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2 Somayyeh Lotfi, Stavros A. Zenios

Abstract We develop robust models for optimization of the VaR (value at risk) and CVaR
(conditional value at risk) risk measures with a minimum expected return constraint under
joint ambiguity in distribution, mean returns, and covariance matrix. We formulate models for
ellipsoidal, polytopic, and interval ambiguity sets of the means and covariances. The models
unify and/or extend several existing models. We also show how to overcome the well-known
conservativeness of robust optimization models by proposing an algorithm and a heuristic for
constructing joint ellipsoidal ambiguity sets from point estimates given by multiple securities
analysts. Using a controlled experiment we show how the well-known sensitivity of CVaR to
mis-specifications of the first four moments of the distribution is alleviated with the robust
models. Finally, applying the model to the active management of portfolios of sovereign credit
default swaps (CDS) from Eurozone core and periphery, and Central, Eastern and South-Eastern
Europe countries, we illustrate that investment strategies using robust optimization models
perform well out-of-sample, even during the eurozone crisis. We consider both buy-and-hold
and active management strategies.

Keywords Risk management · Data ambiguity · Coherent risk measures · Portfolio optimiza-
tion · Eurozone crisis.
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1 Introduction

Mean-variance portfolio optimization from the seminal thesis of Harry Markowitz provided the
basis for a descriptive theory of portfolio choice: how investors make decisions. This led to
further research in financial economics, with the development of a theory on price formation
for financial assets (by William Sharpe) and on corporate finance taxation, bankruptcy and
dividend policies (by Merton Miller). These descriptive contributions of the behavior of financial
agents were recognized by a joint Nobel Prize in 1990. The prescriptive part of the theory —
how investors should make decisions— was also acclaimed by practitioners, and mean-variance
models proliferated. Here, however, problems surfaced: mean-variance portfolio optimization is
sensitive to perturbations of input data (Best and Grauer, 1991; Chopra and Ziemba, 1993).
Since the estimation of market parameters is error prone, the models are severely handicapped.
In theory they produce well diversified portfolios but in practice they generate portfolios biased
towards estimation errors.

With advances in financial engineering, variance was replaced by more sophisticated risk mea-
sures. Value-at-risk (VaR) became an industry standard and written into the Basel II accords
to calculate capital adequacy, or calculate insurance premia, or set margin requirements. How-
ever, value-at-risk is criticized for being non-convex and it is also computationally intractable
to optimize. In a seminal paper Artzner et al. (1999) provided an axiomatic characterization
of coherent risk measures, and conditional value-at-risk (CVaR) emerged as one such measure.
CVaR rose to prominence with the work of Rockafellar and Uryasev (2000) who showed that it
can be minimized as a linear program. CVaR optimization emerged as a credible successor to
mean-variance models: it is coherent, computationally tractable, and found numerous applica-
tions (Zenios, 2007, ch. 5). Basel III shifted from VaR to an expected shortfall measure of risk,
to capture tail risk, especially during periods of financial market stress.

With the increased attention placed on CVaR an argument against its use and in favor of
VaR also surfaced. VaR estimated from a set of sampled scenarios is a robust statistic, i.e., it
is insensitive to small deviations of the underlying distribution from the observed distribution,
whereas CVaR is not. Kou et al. (2013) argue that risk measures should be robust but coherent
risk measures are not and CVaR lacks a key property.

This paper contributes to an extensive body of literature that seeks to eliminate the sensi-
tivity of CVaR by incorporating data ambiguity in the optimization model. We develop robust
models for VaR and CVaR optimization under general ellipsoidal ambiguity sets and for joint
ambiguity in means and covariances. These models touch on previous works by others, reviewed
below, and extend and/or unify some of the previous contributions. We also develop an al-
gorithm and a heuristic to construct an ellipsoid ambiguity set from point estimates given by
multiple securities analysts, and to control the ambiguity set to avoid too conservative solutions.
This contribution is, to the best of our knowledge, novel in the literature. We use numerical
experiments to highlighting that the models can be robust under first, second, and higher-
moment ambiguity, and also that robustness does not necessarily come by sacrificing portfolio
performance.

1.1 Review of robust VaR and CVaR models

The 2008 global crisis revived the work of Chicago economist Frank H. Knight (1921) that
considers financial and economic data as ambiguous instead of uncertain. Under uncertainty
a probability model is known but the random variables are observed with some measurement
error, whereas under ambiguity the probability model is unknown. Hence, data mis-specification
is not only due to measurement error, that can be reduced with improved estimation techniques,
but is an integral part of financial decision making. Data ambiguity deserves attention as an
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issue to be modeled, not as a problem to be eliminated. It is from this perspective that we
develop this study.

Early suggestions in dealing with the sensitivity of portfolio optimization models to data
estimation errors use Bayesian or James-Stein estimators, resampling, or restricting portfolio
choices with ad hoc constraints. We do not review this literature as it is outside the scope of
our work. We build, instead, on recent research that brings developments in robust optimization
to bear on portfolio selection under data ambiguity.

Robust optimization models require constraints to be satisfied even with ambiguous data,
and the objective value to be insensitive to the ambiguity. Concepts of robustness in optimiza-
tion have been developed independently in the fields of operations research and engineering
design. Mulvey et al. (1995) proposed the robust optimization of large scale systems when data
take values from a discrete scenario set, using a regularization of the objective function to con-
trol its sensitivity, and penalty functions to control constraint violation. This approach spurred
numerous applications in facility location, power capacity planning, disaster response, agribusi-
ness, supply chain management, production and process planning, network design, and so on.
Robust convex optimization was developed by Ben-Tal and Nemirovski (1998) for optimization
problems with data ambiguity described by an ellipsoid. They showed that important convex
optimization problems admit a tractable robust counterpart. The foundational paper spurred
extensive theoretical and applied research (Ben-Tal et al., 2009; Bertsimas et al., 2011). In a
way, robust portfolio optimization brings ideas from Taguchi robust engineering design to the
design of portfolios. Authors usually adopt the robust convex optimization framework over an
appropriate ambiguity set, and it is in this domain that our paper makes a contribution. Fabozzi
et al. (2010) review robust portfolio optimization using mean, VaR, and CVaR risk measures.

The robust counterpart to mean-variance optimization was developed by Goldfarb and Iyen-
gar (2003). Using a linear factor model for asset returns they introduce “uncertainty structures”
—the confidence regions associated with parameter estimation— and formulate robust portfolio
selection models corresponding to these uncertainty structures as second order cone programs
(SOCP). They also develop robust counterparts for VaR and CVaR optimization under the nor-
mality assumption of mean-variance models. Schottle and Werner (2009); Tütüncü and Koenig
(2004); Ye et al. (2012) develop further robust mean-standard deviation and mean-variance
models, removing some of the assumptions of the Goldfarb–Iyengar paper.

Our paper develops a robust counterpart of CVaR optimization (RCVaR) and finds it iden-
tical to robust VaR optimization (RVaR). Hence, we give a detailed review of previous works
on RVaR and RCVaR optimization, so we can place the innovations of our own contribution.

Current literature addresses the following sources of ambiguity of model parameters: (i)
ambiguity in mean return estimates, (ii) ambiguity in covariance matrix estimates, and (iii)
ambiguity in the distribution of the data. Ambiguity can be independent for each parameter or
joint for multiple parameters. If ambiguity is independent for each parameter we have simple sets
of parameter values, e.g., a (sub)vector of parameters lies in some interval. For joint ambiguity
the parameters belong to sets such as ellipsoids or convex polytopes. Models based on discrete
scenarios may have ambiguity in the scenario values or the scenario probabilities or both. For
models with continuous distributions, ambiguity is in the moments. Another important dis-
tinction in understanding the various contributions is captured in the terminology used. VaR
and CVaR minimization models lack a minimum return constraint, and ambiguity is restricted
to the objective function. VaR and CVaR optimization trade off the risk measure against an
expected return target. The difference between risk-minimization and risk-optimization is not
innocuous: risk-optimization models with a target expected return are difficult to analyze if the
means are ambiguous, as ambiguity appears in the constraints, and not only in the obective.

El Ghaoui et al. (2003) address RVaR minimization with partially known distributions of
returns, whereby means and covariance lie within a known uncertainty set, such as an interval, a
polytope (polytopic uncertainty), or a convex subset (convex moment uncertainty). Given this
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information on return distributions they cast RVaR minimization for interval uncertainty as
semidefinite program (SDP), and for polytopic uncertainty as SOCP. They also give a general,
but potentially intractable, model for convex moment uncertainty. Their model lacks the target
expected return constraint.

The first RCVaR optimization model is by Quaranta and Zaffaroni (2008) for interval un-
certainty of the means. Zhu and Fukushima (2009) consider RCVaR optimization for box and
ellipsoidal uncertainty in distribution, as well as distribution mixtures of convex combination of
predetermined distributions and unknown mixture weights. By “distribution” the authors mean
the probabilities of the discretized data. Their model can potentially be used to approximate
joint ambiguity of means, covariances, and higher moments through the choice of weights of the
distributions, using results of Marron and Wand (1992)1. Distinctly from this work, our models
are exact. Furthermore, if there is no information on the distribution of the discretized random
variable but there is information on the first two moments of the distribution, then we can use
our models but not Zhu-Fukushima.

Delage and Ye (2010) show (as a special case of their work) that RCVaR minimization for
ambiguity in the probabilities, mean, and second moment, can be solved in polynomial time. The
authors provide bounds and generate confidence regions on the mean and covariance matrix in
case of moment uncertainty but stop short from developing RCVaR models and develop, instead,
a robust model for expected utility maximization under moment uncertainty.

Chen et al. (2011) point out that robust solutions come with a computational price: robust
optimization models can be infinite dimensional and, without proper choice of uncertainty sets,
the model may be intractable. They obtain bounds on worst case value of lower partial moments
and use them to develop RVaR and RCVaR minimization for distribution ambiguity with closed
form solution under a normalization constraint. Paç and Pınar (2014) extend further RVaR and
RCVaR optimization for distribution and mean returns ambiguity, but fixed covariance matrix.
This is one of the papers extended in our work, by allowing covariance matrix ambiguity.

