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Abstract

Nowadays, one of the most important tools for the solution of differential equations is the ap-

plication of Lie symmetry methods. Solutions of nonlinear partial differential equations (PDEs)

can be constructed directly from the symmetries or via similarity reductions. However, finding

Lie symmetries of PDEs and generally for systems of PDEs, is not an easy task, especially when

arbitrary elements appear in the equations. Hence, in order to avoid numerous calculations,

some useful restrictions on the functional form of the coefficient functions of the Lie generator,

are needed.

The target of the present thesis is to find some useful a-priori restrictions on the form of the

generator, to reduce the number of calculations required in group classification. We deal with

evolution equations. To achieve this goal, in chapter 2 some basic, necessary definitions are given,

that enable us to develop our theory. We describe the notion of Lie groups of transformations,

the infinitesimal transformations. We explain what is meant by the terms invariance of a PDE,

similarity reductions, nonclassical symmetries and equivalence transformations.

In the next chapter, we exhibit known results for two types of generalized nonlinear scalar

PDEs. Specifically, for the nonlinear heat equation without presenting any calculations, we

mention out the equivalence transformations, Lie symmetries and invariant solutions. Also, for

the generalized Burgers equation, equivalence transformations and Lie symmetries are given.

These two equations motivate us to extend these results, for systems of diffusion equations,

later in the thesis.

Chapter 4 is the chapter in which the wanted, aforementioned restrictions on the form of the

Lie generator are derived. We recall some results from the papers of Tu [93] and Bluman [12].

Motivated by this work for scalar evolution PDEs, we extend similar results to systems of

evolution equations. That is, we firstly present restrictions on the form of the coefficient function

τ of the generator

Γ = τ (x, t, u, v)
∂

∂t
+ ξ (x, t, u, v)

∂

∂x
+ η (x, t, u, v)

∂

∂u
+ µ (x, t, u, v)

∂

∂v
.
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We examine when this coefficient function is a function only of t. We have also found coun-

terexamples in which τ depends not only on t. These are interesting examples, that need to

be considered in some future work. Furthermore, restrictions on the form of the coefficient

functions ξ, η and µ, are given, in the case where τ = τ(t) is valid.

Chapters 5 and 6 contain applications of chapter 4 on two special classes of systems of evolu-

tion equations. Group classification of systems of diffusion equations is the purpose of chapter

5, while in chapter 6 we examine Burgers-type systems. For both systems, Lie symmetries, as

a result of the previous restrictions, and equivalence transformations, that help us to simplify

the form of the PDEs, are given. We have studied similarity reductions for two special cases of

systems of diffusion equations, whilst we have found some examples of nonclassical reductions

and a linearizable case of Burgers systems.

We finally present, in chapter 7, symmetry analysis of a two-dimensional Burgers system.

Lie invariance algebra and its subalgebras, followed by the complete point symmetry group, Lie

reductions of codimension one and two and also Lie symmetries of the reduced systems of PDEs,

complete this thesis.

The last chapter of the thesis, is a description of what we are planning to do in the next

few years. Problems that might admit generalizations are listed to be carried out. These are

problems appeared in chapters 4, 5, 6 and 7 of the thesis and need further study!
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PerÐlhyh

Stic mèrec mac, èna apì ta pio shmantik� ergaleÐa gia thn epÐlush twn Diaforik¸n Exis¸sewn

eÐnai h efarmog  twn mejìdwn twn summetri¸n tou Lie. LÔseic miac mh-grammik c Merik c Dia-

forik c ExÐswshc (MDE) mporoÔn na kataskeuastoÔn apeujeÐac apì tic summetrÐec   mèsw twn

metasqhmatism¸n upobibasmoÔ t�xewc. Wstìso, h eÔresh twn summetri¸n Lie MDE kai genikìte-

ra susthm�twn MDE, den eÐnai eÔkolh diadikasÐa, eidikìtera sthn perÐptwsh pou stic exis¸seic

emfanÐzontai sunart seic twn exarthmènwn  /kai anex�rthtwn metablht¸n. Wc ek toÔtou, proc

apofug  polu�rijmwn upologism¸n, apaitoÔntai k�poioi qr simoi periorismoÐ sthn sunarthsiak 

morf  twn suntelest¸n tou genn tora.

O stìqoc thc paroÔsac diatrib c eÐnai h eÔresh qr simwn, ek twn protèrwn periorism¸n, sthn

morf  tou genn tora, gia na meiwjeÐ o arijmìc twn upologism¸n pou apaitoÔntai sthn taxinìmh-

sh twn summetri¸n. Ja asqolhjoÔme me exis¸seic exèlixhc. Proc epÐteuxh tou skopoÔ autoÔ,

sto kef�laio 2, dÐnontai k�poioi basikoÐ, qr simoi orismoÐ, pou ja mac bohj soun na anaptÔ-

xoume thn jewrÐa mac. GÐnetai perigraf  thc ènnoiac twn om�dwn metasqhmatism¸n Lie, twn

apeirost¸n metasqhmatism¸n. AkoloÔjwc, epexhgoÔme ti shmaÐnei analloÐwth Diaforik  ExÐsw-

sh, metasqhmatismoÐ upobibasmoÔ t�xewc miac Diaforik c ExÐswshc, mh-klassikèc summetrÐec kai

metasqhmatismoÐ isodunamÐac.

Sto epìmeno kef�laio, parousi�zoume gnwst� apotelèsmata gia dÔo kathgorÐec genikeumènwn

mh-grammik¸n bajmwt¸n MDE. Sugkekrimèna, gia thn mh-grammik  exÐswsh thc jermìthtac, qwrÐc

na parousi�soume touc upologismoÔc, dÐnoume touc metasqhmatismoÔc isodunamÐac, tic summetrÐec

Lie kai tic analloÐwtec lÔseic. EpÐshc, gia thn genikeumènh exÐswsh tou Burgers, anafèroume

touc metasqhmatismoÔc isodunamÐac kai tic summetrÐec Lie.

To kef�laio 4, eÐnai to kef�laio sto opoÐo parousi�zontai oi zhtoÔmenoi, proanaferjèntec

periorismoÐ sthn morf  tou genn tora. AnakaloÔme k�poia apotelèsmata apì tic dhmosieÔseic

twn Tu [93] kai Bluman [12]. UpokinoÔmenoi apì aut  thn doulei�, gia bajmwtèc MDE exèlixhc,

epekteÐnoume parìmoia apotelèsmata kai gia sust mata exis¸sewn exèlixhc. Analutikìtera, pr¸ta
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parousi�zoume touc periorismoÔc sthn morf  tou suntelest  τ tou genn tora

Γ = τ (x, t, u, v)
∂

∂t
+ ξ (x, t, u, v)

∂

∂x
+ η (x, t, u, v)

∂

∂u
+ µ (x, t, u, v)

∂

∂v
.

Exet�zoume pìte autìc o suntelest c eÐnai sun�rthsh tou t, mìnon. 'Eqoume epÐshc brei antipa-

radeÐgmata sta opoÐa to τ , den exart�tai mìno apì to t. Aut� eÐnai endiafèronta paradeÐgmata, ta

opoÐa prèpei na exetasjoÔn se k�poia mellontik  ergasÐa. Epiplèon, dÐnontai kai periorismoÐ sthn

morf  twn suntelest¸n ξ, η kai µ, sthn perÐptwsh pou isqÔei τ = τ(t).

Ta kef�laia 5 kai 6, apoteloÔn efarmogèc twn apotelesm�twn tou kefalaÐou 4, se dÔo eidi-

kèc peript¸seic susthm�twn exis¸sewn exèlixhc. O skopìc tou kefalaÐou 5 eÐnai h taxinìmhsh

twn summetri¸n susthm�twn exis¸sewn di�qushc, en¸ sto kef�laio 6 exet�zoume sust mata tÔ-

pou Burgers. Kai gia ta dÔo sust mata, parousi�zoume tic summetrÐec Lie, wc apotèlesma twn

prohgoÔmenwn periorism¸n, kai touc metasqhmatismoÔc isodunamÐac, pou mac bohjoÔn na aplopoi-

 soume thn morf  twn MDE. 'Eqoume melet sei touc metasqhmatismoÔc upobibasmoÔ t�xewc gia

dÔo sugkekrimènec peript¸seic susthm�twn exis¸sewn di�qushc, en¸ èqoume brei kai k�poia para-

deÐgmata mh-klassik¸n summetri¸n, kaj¸c epÐshc kai mÐa grammikopoi simh perÐptwsh sust matoc

tÔpou Burgers.

Tèloc, sto kef�laio 7, parousi�zoume an�lush summetri¸n enìc di-di�statou sust matoc Burg-

ers. H diatrib  oloklhr¸netai me thn analloÐwth �lgebra Lie kai tic upo�lgebrec aut c, akolou-

joÔmenh apì thn pl rh shmeiak  om�da summetri¸n, touc upobibasmoÔc Lie sundiast�sewn 1 kai

2, kaj¸c epÐshc kai tic summetrÐec Lie twn upobibasmènwn susthm�twn MDE.

To teleutaÐo kef�laio thc diatrib c, apoteleÐ perigraf  thc èreunac pou prìkeitai na gÐnei sto

eggÔc mèllon. AparijmoÔntai probl mata, ta opoÐa pijanìn na epidèqontai genikeÔsewn, pou ja

exetastoÔn. Aut� eÐnai probl mata pou emfanÐsthkan sta kef�laia 4, 5, 6 kai 7 thc diatrib c kai

gia ta opoÐa apaiteÐtai epiplèon melèth!
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Chapter 1

Introduction

Marious Sophus Lie (1842–1899), was a Norwegian mathematician, who first established the

group analysis of differential equations. Lie’s theories are powerful tools for understanding the

physical laws of Nature.

Ovsiannikov in the late 1950’s and 1960’s and Bluman in the late 1960’s and 1970’s continued

Lie’s work, to develop symmetry methods for differential equations. Nowadays, there are several

comprehensive accounts of the basic theory as well as more recent applications and generaliza-

tions, based on the publication of the texts of Ovsiannikov [72], Bluman and Kumei [13], Bluman

and Anco [14], Bluman, Anco and Cheviakov [15], Olver [68], Ibragimov [37] and Fushchich [30].

Transformation methods are one of the most powerful tools currently available in the area

of nonlinear PDEs. While there is no existing general theory for solving such equations, many

special cases have yielded to appropriate changes of variables. Point transformations are the

ones which are mostly used. These are transformations in the space of the dependent and

the independent variables of a PDE. Probably the most useful point transformations of PDEs

are those which form a continuous Lie group of transformations and which leave the equation

invariant. Symmetries of this PDE are then revealed, perhaps enabling new solutions to be

found directly or via similarity reductions. The classical method of finding Lie symmetries is

to first find infinitesimal transformations, with the benefit of linearization, and then to extend

these to groups of finite transformations.

The investigation of nonlinear diffusion equations by means of symmetry methods began in

1959 with Ovsiannikov’s work [71] in which the author performed the group classification of the

class of equations of the form

ut = (f(u)ux)x .

In Chapter 3 we recall the known results of the above second-order nonlinear diffusion equa-

1
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tion. We present the equivalence transformations, Lie symmetries and invariant solutions. We

also give the equivalence transformations and Lie symmetries for the generalized Burgers equa-

tion

ut = uxx + k(u)ux.

In the 1980’s Tu [93] and Bluman [12], presented some a-priori restrictions on the form of

the coefficient functions of the Lie symmetry generator for scalar PDEs.

Motivated by these results, in Chapter 4, we give some a-priori restrictions on the form of the

coefficient functions of the Lie symmetry generator for systems of evolution equations. These

restrictions make the problem of group classification of systems of evolution equations, especially

when arbitrary elements exist, easier.

In Chapters 5 and 6, we apply these restrictions to give the complete group classification of

the system of diffusion equations

ut = [f(u, v)ux]x , vt = [g(u, v)vx]x

and the systems of Burgers equations

ut = λ1uxx + f(u, v)ux + ϵ1vvx, vt = λ2vxx + k(u, v)vx + ϵ2uux, ϵ1ϵ2 ̸= 0

and

ut = λ1uxx + f(u, v)ux, vt = λ2vxx + k(u, v)vx,

respectively.

In Chapter 7 we consider the two-dimensional Burgers system

ut + uux + vuy −
1

Re
(uxx + uyy) = 0, vt + uvx + vvy −

1

Re
(vxx + vyy) = 0

where Re is the Reynolds number. We present Lie symmetries, Lie reductions, Lie invariance

algebra and complete point symmetry group.

Finally, in Chapter 8 we list some open problems that need to be considered, in the future.

The calculations involved in this thesis have been facilitated by the computer algebraic pack-

age “MAPLE” [102].

2
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Chapter 2

Basic Definitions

2.1 Lie Groups of Transformations

2.1.1 Groups

Definition 2.1. A group is a pair (G,∗) that consists of a non-empty set G and a binary

operation, ∗: G×G −→ G, satisfying the following axioms:

(i) Closure:

∀ g, h ∈ G =⇒ g ∗ h ∈ G.

(ii) Associativity:

∀ g, h, k ∈ G =⇒ g ∗ (h ∗ k) = (g ∗ h) ∗ k.

(iii) Identity Element: There is a (unique) element, e ∈ G, called the identity element, such that

∀ g ∈ G =⇒ e ∗ g = g ∗ e = g.

(iv) Inverse element: For each element g ∈ G there is a (unique) inverse, g−1 ∈ G, such that

g ∗ g−1 = g−1 ∗ g = e.

Definition 2.2. A group G is called abelian if ∀ g, h ∈ G =⇒ g ∗ h = h ∗ g.

Definition 2.3. A subgroup of G is a non-empty subset of G, which forms a group itself under

the same operation.

3

STAVROS KONTOGIO
RGIS



2.1.2 Examples of Groups

Example 2.1. (Q,+) i.e. the additive group of rational numbers. Here e = 0 and q−1 = −q.

Example 2.2. (R+,·) i.e. the multiplicative group of all positive real numbers. Here e = 1 and

g−1 = 1
g .

2.1.3 Groups of Transformations

Definition 2.4. The term space transformation denotes a function, T : R4 −→ R4, defined via

x′ = ϕ (x, t, u, v) , t′ = χ (x, t, u, v) , u′ = ψ (x, t, u, v) , v′ = ω (x, t, u, v) ,

where ϕ, χ, ψ and ω are known functions. Geometrically, T transforms a point (x, t, u, v) to

another point (x′, t′, u′, v′), in the same coordinate system.

If the equations defining the transformation T , can be solved with respect to x, t, u, v, then

the resulting transformation is called the inverse transformation, T−1, which is defined via

x = Φ
(
x′, t′, u′, v′

)
, t = X

(
x′, t′, u′, v′

)
, u = Ψ

(
x′, t′, u′, v′

)
, v = Ω

(
x′, t′, u′, v′

)
.

The composition of these two transformations, gives the identical transformation, i.e.

x′ = x, t′ = t, u′ = u, v′ = v.

We now consider transformations in which the functions ϕ, χ, ψ and ω depend also on a real

parameter ϵ. We assume that the parameter ϵ, varies continuously in an open interval, such that

| ϵ |< ϵ0. Then, the transformations compose a group of transformations Tϵ, given via

x′ = ϕ (x, t, u, v, ϵ) , t′ = χ (x, t, u, v, ϵ) , u′ = ψ (x, t, u, v, ϵ) , v′ = ω (x, t, u, v, ϵ) ,

where ϕ, χ, ψ and ω are analytic functions.

Definition 2.5. A set of transformations of the above form, forms a one-parameter Lie group

of transformations if it satisfies the following axioms:

α) T0 = I (Tϵ0 = I) (existence of identity element)

β) T−1
ϵ = Tϵ−1 (existence of inverse element)

γ) Tγ (TδTϵ) = (TγTδ)Tϵ (associativity)

δ) TδTϵ = Tϕ(δ, ϵ) (closure)

Each value of the parameter ϵ corresponds to a particular member of the group of transforma-

tions. Transformations Tϵ belong to the one-parameter group of transformations.
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2.1.4 Examples of One-parameter Lie Groups of Transformations

Example 2.3. Group of Translations:

x′ = x, t′ = t+ ϵ, u′ = u, v′ = v.

Here T0 = I. Hence ϵ0 = 0. Also T−1
ϵ = T−ϵ, so ϵ

−1 = −ϵ. Finally, from the closure, we have

TδTϵ = Tδ+ϵ. Therefore, ϕ (δ, ϵ) = δ + ϵ. This transformation represents a translation in the

direction of t, at a distance ϵ.

Example 2.4. Group of Rotations:

x′ = x cos ϵ− t sin ϵ, t′ = x sin ϵ+ t cos ϵ, u′ = u+ ϵ, v′ = v,

where T0 = I, which means ϵ0 = 0. Furthermore, ϵ−1 = −ϵ, since T−1
ϵ = T−ϵ. Again, TδTϵ =

Tδ+ϵ, so ϕ (δ, ϵ) = δ + ϵ. Such a transformation describes a rotation in the xt-plane at an angle

ϵ, and a translation in the u-direction, at a distance ϵ.

Example 2.5. Group of scalings:

x′ = ϵx, t′ = ϵ2t, u′ = u, v′ = ϵv.

In this case ϵ0 = 1, due to the fact that T1 = I. Furthermore, T−1
ϵ = T 1

ϵ
, which means ϵ−1 = 1

ϵ .

Here, ϕ (δ, ϵ) = δϵ because TδTϵ = Tδϵ.

2.2 Infinitesimal Transformations

We consider a one-parameter Lie group of transformations Tϵ, with identity ϵ0 = 0. Using

Taylor’s expansion about ϵ0 = 0, we obtain

x′ = x+ ϵξ (x, t, u, v) +O
(
ϵ2
)

t′ = t+ ϵτ (x, t, u, v) +O
(
ϵ2
)

u′ = u+ ϵη (x, t, u, v) +O
(
ϵ2
)

v′ = v + ϵµ (x, t, u, v) +O
(
ϵ2
)
,

(2.1)

where,

ξ =
∂ϕ

∂ϵ

∣∣∣∣
ϵ=0

, τ =
∂χ

∂ϵ

∣∣∣∣
ϵ=0

, η =
∂ψ

∂ϵ

∣∣∣∣
ϵ=0

, µ =
∂ω

∂ϵ

∣∣∣∣
ϵ=0

.

In these equations we ignore terms of order two and higher. This first order transformation,

is called infinitesimal transformation. The functions ξ, τ, η, µ are called the infinitesimal

functions of the transformation.

5

STAVROS KONTOGIO
RGIS



The form of the corresponding Lie group of transformations, in finite form, can be found

when the infinitesimal functions are known. Their form is the solution of the system of Ordinary

Differential Equations (ODEs)

dx′

dϵ
= ξ

(
x′, t′, u′, v′

)
dt′

dϵ
= τ

(
x′, t′, u′, v′

)
du′

dϵ
= η

(
x′, t′, u′, v′

)
(2.2)

dv′

dϵ
= µ

(
x′, t′, u′, v′

)
subject to the initial conditions,

x′ = x, t′ = t, u′ = u, v′ = v, for ϵ = 0.

The above result is known as the First Fundamental Theorem of Lie.

2.2.1 Infinitesimal Generators

Definition 2.6. The infinitesimal generator of the one-parameter Lie group of transformations

(2.1) is the linear differential operator

Γ = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
+ µ

∂

∂v
.

For any differentiable function, F (x, t, u, v), we have

ΓF = ξ
∂F

∂x
+ τ

∂F

∂t
+ η

∂F

∂u
+ µ

∂F

∂v
.

Example 2.6. We consider the group of rotations in the xt-plane

x′ = x cos ϵ− t sin ϵ, t′ = x sin ϵ+ t cos ϵ.

The infinitesimal functions for the transformation are

dx′

dϵ

∣∣∣∣
ϵ=0

= −x sin ϵ− t cos ϵ|ϵ=0 = −t, dt′

dϵ

∣∣∣∣
ϵ=0

= x cos ϵ− t sin ϵ|ϵ=0 = x

and the infinitesimal generator has the form

Γ = −t ∂
∂x

+ x
∂

∂t
.

Hence the system (2.2) has the following form

dx′

dϵ
= −t′, dt′

dϵ
= x′

subject to the initial conditions

x′ = x, t′ = t when ϵ = 0.
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2.2.2 Invariant Functions

Definition 2.7. An infinitely differentiable function F (x, t, u, v) is called an invariant function

of the Lie group of transformations (2.1) if F (x′, t′, u′, v′) = F (x, t, u, v) identically in x, t, u, v

and ϵ in a neighborhood of ϵ = 0.

Remark 2.1. Given an invariant function F (x, t, u, v), any function Φ(F (x, t, u, v)) is also

invariant.

Theorem 2.1. A function F (x, t, u, v) is an absolute invariant of the Lie group of transforma-

tions (2.1) with the generator Γ if and only if it is a solution of the homogeneous PDE

ΓF (x, t, u, v) = 0,

where,

Γ = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
+ µ

∂

∂v
.

Example 2.7. If we consider the group of rotations, a function F (x, t) is invariant if and only

if

ΓF (x, t)≡− t
∂F

∂x
+ x

∂F

∂t
= 0.

Using the method of characteristics, one can solve the aforementioned first-order linear PDE,

that is,

dx

−t
=
dt

x
=
dF

0
.

The solution has the form

F = Ψ
(
x2 + t2

)
.

Hence any function of the form Ψ
(
x2 + t2

)
remains invariant under the group of rotations.

2.3 Invariance of a PDE

We would like to examine when a PDE remains invariant under the action of the infinitesimal

transformation. It is necessary to know how the derivatives are transformed. For second order
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PDEs, we define the following extension transformations:

u′x′ = ux + ϵηx (x, t, u, ux, ut) +O
(
ϵ2
)

u′t′ = ut + ϵηt (x, t, u, ux, ut) +O
(
ϵ2
)

u′x′x′ = uxx + ϵηxx (x, t, u, ux, ut, uxx, uxt, utt) +O
(
ϵ2
)

u′x′t′ = uxt + ϵηxt (x, t, u, ux, ut, uxx, uxt, utt) +O
(
ϵ2
)

u′t′t′ = utt + ϵηtt (x, t, u, ux, ut, uxx, uxt, utt) +O
(
ϵ2
)
,

(2.3)

where the extended infinitesimal functions have the form:

ηx = Dx (η)− uxDx (ξ)− utDx (τ)

ηt = Dt (η)− uxDt (ξ)− utDt (τ)

ηxx = Dx (η
x)− uxxDx (ξ)− uxtDx (τ)

ηxt = Dt (η
x)− uxxDt (ξ)− uxtDt (τ)

= Dx

(
ηt
)
− uxtDx (ξ)− uttDx (τ)

ηtt = Dt

(
ηt
)
− uxtDt (ξ)− uttDt (τ) .

(2.4)

Here, Dx and Dt denote the total derivative operators, with respect to x and t, respectively.

The first and second prolongations of the extended infinitesimal generator are defined as:

Γ(1) = Γ + ηx
∂

∂ux
+ ηt

∂

∂ut
(2.5)

Γ(2) = Γ(1) + ηxx
∂

∂uxx
+ ηxt

∂

∂uxt
+ ηtt

∂

∂utt
(2.6)

respectively.

A transformation is called a Lie symmetry of a second order PDE,

E (x, t, u, ux, ut, uxx, uxt, utt) = 0,

if the PDE has the same form in the new variables x′, t′, u′. That is,

E
(
x′, t′, u′, u′x′ , u

′
t′ , u

′
x′x′ , u

′
x′t′ , u

′
t′t′
)
= 0.

The PDE

E (x, t, u, ux, ut, uxx, uxt, utt) = 0,

admits a Lie symmetry of the form

Γ = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
,

if and only if,

Γ(2)E|
E=0

= 0.
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This is a multi-variable polynomial in the variables ux, ut, uxx, uxt, utt. Equating the coefficients

of ux, ut, uxx, uxt, utt, gives an over-determined system of PDEs for the infinitesimal functions

ξ (x, t, u) , τ (x, t, u) and η (x, t, u). The solution of this system provides us with the required

Lie symmetries of the PDE.

2.3.1 Similarity Reductions

Lie symmetries lead to the construction of transformations which reduce the number of inde-

pendent variables of a system of PDEs by at least one. Especially, in the case of a PDE with

two independent variables the reduction gives an ordinary differential equation. In the case of

an ODE the order of the equation is reduced by one. Such transformations are called similarity

transformations or similarity reductions. In the case of a system of PDEs with two independent

and two dependent variables they can be constructed from the solution of the invariant surface

conditions

τ(x, t, u, v)ut + ξ(x, t, u, v)ux = η(x, t, u, v),

τ(x, t, u, v)vt + ξ(x, t, u, v)vx = µ(x, t, u, v). (2.7)

This solution is obtained by solving the characteristic system,

dt

τ
=
dx

ξ
=
du

η
=
dv

µ
.

