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Ilepiinynm

Kabwg m teyxvohoyia eEghiooeTal, Ta UeYEDN aToTUTMONG OMOKANPWUEVDV KUKADUATOV
OVPPLKVAOVOVTOL, TO TPOVELOTOP Yivovion AMydtepo aEOmoto. Qg amToTEAEoUO. QUTNg
™G eEEMENC, TAL HEMOVTLKG GUOTNUOTOL CLVALUEVETOL VO ELVOLL TTLO EVOAWTOL OF POLVOUEVA,
@Bopag (Ue TNV TTAPOSO TOL YPOVOL KoL TNV ¥pNo1). To INtnua g @Oopdg pe TV mdpodo
TOU YPOVOL Kat TG Babduatog vroBaduong KabLoTd ovaryKalo Ty (P01 W) eVIOUOV
TOV ETMULTPETOVY TNV TTPOOTACL TOV CUOTNUATOG GO AVETLOVUNTEG CUUITEPLPOPES BLEVKO-
AUVOVTOG ETOL 0TIV VLY VEVOT], TOV UETPLALOUO 1] / KOL TNV OUTOKOTAOTO0T 0pONG AettoupyL-
ag oo ogaluata ko "o T drapkela Lwng Tov cvothuatog. Ipoogoata, oty BLfio-
YPOAPLOL EXOVV TPOTADEL APKETEG TEYVIKES YLOL EAEYYO TV CUOTNUATMY TTOU VO, ETLTPETOVV
T SUVOULKT] QVLYVEVON HOVIU®Y 0QoAdTmy. H aviyvevon opoludtov omo to 1oL To
OVOTINUATO, UE TNV XPNOT AOYLOULKOU ELVOL L SLAOESOUEV TEYVLKT] OTOV TOUED ELEYY OV
YNPLOKDOV KUKAOUATOV Kat wkpoemeEepyoaotov. H Aertovpyia avtn Baolletar otnv
EKUETAMAEVON TOV VPLOTAUEVDY SLAOECLUWV TOPWV TTOV VILAPYOVY 0T0 ovotnua. TIEpa
ATTO TNV AVIYVEVOT) OPOALATMV, TO OVYYPOVO CUOTIUOTO TPETEL VOL EVIOYVOOVV ULE Uy ovL-
OUOVG TTOV £LVaL 0€ OE0T VO ETTLOLOPODOOVY KaiL VO AVOKTIIOOVY TNV 0pO1) AELTOUPYLA TOU
OVOTNUATOG OTNV TOPOVOLO OPAALOTOS, TTPOKEWUEVOD VO TAPOUELVEL AELTOVPYLKO TTOPa

TNV VITOPEN wOVIUWY PraPV.

TKOTOG QUTNG TNG SLATPLPNG ELVOL 1) AVATTTUEN TEXVIK MV Yiat: (1) AviVEVOT) OPAMLATWY,
(i) ueO0SOLOYLEG TPOYPOUUOTLOUOV YLOL TNV AVEN 0T TNG SL0OECLUOTITOG TOV CVOTNUATOG
KOTA TN SLAPKELD TWV ELEYYOV TOU OLOTNUOTOG Ko (iil) EVIOYVOY TOU OVOTNUOTOG Ue
dUVATOTNTEG AUTOKATAOTOONG. TO TPMOTO UEPOG QUTNG THG EPYAOLOG ELOGYEL EVOL VEO
TOPASELYILC OV VEVONG OPOALATOV TTOV EAEYYEL TO OVOTNUOL VL0 OQPAAULOTO 0T SLOKPL-
TOTITA TV ETTL UEPOVG OVOTNUATOV (VITTOAOYLOTIKDV LOVASWV) EVOG ETEEEPYAOTY| OF GLOT-
UOTOL TTOAMOTEADY TTUPTVWV ACUBAVOVTOG VTTOPLY TO LOTOPLKO TNG AELTOVPYLOG TOVG,. SUYKe-
KpLEva, avamtuyOnke to thaioto DaemonGuard Tov eLTPETEL TV TO.PATHPNOT OF TPOL-

YUOTLKO YPOVO TOV ETTL UEPOVG VITOLOYLOTIKMY CUOTNUATMY EVOG ETEEEPYAOT EKTEADVTOG
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o StodLkaoto yuo ELeyyo (o€ TomKO emimedo) YwPLG VA YIVETOL OMKOG ELEYYOG TOU
EMEEEPYAOTI YLOL OQPAAUOTO OF ETLITESO VALKOU. AVTH 1) TEYVIKT] OTOYEVEL 0T UELMOT TOV
YPOVOU EKTELEONG EALEYYOV OTTOPEVYOVTAG TOV OUYVO EAEYYO TMV UOVASWV TWV OTOLWYV
M xpNon Nrav oe xaunio emimedo. To deUtepo UEPOG Slepeuvd TN OYEON UETAED ToV
YPOVOU KOTA. TOV OTTOLO TO OVOTNUO PPLOKETAL VITO ELEYYO KOL TOU OUVOMKOU YPOVOU
7OV YPeLALETOL Va. gEheyBoUV OAOL OL TUPNVEG TOV CLOTHUATOG. [Lal AVTO TO ONUELD TNV
EPEVVAL LG, AVATTVOOOVLE £VA. TTAALOLO EEEPEVVIONG LKAVO VOL TPOGSLOPLOEL TV KOADTEPT
TOALTLKY) TTPOYPALUUATLOUOV VL0, VO VENOEL TN StafeotndTnTO TOV VoTNUOTOG. Emuthgov,
TPOTELVOVE, AELOLOYOVUE KOl EVOMUTMVOUUE UL VEO, LeBOBOLOYLA TTOV OTOYEVEL OTNV
TEPALTEP® PEATIWON TV TEYVIKDV KOONDG TO 0VOTNUA UeYOAmVEL. Lol T TEAEVTALO HEPOG
™G TOPOVOOG SLATPLPNG, TTPOTELVOUILE TEYVIKES TTOV BELTUHVOUV TO TTPOTELVOUEVO TTAALOLO
KO WTopouV va, VItooTNPlEOVV dUVATOTNTEG OTTOKATAOTAUONG TG OWOTNG AELTOVPYLOG
TP TV EUPAVLOT) OPOMATOV. ZUYKEKPLUEVOL, TTPOTELVOUUE EVOLY OITTOSOTLKO ) AVIOUO
AVAKTNONG KO ETTOVOPOPAS, O OTTOLOG, LETAL TNV AVLYVEVOT] OQPUALATOV, LTTOPEL VOL ETTOVOL-
PEPEL TO OVOTNUC. OTNV TTLO TPOOPOTY EYKUPY KOTAOTAON 0pONG AELToupylog KoL vo.
ETTAVOLA-BEL TNV EKTELEDT), VTTODETOVTOG TV OTTEVEPYOTTOLN|01] TOV EAATTWUATIKOV TTUPNVOL,
08N YM-VTUG £TOL 08 EVOL VITORADULOUEVO UEV, OAA AELTOVPYLKO GVOTNUO. ‘OLEG OL TPOTELVO-

WEVEG TEYVIKEG AELOAOYOUVTOL LEOM LG OELPAG TTELPOUATMV UE T Y P10T] TTPOGOUOLWOTG.
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Abstract

As technology scales deep into the sub-micron regime, transistors become less reliable. Future
systems are widely predicted to suffer from considerable aging and wear-out effects. The issue
of aging and gradual degradation necessitates the use of mechanisms that can enable protection
against undesired system behavior by facilitating detection, mitigation, and/or recovery from
faults throughout the lifetime of the system. Recently, several on-line testing techniques have
been proposed in literature enabling dynamic detection of permanent faults. Software-based
Self-Testing (SBST) is an emerging new paradigm in the testing domain, which relies on the
exploitation of existing available resources resident in the system. Beyond the detection of
faults, modern systems must be enhanced with mechanisms able to self-repair and recover the
system to a fault-free state, in order to remain functional despite the presence of permanent

faults.

The objectives of this work are to develop techniques for: (i) on-line fault detection, (ii)
scheduling methodologies to increase the system availability during testing and (iii) enhance
the system with recovery capabilities. The first part of this thesis introduces a new paradigm
of SBST that performs testing at the granularity of individual microprocessor core compo-
nents in multi-/many-core systems based on the utilization. In particular, we develop the Dae-
monGuard, a framework that enables the real-time observation of individual sub-core modules
and performs on-demand selective testing of modules that have been stressed. This technique
aims to reduce the testing time by avoiding the over-testing of under-utilized units. The second
part investigates the relation between system test latency and test time overhead under several
scheduling policies. For this part we develop an exploration framework able to identify the best
scheduling policy in order to increase system availability under a given test latency constraint.
Additionally, a new methodology aiming to reduce the extra overhead related to testing that
is incurred as the system scales up (i.e. the number of on-chip cores increases) is integrated
and evaluated under the developed exploration framework. For the last part of this thesis, we

propose to enhance our framework to support fault recovery capabilities. In particular, we pro-

X



pose an efficient check pointing and rollback recovery mechanism which, upon fault detection,
can restore the system to the most recently valid correct state and resume the normal opera-
tion assuming disabling of the faulty core, thereby leading to a healthy (but degraded) system.
All the proposed techniques are evaluated through a series of experiments using a full-system,
execution-driven simulation framework running a commodity operating system and real multi-

threaded workloads.
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Chapter 1

Introduction

The era of nanoscale technology has ushered designs of unprecedented complexity and im-
mense integration densities. Billions of transistors now populate modern multi-core micro-
processor chips and the trend is only expected to grow, leading to single-chip many-core sys-
tems [1]. However, a side effect of this deep technology scaling is the exacerbation of the
vulnerability of systems to unreliable components [2]. Beyond the static variation of transis-
tors that can occur during the fabrication, which is expected to get worse, current and future
technology also suffers from dynamic variations. Single-event upsets (soft errors) are another
source of concern with a direct impact on the system’s reliability. Finally, a third source of
unreliable hardware operation that can lead to permanent system failures is the increased sensi-
tivity to aging (time-dependent device degradation) and wear-out artifacts, due to the extreme

operating conditions.

The issue of increased vulnerability and the expected increase in the occurrence of transient
and permanent failures — as a result of future technologies — render the one-time factory testing
of the system inadequate. The new state of affairs necessitates the use of mechanisms that
can enable protection against undesired system behavior by facilitating detection, mitigation,
and/or recovery from faults throughout the lifetime of the system [3]. Several fault detection
techniques have been proposed in order to detect faults during the normal lifetime of the chip.
Such schemes broadly fall into two categories: (a) Concurrent methods relying on fault-tolerant
mechanisms (i.e., redundancy techniques) [4], and (b) Non-concurrent periodic on-line testing

[5], which aims to detect errors that are, subsequently, addressed using various techniques.

Multi-/many-core microprocessor chips with an abundance of identical computational re-
sources would appear to be ideal for implementing high availability solutions on-chip, due to

the inherent replication of resources (i.e., the processing cores). Multi-core systems should



remain operational despite the occurrence of permanent and/or transient faults. Detection and
diagnosis of such fautls constitute the first and perhaps the most important step towards the im-
plementation of self-healing multi-core systems. The already proposed self-testing techniques
for simple and even more complex microprocessors have matured enough, while current and
future trends in the self-testing research area are adapting these techniques to multi-/many-core
processors. Considering the huge range of today’s applications that require many and different
types of computational systems, researchers aim to develop self-testing techniques targeting
either general-purpose multi-core microprocessors, or embedded microprocessors and micro-
controllers that constitute application-specific Systems-on-Chip (Soc).

Non-concurrent periodic online testing is one methodology used traditionally for the detec-
tion of permanent faults (hard failures). Moreover, it can be used for circuit failure prediction
within the cores of modern microprocessors, due to either infant mortality reasons (early-life
failures), or aging-related factors [6—10]. Hardware-based schemes, typically using Built-In
Self-Testing (BIST) [11], as well as software-based schemes, known as Software-Based Self-
Testing (SBST), can be employed for this problem. The SBST technique [12-20] is an emerg-
ing new paradigm in testing that avoids the use of complicated dedicated hardware for testing
purposes. Instead, SBST employs the existing hardware resources of a chip to execute specific
(software) programs that are designed to test the functionality of the processor. The test rou-
tines used in this technique are executed as normal programs by the CPU cores under test. As a
result, the major cost of SBST is the time overhead incurred by the execution of the appropriate
test routines on the CPU. The hardware overhead is either non-existent, or negligible, and no
Instruction Set Architecture (ISA) extensions are required.

Beyond the detection of faults, modern systems must be enhanced with mechanisms able
to self-repair and recover the system to a fault-free state, in order to remain functional despite
the presence of permanent faults. To maintain proper operation of the system, several error
recovery techniques have been proposed. These techniques are classified mainly in two cate-
gories: (1) Forward Error Recovery (FER), and (i1) Backward Error Recovery (BER). In the
first (FER), the usage of redundant hardware is necessary for error detection and recovery. On
the other hand, BER requires to store a fault-free state of the system using checkpoints for
error recovering. Once an error is detected, the system is able to rollback to the fault-free state
and re-execute the affected workload, assuming it supports reconfiguration/fault-containment
capabilities to rule out the malfunctioning component. In most cases, BER does not require
extra hardware to support the recovery procedure, and the imposed overhead is in execution

time, since a portion of the executed workload needs to be re-executed. There is also some
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storage overhead to store the checkpoints.

1.1 Thesis Objectives

The objectives of this thesis are to develop techniques for: (a) on-line fault detection, specifi-
cally SBST methodologies for multi-core systems in order to reduce the imposed testing over-
head during testing and to increase the system availability by proposing test scheduling policies,
and (b) efficient check-pointing and roll-back mechanisms to assist recovery in the presence of
permanent faults. Combining the proposed techniques we aim to develop a dependable system
able to tolerate permanent hardware failures encountered during the normal operation of many-
core architectures. The first part of this thesis introduces a new paradigm of SBST that performs
testing at the granularity of individual microprocessor core components in multi-/many-core
systems based on the utilization. This thesis, is the first work that proposed and implemented
selective testing. The second part investigates the relation between system test latency and test
time overhead under several scheduling policies targeting large systems in terms of number of
cores. As a result, we aim to identify the best scheduling policy that increases system avail-
ability under a given test latency constraint. Both the on-line fault detection approaches are
deployed and evaluated under a real environment using a unix based OS (Solaris) targeting a
SparcV9 multi-core architecture. Finally, in the third and last part of this thesis, we enhanced
our framework to support fault recovery in the presence of permanent faults.

For the development of the above techniques, we proposed the DaemonGuard Framework,
a light-weight, minimally-intrusive framework, which transparently orchestrates the procedure
of SBST and accommodates algorithms for the creation of checkpoints and to support the re-
covery to a fault-free state. The basic DaemonGuard Framework is generic enough and can
support different techniques for SBST as well as test programs that target hardware compo-
nents of a multi-core system at different granularities (i.e. core level, functional unit). The
DaemonGuard Framework comprises an always-active OS process (the Testing Manager) and
a number of dormant daemons (the test routines), which are awakened according to the imple-
mented technique.

The developed framework in this thesis can be considered as an flexible tool for the scientific
community with research interests in the area of self-testing and specifically the SBST. The
ability to monitor the system’s activity and provide a real-time feedback of the “health” of
the system’s module combined with the O/S resident processes for testing can help research

groups to easily implement, deploy and evaluate new SBST techniques. Besides the scientific

3



community, the concept of DaemonGuard Framework can be adopted by different industry

sectors (i.e automotive industry) towards a low cost reliable solution.

1.2 Self-Testing of Multi-Core Microprocessors

The main purpose of this thesis is to provide new approaches for self-testing of multi-core
microprocessors. The existing SBST approaches are mainly focused on the development of
test programs that are periodically applied at microprocessors. The first part of our research
activity, focuses to the reduction of imposed testing overheads from the execution of test pro-
grams during the normal operation of systems. The motivation of this approach is to perform
test based on the utilization by avoiding testing under-utilized components. To achieve the
utilization-based SBST, the individual cores of a multi-core system are divided in several func-
tional units that can be tested independently. This allows us to perform selective testing on the
high-utilized functional units.

To achieve this, we utilize the DaemonGuard Framework to enable the real-time obser-
vation of individual sub-core modules and the initiation of on-demand selective testing. For
this approach, the main component of the DaemonGuard Framework is the Testing Manager
software process, which is responsible for the invocation of the various Test Daemons (test
programs targeting individual functional units of each core of the system), based on the utiliza-
tion information provided by hardware instruction counters residing alongside each functional
unit within the CPU cores. The main function of the Testing Manager is the checking for
pending test requests by any functional unit of any core within the system. Furthermore, the
DaemonGuard mechanism is able to exploit the memory hierarchy of the CPU to expedite the
testing process. DaemonGuard is augmented with the capability to perform cache-aware selec-
tive testing, whereby test sessions are initiated not only based on unit utilization, but also on the
recent history of test sessions by other similar units in other cores. Consequently, test programs
can benefit from cache-resident blocks, thereby avoiding the need for many expensive off-chip
memory accesses.

In order to provide a comprehensive framework for the orchestration of testing activity
under multi-core systems, a different approach of SBST is also investigated in this thesis. In
particular, we investigate the impact of SBST for shared-memory multi-core systems in cases
where the need for testing the entire system is necessary. One salient aspect of on-line self-
testing is the scheduling of the test programs during a testing session. For the second part

of this thesis, we proposed to investigate scheduling methodologies aiming to increase system
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availability during testing. The main focus is to investigate the intricate relationship between
the test latency and the test-time overhead under different test scheduling policies. We are
motivated to study this problem, because, in shared memory systems, the time overhead of
SBST for each core is affected by potential test program content already resident in the Last

Level Cache as a result of a previous core’s testing session.

1.3 System Recovery in the Presence of Permanent Faults

For the last part of this thesis, an enhancement of DaemonGuard Framework to support fault
recovery capabilities is proposed. When a testing session is completed, during selective testing,
a checkpoint that holds the fault-free state of the system must be captured. Since the considered
detection mechanism performs on-demand testing at sub-core granularity, checkpoints are cap-
tured and stored in the system at irregular time intervals. As a result of this, we are motivated
to investigate techniques that aim to solve the problems arising by the application of recovery
policy over selective testing.

The main focus of this thesis is the system recovery process, once a permanent fault has
been detected. Hence, a recovery mechanism is introduced, which is able to keep the system
operational despite the occurrence of permanent faults. The main components of the proposed
recovery mechanism are (a) the Checkpoint Manager, and (b) the Recovery Manager, which
are responsible, respectively, for the creation of system checkpoints and determining a valid
checkpoint (among the multiple stored ones) to roll back.

After the detection of a permanent fault and the subsequent recovery to a fault-free state,
the system should be able to isolate the faulty module and reconfigure itself to a fault-free (albeit
degraded) operational mode. We assume that the operating system is aware of the reconfigura-
tion policy and, upon rollback, it is able to re-distribute the workload to the fault-free (and still
active) cores, and resume execution from the selected checkpoint. Note that the reconfiguration

mechanism is beyond the scope of this thesis.

1.4 Contributions

The contributions of this thesis are:

* The Development of DaemonGuard Framework, a light-weight framework that can en-
able SBST from the O/S level. The modular and scalable design of this framework allows

the accommodation and evaluation of different SBST approaches.
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» The Utilization-Based Selective SBST contributes to the substantial reduction in testing

overhead by avoiding the testing of non-utilized functional units.

* A further improvement of Selective SBST, by considering the Cache-Aware Selective
Testing. Testing sessions are initiated not only on utilization statistics per unit, but con-
sidering the recent activity of testing in order to exploit the cache-resident blocks of test

data.

* Optimization of test scheduling process in order to minimize the test-time overhead and

maximize the system availability.

* A clustering approach of selecting the cores under test is proposed in order ensure the

reduction in test-time overheads while the system scales up.

* An efficient checkpointing and roll-back recovery mechanisms for systems that perform

on-demand testing on a specific part of the system (i.e. Selective SBST).

1.5 Thesis Outline

The outline of this thesis is illustrated in Figure 1.1. Chapter 2 presents a review of state-of -
the-art techniques and methodologies for the self testing of multi-core processors. In Chapter
3 we present the DaemonGuard Framework by describing the most important components.
Details about a series of simulation experiments in order to acquire statistics about the executed

instructions per functional unit within a core by the application of several benchmarks is also
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presented in Chapter 3. Chapter 4 introduces the Selective SBST while Chapter 5 presents the
cache-aware selective SBST approach. Test scheduling techniques and optimization of system
availability is presented in Chapter 6. In Chapter 7, we propose mechanisms to support recovery
in the presence of permanent faults. Finally, in Chapter 8 we present the concluding remarks

and future work.






Chapter 2

State-of-the-Art Overview

2.1 Taxonomy of On-line Fault Detection Methods

Over the last several years, several self-testing approaches have been proposed towards reliable
and dependable multi-core microprocessor systems. Considering the implementation details as
well as the architectural level of application, on-line fault detection techniques can be classified
in four main categories [3]. Figure 2.1 presents a tree diagram of the taxonomy of on-line fault
detection methods. The four categories that on-line fault detection methodologies can be clas-
sified are: (a) redundant execution where the exploitation of “spare” processing elements (i.e.
cores) for the replication of normal workload can lead to the detection of failures, (b) dynamic
verification where the fault detection is based on the validation of program invariants during
runtime, (c) anomaly detection where the system is monitored for the detection of symptoms
of faults, and (d) the Self-Test-based techniques where the on-line fault detection is done by the
application of test patterns. Based on the level of implementation and the way that faults are
detected in each category, the first three categories can be considered as a Non-Self-Test-based

approaches as well.

The main characteristic of Non-Self-Test-based methods is that the detection of faults is
achieved by exploiting the normal workload that is applied in the system. As a result of these
approaches, in fault-free executions the imposed performance overheads in normal workloads
is almost zero while hardware overhead exists either using additional hardware components
(i.e. using checkers) or by increasing (i.e. doubling) the resources for the execution of the
workload (i.e redundant execution). In Self-Test-based techniques, the detection of faults is
achieved by the application of test patterns either by using hardware support (i.e. scan chains),

in hardware-based techniques, or by exploiting the available resources and ISA, in software-
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Figure 2.1: Taxonomy of on-line fault detection methods

based techniques.