A contribution that filled several gaps is Gotoh et al. (2013). Scenario based VaR and CVaR
minimization models use discrete data observations (i.e., scenarios) and their probabilities to
determine the empirical distribution. There are three possible ways to introduce ambiguity
and formulate RVaR and RCVaR counterparts using scenarios. The first approach (Zhu and
Fukushima, 2009), keeps the scenarios fixed and considers ambiguous probabilities from a box
or an ellipsoid. Gotoh et al. (2013) consider a second approach with uncertainty in scenarios but
fixed probabilities, and a third approach, where both scenarios and probabilities are ambiguous.

Our work considers ambiguity in the distribution as well as mean returns and the covari-
ance matrix, and joint ambiguity in combinations of the above. These are, to the best of our
knowledge, the most general ambiguity sets considered in the literature for RVaR and RCVaR
models. Joint uncertainty in means and covariance matrix was also considered by Schottle and
Werner (2009) and Ye et al. (2012) but for mean-standard deviation and mean-variance opti-
mization, respectively. We use an ellipsoidal ambiguity set which is general and obtain tractable
optimization models as SOCP. We use the term ambiguity sets in the Knightean sense, instead
of uncertainty sets, in discussing robust models. Robust optimization literature typically refers
to uncertainty sets although usually ambiguity is meant.

The paper is organized as follows. Section 2 defines VaR, CVaR, RVaR, and RCVaR mod-
els and discusses the instability of VaR and CVaR optimal portfolios. Section 3 is the main
one. It formulates RVaR and RCVaR for ambiguous distributions, and ellipsoidal ambiguity
in means and covariance, discusses the construction of ambiguity sets (sec. 3.2), extends or
unifies existing results (sec. 3.3). It also develops models for polytopic and interval ambiguity
sets (sec. 3.4). In developing our models we also identify some implicit limiting assumptions
made in previous works and explain how we overcome the limitations. Section 4 reports on two
distinct numerical tests. First, using simulations we test the robustness of optimal portfolios

1 We thank a referee for pointing out this potential generalization.
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under mis-specification of mean, variance, skewness, and kurtosis. Second, using sovereign CDS
spread returns during the eurozone crisis we investigate the robustness of alternative investment
strategies. Conclusions are in section 5. Proofs are gathered in the appendix.

2 Optimization of VaR and CVaR risk measures and their stability

The mean of α-tail2 distribution of the loss random variable Ξ, CVaRα(Ξ), and its minimization
formula are given by the following theorem of Rockafellar and Uryasev (2000).

Theorem 1 Fundamental minimization formula.
As a function of γ ∈ R, the auxiliary function

Fα(Ξ, γ) = γ +
1

1− α
E{[Ξ − γ]+},

where α ∈ (0, 1] is the confidence level and [t]+ = max{0, t}, is finite and convex, with

CVaRα(Ξ) = min
γ∈R

Fα(Ξ, γ).

Moreover, the set Mα of minimizers to Fα(Ξ, γ) is a compact interval, Mα = [xα, x
α], where

xα = inf {x ∈ R : P [Ξ ≤ x] ≥ α} and xα = inf {x ∈ R : P [Ξ ≤ x] > α}.

Remark 1 Note that xα, the left end-point of the set Mα, and not every minimizer of Fα(Ξ, γ),
is equal to VaRα(Ξ). Hence, the statement VaRα(Ξ) = argmin

γ∈R
Fα(Ξ, γ) is true only when the

minimum is unique and the interval reduces to a point.

Consider an investor operating in a market with n risky assets, a riskless asset, and no
short-selling. The riskless asset has rate of return rf and the n risky assets have rates of return
denoted by random vector ξ. The loss function associated with decision variable x ∈ Rn of
proportionate allocations to the risky assets is given by

f(x, ξ) = −(x>ξ + rf (1− x>e)),

where e is an n-vector of ones. (When dealing with portfolio optimization models, loss is a
function of the portfolio x, i.e., the loss random variable is Ξ

.
= Ξ(x), and we write the auxiliary

function and CVaR as functions of x.) According to Theorem 1 the conditional value-at-risk of
the loss function is the solution of

CVaRα(x) = min
γ∈R

Fα(x, γ), (1)

where

Fα(x, γ) = γ +
1

1− α
E{[f(x, ξ)− γ]+}.

If γ̄ denotes argmin
γ
Fα(x, γ), then, by Theorem 1, VaRα(x) is obtained from

VaRα(x) = min
γ∈R

γ (2)

s.t. Fα(x, γ) ≤ Fα(x, γ̄).

This problem is non-convex, unless Fα(x, γ) has a unique minimum, e.g., for normally distributed
returns with strictly increasing cumulative distribution function.

2 We use α = 0.95 in all numerical experiments throughout the paper.
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The definition of VaR in (2) uses the auxiliary function Fα(x, γ), whereas the original for-
mulation of VaR is

VaRα(x) = min
γ∈R

γ (3)

s.t. Prob {γ ≤ f(x, ξ)} ≤ 1− α.

Hence, models for selecting a portfolio with minimal VaR or CVaR, and a minimum return
constraint, can be posed as follows:

I. VaR optimization

min
γ∈R, x∈Rn

γ (4)

s.t. Fα(x, γ) ≤ Fα(x, γ̄),

(µ̄− rfe)>x ≥ d− rf ,

or

min
γ∈R, x∈Rn

γ (5)

s.t. Prob {γ ≤ f(x, ξ)} ≤ 1− α,
(µ̄− rfe)>x ≥ d− rf .

II. CVaR optimization

min
γ∈R,x∈Rn

Fα(x, γ) (6)

s.t. (µ̄− rfe)>x ≥ d− rf .

µ̄ is the risky assets mean vector and d ∈ R+ is the minimum return satisfying d ≥ rf .
Without loss of generality, in our numerical work we will consider VaR and CVaR mini-

mization with a budget constraint, no risk-free asset, and no short-selling. Denote by X the set
{x ∈ Rn | x ≥ 0,

∑n
i=1 xi = 1}, and use Monte Carlo simulation to generate an S × n matrix

R of return scenarios for n risky assets, where S is the number of scenarios generated by the
simulations. Using M to denote a large positive number, VaR model (5) is solved as the mixed
integer linear program, see, e.g., Pflug (2000),

min
x∈X, γ∈R, y∈{0,1}S

γ (7)

s.t.

−Rx−My − eγ ≤ 0,

e>y ≤ S(1− α).

CVaR model (6) is formulated as the linear program (Rockafellar and Uryasev, 2000)

min
x∈X, u∈RS , γ∈R

γ +
1

S(1− α)
e>u (8)

s.t.

−Rx− eγ ≤ u,
u ≥ 0.

It is well-known that scenario based CVaR is not a robust estimator whereas VaR is, and
Gotoh et al. (2013); Lim et al. (2011) also noted the instability of the portfolio weights obtained
when minimizing these measures. This instability is exemplified in Figure 11, where it is also
shown that the robust models generate more stable portfolios.
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3 Robust VaR and CVaR for distribution and moment ambiguity

We introduce now ambiguity in the models. Robust counterparts for VaR and CVaR are for-
mulated as SOCPs and we will observe that they are identical. We consider a joint ellipsoidal
structure for the ambiguity set of mean returns and covariance matrix. Ellipsoidal sets can
be viewed as generalizations of polytopic sets (Ben-Tal et al., 2009), and therefore our model
generalizes El Ghaoui et al. (2003) who modeled RVaR minimization for polytopic uncertainty.
Extending the models from sets with independence between means and covariance (El Ghaoui
et al., 2003; Goldfarb and Iyengar, 2003; Tütüncü and Koenig, 2004) to sets that capture depen-
dencies, we generate better diversified and less conservative portfolios as argued by Lu (2011)
for mean-variance models.

Definition 1 (Ambiguity in distribution) The random variable ξ assumes a distribution
from

D = {π | Eπ[ξ] = µ̄, Covπ[ξ] = Γ̄ � 0},
where µ̄ and Γ̄ are given.

Definition 2 (Ellipsoidal ambiguity for mean returns and covariance matrix) Mean
returns and covariance matrix belong to the joint ellipsoidal set:

Uδ(µ̂, Γ̂ ) = {(µ̄, Γ̄ ) ∈ Rn × Sn | S(µ̄− µ̂)>Γ̂−1(µ̄− µ̂) +
S − 1

2
‖Γ̂−

1
2 (Γ̄ − Γ̂ )Γ̂−

1
2 ‖2tr ≤ δ2},

where ‖A‖2tr = tr(AA>). (For the definition see (Schottle and Werner, 2009, Proposition 3.3).)

Remark 2 The set Uδ(µ̂, Γ̂ ) is a generalization of ambiguity sets that have been used in the
literature. Setting Γ̄ = Γ̂ , i.e., certainty about the estimate of the covariance matrix, we obtain
the ellipsoidal set for mean returns used in Ceria and Stubbs (2006); Chen et al. (2011); Schottle
and Werner (2009); Zhu et al. (2008). Similarly, if we fix µ̄ = µ̂, i.e., certainty about the mean
estimates, we obtain the ellipsoidal set for covariance matrix. Goldfarb and Iyengar (2003) use
this structure of uncertainty set for the factor loading matrix of a factor model of returns.

Remark 3 Uδ(µ̂, Γ̂ ) can be decomposed to U√κδ(µ̂) and U√1−κδ(Γ̂ ) using a parameter κ ∈ [0, 1],

with U√κδ(µ̂) = {µ̄ ∈ Rn | S(µ̄ − µ̂)>Γ̂−1(µ̄ − µ̂) ≤ κδ2} and U√1−κδ(Γ̂ ) = {Γ̄ ∈ Sn |
S−1

2 ‖Γ̂
− 1

2 (Γ̄ − Γ̂ )Γ̂−
1
2 ‖2tr ≤ (1 − κ)δ2}. This representation is used later to obtain, as special

cases, models with ambiguity in means (κ = 1) or covariances (κ = 0) only.