Now, if ξ(x,t,u,v)
τ(x,t,u,v) is independent of u and v, then the solution of (2.7) has the form

ω(x, t) = constant,

u(x, t) = F (x, t, ω, ϕ(ω)), (2.8)

v(x, t) = G(x, t, ω, ψ(ω)),

where F and G are known functions. Equation (2.8) is the invariant solution and the function

ω(t, x) is called the similarity variable that constitutes the independent variable of the ODE that

we obtain from the transformation. The functions ϕ(ω) and ψ(ω) are the unknown dependent

variables of the ODEs.

2.4 Nonclassical Reductions

The method of nonclassical reductions is a generalization of the classical method of Lie reductions

for obtaining invariant solutions of PDEs. In this method we, furthermore, require the invariance
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of the PDE

E(x, t, u, ut, ux, utt, utx, uxx, . . .) = 0, (2.9)

under the invariant surface condition, produced by the infinitesimal generator

Γ = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (2.10)

As a result an over-determined nonlinear system of PDEs for the determination of the coefficients

ξ(x, t, u), τ(x, t, u) and η(x, t, u) is obtained.

Although the term “nonclassical symmetry” is used, it is not a symmetry of a given PDE

(2.9) unless the infinitesimal coefficients yielding an infinitesimal generator (2.10) yield a point

symmetry of (2.9). Otherwise a mapping resulting from such an infinitesimal generator maps

no solution of (2.9) into a different solution of it. In other words the nonclassical method is not

a “symmetry” method but an extension of Lie’s symmetry method (“classical method”) for the

purpose of finding specific solutions of PDEs.

From the nature of the constraint invariant surface condition equation (2.7), without loss of

generality, in using the nonclassical method, two simplifying cases need only be considered when

solving the determining equations for finding the form of the infinitesimal coefficients, namely

τ ̸= 0 and τ = 0. In the case τ(x, t, u) ̸= 0 we can assume, without loss of generality, that τ = 1.

Also, when τ = 0, without loss of generality, we can take ξ = 1. In this latter case the invariant

conditions result in a single nonlinear PDE in η(x, t, u). Here we only consider the case where

τ = 1. For recent applications of this method see [52] and references therein.

2.5 Equivalence Transformations

Equivalence transformations are nondegenerate point transformations, that preserve the differ-

ential structure of the class under study and change only its arbitrary elements. The set of all

equivalence transformations of a given family of differential equations forms a group which is

called the equivalence group. There exist two methods for the calculation of equivalence trans-

formations, the direct method which was first used by Lie [55] and the Lie infinitesimal method

which was introduced by Ovsiannikov [72]. Although, the direct method involves considerable

computational difficulties, it has the advantage of finding the most general equivalence group

and also unfolds all form-preserving [46] (also known as admissible [75]) transformations admit-

ted by this class of equations. For recent applications of the direct method one can refer, for

example, to references [94–98].
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There are different kinds of equivalence groups. The usual equivalence group, which has been

used for solving group classification problems since late the 50’s, consists of the non-degenerate

point transformations of the independent and dependent variables and of the arbitrary elements

of the class, where transformations for independent and dependent variables do not involve

arbitrary elements of the class under consideration [72]. The notion of the generalized equivalence

group, where transformations of variables of given DEs explicitly depend on arbitrary elements,

was introduced by Meleshko [60, 61] in the mid nineties. The extended equivalence group is an

equivalence group whose transformations include nonlocalities with respect to arbitrary elements

(e.g., if new arbitrary elements are expressed via integrals of old ones) [38]. The generalized

extended equivalence group possesses the properties of both generalized and extended equivalence

groups [94,95,97,98].
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Chapter 3

Group analysis of generalized

nonlinear equations

3.1 Introduction

The investigation of nonlinear heat (or diffusion if u represents mass concentration) equations

by means of symmetry methods began in 1959 with Ovsiannikov’s work [71] in which the author

performed the group classification of the class of equations of the form

ut = (f(u)ux)x . (3.1)

Equation (3.1) describes the stationary motion of a boundary layer of fluid over a flat plate and

a vortex of incompressible fluid in a porus medium with polytropic relation between gas density

and pressure.

Another equation that is of considerable interest in mathematical physics is the nonlinear

diffusion-convection equation

ut = (f(u)ux)x + k(u)ux.

Lie symmetries of the above equation have been considered in [23, 70, 76]. In the case where

f(u) = 1 it coincides with the generalized Burgers equation

ut = uxx + k(u)ux. (3.2)

Lie symmetries of (3.2) have been derived in [45].

In this Chapter we present the known results for equations (3.1) and (3.2). We give the

equivalence transformations and the group classification of Lie symmetries. We also present

examples of invariant solutions.
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3.2 Nonlinear heat equation

3.2.1 Equivalence transformations

We find that equation (3.1), admits the equivalence transformations

t′ = c1t+ c2, x′ = c3x+ c4, u′ = c5u+ c6, f ′ =
c23
c1
f,

where c1, c2, c3, c4, c5, c6 are arbitrary constants and c1c3c5 ̸= 0.

3.2.2 Lie Symmetries

A second-order PDE admits Lie point symmetries if and only if

Γ(2)E
∣∣∣
E=0

= 0,

where Γ(2) is the second prolongation of the generator

Γ = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
,

which is given by the relation

Γ(2) = Γ + [Dt (η)− uxDt (ξ)− utDt (τ)]
∂

∂ut
+ [Dx (η)− uxDx (ξ)− utDx (τ)]

∂

∂ux

+ [Dx (η
x)− uxxDx (ξ)− uxtDx (τ)]

∂

∂uxx
.

Here Dt and Dx represent the total derivative operators with respect to t and x respectively

and ηx is the coefficient function of ∂
∂ux

.

In this case we have that

E = ut − f(u)uxx −
df(u)

du
u2x = 0

and equation (3.1) admits Lie point symmetries if and only if

Γ(2)[ut − f(u)uxx −
df(u)

du
u2x] = 0 (3.3)

for ut = f(u)uxx +
df(u)
du u2x.

Eliminating ut and also substituting

utx = f(u)uxxx + 3
df(u)

du
uxuxx +

d2f(u)

du2
u3x,

equation (3.3) becomes a multi-variable polynomial in ux, uxx and uxxx. The coefficients of

different powers of these variables must be zero. These give the determining equations for the

coefficients ξ, τ and η.
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The coefficients of uxxx and uxuxxx give respectively

τx = τu = 0, (3.4)

which implies that τ(x, t, u) = τ(t). The coefficient of uxuxx gives

ξu = 0, (3.5)

which means that ξ(x, t, u) = ξ(x, t). The coefficients of uxx, u
2
x, ux and the term which is

independent of the derivatives, give respectively, the following equations:

ηfu + (τt − 2ξx)f = 0, (3.6)

ηuuf + (τt − 2ξx + ηu)fu + ηfuu = 0, (3.7)

(2ηxu − ξxx)f + 2ηxfu + ξt = 0, (3.8)

(τt − 2ξx + ηxx)f + ηfu − ηt = 0. (3.9)

When we solve these equations (3.6)–(3.9), we observe that for the case where f is arbitrary,

the symmetry Lie algebra is three-dimensional and is spanned by

X1 = ∂t, X2 = ∂x, X3 = 2t∂t + x∂x.

Note 3.1. Throughout the thesis, we use both notations for partial derivatives, ∂
∂x or ∂x, to

present the form of Lie symmetries.

An additional fourth Lie symmetry exists in the cases where f(u) = eu, which is

X4 = x∂x + 2∂u

and f(u) = un, which is

X4 =
n

2
x∂x + u∂u.

Finally, for the specific value of the parameter n = −4
3 , that is, f(u) = u−

4
3 , equation (3.1)

admits a fifth symmetry

X5 = −x2∂x + 3xu∂u.
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3.2.3 Invariant Solutions

The primary use of Lie symmetries is to obtain a reduction of variables. Similarity variables

appear as constants of integration in the solution of the characteristic equations

dt

τ
=

dx

ξ
=

du

η
.

Reductions could be obtained from any symmetry which is an arbitrary linear combination, i.e.

a1X1 + a2X2 + a3X3 + a4X4 + a5X5.

In the case for which f is arbitrary, the optimal system and the corresponding similarity reduc-

tions that transform (3.1) into an ODE are given by the operators

X1 : u = ϕ(ω), ω = x,

X2 : u = ϕ(ω), ω = t,

X3 : u = ϕ(ω), ω =
x2

t
,

X1 +X2 : u = ϕ(ω), ω = x− t.

In the case where f(u) = eu, the optimal system includes the following additional operators

X1 +X4 : u = 2t+ ϕ(ω), ω = xe−t,

X4 : u = ln(t) + ϕ(ω), ω = x,

CX3 +X4 : u =
1

C
ln(x) + ϕ(ω), ω = tx

1
C
−2,

X2 −
1

2
(X3 −X4) : u = x+ ϕ(ω), ω = tex.

When f(u) = un, n ̸= 0,−4
3 , the optimal system also widens and includes the additional

operators:

X1 +X4 : u = etϕ(ω), ω = xe−
nt
2 ,

CX3 +X4 : u =

 x
1

C+n
2 ϕ(ω), ω = tx

− 2C
C+n

2 , if C ̸= −n
2 ,

t−
1
nϕ(ω), ω = x, if C = −n

2 ,
,

X2 −
n

2
X3 +X4 : u = exϕ(ω), ω = tenx.
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Lastly, when f(u) = u−
4
3 , for which a fifth symmetry exists, we obtain the following additional

reductions:

X1 +X4 : u = etϕ(ω), ω = xe
2t
3 ,

CX3 +X4 : u =

 x
1

C− 2
3 ϕ(ω), ω = tx

− 2C

C− 2
3 , if C ̸= 2

3 ,

t
3
4ϕ(ω), ω = x, if C = 2

3 ,
,

X5 : u = x−3ϕ(ω), ω = t,

X2 +X5 : u = x−3ϕ(ω), ω = t− 1

x
,

X3 +X5 : u = x−3ϕ(ω), ω =
tx2

(x+ 1)2
.

The results of Section 3.2 can be found in [71].

3.3 Generalized Burgers equation

3.3.1 Equivalence transformations

We find that equation (3.2), admits the equivalence transformations

t′ = c24t+ c1, x′ = c4x+ c6t+ c2, u′ = c5u+ c3, k′ =
1

c4
k − c6

c24
,

where c1, c2, c3, c4, c5, c6 are arbitrary constants and c4c5 ̸= 0.

3.3.2 Lie Symmetries

In this case we have that

E = ut − uxx − k(u)ux = 0

and equation (3.2) admits Lie point symmetries if and only if

Γ(2)[ut − uxx − k(u)ux] = 0 (3.10)

for ut = uxx + k(u)ux.

Eliminating ut and also substituting

utx = uxxx +
dk(u)

du
u2x + k(u)uxx,

equation (3.10) becomes a multi-variable polynomial in ux, uxx and uxxx. The coefficients of

different powers of these variables must be zero. These give the determining equations for the

coefficients ξ, τ and η.
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The coefficients of uxxx and uxuxxx give respectively

τx = τu = 0, (3.11)

which implies that τ(x, t, u) = τ(t). The coefficient of uxuxx gives

ξu = 0, (3.12)

which means that ξ(x, t, u) = ξ(x, t). The coefficients of uxx, u
2
x, ux and the term independent

of the derivatives give, respectively, the following equations:

τt − 2ξx = 0, (3.13)

ηuu = 0, (3.14)

2ηxu + ηku + (τt − ξx)k + ξt − ξxx = 0, (3.15)

ηxk + ηxx − ηt = 0. (3.16)

The solution of the above system gives the Lie symmetries admitted by equation (3.2). For an

arbitrary function k, equation (3.2), admits the Lie symmetries

X1 = ∂t, X2 = ∂x.

If k(u) = eu, there exists a third Lie symmetry, given by

X3 = 2t∂t + x∂x − ∂u.

A third Lie symmetry, also exists in the cases where k(u) = un, which is

X3 = 2nt∂t + nx∂x − u∂u,

and when k(u) = lnu

X3 = t∂x − u∂u.

Finally, five Lie symmetries are admitted for k(u) = u, which is the case when equation (3.2)

coincides with Burgers equation. Here, we have

X3 = t2∂t + tx∂x − (tu+ x)∂u, X4 = 2t∂t + x∂x − u∂u, X5 = t∂x − ∂u.
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Chapter 4

On the simplification of the form of

Lie transformation groups

4.1 Introduction

There have been many attempts to compute Lie symmetries of differential equations using differ-

ent systems of computer algebras, such as MATHEMATICA, MAPLE, MACSYMA, REDUCE,

AXIOM, MuPAD etc, as well as different symbolic manipulation packages [17, 21, 31, 85, 100]

(see also detailed review in [32,33]). These programs, although powerful, are not guaranteed to

complete their task. They have a number of essential disadvantages, for example, restrictions on

nonlinearities. This is particularly true, when we have the problem of finding the Lie symme-

tries for a class of PDEs instead of a single PDE. In this case, we have unspecified functions, for

example of independent or/and dependent variables, appearing in the PDE which are known as

arbitrary elements. The problem of finding the Lie symmetries of such a class of PDEs is known

as group classification and it is more complicated since in the determining system, in addition to

the coefficient functions, we have the appearance of the arbitrary elements. In order to simplify

the group classification, it is important to have a-priori knowledge of the form of the coefficient

functions.

The results of the present chapter, appear in [49].
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4.2 Known results for the general class of scalar evolution equa-

tions

The idea of the present chapter was previously adopted by various authors in the literature for

scalar PDEs. For example, Tu [93] proved that the Lie symmetry generator

Γ = τ (x, t, u)
∂

∂t
+ ξ (x, t, u)

∂

∂x
+ η (x, t, u)

∂

∂u
(4.1)

admitted by the general class of evolution equations

ut = H(x, t, u, u1, u2, . . . , un), Hun ̸= 0, n ≥ 2

has the simplified form

Γ = τ (t)
∂

∂t
+ ξ (x, t, u)

∂

∂x
+ η (x, t, u)

∂

∂u
.

Bluman [12] presented some general results for the nature of the infinitesimal Lie generator

(4.1) for linear PDEs. He derived certain criteria to determine whether or not the coefficient

functions τ(x, t, u) and ξ(x, t, u) depend only on the independent variables t and x and also

criteria that examine whether the coefficient function η(x, t, u) is linear in u. Certain restrictions

on the form of (4.1) for wave-type equations are presented in [47]. Corresponding results for the

nature of general point transformations for evolution equations can be found, for example, in

references [40,46,57,77].

4.3 System of evolution equations with two dependent and two

independent variables

We consider the system of evolution equations

ut = H (x, t, u, v, u1, u2, . . . , un, v1, v2, . . . , vm) , n ≥ 0,

vt = G (x, t, u, v, u1, u2, . . . , ur, v1, v2, . . . , vp) , p ≥ 0, (4.2)

where

ui =
∂iu

∂xi
, vi =

∂iv

∂xi
, i = 1, 2, . . . .

In the subsequent analysis, u0 = u and v0 = v. We also assume that,

∂H

∂un
̸= 0,

∂H

∂vm
̸= 0,

∂G

∂ur
̸= 0,

∂G

∂vp
̸= 0.
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The condition n ≥ 0 implies that H is always a function of u and/or its derivatives with respect

to x. A similar conclusion can be drawn for the condition p ≥ 0. Systems of the form (4.2)

have considerable interest in mathematical physics and in other disciplines of mathematical

applications. Such examples are given in the analysis that follows.

Although in the present work we consider systems of PDEs, the results are also useful for

searching for nonlocal (potential) symmetries for scalar PDEs. If a PDE can be written in a

conserved form, then by introducing a potential variable (new dependent variable), we can write

the PDE as a system of two PDEs. This system might lead to nonlocal symmetries for the

original PDE. For more details see Ref. [10,11,13]. Also, complex scalar PDEs can be written as

a system of two real equations by separating real and imaginary parts. Such complex equations

are the Schrödinger type equations which are of considerable interest in mathematical physics.

See, for example, in [53,64,75,78,86].

The results that are derived in the present chapter will also be useful for calculations of

the equivalence transformations of systems of evolution equations using the Lie infinitesimal

method which was introduced by Ovsiannikov [72]. Such transformations are used, for example,

in determining the differential invariants of differential equations. Examples of constructing

differential invariants for a system of PDEs of the form (4.2) can be found, for example, in [30,58].

4.4 Restrictions on the form of the coefficient function τ

The Lie symmetry generator admitted by the system of evolution equations (4.2) has the form

Γ = τ (x, t, u, v)
∂

∂t
+ ξ (x, t, u, v)

∂

∂x
+ η (x, t, u, v)

∂

∂u
+ µ (x, t, u, v)

∂

∂v
(4.3)

which corresponds to the one-parameter Lie group of transformations

t′ = t+ ϵτ (x, t, u, v) +O(ϵ2)

x′ = x+ ϵξ (x, t, u, v) +O(ϵ2)

u′ = u+ ϵη (x, t, u, v) +O(ϵ2)

v′ = v + ϵµ (x, t, u, v) +O(ϵ2).

These transformations leave the system of evolution equations (4.2) invariant. In this section we

present those forms of the class (4.2) that admit Lie symmetries when the coefficient function τ

depends only on t.

The corresponding extended generator has the form

Γext = τ
∂

∂t
+ ξ

∂

∂x
+ η

∂

∂u
+ µ

∂

∂v
+ ηt

∂

∂ut
+ µt

∂

∂vt
+

max(n,r)∑
i=1

ηx
i ∂

∂ui
+

max(m,p)∑
i=1

µx
i ∂

∂vi
, (4.4)
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where the coefficients of the extended generator are defined as follows

ηt = Dt (η)− uxDt (ξ)− utDt (τ) ,

ηx = Dx (η)− uxDx (ξ)− utDx (τ) ,

ηxx = Dx (η
x)− uxxDx (ξ)− uxtDx (τ) ,

...

ηx
n+1

= Dx

(
ηx

n)− uxn+1Dx (ξ)− uxntDx (τ) ,

µt = Dt (µ)− vxDt (ξ)− vtDt (τ) ,

µx = Dx (µ)− vxDx (ξ)− vtDx (τ) ,

µxx = Dx (µ
x)− vxxDx (ξ)− vxtDx (τ) ,

...

µx
n+1

= Dx

(
µx

n)− vxn+1Dx (ξ)− vxntDx (τ) ,

where Dt and Dx are the total derivatives with respect to t and x, respectively, i.e

Dx =
∂

∂x
+ ux

∂

∂u
+ vx

∂

∂v
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ vxx

∂

∂vx
+ vxt

∂

∂vt

+ uxxx
∂

∂uxx
+ uxxt

∂

∂uxt
+ uxtt

∂

∂utt
+ vxxx

∂

∂vxx
+ vxxt

∂

∂vxt
+ vxtt

∂

∂vtt
+ . . . (4.5)

and

Dt =
∂

∂t
+ ut

∂

∂u
+ vt

∂

∂v
+ uxt

∂

∂ux
+ utt

∂

∂ut
+ vxt

∂

∂vx
+ vtt

∂

∂vt

+ uxxt
∂

∂uxx
+ uxtt

∂

∂uxt
+ uttt

∂

∂utt
+ vxxt

∂

∂vxx
+ vxtt

∂

∂vxt
+ vttt

∂

∂vtt
+ . . . . (4.6)

Now using mathematical induction, it can be shown that

ηx
k

= Dk
xη −

k∑
j=1

(
k

j − 1

)(
Dk+1−j
x ξ

)
uj −

k−1∑
i=0

(
k

i

)(
Dk−i
x τ

)
uxit,

µx
k

= Dk
xµ−

k∑
j=1

(
k

j − 1

)(
Dk+1−j
x ξ

)
vj −

k−1∑
i=0

(
k

i

)(
Dk−i
x τ

)
vxit. (4.7)

We note that in the form of ηx
n
, Dn

xη gives

ηuun + ηvvn + (lower order terms),

the first sum gives

−n (Dxξ)un − ux (ξuun + ξvvn) + . . .
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and the second sum gives

− (τuun + τvvn)H − n (Dxτ)

(
∂H

∂un
u2n−1 +

∂H

∂vm
vn+m−1

)
+ . . . .

Similar expressions are obtained from the form of µx
m

in the first determining equation and

from ηx
r
, µx

p
in the second determining equation.

Here we require that

Γext(H − ut) = 0, Γext(G− vt) = 0

modulo the system (4.2), where Γext is defined by (4.4). Hence, we have

τ
∂H

∂t
+ ξ

∂H

∂x
+ η

∂H

∂u
+ µ

∂H

∂v
− ηt +

n∑
i=1

ηx
i ∂H

∂ui
+

m∑
i=1

µx
i ∂H

∂vi
= 0, (4.8)

τ
∂G

∂t
+ ξ

∂G

∂x
+ η

∂G

∂u
+ µ

∂G

∂v
− µt +

r∑
i=1

ηx
i ∂G

∂ui
+

p∑
i=1

µx
i ∂G

∂vi
= 0, (4.9)

where

ut = H, uxit = Di
xH, vt = G, vxit = Di

xG. (4.10)

Using (4.10), equations (4.8) and (4.9) become two multi-variable polynomials in the variables

x, t, u, v and the derivatives of u and v with respect to x. The results in the present section

are determined by collecting the coefficients of the appropriate variables in (4.8) and (4.9) and

setting them equal to zero. The derived results are presented in the following theorems.

We consider the general case where all indices n, m, r, p ≥ 2.

Theorem 4.1. If the indices n, m, r, p ≥ 2 and they are not all equal, then system (4.2)

admits Lie symmetries of the form (4.3), where

τ = τ(t).

If n = m = r = p ≥ 2 and in addition[(
∂H

∂un

)2

+
∂H

∂vn

∂G

∂un

]2
+

[
∂H

∂un
+
∂G

∂vn

]2
̸= 0 (4.11)

then

τ = τ(t).
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Note 4.1. If restriction (4.11) holds then its symmetric[(
∂G

∂vn

)2

+
∂H

∂vn

∂G

∂un

]2
+

[
∂H

∂un
+
∂G

∂vn

]2
̸= 0

also holds. In the case restriction (4.11) is not satisfied, then we can write

∂H

∂un
= − ∂G

∂vn
,

∣∣∣∣∣∣
∂H
∂un

∂G
∂un

∂H
∂vn

∂G
∂vn

∣∣∣∣∣∣ = 0. (4.12)

In other words, if the system (4.2) admits Lie symmetries with the coefficient function τ not

depending only on t, then H and G satisfy the conditions (4.12).

Proof: Writing only the highest order terms, the first determining equation has the form

−
(

n

n− 1

)
(Dxτ)uxn−1t

∂H

∂un
+ . . .−

(
m

m− 1

)
(Dxτ) vxm−1t

∂H

∂vm
+ . . .

which can be simplified, using (4.10), to

−n (Dxτ)

(
∂H

∂un
u2n−1 +

∂H

∂vm
vn+m−1 + . . .

)
∂H

∂un
+ . . .

−m (Dxτ)

(
∂G

∂ur
ur+m−1 +

∂G

∂vp
vp+m−1 + . . .

)
∂H

∂vm
+ . . . (4.13)

Similarly, the second determining equation gives

−r (Dxτ)

(
∂H

∂un
un+r−1 +

∂H

∂vm
vm+r−1 + . . .

)
∂G

∂ur
+ . . .

−p (Dxτ)

(
∂G

∂ur
ur+p−1 +

∂G

∂vp
v2p−1 + . . .

