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Abstract

The aim of this thesis is twofold. First, to investigate the problem of estimating
the rescaled fourth order cumulant of the unobserved innovations of linear time series
which is an important parameter for statistical inference. Second, to propose two
modifications of the autoregressive-sieve respectively of the autoregressive bootstrap.

For the first problem, an existing nonparametric estimator is first discussed and its
asymptotic properties are derived. In particular, it is shown how the autocorrelation
structure of the underlying process affects the behavior of the estimator. Based on these
findings and on a discovered and important invariance property of the parameter of
interest with respect to linear filtering, a pre-whitening based nonparametric estimator
of the same parameter is proposed. The aforementioned invariance property implies
that the parameter of interest can be estimated using the residuals obtained by applying
the linear filter to the time series at hand and an inverse-transformation is not needed.
It is shown that if the filter chosen to pre-whiten the time series is such that the filtered
time series is less correlated than the original one, then the new estimator has several
advantages.

The asymptotic properties of the new estimator based on a simple autoregressive
filter are investigated and its superiority is theoretically established for large classes
of stochastic processes. It is shown that for the particular estimation problem con-
sidered, pre-whitening not only reduces the variance of the estimator but it can also
lead to gains in terms of bias. The finite sample performance of the existing and of
the new estimator is investigated and compared by means of several simulations. As
an application, we show that the new estimator allows for a simple modification of the
multiplicative frequency domain bootstrap which considerable extends its range of va-
lidity. Furthermore, the problem of testing hypotheses about the rescaled fourth order
cumulant of the unobserved innovations is also considered. In this context, a simple

test for Gaussianity is proposed and some real-life data applications are presented.



Concerning the two modifications of the autoregressive-sieve respectively of the au-
toregressive bootstrap proposed, the first replaces the classical i.i.d. resampling scheme
applied to the residuals of the autoregressive fit by a generation of i.i.d. wild pseudo-
innovations that appropriately mimic the first and the second order moments as well as
the rescaled fourth order cumulant of the true innovations driving the underlying linear
process. This modification, uses the estimator of the fourth order cumulant presented
in the first part of the thesis and extends the range of validity of the autoregressive-sieve
bootstrap to classes of statistics for which the classical, residual-based autoregressive-
sieve bootstrap, fails. The second modification, is a version of the autoregressive boot-
strap which is applied to an appropriately transformed time series. This, together
with a dependent-wild type generation of pseudo-innovations, delivers a bootstrap pro-
cedure which is valid for large classes of statistics and for stochastic processes that
satisfy quite general weak dependence conditions. A fully data-driven selection of the
tuning parameters involved in both bootstrap modifications is proposed, while exten-
sive simulations, including comparisons with alternative bootstrap methods, show a

good finite sample performance of the proposed bootstrap procedures.
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ITepiindm

H mapotoa dwtpdy] €xet 800 xupleg otdyous. O mpoTog, va acyoinlel ye o TpoBinua
NG EXTIUNONG TOU AVOXALOXDUEYOU GUGCWEELUTH TEToTNe T4ine (rescaled fourth order
cumulant) tou un mopatnendévtoc Aeuxol YopiBou wiog YeuuUIXhic OTOYAoTIXAC AvENENG,
o omolog amotehel plo oNUAVTIXT TUPdUETPO GTNY OTATIOTIXY| CUUTERACUATO oYX YpOVO-
oelpwy. O BelTEPOS GToOY0¢ ebvan Vo TEOTEIVEL B0 TPOTOTOWGELS TNG AUTOTAAVOPOMX NS
otadeactog bootstrap, ol onoleg enextelvouy onuavTIXd TO EUPOC TWV EPUPUOYROY XL TNG
QCUUTTWTIXHAC CUVETELNS TV AvTIGTOLY WV UEVOOWY.

‘Ocov apopd t0 TemTo TEOBANUL eXTIUNOTG, Ui UPIGTAUEYY) U1 TULUUETELXY) EXTUHTELY
e€eTaleTal XAl Ol AOUUTOTIXES WOTNTES TNG EpELVOLVTAL. T ACUUTTWTIXG ATOTEAECHATA
OElYYOUY UE TTOL6 TEOTO 1) AUTOCUGYETION TN OTOYAOTIXC AVEMENG EMNEedlEl TNV CUUTE-
ELpopd NG exTTelG. Baclouévol 6 auTd Tol EURTUTA XL OF UL OTUAYTIXT] LWOLOTNTY
AVIALOIWTOU TNG TUPAUETEOU TOU UG EVOLUPEREL WG TROS TAL YROUMXE QLATpoplouaTta TNG
YeOovooELRds, TpoTelveTon ulol xawvolpyla ur TogaueTeiy| exTiurtel 1 onola Baciletan oc
wio heuxoopufBornoinon (pre-whitening) e vglotduevne ypovooeipde. H npoavagepiei-
oo WOLOTNTA TOU AVOALOIMTOU CUVETAYETHL OTL 1) TUPAUETPOS TOU HAS EVOLAPEPEL UTOREL
vor exTn el YENOoLLOTOWWVTAS To UTOAOLTIA TOU TROXUTTOUY €QURUOLOVTAS EVA YRUUUIXO
GIATEO UETACYNUATIOUOY TNG YPOVOOERHS Xal OTL OEV amotteltol 1) YeHon OTOoUdYTOTE
avTloTPOPOU PETACYTUATION00. AV 1) QUATRPAQIOUEVT YPOVOGELRd vl AtYOTERO GUOYETL-
GUEVT O GYEoT Ue TNy Topatnenieica, TOTE 1 VEX EXTIUNTELN EYEL AOUETA TAEOVEXTAUATA
CUYXEWOUEVT| UE TNV EXTWHTELN TOU YENOWOTOLEL TNV oy LxY| YeOVOoELRd.

O aoUUTOTIXES WOTNTES TNG XAUVOURYLIC EXTWUATELIC PACIOUEVY) GE €VOL ATAO OUTO-
TOAVOPOUXG PIATPO EQEUVOUVTAL XAl 1) AVWTEQOTNTA TNG VEUG EXTIUNTEIAS Yt Wiot UEYAAN
ANEOT) CTOYAOTIXWY DLadIXACLOY amodeXviEToHL . ‘OTwe TEOXUTTEL Y TO CUYXEXPUIE-
vo mpofhnua extiunong n Aeuxodopufornoinon uropel va UEIOOEL onuavTIXd Oyl UOVOo 11
Olomopd ahhd xon 1) pepoAndio tng extTelag. MEow TEOGOUOIWoENY BlEpEUVOUUE

TNV CUUTEQLPORY TwV dV0 EXTIUNTEWDY Ot Oelypata memepaouévou peyédouc. Metald
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TWY EQUEUOYWY TOU €YEL 1) xouvolpyio exTrTel efvan xou ulo amhf tpomomoinor g
TohhamhactaoTixhc dladxactog bootstrap Baciopévng otn gaouatind TuxveTnTa 1) onola
nou EMEXTEIVEL oNuavTiXd To €0p0¢ TwY eQappoywy Tne. Emnpdoieta e€etdlouye xar to
TEOBANUA EAEYYOU UTOVEGEWY OYETIY UE TOV AVUXALUIXWUEVO CUCCWEELTY| TETURTNS Td-
&ne. Eto mhaiolo autod, mpotelvetal éva amhog Eheyyog xavovixdtntoc (Gaussianity) xon
ToEouGIAloVTaL TOANES EQUPUOYES GE TEAYUATIXG, DEQOUEVAL.

Ocov agopd 1ic 800 TPOTOTOAGE TNG auTOTaAVOpoUxg dradactag bootstrap, 7
TeO TN avTIXaNoTd TO XAACOINd Oy fud AVUDELYHaTOAEDloG TOU aopd ot aveddoTNTES Xou
1oOVoPES Tuyaieg UETABANTES %ot EQUEUOLETOL GTOL UTOAOLTOL TOU QUTOTUAYOQOULXOU HOVTE-
Aou. H véa dradixaota avaderypatorewpiog aciletar o1 dnuovpyia aveldptntwy xat 166-
vouwyv droxtwy (wild) geudo-urtoloinwy o omola YtpolvTon XaTdAANAA THY pOTH TEOTNC
%o DEVTEPNC TAENC X0 TOV AVUXAUOXDUEVO CUOCWEEUTY TéTopTne TdEne (rescaled fourth
order cumulant) twv aveZdptntomv xa lobvouwy Tuyciny uetaintey (innovations) mou
emogpyovial 0T Onpovpyia TN Yeauuic oToyaoTixig avéling. Auty 1 Tporonoinon v
ornofa YeNoWoTOLEl TNV EXTYATELN TOU OVUXAMUNXOUEVOY CUCCWEEVTH TETUPTNG TAENE TOU
TOLOUCIIOTAXE OTO TEMTO UEEOC TNG OLATEPNC, EMEXTEIVEL TNV EYXULOTNT TNE AUTOTO-
Avopouxrig dadtxactiog bootstrap, o€ xAJGEC CTATIOTIXWY CUVIPTACEWY Yid TIC OToleC
1 xAacouxr) automaAvdpouxy dwadtxacto bootstrap amotuyydver. Xtn deltepn TPOTO-
rolnor, mpotelveton wior automaAvdpomxr dtadxacioa bootstrap cgapuocuévn éyt oty
YPOVOOELRd Tou TapaTreeital, aAAd ot éva xatdhhnho yetaoynuoationd ™. Mall ye
Onuovpyio e€aptnuévewv-draxtwy (dependent-wild) ¢eudo-unohoinwy opileton pior Suadi-
xaota bootstrap 1 omola efvon GUVETHS Yo plar UEYIAT AAEOT) CTATIOTIXWY CUYUPTACEWY
AL Y10 OTOYAOTIXES DLodixacies ot omoleg xavomotoly apxeTd yevixég aoveveic cuvinxeg
eldotnorg. Téhog, mpotelveton pla Sradcacion auTOUATNG ETAOYAS TWV TUPAUETPOY TOU
epgaviCovton oTic 600 dladixacieg bootstrap mou TEOTEIVOUUE, EVEH EXTETAPEVES TROGO-
HOLOGELS, TEQL oUPavouévwy ouyxploewy ue evahhaxtixég uedodoug bootstrap, delyvouy
TNV X0hT) CUUTERLPORA TwV VEWY dLadixaoty bootstrap oe delyyota TEnEQUoUEVOL Ue-

vélouc.
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Chapter 1

Introduction

Statistical inference for linear processes is a well developed area in time series analysis.
Linear stochastic processes are generated by applying a linear filter to a sequence of
unobserved innovations {g;,t € Z}, which are assumed to be independent and identi-
cally distributed (i.i.d.) with mean zero and finite variance 02 = E(¢?). If we denote
by X = {X},t € Z} the linear process and by {¢;,j € Z},
oo

> sl < oo,

j=—o00
the coefficients of the linear filter, then the generating equation of the X;’s is given by

oo

X = Z wjgt—ja o = 1. (1-1)
j=—00
Statistical inference for such processes is typically based on an observed stretch X7, Xo,
..., X, stemming from X. There are situations, however, where the outcome of an in-
ference procedure depends also on a certain higher order moments of ;. An important
and particularly difficult case in this context occurs, when this dependence refers to
the rescaled, fourth order cumulant of the innovations, that is, to the parameter
E(ey) — 302
77478 = —4'
O-E

To elaborate on such inference situations, denote by Ix (A\) the periodogram of the

time series X7, Xo, ..., X, i.e.,
2

1
]X(/\):% , AER,

n
§ Xte—iﬁ\
t=1

and consider the following general class of statistics, also known as spectral means,

S, = /7r (N Ix(N)dA, (1.2)

—T



where ¢ is some function ¢ : [-m, 7] — R. Class (1.2) is large enough and includes,
as special cases, several interesting examples of commonly used statistics in time series
analysis. For instance, for ¢(A\) = cos(Ah), with h some integer 0 < h < n, S, is the

sample autocovariance
n—|h]

1
Sn = — > XX,
t=1

which is an estimator of the autocovariance
VX(h) = E(XtXt+h)-

For p(A) = 1j94(A), x € [0,1], S, is the empirical spectral distribution function
&:Em:/&mw,
0

which is an estimator of the spectral distribution function

Fx(0)= [ feyir

Here,
(o @]

Z vx (h) cos(Ah)

=—00

1
A)=—
Fx(A) = o
denotes the spectral density of X, which by the assumption that 37 [ < oo,
exists and is continuous. It is well known, cf. Dahlhaus (1985) that under certain
regularity conditions,
Visa= [ ey B No.02),
as n — 0o, where

s =2 [ PONAW+ . ( | so(A)medA)Q (1.3)

—T —T

and “ 2 7 denotes weak convergence. As equation (1.3) shows, the variance ai of the
limiting Gaussian distribution depends on the unknown rescaled fourth order cumulant
Nae of the i.i.d. innovations ;. Thus, implementation of the above asymptotic result
for estimating the variance of S, or for the construction of confidence intervals for
™
JRE
—n

requires estimation of 7y ..



Another situation where interest in estimating the parameter 7, . occurs, appears
when one deals with frequency domain bootstrap methods for the periodogram. No-
tice first that the periodogram Ix(\) is commonly calculated at the so-called Fourier

frequency A; € F,,, where

]—"n:{)\j:%:j:—{ngl},...,[g}}.

It is well known that for linear processes, periodogram ordinates are asymptotically

exponential distributed and obey the following (approximative) multiplicative expres-

sion
1
xO) = OO +0r (=) (1.4
where the Op (1/4/n) is uniform in the frequencies \; and
1< ’
L) = 5— ; e exp{—it\;j}| ,
denotes the periodogram of the standardized innovations ey, e, ..., e,, €, = £;/0.; see

Brockwell and Davis (1991), Ch. 10, Theorem 10.3.1. Furthermore, for 0 < A; # A, <
7, it yields that

Con(Tx(N), Ix (W) = e () fxO) + 0 (-

see Paparoditis (2002). That is, periodogram ordinates at different frequencies are
asymptotically uncorrelated, although they appear to be weakly n~!'-dependent in
finite samples. Moreover, it can be shown that for any number of fixed frequen-
cies 0 < A < Ay < ... < A\, < m, the corresponding periodogram ordinates are
asymptotically independent; see for instance Brockwell and Davis (1991), Theorem
10.3.2. Expression (1.4) together with the aforementioned asymptotic independence
of the periodogram ordinates have been used by some researchers to bootstrap the
periodogram; see Franke and Hérdle (1992) and Dahlhaus and Janas (1996). Such
approaches work by ignoring the Op (1/4/n) term in (1.4) and by generating inde-
pendent pseudo-periodogram ordinates, % ();), which are obtained by replacing the
unknown spectral density fx in (1.4) by some estimator and by generating independent
pseudo-random variables U7, designed in a way to mimic the behavior of I.();). How-
ever, because such bootstrap approaches neglect the weak dependence structure of the
periodogram ordinates Ix();), they can not be successfully applied to statistics, the

distribution of which is affected by this weak dependence. Spectral means defined in



(1.2) are examples of such statistics. As a matter of fact, the second term in the limiting
variance ‘7520 of S,, exhibited in (1.3), is due to the weak and asymptotically vanishing
dependence of the periodogram ordinates; see Dahlhaus and Janas (1996) and Papar-
oditis (2002) for an extensive discussion. This failure of frequency domain bootstrap
methods which generate independent pseudo-periodogram ordinates, motivated many
researches to develop bootstrap procedures for the periodogram that imitate correctly
also its weak, n~!-vanishing dependence structure; see Janas and Dahlhaus (1994) and
Kreiss and Paparoditis (2012). Such bootstrap approaches need, however, a consistent
estimator of the rescaled fourth order cumulant 7, .

In the second chapter of the thesis, we consider the problem of estimating the
rescaled fourth order cumulant of the i.i.d innovations for linear processes. We derive
the asymptotic distribution of an existing lag-window type estimator as well as bias
and variance expressions. Based on these findings, a new estimator is proposed which
is based on the idea of pre-whitening. Due to an invariance property of the parameter
of interest with respect to linear filtering, an inverse transformation is not required.
The asymptotic distribution and the bias and variance properties of the new estimator
are derived. Its theoretical superiority is established for large classes of stochastic
processes. In addition, approximations of the asymptotic mean square error of the
new estimator are obtained which build the basis for some practical rules to select the
smoothing parameters involved in the estimation procedure.

Notice that if the underlying time series is not linear, the second expression in (1.3)
is typically replaced by certain integrals of the fourth order cumulant spectral density
of the underlying process; see Dahlhaus (1985). In this case, consistent estimators
of the corresponding expressions based on functions of finite Fourier transforms of
X1, Xo,..., X, have been considered by Taniguchi (1982). Keenan (1987) derived
asymptotic results for more general class of estimators of such quantities. However,
the inference problem considered in this chapter is different since we are concerned
with linear processes and we focus on the case where the parameter of interest is the
rescaled fourth order cumulant 7, . of the unobserved innovations €; and not the fourth
order cumulant density of the underlying process {X;,t € Z} or integrals thereof.

Bootstrap is a powerful tool for statistical inference in time series. This is mainly
due to the fact that for time series and for many statistics of interest, asymptotic
derivations are not only quite involved but the results obtained are also difficult to

implement in practise. Developing appropriate bootstrap methods for time series is a

4



challenging and difficult task and many approaches already exist in the literature.

A basic problem faced by bootstrap procedures for time series is that, in order to
be successfully applied to some statistics of interest, they have to imitate (at least to
the necessary extent) the (in principle complicated) dependence structure of the under-
lying stochastic process. This problem has been addressed by the different bootstrap
proposals for time series in a different way, which depends on the kind of weak depen-
dence assumptions imposed on the process generating the observed time series and on
the structure of the particular statistic of interest; see Bithlmann (2002), Politis (2003)
and Kreiss and Paparoditis (2011) for an overview.

Among the different bootstrap methods proposed in the literature, the autoregres-
sive (AR) and the autoregressive-sieve (AR-sieve) bootstrap, are quite popular due to
their easy implementation and their potential applicability to a variety of situations.
The basic idea is to generate new pseudo-time series by using an estimated autoregres-
sive model driven by pseudo-innovations generated by means of i.i.d. resampling of
the estimated (and centered) residuals of the autoregressive fit. While in practice and
for a given time series X, Xs, ..., X, at hand, the procedure is the same for the AR
and for the AR-sieve bootstrap, from a theoretical point of view, the two methods are
quite different. The AR bootstrap assumes that the underlying process follows a linear,
finite order autoregressive model, while the AR-sieve bootstrap considers the autore-
gression fitted to the observed time series as an approximation of the more complicated
autocovariance structure of the underlying process. In order to capture the entire au-
tocovariance structure of the process, the AR-sieve bootstrap requires, therefore, that
the order p of the autoregression fitted increases to infinity (at an appropriate rate) as
the sample size increases to infinity.

An interesting question is, of course, for which stochastic processes and for what
kind of statistics are autoregressive bootstrap methods valid. While this seems to
be clear for the AR bootstrap, the situation is more involved for the AR-sieve boot-
strap. This question becomes even more interesting when one takes into account that
a so-called autoregressive representation exists for a wide class of strictly stationary
stochastic processes. To elaborate, recall the well-known Wold representation according
to which every purely nondeterministic, stationary and zero mean stochastic process

X = {X;,t € Z} obeys a unique, infinite order moving average representation

Xt = chet,j, (15)
j=0



where
o0
-1 2
co =1, ¢; <0
=0

and {e;,t € Z} is a white noise process, i.e., the e;’s are uncorrelated, zero mean random
variables with variance 0 < 02 < oo. If X also possesses a spectral density which is
continuous and bounded away from zero everywhere in the interval [0, 7], then X
also obeys a so-called, autoregressive representation. That is, X; can be alternatively

expressed as

Xt = Za,th,j + €¢, (16)
j=1

where the innovations e, are identical to those appearing in Wold’s representation (1.5)

and the coefficients a; satisfy the stronger condition

oo
> lay| < oo
j=1

see Pourahmadi (2001) and Kreiss et al. (2011). Notice that expressions (1.5) and
(1.6), do not describe a model but just two alternative representations of X;. The first
is a representation of X, in terms of the history of the innovations {e;,¢ < 1} and the
second in terms of the history of the process X; itself. From a statistical point of view,
representation (1.6) seems to be more appealing since it allows for an estimation of the
coefficients a; based on the observed part of the process.

Although originally proposed for infinite order linear autoregressive processes, see
Kreiss (1988), Paparoditis and Streitberg (1991) and Biithlmann (1997), the question
about the range of validity of the AR-sieve bootstrap has been recently discussed in
Kreiss et al. (2011) in the context of general (strictly) stationary processes obeying
representation (1.6). Since the AR-sieve bootstrap succeeds in mimicking correctly
the second order structure of the underlying process X, it has been shown that if
the (asymptotic) distribution of a statistic of interest depends only on second order
characteristics, then the AR-sieve bootstrap will be asymptotically valid even if X is
nonlinear. Sample mean and nonparametric estimators of the spectral density are two
examples of such statistics; see Kreiss et al. (2011) for details.

For nonlinear processes and for more general statistics, however, like for instance,
for the important class of generalized means given by

1 n—m-+1
T,=f (— > g(Xt,Xm,...,XHml)), (1.7)

n—m-+1 —



m < n, with f and g appropriate functions, see Kiinsch (1989), the AR-sieve bootstrap
fails. Class (1.7) includes many statistics of interest in time series analysis, as special
cases. In the following, we discuss some examples.

(i) For m = 1 and f=g be the identity function, then 7, is the sample mean

1 n
T, = H;Xt.

