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Abstract

Nowadays, one of the most important tools for the solution of differential equations is the ap-
plication of Lie symmetry methods. Solutions of nonlinear partial differential equations (PDEs)
can be constructed directly from the symmetries or via similarity reductions. However, finding
Lie symmetries of PDEs and generally for systems of PDEs, is not an easy task, especially when
arbitrary elements appear in the equations. Hence, in order to avoid numerous calculations,
some useful restrictions on the functional form of the coefficient functions of the Lie generator,
are needed.

The target of the present thesis is to find some useful a-priori restrictions on the form of the
generator, to reduce the number of calculations required in group classification. We deal with
evolution equations. To achieve this goal, in chapter 2 some basic, necessary definitions are given,
that enable us to develop our theory. We describe the notion of Lie groups of transformations,
the infinitesimal transformations. We explain what is meant by the terms invariance of a PDE,
similarity reductions, nonclassical symmetries and equivalence transformations.

In the next chapter, we exhibit known results for two types of generalized nonlinear scalar
PDEs. Specifically, for the nonlinear heat equation without presenting any calculations, we
mention out the equivalence transformations, Lie symmetries and invariant solutions. Also, for
the generalized Burgers equation, equivalence transformations and Lie symmetries are given.
These two equations motivate us to extend these results, for systems of diffusion equations,
later in the thesis.

Chapter 4 is the chapter in which the wanted, aforementioned restrictions on the form of the
Lie generator are derived. We recall some results from the papers of Tu [93] and Bluman [12].
Motivated by this work for scalar evolution PDEs, we extend similar results to systems of
evolution equations. That is, we firstly present restrictions on the form of the coefficient function
7 of the generator
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We examine when this coefficient function is a function only of {. We have also found coun-
terexamples in which 7 depends not only on ¢. These are interesting examples, that need to
be considered in some future work. Furthermore, restrictions on the form of the coefficient
functions &, n and pu, are given, in the case where 7 = 7(¢) is valid.

Chapters 5 and 6 contain applications of chapter 4 on two special classes of systems of evolu-
tion equations. Group classification of systems of diffusion equations is the purpose of chapter
5, while in chapter 6 we examine Burgers-type systems. For both systems, Lie symmetries, as
a result of the previous restrictions, and equivalence transformations, that help us to simplify
the form of the PDEs, are given. We have studied similarity reductions for two special cases of
systems of diffusion equations, whilst we have found some examples of nonclassical reductions
and a linearizable case of Burgers systems.

We finally present, in chapter 7, symmetry analysis of a two-dimensional Burgers system.
Lie invariance algebra and its subalgebras, followed by the complete point symmetry group, Lie
reductions of codimension one and two and also Lie symmetries of the reduced systems of PDEs,
complete this thesis.

The last chapter of the thesis, is a description of what we are planning to do in the next
few years. Problems that might admit generalizations are listed to be carried out. These are

problems appeared in chapters 4, 5, 6 and 7 of the thesis and need further study!
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ITepiAndn

Yug pépeg pag, éva and To To oNUavTiXd epyaiela Yo Ty extluon twv Atagopixwy Eliohoewy
elvon 1 eQopuoyYt Twv Pedodwy Twv ouppetpuwy tou Lie. Aloeig wag pn-ypopwxhc Mepixhc Ara-
popixfic E&lowone (MAE) urnopodv va xataoxevaotody aneudeiog and Tic oUUUETplES ¥ péow TV
HeTao Y NUaTIopdY utoPiBacpol tdlews. 2ot600, 1 ebpeon Ty cupuetelwv Lie MAE xot yevixote-
ea ovotnudtwy MAE, dev etvar e0xoln diadixacia, edixdtepa 0Ttny nepintwon mou o1 eEI0NOTELS
epgaviCoviar ouvapthoes twv eCapnuévey B/xar aveldptntwy getafintoyv. ¢ ex toltou, Tpog
AnoQUYY TOAUGPWIUWY UTOAOYIOUGY, ATATOOVTOL XUTOOL YPTiOILOL TIEPLOPLOUOL OTNV CUVRTNCLAXT
HOPQT TWV GUVTEAEGTOY TOU YEVVHTOEA.

O otéy0¢ e napovoag drateiPrc eivor 1) pEST) YENOWWY, EX TOV TEOTEPWY TEPLOPIOUWDY, OTNY
Hop®t, Tou YeVVATOPA, Yo vor detwdel o apripdg TV UTOAOYIOU®Y TOU anutTobVTAL 0TV TAEVOUN-
o1 TV CUPPETELOY. Ou aoyokniolue ue edlowoelg e€éMéng. Tlpog eniteudn tou oxomol autoy,
oto xe@dhouo 2, divoviar xdmotot Pactxol, yeRowol opopol, tou Va pag Bondicouv va avartd-
Couvpe v Vewpla pag. Tiveton meprypagh g évvolag Twv opddwy petaoynuatiopoyv Lie, twv
OTEIPOCTOVY PETACYNUATIOUOY. Axohollwg, enegnyolue Tt onuaivel avadloiwtn Atagopux E€low-
on, yetacynuatiopol utoBiBacuol Tdlews wag Awgopixrc EElowong, un-xhacoixéc oupuetpleg xat
HeTaoynpatiopol toduvapiog.

Y10 enOUEVO XEQANAO, TUPOUGCIALOVUE YVOOTA anoTtehéouota Yol 800 XATNYO0plEC YEVIXEUUEV®Y
un-ypouuixoy faduwtoy MAE. Yuyxexpipéva, yia tny un-yeopuxn egiowon g Yeppdtnrag, ywplg
VOl TOPOUGIAGOUIE TOUG UTOMOYIoWOUS, BIVOUUE TOUG UETACY NUATIOROVS LoOBUVIPLAS, TIC CURUETPIES
Lie xor Tic avahholwteg Moec. Enlong, yia v yevixevpévn ellowor tou Burgers, avagépouue
TOUC UETAOY UATIoLoUS looduvayiag xar Tig ovuuetpieg Lie.

To xepdhoo 4, eivor T0 xe@dhowo 610 onolo magovatdlovtar ot {ntoluevot, TpoavaPepdévieg
neploptopol TNV Hop@y Tou YeEVVATOpd. AvaxdAolUe xdmolo anoTEAESUATH And TIC ONUOCIEVOELS
twv Tu [93] xar Bluman [12]. YTroxwvoduevor and auth tnv dovietd, yio Badpwntéc MAE eZéhing,

EMEXTEIVOUUE TUPOUOLA ATOTENEGUATA Kol YLt CLUOTAUATA EELCOOEWY EEEMENG. AVaAUTIXOTERY, TRMOTA
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TpOLGLALOVUE TOUG TEPIOPLOUONE OTNY HOP®T] TOU CUVTEAEGTY T TOU YEVVHTOP

0 0 0 0
F:T(w,t,u,v)a+§(m,t,u,v)%+n(a¢,t,u,v)%—{—u(a:,t,u,’u) 0

E&etdloupe ndte autdg o ouvtedeothc eivan ouvdptnom tou t, uévov. Eyouue enlong Beet avtina-
padetypata ota onola 1o T, dev e€aptdTon povo and to t. Autd elvan evbagpépovta mapadelypota, To
omola npénel vo eetacVolv oe xdnolo peAhovTixy epyacio. Emniéov, divovtal xat neptoptopol otny
Hop@Y TV cuvtEhEsT®Y &, 1 xou K, oty nepinTwon tou toyler T = T(1).

To xepdharo 5 xon 6, amoteholY €QUPUOYEC TWV ATOTEAESPATWY Tou xePataiov 4, o€ 500 €idL-
*€C TEPIMTAOOELS oLOTNUATLY ellohoewy eEEMEnc. O oxomdg tou xepoalaiov 5 elvon 1 Tagvounon
TWV CUUUETPIOV CUOTHUATWY €EIOMOEWY BIdYVoTS, EV® 0T0 XxeE@dlato 6 e€etdlouue ouothAuata TO-
mou Burgers. Ko yio 1o 800 ouotiuata, napovoidlovye tig oupuetplec Lie, wg anotéheopa twv
TEONYOVUUEVGY TEQLOPIOUMY, Xl TOUG PETAOY NUATIoRoUS tooduvauiog, Tou wog Bondoly va arhonot-
floovpe v woppt, Twv MAE. Eyouue yeletioet toug yetaoynuatiopods urnoPiBacuol tdlems yio
000 GUYAEXPIUEVES TEPITTOOELS CUOTNUATWY EEI0WMOEWY BLdYUGNS, EVG €YOUUE PEEL XAt XATOLOL T
OElYUOTOL UN-XAATTIXWDY CUUPETEIOV, xaddg entiong xon ulo Ypopuxonotmoun TepitTtwor ousTHLATOS
tOnou Burgers.

Téhog, 610 xe@dhato 7, TapouGLaLoLYE AVIAUGT GUUUETELOY EVOC BL-BIdGTaTou cucThiuatog Burg-
ers. H datpifBr ohoxhnpwvetan ue v avadrolwtn dhyePpa Lie xar tic unodhyePpeg authg, axohou-
Yoluevn and Ty Thfer onpelaxy| ouddo cuUUETEIWY, Toug uroPBacpols Lie ouvdiaotdoewy 1 xou
2, xadde enlong xou Ti¢ ouppetpieg Lie twv unoPiBacuévey cvotnudtwy MAE.

To tekeutaio xepdhato g dratpiPric, amotehel mepLypapy| TNG €PEUVAS TOU TREOXELTAL VA YIVEL GTO
eyyYVc uéhhov. Amapripodvtar tpofhiuota, ta onofo mdavoy Vo emBEYOVTUL YEVIXEUOEWY, OV Vo
e€etaotoly. Autd elvor mpoPhuata o epgaviotnxay ota xepdhoua 4, 5, 6 xou 7 tng dateBhc xou

yio Tt omola amouteitar emnhéov pehéty!
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Chapter 1

Introduction

Marious Sophus Lie (1842-1899), was a Norwegian mathematician, who first established the
group analysis of differential equations. Lie’s theories are powerful tools for understanding the
physical laws of Nature.

Ovsiannikov in the late 1950’s and 1960’s and Bluman in the late 1960’s and 1970’s continued
Lie’s work, to develop symmetry methods for differential equations. Nowadays, there are several
comprehensive accounts of the basic theory as well as more recent applications and generaliza-
tions, based on the publication of the texts of Ovsiannikov [72], Bluman and Kumei [13], Bluman
and Anco [14], Bluman, Anco and Cheviakov [15], Olver [68], Ibragimov [37] and Fushchich [30].

Transformation methods are one of the most powerful tools currently available in the area
of nonlinear PDEs. While there is no existing general theory for solving such equations, many
special cases have yielded to appropriate changes of variables. Point transformations are the
ones which are mostly used. These are transformations in the space of the dependent and
the independent variables of a PDE. Probably the most useful point transformations of PDEs
are those which form a continuous Lie group of transformations and which leave the equation
invariant. Symmetries of this PDE are then revealed, perhaps enabling new solutions to be
found directly or via similarity reductions. The classical method of finding Lie symmetries is
to first find infinitesimal transformations, with the benefit of linearization, and then to extend
these to groups of finite transformations.

The investigation of nonlinear diffusion equations by means of symmetry methods began in
1959 with Ovsiannikov’s work [71] in which the author performed the group classification of the

class of equations of the form

ur = (f(u)uz), -

In Chapter 3 we recall the known results of the above second-order nonlinear diffusion equa-



tion. We present the equivalence transformations, Lie symmetries and invariant solutions. We
also give the equivalence transformations and Lie symmetries for the generalized Burgers equa-

tion
Up = Ugy + k(U)Usgp.

In the 1980’s Tu [93] and Bluman [12], presented some a-priori restrictions on the form of
the coefficient functions of the Lie symmetry generator for scalar PDEs.

Motivated by these results, in Chapter 4, we give some a-priori restrictions on the form of the
coefficient functions of the Lie symmetry generator for systems of evolution equations. These
restrictions make the problem of group classification of systems of evolution equations, especially
when arbitrary elements exist, easier.

In Chapters 5 and 6, we apply these restrictions to give the complete group classification of

the system of diffusion equations

up = [f(u,0)ual, ,  ve = [g(u, v)va],
and the systems of Burgers equations

Up = MUgy + (U, 0)uy + €100z, v = AoUge + k(u, v)vy + €quu,, €162 #0
and

U = MUgg + [, 0)uz, v = AoUsg + k(u, v)vy,

respectively.

In Chapter 7 we consider the two-dimensional Burgers system

Ut + UUy + VUy — E(um: +ayy) =0, v+ uve + vy — ﬁ(vm + vyy) =0

where Re is the Reynolds number. We present Lie symmetries, Lie reductions, Lie invariance
algebra and complete point symmetry group.
Finally, in Chapter 8 we list some open problems that need to be considered, in the future.
The calculations involved in this thesis have been facilitated by the computer algebraic pack-

age “MAPLE” [102].



Chapter 2

Basic Definitions

2.1 Lie Groups of Transformations

2.1.1 Groups

Definition 2.1. A group is a pair (G,x) that consists of a non-empty set G and a binary

operation, *: G x G — @G, satisfying the following axioms:

(i) Closure:
Vg heG=gxhedG.

(ii) Associativity:
Vg hkeG=gx*(hxk)=(g*h)x*k.

(iii) Identity Element: There is a (unique) element, e € G, called the identity element, such that
VgeG=—exg=gxe=yg.

(iv) Inverse element: For each element g € G there is a (unique) inverse, g~! € G, such that

Definition 2.2. A group G is called abelian ifV gh € G= gxh=hxg.

Definition 2.3. A subgroup of G is a non-empty subset of G, which forms a group itself under

the same operation.



2.1.2 Examples of Groups

Example 2.1. (Q,+) i.e. the additive group of rational numbers. Here e = 0 and ¢~ ! = —¢.

Example 2.2. (R",-) i.e. the multiplicative group of all positive real numbers. Here e = 1 and

2.1.3 Groups of Transformations

Definition 2.4. The term space transformation denotes a function, T : R* — R*, defined via
v =¢(x,t,u,v), ' =x(z,t,u,0), v =¥ (x,t,u,v), v =w(z,t,u,v),

where ¢, x,1¢ and w are known functions. Geometrically, T transforms a point (z,t¢,u,v) to
another point (2/,¢,4/,v’), in the same coordinate system.
If the equations defining the transformation 7', can be solved with respect to x,t,u, v, then

the resulting transformation is called the inverse transformation, 77!, which is defined via
r=9 (x’,t’,u’,v') ,t=X (a;',t’,u',v’) , u=WY (x’,t’,u’,v') ,v=10Q (a;',t’,u',v’) .

The composition of these two transformations, gives the identical transformation, i.e.

We now consider transformations in which the functions ¢, x, 1 and w depend also on a real
parameter €. We assume that the parameter ¢, varies continuously in an open interval, such that

| € |< €g. Then, the transformations compose a group of transformations 7T, given via
¥ =¢(z,t,u,v,€), ' =x(z,t,u,v,€), v = (x,t,u,v,e), v =w(x, t,u,v, e,
where ¢, x, % and w are analytic functions.

Definition 2.5. A set of transformations of the above form, forms a one-parameter Lie group
of transformations if it satisfies the following axioms:

a) Ty =1 (T, = I) (existence of identity element)

B) T- = T.-1 (existence of inverse element)

v) Ty (T5Te) = (T, 1) T, (associativity)

0) TsTe = Ty(s, ¢y (closure)
Fach value of the parameter e corresponds to a particular member of the group of transforma-

tions. Transformations 7, belong to the one-parameter group of transformations.



2.1.4 Examples of One-parameter Lie Groups of Transformations

Example 2.3. Group of Translations:
=z, t'=t+e W =u v =0

Here Ty = I. Hence ¢g = 0. Also T- ' = T_., so e ! = —¢. Finally, from the closure, we have
TsT, = Tsic. Therefore, ¢ (d,6) = § + €. This transformation represents a translation in the

direction of t, at a distance e.

Example 2.4. Group of Rotations:
2 =xcose—tsine, t' =xsine+tcose, v =ute v =0,

where Ty = I, which means ey = 0. Furthermore, ¢! = —¢, since Te_1 =T .. Again, T5T, =
Tste, 50 ¢ (d,€) = 0 + €. Such a transformation describes a rotation in the zt-plane at an angle

€, and a translation in the u-direction, at a distance e.

Example 2.5. Group of scalings:
¥ =ex, t' = ezt, u =u, v = ev.

In this case ¢g = 1, due to the fact that 73 = I. Furthermore, TE_1 = T, which means e ! = %

Here, ¢ (0,€) = de because T5T. = Ty..

2.2 Infinitesimal Transformations

We consider a one-parameter Lie group of transformations 7., with identity ¢¢ = 0. Using

Taylor’s expansion about ¢y = 0, we obtain

x’zx+e§(m,t,u,v)+0(62)
t'=t+er(z,t,u,v)+ 0 () 2.1)
v =u+en(z,t,u,v)+ O (%) .

v =v+ep(z,tu,v) + O (€2),
where,

_ 99
 Oe

_Ox

Ix _ o
T_ae

oY _ Ow
5:0’ n= Oe

f EZO’:U’_E

e=0 e=0
In these equations we ignore terms of order two and higher. This first order transformation,
is called infinitesimal transformation. The functions &, 7, n, u are called the infinitesimal

functions of the transformation.



The form of the corresponding Lie group of transformations, in finite form, can be found
when the infinitesimal functions are known. Their form is the solution of the system of Ordinary

Differential Equations (ODEs)

W @)
CZ“‘; = (¢, 0) (2.2)

=z t'=t u=u v=v, for e=0.

The above result is known as the First Fundamental Theorem of Lie.

2.2.1 Infinitesimal Generators

Definition 2.6. The infinitesimal generator of the one-parameter Lie group of transformations
(2.1) is the linear differential operator
0 0 0 0
I=¢— — — .
gax + "ot * "o + s
For any differentiable function, F(x,t,u,v), we have
oF oF OF oF
'F=¢(— — — —_—.
$oc Tt Tou oy
Example 2.6. We consider the group of rotations in the zt-plane

/ . ! .
T =xcose—tsine, t' = xsine + tcose.

The infinitesimal functions for the transformation are

dx’ dt’

= —zsine —tcose| _, = —t, = xcose —tsine| _, ==

de e=0 de e=0

and the infinitesimal generator has the form

Hence the system (2.2) has the following form
dx’ dt’

g8

de ~ °

de

subject to the initial conditions

=z, t'=t when e=0.



2.2.2 Invariant Functions

Definition 2.7. An infinitely differentiable function F'(z,t,u,v) is called an invariant function
of the Lie group of transformations (2.1) if F(2/,¢,u/,v") = F(x,t,u,v) identically in x,t, u,v

and € in a neighborhood of € = 0.

Remark 2.1. Given an invariant function F(z,t,u,v), any function ®(F(z,t,u,v)) is also

invariant.

Theorem 2.1. A function F(x,t,u,v) is an absolute invariant of the Lie group of transforma-

tions (2.1) with the generator I' if and only if it is a solution of the homogeneous PDE
IF(z,t,u,v) =0,
where,

0 0

Example 2.7. If we consider the group of rotations, a function F'(z,t) is invariant if and only
if

oF oF

Using the method of characteristics, one can solve the aforementioned first-order linear PDE,

that is,

de dt dF

—t =z 0
The solution has the form

F=1V (2" +t).

Hence any function of the form ¥ (:U2 + t2) remains invariant under the group of rotations.

2.3 Invariance of a PDE

We would like to examine when a PDE remains invariant under the action of the infinitesimal

transformation. It is necessary to know how the derivatives are transformed. For second order



PDEs, we define the following extension transformations:

u, = ug+ent(x,t,u, ug, u) + O (62)

uy, = w+ent (z,t,u, ug, ug) + O (62)

u Ugy + €77 (2,6, U, Ug, Up, Uz, Ugp, Ugt) + O (€2) (2.3)
Wy = uge + e (2,1, U, Ug, Up, Ung, Uat, use) + O (€7)

u;’t’ = U+ 677tt (x,t, u, Ug, Ut, Ugg, Ugt, Utt) + O (62) ,

where the extended infinitesimal functions have the form:

n* = Di(n) —usDz (§) — uDy (1)
1" = Di(n) —uaDy (§) —weDy (7)
N = Dz (n") = tza Dy (§) — uarDa (7) (2.4)
N = Di(n") = tuga Dy (€) — uge Dy (1)
= D, (n') — upDy (§) — up Dy ()
n" = Di(n') — uwDe (§) — upDe (7)

Here, D, and D; denote the total derivative operators, with respect to x and ¢, respectively.

The first and second prolongations of the extended infinitesimal generator are defined as:

0 0
IO =T 49— 4+t — 2.
St g (2.5)
0 0 0
F(?) _ F(l) Tx xt tt 2.6
* K 8ux:v * K auxt i 7 8utt ( )
respectively.