)
∂G

∂vp
+ . . . (4.14)

In order to complete the proof, we need to consider three cases:

(i) n > p,

(ii) n < p and

(iii) n = p,

shown in the following table:
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T
ab

le
4.
1:

P
ro
of

of
th
eo
re
m

4.
1

R
el
a
ti
o
n

R
el
at
io
n

b
et
w
ee
n

b
et
w
ee
n

E
q
u
a
ti
on

,
C
o
effi

ci
en
t

R
es
tr
ic
ti
on

R
es
u
lt

n
an

d
p

n
,m

,r
te
rm

(4
.1
3)
,
v n

+
m

−
1

n
(D

x
τ
)

∂
H

∂
v
m

∂
H

∂
u
n
=

0
∂
H

∂
v
m

∂
H

∂
u
n
̸=

0

n
>
p

o
r

D
x
τ
=

0
=
⇒
τ
=
τ
(t
)

(4
.1
4)
,
u
n
+
r
−
1

r
(D

x
τ
)

∂
H

∂
u
n

∂
G

∂
u
r
=

0
∂
H

∂
u
n

∂
G

∂
u
r
̸=

0

(4
.1
3)
,
v m

+
p
−
1

m
(D

x
τ
)

∂
H

∂
v
m

∂
G

∂
v
p
=

0
∂
H

∂
v
m

∂
G

∂
v
p
̸=

0

n
<
p

o
r

D
x
τ
=

0
=
⇒
τ
=
τ
(t
)

(4
.1
4)
,
u
r
+
p
−
1

p
(D

x
τ
)

∂
G

∂
u
r

∂
G

∂
v
p
=

0
∂
G

∂
u
r

∂
G

∂
v
p
̸=

0

(4
.1
3)
,
v n

+
m

−
1

(D
x
τ
)

∂
H

∂
v
m

( n
∂
H

∂
u
n
+
m

∂
G

∂
v
n

) =
0

n
∂
H

∂
u
n
+
m

∂
G

∂
v
n
̸=

0

n
=
p

o
r

D
x
τ
=

0
=
⇒
τ
=
τ
(t
)

(4
.1
4)
,
u
n
+
r
−
1

(D
x
τ
)

∂
G

∂
u
r

( r
∂
H

∂
u
n
+
n

∂
G

∂
v
n

) =
0

r
∂
H

∂
u
n
+
n

∂
G

∂
v
n
̸=

0

n
∂
H

∂
u
n
+
m

∂
G

∂
v
n
=

0,
r

∂
H

∂
u
n
+
n

∂
G

∂
v
n
=

0
=
⇒
n
2
=
m
r

(4
.1
3)
,
u
r
+
m

−
1

m
(D

x
τ
)

∂
H

∂
v
m

∂
G

∂
u
r
=

0
∂
H

∂
v
m

∂
G

∂
u
r
̸=

0

n
=
p

2 n
<
r
+
m

o
r

D
x
τ
=

0
=
⇒
τ
=
τ
( t
)

(4
.1
4)
,
v m

+
r
−
1

r
(D

x
τ
)

∂
H

∂
v
m

∂
G

∂
u
r
=

0
∂
H

∂
v
m

∂
G

∂
u
r
̸=

0

(4
.1
3)
,
u
2
n
−
1

n
(D

x
τ
)
( ∂

H
∂
u
n

) 2 =
0

∂
H

∂
u
n
̸=

0

n
=
p

2
n
>
r
+
m

o
r

D
x
τ
=

0
=
⇒
τ
=
τ
(t
)

(4
.1
4)
,
v 2

n
−
1

n
(D

x
τ
)
( ∂

G
∂
v
n

) 2 =
0

∂
G

∂
v
n
̸=

0

2
n
=
r
+
m

(4
.1
3)
,
u
2
n
−
1

n
(D

x
τ
)

[ ( ∂
H

∂
u
n

) 2 +
∂
H

∂
v
n

∂
G

∂
u
n

] =
0

( ∂
H

∂
u
n

) 2 +
∂
H

∂
v
n

∂
G

∂
u
n
̸=

0

n
=
p

=
⇒

o
r

(n
ot
e
4.
1)
=
⇒

D
x
τ
=

0
=
⇒
τ
=
τ
(t
)

n
=
m

=
r
=
p

(4
.1
4)
,
v 2

n
−
1

n
(D

x
τ
)

[ ∂
H

∂
v
n

∂
G

∂
u
n
+
( ∂

G
∂
v
n

) 2] =
0

∂
H

∂
v
n

∂
G

∂
u
n
+
( ∂

G
∂
v
n

) 2 ̸=
0
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We give a trivial counterexample to show that Theorem 4.1 is not generally true if restriction

(4.11) is not valid.

Example 4.1. We show that system

ut = un − vn, vt = un − vn, n ≥ 2

admits the Lie symmetry x∂∂t . This shows that τ depends also on x. The form of the symmetry

implies that

τ = x, ξ = 0, η = 0, µ = 0,

so

Dt(τ) = 0, ηt = 0, µt = 0,

∂H

∂x
=
∂H

∂t
=
∂H

∂u
=
∂H

∂v
=
∂G

∂x
=
∂G

∂t
=
∂G

∂u
=
∂G

∂v
= 0

and

∂H

∂un
= 1 ̸= 0,

∂H

∂vn
= −1 ̸= 0,

∂G

∂un
= 1 ̸= 0,

∂G

∂vn
= −1 ̸= 0.

Also,

ηx
n
= −n (u2n−1 − v2n−1) , µ

xn = −n (u2n−1 − v2n−1) .

Therefore the determining equations (4.8) and (4.9) are satisfied.

Now we consider certain special cases where some of the indices, but not both, of n and p,

are less than two.

Theorem 4.2. If at least one of the four indices is less than two and at least one of n and p is

greater than or equal to two, then system (4.2) admits Lie symmetries of the form (4.3), where

τ = τ(t).

Proof: We split the proof into the following cases:

(i) n, p, m ≥ 2, r ≤ 1 (or its symmetric case n, p, r ≥ 2, m ≤ 1);

(ii) n, p ≥ 2, r, m ≤ 1;

(iii) n ≥ 2, p ≤ 1 (or its symmetric case n ≤ 1, p ≥ 2);

In these cases the form of the leading terms in each determining equation is more complicated,

since we cannot ignore the terms that contain the derivatives un, vn, um, vm, e.t.c..
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(i) n, p, m ≥ 2, r ≤ 1: We consider separately r = 0 and r = 1.

If r = 0, the determining equations (4.8) and (4.9) have the form (writing only the leading

terms)

[− (τuun + τvvn)H − n (Dxτ)

(
∂H

∂un
u2n−1 +

∂H

∂vm
vn+m−1 + . . .

)
+ ηuun + ηvvn − n (Dxξ)un − ux (ξuun + ξvvn) + . . .]

∂H

∂un
+ . . .

+ [− (τuum + τvvm)G−m (Dxτ)
∂G

∂vp
vp+m−1 + . . .

+ µuum + µvvm −m (Dxξ) vm − vx (ξuum + ξvvm) + . . .]
∂H

∂vm
+ . . . (4.15)

and

[− (τuup + τvvp)G− p (Dxτ)
∂G

∂vp
v2p−1 + . . .

+ µuup + µvvp − p (Dxξ) vp − vx (ξuup + ξvvp) + . . .]
∂G

∂vp
+ . . . (4.16)

respectively.

• n > p which means that n+m− 1 > n,m, p, r. The coefficient of vn+m−1 in (4.15) gives

n (Dxτ)
∂H

∂vm

∂H

∂un
= 0

and since ∂H
∂vm

∂H
∂un

̸= 0, we have Dxτ = 0. That is, τ = τ(t).

• n < p which implies that p+m− 1 > n,m, p, r. The coefficient of vp+m−1 in (4.15) gives

m (Dxτ)
∂H

∂vm

∂G

∂vp
= 0

and since ∂H
∂vm

∂G
∂vp

̸= 0, we have Dxτ = 0. That is, τ = τ(t).

• n = p which indicates that n+m− 1 > n,m, p, r. The coefficient of vn+m−1 in (4.15) gives

(Dxτ)
∂H

∂vm

(
n
∂H

∂un
+m

∂G

∂vn

)
= 0.

If n ∂H
∂un

+m ∂G
∂vn

̸= 0 and since ∂H
∂vm

̸= 0 the result follows. If n ∂H
∂un

+m ∂G
∂vn

= 0 then

H = −m
n
un

∂G

∂vn
+ . . .

which means that H is linear in un. We have the following two subcases:

(a) m ≥ 2n: We have m > n, p, r, 2n− 1 and the coefficient of um in (4.15) gives

µu − ξuvx −Gτu = 0.
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The left hand side of this expression is the coefficient of H in the second determining equation

(H appears in the expression for µt) and hence H disappears from this equation. Noting also

that 2n− 1 > n, p, r, we can take the coefficient of v2n−1 in (4.16) to give n (Dxτ)
(
∂G
∂vn

)2
= 0.

Hence, τ = τ(t).

(b) m < 2n: The coefficient of un in (4.16) gives

(µu − ξuvx −Gτu)
∂G

∂vn

(
1 +

m

n

)
= 0.

As before, H disappears from this equation. Since 2n− 1 > n, p, r, coefficient of v2n−1 in (4.16)

gives n (Dxτ)
(
∂G
∂vn

)2
= 0. Hence, τ = τ(t).

Now, we consider r = 1. The determining equations have the form (leading terms)

[− (τuun + τvvn)H − n (Dxτ)

(
∂H

∂un
u2n−1 +

∂H

∂vm
vn+m−1 + . . .

)
+ ηuun + ηvvn − n (Dxξ)un − ux (ξuun + ξvvn) + . . .]

∂H

∂un
+ . . .

+ [− (τuum + τvvm)G−m (Dxτ)

(
∂G

∂ux
um +

∂G

∂vp
vp+m−1 + . . .

)
+ µuum + µvvm −m (Dxξ) vm − vx (ξuum + ξvvm) + . . .]

∂H

∂vm
+ . . . (4.17)

and

+ [− (τuup + τvvp)G− p (Dxτ)

(
∂G

∂ux
up +

∂G

∂vp
v2p−1 + . . .

)
+ µuup + µvvp − p (Dxξ) vp − vx (ξuup + ξvvp) + . . .]

∂G

∂vp
− (Dxτ)H

∂G

∂ux
+ . . . (4.18)

respectively.

• n > p which means that n+m− 1 > n,m, p, r. The coefficient of vn+m−1 in (4.17) gives

n (Dxτ)
∂H

∂vm

∂H

∂un
= 0

and since ∂H
∂vm

∂H
∂un

̸= 0, we have Dxτ = 0. That is, τ = τ(t).

• n < p which means that p+m− 1 > n,m, p, r. The coefficient of vp+m−1 in (4.17) gives

m (Dxτ)
∂H

∂vm

∂G

∂vp
= 0

and since ∂H
∂vm

∂G
∂vp

̸= 0, we have Dxτ = 0. That is, τ = τ(t).

• n = p which means that n+m− 1 > n,m, p, r. The coefficient of vn+m−1 in (4.15) gives

(Dxτ)
∂H

∂vm

(
n
∂H

∂un
+m

∂G

∂vn

)
= 0.
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If n ∂H
∂un

+m ∂G
∂vn

̸= 0 and since ∂H
∂vm

̸= 0 the result follows. If n ∂H
∂un

+m ∂G
∂vn

= 0 then

H = −m
n
un

∂G

∂vn
+ . . .

which means that H is linear in un. We have the following three subcases:

(a) m < 2n − 1: Since 2n − 1 > n,m, p, r, the coefficient of u2n−1 in (4.17) gives

n (Dxτ)
(
∂H
∂un

)2
= 0. Hence, τ = τ(t).

(b) m > 2n− 1: We have m > n, p, r, 2n− 1 and hence, coefficient of um in (4.17) gives

∂H

∂vm

(
µu − ξuvx −Gτu −m (Dxτ)

∂G

∂ux

)
= 0.

Since ∂H
∂vm

̸= 0, we find

µu − ξuvx −Gτu = m (Dxτ)
∂G

∂ux
.

Using this expression and the coefficient of un in (4.18), we deduce that

∂G

∂vn

∂G

∂ux

(
m− n+

m

n
+
m2

n

)
(Dxτ) = 0.

Since the bracket is nonzero, the result follows.

(c) m = 2n− 1: We note that m > n, p, r. The coefficients of un in (4.18) and um in (4.17)

give, respectively,

∂G

∂vn

[
(µu − ξuvx −Gτu)

(
1 +

m

n

)
+
(m
n

− n
)
(Dxτ)

∂G

∂ux

]
= 0, (4.19)

−n (Dxτ)

(
∂H

∂un

)2

+
∂H

∂vm

(
µu − ξuvx −Gτu −m (Dxτ)

∂G

∂ux

)
= 0. (4.20)

Combining these two equations we find that

(Dxτ)

(
n

(
∂H

∂un

)2

+
∂H

∂vm

∂G

∂ux

(
5n2 − 3n

3n− 1

))
= 0. (4.21)

Now, differentiating determining equation (4.18) with respect to vm to find

n (Dxτ)

(
∂G

∂vn

)2

+
∂H

∂vm
(Dxτ)

∂G

∂ux
+
∂H

∂vm
(µu − ξuvx −Gτu) = 0

and using (4.19), this equation simplifies to

(Dxτ)

(
n

(
∂G

∂vn

)2

+
n2 + n

3n− 1

∂H

∂vm

∂G

∂ux

)
= 0. (4.22)
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Using that ∂H
∂un

= −m
n
∂G
∂vn

, the bracket in (4.21) and the bracket in (4.22) cannot be simultane-

ously equal to zero since this would lead to a contradiction. This can be seen by considering

the determinant of the coefficients which can be shown to be nonzero. Hence, Dxτ = 0 and the

result follows.

A similar proof is derived for the symmetric case n, p, r ≥ 2, m ≤ 1.

(ii) n, p ≥ 2, r, m ≤ 1: In both cases m = 0 and m = 1, the coefficient of u2n−1 (greatest

order derivative of u) in (4.15) gives

n (Dxτ)

(
∂H

∂un

)2

= 0 =⇒ Dxτ = 0 =⇒ τ = τ(t).

Similar results apply for r = 0 and r = 1.

(iii) n ≥ 2, p ≤ 1: We consider separately m ≥ 2, m = 1 and m = 0.

• m ≥ 2: Since n+m− 1 > n,m, the coefficient of vn+m−1 in (4.13) gives

n (Dxτ)
∂H

∂vm

∂H

∂un
= 0 =⇒ Dxτ = 0 =⇒ τ = τ(t).

• m = 1: If r < 2n− 1, then the coefficient of u2n−1 in (4.13) gives n (Dxτ)
(
∂H
∂un

)2
= 0 and

the result follows. If r ≥ 2n − 1, then coefficient of un+r−1 in (4.14) gives r (Dxτ)
∂H
∂un

∂G
∂ur

= 0

which leads to the result.

• m = 0: Now the determining equations are symmetric with equations (4.15) and (4.16),

where r = 0. In the first determining equation the highest derivative of v is vn. Taking its

coefficient, we find

ηv − ξvux −Hτv = 0.

Therefore the coefficient of G in the first determining equation vanishes and the coefficient of

u2n−1 in the same equation gives

n (Dxτ)

(
∂H

∂un

)2

= 0 =⇒ Dxτ = 0 =⇒ τ = τ(t).

A similar proof can be constructed for the symmetric case n ≤ 1, p ≥ 2. This completes the

proof of Theorem 4.2. �

The same result, as in Theorems 4.1 and 4.2, applies when system (4.2) is separable or

semiseparable which is stated in the following theorem.

Theorem 4.3. If system (4.2) is of a separable or of a semiseparable form and at least one of

n and p is greater than or equal to two, then it admits Lie symmetries of the form (4.3), where

τ = τ(t).
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Proof: System (4.2) is of the separable form

ut = H (x, t, u, u1, u2, . . . , un)

vt = G (x, t, v, v1, v2, . . . , vp) (4.23)

The first equation does not involve v and its derivatives and the second equation does not involve

u and its derivatives. We assume that at least one of n and p is greater than or equal to 2. If

n ≥ 2 we take the coefficient of u2n−1 in the first determining equation, which implies that

n (Dxτ)

(
∂H

∂un

)2

= 0 =⇒ Dxτ = 0 =⇒ τ = τ(t).

If p ≥ 2 we take the coefficient of v2p−1 in the second determining equation, which implies that

p (Dxτ)

(
∂G

∂vp

)2

= 0 =⇒ Dxτ = 0 =⇒ τ = τ(t).

Now we consider the case where the system (4.2) is of the semi-separable form

ut = H (x, t, u, v, u1, u2, . . . , un, v1, v2, . . . , vm) ,

vt = G (x, t, v, v1, v2, . . . , vp) , p ≥ 1. (4.24)

If p = 1, then we assume that n ≥ 2. The result follows from the coefficient of u2n−1 in the first

determining equation when m = 0, 1 and from the coefficient of vn+m−1 in the first determining

equation when m ≥ 2. If p ≥ 2 and m = 0, 1, then the coefficient of v2p−1 in the second

determining equation gives the desired result.

We complete the proof by considering the case p, m ≥ 2. Writing the highest order terms,

the two determining equations have the form

[− (τuun + τvvn)H − n (Dxτ)

(
∂H

∂un
u2n−1 +

∂H

∂vm
vn+m−1 + . . .

)
+ ηuun + ηvvn − n (Dxξ)un − ux (ξuun + ξvvn) + . . .]

∂H

∂un
+ . . .

+ [− (τuum + τvvm)G−m (Dxτ)
∂G

∂vp
vp+m−1 + . . .

+ µuum + µvvm −m (Dxξ) vm − vx (ξuum + ξvvm) + . . .]
∂H

∂vm
+ . . . (4.25)

and

[− (τuup + τvvp)G− p (Dxτ)
∂G

∂vp
v2p−1 + . . .

+ µuup + µvvp − p (Dxξ) vp − vx (ξuup + ξvvp) + . . .]
∂G

∂vp
+ . . . (4.26)

• n > p which means that n+m− 1 > n,m, p. The coefficient of vn+m−1 in (4.25) gives

n (Dxτ)
∂H

∂vm

∂H

∂un
= 0

30

STAVROS KONTOGIO
RGIS



and since ∂H
∂vm

∂H
∂un

̸= 0, we have Dxτ = 0. That is, τ = τ(t).

• n < p which means that p+m− 1 > n,m, p. The coefficient of vp+m−1 in (4.25) gives

m (Dxτ)
∂H

∂vm

∂G

∂vp
= 0

and since ∂H
∂vm

∂G
∂vp

̸= 0, we have Dxτ = 0. That is, τ = τ(t).

• n = p which means that n+m− 1 > n,m, p. The coefficient of vn+m−1 in (4.25) gives

(Dxτ)
∂H

∂vm

(
n
∂H

∂un
+m

∂G

∂vn

)
= 0.

If n ∂H
∂un

+m ∂G
∂vn

̸= 0 and since ∂H
∂vm

̸= 0 the result follows. If n ∂H
∂un

+m ∂G
∂vn

= 0 then

H = −m
n
un

∂G

∂vn
+ . . .

which means that H is linear in un. We have the following three subcases:

(a)m < 2n−1. Since 2n−1 > n,m, p, the coefficient of v2n−1 in (4.26) gives n (Dxτ)
(
∂G
∂vn

)2
=

0. Hence, τ = τ(t).

(b) m > 2n − 1. We have m > n, p, 2n − 1 and hence, differentiating (4.26) with respect to

vm to give

∂H

∂vm
(µu − ξuvx −Gτu) = 0.

Since ∂H
∂vm

̸= 0, we find

µu − ξuvx −Gτu = 0.

Using this expression we deduce that the coefficient of H in (4.26) is zero. The coefficient of

v2n−1 in (4.26) implies that Dxτ = 0.

(c) m = 2n− 1. The coefficient of un in (4.26) gives

∂G

∂vn
(µu − ξuvx −Gτu)

(
1 +

m

n

)
= 0

which implies that

µu − ξuvx −Gτu = 0.

This means that H disappears from the determining equation (4.26). The coefficient of v2n−1

in (4.26) implies

n

(
∂G

∂vn

)2

Dxτ = 0.

31

STAVROS KONTOGIO
RGIS



Hence, Dxτ = 0 and the result follows. �

An example of uncoupled equations is the system of nonlinear diffusion equations ut =

(f(u)ux)x and vt = (g(v)vx)x. Lie symmetries for these have been derived in 1986 by Knyazeva

and Popov and the results can be found at page 171 in the book [36].

4.5 Further restrictions on the form of the symmetry generator

We consider systems of the class (4.2) that admit Lie symmetries, where τ = τ(t). Systems where

n = m = r = p ≥ 2 and the condition (4.11) does not hold must be investigated separately. In

this section we present further restrictions on the coefficient functions ξ(x, t, u, v), η(x, t, u, v)

and µ(x, t, u, v) for certain forms of the general system (4.2).

In the case where τ = τ(t), the coefficient functions of the extended generator have the

simplified forms

ηt = ηt + ηuut + ηvvt − ux (ξt + ξuut + ξvvt)− utτt

ηx = ηx + ηuux + ηvvx − ux (ξx + ξuux + ξvvx)

ηxx = Dx (η
x)− uxxDx (ξ)

...

ηx
n+1

= Dx

(
ηx

n)− uxn+1Dx (ξ)

µt = µt + µuut + µvvt − vx (ξt + ξuut + ξvvt)− vtτt

µx = µx + µuux + µvvx − vx (ξx + ξuux + ξvvx)

µxx = Dx (µ
x)− vxxDx (ξ)

...

µx
n+1

= Dx

(
µx

n)− vxn+1Dx (ξ) .

Now, using induction we find

ηx
k

= Dk
xη −

k∑
j=1

(
k

j − 1

)(
Dk+1−j
x ξ

)
uj

µx
k

= Dk
xµ−

k∑
j=1

(
k

j − 1

)(
Dk+1−j
x ξ

)
vj .

In the subsequent analysis we require the coefficients of vn and vn−1 in η
xn and the coefficients

of um and um−1 in µx
m
. We use the following lemma.
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Lemma 4.1. If τ = τ(t) and n,m ≥ 2, then ηx
n
and µx

m
have the following form

ηx
n

= (ηv − uxξv) vn + nvn−1

(
ηvx + ηuvux + ηvvvx − ξvxux − ξuvu

2
x − ξvvuxvx − ξvuxx

)
+ Φ(x, t, u, v, u1, . . . , un, v1, . . . , vn−2), (4.27)

µx
m

= (µu − vxξu)um +mum−1

(
µux + µuvvx + µuuux − ξuxvx − ξuvv

2
x − ξuuuxvx − ξuvxx

)
+ Ψ(x, t, u, v, u1, . . . , um−2, v1, . . . , vm), (4.28)

respectively, where Φ and Ψ are smooth functions in their arguments.

The proof of the lemma is constructed by induction on the indices n and m, respectively.

Theorem 4.4. We consider system (4.2) with n ≥ 2 or/and p ≥ 2. In the following cases

(i) n > p,m, r (and its symmetric case p > n,m, r)

(ii) n = p < r < m (and its symmetric case n = p < m < r)

(iii) n = p < r = m with the restriction (Hvmvm)
2 + (Gumum)

2 ̸= 0

(iv) n = p > m, r with the restriction Hun ̸= Gvn

(v) n = p and m, r ≤ n−2 with the restrictions Hun = Gvn,
(
Hun−1un−1

)2
+
(
Gvn−1vn−1

)2 ̸= 0

the system (4.2) admits Lie symmetries with generator of the form (4.3), where the coefficient

functions have the restricted forms

τ = τ(t), ξ = ξ(x, t), η = η(x, t, u), µ = µ(x, t, v).

Proof: Using the result for τ = τ(t), the determining equations have the form (4.8) and (4.9)

with

ηt = ηt + ηuH + ηvG− uxξt − uxξuH − uxξvG− τtH

µt = µt + µuH + µvG− vxξt − vxξuH − vxξvG− τtG (4.29)

and the forms of ηx
n
, µx

m
are given in Lemma 4.1. We consider each case separately.

(i) n > p,m, r: We differentiate (4.8) and (4.9) with respect to vn and un, respectively, to

give

(ηv − uxξv)
∂H

∂un
= 0, (µu − vxξu)

∂H

∂un
= 0.

Hence, ξ = ξ(x, t), η = η(x, t, u), µ = µ(x, t, v). A similar proof can be constructed for its

symmetric case p > n,m, r.

(ii) n = p < r < m: We differentiate (4.9) with respect to vm to give

(µu − vxξu)
∂H

∂vm
= 0.
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Hence, µu − vxξu = 0 which means that H disappears from the determining equation (4.9).

Therefore the highest order derivative of v that appears in (4.9) is vr. We differentiate (4.9)

with respect to vr to give

(ηv − uxξv)
∂G

∂ur
= 0.

Hence,

ξ = ξ(x, t), η = η(x, t, u), µ = µ(x, t, v).

A similar proof may be constructed for its symmetric case n = p < m < r.

(iii) n = p < r = m with the restriction (Hvmvm)
2 + (Gumum)

2 ̸= 0: We differentiate (4.9)

with respect to vm to give

(µu − vxξu)
∂H

∂vm
= (ηv − uxξv)

∂G

∂um
.

