
CLUSTERING ATTRIBUTED MULTI-GRAPHS

Andreas Papadopoulos

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the

University of Cyprus

Recommended for Acceptance

by the Department of Computer Science

May, 2017And
rea

s P
ap

ad
op

ou
los

© Copyright by

Andreas Papadopoulos

All Rights Reserved

2017

And
rea

s P
ap

ad
op

ou
los

APPROVAL PAGE

Doctor of Philosophy Dissertation

CLUSTERING ATTRIBUTED MULTI-GRAPHS

Presented by

Andreas Papadopoulos

Research Supervisor
George Pallis

Committee Member
Marios D. Dikaiakos

Committee Member
Constantinos S. Pattichis

Committee Member
Nick Bassiliades

Committee Member
Fragkiskos Papadopoulos

University of Cyprus

May, 2017

ii

And
rea

s P
ap

ad
op

ou
los

DECLARATION PAGE

Doctor of Philosophy Dissertation

CLUSTERING ATTRIBUTED MULTI-GRAPHS

The present doctoral dissertation was submitted in partial fulfillment of the require-

ments for the degree of Doctor of Philosophy of the University of Cyprus. It is a

product of original work of my own, unless otherwise mentioned through references,

notes, or any other statements.

Andreas Papadopoulos

University of Cyprus

May, 2017

iii

And
rea

s P
ap

ad
op

ou
los

ΟΜΑΔΟΠΟΙΗΣΗ ΑΝΤΙΚΕΙΜΕΝΩΝ ΣΕ ΔΙΚΤΥΑ

ΠΛΗΡΟΦΟΡΙΩΝ

Ανδρέας Παπαδόπουλος

Πανεπιστήµιο Κύπρου, 2017

΄Ενα δικτύο πληροφοριών (information networks) µπορεί να µοντελοποιηθεί αποτε-

λεσµατικά ως ένας πολυγράφος ιδιοτήτων (attributed multi-graph). Σε ένα πολυ-

γράφο ιδιοτήτων µια κορυφή (vertex) αντιπροσωπεύει ένα αντικείµενο. Κάθε κορυφή

χαρακτηρίζεται από κάποιες τιµές που αντιστοιχούν στις ιδιότητες του αντικειµένου

που αντιπροσωπεύει. Οι συνδέσεις αναπαριστούν τις σχέσεις που έχουν τα αντικείµενα.

Η οµαδοποίηση (clustering) αποσκοπεί στη διαίρεση των αντικειµένων σε οµάδες

βάση διαφόρων κριτηρίων. Σε πραγµατικά δίκτυα πληροφοριών, κάθε χαρακτηριστικό

των αντικειµένων, π.χ. ιδιότητες και τύποι συνδέσεων, περιέχει διαφορετική πληρο-

φορία, και ορισµένα από αυτά τα χαρακτηριστικά µπορεί να µην είναι χρήσιµα στην

διαδικασία οµαδοποίησης. Εποµένως, πρέπει να προσδιορίσουµε πόσο σηµαντική είναι

η κάθε ιδιότητας και ο κάθε τύπος ακµής. ΄Οταν η διαδικασία οµαδοποίησης λαµβάνει

υπόψη το πόσο σηµαντικά είναι τα χαρακτηριστικά των αντικειµένων επιτυγχάνει

αποτελέσµατα υψηλής ποιότητας.

Πολλές υπάρχουσες µέθοδοι οµαδοποίησης αντικειµένων/κόµβων σε γράφους ιδ-

ιοτήτων θεωρούν ότι οι ιδιότητες των αντικειµένων είναι το ίδιο σηµαντικές ή αγνοούνAnd
rea

s P
ap

ad
op

ou
los

Ανδρέας Παπαδόπουλος –– Πανεπιστήµιο Κύπρου, 2017

την ύπαρξη συνδέσεων πολλαπλών τύπων. Επίσης, ανακαλύπτουν οµάδες που χαρακ-

τηρίζονται από οµοιογένεια χαρακτηριστικών και είναι πυκνά συνδεδεµένες (densely

connected components). Ωστόσο, η αναγνώριση οµάδων αντικειµένων που µοιράζονται

παρόµοιες συνδέσεις είναι επίσης σηµαντική.

Προτείνουµε µια συλλογή καινοτόµων µεθόδων για την εύρεση οµάδων σε ένα

δίκτυο πληροφοριών που µοντελοποιείται ως ένας πολυγράφος ιδιοτήτων. Οι προ-

τεινόµενες µέθοδοι µπορούν να εκµεταλλευτούν την υπολογιστική ισχύ των σύγχρονων

πολυπύρηνων υπολογιστών έτσι ώστε να είναι ικανές να χειριστούν µεγάλα σύνολα

δεδοµένων. Προτείνουµε συναρτήσεις ενοποιηµένης οµοιότητας ή απόστασης που συν-

δυάζουν αποτελεσµατικά τα χαρακτηριστικά των κορυφών και σχεδιάζουµε µηχανισµούς

στάθµισης. Οι προτεινόµενες µέθοδοι οµαδοποίησης προσδιορίζουν τη σηµαντικότητα

κάθε χαρακτηριστικού (ιδιότητας και τύπου ακµών) των αντικειµένων χρησιµοποιώντας

αυτούς τους µηχανισµούς στάθµισης, και έτσι εξισορροπούν και συνδυάζουν αποτε-

λεσµατικά όλα τα χαρακτηριστικά των κορυφών. Το αποτέλεσµα είναι η βελτίωση της

ποιότητας της οµαδοποίησης µε βάση διάφορα ευρέως αποδεκτά µέτρα αξιολόγησης αλ-

γορίθµων οµαδοποίησης. Ο στόχος µας είναι να µεγιστοποιήσουµε την ενοποιηµένη

οµοιότητα µεταξύ των κορυφών που ανήκουν στην ίδια οµάδα. Τα µέλη µιας οµάδας

πρέπει να έχουν υψηλή παρόµοια συνδεσιµότητα (similar connectivity), δηλαδή να

σχετίζονται/συνδέονται µε τις ίδιες κορυφές. Επίσης, πρέπει να χαρακτηρίζονται από

κοντινές τιµές ιδιοτήτων (χαµηλή εντροπία). Είµαστε από τους πρώτους που βρίσκουµε

οµάδες µε παρόµοια συνδεσιµότητα σε πολυγράφους ιδιοτήτων.And
rea

s P
ap

ad
op

ou
los

Ανδρέας Παπαδόπουλος –– Πανεπιστήµιο Κύπρου, 2017

Επιπλέον, αξιοποιούµε τις προτεινόµενες µεθόδους για την επίλυση ενός πρακ-

τικού ζητήµατος. Συγκεκριµένα, αναπτύσσουµε ένα σύστηµα το οποίο προσφέρει αξ-

ιόπιστες συστάσεις (recommendations) σε ευρωπαϊκούς οργανισµούς για καινούριες

συνεργασίες. Για να το επιτύχουµε αυτό οµαδοποιούµε τους οργανισµούς που έχουν

συµµετάσχει σε έργα που χρηµατοδοτήθηκαν από την Ευρωπαϊκή ΄Ενωση στο πλαίσιο

του προγράµµατος Horizon 2020. Στην συνέχεια, προτείνουµε µια µέθοδο που αναλύει

τα αποτελέσµατα της οµαδοποίησης για να εξάγει πιθανές συνεργασίες. Οι οργανισµοί

και οι ερευνητές µπορούν να χρησιµοποιήσουν το σύστηµά µας για να για να εντοπί-

σουν νέους συνεργάτες. Από όσο γνωρίζουµε, το σύστηµα µας είναι το πρώτο που

προσφέρει τέτοιες υπηρεσίες στην κοινότητα.

And
rea

s P
ap

ad
op

ou
los

CLUSTERING ATTRIBUTED MULTI-GRAPHS

Andreas Papadopoulos

University of Cyprus, 2017

An attributed multigraph is a structure that efficiently represents real world

networks. In an attributed graph, a vertex represents an object. A vertex is charac-

terized by some attributes corresponding to the object’s properties. Edges capture

the objects’ relationships.

Clustering aims to partition the objects into groups, namely clusters, based on

various criteria. In real world networks each object property, i.e. attribute and edge-

type, contains different information. Some of these properties may be irrelevant to

the clustering task. Hence, we must identify the significance of each attribute and

edge-type. Clustering process must consider the significance of vertex properties to

achieve high-quality results.

Many existing attributed graph clustering methods assume the vertex properties

are equally important, or they ignore that many edge types exist. Also, they dis-

cover clusters characterized by attribute homogeneity that form densely connected

components. Yet, identifying clusters of objects that share similar connections is

also important.

We propose a collection of novel methods to detect clusters in an attributed

multigraph. Proposed methods can exploit the computational power of modernAnd
rea

s P
ap

ad
op

ou
los

Andreas Papadopoulos –– University of Cyprus, 2017

multicore architectures. Hence, they can handle large datasets. We propose unified

similarity or distance functions that efficiently combine the various vertex properties.

We additionally design weighting mechanisms. The proposed methods identify the

importance of each vertex property using these mechanisms. They so balance and

combine the vertex properties efficiently. The result is the improvement of clustering

quality in terms of various evaluation measures. Our goal is to maximize the unified

similarity among vertices in the same cluster. Cluster members must have high

similar connectivity, i.e. relate/connect to the same vertices. Also, they must be

characterized by close attribute values (low entropy). To the best of our knowledge,

we are among the first to optimize similar connectivity.

Moreover, we leverage proposed methods to solve a practical issue. That is, how

to offer reliable, evidence-based recommendations to European organizations. To

do so, we cluster the European research activities network. That is, the network

of all organizations that participated to projects funded by the European Union.

We propose a clustering-based recommendation method that analyzes the cluster-

ing results to provide recommendations. Organization and researchers can use our

system to establish new collaborations. To the best of our knowledge, this is the

first system to offer such services to the community.

And
rea

s P
ap

ad
op

ou
los

ACKNOWLEDGEMENTS

First and foremost, I would like to thank to my Ph.D. advisors, Professors George

Pallis and Marios D. Dikaiakos, for supporting me during the years of my doctoral

studies. George Pallis is someone you will never forget once you meet him. He is

a respectable and affable scholar, who has provided me with unreserved support

and invaluable guidance in every step during my doctoral studies. Marios Dikaiakos

has been supportive and gave me the most insightful guidance. The enlightening

discussions with both of them during my doctoral studies are priceless. They not

only guide me to qualify as a Ph.D., but also give me valuable pieces of advice for

the future success. I would also like to thank the members of my Ph.D. committee

Professors Constantinos S. Pattichis, Nick Bassiliades and Fragkiskos Papadopoulos

for those constructive comments on my dissertation.

I would also like to take the opportunity to gratefully acknowledge the support

I have received from: the Cyprus state scholarship foundation, the Telerehabilita-

tion project (co-financed by the European Union and national funds of Greece and

Cyprus, Cross Border Cooperation Programme Greece Cyprus 2007-2013), the EU

Commission in terms of the PaaSport 605193 FP7 project (FP7-SME-2013), and

the Department of Computer Science at University of Cyprus.

iv
And

rea
s P

ap
ad

op
ou

los

I am deeply grateful to the supervisor of my bachelor’s and master’s theses,

Professor Dimitrios Katsaros, who introduced me to research and encouraged me

to apply for a Ph.D.. My appreciation also goes to my colleges and friends (too

many to list here but they know who they are) for their support and the extensive

fruitful discussions we had during my studies at University of Cyprus. I would also

like to acknowledge Andreas Andreou for implementing the web interface of the

recommended system.

Finally, words cannot express my gratitude to my family for believing in me and

their constant support and encouragement. This thesis would not have been possible

without the support and encouragement of my wife, Ivi, who is always beside me,

days and nights since my bachelor studies, helping me overcome various hurdles.

v

And
rea

s P
ap

ad
op

ou
los

I dedicate this thesis to my family, my wife, Ivi, and my kids, Stephanos and

Angelos, for their unconditional love, support and encouragement.

vi

And
rea

s P
ap

ad
op

ou
los

CREDITS

1. Andreas Papadopoulos, George Pallis, and Marios D. Dikaiakos, “Weighted

clustering of attributed multi-graphs,” Springer journal on Computing, pages

1-28, 2016.

2. Andreas Papadopoulos, Dimitrios Rafailidis, George Pallis, and Marios D.

Dikaiakos, “Clustering attributed multi-graphs with information ranking,” in

Database and Expert Systems Applications, Lecture Notes in Computer Sci-

ence. Springer International Publishing, Volume 9261, Pages: 432-446, ISBN:

978-3-319-22848-8, 2015.

3. Andreas Papadopoulos, George Pallis, and Marios D. Dikaiakos, “Identifying

clusters with attribute homogeneity and similar connectivity in information

networks,” in IEEE/WIC/ACM International Joint Conferences on Web In-

telligence (WI) and Intelligent Agent Technologies (IAT), Volume 1, Pages:

343-350, ISBN: 978-1-4799-2902-3, 2013.

iv

And
rea

s P
ap

ad
op

ou
los

TABLE OF CONTENTS

Chapter 1: Introduction 1

1.1 Clustering Attributed Multi-graphs 2

1.2 Contributions of this Thesis . 4

Chapter 2: Motivation 9

2.1 Roadmap . 13

Chapter 3: Problem Statement and Preliminary Concepts 14

3.1 Data Structure . 14

3.2 Clustering Problem . 16

3.3 Background . 18

3.3.1 Gradient Descent . 18

3.3.2 Spectral Clustering . 19

Chapter 4: Related Work 24

4.1 Distance-based Attributed Graph Clustering 24

4.1.1 Centroid-based . 25

4.1.2 Hierarchical . 26

4.1.3 Spectral Clustering . 27

4.1.4 Graph Transformation . 27

4.2 Model-based Attributed Graph Clustering 28

4.3 Discussion . 29

v

And
rea

s P
ap

ad
op

ou
los

Chapter 5: Homogeneous Attributes and Similar COnnectivity Pat-

terns - HASCOP 35

5.1 Distance Measures . 37

5.1.1 Similar Connectivity . 37

5.1.2 Attribute Coherence . 38

5.2 HASCOP Clustering Model . 38

5.2.1 Overview . 38

5.2.2 Similarity Function and Membership Calculation 39

5.2.3 Structural Properties . 40

5.2.4 Attribute Properties . 41

5.2.5 Adjustment of Edge-Type and Attribute Weights 42

5.3 HASCOP Algorithm . 44

5.3.1 Initialization . 45

5.3.2 Clustering Process . 45

Chapter 6: Clustering Attributed Multi-graphs with Information

Ranking - CAMIR 48

6.1 CAMIR Clustering Model . 50

6.1.1 Information Ranking . 50

6.2 CAMIR Algorithm . 53

Chapter 7: Weighted CLustering of Attributed Multi-graPhs - CLAMP

56

vi

And
rea

s P
ap

ad
op

ou
los

7.1 CLAMP Clustering Model . 57

7.1.1 Overview . 57

7.1.2 Distance Measures . 58

7.1.3 Clustering Model . 61

7.1.4 Objective Function Optimization 64

7.1.5 Cluster Representations . 64

7.1.6 Partitioning - Membership Probabilities 66

7.1.7 Optimizing Attribute, Edge-type and Global Weights 68

7.2 CLAMP Algorithm . 71

7.2.1 CLAMP Algorithm in MapReduce Model 72

Chapter 8: Experimental Study 77

8.1 Datasets . 77

8.1.1 Synthetic Datasets . 77

8.1.2 Real-world Datasets . 79

8.2 Evaluation Measures and Comparison Methods 82

8.3 Evaluation on Synthetic Graphs . 85

8.4 Evaluation on Real-world Graphs . 87

8.4.1 GoogleSP-23 datasets . 87

8.4.2 DBLP-10K dataset . 90

8.4.3 EU-Projects dataset . 91

8.5 Efficiency Study . 92

8.6 Discussion and Connection to Previous Work 93

vii

And
rea

s P
ap

ad
op

ou
los

Chapter 9: Use Case: Clustering-based Recommendation System 97

9.1 Background . 100

9.2 Proposed Solution . 102

9.3 System Overview and Architecture 104

9.4 Evaluation . 107

9.4.1 European Research Activities Network 107

9.4.2 Evaluation Measures and Comparison Methods 109

9.4.3 Evaluation Results . 110

9.5 Conclusions . 113

Chapter 10: Conclusions and Future work 114

References 117

viii

And
rea

s P
ap

ad
op

ou
los

LIST OF TABLES

1 Organization Attributes . 12

2 Notations. 15

3 Comparison of Attributed Graph Clustering Methods 30

4 Time Complexity of Attributed Graph Clustering Methods 32

5 Synthetic and Real-world Datasets Used for Evaluation 78

6 GoogleSP-23 Dataset - File Attributes and Their Description 79

7 Runtime on Real-world Datasets . 92

8 Time Complexity of Proposed Attributed Multi-Graph Clustering

Methods . 93

9 Overview of Proposed Methods . 94

10 Description of Organization Connections 98

11 Description of Organization Attributes 108

ix

And
rea

s P
ap

ad
op

ou
los

LIST OF FIGURES

1 Sample of the European Research Activities Network 11

2 Illustration of Gradient Descent . 19

3 Example of Laplacian Matrix for a Simple Graph 21

4 Example of Eigen decomposition . 22

5 Example of eigen-space clusters to real graph clusters 22

6 Similar Connectivity on a Toy Graph 58

7 Entropy on Synthetic Attributed Graphs 84

8 Similar Connectivity on Synthetic Attributed Graphs 85

9 NMI on Synthetic Attributed Graphs 86

10 Entropy on Synthetic Attributed Multi-graphs 87

11 Similar Connectivity on Synthetic Attributed Multi-graphs 87

12 NMI on Synthetic Attributed Multi-graphs 88

13 Clustering Performance on GoogleSP-23 Datasets 88

14 Entropy on DBLP-10K Dataset . 89

15 Similar Connectivity on DBLP-10K Dataset 89

16 Entropy on EU-Projects Dataset. 91

17 Similar Connectivity on EU-Projects dataset 91

18 Architecture of the Clustering-based Recommender System 104

19 User Interface of the Clustering-based Recommender System 105

20 Precision for Recommending New Collaborations 111

x

And
rea

s P
ap

ad
op

ou
los

21 Recall for Recommending New Collaborations 112

xi

And
rea

s P
ap

ad
op

ou
los

Chapter 1

Introduction

Nowadays many datasets are becoming publicly available. Yet, a dataset on its

own is unlikely to be useful since users need more information. Data mining extracts

useful, and before unknown, knowledge from a dataset. This thesis focuses on the

data mining task of clustering. Clustering is an unsupervised data mining technique

which aims at finding groups/clusters of related data [3, 42]. An unsupervised

technique does not need apriori knowledge of labeled samples. Clusters may be the

input to other algorithms for further analysis. Cluster analysis provides insights on

the data.

Traditionally, datasets are represented as vectors, (objects are modeled as points)

or graphs (objects are modeled as graph vertices and object-relationships are mod-

eled as edges). In many real-world datasets from various domains such as biology,

telecommunications, software engineering and social networking, both types of in-

formation are exposed. For instance, a social network consists of people connected

1

And
rea

s P
ap

ad
op

ou
los

2

to each other by relationships such as friendships and family, while each person is

characterized by his profile, i.e. his interests, gender, education.

Generally speaking, an attributed multi-graph can represent any real world in-

formation network. In an attributed graph, vertices represent homogeneous objects.

Each vertex is characterized by some attributes corresponding to the object’s prop-

erties. Edges capture the objects’ relationships. Thus, attributed graphs represent

both structural and attribute properties of the objects. An attributed multi-graph

is an attributed graph where a pair of vertices may be connected by more than one

edges. Hence, it also captures multiple relationships, i.e. interactions, among ob-

jects. For instance, to model a co-authorship network we represent each author by

a vertex. Some attributes like ‘area of interest’ and ‘number of publications’ charac-

terize each vertex. The edges represent co-authorship and friendship relationships.

Co-authorship and friendship are two different types of relationships.

1.1 Clustering Attributed Multi-graphs

The identification of clusters in an attributed multi-graph is a challenging prob-

lem with a lot of interesting applications. For instance, we cluster a social network

to offer targeted advertisements or recommend friendships; a co-authorship network

to suggest new collaborations or identify influential authors; the clients of a mobile

telephony company to provide recommendations on cell towers placement, and so

on. Clustering attributed multi-graphs faces the following challenges:And
rea

s P
ap

ad
op

ou
los

3

Nowadays, networks can be huge. The World Wide Web has at least nine billion

pages. Each page is described by its context such as topic, author, publish date e.t.c.

and links to other pages. Online social networks, such as Facebook and Twitter,

count more than two billion users. Biologists are gathering more and more genomic

data at lower costs [6, 94]. These huge amounts of data demand efficient clustering

methods capable of extracting useful information.

Moreover, it is not clear how to balance the structural and the attribute infor-

mation. A naive approach is to assume equal importance between them [101]. Al-

though it simplifies things, it is not realistic. As mentioned by Moser and Ester:

“often vertex attributes and edges contain complementary information, i.e. neither

the relationships can be derived from the vertex attributes nor vice versa. In such

scenarios, the simultaneous use of both data types promises more meaningful and

accurate results” [61].

In real-world networks, relationships and attributes contain different information.

Some of these may be irrelevant and introduce noise to the clustering task [24,

80]. For example, when clustering a co-authorship network we can argue that the

attribute ‘area of interest’ is more important than authors gender. Similarly, co-

author relations are more important than authors friendships and gender.

In addition, structural information is often used to detect densely connected

components [24, 90]. Yet, identifying clusters with similar connectivity may be

more important than identifying dense structures [5, 8]. For instance, in a social

network, unconnected people may have a lot of common friends. Although they doAnd
rea

s P
ap

ad
op

ou
los

4

not know each other, they have high similar connectivity. Groups of people with

such similarities can be used for friend recommendations. Similarly, software files

from the same software package do not form densely connected component [44].

Hence, identifying densely connected components on a software files graph is rather

useless [44, 55, 97].

Another important property of real-world networks is that objects are usually not

completely well separated, i.e. an object may be related-similar to objects in multiple

clusters[4]. Thus, we should allow multiple memberships. Fuzzy clustering identifies

overlapping clusters in which an object belongs with a membership probability.

Membership probabilities can provide insights on the data, i.e. importance of an

object in a cluster [33, 48].

1.2 Contributions of this Thesis

This thesis focuses on the problem of clustering information networks modeled

as attributed multi-graphs and introduces novel methods that efficiently tackle the

aforementioned challenges. We summarize the major contributions of this thesis as

follows.

We introduce a data model that efficiently represents an attributed multi-graph

and we formerly define the clustering problem. We approach solutions to the prob-

lem of attributed multi-graph clustering through the definition and optimization

(either minimization or maximization) of specific objective functions. The goal is toAnd
rea

s P
ap

ad
op

ou
los

5

maximize the unified similarity between objects in the same cluster. Unified similar-

ity is computed by functions that combine both structural and attribute properties

of the vertices. Due to the high complexity of the problem (NP-Hard) we adopt

techniques that are not ideal but converge quickly to local optima and yield high-

quality clustering. Particularly, we adopt gradient descent and spectral clustering

techniques.

We survey related work on clustering attributed graphs and multi-graphs. Specif-

ically, we give a summary and qualitative comparison of state-of-the-art attributed

graph clustering methods. Also, we outline several non-trivial challenges of cluster-

ing attributed multi-graphs.

We develop a collection of novel methods to detect clusters in an attributed

multi-graph. Proposed methods can exploit the computational power of modern

multi-core architectures. Hence, they can handle large datasets. We propose unified

similarity or distance functions that efficiently combine the various vertex properties.

We additionally design weighting mechanisms. The proposed methods identify the

importance of each vertex property using these mechanisms. They so balance and

combine the vertex properties efficiently. The result is the improvement of clustering

quality in terms of various evaluation measures. Our goal is to maximize the unified

similarity among vertices in the same cluster. Cluster members must have high

similar connectivity, i.e. relate/connect to the same vertices. Also, they must be

characterized by close attribute values (low entropy). To the best of our knowledge,And
rea

s P
ap

ad
op

ou
los

6

we are among the first to optimize similar connectivity instead of measures such as

density and modularity that are being traditionally optimized.

We firstly present a heuristic approach, HASCOP (Homogeneous Attributes and

Similar COnnectivity Patterns), which optimizes both attribute homogeneity and

similar connectivity. HASCOP identifies the importance of vertex properties based

on a scoring mechanism. Particularly, an edge-type or an attribute is considered

more important and is given a higher score if vertices in current clusters intercon-

nect by edges of this edge-type or share the same values for the specific attribute,

respectively. HASCOP applies to attributed multi-graphs and automatically iden-

tifies the different importance of both edge-types and attributes. A key advantage

of HASCOP is that it does not need any user-specified input such as the number of

clusters.

Secondly, we present CAMIR (Clustering Attributed Multi-graphs with Infor-

mation Ranking) which is based on spectral clustering. Initially, we rank the vertex

properties according to the similarity of the resulted clustering if used indepen-

dently. We avoid calculating all possible clusterings by adopting a co-regularization

technique. Based on the properties ranking we construct a unified similarity ma-

trix on which we apply a spectral clustering technique to generate the final clusters.

CAMIR weight identification process is decoupled from the clustering task and, thus

for a given dataset, it can take place only once. Because CAMIR follows a spectral

clustering approach, it identifies clusters of arbitrary shapes and sizes.And
rea

s P
ap

ad
op

ou
los

7

Thirdly, we present CLAMP (CLustering Attributed Multi-graPhs) that also

optimizes attribute homogeneity and similar connectivity. CLAMP considers simul-

taneously the individual importance of the attributes and edge-types as well as the

balance between the sets of attributes and edges, by assigning them different weights

that are identified during the clustering process in an automatic manner. CLAMP

is to the best of the authors’ knowledge, the first to perform fuzzy clustering on

weighted directed attributed multi-graphs with heterogeneous attributes.

