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[lepiAnyn

H mp60odog mov mapatnpeiton o TeAevtoia XpoOvia 6TV TeXvoloyio
Katookevng eotofodtaikwv (PB) TAaiciowv eixe wg amotéAecpa tnv
Topoywyn ToAd amodotikwv B texvoloylmv, yeyovog mov cuveiopepe
ApPKETA 0T HelwoT) TOL GTABULOPEVOL KOGTOVG NAEKTPLKNG EVEPYELOS
(Levelized Cost of Electricity - LCOE) Aoyw tng acv€npévng {tnong yio tnv
texvoloyia. Avo Pacucol tapayovteg mov B avEneovv n {rtnon ko fa
petdoovv to LCOE akopn mapoamdve eivor: 1) avamtuén Tov Topéa
Aertovpyiog kot cvvtripnong (Operations & Maintenance - O&M) dote va
eEaopolileton 1) BéATIoTN Aettovpyia Twv OB eykataotdoewy, Kot 2)
akpLPg eKTIUNOT TOL YVOOTOV QoVopéVoL TG LIToPabdpLong Tng amddoong
KoL 1) oUykpLon tov pubpov g vtoPfabpLong pe TNV eyyvNGN TOL TPOCPEPEL
o kataokevaotng twv OB mAaisiov. Kot ot dvo avtol mapdyovteg
npovmofétovy evepyn mapakorovdnon kat eonteio Twv OB
EYKOATOOTACEWV, AVAALOT] TV HETPHOEWDV TTOL KATAYPAPOVTOL OO TO
oVOTNHA ToPokoAoVON oG Ko eKTiENOT TOL PLOROD TNG PAKPOYPOVLKGS
vrtoPabpiong péoao 6To SIAGTNHA TNG GTATLOTIKTG ERmioToovvnG. H
avaAvon auth Oo emLTPEPEL He TN CELPA TNG TOV TPOYPAPUATIOHO dPATEWV
ylot GEPALVOT) TV CUTLOV TNG XOUNATG arrdd00nG Kol EAXYLETOTOLNGT) TNG
xopévng evépyerag. H akpiPrg extipnon tov pubpot g vtofdduiong o
emTpéYel emiong tnv akplPr) tpodPAeym tng evepyelakng amddoong tng PB
eykatdotoong kab’ 0An tn didpketa tng (wng tov PB tAaiciov. Me avtd
oV TPOTO, Bt LITAPYEL ) SLVATOTNTO AVADEDPTONG TWV EYYLIGEWV TTOV
TOPEXOVTOL OTTO TOVG KATACKEVAOTEG ETGL MOTE VO TTALPEYETAL TTLO ALLG TN PN
EYYONOT], YLO TTEPALTEP® HELWOT) TOV eTEVOVTIKOD PLOKOV KO TTEPOLTEPW
abENCT) NG ERTTLETOGVVNG TTPOG TNV TEXVOAOYLA.

H dratpipny avtn meprypagel tnv avamrtugn pog yevikevpévng peboroyiog
avalvong dedopévav 1) ool 6TNpLleTal 68 CTATIOTIKY AVAALOT) YLot TNV
eKTiUNo™ Tov pLOpPOL NG LITOPAOHLENG KATW ATTO TPAYHATIKEG GLVONKEG
AeLTovpylog, XPNOLHOTOLOVTAS TPAYHATIKESG HETPTIoELS oo évreka OB
OLOTARAT SLLPOPWV TEXVOAOYLMOV, Tat 0ol lval St Lvdedepéva 6TO
diktvo. Ta cvoTripata aLTE eykaTaoTAONKOVY KoL AeLToLPYODV Ao TOV
Iovvio 2006 6To YOpo dokipwv Tov Epyactnpiov ®B Teyvoloyiag Tov
[Movemotnpiov Kdmpov. H peBodoroyia mov avantoxOnke, oxedidotnke yio
vo Topéxel akpLpn kat epwaotn eKTipnon tov puBpov g voPabponc,
xwpig va xperdleton emifAeyn. Emiong, oxedidotnke yia epoppoyn oe
epmopikd OB cvotipata 6o oL duvatodTnteg ot aoONTHPES Kol CLGTHHATA
kotoypopng dedopévwv eivon epropiopéveg Aoyw kdéotoug. Etot, ot
eAAYLOTEG UTALTHOELS Yio TNV epappoyn Tng peBodoroyiag eivar akpiPeig
HETPTOELG TNG LoXVOG TTOL TapayeTat artd To PB cvotnpa ko akpiPng
HETPNOT TNG NALAKNG akTIvoBoAiag.

H peBodoroyia éxel 6td)0 v Tpoopépel pia mlavr) Abon oe Técoepa KOpLo
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npofAfpata oTov Topéa NG vtoPaduiong twv PB: 1) otnv aloAdynon Twv
TPWTOYEVOV HETPHCEWV KOL T1 SMHLOLPYLA TOV OaVIKOD GUVOAOL TwV
HETPNOEWV YL TEPALTEPW ALVAAVGT), 2) GTNV QVIXVELCT] TEPLOTATIKOV )
BérTiotng amddoong ko a€loAoynomn NG enidpoong TOLG GTOV EKTIUNHEVO
pLOpO NG LTOPABLONC, 3) OTNV AVAAVGCT) XPOVOCELPOV TNG XITOIO0NG Kot
EKTIUNGT) TNG YPOHULIKTG 1) 1T YPOHMULIKNG TAoNG Yo vitofddpion, kat 4) tnv
aAVTIKATAO T TV edikodVv (ad hoc) peBodoroyldv pe oTatioTikd KpLTHpL
yuo peiwon g pepoAnyiog (bias), avtopartomoinon tng dradikaciog ko
yevikevon tng mpotevopevng pebodoroyiac. T va yiver avto, avarttoyOnice
HLo TTPOYPOpPaTIOTIKT) peBodoAoyio mov aurotedeiton outd empépoug
Aertovpyieg yio aELOAOYNOT) TV HETPHICEWV, aviYvevon un PEATIOTNG
amrdS00NG KL HETPLAGHOD TNG ETLOPACTG TG KAl HOVTEAOTTOLNGT) TOL PLOPOD
g voPadponc. Eniong, afloloynOnke to vmoloylotikd K66TOG TNG
epappoyng tng pebodoroyiog kar e€epevviOnkav tpomoL yia T pelwot) Tov.
EmutAéov, mpaypatomotOnkoy exTeToUpHEVES TTELPOHATIKEG HEAETES YLOL TNV
eKTipnon tov pvbpov g vToPfabpiong Twv B TAociwy VO
TOPOKOAOUON G, KATW artd TpdTLTeg oLVONKeg dokiprg (Standard Test
Conditions - STC). Ot peAéteg de€nxOnoav oe mepPdArov epyaotnpiov,
dNAadn ektodG TOL TOTOUL eykatdoTaong Twv PB mAouciwv (ex situ),
xpnoomoldvtog e€etdikevpévo e€omAlopod akpifeiog (nAtocog
TPOGOROLWTNG, SLaTa&n NAekTpoPwTavyelag, didtan vépudpng
Oeppoypapiag) yix pétpnon g Loxvog Twv mthauciov oe STC kot
HN-KOTOGTPOPLKO XOPAKTNPLORO TNG mototntog TV B kuélwy. Katd
oLVOALKT) SLaPKELX TV SOKLHDV TTOL TEPLYPAPOVTaL 0T dtaTpLPr) auti), 1)
TOLOTN T TWV PETPNOEWV eEATPAALLOTAV PECW LVNAGoung Pfabpovopnong
KOl TTEPLOSLKDV EAEYY V.

SV nepintwon Tov dokipwv ot STC, ta amoteAéopata HTay L0
LxvnAdoipo kot akpLPr] oo Toe ToTEAEGHATA TNG AVAALOTIG TV
eEWTEPLKOV HETPTOEWV, OTTWG NTAV OVOHEVOUEVO. ATO TNV GAAN, oL doKIpég
oe meplPAAAOV epYOTTNPLOL ATTALTODOOV OPKETT] XELPOVAKTLKY epyaoio Kol
TPOOoWPLVT] SLKOTY TNG Kaevovikig Aettovpyiag twv PB cvotnudtwv. Etot,
WG ATTOTEAEGHA TOV XELPLOHOD Twv PB mAaisivv katd tnv aneykatdotaot,
T HETALPOPX GTO EPYACTHPLO KL TNV ETAVEYKATAGTAOT), O KIvdLuvog yix
npoKkAnon (g ntav peydhog. Ta amotedéopata amd Tig dokipég oe STC
xpnoomoOnkoy wg onpelo ava@opdg yioe afloAdYnon TNG eYKLPOTNTOG
g peBodoroyiog avalvong dedopévwv mov avamtoxOnke. Me tov TpodTo
avTo, cuykpiBnke n addocn K&Tw ad TpaypaTiKéG cLVONKEG AetTovpyiog
e TNV ar6d00m KAT® atd TpOTLTEG GLVONKEG SOKIUNG, ATOTEAEGHA TTOAD
ONHVTIKO Yl ToV Topén TV PB, kabag vdpyovv eAdylota mapadelypoto
ot PipAoypagio pe pokpomrpdBeopeg cuykpLtikég peAéteg otd dudpopeg OB
TeXVOAOYLES.



Abstract

Recent advances in photovoltaic (PV) module manufacturing have resulted in
the production of highly efficient cells and modules and the significant reduc-
tion of the levelized cost of electricity (LCOE) due to the increased demand
for the technology. Two key factors that will increase the demand and re-
duce the LCOE even further are: 1) improving operations and maintenance
(O&M) to ensure the optimal operation of deployed PV plants, and 2) accu-
rately estimating the well-known effect of gradual performance degradation
and guaranteeing their lifetime energy yield. Both of these key factors require
active monitoring and supervision of the deployed PV plants, analysis of field
measurement data for estimation of the long-term degradation rate, Rp with
statistical confidence and comparison with the warranty. This analysis will in
turn enable the planning of actions to mitigate the causes of low performance
and minimize the amount of energy lost. The accurate estimation of the Rp
for a deployed PV plant will also enable more accurate and precise lifetime en-
ergy yield forecasting and stricter performance guarantees, further reducing
investment risk and increasing confidence in the technology.

This work deals with developing a generalized data analysis methodology based
on statistical principles, for estimating the energy degradation rate, using field
measurement data from eleven different grid-connected PV plants operating
side-by-side since June 2006 at the PV Technology test site of the University
of Cyprus. The methodology was designed to provide accurate and robust un-
supervised estimation with a measure of uncertainty. Also, it was designed
for application on commercial PV plants, where sensor deployment is sparse
and data logging capabilities are low due to cost. Therefore, the minimum
requirements for the realization of the developed methodology are accurate
measurements of power and an accurate measurement of irradiance.

The methodology was developed to address four main issues in the field of
PV degradation: 1) measurement qualification and creation of a clean data set
from uncertain sources, 2) detection of suboptimal performance from the mea-
surement data and assessment of the effect on the actual degradation rate, 3)
analysis of time series of constructed performance metrics to extract and anal-
yse the trend in either a linear or non-linear fashion, and 4) substitution of ad
hoc analyses and empirical parametrisation with formal statistical tests, to en-
able the applicability of the methodology in an unsupervised way. Therefore, a
data pipeline consisting of measurement qualification, creation of performance
metrics, detection and treatment of outliers and trend modelling procedures
was developed. In addition, the computational expense of implementing such
a methodology was explored and alternative ways were proposed to further
reduce it.

Extensive experimental work has also been performed in order to estimate the
Rp of the studied PV arrays, under standard test conditions (STC). These ex-

vi



periments were performed ex situ, using high quality laboratory equipment
(i.e. flasher, electroluminescence (EL), infrared (IR) thermography), with trace-
able calibration throughout the evaluation period. Even though the results
were more traceable and certain, indoor testing required a significant amount
of manual labour and system downtime and introduced risk due to mount-
ing/dismounting and transporting the PV modules to the laboratory. The PV
modules under study were characterized in the laboratory and the results were
used to benchmark the accuracy of the developed unsupervised methodology.
In this way, PV performance measured under a broad spectrum of prevailing
meteorological conditions was compared to the results of indoor testing un-
der international standards. This was one of the most important outcomes
of this work as this kind of long-term comparison on multiple, co-located PV
technologies which were monitored and characterized in a research-grade en-
vironment was extremely rare in the bibliography.
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Chapter 1

Introduction

1.1 Motivation and background

Estimates of degradation rate, Rp, are essential in assessing the effective lifetime of a pho-
tovoltaic (PV) module, given the 25 to 30-year long warranties offered by manufacturers,
who guarantee the specified nameplate capacity, P,,,, with a maximum of 20 % degrada-
tion by the end of the service lifetime. In the last few years, manufacturers have extended
this guarantee to provide maximum linear degradation rates per year. Typical guarantees
state that the PV module’s P,,,, will not degrade higher that 1 %/y in the first ten years
of operation. For the rest of their service lifetime, the guarantee states that the P, will
not degrade higher than 0.67 %/y to 0.8 %/y, depending on the manufacturer. The fact that
warranties offered by manufacturers are by definition not the product of testing the PV
modules to the end of their lifetime in the field, further validates the need for establish-
ing a standardized methodology for accurately estimating degradation rates of fielded PV
modules and systems.

Even by disrupting normal plant operation to measure the module’s performance under
laboratory conditions, at standard test conditions (STC), the measurement uncertainties
are high enough that a difference lower than 2 %-3 % from the P,,,, will be within the
experimental uncertainty. Additionally, by solely testing at STC, a very narrow window
of field performance is tested, since in most outdoor environments, such conditions rarely
occur, if at all. Therefore, the overall performance of the array/plant in the field needs to be
analysed in order to draw inference on the actual rate of degradation in the field, i.e. under
real operating conditions.

The main motivation behind this dissertation is the lack of a generalized methodology
for assessing such an important aspect of PV plant performance, without interrupting nor-
mal plant operation. Although much effort has been put into estimating the degradation
rate, no methodology has been proposed and aimed towards minimizing the bias generated
by the person performing the analysis due to the selection of ad hoc analysis techniques,
i.e. measurement filtering, outlier handling, trend modelling and interpretation of the re-

sults. It is for this reason that the estimation of the degradation rate of PV remains a highly



controversial topic.

Especially with respect to handling measurement data, current best practices involve
discarding a very large amount of intra-daily measurements and focusing on the perfor-
mance around noon in order to minimize seasonality and secondary effects such as reflec-
tions, cloud motion and temperature fluctuations. Additionally, current best practices in
handling outliers and missing data involve either ignoring them completely or using previ-
ously validated historical data from similar days to fill in the gaps. Finally, the most widely
used method in the literature for estimating Rp, utilizes linear regression with ordinary
least-squares (OLS) to fit a linear trend on data reduced by the aforementioned filtering
techniques. As has been proven numerous times in the literature, a simple OLS trend is not
the universal answer. Even more concerning is the universally accepted practice in the field
that the aforementioned data reduction and normalization techniques should be designed
as such, to reduce the highly seasonal and uncertain measurement data set to approximate
a monotonically decreasing linear process.

The work developed in this dissertation aims to show that by leveraging proper statisti-
cal analyses, the current arbitrary practices can be replaced by generalized methodologies
which can provide inference, eliminate the selection bias and allow the quantification of
uncertainty while at the same time extracting as much information as possible from all

useful measurement data in an unsupervised manner.

1.2 Problem statement

As of recently, the proliferation of PV system installations around the globe has resulted in
the exponential growth of energy produced from renewable energy sources which is esti-
mated to continue increasing monotonically. Also, according to International Renewable
Energy Agency (IRENA), solar PV prices have been on a downward trend [1] and this has
resulted in a dramatic reduction of the levelized cost of electricity (LCOE), which is defined
in Eq. 1.1:

CapEx + YN OpEx-RV

- n=1_@1a+n"
LCOE = N Yo@-Rp,)" (1.1)

-1 @

where:

« N =PV system lifetime [years],

CapEx = total capital expenses [€/kWp],
- OpEx = annual operational expenses [€/kWp],
» RV =residual value [€/kWp],

. r = discount rate [%],



+ Yy = initial yield [kW h],
* Rp, = energy degradation rate [%].

From Eq. 1.1 it can be seen that one of the major factors in the reduction of the LCOE is the
energy degradation rate, Rp,. Up to now, no statistically sound and universally accepted
methodology has been developed for its estimation.

In this framework, the estimation of the degradation rate of PV presents several issues;
one of them is the lack of quality comparisons between field measurement data and mea-
surements under STC. This is important as through these kinds of comparisons, it can be
inferred whether a methodology could be used to estimate a statistically significant rate
of degradation, or whether it was due to chance. Another problem is the lack of a uni-
versally accepted methodology for assessing degradation and the numerous and different
methodologies found in the literature which make different assumptions and result in dif-
ferent evaluations. Due to this, there is currently much effort being put into defining and
accepting a universally “correct” methodology [2].

In addition, currently published work on degradation has been concerned with defining
methodologies that minimize the uncertainty by trying to linearize the time series of the
chosen key performance indicator (KPI) in order to fit a straight line through the data, the

slope of which would represent the Rp, . This presents several problems on its own, namely:

+ Trying to minimize the confidence interval by discarding unfavourable data points

biases the results.

+ Reducing the amplitude of the seasonal component by linearly normalizing with a
single temperature coefficient introduces error, as the P o« T, relationship is not
perfectly linear throughout the lifetime of a PV module, as has been proven in field

tests.

+ Current trend estimation methodologies produce single point estimates and do not

calculate the uncertainty.

« As many covariates as are available are used to explain the array power, P4, without

accounting for multicollinearity.

Thus, it is evident that more challenging and far stricter quality assessment of PV instal-
lations will be needed, to maintain optimal performance and provide increased confidence
in the short- and long-term energy production of the enormous amount of PV installations
that will be commissioned in the near future. Such strict assurance cannot be achieved by
current practices, which are more specific than general and were designed to solve ad hoc
problems in the assessment of PV performance. To meet these new requirements of the
PV sector, a new paradigm for performance assessment will be needed. At its centre is ap-

plied statistical analysis and a significant amount of effort is currently being dedicated to



converting legacy methodologies into generalised statistical analyses. Applications of sta-
tistical analyses in PV can be found in modelling, forecasting, supervision, fault detection

and estimation of degradation.

1.3 Aim of this work

The dissertation takes on a holistic view to the estimation of performance degradation of
PV systems deployed in the field. The aim was to propose a generalized methodology that
treated data deficiencies such as uncertainty, outliers and missing data from field measure-
ments and investigate its accuracy by comparing it to standardized indoor procedures, with
minimal requirements in sensor and data logging equipment. The methodology was also
aimed at minimizing bias generated by ad hoc methods, by relying on established statistical
procedures and formal tests.

One additional aim of this work was to improve estimation of the Rp, without relying
on labelled data (e.g. log of outage periods, faults etc.) The tedious manual procedures of the
past were uncertain and had to be performed offline. Due to this, they were not repeatable
and transferable across the field.

Finally, the choice of the measurement datasets used in this work do not constrain the
applicability of the proposed method. All methods proposed and discussed in this disserta-

tion were specifically chosen in order to construct a generalized methodology.

1.4 Outline of the dissertation

This dissertation is structured in such a way that it presents a logical flow for solving the
degradation estimation problem in PV. It is divided into eight chapters, including this in-

troduction:

+ Ch. 1 presents an overview of the problem, motivation and the specific aims of this

work.

« Ch. 2 presents a through literature review in relation to the estimation of degradation

rates.

« Ch. 3 presents the experimental setup and the procedures for ensuring measurement

quality throughout this work.
+ Ch. 4 explains how the data was organized to become amenable for analysis.

« Ch. 5 presents the developed methodology for detecting and handling outliers and

missing data using various techniques and assesses the uncertainty.

+ Ch. 6 presents the proposed methodologies on degradation rate estimation, its lin-

earity, its sensitivity on the choice of the analysis and the total uncertainty.



« Ch. 7 presents the extensive experimental work performed for validating the statis-

tical analysis approach and their inter-comparison.

« Ch. 8 includes a summary of this work, the research achievements and innovations

emanating from this thesis and proposes future work directions.

In addition to the main chapters, a short discussion of the computational cost of the
approach and challenges faced throughout this work, along with implemented alternative
solutions, is included in Appendix A.

Finally, a description of general contributions to the PV and data science community,

stemming in part from this work, is included in Appendix B.



Chapter 2

Related Work

Work from this chapter has been published in [3, 4]

2.1 Introduction

The degradation of PV is currently a much researched topic which has resulted in mod-
ule production improvements, efficiency increases and the introduction of new materials.
Performance degradation can be evidenced in all PV devices, i.e. cell, module, array and
system with different factors and degradation mechanisms manifesting on each device. In
all cases, the main extrinsic factors related to performance degradation in the field include:
temperature, humidity, precipitation, dust, snow and solar irradiance. At the array level, all
of these and additionally shading and module mismatches contribute to degradation. The
aforementioned factors give rise to various degradation mechanisms [5, 6, 7, 8] and impose
significant stress over the lifetime of a PV module, resulting in the reduction of durability,
which must be quantified through the estimation of the rate of degradation.

More specifically, at the PV cell level the main mechanisms behind performance loss
and possible failure are corrosion, light-induced degradation, contact stability and cracked
cells [9, 10]. At the module level, degradation occurs due to the reliability issues of the
individual cells and in addition due to glass breakage, delamination, busbar failure, bro-
ken interconnects, front surface discoloration, moisture ingress, reduced interlayer adhe-
sion, diode failures and hot-spots. The majority of studies on crystalline silicon (c-Si) tech-
nology report that the degradation of power at maximum power point (MPP), Py pp, was
mainly attributed to short-circuit current, Isc, losses, followed by smaller decreases in fill
factor, FF [11, 12, 13]. Isc degradation was associated with the reduction of Py pp and was
most commonly caused by delamination and discoloration [14, 15]. Hishikawa, Morita,
Sakamoto, and Oshiro [16] have shown that the reduction in Ig- was due to discoloration
or delamination at the cell/ethylene-vinyl acetate (EVA) interface, front glass breakage and
increased series resistance, rg, due to the degradation in electrode soldering. A study by
National Renewable Energy Laboratory (NREL) suggested that the degradation rate and

associated Igc- decline were caused by ultraviolet (UV) light absorption at or near the top



of the silicon surface, which caused discoloration [17]. Sanchez-Friera et al. [12] attributed
the large degradation rate and Isc losses to delamination of the cell-encapsulant interface,
oxidation of the front metallization grid and the anti-reflection coating of the cells and front
glass soiling. On the other hand, for thin-film technologies, there was a higher degradation
rate of the FF in comparison to the c-Si case [18] and additional mechanisms not observed
on c-Si technologies [19, 20, 21]. Finally, at the system level, degradation was the result
of individual module failures, array shading, potential induced degradation (PID) [22] and
other balance-of-systems (BOS) effects such as inverter efficiency loss, interconnect and
cabling losses.

