points of D s.t.:

• H is point-wise consistent with the t-propositions already in D and H does not contain a

t-proposition of the form ‘F holds-at t’ for t > t1

• E is no longer an exogenous qualification extension of the action occurrence A at t1 in D
′

in the sense that starting from the same initial state as in E there is no admissible exogenous

qualification extension of the action occurrence A at t1 in D
′
.

H is called a qualification explanation (wrt E) (or the initial state of E) of the exogenous

failure of action A at t1.

In addition, as is usual with abductive explanations, we can require that qualification explana-

tions are minimal wrt set inclusion.

Hence in the previous Example 13, H = {¬L holds-at T1}, is a qualification explanation of

the exogenous failure of action A at T1. Suppose now that we extend the previous Example 13 as

follows:

Example 14 (Domain QD2)

A initiates F when L

A happens-at T1

Evg
en

ios
 H

ad
jiso

ter
iou

95

B initiates L when K

B
′

terminates L when K
′

B happens-at T
′

¬F holds-at T2

where T0 < T
′
< T1 < T2. Depending on the initial value of the fluentsK and L in an admissible

extension, i.e. whether a positive or a negative assumption argument at time T0 for these fluent is

included in an extension, this will determine whether the extension is an exogenous qualification

of the action occurrence of A at T1. This can happen in two cases (a) ‘L holds-at T0’ or (b) ‘K

holds-at T0’ under which the action occurrence of A at T1 gives a generation (initiation) argument

for F . Figure 16 depicts this example and three possible qualification explanations, H,H
′
, H

′′
,

for the exogenous qualification of the action occurrence of A at T1, as will be discussed below.

0
Obs ¬L
Obs K
Obs ¬K ′

T
′

B
(K)

H
′

= {¬K}

T
′′

B
′

K
′

H
′′

= {K ′}

T1
A

(L)
H = {¬L}

T2
Obs ¬F

-L

-¬L

-F

-� ¬F¬F

Figure 16: Qualification Explanations for Domain QD2

Hence under either of these cases, as in the previous example, a qualification explanation for

the exogenous qualification of the action occurrence of A at T1 is given by ‘¬L holds-at T1’.

The extended domain obtained from QD2 by adding this t-proposition does not anymore have an

exogenous qualification extension of A at T1 because the potential initiation argument of F at T1

Evg
en

ios
 H

ad
jiso

ter
iou

96

cannot be applied. But this extended domain, in the case where we have ‘K holds-at T0’, will now

have an exogenous qualification extension for L at T
′

based on the new t-proposition that we have

now added to the domain 5 (see Figure 17).

0
Obs ¬L
Obs K

T
′

B
(K)

T1
A

(L)
H = {¬L}

T2
Obs ¬F

-L -F

-� ¬F¬F

Figure 17: Qualification Explanation H for Domain QD2

We can then explain this new exogenous qualification by adding the extra t-proposition, ‘¬K

holds-at T
′
’, to the extended domain. This pushes the exogenous qualification back to the persis-

tence of K from T0 to T
′
.

Then if also the initial state is s.t. ¬L is derived at T0, e.g. when ‘¬L holds-at T0’ is in the

domain, there will be no exogenous qualification of A at T1 in the domain extended by both ‘¬L

holds-at T1’ and ‘¬K holds-at T
′
’ (see Figure 18). Note that Figure 18 shows ‘¬L holds-at T1’

as an additional observation.

Furthermore, the new t-proposition, ‘¬K holds-at T
′
’, is sufficient alone, without the need for

the earlier explanation ‘¬L holds-at T1’, to explain the exogenous qualification ofA at T1. In other

words, starting from the explanation H = { ¬L holds-at T1} for the exogenous qualification of A

at T1 we can replace (one of) its element(s), i.e. ‘¬L holds-at T1’, by an explanation, H
′

= {¬K
5When we have the other case of ‘L holds-at T0’ the extended domain will have admissible extensions with an

exogenous qualification of persistence of L in (T0, T1].Evg
en

ios
 H

ad
jiso

ter
iou

97

0
Obs ¬L
Obs K

T
′

B
(K)

H
′

= {¬K}

T1
A

(L)
Hobs = {¬L}

T2
Obs ¬F

-L -F

-� ¬F¬F

Figure 18: Qualification Explanation H
′

for Domain QD2

holds-at T
′}, of the exogenous qualification of B at T

′
based on this element, resulting in a new

(minimal) explanation of the exogenous qualification of A at T1.

In general, there are two types of qualification explanation domains: ones that block a gener-

ation point as we have seen in the examples above and explanations that activate an intermediate

generation point to block persistence. Let us consider an example of the latter type. In the example

domain QD2 another explanation of the exogenous qualification of A at T1 would be possible if

we had in the domain a known occurrence of the action B
′

at some time point T
′′ ∈ (T

′
, T1)

(shown in Figure 16 with a dotted line). So let us assume that the domain QD2 also contains the

h-proposition B
′

happens-at T
′′
. Then H

′′
= {K ′

holds-at T
′′} is a qualification explanation of

the exogenous qualification of B at T
′

as it enables a termination point for L at T
′′
. In turn this

means that H
′′

is also a qualification explanation of the exogenous qualification of A at T1. In

other words, again starting from the explanation H = {¬L holds-at T1} for the exogenous qual-

ification of A at T1 we can generate a new explanation H
′′

for this by finding an explanation for

an earlier action that is exogenous qualified by the addition of H in the domain.

Hence as we have seen in the example above, qualification explanations can be built iteratively

by pushing the exogenous qualification they explain to an earlier action and replacing (elements
Evg

en
ios

 H
ad

jiso
ter

iou

98

of) the initial explanation by an explanation of the exogenous qualification of the earlier action.

The following property linking the qualification explanations of actions holds in general.

Property Let D be a domain, E an exogenous qualification extension of an action occurrence

A at t1 and H a qualification explanation of A wrt E. Let also ‘L holds-at T ’ belong to H and

H
′

be a qualification explanation wrt E of an action occurrence A
′

at T1 (T1 < T) based on L

holds-at T . Then given H
′′

= (H − { L holds-at T }) ∪H ′
one of the following holds:

• H ′′
is also a qualification explanation of A at t1 wrt E

• or D ∪H ′′
has an admissible extension E

′′
with the same initial state as that of E s.t. E

′′
is

an exogenous qualification extension of an action occurrence A
′′

at T2 with T2 < T1.

• or E ` ¬HoldsAt(L, 0) and the persistence of the fluent literal ¬L from 0 to T is exoge-

nously qualified in D ∪H wrt E.

Hence as we have seen above in the example domain QD2 H = {¬L holds-at T1} can be

replaced by H ′′ = {¬K holds-at T
′} to either give a new qualification explanation of A at T1 in

the case where E ` ¬HoldsAt(L, 0) or when E ` HoldsAt(L, 0) the persistence of L from 0 to

T1 is exogenously qualified in D ∪H .

Based on this property we can then develop algorithms to find qualification explanations of

action failures by systematically following backwards the time line from the time of an unexpected

observation, such as ‘¬F holds-at T2’ in the above examples, and examining the preconditions of

the possible initiation and termination points for F . These explanations can be further compared

according to some criterium, e.g. that of minimality of the number of actions that are exogenously

qualified. This issue of the minimization of exogenous qualification (and its argumentation inter-

pretation) is beyond the scope of this thesis. It is important though to note that the computation of
Evg

en
ios

 H
ad

jiso
ter

iou

99

qualification explanations is made possible by the generality of the argumentation semantics and

its ability to give meaning to any domain description.

4.6 Related Work and Summary

Our work follows the EC approach for RAC and the realization of this through argumentation.

It extends the earlier argumentation based approach for the EC language E [48] by allowing the

observations in a domain description to be used directly in the argumentation process rather than

to be imposed as a-posteriori constraints. As a result any domain description in E can be given a

meaning under the extended AF.

Interestingly, our formulation comes closer to the original EC [51]. Like the original EC it

has a symmetrical treatment of forward and backward reasoning from events (see Appendix C),

unlike the later formulations of the Simplified EC [74, 60]) where the emphasis is mainly on

reasoning forward from events. The original EC is based upon the notion of events and time

periods generated by the events. There are two types of time periods, after(e u) and before(e u)

generated by an event e and during which a fluent u holds. The first of these names a time period

after the occurrence of the event e while the second names a time period before the occurrence of

the event e. The ends of these periods is initially undefined until extra information that can help us

derive this is provided. These time periods are derived through the rules in the EC of the following

form:

Holds(after(e u)) if Initiates(e u)

Holds(before(e u)) if Terminates(e u)

Such rules are analogous to the arguments {PGF [u, e], PFP [u, t; e]}, where t is any time point

after the time of the event e and NGB[u, e] and NBP [u, t; e], where t is any time point before or

equal to the time of the event e.
Evg

en
ios

 H
ad

jiso
ter

iou

100

This symmetrical nature of reasoning with time in the EC is mirrored with the symmetry

of forward and backwards persistence arguments in our formulation. Hence both formalisms

have similar effects especially when reasoning in the past. To illustrate this consider the simple

example:

Example 15 (Domain D
′′′′

)

A initiates F

B initiates F

A happens-at T1

B happens-at T2

In this domain the original EC concludes that there exists an end point i of the time period

after(A F) s.t. A < i ≤ B. After i the value of F is unknown. The effect of this is that

the value of F cannot be concluded at any time point between the time of A, i.e. T1, and the

time of B, i.e. T2 (as the exact time of i is unknown). Similarly, in our formulation there exists

admissible extensions of this domain s.t. for any time point Ti ∈ (T1, T2) the fluent F changes it

truth value from true to false and hence the value of F within this time period cannot be sceptically

determined.

Hence both formulations essentially conclude the existence of at least one unknown event at

some intermediate time point Ti between T1 and T2 that has terminated F and hence we cannot

decide sceptically on F between T1 and T2. Through different mechanisms, our argumentation

and the original EC give the same end result in terms of properties holding. We also note that both

formalisms allow that in these situations of ‘uncertainty’ between two time points, the possibility

of several changes in the value of the fluent.Evg
en

ios
 H

ad
jiso

ter
iou

101

The above example may be a little specialized. The more natural case of this effect of incor-

porating backwards persistence is seen in the Examples 8 and 9 where observations are involved.

The observations indicate a change in the value of a fluent at some unknown time within a cer-

tain time period. This is captured by our formulation thus showing how the original EC could be

extended to allow observations in its domain descriptions.

Another approach to RAC using argumentation is that of [82]. This work addresses the main

problems of RAC, in particular the frame, and qualification problems, using a formulation that is

based on argumentation and in particular the ABA AF of [13]. As in [13] it uses argumentation

assumptions that complement the logical knowledge to draw inferences from a domain descrip-

tion. There are two types of assumptions associated to each fluent literal: frame and qualification

assumptions. The frame assumptions allow the persistence of a fluent literal as these assumptions

can be assumed at any time point. Unlike our approach which relies directly on argumentation

to capture persistence through the use of persistence arguments, the effect of persistence in [82]

is obtained indirectly by the freedom of their formalism to make these frame assumptions. This

though imposes the need to control this freedom by additional requirements imposed on top of

a first structure they obtain via the argumentation requirement of preferred frame assumptions,

called pre-models, in order to narrow down the possibilities of frame assumptions. This extra re-

quirement is outside the standard argumentation notions imposing a ‘minimization of change’ on

the pre-models.

Subsequently, in order to handle also the qualification problem another type of assumptions

is introduced, the qualification assumptions. These are ‘externally’ linked with each of the causal

rules that generate fluent literals and are thought off as encompassing all the exogenous (unknown)

qualification conditions that can block the generation of the fluent literal through the causal law.Evg
en

ios
 H

ad
jiso

ter
iou

102

Then again a further technical machinery is developed on top of this with notions such as, plausi-

ble, unsound and rejected sets of assumptions, which need to be imposed on the initial pre-models,

i.e outside the argumentation formulation. In this filtering it is also necessary to impose carefully

a preference of qualification assumptions over frame assumptions in order to solve both the frame

and qualification problems together.

Hence although the two approaches have similarities as they are both based on argumentation

they have crucial differences which can have an effect both at the representation and computational

level. For example, the assumption arguments in [82] are of various types and are operational in

nature rather than expressing some declarative knowledge in the domain. In contrast, our approach

works directly on the given declarative knowledge of the problem: assumptions can only made at

the initial time point and importantly they are declarative statements.

Furthermore, our approach addresses the problem of RAC entirely within standard argumenta-

tion notions with no reliance on any other formal structure. One of the reasons why this is not the

case for the case of [82] is the overly liberal freedom to make assumptions in the first place. In our

case the arguments considered need to be grounded (or supported) by the given domain description

and particularly the narrative it contains. We can thus apply the argumentation process directly on

the given knowledge capturing the required reasoning in a natural and simple way. This difference

in the two approaches is highlighted by the way each approach uses priorities between arguments.

In [82] the priorities are used on top to filter pre-structures whose definition depends on notions

of argumentation only at a first level whereas in our case the priority is integrated within the ar-

gumentation process allowing the notions of argumentation to be sufficient to directly capture the

semantics and the reasoning required.

As [82] argue, one of the main advantages of an argumentation based approach to the central

challenges of RAC and default reasoning more generally, is that the reasoning can be made more
Evg

en
ios

 H
ad

jiso
ter

iou

103

explicit compared to other non-monotonic approaches. This is a general feature shared by most

argumentation based application frameworks including our own in this Chapter, whose relative

simplicity and direct use of argumentation makes it easy to exploit this advantage.

The main contribution of this Chapter is that we have extended an existing based argumenta-

tion based formulation of language E by introducing (a) arguments based on property observations

that one typically finds in any given narrative and (b) arguments for backward persistence. This

allow us to recover and also extend language E , giving a semantic meaning to domains that can-

not be interpreted under E . Our work then can be seen as an example where the general theory

of argumentation, finds concrete application in addressing the foundational problems of temporal

persistence and knowledge qualification.

Evg
en

ios
 H

ad
jiso

ter
iou

Chapter 5

Computing Dynamic Argumentation

“We do not see things as they are. We see things as we are.”

Rabbi Shemuel ben Nachmani, as quoted in the Talmudic tractate Berakhot (55b.)

In Chapters 3 and 4, argumentation is used for reaching conclusions by tracking and evaluating

changes in the problem environment. This Chapter, discusses a new approach of creating argu-

mentation through matrices. Since any abstract AF with many finite arguments can be presented

in a matrix form, matrix operations, theorems from mathematics and graph theory were used to

go deeper and investigate AF under the scope of the matrices. In this way, the strengths and

weaknesses of matrix operations are migrated from a mathematical representation to a computer

science interpretation.

As time changes the problem, narrative also changes abstractly and the world representation

may be altered. For example, existing attack(s) or argument(s) may cease to exist, or new attack(s)

or argument(s) may arise. Furthermore, at different time points under a snapshot of the world the

strength of many attacks may differ. At this level of our investigation, how changes occur is

not explained. Rather, they are allowed, observed and accepted and their affect is evaluated on

argumentation.

104

Evg
en

ios
 H

ad
jiso

ter
iou

105

Abstract AF is interpreted in terms of matrix multiplication and present matrix operation al-

gorithms that can answer whether a given set of arguments is part of an argumentation extension

under the various semantics of AF. We describe a new way of answering the question of whether

or not a set of arguments, S, is a conflict-free/admissible/complete/stable/grounded extension of

a given AF. Based on this concept, the algorithms ASSA and ASSAG
1 were created. In recent

months, our algorithms were optimized and effective and efficient ways to handle dynamically

changing environments were identified through matrix methods.

5.1 Introduction

Agents can construct arguments for and against a specific goal in order to reach a conclusion.

The construction of these arguments often follows semantics that are given in an abstract AF, either

by extensions [24] or by labellings [17, 84]. The former was used to base the ASSA algorithm and

the latter for the the ASSAG algorithm.

The aim of this chapter is to introduce matrices and their operations that were studied, and to

explore AFs in order to propose new approaches to identifying extensions. The theoretical part

must be studied in order to understand the theory of abstract AF in terms of matrices. Within

the practical part, efficient algorithms and systems that compute argumentation are developed. A

matrix-based approach to compute extensions for abstract AFs is presented according to various

semantics. When AFs are represented by their adjacency matrices and set as characteristic vectors,

then matrix operations and additional tests can be used to verify whether a given set of arguments

satisfies certain semantical criteria. This is a new approach to addressing the question of whether

or not a set of arguments, S, is a conflict-free/admissible/complete/stable/grounded extension of a

given AF.
1 Inspired from left and right matrix multiplication: AS and SA, and the author’s children’s names Artemis-

StylianaStylianaArtemis and Giorgos

Evg
en

ios
 H

ad
jiso

ter
iou

106

We have developed an algorithm that answers whether a given set of arguments is an extension,

implemented in a system, and presented at the ICCMA’15 2 competition [80]. Our solver, called

ASSA [37], finds the stable extension(s) of an AF.

5.1.1 Related Work

There is a lot of interest in computing extensions, with a competition starting in 2015 (see

ICCMA’15). Other approaches that tackle similar results exist, such as the ASPARTIX (Answer

Set Programming Argumentation Reasoning Tool) and DIAMOND [27, 28, 19, 83], but none of

them use matrices to compute extensions. They are based on SAT-solving techniques, where the

argumentation problems are transformed to SAT problems.

A matrix-based mathematical approach to answering question in abstract argumentation of

the form: ‘Is set A an extension?’ is introduced. Similar to this approach, is the work presented

in [85, 18]. Their approach is structured as follows: They consider the adjacency matrix of an

AF and then define several parts of the adjacency matrix, which they call sub-blocks. Finding

all sub-blocks that have zeroes everywhere is similar to finding the conflict-free sets of the AF.

This result can be seen in Definition 31. Each one of these sets was mapped into its matrix

representation normal form, with respect to a specific semantics (stable, admissible, complete).

Based on matrix criteria they find among the conflict-free sets that qualify as stable, admissible,

or complete extensions.

As we will see, our approach differs in that this study not use sub-blocks, and creates sets of

arguments in a matrix representation to define tests for the different argumentation semantics. Our

work, when considering all possible subsets of arguments, comes close to the work of [18], as it

answers similar questions but with a different algorithm. Both techniques are time consuming with
2 http://argumentationcompetition.org/index.htmlEvg
en

ios
 H

ad
jiso

ter
iou

http://argumentationcompetition.org/index.html
http://argumentationcompetition.org/index.html

107

high computational complexity in many problems. In the work [18], they first labell all arguments

in the AF with a distinct name and use the notion of the adjacency matrix to represent the AF

as a square matrix. Instead of having only one representation of the AF as we have, they can

rename arguments whenever needed to map the AF to a different matrix. The renaming process

can also be done through a series of dual interchanges inside of their initially created adjacency

matrix, which is an interchange of j row with k row and j column with k column. This process,

when done constructively, manages to move all of the arguments that are being considered to the

top, left corner of the matrix, where they represent each AF into a matrix that has one of the two

standard forms that have defined. Taking into consideration the full potentials of the adjacency

matrix represented in a standard form, and the basic definitions of extensions, they manage to find

a mapping relationship between extensions under various semantics and the internal structure of

the matrix by observing predefined sub-blocks for various extensions, such as admissible, stable,

and complete.

Various optimization techniques have been applied in [18], such as finding various sub-blocks

of the matrix and comparing their values. The standard form is partitioned into three parts (a) set

S, which includes the arguments under investigation; (b) the set of arguments that are under attack

by S; and (c) the other arguments in the AF or even considering the set as a single argument when

it reduces the dimensions of the matrix significantly.