We developed an experimental framework for attributed graph clustering, which

includes implementing attributed graph and multigraph clustering algorithms; col-

lecting and generating real-world and synthetic datasets; and evaluating acquired

clusterings. Our extensive experimental evaluation on synthetic datasets and a di-

verse collection of real-world information networks (bibliography items, software

packages, research and innovation projects funded by the European Union) against

the state-of-the-art attributed graph clustering approaches: (a) confirms that us-

ing weighting scheme improves results quality; and (b) demonstrates the efficiency

and effectiveness of the proposed approaches in terms of similar connectivity and

attribute homogeneity under various scenarios. Moreover, to the best of our knowl-

edge, we are the first to study clustering results on the network of organizations

participated in projects funded by the European Union.1

Moreover, we leverage proposed methods to solve a practical issue. That is,

how to offer reliable, evidence-based recommendations to European organizations.

We propose a clustering-based recommendation method for the European research
1The dataset is available online at EU Open Data Portal - http://open-data.europa.eu

And
rea

s P
ap

ad
op

ou
los

http://open-data.europa.eu

8

activities network. That is the network of all organizations participated in R&D

projects funded by the European Union under Horizon 2020 programme. 2 We in-

tegrate the proposed recommendation approach in a web-based system. Our system

imports updates of the European research activities network from the web auto-

matically. It then applies the proposed recommendation method and analyses the

results to provide recommendations. Organization and researchers can use our sys-

tem to identify possible partners to establish new collaborations. To the best of our

knowledge, this is the first system to offer such services to the community.

2Horizon 2020 is the biggest EU Research and Innovation programme ever with nearly e80
billion of funding available over 7 years (2014 to 2020). https://ec.europa.eu/programmes/
horizon2020/

And
rea

s P
ap

ad
op

ou
los

https://ec.europa.eu/programmes/horizon2020/
https://ec.europa.eu/programmes/horizon2020/

Chapter 2

Motivation

An attributed multi-graph is an expressive data structure able to represent real

world information networks from various domains. Clustering objects on real world

networks is being widely used for a lot of purposes. Most of the times the goal of

clustering depends on the application and the network.

Despite the plethora of practical real-world applications, clustering attributed

multi-graphs is an interesting challenging problem. For example, more than 130000

research projects have been funded by the European Union under H2020 and FP7

programmes. Figure (1) presents an exemplary attributed multigraph modeling a

sample of the network. A vertex is characterized by some attributes (Table (1)) and

represents an organization that participated to projects funded by the European

Union. Collaborations on FP7 and H2020 projects are modeled by weighted edges

of different type in Figure (1a).

9

And
rea

s P
ap

ad
op

ou
los

10

Clustering this collaborations network is practically useful in recommending new

partnerships and in detecting outliers. Yet, we have to exploit the information from

both the heterogeneous organizations’ attributes and the multiple collaborations.

Recently, there has been a lot of research in the area of attributed graph cluster-

ing [13, 19] aiming to combine structural and attribute properties and consequently

improve clustering quality [34, 76]. However, these methods [8, 23, 91, 93] can-

not be directly applied to an attributed multi-graph such as the network of Figure

(1), because they either ignore the multiple types of edges and/or deal with only

one attribute type. To overcome this, these methods must project an attributed

multi-graph to an attributed graph with homogeneous attributes. Still, a projection

results in information loss and consequently limits clustering accuracy. For exam-

ple, by discretizing the attribute ‘number of H2020 projects’ to two bins we cannot

distinguish if an organization participated in 1, 7 or 9 projects. Similarly, by trans-

forming the multi-graph to a graph, i.e. by summing the weights of multiple edges,

we discard collaborations.

Moreover, majority of existing methods [23, 91, 93] detect densely connected

components while identification of clusters of objects having similar connectivity

may be of even greater importance [8, 63]. For instance, in Figure (1a) AIT and

CSEM share common partners (high similar connectivity) and close attributes. Since

these two organizations have not collaborated in the past we can recommend a new

collaboration. However, they are not a densely connected component and thus

would not be clustered together. Specifically, methods that seek to identify denselyAnd
rea

s P
ap

ad
op

ou
los

11

H2020

FP7

Airbus

CIRA

3

CEA

CSEM

AIT

KEMEA 19

3

19

(a) Organizations Collaboration Network.
Weights denote the number of collabora-
tions (unlabeled edges have weight 1).

Cluster 1

Cluster 2

Cluster 3

Airbus

CIRA

3

CEA

CSEM

AIT

KEMEA 19

3

19

(b) Fuzzy Clustering of the Network

Figure 1: A sample of the European research activities network modeled as at-
tributed multi-graph. Each vertex represents an organization characterized by the
attributes shown in Table 1, and Figure (a) shows the organizations collaboration
network. A weighted edge indicates the number of collaborations. Figure (b) de-
picts a fuzzy clustering of the organizations into three clusters (white, red, green).
A vertex may belong to multiple clusters according to a probability represented by
a circle share.

connected components would identify the clusters: {Airbus, CIRA, CSEM} and

{AIT, KEMEA, CEA}. However, these clusters do not provide many insights,

especially for recommending new collaborations since organizations in the same

cluster have already collaborated.

Another important property of the collaboration network in Figure (1) is that

organizations are usually not completely well separated, i.e. an organization may

be related-similar to organizations in multiple clusters. However, many of existing

methods such as PICS [8], SA-Cluster [23] and BAGC [91] perform hard cluster-

ing instead of allowing multiple memberships, i.e. fuzzy clustering that identifiesAnd
rea

s P
ap

ad
op

ou
los

12

Table 1: Organization Attributes

Short
Name

Name FP7
projects

H2020
projects

Country

Airbus Airbus SAS 14 1 France

AIT Austrian Institute of Tech-
nology 137 9 Austria

KEMEA Center for Security Studies 32 0 Greece

CIRA Centro Italiano Ricerche
Aerospaziali 44 1 Italy

CEA
Commissariat a l’energie
atomique et aux energies al-
ternatives

611 39 France

CSEM Swiss Center for Electronics
and Microtechnology 96 7 Switzerland

overlapping clusters in which an object belongs with a membership probability.1

Figure (1b) demonstrates a fuzzy clustering by CLAMP proposed method where

each vertex slice represents the object’s probability belonging to the respective clus-

ter. For example, we observe that KEMEA is highly related to Airbus and CIRA,

because of cluster 1; and it is also related to AIT and CSEM, because of cluster 3.

Thus, we can recommend some of these organizations as partners to KEMEA by

leveraging the membership probabilities.

Moreover, object properties, i.e. attributes and edge-types, contain different

information and some may be irrelevant to the clustering task. For instance, to

cluster the collaboration network of Figure (1) the attributes ‘number of FP7’ and

‘number of H2020’ projects are important, while attributes ‘number of employees’

and ‘year of establishment’ may introduce noise. One way to capture this challenging
1Similarly, overlapping clustering assigns an object to multiple clusters with binary member-

ships [21, 93]. Though, membership probabilities provide more information, i.e. importance of an
object in a cluster [33, 48].And
rea

s P
ap

ad
op

ou
los

13

aspect is to assign proper weights to each object property (attribute and edge-

type). By doing so each object property is considered differently in the clustering.

However, tuning such weights is a difficult task requiring apriori knowledge or costly

preprocessing of the information network under study.

In this thesis we focus on the problem of clustering information networks modeled

as attributed multi-graphs, and we introduce novel methods that efficiently tackle

the aforementioned challenges and automatically tune the weights.

2.1 Roadmap

To this end, Chapter 3 introduces the data model and the notations used through-

out the thesis, and formally defines the attributed multi-graph clustering problem.

Chapter 4 surveys related work. Chapters 5, 6, 7 describe the proposed meth-

ods, which are extensively evaluated in Chapter 8 on both real-world and synthetic

datasets. Chapter 9 demonstrates a use-case and confirms the applicability of pro-

posed methods to real-world problems. Finally, Chapter 10 concludes this thesis

and presents some future research directions.

And
rea

s P
ap

ad
op

ou
los

Chapter 3

Problem Statement and Preliminary Concepts

In this section, we introduce our notations, present the attributed multi-graph

data model used in this thesis, and define the problem clustering attributed multi-

graphs. Due to the high complexity of the problem we adopt approximation tech-

niques which we also discuss in this section. These techniques converge quickly to

high quality clustering.

Our notation is presented in Table 2. Following standard notations, sets are

denoted by calligraphic upper case letters, e.g., 𝒜; matrices by plain upper case

letters, e.g., 𝐴; functions by lower case calligraphic letters, e.g., a; and set elements

by lower case letters, e.g., 𝑎.

3.1 Data Structure

An information network can be modeled as a directed weighted attributed

multi-graph 𝐺 where:

• 𝒱 = {𝑣𝑖} is the set of vertices

14

And
rea

s P
ap

ad
op

ou
los

15

Table 2: Notations.

Symbol Description
𝒱 Set of vertices 𝒱 = {𝑣𝑖}. |𝒱| is the number of vertices
ℰ𝑡 Set of edges of type 𝑡. ℰ𝑡 = {(𝑣𝑖, 𝑣𝑗) : 𝑣𝑖, 𝑣𝑗 ∈ 𝒱}

𝜔t : ℰ𝑡 → (0, 1] Function that returns the weight of the edges of type 𝑡

𝒜 Set of attributes 𝒜 = {𝛼}

𝒟𝛼
The range of attribute 𝛼, i.e. all possible values of at-
tribute 𝛼

a𝛼(𝑣𝑖) Value of vertex 𝑣𝑖 on attribute 𝛼
𝒯 Set of edge-types, with 𝒯 = {𝑡}

𝒫 = {𝒜 ∪ 𝒯 } Set of all vertex properties (attributes and edge-types)

w : 𝒫 → (0, 1] Function that returns the importance/weight of a vertex
property 𝑝

𝐾 The number of clusters, 𝐾 ≥ 2
𝒞𝑗 Cluster 𝑗, 1 ≤ 𝑗 ≤ 𝐾

Θ A |𝒱| ×𝐾 matrix where 𝜃𝑖,𝑗 is the probability of vertex
𝑣𝑖 belonging to cluster 𝒞𝑗

• 𝒯 = {𝑡} is the set of edge types

• ℰ 𝑡 = {𝑒𝑡
𝑖𝑗 = (𝑣𝑖, 𝑣𝑗, 𝑡) : 𝑣𝑖, 𝑣𝑗 ∈ 𝒱 , 𝑡 ∈ 𝒯 } is the set of edges of type 𝑡 (for

undirected graphs 𝑒𝑖𝑗 = 𝑒𝑗𝑖)

• ℰ = ⋃︀
𝑡∈𝒯 (ℰ 𝑡) is the set of all edges

• 𝑤 : ℰ → (0, 1] is the function that returns the edge weights, i.e. 𝑤(𝑒𝑡
𝑖𝑗) is the

weight of the edge from 𝑣𝑖 to 𝑣𝑗 of type 𝑡

• 𝒜 = {𝑎} is the set of all attributes which are numerical or categorical

• a𝛼 : 𝒱 → 𝒟𝛼 is the function that returns the value of attribute 𝛼 for each

vertex. Each vertex is characterized by |𝒜| attribute values, one for each

attribute 𝛼.And
rea

s P
ap

ad
op

ou
los

16

Furthermore, let 𝒫 be set of all vertex properties, i.e. 𝒫 = {𝒜⋃︀ 𝒯 }, and w :

𝒫 → (0, 1] be the function that returns the weight of an edge type 𝑡 or an attribute 𝑎.

Weights represent the importance of the edge-types or attributes for the clustering

process.

3.2 Clustering Problem

The problem we focus is to identify groups of related (“similar”) objects in an

attributed multi-graph. Formally, given an attributed multi-graph the goals are to:

• Learn the importance of the various vertex properties, that is, compute a

weight w(𝑝) for each vertex property 𝑝 ∈ 𝒫 ;

• Compute a |𝒱|×𝐾 matrix Θ where 𝐾 is the number of clusters and Θ𝑖,𝑗 is the

probability of vertex 𝑣𝑖 belonging to cluster 𝒞𝑗 with respect to the constraint
𝐾∑︀

𝑗=1
Θ𝑖,𝑗 = 1 for all vertices.

so that vertices clustered together have: (a) have high weighted similarity in terms

of structure; and (b) low diversity in their attribute values.

In our work, we model the problem of attributed multi-graph clustering as a

problem of defining and optimizing specific objective functions. The goal is to max-

imize the unified similarity or equivalently minimize the unified distance between

objects in the same cluster. Unified distance/similarity is a function that efficiently

combines both the structural and attribute properties of the vertices and captures

the desiderata of the final clustering. In its simplest form, the clustering goal is toAnd
rea

s P
ap

ad
op

ou
los

17

optimize the following multi-objective function:

arg min
𝐾,Θ∈R|𝒱|×𝐾 ,w

|𝒱|∑︁
𝑖=1

𝐾∑︁
𝑘=1

Θ𝑖,𝑘 ·

⎛⎝ |𝒱|∑︁
𝑗=1

Θ𝑗,𝑘 · 𝑑(𝑣𝑖, 𝑣𝑗, w)
⎞⎠ (1)

where 𝑑(𝑣𝑖, 𝑣𝑗, w) is the unified distance of vertices 𝑣𝑖 and 𝑣𝑗 with respect to the

importance w of vertex properties.

Finding the global optimum of Equation (1) is computationally difficult (NP-

hard). For example, the detection of maximal cliques or optimization of the com-

monly used modularity measure on plain graphs is proven to be NP-hard [18, 31].

The same holds for clustering attributed multi-graphs; where the importance of

vertex properties is an additional parameter to be optimized. To tackle the high

complexity of the problem we: (a) represent a cluster by a virtual vertex which

summarizes the properties of the cluster members, i.e. is characterized by |𝒜| at-

tribute values and connects to vertices by edges of |𝒯 | types1 ; (b) add additional

constraints to the models, i.e. number of clusters is given as input or a vertex is

placed in only one cluster; and (c) adopt techniques that are not optimal but con-

verge quickly to local optima and yield high-quality clustering. In this thesis we

adopt gradient descent [16] and spectral clustering [75] techniques, which are used

by many clustering algorithms like K-means [57] and NCut [75]. Below, we provide

an overview of these techniques.
1Hence, a cluster 𝒞𝑘 is valid parameter to vertex distance/similarity functions.

And
rea

s P
ap

ad
op

ou
los

18

3.3 Background

This section describes the gradient descent [16] and spectral clustering [75] tech-

niques that we used to minimize or maximize the defined objective functions.

3.3.1 Gradient Descent

Gradient descent is an optimization technique to find a local minimum of a

function [16, 35]. Particularly, at each iteration the algorithm takes one step pro-

portional to the negative of the gradient (or of the approximate gradient) of the

function at the current point. In case of a multi-variate function, the technique

alternates between the dimensions (variables) considering at each step the others

as fixed. An illustration of gradient descent is depicted in Figure (2).2 In Figure

(2a) the function to be minimized is assumed to be defined on a two-dimensional

space, and to have only one minimum. We see that gradient descent leads us to the

minimum of the function, that is, to the point where the value of the function is

minimal. In Figure (2b), we see that gradient descent technique is sensible to the

starting point of the descent, because the function has three local minima and a

different solution is achieved depending on the starting point.

The advantage of the gradient descent technique is that it works in spaces of

any number of dimensions. Although in theory it might takes many iterations to

converge with a required accuracy, in practice, it converges quickly to local op-

tima [16, 35], and it is used by many clustering algorithms like the K-means.
2Source: http://www.yaldex.com/game-development/1592730043_ch18lev1sec4.htmlAnd
rea

s P
ap

ad
op

ou
los

http://www.yaldex.com/game-development/1592730043_ch18lev1sec4.html

19

(a) Minimization of a function with one min-
imum

(b) Minimization of a function with three
minimums.

Figure 2: Illustration of Gradient Descent

We note that gradient descent is not tightly coupled to clustering, and it is

being widely used in many optimization problems. Clustering algorithms that adopt

gradient descent differ in how they model the problem and consequently which

objective function they aim to optimize.

3.3.2 Spectral Clustering

Spectral clustering takes as input a similarity matrix 𝑆. The similarity matrix

𝑆, also referred as affinity matrix, is a |𝒱| × |𝒱| matrix where 𝑆𝑖,𝑗 denotes the

similarity of vertices (or data points) 𝑣𝑖 and 𝑣𝑗.3 Spectral clustering makes use

of the eigenvalues (spectrum) of the similarity matrix to perform dimensionality

reduction before clustering in fewer dimensions. The key idea is to achieve graph

partitioning by performing eigendecomposition of a graph Laplacian matrix derived

from 𝑆. Laplacian matrix is a matrix representation of a graph that can be used to

find many useful properties of a graph, such as the number of spanning trees [56].
3For a simple graph it can be the adjacency matrix. Simple graph is an undirected graph

without multiple edges and loops.
And

rea
s P

ap
ad

op
ou

los

20

Spectral clustering uses the top 𝐾 eigenvectors of the Laplacian to define a 𝐾-

dimensional eigenspace in which vertices (or data points) are easily separable to

clusters [27]. Laplacian matrix 𝐿 for a simple graph is computed using the following

equation [25]:

𝐿𝑖,𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑒𝑔(𝑣𝑖) if 𝑖 = 𝑗

−1 if 𝑖 ̸= 𝑗 and (𝑣𝑖, 𝑣𝑗) ∈ ℰ

0 otherwise

(2)

where 𝑑𝑒𝑔(𝑣𝑖) is the degree of vertex 𝑣𝑖. The Laplacian of a simple graph is used to

minimize the total cost of the edges among clusters.

Spectral clustering methods differ in how they define and construct the Lapla-

cian matrix 𝐿 of the similarity matrix 𝑆 and thus which eigenvectors are selected to

construct a 𝐾-dimensional eigenspace, aiming to exploit special properties of differ-

ent matrix formulations [32]. Ulrike von Luxburg’s tutorial [56] includes examples

of different Laplacians’ constructions. For instance, Normalized Laplacian matrix

given by Equation (3) is used to minimize the total cost of the edges crossing the

cluster boundaries, normalized by the degree of each cluster [75].

𝐿𝑖,𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 𝑖 = 𝑗

−1√
𝑑𝑒𝑔(𝑣𝑖)·𝑑𝑒𝑔(𝑣𝑗)

if 𝑖 ̸= 𝑗 and (𝑣𝑖, 𝑣𝑗) ∈ ℰ

0 otherwise

(3)

The basic idea of the spectral clustering technique is as follows. Given a |𝒱|×|𝒱|

matrix 𝑆 where 𝑆𝑖,𝑗 is the similarity of 𝑣𝑖 and 𝑣𝑗:And
rea

s P
ap

ad
op

ou
los

21

(a) Simple Graph

Adjacency Matrix
1 2 3 4 5 6 7 8 9 10

1 1 1
2 1 1
3 1 1 1
4 1 1
5 1 1
6
7 1
8
9
10

(b) Adjacency Matrix

Laplacian Matrix
1 2 3 4 5 6 7 8 9 10

1 1 -0.354 -0.5
2 1 -0.408 -0.408
3 -0.354 1 -0.25 -0.354 -0.354
4 -0.408 1 -0.289 -0.333
5 -0.25 -0.289 1 -0.5 -0.289
6 -0.5 1
7 1 -0.707
8 -0.408 -0.333 -0.289 1
9 -0.354 -0.707 1
10 -0.5 -0.354 1

(c) Laplacian Matrix

Figure 3: Example of Laplacian Matrix for a Simple Graph

1. Construct the Graph Laplacian 𝐿 from 𝑆. In case of a simple graph, 𝑆 can be

the adjacency matrix (Figure (3)).

2. Perform eigendecomposition on 𝐿. That is, solve the eigenvalue problem:

𝐿 · 𝑢 = 𝜆 · 𝑢 where 𝜆 is an eigenvalue and 𝑢 its corresponding eigenvector.

3. Construct a |𝒱| × 𝐾 matrix 𝑈 by selecting the top 𝐾 eigenvectors corre-

sponding to the top 𝐾 eigenvalues. These eigenvectors define a 𝐾-dimensional

eigenspace. The columns of 𝑈 are the top 𝐾 eigenvectors of the Laplacian ma-

trix 𝐿. The rows of 𝑈 are the embeddings of the |𝒱| vertices in the eigenspace,
And

rea
s P

ap
ad

op
ou

los

22

Top 3 eigenvectors
U1 U2 U3

1 -0.659 -0.705 0.263
2 -0.620 0.747 0.241
3 -0.595 -0.486 -0.640
4 -0.668 0.711 -0.221
5 -0.723 0.395 0.566
6 -0.669 0.414 -0.617
7 -0.332 -0.486 -0.808
8 -0.668 0.711 -0.221
9 -0.379 -0.491 0.784
10 -0.659 -0.705 0.263

(a) Eigenvectors (b) Eigen-space

Figure 4: Example of Eigen decomposition

(a) Clusters in the eigenspace (b) Project back to the original graph

Figure 5: Example of eigen-space clusters to real graph clusters

which compared to the initial metric space R|𝒱|×|𝒱| of 𝑆 is a lower dimensional

space, since 𝐾 ≪ |𝒱| in the clustering problem (Figure (4)).

4. Identify clusters in the eigenspace using, for instance, K-means algorithm (Fig-

ure (5a)).

5. Project back to the original space (Figure (5b)).

By definition spectral clustering requires the similarity matrix to be symmetric

which implies only undirected graphs. Approximations that allow application of
And

rea
s P

ap
ad

op
ou

los

23

spectral clustering on directed graphs have been proposed [60]. The main advan-

tage of spectral clustering is the fact that it identifies clusters of arbitrary shapes

and sizes. That is, because similar objects are projected closely in the eigenspace

independently of their representation in the initial space.4

4For instance, in Figure (4) vertices 𝑣1 and 𝑣10 are projected to the same point in the 3-
dimensional eigenspace.

And
rea

s P
ap

ad
op

ou
los

Chapter 4

Related Work

Many methods have been proposed in the context of graphs and multi-graphs

clustering [1, 33, 66, 73, 83, 99]. However, these methods ignore vertex attributes

and cannot be directly applied to attributed graphs or multi-graphs.

Recently, attributed graph clustering has received much attention [7, 13, 19]. The

representative approaches are based on unified distance functions [13, 23, 24, 101]

or model definitions [80, 90, 91, 93]. Thus, we categorize attributed graph clustering

algorithms into two types:

• Distance-based

• Model-based

4.1 Distance-based Attributed Graph Clustering

Distance-based algorithms adopt or define a unified similarity/distance measure

that combines both structural and attribute information of the vertices. Based on

24

And
rea

s P
ap

ad
op

ou
los

25

this measure various approaches are followed to identify clusters in which vertices

are characterized by high similarity or equivalently low distance.

The challenges of distance-based algorithms for clustering attributed graphs are,

firstly, the design of such a unified distance measure that takes into account both

the structural and the attribute structure and, secondly, the optimization of its

parameters, i.e. weights reflecting the importance of each vertex property. To

tackle these challenges the majority of distance-based methods fall into one of the

categories described in the following paragraphs.

4.1.1 Centroid-based

Centroid-based approaches typically follow K-means or K-medoids approach [47].

That is, they initially choose 𝐾 cluster prototypes and iterate through the following

steps: (i) assign vertices to their closest or most similar cluster according to the

unified distance or similarity measure, respectively; and (ii) update cluster proto-

types. The clustering process completes when no more changes occur to cluster

prototypes or vertex memberships. Since after some iterations results improvement

is limited these algorithms usually terminate if at the end of an iteration changes

are insignificant, i.e. below a small fraction, usually referred as ‘accepted error’ or

‘convergence delta’ denoted as 𝜖 and 𝛿 respectively.

For instance, SA-Cluster [101] is a centroid-based approach that uses random

walk distance on an augmented graph in order to calculate the unified distance

between two vertices (or a vertex and a cluster). The augmented graph is theAnd
rea

s P
ap

ad
op

ou
los

26

original graph without attributes enriched with new vertices each of which represents

an attribute value. Then, a weighted edge from a graph vertex to an attribute vertex

is added if the vertex is characterized by the value that is represented by the specific

vertex. Its weight depends on the importance of the attribute represented by the

attribute vertex. By enriching the graph, vertices which share the same attributes

are closer and there is a path of two hops, through the attribute vertex, between

them. To efficiently compute the random walk distances, authors further proposed

two extended versions: an incremental distance computation in Inc-Cluster [102]

and an approximate distance computation in SA-Cluster-Opt [23].

4.1.2 Hierarchical

Approaches in this category, namely hierarchical, aim to form a hierarchy of

clusters. Specifically, they iteratively either merge or split clusters based on a uni-

fied similarity/distance function. The clustering process terminates when a new

merge/split is not possible, i.e. a cluster of one object cannot be further split, or

a cluster cannot be merged with other cluster [76]. Alternatively, a stopping cri-

teria may be imposed to stop before completing the clusters hierarchy. Usually,

these criteria are based on cost functions that evaluate the results at each iteration,

i.e., if a new split/merge does not improve the cost function the clustering process

terminates.

PICS [8] is a hierarchical clustering method that uses the total encoding cost

in bits as stopping criteria. Initially, all vertices are in one cluster and at eachAnd
rea

s P
ap

ad
op

ou
los

27

iteration it splits the cluster with the maximum per attribute entropy followed by

a split based on the adjacency matrix. It halts when a new splitting does not lower

the total encoding cost.

4.1.3 Spectral Clustering

Spectral clustering technique projects the attributed graph into a lower dimen-

sional space by performing eigendecomposition on its unified Laplacian matrix. The

Laplacian is defined differently by each method, aiming to select different eigenvec-

tors and thus identify clusters with different properties (see Section 3.3.2). In this

lower dimensional space, known as eigenspace, the K-means clustering algorithm is

adopted to generate the final clusters [38, 51, 54, 75]. Clusters produced by methods

in this category have arbitrary shapes and sizes.

4.1.4 Graph Transformation

The attributed graph is projected to a weighted graph in which the weights of

the edges represent a combination of attribute and structural similarities. Usually,

the edges are sampled based on various criteria to avoid having a complete graph,1

i.e. edges with weight less than a threshold are removed. Consequently, they apply

a clustering algorithm for plain (without attributes) weighted graphs [68, 70, 78].