To develop RVaR and RCVaR models we start from one of the following:

1. RVaRI (robust counterpart of model (4))

min
γ∈R, x∈Rn

γ (9)

s.t. max
(µ̄,Γ̄ )∈Uδ(µ̂,Γ̂ ), π∈D

[Fα(x, γ)− Fα(x, γ̄)] ≤ 0,

min
(µ̄,Γ̄ )∈Uδ(µ̂,Γ̂ ), π∈D

(µ̄− rfe)>x ≥ d− rf .

2. RVaRII (robust counterpart of model (5))

min
γ∈R, x∈Rn

γ (10)

s.t. max
(µ̄,Γ̄ )∈Uδ(µ̂,Γ̂ ), π∈D

Prob{γ ≤ f(x, ξ)} ≤ 1− α,

min
(µ̄,Γ̄ )∈Uδ(µ̂,Γ̂ ), π∈D

(µ̄− rfe)>x ≥ d− rf ,

where γ̄ = argminγFα(x, γ).
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3. RCVaR (robust counterpart of model (6))

min
x∈Rn, γ∈R

max
(µ̄,Γ̄ )∈Uδ(µ̂,Γ̂ ), π∈D

Fα(x, γ) (11)

s.t. min
(µ̄,Γ̄ )∈Uδ(µ̂,Γ̂ ), π∈D

(µ̄− rfe)>x ≥ d− rf .

Remark 4 The maximization problem in the first constraint of (9) can not, in general, be solved
explicitly. Existing papers for RVaR minimization (Chen et al., 2011) and RVaR optimization
(Paç and Pınar, 2014) solve the special case when Fα(x, γ) has a unique minimum3, thereby
obtaining an explicit solution to the maximization problem in the constraint and simplifying
the RVaR formulation.

Remark 5 Unique minimum of Fα(x, γ) implies unique solution of Prob{f(x, ξ) ≤ γ} = α,
which is then VaRα(x). This occurs when the distribution function of portfolio loss is strictly
increasing. However, the loss distribution function is often a (non-decreasing) continuous step
function, and Rockafellar and Uryasev (2002) extended their original contribution to derive the
fundamental properties of CVaR for general loss distributions. We work with (10) to deal with
the inner maximization for general loss distributions.

3.1 Explicit formulation of RVaR and RCVaR optimization models

We obtain now explicit formulations for models (10) and (11). First we prove an essential
proposition and then the main theorem.

Proposition 1 If random variable ξ has a distribution from the set D with fixed µ̄ and Γ̄ , then

min
γ∈R

max
π∈D

Fα(x, γ) = min
γ∈R, x∈Rn

γ (12)

s.t. max
π∈D

Prob{γ ≤ f(x, ξ)} ≤ 1− α,

and the solution is −rf − (µ̄− rfe)>x+
√
α√

1−α

√
x>Γ̄ x.

Proof. From equation (10) in Paç and Pınar (2014) we know that

min
γ∈R

max
π∈D

Fα(x, γ) = −rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x. (13)

For the constraint of the optimization problem in the right-hand side of (12), we use Theorem 1
of El Ghaoui et al. (2003) (set 1−α and f(x, ξ) instead of ε and −r(w, x), respectively), which
means

max
π∈D

Prob{γ ≤ f(x, ξ)} ≤ 1− α

is equivalent to

− rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x ≤ γ.

Hence, the optimization problem in the right-hand side is equivalent to

min
γ∈R

γ (14)

s.t. −rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x ≤ γ,

3 This implicit assumption is made in the proofs of Theorems 2.9 and 1, respectively, when the authors invoke
the equality VaRα(Ξ) = argmin

γ∈R
Fα(Ξ, γ) which holds true only when Fα(x, γ) has a unique minimum, see

Remark 1.
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which has the minimum value −rf − (µ̄− rfe)>x+
√
α√

1−α

√
x>Γ̄ x. This completes the proof.

Remark 6 The left and right-hand sides of (12) are RCVaR and RVaR, respectively, associ-
ated with the ambiguity set of Definition 1. Hence, the robust counterpart to VaR and CVaR
optimization for distribution ambiguity is the same optimization model.

Zymler et al. (2013a,b) also derived worst-case VaR and CVaR for piece-wise and quadratic
loss functions when there is ambiguity in distribution of asset returns but known mean and
covariance information. Both of optimization problems are obtained as SDPs and they turned
out to be identical for both loss functions. When the loss function is linear (no derivative
securities), the associated problems reduce to the same SOCPs as in our Proposition 1. Zymler
et al. (2013a) extend further these identical models to ambiguity in means and covariance
matrix. They take into account box-type ambiguity in the moment matrix but we consider
joint ellipsoidal ambiguity set for mean and covariance matrix and obtain the robust models
for a linear loss function next. So, compared to Zymler et al. we establish the equivalence with
more general ambiguity sets when there is ambiguity in means and covariance matrix, whereas
they use more general loss functions. Our result also generalizes the result of Čerbáková (2006)
for the special case of symmetric distributions identified only by the first two moments. It
also establishes that the bounds obtained by Bertsimas et al. (2004) on VaR and CVaR for
distribution ambiguity are tight.

We obtain now RVaR and RCVaR optimization models for ambiguity in distributions, mean
returns and covariance matrix.

Theorem 2 If random variable ξ has a distribution from the set D and (µ̄, Γ̄ ) ∈ Uδ(µ̂, Γ̂ ). Then,
the robust counterpart to VaR portfolio optimization model (5) and the robust counterpart to
CVaR model (6) are both represented by the following SOCP:

min
x∈Rn

− rf − (µ̂− rfe)>x+

(
max
κ∈[0,1]

f(κ)

)
‖Γ̂

1
2x‖ (15)

s.t.− δ√
S
‖Γ̂

1
2x‖+ (µ̂− rfe)>x ≥ d− rf ,

where f(κ) =
√
α√

1−α

√
(1 + δ

√
2(1−κ)
S−1 + δ

√
κ
S .

Proof. See Appendix A.1.

Remark 7 f(κ) is a strictly concave function with limκ→0f
′
(κ) = ∞ and limκ→1f

′
(κ) = −∞.

Hence, f(κ) has a unique maximum in the interval (0, 1).

3.2 Constructing the ambiguity set

The ambiguity set is typically taken as input in the robust optimization literature. In some
cases the ambiguity set can be defined as the confidence regions of the statistical estimators of
the model parameters (Goldfarb and Iyengar, 2003; Schottle and Werner, 2009). For other cases
—such as in the applications we solve later— we may be given multiple estimates of model
parameters which raises the question as to what is the appropriate ambiguity set. In finance, for
instance, it is not uncommon to be given estimates by multiple securities analysts and we need
a method to construct an ambiguity set, including its center. This issue has not been addressed
in existing literature and we now propose and solve analytically a nonlinear SDP for finding the
center of a joint ellipsoidal set.

Assume K experts provide estimates for mean returns and covariance matrices (µ̄k, Γ̄k),
k = 1, 2, . . . ,K. (For convenience we assume they were all estimated using the same number
of scenarios S.) To construct their joint ellipsoidal ambiguity set we need to fix the center (µ̂,
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Γ̂ ). This is obtained as the solution of a nonlinear convex program for minimizing the l2-norm
of the parameters δk, for k = 1, 2, . . . ,K, where each parameter corresponds to the ellipsoid
with center (µ̂, Γ̂ ) containing observation (µ̄k, Γ̄k). Referring to Definition 2 the optimization
problem is given by

min
µ̂∈Rn, Γ̂∈Sn++

√√√√ K∑
k=1

S(µ̄k − µ̂)>Γ̂−1(µ̄k − µ̂) +
S − 1

2
‖Γ̂−

1
2 (Γ̄k − Γ̂ )Γ̂−

1
2 ‖2tr, (16)

where Sn++ is the set of all n-dimensional, symmetric, positive definite matrices. This problem
is equivalent to

min
µ̂∈Rn, Γ̂∈Sn++

K∑
k=1

S(µ̄k − µ̂)>Γ̂−1(µ̄k − µ̂) +
S − 1

2
‖Γ̂−

1
2 (Γ̄k − Γ̂ )Γ̂−

1
2 ‖2tr. (17)

The next theorem gives the solution of this problem, if a solution exists.

Theorem 3 If (17) is solvable, then it admits the following solution:

1. µ̂ = 1
K

∑K
k=1 µ̄.

2. Γ−, the inverse of optimal Γ̂ , is obtained from the linear system of equations[
K∑
k=1

Γ̄k ⊗ Γ̄k

]
vec(Γ−) =

K∑
k=1

vec(Γ̄k)−
S

(S − 1)

K∑
k=1

vec
(

(µ̂− µ̄k)(µ̂− µ̄k)>
)
, (18)

where ⊗ is the Kronecker product and
∑K

k=1 Γ̄k ⊗ Γ̄k is positive semidefinite.

If at least one of Γ̄k, k = 1, . . . ,K, is positive definite, then (18) has a unique solution.
Proof. See Appendix A.2.

We now state a simple algorithm for constructing ellipsoidal ambiguity sets.

3.2.1 Algorithm for constructing a joint ellipsoidal ambiguity set

1. Compute µ̂ = 1
K

∑K
k=1 µ̄, solve the system of linear equations (18) for vec(Γ−), form matrix

Γ−, and calculate its inverse Γ̂ to obtain the center (µ̂, Γ̂ ).

2. Choose δ such that the resulting ellipsoidal set inscribes (µ̄k, Γ̄k), k = 1, . . . ,K, i.e., compute
the distance of each estimate from the center, δ1, . . . , δK , and let δ be the maximum value.