The extent by which the various degradation mechanisms affect different PV technolo-
gies does not appear to be identical but depends on the technology, the operating topology
and the cumulative history of field exposure, which depends on the location of installa-
tion [23]. Consequently, the nominal performance of different PV systems/arrays/modules
can be found to degrade at different rates. This rate is expressed as Rp, is defined as the
rate of nominal performance drop over time and is denoted as a positive quantity. It is
commonly expressed in %/y and represents the reduction of the performance metric in the
field [24].

Jordan, Kurtz, VanSant, and Newmiller [25] have compiled a comprehensive review of
published degradation rates, both from indoor testing and field data analysis. In summary,
from 11 029 published studies, spanning every module technology, the mean R, was calcu-
lated at 0.91 %/y, with the majority of studies published for c-Si. Regarding thin-film tech-
nologies, 455 published studies have shown that the mean Rp was higher, at 1.38 %/y, with
the majority of studies published after 2000. These results did not include initial degrada-
tion. Although the mean for all technologies was 0.93 %/y, the values for thin-film technolo-
gies were spread from -1 %/y to 6 %/y, whereas for c-Si the rates were mainly concentrated
around the mean. This signifies a very large variation in reported degradation rates, which
may be attributed to the small number of field studies and the variability in degradation
rate estimation methodologies [26, 27].

Degradation estimation has been the target of international research groups [28, 23],
research centres [25] and industry [29, 30, 31, 32]. Methods for estimating R}, vary widely
with the choice of performance metric, normalization parameter, data filtering and also test
conditions (field vs indoors) [33]. Indoor testing at STC using solar simulators is less often
used as it is time consuming and inefficient for other than small-scale PV plants [34]. For
this reason, only a small sample of PV modules is tested at STC [35], hence assuming that
the degradation of the specific sample of modules is representative of the whole PV plant.
The current problems faced in the estimation of the Rp of PV systems in the field, reveal

that a multi-disciplinary approach must be adopted to address the multiple shortcomings.



2.2 Photovoltaic performance analysis

In the centrepiece of all research around the estimation of degradation is the actual data
used in the analysis which are recorded from the field [36]. Most of the current methodolo-
gies have not been proven to be robust to the absence of accurate measurement data [37],
hence much effort has been put into creating reliable and accessible monitoring and super-
vision systems for PV [38, 39]. A large part of PV performance analysis is also concerned
with the software design, algorithm development and data warehousing [40, 41, 42] which
has received numerous developments in the last few years, mainly because of the lowered
barriers to entry for data science and machine learning.

To address the fact that PV has become very accessible for small scale deployment, i.e.
on individual homes, and the fact that the cost of the majority of PV monitoring systems
becomes prohibitive for this scale, easily deployable solutions [43] have been created using
commodity hardware [44, 45] to monitor PV production. Other proposed systems pro-
vide more advanced functionality, through real-time diagnostics [46] and were designed to
scale [47] while others were designed to make use of satellite data to address the absence

of expensive sensor hardware on-site [48].

2.2.1 Performance metrics

The estimation of degradation rates relies on the analysis of chronological ratings of the
performance of PV in the field and the prevailing meteorological conditions. Typical pa-
rameters include: 1) array current, 14, array voltage, V4, and subsequently P4, as a calcu-
lated value, 2) power to the utility grid, Py, for grid-connected systems, 3) I, open-circuit
voltage, V¢, FF, rg, and shunt resistance, rgy, extracted from continuous current-voltage
(IV) characterization of modules and arrays in the field, and 4) meteorological measure-
ments such as global irradiance, G;, ambient air temperature, T,,,, module temperature,
T,,, wind speed, Sy, and relative humidity, H,,; [36].

These measurements are used to create chronological performance metrics. Common
performance metrics can be grouped into four categories, 1) electrical parameters from IV
curves recorded under outdoor or controlled indoor conditions and corrected to STC, 2)
extrapolated metrics such as power extrapolated to Photovoltaics for Utility-Scale Appli-
cations (PVUSA) test conditions, Ppr¢ [49, 50], 3) normalized metrics such as performance

ratio, PR, and 4) scaled metrics such as Pa/Pyom, Prvy/Prom and array yield, Ya/Ppom [51].

IV curve parameters

Outdoor IV curves are usually obtained at fixed intervals, whereas indoor IV curves are
obtained at STC at sparse intervals [52], due to the manual work required to obtain them.
From an IV curve, degradation can be observed on the individual electrical parameters [53].
As described in Sec. 2.1, degradation of an electrical parameter can be traced back to the

existence of physical defects and degradation mechanisms. Further identification of some



degradation mechanisms can also be performed indoors, with techniques such as electro-
luminescence (EL), dark lock-in thermography (DLIT) and infrared (IR) thermography. IV
characterization in the field is currently mostly performed for research [11] and diagnostic
purposes [54], with the modules ideally held at MPP between IV scans, in order to simulate
the full load condition [55, 56].

Indoor IV characterization is less commonly used as it is time consuming and inefficient
for fielded PV arrays. Furthermore, indoor IV characterization carries the risk of damaging
the modules due to mishandling, dismounting from the array and transportation. Thus,
it is more efficiently used for standalone modules that are deployed alongside a larger PV
system [57], whose purpose is to track degradation under real operating conditions. When
using indoor IV characterization, the degradation rate can be calculated as the percentage

error (PE), between two successive temporal ratings [58].

Extrapolated metrics

Regression models that rely on the linear relationship between PV performance parameters
and meteorological parameters [59, 60] are often used to extrapolate field measurements to
pre-defined conditions.

One of the most popular regression models is PVUSA [61, 62]. The model requires
selecting measurements at high G; on the plane of array (POA) (equal or greater than
800 W/m?), fitting measurements of P, or Py, Gy, Tapm and Sy to Eq. 2.1 and estimating
the coefficients f1, fo, f3 and B4 via OLS. The model assumes that 14, primarily depends
on the Gy, and the V}, primarily depends on the T,,; which in turn, depends on the G;, Ty,
and Sy,. The coefficients are estimated for every monthly block of data and then monthly
power ratings at PVUSA test conditions (PTC) are calculated by prediction of Eq. 2.1 at
Gy = 1000 W/m?, T,,, = 20°C and Sy, = 1m/s.

Puypp = Gr(B1 + P2 Gy + B3 Tam + BaSw) (2.1)

The model is accurate for c-Si PV, but not for thin-film technologies.

A modified model for thin-films was proposed in [63], which uses Eq. 2.2 and adds
a constant loss factor, with f; through S5 the regression coefficients. Measurements at
G; equal or greater than 50 W/m? could be used, widening the predictive application of the
model. An indirect advantage of this modified model is that less data is filtered out, resulting
in more accurate realization of the temporal characteristics of the PV system inside a larger

operating window.

Ya = Gi(By + B2Gr + B3 Tum + PaSw) — Ps (2.2)

A method devised by NREL to estimate the degradation rate [64] with PVUSA, restricted
data points to G; > 800 W/m? and P4 > 0.75P,,,, in order to eliminate data points where

the PV array was shaded or covered. Then, the Ppy, ratings were calculated on a monthly



basis. The results of this work have shown that an amorphous silicon (a-Si) system suffered
a rapid degradation of 7.25 % through its first year of operation. In the subsequent 5 years,
the system has shown a degradation of 1.73 %/y.

Normalized and scaled metrics

Normalized [65] and scaled [51, 66] metrics are used for direct comparison between different
PV technologies, PV plant capacities and geographical locations [67]. The most popular
metric used is PR, which is defined in Eq. 2.3 as the ratio of the Yy, or the final yield, Yf, of
the PV array/plant, and the reference yield, Y, [36].

PR=— (2.3)

where the Y, is the sum of the array energy, ), E4, divided by the P,,,, of the deployed
PV array. The Y, is the sum of the global irradiation, Hj, on the POA, divided by the global
irradiance at STC, Gg¢. This represents an equivalent number of hours at Ggr¢. Y, can
therefore be used to define the solar irradiance resource for the PV system. It is a function
of the location, orientation of the PV array and weather variability.

PR ratings are defined as aggregates on a monthly or annual basis and are typically
reported as such. Values calculated for shorter intervals, such as weekly or daily, may be
useful for identifying component failures and measurement outliers. On the other hand,
annual PR ratings can very easily be used to indicate a permanent loss in performance, i.e.
degradation. The PR can also indicate losses due to soiling and seasonal variations when
calculated on a monthly basis. This is one of the main advantages of PR and other nor-
malized and scaled metrics over extrapolated metrics. Additionally, by normalizing with
respect to irradiance, the overall effect of losses on the rated output due to 1) inverter in-
efficiency, 2) wiring mismatches and other losses from DC/AC conversion, 3) module tem-
perature, 4) reflection losses. 5) soiling, 6) system down time and component failures can
be captured in the metric.

With respect to degradation rates, a comparison of the published results obtained using
PVUSA and PR, has shown similar results between them, for various PV technologies [68],
but some studies have shown substantial differences between using the PVUSA and PR [65,
69]. Differences have also been observed when using temperature correction and various
time units on the PR. It has been shown that the application of temperature correction
resulted in higher estimated Rp, in comparison to using uncorrected measurements[65,
70]. This can be somewhat correlated to the instability of the temperature coefficients in
the field which were reported to be non-linear [71, 72, 73]. Lastly, it was shown that using
a smaller time grid with these metrics resulted in increasing the variability of the estimated
Rp [65].

10



2.2.2 Outlier detection and treatment

An outlier is defined as an observation that is some measure of distance away from other
data points and may indicate bad data, measurement error or faults in the system. When
data is used to model a PV device, the model can only be as accurate as the data used during
training. For this reason, an outlier can have a significant impact, depending on the analysis
methodology. One way to reduce the number of outliers in PV measurement data is to use
calibrated and accurate sensors in the field and adhere to a maintenance plan. Even then,
outliers will surely be presented in the measurement data sets, due to the unpredictable state
of the prevailing meteorological conditions, random interactions with nature and random
system states.

A large number of publications can be found in the literature, that deal with detecting
outliers in the data [74, 75, 76] and faults in the system [55, 77]. Outliers in the measurement
data, especially due to shading [54], have been successfully identified using the I+ and the
Gy as a method to reduce uncertainty in Ry, estimations [78].

Even though outliers and faults can be detected and the results used for planning main-
tenance actions and increasing the reliability of the system, this information does not cur-
rently suggest best practices in dealing with outliers in the measurement data. Therefore,
it is common practice to filter field measurements to select favourable meteorological con-
ditions [79] and average them to reduce noise and the effect of outliers. A pitfall in this
approach is that excessive filtering of PV measurement data can lead to unrealistic expec-
tations and introduce bias [80]. Also, it reduces sample size and the statistical significance
of the results [81].

A more recent study discussed how data filtering affected the estimated degradation
rate of a grid-connected PV system at NREL [65]. The study used the degradation rate esti-
mated by measuring the Py;pp indoor at STC, prior to field deployment and after six years of
exposure and compared it with different filtering criteria. It was found that the temperature
corrected Pypp/Gr and PR metrics, combined with a stability filter (i.e. irradiance and tem-
perature rate of change), outlier filter and linear regression, resulted in degradation rates
in line with the indoor measured degradation rate at STC. The non-temperature-corrected
PR showed negative bias on the resulting degradation rate. Using the PVUSA rating the
resulting degradation rates were found to be much different that the indoor degradation
rate, independent of whether filtering was applied or not.

In other fields of engineering, robust statistical techniques [82] are used when the mea-
surement data contains significant outliers. Robust techniques [83] were designed to mit-
igate their effect [84]. In addition, the detection of outliers is presented in a very different
manner than most of the literature in the field of PV, apart from some excellent contribu-
tions [85, 86, 87] where statistical methods based on quantitative measures derived using
the population sample are proposed.

Purely data-driven approaches such as principal component analysis (PCA) and its mod-

ifications are often taken into consideration [88]. PCA and the subspace methods classify
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the observed data into “normal” and “abnormal” subspaces and have proven themselves
efficient in anomaly detection applications [89, 90, 88]. Analyses such as z-scores on uni-
variate data, Gaussian mixture models optimized using expectation-maximization, projec-
tions of the data onto lower dimensions (e.g. PCA and robust principal component analysis
(RPCA) [91]), clustering and others can be applied if desired [92].

2.2.3 Missing data imputation

Measurement outages cause missing measurements and incomplete data sets. The outages
can be due to data logger faults, measurement noise, data transmission errors, connection
errors and data storage faults. Missing data is also caused by discarding invalid measure-
ments and outliers due to inverter clipping, misconfigured sensors, sensor drifts and invalid
calibration, array or irradiance sensor shading and soiling and PV system downtimes. Addi-
tionally, outliers can be determined from abrupt changes and high-frequency content in the
measurements and also from highly volatile measurement data (higher than the response
delay of the sensors.)

A power industry best practice to impute bad/missing smart meter data is presented
in [93]. Intervals shorter than two hours were typically imputed by applying linear in-
terpolation (LI) to the surrounding data. For periods longer than two hours, the typical
approach was to construct daily load profiles based on previously validated historical data
of similar days.

Similar approaches are common in the PV sector, where the subject of missing data
imputation is very new, with a very small number of focused contributions. The most com-
mon approach in the PV sector to handle missing data entries is to ignore them completely.
These methods include list-wise deletion and pairwise deletion. Even though these methods
were the easiest to deal with empirically, their application introduced bias and assumptions
that rarely hold true, such as lossless relationships between meteorological parameters and
Pypp and biased estimates in statistical analyses such as linear regression [94].

Some initial work has been done to impute time series using PV system models such
as PVUSA [57] and regression models [95] in order to estimate the Rp. Another study re-
ported the analysis of the performance of PV arrays using imperfect or incomplete input
data[96]. The study proposed interpolation of missing meteorological data by calculating
the nominal operating cell temperature, Ty o1, using available measurements, and identi-
fying erroneous PV measurement data by plotting. Most recently, empirical electrical mod-
els have been used [97] to back-fill time series of measurements. The basic idea between
the two methods is the same: utilize as many covariates as possible from meteorology and
field performance, in order to build a PV model that would accurately interpolate the series.

On the other hand, methods for handling missing data points is a well-established area
in statistics [98, 99]. Full data sets can be generated by filling in the missing data periods
with imputed data [100]. The imputed data periods have a continuous profile with respect

to the adjacent available measurements, which is a highly desirable feature for time series
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analyses. Common data imputation methods are categorized as single imputation (SI), mul-
tiple imputation (MI), multiple overimputation (MO) and maximum likelihood estimation
(MLE) [101, 98, 102]. Modern MI approaches have been developed to impute values mul-
tiple times [98], i.e. multiple imputations, which can provide a measure of the uncertainty
of the missing data point. In this way, a confidence interval could be constructed.

SI methods, such as replacing the missing values by the mean of the available values, by
using linear regression to interpolate missing data and filling in gaps with the last observa-
tion carried forward (LOCF), are simple to implement, but can lead to biased estimates of
certain parameters in statistical modeling. Compared to SI methods, MI and MLE methods

have better statistical properties, but require much more computational resources.

2.3 Time series analysis

Statistical methods for estimating the trend of the performance metric over time have been
shown to greatly affect the estimation of Rp [103]. The goal of the statistical analysis is to
extract the trend of PV performance time series and translate the rate of change of the trend
to the annual Rp. Model-based methods such as linear regression (LR), classical seasonal
decomposition (CSD), Holt-Winters exponential smoothing (HW) and autoregressive inte-
grated moving average (ARIMA) require the specification of a stochastic time series model
whereas non-parametric methods, such as locally weighted smoothing (LOcal regrESSion)
(LOESS) and Theil-Sen (TS) do not require the specification of a model and are popular

because of their ease of use and robustness.

2.3.1 Linear regression

The most commonly used method in the literature is LR. It is used to fit Eq. 2.4 to the PV

performance metric time series:

y =Pt + Py +€ (2.4)

where y represents the fitted values, f; is the slope of the trend and f, is the intercept. The
LR algorithm tries to fit Eq. 2.4 by minimizing the sum of squared residuals, most commonly
by using OLS. It is very sensitive to outliers and seasonal variation and can thus exhibit a
high uncertainty.

Other methods, more advanced than LR have been proposed in the literature [104, 105],
to extract the underlying trend from PV performance time series and overcome the limita-

tions of the LR method.

2.3.2 Theil-Sen estimator

An approach for estimating the Rp, has been proposed by SunPower® [106, 31]. The so-

called year-over-year (Y-o-Y) approach is an alternative to OLS and is known in the statis-
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tical field as the Theil-Sen estimator [107, 108].

The TS is a robust estimation technique that chooses the median slope among all lines
passing through the data points. This estimator can be computed efficiently, and is insen-
sitive to outliers [109]. The linear slopes are calculated as follows:

X, - X
dy = L—
_]—l

(2.5)

for (1 < i < j < n), where d is the slope, X denotes the variable, n is the number of
points and i and j are indices. TS slope is then calculated as the median from all slopes:
b = Median(d). A confidence interval for the slope estimate is also easily determined as
the interval containing the middle 95 % of the slopes of all lines.
A seasonal TS slope estimator can also be defined, to estimate slopes for each season
(months or days.) It is calculated as follows:
Xij = Xik
diig = ——— 2.6
ijk ik (2.6)
for each (x;j, x;i) pair, i = 1,2,..., m, where 1 < k < j < n; and n; is the number of known

values in the ith season. The seasonal slope is the median of all values of d;jx

2.3.3 Classical seasonal decomposition

Generally, CSD is regarded as a simple method of seasonal adjustment [110] as the de-
composition is performed with minimal effort and computational needs. This technique
also forms the basis for most of the modern decomposition methods [111]. CSD and other
statistical methods have been used in the past to model grid-connected PV power produc-
tion [112] and to determine degradation rates of PV modules [104, 70]. Despite that and
due to the fact that the particular technique fits a predefined model, it doesn’t take into
account the particular characteristics of each time series and therefore, cannot optimally
model each different PV system technology. Additionally, since the most basic assumption
of stochastic models is that model residuals are uncorrelated, in most cases it cannot provide
statistical inference, proven by the presence of autocorrelation in the model residuals.

An additive model, as in Eq. 2.7, or a multiplicative model, as in Eq. 2.8, can be specified,

depending on the nature of the seasonal component,

)A) = Tt + St + € (27)
V=TS +¢ (2.8)

where y are the fitted values, T; represents the trend, S; represents the seasonal component

and e; the residual component.
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2.3.4 Autoregressive integrated moving average

The most advanced model-based method reported in the literature was multiplicative ARIMA
[113, 114]. The ARIMA method is more flexible than classical decomposition methods since
it can effectively deal with seasonal variations, random errors, outliers and level shifts
through the specification of a model which removes all autocorrelation in the model resid-
uals. The general model for multiplicative ARIMA is given in Eq. 2.9 and is abbreviated
as ARIMA(p,d,q)(P,D,Q), where p is the auto-regressive (AR) order, d is the differencing
order, g is the moving average (MA) order, P is the seasonal AR order, D is the seasonal

differencing order and Q is the seasonal MA order.
WT)2S(T*WV YLy, = O(T)O5(T ey (2.9)

In order to fit the optimal ARIMA model, the time series must first be checked for sta-
tionarity and then transformed using differencing to achieve stationarity. The lags p, g,
P, Q of the model are determined by inspecting the autocorrelation function (ACF) and
partial autocorrelation function (PACF). The model selection procedure can yield multiple
models that fit the data well. The optimum model is the one with the lowest order (i.e.
parsimonious), with the lowest mean squared error (MSE) and the lowest Akaike informa-
tion criterion (AIC), corrected Akaike information criterion (AICc) or Bayesian information
criterion (BIC).

ARIMA was used to study the sensitivity of the methodologies to outliers and data
shifts [104]. Shifts in the measurement data were fixed by selecting a range of corrective
scaling factors and minimizing the residual sum of squares (RSS) of the errors with respect
to the various scale factors. The ARIMA(1,0,0)(0,1,1) model was pre-selected and the results
have shown that it performed very well with respect to outliers and could be used to cal-
culate similar Rp, to the simple LR method with as few as two years of field measurement

data in a semi-arid climate.

2.4 Non-linearity

The most common way in the literature for estimating degradation was by assuming a
linear trend that quantified the long-term performance. Field tests have shown that the
assumption of linearity could not be held in the beginning of outdoor exposure, especially
for thin-film technology.

A recent study [9] has shown that some degradation modes such as discolouration can
lead to a linear degradation, while other degradation modes can lead to distinctly non-linear
degradation which appears as large drops in the time series (e.g., hot spots, solder bond
failures, corrosion). Non-linearities were typically more easily observed in accelerated tests
than in he field, due to the high stress levels. In addition, as detailed in Sec. 2.1, modules in

the field can display a variety of degradation modes and this leads to difficulty in correlating
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physical degradation to a deterministic trend in the time series.

Specifically for thin-film techonologies, the initial performance of a-Si technologies fea-
tures an initial rapid decline which stabilizes after several months [115, 57].

The degradation rate of non-linearly degradating PV array has not been explored in the

literature.

2.5 Uncertainty

Each methodology for calculating the degradation rate of PV systems in the field carries
its own uncertainty. For example, the LR method on PR carries the uncertainty of the
regression and the calculation of PR, which in turn carries the uncertainties of the Vjy, Iy
and Gy sensors used.

It was reported that correction of outages and filtering measurements in order to ex-
clude low-quality data reduced the uncertainty of the degradation rate due to reducing the
variance in the data [65, 116]. On the other hand, the short observation time, the presence of
outliers in the measurements and the data shifts related with hardware changes, increased
the uncertainty of the calculation [104]. A minimum testing period of 3 to 5 years was found
to be necessary in order to obtain accurate Rp) estimates from field measurements, due to
seasonal variations and higher initial degradation [117]. More specifically, the uncertainty
of the statistical method used to calculate the R was reduced with increased observation
time, as more sample data was recorded and therefore random variations and seasonality
had a smaller impact on the underlying trend.

In addition, the methodology used can affect uncertainty and therefore the width and
shape of the Rp distribution. A higher uncertainty was related to higher variance and thus
resulted in a broader distribution. Granata, Boyson, Kratochvil, and Quintana [118] found
that the estimated R were within the experimental uncertainty, which meant that they
were difficult to infer, given the specific measuring equipment and analysis method. The
irradiance measurement carried the largest contribution to uncertainty. Translated into
PR values, the uncertainty could reach up to 4.5 % [119]. This further proves the need for
employing a methodology which minimizes the uncertainty, especially given that a linear

Rp less than 0.67 %/y is required to satisfy long-term warranties [120].