For instance, CODICIL [70] adds a new edge from each vertex to its most

attribute-similar vertices. On the new graph, it computes the similarity of two
1A complete graph is a graph where there is an edge between every pair of vertices.And
rea

s P
ap

ad
op

ou
los

28

vertices as the overlap of their neighbor sets and prunes the edges such that a ver-

tex connects only to its most similar vertices according to a threshold. Any graph

clustering algorithm is then applied to the new graph.

4.2 Model-based Attributed Graph Clustering

In model-based (also known as distribution-based) schemes, probabilistic dis-

tribution models are used to cluster the data. Specifically, model-based methods

assume that the data are generated by a mixture of underlying probability distri-

butions [89, 90, 93]. Hence, their purpose it to calculate the parameters of these

distributions to optimize inter-cluster similarities. A cluster is generally modeled by

its connection (e.g. Bernoulli) and attribute distributions (e.g. exponential, Gaus-

sian). Each probability distribution that characterizes a cluster assigns a probability

to each vertex belonging to it, according to its probability density function (pdf).

Since vertices in the same cluster are most likely belonging to the same distribution,

vertices are categorized into the cluster they follow its distributions. The attributed

graph is a finite mixture model of these clusters [82, 84].

For example, BAGC [90] assumes that each cluster is generated by a Bernoulli

distribution modeling the edges among its members, and by a set of multinomial

distributions, one for each attribute. It uses the Bayesian inference to estimate the

parameters of the distributions. Bayesian inference is an inference method in which

Bayes’ rule is used to update the probability estimate for a hypothesis as additional

evidence is learned. The approach has been generalized to weighted attributedAnd
rea

s P
ap

ad
op

ou
los

29

graphs in [91]. CESNA [93] is another model-based approach that assumes edges

and attributes of vertices in the same cluster follow Bernoulli distributions.

The key problem of model-based clustering methods is known as over-fitting.

Over-fitting occurs when the model captures random error or noise instead of the

actual relationships of the objects. A excessively complex model is prone to over-

fitting, and as a result it has poor performance. To avoid it, constraints are added

to the model. The most widely used constraint is the predefinition of the number

of clusters [89].

4.3 Discussion

Concluding this chapter, we provide a summary and qualitative comparison of

some of the current approaches for clustering attributed graphs, and we outline

several non-trivial challenges.

An overview of attributed graph clustering methods is depicted in Table 3. There

are many aspects to consider upon selecting which method to use. For example:

(a) the applicability of a specific method to the network under study, i.e. some

methods do not handle weighted attributed graphs; (b) the handling of numerical

and categorical attributes; and (c) the characteristics of the final clustering are

important.

In addition, the different importance of edge-types and attributes is generally

ignored. Weighting mechanisms to reflect the different importance of various prop-

erties and improve results quality have been encapsulated in both traditional dataAnd
rea

s P
ap

ad
op

ou
los

30

Table 3: Comparison of Attributed Graph Clustering Methods. *1. For undi-
rected unweighted graphs PICS can also identify densely connected components.
*2. Clustering Results: H=Hard, O=Overlapping, F=Fuzzy. *3. CODICIL uses
any traditional graph clustering algorithm to generate the final clusters.

Model Based Distance Based
BAGC CESNA GenClus CODICIL PICS SA-Cluster

[90] [93] [80] [70] [8] [101]
Graph Properties

Directed X X X X X X
Weighted X X X

Multi-graph X

Structural Properties
Edge-type

importance X

Densely
Connected

Components
X X X X X*1 X

Similar
Connectivity X X

Attribute Properties
Attribute

importance X X

Numerical X
Categorical X X X X X X
Incomplete X

Algorithm Design
Parameter

free X

Clustering
Results*2 H O F All*3 H H

clustering [40] and attributed graph clustering methods [23, 87]. GenClus that

considers the multiple edge-types and their different importance allows only one

edge (of a specific type) between two vertices while it does not deal with different

importance of attributes. GenClus is the only approach that, by design, handles

incomplete and numerical attributes as well. Numerical attributes though can beAnd
rea

s P
ap

ad
op

ou
los

31

discretized. CESNA and SA-Cluster assign different weights to attributes thus in-

corporating their different importance in the clustering process. CESNA weights at-

tributes separately for each cluster, thus it identifies clusters in attribute subspaces

of the network. Weighting schemas have been also adopted to balance the sets of

attributes and edges [19]. However, these methods either do not apply to attributed

multi-graphs, do not concern simultaneously the different importance of structural-

attribute properties and the different importance of the sets of edges-attributes, or

they do not automatically compute the weights.

A characteristic of the majority of the above approaches for clustering attributed

graphs is the requirement of user specified parameters such as the number of clus-

ters, thresholds or similarity functions. These parameters though are often unknown,

hard to be defined and do not adapt well to different application domains, thus re-

quiring fine-tuning for each individual application/dataset. PICS has the advantage

of being parameter-free. In contrast to all other methods, PICS identifies clusters

that exhibit similar connectivity patterns and attribute homogeneity. It is noted

that similar connectivity does not imply that the algorithm is parameter-free. For

undirected unweighted graphs, PICS also identifies densely connected components.

However, PICS does not consider either the fact that different types of directed

edges exist in such networks or the different importance of the attributes.

The concept of similar connectivity has been studied on unattributed unweighted

graphs [79, 88]. SCAN [88] exploits the neighborhood of vertices to partition theAnd
rea

s P
ap

ad
op

ou
los

32

Table 4: Time Complexity of Attributed Graph Clustering Algorithms. It is noted
that the number of iterations (𝑅) differs for each method. Also, the number of
clusters (𝐾) for PICS is not constant.

Algorithm Time Complexity

BAGC ≈ 𝑂
(︂

𝑅 · (𝐾 + |𝒱|+ |ℰ|+∑︀
∀𝛼
|𝒟𝛼|)

)︂
GenClus ≈ 𝑂(𝑅 · (𝑅1 ·𝐾 · (|𝒱| · |𝒫|+ |ℰ|) + 𝑅2 · 𝑡2.376))

PICS ≈ 𝑂(𝑅 ·𝐾2 · (|𝒱| · |𝒫|+ |ℰ|))
SA-Cluster ≈ 𝑂(𝑅 · |𝒱|3)

SA-Cluster-Opt ≈ 𝑂 (𝑅 · (3 · |𝒱|+ log2 𝑙))
where l is the length limit of the random walks

CESNA ≈ 𝑂(𝑅 ·
(︂
|ℰ|+ |𝒱| ·∑︀

∀𝛼
|𝒟𝛼|)

)︂
CODICIL ≈ 𝑂(|𝒱|2 · (|𝒫|+ log |𝒱|) + 𝑂(|𝒱| log |𝒱|)

network such that vertices sharing many neighbors are grouped into the same clus-

ter. Although SCAN optimizes similar connectivity, it is sensible to a threshold

parameter: the minimum number of common neighbors. To overcome the issue of

selecting the threshold parameter of SCAN, gSkeletonClu [79], which additionally

aims to find hubs and outliers, has been proposed. Also, the concept of similar

connectivity is close to the concept of block models. Block models is a generative

model for generating undirected unweighted graphs. The idea is to divide the ver-

tices into hard clusters, or “blocks”, where all vertices in the same cluster have the

same pattern of connections to vertices in other clusters. Stochastic block model

(also referred to as planted partition model [26]) weakens this idea: the probability

of an edge between two vertices just depends on which clusters they belong to, and

is independent across edges [1, 4, 46]. Although these approaches and models are

useful, they do not apply to attributed multi-graphs.And
rea

s P
ap

ad
op

ou
los

33

Furthermore, the runtime of the method is a crucial aspect. Table 4 presents the

worst-case time complexity of the above methods. It is noted that the number of it-

erations 𝑅 and the number of clusters 𝐾 is not the same for all the algorithms. We

have experimentally noticed that CESNA and BAGC, although are model based

approaches, are the fastest currently available methods for clustering attributed

graphs, followed by SA-Cluster-Opt and PICS. We note that for SA-Cluster-Opt we

do not include the time for augmenting the graph because the graph augmentation

occurs only once before the algorithm is applied. GenClus requires more time be-

cause it is based on EM algorithm, deals with multiple edge types and identify their

importance.

Moreover, the use of augmented graphs (SA-Cluster) can lead to an explosion of

graph size, increasing significantly the requirements in memory and time. CESNA

does not augment the original graph, but handles non-weighted attributed graphs.

CODICIL can be applied to weighted graphs but the graph transformation process

is relatively slow. CODICIL has the advantage that once the original graph is

transformed a lot of algorithms can be applied on it.

We conclude this section by noting the existence of many open areas in the field

of attributed graph clustering. Particularly, we observe among others that: (a)

the existence of more than one edge type is largely ignored; (b) the identification of

clusters characterized by similar connectivity has been airily considered; (c) although

the different importance of attributes and edge-types have been studied by various

approaches, none of these considers both simultaneously.And
rea

s P
ap

ad
op

ou
los

34

Following chapters present some work done towards supporting this thesis. Par-

ticularly, three methods for clustering attributed multi-graphs, namely HASCOP,

CAMIR, and CLAMP, have been proposed. All of them consider the existence of

multiple edge-types as well as the different importance of attributes and edge-types

simultaneously. Although these three methods attack the same problem, each of

them optimizes a different objective function aiming to optimize different cluster

properties by exploiting various characteristics of the network under study.

And
rea

s P
ap

ad
op

ou
los

Chapter 5

Homogeneous Attributes and Similar

COnnectivity Patterns - HASCOP

HASCOP (Homogeneous Attributes and Similar COnnectivity Patterns) [63] is

a heuristic parameter-free distance-based attributed multi-graph clustering method

that clusters the network such that both attribute and structural similarities are

maximized. It also automatically identifies the importance of each attribute and

edge-type during the clustering process.

HASCOP defines a heuristic function that combines both structural and at-

tribute properties of the vertices according to their identified importance, by as-

signing different weights to each of them. At each iteration, these weights are

updated according to the new clustering results using a scoring mechanism similar

to SACluster. An attribute is considered more important if in the present clustering

configuration vertices in the same clusters share the same value for the specific at-

tribute. An edge type is considered more important if vertices in the same cluster are

inter-connected by this edge type. Initially, every vertex is considered to belong into

35

And
rea

s P
ap

ad
op

ou
los

36

one cluster. Iteratively clusters are merged, and edge-type and attribute weights are

adjusted until convergence. Clustering process stops if at the end of an iteration the

number of clusters is not further reduced. Resulted clustering configuration exhibits

attribute homogeneity and similar connectivity.

Formally, with respect to the clustering problem presented in Section 3.2, given

an attributed multi-graph 𝐺, HASCOP goals are:

• Identify the importance of each edge type and calculate its weight w(𝑡), where

w(𝑡) ∈ (0, 1] and ∑︀
∀𝑡∈𝒯

w(𝑡) = 1.

• Based on the importance of each attribute, assign each of them a weight w(𝛼),

such that 𝑤(𝛼) ∈ (0, 1] and ∑︀
∀𝛼∈𝒜

𝑤(𝛼) = 1.

• Find a fuzzy clustering Θ|𝒱|×𝐾 , where Θ𝑖,𝑗 is the probability of 𝑣𝑖 belonging to

cluster 𝐶𝑗 subject to
𝐾∑︀

𝑗=1
Θ𝑖,𝑗 = 1 for all vertices.

In other words, the goal is to identify the importance of each edge-type and

attribute, and cluster an attributed multi-graph such that vertices in the same

cluster exhibit both a similar connectivity pattern and attribute coherence. In the

following paragraphs we give an overview of the similar connectivity and attribute

coherence, followed by HASCOP objective function and optimization process.

And
rea

s P
ap

ad
op

ou
los

37

5.1 Distance Measures

5.1.1 Similar Connectivity

A set of vertices connecting to the same vertices are characterized by similar

connectivity. For the sake of simplicity we limit the discussion in the following

paragraphs to only one type of edges.

Two vertices 𝑣𝑖, 𝑣𝑗 exhibit a similar connectivity pattern if 𝒩 [𝑣𝑖] and 𝒩 [𝑣𝑗]

highly overlap, where 𝒩 [𝑣𝑖] is the closed out-neighbourhood of vertex 𝑣𝑖. Formally,

the closed out-neighbourhood of a vertex is defined as [20]:

𝒩 [𝑣𝑖] = {𝑣𝑖} ∪ {𝑢 : (𝑣𝑖, 𝑢) ∈ ℰ} (4)

If 𝒩 [𝑣𝑖] and 𝒩 [𝑣𝑗] highly overlap then 𝑣𝑖 and 𝑣𝑗 link to common vertices. It

is noted that vertices having similar connectivity may not be directly connected to

each other. Thus, the density metric of the final clustering may not be close to one

because clusters are not necessary densely connected components. The intuition is

that vertices related to common vertices should form a cluster even though they are

not inter-connected. For instance, in the case of a social network, if some people

have a lot of common friends (and common attributes) but they do not know each

other, they should form a group, and such groups are covered as well.

Furthermore, it is desired that the similar connectivity pattern of two vertices,

which link to common vertices, to be higher if they are also connected to each other.

For example, a group of people having common friends should belong to the same

clusters with higher probability if they are also friends with each other. To addressAnd
rea

s P
ap

ad
op

ou
los

38

this, we choose the closed neighborhood of a vertex. That is, the set containing the

vertices that 𝑣𝑖 connects to and 𝑣𝑖 itself, as is given by Equation (4).

5.1.2 Attribute Coherence

Two vertices have attribute coherence if their distance is low, that is their at-

tribute vectors are close in R|𝒜|. The intuition is that vertices described by close

attribute values should have high attribute coherence.

5.2 HASCOP Clustering Model

5.2.1 Overview

HASCOP fuzzy clustering model for attributed multi-graphs makes use of a

similarity function denoted as 𝑠𝑖𝑚 that combines both the structural and attribute

properties of the vertices according to their importance. Hence, similarly to fuzzy

clustering algorithms, for each vertex we want to maximize the weighted (by its

memberships) sum of its similarities with the clusters it belongs. Equally, the goal

is to maximize the following objective function:

𝑂(Θ) =
|𝒱|∑︁
𝑖=1

𝐾∑︁
𝑗=1

Θ𝑖,𝑗 · 𝑠𝑖𝑚(𝑣𝑖, 𝒞𝑗) (5)

where Θ𝑖,𝑗 is the probability that vertex 𝑣𝑖 belongs to cluster 𝒞𝑗, and 𝑠𝑖𝑚(𝑣𝑖, 𝒞𝑗) is

a heuristic function that returns the similarity of vertex 𝑣𝑖 and cluster 𝒞𝑗 based on

the different importance of edge-types and attributes.

A cluster is considered to be a regular vertex in the attributed multi-graph

(characterized by |𝒜| attributes and connected to vertices by |𝒯 | types of edges)
And

rea
s P

ap
ad

op
ou

los

39

that represents its members. The weights of a cluster’s outgoing edges are given as

the weighted average of the outgoing edges of its members. The attribute centroid

of a cluster is given by the attributes that characterize most of its members, i.e. the

mode of the cluster [41]. We defer discussion in Sections 5.2.3 and 5.2.4.

HASCOP maximizes the objective function given by Equation (5) as follows.

Initially each vertex is categorized in a cluster by itself. Iteratively clusters are being

updated (some are eliminated) and edge-type and attribute weights are adjusted. An

iteration starts with categorizing the vertices into the updated clusters according to

their similarity and the updated weights. An edge type or an attribute is considered

more important and is given higher weight at the next iteration if vertices in current

clusters inter-connect by edges of this edge type or share the same value for the

specific attribute, respectively.

5.2.2 Similarity Function and Membership Calculation

We define the unified similarity function 𝑠𝑖𝑚 as follows:

𝑠𝑖𝑚(𝑣𝑖, 𝒞𝑗) = 𝑙𝑖𝑛𝑘_𝑠𝑖𝑚(𝑣𝑖, 𝒞𝑗) · 𝑎𝑡𝑡𝑟_𝑠𝑖𝑚(𝑣𝑖, 𝒞𝑗) (6)

where 𝑙𝑖𝑛𝑘_𝑠𝑖𝑚(𝑣𝑖, 𝒞𝑗) and 𝑎𝑡𝑡𝑟_𝑠𝑖𝑚(𝑣𝑖, 𝒞𝑗) are the structural and attribute simi-

larities of vertex 𝑣𝑖 and cluster 𝒞𝑗, respectively.

The reason for selecting to multiply the two similarities is the following; a vertex

has high similarity with a cluster if both their similar connectivity and attribute

coherence are high. For example, if 𝑙𝑖𝑛𝑘_𝑠𝑖𝑚 is high (i.e. 0.9) and 𝑎𝑡𝑡𝑟_𝑠𝑖𝑚 is lowAnd
rea

s P
ap

ad
op

ou
los

40

(i.e. 0.1) the total 𝑠𝑖𝑚 will be low (i.e. 0.09). Similarly, if 𝑙𝑖𝑛𝑘_𝑠𝑖𝑚 is low and

𝑎𝑡𝑡𝑟_𝑠𝑖𝑚 is high the total 𝑠𝑖𝑚 will still be low.

We calculate the membership of a vertex to clusters by normalizing its similarities

using the following equation:

Θ𝑖,𝑗 = 𝑠𝑖𝑚(𝑣𝑖, 𝒞𝑗)
𝐾∑︀

𝑙=1
𝑠𝑖𝑚(𝑣𝑖, 𝒞𝑙)

(7)

Equation (7) assigns a vertex 𝑣𝑖 to a cluster 𝒞𝑗 with high probability Θ𝑖,𝑗 if their

similarity is high. Thus, the higher the similarity of a vertex 𝑣𝑖 and a cluster 𝒞𝑗 is,

the higher its membership will be. Hence, the objective function (Equation (5)) is

maximized.

The following paragraphs focus on the problem of calculating similar connectivity

and attribute coherence as well as on how to adjust the attribute and edge-type

weights in order to calculate the final clustering.

5.2.3 Structural Properties

As stated earlier, vertices and clusters can be connected via edges of |𝒯 | types.

The initial unweighted multi-graph is projected to a weighted “projected graph”

following a process that aggregates various edge types. The weight of the edge

(𝑣𝑖, 𝑣𝑗) is calculated based on the importance of each edge type using the following

function:

𝜔(𝑣𝑖, 𝑣𝑗) =
|𝒯 |∑︁
𝑡=1

w(𝑡) · 𝜔t (𝑣𝑖, 𝑣𝑗) (8)And
rea

s P
ap

ad
op

ou
los

41

The weight of the edge from a cluster 𝒞𝑗 to a vertex 𝑢 is given by the following

equation:

𝜔(𝒞𝑗, 𝑢) =

∑︀
∀𝑣𝑖∈𝒱

(Θ𝑖,𝑗 · 𝜔(𝑣𝑖, 𝑢))∑︀
∀𝑣𝑖∈𝒱

Θ𝑖,𝑗

(9)

Provided the projected graph we define a similarity function 𝑙𝑖𝑛𝑘_𝑠𝑖𝑚(𝑣𝑖, 𝒞𝑗)

which represents the similar connectivity pattern of 𝑣𝑖 and 𝒞𝑗. The similarity con-

nectivity pattern of vertex 𝑣𝑖 and cluster 𝒞𝑗 takes a value in the range (0, 1], and is

given by the following equation:

𝑙𝑖𝑛𝑘_𝑠𝑖𝑚(𝑣𝑖, 𝒞𝑗) = 1
1 +

√︂ ∑︀
∀𝑢∈𝒱

(𝜔(𝑣𝑖, 𝑢)− 𝜔(𝒞𝑗, 𝑢))2
(10)

If 𝑣𝑖 connects to the same vertices with same link types as 𝒞𝑗, then their similar

connectivity is one because their distance is zero.1 On the opposite side, if there

is not a vertex 𝑢 that both 𝑣𝑖 and 𝒞𝑗 connect to then their distance will be high and

their similar connectivity will be very close to zero. The value one is added to the

distance to ensure that the result is in the range (0, 1] as the distance can be less

than one. Equation (10) is preferred over any other traditional measure as it takes

into account the outgoing edges of a vertex and not its incoming edges.

5.2.4 Attribute Properties

We calculate the attribute similarity of a vertex and a cluster, based on attribute

importance, by transforming to similarity the distance of their attribute vectors,
1This is a sufficient but not necessary condition. The link distance of a cluster and a vertex

can actually be zero if the sum of the importance of their outgoing edges is the same. Since the
weight (importance) of an edge-type is updated at every iteration, the probability of this scenario
is very low and is decreasing proportionally to the number of iterations.And
rea

s P
ap

ad
op

ou
los

42

using the following equation:

𝑎𝑡𝑡𝑟_𝑠𝑖𝑚(𝑣𝑖, 𝒞𝑗) = 1
1 +

√︂ ∑︀
∀𝛼∈𝒜

w(𝛼) · 𝛿 (a𝛼(𝑣𝑖), a𝛼(𝒞𝑗))
(11)

where

𝛿 (𝑥, 𝑦) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 𝑥 = 𝑦

1 else

The attribute value of a cluster 𝒞𝑘 for an attribute 𝛼, denoted as a𝛼(𝒞𝑘), is the value

that characterizes most of its members:

a𝛼(𝒞𝑘) = arg max
𝑦∈𝒟𝛼

|𝒱|∑︁
𝑖=1

1|a𝛼(𝑣𝑖) = 𝑦 ∧Θ𝑖,𝑘 > 0 (12)

We add one to the denominator of Equation (11) for two reasons. The first reason

is to ensure that 𝑎𝑡𝑡𝑟_𝑠𝑖𝑚 is always in the range (0, 1], and the second reason is

to ensure that the result is close to one if the attribute values of vertex 𝑣𝑖 are very

similar to the attribute values of cluster 𝒞𝑗.

5.2.5 Adjustment of Edge-Type and Attribute Weights

Given the clustering results at each iteration we must identify the importance of

the various edge-types and attributes. Equally, we must adjust the weights, w(𝛼)

and w(𝑡), for each attribute 𝛼 and edge-type 𝑡. In order to automatically adjust the

weights we use a scoring mechanism, based on which before proceeding to the next

iteration we adjust accordingly the edge-type and attribute weights. We prefer the

following mechanism over the available approaches, such as ReliefF [69], since we

update the importance of edge-types and attributes at each iteration to incorporate
And

rea
s P

ap
ad

op
ou

los

43

the knowledge from the clustering results. At each iteration a score is assigned

to each edge-type and each attribute based on the current clustering and their

importance. Specifically, an edge-type or an attribute is considered more important

if vertices in the same cluster are inter-connected by edges of this type or share the

same value for the specific attribute, respectively. Based on its score, a temporary

weight is calculated and used to compute the weights for the next iteration.

Let w 𝑟(𝑝) be the weight of property (edge-type or attribute) 𝑝 at the beginning of

iteration 𝑟. Also, let w 𝑟(𝑝)′ be the temporary weight at iteration 𝑟, which represents

the importance of edge-type or attribute 𝑝 by considering only the scores and the

clusters at iteration 𝑟. The updated weight is then given by:

w 𝑟+1(𝑝) = 1
2 · (w 𝑟(𝑝) + w 𝑟(𝑝)′) (13)

where

w 𝑟(𝑝)′ = 𝑒𝑑𝑔𝑒_𝑡𝑦𝑝𝑒_𝑠𝑐𝑜𝑟𝑒(ℰ𝑝, Θ)∑︀
∀𝑡∈𝒯

𝑒𝑑𝑔𝑒_𝑡𝑦𝑝𝑒_𝑠𝑐𝑜𝑟𝑒(ℰ𝑡, Θ) if 𝑝 ∈ 𝒯 (14)

w 𝑟(𝑝)′ = 𝑎𝑡𝑡𝑟_𝑠𝑐𝑜𝑟𝑒 (𝑝, Θ)∑︀
𝛼∈𝒜

𝑎𝑡𝑡𝑟_𝑠𝑐𝑜𝑟𝑒 (𝛼, Θ) if 𝑝 ∈ 𝒜 (15)

We define the function 𝑒𝑑𝑔𝑒_𝑡𝑦𝑝𝑒_𝑠𝑐𝑜𝑟𝑒, which returns the score of edge-type 𝑡

based on the current clustering, as follows:

𝑒𝑑𝑔𝑒_𝑡𝑦𝑝𝑒_𝑠𝑐𝑜𝑟𝑒 (ℰ𝑡, Θ) = ∑︀
(𝑢,𝑣)∈ℰ𝑡

𝐾∑︀
𝑗=1

(Θ𝑢,𝑗 + Θ𝑣,𝑗)

if Θ𝑢,𝑗 > 0, Θ𝑣,𝑗 > 0
(16)

In other words, to calculate the score of an edge-type 𝑡, we add the probabilities

of each pair of vertices 𝑢 and 𝑣 that belong to a cluster 𝒞, if there is an edge of type

𝑡 between 𝑢 and 𝑣. It is noted that 𝑒𝑑𝑔𝑒_𝑡𝑦𝑝𝑒_𝑠𝑐𝑜𝑟𝑒 returns a value that is not a
And

rea
s P

ap
ad

op
ou

los

44

probability but just a measure of the importance of edges of type 𝑡 in the current

clustering. The higher the score of edge-type 𝑡 is, the more important the edge-type

𝑡 is considered.

Similarly to edge-types, the higher the score of an attribute the more important

it is. For an attribute its score is given by the sum of the number of vertices in the

same cluster that are sharing the same value for that attribute:

𝑎𝑡𝑡𝑟_𝑠𝑐𝑜𝑟𝑒 (𝛼, Θ) = ∑︀
(𝑢,𝑣)∈𝒱×𝒱

𝐾∑︀
𝑗=1

(1)

if a𝛼(𝑢) = a𝛼(𝑣) and Θ𝑢,𝑗 > 0, Θ𝑣,𝑗 > 0
(17)

Lastly, it is noted that because ∑︀w 𝑟(𝑝) = 1 and ∑︀
w 𝑟(𝑝)′ = 1 the constraint

∑︀
w 𝑟+1(𝑝) = 1 is not violated.