System (18) is of dimension n2×n2 which depends only on the number of assets n. Methods
for solving systems of equations based on LU or Cholesky (when applicable) factorizations are
polynomial of cubic order. Hence, the computational complexity of the algorithm is O(n6), and
for medium portfolio sizes this is tractable.

3.2.2 Heuristic for constructing a joint ellipsoidal ambiguity set

It is also possible to construct the ambiguity set with a simple heuristic. In some cases the
heuristic gives tighter ellipsoids than the algorithm and this results to less conservative robust
solutions. The heuristic needs K inversions of a matrix of dimension n × n and elementary
matrix operations, and its computational complexity is O(Kn3).

1. For each estimate (µ̄k, Γ̄k) we compute the sum of its distances from all others

distk =

√√√√ K∑
k′=1

S(µ̄k′ − µ̄k)>Γ̄−1
k (µ̄k′ − µ̄k) +

S − 1

2
‖Γ̄−

1
2

k (Γ̄k′ − Γ̄k)Γ̄
− 1

2
k ‖2tr.
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2. The estimate with the minimum value of distk is the center, and we choose δ such that
the constructed ellipsoidal set inscribes all (µ̄k, Γ̄k), k = 1, . . . ,K. Specifically, we compute
δ1, . . . , δK as the distance of each point in the ellipsoid from the center and let δ be the
maximum value.

3.2.3 Comments on the choice of method

It remains an open question how to construct an ellipsoidal ambiguity set that is big enough
to guarantee robustness but tight enough to avoid conservative solutions. One may wish to try
both the algorithm and the heuristic and pick the ellipsoid with the smaller δ, knowing that
both ellipsoidal sets ensure robust solutions and the one with the smallest δ is less conservative.
Furthermore, both methods provide an intuitive way to choose smaller values of δ by choosing
a suitable quantile of δk, k = 1, . . . ,K. It is not clear on the outset which method generates the
tighter ellipsoid. Figure 1 illustrates in two-dimensions situations when one method dominates
the other. When observations are evolving slowly, or differ slightly from each other, the heuristic
performs better since one of the observations provides a good approximation to the ellipsoid’s
center. When observations change significantly then the algorithm is better in finding a center
of the diverse observations.

Fig. 1: Illustrating algorithm- and heuristic-constructed ellipsoids in two dimensions. For the
observations (solid bullets) on the left, with small changes from each other, the heuristic esti-
mates the tighter ellipsoid. For the observations on the right, with bigger changes, the algorithm
ellipsoid is tighter. When there is no ambiguity in (co)variance the centers coincide. The fig-
ure illustrates the general case in two dimensions. The x-axis represents mean values and the
x-coordinate of the centers coincide. The y-axis representing variances and the y-coordinates
are obtained from eqn (18), which is not a simple average, and hence the y-coordinates of the
centers do not coincide.

3.3 Unifying and extending some results on RVaR and RCVaR optimization

From our model we obtain, as special cases, known results from the literature.

1. For distribution ambiguity, but known mean returns and covariance matrix, set µ̄ = µ̂, Γ̄ = Γ̂
in Proposition 1, to get the results of Chen et al. (2011); Paç and Pınar (2014) for RCVaR,
and of El Ghaoui et al. (2003) for RVaR.

2. For ambiguity in distribution and means, but known covariance, set κ = 1 in Remark 3 to
obtain the problem studied by Paç and Pınar (2014). Following the proof of Theorem 2 we
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now get

min
x∈Rn

− rf − (µ̂− rfe)>x+

(
δ√
S

+

√
α

1− α

)
‖Γ̂

1
2x‖ (19)

s.t.− δ√
S
‖Γ̂

1
2x‖+ (µ̂− rfe)>x ≥ d− rf ,

which is the Paç–Pınar RCVaR model, with their constant ε = δ√
S

.

3. For ambiguity in distribution and covariance, but known means, set κ = 1 in Remark 3 and
follow the proof of Theorem 2 to get

min
x∈Rn

−rf − (µ̂− rfe)>x+

 √
α√

1− α

√
(1 + δ

√
2

S − 1

 ‖Γ̂ 1
2x‖ (20)

s.t. (µ̂− rfe)>x ≥ d− rf .

We are not aware of any studies of this case, which is of interest for risk minimization or
when there is special knowledge on the mean return. For instance, in index tracking (Zenios,
2007, ch. 7) the mean excess return of a portfolio over the index is zero in efficient markets.

Using Theorem 2 we can relax the assumption of Chen et al. (2011); Paç and Pınar (2014),
see Remark 4. Their RVaR model is

−rf − (µ̄− rfe)>x+
2α− 1

2
√
α
√

1− α

√
x>Γ̄ x,

while we (and El Ghaoui et al. (2003)) have

−rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x.

From Remark 5 we know that their RVaR model is computed over a subset of the original
ambiguity set, i.e., the set of all strictly increasing distribution functions with fixed means and

covariance, and their parameter differs from ours. Obviously 2α−1
2
√
α
√

1−α <
√
α√

1−α and their robust

counterpart is less conservative but is valid only under the assumption.

3.4 Extensions to polytopic and interval ambiguity sets

We extend now to models for distribution ambiguity and polytopic and interval ambiguity sets
in the mean returns and covariance matrix. Polytopic and interval uncertainty were studied by
El Ghaoui et al. (2003) for minimizing RVaR, without a target expected return constrain. Thus,
our models extend previous work to include target return constraints for RVaR optimization.
By Proposition 1, we also have a RCVaR optimization model for polytopic ambiguity, that, to
the best of our knowledge is novel. We also obtain a model for RCVaR optimization for interval
ambiguity which is different from that of Zhu and Fukushima (2009), as discussed above.

3.4.1 Extension to polytopic ambiguity sets

We give the formal definition and the relevant theorem to specify RVaR and RCVaR optimiza-
tion models for polytopic ambiguity sets on the mean returns and covariance matrix.
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Definition 3 (Polytopic ambiguity for mean returns and covariance matrix) Mean
returns and covariance matrix belong to the following polytopic set:

UP = {(µ̄, Γ̄ ) ∈ Rn × Sn | µ̄ =

J∑
j=1

ρjµ̄j , Γ̄ =

J∑
j=1

ρjΓ̄j ,

J∑
j=1

ρj = 1, ρj ≥ 0, j = 1, . . . , J},

where (µ̄j , Γ̄j) ∈ Rn × Sn+, j = 1, . . . , J, are the polytope vertices.

Remark 8 Similar to El Ghaoui et al. (2003) we consider the case when mean and covariance
matrix are subject to independent polytopic ambiguity sets. That is we let Up be the direct
product of two polytopes UP1 and UP2 , where

UP1 = {µ̄ ∈ Rn | µ̄ =

J∑
j=1

ρjµ̄j ,

J∑
j=1

ρj = 1, ρj ≥ 0, j = 1, . . . , J}

UP2 = {Γ̄ ∈ Sn | Γ̄ =
J∑
j=1

ρjΓ̄j ,
J∑
j=1

ρj = 1, ρj ≥ 0, j = 1, . . . , J}

are polytopic ambiguity sets for means and covariance matrix, respectively.

Theorem 4 If random variable ξ has a distribution from the set D and (µ̄, Γ̄ ) ∈ UP . Then, the
robust counterpart to VaR portfolio optimization model (5) and the robust counterpart to CVaR
model (6) for polytopic ambiguity are represented by the following SOCP:

min
x∈Rn, ω∈R, β∈R

√
α√

1− α
ω − β (21)

s.t.

rf + (µ̄j − rfe)>x ≥ d, j = 1, . . . , J,

rf + (µ̄j − rfe)>x ≥ β, j = 1, . . . , J,√
x>Γ̄jx ≤ ω, j = 1, . . . , J.

Proof. See Appendix A.3

3.4.2 Extension to interval ambiguity sets

We give now the formal definition and the relevant theorem to specify RVaR and RCVaR
optimization models for interval ambiguity sets on the mean returns and covariance matrix.

Definition 4 (Interval ambiguity for mean returns and covariance matrix) Mean re-
turns and covariance matrix belong to the following interval set:

UI = {(µ̄, Γ̄ ) ∈ Rn × Sn | µ̄− ≤ µ̄ ≤ µ̄+, Γ̄− ≤ Γ̄ ≤ Γ̄+},

where µ̄−, µ̄+, Γ̄−, Γ̄+ are given vectors and matrices and the inequalities are component-wise.
We assume there is at least one (µ̄, Γ̄ ) ∈ UI for which Γ̄ � 0.

Remark 9 The interval ambiguity set can be written as UI1 × UI2 , where

UI1 = {µ̄ ∈ Rn | µ̄− ≤ µ̄ ≤ µ̄+}

UI2 = {Γ̄ ∈ Sn | Γ̄− ≤ Γ̄ ≤ Γ̄+}

are interval ambiguity sets for means and covariance matrix, respectively.
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Theorem 5 If random variable ξ has a distribution from the set D and (µ̄, Γ̄ ) ∈ UI . Then, the
robust counterpart to VaR portfolio optimization model (5) and the robust counterpart to CVaR
model (6) for interval ambiguity are represented by the following SDP:

min
υ∈R, x+, x−∈Rn, Λ, Λ+, Λ−∈Sn

tr(Λ+Γ̄+)− tr(Λ−Γ̄−) + (22)

α

1− α
υ + (µ̄+ − rfe)>x+ − (µ̄− − rfe)>x−

s.t. [
Λ x−−x+

2
(x−−x+)

2

>
υ

]
� 0,

Λ � Λ+ − Λ−,
(µ̄− − rfe)>x− − (µ̄+ − rfe)>x+ ≥ d− rf ,
x+, x− ≥ 0, Λ, Λ+, Λ− � 0.

Proof. See Appendix A.4.