A transformation is called a Lie symmetry of a second order PDE,
E (z,t, u, uy, Up, Ugg, Ugt, Ugt) = 0,
if the PDE has the same form in the new variables 2/, ¢',u/. That is,
Uy U;'t') =0.

! 4l / / / !/
E (x S W Uy Ugry Ur

The PDE
D) (:Ca tv Uy Uy, Uty Uggy Unt s utt) = 07

admits a Lie symmetry of the form

0 0 0
F—f%ﬁ-’l’a"f'n%,

if and only if|

r®g|_ =o.



This is a multi-variable polynomial in the variables wu,, t¢, gz, Uzt, Ure. Equating the coefficients
of Uy, U, Ups, Uzt, Ust, gives an over-determined system of PDEs for the infinitesimal functions
&(x,t,u), 7(x,t,u) and n(x,t,u). The solution of this system provides us with the required
Lie symmetries of the PDE.

2.3.1 Similarity Reductions

Lie symmetries lead to the construction of transformations which reduce the number of inde-
pendent variables of a system of PDEs by at least one. Especially, in the case of a PDE with
two independent variables the reduction gives an ordinary differential equation. In the case of
an ODE the order of the equation is reduced by one. Such transformations are called similarity
transformations or similarity reductions. In the case of a system of PDEs with two independent
and two dependent variables they can be constructed from the solution of the invariant surface

conditions
T(‘T? t,u, U)ut + g(xv i, u, v)uw = 77('7;7 t,u, U),
T(z, t, u,v)ve + &(x, tyu, v)v, = p(z, t, u,v). (2.7)

This solution is obtained by solving the characteristic system,

dt B dj du dv

& n ow
Now, if f((iizzg is independent of w and v, then the solution of (2.7) has the form
w(x,t) = constant,
w(et) = Flotw, o)), (2.8)

v(z,t) = G(z,tw,P(w)),

where F' and G are known functions. Equation (2.8) is the invariant solution and the function
w(t, z) is called the similarity variable that constitutes the independent variable of the ODE that
we obtain from the transformation. The functions ¢(w) and ¢ (w) are the unknown dependent

variables of the ODEs.

2.4 Nonclassical Reductions

The method of nonclassical reductions is a generalization of the classical method of Lie reductions

for obtaining invariant solutions of PDEs. In this method we, furthermore, require the invariance



of the PDE
E(x,t,u, ug, Uy, Utt, Uty Uy, - - -) = 0, (2.9)
under the invariant surface condition, produced by the infinitesimal generator

[ = &yt u)-2 + e to) O+ (st u) 2

B B 0 (2.10)

As aresult an over-determined nonlinear system of PDEs for the determination of the coefficients
&(x,t,u), T(x,t,u) and n(x,t,u) is obtained.

Although the term “nonclassical symmetry” is used, it is not a symmetry of a given PDE
(2.9) unless the infinitesimal coefficients yielding an infinitesimal generator (2.10) yield a point
symmetry of (2.9). Otherwise a mapping resulting from such an infinitesimal generator maps
no solution of (2.9) into a different solution of it. In other words the nonclassical method is not
a “symmetry” method but an extension of Lie’s symmetry method (“classical method”) for the
purpose of finding specific solutions of PDEs.

From the nature of the constraint invariant surface condition equation (2.7), without loss of
generality, in using the nonclassical method, two simplifying cases need only be considered when
solving the determining equations for finding the form of the infinitesimal coefficients, namely
7 # 0 and 7 = 0. In the case 7(z,t,u) # 0 we can assume, without loss of generality, that 7 = 1.
Also, when 7 = 0, without loss of generality, we can take £ = 1. In this latter case the invariant
conditions result in a single nonlinear PDE in n(x,t,u). Here we only consider the case where

7 = 1. For recent applications of this method see [52] and references therein.

2.5 Equivalence Transformations

Equivalence transformations are nondegenerate point transformations, that preserve the differ-
ential structure of the class under study and change only its arbitrary elements. The set of all
equivalence transformations of a given family of differential equations forms a group which is
called the equivalence group. There exist two methods for the calculation of equivalence trans-
formations, the direct method which was first used by Lie [55] and the Lie infinitesimal method
which was introduced by Ovsiannikov [72]. Although, the direct method involves considerable
computational difficulties, it has the advantage of finding the most general equivalence group
and also unfolds all form-preserving [46] (also known as admissible [75]) transformations admit-
ted by this class of equations. For recent applications of the direct method one can refer, for

example, to references [94-98].

10



There are different kinds of equivalence groups. The usual equivalence group, which has been
used for solving group classification problems since late the 50’s, consists of the non-degenerate
point transformations of the independent and dependent variables and of the arbitrary elements
of the class, where transformations for independent and dependent variables do not involve
arbitrary elements of the class under consideration [72]. The notion of the generalized equivalence
group, where transformations of variables of given DEs explicitly depend on arbitrary elements,
was introduced by Meleshko [60,61] in the mid nineties. The extended equivalence group is an
equivalence group whose transformations include nonlocalities with respect to arbitrary elements
(e.g., if new arbitrary elements are expressed via integrals of old ones) [38]. The generalized
extended equivalence group possesses the properties of both generalized and extended equivalence

groups [94,95,97,98|.
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Chapter 3

Group analysis of generalized

nonlinear equations

3.1 Introduction

The investigation of nonlinear heat (or diffusion if u represents mass concentration) equations
by means of symmetry methods began in 1959 with Ovsiannikov’s work [71] in which the author

performed the group classification of the class of equations of the form

up = (f (u)tz), - (3.1)

Equation (3.1) describes the stationary motion of a boundary layer of fluid over a flat plate and
a vortex of incompressible fluid in a porus medium with polytropic relation between gas density
and pressure.

Another equation that is of considerable interest in mathematical physics is the nonlinear

diffusion-convection equation
wp = (Fu)ug), + k(u)u,.

Lie symmetries of the above equation have been considered in [23,70,76]. In the case where

f(u) =1 it coincides with the generalized Burgers equation
Ut = Ugy + k(U)ug. (3.2)

Lie symmetries of (3.2) have been derived in [45].
In this Chapter we present the known results for equations (3.1) and (3.2). We give the
equivalence transformations and the group classification of Lie symmetries. We also present

examples of invariant solutions.

12



3.2 Nonlinear heat equation

3.2.1 Equivalence transformations
We find that equation (3.1), admits the equivalence transformations
2

c
/ / / !/ 3

' =cit+cy, ¥ =c3x+cq4, U = csu+ cg, f:—c 1
1

where c1, co, c3, ¢4, C5, Ccg are arbitrary constants and cjcses # O.

3.2.2 Lie Symmetries

A second-order PDE admits Lie point symmetries if and only if

r®g|  =o
E=0 ’

where I'® is the second prolongation of the generator

0 0 0
r'= f(x,t,u)% +7—(5L’7t7u)§ +77(£L’,t, u)%:

which is given by the relation

M = T (D4 () = 2D (€) = wDi (1) 5+ (D (1) = 2D (€) — s (1) 5

Here D, and D, represent the total derivative operators with respect to ¢ and x respectively
and n” is the coefficient function of 872;«'

In this case we have that

df (u) 2
du uy =0

E:ut_f(u)ux:c -

and equation (3.1) admits Lie point symmetries if and only if

T@ [y — f(u)uge — C”d(;”ug] =0 (3.3)

for uy = f(u)uzy + dfd%) u?.

Eliminating u; and also substituting

df (u) d*f(u) 3
du Uslior + duz

equation (3.3) becomes a multi-variable polynomial in g, gz, and uz.,. The coefficients of
different powers of these variables must be zero. These give the determining equations for the

coefficients &, T and 7.

13



The coeflicients of u;,, and uz .., give respectively
Ty = Ty = 0, (3.4)
which implies that 7(z,t,u) = 7(t). The coefficient of u,uz, gives
§u =0, (3.5)

which means that &(z,t,u) = &(z,t). The coefficients of gy, u2

%, Uy and the term which is

independent of the derivatives, give respectively, the following equations:

nfu+ (1t —26)f =0, (3.6)
Nuuf + (7¢ = 26 + 1) fu + N fuu = 0, (3.7)
(202w — &aa) [ + 202 fu + & =0, (3.8)
(7¢ — 285 + Naa) f +1fu — e = 0. (3.9)

When we solve these equations (3.6)—(3.9), we observe that for the case where f is arbitrary,

the symmetry Lie algebra is three-dimensional and is spanned by
X1 = 8,5, XQ = &,;, X3 = 2t8t + x@x

Note 3.1. Throughout the thesis, we use both notations for partial derivatives, 6% or J,, to

present the form of Lie symmetries.

An additional fourth Lie symmetry exists in the cases where f(u) = e, which is
X4 =20, + 20,
and f(u) = u", which is
Xy = 520y + udy.

Finally, for the specific value of the parameter n = —%, that is, f(u) = u_%, equation (3.1)

admits a fifth symmetry

X5 = —220, + 3zud,.
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3.2.3 Invariant Solutions

The primary use of Lie symmetries is to obtain a reduction of variables. Similarity variables

appear as constants of integration in the solution of the characteristic equations

§ n

Reductions could be obtained from any symmetry which is an arbitrary linear combination, i.e.

a_de_au
— ==
a1X1 + asXo + a3 X3 + as X4 + a5 Xs.

In the case for which f is arbitrary, the optimal system and the corresponding similarity reduc-

tions that transform (3.1) into an ODE are given by the operators

X1 w=gw), w=uz,
X2 : U:¢(W), w=t,

22

X3 U:¢(w)v WZ?v
X1+Xy ¢ u=9¢w), w=z—t

In the case where f(u) = €*, the optimal system includes the following additional operators

X1+Xs © u=2t+0¢Ww), w=umze,
Xy ¢ u=hh(t)+o¢(w), w=u=z,
1
CXs+ Xy : u=Zh(2)+6w), w= trc 2,
1
X2—§(X3—X4) D ou=x+4dw), w=te".
When f(u) = u", n # 0,—%, the optimal system also widens and includes the additional

operators:

Xi+X, : u=cow), w=ze 2,

1 2C
22 p(w), w=tr °T%, if C £ -1,
CX3—|—X4 : u = L (Z)() 7& 2 ,
t™no(w), w=u, if C = -3,

Xo — ng +Xy 0 u=eo(w), w=te"".

15



Lastly, when f(u) = ufg, for which a fifth symmetry exists, we obtain the following additional

reductions:

X1+Xy © u=cow), w=umze3,

-2 _2
CX3+X4 : u= 1‘30 Tp(w), w=te 73, ifC#2, |
tig(w), w =z, 1fC:%7
X5 : u=13¢w), w=t,
X0+ X5 : u=z3%W), w= 7%7
ta?

X34+ X5 : u=2%W), w=-——

The results of Section 3.2 can be found in [71].

3.3 Generalized Burgers equation

3.3.1 Equivalence transformations

We find that equation (3.2), admits the equivalence transformations

1 Cg
t’:cit—i—cl, ' = cqx + cgt + co, U = csu+ c3, k':c—k—c—z,
4 4

where c1, co, c3, ¢4, C5, cg are arbitrary constants and cycs # 0.

3.3.2 Lie Symmetries

In this case we have that
E=u; — uzy — k(uw)uy =0
and equation (3.2) admits Lie point symmetries if and only if
T@ [y — gy — k(u)ug] =0 (3.10)

for up = ugy + k(u)u,.
Eliminating u; and also substituting

dk(u)

o ui + k(u) gy,

Uty = Uggy +

equation (3.10) becomes a multi-variable polynomial in wu,, ug; and ug.,. The coefficients of
different powers of these variables must be zero. These give the determining equations for the

coefficients &, T and 7.
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The coeflicients of u;,, and uz .., give respectively
— (3.11)
which implies that 7(z,t,u) = 7(t). The coefficient of u,uz, gives
§u =0, (3.12)

which means that &(xz,t,u) = &(x,t). The coefficients of uy,, u?

%, Ug and the term independent

of the derivatives give, respectively, the following equations:

T — 26, =0, (3.13)
Nuu = 0, (3.14)
20z + Nku + (7 — &)k + & — §oa = 0, (3.15)
Nak + Nzz —ne = 0. (3.16)

The solution of the above system gives the Lie symmetries admitted by equation (3.2). For an

arbitrary function k, equation (3.2), admits the Lie symmetries
X1 =0, Xo=0,.
If k(u) = e, there exists a third Lie symmetry, given by
X3 = 2t0; + 20y — Oy
A third Lie symmetry, also exists in the cases where k(u) = u™, which is
X3 =2nt0; + nxdy — udy,
and when k(u) = Inu
X3 =10, — udy.

Finally, five Lie symmetries are admitted for k(u) = w, which is the case when equation (3.2)

coincides with Burgers equation. Here, we have

X3 = 20, + twd, — (tu 4 )0y, X4 =2t0; + 20y — udy, X5 =1ty — Oy.
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Chapter 4

On the simplification of the form of

Lie transformation groups

4.1 Introduction

There have been many attempts to compute Lie symmetries of differential equations using differ-
ent systems of computer algebras, such as MATHEMATICA, MAPLE, MACSYMA, REDUCE,
AXIOM, MuPAD etc, as well as different symbolic manipulation packages [17,21, 31, 85, 100]
(see also detailed review in [32,33]). These programs, although powerful, are not guaranteed to
complete their task. They have a number of essential disadvantages, for example, restrictions on
nonlinearities. This is particularly true, when we have the problem of finding the Lie symme-
tries for a class of PDEs instead of a single PDE. In this case, we have unspecified functions, for
example of independent or/and dependent variables, appearing in the PDE which are known as
arbitrary elements. The problem of finding the Lie symmetries of such a class of PDEs is known
as group classification and it is more complicated since in the determining system, in addition to
the coefficient functions, we have the appearance of the arbitrary elements. In order to simplify
the group classification, it is important to have a-priori knowledge of the form of the coefficient
functions.

The results of the present chapter, appear in [49].
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4.2 Known results for the general class of scalar evolution equa-

tions

The idea of the present chapter was previously adopted by various authors in the literature for

scalar PDEs. For example, Tu [93] proved that the Lie symmetry generator

0 0 0
F:T(m,t,u)a—i—f(:p,t,u)%—i—n(x,t,u)%

admitted by the general class of evolution equations
up = H(z,t,u,ug,ug, ... upn), Hy, #0, n>2

has the simplified form

0 0 0

(4.1)

Bluman [12] presented some general results for the nature of the infinitesimal Lie generator

(4.1) for linear PDEs. He derived certain criteria to determine whether or not the coefficient

functions 7(x,t,u) and &(z,t,u) depend only on the independent variables ¢ and x and also

criteria that examine whether the coefficient function n(x,t, u) is linear in u. Certain restrictions

on the form of (4.1) for wave-type equations are presented in [47]. Corresponding results for the

nature of general point transformations for evolution equations can be found, for example, in

references [40,46,57,77).

4.3 System of evolution equations with two dependent and two

independent variables

We consider the system of evolution equations

w = H(x,t,u,v,u1,U, ... Uy, V1,02, ..., Vp), 1N >0,
vy = G(x,t,u,v,ur,u,...,U,V1,02,...,0), p=>0,
where
O'u v .
ui:@, Ui:@,Z:LQ,....

In the subsequent analysis, ug = u and vy = v. We also assume that,

OH , OH L, 9G , 0G
vy

Oup, OV, Ou,

£ 0.
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The condition n > 0 implies that H is always a function of w and/or its derivatives with respect
to x. A similar conclusion can be drawn for the condition p > 0. Systems of the form (4.2)
have considerable interest in mathematical physics and in other disciplines of mathematical
applications. Such examples are given in the analysis that follows.

Although in the present work we consider systems of PDEs, the results are also useful for
searching for nonlocal (potential) symmetries for scalar PDEs. If a PDE can be written in a
conserved form, then by introducing a potential variable (new dependent variable), we can write
the PDE as a system of two PDEs. This system might lead to nonlocal symmetries for the
original PDE. For more details see Ref. [10,11,13]. Also, complex scalar PDEs can be written as
a system of two real equations by separating real and imaginary parts. Such complex equations
are the Schrodinger type equations which are of considerable interest in mathematical physics.
See, for example, in [53,64,75,78,86].

The results that are derived in the present chapter will also be useful for calculations of
the equivalence transformations of systems of evolution equations using the Lie infinitesimal
method which was introduced by Ovsiannikov [72]. Such transformations are used, for example,
in determining the differential invariants of differential equations. Examples of constructing

differential invariants for a system of PDEs of the form (4.2) can be found, for example, in [30,58].

4.4 Restrictions on the form of the coefficient function 7

The Lie symmetry generator admitted by the system of evolution equations (4.2) has the form

0 0 0
FZT(x,t,u,v)a+§(m,t,u,v)8—x+n(:c,t,u,v)%+u(w,t,u,v)% (43)

which corresponds to the one-parameter Lie group of transformations

t' =t +er(z,t,u,v) + O(?)

a' =+ el (x,t,u,v) + O(?)

u' =+ en(z,t,u,v) + O(e?)

v =v+ep(x,t,u,v) + O().
These transformations leave the system of evolution equations (4.2) invariant. In this section we
present those forms of the class (4.2) that admit Lie symmetries when the coefficient function 7

depends only on ¢.

The corresponding extended generator has the form

max(n,r) max(m,p)
0 0 0 0 0 0 i 0 i 0
Pext: -~ t t x x 4.4
"ot 4o T u T Ho0 T ou T B, Z; " o Z_; K g 44)
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where the coefficients of the extended generator are defined as follows
N = Di(n) —usDy (§) —wDy (1),
n* = Dy(n) —uxDy (&) —wDy (1),
" = Dy (n") = uzaDy (§) — uxt Dy (1),

xn+1

= Do (0™") = ugn1 Dy (§) — tane D (7)),

pt = Dy (1) —veDy (§) — v Dy () ,
/Jm = D, (H) — v Dy (5) — Dy (T) >

,Ufmz = D, (Mw) — Uge Dy (5) — Ut Dy (7—) )

xn+1

= D, (1) — g D (€) — v D (7).

where D, and D, are the total derivatives with respect to ¢ and x, respectively, i.e

D, = i—i—u a—i—vg—l—u 0 +u g +v 0 +v 9
T 9 Tou T tov T T ouy | Mow T ou, | owg
+ u i%—u i—l—u i—i—v i—i—v 0 +v 0 +
TTT auxx xxt 8uxt xtt 8Utt TTIT avxm xxt 87};zt xtt avtt e
and
D, = a—i—ua—i-va—i-u 8+u 84—1} a—i—v 4
t = ot ta ta xta ttat mta ttat
+ u +u +u 0 +v 9 +v 9 +v 0 +
xxt 8uz$ xtt 8um ttt a i xxt 8vz$ xtt (%mt ttt avtt ERCEEIS

Now using mathematical induction, it can be shown that

ko k : k k+1—j - k k—i
= o= (1) (e u - 5 () (P e

=0
k i k -
z k k+1—j

W Dzu—jgl (j—1> (Dw Jg) vj —

We note that in the form of n*", D" gives

.

e

—

7N
~. o

N———
~~
32
L
~—

&

NuUn + MUy, + (lower order terms),
the first sum gives
—n (D) up — Uy (Euupn + Evp) + ...
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and the second sum gives

0H 0H

— (Tuun + Ty'l)n) H — n (DmT) <aunU2n_1 + %

Un+m—1> + ...

Similar expressions are obtained from the form of u*" in the first determining equation and

from 7®", 4" in the second determining equation.

Here we require that
I*YH —u) =0, TG —v)=0

modulo the system (4.2), where I'*** is defined by (4.4). Hence, we have

OH OH OH OH U ZaH
TW—Ffi 778 +,UJ87—77+E E u = O,
aG aG P laG
where

ug = H, vy, =DLH, vy =G, v, = D.G.

(4.10)

Using (4.10), equations (4.8) and (4.9) become two multi-variable polynomials in the variables

x,t,u,v and the derivatives of u and v with respect to x. The results in the present section

are determined by collecting the coefficients of the appropriate variables in (4.8) and (4.9) and

setting them equal to zero. The derived results are presented in the following theorems.

We consider the general case where all indices n, m, r, p > 2.

Theorem 4.1. If the indices n, m, r, p > 2 and they are not all equal, then system (4.2)

admits Lie symmetries of the form (4.3), where
T=17(t).
Ifn=m=r=p2>2 and in addition

OH\*  OH 0G o0H  0G)?
ouy, ovy, 8un

m*a] 70

then

T =17(1).
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Note 4.1. If restriction (4.11) holds then its symmetric

> rom  oc

2
+[8un+8vn] £0

also holds. In the case restriction (4.11) is not satisfied, then we can write

oG \*, or oG
vy, Ovy,, Ouy,

oH 0G| Gk 5% o (4.12)
ou,  Ov, | o oG | '
Ovp, Ovnp,

In other words, if the system (4.2) admits Lie symmetries with the coefficient function 7 not

depending only on ¢, then H and G satisfy the conditions (4.12).

