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Abstract

The aim of this thesis is twofold. First, to investigate the problem of estimating

the rescaled fourth order cumulant of the unobserved innovations of linear time series

which is an important parameter for statistical inference. Second, to propose two

modifications of the autoregressive-sieve respectively of the autoregressive bootstrap.

For the first problem, an existing nonparametric estimator is first discussed and its

asymptotic properties are derived. In particular, it is shown how the autocorrelation

structure of the underlying process affects the behavior of the estimator. Based on these

findings and on a discovered and important invariance property of the parameter of

interest with respect to linear filtering, a pre-whitening based nonparametric estimator

of the same parameter is proposed. The aforementioned invariance property implies

that the parameter of interest can be estimated using the residuals obtained by applying

the linear filter to the time series at hand and an inverse-transformation is not needed.

It is shown that if the filter chosen to pre-whiten the time series is such that the filtered

time series is less correlated than the original one, then the new estimator has several

advantages.

The asymptotic properties of the new estimator based on a simple autoregressive

filter are investigated and its superiority is theoretically established for large classes

of stochastic processes. It is shown that for the particular estimation problem con-

sidered, pre-whitening not only reduces the variance of the estimator but it can also

lead to gains in terms of bias. The finite sample performance of the existing and of

the new estimator is investigated and compared by means of several simulations. As

an application, we show that the new estimator allows for a simple modification of the

multiplicative frequency domain bootstrap which considerable extends its range of va-

lidity. Furthermore, the problem of testing hypotheses about the rescaled fourth order

cumulant of the unobserved innovations is also considered. In this context, a simple

test for Gaussianity is proposed and some real-life data applications are presented.
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Concerning the two modifications of the autoregressive-sieve respectively of the au-

toregressive bootstrap proposed, the first replaces the classical i.i.d. resampling scheme

applied to the residuals of the autoregressive fit by a generation of i.i.d. wild pseudo-

innovations that appropriately mimic the first and the second order moments as well as

the rescaled fourth order cumulant of the true innovations driving the underlying linear

process. This modification, uses the estimator of the fourth order cumulant presented

in the first part of the thesis and extends the range of validity of the autoregressive-sieve

bootstrap to classes of statistics for which the classical, residual-based autoregressive-

sieve bootstrap, fails. The second modification, is a version of the autoregressive boot-

strap which is applied to an appropriately transformed time series. This, together

with a dependent-wild type generation of pseudo-innovations, delivers a bootstrap pro-

cedure which is valid for large classes of statistics and for stochastic processes that

satisfy quite general weak dependence conditions. A fully data-driven selection of the

tuning parameters involved in both bootstrap modifications is proposed, while exten-

sive simulations, including comparisons with alternative bootstrap methods, show a

good finite sample performance of the proposed bootstrap procedures.
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PerÐlhyh

H paroÔsa diatrib  èqei dÔo kurÐwc stìqouc. O pr¸toc, na asqolhjeÐ me to prìblhma

thc ektÐmhshc tou anaklimak¸menou susswreut  tètarthc t�xhc (rescaled fourth order

cumulant) tou mh parathrhjèntoc leukoÔ jorÔbou miac grammik c stoqastik c anèlixhc,

o opoÐoc apoteleÐ mÐa shmantik  par�metro sthn statistik  sumperasmatologÐa qrono-

seir¸n. O deÔteroc stìqoc eÐnai na proteÐnei dÔo tropopoi seic thc autopalindromik c

diadikasÐac bootstrap, oi opoÐec epekteÐnoun shmantik� to eÔroc twn efarmog¸n kai thc

asumptwtik c sunèpeiac twn antÐstoiqwn mejìdwn.

'Oson afor� to pr¸to prìblhma ektÐmhshc, mÐa ufist�menh mh parametrik  ektim tria

exet�zetai kai oi asumpwtikèc idiìthtec thc ereunoÔntai. Ta asumptwtik� apotelèsmata

deÐqnoun me poiì trìpo h autosusqètish thc stoqastik c anèlixhc ephre�zei thn sumpe-

rifor� thc ektim triac. Basismènoi se aut� ta eur mata kai se mia shmantik  idiìthta

analloÐwtou thc paramètrou pou mac endiafèrei wc proc ta grammik� filtrarÐsmata thc

qronoseir�c, proteÐnetai mÐa kainoÔrgia mh parametrik  ektim tria h opoÐa basÐzetai se

mÐa leukojorubopoÐhsh (pre-whitening) thc ufist�menhc qronoseir�c. H proanaferjeÐ-

sa idiìthta tou analloÐwtou sunep�getai ìti h par�metroc pou mac endiafèrei mporeÐ

na ektimhjeÐ qrhsimopoi¸ntac ta upìloipa pou prokÔptoun efarmìzontac èna grammikì

fÐltro metasqhmatismoÔ thc qronoseir�c kai ìti den apaiteÐtai h qr sh opoioud pote

antÐstrofou metasqhmatismoÔ. An h filtrarismènh qronoseir� eÐnai ligìtero susqeti-

smènh se sqèsh me thn parathrhjeÐsa, tìte h nèa ektim tria èqei arket� pleonekt mata

sugkrinìmenh me thn ektim tria pou qrhsimopoieÐ thn arqik  qronoseir�.

Oi asumpwtikèc idiìthtec thc kainoÔrgiac ektim triac basismènh se èna aplì auto-

palindromikì fÐltro ereunoÔntai kai h anwterìthta thc nèac ektim triac gia mÐa meg�lh

kl�sh stoqastik¸n diadikasi¸n apodeiknÔetai . 'Opwc prokÔptei gia to sugkekrimè-

no prìblhma ektÐmhshc h leukojorubopoÐhsh mporeÐ na mei¸sei shmantik� ìqi mìno th

diaspor� all� kai th merolhyÐa thc ektim triac. Mèsw prosomoi¸sewn diereunoÔme

thn sumperifor� twn dÔo ektimhtri¸n se deÐgmata peperasmènou megèjouc. MetaxÔ
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twn efarmog¸n pou èqei h kainoÔrgia ektim tria eÐnai kai mÐa apl  tropopoÐhsh thc

pollaplasiastik c diadikasÐac bootstrap basismènhc sth fasmatik  puknìthta h opoÐa

kai epekteÐnei shmantik� to eÔroc twn efarmog¸n thc. Epiprìsjeta exet�zoume kai to

prìblhma elègqou upojèsewn sqetik� me ton anaklimak¸meno susswreut  tètarthc t�-

xhc. Sto plaÐsio autì, proteÐnetai èna aplìc èlegqoc kanonikìthtac (Gaussianity) kai

parousi�zontai pollèc efarmogèc se pragmatik� dedomèna.

Oson afor� tic dÔo tropopoi seic thc autopalindromik c diadikasÐac bootstrap, h

pr¸th antikajist� to klassikì sq ma anadeigmatoleiyÐac pou afor� se anex�rthtec kai

isìnomec tuqaÐec metablhtèc kai efarmìzetai sta upìloipa tou autopalindromikoÔ montè-

lou. H nèa diadikasÐa anadeigmatoleiyÐac basÐzetai sth dhmiourgÐa anex�rthtwn kai isì-

nomwn �taktwn (wild) yeudo-upoloÐpwn ta opoÐa mimoÔntai kat�llhla thn rop  pr¸thc

kai deÔterhc t�xhc kai ton anaklimak¸meno susswreut  tètarthc t�xhc (rescaled fourth

order cumulant) twn anex�rthtwn kai isìnomwn tuqaÐwn metablht¸n (innovations) pou

episèrqontai sth dhmiourgÐa thc grammik c stoqastik c anèlixhc. Aut  h tropopoÐhsh h

opoÐa qrhsimopoieÐ thn ektim tria tou anaklimak¸menou susswreut  tètarthc t�xhc pou

parousi�sthke sto pr¸to mèroc thc diatrib c, epekteÐnei thn egkurìthta thc autopa-

lindromik c diadikasÐac bootstrap, se kl�seic statistik¸n sunart sewn gia tic opoÐec

h klassik  autopalindromik  diadikasÐa bootstrap apotugq�nei. Sth deÔterh tropo-

poÐhsh, proteÐnetai mia autopalindromik  diadikasÐa bootstrap efarmosmènh ìqi sthn

qronoseir� pou parathreÐtai, all� se èna kat�llhlo metasqhmatismì thc. MazÐ me th

dhmiourgÐa exarthmènwn-�taktwn (dependent-wild) yeudo-upoloÐpwn orÐzetai mÐa diadi-

kasÐa bootstrap h opoÐa eÐnai sunep c gia mÐa meg�lh kl�sh statistik¸n sunart sewn

kai gia stoqastikèc diadikasÐec oi opoÐec ikanopoioÔn arket� genikèc asjeneÐc sunj kec

ex�rthshc. Tèloc, proteÐnetai mÐa diadikasÐa autìmathc epilog c twn paramètrwn pou

emfanÐzontai stic dÔo diadikasÐec bootstrap pou proteÐnoume, en¸ ektetamènec proso-

moi¸seic, perilambanomènwn sugkrÐsewn me enallaktikèc mejìdouc bootstrap, deÐqnoun

thn kal  sumperifor� twn nèwn diadikasi¸n bootstrap se deÐgmata peperasmènou me-

gèjouc.
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Chapter 1

Introduction

Statistical inference for linear processes is a well developed area in time series analysis.

Linear stochastic processes are generated by applying a linear filter to a sequence of

unobserved innovations {εt, t ∈ Z}, which are assumed to be independent and identi-

cally distributed (i.i.d.) with mean zero and finite variance σ2
ε = E(ε21). If we denote

by X = {Xt, t ∈ Z} the linear process and by {ψj, j ∈ Z},
∞∑

j=−∞

|ψj| <∞,

the coefficients of the linear filter, then the generating equation of the Xt’s is given by

Xt =
∞∑

j=−∞

ψjεt−j, ψ0 = 1. (1.1)

Statistical inference for such processes is typically based on an observed stretch X1, X2,

. . . , Xn stemming from X. There are situations, however, where the outcome of an in-

ference procedure depends also on a certain higher order moments of ε1. An important

and particularly difficult case in this context occurs, when this dependence refers to

the rescaled, fourth order cumulant of the innovations, that is, to the parameter

η4,ε =
E(ε41)− 3σ4

ε

σ4
ε

.

To elaborate on such inference situations, denote by IX (λ) the periodogram of the

time series X1, X2, . . . , Xn, i.e.,

IX(λ) =
1

2πn

∣∣∣∣∣
n∑
t=1

Xte
−itλ

∣∣∣∣∣
2

, λ ∈ R,

and consider the following general class of statistics, also known as spectral means,

Sn =

∫ π

−π
ϕ(λ)IX(λ)dλ, (1.2)

1
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where ϕ is some function ϕ : [−π, π] → R. Class (1.2) is large enough and includes,

as special cases, several interesting examples of commonly used statistics in time series

analysis. For instance, for ϕ(λ) = cos(λh), with h some integer 0 ≤ h < n, Sn is the

sample autocovariance

Sn =
1

n

n−|h|∑
t=1

XtXt+|h|,

which is an estimator of the autocovariance

γX(h) = E(XtXt+h).

For ϕ(λ) = 1[0,x](λ), x ∈ [0, 1], Sn is the empirical spectral distribution function

Sn = F̂n (λ) =

x∫
0

IX (λ) dλ,

which is an estimator of the spectral distribution function

FX(x) =

∫ x

0

fX(λ)dλ.

Here,

fX(λ) =
1

2π

∞∑
h=−∞

γX(h) cos(λh)

denotes the spectral density of X, which by the assumption that
∑∞

j=−∞ |ψj| < ∞,

exists and is continuous. It is well known, cf. Dahlhaus (1985) that under certain

regularity conditions,

√
n
(
Sn −

∫ π

−π
ϕ(λ)fX(λ)dλ

) D→ N(0, σ2
ϕ),

as n→∞, where

σ2
ϕ = 2π

∫ π

−π
ϕ2(λ)f 2

X(λ)dλ+ η4,ε

(∫ π

−π
ϕ(λ)fX(λ)dλ

)2

(1.3)

and “
D→ ” denotes weak convergence. As equation (1.3) shows, the variance σ2

ϕ of the

limiting Gaussian distribution depends on the unknown rescaled fourth order cumulant

η4,ε of the i.i.d. innovations εt. Thus, implementation of the above asymptotic result

for estimating the variance of Sn or for the construction of confidence intervals for∫ π

−π
ϕ(λ)fX(λ)dλ,

requires estimation of η4,ε.

2
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Another situation where interest in estimating the parameter η4,ε occurs, appears

when one deals with frequency domain bootstrap methods for the periodogram. No-

tice first that the periodogram IX(λ) is commonly calculated at the so-called Fourier

frequency λj ∈ Fn, where

Fn =

{
λj =

2πj

n
: j = −

[
n− 1

2

]
, . . . ,

[n
2

]}
.

It is well known that for linear processes, periodogram ordinates are asymptotically

exponential distributed and obey the following (approximative) multiplicative expres-

sion

IX(λj) = fX(λj)Ie(λj) +OP

(
1√
n

)
, (1.4)

where the OP (1/
√
n) is uniform in the frequencies λj and

Ie(λj) =
1

2πn

∣∣∣∣∣
n∑
t=1

et exp{−itλj}

∣∣∣∣∣
2

,

denotes the periodogram of the standardized innovations e1, e2, . . . , en, et = εt/σε; see

Brockwell and Davis (1991), Ch. 10, Theorem 10.3.1. Furthermore, for 0 < λj 6= λk <

π, it yields that

Cov(IX(λj), IX(λk)) =
1

n
η4,εfX(λj)fX(λk) + oP

( 1

n

)
;

see Paparoditis (2002). That is, periodogram ordinates at different frequencies are

asymptotically uncorrelated, although they appear to be weakly n−1-dependent in

finite samples. Moreover, it can be shown that for any number of fixed frequen-

cies 0 < λ1 < λ2 < ... < λm < π, the corresponding periodogram ordinates are

asymptotically independent; see for instance Brockwell and Davis (1991), Theorem

10.3.2. Expression (1.4) together with the aforementioned asymptotic independence

of the periodogram ordinates have been used by some researchers to bootstrap the

periodogram; see Franke and Härdle (1992) and Dahlhaus and Janas (1996). Such

approaches work by ignoring the OP (1/
√
n) term in (1.4) and by generating inde-

pendent pseudo-periodogram ordinates, I∗X(λj), which are obtained by replacing the

unknown spectral density fX in (1.4) by some estimator and by generating independent

pseudo-random variables U∗j , designed in a way to mimic the behavior of Ie(λj). How-

ever, because such bootstrap approaches neglect the weak dependence structure of the

periodogram ordinates IX(λj), they can not be successfully applied to statistics, the

distribution of which is affected by this weak dependence. Spectral means defined in
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(1.2) are examples of such statistics. As a matter of fact, the second term in the limiting

variance σ2
ϕ of Sn exhibited in (1.3), is due to the weak and asymptotically vanishing

dependence of the periodogram ordinates; see Dahlhaus and Janas (1996) and Papar-

oditis (2002) for an extensive discussion. This failure of frequency domain bootstrap

methods which generate independent pseudo-periodogram ordinates, motivated many

researches to develop bootstrap procedures for the periodogram that imitate correctly

also its weak, n−1-vanishing dependence structure; see Janas and Dahlhaus (1994) and

Kreiss and Paparoditis (2012). Such bootstrap approaches need, however, a consistent

estimator of the rescaled fourth order cumulant η4,ε.

In the second chapter of the thesis, we consider the problem of estimating the

rescaled fourth order cumulant of the i.i.d innovations for linear processes. We derive

the asymptotic distribution of an existing lag-window type estimator as well as bias

and variance expressions. Based on these findings, a new estimator is proposed which

is based on the idea of pre-whitening. Due to an invariance property of the parameter

of interest with respect to linear filtering, an inverse transformation is not required.

The asymptotic distribution and the bias and variance properties of the new estimator

are derived. Its theoretical superiority is established for large classes of stochastic

processes. In addition, approximations of the asymptotic mean square error of the

new estimator are obtained which build the basis for some practical rules to select the

smoothing parameters involved in the estimation procedure.

Notice that if the underlying time series is not linear, the second expression in (1.3)

is typically replaced by certain integrals of the fourth order cumulant spectral density

of the underlying process; see Dahlhaus (1985). In this case, consistent estimators

of the corresponding expressions based on functions of finite Fourier transforms of

X1, X2, . . . , Xn have been considered by Taniguchi (1982). Keenan (1987) derived

asymptotic results for more general class of estimators of such quantities. However,

the inference problem considered in this chapter is different since we are concerned

with linear processes and we focus on the case where the parameter of interest is the

rescaled fourth order cumulant η4,ε of the unobserved innovations εt and not the fourth

order cumulant density of the underlying process {Xt, t ∈ Z} or integrals thereof.

Bootstrap is a powerful tool for statistical inference in time series. This is mainly

due to the fact that for time series and for many statistics of interest, asymptotic

derivations are not only quite involved but the results obtained are also difficult to

implement in practise. Developing appropriate bootstrap methods for time series is a
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challenging and difficult task and many approaches already exist in the literature.

A basic problem faced by bootstrap procedures for time series is that, in order to

be successfully applied to some statistics of interest, they have to imitate (at least to

the necessary extent) the (in principle complicated) dependence structure of the under-

lying stochastic process. This problem has been addressed by the different bootstrap

proposals for time series in a different way, which depends on the kind of weak depen-

dence assumptions imposed on the process generating the observed time series and on

the structure of the particular statistic of interest; see Bühlmann (2002), Politis (2003)

and Kreiss and Paparoditis (2011) for an overview.

Among the different bootstrap methods proposed in the literature, the autoregres-

sive (AR) and the autoregressive-sieve (AR-sieve) bootstrap, are quite popular due to

their easy implementation and their potential applicability to a variety of situations.

The basic idea is to generate new pseudo-time series by using an estimated autoregres-

sive model driven by pseudo-innovations generated by means of i.i.d. resampling of

the estimated (and centered) residuals of the autoregressive fit. While in practice and

for a given time series X1, X2, . . . , Xn at hand, the procedure is the same for the AR

and for the AR-sieve bootstrap, from a theoretical point of view, the two methods are

quite different. The AR bootstrap assumes that the underlying process follows a linear,

finite order autoregressive model, while the AR-sieve bootstrap considers the autore-

gression fitted to the observed time series as an approximation of the more complicated

autocovariance structure of the underlying process. In order to capture the entire au-

tocovariance structure of the process, the AR-sieve bootstrap requires, therefore, that

the order p of the autoregression fitted increases to infinity (at an appropriate rate) as

the sample size increases to infinity.

An interesting question is, of course, for which stochastic processes and for what

kind of statistics are autoregressive bootstrap methods valid. While this seems to

be clear for the AR bootstrap, the situation is more involved for the AR-sieve boot-

strap. This question becomes even more interesting when one takes into account that

a so-called autoregressive representation exists for a wide class of strictly stationary

stochastic processes. To elaborate, recall the well-known Wold representation according

to which every purely nondeterministic, stationary and zero mean stochastic process

X = {Xt, t ∈ Z} obeys a unique, infinite order moving average representation

Xt =
∞∑
j=0

cjet−j, (1.5)
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where

c0 = 1,
∞∑
j=0

c2j <∞

and {et, t ∈ Z} is a white noise process, i.e., the et’s are uncorrelated, zero mean random

variables with variance 0 < σ2
e < ∞. If X also possesses a spectral density which is

continuous and bounded away from zero everywhere in the interval [0, π], then Xt

also obeys a so-called, autoregressive representation. That is, Xt can be alternatively

expressed as

Xt =
∞∑
j=1

ajXt−j + et, (1.6)

where the innovations et are identical to those appearing in Wold’s representation (1.5)

and the coefficients aj satisfy the stronger condition

∞∑
j=1

|aj| <∞;

see Pourahmadi (2001) and Kreiss et al. (2011). Notice that expressions (1.5) and

(1.6), do not describe a model but just two alternative representations of Xt. The first

is a representation of Xt in terms of the history of the innovations {et, t ≤ 1} and the

second in terms of the history of the process Xt itself. From a statistical point of view,

representation (1.6) seems to be more appealing since it allows for an estimation of the

coefficients aj based on the observed part of the process.

Although originally proposed for infinite order linear autoregressive processes, see

Kreiss (1988), Paparoditis and Streitberg (1991) and Bühlmann (1997), the question

about the range of validity of the AR-sieve bootstrap has been recently discussed in

Kreiss et al. (2011) in the context of general (strictly) stationary processes obeying

representation (1.6). Since the AR-sieve bootstrap succeeds in mimicking correctly

the second order structure of the underlying process X, it has been shown that if

the (asymptotic) distribution of a statistic of interest depends only on second order

characteristics, then the AR-sieve bootstrap will be asymptotically valid even if X is

nonlinear. Sample mean and nonparametric estimators of the spectral density are two

examples of such statistics; see Kreiss et al. (2011) for details.

For nonlinear processes and for more general statistics, however, like for instance,

for the important class of generalized means given by

Tn = f

(
1

n−m+ 1

n−m+1∑
t=1

g(Xt, Xt+1, . . . , Xt+m−1)

)
, (1.7)
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m < n, with f and g appropriate functions, see Künsch (1989), the AR-sieve bootstrap

fails. Class (1.7) includes many statistics of interest in time series analysis, as special

cases. In the following, we discuss some examples.

(i) For m = 1 and f=g be the identity function, then Tn is the sample mean

Tn =
1

n

n∑
t=1

Xt.

(ii) For m < n

g (x1, x2, ..., xm) = (x1 · x1, x1 · x2, ..., x1 · xm) ,

and f be the indicator function, then

Tn =

(
1

n

n−k∑
t=1

XtXt+k, k = 0, 1, ...,m− 1

)
,

that is, Tn is an estimator of the autocovariances (γX (0) , γX (1) , ..., γX (m− 1)).

(iii) For the function g defined as in (ii) and f as

f (y0, y1, ..., ym−1) =

(
y1
y0
,
y2
y0
, ...,

ym−1
y0

)
, y0 6= 0,

them Tn is an estimator of the autocorrelations (ρX (1) , ρX (1) , ..., ρX (m− 1)), ρX (h) =

γX (h) /γX (0), given by

Tn =


n−k∑
t=1

XtXt+k

n∑
t=1

X2
t

, k = 1, 2, ...,m− 1

 ,

(iv) For the same specification of the function g as in (ii) and f : Rm → Rm−1 defined

as

f (y0, y1, ..., ym−1) = W−1
m−1wm−1

whereWm−1 is the non-singular (m−1)×(m−1) matrix given byWm−1 =
(
y|i−j|

)
i,j=1,2,..,m−1

and wm−1 the (m− 1)−dimensional vector wm−1 = (y0, y1, ..., ym−1)
>, then Tn is given

by

Tn ≡ (T1,n, T2,n, ..., Tm−1,n)> = Γ̂−1m−1γ̂m−1.

Here, Γ̂m−1 = (γ̂X (i− j)),j=1,2,..,m−1 and γ̂m−1 = (γ̂X (1) , γ̂X (2) , ..., γ̂X (m− 1))>.

Recall from Brockwell and Davis (1991), Proposition 5.1.1, that γ̂X (0) > 0 and

Γ̂k = (γ̂X (i− j))i,j=1,2,..,k, is non-singular for every k ∈ N. For m = p + 1, Tn is

the Yule-Walker estimator of ap = (a1,p, a2,p, ..., ap,p)
>, where ap are the coefficients of
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the best (in the mean square sense) linear approximation of Xt based on it past values

Xt−1, ..., Xt−p, that is,

E
(
Xt −

∑p

j=1
aj,pXt−j

)2
= min

r1,...rp
E
(
Xt −

∑p

j=1
rjXt−j

)2
.

Furthermore, notice that since Tm−1,n is an estimator of the lag (m−1) partial autocor-

relation; see Brockwell and Davis (1991), Definition 3.4.3, the class of statistics (1.7)

includes sample partial autocorrelations as special cases. The failure of the AR-sieve in

this case is due to fact that the uncorrelated innovations et appearing in representation

(1.6) are replaced by i.i.d. pseudo-innovations, i.e., in contrast to (1.6), the process

generated by the AR-sieve bootstrap is a linear process driven by i.i.d. innovations.

What is striking, however, is the fact that the AR-sieve bootstrap may fail for the

above class of statistics even if the underlying process X is linear, that is, if Xt is

generated as

Xt =
∞∑

j=−∞

ψjεt−j, (1.8)

where {εt, t ∈ Z} consists of i.i.d. random variables with zero mean, variance 0 < σ2
ε <

∞, finite fourth moments E(ε4t ) <∞ and the coefficients ψj satisfy

∞∑
j=−∞

|ψj| <∞.

Notice that the last summability condition implies that X possess a continuous spectral

density. If this spectral density is also everywhere positive, then the linear process

X also obeys the autoregressive representation (1.6). For the AR-sieve bootstrap,

however, the important point is that the stochastic properties of the two innovation

processes, that is of {εt} in representation (1.8) and of {et} in representation (1.6),

could be different. For instance, the fourth order moments of et and of εt, may be

different. This implies, that if the (limiting) distribution of some statistic of interest

depends on the fourth order moments of the innovations, then the AR-sieve bootstrap

may fail even if the underlying process is linear. Empirical autocovariances are a

prominent example of such statistics; see Kreiss et al. (2011) for details. Notice that

for linear processes, and apart from the Gaussian case, the two innovation sequences

in representations (1.6) and (1.8) are identical if the underlying process is causal and

invertible, that is, if

ψj = 0 for j < 0
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and the power series

Ψ(z) ≡ 1 +
∞∑
j=1

ψjz
j

has no roots for |z| ≤ 1. Since in this specific case Ψ(z) is invertible, Xt can be

expressed as

Xt =
∞∑
j=1

ajXt−j + εt,

where

A(z) ≡ 1−
∞∑
j=1

ajz
j = Ψ−1(z).

This representation is identical to the AR-representation (1.6) of Xt, i.e., {et} and {εt}

are, in this case, identical innovation processes. X is then a so-called linear, infinite

order autoregressive process, see Brockwell and Davis (1991). It is well-known that

for this specific class of processes, the AR-sieve bootstrap works for the entire class of

generalized means (1.7); see also Bühlmann (1997).

In the third chapter of the thesis, we proceed with a re-examination of the well

known AR-sieve bootstrap for time series. Motivated by some limitations of this boot-

strap procedure in the case of linear processes, we propose a modification of the stan-

dard AR-seive bootstrap procedure which is based on a modification of the resampling

procedure used to generate the i.i.d pseudo-innovations. The difference is that the

pseudo-innovations are generated in a way which correctly captures (asymptotically)

the fourth order moment structure of the true innovations. For this, the estimation

results of the rescaled fourth order cumulant discussed in Chapter 2 are used. This

procedure is called the AR-seive with i.i.d. wild innovations and it is shown that this

modification extends the range of validity of the standard AR-seive bootstrap.