To find the conflict-free sets the work of [18] uses the adjacency matrix properties. To consider

all possible conflict-free sets, they must create all possible sets (which is time consuming and not

practical) and determine whether these sets satisfy the definition. If they already know which

arguments they want to check, then they create the standard form matrix based on this set and

compare the elements of a particular sub-block. If all of the elements are zero, they conclude that

the set it is conflict free. Furthermore, by taking different sub-blocks of the standard form matrix,
Evg

en
ios

 H
ad

jiso
ter

iou

108

they follow the definition of stable set, admissible set, or complete set to check by comparing

the elements of the sub-blocks if, the conflict-free set is also a stable, admissible, or a complete

extension.

As we will see, in both techniques, the definitions of semantics are strictly followed to find

conflict-free, admissible, stable, and complete extensions. The approaches are different, as our

study uses matrix multiplication and a comparison with the resulting vector, while in [18] the

authors create the standard form of the adjacency matrix based on the given set and then compared.

The philosophy might be the same but the implementation varies. Nonetheless, our approach

has been implemented in the ASSA and AASAG algorithms, while their approach has not been

implemented yet.

5.2 Matrix Approach to Argumentation

“If you’re not having fun, you’re doing something wrong.”

Groucho Marx

The basic information presented here is used throughout this Chapter on matrices and argu-

mentation extensions that one can find in books (see e.g. [75, 24, 5, 25]). Based on matrix

operations, an algebraic method was constructed that computes extensions for an abstract AF. A

link between the fields of graph theory and logic programs has been presented in [23, 81], and it

is shown that stable extensions correspond to the kernels of the adjacency matrix. This approach

was not followed, despite the similarities found through general comparison.

A matrix is a structure that is designed in rows and columns, where each one of its elements

contains information. When the number of rows and columns are equal, the matrix is called aEvg
en

ios
 H

ad
jiso

ter
iou

109

square matrix. Square matrices have diagonals; a row vector is a 1× n matrix (x1 x2 ... xn) and

a column vector is a n× 1 matrix (x1 x2 ... xn)T .

Computers can perform matrix operations relatively quickly. The computational complexity

for multiplying two matrices with n digit numbers is O(n3) [76], and there are methods that can

optimize this result [76, 65]. This algorithm for computing argumentation extensions and verifying

extensions is based on matrix multiplication. Thus, it is of logarithmic space complexity [28, 19].

This sections is not concerned with complexity issues.

This approach is based on matrices because: (a) matrices can be easily represented and han-

dled by a computer; (b) illustrated information is compact; (c) through different operation tools,

matrices can be easily manipulated; and (d) matrices can capture all of the information in an ab-

stract AF. From a theoretical point of view, matrices are interesting to investigate in depth, as

characterizations of semantical definitions are simple to recognize.

Square matrices can capture the arguments and the attacking relations of an AF in a relatively

easy way. First, each argument must be labelled with a distinct natural number, using the rows

and columns of the matrix to represent the arguments and the attacks, respectively. For example,

the third row a3,∗ of a square matrix consists of the elements {a3,1, a3,2, . . . , a3,n}. If argument

a3 attack argument a4 then the element a3,4 of the square matrix will be one (1), otherwise it will

be zero (0). The value of the element a3,3 will show if argument a3 is self-attacking. The formal

definition is as follows:

The next definitions and results are adapted straightforwardly from graph theory as can be

found in [52, 14, 75].

Definition 31 (Mapping an AF to a matrix. The reader is also referred to [52]) LetA = (ai,j)

be the adjacency matrix of an AF = 〈A,R〉 s.t.: ai,j =


1 if (ai, aj) ∈ R

0 if (ai, aj) /∈ R
Evg

en
ios

 H
ad

jiso
ter

iou

110

a // b // c

Figure 19: A Simple AF


0 1 0

0 0 1

0 0 0


Figure 20: Adjacency Matrix of Figure 19

Figure 21: Figures 19 and 20 Show Respectively the Directed Graph and Matrix Representation

of Example 16

Note that if arguments are selected in a different order the adjacency matrix will differ. Thus,

different ordering will generate different adjacency matrices. It is important to know who attacks

who. The attacker is represented by the row of the adjacency matrix and each column represents

the attacked argument. Therefore, a3,4 represents the attack from argument a3 to argument a4

while a4,3 represents the attack from a4 to a3.



to

a1,1 a1,2 · · · a1,n

from a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n


Example 16 Let {a, b, c} = A be three arguments s.t. {(a, b), (b, c)} = R. Figure 21 depicts this

example.

Example 17 Let A = {a1, a2, a3, a4} and R = {(a1, a1), (a1, a2), (a1, a4), (a2, a3), (a2, a4),

(a4, a2), (a4, a3)}. Its directed graph and matrix representation are shown in Figure 24.Evg
en

ios
 H

ad
jiso

ter
iou

111

a2

!!
a1

!!

==

%%
a3

a4

KK

==

Figure 22: A More Complicated AF



1 1 0 1

0 0 1 1

0 0 0 0

0 1 1 0


Figure 23: Adjacency Matrix of Figure 22

Figure 24: Figure 22 Shows Example 17’s Directed Graph and 23 Captures its Adjacency Matrix

Matrix operations can be constructed under standard mathematical rules. When these oper-

ations are performed on the adjacency matrix of an AF, an interpretation exists, connecting the

result of the operation with the AF.

Definition 32 (Representing a set of arguments as a vector) Let AF = 〈A,R〉 with A its ad-

jacency matrix and S ⊆ A. Set S is represented by a column vector Sn×1 = (si,1), where

si,1 =


1 if ai ∈ S

0 if ai /∈ S

Proposition 2 LetA be the adjacency matrix of AF = 〈A,R〉 and let S ⊆ A be a set of arguments

with S as its column vector representation. The product AS is a column vector where the entry

(AS)i,1 shows how many times argument ai ∈ A attacks S .

Proof 6 See Appendix, Proof 22

Proposition 3 Let A be the adjacency matrix of AF = 〈A,R〉 and S ⊆ A be a set with ST as

its row vector representation. The product STA is a row vector where entry (STA)1,i shows how

many times argument ai ∈ A is attacked by S.

Proof 7 The proof is similar to the proof of Proposition 2.Evg
en

ios
 H

ad
jiso

ter
iou

112

From a mathematical perspective [75] the notions of a walk and length of a walk of a directed

graph, have a different meaning than from a computer science perspective. These mathematical

notions are used to provide an interpretation of an AF.

Definition 33 (The reader is also referred to [52]) A walk in an AF is a sequence of arguments

and attacks where each attack is directed from the attacking argument to the argument under

attack.

Length of a walk in an AF is the smallest number of attacks occurring in the AF that connect

argument ai to argument aj .

Theorem 4 [The reader is also referred to Theorem 5.4.4 at [52]] Let A be the adjacency matrix

of AF = 〈A,R〉. The (Am)i,j entry is the number of walks of length m from ai to aj in AF.

Proof 8 See Appendix, Proof 23

At this point, several questions have been generated. To interpret this result under the scope

of an abstract AF, A2, A3, . . . , An, . . . is computed. But when to stop is unclear. To determine

whether there is a limit, or an upper bound where no more information can be extracted if it is

passed, or if it carries on indefinitely, the following restriction is added: A path that has been used

can not be retaken. With this limitation an upper bound can be identified that is relative to the

number of arguments in the AF. When an AF contains n arguments, An can be computed in order

to find all of the loops containing up to n arguments. This result is interesting when investigating

elements (An)i,i on the main diagonal.

Example 18 Consider the AF depicted in Figure 22. To find the number of walks with length 2

and 3 starting from argument a1 to a4, matrices A2 and A3 are computed respectively. Note that

in A2, a1,4 = 2 which indicates that two walks of length 2 exist from argument a1 to argument a4.
Evg

en
ios

 H
ad

jiso
ter

iou

113

These two walks are {a1, a1, a4} and {a1, a2, a4}. In addition, A4 = A2 ×A2; thus, any element

in A2 that is not zero will not be a zero in A4.

A2 =



1 2 2 2

0 1 1 0

0 0 0 0

0 0 1 1


A3 =



1 3 4 3

0 0 1 1

0 0 0 0

0 1 1 0


A4 =



1 4 6 4

0 1 1 0

0 0 0 0

0 0 1 1


Proposition 4 Let A be the adjacency matrix of an AF = 〈A,R〉. The entry (Am)i,i, m ≤ n

of Am is the number of loops of length m from ai to ai in AF. When m is odd (resp. even) the

number of odd (resp. even) loops is shown.

Proof 9 The proof follows directly from Theorem 4.

Based on Theorem 4, (Am)i,j entry shows the number of walks of length m. The main di-

agonal of a matrix illustrates loops, as loops are walks at which the starting and the ending point

is the same. The number of loops of length m (i.e., containing m arguments) is shown in the

Am main diagonal when m is not a multiplier of an already existing loop. When m = odd (resp.

even) number, the number of odd (resp. even) loops is shown in an AF of any length. The matrix

A = A1 diagonal shows the ‘self-attacking’ arguments as it is a walk from an argument to itself

of length 1 (i.e., in Figure 23 a1,1 = 1). When a loop with length n exists (i.e., n arguments)

it will be shown in the matrix An main diagonal. Furthermore, any other matrix An×k, k ∈ N

will also contain this loop (as we cannot allow restrictions to fall directly into matrix operations).

Additionally, other loops of length n× k will also be shown if they exist on the main diagonal of

An×k.

With the help of matrix multiplication, questions such as which arguments in A attack (resp.

are attacked by) a specific set of arguments can be answered. Even though this question can be
Evg

en
ios

 H
ad

jiso
ter

iou

114

answered by observing either the AF or the adjacency matrix, when the frameworks and hence

their matrices are large, it may be easier to use matrix operations. In this way, it is similar to using

a series of matrix multiplications to navigate through the AF. To illustrate this statement, let us

expand Example 17.

Example 19 (Based on Example 17) To answer the question what arguments argument a2 attacks

or is attacked, the vector S =

(
0
1
0
0

)
= (0 1 0 0)T is constructed. S contains as many entries as

the arguments in the AF (four in this case). Since this example is only interested in a2, all of the

entries in S will be 0 except for the second entry, which will be 1. To find what arguments are

attacked by argument a2 the matrix STA is evaluated. To find what arguments in AF can attack

argument a2 the matrix AS is evaluated. Here, STA = (0 0 1 1), which means that S attacks

arguments a3 and a4, as the third and fourth elements are not zero and AS =

(
1
0
0
1

)
which means

that S is attacked by arguments a1 and a4.

Let us consider the arguments a2, a3, and a4. In this particular instance, S =

(
0
1
1
1

)
. Evaluat-

ing the matrix STA, STA = (0 1 2 1) is obtained. This shows which arguments in A are attacked

by S = {a2, a3, a4}. Specifically, a2 and a4 are attacked by one of the arguments in S and a3

is attacked by two of the arguments in S, but it is unclear by which arguments. This informa-

tion is lost through the matrix multiplication and one can retrieve it when multiplication is done

indestructibly, which can then be used to easily evaluate the results in dynamic environments.

By following definitions for labelling arguments [17, 84], which arguments are labelled in,

out, or undec can be identified. Furthermore, the interpretation of other multiplications can be

provided as well. For example, STA2 = (STA)A (resp. STAk for k ∈ {1, 2, . . .}) shows the

arguments in A that can be reached/attacked by the S arguments in two steps (resp. k steps).

In addition, A2S = A(AS) (resp. AkS for k ∈ {1, 2, . . .}) shows the arguments in A thatEvg
en

ios
 H

ad
jiso

ter
iou

115

can reach/attack the S arguments in two steps (resp. k steps). Using the notion ‘reach’ conveys a

positive meaning where the notion of ‘attack’ conveys a negative meaning (i.e., depending whether

the length of the walk is an odd or an even number), we present it here as an observation and the

mapping to an abstract AF should be done with gentle manipulations. The formal results are

shown below.

Proposition 5 Let A be the adjacency matrix of an AF = 〈A,R〉. Let S be a set of arguments

with S as its column vector representation. The entry (AkS)i,1 of the product AkS shows how

many times arguments ai ∈ A can reach the set S in a k length walk.

Proof 10 Let AF = 〈A,R〉 with A = (ai,j) as its adjacency matrix, and let Ak = B. By

Theorem 4 and Proposition 2 is proven.

Proposition 6 Let A be the adjacency matrix of AF = 〈A,R〉. Let S be a set of arguments with

S as its column vector representation. The entry (STAk)1,i of the product STAk shows how many

times arguments ai ∈ A are reached by the set S in a k length walk.

Proof 11 The proof is similar to the proof of Proposition 5. It follows directly from Theorem 4

and Proposition 3.

5.2.1 Theory and Algorithms

In this section, algorithms are provided to determine whether a set of arguments, is conflict-

free, admissible, stable, or complete.

Conflict-free test: Given a set of arguments we can check if this set is conflict-free by running

a conflict-free test as follows:Evg
en

ios
 H

ad
jiso

ter
iou

116

Proposition 7 (Conflict-free test) Let AF = 〈A,R〉 with A as its adjacency matrix. Let S ⊆ A

be a given set of arguments with S as its column vector representation. Let Γ = STA. S passes

the conflict-free test iff whenever γi 6= 0 ∈ Γ then ∫i = 0 ∈ S.

Proof 12 See Appendix, Proof 24

Computing a matrix multiplication can determine whether a given set of arguments, S , is

conflict-free. When a row matrix passes (resp. fails) the test, S is (resp. is not) conflict-free. The

empty set always passes the conflict-free test, as the generated matrix Γ has zeroes everywhere.

Example 20 (a) Consider Example 16 illustrated in Figure 21. Let S1 = {a1} with S =
(

1
0
0

)
and

STA = Γ = (0 1 0). γi 6= 0 when i = 2 and s2 = 0. For this reason it passes the conflict-free

test. Therefore, the set S1 = {a1} is conflict-free (i.e., not self-attacking). Let us now consider

the set S2 = {a1, a2} with S =
(

1
1
0

)
and STA = Γ = (0 1 1). γ2 = s2 = 1. Thus, the set S2

fails the conflict-free test.

(b) Similarly, for Example 17 depicted in Figure 24, the set {a1} is not conflict-free as it attacks

itself:
(

1 0 0 0
)
×A =

(
1 1 0 1

)
.

Admissible extension test: To check the admissibility of a given set of arguments S, two tests

are performed: (a) the conflict-free test and (b) the defending test. For S to be admissible it must

pass both tests.

Proposition 8 (Defending test) Let AF = 〈A,R〉 with adjacency matrix A and let S ⊆ A be a

set of arguments. Let S be the column vector representation of S and Γ = (γi) = AS. For every

i, s.t. γi 6= 0, a column vector ∆(i) = (δ
(i)
j) is created, s.t.: δ(i)j =


1 if i = j

0 if i 6= j

. Options holds:

(1) Γ is a zero matrix, or (2) E(i) = A∆(i) and ∀i, ∃e(i)k ∈ E
(i) s.t. e(i)k 6= 0 and 0 6= sk ∈ S.Evg

en
ios

 H
ad

jiso
ter

iou

117

Proof 13 See Appendix, Proof 25

The defending test is based on matrix multiplication. Γ = AS shows if S is under attack, i.e.

if any arguments in AF can attack S. When Γ = 0, set S passes the defending test as no attackers

exist and there are no arguments to defend against. When Γ 6= 0, set S is under attack and we

have to check if S counter attacks them. Since we do not know who attacks who, instead we get

an indication of the number of attacks an argument or a set of arguments has, we need to separate

the arguments under attack and create the vectors ∆(i). Based on another matrix multiplication,

E(i) = A∆(i), we find E(i) that shows any arguments in A that attacks ∆(i). To confirm that

counter attacks existing come from arguments in S, we compare S with E(i)s. If the comparison

shows that any attack is counter attacked by S, we conclude that S has passed the defending test

based on S.

Example 21 (Defending test examples) In Example 16, given the sets S ′
= {} and S = {a, c},

for S ′
: all entries for its column vector representation are zeroes, and since S ′

is represented by a

zero matrix, the empty set passes the defending test.

For S: S =
(

1
0
1

)
and AS =

(
0 1 0
0 0 1
0 0 0

)(
1
0
1

)
=
(

0
1
0

)
= Γ. Using S =

(
1
0
1

)
, the thesis

asks which arguments can attack arguments a and c. The answer is
(

0
1
0

)
= Γ, which means

that argument b attacks the argument set S = {a, c}. From Γ and its non zero entries we find

∆(1) =
(

0
1
0

)
. To check if all attackers (i.e. b) are attacked back by S we evaluate E(1) =

A∆(1) =
(

0 1 0
0 0 1
0 0 0

)(
0
1
0

)
=
(

1
0
0

)
. The result is

(
1
0
0

)
and since e(1)1 6= 0 ∈ E(1) and s1 6= 0 ∈ S, S

has passed the defending test.

Proposition 9 (Admissibility test) Let S be a given set of arguments. For S to be admissible its

matrix representation S has to pass both the conflict-free and defending tests.

Proof 14 The proof follows directly from Definition 1, Proposition 7 and Proposition 8.
Evg

en
ios

 H
ad

jiso
ter

iou

118

Stable extensions test: Stable extensions are a subclass of admissible extensions. For any

given set, for S to be stable it first has to pass the conflict-free test. Then, whether S can attack all

other arguments which do not belong to it is determined. This is done with the stable extension

test.

Proposition 10 (Stable extensions test) Let AF = 〈A,R〉 with adjacency matrix A. Let S ⊆ A

be a given set of arguments and S the column vector of S and Γ = STA. The set S passes the

stable extensions test iff:

1. S passes the conflict-free test, and

2. ∀i s.t. si = 0, γi 6= 0 (where si ∈ S, γi ∈ Γ).

Proof 15 See Appendix, Proof 26

For the stable extension test, the admissibility test is not used. Intuitively, a set attacking

anything that is ‘outside’ of it means that it attacks all of its potential attackers. This is true since

passing the conflict-free test shows that attacks coming from ‘inside’ of it are nonexistent. Thus,

any existing attacks should be from ‘outside’ and it would counterattack regardless.

Example 22 (Stable extension test) For Example 16, illustrated in Figure 21, wether S = {a} is

stable id determined. To do this, S must pass the stable extension test. {a} passes the conflict-free

test as shown below. S =
(

1
0
0

)
and STA = (1 0 0)

(
0 1 0
0 0 1
0 0 0

)
= (0 1 0) = Γ, where γ2 6= 0 and

b2 = 0. The matrix ST = (1 0 0) is used. This is similar to asking which arguments in A are

attacked by a. The answer is matrix (0 1 0), which means that a attacks b. Therefore it is not stable

as it does not attack all of the arguments found elsewhere (i.e., arguments {b, c}). To conclude

this result based on Proposition 10 matrices Γ = (0 1 0) and (S)T = (1 0 0) are compared, but

s3 = 0 and γ3 = 0. For this reason, it fails the stable extension test.
Evg

en
ios

 H
ad

jiso
ter

iou

119

The set S = {a, c}, S =
(

1
0
1

)
passes the stable extension test. STA = (1 0 1)

(
0 1 0
0 0 1
0 0 0

)
=

(0 1 0) = Γ. First, it passes the conflict-free test as γ2 6= 0 and s2 = 0. Using ST = (1 0 1) the

thesis asks which arguments in A are attacked by the set S = {a, c}. The answer is (0 1 0), which

means that it only attacks argument b. Based on the stable extension test, we compare matrices

Γ = STA = (0 1 0) and (S)T = (1 0 1). s2 = 0 and γ2 = 1, and therefore it is stable.

Complete extensions test: Let S be a given set of arguments. For S to be complete it must

be admissible and for this reason its matrix representation has to pass the admissibility test first.