Proof: Writing only the highest order terms, the first determining equation has the form

n oH m oOH
( > (DxT) uxn—lt% +...— (m 1) (DIT) Uzm—lt% +

n—1

which can be simplified, using (4.10), to

n xT aun U2n—1 avm Un+m—1 . aun e
oG oG OH
—m (DxT) <8urur+m1 + aivp’l}p+m71 + .. > % + ... (413)
Similarly, the second determining equation gives
r (Dyr D Uptr—1 Do Umdr—1 + - - - ou, T
oG oG 0G
—p (_DxT) (mur+p_1 + aivpvzp_l + .. ) 87% + ... (414)

In order to complete the proof, we need to consider three cases:
(i) n>p,
(ii) n < p and
(iii) n = p.

shown in the following table:
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0# (58) + st | 0=| (56) + S 6| rayu | Gy |d=u=w=u
(D1 =1<=0=1%q <——(1' o30u) ) ) IO <— d=u
ung “ag ung [ ung ap ung B oo _
o#%m‘@.TmAm@v 0= Umm‘@.TmA:@v (L*q@)uw | MR (ETy) | Wl =ug
07 6 0= %w%v (L*@)u | T ()
(D1 =14<=0=1%q I0 w+ 4 < Ug d=u
0# o 0= N@%v (Lf@)u | e (ery)
0# %% m;% 0= %% ma% Aban 4| 1matwgy Awﬁ.vv
(NL=1<=0=1%q IO W+ 4 > U, d=u
O wm ms% MM% O — %@@ MN@% AF&QV wul HIE.TLj\ NAMH:ﬁv ) i} ]
== 0= pp Ut 0= pgtt gt
0# pout es | 0= (BRut Fet) 58 (@) | )
(NL=1<=0=1%q I0 d=u
0# st ggu | 0= (Sguw+ Fou) G (@raq) | i er)
d v d o
07 56 Do 0= 56 pe (L"a)d | =Hm (p1y)
(NL=1<=0=1%q Io d>u
d w d, w,
07 56 7t 0= 5 e @) w | =" (g1y)
0# B¢ He 0=56 7o (+"@)+ | " (pTY)
(NL=1<=0=1%q Io d<u
0 wm %% ma% 0= %% ma% Ahan u | Tmwtuy Amﬁ.wv
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We give a trivial counterexample to show that Theorem 4.1 is not generally true if restriction

(4.11) is not valid.

Example 4.1. We show that system
Ut = Up — Vp, Vp =Up —Up, N =2

admits the Lie symmetry x%. This shows that 7 depends also on x. The form of the symmetry

implies that

SO
Dt(T):Oa 77t:0, MtzO,
OH _OH _0H _0H _0G _0G _0G _0G _ |
dr Ot Ou v Hx Ot Ou v
and
oOH OH oG oG
8—%—17&0, a—vn——l;&o, a—un—l#o, a—vn——l#o.
Also,

" n

n* = —n(ugn—1 — van—1), K°

= —n (uzp—1 — V2n-1)-
Therefore the determining equations (4.8) and (4.9) are satisfied.

Now we consider certain special cases where some of the indices, but not both, of n and p,

are less than two.

Theorem 4.2. If at least one of the four indices is less than two and at least one of n and p is

greater than or equal to two, then system (4.2) admits Lie symmetries of the form (4.3), where

T =1(1).

Proof: We split the proof into the following cases:
(i) n, p, m > 2, r <1 (or its symmetric case n, p, r > 2, m < 1);
(i) n, p=>2, 1, m < 1

(iii) n > 2, p <1 (or its symmetric case n < 1, p > 2);

In these cases the form of the leading terms in each determining equation is more complicated,

since we cannot ignore the terms that contain the derivatives u,, v, Um, Um, €.t.c..
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(i) n, p, m > 2, r < 1: We consider separately r =0 and r = 1.

If » = 0, the determining equations (4.8) and (4.9) have the form (writing only the leading

terms)
oH oH
[— (Tutn + Tyvn) H — n (DyT) <6unu2n_l + %Un—&—m—l + .. >
oH
+  Nutin + NV — 1 (D) Un — Uz (§utin + Eyn) + . ]8u +.
oG
+ [_ (Tuum + Tv”m) G—-—m (DxT) T Uptm—1+ ...
vy,
oH
+ Uyl + LUy — M (Dxf) Um — Uy (fuum + gvvm) + . ]81) + . (415)
and
oG
[— (Tuup + Tyvp) G — p (DyT) a—vzp_l + ...
Up
oG
+ iy + pp — P (D) vp — va (Sutty + Euvp) + - ]% +... (4.16)
p
respectively.

e n > p which means that n +m — 1 > n,m, p,r. The coefficient of vy, 4y,—1 in (4.15) gives

OH 0H

D,
n(Dar) 5= ovp, 8un

and since gH o — # 0, we have D,7 = 0. That is, 7 = 7(¢).

e n < p which implies that p + m — 1 > n,m,p,r. The coefficient of vp{m—1 in (4.15) gives

0H 0G

m(Dat) 50 v, 8vp

and since gH 9G £ (), we have D,7 = 0. That is, 7 = 7(t).

en=7p Wthh indicates that n+m —1 > n,m,p,r. The coefficient of vy 4y,—1 in (4.15) gives

D) 22 (a2 26 o,

v \ Oy O,
Ifng - 8H -+ maG # (0 and since aH - # 0 the result follows. If n —|— m8 = 0 then

oG
H=-"0,22 4
n  Ovy,
which means that H is linear in u,. We have the following two subcases:

(a) m > 2n: We have m > n,p,r,2n — 1 and the coefficient of wu,, in (4.15) gives

My — éuvx - Gt, = 0.
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The left hand side of this expression is the coefficient of H in the second determining equation

(H appears in the expression for uf) and hence H disappears from this equation. Noting also
N2

that 2n — 1 > n,p,r, we can take the coefficient of v, _1 in (4.16) to give n (D,7) (%) =0.

Hence, 7 = 7(t).
(b) m < 2n: The coefficient of u,, in (4.16) gives
oG m
(Mu — &y — GTu) aivn (1 + g) =0.

As before, H disappears from this equation. Since 2n —1 > n,p,r, coefficient of vg,—1 in (4.16)

2
gives n (D,T) (%) = 0. Hence, 7 = 7(¢).

Now, we consider » = 1. The determining equations have the form (leading terms)

OH OH
[— (Twtn + Tyvn) H — n (DyT) <Bunu2n_1 + %vnﬂn_l + .. >
OH
+  NuUn + MVn — N (Dxf) Up — Ug <£uun + gv”n) + .. ]87 W
oG oG
+ [ (Tutum + 7o) G — m (Dy7) <6uxum + 8—%027+m,1 + .. >
OH
+  pulm + U — M (DzE) Uy — v (Sutim + EoUm) + - ]W (4.17)
and
oG 0G
+ = (ruup + Tovp) G — p (Dy7) (8%% + 8—%1)2]3_1 +.. )
oG oG
+  pytp + vy — p (D) vp — v (Sutup + Eup) + . ]a— — (Dg7) Ha +... (4.18)
Up Uy
respectively.

e n > p which means that n +m — 1 > n,m,p,r. The coefficient of v, y,—1 in (4.17) gives

OH 0H

n(Dar) 5~ Oovp, Oun

and since adH OH - # 0, we have D7 = 0. That is, 7 = 7(t).

en<p Wthh means that p +m — 1 > n,m, p,r. The coefficient of vp;p—1 in (4.17) gives

OH 0G

D,
m (D7) 5= Ovp, (%p

and since gH 9G - (), we have D,7 = 0. That is, 7 = 7(t).

en=7p Wthh means that n+m — 1 > n,m, p,r. The coefficient of vy, ,—1 in (4.15) gives

(D,r) 2L OH ( OH aG)

"ouw, " ou,

Ovp,
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Ifng, - aH ~+ mac # 0 and since gH # 0 the result follows. If n + ma = 0 then

H=——u,— +...
n“"avn+

which means that H is linear in u,. We have the following three subcases:

(a) m < 2n — 1: Since 2n — 1 > n,m,p,r, the coefficient of ug,—1 in (4.17) gives
2
n (DgT) (gTIi) = 0. Hence, 7 = 7(¢).

(b) m > 2n — 1: We have m > n,p,r,2n — 1 and hence, coefficient of u,, in (4.17) gives

oOH oG
% <Nu - éuvx -Gty — (D T) 8Ux> =0.

Since 8H # 0, we find

oG

pu — vy — GTy = m (DyT) R

Using this expression and the coefficient of u,, in (4.18), we deduce that

oG 0G m  m?

Since the bracket is nonzero, the result follows.

(¢) m = 2n — 1: We note that m > n,p,r. The coefficients of u,, in (4.18) and u,, in (4.17)

give, respectively,

0G oG

o {(uu & = Gm) (14 5) + (2 = n) (Do) a%] 0, (4.19)
2

-n (DIT) <§i{> + STH <Uu — &z — Gy —m (DxT) gf) 0. (4.20)

Combining these two equations we find that

OH\?> OH 0G [5n%—3n
(D7) <n (au) + o Bu < T >> =0. (4.21)

Now, differentiating determining equation (4.18) with respect to v, to find

oG\?* oH oG OoH
n (D,T) (81}) (D,1) — (py — &y — G1y) =0

Ouy  Ovpy,
and using (4.19), this equation simplifies to
0G\?  n*+n 9H OG
D, T —0. 4.22
(Do) <n (8%) + 3n — 1 0v,y, Ouy 0 ( )
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Using that gTIi = —%g%, the bracket in (4.21) and the bracket in (4.22) cannot be simultane-
ously equal to zero since this would lead to a contradiction. This can be seen by considering
the determinant of the coefficients which can be shown to be nonzero. Hence, D,7 = 0 and the
result follows.

A similar proof is derived for the symmetric case n, p, r > 2, m < 1.

(ii) n, p > 2, r, m < 1: In both cases m = 0 and m = 1, the coefficient of ug,_1 (greatest
order derivative of u) in (4.15) gives

2
n (DgT) <gj7> =0= D,7=0=7=17(1).

Similar results apply for r = 0 and r = 1.

(iii) n > 2, p < 1: We consider separately m > 2, m =1 and m = 0.

e m > 2: Since n +m — 1 > n,m, the coefficient of vy, 4,—1 in (4.13) gives

OH 0H
n(DxT)%aiun :0:>Dx7':0:>7_:’7'(t)
2
e m = 1: If r < 2n — 1, then the coefficient of ug,—1 in (4.13) gives n (D7) (gTh;) =0 and
the result follows. If » > 2n — 1, then coefficient of wy4,—1 in (4.14) gives r (D,7) g%gg =

which leads to the result.
e m = 0: Now the determining equations are symmetric with equations (4.15) and (4.16),
where r = 0. In the first determining equation the highest derivative of v is v,. Taking its

coefficient, we find
N — Sy — Hry = 0.

Therefore the coefficient of G in the first determining equation vanishes and the coefficient of
u9n_1 in the same equation gives

2
n (DgT) (gf) =0= D,7=0=7=1(1).

A similar proof can be constructed for the symmetric case n < 1, p > 2. This completes the
proof of Theorem 4.2. O
The same result, as in Theorems 4.1 and 4.2, applies when system (4.2) is separable or

semiseparable which is stated in the following theorem.

Theorem 4.3. If system (4.2) is of a separable or of a semiseparable form and at least one of

n and p is greater than or equal to two, then it admits Lie symmetries of the form (4.3), where

T =T7(t).
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Proof: System (4.2) is of the separable form

ut = H(Z’,t,u,@u,@@,...,un)

v = G(x,t,v,01,02,...,0p) (4.23)

The first equation does not involve v and its derivatives and the second equation does not involve
u and its derivatives. We assume that at least one of n and p is greater than or equal to 2. If
n > 2 we take the coefficient of ug,_1 in the first determining equation, which implies that

7\ 2
n (DyT) (gu> =0= D,7=0=7=17(1).
n

If p > 2 we take the coefficient of v9,_; in the second determining equation, which implies that

2
p(DyT) <6G> =0= D,7=0= 7 =1(t).
vy

Now we consider the case where the system (4.2) is of the semi-separable form

w = H(x,t,u,v,u1,Ug,. .., Uy, V1,02, .., V),

v = G(x,tv,v1,02,...,0), p>1 (4.24)

If p = 1, then we assume that n > 2. The result follows from the coefficient of ug,_1 in the first
determining equation when m = 0, 1 and from the coefficient of v, ,,,—1 in the first determining
equation when m > 2. If p > 2 and m = 0, 1, then the coefficient of vg,_1 in the second
determining equation gives the desired result.

We complete the proof by considering the case p, m > 2. Writing the highest order terms,

the two determining equations have the form

OH OH
[— (Twtn + Tovn) H — n (Dy7) <8uann_1 + %’Un_lrm_l + .. >
OH
+  MUn + Nt — N (ng) Up — Ug (guun + gvvn) + .. ]87 +..
oG
+  [= (Tutm + To0m) G —m (DyT) ——Vpym—1 + - ..
vy,
O0H
+ gl + Uy — m (DzE) vy — v (Eutm + EoUm) + - . ]W (4.25)
and
oG
[— (Tuup + Tyvp) G — p (DyT) Do V21 +...
Up
0G
+ sty + pp — p (D) vp — ve (Suty + Euvp) + - ](97 +... (4.26)
p
e n > p which means that n +m — 1 > n,m,p. The coefficient of vy, 4,—1 in (4.25) gives
OH 0H
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and since gH OH —~ # 0, we have D7 = 0. That is, 7 = 7(¢).

e n < p which means that p + m — 1 > n,m,p. The coefficient of v,1,,—1 in (4.25) gives

0H 0G
m(Dat) 5 vy, OV, =0

and since gH 9G £ (), we have D,7 = 0. That is, 7 = 7(t).

en=7p Wthh means that n +m — 1 > n,m, p. The coefficient of v, 4m,—1 in (4.25) gives

0H 0H oG

If ngf + maG # (0 and since 8H - # 0 the result follows. If n + mav = 0 then

which means that H is linear in u,. We have the following three subcases:

2
(a) m < 2n—1. Since 2n—1 > n,m, p, the coefficient of ve,_1 in (4.26) gives n (D) <%> =
0. Hence, 7 = 7(t).

(b) m > 2n — 1. We have m > n,p,2n — 1 and hence, differentiating (4.26) with respect to
U, to give

o

8’Um (:uu - guvx - GTU) =0.

Since g}—i # 0, we find
ty — &g — Gy = 0.

Using this expression we deduce that the coefficient of H in (4.26) is zero. The coefficient of
Vop—1 in (4.26) implies that D,7 = 0.

(¢c) m = 2n — 1. The coefficient of u,, in (4.26) gives

ey
vy,

m

oy — EuVz — GTy) (1 + z) =0
which implies that
oy — &g — Gy = 0.

This means that H disappears from the determining equation (4.26). The coefficient of va,—1

in (4.26) implies

oG \*
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Hence, D,7 = 0 and the result follows. ]

An example of uncoupled equations is the system of nonlinear diffusion equations u; =
(f(u)ug)y and vy = (g(v)vy)y. Lie symmetries for these have been derived in 1986 by Knyazeva
and Popov and the results can be found at page 171 in the book [36].

4.5 Further restrictions on the form of the symmetry generator

We consider systems of the class (4.2) that admit Lie symmetries, where 7 = 7(¢). Systems where
n=m =71 =p > 2 and the condition (4.11) does not hold must be investigated separately. In
this section we present further restrictions on the coefficient functions £(z, ¢, u,v), n(z,t,u,v)
and p(z,t,u,v) for certain forms of the general system (4.2).

In the case where 7 = 7(t), the coefficient functions of the extended generator have the

simplified forms

o= M+ N+ v — Uy (& + Euue + Eovr) — weTy

xT

Nt = Ne Ny + Nz — Ug (& + Eutie + &Uz)

n+1 n
z = l)x (nx ) __1Lz"+11)z (é)
po= e paw v — v (& + Sutg 4 Eovr) — v
,u:p = Mg T UyUz + UpVz — Vg (£$ + guux + Evvx)

p* = Dy (0") — vzz Dy ()

xn+1

H = D, (an) — V1 Dy (§)

Now, using induction we find

k
0 = Dip-Y <j E 1) (D’£+1‘j€> uj
=1
k ] k k .
- B )
j=1

In the subsequent analysis we require the coefficients of v,, and v,,_1 in n*" and the coefficients

of u,, and u,;,—1 in uxm. We use the following lemma.
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Lemma 4.1. If 7 = 7(t) and n,m > 2, then " and u®" have the following form

ﬁmn = (nv - uazfv) Up + NUp—1 (nvx + NuvUgz + NMooVz — gvzuz - fuvui - gvvuxvx - gvumc)
+ O(z,t,u, v, UL, Up, Ve, Up—2), (4.27)
:uxm = (ﬂu - Urﬂgu) Um + MUp—1 (,Udux + pupVz + Punls — SuaVz — guvvg% — Suu gV — guvzmt)

+ U(z,t,u, 0, UL, Up—2, V1, -+, U )y (4.28)
respectively, where ® and ¥ are smooth functions in their arguments.
The proof of the lemma is constructed by induction on the indices n and m, respectively.

Theorem 4.4. We consider system (4.2) with n > 2 or/and p > 2. In the following cases

(i) n > p,m,r (and its symmetric case p > n,m,r)

(i) n =p <r <m (and its symmetric casen =p <m <)

(iii) n = p < r = m with the restriction (H,, 4. )* + (Gupu, ) # 0

(iv) n = p > m,r with the restriction Hy, # G,

(v) n =p and m,r < n—2 with the restrictions H,, = G,,,, (Hun_1un_1)2+ (Gvn_lvn_1)2 #0
the system (4.2) admits Lie symmetries with generator of the form (4.3), where the coefficient

functions have the restricted forms

T:T(t)a fzé(.ﬂf,t), "7:77(%%“), M:M(Jf,t,’l))-

Proof: Using the result for 7 = 7(¢), the determining equations have the form (4.8) and (4.9)
with

o= me+nuH + 100G — ugy — up&uH — up&,G — i H

po= o+ paH A+ oG — & — v€uH — 06,6 — G (4.29)

and the forms of n*", ;*" are given in Lemma 4.1. We consider each case separately.
(i) n > p,m,r: We differentiate (4.8) and (4.9) with respect to v, and u,, respectively, to
give

oOH oH
(nv - ngv) 87 =0, (Hu - Umfu) 87 =0.

n mn
Hence, £ = &(z,t), n = n(z,t,u), p = p(z,t,v). A similar proof can be constructed for its
symmetric case p > n,m,r.
(ii) n = p < r < m: We differentiate (4.9) with respect to v, to give
OH
(Mu - ngu) % =0.
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Hence, g, — v,&, = 0 which means that H disappears from the determining equation (4.9).
Therefore the highest order derivative of v that appears in (4.9) is v,. We differentiate (4.9)

with respect to v, to give

oG
(771) - uxgv) (37 =0.

Uy

Hence,

§= f(l‘,t), n= 77(:‘5’ tau)v w= M($a t,’U).

A similar proof may be constructed for its symmetric case n = p < m < r.

(iii) n = p < r = m with the restriction (H. 2+ (Guppuy )2 # 0: We differentiate (4.9)

UmUm

with respect to v, to give

OH oG
(,Uu - U:chu) W = (7711 - uw&)) W

m m

After further differentiation with respect to v, or u,, and using the restriction

(vavm)2 + (Gumum)2 # 07

we conclude that
Py — Vabu = Ny — Uz&y = 0.

Hence7 5 = 5("1:7 t)? 77 = 7]($7 t7 u)7 M T M(x7 t7 v)‘
(iv) n = p > m,r with the restriction H,, # G,,: We differentiate (4.8) and (4.9) with

respect to v, and u,, respectively, to give

0G oH oH oG
(Mo — uzy) 0. = (v — uzy) ou.’ (s — v2€u) ou. = (pu — vz&u) ..

n n n Un

Since H,,, # G, the result follows.

(v) n=p and m,r < n — 2 with the restrictions

Hy, = Gy (Hup i 1)+ (G g 1) # 0
From the condition
H,, =Gy, = K(z,t,u,v,u1,...,Up,V1,...,0np),
we conclude that, if r,m < n — 2,
H = K(z,t,u,v,u1,...,U,01,...,0m)Un + F(x,t,u,v,U1,...,Up—1,01,...,Un),
G = K(x,t,u,0,u1,...,Up, U1, ., 0000 + L(x, t,u, 0,01, ..., Up, V1, ..., Up1).

34



With these forms of H and G, v,, disappears from determining equation (4.8) and w,, from (4.9).

We differentiate (4.8) and (4.9) with respect to v,—1 and u,_1, respectively, to give

oL or
(M0 — tady) o, (o — uabo) un
+ n (77113: + NuvUy + Moy Vz — fvmum - guvui - fvvuzvz - évu:vac) K7
oF oL
(b — V2€u) . (= Vo&u) o1

+ n (Nux + Uz + fuulle — SuzVz — guvvz — SuullgVz — éuvxx) K.