Furthermore, another AR-bootstrap procedure has been proposed, which is applied

to approximate the distribution of a large class of statistics, the class of so-called

generalized means given by (1.7). The basic idea is to apply the AR-bootstrap not to

the obsereved time series itself but to the thransformed time series which is used in

the estimator of the parameter of interest. This novel idea is investigated more closely

in the Chapter 3 of the thesis and a bootstrap procedure for the class of statistics

considered is proposed. The procedure is called the AR-bootstrap with dependent

wild innovations and it is proven that this procedure ia asymptotically valid for general

classes of stochastic processes.

9

Mari
a F

rag
ke

sk
ou



Chapter 2

Inference for the Fourth Order

Innovation Cumulant in Linear

Time Series

2.1 Introduction

In this chapter we investigate more closely the problem of estimating the parameter

η4,ε. We first consider a nonparametric estimator of this parameter, the origins of

which go back to Grenander and Rosenblatt (1957). This nonparametric estimator has

been also used by Janas and Dahlhaus (1994), while a simpler and computationally

more tractable version has been applied in Kreiss and Paparoditis (2012). We derive

the asymptotic properties of this estimator and show how the entire autocorrelation

structure of the underlying linear process affects the behavior of the estimator. Our

theoretical deviations show that, the more correlated the time series is the worse is the

estimator, both in terms of bias and of variance. Motivated by these findings, a new

nonparametric estimator of η4,ε is proposed, which exploits a basic invariance property

of the parameter of interest with respect to linear filtering of the time series. The

new estimator is based on pre-whitening the time series by means of an autoregressive

filter, the coefficients of which are determined in a way that reduces the correlation

of the time series at hand. The aforementioned invariance property implies that the

parameter of interest can be estimated using the residuals obtained by applying the

linear filter to the time series at hand and an inverse-transformation is not needed.

The asymptotic properties of the new estimator are investigated and its superiority
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for large classes of stochastic processes is established. Our derivations allow also for

some interesting applications. For instance, we propose a modification of the multi-

plicative periodogram bootstrap investigated by Franke and Härdle (1992) which is

able to imitate the weak dependence structure of the periodogram. We also consider

the problem of testing hypotheses about the parameter η4,ε. In this context, a simple

bootstrap-based test for the important null hypothesis

H0 : η4,ε = 0

is proposed. Notice that rejection of this hypothesis can be interpreted as rejection

of a hypothesized Gaussianity of the time series. Finally, simulations show a clearly

improved performance of the new estimator compared to the existing estimator, where

the gains in terms of variance and bias reduction, especially for correlated time series,

could be very impressive.

The remaining of the chapter is organized as follows. Section 2.2 discusses the

nonparametric estimator for η4,ε proposed so far in the literature and investigates its

asymptotic behavior. Section 2.3 introduces the new nonparametric estimator and

derives its asymptotic properties. Theoretical comparisons are made in Section 2.4,

while applications of the results obtained for bootstrapping the periodogram and for

testing hypotheses about the parameter η4,ε are discussed in Section 2.5. The issue of

the practical choice of the filtering and of the smoothing parameters, involved in the

estimation procedure, is addressed in Section 2.6. This section presents also several

simulations that verify our theoretical findings and demonstrate the superiority of the

new nonparametric estimator proposed. Some interesting applications to real-life data

are also discussed. All technical proofs are deferred to the Section 2.7.

2.2 Nonparametric Estimation

2.2.1 Assumptions and Estimators

Throughout the chapter we assume that the underlying stochastic process X = {Xt : t ∈ Z}

which generates the observed time series X1, X2, ..., Xn follows equation (1.1) and that

the following condition is satisfied.

Assumption 2.1.
∑

j∈Z j
2ψ2

j < ∞, ψ0 = 1 and {εt, t ∈ Z} consists of i.i.d. random

variables with E(εt) = 0, E(ε2t ) = σ2
ε and E(ε8t ) <∞.
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The requirement of finiteness of eight moments of the innovations seems in-avoidable

since our derivations include calculations of the variance of estimators which are func-

tions of moments up to fourth order of the εt’s.

Assumption 2.1 implies that

∞∑
h=−∞

h2 |γX (h)| = σ2
ε

∞∑
h=−∞

h2

∣∣∣∣∣
∞∑

j=−∞

ψjψj+|h|

∣∣∣∣∣
≤ σ2

ε

∞∑
j=−∞

|ψj|
∞∑

h=−∞

h2
∣∣ψj+|h|∣∣ <∞,

and, therefore, the process X possesses a spectral density fX given by

fX (λ) =
1

2π

∞∑
h=−∞

γX (h) cos (λh), λ ∈ (−π, π],

which is twice continuously differentiable. Denote by

ρX(h) =
γX(h)

γX(0)

the autocorrelation at lag h ∈ Z of X.

Recall that our aim is to estimate the parameter

η4,ε =
κ4,ε
σ4
ε

where

κ4,ε = cum4(εt) = E(ε4t )− 3σ4
ε

is the fourth order cumulant of εt. Following Grenander and Rosenblatt (1957), Ch.

6.5, the covariance γ2,X(h) ≡ Cov(X2
t , X

2
t+h), is given by

γ2,X(h) = (Eε4t − 3(Eε2t )
2)

∞∑
j=−∞

ψ2
jψ

2
h+j + 2γ2X (h), (2.1)

hence
∞∑

h=−∞

γ2,X (h) = κ4,ε

∞∑
h=−∞

∞∑
j=−∞

ψ2
jψ

2
h+j + 2

∞∑
h=−∞

γ2X (h). (2.2)

Using the equality
∞∑

h=−∞

∞∑
j=−∞

ψ2
jψ

2
h+j =

γ2X(0)

σ4
ε

,

we get the basic expression

η4,ε =
1

γ2X(0)

∞∑
h=−∞

(
γ2,X(h)− 2γ2X(h)

)
, (2.3)
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which relates the parameter η4,ε of interest to the autocovariances of X and to that of

the squared process X2 = {X2
t , t ∈ Z}. Based on (2.3), Kreiss and Paparoditis (2012)

proposed a lag-window estimator of η4,ε, given by

η̆4,ε =
1

γ̂2X (0)

n−1∑
h=−(n−1)

w

(
h

Mn

)(
γ̂2,X (h)− 2γ̂2X (h)

)
. (2.4)

Here

γ̂X(h) =
1

n

n−|h|∑
t=1

(Xt −Xn)(Xt+|h| −Xn), γ̂2,X(h) =
1

n

n−|h|∑
t=1

(X2
t −X2,n)(X2

t+|h| −X2,n),

Xn =
1

n

n∑
t=1

Xt and X2,n =
1

n

n∑
t=1

X2
t ,

are sample estimates of the corresponding unknown quantities appearing in (2.3). Fur-

thermore, w is a so-called lag-window and Mn = M(n) < n is a truncation parameter.

The lag window and the truncation parameter are assumed to satisfy the following

conditions.

Assumption 2.2.

(i) w : [−1, 1]→ R is a symmetric, non− negative and continuous function and

satisfies

w (x) =

∫ ∞
−∞

K (u)e−iuxdu,

where K is a non− negative kernel function. Furthermore,∫ ∞
−∞

w2 (u)du <∞.

(ii)
1

Mn

+
M4

n

n
→ 0 as n→∞.

Notice that Grenander and Rosenblatt (1957) proposed a different but asymptoti-

cally equivalent estimator of the parameter η4,ε which is based on equation (2.3). This

estimator is obtained using the relations

∞∑
h=−∞

γ2X (h) = 2π

∫ π

−π
f 2
X (λ) dλ,

∞∑
h=−∞

γ2,X (h) = 2πfX2 (0) ,

and

γX(0) =

∫ π

−π
fX (λ) dλ,

where

fX2 (λ) =
1

2π

∞∑
h=−∞

γ2,X (h) cos(λh)
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is the spectral density of the squared process X2. It is then easily seen that

η4,ε =
2πfX2(0)− 4π

∫ π
−π f

2
X(λ)dλ( ∫ π

−π fX(λ)dλ
)2 ,

which leads to the following frequency domain version of η̆4,

η4,ε =
2πf̂X2(0)− 4π

∫ π
−π f̂

2
X(λ)dλ( ∫ π

−π f̂X(λ)dλ
)2 .

In the above expression,

f̂X(λ) =
1

2π

n−1∑
h=−(n−1)

w

(
h

Mn

)
γ̂X(h) cos(λh),

and

f̂X2(λ) =
1

2π

n−1∑
h=−(n−1)

w

(
h

Mn

)
γ̂2,X(h) cos(λh),

are lag window estimators of the spectral densities fX(λ) and fX2(λ) respectively; see

also Janas and Dahlhaus (1994).

2.2.2 Asymptotic Properties

Kreiss and Paparoditis (2012) established consistency of the estimator η̆4,ε. The fol-

lowing theorem extends this result by establishing several additional properties of this

estimator.

Theorem 2.2.1. Suppose that Assumption 2.1 and Assumption 2.2 are satisfied. Then,

as n→∞,

(i) M2
n(E(η̆4,ε)− η4,ε)→

∫ 1

−1
x2w(x)dx

κ4,ε
σ2
ε γ

2
X(0)

2πf
′′

X̃
(0),

(ii)
n

Mn

V ar
(
η̆4,ε

)
→ τ 2X = 2

∫ 1

−1
w2(x)dx

(
η4,ε + 2

∞∑
h=−∞

ρ2X(h)
)2
,

(iii)

√
n

Mn

(
η̆4,ε − E

(
η̆4,ε

)) D→ N
(
0, τ 2X

)
.

Here, f
′′

X̃
denotes the second derivative of the spectral density of the process X̃ ={

X̃t : t ∈ Z
}

, where X̃t =
∑∞

j=−∞ ψ
2
j εt−j.

The results of Theorem 2.2.1 highlight several interesting features of η̆4,ε. First of

all, the variance of this estimator, given in part (ii) of the above theorem, has a simple
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form and depends, apart from the parameter η4,ε itself, also on the entire (squared)

autocorrelation structure of the underlying process X. In fact, the larger
∑∞

h=1 ρ
2
X(h)

is, the larger is the variability of η̆4,ε. Furthermore, and since

2πf
′′

X̃
(0) = −

∞∑
h=−∞

h2γX̃(h),

with γX̃(·) the autocovariance function of the process X̃, the behavior of the bias given

in part (i) depends, among other things, also on the autocovariance structure of X̃.

Interestingly, for η4 = 0 the bias term disappears, that is,

M2
n(E(η̆4,ε)− η4,ε)→ 0 as n→∞.

Finally, if X is an i.i.d. process, that is, if Xt = εt, then

M2
n(E(η̆4,ε)− η4,ε)→ 0 and

n

Mn

V ar (η̆4,ε)→ 2

∫ 1

−1
w2(x)dx

(
η4,ε + 2

)2
(2.5)

as n → ∞ where the last limit above is the lower bound that the variance of the

nonparametric estimator η̆4,ε can achieve over all linear processes X which have i.i.d.

innovations εt with given first, second and fourth order moments.

2.3 An Improved Nonparametric Estimator

According to the results presented in the previous section, the behavior of the estimator

η̆4,ε is seriously affected by the autocorrelation structure of the underlying process X,

that is, the more correlated the time series is, the worse is the estimator η̆4,ε. In this

section we propose another estimator of the parameter of interest. Toward this goal,

the following two observations are important.

First, the target parameter η4,ε is invariant with respect to linear transformations

of the time series. To elaborate, let B be the shift operator, i.e.,

BkXt = Xt−k for k ∈ Z,

and write

Xt = Ψ(B)εt, where Ψ(B) =
∞∑

j=−∞

ψjB
j.

Let

A(B) =
∑
j∈Z

ajB
j
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be a linear filter. Then the filtered process Y = {Yt, t ∈ Z} with

Yt = A(B)Xt = A(B)Ψ(B)εt

is obviously linear and both processes X and Y are driven by the same i.i.d. innovations

{εt, t ∈ Z}. Thus, applying the estimator η̆4,ε to a time series Y1, Y2, ..., Yn stemming

from the filtered process Y, or to a time series X1, X2, ..., Xn stemming from the original

process X, estimates the same target parameter η4,ε.

Second, given the above invariance property, the behavior of the estimator can be

improved by reducing the correlation of the time series at hand by means of applying

an appropriate linear filter A(B). Ideally, such a filter will transform the observed time

series to an uncorrelated sequence. For this purpose, different filtering approaches can

be considered. For instance, following Brockwell and Davis (1988) we can apply a

moving average filter by means of the innovations algorithm. Computationally more

attractive is a pre-whitening approach which is based on applying an autoregressive

filter. This approach has a long history in time series analysis, see Press and Tukey

(1956). It transforms the time series by fitting an autoregressive process, that is, by

considering the process U = {Ut,p, t ∈ Z}, where

Ut,p = Xt −
p∑
j=1

aj,pXt−j.

Here (a1,p, a2,p, ..., ap,p)
> are the coefficients of the best (in the mean square sense) ap-

proximation of Xt by means of a linear combination of the past p values Xt−1, ..., Xt−p.

It is well known that, under Assumption 2.1, the coefficients ap = (a1,p, a2,p, . . . , ap,p)
>

are uniquely determined and given by

ap = Γ−1p γp,

where

Γp = (γX(i− j))i,j=1,2,...,p and γp = (γX(j), j = 1, 2, . . . , p)>,

cf. Proposition 5.1.1 of Brockwell and Davis (1991). Notice that because of the invari-

ance of the parameter η4,ε with respect to linear filtering, we get, along the same lines

as in obtaining (2.3),

η4,ε =
1

γ2U(0)

∞∑
h=−∞

(
γ2,U(h)− 2γ2U(h)

)
, (2.6)
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where γU(h) = Cov(Ut,p, Ut+h,p) and γ2,U(h) = Cov(U2
t,p, U

2
t+h,p) denote the autocovari-

ance of the filtered process {Ut,p, t ∈ Z} and of the squared filtered process {U2
t,p, t ∈ Z},

respectively.

Summarizing the observations made so far, the following procedure to estimate the

parameter η4,ε is suggested. Let

Ût,p = Xt −
p∑
j=1

âj,pXt−j, t = p+ 1, p+ 2, . . . , n,

where âj,p, j = 1, 2, ..., p are the Yule-Walker estimators of aj,p, j = 1, 2, . . . , p, obtained

by replacing the autocovariances γX(h) in the expression ap = Γ−1p γp by the correspond-

ing sample autocovariances γ̂X(h). Then, the alternative nonparametric estimator of

η4,ε we propose is given by

η̂4,ε =
1

γ̂2U(0)

N−1∑
h=−(N−1)

w

(
h

Mn

)(
γ̂2,U(h)− 2γ̂2U(h)

)
, (2.7)

where N = n− p,

γ̂U(h) =
1

N

n−|h|∑
t=p+1

(
Ût,p − Un

)(
Ût+|h|,p − Un

)
, Un =

1

N

n∑
t=p+1

Ût,p,

γ̂2,U(h) =
1

N

n−|h|∑
t=p+1

(
Û2
t,p − U2,n

)(
Û2
t+|h|,p − U2,n

)
and U2,n =

1

N

n∑
t=p+1

Û2
t,p.

We stress here the fact that we do not assume that the time series at hand stems

from an autoregressive process. We rather use the autoregressive fit solely as a filtering

approach in order to reduce the correlation of the observations which will be used in the

nonparametric estimator of the parameter of interest. In view of the results obtained

in Theorem 2.2.1, we expect that such a filtering will improve the estimator. In the

following theorem we first summarize the asymptotic properties of the new estimator

η̂4,ε. Comparisons with η̆4,ε are given in the next section.

Theorem 2.3.1. Suppose that Assumption 2.1 and Assumption 2.2 are satisfied and

let p ∈ N be fixed. Then, as n→∞

(i) M2
n(E(η̂4,ε)− η4,ε)→

∫ 1

−1
x2w(x)dx

κ4,ε
σ2
ε γ

2
U(0)

2πf
′′

Ũ
(0),

(ii)
n

Mn

V ar
(
η̂4,ε

)
→ τ 2U = 2

∫ 1

−1
w2(x)dx

(
η4,ε + 2

∞∑
h=−∞

ρ2U(h)
)2
,

(iii)

√
n

Mn

(
η̂4,ε − E

(
η̂4,ε

)) D→ N
(
0, τ 2U

)
,
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where ρU(h) = γU(h)/γU(0) is the autocorrelation of the process {Ut,p, t ∈ Z} and f
′′

Ũ
(λ)

denotes the second derivative of the spectral density of the process Ũ =
{
Ũt,p : t ∈ Z

}
,

where Ũt,p =
∑∞

j=−∞ c
2
j,pεt−j and the coefficients {cj,p, j ∈ Z} are given by

∑∞
j=−∞ cj,pz

j =

(1−
∑p

j=1 aj,pz
j)(
∑∞

j=−∞ ψjz
j).

2.4 Comparisons

In this section we compare the estimators η̆4,ε and η̂4,ε based on the asymptotic results

obtained in the previous sections. For this, we first impose the following condition on

the underlying process X.

Assumption 2.3. The spectral density of X satisfies

inf
λ∈[0,π]

fX(λ) > 0.

Assumption 2.3 restricts slightly the class of linear processes considered since it

excludes processes for which the power series

Ψ(z) =
∞∑

j=−∞

ψjz
j, z ∈ C,

has zeros on the unit disc. Recall that by Assumption 2.1 the spectral density fX(λ)

of X is continuous. This together with Assumption 2.3 above, implies that the process

X obeys a so-called autoregressive (AR-) representation, that is, Xt can be expressed

as

Xt =
∞∑
j=1

ajXt−j + vt, (2.8)

where the aj’s are defined as the coefficients of the best (in the mean square sense)

linear approximation of Xt based on its infinite past {Xt−1, Xt−2, . . .}. Furthermore,

{vt, t ∈ Z} is a white noise innovation process, i.e.,

E(vt) = 0, V ar(vt) = σ2
v , Cov(vt, vs) = 0

for t 6= s and which may be different from the i.i.d. innovation process {εt} appearing

in (1.1); see Pourahmadi (2001) for details. We stress the fact that the autoregressive

representation (2.8) of Xt with respect to the white noise innovations {vt, t ∈ Z} is

different and should not be confused with the linear AR(∞) representation

Xt =
∞∑
j=1

πjXt−j + εt
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with respect to the i.i.d. innovation process εt, which exists if X is a causal and

invertible linear process. That is, if the coefficients ψj in (1.1) satisfy

ψj = 0 for j < 0 and Ψ(z) =
∞∑
j=0

ψjz
j 6= 0 for |z| ≤ 1;

cf. Brockwell and Davis (1991). In fact, representation (2.8) of a purely station-

ary stochastic process, possessing a continuous and positive spectral density fX , is

an autoregressive analog to the well-known, moving average Wold representation, see

Brockwell and Davis (1991), Chapter 5.7. To give an example, the non-invertible, first

order moving average process

Xt = θεt−1 + εt with |θ| > 1,

does not possess a linear AR(∞) representation with respect to the i.i.d. innovations

εt. However, it has the AR-representation

Xt =
∞∑
j=1

ajXt−j + vt,

with respect to the white noise series {vt, t ∈ Z}, where

aj = −(−1/θ)j, j = 1, 2, . . . and vt = εt + (1− θ2)
∞∑
j=1

(−θ)−jεt−j;

see also Kreiss et al. (2011).

Consider first the variance of the two estimators η̆4,ε and η̂4,ε. For this it suffices to

compare the two series

∞∑
h=−∞

ρ2X (h) and
∞∑

h=−∞

ρ2U (h).

Interpreting,

‖ρX‖2 =

√√√√ ∞∑
h=−∞

ρ2X (h) and ‖ρU‖2 =

√√√√ ∞∑
h=−∞

ρ2U (h),

as global measures of correlation of the processes X = {Xt : t ∈ Z} and U = {Ut,p :

t ∈ Z} respectively, it yields that if U is less correlated than X, that is, if

‖ρU‖2 < ‖ρX‖2,

then the estimator η̂4,ε will be (asymptotically) more efficient than the estimator η̆4,ε.
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The following theorem shows that filtering indeed achieves this goal and that the

advantages of filtering in terms of variance reduction are uniform over the order p of

the autoregressive filter used, provided this order exceeds some given value p0, which

depends on characteristics of the underlying process X. Furthermore, allowing for the

order p of the autoregressive filter used, to increase to infinity at an appropriate rate, the

pre-whitened estimator η̂4,ε becomes asymptotically efficient, that is, V ar(η̂4,ε) achieves

the lower bound given in (2.5) which corresponds to the case where the underlying

process is uncorrelated.

Theorem 2.4.1. Suppose that Assumption 2.1, Assumption 2.2 and Assumption 2.3

are satisfied.

(i) There exist p0 ∈ N (p0 depends on the process X), such that for all p ∈ N with

p ≥ p0, it yields that

lim
n→∞

V ar (η̂4,ε)

V ar (η̆4,ε)
< 1. (2.9)

(ii) If p = p(n)→∞ such that p = o((n/log(n))1/4), then

lim
n→∞

n

Mn

V ar(η̂4,ε) = 2

∫ 1

−1
w2(x)dx

(
2 + η4,ε

)2
. (2.10)

Notice that p0 could be as small as p0 = 1. For instance, for the first order moving

average process

Xt = εt + θεt−1 with θ 6= 0,

it is true that for any p ≥ 1, the variance of the estimator η̂4,ε is strictly smaller than

that of the originally proposed estimator η̆4,ε. For example, by simple algebra and

using p = 1 one gets

∞∑
h=−∞

ρ2U (h) = 2

{
ρ4X(1) + ρ2X(1)

(1− ρ2X(1))
2

}
ρ2X(1) + 1 < 2ρ2X(1) + 1 =

∞∑
h=−∞

ρ2X (h) ,

where the last inequality follows because

ρ4X(1) + ρ2X(1)

(1− ρ2X(1))2
< 1,

due to the fact that, for any linear first order moving average process it is true that

|ρX(1)| ≤ 1

2
.

We next consider the biases of the estimators η̆4,ε and η̂4,ε. A comparison of the

bias expressions given in part (ii) of Theorem 2.2.1 and Theorem 2.3.1 respectively,
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requires, among other things, the comparison of the second derivatives at frequency

zero of the spectral densities of the processes X̃ and Ũ respectively. Although it seems

difficult to derive results for the most general case, such results can be established for

the important case where the underlying linear process X is causal and invertible.

Assumption 2.4. The process X generated as in (1.1) satisfies

ψj = 0 for j < 0 and Ψ(z) = 1 +
∞∑
j=1

ψjz
j 6= 0 for |z| ≤ 1.

As previously mentioned, Assumption 2.4 is stronger than Assumption 2.3. In fact

if Assumption 2.4 is true, then Xt can be expressed as a linear AR(∞) process with

respect to the i.i.d. innovations εt, i.e.,

Xt =
∞∑
j=1

cjXt−j + εt,

where the cj, j = 1, 2, . . . are uniquely determined as the coefficients of zj, j = 1, 2, . . .

of Ψ−1(z). The next theorem summarizes our findings regarding the comparison of the

biases of the two nonparametric estimators considered.

Theorem 2.4.2. Suppose that Assumption 2.1, Assumption 2.2 and Assumption 2.4

are satisfied.

(i) There exist p0 ∈ N (p0 depends on the process X), such that for all p ∈ N with

p ≥ p0, it yields that

lim
n→∞

M2
n (|E(η̂4,ε)− η4,ε| − |E(η̆4,ε)− η4,ε|) < 0. (2.11)

(ii) If p = p(n)→∞ such that p = o((n/log(n))1/4), then

M2
n(E(η̂4,ε)− η4,ε) = o(1). (2.12)

As the above theorem shows, if X belongs to the important class of causal and

invertible linear processes, then the advantages of pre-whitening are extended also to

the bias of the new nonparametric estimator η̂4,ε.

2.5 Applications

2.5.1 Periodogram Bootstrap

As mentioned in the Introduction, the multiplicative periodogram bootstrap procedure

investigated by Franke and Härdle (1992) and Dahlhaus and Janas (1996), consists of
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generating pseudo periodogram ordinates as

I∗X(λj) = f̂X(λj)U
∗
j , λj =

2πj

n
, j = 1, 2, . . .

[n
2

]
,

where the U∗j ’s are independent pseudo-random variables designed to mimic the be-

havior of Ie(λj) which is the periodogram of the standardized innovations et = εt/σε.

The independence of the U∗j ’s and, consequently, of the periodogram ordinates I∗X(λj),

restrict the range of validity of this frequency domain bootstrap procedure to statistics

the distribution of which does not depend on the fourth order moments of ε1.

Using the improved estimator η̂4,ε of η4,ε proposed in this chapter, we can easily

modify this bootstrap procedure to overcome this limitation; see also Kreiss and Pa-

paroditis (2012). This can be achieved as follows: Generate i.i.d. random variables

e+1 , e
+
2 , . . . , e

+
n such that

E(e+1 ) = 0, E(e+1 )2 = 1 and E(e+1 )4 = η̂4,ε + 3.

Let

I+e (λj) =
1

2πn

∣∣∣∣∣
n∑
t=1

e+t exp{−itλj}

∣∣∣∣∣
2

,

be the periodogram of e+1 , e
+
2 , . . . , e

+
n and define bootstrap pseudo periodogram ordi-

nates I+X(λj), j = 1, 2, . . . , [n/2], as

I+X(λj) = f̂X(λj)I
+
e (λj).

It is easily seen that for 0 < λj 6= λk < π,

Cov(I+e (λj), I
+
e (λk)) =

η̂4,ε
4π2n

,

that is, I+e (λj) mimics the covariance structure of the periodogram Ie(λj). The pseudo-

periodogram ordinates I+X(λj) can now be used to approximate the distribution of some

statistic which is based on the periodogram ordinates IX(λj). For instance, consider

the important class of spectral means (1.2). For this, we can define

S+
n =

2π

n

∑
λj∈Fn

ϕ(λj)I
+
X(λj),

with

I+X(λj) = I+X(−λj), for λj < 0,

as a discrete bootstrap analogue of Sn and use the distribution of

L+
n =
√
n(S+

n −
2π

n

∑
λj∈Fn

ϕ(λj)f̂X(λj)),
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to approximate the distribution of

Ln =
√
n(Sn −

∫
[−π,π]

ϕ(λ)fX(λ)dλ).

Asymptotic validity of this bootstrap proposal can be established along the same lines

as in the proof of Theorem 3.1 in Kreiss and Paparoditis (2012).

2.5.2 Testing Hypotheses

Apart from the estimation problem considered so far, the results presented in this

chapter allow also for the construction of tests of hypotheses about the parameter η4,ε.

A special case in this context concerns the test

H0 : η4,ε = 0 vs. H1 : η4,ε 6= 0. (2.13)

This case is of particular interest for several reasons. First of all, and as we already have

seen in the Introduction, the case η4,ε = 0 simplifies considerably statistical inference.

Furthermore, η4,ε = 0 occurs if X is a Gaussian time series, that is, if Xt obeys the

causal representation

Xt =
∞∑
j=0

ψjεt−j,

with innovations εt that are i.i.d. Gaussian random variables with mean zero and

variance σ2
ε ; see Fan and Yao (2003), Proposition 2.1. In this context, rejection of H0

can be interpreted as rejection of a hypothesized Gaussianity of the underlying time

series. Now, to test hypotheses (2.13), one can exploit the results of Theorem 2.3.1

and use as test statistic the studentized quantity

tn =

√
n(η̂4,ε − EH0(η̂4,ε))√

Mn τ̂U
.