(ii) For m <n
9(901,%; 71‘m) = ($1 *X1,T1 T2y .., T Im)v

and f be the indicator function, then

n—=k
1
Tn: <— E XtXt-i-k) k:O,l,,m—l) 5
n
t=1

that is, 7, is an estimator of the autocovariances (yx (0),vx (1),...,7x (m —1)).

(iii) For the function g defined as in (ii) and f as

Y1 Yo Ym—1
f (y07y1a "'7ym—1) = (_7 IEERREE) > ) Yo 7£ Oa
Yo Yo Yo

them 7, is an estimator of the autocorrelations (px (1), px (1), ..., px (m — 1)), px (h)
7x (h) /7x (0), given by

n—k
> Xi Xtk
T,= |5 —— k=12..m-1],
> X?
=1
(iv) For the same specification of the function g as in (ii) and f : R™ — R™! defined

as
f (3/07 Y1y -eey ymfl) = Wygilwmfl

where W,,_1 is the non-singular (m—1)x (m—1) matrix given by W1 = (yi—j)), 12t
and w,,_1 the (m — 1)—dimensional vector w,,_1 = (Yo, Y1, --- ym_l)T7 then T, is given

by

Here, 1-‘m—l - (/’Y\X (Z - j))7j:1727__,m_1 and /’)\/m—l = (:yX (1) 7/’77)( (2) ) "'7/f>\/X (m - 1))T
Recall from Brockwell and Davis (1991), Proposition 5.1.1, that 7x (0) > 0 and
T, = (x (i _j))i,j=1,2,..,k’ is non-singular for every £k € N. For m = p+ 1, T}, is

the Yule-Walker estimator of a, = (a1,, asyp, ..., ap,p)T, where a, are the coefficients of



the best (in the mean square sense) linear approximation of X; based on it past values
X1, ..., Xy—p, that is,
P 2 p 2
E(Xt > aj,pxt,j) = min E(Xt > rth,j> .
Furthermore, notice that since 7},,—1 ,, is an estimator of the lag (m —1) partial autocor-
relation; see Brockwell and Davis (1991), Definition 3.4.3, the class of statistics (1.7)
includes sample partial autocorrelations as special cases. The failure of the AR-sieve in
this case is due to fact that the uncorrelated innovations e; appearing in representation
(1.6) are replaced by i.i.d. pseudo-innovations, i.e., in contrast to (1.6), the process
generated by the AR-sieve bootstrap is a linear process driven by i.i.d. innovations.
What is striking, however, is the fact that the AR-sieve bootstrap may fail for the
above class of statistics even if the underlying process X is linear, that is, if X, is

generated as

X = i %‘Stfj, (1-8)

j=—o0
where {e;,t € Z} consists of i.i.d. random variables with zero mean, variance 0 < 2 <

00, finite fourth moments F(e}) < oo and the coefficients v; satisfy

> 1l < 0.

j=—00
Notice that the last summability condition implies that X possess a continuous spectral
density. If this spectral density is also everywhere positive, then the linear process
X also obeys the autoregressive representation (1.6). For the AR-sieve bootstrap,
however, the important point is that the stochastic properties of the two innovation
processes, that is of {g;} in representation (1.8) and of {e;} in representation (1.6),
could be different. For instance, the fourth order moments of e; and of ¢;, may be
different. This implies, that if the (limiting) distribution of some statistic of interest
depends on the fourth order moments of the innovations, then the AR-sieve bootstrap
may fail even if the underlying process is linear. Empirical autocovariances are a
prominent example of such statistics; see Kreiss et al. (2011) for details. Notice that
for linear processes, and apart from the Gaussian case, the two innovation sequences
in representations (1.6) and (1.8) are identical if the underlying process is causal and
invertible, that is, if

;=0 for j <O



and the power series
o0
U(z)=1+ ijzj
j=1

has no roots for |z| < 1. Since in this specific case ¥(z) is invertible, X; can be

expressed as
o0
Xt = E ant,j + &4,
j=1

where

Az)=1- Zajzj = U 1(2).

This representation is identical to the AR-representation (1.6) of X, i.e., {e;} and {e;}
are, in this case, identical innovation processes. X is then a so-called linear, infinite
order autoregressive process, see Brockwell and Davis (1991). It is well-known that
for this specific class of processes, the AR-sieve bootstrap works for the entire class of
generalized means (1.7); see also Biithlmann (1997).

In the third chapter of the thesis, we proceed with a re-examination of the well
known AR-sieve bootstrap for time series. Motivated by some limitations of this boot-
strap procedure in the case of linear processes, we propose a modification of the stan-
dard AR-seive bootstrap procedure which is based on a modification of the resampling
procedure used to generate the i.i.d pseudo-innovations. The difference is that the
pseudo-innovations are generated in a way which correctly captures (asymptotically)
the fourth order moment structure of the true innovations. For this, the estimation
results of the rescaled fourth order cumulant discussed in Chapter 2 are used. This
procedure is called the AR-seive with i.i.d. wild innovations and it is shown that this
modification extends the range of validity of the standard AR-seive bootstrap.

Furthermore, another AR-bootstrap procedure has been proposed, which is applied
to approximate the distribution of a large class of statistics, the class of so-called
generalized means given by (1.7). The basic idea is to apply the AR-bootstrap not to
the obsereved time series itself but to the thransformed time series which is used in
the estimator of the parameter of interest. This novel idea is investigated more closely
in the Chapter 3 of the thesis and a bootstrap procedure for the class of statistics
considered is proposed. The procedure is called the AR-bootstrap with dependent
wild innovations and it is proven that this procedure ia asymptotically valid for general

classes of stochastic processes.



Chapter 2

Inference for the Fourth Order
Innovation Cumulant in Linear

Time Series

2.1 Introduction

In this chapter we investigate more closely the problem of estimating the parameter
Nae. We first consider a nonparametric estimator of this parameter, the origins of
which go back to Grenander and Rosenblatt (1957). This nonparametric estimator has
been also used by Janas and Dahlhaus (1994), while a simpler and computationally
more tractable version has been applied in Kreiss and Paparoditis (2012). We derive
the asymptotic properties of this estimator and show how the entire autocorrelation
structure of the underlying linear process affects the behavior of the estimator. Our
theoretical deviations show that, the more correlated the time series is the worse is the
estimator, both in terms of bias and of variance. Motivated by these findings, a new
nonparametric estimator of 7, . is proposed, which exploits a basic invariance property
of the parameter of interest with respect to linear filtering of the time series. The
new estimator is based on pre-whitening the time series by means of an autoregressive
filter, the coefficients of which are determined in a way that reduces the correlation
of the time series at hand. The aforementioned invariance property implies that the
parameter of interest can be estimated using the residuals obtained by applying the
linear filter to the time series at hand and an inverse-transformation is not needed.

The asymptotic properties of the new estimator are investigated and its superiority

10



for large classes of stochastic processes is established. Our derivations allow also for
some interesting applications. For instance, we propose a modification of the multi-
plicative periodogram bootstrap investigated by Franke and Héardle (1992) which is
able to imitate the weak dependence structure of the periodogram. We also consider
the problem of testing hypotheses about the parameter 7, .. In this context, a simple

bootstrap-based test for the important null hypothesis
HO : 774’5 = 0

is proposed. Notice that rejection of this hypothesis can be interpreted as rejection
of a hypothesized Gaussianity of the time series. Finally, simulations show a clearly
improved performance of the new estimator compared to the existing estimator, where
the gains in terms of variance and bias reduction, especially for correlated time series,
could be very impressive.

The remaining of the chapter is organized as follows. Section 2.2 discusses the
nonparametric estimator for 74 . proposed so far in the literature and investigates its
asymptotic behavior. Section 2.3 introduces the new nonparametric estimator and
derives its asymptotic properties. Theoretical comparisons are made in Section 2.4,
while applications of the results obtained for bootstrapping the periodogram and for
testing hypotheses about the parameter 7, . are discussed in Section 2.5. The issue of
the practical choice of the filtering and of the smoothing parameters, involved in the
estimation procedure, is addressed in Section 2.6. This section presents also several
simulations that verify our theoretical findings and demonstrate the superiority of the
new nonparametric estimator proposed. Some interesting applications to real-life data

are also discussed. All technical proofs are deferred to the Section 2.7.

2.2 Nonparametric Estimation

2.2.1 Assumptions and Estimators

Throughout the chapter we assume that the underlying stochastic process X = { X, : t € Z}
which generates the observed time series X, Xs, ..., X,, follows equation (1.1) and that

the following condition is satisfied.

Assumption 2.1. Y, j%)? < o0, ¢y = 1 and {e,,t € Z} consists of i.i.d. random

variables with E(g;) = 0, E(e?) = 02 and FE(}) < .

11



The requirement of finiteness of eight moments of the innovations seems in-avoidable
since our derivations include calculations of the variance of estimators which are func-
tions of moments up to fourth order of the ¢,’s.

Assumption 2.1 implies that

SR x (W) =02 Y R ) it

h=—oc0 h=—o0 j=—00
00 0o
2 2
< )1l D PP [y < oo,
j=—00 h=—00

and, therefore, the process X possesses a spectral density fx given by

Ix ( =5 Z vx (h)cos(Ah), X € (—m, 7],

h=—00

which is twice continuously differentiable. Denote by

the autocorrelation at lag h € Z of X.

Recall that our aim is to estimate the parameter

where

Kie = cumy(e;) = E(e}) — 302

is the fourth order cumulant of ¢;. Following Grenander and Rosenblatt (1957), Ch.

6.5, the covariance ¥ x (h) = Cov(X7, X7, ), is given by

ve.x(h) = (Bey — 3(Eey)” Z Uiy + 2% (), (2.1)

j=—00

hence
Z Yo,x (h) = Ky Z Z @Z)JZ@/JiQLﬂ +2 Z 7?( (h). (2.2)
h=—o00 h=—o00 j=—00 h=—o00
Using the equality
00 0o 2
7x(0)
Z Z wjz'w%wrj - );4 ’
h=—00 j=—00 €

we get the basic expression

> (rax(h) = 29%(h), (2.3)

12



which relates the parameter 1, . of interest to the autocovariances of X and to that of
the squared process X2 = {X?,t € Z}. Based on (2.3), Kreiss and Paparoditis (2012)

proposed a lag-window estimator of 1, ., given by

} 1 ! h\ o
Mie = m Z w (Vn) (’Yz,x (h) — Q’YX (h)) (2.4)

Here
n—|h| n—|h|
~ 1 ~ ~ ~ 1 2 2 ~
Vx(h) = - D (X = Xo) (Xign — Xn), Aax(h) = - (X7 = Xon) (Xin — Xon),
t=1 t=1

. 1 n . 1 n
Xn:—E X, and XM:—E X2,
n n

t=1 t=1

are sample estimates of the corresponding unknown quantities appearing in (2.3). Fur-
thermore, w is a so-called lag-window and M,, = M (n) < n is a truncation parameter.
The lag window and the truncation parameter are assumed to satisfy the following

conditions.
Assumption 2.2.

(1) w: [—1,1] = R is a symmetric, non — negative and continuous function and

:/ K (u)e™ ™ du,

where K is a non — negative kernel function. Furthermore,

/ w? (u)du < oo.
1 M, R

(i@')ﬁ+—n—>0 as n— oo.
(@

satis fies

Notice that Grenander and Rosenblatt (1957) proposed a different but asymptoti-
cally equivalent estimator of the parameter 7, . which is based on equation (2.3). This

estimator is obtained using the relations

o0

> =2 [ i S o (h) = 2552 (0).
h=—o0 h=—o0
and
[ i
where
fxz (A 27r ; Ya.x (h) cos(Ah)

13



is the spectral density of the squared process X2. It is then easily seen that
27 fx2(0) — 47 f (A

(f_ﬂ fX<A>dA) |

which leads to the following frequency domain version of 7y,

Nie =

27TfX2 —47rf fX

ﬁ4,z—: -
(/. fX<A>dA)
In the above expression,
n—1
e = o ) S () cos(an)
x(A) = o h:_(n_l)w A vx (h) cos

and

. 1 == ho\
fxz(A\) = — w (—) Y2.x (h) cos(Ah),
h=—(n—1)

are lag window estimators of the spectral densities fy(\) and fx2(\) respectively; see

also Janas and Dahlhaus (1994).

2.2.2 Asymptotic Properties

Kreiss and Paparoditis (2012) established consistency of the estimator 7,.. The fol-
lowing theorem extends this result by establishing several additional properties of this

estimator.

Theorem 2.2.1. Suppose that Assumption 2.1 and Assumption 2.2 are satisfied. Then,

as n — 0o,

() MEG) — ) > [ uledde o 0)

wQ(ﬂf)dm(m,a +2 i pi(h))2,

h=—00

1

(it) MiVar (1,.) = 7% = 2/

-1

(111) \/> 7745)) 2N (0,7)2{).

Here, f}( denotes the second derivative of the spectral density of the process X =
{)?t te Z}, where X; = Z]_foo Vie;.

The results of Theorem 2.2.1 highlight several interesting features of 7j, .. First of

all, the variance of this estimator, given in part (ii) of the above theorem, has a simple

14



form and depends, apart from the parameter 7, . itself, also on the entire (squared)
autocorrelation structure of the underlying process X. In fact, the larger >_,° | p% (h)

is, the larger is the variability of 7, .. Furthermore, and since

2mfe(0) == > Wg(h),
h=—o0
with v5(-) the autocovariance function of the process )NC, the behavior of the bias given

in part (i) depends, among other things, also on the autocovariance structure of X.

Interestingly, for ny = 0 the bias term disappears, that is,
MZ2(E(fe) —Me) — 0 as  n — oo.
Finally, if X is an i.i.d. process, that is, if X; = ¢, then
n . 2
ME(B(ise) = me) >0 and  —Var (i) — 2 / wi(@)de(me+2) (25)
n -1
as n — oo where the last limit above is the lower bound that the variance of the

nonparametric estimator 7, . can achieve over all linear processes X which have i.i.d.

innovations g, with given first, second and fourth order moments.

2.3 An Improved Nonparametric Estimator

According to the results presented in the previous section, the behavior of the estimator
N4 s seriously affected by the autocorrelation structure of the underlying process X,
that is, the more correlated the time series is, the worse is the estimator 7, .. In this
section we propose another estimator of the parameter of interest. Toward this goal,
the following two observations are important.

First, the target parameter 7, . is invariant with respect to linear transformations

of the time series. To elaborate, let B be the shift operator, i.e.,
B¥X, = X, for keZ,
and write

X, =V(B)e;, where U(B)= ) ;B

j=—o00

Let
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be a linear filter. Then the filtered process Y = {Y;,t € Z} with

is obviously linear and both processes X and Y are driven by the same i.i.d. innovations
{et,t € Z}. Thus, applying the estimator 7, . to a time series Y7, Y5, ..., Y,, stemming
from the filtered process Y, or to a time series X1, X5, ..., X, stemming from the original
process X, estimates the same target parameter 7, ..

Second, given the above invariance property, the behavior of the estimator can be
improved by reducing the correlation of the time series at hand by means of applying
an appropriate linear filter A(B). Ideally, such a filter will transform the observed time
series to an uncorrelated sequence. For this purpose, different filtering approaches can
be considered. For instance, following Brockwell and Davis (1988) we can apply a
moving average filter by means of the innovations algorithm. Computationally more
attractive is a pre-whitening approach which is based on applying an autoregressive
filter. This approach has a long history in time series analysis, see Press and Tukey
(1956). It transforms the time series by fitting an autoregressive process, that is, by

considering the process U = {U;,,t € Z}, where
p
Upp = Xi — Z WjpXi—j-
j=1
Here (ay p, @z p, ..., a,,) " are the coefficients of the best (in the mean square sense) ap-
proximation of X; by means of a linear combination of the past p values X;_q,..., X;_,.

It is well known that, under Assumption 2.1, the coefficients a, = (a1, az2p, - - -, ap,p) "

are uniquely determined and given by
ap =1, 1%,
where

FP = (WX(Z - j))inj:lyzv“wp and ’YP = (’YX(])M] = 17 2a e 7p) 9

cf. Proposition 5.1.1 of Brockwell and Davis (1991). Notice that because of the invari-
ance of the parameter 7, . with respect to linear filtering, we get, along the same lines

as in obtaining (2.3),

3" (w(h) — 293 (1)), (2.6)
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where Yy (h) = Cov(Uyp, Upynyp) and yo,(h) = Cov(U?

2 .
i Uiy p,p) denote the autocovari-

ance of the filtered process {U; ,,t € Z} and of the squared filtered process {Ut%p, teZ},
respectively.
Summarizing the observations made so far, the following procedure to estimate the

parameter 7. is suggested. Let

p
Ut,p:Xt—Zaj,pXt—j, t=p+1Lp+2,...,n,

j=1

where @ ,, j = 1,2, ..., p are the Yule-Walker estimators of a;,,, j = 1,2, ..., p, obtained
by replacing the autocovariances vx (h) in the expression a, = T'; 14, by the correspond-
ing sample autocovariances Yx(h). Then, the alternative nonparametric estimator of

N4 We propose is given by

1 = h
~ AW o2
Nae = ;y(zj(o) h:_z(];_l)w (Mn) (72,U(h) 2 U(h))’ (27)
where N =n — p,
1 n—|h| R - R A - 1 no
/’?U(h) = N Z (Ut,p - Un) (Ut+|h|,p - Un)7 Un = N Z Ut,pa
t=p+1 t=p+1
1 n—|h| N P y - - 1 no
You(h) = 7 Z (U2, = Uzn) (U p — Uzn) and Usy = v Z Uz,
t=p+1 t=p+1

We stress here the fact that we do not assume that the time series at hand stems
from an autoregressive process. We rather use the autoregressive fit solely as a filtering
approach in order to reduce the correlation of the observations which will be used in the
nonparametric estimator of the parameter of interest. In view of the results obtained
in Theorem 2.2.1, we expect that such a filtering will improve the estimator. In the
following theorem we first summarize the asymptotic properties of the new estimator

M. Comparisons with 7, are given in the next section.

Theorem 2.3.1. Suppose that Assumption 2.1 and Assumption 2.2 are satisfied and
let p € N be fixed. Then, as n — oo

1
(i) MZ(E(fyc) — M) — /_1 wa(x)dxagZ;%’?o)Qﬁfg(O),

1

(i) -Ver @) » 7 =2

(i) 5 (.= B @0.)) 3N (0.72).
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where py(h) = yu(h)/yu(0) is the autocorrelation of the process {U, p,t € Z} and fg()\)
denotes the second derivative of the spectral density of the process U= {ﬁt’p 't e Z},
where Uy, = S°°0 2 e, and the coefficients {c;,, j € Z} are given by > o Cip? =

j:—OO 7P

(1= 320 aip2?) 05 ¥527).

2.4 Comparisons

In this section we compare the estimators 74 . and 7, . based on the asymptotic results
obtained in the previous sections. For this, we first impose the following condition on

the underlying process X.

Assumption 2.3. The spectral density of X satisfies

inf A) > 0.
Aé%m]fX( ) >

Assumption 2.3 restricts slightly the class of linear processes considered since it
excludes processes for which the power series
U(z) = Z V;2’, 2 €C,
j=—00
has zeros on the unit disc. Recall that by Assumption 2.1 the spectral density fx ()
of X is continuous. This together with Assumption 2.3 above, implies that the process
X obeys a so-called autoregressive (AR-) representation, that is, X; can be expressed

as
00

Xt = Z CLth_j + Vg, (28)

j=1
where the a;’s are defined as the coefficients of the best (in the mean square sense)

linear approximation of X; based on its infinite past {X;_1, X;_»,...}. Furthermore,

{v,t € Z} is a white noise innovation process, i.e.,

E(v) =0, Var(v) = o?

v

Cov(vg,vs) =0

for t # s and which may be different from the i.i.d. innovation process {&;} appearing
in (1.1); see Pourahmadi (2001) for details. We stress the fact that the autoregressive
representation (2.8) of X; with respect to the white noise innovations {v;,t € Z} is

different and should not be confused with the linear AR(c0) representation
Xt = Z?Tthfj + &
j=1
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with respect to the i.i.d. innovation process e;, which exists if X is a causal and

invertible linear process. That is, if the coefficients v, in (1.1) satisfy
;=0 for j<0 and VU(z Z¢]ZJ7AO for |z| < 1;

cf. Brockwell and Davis (1991). In fact, representation (2.8) of a purely station-
ary stochastic process, possessing a continuous and positive spectral density fx, is
an autoregressive analog to the well-known, moving average Wold representation, see
Brockwell and Davis (1991), Chapter 5.7. To give an example, the non-invertible, first

order rnoving average process
Xt = 9815,1 + & with |0| > 17

does not possess a linear AR(o0) representation with respect to the i.i.d. innovations

;. However, it has the AR-representation

Xt = Z (Ith_j + vy,

j=1

with respect to the white noise series {v;, t € Z}, where

aj=—(=1/0Y, j=1,2,... and v =g +(1—06%)> (=0) e ;

7j=1
see also Kreiss et al. (2011).

Consider first the variance of the two estimators 7, . and 7y .. For this it suffices to

compare the two series

[e.9] o0

S A ad Y k().

h=—00 h=—00

Interpreting,

> ok (h)

h=—o00

loxlly = and lpully =

as global measures of correlation of the processes X = {X;:t € Z} and U = {U,, :
t € Z} respectively, it yields that if U is less correlated than X, that is, if

loullz < [lpx |2,

then the estimator 7, will be (asymptotically) more efficient than the estimator 7, ..
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The following theorem shows that filtering indeed achieves this goal and that the
advantages of filtering in terms of variance reduction are uniform over the order p of
the autoregressive filter used, provided this order exceeds some given value py, which
depends on characteristics of the underlying process X. Furthermore, allowing for the
order p of the autoregressive filter used, to increase to infinity at an appropriate rate, the
pre-whitened estimator 7, . becomes asymptotically efficient, that is, Var (7, ) achieves
the lower bound given in (2.5) which corresponds to the case where the underlying

process is uncorrelated.