Using the restriction

2

(Hun,lun,l)Z + (G’Unfll)nfl) 5& 0

or equivalently
(Fun i) (B ) #0,
differentiating both of the above equations with respect to u,—_1 (or v,_1) yields
fru = V2€u = T — Uz€y = 0.
Hence,
§=¢&(@,t), n=mn(x,t,u), p=p(tv). O
Example 4.2. The form of the following system [42]
Up = Uggy + 6UUL + 200, v = 2(uV),,

is such that (n =3, m = r = p = 1) Theorems 4.2 and 4.4(i) can be applied. Hence, all Lie

symmetries admitted by this system are of the restricted form
T(t)0 + &(x, 1) 00 + n(2, t,u) 0y + p(x, t,v)0y.
Theorem 4.5. System (4.2) withn=p>2, m=n—1 and r < n — 2 with the restrictions
Hy, =Gy, Hu, yu,—, # 0,
admits Lie symmetries with a generator of the form (4.3), where
T=1(t), £=¢&=,t,v), p=p(xtv).
System (4.2) withn =p>2, r=n—1 and m < n — 2 with the restrictions
Hy, = Gy,; Gu, v, # 0,
admits Lie symmetries with a generator of the form (4.3), where

T=1(t), £=E(xtu), 0=t u).
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Note 4.2. We point out that the two parts of the above theorem are related by the discrete

symmetry u — v and v — u applied to both the system of equations and the symmetry generator.

Proof: From the restriction H,, = G,, = K(z,t,u,v,u1,...,Up,v1,...,0ny), we have
= K(CC,t,U,’U,Ul,...,UT,Ul,...,Un,]_)’U,n—|—F(JJ,t,U,U,Ul,...,Unfl,rU]_,...,Unfl),
G = K(x,t,u,0,U1,...,Up, V1, .,0p—1)Un + L(x, t,u,v,u1,. .., U, V1, ..., V1),

where r < n — 2. With these forms of H and G, u,, disappears from determining equation (4.9).
We differentiate (4.9) with respect to u,—1 to give

oF oG

(o = v28u) 57— = (Hu — Vzu)

Otp—1 O0vp—1

+ n (Nuz + Uz + Myu Uy — guxv:(: - éuvvg - fuuuxvx - guvxx) K.

Using the restriction Hy,, v, , # 0 or equivalently F, ., , 7 0 and differentiating the above

equation with respect to u,—1 implies that p, — v,&, = 0. Hence,

§=¢(z,t,v), p=p(x,tv).
A similar proof may be constructed for the other part of Theorem 4.5. O

Example 4.3. It can be shown that the system

Vg (%
Ut = —3Ugg; UVt = 3 Uz
Uy Uy

admits, among others, the two Lie symmetries u% and vg—x. Here we have
n=p=2 m=r=1=n-—1.

Also the system

2 2
Ugxx 3’U,zx (o VpUgy _ Uzgx SUgrVeg (A VpUgy
& w ut w + w2 UtTTE T T e T T2 u3
x x T x x x x x

admits at least the two Lie symmetries, u% and vg—x. Here we have

n=p=3 m=r=2=n-—1.

These two results show that in Theorem 4.5 we need to take either m or r less than n — 1,
otherwise restrictions on the form of & do not exist in general. In the above systems we note
that H,, = G, . This shows that the restriction H,, # G, is needed in order to prove Theorem

4.4, case (iv).
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Theorem 4.6. We consider the quasi-linear system

w = Hiup + Ho(x, t,u,0,u1, ..y Up—1,0V1, ..., Vm),

vy = Gi(z,t,u,v,ur, .. Uy U1, Up 1)Uy + Go(Z, E uy vy Uy ey Uy VT, ey Up—1),
where n > 2, m,r <n —1 and Hy is a nonzero constant. If G1 # Hy, then
T=1(t), &€= qrn(t)+o(t), n=n(ztu), p=ptv).
We point out that Theorem 4.6 is also valid for G; = 0.

Proof: From Theorems 4.1, 4.2 or 4.3, we have 7 = 7(t). Also from Theorem 4.4, we have

n=n(z,t,u) and p = p(x,t,v). The coefficient of u,, in the first determining equation gives
Hy[n&y(z,t) — ()] = 0.
Hence, £(t,z) = Lan(t) + ¢(b). O
Example 4.4. We consider the coupled Burgers system of the form [16]
Ut = MUgg + Uty + f(U,0)V5, v = Aoy + 00z + f(u, ) Uy,

where A\ # Ao. Using Theorem 4.6, this system admits Lie symmetries which are all of the
form 7(t)0;, + (327 + ¢(t)) 0y + n(w,t,u)dy + p(z, t,v)9,. Lie symmetries of such a form are also
admitted by the coupled Drinfeld-Sokolov—Satsuma-Hirota system [2, 22, 84]

Ut = —Uggy + OUUL + OV, Uy = 2Vp00 — OUV,.

We note that in the above example for the Burgers system with A\; = Ao and for the following

system [90]
Ut + Uppr + 2Uly + 20U, = 0, v 4+ Vg + 200, + 2uv, =0

Theorem 4.6 does not apply.

4.6 Conclusion

Motivated by the results of Tu [93] and Bluman [12], we have presented a number of results,
concerning the form of the infinitesimal generator. A next step could be the generalization of
these results in the cases where we have systems with two independent and n dependent variables

and also for equations with one dependent and n independent variables.
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Chapter 5

Group classification of systems of

diffusion equations

5.1 Introduction
Systems of diffusion equations of the form
Ut = [f(uv U)u:v + h(u’ U)’Ux]x ; UVt = [k(uv v)ux B g(uv U)Ux]x ) (51)

are of considerable interest in mathematical biology and in soil science. For instance, such
systems describe the movement of water in a homogeneous unsaturated soil, to cases describing
the combined transport of water vapour and heat under a combination of gradients of soil
temperature and volumetric water content [43,73]. In such problems u(x,t) and v(z,t) are,
respectively, the soil temperature and volumetric water content at depth z and time t.

In the present chapter, we consider the special case of the class (5.1)

ue = [f(u,0)ue], s v = [g(u, v)vl, (5.2)

where we assume that f and g, being the diffusivity coefficients, are non-zero smooth functions
in their arguments. Such systems have also been used to model successfully physical situations,
such as transport in porous media with variable transmissivity [24] and river pollution [59].
Further applications can be found in plasma physics [80,81]. We study this system from the Lie
point of view. We carry out the Lie group classification. That is, we find the all forms of f(u,v)
and g(u,v) such that system (5.2) admits Lie symmetries. The problem was initiated in [41]
and completed here.

The results of the present chapter, appear in [48].
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5.2 Equivalence Transformations

To derive the equivalence group of the class under consideration we use the direct method [46].

The details of the calculations are omitted for brevity and we only present the results.
Theorem 5.1. The usual equivalence group G~ of class (5.2) consists of the transformations
! =ait+ag, o' =pz+ P, v =mu+7, v =0dv+d,
f'=a'Bf, ¢ =o' Big, (5.3)
where a1 B17101 # 0.

It turns out that in the case where the arbitrary elements are equal, the usual equivalence

group is wider and the results are presented in the following theorem.

Theorem 5.2. The usual equivalence group G?:g of class (5.2), where f = g, consists of the

transformations
t'=ait+as, 2 =pr+ B U =yu+yv+3, v =0u+ dv+ s,
f'=oa'Bif, (5.4)
where aqf1(y102 — ¥201) # 0.

Equivalence transformations are used to simplify the analysis, with the understanding that

these equivalence transformations are included in the conclusions. For example, if

f(u7 U) - (/’Llu + M2)n<:u3v + M4)m7 with M3 7& Oa

we can use scalings and translations of u and v to take, without loss of generality, f(u,v) = u"v™.

5.3 Lie Symmetries

The classical method for finding Lie point symmetries is well known, see for example in [13-15,

30,37,68,72]. Here we search for generators
0 0 0 0
I'= T(I’, tv u, U)a + é(xv tv u, ’U)% + 77(95, tv u, U)% + ,U(Jf‘, tv u, ’U)%
corresponding to the infinitesimal transformations

t'=t+er(z,t,u,v), ¥ =a+e(r,t,u,v), v =u+en(x,t,u,v), v =v+eu(wt uv)

to the first order of e. These transformations are such that when the nth extension I'™ of T,

where n is the order of the corresponding equation in the system, is applied to the equations of
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the system the resulting equations are identically zero, modulo the system under consideration.

Theorem 4.2 implies that
T =7().
Here we require that
PO {up — fuge = furd = foueve} =0, T® {v; = guge — gutizvs — gz} =0, (5.5)

identically, modulo the system (5.2). The resulting equations, before using system (5.2), are two

identities in the variables
Tyt Uy U, Ug,y Uty Ugy Uty Uzgy Vg

Eliminating u; and v, using the system (5.2), then we have two identities in the variables
T, T, U, U, Ug, Vs Ugg, V-

In order to use Theorem 4.4(iv), we spilt the analysis into two cases:

1: f#g,
2: f=g.

Case 1: f # g. Using Theorem 4.4(iv), we conclude that

§=E&(x,t), n=mn(xtu), p=p(ztv).

These forms simplify the system (5.5). We derive the system of the determining equations that
correspond to the first invariant condition in (5.5). The coefficients of ui, Uy Vg Ugr, Uz, Vp and

the term independent of derivatives give, respectively,

N + (7 + Mu — 282) fu + pfuv + 1fuu = 0,

(7¢ 4 po = 2&2) fo + N fuw + 1fow = 0,

Nfu+ pfo+ (7 = 26)f =0, (5.6)
200 fu + Hafo + (20ue — &oa) f + & =0,

nacfv =0, Nt — nacacf = 0.

Similarly, the coefficients of v2, u,Vy, Vsz, Vs, Uy and the term independent of derivatives in the
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second equation in (5.5) give, respectively,

tovg + (T + pto — 262)gu + NGuv + Hgvo = 0,

(Tt + N — 262)gu + 119w + NGuu = 0,

NGu + Hgo + (1¢ — 2§2)g = 0, (5.7)
NeGu + 2Uagy + (2Hve — §sa)g + & = 0,

HxGu = 0, Mt — Hxag = 0.

The solution of the above determining system with twelve equations provides us with the desired
results. However, since the arbitrary elements f and g are functions of two variables, it makes
our task more difficult than the group classifications where the arbitrary elements depend only
on one dependent variable.

We differentiate the third equation in (5.6) and subtract the resulting equation from the first
equation to give 7y, f = 0. In a similar manner, from the first and third equations in (5.7) we

obtain g, = 0. Hence,
n(z,t,u) = Ar(x, t)u + Ax(x,t), plx,t,v) = As(x,t)v + Ag(x,t).

Now, from the third equations in (5.6) and in (5.7), respectively, we deduce that the functions

f(u,v) and g(u,v) satisfy a first order quasi-linear partial differential equation of the form

(Mu + /\2)% + (Agv + /\4)% + Xs¢ = 0. (5.8)

If the coefficients in the above partial differential equation vanish, then we deduce that f(u,v)
and g(u,v) are arbitrary functions and 7 = 2¢1t + ¢, € = c1x + ¢3, n = p = 0. Hence, for

arbitrary f and g, the system (5.2) admits the Lie symmetries
X1 =0, Xo=0,, X3=2t0;+ 20, (5.9)

where this basis is denoted by A", The next step is to find those forms of f(u,v) and g(u,v)
which are such that the system (5.2) admits additional Lie symmetries. These forms of f(u,v)
and g(u,v) are solutions of the PDE (5.8). Finding all possible forms of f(u,v) and g(u,v) and
then substitution into the systems (5.6) and (5.7) enables us to determine the forms of 7, £, 7
and p. Hence, the desired Lie symmetries can be obtained. Equivalence transformations (5.3)
are used to simplify the PDE (5.8). That is, fixing certain constants in (5.8). Persistence leads
to the results listed in Table 5.1. We point out that the solution of PDE (5.8) contains an

arbitrary function, such as in cases 1, 2, 3, 4 and 8 in Table 5.1. However, for certain forms of
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Table 5.1: Group classification of the system (5.2), where f # g.

n f(u,v) g(u,v) Additional Lie symmetries

1. u"F(e™"u) u"G(e™u) | X4 =mntd — mudy + Oy

2. uF™/u) | "GO/ u) | X4 =mntd, — mud, — v0,

3. e“F(e™"v) e*G(e™"v) X4 =t0 — Ou + nvd,

4. | e"F(v+eu) | e*Go+eu) | X4 =10y — Oy + €0y

5. u"o™ au"v™ X4 = mxdy + 200y, X5 = nxds + 2udy,
6. u"e? au”e’ X4 =20, + 20y, X5 = nw0: + 2u0,

7. ety ae*t? X4 =10 — Ou, X5 =10y — Oy

8. F(v) G(v) X4 = Ou, X5 =u0y

9. ™ av™ X4 = 0Ou, X5 =u0yu, X¢ = mtd — vy
10. e’ ae’ X4 = 0Ou, X5 =u0y, X¢ =10 — Oy

Here e = 0,41, a # 0,1, a is a constant; F', G are arbitrary functions in their arguments, where F' # G.

this function, system (5.2) admits additional Lie symmetries. Such cases are cases 5, 6, 7, 9 and

10 in Table 5.1.

For completeness, we present the results in the case that the system (5.2) consists of two
uncoupled equations. That is, f = f(u) and g = g(v). It is known that the nonlinear diffusion
equation u; = (f(u)ug), admits 3 Lie symmetries if f(u) is an arbitrary function, 4 symmetries
if f(u) = u™ or f(u) =

dimensional symmetry if f(u) = 1 [71]. All cases for the uncoupled system can be extracted

e", 5 symmetries if f(u) = w5 and 6 symmetries and an infinite-

from the above table, with the exception of three cases, which we list below. For example, in
Table 5.1, entry 4, F(v+ eu) = 1, G(v + eu) = M%) and choosing € = —+ provides the four
Lie symmetries for the uncoupled system u; = (e“u,), and vy = (€'v;),. The remaining cases

are

(i) f(u) arbitrary and g(v) = 1:

X4 =00y, Xo = a(t,x)0y, where oy = aizy;

(ii) f(u) = w5 and g(v) = v

X4 = 4t0; + 3udy + 300y, X5 = 220, — 3xudy, — 32v0,;
(iii) f(u) =1 and g(v) = a:

X4 = 260, — 2u0y, — %&J, X5 = udy, Xg =00y,

X7 = 420, + 4at0, — (x* + 20)ud, — (x* + 2at)2L0,,
Xo = aft, )0y, Xg = B(t,x)0,

where oy = g, and By = a4,
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The above results for the uncoupled equations were derived in 1986 by Knyazeva and Popov

which can be found on page 171 of the book [36].

Case 2: f = g. Here, we cannot make use of Theorem 4.4(iv), since f = g. Instead, we use the

coefficients of uzuyz, and v, u., in the first identity of (5.5) to give &, = &, = 0. Hence,

§= £($7t)a

as in the previous case. These restricted forms of 7 and & simplify the identities (5.5). In fact,
identities (5.5) become two multivariate polynomials in the four variables uy, vy, Uy, and vg,.
The coefficients of these variables will provide us the determining system which is solved to
give the forms of the arbitrary elements f(u,v) and g(u,v) and also the coefficient functions
7(t), &(x,t), n(x,t,u,v) and p(z,t,u,v).

As in the previous case, we list the two systems of determining equations. The coefficients of
UgVs, Ugz, Uz, V2, v and the term independent of derivatives in the first equation in (5.5)

2
Uz

give, respectively,
Nuug + (Tt + M — 282)gu + o + 19w + NGuu = 0,
20uwg + MGu + (Tt + po — 2&2) 9 + NGuv + Hgue = 0,
(7t — 2€2)g + Mgu + gy = 0, (5.10)
2029u + taGo + (20uz — xa)g + & = 0,
Nwg =0, 2Nyzg +N2gv =0, 1t — Ngzg = 0.

2

Z, ugz and the term independent of derivatives in

2
Uy Vg, Vggy Vg, Uy,

Finally, the coefficients of v

the second equation in (5.5) give, respectively,

foog + MuGu + (T¢ + tho = 262)90 + NGuv + Hgvw = 0,
21w + tugo + (T + 0w — 262)9u + Huw + NGuu = 0,
(1t — 2&2)9 + 1gu + gy = 0, (5.11)
Nagu + 2zGo + (2h0r — Eaz)g + & = 0,
puug =0, 2puzg + pregu = 0, pt = pleeg = 0.
We note that the third equations in the determining system (5.10) and in (5.11) are identical.
The solution of the above systems that consist of thirteen equations provide us with the desired

results. We differentiate the third equation in (5.10) and the resulting equation is subtracted

form the first and the second equation to give, respectively, 1y, = 7w = 0. Using these
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conclusions and the fifth equation, we obtain
n(xz,t,u,v) = A1(x, t)u + Ag(z, t)v + As(x,t).

Similarly, from the first, second, third and fifth equations in the system (5.11) we obtain
plz, t,u,v) = Ag(z, t)u + As(z, t)v + Ag(x, t).

With the forms of 7 and p the third equation in (5.10) implies that g(u, v) satisfies a first order

quasi-linear partial differential equation of the form

15) 15)
(p1u + pav + pa)afz + (qru+ qev + q3)8% +rg =0, (5.12)

unless v — 2§, = n = p = 0, which implies that g(u,v) is an arbitrary function and hence, the
system (5.2) admits A*" which consists with the three Lie symmetries given by (5.9). If g(u,v)
is any solution of PDE (5.12), then the system (5.2) admits the fourth Lie symmetry

X4 =1t + (pru+ pov + p3)0u + (qru + q2v + 3) 0. (5.13)

Now we search for functions g(u,v) which are such that the system (5.2) admits additional
Lie symmetries. In order to achieve this, we need to find all possible solutions of PDE (5.12).
However solving this quasi linear PDE is not an easy task. Here we make use of the equivalence
transformations of the system (5.2) in the case f = g, which are given by equation (5.4).
In particular, if we consider equation (5.12) with the variables u,v,g being primed, then the
application of equivalence transformation (5.4), with ¢’ = ¢, 2’ = x, transforms equation (5.12)

into

[(7102p1 4 d102p2 — V17241 — Y20142) w +

Y202p1 + 65p2 — V501 — Y202q2) v +

0
(7302p1 + 0203p2 + d2p3 — Y2391 — Y203G2 — V243)] 873 +
[(viq1 +7161q2 — Md1p1 — 07p2) u +

(

Y172q1 + V16292 — Y201p1 — 0102p2) v +
dg
(71731 + 710392 + Y193 — Y301p1 — 0103p2 — 01p3)] e +

r(v162 — 7¥201)g = 0,

where 7109 — 201 # 0. Our goal is to simplify, as much as possible, the above equation. We try

to fix the constants that appear in the equivalence transformations. This leads to various cases
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depending on whether certain constants are zero or nonzero. In fact, we find that, instead of

solving (5.12), we can equivalently solve, separately, the following PDEs

dg dg B

%—i-q;z,%—i-rg—o, (514)

9 4 (qrut e0)2 1 rg=0 (5.15)

ou q1u T+ q2v v rg=>yu, .
dg dg B

um + (qu + q;g)fav +rg =0, (5.16)
dg dg B

un + (qu+ QQU)faU +7rg=0, (5.17)
g 9y _

The solutions of the above PDEs provide us all the possible forms of g(u, v) which are substituted
into the systems (5.10) and (5.11). Then, the forms of 7, £, n and p are determined and,
consequently, the desired Lie symmetries are classified. The results are tabulated in Table 5.2.
The constants that appear in the form of g(u,v) depend on the nonzero constants that appear
in PDE (5.12) and, consequently, the constants in the symmetry X4 will be changed. For this
reason we also list X4 in Table 5.2.

The solution of PDE (5.14) is g(u,v) = €™"¢(v 4+ eu). We substitute this form of ¢ into the
systems (5.10) and (5.11). The solution of these two systems gives the forms of 7, £, n and
1 and, consequently, the corresponding Lie symmetries are derived. Without presenting any
detailed analysis, we state that the results are tabulated in the entries 8-12 in Table 5.2.

Equation (5.15), depending on the relation between the constants, has a solution of the form
g(u,v) = e™@(v + eu?) or of the form g(u,v) = e™*¢(v + cu + £/§). The first type of solution
produces the result that is tabulated in the entry 6 in Table 5.2, while the second solution of ¢
does not give any new cases. Solving PDE (5.16), we find g(u,v) = u™¢(v + eu + dInwu) and
substituting this form of g(u,v) into the systems (5.10) and (5.11) we obtain results which are
special cases of entries 7 and 8. Equation (5.17) has either a solution of the form g(u,v) =
u™@[u" (v + eu)] or of the form g(u,v) = u™¢(2 + dlnwu). The first form of g leads to the
results tabulated in the entries 1-5 of Table 5.2, while the second form provides the result that

is tabulated in the entry 7. Finally, the solution of (5.18) does not lead to any new cases.