Here EH0(η̂4,ε) denotes the expected value of η̂4,ε under the null hypothesis and τ̂U

denotes a consistent estimator of the standard deviation τU =
√
τ 2U . Notice that if

η4,ε = 0 and Mn = O
(
n1/5

)
, then√

n

Mn

EH0(η̂4,ε)→ 0,

which implies that for testing the null hypothesis (2.13), the test statistic simplifies to

tn =

√
nη̂4,ε√
Mnτ̂U

.

23

Mari
a F

rag
ke

sk
ou



Such a test will reject H0 whenever

|tn| > z1−α/2,

where z1−α/2 denotes the upper α/2-percentage point of the standard Gaussian distri-

bution.

A simpler way to implement a test of hypotheses (2.13), however, is the following.

Notice, first that under the null hypothesis, the limiting distribution of√
n

Mn

(η̂4,ε − η4,ε)

depends only on the autocorrelation structure of the filtered process {Ut,p, t ∈ Z}, since

in this case we have that√
n

Mn

η̂4,ε
D→ N

0, 8

∫ 1

−1
w2(x)dx

(
∞∑

h=−∞

ρ2U(h)

)2
 ,

see Theorem 2.3.1. Furthermore, for p large enough, we expect that the filtered time

series Ut,p, t = p+ 1, p+ 2, . . . , n, will behave as a time series of approximately uncor-

related random variables. That is, the limiting variance will further simplify to

8

∫ 1

−1
w2(x)dx.

These considerations suggest the following simple bootstrap procedure to perform a

test of hypotheses (2.13).

Step 1: Calculate γ̂U(0) based on the filtered time series Ût,p, t = p+ 1, p+ 2, . . . , n.

Step 2: Generate independent random variables U∗p+1, U
∗
p+2, . . . , U

∗
n having a

Gaussian distribution with mean zero and variance γ̂U(0).

Step 3: Using U∗p+1, U
∗
p+2, . . . , U

∗
n calculate the estimator given in (2.7).

Denote this estimator by η̂∗4,ε.

Step 4: Repeat Step 2 and Step 3 a large number of times, say B times, and

reject H0 if

η̂4,ε ≤ q∗α/2 or η̂4,ε ≥ q∗1−α/2.

Here and for β ∈ (0, 1), q∗β denotes the β-percentage point of the distribution

of η̂∗4,ε, i.e., P (η̂∗4,ε ≤ q∗β) = β. The percentage point q∗β can be consistently

estimated using the B bootstrap replications of the estimator η̂∗4,ε.
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Notice that in Step 2, the Gaussian distribution has been chosen for the sake of

convenience only. The U∗t ’s could be also generated as i.i.d. random variables having a

distribution with mean zero, variance γ̂U(0) and zero fourth order cumulant. Asymp-

totically, this will not affect the results obtained, because the limiting distribution of√
n/Mnη̂4,ε depends, under the null hypothesis, only on the second order structure of

the filtered process {Ut,p, t ∈ Z}; see Theorem 2.3.1(iii). Now, it is easily seen that

under the assumptions of this theorem,

t∗n =

√
n

Mn

η̂∗4,ε
D→ N

(
0, 8

∫ 1

−1
w2(x)dx

)
,

and this justifies asymptotically the use of the critical values q∗α/2 and q∗1−α/2 in Step 4

of the above bootstrap algorithm to perform the test.

2.6 Practical Considerations and Numerical Ex-

amples

2.6.1 Choice of Parameters

Implementation of the estimator η̂4,ε requires the choice of two parameters: The order

p of the autoregressive filter used and the truncation lag Mn applied for the calculation

of (2.7). In this section we give some guidelines of how to choose these parameters in

practice.

Concerning the choice of the autoregressive order p, we recommend the use of

Akaike’s information criterion (AIC). That is, p should be selected as the minimizer of

AIC(p) = argminp

{
log γ̂U(0) +

2p

n

}
(2.14)

over a range of values of p where γ̂U(0) is the estimated variance of the filtered process

{Ut,p, t ∈ Z}.

The difficult problem to solve concerns, certainly, the choice of the truncation lag

Mn, which is common in both nonparametric estimation procedures for η4,ε considered

in this chapter. Towards a suggestion for how to choose this parameter in practice, we

give first the following alternative expression for the bias of η̂4,ε,

E(η̂4,ε)− η4,ε =
1

M2
n

∫ 1

−1
x2w(x)dx

{
2
∞∑
−∞

h2ρ2U(h)− γ2,U(0)

γ2U(0)

∞∑
h=−∞

h2ρ2,U(h)

}
+ o

(
1

M2
n

)

=
1

M2
n

∫ 1

−1
x2w(x)dx

1

cU (0)

∞∑
h=−∞

h2
(
2cU (0) ρ2U (h)− ρ2,U (h)

)
+ o

(
1

M2
n

)
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where,

ρU(h) = γU(h)/γU(0) ρ2,U(h) = γ2,U(h)/γ2,U(0), and cU(0) = γ2U(0)/γ2,U(0).

Using assertion (ii) of Theorem 2.3.1 and equation (2.3) an alternative expression for

the variance of η̂4,ε is given by

V ar(η̂4,ε) = 2

∫ 1

−1
w2(x)dx

1

c2U (0)

Mn

n

(
∞∑

h=−∞

ρ2,U (h)

)2

+ o

(
Mn

n

)
.

Thus, it follows by straightforward calculations that the value of Mn which minimizes

the (asymptotic) mean square error

E(η̂4,ε − η4,ε)2 = V ar(η̂4,ε) + (E(η̂4,ε)− η4,ε)2,

is given by

M (opt)
n =


2W 2

1

(
∞∑

h=−∞

h2(2cU(0)ρ2U(h)− ρ2,U(h))

)2

W2

(
∞∑

h=−∞

ρ2,U(h)

)2



1/5

n1/5. (2.15)

Here,

W1 =

∫ 1

−1
x2w(x)dx and W2 =

∫ 1

−1
w2(x)dx.

From (2.15), a crude estimator M̂
(opt)
n of M

(opt)
n can be obtained by replacing cU(0),

ρ2,U(h) and ρU(h) by sample estimators and truncating the infinite sums to some finite,

small value K. As a simple practical rule, we use K = 1 in all calculations presented in

this section. This choice can be also justified by the fact that, since U = {Ut,p, t ∈ Z}

is a filtered process, we expect that for p large enough, many of its autocorrelations

ρU(h) will be close to zero.

2.6.2 Numerical Simulations

We first investigated numerically the finite sample performance of the two nonpara-

metric estimators η̆4,ε and η̂4,ε. For this, we generated time series of length n = 100

and n = 500 of the ARMA(1,1) model

Xt = φXt−1 + θεt−1 + εt, (2.16)

with different choices of the parameters φ and θ and different distributions for the i.i.d.

innovations εt. In particular and concerning the choice of the pair of parameters (φ, θ),
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the following seven models have been considered:

Model I: (0, 0.8)

Model II: (0,−0.8)

Model III: (0, 1.25)

Model IV: (0,−1.25)

Model V: (0.8, 0)

Model VI: (−0.8, 0)

Model VII: (0.8, 0.8)

Notice that Model III and Model IV are non-invertible moving average processes

with parameters that are the reciprocal values of the parameters of the invertible

counterparts given in Model I and Model II respectively. Furthermore and concerning

the innovations, the following four distributions with mean zero and unit variance have

been selected:

(I) Uniform on
[
−
√

3,
√

3
]
, (η4,ε = −1.2)

(II) Standard Gaussian, (η4,ε = 0)

(III) Logistic, (η4,ε = 1.2)

(IV) Double exponential, (η4,ε = 3.0)

In all calculations the Bartlett-Priestly lag window has been used.

For the calculation of the estimator η̆4,ε we have used in the simulations the the-

oretically derived optimal value M
(opt)
n of the truncation lag given in formulae (2.15),

where the unknown quantities appearing in this formulae have been evaluated using

the true parameters of the underlying model. In contrast to this, for the new estima-

tor η̂4,ε, we selected the parameters p and Mn as suggested in Subsection 2.6.1, where

the estimator M̂
(opt)
n proposed there has been used. In other words, we compare the

performance of the new estimator η̂4,ε based on data driven choices of p and Mn with

the performance of the estimator η̆4,ε based on the theoretically optimal choice of Mn.

Figure 2.1 and Figure 2.2 present boxplots of both estimators obtained over R = 100

replications, of each one of the seven models and of each one of the four distributions

of the innovations considered. The corresponding mean square errors of both estima-

tors are presented in Figure 2.3 and Figure 2.4 respectively. Furthermore, Table 2.1
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and Table 2.2 present the Mean (Mean) and the standard deviation (Std) of the two

estimators considered.

As it is seen, the new estimator η̂4,ε performs extremely well and leads to impres-

sive improvements especially in the case of the more correlated time series (models

V,VI and VII). This can be verified by examining the behavior of the boxplots over

the different models and the different distributions of the innovations considered as

well as the behavior of the corresponding mean square errors. In fact, it seems that

pre-whitening the time series stabilizes the mean square error of estimation over the dif-

ferent autocorrelation structures considered towards the case of a time series consisting

of non-correlated observations.
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Figure 2.1: Boxplots of the distributions of the estimators η̆4,ε (left panel) and η̂4,ε

(right panel) for the different models, the different innovation distributions considered

and the sample size of n = 100 observations.
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Figure 2.2: Boxplots of the distributions of the estimators η̆4,ε (left panel) and η̂4,ε

(right panel) for the different models, the different innovation distributions considered

and the sample size of n = 500 observations.
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Figure 2.3: Mean square error (MSE) of the two estimators for the different models,

the different innovation distributions and the sample size of n = 100 observations.

+−−−+ refers to the MSE of the original estimator η̆4,ε, while ◦ −−− ◦ to that of

the new estimator η̂4,ε.
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Figure 2.4: Mean square error (MSE) of the two estimators for the different models,

the different innovation distributions and the sample size of n = 500 observations.

+−−−+ refers to the MSE of the original estimator η̆4,ε, while ◦ −−− ◦ to that of

the new estimator η̂4,ε.

32

Mari
a F

rag
ke

sk
ou



θ φ Est. UNIF NORM LOGI DEXP

Mean Std Mean Std Mean Std Mean Std

η4,ε -1.200 0.000 1.200 3.000

0.8 0.0
η̆4,ε -1.053 0.384 -0.002 0.658 0.742 1.281 1.736 1.706

η̂4,ε -0.994 0.239 -0.151 0.570 0.616 1.043 2.054 1.877

-0.8 0.0
η̆4,ε -1.113 0.386 -0.060 0.650 0.570 1.163 1.597 1.553

η̂4,ε -0.996 0.191 -0.068 0.598 0.614 1.034 1.965 1.735

1.25 0.0
η̆4,ε -1.036 0.416 -0.124 0.559 0.769 1.399 2.080 2.156

η̂4,ε -0.756 0.345 -0.013 0.551 0.449 0.937 1.325 1.316

-1.25 0.0
η̆4,ε -1.152 0.387 -0.134 0.575 0.689 1.371 1.906 1.988

η̂4,ε -0.764 0.342 -0.124 0.520 0.477 0.908 1.200 1.206

0.0 0.8
η̆4,ε -0.641 2.268 0.175 0.964 1.119 2.942 1.596 3.763

η̂4,ε -1.167 0.238 -0.097 0.541 0.887 1.314 2.358 1.847

0.0 -0.8
η̆4,ε -1.475 1.684 -0.391 0.647 -0.283 2.284 -0.573 2.407

η̂4,ε -1.183 0.196 -0.088 0.435 1.009 1.093 2.390 1.883

0.8 0.8
η̆4,ε 0.108 4.292 0.155 1.243 0.896 3.495 1.644 3.979

η̂4,ε -1.006 0.318 -0.030 0.549 0.693 1.053 2.098 1.907

Table 2.1: Mean (Mean) and standard deviation (Std) of the two estimators over

R = 100 replicates for different models and n = 100 observations. NORM, UNIF, LOGI

and DEXP refer to the normal, the uniform, the logistic and the double exponential

distribution of the innovations εt respectively with mean zero and unit variance.
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θ φ Est. UNIF NORM LOGI DEXP

Mean Std Mean Std Mean Std Mean Std

η4,ε -1.200 0.000 1.200 3.000

0.8 0.0
η̆4,ε -1.128 0.239 0.031 0.264 0.920 0.771 2.649 1.355

η̂4,ε -1.130 0.079 -0.005 0.250 1.083 0.731 2.705 1.336

-0.8 0.0
η̆4,ε -1.144 0.224 -0.028 0.307 0.963 1.166 2.584 1.840

η̂4,ε -1.144 0.101 -0.064 0.243 1.204 0.671 2.701 1.144

1.25 0.0
η̆4,ε -1.156 0.233 0.001 0.326 0.992 0.779 2.531 1.630

η̂4,ε -0.833 0.189 0.012 0.267 0.734 0.611 1.862 1.178

-1.25 0.0
η̆4,ε -1.130 0.2292 -0.036 0.302 0.943 0.993 2.526 1.543

η̂4,ε -0.793 0.179 -0.042 0.238 0.668 0.573 1.760 0.924

0.0 0.8
η̆4,ε -0.801 1.497 0.023 0.452 0.716 2.079 2.115 3.113

η̂4,ε -1.197 0.074 0.017 0.292 1.139 0.860 2.546 1.073

0.0 -0.8
η̆4,ε -0.988 1.809 -0.054 0.473 0.544 1.920 1.399 2.392

η̂4,ε -1.195 0.072 -0.063 0.226 1.112 0.587 2.655 1.376

0.8 0.8
η̆4,ε -0.715 2.247 0.075 0.475 0.900 2.447 2.236 4.023

η̂4,ε -1.125 0.090 -0.006 0.259 0.973 0.687 2.544 1.032

Table 2.2: Mean (Mean) and standard deviation (Std) of the two estimators over

R = 100 replicates for different models and n = 500 observations. NORM, UNIF, LOGI

and DEXP refer to the normal, the uniform, the logistic and the double exponential

distribution of the innovations εt respectively with mean zero and unit variance.
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We next consider the problem of testing the hypothesis

H0 : η4,ε = 0 vs. H1 : η4,ε 6= 0.

For this, the size and power behavior of the bootstrap-based testing procedure proposed

in Subsection 2.5.2 is investigated. Time series from model (2.16) have been considered

with different choices of the parameters (φ, θ) and different i.i.d. innovations εt. The

innovations have been generated as

εt = (1− γ)zt + γwt, γ ∈ [0, 1], (2.17)

where {zt, t ∈ Z} and {wt, t ∈ Z} are i.i.d. random sequences, independent from

each other and such that zt has a standard Gaussian distribution and wt has one of the

following three distributions: uniform, logistic and double exponential. The parameters

of the distribution of wt have been chosen so that εt has mean zero and unit variance.

Notice that specification (2.17) of the innovations allows for the examination of the

size and of the power properties of the bootstrap-based test.

In particular, the case γ = 0 corresponds to the null hypothesis while the case

γ > 0 to the alternative. Table 2.3 and Table 2.4 present the empirical rejection

probabilities calculated over R = 1000 replications for sample sizes of n = 100 and

n = 500 observations respectively. The test statistic described in Subsection 2.5.2

has been used, with the smoothing parameters p and Mn selected according to the

recommendations made in Subsection 2.6.1. The critical values of the test have been

estimated using B = 1000 bootstrap replications.

As Table 2.3 and Table 2.4 show, the test retains the correct size over the different

model structures considered. It also has reasonable power for deviations from the null

even for the sample size of n = 100 observations. Furthermore, the power of the test

increases as the sample size increases and/or as the deviation from the null becomes

larger, that is as the parameter γ becomes larger.
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θ φ α GAUSS UNIF LOGI DEXP

γ = 0.0 γ = 0.5 γ = 1.0 γ = 0.5 γ = 1.0 γ = 0.5 γ = 1.0

0.0 0.0
5% 0.046 0.233 0.881 0.169 0.283 0.402 0.670

10% 0.087 0.338 0.924 0.262 0.373 0.510 0.774

0.8 0.0
5% 0.055 0.193 0.666 0.156 0.264 0.352 0.589

10% 0.103 0.277 0.778 0.238 0.371 0.439 0.694

-0.8 0.0
5% 0.057 0.195 0.712 0.161 0.254 0.307 0.569

10% 0.116 0.290 0.820 0.249 0.354 0.399 0.677

1.25 0.0
5% 0.052 0.116 0.288 0.103 0.174 0.233 0.438

10% 0.096 0.184 0.388 0.172 0.268 0.325 0.535

-1.25 0.0
5% 0.050 0.117 0.306 0.102 0.158 0.228 0.368

10% 0.092 0.187 0.408 0.175 0.237 0.305 0.485

0.0 0.8
5% 0.054 0.226 0.836 0.179 0.274 0.416 0.706

10% 0.110 0.326 0.900 0.270 0.388 0.535 0.800

0.0 -0.8
5% 0.049 0.222 0.877 0.164 0.281 0.395 0.657

10% 0.105 0.315 0.935 0.266 0.387 0.505 0.764

0.8 0.8
5% 0.078 0.181 0.556 0.193 0.289 0.355 0.590

10% 0.134 0.260 0.701 0.262 0.393 0.465 0.692

Table 2.3: Empirical rejection probabilities over R = 1000 replications of the

bootstrap-based testing procedure for different models and innovation structures and

for sample size of n = 100 observations. GAUSS, UNIF, LOGI and DEXP refer to the

Gaussian, the uniform, the logistic and the double exponential distribution used in the

equation (2.17) to specify the innovations.
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θ φ α GAUSS UNIF LOGI DEXP

γ = 0.0 γ = 0.5 γ = 1.0 γ = 0.5 γ = 1.0 γ = 0.5 γ = 1.0

0.0 0.0
5% 0.050 0.920 1.000 0.528 0.808 0.952 1.000

10% 0.102 0.960 1.000 0.626 0.860 0.974 1.000

0.8 0.0
5% 0.050 0.880 1.000 0.444 0.780 0.904 1.000

10% 0.100 0.930 1.000 0.552 0.850 0.948 1.000

-0.8 0.0
5% 0.040 0.892 1.000 0.434 0.782 0.916 1.000

10% 0.104 0.946 1.000 0.554 0.866 0.958 1.000

1.25 0.0
5% 0.046 0.458 0.972 0.254 0.480 0.700 0.940

10% 0.100 0.588 0.984 0.346 0.590 0.798 0.978

-1.25 0.0
5% 0.050 0.420 0.974 0.252 0.526 0.716 0.962

10% 0.092 0.570 0.982 0.356 0.614 0.808 0.970

0.8 0.0
5% 0.052 0.934 1.000 0.514 0.802 0.926 0.998

10% 0.110 0.970 1.000 0.628 0.888 0.956 0.998

-0.8 0.0
5% 0.050 0.932 1.000 0.482 0.796 0.930 0.998

10% 0.104 0.968 1.000 0.612 0.888 0.960 0.998

0.8 0.8
5% 0.068 0.886 1.000 0.450 0.760 0.924 0.992

10% 0.118 0.948 1.000 0.580 0.842 0.962 0.996

Table 2.4: Empirical rejection probabilities over R = 1000 replications of the

bootstrap-based testing procedure for different models and innovation structures and

for sample size of n = 500 observations. GAUSS, UNIF, LOGI and DEXP refer to the

Gaussian, the uniform, the logistic and the double exponential distribution used in the

equation (2.17) to specify the innovations.

37

Mari
a F

rag
ke

sk
ou



2.6.3 Real-life Data Applications

We applied the testing procedure for the hypothesis

H0 : η4,ε = 0

proposed in this chapter to eleven different datasets commonly used in the time series

literature and to which linear models have been fitted after transforming them to sta-

tionarity by taking first differences and/or logarithms. For every time series considered,

the test has been performed with smoothing parameters p and Mn selected according

to the suggestions made in Subsection 2.6.1. Table 2.5 presents the different time series

considered together with the source from which they have been obtained, the sample

size n, the estimated value η̂4,ε and the p-value of the test based on B = 1000 bootstrap

replications.

The results presented in this table are quite interesting. In particular and except

from only two out of the eleven time series considered, the null hypothesis η4,ε = 0 has

been rejected at the commonly used levels. These results, do not only imply that for

many time series in practice, the hypothesis of Gaussianity can not be justified, but

also that statistical inference based on the simplifying assumption that η4,ε = 0, may

lead to erroneous conclusions.
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Time Series n η̂4,ε Bootstrap p-value

1 Series A, (first difference) 196 1.2818 0.0075

Box and Jenkins (1970), p.525

2 Series C, (first difference) 225 13.128 0.0000

Box and Jenkins (1970), p.528

3 Series D, (first difference) 309 2.7310 0.0000

Box and Jenkins (1970), p.529

4 Series J, (first difference) 295 10.886 0.0000

Box and Jenkins (1970), p.532-533

5 German Egg Prices, (first difference) 299 1.2714 0.0024

Fan and Yao (2003), p.113

6 GNP Data, (first difference) 222 2.2919 0.0002

Shumway and Stoffer (2006), p.144

7 Recruitment Series, (first difference) 452 2.8355 0.0000

Shumway and Stoffer (2006), p.109

8 Southern Oscillation Index, (first difference) 452 0.04956 0.8836

Shumway and Stoffer (2006), p.222

9 Federal Reserve Board Production, (first difference) 371 5.1467 0.0000

Shumway and Stoffer (2006), p.160

10 Global Temperature, (first difference) 97 -0.6983 0.1993

Shumway and Stoffer (2006), p.58

11 Paleoclimatic Glacial Varves, 633 0.5131 0.0303

(first difference of log-transform)

Shumway and Stoffer (2006), p.62

Table 2.5: Bootstrap p-values of the test of the hypothesis η4,ε = 0 for different real-life

data sets transformed to stationarity by applying first differences (first diff.) and/or taking

logarithms (log-trans.)
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2.7 Auxiliary Lemmas and Proofs

In this section we give the proofs of the main theorems presented in Chapter 2 sup-

pressing at some places cumbersome but straightforward calculations.

Throughout the proofs we use the function nφn (r;h1, h2) which is defined by

nφn (r;h1, h2) =



n− 1
2 {|h2|+ |h1|+ (h1 − h2)}+ r,

if r = −
{
n− 1

2 (|h2|+ |h1|+ (h1 − h2))
}
, ..., 12 (h1 − h2)− 1

2 ||h1| − |h2|| ,

n−max {|h1| , |h2|} ,

if r = 1
2 (h1 − h2)− 1

2 ||h1| − |h2|| , ...,
1
2 (h1 − h2) + 1

2 ||h1| − |h2|| ,

n− 1
2 {|h2|+ |h1| − (h1 − h2)} − r,

if r = 1
2 (h1 − h2) + 1

2 ||h1| − |h2|| , ..., n−
1
2 (|h2|+ |h1| − (h1 − h2)) ,

0,

elsewhere.

Note that for every r, h1, h2,

0 ≤ φn (r;h1, h2) ≤ 1, and lim
n→∞

φn (r;h1, h2) = 1;

see also Anderson (1971), Problem 19, p. 555. Furthermore, denote by

Cum (Xt, Xt+h1 , Xt+h2 , ..., Xt+hr) ≡ cumX (h1, h2, ..., hr) ,

the (r + 1)th order joint cumulant of (Xt, Xt+h1 , Xt+h2 , ..., Xt+hr), and by

Cum
(
X2
t , X

2
t+h1 , X

2
t+h2X

2
t+h3

)
≡ cumX2 (h1, h2, h3) ,

the 4th order joint cumulant of
(
X2
t , X

2
t+h1

, X2
t+h2

, X2
t+h3

)
.

The first lemma deals with the absolute summability of certain cumulant functions for

linear processes.

Lemma 2.7.1. Suppose that Assumption 2.1 is satisfied. Then,

(i)
∞∑

h1,h2,...,h7=−∞
|Cum (Xt, Xt+h1 , ..., Xt+h7)| <∞,

(ii)
∞∑

h1,h2,h3=−∞

∣∣Cum (X2
t , X

2
t+h1

, X2
t+h2

, X2
t+h3

)∣∣ <∞.
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Proof:

(i) Following Rosenblatt (1985) the cumulant Cum (Xt, Xt+h1 , ..., Xt+h7) is given by

Cum (Xt, Xt+h1 , ..., Xt+h7) = γ8

∞∑
r=−∞

ψrψr+h1 ...ψr+h7

where γ8 is the 8th order cumulant of εt. Then,

∞∑
h1,h2,...,h7=−∞

|Cum (Xt, Xt+h1 , ..., Xt+h7)| = |γ8|
∞∑

h1,h2,...,h7=−∞

∣∣∣∣∣
∞∑

r=−∞
ψrψr+h1 ...ψr+h7

∣∣∣∣∣
≤ |γ8|

( ∞∑
r=−∞

|ψr|

)8

<∞.

(ii) It is known that for random variables Z1, Z2, Z3, Z4 the cumulant Cum (Z1, Z2, Z3, Z4) is

given by

Cum (Z1, Z2, Z3, Z4) =E (Z1Z2Z3Z4)−
{
E (Z1)E (Z2Z3Z4) + ...+ E (Z4)E (Z1Z2Z3)

}
−
{
E (Z1Z2)E (Z3Z4) + E (Z1Z3)E (Z2Z4) + E (Z1Z4)E (Z3Z2)

}
+ 2
{
E (Z1)E (Z2)E (Z3Z4) + ...+ E (Z3)E (Z4)E (Z1Z2)

}
− 6E (Z1)E (Z2)E (Z3)E (Z4) . (2.18)

Thus, Cum
(
X2
t , X

2
t+h1

, X2
t+h2

, X2
t+h3

)
equals

∞∑
j1,j2,...,j8=−∞

ψj1ψj2 ...ψj8Cum (εt−j1 εt−j2 , εt+h1−j3εt+h1−j4 , εt+h2−j5εt+h2−j6 , εt+h3−j7εt+h3−j8) .

Evaluating the above cumulant of the εt’s, we get after straightforward calculations that

∞∑
h1,h2,h3=−∞

∣∣Cum (X2
t , X

2
t+h1 , X

2
t+h2 , X

2
t+h3

)∣∣
≤
{∣∣E (ε81)∣∣+ 28E

(
ε21
) ∣∣E (ε61)∣∣+ 35E2

(
ε41
)

+ 642E4
(
ε21
)

+420
∣∣E (ε41)∣∣E2

(
ε21
)}

×
( ∞∑
j=−∞

ψ2
j

)4
+
{

456E4
(
ε21
)

+ 96
∣∣E (ε41)∣∣E2

(
ε21
)}( ∞∑

j=−∞
|ψj |

)6( ∞∑
j=−∞

ψ2
j

)
+ 24

{
E
(
ε21
) ∣∣E (ε61)∣∣+ 24E2

(
ε41
)

+ 1092E4
(
ε21
)

+504
∣∣E (ε41)∣∣E2

(
ε21
)}

×
( ∞∑
j=−∞

ψ2
j

)2( ∞∑
j=−∞

|ψj |
)4

+
{

56E2
(
ε41
)

+ 96
∣∣E (ε41)∣∣E2

(
ε21
)}( ∞∑

j=−∞
|ψj |

)8
≤ C

( ∞∑
r=−∞

|ψr|

)8

,

which yields the expected result.
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Let η̃4,ε be the same estimator as η̆4,ε with Xn replaced by µ = E(Xt) and X2,n by

µ2 = E
(
X2
t

)
. In general, and in the following, “ ˜ ” refers to estimators using the true means

µ and µ2, while, “ ̂ ” to estimators using the sample means Xn and X2,n. The following

lemma shows that the asymptotic properties of the estimator η̆4,ε are the same as those of

the estimator η̃4,ε.