4 Numerical tests

We illustrate the performance of the robust models and compare the robust models vis-a-
vis the nominal (non-robust) models on two financial applications. First, we use simulations
to test the robustness of solutions under mis-specification of mean, variance, skewness, and
kurtosis of the return distributions. This test also highlights the conservativeness of the robust
models and justifies the heuristic for constructing ambiguity sets. Second, we use sovereign CDS
spread returns for Eurozone core and periphery, and Central, Eastern and South-Eastern Europe
countries, covering the eurozone crisis period, to test the robustness of buy-and-hold and active
management investment strategies obtained using the models. Since the CDS spread returns
suffer regime switching before and after the crisis, they provide a natural set of data for stress-
testing the robust models. We also illustrate the estimation of ellipsoids with the algorithm and
the heuristic, and provide results with the execution times to understand the computational
requirements of the new models. All computations were performed using MATLAB 7.14.0 on
a Core i7 CPU 2.5GHz laptop with 8GB of RAM. SOCPs are solved using CVX and (mixed
integer) linear programs with CPLEX.

4.1 Robustness under distribution ambiguity: moment mis-specification

We demonstrate the robustness of RCVaR optimal portfolios to mis-specification in the first
four marginal moments. Mis-specification of higher moments is a form of distribution ambiguity
and these tests illustrate robustness with respect to distribution ambiguity. A more interesting
interpretation of our results is in conjunction with the work of Kaut et al. (2007), where it
was established that CVaR optimization models are sensitive to mis-specification of means,
covariance, skewness, and, less so, to kurtosis. Our results show that these sensitivities are
eliminated by the robust models of this paper.

We consider CVaR and RCVaR optimization with a minimum expected return constraint,
no short-selling, and a budget constraint. We perturb one moment at a time while keeping all
other moments fixed to their original (assumed “true”) value, and repeat the perturbation 100
times. Data are from Kaut et al. (2007) (see Appendix B, Table 2) for international investment
portfolio, which are assumed to be the true values of the moments.

We test as follows the impact of moment mis-specification on the models:
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Step 0: Fix parameter θ and define θ% error on a moment as4

true value (1 + ε
θ

100
), ε ∈ U [−1, 1].

Generate 100 perturbations for one moment by randomly generating ε, while all other mo-
ments are fixed to their true values.

Step 1: Generate 2000 scenarios using Pearson random numbers with the specified mean,
standard deviation, skewness, or kurtosis for each one of the 100 perturbations from Step 0.
Record the scenario sets {R̄k}100

k=1 and their means and covariance {(µ̄k, Γ̄m)}100
k=1.

Step 2: Apply the algorithm of subsection 3.2.1 to {(µ̄k, Γ̄k)}100
k=1, to find the center (µ̂, Γ̂ )

and the parameter δ. Chose the point with the smallest distance δk from the center, with its
scenario set R̂, as the reference scenario set.

Step 3: Solve the model on the reference scenario set and the robust counterpart, and record
the optimal portfolios.

Step 4: Compute return and risk measures of the optimal portfolios over {R̄k}100
k=1.

The model on the reference set is a proxy for the nominal model since we do not have a
scenario set corresponding to the center of the ellipsoid generated by the algorithm. When using
the heuristic to compute the ellipsoid we have the scenario set for the center and hence we have
exactly the nominal model. The performances of the proxy and the nominal models do not differ
significantly, and in the experiments we compare the robust model with the proxy.

4.1.1 Mean and variance mis-specification

Applying the simulation procedure outlined above for the first two moments is not essential,
since the robustness of RVaR and RCVaR have been established theoretically. Nevertheless, we
perform simulations on the first two moments to illustrate another feature of the models. Robust
models are conservative and we illustrate how to control conservativeness by adjusting δ. We
pick δ so that the ambiguity set is large enough to contain all 100 perturbations or only 90 or 80
and so on, by choosing in Step 2 of the algorithm the appropriate quantile of δk, k = 1, . . . ,K.

The results of simulating perturbations in the mean and variance by θ = 10% and 20%,
respectively, and different values of δ, are illustrated in Figures 2–3. We observe from panel (a)
that the robust portfolio never violates the minimum return constraint out-of-sample, while the
nominal portfolio violates the minimum return for about half of the perturbations. On the other
hand, the robust optimal portfolio is conservative and mean returns are significantly higher than
the target for all perturbations. We can remedy this situation by reducing δ using a suitable
quantile of δk, k = 1, . . . ,K. Panel (b) illustrates the effect of this modification in obtaining less
conservative portfolios5. Running the models on the heuristic-generated ellipsoids we find them
more conservative, but we do not report results as they do not provide any additional insights.

4.1.2 Skewness and kurtosis mis-specification

Kaut et al. (2007) established that CVaR portfolios are sensitive to mis-specification in the first
four moments and correlations. In particular, they solve CVaR optimization models for each of
100 generated scenario sets and then evaluate all these optimal portfolios on the benchmark
scenario set. Our experiment studies the same issue for RCVaR optimization. We solve the

4 We follow Chopra and Ziemba (1993), except that they use normally distributed ε ∈ N [0, 1], while we use
uniformly distributed ε ∈ U [−1, 1].

5 Note that the less conservative portfolios still satisfy the mean return constraint, but this is now not guaran-
teed. What we are guaranteed is to meet the target portfolio for the chosen quantile k.
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(a) δ = 12.24, solution from subsection 3.2.1 algo-
rithm
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(b) δ = 10.61, 80th quantile of δk, k = 1, . . . ,K

Fig. 2: Out-of-sample performance of RCVaR optimization for perturbations in means and
variances with θ = 10%. Portfolios are less conservative for smaller delta.
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(a) δ = 21.13, solution from subsection 3.2.1 algo-
rithm
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(b) δ = 16.94, 80th quantile of δk, k = 1, . . . ,K

Fig. 3: Out-of-sample performance of RCVaR optimization for perturbations in means and
variances with θ = 20%. Portfolios are less conservative for smaller delta.

CVaR optimization with reference scenario R̂ and its robust counterpart, and evaluate the
optimal portfolio on 100 scenario sets of skewness and kurtosis perturbations.

The results are illustrated in Figures 4–5. We examine the performance of optimal portfolios
with increasing perturbation parameter θ, and δ chosen by the algorithm of subsection 3.2.1.
Our observations are consistent with Kaut et al. (2007) on the sensitivity of CVaR strategy
with respect to higher moments mis-specification, i.e., the optimal CVaR portfolio violates the
minimum return constraint for the perturbed scenario sets. The sensitivities of CVaR portfolios
to errors in skewness and kurtosis are in agreement with the findings of Kaut et al. (2007).
The optimal RCVaR portfolios, however, satisfy the minimum return constraint even with
perturbations in the higher moments. Higher moment perturbation is a form of distribution
ambiguity and, hence, the results are expected since the models are robust with respect to
distribution ambiguity.
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Fig. 4: Out-of-sample performance for perturbations in skewness for increasing θ. RCVaR port-
folios meet the minimum return whereas CVaR portfolios do not.
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4.2 Robustness of different investment strategies

We now construct portfolios in eight sovereign CDS for Portugal, Slovenia, Italy, Spain, Ireland,
Germany, Cyprus, and Greece, using daily spread returns from 2 Feb. 2009 to 16 Sept. 2011.
This period covers the eurozone crisis. Analyzing Greece CDS spreads using Bai-Perron tests we
note regime switching at 20 April 2010 and 15 April 2011 (see Appendix B). Up to April 2010
there is a tranquil period (days 1–317), until April 2011 a turbulent period (days 318–575), and
post April 2011 we have a crisis (days 576–685). This classification is convenient to stress-test
the robustness of the model as the market changes from tranquil to turbulent and into a crisis,
and we do so for both RVaR and RCVaR minimization without a risk free asset, no short-selling,
and a budget constraint, following a buy-and-hold investment strategy.

We also use an active portfolio management strategy, to evaluate the performance of the
model in real-word applications, instead of simply testing its robustness. We test the active
management strategy using robust and nominal CVaR models on a set of 18 Eurozone core and
periphery, and Central, Eastern and South-Eastern Europe countries. For this experiment we
use the longest possible period during which there were complete data for all countries in the
sample, i.e., October 2008 to March 2016. During this period again three regimes were iden-
tified, which we call turbulent, crisis, and post-crisis. For details on the data, identification of
regime switching, and descriptive statistics during each regime see Consiglio et al. (2017). These
experiments shed light to the following questions: (i) Are portfolios obtained with robust opti-
mization models indeed robust during the crisis regime switching? (ii) How do robust portfolios
perform using a well accepted risk-adjusted measure of portfolio performance (Sharpe ratio) in
a realistic example, and how do they compare to their non-robust counterparts?

4.2.1 Buy-and-hold

Buy-and-hold investors use the available information to set up the model and optimize the asset
allocation, which is kept fixed throughout the investment horizon. We consider an investor who
develops robust models based on scenarios observed during the tranquil period and keeps them
even as the markets move into turbulence and crisis. The new information is observed and used
to compute portfolio performance, i.e., the risk measures VaR and CVaR, but the portfolio is
not re-optimized. For each new observation we drop the oldest observation, so that the VaR
and CVaR of portfolios obtained with the models are computed on a fixed-size window of the
most recent data.

The ellipsoidal ambiguity set is constructed as follows. First we estimate (µ̄, Γ̄ ) using the first
150 (out of 316) return observations in the tranquil period. Then we discard the first observation,
add the 151st, and compute a new estimate of (µ̄, Γ̄ ). This procedure is repeated by “rolling”
the estimation window forward one period at a time until the end of the tranquil period. At the
end of this procedure, we have 166 estimates of (µ̄, Γ̄ ), and compute the center and δ of the
ambiguity set using the algorithm of subsection 3.2.1. Nominal models use observed data over
the tranquil period to obtain minimum VaR and CVaR portfolios, which are held throughout
the turbulent period. We repeat this process using scenarios from the turbulent period and
evaluate out-of-sample performance into the crisis period.

Results are shown in Figures 6–7. We observe that the out-of-sample risk measure for the non-
robust portfolios may be larger than the in-sample value, but not so for the robust portfolios. The
robust portfolios remain robust even when there is a regime switch from tranquil to turbulent
and from turbulent to crisis.