For completeness, we state that in the case where g(u,v) = 1, that is, system (5.2) becomes

two uncoupled linear heat equations, the additional admitted Lie symmetries are
Xy = 2t0, — x(udy + vdy), X5 = 220, + 2txd, — %(21& + x2)(u3u +v0y), X = udy,
X7 =00y, Xg =100y, Xg =10y, Xo = a0y, Xg= [0,

45



Table 5.2: Group classification of the system (5.2), where f = g.

n g(u,v) Additional Lie symmetries
1. (v+ Eu)”evil;u X4 =ntdy — udy — 0y, X5 =71t — (v + eu)du + (v + €u)d,
2. [(v+ su)2 + 62u2}"e”tan71 T X4 = 2nt0r — u0y — VO,

X5 = (pd + 2en)td; + vy — [(62 4 €*)u + 260)0y

3. (v+eu—du)™(v+eu+ du)” X4 = (m~+n)tdy — udy — vy,
X5 = [(m+n)e + (m — n)d|td + v0y + ([(6% — €*)u — 2ev)d,

4. [(v+ eu)® + du]” X4 = 2ntd; — 2udy — (v — eu)0y,
X5 = 2entd; + 200, — (52u + 3ev + 9)0y
5. (v+eu+ 6u2)" X4 = 2nt0r — udy — (eu + 20v)0y,
X5 = 2ntd; + (1 — w)du — [(g + 20)u + 2v + €]0,
6. evteutou? Xy = £t0y — O + 20udy, X5 = 10, — Dy
7. (yu + dv)™ (v + eu)” X4 = (m~+n)tdy — udy — vy,
X5 = (yn + dem)td; + 6v0y — (yeu + yv + dev)dy
8. eV (y 4 gu)™ X4 = (6 — )td + Oy — €0y,
X5 =n(y —0e)tds + 6(v + eu)du — y(v + eu)0y
9. o(v + eu) X4 =0y — €0y, X5 = udy — euly, X = 00y — vy
10. evten X4 =0y — 0y, X5 =u0y — cudy, X =00, — 00y, X7 =10; — Oy
11. (v +eu)” X4 = 0Oy — €0y, X5 = udy — euby, X = 00y — VO0y,
X7 =ntds — (v + eu)dy
12. (v+eu)™? X4 =0y — €0y, X5 =udy — euby, X = 00y, — U0y,

X7 =2t + (v +eu)dy, Xs = z(v+ eu) (0 — £0y)

Here e = 0,41 and r # 0, § # 0, p, -y are arbitrary constants; ¢ is an arbitrary function.

where a(z,t) and B(z,t) are solutions of the linear heat equation, uy = ;.

We point out that the member of the equivalence transformation (5.4),
=t 2=z u=u vV=utv

maps v + eu with € = +1 in Table 5.2, to the corresponding cases with € = 0.
Case 12, of Table 5.2 is a member of the system (5.2) which can be linearized by a nonlocal

mapping. For this mapping and also for potential symmetries for this case see [39].

5.4 Similarity reductions

Lie symmetries can be employed to derive similarity reductions [13,68,72]. These are trans-
formations that reduce the number of independent variables of a system of PDEs by one. In
the case of an ordinary differential equation, the order of the equation can be reduced by one.

Here we have a system of PDEs in two independent variables and hence, the reduced system
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consists of two ordinary differential equations. In order to construct a similarity reduction that
corresponds to a Lie symmetry generator I' = T% +& % + 778% + ,u%, we need to find a solution

of the characteristic system

dt dxr du B dl

T & o p
The complete list of similarity reductions that correspond to Lie symmetries can be achieved by
using subalgebras from the so-called optimal system [68]. Alternatively, all possible solutions
of the above characteristic system can be found for the linear combination of the basis of Lie
symmetries.

In the case f(u,v) =u"v" and g(u,v) = auv™, we have the system
up = [u"v™ugle, v = afu"v™ vy, (5.19)
which admits the Lie symmetries
X1 =0, Xo=0,, X3=20+20;, X4=mx0;+ 200,, X5 =nxd, + 2ud,.

All similarity reductions for this case are tabulated in Table 5.3.

The second example is the member of the system (5.2), where f(u,v) = g(u,v) = (v+ du?)",
up = [(v + 0u?)"uge, vi = [(v+ 6u?) vy, (5.20)
This system admits the five Lie symmetries
X1 =0y, Xo=0,, X3=20+x20:, X4 =2nt0; — udy, — 200,,

X5 =2ntd + (1 —u)0y — 2(0u + v)0y.

The corresponding results are provided in Table 5.4. The constants that appear in the reductions

are arbitrary with the exception of those that appear in the denominator and which are nonzero.
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0=0, 3(1+u)+ P, _(,00+ D) 38+ @ _(,00+P), 3 u—

PP (90 + ) _3(1T + w)ug + b P _ (90 + ) _3(T + ug)ueg + @,(,00 + ) _ (0 + R)u + P u (3)puz+y=n 14T
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The solutions of the reduced ODEs listed in the Tables 5.3 and 5.4 provide us with special
solutions of the original PDEs. Only in some special cases the systems of ODEs listed in Tables
5.3 and 5.4 can be solved analytically. Generally, such reduced systems along with appropriate
initial /boundary comditions can be solved numerically. Below we give examples, where we

obtain exact solutions for the reduced ODEs.

Example 5.1. We use case 4 of Table 5.3 with £ = 0. In other words, we look for traveling

wave solutions for the system (5.19). The reduced system of the ODEs has the form
[¢nwm¢/]/ + C(ﬁ/ — 0, a[(bnwmwl]/ + Cwl =0.

The solution of this system is given explicitly by

Y —w2)" + 1"
vy — C’Lﬂ

o6 = () )+, [ Ll | =€+,

where the v; are constants of integration. For the special case where v; = v = 0, we have
B(E) = (Ve + vh) e,

if a # —7" and
V() = vhe",

ifa=—

I3

Example 5.2. We consider case 5 of Table 5.3 which is a special case of case 6. Choosing
m = —n and k = —% the reduced system of ODEs, after one integration can be written in the

form
20" + Ed =11, 2" Y™ + £ = 1y
For vanishing constants of integration v; and v», we find

¢(§) = V31/)a7

1 ¢2

where (&) = (14 — n(ai_nl)fg)"wlfl), if a# 1 and ¥(&) = V46_W£ yifa=1.

davy

50



Example 5.3. We look for traveling wave solutions for the system (5.20). We consider the
case 5 of Table 5.4 with k& = 0. Integrating the first reduced ODE and taking the constant of
integration equal to zero, we find ¢’9)"" = —c¢. Substituting into the second reduced ODE and

integrating twice, we find

(&) = ded® + vigp + va.

Now, the first integrating equation gives

/ (6cd® + v1¢p+ vo)"
o

d¢ = —c€ + vs.

Example 5.4. Case 4 of Table 5.4, gives the exact solution

2(n+2) d¢ n+1
B(E) = male) L,
1 v

5.5 Conclusion

The complete Lie group classification of class (5.2) has been achieved. The difficulty of the
problem lies in the fact that the two arbitrary elements depend on two variables. The solutions of
such problems are rare in the literature. The work in the present chapter aims to be an inspiration
for the complete group classification of the general class (5.1). Furthermore, the problem of
classification of potential symmetries for the class (5.1) needs consideration. Finally, we need to
point out the importance of the derivation of the equivalence transformations admitted by the
class under consideration. Such transformations simplify the problem of group classification. In
the last few years, an algebraic method was introduced to solve group classification problems
[7,8]. It is based on the subgroup analysis of the corresponding equivalence group. This method
can be used to solve the group classification problems that are considered in this thesis. For

recent applications of the algebraic method see [69,74,99].
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Chapter 6

Lie symmetry analysis of

Burgers-type systems

6.1 Introduction

The nonlinear diffusion-convection equations of the form
up = [d(u)ug], + k(u)uz, (6.1)

where d(u) and k(u) are arbitrary smooth functions, have considerable applications in math-
ematical physics, chemistry and biology [19, 20,62, 63,92]. A number of authors derived Lie
symmetries for the class (6.1). However, its complete and strong Lie group classification was

presented in [76]. In the case d(u) =constant= A, we have the generalized Burgers equation
U = Mgy + k(u)uy (6.2)

whose most famous member is the Burgers equation u; = u,; + uu, which has, among others,
applications in nonlinear acoustics [20]. Group classification of (6.2) was carried out in [45] (see
also in [76]).

A generalization of the class (6.2) is the following system, written in the vector form
U; = AU,, + K(U)U,,

where U is the vector [uj(w,t),us(z,t),... ,u,(x,t)]T, A is an n x n matrix with constant
elements and K(U) is an n x n matrix with its elements being functions of the dependent
variables w1, ug,...,u,. In the case where n = 2 and A being a diagonal matrix the above

vector equation is equivalent to the Burgers-type system
U = MUy + f(u,0)ug + g(u, v)vg, ve = AovUgy + h(u, v)uy + k(u, v)vy, (6.3)
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where f(u,v), g(u,v), h(u,v), k(u,v) are arbitrary smooth functions in their arguments and
A1, A9 are arbitrary constants.

The Group classification for the special case of (6.3), where f(u,v) = u and k(u,v) = v was
considered in [16]. In the present chapter we consider the following two members of the general

system (6.3).

U = MUgg + [(U,0)uy + €100, UV = AoUgy + k(u, v)v, + €quuy, €162 # 0, (6.4)
and

Up = MUgg + [(U,0)Uz, U = AoUgy + k(u, v)v,. (6.5)

We present the group classification for these two Burgers-type systems.

The idea of group classification was introduced by Ovsiannikov when he considered the nonlin-
ear diffusion equation (k(u) = 01in (6.1)) [71]. Solving group classification problems is important
from both the mathematical and physical point of view. Following the physical laws, for exam-
ple from the Galilean or special relativity principles, models are often constrained with a-priori
requirements to symmetry properties.

The Lie algorithm in the group classification of a class of differential equation leads to a
complicated over-determined system of PDEs with respect to the coefficient functions of the
infinitesimal operator and the arbitrary functions (elements) that appear in the class. The
appearance of the arbitrary elements in the over-determined system makes the solution of the
problem much more complicated than finding the Lie symmetries of a single system of differential
equations. In the present problem, the arbitrary elements f and k depend on two variables which
make the classification even more difficult than the usual ones. A similar problem where there
exist two arbitrary elements depending in two variables was considered recently in [48]. Another
good example, is considered in [89], where certain results of group classification of complex three-
dimensional diffusion-type equations are presented. Also, in [65-67], the group classification of
reaction-diffusion systems can be found. Examples of group classification of single equations
that contain arbitrary elements depend on two variables can be found in [8,56] that appeared
recently in the literature.

In the next section we present the equivalence transformations for the two systems (6.4) and
(6.5) which are used to simplify the calculations of Lie symmetries. In section 3, we present
the classification of Lie symmetries for the two systems. The results are summarized in three

tables. In section 4, we give examples of nonclassical reductions. Finally, we give an example
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of a Hopf-Cole type transformation that linearizes a specific Burger-type system. The results of
the last two sections could be the starting point for further investigations.

The results of the present chapter, appear in [50].

6.2 Equivalence transformations

In this section we derive the equivalence transformations of the classes (6.4) and (6.5) which
play an important role in the theory of Lie group classification. These are nondegenerate point
transformations, that preserve the differential structure of the class of differential equations
under study and change only its arbitrary elements (functions f(u,v) and k(u,v)). We can
also say that equivalence transformations connect two members of the same class of PDEs.
The set of all equivalence transformations of a given family of differential equations forms a
group which is called the equivalence group. There exist two methods for the calculation of
equivalence transformations, the direct method which was first used by Lie [55] and the Lie
infinitesimal method which was introduced by Ovsiannikov [72]. Although, the direct method
involves considerable computational difficulties, it has the advantage of finding the most general
equivalence group and also unfolds all form-preserving [46] (also known as admissible [75])
transformations admitted by this class of equations. For recent applications of the direct method
one can refer, for example, to the recent references [94,95,97,98|.

The derived equivalence transformations are employed to simplify the forms of the arbitrary
elements with the understanding that these equivalence transformations are included in the
conclusions.

We calculate the equivalence group of the class under consideration by employing the direct

method. The details of the calculations are omitted for brevity and we only present the results.
Theorem 6.1. The usual equivalence group G~ of class (6.4) consists of the transformations
u v
' =ait+as, 2'=aix+ Bit+ B, UIZOTI, v =—,
f'=ai'f = pial? K =ai'k - Bia?, (6.6)

where a # 0.

In the above theorem, we assume that A} = A1, X, = Ao, €] = €1, €, = €5. Clearly, system

(6.4) admits the discrete symmetry

/ / / / !/ / / / !/ /
U=t =2, u=v,0=u AN =X, \g=A1, €, =€, ea=c¢1, [ =k, kK =Ff.
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Theorem 6.2. The usual equivalence group G~ of class (6.5) consists of the transformations

' =ait+as, =@+ pBit+ P, v =mu+y, v =056v+0,

f'=ailf —Biai?, K =ai'k - Bia]?, (6.7)
where a1y101 # 0.

It turns out that in the case where the arbitrary elements are equal, the usual equivalence

group is wider.

Theorem 6.3. The usual equivalence group G5_,. of class (6.5), where f(u,v) = k(u,v) and

A1 = A2 = 1, consists of the transformations
' =alt+as, o' =o1x+ Pt +Pa, U =yutyeut s, v =81u+ dv + 8,
fr=aoi'f—pror? K =o'k - Biag?, (6.8)
where a1 (y102 — Y201) # 0.

In the above theorems we have used the term usual equivalence group. For the notion of

generalized equivalence transformations one can refer to the references [94,95,97,98].

6.3 Lie symmetries

6.3.1 Group classification for the class (6.4)

The Lie method for finding point symmetries is well established in the last decades. Several
textbooks exist that describe the method. See for example, in [13-15, 30, 37,68, 72]. Here we

search for generators

0 0 0 0
I'= T(.’L’,t, u, U)a +§(m,t,u,v)% +7’](.’L’,t, u, U)% +u(m,t,u,v)%

corresponding to the infinitesimal transformations

t'=t+er(z,t,u,v), ¥ =x+e(r,t,u,v), v =u+en(x,t,u,v), v =v+eu(wt uv)

to the first order of e.

We require that
r@ {ur — Muge — f(u,v)uy — eqvv,} =0, r@ {vy — Aovgy — k(u, v)vy — equuy} =0, (6.9)

identically, modulo the system (6.4). Eliminating u,, and v, from system (6.4), equations (6.9)

become two multi-variable polynomials in u;, ., v¢ and v,. The coefficients of the different
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combinations of powers of these four variables must be zero, giving the determining system.
This system needs to be solved for 7, £, n and u in terms of ¢, x, u and v and also for f and k
in terms v and v.

We need to consider two cases:

1. A # A9 and

2. A\ = Ao

Case 1: Based on Theorem 4.6, if A\ # Ao then

T=1(t), £€=3an(t)+o(t), n=n(z,t,u), p=p(,tv).

Using these simplified forms of the coefficient functions, the coefficients of u2, u,, v, and the

terms independent of derivatives in the first identity in (6.9) lead to the four equations of the

2

following overdetermined system. The other four equations are the coeflicients of vZ, vg, u, and

the terms independent of derivatives in the second identity in (6.9).

Nuu = 07
0 0

2L 002 b a iy + o+ 200 = 0,
ou ov

VNy — Vfby — b — %th =0,

m — Alnxm - fnx — €E1Vy = 0,

Hov = 0,
ok ok

2n— + 2u— + 1k + Ao ptgy + xT8 + 200 = 0,
ou ov

Upty — uny —n — ur; =0,

ft — Aoflpy — kg — eaun, = 0.

Without presenting any more detailed analysis, we deduce that
T=2ct+4+c, E=crx+c3t+cy, N=—cru, p=—cv
and f(u,v) and k(u,v) satisfy a first order PDE of the form
ciuhy + c1vhy — cth — c3 = 0.

Investigating all possible solutions of the above PDE, we obtain the following results:
1. f and k arbitrary: X1 = 0y, X2 = 0.
2. f=wvo (%) +1land k=1: X1, Xo, X3 =2t0, + (x — t)0y — u0y — v0,.
3. f=v¢ (%) , k=wvy (%) X1, Xo, Y3 =2t0; + 0, — u0y — v0,.
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Case 2: If A\ = )9, using the mapping

fy_k o_a ,_¢c
y ©1 2 /\1’

/ / !/ / /
t:)\lt,x:x,u:u,vzv,f:)\—l, N YR

we can take A = Ay = 1. The coefficients of u2, u,v, and v2 in the identities (6.9) imply that

both n and p are linear in v and v. Hence, we deduce that
T=1(t), £ = 327 + (1),

0= Ay, thu + As(a, t)o + As(e,1),

= Bi(z,t)u+ Ba(z,t)v + Bs(x,t).

Here we require that 7, = A2 # 0 and u, = B; # 0 because otherwise we obtain the three

results of Case 1. The coefficients of u,, v, and the term independent of these derivatives in

the identities (6.9) lead to the following overdetermined system

(Arzu + Aggv + Ase ) f + (At — Are)u + (Azze — Aot)v + Az — Az +
€1v(Bizu + Bogv + Bs,) = 0,

Ao(f — k) + 249, + 61(%7}’(} — Ajv+ Biu+2Bov + Bs) =0,

(Aru+ Agv + A3) fu + (Biu + Bov + B3) fu + 37f + 2415 + mua + ¢y +
€1B1v — e2Asu = 0,

(B1zu + B2y + Bsg)k + (Bize — Bi)u + (Baze — B2)v + Bage — By +
eou(Aizu 4+ Aggv + Asg) =0,

Bi(k — f) + 2B + e2(3miu + 241u + Asv + A3 — Bou) = 0,

(Aju + Agv + A3)ky + (Biu+ Bov + Bs)ky + 37¢k + 2Bag + mya + ¢ +

62A2u 4 elBlv — 0,

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

We note from (6.11) that if Ap = 0, then B; = 0 (or from (6.14), if B; = 0, then Ay = 0). Hence

both conditions 7, # 0 and p,, # 0 must hold.

From determining equations (6.11) and (6.14), we deduce that f and k are connected by the

relation

f=Fk+ piu+ p2v + ps.

(6.16)

We substitute the above form of f into equations (6.10) - (6.15). The coefficient of w in (6.11)

and the coefficient of v in (6.14) give the homogeneous linear system in Ay and Bj,

p1As +€1B1 =0, €Ay — By =0.
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Since Ay # 0 and B; # 0, the determinant of the coefficients must vanish. We find that

€162 + pipe = 0.

Hence, p1 # 0 and po # 0. Using the above relation, the system gives

Now equation (6.11) is linear in v and (6.14) is linear in v which lead to the results

_ —3epars + (derpn — 4p3) As B, — —3e1pam + (2e1p1 — 4p3) Ag
B 6er 12 PR 6e o
_ HaAy — 24y, By —  paAs + 249,

H2 €1

Aq

As
We subtract equations (6.10) and (6.13) to find that

H
M1

€1 =
and

ws(pate + 4ppAg) = 0.
Hence, we need to split the analysis into two cases: us # 0 and us = 0.
4. If p3 # 0, then

_ H2Ti

Ay = ——.
? 4p

Equation (6.12) or (6.15) gives 7 = ¢t + ¢z and differentiation of equation (6.10) with respect
to t gives ¢ = c3t + ¢4. Collecting all the above results and using equation (6.10), we find that
if k(u,v) is a solution of the PDE

w2 (3pru 4 pov + ps)ky + 1 (paw+ 3pev + ps) ky — 201 prok + pa po (pau + pov —2p4) = 0, (6.17)

f(u,v) is given by the relation (6.16) and

_ M
p2’

43
p1’

€1 = €2

then the system (6.4) with A} = A2 = 1 admits 3 Lie symmetries, where the third has the form

Z3 = 2t0¢ + (v + pat)0y — ﬁ@mu + v + p3)0y — i(ulu + 3uv + p3)0y.

If ug = 0, solving equations (6.10), (6.12) and (6.15), we find three more cases that produce

additional symmetries.

58



5. If k(u,v) is a solution of the PDE

(s (1 — vpg)u + p5olky + i+ pa(py — vig)olky + vpsk + ppo(pau + pv) = 0, (6.18)

f(u,v) is given by the relation (6.16) and

2 2
5] M1
€1 =———, €= —),
M1 M2

then the system (6.4) with \; = Ao = 1 admits a third Lie symmetry
Wy = 2upi5t0; + vpu3w0y + [pa(p — vp)u + p3vl0y + [Hiu + po(p — vpn)v]o,,

In the special case where v = 0, PDE (6.18) gives the solution

k(u,v) = —piu + ¢(piu — pav)

and from (6.16),

fu,v) = p2v + ¢(p1u — pav).