Wether it contains all of the arguments that it defends must then be determined. Note that if an

argument has no attackers, it is trivially defended by any set. This check can be done through two

matrix multiplications. The first multiplicationB = (1 1 ... 1)1×nAn×n finds all of the arguments

that are not under attack and these arguments should be in any complete extension. The second

multiplication determines whether the set S contains all of the arguments that it defends. Γ =

(STA)A = STA2, where Z = STA will show (when mapped to the AF) all arguments that

are under attack by the set S, and Γ = ZA will show all arguments that set S can defend. To

identify all complete extensions, the admissibility test must be run with an extended set S that

contains all possible combinations of the arguments in A. This technique is time consuming and

its computational complexity increasingly grows as the number of arguments that are not in S

become bigger. To consider all possible combinations with n (many arguments), a matrix with 2n

number of columns has to be created.

Proposition 11 (Complete extensions test) Let AF = 〈A,R〉 with adjacency matrix An×n. Let

S ⊆ A with S its column vector. S passes the complete extension test iff:

1. S passes the admissibility testEvg
en

ios
 H

ad
jiso

ter
iou

120

2. Compute B = (1 1 ... 1)1×nA and Γ = SA2. For each entry bi = 0 then si ⊆ S, and for

each entry γj 6= 0 then sj ⊆ S.

Proof 16 The proof follows directly from Proposition 9, Definition 1, and Definition 2.

Example 23 Consider Example 16, its set S = {a, c} and its matrix representation ST = (1 0 1).

Condition 1 is satisfied as S passes the admissibility test (see Example 21) and therefore S is

admissible. To determine whether S is complete, condition 2 should also be satisfied. Evaluate

B = (1 1 1)A = (1 1 1)
(

0 1 0
0 0 1
0 0 0

)
= (0 1 1), and Γ = STA2 = (1 0 1)

(
0 0 1
0 0 0
0 0 0

)
= (0 0 1). Note

that b1 = 0 and s1 ⊆ S. In addition, γ3 6= 0 and s3 ⊆ S. Thus, condition 2 is satisfied and

S = {a, c} is complete.

Building the grounded extension: To build the grounded extensions, a constructive algorithm

for generating the grounded labelling, taken from [61], is followed. First, all arguments that are

not under attacked are labelled in. If such arguments do not exist then the grounded extension

set is empty. Then, the arguments that are under attack by an argument that is labelled in are

identified, and the labelling out is assigned to these arguments. The in labell is then assigned to

all arguments whose attackers are out. Continue until no new arguments can be labelled either in

or out. If any arguments have not been assigned a labell then assign those with the labell undec.

Algorithm for grounded semantics using the labelling approach

1. L0 = (∅, ∅, ∅) % (in(L), out(L), undecided(L))

2. repeat

3. in(Li+1) = in(Li) ∪ {x| x is not labelled in(Li), and ∀y: if (y, x) ∈ R then y ∈ out(Li)}

4. out(Li+1) = out(Li) ∪ {x| x is not labelled inLi, and ∃y: if (y, x) ∈ R then y ∈ in(Li)}

5. until Li+1 =LiEvg
en

ios
 H

ad
jiso

ter
iou

121

6. Lgrounded = (in(Li), out(Li), A \ (in(Li)∪ out(Li)))

To map this algorithm to the matrix approach, the following steps are taken. Let G be the set

that contains the arguments that are qualified as grounded. Start with G0 = {}.

Step1:

Let AF be the existing argumentation framework with An×n as its adjacency matrix. Let B1×n be

a row matrix that has ones in every position. Evaluate BA = C. Let G1 be the set containing all

of the arguments that are represented by the zero elements from matrix C (these are the arguments

that are labelled in). Let G2 = G1 ∪ G0.

Step 2:

Find which arguments are labelled out. To find them matrix D must be created first, which is

a matrix that has zeroes in positions that matrix C has elements that are not zeroes and ones at

the positions where the matrix C has zeroes. Then, the matrix multiplication DA = E must be

evaluated. The positions that do not have zeros in matrix E are the arguments that are labelled

out. Let these arguments be represented by the set F .

Step 3:

Take the arguments that are labelled in and the arguments that are labelled out and remove them

from the existing AF. By removing these arguments, all attacks that are related to these arguments

are removed as well. That is, the existing AF is taken and the set G1 ∪ F .

Step 4:

If G1 = {} or A = {} go to Step 5 else go to Step 1 with G0 = G2.

Step 5:

Grounded = G2Evg
en

ios
 H

ad
jiso

ter
iou

122

a1

((

a2 a3 a4

a5

hh OO

a6oo

==

Figure 25: Example for Grounded Extension

5.2.2 Implementation Systems

A new way of answering the question of whether or not a set of arguments, S, is a stable

extension or a grounded extension of a given AF is implemented through the algorithms ASSA

and ASSAG respectively.

5.2.2.1 ASSA

“Many hands make light work.”

John Heywood

A system called ASSA [37, 36] was implemented that is able to answer various questions for

stable semantics for any given abstract AF. This program creates all possible instances of selected

set S and builds a matrix S
′
. That is, each set of arguments is represented as one column of the

matrix S
′
. By handling matrix S

′
in a similar way to vector S and performing necessary tests, all

stable extensions were found that exist in an abstract AF.

The solver ASSA is written in Java; it uses the trivial graph format and the package of matrix

multiplication. It performs relatively well, despite the fact that it is in its primary stage. The

authors participated in the ICCMA’15 competition for the following computational tasks with

respect to the stable semantics:

Given an abstract AF the following must be determined:
Evg

en
ios

 H
ad

jiso
ter

iou

123

1. Some extension (SE − ST)

2. All extensions (EE − ST)

Given an abstract AF and some argument, decide whether the given argument is:

1. Credulously inferred (DC − ST)

2. Skeptically inferred (DS − ST)

Example 17 can be presented in tgf format as follows:

a1

a2

a3

a4

#

a1,a1

a1,a2

a1,a4

a2,a3

a2,a4

a4,a2

a4,a3

The benchmark graphs that were use for these results (e.g., (SE − ST), (EE − ST), (DC −

ST), and (DS − ST)) were based on three different graph models: (a) A group consisting of

graphs with a large grounded extension and many nodes, (b) a group consisting of graphs withEvg
en

ios
 H

ad
jiso

ter
iou

124

a rich structure of strongly connected components, and, (c) a group consisting of graphs which

feature many complete/preferred/stable extensions.

To find several extensions or all extensions, a matrix S
′

must be created where each one

of its columns represent one subset of arguments in the AF. Then, by running tests under S
′
,

similar questions can be addressed by comparing each column of the resulting matrices with the

appropriate vector of the test.

Example 24 (cont.) Creating the matrix S
′

of Example 17. The number of arguments are four,

thus S
′

contains 24 = 16 columns. Each column of

S
′

=

(
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

)
is mapped to selected sets of arguments in A (e.g., the fifth

column refers to argument a2). Therefore, information related to arguments a2 will be found when

comparing the fifth columns of matricesAS
′
and S

′T
A. Here,AS

′
=

(
0 1 0 1 1 2 1 2 1 2 1 2 2 3 2 3
0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 2 2 0 0 1 1 1 1 2 2

)
and S

′T
A =

(
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 1 2 1 2 1 2 1 2
0 1 0 1 1 2 1 2 0 1 0 1 1 2 1 2
0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2

)
.

ASSA is ineffective at this time as it needs to create a matrix with 2n number of columns.

Specifically, under the first group of benchmark graphs where many nodes exist, ASSA suffers the

most. The authors plan to study ways to make this more effective, including (a) optimizations that

come from the properties of argumentation semantics and (b) optimizations that exploit general

optimizations on matrix operations. On the other hand, ASSA is not affected by the density of

the problem (i.e. problems with a rich structure of strongly connected components and problems

that feature many stable extensions) and because it is based the adjacency matrix one can under-

stand the algorithm and the definitions fully with basic mathematic knowledge. Based on these

advantages ASSA scored relatively well in the ICCMA’15 competition as shown in Figure 26.Evg
en

ios
 H

ad
jiso

ter
iou

125

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

800000	

900000	

LabSATSolver	 ArgSemSAT	 ArgTools	 CoQuiAAS	 ASPARTIX-D	 ConArg	 ASGL	 ProGraph	 DIAMOND	 Carneades	 ASSA	

Ti
m
e	

Solvers	

Average	run1me	correct	answers		

DC-ST	

DS-ST	

Figure 26: Average Runtime Correct Answers Based on ICCMA’15 Competition

5.2.2.2 ASSAG

“If I knew how to take a good photograph, I’d do it every time.”

Robert Doisneau

The following example discusses how the ASSAG algorithm is implemented and tested.

Example 25 Let AF = 〈A,R〉, where A = {a1, a2, a3, a4, a5, a6}

andR = {(a1, a5), (a5, a1), (a5, a2), (a6, a5)}, depicted in Figure 25.

Step 1: (Start with G0 = {})

For the AF in Example 25, n = 6. Let A6×6 =

 0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
0 0 0 1 1 0

 be the adjacency matrix of AF and

B1×6 = (1 1 1 1 1 1).

To find matrix C, evaluate:

B1×6A6×6 = (1 1 1 1 1 1)

 0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
0 0 0 1 1 0

 = (1 1 0 1 2 0) = C. From C, create set G1 = {a3, a6}.Evg
en

ios
 H

ad
jiso

ter
iou

126

G2 = G1 ∪ G0 = {a3, a6} ∪ {} = {a3, a6}.

Step2:

From matrix C, create matrix D = (0 0 1 0 0 1):

DA = E = (0 0 1 0 0 1)

 0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
0 0 0 1 1 0

 = (0 0 0 1 1 0) = E. From matrix E = (0 0 0 1 1 0) find

set F = {a4, a5}.

Step3:

From the existing AF that contains arguments A = {a1, a2, a3, a4, a5, a6}, create the new AF

by removing the arguments {a3, a4, a5, a6} and the attacks to and from these arguments. Let

AF1 = 〈A1,R1〉 be the new argumentation framework that is depicted in Figure 27, where

A1 = {a1, a2} and R1 = {}. G1 6= {}; thus, one can continue by going to Step 1 with

G0 = G2 = {a3, a6}.

For AF1, n = 2. Let A2×2 = (0 0
0 0), B1×2 = (1 1)

To find matrix C, evaluate:

B1×2A2×2 = (1 1) (0 0
0 0) = (0 0) = C. From C we create set G1 = {a1, a2}. G2 = G1 ∪ G0 =

{a1, a2} ∪ {a3, a6} = {a1, a2, a3, a6}.

Step2:

From matrix C, matrix D = (1 1) is created.

DA = E = (1 1) (0 0
0 0) = (0 0) = E. From matrix E = (0 0), set F = {} is found.

Step3:

From the existing AF that contains arguments A = {a1, a2}, the new AF is created by removing

the arguments {a1, a2} and the attacks to and from these arguments. Let AF2 = 〈A2,R2〉 be the

new argumentation framework, where A2 = {} and R2 = {}. A = {}; thus, one must continue

by going to Step 5 with Grounded = G2 = {a1, a2, a3, a6}.Evg
en

ios
 H

ad
jiso

ter
iou

127

a1 a2

Figure 27: Example for Grounded Extension After the First Pass

0 2,000 4,000 6,000

0

0.5

1

1.5

2
·106

y = x2

Number of Arguments

R
un

tim
e

in
M

ill
is

ec
on

ds

Complexity of ASSAG

Figure 28: ASSAG is of Polynomial Complexity

The algorithm that was used to compute the grounded extensions is of polynomial complexity.

The ASSAG algorithm was run to various examples, asking to find under a given AF the grounded

extension. This demonstrates that implementing a polynomial algorithm with the matrix approach

remains polynomial. The benchmark results were taken from the ICCMA’15 competition. In

Figure 28, the x-axis represents the number of arguments, and the y-axis represents the runtime of

ASSAG in milliseconds. Furthermore, the graph y = x2 is also added for comparison.

The next experiment is more targeted since how the algorithm works is known it has to do an

indebt check to find grounded extension. For this reason, Example 29 was created, which needs

to go step by step in a predefined way to reach the end. Argument a1 is labelled in, a2 is labelledEvg
en

ios
 H

ad
jiso

ter
iou

128

a1 // a2 // . . . // a1999 // a2000

Figure 29: Experiment for Grounded Extension

out, a3 is labelled in, and so forth. The runtime of ASSAG is 365185 milliseconds. The attack

(a1,a1000) that labells argument a1000 out is then added, which was already labelled out. Adding

this attack provided a similar outcome to splitting the AF into two smaller AFs that run parallel

in the ASSAG algorithm. This example needed 164087 milliseconds to complete. Extending this

thought process, the attacks {(a1, a500), (a501, a1000), (a1001, a1500)} are added to the initial AF;

this example ran in 118998 milliseconds. The experiment continued by removing arguments and

their attacks. By removing argument a1000 and the attacks that are related to this argument, which

are {(a999, a1000), (a1000, a1001)}, ASSAG finished in 187031 milliseconds. Finally, arguments

a500, a1000 and a1500 were removed and the attacks that are related to these arguments, which are

{(a499, a500), (a500, a501), (a999, a1000), (a1000, a1001), (a1499, a1500), (a1500, a1501)}. For this fi-

nal experiment, ASSAG needed 84724 milliseconds to complete.

5.3 Dynamic Argumentation

Previously, a matrix was shown as a rectangular array, arranged in n of rows andm of columns

(n×mmatrix). An element of the matrix can be anything that provides information. For example,

the following matrix provides the name, age, preferred color, and preferred fruit of my three

children.

Evg
en

ios
 H

ad
jiso

ter
iou

129

A =



Styliana Artemis Giorgos

5 3 1

pink purple undefined

allfruits banana undefined


. It can be represented as a row matrix or

as a column matrix. That is A =



Row1

Row2

Row3

Row4


=



Styliana Artemis Giorgos

5 3 1

pink purple undefined

allfruits banana undefined



=

(
Column1 Column2 Column3

)
=



Styliana Artemis Giorgos

5 3 1

pink purple undefined

allfruits banana undefined


.

Matrices can be large, and it might be difficult or confusing to follow and understand their

structure. For this reason, matrices are written into blocks. Nice patterns such as the identity

matrix or the zero matrix might be good partition points, or even repetitions of ones, zeroes, or

other elements. For square matrices, it is often useful to choose the same partition points for

columns and rows. In addition, there may be as many levels of partition points as desired. Blocks

are matrices and therefore, they can be written as blocks using sub-blocks.

Systems that are continuously changing, such as decision making in argumentation can benefit

from dynamic systems. Two types of changes exist in an AF: 1) adding or removing arguments and

2) adding or removing attacks. A naive and time consuming approach to find the new extensions

would be to construct the extensions from scratch, ignoring all of the work that was done before

the AF was updated. All of the knowledge that is gained and the mathematical operations that areEvg
en

ios
 H

ad
jiso

ter
iou

130

done are used when evaluating all of the extensions for the initial AF before it was updated, to

quickly evaluate the new extensions for the updated AF. This is done using block matrices.

Block Matrices: Matrix multiplication can be a difficult and computational, complex pro-

cedure. When the AF is represented by an adjacency matrix to capture dynamic changes of the

framework, matrix multiplication can be a repetitive procedure. For this reason, it might be useful

to split matrices into smaller matrices that are often called sub matrices, and handle changes of

the main matrix by working solely on the sub matrices. The disadvantage is a matrix must be split

into sub matrices wisely, as dimensions need to match up in order to produce valid operations.

A block matrix is any matrix that is partitioned into smaller matrices called a block of matri-

ces. Any matrix may be interpreted as a block matrix in many ways. The usual rules of matrix

multiplication hold as long as the block sizes correspond. For example:

A =

 B C

D E

 =



b1,1 b1,2 c1,1 c1,2 c1,3

b2,1 b2,2 c2,1 c2,2 c2,3

d1,1 d1,2 e1,1 e1,2 e1,3

d2,1 d2,2 e2,1 e2,2 e2,3

d3,1 d3,2 e3,1 e3,2 e3,3


, where B =

 b1,1 b1,2

b2,1 b2,2

,

C =

 c1,1 c1,2 c1,3

c2,1 c2,2 c2,3

, D =


d1,1 d1,2

d2,1 d2,2

d3,1 d3,2

 and E =


e1,1 e1,2 e1,3

e2,1 e2,2 e2,3

e3,1 e3,2 e3,3

. Let

also consider block matrix A1 =

 B1 C1

D1 E1

 and perform a block matrix multiplication

Γ = AA1 =

 B C

D E


 B1 C1

D1 E1

 =

 BB1 + CD1 BC1 + CE1

DB1 + ED1 DC1 + EE1

. As shown

by the matrix multiplication Γ = AA1, smaller matrix multiplications are evaluated to obtain theEvg
en

ios
 H

ad
jiso

ter
iou

131

end result. Specifically, the results, BB1, CD1, BC1 CE1, DB1, ED1, DC1 and EE1 are com-

puted. When an attack is added or subtracted from the AF, this will reflect specific elements of the

adjacency matrix, and will therefore only change some of the sub matrices that were created. In

this way, the end result can be computed quickly by only computing the affected blocks.

Matrices can be partitioned in many ways, up to the point where each element of the matrix is

solely considered. They can be partitioned by splitting them into columns or rows, as we shown

below for the matrix multiplication Cn×m = An×kBk×m.

(Partitions by columns:) Partition matrices B and C (which is the resulting matrix), and get

the result: C =

(
c1 c2 . . . cm

)
= AB = A

(
b1 b2 . . . bm

)
=(

Ab1 Ab2 . . . Abm

)
(Partitions by rows:) Partition C and A by rows and to obtain the following result:

C =



c1

c2

. . .

cn


= AB =



a1

a2

. . .

an


B =



a1B

a2B

. . .

anB


(Partitions by rows and columns:) Partition matrices A and B to obtain the result: C =

AB =

(
a1 a2 . . . ak

)


b1

b2

. . .

bk


= a1b1 + a2b2 + . . .+ akbk.

With the result of each column or row in memory, which lines changed is shown and a new

matrix multiplication can be computed solely for that line or row. In this way, matrix multiplication

can be quickly identified adjusted when the elements of matrix S partially changed by evaluating

only the affected block of matrices.Evg
en

ios
 H

ad
jiso

ter
iou

132

In the case where new arguments are added to the framework, the adjacency matrix An×n will

become a new matrix B with dimensions n + 1 × n + 1. These cases we can be partitioned as

follows: B =



c1,1

A
...

c1,n

cn+1,1 . . . cn+1,n cn+1,n+1


If an existing argument (i.e., argument ak) was deleted, then the kth row and column of the ad-

jacency matrix would be deleted and therefore partition there. If more arguments where removed,

then more partitions could be applied increased convenience.

We have extended ASSA and ASSAG to work into dynamic environments. We first run the

program with the available information and provide the finished result. With this result, a dialogue

is also presented to the user. In this dialogue, available arguments and attacks are written on the

screen for the user to see and decide which of these arguments s/he wants to remove. The user

can then end the program, deciding which of the available arguments or attacks they want to have

removed or if new arguments with new attacks will be added to the system. The systems are then

run, with consideration for the new information that has been provided. This approach, as already

stated, is naı̈ve, as it does not take results into consideration before the AF has been updated. As

future work, the authors want to extend this dynamic system to conform with the block theory on

matrices in order to run faster.

5.3.1 Summary

The main contribution of this chapter is the new approach to formalizing and computing ar-

gumentation through matrices in order to identify extensions. We show a new way of answering

the question of whether or not a set of arguments, S, is a conflict-free/admissible/complete/stableEvg
en

ios
 H

ad
jiso

ter
iou

133

and grounded extension of a given AF. Based on this concept, the algorithms ASSA and ASSAG

were created. One of the features of ASSA is that it is not affected by the density of the problem

(i.e. problems with a rich structure of strongly connected components and problems that feature

many stable extensions) and because it is based the adjacency matrix one can understand the algo-

rithm and the definitions fully with basic mathematic knowledge. Similarly, ASSAG can be fully

understood with basic mathematic knowledge. We have shown that implementing a polynomial

algorithm with the matrix approach remains polynomial.