The well–known conservativeness (Ben-Tal and Nemirovski, 2002; Bertsimas and Sim, 2004)
of robust portfolios in this example is observed in the gap between the in-sample and out-of-
sample values. The gap is unavoidable, since we consider a robust model for the worst case
under ambiguity in all problem data. However, we point out that the magnitude of the gap
depends on data ambiguity and model characteristics. Since we assume ambiguity in means,



Robust VaR and CVaR portfolio optimization 21

variances and covariances, as well as the distribution, the gap in these examples is large. Re-
search in robust optimization typically finds small gaps. However, (Thiele, 2010, Example 1.1)
stress test numerically a portfolio allocation problem and found that when more than 41 out of
the 150 assets had ambiguous data, the solution would become extremely conservative with the
portfolio invested in a single asset. In our application we assume that all assets have ambiguous
data. Using smaller values of δ from the algorithm (or the heuristic), we get less conservative
solutions, as illustrated in Figures 6–7. The gap is reduced as we decrease δ. For δ = 0 and with-
out distribution ambiguity we get the same in-sample solution as the nominal model. However,
now the solution is not robust. We also note that the gap has a large component due to distri-
bution ambiguity, manifested when we set δ = 0 without eliminating distribution. It appears,
in this particular example, that distribution ambiguity is an extreme assumption and models
with ambiguity in means, variances and correlations, but no distribution ambiguity, would be
less conservative. In financial applications it may be possible to avoid distribution ambiguity,
especially in non-crisis situations, but if decision makers are concerned about a potential crisis
the more general ambiguity incorporated in our models is more appropriate.

We note from this experiment that the out-of-sample performance does not differ significantly
between the robust and non-robust model portfolios. (We do not report in the figures the out-
of-sample performance of portfolios obtained with smaller values of δ, as they lie between the
lines shown for the robust and the nominal models.) Hence, it may not be possible to gain
robustness and at the same time improve portfolio performance. From the figure it appears that
the robust models have slightly better performance than the non-robust counterparts out-of-
sample, but this is serendipitous. To evaluate further this issue we use the models for active
portfolio management in the next section.

4.2.2 Active management

Active portfolio managers use the available information to set up the model and optimize asset
allocation for one time period, but as new information arrives the model data are updated and
the portfolio is re-optimized. We consider an investor who starts calibrating nominal and robust
models with the scenarios from the first 150 observations of the tranquil period, with δ = 0 for
the starting robust model. Subsequently, a new data point is observed, the oldest observation
is dropped, and we compute the risk measures with the shifted window, and the portfolio ex
post return for the new data point. After the time window is shifted we re-optimize the asset
allocation with the new information. For the robust model we use the new information to update
δ and construct an ellipsoid using the algorithm of subsection 3.2.1. This procedure is repeated
until the end of the turbulent period. The same experiment is carried out starting with the first
150 observations of the turbulent period and finishing at the end of the crisis.

Results with the sample of eight countries are shown in Figures 8–9. Panels (a)–(b) show
differences between in- and out-of-sample risk measures. The investor is on the safe side when
the difference is positive and suffers unexpected losses for negative differences. Figure 8(a)-(b)
shows out-of-sample performance occasionally deviating from the in-sample estimate. As the
time window rolls forward the robust model registers few and minor downside violations, as
a result of enlarged ambiguity sets with increasing δ (Figure 12). This improvement is less
pronounced in Figure 9(a)-(b), since spreads change substantially during the crisis and learning
is insufficient to build an ellipsoid containing crisis movements. Robust models can not be better
than the data defining the ambiguity sets.

Figures 8(c) and 9(c) plot the ex-post cumulative growth of investments using both the robust
and non-robust models. We calculate the Sharpe ratios for the returns of portfolios developed
using VaR, CVaR, and their robust counterpart. We take the German 3-month treasury bill
rate as the risk free in Sharpe ratio calculations, and the results are reported in the figure.
We test the hypothesis that the Sharpe ratios are identical between the robust and non-robust
strategies using the test established in (Wright et al., 2014), and can not reject it at the 0.01
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Fig. 6: Out-of-sample performance of buy-and-hold for tranquil-to-turbulent. (δ = 10.28)
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Fig. 7: Out-of-sample performance of buy-and-hold for turbulent-to-crisis. (δ = 21.63)

significance level, for both tranquil-to-turbulent and turbulent-to-crisis periods (Appendix C).
Robust solutions do not necessarily sacrifice portfolio performance.

It is an unexpected positive finding that we gain robustness without sacrificing performance,
and we repeat the experiment using the sample of 18 countries over the longer time period, using
a regime identification that is suitable for this combination of countries and dates (turbulent,
crisis, and post-crisis). Results are reported in Figure 10 and the test statistics in Appendix C,
and confirm the finding. We also use a variation of Sharpe ratio that considers only downside
risk (Ziemba, 2005), and find that the robust models perform better than the nominal models
during the turbulent to crisis period, with one-sided ratios of 0.0048 for RCVaR and -0.0065 for
CVaR (although we are not aware of statistical tests for the down-sided Sharpe ratio). These
are very encouraging results for the use of robust optimization for financial applications. We
hasten to emphasize, however, that this is an empirical finding on two data-sets. While it is
encouraging for the use of robust models, this may not be the case for different data sets and
different time periods. Indeed, one should be ready to sacrifice portfolio performance to gain
portfolio robustness.
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Fig. 10: Out-of-sample performance with active management for the 18-country sample during
(a) turbulent-to-crisis, and (b) crisis-to-post-crisis.



26 Somayyeh Lotfi, Stavros A. Zenios

Time window

P
o

rt
fo

lio
 a

llo
c
a
ti
o
n
(V

a
R

 s
tr

a
te

g
y
)

 

 

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Portugal

Slovenia

Italy

Spain

Ireland

Germany

Cyprus

Greece

(a) VaR

Time window

P
o

rt
fo

lio
 a

llo
c
a
ti
o
n
(C

V
a
R

 s
tr

a
te

g
y
)

 

 

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Portugal

Slovenia

Italy

Spain

Ireland

Germany

Cyprus

Greece

(b) CVaR

Time window

P
o

rt
fo

lio
 a

llo
c
a
ti
o
n
(R

V
a
R

(=
R

C
V

a
R

) 
s
tr

a
te

g
y
)

 

 

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Portugal

Slovenia

Italy

Spain

Ireland

Germany

Cyprus

Greece

(c) RVaR=RCVaR

Fig. 11: Portfolio composition with different models for tranquil-to-turbulent. Portfolio turnover
for VaR=0.09, CVaR=0.03 and RVaR=RCVaR=0.004.
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Fig. 12: Values of δ estimated with the algorithm and the heuristic.

4.2.3 Stability of optimal portfolios

We use the active management experiment to revisit the instability issue discussed in Section 2.
Figure 11 illustrates the portfolio composition in the eight-country sample for the tranquil-to-
turbulent period. The robust portfolios change gradually, but not so the nominal counterparts.
Portfolio turnover of the robust model is 0.004, an order of magnitude smaller than that of VaR
(0.09) or CVaR (0.03). The improved stability of the portfolios generated by the robust models
was noticeable in all experiments.

4.3 Estimating the ellipsoids

We report in Figure 12 the values of δ obtained with the algorithm and the heuristic during the
active management experiments on the eight-country sample. The algorithm generates tighter
ellipsoids for tranquil-to-turbulent period, while there is no clear advantage of one method
over the other in turbulent-to-crisis period. In all experiments reported above we use ellipsoids
constructed by the algorithm6.

6 We also performed experiments using heuristic-constructed ellipsoids, without any significant differences.
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4.4 Computational requirements

The robust CVaR optimization models are computationally tractable. By solving robust CVaR
optimization models we get robust solutions for CVaR (and VaR) optimization, with marginally
larger computation time than solving a nominal CVaR model. The RCVaR model, which is
identical to RVaR, requires significantly less computational resources than the nominal VaR
model which is a mixed integer program. Table 1 summarizes model sizes and solution times
for all models.

Problem Model Number of Number of Number of
constraints variables binary variables

8-country problem with 100 scenarios
VaR MIP 152 310 150
CVaR LP 151 309 0
RCVaR=RVaR SOCP 1 8 0

18-country problem with 500 scenarios
VaR MIP 502 1020 500
CVaR LP 501 1019 0
RCVaR

.
= RVaR SOCP 1 18 0

Model and solver 8-country model 18-country model
(seconds) (seconds)

CVaR using CPLEX 1.96 4.31
VaR using CPLEX 33.25 206.94
RCVaR=RVaR using CVX 51.40 56.20

Table 1: Model dimensions (top) and solution times (bottom) for solving 100 instances of the
models.
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5 Conclusions

This paper develops models for robust optimization of VaR and CVaR for the most general
ambiguity sets, namely joint ambiguity in the distribution, mean returns, and covariance matrix.
RVaR and RCVaR optimization for distribution ambiguity reduce to the same second order cone
program. This result allows us to develop several tractable models using ellipsoidal, polytopic,
and interval ambiguity sets for mean returns and covariance matrix. These models expand the
arsenal of robust optimization tools for risk management.

The paper also suggests an algorithm and a heuristic to construct joint ellipsoidal ambiguity
sets from a set of point estimates. We show how to control the size of the ellipsoid, thus limiting
the well known conservativeness of robust optimization models.

Numerical results support the following conclusions:

1. RCVaR optimal portfolios are robust with respect to mis-specifications in the first four
moments.

2. RVaR and RCVaR models could produce conservative solutions under the extreme conditions
assumed in the model, namely ambiguity in all moments and the underlying distributions.
If users can resolve some of this ambiguity then less general models are more appropriate.
In any event, both the algorithm and the heuristic for constructing an ellipsoidal ambiguity
set provide a way to select the ellipsoidal parameter in order to control conservativeness.