The third Lie symmetry takes the form

W3 = pa(pu + p2v)0y + pa (1t + p12v) 0,

6. If £ = vju+ ”i—’l’?’v and f = v3u + v, then system (6.4) with \;y = Ay = 1 and

2
vs (v1—v3) vi(v1i—vs
€1 = 2—5— 762:7(,,2 )

” admits 4 Lie symmetries,
1

Y3 = 2t0; + 20y — u0y — v0y, X4 = va(V1u — Vov)0y — Vi (11U — VoV)0,.

Finally, we find that k(u,v) = viju + v3 and f(u,v) = vev + v3 and the system (6.4) with
A1 = A2 = 1 admits 6 Lie symmetries. Using the equivalence transformations, we can take
v3 = 0. Hence, we have the following result:

7. If k = viu and f = 9o, the system (6.4) with Ay = Ay =1 and ¢ = %, €0 = Z—g admits
the Lie symmetries

X3 =2t0; + x0; — u0y — V0,

X4 = va(v1u — v9v) 0y — V1 (V1u — vv) 0y,

X5 = dvtd, — valz(riu — vev) + 2]0, + v1[x(viu — vav) — 2|0y,

X6 = 8u119t20; + Sv1vawtd, — va|(vi(2? + 2t)u — ve(x? — 6t)v + 420,

—v1[(va(2? + 2t)v — vy (2% — 6t)u + 42]0,
The results of the group classification for the class (6.4) are summarized in Table 6.1.
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Table 6.1: Group classification of the system (6.4).

n fu,v) k(u,v) €1 €5 A1, A2 Lie symmetries

1. v v v v v X1, X2

2. v (L) +1 1 v v v X1, X2, X3

3. vg () vt (%) v v v X1, X5,Y3

4. | k+ pau+ ppv+ ps | solution of (6.17) | 2 g M=Xo=1]| X1, Xs,7s

5.| k+mutpw | solutionof (6.18) | “ M=de=1]| X1, Xa, Wy

6. vau + vav viu 2y | B [atsn) [y = =1 | Xy, Xo, Vs, X

7. vov mu “ “ A =Xo=1| X1, Xo, X3, Xu, X5, Xo

Here pu1, pi2, fi3, 1, v2 and vz are nonzero arbitrary constants.
6.3.2 Group classification for the class (6.5)
Here we require that
r {ur — Mugsy — f(u,v)ug} =0, re {vt — Aavge — k(u,v)v,} =0,

identically, modulo the system (6.5).
We consider the cases:
1. A # X9 and
2. A\ =\

Case 1: Based on Theorem 4.6, if A\; # Ao, then

T:T(t), §:%$Tt(t)+gf)(t), UZU(ZUJ,U)7 N:N(x7t7v)'

(6.19)

The coefficient of u2 in the first identity in (6.19) gives that 7,, = 0 and the coefficient of v?

in the second identity in (6.19) gives 1, = 0. Summarizing, the coefficient functions have the

simplified forms
T = T(t)v §= %:L'Tt + ¢(t)7 n= Al(x>t)u + A2($,t), n= Bl(l‘,t)’U
and the identities (6.19) lead to the following determining system

Argu+ Aog) f + (M A1z — Ar)u + M Aogg — Ao = 0,

(
(
(B1zv + Baz)k + (A2 Biaax — Bit)v + Ao Bage — Bar = 0,
(

+ BZ('rvt)

Aju+ Ag) fu + (B1v + Ba) fu + 57 f 42X A1 + 370z + ¢ = 0,

Alu + AQ)k‘u + (Blv + Bg)kv + %’Ttk + 2)\2le + %Tttl‘ + d)t =0.

The solution of the system (6.20) - (6.23) provides the forms of the functions f(u,v), k(u,v)

and the coefficient functions and therefore the desired Lie symmetries can be obtained. For
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arbitrary functions f(u,v) and k(u,v), system (6.5) admits the Lie symmetries
X1 =0, Xo=0,.

From equation (6.20) we can determine the form of f(u,v) unless its coefficient is equal to
zero. Similarly if the coefficient of k(u,v) in (6.22) is not equal to zero, we can write down its

form. These possibilities give the following subcases:

(i) A2, + A3, #0and B}, + B3, #0
(i) A2, + A3, #0and B?, + B2, =0
(iii) A?, + A2 =0and B}, + B, =0

We point out that the symmetric case of (ii) is omitted.

(i) A2,+ A2, # 0 and B}, + B3, # 0: From equation (6.20) we deduce that f has the specific

form ZLUtP2 and | similarly, from (6.22) k has the form £Y7%  Sybstitution of these forms into
P3u+ps q3v+qa

the system (6.20) - (6.23), leads to the conclusion that f is linear in u and k is linear in v. Using

the equivalence transformations, we can take f = uw or f = a and k = bv or k = b, where a and

b are arbitrary constants. Clearly, these forms of f and k impose that the system (6.5) consists

of two separable differential equations. We state the following results:

(a) f(u,v) = a and k(u,v) = b, where a and b are arbitrary constants. System (6.5) which

consists of two separable linear equations admits the Lie symmetries

b
X1, X9, X3 =2t0; + 20, — i(a: + at)ud, — ——(x + bt)v0,,
2\ 29
1 1
Xy =10y — 7 U oy Vs
4 =10, IV (x + at)uo. 7. (x + bt)vo

1 1

X5 = t2at + tx@x - E [(IE + at)2 + 2)\]_t:| u@u - 47)\2 [(fL’ + bt)2 =+ 2)\2t] UBU,

X6 N ua’M7 X7 y- Uava le = ¢1(75,33)aua X’L/)Q = ¢2(t733)8v7

where 11 (¢, z) and (¢, x) are solutions of the linear PDE

Yt = Mgz + g, (6.24)
where (A, ¢) = (A1,a) and (A, ¢) = (A2, b), respectively.

(b) f(u,v) = a and k(u,v) = bv. System (6.5) which consists of two separable equations, one

being a linear PDE and the other one is the Burgers equation. The admitted Lie symmetries
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are the following:

X1, Xo, X3 =2t0; + 20, — i(SE + at)u@u — 0Oy,

2\
Xy = 10y — —— (2 + atyudy — -0
4 — x 2)\1 U b (o)
1 1
X5 = t20; + txd, — o [(z + at)? + 2X\1t] w0y — 5 (btv + 2)0y,
1

X6 == ualu X¢1 - ¢1(tax)aU7

where 1 (¢,z) is a solution of the linear PDE (6.24) with (A, ¢) = (A1, a).

(c) f(u,v) = u and k(u,v) = bv. Here we have a system of two separable Burgers equations

that admits the Lie symmetries

X1, Xo, X3 =2t0; + 20, — u0y — vy,

1 1
Xy =10y — Oy — gav, X5 = t20; + twd, — (tu + )0, — 7

(ii) A2, + A3, # 0 and B}, + B3, = 0: Equation (6.22) implies that the functions B; and

(btv 4 2)0,.

By are both constants. From equations (6.20) and (6.21) we find, as in the previous subcase,
f=aor f=u. Inthe case f = a, in order to satisfy the condition A% + A2 0, we need to
take k, = 0. From equation (6.23) we deduce that 7 = 2c1t + c2, ¢ = 3t + ¢4 and k(v) satisfies
an ordinary differential equation of the form (v1v + 19)k, + vsk = vy4. All possible solutions of
this latter equation provide the following results which correspond to separable systems with

the first equation being linear.

(a) f(u,v) =a and k(u,v) = k(v), where k(v) is an arbitrary function.
X1, Xo, X3 =10y, Xy =9(t,x)0y,

where 1 (t, ) is a solution of the linear equation 1y = A\, + ath,.

(b) f(u,v) =a and k(u,v) = v".

X1, X9, X3 =10y, X4 =4 nt0; + 2 \inxd, — an(x + at)udy, — 2A1v0,, Xy = ¢(t,x)0y.

(¢) f(u,v) =a and k(u,v) = e™.

X1, X9, X3 =10y, X4 =4 nt0; + 2 \nx0, — an(x + at)udy — 2X10y, Xy = Y(t,x)0,.

(d) f(u,v) =a and k(u,v) = Inw.
X1, Xo, X3 =10y, X4 =2M10; — (x + at)udy — 2Mv0,, Xy = Y(t,2)0,.
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In the case f(u,v) = u, in order to satisfy the condition A% + A3 # 0, the determining
equations (6.20) - (6.23) are satisfied only if k(u,v) = u. We find that system (6.5) admits 7 Lie
symmetries and the results are tabulated in entry 22 of Table 6.2.

(iii) A3, + A3, = 0 and B?, + B3, = 0: From equations (6.20) and (6.22) we find that
Ay, A2, By and By are constant functions. Differentiation of equation (6.21) (or (6.23)) with
respect to x and ¢, respectively, gives that 7(¢) and ¢(t) are linear functions. Summarizing, we

state that the coeflicient functions have the form
T=2ct+4+cy, £E=cix+cst+cq, n=csu+cg, [=crv+cs.
Finally, equations (6.21) and (6.23) which become

0 0
(05u+66)a—£ + (erv + cs)a—‘i +caf+ce3=0,

ok
+ (671} + Cg)f

(csu+c )%
5 6 v

5 +c1k+c3 =0, (6.25)
need to be satisfied. From equations (6.25) we deduce that the functions f(u,v) and k(u,v)

satisfy a first order quasi-linear partial differential equation of the form

0 5,
(u1u+u2)£ + (u3v+u4)£ + us¢ + pe = 0. (6.26)

If f(u,v) and k(u,v) are any arbitrary solutions of the PDE (6.26), then in addition to the two

Lie symmetries X; and Xo, system (6.5) admits at least one third Lie symmetry of the form
2u5t0; + (us + pet)0z + (L1 + p2)0y + (p3v + 114)0y.

Now the question is: Which forms of f(u,v) and k(u,v) lead to more than one Lie symmetry of
the above form?

The possible forms of f(u,v) and k(u,v) (solutions of (6.26)) are:
(i) f(u,v) = au+ ¢(u+ ev), k(u,v) = au+ P(u + ev),
(i) f(u,v) = e™d(u+ ev), k(u,v) = e™P(u + ev),
(iil) f(u,v) = au+ ¢p(ve™™), k(u,v) = au + (ve™"),
(1v) £(u,v) = €M (ue™), h(u,v) = emieh(vem™),
(v) f(u,v) = alnu+ p(ue™’), k(u,v) = alnu + ¢ (ue™),
(vi) flu,v) = u"¢(ue™), k(u,v) = u"(ue™),
(vii) f(u,v) =alnu+ ¢(vu™), k(u,v) = alnu+ p(vu™),
( ) k

viil) f(u,v) = u"@(vu™

(u,v) = u"P(vu™),
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where ¢ and 1 are arbitrary functions in their arguments. Writing in (iv) ¢(ve™") =
(ve™*)5p(ve™™) and similarly for 1, we note that these forms of f(u,v) and k(u,v) are symmet-
ric (interchange u and v) with those of (vi). However since this observation is not so obvious,
we keep both forms in (iv) and (vi).

Consecutive substitutions of the above eight forms of f(u,v) and k(u, v) into equations (6.25)
lead to the conclusion that for arbitrary ¢ and v system (6.5) admits a third Lie symmetry.
The results are tabulated in the entries 1 - 8 of Table 6.2. Additional Lie symmetries exist for
specific forms of ¢ and . Without presenting the detailed analysis, we state that we obtain the

results in the entries 9 - 21 of table 6.2.

Note 6.1. The above solutions for f(u,v) and k(u,v) that satisfy the PDE (6.26) do not include
the cases where one of the functions is constant. If k(u,v) = v, then f(u,v) takes one of the
forms (ii), (iv), (vi) and (viii) plus the constant v. Using the equivalence transformations (6.7)
we can take, without loss of generality, v = 0. The required Lie symmetries can be obtained by

setting ¥ = 0 in the corresponding cases.

Case 2: If \{ = A2 and using the mapping t' = \it, 2’ =z, v/ =u, v =v, f' = il, kK = )\%,
we can take \; = Ay = 1. System (6.5) takes the form
U = Ugy + fu, 0)ug, v = Uge + k(u,v)v, (6.27)

The coefficients of u%, Uy and v% in the first identity in (6.19) give Nyy = Nuw = Moo = 0
and from the corresponding coefficients in the second identity we get piyy = fur = o = 0.
Therefore the coefficient functions 7 and p have the form

77(957 tv u, 1}) = Al (.’,E, t)u + AQ(xv t)v + Ag(.%', t)a
wlx,t,u,v) = Bi(x,t)u+ Ba(x,t)v + Bs(z,t).
The coefficients of u,, v, and the term independent of derivatives u, and v, in equations (6.19)
give the following six identities:
(Alzu + AQxU + A3x)f + (Alrx - Alt)u + (A2:mc - A2t)'U + A3m:r - A3t = 07 (628
Ag(f — k‘) + 249, =0, (629

)
)
(Aru+ Agv + A3) fu + (Biu + Bov + B3) fu + a7f + 241, + smux + ¢ =0, (6.30)
)
)
)

(leu + BQQZU + B3x)k + (lea: - Blt)u + (B2xx - BZt)U + B3a:a: - B?:t - 07 (631
Bi(k — f) + 2By, = 0, (6.32
(Aju + Agv + As)ky + (Biu + Bav + Bs)k, + %Tt/{? + 2Bg, + %Tttﬂf +¢.=0. (633
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Table 6.2: Group classification of the system (6.5), where A\; and Ay are arbitrary.

n f(u,v) k(u,v) Additional Lie symmetries
1. au + ¢(u + ev) au + Y(u + ev) X3 = eatd, — €0y + Oy
2. e d(u + ev) e 1(u + ev) X3 = 2entd; + enxOy — €0y + Oy
3. au + ¢(ve™") au + P (ve™") X3 = at0z — Ou + mvd,
4. e p(ve™") e (ve™") X3 = 2ntO; + nxOy — Oy + mud,
5. | alnu+ ¢(ue™”) | alnu+ P(ue™) | Xz = matdy — mudy + 0y
6. u"p(ue™") up(ue™") X3 = 2mntd; + mnxd, — mud, + Oy
7. alnu+ ¢(vu™) | alnu+YP(vu™) | X3 = atdy — udy + mvd,
8. u"p(vu™) u"p(vu™) X3 = 2nt0; + nxOr — uOy + muvo,
9. euTev beuTev X3 = 2t0: + x0r — O
X4 = ec‘?u - av
10. (u+ ev)™ b(u + ev)™ X3 = 2nt0; + N0y — uOy — V0,
X4 = €0y — Oy
11. e bv"e™* X3 = 2nt0; + nxdy — v0,
X4 = n0y — mvo,
12. v ™ bv"u™ X3 = 2nt0; + nxOy — v0,
X4 = nud, — mvd,
13. av + lnu av + Inu X3 =atdy, — Oy
X4 = auly — Oy
14. av + e av + be™ X3 = 2nt0; + nxOy — Ou — VO,
X4 = at&n - 8U
15. av +u” av + bu" X3 = 2nt0; + nxOr — uy — NV,
X4 = atc?z — (91;
16. alnv+1lnu alnv+1Inu X3 =t0; — u0,
X4 = auly — v,
17. o(u) P(u) X3 =00y, X4 =0y
18. u+ ev u+ ev X3 = 2t0; + x0: — U0y — VO,
X4 = Eau — av
X5 =10, — Oy
19. u” bu™ X3 =00y, X4 =0y
X5 = 2nt0; + nxdy — udy
20. e be™" X3 =00y, X4 = Oy
X5 = 2nt0: + nxdy — Ou
21. Inu Inu X3 =00y, X4 =0y
X5 = tam — u@u
22. u u X3 =00y, X4 = Oy
X5 = 2t0; + 20 — u(‘)u,Xg =t0; — Oy
X7 = t20; + xt0, — (ut + )0y

Here a, b, m and n are arbitrary constants. In 9, 10 and 17 - 22, A1 # A2 since for A1 = A2 the corresponding

forms of the system admit additional Lie symmetries (see table 6.3). In 13 - 16 a # 0 and in 18 € # 0.

We point out that if Ay = By = 0, then we obtain the results of the previous case.

From equation (6.29) or equation (6.32), if A2 + B? # 0, then we deduce that

f(u,v) = k(u,v) + A

If A # 0, the determining system (6.28) - (6.33) is satisfied only in the case where k is constant

and, consequently, f is also a constant. If f(u,v) =
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separable system (6.27) admits nine Lie symmetries and two infinite-dimensional symmetries.

X3 = 4t0; + 220, — p1 (p1t + z)udy — po(pot + x)voy,

Xy = 4120, + 4txd, — [2t + (uit + )2 |ud, — [2t + (ot + x)*vd,,

X5 = 2t0, — (pit + x)udy — (uot + )vdy,

Xo = vexp{j(uz — pu1)[(u2 + 1)t + 2]},

X7 =wexp{—j(p2 — pn)[(p2 + )t + 22},

Xg = udy, Xg =100y, Xy, = 1(t, )04, Xy, = a2(t, )0y,
where 1 (t,x) and (¢, z) are solutions of the linear PDE (6.24), where (\,¢) = (1, 1) and
(A, ¢) = (1, p2), respectively.

Now we examine the subcase where A = 0. If the functions A;(z,t), Aa(z,t), As(z,t),
Bi(z,t), Ba(x,t), Bs(x,t) are not all constants then k(u,v) is either constant or linear in u
and v. If f(u,v) = k(u,v) = u, then the corresponding Lie symmetries are obtained from the
previous case by setting 1 = p2 = p. In the case where k(u,v) is a linear function, using the

equivalence transformations, we can take f(u,v) = k(u,v) = v + eu. System (6.27) admits nine

Lie symmetries

X3 = 2t0; + x0; — u0y — VO,

Xy = t20; + xt0, — (eut + vt + x)0,,

X5 =€tdy — Oy, Xg =10 — Oy,

X7 =00, — evdy, Xg = u0y — €uly,

Xo = (eut + vt + x)0, — €(eut + vt + )0,

If the functions Aj(x,t), As(x,t), As(x,t), By(z,t), Ba(z,t), Bs(z,t) are all constants, we find

that the coefficient functions have the form
T=2ct+cy, E=cix+cst+cs, n=csu+cgv+cy, p=cgu-+cov+ci
and we only have to satisfy the determining equation (6.33) which is identical to (6.30),
ok ok
(csu + cgv + 07)% + (cgu + cgv + clo)% +c1k +c3 = 0. (6.34)

We deduce that k(u,v) satisfies a quasi-linear partial differential equation of the form

ok ok
(p1u+ pov + pg)% + (qru + gv + q3)% +rk+s=0. (6.35)
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For an arbitrary form of k(u,v) system (6.27) admits the Lie symmetries X; = 0; and
Xo = 0. If k(u,v) is a solution of the PDE (6.35), then system (6.27) admits at least one more

Lie symmetry of the form
2rtdy + (rx + st)0y + (p1u + pP2v + p3) 0y + (q1u + g2v + q3)0y. (6.36)

Now our task is to find those forms of k(u, v) that admit more than one Lie symmetry of the form
(6.36). In order to achieve this goal, we need to find all possible solutions of the PDE (6.35).
However, solving this quasi linear PDE is not an easy task. We make use of the equivalence
transformations of the system (6.5) in the case where f(u,v) = k(u,v) and A\; = X2 = 1
(Theorem 6.3), which is given by equation (6.8) in order to simplify PDE (6.35). We deduce

that we can, equivalently, solve the following PDEs:

gz + qgglz + 7k =0, (6.37)
o w4 5=0, (6.39)
O bt @) 4 k=0, (6.39)
gz + (qru + qzv)zi +s5=0, (6.40)
ugi + (qru + qs)glz +rk =0, (6.41)
u% + (qru + qg)% +5=0, (6.42)
u% + (qru + QQU)% +rk =0, (6.43)
u% + (qru+ qw)% +s=0, (6.44)
v% + (qru + qgv)% +rk =0, (6.45)
v% + (qru + QQ’U)% +5=0. (6.46)

In the subsequent analysis, where we solve the above equations, certain constants are renamed
without stating it.

If » = 0 in (6.37), the general solution has the form k(u,v) = ¢(u + ev). We substitute this
form into (6.34) to deduce that ¢(£), & = u+ ev satisfies an ordinary differential equation of the

form

(l/1§ + Vg)iﬁ + 3¢ = vy. (647)

All possible solutions of the above equation lead to the results tabulated in the entries 19, 22

- 24 in Table 6.3. If r # 0 in (6.37), the general solution has the form k(u,v) = e™"¢(u + €v).
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From (6.34), we find that ¢(§), £ = u+ ev satisfies an ordinary differential equation of the form

(1€ + V2)3? + (136 +14)9 = 0.

For an arbitrary function ¢, system (6.27) admits three Lie symmetries. The other possible
solutions of the above equations are ¢(¢&) = ™€ and ¢(€) = &+ which produce an addi-
tional fourth Lie symmetry and the results are tabulated in the entries 1 and 12 of Table 6.3,
respectively. If s # 0 in (6.38), the general solution has the form k(u,v) = mu + ¢(u + ev). In

this case, we deduce that ¢(§) is a solution of an ordinary differential equation of the form

(1€ + V2)(3? + 3¢9 = € + vs.

