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Περίληψη

Υποκινούμενοι από την αυξανόμενη σημαντικότητα των επιφανειακών (ή γενικότερα

συνοριακών) φαινομένων σε τοπολογικές καταστάσεις της Συμπυκνωμένης ΄Υλης, και σε

συνδυασμό με την εμπλοκή γεωμετρικών και τοπολογικών εννοιών στην Κβαντομηχανική,

η παρούσα διατριβή αφιερώνεται στην αναδιατύπωση και επέκταση ορισμένων θεμελιωδών

εννοιών, οι οποίες με τη σειρά τους επιφέρουν σημαντικές μετρήσιμες συνέπειες.

΄Εχουμε αναθεωρήσει τη λεγόμενη Μοντέρνα Θεωρία της Τροχιακής Μαγνήτισης,

ορίζοντας καινούργιες ποσότητες, οι οποίες οφείλονται σε ένα μη-Ερμιτιανό φαινόμενο,

το οποίο αποδίδεται σε ανώμαλους τελεστές που σπάνε το πεδίο ορισμού της Ερμιτιανής

Χαμιλτονιανής. Ως αποτέλεσμα, συνεισφορές από τα άκρα οι οποίες έχουν αγνοηθεί

στο παρελθόν, λαμβάνονται αυστηρά και αναλυτικά υπόψη. Αυτές αναμένεται να δίνουν

πολύ μεγάλες συνεισφορές στην τροχιακή μαγνήτιση, όποτε υπάρχουν διασταυρώσεις εν-

εργειακών ζωνών μαζί με τάσηHall λόγω ανισορροπίας στη συσσώρευση των ηλεκτρονίων
σε απέναντι άκρα του υλικού.

Παρόμοια επιχειρήματα με μη-Ερμιτιανές συνεισφορές έχουμε εφαρμόσει και στη φυσική

του σπιν. Δείχνουμε πώς μπορεί κανείς να ορίσει μια κβαντική εξίσωση κίνησης για το

σπιν, χωρίς να είναι απαραίτητη η ύπαρξη τοπικού νόμου διατήρησης, σε αντίθεση με την

καθιερωμένη πρακτική. Σε αυτό το πλαίσιο, έχουμε ορίσει το ενδογενές ρεύμα του σπιν

ως τη χρονική παράγωγο της συσχέτισης μεταξύ της θέσης και του σπιν του ηλεκτρονίου.

Το ενδογενές ρεύμα του σπιν είναι απαλλαγμένο από οποιεσδήποτε επιπλοκές, λαμβάνει

ρητά υπόψη τις συμβολές από τα άκρα, και για συστήματα στα οποία δεν ασκούνται τοπικές

ροπές στρέψης δίνει μηδενική τιμή.

Επιπλέον, έχουμε κάνει μια επέκταση του γνωστού θεωρήματος Hellmann-Feynman,
σε μια διευρυμένη μορφή η οποία μπορεί να εφαρμοστεί σε χρονικά εξαρτώμενες καταστά-

σεις και χρονικά εξαρτώμενες παραμέτρους. Ο προκύπτων τύπος της επέκτασης έχει βρε-

θεί ότι δίνει τις αναμενόμενες τιμές των φυσικών μεγεθών σαν συνάρτηση γενικευμένων

καμπυλοτήτων του Berry και συνεισφορών από τα άκρα του συστήματος λόγω και πάλι
ενός αναδυόμενου μη-Ερμιτιανού φαινομένου. Με εφαρμογή της επέκτασης έχουμε βρει

τις κβαντικές εξισώσεις κίνησης του ηλεκτρονίου οι οποίες επεκτείνουν τις αντίστοιχες

ημικλασικές. Η εφαρμογή του θεωρήματος στη μελέτη της μεταφοράς σωματιδίων σε μη-

αδιαβατικό όριο, δείχνει ότι η κβάντωση καταρρέει εξαιτίας μιας μη τετριμμένης Aharonov-
Anandan φάσης. Ομοίως, η εφαρμογή του θεωρήματος στη μελέτη της πόλωσης των ηλεκ-
τρονίων, αναδεικνύει την ύπαρξη μιας επιφανειακής μη-Ερμιτιανής συνεισφοράς η οποία
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δεν έχει ληφθεί υπόψη μέχρι στιγμής στη λεγόμενη Μοντέρνα Θεωρία της Πόλωσης.