Lemma 2.7.2. Suppose that Assumption 2.1 and Assumption 2.2 are satisfied. Then, as

n→∞

(i) E (η̆4,ε) = E (η̃4,ε) +O

(
1√
n

+
Mn

n

)
,

(ii)
n

Mn
V ar (η̆4,ε) =

n

Mn
V ar (η̃4,ε) +O

(
1√
Mn

+
Mn

n

)
,

(iii)

√
n

Mn
(η̆4,ε − E (η̆4,ε)) =

√
n

Mn
(η̃4,ε − E (η̃4,ε)) +OP

(
1√
Mn

+

√
Mn

n

)
.

Proof:

Let,

η̆4,ε =
N̂n

γ̂2X (0)
and η̃4,ε =

Ñn

γ̃2X (0)
,

where

N̂n =

(n−1)∑
h=−(n−1)

w

(
h

Mn

)(
γ̂2,X (h)− 2γ̂2X (h)

)
and Ñn =

(n−1)∑
h=−(n−1)

w

(
h

Mn

)(
γ̃2,X (h)− 2γ̃2X (h)

)
.

To prove assertion (i) of the lemma observe that for |h| ≤ n− 1,

γ̂2,X (h) = γ̃2,X (h)− 1

n2

n−|h|∑
t=1

n∑
s=1

(
X2
t − µ2

) (
X2
s − µ2

)
− 1

n2

n−|h|∑
t=1

n∑
s=1

(
X2
t+|h| − µ2

) (
X2
s − µ2

)
+
n− |h|
n3

n∑
t,s=1

(
X2
t − µ2

) (
X2
s − µ2

)
.

Taking expectation on both sides yields

E (γ̂2,X (h)) = E (γ̃2,X (h))− 1

n2

n−|h|∑
t=1

n∑
s=1

γ2,X (s− t)− 1

n2

n−|h|∑
t=1

n∑
s=1

γ2,X (s− t− |h|)

+
n− |h|
n3

n∑
t,s=1

γ2,X (s− t). (2.19)

The second term on the right-hand side of (2.19) equals

1

n2

(n−1)∑
b=−(n−1)

nφn (b;h, 0) γ2,X (b) ,
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which is in turn, bounded in absolute value by

1

n

∞∑
b=−∞

|γ2,X (b)| = O

(
1

n

)
.

Similarly, the third and the fourth term on the right-hand side of (2.19) are O (1/n). Thus,

we conclude that

E (γ̂2,X (h)) = E (γ̃2,X (h)) +O

(
1

n

)
. (2.20)

For γ̂2X (h) we have

γ̂2X (h) = γ̃2X (h) +
1

n4

n−|h|∑
t,r=1

n∑
s,q=1

(Xt − µ) (Xr − µ) (Xs − µ) (Xq − µ)

+
1

n4

n−|h|∑
t,r=1

n∑
s,q=1

(
Xt+|h| − µ

) (
Xr+|h| − µ

)
(Xs − µ) (Xq − µ)

+
(n− |h|)2

n6

n∑
t,r,s,q=1

(Xt − µ) (Xr − µ) (Xs − µ) (Xq − µ)

− 2

n3

n−|h|∑
t,r=1

n∑
s=1

(Xr − µ)
(
Xr+|h| − µ

)
(Xs − µ) (Xt − µ)

− 2

n3

n−|h|∑
t,r=1

n∑
s=1

(Xr − µ)
(
Xr+|h| − µ

)
(Xs − µ)

(
Xt+|h| − µ

)
+

2 (n− |h|)
n4

n−|h|∑
r=1

n∑
s,t=1

(Xr − µ)
(
Xr+|h| − µ

)
(Xs − µ) (Xt − µ)

+
2

n4

n−|h|∑
t,r=1

n∑
s,q=1

(Xq − µ)
(
Xr+|h| − µ

)
(Xs − µ) (Xt − µ)

− 2 (n− |h|)
n5

n−|h|∑
t=1

n∑
s,q,r=1

(Xq − µ) (Xr − µ) (Xs − µ) (Xt − µ)

− 2 (n− |h|)
n5

n−|h|∑
t=1

n∑
s,q,r=1

(Xq − µ) (Xr − µ) (Xs − µ)
(
Xt+|h| − µ

)
. (2.21)

Taking expectation on both sides of the equation (2.21), we can show that

E
(
γ̂2X (h)

)
= E

(
γ̃2X (h)

)
+O

(
1

n

)
. (2.22)

To see (2.22) consider for instance the 6th term of (2.21). Using the relation (2.18) we get

2

n3

n−|h|∑
t,r=1

n∑
s=1

{
γX (h)γX (s− t− |h|) + γX (t− r + |h|) γX (s− r − |h|) + γX (s− r) γX (t− r)

+ cumX (|h| , t− r + |h| , s− r)
}
. (2.23)
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The first term of (2.23) equals

2 (n− |h|)
n3

γX (h)

(n−1)∑
r=−(n−1)

nφn (r;h, 0) γX (r − |h|) ,

and is bounded in absolute value by

2 (n+ |h|)
n2

|γX (h)|
∞∑

r=−∞
|γX (r − |h|)| = O

(
1

n

)
.

Moreover, the second term of (2.23) is bounded in absolute value by

2

n3

n−|h|∑
r=1

(n−1)∑
z,b=−(n−1)

|γX (z + |h|)| |γX (b− |h|)| ≤ 2 (n− |h|)
n3

∞∑
z,b=−∞

|γX (z + |h|)| |γX (b− |h|)|.

Thus, the second term of (2.23) and similarly, the third term are O
(
1/n2

)
. Finally, for the

last term we have

2

n3

n−|h|∑
t,r=1

n∑
s=1

cumX (|h| , t− r + |h| , s− r) ≤ 2

n3

n−|h|∑
r=1

n−1∑
z,b=−(n−1)

|cumX (|h| , z + |h| , b)|

≤ 2 (n− |h|)
n3

∞∑
z,b=−∞

|cumX (|h| , z + |h| , b)|

= O

(
1

n2

)
.

From the above derivations, we conclude that (2.23) is O (1/n). Similar arguments show that

the expectation of all the other terms on the right-hand side of (2.21) which follow the term

E
(
γ̃2X (h)

)
, have order at least equal to O (1/n). Thus, from (2.20) we get

E(N̂n) = E(Ñn) +O

(
Mn

n

)
. (2.24)

Using a Taylor series argument observe that

η̃4,ε =
Ñn

γ̃2X (0)
=

Ñn

γ2X (0)
+
(
γ̃2X (0)− γ2X (0)

)(
− Ñn

γ4X (0)

)
+
Ñn

2c3
(
γ̃2X (0)− γ2X (0)

)2
, (2.25)

where min
{
γ2X (0), γ̃2X (0)

}
< c < max

{
γ2X (0), γ̃2X (0)

}
. Cauchy-Schwartz’s inequality yields

then

E

∣∣∣∣∣
(
Ñn

c3
(
γ̃2X (0)− γ2X (0)

)2)∣∣∣∣∣ ≤
√√√√E

(
Ñn

c3

)2√
E
(
γ̃2X (0)− γ2X (0)

)4
= O

(
1

n

)
,

and

E
∣∣(Nn

(
γ̃2X (0)− γ2X (0)

))∣∣ ≤√E(Ñn)
2
√
E
(
γ̃2X (0)− γ2X (0)

)2
= O

(
1√
n

)
.

Therefore,

E (η̃4,ε) =
1

γ2X (0)
E(Ñn) +O

(
1√
n

)
, (2.26)
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and, similarly,

E (η̆4,ε) =
1

γ2X (0)
E(N̂n) +O

(
1√
n

)
. (2.27)

Thus, the required result is obtained from (2.24), (2.26) and (2.27).

To prove assertion (ii) of the lemma notice first that by tedious algebra we have that

Cov (γ̂2,X (h1) , γ̂2,X (h2)) = Cov (γ̃2,X (h1) , γ̃2,X (h2)) +O

(
1

n2

)
,

Cov
(
γ̂2,X (h1) , γ̂

2
X (h2)

)
= Cov

(
γ̃2,X (h1) , γ̃

2
X (h2)

)
+O

(
1

n2

)
,

and

Cov
(
γ̂2X (h1) , γ̂

2
X (h2)

)
= Cov

(
γ̃2X (h1) , γ̃

2
X (h2)

)
+O

(
1

n2

)
.

From the above relations we get

V ar(N̂n) = V ar(Ñn) +O

(
M2
n

n2

)
. (2.28)

Calculating the variance of equation (2.25)

V ar
(
η̃4,ε
)

=
1

γ4X (0)
V ar(Ñn) + V ar

((
γ̃2X (0)− γ2X (0)

) Ñn

γ4X (0)

)
+

1

4
V ar

(Ñn

c3
(
γ̃2X (0)− γ2X (0)

)2)
− 2

γ6X (0)
Cov

(
Ñn,

(
γ̃2X (0)− γ2X (0)

)
Ñn

)
+

1

γ2X (0)
Cov

(
Ñn,

Ñn

c3
(
γ̃2X (0)− γ2X (0)

)2)
− 1

γ4X (0)
Cov

(
Ñn

(
γ̃2X (0)− γ2X (0)

)
,
Ñn

c3
(
γ̃2X (0)− γ2X (0)

)2)
,

where

V ar
((
γ̃2X (0)− γ2X (0)

) Ñn

γ4X (0)

)
= O

(
1

n

)
, V ar

(Ñn

c3
(
γ̃2X (0)− γ2X (0)

)2)
= O

(
1

n2

)
,

and

Cov
(
Ñn,

(
γ̃2X (0)− γ2X (0)

)
Ñn

)
≤
√
V ar(Ñn)

√
V ar

((
γ̃2X (0)− γ2X (0)

)
Ñn

)
= O

(√
Mn

n

)
.

Similarly,

Cov
(
Ñn

(
γ̃2X (0)− γ2X (0)

)
,
Ñn

c3
(
γ̃2X (0)− γ2X (0)

)2)
= O

(
1

n3/2

)
,

and

Cov
(
Ñn,

Ñn

c3
(
γ̃2X (0)− γ2X (0)

)2)
= O

(√
Mn

n3/2

)
.
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Thus,

n

Mn
V ar (η̃4,ε) =

1

γ4X (0)

n

Mn
V ar(Ñn) +O

(
1√
Mn

)
. (2.29)

Along the same lines and with η̃4,ε, Ñn and γ̃2X (0) replaced by η̆4,ε, N̂n and γ̂2X (0)

respectively we can show that

n

Mn
V ar (η̆4,ε) =

1

γ4X (0)

n

Mn
V ar(N̂n) +O

(
1√
Mn

)
. (2.30)

Finally, equations (2.28), (2.29) and (2.30) yield assertion (ii).

Consider next assertion (iii) and notice that

γ̂X(h) = γ̃X(h) +
1

n

(
µ−Xn

) n−|h|∑
t=1

(Xt − µ) +
1

n

(
µ−Xn

) n−|h|∑
t=1

(
Xt+|h| − µ

)
+
n− |h|
n

(
µ−Xn

)2
,

and

γ̂2,X(h) = γ̃2,X(h) +
1

n

(
µ2 −X2,n

) n−|h|∑
t=1

(
X2
t − µ2

)
+

1

n

(
µ2 −X2,n

) n−|h|∑
t=1

(
X2
t+|h| − µ2

)
+
n− |h|
n

(
µ2 −X2,n

)2
.

Using

(I)
∑n−|h|

t=1 (Xt − µ) = OP (
√
n),

(II)
∑n−|h|

t=1 (X2
t − µ2) = OP (

√
n),

(III) µ−Xn = OP (1/
√
n),

(IV) µ2 −X2,n = OP (1/
√
n),

we get that

γ̂2,X (h) = γ̃2,X (h) +OP

(
1

n

)
and γ̂2X (h) = γ̃2X (h) +OP

(
1

n

)
,

and, therefore,

η̆4,ε = η̃4,ε +OP

(
Mn

n

)
. (2.31)

From equation (2.31) and assertion (i) we get that√
n

Mn

(η̆4,ε − E (η̆4,ε)) =

√
n

Mn

(η̆4,ε − η̃4,ε) +

√
n

Mn

(η̃4,ε − E (η̆4,ε))

=

√
n

Mn

(η̃4,ε − E (η̃4,ε)) +OP

(
1√
Mn

+

√
Mn

n

)
,

which concludes the proof.
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Proof of Theorem 2.2.1:

Let

η̃4,ε =
Ñn

γ̃2X(0)
, where Ñn =

(n−1)∑
h=−(n−1)

w

(
h

Mn

)(
γ̃2,X (h)− 2γ̃2X (h)

)
.

(i) By a Taylor series argument and as in the proof of Lemma 2.7.2 (i), equation (2.25),

we get

E(η̃4,ε) =
1

γ2X(0)
E(Ñn) +O

(
1√
n

)
. (2.32)

Now,

E(Ñn) =
n−1∑

h=−(n−1)

w

(
h

Mn

)(
E
(
γ̃2,X (h)

)
− 2E

(
γ̃2X (h)

))
,

where E (γ̃2X (h)) equals

1

n2

n−|h|∑
t,s=1

E (Xt − µ)
(
Xt+|h| − µ

)
(Xs − µ)

(
Xs+|h| − µ

)
=

(n− |h|)2

n2
γ2X (h) +

1

n2

n−|h|∑
t,s=1

γ2X (t− s) +
1

n2

n−|h|∑
t,s=1

γX (t− s− |h|) γX (t+ |h| − s)

+
1

n2

n−|h|∑
t,s=1

cumX (|h| , s− t, s− t+ |h|)

=
(n− |h|)2

n2
γ2X (h) +

1

n

n−1∑
r=−(n−1)

φn (r;h, h)γ2X (r)

+
1

n

n−1∑
r=−(n−1)

φn (r;h, h)γX (r + |h|) γX (r − |h|)

+
1

n

n−1∑
r=−(n−1)

φn (r;h, h)cumX (|h| ,−r,−r + |h|) .

Furthermore, it is easy to see that

E (γ̃2,X (h)) =
n− |h|
n

γ2,X (h) .

Thus,

E(Ñn) =
n−1∑

h=−(n−1)

w

(
h

Mn

)
γ2,X (h)−

n−1∑
h=−(n−1)

|h|
n
w

(
h

Mn

)
γ2,X (h)

− 2
n−1∑

h=−(n−1)

w

(
h

Mn

)
γ2X (h)
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− 2
n−1∑

h=−(n−1)

h2

n2
w

(
h

Mn

)
γ2X (h) + 4

n−1∑
h=−(n−1)

|h|
n
w

(
h

Mn

)
γ2X (h)

− 2

n

Mn∑
h=−Mn

n−1∑
r=−(n−1)

φn (r;h, h)w

(
h

Mn

)
γ2X (r)

− 2

n

Mn∑
h=−Mn

n−1∑
r=−(n−1)

φn (r;h, h)w

(
h

Mn

)
γX (r + |h|) γX (r − |h|)

− 2

n

Mn∑
h=−Mn

n−1∑
r=−(n−1)

φn (r;h, h)w

(
h

Mn

)
cumX (|h| ,−r,−r + |h|) .

By Lemma 2.7.1 and the summability conditions

∞∑
h=−∞

|h| |γ2,X (h)| <∞ and
∞∑

h=−∞

h2γ2X (h) <∞,

we get that

E(Ñn) =
n−1∑

h=−(n−1)

w

(
h

Mn

)(
γ2,X (h)− 2γX

2 (h)
)

+O

(
Mn

n
+

1

n

)
.

Furthermore,

M2
n

[
E(Ñn)− κ4,ε

]
= M2

n

Mn∑
h=−Mn

[
w

(
h

Mn

)
− 1
] [
γ2,X (h)− 2γ2X (h)

]
− 2M2

n

∞∑
h=Mn+1

[
γ2,X (h)− 2γ2X (h)

]
+O

(
M3

n

n

)
. (2.33)

The first term on the right-hand side of (2.33) can be written as

M∗n∑
h=−M∗n

w
(

h
Mn

)
− 1(

h
Mn

)2 h2
[
γ2,X (h)− 2γ2X (h)

]
+2

Mn∑
h=M∗n+1

w
(

h
Mn

)
− 1(

h
Mn

)2 h2
[
γ2,X (h)− 2γ2X (h)

]
,

(2.34)

for any integer M∗
n
< Mn. Consider the first term of (2.34), For any ε > 0 we can

choose δ = δ (ε) so that for |h/Mn| < δ,∣∣∣∣∣∣∣
w
(

h
Mn

)
− 1(

h
Mn

)2 + Cw

∣∣∣∣∣∣∣ < ε, where Cw :=

1∫
−1

x2w (x) dx.

Thus for M∗
n

= [δMn], the first term in (2.34) is within

ε′ = ε
∑∞

h=−∞
h2
∣∣γ2,X (h)− 2γ2X (h)

∣∣ of − Cw
∑M∗n

h=−M∗n
h2
[
γ2,X (h)− 2γ2X (h)

]
,

which implies that this term converges to

−Cw
∞∑

h=−∞

h2
[
γ2,X (h)− 2γ2X (h)

]
,
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as n→∞. Since |w (x)| ≤ 1 we have

|1− w (x)|
x2

≤ 2

δ2
, |x| ≥ δ.

The second term in (2.34) is in absolute value no greater than

4

δ2

∞∑
h=[δMn]+1

h2
∣∣γ2,X (h)− 2γ2X (h)

∣∣,
which converges to zero as n→∞.

The second term on the right-hand side of (2.33) is bounded in absolute value by

2M2
n

∞∑
h=Mn+1

∣∣γ2,X (h)− 2γ2X (h)
∣∣ ≤ 2

∞∑
h=Mn+1

h2
∣∣γ2,X (h)− 2γ2X (h)

∣∣,
which also converges to zero, as n→∞. Thus,

M2
n

[
E(Ñn)− κ4,ε

]
→ −Cw

∞∑
h=−∞

h2
[
γ2,X (h)− 2γ2X (h)

]
, (2.35)

as n→∞. Using equation (2.32) and Lemma 2.7.2 (i), we conclude that

lim
n→∞

M2
n

(
E
(
η̆4,ε

)
− η4,ε

)
= − Cw

γ2X (0)

∞∑
h=−∞

h2
[
γ2,X (h)− 2γ2X (h)

]
= Cw

κ4,ε
σ2
ε γ

2
X(0)

2πf
′′

X̃
(0),

where f
′′

X̃
denotes the second derivative of the spectral density of the process X̃ =

{X̃t : t ∈ Z}, where X̃t =
∑∞

j=−∞ ψ
2
j εt−j.

(ii) Notice that

Var(Ñn) =
n−1∑

h1,h2=−(n−1)

w

(
h1
Mn

)
w

(
h2
Mn

)
Cov

(
γ̃2,X (h1) , γ̃2,X (h2)

)
− 4

n−1∑
h1,h2=−(n−1)

w

(
h1
Mn

)
w

(
h2
Mn

)
Cov

(
γ̃2,X (h1) , γ̃

2
X (h2)

)
+ 4

n−1∑
h1,h2=−(n−1)

w

(
h1
Mn

)
w

(
h2
Mn

)
Cov

(
γ̃2X (h1) , γ̃

2
X (h2)

)
= V1,n − 4V2,n + 4V3,n (say).

We show that

n

Mn

V1,n = 2
( ∞∑
u=−∞

γ2,X (u)
)2 1∫
−1

w2 (x) dx+O

(
1

Mn

)
, (2.36)
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n

Mn

V2,n = O

(
1

Mn

)
, (2.37)

and

n

Mn

V3,n = O

(
1

Mn

)
. (2.38)

To see why relation (2.36) is true notice that

nCov (γ̃2,X (h1) , γ̃2,X (h2))

=
n−1∑

r=−(n−1)

φn (r;h1, h2)
{
γ2,X (r) γ2,X (r + |h1| − |h2|) + γ2,X (r + |h1|) γ2,X (r − |h2|)

+cumX2 (|h1| ,−r, |h2| − r)
}
.

Thus, (n/Mn)V1,n equals

1

Mn

Mn∑
h1,h2=−Mn

w

(
h1
Mn

)
w

(
h2
Mn

) n−1∑
r=−(n−1)

φn (r;h1, h2)
{
γ2,X (r) γ2,X (r + |h1| − |h2|)

+ γ2,X (r + |h1|) γ2,X (r − |h2|) + cumX2 (|h1| ,−r, |h2| − r)
}
. (2.39)

We deal with each of the three terms of (2.39) separately. Consider first the term

1

Mn

Mn∑
h1,h2=−Mn

n−1∑
r=−(n−1)

φn (r;h1, h2)w

(
h1
Mn

)
w

(
h2
Mn

)
γ2,X (r + |h1|) γ2,X (r − |h2|)

=
1

Mn

Mn+n−1∑
u,v=−(Mn+n−1)

min[u−Mn,v−Mn,(n−1)]∑
r=max[u−Mn,v−Mn,−(n−1)]

φn (r; r − u, v − r)

× w
(
r − u
Mn

)
w

(
v − r
Mn

)
γ2,X (u) γ2,X (v) , (2.40)

of (2.39), where the sum over r is equal to zero if the lower limit is greater than the

upper limit. The difference between (2.40) and

1

Mn

m∑
u,v=−m

min[u−Mn,v−Mn,(n−1)]∑
r=max[u−Mn,v−Mn,−(n−1)]

φn (r; r − u, v − r)w
(
r − u
Mn

)
w

(
v − r
Mn

)
× γ2,X (u) γ2,X (v) , (2.41)

is, in absolute value, bounded by

4

(
2 +

1

Mn

) ∞∑
u=−∞

∞∑
v=m+1

|γ2,X (u)| |γ2,X (v)| ,
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which can be made arbitrarily small if m (≤Mn) is sufficiently large taking into account

that |w (x)| is bounded and
∑∞

r=−∞ |γX (r)| < ∞. Since w (x) is continuous, we have

for |u| ≤ m, |v| ≤ m and Mn sufficiently large that∣∣∣∣w(r − uMn

)
w

(
v − r
Mn

)
− w2

(
r

Mn

)∣∣∣∣ < ε, (2.42)

for r such that −Mn ≤ r − u ≤ Mn, −Mn ≤ r − v ≤ Mn, and −Mn ≤ r ≤ Mn. For

|u| ≤ m, |v| ≤ m, |r| ≤ m+Mn

φn (r; r − u, v − r) ≥ 1− 5m+ 3Mn

n
.

Thus, the difference between (2.41) and

1

Mn

Mn∑
r=−Mn

w2

(
r

Mn

)( m∑
v=−m

γ2,X (v)
)2

(2.43)

can be made arbitrarily small for n sufficiently large. Now, since

1

Mn

Mn∑
r=−Mn

w2

(
r

Mn

)
→
∫ 1

−1
w2 (x) dx, as Mn →∞,

(2.43) converges to ( ∞∑
u=−∞

γ2,X (u)
)2 1∫
−1

w2 (x) dx.

Consider next the term

1

Mn

Mn∑
h1,h2=−Mn

n−1∑
r=−(n−1)

φn (r;h1, h2)w

(
h1
Mn

)
w

(
h2
Mn

)
γ2,X (r) γ2,X (r + |h1| − |h2|)

=
1

Mn

n−1∑
u=−(n−1)

u+2Mn∑
v=u−2Mn

min{u,v}+Mn∑
s=max{u,v}−Mn

φn (u;u− s, v − s)w
(
u− s
Mn

)
w

(
v − s
Mn

)
× γ2,X (u) γ2,X (v) , (2.44)

of (2.39). Using the same arguments as for (2.40), the right hand side of equation

(2.44) equals

1

Mn

m∑
u,v=−m

min{u,v}+Mn∑
s=max{u,v}−Mn

φn (u;u− s, v − s)w
(
u− s
Mn

)
w

(
v − s
Mn

)
γ2,X (u) γ2,X (v)+o(1).

(2.45)
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Taking into account (2.42), the difference between (2.45) and

m∑
u,v=−m

Mn∑
s=−Mn

1

Mn

w2

(
s

Mn

)
γ2,X (u) γ2,X (v) , (2.46)

can be made arbitrarily small for n sufficiently large. Thus, for m sufficiently large the

limit of (2.46) is ( ∞∑
u=−∞

γ2,X (u)
)2 ∫ 1

−1
w2 (x) dx.

Finally, consider the term

1

Mn

Mn∑
h1,h2=−Mn

n−1∑
r=−(n−1)

φn (r;h1, h2)w

(
h1
Mn

)
w

(
h2
Mn

)
cumX2 (h1,−r, h2 − r)

of (2.39).This term is in absolute value no greater than

1

Mn

∞∑
r,s,t=−∞

|cumX2 (r, s, t)| = O

(
1

Mn

)
,

by Lemma 2.7.1. Thus,

n

Mn

V1,n = 2
( ∞∑
u=−∞

γ2,X(u)
)2 ∫ 1

−1
w2 (x) dx+O

(
1

Mn

)
= 8π2f 2

X2 (0)

∫ 1

−1
w2 (x) dx+O

(
1

Mn

)
.

To show (2.37), notice that

n

Mn

V2,n =
1

Mnn2

n−1∑
h1,h2=−(n−1)

w

(
h1
Mn

)
w

(
h2
Mn

) n−|h1|∑
t=1

n−|h2|∑
z,s=1

Cov
((
X2
t − µ2

) (
X2
t+|h1| − µ2

)
,

(Xz − µ)
(
Xz+|h2| − µ

)
(Xs − µ)

(
Xs+|h2| − µ

))
. (2.47)

Using the notation

Cum
(
X2
t , X

2
r , Xz, Xg

)
≡ cumX,X2 (r − t, z − t, g − t) ,

we get from Lemma 2.7.1 that

∞∑
t,r,z,g=−∞

|cumX,X2 (r − t, z − t, g − t)| <∞.

To bound (2.47) we evaluate the expectation E

(
6∏
i=1

Zi

)
of the random variables Zi

with E (Zi) = 0, i = 1, 2, ..., 6, using all possible decompositions in products of triples
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E (ZiZjZk)E (ZlZmZn), of quadriples and pairs E (ZiZjZkZl) E (ZmZn), and of pairs

E (ZiZj)E (ZkZl)E (ZmZn) for indices i, j, k, l,m, n ∈ {1, 2, ..., 6} and the cumulant

term Cum (Z1, Z2, Z3, Z4, Z5, Z6). Evaluating the expansion term in (2.47) in that

way, it follows by similar arguments that all terms have at least order O(1/Mn). For

instance, the term

1

Mnn2

n−1∑
h1,h2=−(n−1)

w

(
h1
Mn

)
w

(
h2
Mn

) n−|h1|∑
t=1

n−|h2|∑
z,s=1

γX (h2)Cum
(
X2
t , X

2
t+|h1|, Xs, Xs+|h1|

)
,

appearing in the evaluation of the expectation term in (2.47) is bounded in absolute

value by

1

Mn

sup
−1≤x≤1

w2(x)
∞∑

g=−∞

|γX (g)|
∞∑

r,b,z,h=−∞

|cumX,X2 (r, b, z, h)| = O

(
1

Mn

)
.