3. Buy-and-hold investment strategies based on robust optimization models perform well even
out-of-sample and under the extreme market movements of a financial crisis.

4. Active investment strategies based on robust models do not have inferior performance to
strategies based on nominal models, but they are less sensitive to out-of-sample perturbances.
Hence, we gain robustness without sacrificing portfolio performance , even under the extreme
conditions assumed by the model, and this is a very positive finding.

The last finding is very encouraging but is based on limited experimentation and deserves fur-
ther empirical investigation. It also begs for an answer to the question whether robust portfolios
always have non-inferior performance to their nominal counterparts in efficient markets.
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A. B. Paç and M. Ç. Pınar. Robust portfolio choice with CVaR and VaR under distribution
and mean return ambiguity. TOP, 22(3):875–891, 2014.

G. C. Pflug. Some remarks on the value-at-risk and the conditional value-at-risk. In S. Uryasev,
editor, Probabilistic Constrained Optimization, pages 272–281. Kluwer Academic Publishers,
2000.

A. G. Quaranta and A. Zaffaroni. Robust optimization of conditional value at risk and portfolio
selection. Journal of Banking & Finance, 32(10):2046–2056, 2008.

R. T. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. Journal of Risk,
2:21–41, 2000.

R. T. Rockafellar and S. Uryasev. Conditional value-at-risk for general loss distributions. Journal
of Banking & Finance, 26(7):1443–1471, 2002.

K. Schottle and R. Werner. Robustness properties of mean-variance portfolios. Optimization,
58(6):641–663, 2009.

A. Thiele. A note on issues of over-conservatism in robust optimization with cost uncertainty.
Optimization, 59(7):1033–1040, 2010.
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A Appendix: Proofs

A.1 Proof of Theorem 2

To formulate the robust counterpart of (5) and (6) we need an explicit formulation of (10) and (11),
respectively. Using Proposition 1 we write both RVaR and RCVaR models (10) and (11) as

min
x∈Rn

max
(µ̄,Γ̄ )∈Uδ(µ̂,Γ̂ )

−rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x (23)

s.t. min
(µ̄,Γ̄ )∈Uδ(µ̂,Γ̂ ),π∈D

(µ̄− rfe)>x ≥ d− rf .

To find an explicit formulation we need the optimal value of the inner problem

max
(µ̄,Γ̄ )∈Uδ(µ̂,Γ̂ )

− rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x. (24)

We decompose the robustification first in µ̄ and then in Γ̄ via an additional parameter κ ∈ (0, 1), where
U√κδ(µ̂), U√1−κδ(Γ̂ ) are defined as in Remark 3. It is easy to see that (24) is equivalent to:

max
κ∈[0,1]

max
Γ̄∈U√1−κδ(Γ̂ )

max
µ̄∈U√κδ(µ̂)

−rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x. (25)

We start with the innermost maximization problem

max
µ̄∈U√κδ(µ̂)

−rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x,

or, equivalently,

maxµ̄∈Rn −rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x (26)

s.t. S(µ̄− µ̂)>Γ̂−1(µ̄− µ̂) ≤ κδ2.

This is maximized for µ̄∗ = µ̂−δ
√

κ
S

Γ̂
1
2 x

‖Γ̂
1
2 x‖

. Plugging in this solution we obtain the middle maximization

problem as

max
Γ̄∈Sn

−rf − (µ̂− rfe)>x+ δ

√
κ

S
‖Γ̂ 1

2x‖+

√
α√

1− α

√
x>Γ̄ x

s.t.
S − 1

2
‖Γ̂− 1

2 (Γ̄ − Γ̂ )Γ̂−
1
2 ‖2tr ≤ (1− κ)δ2.

Using the variable transformation ¯̄Γ = Γ̂−
1
2 (Γ̄ − Γ̂ )Γ̂−

1
2 , this becomes

max
¯̄Γ∈Sn

−rf − (µ̂− rfe)>x+ δ

√
κ

S
‖Γ̂ 1

2x‖+

√
α√

1− α

√
x>Γ̂ x+ x>Γ̂

1
2

¯̄Γ Γ̂
1
2x (27)

s.t. ‖ ¯̄Γ‖2tr ≤
2

S − 1
(1− κ)δ2.

Since the square root function is monotonically increasing, the objective function of (27) is maximized

if and only if x>Γ̂
1
2

¯̄Γ Γ̂
1
2x is maximized. Thus, we let y := Γ̂

1
2x and solve

max ¯̄Γ∈Sn y
> ¯̄Γy (28)

s.t. ‖ ¯̄Γ‖2tr ≤
2

S − 1
(1− κ)δ2. (29)

The optimal solution ¯̄Γ ∗ is given by

¯̄Γ ∗ = δ

√
2

S − 1
(1− κ)

y

‖y‖
.
y>

‖y‖
.
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Plugging everything back we get the optimal value of (27) as

−rf − (µ̂− rfe)>x+ δ

√
κ

S
‖Γ̂ 1

2x‖+

√
α√

1− α

√
(1 + δ

√
2(1− κ)

S − 1
‖Γ̂ 1

2x‖,

which is substituted back in problem (25) to get

max
κ∈[0,1]

−rf − (µ̂− rfe)>x+ δ

√
κ

S
‖Γ̂ 1

2x‖+

√
α√

1− α

√
(1 + δ

√
2(1− κ)

S − 1
‖Γ̂ 1

2x‖

= −rf − (µ̂− rfe)>x+ max
κ∈[0,1]

δ√κ

S
+

√
α√

1− α

√
(1 + δ

√
2(1− κ)

S − 1

 ‖Γ̂ 1
2x‖

= −rf − (µ̂− rfe)>x+

(
max
κ∈[0,1]

f(κ)

)
‖Γ̂ 1

2x‖,

which is the objective function of (15).
Now, the robust counterpart of minimum return constraint is equivalent to:

min
κ∈[0,1]

min
µ̄∈U√κδ(µ̂)

(µ̄− rfe)>x ≥ d− rf .

Following the same course as in solving the inner problem (24), we get:

min
κ∈[0,1]

(µ̂− rfe)>x− δ
√
κ

S
‖Γ̂ 1

2x‖ ≥ d− rf .

The solution is κ = 1 and the robust counterpart of minimum return constraint is:

(µ̂− rfe)>x−
δ√
S
‖Γ̂ 1

2x‖ ≥ d− rf ,

which is the constraint in (15). This completes the proof.

A.2 Proof of Theorem 3

First we state some well-known properties of Kronecker product ⊗.

Proposition 2 Assume A, B, C, D and X are given matrices of conformable sizes.

(i) tr(AB) = tr(BA)

(ii) tr(A>B) = vec(A)>vec(B)

(iii) vec(AXB) = (B> ⊗A)vec(X)

(iv) (B ⊗A)(C ⊗D) = BC ⊗AD

(v) (B ⊗A)(C ⊗D) = BC ⊗AD

where vec(A) denotes the vector obtained by stacking the columns of A ∈ Rm×n successively underneath
each other.

We transform the problem using new variables (µ̂, Γ−) where Γ− = Γ̂−1 is also positive definite, and
develop the analysis on the transformed equivalent problem. We show that the transformed problem is
convex and Slater condition hold. Therefore, we use the KKT optimality conditions to derive the optimal
solution of the transformed problem and compute the inverse of Γ− to obtain Γ̂ .

Let H = H(µ̂, Γ̂ ) denote the objective function in (17). Then

H =

K∑
k=1

S(µ̄k − µ̂)>Γ̂−1(µ̄k − µ̂) +
S − 1

2
tr(Γ̂−

1
2 (Γ̄k − Γ̂ )Γ̂−1(Γ̄k − Γ̂ )Γ̂−

1
2 ). (30)
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Using property (i) we get

H =

K∑
k=1

S tr(Γ̂−1(µ̂− µ̄k)(µ̂− µ̄k)>) +
S − 1

2
tr(Γ̂−1(Γ̄k − Γ̂ )Γ̂−1(Γ̄k − Γ̂ ))

=

K∑
k=1

S tr(Γ̂−1(µ̂− µ̄k)(µ̂− µ̄k)>) +
S − 1

2
tr((Γ̂−1Γ̄k − I)2).

Applying properties (ii)–(iii) we get

H =

K∑
k=1

S vec((µ̂− µ̄k)(µ̂− µ̄k)>)>vec(Γ̂−1) +
S − 1

2
vec(Γ̄kΓ̂

−1 − I)>vec(Γ̂−1Γ̄k − I)

=

K∑
k=1

S vec((µ̂− µ̄k)(µ̂− µ̄k)>)>vec(Γ̂−1) +

K∑
k=1

S − 1

2
((I ⊗ Γ̄k)vec(Γ̂−1)− vec(I))>((Γ̄k ⊗ I)vec(Γ̂−1)− vec(I)).

Finally, by replacing Γ̂−1 by Γ−, doing some straightforward calculations, and using properties (iv)–(v)
we get the new formulation of H(µ̂, Γ̂ ) in terms of (µ̂, Γ−), which we call G(µ̂, Γ−),

G(µ̂, Γ−) = vec(Γ−)>

[
S − 1

2

K∑
k=1

Γ̄k ⊗ Γ̄k

]
vec(Γ−) +

nK(S − 1)

2
+

[
S

K∑
k=1

vec((µ̂− µ̄k)(µ̂− µ̄k)>)− (S − 1)

K∑
k=1

vec(Γ̄k)

]>
vec(Γ−). (31)

Now that we have H as a function of (µ̂, Γ−), we write the transformed problem as

min
µ̂∈Rn, Γ−∈Sn++

G(µ̂, Γ−).