During self-testing, test patterns are applied in a periodic manner where the normal opera-
tion of module under test (i.e. core) is suspended and turned into testing mode. As a result of
this, Self-Test-based approaches imposed performance overheads in the system. In the era of
multi-/many-core architectures with multiple homogeneous cores appearing in the same chip,
despite the suspension of the normal operation of the core under test, the entire system remain

operational as normal workload can be scheduled in one of the remain available resources.

2.2 Non-Self-Test-based Methods

A fault detection approach targeting microprocessor cores is to run two identical copies of the
same program (different executions either at the thread or process levels) and compare their
outputs. Redundant execution is feasible both at the hardware level and the software level.
In the era of multi-/many-core architectures with multiple homogeneous cores integrated on
the same chip, and the capability to execute multiple threads (or processes) simultaneously,
the hardware-based redundant techniques (such as Dual/Triple Modular Redundancy, DMR,
TMR) can be applied with significantly reduced performance overheads, targeting both transient
and permanent faults. The application of these hardware-based redundant techniques is feasible
because of the rather improbable simultaneous utilization of all the processing resources at any
given time. In literature, two forms of redundant techniques at hardware level can be found
the structural redundancy (lockstep configuration) and temporal redundancy (redundant multi-

threading).
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In the former, identical cores are working in close synchronization either at instruction level
or even more at cycle level. Aggarwal et al. [21] propose DMR and TMR configurations for
CMPs which provide error detection and error recovery through fault containment and com-
ponent retirement. LaFrieda et al. [22] presents a dynamic core coupling (DCC) technique
that allows arbitrary CMP cores to verify each other’s execution. Unlike existing DMR tech-
niques that require a static binding of adjacent cores via dedicated communication channels
and buffers, the proposed technique avoids the static binding of cores. Li et al. [23] proposed a
variation-aware core-level redundancy scheme in order to achieve robust computation in many-
core systems with inter-core variations and mixed workloads.

Several Redundancy Multi-Threading (RMT) techniques have been proposed targeted single-
core chips that support Simultaneously Multi-Threading (SMT) [24,25]. The evolution of tech-
nology and the era of multi-core systems forced researches to develop techniques exploiting the
nature of Chip Multi-Processors. Mukherjee et al. [26] studied RMT techniques in the context
of both single- and dual-processor simultaneous multi-threaded (SMT) propose a Chip-level
Redundant Threading (CRT) for CMP architectures. [27] present a Software-based Redundant
Multi-Threading (SRMT) approach for transient fault detection targeting general-purpose chip
multi-processors (CMPs). Furthermore, Chen et al. [28] explores how to efficiently assign the
tasks onto different cores with heterogeneous performance properties in order to achieve high
reliability and satisfy the tolerance of timeliness. Mitropoulou et al. [29] proposes a compiler-
based technique that makes use of redundant cores within a multi-core system to perform error
checking.

As we mentioned, redundant execution techniques can be found at software level as well.
In this case, the redundant execution of workload at different architectural levels (i.e. instruc-
tion, thread, process) is based on the re-execution at the same resources. As a result, redundant
techniques at this level can only detect transient faults. Oh et al. [30] propose a pure soft-
ware technique Error Detection by Duplicated Instructions(EDDI) that duplicates instructions
during compilation and uses different registers and variables for the new instructions. Reis et
al. [31] present SWIFT, a novel, software-only, transient fault detection technique. Recently,
Mushtaq et al. [32] propose an error detection mechanism that is optimized to perform mem-
ory comparisons of the replicas efficiently in user-space. Kuvaiskii et al. [33] present HAFT, a
fault tolerance technique using hardware extensions of commodity CPUs to protect unmodified
multi-threaded applications against such corruptions. HAFT utilizes instruction-level redun-
dancy for fault detection and hardware transactional memory for fault recovery.

The second category of on-line fault detection in the considered taxonomy is the Dynamic
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Verification. The operation of this approach is based on the run-time verification of specific
invariants that in a fault free execution are true. The verification is based on dedicated hard-
ware checkers. The research challenge within these approaches beyond to maintain a low-cost
in terms of hardware implementations, is to provide a comprehensive set of invariants aim-
ing to increase the detected faults. Dynamic Verification was first introduced by Todd Austin
in [34], where a novel micro-architecture based technique that permits detection and recov-
ery of all transient and permanent faults in the processor core is proposed. DIVA, a Dynamic
Implementation Verification Architecture,) uses a simple checker core to detect errors in a spec-
ulative, super-scalar core. Despite, the low-cost implementation requirements compared with
a complex super-scalar core, in multi-core systems with simpler microprocessors the overhead
becomes significant. Meixner et al. [35] proposes Argus, a low-cost, comprehensive fault de-
tection targeting simple cores. Based on dynamic verification, Argus uses four invariants that
guarantee the correct operation of a core, control flow, computation, dataflow and memory.
Additionally, Meixner and Sorin [36] proposes the Dynamic Dataflow Verification (DDFV)
another approach of dynamic verification using a high-level invariant. Fault are detected by
verifying at runtime the dataflow graph.

The last category of Non-Self-Test-based approaches is the Anomaly Detection where that
faults are detected by monitoring the software for anomalous behavior or symptoms of faults.
According the level of symptoms that can detect, anomaly detection approaches can be further
classified in three categories [3], (a) those that detect data value anomalies, (b) those that detect
micro-architectural behavior anomalies, and (c) those that detect software behavior anomalies.
Racunas et al. [37] dynamically predict the valid set of values that an instruction will produce,
and consider a departure from this prediction as a symptom of a (transient) fault. Wang and
Pater [38] detect transient faults without significatn overhead by utilizing symptom. Feng et
al. [39] in Shoestring, enhance ReStore by selectively duplicating some vulnerable instructions
with simple heuristics. Li et al. [40] propose the detection of faults by deploying low overhead
monitors for simple software symptoms at the operating system level. Their approach is rely on
the premise that micro-architectural strcuctures eventually propagate symptoms to the operating

system.

2.3 Self-Test-based Methods

The last category of the considered taxonomy is the Self-Test-based Methods where the de-

tection of faults is based on the application of test patterns. Based on the architectural level
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of implementation and application of test patterns, Self-Test-based methods are further classi-
fied in three categories: (i) the Hardware-based methods, known as Built-In Self-Test (BIST),
where self-testing is maintained by hardware components, (i1) Software based methods, known
as Software-Based Self-Testing (SBST) where the application of test patterns in done using
software programs, and (iii) the hybrid approaches where self-testing is supported both by

hardware level and software level.

2.3.1 Hardware-based Methods (BIST)

Built-In Self-Test (BIST) approaches can, theoretically, perform non-concurrent error detec-
tion of microprocessors during their entire lifetime. Hardware-based BIST exploits special
circuits located on the chip that produce, monitor, and evaluate the tests needed by the cores.
Traditionally, BIST techniques are used for manufacturing testing, but the advances in technol-
ogy necessitates the application of such techniques during the lifetime and normal operation of
the system targeting wear-out and aging-related faults.

Shyam et al. [41] utilize existing distributed hardware BIST mechanisms to validate the
integrity of the processor components in an on-line detection strategy. For each of the pipeline
components, a high quality input vector set is stored in an on-chip ROM, which is fed into the
modules during idle cycles. A checker is also associated with each component to detect any
defect in the system.

Li et al. [42] present CASP, Concurrent Autonomous chip self-test using Stored test Pat-
terns, is a special kind of self-test where a the system tests itself during normal operation without
any downtime visible to the end-user. The operation of CASP is based on two main functions:
(1) the storage of very thorough test patterns in non-volatile memory, and (ii) the architectural
and system-level support for autonomous testing of one or more cores in a multi-core system
without suspend the normal system operation. The testing procedure under CASP solution is
composed by four phases: (1) the test scheduling where one or more cores may be selected for
testing, (2) the pre-processing phase where the core under test is temporarily isolated saving
the current state, (3) the testing where test patterns are loaded and applied to the core under
test and finally, (4) restore the state and resume the operation of tested core. The evaluation of
the proposed technique is done using the OpenSPARC T1 multi-core processors where a fault
coverage more than 99% using SMB of stored patterns is achieved.

Lee et al. [43] propose a novel self-test architecture which achieves high fault coverage by

using deterministic scan-based test patterns. The main idea of this work is the compression and
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storage on the chip while the decompression and application to the circuits under test will take
place during the testing. As the testing is performed based on deterministic patterns, pseudo-
random patterns are not required and this results in the reduction of testing time. Experimental
results on OpenSPARC T2, a publicly accessible 8-core processor containing 5.7M gates, show
that all required test data for 100% testable stuck-at fault coverage can be stored in the scan

chains of the processor with less than 3% total area overhead for the whole test architecture.

2.3.2 Software-based Methods (SBST)

The SBST technique is an emerging new paradigm in testing that avoids the use of compli-
cated dedicated hardware for testing purposes. Instead, SBST employs the existing hardware
resources of a chip to execute normal (software) programs that are designed to test the func-
tionality of the processor itself. The test routines used in this technique are executed as normal
programs by the CPU cores under test. The processor generates and applies functional-test pro-
grams using its native instruction set. In recent years, several active research teams have been
working in the area of SBST focusing on different approaches. The two main phases of SBST
towards the detection of a fault are (a) the test-program development, and (b) the execution of

the test program on the system.

Test program development for multi-core architectures Several research teams are work-
ing on the development of test programs with multi-dimensional scope, such as to increase the
fault coverage, extend the considered fault models (i.e., to also include delay faults), reduce the
test-program size, achieve savings in testing time overhead, etc. More recently, in the age of
chip multiprocessors and multi-threading, the development of test programs also focuses on
the effective adoption of the underlying hardware to yield self-test optimization strategies that
benefit from the targeted architectures.

Foutris et al. [14] propose a Multi-Threaded Software-Based Self-Test (MT-SBST) SBST
methodology targeting multi-threaded multi-core architectures. The proposed MT-SBST method-
ology generates an efficient multi-threaded version of the test program and schedules the result-
ing test threads into the hardware threads of the processor to reduce the overall test execution
time and on the same time to increase the overall fault coverage. MT-SBST approach signif-
icantly speeds up testing time at both the core level (3.6 times) and the processor level (6.0
times) against single-threaded execution, while at the same time it improves the overall fault

coverage
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Kaliorakis et al. [44] propose a test-program parallelization methodology for many-core
architectures, in order to accelerate the on-line detection of permanent faults. The proposed
methodology is based on the identification of the memory hierarchy parameters of many-core
architectures that slow down the execution of parallel test programs in order to identify the
parts that can be parallelized and therefor to improve the performance. The evaluation of the
methodology in [44] is done using the Intel’s Single Chip Cloud Computer showing an up to

47.6X speedup compared to a serial test program execution approach.

Test program scheduling One salient aspect of on-line testing and specifically of SBST
is the scheduling of the test program(s). In light of the rapid proliferation of multi-/many-
core microprocessor architectures, the test scheduling issue becomes even more pertinent. One
approach is to periodically initiate testing on the system targeting individual cores, or all the
cores simultaneously. In any case, the interruption of the current execution of normal workload
is unavoidable. Another approach is the execution of test programs on cores that have been
observed to be idle for some time. Recent techniques have proposed the monitoring of the
utilization of the system and subsequent selection of specific cores to be tested.

Apostolakis et al. [12] proposed a methodology that allocates the test programs and test re-
sponses into the shared on-chip memory and schedules the test routines among the cores aiming
at the reduction of the total test application time, and thus, test cost, for the SMP, by increas-
ing the execution parallelism and reducing both bus contentions and data cache invalidations
The proposed solution is demostrated with detailed experiments on several multi-core systems
based on OpenRISC 1200 processor.

A recent test-scheduling study for online error detection in multicore systems is discussed in
[45]. The authors evaluate the performance of test programs applied on Intel’s 48-core Single-
chip Cloud Computer (SCC) architecture. Due to possible congestion within common hardware
resources used by the various cores, the test time can be quite large with a significant impact
on performance. As a result, the authors of [45] develop effective test scheduling algorithms to
expedite the test process in such systems.

Skitsas et al. [46] investigate the relation between system test latency and test-time over-
head in multi-/many-core systems with shared Last-Level Cache (LLC) for periodic SBST,
under different test scheduling policies. The investigated scheduling policies primarily vary
the number of cores in the overall system testing session. Given a constraint in test latency, the
proposed methodology optimizes the test scheduling process, so as to minimize the test-time

overhead and maximize system availability.
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Monitoring system activity Recently, several techniques proposed the monitoring of sys-
tem status over the time as an indicator for initiation testing procedure. Power, utilization,
performance are among the metrics that are considered in the type of testing activity.

Gupta et al. [47] propose an adaptive online testing framework to significantly aiming to
reduce the testing overhead. The proposed approach is based on the ability to assess the hard-
ware health and apply detailed tests. Hardware health assessment is done using in-situ sensors
that detect the progress of various wearout mechanisms. Results show a reduction in software
test instructions about 80% while the sensor area overhead for a 16-core CMP system is 2.6%.

Haghbayan et al. [48] proposed a power-aware non-intrusive online testing approach for
many-core systems. The proposed approach schedules software-based self-test routines on the
various cores during their idle periods. The scheduler selects the core(s) to be tested from a list
of candidate cores. The selection is based on a criticality metric, which is calculated considering
the utilization of the cores and power budget availability.

Skitsas et al. [49] investigate the potential of SBST at the granularity of individual micro-
processor core components in multi-/many-core systems. While existing techniques monolith-
ically test the entire core, the proposed approach aims to reduce testing time by avoiding the
over-testing of under-utilized units. The methodology is based on a real-time observation of
individual sub-core modules and performs on-demand selective testing of only the modules that
have recently been stressed. Results indicate substantial reductions in testing overhead of up to

30X.

2.3.3 Hybrid Methods (HW/SW)

Beyond Self-Test-based methods that are purely implemented at one architectural level either
on hardware or software, there is a different approach that spans in both architectural levels.
The purpose of these hybrid approaches is to further improve the performance of self-test
based methods by reducing the testing time, increasing the fault coverage, etc. The hardware
architectural support provides the necessary substrate to facilitate testing, while the software
makes use of this substrate to perform the testing. For the implementation of such approaches,
modifications of the ISA and/or the extension of hardware components may be required.
Inoue et al [50] propose VAST, a Virtualization-Assisted concurrent, autonomous Self-Test
that enables a multi-/many-core system to test itself, concurrently during normal operation,
without any user-visible downtime. VAST is hardware and software co-design of on-line self-

test features in a multi-/many-core system through integration of BIST (i.e. CASP) methods
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with a virtualization software. Testing can be done in two ways, stop-and-test and migrate-and-
test. Experimental results from an actual multi-core system demonstrate that VAST-supported
self-test policies enable extremely thorough on-line self-test with very small performance im-
pact.

Constantinides et al. [S1] proposed an online testing methodology using an enhanced ISA
with special instructions for fault detection and isolation. Structural tests are performed by
applying test patterns using software routines. The test routines are executed periodically, after
a number of executed instructions have committed, and checkpoints are used for recovery.
The technique of Constantinides et al. is software-assisted, but it requires various hardware
modifications. These intrusive modifications are needed, because the goal is to enable very
detailed structural testing through existing scan-chain infrastructure.

A hardware and software co-design methodology for functional testing is proposed by Khan
et al. [52]. The testing methodology is based on the redundancy concept, whereby two cores
execute the same program and capture corresponding footprints. The results of the executions
are compared for fault detection. The choice of the test program is based on profiling that can
be done offline or online. In [53], the authors propose a thread relocation methodology that
uses dynamic profiling based on phase tracking and prediction.

In [54], a scalable self-test mechanism for online testing of many-core processors has been
proposed. Several hardware components are incorporated in the many-core architecture that
distribute software test routines among the processing cores, monitor behavior of the process-
ing cores during test routine execution, and detect faulty cores. Results indicate a good fault
coverage in a limited number of test cycles while the scalability in terms of hardware and timing

overhead is maintained making the application to many-core systems feasible.

2.4 Work Related to this Thesis

The developed fault detection techniques under this thesis are classified in the Self-Test-based
methods and particular under the Software-based methods. As the scope of this thesis is to
reduce the imposed testing overheads and increase the system availability by applying the pro-
posed test scheduling policies, the test program development is beyond the scope of this thesis.
Test programs that are used in our framework are adopted from the literature and specifically
for the Foutris et al [14].

As we mentioned earlier in this Chapter, several research groups are working on the devel-

opment of test programs targeting processing elements at different granularities (i.e. functional
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Table 2.1: High-level comparison of relevant online testing techniques.

Selective SBST Full-Core Functional Testing Struct. Testing
(Proposed) [12] [14] [52] [59] [51]
Test-Time Overhead Low High Low
Overall Fault Coverage Moderate to High Very High
Fault Coverage per Testing
Unit-based Core/System-based
Session
Low to High ) )
Detection Latency Depends on testing period
(based on stress)
System Avail. During )
Very High High None
Testing
Targeted Module Functional unit Core/System
Test Triggering Method Stress-based Periodic
Frequency of Test ) )
High Low (Depends on testing period)
Triggering
HW Support Minimal No No Yes No Yes
OS Modif. No No No Yes Yes No

units, entire core). Psarakis et al. [18] discussed the role of SBST in the microprocessor test
and they proposed a taxonomy for different SBST methodologies according their test program
development philosophy. The efficiency of an SBST approach depends on its test program de-
velopment methodology and the effectiveness of the generated test routines. Another important
parameter towards the efficient development of test programs is the automation of the self-test
program generation process. The field of automatic test program generation includes generic
approaches targeting processor cores [55,56] or approaches targeting specific high-performance

processor architectures [57,58].

The main contribution of this thesis the selective SBST where the test programs are applied
at sub-core granularity (functional units) based on the utilization. Thus, an important element
in this thesis is the usage of test programs that target the individual functional units of the
considered architecture. Based on the literature, the most applicable test programs for our
framework are those that are developed by Foutris et al. [14] targeting the functional units of a

Chip Multi-Threaded (CMT) multiprocessor architecture.

Table 2.1 presents a high-level comparison of the proposed selective SBST technique to
other relevant on-line testing techniques (including full-core functional testing). The main con-

tribution of the work in this thesis is the reduction of the test-time overhead, by avoiding un-
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necessary testing. As shown in Table 2.1, the “Overall Fault Coverage” of the selective and
full-core testing approaches is the same. However, the limitation of selective testing is in terms
of “Fault Coverage per Testing Session.” The provided fault coverage of each testing session
refers only to the particular functional unit under test (since only one functional unit is tested
during each test session). Of course, this limitation only applies to each individual test session;
once all units are tested over time, the overall fault coverage is identical to the one provided by
full-core testing. Note that the under-utilized units are tested periodically. Another important
parameter affected by the proposed selective testing technique is the detection latency. Since
test triggering is based on utilization (or, more generally, stress), the detection latency could
vary from low to high: fault detection in highly-utilized units is much faster than in under-
utilized units, due to the more frequent testing sessions. Most importantly, the impact of the
proposed testing approach on overall system performance is minimized by utilizing a software-
based framework (with minimal hardware support), which runs seamlessly and transparently

within the OS of the multi-core system.
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Chapter 3

DaemonGuard Framework

In order to enable on-line software-based self-testing, targeting either sub-core functional units
or the entire core and additionally to be able to support recovery in the presence of permanent
faults, we proceeded to the development and implementation of the DaemonGuard Framework.
This framework is mainly constituted from test programs residing at the operating system level
and during their execution are targeting on the detection of permanent fautls. On top of these
test programs, another software process, that is running at O/S level as well, is responsible for
the orchestration of the testing activity. In particular, The Testing Manager process initiates
the execution of the test programs based on a triggering mechanism either by monitoring the
activity of the system or based on a predefined time interval (periodically). For each proposed
methodology under this work, the Testing Manager process is suitably adapted, i.e in selective
testing the execution of test programs is driven by the utilization metrics of the functional units

within the cores of the system.

Figure 3.1 depicts a high-level overview of the DaemonGuard framework used to facilitate
fault detection and recovery in a multi-/many-core setup. According to the architectural level
of implementation, DaemonGuard is implemented in two levels, the Software Level residing
within the O/S and the Hardware Level including the memory elements as well. The right
side of the figure depicts the many-core architecture where each core of the system has its
own private cache memory and is interconnected to the NoC. Additionally, with orange color
are the enhancements related to the monitoring as well as the communication with message
queues. Arrows with red color indicates the communication between the several components

of the DaemonGuard Framework.
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Figure 3.1: A high-level overview of the general framework employed in this thesis to facilitate the detection of
faults (the focus is on permanent faults) and the recovery of the multi-/many-core system to a correct state. Correct

system states are maintained in the form of checkpoints.

3.1 Software Level Implementation

In DaemonGuard Framework, fault detection and recovery mechanisms are maintained by soft-
ware processes that resides in the O/S with the minimum support of hardware components (i.e.
for the monitoring of the system). In this section, we are presenting an overview of those soft-
ware processes that form the fault detection mechanisms, the Test Daemons that are responsible
to apply test patterns over the functional components of a core and the Testing Manager process
mainly responsible for the invocation of Test Daemons. Additionally, in order to assist the re-
covery procedure upon the detection of a permanent fault, two software processes are running
at the O/S level as well. The first process is responsible for the creation of checkpoints (a fault
free state of the system) and the second, implements an algorithm for the selection of a valid

checkpoint for recovery.

3.1.1 Deamon-Based Test Programs (Test Daemons)

In multitasking computer operating systems, daemons are programs that run as background
processes without any interaction at the user level. Daemons can be characterized as common
processes; i.e., they have a Process ID (PID) and all operations pertaining to processes — such
as the sleep function and various signals — can be applied. Daemon programs are loaded onto

the system once, when the operating system starts up, and they run continuously during the
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normal operation of the system. In the most cases, daemons are idle processes waiting for
an appropriate signal, or interrupt, in order to become active and perform their task(s). An
example of such OS daemon is the printer server in unix-based operating systems. The daemon
is loaded and executed during the startup phase of the operating system and runs continuously
in the background (in idle mode) while waiting for a job to print.

For the purposes of this work, the test programs are normal OS processes that run in the
same way as normal applications. As a result, the isolation of test programs is facilitated by the
operating system through context switching, whereby the state of a process is stored and restored
on-demand, and the execution of both test programs and normal workloads is seamlessly time-
multiplexed on the system. Hence, it is the OS that handles the scheduling and isolation of test

programs, since the latter are normal OS processes.