Theorem 2.4.1. Suppose that Assumption 2.1, Assumption 2.2 and Assumption 2.3

are satisfied.

(i) There exist py € N (po depends on the process X), such that for all p € N with

P > po, it yields that
1- VC“” (ﬁ475)
im ————=

< 1. 2.9
n—oo Var (ﬁ475) ( )

(i) If p = p(n) — oo such that p = o((n/log(n))'/*), then

1
. n ~
lim ﬁVar(m,g) = 2/_ w?(z)dz (2 + 774,5)2. (2.10)

n—00 n 1

Notice that py could be as small as py = 1. For instance, for the first order moving

average process

Xt =&+ 9515,1 with 6 7£ O,
it is true that for any p > 1, the variance of the estimator 7). is strictly smaller than
that of the originally proposed estimator 7,.. For example, by simple algebra and
using p = 1 one gets

S <h>:2{”3);(?;%;?}@(1)“<2p?x<1>+1= 3 A,

where the last inequality follows because

px (1) + p% (1)
(1 —px(1))?

due to the fact that, for any linear first order moving average process it is true that

h=—00 h=—00

<1,

N | —

lpx(1)] <

We next consider the biases of the estimators 7, and 7y.. A comparison of the

bias expressions given in part (i) of Theorem 2.2.1 and Theorem 2.3.1 respectively,
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requires, among other things, the comparison of the second derivatives at frequency
zero of the spectral densities of the processes X and U respectively. Although it seems
difficult to derive results for the most general case, such results can be established for

the important case where the underlying linear process X is causal and invertible.
Assumption 2.4. The process X generated as in (1.1) satisfies

Y; =0 for 7<0 and \I/(z):1+zwjzj7é0 for |z| < 1.
j=1

As previously mentioned, Assumption 2.4 is stronger than Assumption 2.3. In fact
if Assumption 2.4 is true, then X; can be expressed as a linear AR(oc0) process with

respect to the i.i.d. innovations g, i.e.,

(o.)
Xt = Z Cth_j + &y,
j=1
where the ¢;, j = 1,2,... are uniquely determined as the coefficients of 27, j = 1,2, ...

of U~1(2). The next theorem summarizes our findings regarding the comparison of the

biases of the two nonparametric estimators considered.

Theorem 2.4.2. Suppose that Assumption 2.1, Assumption 2.2 and Assumption 2./

are satisfied.

(i) There exist py € N (po depends on the process X), such that for all p € N with
P > po, it yields that

Tim M (|E(ae) = el = [EQse) = macl) <0. (2.11)
(i) If p=p(n) — oo such that p = o((n/log(n))'/*), then
M (E () = ) = o(1). (2.12)

As the above theorem shows, if X belongs to the important class of causal and
invertible linear processes, then the advantages of pre-whitening are extended also to

the bias of the new nonparametric estimator 7, ..

2.5 Applications

2.5.1 Periodogram Bootstrap

As mentioned in the Introduction, the multiplicative periodogram bootstrap procedure

investigated by Franke and Héardle (1992) and Dahlhaus and Janas (1996), consists of
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generating pseudo periodogram ordinates as

* N * . n
L) = FOn0;, x =2 =12 (5],

where the U’s are independent pseudo-random variables designed to mimic the be-
havior of I.();) which is the periodogram of the standardized innovations e; = ¢;/o..
The independence of the U}’s and, consequently, of the periodogram ordinates I (M),
restrict the range of validity of this frequency domain bootstrap procedure to statistics
the distribution of which does not depend on the fourth order moments of ;.

Using the improved estimator 7y, of 74, proposed in this chapter, we can easily
modify this bootstrap procedure to overcome this limitation; see also Kreiss and Pa-
paroditis (2012). This can be achieved as follows: Generate i.i.d. random variables

ef,es, ..., et such that

E(ef)=0, E(ef)*=1 and E(e)* = +3.

Let )
1 n
VD) — + i)
17(A) = omn ;et exp{—itA;}|
be the periodogram of e, e5, ... el and define bootstrap pseudo periodogram ordi-

nates I¥();), 7 =1,2,...,[n/2], as
Ix(N) = fx(\) L)
It is easily seen that for 0 < \; # A\, <,

Cov(IF(Ny), IF (M) = —B=

© 4rp]

that is, I (\;) mimics the covariance structure of the periodogram I.();). The pseudo-
periodogram ordinates I3 ();) can now be used to approximate the distribution of some
statistic which is based on the periodogram ordinates Ix(\;). For instance, consider
the important class of spectral means (1.2). For this, we can define

ST =203 GO0,

XjEFn
with
IE(\) =T5(=))), for X\ <0,

as a discrete bootstrap analogue of .S,, and use the distribution of
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to approximate the distribution of
Lo = /(S - /[ ),
Asymptotic validity of this bootstrap proposal can be established along the same lines

as in the proof of Theorem 3.1 in Kreiss and Paparoditis (2012).

2.5.2 Testing Hypotheses

Apart from the estimation problem considered so far, the results presented in this
chapter allow also for the construction of tests of hypotheses about the parameter 7, .

A special case in this context concerns the test
Ho:me=0 vs. Hy:m.#0. (2.13)

This case is of particular interest for several reasons. First of all, and as we already have
seen in the Introduction, the case 14, = 0 simplifies considerably statistical inference.
Furthermore, 74, = 0 occurs if X is a Gaussian time series, that is, if X; obeys the

causal representation
o
Xy = E Yi€t—j,
j=0

with innovations &; that are i.i.d. Gaussian random variables with mean zero and
variance o2; see Fan and Yao (2003), Proposition 2.1. In this context, rejection of Hy
can be interpreted as rejection of a hypothesized Gaussianity of the underlying time
series. Now, to test hypotheses (2.13), one can exploit the results of Theorem 2.3.1
and use as test statistic the studentized quantity
V(e — Epy (Tae))

VM, 7y '

Here Ep,(71.) denotes the expected value of 7. under the null hypothesis and 7y

t, =

denotes a consistent estimator of the standard deviation 7y = /7. Notice that if

Ny =0and M, =0 (n1/5), then

n

Mn EHO (ﬁ475) — 07

which implies that for testing the null hypothesis (2.13), the test statistic simplifies to

_ \/ﬁﬁ4,s
V Mn?U .

tn
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Such a test will reject Hy whenever

|tn| > Zlfa/Qa

where z1_,/2 denotes the upper «/2-percentage point of the standard Gaussian distri-
bution.
A simpler way to implement a test of hypotheses (2.13), however, is the following.

Notice, first that under the null hypothesis, the limiting distribution of

n

E(m,g - 774,5)

depends only on the autocorrelation structure of the filtered process {U; ,,t € Z}, since
in this case we have that

1 00 2
’/M%ﬁ“ 2 N o, 8/_1w2(93)dx ( 3y ,@(h)) ,

h=—o00

see Theorem 2.3.1. Furthermore, for p large enough, we expect that the filtered time
series Uy, t =p+1,p+2,...,n, will behave as a time series of approximately uncor-
related random variables. That is, the limiting variance will further simplify to
1
8 / le(IB)dIB.
These considerations suggest the following simple bootstrap procedure to perform a

test of hypotheses (2.13).

Step 1: Calculate 7y(0) based on the filtered time series (/jt,zn t=p+1,p+2,...,n.

Step 2: Generate independent random variables Uy, ;, Uy, ..., U} having a

Gaussian distribution with mean zero and variance 7 (0).

Step 3: Using U;,,,U, ., ..., U, calculate the estimator given in (2.7).

Denote this estimator by 7 _.

Step 4: Repeat Step 2 and Step 3 a large number of times, say B times, and
reject Hy if
Me < qnjp O Mie > Gi_go-
Here and for 3 € (0,1), g5 denotes the S-percentage point of the distribution
of M., i.e., P(;. < qj) = B. The percentage point gj can be consistently

estimated using the B bootstrap replications of the estimator 7 _.
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Notice that in Step 2, the Gaussian distribution has been chosen for the sake of
convenience only. The U;’s could be also generated as i.i.d. random variables having a
distribution with mean zero, variance 7y (0) and zero fourth order cumulant. Asymp-
totically, this will not affect the results obtained, because the limiting distribution of

n/M,ns . depends, under the null hypothesis, only on the second order structure of
the filtered process {U;,,t € Z}; see Theorem 2.3.1(iii). Now, it is easily seen that

under the assumptions of this theorem,

1
th = ‘/Mﬂnﬁig 2N (0,8/_1w2(:1:)dx>,

and this justifies asymptotically the use of the critical values ¢’ /2 and ¢}, Jo In Step 4

of the above bootstrap algorithm to perform the test.

2.6 Practical Considerations and Numerical Ex-

amples

2.6.1 Choice of Parameters

Implementation of the estimator 7, . requires the choice of two parameters: The order
p of the autoregressive filter used and the truncation lag M,, applied for the calculation
of (2.7). In this section we give some guidelines of how to choose these parameters in
practice.

Concerning the choice of the autoregressive order p, we recommend the use of

Akaike’s information criterion (AIC). That is, p should be selected as the minimizer of

AIC(p) = argmin,, {log v (0) + %} (2.14)
over a range of values of p where 7;(0) is the estimated variance of the filtered process
{Up, t € Z}.

The difficult problem to solve concerns, certainly, the choice of the truncation lag
M,,, which is common in both nonparametric estimation procedures for 1, . considered
in this chapter. Towards a suggestion for how to choose this parameter in practice, we
give first the following alternative expression for the bias of 7y,

0 L[ N _220(0) 1
EMye) —Mae = 7 /1 2?w(z)dx {2Zh2p,2]( 2U Z h?pyir(h) } (MQ)

n

_ # /_11 z?w(z (2c0 (0) pfy () — pav (h)) + 0 (]\;2)

n h—oo
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where,

pu(h) =w(h)/w(0) pau(h) =r2u(h)/12u(0), and cr(0) =5(0)/720(0).

Using assertion (ii) of Theorem 2.3.1 and equation (2.3) an alternative expression for
the variance of 7y, is given by
! 1 M, [ < i M,
Var(ny.) = 2/ w? (z)dr ———— pau (h) | +o (—") :
) =2 [ i e 30 =
Thus, it follows by straightforward calculations that the value of M,, which minimizes

the (asymptotic) mean square error

E(ﬁ4,s - 774,5)2 = Var(ﬁ47€) + (E(m,s) - 774,5)27

is given by
( o 2y /5
2wy ( Z h?(2¢0(0)pi; (h) — pQ,U(h))>
M Pt " — . n'/s (2.15)
W, ( > P2,U(h)>
\ h=—00
Here,

1

1
le/ v*w(xr)dr and WQI/ w?(x)dw.

1 -1
From (2.15), a crude estimator M of M"Y can be obtained by replacing cy(0),
p2.u(h) and py(h) by sample estimators and truncating the infinite sums to some finite,
small value K. As a simple practical rule, we use K = 1 in all calculations presented in
this section. This choice can be also justified by the fact that, since U = {U,,,t € Z}
is a filtered process, we expect that for p large enough, many of its autocorrelations

pu (h) will be close to zero.

2.6.2 Numerical Simulations

We first investigated numerically the finite sample performance of the two nonpara-

metric estimators 7, . and 7y .. For this, we generated time series of length n = 100

and n = 500 of the ARMA(1,1) model
Xt == ¢Xt_1 + 98,5_1 + Et, (216)

with different choices of the parameters ¢ and # and different distributions for the i.i.d.

innovations ;. In particular and concerning the choice of the pair of parameters (¢, ),

26



the following seven models have been considered:

Model I: (0,0.8)
Model II: (0,-0.8)
Model III: (0,1.25)
Model IV: (0, —1.25)
Model V: (0.8,0)
Model VI: (—0.8,0)
Model VII: (0.8,0.8)

Notice that Model III and Model IV are non-invertible moving average processes
with parameters that are the reciprocal values of the parameters of the invertible
counterparts given in Model I and Model II respectively. Furthermore and concerning
the innovations, the following four distributions with mean zero and unit variance have

been selected:

(I) Uniform on [—v/3,v/3], (. = —1.2)
(IT) Standard Gaussian, (ny. = 0)
(III) Logistic, (ne = 1.2)
(IV) Double exponential, (7. = 3.0)

In all calculations the Bartlett-Priestly lag window has been used.
For the calculation of the estimator 7. we have used in the simulations the the-

)

oretically derived optimal value M of the truncation lag given in formulae (2.15),
where the unknown quantities appearing in this formulae have been evaluated using
the true parameters of the underlying model. In contrast to this, for the new estima-
tor 1y, we selected the parameters p and M,, as suggested in Subsection 2.6.1, where
the estimator M. proposed there has been used. In other words, we compare the
performance of the new estimator 7, based on data driven choices of p and M,, with
the performance of the estimator 74 . based on the theoretically optimal choice of M,,.

Figure 2.1 and Figure 2.2 present boxplots of both estimators obtained over R = 100
replications, of each one of the seven models and of each one of the four distributions

of the innovations considered. The corresponding mean square errors of both estima-

tors are presented in Figure 2.3 and Figure 2.4 respectively. Furthermore, Table 2.1
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and Table 2.2 present the Mean (Mean) and the standard deviation (Std) of the two
estimators considered.

As it is seen, the new estimator 7, performs extremely well and leads to impres-
sive improvements especially in the case of the more correlated time series (models
V,VI and VII). This can be verified by examining the behavior of the boxplots over
the different models and the different distributions of the innovations considered as
well as the behavior of the corresponding mean square errors. In fact, it seems that
pre-whitening the time series stabilizes the mean square error of estimation over the dif-
ferent autocorrelation structures considered towards the case of a time series consisting

of non-correlated observations.
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Figure 2.1: Boxplots of the distributions of the estimators 7, . (left panel) and 7.

(right panel) for the different models, the different innovation distributions considered

and the sample size of n = 100 observations.
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Figure 2.2: Boxplots of the distributions of the estimators 7, . (left panel) and 7.
(right panel) for the different models, the different innovation distributions considered

and the sample size of n = 500 observations.
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Figure 2.3: Mean square error (MSE) of the two estimators for the different models,
the different innovation distributions and the sample size of n = 100 observations.
+ — — — + refers to the MSE of the original estimator 7j, ., while o — — — o to that of

the new estimator 7, ..
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Figure 2.4: Mean square error (MSE) of the two estimators for the different models,
the different innovation distributions and the sample size of n = 500 observations.
+ — — — + refers to the MSE of the original estimator 7j, ., while o — — — o to that of

the new estimator 7, ..
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0 ¢ Est. UNIF NORM LOGI DEXP
Mean Std Mean Std Mean Std Mean Std

Nae | -1.200 0.000 1.200 3.000

Mie | -1.053 0384 -0.002 0.658 0.742 1.281 1.736 1.706
0.8 0.0

Mie | -0.994 0.239 -0.151 0.570 0.616 1.043 2.054 1.877

Mae | -1.113  0.386 -0.060 0.650 0.570 1.163 1.597 1.553
-0.8 0.0

e | -0.996 0.191 -0.068 0.598 0.614 1.034 1.965 1.735

M4e | -1.036 0.416 -0.124 0.559 0.769 1.399 2.080 2.156
1.25 0.0

e | -0.756 0.345 -0.013 0.551 0.449 0.937 1.325 1.316

Mae | -1.152  0.387 -0.134 0.575 0.689 1.371 1.906 1.988
-1.25 0.0

e | -0.764 0.342 -0.124 0.520 0.477 0.908 1.200 1.206

Mie | -0.641 2268 0.175 0.964 1.119 2942 1.596 3.763
0.0 0.8

Mie | -1.167 0.238 -0.097 0.541 0.887 1.314 2.358 1.847

Nae | -1.475 1.684 -0.391 0.647 -0.283 2.284 -0.573 2.407
0.0 -0.8

e | -1.183 0.196 -0.088 0.435 1.009 1.093 2.390 1.883

M4, 0.108 4.292 0.155 1.243 0.896 3.495 1.644 3.979
0.8 0.8

e | -1.006 0.318 -0.030 0.549 0.693 1.053 2.098 1.907

Table 2.1: Mean (Mean) and standard deviation
R = 100 replicates for different models and n = 100 observations. NORM, UNIF, LOGI

(Std) of the two estimators over

and DEXP refer to the normal, the uniform, the logistic and the double exponential

distribution of the innovations ¢; respectively with mean zero and unit variance.
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0 0} Est. UNIF NORM LOGI DEXP
Mean Std Mean Std Mean Std Mean Std

Nae -1.200 0.000 1.200 3.000

Nae -1.128  0.239 0.031 0.264 0.920 0.771 2.649 1.355
0.8 0.0

Tae -1.130 0.079 -0.005 0.250 1.083 0.731 2.705 1.336

Nae -1.144 0.224 -0.028 0.307 0.963 1.166 2.584 1.840
-0.8 0.0

Tae -1.144 0.101 -0.064 0.243 1.204 0.671 2.701 1.144

Nae -1.156  0.233 0.001 0.326 0.992 0.779 2.531 1.630
1.25 0.0

e -0.833 0.189 0.012 0.267 0.734 0.611 1.862 1.178

Mae -1.130 0.2292 -0.036 0.302 0.943 0.993 2.526 1.543
-1.25 0.0

M -0.793 0.179 -0.042 0.238 0.668 0.573 1.760 0.924

Nae -0.801 1.497 0.023 0.452 0.716 2.079 2.115 3.113
0.0 0.8

e -1.197 0.074 0.017 0.292 1.139 0.860 2.546 1.073

Mae -0.988 1.809 -0.054 0.473 0.544 1.920 1.399 2.392
0.0 -0.8

Tae -1.195 0.072 -0.063 0.226 1.112 0.587 2.655 1.376

Nae -0.715  2.247  0.075 0.475 0.900 2.447 2.236 4.023
0.8 0.8

e -1.125 0.090 -0.006 0.259 0.973 0.687 2.544 1.032

Table 2.2: Mean (Mean) and standard deviation (Std) of the two estimators over
R = 100 replicates for different models and n = 500 observations. NORM, UNIF, LOGI

and DEXP refer to the normal, the uniform, the logistic and the double exponential

distribution of the innovations ¢; respectively with mean zero and unit variance.
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We next consider the problem of testing the hypothesis
HO MNae = 0 VS. Hl “MNae 7£ 0.

For this, the size and power behavior of the bootstrap-based testing procedure proposed
in Subsection 2.5.2 is investigated. Time series from model (2.16) have been considered
with different choices of the parameters (¢,6) and different i.i.d. innovations ;. The

innovations have been generated as
€ = (1 - 7)215 + yw, e [07 1]7 (217)

where {z;,t € Z} and {w;,t € Z} are i.i.d. random sequences, independent from
each other and such that z; has a standard Gaussian distribution and w; has one of the
following three distributions: uniform, logistic and double exponential. The parameters
of the distribution of w, have been chosen so that ; has mean zero and unit variance.
Notice that specification (2.17) of the innovations allows for the examination of the
size and of the power properties of the bootstrap-based test.

In particular, the case v = 0 corresponds to the null hypothesis while the case
v > 0 to the alternative. Table 2.3 and Table 2.4 present the empirical rejection
probabilities calculated over R = 1000 replications for sample sizes of n = 100 and
n = 500 observations respectively. The test statistic described in Subsection 2.5.2
has been used, with the smoothing parameters p and M, selected according to the
recommendations made in Subsection 2.6.1. The critical values of the test have been
estimated using B = 1000 bootstrap replications.