Finally, to see (2.38), notice that

Cov (γ̃2
X (h1) , γ̃2

X (h2))

= Cov
({ 1

n

n−|h1|∑
t=1

(Xt − µ)
(
Xt+|h1| − µ

)}2

,
{ 1

n

n−|h2|∑
z=1

(Xz − µ)
(
Xz+|h2| − µ

)}2)
=

1

n4

n−|h1|∑
t,s=1

n−|h2|∑
z,q=1

Cov
(

(Xt − µ)
(
Xt+|h1| − µ

)
(Xs − µ)

(
Xs+|h1| − µ

)
,

(Xz − µ)
(
Xz+|h2| − µ

)
(Xq − µ)

(
Xq+|h2| − µ

))
.

Thus,

n

Mn

V3,n =
1

Mnn3

n−1∑
h1,h2=−(n−1)

w

(
h1
Mn

)
w

(
h2
Mn

) n−|h1|∑
t,s=1

n−|h2|∑
z,q=1

Cov
(

(Xt − µ)
(
Xt+|h1| − µ

)
(Xs − µ)

(
Xs+|h1| − µ

)
, (Xz − µ)

(
Xz+|h2| − µ

)
(Xq − µ)

(
Xq+|h2| − µ

))
.

(2.48)

To bound (2.48) we evaluate the expectation E

(
8∏
i=1

Zi

)
of the random variables Zi

with E (Zi) = 0, i = 1, 2, ..., 8, using all possible decompositions in products of

E (ZiZjZkZh)E (ZlZmZnZr) ,

E (ZiZjZkZhZlZm)E (ZnZr) ,

E (ZlZmZnZr)E (ZiZj)E (ZkZh) ,

E (ZiZjZkZhZl)E (ZmZnZr) ,

E (ZiZjZk)E (ZmZnZr)E (ZhZl) ,
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E (ZiZj)E (ZkZh)E (ZlZm)E (ZnZr) ,

for indices i, j, k, l,m, n, r, h ∈ {1, 2, ..., 8} and the cumulant term Cum (Z1, Z2, Z3, Z4,

Z5, Z6, Z7, Z8). Evaluating the expansion term in (2.48) in that way, it follows by

similar arguments that all terms have at least order O(1/Mn). For instance, consider

the case where product of four autocovariances appears

1

Mnn3

n−1∑
h1,h2=−(n−1)

w

(
h1
Mn

)
w

(
h2
Mn

)
(n− |h2|)

n−|h1|∑
t,s=1

n−|h2|∑
z=1

γX (h2)γX (t− z + |h1|)

× γX (t− s− |h1|) γX (s− z − |h2|) .

The above expression is bounded in absolute value by

1

Mn

sup
−1≤x≤1

w2(x)
( ∞∑
r=−∞

|γX (r)|
)4

= O

(
1

Mn

)
.

Thus, from (2.36), (2.37) and (2.38) we get that

n

Mn

V ar(Ñn) = 2
( ∞∑
u=−∞

γ2,X (u)
)2 1∫
−1

w2 (x) dx+O

(
1

Mn

)
.

Lemma 2.7.2 (ii) and equation (2.29) imply then that

n

Mn

V ar (η̆4,ε) =
8π2f 2

X2 (0)

γ4X (0)

1∫
−1

w2 (x) dx+O

(
1√
Mn

+
Mn

n

)
,

from which assertion (ii) of the theorem follows since

∞∑
h=−∞

γ2,X(h) = η4,εγ
2
X(0) + 2

∞∑
h=−∞

γ2X(h); see (2.3).

(iii) Notice that because√
n

Mn

(Ñn−E(Ñn)) =

√
n

Mn

(n−1)∑
h=−(n−1)

w

(
h

Mn

)
(γ̃2,X (h)− E (γ̃2,X (h)))+OP

(
1√
Mn

)
,

(2.49)

it suffices to consider the limiting distribution of the first term on the right hand-side

of (2.49) only. We have√
n

Mn

(n−1)∑
h=−(n−1)

w

(
h

Mn

)
(γ̃2,X(h)− E(γ̃2,X(h)))

= 2

√
n

Mn

Mn∑
h=1

w

(
h

Mn

)
1

n

n∑
t=1

{UtUt+h − E (UtUt+h)}+ oP (1)

= Wn + oP (1) (say),

54

Mari
a F

rag
ke

sk
ou



where

Ut = X2
t − µ2 =

∞∑
j1,j2=−∞

ψj1ψj2εt−j1εt−j2 − σ2
ε

∞∑
j=−∞

ψ2
j .

Write

Ut = Ut,L + Vt,L,

where

Ut,L =
L∑

j1,j2=−L

ψj1ψj2εt−j1εt−j2 − σ2
ε

L∑
j=−L

ψ2
j ,

and

Vt,L =
∑

|j1|,|j2|>L

ψj1ψj2εt−j1εt−j2 − σ2
ε

∑
|j|>L

ψ2
j + 2

∑
−L≤j1≤L,|j2|>L

ψj1ψj2εt−j1εt−j2 .

Notice that Ut,L depends only on a finite number of the i.i.d. innovations εt’s. Let

Wn,L = 2

√
n

Mn

Mn∑
h=1

w

(
h

Mn

)
1

n

n∑
t=1

{Ut,LUt+h,L − E (Ut,LUt+h,L)}.

In order to show that

Wn
D→N

(
0, 8π2f 2

X2 (0)

∫ 1

−1
w2 (x) dx

)
as n→∞,

it suffices by Proposition 6.3.9 of Brockwell and Davis (1991), to show that

(a) Wn,L
D→

n→∞
YL for all L, where

YL ∼ N
(

0, 8π2f 2
X2

L
(0)

∫ 1

−1
w2(x)dx

)
,

fX2
L

is the spectral density of the process X2
L = {X2

t,L, t ∈ Z} and X2
t,L =

(
∑L

j=−L ψjεt−j)
2.

(b) YL
D→Y as L→∞ where

Y ∼ N
(

0, 8π2f 2
X2 (0)

1∫
−1

w2 (x) dx
)
,

(c) limL→∞ lim supn→∞ P (|Wn −Wn,L| > ε) = 0 for every ε > 0.

To establish (a) notice that E (Wn,L) = 0, while

V ar (Wn,L) = 8π2f 2
X2

L
(0)

∫ 1

−1
w2 (x) +O

(
1

Mn

)
.
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Write,

Wn,L =
1√
n

n∑
t=1

Zt,L,

where

Zt,L = 2
1√
Mn

Mn∑
h=1

w

(
h

Mn

)
{Ut,LUt+h,L − E (Ut,LUt+h,L)}.

Let {Qn} be a sequence of integers such that (Mn + 2L) /Qn → 0 and Qn/n → 0 as

n→∞. Furthermore, let

Qn =
[√

n (Mn + 2L)
]

and

Yj,n =
1√
Qn

{
Z(j−1)Qn+1,L + ...+ ZjQn−Mn−2L,L

}
, j = 1, 2, ..., [n/Qn] .

Observe that Y1,n, Y2,n, ..., Y[n/Qn],n are i.i.d. and that

1√
n

n∑
t=1

Zt,L −
1√

[n/Qn]

[n/Qn]∑
j=1

Yj,n = oP (1) .

Thus, it suffices to consider the asymptotic distribution of

1√
[n/Qn]

[n/Qn]∑
j=1

Yj,n.

Moreover,

E
(
Yj,n

4
)

=
1

Q2
n

Qn−Mn∑
t,s,r,q=1

E (ZtZsZrZq), (2.50)

where

E (ZtZsZrZq) =



E
(
Z4

t

)
, if t = s = r = q,

E
(
Z2

t
Z2

s

)
, if t = r 6= s = q or t = s 6= r = q or t = q 6= s = r,

E
(
Z2

t
ZsZr

)
, if two indices are same, different with the other two indices

which are different with each other

E
(
Z3

t
Zs

)
, if t = r = q 6= s or s = r = q 6= t or t = s = q 6= r or t = r = s 6= q,

E (ZtZsZrZq), if all indices are different.

We proceed by evaluating the expectation term E (ZtZsZrZq). Now, consider for

instance, the case where t = s = r = q. Then,
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E
(
Yj,n

4
)

=
1

Q2
n

Qn−Mn∑
t=1

E
(
Z4

t

)
=

24

M2
nQ

2
n

Mn∑
h1,h2,h3,h4=1

w

(
h1
Mn

)
w

(
h2
Mn

)
w

(
h3
Mn

)
w

(
h4
Mn

)Qn−Mn∑
t=1

E

{
{
Ut,LUt+|h1|,L − E

(
Ut,LUt+|h1|,L

)}{
Ut,LUt+|h2|,L − E

(
Ut,LUt+|h2|,L

)}
×
{
Ut,LUt+|h3|,L − E

(
Ut,LUt+|h3|,L

)}{
Ut,LUt+|h4|,L − E

(
Ut,LUt+|h4|,L

)}}
.

The last expression above equals

24

M2
nQ

2
n

Mn∑
h1,h2,h3,h4=1

w

(
h1
Mn

)
w

(
h

Mn

)
w

(
h

Mn

)
w

(
h

Mn

)Qn−Mn∑
t=1

E(Wt,h1Wt,h2Wt,h3Wt,h4)

=
24

M2
nQ

2
n

Mn∑
h1,h2,h3,h4=1

w

(
h1
Mn

)
w

(
h2
Mn

)
w

(
h3
Mn

)
w

(
h4
Mn

)Qn−Mn∑
t=1{

E (Wt,h1Wt,h2)E (Wt,h3Wt,h4) + E (Wt,h1Wt,h3)E (Wt,h2Wt,h4)

+ E (Wt,h1Wt,h4)E (Wt,h2Wt,h3) + Cum (Wt,h1 ,Wt,h2 ,Wt,h3 ,Wt,h4)
}
, (2.51)

where Wt,h = Ut,LUt+|h|,L − E
(
Ut,LUt+|h|,L

)
. Denote by

cumU,L (h1, h2, h3) ≡ Cum (Ut,L, Ut+h1,L, Ut+h2,L, Ut+h3,L)

the fourth order joint cumulant of Ut,L, Ut+h1,L, Ut+h2,L and Ut+h3,L and let γU,L (h1) =

Cov (Ut,L, Ut+h1,L), be the autocovariance function of {Ut,L, t ∈ Z}. From Lemma 2.7.1

we get that
∞∑

h1=−∞

∞∑
h2=−∞

∞∑
h3=−∞

cumU,L (h1, h2, h3) <∞. (2.52)

The first term of (2.51) which refers to E (Wt,h1Wt,h2)E (Wt,h3Wt,h4) equals

24(Qn −Mn)

M2
nQ

2
n

Mn∑
h1,h2,h3,h4=1

w

(
h1
Mn

)
w

(
h2
Mn

)
w

(
h3
Mn

)
w

(
h4
Mn

){
{
γU,L (0)γU,L (|h2| − |h1|) + γU,L (h1) γU,L (h2) +cumU,L (|h1| , 0, |h2|)

}
×
{
γU,L (0) γU,L (|h4| − |h3|) + γU,L (h3) γU , L (h4) + cumU,L (|h3| , 0, |h4|)

}}
. (2.53)

To show that (2.53) converges to zero, consider for instance the term

24γ2
U,L

(0) (Qn −Mn)

M2
nQ

2
n

Mn∑
h1,h2=1

w

(
h1
Mn

)
w

(
h2
Mn

)
γU,L (|h2| − |h1|)

×
Mn∑

h3,h4=1

w

(
h3
Mn

)
w

(
h4
Mn

)
γU,L (|h4| − |h3|).
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The above expression is bounded in absolute value by

24γ2
U,L

(0) (Qn +Mn)

M2
nQ

2
n

Mn∑
h1,h2=1

|γU,L (|h2| − |h1|)|
Mn∑

h3,h4=1

|γU,L (|h4| − |h3|)|

=
24γ2

U,L
(0) (Qn +Mn)

Q2
n

(Mn−1)∑
r=−(Mn−1)

|γU,L (r)|φMn (r)

(Mn−1)∑
z=−(Mn−1)

|γU,L (z)|φMn (z) , (2.54)

where

MnφMn (r) =



Mn + r, r = −Mn, ..., 0

Mn, r = 0,

Mn − r, r = 0, ...,Mn,

0, elsewhere.

Note that for every r,

0 ≤ φMn (r) ≤ 1, and lim
n→∞

φMn (r) = 1.

Thus, equation (2.54), is bounded by

24γ2
U,L

(0) (Qn +Mn)

Q2
n

( ∞∑
r=−∞

|γU,L (r)|
)2
→ 0 as n→∞.

Consider next from (2.53), the term

24γ
U,L

(0)(Qn −Mn)

M2
nQ

2
n

Mn∑
h1,h2=1

w

(
h1
Mn

)
w

(
h2
Mn

)
γU,L (|h2| − |h1|)

×
Mn∑

h3,h4=1

w

(
h3
Mn

)
w

(
h4
Mn

)
cumU,L (|h3| , 0, |h4|) .

The above expression is bounded in absolute value by

24|γU,L (0)|(Qn +Mn)

M2
nQ

2
n

Mn∑
h1,h2=1

|γU,L (|h2| − |h1|)|
Mn∑

h3,h4=1

|cumU,L (|h3| , 0, |h4|)|

=
24|γU,L (0)|(Qn +Mn)

MnQ2
n

(Mn−1)∑
r=−(Mn−1)

|γU,L (r)|ϕMn (r)
Mn∑

h3,h4=1

|cumU,L (|h3| , 0, |h4|)|

≤ 24|γU,L (0)|(Qn +Mn)

MnQ2
n

∞∑
r=−∞

|γU,L (r)|
∞∑

h3,h4=−∞

|cumU,L (|h3| , 0, |h4|)|

→ 0 as n→∞.

By similar arguments it follows that all the other terms of (2.53) as well as the second

and the third term of (2.51) converge to zero as n → ∞. Finally, the fourth term of
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(2.51) is bounded by

24(Qn +Mn)

M2
nQ

2
n

Mn∑
h1,h2,h3,h4=1

∣∣Cum(Ut,LUt+|h1|,L, Ut,LUt+|h2|,L, Ut,LUt+|h3|,L, Ut,LUt+|h4|,L
∣∣,

which converges to zero as n → ∞ because of Lemma 2.7.1. Next, consider E
(
Yj,n

4
)

in (2.50), when all indices t, s, q and r are different. Using the same arguments as in

dealing with the case t = s = q = r we get

E
(
Yj,n

4
)

=
24

M2
nQ

2
n

Mn∑
h1,h2,h3,h4=1

w

(
h1
Mn

)
w

(
h2
Mn

)
w

(
h3
Mn

)
w

(
h4
Mn

) Qn−Mn∑
t,r,s,q=1{

E (Wt,h1Wr,h2)E (Ws,h3Wq,h4) + E (Wt,h1Wq,h3)E (Ws,h2Wr,h4)

+ E (Wt,h1Ws,h4)E (Wq,h2Wr,h3) + Cum (Wt,h1 ,Ws,h2 ,Wq,h3 ,Wr,h4)
}
.

(2.55)

The first term of (2.55) which refers to E (Wt,h1Wr,h2)E (Ws,h3Wq,h4) equals

24

M2
nQ

2
n

Mn∑
h1,h2,h3,h4=1

w

(
h1
Mn

)
w

(
h2
Mn

)
w

(
h3
Mn

)
w

(
h4
Mn

){
{
γU,L (r − t)γU,L (r − t+ |h2| − |h1|) + γU,L (r − t+ h1) γU,L (r − t+ h2)

+cumU,L (|h1| , r − t, r − t+ |h2|)
}

×
{
γU,L (s− q) γU,L (s− q + |h4| − |h3|) + γU,L (s− q + h3) γU,L (s− q + h4)

+ cumU,L (|h3| , s− q, s− q + |h4|)
}}

, (2.56)

which is bounded. To see this, consider for instance the term

24

M2
nQ

2
n

Qn−Mn∑
t,s,r,q=1

γU,L (r − t) γU,L (s− q)
Mn∑

h1,h2=1

w

(
h1
Mn

)
w

(
h2
Mn

)
γU,L (r − t+ |h2| − |h1|)

×
Mn∑

h3,h4=1

w

(
h3
Mn

)
w

(
h4
Mn

)
γU,L (s− q + |h4| − |h3|).

The above expression is bounded in absolute value by

24

M2
nQ

2
n

Qn−Mn∑
t,s,r,q=1

|γU,L (r − t) ||γU,L (s− q) |
Mn∑

h1,h2=1

|γU,L (r − t+ |h2| − |h1|) |

×
Mn∑

h3,h4=1

|γU,L (s− q + |h4| − |h3|) |,
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which is equals to

24(Qn −Mn)2

Q2
n

(Qn−Mn−1)∑
l,m=−(Qn−Mn−1)

φQn−Mn (l)φQn−Mn (m) |γU,L (l) ||γU,L (m) |

×
(Mn−1)∑

h=−(Mn−1)

|γU,L (l + h) |
(Mn−1)∑

z=−(Mn−1)

|γU,L (m+ z) |

≤ 24(Qn −Mn)2

Q2
n

( ∞∑
h=−∞

|γU,L (h) |
)4

<∞.

By similar arguments and using relation (2.52) it follows that all other terms of (2.55)

as well as all terms of (2.56) are negligible. Thus, E
(
Y 4
1,n

)
is uniformly bounded in n,

which, by a verification of Lyapunov’s condition, implies that

1√
[n/Qn]

[n/Qn]∑
j=1

Yj,n

has a limiting Gaussian distribution, that is, as n→∞,

Wn,L =
1√
n

n∑
t=1

Zt,L
D→YL, where YL ∼ N

(
0, 8π2f 2

X2
L

(0)

∫ 1

−1
w2 (x) dx

)
.

To see assertion (b) notice first that

f 2
X2 (0)− f 2

X2
L

(0) =
( 1

2π

∞∑
h=−∞

γ2,X (h)
)2
−
( 1

2π

∞∑
h=−∞

γ2,XL
(h)
)2
,

where γ2,XL
is the autocovariance function of the process X2

L = {X2
t,L, t ∈ Z}. Using

a2 − b2 = (a− b)(a+ b) and since

∞∑
h=−∞

γ2,X (h) =
(
E
(
ε41
)
− 3σ4

ε

) ( ∞∑
j=−∞

ψ
2

j

)2
+ 2σ4

ε

∞∑
h=−∞

( ∞∑
j=−∞

ψjψj+h

)2
,

and

∞∑
h=−∞

γ2,XL
(h) =

(
E
(
ε41
)
− 3σ4

ε

) ( L∑
j=−L

ψ
2

j

)2
+ 2σ4

ε

∞∑
h=−∞

( L∑
j=−L

ψjψj+h

)2
,

we easily get ∣∣∣f 2
X2 (0)− f 2

X2
L

(0)
∣∣∣→ 0 as L→∞.

Consider assertion (c). Write

Wn −Wn,L = S1 + S2 + S3
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where

S1 =
2√
nMn

Mn∑
h=1

w

(
h

Mn

) n∑
t=1

{
Ut,LVt+h,L − E (Ut,LVt+h,L)

}
,

S2 =
2√
nMn

Mn∑
h=1

w

(
h

Mn

) n∑
t=1

{
Vt,LUt+h,L − E (Vt,LUt+h,L)

}
,

and

S3 =
2√
nMn

Mn∑
h=1

w

(
h

Mn

) n∑
t=1

{
Vt,LVt+h,L − E (Vt,LVt+h,L)

}
.

Straightforward calculations yield that the variances of the terms Si, i = 1, 2, 3, are of

order O
(∑

|j|>L |ψj|
)

uniformly in n. Since

E(Wn −Wn,L)2 ≤ 3 (V ar (S1) + V ar (S2) + V ar (S3)) ,

assertion (c) follows by Markov’s inequality.

To conclude the proof notice that√
n

Mn

(η̃4,ε − E(η̃4,ε)) =

√
n

Mn

1

γ2X(0)
(Ñn − E(Ñn)) + oP (1) ,

and, therefore, using Lemma 2.7.2 (iii) and the relation

8π2f 2
X2(0)

γ4X(0)
= 2
(
η4,ε + 2

∞∑
h=−∞

ρ2X(h)
)2
,

we get √
n

Mn

(η̆4,ε − E(η̆4,ε))
D→N

(
0, τ 2X

)
, as n→∞

where

τ 2X = 2
(
η4,ε + 2

∞∑
h=−∞

ρ2X(h)
)2 ∫ 1

−1
w2(x)dx.
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Let η̊4,ε be the same estimator as η̂4,ε with the estimated filtered observations Ût,p =

Xt −
∑p

j=1 âj,pXt−j , replaced by Ut,p = Xt −
∑p

j=1 aj,pXt−j, t = p+ 1, p+ 2, . . . , n. The

following lemma allows to approximate bias, variance and distribution of η̂4,ε using the

corresponding quantities of η̊4,ε.

Lemma 2.7.3. Suppose that Assumption 2.1 and Assumption 2.2 are satisfied and let

p ∈ N be fixed. Then, as n→∞

(i) E (η̂4,ε) = E (η̊4,ε) +O

(
Mn

n
+

1√
n

)
,

(ii)
n

Mn

V ar (η̂4,ε) =
n

Mn

V ar (η̊4,ε) +O

(
1√
Mn

+
Mn

n

)
,

(iii)

√
n

Mn

(η̂4,ε − E (η̂4,ε)) =

√
n

Mn

(η̊4,ε − E (η̊4,ε)) +OP

(√
Mn

n
+

1√
Mn

)
.

Proof:

Let “ ˜ ” refer to estimators based on the time series Ût,p, t = p+ 1, p+ 2, . . . , n using

the means E(Ût,p) and E(Û2
t,p), instead of the sample means Un and U2,n. Let also “

˚̃ ” refer to estimators based on the time series Ut,p, t = p + 1, p + 2, . . . , n using the

means E(Ut,p) and E(U2
t,p), while, “ ˚ ” to estimators based on the same time series

but using the sample means Un = (1/N)
∑N

t=1 Ut,p and U2,n = (1/N)
∑N

t=1 U
2
t,p. Notice

that

Ût,p = Ut,p +

p∑
j=1

(aj,p − âj,p)Xt−j. (2.57)

Since for fixed p, E(aj,p − âj,p)2 = OP (1/n), Cauchy-Schwartz’s inequality yields,

uniformly in h,
p∑
j=1

(aj,p − âj,p)Xt+|h|−j = OP

(
1√
n

)
. (2.58)

To show assertion (i), observe first that

Mn∑
h=−Mn

w

(
h

Mn

)
E(γ̃2,U (h)− 2γ̃2U (h)) =

Mn∑
h=−Mn

w

(
h

Mn

)
E (̊γ̃2,U (h)− 2̊γ̃

2

U (h))

+O

(
Mn

n

)
.

The above equation follows after straightforward calculations using relations (2.57),

(2.58) and applying Cauchy-Schwartz’s inequality. Using the same arguments as in the
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proof of Lemma 2.7.2 (i), it follows that,

Mn∑
h=−Mn

w

(
h

Mn

)
E(γ̂2,U (h)− 2γ̂2U (h)) =

Mn∑
h=−Mn

w

(
h

Mn

)
E(γ̃2,U (h)− 2γ̃2U (h)) +O

(
Mn

N

)
(2.59)

and

Mn∑
h=−Mn

w

(
h

Mn

)
E(̊γ̃2,U (h)− 2̊γ̃

2

U (h)) =

Mn∑
h=−Mn

w

(
h

Mn

)
E(̊γ2,U (h)− 2̊γ2U (h)) +O

(
Mn

N

)
.

The above relations and a Taylor series argument; see equation (2.25) yield assertion

(i).

To prove assertion (ii) we first show that

n

Mn

V ar
( Mn∑
h=−Mn

w

(
h

Mn

)
(γ̃2,U (h)− 2γ̃2U (h))

)
=

n

Mn

V ar
( Mn∑
h=−Mn

w

(
h

Mn

)
(̊γ̃2,U (h)− 2̊γ̃

2

U (h))
)

+O

(
1√
n

)
. (2.60)

Equation (2.60) follows because, by straightforward calculations using Cauchy-Schwartz’s

inequality and relations (2.57) and (2.58) we get

n

Mn

Mn∑
h1,h2=−Mn

w

(
h1
Mn

)
w

(
h1
Mn

)
Cov(γ̃2U (h1) , γ̃

2
U (h2))

=
n

Mn

Mn∑
h1,h2=−Mn

w

(
h1
Mn

)
w

(
h2
Mn

)
Cov(̊γ̃

2

U (h1) ,˚̃γ
2

U (h2)) +O

(
1

n3/2Mn

)
,

n

Mn

Mn∑
h1,h2=−Mn

w

(
h1
Mn

)
w

(
h1
Mn

)
Cov(γ̃2,U (h1) , γ̃2,U (h2))

=
n

Mn

Mn∑
h1,h2=−Mn

w

(
h1
Mn

)
w

(
h2
Mn

)
Cov(̊γ̃2,U (h1) ,˚̃γ2,U (h2)) +O

(
1√
n

)
and

n

Mn

Mn∑
h1,h2=−Mn

w

(
h1
Mn

)
w

(
h1
Mn

)
Cov(γ̃2,U (h1) , γ̃

2
U (h2))

=
n

Mn

Mn∑
h1,h2=−Mn

w

(
h1
Mn

)
w

(
h2
Mn

)
Cov(̊γ̃2,U (h1) ,˚̃γ

2

U (h2)) +O

(
1

n

)
.

Furthermore, using the same arguments as in the proof of Lemma 2.7.2 (ii) it follows

that
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V ar
( Mn∑
h=−Mn

w

(
h

Mn

)
(γ̂2,U (h)− 2γ̂2U (h))

)
= V ar

( Mn∑
h=−Mn

w

(
h

Mn

)
(γ̃2,U (h)− 2γ̃2U (h))

)
+O

(
M2

n

N2

)
(2.61)

and

V ar
( Mn∑
h=−Mn

w

(
h

Mn

)
(̊γ̃2,U (h)− 2̊γ̃

2

U (h))
)

= V ar
( Mn∑
h=−Mn

w

(
h

Mn

)
(̊γ2,U (h)− 2̊γ2U (h))

)
+O

(
M2

n

N2

)
.

The above two relations, equation (2.60) and a Taylor series argument yield assertion

(ii).

Assertion (iii) follows using assertion (i) and

Mn∑
h=−Mn

w

(
h

Mn

)(
γ̂2,U (h)− 2γ̂2U (h)

)
=

Mn∑
h=−Mn

w

(
h

Mn

) (̊
γ2,U (h)− 2̊γ2U (h)

)
+OP

(
Mn

n

)
.