One can easily check that the Hessian matrix of function G is positive semidefinite and Slater condition
holds, hence KKT conditions give us the optimal solution. There are no constraints on mean returns, and
Γ−, being the inverse of a positive definite matrix, is positive definite and in the interior of the positive
semidefinite cone. Hence, the KKT optimality conditions reduce to:

∇Gµ̂ = 0,

∇Gvec(Γ−) = 0. (32)

To obtain ∇Gµ̂ we take the differential with respect to µ̂:

dG = d

K∑
k=1

S vec((µ̂− µ̄k)(µ̂− µ̄k)>)>vec(Γ−)

=

K∑
k=1

S vec(d((µ̂− µ̄k)(µ̂− µ̄k)>))>vec(Γ−)

=

K∑
k=1

S
(
vec(dµ̂(µ̂− µ̄k)>)>vec(Γ−) + vec((µ̂− µ̄k)(dµ̂)>)>vec(Γ−)

)
.

Using properties (ii)–(iii) we get:

dG =

K∑
k=1

S
(
tr((µ̂− µ̄k)(dµ̂)>Γ−) + tr(dµ̂(µ̂− µ̄k)>Γ−)

)
=

K∑
k=1

S
(
tr((µ̂− µ̄k)(dµ̂)>Γ−) + tr(dµ̂(µ̂− µ̄k)>Γ−)

)
=

K∑
k=1

2S (µ̂− µ̄k)>Γ−dµ̂.
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Hence,

∇Gµ̂ = (
dG

dµ̂
)> =

K∑
k=1

2S Γ−(µ̂− µ̄k).

Therefore the solution of ∇Gµ̂ = 0 is µ̂ = 1
K

∑K
k=1 µ̄.

Calculating ∇Gvec(Γ−) we obtain the second equation in (32) as:[
(S − 1)

K∑
k=1

Γ̄k ⊗ Γ̄k

]
vec(Γ−) +

[
S

K∑
k=1

vec((µ̂− µ̄k)(µ̂− µ̄k)>)− (S − 1)

K∑
k=1

vec(Γ̄k)

]
= 0,

which suggests the following system of linear equations in terms of vec(Γ−):[
K∑
k=1

Γ̄k ⊗ Γ̄k

]
vec(Γ−) =

[
K∑
k=1

vec(Γ̄k)− S

(S − 1)

K∑
k=1

vec((µ̂− µ̄k)(µ̂− µ̄k)>)

]
= 0.

All Γ̄k, k ∈ {1, . . . ,K} are positive semidefinite matrices. The sum and Kronecker product of two

positive semidefinite matrices are positive semidefinite matrices, thus
∑K
k=1 Γ̄k ⊗ Γ̄k is positive semidef-

inite. To prove uniqueness of solution, assume Γ̄l, for some l ∈ {1, . . . ,K} is a positive definite matrix,
then so is Γ̄l ⊗ Γ̄l. Also, Γ̄k ⊗ Γ̄k, for all k ∈ {1, . . . ,K}/{l} are positive semidefinite matrices. These all

together imply that
∑K

k=1

Γ̄k ⊗ Γ̄k is a positive definite matrix, that is the coefficient matrix is a full rank

matrix and thus (18) has a unique solution.

A.3 Proof of Theorem 4

By Proposition (1), RVaR and RCVaR optimization models can be written as:

min
x∈Rn

max
(µ̄,Γ̄ )∈UP

−rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x (33)

s.t. min
(µ̄,Γ̄ )∈UP

rf + (µ̄− rfe)>x ≥ d.

Using the representation UP1 × UP2 of UP , one can easily see that the inner optimization problems
appeared in objective function and constraint can be decomposed into easier subproblems and thus we
get:

min
x∈Rn

− rf − min
µ̄∈UP1

(µ̄− rfe)>x+

√
α√

1− α
max
Γ̄∈UP2

√
x>Γ̄ x (34)

s.t. rf + min
µ̄∈UP1

(µ̄− rfe)>x ≥ d.

Obviously, min
µ̄∈UP1

(µ̄− rfe)>x = min
1≤j≤J

(µ̄j − rfe)>x and

max
Γ̄∈UP2

√
x>Γ̄ x = max

1≤j≤J

√
x>Γ̄jx.

Letting β = rf + min
1≤j≤J

(µ̄j − rfe)>x and ω = max
1≤j≤J

√
x>Γ̄jx, we get the result.

A.4 Proof of Theorem 5

By Proposition (1), RVaR and RCVaR optimization models can be written as:

min
x∈Rn

max
(µ̄,Γ̄ )∈UI

−rf − (µ̄− rfe)>x+

√
α√

1− α

√
x>Γ̄ x (35)

s.t. min
(µ̄,Γ̄ )∈UI

rf + (µ̄− rfe)>x ≥ d.
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We start with the objective function. Using Theorem 1 of El Ghaoui et al. (2003) we replace the inner
maximization objective function by the following:

min
υ∈R, Λ∈Sn+

tr(ΛΓ̄ ) +
α

1− α
υ − (rf + (µ̄− rfe)>x) (36)

s.t.

[
Λ x

2
x
2
> υ

]
� 0,

Hence, the inner maximization in the objective function of model (35) is equivalent to:

max
(µ̄,Γ̄ )∈UI

min
υ∈R, Λ∈Sn+

tr(ΛΓ̄ ) +
α

1− α
υ − (rf + (µ̄− rfe)>x) (37)

s.t. [
Λ x

2
x
2
> υ

]
� 0.

Convexity and compactness of feasible region and linearity of objective function with respect to µ̄ and
Γ̄ for fixed Λ and υ (and conversely) imply that we can exchange “min” and “max” to obtain

min
υ∈R, Λ∈Sn+

max
(µ̄,Γ̄ )∈UI

tr(ΛΓ̄ ) +
α

1− α
υ − (rf + (µ̄− rfe)>x) (38)

s.t. [
Λ x

2
x
2
> υ

]
� 0.

Decompose now the inner maximizations into easier subproblems by applying the UI1×UI2 representation
of UI to derive the following formulation of (38):

min
υ∈R, Λ∈Sn+

−rf +
α

1− α
υ + max

Γ̄∈UI2
tr(ΛΓ̄ ) + max

µ̄∈UI1
− (µ̄− rfe)>x (39)

s.t. [
Λ x

2
x
2
> υ

]
� 0.

The dual formulations of the maximization problems in (39) are

max
Γ̄∈UI2

tr(ΛΓ̄ ) = min
Λ+, Λ−�0, Λ�Λ+−Λ−

tr(Λ+Γ̄+)− tr(Λ−Γ̄−),

and
max
µ̄∈UI1

− (µ̄− rfe)>x = min
x+, x−≥0, x=x−−x+

(µ̄+ − rfe)>x+ − (µ̄− − rfe)>x−.

Under suitable conditions —primal and dual strict feasibility— the duality gap in the first optimization
problem above is zero, and we obtain the objective function of (35) as

min
υ∈R, x+,x−∈Rn,Λ, Λ+, Λ−∈Sn

α

1− α
υ + tr(Λ+Γ̄+)− tr(Λ−Γ̄−) + (40)

(µ̄+ − rfe)>x+ − (µ̄− − rfe)>x−
s.t. [

Λ x−−x+

2
(x−−x+)

2

>
υ

]
� 0,

Λ � Λ+ − Λ−,
x+, x− ≥ 0, Λ, Λ+, Λ− � 0.

To complete the robust counterpart (35), we need an explicit formulation of the robust counterpart of
minimum return constraint:

min
(µ̄,Γ̄ )∈UI

rf + (µ̄− rfe)>x ≥ d.

To do this, we write the minimization problem as −rf + max
µ̄∈UI1

− (µ̄− rfe)>x and use the result on dual

form discussed above. Hence, the robust counterpart of minimum return constraint is:

rf − (µ̄+ − rfe)>x+ + (µ̄− − rfe)>x− ≥ d.

This completes the proof.
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B Appendix: Data
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Fig. 13: CDS spreads of the Greek sovereign with identified regimes: Leftmost is the tranquil
period, center is the turbulent, and the rightmost is the crisis.

Stock.USA Stock.UK Stock.DE Stock.JP Bnd1.USA Bnd2.USA

Mean 0.01296 0.01047 0.01057 -0.00189 0.00553 0.00702
SD 0.04101 0.04150 0.05796 0.06184 0.00467 0.01620
Skewness -0.47903 -0.19051 -0.47281 0.04768 -0.18341 -0.07482
Kurtosis 3.76519 3.11399 4.11970 3.62119 2.77801 3.23974

Table 2: Moments of monthly differentials of the historical market data.
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C Appendix: Hypothesis testing

We used the test of Wright et al. (2014) to test for the equality of Sharpe ratios of the returns created
by the portfolios of pairs of models. The null hypothesis is as follows

H0 : SH(Model1) = SH(Model2), (41)

where SH(Model1) and SH(Model 2) are the Sharpe ratios of the sample of portfolio returns generated
using Model1 and Model2, respectively. The null hypothesis is rejected if the test statistic χ̂2 is greater
than the critical value coming from the table of probabilities for the χ2 distribution with one degree
of freedom, at a pre-scpecified significance level. The p-value is the probability that, under the null
hypothesis H0, the χ2 value will be greater than the empirically estimated value χ̂2, i.e. p-value = Prob
(χ2 > χ̂2 | H0). The results of the test for different set of experiments are in Table 3 at the 0.01
significance level.

Period H0 hypothesis χ̂2 p-value

Active management Turbulent- SH(VaR)=SH(RVaR) 0.0413 0.8389
eight-country sample to-crisis SH(CVaR)=SH(RCVaR) 0.0380 0.8454

Crisis-to- SH(VaR)=SH(RVaR) 0.5874 0.4434
post-crisis SH(CVaR)=SH(RCVaR) 1.9031 0.1677

Active management Turbulent-
eighteen-country sample to-crisis SH(CVaR)=SH(RCVaR) 0.7525 0.3857

Crisis-to
post-crisis SH(CVaR)=SH(RCVaR) 0.0035 0.9529

Table 3: The hypothesis that the Sharpe ratios for different strategies are identical can not be
rejected at the 0.01 significance level. The critical value for the χ2 distribution with one degree
of freedom is 6.6349.
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