Χρησιμοποιώντας μια ορθοκανονική βάση αναλύσαμε περαιτέρω την επέκταση του

θεωρήματος Hellmann-Feynman. ΄Εχουμε βρει ένα τύπο για τις αναμενόμενες τιμές των
φυσικών μεγεθών που εξαρτάται τόσο από τη δυναμική εξέλιξη μέσω των συντελεστών του

αναπτύγματος, όσο και από την τοπολογία του στιγμιαία κατειλημμένου χώρουHilbert. Εί-
ναι ενδιαφέρον το γεγονός ότι τα μετρήσιμα μεγέθη αποκτούν εξάρτηση από μη-Αβελιανές

καμπυλότητες Berry όποτε η κβαντική κατάσταση καταλαμβάνει περισσότερες από μία δι-
αστάσεις του χώρου Hilbert. Η μορφή αυτών των μη-Αβελιανών καμπυλοτήτων μοιάζει
με τους τανυστές του πεδίου Yang-Mills. Στο πλήρως δυναμικό όριο, όταν όλοι οι συν-
τελεστές του αναπτύγματος εξελίσσονται πλήρως συζευγμένοι μεταξύ τους, αυτές οι μη-

Αβελιανές καμπυλότητες του Berry δίνουν μηδέν. Με την εφαρμογή αυτής της επέκ-
τασης, μπορούμε να δικαιολογήσουμε τα θεωρητικά αποτελέσματα που έχουν προκύψει

τα τελευταία χρόνια στις μελέτες μεταφοράς σε δυναμικά συστήματα τα οποία είναι εκτός

ισορροπίας (π.χ. συστήματα Floquet), όπου έχει βρεθεί ότι η αγωγιμότητα, καθώς και η
μεταφορά σωματιδίων, δίδονται ως ολοκληρώματα των καμπυλοτήτων Berry σταθμισμένα
από τις πιθανότητες των καταλήψεων.

Αυτή η διατριβή δίνει μια καινούργια προοπτική για ουσιαστική εμπλοκή των μη Ερμι-

τιανών φαινομένων, της τοπολογίας και της δυναμικής εξέλιξης, μέσα σε ένα εννοιολογικό

πλαίσιο που είναι κατάλληλο για θεωρητικές μελέτες στη Φυσική της Συμπυκνωμένης

΄Υλης, και ως τέτοια, ευχόμαστε να συμβάλει στο να ακολουθηθούν αυτές οι μέθοδοι και

από άλλα μέλη της κοινότητας στο μέλλον.
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Abstract

Motivated by the increased importance of boundary effects in topological states of Con-
densed Matter, combined with the involvement of geometric and topological concepts within
a quantum mechanical framework, this dissertation is dedicated to the reformulation and ex-
tension of some fundamental concepts, which in turn lead to important measurable conse-
quences.

We have reconsidered the so called Modern Theory of Orbital Magnetization by defin-
ing additional quantities that incorporate a non-Hermitian effect due to anomalous operators
that break the domain of definition of the Hermitian Hamiltonian. As a result, overlooked
boundary contributions to the observable are rigorously and analytically taken into account.
These are expected to give giant contributions to orbital magnetization whenever band cross-
ings occur along with Hall voltage due to imbalance of electron accumulation at opposite
boundaries of the material.

We have also applied similar arguments with non-Hermitian contributions to spin physics.
We show how one can set up a global quantum equation of motion for the spin transport pro-
cesses without any local conservation law being necessary, in contrast to the established
practice. In this framework, we have defined the intrinsic spin current operator as the time
derivative of the correlation between electron’s position and electron’s spin. This intrinsic
spin current is free from any complications, it explicitly takes into account boundary contri-
butions, and for systems that lack local spin-torques turns zero value.

In addition, we have made a dynamical extension of the standard Hellmann-Feynman
theorem to one that can be applied to time-dependent states with time-dependent parame-
ters. The resulting formula for the dynamics of the observables is found to have profound
connections to generalized Berry curvatures as well as to boundary contributions due to an
emerging non-Hermitian effect. By way of application we have derived the quantum equa-
tions of motion of the electron which extends the standard semiclassical counterpart. Ap-
plication of the theorem to the study of particle transport in the non-adiabatic limit, shows
that the quantization breaks down due to a non-trivial Aharonov-Anandan phase. Similarly,
application of the theorem to the study of the electric polarization indicates that there is a
boundary non-Hermitian contribution that has been so far overlooked in the so called Modern
Theory of Polarization.