After further differentiation with respect to vm or um and using the restriction

(Hvmvm)
2 + (Gumum)

2 ̸= 0,

we conclude that

µu − vxξu = ηv − uxξv = 0.

Hence, ξ = ξ(x, t), η = η(x, t, u), µ = µ(x, t, v).

(iv) n = p > m, r with the restriction Hun ̸= Gvn : We differentiate (4.8) and (4.9) with

respect to vn and un, respectively, to give

(ηv − uxξv)
∂G

∂vn
= (ηv − uxξv)

∂H

∂un
, (µu − vxξu)

∂H

∂un
= (µu − vxξu)

∂G

∂vn
.

Since Hun ̸= Gvn the result follows.

(v) n = p and m, r ≤ n− 2 with the restrictions

Hun = Gvn ,
(
Hun−1un−1

)2
+
(
Gvn−1vn−1

)2 ̸= 0 :

From the condition

Hun = Gvn = K(x, t, u, v, u1, . . . , ur, v1, . . . , vm),

we conclude that, if r,m ≤ n− 2,

H = K(x, t, u, v, u1, . . . , ur, v1, . . . , vm)un + F (x, t, u, v, u1, . . . , un−1, v1, . . . , vm),

G = K(x, t, u, v, u1, . . . , ur, v1, . . . , vm)vn + L(x, t, u, v, u1, . . . , ur, v1, . . . , vn−1).
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With these forms of H and G, vn disappears from determining equation (4.8) and un from (4.9).

We differentiate (4.8) and (4.9) with respect to vn−1 and un−1, respectively, to give

(ηv − uxξv)
∂L

∂vn−1
= (ηv − uxξv)

∂F

∂un−1

+ n
(
ηvx + ηuvux + ηvvvx − ξvxux − ξuvu

2
x − ξvvuxvx − ξvuxx

)
K,

(µu − vxξu)
∂F

∂un−1
= (µu − vxξu)

∂L

∂vn−1

+ n
(
µux + µuvvx + µuuux − ξuxvx − ξuvv

2
x − ξuuuxvx − ξuvxx

)
K.

Using the restriction(
Hun−1un−1

)2
+
(
Gvn−1vn−1

)2 ̸= 0

or equivalently(
Fun−1un−1

)2
+
(
Lvn−1vn−1

)2 ̸= 0,

differentiating both of the above equations with respect to un−1 (or vn−1) yields

µu − vxξu = ηv − uxξv = 0.

Hence,

ξ = ξ(x, t), η = η(x, t, u), µ = µ(x, t, v). �

Example 4.2. The form of the following system [42]

ut = uxxx + 6uux + 2vvx, vt = 2(uv)x,

is such that (n = 3, m = r = p = 1) Theorems 4.2 and 4.4(i) can be applied. Hence, all Lie

symmetries admitted by this system are of the restricted form

τ(t)∂t + ξ(x, t)∂x + η(x, t, u)∂u + µ(x, t, v)∂v.

Theorem 4.5. System (4.2) with n = p ≥ 2, m = n− 1 and r ≤ n− 2 with the restrictions

Hun = Gvn, Hun−1un−1 ̸= 0,

admits Lie symmetries with a generator of the form (4.3), where

τ = τ(t), ξ = ξ(x, t, v), µ = µ(x, t, v).

System (4.2) with n = p ≥ 2, r = n− 1 and m ≤ n− 2 with the restrictions

Hun = Gvn, Gvn−1vn−1 ̸= 0,

admits Lie symmetries with a generator of the form (4.3), where

τ = τ(t), ξ = ξ(x, t, u), η = η(x, t, u).
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Note 4.2. We point out that the two parts of the above theorem are related by the discrete

symmetry u 7→ v and v 7→ u applied to both the system of equations and the symmetry generator.

Proof: From the restriction Hun = Gvn = K(x, t, u, v, u1, . . . , ur, v1, . . . , vm), we have

H = K(x, t, u, v, u1, . . . , ur, v1, . . . , vn−1)un + F (x, t, u, v, u1, . . . , un−1, v1, . . . , vn−1),

G = K(x, t, u, v, u1, . . . , ur, v1, . . . , vn−1)vn + L(x, t, u, v, u1, . . . , ur, v1, . . . , vn−1),

where r ≤ n− 2. With these forms of H and G, un disappears from determining equation (4.9).

We differentiate (4.9) with respect to un−1 to give

(µu − vxξu)
∂F

∂un−1
= (µu − vxξu)

∂G

∂vn−1

+ n
(
µux + µuvvx + µuuux − ξuxvx − ξuvv

2
x − ξuuuxvx − ξuvxx

)
K.

Using the restriction Hun−1un−1 ̸= 0 or equivalently Fun−1un−1 ̸= 0 and differentiating the above

equation with respect to un−1 implies that µu − vxξu = 0. Hence,

ξ = ξ(x, t, v), µ = µ(x, t, v).

A similar proof may be constructed for the other part of Theorem 4.5. �

Example 4.3. It can be shown that the system

ut =
vx
u3x
uxx, vt =

vx
u3x
vxx

admits, among others, the two Lie symmetries u ∂∂x and v ∂∂x . Here we have

n = p = 2, m = r = 1 = n− 1.

Also the system

ut =
uxxx
u3x

− 3u2xx
u4x

− vxx
ux

+
vxuxx
u2x

, vt =
vxxx
u3x

− 3uxxvxx
u4x

− vxvxx
u2x

+
v2xuxx
u3x

admits at least the two Lie symmetries, u ∂∂x and v ∂∂x . Here we have

n = p = 3, m = r = 2 = n− 1.

These two results show that in Theorem 4.5 we need to take either m or r less than n − 1,

otherwise restrictions on the form of ξ do not exist in general. In the above systems we note

that Hun = Gvn . This shows that the restriction Hun ̸= Gvn is needed in order to prove Theorem

4.4, case (iv).
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Theorem 4.6. We consider the quasi-linear system

ut = H1un +H2(x, t, u, v, u1, . . . , un−1, v1, . . . , vm),

vt = G1(x, t, u, v, u1, . . . , ur, v1, . . . , vn−1)vn +G2(x, t, u, v, u1, . . . , ur, v1, . . . , vn−1),

where n ≥ 2, m, r ≤ n− 1 and H1 is a nonzero constant. If G1 ̸= H1, then

τ = τ(t), ξ = 1
nxτt(t) + ϕ(t), η = η(x, t, u), µ = µ(x, t, v).

We point out that Theorem 4.6 is also valid for G1 = 0.

Proof: From Theorems 4.1, 4.2 or 4.3, we have τ = τ(t). Also from Theorem 4.4, we have

η = η(x, t, u) and µ = µ(x, t, v). The coefficient of un in the first determining equation gives

H1[nξx(x, t)− τ(t)] = 0.

Hence, ξ(t, x) = 1
nxτt(t) + ϕ(t). �

Example 4.4. We consider the coupled Burgers system of the form [16]

ut = λ1uxx + uux + f(u, v)vx, vt = λ2vxx + vvx + f(u, v)ux,

where λ1 ̸= λ2. Using Theorem 4.6, this system admits Lie symmetries which are all of the

form τ(t)∂t+(12xτt+ϕ(t))∂x+ η(x, t, u)∂u+µ(x, t, v)∂v. Lie symmetries of such a form are also

admitted by the coupled Drinfeld–Sokolov–Satsuma–Hirota system [2,22,84]

ut = −uxxx + 6uux + 6vx, vt = 2vxxx − 6uvx.

We note that in the above example for the Burgers system with λ1 = λ2 and for the following

system [90]

ut + uxxx + 2uux + 2vux = 0, vt + vxxx + 2vvx + 2uvx = 0

Theorem 4.6 does not apply.

4.6 Conclusion

Motivated by the results of Tu [93] and Bluman [12], we have presented a number of results,

concerning the form of the infinitesimal generator. A next step could be the generalization of

these results in the cases where we have systems with two independent and n dependent variables

and also for equations with one dependent and n independent variables.
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Chapter 5

Group classification of systems of

diffusion equations

5.1 Introduction

Systems of diffusion equations of the form

ut = [f(u, v)ux + h(u, v)vx]x , vt = [k(u, v)ux + g(u, v)vx]x , (5.1)

are of considerable interest in mathematical biology and in soil science. For instance, such

systems describe the movement of water in a homogeneous unsaturated soil, to cases describing

the combined transport of water vapour and heat under a combination of gradients of soil

temperature and volumetric water content [43, 73]. In such problems u(x, t) and v(x, t) are,

respectively, the soil temperature and volumetric water content at depth x and time t.

In the present chapter, we consider the special case of the class (5.1)

ut = [f(u, v)ux]x , vt = [g(u, v)vx]x , (5.2)

where we assume that f and g, being the diffusivity coefficients, are non-zero smooth functions

in their arguments. Such systems have also been used to model successfully physical situations,

such as transport in porous media with variable transmissivity [24] and river pollution [59].

Further applications can be found in plasma physics [80,81]. We study this system from the Lie

point of view. We carry out the Lie group classification. That is, we find the all forms of f(u, v)

and g(u, v) such that system (5.2) admits Lie symmetries. The problem was initiated in [41]

and completed here.

The results of the present chapter, appear in [48].
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5.2 Equivalence Transformations

To derive the equivalence group of the class under consideration we use the direct method [46].

The details of the calculations are omitted for brevity and we only present the results.

Theorem 5.1. The usual equivalence group G∼ of class (5.2) consists of the transformations

t′ = α1t+ α2, x′ = β1x+ β2, u′ = γ1u+ γ2, v′ = δ1v + δ2,

f ′ = α−1
1 β21f, g′ = α−1

1 β21g, (5.3)

where α1β1γ1δ1 ̸= 0.

It turns out that in the case where the arbitrary elements are equal, the usual equivalence

group is wider and the results are presented in the following theorem.

Theorem 5.2. The usual equivalence group G∼
f=g of class (5.2), where f = g, consists of the

transformations

t′ = α1t+ α2, x′ = β1x+ β2, u′ = γ1u+ γ2v + γ3, v′ = δ1u+ δ2v + δ3,

f ′ = α−1
1 β21f, (5.4)

where α1β1(γ1δ2 − γ2δ1) ̸= 0.

Equivalence transformations are used to simplify the analysis, with the understanding that

these equivalence transformations are included in the conclusions. For example, if

f(u, v) = (µ1u+ µ2)
n(µ3v + µ4)

m, with µ1µ3 ̸= 0,

we can use scalings and translations of u and v to take, without loss of generality, f(u, v) = unvm.

5.3 Lie Symmetries

The classical method for finding Lie point symmetries is well known, see for example in [13–15,

30,37,68,72]. Here we search for generators

Γ = τ(x, t, u, v)
∂

∂t
+ ξ(x, t, u, v)

∂

∂x
+ η(x, t, u, v)

∂

∂u
+ µ(x, t, u, v)

∂

∂v

corresponding to the infinitesimal transformations

t′ = t+ ϵτ(x, t, u, v), x′ = x+ ϵξ(x, t, u, v), u′ = u+ ϵη(x, t, u, v), v′ = v + ϵµ(x, t, u, v)

to the first order of ϵ. These transformations are such that when the nth extension Γ(n) of Γ,

where n is the order of the corresponding equation in the system, is applied to the equations of
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the system the resulting equations are identically zero, modulo the system under consideration.

Theorem 4.2 implies that

τ = τ(t).

Here we require that

Γ(2)
{
ut − fuxx − fuu

2
x − fvuxvx

}
= 0, Γ(2)

{
vt − gvxx − guuxvx − gvv

2
x

}
= 0, (5.5)

identically, modulo the system (5.2). The resulting equations, before using system (5.2), are two

identities in the variables

x, t, u, v, ux, ut, vx, vt, uxx, vxx.

Eliminating ut and vt, using the system (5.2), then we have two identities in the variables

x, t, u, v, ux, vx, uxx, vxx.

In order to use Theorem 4.4(iv), we spilt the analysis into two cases:

1: f ̸= g,

2: f = g.

Case 1: f ̸= g. Using Theorem 4.4(iv), we conclude that

ξ = ξ(x, t), η = η(x, t, u), µ = µ(x, t, v).

These forms simplify the system (5.5). We derive the system of the determining equations that

correspond to the first invariant condition in (5.5). The coefficients of u2x, uxvx, uxx, ux, vx and

the term independent of derivatives give, respectively,

ηuuf + (τt + ηu − 2ξx)fu + µfuv + ηfuu = 0,

(τt + µv − 2ξx)fv + ηfuv + µfvv = 0,

ηfu + µfv + (τt − 2ξx)f = 0, (5.6)

2ηxfu + µxfv + (2ηux − ξxx)f + ξt = 0,

ηxfv = 0, ηt − ηxxf = 0.

Similarly, the coefficients of v2x, uxvx, vxx, vx, ux and the term independent of derivatives in the
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second equation in (5.5) give, respectively,

µvvg + (τt + µv − 2ξx)gv + ηguv + µgvv = 0,

(τt + ηu − 2ξx)gu + µguv + ηguu = 0,

ηgu + µgv + (τt − 2ξx)g = 0, (5.7)

ηxgu + 2µxgv + (2µvx − ξxx)g + ξt = 0,

µxgu = 0, µt − µxxg = 0.

The solution of the above determining system with twelve equations provides us with the desired

results. However, since the arbitrary elements f and g are functions of two variables, it makes

our task more difficult than the group classifications where the arbitrary elements depend only

on one dependent variable.

We differentiate the third equation in (5.6) and subtract the resulting equation from the first

equation to give ηuuf = 0. In a similar manner, from the first and third equations in (5.7) we

obtain gµvv = 0. Hence,

η(x, t, u) = A1(x, t)u+A2(x, t), µ(x, t, v) = A3(x, t)v +A4(x, t).

Now, from the third equations in (5.6) and in (5.7), respectively, we deduce that the functions

f(u, v) and g(u, v) satisfy a first order quasi-linear partial differential equation of the form

(λ1u+ λ2)
∂ϕ

∂u
+ (λ3v + λ4)

∂ϕ

∂v
+ λ5ϕ = 0. (5.8)

If the coefficients in the above partial differential equation vanish, then we deduce that f(u, v)

and g(u, v) are arbitrary functions and τ = 2c1t + c2, ξ = c1x + c3, η = µ = 0. Hence, for

arbitrary f and g, the system (5.2) admits the Lie symmetries

X1 = ∂t, X2 = ∂x, X3 = 2t∂t + x∂x, (5.9)

where this basis is denoted by Aker. The next step is to find those forms of f(u, v) and g(u, v)

which are such that the system (5.2) admits additional Lie symmetries. These forms of f(u, v)

and g(u, v) are solutions of the PDE (5.8). Finding all possible forms of f(u, v) and g(u, v) and

then substitution into the systems (5.6) and (5.7) enables us to determine the forms of τ, ξ, η

and µ. Hence, the desired Lie symmetries can be obtained. Equivalence transformations (5.3)

are used to simplify the PDE (5.8). That is, fixing certain constants in (5.8). Persistence leads

to the results listed in Table 5.1. We point out that the solution of PDE (5.8) contains an

arbitrary function, such as in cases 1, 2, 3, 4 and 8 in Table 5.1. However, for certain forms of
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Table 5.1: Group classification of the system (5.2), where f ̸= g.

n f(u, v) g(u, v) Additional Lie symmetries

1. unF (emvu) unG(emvu) X4 = mnt∂t −mu∂u + ∂v

2. unF (vm/u) unG(vm/u) X4 = mnt∂t −mu∂u − v∂v

3. euF (enuv) euG(enuv) X4 = t∂t − ∂u + nv∂v

4. euF (v + εu) euG(v + εu) X4 = t∂t − ∂u + ε∂v

5. unvm aunvm X4 = mx∂x + 2v∂v, X5 = nx∂x + 2u∂u

6. unev aunev X4 = x∂x + 2∂v, X5 = nx∂x + 2u∂u

7. eu+v aeu+v X4 = t∂t − ∂u, X5 = t∂t − ∂v

8. F (v) G(v) X4 = ∂u, X5 = u∂u

9. vm avm X4 = ∂u, X5 = u∂u, X6 = mt∂t − v∂v

10. ev aev X4 = ∂u, X5 = u∂u, X6 = t∂t − ∂v

Here ε = 0,±1, a ̸= 0, 1, a is a constant; F , G are arbitrary functions in their arguments, where F ̸= G.

this function, system (5.2) admits additional Lie symmetries. Such cases are cases 5, 6, 7, 9 and

10 in Table 5.1.

For completeness, we present the results in the case that the system (5.2) consists of two

uncoupled equations. That is, f = f(u) and g = g(v). It is known that the nonlinear diffusion

equation ut = (f(u)ux)x admits 3 Lie symmetries if f(u) is an arbitrary function, 4 symmetries

if f(u) = un or f(u) = eu, 5 symmetries if f(u) = u−
4
3 and 6 symmetries and an infinite-

dimensional symmetry if f(u) = 1 [71]. All cases for the uncoupled system can be extracted

from the above table, with the exception of three cases, which we list below. For example, in

Table 5.1, entry 4, F (v + ϵu) = 1, G(v + ϵu) = eλ(v+ϵu) and choosing ϵ = − 1
λ provides the four

Lie symmetries for the uncoupled system ut = (euux)x and vt = (evvx)x. The remaining cases

are

(i) f(u) arbitrary and g(v) = 1:

X4 = v∂v, Xα = α(t, x)∂v, where αt = αxx;

(ii) f(u) = u−
4
3 and g(v) = v−

4
3 :

X4 = 4t∂t + 3u∂u + 3v∂v, X5 = x2∂x − 3xu∂u − 3xv∂v;

(iii) f(u) = 1 and g(v) = a:

X4 = 2t∂x − xu∂u − xv
a ∂v, X5 = u∂u, X6 = v∂v,

X7 = 4t2∂t + 4xt∂x − (x2 + 2t)u∂u − (x2 + 2at)va∂v,

Xα = α(t, x)∂u, Xβ = β(t, x)∂v,

where αt = αxx and βt = aβxx.
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The above results for the uncoupled equations were derived in 1986 by Knyazeva and Popov

which can be found on page 171 of the book [36].

Case 2: f = g. Here, we cannot make use of Theorem 4.4(iv), since f = g. Instead, we use the

coefficients of uxuxx and vxuxx in the first identity of (5.5) to give ξu = ξv = 0. Hence,

ξ = ξ(x, t),

as in the previous case. These restricted forms of τ and ξ simplify the identities (5.5). In fact,

identities (5.5) become two multivariate polynomials in the four variables ux, vx, uxx and vxx.

The coefficients of these variables will provide us the determining system which is solved to

give the forms of the arbitrary elements f(u, v) and g(u, v) and also the coefficient functions

τ(t), ξ(x, t), η(x, t, u, v) and µ(x, t, u, v).

As in the previous case, we list the two systems of determining equations. The coefficients of

u2x, uxvx, uxx, ux, v
2
x, vx and the term independent of derivatives in the first equation in (5.5)

give, respectively,

ηuug + (τt + ηu − 2ξx)gu + µugv + µguv + ηguu = 0,

2ηuvg + ηvgu + (τt + µv − 2ξx)gv + ηguv + µgvv = 0,

(τt − 2ξx)g + ηgu + µgv = 0, (5.10)

2ηxgu + µxgv + (2ηux − ξxx)g + ξt = 0,

ηvvg = 0, 2ηvxg + ηxgv = 0, ηt − ηxxg = 0.

Finally, the coefficients of v2x, uxvx, vxx, vx, u
2
x, ux and the term independent of derivatives in

the second equation in (5.5) give, respectively,

µvvg + ηvgu + (τt + µv − 2ξx)gv + ηguv + µgvv = 0,

2µuvg + µugv + (τt + ηu − 2ξx)gu + µguv + ηguu = 0,

(τt − 2ξx)g + ηgu + µgv = 0, (5.11)

ηxgu + 2µxgv + (2µvx − ξxx)g + ξt = 0,

µuug = 0, 2µuxg + µxgu = 0, µt − µxxg = 0.

We note that the third equations in the determining system (5.10) and in (5.11) are identical.

The solution of the above systems that consist of thirteen equations provide us with the desired

results. We differentiate the third equation in (5.10) and the resulting equation is subtracted

form the first and the second equation to give, respectively, ηuu = ηuv = 0. Using these
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conclusions and the fifth equation, we obtain

η(x, t, u, v) = A1(x, t)u+A2(x, t)v +A3(x, t).

Similarly, from the first, second, third and fifth equations in the system (5.11) we obtain

µ(x, t, u, v) = A4(x, t)u+A5(x, t)v +A6(x, t).

With the forms of η and µ the third equation in (5.10) implies that g(u, v) satisfies a first order

quasi-linear partial differential equation of the form

(p1u+ p2v + p3)
∂g

∂u
+ (q1u+ q2v + q3)

∂g

∂v
+ rg = 0, (5.12)

unless τt − 2ξx = η = µ = 0, which implies that g(u, v) is an arbitrary function and hence, the

system (5.2) admits Aker which consists with the three Lie symmetries given by (5.9). If g(u, v)

is any solution of PDE (5.12), then the system (5.2) admits the fourth Lie symmetry

X4 = rt∂t + (p1u+ p2v + p3)∂u + (q1u+ q2v + q3)∂v. (5.13)

Now we search for functions g(u, v) which are such that the system (5.2) admits additional

Lie symmetries. In order to achieve this, we need to find all possible solutions of PDE (5.12).

However solving this quasi linear PDE is not an easy task. Here we make use of the equivalence

transformations of the system (5.2) in the case f = g, which are given by equation (5.4).

In particular, if we consider equation (5.12) with the variables u, v, g being primed, then the

application of equivalence transformation (5.4), with t′ = t, x′ = x, transforms equation (5.12)

into

[(γ1δ2p1 + δ1δ2p2 − γ1γ2q1 − γ2δ1q2)u +(
γ2δ2p1 + δ22p2 − γ22q1 − γ2δ2q2

)
v +

(γ3δ2p1 + δ2δ3p2 + δ2p3 − γ2γ3q1 − γ2δ3q2 − γ2q3)]
∂g

∂u
+[(

γ21q1 + γ1δ1q2 − γ1δ1p1 − δ21p2
)
u +

(γ1γ2q1 + γ1δ2q2 − γ2δ1p1 − δ1δ2p2) v +

(γ1γ3q1 + γ1δ3q2 + γ1q3 − γ3δ1p1 − δ1δ3p2 − δ1p3)]
∂g

∂v
+

r(γ1δ2 − γ2δ1)g = 0,

where γ1δ2 − γ2δ1 ̸= 0. Our goal is to simplify, as much as possible, the above equation. We try

to fix the constants that appear in the equivalence transformations. This leads to various cases
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depending on whether certain constants are zero or nonzero. In fact, we find that, instead of

solving (5.12), we can equivalently solve, separately, the following PDEs

∂g

∂u
+ q3

∂g

∂v
+ rg = 0, (5.14)

∂g

∂u
+ (q1u+ q2v)

∂g

∂v
+ rg = 0, (5.15)

u
∂g

∂u
+ (q1u+ q3)

∂g

∂v
+ rg = 0, (5.16)

u
∂g

∂u
+ (q1u+ q2v)

∂g

∂v
+ rg = 0, (5.17)

v
∂g

∂u
+ (q1u+ q2v)

∂g

∂v
+ rg = 0. (5.18)

The solutions of the above PDEs provide us all the possible forms of g(u, v) which are substituted

into the systems (5.10) and (5.11). Then, the forms of τ, ξ, η and µ are determined and,

consequently, the desired Lie symmetries are classified. The results are tabulated in Table 5.2.

The constants that appear in the form of g(u, v) depend on the nonzero constants that appear

in PDE (5.12) and, consequently, the constants in the symmetry X4 will be changed. For this

reason we also list X4 in Table 5.2.

The solution of PDE (5.14) is g(u, v) = emuϕ(v + εu). We substitute this form of g into the

systems (5.10) and (5.11). The solution of these two systems gives the forms of τ, ξ, η and

µ and, consequently, the corresponding Lie symmetries are derived. Without presenting any

detailed analysis, we state that the results are tabulated in the entries 8-12 in Table 5.2.