Evg
en

ios
 H

ad
jiso

ter
iou

Chapter 6

Conclusion and Future Work

“Twelve significant photographs in any one year is a good crop.”

Ansel Adams

Argumentation is ubiquitous. Humans try to find the reason behind behavior, and use argu-

mentation to make decisions and to explain behavior. Reasoning depends on the user, the current

state of the world and the final goal. The need for an adaptive and dynamic argumentation that can

help people reason in order to solve decision making problems, with incomplete information in a

continually changing world is becoming a necessity.

A theoretical framework was created [35] that can adjust dynamically to changes and maintain

a good representation of the operating world. Our argumentation, based formulation of the action

language E for RAC, extends the argumentation based formulation of E [48] to accommodate

arguments based on property observations, and arguments for backwards persistence [48, 38, 40,

39] in a domain description that will be used directly in the argumentation process rather than

imposed as a-posteriori constraints.

Thus, this work can be seen as an example where the general theory of argumentation, which

has been extensively and widely developed over the past two decades in AI (see e.g. [10, 67]),

134

Evg
en

ios
 H

ad
jiso

ter
iou

135

finds a concrete application in addressing the foundational problems of temporal persistence and

knowledge qualification. This synthesis of ideas opens up possibilities of extending the application

of argumentation from ‘static problems’ to variations of these, where the problem environment is

dynamically changing as new information becomes available. Using argumentation for reasoning

about changes in the problem world domain offers a principled way to manage the changes in the

AF, under which the application problem is expressed, thus extending the use of argumentation

from static to ‘dynamic problems’.

A real life type of application called ‘Hotel for ME’ was studied that uses argumentation as a

decision-making process in order to show how such problems can be formalized and implemented

in argumentation. The framework is influenced by the working environment and the user’s pref-

erences. The applications become personalized since the user profile is analyzed, including their

needs and habits, by extracting them through a short dialogue with the user. Implementing the

application in Gorgias [1, 64], all of the rules and priorities that were used to reach the final con-

clusion were tracked which can the be used to convince the user to follow a recommended option.

Through examples we have shown that for a single user at different time point, different results

are produced illustrating the dynamic and personalized nature of the approach. We can extend this

application to have a meta-level stage that are approximate closely enough or pass a predefined

threshold.

For future work the authors will examine how to integrate the AF for reasoning about proper-

ties over time in Chapter 4 with argumentation-based approaches for decision making in Chapter 3

such that we have a fully argumentation based framework. Similarly, the authors want to apply

this framework to planning problems and in particular, to the revision of plans as new unexpected

information is acquired.Evg
en

ios
 H

ad
jiso

ter
iou

136

In particular, as the dialectic nature of argumentation is close to human reasoning, with recent

studies from Cognitive Psychology [59] reinforcing this view, our argumentation-based approach

for RAC can help its integration with wider forms of human reasoning, such as that of discourse

comprehension, dialogue, and debate. Recent work on story comprehension [21] has shown how

argumentation can play a significant role in formulating and automating the human process of

comprehension. Similarly, in multi-agent system interaction and communication, several works

(e.g., [56, 47]), have shown the suitability of using argumentation to model agent dialogues by

exploiting the dialectic and game theoretic form of argumentation.

The dynamic nature of dialogues lends itself to a uniform argumentation based formalization

for integrating reasoning about changes in the environment of communication with the various

dialogue protocols. In particular, the incremental process of a dialogue can be modeled in terms

of dynamic argumentation by generalizing the proof and game theories of computation [26, 62]

for static argumentation. Allowing arguments to be time dependent permits adaptation over time

by tracking the changes of arguments and the attacking relation between them. Real-life problems

can then be mapped to AFs and constructed incrementally from the dynamic knowledge of the

problem (e.g., the information exchanged at different time points of a dialogue).

For future work we will examine how we can integrate our framework for reasoning about

properties over time with argumentation based approaches for decision making so that these de-

cisions can be context sensitive over time. This will allow us to develop applications of advisory

or recommendation systems, as in [20], that can adapt themselves as their external environment

evolves. Similarly, we want to apply our framework to planning problems and in particular to the

revision of plans as new unexpected information is acquired.

Another way to address these problems of dynamic development is to examine the link be-

tween our work and that of dynamic argumentation (see e.g. [7, 54]), where RAC with new
Evg

en
ios

 H
ad

jiso
ter

iou

137

information in the time line of an application problem realizes a dynamic AF. New arguments and

attacks between arguments are enabled as the information unfolds, particularly by observations

that cause exogenous qualification. Researches can also explore how various problems that have

been studied in the general setting of dynamic abstract argumentation can help address problems

in RAC, such as overcoming an exogenous qualification by identifying what actions must occur

such that certain conclusion would necessarily follow.

A matrix-based approach has been created that uses argumentation in order to reason. Through

this approach extensions were computed for abstract AFs according to various semantics. When

AFs are represented by their adjacency matrices and set as characteristic vectors, then matrix

operations and additional tests can be used to verify whether a given set of arguments satisfies

certain semantical criteria. This is a new way of answering the question of whether or not a set of

arguments, S , is a conflict-free/admissible/complete/stable/grounded extension of a given AF. This

approach has been implemented in the ASSA and ASSAG systems [37, 36]. ASSA is ineffective

as it needs to create a matrix with 2n number of columns when trying to find all stable extensions

which is an NP-complete problem. For this reason, all possible combinations of sets of arguments

must be computed and each one must be checked if it passes the criteria. For this reason, ASSA

cannot scale up to problems with more than twenty arguments, but it is not affected by the density

of the attacks provided. Of course, ASSA can easily check if a given set is stable, as the complexity

for this manner does not matter. On the other hand, ASSAG implements a polynomial complexity

problem, and we have shown that our technique does not affect its complexity.

As future work, we plan to apply different optimization methods to improve computability, and

to expand ASSA to all of the other semantics. We plan to study ways to make this more effective:

(a) optimizations that come from the properties of argumentation semantics, (b) optimizations that

exploit general optimizations on matrix operations, or finally (c) as stated in the work of [85, 18],
Evg

en
ios

 H
ad

jiso
ter

iou

138

when given a set S, instead of considering it as a set, it should be considered as a single argument

to continue from there. In this way, we can be mapped the problem into a simpler one and will

likely produce better results.

The ASSA and ASSAG have been extended to work in dynamic environments. At this point,

the user can add or remove arguments or attacks after the initial program provides an answer.

All of the available nodes are then presented to the user with the possible attacks in order to

avoid confusion when the user decides to remove arguments or attacks. If the user decides to add

arguments or attacks then this information will also be needed, as the user may want to add attacks

that does not exist. At this point, the new information that is provided by the user is considered

while discarding all operations that were done up to this point and the program is run again. As

future work we want to extend this dynamic system to conform with the block theory on matrices

so the the dynamic re-computation can be improved.

We have shown that adding or removing targeted attacks and arguments in the AF can reduce

the runtime of ASSAG. We are interested in studying the addition of targeted dummy attacks

to specific arguments of the AF, in order to split the AF into smaller virtual AF that will run

parallel and provide labelling to arguments at an earlier time point of the procedure. If such

labelling is done wisely the runtime of ASSAG will be reduced significantly. Other optimization

techniques to examine are: Allowing our systems to use matrix calculation packages will improve

its performance, and taking into the odd numbers of loops into consideration will reduce the

number of checks that must be performed. Furthermore, distributed systems are used to manage

all necessary matrix operations in order to have a system that can answer questions for a larger

number of arguments.Evg
en

ios
 H

ad
jiso

ter
iou

Bibliography

[1] The Second International Joint Conference on Autonomous Agents & Multiagent Systems,
AAMAS 2003, July 14-18, 2003, Melbourne, Victoria, Australia, Proceedings. ACM, 2003.

[2] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the logic of theory
change: Partial meet contraction and revision functions. J. Symb. Log., 50(2):510–530, 1985.

[3] Leila Amgoud and Henri Prade. Using arguments for making and explaining decisions.
Artif. Intell., 173(3-4):413–436, 2009.

[4] Marko Balabanovic and Yoav Shoham. Content-based, collaborative recommendation.
Commun. ACM, 40(3):66–72, 1997.

[5] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argumen-
tation semantics. Knowledge Eng. Review, 26(4):365–410, 2011.

[6] Pietro Baroni and Massimiliano Giacomin. Argumentation in Artificial Intelligence, chapter
Semantics of Abstract Argument Systems, pages 25–44. Springer US, Boston, MA, 2009.

[7] Ringo Baumann and Gerhard Brewka. Expanding argumentation frameworks: Enforcing
and monotonicity results. In Computational Models of Argument: Proceedings of COMMA
2010, Desenzano del Garda, Italy, September 8-10, 2010., pages 75–86, 2010.

[8] T Bench-Capon and D Dunne. Argumentation and dialogue in artificial intelligence. IJCAI
2005 tutorial notes, 2005.

[9] Trevor J. M. Bench-Capon. Persuasion in practical argument using value-based argumenta-
tion frameworks. J. Log. Comput., 13(3):429–448, 2003.

[10] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial intelligence. Artif.
Intell., 171(10-15):619–641, 2007.

[11] Philippe Besnard and Anthony Hunter. A logic-based theory of deductive arguments. Artifi-
cial Intelligence, 128(12):203 – 235, 2001.

[12] Guido Boella, Dov M. Gabbay, Alan Perotti, Leendert van der Torre, and Serena Villata.
Theorie and Applications of Formal Argumentation: First International Workshop, TAFA
2011. Barcelona, Spain, July 16-17, 2011, Revised Selected Papers, chapter Conditional
Labelling for Abstract Argumentation, pages 232–248. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

139

Evg
en

ios
 H

ad
jiso

ter
iou

140

[13] Andrei Bondarenko, Phan Minh Dung, Robert A. Kowalski, and Francesca Toni. An ab-
stract, argumentation-theoretic approach to default reasoning. Artif. Intell., 93:63–101, 1997.

[14] John-Adrian Bondy and U. S. R. Murty. Graph theory. Graduate texts in mathematics.
Springer, New York, London, 2007. OHX.

[15] Gerhard Brewka. On the relationship between defeasible logic and well-founded seman-
tics. In Logic Programming and Nonmonotonic Reasoning, 6th International Conference,
LPNMR 2001, Vienna, Austria, September 17-19, 2001, Proceedings, pages 121–132, 2001.

[16] Martin W. A. Caminada, Walter Alexandre Carnielli, and Paul E. Dunne. Semi-stable se-
mantics. J. Log. Comput., 22(5):1207–1254, 2012.

[17] Martin W. A. Caminada and Dov M. Gabbay. A logical account of formal argumentation.
Studia Logica, 93(2-3):109–145, 2009.

[18] Claudette Cayrol and Yuming Xu. The matrix approach for abstract argumentation frame-
works. Technical Report RR–2015-01–FR, IRIT, Universit Paul Sabatier, Toulouse, 2015.

[19] Günther Charwat, Wolfgang Dvorák, Sarah Alice Gaggl, Johannes Peter Wallner, and Stefan
Woltran. Methods for solving reasoning problems in abstract argumentation - A survey.
Artif. Intell., 220:28–63, 2015.

[20] Carlos Iván Chesñevar, Ana Gabriela Maguitman, and Guillermo Ricardo Simari. A first
approach to argument-based recommender systems based on defeasible logic programming.
In NMR, pages 109–117, 2004.

[21] Irene-Anna Diakidoy, Antonis C. Kakas, Loizos Michael, and Rob Miller. Story Compre-
hension through Argumentation. In Proceedings of the 5th International Conference on
Computational Models of Argument (COMMA 2014), volume 266 of Frontiers in Artificial
Intelligence and Applications, pages 31–42, Scottish Highlands, U.K., September 2014. IOS
Press.

[22] Yannis Dimopoulos and Antonis C. Kakas. Logic programming without negation as fail-
ure. In Logic Programming, Proceedings of the 1995 International Symposium, Portland,
Oregon, USA, December 4-7, 1995, pages 369–383, 1995.

[23] Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in logic programs and
default theories. Theor. Comput. Sci., 170(1-2):209–244, 1996.

[24] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

[25] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Computing ideal sceptical argu-
mentation. Artif. Intell., 171(10-15):642–674, 2007.

[26] P.M. Dung, R.A. Kowalski, and F. Toni. Dialectic proof procedures for assumption-based,
admissible argumentation. Artificial Intelligence, 170(2):114 – 159, 2006.

[27] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. ASPARTIX: implementing argumenta-
tion frameworks using answer-set programming. In Logic Programming, 24th International
Conference, ICLP 2008, Udine, Italy, December 9-13 2008, Proceedings, pages 734–738,
2008.

Evg
en

ios
 H

ad
jiso

ter
iou

141

[28] Stefan Ellmauthaler and Hannes Strass. The DIAMOND system for computing with abstract
dialectical frameworks. In Computational Models of Argument - Proceedings of COMMA
2014, Atholl Palace Hotel, Scottish Highlands, UK, September 9-12, 2014, pages 233–240,
2014.

[29] Morten Elvang-Gøransson, Paul J. Krause, and John Fox. Dialectic reasoning with inconsis-
tent information. CoRR, abs/1303.1467, 2013.

[30] Xiuyi Fan, Robert Craven, Ramsay Singer, Francesca Toni, and Matthew Williams.
Assumption-based argumentation for decision-making with preferences: A medical case
study. In CLIMA, pages 374–390, 2013.

[31] Xiuyi Fan and Francesca Toni. Decision making with assumption-based argumentation. In
TAFA, pages 127–142, 2013.

[32] Alejandro Javier Garcı́a and Guillermo Ricardo Simari. Defeasible logic programming: An
argumentative approach. TPLP, 4(1-2):95–138, 2004.

[33] M. Gelfond and V. Lifschitz. Representing action and change by logic programs. Logic
Programming, 17:301–322, 1993.

[34] Marie Pierre Gleizes, Andrea Omicini, and Franco Zambonelli, editors. Engineering So-
cieties in the Agents World V, 5th InternationalWorkshop, ESAW 2004, Toulouse, France,
October 20-22, 2004, Revised Selected and Invited Papers, volume 3451 of Lecture Notes in
Computer Science. Springer, 2005.

[35] E. Hadjisoteriou and A. Kakas. Reasoning about actions and change in argumentation. Ar-
gument & Computation, 0(0):1–27, 2016.

[36] Evgenios Hadjisoteriou. Computing Argumentation with Matrices. In Claudia Schulz and
Daniel Liew, editors, 2015 Imperial College Computing Student Workshop (ICCSW 2015),
volume 49 of OpenAccess Series in Informatics (OASIcs), pages 29–36, Dagstuhl, Germany,
2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[37] Evgenios Hadjisoteriou and Michael Georgiou. Assa: Computing stable extensions with ma-
trices. System Descriptions of the First International Competition on Computational Models
of Argumentation (ICCMA15), pages 62–65, 2015.

[38] Evgenios Hadjisoteriou and Antonis Kakas. Logic Programs, Norms and Action: Essays in
Honor of Marek J. Sergot on the Occasion of His 60th Birthday, chapter Argumentation and
the Event Calculus, pages 103–122. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[39] Evgenios Hadjisoteriou and Antonis C. Kakas. Argumentation and temporal persistence. In
Proceedings of the 7th Panhellenic Logic Symposium, pages 89–94, 15-19 July, Patras, 2009.

[40] Evgenios Hadjisoteriou and Antonis C. Kakas. Argumentation and temporal persistence. In
ICCSW, pages 31–38, 2011.

[41] Steve Hanks and Drew V. McDermott. Nonmonotonic logic and temporal projection. Artif.
Intell., 33(3):379–412, 1987.

[42] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich. Recom-
mender Systems - An Introduction. Cambridge University Press, 2010.

Evg
en

ios
 H

ad
jiso

ter
iou

142

[43] Antonis Kakas and Pavlos Moraitis. Argumentation based decision making for autonomous
agents. In Proceedings of the Second International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’03, pages 883–890, New York, NY, USA, 2003. ACM.

[44] Antonis C. Kakas, Leila Amgoud, Gabriele Kern-Isberner, Nicolas Maudet, and Pavlos
Moraitis. Aba: Argumentation based agents. In ArgMAS, pages 9–27, 2011.

[45] Antonis C. Kakas, Robert A. Kowalski, and Francesca Toni. Abductive logic programming.
J. Log. Comput., 2(6):719–770, 1992.

[46] Antonis C. Kakas, Paolo Mancarella, and Phan Minh Dung. The acceptability semantics
for logic programs. In Logic Programming, Proceedings of the Eleventh International Con-
ference on Logic Programming, Santa Marherita Ligure, Italy, June 13-18, 1994, pages
504–519, 1994.

[47] Antonis C. Kakas, Nicolas Maudet, and Pavlos Moraitis. Flexible agent dialogue strategies
and societal communication protocols. In 3rd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004), 19-23 August 2004, New York, NY, USA,
pages 1434–1435, 2004.

[48] Antonis C. Kakas and Rob Miller. A simple declarative language for describing narratives
with actions. J. Log. Program., 31(1-3):157–200, 1997.

[49] Antonis C. Kakas, Rob Miller, and Francesca Toni. An argumentation framework of reason-
ing about actions and change. In LPNMR, pages 78–91, 1999.

[50] Henry A. Kautz. The logic of persistence. In Proceedings of the 5th National Conference
on Artificial Intelligence. Philadelphia, PA, August 11-15, 1986. Volume 1: Science., pages
401–405, 1986.

[51] R Kowalski and M Sergot. A logic-based calculus of events. New Gen. Comput., 4(1):67–95,
1986.

[52] Eric Lehman, Tom Leighton, and Albert R Meyer. Mathematics for computer science. Tech-
nical report, 2010.

[53] Beishui Liao. Efficient Computation of Argumentation Semantics. Intelligent systems series.
Academic Press, 2014.

[54] Beishui Liao, Li Jin, and Robert C Koons. Dynamics of argumentation systems: A division-
based method. Artificial Intelligence, 175(11):1790–1814, 2011.

[55] Tariq Mahmood and Francesco Ricci. Improving recommender systems with adaptive con-
versational strategies. In Hypertext, pages 73–82, 2009.

[56] Peter McBurney and Simon Parsons. Dialogue games for agent argumentation. In Guillermo
Simari and Iyad Rahwan, editors, Argumentation in Artificial Intelligence, pages 261–280.
Springer US, 2009.

[57] Norman McCain and Hudson Turner. Causal theories of action and change. In In Proc.
AAAI-97, pages 460–465, 1997.Evg
en

ios
 H

ad
jiso

ter
iou

143

[58] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artificial
intelligence. Machine Intelligence, 4:463–502, 1969.

[59] H. Mercier and D. Sperber. Why Do Humans Reason? Arguments for an Argumentative
Theory. Behavioral and Brain Sciences, 34(2):57–74, 2011.

[60] Rob Miller and Murray Shanahan. The event calculus in classical logic - alternative axioma-
tisations. Electron. Trans. Artif. Intell., 3(A):77–105, 1999.

[61] S. Modgil and Martin W.A. Caminada. Proof theories and algorithms for abstract argumen-
tation frameworks. In I. Rahwan and G. Simari, editors, Argumentation in Artif. Intell., pages
105–129. Springer Publishing Company, Incorporated, 2009.

[62] Sanjay Modgil and Martin Caminada. Proof theories and algorithms for abstract argumenta-
tion frameworks. In Guillermo Simari and Iyad Rahwan, editors, Argumentation in Artificial
Intelligence, pages 105–129. Springer US, 2009.

[63] Sanjay Modgil and Henry Prakken. A general account of argumentation with preferences.
Artif. Intell., 195:361–397, 2013.