By using an orthonormal basis we have analyzed further the dynamical extension of the
Hellmann-Feynman theorem. We have found a formula for the observables that depends
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on the dynamics through the expansion coefficients together with the topology of the in-
stantaneous occupied Hilbert space. Interestingly, the observables acquire dependence on
non-Abelian Berry curvatures when the quantum state occupies more than one dimensions
in Hilbert space. The form of these non-Abelian Berry curvatures resembles the Yang-Mills
field strength tensors. In the fully dynamical limit, when all expansion coefficients evolve in
time coupled to each other, these non-Abelian Berry curvatures turn to zero. By way of ap-
plication of this extension we can justify the theoretical results that have come out in the last
few years in non-equilibrium transport studies (i.e. of Floquet systems), where they find that
the conductivity as well as the particle transport, are given as integrals of Berry curvatures
weighted by the occupation numbers.

Our dissertation gives a new perspective for an essential engagement of boundary non-
Hermitian effects, topology and dynamics, in a single theoretical framework that is appro-
priate for theoretical studies of Condensed Matter Physics, and as such we hope that it will
contribute in making these methods followed up by other members of the community in the
future.
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Chapter 1

Introduction

For decades, the application of differential geometry and algebraic topology has been re-
stricted to either the curved spacetime of general relativity or gauge theories in particle
physics. This was until 1984 when Michael Berry [17] discovered the geometric phase ac-
companying adiabatic evolutions around closed loops. Barry Simon [123] interpreted this
result in terms of the holonomy in a Hermitian line bundle and realized the topological ori-
gin of the integer quantum Hall effect [135]. He identified the integer values of conductivity1

as the first Chern numbers which are topological invariants related to closed surfaces. The
discoveries of Michael Berry and Barry Simon mark the beginning of a new era in the theo-
retical studies of condensed matter physics. The involvement of geometry and topology by
means of quantum mechanics sharpened our understanding and led to numerous discover-
ies2.

Quantization of particle transport [134] for a time-periodic and adiabatic evolution was
justified due to topology. Reformulation of the electric polarization by engaging geometric
phases [75, 101, 109] was carried out in the 1990s (although the role of the Berry phase in
this theory was not immediately apparent, it facilitated the reinterpretation of macroscopic
polarization later on [114, 111]). Reformulation of the orbital magnetization [133, 33] by
using geometric concepts was performed in mid 2000s. An extension of the semiclassical
equations of motion was made [35, 130], and an additional term that depends on geometric
details, called the anomalous velocity, has finally confirmed a fifty-year-old idea concerning
the interpretation of the anomalous Hall effect [73].

Generally, topological states of matter are inherently related to non-integrable geometric
phases, and as such are realized for example in Chern and topological insulators [61, 106], as
well as in Dirac and Weyl semimetals [137, 6]. The special properties of such states of matter
like the Chern number, can be traced back to geometric quantities like the Berry curvature,
in the same spirit as the Gauss-Bonnet theorem which connects the Euler characteristic of a

1The theoretical explanation of the integer quantized Hall conductance in the presence of a magnetic field
was first made in 1982 by the quartet of Thouless, Kohmoto, Nightingale and den Nijs [135] with a perturbation
calculation, where they found the integer values (appropriately coined later as the TKNN invariant) without
using topological arguments.

2These discoveries go by the name Topological Phases, and their great importance is reflected in the 2016
Nobel Prize in Physics (awarded to D. J. Thouless, J. M. Kosterlitz and F. D. M. Haldane).
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Chapter 1 Section 1.1

Figure 1.1: At the end of a cyclic process the (final) modulus of the wavefunction Ψ(r,R(t))
remains the same to the initial but the wavefunction acquires a dynamical β plus a geometric
γ(c) phase.

surface to the Gaussian curvature.

1.1 Geometric Phases

In classical and quantum mechanics, the geometric phase is a phase difference acquired over
the course of a cycle when a system is subject to a cyclic process as shown in Fig.1.1.