3.1.2 Testing Manager Process

The basic component of the DaemonGuard framework is the Testing Manager process which
is responsible for the invocation of the various test daemons based on each consider self-testing
methodology. Just like all the other other processes running during normal system operation,
the O/S is responsible to schedule the Testing Manager process as well. The ability of the
implementation of different algorithms (i.e. scheduling policies) for the orchestration of self-
testing in multi-core systems is one of the characteristics of Testing Manager. This and the
possibility to exploit information by monitoring the system allow us to implement and evaluate
several efficient techniques and different scheduling schemas related with SBST.

Beyond the invocation of test daemons, the Testing Manager process is responsible for the
collection of test results in order to initiate the recovery mechanism in the case that a permanent
fautl is detected. In particular, upon completion of a test session, the corresponding test daemon
sends the test result back to the Testing Manager. We note here that in our work, the analysis of
the test results (i.e., the comparison of the test results with the golden/expected results) is carried
out by each test daemon individually, followed by a pass/fail signal from each test daemon to
the Testing Manager. An alternative implementation could delegate the analysis of every test
result to the Testing Manager.

For the scheduling approaches of this work, two different self-testing scheduling policies are
considered, (a) the utilization-based approach where a feedback about the executed instructions
determines the initiation of a testing session at the granularity of sub-core unit, and (b) the

periodic testing of entire system where the testing procedure is applied at core level. More
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details and the benefits of each approach are given in the Chapters 4, 5 and 6.

3.1.3 Recovery Management and Support

Beyond the detection of faults, modern systems must be enhanced with mechanisms able to
self-repair and recover the system to a fault-free state, in order to remain functional despite the
presence of permanent faults. Once an error is detected by on-demand SBST, the system must
be able to recover via rollback to a fault-free state. Hence, a recovery mechanism is introduced
in DaemonGuard Framework, which is able to keep the system operational despite the occur-
rence of permanent faults. The main components of the proposed recovery mechanism are (a)
the Checkpoint Manager, and (b) the Recovery Manager, which are responsible, respectively,
for the creation of system checkpoints and determining a valid checkpoint (among the multiple
stored ones) to roll back. Both mechanisms are resides in the O/S and are triggered by the
Testing Manager process.

In the very simple form, the Checkpoint Manager is triggered upon the completion of each
testing session (either for a sub-core functional unit or the entire core) and initiates the process
for the creation of a checkpoint with the fault-free state of the system. As the main part of
this work 1s based on on-demand testing (Selective SBST), an efficient Checkpoint Manager is
proposed in order to reduce the number of checkpoints within the system. Details about the
algorithm and its implementation are given in Chapter 7.

The second process related with the recovery mechanism is responsible to determine a valid
checkpoint for rollback. Considering the utilization-based testing, the most recent checkpoint
cannot ensure the fault-free state as the checkpoint is created upon the completion of a testing
session targeting in many cases part of a core and not the entire system. As a result, an intelligent
mechanism for to determine a valid checkpoint for recovery is introduced. Chapter 7 provides

details about the Most Recent Valid Checkpoint algorithm.

3.2 Hardware Level

The DaemonGuard Framework is mainly developed to support Software-Based Self-Testing
orchestrated by the O/S. However, to support the on-line SBST, a minimum hardware en-
hancements are required. The cores of the system are enhanced with monitoring components
per functional units (counting the executed instructions) in order to support the utilization-

based Selective SBST (see Chapters 4 and 5) while some modifications on the Cache Address
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Mapping component are required in order to support the clustering approach of test scheduling

techniques in large systems (see Chapter 6).

3.2.1 Hardware Support

The proposed selective testing methodology relies on the run-time gathering of information
regarding the utilization of the various functional units within each core of the system. The
term “utilization” refers to the number of instructions that have made use of the specific unit
during normal operation. In order to collect this data, we assume the presence of a set of
hardware instruction counters. There is one such counter for each functional unit within each
core. instruction counters are developed to support the needs of this work and specifically the
Selective SBST. Since, our scope is to develop the DaemonGuard as a generic Framework
that can support different forms of SBST that may required feedback from the system, the
instruction counters can be replaced by any other components or can be enhanced to include
other type of information (i.e. historical data).

Furthermore, as one of the contributions of this work is to maintain the scalability of multi-
core systems in terms of the number of cores, low-cost enhancements of hierarchical memory
system are considered as well. In particular, in Chapter 6 we proposed the clustering approach
where the testing data are distributed over the Last Level Cache Bank (LLC-Bank) of a set of
cores in the system that forms the cluster. For the implementation of the clustering approach,

the Cache Address Mapping component is modified in order to force the placement to the

desired LLC-Bank.

3.2.2 Shared Memory

Another component of the system that is exploited for the implementation of DaemonGuard
Framework is the shared memory. Beyond the usage during the execution of test daemons,
shared memory is used as the main storage component of the created checkpoints as well as
data structures (i.e queues) for the fault detection mechanisms.

In the utilization-based self-testing, where the feedback from the activity of functional units
is necessary, a message queue located in main memory is developed in order to assist the com-
munication between the Hardware and Software Levels. This queue is accessible both by the
hardware monitoring units and Testing Manager process. Additionally, memory structures (i.e.
queues, arrays) are developed as well in order to support the cache-aware testing, an improve-

ment of selective testing where the history of testing activity is required for the prediction of
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future testing sessions.

3.3 Impact of DaemonGuard Framework

As DaemonGuard Framework is mainly based on the execution of processes by the O/S con-
current with the normal workload, a series of experiments are performed in order to investigate
the impact of DaemonGuard on overall system performance. It will be demonstrated that the
cost of employing an always-active Testing Manager process is very low.

For the purposes of our investigation here, we run two simulations per benchmark: one of
a “clean” run of the benchmark without the implemented framework, and one with the full-
fledged DaemonGuard framework running on the system. A test daemon is loaded for the
testing routine of each functional unit within each CPU core. Since we consider seven func-
tional units per core of the 16-core system, 128 test daemons (including the 16 Test Daemons
for full-core testing) are loaded in total. The testing routines are loaded, but not actually “exe-
cuted,” since we are only interested (at this point) in the performance overhead imposed by the
proposed monitoring and test initiation framework, and not the actual testing time overhead.
This simulation exercise shows that the overhead imposed by DaemonGuard over all bench-
marks is near-negligible, at around 0.23%. Detailed analysis of the impact of DeamonGuard
Framework considering the Selective SBST is presented in Section 4.5.2.

Regarding the impact of loaded Test Daemons, a Test Daemon is required for each level
and each functional unit as DaemonGuard Framework supports testing at core level as well as
at sub-core granularity (i.e. functional units). The number of loaded test daemons does not
impact the performance overhead, since the daemons are always idle during normal operation.
The cost incurred by the test daemons is only in terms of memory overhead. Since daemons
are common loaded processes of the OS, they have a portion of the main memory allocated to
them. However, the memory footprint is determined by the number of unique test routines to
be executed, not the number of daemons running.

Considering the microprocessor architecture that we are using in this thesis, the core is
divided in seven functional units that can be tested. Thus, the total number of test daemons
required to be hosted in DaemonGuard Framework is eight, one for the full core testing and
one for the seven test routines. The total memory footprint required for the accommodation of
all the test daemons within the system is determined by these eight daemons. The simulation
exercise that is done for the performance evaluation of DaemonGuard Framework indicates that

the amount of memory required is 712 KB, on average, per unit-specific test routine and about
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3 MB for the full-core Test Daemon. If multiple daemons execute the same test routine, then
all these daemons will execute the same routine instructions from the same physical address
space. For example, in a 16-core system, we would need one ALU test daemon per core, i.e., a
total of 16 test daemons executing the same ALU test routine. Thus, the memory footprint for
the ALU test routine would only be incurred once, not 16 times. This is precisely the reason

why this daemon-based approach is scalable with the number of CPU cores.

3.4 DaemonGuard Framework: a Profiling Exercise

As we already mentioned, DaemonGuard Framework is an O/S based system with hardware
support that mainly is used for the orchestration of SBST techniques for multi-core systems.
The first utilization of DaemonGuard Framework in our work, is to implement the Selective
SBST. Initially, we deployed part of the DaemonGuard Framework and specifically the in-
struction counters for each core of a multi-core system. Using this, we proceeded to a profiling
exercise of workloads applied to the system in order to classify the executed instructions in
classes based on their functional characteristics/functional units. Results of this profiling exer-
cise motivates us to further investigate the utilization-based SBST and proposed the Selective
SBST. In this section, the profiling exercise is presented.

Sub-core functional unit utilization statistics are derived through a series of full-system sim-
ulations over the PARSEC benchmark applications. For each benchmark, we periodically col-
lect information pertaining to the number of executed instructions. We classify the instructions
based on their type and the corresponding functional unit that is responsible for their execu-
tion. Figure 3.2 presents some of the results of our profiling experiments pertaining to CPU
utilization during the execution of various multi-threaded benchmark applications. Note that
the CPU utilization is observed at the granularity of individual functional units (i.e., at the sub-
core level). In particular, for each of four PARSEC benchmarks, we present the percentage
utilizations of each of the nine functional units (integer ALU, integer multiplier, integer di-
vider, branch, floating-point adder, floating-point multiplier, floating-point divider, read-ports
and write-ports) of a specific core over a period of 50 K cycles during the benchmark’s execu-
tion (similar trends have been observed in all cores of the system).

This profiling exercise assumes a 16-core Chip Multi-Processor (CMP); the details and pa-
rameters of the evaluation framework are given in Section 4.5. The x-axis of each sub-figure
in Figure 3.2 shows the benchmark’s execution timeline, while the y-axis shows the percentage

utilization of each intra-core functional unit. Figure 3.3 illustrates the utilization of each func-
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Figure 3.2: Profiling experiments of CPU utilization during the execution of four PARSEC benchmark applica-

tions. The CPU utilization is measured at the granularity of individual functional units within each processing

core. In particular, the percentage utilizations of each of the nine functional units (integer ALU, integer multi-

plier, integer divider, branch, floating-point adder, floating-point multiplier, floating-point divider, read-ports and

write-ports) of a specific core in a 16-core CMP are presented over a period of 50 K cycles during the benchmark’s

execution.

tional unit when all PARSEC benchmarks are executed sequentially, one after the other. This

experiment aims to show how unit utilization varies as the application type changes over time

(since different applications are executed sequentially). The averaging period in the results of

Figure 3.3 is 1 minute, in order to observe functional unit utilization over a more practical in-

terval (i.e., substantially longer than the 50 K cycles of Figure 3.2). The entire duration of the

sequential execution of all PARSEC benchmarks is more than 2 minutes, so Figure 3.3 presents

results for two averaging periods: one for the first minute of execution (T=0-1 mins), and one

for the second minute of execution (T=1-2 mins).

The overall outcome of this profiling exercise is that despite the well balanced distribution
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Figure 3.3: Utilization of each functional unit when all PARSEC benchmarks are executed sequentially, one after
the other. The averaging period is 1 minute. Two averaging samples are shown: one for the first minute of

execution (T=0-1 mins), and one for the second minute of execution (T=1-2 mins).

of workload over the cores of the system the distribution at sub-core granularity, over the func-
tional units, is non-uniform. This motivates us to investigate the utilization-based self-testing

at the granularity of functional unit, Selective SBST.
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Chapter 4

Selective SBST for Shared-Memory

Multicore Systems

As technology scales deep into the sub-micron regime, transistors become less reliable. Fu-
ture systems are widely predicted to suffer from considerable aging and wear-out effects. This
ominous threat has urged system designers to develop effective run-time testing methodologies
that can monitor and assess the system’s health. In this chapter, we investigate the potential of
online software-based functional testing at the granularity of individual microprocessor core
components in multi-/many-core systems. While existing techniques monolithically test the
entire core, our approach aims to reduce testing time by avoiding the over-testing of under-
utilized units. To facilitate fine-grained testing, we introduce the DaemonGuard Framwork
for Selective SBST, a framework that enables the real-time observation of individual sub-core
modules and performs on-demand selective testing of only the modules that have recently been
stressed. The monitoring and test-initiation process is orchestrated by a transparent, minimally-
intrusive, and lightweight operating system process that observes the utilization of individual
datapath components at run-time. We perform a series of experiments using a full-system,
execution-driven simulation framework running a commodity operating system, real multi-
threaded workloads, and test programs. Our results indicate that operating-system assisted
selective testing at the sub-core level leads to substantial savings in testing time and very low

impact on system performance.
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4.1 Introduction

Existing SBST mechanisms for multi-core systems [12—-14] periodically test either an entire
CPU core, or — in more aggressive scenarios — the entire CPU (i.e., all CPU cores). Naturally,
this methodology may lead to over-testing, since all core modules (e.g., integer ALU, floating-
point units, etc.) are tested irrespective of the actual strain they have suffered since the previous
testing session. Ideally, one would want to perform selective/targeted testing to the units that
have sustained the most strain, and only sporadic testing to under-utilized modules. As the
number of cores in multi-core microprocessors increases, the probability that various functional
units within the individual cores will be underutilized during certain periods of time increases.
Hence, conducting tests at the granularity of entire cores, or CPUs, will increasingly lead to

unnecessary testing and associated performance overhead.

This realization serves as the primary motivation for this chapter: our objective is to re-
duce the testing time of multi-/many-core systems by only selectively targeting the individual
functional units of each CPU core that are stressed the most. By surgically testing individual
modules, we can markedly reduce the overall testing time, since the testing procedure will only
execute the test routines relevant to the specific unit under test. In order to enable such testing
capabilities, the utilization of the various datapath components is observed at run-time and tests

are initiated.

Toward this end, and in an effort to facilitate seamless and transparent selective SBST in
multi-core systems, we hereby propose an adjustment of the DaemonGuard Framework to
support Selective SBST. In particular, DaemonGuard Framework enables the real-time ob-
servation of individual sub-core modules and initiates on-demand selective (i.e., unit-specific)
testing. By looking inside each core, DaemonGuard performs more frequent testing of over-
utilized functional units and periodic, infrequent testing of under-utilized units. It should be
noted that the DaemonGuard framework does not impose any restrictions on the metric used to
trigger the testing mechanism. Utilization is used here as a proof-of-concept surrogate targeting
the Hot Carrier Injection (HCI) failure mechanism, which is directly related to the switching
frequency and activity factor of the components [60,61]. In reality, any metric may be adopted
to account for any form of aging/wear-out. For example, if the underlying architecture pro-
vides temperature sensors [62], or any other type of aging sensors, DaemonGuard may utilize
them for more accurate estimation of aging. Performance counters may also be used as a proxy

for high temperatures, as demonstrated in [63].

In order to assess the advocated new testing methodology, we fully implement and evalu-
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ate DaemonGuard in a full-system simulation framework based on Simics [64]/ GEMS [65],
running a commodity operating system and executing the PARSEC benchmark suite [66] (a
selection of multi-threaded applications) in a multi-core setup. We juxtapose the proposed se-
lective testing procedure to two full-core testing approaches: (a) full-core testing triggered by
total core utilization, and (b) full-core testing triggered by individual sub-core unit utilizations.
Instead, DaemonGuard only performs unit-specific tests to the units that exceed a certain uti-
lization threshold. The results of our experiments indicate savings in testing time of up to 30X
when testing is performed in a selective manner. Moreover, the impact on system performance
of the always-on Testing Manager process is shown to be negligible, thus corroborating our
assertion that OS-assisted SBST is a viable option. The latter also demonstrates the potential
scalability of this approach to large-scale many-core systems.

This work was published and presented in a peer-reviewed conference [?] and published as

a journal paper [49].

4.2 Related Work

Several non-concurrent on-line testing techniques have been proposed in the literature [5].
SBST or functional testing is a promising solution for periodic testing of traditional micro-
processor architectures [18]. Recently, the advent of the multi-/many-core era has spurred a
series of techniques targeting the testing of a system at the core and system levels. When apply-
ing such methodologies in microprocessors, the main source of overhead is festing time. One
of the main objectives of these techniques is to reduce the testing time overhead.

Constantinides et al. [51] proposed an online testing methodology using an enhanced ISA
with special instructions for fault detection and isolation. Structural tests are performed by ap-
plying test patterns using software routines. The test routines are executed periodically, after a
number of executed instructions have committed, and checkpoints are used for recovery. The
technique of Constantinides et al. is software-assisted, but it requires various hardware modi-
fications. These intrusive modifications are needed, because the goal is to enable very detailed
structural testing through existing scan-chain infrastructure. On the contrary, the proposed
DaemonGuard approach targets functional testing, which is purely software-based, and only
employs regular instructions that are part of the processor’s ISA.

A hardware and software co-design methodology for functional testing is proposed in [52].
The testing methodology is based on the redundancy concept, whereby two cores execute the

same program and capture corresponding footprints. The results of the executions are com-
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pared for fault detection. The choice of the test program is based on profiling that can be
done offline or online. In [53], the authors propose a thread relocation methodology that uses
dynamic profiling based on phase tracking and prediction.

Apostolakis et al. [12] propose a scheduling methodology for the test routines, aiming to
reduce the test execution time by exploiting core-level parallelism. A Multi-Threaded (MT)
SBST methodology is proposed in [14]. The authors propose an efficient MT version of func-
tional unit test programs, in order to reduce the execution time of testing. All test routines are
run simultaneously, based on the thread-level parallelism capabilities of the core under test. In
all cases, testing is assumed to be initiated periodically (at regular time intervals) and is per-
formed for the entire core. Note that the proposed DaemonGuard scheme is orthogonal to MT
SBST, and, thus, it may be used to complement such methods.

Yanjing Li et al. [59] demonstrate the need for OS support in efficiently orchestrating online
self-testing in future robust systems. Their contribution is the development of test-aware OS
scheduling techniques for multicore systems. These techniques take into account the availabil-
ity of each core when deciding the initiation of full-core testing, with the ultimate goal being
to reduce the performance impact of the testing procedure. Test-aware OS scheduling is or-
thogonal to the work presented in this article and can, in fact, complement the DaemonGuard
framework. In other words, while the current incarnation of DaemonGuard does not modify the
OS scheduler, it is conceivable that a more holistic approach could allow the DaemonGuard’s
Testing Manager to coordinate with the OS scheduler.

A recent test-scheduling study for online error detection in multicore systems is discussed in
[45]. The authors evaluate the performance of test programs applied on Intel’s 48-core Single-
chip Cloud Computer (SCC) architecture. Due to possible congestion within common hardware
resources used by the various cores, the test time can be quite large with a significant impact
on performance. As a result, the authors of [45] develop effective test scheduling algorithms to

expedite the test process in such systems.

4.3 DaemonGuard Framework for Selective SBST

In order to enable selective testing — whereby the execution of unit-specific test routines is initi-
ated on demand at run-time — it is essential to be able to dynamically track the utilization of the
functional units within each CPU core. This was the initial motivation for the implementation
of DaemonGuard, a light-weight, minimally-intrusive framework, which transparently orches-

trates the procedure of selective testing. In Selective SBST the DaemonGuard Framework is
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Figure 4.1: Architectural Overview of the DaemonGuard Framework for selective SBST. The three main compo-
nents of DaemonGuard work in unison in order to facilitate real-time monitoring of the utilization of the various
functional units within each core of the multi-core system. Once a unit exceeds a certain number of executed
instructions, a test request is generated. Accordingly, the Testing Manager OS process invokes the appropriate

OS-resident test daemon to initiate the execution of the unit-specific test routine.

responsible to (a) monitor the system activity during normal operation, (b) initiate the execution
of the appropriate test routines on the appropriate cores, and (c) collect the test results. Details
about the implementation of DaemonGuard Framework have been presented in Chapter 3. In
this chapter we provide technical details of the components of DaemonGuard Framework that

are adapted and/or extended in order to support the Selective SBST.

The three main components of DaemonGuard Framework for the Selective SBST are il-
lustrated in Figure 4.1(a). The top two components (the Testing Manager OS Process and the
Test Daemons) are implemented purely in software and reside within the OS. The bottom com-
ponent in Figure 4.1(a) shows the minimal hardware support (the Instruction Counters for the
various functional units within each CPU core) required to provide utilization information to

the Testing Manager.
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4.3.1 Daemon-Based Selective SBST - Test Daemons

In order to perform selective SBST, a number of test daemons (as described in Section 3.1.1)
are loaded onto the OS. The number of loaded test daemons depends on both the number of
CPU cores present in the system, and the number of functional units within each core. Dae-
monGuard requires one test daemon per functional unit per core. As previously mentioned
the memory footprint is not affected by the number of daemons, but by the number of unigue
unit-specific test routines. Daemons are kept in idle mode during normal operation; they wait
for the appropriate invocation signal from the Testing Manager OS process, in order to wake up
and execute their specified unit-specific test routine on the targeted functional unit of a specific
core. The flow diagram of the operation of a test daemon is shown in the middle box of Figure
4.1(a). Upon completion of the testing process, the outcome (i.e., if a fault has been detected

or not) is reported to the Testing Manager process.

4.3.2 The Testing Manager O/S Process

The main part of the DaemonGuard framework is the Testing Manager process that is re-
sponsible for the invocation of the various test daemons, based on the utilization information
provided by the hardware instruction counters residing alongside each functional unit within
the CPU cores. The main function of the Testing Manager is the periodic checking of pend-
ing test requests by any functional unit of any core within the system. Since our aim was to
present a proof-of-concept implementation for the DaemonGuard framework, a polling-based
approach was employed for simplicity. It should be noted that an interrupt-based implementa-
tion would be more efficient. Regardless, the results show that even the polling-based approach
incurs near-zero overhead. Irrespective of the implementation details of the Testing Manager,
the main goal of this chapter is to demonstrate the potential benefits of selective testing. The
test requests are stored into a Pending Tests Queue structure, as depicted in Figure 4.1(b). This
memory-mapped software structure is located in shared memory, where every core of the sys-
tem has direct access. This means that the Testing Manager can run on any available core of
the system and it can still have access to the queue.