2.6 Degradation rate estimation methods

Table 2.1 summarizes the most commonly employed analytical techniques for estimating
Rp using field measurement data, as reported in the literature. From this table it can be

seen that there is a wide array of methods used to estimate Rp.
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Table 2.1: Most common Rp, estimation methods reported in the literature.

Metric Filtering Analysis Ref.

Monthly W/W,, from STC AM1.5 and noon PE between sequential [69]

corrected P, Junes

Monthly PR none LR [69]

Monthly PR G, > 800 W/m?, outages LR [69]

Monthly Ppre, using Py none LR [69]

Monthly PPTC’ u51ng PMPP GI > 800 W/mz LR [27,
104]

Monthly Pprc G; > 800 W/m? LR on top of CSD [104]

Monthly Pprc G; > 800 W/m? CSD on top of [104]

ARIMA(1,0,0)(0,1,1)
Monthly PR outages LR on top of optimal [103]
sARIMA

Monthly PR outages HW [103]

Pypp from module IV none PE [58]

Pypp from indoor IV none PE [58]

Pypp from module IV T, = Tyocr and PE [11]

G; > 800 W/m?

Annual AC PR none PE [121]

Pypp from indoor IV none PE [122,
123]

Weekly means of Pypp, Isc, extrapolation to 1000 W/m? LR [124]

Voc, FF, IMPP and VMPP from and Tm =45°C and

module IV 800 < G; < 1100Wm™2

Daily Yy none LR [24]

Modified weekly and monthly extrapolation to STC and LR [125]

PPTC GI > 500 \A//rn.2

Performance Index = (Measured 400 W/m? < G; < TS [106,

/ Expected output) 2000 W/m?, bad data 126]

The distribution of the 196 R values from all sources cited in this chapter can be seen
in the histogram of Fig. 2.1, where a positive Rp indicates performance loss. Since the
distribution of the published Rp figures is not exactly normal, due to limited sample size
(196) relative to all deployed PV plants in the world, the mean and median values were
bootstrapped 1000 times to reduce bias. The mean Ry, of all technologies was estimated as
(1.127 £ 0.140) %/y and the median as (0.989 + 0.089) %/y at the 95 % confidence level. Sim-
ilarly, for individual technologies, the mean R for monocrystalline silicon (mono-Si) was
(0.969 * 0.254) %/y, for polycrystalline silicon (poly-Si) was (0.818 + 0.176) %/y, for a-Si was
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Figure 2.1: Distribution of degradation rates reported in the literature.

(1.413 £ 0.424) %/y, for copper indium gallium (di)selenide (CIGS) was (1.800 + 0.478) %/y,
for cadmium telluride (CdTe) was (1.657 £ 0.596) %/y and for other thin-film technologies
the mean R was found to be (2.244 + 0.087) %/y. From the differences in mean degradation
rates, it is evident that they are highly dependent on PV technology. Degradation rates
estimated specifically with LR are shown in Fig. 2.2, categorized by module technology.
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b a-sSi
2 0.757 [ a-Si/a-Si
@ [ cdTte
) [cics
O 0.504 [ mono-Si
[ poly-Si
thin—film
0.25 A
0.00 1

Rp [Y%/year]

Figure 2.2: Distribution of degradation rates reported in the literature as estimated with LR.

The Rp results extracted from the literature were further categorized by statistical anal-
ysis method and are presented in Fig. 2.3, where the dashed horizontal line represents the
median for all technologies. It can be seen that the IV method with PE resulted in the low-
est degradation rates and low variation, except for mono-Si technologies. LR resulted in
the highest variation and uncertainty, especially for a-Si-2], CdTe and CIGS, and produced
slightly lower median Rp. LOESS and ARIMA, albeit less frequently used, were shown to
produce better results with low variation, for all technologies. Lastly, CSD produced the

highest degradation rates for c-Si technologies.
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2.7 Conclusions

In this chapter, it has been shown that the Rp did not only depend on PV technology,
but it also depended on the analysis methodology. Many different methodologies for the
estimation of Rp were found in the literature. The four major statistical analysis methods
were: 1) LR, 2) CSD, 3) ARIMA, and 4) PE. The most commonly used performance metrics in
conjunction with these methods were found to be: 1) electrical parameters from IV curves
recorded in outdoor or indoor conditions and corrected to STC, 2) extrapolated metrics such
as PVUSA, 3) normalized metrics such as PR and Py;pp/Gy, and 4) scaled metrics such as
Pripp/Prom, and Ya/Ppom.

The results of the reported studies have shown that the IV method with PE produced the
lowest Rp. The LR method produced results with considerable variation and uncertainty:.
The CSD method produced the highest Rp for c-Si technologies but with lower uncertainty
than LR, whereas the ARIMA and LOESS methods, albeit less popular, produced results with
lower variation and uncertainty and good agreement between them for all technologies.

Finally, many deficiencies and gaps have been recognized. The gaps in the literature
reveal a common pattern of constructing ad hoc analyses to solve statistical estimation

problems.
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Chapter 3
Experimental Setup

Work from this chapter has been published in [127]

3.1 Photovoltaic Technology test site

3.1.1 Systems and devices under test

At the outdoor test site of the PV Technology Laboratory of the University of Cyprus (UCY),
eleven grid-connected PV systems of different technologies and approximately 1kW ca-
pacity each, were installed and commissioned in June 2006. The performance of each PV
system as well as the prevailing meteorological conditions were recorded since commis-
sioning. Measured Meteorological quantities include the G;, wind direction, ay, Sy, as
well as T,,,, and T,,. The primary electrical quantities measured include V4, I4 and Pry;.

The characteristics and the P,,,,, for each PV array under study are listed in Table 3.1. Man-

Table 3.1: Characteristics of the PV arrays under study.

System Cell No. of = Nominal Power Yp
Technology Modules [(kWp] [%/°C]
ucy04 mono-Si 7 1.540 -0.43
ucy05 mono-Si (HIT) 5 1.025 -0.30
ucy06 mono-Si 6 1.020 -0.37
ucy07  mono-Si (back-contact) 5 1.000 -0.38
ucy08 poly-Si (EFG) 4 1.000 -0.47
ucy09 mono-Si 6 1.110 -0.50
ucy10 poly-Si 6 0.990 -0.47
ucyll poly-Si (MAIN) 6 1.020 -0.47
ucyl2 CIGS 12 0.9 -0.36
ucy13 CdTe 18 1.08 -0.25
ucyl4 a-Si 10 1 -0.20

ufacturer specifications written on the datasheet for each technology are listed in Table 3.2.
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Table 3.2: Datasheet specifications of the PV modules under study.

System Efficiency Vpoc Isc Iypp Vmpp Pnom Area

[%] VI [A]l [A] [V [Wp] [m?]
ucy04 13.4 365 825 7.62 289 220 1.64
ucy05 16.4 503 554 5.05 40.7 205 1.25
ucy06 12.9 440 5.10 475 3538 170 1.32
ucy07 16.1 478 540 5.00 40.0 200 1.24
ucy08 11.7 709 491 455 571 250 2.14
ucy09 14.8 448 550 5.10 36.5 185 1.25
ucy10 12.7 439 5.10 4.60 355 165 1.30
ucyll 13 440 525 471 36 170 1.31
ucyl2 10.3 455 2,50 222 36 75 0.73
ucy13 8.3 90.0 1.14 094 64 60 0.72
ucyl4 6.4 141.0 1.17 0.93 108 100 1.57

The sensors included a Kipp & Zonen CM21 secondary standard pyranometer located in
the middle of the testing field, mounted on the POA, a PT100 back-of-module temperature
sensor for every PV array, wind speed and wind direction sensors, dc (array) voltage and

current transducers and an ac energy meter, as listed in Table 3.3.

Table 3.3: Sensors in use at the PV Technology test site.

Apparatus Manufacturer & Model Standard Error
Data acquisition Delphin TopMessage +0.01%
Pyranometer Kipp & Zonen CM21 2%
Ambient temperature  Theodor Friedrich 2030 +0.1 + (0.005 x T)/3
Module temperature Heraus PT100 0.3 +0.005 x T
Wind speed Theodor Friedrich 0.3m/s at v < 10m/s
Wind direction Theodor Friedrich +2.5°
Voltage sensor Bastizi potential divider £0.015 % at 20V to 1000 V
Current sensor Bastizi shunt resistor £0.75% at 2A to 10 A
AC energy meter NRZ AAD1D5F 1%

Fig. 3.1 shows a closeup of the location of the sensors at the testing site of the PV Tech-
nology laboratory and Fig. 3.2a shows the typical location of a PT100 temperature sensor
on the back of the module. The pyranometer was installed on the POA at the same inclina-
tion angle as the modules (27.5 £ 1.0)°. Fig. 3.2b shows the sensor board which was used to
measure the dc current and voltage of the PV array. This board was installed in the electri-
cal panel next to the inverter. Measurements were acquired by a Delphin TopMessage data
logger, shown in Fig. 3.3. Each data logger channel was sampled at 50 Hz and the samples
were averaged and stored every 1s, 1 min and 15 min, for effective archival rates of 1Hz,
16.67 mHz and 1.11 mHz respectively. The data logger pushed these average measurement
values to the database server which stored them indefinitely. This helped facilitate the cre-

ation of a high resolution set of measurement data which captured effectively the variance
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Figure 3.1: Closeup of sensors in the field.

(a) Back of module temperature sen- (b) Sensor board used to
sor measure I, and V,

Figure 3.2: Sensors interfacing with the PV modules.

of each measurand.

The standard error given in Table 3.3 represents the combined standard uncertainty
of measurement, u, as the estimated standard deviation of the result. Using the data in
Table 3.3, the expanded measurement uncertainty at 95 % confidence, Uys, was calculated

using uncertainty propagation [128] as in Eq. 3.1:

d 2 1 d 2 d 2
Ugs = k + \/(d_xlu(xl)> + (d_xzu(xZ)> +.. <d_x,,u(xn)> (3.1)

where u(xy), u(xy), ..., u(x,) were the individual standard uncertainty components and k =
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Figure 3.3: Delphin TopMessage data logger at the outdoor test site.

2 was the coverage factor for 95 % confidence. The expanded uncertainty for the V4 was
calculated at £0.036 %, for the I, at +1.5 % and for the Pr;; = V4 » I4 this was calculated at
+1.6 %.

3.1.2 Sampling and archival rates
General guidelines

At a minimum, the sampling rate of measurement should satisfy the Nyquist-Shannon
sampling criterion [129]. The Nyquist-Shannon sampling theorem states that all the infor-
mation from a continuous-time signal of finite bandwidth could be captured in a discrete
sequence of samples, given a sufficient sampling rate. Such a sampling rate is only consid-
ered sufficient when the fidelity of the original signal is preserved during reconstruction
of the continuous-time signal from its discrete samples [130]. Thus, the Nyquist frequency
is defined as half the sampling rate and is therefore the maximum frequency that can be
detected for a given sampling rate. Since in this work the signals were sampled at 50 Hz
and archived at 1 Hz, the maximum frequency that could be detected was 0.5 Hz.
Literature which investigates the important subject of sampling and optimal PV per-

formance measurement is sparse [131, 132]. The most widely accepted guideline, IEC
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61724:1998 [36], recommends that the sampling interval for parameters which vary directly
with irradiance shall be 1 min or less. Given that solar irradiance is highly volatile, a 1 min
sampling interval is very large and thus it can cause aliasing. Even though the intent of
IEC 61724:1998 was not to capture transient-level detail, but rather to suggest a sufficient
sampling rate for characterizing performance over an averaging interval [133, 134], aliasing
caused by an insufficient sampling rate can in turn cause unexpected deviation from the
true value when the measurand varies and thus introduce error in average or integrated
quantities.

The most important signals in PV monitoring are those that represent power: Gy, Py
and Pry. These signals are integrated over time to enable the calculation of energy, as each
value stored at a certain archival rate represents the average over that interval. System
KPIs such as net energy from array, E4, net energy to utility grid, Eryn and PR are then
derived from these quantities. In this work, since the commissioning of the systems under
study in June 2006, PV system and meteorological quantities were sampled by the data
logger at 50 Hz, then averaged and archived at 1 Hz, 16.67 mHz and 1.11 mHz, as previously
mentioned. This far exceeded the sampling guidelines of IEC 61724:1998, for the purpose
of creating a high-resolution data set of PV performance which captured transient effects
such as volatility due to the weather [135] and MPP tracking step response [136]. The need
for this highly resolved data diminishes when the goal of the analysis is to extract global

features, such as energy yield and degradation rates.

Simulated sampling rates

Since the highest archival rate was 1 Hz, a one month long selection of 1 Hz averaged data
from the ucy05 system, as well as the prevailing weather conditions, was extracted from
the database in order to investigate whether the data could sufficiently characterize PV
performance. Realistically, due to the 50 Hz sampling rate, aliasing due to sampling was
not expected. Nevertheless, different sampling rates were simulated (based on the 1 s data)
in order to assess whether strict compliance with the sampling guidelines in IEC 61724:1998
would be sufficient. For the purpose of this analysis, 1 Hz data was decimated [137, 138] by a
factor of 10, 60 and 900 to simulate sampling intervals of 10 s, 1 min and 15 min respectively.

Analysing data at various sampling rates could show whether noise was introduced at
excessively high sampling rates and whether frequencies were lost at low sampling rates.
A low-pass filter is required first in the chain to mitigate distortion due to aliasing by
downsampling. Three types of infinite impulse response (IIR) filters are typically used as
anti-aliasing filters: Butterworth, Chebyshev Type I and Chebyshev Type II filters. Butter-
worth filters feature a maximally flat frequency response in the passband but weak roll-off,
whereas Chebyshev Type I filters feature ripple in the passband and steeper roll-off and
Chebyshev Type II filters feature flat passband response, ripple in the stopband (frequency
leakage) and steeper roll-off. The frequency response of these filters for a cut-off frequency
of 0.1 Hz and filter orders of 2, 4 and 8 is shown in Fig. 3.4. Of the three filter types, the
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Figure 3.4: Frequency response of Butterworth, Chebyshev Type I and Type II filters.

Chebyshev Type I filter’s features were the most desirable for this application. The filter
was applied in both the forward and reverse directions to remove phase distortion. The

gain response, G,(w), of the filter is given by Eq. 3.2:

Go(0) = ———— (3.2)

1+ £Tiw
Wo
where T, is a Chebyshev polynomial of nth order. In this case, n = 8 was chosen.

Data was decimated by first reducing high frequency signal components with a low-
pass filter of cut-off frequency 0.1 Hz, 16.67 mHz and 1.11 mHz and then downsampling. A
comparison of the 1s data to the downsampled 10s, 60 s and 15 min is shown in Fig. 3.5,
Fig. 3.6 and Fig. 3.7 respectively. Through visual analysis, it can be seen that beyond 10s

sampling interval, some amount of information is lost.

Spectral analysis

To observe the frequency content of each signal, the discrete Fourier Transform (DFT) was
computed using the Fast Fourier Transform (FFT). The DFT converts the signal from the

time domain into the frequency domain and is given by Eq. 3.3:
N-1
Xk — Z xne—IZITkn/N (33)
n=0
where:
* X, is a sequence of uniformly spaced samples of signal x(t),

e k=0,...,N-1,

« N is the number of samples.

25



Gi

1000 +
500 4
0-

1000 +
750 ~
500 -~
250 ~

O-

Ptu

900 -~
600 ~
300 1

0-

Tm

50 ~

40 4

30 4

20~

May 15 00:00 May 15 06:00 May 15 12:00 May 15 18:00 May 16 00:00
Time

Figure 3.5: Comparison of 1s archived data to 10 s downsampled signals.
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Figure 3.6: Comparison of 1s archived data to 60 s downsampled signals.
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Figure 3.7: Comparison of 1s archived data to 900 s downsampled signals for a single day.

The magnitude of the DFT was then computed, squared and plotted versus frequency to
calculate the power spectral density (PSD) by Eq. 3.4:

At
Sxx(f) = N ,  —1/2At < f < 1/2At (3.4)

N-1
Z xne—IZT[fl’l
n=0

where At is the sampling interval. For a one-sided plot, the values at all frequencies except
0 and 1/2At, are multiplied by 2 so that the total power is conserved.

Since the PSD shows at which frequencies variations are strong and at which frequen-
cies they are weak, a linear trend and/or drift in the time domain will be converted to a
high power component at extremely low frequency. Therefore, a linear trend and the mean
were removed from the data prior to calculating the DFT and PSD by fitting a straight
line with OLS and keeping only the residuals. From the PSD of 1Hz P, data, shown in
Fig. 3.8, it can be seen that most of the information was contained at low frequencies and
that there were short peaks and ripples at specific frequencies. Since the PSD was dom-
inated by noise, Welch’s method was used to reduce the effect of noise on the PSD plot.
This method averages multiple spectra to compute the PSD by binning the time series at
the fundamental period (i.e. 24 h) and then computing the PSD for each bin and averaging
over all PSDs. The result can be seen in Fig. 3.9 which shows more clearly the locations
of significant frequency components. The identified peaks on P4 at 0.2175Hz, 0.328 Hz,
0.345Hz, 0.4375 Hz and 0.454 Hz corresponded to periods of 4.60s, 3.05s, 2.90s, 2.29 s and
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Figure 3.8: PSD plot of the detrended and demeaned 1s Py.
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Figure 3.9: PSD plot of the detrended and demeaned 1s P4 with Welch’s method.

2.20 s respectively. These frequencies could only be detected on the P4 and not on Gy (see
Fig 3.10a), Pry (see Fig 3.10b) or T,, (see Fig 3.10c). An interesting feature of this analysis
was the profile of these “high” frequency peaks, which were different for each sensor. As Gy
was measured with a thermopile pyranometer which could not respond to fast irradiance
changes because of its thermal mass, high frequency content were effectively filtered out by
the sensor. Similarly, the PSD of T,, showed only noise due to inertia against temperature
fluctuations. Regarding the frequency content of the Py, no peaks can be distinguished
which meant that they were filtered by the inverter. Finally, the peaks shown in the PSD
plot of P4 could be attributed to irradiance variations, since a PV panel/array would gen-
erally respond much faster than a thermopile pyranometer. To view the high frequency
content in the time domain, a high-pass Chebyshev Type I filter with cut-off frequency
f = 0.1Hz was used with the 1 Hz P, data to remove the low frequency content. A plot of
the original data as well as the filtered high frequency content is shown in Fig. 3.11.

For completeness, PSD plots of P4 downsampled at 0.1 Hz, 16.67 mHz and 1.11 mHz
were constructed. As expected, the plots have shown that high frequency content was

missing. The only difference was on the 1.11 mHz (900 s interval) downsampled data which
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Figure 3.10: PSD plots of the detrended and demeaned 1s Gy, Pyy and T, with Welch’s
method.

featured two low frequency peaks, at fy = 1.157407 « 10"°°>Hz and its harmonic at f; =
2.314815 = 10"9°Hz, corresponding to the diurnal and semi-diurnal cycles respectively.
These are shown in Fig. 3.12.

In conclusion, it was shown that measurement data used in this analysis retained high
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frequency variations that were lost when the sampling interval was increased to be in line
with current practices and guidelines. Therefore, it was proven that the experimental setup
used in this work could be used to analyze PV performance without being hindered by
aliasing. The ability to record high frequency variations was dependent on the type of
sensor used; sensors with thermal mass did not respond as fast as the PV panels/arrays to

fast irradiance changes.

3.1.3 Quality assurance for measurements in the field

To ensure correct representation of the results, identify sensors which exhibit drifts and
maintain measurement accuracy, regular calibration campaigns were performed for the
resistive sensors in Fig. 3.1 which were used to measure the V4 and I, as well as for the
data logger and the Kipp & Zonen CM21 pyranometer.

Calibration was performed strictly on sunny days and under clear skies, to minimize
measurement error from fast fluctuations of the I, due to clouds overhead. Calibration
was performed at most every four to five weeks and all historical measurements were kept

in a record with the absolute calibration and drift of each sensor.
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Three people were involved in each calibration campaign. All three were required to
carry synchronized time sources and record the measurement given by the apparatus they
were responsible for at pre-defined intervals (usually every 10s.) Multiple measurements
were recorded for each type of variable and sensor which were then averaged in post-
processing.

One person was responsible for measuring the V, and I4 directly from the PV array
cables while in operation. Another person was responsible for measuring the output of the
array current and voltage sensors at the data logger. The third person was responsible for
recording the value written into the database by the data logging software through a PC.
Through this procedure, it was easy to detect the calibration of the sensors, pinpoint the
cause of measurement errors, e.g. direct current (DC) cable losses, sensor cable problems,
sensor element failures, data logger interface problems, misconfigured software calibration
factors.

The historical calibration record of each sensor was examined for drifts after each cal-
ibration campaign and sets of calibration factors were calculated and used to correct the
response of each sensor. Each set of calibration factors was applied on the appropriate data
logger channels of V4 and I4 by adjusting the sensitivity. Therefore, this ensured that the
measurements used throughout this work to calculate the fifteen-minute average P4 were
accurate and the sensor variance was traceable.

Regarding module temperature, T,,, the measurements and the placement of the back-
of-module temperature sensors were cross-checked with an accurate IR camera in order to
ensure that the measured T,, was not skewed due to seasonal shading or vicinity to hot
spots on the module.

Lastly, the CM21 pyranometer which was used throughout the evaluation period was
calibrated every two years by the manufacturer or accredited calibration laboratories. When-
ever the CM21 was dismounted for calibration, it was replaced by a calibrated secondary
standard EKO MS-802 pyranometer. This ensured that measurements would continue to be

recorded with the same standard.

3.2 Indoor test laboratory

The Pasan SunSim 3c solar simulator was used to measure the performance of each PV
module at standard test conditions. IEC 60904-9:2007 [139] classifies sun simulators in three

classes, A (the best), B and C depending on three parameters, summarized in Table 3.4. From

Table 3.4: Uncertainty of the solar simulator measurements.

Parameter Class A SunSim 3c
Non-uniformity of irradiance < 2% < 1.0%
Pulse instability (long term) < 2% < 1.0%

Spectral irradiance distribution < #25% < £12.5%
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the above technical parameters, the SunSim 3c could be rated class AA — AA - AA (or A+
according to TUV).

The expanded uncertainty of measurement including measured temperature unifor-
mity, irradiance uniformity, spectral mismatch from AM1.5 using spectroradiometers and

IR temperature sensors was calculated as 3.5 % for the power at STC, Psrc.

3.2.1 Quality assurance for measurements in the lab
Large area pulsed solar simulator

The same standards of measurement quality and calibration were also implemented for the
large area pulsed solar simulator (LAPSS), as it was the basis of the indoor experimen-
tal approach. Two new c-Si PV modules were designated as the reference modules, and
were only used to verify calibration of the flasher. These two modules were sent initially
once, and later twice a year, to the calibration centre of the Joint Research Centre (JRC) of
the European Commission, which provided traceable calibration certificates with expected

electrical characteristics at STC which were used to adjust the sensitivity of the flasher.