The geometric phases occur whenever there are parameters characterizing a wave in the
vicinity of some sort of singularity or hole. The first to observe the occurrence of a ge-
ometric phase when dealing with closed loops in a parameter space was S. Pancharatnam
[102] in 1956. He discovered the geometric phase in the context of optical polarization.
He discussed the interference of two polarized beams, one of them having been transported
around a closed loop on the Poincare sphere (the space of polarization states) with respect to
the other. Moreover, he was able to express the result in terms of the solid angle described
by the normal vector along the loop. In 1959 Y. Aharonov and D. Bohm [2] realized that
the electromagnetic scalar and vector potentials, which were introduced in classical elec-
trodynamics mainly for convenience, have physically meaningful consequences in quantum
mechanics. Although measurable quantities cannot depend directly on the potentials due to
gauge freedom, Y. Aharonov and D. Bohm discovered that the electronic wave function ac-
quires a measurable (geometric) phase shift when transported along a circuit threaded by a
line of magnetic flux. Speaking in terms of geometry, the magnetic vector potential and field
in the Aharonov-Bohm effect correspond to the connection and curvature, respectively. At
the same time, the geometric phase appeared at a different end in a more subtle way, in the
study of Jahn-Teller effect in molecular systems. It manifested itself as a change of sign in the
electronic wavefunction during a cyclic evolution of the nuclear coordinates around a conical
intersection of the potential energy surfaces. The original idea was limited to systems where
the wavefunctions could be chosen as real. Hence, the interpretation of the sign change of a
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Chapter 1 Section 1.2

Figure 1.2: Spherical and crumpled balls have the same genus of g = 0, in (a), but both the
donut and the coffeecup with one hole in (b) are characterized by g = 1. Adapted from [16].

real wavefunction as the special case of a phase change of a complex wavefunction was not
apparent, and the geometric phase that was underlying the entire problem was not identified
as such. It was not until the publication of C. Mead and D. Truhlar [93] in 1979, when the
double-valuedness of the electronic wavefunction caused by the sign change was resolved
by introducing a vector potential in the electronic Hamiltonian. This vector potential seemed
to originate from a fictitious magnetic flux line at the location of the conical intersection of
two energy levels in the parameter space of nuclear coordinates. Because of this analogy, the
phenomenon is called the molecular Aharonov-Bohm effect. In fact, this method introduced
geometric phases as a generalization of the Born-Oppenheimer approximation in molecules
if one allows for the nuclei to move slowly.

1.2 Topology in condensed matter

Topology is the abstract study of continuity. It introduces mathematical structures which
remain unchanged under continuous deformation. For this reason it is often called “rub-
ber sheet” geometry as it focuses on features that do not change when continuous changes
are made to the parameters of the system. In conventional band theory, one only needs to
calculate the dispersion relation En(k) in order to study the transport properties. For ex-
ample, the electron’s velocity v is simply given by the gradient of the electron’s energy

v =
1

~
∇kEn(k). On the other hand, in topologically non-trivial states of matter, the lat-

ter relation turns out to be inadequate and is enhanced by extra terms T n(k) resulting to

v =
1

~
∇kEn(k) + T n(k). The extra terms capture the topology of the Hilbert space and

mathematically are attributed to the singularities of the wavefunctions. These singularities
form nodal lines (also called dislocation lines) in 3D configuration space or points in 2D.
Along these nodal lines the phase of the wavefunction is undetermined and its modulus is
normally zero. Each nodal line is characterized by a topological integer that is also called
topological charge. The number of dislocation lines that penetrates only once a closed sur-
face, in a way can be thought as the genus g that counts the number of holes of a surface
as shown in Figure 1.2. The study of this kind of singularities is made either by Dirac string
method, where one explicitly deals with the singularities, or with the fiber-bundle method
where one deals with overlap spaces and the strings are avoided. The Dirac string method
although a bit more complicated, is intuitively more instructive for one to highlight the in-
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Chapter 1 Section 1.2

volvement of non-integrable phases. In this framework, we outline in what follows the Paul
Dirac’s [43] monopole charge study in real space r, and then describe a counterpart study
in parameter space R.