The possible solutions of the above ordinary differential equations are ¢(&) = re™ +mé&, ¢(§) =
r€" +m&, ¢(§) = In& + mé and ¢(§) = £In& + m& which all produce a fourth Lie symmetry.
The results appear in the entries 3 - 6 of Table 6.3.

If = 0 in (6.39) we find that k(u,v) = ¢(v + eu?) or k(u,v) = ¢((v + eu)e™") depending
if the constant gy is zero or nonzero. Substitution of the first form into (6.34) implies that ¢
satisfies an ordinary differential equation of the form (6.47). The three possible solutions of
this equation produce the results tabulated in the entries 8 - 10 of Table 6.3. The second form
provides special cases of the results in the entries 1 and 3 of the same table. If r # 0, equation
(6.39) has the general solution k(u,v) = e"¢(v + eu?) or k(u,v) = e™¢((v + eu)e™*). The first
form with ¢ being arbitrary gives three Lie symmetries, while in the case ¢ = e’ we find
four Lie symmetries and the result is a special case of the entry 12 of Table 6.3. The second
form with ¢ being arbitrary gives three Lie symmetries, if ¢ = ((v+ eu)e™")™, we reproduce the
results of entry 1 in Table 6.3 and if ¢ = ((v + eu)em“)”/ ™ we reproduce the results of entry
22 in Table 6.3.

If s # 0, equation (6.40) has the general solution k(u,v) = au + ¢(v + eu?) or k(u,v) =
au + ¢((v + eu)e™"). We substitute the first form into (6.34) to find that, if ¢ is arbitrary we
have three Lie symmetries, if ¢ = v/v + eu? we have four Lie symmetries and the results are
tabulated in the entry 11 of Table 6.3 and if ¢ = v + eu? we have five Lie symmetries and
the results are tabulated in the entry 20 of Table 6.3. The second form produces three Lie
symmetries for arbitrary ¢, four Lie symmetries for ¢ = In((v + eu)e™") which is a recalculation
of the results of entry 3 of Table 6.3 and six Lie symmetries for ¢ = — = In((v + eu)e™") which
is recalculation of the results of entry 24 of Table 6.3.

Now we consider equations (6.41) and (6.42). If r = 0, the general solution of (6.41) has

the form k(u,v) = ¢(v + eu + mInwu). For arbitrary ¢, we obtain three Lie symmetries, for
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¢ = v+ eu + mlnu, four Lie symmetries which is a special case of entry 3 in Table 6.3 and
in the case where ¢ = u™e""T“, we obtain a special case of entry 1 in Table 6.3. If r # 0,
the general solution of (6.41) has the form k(u,v) = u"¢(v + eu + mlnu). For m # 0, the
determining equation (6.34) implies that ¢ = e~ mvteutminu) o o — guteutmlnu T hoth cases
we obtain existing results. For m = 0, equation (6.34) implies that ¢ is of exponential or power
form which do not lead to any new results. If s # 0, then equation (6.42) has the general
solution k(u,v) = slnu + ¢(v + eu + mInu). We substitute into (6.34) and we obtain four
different cases. If ¢ is an arbitrary function, then system (6.27) admits three Lie symmetries.
If  =In(v+ eu+mlnu), we find three Lie symmetries for m # 0 and four for m = 0 and the
result is a special case of the entry 7 in Table 6.3. If ¢ = v + eu + mInwu, we recalculate the

result of a special case of entry 3 in Table 6.3. Finally, if ¢ = —=(v+eu+mInu), we reproduce

%
a subset of Lie symmetries of entry 25 in Table 6.3.

Equation (6.43) with » = 0 has the general solution k(u,v) = ¢(u™(v + eu)) or k(u,v) =
(2 +mlInu) depending if go # 1 or g2 = 1. In the case where k(u,v) = ¢(u™ (v +eu)), equation
(6.34) implies that for arbitrary ¢ there exist three Lie symmetries, for ¢ = (u"(v + eu))™
four symmetries which is a special case of entry 2 in Table 6.3 and for ¢ = In(u"(v + eu))
also four symmetries which are special cases of entry 7 in Table 6.3. For the second form,
k(u,v) = ¢(2 + mlnu), we need to take the subcases m # 0 and m = 0. As before, for
arbitrary ¢ we find three Lie symmetries. When m # 0, additional symmetries exist when
¢ = 5 +mlnu and ¢ = eut™% and the results are special cases of the entries 13 and 14

in Table 6.3, respectively. When m = 0, we deduce that ¢(§), § = = satisfies an ordinary

differential equation of the form

(1E” + vo€ + V3)j? + 140 = vs. (6.48)

If v, # 0 and vy # 0, the possible solutions of (6.48) are of the forms ¢(£) = et & $(£) =
<§+i§>n and ¢(&) = e, These forms lead to the special cases tabulated in the entries 2, 13

and 17 of Table 6.3. If v; # 0 and v4 = 0, we find that ¢(£) = tan=!(n&), ¢(¢) =In (%) and

o(&) = ﬁ The first two forms lead to results obtained in previous cases. The third form leads
to the results tabulated in the entry 21 of Table 6.3. If v; = 0, we find ¢ = " (Table 6.2, entry
12), ¢ = In& (Table 6.2, entry 18), ¢ = €™ (Table 6.3, entry 13 with ¢ = 0 and m = 0) and
¢ = £ (Table 6.3, entry 21 with € = 0).

Equation (6.43) with r # 0 has the general solution k(u,v) = u"¢(u™(v + eu)) or k(u,v) =
u"¢( +mlnu). We substitute the first form k(u,v) = u"¢(§), § = u™ (v + eu) into (6.34). We

find that ¢ = " and ¢ = & ~7 which lead to results that have already been found in previous
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cases. The second form for m # 0 leads to a special case of entry 13 in Table 6.3. If m = 0,
we find ¢(§) = 7", € = £ which gives the results of entry 22 in Table 6.3 with € = 0 or ¢(¢)

satisfies an ordinary differential equation of the form

(€% + 1ok + u3>jf + (—rné + a)p =0, (6.49)

If 1 = 0, we find that ¢ = " and ¢ = ™ which give special cases of the results of entry 2
and entry 13 of Table 6.3, respectively. If 14 # 0, we find the three possible solutions of (6.49):
¢ = (n2€2 + 1)7/2egmtan™ing 4 — (¢ 4 m)”e@%m and ¢ = (€ + m)"/2t7(¢ 4+ €)"/2~". Rearranging
the constants, we find the corresponding forms of k(u,v) and then we substitute into (6.34) to
derive the corresponding Lie symmetries and the results are tabulated in the entries 2, 13 and
17 with € = 0 in the Table 6.3.

Equation (6.44) with s # 0 has the general solution k(u,v) = slnu + ¢(u™(v + eu)) or
k(u,v) = sInu+¢(2+mlnu). We substitute the first form k(u, v) = sInu+¢(§), § = u™(v+eu)
into (6.34). We find that ¢ = " and ¢ = 5_% which lead to results that have already been
found in previous cases. The second case, for m # 0 reproduces a special case of the results
of entry 14 in the Table 6.3. In the subcase where m = 0, ¢(§), { = ¥ satisfies an ordinary

differential equation of the form

(11€% 4 1€ + Vg)j? = rvi€ 4 vy, (6.50)

If v1 = 0, then ¢ = £ or ¢ = In¢ which lead to special cases of entries 7 and 14 in Table
6.3. If v # 0, ¢ takes one of the following three forms: ¢ = mtan~'né + %ln(n2§2 + 1),
¢ = g trin(€+m) and ¢ = (5 +n)In({+m)+ (5 —n)In({ +¢). Rearranging the constants,
we substitute the corresponding form of k(u,v) into (6.34). We find the results tabulated in the
entries 7, 18 with ¢ = 0 and 14 of Table 6.3.

The solutions of equation (6.45) with r # 0 and of equation (6.46) with s # 0 are cumbersome
expressions. We neglect these cases and we only consider equation (6.45) with r = 0. If g = 0,
the general solution is of the form k(u,v) = ¢(u? + nv?). For arbitrary ¢ we find three Lie
symmetries and for ¢ = (u%+nv?)" and ¢ = In(u?+nv?) we find four symmetries and the results
coincide with those of entries 17 with ¢ = 0 and 18 in Table 6.3 with m = € = 0, respectively.
If g9 # 0, then k(u,v) = ¢(&), where £ takes the following three forms: £ = (v + eu)eﬁ,

vteu

€= (v+eu)™(v+ 6u)" and € = [(v + eu)? + 62u2)e" ™ (*55*) | Substitution into (6.34) implies

that in all three cases ¢ = £ or ¢ = In&. For both forms of ¢, the first two cases give results
obtained earlier. The third case leads to the results tabulated in the entries 17 and 18 of Table
6.3.
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Table 6.3: Group classification of the system (6.5), where A\; = Ay =1 and f(u,v) = k(u,v).

n k(u,v) Additional Lie symmetries
1. e’ T (y + eu)™ X3 = (v+eu+m)dy — [06(v+ eu) + me|dy,
X4 =2(e — )0y + (€ — 0)x0y + O — €0y
2. (v + ew)™ (v + du)™ X3 = [m(v+ eu) + n(v + 6u)]du — [Mmd(v + eu) + ne(v + du)|w,
X4 =2(n+m)td: + (n + m)xdy — udy — vy
3. In(v + eu) + m(v + du) X3 = [m(v+ eu) + 1]0u — [md(v + eu) + €]0,
X4 =m(e—)t0z + Oy — €Dy
4. R ) X3 = 2n(e — 6)td; + n(e — 0)xd + [n(v + du) — 1]0y
+[6 — ne(v + du)] 0,
Xa =m(e— §)t0s + Oy — €Dy
5. (v+ eu)” + m(v + du) X3 = 2n(e — 6)td; + n(e — 0)xdy + (n(v + du) — v — eu)0y
+(6(v + eu) — ne(v + du)) 0y,
Xa =m(e— §)t0y + Oy — €Dy
6. (v+ eu)In(v + eu) + m(v + ou) X3 = 2m(e — 0)td; + m(e — 9)x0z + [(Mmd — me — €)u — v]0y
+[e2u + (mS — me + €)v]a,
X4 =m(e— 0)t0y + Oy — €0y
7. nln(v + eu) + mIn(v + du) X3 = [m(v+ eu) + n(v + 6u)]0u — [Mmd(v + eu) + ne(v + ou)] Oy,
X4 = (n+m)tdy — udy — vy
8. (v+ ’yu2)" X3 = Oy — 2vuOy, X4 = 4ntd; + 2nx0r — udy — 200,
9. e”<”+wz) X3 = 0y — 2yu0y, X4 = 2nt0¢ + nxdy — Oy
10. In(v + fyuQ) X3 = 0y — 2vuOy, X4 = 2t0y — udy — 200,
11. mu + \/v+’yu2 X3 = 2t0; + 20x — u0y — 200y, X4 = Mty — Ou + 2yu0y
12. e(vFowTn(vteu) Xs = [2(v + 0u) 4 n)du — (26(v + 6u) + ne|dy,
X4 =2n(e—6)t0: + n(e — §)xdy — Ou + 00y
13. (v + eu)™evreu X3 = [ru — m(v + eu)]dy + [rv + me(v + eu)]0,
X4 = 2mto; + mxOr — uOy — V0,
14. ren T mn(v + eu) X3 = [ru — m(v + eu)]0y + [rv + me(v + eu)]0,
X4 = mtaz — uau - 'Ua'u
15. ores Tm(v+eu)” X3 = 2ntds + nxdy — (n + 1)udy + (new — v)0dy,
X4 =1t0; — (v + eu)Oy + €(v + eu)dy
16. v:zu + mlnffj:;“) X3 = 2rtd + rxdy — moy + [(r(v + eu) + me|dy,
X4 =71t0z — (V4 eu)0y + (v + eu)dy
17. [(v+ eu)® + (52u2]me”an71(v§#) X3 = [rdu + 2m(v + eu)]0u — [2m(6% + )u + (2me — 76)v] 0y,
X4 = 4mto; + 2mx0s — u0y — V0,
18. [ mtan™ " “I + nIn[(v + eu)” + 6°u’] | X3 = [mbu + 2n(v + eu)]0u — 2n(67 + €)u + (2ne — md)v]0,,
X4 = 2nt0; — uly — v0y
19. o(v + eu) X3 =0y — €0y, X4 = u0y — €udy, X5 = 00y — €00,
20. (v + eu)” + m(v + u) X3 =4(e — 6)td + 2(e — 0)xz0e + ((20 — €)u + v)0y
+((6 — 2¢)v — deu)dy,
X4 =m(e—6)t0y + Oy — €O,
X5 = (2(v + eu) + m)Oy — (2e(v + eu) + md)0d,
21. P X3 = u0y + 00y, X4 = 2t0; + 0, + (v + €u)0,
X5 = 4etd; + (2ex — )0y + vy + 2udy
22. (v + eu)” X3 = 0y — €0y, X4 = U0y — €udy, X5 = v0y — €00y,
X6 = 2ntd + nxdy — (v + eu)d,
23. ertren) X3 = Ou — €0y, Xa = udy — cudy, X5 = 00y — €00y,
X6 = 2nt0; + nxOy — Oy
24. In(v + eu) X3 = 0y — €0y, X4 = u0y — €uOy, X5 = 00, — €vy,
X6 =10z — (v+ eu)dy
25. v+ eu X3 = 2t0; + x0y — uOy — vy,

X4 =20, + xtd, — (eut + vt + )0y,
X5 = Etaz — 8u,X6 = taz — 8v,X7 = Uau — Evav,
Xg = udy — €udy, Xo = (eut + vt + )0y — e(eut + vt + )0,

Here €, d, v, n, m and r are arbitrary constants. In 1 -7, m, n# 0and § #e. In8-10,n, v # 0. In 13 - 16

m, 7#0. In 17, 18 § #0. In 20 m # 0 and § # e.
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Note 6.2. We have used the equivalence transformations to simplify the forms of f(u,v) and
k(u,v). However in some cases, we have kept the form of these functions in order to verify
certain special cases. For example, system (6.5) with f(u,v) = k(u,v) = v + eu (entry 25 of
Table 6.3) can be mapped into the same system with f(u,v) = k(u,v) = v using the member of

the equivalence transformations
t—t, z—x, U U, VUV — EU.

Similarly, we can use the above mapping for entries 1 - 7 (§ — 6 —¢), 12 - 24 to transform v+ eu
into v. In an inverse manner, we can use the inverse transformation to replace v by v + eu in

entries 8 - 11.

6.4 Examples of nonclassical reductions

Bluman and Cole introduced a new method for finding group-invariant solutions of partial
differential equations [9] which was called "non-classical reduction”. Later, it was also called,
by different authors, conditional symmetries, Q-conditional symmetries and reduction operators
[27,29,54]. A precise and rigorous definition of nonclassical invariance was first formulated in [26]
where they generalized the Lie definition of invariance (see also [101]). The necessary definitions
and relevant statements on the theory of nonclassical reductions can be found in [95].

We search for non-classical reductions for the classes (6.4) and (6.5). Non-classical reductions
for the special case of (6.3) where f(u,v) = v and k(u,v) = v were obtained in [4,16]. We require

invariance of equation (6.4) in conjunction with its invariant surface conditions
T(l‘, t,u, U)ut + 5(337 t,u, U)Ux = 77(% t,u, U)a

T(:E7t7 u, U)Ut + f(:v,t,u,v)vz = N(%@%U)a

under the infinitesimal transformations generated by

0 0 0 0
I'=71(x,t,u, U)a +£($,t,u,v)% + n(z,t, u, U)% +,u(:17,t,u,v)%.

The non-classical method for finding reductions leads to an over-determined nonlinear
system of partial differential equations for finding the forms of the coefficient functions
T(z, t,u,v), &(x,t,u,v), n(x,t,u,v) and p(z,t,u,v) while in the case of classical Lie method
the corresponding system consists of linear partial differential equations. Obviously, the deriva-

tion of non-classical reductions is not an easy task.
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For evolution equations there exist two principally different cases of finding the operator T,
7 # 0 and 7 = 0. In the present chapter, we consider the case with 7 # 0 and without loss
of generality we can assume that 7 = 1. When 7 = 0 (known as “no-go” case), we can take
without loss of generality & = 1.

We apply the second extension of the operator I' to the system (6.4) and we eliminate the
derivatives gz, vy using the system and ug, vy from the invariant surface conditions. The result
is a polynomial in the variables u;, v,. The coefficients of various powers of these variables give

the following determining system

Suw = Eov = Euw =0,

Nuu — 2&uz + 268w + 28uf + 2u&y =0,

Paw — 280z + 2886 + 260k + e1v€, = 0,

Nov + €10& = 0,

Py + €2u8y = 0,

2Nuw — 28va + 26108 + 2880 + & f + &k =0,

2y — 28uz + 2€2u&y + 286y + Euf + Suk = 0,

2Nuz — €uny + €10y — 20&y — Soo + 2860 + & f +0fu + pfo + & =0,

2oz — €10y + €uipy — 20&y — Eaa + 2880 + Eok + nku + pky + & =0,

2Moe — E1VNy + €10y + o f — Mok — 208y + €108 + €1 = 0,

2fiue — €2Ufty + E2Uny + fiuk — pluf — 218 + €2ués + €21 = 0,

Nt = New — Naf — €10pe + 208 = 0,

pt — fax — Pk — €2ung + 2p€ = 0.
The solution of the determining system provides the forms of the functions f(u,v), k(u,v) and
also the forms of the coefficient functions &(z,t,u,v), n(z,t,u,v), pu(x,t,u,v). We point out
that every Lie symmetry generator is also a non-classical generator. Hence, our task is to
find reductions that are not equivalent to Lie symmetry reductions. For the system (6.5) the
corresponding determining system coincides with the above with €; = €5 = 0.

Here we present two examples of nonclassical reductions and the complete classification will

be considered in a separate work. The system

U2 U2
Up = Ugy — €1——Ug + €1VVg, Vg = Ugy — €2— Uy + €2UUy,
u v
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admits the nonclassical generator

3u 3v

3
Xzat_gam_ﬁau_ ﬁa’m

which produces the similarity mapping
u=a¢(C), v=ay((), (=a’+6t

that transforms the system into the system of ordinary differential equations
200" — e19’d + e =0, 209" — e2¢°Y + eagpg’ = 0.

This example is analogue to the one presented in [4].

The system
Ut = Ugy + (U + €U)Uy, V¢ = Vg + (U + €u)vy,
admits the nonclassical generator
X =0 — (v+ eu)0y.

As we have seen earlier, the above system with € # 0 is equivalent to the system with e = 0. In

the case ¢ = 0, we have the implicit similarity reduction

u:¢(<)7 U:WC% (=tv+uzx,

that reduces the system into the simple linear system

¢// — O 1/]// _ 0
which gives the solutions

3T + (cacs — creq)t + ¢4 b G2 + ¢
1-— cit ’ 1-— cit '

6.5 A linearizing Burgers system

It is well known that the Hopf-Cole transformation connects Burgers equation with the linear

heat equation. In references [4,29] the following Hopf-Cole-type mapping appears
) Ug / Uy
which maps the nonlinear system
'Ué/ = U/x/x/ + QU,U;/7 ’Ug/ = U;/I/ + 2'[),’(1/;/7
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into the linear system
Ut = Ugy, Ut = VUgg- (651)
Here we present a similar example for the general class (6.5). In particular, the nonlinear system
u;, = u;/x/ + u'u;,, Ug/ = v'x/x/ + UIU;/,

(which admits 9 Lie symmetries) is connected with the linear system (6.51) under the Hopf-

Cole-type mapping

, 2ug , 0
U = , U= —.
u U

(6.52)

The idea for deriving such linearizing mappings for general classes of Burgers-type systems, as

for diffusion-type systems [44, 87, 88], will be considered in a separate work in the near future.
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Chapter 7

Symmetry analysis of

two-dimensional Burgers system

7.1 Introduction

In the last decades a lot of attention has been paid to study the various forms of Burgers
equations [82]. If we ignore the pressure gradient terms from the incompressible Navier-Stokes

equations, we obtain the nonlinear system

1
U + Uy + VUy — %(um + uyy) =0, )

1
Vg 4 Uy + vy — %(vm +vyy) =0

which is known as the two-dimensional Burgers system, where Re is the Reynolds number.
We point out that the solution of the system (7.1) will not, necessarily, satisfy the continuity
equation. The system (7.1) has been considered, for example, in [34,83] where certain underlying
geometric and group theoretical properties were discussed.

It is well known that the Hopf-Cole transformation relates the Burgers equation and the
linear heat equation [18,35]. This transformation can be generalized for multi-dimensional

equations [3,18]. In two dimensions the generalization of Hopf-Cole transformation is

2 ¢u 29y

Re ¢’ —  Reo

which relates the system (7.1) with the additional constraint u, = v, and the system

¢t_¢mz _qbyy =0.