Periodic quality control

Prior to every PV module test at STC, one of the reference modules was mounted on the
flasher and used to verify calibration. The results were recorded in the database and are

graphed in Fig. 3.13, along with the 95 % confidence interval (CI).
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Figure 3.13: Pgyc of the reference modules used to calibrate the indoor solar simulator.

Round-robin calibration

In addition to accredited calibration, two round-robin tests were performed throughout
the evaluation period, to test the stability and calibration of the flasher with different PV
technologies. The first round-robin module test was performed between the UCY, the Aus-
trian Institute of Technology (AIT), the Institut fiir Photovoltaik, Universitat Stuttgart (ipv)
and the Zentrum fiir Sonnenenergie- und Wasserstoff-Forschung (ZSW). The scope of the
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round-robin test was to accurately measure the PV modules’ initial performance at STC
and to perform full characterization by using common indoor testing procedures according
to international standards. The end result was a calibration value of the testing equipment,
adapted to each module type under study.

The first round-robin test was concerned with the accurate measurement of the IV curve
of the PV modules at STC, the optical characterization to find defects and the comparison of
the results between the test facilities. Testing was done on unexposed control modules: one
Schott Solar ASI103 a-Si module, one TSMC TS150 CIGS module and one Enfoton 240QC
poly-Si module.

For the accurate comparison of the thin-film modules’ Pg7(, the spectral correction
factor had to be calculated and applied. This was done by in situ measurement of the mod-
ule’s Ig- at AM1.5 global spectrum and under high irradiation. The in-situ-measured I5c
was then extrapolated to STC and compared to the output of a calibrated c-Si reference
cell, mounted in-plane. Due to the Earth’s movement, AM1.5 global spectrum (AM1.5 G) is
available outdoor only twice a year; February—April in Cyprus and April-May in Austria
and Germany. These periods were calculated through simulation using the Michalsky sun
position algorithm [140]. The equation for the air mass, AM is shown in Eq. 3.5:

1

AMG cos(6,) (35

where 6, was the zenith angle at the PV testing site, calculated through the sun position
algorithm.

Testing at the UCY was performed in March 2014 and April 2015. Prior to testing
at STC, the poly-Si module was exposed to 5kW h/m? irradiation under load, in accor-
dance to IEC 61215-1-2:2016 [141]. The corresponding standard for thin-film modules,
IEC 61646:2007 [142], calls for light-soaking at successive intervals of 43 kW h/m? irradia-
tion under load, until stabilization of Pgr¢, measured using the indoor solar simulator. In
Cyprus, the Pg1¢ was stable after 43 kW h/m? irradiation. While performing light-soaking
on the modules, the modules’ electrical characteristics, as well as meteorological param-
eters were being recorded. The desirable spectrum (AM1.5 G) was available outdoors and
therefore the I was measured as close and extrapolated to 1000 W/m?, AM1.5G and 25 °C.
The extrapolated I~ was then used to calculate the spectral mismatch factor (MMF) which
was subsequently used to adjust the solar simulator sensitivity. The calculated spectral
MMF varied by PV module technology:

« Schott Solar ASI103: 8.67 %
« TSMC TS150: 0.79 %
« Enfoton 240QC: 0.76 %

The spectral MMF from AM1.5G for the TSMC and Enfoton modules were insignificant

and were thus not applied in order to avoid introducing further uncertainty to flash tests.

33



On the contrary, the spectral MMF for the Schott Solar ASI103 module was significant and
contributed greatly to correct measurement of the module rating at STC.

To further ensure that the results were consistent across all test laboratories, EL imaging
was performed before shipping the modules and upon reception at their destination; the
AIT or the ipv. Comparison of the EL images before shipping and upon reception would
reveal damaged incurred by shipping and handling. It was expected that any damage on
the PV cells would affect the measured Pgyc. Fortunately, that was not the case during the
first round-robin. But, during the second round robin, microcracks could be identified from

the EL image, as shown in Fig. 3.14a and Fig. 3.14b.

(a) Before transport (b) After transport

Figure 3.14: Small microcracks from shipping and handling (a) before and (b) after reception
back in Cyprus.

The results of the first round robin have shown very good agreement for the Schott
Solar a-Si and TSMC CIGS module results between the UCY and AIT, at 99.85 % and 98.82 %
respectively. The STC results for the Enfoton poly-Si module have shown up to 2.92 %
difference between the two test labs, which was within the uncertainty of measurement.
All three results were within the experimental uncertainty and validated the correct rating
of the modules at STC. Similarly, the comparison of the results between UCY and ipv has
shown maximum differences of up to 3.8 W.

One year later, the round-robin was repeated between the same research labs. The
results have shown differences between 0.37 % to 0.95 % from the first round-robin. The
differences were negligible and have therefore verified the stability of the experimental

setup.
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Chapter 4

Data Organization

4.1 PV performance measurements

Fifteen-minute average measurements of the Vy, I4, T,,, and G; were used to develop the
work in this dissertation, to assess the Rp_ of each PV array in the field. The G; was mea-

sured on the POA, using a calibrated Kipp & Zonen CM21 pyranometer. Using sampled
2., Varly

n b
and T = 1/50Hz = 0.02s was the sampling interval. Measurements were extracted from

the database for the period between 2006-06-01 and 2015-05-31, therefore the first nine full

years of operation. Monthly PR time series, which were constructed using fifteen-minute

V4 and Iy, fifteen-minute average P4 was calculated as P4 = where n =15+ 60« %

average data in Eq.2.3, for the PV systems listed in Table 3.1, are shown in Fig. 4.1, from
June 2006 to May 2015.

The PR time series presented in Fig. 4.1 have been produced using the fifteen-minute
average measurements and manual monthly energy yield corrections (in kW h) based on
the ad hoc back-filling procedure using similar days of measurements, which was described
in Ch. 2. These historical corrections accounted for most of the energy lost due to system
faults and outages and were being calculated since the commissioning of the systems in
June 2006 for the purpose of energy yield comparisons between the technologies. They are
plotted in Fig. 4.2 and are displayed here for completeness’ sake, to visualize them alongside
the monthly PR time series shown in Fig. 4.1. In Ch. 5, a methodology will be described

that deals with this subject, in the context of the unsupervised degradation rate estimation.

The main requirements that enable the analysis presented in this work are good quality
measurements of P4 and good quality measurements of G;. Although PV reference cells
could also be used as irradiance sources (to offset the cost of a quality pyranometer) [143]
their measurements can be affected by the same degradation modes as conventional PV
modules. The presence of a temporal drift in the output of the reference cell, due to degra-
dation, would make the estimation of the RDE impossible.

Lastly, metadata such as the GPS coordinates of the site of installation of the PV system,

as well as the timezone of the location and the angle of inclination of the PV array were
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Figure 4.1: Performance Ratio (PR) of the PV systems under study at the University of
Cyprus, from June 2006 to May 2015.
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Figure 4.2: Monthly energy yield corrections, estimated empirically.
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required, to be able to compute the sun’s trajectory, the angle of incidence, 840; and the

sunrise and sunset times.

4.2 Prevailing meteorological conditions

The prevailing meteorological conditions at the PV Technology test site were typical for
the eastern Mediterranean region, with mostly sunny days, as shown in Fig. 4.3a and high
ambient temperatures during the day, as shown in Fig. 4.3b. From day 75 until 244 of each
year, the irradiance at the POA reached its highest point (8 kW h/m?.)
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Figure 4.3: (a) Monthly and (b) daily irradiance measured with a Kipp & Zonen CM21 pyra-
nometer on the POA and ambient temperature.

The highest measured G; and T,,,, were observed at instances of low AM and low 840;.
This can be seen in Fig. 4.4a and Fig. 4.4b which shows plots of the fifteen-minute average
Gy and T,,, at different levels of AM and 0,0;.
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Figure 4.4: Fifteen-minute average G; measured on the POA and ambient temperature
showing interaction with (a) Air Mass, and (b) Angle of Incidence.

4.3 Exploratory data analysis

4.3.1 Distribution of data

The distribution of the data can be checked graphically (e.g. histogram, quantile-quantile
plot), or formally. An initial assessment of the underlying distribution, is shown in the
histograms for P, in Fig. 4.5 and for the instantaneous performance ratio, iPR (which is
defined in Sec. 5.2) in Fig. 4.6. The underlying data were selected for daylight periods only,
to avoid inflating the probability density function (PDF) with zeroes. From the histograms
it can be seen that the P, distribution resembled a zero-inflated variable, than a normally
distributed one. The iPR distribution was also non-normal.

Formal statistical tests measure the uncertainty of the Hy and report a p-value, which
is the probability of rejecting the Hy, given that it is true. In this case, the Hy assumes

that the data is normally distributed. If the p-value is greater than «, it means that there
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Figure 4.5: Histograms of the P4 of the PV systems under study, restricted to daylight only.
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Figure 4.6: Histograms of the iPR of the PV systems under study, restricted to daylight only.

is no evidence to reject the Hy. Otherwise the Hy must be rejected. Therefore, statistical
significance is achieved when the p-value is less than the defined a.

To test data normality in a formal way, two well studied test statistics were used: 1)
the Shapiro-Wilk test [144], and 2) the Kolmogorov-Smirnov test [145, 146]. These two
non-parametric tests were used to assess the normality of the data. Non-parametric tests
do not specity a distribution a-priori, therefore do not rely on the assumption of a known
population PDF for their validity [147].

The Shapiro-Wilk H, assumes normality, therefore a low p-value of the Shapiro-Wilk
test statistic rejects the Hy. The p-values are shown below for the P4 in Fig. 4.7 and the
iPR (which is defined in Sec. 5.2) in Fig. 4.8. The y-axis was square-root transformed for
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better visual inspection. It can be seen that the p-value of W for the P4 was below the
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Figure 4.7: Square roots of daily p-values of the Shapiro-Wilk test statistic on Py.

significance level @ = 0.05 across all PV systems, whereas for the iPR, and especially for
ucy12, there were many instances where the Hy could not be rejected.

The Kolmogorov-Smirnov test estimates the distance between the sample cumulative
distribution function (CDF) and the reference CDF. The H, is that the sample is drawn
from the reference distribution and again, a low p-value rejects the Hy. The p-values of the
Kolmogorov-Smirnov test statistic are shown in Fig. 4.9 for the P, and in Fig. 4.10 for the
iPR. The Kolmogorov-Smirnov test produced similar results to the Shapiro-Wilk for the
P, but different for the iPR. Whereas the W p-value indicated some notion of normality,

the D,, was stricter and its p-values rejected the notion of normality.

4.3.2 Correlation of the covariates

The Pearson correlation coefficient, px y, is a measure of the strength and direction of as-
sociation that exists between two continuous variables, X and Y. Its value can range from
-1 for a perfect negative linear relationship to +1 for a perfect positive linear relationship.
A value of 0 indicates no relationship between two variables. The Pearson correlation co-

efficient is obtained by dividing the covariance of the two variables, E[(X - X)(Y - )], by
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Figure 4.8: Square roots of daily p-values of the Shapiro-Wilk test statistic on iPR.
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Figure 4.9: Square roots of daily p-values of the Kolmogorov-Smirnov test statistic on Pg.
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Figure 4.10: Square roots of daily p-values of the Kolmogorov—-Smirnov test statistic on iPR.

the product of their standard deviations, as in Eq. 4.1.

E[(X - x)(Y -5
PXY = d Gxi( ) (4.1)
x0y

Near perfect correlation was observed between P4 and Gy, with a 0.97 correlation coef-
ficient, for all the PV systems under test, as shown in Fig. 4.11. As expected, other variables
also had strong correlation to the P4, namely the 0407 and the T,,,. These independent vari-
ables were also strongly correlated to the G; and if they were included in the data model,
confounding would occur.

The relationship between P4 as a function of G; and T,,,, was also explored. In Fig 4.12
it can be seen that most of the variability in P4/G; could be found at lower T,,,. From the
figure, distinct linear relationship could be distinguished, although for ucy10 and ucy12,
multiple slopes could be distinguished.

Similarly, the relationship between P, as a function of T,, and Gy is shown in Fig. 4.13.
From the figure, a strictly linear relationship was difficult to ascertain. For this reason,
which is additionally validated by other studies in the literature [148, 149, 71, 150, 151], this

work does not use T,, for correcting P4 measurements.
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Figure 4.11: Pair-wise Pearson correlation coefficient between pairs of variables.

4.4 Data qualification

The guidelines in [36] were used to ensure that the measurement data did not contain sys-
tematic errors and that they were measured accurately, which was checked via the monthly
calibration campaigns described in Sec. 3.1.3 and the periodic accredited calibration.

The data qualification flowchart is shown in Fig. 4.14. The first step in the analysis of
measurement data was the removal of invalid values and the detection of missing times-
tamps. To assess the amount of data missing from the complete fifteen-minute data set, the
data were aligned to a regular grid and the gaps were filled with NA values. Invalid data
was defined as points with invalid values, such as NaN, Inv, Inf and measurement data that
were outside the measuring range of the instruments. These out-of-range measurements
consisted of a few instances of spikes and stuck values which recorded power generation
during the night.

The above procedure was fully automated, to minimize human error, and made use
of the sunrise and sunset times calculated as described in Sec. 3.2.1. Fig. 4.15 shows the
amount of missing data points from the raw fifteen-minute data set, annually and monthly,
after performing data qualification. Two areas of about 300 missing data points from the
fifteen-minute data set were found in 2013 and a lesser amount in 2011. The events in 2013
corresponded to a database corruption issue due to a power cut and inability to recover
the data points for specific days. The events in 2011 corresponded to the rolling black-outs
issued by the Electricity Authority of Cyprus, following catastrophic damage to one of its
power plants.

Lastly, the only manual manipulation on the data was a correction of data-logger mis-

configuration during the first few months of operation of the ucy14 PV system back in June
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2006, by applying an estimated calibration factor to the V4 and I4 measurements.

4.5 On-line analysis

In this approach, the evaluation is based on analysis of field measurement data and con-
sists of a pipeline of data filtering [65, 80], outlier identification [83, 152], dimensionality
reduction [91, 153], seasonal decomposition [154] and trend modelling [103, 155, 156] pro-
cedures.

Each PV system and its metadata were treated as members of list of PV systems un-
der study. This abstracted the analysis from the actual PV system specifics and allowed
the development of efficient, reproducible and unsupervised data analysis. The split-apply-
combine paradigm [157] was used extensively to shape the unsupervised Rp, estimation
approach presented in this dissertation. Following this paradigm, functions used to manip-
ulate data were created to be as generic as possible by accepting general data structures,
performing the specific transformations and returning the same type of data structures. In
R, this functionality is provided by the dplyr [158] and purrr [159] family of tools. In this
work, each member of the list was treated as a separate entity for analysis. The generic func-
tions were applied on members of the list using the iterative split-apply-combine paradigm.
The use of the iterative approach made large parts of the analysis open to explicit paral-

lelism which was extensively used throughout the analysis.

4.6 Challenges

As described in Sec. 4.3, PV system and meteorological measurements did not follow a nor-
mal distribution. This posed difficulties in applying statistical inference tests that assume
normality.

Some possible solutions to this challenge were a) to apply a transformation to the data
to make them normally distributed (e.g. Box-Cox), b) use statistics that are robust or c) use
non-parametric tests. In this work, the third option was preferred, to make sure that the
proposed methodology could be applied on PV systems in a different climate region, un-
der different prevailing meteorological conditions. Non-parametric tests can be especially

useful with a small sample that is skewed or a sample that contains several outliers.
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Figure 4.12: Fifteen-minute average P, as a function of the G; measured on the POA and
interaction with T, for the PV systems under study. 4
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Chapter 5
Detection and Treatment of Outliers

Work from this chapter has been published in [160, 161, 162]

5.1 Introduction

The subject of outlier detection in PV is very important for securing the technology and
assessing power delivery in a dynamic operating environment. In the field of PV, listwise
deletion, excessive filtering and discarding of un-favourable data are commonly employed
in the assessment of PV performance in the field and Rp, estimation studies. In this work,
a rigorous statistical methodology was developed, to improve upon the existing ad hoc
approaches, making use of all measurement data available for analysis.

The developed methodology treats the outlier detection task as a one-class classification
problem, since the measurement data were not labelled in any way. This meant that there
was no indication of catastrophic system states, only the statistics of normal operation
could be discovered. Abnormal operation, during e.g. shading, cloud coverage, system and
grid faults was assumed to be intermittent and had to be identified from the data. Even
though instances of total system outages were logged for the PV systems under study, the
assumption that there was no prior information on the state of the system was a reasonable
one to make since since, in the real world, PV systems are very rarely maintained and
monitored the same way as in a research-grade infrastructure.

Alternatively, in a supervised learning fashion, a theoretical model of PV performance
could be constructed to provide a labelled data set. This would have the advantage of being
able to compare the expected to the actual performance, assuming that all extrinsic factors
could be modelled or measured (e.g. PV panel degradation, shading, clouds, soiling, precip-
itation, PV panel cooling from the wind, interactions with fauna and flora), which cannot be
assumed to be true in every case. Typical model-based fault detection for PV performance
would thus require investing in sensor hardware or specialized equipment that can perform
IV characterization in situ, which could provide much more information than single point
measurements.

The main requirements that defined the developed methodology were the following:
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« Continuous updating of the underlying detection task as new data becomes available.

Minimization of false positives.

Ignore seasonal variability.

Robust so that it works on data that is not normally distributed.

« Computationally efficient so that it converges quickly.

5.2 Data transformation

To be able to detect an outlier in time series of P4, a relatively stable metric needed to
be constructed, which was later assessed for the presence of outliers (or anomalies). One
option was to transform the P4, and construct a performance metric that aided the detection
of outlier points. Since, by definition, the P4 was perfectly linearly correlated to the Gy, their
ratio normalized by the PV module’s P,,,, captured most of the PV system losses. This
is evident in the Pearson correlation matrix plot in Fig. 4.11, which plots the correlation
between the variables in the data set and in Fig. 4.12 which proves the linear relationship.

Therefore, for the purpose of this analysis, the new normalized and scaled metric was
defined in order to generalize the proposed outlier identification procedure across all PV
system scales and irradiance levels. The metric was defined by P4 measurements normal-
ized to the array P,,,, and linearly extrapolated to Ggr¢ = 1000 W/m?, according to Eq. 5.1.

. P,
iPR= —4 — (5.1)

Py

nom Ggrc

The metric was defined as the iPR, and is closely related to the PR. The main difference was
that the PR is formally defined for daily or monthly or annual aggregates [36], whereas the
iPR is a static metric.

This means that the fraction 2 should essentially represent a straight line, in the ab-

G
sence of outliers. The ratio % makles sense as a data transformation from a physical point
of view, as the effects of solar variations and the 11-year solar cycle [163] would be factored
in the analysis.

Under ideal conditions, the iPR should follow a straight horizontal line around 1. Under
real conditions, this ratio is affected by factors such as the effect of temperature on the PV
panel voltage and current, reflection losses due to the angle of incidence of G; and front PV
panel surface soiling, recombination, physical defects in the PV panel, fast moving clouds

and other secondary factors.
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5.3 OQutlier detection

Throughout the years of field exposure it was observed that, under some circumstances,
some of the arrays under study were partially shaded in the early morning or in the late
afternoon due to foliage or constructions nearby. Furthermore, even though all of the mod-
ules were kept clean throughout the evaluation period, even a small amount of soiling
could affect the estimation of the Rp, . Other secondary effects such as abnormally high
or low ambient temperature/irradiance and unpredictable cloud formations contributed to
the variability of the PR, adding additional uncertainty to the results [164]. Due to the
unpredictability of the aforementioned events and the instability of the temperature coef-
ficients [165, 166], physical or empirical PV models were not adequate in filtering them
out. Non-parametric methods were therefore chosen to try and explain the variance of the

metrics and mitigate some of the uncertainty.

5.3.1 Boxplot outlier rule
Introduction

One statistical method for identifying outliers is the boxplot outlier rule, where the lower

5th percentile), and the

quartile (Q1, 25th percentile), the median, the upper quartile (Q3, 7
interquartile range (IQR) (/QR = Q3- Q1) are used to describe the variation of the data. The
boxplot method ignores the mean and standard deviation, which are influenced by extreme

values (outliers). The rule can be expressed as:

x1 > Q3+ 15IQR| Jx1 < Q1 - 1L5IQR (5.2)

The boxplot outlier rule is employed to detect values outside an estimated interval. By
definition, 50 % of all measurements are within +0.5/QR of the median, which provides a

robust measure of scale.

Bootstrapping

Bootstrapping is a popular method for providing confidence intervals and predictions that
are more robust to the nature of the data [167], therefore, one of the appeals of the bootstrap
is its generality [168]. Any estimate can be bootstrapped, since all that is needed are an
estimate and a sampling distribution. This generality allows researchers to solve otherwise
intractable problems.

Since the underlying data were not normally distributed, the non-parametric bootstrap
was used to empirically estimate the sampling distribution of the boxplot statistics, without
making assumptions about the form of the population and without deriving the sampling
distribution explicitly. The bootstrap allowed the estimation of confidence intervals on each

statistic which were used to assess the uncertainty of the proposed approach.
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The essential idea of the nonparametric bootstrap is as follows: a sample of size n is
drawn from among the elements of the sample S, sampling with replacement to create the
bootstrap sample S;. Next, a statistic T for each of the bootstrap samples, i.e. T = #(S)) is
computed. This procedure is repeated a large number of times, R, selecting many bootstrap
samples. In this work, the number of replications were set to R = 1000, as common practice
in other fields.

From the bootstrap samples, statistics were calculated to describe the mean, the bias

and the confidence interval of the process. The mean was estimated as:

R ..
21 Th

T = E(T) = -

(5.3)

which was then used to estimate the bias of T, i.e. B =T -T. Similarly, the estimated

bootstrap variance of T7,

Var(T") = 5.4
ar (1) = L 5.4
was used for the bootstrap estimated standard error of T:
R —
~ 2p-1(T, - T)?
SE(T*) =\/ b 1R b1 (5.5)

Finally, confidence intervals were calculated with the quantile function, which is related to
the CDF. The quantile function gives the value at which the probability of a random variable

is less than or equal to the given probability or significance level:
Qa/2) < CI < Q(1 - a/2) (5.6)

where « is the significance level (@ = 0.05 in this work) and Q(x) the quantile function.

The performance of the bootstrap is discussed in more detail in Appendix A.2.1.

Bootstrapped statistics

More specifically, the non-parametric balanced bootstrap with stratification was used. Points
with higher weights were sampled at least once, whereas points with lower weights were
sampled at most once. The weights specified to stratify the analysis weighted daytime val-
ues at 1 and night time values at 0. Night time data were labelled by calculating the sun’s
trajectory across the sky using Michalsky’s algorithm [140], as also used in Sec. 3.2.1. In
this case, night time data were weighted less than daytime data, to avoid sampling from
instances when the PV systems were off.