Equation (5.15), depending on the relation between the constants, has a solution of the form

g(u, v) = emuϕ(v + εu2) or of the form g(u, v) = emuϕ(v + εu+ ε/δ). The first type of solution

produces the result that is tabulated in the entry 6 in Table 5.2, while the second solution of g

does not give any new cases. Solving PDE (5.16), we find g(u, v) = umϕ(v + εu + δ lnu) and

substituting this form of g(u, v) into the systems (5.10) and (5.11) we obtain results which are

special cases of entries 7 and 8. Equation (5.17) has either a solution of the form g(u, v) =

umϕ[un(v + εu)] or of the form g(u, v) = umϕ( vu + δ lnu). The first form of g leads to the

results tabulated in the entries 1-5 of Table 5.2, while the second form provides the result that

is tabulated in the entry 7. Finally, the solution of (5.18) does not lead to any new cases.

For completeness, we state that in the case where g(u, v) = 1, that is, system (5.2) becomes

two uncoupled linear heat equations, the additional admitted Lie symmetries are

X4 = 2t∂x − x(u∂u + v∂v), X5 = 2t2∂t + 2tx∂x − 1
2(2t+ x2)(u∂u + v∂v), X6 = u∂u,

X7 = v∂v, X8 = v∂u, X9 = u∂v, Xα = α∂u, Xβ = β∂v,
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Table 5.2: Group classification of the system (5.2), where f = g.

n g(u, v) Additional Lie symmetries

1. (v + εu)ne
ru

v+εu X4 = nt∂t − u∂u − v∂v, X5 = rt∂t − (v + εu)∂u + ε(v + εu)∂v

2. [(v + εu)2 + δ2u2]nep tan−1 v+εu
δu X4 = 2nt∂t − u∂u − v∂v,

X5 = (pδ + 2εn)t∂t + v∂u − [(δ2 + ε2)u+ 2εv)∂v

3. (v + εu− δu)m(v + εu+ δu)n X4 = (m+ n)t∂t − u∂u − v∂v,

X5 = [(m+ n)ε+ (m− n)δ]t∂t + v∂u + ([(δ2 − ε2)u− 2εv)∂v

4. [(v + εu)2 + δu]n X4 = 2nt∂t − 2u∂u − (v − εu)∂v,

X5 = 2εnt∂t + 2v∂u − (ε2u+ 3εv + δ)∂v

5. (v + εu+ δu2)n X4 = 2nt∂t − u∂u − (εu+ 2v)∂v,

X5 = 2nt∂t + (1− u)∂u − [(ε+ 2δ)u+ 2v + ε]∂v

6. ev+εu+δu2

X4 = εt∂t − ∂u + 2δu∂v, X5 = t∂t − ∂v

7. (γu+ δv)m(v + εu)n X4 = (m+ n)t∂t − u∂u − v∂v,

X5 = (γn+ δεm)t∂t + δv∂u − (γεu+ γv + δεv)∂v

8. eγu+δv(v + εu)n X4 = (δε− γ)t∂t + ∂u − ε∂v,

X5 = n(γ − δε)t∂t + δ(v + εu)∂u − γ(v + εu)∂v

9. ϕ(v + εu) X4 = ∂u − ε∂v, X5 = u∂u − εu∂v, X6 = v∂u − εv∂v

10. ev+εu X4 = ∂u − ε∂v, X5 = u∂u − εu∂v, X6 = v∂u − εv∂v, X7 = t∂t − ∂v

11. (v + εu)n X4 = ∂u − ε∂v, X5 = u∂u − εu∂v, X6 = v∂u − εv∂v,

X7 = nt∂t − (v + εu)∂v

12. (v + εu)−2 X4 = ∂u − ε∂v, X5 = u∂u − εu∂v, X6 = v∂u − εv∂v,

X7 = 2t∂t + (v + εu)∂v, X8 = x(v + εu)(∂u − ε∂v)

Here ε = 0,±1 and r ̸= 0, δ ̸= 0, p, γ are arbitrary constants; ϕ is an arbitrary function.

where α(x, t) and β(x, t) are solutions of the linear heat equation, ut = uxx.

We point out that the member of the equivalence transformation (5.4),

t′ = t, x′ = x, u′ = u, v′ = u± v

maps v + εu with ε = ±1 in Table 5.2, to the corresponding cases with ε = 0.

Case 12, of Table 5.2 is a member of the system (5.2) which can be linearized by a nonlocal

mapping. For this mapping and also for potential symmetries for this case see [39].

5.4 Similarity reductions

Lie symmetries can be employed to derive similarity reductions [13, 68, 72]. These are trans-

formations that reduce the number of independent variables of a system of PDEs by one. In

the case of an ordinary differential equation, the order of the equation can be reduced by one.

Here we have a system of PDEs in two independent variables and hence, the reduced system
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consists of two ordinary differential equations. In order to construct a similarity reduction that

corresponds to a Lie symmetry generator Γ = τ ∂
∂t + ξ

∂
∂x + η

∂
∂u +µ

∂
∂v , we need to find a solution

of the characteristic system

dt

τ
=
dx

ξ
=
du

η
=
dv

µ
.

The complete list of similarity reductions that correspond to Lie symmetries can be achieved by

using subalgebras from the so-called optimal system [68]. Alternatively, all possible solutions

of the above characteristic system can be found for the linear combination of the basis of Lie

symmetries.

In the case f(u, v) = unvm and g(u, v) = aunvm, we have the system

ut = [unvmux]x, vt = a[unvmvx]x (5.19)

which admits the Lie symmetries

X1 = ∂t, X2 = ∂x, X3 = 2t∂t + x∂x, X4 = mx∂x + 2v∂v, X5 = nx∂x + 2u∂u.

All similarity reductions for this case are tabulated in Table 5.3.

The second example is the member of the system (5.2), where f(u, v) = g(u, v) = (v+ δu2)n,

ut = [(v + δu2)nux]x, vt = [(v + δu2)nvx]x. (5.20)

This system admits the five Lie symmetries

X1 = ∂t, X2 = ∂x, X3 = 2t∂t + x∂x, X4 = 2nt∂t − u∂u − 2v∂v,

X5 = 2nt∂t + (1− u)∂u − 2(δu+ v)∂v.

The corresponding results are provided in Table 5.4. The constants that appear in the reductions

are arbitrary with the exception of those that appear in the denominator and which are nonzero.
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The solutions of the reduced ODEs listed in the Tables 5.3 and 5.4 provide us with special

solutions of the original PDEs. Only in some special cases the systems of ODEs listed in Tables

5.3 and 5.4 can be solved analytically. Generally, such reduced systems along with appropriate

initial/boundary comditions can be solved numerically. Below we give examples, where we

obtain exact solutions for the reduced ODEs.

Example 5.1. We use case 4 of Table 5.3 with k = 0. In other words, we look for traveling

wave solutions for the system (5.19). The reduced system of the ODEs has the form

[ϕnψmϕ′]′ + cϕ′ = 0, a[ϕnψmψ′]′ + cψ′ = 0.

The solution of this system is given explicitly by

ϕ(ξ) = ν3(ψ(ξ)− ν2)
a + ν1,

∫
ψm[ν3(ψ − ν2)

a + ν1]
n

ν2 − cψ
dψ = ξ + ν4,

where the νi are constants of integration. For the special case where ν1 = ν2 = 0, we have

ψ(ξ) = (ν ′3ξ + ν ′4)
1

m+an ,

if a ̸= −m
n and

ψ(ξ) = ν ′3e
ν′4ξ,

if a = −m
n .

Example 5.2. We consider case 5 of Table 5.3 which is a special case of case 6. Choosing

m = −n and k = −1
2 the reduced system of ODEs, after one integration can be written in the

form

2ϕnψmϕ′ + ξϕ = ν1, 2aϕnψmψ′ + ξψ = ν2.

For vanishing constants of integration ν1 and ν2, we find

ϕ(ξ) = ν3ψ
a,

where ψ(ξ) = (ν4 − n(a−1)
4aνn3

ξ2)
1

n(a−1) , if a ̸= 1 and ψ(ξ) = ν4e
− 1

4νn3
ξ2

, if a = 1.
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Example 5.3. We look for traveling wave solutions for the system (5.20). We consider the

case 5 of Table 5.4 with k = 0. Integrating the first reduced ODE and taking the constant of

integration equal to zero, we find ϕ′ψn = −cϕ. Substituting into the second reduced ODE and

integrating twice, we find

ψ(ξ) = δcϕ2 + ν1ϕ+ ν2.

Now, the first integrating equation gives∫
(δcϕ2 + ν1ϕ+ ν2)

n

ϕ
dϕ = −cξ + ν3.

Example 5.4. Case 4 of Table 5.4, gives the exact solution

ψ(ξ) = ν1ϕ(ξ)
2(n+2)
n+1 ,

∫
dϕ

ϕ(ν1ϕ
2(n+2)
n+1 + δϕ2)n

=
n+ 1

n2
ξ + ν2.

5.5 Conclusion

The complete Lie group classification of class (5.2) has been achieved. The difficulty of the

problem lies in the fact that the two arbitrary elements depend on two variables. The solutions of

such problems are rare in the literature. The work in the present chapter aims to be an inspiration

for the complete group classification of the general class (5.1). Furthermore, the problem of

classification of potential symmetries for the class (5.1) needs consideration. Finally, we need to

point out the importance of the derivation of the equivalence transformations admitted by the

class under consideration. Such transformations simplify the problem of group classification. In

the last few years, an algebraic method was introduced to solve group classification problems

[7,8]. It is based on the subgroup analysis of the corresponding equivalence group. This method

can be used to solve the group classification problems that are considered in this thesis. For

recent applications of the algebraic method see [69,74,99].
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Chapter 6

Lie symmetry analysis of

Burgers-type systems

6.1 Introduction

The nonlinear diffusion-convection equations of the form

ut = [d(u)ux]x + k(u)ux, (6.1)

where d(u) and k(u) are arbitrary smooth functions, have considerable applications in math-

ematical physics, chemistry and biology [19, 20, 62, 63, 92]. A number of authors derived Lie

symmetries for the class (6.1). However, its complete and strong Lie group classification was

presented in [76]. In the case d(u) =constant= λ, we have the generalized Burgers equation

ut = λuxx + k(u)ux (6.2)

whose most famous member is the Burgers equation ut = uxx + uux which has, among others,

applications in nonlinear acoustics [20]. Group classification of (6.2) was carried out in [45] (see

also in [76]).

A generalization of the class (6.2) is the following system, written in the vector form

Ut = ΛUxx +K(U)Ux,

where U is the vector [u1(x, t), u2(x, t), . . . , un(x, t)]
T , Λ is an n × n matrix with constant

elements and K(U) is an n × n matrix with its elements being functions of the dependent

variables u1, u2, . . . , un. In the case where n = 2 and Λ being a diagonal matrix the above

vector equation is equivalent to the Burgers-type system

ut = λ1uxx + f(u, v)ux + g(u, v)vx, vt = λ2vxx + h(u, v)ux + k(u, v)vx, (6.3)
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where f(u, v), g(u, v), h(u, v), k(u, v) are arbitrary smooth functions in their arguments and

λ1, λ2 are arbitrary constants.

The Group classification for the special case of (6.3), where f(u, v) = u and k(u, v) = v was

considered in [16]. In the present chapter we consider the following two members of the general

system (6.3).

ut = λ1uxx + f(u, v)ux + ϵ1vvx, vt = λ2vxx + k(u, v)vx + ϵ2uux, ϵ1ϵ2 ̸= 0, (6.4)

and

ut = λ1uxx + f(u, v)ux, vt = λ2vxx + k(u, v)vx. (6.5)

We present the group classification for these two Burgers-type systems.

The idea of group classification was introduced by Ovsiannikov when he considered the nonlin-

ear diffusion equation (k(u) = 0 in (6.1)) [71]. Solving group classification problems is important

from both the mathematical and physical point of view. Following the physical laws, for exam-

ple from the Galilean or special relativity principles, models are often constrained with a-priori

requirements to symmetry properties.

The Lie algorithm in the group classification of a class of differential equation leads to a

complicated over-determined system of PDEs with respect to the coefficient functions of the

infinitesimal operator and the arbitrary functions (elements) that appear in the class. The

appearance of the arbitrary elements in the over-determined system makes the solution of the

problem much more complicated than finding the Lie symmetries of a single system of differential

equations. In the present problem, the arbitrary elements f and k depend on two variables which

make the classification even more difficult than the usual ones. A similar problem where there

exist two arbitrary elements depending in two variables was considered recently in [48]. Another

good example, is considered in [89], where certain results of group classification of complex three-

dimensional diffusion-type equations are presented. Also, in [65–67], the group classification of

reaction-diffusion systems can be found. Examples of group classification of single equations

that contain arbitrary elements depend on two variables can be found in [8, 56] that appeared

recently in the literature.

In the next section we present the equivalence transformations for the two systems (6.4) and

(6.5) which are used to simplify the calculations of Lie symmetries. In section 3, we present

the classification of Lie symmetries for the two systems. The results are summarized in three

tables. In section 4, we give examples of nonclassical reductions. Finally, we give an example
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of a Hopf-Cole type transformation that linearizes a specific Burger-type system. The results of

the last two sections could be the starting point for further investigations.

The results of the present chapter, appear in [50].

6.2 Equivalence transformations

In this section we derive the equivalence transformations of the classes (6.4) and (6.5) which

play an important role in the theory of Lie group classification. These are nondegenerate point

transformations, that preserve the differential structure of the class of differential equations

under study and change only its arbitrary elements (functions f(u, v) and k(u, v)). We can

also say that equivalence transformations connect two members of the same class of PDEs.

The set of all equivalence transformations of a given family of differential equations forms a

group which is called the equivalence group. There exist two methods for the calculation of

equivalence transformations, the direct method which was first used by Lie [55] and the Lie

infinitesimal method which was introduced by Ovsiannikov [72]. Although, the direct method

involves considerable computational difficulties, it has the advantage of finding the most general

equivalence group and also unfolds all form-preserving [46] (also known as admissible [75])

transformations admitted by this class of equations. For recent applications of the direct method

one can refer, for example, to the recent references [94,95,97,98].

The derived equivalence transformations are employed to simplify the forms of the arbitrary

elements with the understanding that these equivalence transformations are included in the

conclusions.

We calculate the equivalence group of the class under consideration by employing the direct

method. The details of the calculations are omitted for brevity and we only present the results.

Theorem 6.1. The usual equivalence group G∼ of class (6.4) consists of the transformations

t′ = α2
1t+ α2, x′ = α1x+ β1t+ β2, u′ =

u

α1
, v′ =

v

α1
,

f ′ = α−1
1 f − β1α

−2
1 , k′ = α−1

1 k − β1α
−2
1 , (6.6)

where α1 ̸= 0.

In the above theorem, we assume that λ′1 = λ1, λ
′
2 = λ2, ϵ

′
1 = ϵ1, ϵ

′
2 = ϵ2. Clearly, system

(6.4) admits the discrete symmetry

t′ = t, x′ = x, u′ = v, v′ = u, λ′1 = λ2, λ
′
2 = λ1, ϵ

′
1 = ϵ2, ϵ

′
2 = ϵ1, f

′ = k, k′ = f.
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Theorem 6.2. The usual equivalence group G∼ of class (6.5) consists of the transformations

t′ = α2
1t+ α2, x′ = α1x+ β1t+ β2, u′ = γ1u+ γ2, v′ = δ1v + δ2,

f ′ = α−1
1 f − β1α

−2
1 , k′ = α−1

1 k − β1α
−2
1 , (6.7)

where α1γ1δ1 ̸= 0.

It turns out that in the case where the arbitrary elements are equal, the usual equivalence

group is wider.

Theorem 6.3. The usual equivalence group G∼
f=k of class (6.5), where f(u, v) = k(u, v) and

λ1 = λ2 = 1, consists of the transformations

t′ = α2
1t+ α2, x′ = α1x+ β1t+ β2, u′ = γ1u+ γ2v + γ3, v′ = δ1u+ δ2v + δ3,

f ′ = α−1
1 f − β1α

−2
1 , k′ = α−1

1 k − β1α
−2
1 , (6.8)

where α1(γ1δ2 − γ2δ1) ̸= 0.

In the above theorems we have used the term usual equivalence group. For the notion of

generalized equivalence transformations one can refer to the references [94,95,97,98].

6.3 Lie symmetries

6.3.1 Group classification for the class (6.4)

The Lie method for finding point symmetries is well established in the last decades. Several

textbooks exist that describe the method. See for example, in [13–15, 30, 37, 68, 72]. Here we

search for generators

Γ = τ(x, t, u, v)
∂

∂t
+ ξ(x, t, u, v)

∂

∂x
+ η(x, t, u, v)

∂

∂u
+ µ(x, t, u, v)

∂

∂v

corresponding to the infinitesimal transformations

t′ = t+ ϵτ(x, t, u, v), x′ = x+ ϵξ(x, t, u, v), u′ = u+ ϵη(x, t, u, v), v′ = v + ϵµ(x, t, u, v)

to the first order of ϵ.

We require that

Γ(2) {ut − λ1uxx − f(u, v)ux − ϵ1vvx} = 0, Γ(2) {vt − λ2vxx − k(u, v)vx − ϵ2uux} = 0, (6.9)

identically, modulo the system (6.4). Eliminating uxx and vxx from system (6.4), equations (6.9)

become two multi-variable polynomials in ut, ux, vt and vx. The coefficients of the different
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combinations of powers of these four variables must be zero, giving the determining system.

This system needs to be solved for τ, ξ, η and µ in terms of t, x, u and v and also for f and k

in terms u and v.

We need to consider two cases:

1. λ1 ̸= λ2 and

2. λ1 = λ2.

Case 1: Based on Theorem 4.6, if λ1 ̸= λ2 then

τ = τ(t), ξ = 1
2xτt(t) + ϕ(t), η = η(x, t, u), µ = µ(x, t, v).

Using these simplified forms of the coefficient functions, the coefficients of u2x, ux, vx and the

terms independent of derivatives in the first identity in (6.9) lead to the four equations of the

following overdetermined system. The other four equations are the coefficients of v2x, vx, ux and

the terms independent of derivatives in the second identity in (6.9).

ηuu = 0,

2η
∂f

∂u
+ 2µ

∂f

∂v
+ τtf + 4λ1ηxu + xτtt + 2ϕt = 0,

vηu − vµv − µ− 1
2vτt = 0,

ηt − λ1ηxx − fηx − ϵ1vµx = 0,

µvv = 0,

2η
∂k

∂u
+ 2µ

∂k

∂v
+ τtk + 4λ2µxv + xτtt + 2ϕt = 0,

uµv − uηu − η − 1
2uτt = 0,

µt − λ2µxx − kµx − ϵ2uηx = 0.

Without presenting any more detailed analysis, we deduce that

τ = 2c1t+ c2, ξ = c1x+ c3t+ c4, η = −c1u, µ = −c1v

and f(u, v) and k(u, v) satisfy a first order PDE of the form

c1uhu + c1vhv − c1h− c3 = 0.

Investigating all possible solutions of the above PDE, we obtain the following results:

1. f and k arbitrary: X1 = ∂t, X2 = ∂x.

2. f = vϕ
(
u
v

)
+ 1 and k = 1: X1, X2, X3 = 2t∂t + (x− t)∂x − u∂u − v∂v.

3. f = vϕ
(
u
v

)
, k = vψ

(
u
v

)
: X1, X2, Y3 = 2t∂t + x∂x − u∂u − v∂v.
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Case 2: If λ1 = λ2, using the mapping

t′ = λ1t, x
′ = x, u′ = u, v′ = v, f ′ =

f

λ1
, k′ =

k

λ1
, ϵ′1 =

ϵ1
λ1
, ϵ′2 =

ϵ2
λ1
,

we can take λ1 = λ2 = 1. The coefficients of u2x, uxvx and v2x in the identities (6.9) imply that

both η and µ are linear in u and v. Hence, we deduce that

τ = τ(t), ξ = 1
2xτt + ϕ(t),

η = A1(x, t)u+A2(x, t)v +A3(x, t),

µ = B1(x, t)u+B2(x, t)v +B3(x, t).

Here we require that ηv = A2 ̸= 0 and µu = B1 ̸= 0 because otherwise we obtain the three

results of Case 1. The coefficients of ux, vx and the term independent of these derivatives in

the identities (6.9) lead to the following overdetermined system

(A1xu+A2xv +A3x)f + (A1xx −A1t)u+ (A2xx −A2t)v +A3xx −A3t +

ϵ1v(B1xu+B2xv +B3x) = 0, (6.10)

A2(f − k) + 2A2x + ϵ1(
1
2τtv −A1v +B1u+ 2B2v +B3) = 0, (6.11)

(A1u+A2v +A3)fu + (B1u+B2v +B3)fv +
1
2τtf + 2A1x +

1
2τttx+ ϕt +

ϵ1B1v − ϵ2A2u = 0, (6.12)

(B1xu+B2xv +B3x)k + (B1xx −B1t)u+ (B2xx −B2t)v +B3xx −B3t +

ϵ2u(A1xu+A2xv +A3x) = 0, (6.13)

B1(k − f) + 2B1x + ϵ2(
1
2τtu+ 2A1u+A2v +A3 −B2u) = 0, (6.14)

(A1u+A2v +A3)ku + (B1u+B2v +B3)kv +
1
2τtk + 2B2x +

1
2τttx+ ϕt +

ϵ2A2u− ϵ1B1v = 0, (6.15)

We note from (6.11) that if A2 = 0, then B1 = 0 (or from (6.14), if B1 = 0, then A2 = 0). Hence

both conditions ηv ̸= 0 and µu ̸= 0 must hold.

From determining equations (6.11) and (6.14), we deduce that f and k are connected by the

relation

f = k + µ1u+ µ2v + µ3. (6.16)

We substitute the above form of f into equations (6.10) - (6.15). The coefficient of u in (6.11)

and the coefficient of v in (6.14) give the homogeneous linear system in A2 and B1,

µ1A2 + ϵ1B1 = 0, ϵ2A2 − µ2B1 = 0.
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Since A2 ̸= 0 and B1 ̸= 0, the determinant of the coefficients must vanish. We find that

ϵ1ϵ2 + µ1µ2 = 0.

Hence, µ1 ̸= 0 and µ2 ̸= 0. Using the above relation, the system gives

B1 = −µ1
ϵ1
A2.

Now equation (6.11) is linear in v and (6.14) is linear in u which lead to the results

A1 =
−3ϵ1µ2τt + (4ϵ1µ1 − 4µ22)A2

6ϵ1µ2
, B2 =

−3ϵ1µ2τt + (2ϵ1µ1 − 4µ22)A2

6ϵ1µ2
,

A3 =
µ3A2 − 2A2x

µ2
, B3 = −µ3A2 + 2A2x

ϵ1
.

We subtract equations (6.10) and (6.13) to find that

ϵ1 = −µ
2
2

µ1

and

µ3(µ2τt + 4µ1A2) = 0.

Hence, we need to split the analysis into two cases: µ3 ̸= 0 and µ3 = 0.

4. If µ3 ̸= 0, then

A2 = −µ2τt
4µ1

.

Equation (6.12) or (6.15) gives τ = c1t + c2 and differentiation of equation (6.10) with respect

to t gives ϕ = c3t+ c4. Collecting all the above results and using equation (6.10), we find that

if k(u, v) is a solution of the PDE

µ2(3µ1u+µ2v+µ3)ku+µ1(µ1u+3µ2v+µ3)kv−2µ1µ2k+µ1µ2(µ1u+µ2v−2µ4) = 0, (6.17)

f(u, v) is given by the relation (6.16) and

ϵ1 = −µ
2
2

µ1
, ϵ2 =

µ21
µ2
,

then the system (6.4) with λ1 = λ2 = 1 admits 3 Lie symmetries, where the third has the form

Z3 = 2t∂t + (x+ µ4t)∂x − 1
2µ1

(3µ1u+ µ2v + µ3)∂u − 1
2µ2

(µ1u+ 3µ2v + µ3)∂v.

If µ3 = 0, solving equations (6.10), (6.12) and (6.15), we find three more cases that produce

additional symmetries.
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5. If k(u, v) is a solution of the PDE

[µ2(µ1 − νµ2)u+ µ22v]ku + [µ21u+ µ2(µ1 − νµ2)v]kv + νµ22k + µ1µ2(µ1u+ µ2v) = 0, (6.18)

f(u, v) is given by the relation (6.16) and

ϵ1 = −µ
2
2

µ1
, ϵ2 =

µ21
µ2
,

then the system (6.4) with λ1 = λ2 = 1 admits a third Lie symmetry

W3 = 2νµ22t∂t + νµ22x∂x + [µ2(µ1 − νµ2)u+ µ22v]∂u + [µ21u+ µ2(µ1 − νµ2)v]∂v.