[64] Victor Noël and Antonis C. Kakas. Gorgias-c: Extending argumentation with constraint
solving. In LPNMR, pages 535–541, 2009.

[65] Christos H Papadimitriou. Computational complexity. John Wiley and Sons Ltd., 2003.

[66] Michael J. Pazzani and Daniel Billsus. Learning and revising user profiles: The identification
of interesting web sites. Machine Learning, 27(3):313–331, 1997.

[67] I. Rahwan and G.R. Simari. Argumentation in Artificial Intelligence. Springer Publishing
Company, Incorporated, 2009.

[68] Iyad Rahwan and Guillermo R. Simari. Argumentation in Artificial Intelligence. Springer
Publishing Company, Incorporated, 1st edition, 2009.

[69] Paul Resnick and Hal R Varian. Recommender systems. Communications of the ACM,
40(3):56–58, 1997.

[70] Paul Resnick and Hal R. Varian. Recommender systems - introduction to the special section.
Commun. ACM, 40(3):56–58, 1997.

[71] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender systems
handbook. Springer, 2011.

[72] Gerard Salton. Automatic Text Processing: The Transformation, Analysis, and Retrieval of
Information by Computer. Addison-Wesley, 1989.

[73] Scott G Schreiber. Aristotle on false reasoning: language and the World in the Sophistical
Refutations. SUNY Press, 2003.

[74] Murray Shanahan. Solving the frame problem - a mathematical investigation of the common
sense law of inertia. MIT Press, 1997.

[75] Gilbert W Stewart. Introduction to matrix computations. 1973.
Evg

en
ios

 H
ad

jiso
ter

iou

144

[76] Andrew James Stothers. On the complexity of matrix multiplication. 2010.

[77] Loren G. Terveen and David W. McDonald. Social matching: A framework and research
agenda. ACM Trans. Comput.-Hum. Interact., 12(3):401–434, 2005.

[78] M. Thielscher. The Qualification Problem: A Solution to the Problem of Anomalous Models.
AIJ, 131(1–2):1–37, 2001.

[79] Michael Thielscher. From situation calculus to fluent calculus: State update axioms as a
solution to the inferential frame problem. Artificial Intelligence, 111:277–299, 1999.

[80] M. Thimm and S. Villata. System Descriptions of the First International Competition on
Computational Models of Argumentation (ICCMA’15). ArXiv e-prints, October 2015.

[81] A. Torres. Negation as failure to support. In L. M. Pereira and A. Nerode, editors, Logic
Programming and Non-Monotonic Reasoning: Proc. of the Second International Workshop.
Cambridge, pages 223–243. MIT Press, MA, 1993.

[82] Quoc Bao Vo and Norman Y. Foo. Reasoning about action: An argumentation-theoretic
approach. Journal of Artificial Intelligence Research, 24:465–518, 2005.

[83] Toshiko Wakaki and Katsumi Nitta. Computing argumentation semantics in answer set pro-
gramming. In New Frontiers in Artificial Intelligence, JSAI 2008 Conference and Workshops,
Asahikawa, Japan, June 11-13, 2008, Revised Selected Papers, pages 254–269, 2008.

[84] Y. Wu and M.W.A. Caminada. A labelling-based justification status of arguments. Studies
in Logic, 3(4):12–29, 2010.

[85] Yuming Xu. A matrix approach for computing extensions of argumentation frameworks.
CoRR, abs/1209.1899, 2012.

Evg
en

ios
 H

ad
jiso

ter
iou

Appendix A

Proofs

A.1 Chapter 4 Proof

Proposition 1

Proof 17 By contradiction. Let D be a domain and E be an admissible extension that is not
consistent with the t-propositions in D. Therefore, there exists a fluent f and a time point t s.t.
‘f holds-at t’ belongs to D and E ` ¬HoldsAt(f, t) (resp. ‘¬f holds-at t’ belongs to D and
E `HoldsAt(f, t)). Consider the case E ` ¬HoldsAt(f, t) (the respective case is completely
analogous). Let B be the set of argument rules B = {PO[f, t]}. We will show that B is an
attack against E that is not attacked back by E, thus contradicting the admissibility of E. B
attacks E because B(D) ∪ B `HoldsAt(f, t) minimally and E ` ¬HoldsAt(f, t) and there is
no argument that has higher priority than PO[f, t] at t. This attack can only be attacked back
by deriving ¬HoldsAt(f, t). The (minimal) derivation of ¬HoldsAt(f, t) by E will require either
a persistence argument or a local generation argument whose conclusion will be ¬HoldsAt(f, t).
The priority relation in Definition 22 assigns to these lower priority than PO[f, t], and hence since
B does not contain any other argument rule such derivations cannot form an attack againstB. The
only other possibility for E to derive ¬HoldsAt(f, t) is through PO[f, t] but this is not possible
due to the point wise consistency of D.

Lemma 2

Proof 18 Let f be a fluent, tn < tm two time points s.t. E `HoldsAt(f, tn) andE `HoldsAt(f, tm)
(the case where E ` ¬HoldsAt(f, tn) and E ` ¬HoldsAt(f, tm) is analogous). Assume that
E ` ¬HoldsAt(f, t) for some time t ∈ (tn, tm). We will show that this leads to a contradiction
of the admissibility of E. As time is discrete and so there are finitely many time points in the
interval (tn, tm) we can consider the first time point T in [tn, tm) at which we have a change of
the value of f by E, i.e. E `HoldsAt(f, T), E ` ¬HoldsAt(f, T + 1). Consider now the set
S = E1 ∪ {PFP (f, T + 1;T)} where E1 is a minimal subset of E that derives f at T . Then
S `HoldsAt(f, T + 1) and so it is a potential attack on E. In fact, since there are no termination
points for f in [tn, tm) and observations of ¬f in [tn, tm) the extension E cannot derive ¬f at
T + 1 with an argument stronger than PFP (f, T + 1;T) and so S attacks E. The only possible
way for E to attack back S is via a conflict at T + 1 by deriving ¬f at T + 1, as it cannot attack
S on its E1 subset since this would mean that E is inconsistent.
Again, since there are no termination points for f in [tn, tm) and observations of ¬f in [tn, tm)

145

Evg
en

ios
 H

ad
jiso

ter
iou

146

the extension E can derive ¬f at T + 1 either by a forward persistence of ¬f starting from a
time point before T or by backward persistence of ¬f from a time point after T + 1, but not both
due to the compactness property of an admissible extension (see Definition 28) that explicitly ex-
cludes this. Note that if there is an initiation point for f at tm and hence we have the possibility
to have in the AF a NGB[f, tm] argument for ¬f at tm this cannot belong to E as then E would
be inconsistent (at tm since E derives f at tm). In the first case, this cannot constitute an attack
as PFP (f, T + 1;T) is stronger than the forward persistence of ¬f , starting from a time point
before T .
In the second case this backward persistence of ¬f must have its origin from a point after tm
as there are no termination points or observations before tm. But, then the set S

′
= E

′ ∪
{PBP (f, T + 1; tm)} where E

′
is a minimal subset of E that derives f at tm attacks E. This

can only be defended by E with a backwards persistence argument starting before tm which is
not possible as there are no termination points for f or observation points for ¬f . Note that if
we have a chain of backward persistence starting from a time after tm to an intermediate time
point, ti, before tm but after T + 1 and then another backwards persistence from this to T + 1,
the extension E still needs to contain a persistence argument for ¬f starting after tm and reaching
this intermediate time point before tm. Then the attack, S

′′
= E

′ ∪ {PBP (f, ti; tm)}, analo-
gous to S

′
, cannot be attacked back by E. Similarly, if the way that E derives ¬f at T + 1 is

through a forward persistence from a time point before tn to a time point, t
′
, after T + 1 and then

a backwards persistence from t
′

to T + 1, then E would not be able to attack back the attack,
S

′′′
= E1 ∪ {PFP (f, t

′
;T)}, where E1 is a minimal subset of E that derives f at T . Hence one

of the attacks, S, S
′
, S

′′
or S

′′′
, cannot be attacked back by E and so E would not be admissible.

Contradiction.

Theorem 1

Proof 19 Let D be given with a countable number of h-propositions and t-propositions. We will
show the existence of an admissible extension E by induction on the number of h-propositions in
D.

Base Case: Number of h-propositions is zero.
To prove this case, a second induction on the number of t-propositions was used, which we have
also assumed to be countable.
Base case: Number of t-propositions is zero.
Let E =

⋃
f{PA[f, 0], PFP [f, t; 0] for every fluent f and every time point t > 0}. By construc-

tion E is complete, consistent, and clearly satisfies the compactness property of an admissible
extension. It remains to show that E attacks all of its attacks. To have an attack A on E, A needs
to derive ¬HoldsAt(f, t) for some fluent f and time point t, so as to have a contrary conclusion
with E. This can only happen if A contains the argument NA(f, 0). But then E attacks back A
through its argument PA(f, 0).
Induction Step: Suppose that there exist a (complete) admissible extension, E

′
, of the cor-

responding AF (B(D
′
),A, <) for any domain D

′
that contains up to k t-propositions and no

h-propositions. We will prove that the statement holds when a domain D contains k + 1 t-
propositions (and no h-propositions).
Consider the last t-proposition and let its time point be tk+1. If it is removed from D, the result-
ing domain, D

′
will only contain k many t-propositions. By the induction hypothesis, let E

′
be

a (complete) admissible extension of D
′
. We will use E

′
to construct an extension, E, for D as

follows. Let f be the fluent to which the t-proposition taken out ofD refers to and consider the last
Evg

en
ios

 H
ad

jiso
ter

iou

147

t-proposition in D
′

on f . Let its time be tl, tl ≤ tk+1. We will construct an admissible extension
E for D as the union, E = E−f ∪ E

+
f , of two sets of arguments obtained and extended from E

′
.

The following cases are obtained:
Case(a) there does not exist such a t-proposition, i.e. the observation at tk+1 is the only one in

D that refers to f . Assume that this observation at tk+1, is that f holds (the case where ¬f holds
at tk+1 is analogous). Then let
E−f = E

′r{All arguments in E
′

that refer to f for any time point} and
E+

f = {PO[f, tk+1], PFP [f, t1; tk+1], PBP [f, t2; tk+1] | t1 > tk+1, t2 < tk+1}.
Case(b) the (last) observation at time tl also states that f holds (i.e. as does the observation

for the fluent f at time tk+1). Let E−f = E
′

and E+
f = ∅.

Case(c) the (last) observation at time tl is opposite to the observation for the fluent f at time
tk+1, i.e. at time tl f is observed not to hold whereas at tk+1 it is observed to hold. Then let
E−f = E

′r{All arguments in E
′

that refer to f for any time point, t ≥ tl}. Choose a time point
Ti ∈ [tl, tk+1) and let
E+

f = {NO[f, tl], NFP [f, t; tl] | t ∈ (tl, Ti]}∪{PO[f, tk+1], PFP [f, t1; tk+1], PBP [f, t2; tk+1]
| t1 > tk+1, t2 ∈ (Ti, tk+1)}.

By construction, E = E−f ∪ E
+
f in every case is consistent, complete and compact. To show

that E is admissible let us consider the possible new attacks on E that result from the changes to
E

′
for the three cases above. Case(a): new attacks need to prove ¬HoldsAt(f, t) for some time

point t. This can only happen by a potential attack A that contains the argument NA[f, 0] as in
D there does not exist any h-propositions and the observation at tk+1 is the only one referring
to f . But any attack of this form on E+

f = {PO[f, tk+1], PFP [f, t1; tk+1], PBP [f, t2; tk+1] |
t1 > tk+1, t2 < tk+1} can be counterattacked by E+

f on the argument NA[f, 0] of A. Case(b): E
does not differ from E

′
and hence it remains admissible. Case(c): let us consider new attacks on

E that are not attacks on E
′

after and before tk+1.
(i) after tk+1: any potential new attack on E on the fluent f can only come through forward
persistence of ¬f from some time point T ≤ tl < tk+1 as there aren’t any h-propositions in
D and the last observation for f before tk+1 is at time tl. But this is not an attack on E+

f =
{NO[f, tl], NFP [f, t; tl] | t ∈ (tl, Ti]} ∪ {PO[f, tk+1], PFP [f, t1; tk+1], PBP [f, t2; tk+1] |
t1 > tk+1, t2 ∈ (Ti, tk+1)} as forward persistence arguments from latter time points are stronger.
(ii) before tk+1 and tl new potential attacks onE can only occur by the observation at tk+1. Let us
then consider a potential new attack, A

′
on E given by {PO[f, tk+1], PBP [f, T ; tk+1] for some

T < tl}. We then consider how E
′

and E derive ¬f at T . There are two possibilities, either
by {NO[f, tl], NBP [f, T ; tl] in which case A

′
does not attack E

′
, or through some forward per-

sistence argument from some other observation for ¬f before tl or from a negative assumption
for ¬f at 0. In both of these latter cases, E

′
would counter attack the attack A

′
as forward and

backwards persistence arguments are non-comparable.
(iii) before tk+1 but after tl attacks on E are based on a conflict between forward and backwards
persistence in the interval (tl, tk+1). These are counter-attacked byE+

f = {NO[f, tl], NFP [f, t; tl]
| t ∈ (tl, Ti]} ∪ {PO[f, tk+1], PFP [f, t1; tk+1], PBP [f, t2; tk+1] | t1 > tk+1, t2 ∈ (Ti, tk+1)}
in E since conflicting forward and backwards persistence arguments have the same priority.

Induction step: Suppose that there exist an (complete) admissible extension, E
′
, of the cor-

responding AF (B(D
′
),A, <), for any domain D

′
that contains k or less h-propositions. We will

prove that the statement holds when a domain D contains k + 1 h-propositions.
Consider the last h-proposition that occurred at time point tk+1. If it is removed from D, the
resulting domain, D

′
, will only contain k many h-propositions. By the induction hypothesis, let

Evg
en

ios
 H

ad
jiso

ter
iou

148

E
′

be a (complete) admissible extension of D
′
. We will use E

′
to construct an extension E for D

as follows. Let E be given by:
E =

⋃
f

E−f ∪
⋃
f

E+
f

where E−f is defined from E
′

by removing some arguments for the fluent f and E+
f are some new

arguments for the fluent f . For any fluent f we have the following cases:
(Case1) tk+1 is an initiation point for f in E

′
.

(Case2) tk+1 is a termination point for f in E
′
. This case is similar to case 1. Note that tk+1

can be both an initiation and a termination point for the same fluent f . In such a case we can pick
either case in the construction.

(Case3) tk+1 is neither an initiation or a termination point for f in E
′
. In this case E−f = E

′
f

and E+
f = {}, i.e. nothing (related to the fluent f) is removed or added.

Hence let us assume that tk+1 is an initiation point for f in E
′

and consider the following
changes in E

′
in order to build an admissible extension E.

These changes to E
′

will all be after time point tk+1. Note that there is no need to make
any changes before tk+1, as the existence of the initiation point for f at tk+1 can enable new
possible attacks on E

′
(and the resulting E that we are constructing) only through the argument

NGB[f, tk+1] and either backwards persistence of ¬f from this or forwards persistence. In the
case of backwards persistence, this attack will always be counter attacked by E

′
as backwards

persistence arguments are non-comparable to other arguments, or they will be weaker than earlier
backwards persistence in E

′
. For the new forwards persistence of ¬f from NGB[f, tk+1] pos-

sible attacks we are shown below that these persistence arguments will be weaker than the new
arguments E+

f that we add in E
′
.

Consider therefore, the first t-proposition referring to f after tk+1 at time, tn > tk+1. The
following cases are obtained:

(a1) If there does not exist such a t-proposition let
E−f = E

′\{All arguments in E
′

that refer to f , for any t > tk+1} and
E+

f = {PGF [f, tk+1], PFP [f, t; tk+1 + 1] | t > tk+1 + 1}.
(a2) The first t-proposition after tk+1, at time tn, confirms (i.e. we observe that f holds at tn) the
initiation point for the fluent f at time tk+1. Let
E−f = E

′\{All arguments in E
′

that refer to f , for any t ∈ (tk+1, tn)} and
E+

f = {PGF [f, tk+1], PFP [f, t; tk+1 + 1] | t ∈ (tk+1 + 1, tn)}.
(a3) The first t-proposition after tk+1 at time tn is opposite (i.e. we observe that f does not holds
at tn) to the initiation point for the fluent f at tk+1. Choose Ti ∈ [tk+1, tn). Let
E−f = E

′\{All arguments in E
′

that refer to f , for any t ∈ (tk+1, tn]} and
E+

f = {PGF [f, tk+1], PFP [f, t; tk+1 + 1] | t ∈ (tk+1 + 1, Ti]} ∪ {NO(f, tn),

NBP [f, t
′
; tn] | t′ ∈ (Ti, tn)}.

(b) Changes to E
′

before or at time point tk+1:
Consider the last t-proposition referring to f or h-proposition that can generate f or ¬f in E

′
at

time tm ≤ tk+1.
(b1) If there does not exist such a t-proposition or an h-proposition, i.e. the h-proposition at tk+1

is the only one in D that refers to f and there does not exist a t-proposition in D at tm ≤ tk+1 that
refers to f . Let
E−f = E

′\{All arguments in E
′

that refer to f , for any t ≤ tk+1} and
E+

f = {NA[f, 0], NFP [f, t; 0] | t < tk+1}.
Evg

en
ios

 H
ad

jiso
ter

iou

149

(b2) If there exists a t-proposition or an h-proposition at tm ≤ tk+1 opposite to the initiation point
for the fluent f at time tk+1 (i.e. the observation at tm is that f does not hold at tm or at tm we
have a termination point for f), then no change before tk+1 of E

′
is needed.

(b3) Similarly, if there exists a t-proposition at tm ≤ tk+1 where f is observed to hold at tm or
there exits an h-proposition at tm ≤ tk+1 s.t. tm is also an initiation point for the fluent f , then no
change before tk+1 of E

′
is needed.

By construction E is complete, consistent, and compact. It must further demonstrated that
E attacks back at any of its attacks. Consider all possible new attacks on E through the dif-
ferent cases that are given above. Case a1. Any new potential attack on E after tk+1 needs to
prove ¬HoldsAt(f, t) for some t > tk+1. Such a minimal proof can only be built from either
an observation for the fluent ¬f before or equal to tk+1, a termination for the fluent f before or
equal to tk+1 or an assumption for ¬f at 0. But all three cases do not constitute an attack on
the E+

f = {PGF [f, tk+1], PFP [f, t; tk+1 + 1] | t > tk+1 + 1} as between conflicting forward
persistence arguments higher priority have the arguments occurring at a latter time point. Hence
there are no new attacks on this new part of E.
Case a2. A potential new attack on E needs to prove ¬HoldsAt(f, t) for t ∈ (tk+1, tn). Such a
proof can only be built from an observation or a generation point before or equal to tk+1 or by an
assumption at 0. Similar to case a1 these are not attacks. Another possibility are proofs starting
after tn by observations of ¬f by backward persistence. This attacks E but it is counter attacked
by E because no priority is given between conflicting forward persistence arguments over back-
ward persistence arguments.
Case a3. Any new potential attack on E at (tk+1, Ti] needs to prove ¬HoldsAt(f, t) for any
t ∈ (tk+1, Ti]. Such a minimal proof can only be built from either an assumption for the fluent
¬f at 0, an observation for the fluent ¬f before or equal to tk+1 or by a termination for the fluent
f before or equal to tk+1. But similarly to case a1 all three are not attacks. Other new attacks
require a proof of ¬f starting after tn. But these attacks are counter attacked (similarly to case
a2). Also new attacks on E at (Ti, tn] need to prove HoldsAt(f, t) for any t ∈ (Ti, tn]. Such a
minimal proof can only be built from either an assumption for the fluent f at 0, an observation for
the fluent f before Ti or by an initiation for the fluent f before Ti. All three are attacks but can be
counter attacked by the constructed E.