Based on the above weighting mechanism, if a property 𝑝 is important it will get

higher weight at the next iteration because w 𝑟(𝑝)′ will be higher than w 𝑟(𝑝). On

the other hand, if a property is not important then w 𝑟(𝑝)′ will be less than w 𝑟(𝑝)

and thus its importance will be lowered for the next iteration.

5.3 HASCOP Algorithm

The following paragraphs describe the initialization and the clustering process

of HASCOP as well as the way clusters are handled and updated at each iteration.

And
rea

s P
ap

ad
op

ou
los

45

5.3.1 Initialization

Initially, edge-types (and attributes) are considered to share the same importance

among them. Thus, initial weights are given by the following equations:

w(𝑡) = 1
|𝒯 |

and w(𝛼) = 1
|𝒜|

(18)

For clusters initialization we set each vertex to be a singleton cluster. A singleton

cluster is a cluster which has only one member.

5.3.2 Clustering Process

HASCOP takes as parameters only the information network which is modelled as

an attributed multi-graph. At each iteration, the attributed multi-graph is projected

to an attributed graph (Equation (8)) and the clustering memberships are computed

(Equation (7)). We prune the membership values below a threshold 𝜖 (we set 𝜖 =

0.001). This pruning, firstly, guarantees that a vertex does not belong to all the

clusters, and secondly it enables the use sparse matrices for efficient implementation.

After pruning, identical clusters (clusters that represent exactly the same vertices)

may exist. Thus, we eliminate these clusters as follows. Each group of identical

clusters (𝒞 = {𝒞𝑥, . . . , 𝒞𝑦}) is replaced by a new cluster (𝒞𝑛𝑒𝑤). The probability of

a vertex 𝑢 belonging to cluster 𝒞𝑛𝑒𝑤 is given by max(Θ𝑢,𝑥, . . . , Θ𝑢,𝑦). As a result,

each vertex will belong to the new cluster with the highest calculated membership

probability it belongs to the identical clusters. We select the maximum membership

probability for each vertex 𝑢 since we assume that this one captures better the

similarity of vertex 𝑢 with the other vertices that belong to the identical clusters (in
And

rea
s P

ap
ad

op
ou

los

46

Algorithm 1 HASCOP
Input: Attributed Multi-graph
Output: Fuzzy clustering of the network denoted by a |𝒱| ×𝐾 matrix Θ
1: Initialize weights by Equation (18)
2: while true do
3: Project multi-graph to graph - Equation (8)
4: for all vertices 𝑣𝑖 ∈ 𝒱 do in parallel
5: for all cluster nodes 𝒞𝑗 do in parallel
6: Calculate Θ𝑖,𝑗 using Equations (7), (10), (11)
7: end for
8: end for
9: if NOT ProcessDuplicateClusters(Θ) then

10: return Θ;
11: end if
12: Parallel update cluster outgoing edges
13: Parallel update cluster attribute centroids
14: Parallel update all weights - Equations (14), (15)
15: end while

fact, maximum of probabilities represents the union of sets). At each iteration, the

number of identical clusters is not known apriori since it depends on the dataset and

the current clustering results. If identical clusters do not exist at an early iteration,

the algorithm terminates resulting in a clustering that consists of many clusters. At

the end of each iteration, the clusters and the weights are updated according to the

new clustering Θ.

The pseudo-code of HASCOP clustering process is presented by Algorithm (1).

HASCOP terminates when at the end of an iteration the number of clusters does

not change. It returns the number of clusters (𝐾) and the fuzzy clustering of the

network Θ|𝒱|×𝐾 . A vertex belongs to the clusters for which is membership is not

zero, i.e. 𝑣𝑖 ∈ 𝒞𝑗 if Θ𝑖,𝑗 ̸= 0. Lastly, we note that memberships for each vertex asAnd
rea

s P
ap

ad
op

ou
los

47

well as the cluster centers and the weights can be computed independently. Hence,

HASCOP can be implemented and executed in parallel.

The time complexity of HASCOP can be expressed as the sum of the costs for

calculating Θ, processing duplicate clusters, updating centroids and updating vertex

property weights.

The time complexity for calculating Θ𝑖,𝑗 is the cost for calculating the structural

and attribute distances between vertex 𝑣𝑖 and cluster 𝒞𝑗. The cost for calculating

the weighted Euclidean distance of two vectors 𝑣𝑑×1 is 𝑂(𝑑). Therefore, the total

cost for calculating a similarity between a vertex and a cluster is 𝑂(|𝒱|+ |𝒜|). Since

the columns of Θ are 𝐾𝑖, where 𝐾𝑖 is the number of clusters at the end of the first

step at iteration 𝑖, the cost for calculating Θ is 𝑂(|𝒱| ·𝐾𝑖 · (|𝒱| + |𝒜|)). The time

complexity for deleting the same clusters is 𝑂(𝐾𝑖 · |𝒱|) and the cost for updating

clusters based on Θ is 𝑂(𝐾𝑖 · |𝒱| · |𝒜|). The time complexities for updating edge

type and attribute weights are 𝑂(𝐾𝑖 ·
∑︀

∀𝑡 |ℰ𝑡|) and 𝑂(|𝒜| · |𝒱|2 · 𝐾𝑖) respectively.

Thus, the total cost for updating all weights is ≈ 𝑂(𝐾𝑖 · (|ℰ|+ |𝒱|2 · |𝒜|)). Putting

them all together, the worst case time complexity of Algorithm (1) for 𝑅 iterations

is ≈ 𝑂(𝑅 ·𝐾 ·(|ℰ|+ |𝒱|2 · |𝒜|)). During our experiments we observed that HASCOP

converges in less than 15 iterations.

And
rea

s P
ap

ad
op

ou
los

Chapter 6

Clustering Attributed Multi-graphs with

Information Ranking - CAMIR

CAMIR (Clustering Attributed Multi-graphs with Information Ranking) [65] is

distance-based clustering algorithm for attributed multi-graphs that adopts spectral

clustering. Although HASCOP achieves high quality results, it is quite slow because

at each iteration it computes the weights (Section 5.2.5) and projects the attributed

multi-graph to an attributed graph (Section 5.2.3). Also, as an agglomerative-

like algorithm during the first few iterations the number of clusters is much higher

than the final number of clusters (it is in the order of the number of vertices),

which increases significantly the iteration run time. CAMIR computes the weights

and projects the attributed multi-graph only once, and thus it is much faster than

HASCOP while it achieves clustering results of comparable quality.

Initially, CAMIR uses a mechanism to rank and consequently weigh the vertex

properties in attributed multi-graphs, by iteratively co-regularizing the clustering

48

And
rea

s P
ap

ad
op

ou
los

49

hypotheses across the vertex properties. Co-regularization is a well-known tech-

nique [51], which we use to compute the ‘agreement’ among the vertex attributes

and the edge-types in attributed multi-graphs. Two vertex properties ‘agree’ if they

assign vertices the same cluster labels when they are used individually. The vertex

property with the highest agreement best separates the vertices into clusters, while

the property with the lowest agreement introduces noise and reduces the cluster-

ing accuracy. CAMIR ranks all vertex properties accordingly; that is, its assigns

the highest and the lowest ranks to the properties with the highest and the lowest

agreements respectively. According to the ranking, it assigns a weight parameter to

each vertex property to compute a unified similarity measure for attributed multi-

graphs. Based on the computed measure, spectral clustering technique is adopted

to partition the attributed multi-graph and to generate the final clusters.

Formally, the clustering problem presented in Section 3.2 is refined as follows.

Given an attributed multi-graph 𝐺 and a number of clusters 𝐾 (𝐾 ≥ 2), CAMIR

goals are:

• Compute a weight w(𝑝) for each vertex property 𝑝 ∈ 𝒫 , in order to construct

a unified similarity matrix 𝑆 ∈ R|𝒱|×|𝒱|

• Generate the 𝐾 clusters based on 𝑆, by maximizing the similarity of vertices

within a cluster and minimizing the similarity between vertices in different

clusters.And
rea

s P
ap

ad
op

ou
los

50

6.1 CAMIR Clustering Model

The proposed CAMIR method consists of the following steps:

• The attributed multi-graph is processed to rank the vertex properties and

to calculate their weights accordingly; then a unified similarity measure is

computed by considering all vertex properties and their importance based on

the calculated weights.

• A spectral clustering approach is adopted to embed the vertices into the re-

spective eigenspace of the unified similarity measure.

The reason for selecting spectral clustering is that it identifies clusters of arbi-

trary shapes and sizes (see Section 3.3.2). The key idea in spectral clustering is to

achieve graph partitioning by finding the best cut. CAMIR follows the Normalized

Cut (NCut) [75] method.1 NCut tries to minimize the total cost of the edges cross-

ing the cluster boundaries, normalized by the total degree of each cluster, making

thus the clusters having similar degrees. In the following Sections we present each

step of the CAMIR method in detail.

6.1.1 Information Ranking

Given an attributed multi-graph 𝐺, we compute the affinity matrices 𝑆𝑝 ∈

R|𝒱|×|𝒱|, where 𝑆𝑝
𝑖𝑗 ≥ 0 denotes the relationship - similarity between 𝑣𝑖 and 𝑣𝑗 for

property 𝑝 ∈ 𝒫 ≡ {𝒜 ∪ 𝒯 }. For each edge-type 𝑡 ∈ 𝒯 , the respective similarity
1Alternatively, several parallel spectral clustering methods could be used in the proposed ap-

proach, such as the works of [22], [45], to reduce the computational time of spectral clustering.And
rea

s P
ap

ad
op

ou
los

51

matrix is calculated as follows:

𝑆𝑡
𝑖𝑗 = 𝜔t (𝑣𝑖, 𝑣𝑗) (19)

For each vertex attribute 𝑎 ∈ 𝒜 we calculate the respective similarity matrix based

on the Gaussian kernel:2

𝑆𝛼
𝑖𝑗 = exp

(︃
−||a𝛼(𝑣𝑖)− a𝛼(𝑣𝑗)||2

2 · 𝜎𝑖 · 𝜎𝑗

)︃
(20)

where 𝜎𝑖 is a scaling parameter to control how rapidly the similarity 𝑆𝛼
𝑖𝑗 reduces

according to the distance between 𝑣𝑖 and 𝑣𝑗. For each vertex 𝑣𝑖, the scaling parameter

𝜎𝑖 allows the self-tuning of the vertex-to-vertex distances according to the local

statistics of the neighbourhoods surrounding 𝑣𝑖. We followed the self-tuning strategy

of [22]. Provided that 𝑣𝑖 has 𝜖 neighbours, 𝜎𝑖 is calculated as the average of the 𝜖

distances.

According to Equations (19) and (20), for each vertex property 𝑝 ∈ 𝒫 we con-

struct an affinity matrix, denoted as 𝑆𝑝 ∈ R|𝒱|×|𝒱|. We compute the normalized

Laplacian 𝐿𝑝 ∈ R|𝒱|×|𝒱| of 𝑆𝑝 as follows:

𝐿𝑝 = 𝐼 −𝐷𝑝−1/2 · 𝑆𝑝 ·𝐷𝑝−1/2 (21)

where 𝐼 is the identity matrix and 𝐷𝑝 is a diagonal matrix calculated as follows:

𝐷𝑝
𝑖𝑖 =

|𝒱|∑︁
𝑗=1

𝑆𝑝
𝑖𝑗 (22)

where 𝐷𝑝−1/2 indicates the inverse square root of 𝐷𝑝. For any 𝑆 with 𝑆𝑖𝑗 ≥ 0,

the Laplacian matrix is symmetric positive semi-definite [56]. After computing the
2Also, other types of kernel functions could be used, such as linear and polynomial, thoroughly

examined in [39] for machine learning methods.
And

rea
s P

ap
ad

op
ou

los

52

|𝒫| different normalized Laplacians, we perform eigendecomposition on each of the

normalized Laplacians to retrieve their top 𝐾 eigenvectors, denoted by 𝑈𝑝 ∈ R|𝒱|×𝐾

for the 𝑝-th Laplacian 𝐿𝑝.

According to [51] the vertex property 𝑝 that best separates the vertices is selected

using the following equation:

𝑓(𝒫) = arg max
𝑈𝑝∈R|𝒱|×𝐾

𝑡𝑟

⎡⎢⎢⎣𝑈𝑝𝑇 ·

⎛⎜⎜⎝𝐿𝑝 + 𝜆 ·
|𝒫|∑︁
𝑖=1

𝑝𝑖 ̸=𝑝

(︁
𝑈 𝑖𝑇 · 𝑈 𝑖

)︁⎞⎟⎟⎠ · 𝑈𝑝

⎤⎥⎥⎦ (23)

where 𝒫 is the set of all vertex properties, 𝑡𝑟 is the trace of the matrix, 𝑈 𝑖𝑇 is the

transpose matrix of 𝑈 𝑖, and 𝜆 is a co-regularization parameter that controls the pe-

nalization of a property according to its ‘disagreement’ with the other properties,3

denoted by the sum in Equation (23). According to [51] two different vertex prop-

erties ‘agree’ if they produced the same clustering result when used individually.

Equation (23) returns the property 𝑝 that has the highest ‘agreement’ with the rest

properties, assuming that if we use only the selected property 𝑝 for clustering we

expect to find accurate clusters, independently of the rest of the properties. The

mathematical proof can be found in [51].

However, considering just a single property to perform clustering contradicts with

works elaborating on the use of all vertex properties to improve clustering accuracy

[24], [68]. We propose to iteratively apply Equation (23) |𝒫| times. At each iteration

we exclude the properties that have been already ranked. In particular, given the set

of unranked properties, denoted as 𝒫𝑢, we compute the ranking r (𝑝) of a property
3Following [51] we use a common 𝜆 for all properties. In practice though, 𝜆 = 0.001 is an

appropriate value to control the impact of the other properties, as we observed in our experiments.And
rea

s P
ap

ad
op

ou
los

53

𝑝 by the following equation:

r (𝑝) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|𝒫𝑢| : |𝒫𝑢| > 1 ∧ 𝑓(𝒫𝑢) = 𝑈𝑝

1 : |𝒫𝑢| = 1
(24)

In doing so, the highest rank is given to the property with the highest ‘agreement’

with the other properties; while the lowest rank is given to the property that is

selected last, does not ‘agree’ with the rest of properties, and consequently introduces

noise to the clustering. Equation (24) maps the vertex properties to the ranks

{|𝒫|, |𝒫| − 1, . . . , 1} according to the order the properties are selected. To calculate

the weight of each property, we perform a normalization of the properties’ ranking

as follows:

w(𝑝𝑖) = r (𝑝𝑖)
|𝒫|∑︀
𝑗=1

r (𝑝𝑗)
(25)

Equation (25) assigns higher weights to more important vertex properties and

down-weighs the properties that have lower ranks and introduce noise over the

clustering. Finally, according to property weights we compute the unified similarity

matrix 𝑆 ∈ R|𝒱|×|𝒱| as the weighted sum of the |𝒫| similarity matrices 𝑆𝑝:

𝑆 =
∑︁

∀𝑝∈𝒫
w(𝑝) · 𝑆𝑝 (26)

6.2 CAMIR Algorithm

In our method, spectral clustering is formulated as follows: given the |𝒱| vertices

of the attributed multi-graph 𝐺 and the unified similarity matrix 𝑆 ∈ R|𝒱|×|𝒱|,

calculated based on Equation (26), the goal is to find 𝐾 disjoint vertex subsets,And
rea

s P
ap

ad
op

ou
los

54

Algorithm 2 CAMIR Algorithm
Input: Attributed multi-graph 𝐺, number of clusters 𝐾
Output: Partitioning of the network denoted by a 𝐾 × 1 vector
𝒫𝑢 = 𝒫
while |𝑃𝑢| ̸= ∅ do

Rank a property 𝑝 using Equation (24)
𝒫𝑢 = 𝒫𝑢 ∖ {𝑝}

end while
Compute weights w(𝑝𝑖) based on Equation (25)
Compute the unified similarity matrix 𝑆 using Equation (26)
Compute the normalized Laplacian 𝐿 of 𝑆 according to Equation
(21)
Perform eigendecomposition on 𝐿 to obtain 𝑈 - the top 𝐾
eigenvectors
Run 𝐾-means on 𝑈 to generate the final cluster labels

namely clusters, whose union is the whole data set, by solving the following standard

eigendecomposition problem:

arg max
𝑈∈R|𝒱|×𝐾

𝑡𝑟
(︁
𝑈𝑇 · 𝐿 · 𝑈

)︁
, s.t. 𝑈𝑇 · 𝑈 = 𝐼 (27)

where 𝐿 is the normalized Laplacian of the unified similarity matrix 𝑆 given by

Equation (26). The columns of 𝑈 ∈ R|𝒱|×𝐾 are the top 𝐾 eigenvectors of the

Laplacian matrix 𝐿, while its rows are the embeddings of the |𝒱| vertices in the 𝐾-

th dimensional eigenspace. The final 𝐾 clusters are generated by applying 𝐾-means

algorithm to the |𝒱| embeddings of the vertices.

Algorithm (2) presents the pseudocode of the CAMIR algorithm. We note that

parallel eigendecomposition solvers have been widely studied in the literature [71,

86, 96], successfully solving relatively quick the problem on billion-sized matrices.

Hence, CAMIR can take advantage of such solvers to scale to large attributed multi-

graphs. The first step of the proposed approach is depicted by lines 2-6. Lines 2-5 doAnd
rea

s P
ap

ad
op

ou
los

55

the properties ranking, and line 6 computes the property weights. The complexity

for the first step is ≈ 𝑂(|𝒫| · |𝒱|2 · 𝐾). Lines 8 and 9 correspond to the second

step of CAMIR algorithm. That is to compute the normalized Laplacian and the

embedding of the attributed multi-graph to the eigenvectors space. This step has

complexity ≈ 𝑂(|𝒱|2 · 𝐾). Lastly, line 10 applies K-means algorithm to find the

cluster labels, which complexity is ≈ 𝑂(|𝒱|𝐾2+1 · log |𝒱|) [10]. Putting all together,

the worst case time complexity is ≈ 𝑂(|𝒫| ·𝐾 · |𝒱|2 + |𝒱|𝐾2+1 · log |𝒱|).

And
rea

s P
ap

ad
op

ou
los

Chapter 7

Weighted CLustering of Attributed Multi-graPhs

- CLAMP

CLAMP (CLustering Attributed Multi-graPhs) [64] is a distance-based clus-

tering method which maximizes attribute and structural similarities according to

automatically identified importance of each attribute and edge type. CLAMP bal-

ances globally the sets of attributes and edge-types, applies to directed weighted

attributed multi-graphs and handles the heterogeneous vertex attributes (both nu-

merical and categorical), thus overcoming limitations of the methods presented in

Chapters 5 and 6.1 CLAMP is the first method to perform fuzzy clustering on

weighted directed attributed multi-graphs with heterogeneous attributes.

During the execution of CLAMP, the intermediate results and the importance

of the various edge-types and attributes enhance each other until convergence. The

importance of edge-type and attribute sets are reflected by the global weights. Sim-

ilarly, edge-type and attribute weights reflect the importance of each edge-type and
1HASCOP handles directed unweighted attributed multi-graphs with categorical attributes.

CAMIR handles undirected weighted attributed multi-graphs with numerical attributes.

56

And
rea

s P
ap

ad
op

ou
los

57

attribute. At each iteration, all the weights are updated based on the current clus-

tering. Taking into account the calculated weights and a given number of clusters,

vertices belonging to the same cluster should: (a) have the maximum similar connec-

tivity, in terms of structure; and (b) have the minimum diversity in their attribute

values.

Formally, based on the clustering problem presented in Section 3.2, given an

attributed multi-graph and a number of clusters 𝐾 (𝐾 ≥ 2), CLAMP goals are:

• Identify the importance of each edge-type and attribute. That is to compute

the weights w(𝑡) and w(𝛼), subject to ∑︀
∀𝑡∈𝒯

w(𝑡) = 1 and ∑︀
∀𝛼∈𝒜

w(𝛼) = 1.

• Calculate the importance of structural and attribute properties of the vertices,

denoted as 𝑊𝑙𝑖𝑛𝑘𝑠 and 𝑊𝑎𝑡𝑡𝑟 respectively.

• Find a fuzzy clustering Θ|𝒱|×𝐾 , where Θ𝑖,𝑗 is the probability of 𝑣𝑖 belonging to

cluster 𝐶𝑗 subject to
𝐾∑︀

𝑗=1
Θ𝑖,𝑗 = 1 for all vertices.

7.1 CLAMP Clustering Model

7.1.1 Overview

In this section we present CLAMP (CLustering Attributed Multi-graPh). CLAMP

combines in a unified distance measure for attributed multi-graphs the distance mea-

sures we present in Section 7.1.2 below. Leveraging the proposed unified distance

function, in Section 7.1.3 we define the clustering objective function. In Section

7.1.4 we discuss the optimization process which seeks to assign each vertex: (a) toAnd
rea

s P
ap

ad
op

ou
los

58

Kim Max

0 .7

S am Ava

0 .1

Xia

0 . 9

0 . 5

Neo

0 .3

(a) Example graph. The weight of unlabeled
edges is 1.

𝐾𝑖𝑚 𝑀𝑎𝑥 𝑆𝑎𝑚 𝑋𝑖𝑎 𝑁𝑒𝑜 𝐴𝑣𝑎

𝐾𝑖𝑚 1.0 0.7 1.0 0 1.0 1.0
𝑀𝑎𝑥 1.0 1.0 0.9 0.3 1.0
𝑆𝑎𝑚 1.0 0.5 0 0.1
𝑋𝑖𝑎 1.0 0 0
𝑁𝑒𝑜 1.0 0
𝐴𝑣𝑎 1.0

(b) Adjacency matrix

𝐾𝑖𝑚 𝑀𝑎𝑥 𝑆𝑎𝑚 𝑋𝑖𝑎 𝑁𝑒𝑜 𝐴𝑣𝑎

𝐾𝑖𝑚 0 1.48 2.15 4.29 2.16 1.90
𝑀𝑎𝑥 0 1.15 1.85 3.88 1.80
𝑆𝑎𝑚 0 1.52 2.75 1.87
𝑋𝑖𝑎 0 3.61 3.17
𝑁𝑒𝑜 0 2.50
𝐴𝑣𝑎 0

(c) Similar connectivity matrix

Figure 6: Similar Connectivity on a Toy Graph

its closest cluster with the highest probability; and (b) to its furthest cluster with

the lowest probability, with respect to the weights. Lastly, we present the CLAMP

algorithm in Section 7.2.

7.1.2 Distance Measures

7.1.2.1 Similar Connectivity

It is a measure that represents how dissimilar two vertices are based on their

outgoing edges. We formally define Type-Similar Connectivity as follows.

Definition 1. (Type-Similar Connectivity) The type-similar connectivity of

two vertices 𝑢, 𝑣 for edge type 𝑡, denoted as 𝑆𝐶𝑡(𝑢, 𝑣), is given by:

𝑆𝐶𝑡(𝑢, 𝑣) =
|𝒱|∑︁
𝑖=1

(𝑤𝑡(𝑢, 𝑣𝑖)− 𝑤𝑡(𝑣, 𝑣𝑖))2 (28)And
rea

s P
ap

ad
op

ou
los

59

where

𝑤𝑡(𝑢, 𝑣) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑤𝑡(𝑢, 𝑣) if (𝑢, 𝑣) ∈ ℰ𝑡

1 if 𝑢 = 𝑣

0 else

(29)

Figure (6) presents a toy co-authorship graph.2 Specifically, Figure (6b)

depicts the upper part of the adjacency matrix of the toy graph of Figure (6a), and

Figure (6c) presents the similar connectivity computed by Equation (28).3 For

instance, similar connectivity of authors Kim and Max is computed as follows:

𝑆𝐶(𝐾𝑖𝑚, 𝑀𝑎𝑥) = [𝑤(𝐾𝑖𝑚, 𝐾𝑖𝑚)− 𝑤(𝑀𝑎𝑥, 𝐾𝑖𝑚)]2

+ [𝑤(𝐾𝑖𝑚, 𝑀𝑎𝑥)− 𝑤(𝑀𝑎𝑥, 𝑀𝑎𝑥)]2 + [𝑤(𝐾𝑖𝑚, 𝑆𝑎𝑚)− 𝑤(𝑀𝑎𝑥, 𝑆𝑎𝑚)]2

+ [𝑤(𝐾𝑖𝑚, 𝑋𝑖𝑎)− 𝑤(𝑀𝑎𝑥, 𝑋𝑖𝑎)]2 + [𝑤(𝐾𝑖𝑚, 𝑁𝑒𝑜)− 𝑤(𝑀𝑎𝑥, 𝑁𝑒𝑜)]2

+ [𝑤(𝐾𝑖𝑚, 𝐴𝑣𝑎)− 𝑤(𝑀𝑎𝑥, 𝐴𝑣𝑎)]2 = (1− 0.7)2 + (0.7− 1)2 + (1− 1)2

+(0− 0.9)2 + (1− 0.3)2 + (1− 1)2 = 1.48

We see that 𝑆𝐶(𝐾𝑖𝑚, 𝑀𝑎𝑥) = 1.48 while 𝑆𝐶(𝑋𝑖𝑎, 𝑁𝑒𝑜) = 3.61. Hence, as it

is also seen from Figure (6a), authors {𝐾𝑖𝑚, 𝑀𝑎𝑥} are more similar than authors

{𝑋𝑖𝑎, 𝑁𝑒𝑜}. The lowest similar connectivity between Sam and Max is justified by

the fact that they are connected to each other and they have three out of four

common neighbors (only Neo is not a common neighbor). Thus, low Similar Con-

nectivity among two vertices denotes that they share common neighbors and should

be grouped together.

Total Similar Connectivity measures the distance of two vertices based on

all their outgoing edges. We calculate the Total-Similar Connectivity of two vertices
2Edge weights have been scaled to [0, 1].
3Type-similar Connectivity can be calculated on directed graphs as well.

And
rea

s P
ap

ad
op

ou
los

60

as follows:

𝑆𝐶(𝑢, 𝑣) = 1
|𝒱|
·
∑︁
∀𝑡

w(𝑡) · 𝑆𝐶𝑡(𝑢, 𝑣),
∑︁
∀𝑡

w(𝑡) = 1 (30)

where w(𝑡) is the importance of the graph view corresponding to edge type 𝑡.