In the special case where ν = 0, PDE (6.18) gives the solution

k(u, v) = −µ1u+ ϕ(µ1u− µ2v)

and from (6.16),

f(u, v) = µ2v + ϕ(µ1u− µ2v).

The third Lie symmetry takes the form

W3 = µ2(µ1u+ µ2v)∂u + µ1(µ1u+ µ2v)∂v.

6. If k = ν1u + ν2ν3
ν1
v and f = ν3u + ν2v, then system (6.4) with λ1 = λ2 = 1 and

ϵ1 =
ν22 (ν1−ν3)

ν21
, ϵ2 =

ν1(ν1−ν3)
ν2

admits 4 Lie symmetries,

Y3 = 2t∂t + x∂x − u∂u − v∂v, X4 = ν2(ν1u− ν2v)∂u − ν1(ν1u− ν2v)∂v.

Finally, we find that k(u, v) = ν1u + ν3 and f(u, v) = ν2v + ν3 and the system (6.4) with

λ1 = λ2 = 1 admits 6 Lie symmetries. Using the equivalence transformations, we can take

ν3 = 0. Hence, we have the following result:

7. If k = ν1u and f = ν2v, the system (6.4) with λ1 = λ2 = 1 and ϵ1 =
ν22
ν1
, ϵ2 =

ν21
ν2

admits

the Lie symmetries

X3 = 2t∂t + x∂x − u∂u − v∂v,

X4 = ν2(ν1u− ν2v)∂u − ν1(ν1u− ν2v)∂v,

X5 = 4ν1ν2t∂x − ν2[x(ν1u− ν2v) + 2]∂u + ν1[x(ν1u− ν2v)− 2]∂v,

X6 = 8ν1ν2t
2∂t + 8ν1ν2xt∂x − ν2[(ν1(x

2 + 2t)u− ν2(x
2 − 6t)v + 4x]∂u

−ν1[(ν2(x2 + 2t)v − ν1(x
2 − 6t)u+ 4x]∂v

The results of the group classification for the class (6.4) are summarized in Table 6.1.
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Table 6.1: Group classification of the system (6.4).

n f(u, v) k(u, v) ϵ1 ϵ2 λ1, λ2 Lie symmetries

1. ∀ ∀ ∀ ∀ ∀ X1,X2

2. vϕ
(
u
v

)
+ 1 1 ∀ ∀ ∀ X1,X2,X3

3. vϕ
(
u
v

)
vψ

(
u
v

)
∀ ∀ ∀ X1,X2, Y3

4. k + µ1u+ µ2v + µ3 solution of (6.17) −µ2
2

µ1

µ2
1

µ2
λ1 = λ2 = 1 X1,X2, Z3

5. k + µ1u+ µ2v solution of (6.18) −µ2
2

µ1

µ2
1

µ2
λ1 = λ2 = 1 X1,X2,W3

6. ν3u+ ν2v ν1u+ ν2ν3
ν1

v
ν2
2 (ν1−ν3)

ν2
1

ν1(ν1−ν3)
ν2

λ1 = λ2 = 1 X1,X2, Y3, X4

7. ν2v ν1u
ν2
2

ν1

ν2
1

ν2
λ1 = λ2 = 1 X1,X2,X3, X4, X5, X6

Here µ1, µ2, µ3, ν1, ν2 and ν3 are nonzero arbitrary constants.

6.3.2 Group classification for the class (6.5)

Here we require that

Γ(2) {ut − λ1uxx − f(u, v)ux} = 0, Γ(2) {vt − λ2vxx − k(u, v)vx} = 0, (6.19)

identically, modulo the system (6.5).

We consider the cases:

1. λ1 ̸= λ2 and

2. λ1 = λ2.

Case 1: Based on Theorem 4.6, if λ1 ̸= λ2, then

τ = τ(t), ξ = 1
2xτt(t) + ϕ(t), η = η(x, t, u), µ = µ(x, t, v).

The coefficient of u2x in the first identity in (6.19) gives that ηuu = 0 and the coefficient of v2x

in the second identity in (6.19) gives µvv = 0. Summarizing, the coefficient functions have the

simplified forms

τ = τ(t), ξ = 1
2xτt + ϕ(t), η = A1(x, t)u+A2(x, t), µ = B1(x, t)v +B2(x, t)

and the identities (6.19) lead to the following determining system

(A1xu+A2x)f + (λ1A1xx −A1t)u+ λ1A2xx −A2t = 0, (6.20)

(A1u+A2)fu + (B1v +B2)fv +
1
2τtf + 2λ1A1x +

1
2τttx+ ϕt = 0, (6.21)

(B1xv +B2x)k + (λ2B1xx −B1t)v + λ2B2xx −B2t = 0, (6.22)

(A1u+A2)ku + (B1v +B2)kv +
1
2τtk + 2λ2B1x +

1
2τttx+ ϕt = 0. (6.23)

The solution of the system (6.20) - (6.23) provides the forms of the functions f(u, v), k(u, v)

and the coefficient functions and therefore the desired Lie symmetries can be obtained. For
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arbitrary functions f(u, v) and k(u, v), system (6.5) admits the Lie symmetries

X1 = ∂t, X2 = ∂x.

From equation (6.20) we can determine the form of f(u, v) unless its coefficient is equal to

zero. Similarly if the coefficient of k(u, v) in (6.22) is not equal to zero, we can write down its

form. These possibilities give the following subcases:

(i) A2
1x +A2

2x ̸= 0 and B2
1x +B2

2x ̸= 0

(ii) A2
1x +A2

2x ̸= 0 and B2
1x +B2

2x = 0

(iii) A2
1x +A2

2x = 0 and B2
1x +B2

2x = 0

We point out that the symmetric case of (ii) is omitted.

(i) A2
1x+A

2
2x ̸= 0 and B2

1x+B
2
2x ̸= 0: From equation (6.20) we deduce that f has the specific

form p1u+p2
p3u+p4

and, similarly, from (6.22) k has the form q1v+q2
q3v+q4

. Substitution of these forms into

the system (6.20) - (6.23), leads to the conclusion that f is linear in u and k is linear in v. Using

the equivalence transformations, we can take f = u or f = a and k = bv or k = b, where a and

b are arbitrary constants. Clearly, these forms of f and k impose that the system (6.5) consists

of two separable differential equations. We state the following results:

(a) f(u, v) = a and k(u, v) = b, where a and b are arbitrary constants. System (6.5) which

consists of two separable linear equations admits the Lie symmetries

X1, X2, X3 = 2t∂t + x∂x −
a

2λ1
(x+ at)u∂u −

b

2λ2
(x+ bt)v∂v,

X4 = t∂x −
1

2λ1
(x+ at)u∂u −

1

2λ2
(x+ bt)v∂v,

X5 = t2∂t + tx∂x −
1

4λ1

[
(x+ at)2 + 2λ1t

]
u∂u −

1

4λ2

[
(x+ bt)2 + 2λ2t

]
v∂v,

X6 = u∂u, X7 = v∂v, Xψ1 = ψ1(t, x)∂u, Xψ2 = ψ2(t, x)∂v,

where ψ1(t, x) and ψ2(t, x) are solutions of the linear PDE

ψt = λψxx + cψx, (6.24)

where (λ, c) = (λ1, a) and (λ, c) = (λ2, b), respectively.

(b) f(u, v) = a and k(u, v) = bv. System (6.5) which consists of two separable equations, one

being a linear PDE and the other one is the Burgers equation. The admitted Lie symmetries
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are the following:

X1, X2, X3 = 2t∂t + x∂x −
a

2λ1
(x+ at)u∂u − v∂v,

X4 = t∂x −
1

2λ1
(x+ at)u∂u −

1

b
∂v,

X5 = t2∂t + tx∂x −
1

4λ1

[
(x+ at)2 + 2λ1t

]
u∂u −

1

b
(btv + x)∂v,

X6 = u∂u, Xψ1 = ψ1(t, x)∂u,

where ψ1(t, x) is a solution of the linear PDE (6.24) with (λ, c) = (λ1, a).

(c) f(u, v) = u and k(u, v) = bv. Here we have a system of two separable Burgers equations

that admits the Lie symmetries

X1, X2, X3 = 2t∂t + x∂x − u∂u − v∂v,

X4 = t∂x − ∂u −
1

b
∂v, X5 = t2∂t + tx∂x − (tu+ x)∂u −

1

b
(btv + x)∂v.

(ii) A2
1x + A2

2x ̸= 0 and B2
1x + B2

2x = 0: Equation (6.22) implies that the functions B1 and

B2 are both constants. From equations (6.20) and (6.21) we find, as in the previous subcase,

f = a or f = u. In the case f = a, in order to satisfy the condition A2
1x + A2

2x ̸= 0, we need to

take ku = 0. From equation (6.23) we deduce that τ = 2c1t+ c2, ϕ = c3t+ c4 and k(v) satisfies

an ordinary differential equation of the form (ν1v + ν2)kv + ν3k = ν4. All possible solutions of

this latter equation provide the following results which correspond to separable systems with

the first equation being linear.

(a) f(u, v) = a and k(u, v) = k(v), where k(v) is an arbitrary function.

X1, X2, X3 = u∂u, Xψ = ψ(t, x)∂u,

where ψ(t, x) is a solution of the linear equation ψt = λ1ψxx + aψx.

(b) f(u, v) = a and k(u, v) = vn.

X1, X2, X3 = u∂u, X4 = 4λ1nt∂t + 2λ1nx∂x − an(x+ at)u∂u − 2λ1v∂v, Xψ = ψ(t, x)∂u.

(c) f(u, v) = a and k(u, v) = env.

X1, X2, X3 = u∂u, X4 = 4λ1nt∂t + 2λ1nx∂x − an(x+ at)u∂u − 2λ1∂v, Xψ = ψ(t, x)∂u.

(d) f(u, v) = a and k(u, v) = ln v.

X1, X2, X3 = u∂u, X4 = 2λ1t∂x − (x+ at)u∂u − 2λ1v∂v, Xψ = ψ(t, x)∂u.
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In the case f(u, v) = u, in order to satisfy the condition A2
1x + A2

2x ̸= 0, the determining

equations (6.20) - (6.23) are satisfied only if k(u, v) = u. We find that system (6.5) admits 7 Lie

symmetries and the results are tabulated in entry 22 of Table 6.2.

(iii) A2
1x + A2

2x = 0 and B2
1x + B2

2x = 0: From equations (6.20) and (6.22) we find that

A1, A2, B1 and B2 are constant functions. Differentiation of equation (6.21) (or (6.23)) with

respect to x and t, respectively, gives that τ(t) and ϕ(t) are linear functions. Summarizing, we

state that the coefficient functions have the form

τ = 2c1t+ c2, ξ = c1x+ c3t+ c4, η = c5u+ c6, µ = c7v + c8.

Finally, equations (6.21) and (6.23) which become

(c5u+ c6)
∂f

∂u
+ (c7v + c8)

∂f

∂v
+ c1f + c3 = 0,

(c5u+ c6)
∂k

∂u
+ (c7v + c8)

∂k

∂v
+ c1k + c3 = 0, (6.25)

need to be satisfied. From equations (6.25) we deduce that the functions f(u, v) and k(u, v)

satisfy a first order quasi-linear partial differential equation of the form

(µ1u+ µ2)
∂ϕ

∂u
+ (µ3v + µ4)

∂ϕ

∂v
+ µ5ϕ+ µ6 = 0. (6.26)

If f(u, v) and k(u, v) are any arbitrary solutions of the PDE (6.26), then in addition to the two

Lie symmetries X1 and X2, system (6.5) admits at least one third Lie symmetry of the form

2µ5t∂t + (µ5x+ µ6t)∂x + (µ1u+ µ2)∂u + (µ3v + µ4)∂v.

Now the question is: Which forms of f(u, v) and k(u, v) lead to more than one Lie symmetry of

the above form?

The possible forms of f(u, v) and k(u, v) (solutions of (6.26)) are:

(i) f(u, v) = au+ ϕ(u+ ϵv), k(u, v) = au+ ψ(u+ ϵv),

(ii) f(u, v) = enuϕ(u+ ϵv), k(u, v) = enuψ(u+ ϵv),

(iii) f(u, v) = au+ ϕ(vemu), k(u, v) = au+ ψ(vemu),

(iv) f(u, v) = enuϕ(vemu), k(u, v) = enuψ(vemu),

(v) f(u, v) = a lnu+ ϕ(uemv), k(u, v) = a lnu+ ψ(uemv),

(vi) f(u, v) = unϕ(uemv), k(u, v) = unψ(uemv),

(vii) f(u, v) = a lnu+ ϕ(vum), k(u, v) = a lnu+ ψ(vum),

(viii) f(u, v) = unϕ(vum), k(u, v) = unψ(vum),
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where ϕ and ψ are arbitrary functions in their arguments. Writing in (iv) ϕ(vemu) =

(vemu)sϕ̃(vemu) and similarly for ψ, we note that these forms of f(u, v) and k(u, v) are symmet-

ric (interchange u and v) with those of (vi). However since this observation is not so obvious,

we keep both forms in (iv) and (vi).

Consecutive substitutions of the above eight forms of f(u, v) and k(u, v) into equations (6.25)

lead to the conclusion that for arbitrary ϕ and ψ system (6.5) admits a third Lie symmetry.

The results are tabulated in the entries 1 - 8 of Table 6.2. Additional Lie symmetries exist for

specific forms of ϕ and ψ. Without presenting the detailed analysis, we state that we obtain the

results in the entries 9 - 21 of table 6.2.

Note 6.1. The above solutions for f(u, v) and k(u, v) that satisfy the PDE (6.26) do not include

the cases where one of the functions is constant. If k(u, v) = ν, then f(u, v) takes one of the

forms (ii), (iv), (vi) and (viii) plus the constant ν. Using the equivalence transformations (6.7)

we can take, without loss of generality, ν = 0. The required Lie symmetries can be obtained by

setting ψ = 0 in the corresponding cases.

Case 2: If λ1 = λ2 and using the mapping t′ = λ1t, x
′ = x, u′ = u, v′ = v, f ′ = f

λ1
, k′ = k

λ1
,

we can take λ1 = λ2 = 1. System (6.5) takes the form

ut = uxx + f(u, v)ux, vt = vxx + k(u, v)vx (6.27)

The coefficients of u2x, uxvx and v2x in the first identity in (6.19) give ηuu = ηuv = ηvv = 0

and from the corresponding coefficients in the second identity we get µuu = µuv = µvv = 0.

Therefore the coefficient functions η and µ have the form

η(x, t, u, v) = A1(x, t)u+A2(x, t)v +A3(x, t),

µ(x, t, u, v) = B1(x, t)u+B2(x, t)v +B3(x, t).

The coefficients of ux, vx and the term independent of derivatives ux and vx in equations (6.19)

give the following six identities:

(A1xu+A2xv +A3x)f + (A1xx −A1t)u+ (A2xx −A2t)v +A3xx −A3t = 0, (6.28)

A2(f − k) + 2A2x = 0, (6.29)

(A1u+A2v +A3)fu + (B1u+B2v +B3)fv +
1
2τtf + 2A1x +

1
2τttx+ ϕt = 0, (6.30)

(B1xu+B2xv +B3x)k + (B1xx −B1t)u+ (B2xx −B2t)v +B3xx −B3t = 0, (6.31)

B1(k − f) + 2B1x = 0, (6.32)

(A1u+A2v +A3)ku + (B1u+B2v +B3)kv +
1
2τtk + 2B2x +

1
2τttx+ ϕt = 0. (6.33)
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Table 6.2: Group classification of the system (6.5), where λ1 and λ2 are arbitrary.
n f(u, v) k(u, v) Additional Lie symmetries

1. au+ ϕ(u+ ϵv) au+ ψ(u+ ϵv) X3 = ϵat∂x − ϵ∂u + ∂v
2. enuϕ(u+ ϵv) enuψ(u+ ϵv) X3 = 2ϵnt∂t + ϵnx∂x − ϵ∂u + ∂v
3. au+ ϕ(vemu) au+ ψ(vemu) X3 = at∂x − ∂u +mv∂v
4. enuϕ(vemu) enuψ(vemu) X3 = 2nt∂t + nx∂x − ∂u +mv∂v
5. a lnu+ ϕ(uemv) a lnu+ ψ(uemv) X3 = mat∂x −mu∂u + ∂v
6. unϕ(uemv) unψ(uemv) X3 = 2mnt∂t +mnx∂x −mu∂u + ∂v
7. a lnu+ ϕ(vum) a lnu+ ψ(vum) X3 = at∂x − u∂u +mv∂v
8. unϕ(vum) unψ(vum) X3 = 2nt∂t + nx∂x − u∂u +mv∂v
9. eu+ϵv beu+ϵv X3 = 2t∂t + x∂x − ∂u

X4 = ϵ∂u − ∂v
10. (u+ ϵv)n b(u+ ϵv)n X3 = 2nt∂t + nx∂x − u∂u − v∂v

X4 = ϵ∂u − ∂v
11. vnemu bvnemu X3 = 2nt∂t + nx∂x − v∂v

X4 = n∂u −mv∂v
12. vnum bvnum X3 = 2nt∂t + nx∂x − v∂v

X4 = nu∂u −mv∂v
13. av + lnu av + lnu X3 = at∂x − ∂v

X4 = au∂u − ∂v
14. av + enu av + benu X3 = 2nt∂t + nx∂x − ∂u − nv∂v

X4 = at∂x − ∂v
15. av + un av + bun X3 = 2nt∂t + nx∂x − u∂u − nv∂v

X4 = at∂x − ∂v
16. a ln v + lnu a ln v + lnu X3 = t∂x − u∂u

X4 = au∂u − v∂v
17. ϕ(u) ψ(u) X3 = v∂v, X4 = ∂v
18. u+ ϵv u+ ϵv X3 = 2t∂t + x∂x − u∂u − v∂v

X4 = ϵ∂u − ∂v
X5 = t∂x − ∂u

19. un bun X3 = v∂v, X4 = ∂v
X5 = 2nt∂t + nx∂x − u∂u

20. enu benu X3 = v∂v, X4 = ∂v
X5 = 2nt∂t + nx∂x − ∂u

21. lnu lnu X3 = v∂v, X4 = ∂v
X5 = t∂x − u∂u

22. u u X3 = v∂v, X4 = ∂v
X5 = 2t∂t + x∂x − u∂u, X6 = t∂x − ∂u
X7 = t2∂t + xt∂x − (ut+ x)∂u

Here a, b, m and n are arbitrary constants. In 9, 10 and 17 - 22, λ1 ̸= λ2 since for λ1 = λ2 the corresponding

forms of the system admit additional Lie symmetries (see table 6.3). In 13 - 16 a ̸= 0 and in 18 ϵ ̸= 0.

We point out that if A2 = B1 = 0, then we obtain the results of the previous case.

From equation (6.29) or equation (6.32), if A2
2 +B2

1 ̸= 0, then we deduce that

f(u, v) = k(u, v) + λ.

If λ ̸= 0, the determining system (6.28) - (6.33) is satisfied only in the case where k is constant

and, consequently, f is also a constant. If f(u, v) = µ1 and k(u, v) = µ2, then the linear
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separable system (6.27) admits nine Lie symmetries and two infinite-dimensional symmetries.

X3 = 4t∂t + 2x∂x − µ1(µ1t+ x)u∂u − µ2(µ2t+ x)v∂v,

X4 = 4t2∂t + 4tx∂x − [2t+ (µ1t+ x)2]u∂u − [2t+ (µ2t+ x)2]v∂v,

X5 = 2t∂x − (µ1t+ x)u∂u − (µ2t+ x)v∂v,

X6 = v exp{1
4(µ2 − µ1)[(µ2 + µ1)t+ 2x]}∂u,

X7 = u exp{−1
4(µ2 − µ1)[(µ2 + µ1)t+ 2x]}∂v,

X8 = u∂u, X9 = v∂v, Xψ1 = ψ1(t, x)∂u, Xψ2 = ψ2(t, x)∂v,

where ψ1(t, x) and ψ2(t, x) are solutions of the linear PDE (6.24), where (λ, c) = (1, µ1) and

(λ, c) = (1, µ2), respectively.

Now we examine the subcase where λ = 0. If the functions A1(x, t), A2(x, t), A3(x, t),

B1(x, t), B2(x, t), B3(x, t) are not all constants then k(u, v) is either constant or linear in u

and v. If f(u, v) = k(u, v) = µ, then the corresponding Lie symmetries are obtained from the

previous case by setting µ1 = µ2 = µ. In the case where k(u, v) is a linear function, using the

equivalence transformations, we can take f(u, v) = k(u, v) = v + ϵu. System (6.27) admits nine

Lie symmetries

X3 = 2t∂t + x∂x − u∂u − v∂v,

X4 = t2∂t + xt∂x − (ϵut+ vt+ x)∂v,

X5 = ϵt∂x − ∂u, X6 = t∂x − ∂v,

X7 = v∂u − ϵv∂v, X8 = u∂u − ϵu∂v,

X9 = (ϵut+ vt+ x)∂u − ϵ(ϵut+ vt+ x)∂v.

If the functions A1(x, t), A2(x, t), A3(x, t), B1(x, t), B2(x, t), B3(x, t) are all constants, we find

that the coefficient functions have the form

τ = 2c1t+ c2, ξ = c1x+ c3t+ c4, η = c5u+ c6v + c7, µ = c8u+ c9v + c10

and we only have to satisfy the determining equation (6.33) which is identical to (6.30),

(c5u+ c6v + c7)
∂k

∂u
+ (c8u+ c9v + c10)

∂k

∂v
+ c1k + c3 = 0. (6.34)

We deduce that k(u, v) satisfies a quasi-linear partial differential equation of the form

(p1u+ p2v + p3)
∂k

∂u
+ (q1u+ q2v + q3)

∂k

∂v
+ rk + s = 0. (6.35)
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For an arbitrary form of k(u, v) system (6.27) admits the Lie symmetries X1 = ∂t and

X2 = ∂x. If k(u, v) is a solution of the PDE (6.35), then system (6.27) admits at least one more

Lie symmetry of the form

2rt∂t + (rx+ st)∂x + (p1u+ p2v + p3)∂u + (q1u+ q2v + q3)∂v. (6.36)

Now our task is to find those forms of k(u, v) that admit more than one Lie symmetry of the form

(6.36). In order to achieve this goal, we need to find all possible solutions of the PDE (6.35).

However, solving this quasi linear PDE is not an easy task. We make use of the equivalence

transformations of the system (6.5) in the case where f(u, v) = k(u, v) and λ1 = λ2 = 1

(Theorem 6.3), which is given by equation (6.8) in order to simplify PDE (6.35). We deduce

that we can, equivalently, solve the following PDEs:

∂k

∂u
+ q3

∂k

∂v
+ rk = 0, (6.37)

∂k

∂u
+ q3

∂k

∂v
+ s = 0, (6.38)

∂k

∂u
+ (q1u+ q2v)

∂k

∂v
+ rk = 0, (6.39)

∂k

∂u
+ (q1u+ q2v)

∂k

∂v
+ s = 0, (6.40)

u
∂k

∂u
+ (q1u+ q3)

∂k

∂v
+ rk = 0, (6.41)

u
∂k

∂u
+ (q1u+ q3)

∂k

∂v
+ s = 0, (6.42)

u
∂k

∂u
+ (q1u+ q2v)

∂k

∂v
+ rk = 0, (6.43)

u
∂k

∂u
+ (q1u+ q2v)

∂k

∂v
+ s = 0, (6.44)

v
∂k

∂u
+ (q1u+ q2v)

∂k

∂v
+ rk = 0, (6.45)

v
∂k

∂u
+ (q1u+ q2v)

∂k

∂v
+ s = 0. (6.46)

In the subsequent analysis, where we solve the above equations, certain constants are renamed

without stating it.

If r = 0 in (6.37), the general solution has the form k(u, v) = ϕ(u + ϵv). We substitute this

form into (6.34) to deduce that ϕ(ξ), ξ = u+ ϵv satisfies an ordinary differential equation of the

form

(ν1ξ + ν2)
dϕ

dξ
+ ν3ϕ = ν4. (6.47)

All possible solutions of the above equation lead to the results tabulated in the entries 19, 22

- 24 in Table 6.3. If r ̸= 0 in (6.37), the general solution has the form k(u, v) = emuϕ(u + ϵv).
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From (6.34), we find that ϕ(ξ), ξ = u+ ϵv satisfies an ordinary differential equation of the form

(ν1ξ + ν2)
dϕ

dξ
+ (ν3ξ + ν4)ϕ = 0.