Boxplot statistics were bootstrapped across the fifteen-minute iPR, day-by-day and
month-by-month. Random sampling was performed separately on each PV array mea-

surement data subset (i.e. daily and monthly subsets) to get a better sense of the individual
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measures of bias.

For every PV system and for every daily and monthly subset, an index was defined to
describe outlier points, which were outside the interval given in Eq. 5.2. Data points outside
this interval were then replaced with the bootstrapped median which served as a robust
measure of the expected iPR, to create the iPR" dataset. iPR" was then back-transformed
into P} by inverting the relationship in Eq. 5.1. This is a form of winsorizing, where the
effects of extreme values are reduced.

The amount of data points identified as outliers is listed in Table 5.1 and Table 5.2 re-
spectively for the daily and monthly outlier thresholds. As expected, the finer daily

Table 5.1: Percentage of data points outside the daily bootstrapped outlier thresholds.

System < min > max <Q1 >Q3
[%] (%] [%] [%]

ucy04  3.122 2296 7.258 7.152
ucy05 2.273  3.110 6.597 7.419
ucy06 1932 2392 6.471 7.194
ucy07  2.144 0595 7.226 6.583
ucy08  1.807 0422 7.439 6.521
ucy09 2584 0434 7.684 6.468
ucyl0 2496 0.688 7.545 6.446
ucyll 2279 0588 7.904 6.460
ucyl2 0.786  0.270 6.446 6.213
ucyl3 2612 0535 7.771 6.709
ucyl4 1910 2283 7.682 7.144

Table 5.2: Percentage of data points outside the monthly bootstrapped outlier thresholds.

System < min >max <Q1 > Q3
[%] [%] [%] [%]

ucy04 4148 2.699 11.368 11.380
ucy05 3.007 3.659 11.384 11.355
ucy06 2596 2710 11.331 11.383
ucy07  3.693  0.624 11377 11.406
ucy08  3.293 0467 11.389 11.361
ucy09 4383 0515 11.388 11.350
ucyl0 3.800 0.893 11430 11.382
ucyll 4.224 0.707 11460 11.346
ucyl2 1830 0.233 11.320 11.351
ucyl3 4441 0830 11409 11.384
ucyl4 3.038 2978 11404 11.382

thresholds resulted in less points being classified as outliers, across all systems.
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Uncertainty

The uncertainty of the outlier treatment procedure proposed in this chapter was assessed by
constructing a confidence interval on bootstrapped estimates. Bootstrapping was necessary
in the case of PV system measurements and their transformation since the non-normality
of the underlying distribution introduced bias to the confidence intervals.

The constructed 95 % confidence interval can be seen in Fig. 5.1 and Fig. 5.2 for the daily
and monthly subsets of iPR« respectively. The violet points represent the original data, the
yellow range represents the CI of the median, the blue range represents the CI of Q1 and
Q3 and the green range represents the CI of the upper and lower limits. The confidence

interval in iPR was then back-transformed into up, .

Effectiveness of the boxplot method

To assess the effectiveness of the proposed method, a graphical exploration of the iPR* and
the P, was performed. First of all, systems that suffered from partial shading were identi-
fied and typical shading periods were plotted. Secondly, the effect of moving clouds was
compared before and after applying the outlier detection method. Thirdly, the effectiveness
of the daily thresholds was compared to the coarser monthly thresholds. On the one hand,
the monthly thresholds were more robust to long periods of total system downtimes but
provided less fidelity than the daily thresholds. On the other, the daily thresholds provided
stricter confidence intervals which were not skewed by unpredictable weather conditions.

Fig. 5.3 shows the iPR" and the corresponding P4 of the ucy07 system in spring and
winter with the daily outlier thresholds, as a typical example. The graphs show the orig-
inal data as a solid line, the daily confidence interval of the outlier detection method as a
shaded background and the detected outliers as individual points. From these graphs, it
can be seen that outlier points were successfully detected. The outliers manifested in the
early morning and late afternoon be correlated to partial shading and high 64; reflection
losses. In addition, there were two outlier points detected around noon on Jan.19 which
corresponded to short-term PV system outages.

Similarly, plots of the data along with the monthly outlier thresholds can be seen in
Fig. 5.4. It can be observed that the coarser monthly thresholds provided less fidelity than
the daily outlier thresholds, since several instances of early morning or late afternoon shad-
ing were not flagged.

Finally, the daily and monthly methods were compared during periods of bad weather

conditions. This is seen in Fig. 5.5, which shows data from the ucy14 system in winter 2015.

It can be concluded that although the daily bootstrapped thresholds were more sensitive
to long periods of total system outages for some of the systems under study, the increased
intra-daily granularity in comparison to the monthly thresholds enabled more accurate
detection of abnormal losses. In an online application, the static daily / monthly thresholds

could be converted to rolling daily / monthly intervals so that when new data arrive a new
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Figure 5.1: Full set of iPR data and the estimated daily boxplot confidence intervals.

set of thresholds would be computed on the fly.

5.3.2 Principal component analysis
Introduction

PCA is a coordinate transformation method that maps a set of data points onto new axes
called the principal components. Each principal component points in the direction of max-

imum variance remaining in the data, given the variance already accounted for in the pre-
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Figure 5.2: Full set of iPR data and the estimated monthly boxplot confidence intervals.

ceding components. As such, the first principal component is the vector that points in
the direction of maximum variance. The next principal components then each capture the
maximum variance among the remaining orthogonal directions. Thus, the principal axes
are ordered by the amount of data variance that they capture. By examining the amount of
variance captured by each principal component, it can be concluded whether the variability
in the data could be captured in a space of lower dimension.

PCA, as a data transformation, dimensionality reduction, exploration, and visualization

tool, does not make any assumptions. Previous studies have shown that PCA-based meth-
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(b) P, and detected outlier points, back-transformed from iPR".

Figure 5.3: Effectiveness of the boxplot outlier detection method on daily blocks of data.

ods were successful in calculating the projection of the original variables to the principal
component space, followed by the inverse projection back to the original variables [169].
When only the first principal components (i.e. the components that explain most of the
variance in the data) were used for reconstruction, it was proven that the reconstruction
error was low and that the variability contributed by the aforementioned outliers was re-
moved [82]. This was due to the fact that the first principal components could explain the
majority of the variance of typical values, while the rest of the principal components were

associated with outlier variance and were rejected.

Application on PV measurement data

In the case of PV measurement data, it was expected that the intrinsic dimensionality would
be low because of the well defined seasonal component. Higher dimensional components
were expected to capture abnormal behaviour and system losses, as well as uncertainty of

measurement. The PCA was applied on the iPR and iPR" metrics, after normalizing each
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(b) P, and detected outlier points, back-transformed from iPR".

Figure 5.4: Effectiveness of the boxplot outlier detection method on monthly blocks of data.

daily vector around zero. This ensured that PCA dimensions would capture true variance,
and thus avoided skewing of the results due to differences in daily means.

To convert the time series into the matrix M, each univariate series was split into vectors
at the fundamental frequency (daily), i.e. for the daily seasonality, each row was a 15 min
measurement point and each column was one full day of measurements. This ensured that
intra-day variance was preserved and well represented.

Instances of missing data which were encoded as NA, as described in Sec. 4.4, were set
to a sentinel value of 0, to cluster them with the rest of the anomalies, since they were
undefined. In this way, a rectangular matrix was constructed. In this proposed way, the
methodology became insensitive to missing data points and sensor failures since, otherwise,
the PCA algorithm would fail. This made the methodology applicable in an online fashion.

The matrix, M, was constructed for each metric to be decomposed through PCA, con-

sisting of 3287 vectors for the 3287 days or 9y of the investigation period. Each vector
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(b) Monthly boxplot confidence intervals in iPR* for a winter period in 2015.
Figure 5.5: Effectiveness of the daily and monthly boxplot outlier detection methods during

instances of bad weather.

0 min /h
contained 615111% »24h/d = 96/d elements. Each data matrix M;,; was defined as follows:

mii1 Mi2 - My

Mp1 Ma2 - My
M;; = . ;

mi1 Mz - My

where i € [1,96] and j € [1,3287] for each data set of iPR and iPR* constructed in this work.
In total, each M contained 3287 d x 96/d = 315552 elements and was originally rank 57.
Each vector of the matrix was then centred around zero, before PCA. Since missing
data was prior-encoded to 0, the matrix was rectangular. PCA was then applied on the
wide matrix of daily vectors and the number of selected principal components was chosen
to explain at least 95 % of the intra-daily variance in the data. The limit is dynamically set

at the point where the CDF of the variance proportions, reaches 0.95 and then rounding up.
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The PCA components were obtained from the singular value decomposition (SVD) of
M:

M = UDV' (5.7)

where U is a matrix containing the left-singular vectors of M and V is a matrix containing
the right-singular vectors of M. Lastly, D is a diagonal matrix of singular values calculated

from the square roots of the non-zero eigenvalues of U and V.

Reconstruction

Following decomposition into their principal components, the variance explained by each
component was investigated. The proportion of variance for the principal components
through the transformation of iPR to the new axes is shown in Fig. 5.6. It can be seen that

the variance was not well separated.
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Figure 5.6: Proportion of variance of the PCA decomposed iPR metric.

In Fig. 5.7 the proportion of variance for the iPR" transformed metric is shown. Using
the iPR" a much better separation of the variance into individual components was achieved.
It was expected though, since the effect of outliers on the iPR" was mitigated through the
boxplot rule.

The proportion of variance explained by the first principal component is listed in Ta-

ble 5.3. Very low amount of variance can be explained when using the iPR. A higher amount
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Figure 5.7: Proportion of variance of the PCA decomposed iPR" metric.

Table 5.3: Percentage of variance explained by the first PCA component.

2 2 2 2
System  0ipprpc1/0ipr  Oipr-pc1/TipR

[%]

[%]

ucy04 28.196 83.301
ucy05 42.054 84.096
ucy06 38.716 84.289
ucy07 55.150 87.203
ucy08 65.709 87.420
ucy09 56.816 86.924
ucy10 64.067 87.076
ucyll 64.341 87.040
ucyl2 77.585 88.445
ucy13 69.337 87.245
ucyl4 63.481 85.395

of variance could be explained when using the iPR". Moreover, the amount of explained
variance increased to 96 % when taking into account the first four principal components, as
listed in Table 5.4.

Regarding the iPR", the number of selected principal components that explained at least
95 % of the intra-daily variance was 4. To assess the intra-daily variance captured by these
components, the individual components were plotted on a 15 min grid, as shown in Fig. 5.8.

The first component which explained most of the variance, represents what can be expected
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Table 5.4: Percentage of variance explained by the first four PCA components.

2 2 2 2
System  0jpppc1-4/9ipr  Tipr-PC1-4/TiPR

[%] [%]
ucy04 70.119 95.913
ucy05 80.339 96.325
ucy06 82.310 96.250
ucy07 86.190 96.094
ucy08 84.700 96.045
ucy09 81.596 96.067
ucy10 86.181 96.089
ucyll 85.485 96.099
ucy12 89.730 96.052
ucy13 85.345 96.393
ucyl4 90.125 96.485
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Figure 5.8: Reconstruction of the first 16 principal components of the ucy13 iPR".

from a PV system under near optimal operating conditions. The second principal compo-
nent can be directly correlated to different sunrise and sunset times throughout a calendar
year, since it’s amplitude varies positively at the two extremes of the day. The variance
explained by the rest of the components can be attributed to a bundled effect of partial
shading and losses due to high 840}, recombination and elevated T,,,. After the 4th com-
ponent, the variance was treated as uncertainty and was discarded as it represented only

3 % to 4 % of the original amount of variance.
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To assess the actual performance of the PCA, a reconstruction of the four first principal
components was performed. The inverse projection of the first 4 principal components
of iPR" was used to create the iPRp-, and the back-transformation to Pypc, i shown in

Fig. 5.9 for the ucy13 system as a typical example.
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Figure 5.9: Back-transformed Pycs from the principal components of iPR".

It can be concluded that by discarding the components whose variance could be at-
tributed to intermittent behaviour and then reconstructing a reduced version of the original

variable, the iPRp~4 was successfully mapped to a lower dimension.

Suitability for degradation studies

To assess whether PCA had affected the structure of the PV performance time series, the
PCA-processed iPRp-, was transformed back to Py The new Py, time series were
used to create monthly PRy, time series as per the formal definition of PR. The monthly
time series were checked for the presence of trends through the univariate non-parametric
Mann-Kendall test [170, 171] which is commonly employed to detect monotonic trends in
series of environmental data, climate data or hydrological data.

The null hypothesis, Hy, is that the data come from a population with independent
realizations and are identically distributed. The alternative hypothesis, Hy, is that the data
follow a monotonic trend. The p-value of the Mann-Kendall statistic therefore represents
the probability that the trend differs from zero. If the p-value is less than or equal to the
chosen significance level (a = 0.05), the test suggests that the observed data is inconsistent
with the Hy, so the Hy must be rejected. However, that does not prove that the tested
hypothesis is true. When the p-value is calculated correctly, this test guarantees that the
Type L error rate is at most a. For typical analyses, using the standard « = 0.05 significance
level, the Hy is rejected when p > 0.05 and not rejected when p < 0.05.

Table 5.5 lists the resulting p-values of the test statistic. It can be concluded that by
applying PCA, the original trends had disappeared for all systems except ucy12, ucy13 and
ucyl4. This essentially meant that the trend was captured in one of the lower PCA com-
ponents and discarded as uncertainty. Unfortunately, due to the nature of PCA, the trend
could not be pinpointed to a specific principal component. Therefore, more robust methods

were employed.
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Table 5.5: p-value from the univariate Mann-Kendall test for monotonic trend after PCA
reconstruction.

System PR PR*  PRpcy

ucy04 0.0112 0.5120 0.7521
ucy05 0.0024 0.0010 0.2799
ucy06 0.1586 0.1716 0.4181
ucy07 0.0068 0.0051 0.1650
ucy08 0.0536 0.0650 0.4090
ucy09 0.1602 0.0158 0.4557
ucyl0  0.0002 0.0000 0.1979
ucyll 0.0139 0.0079 0.3143
ucyl2z 0.0000 0.0000 0.0000
ucyl3 0.0000 0.0000 0.0002
ucyl4 0.0000 0.0000 0.0076

5.3.3 Robust principal component analysis

RPCA [91] is a modification of the PCA which works well with respect to grossly corrupted
observations, such as in the case of PV performance metrics. RPCA decomposes a data
matrix, M, into a low-rank matrix, L, plus a sparse matrix, S, using the augmented Lagrange
multipler (ALM) method [172].

Using RPCA, M was decomposed into M = L + S, where L was a dense, low-rank matrix
and S was a sparse matrix of perturbations. The use of RPCA in this case was intuitive,
since the outliers, as well as the measurement points which were marked with a sentinel
value, would be placed into the S matrix automatically by the procedure. They would then
have the resulting influence on the inferred low dimensional subspace dropped.

L was recovered by the SVD, as in Eq. 5.7. The RPCA algorithm was applied by solving
the convex programme called principal components pursuit (PCP) to minimize |L|, + A||S] 1,
subject to L + S = M, where A = 1/Vmax dim M = 1/4/3287, as suggested in [91].

The application of RPCA on the wide matrix of each metric had proven to be extremely

slow. Whereas classical PCA could decompose the matrix M in 10 ms, RPCA required 70 s
and therefore could not be considered for this reason.

This is discussed in more detail in Appendix A.2.2.

5.3.4 Randomized robust principal component analysis

Randomized robust principal component analysis (fRPCA) is a method which uses the ran-
domized inexact augmented Lagrange multiplier (IALM) method for obtaining the robust
separation [173] in the same manner as the RPCA. These techniques exploit modern com-
putational architectures more fully than classical methods [174] and open the possibility
of dealing with truly massive data sets. In many cases, this approach provided better ac-
curacy, robustness, and/or speed than its classical competitors, as randomized algorithms

required O(mnlog(k)) floating-point operations (flops) in contrast to O(mnk) for classical
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algorithms [175].

RRPCA was computed using a fast randomized algorithm (rsvd) to compute the approx-
imate low-rank SVD decomposition. The sampling distribution of the randomized singular
value decomposition (rSVD) was uniform in [-1, 1].

The results for all PV systems have shown that the originally rank 57 to 61 matrices of
centred, outlier-corrected iPR" were recovered by rank 23 to 26 L matrices and 62 % sparse,

i.e. 62 % zero element, matrices S.

Reconstruction from rRPCA

The fifteen minute iPR;pp~4 Was reconstructed by rRPCA by subtracting the sparse pertur-
bation matrix, S, from the rectangular matrix, M. The P;‘rRPCA was then back-transformed
from the iPR)pp-4. The plots in Fig. 5.10 show a typical example of the uncertainty mit-
igated by the approach on ucy13. It can be seen that high variability on the iPR* was
effectively removed. These differences could more easily be assessed on the iPR)pp- 4 than

the back-transformed PArRPCA.
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Figure 5.10: Results of applying rRPCA on ucy13 iPR".

The rRPCA can also work in an online fashion since it was designed to provide the

fastest robust separation into principal components.

Suitability for degradation studies

In similar fashion to the PCA, the Mann-Kendall test was employed to check for presence

of trends on the iPR}pp- 4. Table 5.6 lists the resulting p-values of the test statistic. It can
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Table 5.6: p-value from the univariate Mann-Kendall test for monotonic trend after rRPCA
reconstruction.

System PR PR"  PR.ppca

ucy04 0.0112 0.5120  0.6729
ucy05 0.0024 0.0010 0.0013
ucy06  0.1586 0.1716  0.2131
ucy07 0.0068 0.0051  0.0076
ucy08 0.0536 0.0650  0.0868
ucy09 0.1602 0.0158  0.0045
ucyl0  0.0002 0.0000  0.0000
ucyll 0.0139 0.0079  0.0096
ucyl2z  0.0000 0.0000 0.0000
ucyl3  0.0000 0.0000  0.0000
ucyl4 0.0000 0.0000  0.0000

be concluded that by applying rRPCA, the original trends were retained in the constructed

monthly PR time series.

5.3.5 Comparison of the methods

A comparison of the boxplot and the cascade of boxplot + rRPCA on iPR is shown in
Fig. 5.11 during a typical winter period and Fig. 5.12 during a typical fault period. The
back-trasformation to P, is shown in Fig. 5.13 and Fig. 5.14.  From the figures, it can be
concluded that including the boxplot outlier rule in the cascade resulted in being able to also
estimate the period of faults and impute the expected performance for six out of the eleven
PV systems in this study. The addition of rRPCA, resulted in mitigating the uncertainty of
the fault detection.

5.3.6 Uncertainty

The uncertainty of applying the boxplot outlier rule on its own and the cascade of boxplot
+ rRPCA was evaluated through the standard deviation of the residuals. Fig. 5.15 plots the
o for the fifteen-minute residuals of each PV system’s P4 and its back-transformation to P}
and Py oy AAS can be concluded, less amount of uncertainty was offered by the cascade

Boxplot + rRPCA approach.

5.4 Missing data

5.4.1 Introduction

In the presence of missing data, the incomplete data sets can affect the Rp,_ estimate, ei-
ther by exacerbating the effect of the outage factors when the missing data point is of an

instance of optimal operation, or by overestimating PV system performance and therefore
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Figure 5.11: Performance of Boxplot and Boxplot+rRPCA on the iPR during a typical winter
period.

underestimating degradation, when the missing data point is of a period of increased sys-
tem losses. Therefore the effect of missing data on the underlying degradation will need to
be investigated.

In this section, P4 time series were created with varying factors of missing data, which
were randomly selected. Each time series was imputed with three different methods and

the Rp, was estimated on the permutation of the created time series.

5.4.2 Generation of artificially missing data

A Monte Carlo approach was employed, in order to create data sets with artificial missing
data from the complete data set of observed values, A, for each PV system. The index of
the complete data set was randomly sampled at different levels in order to extract artificial
outage periods. Random sampling without replacement was performed from 1% to 40 %
of the total amount of data in the complete data set. The data points, M, were then desig-
nated as missing from the complete data sets. The resulting incomplete data sets contained
instances where all variates were missing at once (case deletion), to simulate multiple fail-
ures in the whole measurement chain. Since random sampling was utilized, an unbiased

set of data points was assumed to be selected. This method represents the case where data
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Figure 5.12: Performance of Boxplot and Boxplot+rRPCA on the iPR during a typical fault
period.

is missing completely at random (MCAR) [94] and the distribution of missing data points

did not depend on either the observed values or the missing values, as in Eq. 5.8.
P(M|A°b) = P(M) (5.8)

Lastly, as with the case of complete data sets, the incomplete data sets were used to
create monthly PR time series for each simulated level of missing data. In total, forty in-

complete data sets were created for each of the PV systems under study.

5.4.3 Imputation of missing data

As the estimation of the Rp, relies on statistical analysis, the statistical properties of the
time series should be retained without introducing bias by the imputation method. When
using PV models such as PVUSA, single-point efficiency or others [176] to interpolate miss-
ing values, all the required explanatory variables may not always be available and may not
always be measured (e.g. irradiance, module temperature, wind speed, humidity.) Addi-
tionally, since data logger, data transmission and storage related errors affect all measured
variables, PV models were not applicable when a whole row of data was missing. Instead,

the handling of missing data was based on univariate imputation of missing G; and P4 data
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Figure 5.13: Performance of Boxplot and Boxplot+rRPCA on the P4 during a typical winter
period.

points, where the basic assumption was that the pattern of missing data was independent
of the underlying data set. The missing data points were imputed with a) the unconditional
mean of the variable, b) LI, and c¢) bootstrapping in order to fill in the gaps in the fifteen-
minute data sets. Firstly, the missing data points were imputed by the unconditional mean
of the data set. This ensured that the mean of the measurement variable remained the same,
but at the expense of large errors due to the seasonal profile of P4 and G;. Similarly, the
same missing data points were imputed by LI regressed on the time variable, in order to

better model the effect of the trend present in the complete data set, as in Eq. 5.9.

Py=pqt+e (5.9)

where f3; is a regression coefficient, t is the time and € are the residuals.
Multiple imputations were created for each run, to estimate the uncertainty in the miss-

ing values.

5.4.4 Imputation by the bootstrap

In addition to imputation by the mean and linear interpolation, the bootstrap method was

employed in order to use as much information from the distribution of each time series and
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be able to assess the uncertainty of the imputed values [98]. The bootstrap method relies
on sampling from the posterior distributions and replacing missing data points with the
sampled values [177]. The algorithm then re-evaluates and resamples the posterior distri-

bution, and replaces the missing data points with the newly sampled values. This iterative
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procedure is performed until the Expectation Maximization algorithm [178] converges. The
result is that the missing values are filled in with a distribution of imputations that reflect
the uncertainty about the missing data, for each data point.