7.1.2.2 Attribute Distance

We compute attribute distance of two vertices using a distance measure suitable

for both numerical and categorical attributes [41]. Specifically, the attribute distance

of vertices 𝑢 and 𝑣, denoted as 𝐴𝐷(𝑢, 𝑣), is given by:

𝐴𝐷(𝑢, 𝑣) =
∑︁
∀𝛼

w(𝛼) · 𝛿𝛼(𝑢, 𝑣),
∑︁
∀𝛼

𝑊𝛼 = 1 (31)

where w(𝛼) is the importance of the graph view corresponding to attribute 𝛼, and

𝛿𝛼(𝑢, 𝑣) is the attribute distance of vertices 𝑢 and 𝑣 for attribute 𝛼. Function 𝛿𝛼

depends only on the type of attribute 𝛼.

For numerical attributes scaled to [0, 1] we use: 𝛿𝛼(𝑢, 𝑣) = (𝑎𝛼(𝑢)− 𝑎𝛼(𝑣))2. For

categorical attributes we use the Kronecker’s delta function:

𝛿𝛼(𝑢, 𝑣) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 𝑎𝛼(𝑢) = 𝑎𝛼(𝑣)

1 else
(32)

Other distance functions such as Minkowski, Hamming or Semantic could be adopted

as well. We leave this analysis for future work.

7.1.2.3 Unified Distance Function

In order to calculate the total distance between two vertices, we must combine

and balance their similar connectivity and attribute distance. The problem is quite
And

rea
s P

ap
ad

op
ou

los

61

challenging because structural and attribute distances are two seemingly indepen-

dent objectives [24, 101]. A possible solution which we adopt is to use a distance

function that balances these two objectives using appropriate weighting factors:

𝑑(𝑢, 𝑣) = 𝑊𝑎𝑡𝑡𝑟 · 𝐴𝐷(𝑢, 𝑣) + 𝑊𝑙𝑖𝑛𝑘𝑠 · 𝑆𝐶(𝑢, 𝑣) (33)

where 𝑊𝑎𝑡𝑡𝑟 and 𝑊𝑙𝑖𝑛𝑘𝑠 represent the importance of the attribute and structural

properties of the vertices respectively. These weighting factors are fine-tuned by

CLAMP based on the network properties and the clustering results during the clus-

tering process. We defer more detailed discussion of the weighting mechanism to

Section 7.1.4.

7.1.3 Clustering Model

Recall that our goal is to find the optimal solution that assigns each vertex

to: (a) its closest cluster with the highest probability; and (b) its furthest cluster

with the lowest probability, which ideally should be zero (usually it is a very small

value). Intuitively, the optimal solution minimizes the weighted distance between

all possible pairs of vertices and clusters. Thus, a naive approach would be to adopt

traditional fuzzy clustering. That is, to find the optimal clustering that minimizes

the function:
|𝒱|∑︁
𝑖=1

𝐾∑︁
𝑘=1

(Θ𝑖,𝑘)𝑓 · 𝑑(𝑣𝑖, 𝒞𝑘) (34)

where 𝑑(𝑣𝑖, 𝒞𝑘) is the distance of vertex 𝑣𝑖 to cluster 𝒞𝑘; and 𝑓 is the so-called fuzzifier,

a free parameter that takes real values in the range (1, +∞) and determines by how

much clusters overlap [15, 48]. The fuzzifier is necessary for getting fuzzy clusters,
And

rea
s P

ap
ad

op
ou

los

62

but its optimal value depends on the dataset and can be defined only through

experimentation [15].

However, the above objective is not suitable for the problem we study because

using the unified distance measure of Equation (33) it expands to weighted sum

of individual terms corresponding to attribute and structural distances. Hence,

to minimize it we must assign weight 1 to the lowest term, i.e. 𝑊𝑎𝑡𝑡𝑟 = 1, and

consequently zero weight to the highest term. The same holds for the attribute

and edge-type weights, i.e. w(𝛼1) = 1 and w(𝛼𝑖) = 0∀𝑖 ̸= 1, if attribute 𝛼1 yields

the lowest sum of distances. Withal, the above objective is minimized if: (a) we

ignore either structural or attribute properties of the vertices; and (b) we consider

only the edge type or the attribute that yields the minimum distance among all

possible pairs of vertices and clusters. To address these issues we perform negative

entropy regularization [58] on all the weights, to ‘force’ them to be close to each

other. Specifically, we perform regularization on weighting factors 𝑊𝑙𝑖𝑛𝑘𝑠 and 𝑊𝑎𝑡𝑡𝑟

to limit weights diversity and make it impossible for attributes to dominate edge

types and vice versa. Similarly, we regularize attribute and edge-type weights to

prohibit the dominance of a specific attribute and edge type.

In this manner, we formulate the problem of fuzzy clustering an attributed multi-

graph as the identification of the optimal clustering (membership probabilities) and

And
rea

s P
ap

ad
op

ou
los

63

weights that minimize the following objective function:

𝒱∑︁
𝑖=1

𝐾∑︁
𝑘=1

(Θ𝑖,𝑘)𝑓 · 𝑑(𝑣𝑖, 𝒞𝑘) + 𝜆 · [𝑊𝑙𝑖𝑛𝑘𝑠 log (𝑊𝑙𝑖𝑛𝑘𝑠) (35)

+𝑊𝑎𝑡𝑡𝑟 log (𝑊𝑎𝑡𝑡𝑟) +
∑︁
∀𝑡

w(𝑡) log (w(𝑡)) +
∑︁
∀𝛼

w(𝛼) log (w(𝛼))]

subject to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐾∑︀
𝑘=1

Θ𝑖,𝑘 = 1, ∀𝑣𝑖 ∈ 𝒱

𝑊𝑎𝑡𝑡𝑟 + 𝑊𝑙𝑖𝑛𝑘𝑠 = 1, 𝑊𝑎𝑡𝑡𝑟 > 0, 𝑊𝑙𝑖𝑛𝑘𝑠 > 0

∑︀
∀𝑡

w𝑡 = 1, w𝑡 > 0

∑︀
∀𝛼

w𝛼 = 1, w𝛼 > 0

(36)

where:

• 𝒞𝑘 is the representation of cluster 𝑘. Each cluster is characterized by 𝒜 at-

tribute values and connects to vertices by weighted edges of |𝒯 | types.4 The

attribute values of a cluster and the weights of its outgoing edges are computed

based on its members, as we present in Section 7.1.4 below.

• 𝑑(𝑣𝑖, 𝒞𝑘) is the unified distance of vertex 𝑣𝑖 and cluster 𝒞𝑘 (Equation (33)).

• 𝜆 > 0 is the regularization parameter that controls how much a solution is

penalized according to weights entropy. High entropy equals to high weight

diversity. Thus, the more the weights deviate the higher the regularization

term (entropy) becomes, and the solution is penalized accordingly depending

on the value of 𝜆. The 𝜆 parameter needs to be tuned empirically or using

cross validation techniques [98].
4Hence, 𝒞𝑘 is a valid parameter to Equations (27) - (33).

And
rea

s P
ap

ad
op

ou
los

64

7.1.4 Objective Function Optimization

Finding the global optimum of Equation (35) is computationally difficult (NP-

hard). To tackle the high complexity of the problem, we adopt the technique of

gradient descent [16, 35]. Gradient descent requires minimum computations at each

iteration, converges quickly to a local optimum, does not impose new parameters

into the model, and is being widely used by many clustering algorithms, i.e. K-

means. According to gradient descent we iteratively optimize either the membership

probabilities, the weights or the cluster representations while considering the other

parameters fixed. Therefore, we make the following propositions that suggest how

to update the parameters at each iteration to reach a minimum of the CLAMP

objective function.

7.1.5 Cluster Representations

Proposition 1 (Cluster Outgoing Edges). If partitioning and view weights are fixed

then the objective function is minimized when the weight of the edge from cluster 𝒞𝑗

to a vertex 𝑢 of edge type 𝑡 is given by:

𝜔t (𝒞𝑗, 𝑢) =

|𝒱|∑︀
𝑖=1

(Θ𝑖,𝑗)𝑓 · 𝜔t (𝑣𝑖, 𝑢)
|𝒱|∑︀
𝑖=1

(Θ𝑖,𝑗)𝑓

(37)

Proof of Proposition 1. Based on similar connectivity definition and excluding the

attributes part and regularization terms of the objective function (because they yield

to partial derivative equal to zero as they are constant) we have to minimize theAnd
rea

s P
ap

ad
op

ou
los

65

following function:

|𝒱|∑︀
𝑖=1

𝐾∑︀
𝑘=1

(Θ𝑖,𝑘)𝑓 ·𝑊𝑙𝑖𝑛𝑘𝑠 ·
∑︀
∀𝑡

w(𝑡) · 𝑆𝐶𝑡 (𝒞𝑘, 𝑣𝑖) (38)

We differentiate the above equation with respect to 𝑤𝑡(𝒞𝑘, 𝑢):

𝜕𝑂
𝜕𝑤𝑡(𝒞𝑘,𝑢) =

|𝒱|∑︀
𝑖=1

(Θ𝑖,𝑘)𝑓 ·𝑊𝑙𝑖𝑛𝑘𝑠 · w(𝑡) · 2 · 𝑤𝑡(𝒞𝑘, 𝑢)

−
|𝒱|∑︀
𝑖=1

(Θ𝑖,𝑘)𝑓 ·𝑊𝑙𝑖𝑛𝑘𝑠 · w(𝑡) · 2 · 𝑤𝑡(𝑣𝑖, 𝑢)
(39)

Setting the derivative equal to zero and solving to 𝑤𝑡(𝒞𝑘, 𝑢) the result is Equation

(37).

In order to calculate the attribute values of a cluster we have two cases: (a)

categorical attributes; and (b) numerical attributes.

Proposition 2 (Cluster Categorical Attributes). If membership probabilities and

view weights are fixed then for categorical attributes the objective function is mini-

mized when:

a𝛼(𝒞𝑗) = arg max
𝑦∈𝒟𝛼

|𝒱|∑︁
𝑖=1

Θ𝑖,𝑗|a𝛼(𝑣𝑖) = 𝑦 (40)

Proof Sketch for Proposition 2. The objective function considering only one cate-

gorical attribute can be rewritten as:

arg min
𝒞𝑘

𝑊𝑎𝑡𝑡𝑟 · w(𝛼) ·
|𝒱|∑︁
𝑖=1

𝐾∑︁
𝑘=1

(Θ𝑖,𝑘)𝑓 · 𝛿𝛼(𝒞𝑘, 𝑣𝑖) (41)

Expanding the summation, the no-zero terms are the ones for which Θ𝑖,𝑘 > 0 and

𝛿𝛼(𝒞𝑘, 𝑣𝑖) = 1. Since memberships are considered fixed, the objective function min-

imizes when Equation (40) holds.And
rea

s P
ap

ad
op

ou
los

66

Equation (40) represents the weighted mode of the cluster [41]. That is, a cate-

gorical attribute of a cluster takes the attribute value that characterizes most of its

members, according to the membership probabilities.

Proposition 3 (Cluster Numerical Attributes). If membership probabilities and

view weights are fixed then for numerical attributes the objective function is mini-

mized when:

𝑎𝛼(𝒞𝑗) =

|𝒱|∑︀
𝑖=1

(︁
(Θ𝑖,𝑗)𝑓 · 𝑎𝛼(𝑣𝑖)

)︁
|𝒱|∑︀
𝑖=1

(Θ𝑖,𝑗)𝑓

(42)

Proof of Proposition 3. For numerical attributes we calculate the partial derivative

of the objective function as follows:

𝜕𝑂
𝜕𝑎𝛼(𝒞𝑘) = 𝑊𝑎𝑡𝑡𝑟 ·

|𝒱|∑︀
𝑖=1

𝐾∑︀
𝑘=1

(Θ𝑖,𝑘)𝑓 · w(𝛼) · 𝐴𝐷′(𝒞𝑘, 𝑣𝑖)

𝜕𝑂
𝜕𝑎𝛼(𝒞𝑘) = 0⇒ 𝑎𝛼(𝒞𝑘) =

∑︀ ((Θ𝑖,𝑘)𝑓 ·𝑎𝛼(𝑣𝑖))∑︀
(Θ𝑖,𝑘)𝑓

(43)

Intuitively, Propositions (1)-(3) update the outgoing edges and the attribute

values of a cluster according to its members with respect to the membership prob-

abilities.

7.1.6 Partitioning - Membership Probabilities

Proposition 4 (Optimise Partitioning). If clusters and view weights are fixed then

the objective function is minimized when:

Θ𝑖,𝑗 =
⎡⎣ 𝐾∑︁

𝑘=1

(︃
𝑑(𝑣𝑖, 𝒞𝑗)
𝑑(𝑣𝑖, 𝒞𝑘)

)︃ 1
𝑓−1
⎤⎦−1

(44)

where 𝑑(𝑣𝑖, 𝒞𝑘) is given by Equation (33).
And

rea
s P

ap
ad

op
ou

los

67

Proof of Proposition 4. For calculating Θ𝑖,𝑘 we consider the partial derivative of 𝑂

with respect to Θ. In order to take into account the constraints of the objective

function we use the Lagrange multiplier 𝐿𝑖:

|𝒱|∑︁
𝑖=1

𝐿𝑖 ·
(︃

𝐾∑︁
𝑘=1

Θ𝑖,𝑘 − 1
)︃

(45)

Note that we add only the constraint
𝐾∑︀

𝑘=1
Θ𝑖,𝑘 = 1 and its Lagrange multiplier

is denoted as 𝐿𝑖. Normally all the constraints must be included, but this does not

affect the partial derivatives with respect to Θ𝑖,𝑘 as they are treated as constant.

Taking the partial derivative of the objective function with respect to Θ𝑖,𝑘 yields:

𝜕𝑂
𝜕Θ𝑖,𝑘

= 𝑊𝑎𝑡𝑡𝑟 · 𝑓 · (Θ𝑖,𝑘)𝑓−1 · 𝐴𝐷(𝒞𝑘, 𝑣𝑖)

+𝑊𝑙𝑖𝑛𝑘𝑠 · 𝑓 · (Θ𝑖,𝑘)𝑓−1 · 𝑆𝐶(𝒞𝑘, 𝑣𝑖)

+𝐿𝑖

(46)

Setting the derivative equal to zero we get:

−𝐿𝑖 = 𝑓 ·Θ𝑓−1
𝑖,𝑘 · 𝑑(𝒞𝑘, 𝑣𝑖) (47)

Θ𝑖,𝑘 =
[︃

−𝐿𝑖

𝑓 · 𝑑(𝒞𝑘, 𝑣𝑖)

]︃ 1
𝑓−1

(48)

where 𝑑(𝒞𝑘, 𝑣𝑖) is Equation (33). It also holds that
𝐾∑︀

𝑗=1
Θ𝑖,𝑗 = 1. Hence:

𝐾∑︀
𝑗=1

[︁
−𝐿𝑖

𝑓 ·𝑑(𝑐𝑗 ,𝑣𝑖)

]︁ 1
𝑓−1 = 1 (49)

By replacing 𝐿𝑖, as given by Equation (47), and solving to Θ𝑖,𝑘 we get Equation

(44).

Equation (44) confirms that Θ𝑖,𝑗 must be high for low 𝑑(𝒞𝑗, 𝑣𝑖) and vice versa.
And

rea
s P

ap
ad

op
ou

los

68

7.1.7 Optimizing Attribute, Edge-type and Global Weights

Proposition 5 (Optimize Attribute and Edge-Type Weights). If membership prob-

abilities and clusters are fixed then the objective function is minimized when:

w(𝑡) =
exp

[︁
𝑆𝑡·ln(2)

−𝜆

]︁
∑︀

∀𝑖∈𝒯
exp

[︁
𝑆𝑖·ln(2)

−𝜆

]︁ (50)

w(𝛼) =
exp

[︁
𝐴𝐷𝛼·ln(2)

−𝜆

]︁
∑︀

∀𝛽∈𝒜
exp

[︁
𝐴𝐷𝛽 ·ln(2)

−𝜆

]︁ (51)

where

𝑆𝑡 = 𝑊𝑙𝑖𝑛𝑘𝑠 ·
|𝒱|∑︁
𝑖=1

𝐾∑︁
𝑗=1

(Θ𝑖,𝑗)𝑓 · 𝑆𝐶𝑡(𝑣𝑖, 𝒞𝑗) (52)

𝐴𝐷𝛼 = 𝑊𝑎𝑡𝑡𝑟 ·
|𝒱|∑︁
𝑖=1

𝐾∑︁
𝑗=1

(Θ𝑖,𝑗)𝑓 · 𝛿𝛼 (𝑣𝑖, 𝒞𝑗) (53)

Proof of Proposition 5. We prove the proposition for attribute weights as follows;

solutions for edge type weights and weighting factors 𝑊𝑙𝑖𝑛𝑘𝑠 and 𝑊𝑎𝑡𝑡𝑟 are calcu-

lated following the same steps. Initially, we derivate the objective function with

respect to attribute weights. By substituting Equation (31) and adding the term

𝐿2 · (
∑︀

∀𝛼 w(𝛼)− 1) to the objective function, where 𝐿2 is the Lagrange multiplier,

we get the first derivative:

𝜕𝑂

𝜕w(𝛼) = 𝐴𝐷𝛼 + 𝜆 · (log(w(𝛼)) + 1) + 𝐿2 (54)

where

𝐴𝐷𝛼 =
𝒱∑︁

𝑖=1

𝐾∑︁
𝑘=1

(Θ𝑖,𝑘)𝑓 ·𝑊𝑎𝑡𝑡𝑟 · 𝛿𝛼 (𝒞𝑘, 𝑣𝑖) (55)

By setting the derivative to zero, we get:

𝐿2 = −𝐴𝐷𝛼 − 𝜆 · (log(w(𝛼)) + 1) (56)
And

rea
s P

ap
ad

op
ou

los

69

w(𝛼) = exp
[︂(︂−𝐴𝐷𝛼

𝜆
+ 1

)︂
· ln(10)

]︂
· exp

[︃
−𝐿2 · ln(10)

𝜆

]︃
(57)

Taking into account the constraint ∑︀
∀𝛽∈𝒜

w(𝛽) = 1 we get:

exp
[︃
−𝐿2 · ln(10)

𝜆

]︃
= 1∑︀

∀𝛽∈𝒜
exp

[︁(︁−𝐴𝐷𝛽

𝜆
+ 1

)︁
· ln(10)

]︁ (58)

Substituting the above equation to Equation (57) the result is Equation (51).

Intuitively, Proposition (5) suggests that we assign a ‘score’ to each edge-type and

attribute according to Equations (52) and (53) respectively, based on the individual

contribution of vertices to each edge-type and attribute, i.e.
𝐾∑︀

𝑗=1
(Θ𝑖,𝑗)𝑓 ·𝑆𝐶𝑡(𝑣𝑖, 𝒞𝑗) is

the contribution of vertex 𝑣𝑖 to edge-type 𝑡. Then, edge-type and attribute weights

are computed accordingly using Equations (50) and (51).

Proposition 6 (Optimize Global Weights). If membership probabilities, clusters

and attribute and edge-type weights are fixed then the objective function is minimized

when:

𝑊 ′
𝑙𝑖𝑛𝑘𝑠 =

exp
[︁

𝑆𝑙𝑖𝑛𝑘𝑠·ln(2)
−𝜆

]︁
𝒲

(59)

𝑊 ′
𝑎𝑡𝑡𝑟 =

exp
[︁

𝑆𝑎𝑡𝑡𝑟·ln(2)
−𝜆

]︁
𝒲

(60)

where

𝑆𝑙𝑖𝑛𝑘𝑠 = 1
𝑊𝑙𝑖𝑛𝑘𝑠

·
∑︁
∀𝑡

w(𝑡) · 𝑆𝐶𝑡 (61)

𝑆𝑎𝑡𝑡𝑟 = 1
𝑊𝑎𝑡𝑡𝑟

·
∑︁
∀𝛼

w(𝛼) · 𝐴𝐷𝛼 (62)

𝒲 = exp
[︃

𝑆𝑎𝑡𝑡𝑟 · ln(2)
−𝜆

]︃
+ exp

[︃
𝑆𝑙𝑖𝑛𝑘𝑠 · ln(2)
−𝜆

]︃
(63)And

rea
s P

ap
ad

op
ou

los

70

Similarly to Proposition (5), Equations (61) and (62) assign a ‘score’ to the set of

edge-types and to the set of attributes according to the contribution of each vertex.

The updated structural and attribute property weights are given by Equations (59)

and (60) respectively.

We note that according to Propositions (5), (6) and Equation (33) vertex prop-

erty weights and global weighting factors are interrelated. That is, an edge-type im-

portance is the product of the global edges weight and the weight of the edge-type.

The same holds for attributes. However, if we combine global and individual weights

to reduce model parameters regularization of both global and individual weights will

not be feasible and the set of attributes or edges may dominate. Moreover, weights

combination should be done by modifying the proposed unified distance measure and

consequently the objective function. Although such model sounds much simpler, it

will consider of the same type both vertex attributes and connections. For instance,

the attribute ‘gender’ and the edge-type ‘friends’ would be incorrectly considered of

the same type. That is because property weights will be computed using the same

formulas derived from a simplified unified distance measure that does not consider

simultaneously the individual importance of the vertex properties and the sets of

attributes and edges. Overall, a simplified model would neither capture the different

type of information encoded in an attributed multigraph nor balance properly the

vertex structural and attribute properties.

And
rea

s P
ap

ad
op

ou
los

71

Algorithm 3 CLAMP - Attributed Multi-graphs Clustering Algorithm
Input: Attributed multi-graph 𝐺, number of clusters 𝐾
Output: Fuzzy clustering of the network denoted by a |𝒱| ×𝐾 matrix Θ
1: Initialize iteration number: 𝑟 ← 0
2: Initialize 𝐾 cluster prototypes
3: Initialize weights using Equation (64)
4: while true do
5: Update memberships Θ𝑟+1 by Equation (44)
6: if ‖Θ𝑟+1 - Θ𝑟‖ < 𝛿 then
7: return Θ𝑟+1

8: end if
9: Compute clusters by Equations (37)-(42)

10: Update weights by Equations (50)-(63)
11: end while

7.2 CLAMP Algorithm

Putting everything together, Algorithm (3) depicts the pseudo code of the pro-

posed algorithm for clustering attributed multi-graphs. CLAMP following the gra-

dient descent technique iteratively (𝑟 is the iteration number) updates the vertex

memberships, the clusters and the weights according to the propositions in Sec-

tion 7.1.4. It terminates when two successive partitionings differ less than a small

threshold (i.e. convergence delta 𝛿 ≈ 10−4).

To initialize the clusters we follow the approach of random selection. That

is, 𝐾 vertices are randomly selected as clusters. Alternatively, several centroid

initialization methods could be extended and used in the proposed approach, such

as the works of ([12, 74]), to preprocess the network aiming to reduce the number of

iterations and/or improve clustering accuracy. We adopt random selection because it

And
rea

s P
ap

ad
op

ou
los

72

is the fastest approach and does not require specialized knowledge or preprocessing-

analysis of the network [77], although it yields slightly different results for the same

input.

The initial weights are computed by equations:

𝑊𝑡 = 1
|𝒯 |

, 𝑊𝛼 = 1
|𝒜|

, 𝑊𝑎𝑡𝑡𝑟 = 𝑊𝑙𝑖𝑛𝑘𝑠 = 1
2 (64)

We experimentally observed that weights initialization does not affect results quality,

but it may affect (increase or decrease) the number of iterations until convergence.

As we observed in our experimental evaluation CLAMP converges in less than 10

iterations.

The time complexity of CLAMP (Algorithm (3)) is the sum of the costs for

calculating memberships, updating clusters and updating vertex property weights.

The worst-case time complexity for calculating Θ is 𝑂(|𝑉 | ·𝐾 · (|𝒜|+ |𝒯 |.|𝒱|); for

updating clusters is 𝑂(𝐾. (|𝒯 |.|𝒱|+ |𝒜|.|𝒱|)); and for updating the weights is ≈

𝑂(|𝒱| ·𝐾 · (|𝒫|)). Putting all together, the total complexity of Algorithm (3) for 𝑅

iterations is ≈ 𝑂(𝑅 ·𝐾 · |𝒱| · (|𝒯 | · |𝒱|+ |𝒫|)).

7.2.1 CLAMP Algorithm in MapReduce Model

To tackle the high complexity of the clustering attributed multi-graphs problem,

we can easily parallelize CLAMP in a variety of parallel computational models. In

the following paragraphs we describe a parallel implementation of our algorithm in

the MapReduce model [28], that can significantly lower the runtime and improve

the scalability of the algorithm.And
rea

s P
ap

ad
op

ou
los

73

Algorithm 4 CLAMP - Attributed Multi-graphs Clustering Algorithm on MapRe-
duce
Input: Attributed multi-graph 𝐺, number of clusters 𝐾
Output: Clustering Θ, Weights
1: Initialize iteration number: 𝑅← 0
2: Select randomly 𝐾 vertices as initial clusters
3: Initialize weights using Equation (64)
4: while true do
5: Run first Map Reduce job
6: if all clusters converged then
7: return
8: end if
9: Run second Map Reduce job

10: Update weights using Equations (51), (60)
11: end while

The implementation in MapReduce confirms that CLAMP can be executed on

modern cloud many- and multi-core architectures to scale to large datasets and keep

runtime low. CLAMP iteratively updates the vertex memberships, the clusters and

the weights according to the propositions in Section 7.1.4.

Algorithm (4) depicts the pseudo code of the proposed CLAMP algorithm (𝑅

denotes the iteration number). CLAMP process consists of two MapReduce jobs.

The first job (Algorithm (5)) calculates the membership probabilities and updates

the clusters; and the second job updates the weights. The clustering process ter-

minates when at the end of the first job all clusters change insignificantly, i.e. less

than 𝛿.