For an arbitrary function ϕ, system (6.27) admits three Lie symmetries. The other possible

solutions of the above equations are ϕ(ξ) = emξξn and ϕ(ξ) = eξ
2+nξ which produce an addi-

tional fourth Lie symmetry and the results are tabulated in the entries 1 and 12 of Table 6.3,

respectively. If s ̸= 0 in (6.38), the general solution has the form k(u, v) = mu+ ϕ(u+ ϵv). In

this case, we deduce that ϕ(ξ) is a solution of an ordinary differential equation of the form

(ν1ξ + ν2)
dϕ

dξ
+ ν3ϕ = ν4ξ + ν5.

The possible solutions of the above ordinary differential equations are ϕ(ξ) = renξ +mξ, ϕ(ξ) =

rξn +mξ, ϕ(ξ) = ln ξ +mξ and ϕ(ξ) = ξ ln ξ +mξ which all produce a fourth Lie symmetry.

The results appear in the entries 3 - 6 of Table 6.3.

If r = 0 in (6.39) we find that k(u, v) = ϕ(v + ϵu2) or k(u, v) = ϕ((v + ϵu)emu) depending

if the constant q2 is zero or nonzero. Substitution of the first form into (6.34) implies that ϕ

satisfies an ordinary differential equation of the form (6.47). The three possible solutions of

this equation produce the results tabulated in the entries 8 - 10 of Table 6.3. The second form

provides special cases of the results in the entries 1 and 3 of the same table. If r ̸= 0, equation

(6.39) has the general solution k(u, v) = eruϕ(v+ ϵu2) or k(u, v) = eruϕ((v+ ϵu)emu). The first

form with ϕ being arbitrary gives three Lie symmetries, while in the case ϕ = ev+ϵu
2
we find

four Lie symmetries and the result is a special case of the entry 12 of Table 6.3. The second

form with ϕ being arbitrary gives three Lie symmetries, if ϕ = ((v+ ϵu)emu)n, we reproduce the

results of entry 1 in Table 6.3 and if ϕ = ((v + ϵu)emu)−r/m, we reproduce the results of entry

22 in Table 6.3.

If s ̸= 0, equation (6.40) has the general solution k(u, v) = au + ϕ(v + ϵu2) or k(u, v) =

au + ϕ((v + ϵu)emu). We substitute the first form into (6.34) to find that, if ϕ is arbitrary we

have three Lie symmetries, if ϕ =
√
v + ϵu2 we have four Lie symmetries and the results are

tabulated in the entry 11 of Table 6.3 and if ϕ = v + ϵu2 we have five Lie symmetries and

the results are tabulated in the entry 20 of Table 6.3. The second form produces three Lie

symmetries for arbitrary ϕ, four Lie symmetries for ϕ = ln((v+ ϵu)emu) which is a recalculation

of the results of entry 3 of Table 6.3 and six Lie symmetries for ϕ = − a
m ln((v + ϵu)emu) which

is recalculation of the results of entry 24 of Table 6.3.

Now we consider equations (6.41) and (6.42). If r = 0, the general solution of (6.41) has

the form k(u, v) = ϕ(v + ϵu + m lnu). For arbitrary ϕ, we obtain three Lie symmetries, for
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ϕ = v + ϵu + m lnu, four Lie symmetries which is a special case of entry 3 in Table 6.3 and

in the case where ϕ = umev+ϵu, we obtain a special case of entry 1 in Table 6.3. If r ̸= 0,

the general solution of (6.41) has the form k(u, v) = urϕ(v + ϵu + m lnu). For m ̸= 0, the

determining equation (6.34) implies that ϕ = e−
r
m
(v+ϵu+m lnu) or ϕ = ev+ϵu+m lnu. In both cases

we obtain existing results. For m = 0, equation (6.34) implies that ϕ is of exponential or power

form which do not lead to any new results. If s ̸= 0, then equation (6.42) has the general

solution k(u, v) = s lnu + ϕ(v + ϵu + m lnu). We substitute into (6.34) and we obtain four

different cases. If ϕ is an arbitrary function, then system (6.27) admits three Lie symmetries.

If ϕ = ln(v + ϵu+m lnu), we find three Lie symmetries for m ̸= 0 and four for m = 0 and the

result is a special case of the entry 7 in Table 6.3. If ϕ = v + ϵu +m lnu, we recalculate the

result of a special case of entry 3 in Table 6.3. Finally, if ϕ = − s
m(v+ ϵu+m lnu), we reproduce

a subset of Lie symmetries of entry 25 in Table 6.3.

Equation (6.43) with r = 0 has the general solution k(u, v) = ϕ(um(v + ϵu)) or k(u, v) =

ϕ( vu +m lnu) depending if q2 ̸= 1 or q2 = 1. In the case where k(u, v) = ϕ(um(v+ ϵu)), equation

(6.34) implies that for arbitrary ϕ there exist three Lie symmetries, for ϕ = (um(v + ϵu))n

four symmetries which is a special case of entry 2 in Table 6.3 and for ϕ = ln(um(v + ϵu))

also four symmetries which are special cases of entry 7 in Table 6.3. For the second form,

k(u, v) = ϕ( vu + m lnu), we need to take the subcases m ̸= 0 and m = 0. As before, for

arbitrary ϕ we find three Lie symmetries. When m ̸= 0, additional symmetries exist when

ϕ = v
u + m lnu and ϕ = e

v
u
+m lnu and the results are special cases of the entries 13 and 14

in Table 6.3, respectively. When m = 0, we deduce that ϕ(ξ), ξ = v
u satisfies an ordinary

differential equation of the form

(ν1ξ
2 + ν2ξ + ν3)

dϕ

dξ
+ ν4ϕ = ν5. (6.48)

If ν1 ̸= 0 and ν4 ̸= 0, the possible solutions of (6.48) are of the forms ϕ(ξ) = er tan
−1 ξ, ϕ(ξ) =(

ξ+ϵ
ξ+δ

)n
and ϕ(ξ) = e

n
ξ+ϵ . These forms lead to the special cases tabulated in the entries 2, 13

and 17 of Table 6.3. If ν1 ̸= 0 and ν4 = 0, we find that ϕ(ξ) = tan−1(nξ), ϕ(ξ) = ln
(
ξ+ϵ
ξ+δ

)
and

ϕ(ξ) = 1
ξ+ϵ . The first two forms lead to results obtained in previous cases. The third form leads

to the results tabulated in the entry 21 of Table 6.3. If ν1 = 0, we find ϕ = ξn (Table 6.2, entry

12), ϕ = ln ξ (Table 6.2, entry 18), ϕ = enξ (Table 6.3, entry 13 with ϵ = 0 and m = 0) and

ϕ = ξ (Table 6.3, entry 21 with ϵ = 0).

Equation (6.43) with r ̸= 0 has the general solution k(u, v) = urϕ(um(v + ϵu)) or k(u, v) =

urϕ( vu +m lnu). We substitute the first form k(u, v) = urϕ(ξ), ξ = um(v + ϵu) into (6.34). We

find that ϕ = ξn and ϕ = ξ−
r
m which lead to results that have already been found in previous
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cases. The second form for m ̸= 0 leads to a special case of entry 13 in Table 6.3. If m = 0,

we find ϕ(ξ) = ξ−r, ξ = v
u which gives the results of entry 22 in Table 6.3 with ϵ = 0 or ϕ(ξ)

satisfies an ordinary differential equation of the form

(ν1ξ
2 + ν2ξ + ν3)

dϕ

dξ
+ (−rν1ξ + ν4)ϕ = 0. (6.49)

If ν1 = 0, we find that ϕ = ξn and ϕ = enξ which give special cases of the results of entry 2

and entry 13 of Table 6.3, respectively. If ν1 ̸= 0, we find the three possible solutions of (6.49):

ϕ = (n2ξ2 + 1)r/2em tan−1 nξ, ϕ = (ξ +m)re
n

ξ+m and ϕ = (ξ +m)r/2+n(ξ + ϵ)r/2−n. Rearranging

the constants, we find the corresponding forms of k(u, v) and then we substitute into (6.34) to

derive the corresponding Lie symmetries and the results are tabulated in the entries 2, 13 and

17 with ϵ = 0 in the Table 6.3.

Equation (6.44) with s ̸= 0 has the general solution k(u, v) = s lnu + ϕ(um(v + ϵu)) or

k(u, v) = s lnu+ϕ( vu+m lnu). We substitute the first form k(u, v) = s lnu+ϕ(ξ), ξ = um(v+ϵu)

into (6.34). We find that ϕ = ξn and ϕ = ξ−
s
m which lead to results that have already been

found in previous cases. The second case, for m ̸= 0 reproduces a special case of the results

of entry 14 in the Table 6.3. In the subcase where m = 0, ϕ(ξ), ξ = v
u satisfies an ordinary

differential equation of the form

(ν1ξ
2 + ν2ξ + ν3)

dϕ

dξ
= rν1ξ + ν4. (6.50)

If ν1 = 0, then ϕ = ξ or ϕ = ln ξ which lead to special cases of entries 7 and 14 in Table

6.3. If ν ̸= 0, ϕ takes one of the following three forms: ϕ = m tan−1 nξ + r
2 ln(n

2ξ2 + 1),

ϕ = n
ξ+m + r ln(ξ+m) and ϕ = ( r2 +n) ln(ξ+m)+ ( r2 −n) ln(ξ+ ϵ). Rearranging the constants,

we substitute the corresponding form of k(u, v) into (6.34). We find the results tabulated in the

entries 7, 18 with ϵ = 0 and 14 of Table 6.3.

The solutions of equation (6.45) with r ̸= 0 and of equation (6.46) with s ̸= 0 are cumbersome

expressions. We neglect these cases and we only consider equation (6.45) with r = 0. If q2 = 0,

the general solution is of the form k(u, v) = ϕ(u2 + nv2). For arbitrary ϕ we find three Lie

symmetries and for ϕ = (u2+nv2)r and ϕ = ln(u2+nv2) we find four symmetries and the results

coincide with those of entries 17 with ϵ = 0 and 18 in Table 6.3 with m = ϵ = 0, respectively.

If q2 ̸= 0, then k(u, v) = ϕ(ξ), where ξ takes the following three forms: ξ = (v + ϵu)e
ϵu

v+ϵu ,

ξ = (v + ϵu)m(v + δu)n and ξ = [(v + ϵu)2 + δ2u2]er tan
−1( v+ϵu

δu
). Substitution into (6.34) implies

that in all three cases ϕ = ξn or ϕ = ln ξ. For both forms of ϕ, the first two cases give results

obtained earlier. The third case leads to the results tabulated in the entries 17 and 18 of Table

6.3.
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Table 6.3: Group classification of the system (6.5), where λ1 = λ2 = 1 and f(u, v) = k(u, v).

n k(u, v) Additional Lie symmetries

1. ev+δu(v + ϵu)m X3 = (v + ϵu+m)∂u − [δ(v + ϵu) +mϵ]∂v,
X4 = 2(ϵ− δ)t∂t + (ϵ− δ)x∂x + ∂u − ϵ∂v

2. (v + ϵu)n(v + δu)m X3 = [m(v + ϵu) + n(v + δu)]∂u − [mδ(v + ϵu) + nϵ(v + δu)]∂v,
X4 = 2(n+m)t∂t + (n+m)x∂x − u∂u − v∂v

3. ln(v + ϵu) +m(v + δu) X3 = [m(v + ϵu) + 1]∂u − [mδ(v + ϵu) + ϵ]∂v,
X4 = m(ϵ− δ)t∂x + ∂u − ϵ∂v

4. en(v+ϵu) +m(v + δu) X3 = 2n(ϵ− δ)t∂t + n(ϵ− δ)x∂x + [n(v + δu)− 1]∂u
+[δ − nϵ(v + δu)]∂v,
X4 = m(ϵ− δ)t∂x + ∂u − ϵ∂v

5. (v + ϵu)n +m(v + δu) X3 = 2n(ϵ− δ)t∂t + n(ϵ− δ)x∂x + (n(v + δu)− v − ϵu)∂u
+(δ(v + ϵu)− nϵ(v + δu))∂v,
X4 = m(ϵ− δ)t∂x + ∂u − ϵ∂v

6. (v + ϵu) ln(v + ϵu) +m(v + δu) X3 = 2m(ϵ− δ)t∂t +m(ϵ− δ)x∂x + [(mδ −mϵ− ϵ)u− v]∂u
+[ϵ2u+ (mδ −mϵ+ ϵ)v]∂v
X4 = m(ϵ− δ)t∂x + ∂u − ϵ∂v

7. n ln(v + ϵu) +m ln(v + δu) X3 = [m(v + ϵu) + n(v + δu)]∂u − [mδ(v + ϵu) + nϵ(v + δu)]∂v,
X4 = (n+m)t∂x − u∂u − v∂v

8. (v + γu2)n X3 = ∂u − 2γu∂v,X4 = 4nt∂t + 2nx∂x − u∂u − 2v∂v

9. en(v+γu2) X3 = ∂u − 2γu∂v,X4 = 2nt∂t + nx∂x − ∂v
10. ln(v + γu2) X3 = ∂u − 2γu∂v,X4 = 2t∂x − u∂u − 2v∂v
11. mu+

√
v + γu2 X3 = 2t∂t + x∂x − u∂u − 2v∂v,X4 = mt∂x − ∂u + 2γu∂v

12. e(v+δu)2+n(v+ϵu) X3 = [2(v + δu) + n]∂u − (2δ(v + δu) + nϵ]∂v,
X4 = 2n(ϵ− δ)t∂t + n(ϵ− δ)x∂x − ∂u + δ∂v

13. (v + ϵu)me
ru

v+ϵu X3 = [ru−m(v + ϵu)]∂u + [rv +mϵ(v + ϵu)]∂v,
X4 = 2mt∂t +mx∂x − u∂u − v∂v

14. ru
v+ϵu

+m ln(v + ϵu) X3 = [ru−m(v + ϵu)]∂u + [rv +mϵ(v + ϵu)]∂v,
X4 = mt∂x − u∂u − v∂v

15. ru
v+ϵu

+m(v + ϵu)n X3 = 2nt∂t + nx∂x − (n+ 1)u∂u + (nϵu− v)∂v,
X4 = rt∂x − (v + ϵu)∂u + ϵ(v + ϵu)∂v

16. ru
v+ϵu

+m ln(v+ϵu)
v+ϵu

X3 = 2rt∂t + rx∂x −m∂u + [(r(v + ϵu) +mϵ]∂v,
X4 = rt∂x − (v + ϵu)∂u + ϵ(v + ϵu)∂v

17. [(v + ϵu)2 + δ2u2]mer tan−1( v+ϵu
δu

) X3 = [rδu+ 2m(v + ϵu)]∂u − [2m(δ2 + ϵ2)u+ (2mϵ− rδ)v]∂v,
X4 = 4mt∂t + 2mx∂x − u∂u − v∂v

18. m tan−1 v+ϵu
δu

+ n ln[(v + ϵu)2 + δ2u2] X3 = [mδu+ 2n(v + ϵu)]∂u − [2n(δ2 + ϵ2)u+ (2nϵ−mδ)v]∂v,
X4 = 2nt∂x − u∂u − v∂v

19. ϕ(v + ϵu) X3 = ∂u − ϵ∂v,X4 = u∂u − ϵu∂v, X5 = v∂u − ϵv∂v
20. (v + ϵu)2 +m(v + δu) X3 = 4(ϵ− δ)t∂t + 2(ϵ− δ)x∂x + ((2δ − ϵ)u+ v)∂u

+((δ − 2ϵ)v − δϵu)∂v,
X4 = m(ϵ− δ)t∂x + ∂u − ϵ∂v,
X5 = (2(v + ϵu) +m)∂u − (2ϵ(v + ϵu) +mδ)∂v

21. u
v+ϵu

X3 = u∂u + v∂v, X4 = 2t∂t + x∂x + (v + ϵu)∂v,

X5 = 4ϵt∂t + (2ϵx− t)∂x + v∂u + ϵ2u∂v
22. (v + ϵu)n X3 = ∂u − ϵ∂v,X4 = u∂u − ϵu∂v, X5 = v∂u − ϵv∂v,

X6 = 2nt∂t + nx∂x − (v + ϵu)∂v
23. en(v+ϵu) X3 = ∂u − ϵ∂v,X4 = u∂u − ϵu∂v, X5 = v∂u − ϵv∂v,

X6 = 2nt∂t + nx∂x − ∂v
24. ln(v + ϵu) X3 = ∂u − ϵ∂v,X4 = u∂u − ϵu∂v, X5 = v∂u − ϵv∂v,

X6 = t∂x − (v + ϵu)∂v
25. v + ϵu X3 = 2t∂t + x∂x − u∂u − v∂v,

X4 = t2∂t + xt∂x − (ϵut+ vt+ x)∂v,
X5 = ϵt∂x − ∂u,X6 = t∂x − ∂v, X7 = v∂u − ϵv∂v,
X8 = u∂u − ϵu∂v, X9 = (ϵut+ vt+ x)∂u − ϵ(ϵut+ vt+ x)∂v

Here ϵ, δ, γ, n, m and r are arbitrary constants. In 1 - 7, m, n ̸= 0 and δ ̸= ϵ. In 8 - 10, n, γ ̸= 0. In 13 - 16

m, r ̸= 0. In 17, 18 δ ̸= 0. In 20 m ̸= 0 and δ ̸= ϵ.
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Note 6.2. We have used the equivalence transformations to simplify the forms of f(u, v) and

k(u, v). However in some cases, we have kept the form of these functions in order to verify

certain special cases. For example, system (6.5) with f(u, v) = k(u, v) = v + ϵu (entry 25 of

Table 6.3) can be mapped into the same system with f(u, v) = k(u, v) = v using the member of

the equivalence transformations

t 7→ t, x 7→ x, u 7→ u, v 7→ v − ϵu.

Similarly, we can use the above mapping for entries 1 - 7 (δ 7→ δ− ϵ), 12 - 24 to transform v+ ϵu

into v. In an inverse manner, we can use the inverse transformation to replace v by v + ϵu in

entries 8 - 11.

6.4 Examples of nonclassical reductions

Bluman and Cole introduced a new method for finding group-invariant solutions of partial

differential equations [9] which was called ”non-classical reduction”. Later, it was also called,

by different authors, conditional symmetries, Q-conditional symmetries and reduction operators

[27,29,54]. A precise and rigorous definition of nonclassical invariance was first formulated in [26]

where they generalized the Lie definition of invariance (see also [101]). The necessary definitions

and relevant statements on the theory of nonclassical reductions can be found in [95].

We search for non-classical reductions for the classes (6.4) and (6.5). Non-classical reductions

for the special case of (6.3) where f(u, v) = u and k(u, v) = v were obtained in [4,16]. We require

invariance of equation (6.4) in conjunction with its invariant surface conditions

τ(x, t, u, v)ut + ξ(x, t, u, v)ux = η(x, t, u, v),

τ(x, t, u, v)vt + ξ(x, t, u, v)vx = µ(x, t, u, v),

under the infinitesimal transformations generated by

Γ = τ(x, t, u, v)
∂

∂t
+ ξ(x, t, u, v)

∂

∂x
+ η(x, t, u, v)

∂

∂u
+ µ(x, t, u, v)

∂

∂v
.

The non-classical method for finding reductions leads to an over-determined nonlinear

system of partial differential equations for finding the forms of the coefficient functions

τ(x, t, u, v), ξ(x, t, u, v), η(x, t, u, v) and µ(x, t, u, v) while in the case of classical Lie method

the corresponding system consists of linear partial differential equations. Obviously, the deriva-

tion of non-classical reductions is not an easy task.
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For evolution equations there exist two principally different cases of finding the operator Γ,

τ ̸= 0 and τ = 0. In the present chapter, we consider the case with τ ̸= 0 and without loss

of generality we can assume that τ = 1. When τ = 0 (known as “no-go” case), we can take

without loss of generality ξ = 1.

We apply the second extension of the operator Γ to the system (6.4) and we eliminate the

derivatives uxx, vxx using the system and ut, vt from the invariant surface conditions. The result

is a polynomial in the variables ux, vx. The coefficients of various powers of these variables give

the following determining system

ξuu = ξvv = ξuv = 0,

ηuu − 2ξux + 2ξξu + 2ξuf + ϵ2uξv = 0,

µvv − 2ξvx + 2ξξv + 2ξvk + ϵ1vξu = 0,

ηvv + ϵ1vξv = 0,

µuu + ϵ2uξu = 0,

2ηuv − 2ξvx + 2ϵ1vξu + 2ξξv + ξvf + ξvk = 0,

2µuv − 2ξux + 2ϵ2uξv + 2ξξu + ξuf + ξuk = 0,

2ηux − ϵ2uηv + ϵ1vµu − 2ηξu − ξxx + 2ξξx + ξxf + ηfu + µfv + ξt = 0,

2µvx − ϵ1vµu + ϵ2uηv − 2µξv − ξxx + 2ξξx + ξxk + ηku + µkv + ξt = 0,

2ηvx − ϵ1vηu + ϵ1vµv + ηvf − ηvk − 2ηξv + ϵ1vξx + ϵ1µ = 0,

2µux − ϵ2uµv + ϵ2uηu + µuk − µuf − 2µξu + ϵ2uξx + ϵ2η = 0,

ηt − ηxx − ηxf − ϵ1vµx + 2ηξx = 0,

µt − µxx − µxk − ϵ2uηx + 2µξx = 0.

The solution of the determining system provides the forms of the functions f(u, v), k(u, v) and

also the forms of the coefficient functions ξ(x, t, u, v), η(x, t, u, v), µ(x, t, u, v). We point out

that every Lie symmetry generator is also a non-classical generator. Hence, our task is to

find reductions that are not equivalent to Lie symmetry reductions. For the system (6.5) the

corresponding determining system coincides with the above with ϵ1 = ϵ2 = 0.

Here we present two examples of nonclassical reductions and the complete classification will

be considered in a separate work. The system

ut = uxx − ϵ1
v2

u
ux + ϵ1vvx, vt = vxx − ϵ2

u2

v
vx + ϵ2uux,
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admits the nonclassical generator

X = ∂t −
3

x
∂x −

3u

x2
∂u −

3v

x2
∂v,

which produces the similarity mapping

u = xϕ(ζ), v = xψ(ζ), ζ = x2 + 6t,

that transforms the system into the system of ordinary differential equations

2ϕϕ′′ − ϵ1ψ
2ϕ′ + ϵ1ϕψψ

′ = 0, 2ψψ′′ − ϵ2ϕ
2ψ′ + ϵ2ϕψϕ

′ = 0.

This example is analogue to the one presented in [4].

The system

ut = uxx + (v + ϵu)ux, vt = vxx + (v + ϵu)vx,

admits the nonclassical generator

X = ∂t − (v + ϵu)∂x.

As we have seen earlier, the above system with ϵ ̸= 0 is equivalent to the system with ϵ = 0. In

the case ϵ = 0, we have the implicit similarity reduction

u = ϕ(ζ), v = ψ(ζ), ζ = tv + x,

that reduces the system into the simple linear system

ϕ′′ = 0, ψ′′ = 0,

which gives the solutions

u =
c3x+ (c2c3 − c1c4)t+ c4

1− c1t
, v =

c1x+ c2
1− c1t

.

6.5 A linearizing Burgers system

It is well known that the Hopf-Cole transformation connects Burgers equation with the linear

heat equation. In references [4, 29] the following Hopf-Cole-type mapping appears

u′ =
ux
u
, v′ = vx −

ux
u
v,

which maps the nonlinear system

u′t′ = u′x′x′ + 2u′u′x′ , v′t′ = v′x′x′ + 2v′u′x′ ,
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into the linear system

ut = uxx, vt = vxx. (6.51)

Here we present a similar example for the general class (6.5). In particular, the nonlinear system

u′t′ = u′x′x′ + u′u′x′ , v′t′ = v′x′x′ + u′v′x′ ,

(which admits 9 Lie symmetries) is connected with the linear system (6.51) under the Hopf-

Cole-type mapping

u′ =
2ux
u
, v′ =

v

u
. (6.52)

The idea for deriving such linearizing mappings for general classes of Burgers-type systems, as

for diffusion-type systems [44,87,88], will be considered in a separate work in the near future.
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Chapter 7

Symmetry analysis of

two-dimensional Burgers system

7.1 Introduction

In the last decades a lot of attention has been paid to study the various forms of Burgers

equations [82]. If we ignore the pressure gradient terms from the incompressible Navier-Stokes

equations, we obtain the nonlinear system

ut + uux + vuy −
1

Re
(uxx + uyy) = 0,

vt + uvx + vvy −
1

Re
(vxx + vyy) = 0

(7.1)

which is known as the two-dimensional Burgers system, where Re is the Reynolds number.