First, we discuss the analyticity of the wavefunction and it’s single-valuedness, in order
to connect as simply as possible the topological states of matter with the related singularities
of the wavefunctions. In this respect we consider the space

(r,R, t)

where r is the position vector, R is a three-dimensional continuous vector parameter, and
t is time. We assume a wavefunction that defines the map

(r,R, t) 7−→ Ψ(r,R, t) (1.1)

for a closed system ˚
V

|Ψ(r,R, t)|2 d3r = 1. (1.2)

Position coordinates

If the wavefunction is globally single-valued over position coordinates, it satisfies

˛
C

∇Ψ(r,R, t) · dr = 0 (1.3)

for any closed circuit that fulfills two conditions stated below. We consider for simplicity a
scalar wavefunction Ψ(r,R, t) = |Ψ(r,R, t)| eiS(r,R, t), where |Ψ(r,R, t)| is its modu-
lus and S(r,R, t) its phase. Taking into account that the wavefunction is single-valued but
the phase is defined modulo 2π, it results to the first condition

˛
C

∇S(r,R, t) · dr = 2πn (1.4)

where n is an integer. The latter equation implies that, when n 6= 0 there exist a nodal
line where the phase is undetermined3. The modulus of the wavefunction, must satisfy the
Schwarz integrability condition globally over space coordinates ∇×∇|Ψ(r,R, t)| = 0,
due to the normalization constraint Eq. (1.2). Applying the Stokes theorem in the arbitrary
circuit of Eq. (1.3) gives

i

¨
S

Ψ(r,R, t)∇×∇S(r,R, t) · da = 0. (1.5)

3Applying the Stokes theorem for the arbitrary closed circuit gives
¨

S

∇×∇S(r,R, t) · da = 2πn, im-

plying that there is a nodal line along the points where ∇×∇S(r,R, t) 6= 0 for n 6= 0.
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Chapter 1 Section 1.2

This implies that Ψ(r,R, t) has to be zero at the dislocation lines where the phase is un-
determined ∇×∇S(r,R, t) 6= 0 which is the second constraint. Although the phase is not
globally integrable, it does not cause any complications due to the constraint
Ψ(r,R, t)∇×∇S(r,R, t) = 0. For example, in the Hydrogen atom the wavefunction is
zero along the entire z axis whenever the electron has a well-defined angular momentum.
Therefore, an infinite nodal line is present and extends all over the z axis, from the lower
boundary of the system to the upper boundary. This defines the topologically trivial states
with quantized angular momentum, that is the states where each nodal line crosses twice the
enclosing surface of the system.

Dirac string

An exceptional, non-trivial case was encountered in the seminal work of Paul Dirac [43] in
his study about the motion of an electron around a magnetic monopole charge. He intro-
duced a vector potential A(r) by a global, singular U(1) phase transformation with a non-
integrable phase. That is, he assumed Φ(r, t) = eiΛ Ψ(r, t) where Λ cannot be expressed as
a function of (r, t) with definite value at each point, but, has definite derivatives satisfying
∇Λ =

e

~c
A(r). The phase Λ is undefined along the nodal line characterized by

∇×∇Λ =
e

~c
B(r) 6= 0, where B(r) is tangential to the nodal line. This nodal line is

unobservable, provided that it coincides with a nodal line of Ψ(r, t), as well as it satisfies˛
∇Λ · dr = 2πn. Therefore, viewing the nodal line as an infinitesimal flux tube with the

magnetic field B(r) coming from south pole as depicted in Figure 1.3, and assuming that
this nodal line penetrates only once the surface enclosing the system, he concluded that the
magnetic flux over a closed surface is quantized

e

~c

‹

S

B(r) · da =

‹

S

∇×∇Λ · da =

˛

C→0

∇Λ · dr = 2πn,

where C is the infinitesimal closed curve enclosing the nodal line and n is an integer.
Equivalently, this magnetic flux can be attributed to a magnetic monopole charge qm that
is situated at the end of the nodal line where ∇ ·∇×∇Λ 6= 0 and creates an effective
spherically symmetric magnetic field Beff(r) as shown in Figure 1.3. Therefore the magnetic

charge is quantized in units of qm = n
~c
2e

.