As Table 2.3 and Table 2.4 show, the test retains the correct size over the different
model structures considered. It also has reasonable power for deviations from the null
even for the sample size of n = 100 observations. Furthermore, the power of the test
increases as the sample size increases and/or as the deviation from the null becomes

larger, that is as the parameter v becomes larger.
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9 ¢ o |GAUSS UNIF LOGI DEXP
v=20.0 vy=05 =10 =05 =10 vy=05 ~v=1.0
5% | 0.046 0.233  0.881 0.169  0.283 0.402  0.670
v 10% | 0.087 0.338  0.924 0.262  0.373 0510  0.774
5% | 0.055 0.193  0.666 0.156  0.264 0.352  0.589
e 10% | 0.103 0.277  0.778 0.238  0.371 0439 0.694
5% | 0.057 0.195  0.712 0.161  0.254 0.307  0.569
s 00 10% | 0.116 0200  0.820 0.249  0.354 0.399  0.677
5% | 0.052 0.116  0.288 0.103  0.174 0.233  0.438
1.25 0.0
10% | 0.096 0.184  0.388 0172 0.268 0.325  0.535
5% | 0.050 0.117  0.306 0.102  0.158 0.228  0.368
125 0.0
10% | 0.092 0.187  0.408 0.175  0.237 0.305  0.485
5% | 0.054 0.226  0.836 0.179  0.274 0.416  0.706
voe 10% | 0.110 0.326  0.900 0.270  0.388 0535  0.800
5% | 0.049 0.222  0.877 0.164  0.281 0.395  0.657
o 0s 10% | 0.105 0.315  0.935 0.266  0.387 0.505  0.764
5% | 0.078 0.181  0.556 0.193  0.289 0.355  0.590
E0e 10% | 0.134 0.260  0.701 0.262  0.393 0.465  0.692

Table 2.3: Empirical rejection probabilities over R = 1000 replications of the
bootstrap-based testing procedure for different models and innovation structures and
for sample size of n = 100 observations. GAUSS, UNIF, LOGI and DEXP refer to the
Gaussian, the uniform, the logistic and the double exponential distribution used in the

equation (2.17) to specify the innovations.
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9 ¢ a |GAUSS UNIF LOGI DEXP
v=0.0 vy=05 =10 vy=05 =10 v=05 v=10
5% | 0.050 0.920  1.000 0.528  0.808 0.952  1.000
ool 10% | 0.102 0.960  1.000 0.626  0.860 0.974  1.000
5% | 0.050 0.880  1.000 0.444  0.780 0.904  1.000
e 00 10% | 0.100 0.930  1.000 0552 0.850 0.948  1.000
5% | 0.040 0.892  1.000 0434  0.782 0.916  1.000
s 00 10% | 0.104 0.946  1.000 0554 0.866 0.958  1.000
5% | 0.046 0.458  0.972 0.254  0.480 0.700  0.940

1.25 0.0
10% | 0.100 0.588  0.984 0.346  0.590 0.798  0.978
5% | 0.050 0.420  0.974 0.252  0.526 0.716  0.962

125 0.0
10% | 0.092 0570 0.982 0.356  0.614 0.808  0.970
5% | 0.052 0.934  1.000 0514 0.802 0.926  0.998
e 00 10% | 0.110 0.970  1.000 0.628  0.888 0.956  0.998
5% | 0.050 0.932  1.000 0.482  0.796 0.930  0.998
s 00 10% | 0.104 0.968  1.000 0.612  0.888 0.960  0.998
5% | 0.068 0.886  1.000 0.450  0.760 0.924  0.992
e s 10% | 0.118 0.948  1.000 0.580  0.842 0.962  0.996

Table 2.4: Empirical rejection probabilities over R = 1000 replications of the
bootstrap-based testing procedure for different models and innovation structures and
for sample size of n = 500 observations. GAUSS, UNIF, LOGI and DEXP refer to the
Gaussian, the uniform, the logistic and the double exponential distribution used in the

equation (2.17) to specify the innovations.
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2.6.3 Real-life Data Applications

We applied the testing procedure for the hypothesis
Ho:me=0

proposed in this chapter to eleven different datasets commonly used in the time series
literature and to which linear models have been fitted after transforming them to sta-
tionarity by taking first differences and/or logarithms. For every time series considered,
the test has been performed with smoothing parameters p and M,, selected according
to the suggestions made in Subsection 2.6.1. Table 2.5 presents the different time series
considered together with the source from which they have been obtained, the sample
size n, the estimated value 7); . and the p-value of the test based on B = 1000 bootstrap
replications.

The results presented in this table are quite interesting. In particular and except
from only two out of the eleven time series considered, the null hypothesis 74, = 0 has
been rejected at the commonly used levels. These results, do not only imply that for
many time series in practice, the hypothesis of Gaussianity can not be justified, but
also that statistical inference based on the simplifying assumption that 74, = 0, may

lead to erroneous conclusions.
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Time Series n N4,e Bootstrap p-value

1 | Series A, (first difference) 196 | 1.2818 0.0075
Box and Jenkins (1970), p.525

2 | Series C, (first difference) 225 | 13.128 0.0000
Box and Jenkins (1970), p.528

3 | Series D, (first difference) 309 | 2.7310 0.0000
Box and Jenkins (1970), p.529

4 | Series J, (first difference) 295 | 10.886 0.0000
Box and Jenkins (1970), p.532-533

5 | German Egg Prices, (first difference) 299 | 1.2714 0.0024
Fan and Yao (2003), p.113

6 | GNP Data, (first difference) 222 | 2.2919 0.0002
Shumway and Stoffer (2006), p.144

7 | Recruitment Series, (first difference) 452 | 2.8355 0.0000
Shumway and Stoffer (2006), p.109

8 | Southern Oscillation Index, (first difference) 452 | 0.04956 0.8836
Shumway and Stoffer (2006), p.222

9 | Federal Reserve Board Production, (first difference) | 371 | 5.1467 0.0000
Shumway and Stoffer (2006), p.160

10 | Global Temperature, (first difference) 97 | -0.6983 0.1993
Shumway and Stoffer (2006), p.58

11 | Paleoclimatic Glacial Varves, 633 | 0.5131 0.0303

(first difference of log-transform)

Shumway and Stoffer (2006), p.62

Table 2.5: Bootstrap p-values of the test of the hypothesis 74, = 0 for different real-life

data sets transformed to stationarity by applying first differences (first diff.) and/or taking

logarithms (log-trans.)
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2.7 Auxiliary Lemmas and Proofs

In this section we give the proofs of the main theorems presented in Chapter 2 sup-

pressing at some places cumbersome but straightforward calculations.

Throughout the proofs we use the function n¢, (r; hq, hy) which is defined by

;

n— 5 {|ha| + [Pa] + (b1 = ha)} + 1,

if = —{n =& (hal + bl + (b1 = h2)) f s (1 = o) = 3 [1ma] = [h]
n —max {|h1|, |h2|},

; 1 _ 1 N
non (rihishg) — 41 7= 3 =) = ] = ol o § (hn — ha) + 3 [h] = [l
n =L {{ha| + 1| = (b1 — ha)} -

3 (1 —h2) + 5[] = |hall,....n = 5 (lho| + [ha| = (b1 — h2)),

if r
0,

elsewhere.

\

Note that for every r, hy, ho,

0<¢n(r;hi,he) <1, and lim ¢, (r;hy, he) =1

n—o0

see also Anderson (1971), Problem 19, p. 555. Furthermore, denote by
Cum (Xy, Xisnys Xithgs s Xean,) = cumy (hy, hay ...y hy)
the (r + 1) order joint cumulant of (X;, X;in,, Xithys -y Xegn, ), and by
Cum (Xt 7Xt+h17Xt+h2Xt+h3) = cumxz (hi, ha, h3)

X2

X7 t+h3)

the 4" order joint cumulant of (th, X? thys

t+hy°
The first lemma deals with the absolute summability of certain cumulant functions for

linear processes.

Lemma 2.7.1. Suppose that Assumption 2.1 is satisfied. Then,
oo

(Z) Z ‘Cum (XtaXt+h17"-7Xt+h7)| < 00,

hi,ha,....;hr=—00

(ii) > |C’um (Xt 7Xt2+h17X152+h27Xt2+h3)‘ < 0.

hi,h2,h3=—00
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Proof:

(i) Following Rosenblatt (1985) the cumulant Cum (X¢, Xiyp,, ..., X¢4n,) is given by

o0
Cum (Xt7 Xt+h17 teey Xt+h7) =8 Z ¢T¢T+h1”'wr+h7

r=—00

where ~g is the 8" order cumulant of €;. Then,

[e.e] [e.e] oo
Z \Cum (Xt7 Xt+h17 ceey Xt+h7)’ - |’78| Z Z wT¢T+h1 "‘1/}T+h7
hl,hg ..... h7:—oo hl,hg ..... h7:—oo r=—00

0o 8
SIVsI(Z rw) < 0.

(ii) It is known that for random variables Z1, Zs, Z3, Z4 the cumulant Cum (Z1, Za, Z3, Z4) is

given by

Cum (21, Zo, Zs, Za) =B (21 ZoZ324) — {E (Z1) E(Z32524) + ...+ E(Z4) E (212223)}
~{ B2 %) E(2321) + B (2125) E(Z21) + E (21 2:) B (Zs2) }
+ Q{E (21) E(Zy) E(Z3Z4) + ... + E (Z3) E (Z4) E(leg)}
—6E (2) E(Z,) E (Z5) E (Z4) (2.18)

2 2
Thus, Cum (X2 Xf+hl,Xt+h2,Xt+h3) equals

oo

E Vs Yy g Cum (E4—jy Et—jos Etrhy —jsEtthy—jas Et-+ha—jsEt+ha—jas Et-+hs—jrEtths—js) -
J15J25+++,J8=—00

Evaluating the above cumulant of the g;’s, we get after straightforward calculations that

o0

Z ‘Cum (Xt27 Xt2+h1 ) —th—i-hgﬂ X152+h3) }
hl,hQ,h3:—OO

<{|B ()| +28B (1) | (5)] + 352 (e1) + 642E° (3) +420 | E ()| E* (<) }

) {456E4( 2) + 96| E ()| B (2 }(Z ]1/1]) (Z ])

j=—o00 j=—00

X

(3
+24{ (2) |E (£9)] + 242 (1) + 1092E* (£2) +504 | E ()| B2 51)}
(>

x ) (Z \1/;]) + {562 (1) + 96 | B (1) | E* (3) } ( Z |¢j)
j=—o00 j=—o00 j=—00
oo 8
< c( > Iwr\> ,
r=—00
which yields the expected result. O
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Let 71 be the same estimator as 7y, with X,, replaced by p = E(X;) and Xa,, by

W

o =FE (XtQ) In general, and in the following, refers to estimators using the true means

w o~

p and po, while, ” to estimators using the sample means X, and Xs,. The following

lemma shows that the asymptotic properties of the estimator 74, are the same as those of

the estimator 1y .

Lemma 2.7.2. Suppose that Assumption 2.1 and Assumption 2.2 are satisfied. Then, as

n — oo

(i) E (ﬁ47a) =F (77475) + 0 (\}ﬁ + ]\in) y

on . n - 1 M,
(i) EVW (Ma,e) = EVW (Mae) + O <\/m + n) ,

(iii) \/MTn (s = B (ia)) = |3 (ne = B (e)) + O ( \/Jl\Tn + Aﬁ") .

Proof:

Let, A A
o N, i
Nie = 2.0 and 74. 2 (0)

where

~ (n—1) B\ . R (n_1) N )

N, = h:_%_l)w <Mn> (F2.x (h) = 27% (h)) and N, = h:_%_l)w <Mn> (Fo,x (h) — 27% (R)).

To prove assertion (i) of the lemma observe that for |h| <n —1,

n—|h| n n—|h| n

~ 1
Yo,x (h) = 2,x (h Z > O (XF - p2) (X2 — o) - 3 ( 2~ )(st—ﬂz)
t=1 s=1 t=1 s=1
—|h n
52 3‘ ‘Z(Xf—mﬂxz—m).

n
t,s=1

Taking expectation on both sides yields

n—lh| n n—|h| n
~ ~ 1 1
E(ex (b)) =EMx (h) - — 12X (51— — Yo,x (s —t —|hl)
t=1 s=1 t=1 s=1
n— |h| <
g D ax (s 1) (2.19)
t,s=1

The second term on the right-hand side of (2.19) equals

(n—1)
1

b=—(n—1)
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which is in turn, bounded in absolute value by

LS paxoi=o(%).

b=—00
Similarly, the third and the fourth term on the right-hand side of (2.19) are O (1/n). Thus,

we conclude that

B G (1) = B Gax (0) +0 (). (2.20)
For 7% (h) we have
n—|h| n
T ) =R )+ 5 > S0 (X ) (X — ) (Xs = ) (X, — )
t,r=1s,q=1
n—|h| n
+ % tzl 21 (Xpsn) — 1) (X — 1) (X — ) (Xg — )
_ 2 n
$ U S™  ) (6— ) (K— ) (5 )
t,r,s,q=1
9 n—lh| n
-3 SN (X =) (X — 1) (X = ) (Xy — p)
t,r=1 s=1
n—lh| n
= 2SS K ) (K = 19) (K = 1) (Krapy — 1)
t,r=1 s=1
n—lh| n
+ 2(nn_4‘h‘) > (X — 1) (Xpp g — 1) (X — ) (X1 — po)
r=1 s,t=1
9 n—lh| n
+ Zl Zl (Xg — 1) (Xpyn) — 1) (X5 — ) (Xe — p)
t,r=1 s,q=
n—|h| n
2 (nn_5 " DY (X =) (X — p) (X — ) (Xy — )
t=1 s,q,r=1
20— n) '
— e D Y () (X = ) (X — ) (X — 1) (2.21)
t=1 s,q,r=1

Taking expectation on both sides of the equation (2.21), we can show that

E (7% (h)) = E (3% () + O (i) : (2.22)

To see (2.22) consider for instance the 6 term of (2.21). Using the relation (2.18) we get

n—lh| n

S S (s = = D) (¢ = B v s = = R + 7 (5 = ) (= )
t,r=1 s=1
+ cumx (|h] .t =7+ [h] ;s =) }. (2.23)
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The first term of (2.23) equals

(n=1)

X (h) Z non (7’; h70> rX (T - ’h‘) )

r=—(n—1)

2(n — |hl)
n3

and is bounded in absolute value by
(n * kD) |
——5— x ()] Z [vx (r = [hl)]
r=—0o0
Moreover, the second term of (2.23) is bounded in absolute value by

2y 5 i (= 4 Do (& )] < 200 S o a6 - B

r=1 z,b=—(n-1) z,b=—00
Thus, the second term of (2.23) and similarly, the third term are O (1/n?). Finally, for the

last term we have

n—|h| n n—|h| n—1
2
ZZcumX (|hl,t =r+1|hl,s —7) < — Z lcumx (|h|,z + |h|,b)]
t,r=1 s=1 " r=1 zb=—(n—1)
2(n—|h >
< 20D S e (]2 + 1l 1)
z,b=—00

From the above derivations, we conclude that (2.23) is O (1/n). Similar arguments show that
the expectation of all the other terms on the right-hand side of (2.21) which follow the term

E (7% (h)), have order at least equal to O (1/n). Thus, from (2.20) we get

~ ~ M,
E(N,) = E(N,)+ O (n) . (2.24)
Using a Taylor series argument observe that
~ ]’\7” Nn ~2 2 Nn Nn 2 2 2
Me == = + (vx (0) =% (0 — + —=(x (0) =% (0))", (2.25
Uit t OB CIUREEID) ( 7§(0)> 55 Gk (0 =% (0) (225
where min {73{ (0),7% (0 } < ¢ < max {7X ), 7% (0)} Cauchy-Schwartz’s inequality yields
then
E
and
E|(Na (
Therefore,

(2.26)

44



and, similarly,

E (774,6) = 7§<1(0) E(Nn) + 0 <\}ﬁ> : (2.27)

Thus, the required result is obtained from (2.24), (2.26) and (2.27).

To prove assertion (ii) of the lemma notice first that by tedious algebra we have that

Cov (2,x (h1) ,72,x (h2)) = Cov (2,x (h1),72.x (h2)) + O (le) :

Cov (Jo,x (h1),7% (h2)) = Cov (Fa,x (M), 7% (h2)) + O <nl2> ’

and

n2

Cov (3% (h1) 7% (ha)) = Cov (7% () 7% (h2)) + O <1> |

From the above relations we get
~ ~ M2
Var(Ny) = Var(N,)+ O (712"> . (2.28)

Calculating the variance of equation (2.25)

Var (7,.) = — o Var(N,) + Var( (3% (0) = 7 (0)) o)

0 7 ()
Avar(Be@ 0 - 0))

B 76;(0)@0@ (N (3% (0) 2% (0) o)

bl o (M @ 0 -3 )

_ 74;(0)00@ (M0 (3% (0) = 7% (0)), Ng, (7% (0) = 7% (0)%),

w0 =G :
und
Cov (o, (3% 0) =% 0) B) < \Var(F)yVar (53 0) =23 0) ) =0 ().
Similarly,
Con (Mo (3% 073 0), 2 (53 0) -3 0)7) =0 (147
and
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Thus,
1

n ~ 1
EV&T (M) = mMn Var(Ny,) 4+ O (\/E) . (2.29)

Along the same lines and with 7., N, and 7% (0) replaced by Nae, N, and 73 (0)

respectively we can show that

n N 1
7 Var (ie) =

A i WM Var( )—I—O( ! ) (2.30)

VM,
Finally, equations (2.28), (2.29) and (2.30) yield assertion (ii).

Consider next assertion (iii) and notice that
n—|h| n—|h|

Fx(h) =Fx(h) + % (n=X0) > (X =)+ % (b—X0) D> (X — 1)
Ln —n|h| (1 _yn)27

Using
) XM (X, — p) = Op (V).

(1) Yo" (X7 = p12) = Op (),
(D) 4 — X, = Op (1/v/n),
(IV) p2 — Xon = Op (1/y/n),
we get that
e ()= (1) O () and 5% (1) =T 1)+ 0n (7).
and, therefore,

y ~ M,
Nae = Nae + Op (7) . (2.31)

From equation (2.31) and assertion (i) we get that

n n n
_ve_Evs = _VE_NE _NE_EVE
M, (7a, (4,6)) M. (T — Mae) + A (a, (Tla,e))
n 1 M,
- — (7. e — E (7. € O - ;
Mn (T]47 (T]47 )) + P <\/m + n )
which concludes the proof. O
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Proof of Theorem 2.2.1:

Let )
~ n—1
N, ~ h
Tie = =, where N, = w(—) Fo.x (h) — 27% (h)).
! 7% (0) h;—l) M, et x ()

(i) By a Taylor series argument and as in the proof of Lemma 2.7.2 (i), equation (2.25),
we get

- 1
E(fue) = 57~

WX(O)E(N") +0 (L) . (2.32)

vn
Now,

n—1

= X o () (BGux ) 28GR ),
h 1) "

=—(n—

where E (7% (h)) equals

n—|n|
= ZE (Xe = 1) (Xoqyn) — 1) (X = 1) (Xpn) — 1)
t,s=1
n—|h| n—|n|
n—|h 1 1
Dy LS )+ 5 S e s ) (- 9
t,s=1 t,s=1
n—|h|

1
+t Zcumx(|h|,s—t,s—t+|h|)

t,s=1

n—1
n—|h
BRIy b (15 L 0% (1)
=—(n-1)
1 n—1
+ > n(rshh)yx (r+ |h]) yx (r = |B])
r=—(n—1)

n—1
> bulrih h)cumy (], —r,—r + |h]).

r=—(n—1)

Furthermore, it is easy to see that

B G (1)) = "oy ).

Thus,
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*—(n—l) h=—(n—1)
M n—1
o U h\
—Ez Z<%Mh<E%ﬂ)
—Myp r=—(n-1)
n—1

By Lemma 2.7.1 and the summability conditions

Z Bl lyex (h)] <00 and Y W% (h) < oo,

h=—o0 h=—o00
we get that
n—1
- h M, 1
E = - - y— " _
F)= 3 wfyr) Gaxm-zm) o (2 )
h=—(n—1)
Furthermore

MZ [E(Nn) - 54,5] = Mg % [w (Min) = 1] [’Yz,x (h) — 2”7?( (h)}

—2M? Z [2,x (h) = 2% (R)] + O (]\f:> . (2.33)

The first term on the right-hand side of (2.33) can be written as

i le [2,x (h) = 27% (h)]+2 i Mhz [a.x (h) = 29% ()],

h 2 h 2
=—M; (m) h=M7+1 (m)

for any integer M* < M,. Consider the first term of (2.34), For any ¢ > 0 we can

(2.34)

choose § = ¢ (¢) so that for |h/M,| < 6,

w (M ) —1 :
— ————+0C,| <&, where C,:= /x2w () dx.
(35) >
Thus for M* = [§M,], the first term in (2.34) is within
r_ > 2 _ 9.2 _ _ 942
d=eY Rlax ) -2% ()] of —C,Y " s 17 D2 () = 205 ()],

which implies that this term converges to

Cu 3 B [ () — 293 ()],

h=—o00
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as n — o0o. Since |w (z)| < 1 we have
I1—w(x) 2
BT < 52 lz| > 6.

The second term in (2.34) is in absolute value no greater than

4
ﬁ Z h? |ya,x (h) — 2% (),
—[5M]+

which converges to zero as n — oc.

The second term on the right-hand side of (2.33) is bounded in absolute value by

2M2 D" fax (B) =295 ()| <2 ) b |yex (h) — 29k (h)],
h=Mp+1 h=Mn+1

which also converges to zero, as n — oo. Thus,

M2 [E(Nn) . m,g] = —Cy Y B [rax (h) — 29% (W), (2.35)

h=—00

as n — 00. Using equation (2.32) and Lemma 2.7.2 (i), we conclude that

Cp e
Tim M?(E(7,.) = ..) = 2 0) > 0 [rax (h) = 2% (h)]
h=—o0
— Cy—ts 27 £2(0),

———27
" 029%(0)
where f’i denotes the second derivative of the spectral density of the process X =

{X,:t €7}, where X, = > Vi

(i) Notice that

vaFa = S (B (1) Coriax () ax ()

h1,he=—(n—1)
_42( o (1 Yo (2) Con (e () 3% (1)
+4 ni ( ) (hi)Cov (7% (M), 7% (ha))

hi,ho=—(n—1)

= Vi, —4Vy,, +4V3, (say).