Proof of Theorem 2.3.1:

Follows from Lemma 2.7.2 and Lemma 2.7.3 applied to η̊4,ε and exactly along the

same lines as the proof of Theorem 2.2.1.
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Proof of Theorem 2.4.1:

(i) It suffices to show that p0 ∈ N exists such that for all p ≥ p0,

∞∑
h=1

ρ2U (h) ≤
∞∑
h=1

ρ2X (h),

or equivalently, that for every ε > 0, p0 = p(ε,X) exists, such that for all p ≥ p0,

∞∑
h=1

ρ2U (h) < ε.

Using the AR-representation (2.8), we get

Ut,p =

p∑
j=1

(aj − aj,p)Xt−j +
∞∑

j=p+1

ajXt−j + vt. (2.62)

Thus,

∞∑
h=1

γ2U (h) =
∞∑
h=1

{
p∑

j,r=1

(aj − aj,p)(ar − ar,p)γX (h+ j − r)

+

p∑
j=1

∞∑
r=p+1

(aj − aj,p)arγX (h+ j − r)

+
∞∑

j=p+1

p∑
r=1

aj(ar − ar,p)γX (h+ j − r) +
∞∑

j,r=p+1

ajarγX (h+ j − r)

+

p∑
r=1

(ar − ar,p)Cov (vt, Xt−r+h) +
∞∑

r=p+1

arCov (vt, Xt−r+h)

+

p∑
j=1

(aj − aj,p)Cov (vt+h, Xt−j) +
∞∑

j=p+1

ajCov (vt+h, Xt−j)

}2

, (2.63)

where

Cov (vt+h, Xt−j) = γX (h+ j)−
∞∑
j1=1

aj1γX (h+ j − j1)

and

Cov (vt, Xt−r+h) = γX (h− r)−
∞∑
j1=1

aj1γX (h+ j1 − r).

Bounding the differences |aj,p − aj| by Baxter’s inequality

p∑
j=0

|aj,p − aj| ≤ C
∞∑

j=p+1

|aj|, (2.64)

where C > 0 is a constant independent of p, see Lemma 2.2 of Kreiss et al. (2011), and

using the summability of the autocovariances and of the coefficients |aj|, it follows that
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all eight terms on the right hand side of (2.63) can be made arbitrary small. Consider

for instance, the term

∞∑
h=1

{ p∑
j,r=1

(aj − aj,p)(ar − ar,p)γX (h+ j − r)
}2

,

which is bounded by

( p∑
j,r=1

|aj − aj,p||ar − ar,p|
)2 ∞∑

h=−∞

γ2X (h). (2.65)

Using (2.64) there exists p(1) ∈ N and C1 > 0 (independent of p(1)) such that for all

p ≥ p(1), (2.65) is less or equal to

C1

( ∞∑
r=p+1

|ar|
)4 ∞∑

h=−∞

γ2X (h) <
εσ4

ε

8
.

Similar arguments can be applied to the other seven terms on the right-hand side

of (2.63) showing that p(i), i = 2, 3, . . . , 8 exist such that each one of the corre-

sponding terms can be made arbitrary small, i.e., less than εσ4
ε/8. Choosing p0 =

max
{
p(1), p(2), ..., p(8)

}
, we get that

∞∑
h=1

γ2U (h) < εσ4
ε .

The assertion follows then since

∞∑
h=1

ρ2U (h) =
1

γ2U (0)

∞∑
h=1

γ2U (h) <
εσ4

ε

γ2U (0)
≤ εσ4

ε

σ4
ε

= ε.

(ii) From Theorem 2.1 of Hannan and Kavalieris (1986), we obtain under the assump-

tions made, that

max
1≤j≤p

|aj,p − âj,p| = OP

(√ log(n)

n

)
,

and, therefore,
p∑
j=1

(aj,p − âj,p)Xt+|h|−j = OP

(
p

√
log(n)

n
). (2.66)

We first prove that

n

Mn

V ar
( Mn∑
h=−Mn

w

(
h

Mn

)
(γ̃2,U (h)− 2γ̃2U (h))

)
=

n

Mn

V ar
( Mn∑
h=−Mn

w

(
h

Mn

)
(̊γ̃2,U (h)− 2̊γ̃

2

U (h))
)

+O
(p√n log(n)

N

)
. (2.67)
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Equation (2.67) follows using the relations

n

Mn

Mn∑
h1,h2=−Mn

w

(
h1
Mn

)
w

(
h2
Mn

)
Cov(γ̃2U (h1) , γ̃

2
U (h2))

=
n

Mn

Mn∑
h1,h2=−Mn

w

(
h1
Mn

)
w

(
h2
Mn

)
Cov(̊γ̃

2

U (h1) ,˚̃γ
2

U (h2)) +O
(p√n log(n)

MnN2

)
,

n

Mn

Mn∑
h1,h2=−Mn

w

(
h1
Mn

)
w

(
h2
Mn

)
Cov(γ̃2,U (h1) , γ̃2,U (h2))

=
n

Mn

Mn∑
h1,h2=−Mn

w

(
h1
Mn

)
w

(
h2
Mn

)
Cov(̊γ̃2,U (h1) ,˚̃γ2,U (h2)) +O

(p√n log(n)

N

)
and

n

Mn

Mn∑
h1,h2=−Mn

w

(
h1
Mn

)
w

(
h2
Mn

)
Cov(γ̃2,U (h1) , γ̃

2
U (h2))

=
n

Mn

Mn∑
h1,h2=−Mn

w

(
h1
Mn

)
w

(
h2
Mn

)
Cov(̊γ̃2,U (h1) ,˚̃γ

2

U (h2)) +O
(p√n log(n)

N3/2

)
,

where the above assertions can be verified using Cauchy-Scwartz’s inequality and equa-

tions (2.57) and (2.66). Using equations (2.61) and (2.67) and a Taylor series argument;

see equation (2.25), we get

n

Mn

V ar (η̂4,ε) =
n

Mn

1

γ4U (0)
V ar

( Mn∑
h=−Mn

w

(
h

Mn

)
(̊γ̃2,U (h)− 2̊γ̃

2

U (h))
)

+O
(p√n log(n)

N

)
.

Next, by the same arguments as in the proof of Theorem 2.2.1(ii), we obtain

n

Mn

V ar (η̂4,ε) = 2
(
η4,ε + 2

m∑
h=−m

ρ2U (h)
)2 1

Mn

Mn∑
r=−Mn

w2

(
r

Mn

)
+O

(p√n log(n)

N

)
,

where m ≤Mn is an integer. Furthermore, since
∑∞

h=1 γ
2
U (h)→ 0 as p→∞, we get

m∑
h=−m

ρ2U (h) ≤ 2
∞∑
h=1

ρ2U (h) + 1 ≤ 2

σ4
ε

∞∑
h=1

γ2U (h) + 1→ 1, as p→∞,

and, therefore,

n

Mn

V ar (η̂4,ε)→ 2(η4,ε + 2)2
∫ 1

−1
w2 (x) dx.
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Proof of Theorem 2.4.2:

(i) It suffices to show that p0 ∈ N exists such that for all p ≥ p0,∣∣∣2πf ′′
Ũ

(0)
∣∣∣

γ2U (0)
≤

∣∣∣2πf ′′
X̃

(0)
∣∣∣

γ2X (0)
,

or equivalently, that for every ε > 0, p0 = p(ε,X) exists such that for all p ≥ p0,∣∣∣2πf ′′
Ũ

(0)
∣∣∣

γ2U (0)
< ε.

Notice that

2π
∣∣f ′′
Ũ

(0)
∣∣ = σ2

ε

∞∑
h=−∞

∞∑
l=−∞

h2c2l,pc
2
l+h,p

≤ σ2
ε

( ∞∑
l=−∞

|cl,p|
∞∑

h=−∞

|h||cl+h,p|
)2

≤ σ2
ε

( ∞∑
h=−∞

|h||ch,p|
)4
.

Thus it suffices to show that for every δ > 0, p0(δ,X) exists such that for all p ≥ p0,

∞∑
h=−∞

|h||ch,p| < δ.

Recall that the coefficients ch,p are those appearing in the power series

Cp(z) =
∞∑

h=−∞

ch,pz
h, z ∈ C,

where

Cp(z) = Ap(z)Ψ (z) , Ap(z) = 1−
p∑

h=1

ah,pz
h and Ψ (z) =

∞∑
h=0

ψhz
h,

that is,

ch,p =


ψh −

min{h,p}∑
k=1

ak,pψh−k , h ≥ 0,

0, h < 0,

where ψ0 = 1. Furthermore, for

A(z) = 1−
∞∑
h=1

ahz
h

we have by Assumption 2.4, that

A(z) = Ψ−1(z), and ψh −
∑∞

k=1
akψh−k = 0, for h 6= 0.
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From the above we get

∞∑
h=1

|h| |ch,p| =
∞∑
h=1

|h|
∣∣∣∣∑min{h,p}

k=1
(ak − ak,p)ψh−k +

∑∞

k=min{h,p}+1
akψh−k

∣∣∣∣ . (2.68)

By Baxter’s inequality, see (2.64), there exists p0 ∈ N and C1 > 0 (independent of p0)

such that for all p ≥ p0, (2.68) is less or equal to

C1

∞∑
h=1

|h|
∑∞

k=min{h,p}+1
|ak| |ψh−k| < δ.

Thus, for δ = σ
1/2
ε ε1/4 we have that

2π
∣∣f ′′
Ũ

(0)
∣∣ < σ4

εε,

and, therefore,
2π|f ′′

Ũ
(0)|

γ2U (0)
<

εσ4
ε

γ2U (0)
≤ εσ4

ε

σ4
ε

= ε.

(ii) First, we show

Mn∑
h=−Mn

w

(
h

Mn

)
E(γ̂2,U (h)− 2γ̂2U (h)) =

Mn∑
h=−Mn

w

(
h

Mn

)
E (̊γ̃2,U (h)− 2̊γ̃

2

U (h))

+O
(p√log(n)√

nN

)
. (2.69)

Equation (2.69) follows from equation (2.59) and because

Mn∑
h=−Mn

w

(
h

Mn

)
E(γ̃2,U (h)− 2γ̃2U (h)) =

Mn∑
h=−Mn

w

(
h

Mn

)
E (̊γ̃2,U (h)− 2̊γ̃

2

U (h))

+O
(p√log(n)√

nN

)
.

Let,

η̂4,ε =
κ̂4,ε
γ̂2U (0)

where κ̂4,ε =
Mn∑

h=−Mn

w

(
h

Mn

)
(γ̂2,U (h)− 2γ̂2U (h)).

Using the same arguments as in the proof of Theorem 2.2.1(i) we get

M2
n[E(κ̂4,ε)− κ4,ε] = −Cw

∞∑
h=−∞

h2[γ2,U(h)− 2γ2U(h)] +O

(
M2

n√
N
p

√
log(n)

n

)
.

Recall that under Assumption 2.4, relation (2.62) is true with the vt’s replaced by the

i.i.d. innovations εt. Straightforward calculations yield then

∞∑
h=−∞

h2[γ2,U(h)− 2γ2U(h)] = o(1),
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and, consequently,

M2
n[E(κ̂4,ε)− κ4,ε]→ 0.

Finally, using

γ2U (0)− γ2ε (0) = o(1),

and a Taylor series argument we get, under the assumptions made, that

M2
n(E (η̂4,ε)− η4,ε) =

M2
n

γ2ε (0)
{E (κ̂4,ε)− κ4,ε}+O

(
M2

n

N
+
M2

n√
N
p

√
log(n)

n

)
→ 0,

which concludes the proof.
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Chapter 3

Extending the Range of Validity of

the Autoregressive (Sieve)

Bootstrap

3.1 Introduction

The aim of this chapter is twofold. First, for linear processes X, we extend the range

of validity of the AR-sieve bootstrap to important classes of statistics which include,

for instance, sample autocovariances. This is achieved by appropriately modifying the

way the pseudo-innovations used in this bootstrap algorithm are generated. Using some

recent developments in nonparametric estimation of the fourth order moments of the

(unobserved) i.i.d. innovations εt driving the linear process (1.8), described in Chapter

2, we propose an AR-sieve bootstrap procedure where the pseudo-innovations are not

obtained by i.i.d. resampling from the empirical distribution of the estimated residuals

but from some appropriate three point distribution. This three point distribution,

delivers i.i.d. pseudo-innovations which imitate asymptotically correct also the rescaled

fourth order moment cumulant of the true innovations εt, a quantity which is important

for some statistics belonging to the class (1.7). We call this procedure the AR-sieve

bootstrap with i.i.d. wild innovations and we show that, for the linear process class

(1.8), this modification extends the range of validity of the AR-sieve to important
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statistics belonging to the class (1.7) and for which the classical AR-sieve fails.

However, for general processes and due to the retained i.i.d. structure of the gener-

ated pseudo-innovations, the range of validity of the modified AR-sieve bootstrap for

the class (1.7) is essentially restricted to statistics that only depend on the second order

structure of the process. To overcome this limitation we propose a new version of the

AR-bootstrap. This version works by fitting an autoregressive model of order p, not

to the observed time series X1, X2, . . . , Xn itself, but to the time series of transformed

random variables Y1, Y2, . . . , Yn−m+1, where Yt is given by

Yt = g(Xt, Xt+1, . . . , Xt+m−1);

see expression (1.7). New pseudo-time series Y ∗1 , Y
∗
2 , . . . , Y

∗
n−m+1 are generated using

this autoregressive fit and pseudo-innovations obtained by means of a dependent wild

bootstrap procedure, Shao (2010), applied to the estimated residuals

V̂t,p = Yt −
p∑
j=1

b̂j,pYt−j, t = p+ 1, p+ 2, ..., n−m+ 1.

Since the dependent wild bootstrap appropriately mimics the dependence structure of

the filtered process

Vt,p = Yt −
p∑
j=1

bj,pYt−j,

the autoregressive order p used in the autoregressive fit does not need to increase to

infinity with n, in order for this bootstrap procedure to capture the entire autocovari-

ance structure of the transformed process Y = {Yt, t ∈ Z}. Notice that for general

nonlinear functions g(·), like those in (1.7), it is in general not easy to derive properties

of the spectral density of the transformed process Y based on properties of the process

X. In other words, it is not clear under what circumstances an autoregressive repre-

sentation like (1.6) exists for the transformed process Y. This makes the application

of an AR-sieve bootstrap procedure to Y difficult to justify theoretically. However,

fitting a fixed, pth-order linear autoregression, is always possible, provided that

p < n−m, V ar(Yt) > 0 and Cov(Yt, Yt+h)→ 0, as h→∞;

see Brockwell and Davis (1991), Proposition 5.1.1. The later requirement is, however,

satisfied by the conditions imposed on Tn in order for this statistic to have a proper
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limiting distribution; see Subsection 3.2.1. We show that the proposed AR-bootstrap

with dependent wild innovations, is asymptotically valid for a wide range of weakly

dependent processes and for the entire class of statistics (1.7). This asymptotic validity

coincides with a good finite sample behavior, which is demonstrated by means of several

numerical simulations. In these simulations, comparisons to some alternative bootstrap

methods are also given. Notice that although the last discussed version of the AR-

bootstrap applied to the transformed process Y is also valid for the cases for which the

modified AR-sieve with i.i.d. wild innovations works, the later bootstrap procedure

retains its attractivity due to its potential efficiency in cases where the underlying

process is indeed linear. This justifies the consideration of both bootstrap modifications

in this chapter.

There are many applications of the AR, respectively, of the AR-sieve bootstrap, in

the econometric time series literature which use wild bootstrap procedures to generate

the pseudo-innovations. These applications concerns mostly the case of (stationary or

non-stationary) autoregressive processes (of finite or infinite order) with heteroskedastic

innovations or innovations having infinite variance; see among others Hansen (2000),

Goncalves and Kilian (2004), Concalves and Kilian (2007) and Cavaliere et al. (2013).

However, the situation considered in this chapter is different. We do not deal with non-

stationary or heteroscedastic processes and our wild bootstrap proposals are concerned

with the limitations of the AR-sieve bootstrap caused by the fact that the standard

resampling procedures applied to generate the pseudo-innovations do not correctly

mimic the rescaled fourth order cumulant of the true innovations (in the linear process

case) or the fourth order moment structure of the process (in the general process case).

These limitations turn out to be important for many statistics of interest, like for

instance those described by the class (1.7). Our proposals resolve the problems caused

by these limitations and considerably extend the range of validity of autoregressive

bootstrap procedures. Furthermore, for general processes, our bootstrap consistency

results are established under quite minimal assumptions on the underlying process

requiring essentially summability of second and fourth order cumulants, and therefore,

avoiding mixing or any other type of weak dependence conditions.
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The remaining of the chapter is organized as follows. In Section 3.2 the basic as-

sumptions needed as well as a precise description of the modified AR-sieve bootstrap

procedure are given. Validity of the modified AR-sieve procedure driven by appropri-

ately i.i.d. wild generated innovations is then established. Section 3.3 describes the

AR-bootstrap proposal applied to the transformed process Y and driven by dependent

wild pseudo-innovations. It establishes the asymptotic validity of this bootstrap pro-

cedure for the entire class of statistics (1.7) and under quite general weak dependence

assumptions on the underlying process X. A fully data driven procedure to select the

parameters involved in both bootstrap procedures is described in Section 3.4. Exten-

sive simulations are also presented in this section which investigate the finite sample

behavior of both methods and compare their performances with that of the classical

AR-sieve and of the block bootstrap. All technical proofs are deferred to Section 3.5 .

3.2 Autoregressive Sieve Bootstrap with i.i.d. Wild

Innovations

3.2.1 Assumptions and preliminaries

Throughout this section we assume that the underlying process X is linear, that is, Xt

is generated as in (1.8). Moreover, the following assumption is made.

Assumption 3.1. The power series

Ψ(z) =
∞∑

j=−∞

ψjz
j, z ∈ C,

satisfies Ψ(z) 6= 0 for |z| = 1. The coefficients ψj fulfill the condition

∞∑
j=−∞

|j||ψj| <∞

and the i.i.d. innovations in (1.8) have finite fourth moments, i.e., Eε4t <∞.

Notice that Assumption 3.1 implies that the linear process X is strictly stationary

with mean zero and autocovariance function

γX(h) = E(XtXt+h), h ∈ Z.
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Furthermore,
∞∑
h=1

h|γX(h)| <∞,

and a spectral density

fX(ω) =
1

2π

∞∑
h=−∞

γX(h)e−ihω

of X exists, is differentiable and bounded away from zero everywhere in the interval

[0, π]. The linear process considered obeys, therefore, the autoregressive representation

(1.6), where the white noise sequence {et} appearing in this representation is not

necessarily identical to the sequence of i.i.d. innovations {εt} appearing in (1.8).

To illustrate the last point, consider as an example the simple linear process

Xt = εt + θεt−1 with θ > 1.

With the help of the backshift operator L we can express Xt as

Xt = (1 + θL)εt

= (1 + θL)(1 + θ−1L)(1 + θ−1L)−1εt

= (1 + θ−1L)et,

where

et = (1 + θL)(1 + θ−1L)−1εt = εt +
∞∑
j=1

djεt−j, with dj = (1− θ2)(−θ)−j.

Notice that {et, t ∈ Z} is a white noise process, that is, E (etet+h) = 0 ∀ h ≥ 1. This

is easily seen, since ∀ h ≥ 1,

E (etet+h) = E (εtεt+h) +
∞∑
j=1

djE (εtεt+h−j) +
∞∑
j=1

djE (εt+hεt−j) +
∞∑

j,r=1

djdrE (εt−jεt+h−r)

= σ2
εdh + σ2

ε

∞∑
j=1

djdj+h

= σ2
ε

(
1− ϑ2

)(
−1

θ

)h
+ σ2

ε

(
1− ϑ2

)2(−1

θ

)h ∞∑
j=1

(
−1

θ

)2j

= 0.

Thus, Xt obeys the AR-representation

Xt =
∞∑
j=1

ajXt−j + et where aj = −(−1/θ)j, j = 1, 2, . . . .
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Furthermore, for θ = 2 it is easily seen that

σ2
e = 4σ2

ε and η4,e =
2

5
η4,ε,

where σ2
e = E(e2t ), σ

2
ε = E(ε2t ), are the variances and η4,e = Ee4t/σ

4
e − 3 and η4,ε =

Eε4t/σ
4
ε − 3, are the rescaled fourth order cumulants of the innovations et and εt,

respectively.

Recall from Chapter 2 that fitting an autoregressive model of order p to X by means

of minimizing the mean square error

E(Xt −
p∑
j=1

βjXt−j)
2

with respect to β1, β2, ..., βp, leads to the uniquely determined coefficients ap = (a1,p, a2,p, . . . ,

ap,p)
> given by

ap = Γ−1p γp,

where

Γp = (γX(i− j))i,j=1,2,...,p and γp = (γX(j), j = 1, 2, . . . , p)>.

Notice that under Assumption 3.1, the matrix Γp is invertible for every p ∈ N; cf.

Proposition 5.1.1 of Brockwell and Davis (1991). Suppose we have estimators âp =

(âj,p, j = 1, 2, . . . , p)> of ap and define the estimated residuals

êt,p = Xt −
p∑
j=1

âj,pXt−j, t = p+ 1, p+ 2, ..., n. (3.1)

âp could be for instance the Yule-Walker estimator which is obtained by replacing

γX(h) in ap = Γ−1p γp by the sample autocovariances γ̂X(h), 0 ≤ h ≤ p, given by

γ̂X(h) =
1

n

n−|h|∑
t=1

(Xt −Xn)(Xt+|h| −Xn), Xn =
1

n

n∑
t=1

Xt. (3.2)

Since we do not restrict our considerations to the case of the Yule-Walker estimator,

we require that the estimator used satisfy the following condition.

Assumption 3.2. The sequence of estimators âp = (â1,p, â2,p, . . . , âp,p)
> satisfies

p2
p∑
j=1

|âj,p − aj,p| = OP (1), as p→∞.
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Assumption 3.2 is quite general and is fulfilled for instance by the Yule-Walker and

the least squares estimator; see also Kreiss et al. (2011). For instance, if âj,p is the

Yule-Walker estimator then,

max
1≤j≤p

|aj,p − âj,p| = OP

(√
log(n)

n

)
;

see Theorem 2.1 of Hannan and Kavalieris (1986). Thus,

p2
p∑
j=1

|âj,p − aj,p| = OP

(
p3
√

log(n)

n

)
,

which is OP (1) if p→∞ with n→∞ such that p = O(n/ log(n))1/6.

Consider next the class of statistics (1.7) and assume that the functions f and g

satisfy the following smoothness conditions.

Assumption 3.3. f (x) has continuous partial derivative for all x in a neighborhood

of θ = E(g (Xt, ..., Xt+m−1)) and the differential

m∑
i=1

∂f (x) /∂xi |x=θ

does not vanish. The function

g : Rm → Rd, d ≤ m,

has continuous partial derivatives of order h (h ≥ 1) which satisfy a Lipschitz condition.

Under Assumption 3.1 and Assumption 3.3 it can be shown that, as n→∞,

√
n(Tn − f(θ))

D→ N(0, Hf (θ)Σg(θ)H
>
f (θ)), (3.3)

where “
D→ ” denotes convergence in distribution,

Σg(θ) =

(
∞∑

h=−∞

Cov(gi(X0, ..., Xm−1), gj(Xh, ..., Xh+m−1))

)
i,j=1,2,...,d

, (3.4)

and

Hf (θ) = (∂f(x)/∂xi|x=θ, i = 1, 2, . . . , d).

In the following and for simplicity, we assume that d = 1. The goal, is then to

approximate the distribution of

√
n(Tn − f(θ)),

by means of the following modified AR-sieve bootstrap procedure, which we call the

AR-sieve bootstrap with i.i.d. wild innovations.
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3.2.2 The bootstrap algorithm

Step 1: Fit an autoregressive model of order p = p(n)∈ N, p < n, to the time series

X1, X2, ..., Xn, obtain estimates âp and residuals êt,p, t = p+ 1, p+ 2, . . . , n, defined as

in (3.1).

Step 2: Let η̂4,ε be the estimator of η4,ε given by

η̂4,ε =
1

γ̂2e (0)

N−1∑
h=−(N−1)

k

(
h

Mn

)(
γ̂2,e(h)− 2γ̂2e (h)

)
, (3.5)

where N = n− p, 0 ≤ h ≤ N − 1,

γ̂e(h) =
1

N

n−|h|∑
t=p+1

(
êt,p − en

)(
êt+|h|,p − en

)
, en =

1

N

n∑
t=p+1

êt,p,

γ̂2,e(h) =
1

N

n−|h|∑
t=p+1

(
ê2t,p − e2,n

)(
ê2t+|h|,p − e2,n

)
and e2,N =

1

N

n∑
t=p+1

ê2t,p.

Here k is a so-called lag-window satisfying k ≥ 0, k(x) = 0 for |x| ≥ 1 while Mn < n

is a truncation parameter to be specified later.

Step 3: Generate X∗1 , X
∗
2 , . . . , X

∗
n as

X∗t =

p∑
j=1

âj,pX
∗
t−j +

√
γ̂e(0)ε∗t , t ∈ Z, (3.6)

where the innovations ε∗t are i.i.d. random variables having the following (three point)

distribution

P
(
ε∗t =

√
η̂4,ε + 3

)
= P

(
ε∗t = −

√
η̂4,ε + 3

)
=

1

2 (η̂4,ε + 3)

and

P (ε∗t = 0) = 1− 1

(η̂4,ε + 3)
.

Step 4: Let T ∗n be the same statistic as Tn defined in (1.7) but with Xt replaced by

X∗t , that is,

T ∗n = f

(
1

n−m+ 1

n−m+1∑
t=1

g(X∗t , X
∗
t+1, . . . , X

∗
t+m−1)

)
, (3.7)

and θ∗ = E∗(g(X∗t , X
∗
t+1, . . . , X

∗
t+m−1)), the analogue of θ associated with the bootstrap

process X∗ = {X∗t , t ∈ Z}, where X∗t is generated as in (3.6). Use the distribution of

√
n(T ∗n − f(θ∗)) to approximate the distribution of

√
n(Tn − f(θ)).
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Concerning the estimator η̂4,ε used in Step 2 of the above AR-sieve bootstrap al-

gorithm the following is mentioned. Recall that in the classical AR-sieve bootstrap,

the pseudo-innovations are generated by choosing with replacement from the empirical

distribution of the estimated residuals êt,p. Furthermore, it yields that (under cer-

tain conditions) the empirical fourth order moment of the estimated residuals, that

is (n− p)−1
∑n

t=p+1 ê
4
t,p, converges in probability to E(e4t ), as p → ∞ and n → ∞.

However, E(e4t ) and E(ε4t ) and, consequently, η4,e and η4,ε may be different; recall the

example discussed in Subsection 3.2.1. The statistic η̂4,ε used in Step 2 is a consis-

tent, nonparametric estimator of η4,ε, i.e. of the rescaled, fourth order cumulant of

the innovations {εt, t ∈ Z} appearing in (1.8). Thus, the fourth order cumulant of εt

is appropriately captured by this modification of the AR-sieve bootstrap. As we have

seen in Chapter 2, the estimator η̂4,ε has certain advantages compared to alternative

estimators of the same parameter previously proposed in the literature; see Grenander

and Rosenblatt (1957), Janas and Dahlhaus (1994) and Kreiss and Paparoditis (2012).