During each checking period, the Testing Manager checks the queue, it dequeues all pend-
ing test requests, and it sends a wake-up signal to the corresponding test daemons. The signal,
in this case, is an inter-process communication message and it is facilitated by the OS. Due
to this OS-assisted functionality, the proposed testing methodology is minimally intrusive at

the system level, and the test programs can run “simultaneously” with the normal applications,
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using OS context switching. In fact, depending on the running application, the OS may some-
times be able to completely “hide” the execution of the test daemons. Upon completion of a test
session, the corresponding test daemon sends the test result back to the Testing Manager. The
complete flow diagram of the DaemonGuard’s operation is illustrated in Figure 4.1(b). The
high-level pseudo-code of the Testing Manager is given in Algorithm 1. The checking period
of the Testing Manager is decided a priori and remains constant during the normal operation

of the system.

Algorithm 1 Testing Manager Process for Selective SBST. Periodically checks for pending test

requests and invokes test deamons for execution
Input: Period P, Pending Tests Queue (PTQ)

1: while True do

2: while PTQ not Empty do

3: SendSignal(PTQ.dequeue()) /* trigger test */
4: end while

5: while Available Results do

6: CollectResult(daemon)

7: end while

8: Sleep(P)

9: end while

4.3.3 Hardware support

The proposed selective testing methodology relies on the run-time gathering of information
regarding the utilization of the various functional units within each core of the system. The term
“utilization” refers to the number of instructions that have made use of the specific unit during
normal operation. In order to collect this data, we assume the presence of a set of hardware
instruction counters. There is one such counter for each functional unit within each core. For
example, if an executed instruction uses the ALU, the corresponding counter will increase by
one. The value of each counter is then used to determine when a functional unit must request
a test. When the predefined threshold of T instructions is met, the affected unit places a test
request in the Pending Tests Queue of Figure 4.1(b). The Testing Manager process will then
invoke the appropriate daemon (e.g., the ALU test daemon) to execute the unit-specific test

routine on the corresponding core. After the execution of the test routine finishes, the specific
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Figure 4.2: Abstract illustration of the differences between the three examined testing methodologies, FT-TU,
FT-UU, and ST-UU. The stress on each core or unit (i.e., number of instructions executed) is represented by the
color intensity, as a percentage of the threshold required to trigger testing. Red squares/rectangles are cores/units

under test.

counter will receive a reset signal from the Testing Manager process to restart counting from

Z€r1o0.

4.4 Proposed selective testing based on functional-unit uti-

lization

The current trend in SBST schemes is to periodically test either the entire core, or the entire sys-
tem. This may lead to considerable over-testing, especially in the case of multi-/many-core sys-
tems where certain parts of the system may be under-utilized at certain points in time. Hence,
utilization-based testing may be more appropriate and can lead to a considerable reduction in
the overall testing time, since unnecessary testing can be avoided.

The motivation of utilization-based self testing is derived by the profiling exercise of Sec-
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tion 3.4. We have derived sub-core unit utilization statistics through a series of full-system
simulations over the PARSEC benchmark applications [66]. For each benchmark, we period-
ically collect information pertaining to the number of executed instructions. We classify the
instructions based on their type and the corresponding functional unit that is responsible for
their execution. The profiling results show that the distribution of the instructions over the var-
ious units within each core is non-uniform, mainly due to the nature of the running application.
This motivates us to explore the potential of selective testing at the sub-core granularity by ap-
plying appropriate test routines to only the strained units and, thus, reducing the overall testing
time overhead.

Hence, we propose a selective testing methodology based on sub-core level utilization, i.e.,
on the utilization of individual functional units within a CPU core. We refer to this testing policy
as Selective Core-Unit Testing based on Core-Unit Utilization (ST-UU). The system takes into
consideration all of the core’s functional units and performs individual unit tests. The execution
of a particular test routine targeting a specific functional unit within a core is triggered after a
pre-defined number of T instructions (the threshold) have used the specific unit. Each time the
number of executed instructions on a unit meets the threshold T, a test request is placed into
the Pending Tests Queue. The Testing Manager process then invokes the corresponding test
daemon to initiate execution of the unit-specific test routine. Using this approach, unnecessary
testing of the remaining (under-utilized) functional units is not performed.

We explore two more testing methodologies that perform full-core testing, based on uti-
lization at the core- and sub-core levels. These two scenarios will be used to demonstrate the
impact of selective testing on over-testing savings, as compared to non-selective, full-core test-
ing schemes. The first method — Full-Core Testing based on Total-Core Utilization (FT-TU)
— tracks the total number of executed instructions within each core, without considering the
functional units used by each instruction. When the number of executed instructions meets the
testing threshold, the OS invokes a test daemon that tests the entire core. Note that this sce-
nario is not directly comparable to the philosophy of unit-based utilization. It is included here
to serve as an indicative measure of the potential savings that may be reaped for cases where
utilization statistics can only be obtained at the core level.

A directly comparable testing methodology is the second full-core testing methodology
used in our exploration, the Full-Core Testing based on Core-Unit Utilization (FT-UU). Here,
the system tracks the number of executed instructions on each functional unit within each core,
similar to the proposed DaemonGuard methodology. When the functional unit with the highest

utilization within a core exceeds the testing threshold (i.e., the unit executes more instructions
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Table 4.1: Simulated system parameters.

Processors | 16 UltraSparc III+ cores
L1 Caches | 32 KB 1& 32 KB D, 3-cycle latency
L2 Caches | 16 MB, 10-cycle latency

Main Memory | 4 GB, 200-cycle latency

Network | 4x4 2D Mesh
OS | Solaris 10

than the threshold T), the OS invokes a test daemon that tests the entire core. Note that after

the execution of the full-core testing process, all unit counters will restart counting from zero.

Figure 4.2 illustrates abstractly the differences between the three examined testing method-
ologies. Let us assume that we have a 9-core CMP. In the case of the FT-TU testing scheme
(top part of Figure 4.2), the CMP only observes the number of instructions executed in each
core, so the minimum granularity of observation is a single core (represented by each small
square in the 9-core CMP). The stress on each core (i.e., number of instructions executed) is
represented by the square’s color intensity, as a percentage of the threshold required to trig-
ger testing. For example, a light grey core indicates low stress, and as the threshold utilization
target is approached (i.e., closer to 100%), the color becomes darker. Once the threshold tar-
get is hit, the core transitions to testing mode (indicated by the red color). As time progresses,
more squares (cores) become darker in color (i.e., total-core stress increases), and various cores
transition into testing mode. The second testing methodology, FT-UU (middle part of Figure
4.2), observes core stress at a sub-core granularity, as indicated by the smaller rectangles, which
represent individual functional units within each core. However, testing is still performed on
the entire core once the threshold of a functional unit is exceeded. Finally, the proposed ST-
UU methodology (bottom part of Figure 4.2) conducts selective testing only on the functional
units that exceed their stress threshold. As evident by the smaller red rectangles in the bottom
row of Figure 4.2, the proposed methodology provides fine-grained testing and, thus, it avoids
overtesting. Even though the same workload is executed in all three cases, the fest-trigger time
and the fest target are different, based on the methodology employed. The proposed ST-UU

approach provides finer-granularity observations and finer-granularity testing sessions.
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Table 4.2: The execution times and memory footprints of the employed unit-specific test programs.

Perfect w/Memory
Functional Memory Hierarchy | Code Size (KB) | # of Instr. Pattern
Unit (K Cycles) | (K Cycles) Size (KB)
Int ALU 32.8 63.6 1.5 280 1
Int Mult 8.8 232 0.6 110 1
Int Div 51 62.8 0.5 800 2
Branch 32.8 43.6 1.45 270 1
Fload Add 1,302 20,000 3.18 30 1696
Fload Mult 534 8,600 2.96 30 464
Fload Div 774 12,569 2.7 30 672
Full-Core 2,737 41,000 12.89 1550 2837

4.5 Experimental Framework and Results

4.5.1 Evaluation framework

For the evaluation of the proposed testing methodologies, we use a full-system, execution-driven
simulation framework based on the Wisconsin GEMS toolset [65], in conjunction with Wind
River’s Simics [64]. We simulate a 16-core CMP, as presented in Table 4.1. Each core in the
system is an in-order-execution UltraSPARC III+ core.

Our approach of selective testing requires one test daemon for each functional unit of each
CPU core. We first use the test routines from [14], which is the most recent work that developed
testing routines at the functional-unit level. In order to use these routines in our framework,
we implemented them as daemons and integrated them within the OS, as descriped in pre-
views sections. These test routines target the OpenSPARC microprocessor [67], which uses
the SPARC v9 ISA. The UltraSPARC III+ core in our evaluation framework also uses the
SPARC v9 ISA, which means that the test routines of [14] are applicable to our system. The
execution times, number of instructions, and memory footprints of these routines are given in
Table 4.2. In terms of execution time, two sets of times are reported: one for a microprocessor
with a perfect memory system (i.e., without considering any memory latencies), and one for
a realistic system employing the memory hierarchy described in Table 4.1. The two sets of
execution times are shown to identify the test routines that experience elevated cache misses in
the realistic system (i.e., the system used in our simulations).

Full-system, execution-driven simulations are performed using the PARSEC benchmark

suite [66]. PARSEC is a benchmark suite of multi-threaded workloads that focus on emerging
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Table 4.3: Details of the PARSEC benchmark applications used in our evaluation framework.

Benchmark Input Set | Executed Instr. (Billions) | Time (M Cycles)
1 Blackscholes | medium 0.76 552
2 | Bodytrack small 1.08 776
3 Canneal medium 1.15 1,400
4 | Dedup small 2.84 1,700
5 | Ferret small 2.03 958
6 | Fluidanimate small 1.36 553
7 Freqmine small 2.24 2,529
8 Raytrace medium 1.36 193
9 | Swaptions small 2.57 890
10 | Vips small 4.04 2,180
11 | x264 small 0.74 660

parallel workloads. We use PARSEC benchmarks for our extensive profiling of the distribution
of instructions over the units and the cores of the system. To evaluate the proposed testing
methodologies, we use eleven of the benchmarks. Details about the input sizes, number of
executed instructions, and execution times are given in Table 4.3. All the benchmarks are
configured with 16 threads, since the multi-core setup in our evaluation framework consists of

16 cores.

4.5.2 Impact of the DaemonGuard Framework

As DaemonGuard Framework is mainly based on the execution of processes by the O/S con-
current with the normal workload, a series of experiments are performed in order to investigate
the impact of DaemonGuard on overall system performance. It will be demonstrated that the
cost of employing an always-active Testing Manager process is very low.

Table 4.4 presents the results of this exploration. The parameters of the simulated machine
are shown in Table 4.1 and results are collected when running the PARSEC benchmark appli-
cations [66]. In order to speed up the simulation time, the memory system is not considered
here, because no test routine is actually executed (which would require a memory access), i.e.,
the memory system does not affect the experiment under consideration. Note that the simula-
tion experiments for the evaluation of Selective SBST include a complete and realistic memory
hierarchy, as will be explained later on. For the purposes of our investigation here, we run
two simulations per benchmark: one of a “clean” run of the benchmark without the proposed

framework, and one with the full-fledged DaemonGuard framework running on the system. A
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Table 4.4: Impact of the DaemonGuard Framework on System Performance, P = 750K cycles.

“Clean” Run with DaemonGuard
Benchmark K Cycles K Cycles | Overhead

1 Blackscholes 46,187 46,210 | 0.050%
2 | Bodytrack 296,423 296,440 | 0.006%
3 | Canneal 64,921 64,962 | 0.063%
4 | Dedup 201,362 202,488 | 0.559%
5 | Ferret 435,702 436,130 | 0.10%
6 | Fluidanimate 165,291 165,483 | 0.116%
7 | Freqmine 2,399,959 | 2,400,465 | 0.021%
8 Raytrace 85,453 85,733 0.328%
9 | Swaptions 57,403 58,094 | 0.695%
10 | Vips 357,257 359,263 | 0.561%
11 | x264 240,723 240,879 | 0.064%
Average | 0.232%

test daemon is loaded for the testing routine of each functional unit within each CPU core. As
it can been seen in the table, the overhead imposed by DaemonGuard over all benchmarks is

near-negligible, at around 0.23%.

The incurred overhead is attributed to the always-on Testing Manager process, which peri-
odically checks for pending test requests. A significant parameter within the Testing Manager
is the period P over which pending test requests are monitored; i.e., period P is the time (in
cycles) between each check of the Testing Manager for pending test requests. Period P is de-
termined by the threshold T of committed instructions that a functional unit must exceed in
order to initiate testing. This threshold is typically determined by the underlying technology,
the criticality of the system, and the application of on-line self-testing. For example, for circuit
failure prediction [8,9,68], periodic on-line self-testing can be performed less frequently — say
once every 10 secs — than in the case of hard failure detection, which can occur as often as once
per second, in order to allow for low-cost and low-latency recovery [59]. In our framework, a
testing request is initiated by the core, based on workload utilization, when the threshold T is
reached. Hence, the monitoring of pending test requests must occur frequently, so as to enable
timely detection of test requests. The relationship between P and T is expressed as P << T,

where T is the estimated time in cycles required to commit T instructions.

For the experiments of Table 4.4, the period P is set to 750K, so the Testing Manager

checks for pending test requests every 10 ms. The overhead, in terms of instructions, each
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time the Testing Manager checks for test requests is only 83 instructions. As the overall Dae-
monGuard performance overhead is inversely proportional to P, larger values of P will reduce
the overhead even further. A smaller than 10 ms P is not considered viable, as this would im-
ply an even smaller T, which, in turn, would activate SBST more frequently than needed. It
is worth mentioning that the low overhead of the Testing Manager process is partially due to
the optimal scheduling that the operating system performs; the Testing Manager process is not

bound to any specific core within the system — it can run on any available core.

4.5.3 Evaluation results of Utilization-Based Selective SBST

We simulate all aforementioned benchmarks according to the testing methodologies described
in Section 4.4, using the proposed DaemonGuard framework and the test routines of Table
4.2. Simulations are performed in order to evaluate the benefit of the proposed selective testing
policy, ST-UU, as compared to the two full-core testing policies, FT-TU and FT-UU.

One key issue is the selection of an appropriate testing threshold T, i.e., the number of ex-
ecuted instructions that trigger the initiation of a test session. As already mentioned, T will be
defined based on technology parameters related to aging and wear-out effects, the criticality
level of the system, as well as the considered application of on-line self-testing (e.g., failure
prediction vs. failure detection). First, we study how different values of T impact the proposed
methodology. Specifically, we evaluate the testing-time overhead when modifying the testing
threshold. Figure 4.3 shows the results when applying different threshold values. In partic-
ular, we performed simulations using threshold values T of 5M and 10M instructions for all
the considered benchmarks. The three figures correspond to the three testing methodologies
under evaluation. The x-axis of each graph shows the 11 benchmarks and each pair of bars
corresponds to the two investigated threshold values. The last group of bars on the x-axis refers
to the average results for all the benchmarks. The y-axis shows the extra overhead — in terms of
cycles — incurred by each method due to testing. As it can be seen, the overhead is drastically
reduced as the threshold increases, since the number of testing sessions also decreases. On
average, doubling the threshold yields a reduction in testing overhead of about 40% in all three
testing methodologies. This result highlights the significance of the testing threshold: a very
low threshold will result in excessive testing and unnecessary stressing of the functional units
by the test routines themselves. On the other hand, setting the testing threshold too high may

result in late detection of faults.

For the remainder of our experiments, we use ' = 5M instructions. In practice, T may
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Figure 4.3: Exploring the impact of the testing threshold T (the number of executed instructions required to trigger
a testing session) on the execution time of the various benchmark applications. The three graphs correspond to

the three testing methodologies under evaluation: FT-TU, FT-UU, and the proposed ST-UU (bottom graph).

be larger; however, we limit its value here, in order to be able to invoke the various testing
policies an adequate number of times for comparison purposes, while maintaining reasonable

simulation times in our full-system, cycle-accurate framework.

Since the main objective of this chapter is to reduce the testing time, we investigate the total
execution time (application time plus testing time), in terms of cycles, and the total number of
executed instructions in the presence of each testing methodology. Figure 4.4 presents the
results over all the considered benchmarks. The top graph of Figure 4.4 presents the testing
overhead in terms of total committed instructions under each testing policy, while the bottom
graph shows the testing overhead in terms of extra clock cycles. Each triplet of bars represents
the three testing methodologies and shows the testing overhead normalized to a system with
DaemonGuard loaded but with no tests performed. The last triplet in both graphs shows the
average results across all benchmarks. Clearly, the proposed selective testing approach (the
right-most bar — ST-UU - in each triplet) yields a significant reduction in the testing cost, both
in terms of extra executed instructions and extra cycles needed. On average, the testing overhead
is less than 8% when applying the proposed selective testing approach (ST-UU), while full-core

testing based on unit-utilization (FT-UU) imposes a 70% overhead.
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Figure 4.4: The testing overhead imposed by the three testing methodologies across all benchmarks. The top graph
shows the testing overhead in terms of extra executed instructions, while the bottom graph shows the overhead in
terms of extra cycles needed. The testing routines are executed together with the running applications, whenever

a testing session is triggered.
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Figure 4.5: A comparison between the obtained testing overhead incurred — in terms of extra cycles needed —
and the expected overhead. The expected overhead is estimated by multiplying the number of testing sessions

performed with the number of cycles that each test routine requires when executed in isolation.
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Expected Testing Overhead

We also compare the obtained testing overhead incurred — in terms of extra cycles needed —
with the expected overhead. The expected overhead is estimated by multiplying the number of
performed testing sessions (as reported from the simulations) with the number of cycles that
each test routine requires when executed in isolation. The simulation results show that the actual
(obtained) overhead is less than the expected, as illustrated in Figure 4.5. Once again, the three
graphs correspond to the three testing methodologies under evaluation. The left bar in each pair
of bars represents the obtained extra cycles needed due to testing, while the right bar indicates
the calculated expected cycles. Observe that, in many cases, the obtained overhead is less than
the expected. The reason for this discrepancy is attributed to the OS: the OS scheduler re-
balances (re-distributes) the application workload during testing sessions, so as to optimize the
use of resources. Consequently, testing time can be hidden by the OS’s scheduling mechanisms.
This is another benefit of the proposed daemon-based SBST methodology: by employing OS-
assisted selective testing, we benefit from the inherent capabilities of the OS itself, in terms of

scheduling and load-balancing optimizations.

4.6 Concluding Remarks

This chapter proposes Selective SBST, a new approach in SBST that monitors the system uti-
lization at the sub-core granularity and initiates targeted testing of only the over-utilized func-
tional units. Under-utilized units are only sporadically tested in a periodic manner. The pro-
posed methodology is evaluated using full-system, execution-driven simulations over the PAR-
SEC benchmark suite. The results incidate significant reductions in testing overhead of up to
30x when the Selective SBST is used instead of a full-core testing approach. Additionally,
the results of the execution of larger test routines with higher demands of memory accesses
indicates an increased overhead in terms of execution time. This motivates us, first to investi-
gate the impact of memory hierarchy (i.e. LLC) and then to propose a mechanism in order to

further reduce the imposed overheads.
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Chapter 5

Cache-Aware Selective SBST

The era of nanoscale technology has ushered designs of unprecedented complexity and im-
mense integration densities. Billions of transistors now populate modern multi-core micropro-
cessor chips and the trend is only expected to grow. Diminutive feature sizes, however, put
undue strain on the reliability and long-term endurance of these modern systems. Research by
both industry and academia is pointing to the alarming fact that future designs will be increas-
ingly vulnerable to aging and wear-out artifacts. In this chapter, we proposed an improvement
of Selective SBST by tracking the testing activity and providing a test data pre-fetch mecha-
nism aiming to further reduce the imposed testing time overheads. In particular, we investigate
the impact of the cache hierarchy on the testing process and we develop a cache-aware selec-
tive testing methodology that significantly expedites the execution of memory-intensive test
programs. We perform a series of experiments using a full-system, execution-driven simula-
tion framework running a commodity operating system, real multi-threaded workloads, and
test programs. Our results indicate that the cache-aware testing technique is very effective in

exploiting the memory hierarchy to further minimize the testing time.

5.1 Introduction

The proposed Utilization-Based Selective SBST of Chapter 4 seems to be a promising SBST
method which aims to reduce the testing time overheads by avoiding the over-testing of under-
utilized units. Based on the proposed Selective SBST and the DaemonGuard Framework (de-
scribed in previous chapters), in this chapter, we proceeded to an enhancement by proposing
the Cache-Aware Selective SBST. The DaemonGuard mechanism is able to exploit the mem-

ory hierarchy of the CPU to expedite the testing process. While some test programs may be
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small and could fit in their entirety within the L1 cache, there are also test programs that are
much larger (on the order of MB) and, therefore, tend to stress the system’s memory.

In general, on-line self-testing may require thorough testing to account for a variety of fail-
ure modes, such as traditional stuck-at and delay faults. In such cases, it may be necessary to
load a considerable amount of test patterns from off-chip memory. Given the trend toward
many-core microprocessors with ever-increasing hardware complexity, the memory footprint
of such SBST programs is also likely to increase. In this chapter, we investigate the impact of
the cache hierarchy on the testing time of memory-intensive test programs and demonstrate that
the testing coordinator (the 7esting Manager in our case) cannot be oblivious to the underlying
memory sub-system. Hence, the DaemonGuard Framework for Selective SBST is augmented
with the capability to perform cache-aware selective testing, whereby test sessions are initiated
not only based on unit utilization, but also on the recent history of test sessions by other sim-
ilar units in other cores. Consequently, test programs can benefit from cache-resident blocks,
thereby obviating the need for many expensive off-chip memory accesses.

In order to assess the new testing methodology, similar with Selective SBST, we fully im-
plement and evaluate DaemonGuard Framework in a full-system simulation framework based
on Simics [64]/ GEMS [65], running a commodity operating system and executing the PAR-
SEC benchmark suite [66] in a multi-core setup. For the evaluation, we compare the testing
time overhead of the cache-aware Selective SBST with the non-cache-aware from the Chapter
4. Additionally, in order to assess the efficiency of the proposed approach, we compare the
results with the ideal scenario where all the data are located in the L1 cache of the core that
functional unit under test belongs. The results of our experiments indicate that the cache-aware
selective testing capabilities of DaemonGuard are shown to substantially decrease the execution
time of memory-intensive test programs, thus minimizing the testing overhead and its impact
on overall system performance.

The work of this chapter has been peer-reviewed and published as a journal paper [49].