Solutions of this linear equation provide solutions of system (7.1) with the use of the Hopf-Cole

transformation.
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Transformation properties of evolution equations and systems have been widely studied be-
cause of the many practical benefits that such knowledge provides and also because of the variety
of physical applications for which these equations are model equations. The knowledge of the
Lie group of point symmetries is particularly useful in the study of a partial differential equa-
tion. While there is no existing general theory for solving nonlinear PDEs, these methods have
proved to be very powerful. The Lie group analysis of system (7.1) has been studied by various
authors [1,25,91]. Although the derivation of Lie symmetries is accurate, the analysis on re-
ductions of the system (7.1) is incomplete. For example, in [25] an optimal system is presented
where two Lie symmetries admitted by the system are missing.

We present the complete list of similarity reductions. This goal can be achieved by construct-
ing the optimal system either of one or two-dimensional subalgebras of its Lie symmetry algebra.
The optimal system of two-dimensional subalgebras enables us to reduce the system (7.1) directly
to system of ordinary differential equations. The optimal system of one-dimensional subalgebras
leads to reductions where the reduced systems consist of PDEs in two independent variables.
Then, we derive the Lie symmetries for each reduced system and consequently we construct
the corresponding optimal system which is used to have the second reduction. Although the
second approach involves of more calculations, it has the advantage of unfolding possible missing
(hidden) symmetries.

The results of the present chapter, appear in [51].

7.2 Lie invariance algebra and complete point symmetry group

The classical approach for deriving Lie symmetries is well known and established, see for example
in references [13,68,72]. Firstly, we note that the point transformation

T
x/: /: y t,:t, u/:

\/Re7 y \/Re’

maps (7.1) into

VRe’

Ut + UVg + VVy — (Vgz + Uyy) = 0.
Therefore, without loss of generality we can take Re = 1.
The Lie symmetry algebra of the system (7.2) can be found in [1,25,91]. The maximal Lie
invariance algebra of the Burgers system is the so-called reduced (i.e., centerless) special Galilei

algebra [28] with space dimension two

A™ = (X1, Xa, X3, X4, X5, X6, X7, X3),
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where

X1 =0y, Xo=2t0+ 20, + y0y — udy — v0y,
X3 = 120, + txdy + tydy + (x — tu)dy + (y — tv)dy, X4 = 20y — ydy + udy — vy,

X5 =0,, Xg :8y, X7 =10, + 0y, Xg :t8y+8v.

The commutation relations of A™** and the adjoint actions for the Lie algebra of the system

(7.2), are given in Tables 7.1 and 7.2, respectively.

Table 7.1: Commutation relations of A™* of the system (7.2)

X1 Xo X3 Xy X5 Xe X7 Xz
X4 0 2X1 Xa 0 0 0 Xs X6
Xo | —2X, 0 2X3 0 X5 —Xe X7 X3
X3 | —Xo2 —2X3 0 0 X7 —=X3 0 0
X4 0 0 0 0 —Xe X5 —Xs X7
X5 0 X5 X7 Xe 0 0 0 0
X6 0 X Xs X5 0 0 0 0
X7 | —Xs - X7 0 X3g 0 0 0 0
Xg | —Xe — X3 0 —X7 0 0 0 0
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8y Ly oy sy Ly 4 ¥y £y 8y + oY 9y 4+ 1y £
sy Ly £ sy 8Y3 — 7Y ' Ly 4Ty oo 4+ Ty Ly

8X ¢ X X X2 +TX 8X? — X 9X? — X 3¢ X

sy Ly oy sy 93 — TY Lys — €Y Sys — Ty 15% sy
82800 4 LY2UIS—  8YIUIS 4 LY2800 9YI800 4 SydUls —  9YIUIS + 9S00 15'¢ 55 (5’ 15 vY
8X ¢ 8X + %X D Ehi'¢ [5'¢ X EXT+ X X+ +TX | fX

8X,_2 X2 9X ;2 X 52 X EX 5g-2 ¢ TX 502 ¢

9X? — 8x X2 — X X X X X2 +ex2 -8 X7 —°%X 3¢ D¢

¢ X X X X ' X ¢ PV

(g'L) woysAs o1} Jo vIQES[R A1 91} 10] SUOIOR JUIO(PY :7’) 9[qe],
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7.3 Subalgebras of Lie invariance algebra

The classification of subalgebras of Galilei algebras was considered in a number of papers, see
[5,6,28] and references therein. We have listed inequivalent subalgebras of A™%* from the very
beginning and compare the obtained list with the list presented in [28].

We classify subalgebras of the algebra A™%* up to the equivalence relation generated by the
induced adjoint action of the point symmetry group G of the Burgers system on A™%. One-
dimensional inequivalent subalgebras: In the case when the Lie algebra is solvable, we need to
start with the general element of Lie symmetry algebra,

X = a1 X1+ axXo + a3 X3 + as Xy + a5 X5 + ag X6 + a7 X7 + ag Xs.

From Table 7.1 we conclude that the Lie algebra is not solvable, so we cannot make use of the

above procedure. In our case we use the Levi decomposition of the specific algebra.
AT = (X4, X9, X3) € (X4, X5, X6, X7, X3),

where the subalgebra
(X1, Xo, X3)

is called the Levi factor of A”%* and the subalgebra
(X4, X5, X6, X7, X3)

is a radical of A™a%,

From [68] we find that the optimal system of the Levi factor is
{0}, { X1}, {Xa}, { X0 + X}
For each element we add the tail
a4 X4 + a5 X5 + agXe + a7 X7 + ag Xy

and we use the table with the adjoint actions 7.2 to construct the desired optimal system. We

obtain the following independent elements: In the case of {X;} we obtain Amae 1.1 gmaz 1.2

The second element leads to A4 13 The element {X; + X3} provides us with the results

Amaz 1.4 Apes 15 Finally, the element {0} gives A™max 1.6 gmaz 1.7 gmaz 1.8 = Below, we
list all the derived elements after the application of the adjoint actions.
AZ“M 1.1 _ <X1 + HX4>/{6{0,1}> Amazr 1.2 _ <X1 + X8>; A;nax 1.3 _ <X2 + 2/€X4>/4207
AP I = (X 4 X3+ 6 Xy)ez0,  AP™T 0 = (X1 + X3+ Xy + u(X7 — X6)) >0,

Amaz 1.6 _ <X4>, Amaz 1.7 _ <X7 _ X6>7 Amaz 1.8 _ <X6>
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Two-dimensional inequivalent subalgebras consist of the following: [79]

AZMM 21 X17X2 + K/X4>H>07 Amaz 2.2 <X1,X4> Amaz 2.3 <X2,X4>

A™maT 24 — (X 4 X3, Xy), AL 25 = (X1 + X3 + X+ u(Xs + X5), X7 — Xg) >0,

Ama:): 2.7

=
=
Aar 28 = (X7 — Xo, Xg + 11X5) u>0,
= (X6, X1+ X7 + vX8) 050, p2402€{0.1}
=

Amaz 2.8 XG,X2>, Amaz 2.9 <X6,X5> Amaz 2.10 __ <X67X8>

Amax 2.11 <X6,X7 + /‘LX8>M>0’ Amax 2.12 <X67X8 + X5>

The two-dimensional subalgebras can be used to reduce the initial system (7.2), directly to
systems of ODEs. In the case of one-dimensional subalgebras, the system (7.2), is reduced to a
system of PDEs in two independent variables. The next step is to determine the Lie symmetries
of the reduced systems, which lead to similarity reductions that transform these systems to
systems of ODEs. Clearly, the second choice is lengthier. However, in this way it is possible
to unfold missing symmetries of the reduced systems of PDEs. The definition and theory of

missing symmetries can be found, for example, in [13].

7.4 Lie reductions of codimension one

Ansatzes constructed with one-dimensional subalgebras of A" reduce the system (7.2) to
systems of two partial differential equations in two independent variables. This can be achieved,

by solving the appropriate invariant surface conditions
T(.%', Y, ta u, U)“t + ":v ($, Y, ta u, ’U)Um + gy(x’ Y, tv u, U)uy = "7(337 Y, tv u, ’U),

T(]), Y, ta U, 'U)’Ut + gw (JZ‘, Y, t7 u, U)Ux‘ + gy('ra Y, tu Uu, U)Uy = N(xa Y, tv Uu, U)7

which correspond to the symmetry generator

9 9 9 o9 9
A T _— y_— _ _
e T WML wi o vt

Below, for each of the one-dimensional subalgebras listed in the previous section, we present an

ansatz constructed for (u,v) with this subalgebra and the corresponding reduced system. Here

p=0¢mn), v=v(¢n),

are new unknown functions of the invariant independent variables (&, 7).
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L1 Aper M= (X + £ X4) peqo):

U= ¢cosT —PsinT — Ky,

v=¢sinT +YcosT + Kz,
where & =xcosT+ysint, n=—zxsinT+ycost, T:=Kt;

ngbg “'@Z)ﬁbn - ¢£§ - ann — 2k — kK =0,
Qe + by — Ve — thyy + 260 — K = 0.

2
1.2 Amer L2 — (X7 4 Xg): u=¢, v=1)+t, where &=u, n=y-5;
¢¢£+w¢n_¢£§_¢nn:07
¢¢§+¢¢n*¢£§*¢nn+1:0-
1.3. Azmx 13 — <X2 + 2/{X4>,Q>0:
(BcosT —psing) + & — 5
u=——=(¢cosT —¢sinT) + — — kK=
VIt 2t t’
1
v:\/m(¢sin7'+¢cos7')+2yt+ﬁf,
1 . 1 .
where ¢ = —=(zcosT+ysint), n=——=(—xsinT+ycos7), 7:=rlnlt|;
vau vau

¢+ 06, ~ bcc — by — 20— (124 1 ) €= 0.

P + Yiby — Yee — Yy + 260 — i) n=0, (k:=ksgnt).

</<;2 +
(HLZ +

1.4, Amer L4 — (X 4+ X3 + kXy) >0

1 . tx KY
U = t2+1(¢COST_wSlnT)+7t2+1_7t2+1’
1 . ty KX
v = t2+1(¢s1n7'—|—2,bcos7')+t2+1+7t2+1,
h 13 ! ( + ysinT) ! (—zsinT + ) tan~'t
where = xcosT + ysinT), = —xsinT +ycosT), T:=kKtan "t
V2 +1 7 t2+1

de + Yoy — bee — yy — 269 + (1 — /‘52)5 =0,
PVe + Py — e — Yy + 266 + (1 — &%) = 0.
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L5, Aper 15 — (X + X3+ Xy + p(X7 — Xg))pso:

_to+y  ta+p) oy

241 24+1 241
o+t ty T —
241 24+1 241’

_x+ty‘
2417

tr —y

—1
m — /,Lt&n t, n

where ¢ =

¢¢§+¢¢n—¢5§—¢nn—2¢=0,
OVe + Yy — Yee — Uy + 20 + 2 = 0.

x x T
16, Am 1= (X w="¢- Yyt 5 v=Yot Tyy L

r r r r r r
where & =1t, n=r:= /22 +y?

2
¢g+¢¢n—¢nn—“’f7—ng=0,
o v
g

w§+¢¢n_¢nn+7+ =0.

_o—thttu—y  totutatty

1.7, Amer LT — (X7 — Xg): R T

_xtty.
77— t2+17

)

where ¢ =tan~'t,

¢£+¢¢n_¢m]_2¢207
Ve + Oy — Yy + 29 = 0.

1.8, A™ 18 = (Xg): u=¢, v=1), where E=t, n=uz;

9255 +¢¢77 - d’rm = 07
Ve + Oy — Yyy = 0.

The linearizing mapping for this reduced system is given by the Hopf-Cole-type transformation

A B

d):_ZZ? w:Z7

where the functions A and B satisfy the linear heat equation
oy — g = 0.

In the next section, we classify the Lie symmetries of the above eight reduced systems.
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7.5 Lie symmetries of reduced systems of PDEs

We have selected ansatzes in such a way that the reduced systems are quite simple and can

be grouped into two sets depending on their structure, which is convenient for studying their

symmetries and finding exact solutions.

We note that the reduced systems 1.1 - 1.5 are of the general form

GPe + Yoy — Pee —

Gy — 269 + af = 0,

¢¢g+¢¢n—¢§§—¢nn+2/€¢+0477+5=0,

where k, o and 8 are constants with af = 0. We investigate the group classification of the

above system. We find that, depending on the values of these parameters, a system of the above

form admits the following maximal Lie invariance algebra B:

a#£0, =0:

a=0, B#0:

a=p=0, k#0:

a=pF=k=0:
where

Yi =0 Yo=0,,

Y3 = &0y — n0¢ + @0y — Y0y,

Y, = {85 + 7787, — ¢8¢ — ¢aw

As a result, the maximal Lie invariance algebras of reduced systems 1.1 - 1.5 are respectively

Bl = YE),> if k= and B1 = <YV17YYQ7}/37Y4> if ’%:07

(
(

B*=(Y3) if k#1 and BY=(Y1,Y,Y3) if k=1,
(

The other three reduced systems are of the form

¢E+¢¢7]—¢nn+F(£ana¢vw) :07
wf"‘(ﬁwn_wnn"‘G(fan,(ﬁyw =0,

where the parameter-functions F' = F (§,n,6,v), G = G (&,n,¢,1) are at most quadratic in

(¢,1). The maximal Lie invariance algebras of the reduced systems 1.6 - 1.8 have the following
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structure:
BS = (O¢, 2£0¢ + 10y — POy — Y0y,
20 + Endy + (n — £¢)0y — EYDy),
BT = (0, 0y, cos(26)0; — 25in(2€)0y — 2 cos(2£)dy,
sin(2€)d,, + 2 cos(2£)d, — 2sin(2€)dy),
B® = (3¢, 260 + 10y — $0 — Py, E20¢ + Endy + (0 — £6)s,
Oy, £0p + 0, Oy, 9Oy, (1 —EP)Dy, YIy).

The question which arises is whether the reduced systems, which correspond to cases

Amaz 1.1 gmaz 1.8 5 qmit hidden (missing) symmetries. The investigation showed that only

Amaz 18 - admits hidden symmetries. Since cases Ama® 1 gmaz L7 4o

the linearizable case
not admit hidden symmetries, we use two-dimensional subalgebras to reduce the system (7.2),

to systems of ODEs. This analysis is carried out in the next section.

7.6 Lie reductions of codimension two

Since the reduced system constructed with the subalgebra A™® 18 —= (X) is linearizable, a two-
dimensional subalgebra of A" is significant for use in the course of reducing of the system (7.2)
only if it does not contain the vector field Xg or, more generally, a vector field equivalent to Xg.
Therefore, only the subalgebras A]*** 2‘17AZ“” 26 are significant for Lie reduction among the
listed two-dimensional inequivalent subalgebras. Below, for each of these subalgebras, we present
an ansatz constructed for (u, v) and the corresponding reduced system. Here ¢ = ¢(€), ¥ = ¥(€),

are new unknown functions of the invariant independent variable &, and r := /22 + 32.
2.1. A?am 21— <X1,X2 + KJX4>,§;02
u= £¢ Y E”Lﬂa v = gﬁb‘i‘ Eiﬁ, where ¢ = tan™! L klnr;
72 72 r2 r2 T
(¥ — k¢ = 2r)¢ — (K* + 1)¢" + 2" — ¢* — 4% = 0,
(0 — ko — 26)¢ — (s* + 19" — 20" = 0.

2.2. A™ax 22 — <X1,X4>2
_xp—yy @ _yotayp oy
uw= "7 v="""T1 %

- + pox ; 2 where & =r;
/ /! w2 1
09— 9"~ @ =0,
r oo Y Y
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2.3. AmaT 23 — (X, X,):

rp—yp  x w yotayp oy oy r
u=—"—=—+5+5, vV=""7—=—+ 5+, where = :
r/lt] 2t 2 £ m
2
I //_wi_i_ﬁ_
-
¢w’—w”+%+2%:o.
& ¢
2.4, Amow 24 = (X + X3, Xy):
Tz 2 =+ h — .
YT vErT T Err YT gt e e where &= U
Y1
¢ — ¢~ — Z+E=0,
& &
¢1/1’—¢”+¢§)+2g2:o,

2.5. AT 25 = (X1 + X3+ Xy + p(Xs + X5), X7 — Xg)uzo:

p—ty+tr—y+p U_t¢+1/1+x+ty+ut
B 2 +1 T 2 +1 ’
t
where & = j;—:_zlj — ptan~te;
¢ — ¢ —2¢ =0,

o' — " 4+ 20+ 2u = 0.

2.6. Ajper 26 = (X7 — X¢), Xg + pX5),50:

u_tgb—mﬁ—l—tw—uy U_¢+t1/1—|—x+ty
N 2+ p i N 2+ p

¢ =0, o =0.

, Where & =t;

The maximal Lie invariance algebras of the above systems of ODEs are the following;:

2.1. (De); 2.2 (€0¢ — 90y — WOy);  2.3.{0}; 2.4.{0}; 2.5. (9¢);
2.6. (a(&; ¢, ¥)0¢ + B(9, 1)y + (¢, ¥)0y),

where «, § and ~ run through the sets of smooth functions of their arguments.
Therefore, all Lie symmetries of the significant reduced systems of ODEs are induced by
Lie symmetries of the original system (7.2), and thus they should not be used for the further

reductions to systems of algebraic equations.
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Chapter 8

Further study

The main purpose of the present thesis was to establish a-priori restrictions on the form of the
coefficient functions of the symmetry generator (4.3), in order to avoid difficult and complicated
calculations when group classification is needed. This problem becomes more risky, using sym-
bolic manipulation packets, especially when arbitrary elements appear in the system of PDEs
under consideration. This goal was achieved with the theorems proved in Chapter 4. The moti-
vation of this work came from the papers of Tu [93] and Bluman [12]. Such restrictions obtained
where applied in Chapters 5 and 6, to simplify the procedure of group classification of systems
(5.2) and (6.4-6.5), respectively.

In this final chapter of the thesis, we list some open problems that need to be considered in
the future.

The first problem which needs further investigation is whether Theorem 4.1 admits a gen-
eralization in the case when the number of PDEs of the system under consideration and the
number of the dependent variables are equal. That is, if the Jacobian matrix which corresponds
to the derivatives of the right-hand sides of the PDEs with respect to the highest order spatial
derivatives of the dependent variables, is not a nilpotent matrix of degree two, then 7 = 7(t).

We would also like to deal with a system in which the above condition is biased. We are
planning to examine a system of two PDEs with two independent and two dependent variables,
where both the trace and the determinant of the aforementioned Jacobian matrix vanish. An

interesting example of such a system is

1
up = [(u+ cv)"ug + c(u+cv)"vg),, v=—|=(u+cv)"uzy + (u+cv)"vg|
¢ x

where ¢ is nonzero constant. This is a member of the general class
Ut = [f(u7 U)ux + h(u’ U)’Ux]x ) UVt = [k(uv v)um + g(uv ’U)Ux]m )
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and admits the Lie symmetry
X = ¢(u+ cv)ok,

where ¢ is an arbitrary function of u + cv. This is an example of system of PDEs where the
coefficient function 7 depends not only on ¢.

We, furthermore, would like to take into account systems (5.1) and (6.3). Such systems
are generalizations of systems (5.2) and (6.4)-(6.5), respectively, that were investigated in two
separate chapters in the thesis. The Group classification will be carried out in future papers.

Moreover, the classification of potential symmetries will be investigated. For example, system
Ut = Uggy + 20Uy, Vi = Vggp + 2005 + 20Uy, (8.1)
which is a member of class (6.3), can be written as a system of four equations,
Wy = U, Wi :uz—i—uw, Zp = U, 2 = 20V + Uy,

by introducing the potential variables w and z. This system admits 9 Lie symmetries and 2
infinite-dimensional symmetries. Eight symmetries project into Lie symmetries of the original

system and the remaining symmetry
Xg = vy, — 2020, + 20y — 220,
and the two infinite-dimensional symmetries
Xo = (ay —au)e 0, — [(ag — au)z + aw]e” Y0, + ae” Y0y, — aze” V0,

X,B = (69& - ﬂu)eiwav + 6671”827
where «o(z,t) and (z,t) are solutions of the linear heat equation.

Motivated by the Hopf-Cole transformation, we can derive similar mappings for the general

system (6.3). An example of such a transformation is

L v_¢m—¢wx__(¢>
6 & ),

which maps the system (8.1) into the linear system

V- (ln ¢)za

d’t = ¢CECE7 ¢t = 7/’:1::(:

Some other interesting open problems that need lengthier investigation contain equivalence
transformations of systems of two diffusion equations with two independent and two dependent
variables. Our aim is to prove that the point transformation which corresponds to ¢’ depends
only on ¢.

Finally, regarding Chapter 7, we search for exact solutions of the reduced systems of ODEs.
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