The bootstrap method was applied on the data sets using the MICE package [179, 180]
from R [181].

5.4.5 Effect of imputation on the degradation rate estimate

A large number of data sets were created by applying the methodology described in the
previous subsection. For each PV system, 161 different data sets were analysed, in order
to estimate the energy degradation rate: a) one complete data set, b) forty incomplete data
sets with 1% to 40 % of missing data, c) forty data sets imputed by the mean, d) forty data
sets imputed by LI, and e) forty data sets imputed by the bootstrap.

Each data set of G; and P, values was used to create monthly PR time series which were
then analysed with different statistical methods over the whole evaluation period. The PR
time series for each PV array was seasonally adjusted with regression model with ARIMA
errors (regARIMA) and CSD in order to separate it into the trend, the seasonal and the
irregular components and was also modelled with LR using OLS.

The results of the analysis for 1 % to 40 % of sampled data points missing completely at
random are shown in Fig. 5.16, Fig. 5.17 and Fig. 5.18 for the LR, CSD and regARIMA meth-

ods respectively. It can be concluded that imputation by the mean and LI performed very
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Figure 5.16: Rp_ estimated with linear regression for 1% to 40 % missing data points and
imputation by the mean, linear interpolation and bootstrap.

poorly for all PV systems as these two methods underestimated the Rp,_ consistently with
increasing amount of missing data. On the other hand, imputation by the bootstrap has
been shown to provide an improvement to the estimation of Rp,, across all three degra-
dation estimation methods. For LR, the bootstrap provided robustness for up to 20 % of
missing data for the ucy07 and ucy11 systems, whereas for the ucy08 system, the estimates

were stable even at 40 % of missing data.
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Figure 5.18: Rp, estimated with regARIMA for 1 % to 40 % missing data points and imputa-
tion by the mean, linear interpolation and bootstrap.

The results of applying CSD were very sensitive to the amount of missing data and
the application of imputation. Without imputation, the estimates were underestimated
by 0.22 %/y for the ucy07 system and overestimated by 0.05 %/y for the ucy08 and ucy11
systems. By using the bootstrap, the under/overestimation was reduced to 0.05 %/y for all
systems. In the case of regARIMA, the results were shown to be the most robust to missing
data for all systems, regardless of whether imputation was used. For the ucy07 and ucy11
systems, the maximum differences without imputation were 0.05 %/y and for the ucy08 the
maximum difference was 0.02 %/y. When imputed by the bootstrap, the differences were
comparable but lower.

A comparison between degradation estimation methods with incomplete data sets, where
no imputation was applied, has shown that regARIMA was the most robust, for up to 10 %
of missing data for the ucy07 system and 20 % of missing data for the rest of the systems.
LR and CSD were shown to be very sensitive to missing data, starting from 2 %.

Finally, to mitigate the effects of missing data, imputation by the bootstrap was shown to

be the most successful in providing robust energy degradation rate estimates. RegARIMA
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was the most robust method, regardless of whether imputation was used. LR was more
robust when missing values were imputed by the bootstrap and CSD was the most sensitive
method to missing data.

As the results have shown, this method outclassed conventional linear interpolation,
historical average, and industry best practice imputation approaches in dealing with miss-
ing data and imputing PV power measurements. The end conclusion was that when using
regARIMA up to 10 % of data could be missing, before having to apply any imputation on
the dataset.

5.5 Conclusions

In this chapter, a simple and applicable methodology has been developed which treats the
problem of outlier detection as one-class classification problem. Three statistical methods
have been tested for applicability in the field of PV and used to develop the final methodol-
ogy, taking into account the density of measurement data, minimization of the number of
covariates, the effect of missing data, the simplicity of the approach and its fast convergence
for online applicability.

The flowchart of the developed methodology is shown in Fig. 5.19. This proposed
flowchart could easily be implemented in an online fashion.

Finally, through the work developed in this chapter, the need for ad hoc corrections
on the energy yield was eliminated, in favour of more general procedures which can also

provide inference.
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Chapter 6
Time Series Analysis

Work from this chapter has been published in [182, 183, 184, 70, 103, 185]

6.1 Introduction

In order to estimate degradation through field measurement data, the Energy Degradation
Rate, Rp,, quantity was defined. The Rp,_ characterizes the degradation of the field perfor-
mance, estimated through analysis of measurements from a PV array/system under a broad

spectrum of prevailing meteorological conditions.

Definition (Energy degradation rate): A scalar quantity which is defined as the annual,

linear percentage reduction of the field performance metric.

In this work, the performance metric was the monthly PR, as formally defined in IEC
61724:1998 [36], using fifteen-minute average data of G; and P4 or Py epon 35 defined in
Sec. 5.3.4.

Due to the prevailing seasonal profile of PV power production, the calculation of Rp,
was generalized for multiple geographical regions by designing proper statistical analyses
to decouple the seasonal component from the underlying trend of PV performance. Such
statistical methods were initially developed to test hypotheses about the data and were the
basis for econometrics and other time-series heavy disciplines. The general structure of
PV field performance data sets is closely related to economic time series, with very similar
characteristics, making the application of similar time series analysis methods a reason-
able option, although in PV there is the advantage of knowing a-priori which independent
variables could explain the data. Therefore, combining the physical models of PV per-
formance [186] with statistical data analysis methods allows additional information to be
extracted from time series of PV performance in the field, as was shown by the definition
of the iPR in this work.

In this chapter, the viability of statistical models for estimating a trend on monthly PR

time series is presented. The modelled trends are assessed for compliance to the underlying

74



assumptions and tested for non-linearity and changepoints. Finally, the uncertainty of each

method is estimated by bootstrap.

6.1.1 Indication of trend

Prior to performing any Rp, estimation, the time series is checked for the presence of trends
via the Mann-Kendall test, described in Sec. 5.3.2. As with all non-parametric tests, the
Mann-Kendall test does not assume a specific distribution for the population. The Rp, was
estimated through the parametric and non-parametric models described in this chapter and
then its confidence was estimated by the Mann-Kendall test statistic.

In Table 5.6 it has been shown that the p-value of the test statistic was greater than
the 0.05 significance level for ucy04, ucy06 and ucy08, which failed to reject the Hy and
suggested that the PR values of those systems were independent and identically distributed
(ii.d.) (i.e. no trend could be detected with confidence.)

When the given time series is of a monthly seasonal structure, the Hy given above may
be too restrictive and fail to detect any trend. The seasonal Mann-Kendall test [187, 188] was
employed to test for seasonal trends, where the Mann-Kendall statistics are computed for
each season separately. For these time series, season refers to each of the twelve months of
the year. The p-values of the seasonal Mann-Kendall test statistic had shown that only the
ucy10, ucy12, ucy13 and ucy14 PR and PR} pp- 4 time series featured monotonic negative
seasonal trends.

In the presence of seasonal correlation, neither the seasonal nor the non-seasonal Mann-
Kendall test could be considered an exact test. The correlated seasonal Mann-Kendall test
was thus employed, since in the case of PR time series, autocorrelation was detected in the
data via the ACF. This test statistic suggested the presence of trend on all PR and PR} pp4

time series, except ucy06 and ucy09.

6.2 Methods for estimating the degradation rate

The following methods were employed in an attempt to model the trend of the PR and
PR ppc 4 time series:

« Linear regression (LR)

Classical Seasonal Decomposition (CSD)

Seasonal-Trend Decomposition by LOESS (STL)

Theil-Sen estimator (TS)

X-13ARIMA-SEATS (regARIMA)
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6.2.1 Non-parametric methods

Non-parametric filtering methods are inherently different than stochastic model-based meth-
ods because an explicit model is not specified. Such a method is seasonal-trend decompo-
sition by LOESS (STL) [189], which extracts the trend from locally weighted polynomial
fitting [190, 191]. STL can provide robust estimates of the trend and seasonal components
that are not distorted by outliers and missing values. By using the STL [189], a time series
can be decomposed into seasonal, trend and irregular components. This iterative filtering
procedure estimates the seasonal component by smoothing the seasonal sub-series (e.g.
the series of all solar noon values). In each iteration of the procedure, the moving average
smoothing and LOESS smoothing are used multiple times. In the case of STL, the Rp, is
estimated as the negative slope of the trend component.

The Theil-Sen estimator (which is referred to as the Y-o-Y method in PV literature and
described in Ch. 2) is also another non-parametric method which is robust to outliers since
it chooses the median slope among all lines passing through the data points. The slopes of

all lines are calculated as follows:
~ PR; - PR;

N (6.1)
Jj-i

dy

for (1 < i < j < n), where d is the slope, PR is the monthly Performance Ratio, n is the
number of points and i and j are indices. The Rp, is thus equal to the TS slope which is
the median from all slopes, multiplied by 12 to convert to an annual value and by 100 to

convert to percentage:

Rp, = -1+ 12+ 100 » Median(dy) (6.2)

6.2.2 Linear Regression

The R method is the most widely used in the literature, as detailed in Ch. 2. It was applied
through OLS on monthly PR time series:

PR=pit+fy+e (6.3)

where PR represents the fitted monthly PR, f; is the slope of the trend and f, is the inter-
cept. The Rp, was thus estimated by:

Rp, = -1+ 12+ 100+ (6.4)

6.2.3 Classical Seasonal Decomposition

The CSD method is based on the application of a centred moving average and calculation of
seasonal indices by averaging the extracted seasonal component for each month. It assumes

that the seasonal component of PV performance remains stable year after year. An additive
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model was specified, as the annual seasonal component due to prevailing weather was

expected to be relatively stable:
PAR = Tt + St + et (6.5)

where PR is the fitted monthly PR, T, represents the trend, S, represents the seasonal com-
ponent and e; the residual component. The trend was calculated by applying a 12-month
centred MA to monthly PR time series. For a 2 x k moving average, where k is the seasonal
period (k = 12 because of the number of months in a year), the centred MA at time t was

calculated by:

1 1 t+m-1 1 t+m
T,=-|( - PR, + — PR, (6.6)
2 <k i=t2—:m Lk i=t—zr:n+1 l)
where T; is the trend at time t, (t > m), and m is defined as the half-width of a moving

average, m = k/2. The Rp_ was thus estimated as the linear slope of the trend component,

multiplied by 12 to convert to an annual value and by 100 to convert to percentage:

ft =Pyt + Py + € (6.7)
Rp, = -1+ 12100+ f4 (6.8)

6.2.4 Autoregressive integrated moving average models

ARIMA models were popularised by Box and Jenkins [113]. An ARIMA model describes a
univariate time series as a combination of AR and MA lags which capture the autocorrela-
tion within the time series. The order of integration denotes how many times the series has
to be differenced to obtain a stationary series. The augmented Dickey—-Fuller (ADF) [192]
test is used to test for a unit root in the series and determine the order of differencing. An-
other stationarity test, the Kwiatkowski-Phillips—Schmidt-Shin (KPSS) test [193], uses the
Hj that the series is trend stationary (stationary around a deterministic trend). By using
both the ADF and the KPSS, series that appear to be stationary, series that appear to have
a unit root, and series for which it cannot be ascertained whether they are stationary or in-
tegrated can be distinguished. For the PV systems used in this work, both tests had shown
that there were unit roots and deterministic trends, as can be seen in Table 6.1 which lists
the order of differencing determined using each test.

ARIMA models are associated with the Box-Jenkins approach to time series. According
to this approach, the series must be differenced until stationary, and then the ACF and
PACF plots of the stationary series should be consulted to determine the appropriate lag
order for an ARIMA process. The model parameters are then estimated, and the model must
be checked for autocorrelation in the residuals. As explained before, the ARIMA model
has free parameters which have to be selected by the designer of the system manually

with the Box-Jenkins approach. To automate the approach, various systematic techniques
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Table 6.1: Number of differencing orders required, as determined by ADF and KPSS tests.

System PR (ADF) PR (KPSS) PR:ppca (ADF) PR ppea (KPSS)
0

ucy04
ucy05
ucy06
ucy07
ucy08
ucy09
ucy10
ucyll
ucyl2
ucy13
ucyl4

O O O O O O O M =
—om = OO O O O O O

S OO OO OO R
_= == O RO O O O = O

can be utilised. In this work, a regression model with ARIMA errors, or regARIMA, using
the seasonal adjustment technique developed by the U.S. Census Bureau (X-12-ARIMA)
which was used to estimate a non-linear, non-monotonic trend from time-series data, while
removing all autocorrelation in the residuals and automatically determining the order of the
parameters via the AICc.

A regARIMA model estimates the mean of the time series, Y;, as a linear combination

of regressors and the residual component, z;, by an ARIMA process, as in Eq. 6.9:
Y; = Z Bixi, + z (6.9)
i

where Y; is the monthly PR time series and the residual component, z;, is modelled by the

seasonal (multiplicative) ARIMA model given in Eq. 6.10:
O(T)®5(Ts)VIVEz, = O(T)0s(Ts)e; (6.10)

In this way, the regARIMA model residuals possess, by definition, Gaussian white noise
(GWN) properties which therefore satisfies the most basic requirement of stochastic models.

Optimal regARIMA models were fitted to the data through the X-13ARIMA-SEATS algo-
rithm [194] which was developed by the U.S. Census Bureau and used extensively in econo-
metrics and time series analysis by institutions such as the Deutsche Bundesbank [195], the
European Central Bank [196], the Australian Bureau of Statistics, Statistics Canada, Office
of National Statistics UK and many others. The first seasonal adjustment method where
regARIMA was derived from, was released in 1967 as the X-11 procedure [197], enhanced
in 1983 with ARIMA forecasts and backcasts by the X-11-ARIMA procedure [198], further
enhanced in 1998 by adding regARIMA, outlier identification and a plethora of diagnos-
tics into X-12-ARIMA [199] and most recently in 2012 by the update of X-12-ARIMA with
SEATS-TRAMO (X-13ARIMA-SEATS) [194, 200] method. X-11-ARIMA was developed to

use ARIMA model forecasts to extend the original series at both ends, which is then sea-
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sonally adjusted. Doing this mitigates the uncertainty in the trend estimation and seasonal
averaging near the tails of the time series. These extensions were a very important improve-
ment offered by X-13ARIMA-SEATS over CSD. Another advantage of X-13ARIMA-SEATS
was that it was able to yield trend estimates for all observations, in contrast to CSD, which
was unable to produce trend estimates for half of the seasonal period at each end of the
time series.

The X-13ARIMA-SEATS algorithm behaves in a similar way to CSD, and then the com-
ponents are refined through several iterations. The X-13ARIMA-SEATS modelling method
allows the calculation of the optimal regARIMA model for each PV system time series and
uses robust statistics to decompose the time series into the seasonal, the trend and the resid-
ual components. The following outline of the method describes an additive decomposition

applied to monthly data, such as PR time series.

1. Test the stationarity of the time series with the ADF test and the KPSS test and trans-

form it to achieve stationarity.
2. Detect and remove extreme values one-by-one [201, 202]

3. Iteratively fit an ARIMA process with varying model orders until the AICc is mini-

mized

4. Subtract the residuals of the best fitted ARIMA model and calculate a 3x3 or 3x5
Henderson MA

5. Cross-validate the model by testing residual autocorrelation

In this way, the Rp, estimated with regARIMA was calculated from the slope of the MA
filtered trend, multiplied by 12 to convert it to an annual value and by 100 to convert to

percentage.

Model selection

The X-13ARIMA-SEATS algorithm was applied in batch mode. Optimal model orders,
which were estimated automatically via minimizing the AICc, are listed in Table 6.2 for
each PV system PR and outlier corrected PR;pp,4. The AICc penalizes high model orders,
therefore the selected optimal models satisfied the principle of parsimony. The monthly
time series have shown similar temporal characteristics between them, with many systems
being optimally modeled with the same model structure.

The models were validated through the X-13ARIMA-SEATS diagnostics and by examin-
ing the properties of the residuals and the statistical significance of the model parameters.
The Ljung-Box test was used to automate testing for autocorrelation in the residuals and
determining which autocorrelation coefficients were significant in an unsupervised way.
This provided a level of confidence for the validity of the model and the fit. Besides the

Ljung-Box test, this procedure can be performed manually by constructing a plot of the
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Table 6.2: Optimal regARIMA model orders.

System PR PR rpca

ucy04  (100)(011) (100)(011)
ucy05 (011)(011) (101)(110)
ucy06  (011)(011) (100)(011)
ucy07 (011)(011) (100)011)
ucy08 (011)(011) (011)011)
ucy09 (012)(011) (011)(011)
ucyl0 (101)(111) (011)(011)
ucyll (011)(011) (011)(011)
ucyl2 (011)(011) (011)(011)
ucyl3 (011)(011) (000)011)
ucyld (011)011) (011)(01 1)

ACF of the residuals and observing at which lags there was significant autocorrelation. In

this case, autocorrelation of the residuals was insignificant for all PV systems under study.

6.3 Uncertainty

Some of the effects of model uncertainty are too narrow prediction intervals, and the non-
trivial biases in parameter estimates which can follow data-based modelling. One way to

overcome the effects of model uncertainty would be to use the bootstrap.

6.3.1 Standard errors

From the modelled trends, the linear Rp, was calculated from the linear slope of the trend.
As such, the uncertainty of the slope was approximated using the standard error (SE) of the

slope estimator of LR on the trend of each PV system time series [128] as in Eq. 6.11:

2
SE\/ 1 leil(yl"%')

n -\2
n-2 2,~=1 (x; = %)

(6.11)

where n is the sample size, y is the observed value and y is the estimated value of the
dependent variable respectively, x is the observed value and x is the mean value of the
independent variable respectively. The expanded uncertainty, Ug, , can be calculated for a
95 % confidence level:

Ug, = k x SE (6.12)

where k = 2, if the linear model assumptions are correct.

The interval created by Rpg + 2+ SE is an approximation of the 95 % confidence interval.
The coeflicient standard errors, estimated by the model, rely on asymptotic approximations
and may not be trustworthy in a sample of size 108 months, i.e. the length of the monthly

PR and PR pp~ 4 time series used in this work.
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6.3.2 Bootstrap Confidence Intervals

Bootstrapping has been described in Sec. 5.3.1, where it was applied on boxplot statistics, to
get a better estimate of the outlier thresholds and the confidence interval. In the context of
modelling, bootstrapping can either be performed on the residuals of the regression models
used in this analysis, namely the LR, CSD and X-13ARIMA-SEATS or on the time index for
the STL. Regarding the TS, it was robust to the presence of outliers and additionally, since
the slope was not a point estimate but a distribution of estimates, the confidence intervals
reported by the method were considered unbiased.

When the linear model of Eq. 6.13 is used, the most intuitive way to construct a confi-

dence interval, would be to use the residual bootstrap to model variation of the error term.
Vi=Xif +e (6.13)
Thus the bootstrapped linear model would become:
Vi =XiB+e (6.14)

which assumes that the actual error terms are i.i.d., which is a strong assumption to make
with the LR, CSD and STL models, as their Ljung-Box statistic and the ACF and PACF plots
signified the presence of autocorrelation. On the other hand, if the model was correctly
specified and designed to capture all the information in the residuals, then residual resam-
pling would be a good option.

One alternative in the case of non-i.i.d. residuals would be to resample the time index,
also called random-x-resampling. This was less intuitive because the time between succes-
sive measurements was fixed, so resampling in this way would construct an irregular time
grid. Random-x resampling was performed on LR, CSD and STL models, since it has been
shown that the model residuals had significant autocorrelation.

Finally, the confidence interval was created as in Eq. 5.6.

6.4 Trend estimation

6.4.1 Linear trend

In the context of comparing the estimated Rp, to the linear warranties given by PV mod-
ule manufacturers, a linear trend could be assumed. A linear trend assumes that the per-
formance metric of a PV module/array/system drifts monotonically to a critical value, af-
ter which failure occurs. In this work, trend estimation was treated as a post seasonal-
adjustment step, therefore a linear fit was applied on extracted trends which were not com-
pletely linear. These were the STL, CSD and X-13ARIMA-SEATS estimated trends. On the
other hand, fitting the trend with a straight line had the advantage of being able to compare

against experimental results which will be presented in Ch. 7.
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The linear Rp, is thus given in units of %/y and is defined as such:
Rp, = -1+ 12+ 100+ f (6.15)

where f is the slope coefficient of the trends extracted with LR, CSD. STL and X-13ARIMA-
SEATS or the median of all slope coefficients estimated with TS, 12 converts the monthly
slope to an annual value and 100 converts it to a percentage.

The linear Rp, and its confidence interval for the LR, CSD, STL, X-13ARIMA-SEATS and
TS methods is plotted in Fig. 6.1. The confidence interval shown was estimated by boot-
strapped slope estimates through residual resampling for X-13ARIMA-SEATS and random-
x-resampling for LR, CSD and STL. The CI for TS was provided by the CI of the estimator.
From this plot, it can be seen that all three metrics, namely the PR, the Manually cor-
rected PR (as described in Sec. 4.1) and the PR} ,p~4 Were able to provide similar estimates
for every system under evaluation, except ucy04, and across all methods. The differences
observed for the ucy04 system could be traced back to the Mann-Kendall test results in Ta-
ble 5.6, which has shown that a trend could not be detected with confidence for ucy04 and
ucy06.

From this plot, it is evident that the Rp, of c-Si arrays hovered around the 0.7 %/y rate,
with the exception of ucy10. On the contrary, higher Rp, was estimated for all the thin-film
technologies, with CIGS degrading between 2.28 %/y to 2.55 %/y, CdTe degrading between
1.48 %/y to 1.98 %/y and a-Si degrading between 1.11 %/y to 1.24 %/y

6.4.2 Non-linear trend

As described in Ch. 2, it is sometimes observed in PV performance time series, that the trend
is not always a straight line. To assess the linear degradation assumption throughout the 9y
of operation of the systems, a non-linear trend estimation procedure was developed. A non-
linear trend assumes that at some point in time, a change in the operational characteristcs,
forced the trend in another direction. This point in time is called a change point and several
statistical methods exist to estimate its position.

To detect a single change point in the trends, the non-parametric Pettitt’s test was ap-
plied on the estimated trends [203] to test for a shift in the central tendency of the time
series. This non-parametric test hypothesizes the H that there is no change against the
H; that a change point exists. In this way, the proposed method made it suitable to be
employed in the unsupervised, online fashion.

Table 6.3 shows the change points and their significance, detected on the regARIMA
trends from the PR,pp~, time series of the systems under study. According to their p-
values, these change points were all significant. These change points were used to segment
the time series at the detected points and compute a separate Rp, for each segment with
the robust TS estimator, again, in an automated way.