We show that

i =2( 2 )’

U=—00

w? () dz + O <i> | (2.36)

Le—u__
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n 1
EVM -0 (E) : (2.37)

and

n 1
E%’n =0 (E) . (2.38)

To see why relation (2.36) is true notice that

nCov (Yo,x (h1) ,Y2,x (h2))

> onl(r; hhhz){%,x (r)ye,x (1 + [h| = |ho|) +r2.x (7 + |h1]) y2,x (7 — [h2])
r=—(n—1)

+cumye (|h|, —r, |he| — 7’)}

Thus, (n/M,)V1, equals

1 h h —
M . w (ﬁ)w (ﬁi) Z On (7“; hl,hQ){’YQ,X (T)’sz (7“-1- |h1| - |h2|)

r=—(n—1)
+yo,x (1 + [ha]) y2,x (r — |ha]) + cumx: (|

r,lhal = 1) }. (2.39)

We deal with each of the three terms of (2.39) separately. Consider first the term

1 & &= h h
W > o ritns (Yo (42 ) v -+ 1) e 7 = 1
" h1ha=—Mn r=—(n-1) "
1 Mp+n—1

min[u—Mp,v—M,,(n—1)]
Y >

u,v=—(Mp+n—1) r=max[u—My,v—Mp,—(n—1)]
SET) — )y x (u) (v)

w w U v
Mn Mn 27 ’)/27X ’

f (2.39), where the sum over r is equal to zero if the lower limit is greater than the

Gn (r;r —u,v —71)

(2.40)

upper limit. The difference between (2.40) and

m min[u—Mp,v—Mp,(n—1)]

1 _ _
TS 2 onrir == (T ()
" wv=—m r=max|[u— My, v—M

M,, M,,
—Mp,—(n—1)]
X Yo,x (U) 12,x (V)

(2.41)
is, in absolute value, bounded by

1(2+51) S 3 o ()l ax @]

u=—00 v=m+1
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which can be made arbitrarily small if m (< M,,) is sufficiently large taking into account
that |w ()| is bounded and > 2 |yx (r)] < oo. Since w (x) is continuous, we have

for |u| < m,|v| < m and M, sufficiently large that

b (5 () (57

for r such that —M, <r—u < M,, —M, <r—v < M,, and —M, <r < M,. For

<, (2.42)

lu| < m,|v] <m,|r| <m+ M,

5m + 3M,,

On (ryr —u,v—r)>1-—
n

Thus, the difference between (2.41) and

v=—m
can be made arbitrarily small for n sufficiently large. Now, since

M, 1
1
A E w? (ML) —>/ w? (z)dr, as M, — oo,
no = n —

1

(2.43) converges to

Counsider next the term

1 . h h
- Z Z (r; hy, ho)w (—1)11) (—2) Yo,x (1) Ya.x (7 4 |ha| — |hal)
M, hi,ha=—Mp r=—(n—1) M, My
u+2M,  min{u,v}+M, U—§ VvV — 8§
i ST S e () e ()

nu——(n 1) v=u—2My s=max{u,v}—M,

X Y2.x (u) y2.x (v), (2.44)

of (2.39). Using the same arguments as for (2.40), the right hand side of equation

(2.44) equals

min{u,v}+ My

XY et s gw (52w (5 e a0 000

" uv=—m s= max{u,v}—My

(2.45)
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Taking into account (2.42), the difference between (2.45) and

> _Z Mian <Min> Yo.x () Y2,x (), (2.46)

can be made arbitrarily small for n sufficiently large. Thus, for m sufficiently large the

limit of (2.46) is

Finally, consider the term
n—1
1 h h
A Z Z ¢n (75 hy, ho)w <ﬁ1)w (Mz) cumxz (hy, —r,hy — 1)
hi,ho=—Mpn r=—(n-1) " "
of (2.39).This term is in absolute value no greater than

i Y e rsni=0(5).

7,8,t=—00

by Lemma 2.7.1. Thus,

1

Vi =2( 3 raxw) [ vt +0 (o)

U=—00

! 1
— 82 f2, 2 () d ‘
8 fy (O)/lw (x)dx + O (Mn)
To show (2.37), notice that

n—|hi| n—|ha|

e, & e () () 2 2 (o)t =)
(Xe = 1) (Xopppa) = 1) (X5 = 1) (X o) — M)) (2.47)

Using the notation
Cum (X}, X7, X., Xy) = cumyx2 (r —t,z —t,g—t),

we get from Lemma 2.7.1 that

[e.e]

Z lcumx x2 (r —t,z —t,g — t)| < 0.

t,r,z,g=—00

6
To bound (2.47) we evaluate the expectation F (H Zz-) of the random variables Z;
i=1

with F (Z;) = 0,7 =1,2,...,6, using all possible decompositions in products of triples
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E(Z,Z;Zy) E(ZZnZy,), of quadriples and pairs E (Z,Z,;Z7;) E (Z,,Z,), and of pairs
E(Z,Z;) E(ZyZ)) E (Z,,Z,) for indices 1, j,k,l,m,n € {1,2,...,6} and the cumulant
term Cum (21, Za, Z3, Z4, Z5, Zg). Evaluating the expansion term in (2.47) in that
way, it follows by similar arguments that all terms have at least order O(1/M,,). For

instance, the term

n—1 n—lh1| n—|ho|

1 h h
i X w(a)e(5E) 5 e tha) Cum (X2 X2 X Koo,
n ) n n

hi,ho=—(n—1 t=1 z,s=1

appearing in the evaluation of the expectation term in (2.47) is bounded in absolute

value by
L sup wi(@) fo: v (9)] f: lcum = (v, b, 2, B)| :o<—1 )
Mn —1<z<1 ' Mn

g=—00 7,b,2,h=—00

Finally, to see (2.38), notice that

Cov (73 (h1) , 7% (ha))

n—|ha]| 2 n—|ha] 9
= Cov({% Z (Xi — 1) (Ko — M)} ,{% Z (Xe = 1) (Xopin) — N)} )
—|h1| n—|h2|
— i4 Z Z COU( — ) (Xt+|h1| ,U) (Xs—p) <X8+|h1| - M) )

(Xe = 1) (Xayng) — 1) (Xg — 1) (Xgipa) — M))

Thus,
n—1 n—|hi| n—|hz|
n 1 h1 h/2
Eva,n = W Z w <M)w ( ) Z Z Cov( (X — ) (Xt+\h1| — u)
hi,ha=—(n—1) t,s=1 z,q=1

(Xs — 1) (Xs+|h1\ - ,u) ,(Xe —p) (XZ+|h2\ - N) (Xg — 1) (Xq+|h2\ - ,U))

(2.48)
8
To bound (2.48) we evaluate the expectation F (H Zi) of the random variables Z;

with £ (Z;) =0, i =1,2,...,8, using all possible decompositions in products of
E(ZiZ;ZyZy) E(Z1 220 2;)
E(Z:Z;Zv 22y Z) E (20 2,)
E(Z120n2,2,) E(Z; Z;) E(ZiZy),
E(Z:Z;22020) E(ZnZnZr)

E(Z:.2;24) E(ZnZnZ,) E(Z4Z)
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E(Z:Z;) E(ZkZn) E(Z12m) E(Z0Z,) |

for indices 4, j, k,l,m,n,r,h € {1,2,...,8} and the cumulant term Cum (21, Zs, Z3, Z4,
Zs, Zs, Z7, 7). Evaluating the expansion term in (2.48) in that way, it follows by
similar arguments that all terms have at least order O(1/M,,). For instance, consider
the case where product of four autocovariances appears

n—1 n—|hi| n—|hs|
1 h
Mon? Z w<Mln) ( )"‘Vb Z Z’YX (h2)yx (t = 2z + [ha)

" hi,ha=—(n—1) t,s=1 2z2=1

X yx (t —s—|hi|)vx (s — 2 — |ha|) .

The above expression is bounded in absolute value by

Min _f£f§1w2($)< i 7x (r)|>4 =0 (Min) .

T=—00

Thus, from (2.36), (2.37) and (2.38) we get that

1

Evm —2(272)( )/w2(x)dx+O(Min).

-1

Lemma 2.7.2 (ii) and equation (2.29) imply then that

1
n Lo 81 f% (0) 5 1 M,
EV&r(m’g) = T)?O)/w (x)dz+ O (\/m—i—?),

from which assertion (ii) of the theorem follows since

o0

Z Yo,x (h) :774,57)( )+ 2 Z ¥ (h); see (2.3).

h=—o00 h=—o00

(iii) Notice that because

(n—1)

NEREREESR Mig(;)w(Mi) (e (1) = E G ()0 {W))
2.49

it suffices to consider the limiting distribution of the first term on the right hand-side

of (2.49) only. We have

\/MI (nz_l) w(Mi) G (h) = EGax(h)
—zf w(5r)s Z{UtUt+h— (Ur4)} + 0p (1)

= W+ op (1) (say),
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where

Uy = Xt2 — M2 = Z R N 03 Z 1%2

J1,j2=—00 j=—o00
Write
U =U,r + Vi,
where
L L
V=Y. Gnbpneipcin—o> 3 ¥
t,L = 1 YPja€t—j1Et—j2 — O¢ 3
J1,j2=—L j=—L
and

Vi= Y, UnUpfincj—02 > WI42 > Uibpe e,

l71],]52|>L |71>L —L<j1<L,|j2|>L
Notice that U, 1 depends only on a finite number of the i.i.d. innovations ¢;’s. Let
n L h\ 1w
Whr =24/ — — | = U, LU, — F (U, LU, )
=25 3w (5 ) >~ Uabisns = B Ueallns)
In order to show that

1

anN(O, 8% fe (O)/ w? (z) dx) as n — oo,

-1

it suffices by Proposition 6.3.9 of Brockwell and Davis (1991), to show that

(a) Wo. = Vi for all L, where

n—oo

1

Yi ~ N(o, 87212, (0) /

-1

wQ(x)dx>,

fxz 1s the spectral density of the process X2 = {Xt%L,t € Z} and Xt%L =
L

(Zj:*L wjgtfj)Q'

(b) Yr 2Y as L — 0o where

1

Y ~ N(O, 872 2, (0) / w? (z) daz),

-1

(¢) limp o limsup, . P (|W, — W, 1| > ¢) =0 for every € > 0.
To establish (a) notice that £ (W, ) = 0, while
1
Var (W) = 87 frs (O)/ w? (z) + O (—) :
» 7 . Mn
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Write,

nL— ZZtln

where

i = \/_

Let {Q,} be a sequence of integers such that (M, + 2L) /Q, — 0 and @Q,/n — 0 as

Z ( ) {UtUinr — E (U LUsinr) }-

n — oo. Furthermore, let
Qn = [ n (M, + 2L)]
and

1
Y',nz Z i—1)Qn 1,L+---+Z‘Qn7Mn72L,L 3 j = 1,2,,[77,/@”]
J @{ (—-1)Qn+ J }

Observe that Y1, Yo, ..., Yjn/q,)n are ii.d. and that
T [n/Qn]
VR T X
Thus, it suffices to consider the asymptotic distribution of

[n/Qn]

V n/Qn Z

Moreover,
1 Qn—M
4
E(Y;') =75 Y. E(Z22.2.2,), (2.50)
n ts,rq=1
where
E(Zfl), ift:S:T:q,
E(Zfo), ift=r#s=qort=s#r=qort=q#s=r,
E(Z%Z,Z;), if two indices are same, different with the other two indices
E(ZiZ.Z,Zy) =

which are different with each other
E(Z3Zs), ift=r=q#sors=r=q#tort=s=q#rort=r=s#g,

E(Z,Z;Z.Zy), if all indices are different.

We proceed by evaluating the expectation term E (Z,Z;Z,.Z,). Now, consider for

instance, the case where t = s = r = ¢. Then,
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QniMn

B =g 3 B(Z)

noog=1

o4 Mn hy ho hs hy \ G
e X (i) () e ()« () X A

" hi,h2,h3,ha=1 t=1

{UtUisiis = B (UsUit) H{UnrUsipar = B (UinUrsipain) |
X {Ut,LUt+|h3\,L - F (Ut,LUt+|h3\,L)}{Ut,LUt+\h4|,L —F (Ut,LUt+|h4|7L)}}-

The last expression above equals

21 o hy h h b\ Ol
gz, 2\ )o\an) v n) v an) 2 POV W Wi Wi

™ hi,ho,h3,ha=1 t=1

o4 Mn hy hy hs By \ O
“vie > v () e () () X

™ h1,ho,h3,ha=1 t=1

{E (Wi Winy) EWengWing) + E Wi Weng) E(Wen,Wen,)
+ E(Win,Wing) E(WienoaWins) + Cum (Weny, Wi hgs Weng, Wen,) }, (2.51)
where Wy, = Uy LUy — E (Ut,LUt+|h|,L)- Denote by
cumg,y, (h, he, hs) = Cum (Uy 1, Upiny 1, Urbho L Uths 1)

the fourth order joint cumulant of U 1, Upip, 1, Uriny.r and Ui, 1 and let vy (hy) =

Cov (U1, Uptn, 1), be the autocovariance function of {U; 1,t € Z}. From Lemma 2.7.1

we get that

Yo Y D cumur(hi by hy) < o (2.52)

h1=—00 hg=—00 hg=—00

The first term of (2.51) which refers to E (W5, Win,) E (Wi pWin,) equals
24(Qn — M) I h hy hy
i e ) ) e

hi,ha,ha,ha=1
{WU,L (0)yo,L (Ihe| = 171]) + 70,2 (h1) Yo.L (h2) +cumy g (Jha], 0, |h2|)}

x {302 (0) vz (1hal = Ihs]) + 0.2 (hs) 0, L (hs) + cumus (Jhs) .0, |h4|>}}. (2:53)

To show that (2.53) converges to zero, consider for instance the term

24 [2]L 0 Qn_Mn M h h
" %QQ S w(ﬁ)u(ﬁ) vz (o] — [P

hi,ha=1
M,
n h3 h4
SCE) P ha| — |ha]).
< 3w () (5 ) e O = )
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The above expression is bounded in absolute value by

292, (0) (Qu+ M) & &
= N2 > e (hel = (D] Y o (Jhal = |hs])]
n¥n h1,ha=1 hs,ha=1
24 2 ( )(Qn+M> (Mn—1) (Mn—1)
= o > e Ml (1) D0 e (2)lém, (2), (2.54)
n r=—(Mp—1) 2=—(Mp—1)
where

M,+r, r=-M,,...0

M, r =20,

0, elsewhere.

Note that for every r,
0<on,(r)<1, and lim ¢y, (r)=1.
n—oo

Thus, equation (2.54), is bounded by

242 " M
Yoz <)CSQQ ! <Z lw.L (7 ) —0 as n— oo.

r=—00

Consider next from (2.53), the term

%L%g%— Vo) % w(%)w(ﬂ’?n)vUL<|h2\—rhl|>

hi,ha=1

n h4>
X cum hsl|,0,|h
g () (53 ) cumoe nal . 1.

The above expression is bounded in absolute value by

2470 (0)|(Qn + M) -
202 > o (ol = 1)l Y lewmu (|hs| 0, [al)]
nn hi,ha=1 h3,ha=1
(Mn*l) Mn
2y, (0)(Qn + M)
= M, Q2 > e e (7)) D leumy (bl 0, [hal)
nyn r=—(M,—1) h3,hg=1
241 Qn+ M,) < -
< 2 (M 02 S hor ) Y- leump (hs] 0, [hal)]
r=—00 h3,h4zfoo

—0 as n— 0.

By similar arguments it follows that all the other terms of (2.53) as well as the second

and the third term of (2.51) converge to zero as n — oo. Finally, the fourth term of
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(2.51) is bounded by

2(Qn+ M,) =

M2Q2 E ‘Cum(Ut,LUtth\,La Ut,LUt+|h2\,L7 Ut,LUt+|h3\,L7 Ut,LUt+|h4\,L|7
noen hi,ha,hg,ha=1

which converges to zero as n — oo because of Lemma 2.7.1. Next, consider £ (Y] n4)

in (2.50), when all indices ¢, s,q and r are different. Using the same arguments as in

dealing with the case t = s = ¢ = r we get

o4 M h h h ha ) e
a My (L2 5 —
1,12,N3,"4=

t,r,s,q=1

{E (Wt,h1WT,h2) E (WS,hswfl,th) +E (Wt,h1Wq,h3) E (WS,hzwr,hz;)

+ E <Wt,h1 Ws,h4) E (Wq,hQW’r‘,h:;) + Cum (Wtﬁla WS,hQ; Wq,hga WT‘,h4) }

(2.55)
The first term of (2.55) which refers to E (Wi, Wi, ) E (W p, Wy n,) equals
2 () (2 () (2
M2Q2 Y\, )"\, ) Y\, M,
hi,ha,hs,ha=1
L0 (r = 0y (r = 4 Vel = Vul) + 30z (7 = £+ hr) s (7 — £+ o)
+eumy g (|ha|,r—t,r —t+ |h2])}
X {’YU,L (s = q@)yw,L (s —q+|ha| —|hs]) + .0 (s —q+ hs) L (s —q+ ha)
+CumU,L(|h3|,S—q,8—q+|h4|)}}; (2.56)
which is bounded. To see this, consider for instance the term
24 Qn*Mn Mn hl h2
YEreE Y wer=twels—q > w (ﬁ)w (M ) Y.L (r—1t+ |ha| = M)
noen ¢ s rg=1 h1,ho=1 n n
M,
~ hs hy
— — ha| — |hsl).

The above expression is bounded in absolute value by

24 Qn_Mn Mn

202 Z oo (r =) [l (s —q)| Z oL (r—t+ [he| — [ha]) |
NN ¢ g g=1 hi,h2=1
M,
X Y s (s — g+ bl = |hs]) |,
h3,hqa=1
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which is equals to

(Qn—My,—1)
24(Q, — M,)?
( 02 ) Z GQn—, (1) ¢q, 1, (M) [yo.r (1) [|vo, (m) |
n I;m=—(Qn—Mp,—1)
(Mp—1) (Mp—1)
x Y |7U,L<Z+h>| ST e (m+2)]
h=—(Mp—1) = (Mp—1)
24 n —
(Q— Z oL (h
h=—00
< 0.

By similar arguments and using relation (2.52) it follows that all other terms of (2.55)
as well as all terms of (2.56) are negligible. Thus, E (Y;*,) is uniformly bounded in n,

which, by a verification of Lyapunov’s condition, implies that

1 [n/Qn]

VI/Qul Z
has a limiting Gaussian distribution, that is, as n — oo,
W, :LiZ 2V, where Y, ~ N (0,87 f%2 (0) 1w2(a:)dx)
n,L Jn - t,L L L ; X2 B .

To see assertion (b) notice first that

fx2 (0) = f%2 (0 =< Z Yo.x ( > - (% i Yo.x1, (h))%

where 7, x, is the autocovariance function of the process X7 = {X7;,t € Z}. Using

a’? — > = (a — b)(a + b) and since

o0 o0 [o.¢] (e.) 2
S e ()= (2 -3 (3 ) 4200 30 (X wsa)
h=—00 j=—00 h=—00 j=—00
and
[e'S) L N o0 L 2
> e ()= (B () =308 (Do wy) +208 D0 (X wthien)
h=—00 j=—L h=—00 j=—L

we easily get

2 (0)—f§%(0)‘ S50 as L — oo
Consider assertion (c). Write
Wn—Wn’L251+SQ+Sg
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where

M n
2 - h
S, = ~T8 ;w <E) ; UtViehr — E (Ut,LVHh:L)}’
2 & h\ o
h=1 =1
and
2 n

,_.

Straightforward calculations yleld that the variances of the terms 5;, i = 1,2, 3, are of

order O (Z|j|>L |1pj\) uniformly in n. Since
E(W, —Wn1)* <3(Var (Sy) + Var (Ss) + Var (Ss)),

assertion (c) follows by Markov’s inequality.

To conclude the proof notice that

n

n
— (e — E(Mue)) = |~
Mn (7747 (7747 )) Mn ,yg((o)

SO (12 Y A

7x(0) =
we get
Mﬂ(ﬁ“ — E(fye)) — N (0,7)2() , as n — 00
where
Tx = 2<774e+2 Z ,o?x(h)) / w?(x)dx
h=—o00 -1
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Let 74, be the same estimator as 7, . with the estimated filtered observations ﬁt,p =

Xy — Y8 @jpXsj, replaced by U;p = X; — S

i1 ajpXi—j, t=p+1,p+2,...,n The

following lemma allows to approximate bias, variance and distribution of 7, . using the

corresponding quantities of 7y ..

Lemma 2.7.3. Suppose that Assumption 2.1 and Assumption 2.2 are satisfied and let
p € N be fixed. Then, as n — oo

() B @) = Blind +0 (5 + ).

L ~ n . 1 M,
(11) MV(ZT (Mae) = EV@T (M) + O ( T + T)’

(iii) ,/Mﬂn (e — B () = Mﬁn (e = E (1)) + Op ( % i \/1W) '

Proof:

Let “ 77 refer to estimators based on the time series I/]\tp, t=p+1,p+2,...,n using

the means E(ﬁmj) and E(ﬁgp), instead of the sample means U,, and Us,. Let also “

o
~ "

refer to estimators based on the time series U, ,, t = p+ 1,p+ 2,...,n using the

means E(U;,) and E(U}

2,); while, “° 7 to estimators based on the same time series

but using the sample means U, = (1/N)SY, Uy, and ﬁzn = (1/N) Y, U?,. Notice
that

p
Ut,p = Ut,p + Z (aj,p — aﬁp) thj‘ (257)

J=1

Since for fixed p, E(a;, —a;,)* = Op(1/n), Cauchy-Schwartz’s inequality yields,

uniformly in h,

i (@jp = @jp) Xetjn—; = Op (%) : (2.58)

=1

To show assertion (i), observe first that

> () et 0250 = 5 w () B )25 )

h=—M, h=—M,
M,
+0 (_) |
n
The above equation follows after straightforward calculations using relations (2.57),

(2.58) and applying Cauchy-Schwartz’s inequality. Using the same arguments as in the

62



proof of Lemma 2.7.2 (i), it follows that,

% w(ﬁl)E@?vU ) — 252 ) % w(}\%)E(%,U (h) — 272 (h))+o(Mn>

h:—Mn h:—Mn

and

> w (57 ) B () = 250 00) = > w (57 ) B 00 - 23 )+ 0 (5.

N
h=—M, h=—M,
The above relations and a Taylor series argument; see equation (2.25) yield assertion
(i).