5.2 Cache-Aware Selective SBST

The DaemonGuard framework is designed to initiate testing based on the individual unit utiliza-
tions. While this philosophy is extremely beneficial in terms of providing fine-grained testing
(which is faster and avoids overtesting), the framework seems to ignore a fundamental aspect
of the system: the memory hierarchy. The memory hierarchy comes into play when the test

programs become large enough that they start to stress the memory sub-system. Some of the
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test programs used in this thesis are small enough to fit entirely within the L1 cache of any
individual core in the CMP. Hence, other than the unavoidable compulsory misses, those test
programs will not experience any other cache misses throughout their execution. However,
there are other test programs with larger working sets, which cannot fit within the cache hier-
archy. These test programs are memory-intensive; they may experience large numbers of cache
misses, and, consequently, suffer from very expensive (in terms of wasted stall cycles) off-chip
memory accesses.

Moreover, the trend towards larger-scale and more complex (e.g., heterogeneous) CMPs
implies an accompanying increase in the size of some of the test programs used in SBST
schemes. Some researchers have already reported fairly large (in terms of memory footprint)
test programs [3,42], and it is not unreasonable to expect further increases in the memory
footprints of various test programs in the near and distant future. It is, therefore, imperative
to investigate the impact of the cache hierarchy on the testing time of memory-intensive test
programs, in an effort to devise ways to decrease the execution time of such large test programs.

Motivated precisely by this need to further contain the testing time, we augment the Dae-
monGuard framework with the capability to be cache-aware. Selective testing can now be ini-
tiated not only based on unit utilization, but also on the recent history of test sessions by other
similar units in other cores. Our simulation results indicate that test-related data (both test pat-
terns in the data segment and instructions in the text segment) remains cached in the hierarchy
for a substantial period of time after the test session concludes its execution. This period can be
viewed as a window of opportunity for other cores to exploit. Remember, that the data required
by a test daemon is shared between all the loaded daemons targeting the same functional unit
in the various cores. Hence, if the Testing Manager could observe the recent testing history on
all cores, the DaemonGuard mechanism would be able to exploit the memory hierarchy of the
CPU to re-use cache-resident blocks, thereby limiting the need for time-consuming off-chip
memory accesses. As a result, the overall execution time of memory-intensive test programs
would be significantly reduced. Figure 5.1 presents an abstract example of how cache aware-
ness can benefit the testing process. The top portion of Figure 5.1 illustrates the worst-case (in
terms of testing overhead) scenario: Core 1 conducts a test session for a particular functional
unit; Core 2 conducts the same test for the same type of functional unit (situated in Core 2),
but Core 2’s test commences at a time beyond the window of opportunity. In this figure, the
window of opportunity is denoted as the time between points B and C on the timeline. This
worst-case scenario occurs when all the test instructions and data have been evicted from the

cache, i.e., it corresponds to a cold run yielding the longest possible test execution time. The
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Figure 5.1: An abstract example of how cache awareness can benefit the testing process. The goal is to take
advantage of the so called window of opportunity, which is a limited period of time after the testing session of
a particular type of functional unit in one core in the CMP. During this time window (designated by the time
between points B and C on the timeline in this figure), other cores wishing to test the same type of functional unit

could take advantage of cache-resident blocks from the other core’s testing session.

middle portion of Figure 5.1 illustrates the best-case scenario: Core 2’s test commences imme-
diately after the end of Core 1’s test (or, it could also overlap with Core 1’s test); thus, Core 2’s
test benefits from cache-resident blocks and the total time needed to complete the test session is
minimized. The worst- and best-case scenarios constitute the performance bounds pertaining
to the impact of the cache on the testing time. Finally, the bottom part of Figure 5.1 depicts the
solution proposed in this chapter, which triggers earlier testing in Core 2 (i.e., the test is moved
within the window of opportunity), in order to take advantage of cache-resident blocks from
Core 1’s testing session. Obviously, the proposed methodology would fall somewhere between
the worst- and best-case performance bounds, as only those tests falling outside but close to the
window of opportunity will be triggered earlier, in order to benefit from cache-resident blocks.

Based on this premise, we propose a new cache-aware selective methodology, where we
consider both the stress on each individual unit and the recent history of test sessions targeting
the same unit in other cores. In the baseline selective method (i.e., the non-cache-aware one),
each core is responsible to request a test when the number of executed instructions on a spe-
cific functional unit exceed a threshold T. In the cache-aware version, the cores are no longer
responsible to request a test. Instead, every T /d executed instructions on a particular unit of
a particular core — where d is a constant integer and determines the granularity of threshold
sub-divisions — the core updates the corresponding unit’s status by sending a signal to the Test-
ing Manager. This is achieved using a Status Update Queue (SUQ) situated in main memory
and shared by all cores. In other words, the signal sent by each core for each of its functional
units simply indicates that T /d instructions have been executed on the particular unit since the

previous status update. The signal also includes a timestamp, the purpose of which will be
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Figure 5.2: A high-level overview of the enhanced — cache-aware — DaemonGuard framework. The new structures
employed are the Status Update Queue (situated in shared main memory) and two statistics tables, the Workload
Table and the Rate-of-Change Table (both residing in main memory, within the address space of the Testing

Manager itself).

explained shortly. Figure 5.2 presents a high-level overview of the enhanced — cache-aware —
DaemonGuard framework. Thus, each core ¢; in the CMP inserts individual status updates for
each of its functional units #; in the Status Update Queue. These update signals are indicated
by u;; in Figure 5.2. The coordination of the testing procedures on the entire CMP is now
performed by the Testing Manager module, which is modified to support and orchestrate the
cache-aware selective testing scheme. Algorithm 2 presents the high-level pseudo-code of the
cache-aware Testing Manager OS process.

The Testing Manager reads the SUQ and updates two statistics tables: (1) the Workload
Table, which holds the percentage of executed instructions with respect to the threshold T for
each unit within the system, and (2) the Rate-of-Change Table, which holds statistical infor-
mation indicating the rate of executed instructions per unit for a particular time period. Note
that both tables reside in main memory, within the address space of the Testing Manager itself.
The Workload Table is updated by the Testing Manager each time a core ¢; submits an updated

status for unit u;, using the following equation:
Kij = Ki]‘ + 1/d (5.1)

The term Kj; indicates the stress level of each unit u;;, and 1 /d is the percentage of executed
instructions by functional unit u;; — with respect to the threshold T — between two consecutive
status updates. Recall that d is an integer constant. Assuming K;; is initialized to 0, then its
value ranges from O to 1, with 1 indicating that the threshold T has been reached and the unit
u;; must be tested.

Additionally, the rate-of-change R;; of the stress on a functional unit (i.e., a measure of how

frequently the unit is currently being used) is calculated using the following equation:
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Algorithm 2 Testing Manager (Cache-Aware)
Input: Period P, Status Update Queue (SUQ)

1: while True do

2: while SUQ not Empty do
3: uij «~SUQ.dequeue()
4: Update Workload Table(u;;) /* K;; (Eq. 1) */
5: Update Rate of Change Table(u;;) /* R;j (Eq. 2) */
6: ECij = (1 -K;;) X T/R;; I* (Eq. 3) */
7: if (u;; has exceeded T) or (EC;; < L) then
8: SendSignal(unit(u;;)) /* trigger test */
9: end if
10: end while
11: while Available Results do
12: CollectResult(daemon)
13: end while
14: Sleep(P)

15: end while

RE— T/d

1] Cf] _ Clt]—l

(5.2)

The parameter ¢ in the above equation is a discrete counter indicating the " submitted
status update in the SUQ, T'/d is the number of executed instructions between two consecutive
status updates for functional unit u;;, and ij is the timestamp at time instant ¢ (as indicated
by the previously explained status update signals sent by each core). The rate-of-change R;; is
calculated as the ratio of the number of executed instructions T /d over the number of elapsed
cycles within the interval f — 1 to ¢.

The Testing Manager (running as a process within the OS of the multi-core system) uses
three pieces of information: (a) data from the two above-mentioned statistics tables, (b) the
type(s) of units that have just exceeded their threshold T, and (c) all units of the same type(s)
that have recently completed their testing session(s). By combining this valuable history infor-
mation, DaemonGuard becomes cache-aware and triggers the appropriate testing daemon(s).
A test daemon for some unit u;; is triggered under any of the following two conditions: (i)

threshold T has been reached at unit u;; (this information is contained in the Workload Table),
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or (i1) the estimated expected number of clock cycles remaining until the next testing session
of unit u;; — denoted by EC;; — is less than L. The term L is the number of cycles required by
a functional unit in the system to execute 10% of the instructions (a value chosen empirically
here, without loss of generality) of its testing threshold T. Recall that the testing threshold T
is a particular number of executed instructions. EC;; is an estimate of the expected remaining

time before the threshold of unit u;; is reached, and it is calculated by:

Hence, upon completion of a test program on a particular functional unit on a particular
core, the Testing Manager examines the status of the same functional units in the other cores
to see if the estimated number of cycles to reach the threshold is less than L. Those units that
satisfy this condition are immediately tested (i.e., early testing is triggered for those units), so
as to take advantage of the window of opportunity in the cache. Note that since the rate-of-
change R;; of the stress is also considered in the calculation of the estimate EC;;, units with a
low utilization rate are left un-tested until they are much closer to their threshold limit (thereby
avoiding unnecessarily early testing for units that are not utilized often).

In the cases where no similar functional units in other cores are close to their testing thresh-
old — i.e., the aforementioned inequality is not satisfied — the Testing Manager simply resorts
to the baseline scenario, whereby units are tested based only on whether threshold T has been

exceeded.

5.3 Experimental Framework and Evaluation

5.3.1 Evaluation framework

For the evaluation of the proposed testing methodologies, we use a full-system, execution-driven
simulation framework based on the Wisconsin GEMS toolset [65], in conjunction with Wind
River’s Simics [64]. We simulate a 16-core CMP, as presented in Table 4.1. Each core in the
system is an in-order-execution UltraSPARC III+ core.

The basic test routines (Test Daemons) for this approach are the same with Selective SBST
that are presented in Section 4.5.1. In terms of the memory footprint, Table 4.2 shows the
memory capacity consumed by each test program, which includes both the source code of the
test program (i.e., instructions in text segment) and the size of the test patterns loaded from

memory (i.e., the data segment). Obviously, the test programs targeting the integer units (the
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enhanced, cache-aware DaemonGuard framework.

Table 5.1: The execution times and memory footprints of the, memory-intensive test programs used to assess the

Functional Perfect Memory w/Memory Pattern
Unit System (K Cycles) | Hierarchy (K Cycles) | Size (KB)
Int ALU 32.8 921 50.5
Int Mult 8.8 233 11.0
Int Div 339 801 442
Branch 32.8 909 50.5
Fload Add 1,302 20,000 1696
Fload Mult 534 8,600 464
Fload Div 774 12,569 672
Full-Core 2,718 44,000 2990

first four functional units in Table 4.2) are extremely small and can easily fit within the L1 cache

of a core. Thus, these test programs are not memory-intensive.

As previously mentioned in Section 5.2, there are larger test programs already employed
in multi-core SBST schemes [42,45]. These programs are considered larger, in the sense that
they rely on large numbers of test patterns loaded from off-chip memory. Furthermore, given
the continuous increase in both the size and complexity of multi-/many-core microprocessors,
it is reasonable to anticipate an equivalent increase in the amount of required test patterns. To
account for these trends, we develop a second set of test programs, as shown in Table 5.1. These
test programs have the same structure as those in Table 4.2, with the only difference being in
the increased amount of loaded test patterns. We primarily change the size of the data segment
of the first four test routines of Table 4.2, as these are the ones invoked more frequently under
the selective testing scenario proposed in Chapter 4. The last three test routines (the ones for
the floating-point units) already have a large data segment (see Column 6 of Table 4.2), so we
do not modify these. The second set of these test programs, shown in Table 5.1, will be used

to assess the efficacy and efficiency of the cache-aware DaemonGuard framework.

Full-system, execution-driven simulations are performed using the PARSEC benchmark
suite. Details about the input sizes, number of executed instructions, and execution times are

given in Table 4.3.
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Table 5.2: Testing overhead results. The testing overhead is defined as the ratio of the test execution time (i.e., the
time expended on testing sessions) over the total execution time of the system (i.e., until the benchmark application

completes its execution). The results are averaged over the 16 cores of the system.

Testing Overhead (%)

Benchmark Best-Case (Ideal) | Non-Cache Aware | Cache-Aware
1 Blackscholes 10% 21% 15%
2 | Bodytrack 8% 23% 12%
3 | Canneal 7% 22% 9%
4 | Dedup 3% 19% 3%
5 | Ferret 6% 16% 9%
6 Fluidanimate 15% 33% 20%
7 | Freqmine 3% 15% 3%
8 | Raytrace 11% 36% 18%
9 Swaptions 8% 32% 12%
10 | Vips 11% 22% 13%
11 | x264 2% 9% 3%

Average 8% 24% 12%

5.3.2 Evaluation results of the cache-aware DaemonGuard

mechanism

For the evaluation of the cache-aware DaemonGuard framework, we employ the memory-
intensive set of test programs, as shown in Table 5.1. The main goal of cache-aware selective
testing is to further decrease the testing time by exploiting the cache hierarchy to minimize
expensive off-chip memory accesses. In order to assess the efficacy of the proposed cache-
aware DaemonGuard mechanism described in Section 5.2, we investigate three different testing
mechanisms: (1) the best-case scenario depicted in Figure 5.1 (ideal execution), (2) the non-
cache-aware DaemonGuard framework of Section 4.5, and (3) the proposed enhanced cache-
aware DaemonGuard. The first evaluated mechanism (best-case test scenario) corresponds to
the situation where most test instructions and data are cache-resident, i.e., the previous testing
session has just finished and its working set is still in the cache. This scenario is the optimal in
terms of test execution time — since it minimizes the number of off-chip memory accesses —
and it can be viewed as the ideal reference point for the evaluation of cache-aware selective test-
ing. The second evaluated test mechanism (non-cache-aware DaemonGuard) initiates testing
based solely on the thresholds of the various functional units, i.e., it is oblivious to the recent

testing history of other similar functional units in other cores. Finally, the third mechanism
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Table 5.3: The number of test-program-related LLC misses incurred by the three evaluated testing mechanisms.

Note that a reduction in LLC misses results in lower test times and lower off-chip memory traffic.

Number of LLC Misses (Testing) | Incr. in LLC Misses
Benchmark Best-Case | Non- Cache- Non- Cache- Impr.
(Ideal) Cache Aware Cache Aware (%)
Aware Aware

Blackscholes 135K 779K 634 K 5.8% 4.7x 17%
Bodytrack 220K 1178K | 985K 5.33% 4.4x 16%
Canneal 478 K 1069 K 821K 2.23% 1.7x 23%
Dedup 245K 542K 428 K 221X 1.7% 21%
Ferret 230K 1271 K | 925K 5.53% 4.02x 27%
Fluidanimate 457K 1742K | 1114K 3.8% 2.4% 36%
Freqmine 280K 1038 K 833K 371X 2.98x% 20%
Raytrace 185K 613 K 510K 3.31x 2.8% 16%
Swaptions 171K 710K 633 K 4.16x 3.7% 11%
Vips 917K 3146 K | 2002 K 3.43x 2.18x% 36%
x264 72K 168 K 159K 2.33% 221X 5%

Average 309K 1115K 823K 3.80% 2.99% 21%

(the proposed cache-aware technique) corresponds to the methodology described in Section
5.2, whereby test sessions can be initiated earlier than usual to ensure that they are executed
within the window of opportunity provided by the cache hierarchy.

The evaluation results of cache-aware selective testing are analyzed using two important
measures of merit: the total execution time of the test programs, and the number of Last-Level
Cache (LLC) misses imposed by each of the three investigated simulation scenarios.

Table 5.2 presents the testing overhead results. The testing overhead is defined as the ratio of
the test execution time (i.e., the time expended on testing sessions) over the total execution time
of the system (i.e., until the benchmark application completes its execution). The results are
averaged over the 16 cores of the system. As can be seen from the results, the proposed cache-
aware selective testing methodology reduces the testing overhead incurred by memory-intensive
test programs, as compared to the non-cache-aware DaemonGuard of Section 4.5. On average,
the cache-aware DaemonGuard reduces the testing overhead from 24% to 12%, as compared
to the non-cache-aware technique. This decrease corresponds to a quite significant reduction
of 50% in testing overhead. The ideal (best-case) results are also shown as an indication of the
theoretical maximum achievable improvement.

Table 5.3 provides further details about the number of test-program-related LLC misses
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incurred by the three evaluated testing mechanisms of the cache-aware DaemonGuard. The
non-cache-aware DaemonGuard mechanism suffers from a 4X higher, on average, number of
LLC misses, as compared to the ideal (best-case) scenario. When employing the cache-aware
DaemonGuard, the number of incurred LLC misses related to the test programs is reduced
by 21%, on average, as compared to the non-cache-aware mechanism. Note that beyond the
substantial savings in testing time, the significant decrease in the number of LLC misses also
implies a corresponding decrease in the off-chip network traffic, which further improves the

overall system performance.

5.4 Concluding Remarks

This chapter demonstrates the Cache-Aware Selective SBST that significantly reduces the exe-
cution of memory-intensive test programs. In Chapter 4 we proposed the Selective SBST where
test programs are initiated based on unit utilization. In this chapter, we enhance the Testing
Manager process in order to invoke Test Daemons not only based on the utilization, but also
on the recent history of test sessions. This will result in the reduction of the execution time of
test programs by minimizing the number of off-chip accesses by exploiting cache-resident test
related data. Experimental results indicate an approximate 50% reduction in testing overheads
compared to non-cache-aware selective testing So far, we have proposed on-line fault detection
techniques that are based on the monitoring of the system’s activity and perform selective test-
ing. In order to have a complete fault detection solution, we need to include the ability to test
the entire system within the same testing session. This approach will set the system off-line as
all the processing elements should be tested concurrently. The next chapter investigates differ-
ent test scheduling policies to maximize the system availability during test given a test latency

constrain.
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Chapter 6

Optimizing System Availability during
SBST

As technology scales, the increased vulnerability of modern systems due to unreliable com-
ponents becomes a major problem in the era of multi-/many-core architectures. Recently,
several on-line testing techniques have been proposed, aiming towards error detection of wear-
out/aging-related defects that can appear during the lifetime of a system. In this chapter, firstly
we investigate the relation between system test latency and test-time overhead in multi-/many-
core systems with shared Last-Level Cache (LLC) for periodic Software-Based Self-Testing
(SBST), under different test scheduling policies. Secondly, we propose a new methodology
aiming to reduce the extra overhead related to testing that is incurred as the system scales up
(i.e., the number of on-chip cores increases). The investigated scheduling policies primarily
vary the number of cores concurrently under test in the overall system test session. Our exten-
sive, workload-driven dynamic exploration reveals that there is an inverse relationship between
the two test measures; as the number of cores concurrently under test increases, system test
latency decreases, but at the cost of significantly increased test time, which sacrifices system
availability for the actual workloads. Under given system test latency constraints, which dic-
tate the recovery time in the event of error detection, our exploration framework identifies the
scheduling policy under which the overall test-time overhead is minimized and, hence, system
availability is maximized. For the evaluation of the proposed techniques, multi-/many-core sys-
tems consisting of 16 and 64 cores are explored in a full-system, execution-driven simulation

framework running multi-threaded PARSEC workloads.
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6.1 Introduction

One salient aspect of on-line testing (in general) 1s the scheduling of the testing session/process.
In light of the rapid proliferation of multi-/many-core microprocessor architectures [1,2], the
test scheduling issue becomes even more pertinent. One approach is to periodically initiate
testing on all system cores simultaneously [12, 14, 69]. This method implies that the entire
system will be offline during the duration of the test process, thereby interrupting the execution
of other applications. Another approach is to initiate testing on individual cores that have been
observed to be idle for some time [42,48,59]. Thus, the testing process in minimally intru-
sive, but the time required to complete the testing of all cores is substantially longer (since each
core is individually tested at different points in time). Finally, testing may be selective (rather
than periodic), targeting cores that have experienced prolonged stressing due to high utilization.
Selective testing may be performed either at a full-core granularity, or at a sub-core granular-
ity (testing individual intra-core components). Selective is part of this work and presented in

Chapter 4.

In this chapter, we focus on periodic on-line SBST of the processor cores of homogeneous
multi-/many-core systems with a shared and distributed Last-Level Cache (LLC). Memory test-
ing and on-chip interconnect testing are beyond the scope of this work. A shared and distributed
LLC is found in the vast majority of existing commercial Chip Multi-Processors (CMP). In
such systems, each core in the CMP has a slice (bank) of the entire LLC. The work presented
in this chapter comprises an extensive exploration of the test scheduling process in such sys-
tems. We assume that a testing session is complete when all cores in the microprocessor have
completed their testing process. With this in mind, we perform an investigation of different
test scheduling policies, based on the number of cores concurrently under test in the overall
system testing session. We are motivated to study this problem, because, in shared memory
systems, the time overhead of SBST for each core is affected by potential test program content
— instructions and/or data — already resident in the LLC (as a result of a previous core’s testing

session).

The first goal of this work is to investigate the intricate relationship between the two afore-
mentioned key metrics — the test latency and the test-time overhead — under different test
scheduling policies. Typically, the system recovery mechanism imposes an upper bound on
the test latency, because excessive test latency will lead to inordinate amount of wasted work
(i.e., discarded work) in the event of an actual fault detection. Hence, given a specific test la-

tency constraint, our exploration framework is able to identify the test scheduling policy that
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minimizes the test-time overhead and maximizes system availability. To the best of our knowl-
edge, this is the first work in SBST for multi-/many-core systems exploring and juxtaposing
these two important test metrics in a systematic way, so as to minimize the overall system
availability. The second goal is related with the scalability of systems in terms of number of
cores. As our target architectures are multi-/many-core systems, maintaining the performance
of the proposed testing methodologies is very important and crucial for the applicability of such
methods as the number of cores within a system is increased. In our experimrental evaluation,
we investigate the behavior of the proposed test scheduling methodologies when the number of
cores in the system quadruples from 16 to 64. Results show that the test-time overhead metric
and, therefore, the test latency are increased. The main reason for the additional overhead is
the larger Network-on-Chip (NoC), which causes higher latencies when data is fetched from
the LLC to the private cache of the core under test.