Theorem 2

Proof 20 Let D be given and let M be a language E model of D. We will show the existence of
a corresponding admissible extension E by induction on the number of h-propositions in D.

Base case: Number of h-propositions is zero.
Case(1): Number of t-propositions (observations) in D is zero.
By definition of the Models of E , for every fluent f eitherM(f, t) = true for every t orM(f, t) =
false for every t. For any fluent f s.t. M(f, t) = true for every t, let
Ef ={PA(f, 0)} ∪ {PFP (f, t; 0)|for every t} and for any fluent f

′
s.t. M(f

′
, t) = false for

every t, let Ef
′ ={NA(f

′
, 0)} ∪ {NFP (f

′
, t; 0)|for every t}. Let us then define E as follows:

E =
⋃

f |M(f,t)=true

Ef ∪
⋃

f ′ |M(f ′ ,t)=false

Ef ′Evg
en

ios
 H

ad
jiso

ter
iou

150

By construction E corresponds to the model M . We will show that E is an admissible extension.
By construction E is consistent, complete and compact. In order for an argument set A, to attack
E, for some fluent f and time point t a contrary conclusion should exist, i.e. A ` ¬HoldsAt(f, t)
when M(f, t) = true (resp. A `HoldsAt(f

′
, t) when M(f

′
, t) = false) This is only possible if

A contains NA(f, 0) (resp. contains PA(f
′
, 0). E therefore attacks back A through its argument

PA(f, 0) (resp. NA(f
′
, 0). Furthermore, by construction E corresponds to the given model M .

Case(2): The domain D contains t-propositions (observations).
Given the existence of the model, M , of D and the fact that there are no h-propositions in D all
observations inD for a given fluent f are either all for f to hold or all for ¬f to hold at the different
time points where we have observations. Therefore as in Case(1), all fluents have a constant truth
value in M at all time points. Thus we can define E as before:

E =
⋃

f |M(f,t)=true

Ef ∪
⋃

f ′ |M(f ′ ,t)=false

Ef ′

New attacks onE based on observations are not possible since by construction ofE such an attack
would require an observation for a fluent f which is contrary to the constant truth value for f inM .

Induction Step: Suppose that the statement holds for any domain s.t. the number of h- propo-
sitions is less or equal to k.
Let D be a domain with k + 1 h-propositions and let M be a model of D. Consider the last
h-proposition and assume that this occurred at the time point tk+1. We then consider the new
domain D

′
resulting by taking out of D this last h-proposition as well as all the t-propositions

after this time point. The domainD
′

contains k many h-propositions. By the induction hypothesis
there exist an admissible extension E

′
for (B(D

′
),A′

, <) corresponding to the model, M
′
, of D

′

obtained from the model M by replacing the truth value of every fluent, for every time after tk+1,
to be the same as its truth value in M at tk+1. We then define E, from E

′
by considering for each

fluent the initiation or termination status of the time point tk+1 and the possible t-propositions in
D after this time point.

Let f be any fluent:
(i) Let tk+1 be an initiation point for the fluent f inM and thatM assigns true to f after tk+1

1

. Let E−f = E
′
fr{All arguments in E

′
with conclusion ¬HoldsAt(f, T) or HoldsAt(f, T), for

any T > tk+1 } and E+
f = {PG(f, tk+1)} ∪ {PFP (f, t1; tk+1 + 1) | t1 > tk+1 + 1}. Here and

below E
′
f denotes the subset of E

′
of all the arguments that refer to the fluent f .

(ii) Let tk+1 be a termination point for the fluent f in M . Let E−f = E
′
fr{All argu-

ments in E
′

with conclusion HoldsAt(f, T) or ¬HoldsAt(f, T), for any T > tk+1 } and
E+

f ={NG(f, tk+1)} ∪ {NFP (f, t1; tk+1 + 1) | t1 > tk+1 + 1}.
(iii) Let tk+1 be neither an initiation nor a termination point for the fluent f in M . Let E−f =

E
′
f and E+

f = ∅.
(iv) Let tk+1 is both an initiation and a termination point for f in M . The model M of E will non
deterministically have chosen the value true or false for f after tk+1. If this value is true then
E−f and E+

f are defined as in case (i). Otherwise, if it is false then E−f and E+
f are defined as in

case (ii).
1Note that tk+1 can be both an initiation and a termination point for f in M but any given model the fluent f will

have either the value true or false (see case (iv)).Evg
en

ios
 H

ad
jiso

ter
iou

151

We then define E as follows:
E =

⋃
f

E−f ∪
⋃
f

E+
f

By construction and the inductive hypothesis on E
′
, E is consistent, complete and compact. Also

by construction E corresponds to M . We also note that if there exists t-propositions on a fluent f
after time tk+1 then they must all give the same truth value for f since otherwise the domain D
would not have a model. This truth value of f in M will coincide with the derivation of f or ¬f
after tk+1 by the constructed E.

It remains to show that E attacks all its attacks. New attacks on E that were not attacks on
E

′
can occur by the possible generation point at tk+1. Since tk+1 is the last generation point new

attacks on E can be built by backwards persistence from this, conflicting with forward persistence
arguments from t < tk+1. But then, E can counter attack any of these attacks since forward
persistence has same priority than conflicting backwards persistence. Note also that observations
of f after tk+1 cannot generate any new attacks on E since if tk+1 is an initiation point in M for a
fluent f then these observations must all be for f to be true (otherwise M would not be a model)
and hence by the construction of E the observations cannot generate an argument conflicting with
the arguments in E. Similarly, when tk+1 is a termination point in M .

Theorem 3

Proof 21 Let E be a given admissible extension of D and consider the interpretation HE that
correspond to E. HE is well-defined as admissible extensions are complete. Suppose that HE

is not a model of D in language E . Then one of the four conditions of the definition 20 of a
model must be violated. Given the result of Proposition 1, HE cannot violate property (4) of
Definition 20, since admissible extensions are consistent wrt the t-propositions in the domain.
Thus HE violates one of properties (1-3).

Violation of property 1: There exist a fluent f and time points t1, t with t1 < t s.t.
E `HoldsAt(f, t1) and E ` ¬HoldsAt(f, t) (or vice-versa) and there exists no termination point
in [t1, t) relative to E (or HE). Since time is discrete we can choose t1, t to be consecutive times.
We then add in D a new h-proposition ‘A happens-at t1’ s.t. ‘A terminates F ’. In the new domain
D1 obtained from this addition this violation of the model property is removed.
Violation of property 2: There exist a fluent f and time points t1 < t s.t. t1 is an initiation point
of f relative to HE , E ` ¬HoldsAt(f, t) and there exists no termination point in (t1, t) for f in
HE . Due to the discrete nature of time we can choose t to be the closest time point to t1 where
there is such a violation, i.e. t is the closest time point after t1 where E ` ¬HoldsAt(f, t).
We then add in D a new h-proposition ‘A happens-at T

′
’ at T

′
= t − 1 s.t. ‘A terminates F ’. In

the new domain D2 obtained from this addition the violation of the model property is removed.
Note that T

′
can be equal to t1 in which case language E has models for either f or ¬f to hold

after t1.
Violation of property 3: The treatment of this violation is analogous to the violation of property
(2) and results in a new domain D3 that removes one such violation.

We then consider the domain D123 = D1 ∪ D2 ∪ D3. If HE is not a model of D123 then
we repeat the above construction. Due to the finiteness of the h-propositions and t-propositions in
D and the discrete nature of the time line this process terminates and results in the required new
domain D

′
.Evg
en

ios
 H

ad
jiso

ter
iou

152

A.2 Chapter 5 Proof

Proposition 2

Proof 22 Let AF = 〈A,R〉 with n arguments and A = (ai,j) its adjacency matrix. Let S ⊆ A
be a set of arguments with S its column vector representation. The product (of the two matrices
A and S) AS is defined as follows: (AS)i,1 =

∑n
t=1((i, t)th element of A × (t, 1)th element of

S) =
∑n

t=1 ai,tst,1. Based on Definition 32 and Definition 31, (AS)i,1 is an addition of zeroes if
at least one of the entries ai,t or st,1 is zero as 0× 1 = 1× 0 = 0× 0 = 0 or an addition of ones
if both entries ai,t = st,1 = 1 since 1 × 1 = 1. Intuitively, it is an addition of ones if and only if
there exists an attack from ai to at in the AF and at ∈ S.

Theorem 4

Proof 23 Let AF = 〈A,R〉 and A = (ai,j) its adjacency matrix. We will show that Am is the
number of walks of length m from ai to aj in AF . By induction on m.

Base case: m = 1. A1 = A and by Definition 31, it is true.
Induction Step: Suppose the theorem holds for any Am−1,m− 1 > 0 and we will prove that

it is true for Am. Let Am−1 = (bi,j) and Am = (ci,j). Since Am = Am−1 × A, from the matrix
multiplication we get:
(ci,j) =

∑n
t=1((i, t)th element of Am−1 ×(t, j)th element of A) =

∑n
t=1 bi,tat,j .

Every walk from argument i to j of length m is constructed by a walk of length m − 1 from i to
t and by a walk of length 1 from t to j. Since there are bi,t walks of length m − 1 from ai to at
(Induction Step) and at attacks aj (walks of length 1), the total number of walks with length m is∑n

t=1 bi,tat,j = (ci,j).

Proposition 7

Proof 24 Based on Proposition 3, γi ∈ Γ shows how many times argument ai ∈ A is attacked by
S. Therefore, when γi 6= 0 ∈ Γ means that ai is connected to S in γi ways, (i.e. argument ai is
attacked in γi ways by the arguments in S). This does not conform with the definition of a conflict
free set. To pass the test arguments that are attacked should not be part of S, thus ∫i = 0 ∈ S.

Proposition 8

Proof 25 Based on Definition 1. Matrix Γ = (γi) = AS shows if S is under attack (see Propo-
sition 2). When (1) Γ = 0, S passes the defending test as no attackers exist and there are no
arguments to defend against. When (2) Γ 6= 0, i.e. attackers exist, we check if S counter attacks
them. γi 6= 0 Proposition 2, shows the number of attacks. To retrieve this critical information
we create ∆(i), ∀i that γi 6= 0 and evaluate E(i) = A∆(i). By Proposition 2, E(i) shows if any
arguments in A attack ∆(i). To ensure that when counter attacks exist, they come from arguments
in S, we allow the restriction ∀i,∃e(i)k ∈ E

(i) when e(i)k 6= 0, sk 6= 0, i.e. for every attack there
exists at least one argument counter attacking it and this argument belongs to S.

Proposition 10

Proof 26 LetAF = 〈A,R〉,S ⊆ A be a set of arguments with S its column vector representation.
Based on Definition 2 S should be conflict-free, i.e. it should pass the conflict-free test and every
argument not in S should be attacked by an argument in S. Γ = STA is a row vector where its
entry (STA)i,1 shows (see Proposition 3) how many times argument ai ∈ A is attacked by S.
Fulfilling the constrain ∀i s.t. si = 0, γi 6= 0 we make sure that every argument not in S should
be attacked by an argument in S .

Evg
en

ios
 H

ad
jiso

ter
iou

Appendix B

Parametric Space for Hotels

Hotels

Instrumental value (a place to stay)

Value

Basic hotel

Room

Comfort

Entertainment

Bathroom

Common area amenity

Quiet, relaxing lounge

Entertainment in lounge

Food & beverage

Services

Fast, efficient check-in and check-out

Room service

Feel safe and secure in hotel

Security personnel on floor

24hour video security

Loud fire alarms

Facilities

Sport facilities

Gift shops

Children

Extrinsic value (a place in the world)

Attractiveness

Location

Use of local services

Usability & Access

Nightlife

Figure 30: Hotels

153

Evg
en

ios
 H

ad
jiso

ter
iou

Appendix C

Original Event Calculus

The original EC is formalized as a logic program using negation as failure to capture persis-
tence. It was designed to deal with incomplete narrative information where updates to the theory
(knowledge base) are done additively and incrementally. New information in the form of new
events can cause the start or the end of zero or more time periods. In particular, they can affect
the end points of existing after(e u) and before(e u) time periods and this in turn affects the
possible conclusion of whether the property u holds or not at some time point. The following
example is taken from [51].

Example 26 Let John be a person working for company C at position P1. The event promoting
John from position P1 to position P2 will end the period of John working at position P1 and start
a new period of John working at position P2. The previous knowledge is not deleted as promoting
John does not delete the period where he was working at position P1.

The original EC uses the two time period terms, after(e u) and before(e u) where:

after(e u) names a time period after the event e as a function of the event e. The parameter u
names the relationship that is associated with the period. The end of after(e u) is undefined
unless extra information that can help us derive the end of the period after(e u) is added
to the theory.

before(e u) names a time period before the event e as a function of the event e. The parameter
u names the relationship associated with the period. The start of before(e u) is undefined
unless extra information that can help us derive the start of the period before(e u) is added
to the theory.

Predicates after(e u) and before(e u) are treated symmetrically and the latter allows back-
wards reasoning. Stating that the end of after(e u) (resp. the start of before(e u)) is undefined
means that after(e u) (resp. before(e u)) might last forever or until a new event with extra in-
formation will determines its end. Some events can inform us about the future (e.g., the event hire
denotes the start of a period), the past (e.g., the event fire or leave denotes the end of a period).
Furthermore, there are events (e.g., promote) that inform us about the end of a period and the
beginning of a new one.

154

Evg
en

ios
 H

ad
jiso

ter
iou

155

-John P1E1

1

�John P2 E2

8

-� John P2John P1

4

E3

Figure 31: After Update (3)

John P1E1

1

John P2 E2

84

E3

Figure 32: Conclusion

Example 27 Let the following narrative:
(1) John was hired for the position P1 at time 1.
(2) John left from position P2 at time 8.
(3) John was promoted from position P1 to position P2 at time 4.

Updating the knowledge base (initially it is empty) with the narratives (1)-(3) can be repre-
sented pictorially as illustrated in Figure 31. Each sentence (event) in Example 27 can be seen as
an update to the knowledge base.

After update (1), the term after(E1 P1) names the time period after the event E1. The end
of after(E1 P1) is undefined; therefore at this point it is assumed that it lasts forever. Similarly,
after update (2); the term before(E2 P2) names the time period before the event E2. The starting
end of before(E2 P2) is also undefined. After the final update (3), we can conclude that the
ends of after(E1 P1) and before(E2 P2) are revealed, and after(E1 P1) = before(E3 P1)
and after(E3 P2) = before(E2 P2). Pictorially this is shown in Figure 32.

Let e and e
′
be two events. In order to conclude that two periods are the same (i.e., after(e u) =

before(e
′
u)) original EC uses rules like the following one:

after(e u) = before(e
′
u) if Holds(after(e u))

and Holds(before(e
′
u))

and e < e
′

and not Broken(e u e
′
)

Here, Holds(p) expresses the fact that there is a time period p that an associated property
holds. Broken(e u e

′
) indicates that, given the information that is available, the relation u was

interrupted between the events e and e
′
.Evg

en
ios

 H
ad

jiso
ter

iou

156

� u
e
′

-ue

Conclusion

ue e
′

Figure 33: Identical

-u
′

e
′

-u
e

� u
′

e
′

� u
e

Conclusion

-u
′

e
′

u
e i

u
′

e
′

i

� u
e

Figure 34: Exclusive

C.0.1 Deriving the End Points

The original EC uses several rules to determine the beginning of a period or the end of a
period. When two time periods interact, there are three cases that cover all possible scenarios: (1)
identical, (2) exclusive, and (3) incompatible. Assume that e < e

′
are two events.

In the first case, as shown above, the two periods that the events generate become identical, as
illustrated in Figure 33 (i.e., after(e u) = before(e

′
u)). In this case, it is natural to conclude

that the start and the end of the time periods were found.
As shown in Figure 34 when before(e u) comes into conflict with before(e

′
u

′
) (e.g., when

u
′

= ¬u) then there must be a start point i of before(e
′
u

′
) at or after e. When after(e u) comes

into conflict with after(e
′
u

′
) then there must be an end point i of after(e u) at or before e

′
.

Finally, as shown in Figure 35, when after(e u) comes into conflict with before(e
′
u

′
) then

there is an end of after(e u) at or before the start of before(e
′
u

′
).

In both of the last two cases, the narrative has some missing information.

� u
′

e
′

-u
e

Conclusion

u
′

i e
′

u
e f

Figure 35: Incompatible

Evg
en

ios
 H

ad
jiso

ter
iou

157

0 1 2 3
m1

alive
¬loaded

alive
loaded

alive
loaded

¬ alive
loaded

0 1 2 3
m2

alive
¬loaded

alive
loaded

alive
¬ loaded

alive
¬loaded

Figure 36: Yale Shooting Problem

C.1 Frame and Qualification Problem

The qualification problem exists when at a time point t1 there is an initiation point for fluent
F , but at a latter time point where t2 > t1, ¬F is observed, or when at t1 F is observed and at
t2 > t1 ¬F is observed. When this result cannot be explained, it is called a qualification problem.
In these two cases, there is an exogenous qualification problem since exogenous reason exists to
‘explain’ these behaviors that our description does not conform.

Consider the Yale Shooting Problem introduced by [41], which is directly related to the frame
problem (fluent values do not change unless an action occurs that has the ability to change them).
The Yale shooting Problem scenario contains a gun and a victim. There are two fluent names alive
and loaded and three actions are produced in the following way: 1) load (the gun), 2) wait and
3) shoot (the victim). Initially, the victim is alive and the gun is not loaded. One possible model
m1 would be for the victim to not be alive after performing the action shoot. Another possible
model m2, again logically correct, would be for the gun to mysteriously become unloaded before
shooting and therefore the victim survives; these two models are depicted in Figure 36.

Evg
en

ios
 H

ad
jiso

ter
iou

Appendix D

Codes

To download and run the programs please visit our website1 .

D.1 Code: ‘Hotel for ME’

Listing D.1: Hotel for Me
% Some f a c t s
r u l e (f 1 o (H) , h o t e l (H) , []) :− between (1 , 5 0 0 ,H) .
r u l e (f 2 t (T) , t i m e p o i n t (T) , []) :− between (1 , 1 2 , T) .

% Some p r i o r i t y r u l e s
r u l e (p r 1 (H, T) , p r e f e r (f 1 2 p (H, T) , f 1 1 p (H, T)) , []) .
r u l e (p r 1 c r (H, T) , p r e f e r (f 1 2 c r (H, T) , f 1 1 c r (H, T)) , []) .
r u l e (p r 2 (H, T) , p r e f e r (r 1 4 p (H, T) , r 1 3 p (H, T)) , []) .
r u l e (p r 3 (H, T) , p r e f e r (r 1 5 p (H, T) , r 1 3 p (H, T)) , []) .
r u l e (p r 4 (H, T) , p r e f e r (r 1 7 n (H, T ,A) , r 1 6 n (H, T ,A)) , []) .

% Users : For t h i s n a r r a t i v e we have 5 u s e r s
% k l e l i a , a l e x a n d r o s john , c h r i s t o s and g i o r g o s
r u l e (r 1 6 u (U) , u s e r (U) , []) : −member (U , [k l e l i a ,

a l e x a n d r o s , john , c h r i s t o s , g i o r g o s]) .

% User may t r a v e l f o r b u s i n e s s or p l e a s u r e
% R = Reason f o r v i s i t i n g
r u l e (r 1 6 r (R) , r e a s o n (R) , []) :− member (R , [b u s i n e s s , p l e a s u r e]) .