To prove assertion (ii) we first show that
n L h
EVC”“( > ow (E) (Fov (R) — 27% (h))>

= o Var 3 w () Gaw -2y a0) +0 (). (20

Equation (2.60) follows because, by straightforward calculations using Cauchy-Schwartz’s

inequality and relations (2.57) and (2.58) we get

oy L () (i ) coutit () 32 ha)

" hy,ha=—M,,
M,
n 3 h, h 22 22 1
o > (g )u (5 ) ot ) B )+ 0 ()
™ by ho=— My n " !

n i h h
E o (Mln)w <ﬁ1n>007j(7)72,[] (h1)  Yo.Uu (h2))
hi1,ho=—M,,
M
n - h1 h2 o o 1
- E . hZ:_M w (—n>w (E) COU(%,U (h1) » Vo,u (h2)) + O (ﬁ)

and

oS (35 )w (31 ) Covtaw () 3 1a)

" hy,ho=—M,
M
n ~ h h 2 22 1
=5 Z w (Ml)w (ﬁ)C’ov(%’U (h1) .7y (he)) + O (ﬁ) :
" by ha—— M, n n

Furthermore, using the same arguments as in the proof of Lemma 2.7.2 (ii) it follows

that
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~ Var i w (55 ) Gaw 0 - 23 () + 0 (32 (261)

and

vor( 35 w () aw () -2 00)

- Var_ (}é; w (Mi) (ew () — 233 (1)) +0 (%) ,

The above two relations, equation (2.60) and a Taylor series argument yield assertion
(ii).

Assertion (iii) follows using assertion (i) and

% w <J\Zn) (Y27 (h) =273 (b)) = Afj w (AZ) (3o.0 (h) — 25% (b)) + Op <J\i"> ,

h=—M, h=—M,,
m

Proof of Theorem 2.3.1:

Follows from Lemma 2.7.2 and Lemma 2.7.3 applied to 7. and exactly along the

same lines as the proof of Theorem 2.2.1. O

64



Proof of Theorem 2.4.1:

(i) Tt suffices to show that py € N exists such that for all p > py,

W ACESNAO!

or equivalently, that for every € > 0, py = p(e, X) exists, such that for all p > py,

> oh(h)<e

h=1
Using the AR-representation (2.8), we get

p

p= —aj, L X, . . .
Ut Z (CLJ Cl]p)Xt j + Z aJXt j + vy (2 62)

=1 j=p+1

Thus,

iS]

ZVU = Z{Z — ajp)(ar — arp)yx (h+4—1)

h=1 h=1
P o0
+ZZ —ajp)ayx (h+7—71)
j=1r=p+1
oo P o0
+ Z Zaj(ar —arp)yx (h+7—1)+ Z aja,yx (h+j5—r)
Jj=p+1 r=1 Jr=p+1
p 00
+ Z arp COV (Ut, Xt T+h> + Z CLTCOV (Ut, Xt—r—‘,—h)
r=p+1
P 00 2
+ Z — a;,)Cov (i, X)) + Y a;Cov (U4, th)} ,(2.63)
j=p+1
where
Cov (Vrn, Xi—j) = 7x (h+4) = Y aj7x (h+j — ji)
Ji=1
and
Cov (ve, Xi—pin) =x (h— 1) — Z aj,vx (h+j1—r).
Ji=1

Bounding the differences |a;, — a;| by Baxter’s inequality

ZMJP aj| <C Z ||, (2.64)

Jj=p+1

where C' > 0 is a constant independent of p, see Lemma 2.2 of Kreiss et al. (2011), and

using the summability of the autocovariances and of the coefficients |a;|, it follows that
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all eight terms on the right hand side of (2.63) can be made arbitrary small. Consider

for instance, the term

p

s 2
S @ —ai)ar —ap)ix (b=}
h=1  jr=1
which is bounded by
p 9 @
(D Jas = ajpllar —anl) 3 2% ). (2.65)
J,r=1 h=—oc0

Using (2.64) there exists p(!) € N and C; > 0 (independent of p")) such that for all
p > pM) (2.65) is less or equal to
Cl<2|ar> Z%( <—.
r=p+1 h=—o0
Similar arguments can be applied to the other seven terms on the right-hand side
of (2.63) showing that p¥, i = 2,3,...,8 exist such that each one of the corre-
sponding terms can be made arbitrary small, i.e., less than e0?/8. Choosing p, =

max {p), p@, ., p®}, we get that

iv ) < eot

h=1
The assertion follows then since
o0 o0 4 4
2 05 605
Pu (h) - U < = €.
,; 0) = 7% (0) = ol

(ii) From Theorem 2.1 of Hannan and Kavalieris (1986), we obtain under the assump-

tions made, that

~ log(n
max |a;, — @;p| :Op( gn( )>,

and, therefore,

- ~ log(n)
D~ (@i =) X = Or(py/ =2

J=1

). (2.66)

We first prove that

Evar( S w () Guu 00 -2 )

- n

= o Var i w (5 ) oo (0= 270 ) + 0 (BLPEM) . 2o
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Equation (2.67) follows using the relations

M " hZ_M v (z\hf_) v ( A]}) Cov(75 (h) .7 (ha))

i hZ w () v (1) Coutit () 50 ) + (P,

M, N?
M . hZM v (M ) (ﬁ)cov Yo (), Y20 (he))

hlhz — M, ( ) ( )COUV?U(hl) %2,U(h2))+O<ILOg(n))

N
and
M
n - h h - -
A Z w (Ml) w (MQ) Cov(Fau (hy) 775 (h2))
™ by ho=—Mn " "
M,
2 w5 e (52 ) conti ) ) + oA,
h1,ha=—My

where the above assertions can be verified using Cauchy-Scwartz’s inequality and equa-

tions (2.57) and (2.66). Using equations (2.61) and (2.67) and a Taylor series argument
see equation (2.25), we get

MﬂnVar (Mae) = V 1(0) Var (h_MZjan <Min> (Vo (h) = 279y (h)>>

Next, by the same arguments as in the proof of Theorem 2.2.1(ii), we obtain

M, 1
VV@T(T)45)—2(U4E+2hZ_:mpU >2Min Z w? <MLn>+O(p nog(n)>7

N
M,

where m < M, is an integer. Furthermore, since Y - 7% (h) = 0 as p — 0o, we get

m o0 2 oo

Z ot (h) §22p2U(h)+1§ ;vaj(h)—i—lﬁl, as p — 00,
h=—m =1 € h=1

and, therefore,

1
MﬂVar (M) = 2(Nae + 2)2/ w? (x) dx.
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Proof of Theorem 2.4.2:

(i) It suffices to show that py € N exists such that for all p > py,

27 O _ s 0)
O T %O

or equivalently, that for every ¢ > 0, py = p(e, X) exists such that for all p > py,

2717 (0)]
w0 F

Notice that

21| fp () =02 Y D b,

h=—00 l=—00

o oo 2
o2( Y sl Y [hllcins)

l=—00 h=—00

ad 4
<o2(( Y Ihllens) -

h=—o00

IN

Thus it suffices to show that for every 6 > 0, py(9, X) exists such that for all p > py,

Cp(z) = Z chpz', z € C,
h=—0o0
where
p 00
Cp(z) = Ap(2)¥ (2), Ap(z) =1— Zah p20 and VU(z) = thzh,
h=1 h=0
that is,
min{h,p}
Yn— > @p¥nr, h=0,
Ch,p = k=1
0, h <0,

where 1)y = 1. Furthermore, for
A(z)=1—- Zahzh
h=1
we have by Assumption 2.4, that

A(z) =07!(2), and oy — Z:l apn_r =0, for h#0.
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From the above we get

> > mln{hp}
; |h| |Ch,P| = ; |h| ’Z CLk - Clk;p ¢h k + Zk min{hp}+1 kl/Jh_k . (268)

By Baxter’s inequality, see (2.64), there exists po € N and C} > 0 (independent of py)

such that for all p > pg, (2.68) is less or equal to

“ ; lh‘ Zk:min{h,p}ﬂ ’akl Wh—k\ < 0.

Thus, for § = 02/%¢/4 we have that

and, therefore,

+ 0(7%/%@) (2.69)

Equation (2.69) follows from equation (2.59) and because

5w () BGas 27 00 = 3 w () By () 255 )

h=—My h=—M,
py/log(n)
+ oMY
(")
Let,
Ky < h
Mie = =5 h Kie = — | (Fov (h) — 277 (h
o= sy e Fee= 30w () Gao () 250 ),

Using the same arguments as in the proof of Theorem 2.2.1(i) we get

MBRse) = fiae = =Cu 3 Wheo(h) = 23] +0 (3%19 10g§n>>.

Recall that under Assumption 2.4, relation (2.62) is true with the v;’s replaced by the
i.i.d. innovations ¢;. Straightforward calculations yield then

3" Bl (h) — 293 (h)] = o(1),

h=—oc0
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and, consequently,

M2[E(Ry.) — kae] — 0.

n

Finally, using
75 (0) =12 (0) = o(1),

and a Taylor series argument we get, under the assumptions made, that

M? M2 M2 [log(n)
M2(E (0y.) —Mue) = —2{E (Ry.) — kgt + O | =2 + —2 — 0,
n( (7747 ) T4, ) 752 (0) { ( 4, ) 4, } < N \/Np n

which concludes the proof.
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Chapter 3

Extending the Range of Validity of
the Autoregressive (Sieve)

Bootstrap

3.1 Introduction

The aim of this chapter is twofold. First, for linear processes X, we extend the range
of validity of the AR-sieve bootstrap to important classes of statistics which include,
for instance, sample autocovariances. This is achieved by appropriately modifying the
way the pseudo-innovations used in this bootstrap algorithm are generated. Using some
recent developments in nonparametric estimation of the fourth order moments of the
(unobserved) i.i.d. innovations ¢; driving the linear process (1.8), described in Chapter
2, we propose an AR-sieve bootstrap procedure where the pseudo-innovations are not
obtained by i.i.d. resampling from the empirical distribution of the estimated residuals
but from some appropriate three point distribution. This three point distribution,
delivers i.i.d. pseudo-innovations which imitate asymptotically correct also the rescaled
fourth order moment cumulant of the true innovations ¢;, a quantity which is important
for some statistics belonging to the class (1.7). We call this procedure the AR-sieve
bootstrap with i.i.d. wild innovations and we show that, for the linear process class

(1.8), this modification extends the range of validity of the AR-sieve to important
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statistics belonging to the class (1.7) and for which the classical AR-sieve fails.
However, for general processes and due to the retained i.i.d. structure of the gener-
ated pseudo-innovations, the range of validity of the modified AR-sieve bootstrap for
the class (1.7) is essentially restricted to statistics that only depend on the second order
structure of the process. To overcome this limitation we propose a new version of the
AR-bootstrap. This version works by fitting an autoregressive model of order p, not
to the observed time series X1, X, ..., X, itself, but to the time series of transformed

random variables Y7, Y5, ... Y, .11, where Y} is given by
Vi = g(Xe, Xeg1, s Xeym1);

see expression (1.7). New pseudo-time series Y, Y5, ..., Y | are generated using
this autoregressive fit and pseudo-innovations obtained by means of a dependent wild
bootstrap procedure, Shao (2010), applied to the estimated residuals

p
‘/t,p:}/t_zbjyp}/;*j’ t:p+1,p+2,,n—m+1
j=1

Since the dependent wild bootstrap appropriately mimics the dependence structure of
the filtered process
p
Vip =Y: — Z bjpYi-j,
j=1
the autoregressive order p used in the autoregressive fit does not need to increase to
infinity with n, in order for this bootstrap procedure to capture the entire autocovari-
ance structure of the transformed process Y = {Y;,t € Z}. Notice that for general
nonlinear functions ¢(-), like those in (1.7), it is in general not easy to derive properties
of the spectral density of the transformed process Y based on properties of the process
X. In other words, it is not clear under what circumstances an autoregressive repre-
sentation like (1.6) exists for the transformed process Y. This makes the application
of an AR-sieve bootstrap procedure to Y difficult to justify theoretically. However,

fitting a fixed, pth-order linear autoregression, is always possible, provided that
p<n-—m, Var(Y;)>0 and Cov(YYin) — 0, as h— oo;

see Brockwell and Davis (1991), Proposition 5.1.1. The later requirement is, however,

satisfied by the conditions imposed on 7}, in order for this statistic to have a proper
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limiting distribution; see Subsection 3.2.1. We show that the proposed AR-bootstrap
with dependent wild innovations, is asymptotically valid for a wide range of weakly
dependent processes and for the entire class of statistics (1.7). This asymptotic validity
coincides with a good finite sample behavior, which is demonstrated by means of several
numerical simulations. In these simulations, comparisons to some alternative bootstrap
methods are also given. Notice that although the last discussed version of the AR-
bootstrap applied to the transformed process Y is also valid for the cases for which the
modified AR-sieve with i.i.d. wild innovations works, the later bootstrap procedure
retains its attractivity due to its potential efficiency in cases where the underlying
process is indeed linear. This justifies the consideration of both bootstrap modifications
in this chapter.

There are many applications of the AR, respectively, of the AR-sieve bootstrap, in
the econometric time series literature which use wild bootstrap procedures to generate
the pseudo-innovations. These applications concerns mostly the case of (stationary or
non-stationary) autoregressive processes (of finite or infinite order) with heteroskedastic
innovations or innovations having infinite variance; see among others Hansen (2000),
Goncalves and Kilian (2004), Concalves and Kilian (2007) and Cavaliere et al. (2013).
However, the situation considered in this chapter is different. We do not deal with non-
stationary or heteroscedastic processes and our wild bootstrap proposals are concerned
with the limitations of the AR-sieve bootstrap caused by the fact that the standard
resampling procedures applied to generate the pseudo-innovations do not correctly
mimic the rescaled fourth order cumulant of the true innovations (in the linear process
case) or the fourth order moment structure of the process (in the general process case).
These limitations turn out to be important for many statistics of interest, like for
instance those described by the class (1.7). Our proposals resolve the problems caused
by these limitations and considerably extend the range of validity of autoregressive
bootstrap procedures. Furthermore, for general processes, our bootstrap consistency
results are established under quite minimal assumptions on the underlying process
requiring essentially summability of second and fourth order cumulants, and therefore,

avoiding mixing or any other type of weak dependence conditions.
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The remaining of the chapter is organized as follows. In Section 3.2 the basic as-
sumptions needed as well as a precise description of the modified AR-sieve bootstrap
procedure are given. Validity of the modified AR-sieve procedure driven by appropri-
ately i.i.d. wild generated innovations is then established. Section 3.3 describes the
AR-bootstrap proposal applied to the transformed process Y and driven by dependent
wild pseudo-innovations. It establishes the asymptotic validity of this bootstrap pro-
cedure for the entire class of statistics (1.7) and under quite general weak dependence
assumptions on the underlying process X. A fully data driven procedure to select the
parameters involved in both bootstrap procedures is described in Section 3.4. Exten-
sive simulations are also presented in this section which investigate the finite sample
behavior of both methods and compare their performances with that of the classical

AR-sieve and of the block bootstrap. All technical proofs are deferred to Section 3.5 .

3.2 Autoregressive Sieve Bootstrap with i.i.d. Wild

Innovations

3.2.1 Assumptions and preliminaries

Throughout this section we assume that the underlying process X is linear, that is, X,

is generated as in (1.8). Moreover, the following assumption is made.

Assumption 3.1. The power series

U(z) = Z V2, 2 €C,

j=—o0

satisfies W(z) # 0 for |z| = 1. The coefficients 1; fulfill the condition

> lillyl < o0

j=—o0

and the i.i.d. innovations in (1.8) have finite fourth moments, i.e., Ee} < oo.

Notice that Assumption 3.1 implies that the linear process X is strictly stationary

with mean zero and autocovariance function

vx(h) = E(X;Xi4n), heZ
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Furthermore,
and a spectral density

of X exists, is differentiable and bounded away from zero everywhere in the interval
[0, 7]. The linear process considered obeys, therefore, the autoregressive representation
(1.6), where the white noise sequence {e;} appearing in this representation is not
necessarily identical to the sequence of i.i.d. innovations {&;} appearing in (1.8).

To illustrate the last point, consider as an example the simple linear process
X, =¢e;+ 01 with 6> 1.
With the help of the backshift operator L we can express X; as
Xi=(140L)g
=(1+0L)(1+0 L)1+ 6710) e
=(1+60""L)ey,
where

e =(1+0L)1+07'L) ey =5, + Y dig;, with  dj = (1—0%)(—0)7.

j=1
Notice that {e;,t € Z} is a white noise process, that is, E (e;e;1p,) = 0V h > 1. This

is easily seen, since V h > 1,

E(erern) = E(eigean) + Y diE (i6ren—g) + Y diE (erynsiy) + Y didv B (64— jErnr)

j=1 j=1 jr=1
=o02dy+ 02 didji,

j=1
_2_2_1h 2_22_1hoo _12j
= o2 (1 19)(9> +02(1 19)(9); ;

= 0.
Thus, X; obeys the AR-representation

Xt:Zant,jjtet where a; = —(=1/0)7, j=1,2,....

J=1
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Furthermore, for 8 = 2 it is easily seen that

2
03 = 40? and Mg = 577475’

where 02 = F(e?), 02 = E(e?), are the variances and 7y, = Ee}/o? — 3 and ny. =

Fel/o? — 3, are the rescaled fourth order cumulants of the innovations e; and &,
respectively.
Recall from Chapter 2 that fitting an autoregressive model of order p to X by means

of minimizing the mean square error

E(X, =) BXi ;)
j=1

with respect to 1, fa, ..., By, leads to the uniquely determined coefficients a, = (a1, azp, - - -

app)! given by
a, = F;lfyp,
where
Ly = (x(i = ))ij=12..0 and 7= (vx(4):5=1.2,...,p)".

Notice that under Assumption 3.1, the matrix I', is invertible for every p € N; cf.

Proposition 5.1.1 of Brockwell and Davis (1991). Suppose we have estimators a, =

(@j,7=1,2,...,p)" of a, and define the estimated residuals
p
erp =Xt — ajpXi—j, t=p+1,p+2, .., n. (3.1)
j=1

a, could be for instance the Yule-Walker estimator which is obtained by replacing
vx(h) in a, = F;lyp by the sample autocovariances yx(h), 0 < h < p, given by
1 n—|h| . o . 1 n
Ax(h) == (X = X)X — Xn), Xy = - > X (3.2)
t=1

n
t=1

Since we do not restrict our considerations to the case of the Yule-Walker estimator,

we require that the estimator used satisfy the following condition.

Assumption 3.2. The sequence of estimators @, = (A1, Az p, - - -, pp) " satisfies

P
P Z |ajp —ajp| =0p (1), as p— oo.
j=1
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Assumption 3.2 is quite general and is fulfilled for instance by the Yule-Walker and
the least squares estimator; see also Kreiss et al. (2011). For instance, if @;, is the

Yule-Walker estimator then,

- log(n
max |a;j, — a;,| = Op ( & )) :

1<j<p n

see Theorem 2.1 of Hannan and Kavalieris (1986). Thus,

p
. [log(n)
p2§ :|aj,p_aj7p|:OP <p3 n )’
=1

which is Op (1) if p — oo with n — oo such that p = O(n/log(n))

1/6

Consider next the class of statistics (1.7) and assume that the functions f and g

satisfy the following smoothness conditions.

Assumption 3.3. f (z) has continuous partial derivative for all x in a neighborhood

of 0 = E(g(Xy,..., Xi2m—1)) and the differential
zm: Of (x) /O | =0
i=1
does not vanish. The function
g:Rm—>]Rd, d<m,
has continuous partial derivatives of order h (h > 1) which satisfy a Lipschitz condition.

Under Assumption 3.1 and Assumption 3.3 it can be shown that, as n — oo,

D
V(T — f(8)) = N(0, Hy(0)24(0) Hy (6)), (3.3)

where “ 2 7 denotes convergence in distribution,

¥,(0) = ( > Cov(gi(Xg,...,Xm1),gj(Xh,...,Xh+m1))) , (3.4)

h=—00 1,j=1,2,....d
and
Hi(0) = (0f(x)/0x;|1—p,i = 1,2,...,d).

In the following and for simplicity, we assume that d = 1. The goal, is then to

approximate the distribution of

\/E(Tn - f(e))v

by means of the following modified AR-sieve bootstrap procedure, which we call the

AR-sieve bootstrap with i.i.d. wild innovations.
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3.2.2 The bootstrap algorithm

Step 1: Fit an autoregressive model of order p = p(n)€ N, p < n, to the time series
X1, Xs, ..., X, obtain estimates @, and residuals €;,, t =p+1,p+2,...,n, defined as
n (3.1).

Step 2: Let 75 be the estimator of 7, . given by

Nie = A
7e( =—(

where N=n—p, 0<h <N —1,

Nk( ) Gault) = 2320). (3.5)

1 1 &
%(h) = N Z (é\t:p - é") (é\t+|h|7p - é")’ €n = N é\t,p’
t=p+1 t=p+1
1 n—|h|
:7\2,e<h) - N Z (efp 62,71) (/e\?ﬂh\,p _EZ”) and €N = Z etp
t=p+1 t=p+1

Here k is a so-called lag-window satisfying & > 0, k(z) = 0 for |z| > 1 while M,, < n
is a truncation parameter to be specified later.