MAP 1. Mappers of the first job compute the clustering (membership proba-

bilities). Since each vertex can compute independently its memberships by know-

ing only the weights and the clusters, a mapper responsible for a vertex 𝑣𝑖 emitsAnd
rea

s P
ap

ad
op

ou
los

74

Algorithm 5 CLAMP - First MapReduce Job
Input: Attributed multi-graph 𝐺, number of clusters 𝐾, weights
Output: Clustering Θ

MAP 1
1: Input: Clusters 𝒞, Weights, Set of vertices 𝑆 ⊂ 𝒱
2: Output: <𝑘, [𝑖, Θ𝑖,𝑘]> ∀𝑘
3: for all 𝑣𝑖 ∈ 𝑆 do
4: for all 𝒞𝑘 ∈ 𝒞 do
5: Compute membership of vertex 𝑣𝑖 to cluster 𝒞𝑘 using Equation

(44)
6: Output: <𝑘, [𝑖, Θ𝑖,𝑘]>
7: end for
8: end for

REDUCE 1
9: Input: <𝑘, list of [𝑖, Θ𝑖,𝑘]>

10: Output: <𝑘, [𝒞𝑘]>
11: Compute cluster properties by Equations (37)-(42)
12: if ‖𝒞𝑟

𝑘 - 𝒞𝑟−1
𝑘 ‖ ≤ 𝛿 then

13: Increase counter of converged clusters
14: end if

<k, [𝑖, Θ𝑖,𝑘]>, where 𝑘 is the id of cluster 𝑘. In practice, a mapper may be respon-

sible for a set of vertices, i.e. |𝒱|
𝑁

where 𝑁 is the number of MapReduce nodes.5

The time complexity for calculating Θ is 𝑂(|𝒱|
𝑁
·𝐾 · (|𝑇 |.|𝒱|+ |𝒜|)).

Computed memberships are grouped by cluster id and thus each reducer receives

the membership probabilities of vertices to a specific cluster, i.e. 𝒞𝑘.

REDUCE 1. A reducer is responsible to update a cluster and output its de-

scription, i.e. <k, [𝐶𝑘]> where [𝐶𝑘] consists of two vectors representing the attribute

values and the outgoing edges of cluster 𝑘. It also checks whether the specific cluster

has converged. The time complexity for updating clusters is 𝑂(𝐾
𝑁
·|𝒱 ·|𝒫|), assuming

the maximum size of a cluster is |𝒱|.
5The number of vertices must be higher than the number of available MapReduce nodes, i.e.

|𝒱| ≫ 𝑁 .And
rea

s P
ap

ad
op

ou
los

75

Algorithm 6 CLAMP - Second MapReduce Job
MAP 2

1: Input: Clusters 𝒞, Weights, Set of vertices 𝑆 ⊂ 𝑉 , Vector Θ𝑖

∀𝑣𝑖 ∈ 𝑆
2: Output: <{𝑡|𝛼|𝑇 |𝐴}, 𝑣𝑖 contribution> ∀𝑣𝑖 ∈ 𝑆
3: for all 𝑣𝑖 ∈ 𝑆 do
4: for all 𝑡 ∈ 𝑇 do
5: Compute contribution of 𝑣𝑖 to 𝑡
6: Output <𝑡, 𝑣𝑖 contribution>
7: end for
8: for all 𝛼 ∈ 𝐴 do
9: Compute contribution of 𝑣𝑖 to 𝛼

10: Output <𝛼, 𝑣𝑖 contribution>
11: end for
12: Output <𝐴, 𝑣𝑖 contribution to set of attributes>
13: Output <𝑇, 𝑣𝑖 contribution to set of edges>
14: end for

REDUCE 2
15: Input: <{𝑡|𝛼|𝑇 |𝐴}, list of contributions (one value for each

vertex)>
16: Output: 𝑆𝑙𝑖𝑛𝑘𝑠, 𝑆𝑎𝑡𝑡𝑟, 𝑆𝑡, 𝐴𝐷𝛼

17: Compute 𝑆𝑙𝑖𝑛𝑘𝑠, 𝑆𝑎𝑡𝑡𝑟, 𝑆𝑡 or 𝐴𝐷𝛼 by Equations (52), (53) or (62)

The second MapReduce job (Algorithm (6)) starts the weight update process.

MAP 2. The mapper responsible for a vertex 𝑣𝑖 outputs its contribution to

every attribute and edge-type. Thus, each mapper outputs many key-value pairs,

with key being the id of an attribute or an edge-type.

The individual contributions for specific attribute and edge-type are grouped

into a list and forwarded to the reducers.

REDUCE 2. Each reducer sums up the contributions and outputs 𝑆𝑡 and 𝐴𝐷𝑎

depending on the input key.

Weights for the next iteration are then computed sequentially. The time com-

plexity of weights update process is ≈ 𝑂(|𝒱|
𝑁
·𝐾 · (|𝒫|)).And

rea
s P

ap
ad

op
ou

los

76

Summarizing, the total worst-case complexity of the proposed CLAMP algorithm

(Algorithm (4)) is ≈ 𝑂(𝑅 · |𝒱|
𝑁
· 𝐾 · (|𝒯 | · |𝒱|+ |𝒫|)), where 𝑅 is the number of

iterations and 𝑁 is the number of MapReduce nodes. Complexity analysis confirms

that CLAMP is highly parallelizable suggesting that time complexity is reduced

proportionally to the amount of available MapReduce nodes.

We note that if the set of clusters can not be held in memory or be distributed

among all the mappers, i.e. because there are a lot of clusters, the calculation of

memberships can still be computed in parallel as follows. Each mapper computes

the distances between a vertex and the small set of clusters it holds, while a reducer

computes the final memberships. Such an implementation does not increase the

time complexity, though will have the overhead of an additional MapReduce job.

And
rea

s P
ap

ad
op

ou
los

Chapter 8

Experimental Study

This chapter presents the experimental evaluation of the proposed methods. We

firstly outline the datasets used for the experiments, the evaluation measures and

the experimental setup. Secondly, we present results on synthetic datasets and three

real-world datasets. Lastly, we conclude the section with a discussion on proposed

methods.

8.1 Datasets

8.1.1 Synthetic Datasets

To generate synthetic datasets, we modified the state-of-the-art generator pre-

sented in [68] to capture the multiple edge types and the similar connectivity aspects.

The generator in [68] is based on planted partitions model [26]. It generates dense

clusters where vertices are connected by only one edge type. For each cluster two

parameters control the density and attribute homogeneity of the cluster. Following

the same approach we split the |𝒱| vertices into 𝐾 clusters, i.e. 𝐾 blocks, and

77

And
rea

s P
ap

ad
op

ou
los

78

Table 5: Synthetic and Real-world Datasets Used for Evaluation. N and C are the
number of numerical and categorical attributes respectively

Dataset |𝒱| |ℰ| |𝒜| |𝒯 | Weighted

Synthetics

{100,
500,
1000,
5000}

≈
1000 -
1230000

N={2, 4, 8,
16}

{1, 2,
4, 8,
16}

No

GoogleSP-23-Name 1297 60204 5 (N=4, C=1) 1 No
GoogleSP-23-Path 1297 208752 5 (N=4, C=1) 1 No

GoogleSP-23 1297 268956 5 (N=4, C=1) 2 No
DBLP-10K 10000 65734 2 (N=1, C=1) 1 Yes

EU-Projects 1965 178623 7 (N=6, C=1) 2 Yes

use two parameters for each cluster to specify its similar connectivity and attribute

homogeneity. Specifically, if a vertex in cluster 𝒞𝑗 connects to a vertex 𝑢 then the

Similar Connectivity parameter specifies the least fraction of vertices in the group

that also connect to vertex 𝑢. Vertex outgoing degrees follow a uniform distribu-

tion. The Attribute Homogeneity parameter specifies the least fraction of vertices

in cluster 𝒞𝑗 that share the same attribute value for each attribute. Numerical at-

tributes are drawn from a uniform distribution, and categorical attributes are drawn

from a Bernoulli distribution. In our experiments both parameters were set to 0.8.

Hence, generated graphs exhibit both high attribute homogeneity and low similar

connectivity. We generated synthetic attributed graphs and multi-graphs for various

cluster properties as shown in Table 5. Particularly, we vary the number of vertices

in {100, 500, 1000, 5000} with 4 attributes; the number of attributes in {2, 4, 8, 16}

with 1000 vertices; and the number of edge types in {2, 4, 8, 16} for 1000 vertices

and 4 attributes. For each variation, we generate five graphs.And
rea

s P
ap

ad
op

ou
los

79

Table 6: GoogleSP-23 Dataset - File Attributes and Their Description

Attribute Description

FILE_SIZE The size of the file in bytes
A_TIME Last access time in seconds since Epoch
M_TIME Last content modify time in seconds since Epoch
C_TIME Time of most recent metadata change on Unix, or the time

of creation on Windows in seconds since Epoch
FILE_TYPE The type of the file as given by the command file. e.g.

text/x-java;charset=us-ascii,
application/x-executable; charset=binary

8.1.2 Real-world Datasets

We used software packages (GoogleSP-23), bibliography (DBLP-10K), and re-

search/innovation projects (EU-Projects) datasets which we summarize in Table 5

and describe below.

Software Packages - GoogleSP-23 is a dataset constructed by crawling the file

system of a virtual machine in which 23 software packages downloaded from the

Google code repository1 were installed.

In GoogleSP-23 dataset, a vertex represents a file described by the five attributes

shown in Table 6. There are two edge types in this dataset based on the file name

and file path similarities which we refer as 𝑡𝑛𝑎𝑚𝑒 and 𝑡𝑝𝑎𝑡ℎ respectively. Given two

files 𝑓𝑎 and 𝑓𝑏 we calculate their file-system paths distance 𝑑𝑝(𝑓𝑎, 𝑓𝑏) using a string

edit distance algorithm. The weight of the edge (𝑓𝑎, 𝑓𝑏, 𝑡𝑝𝑎𝑡ℎ) is then given by:

w𝑝𝑎𝑡ℎ(𝑓𝑎, 𝑓𝑏) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑑𝑝 (𝑓𝑎, 𝑓𝑏) < avg (𝑑𝑝)

0 else
(65)

1Available online at http://code.google.comAnd
rea

s P
ap

ad
op

ou
los

http://code.google.com

80

Edges of type 𝑡𝑛𝑎𝑚𝑒 are added similarly. Thus, GoogleSP-23 is an attributed multi-

graph. Additionally, we use as attributed graphs the GoogleSP-23-Name and the

GoogleSP-23-Path datasets in which vertices are connected only by edges of type

𝑡𝑛𝑎𝑚𝑒 or 𝑡𝑝𝑎𝑡ℎ respectively.

Clustering these datasets can be used to identify software packages installed in

Cloud providers, making Cloud services easily accessible and attractive to a wide

range of users (Cloud application users, developers, administrators) [30]. For in-

stance, Amazon has recently launched AWS Marketplace2 , which is an online store

that helps customers find, buy, and immediately start using the software and ser-

vices they need on the Cloud. The advantage of these datasets is that clusters are

known (software packages). Thus, we do not attempt to analyse the properties of

software packages/files, but to compare the clustering results to the ground truth.

DBLP Bibliography - DBLP-10K dataset3 consists of 10000 vertices repre-

senting the top authors from the complete DBLP dataset. Each author is described

by two attributes: the number of publications and the primary area of interest.

We consider authors with four research areas, namely databases (DB), data mining

(DM), information retrieval (IR) and artificial intelligence (AI). A weighted edge

between two authors represents the number of publications they have co-authored.

Clustering this dataset into clusters with similar connectivity and attribute ho-

mogeneity is expected to identify groups of authors from the same area that have
2AWS Marketplace, by Amazon, is available at https://aws.amazon.com/marketplace/,

April 2017
3The full DBLP dataset is available online at http://kdl.cs.umass.edu/data/dblp/

dblp-info.html.And
rea

s P
ap

ad
op

ou
los

https://aws.amazon.com/marketplace/
http://kdl.cs.umass.edu/data/dblp/dblp-info.html
http://kdl.cs.umass.edu/data/dblp/dblp-info.html

81

worked with common researchers probably from different areas. Such clusters can

help us identify outliers or recommend new collaborations.

EU Projects - EU-Projects dataset consists of organizations that participated

in projects funded by the European Union under the FP7 and the H2020 frame-

work programmes for research, innovation and technological development.4 FP7

programme ran from 2007 to 2013, and H2020 programme started in 2014 and is

expected to finish by 2020. In this dataset, we consider only the projects for which

information was available by early 2015. That is 25808 and 2400 FP7 and H2020

projects respectively. Vertices represent organizations which are described by the

following attributes: the number of H2020 and FP7 projects they are involved, co-

ordinated, and participated in, and their country of origin. The 1965 organizations

present in this dataset participated in at least 10 projects and they are connected

by two types of weighted edges representing the number of H2020 and FP7 col-

laborations. In order to execute the algorithms that do not apply to attributed

multi-graphs we consider only one edge between two organizations that represents

the total number of collaborations.

Partitioning this dataset is expected to identify groups of organizations that

share mutual H2020 and/or FP7 partners, have participated in approximately the

same number of projects, and have the same country of origin. Such clusters can

help us identify outliers and recommend new collaborations.
4This dataset is available online at European Union Open Data Portal - http://open-data.

europa.eu.And
rea

s P
ap

ad
op

ou
los

http://open-data.europa.eu
http://open-data.europa.eu

82

8.2 Evaluation Measures and Comparison Methods

In the following experiments, we use the entropy, similar connectivity (Equa-

tion (30)) and normalized mutual information (NMI) to evaluate the results.

Low entropy is equivalent to high attribute homogeneity between the vertices in the

same cluster. Low similar connectivity represents that vertices in the same cluster

have similar outgoing edges. Average entropy and similar connectivity are weighted

by cluster sizes.

For a given clustering 𝒞 = {𝒞1, . . . , 𝒞𝐾}, the entropy of attribute 𝛼 in cluster 𝒞𝑘

is given by:

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝛼, 𝒞𝑘) = −
|𝒟𝛼|∑︁
𝑗=1

𝑝𝑘𝑗 log (𝑝𝑘𝑗) (66)

where 𝑝𝑘𝑗 is the number of vertices in 𝒞𝑘 which have the 𝑗𝑡ℎ value in the domain

of attribute 𝛼 divided by the size of the cluster 𝒞𝑘. Entropy takes a value in the

range [0,∞) despite the negative sign because 𝑝𝑘𝑗 is in the range [0, 1]. Entropy

for a specific attribute for a clustering is given by Equation (67) and is the average

entropy weighted by the size of the clusters. The goal of each clustering method is

to achieve low overall entropy, which is computed as the average of the individual

attribute entropies:

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝛼) = 1
|𝒱|

𝐾∑︁
𝑗=1

(|𝒞𝑗| · 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝛼, 𝒞𝑗)) (67)

NMI represents the similarity between the obtained clustering and the ground

truth. NMI takes values in the range of [0, 1], with 1 corresponding to clustering

that perfectly matches ground truth. Given a clustering 𝒞 = {𝒞1, . . . , 𝒞𝐾} and theAnd
rea

s P
ap

ad
op

ou
los

83

ground-truth ℬ = {ℬ1, . . . ,ℬ𝐾2}, 𝑁𝑀𝐼 is calculated as follows:

𝑁𝑀𝐼(ℬ, 𝒞) = 𝐻(𝒞)−𝐻(ℬ|𝒞)
min(𝐻(ℬ), 𝐻(𝒞)) (68)

where:

𝐻(𝒞) = −
𝐾∑︁

𝑘=1

|𝒞𝑘|
|𝒱|
· log

(︃
|𝒞𝑘|
|𝒱|

)︃

𝐻(ℬ|𝒞) = −
𝐾∑︁

𝑖=1

𝐾2∑︁
𝑗=1

𝑚𝑖𝑗

|𝒱|
· log

(︃
𝑚𝑖𝑗/|𝒱|
|𝒞𝑗|/|𝒱|

)︃

where 𝑚𝑖𝑗 is the number of common vertices between clusters ℬ𝑖 and 𝒞𝑗. In case

𝑁𝑀𝐼(ℬ, 𝒞) = 1, then the two clusterings are identical. At this point we must

mention that 𝑁𝑀𝐼 can be calculated, only if the ground-truth is available. Thus,

we report 𝑁𝑀𝐼 only for the experiments on synthetic datasets where clusters are

known and for the experiment on GoogleSP-23 where ground truth is available.

We evaluated the three proposed approaches, namely HASCOP, CAMIR and

CLAMP presented in Chapters 5, 6, 7 respectively, against BAGC [90], SA-Clu-

ster [101], PICS [8], and ClampNoW. The latter is a fictitious algorithm that uses

CLAMP unified distance function but treats all the weights as constants as given

by Equation (64).

Following experiments show average measurements out of five runs. Final clus-

terings were defuzzified by assigning each vertex to the cluster it belongs with the

highest probability and thus use the same evaluation measures for all algorithms.

The results of CLAMP and HASCOP are from multi-threaded implementations in

Java 1.6. For vectors and matrices computations we use the JAMA library.5 JAMA
5JAMA: A Java Matrix Package - http://math.nist.gov/javanumerics/jama/And
rea

s P
ap

ad
op

ou
los

http://math.nist.gov/javanumerics/jama/

84

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

100 500 1000 5000

E
n

tr
o

p
y

of Vertices

BAGC

PICS

SA-Cluster

CAMIR

HASCOP

 ClampNoW

CLAMP

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 4 8 16

E
n

tr
o

p
y

of Attributes

BAGC

PICS

SA-Cluster

CAMIR

HASCOP

 ClampNoW

CLAMP

(b)

Figure 7: Entropy on synthetic attributed graphs

library provides sparse vector and matrix implementations and thus requires rea-

sonable amount of memory. Each vertex is associated with a sparse vector of length

|𝒜| for its attributes and |𝒯 | sparse vectors of length |𝒱| for its connections. For

computing entropy and NMI we use WEKA data mining tool [85]. CAMIR, SA-

Cluster, BAGC and PICS results are from sequential implementations in Matlab

(source code provided by the authors). All experiments conducted on a Dell Server

equipped with two 12 core Intel Xeon 3.47GHz processors and 80GB RAM.

And
rea

s P
ap

ad
op

ou
los

85

 1

 10

 100

 1000

100 500 1000 5000

S
C

of Vertices

PICS

CAMIR

HASCOP

ClampNoW

CLAMP

(a)

 1

 10

 100

 1000

2 4 8 16

S
C

of Attributes

PICS

CAMIR

HASCOP

ClampNoW

CLAMP

(b)

Figure 8: Similar Connectivity on synthetic attributed graphs. BAGC and SAClus-
ter are omitted from Figures because they achieve similar connectivity of at least
one order of magnitude higher than the other approaches

8.3 Evaluation on Synthetic Graphs

To study the clustering performance we generated synthetic attributed graphs

and multi-graphs for various cluster properties. Particularly, we vary the number of

vertices in {100, 500, 1000, 5000} with 4 attributes; the number of attributes in {2,

4, 8, 16} with 1000 vertices; and the number of edge types in {2, 4, 8, 16} for 1000

vertices and 4 attributes. For each variation, we generate 5 graphs.

According to Figures (7, 8, 9), CLAMP outperforms all its competitors in terms

of entropy, similar connectivity and 𝑁𝑀𝐼. The high clustering accuracy of CLAMP
And

rea
s P

ap
ad

op
ou

los

86

 0

 0.2

 0.4

 0.6

 0.8

 1

100 500 1000 5000

N
M

I

of Vertices

BAGC

PICS

SA-Cluster

CAMIR

HASCOP

ClampNoW

CLAMP

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16

N
M

I

of Attributes

BAGC

PICS

SA-Cluster

CAMIR

HASCOP

ClampNoW

CLAMP

(b)

Figure 9: NMI on synthetic attributed graphs

is based on the presented weighting mechanism that correctly identifies the impor-

tance of the different vertex properties. PICS results in high entropy, high similar

connectivity and low 𝑁𝑀𝐼, because it converges too early and returns few clusters,

by using a self-tuning strategy to determine the number of clusters (Chapter 4).

BAGC and SACluster achieve low entropy on all datasets, but they do not identify

clusters characterized by low similar connectivity because they search for densely

connected components. Specifically, they achieve similar connectivity of at least

one order of magnitude higher than the other approaches, and thus we omit them

from Figure (8). HASCOP and CAMIR achieve comparable clustering accuracyAnd
rea

s P
ap

ad
op

ou
los

87

 0

 0.2

 0.4

 0.6

 0.8

2 4 8 16

E
n

tr
o

p
y

of Edge types

CAMIR
HASCOP

ClampNoW
CLAMP

Figure 10: Entropy on synthetic attributed multi-graphs

 100

 1000

 10000

2 4 8 16

S
C

of Edge types

CAMIR
HASCOP

ClampNoW
CLAMP

Figure 11: Similar Connectivity on synthetic attributed multi-graphs

on attributed multi-graphs (Figures (10, 11, 12)), since they also weigh the vertex

properties efficiently. We further observe a rather steady performance of CLAMP.

That is because it adapts the weights according to the properties of the datasets

during the clustering process.

8.4 Evaluation on Real-world Graphs

8.4.1 GoogleSP-23 datasets

In this experiment algorithms have been executed for 𝐾 = {20, 40, 60}. The goal

is to identify the software packages (ground truth).
And

rea
s P

ap
ad

op
ou

los

88

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16

N
M

I

of Edge types

CAMIR
HASCOP

ClampNoW
CLAMP

Figure 12: NMI on synthetic attributed multi-graphs

 0

 0.2

 0.4

 0.6

 0.8

 1

20 40 60 20 40 60 23|12 51|106|5 20 40 60 20 40 60

N
M

I

GoogleSP-23 GoogleSP-23-Name GoogleSP-23-Path

CLAMPCAMIRHASCOPPICSSA-ClusterBAGC

Figure 13: Clustering performance on GoogleSP-23 datasets. X-axis shows the
number of clusters.

Figure (13) presents the normalized mutual information (NMI) of the results.

It is evident that HASCOP, CAMIR and CLAMP exhibit superior performance

over SACluster, PICS, and BAGC even for the datasets with only one edge type.

SACluster and BAGC fail to achieve high NMI because they identify densely con-

nected components while software packages are not densely connected [63]. PICS

performs slightly better than SACluster and BAGC. Nonetheless, PICS results are

not as good as the proposed approaches because it ignores the different importance

of the vertex properties. We further illustrate that HASCOP, CAMIR and CLAMPAnd
rea

s P
ap

ad
op

ou
los

89

 0
 0.4
 0.8
 1.2
 1.6

20 40 60 80 100

E
n

tr
o

p
y

of Clusters

BAGC
SACluster

CAMIR
PICS

HASCOP
CLAMP

Figure 14: Entropy on DBLP-10K bibliography dataset. Since HASCOP and PICS
use a self-tuning strategy to determine the number of clusters, both methods are
denoted by straight lines

 0.01

 0.1

 1

 10

20 40 60 80 100

S
C

 x
 1

0
3

of Clusters

CAMIR

PICS

HASCOP

CLAMP

Figure 15: Similar Connectivity on DBLP-10K bibliography dataset. Since HAS-
COP and PICS use a self-tuning strategy to determine the number of clusters, both
methods are denoted by straight lines. BAGC and SACluster achieve at least one
order of magnitude higher similar connectivity

successfully identify a high percentage of software packages since they achieves high

mutual information. HASCOP outperforms CLAMP because it has been tuned for

software package identification. Despite its high mutual information, it returns 106

and 5 clusters for GoogleSP-23-Name and GoogleSP-23-Path datasets respectively,

while there are 23 software packages in the dataset. CAMIR also achieves good re-

sults because based on spectral clustering technique it identifies clusters of arbitrary

shapes and sizes. We further note that 𝑁𝑀𝐼 for GoogleSP-23 dataset is increased

compared to GoogleSP-23-Name and GoogleSP-23-Path for all algorithms confirm-

ing that proposed methods exploit properly the existence of more than one edge type.And
rea

s P
ap

ad
op

ou
los

90

8.4.2 DBLP-10K dataset

For DBLP-10K dataset we executed the algorithms for 𝐾 = {20, 40, 60, 80, 100}.

PICS and HASCOP returned 18 and 763 clusters respectively.

It is noted that since authors follow different careers and usually co-work with

researchers from different locations and organizations, it is hard to find a group of

authors that has many common co-authorships. This is also evident from the small

average outgoing degree of a vertex (approximately 6, 5). The weighting mechanisms

of the proposed approaches ‘captures’ this property of the dataset and automati-

cally assigns lower importance to structural properties of the vertices. Moreover,

they identify the importance of each attribute and consider ‘Are of Interest’ more im-

portant than attribute ‘Publications’. This is expected since ‘Publications’ entropy

is higher and their objective function is optimized by assigning lower importance to

it.

Figures (14, 15) present the average entropy and similar connectivity respectively,

for multiple number of clusters. Proposed approaches achieve lower entropy than

all their competitors (Figure (14)). Generally the more the clusters are the less the

entropy is. This is due to the fact that the more the clusters are the easier it is

to group together only vertices with the same attribute values. CAMIR resulted in

lower entropy than CLAMP because it assigned much higher weight to attributes

than edges. However, because of this weighting CAMIR results in much more similar

connectivity than CLAMP (Figure (15)). Withal, Figures (14, 15) demonstrate anAnd
rea

s P
ap

ad
op

ou
los

91

 0
 0.5

 1
 1.5

 2
 2.5

20 40 60 80 100

E
n

tr
o

p
y

of Clusters

BAGC

SACluster

CAMIR

PICS

HASCOP

CLAMP

Figure 16: Entropy on EU-Projects dataset. Since HASCOP and PICS use a self-
tuning strategy to determine the number of clusters, both methods are denoted by
straight lines

 1

 10

 100

 1000

20 40 60 80 100

S
C

 x
 1

0
3

of Clusters

CAMIR

PICS

HASCOP

CLAMP

Figure 17: Similar Connectivity on EU-Projects dataset. Since HASCOP and PICS
use a self-tuning strategy to determine the number of clusters, both methods are
denoted by straight lines. BAGC and SACluster achieve at least one order of mag-
nitude higher similar connectivity

overall good performance of the proposed approaches, while it confirms the efficiency

of their weighting mechanisms.

8.4.3 EU-Projects dataset

For EU-Projects dataset we executed the algorithms for 𝐾 = {20, 40, 60, 80, 100}.