% User may t r a v e l a lone , w i t h f a m i l y (+ c h i l d r e n 0−5) or
% w i t h f r i e n d s , W = T r a v e l l i n g w i t h
r u l e (r 1 9 r (W) , t r a v e l w i t h (W) , []) :− member (W, [a lone ,

f a m i l y (c h i l d r e n (N)) , f r i e n d s]) , be tween (0 , 5 ,N) .

1http://www.mertjiandata.com/assa.html

158

Evg
en

ios
 H

ad
jiso

ter
iou

http://www.mertjiandata.com/assa.html
http://www.mertjiandata.com/assa.html

159

% I f u s e r t r a v e l s f o r b u s i n e s s a l o n e or w i t h f a m i l y and no
% c h i l d r e n u s e r o n l y c a r e s abou t a v a i l a b i l i t y near t h e d e s i r e d
% area and f o r t h e h o t e l t o have a c o n f e r e n c e r o o m :
% U = User , H = Hote l , T = Timepo in t , A = Area , R =
% Reason f o r v i s i t i n g , W = T r a v e l l i n g w i t h
r u l e (r 1 7 a l l (U, H, T , A, R ,W) , h o t e l f o r a l l (U, H, T , A, R ,W) , [u s e r (U) ,

h o t e l (H) , t i m e p o i n t (T) , a r e a (A) ,
c o n f e r e n c e r o o m (H, T) , n e a r (H,A) , r e a s o n (R)]) : −

member (A , [n i c o s i a , l a r n a c a , l i m a s o l , paphos , t r o o d o s]) ,
R = b u s i n e s s , member (W, [a lone , f a m i l y (c h i l d r e n (0))]) .

% I f u s e r t r a v e l s f o r b u s i n e s s w i t h 1−3 c h i l d r e n , u s e r
% o n l y c a r e s abou t p l a y g r o u n d and poo l
% U = User , H = Hote l , T = Timepo in t , A = Area , R = Reason
% f o r v i s i t i n g ,W = T r a v e l l i n g w i t h
r u l e (r 1 7 a l l (U, H, T , A, R ,W) , h o t e l f o r a l l (U, H, T , A, R ,W) , [u s e r (U) ,

h o t e l (H) , t i m e p o i n t (T) , a r e a (A) , n e a r (H,A) , r e a s o n (R) ,
p l a y g r o u n d (H, T) , poo l (H, T)]) : −

member (A , [n i c o s i a , l a r n a c a , l i m a s o l , paphos , t r o o d o s]) ,
R = b u s i n e s s ,
member (W, [f a m i l y (c h i l d r e n (N))]) ,
be tween (1 , 3 ,N) .

% I f u s e r t r a v e l s f o r b u s i n e s s w i t h f r i e n d s u s e r
% o n l y c a r e s abou t poo l and good n i g h t l i f e
% U = User , H = Hote l , T = Timepo in t , A = Area , R = Reason
% f o r v i s i t i n g , W = T r a v e l l i n g w i t h
r u l e (r 1 7 a l l (U, H, T , A, R ,W) , h o t e l f o r a l l (U, H, T , A, R ,W) , [u s e r (U) ,

h o t e l (H) , t i m e p o i n t (T) ,
a r e a (A) , n e a r (H,A) , r e a s o n (R) , poo l (H, T) ,
g o o d n i g h t l i f e (H, T ,A)]) : −

member (A , [n i c o s i a , l a r n a c a , l i m a s o l , paphos , t r o o d o s]) ,
R = b u s i n e s s ,
member (W, [f r i e n d s]) .

% I f u s e r t r a v e l s f o r b u s i n e s s w i t h 4−5 c h i l d r e n , u s e r
% o n l y c a r e s abou t s p e c i a l r a t e s
% U = User , H = Hote l , T = Timepo in t , A = Area , R = Reason
% f o r v i s i t i n g ,W = T r a v e l l i n g w i t h
r u l e (r 1 7 a l l (U, H, T , A, R ,W) , h o t e l f o r a l l (U, H, T , A, R ,W) , [u s e r (U) ,

h o t e l (H) , t i m e p o i n t (T) , a r e a (A) , n e a r (H,A) ,
r e a s o n (R) , s p e c i a l r a t e s (H, T)]) : −

member (A , [n i c o s i a , l a r n a c a , l i m a s o l , paphos , t r o o d o s]) ,
R = b u s i n e s s ,
member (W, [f a m i l y (c h i l d r e n (N))]) ,
be tween (4 , 5 ,N) .Evg

en
ios

 H
ad

jiso
ter

iou

160

% I f u s e r t r a v e l s f o r p l e a s u r e w i t h f r i e n d s u s e r o n l y c a r e s
% abou t c o o l s e a s o n , crowded and good n i g h t l i f e
r u l e (r 1 8 a l l (U, H, T , A, R ,W) , h o t e l f o r a l l (U, H, T , A, R ,W) , [u s e r (U) ,

h o t e l (H) , t i m e p o i n t (T) , r e a s o n (R) , a r e a (A) , n e a r (H,A) ,
c o o l s e a s o n (H, T) , crowded (H, T) ,
g o o d n i g h t l i f e (H, T ,A)]) : −

member (A , [n i c o s i a , l a r n a c a , l i m a s o l , paphos , t r o o d o s]) ,
R = p l e a s u r e ,
member (W, [f r i e n d s]) .

% I f u s e r t r a v e l s f o r p l e a s u r e w i t h f a m i l y and c h i l d r e n
% u s e r o n l y c a r e s abou t pool , p l a y g r o u n d and s p e c i a l r a t e s
r u l e (r 2 0 a l l (U, H, T , A, R ,W) , h o t e l f o r a l l (U, H, T , A, R ,W) , [u s e r (U) ,

h o t e l (H) , t i m e p o i n t (T) , r e a s o n (R) , a r e a (A) ,
n e a r (H,A) , p l a y g r o u n d (H, T) ,
poo l (H, T) , s p e c i a l r a t e s (H, T)]) : −

member (A , [n i c o s i a , l a r n a c a , l i m a s o l , paphos , t r o o d o s]) ,
R = p l e a s u r e ,
member (W, [f a m i l y (c h i l d r e n (N))]) ,
be tween (1 , 5 ,N) .

% I f u s e r t r a v e l s f o r p l e a s u r e w i t h f a m i l y and no c h i l d r e n ,
% u s e r o n l y c a r e s abou t g o o d n i g h t l i f e and po o l
r u l e (r 2 1 a l l (U, H, T , A, R ,W) , h o t e l f o r a l l (U, H, T , A, R ,W) , [u s e r (U) ,

h o t e l (H) , t i m e p o i n t (T) , r e a s o n (R) ,
a r e a (A) , n e a r (H,A) , poo l (H, T) ,
g o o d n i g h t l i f e (H, T ,A)]) : −

member (A , [n i c o s i a , l a r n a c a , l i m a s o l , paphos , t r o o d o s]) ,
R = p l e a s u r e ,
member (W, [f a m i l y (c h i l d r e n (0))]) .

% I f u s e r t r a v e l s f o r p l e a s u r e and t r a v e l s a l o n e o n l y c a r e s
% abou t poo l g o o d n i g h t l i f e and t o be crowded
r u l e (r 2 1 a l l (U, H, T , A, R ,W) , h o t e l f o r a l l (U, H, T , A, R ,W) , [u s e r (U) ,

h o t e l (H) , t i m e p o i n t (T) , r e a s o n (R) , a r e a (A) , n e a r (H,A) ,
crowded (H, T) , po o l (H, T) , g o o d n i g h t l i f e (H, T ,A)]) : −
member (A , [n i c o s i a , l a r n a c a , l i m a s o l , paphos , t r o o d o s]) ,
R = p l e a s u r e ,
member (W, [a l o n e]) .

% I n i t i a l program : Match a l l p a r a m e t e r s
r u l e (r21 me (U, H, T , A, R ,W) , h o t e l f o r m e (U, H, T , A, R ,W) , [

h o t e l f o r a l l (U, H, T , A, R ,W)]) .
% New a t t a c k r e l a t i o n
% Al low u s e r t o s p e c i f i c a l l y say which parame te r i s t h e
% s t r o n g e s t among : s p e c i a l r a t e s (H, T) , c o o l s e a s o n (H, T) ,
% crowded (H, T) , poo l (H, T) , p l a y g r o u n d (H, T) , g o o d n i g h t l i f e (H, T , A) ,

Evg
en

ios
 H

ad
jiso

ter
iou

161

% c o n f e r e n c e r o o m (H, T) . I f u s e r p r e f e r s s p e c i a l r a t e s
r u l e (r22 me (U, H, T , A, R ,W) , h o t e l f o r m e 1 (U, H, T , A, R ,W, L1) , [

h o t e l f o r a l l (U, H, T , A, R ,W) , L1]) .

% New a t t a c k r e l a t i o n
% Al low u s e r t o s p e c i f i c a l l y say which parame te r does n o t
% want among : s p e c i a l r a t e s (H, T) , c o o l s e a s o n (H, T) , crowded (H, T) ,
% poo l (H, T) , p l a y g r o u n d (H, T) , g o o d n i g h t l i f e (H, T , A) ,
% c o n f e r e n c e r o o m (H, T)
%
r u l e (r32 me (U, H, T , A, R ,W) , h o t e l f o r m e 2 (U, H, T , A, R ,W, DL1) , [

h o t e l f o r a l l (U, H, T , A, R ,W) , neg (DL1)]) .

% New a t t a c k r e l a t i o n
% Al low u s e r t o s p e c i f i c a l l y say which parame te r does n o t want
% (DL1) among :
% s p e c i a l r a t e s (H, T) , c o o l s e a s o n (H, T) , crowded (H, T) , poo l (H, T) ,
% p l a y g r o u n d (H, T) ,
% g o o d n i g h t l i f e (H, T , A) , c o n f e r e n c e r o o m (H, T) and aga in
% among t h o u s e one t h a t u s e r l i k e s (L2)
r u l e (r32a me (U, H, T , A, R ,W) , h o t e l f o r m e 3 (U, H, T , A, R ,W, DL1 , L2) ,

[h o t e l f o r m e 2 (U, H, T , A, R ,W, DL1) , L2]) .
% or t h e f o l l o w i n g r u l e which i s t h e same
% r u l e (r32a me (U, H, T , A , R ,W) , h o t e l f o r m e 3 (U, H, T , A , R ,W, DL1 , L2) ,
% [h o t e l f o r m e 1 (U, H, T , A , R ,W, L2) , neg (DL1)]) .
% T h i s use g i v e s d u p l i c a t e s
% r u l e (r32a me (U, H, T , A , R ,W) , h o t e l f o r m e 3 a (U, H, T , A , R ,W, DL1 , L2) ,
%[h o t e l f o r m e 2 (U, H, T , A , R ,W, DL1) , h o t e l f o r m e 1 (U, H, T , A , R ,W, L2)]) .

% New a t t a c k r e l a t i o n
% Al low u s e r t o s p e c i f i c a l l y say two p a r a m e t e r s (L1 and L2) t h a t
% u s e r l i k e s (are t h e s t r o n g e s t) among :
% s p e c i a l r a t e s (H, T) , c o o l s e a s o n (H, T) , crowded (H, T) , poo l (H, T) ,
% p l a y g r o u n d (H, T) , g o o d n i g h t l i f e (H, T , A) , c o n f e r e n c e r o o m (H, T)
%
r u l e (r42 me (U, H, T , A, R ,W) , h o t e l f o r m e 4 (U, H, T , A, R ,W, L1 , L2) ,
[h o t e l f o r m e 1 (U, H, T , A, R ,W, L1) , L2]) .

% F i n a l a t t a c k r e l a t i o n
% Al low u s e r t o s p e c i f i c a l l y say t h r e e p a r a m e t e r s (L1 and L2 L3)
% t h a t u s e r l i k e s (are t h e s t r o n g e s t) among :
% s p e c i a l r a t e s (H, T) , c o o l s e a s o n (H, T) , crowded (H, T) , poo l (H, T) ,
% p l a y g r o u n d (H, T) , g o o d n i g h t l i f e (H, T , A) , c o n f e r e n c e r o o m (H, T)
r u l e (r43 me (U, H, T , A, R ,W) , h o t e l f o r m e 5 (U, H, T , A, R ,W, L1 , L2 , L3) ,
[h o t e l f o r m e 4 (U, H, T , A, R ,W, L1 , L2) , L3]) .

%%%
Evg

en
ios

 H
ad

jiso
ter

iou

162

% Q u e s t i o n s
%%%
% Q u e s t i o n 1 −− Genera l :
% prove ([h o t e l f o r m e (U, H, T , A , R ,W)] , D e l t a) .
% prove ([h o t e l f o r m e 1 (U, H, T , A , R ,W, L1)] , D e l t a) .
% prove ([h o t e l f o r m e 2 (U, H, T , A , R ,W, DL1)] , D e l t a) .
% prove ([h o t e l f o r m e 3 (U, H, T , A , R ,W, DL1 , L2)] , D e l t a) .
% prove ([h o t e l f o r m e 4 (U, H, T , A , R ,W, L1 , L2)] , D e l t a) .
% prove ([h o t e l f o r m e 5 (U, H, T , A , R ,W, L1 , L2 , L3)] , D e l t a) .
%%%
% Q u e s t i o n 2 −− S p e c i f i c :
% prove ([h o t e l f o r m e (k l e l i a , H, 5 , n i c o s i a , b u s i n e s s , f a m i l y (
% c h i l d r e n (3)))] , D e l t a) .
% prove ([h o t e l f o r m e (k l e l i a , H, 1 , la rnaca , p l e a s u r e , f a m i l y (c h i l d r e n
% (0)))] , D e l t a) .
% prove ([h o t e l f o r m e (k l e l i a , H, 1 , la rnaca , p l e a s u r e , f r i e n d s)] , D e l t a) .
% prove ([h o t e l f o r m e (a l e x a n d r o s , H, 4 , t r o o d o s , b u s i n e s s , a l o n e)] , D e l t a) .
%%
% Q u e s t i o n 3
% prove ([h o t e l f o r m e (a l e x a n d r o s , H, T , n i c o s i a , p l e a s u r e , a l o n e)] ,
% D e l t a) .
% prove ([h o t e l f o r m e 1 (a l e x a n d r o s , H, T , n i c o s i a , p l e a s u r e , a lone ,
% poo l (H, T))] , D e l t a) .
% prove ([h o t e l f o r m e 2 (a l e x a n d r o s , H, T , n i c o s i a , p l e a s u r e , a lone ,
% p l a y g r o u n d (H, T))] , D e l t a) .
% prove ([h o t e l f o r m e 3 (a l e x a n d r o s , H, T , n i c o s i a , p l e a s u r e , a lone ,
% p l a y g r o u n d (H, T) , po o l (H, T))] , D e l t a) .
% prove ([h o t e l f o r m e 4 (a l e x a n d r o s , H, T , n i c o s i a , p l e a s u r e , a lone ,
% poo l (H, T) , g o o d n i g h t l i f e (H, T , A))] , D e l t a) .
% prove ([h o t e l f o r m e 5 (a l e x a n d r o s , H, T , n i c o s i a , p l e a s u r e , a lone ,
% poo l (H, T) , g o o d n i g h t l i f e (H, T , A) , s p e c i a l r a t e s (H, T))] , D e l t a) .

Evg
en

ios
 H

ad
jiso

ter
iou

163

D.2 Code: Main sections of ‘ASSA’

Listing D.2: Main Code for ASSA
p u b l i c i n t i s C o n f l i c t F r e e N o d e (Group p){
i n t e x i t c o d e =1;
i f (CONFLICTFREELIST . s i z e () > 0){

f o r (i n t i =0 ; i<CONFLICTFREELIST . s i z e () ; i ++){
Group e= (Group) CONFLICTFREELIST . e l emen tAt (i) ;
i f (e . i s E q u a l (p)==0){

e x i t c o d e =0;}}}
re turn e x i t c o d e ;}
/ / ∗∗
p u b l i c vo id c a l c u l a t e S t a b l e (M a t r i x m1 , M a t r i x m2){
double [] [] B = m2 . g e t A r r a y () ;
double [] [] C = m1 . g e t A r r a y () ;
i n t rows = B . l e n g t h ;
i n t c o l s = B [0] . l e n g t h ;
i n t n o d e s S i z e = rows ;
double [] [] CV = new double [rows] [c o l s] ;
CV=B ;
CV = t r a n s p o s e M a t r i x (CV) ; / / ALL
C = t r a n s p o s e M a t r i x (C) ;
rows = C . l e n g t h ;
c o l s = C [0] . l e n g t h ;
n o d e s S i z e = rows ;
i n t j =0 ;
i n t q =0;
i n t f l a g =0;
f o r (i n t i =0 ; i<c o l s ; i ++){

Group group = new Group () ;
whi le (j<rows){

i f ((CV[j] [i]==0)&&(C[j] [i]>=1)){
f l a g ++;}

e l s e i f ((CV[j] [i]==1)&&(C[j] [i]>=0)){
f l a g ++;
Node node = new Node (g e t N o d e B y P o s i t i o n (j)) ;
g roup . add In toGroup (node) ; }

e l s e {
f l a g −−;}

j ++;}
i f (f l a g == n o d e s S i z e){

f l a g =0;
i f (i s C o n f l i c t F r e e N o d e (group)==0){

STABLELIST . add (group) ; } }
e l s e {

group = new Group () ;
Evg

en
ios

 H
ad

jiso
ter

iou

164

f l a g =0;}
j =0;}}

/ / ∗∗
p u b l i c vo id c a l c u l a t e C o n f l i c t F r e e (M a t r i x m1 , M a t r i x m2){
double [] [] A = m1 . g e t A r r a y () ;
double [] [] B = m2 . g e t A r r a y () ;
i n t rows = A. l e n g t h ;
i n t c o l s = A [0] . l e n g t h ;
i n t j =0 ;
i n t n =0;
i n t t =0 ;
boolean found = f a l s e ;
f o r (i n t i =0 ; i<c o l s ; i ++){
Group group = new Group () ;
whi le (j<rows){

i f (A[j] [i] > 0){
found = t rue ;
n ++;
Node node = new Node (g e t N o d e B y P o s i t i o n (j)) ;
g roup . add In toGroup (node) ;
i f (B[j] [i]==0){

t ++;}}
j ++;}

j =0 ;
i f (found){

i f (t ==n){
CONFLICTFREELIST . add (group) ; }

e l s e {}
t =n =0;}}}

/ / ∗∗
p u b l i c S t r i n g [] [] g e t A l l C o m b i n a t i o n s M a t r i x (i n t numberOfNodes){
S t r i n g [] [] m a t r i x = n u l l ;
S t r i n g [] [] tmp = n u l l ;
i n t columns=numberOfNodes ;
i n t rows=powerOf (2 , numberOfNodes) ;
m a t r i x = new S t r i n g [rows] [columns] ;
tmp= new S t r i n g [1] [numberOfNodes] ;
f o r (i n t i =rows−1; i >=0; i−−){

tmp= g e t b i n a r y M a t r i x (numberOfNodes , i) ;
f o r (i n t w=0; w<1; w++){

f o r (i n t j =0 ; j<numberOfNodes ; j ++){
m a t r i x [i] [j]= tmp [w] [j] ;

}}
} re turn m a t r i x ;}Evg
en

ios
 H

ad
jiso

ter
iou

165

D.3 Code: Main sections of ‘ASSAG’