Consistency of this estimator requires that the lag-window k and the truncation pa-

rameter Mn satisfy the following assumption.

Assumption 3.4.

(i) k : [−1, 1]→ R is a symmetric, non− negative and continuous function and

satisfies k (x) =

∫ ∞
−∞

K (u)e−iuxdu,

where K is a non− negative kernel function. Furthermore, k (0) = 1, |k (u)| ≤ 1,

and

∫ ∞
−∞

k2 (u)du <∞.

(ii) Mn →∞ as n→ 0 such that M4
n/n→ 0.

The procedure used in Step 3 of the algorithm to generate the i.i.d. pseudo-

innovations ε∗t implies that

E∗(ε∗t ) = 0, E∗(ε∗
2

t ) = 1 and E∗(ε∗t )
4 − 3 = η̂4,ε,

where under certain conditions

η̂4,ε
P→ η4,ε, as n→∞.
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Thus the generation mechanism of the i.i.d. pseudo-innovations ensures that these

innovations imitate (asymptotically) correct also the rescaled fourth order cumulant

of the true innovations {εt}. As we will see, this is important for some statistics

belonging to the class (1.7). Notice that one could generate the ε∗t ’s using another

consistent estimator of η4,ε and/or a different distribution, for instance a distribution

from the Pearson family of distributions with mean zero, variance one, zero third

moment and kurtosis η̂4,ε + 3. Such alternative choices, will not affect the asymptotic

results presented in the next section.

3.2.3 Bootstrap validity

The asymptotic validity of the modified AR-sieve bootstrap procedure proposed, is

easily established using the concept of the companion process introduced in Kreiss and

Paparoditis (2011). To elaborate, consider the process X̃ = {X̃t, t ∈ Z}, called the

companion process, with X̃t generated as

X̃t =
∞∑
j=1

ajX̃t−j +
√
γe(0)ε̃t, t ∈ Z, (3.8)

and {ε̃t, t ∈ Z} i.i.d. random variables having distribution

P
(
ε̃t =

√
η4,ε + 3

)
= P

(
ε̃t = −

√
η4,ε + 3

)
=

1

2 (η4,ε + 3)
,

and

P (ε̃t = 0) = 1− 1

(η4,ε + 3)
.

We denote such a sequence of innovations by

ε̃t ∼ IID(0, 1,m4,ε), where m4,ε := E
(
ε̃4t
)

= η4,ε + 3.

Let ẽt =
√
γe (0)ε̃t, where γe (0) ≡ σ2

e . Then, the i.i.d. innovations {ẽt, t ∈ Z} driving

the linear process (3.8) satisfy

E (ẽt) = 0, E
(
ẽ2t
)

= σ2
e and η4,ẽ =

E (ẽ4t )− 3E2 (ẽ2t )

E2 (ẽ2t )
= η4,ε.

The coefficients aj appearing in (3.8) are those of the AR-representation (1.6) of the

underlying process X. Thus, X and X̃ have the same autocovariance structure. Fur-

thermore, notice that X̃ is called the companion process because it is the stochastic
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process the dependence structure of which the modified autoregressive sieve bootstrap

proposal asymptotically mimics.

Now, let T̃n be the same statistic as Tn but withX1, X2, . . . , Xn replaced by a fictious

time series X̃1, X̃2, . . . , X̃n stemming from the companion process X̃. Let further

θ̃ = E(g(X̃t, X̃t+1, . . . , X̃t+m−1)).

Thus, and as we will see in Theorem 3.2.1, what the bootstrap sequence
√
n(T ∗n −

f(θ∗)) consistently estimates, is the distribution of
√
n(T̃n−f(θ̃)). Hence the AR-sieve

bootstrap procedure with i.i.d. wild generated errors, will be asymptotically valid

if and only if the asymptotic distributions of
√
n(T̃n − f(θ̃)) and of

√
n(Tn − f(θ))

are identical. This simple check criterion for examining the validity of the modified

AR-sieve bootstrap procedure proposed, is the consequence of the following theorem.

Theorem 3.2.1. Suppose that Assumption 3.1 to Assumption 3.4 are satisfied and

that pn = o(n/ log(n))1/4 as n→∞. Then,

dk

(
L
(√

n (T ∗n − f (θ∗))
)
,L
(√

n(T̃n − f(θ̃))
))
→ 0, in probability,

where dk denotes Kolmogorov’s distance and L(X) the distribution of the random vari-

able X.

Notice that the AR-sieve bootstrap with i.i.d. wild innovations works for all statis-

tics for which the classical AR-sieve with i.i.d. innovations obtained from the empirical

distribution of the estimated residual êt,p works. This is true since, as we have seen,

the autocovariance structure of X̃ is identical to that of the underlying process X, that

is, γX (h) = γX̃ (h) , ∀h ∈ Z. This is easily seen since,

γX (h) = σ2
e

∞∑
j=0

cjcj+h,

and

γX̃ (h) = V ar(
√
γe (0)ε̃t)

∞∑
j=0

cjcj+h = σ2
e

∞∑
j=0

cjcj+h.

Moreover, because the innovations ε∗t also imitate asymptotically correct the fourth or-

der moment structure of the true innovations εt of the linear process (1.8), the modified
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AR-sieve bootstrap is valid for an extended range of statistics for which the classical

AR-sieve fails. The following is an example.

Example: Consider the estimator

γ̂X(h) =
1

n

n−h∑
t=1

XtXt+h

of the autocovariance γX(h), 0 ≤ h < n, which is a special case of (1.7) and recall that

for linear processes it yields that

√
n(γ̂X(h)− γX(h))

D→ N(0, τ 2h),

where

τ 2h = η4,εγ
2
X(h) +

∞∑
k=−∞

(γ2X(k) + γX(k + h)γX(k − h));

cf. Brockwell and Davis (1991), Prop. 7.3.1. Since for the companion process we have

for the estimator

γ̃X̃(h) =
1

n

n−h∑
t=1

X̃tX̃t+h,

that

√
n(γ̃X̃(h)− γX̃(h))

D→ N(0, τ̃ 2h),

where

τ̃ 2h = η4,εγ
2
X̃

(h) +
∞∑

k=−∞

(γ2
X̃

(k) + γX̃(k + h)γX̃(k − h),

i.e., τ̃ 2h = τ 2h , we immediately get by Theorem 3.2.1 the validity of AR-sieve bootstrap

with i.i.d. wild innovations for this statistic.

3.3 Autoregressive Bootstrap with DependentWild

Innovations

3.3.1 Motivation

The previous modification extends the range of validity of the classical AR-sieve boot-

strap. However, this bootstrap procedure is not valid for general stationary processes

and for the entire class of statistics (1.7) due to the i.i.d. structure of the generated
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pseudo-innovations ε∗t . Moreover, even for linear processes, this bootstrap procedure

does not necessarily imitate correct the entire fourth order moment structure of X. To

elaborate, denote by f4,X the fourth order cumulant spectral density of X and recall

that if this process is the linear process (1.8), then f4,X is given by

f4,X(ω1, ω2, ω3) =
1

(2π)3
(Eε41 − 3σ4

ε)Ψ(ω1)Ψ(ω2)Ψ(ω3)Ψ(−ω1 − ω2 − ω3),

where

ωj ∈ [0, π] and Ψ(ω) =
∞∑

j=−∞

ψje
−ijω;

see Rosenblatt (1985). The fourth order cumulant spectral density f4,X̃ of the com-

panion process X̃, which is the process the dependence structure of which is (asymp-

totically) imitated by the AR-sieve with i.i.d. wild innovations, see (3.8), is given

by

f4,X̃(ω1, ω2, ω3) =
1

(2π)3
σ4
e

σ4
ε

(Eε41 − 3σ4
ε)Ψ̃(ω1)Ψ̃(ω2)Ψ̃(ω3)Ψ̃(−ω1 − ω2 − ω3),

where

Ψ̃(z) = A−1(z), |z| ≤ 1.

Since in general

f4,X 6= f4,X̃ ,

it follows that even for linear processes, the AR-sieve bootstrap does not imitate cor-

rectly the entire fourth order structure of X. As an example, recall the non-invertible

MA(1) process considered in Subsection 3.2.1 and observe that for this process we have

Ψ(z) = 1 + θz, Ψ̃(z) = 1 + θ−1z and σ4
e = θ4σ4

ε .

Thus,

f4,X(ω1, ω2, ω3) =
1

(2π)3
σ4
εη4,ε

3∏
j=1

(
1 + θe−iωj

) (
1 + θei

∑3
l=1 ωl

)
,

while

f4,X̃(ω1, ω2, ω3) =
1

(2π)3
σ4
εη4,ε

3∏
j=1

(
θ + e−iωj

) (
θ + ei

∑3
l=1 ωl

)
.

The goal of this section is to develop an AR-bootstrap procedure which is valid for

the entire class of statistics (1.7) and for stochastic processes satisfying quite general
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weak dependence conditions. It is obvious from the previous discussion that such a

procedure has to imitate correctly the high order dependence structure of the under-

lying process which affects the limiting distribution of the statistic Tn. Towards this

goal, it is important to observe that it is not necessary for the AR-bootstrap procedure

to mimic the entire dependence structure of X. It suffices if it imitates correctly the

autocovariance structure of the transformed process

Y = {Yt = g(Xt, Xt+1, . . . , Xt+m−1), t ∈ Z}.

This is true since, as equation (3.4) shows, it is the autovariance structure of Y that

affects the limiting distribution of Tn. Based on this observation, we apply an AR-

bootstrap procedure not to the time series X1, X2, . . . , Xn itself but to the transformed

time series Y1, Y2, ..., YN , where N = n−m+ 1.

To elaborate, recall that the coefficients bj,p, j = 1, 2, . . . , p, of a linear AR(p)-fit

obtained by minimizing the mean square error

E(Yt −
p∑
j=1

bj,pYt−j)
2,

are for every fixed p ∈ N uniquely determined provided

V ar(Yt) > 0 and Cov(Y0, Yh)→ 0 for h→∞,

see Proposition 5.1.1 of Brockwell and Davis (1991). This requirement is fulfilled if Σg

given in (3.4) is well defined which is true if the following assumption is satisfied.

Assumption 3.5. The autocovariance function of Y denoted by γY (h) = Cov(Yt, Yt+h),

h ∈ Z, is absolute summable, i.e.,

∞∑
h=−∞

|γY (h)| <∞.

Furthermore, we assume that

∞∑
h1,h2,h3=−∞

|Cum (Y0, Yh1 , Yh2 , Yh3)| <∞.

Under the above assumption, the process Y possesses a continuous spectral density

fY . However, it is not clear if the transformed process Y also obeys an autoregressive
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representation like (1.6), since for this to be true, the spectral density fY should also

be bounded away from zero from below. For general functions g, like those appearing

in the definition of (1.7), such a property is in general difficult to verify. This makes

the application of an AR-sieve type bootstrap procedure to the transformed process

Y, where p is allowed to increase to infinity with n, difficult to justify theoretically.

This problem does not exist in our new proposal since the order p of the autoregres-

sion fitted is kept fix. However, since in general, an AR-bootstrap with fixed order p

can not capture the entire autocovariance structure of Y, we appropriately modify the

i.i.d. resampling scheme applied to the residuals. In particular, we replace the i.i.d.

resampling used in the classical AR-bootstrap by a generation of pseudo-innovations

using a dependent wild bootstrap procedure; see Shao (2010). Thus, the bootstrap pro-

cedure proposed is an AR-bootstrap with dependent wild pseudo-innovations applied

to the transformed time series Y1, Y2, . . . , YN . It is precisely described in the following

algorithm.

3.3.2 Bootstrap algorithm and bootstrap validity

Step 1: Fit an autoregressive model of order p to the series Y1, Y2, ..., YN and obtain

estimated residuals

V̂t,p = Yt −
p∑
j=1

b̂j,pYt−j, t = p+ 1, p+ 2, ..., N.

Step 2: Generate the bootstrap sample Y ∗1 , Y
∗
2 , ..., Y

∗
N using

Y ∗j = Yj, j = 1, 2, . . . , p

and

Y ∗t =

p∑
j=1

b̂j,pY
∗
t−j + V ∗t , t = p+ 1, p+ 2, . . . , N,

where the pseudo-innovations V ∗t are obtained as

V ∗t = (V̂t,p − V n)W ∗
t , t = p+ 1, p+ 2, ..., N.

Here,

V n =
1

N − p

N∑
t=p+1

V̂t,p,

85

Mari
a F

rag
ke

sk
ou



and W ∗
t t = p + 1, p + 2, ..., N , is a time series stemming from a stationary process

{W ∗
t , t ∈ Z} which is independent of Y, with

E (W ∗
t ) = 0, V ar(W ∗

t ) = 1 and Cov(W ∗
t ,W

∗
s ) = w [(t− s)/ln] .

The function w (·) is a kernel function which satisfies

Kw (x) =

∞∫
−∞

w(z)e−izxdz ≥ 0, x ∈ R,

and ln is a bandwidth parameter.

Step 3: Approximate the distribution of

√
n(Tn − f(θ))

by that of

√
n(f(Y

∗
n)− f(E∗(Y

∗
n))) where Y

∗
n =

1

N

N∑
t=1

Y ∗t .

The conditions stated about the kernel w ensure the non-negative definiteness of

the covariance matrix of W ∗
t , while ln is a resampling parameter used in the dependent

wild bootstrap and which will be specified later on.

The following theorem shows that the proposed AR-bootstrap procedure with de-

pendent wild innovations, is valid for the entire class of statistics (1.7) under quite

general conditions on the dependence structure of the underlying process X.

Theorem 3.3.1. Suppose that the statistic Tn given in (1.7) based on a time series

of length n from the strictly stationary process X fulfills (3.3) and that E|Y1|2+δ <

∞ for some δ > 0. Furthermore, assume that Assumption 3.3 is fulfilled, that the

process Y satisfies Assumption 3.5 and that {W ∗
t , t ∈ Z} is a ln−dependent process

with E∗|W ∗
t |

2+δ <∞. If ln →∞ as n→∞ such that l
2+2/δ
n /n→ 0, then we have, for

every fixed p ∈ N, that, as n→∞,

dk

(
L
(√

n
(
f(Y

∗
n)− f(E∗(Y

∗
n))
))
,L
(√

n(Tn − f(θ))
))
→ 0,

in probability.
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We stress here the fact that in order to establish the above theorem and beyond

Assumption 3.5, we do not impose any specific weak dependence assumptions on the

underlying process X, like mixing or other type of weak dependence conditions. The

requirement that the statistic Tn convergence in distribution as stated in (3.3) and (3.4)

is very weak and is fulfilled for a wide range of weak dependent processes including

for instance, mixing processes, linear processes and processes satisfying other weak

dependence assumptions; see for instance Künsch (1989).

3.4 Numerical Results

3.4.1 Choosing the bootstrap parameters

Implementation of the autoregressive bootstrap methods proposed in previous sections,

requires the selection of two bootstrap parameters, the order p and the truncation lag

Mn respectively the resampling parameter ln. Concerning the choice of the autoregres-

sive order p, we recommend for both bootstrap procedures to use Akaike’s information

criterion (AIC); see also (2.14). For the truncation lag Mn or the resampling bandwidth

ln, we provide in the following some heuristic rules which lead to some data-driven pro-

cedures to automatically select these two parameters.

For the AR-sieve bootstrap with i.i.d. wild innovations, the nonparametric estima-

tion of η4,ε used, requires the choice of the truncation lag Mn. In Chapter 2, Subsection

2.6.1, a procedure has been proposed for the selection of this parameter which can be

also used in the current context. Recall that the idea is to choose Mn in order to

minimize an approximation of the (asymptotic) mean square error E(η̂4,ε−η4,ε)2. This

approach leads to the formulae

M (opt)
n =


2K2

1

(
∞∑

h=−∞

h2(2ce(0)ρ2e(h)− ρ2,e(h))

)2

K2

(
∞∑

h=−∞

ρ2,e(h)

)2



1/5

n1/5, (3.9)

for the optimal value of Mn. Here,

ce(0) = γ2e (0)/γ2,e(0), K1 =

∫ 1

−1
x2k(x)dx and K2 =

∫ 1

−1
k2(x)dx.
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Furthermore,

ρe(h) = γe(h)/γe(0) and ρ2,e(h) = γ2,e(h)/γ2,e(0)

are the autocorrelation functions at lag h of the filtered processes {et,p, t ∈ Z} and

{e2t,p, t ∈ Z} respectively, while γ2,e = Cov(e2t,p, e
2
t+h,p) is the autocovariance at lag h

of the filtered squared process. Using this formulae, Mn can be chosen by replacing

ce(0), ρ2,e(h) and ρe(h) by the corresponding sample estimators based on the estimated

residuals êt,p, see (3.1), and by truncating the infinite sums in (3.9) to some finite, small

value L, i.e., L = 1.

For the AR-bootstrap procedure with dependent wild innovations, we use the fol-

lowing heuristic rule to select ln. Since the autoregressive fit intends to capture the

second order structure of Y1, Y2, . . . , YN , the choice of ln should concerned with the

imitation of the fourth order structure of the filtered process

Vt,p = Yt −
p∑
j=1

bj,pYt−j.

Making the working assumption that Y is a linear process implies that the fourth order

structure of the filtered process Vt,p can estimated using the same strategy as for the

filtered process

et,p = Xt −
p∑
j=1

aj,pXt−j.

This suggests the use of formulae (3.9) to select ln where ce(0), ρe(h) and ρ2,e(h) are

now replaced by

cV (0) = γ2V (0)/γ2,V (0), ρV (h) = γV (h)/γV (0) and ρ2,V (h) = γ2,V (h)/γ2,V (0).

Here γV (h) and γ2,V (h) are the autocovariances at lag h of the process {Vt,p, t ∈ Z} and

of the squared process {V 2
t,p, t ∈ Z} respectively. Replacing these quantities by sample

estimates based on the estimated residuals V̂t,p, t = p+ 1, p+ 2, . . . , N, and truncating

the infinite sums, as in the case ofMn, leads to a pactical rule for selecting the parameter

ln of the dependent wild bootstrap. As our simulations in the next subsection show,

the rules proposed in this subsection to select the bootstrap parameters p, Mn and ln

work very good in practise.
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3.4.2 Simulations

We investigate the ability of the different bootstrap methods to estimate the standard

deviation of the first order sample autocovariance, i.e., of
√
n γ̂(1), for time series of

length n = 100 and n = 300 stemming from five different models and driven by i.i.d.

innovations having four different distributions. Furthermore, four different bootstrap

methods are compared. The autoregressive sieve bootstrap (ARS), the autoregressive

sieve bootstrap with i.i.d. wild innovations (ARSW), the autoregressive bootstrap with

dependent wild innovations (ARDW) and the block bootstrap (BB). The following five

time series models have been considered in the simulation study:

Model I: Xt = φXt−1 + ε, with φ = 0.8,

Model II: Xt = εt + θεt−1, with θ = 0.8,

Model III: Xt = εt + θεt−1, with θ = 2,

Model IV: Xt = 0.6 sin(Xt−1) + εt,

Model V: Xt =
{

0.8− 1.1 exp{−50X2
t−1}

}
Xt−1 + 0.1εt.

Models I-III are linear models with Model III being a non-invertible first order

moving average process. The nonlinear Model IV has been used in Paparoditis and

Politis (2001) and Shao (2010), while the nonlinear Model V by Auestad and Tjøstheim

(1990). Concerning the i.i.d. innovations, the following distributions with mean zero

and unit variance have been used:

(I) Standard Gaussian, (η4,ε = 0),

(II) Logistic, (η4,ε = 1.2),

(III) Double Exponential, (η4,ε = 3.0),

(IV) A distribution from the Pearson family with η4,ε = 5.

The autoregressive order for the ARS bootstrap has been selected using AIC while

the block size b in the BB procedure has been selected as follows. We calculated the

mean square error of the BB estimates for several values of b between 1 and 20 and
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selected the value of b which minimizes the (empirical) mean square error (MSE) over

R = 200 replications. In other words, the BB estimates presented in this section are the

best (in the MSE sense) estimates that can be obtained using this bootstrap method.

Figure 3.1 and Figure 3.2 present the ratios of the mean bootstrap estimates of

the standard deviation and of the estimated exact standard deviation of
√
nγ̂(1) over

R = 200 replications, for each of the different models and of the different distributions

of the innovations considered. Table 3.1 and Table 3.2 present the estimated exact

standard deviations, the mean bootstrap estimates, the standard deviations and the

corresponding mean square errors of the different bootstrap estimates.

As it is seen from the two tables and the two exhibits presented, the ARS and the

ARSW behave quite good in the case of the three linear models considered and for

these models, they outperform the BB. This is expected since these models are taylor

made for linear bootstrap procedures. Furthermore, the ARSW estimates seem to be

less biased for the case of the non-invertible Model III compared to the estimates of

the classical ARS. However, both linear procedures, that is, the ARS and the ARSW,

become quite biased in the case of the nonlinear models considered, i.e., in the case

of Model IV and Model V. For both nonlinear models, the BB estimates turn out to

be also biased although, their bias is smaller compared to that of the linear bootstrap

procedures ARS and ARSW. The ARDW estimates are quite stable and less biased for

all models and all different distributions of the innovations considered. Notice that the

biases of the ARDW method are, in most of the cases considered, the smallest among

the biases of all bootstrap methods compared in this simulation study. Also regarding

the mean square error, the ARDW estimates behave quite well with their MSE being

in many cases close to the lowest MSE that can be achieved by the BB procedure using

the best possible choice of the block length as explained before. This observation is

especially true for the case of n = 300 observations.
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Figure 3.1: Ratio of the estimated standard deviation of the first order sample auto-

covariance function divided by the estimated exact standard deviation, for the different

models, the different innovation distributions and using the autoregressive sieve boot-

strap (ARS), the autoregressive wild bootstrap (ARSW), the autoregressive dependent

wild bootstrap (ARDW) and the block bootstrap (BB), for a sample size of n = 100

observations.

93

Mari
a F

rag
ke

sk
ou



0.5

1

1.5

M
od

el
 I

Gauss Logistic Double Exponential n4=5

0.5

1

1.5

M
od

el
 II

0.5

1

1.5

M
od

el
 II

I

0.5

1

1.5

M
od

el
 IV

ARS ARSW ARDW BB

0.5

1

1.5

M
od

el
 V

ARS ARSW ARDW BB

0.5

1

1.5

ARS ARSW ARDW BB

0.5

1

1.5

ARS ARSW ARDW BB

0.5

1

1.5

Figure 3.2: Ratio of the estimated standard deviation of the first order sample auto-

covariance function divided by the estimated exact standard deviation, for the different

models, the different innovation distributions and using the autoregressive sieve boot-

strap (ARS), the autoregressive wild bootstrap (ARSW), the autoregressive dependent

wild bootstrap (ARDW) and the block bootstrap (BB), for a sample size of n = 300

observations.
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3.5 Proofs

Lemma 3.5.1. Suppose that Assumption 3.1, Assumption 3.2 with pn = o(n/ log(n))1/4

and Assumption 3.4 are satisfied. Then,

(i) ε∗t
D→ ε̃t in probability,

(ii) X∗t
D→ X̃t in probability.

Proof: (i) Follows immediately since under the assumptions made

γ̂e (0)
P→ γe (0) and η̂4,ε

P→ η4,ε.

(ii) Let ψ̂j,p be the coefficients of

Â−1p (z) =
∞∑
j=0

ψ̂j,pz
j, ψ̂0,p = 1, |z| ≤ 1,

where

Âp (z) = 1−
p∑
j=1

âj,pz
j.

Let e∗t =
√
γ̂e (0)ε∗t . For M ∈ N we write

X∗t =
M∑
j=0

ψj,pe
∗
t−j + U∗t + V ∗t

where

U∗t =
M∑
j=0

(
ψ̂j,p − ψj,p

)
e∗t−j and V ∗t =

∞∑
j=M+1

ψ̂j,pe
∗
t−j.

Let x ∈ R be a continuity point of the distribution function of X̃t. By Slutsky’s

theorem and for γ > 0 we get

P ∗ (X∗t ≤ x) ≤ P ∗

(
M∑
j=0

ψj,pe
∗
t−j ≤ x+ γ

)
+ P ∗ (|U∗t | ≤ γ/2) + P ∗ (|V ∗t | ≤ γ/2) .

Applying Lemma 5.1 and Lemma 5.2 of Bühlmann (1997) and using the fact that

E∗(ε∗t )
2 P→E(ε̃t)

2, and that γ̂e (0)
P→ γe (0) ,

we can choose for any k > 0, a M = M(γ, k), such that for n sufficiently large

P ∗ (|U∗t | ≤ γ/2) ≤ k/2, in probability,
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and

P ∗ (|V ∗t | ≤ γ/2) ≤ k/2, in probability.

We then have, in probability, that

P ∗ (X∗t ≤ x) ≤ P ∗

(
M∑
j=0

ψj,pe
∗
t−j ≤ x+ γ

)
+ k,

and, similarly,

P ∗ (X∗t ≤ x) ≥ P ∗

(
M∑
j=0

ψj,pe
∗
t−j ≤ x− γ

)
− k.

Part (i) of the lemma, together with the i.i.d. property of {ε̃t, t ∈ Z} and of

{ε∗t , t ∈ Z} yield for n sufficiently large, that, for an arbitrary l > 0,

P ∗

(
M∑
j=0

ψj,pe
∗
t−j ≤ x+ γ

)
≤ P

(
X̃t ≤ x+ γ + l

)
+ 2k

and

P ∗

(
M∑
j=0

ψj,pe
∗
t−j ≤ x− γ

)
≥ P

(
X̃t ≤ x− γ − l

)
− 2k.

Thus, for n sufficiently large

P ∗ (X∗t ≤ x) ≤ P
(
X̃t ≤ x+ γ + l

)
+ 3k,

and

P ∗ (X∗t ≤ x) ≥ P
(
X̃t ≤ x− γ − l

)
− 3k,

in probability, which concludes the proof.

Proof of Theorem 3.2.1: A careful inspection of the proof of Theorem 3.1 in

Kreiss et al. (2011), shows that to establish Theorem 3.2.1 it suffices to show that for

every r ∈ N, (
X∗t1 , ..., X

∗
tr

) D→
(
X̃t1 , ..., X̃tr

)
in probability. (3.10)

For this, we decompose each X∗ti as in the proof of Lemma 3.5.1 (ii) and proceed

along the same lines as in the proof of the corresponding assertion to show that for

any c1, c2, ..., cr with ci ∈ R, i = 1, 2, ..., r,
r∑
i=1

ciX
∗
ti

D→
r∑
i=1

ciX̃ti in probability,

which by the Cramér-Wold device establishes assertion (3.10).
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Proof of Theorem 3.3.1: Define a bootstrap time series Ỹ ∗1 , Ỹ
∗
2 , ..., Ỹ

∗
N , where

Ỹ ∗t = Yt for t = 1, 2, . . . , p,

and

Ỹ ∗t =

p∑
j=1

b̂j,pỸ
∗
t−j + Ṽ ∗t for t = p+ 1, p+ 2, ..., N. (3.11)

Here, Ṽ ∗t are dependent wild bootstrap generated observations, which are obtained as

Ṽ ∗t = (Vt,p − V n)W ∗
t , t = p+ 1, p+ 2, ..., N, V n =

1

N − p

N∑
t=p+1

Vt,p,

and Vt,p = Yt −
∑p

j=1 bj,pYt−j, t = p+ 1, p+ 2, ..., N. Notice that, in contrast to

Y ∗1 , Y
∗
2 , ..., Y

∗
N , the random variables Ỹ ∗1 , Ỹ

∗
2 , ..., Ỹ

∗
N are based on the true filtered time

series Vt,p, t = p+ 1, p+ 2, ..., N . In the following, and in all related cases, we ignore

the effect of the starting values.