In order to mitigate the increased testing overhead as the multi-core system scales up (i.e.,
the number of on-chip cores increases), we introduce a clustering approach. The CMP is di-
vided into a number of contiguous core clusters, i.e., each cluster comprises a number of CMP
processing cores. The main idea behind this approach is to keep the test-related data resident
in the LLC of each cluster as close as possible to the core under test. Indeed, using a clustering
approach during the test of a core in the system, we manage to keep the LLC shared test data
within the LL.C banks of a number of adjacent cores in the vicinity of the core-under-test.
Thus, the test program’s LLC shared test data is distributed and kept across the LLC slices of
each core cluster, instead of being uniformly distributed across the entire system’s LLC. This
technique can reduce the overhead to fetch the data from the LLC to the private cache of each
core under test, and, consequently, assists in the reduction of the testing overhead.

This work was published and presented in a peer-reviewed conference [46]. A journal
version has been submitted and is under review in the Journal of Electronic Testing, Theory

and Applications.

6.2 Related Work

Recently, several techniques have investigated the scheduling of test routines in multi-/many-
core systems under SBST. Apostolakis et al. [12] proposed a methodology that allocates the test
programs and test responses into the shared on-chip memory, and schedules the test routines
among the cores. The aim of the work in [12] is to reduce the total test application time,

assuming that all cores are tested simultaneously (i.e., full-system parallel testing).
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Haghbayan et al. [48] proposed a power-aware non-intrusive online testing approach for
many-core systems. The proposed approach schedules software-based self-test routines on the
various cores during their idle periods. The scheduler selects the core(s) to be tested from a list
of candidate cores. The selection is based on a criticality metric, which is calculated considering
the utilization of the cores and power budget availability.

A Multi-Threaded (MT) SBST methodology was proposed in [14], in order to reduce the
test execution time, based on the thread-level parallelism capabilities of the core under test.
Specifically, functional-based test programs are scheduled onto individual multi-threaded cores,
and the focus is on the optimization of the test time of a single core.

Yanjing Li et al. [59] developed a test-aware OS scheduling technique for robust systems.
A test controller selects a core to be tested in a round-robin fashion, and — once the core is
selected — the OS scheduler performs online self-test-aware scheduling, in order to schedule the
test program on the selected core with minimum disruption to the normal workloads running
on the system. The impact of simultaneously testing multiple cores is not considered.

In [44], the authors propose a test-program parallelization methodology for many-core ar-
chitectures, in order to accelerate the online detection of permanent faults. The underlying
architecture does not have a shared cache, but, instead, it relies on high-speed message passing
for data sharing among the cores. Moreover, the work in [44] only examines fully parallel sys-
tem testing (i.e., testing all cores simultaneously), leading to zero availability during the SBST
session.

In [54,70], the authors proposed a scalable self-test mechanism for online testing of many-
core processors. Software test routines are distributed among the cores of the system using

hardware components that monitor the behavior of the processing cores.

6.3 Definitions and Framework Overview

A ftesting session is defined as the time interval required to test all cores in the system. The
evaluation metrics that are used in the exploration are: (a) the Test Latency (TL), defined as
the total time required to complete a testing session (i.e., elapsed time between initiation and
completion of testing), and (b) the Test-time Overhead (T O), defined as the total execution time
devoted to the test programs of all the cores in the system. Based on these two fundamental
metrics, we derive a new metric, termed System Availability during Test (SAT), which is the
percentage of time the system cores are available during a testing session of a given test latency.

During this time, the system is able to continue execution of normal workloads, maintaining
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Figure 6.1: Architectural overview of the employed framework. The two main components are (1) the Test
Scheduler (an OS process), and (2) the actual Test Programs, which all operate at the OS level. The Cache
Address Mapping component is responsible for the mapping of physical addresses to the cores within a cluster
when employing the clustering approach. The figure illustrates an example of the clustering approach, whereby
the test program data — that would otherwise be distributed across the entire CMP — is mapped (red lines) within
the cluster area (solid blue squares). Without clustering, the test program data would go in the empty blue squares

across the entire system.

system availability.

The execution of test programs on the cores of a multi-core system employing shared mem-
ory (and shared LLC) could benefit in terms of test-time overhead and test latency. Test pro-
grams having the same text segment (test instructions) and data segment (test patterns) could
share data among different cores — through the LLC — during the test execution. This sharing
phenomenon could be observed in cases where: (a) test programs are executed in parallel over
several cores; (b) test programs have some execution-time overlap between the various cores;
(c) a test program is executed right after (or shortly after) another core’s test session. In all
these cases, part of the test program’s content may still be resident in the cache hierarchy. On
the other hand, the parallel execution of test programs on multiple cores could lead to further
overhead, either by increasing the on-chip network contention (due to increased requests to the
memory system for the same data), or by reducing the system throughput (since the available
cores for normal operation are limited due to the testing process). This realization motivates us
to investigate the parameter of the number of cores concurrently under test, and how this test

attribute affects test-time overhead and the test latency.
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Beyond the number of cores concurrently under test and how they affect the considered
metrics, we investigate the behavior of the proposed solution when the system scales up (i.e.,
from 16 to 64 cores). As the system scales up, experimental results indicate that the NoC incurs
a significant overhead to the testing procedure. In order to overcome this and eliminate the extra
network overhead, we use a clustering approach, where the testing process is considered over a
cluster instead over the entire system. Again, the testing procedure is completed when all the
cores of all the clusters of the system are tested. In this chapter, a cluster is defined as a group of
cores within the many-core system where the the aforementioned test scheduling policies will
be applied. When a test program is loaded on a cluster for execution, the data are fetched and
uniformly distributed over the LLC banks of the cores under the considered cluster. With this
technique, we reduce the latency of exchanging data between the LLC and the private cache
of the core under test. This is achieved by limiting the distribution of data in the LLC to the
region where the cores form a cluster, instead of distributing the data across the entire system’s
LLC.

To implement the proposed test scheduling scenarios, we adapt the DaemonGuard Frame-
work (Chapter ??) as abstractly depicted in Fig. 6.1. The two main components are: (1) the
test scheduler, and (2) the actual test programs. In order to perform SBST, a number of test
programs are loaded onto the OS. The number of test programs depends on the number of the
cores present in the system: we need one test program for each core. Test programs are regular
processes loaded on the OS, so they have a portion of the main memory allocated to them.
However, since the considered system is a homogeneous many-core system, it means that all
cores are tested using the same test program. Thus, the memory footprint is independent of the
number of cores in the system. The test programs are kept in idle mode during normal oper-
ation; they wait for the appropriate invocation signal from the test scheduler process, in order
to wake up and perform their test execution on the targeted core. Note that the test scheduler
is an OS process, which is loaded and executed at the OS level. The test scheduler process
is responsible to orchestrate the testing process during a testing session. According to the test
scheduling policy, the test scheduler sends a wake-up signal to the test program that is assigned
to the selected core for testing. Upon completion of a test program’s execution, the test sched-
uler is notified and proceeds with the test scheduling procedure. The OS-resident test scheduler
and test programs described here (and shown on the left-hand side of Figure 6.1) are facilitated
by the DaemonGuard Framework.

The implementation of the clustering approach is achieved in our simulation framework

(DaemonGuard) with the modification of the cache management units and, particularly, the
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module responsible for the cache address mapping. In real systems, the implementation of
the mapping component can be done at the OS Level and/or with modifications at the micro-
architectural (hardware) level. In the literature, several works have proposed techniques that
allow the dynamic mapping of data to specific locations within a shared cache. Schemes to
control data placement in large caches by modifying the physical addresses are studied in [71].
In [72], the authors proposed a hardware method that employs a new level of indirection for
physical addresses, allowing for highly flexible data mapping. The implementation and evalua-
tion of such techniques is orthogonal to and beyond the scope of this work. In our work, when
we employ the clustering approach, we assume the presence of such a dynamic data mapping
mechanism, which facilitates core clustering. Our focus here is solely on the scheduling policies

of the test scheduler in many-core systems, with and without the clustering approach.

6.4 Test-Scheduling Exploration

6.4.1 Parameters affecting the testing process

Several parameters could affect the system behavior during the testing process. These param-
eters are directly related to the test-time overhead and test latency metrics. The first design
parameter that could affect the testing process is the test program size. As the memory foot-
print of the test program increases, the test-time overhead also increases, due to memory-,
processor-, and network-related latencies. Next, memory system parameters, such as the LLC
size, the cache organization, and the employed cache coherence protocol could also affect the
testing process. The LLC size is closely related to the test program size; a larger LL.C could
reduce the test-time overhead, since more data could reside in the cache during the test process.
Another important parameter is the CMP size itself (in terms of number of cores). Specifi-
cally, the total number of cores in the system and, therefore, the number of cores concurrently
under test, directly affect the test overhead during the testing sessions. Finally, the on-chip
communication network (the NoC) is another parameter that could affect the testing process.
The impact of the latter parameter becomes more important as the number of cores increases
and, therefore, the size of NoC increases, too. Increased distance between the cores of the
system negatively impacts the testing overhead, since extra delay is imposed for the completion
of testing.

Beyond the testing procedure itself, all of the above parameters affect — to varying degree —

the clustering approach as well. Basically, these parameters will help in determining the cluster
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size and, thus, the number of clusters in the system. More details about the clustering approach
will be provided shortly, in Section 6.4.4.

In this chapter, we assume that there is a given (fixed) test program that targets the cores
of a homogeneous multi-core system. Also, during the lifetime of the system, the parameters
that are related to the CMP architecture and memory system remain unchanged. To perform
the proposed exploration, we focus on the number of cores concurrently under test, and the
clustering approach as the system scales up. These parameters could vary between different

testing sessions, since it is entirely under the control of the test scheduler process.

6.4.2 Scheduling policies

In order to evaluate the test-scheduling process, we propose test scheduling scenarios that vary
the number of cores concurrently under test. We evaluate three general scheduling scenarios.
In the first, the test scheduler invokes all the test programs simultaneously, in order to test all the
cores of the system at the same time. This case corresponds to parallel testing, whereby all the
cores are under test simultaneously. During such a testing session scenario, normal workloads
running on the cores of the system must be suspended. Thus, the system availability will be
reduced to nearly zero, since all cores are under test (our simulations have shown that due to
the shared memory, the test execution time per core is not identical, but it may vary slightly).

On the other extreme, the second scheduling scenario considers a serial execution of test
programs during each testing session. This scenario does not exhibit any testing overlap among
cores, because only one core is under test at any given time. Initially, the test scheduler sends
a signal to commence testing of the first core. Then, when the end notification is received, the
scheduler proceeds with the second core, and so on. The interval between two consecutive core
tests must be as short as possible (ideally zero), in order to reduce the test latency and to benefit
from test data already residing in the cache hierarchy.

The last scheduling scenario aims to bridge the gap between the first two. It initiates se-
quential testing among subsets of the cores of the system. In this scenario, the first core is
tested alone at the beginning of the testing session; this core is known as the “pilot” core, i.e.,
the first core to bring the test instructions and data from the off-chip main memory into the on-
chip cache hierarchy. Subsequently, the remaining cores are tested in groups, with each group
being concurrently under test. In particular, the test scheduling policy will have the maximum
number of cores k that could be concurrently tested as an input parameter. The untested cores

of the system will be divided in groups of k cores. When all k cores within a group complete
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their tests, the test scheduler will initiate simultaneous testing on the next k cores, and so on.
We assume that any core can be selected as the pilot core, and any k cores can be selected for

testing at any given time, i.e., the order of selecting the cores for testing is irrelevant.

Algorithm 3 Test Scheduler
Input: Period P

Input: List of Cores C
Input: Number of Cores Under Test k

Cores under Test List CUT

1: while True do

2: CUT =]

3: pilot < C.dequeue()
4: SendSignal(pilot)

5: CUT .enqueue(pilot)
6: if k = N then

7: k=k-1
8: else
9: WaitCores(CUT)
10: end if
11: while C not Empty do
12: for i=1 to k do
13: nc « C.dequeue()
14: SendSignal(rc)
15: CUT .enqueue(pilot)
16: end for
17: WaitCores(CUT)
18: end while
19: Sleep(P)

20: end while

The decision of using a pilot core to execute the test program alone has a two-fold advantage.
The first one was briefly mentioned above: at the beginning of each testing session, the test
program content (instructions and data) is not resident in the cache hierarchy. As a result of

this, instructions and data will be fetched by the pilot core, since this is the first core to execute
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a test program in the particular test session. This could be considered as a means to pre-fetch
test data for the remaining cores in the system. The second advantage of having a pilot core is
related to the availability of the system. The execution of a test program by the pilot core is
characterized as a time-consuming process, since all data will be fetched into the LLC. Using
the pilot core, this process will be handled by one core of the system (or the cluster, when using
the clustering approach), while the remaining cores are available to execute normal workloads.
In other words, during the time-consuming process — due to the LLC misses — of the execution
of the test program by the pilot core, we ensure the highest possible system availability (all the
other cores continue to execute normal workloads).

As mentioned in Section 6.3, the scheduling process is the responsibility of the test sched-
uler OS process. Algorithm 3 presents the pseudo-code implemented by the test scheduler.
The test scheduler is in idle mode during normal (non-test) operation, in order to incur the
minimum possible overhead to the system. The scheduler simply waits (sleeps) for a period P,
before waking up to initiate and manage the testing process. Function SendSignal(c) is used to
initiate the test program assigned to core ¢ by sending a wake-up signal. The WaitCores(listC)
function is used by the testing scheduler to wait until the completion of the test programs of
the cores in list C. When the clustering approach is used, the test scheduler runs the same
algorithm. The only difference is in the input, and, specifically, the List of Cores C. In the
clustering case, instead of giving all the cores of the system as an input, the list of cores includes
only the cores contained within the cluster under test. Algorithm 1 can be trivially modified to

give priority to idle cores when selecting the pilot core, or the next k cores to test.

6.4.3 Optimization

Considering the two fundamental metrics of test-time overhead and test latency, we propose an
optimization formula, in order to find the maximum number of cores that should be concur-
rently tested (i.e., tested at the same time, in parallel) at any given time, in order to maximize the
system availability during test (SAT), subject to a test latency constraint. This amounts to iden-
tifying an optimal parameter k, described in the previous sub-section. As system availability is
defined based on test-time overhead and test latency (see Section 6.3), we, in fact, optimize the
ratio of these metrics. SAT} is the system availability during the concurrent testing of k cores,

and it is calculated by Equation 1.

TL, x N — TO,
AT, = 6.1
SATk TL; x N 6.1
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Figure 6.2: A high-level statistical analysis investigating the on-chip network latency (in terms of network hops) as
the number of on-chip cores in the CMP increases. Results in (a) the absence of clustering, and (b) in the presence

of clustering are depicted. In the latter case, the size of the employed test program is set to 3 MB.

The terms TOy and TLy are the test-time overhead and test latency, respectively, under the
scheduling scenario of having k cores concurrently under test at a time.
Based on Equation 1, and given a test latency constraint, we aim to find the maximum

possible SAT using the optimization formulas described in Equations 2 and 3.

SAT e = max{SATi), k = 1.N (6.2)
subject to TLy < L (6.3)

The term SAT,,, is the maximum system availability, k = 1 to N corresponds to the
number of cores that are concurrently under test, N is the total number of cores in the system,
and L is the maximum test latency constraint.

Using this optimization objective, we aim to find the number of cores concurrently under
test (i.e., k) that maximizes the system availability, while taking into account the test latency

constraint L.

6.4.4 Scaling to many-core systems: a clustering approach

The proposed test-scheduling approach works very effectively in relatively small-scale multi-
core systems (e.g., with 16 on-chip CPU cores). The critical objective is to ensure scalability
of the proposed framework as the system grows into the many-core realm, i.e., with tens —
or even hundreds — of cores. To address this imperative goal, we introduce a clustering ap-
proach in our testing methodology, which ensures the high performance of the proposed test

scheduling techniques regardless of the size of the system. With the clustering approach, the
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system is divided into a certain number of core clusters. The testing process is then conducted
at the granularity of individual clusters; the cores of each cluster are tested following any of the
scheduling policies described in the previous sub-section. A key assumption when employing
the clustering approach is the presence of a mechanism that allows for dynamic mapping of
data to specific locations within a shared cache, as described at the end of Section 6.3. In our
case, the test-related data is mapped to the cores of each cluster, rather than being distributed
across the cores of the entire CMP.

As mentioned in Section 6.4.1, several parameters could affect the configuration of the
clusters, i.e., the cluster size (the number of cores grouped within a cluster), and, subsequently,
the total number of clusters in the system. Additionally, the decision of using a clustering
approach in the first place within a system is based on these parameters as well.

The clustering approach aims to reduce the imposed testing overhead as the system scales
up. When the number of cores increases, the distances between the cores of the system also
increase, which results in longer NoC delays. To evaluate the impact of the network and to
investigate the potential of the clustering approach, we proceed with a high-level statistical
analysis/exploration. In modeling the network, we assume that one network hop is required to
transfer data between two adjacent cores (i.e., each CPU core is connected to its own on-chip
router). The cost of transferring data between any two cores in the system is calculated based
on the Manhattan distance between the two cores. This implies the use of a mesh-like NoC
topology, which is most frequently encountered in the literature and even in recent commercial
products. Moreover, as the goal of the analysis is to evaluate the network impact, we consider
the case where all the test data is resident within the system (or within one cluster). The network
latency is abstracted as the number of hops required to fetch all the required test data to the
core under test. Beyond the scaling of the system itself (in terms of number of cores), we also
include in our analysis cases where the test program size is also changed.

The results of our statistical analysis are depicted in Figure 6.2(a). Said figure shows the
on-chip network latency (in terms of network hops) as the number of on-chip cores in the
CMP increases all the way to 1024. The four different curves correspond to four different
test program sizes. Obviously, the network latency increases exponentially as the system size
increases. Furthermore, the network latency is also negatively affected by the test program
size. This worrisome trend motivates the need for a different approach that would eliminate the
exponential increase in network latency. Toward this end, we adopt the clustering approach,
which breaks the large-scale system into a number of smaller core clusters.

The statistical analysis was repeated in the presence of the clustering approach. The results
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are shown in Figure 6.2(b). In this case, the focus is on systems ranging from 64 to 1024 cores,
and three different configurations are juxtaposed: absence of clustering, dividing the CMP into
4 clusters, and dividing the CMP into 8 clusters. For example, a 512-core CMP with 8 clusters
implies 64 cores per cluster, and so on. Note that the size of the employed test program is set to
3 MB in this experiment, i.e., similar to the size of the test program used in this chapter. The
results in Figure 6.2(b) clearly indicate that the use of clustering almost linearizes the increase
in the network latency as the system scales up. A linear (or super-linear) increase is certainly
more desirable and practical than the exponential increase observed in the absence of clustering.

One key requirement — and elemental contributor to this scheme’s effectiveness — is that the
entire test program should fit within the LLC banks of the cores of each cluster. This is a fairly
intuitive requirement, since the goal of clustering is to maintain the required test data within a
cluster of cores, in order to expedite the testing process. Consequently, the minimum number
of cores comprising each cluster is dictated by the size of the test program’s data and it depends
on the size of each core’s LLC bank (slice).

At the beginning of testing of each cluster (i.e., when the first core of each cluster will initiate
testing), there is no test data available within the cluster’s LLC slices. The test data required
to test the cores of each cluster must somehow be brought within the cluster. To achieve this,
there are two possible solutions: (1) use a pilot core (see Section 6.4.2) in each cluster, which
will essentially pre-fetch all the test data for the remaining cores within the cluster; and (2)
migrate the test-related data from a cluster that has just finished being tested to a new cluster-
to-be-tested. Of course, the second solution presupposes that clusters are tested serially, one
after the other. Instead, the first solution allows for the parallel testing of multiple clusters, if
desired. Due to this flexibility, we employ the first solution (i.e., the use of a pilot core within
each cluster) in our quantitative analysis in the next section. In any case, the test scheduling
methodologies described in Section 6.4.2 can be applied to either of the aforementioned two

approaches (for the testing of the cores within each cluster).

6.5 Experimental Framework and Results

6.5.1 Evaluation Framework

For the evaluation of the proposed test scheduling techniques, we perform full-system, execution-
driven simulations using the Wind River’s Simics [64] simulator extended with the Wisconsin

GEMS toolset [65] and the GARNET network model [73]. We simulate two multi-core sys-
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System 16-Core CMP 64-Core CMP

Processors | 16 UltraSparc I+ | 64 UltraSparc I+
Network 4x4 2D Mesh 8%8 2D Mesh

L1 Caches | 32 KB I&D, 2c lat 32 KB I&D, 2c lat

L2 Caches | 1 MB/core, 10c lat | 0.5 MB/core, 10c lat

Main Memory 4 GB, 200-cycle latency
(0N} Solaris 10

Table 6.1: Simulated system parameters.

tems, as presented in Table 6.1, one with 16 cores in a 4X4 network topology and one with
64 cores in an 8X8 network topology. In both systems, each core is a SPARC-based in-order-
execution processor, similar to the UltraSPARC III+. For the memory hierarchy, we considered
a two-level cache system with two split private caches at L1 (for instructions and data), and a
shared LL.C (L2). The L2 banks (slices) are distributed equally (in size and configuration) to all
the cores of the system. As the targeted system is homogeneous, and our goal is to test all the
cores of the system, we use Test Daemons from DaemonGuard Framework that perform test-
ing at the full-core level, to test each individual core according to the proposed test-scheduling

techniques.

Through our experimental exercise, we investigate the impact of test-time overhead and
test latency during a testing session under all the possible scheduling scenarios discussed in the
previous section. Similar experiments are applied in both systems. Hence, we consider the case
of serial testing where only one core is tested at a time during the testing session (k = 1), the
parallel case where all cores are tested in parallel (k = N = 16 or 64), and all the other cases in
between where a fixed number k (power of 2) of a subset of the cores are tested in parallel at a
time (k = 2,4, 8...), after the test of the pilot core. We present results for both systems (16- and
64-core), and the different scheduling policies are compared for each system size. Furthermore,
the scalability impact of transitioning from the 16-core CMP to the 64-core one is presented

and analyzed within the context of the results of the newly proposed clustering approach.