Step 3: Generate X7, X5,..., X} as

p

X7 =Y ;X7 ;+/F0), t€Z, (3.6)

j=1
where the innovations ¢} are i.i.d. random variables having the following (three point)

distribution

1

Et 7747 + gt 774, _I_ 2(7]478_’_3)

and

1
(ﬁ4,5 + 3) ‘
Step 4: Let T)f be the same statistic as 7T, defined in (1.7) but with X; replaced by

P(f=0)=1—-

X7, that is,

* 1 i * * *
T :f<n_—m+1 > g(X X X 1)), (3.7)

t=1
and 0" = E*(g(X}, X7\ 1, .., X{ 1 1)), the analogue of § associated with the bootstrap

process X* = {X/,t € Z}, where X/ is generated as in (3.6). Use the distribution of

Vn(Tr — f(6%)) to approximate the distribution of /n(T,, — f(6)).
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Concerning the estimator 7. used in Step 2 of the above AR-sieve bootstrap al-
gorithm the following is mentioned. Recall that in the classical AR-sieve bootstrap,
the pseudo-innovations are generated by choosing with replacement from the empirical
distribution of the estimated residuals e;,. Furthermore, it yields that (under cer-
tain conditions) the empirical fourth order moment of the estimated residuals, that
is (n—p)~' Yo, 1 €tpy converges in probability to E(e}), as p — oo and n — oo.
However, E(e}) and E(e}) and, consequently, 14 and 1. may be different; recall the
example discussed in Subsection 3.2.1. The statistic 7, . used in Step 2 is a consis-
tent, nonparametric estimator of 7, ., i.e. of the rescaled, fourth order cumulant of
the innovations {g;,¢t € Z} appearing in (1.8). Thus, the fourth order cumulant of ¢,
is appropriately captured by this modification of the AR-sieve bootstrap. As we have
seen in Chapter 2, the estimator 7, . has certain advantages compared to alternative
estimators of the same parameter previously proposed in the literature; see Grenander
and Rosenblatt (1957), Janas and Dahlhaus (1994) and Kreiss and Paparoditis (2012).
Consistency of this estimator requires that the lag-window £ and the truncation pa-

rameter M, satisfy the following assumption.

Assumption 3.4.

(1) k: [-1,1] = R is a symmetric, non — negative and continuous function and
satis fies k() = /OO K (w)e~ " du,

where K is a non — negative kernel function. Furthermore, k(0) =1, |k (u)| <1,

and / k? (u)du < oo.

[e.9]

(i) M, — oo as n — 0 such that M2/n — 0.

The procedure used in Step 3 of the algorithm to generate the i.i.d. pseudo-

innovations ¢; implies that
E*(e}) =0, E*(ef)=1 and E*(5})" -3 =,
where under certain conditions

—~ P
774,5 — 774,57 as n — o0.
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Thus the generation mechanism of the i.i.d. pseudo-innovations ensures that these
innovations imitate (asymptotically) correct also the rescaled fourth order cumulant
of the true innovations {g;}. As we will see, this is important for some statistics
belonging to the class (1.7). Notice that one could generate the €;’s using another
consistent estimator of 7. and/or a different distribution, for instance a distribution
from the Pearson family of distributions with mean zero, variance one, zero third
moment and kurtosis 74 + 3. Such alternative choices, will not affect the asymptotic

results presented in the next section.

3.2.3 Bootstrap validity

The asymptotic validity of the modified AR-sieve bootstrap procedure proposed, is
easily established using the concept of the companion process introduced in Kreiss and
Paparoditis (2011). To elaborate, consider the process X = {X’t,t € Z}, called the
companion process, with X, generated as

Xe=Y X+ 703, teZ (3.8)

j=1

and {&;,t € Z} i.i.d. random variables having distribution

P =V =P E= et = 5

Nae + 3) ’

and
1

PE=0=1-( 5

We denote such a sequence of innovations by
g~ I1ID(0,1,my.), where my.:=F (%?) =Ny + 3.

Let € = /7. (0)&;, where v, (0) = o2. Then, the i.i.d. innovations {¢;,t € Z} driving
the linear process (3.8) satisfy

B 3@ _
B (@)

E(e) =0, E (gtz) =o; and Mg =

The coefficients a; appearing in (3.8) are those of the AR-representation (1.6) of the
underlying process X. Thus, X and X have the same autocovariance structure. Fur-

thermore, notice that X is called the companion process because it is the stochastic
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process the dependence structure of which the modified autoregressive sieve bootstrap
proposal asymptotically mimics.
Now, let fn be the same statistic as T;, but with X, Xs, ..., X,, replaced by a fictious

time series X 1 )N(Q, - ,)?n stemming from the companion process X. Let further

0 = E(g()zt, X;t-i-la e >)~(t+m—1)>-

Thus, and as we will see in Theorem 3.2.1, what the bootstrap sequence /n(T} —
£(67)) consistently estimates, is the distribution of \/n(T}, — f(6)). Hence the AR-sieve
bootstrap procedure with i.i.d. wild generated errors, will be asymptotically valid
if and only if the asymptotic distributions of \/n(T}, — f(8)) and of \/n(T, — f(6))
are identical. This simple check criterion for examining the validity of the modified

AR-sieve bootstrap procedure proposed, is the consequence of the following theorem.

Theorem 3.2.1. Suppose that Assumption 3.1 to Assumption 3.4 are satisfied and

that p, = o(n/ 10g(n))1/4 asn — oo. Then,
d; (c (Va (T2 = £(67)) . L(v/n(T, — f@))) 0, in probability,

where dj, denotes Kolmogorov’s distance and L(X) the distribution of the random vari-

able X.

Notice that the AR-sieve bootstrap with i.i.d. wild innovations works for all statis-
tics for which the classical AR-sieve with i.i.d. innovations obtained from the empirical
distribution of the estimated residual e;, works. This is true since, as we have seen,
the autocovariance structure of X is identical to that of the underlying process X, that

is, 7x (h) = 75 (h),Vh € Z. This is easily seen since,

[e.o]

vx (h) = o? ZCjCjJrha
=0
and
vz () = Var(v/7e (0)8) ) ¢ician = 02 > cicipn.
=0 =0

Moreover, because the innovations €; also imitate asymptotically correct the fourth or-

der moment structure of the true innovations &; of the linear process (1.8), the modified
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AR-sieve bootstrap is valid for an extended range of statistics for which the classical
AR-sieve fails. The following is an example.

Example: Consider the estimator
1 n—h
Vx(h) =~ > XX
t=1

of the autocovariance vx(h), 0 < h < n, which is a special case of (1.7) and recall that

for linear processes it yields that

Va@x(h) = yx(R) 2 N(0,72),

where
(o)

=k (h) + Y (k) +vx (k4 h)yx (k — h));

k=—oc0

cf. Brockwell and Davis (1991), Prop. 7.3.1. Since for the companion process we have

for the estimator

n—h
_ 16~ - 3
’Y)?(h) = n ZXtXtJrha
t=1

that
V(g (h) = yz(h)) = N(0,77),
where
% = mur () + ki (20) + gk + By (k — ),

ie., 77 = 77, we immediately get by Theorem 3.2.1 the validity of AR-sieve bootstrap

with i.i.d. wild innovations for this statistic.

3.3 Autoregressive Bootstrap with Dependent Wild

Innovations

3.3.1 Motivation

The previous modification extends the range of validity of the classical AR-sieve boot-
strap. However, this bootstrap procedure is not valid for general stationary processes

and for the entire class of statistics (1.7) due to the i.i.d. structure of the generated
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pseudo-innovations €. Moreover, even for linear processes, this bootstrap procedure
does not necessarily imitate correct the entire fourth order moment structure of X. To
elaborate, denote by f, x the fourth order cumulant spectral density of X and recall

that if this process is the linear process (1.8), then fy x is given by
1
f47x(w1,wQ,w3) = W(E{fil — 30‘?)\11(001)\11(002)\1’((4}3)\1’(—(,01 — Wy — (JJg),

where

w; € [0,7] and VY(w) = Z e

j=—o00

see Rosenblatt (1985). The fourth order cumulant spectral density f, ¢ of the com-
panion process }NC, which is the process the dependence structure of which is (asymp-
totically) imitated by the AR-sieve with i.i.d. wild innovations, see (3.8), is given

by

fiz (W, wa, wy) = (27)? U_(Efféll — 302) U (w1) U (w2) ¥ (w3) ¥ (—w; — wy — w3),

where

U(z)=AY2), |z/<L
Since in general

f4,X 7é f47)27

it follows that even for linear processes, the AR-sieve bootstrap does not imitate cor-
rectly the entire fourth order structure of X. As an example, recall the non-invertible

MA(1) process considered in Subsection 3.2.1 and observe that for this process we have

U(z) =140z, U(z)=1+6"'2 and o' =0'%"

Thus,
1 3 \
Jax(wr,wa,ws) = Wafm,e H (1+ Ge™9) (1 + Qezzz:m> :
j=1
while
1 2 , -
f4,)~((w1,w2,w3) = Wafm,a H (9 + e‘“*’j) (0 + e"Zz:lwl> )
7=1

The goal of this section is to develop an AR-bootstrap procedure which is valid for

the entire class of statistics (1.7) and for stochastic processes satisfying quite general
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weak dependence conditions. It is obvious from the previous discussion that such a
procedure has to imitate correctly the high order dependence structure of the under-
lying process which affects the limiting distribution of the statistic 7;,. Towards this
goal, it is important to observe that it is not necessary for the AR-bootstrap procedure
to mimic the entire dependence structure of X. It suffices if it imitates correctly the

autocovariance structure of the transformed process
Y = {)/;g = g(Xt7Xt+1, Ce ,Xt+m_1),t & Z}

This is true since, as equation (3.4) shows, it is the autovariance structure of Y that
affects the limiting distribution of 7. Based on this observation, we apply an AR-
bootstrap procedure not to the time series X1, X», ..., X, itself but to the transformed
time series Y7, Y5, ..., Yy, where N =n —m + 1.

To elaborate, recall that the coeflicients b;,, j = 1,2,...,p, of a linear AR(p)-fit

obtained by minimizing the mean square error
p
E(Y, =) bipYe ),
j=1
are for every fixed p € N uniquely determined provided
Var(Y;) >0 and Cov(Yy,Ys) -0 for h — oo,

see Proposition 5.1.1 of Brockwell and Davis (1991). This requirement is fulfilled if ¥,

given in (3.4) is well defined which is true if the following assumption is satisfied.

Assumption 3.5. The autocovariance function of Y denoted by vy (h) = Cov(Yy, Yiin),

h € Z, is absolute summable, 1.e.,

>l (h)] < oo
h=—o00
Furthermore, we assume that
> |Cum (Yo, Ya,, Yay, Yi,)| < 0.
hi,ha,hs=—00

Under the above assumption, the process Y possesses a continuous spectral density

fy. However, it is not clear if the transformed process Y also obeys an autoregressive
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representation like (1.6), since for this to be true, the spectral density fy should also
be bounded away from zero from below. For general functions g, like those appearing
in the definition of (1.7), such a property is in general difficult to verify. This makes
the application of an AR-sieve type bootstrap procedure to the transformed process
Y, where p is allowed to increase to infinity with n, difficult to justify theoretically.
This problem does not exist in our new proposal since the order p of the autoregres-
sion fitted is kept fix. However, since in general, an AR-bootstrap with fixed order p
can not capture the entire autocovariance structure of Y, we appropriately modify the
i.i.d. resampling scheme applied to the residuals. In particular, we replace the i.i.d.
resampling used in the classical AR-bootstrap by a generation of pseudo-innovations
using a dependent wild bootstrap procedure; see Shao (2010). Thus, the bootstrap pro-
cedure proposed is an AR-bootstrap with dependent wild pseudo-innovations applied
to the transformed time series Y7, Y5, ..., Yy. It is precisely described in the following

algorithm.

3.3.2 Bootstrap algorithm and bootstrap validity

Step 1: Fit an autoregressive model of order p to the series Y1, Ys, ..., Yy and obtain

estimated residuals

p
Vip =Y — meyt_j, t=p+1,p+2,.. N.

Jj=1

Step 2: Generate the bootstrap sample Y*, V", ..., Y using
}/‘;*ZS/‘;'7 j:1727"‘7p
and
p ~~
Y= bV 4V t=p+lp+2,... N,
j=1
where the pseudo-innovations V;* are obtained as
V= (Vt,p ~V )W, t=p+1,p+2,..,N.

Here,

_ 1 XL
V= 5= 2 Vi

t=p+1
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and W t=p+1,p+2,..,N,is a time series stemming from a stationary process

{W},t € Z} which is independent of Y, with
EW) =0, Var(W})=1 and Cov(W;,W})=w](t—s)/l.].

The function w (-) is a kernel function which satisfies

K, (z) = / w(z)e **dz >0, = € R,

and [, is a bandwidth parameter.

Step 3: Approximate the distribution of

V(T — f(6))

by that of

VA(F(V3) = F(E (V) where V= > %

The conditions stated about the kernel w ensure the non-negative definiteness of
the covariance matrix of W, while [,, is a resampling parameter used in the dependent
wild bootstrap and which will be specified later on.

The following theorem shows that the proposed AR-bootstrap procedure with de-
pendent wild innovations, is valid for the entire class of statistics (1.7) under quite

general conditions on the dependence structure of the underlying process X.

Theorem 3.3.1. Suppose that the statistic T,, given in (1.7) based on a time series
of length n from the strictly stationary process X fulfills (3.3) and that E|Y;]*?’ <
oo for some & > 0. Furthermore, assume that Assumption 3.3 is fulfilled, that the
process Y satisfies Assumption 3.5 and that {W} t € Z} is a l,—dependent process

2+42/8
n

with E*|W;|**° < 0o. Ifl, — 00 as n — oo such that I /n — 0, then we have, for

every fixed p € N, that, as n — oo,

d (LWL = FEF))) L(VR(T, = 0))) =0,

in probability.

86



We stress here the fact that in order to establish the above theorem and beyond
Assumption 3.5, we do not impose any specific weak dependence assumptions on the
underlying process X, like mixing or other type of weak dependence conditions. The
requirement that the statistic 7;, convergence in distribution as stated in (3.3) and (3.4)
is very weak and is fulfilled for a wide range of weak dependent processes including
for instance, mixing processes, linear processes and processes satisfying other weak

dependence assumptions; see for instance Kiinsch (1989).

3.4 Numerical Results

3.4.1 Choosing the bootstrap parameters

Implementation of the autoregressive bootstrap methods proposed in previous sections,
requires the selection of two bootstrap parameters, the order p and the truncation lag
M, respectively the resampling parameter [,,. Concerning the choice of the autoregres-
sive order p, we recommend for both bootstrap procedures to use Akaike’s information
criterion (AIC); see also (2.14). For the truncation lag M,, or the resampling bandwidth
l,,, we provide in the following some heuristic rules which lead to some data-driven pro-
cedures to automatically select these two parameters.

For the AR-sieve bootstrap with i.i.d. wild innovations, the nonparametric estima-
tion of 1y used, requires the choice of the truncation lag M,,. In Chapter 2, Subsection
2.6.1, a procedure has been proposed for the selection of this parameter which can be
also used in the current context. Recall that the idea is to choose M, in order to
minimize an approximation of the (asymptotic) mean square error E(7y. — 1) This

approach leads to the formulae

4 0o 2 1/5
2K} ( > h(2ce(0)p3(h) — p2,e<h)))
M) = e ; n'/s, (3.9)
K ( Z p2,e(h)>
\ h=—o00 /

for the optimal value of M,,. Here,

1 1

2?k(z)dr  and ng/ k?(x)dz.

-1

¢a(0) = 72(0)/20(0), K = /

1
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Furthermore,

pe(h) = /ye(h)/’Ye(O) and pQ,e(h) = 72,6(}2/)/72,6(0)

are the autocorrelation functions at lag h of the filtered processes {e;,,t € Z} and
{e7,,t € Z} respectively, while y5, = Cov(ef,, €7,,,) is the autocovariance at lag h
of the filtered squared process. Using this formulae, M,, can be chosen by replacing
ce(0), p2.(h) and p.(h) by the corresponding sample estimators based on the estimated
residuals €, see (3.1), and by truncating the infinite sums in (3.9) to some finite, small
value L, ie., L =1.

For the AR-bootstrap procedure with dependent wild innovations, we use the fol-
lowing heuristic rule to select [,. Since the autoregressive fit intends to capture the
second order structure of Y7,Ys,..., Yy, the choice of [, should concerned with the

imitation of the fourth order structure of the filtered process

P
Vip=Yi = > b,V
j=1

Making the working assumption that Y is a linear process implies that the fourth order
structure of the filtered process V;, can estimated using the same strategy as for the

filtered process
p
ey =Xi =Y a;, X1
j=1

This suggests the use of formulae (3.9) to select [, where ¢.(0), p.(h) and pa.(h) are

now replaced by

ev(0) =77(0)/42,v(0),  pv(h) = (k) /1 (0) and poy(h) = y2v(h)/72,(0).

Here vy (h) and 72,1/ (h) are the autocovariances at lag h of the process {V;,,t € Z} and
of the squared process {Vt?p,t € 7} respectively. Replacing these quantities by sample
estimates based on the estimated residuals ‘Z,p, t=p+1,p+2,...,N, and truncating
the infinite sums, as in the case of M,,, leads to a pactical rule for selecting the parameter
[,, of the dependent wild bootstrap. As our simulations in the next subsection show,
the rules proposed in this subsection to select the bootstrap parameters p, M, and [,

work very good in practise.
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3.4.2 Simulations

We investigate the ability of the different bootstrap methods to estimate the standard
deviation of the first order sample autocovariance, i.e., of \/n J(1), for time series of
length n = 100 and n = 300 stemming from five different models and driven by i.i.d.
innovations having four different distributions. Furthermore, four different bootstrap
methods are compared. The autoregressive sieve bootstrap (ARS), the autoregressive
sieve bootstrap with i.i.d. wild innovations (ARSW), the autoregressive bootstrap with
dependent wild innovations (ARDW) and the block bootstrap (BB). The following five
time series models have been considered in the simulation study:

Model I: X, = ¢X; 1 + ¢, with ¢ = 0.8,

Model 1I: Xt =&+ 0515_1, with 6 = 08,

Model III: X; = ¢; + 0c,_q, with 0 = 2,

Model IV: X, = 0.6sin(X;_1) + &,

Model V: X, = {0.8 — 1.1exp{—50X? ,}} X, 1 + 0.1e,.

Models I-IIT are linear models with Model III being a non-invertible first order
moving average process. The nonlinear Model IV has been used in Paparoditis and
Politis (2001) and Shao (2010), while the nonlinear Model V by Auestad and Tjgstheim
(1990). Concerning the i.i.d. innovations, the following distributions with mean zero

and unit variance have been used:
(I) Standard Gaussian, (n4. = 0),
(II) Logistic, (ns. = 1.2),
(ITII) Double Exponential, (14, = 3.0),
(IV) A distribution from the Pearson family with n,. = 5.

The autoregressive order for the ARS bootstrap has been selected using AIC while
the block size b in the BB procedure has been selected as follows. We calculated the

mean square error of the BB estimates for several values of b between 1 and 20 and
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selected the value of b which minimizes the (empirical) mean square error (MSE) over
R = 200 replications. In other words, the BB estimates presented in this section are the
best (in the MSE sense) estimates that can be obtained using this bootstrap method.

Figure 3.1 and Figure 3.2 present the ratios of the mean bootstrap estimates of
the standard deviation and of the estimated exact standard deviation of v/n7y(1) over
R = 200 replications, for each of the different models and of the different distributions
of the innovations considered. Table 3.1 and Table 3.2 present the estimated exact
standard deviations, the mean bootstrap estimates, the standard deviations and the
corresponding mean square errors of the different bootstrap estimates.

As it is seen from the two tables and the two exhibits presented, the ARS and the
ARSW behave quite good in the case of the three linear models considered and for
these models, they outperform the BB. This is expected since these models are taylor
made for linear bootstrap procedures. Furthermore, the ARSW estimates seem to be
less biased for the case of the non-invertible Model III compared to the estimates of
the classical ARS. However, both linear procedures, that is, the ARS and the ARSW,
become quite biased in the case of the nonlinear models considered, i.e., in the case
of Model IV and Model V. For both nonlinear models, the BB estimates turn out to
be also biased although, their bias is smaller compared to that of the linear bootstrap
procedures ARS and ARSW. The ARDW estimates are quite stable and less biased for
all models and all different distributions of the innovations considered. Notice that the
biases of the ARDW method are, in most of the cases considered, the smallest among
the biases of all bootstrap methods compared in this simulation study. Also regarding
the mean square error, the ARDW estimates behave quite well with their MSE being
in many cases close to the lowest MSE that can be achieved by the BB procedure using
the best possible choice of the block length as explained before. This observation is

especially true for the case of n = 300 observations.
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Figure 3.1: Ratio of the estimated standard deviation of the first order sample auto-

covariance function divided by the estimated exact standard deviation, for the different

models, the different innovation distributions and using the autoregressive sieve boot-

strap (ARS), the autoregressive wild bootstrap (ARSW), the autoregressive dependent

wild bootstrap (ARDW) and the block bootstrap (BB), for a sample size of n = 100

observations.
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Figure 3.2: Ratio of the estimated standard deviation of the first order sample auto-

covariance function divided by the estimated exact standard deviation, for the different

models, the different innovation distributions and using the autoregressive sieve boot-

strap (ARS), the autoregressive wild bootstrap (ARSW), the autoregressive dependent

wild bootstrap (ARDW) and the block bootstrap (BB), for a sample size of n = 300

observations.
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3.5 Proofs

Lemma 3.5.1. Suppose that Assumption 3.1, Assumption 3.2 with p, = o(n/ log(n))1/4

and Assumption 3.4 are satisfied. Then,
‘ D~ . .
(i) €f = & in probability,
. D = . .
(11) X — X, in probability.
Proof: (i) Follows immediately since under the assumptions made
~ P . P
Ye (0) =7 (0)  and 7y = .
(ii) Let Jm be the coefficients of
Az;l (2) = Z w7, Yop=1, |2 <1,
=0

where
p

A (z)=1— Zajﬁpzj.

j=1

Let €f = v/7. (0)e;. For M € N we write

M
X;P=> e+ U +V

j=0
where
M 00
Uy = E :(QﬁJ,p ¢J»P>et—j and V" = E ¢]7p6t—j'
j=0 J=M+1

Let x € R be a continuity point of the distribution function of )?t. By Slutsky’s

theorem and for v > 0 we get

M
Pr(Xi <z) < P* <Z¢j,p6?_j < x+7> + P (U7 <7/2) + PT([V] < 7/2).