The plots in Fig. 6.2 show the differences in slopes before and after the changepoint. Two
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Figure 6.1: Linear RDE and confidence intervals, using LR, CSD, STL, TS and X-13ARIMA-
SEATS on metrics of PR, Manually corrected PR and PR} pp4-

different degradation modes could be explained by the outdoor exposure time required for

a PV module to reach a stable performance and by the effect of faults such as hotspots and

cracked cells, as in the case of ucy09 and ucy10, which will be explained further in Ch. 7.
The estimated segmented degradation rates are listed in Table 6.4. From the results listed

in this table and the slopes shown in Fig. 6.2, the importance of using a robust estimator
for the slope was demonstrated.

6.5 Conclusions

This chapter has described the unsupervised and generalized methodology for assessing

the Rp, of fielded PV systems which was developed in this work. The methodology can
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Table 6.3: Change points detected with the Pettitt test on the PR),p-, regARIMA trend.

System Point in Time p-value

ucy04 47 0.0068
ucy05 47 0.0000
ucy06 48 0.0000
ucy07 47 0.0000
ucy08 52 0.0000
ucy09 30 0.0000
ucy10 53 0.0000
ucyll 51 0.0000
ucyl2 54 0.0000
ucy13 54 0.0000
ucyl4 50 0.0000

Table 6.4: Rp, before and after the change points detected with the Pettitt test on the
PR npca TegARIMA trend.

System Rp, before Rp, after

[%/y] [%/y]
ucy04 0.2457 0.0119
ucy05 0.7255 0.2429
ucy06  -0.4324  -0.5760
ucy07 0.3851 0.5806
ucy08 0.5483 -0.4926
ucy09 2.1991 0.1208
ucy10 1.1426 0.4438
ucyll 0.5450 -0.3130
ucy12 1.9962 2.8654

ucy13 2.4224 0.6849
ucyl4 1.7494 0.0611

be summarized with the flowchart shown in Fig. 6.3. This developed methodology can
be completely automated, it can provide statistical inference and relies on non-parametric
statistics which abstract the underlying distribution of data. Therefore, the proposed ap-
proach solves many of the problems found in the current literature and addresses many of

the challenges of the PV degradation rate estimation field.
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Chapter 7
Experimental Validation

Work from this chapter has been published in [183, 57, 204]

7.1 Introduction

The results of the literature survey presented in Ch. 2 have shown that there was a lack of
Rp investigations comparing the results of data analysis to standardized testing. For this
reason, an experimental approach was designed, in order to extract as much information as
possible about the phenomenon of degradation. In this approach, the evaluation is based
on indoor testing using international standards [141] and is by definition performed ex situ.

In order to estimate degradation through standardized testing, the capacity degradation
rate, Rp ., quantity was defined. Rp_ represents the degradation rate of the P,,p, of a PV

module/array measured at distinct points in time at STC.

Definition (Capacity degradation rate): A scalar quantity which is defined as the an-

nual, linear percentage reduction of the P,,,,, measured at STC.

The experimental protocol was defined using the standard industry practice where the
first set of module ratings at STC are measured as part of the PV plant pre-commissioning
phase. The initial ratings are typically required by the PV plant owner/financer for assur-
ance and by the installer for provision of warranties. Subsequent module/array ratings at
STC can be performed at any point in time after commissioning, following some amount
of field exposure. A significant amount of manual labour and system downtime is thus re-
quired, in order to dismount a random subset of modules from the array and test them in a
solar simulator [139], either in an accredited standalone laboratory or in mobile laborato-
ries which have become very popular recently because of the very risk of module damage
from transportation to the standalone laboratory. Testing at STC is also usually combined
with IR, as well as EL imaging to identify the manifestation of degradation mechanisms
and the causes of under-performance. In order to evaluate the long-term Rp ., the electrical
characteristics prior to exposure or post-stabilization are compared with the measured char-

acteristics after outdoor exposure and are used to calculate the percentage rate of change.
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With respect to warranties, this rate of change of the Pypp measured at STC can be con-
verted to an annual value, which would represent the annual performance rate of change

or RDc’ in units of %/y.

7.2 Initial degradation

In order to study the initial degradation of different technologies, new PV modules from
three different manufacturers and technologies were deployed in the field in both a system
and standalone configurations. The three systems were designed with 1kWy, capacity and
identical BOS components, whereas the standalone modules were connected to outdoor
continuous IV characterization systems side-by-side with their system-configured coun-
terparts. The technologies of the modules under study were poly-Si, a-Si and CIGS with

their characteristics listed in Table 7.1.

Table 7.1: Deployed PV systems and modules.

Manufacturer Model Technology Installed on Total Exposure
[months]

Schott Solar ~ ASI103 a-Si 2012-07-09 47

T-Solar TS95 a-Si-2] 2012-07-09 7

TSMC TS150 CIGS 2014-01-30 30

QCells Q.PRO-G3 255 poly-Si 2014-06-01 24

The standalone modules were periodically dismounted from the POA and measured at
STC inside the solar simulator (every two to three weeks on average.) From the periodic
indoor testing of the a-Si modules at STC and through analysis of the measurements, it was
observed that the measured Ps exhibited seasonal behavior, even when the measurement
environment (STC) was stable [204]. Fig. 7.1 shows this seasonal behavior, after subtracting
the mean, E[Ps7], and normalizing with respect to the P,,,,. On the same figure, the linear
fit is presented, as a blue line.

Since the indoor testing conditions were stable across all chronological measurements
at STC, this metastable behavior was attributed to module degradation [205], the Steebler-
Wronski effect (SWE) [19] and thermal annealing [206]. Degradation was assumed to be
linear, since the first four months of outdoor exposure were omitted from the analysis and
the outdoor performance had been stabilized. In this regard, the annual degradation rate
was calculated at 2.36 %/y (+0.31) at a 95% confidence level, where the uncertainty was
calculated from the standard error of the slope estimator [184].

Finally, the results of the experimental investigation of the high initial degradation,

correlate well with the results of the segmented Rp,, estimated as described in Sec. 6.4.2.
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Figure 7.1: De-meaned and normalized module power measured indoors at STC, at regular
intervals.

7.3 Reversible degradation

7.3.1 Light-induced metastability

Particularly for a-Si, the field performance features metastabilities which were described
by the SWE in the literature [19].

In order to quantify this percentage of reversible degradation, the following procedure
was devised: Firstly, the measured Pg was normalized with respect to the P,,,, and then
the linear fit representing degradation was subtracted from the result. This produced the

seasonal component of Fig. 7.2, which had a mean of zero and variance, o2 =2.71.
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Figure 7.2: Residual metastability of Pgc, after normalizing to the P,,,, and subtracting
the linear degradation rate.

The effects of the module’s metastable behavior on the field performance were analyzed
in conjunction to indoor measurements at STC. It has been shown in Sec. 7.2 that the module
had suffered a degradation rate of 2.36 %/y, while the SWE and thermal annealing resulted

in +3% variation of the performance, observable throughout the whole year.
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Fig. 7.3 shows the normalized and temperature corrected Pypp from the field and the
normalized Psyc. It can be seen that there were differences between the two performance
metrics, resulting in a mean absolute percentage error (MAPE) of 2.9 % for the whole evalu-
ation period, calculated through interpolation of the discrete Pg7 ratings and comparison
to the filtered and corrected Py pp from the field. It is also evident that the filtered and
corrected Py;pp was higher than the normalized Pgp- during summer and lower during

winter.
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Figure 7.3: Normalized and temperature corrected Py pp from the field (black colour) and
normalized Ps7 (blue line).

7.3.2 Soiling
Previous studies

Soiling can have a significant effect on PV systems whose modules are not regularly cleaned.
Soiling and the quantification of its effect on the energy yield of PV generators presents a
very challenging problem, due to its unpredictability. Some approaches have tried to deal
with soiling by training artificial neural networks (ANNs) on measurements from clean
PV modules and classifying large shifts in performance to soiling [207]. Other research
has shown that soiling losses could be correlated with instances of rainfall and the size of
dust particles in the vicinity of the PV generator [208], although specialized sensors were
required on the field.

It has also been shown that soiling involved a complex interaction of dust and rain [209]
and that there was a marked decrease in module efficiency during the dry season. Similarly,
systems located in deserts were very susceptible to dust build-up, with performance loss
ranging from 0.1 %/d to 0.3 %/d. Meanwhile, systems receiving frequent rainfall (at least
once a month) did not experience significant losses. The average annual loss, according to
this model, ranged from 1.5 % to 6.2 %, a figure which was most commonly reported in the
literature [210].

In addition, it has been estimated that soiling could account for up to 2 % of the annual
energy yield variability [211]. This effect was found to be dependent on the site, climate,

human activities nearby and on flora and fauna.
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Experimental investigation

Throughout this work, soiling has been considered to be a latent effect in PV performance.
The very gradual performance loss due to soiling could be easily confused for degradation.
For this reason, all PV modules and arrays under test had been on a regular cleaning sched-
ule to minimize energy yield losses from soiling, as much as possible. This is also in-line
with realistic PV deployment scenarios, where the installer and/or owner of the plant is
responsible for its maintenance. It is expected that the performance of PV plants which are
left unmaintained will eventually drop due to soiling, by an amount that is easily distin-
guished from typical generation profiles by a bump in the performance, immediately after
cleaning.

Even though it was not the main concern of this study, since all modules in the test field
were cleaned on a regular basis, an experimental evaluation of the effect was performed for
the climate in Cyprus. The experiment consisted of measuring the difference in the Pg7¢ of
a-Si PV modules, before and after short-term outdoor exposure with no cleaning performed
in between.

The specific a-Si modules used in this study were pre-conditioned and were past their
initial degradation phase through prolonged exposure. This was verified from Pg7( stability
prior to performing this experiment. In addition, to minimize the effect of the SWE, the
experiment was performed throughout the summer, when the constant high temperatures
in Cyprus would have annealed the a-Si and mitigated the effect of SWE. This was again
confirmed by stability of the Pg¢ measured indoors.

The results have shown that the Pg7 ¢ of the modules had dropped by up to 10 % during
the three-month outdoor exposure period. The procedure consisted of dismounting the PV
module from the array and testing it at STC without cleaning it. The module was then
cleaned thoroughly and retested at STC a second time. The percentage difference in the
two sets of measurements represented reflection and recombination losses due to the layer
of dirt on the front surface of the module.

In conclusion, this standalone experiment has showcased the importance of PV module
cleaning. Experimental results in the climate of Cyprus cannot be extrapolated to other
climate zones, or even other micro-climates inside Cyprus’s climate zone, due to random
factors in the vicinity of the PV testing site and weather unpredictability. For example, a
PV plant installed alongside a popular high-way will require more frequent cleaning than
one installed in a residential area. In both cases though, the effect will be large enough to

influence any degradation rate estimates if left untreated for a long time.
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7.4 Capacity degradation rate

7.4.1 Indoor testing at Standard Test Conditions

To validate the results of the analysis of field measurements presented in Ch. 3, Ch. 5 and
Ch. 6, all PV arrays were completely disassembled and tested indoors at STC inside the
solar simulator, in order to measure the electrical characteristics of each PV module using
standardized test procedures and guidelines [35]. The electrical characteristics were then
used to calculate the array nominal degradation rate. This indoor measurement procedure
with two temporal STC ratings was well represented in the literature with a number of real
world studies related to the estimation of the Rp,..

All c-Si PV modules were characterized at STC, using the reference modules of the
laboratory to ensure the calibration of the solar simulator, as described in Sec. 3.2.1. The
expanded combined uncertainty of the indoor measurement at the 95 % confidence level
was calculated at +3.5 % for the Pypp, as in Sec. 3.2.

An additional testing step was required for ensuring correct measurement of the ucy05
heterojunction with intrinsic thin-layer (HIT), ucy12 CIGS, ucy13 CdTe and ucy14 a-Si mod-
ules, as their spectral response was different from the spectral response of c¢-Si cells and
subsequently, the calibration factor of the solar simulator had to be adjusted to account
for the MMF. The spectral MMF of these technologies was calculated through outdoor cal-
ibration of the best performing module of each type at global AM1.5 in October 2014 in
Cyprus [212]. The MMF was then used to correct the flasher’s reference cell sensitivity,
separately for each PV technology.

To calculate the MMF, the modules were connected to MPP tracking IV tracers for five
days in order to acquire a clean set of data at high irradiance and clear sky. This procedure
introduced additional uncertainty due to measurement, the data acquisition system and the
irradiance and temperature sensors. The uncertainty components of the outdoor AM1.5

calibration procedure are listed in Table 7.2. Using this information, the uncertainty of the

Table 7.2: Uncertainty components of the AM1.5 calibration.

Device Model Uncertainty

Data logger Papendorf +0.01 %
Electronic load ISET-mpp <x1%
Pyranometer  Hukseflux SR11  Dir. error: +20 W/m?,
Non-linearity: +1 %,
Instability: < + 1 %/y

Reference cell ISET mono <*+4%
Module Pt1000 DIN B accuracy class
temperature

MMF at 68 % confidence level, uyyr, was calculated as +3.3 % using typical uncertainty
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propagation techniques [128] as follows:

_ 2 2 2 2 2
UMMF = \/uSRll * Umono * UpL + Ujpgq + Utemp (7.1)

where ugpq1 is the uncertainty of the pyranometer, u,,,,, is the uncertainty of the mono-
Si reference cell, up; is the uncertainty of the data logger, u;,,4 is the uncertainty of the
electronic load and uyey,, is the uncertainty of the temperature sensor installed on the back
of the module.

The uncertainty of the initial maximum power prior to exposure, Py, measured by the
manufacturers at STC, up 4> WS due to the power tolerance, u;,;, and the standard deviation

of the flashing results from the manufacturer of each module, ur,:

— 2 2
up, = \[UT, + U (7.2)

Similarly, the uncertainty of the array Psrc after 101 months of outdoor exposure, Py,
and subsequently up 430, W3S calculated by combining the flasher uncertainty, ufjgsper, the
standard deviation of repeated measurements for each PV module, Ureps and the uncertainty
of the MMF, where applicable, as in Eq. 7.3:

— 2 2 2
YPasor ~ \/ Utlasher ¥ Urep T UMMF (7.3)

7.4.2 Module mismatches

The results of indoor testing at STC have shown significant variation in module Py,pp after
101 months of outdoor exposure, Prtygys within the same array (more than 10 W in some
cases) as shown in Fig. 7.4, which were mostly due to differences in the Iy;pp. The variation
on the V¢, and the Is¢, of identical modules was well within the experimental uncertainty
for c-Si, even for modules with visual defects.

Through analysis of variance (ANOVA) [213], it was shown that the variance of the
Py, of all modules tested at STC was strongly dependent on factors describing the model
of each module and the serial number of each module. The “module model” factor resulted
in a p-value near zero, with RSS of 3208, whereas the “serial number” factor also resulted in
a p-value near zero, with a RSS of 1. The statistically significant ANOVA results suggested
that the null hypothesis Hy that the mean Py, , was the same across all modules in a PV
array must be rejected.

These values have proven that there were two significant factors which contributed to
the variability of the measured Py, ., namely the “module model” and “serial number” and
additionally, the low RSS of the “serial number” factor indicated that the variance of the
measured Py, . could be fully explained by the characteristics of each individual PV mod-
ule. Based on this, for the calculation of the array capacity degradation, each module was
treated as an individual component and the Psrc for the whole array, Py, ., was calcu-

lated by taking into account the array circuit topology and the position of each module in
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the array. The same procedure was also used to calculate the initial array Py, P4, from

manufacturer flash test reports.
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Figure 7.4: Variability of the centred PV array characteristics, measured through indoor
testing at STC on all array modules after 101 months of field exposure.

As all PV modules in the arrays were connected in series, current mismatches were
the most common type of mismatch encountered. The simple approach of accounting for
the lowest current flowing through a string of modules was employed to construct the
Py,,,- The total voltage produced by the string was taken as the sum of the individual
module voltages as the differences in the Ve due to the logarithmic dependence to Igco
were negligible. The consequence of mismatch loss was that the total power output of the

PV arrays was lower than the sum of the individual power outputs of the modules.
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7.4.3 Array capacity degradation rate

Using the initial MPP power of each PV array at STC, Py, and the array MPP power at STC
after 101 months of outdoor exposure, P4 ., and modelling a linear slope through the two
points in time, the annual array Rp_. was calculated as follows:

_ Payy, - P 100

x (7.4)

R
De Py, 101/12

Finally, the combined uncertainty of the degradation rate at STC, ugp, was calculated

by using Eq. 7.4, up o and up h101” with the following formula:

oRp 2 4Rp 2

Upp = — x U + x U 7.5
RD (aPA101 Pasos) (aPA Psy) (7.5)

0

The expanded uncertainty at a 95 % confidence interval was then calculated as in Eq. 6.12,
with k = 2.

The results are shown in Fig. 7.5, side-by-side with the results of field data analysis de-
scribed in Ch. 4, Ch. 5 and Ch. 6. From the figure, very good agreement can be observed for
all PV systems under study, within the confidence intervals, except ucy09, ucy10 and ucy12.
To investigate the differences within these systems, additional indoor characterization of

all modules was performed.

7.4.4 Non-destructive characterization

Additional non-destructive characterization was performed in order to gain insight into the
causes of physical degradation of the modules. All modules which were measured at STC
were also imaged via EL, in order to identify cell defects not visible to the naked eye. IR ther-
mography was also employed before dismounting the modules to check for hot spots [214].

Major defects in the form of broken cells and cracks were discovered for the ucy09
and ucy10 module technologies, as shown in Fig. 7.6 and Fig. 7.7. These EL images show
modules with severely cracked and broken cells, one of which was caused by a hot spot.
The modules were operating at two thirds capacity when tested inside the solar simulator,
which can be seen by the large outliers and variability of the FF in Fig. 7.4. The EL images
had thus provided proof towards the low performance of some of the ucy09 and ucy10
modules measured indoors at STC.

Other arrays with low performing modules, such as ucy05, ucy12 and ucy13 were also
found to have a high Rp.. Common between these modules was the fact that they were
all made with thin-film layers. In the case of ucy05, the a-Si thin-film layer was intrinsic,
between the p and n Si layers, and this was captured by EL. Fig. 7.8 shows the EL image of
the best performing module from the array. Even though they are small in size, the dark

areas correspond to shunts and do not produce any current. For comparison, EL images of
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Figure 7.5: Annual energy and capacity Rp evaluated through analysis of field performance
metrics and indoor testing at STC.

problematic modules from the ucy05 array are shown in Fig. 7.9. The images reveal deeper
physical defects and whole cells lost. In addition, some kind of checkerboard pattern com-
mon to all modules can be identified. The existence of a pattern can be attributed to man-
ufacturing, since all modules were from the same batch. Inspecting the images closer can
reveal that some shaded cells were not completely dead; in fact, the most probable explana-
tion of why some of them appear black could be the intrinsic a-Si layers underperforming
and limiting the current through the cell.

In the case of purely thin-film arrays, such as ucy12, ucy13 and ucy14, the high esti-

mated Rp . were in line with what was found in the literature (see Ch. 2.) An EL signal
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Figure 7.6: EL images of four problematic modules from the ucy09 PV array.

was more difficult to detect for these technologies, apart from ucy12 which was CIGS tech-
nology and its EL wavelength was close to c-Si, therefore it could be captured effectively
by the EL camera used. The ucy13 modules required high bias voltage to emit any kind

of EL signal, therefore EL was performed on only a few modules to avoid damaging them.
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Figure 7.7: EL images of four problematic modules from the ucy10 PV array.

Regarding ucy14 modules, a bias voltage could not be applied properly and therefore, no
EL images could be recorded.
Fig. 7.10 and Fig. 7.11 show typical EL images of these modules. On ucy12 modules,

black vertical lines can be distinguished which correspond to shunted cells (the cells are
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Figure 7.8: EL image of the best performing module of the ucy05 PV array.

long and thin.) In addition, degradation of the transparent conductive oxide (TCO) can
be seen by the halo-like appearance and patterns that appear as swishes. Also, there was
pronounced degradation around the edges of the modules.

Finally, an EL image of a typical module from the ucy13 array is shown in Fig. 7.11. As
with ucy12, but less pronounced, halos and degradation around the edges can be distin-

guished.

7.5 Comparison of analysis methods

The final results of Rp, and Rp,, shown together in Fig. 7.5 for all PV arrays, analysis
methods and performance metrics, demonstrate that for PV arrays with no physical defects
the estimated R was comparable between analysis of filed measurement data and ex-situ
characterization at STC, therefore validating the approach.

On the performance metrics dimension, the uncertainties of the RDE estimated from
uncorrected monthly PR and corrected monthly PR;pp~, Were comparable across all sys-
tems and all analysis methods, with the uncertainty from PR} ,p~4 begin equal or slightly
less than from uncorrected PR. The lowest uncertainty from the metrics on the Rp, was
achieved by using the manually corrected PR which was tedious to produce. For all c-Si
arrays, the uncertainty of the Rp_ using STC measurements was the lowest, as expected.
Such low uncertainties on the Rp, were only achieved by using X-13ARIMA-SEATS with
any performance metric. On the contrary, due to spectral mismatch, the corresponding
uncertainty of all thin-film arrays (ucy12, ucy13 and ucy14) was higher in the indoor labo-
ratory than the field.

On the analysis method dimension, it can be seen that due to optimal seasonal decom-
position, the X-13ARIMA-SEATS method resulted in the least amount of uncertainty on
Rp, across all systems and performance metrics. The second lowest uncertainty on the Rp,
was achieved by using the TS method. The third lowest uncertainty was achieved by us-
ing STL, the fourth by using CSD and finally, the highest uncertainty was exhibited by LR
which was most widely used in the literature.

Regarding the magnitude of the Rp, it can be seen in Fig 7.5 that Rp,, results overlapped

Rp, results only for PV arrays with no problematic modules. The highest differences were
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Figure 7.9: EL images of typical problematic modules from the ucy05 PV array.

recorded for the ucy09, ucy10 and ucy12 systems which had suffered the worst physical
damage and degradation. Between analysis methods, the mean as well as the uncertainty
varied with different performance metrics. The Rp, from uncorrected PR presented the

highest deviation from Rp .. Treating the data with outlier filters and missing data impu-
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Figure 7.11: EL image of a typical module from the ucy13 PV array.

tation to produce PR)pp~4 lowered the deviation. As expected, the manually corrected PR
was the most agreeable to STC, for arrays with healthy modules.

Specifically for PR, pp-4 metrics. especially strong agreement has been demonstrated
between STC, X-13ARIMA-SEATS, TS for healthy arrays. This is evident from the overlap
of the Rp values. A major advantage of X-13ARIMA-SEATS and TS was that the uncer-
tainty of the methodology was much lower in comparison to other methods, providing
increased confidence in the estimated annual Rj. Weaker agreement was exhibited by the
CSD methodology.