We first show that

1√
N

N∑
t=1

(
Y ∗t − Ỹ ∗t

)
= oP (1), (3.12)

that is, that the effect of estimating Vt,p by V̂ t,p is asymptotically negligible.

Let ĉj,p be the coefficients of the inverse polynomial(
1−

p∑
j=1

b̂j,pz
j

)−1
=
∞∑
j=0

ĉj,pz
j, ĉ0,p = 1, |z| ≤ 1.

Then, Y ∗t and Ỹ ∗t can be expressed as

Y ∗t =
t−1∑
j=0

ĉj,p(V̂t−j,p − V n)W ∗
t−j and Ỹ ∗t =

t−1∑
j=0

ĉj,p(Vt−j,p − V n)W ∗
t−j

respectively. We have

1√
N

N∑
t=1

(
Y ∗t − Ỹ ∗t

)
=

1√
N

N∑
t=1

t−1∑
j=0

ĉj,p(V̂t−j,p − Vt−j,p)W ∗t−j + (V n − V n)
1√
N

N∑
t=1

t−1∑
j=0

ĉj,pW
∗
t−j

=
1√
N

N−1∑
j=0

N−j∑
r=1

ĉj,p(V̂r,p − Vr,p)W ∗r + (V n − V n)
1√
N

N−1∑
j=0

N−j∑
r=1

ĉj,pW
∗
r

= −
N−1∑
j=0

ĉj,p

p∑
j1=1

(
b̂j1,p − bj1,p

) 1√
N

N−j∑
r=1

Yr−j1W
∗
r

+ (V n − V n)

N−1∑
j=0

ĉj,p
1√
N

N−j∑
r=1

W ∗r

= T1,N + T2,N ,
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with an obvious notation for T1,N and T2,N . Observe that∣∣∣∣∣
N−1∑
j=0

ĉj,p
1√
N

N−j∑
r=1

W ∗
r

∣∣∣∣∣ ≤
∞∑
j=0

|ĉj,p|

∣∣∣∣∣ 1√
N

N−j∑
r=1

W ∗
r

∣∣∣∣∣ = OP (
√
ln), (3.13)

since

V ar∗

(
1√
N

N−j∑
r=1

W ∗
r

)
=

1

N

N−j∑
t,s=1

w

(
s− t
ln

)

=
1

N

N−j−1∑
r=−(N−j−1)

(N − j − |r|)w
(
r

ln

)
= O(ln),

uniformly in j. Thus, from equation (3.13) and since

V n = OP

(
1/
√
n
)

and V n = OP

(
1/
√
n
)

we get that,

T2,N = OP

(√
ln/n

)
→ 0 as n→∞.

Regarding T1,N notice that,

|T1,N | ≤
N−1∑
j=0

|ĉj,p|
p∑

j1=1

∣∣∣̂bj1,p − bj1,p∣∣∣
∣∣∣∣∣ 1√
N

N−j∑
r=1

Yr−j1W
∗
r

∣∣∣∣∣
while, ∣∣∣∣∣ 1√

N

N−j∑
r=1

Yr−j1W
∗
r

∣∣∣∣∣ = OP (1)

uniformly in j and j1. This follows because

E(E∗(
1√
N

N−j∑
r=1

Yr−j1W
∗
r )2) =

1

N

N−j∑
t,s=1

γY (t− s)w
(
t− s
ln

)
≤

∞∑
r=−∞

|γY (r)| <∞.

Additionally, since

∞∑
j=0

|ĉj,p| <∞ and

p∑
j=1

∣∣∣̂bj,p − bj,p∣∣∣ = OP

(
1/
√
n
)
,

we conclude that

T1,N = OP

(
1/
√
n
)

which yields equation (3.12).

Next, define random variables Y +
1 , Y

+
2 , ..., Y

+
N , as Y +

j = Yj for j = 1, 2, . . . , p and

Y +
t =

p∑
j=1

bj,pY
+
t−j + Ṽ ∗t =

t−1∑
j=0

cj,p(Vt−j,p − V n)W ∗
t−j, for t = p+ 1, p+ 2, ..., N.
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We show that

1√
N

N∑
t=1

(
Ỹ ∗t − Y +

t

)
= oP (1). (3.14)

To see (3.14) write

1√
N

N∑
t=1

(
Ỹ ∗t − Y +

t

)
=

1√
N

N∑
t=1

t−1∑
j=0

(ĉj,p − cj,p)
(
Vt−j,p − V n

)
W ∗
t−j

=
1√
N

N−1∑
j=0

(ĉj,p − cj,p)
N−j∑
r=1

Vr,pW
∗
r − V n

1√
N

N−1∑
j=0

(ĉj,p − cj,p)
N−j∑
r=1

W ∗
r

= T3,N + T4,N ,

with an obvious notation for T3,N and T4,N . Along the same lines as for the term T2,N

and using V n = OP (1/
√
n) and

∞∑
j=0

|ĉj,p − cj,p| = OP

(
1/
√
n
)
,

see Kreiss and Franke (1992), Lemma 2.2, we conclude that

T4,N = OP

(√
ln/n

)
.

Furthermore,

|T3,N | ≤
N−1∑
j=0

|ĉj,p − cj,p|

∣∣∣∣∣ 1√
N

N−j∑
r=1

Vr,pW
∗
r

∣∣∣∣∣ ,
where, ∣∣∣∣∣ 1√

N

N−j∑
r=1

Vr,pW
∗
r

∣∣∣∣∣ = OP (1)

uniformly in j, since

E(E∗(
1√
N

N−j∑
r=1

Vr,pW
∗
r )2) =

1

N

N−j∑
t,s=1

γV (t− s)w
(
t− s
ln

)
≤

∞∑
r=−∞

|γV (r)| <∞,

due to Assumption 3.5, where γV (r) = Cov (Vt,p, Vt+r,p) , r ∈ Z is the autocovariance

function of {Vt,p, t ∈ Z}. Thus,

T3,N = OP (1/
√
n)

which completes the proof of assertion (3.14).

Let,

L∗n =
1√
N

N∑
t=1

Y ∗t ,
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and

Ln =
1√
N

N∑
t=1

Y +
t =

1√
N

N∑
t=1

t−1∑
j=0

cj,pṼ
∗
t−j.

Notice that by (3.12) and (3.14) we have that

L∗n = Ln + oP (1) .

In order to show that

Ln
D→N(0, σ2

∞), as n→∞, where σ2
∞ = 2πfY (0) ,

it suffices by Proposition 6.3.9 of Brockwell and Davis (1991), to show that

(a) Ln,M
D→ZM for M fixed where

Ln,M =
1√
N

N∑
t=1

M∑
j=0

cj,pṼ
∗
t−j

and

ZM ∼ N(0, σ2
M), σ2

M =

(
M∑
j=0

cj,p

)2

2πfY (0) |Bp (0)|2.

(b) ZM
D→Z as M →∞, where Z ∼ N(0, σ2

∞).

(c) limM→∞ lim supn→∞ P (|Ln − Ln,M | > ε) = 0 for every ε > 0.

To establish (a) write

Ln,M =
M∑
j=0

cj,p
1√
N

N∑
t=1

Ṽ ∗t −
M∑
j=0

cj,p
1√
N

M−1∑
s=0

(M − s) Ṽ ∗n−s. (3.15)

The second term on the right-hand side of (3.15) is in absolute value bounded by

M∑
j=0

|cj,p|
M2

√
N

1

M

M−1∑
s=0

∣∣∣Ṽ ∗n−s∣∣∣ =
M∑
j=0

|cj,p|
M2

√
N
Op (1) = Op

(
1√
n

)
.

Thus, the limiting distribution of Ln,M is identical to the limiting distribution of the

first term on the right hand side of (3.15). Let,

L
(1)
n,M =

M∑
j=0

cj,p
1√
N

N∑
t=1

Ṽ ∗t .

Notice that,

E∗
(
L
(1)
n,M

)
= 0,
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and

V ar∗
(
L
(1)
n,M

)
=

(
M∑
j=0

cj,p

)2 N−1∑
h=−(N−1)

1

N

N∧(N−h)∑
t=1∨(1−h)

(
Vt,p − V n

) (
Vt+h,p − V n

)
w

(
h

ln

)

=

(
M∑
j=0

cj,p

)2

2πf̂V (0) .

Since

2πf̂V (0)
P→ 2πfV (0) , as n→∞

and using the relation

fV (0) = |Bp (0)|2fY (0) , where Bp (0) = 1−
p∑
j=1

bj,p,

we get that

V ar∗
(
L
(1)
n,M

)
→ σ2

M , as n→∞,

where

σ2
M =

(
M∑
j=0

cj,p

)2

2πfY (0) |Bp (0)|2.

We next show that

1√
N

N∑
t=1

Ṽ ∗t
D→N (0, 2πfV (0)) .

Since

1√
N

N∑
t=1

Ṽ ∗t =
1√
N

N∑
t=1

Vt,pW
∗
t +OP

(√
ln
n

)
,

and W ∗
t is ln-dependent, we apply Theorem 1.21 of Kreiss and Paparoditis (2017).

For this, it suffices to show that the following conditions are satisfied.

(i) Σn = V ar∗
(
N−1/2

N∑
t=1

Vt,pW
∗
t

)
→ 2πfV (0), in probability.

(ii) sup
a,r

Aa,r = sup
a,r

1
r
E∗
(
N−1/2

a+r−1∑
t=a

Vt,pW
∗
t

)2

= OP (1/N) .

(iii) max
1≤t≤N

E∗
∣∣N−1/2Vt,pW ∗

t

∣∣2+δ = OP

(
N−1−δ/2

)
, for some δ > 0.

(iv) l
2+2/δ
n /N → 0, as n→∞.

To see (i) and (ii) observe that

Σn =
1

N

N∑
t,s=1

Vt,pVs,pw

(
s− t
ln

)
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=
1

N

ln∑
h=−ln

N−h∑
t=1

w

(
h

ln

)
Vt,pVt+h,p

= 2πf̂V (0) +OP

(
ln
N

)
P→ 2πfV (0) ,

and that

V ar (Aa,r) = V ar

(
1

rN

a+r−1∑
t,s=a

Vt,pVs,pw

(
s− t
ln

))

=
1

r2N2

a+r−1∑
t,s,h,g=a

w

(
s− t
ln

)
w

(
h− g
ln

)
γV (t− h)γV (s− g)

+
1

r2N2

a+r−1∑
t,s,h,g=a

w

(
s− t
ln

)
w

(
h− g
ln

)
γV (t− g)γV (s− h)

+
1

r2N2

a+r−1∑
t,s,h,g=a

w

(
s− t
ln

)
w

(
h− g
ln

)
kV (s− t, h− t, g − t)

≤ 2

N2

(
∞∑

h=−∞

|γV (h)|

)2

+
1

N2

(
∞∑

u,v,l=−∞

|kV (u, v, l)|

)2

= O

(
1

N2

)
.

Consider (iii). We have

max
1≤t≤N

E∗
∣∣N−1/2Vt,pW ∗

t

∣∣2+δ =
(
N−1/2

)2+δ
max
1≤t≤N

|Vt,p|2+δE∗|W ∗
1 |

2+δ = Op

(
N−1−δ/2

)
.

Finally, (iv) follows directly from a corresponding assumption of the theorem. So far,

we have shown that, as n→∞,

Ln,M
D→ZM where ZM ∼ N(0, σ2

M),

which concludes the proof of (a).

Consider assertion (b). This assertion follows since as M →∞,

σ2
M →

(
∞∑
j=0

cj,p

)2

2πfY (0) |Bp (0)|2 = |Bp (0)|−22πfY (0) |Bp (0)|2 = 2πfY (0) = σ2
∞.

To verify assertion (c) we proceed as follows. Write,

Ln − Ln,M =
1√
N

N∑
t=1

{
t−1∑
j=0

cj,pṼ
∗
t−j −

M∑
j=0

cj,pṼ
∗
t−j

}

=
1√
N

N∑
t=M+2

t−1∑
j=M+1

cj,pṼ
∗
t−j

=
1√
N

N−1∑
j=M+1

cj,p

N−j∑
r=1

Ṽ ∗r .
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By Markov’s inequality

P ∗ (|Ln − Ln,M | > ε) ≤ E∗(Ln − Ln,M)2

ε2

=
1

ε2N

N−1∑
j,l=M+1

cj,pcl,p

N−j∑
r=1

N−l∑
s=1

w

(
r − s
ln

)(
Vr,p − V n

)(
Vs,p − V n

)
= T5,N (say).

Notice that,

|E(T5,N)| ≤ 1

ε2N

N−1∑
j,l=M+1

|cj,p| |cl,p|
N∑

r,s=1

∣∣∣E (Vr,p − V n

)(
Vs,p − V n

)∣∣∣
≤ 1

ε2N

N−1∑
j,l=M+1

|cj,p| |cl,p|
N∑

r,s=1

|γV (r − s)|

+
2

ε2(N − p)

N−1∑
j,l=M+1

|cj,p| |cl,p|
N∑

r=p+1

N∑
s=1

|γV (r − s)|

+
N

ε2(N − p)2
N−1∑

j,l=M+1

|cj,p| |cl,p|
N∑

r,s=p+1

|γV (r − s)|

= T6,N + T7,N + T8,N ,

with an obvious notation for T6,N , T7,N and T8,N . The term T6,N is bounded by

1

ε2

(
N−1∑

j=M+1

|cj,p|

)2 ∞∑
h=−∞

|γV (h)| ,

which converges to zero as M and n→∞, since the sums

∞∑
j=0

|cj,p| and
∞∑

h=−∞

|γV (h)|

are finite. Similar arguments yield that the terms T7,N and T8,N converge also to zero

as M and n→∞. This together with the relation

L∗n = Ln + oP (1)

concludes the proof that

L∗n
D→N(0, σ2

∞)

in probability. The assertion of the theorem follows then by an application of the

δ-method and taking into account Assumption 3.3.
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Chapter 4

Conclusions and Future Research

4.1 Conclusions

In the first part of this thesis, we have investigated the problem of estimating the

rescaled fourth order cumulant of the unobserved innovations of a linear time series. An

existing nonparametric estimator of this parameter has been investigated. It has been

shown how the behavior of this estimator is affected by the autocorrelation structure of

the underlying process. An improved nonparametric estimator of the same parameter

has been proposed which is based on pre-whitening the time series by means of an

autoregressive filter. The parameter of interest is estimated using the filtered time

series and an inverse-transformation is not required. This is due to an invariance

property of the parameter of interest with respect to linear filtering.

The asymptotic properties of the new estimator have been investigated and its

superiority has been shown for large classes of stochastic processes. Some simulations

demonstrated that this theoretical superiority is also valid in finite sample situations.

Our findings indicate, that the gains in terms of variance and bias reduction obtained

by using the new estimator could be very impressive, especially for strongly correlated

time series.

In the second part, we have proposed two modifications of the autoregressive-sieve

respectively of the autoregressive bootstrap. First, an AR-sieve bootstrap procedure

has been proposed where the pseudo innovations are not obtained by i.i.d. resampling
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from the empirical distribution of the estimated residuals but from some appropriate

distribution ensuring that the generated i.i.d. pseudo-innovations imitate asymptot-

ically correct also the rescaled fourth order cumulant of the true innovations. Next,

a new version of the AR-bootstrap applied to an appropriately transformed time se-

ries together with a dependent-wild type generation of pseudo-innovations has been

proposed. We show that this AR-bootstrap procedure is asymptotically valid for a

wide range of weakly dependent processes and for large classes of statistics. A fully

data driven procedure to select the parameters involved in both bootstrap procedures

has been proposed. Extensive simulations and comparisons show a good finite sample

behavior of the new bootstrap procedures proposed.

4.2 Future Research

4.2.1 Locally Stationary Processes

Stochastic processes with time varying characteristics have attracted considerable in-

terest during the last decades. An important approach for the development of an

asymptotic theory for such processes has been put forward by the concept of locally

stationary processes introduced by Dahlhaus (1997). Loosely speaking, a stochastic

process is locally stationary if it can be locally (in time) approximated by some sta-

tionary process. More precisely, a triangular array of sequences of random variables

{Xt,n : t = 1, ..., n, n ∈ N} is called locally stationary, if it satisfies the following set of

conditions:

(a) Xt,n has the representation

Xt,n =
∞∑

j=−∞

ψt,n (j) εt−j, t = 1, ..., n, n ∈ N

where the {εt} are i.i.d with E (εt) = 0, E (ε2t ) = 1 and κ4,ε = E (ε4t )− 3.

(b)

sup
t=1,...,n

|ψt,n (j)| ≤ k

l2 (j)
for all j ∈ Z,
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where k is a non-negative constant independent of n and {l (j) : l ∈ Z} is a pos-

itive sequence satisfying
∞∑

j=−∞

|j|l−1 (j) <∞.

(c) Functions ψj (·) : (0, 1]→ R with

sup
u∈[0,1]

|ψj (u)| ≤ k

l (j)

and

sup
u∈[0,1]

∣∣∣∣∂ψj (u)

∂u

∣∣∣∣ ≤ k

l (j)

exist such that

sup
1≤t≤n

∣∣∣∣ψt,n (j)− ψj
(
t

n

)∣∣∣∣ ≤ k

nl (j)
,

where l (j), j ∈ Z and k are as above.

Consider the problem of estimating the rescaled fourth order cumulant of the unob-

served innovations {εt, t ∈ Z}, driving the above locally stationary linear process, that

is of

η4,ε = κ4,ε/σ
4
ε where κ4,ε = cum4(εt) = E(ε4t )− 3σ4

ε

is the fourth order cumulant of εt. Toward this, recall for Xt,n the local approximating

linear process

Xt (u) =
∞∑

j=−∞

ψj (u) εt−j, where u ∈ [0, 1] .

Let c (u, k) = Cov (Xt (u) , Xt+k (u)) and c2 (u, k) = Cov
(
X2
t (u) , X2

t+k (u)
)

be the local

autocovariances of the process Xt (u) and of the squared process X2
t (u) respectively.

Straightforward calculations yield

Cov
(
X2
t (u) , X2

t+k (u)
)

= κ4,ε

∞∑
j=−∞

ψ2
j

(u)ψ2
j+k

(u) + 2Cov2 (Xt (u) , Xt+k (u)) .

Taking the sum over all k ∈ Z, using the fact that

∞∑
k=−∞

∞∑
j=−∞

ψ2
j

(u)ψ2
j+k

(u) = c2 (u, 0)

and integrating both sides over the interval [0, 1], we end-up with the expression

η4,ε =

∞∑
k=−∞

(
1∫
0

c2 (u, k) du− 2
1∫
0

c2 (u, k) du

)
1∫
0

c2 (u, 0) du

.
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The above expression motivates the following estimator of η4,ε

η̂4,ε =

Mn∑
k=−Mn

w (k/Mn) (ĉ2 (k)− 2ĉ2 (k))

ĉ2 (0)
, (4.1)

where

ĉ (k) =
1

LN

L∑
j=1

N−k∑
t=1

(
X[ujn]+t−N/2,n −XN(j, t)

) (
X[ujn]+t−N/2+k,n −XN(j, t)

)
,

ĉ2 (k) =
1

LN

L∑
j=1

N−k∑
t=1

(
X2

[ujn]+t−N/2,n

−X2,N(j, t)
)(
X2

[ujn]+t−N/2+k,n

−X2,N(j, t)
)
,

XN(j, t) =
1

Ns

Ns∑
r=1

X[ujn]+t−N/2+r,n and X2,N(j, t) =
1

Ns

Ns∑
r=1

X2

[ujn]+t−N/2+r,n

,

Ns =
∑N

s=1 I([ujn] + t−N/2 + r + s ∈ {1, 2, ..., n}), are sample estimates of the cor-

responding unknown quantities appearing in (4.1) and I (·) is the indicator function.

Furthermore, w is a lag-window, Mn < n is a truncation parameter, N is the local

window width and uj = [N(j − 1) + N/2]/n, j = 1, ..., L are rescaled time points in

the interval [0, 1]. A similar, frequency domain based estimator has been proposed by

Kreiss and Paparoditis (2015).

A probably improved estimator of η4,ε can be obtained by using locally the idea

of pre-whitening, i.e., by fitting locally to the time series a pth order autoregressive

process. To elaborate, suppose that the local spectral density f (u, λ) is continuous in

λ and satisfies

inf
u∈[0,1]

inf
λ∈[o,π]

f (u, λ) ≥ cf where cf > 0.

Then, the local approximating process {Xt (u) , t ∈ Z} has for every u ∈ [0, 1] the

autoregressive representation

Xt (u) =
∞∑
r=1

br (u)Xt−r (u) + εt, (4.2)

where
∞∑
r=1

r |br (u)| <∞ and 1−
∞∑
r=1

br (u) zr 6= 0

for all complex z with |z| ≤ 1. The minimization of the local quadratic deviation

1

N − p

N−1∑
j=p

(
X[un]−N/2+j,n −

p∑
i=1

ci (u)X[un]−N/2+j−i,n

)2
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with respect to ci (u) , 1 = 1, 2, ..., p leads to the estimates

b̂u (p)> =
(
b̂1 (u) , b̂2 (u) , ..., b̂p (u)

)
,

satisfying the system of equations

R̂u (p) b̂u (p) = r̂u (p) ,

where

R̂u (p) =
1

N − p

N−1∑
j=p

Xj (u, p)Xj (u, p)> , r̂u (p) =
1

N − p

N−1∑
j=p

Xj (u, p)X[un]−N/2+j,n

and

Xj (u, p)> =
(
X[un]−N/2+j,n, X[un]−N/2+j−1,n, ..., X[un]−N/2+j−p,n

)
.

Furthermore, let

σ̂2
p (u) =

1

N − p

N−1∑
j=p

X2
[un]−N/2+j−p,n

− b̂u (p)> r̂u (p) ,

be the estimated variance of the residuals of the local autoregressive fit. The alterna-

tive estimator of η4,ε we propose can then be obtained as follows.

Step 1: For t/n ∈ [0, 1], fit locally an autoregressive model of order p to the observa-

tions X1,n, X2,n, ..., Xn,n, calculate the estimated parameters

b̂t/n (p)> =
(
b̂1 (t/n) , b̂2 (t/n) , ..., b̂p (t/n)

)
and the residual variance σ̂2

p (t/n). Consider, then the rescaled residuals

Ût,n =
1

σ̂p (t/n)

(
Xt,n −

p∑
i=1

b̂i (t/n)Xt−i,n

)
, t = p+ 1, ..., n.

Step 2: Using Ûp+1,n, Ûp+2,n, ..., Ûn,n, calculate the estimator

η̂S4 =
1

γ̂2U(0)

Np−1∑
h=−(Np−1)

w

(
h

Mn

)(
γ̂2,U(h)− 2γ̂2U(h)

)
, Np = n− p;

see (2.7). Here,

γ̂U(h) =
1

Np

n−|h|∑
t=p+1

(
Ût,n − Un

)(
Ût+|h|,n − Un

)
, Un =

1

Np

n∑
t=p+1

Ût,n,

γ̂2,U(h) =
1

Np

n−|h|∑
t=p+1

(
Û2
t,n − U2,n

)(
Û2
t+|h|,n − U2,n

)
, U2,n =

1

Np

n∑
t=p+1

Û2
t,n.
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and w (·) is a lag-window; see Assumption 2.2.

The motivation behind this procedure is the following. The innovations

εt = Xt (u)−
∞∑
r=1

br (u)Xt−r (u) ,

do not depend on u ∈ [0, 1]. Therefore, filtering the time series locally by an autore-

gressive process, intends to obtain local residuals Ût,n which (asymptotic) will behave

like εt. Thus, Ût,n, t = p + 1, ..., n, can be used to estimate the rescaled fourth order

cumulant of the unobserved innovations. Asymptotic properties of the above estimator

can be investigated. Furthermore, the finite sample behavior of these estimators can

be numerically compared by means of simulations with alternative estimators like the

one proposed by Kreiss and Paparoditis (2015).

4.2.2 Multivariate Processes

An important but probably difficult to solved problem of future research is the esti-

mation of the fourth order cumulant of the unobserved innovations for a multivariate

linear time series. Solving this problem, also is important of extending the range of

validity of the multivariate AR-sieve bootstrap; see Meyer and Kreiss (2015).

To elaborate, let {Xt : t ∈ Z} be a m−dimensional stochastic process generated by

Xt = (X1,t, X2,t, ..., Xm,t)
> =

∞∑
j=−∞

Ψjεt−j,

where the Ψj = (ψj (v, s))v,s=1,2,...,m, j ∈ Z, are m × m coefficient matrices, and εt

= (ε1,t, ε2,t, ..., εm,t)
> , t ∈ Z is a zero mean, m−dimensional i.i.d innovation process

with finite fourth moment, i.e, E
(
ε4i,t
)
< ∞ for i = 1, 2, ...,m. It seems difficult to

obtain a consistent estimator of the fourth order cumulant

ηi,j,r,s = Cum (εi,t, εj,t, εr,t, εs,t) , i, j, r, s ∈ {1, 2, ..,m} ,

along the lines used in the univariate context. An alternative strategy will be to apply

the AR-dependent wild bootstrap to a multivariate setting.

Recall that the AR-bootstrap with dependent wild innovations, proposed in this

thesis works by fitting an autoregressive model of order p, not to the observed time
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series X1, X2, . . . , Xn itself, but to the time series of transformed random variables

Y1, Y2, . . . , Yn−m+1, where Yt is given by Yt = g(Xt, Xt+1, . . . , Xt+m−1). An interesting

multivariate extension could be to consider the transformed process

Y
(i,j)
t = Xi,tXj,t+h, i, j = 1, ...,m, t ∈ Z, (4.3)

where Xi,t and Xj,t are the ith and jth components, respectively ,of the vector process

{Xt : t ∈ Z} with Xt = (X1,t, X2,t, ..., Xm,t)
>. Denoting by γij (h) = Cov (Xi,t, Xj,t+h)

and ρij (h) = γij (h) /
√
γii (0) γjj (0) the cross-covariance and cross-correlation function

respectively, the problem is to estimate the distribution of the sample quantities

γ̂ij (h) =
1

n

n−h∑
t=1

(
Xi,t −X i,n

) (
Xj,t+h −Xj,n

)
and ρ̂ij (h) =

γ̂ij (h)√
γ̂ii (0) γ̂jj (0)

,

where X i,n = (1/n)
∑n

t=1Xi,t. The application of the autoregressive bootstrap with

depended wild innovations to the transformed process Y
(i,j)
t given in (4.3) will allow

for the estimation of the distribution of
√
n (γ̂ij (h)− γij (h)) or

√
n (ρ̂ij (h)− ρij (h))

which is an interesting problem in multivariate time series analysis.
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