We point out that the solution of the system (7.1) will not, necessarily, satisfy the continuity

equation. The system (7.1) has been considered, for example, in [34,83] where certain underlying

geometric and group theoretical properties were discussed.

It is well known that the Hopf-Cole transformation relates the Burgers equation and the

linear heat equation [18, 35]. This transformation can be generalized for multi-dimensional

equations [3, 18]. In two dimensions the generalization of Hopf-Cole transformation is

u = − 2

Re

ϕx
ϕ
, v = − 2

Re

ϕy
ϕ
.

which relates the system (7.1) with the additional constraint uy = vx and the system

ϕt − ϕxx − ϕyy = 0.

Solutions of this linear equation provide solutions of system (7.1) with the use of the Hopf-Cole

transformation.
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Transformation properties of evolution equations and systems have been widely studied be-

cause of the many practical benefits that such knowledge provides and also because of the variety

of physical applications for which these equations are model equations. The knowledge of the

Lie group of point symmetries is particularly useful in the study of a partial differential equa-

tion. While there is no existing general theory for solving nonlinear PDEs, these methods have

proved to be very powerful. The Lie group analysis of system (7.1) has been studied by various

authors [1, 25, 91]. Although the derivation of Lie symmetries is accurate, the analysis on re-

ductions of the system (7.1) is incomplete. For example, in [25] an optimal system is presented

where two Lie symmetries admitted by the system are missing.

We present the complete list of similarity reductions. This goal can be achieved by construct-

ing the optimal system either of one or two-dimensional subalgebras of its Lie symmetry algebra.

The optimal system of two-dimensional subalgebras enables us to reduce the system (7.1) directly

to system of ordinary differential equations. The optimal system of one-dimensional subalgebras

leads to reductions where the reduced systems consist of PDEs in two independent variables.

Then, we derive the Lie symmetries for each reduced system and consequently we construct

the corresponding optimal system which is used to have the second reduction. Although the

second approach involves of more calculations, it has the advantage of unfolding possible missing

(hidden) symmetries.

The results of the present chapter, appear in [51].

7.2 Lie invariance algebra and complete point symmetry group

The classical approach for deriving Lie symmetries is well known and established, see for example

in references [13,68,72]. Firstly, we note that the point transformation

x′ =
x√
Re
, y′ =

y√
Re
, t′ = t, u′ =

u√
Re
, v′ =

v√
Re
,

maps (7.1) into

ut + uux + vuy − (uxx + uyy) = 0,

vt + uvx + vvy − (vxx + vyy) = 0.
(7.2)

Therefore, without loss of generality we can take Re = 1.

The Lie symmetry algebra of the system (7.2) can be found in [1, 25, 91]. The maximal Lie

invariance algebra of the Burgers system is the so-called reduced (i.e., centerless) special Galilei

algebra [28] with space dimension two

Amax = ⟨X1, X2, X3, X4, X5, X6, X7, X8⟩,
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where

X1 = ∂t, X2 = 2t∂t + x∂x + y∂y − u∂u − v∂v,

X3 = t2∂t + tx∂x + ty∂y + (x− tu)∂u + (y − tv)∂v, X4 = x∂y − y∂x + u∂v − v∂u,

X5 = ∂x, X6 = ∂y, X7 = t∂x + ∂u, X8 = t∂y + ∂v.

The commutation relations of Amax and the adjoint actions for the Lie algebra of the system

(7.2), are given in Tables 7.1 and 7.2, respectively.

Table 7.1: Commutation relations of Amax of the system (7.2)

X1 X2 X3 X4 X5 X6 X7 X8

X1 0 2X1 X2 0 0 0 X5 X6

X2 −2X1 0 2X3 0 −X5 −X6 X7 X8

X3 −X2 −2X3 0 0 −X7 −X8 0 0

X4 0 0 0 0 −X6 X5 −X8 X7

X5 0 X5 X7 X6 0 0 0 0

X6 0 X6 X8 −X5 0 0 0 0

X7 −X5 −X7 0 X8 0 0 0 0

X8 −X6 −X8 0 −X7 0 0 0 0
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7.3 Subalgebras of Lie invariance algebra

The classification of subalgebras of Galilei algebras was considered in a number of papers, see

[5, 6, 28] and references therein. We have listed inequivalent subalgebras of Amax from the very

beginning and compare the obtained list with the list presented in [28].

We classify subalgebras of the algebra Amax, up to the equivalence relation generated by the

induced adjoint action of the point symmetry group G of the Burgers system on Amax. One-

dimensional inequivalent subalgebras: In the case when the Lie algebra is solvable, we need to

start with the general element of Lie symmetry algebra,

X = a1X1 + a2X2 + a3X3 + a4X4 + a5X5 + a6X6 + a7X7 + a8X8.

From Table 7.1 we conclude that the Lie algebra is not solvable, so we cannot make use of the

above procedure. In our case we use the Levi decomposition of the specific algebra.

Amax = ⟨X1, X2, X3⟩ ∈ ⟨X4, X5, X6, X7, X8⟩,

where the subalgebra

⟨X1, X2, X3⟩

is called the Levi factor of Amax and the subalgebra

⟨X4, X5, X6, X7, X8⟩

is a radical of Amax.

From [68] we find that the optimal system of the Levi factor is

{0}, {X1}, {X2}, {X1 +X3}.

For each element we add the tail

a4X4 + a5X5 + a6X6 + a7X7 + a8X8

and we use the table with the adjoint actions 7.2 to construct the desired optimal system. We

obtain the following independent elements: In the case of {X1} we obtain Amax 1.1
κ , Amax 1.2.

The second element leads to Amax 1.3
κ . The element {X1 + X3} provides us with the results

Amax 1.4
κ , Amax 1.5

µ . Finally, the element {0} gives Amax 1.6, Amax 1.7, Amax 1.8. Below, we

list all the derived elements after the application of the adjoint actions.

Amax 1.1
κ = ⟨X1 + κX4⟩κ∈{0,1}, Amax 1.2 = ⟨X1 +X8⟩, Amax 1.3

κ = ⟨X2 + 2κX4⟩κ>0,

Amax 1.4
κ = ⟨X1 +X3 + κX4⟩κ>0, Amax 1.5

µ = ⟨X1 +X3 +X4 + µ(X7 −X6)⟩µ>0,

Amax 1.6 = ⟨X4⟩, Amax 1.7 = ⟨X7 −X6⟩, Amax 1.8 = ⟨X6⟩.
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Two-dimensional inequivalent subalgebras consist of the following: [79]

Amax 2.1
κ = ⟨X1, X2 + κX4⟩κ>0, Amax 2.2 = ⟨X1, X4⟩, Amax 2.3 = ⟨X2, X4⟩,

Amax 2.4 = ⟨X1 +X3, X4⟩, Amax 2.5
µ = ⟨X1 +X3 +X4 + µ(X8 +X5), X7 −X6⟩µ>0,

Amax 2.6
µ = ⟨X7 −X6, X8 + µX5⟩µ>0,

Amax 2.7
µν = ⟨X6, X1 + µX7 + νX8⟩µ,ν>0, µ2+ν2∈{0,1},

Amax 2.8 = ⟨X6, X2⟩, Amax 2.9 = ⟨X6, X5⟩, Amax 2.10 = ⟨X6, X8⟩,

Amax 2.11
µ = ⟨X6, X7 + µX8⟩µ>0, Amax 2.12 = ⟨X6, X8 +X5⟩.

The two-dimensional subalgebras can be used to reduce the initial system (7.2), directly to

systems of ODEs. In the case of one-dimensional subalgebras, the system (7.2), is reduced to a

system of PDEs in two independent variables. The next step is to determine the Lie symmetries

of the reduced systems, which lead to similarity reductions that transform these systems to

systems of ODEs. Clearly, the second choice is lengthier. However, in this way it is possible

to unfold missing symmetries of the reduced systems of PDEs. The definition and theory of

missing symmetries can be found, for example, in [13].

7.4 Lie reductions of codimension one

Ansatzes constructed with one-dimensional subalgebras of Amax reduce the system (7.2) to

systems of two partial differential equations in two independent variables. This can be achieved,

by solving the appropriate invariant surface conditions

τ(x, y, t, u, v)ut + ξx(x, y, t, u, v)ux + ξy(x, y, t, u, v)uy = η(x, y, t, u, v),

τ(x, y, t, u, v)vt + ξx(x, y, t, u, v)vx + ξy(x, y, t, u, v)vy = µ(x, y, t, u, v),

which correspond to the symmetry generator

Γ = τ
∂

∂t
+ ξx

∂

∂x
+ ξy

∂

∂y
+ η

∂

∂u
+ µ

∂

∂v
.

Below, for each of the one-dimensional subalgebras listed in the previous section, we present an

ansatz constructed for (u, v) with this subalgebra and the corresponding reduced system. Here

ϕ = ϕ (ξ, η) , ψ = ψ (ξ, η) ,

are new unknown functions of the invariant independent variables (ξ, η).
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1.1. Amax 1.1
κ = ⟨X1 + κX4⟩κ∈{0,1}:

u = ϕ cos τ − ψ sin τ − κy,

v = ϕ sin τ + ψ cos τ + κx,

where ξ = x cos τ + y sin τ , η = −x sin τ + y cos τ , τ := κt;

ϕϕξ + ψϕη − ϕξξ − ϕηη − 2κψ − κξ = 0,

ϕψξ + ψψη − ψξξ − ψηη + 2κϕ− κη = 0.

1.2. Amax 1.2 = ⟨X1 +X8⟩: u = ϕ, v = ψ + t, where ξ = x, η = y − t2

2
;

ϕϕξ + ψϕη − ϕξξ − ϕηη = 0,

ϕψξ + ψψη − ψξξ − ψηη + 1 = 0.

1.3. Amax 1.3
κ = ⟨X2 + 2κX4⟩κ>0:

u =
1√
|t|

(ϕ cos τ − ψ sin τ) +
x

2t
− κ

y

t
,

v =
1√
|t|

(ϕ sin τ + ψ cos τ) +
y

2t
+ κ

x

t
,

where ξ =
1√
|t|

(x cos τ + y sin τ), η =
1√
|t|

(−x sin τ + y cos τ), τ := κ ln |t|;

ϕϕξ + ψϕη − ϕξξ − ϕηη − 2κ̂ψ −
(
κ2 +

1

4

)
ξ = 0,

ϕψξ + ψψη − ψξξ − ψηη + 2κ̂ϕ−
(
κ2 +

1

4

)
η = 0, (κ̂ := κ sgn t).

1.4. Amax 1.4
κ = ⟨X1 +X3 + κX4⟩κ>0:

u =
1√
t2 + 1

(ϕ cos τ − ψ sin τ) +
tx

t2 + 1
− κy

t2 + 1
,

v =
1√
t2 + 1

(ϕ sin τ + ψ cos τ) +
ty

t2 + 1
+

κx

t2 + 1
,

where ξ =
1√
t2 + 1

(x cos τ + y sin τ), η =
1√
t2 + 1

(−x sin τ + y cos τ), τ := κ tan−1 t;

ϕϕξ + ψϕη − ϕξξ − ϕηη − 2κψ + (1− κ2)ξ = 0,

ϕψξ + ψψη − ψξξ − ψηη + 2κϕ+ (1− κ2)η = 0.
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1.5. Amax 1.5
µ = ⟨X1 +X3 +X4 + µ(X7 −X6)⟩µ>0:

u =
tϕ+ ψ

t2 + 1
+
t(x+ µ)

t2 + 1
− y

t2 + 1
,

v =
−ϕ+ tψ

t2 + 1
+

ty

t2 + 1
+
x− µ

t2 + 1
,

where ξ =
tx− y

t2 + 1
− µ tan−1 t, η =

x+ ty

t2 + 1
;

ϕϕξ + ψϕη − ϕξξ − ϕηη − 2ψ = 0,

ϕψξ + ψψη − ψξξ − ψηη + 2ϕ+ 2µ = 0.

1.6. Amax 1.6 = ⟨X4⟩: u =
x

r
ϕ− y

r
ψ +

x

r2
, v =

y

r
ϕ+

x

r
ψ +

y

r2
,

where ξ = t, η = r :=
√
x2 + y2;

ϕξ + ϕϕη − ϕηη −
ψ2

η
− 1

η3
= 0,

ψξ + ϕψη − ψηη +
ϕψ

η
+ 2

ψ

η2
= 0.

1.7. Amax 1.7 = ⟨X7 −X6⟩: u =
ϕ− tψ + tx− y

t2 + 1
, v =

tϕ+ ψ + x+ ty

t2 + 1
,

where ξ = tan−1 t, η =
x+ ty

t2 + 1
;

ϕξ + ϕϕη − ϕηη − 2ψ = 0,

ψξ + ϕψη − ψηη + 2ϕ = 0.

1.8. Amax 1.8 = ⟨X6⟩: u = ϕ, v = ψ, where ξ = t, η = x;

ϕξ + ϕϕη − ϕηη = 0,

ψξ + ϕψη − ψηη = 0.

The linearizing mapping for this reduced system is given by the Hopf-Cole-type transformation

ϕ = −2
Ax
A
, ψ =

B

A
,

where the functions A and B satisfy the linear heat equation

αt − αxx = 0.

In the next section, we classify the Lie symmetries of the above eight reduced systems.

83

STAVROS KONTOGIO
RGIS



7.5 Lie symmetries of reduced systems of PDEs

We have selected ansatzes in such a way that the reduced systems are quite simple and can

be grouped into two sets depending on their structure, which is convenient for studying their

symmetries and finding exact solutions.

We note that the reduced systems 1.1 - 1.5 are of the general form

ϕϕξ + ψϕη − ϕξξ − ϕηη − 2κψ + αξ = 0,

ϕψξ + ψψη − ψξξ − ψηη + 2κϕ+ αη + β = 0,

where κ, α and β are constants with αβ = 0. We investigate the group classification of the

above system. We find that, depending on the values of these parameters, a system of the above

form admits the following maximal Lie invariance algebra B:

α ̸= 0, β = 0: B = ⟨Y3⟩,

α = 0, β ̸= 0: B = ⟨Y1, Y2⟩,

α = β = 0, κ ̸= 0: B = ⟨Y1, Y2, Y3⟩,

α = β = κ = 0: B = ⟨Y1, Y2, Y3, Y4⟩,

where

Y1 = ∂ξ, Y2 = ∂η, Y3 = ξ∂η − η∂ξ + ϕ∂ψ − ψ∂ϕ,

Y4 = ξ∂ξ + η∂η − ϕ∂ϕ − ψ∂ψ.

As a result, the maximal Lie invariance algebras of reduced systems 1.1 - 1.5 are respectively

B1 = ⟨Y3⟩ if κ = 1 and B1 = ⟨Y1, Y2, Y3, Y4⟩ if κ = 0,

B2 = ⟨Y1, Y2⟩, B3 = ⟨Y3⟩,

B4 = ⟨Y3⟩ if κ ̸= 1 and B4 = ⟨Y1, Y2, Y3⟩ if κ = 1,

B5 = ⟨Y1, Y2⟩.

The other three reduced systems are of the form

ϕξ + ϕϕη − ϕηη + F (ξ, η, ϕ, ψ) = 0,

ψξ + ϕψη − ψηη +G (ξ, η, ϕ, ψ) = 0,

where the parameter-functions F = F (ξ, η, ϕ, ψ) , G = G (ξ, η, ϕ, ψ) are at most quadratic in

(ϕ, ψ). The maximal Lie invariance algebras of the reduced systems 1.6 - 1.8 have the following
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structure:

B6 = ⟨∂ξ, 2ξ∂ξ + η∂η − ϕ∂ϕ − ψ∂ψ,

ξ2∂ξ + ξη∂η + (η − ξϕ)∂ϕ − ξψ∂ψ⟩,

B7 = ⟨∂ξ, ∂η, cos(2ξ)∂η − 2 sin(2ξ)∂ϕ − 2 cos(2ξ)∂ψ,

sin(2ξ)∂η + 2 cos(2ξ)∂ϕ − 2 sin(2ξ)∂ψ⟩,

B8 = ⟨∂ξ, 2ξ∂ξ + η∂η − ϕ∂ϕ − ψ∂ψ, ξ
2∂ξ + ξη∂η + (η − ξϕ)∂ϕ,

∂η, ξ∂η + ∂ϕ, ∂ψ, ϕ∂ψ, (η − ξϕ)∂ψ, ψ∂ψ⟩.

The question which arises is whether the reduced systems, which correspond to cases

Amax 1.1
κ − Amax 1.8, admit hidden (missing) symmetries. The investigation showed that only

the linearizable case Amax 1.8, admits hidden symmetries. Since cases Amax 1.1
κ − Amax 1.7 do

not admit hidden symmetries, we use two-dimensional subalgebras to reduce the system (7.2),

to systems of ODEs. This analysis is carried out in the next section.

7.6 Lie reductions of codimension two

Since the reduced system constructed with the subalgebra Amax 1.8 = ⟨X6⟩ is linearizable, a two-

dimensional subalgebra of Amax is significant for use in the course of reducing of the system (7.2)

only if it does not contain the vector field X6 or, more generally, a vector field equivalent to X6.

Therefore, only the subalgebras Amax 2.1
κ –Amax 2.6

µ are significant for Lie reduction among the

listed two-dimensional inequivalent subalgebras. Below, for each of these subalgebras, we present

an ansatz constructed for (u, v) and the corresponding reduced system. Here ϕ = ϕ(ξ), ψ = ψ(ξ),

are new unknown functions of the invariant independent variable ξ, and r :=
√
x2 + y2.

2.1. Amax 2.1
κ = ⟨X1, X2 + κX4⟩κ>0:

u =
x

r2
ϕ− y

r2
ψ, v =

y

r2
ϕ+

x

r2
ψ, where ξ = tan−1 y

x
− κ ln r;

(ψ − κϕ− 2κ)ϕ′ − (κ2 + 1)ϕ′′ + 2ψ′ − ϕ2 − ψ2 = 0,

(ψ − κϕ− 2κ)ψ′ − (κ2 + 1)ψ′′ − 2ϕ′ = 0.

2.2. Amax 2.2 = ⟨X1, X4⟩:

u =
xϕ− yψ

r
+
x

r2
, v =

yϕ+ xψ

r
+

y

r2
, where ξ = r;

ϕϕ′ − ϕ′′ − ψ2

ξ
− 1

ξ3
= 0,

ϕψ′ − ψ′′ +
ϕψ

ξ
+ 2

ψ

ξ2
= 0.
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2.3. Amax 2.3 = ⟨X2, X4⟩:

u =
xϕ− yψ

r
√

|t|
+
x

r2
+
x

2t
, v =

yϕ+ xψ

r
√

|t|
+

y

r2
+
y

2t
, where ξ =

r√
|t|

;

ϕϕ′ − ϕ′′ − ψ2

ξ
− 1

ξ3
− ξ

4
= 0,

ϕψ′ − ψ′′ +
ϕψ

ξ
+ 2

ψ

ξ2
= 0.

2.4. Amax 2.4 = ⟨X1 +X3, X4⟩:

u =
xϕ− yψ

r
√
t2 + 1

+
x

r2
+

tx

t2 + 1
, v =

yϕ+ xψ

r
√
t2 + 1

+
y

r2
+

ty

t2 + 1
, where ξ =

r√
t2 + 1

;

ϕϕ′ − ϕ′′ − ψ2

ξ
− 1

ξ3
+ ξ = 0,

ϕψ′ − ψ′′ +
ϕψ

ξ
+ 2

ψ

ξ2
= 0.

2.5. Amax 2.5
µ = ⟨X1 +X3 +X4 + µ(X8 +X5), X7 −X6⟩µ>0:

u =
ϕ− tψ + tx− y + µ

t2 + 1
, v =

tϕ+ ψ + x+ ty + µt

t2 + 1
,

where ξ =
x+ ty

t2 + 1
− µ tan−1 t;

ϕϕ′ − ϕ′′ − 2ψ = 0,

ϕψ′ − ψ′′ + 2ϕ+ 2µ = 0.

2.6. Amax 2.6
µ = ⟨X7 −X6), X8 + µX5⟩µ>0:

u =
tϕ− µψ + tx− µy

t2 + µ
, v =

ϕ+ tψ + x+ ty

t2 + µ
, where ξ = t;

ϕ′ = 0, ψ′ = 0.

The maximal Lie invariance algebras of the above systems of ODEs are the following:

2.1. ⟨∂ξ⟩; 2.2. ⟨ξ∂ξ − ϕ∂ϕ − ψ∂ψ⟩; 2.3. {0}; 2.4. {0}; 2.5. ⟨∂ξ⟩;

2.6. ⟨α(ξ, ϕ, ψ)∂ξ + β(ϕ, ψ)∂ϕ + γ(ϕ, ψ)∂ψ⟩,

where α, β and γ run through the sets of smooth functions of their arguments.

Therefore, all Lie symmetries of the significant reduced systems of ODEs are induced by

Lie symmetries of the original system (7.2), and thus they should not be used for the further

reductions to systems of algebraic equations.
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Chapter 8

Further study

The main purpose of the present thesis was to establish a-priori restrictions on the form of the

coefficient functions of the symmetry generator (4.3), in order to avoid difficult and complicated

calculations when group classification is needed. This problem becomes more risky, using sym-

bolic manipulation packets, especially when arbitrary elements appear in the system of PDEs

under consideration. This goal was achieved with the theorems proved in Chapter 4. The moti-

vation of this work came from the papers of Tu [93] and Bluman [12]. Such restrictions obtained

where applied in Chapters 5 and 6, to simplify the procedure of group classification of systems

(5.2) and (6.4-6.5), respectively.

In this final chapter of the thesis, we list some open problems that need to be considered in

the future.

The first problem which needs further investigation is whether Theorem 4.1 admits a gen-

eralization in the case when the number of PDEs of the system under consideration and the

number of the dependent variables are equal. That is, if the Jacobian matrix which corresponds

to the derivatives of the right-hand sides of the PDEs with respect to the highest order spatial

derivatives of the dependent variables, is not a nilpotent matrix of degree two, then τ = τ(t).

We would also like to deal with a system in which the above condition is biased. We are

planning to examine a system of two PDEs with two independent and two dependent variables,

where both the trace and the determinant of the aforementioned Jacobian matrix vanish. An

interesting example of such a system is

ut = [(u+ cv)nux + c(u+ cv)nvx]x , vt = −
[
1

c
(u+ cv)nux + (u+ cv)nvx

]
x

,

where c is nonzero constant. This is a member of the general class

ut = [f(u, v)ux + h(u, v)vx]x , vt = [k(u, v)ux + g(u, v)vx]x ,
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and admits the Lie symmetry

X = ϕ(u+ cv)∂t,

where ϕ is an arbitrary function of u + cv. This is an example of system of PDEs where the

coefficient function τ depends not only on t.

We, furthermore, would like to take into account systems (5.1) and (6.3). Such systems

are generalizations of systems (5.2) and (6.4)-(6.5), respectively, that were investigated in two

separate chapters in the thesis. The Group classification will be carried out in future papers.

Moreover, the classification of potential symmetries will be investigated. For example, system

ut = uxx + 2uux, vt = vxx + 2uvx + 2vux, (8.1)

which is a member of class (6.3), can be written as a system of four equations,

wx = u, wt = u2 + ux, zx = v, zt = 2uv + vx,

by introducing the potential variables w and z. This system admits 9 Lie symmetries and 2

infinite-dimensional symmetries. Eight symmetries project into Lie symmetries of the original

system and the remaining symmetry

X9 = v∂u − 2vz∂v + z∂w − z2∂z

and the two infinite-dimensional symmetries

Xα = (αx − αu)e−w∂u − [(αx − αu)z + αv]e−w∂v + αe−w∂w − αze−w∂z,

Xβ = (βx − βu)e−w∂v + βe−w∂z,

where α(x, t) and β(x, t) are solutions of the linear heat equation.

Motivated by the Hopf-Cole transformation, we can derive similar mappings for the general

system (6.3). An example of such a transformation is

u =
ϕx
ϕ

= (lnϕ)x, v =
ϕxψ − ϕψx

ϕ2
= −

(
ψ

ϕ

)
x

,

which maps the system (8.1) into the linear system

ϕt = ϕxx, ψt = ψxx.

Some other interesting open problems that need lengthier investigation contain equivalence

transformations of systems of two diffusion equations with two independent and two dependent

variables. Our aim is to prove that the point transformation which corresponds to t′ depends

only on t.

Finally, regarding Chapter 7, we search for exact solutions of the reduced systems of ODEs.
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