We use workloads from the PARSEC Benchmark Suite [66] in our exploration. PARSEC is
a benchmark suite of multi-threaded workloads that focus on emerging parallel workloads. For
the evaluation, we use eleven of the benchmarks for both explored system sizes. The input size
of the benchmarks is set to the maximum possible (large), in order to ensure that the execution
of the benchmarks is not finished prior to the completion of the testing process. The scope

of this work is the evaluation of the proposed test-scheduling techniques while the system is
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running normal workloads (i.e., PARSEC Benchmarks). The number of threads is configured
to be equal to the number of cores in each system (16 or 64), in order for all cores to be fully-

utilized.

6.5.2 Exploration Results

We simulate all the aforementioned benchmarks for each scheduling policy and system to eval-
uate the impact in terms of test-time overhead and test latency. To eliminate the extra impact
imposed by the OS due to scheduling priorities that affect the considered metrics (TO and
TL), we increased the scheduling priority of test programs to the maximum possible for a
non-privileged user (i.e., not OS admin user). This allows us to perform a fair comparison
between the different scheduling policies by avoiding any overhead from the OS due to context
switching between different (non-test) running processes. As a result of this, the only imposed
overhead beyond the testing procedure is due to memory requirements (i.e., cache used by nor-
mal workloads). To investigate the impact of the memory system, we repeat the experiments by
increasing the LLC cache associativity in both systems, without affecting the total LLC cache
size. As it will be shown, the experimental evaluation indicates that the number of misses in
the case of test programs is reduced.

The next two paragraphs present the simulation results for the two considered systems, i.e.,
the 16-core and the 64-core CMPs. The test-time overhead (TO) and test latency (TL) for each
scheduling scenario, as well as the System Availability under Test (SAT) for two different cache
configurations, are evaluated for both systems. Additionally, results related with the scalability

of the system are presented while evaluating the 64-core CMP setup.

Performance of a 16-core CMP

Figure 6.3 presents the results of the 16-core CMP system for all examined PARSEC bench-
marks (each curve corresponds to a different benchmark). The presented results pertain to the
three metrics (one metric per each row of plots) for two LLC cache configurations: a setup with
4-way LLC associativity, and one with 8-way associativity (each column of plots). Recall that
the total LLC size is the same in both cases. For all the plots of the figure, the x-axis gives the
number of cores tested concurrently (in-parallel) at any given time. Hence, the case where 1
core is under test gives the results for the serial scheduling scenario, where one core at a time
is tested. The right-most “All” scenario on the x-axis refers to the case where all cores are

tested in parallel. More accurately, the scenario “All” assumes that the first core in an n-core
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system serves as the pilot core, and, subsequently, the 7 — 1 remaining cores are all tested in
parallel. The y-axis reports the investigated test metrics (IO, TL, SAT) in terms of overall
system execution cycles.

The first — and expected — outcome of this simulation is the increase in test-time overhead
as the number of cores tested concurrently increases. In particular, by doubling the number
of cores concurrently under test, test-time overhead (first row of Figure 6.3) is increased by
a factor of 9-15%, depending on the size of k. The “All” case imposed an increase of 20%
over the serial case. Hence, a single parameter optimization (in this case) would suggest that
the fully-serial scenario (case k = 1) should be selected. However, this scenario comes with
a great cost in test latency, as shown in the second row of Figure 6.3. Actually, juxtaposing
the two figures (first and second row) reveals the inverse relation between the two test metrics
(which is, to some extend, expected). However, this analysis also reveals potentially good com-
promises for optimizing both measures. For example, increasing the number of concurrently
tested cores from 1 to 2 leads to a significant test latency reduction, at the cost of a small test
overhead increase. Given a realistic test latency constraint L, one can decide on the number
of concurrently tested cores, in order to minimize overall system test overhead subject to the
given constraint.

An interesting point arising from the experimental evaluation of the scheduling techniques
is the behavior of the different workloads. As we can see in Figure 6.3, the majority of bench-
marks have the same impact on all the consider metrics. Nevertheless, some benchmarks incur
an extra test-time overhead, even though the Test Latency is not always correspondingly af-
fected. For instance, The TO behavior under the Canneal (red line) and Fluidanimate (yellow
line) benchmarks is markedly different than under other benchmarks. The reason for this pe-
culiar behavior are LLC conflicts. Since the test programs and the benchmark applications run
concurrently, there are cache conflicts which affect testing under some benchmarks more than
under others.

To verify this assertion and to provide a possible solution to this problem, we increased
the cache associativity. In particular, we doubled the LLC associativity from 4-way to 8-way,
while the size of each cache lines was halved, in order to keep the total cache size unchanged.
The results of these experiments (8-way cache system), and the impact on the two considered
metrics (TO, TL) are presented in the plots of the second column of Figure 6.3. The test-time
overhead and test latency still have the same trends, but — when considering absolute values —
there is a slight reduction in the overheads. Furthermore, benchmarks that behaved erratically

(outliers) in the first set of experiments (4-way) now seem to follow the same trend as the rest
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Figure 6.3: The results of the /6-core CMP system for all examined PARSEC benchmarks. Each row of plots
corresponds to one of the three evaluated metrics. The left-column plots corresponds to a 4-way LLC, while the

right-column plots correspond to an 8-way LLC. The total LLC size for both setups is the same.

of the benchmarks. This shows that the increase in LLC associativity “smooths out” the issue
of cache conflicts among the benchmarks and the test programs.

The last set of plots (third row of Figure 6.3) depicts the system availability under test
(SAT) for each of the scheduling scenarios under exploration, calculated using Equation (1) (see
Section 6.4.3) for both cache setups (4-way and 8-way). The SAT metric combines the two test
metrics under consideration and reveals the best scheduling scenario to maximize availability,
which, in the case of no test latency constraints, is the same as the one minimizing the test
overhead. As expected, the system availability is highly related to the number of cores under

test at any given time, and the overall trend between the various benchmarks is similar.

Performance of a 64-core CMP

In order to evaluate the proposed test scheduling techniques in larger — in terms of core numbers

— systems, where the impact of the NoC is significant, we also investigate a 64-core CMP setup.
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Figure 6.4: The results of the 64-core CMP system for all examined PARSEC benchmarks. Each row of plots
corresponds to one of the three evaluated metrics. The left-column plots corresponds to a 4-way LLC, while the

right-column plots correspond to an 8-way LLC. The total LLC size for both setups is the same.

Beyond the evaluation of the proposed testing techniques in larger systems, the purpose of
this experimental exercise is to also identify any scalability issues resulting from the increased
system size. In fact, the results of this exercise will pave the way for the clustering approach,

which will be shown to be necessary in maintaining the scalability of the system.

The exploration exercise under the 64-cores CMP system includes all the scheduling tech-
niques (serial, parallel, and k-cores concurrently under test) investigated with the 16-core CMP
system. Figure 6.4 presents the results of the evaluation of the test scheduling policies for the
three considered metrics under a 64-core CMP system. Again, there are three rows of plots
corresponding to the three metrics, and two columns for the 4-way and 8-way LLC configura-

tions.

Evidently, the trends in the three metrics (TO, TL, SAT) are the same as under the 16-
core CMP system. As the number of cores concurrently under test is increased, the TO also

increases, while the TL decreases. The impact of the cache is also demonstrated by doubling
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System | Pilot | Min | Avg | Max
(Millions of Cycles)
16-Cores | 50 | 14.5 | 15.5 | 16.5
64-Cores | 58 22 25 31

Table 6.2: The number of cycles needed to run the test program on the pilot core, and the minimum, maximum,

and average numbers of cycles needed to run the test program on each of the remaining cores of the system.

the LLC associativity from 4-way to 8-way, while keeping the same total LLC size. As a result
of this increase in associativity, the bahavior of all benchmarks is “smoothed out”, i.e., there are
no more outliers (exhibiting unusually high TO). Note that the Test-time Overhead is increased
by a factor of 5-10% depending on the size of k. The “All” case incurred an increase of 15%

over the serial case.

Despite the same trends in our metrics, at the core-level, the incurred overhead by the test
program execution is increased. In particular, the required time to execute the test program
for a core in a 64-core CMP system is higher than in a smaller system (16 cores). The average
required time in terms of cycles to execute the test program in the 64-core CMP system is
increased by 60%, as compared with the 16-core CMP system. Table 6.2 presents statistics
derived from the experimental evaluation regarding the execution time of the test program on
each core of the system. The table shows the number of cycles needed to run the test program
on the pilot core, and the minimum, maximum, and average numbers of cycles needed to run
the test program on each of the remaining cores of the system. As indicated in Table 6.2, when
executing the test programs in larger systems, the execution time is considerably higher. The
main reason for this increase is the larger distance between the cores and, therefore, the latency
to fetch the data in the private caches of the core-under-test (either from main memory or the
LLC) is significant. In an effort to mitigate this distance-related overhead, we propose the use
of a clustering approach, as explained in Section 6.4.4. The main premise of the clustering

approach is to maintain all the test-related data within the vicinity of the cores to be tested.

6.5.3 Evaluating the Clustering Approach

In this sub-section, we evaluate the effectiveness of the clustering approach of Section 6.4.4.
We employ a 64-core CMP, which is divided into 4 symmetrical 16-core clusters; each cluster
is a quadrant of the 64-core system. We assume the use of one pilot core in each of the four

clusters. The test program data is fetched by the pilot core of each cluster and distributed all over
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System Min | Avg | Max

(Millions of Cycles)
w/o Clustering 22 26 30

(64-Cores)

w/ Clustering 155 | 18 | 21.5

(4 16-Core Clusters)

Table 6.3: Per-core Time-test Overhead (TO) assuming a 64-core CMP being tested with and without the clus-

tering approach.

the L2 banks of the cores comprising the cluster (using a dynamic data mapping mechanism,
as mentioned at the end of Section 6.3). The testing process proceeds at the granularity of
each cluster, i.e., each cluster is viewed independently, and the testing policies are applied to
the cores of each cluster. Due to the symmetrical nature of the clusters, the behavior/trends

observed in all clusters are identical.

Table 6.3 presents the per-core Test-time Overhead (TO) results, in terms of the number of
elapsed cycles required to execute the test programs. Specifically, the table shows the minimum,
maximum, and average numbers of cycles needed to run the test program on each of the cores
of the system. For this experiment, we use the Fluidanimate benchmark and we consider serial
execution of the test programs across all the cores of each cluster, or across all the cores of the
entire CMP when clustering is not used. The first set of results is calculated over the cores of
the entire system (i.e., without the use of clusters), whereby the test-program data is distributed
across all the CMP cores. The second set of results is calculated using the clustering approach,
i.e., when using 4 16-core clusters (the values are averaged over the four clusters). The results in
Table 6.3 show a significant reduction in the test-time overhead when using clustering. In fact,
without clustering, the execution time of the test program on a single core in a 64-core CMP
incurs an extra overhead of about 73%, as compared to a 16-core system. On the contrary,
when using the clustering approach, this overhead is significantly reduced to around 20%. Note
that part of the incurred overhead is due to the smaller-sized L2 bank (slice) per core in the
64-core CMP (see Table 6.1). Hence, the clustering approach allows us to contain the TO and

scale the investigated test-scheduling policies to arbitrarily large CMP systems.

Figure 6.5 presents an overview of the savings obtained when using the clustering approach.
The y-axis shows the percentage reduction in the test-time overhead when using clustering, as
compared to the case without clustering. The different bars on the x-axis correspond to the

different PARSEC benchmarks that were running concurrently with the testing process. Similar
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Figure 6.5: An overview of the savings obtained when using the clustering approach. The graph shows the per-
centage reduction in the test-time overhead when using clustering, as compared to the case without clustering.

Two different LLC associativity setups are evaluated: 4-way and §-way.

to our previous experiments, we evaluate two different LLC associativity setups: 4-way and 8-
way. As demonstrated by the results in Figure 6.5, the clustering approach yields substantial
improvements in terms of test-time overhead. In particular, the majority of the benchmarks
experience a significant reduction in test-time overhead in both configurations (4-way and 8-
way). The only benchmark that is negatively affected by the clustering approach is Canneal. As
already demonstrated in the 16-core CMP results (Figure 6.3), this behavior is due to the high
demands of the benchmark in terms of memory usage and cache accesses.

Under the 8-way LLC setup, the average savings across all examined benchmarks are in
excess of 20%. In general, the clustering approach seems to almost eliminate the NoC overhead

incurred when testing larger CMPs.

6.6 Concluding Remarks

This chapter presents an exploration of periodic, on-line SBST scheduling policies based on
the number of cores concurrently under test during test sessions. The scope of this exercise
is to propose the scheduling methodology that maximizes system availability for running a
normal workload under a test latency constraint. As the test target of this approach is the
entire system, ensuring the system’s scalability is an important requirement. Thus, this chapter
proposes a clustering approach in order to maintain the performance of our methodologies
while the system scales up in terms of number of cores. For the evaluation of the proposed
techniques, multi-/many-core systems consisting of 16 and 64 cores are explored in a full-
system, execution-driven simulation framework running multi-threaded PARSEC workloads.
The overall goal of this thesis is to develop a dependable system able to tolerate permanent

hardware failures encountered during the normal operation of many-core architectures. So far,
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we proposed techniques for on-line fault detection. The next chapter deals with mechanisms

able to assist with the recovery of the system in the presence of permanent faults.
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Chapter 7

System Recovery in the Presence of Faults

In-field on-line testing techniques have recently been proposed for permanent fault detection
caused by wear-out/aging-related defects manifesting during the lifetime of a system. Selective
Software-Based Self-Testing (SBST) is one such paradigm focusing primarily on the recently
stressed functional units of a multicore system at a sub-core granularity, in an attempt to re-
duce the application performance penalty caused by periodically testing the entire system. In
this chapter, we enhance our O/S-enabled framework DeamonGuard for on-demand (selective)
SBST to support fault recovery capabilities. Towards this goal, we propose an efficient check
pointing and rollback recovery mechanism which, upon fault detection, can restore the system
to the most recently valid correct state and resume the normal operation assuming disabling of
the faulty core, thereby leading to a healthy (but degraded) system. The work in this chapter
concentrates on reducing the number of stored checkpoints required when testing at a sub-core
granularity, and minimizing the recovery penalty of such framework. We evaluate and present
the overhead of the proposed recovery mechanism. Our results indicate a practical reduction
in the number of stored checkpoints as well as a significant improvement in recovery latency

for the cases where the faults are correlated with the stressed units.

7.1 Introduction

In previous chapters, we proposed several SBST methodologies in order to efficiently detect
permanent failures in modern many-/multi-core systems during the lifetime of the chip. Beyond
the detection of faults, modern systems must be enhanced with mechanisms able to self-repair
and recover the system to a fault-free state, in order to remain functional despite the presence

of permanent faults.
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To maintain proper operation of the system, several error recovery techniques have been
proposed. These techniques are classified mainly in two categories: (i) Forward Error Recovery
(FER), and (ii) Backward Error Recovery (BER). In the first (FER), the usage of redundant
hardware is necessary for error detection and recovery. On the other hand, BER requires to
store a fault-free state of the system using checkpoints for error recovering. Once an error
is detected, the system is able to rollback to the fault-free state and re-execute the affected
workload, assuming it supports reconfiguration/fault-containment capabilities to rule out the
malfunctioning component. In most cases, BER does not require extra hardware to support
the recovery procedure, and the imposed overhead is in execution time, since a subset of the
already executed workload needs to be re-executed. There is also some storage overhead for
saving the checkpoints.

Several approaches for checkpointing and rollback (during the recovery procedure) have
been proposed in the literature, targeting multicore architectures. SafetyNet [74] combines
local check-pointing and incremental loggings. In SafetyNet, components coordinate their local
checkpoints, in order to represent a consistent global recovery point. Revive [75] uses log-
based rollback mechanisms, based on global checkpoints, and enables recovery from permanent
faults, while the faulty core is disabled. Revive I/O [76] is an extension of Revive that deals
with the output-commit problem. The issue of scalability in checkpointing solutions in large
scale parallel computing systems is further addressed in the more recent works of [77] and
[78], where hardware-based coordination for local checkpointing and multi-level checkpoint
are respectively proposed.

Recovery mechanisms in multicore systems must be incorporated with on-line fault de-
tection schemes. Concurrent methods relying on fault-tolerant mechanisms (i.e., redundancy
techniques) [42, 52] and non-concurrent on-line testing, such as Software-Based Self-Testing
(SBST) techniques [3,18] could both support recovery mechanisms. In this chapter, we propose
a recovery mechanism for a selective SBST technique of a shared-memory multicore system.
During selective SBST, the execution of test programs is performed on demand at sub-core
granularity. The system monitors the utilization of the functional units of each core and in-
vokes the corresponding test program when a predetermined threshold of executed instructions
is reached. Utilization is used as a surrogate measure as it is directly related to the switching
frequency and activity factor of the components [61]. Real-time system monitoring and test
initiation and execution is overseen by DeamonGuard Framework (Chapter 3). In this chap-
ter, we expand DeamonGuard Framework to support recovery capabilities in the presence of

permanent faults, based on checkpointing and rollback.
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Once an error is detected by on-demand SBST, the system must be able to recover via roll-
back to a fault-free state. This is achieved by the recovery mechanism that is responsible to roll
back the system to a valid checkpoint that ensures the correct execution of the workload until the
time the checkpoint was captured. Since the considered detection mechanism (selective SBST)
performs on-demand testing at sub-core granularity, checkpoints are captured and stored in the
system at irregular time intervals (not periodically), which can cause problems with checkpoint
consistency. This problem can be trivially resolved with global checkpointing (which, in turn,
can be enhanced with scalable checkpointing solutions, such as those in [74], [75], [77], [78]).
Under global checkpointing, the architectural state of the entire system (i.e., all cores) is saved.
Note that this solution tends to incur additional overhead, since the number of stored check-
points grows with both the number of sub-core units and the number of cores in the system.
This is an inherent characteristic of on-demand SBST for detection, performed either at the
sub-core or at the core level. The first contribution of this chapter is the reduction of the num-
ber of total checkpoints in the system at any time, using a dynamic policy which can associate
a checkpoint with more than one units/cores according to when their SBST was last executed.
The second contribution of this chapter is the optimization of the recovery latency required for
rollback to a fault-free checkpoint using a newly proposed algorithm able to find an appropriate
checkpoint — called the Most Recently Valid (MRV) checkpoint — aiming to reduce the recov-
ery time overhead. Hence, both types of recovery overheads (checkpoint storage and recovery
latency) are examined. It is assumed that once the recovery process is finished, a reconfiguration
mechanism can isolate the faulty core so that the system can continue the fault-free operation
with a performance degradation, due to the reduced number of functional cores. Reconfigura-
tion is further discussed in the next Section, however, the details of this mechanism are beyond
the scope of this thesis.

This work was published and presented in a peer-reviewed conference [?].

7.2 General Framework for Fault Detection & Recovery

To tolerate permanent hardware failures encountered during the normal operation of a many-
core architecture, the system must be augmented with three salient capabilities: (i) a fault-
detection mechanism (without loss of generality, we employ an on-line software-based self-
testing mechanism for fault detection); (ii) a recovery technique to restore the system to a correct
state after a fault is detected (this constitutes the main focus of this chapter); (iii) a hardware

reconfiguration mechanism to keep the system operational by disabling the faulty module(s).
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A high-level overview of the general framework used to facilitate fault detection and recovery
in a multi-/many-core setup is presented in Chapter 3 and Figure 3.1 . The rest of this section
describes in brief the key elements of this framework with focus on the recovery which is the

main focus of this chapter.

7.2.1 Fault Detection

The considered shared-memory multi-core system incorporates on-line testing, using the SBST
mechanism for permanent fault detection. The assumption is that the system is homogeneous,
1.e., all processing cores are identical. Test programs are executed during the lifetime of the sys-
tem, and they aim to detect faults caused by aging and wear-out artifacts. In particular, we use
the recently proposed on-demand selective testing methodology of the DaemonGuard frame-
work (Chapter 4. DaemonGuard Framework employs a new form of SBST, namely selective
SBST, which tests individual functional units in each processor core on-demand. Specifically,
DaemonGuard performs testing of functional units (at the sub-core granularity), based on each
unit’s utilization, i.e., how often the unit is used during the execution of various benchmark
applications.

The main component of the DaemonGuard framework is the Testing Manager process,
which runs at the OS-level and is responsible for the invocation of the various Test Daemons
(test programs targeting individual functional units of each core of the system), based on the
utilization information provided by hardware instruction counters residing alongside each func-
tional unit within the CPU cores. The main function of the Testing Manager is the checking
for pending test requests by any functional unit of any core within the system. When a testing
session is completed, the Testing Manager calls the Checkpoint Manager (if the test has passed
successfully) to create a system (global) checkpoint and store the current fault-free state. Other-
wise, the Recovery Manager is invoked, in order to roll back the system to a previous fault-free
state.

While selective SBST has been shown to be extremely efficient in terms of testing-time
overhead and avoiding unnecessary over-testing, it suffers from one drawback: it generates sig-
nificantly more checkpoints. In fact, the checkpoints generated are proportional to the number
of individual functional units present in each core (every test session for each functional unit
generates a new global checkpoint). Given that each checkpoint incurs both a timing overhead
(the time needed to generate the checkpoint) and a storage overhead, it is imperative to min-

imize the number of generated (and stored) system checkpoints. This is precisely one of the
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fundamental objectives of this thesis.

7.2.2 Fault Recovery

The main focus of this chapter is the system recovery process, once a permanent fault has
been detected. Hence, a recovery mechanism is introduced, which is able to keep the system
operational despite the occurrence of permanent faults. The main components of the proposed
recovery mechanism are (a) the Checkpoint Manager, and (b) the Recovery Manager, which
are responsible, respectively, for the creation of system checkpoints and determining a valid
checkpoint (among the multiple stored ones) to roll back.

The Checkpoint Manager can potentially create a checkpoint after each testing session. If
the test passes successfully, then a new checkpoint is created, in order to capture the fault-
free state up until the testing time of the specific unit. In this thesis, we use a global check-
point for the entire system, in order to ensure checkpoint consistency despite the presence of a
shared-memory environment. Furthermore, we propose a methodology to reduce the number
of checkpoints caused by the multiple testing sessions resulting from the multi-core architecture
and the sub-core test granularity considered.

The Recovery Manager is called upon the detection of a permanent fault, and it is respon-
sible to find an appropriate checkpoint, which ensures a consistent, fault-free state to roll back
and recover the system. An algorithm that is able to find the Most Recently Valid (MRV)
checkpoint is proposed, which aims to reduce the recovery penalty by avoiding roll-backs to

the oldest checkpoint.