HASCOP and PICS returned 64 and 8 clusters respectively. Figures (16, 17) present

the average entropy and similar connectivity respectively for multiple number of clus-

ters. We observe that proposed approaches by adapting the vertex property weights

achieve low entropy and similar connectivity, and over perform their competitors in

most of the cases.And
rea

s P
ap

ad
op

ou
los

92

Table 7: Runtime (seconds) on Real-world Datasets. HASCOP and CLAMP run-
times are from multi-threaded implementations (Section 8.2).

DBLP-10K GoogleSP-23-Path GoogleSP-23-Name GoogleSP-23 EU-Projects
CLAMP 22110±215.918 69.843±12.026 48.135±8.421 179.128±35.190 32.514±14.938

HASCOP 32957±675.943 231.381±23.169 67.045±11.186 4595±237.189 3830 ±159.376
CAMIR 520.134±104.01 3.783±1.412 4.634±2.191 5.985±2.074 18.4± 2.77
BAGC 0.412±0.064 0.871±0.273 0.696±0.206 - 0.619±0.150

SACluster 404.581±68.065 38.583±3.682 30.583±3.682 - 51.931±19.730
PICS 494.993±0.000 19.932±2.915 15.012±1.256 - 38.030±1.873

8.5 Efficiency Study

We further examine the efficiency of our methods by measuring the execution

time for the above datasets. Table 7 depicts the average runtimes for all number of

clusters. The standard deviation is relatively high because the number of clusters

affects the run time of the algorithms.

HASCOP and CLAMP are the slowest because they update the weights during

the clustering process, and they perform fuzzy clustering. Around 50% of CLAMP

and HASCOP run time is spent on the weights update process as we observed in

our experiments. CLAMP is significantly faster than HASCOP for almost all used

datasets. This improvement on run time is mainly because: (a) during the first few

iterations of HASCOP the number of clusters is high (in the order of the number of

vertices), which increases significantly the iteration time; and (b) HASCOP projects

the original multi-graph at each iteration which is time-consuming. Despite the

time overhead of CLAMP and HASCOP, as previous experiments demonstrate they

achieve results of high quality.

SACluster and PICS generally require approximately the same time but they are

slower than CAMIR in most of the cases. Also, PICS and BAGC do not considerAnd
rea

s P
ap

ad
op

ou
los

93

Table 8: Time complexity of proposed attributed multi-Graph clustering algorithms.
It is noted that the number of iterations (𝑅) differs for each method. Also, the
number of clusters (𝐾) for HASCOP is not constant.

Algorithm Time Complexity

HASCOP ≈ 𝑂(𝑅 ·𝐾 · (|ℰ|+ |𝒱|2 · |𝒜|))
CAMIR ≈ 𝑂(𝐾 · |𝒱|2 · |𝒫|+ |𝒱|𝐾2+1 · log |𝒱|)
CLAMP ≈ 𝑂(𝑅 ·𝐾 · |𝒱| · (|𝒯 | · |𝒱|+ |𝒫|))

the importance of the vertex properties which leads to lower complexity. BAGC

is the fastest method, but achieves limited clustering quality as shown in previous

σSections.

Lastly, the results are consistent with the time complexities presented in Table

4 (Section 4.3) and the time complexity analysis of proposed methods summarized

in Table 8. Tables 7 and 8 show that CAMIR is faster than CLAMP, and CLAMP

is faster than HASCOP.

8.6 Discussion and Connection to Previous Work

Clustering is a very important task in machine learning. We propose three

methods for clustering attributed multi-graphs, in which objects are connected by

multiple types of edges, and each object is characterized by a set of attributes. Table

9 depicts an overview of the proposed methods.

Despite the success of related works presented in Chapter 4, they differ from all

proposed methods for at least one of the following aspects: (a) they assume equal

importance of structural and attribute properties of the vertices; (b) they ignore

the existence of multiple edge types; or (c) they aim to identify either communityAnd
rea

s P
ap

ad
op

ou
los

94

Table 9: Proposed methods for clustering attributed multi-graphs

HASCOP CAMIR CLAMP

Directed X X

Network
Properties

Weighted X X
Numerical
Attributes X X

Categorical
Attributes X X

Algorithm
Properties

Parameter-free X
Fuzzy Clustering X X
Automatic Prop-
erties Weighting X X X

Optimization
Technique Heuristic Spectral

Clustering
Gradient
Descent

outliers [52] or strongly connected components [7]. Proposed methods identify the

importance of the various vertex properties in an automatic manner, handle the

existence of multiple edge-types, identify clusters characterized by high similar con-

nectivity and attribute homogeneity, and are highly parallelizable. Hence, they can

exploit properly the computational power of modern many- and multi-core archi-

tectures to scale to large datasets. Nonetheless, each of them has its strong points

and weaknesses.

HASCOP is parameter-free (does not require the number of clusters to be spec-

ified a priori), performs fuzzy clustering, and effectively identifies software pack-

ages installed in the file system of a computer or a virtual machine (Section 8.4.1).

However, it does not handle either weighted attributed multi-graphs or numerical

attributes, and requires more time than CAMIR and CLAMP (Section 8.5). HAS-

COP is the slowest because as an agglomerative-like algorithm during the first few

iterations the number of clusters is much higher than the final number of clusters (itAnd
rea

s P
ap

ad
op

ou
los

95

is in the order of the number of vertices), which increases significantly the iteration

runtime. Also, it may converges quickly and consequently returns a high number of

clusters.

CAMIR is the fastest of the proposed approaches, mainly because (a) it performs

hard clustering; and (b) its weight identification process is decoupled from the clus-

tering task and, thus it can take place only once. Upon completion of the weight

identification process, the vertex property weights can then be used to rerun the

algorithm with different parameters, i.e. number of clusters. In addition, because

CAMIR follows a spectral clustering approach to partition the attributed multi-

graph and to generate the final clustering, it identifies clusters of arbitrary shapes

and sizes. However, it cannot apply to directed graphs since spectral clustering

technique requires the input similarity matrix to be symmetric.

CLAMP is the first to perform fuzzy clustering on weighted directed attributed

multi-graphs with heterogeneous attributes. CLAMP considers simultaneously the

individual importance of the attributes and edge-types as well as the balance be-

tween the sets of attributes and edges, by assigning them different weights that are

identified during the clustering process. Nevertheless, it is sensible to fuzzifier and

regularization parameters that must be fine tuned for each dataset. Also, because

it adopts gradient descent technique clusters initialization may significantly affect

the results.

And
rea

s P
ap

ad
op

ou
los

96

Overall, our extensive experimental evaluation on synthetic datasets and a di-

verse collection of real world information networks demonstrates the efficiency and

effectiveness of proposed approaches on various scenarios.

And
rea

s P
ap

ad
op

ou
los

Chapter 9

Use Case: Clustering-based Recommendation

System

As Chapter 2 discusses, providing reliable, evidence-based recommendations is a

challenging task useful in many real-world applications. In this chapter, we present

our solution towards recommending collaborations to organizations that have par-

ticipated in R&D projects funded by the European Union.

European research activities network1 is a context rich dataset. It consists of

more than 5000 organizations each of which is characterized by its activity type,

i.e. public research institute or private organization, the number of projects it

has participated in or coordinated, and its location at city or country level. Two

organizations are connected by multiple types of edges depicted in Table 10. Edges

represent their collaborations and role in projects, i.e. organization A coordinated

a project in which organization B has participated; this relation is reflected by a

weighted edge from A to B of type coordinator. Organizations participated to more
1The dataset is freely available for download at European Union Open Data Portal - http:

//open-data.europa.eu

97

And
rea

s P
ap

ad
op

ou
los

http://open-data.europa.eu
http://open-data.europa.eu

98

Table 10: Description of Organization Connections

Connection Type Description

participations An undirected edge from A to B reflects the number of
projects that both organization participated

coordinations A directed edge from A to B reflects the number of
projects that A coordinated and B participated

beneficiaries
A directed edge from A to B reflects the number of
projects that A was beneficiary or host and B partic-
ipated

than 15000 projects so far and they established more than 250K collaborations.

Therefore, it would seem beneficial for organizations and researchers to find potential

successful collaborators through an easily accessible recommender system.

Recommender systems are used in many application scenarios like social net-

works (e.g., Facebook, LinkedIn) and e-commerce sites (e.g., Amazon, Ebay). Most

recommender systems rely on collaborative filtering techniques [17, 43] and aim to

predict a user’s interest in an item based on his past ratings of similar items or

on the past ratings of similar users. Although collaborative filtering has become

the standard method for the recommendation problem using only ratings of similar

users/items to make recommendations without taking into account any other infor-

mation results in low quality recommendations. To handle the issues of traditional

recommendation systems, recommenders that consider contextual information, such

as the user location when he rated a product, have attracted a lot of attention [2, 72].

Contextual recommenders have been recognized to improve results quality [72].

Nevertheless, existing recommender systems do not apply to European research

activities network because of one or more of the following reasons. Firstly, theyAnd
rea

s P
ap

ad
op

ou
los

99

cannot efficiently combine different types of contextual information (e.g., the con-

texts with discrete values versus the ones with continuous values [2]). Secondly,

they do not consider the multiple types of connections among the organizations.

Thirdly, they suffer from high computational complexity (e.g., matrix factorization

model [50] is impractical for extremely large dataset and multiple matrix factoriza-

tions are needed [29]).

In this chapter, we propose a clustering-based recommendation algorithm for the

European research activities network. Our goal is to provide reliable, evidence-based

partnership recommendations to organizations participated to R&D projects funded

by the European Union. To do so we exploit the information from both the het-

erogeneous organizations’ attributes and their multiple collaborations by applying

CLAMP clustering algorithm to the European research activities network. CLAMP

is suitable for this problem since it considers the multiple types of collaborations,

handles the heterogeneous organizations’ attributes, is quite fast and performs fuzzy

clustering. Also, it achieves better results on EU-projects dataset (Chapter 8). We

further propose a recommendation ranking method that derives and ranks the top 𝑁

recommendations for each organization based on cluster membership probabilities.

Furthermore, we develop a prototype system that is able to automatically fetch

and import updates from European open-data portal, thus updating its datastore

and consequently constructing a new attributed multi-graph and performing cluster-

ing on it. Clustering results are then leveraged not only to provide recommendations

but also to extract cluster descriptions, i.e. main topic such as cloud computing.And
rea

s P
ap

ad
op

ou
los

100

Results are stored in the system’s datastore and then presented to the users upon

request via a web-based user interface. To the best of our knowledge, this the first

system to provide such services to the community. We find our contribution as a

great tool in the hands of researchers and organizations towards establishing new

collaborations and thus encourages research advances.

The remaining of this chapter is organized as follows. Section 9.1 overviews the

related work. Sections 9.2 and 9.3 present the proposed solution and the developed

system architecture. Section 9.4 outlines the evaluation section, and Section 9.5

concludes the chapter.

9.1 Background

Traditionally, recommender systems help users to find items suiting their wishes,

needs or preferences. The different approaches to generate the recommendations

can be divided in two broad categories: content-based and collaborative filtering

approaches. Their goal is to predict the ratings of a user to items, and consequently

recommend the items corresponding to the top 𝑁 highest predicted ratings. Our

goal is to recommend organizations (i.e. items) to organizations (i.e. users).

In content-based recommender systems, each item is characterized by an at-

tribute vector describing its properties, e.g., for documents this vector is the Term

Frequency-Inverse Document Frequency (TF-IDF) of the most informative key-

words. A preference profile vector for each user is computed according to the items

he preferred. Subsequently, the 𝑁 most similar items to the user profile vector areAnd
rea

s P
ap

ad
op

ou
los

101

recommended. Recommender systems based purely on content generally suffer from

the problems of over-specialization. That is the system recommends only items that

are similar to the ones liked by this user. Hence, the system may fail to recommend

items that are different but still interesting to the user [2, 53].

Unlike content-based approaches, collaborative filtering approaches rely on the

ratings of a user as well as those of other users in the system. The key idea is that

the rating of a user for an item is likely to be similar to that of other users who

rated similarly other items. In contrast to content-based systems, collaborative fil-

tering ones can recommend items with very different content. Collaborative filtering

methods can be grouped in the two general classes of model-based and neighborhood

methods [29].

Model-based approaches use existing ratings to learn a predictive model. The

general idea is to model the user-item interactions with factors representing latent

characteristics of the users and the items. The models are trained using the avail-

able data and later used to predict the ratings of users for new items. Model-based

approaches for the task of recommending items are mainly based on matrix factor-

ization model [50] and include among others Support Vector Machines [29, 81], and

Singular Value Decomposition (SVD) [67, 100].

In neighborhood-based collaborative filtering, the user-item ratings are directly

used to predict ratings for new items. This can be done in two ways known as user-

based or item-based recommendations. User-based systems evaluate the interest of a

user for an item using the ratings of his neighborhood for this item. The neighborsAnd
rea

s P
ap

ad
op

ou
los

102

of a user are typically the users who rated similarly the same items. Item-based

approaches, on the other hand, predict the rating of a user for an item based on the

item’s neighborhood, i.e. the items which several users rated similarly.

Clustering has been used in various recommender systems to reduce the compu-

tation cost for finding the nearest user/item neighbors [9, 37, 95]. The typical use is

to cluster users and/or items [36, 37, 92] and consider the users/items in the same

cluster as the nearest neighbors. To predict a user’s rating for an item they use the

ratings of users/items in the user/item cluster, e.g. a user will rate an item with the

average rating of users in his cluster. By doing so, the system has to consider only

one cluster to provide recommendations instead of all users/items, thus limiting the

processing time.

Despite the success of above recommender systems, they do not apply to the

European research activities network because they ignore the existence of multiple

collaboration types, i.e. consider a user having only one connection/rating to an

item, and they do not handle the organizations’ heterogeneous attributes.

9.2 Proposed Solution

The problem we study in this chapter is given the European research activities

network to identify and rank for each organization a list of 𝑁 organizations with

which it can collaborate.

To exploit the organizations’ heterogeneous attributes and their multiple-typed

connections, we model the problem as an attributed multi-graph clustering task.And
rea

s P
ap

ad
op

ou
los

103

Specifically, we perform fuzzy clustering on the network to identify the most similar

organizations, that is organizations in the same clusters. Then, cluster memberships

are used to derive and rank new collaborations.

To cluster the European research activities network we employ CLAMP algo-

rithm (Chapter 7) for the following reasons: (a) fuzzy clustering memberships can

be used for recommendations ranking (Chapter 2), thus we excluded CAMIR; (b)

HASCOP does not handle the weighted edges between the organizations; and (c)

CLAMP is quite fast and performs better on EU-projects dataset (Chapter 8).

Hence, given the network we fine-tuned CLAMP clustering process using cross val-

idation technique to determine the model parameters. By doing so the clustering

process does not require any user interaction.

Clustering results are used to perform the recommendation task. Given the

clustering result of CLAMP, i.e. Θ ∈ R|𝒱|×𝐾 , we have to derive and rank the rec-

ommendation lists. Recall that an organization belongs to multiple clusters with

different probabilities. A possible way to derive recommendations for an organiza-

tion is to consider the members of its winner cluster (the cluster it belongs with

the highest probability). On the other hand, we may ignore the winner cluster and

recommend the top organizations from all the clusters it belongs. Either of the two

results in information lose. Thus, we propose to combine the multiple memberships

by computing a matrix 𝑅 ∈ R|𝒱|×|𝒱| using the following equation:

𝑅𝑖,𝑗 = max
∀𝑘

(Θ𝑖,𝑘.Θ𝑗,𝑘) (69)And
rea

s P
ap

ad
op

ou
los

104

Figure 18: Architecture of the Clustering-based Recommender System

𝑅𝑖,𝑗 denotes the computed likelihood of organization 𝑖 to collaborate with organi-

zation 𝑗 according to the clustering Θ. The recommendation list for organization 𝑖

is ranked according to the values in the 𝑖𝑡ℎ row of 𝑅, i.e. the organization with the

highest value is ranked first followed by the organization with the second highest

value and so on.

9.3 System Overview and Architecture

In this section, we describe the developed system prototype which integrates the

proposed clustering-based recommender. The system is modular, extensible and

performs the following operations: (a) imports new data, analyses and converts

them to attributed multi-graph; (b) performs clustering; (c) analyzes clustering

results to extract recommendations and group statistics; and (d) visually presents

the results.

And
rea

s P
ap

ad
op

ou
los

105

Figure 19: User Interface of the Clustering-based Recommender SystemAnd
rea

s P
ap

ad
op

ou
los

106

Figure (18) presents the main components of the system. Data Fetcher com-

ponent is responsible to check periodically if there are any updates on the research

activities network though the European open data portal. If so, it automatically

fetches, parses, validates and stores the new data. Clusterer is then triggered to per-

form the clustering and store the results to the system’s data store. Data Analyser

fetches and analyses the clustering results to derive group statistics and a ranked

recommendation list for each organization. Lastly, the Presentor2 leverages the

system’s Rest API to expose a nice user-friendly interface accessible through stan-

dard web browsers. It presents organizations in an interactive map and allows users

to view collaboration recommendations, filter the results and navigate through the

various group statistics (Figure (19)).

Data Analyser extracts various group statistics based on the clustering results.

Particularly, for each group it computes the winner topic, i.e. cloud computing,

according to the organizations memberships to the group. To do so, it sums per

topic each organization’s contribution, which is the number of projects under the

specific topic it has participated. By computing the winner topic per group we allow

users to easily filter the results and get insights on various group properties. Other

group characteristics such as main research activity type are computed similarly.

Additionally, the system allows users to select topics of interest and time period

for projects start/end, and to optionally type some keywords. Based on user input

the system automatically filters the organizations and constructs a new dataset. It
2The Presentor component has been implemented by Andreas Andreou, email:

andreou.andreas@cs.ucy.ac.cyAnd
rea

s P
ap

ad
op

ou
los

107

then applies CLAMP clustering algorithm to the new dataset, derives recommenda-

tion lists and group statistics, and presents the updated results to the user. This is

particularly useful when someone is interested only in organizations participated in

projects having description matching specific keywords, i.e. recommender system.

9.4 Evaluation

The system is implemented using PHP, mysql and Javascript and thus it is

easily accessible via standard web browsers. The clustering task is performed by a

multi-threaded CLAMP implementation in Java.

9.4.1 European Research Activities Network

As of April 2017 the European Research Activities Network consists of 5198 or-

ganizations that participated to 16621 projects funded under the H2020 programme.

Projects lifespan is between 1/1/2014 (start date) and 31/12/2023 (end date). We

represent each organization by a vertex characterized by the attributes presented

in Table 11. Organizations are connected by three types of edges depicted in Table

10. There are about 527K weighted edges/collaborations in the dataset. We note

that network edges are based on organization participation to funded projects and

may not capture all organization relationships. For instance, information regarding

R&D project proposals that were not approved for funding is not publicly available.

And
rea

s P
ap

ad
op

ou
los

108

Table 11: Description of Organization Attributes

Organization Attributes

The number of projects the organization participated
The number of projects the organization coordinated
The number of projects the organization was beneficiary or host
Location at city level
Activity type, i.e. research organization, higher or secondary education estab-
lishment, private for-profit entity, public body, other.

To statistically evaluate the effectiveness of our clustering-based recommender

we performed a standard hold-out experiment. Specifically, we partitioned the Eu-

ropean research activities network into two sets: a training set consisting of the

collaborations established in the first 70% of the projects (regarding projects start

date); and a test set consisting of the collaborations established in the last 30% of

the projects. By doing so we guaranteed that the training set has the same proper-

ties as the original dataset. Training set consists of 3577 organizations participated

in 7748 projects (30% of the total number of projects). The 3577 organizations

are connected by approximately 245K connections. In the test set 48495 collab-

orations were established (among 1402 organizations) from which 15407 between

unconnected organizations in the training set. Average new collaborations per orga-

nization is 37.3. However, the per-organization maximum and minimum number of

new collaborations in the test set is 402 and 0 respectively. In other words, in the

test set there are organization that established a lot of collaborations and organiza-

tions that did not establish new collaborations. The clustering algorithm is applied

to the training set and the results are analyzed to see how well the system predicts

the 15407 “unknown” collaborations in the test set.And
rea

s P
ap

ad
op

ou
los

109

9.4.2 Evaluation Measures and Comparison Methods

To evaluate the results we use the widely accepted Precision and Recall eval-

uation measures [59]. To compute precision and recall, given an organization’s

recommendation list, we firstly calculate the following values:

1. True Positives (TP): the number of recommended collaborations that are in

the test set

2. False Positives (FP): the number of collaborations not in the test set that have

been recommended

3. False Negatives (FN): the number of collaborations in the test set that have

not been recommended

Precision and recall are defined as follows [59]:

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(70)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(71)

Both precision and recall take values in [0, 1]. Precision measures the proportion

of collaborations in a recommendation list that are correct (appear in the test set),

and indicates how well the system separates the collaborations in the test set from

random collaborations. Recall measures the proportion of collaborations in the test

set that have been recommended (𝑇𝑃 +𝐹𝑁 is the size of the test set), and indicates

how well the system predicts the recommendations in the test set. An ideal system
And

rea
s P

ap
ad

op
ou

los

110

achieves both precision and recall of value 1. However, there exists an important

trade-off between precision and recall: allowing for a longer list of recommendations

improves recall but is likely to reduce precision. Improving precision often worsens

recall [11]. Total precision and recall are taken as the average for all organizations.

Precision@N and Recall@N refer to precision and recall values when we consider

only top 𝑁 items in the recommendation lists.

We note that a recommended collaboration that is not in the test set does not

imply that these two organizations are not related or will never collaborate, e.g.

some organizations may have already collaborated on an EU-project proposal that

was not funded. This fact may result in low precision and recall values.

We compared our system for different values of 𝑁 to SVD and KNN [14] recom-

menders provided by mahout machine learning library. 3 SVD and KNN parameters

are set to the default values in mahout library. The input of SVD and KNN is the

collaboration matrix, i.e. the preference/rating of organization A for organization

B is the number of their collaborations. We also present the results of a fictitious

algorithm that applies CLAMP and then recommends to an organization the top

organizations in its winner cluster.

9.4.3 Evaluation Results

Figures (20, 21) show the average precision and recall values for multiple number

of recommendations (𝑁). We observe that the proposed recommender on average
3https://mahout.apache.org/users/algorithms/recommender-overview.htmlAnd
rea

s P
ap

ad
op

ou
los

https://mahout.apache.org/users/algorithms/recommender-overview.html

111

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40

P
re

c
is

io
n

N

CLAMP
Winner Cluster

SVD
KNN

Figure 20: Precision for Recommending New Collaborations

predicts correctly more than half of excluded collaborations. Also, it achieves Pre-

cision@5 of about 0.7 (Figure (20)). Reaching high precision at low 𝑁 is very

important for a recommender ranking system indicating that recommendations are

correctly ranked on top of the recommendation lists. Proposed method also achieves

high (≈ 0.85) Recall@40 (Figure (21)). This suggests that our system recommended

back almost all the recommendations in the test set. The success of our recommeder

system is based on the proposed ranking method and the CLAMP ability to au-

tomatically identify the importance of each organization’s property. Specifically,

CLAMP assigned almost equal importance/weight to attributes number of par-

ticipations, collaborations and hosted/beneficiary (0.3), and lower importance to

attributes activity type (0.06) and city (0.04). Also, it assigned slightly higher im-

portance/weight to the edges than the attributes (0.6 and 0.4 respectively). This is

reasonable since organizations with different activity types and from different citiesAnd
rea

s P
ap

ad
op

ou
los

112

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 5 10 15 20 25 30 35 40

R
e
c
a
ll

N

CLAMP
Winner Cluster

SVD
KNN

Figure 21: Recall for Recommending New Collaborations

collaborate together. Also, connections are more important than attributes since it

is common for organizations with divert number of projects to collaborate.

Overall, we observe a sharp improvement over the SVD, KNN and WinnerCluster

baselines which fail to handle the European Research activities network. SVD and

KNN mainly fail because they ignore the multiple collaborations types and the

organization heterogeneous attributes. Additionally, the collaboration matrix is

relatively sparse and has low rank (number of linearly independent rows). That is,

because many organizations participate in the same project and the average number

of projects per organization is low (≈ 2). Thus, the network does not contain

sufficient information for SVD and KNN recommender (also known as the cold start

problem) [9]. Proposed method and WinnerCluster use the same clustering results

to provide recommendations. The poor performance of WinnerCluster confirms the

superiority of proposed ranking mechanism. Also, proposed method recommendsAnd
rea

s P
ap

ad
op

ou
los

113

towards the top of the recommendation lists the connections in the test set. We

conclude that our experimentation demonstrates the effectiveness and efficacy of

the proposed clustering-based recommender.

9.5 Conclusions

In this chapter, we propose a clustering-based recommender for research col-

laborations at European level based on CLAMP clustering algorithm. Our exper-

imentation shows a clear advantage of the proposed solution over well-established

recommendation algorithms such as SVD and KNN. Proposed system can be used

from researchers and organizations to find new partners and thus encourages re-

search advances. Moreover, the presented recommender system demonstrates the

applicability of the work presented in this thesis to a real-world scenario.4

For future work, since statistical offline evaluation can not replace a test with

real user [49] and because our system is easily accessible to end users though a web

browser, we plan a test with real user to further evaluate our system’s performance.

4We note that the methods proposed in this thesis are generic and can be applied to other real
world applications as well.