Listing D.3: Main Code for ASSAG

p u b l i c vo id c a l c u l a t e G r o u n d e d () {
double [] [] A = n u l l ;
double [] [] B = n u l l ;
i n t inNodes =0;
i n t outNodes =0;
A= c o v e r t M a t r i x t o D o u b l e (g e t M a t r i x ()) ;
B= c r e a t e 1 X N M a t r i x D o u b l e () ;
Ma t r i x Am = new Ma t r ix (A) ;
Ma t r i x Bm = new Ma t r ix (B) ;
Ma t r i x Cm = Bm. t i m e s (Am) ;
inNodes = ge tGroundedInNodes (Cm) ;
Ma t r i x Dm = c o n v e r t 1 X N M a t r i x D o u b l e (Cm) ;
Ma t r i x Em = Dm. t i m e s (Am) ;
outNodes = getGroundedOUTNodes (Em) ;
i n t n o d e s S i z e = t h i s .NODES. s i z e () ;
whi le ((inNodes > 0)&&(nodesS ize >0)){
A= c o v e r t M a t r i x t o D o u b l e (g e t M a t r i x ()) ;
B= c r e a t e 1 X N M a t r i x D o u b l e () ;
Am = new Ma t r ix (A) ;
Bm = new Ma t r ix (B) ;
Cm = Bm. t i m e s (Am) ;
inNodes = ge tGroundedInNodes (Cm) ;
Dm = c o n v e r t 1 X N M a t r i x D o u b l e (Cm) ;
Em = Dm. t i m e s (Am) ;
outNodes = getGroundedOUTNodes (Em) ;
n o d e s S i z e = t h i s .NODES. s i z e () ; }
p r i n t G r o u n d e d () ; }
/ / ∗∗
p u b l i c i n t ge tGroundedInNodes (M a t r i x m){
i n t x =0;
double [] [] E = m. g e t A r r a y () ;
i n t rows = 1 ;
i n t columns = E [0] . l e n g t h ;
f o r (i n t i =0 ; i<rows ; i ++){
f o r (i n t j =0 ; j<columns ; j ++){

i f (E [i] [j]>0){}
e l s e {

S t r i n g nodeName = g e t N o d e B y P o s i t i o n (j) ;
Node n = new Node (nodeName) ;
t h i s . IN . add (n) ;
x ++;}}}

re turn x ;}
/ / ∗∗

Evg
en

ios
 H

ad
jiso

ter
iou

166

p u b l i c i n t getGroundedOUTNodes (Ma t r i x m){
i n t x =0;
double [] [] E = m. g e t A r r a y () ;
i n t rows = 1 ;
i n t columns = E [0] . l e n g t h ;
f o r (i n t i =0 ; i<rows ; i ++){
f o r (i n t j =0 ; j<columns ; j ++){

i f (E [i] [j]>0){
S t r i n g nodeName = g e t N o d e B y P o s i t i o n (j) ;
Node n = new Node (nodeName) ;
t h i s .OUT. add (n) ;
x ++;}

e l s e {}}}
f o r (i n t i =0 ; i<IN . s i z e () ; i ++){
Node n= (Node) IN . e l emen tAt (i) ;
removeNode (n . getName ()) ;
b reakEdge (n . getName ()) ; }
f o r (i n t i =0 ; i<OUT. s i z e () ; i ++){
Node n= (Node)OUT. e l emen tAt (i) ;
removeNode (n . getName ()) ;
b reakEdge (n . getName ()) ; }
re turn x ; }
/ / ∗∗
p u b l i c double [] [] c r e a t e 1 X N M a t r i x D o u b l e () {
i f (t h i s .NODES. s i z e () > 0){
i n t rows = 1 ;
i n t columns = t h i s .NODES. s i z e () ;
double [] [] m a t r i x = new double [rows] [columns] ;
f o r (i n t i =0 ; i<rows ; i ++){

f o r (i n t j =0 ; j<columns ; j ++){
m a t r i x [i] [j] = 1 . 0 ; } }

re turn m a t r i x ;}
e l s e {
re turn n u l l ;}}
/ / ∗∗
p u b l i c i n t removeNode (S t r i n g nodeName){
V ec t o r V = new V ec t o r () ;
i n t x =0;
i f (NODES. s i z e () > 0){
f o r (i n t i =0 ; i<NODES. s i z e () ; i ++){

Node n = (Node)NODES. e l emen tAt (i) ;
i f (n . getName () . e q u a l s I g n o r e C a s e (nodeName)) {
x ++;}

e l s e {
V. add (n) ;}}}

i f (x>0){
t h i s .NODES=V;}

Evg
en

ios
 H

ad
jiso

ter
iou

167

re turn x ;}
/ / ∗∗
p u b l i c vo id breakEdge (S t r i n g nodeName){
V ec t o r E = new V ec t o r () ;
f o r (i n t i =0 ; i<EDGES . s i z e () ; i ++){
Edge e= (Edge)EDGES . e l emen tAt (i) ;
Node s t a r t N o d e = e . g e t S t a r t () ;
Node endNode = e . ge tEnd () ;
i f (endNode . getName () . e q u a l s I g n o r e C a s e (nodeName)) {
endNode . setName (”X”) ;
Edge e1 = new Edge (s t a r t N o d e , endNode) ;
EDGES . add (i , e1) ; } }

f o r (i n t i =0 ; i<EDGES . s i z e () ; i ++){
Edge e= (Edge)EDGES . e l emen tAt (i) ;
Node s t a r t N o d e = e . g e t S t a r t () ;
Node endNode = e . ge tEnd () ;
i f (s t a r t N o d e . getName () . e q u a l s I g n o r e C a s e (nodeName)){}
e l s e {
E . add (e) ; } }

t h i s . EDGES=E ;}
/ / ∗∗
p r i v a t e Edge p a r s e T r i v i a l E d g e s (S t r i n g l i n e){
S t r i n g tmp=” ” ;
Node s t a r t N o d e = new Node () ;
Node endNode = new Node () ;
f o r (i n t i = 0 ; i < l i n e . l e n g t h () ; i ++){

tmp += l i n e . ch a r A t (i) ;
i f (C h a r a c t e r . i s W h i t e s p a c e (l i n e . c ha r At (i))) {

s t a r t N o d e . setName (tmp . t r i m ()) ;
tmp=” ” ;}}

endNode . setName (tmp . t r i m ()) ;
Edge e = new Edge (s t a r t N o d e , endNode) ;
re turn e ;}
/ / ∗∗
p u b l i c vo id p a r s e T r i v i a l F i l e s (S t r i n g f){
B u f f e r e d R e a d e r b r = n u l l ;
boolean found = f a l s e ;
Node n = n u l l ;
t r y {
S t r i n g s C u r r e n t L i n e ;
b r = new B u f f e r e d R e a d e r (new F i l e R e a d e r (f)) ;
whi le ((s C u r r e n t L i n e = br . r e a d L i n e ()) != n u l l){

i f (! s C u r r e n t L i n e . e q u a l s I g n o r e C a s e (” # ”) && (! found)) {
n = new Node (s C u r r e n t L i n e) ;
t h i s .NODES. add (n) ; }

e l s e {
found = t rue ;}

Evg
en

ios
 H

ad
jiso

ter
iou

168

i f (found){
i f (! s C u r r e n t L i n e . e q u a l s I g n o r e C a s e (” # ”)) {
Edge e = p a r s e T r i v i a l E d g e s (s C u r r e n t L i n e) ;
t h i s . EDGES . add (e) ; } }}}

ca tch (IOExcep t ion e){
e . p r i n t S t a c k T r a c e () ; }
f i n a l l y {
t r y {

i f (b r != n u l l) b r . c l o s e () ; }
ca tch (IOExcep t ion ex){

ex . p r i n t S t a c k T r a c e () ; } } }

Evg
en

ios
 H

ad
jiso

ter
iou

Appendix E

‘Hotel for ME’ Queries

For this set of queries Alexandros is used as the user. Parameters, such as H = hotel, A =
area, R = reason for visiting, and W = traveling with, are left as variable to be instantiated with all
available values. The program is run at different time points to show that the application ‘Hotel
for ME’ is time dependet.

E.1 Single User Dynamic World: Question 1

This question is general. To run a query hotel for me/6, the questions illustrated in List-
ing E.1 were used and the bar chart illustrated in Figure 37 was generated for different time points.

Listing E.1: Question 1
% Any t i m e p o i n t
?− f i n d a l l (H, p rove ([h o t e l f o r m e (a l e x a n d r o s , H, T , A, R ,W)] , D e l t a) , Bag) ,
l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .
Bag = [7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 | . . .] ,
N u m b e r o f s o l u t i o n s = 14029 .

% At Time 1
?− f i n d a l l (H, p rove ([h o t e l f o r m e (a l e x a n d r o s , H, 1 ,A, R ,W)] , D e l t a) , Bag) ,
l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .
Bag = [7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 1 5 | . . .] ,
N u m b e r o f s o l u t i o n s = 13 84 .

Figure 37 shows the number of solutions that our system produces when question 1 is asked.
At time 1 there are 1384 answers, at time 2 there are 1300 answers, etc. 1463 is the largest number
of solution which is produced at time time 4 and the least number of solutions, which is 921
is generated at time 5. As observed in this bar chart, where the ‘imaginary’ x-axis represents the
number of solutions and the ‘imaginary’ y-axis represents the time-points, available solutions vary.
This is because the working environment changes and at different time point different parameters
hold. This is similar for all other bar charts.

169

Evg
en

ios
 H

ad
jiso

ter
iou

170

1

6

11

1,384
1,300

1,463
1,189

921
1,071

1,095
1,131

1,014
1,000

1,314
1,147

Ti
m

e
Po

in
ts

Solutions

Figure 37: Single User Dynamic World: Question 1

E.2 Single User Dynamic World: Question 2

Question 1 is extended to question 2, where the user can specify one parameter that he or she
is interested in. For this example, the user Alexandros, allows higher priority to the need pool.
This is similar for all other needs. To run query hotel for me1/7, the questions illustrated in
Listing E.2 were used and the bar chart illustrated in Figure 38 was generated for different time
points.

Listing E.2: Question 2
% Any t i m e p o i n t
f i n d a l l (H, p rove ([h o t e l f o r m e 1 (a l e x a n d r o s , H, T , A, R ,W, poo l (H, T))] ,
D e l t a) , Bag) , l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .
Bag = [7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 | . . .] ,
N u m b e r o f s o l u t i o n s = 12447 .

% At Time 1
?− f i n d a l l (H, p rove ([h o t e l f o r m e 1 (a l e x a n d r o s , H, 1 ,A, R ,W, poo l (H , 1))] ,
D e l t a) , Bag) , l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .
Bag = [7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 1 6 | . . .] ,
N u m b e r o f s o l u t i o n s = 12 32 .

E.3 Single User Dynamic World: Question 3

Question 3 is an attack relation where the user can specify a need that he or she does not
prefer. For this example, the user Alexandros, specifies that he does not like the hotel to have a
play ground. This is similar for all other needs. The query hotel for me2/7 was run as indicated
in Listing E.3, and all of the results are shown in Figure 39 for different time points.

Listing E.3: Question 3
% Any t i m e p o i n t
?− f i n d a l l (H, p rove ([h o t e l f o r m e 2 (a l e x a n d r o s , H, T , A, R ,W,

Evg
en

ios
 H

ad
jiso

ter
iou

171

1

6

11

1,232
1,028

1,157
949

843
1,021

1,044
1,059

934
925

1,199
1,056

Ti
m

e
Po

in
ts

Solutions

Figure 38: Single User Dynamic World: Question 2

1

6

11

58
207

61
180

124
132

72
68

46
6

13
0

T i
m

e
Po

in
ts

Solutions

Figure 39: Single User Dynamic World: Question 3

p l a y g r o u n d (H, T))] , D e l t a) , Bag) , l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .
Bag = [2 3 , 23 , 23 , 23 , 23 , 24 , 24 , 24 , 2 4 | . . .] ,
N u m b e r o f s o l u t i o n s = 9 6 7 .

% At Time 1
?− f i n d a l l (H, p rove ([h o t e l f o r m e 2 (a l e x a n d r o s , H, 1 ,A, R ,W,
p l a y g r o u n d (H, 1))] , D e l t a) , Bag) , l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .
Bag = [4 0 1 , 402 , 403 , 404 , 405 , 406 , 407 , 408 , 4 3 5 | . . .] ,
N u m b e r o f s o l u t i o n s = 5 8 .

E.4 Single User Dynamic World: Question 4

Question 3 has been extended to question 4, where the user can specify one parameter that he
or she is not interested in, as in question 3, and one parameter that he or she is interested in. For
this example, the user Alexandros, does not like playground and likes pools. This is similar for
all other needs. To run query hotel for me3/8, the questions illustrated in Listing E.4 were used
and the bar chart illustrated in Figure 40 was generated for different time points.

Evg
en

ios
 H

ad
jiso

ter
iou

172

1

6

11

12
51

26
142

110
128

72
68

46
6

13
0

Ti
m

e
Po

in
ts

Solutions

Figure 40: Single User Dynamic World: Question 4

Listing E.4: Question 4
% Any t i m e p o i n t
?− f i n d a l l (H, p rove ([h o t e l f o r m e 3 (a l e x a n d r o s , H, T , A, R ,W, p l a y g r o u n d (
H, T) , po o l (H, T))] , D e l t a) , Bag) , l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .
Bag = [2 3 , 23 , 23 , 23 , 23 , 24 , 24 , 24 , 2 4 | . . .] ,
N u m b e r o f s o l u t i o n s = 6 7 4 .

% At Time 1
?− f i n d a l l (H, p rove ([h o t e l f o r m e 3 (a l e x a n d r o s , H, 1 ,A, R ,W, p l a y g r o u n d (
H, 1) , poo l (H , 1))] , D e l t a) , Bag) , l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .
Bag = [1 0 1 , 102 , 295 , 296 , 295 , 296 , 101 , 102 , 2 9 5 | . . .] ,
N u m b e r o f s o l u t i o n s = 1 2 .

E.5 Single User Dynamic World: Question 5

If the user provides more information, question 5 is an attack relation where the user can
specify two needs that s/he likes. For this example, the user Alexandros, specifies that he likes
pools and good nightlife, which is an extension of question 1. Similarly for all other needs. The
query hotel for me5/8, was run as indicated in Listing E.5 and all of the results are shown in
Figure 41 for different time points.

Listing E.5: Question 5
% Any t i m e p o i n t
?− f i n d a l l (H, p rove ([h o t e l f o r m e 4 (a l e x a n d r o s , H, T , A, R ,W, poo l (H, T) ,
g o o d n i g h t l i f e (H, T ,A))] , D e l t a) , Bag) , l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .
Bag = [7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 8 | . . .] ,
N u m b e r o f s o l u t i o n s = 57 41 .

% At Time 1
?− f i n d a l l (H, p rove ([h o t e l f o r m e 4 (a l e x a n d r o s , H, 1 ,A, R ,W, poo l (H, 1) ,
g o o d n i g h t l i f e (H, 1 ,A))] , D e l t a) , Bag) , l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .

Evg
en

ios
 H

ad
jiso

ter
iou

173

1

6

11

458
426

482
483

530
455

450
501

414
456

548
538

Ti
m

e
Po

in
ts

Solutions

Figure 41: Single User Dynamic World: Question 5

Bag = [7 , 8 , 9 , 10 , 24 , 25 , 26 , 28 , 2 9 | . . .] ,
N u m b e r o f s o l u t i o n s = 4 5 8 .

E.6 Single User Dynamic World: Question 6

Focussing the recommendations. Question 6 allow the user to specify three needs that they
like. For this example, the user Alexandros, likes pools, good nightlife, and special rates, which is
an extension of question 5. This is similar for the other needs. The query hotel for me6/9 was
run as indicated in Listing E.6 and Figure 42 was generated for different time points.

Listing E.6: Question 6
% Any t i m e p o i n t
?− f i n d a l l (H, p rove ([h o t e l f o r m e 5 (a l e x a n d r o s , H, T , A, R ,W, poo l (H, T) ,
g o o d n i g h t l i f e (H, T ,A) , s p e c i a l r a t e s (H, T))] , D e l t a) , Bag) ,
l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .
Bag = [7 , 8 , 9 , 10 , 31 , 31 , 32 , 32 , 3 3 | . . .] ,
N u m b e r o f s o l u t i o n s = 11 40 .

% At Time 1
?− f i n d a l l (H, p rove ([h o t e l f o r m e 5 (a l e x a n d r o s , H, 1 ,A, R ,W, poo l (H, 1) ,
g o o d n i g h t l i f e (H, 1 ,A) , s p e c i a l r a t e s (H , 1))] , D e l t a) , Bag) ,
l e n g t h (Bag , N u m b e r o f s o l u t i o n s) .
Bag = [1 4 9 , 149 , 147 , 148 , 149 , 147 , 148 , 149 , 1 4 7 | . . .] ,
N u m b e r o f s o l u t i o n s = 6 6 .

Evg
en

ios
 H

ad
jiso

ter
iou

174

1

6

11

66
82

226
321

226
0
0
0
0
0

88
131

T i
m

e
Po

in
ts

Solutions

Figure 42: Single User Dynamic World: Question 6

Evg
en

ios
 H

ad
jiso

ter
iou

Appendix F

Table of Basic Notations

Notation Meaning

+ plus
− minus
∴ therefore
∈ is an element of
< is less than
> is greater than
≥u priority relation among arguments
wu priority relation among parametric spaces
/∈ is not an element of
= is equal to
6= is not not equal to
∃ there exists
@ there doe not exists
∀ for all
∅ empty set
⊆ subset
⊇ superset
∪ union
〈A,R〉 an abstract AF
A a set of arguments
S a set of arguments
R an attack relation over arguments
a→ b argument a attacks argument b
attacks(a, b) argument a attacks argument b
(a, b) ∈ R argument a attacks argument b
attacks(S, b) set S attacks argument b
(S, b) ∈ R set S attacks argument b
L← l1, l2, . . . , ln rule in LPwNF
KB domain description
PC action ParkingCar
CPS fluent CarInParkingSpace

175

Evg
en

ios
 H

ad
jiso

ter
iou

176

K belief in revision theory
a formula in revision theory
K + a Expansion in revision theory
K − a Contraction in revision theory
K ∗ a Revision in revision theory
pUi (1) user U, is interested in parameter pi
pUi (0) user U, does not specify an interested in parameter pi
pUi (−1) user U, is not interested in parameter pi
arg1 ≥u arg2 priority relation amongst arguments
Par1 wu Par2 priority relation amongst parametric spaces
AC action constants in language E
F fluent constants in language E
T time points in language E

Table 5: Table of Basic Notations

Evg
en

ios
 H

ad
jiso

ter
iou

	 Introduction
	 A Review of Argumentation
	Introduction
	Abstract Argumentation
	Semantics

	Preference-based Argumentation
	Dynamic Argumentation

	 Time-based Argumentation Frameworks for Decision Making
	Introduction
	Related Work

	Parameterized Argumentation - Theoretical Framework
	An Example Application: `Hotel for ME'
	Representing the Problem in our AF
	Formalization of the Application `Hotel for ME'

	Implementation: `Hotel for ME'
	Evaluation

	Summary

	 Adaptation Over Time
	Introduction
	A Brief Review of Language E
	Argumentation Formulation
	Formal Results
	Qualification Extensions
	Related Work and Summary

	 Computing Dynamic Argumentation
	Introduction
	Related Work

	Matrix Approach to Argumentation
	Theory and Algorithms
	Implementation Systems

	Dynamic Argumentation
	Summary

	 Conclusion and Future Work
	Bibliography
	APPENDICES
	 Proofs
	Chapter 4 Proof
	Chapter 5 Proof

	 Parametric Space for Hotels
	 Original Event Calculus
	Deriving the End Points
	Frame and Qualification Problem

	 Codes
	Code: `Hotel for ME'
	Code: Main sections of `ASSA'
	Code: Main sections of `ASSAG'

	 `Hotel for ME' Queries
	Single User Dynamic World: Question 1
	Single User Dynamic World: Question 2
	Single User Dynamic World: Question 3
	Single User Dynamic World: Question 4
	Single User Dynamic World: Question 5
	Single User Dynamic World: Question 6

	 Table of Basic Notations