7.2.3 System Reconfiguration

After the detection of a permanent fault and the subsequent recovery to a fault-free state, the
system should be able to isolate the faulty module and reconfigure itself to a fault-free (albeit
degraded) operational mode. The granularity of system reconfiguration could vary. For exam-
ple, reconfiguration could be performed at the core granularity (by disabling the entire faulty
core), or at a sub-core granularity (by disabling individual functional units within a core). The
latter approach requires diagnosis and localization of the permanent fault(s) [79], and the core
must be designed with multiple/spare units, or cross-core redundancy capabilities, in order to
disable/bypass faulty modules [80,81]. The core micro-architecture considered in this chapter
does not include any spare functional units, so we assume — without loss of generality — that the

reconfiguration mechanism works at the core granularity (i.e., entire cores are disabled upon

87



fault detection), which does not require any diagnosis mechanisms. We assume that the oper-
ating system is aware of the reconfiguration policy and, upon rollback, it is able to re-distribute
the workload to the fault-free (and still active) cores, and resume execution from the selected
checkpoint. Note that the reconfiguration mechanism is beyond the scope of this thesis; the
proposed recovery mechanism is orthogonal to the reconfiguration technique employed by the

system.

7.3 The Proposed Recovery Mechanism

During SBST, upon completion of each testing session, the system stores its fault-free (assum-
ing the test completed successfully) state information in a checkpoint. This information allows
the system to be restored to a fault-free state after the detection of a fault. In multi-core systems,
where the testing procedure could be performed at a fine granularity (e.g., core-level or sub-core
level), the check-pointing mechanism is more complicated. Three main problems arise, which
must be taken into account: (i) the checkpoint consistency, (ii) the number of generated and
stored checkpoints, and (ii1) ensuring an appropriate fault-free state (i.e., choosing an appro-
priate checkpoint) for rollback. To resolve the first problem, we consider global checkpoints
covering all the cores of the system. Techniques that improve the checkpoint consistency and
the scalability of global checkpointing — such as [75,77,78] — could be combined with the pro-
posed recovery mechanism. For the second problem, we propose a methodology that reduces
the number of checkpoints stored at any given time by the system. For the last problem, we
propose a methodology to find the most recent checkpoint that ensures a fault-free state for the

system.

7.3.1 Reducing the Number of Checkpoints

At a core-level test granularity, where each core is tested independently, we create a global
checkpoint to store the fault-free state. As a result, only the tested core could be characterized
as fault-free in the checkpoint, since the remaining cores of the system may not have been tested
yet. In order to have a sufficiently robust recovery mechanism, we need one checkpoint for each
core of the system. Thus, the number of checkpoints required for full-core-based testing and
recovery is equal to the number of cores in the system. In this case, the valid checkpoint to
recover after a fault detection is the last captured checkpoint corresponding to the faulty core. In

our work, since we consider selective testing at a sub-core granularity, checkpoints are created
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Figure 7.1: An example scenario of the proposed check-pointing system, assuming the use of selective SBST to

detect the presence of permanent faults.

at the end of each testing session, targeting a specific unit of a core within the system. As a result
of this, the number of stored checkpoints in the system increases, and it is equal to the number
of cores in the system multiplied by the number of units considered for testing. To tackle this
large number of generated checkpoints, we propose a methodology aiming to reduce the total

number of checkpoints.

The main idea of this methodology is to use an existing checkpoint for more than one unit.
In particular, units that are tested within a specific number of cycles, L, after the creation of a
checkpoint may use the last created checkpoint for roll back (instead of creating a new one).
This period can be viewed as a window of opportunity to reduce the number of checkpoints.
Checkpoints are enhanced with a list of units that are assigned to them, and if any of those
units fails a future test, the state will roll back to that particular checkpoint. The Checkpoint
Manager is responsible to decide either to create a new checkpoint, or to use an existing one
and append the tested unit to the list. In the latter case, the considered unit must be removed
from the list of the old checkpoint that is currently assigned to said unit. Checkpoints that do
not have any units assigned to them are considered invalid and they discarded from the system.

Algorithm 4 describes the proposed methodology.

Figure 7.1 illustrates an example of the proposed check-pointing mechanism. A global
checkpoint is captured after the completion of the testing session of a specific functional unit.
The example illustrates two cores of the system, 7 and j, with four units each. Once a unit
is tested, the Checkpoint Manager is invoked to decide whether to create a new checkpoint,
or to use an existing one (based on the distance, in cycles, from the last checkpoint). The C;
checkpoint is created after the testing of unit j;, and, subsequently, unit i, is appended to the

same checkpoint. The same procedure is applied to the following testing sessions as well. After
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the creation of the C, and C; checkpoints, the units assigned to C; have been tested again, so
they are appended to the new checkpoint lists. At this point, those units are removed from C;

and the state of said checkpoint becomes invalid (it is removed from the system).

Algorithm 4 Checkpoint Manager
Input: Tested Unit U

Input: Last Checkpoint C

1. if U.TimeStamp — C.TimeStamp < L then
2: C.appendUnit(U)

3: else

4: NewC = CreateNewCheckpoint()

5: NewC.appendUnit(U)

6: end if

7: LastC = U.LastAssignCheckpoint ()

8: LastC.removeUnit(U)

9: U.updateCheckpoint(NewC)

7.3.2 Identifying the Most-Recently Valid (MRYV) Checkpoint

When a fault is detected and the recovery mechanism is invoked, the system rolls back to a
checkpoint that ensures fault-free re-execution of the workload. As mentioned earlier, during
selective testing, we hold all the relevant checkpoints of all sub-core units for each core of the
system. The example in Figure 7.1 shows that, at any given time, we have 4 (number of units
per core) checkpoints for each core of the system. The checkpoint that ensures fault-free state
recovery is the oldest checkpoint among all the units of the cores of the system.

It should be noted that despite the unit-based testing at a sub-core granularity assumed in this
chapter, the rollback process is performed at the system level, since we use global checkpoints.
In order to improve the recovery penalty — by avoiding rollback to the oldest checkpoint —
we propose an algorithm that is able to select the Most Recently Valid (MRV) checkpoint for
system recovery. The proposed algorithm is described in Algorithm 5.

Algorithm 5 gets as input the faulty unit and the list with the global checkpoints. The first
step of the algorithm is to sort the checkpoints according to the capture time (cycle), with
the oldest checkpoint being first, and then set the Cu checkpoint as the latest valid checkpoint

for the unit that has sustained a fault. The second step of the algorithm is to find the MRV
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Algorithm 5 Find the Most-Recently Valid (MRV) Checkpoint

Input: Faulty Unit U

Input: List of Checkpoints C

Sort C based on time (Oldest First)
Cu « C.getCheckpoint(U)

1: repeat

2: Cd; « C.remove()

3: Cd, « C.pick()

4: if Cd, = Cu then

5: return Cu

6: end if

7: I « Cdj.cycle - Cd;.cycle

8: t « AccumulateTestingTime(Cd; .Listof Units)
9: if t <[ then
10: response « testUnit(Cd; .Listof Units)
11: if response = fail then
12: return Cd,;
13: end if
14: else
15: return Cd,
16: end if

17: until (True)

checkpoint to recover the system. The main idea of this procedure is to avoid rollback to the
oldest checkpoint, in the case where we can find a more recent checkpoint that still ensures fault-
free execution of the affected workload. During the first iteration of the algorithm, we get the
oldest checkpoint, Cd;, and the next one, Cd,. From the oldest checkpoint, we identify the type
of the units assigned to it, and we estimate the required time to test all of them. The estimation is
based on a priori profiling of each test program. If the estimated testing overhead is smaller than
the distance in time (cycles) of the two consecutive checkpoints, we execute the test programs
corresponding to the units assigned to the oldest checkpoint (Cd,). If the test is successful, we
remove Cd; from the list, and we repeat this process for the next checkpoints. This procedure

1s repeated until: (1) the testing overhead is higher than the recovery from an older checkpoint,
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Figure 7.2: An example of the use of the MRV algorithm, which reduces the roll-back recovery penalty.

whereby we return Cd; (line 15), or (ii) one of the executed tests fails, whereby the algorithm
returns Cd; (line 12), or (iii) all the functional units pass their tests, whereby Cu is considered

to be the MRV checkpoint for recovery.

Figure 7.2 illustrates an example where the MRV algorithm is applied. In this example,
two faults occur, one in each of the two considered cores, i and j. Note that the occurrence
of multiple permanent faults (at different locations on the chip) becomes more relevant as the
system ages; wear-out and aging effects may cause precipitation of multiple faults in the late
stages of the system’s lifetime. Thus, it is imperative for any mechanism to cover those situations
as well. During the testing session of unit i3 in the example of Figure 7.2 (red color), a fault is
detected and the MRV algorithm is used. The oldest checkpoint in this case is Cy, and the next
step of the proposed algorithm is to find a more recent valid checkpoint (if it exists). To do
this, we move to the next (chronologically) checkpoint, i.e., Cy, and we initiate testing of the
functional units assigned to the Cy checkpoint. In this particular example, during the testing
procedure of the units assigned to C; (i.e., units i, and j;), a second fault is detected in unit .
As a result of this, Cs is now considered as the MRV checkpoint for roll-back. Had the second
fault not occurred, the MRV checkpoint would be Cs. In both cases, the roll-back to the oldest

checkpoint is avoided, thereby reducing the recovery penalty.

Once the system is recovered to a fault-free state, a system reconfiguration must be per-
formed, in order to isolate the faulty core. This process leads to a degraded (but operational)
system. As previously mentioned, we assume that the OS would redistribute the system work-
load (as restored from the checkpoint) to the fault-free cores of the degraded system and resume

execution.
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Figure 7.3: Reduction of the number of stored checkpoints by applying the proposed mechanism varying the

Window of Opportunity.

7.4 Experimental Results

For the evaluation of the proposed recovery mechanism, we have developed a simulation frame-
work that incorporates unit-based fault injection, a detection mechanism based on selective
SBST, and the proposed recovery mechanisms using rollback and check-pointing. We con-
sider a 16-core system with 7 functional units in each core. Each unit is tested by an appro-
priate software test program with the same characteristics as those described in DaemonGuard
Framework and used for Selective SBST. Faults escaping the SBST detection mechanism are
not considered in this chapter. The considered workload is synthesized using detailed applica-

tion profiling of the PARSEC benchmark suite [66].

The total duration of simulations is 20 billion cycles. The testing threshold (utilization
metric which triggers selective SBST) is set to 10 million instructions. Under-utilized units
are tested periodically, if the executed instructions do not reach the threshold within a specific
time period, to ensure that all units will be tested at least once during a simulation process.
Multiple fault injections and simulations are performed, in order to investigate the detection
and recovery overhead in the presence of faults. Faults are injected in both utilized and under-
utilized units. The reported results for each unit are averaged over 10 fault injection campaigns

per unit, whereby a fault is injected into the considered unit at a time.

We first study the effectiveness of the proposed policy in reducing the total number of
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Figure 7.4: The average distance between the checkpoint capture time and the time where a testing session is

completed for the units that are appended to an existing checkpoint.

checkpoints kept at any time. Figure 7.3 presents the number of stored valid checkpoints and
the number of functional units assigned to each checkpoint at any given time, by varying the
Window of Opportunity L. As expected, the number of checkpoints is reduced as L increases.
Actually, the number of checkpoints is reduced quickly with a small increase in the value of L.
Since we do not create checkpoints for each tested unit in the system, we have an extra overhead
in terms of recovery latency which is the distance between the checkpoint timestamp and the
time where the testing session is completed. However, this extra penalty is limited by the value
of period L which is the maximum distance that can appear. Figure 7.4 presents the averaged
distance of each functional unit to the checkpoint. For the rest of our results we set the window
of opportunity L = 4M cycles where the number of stored checkpoints is about 25% of the
initial.

Figure 7.5 presents results for the detection latency and recovery penalty of the two recovery
policies, i.e., (i) oldest checkpoint, and (ii) the proposed MRV checkpoint approach. The x-
axis shows the 7 considered functional units of the system and the y-axis refers to the latency
for three metrics (detection and the two above-mentioned recovery policies), in terms of cycles.
The functional units are sorted based on their utilization. The ALU is the highest utilized unit,

while MULT (multiplier) is the least utilized unit.

As we can see in Figure 7.5, the latency of the fault detection is increased as the utilization
decreases. This is a result of selective testing, as units are tested based on their utilization.
Comparing the ALU and MULT units, detection is more than 3X faster in ALU. The recovery
penalty incurred when using the oldest check-pointing method is similar for all the units of the
system. The reason for this is that irrespective of the faulty unit, the system recovers to the oldest

checkpoint, and in most cases the oldest checkpoint is determined by the under-utilized units.
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Figure 7.5: Detection and recovery overhead. The results are averaged over several fault injection experiments.

The small variations between the units are related to the detection latency. In the case of highly
utilized units, the recovery is slightly better, due to the fast detection of faults. Considering the
proposed MRV checkpoint mechanism, we can significantly reduce (up to 4X) the recovery
penalty, when the fault occurs in a stressed unit. The improvement of the MRV mechanism
for the under-utilized units is smaller, compared to that achieved for the stressed units, since in
most cases the most recently valid checkpoint is near the oldest one.

As we consider faults caused by aging and wear-out artifacts, faults are more likely to occur
in units with higher stress during the lifetime of the system. Based on this attribute, the MRV

check-pointing mechanism can significantly improve the recovery latency.

7.5 Concluding Remarks

This chapter introduced an efficient checkpointing and roll-back recovery mechanism for se-
lective SBST techniques. Selective testing performs on-demand testing at the granularity of
functional units based on utilization. Thus, the time interval between two consecutive testing
sessions is not constant. This creates challenges related to the number of checkpoints that are
required to hold the fault-free state of the system and the roll-back penalty. In this chapter, two
mechanisms are proposed in order to meet the challenges. For the evaluation of the proposed
techniques, we developed a simulation framework with fault-injection capabilities. Results val-
idate the significant reduction in both the number of checkpoints and the roll-back recovery

penalty.
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Chapter 8

Conclusions

The main goal of this thesis is to develop a framework able to provide protection against unde-
sired system behavior caused by aging and wear-our effects in shared-memory multi-core sys-
tems. On-line testing techniques are employed in modern systems in order to perform dynamic
detection of permanent faults during the lifetime of the system. Beyond the fault detection,
systems must be enhanced with recovery capabilities in order to keep the system functional in

the presence of permanent fault.

The work in Chapters 4 and 5 introduces the notion of Selective SBST as a means to drasti-
cally reduce the testing time overhead in multi-/many-core microprocessors. The proposed test-
ing methodology considers system activity at the sub-core granularity and initiates targeted test-
ing of only the over-utilized (and, thus, strained) functional units. Under-utilized units are only
sporadically tested. To facilitate this testing regime, we introduce the DaemonGuard Frame-
work for Selective SBST, which enables real-time observation of individual sub-core modules
and performs on-demand selective testing of individual functional units. This discriminatory
testing approach offers drastic savings in testing time, since the testing phase only executes test
routines relevant to the specific functional unit under test. DaemonGuard employs a transpar-
ent, minimally-intrusive, and lightweight operating system process that monitors the utilization
of individual components at run-time. Whenever a unit requires testing, DaemonGuard invokes

OS-residing unit-specific test daemons to execute appropriate test routines.

In Chapter 4, selective testing is compared against two full-core SBST approaches to eval-
uate the testing time overhead incurred on the system. Our results indicate substantial reduc-
tions in testing overhead of up to 30X. Most importantly, the impact of the DaemonGuard
framework on system performance is shown to be negligible, thus corroborating our claim

that OS-assisted selective SBST is a feasible option for modern microprocessors. Further-
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more, the DaemonGuard Framework for Selective SBST is augmented with the capability to
exploit the memory hierarchy of the system in order to expedite the testing process. Large,
memory-intensive test programs tend to stress the memory sub-system of the CMP. In Chapter
5 we demonstrate that cache-aware selective testing can significantly reduce the execution of
memory-intensive test programs, by exploiting cache-resident blocks and minimizing the num-
ber of expensive off-chip memory accesses. Thus, the cache-aware DaemonGuard scheme
initiates test sessions based not only on unit utilization, but also on the recent history of test
sessions by other similar units in other cores. The cache-aware testing scheme is shown to be
very effective in exploiting the memory hierarchy to minimize the testing time of memory-
intensive test programs.

Unlike selective testing, a different testing policy where all the cores of a multi-core system
are required to be tested is evaluated through the implementation of different scheduling poli-
cies. The work performed in Chapter 6 is an exploration of periodic, on-line SBST scheduling
policies in homogeneous multi-core systems. The ultimate goal is to reduce the testing over-
head, in terms of testing time and test latency. Toward this end, we propose and examine
several test scheduling techniques, based on the number of cores concurrently under test dur-
ing test sessions. Given a constraint in test latency, the proposed methodology optimizes the test
scheduling process, so as to minimize the test-time overhead and maximize system availability.

Beyond the exploration pertaining to the number of concurrent cores under test, we also
investigate the scalability of the test-scheduling policies as the CMP system grows in size, i.e.,
it accommodates larger numbers of on-chip cores. In order to curtail exponential increases in
testing overhead in such large systems, the work in chapter 6 proposes a clustering approach,
whereby the CMP’s cores are grouped into contiguous clusters. The underlying premise is to
enable all test-related data to be resident in the LL.C banks of the cores in the vicinity of the
core-under-test, rather than being scattered throughout the CMP. The evaluation results indicate
that clustering reaps substantial savings in test-time overhead and enables efficient scalability of
the testing process to arbitrarily large systems.

Finally, the work in Chapter 7 introduces an efficient checkpointing and roll-back recov-
ery mechanism for selective SBST techniques. In the presence of permanent faults, the pro-
posed technique is able to effectively recover a shared-memory multi-core system to a fault-free
state and keep the entire system operational, with some performance degradation. In terms of
checkpointing, a methodology is proposed to substantially reduce the total number of gener-
ated and stored checkpoints, which improves the viability of selective SBST. Complementing

the checkpointing process, a recovery mechanism identifies the most appropriate checkpoint
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for roll-back, in order to minimize the recovery penalty. The proposed methodology is evalu-
ated under extensive fault-injection scenarios targeting both highly-utilized and under-utilized
units. Results validate the significant reduction in both the number of checkpoints and the
roll-back recovery penalty. Especially in the cases where the faults are more likely to occur in
highly-stressed units with higher utilization, the recovery penalty can be dramatically reduced.

Overall, the research within this thesis focuses on the development of mechanisms towards
the protection of multi-/many-core systems against undesired behavior. In the area of SBST,
this thesis contributes to a significant reduction of testing time overhead taking into advantage
the monitoring of system’s activity and initiating on demand testing targeting the high-utilized
elements. Despite the potential of on-demand selective testing during lifetime, the system must
be able to perform self-test targeting its’ entirety. Regarding this requirement, our work con-
tributes to the optimization of system availability under a given test latency constraint through
test scheduling approaches. Beyond self-testing, this thesis contributes in system recovery af-
ter the detection of permanent faults by developing mechanisms for efficient checkpointing and

roll-back recovery in systems that perform on-demand testing.

8.1 Future Work

The open research challenges in the area of on-line fault detection towards reliable systems in
combination with the outcomes of the proposed methodologies set the basis for further research
on top of this thesis. There are several directions that future research can take in order to
improve the findings of this thesis. Selective SBST, a hybrid approach that combines testing at
sub-core granularity with full-core testing can result in further reductions in test-time overheads
and detection latencies. Using larger programs (targeting more than one functional units or
the entire core) provides the potential to reduce the overheads imposed by the OS while test
daemons are invoked and run (scheduling). Merging the test programs of different functional
units is a challenging approach as several parameters such as the utilization of the considered
units should be considered. Additionally, test programs that target un-core components can be
part of selective SBST. This, necessitates the need to include triggering mechanisms of these
programs as are not part of the monitoring activity (functional units).

Cache-aware selective SBST and clustering approach proved able to manage large test pro-
grams as well as large systems. In this context, additional techniques can be applied in large
test programs in order to further reduce the test-time overheads. A potential approach in this

direction is the pipelined execution of test programs. The execution of large programs in seg-
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ments (one after other) can reduce the misses of LLC resulting in savings in testing time. A
very simple approach towards this extension is to split the test routine in two parts. The sched-
uler will initiate the execution of the first part for all the cores of the system and then for the
second part. All the proposed test scheduling approaches (varying the number of concurrent
cores under test) can be applied.

For the last part of this thesis, several directions of future work can be considered. Recovery
mechanisms with capabilities to isolate the faulty component and reconfigure the system in order
to remain operational can be implemented. Additionally to this, techniques that differentiate
transient and permanent errors should be included in the proposed framework. An example is
that upon the detection of a fault, the test scheduler can re-execute the same test program. If the
fault is also detected, we have a permanent fault and further actions for reconfiguration should be
taken. Otherwise, we can assume the detection of a transient fault and we can proceed with the
recovery only. Another potential direction of future work and more relevant with the first part
of this thesis is that the testing manager of the selective testing can receive feedback from the
checkpointing mechanism towards the further reduction of the number of stored checkpoints
as well as the reduction of the recovery penalty in the presence of faults.

In this thesis and specifically in the fault detection techniques our goal is to reduce the im-
posed testing time overheads either by perform on-demand testing or using different scheduling
approaches. A potential direction that this work can be further continued is to identify and use
different metrics for the assessment and evaluation of testing exercise. A reliability model
that includes the test quality (i.e. test coverages), system characteristics and requirements (i.e.
critical or non-critical systems), detection latencies can be integrated to the DaemonGuard
Framework in order to trigger and assess the testing procedure.

An alternative approach to addressing the issue of aging and wear-out can be implemented
by exploiting the already proposed DaemonGuard Framework. So far, we deal with aging
by providing mechanisms able to perform on-line detection of permanent faults during the
lifetime of the system. Tackling the issue from a different perspective is to provide solutions
able to predict or slow down the aging phenomenon. Such techniques can be implemented and
orchestrated by the DaemonGuard Framework.

To sum up, further development of the DaemonGuard Framework can lead to a complete
simulation framework that can support detection, prevention and recovery of permanent faults
due to aging and wear-out phenomenon on top of the modern architectures. The modular
and scalable design of DaemonGuard allows the integration of different self-testing approaches

targeting multi-core systems.
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