And
rea

s P
ap

ad
op

ou
los

Chapter 10

Conclusions and Future work

This thesis focuses on the problem of clustering information networks modeled

as attributed multi-graphs and introduces three novel methods that efficiently over-

come various limitations of existing state-of-the-art methods. Specifically, the pro-

posed methods for identifying clusters in an attributed multi-graph, named HAS-

COP (Homogeneous Attributes and Similar COnnectivity Patterns), CAMIR (Clus-

tering Attributed Multi-graphs with Information Ranking) and CLAMP (CLuster-

ing Attributed Multi-graPhs): (a) identify automatically the importance of struc-

tural and attribute properties of the vertices; (b) consider the existence of multiple

edge types; and (c) detect clusters that exhibit similar connectivity, in terms of

structural, i.e. relate/connect to the same vertices, and attribute coherence, in

terms of attributes, i.e. vertices are characterized by close attribute values. Also,

CLAMP is the first method to perform fuzzy clustering on weighted directed at-

tributed multi-graphs with heterogeneous attributes. Proposed methods can exploit

properly the computational power of modern many- and multi-core architectures to

114

And
rea

s P
ap

ad
op

ou
los

115

scale to large datasets. They identify the importance of each vertex property using

proposed weighting mechanisms. They so balance and combine the vertex proper-

ties efficiently. Our extensive experimental evaluation on synthetic datasets and a

diverse collection of real world information networks: (a) confirms that proposed

weighting mechanisms improve clustering quality; and (b) demonstrates the effi-

ciency and effectiveness of proposed approaches on various scenarios.

Moreover, we are among the first to optimize similar connectivity on attributed

multi-graphs. We demonstrate the importance of similar connectivity in identifying

software packages and recommending new collaborations. Similar connectivity can

be of great help in other real-world applications as well, i.e. friendship recommen-

dations in online social networks.

We further leverage proposed methods to solve a practical issue. That is, how

to offer reliable, evidence-based recommendations to European organizations. We

propose a clustering-based recommendation method for the European research ac-

tivities network. Organization and researchers can use our system to establish new

collaborations. To the best of our knowledge, this is the first system to offer such

services to the community.

The European research activities use case demonstrates the applicability of the

work presented in this thesis to real-world scenarios. Since proposed methods are

generic and can be applied to other real world networks as well, we plan to investigate

the results of our methods on social network and protein interaction attributed

multi-graphs. A Protein Interaction Network can be modeled as an attributed graphAnd
rea

s P
ap

ad
op

ou
los

116

where a vertex is a gene, and there is an edge between two genes if there is an

interaction between the proteins corresponding to these two genes. The attributes

associated to a gene are simply the biological situations in which the gene was over-

expressed. Examining the clusters of such network can raise interesting questions,

i.e. “are there some interactions between an isolated cluster and the others, while

no such interaction is known?”, or “is there any order in the activation of the genes

in the same group?”. These questions can lead to interesting deeper investigations

through biology experiments [62].

The work this thesis presents can be used to extract meaningful knowledge from

the networks under study. Yet, it concerns only with full space clustering of static

homogeneous attributed multi-graphs. Real-world information networks change con-

tinuously and consist of heterogeneous objects, while a set of objects may be ‘related’

based on a subset of their properties. To this end, we pose as future research direc-

tions the proposal and development of scalable methods for subspace clustering of

heterogeneous evolving networks.

And
rea

s P
ap

ad
op

ou
los

References

[1] Emmanuel Abbe and Colin Sandon. Community detection in general stochas-
tic block models: Fundamental limits and efficient algorithms for recovery. In
Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Sympo-
sium on, pages 670–688. IEEE, 2015.

[2] Gediminas Adomavicius and Alexander Tuzhilin. Context-aware recom-
mender systems. In Recommender systems handbook, pages 191–226. Springer,
2015.

[3] Charu C. Aggarwal and Haixun Wang. A Survey of Clustering Algorithms
for Graph Data. In Charu C. Aggarwal, Haixun Wang, and Ahmed K. Elma-
garmid, editors, Managing and Mining Graph Data, volume 40 of Advances in
Database Systems, pages 275–301. Springer US, 2010.

[4] Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing.
Mixed membership stochastic blockmodels. J. Mach. Learn. Res., 9:1981–
2014, June 2008.

[5] C.G. Akcora, B. Carminati, and E. Ferrari. Network and profile based mea-
sures for user similarities on social networks. In Information Reuse and Inte-
gration (IRI), 2011 IEEE International Conference on, pages 292 –298, aug.
2011.

[6] Leman Akoglu. Mining and modeling real-world networks: patterns, anoma-
lies, and tools. Technical report, DTIC Document, 2012.

[7] Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based anomaly
detection and description: a survey. Data Mining and Knowledge Discovery,
29(3):626–688, 2015.

[8] Leman Akoglu, Hanghang Tong, Brendan Meeder, and Christos Faloutsos.
Pics: Parameter-free identification of cohesive subgroups in large attributed
graphs. In Proceedings of the 12th SIAM International Conference on Data
Mining, SDM 2012, pages 439–450. SIAM / Omnipress, April 2012.

117

And
rea

s P
ap

ad
op

ou
los

118

[9] Xavier Amatriain and Josep M. Pujol. Data Mining Methods for Recom-
mender Systems, pages 227–262. Springer US, Boston, MA, 2015.

[10] David Arthur and Sergei Vassilvitskii. How slow is the k-means method?
In Proceedings of the Twenty-second Annual Symposium on Computational
Geometry, SCG ’06, pages 144–153, New York, NY, USA, 2006. ACM.

[11] Iman Avazpour, Teerat Pitakrat, Lars Grunske, and John Grundy. Dimen-
sions and Metrics for Evaluating Recommendation Systems, pages 245–273.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[12] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and
Sergei Vassilvitskii. Scalable k-means++. Proc. VLDB Endow., 5(7):622–
633, March 2012.

[13] Alessandro Baroni, Alessio Conte, Maurizio Patrignani, and Salvatore Rug-
gieri. Efficiently clustering very large attributed graphs. arXiv preprint
arXiv:1703.08590, 2017.

[14] Joeran Beel, Bela Gipp, Stefan Langer, and Corinna Breitinger. Research-
paper recommender systems: a literature survey. International Journal on
Digital Libraries, 17(4):305–338, 2016.

[15] James C. Bezdek, Robert Ehrlich, and William Full. FCM: The fuzzy c-means
clustering algorithm. Computers & Geosciences, 10(2–3):191 – 203, 1984.

[16] J.C. Bezdek, R.J. Hathaway, R.E. Howard, C.A. Wilson, and M.P. Windham.
Local convergence analysis of a grouped variable version of coordinate descent.
Journal of Optimization Theory and Applications, 54(3):471–477, 1987.

[17] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiér-
rez. Recommender systems survey. Knowledge-based systems, 46:109–132,
2013.

[18] Brigitte Boden. Combined clustering of graph and attribute data. Apprimus-
Verlag, 2014.

[19] Cecile Bothorel, Juan David Cruz, Matteo Magnani, and Barbora Micenkova.
Clustering attributed graphs: Models, measures and methods. Network Sci-
ence, 3:408–444, 9 2015.

[20] V. K. Bulitko. On graphs with given vertex neighborhoods, 1972.

[21] Florentina Bunea, Yang Ning, and Marten Wegkamp. Overlapping variable
clustering with statistical guarantees. arXiv preprint arXiv:1704.06977, 2017.

[22] Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, and E.Y. Chang.
Parallel spectral clustering in distributed systems. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 33(3):568–586, 2011.

And
rea

s P
ap

ad
op

ou
los

119

[23] Hong Cheng, Yang Zhou, Xin Huang, and Jeffrey Xu Yu. Clustering large at-
tributed information networks: an efficient incremental computing approach.
Data Mining and Knowledge Discovery, 25(3):450–477, 2012.

[24] Hong Cheng, Yang Zhou, and Jeffrey Xu Yu. Clustering large attributed
graphs: A balance between structural and attribute similarities. ACM Trans.
Knowl. Discov. Data, 5(2):12:1–12:33, February 2011.

[25] Fan R. K. Chung. Spectral Graph Theory. American Mathematical Society,
Providence, RI, 1997.

[26] Anne Condon and Richard M. Karp. Algorithms for graph partitioning on the
planted partition model. Random Struct. Algorithms, 18(2):116–140, March
2001.

[27] Dragoš M. Cvetković, Michael Doob, and Horst Sachs. Spectra of Graphs:
Theory and Application. Academic Press, New York, 1980.

[28] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, January 2008.

[29] Christian Desrosiers and George Karypis. A comprehensive survey of
neighborhood-based recommendation methods. In Recommender systems
handbook, pages 107–144. Springer, 2011.

[30] Marios D. Dikaiakos, Asterios Katsifodimos, and George Pallis. Minersoft:
Software retrieval in grid and cloud computing infrastructures. ACM Trans.
Internet Technol., 12(1), July 2012.

[31] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering large
graphs via the singular value decomposition. Machine Learning, 56(1):9–33,
2004.

[32] Maurizio Filippone, Francesco Camastra, Francesco Masulli, and Stefano
Rovetta. A survey of kernel and spectral methods for clustering. Pattern
Recogn., 41(1):176–190, 2008.

[33] Santo Fortunato and Darko Hric. Community detection in networks: A user
guide. Physics Reports, 659:1 – 44, 2016. Community detection in networks:
A user guide.

[34] Esther Galbrun, Aristides Gionis, and Nikolaj Tatti. Overlapping community
detection in labeled graphs. Data Mining and Knowledge Discovery, 28(5-
6):1586–1610, 2014.

[35] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.And
rea

s P
ap

ad
op

ou
los

120

[36] Thomas George and Srujana Merugu. A scalable collaborative filtering frame-
work based on co-clustering. In Proceedings of the Fifth IEEE International
Conference on Data Mining, ICDM ’05, pages 625–628, Washington, DC,
USA, 2005. IEEE Computer Society.

[37] Modou Gueye, Talel Abdessalem, and Hubert Naacke. Dynamic Recom-
mender System: Using Cluster-Based Biases to Improve the Accuracy of the
Predictions, pages 79–104. Springer International Publishing, Cham, 2016.

[38] S. Gunnemann, I. Farber, S. Raubach, and T. Seidl. Spectral subspace clus-
tering for graphs with feature vectors. In Data Mining (ICDM), 2013 IEEE
13th International Conference on, pages 231–240, Dec 2013.

[39] Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola. Kernel
methods in machine learning. Ann. Statist., 36(3):1171–1220, 2008.

[40] Hsin-Chien Huang, Yung-Yu Chuang, and Chu-Song Chen. Multiple kernel
fuzzy clustering. Fuzzy Systems, IEEE Transactions on, 20(1):120–134, Feb
2012.

[41] Zhexue Huang. Extensions to the k-means algorithm for clustering large data
sets with categorical values. Data Min. Knowl. Discov., 2(3):283–304, Septem-
ber 1998.

[42] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Comput. Surv., 31(3):264–323, September 1999.

[43] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard
Friedrich. Recommender systems: an introduction. Cambridge University
Press, 2010.

[44] S. Jenkins and S.R. Kirk. Software architecture graphs as complex networks:
A novel partitioning scheme to measure stability and evolution. Information
Sciences, 177(12), 2007.

[45] U. Kang, Brendan Meeder, Evangelos E. Papalexakis, and Christos Faloutsos.
Heigen: Spectral analysis for billion-scale graphs. IEEE Trans. Knowl. Data
Eng., 26(2):350–362, 2014.

[46] Brian Karrer and M. E. J. Newman. Stochastic blockmodels and community
structure in networks. Phys. Rev. E, 83:016107, Jan 2011.

[47] L. Kaufman and P. Rousseeuw. Clustering by Means of Medoids. Reports of
the Faculty of Mathematics and Informatics. Delft University of Technology.
Fac., Univ., 1987.And
rea

s P
ap

ad
op

ou
los

121

[48] Frank Klawonn and Frank Höppner. What Is Fuzzy about Fuzzy Clustering?
Understanding and Improving the Concept of the Fuzzifier. In Advances in In-
telligent Data Analysis V, volume 2810 of Lecture Notes in Computer Science,
pages 254–264. Springer Berlin Heidelberg, 2003.

[49] Ron Kohavi and Roger Longbotham. Online Controlled Experiments and A/B
Testing, pages 1–8. Springer US, Boston, MA, 2016.

[50] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization tech-
niques for recommender systems. Computer, 42(8), 2009.

[51] Abhishek Kumar, Piyush Rai, and Hal Daume. Co-regularized multi-view
spectral clustering. In J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira,
and K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems 24, pages 1413–1421. Curran Associates, Inc., 2011.

[52] Nan Li, Huan Sun, Kyle C. Chipman, Jemin George, and Xifeng Yan. A
probabilistic approach to uncovering attributed graph anomalies. In Mo-
hammed Javeed Zaki, Zoran Obradovic, Pang-Ning Tan, Arindam Banerjee,
Chandrika Kamath, and Srinivasan Parthasarathy, editors, Proceedings of the
2014 SIAM International Conference on Data Mining, Philadelphia, Pennsyl-
vania, USA, April 24-26, 2014, pages 82–90. SIAM, 2014.

[53] Xin Liu and Karl Aberer. Soco: A social network aided context-aware rec-
ommender system. In Proceedings of the 22Nd International Conference on
World Wide Web, WWW ’13, pages 781–802, New York, NY, USA, 2013.
ACM.

[54] Bo Long, Zhongfei (Mark) Zhang, Xiaoyun Wú, and Philip S. Yu. Spectral
clustering for multi-type relational data. In Proceedings of the 23rd Interna-
tional Conference on Machine Learning, ICML ’06, pages 585–592, New York,
NY, USA, 2006. ACM.

[55] Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos. Power laws in
software. ACM Trans. Softw. Eng. Methodol., 18(1):2:1–2:26, October 2008.

[56] Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, 2007.

[57] J. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proceedings of the Fifth Berkeley Symposium on Mathemat-
ical Statistics and Probability, Volume 1: Statistics, pages 281–297, Berkeley,
Calif., 1967. University of California Press.

[58] Gideon S. Mann and Andrew McCallum. Efficient computation of entropy
gradient for semi-supervised conditional random fields. In Human Language
Technologies 2007: The Conference of the North American Chapter of theAnd
rea

s P
ap

ad
op

ou
los

122

Association for Computational Linguistics; Companion Volume, Short Papers,
pages 109–112. Association for Computational Linguistics, 2007.

[59] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. Introduc-
tion to Information Retrieval. Cambridge University Press, New York, NY,
USA, 2008.

[60] Marina Meila and William Pentney. Clustering by weighted cuts in directed
graphs. In In Proceedings of the 2007 SIAM International Conference on Data
Mining, 2007.

[61] Flavia Moser, Recep Colak, Arash Rafiey, and Martin Ester. Mining cohesive
patterns from graphs with feature vectors. In SDM, pages 593–604. SIAM,
2009.

[62] Pierre-Nicolas Mougel, Christophe Rigotti, and Olivier Gandrillon. Finding
collections of k-clique percolated components in attributed graphs. In Pang-
Ning Tan, Sanjay Chawla, ChinKuan Ho, and James Bailey, editors, Advances
in Knowledge Discovery and Data Mining, volume 7302 of Lecture Notes in
Computer Science, pages 181–192. Springer Berlin Heidelberg, 2012.

[63] Andreas Papadopoulos, George Pallis, and Marios D. Dikaiakos. Identifying
clusters with attribute homogeneity and similar connectivity in information
networks. IEEE/WIC/ACM International Conference on Web Intelligence,
2013.

[64] Andreas Papadopoulos, George Pallis, and Marios D. Dikaiakos. Weighted
clustering of attributed multi-graphs. Computing, pages 1–28, 2016.

[65] Andreas Papadopoulos, Dimitrios Rafailidis, George Pallis, and Marios Dika-
iakos. Clustering attributed multi-graphs with information ranking. In
Database and Expert Systems Applications, Lecture Notes in Computer Sci-
ence. Springer International Publishing, 2015.

[66] E.E. Papalexakis, L. Akoglu, and D. Ience. Do more views of a graph help?
community detection and clustering in multi-graphs. In Information Fusion
(FUSION), 2013 16th International Conference on, pages 899–905, July 2013.

[67] Arkadiusz Paterek. Improving regularized singular value decomposition for
collaborative filtering. In Proceedings of KDD cup and workshop, volume
2007, pages 5–8, 2007.

[68] Bryan Perozzi, Leman Akoglu, Patricia Iglesias Sánchez, and Emmanuel
Müller. Focused Clustering and Outlier Detection in Large Attributed Graphs.
In Proceedings of the 20th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’14. ACM, 2014.And
rea

s P
ap

ad
op

ou
los

123

[69] Marko Robnik-Šikonja and Igor Kononenko. Theoretical and Empirical Anal-
ysis of ReliefF and RReliefF. Mach. Learn., 53(1-2):23–69, October 2003.

[70] Yiye Ruan, David Fuhry, and Srinivasan Parthasarathy. Efficient community
detection in large networks using content and links. In Proceedings of the 22nd
International Conference on World Wide Web, WWW ’13, pages 1089–1098,
Republic and Canton of Geneva, Switzerland, 2013. International World Wide
Web Conferences Steering Committee.

[71] E. M. Rutledge, B. A. Miller, and M. S. Beard. Benchmarking parallel eigen
decomposition for residuals analysis of very large graphs. In 2012 IEEE Con-
ference on High Performance Extreme Computing, pages 1–5, Sept 2012.

[72] Alan Said and Alejandro Bellogín. Comparative recommender system evalu-
ation: benchmarking recommendation frameworks. In Proceedings of the 8th
ACM Conference on Recommender systems, pages 129–136. ACM, 2014.

[73] Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27 –
64, 2007.

[74] Shimo Shen and Zuqiang Meng. Optimization of initial centroids for k-means
algorithm based on small world network. In Zhongzhi Shi, David Leake, and
Sunil Vadera, editors, Intelligent Information Processing VI, volume 385 of
IFIP Advances in Information and Communication Technology, pages 87–96.
Springer Berlin Heidelberg, 2012.

[75] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 2000.

[76] Laura M. Smith, Linhong Zhu, Kristina Lerman, and Allon G. Percus. Parti-
tioning networks with node attributes by compressing information flow. ACM
Trans. Knowl. Discov. Data, 11(2):15:1–15:26, November 2016.

[77] Michael. Steinbach and Vipin Kumar. Cluster analysis: Basic concepts and
algorithms. In Introduction to data mining. Pearson Addison Wesley, 1st edi-
tion, 2005.

[78] Karsten Steinhaeuser and NiteshV. Chawla. Community detection in a large
real-world social network. In Huan Liu, JohnJ. Salerno, and MichaelJ. Young,
editors, Social Computing, Behavioral Modeling, and Prediction, pages 168–
175. Springer US, 2008.

[79] Heli Sun, Jianbin Huang, Jiawei Han, Hongbo Deng, Peixiang Zhao, and Boqin
Feng. gSkeletonClu: density-based network clustering via structure-connected
tree division or agglomeration. In Proceedings of the 2010 IEEE International
Conference on Data Mining, ICDM ’10, pages 481–490, Washington, DC,
USA, 2010. IEEE Computer Society.And
rea

s P
ap

ad
op

ou
los

124

[80] Yizhou Sun, Charu C. Aggarwal, and Jiawei Han. Relation strength-aware
clustering of heterogeneous information networks with incomplete attributes.
Proc. VLDB Endow., 5(5):394–405, January 2012.

[81] Panagiotis Symeonidis. Matrix and tensor decomposition in recommender sys-
tems. In Proceedings of the 10th ACM Conference on Recommender Systems,
pages 429–430. ACM, 2016.

[82] Mirwais Tanai, Jongwan Kim, and JoongHyuk Chang. Model-based clustering
analysis of student data. In Geuk Lee, Daniel Howard, and Dominik Slezak,
editors, Convergence and Hybrid Information Technology, volume 6935 of Lec-
ture Notes in Computer Science, pages 669–676. Springer Berlin Heidelberg,
2011.

[83] Wei Tang, Zhengdong Lu, and Inderjit S. Dhillon. Clustering with multiple
graphs. In Proceedings of the 2009 Ninth IEEE International Conference on
Data Mining, ICDM ’09, pages 1016–1021, Washington, DC, USA, 2009. IEEE
Computer Society.

[84] Wikipedia. Mixture model. http://en.wikipedia.org/wiki/Mixture_
model, February 2013.

[85] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Ma-
chine Learning Tools and Techniques. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 3rd edition, 2011.

[86] M. M. Wolf and B. A. Miller. Sparse matrix partitioning for parallel eigen-
analysis of large static and dynamic graphs. In 2014 IEEE High Performance
Extreme Computing Conference (HPEC), pages 1–6, Sept 2014.

[87] Zhonggang Wu, Zhao Lu, and Shan-Yuan Ho. Community detection with
topological structure and attributes in information networks. ACM Trans.
Intell. Syst. Technol., 8(2):33:1–33:17, November 2016.

[88] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas A. J. Schweiger.
SCAN: a structural clustering algorithm for networks. In Proceedings of the
13th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’07, pages 824–833, New York, NY, USA, 2007. ACM.

[89] Zhiqiang Xu, James Cheng, Xiaokui Xiao, Ryohei Fujimaki, and Yusuke Mu-
raoka. Efficient nonparametric and asymptotic bayesian model selection meth-
ods for attributed graph clustering. Knowledge and Information Systems,
pages 1–30, 2017.

[90] Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. A model-
based approach to attributed graph clustering. In Proceedings of the 2012
international conference on Management of Data, SIGMOD ’12, pages 505–
516, New York, NY, USA, 2012. ACM.

And
rea

s P
ap

ad
op

ou
los

http://en.wikipedia.org/wiki/Mixture_model
http://en.wikipedia.org/wiki/Mixture_model

125

[91] Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. GBAGC:
A general bayesian framework for attributed graph clustering. ACM Trans.
Knowl. Discov. Data, 9(1):5:1–5:43, August 2014.

[92] Gui-Rong Xue, Chenxi Lin, Qiang Yang, WenSi Xi, Hua-Jun Zeng, Yong Yu,
and Zheng Chen. Scalable collaborative filtering using cluster-based smooth-
ing. In Proceedings of the 28th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 114–121. ACM,
2005.

[93] Jaewon Yang, Julian McAuley, and Jure Leskovec. Community detection in
networks with node attributes. In Data Mining (ICDM), 2013 IEEE 13th
International Conference on, pages 1151–1156, Dec 2013.

[94] H Yu and Blair R Hageman. A framework for attribute-based community de-
tection with applications to integrated functional genomics. In Pacific Sym-
posium on Biocomputing. Pacific Symposium on Biocomputing, volume 21,
page 69, 2016.

[95] Sobia Zahra, Mustansar Ali Ghazanfar, Asra Khalid, Muhammad Awais
Azam, Usman Naeem, and Adam Prugel-Bennett. Novel centroid selection
approaches for kmeans-clustering based recommender systems. Information
Sciences, 320:156 – 189, 2015.

[96] Qian Zhang, Ye Tian, Ting Wang, Feng Yuan, and Qiang Xu. Approxeigen:
An approximate computing technique for large-scale eigen-decomposition. In
Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, ICCAD ’15, pages 824–830, Piscataway, NJ, USA, 2015. IEEE Press.

[97] Xiaolong Zheng, Daniel Zeng, Huiqian Li, and Feiyue Wang. Analyzing open-
source software systems as complex networks. Physica A: Statistical Mechan-
ics and its Applications, 387(24):6190 – 6200, 2008.

[98] Erheng Zhong, Wei Fan, Qiang Yang, Olivier Verscheure, and Jiangtao Ren.
Cross validation framework to choose amongst models and datasets for trans-
fer learning. In Proceedings of the 2010 European Conference on Machine
Learning and Knowledge Discovery in Databases: Part III, ECML PKDD’10,
pages 547–562, Berlin, Heidelberg, 2010. Springer-Verlag.

[99] Dengyong Zhou and Christopher J. C. Burges. Spectral clustering and trans-
ductive learning with multiple views. In Proceedings of the 24th International
Conference on Machine Learning, ICML ’07, pages 1159–1166, New York, NY,
USA, 2007. ACM.

[100] Xun Zhou, Jing He, Guangyan Huang, and Yanchun Zhang. Svd-based in-
cremental approaches for recommender systems. Journal of Computer and
System Sciences, 81(4):717–733, 2015.And
rea

s P
ap

ad
op

ou
los

126

[101] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. Graph clustering based on
structural/attribute similarities. Proc. VLDB Endow., 2(1):718–729, August
2009.

[102] Yang Zhou, Hong Cheng, and J.X. Yu. Clustering large attributed graphs:
An efficient incremental approach. In Data Mining (ICDM), IEEE 10th In-
ternational Conference on, 2010.

And
rea

s P
ap

ad
op

ou
los

	 Introduction
	Clustering Attributed Multi-graphs
	Contributions of this Thesis

	 Motivation
	Roadmap

	 Problem Statement and Preliminary Concepts
	Data Structure
	Clustering Problem
	Background
	Gradient Descent
	Spectral Clustering

	 Related Work
	Distance-based Attributed Graph Clustering
	Centroid-based
	Hierarchical
	Spectral Clustering
	Graph Transformation

	Model-based Attributed Graph Clustering
	Discussion

	 Homogeneous Attributes and Similar COnnectivity Patterns - HASCOP
	Distance Measures
	Similar Connectivity
	Attribute Coherence

	HASCOP Clustering Model
	Overview
	Similarity Function and Membership Calculation
	Structural Properties
	Attribute Properties
	Adjustment of Edge-Type and Attribute Weights

	HASCOP Algorithm
	Initialization
	Clustering Process

	 Clustering Attributed Multi-graphs with Information Ranking - CAMIR
	CAMIR Clustering Model
	Information Ranking

	CAMIR Algorithm

	 Weighted CLustering of Attributed Multi-graPhs - CLAMP
	CLAMP Clustering Model
	Overview
	Distance Measures
	Clustering Model
	Objective Function Optimization
	Cluster Representations
	Partitioning - Membership Probabilities
	Optimizing Attribute, Edge-type and Global Weights

	CLAMP Algorithm
	CLAMP Algorithm in MapReduce Model

	 Experimental Study
	Datasets
	Synthetic Datasets
	Real-world Datasets

	Evaluation Measures and Comparison Methods
	Evaluation on Synthetic Graphs
	Evaluation on Real-world Graphs
	GoogleSP-23 datasets
	DBLP-10K dataset
	EU-Projects dataset

	Efficiency Study
	Discussion and Connection to Previous Work

	 Use Case: Clustering-based Recommendation System
	Background
	Proposed Solution
	System Overview and Architecture
	Evaluation
	European Research Activities Network
	Evaluation Measures and Comparison Methods
	Evaluation Results

	Conclusions

	 Conclusions and Future work
	References