=0
Applying Lemma 5.1 and Lemma 5.2 of Bithlmann (1997) and using the fact that
w7 2 P ~\2 —~ P
E*(e])" = E(g)", and that 7.(0)—".(0),

we can choose for any k > 0, a M = M (v, k), such that for n sufficiently large

P*(|U}] <v/2) < k/2, in probability,
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and

P (|Vy*] <~/2) < k/2, in probability.

We then have, in probability, that
M
P Xy <z)< P (Z Vipei_; < T+ 7) + k,
§=0
and, similarly,

M
P* (X[ <) > P (Z Viplh; S @ = v) — k.

j=0

Part (i) of the lemma, together with the i.i.d. property of {&;,t € Z} and of
{ef,t € Z} yield for n sufficiently large, that, for an arbitrary [ > 0,
M ~
P (Z%pej_j < x—l—’y) <P(Xi<ot+qy+1)+2
=0

and
M
p* <Z¢j,pe;“_j Sx—v) > P()?t S:B—’Y—l> — 2k.
j=0

Thus, for n sufficiently large
P (XF <)< P()?t §x+7+l> + 3k,

and

PrX; <) > P (X <a—y—1) =3k,

in probability, which concludes the proof. O

Proof of Theorem 3.2.1: A careful inspection of the proof of Theorem 3.1 in
Kreiss et al. (2011), shows that to establish Theorem 3.2.1 it suffices to show that for
every r € N,

(X

D G (5@1, 5%) in probability. (3.10)
For this, we decompose each X} as in the proof of Lemma 3.5.1 (ii) and proceed

along the same lines as in the proof of the corresponding assertion to show that for

any ¢y, Co,....,c, with ¢; e R, i =1,2,...,r,
T D s .
Z i X{ — Z ¢; Xy, in probability,

i=1 i=1
which by the Cramér-Wold device establishes assertion (3.10). [
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Proof of Theorem 3.3.1: Define a bootstrap time series }71*, }72*, e }7]2}, where

Y=Y, for t=1,2,...,p,

and

p
V=) b)Y+ Vi for t=p+1p+2,.., N (3.11)
j=1
Here, XZ* are dependent wild bootstrap generated observations, which are obtained as

N
‘Z*:(Vw_ﬁn)wt*’ t=p+1,p+2,..,N, ﬁl:N;—p Z Vips
t=p+1
and Vi, =Y, = >0 b;,Yij, t=p+1,p+2,..,N. Notice that, in contrast to
Y Y5, . Yy, the random variables 171*, 172*, e 1711} are based on the true filtered time
series Vi, t =p+1,p+2,...,N. In the following, and in all related cases, we ignore

the effect of the starting values.

We first show that
N
1 ( ~
> (% =) = or(1), (3.12)
VN =

that is, that the effect of estimating V;, by 17754; is asymptotically negligible.

Let ¢, be the coefficients of the inverse polynomial

P -1 o]
L= E :bj,pzj = E Cipd, Cop=1, |z[ <L
j=1 7=0

Then, Y," and 17;* can be expressed as

t—1 1
Y=Y Gp(Viesp = VWi and ¥ =3 2,(Viejp = Vi)W
=0 pr

respectively. We have

1 N B 1 N t—1 o 1 N t—1
=2 (Y1) = = D G (Vhesn = Vesn) Wiy + (Vo = Vi) o= DD 6 Wi,
VN t=1 N t=1 j=0 VN t=1 j=0

1 N—1N—j o 1 N—1N—j
= Emp(vr,p - Vrp)W: + (Vo —Va)—= /C\MDW:
\/N Jj=0 r=1 N j=0 r=1
N-1 P » 1 N—j
== Cip Z <by1 P ]1»17) Z Yoo, Wy
7=0 J1=1 \/N r=1
- N-1 1 N—j
+ (Vn - Vn) Z /C\j,pi W:
7=0 \/erl
=Ty + 12N,
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with an obvious notation for 77 5 and 75 . Observe that

since

uniformly in j. Thus, from equation (3.13) and since

p(1/v/n) and V, = O0p (1/v/n)

we get that,
Ton = Op (x/ln/n> — 0 asn — oo.

Regarding T} y notice that,

Tin| < Z|Cyp|z

Jj1=1

=z

—J

*
Y., W,

Ji,p le

IIM

1
VN 4
while,

= Op(1)

1
I~ Z Y;“—jl Wr*
\/N r=1

uniformly in j and j;. This follows because

ZY G WE?) = Zvyt—s <t_8) Zh/y )| < o0.

t s=1 r=—00

Additionally, since

00 p
ch}-’p[ < oo and Z b = Op (1/v/n),
j=0 J=1

Jp bjp

we conclude that
Tin = Op (1/v/n)

which yields equation (3.12).

Next, define random variables Y1, Y5, ..., Yy, as Y, =Y for j = 1,2,...,p and

P t—1
=D b Y AV = cp(Visjy — VWi, for t=p+1p+2,.. N
- g

N-1 1 N—j 00 1 N—j
Cip—=> WX <Y [E,]|—=) W =0p(/I 3.13
jgo J,P erl ;’ J:p‘ \/N; P(\/—) ( )
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We show that

3 (37; - Yj) = op(1). (3.14)

t=1

Sl

To see (3.14) write

> (7 ) -

t=1

t—1

(Cip = Cjip) (thj,p - Vn) Wt*—j

-
1M

I
o

J

* I 1 ~ ' *
(Cip — Cjp) Z VW — Vn\/_w (Cip — Cjp) Z W,

r=1 7=0 r=1

?
=2
I
P

2= 2=

.
Il
o

I
o3
=
+
N

4,N >

with an obvious notation for T3 5 and Ty y. Along the same lines as for the term T y

and using V,, = Op (1/4/n) and
Z Cip — Cjp| = Op (1/\/5) ’
=0

see Kreiss and Franke (1992), Lemma 2.2, we conclude that

Tyn = Op (@/n) )

Furthermore,

1
—=> Va7
\/jv r=1

N—
Tsn] <> [Ep — cigl
=0
where,

1 =
\/_NZV”’W = Op(1)
r=1

uniformly in 7, since

B Y VW) = 2w (e s (1

due to Assumption 3.5, where vy (1) = Cov (Vi p, Vigrp) , 7 € Z is the autocovariance

SED M TRUEES

rT=—00

function of {V;,,t € Z}. Thus,

Tsn = Op(1/y/n)

which completes the proof of assertion (3.14).
Let,

N
DY

t=1

-
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and

Notice that by (3.12) and (3.14) we have that
Ly =L,+op(1).
In order to show that
LngN(O,JgO), as n — o0, where o2 =2nufy (0),
it suffices by Proposition 6.3.9 of Brockwell and Davis (1991), to show that

(a) Lnm B Zu for M fixed where

and
Zy ~ N(0,02%,), = (Zcﬂ,> 27 fy (0) | B, (0)]*.
(b) Zu2Z as M — oo, where Z ~ N(0,02).
(¢) limpsyo0 limsup,, oo P (|Ly — Ly | > €) = 0 for every € > 0.

To establish (a) write

M s M =
Luat =D w2 D Vi =D s (3.15)
=0 VN t=1 j=0 VN s=0

The second term on the right-hand side of (3.15) is in absolute value bounded by

_ f} ol 20, =0, ().

Thus, the limiting distribution of L,, s is identical to the limiting distribution of the

M-1

first term on the right hand side of (3.15). Let,

M 1N
I e
b JZO f :
Notice that,
B (L) =0,
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and

Var* (LSQ) = (

Since

we get that

where

We next show that
Since

and W} is [,-dependent, we apply Theorem 1.21 of Kreiss and Paparoditis (2017).

For this, it suffices to show that the following conditions are satisfied.

N
(i) X, =Var® (Nl/2 > V},pVV:) — 27 fy (0), in probability.
t=1

a+r—1 2
(ii) sup A, = sup 2 E* (N1/2 ; 1/;7th*) =0Op(1/N).

246

N-Y2V, Wy =Op (N_1_5/2), for some § > 0.

(ili) max E*
1<t<N

(iv) li+2/5/N — 0, as n — 00.

To see (i) and (ii) observe that

1 & s—t
Yin = N Z V;,p‘/:s,pw (T)

t,s=1
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:% i Zw( >th‘/;€+hp

h=—1, t=1

=27 f (0) + Op (lﬁ”) Lonfy (0),

and that
a+r—1 8 ¢
Var (Aa,) = Var ( Z ViV spw ))
t,s=a
1 ! s—t h—g
= Nz Z ( ) ( ] ) Wt —h)yw(s—g)
t,s,h,g=a "
1 a+r—1 P h— q
+ e Z ( )w( ] )VV g)vv(s —h)
r t,s,h,g=a n
1 a+r—1 st h g
+ s D ( )w( )kv (s—t,h—t,g—t)
TQN t,s,h,g=a ln
2 = 1 ’ 1

Consider (iii). We have

N*1/2Vt W 2+6: N-1/2 246 < |V, 2+6E* Wl 246 — 0. (N-1-9/2)
PVt P P

max E*

1<t<N 1<t<N

Finally, (iv) follows directly from a corresponding assumption of the theorem. So far,

we have shown that, as n — oo,
D 2
Ln,M%ZM where ZM NN(07O'M)7

which concludes the proof of (a).

Consider assertion (b). This assertion follows since as M — oo,

(chp) 27 fy (0) [ B, (0 )

To verify assertion (c) we proceed as follows. Write,

A = Mo
Ly —Lpy = N {Z CipVisy — Z CipVis g}
t

j=0 7=0

= |B, (0)| 27 fy (0)| B, (0)]* = 27 fy (0) = 0.
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By Markov’s inequality

E*(Ly — Lny)”

P*(|Lp, — Loy| > ¢) <

Notice that,

BT < o 3 lepllad 30| (1= T2) (-7
Jil=M+1 r,s=1
1 N-1 N
<o 3 el o b (- 9)
Jl=M+1 r,s=1
9 N-1 N N
o X lasllasl 20 X =9
p Jl=M+1 r=p+1 s=1
N N-1 N
+52(N— )2 Z ¢l lCip] Z [ (r =)
p Jl=M+1 r,s=p+1

=Ten+T7 N+ T3 N,

with an obvious notation for Tg n, T7 xy and T y. The term Tg n is bounded by

i( > ,%|> > v ()

j=M+1 h=—00

which converges to zero as M and n — oo, since the sums

D leipl and Y (h)
j=0

h=—0oc0

are finite. Similar arguments yield that the terms 77 x and T3 y converge also to zero

as M and n — oco. This together with the relation
L:, = Ln “+ op (1)

concludes the proof that

L: 3 N(0,02)

in probability. The assertion of the theorem follows then by an application of the

d-method and taking into account Assumption 3.3.

103



Chapter 4

Conclusions and Future Research

4.1 Conclusions

In the first part of this thesis, we have investigated the problem of estimating the
rescaled fourth order cumulant of the unobserved innovations of a linear time series. An
existing nonparametric estimator of this parameter has been investigated. It has been
shown how the behavior of this estimator is affected by the autocorrelation structure of
the underlying process. An improved nonparametric estimator of the same parameter
has been proposed which is based on pre-whitening the time series by means of an
autoregressive filter. The parameter of interest is estimated using the filtered time
series and an inverse-transformation is not required. This is due to an invariance
property of the parameter of interest with respect to linear filtering.

The asymptotic properties of the new estimator have been investigated and its
superiority has been shown for large classes of stochastic processes. Some simulations
demonstrated that this theoretical superiority is also valid in finite sample situations.
Our findings indicate, that the gains in terms of variance and bias reduction obtained
by using the new estimator could be very impressive, especially for strongly correlated
time series.

In the second part, we have proposed two modifications of the autoregressive-sieve
respectively of the autoregressive bootstrap. First, an AR-sieve bootstrap procedure

has been proposed where the pseudo innovations are not obtained by i.i.d. resampling
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from the empirical distribution of the estimated residuals but from some appropriate
distribution ensuring that the generated i.i.d. pseudo-innovations imitate asymptot-
ically correct also the rescaled fourth order cumulant of the true innovations. Next,
a new version of the AR-bootstrap applied to an appropriately transformed time se-
ries together with a dependent-wild type generation of pseudo-innovations has been
proposed. We show that this AR-bootstrap procedure is asymptotically valid for a
wide range of weakly dependent processes and for large classes of statistics. A fully
data driven procedure to select the parameters involved in both bootstrap procedures
has been proposed. Extensive simulations and comparisons show a good finite sample

behavior of the new bootstrap procedures proposed.

4.2 Future Research

4.2.1 Locally Stationary Processes

Stochastic processes with time varying characteristics have attracted considerable in-
terest during the last decades. An important approach for the development of an
asymptotic theory for such processes has been put forward by the concept of locally
stationary processes introduced by Dahlhaus (1997). Loosely speaking, a stochastic
process is locally stationary if it can be locally (in time) approximated by some sta-
tionary process. More precisely, a triangular array of sequences of random variables
{Xin:t=1,...n,n € N} is called locally stationary, if it satisfies the following set of

conditions:

(a) X, has the representation

Xin = Z Yin (§)er—j, t=1,...,n, neN

j=—o0

where the {;} are i.i.d with F (g,) = 0, E (¢?) = 1 and k4. = F (¢}) — 3.

(b)

k
| <
t:Sll,lp,n |wt,n (])’ — lg (])

for all jeZ,
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where k£ is a non-negative constant independent of n and {l(j) : | € Z} is a pos-

itive sequence satisfying

> il () < oo

j==o0

(¢) Functions ¢, (+) : (0,1] — R with

k
sup W’J ( )| TN
u€(0,1] ( )
and
N (u) k
su -
uE[OI,)l} ou |~ 1(j)

exist such that

sup
1<t<n

where [ (j), 7 € Z and k are as above.

Consider the problem of estimating the rescaled fourth order cumulant of the unob-
served innovations {e;, ¢t € Z}, driving the above locally stationary linear process, that
is of

Nie = /<;47€/0;1 where k4. = Cum4(€t) = E(gf) - 30?

is the fourth order cumulant of ;. Toward this, recall for X, ,, the local approximating

linear process

Z Vi (u) ey, where we€[0,1].

Jj=—00

Let ¢ (u, k) = Cov (X (u) , Xpyx (v)) and ¢3 (u, k) = Cov (X2 (u) , X}, (u)) be the local
autocovariances of the process X; (u) and of the squared process X? (u) respectively.
Straightforward calculations yield

Cov (X2 (u), X2y, (1)) = kue Z V2 (u) 92, (1) +2Cov* (X; () , Xopr (1)) .

j=—00

Taking the sum over all k € Z, using the fact that

S S @), () = ¢ (u.0)

k=—o00 j=—00

and integrating both sides over the interval [0, 1], we end-up with the expression

OO (f@uk;du—?fc uk‘du)

k=—co \0

Nie =

1
[ ¢ (u,0)du
0
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The above expression motivates the following estimator of 7, .

M,
> w(k/M,)(c; (k) —2¢* (k)
~ k=—M
e = - , 4.1
where
1 L N*k
m Z n]+t—N/2n — XN(]at)) (X[u]'n]+th/2+k,n - XN(ja t)) ’
j=1 t=1
1 L N-k
L Xanlin) (¥ Xon(i0).
LN ; =1 ( u n +t—N/2,n 27N<j ) [u]-n]+t—N/2+k,n 2’N<j )
1 &
Xn(j,1) Xium rn and Xy N (7, X2
n(:t) N Z [ujn]+t—N/2+ an 2N (71 Z n]+t- N/24rm

Ny =N Z(fumn] 4+t — N/2 47 +s € {1,2,...,n}), are sample estimates of the cor-
responding unknown quantities appearing in (4.1) and Z (+) is the indicator function.
Furthermore, w is a lag-window, M, < n is a truncation parameter, N is the local
window width and u; = [N(j — 1) + N/2]/n, j = 1, ..., L are rescaled time points in
the interval [0,1]. A similar, frequency domain based estimator has been proposed by
Kreiss and Paparoditis (2015).

A probably improved estimator of n,. can be obtained by using locally the idea
of pre-whitening, i.e., by fitting locally to the time series a p'" order autoregressive
process. To elaborate, suppose that the local spectral density f (u, \) is continuous in
A and satisfies

inf inf A) > h > 0.
ug[%),u)\g[(l;,w]f(u’ ) > ¢y where ¢y

Then, the local approximating process {X; (u),t € Z} has for every u € [0,1] the

autoregressive representation

Zb )Xoy (w) + &4, (4.2)

where
x

Zr|bT(u)| < oo and I—Zbr(u)z’ﬁéo

r=1 r=1

for all complex z with |z| < 1. The minimization of the local quadratic deviation

N-1 2

1
N _ pz <Xun] N/2+jn — Zcz X[un] N/2+45— zn)

=1
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with respect to ¢; (u),1 =1,2,...,p leads to the estimates

-~

by (p)| = (61 (), B (u), ..., D, (u)) ,

satisfying the system of equations

where
N 1 N—-1 1 N—-1
Ry (p) = N——p Z X (u,p) X; (U,p)T , Tul(p) = N——p Z X (4, p) Xpun]-Ny2+jm
J=p =
and

T
Xj (u7p) = (X[un}—N/2+j,nu X[un}—N/2+j—1,na '~'7X[un]—N/2+j—p,n) .

Furthermore, let

N-1
1 b
~2 o 2 T ~
Tp (u) = N—p Z X[un]fN/2+j—p,n = bu(p) Tu(p),
Jj=p

be the estimated variance of the residuals of the local autoregressive fit. The alterna-
tive estimator of 1, . we propose can then be obtained as follows.
Step 1: For t/n € [0, 1], fit locally an autoregressive model of order p to the observa-

tions X, Xop, ..., Xpn, calculate the estimated parameters

Bun () = (b1 (t/n) B (1) ... By (1)

and the residual variance & (t/n). Consider, then the rescaled residuals

A 1 L
G = = (Ko = Bt/ Xein), E=p L
o= s SO, 1=t

Step 2: Using ﬁp+17n, ﬁp+27n, e ﬁnm, calculate the estimator

Np—1
it s, 3 v () G-
= = w | — h) —2v;(h)), N,=mn—p;
774 7(2](0) h:(zjvpl) Mn (727U( ) P)/U( )) p p
see (2.7). Here,
1 n—|h| - . . . . 1 o
() =5 > Oun=Ta) (Ui =Un), Un=7- D Ui,
P t=p+1 P i—pt1
1 n—|h| . . . . . 1 no
:Y\Q,U(h) = F Z (Ut%n - UZ,n) (Ut2+|h|,n - UQ,n)a U2,n = F Z Ut2,'n,
Pi=p+1 Pi=p+1
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and w (+) is a lag-window; see Assumption 2.2.

The motivation behind this procedure is the following. The innovations

e =X (u) — Z by (u) Xi—y (u) ,

do not depend on u € [0,1]. Therefore, filtering the time series locally by an autore-
gressive process, intends to obtain local residuals ﬁt,n which (asymptotic) will behave
like ;. Thus, [7t7n, t=p+1,...,n, can be used to estimate the rescaled fourth order
cumulant of the unobserved innovations. Asymptotic properties of the above estimator
can be investigated. Furthermore, the finite sample behavior of these estimators can
be numerically compared by means of simulations with alternative estimators like the

one proposed by Kreiss and Paparoditis (2015).

4.2.2 Multivariate Processes

An important but probably difficult to solved problem of future research is the esti-
mation of the fourth order cumulant of the unobserved innovations for a multivariate
linear time series. Solving this problem, also is important of extending the range of
validity of the multivariate AR-sieve bootstrap; see Meyer and Kreiss (2015).

To elaborate, let {X, : t € Z} be a m—dimensional stochastic process generated by

[e.o]

X, = (Xop Xogoo Xoma) ' = D Wig,

where the W; = (¢; (v,s)), ._15 .. J € Z, are m x m coeflicient matrices, and ¢,
= (e14,€245 ...,6m7t)T ,t € Z is a zero mean, m—dimensional i.i.d innovation process
with finite fourth moment, ie, E(¢f,) < oo for i = 1,2,...,m. It seems difficult to

obtain a consistent estimator of the fourth order cumulant
ni:ij’s - Cum (gl’t7 €j7t7 €T7t7 gsyt) Y i?j? T? S 6 {17 27 i) m} 9

along the lines used in the univariate context. An alternative strategy will be to apply
the AR-dependent wild bootstrap to a multivariate setting.
Recall that the AR-bootstrap with dependent wild innovations, proposed in this

thesis works by fitting an autoregressive model of order p, not to the observed time
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series X1, Xo,..., X, itself, but to the time series of transformed random variables
Y1,Ya, ..., Yo _me1, where Y} is given by Y = g(X, Xiq1, ..., Xiym—1). An interesting

multivariate extension could be to consider the transformed process
Y = X X0, ij=1,...m, tez, (4.3)

where X;; and X, are the i and j™ components, respectively ,of the vector process
{X,:t € Z} with X, = (X14, Xoy, ..., th)T. Denoting by 7;; (h) = Cov (X, Xji4n)

and p;; (k) = 745 (h) /+/7ii (0) 755 (0) the cross-covariance and cross-correlation function

respectively, the problem is to estimate the distribution of the sample quantities

n—h ~
i () = 3 3 (Xie = Xin) (Kjeon = Kyn) and iy (1) = —= (6 )( % O3
—1 22 Wy

where X;, = (1/n) Y., X;;. The application of the autoregressive bootstrap with

)

depended wild innovations to the transformed process Yt(i’j given in (4.3) will allow

for the estimation of the distribution of v/n (i (h) — 7i; (h)) or /n(pi; (h) — pij (h))

which is an interesting problem in multivariate time series analysis.
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