To better quantify differences between Rp_ and Rp_, the mean absolute percentage de-

viation (MAPD) was computed for each combination of PV system and trend estimation
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method. The MAPD was given by Eq. 7.6:

100
MAPD = — )
noi=1

fﬁkl:;ggﬁ (76)

Rp,.

where n was the number of performance metrics, i.e. PR, PR with manual corrections and
PR ppca- The MAPD is plotted in Fig. 7.12. The MAPD quantifies and highlights more
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Figure 7.12: Mean Absolute Percentage Deviation (MAPD) between Rp, and Rp,..

clearly differences between analysis of field measurement data and testing ex-situ. Highest
differences were observed for the ucy09, ucy10 and ucy05 array, which can be traced back
to physical defects (see Sec. 7.4.4.) In addition, an outlier can be seen for ucy06, using CSD
to extract the trend. Finally, except ucy06 and ucy14, the differences between Rp_ and
Rp, were reduced by using the time series analysis methodologies developed in this work
instead of LR.
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Chapter 8

Conclusions

8.1 Degradation rate estimation in photovoltaics

Through this work, it has been shown that the subject of degradation in PV poses many
interesting challenges. The methodologies developed in this work, through the applica-
tion of generalized statistical analysis methods on time series of measurements from PV
systems in the field have shown that an unsupervised and generalized methodology could
be developed for assessing the degradation rate, without having to disrupt normal system
operation.

The approaches of field data analysis and indoor testing at STC, as presented in Ch. 3
and Ch. 7 were applied on eleven different c-Si and thin-film grid-connected PV plants, op-
erating side-by-side at the PV Technology test site of the University of Cyprus since June
2006. More specifically, P4 from grid-connected PV arrays and Gy, from calibrated pyra-
nometers on the POA were used to derive an accurate estimation of the energy degradation
rate, Rp,, and provide statistical inference on the results. The results were supported by the
more comprehensive and hands-on approach of indoor testing at STC according to inter-
national standards. The indoor procedure provided extensive detail of the characteristics of
each module in the array, the major mechanisms behind the observed performance degra-
dation and additionally, it carried the least amount of uncertainty but required a significant
amount of manual labour, introduced risk of module damage due to handling and required
significant system downtime.

The developed data analysis methodology was designed to provide data qualification,
outlier detection and rejection, performance metric creation, seasonal decomposition and
linear/non-linear trend modelling. The most interesting feature of the data analysis ap-
proach was that no prior knowledge of the physical properties or the circuit of the PV
system was required, except for the datasheet power, making this approach a very good
candidate for an unsupervised algorithm and integration into operations and maintenance
(O&M) systems.

In addition, the comparison between the results of outdoor data analysis and indoor

testing at STC has shown good agreement between the two methods in the case of non-
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problematic modules in the array. In the case of problematic modules in the array, there
were differences in the estimated Rp. Through extensive indoor characterization, the dif-
ferences were attributed to physical damage on individual modules, such as cracked or
broken cells, material degradation, TCO corrosion, browning of the EVA, hot spots and de-
lamination, and to the spectral mismatch of non-c-Si module technologies. The differences
in means between indoor module parameters in problematic arrays were large and affected
the ability of the whole array to perform well. For arrays with only healthy modules, the
mean Rp, was within the confidence interval of Rp,..

Between module technologies, the results have shown that arrays with modules con-
taining a thin-film layer degraded at a higher rate than purely c-Si modules. Especially in
this work which used modules which had been exposed for nine years, this high degrada-
tion was able to be observed both through the measurement data and through physical de-
fects visible with EL imaging. Specifically, the Rp_ of arrays with thin-film modules ranged
between 1.3 %/y to 4.5 %/y which was commonly reported in the literature. Physical degra-
dation was easily observable through EL which revealed severe cases of shunted cells, TCO
corrosion and module edge degradation. On the other hand, the Rp_ of arrays with healthy
c-Si modules ranged between 0.25 %/y to 0.8 %/y, depending on the analysis method and
performance metric. This was consistent with the literature as well. Whereas for the c-Si
arrays the main factor was the analysis method and performance metric, for thin-film tech-
nologies the main factor was the actual cell and module technology. It was thus concluded
that different PV technologies could be sufficiently characterized by varying ranges of Rp,
and Rp,..

Based on the strong agreement with the Rp . estimated at STC, the low amount of un-
certainty, the robustness to missing data and the statistically significant model produced,
the X-13ARIMA-SEATS regARIMA time series analysis method and the non-parametric TS
method were proven to provide the most benefit from all methods tested, for estimating
the linear Rp, of a PV array with no serious physical faults. In general, application of the
unsupervised methodology on field measurement data yielded more predictable results (in
line with what is reported in the literature) due to the lower measurement correction and
extrapolation requirements (i.e. spectral mismatch, temperature uniformity), in contrast to
the indoor testing procedure.

Lastly, in the case of PV plants with significantly damaged modules, the indoor testing
approach has provided more insight into the physical causes of under-performance. In the
case of module technologies with different spectral response than c-Si, such as thin-film and
multi-junction technologies, the results of the comparison have demonstrated the need for
additional capabilities of the indoor testing laboratory, such as spectrally matched reference
cells and an InGaAs EL camera to capture the EL signal of CdTe, a-Si and HIT module
more effectively. These additional capabilities will enable drawing concrete conclusions

regarding the PV array degradation rate.
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8.2 Research achievements

The main outcome of this work is an index of Rp, that is robust to outliers and that can
be estimated in an unsupervised fashion. A secondary aspect of this work is the online
estimation of the Rp, . The developed methodology is computationally tractable and can be
applied on-line. This involved the translation of the developed methodologies to proof-of-
concept form that was capable of performing “real-time” estimation of the Rp_ in software.
The software implementation of the data pipeline was optimized for speed and abstraction
of the underlying details of the PV entities (modules, arrays, systems etc.) into their own
environment, using the split-apply-combine paradigm for data analysis.

Through this work, the following research objectives were achieved:

1. Development of an improved methodology for classifying and filtering outliers in

field measurement data

2. Development of an improved methodology for handling missing data points and in-

vestigation of its sensitivity

3. Development of an improved methodology for extracting the trend from field mea-

surement data

4. Development of an improved methodology for estimating non-linear trends in PV

performance

5. Extensive indoor characterization of all PV modules from the plants under test and

qualification of all observed degradation mechanisms

6. Comparison of the results of the trend extraction procedure to the results of indoor

characterization and quantification of observed differences

7. Definition of calibration campaigns for the collection of accurate field measurement
data from multiple PV plants of different technologies at the UCY and tracking of the

sensitivity of each sensor over time
8. Quantification of the reversible degradation of a-Si technologies

By leveraging robust statistical techniques, the degradation rate of deployed PV plants
was estimated with higher accuracy and lower uncertainty than current industry practices
and additionally, it provided inference on the results. The methodology was designed to
be unsupervised, which decouples human influence from the analysis and removes bias
introduced by current practices through the arbitrary selection of filtering, regression and

extrapolation procedures.
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8.3 Innovation

Based on previous findings, this work has gone beyond the state-of-the-art and addressed
the question whether P4 and G; alone could be sufficient for a reliable estimation of PV
degradation in the field.

To the best of the author’s knowledge, no other research work has tried to combine all
the developed data analysis steps to arrive to degradation rate estimates from raw mea-
surement data that provide inference, are robust to outliers and were estimated through
a generalized unsupervised algorithm. A very important fact is that significant effort has
been put into creating a baseline of indoor ratings at STC to compare the feasibility and ac-
curacy of the algorithm, which no other study has performed at such scale. Each one of the
PV modules under study were dismounted from the arrays and extensively characterized
indoors using a calibrated solar simulator and state-of-the-art visual techniques for iden-
tifying defects. Another important innovative result of this effort was that the metastable
behaviour of a-Si PV modules was quantified and its reversible degradation was demon-
strated and quantified as a result of the outdoor exposure.

Finally, since the methodology was benchmarked on PV plants of various technologies
operating side-by-side for the long term, the methodology has the potential to be general-

ized across multiple PV technologies, module manufacturers and installation sites.

8.4 Future work

This dissertation has presented original work and results beyond the state-of-the-art in a
subject that has gained a lot of interest in the past few years and is currently under much
research in the field of PV. Taking advantage of the momentum created and the increas-
ing need for data science in this field, the opportunity for improving upon the presented
methodologies in the future is evident.

The first step for improving this work and developing it into a universally accepted
methodology for estimating the degradation rate would be to benchmark the whole data
pipeline with measurements from PV plants deployed outside of Cyprus. It is expected that
this will present new challenges, as more types of PV panels and BOS will be encountered, to
reveal new, unobserved up to now degradation modes and operational/seasonal character-
istics. Although the developed methodology is generalized due to its reliance on statistical
tests, the need for better statistical tests and procedures will surely arise, given the diverse
conditions PV plants are commissioned in. For example, the estimation of degradation for
PV arrays deployed in northern countries will present different challenges than the same
PV arrays deployed in the desert.

Secondly, the use of different sources of irradiance measurements could be investigated.
In case measurements from a PV plant were not recorded alongside an accurate irradiance
sensor, the effects of using another source of irradiance measurements as a surrogate could

be considered. The surrogate could either be a nearby irradiance sensor, a satellite provider

106



or another nearby monitored PV plant. In addition, the possibility of eliminating the ir-
radiance sensor completely could be investigated, as it could result in simplifying the PV
installation and reduce the uncertainty imposed by unmaintained and uncalibrated sensor
equipment.

Thirdly, more advanced models could be used for modelling the PV performance time
series. Growth curve models are another important type of latent variable models. Growth
modeling could be used to analyze time series data, where a quantity is measured on several
occasions, in order to study the change over time. This can then be modelled as a linear
or non-linear curve. Linear dynamic models could also be investigated. These models can
capture the temporal structure of a stochastic process and have been used in financial time
series analysis. They can be used to analyze non-linear phenomena in a robust manner
and can construct the long-term behaviour of the process from its time series. Both growth
curve and linear dynamical models have similar characteristics to the observed degradation
of PV modules.

Additionally, as demonstrated in Sec. 4.3, the probability distribution of PV system and
meteorological measurements feature two distinct sub-populations. In this work, this ef-
fect was not dealt with due to the application of non-parametric and robust methods on the
data. In future work, random and fixed effects models could be used to capture the informa-
tion contained in each sub-population. An expected outcome of this investigation would
be to model the two distinct modes of operation and to mitigate the effects of non-linear
temperature and irradiance relationships with the P4. This would improve forecasting and
extracting the structure of the data under various environmental conditions.

Another topic that could be explored is the effect of cold-start, where not enough data
are available in the early post-commissioning phase of the PV system to estimate the degra-
dation. This poses challenges in the reliability of the estimation of degradation and the
statistical power of the results. In the absence of enough measurement data for inference,
Bayesian techniques could be explored, even though they are computationally much more
expensive.

Finally, the topic of outlier and fault detection could be further developed. An imme-
diate contribution could be made by formulating a better methodology for the results of
PCA and RPCA and its variants, to distinguishing two separate subspaces, one of which
will describe the normal operation and the other which will describe operation under fault

under some measure of statistical confidence.

8.5 Articles in preparation

A number of research articles that stem from this work are currently in preparation:

1. Anomaly detection in PV with robust principal component analysis

2. Statistical estimation of shading losses for photovoltaic arrays
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3. Effect of missing data on the analysis of photovoltaic system measurements

4. Generalized energy degradation estimation methodology for photovoltaics
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Appendix A

Computational Expense

A.1 Computational cost

There are several techniques that can be used to reduce the cost of a computationally heavy
analysis, such as the one developed in this work. One of them is concerned with the pro-
gramming style and defines explicit and implicit parallelism to take advantage of all avail-
able computing resources. Explicit parallel programming can be employed by the program-
mer to divide a large task that deals with computing independent realizations into smaller
tasks and distribute across multiple central processing unit (CPU) cores. As an example,
an expensive for loop over large lists of variables contained in this work was replaced by
many cheaper partitions of computations which were spread to more than one core, re-
sulting in a drastic reduction of computation time. The partitions were split as equally as
possible to the number of CPU cores, to create a uniform load across all cores and minimize
the overhead of setting up new threads as the old ones complete their job.

On the other hand, usage of an optimizing compiler which automatically extracts the
parallelism inherent to computations can be used to provide implicit parallellism. It is
important to note though, that only specific kinds of computations can be converted to im-
plicitly parallelized code by the compiler and that implicit and explicit parallellism operate
on different domains. Therefore, one is not a replacement of the other. Implicit parallellism
was enabled throughout this work, by compiling and linking R with high performance linear
algebra libraries (i.e. Basic Linear Algebra Subprograms (BLAS) and the Intel® Math Kernel
Library (MKL).) Intel® MKL is a math library of highly optimized and multi-threaded rou-
tines which provided accelerated linear algebra routines for vector and matrix operations,
high-performance vectorized random number generators (RNGs) for several probability
distributions and convolution and correlation routines. More information can be found in
Appendix B.2.

Another technique that was used to reduce the computational cost was caching. Data
objects carrying the results of expensive computations were cached to disk, once computa-
tion was complete. The cached data was recalled on demand, provided that the input data

and the function used to compute them had not changed. This was achieved by storing
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the hash of the input data and the function text as metadata and linking it to the saved
data on disk. If the hashes did not match, the cached result was discarded and had to be
recomputed. The concept of caching was very important throughout this work, since past
measurement data were static. It did not make sense to apply the same functions more
than once, over the same set of data, which is especially desirable in the online monitoring
paradigm. Specifically, in estimating statistics over daily or monthly groups, these were

computed once, saved and reused.

A.2 Bottlenecks

The major bottlenecks in the proposed data analysis methodology were the ALM method
used to optimize PCP for obtaining RPCA, the bootstrap of the boxplot outlier rule and
the bootstrap for estimating confidence intervals on the Rp, . All three of these procedures
were iterative in nature and suffered from the curse of dimensionality. This was especially
important in this work, as the number of PV systems under test (11), combined with the high
number of constructed metrics meant that each analysis would take a significant amount

of time to complete.

A.2.1 Bootstrap

In the case of the bootstrap, the computation of each realization of the bootstrapped statistic
was independent of each other, therefore this presented what is called an embarrassingly
parallel problem. Such problems are easily solved by spreading the computational load
across many CPU cores, which can either belong to the local machine or a remote cluster.

In R, there are two main types of parallel clusters:

1. a socket type cluster, which runs Rscript on the specified host(s) or CPUs to set up
worker processes which listen on their own socket for expressions to evaluate, and

return the results as serialized objects

2. afork type cluster, which forks the main R process and links all workers to the same

address space

On both Linux and Windows machines, parallelism can be implemented by creating a
socket cluster. A socket cluster has the advantage that it can be started on a remote host
and not only on the local host, in contrast to the fork cluster type. On the other hand, a
socket cluster operates each worker process in their own memory address space, effectively
multiplying the memory requirements for the analysis by the number of parallel workers
started.

The fork cluster type is exclusive to Linux, as it can only work with operating systems
that support the fork system call. It provided superior performance in comparison to the

socket type by avoiding the overhead of setting up separate workers and duplicating the
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memory space of the main R process for each one. It thus resulted in much less memory
consumption, an important fact, given the amount of data produced in this work, which
enabled the analysis on commodity hardware without running out of memory. Whereas
the minimum memory requirements for running the analysis on Linux were 16GB RAM, on
Windows it was at least 24GB. Throughout this work, Linux and the fork cluster type were
used extensively, although the analysis was also ported and can thus run on a Windows
system.

Regarding application of the bootstrap in this analysis, fixing the bottleneck with ex-
plicit parallelization resulted in speedup up to the maximum number of cores used. To put
this into perspective, computing the daily bootstrapped boxplot statistics and confidence
intervals required 61 s per PV system time series or 18 ms per time series, per day for 1000
bootstrap samples. This was quite fast on its own for a single system and a single day,
but quite slow as an absolute measure of computational cost when the whole data set was
considered. By spreading computation across the available cores, the time required for a
single system and single day was still 18 ms, but the total computation time across all days

for a single system was reduced by a factor of 4 on an i7-2600K processor.

A.2.2 Robust Principal Component Analysis

On the other hand, the RPCA could not be treated the same way as the bootstrap, as the
algorithm minimizes a cost function, with input from the previous step. Therefore, ways to
reduce computation time were either to optimize the convergence of the SVD function, use
a different solver [215] or accelerate linear algebra computations by linking with a multi-
threaded library. In this work, the second and third options were investigated. Linking
with a multi-threaded library is described in Appendix B.2. This enabled multi-threading
of the SVD function used to realize RPCA. The cost was reduced by a factor of the number
of physical cores in the system. More specifically, decomposition of the Mgg.3557 matrix
of P4 measurements for a single PV system required 105 seconds and 2300 iterations to
converge, using the accelerated linear algebra libraries. In a real world application of mon-
itoring hundreds, even thousands of PV systems, it is evident that this would not be a good
candidate for outlier detection since the benefits of RPCA would be negated by its slow
execution time.

Using the exact ALM for RPCA was very slow, therefore different solvers were inves-
tigated to enable the use of the RPCA for this analysis. A faster alternative was the ran-
domized accelerated IALM which used a randomized implementation of the SVD [173, 174]
which was able to obtain the robust separation in significantly less amount of time. To
quantify the complexity of different implementations, each algorithm was run iteratively
for a minimum of 20 repetitions. The elapsed time was recorded and used to create the
plot shown in Fig. A.1, which displays a boxplot with a rotated kernel density plot on each
side (otherwise known as a violin plot). In this way, the minimum, maximum and mean

time required for each computing block could be easily visualized. It can be observed that
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Figure A.1: Benchmark of PCA and RPCA algorithms.

RPCA with the exact ALM was the slowest, by a factor of more than 102 in comparison
to the second slowest approach. It should also be noted that the times shown in Fig. A.1
for the exact RPCA were recorded from a custom compiled R package, linking against the
Intel® MKL which provided a multi-threaded SVD implementation, whereas the rSVD was
single threaded. Therefore, under the most popular scenario of vanilla R usage, without
any custom optimizations, RPCA would have been up to 4 « 102 slower that rRPCA, since
a quad-core CPU was used in this case. With such a significant difference in computation
time, the exact RPCA was deemed not viable.

In addition, classical PCA was included to demonstrate the impact of low-rank matrix

recovery in rRPCA. This is shown in Fig. A.2.

rRPCA (rsvd) ~

PCA A

0e+00  1e+08  2e+08  3e+08
Time [ms]

Figure A.2: Impact of low-rank matrix recovery with rRPCA.
In conclusion, from Fig. A.1 and Fig. A.2, it can be seen that the choice of the under-
lying algorithm providing RPCA had the largest influence on the overall performance of

the data pipeline. Choosing the rRPCA was therefore the most logical step in reducing the

computational cost of the unsupervised methodology.
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Appendix B

Open-Source Contributions

B.1 Photovoltaic Performance Analysis in R

Photovoltaic Performance Analysis in R [41] (pvpaR for short) is a proof-of-concept web
application that was developed for on-demand visualization and supervision of PV systems.
It was released under the GNU General Public License (GPL), as a derivative of the work
presented in this thesis. The application is a user-friendly online dashboard developed in R
with features such as visualization of PV system performance, detection and classification
of outliers and qualification of raw measurement data. The platform has been presented
at the IEEE Photovoltaic Specialists Conference [41] and is freely available to download at
https://github.com/alexisph/pvpaR.

Bundled with the application is a sample of data from the recorded operation of an
actual PV plant at the testing site. The application is designed in such a way that it can be
used with any data feed for rapid analysis and prototyping, and the data sample helps to
showcase the application’s functionality.

Current functionality includes visualization of measurement data and points of sub-
optimal performance, irradiance modelling and transposition to the POA [216], modelling
of PV system performance and quantification of differences between expected and actual
performance. In addition, the application can detect and classify outliers. Loss param-
eters are estimated on the data given and are subsequently used to estimate acceptable
performance thresholds. For points beyond the thresholds, a rudimentary classification
and localization of the root cause procedure was implemented, loosely based on published
research [76].

Future work will incorporate all methodologies developed and described in this disser-

tation. The envisaged architecture can be seen in Fig. B.1.

B.2 Optimization and packaging of R for Linux

All the results produced in the context of this dissertation were computed/estimated in R,

an open-source software environment for statistical computing [181]. Similar to Python,
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Figure B.1: Envisaged architecture of pvpaR.

Matlab, Julia and others, R is a statistical computing environment which includes libraries
for data manipulation, calculation and graphical display. What sets it apart is its intuitive
syntax and its vast library of open-source state-of-the-art statistical methods. R is very
popular in both academia and industry.

Since statistical programming in R was a major part of this work, the base application
was optimized as detailed below. In summary, the optimization procedure required cus-
tom compilation options and linking with high-performance, multithreaded mathematical
libraries.

The configuration was hosted online in the Arch User Repository (AUR), which is a
community-driven software repository for Arch Linux users. It contains package descrip-
tions (PKGBUILDs) that allow anyone to install software via the package manager, without
having to run configure and make scripts and having to manually keep track of installed
files in the filesystem. The AUR was created to organize and share new packages from the
open-source community and to help expedite popular packages’ inclusion into the official
repositories.

An Arch Linux user could fetch and install the software as customized for this work
by downloading the r-mkl package and invoking $ makepkg -si at the terminal. When
this is ran, the source code will automatically be downloaded, unpacked, compiled using
the specific options and libraries as per the PKGBUILD and then installed. The package had
already gained some popularity worldwide, as can be seen on the AUR page at https:
//aur.archlinux.org/packages/r-mkl/.

The package was compiled with the following flags and linked to the following libraries:

« -03: enables aggressive optimization, including optimizations that incur a space-time

tradeoff in favor of time, such as loop unrolling and automatic function inlining.

« -xHost: tells the compiler to generate instructions for the highest instruction set

available on the compilation host processor, e.g. SSE or AVX.

« -m64: tells the compiler to generate code for Intel®64 architecture.
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« -gopenmp: enables the parallelizer to generate multi-threaded code based on OpenMP

directives.
« -ipo: enables interprocedural optimization between files.

« -fp-model strict: disables optimizations that are not value-safe on floating-point
data and maintains ANSI/IEEE standards [217] compliance.

« -fp-model source: rounds intermediate results to source-defined precision.
« -lpthread: enables threading support.

« -lm: links the math library.

« -lsvml: links the Intel Short Vector Math Library.

Aside from the custom build of R described in the previous paragraph, the author
also maintains an AUR package for Microsoft’s enhanced, multi-platform distribution of
R, called Microsoft R Open https://aur.archlinux.org/packages/microsoft-r-open/.
This package also links against the Intel® MKL which it bundles alongside the binaries but
does not enable some of the optimization options of the r-mk1l package. Nevertheless, this
distribution also provides much better performance than vanilla R and is currently the most
straightforward way to run a multi-threaded analysis on Windows, Linux and Mac OS X.
It can also prove useful when the Intel® MKL libraries cannot be licensed for free, or when
the user does not want to install the Intel®development libraries package on their local

machine for compiling r-mk1.
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