String in parameter space

Similar arguments of the Dirac string approach in real space, are commonly found in the
topological states of matter, where the role of the magnetic field is given to the Berry cur-
vature and the role of vector potential to the Berry connection. For example, in topological
states of matter one frequently finds the map

(r,R) 7−→ Ψ(r,R) 7−→ i

˚
V

Ψ∗(r,R)∇RΨ(r,R)dV = A(R) (1.6)

18

Kyri
ak

ou
 Kyri

ak
os



Chapter 1 Section 1.2

Figure 1.3: Magnetic field of the singular Dirac potential.

where A(R) is the Berry connection. Intuitively one expects that singularities of the wave-
function created by variation of the parameter R will be inherited to the Berry connection.
Therefore, one can follow the Dirac steps of derivation but in parameter space, namely, in-
troduce a Berry connection A(R) by a global singular U(1) phase transformation with
a non-integrable phase. In this framework we assume Φ(r,R) = eiΛ Ψ(r,R), where the
phase Λ cannot be expressed as a function of R with definite value at each point, but, has def-
inite derivatives satisfying∇RΛ = A(R). This vector field is singular along the nodal line
∇R ×∇RΛ 6= 0, but is unobservable provided that it coincides with a nodal line of Ψ(r,R)

as well as it satisfies
˛
∇RΛ · dR = 2πn. Therefore, for a nodal line that penetrates once a

closed surface in parameter space, one finds

‹

S

B(R) · da =

‹

S

∇×∇Λ · da =

˛

C→0

∇Λ · dR = 2πn

where B(R) = ∇R × A(R) is the so-called Berry curvature, C is the infinitesimal
closed curve enclosing the nodal line, and n is a topological invariant integer called first
Chern number. In this framework, monopoles are also possible to exist in parameter space
provided that the Berry connection A(R) and the wavefunctions (according to Eq. (1.6)),
have some kind of singularities. A monopole (antimonopole) charge in parameter space
(the k space in Solid State Physics) is situated at the end (beginning) of a nodal line which
coincides with a band-touching point in the Brillouin zone.

Monopoles are realized in crystal momentum (parameter) space in band theory, in the
topological states of matter, in contradistinction to real space. A reason that may cause this
dissimilarity may be due to the wavefunctions that need not be single-valued globally over
parameter coordinates (in contrast to real space). Therefore, the single-valuedness over real
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Chapter 1 Section 1.3

space coordinates Eq. (1.5) can be relaxed in parameter space

˛
C

∇RΨ(r,R) · dR = i

¨
S

Ψ(r,R)∇R ×∇RS(r,R, ) · daR 6= 0. (1.7)

This kind of multivalued functions does not affect the observables in the canonical formula-
tion, since the operators (r,p) do not act on the parameter coordinates. If we accept that this
is the case, then, the nodal lines in parameter space R need not coincide with the zeros of the
wavefunction, and as such are presumably much easier to be realized in crystal momentum
space.

Two plausible questions now arise. What are the theoretical tools that probe these topo-
logical effects and how are these effects explicitly taken into account as part of observables’
formulas? The probe of these effects is usually made by studying the geometric phases in the
framework of Michael Berry’s phase [17], but the explicit connection to observables is still
somewhat unclear. Perhaps the most known result so far that explicitly relates an observable
with a curvature, was given by Ming-Che Chang and Qian Niu [35] in 1996, and Ganesh
Sundaram and Qian Niu [130] in 1999, who enhanced the semiclassical equations of motion
by incorporating Berry curvature corrections.

An explicit engagement of Berry curvatures in the formulas of observables will come out
as a part of this dissertation, originating from a derivation of two dynamical extensions of
the Hellmann-Feynman theorem that takes into account boundary contributions due to non-
Hermitian effects. The dynamical extensions give one the ability, in the simplest manner
possible, to explicitly probe the dynamics and the topology of the embedded Hilbert space.

1.3 Semiclassical Equations of Motion

In the semiclassical approach, each electron is described by a wave packet constructed from
a single band Bloch functions under the following condition. The spread ∆k of the wave
packet in the momentum space should be small compared with the dimensions of the Bril-
louin zone, so that it is meaningful to speak of the momentum k of the electron. This require-
ment implies that in real space the spread ∆r of the wave packet is on the scale of hundreds
of unit cells. Therefore, in order for the semiclassical description to be valid, external per-
turbations must vary slowly over the dimensions of ∆r. The wave packet can be written
as

|W (rc,kc) 〉 =

˚
BZ

an(k)eik·(r− rc) |un(k) 〉 (1.8)

where rc and kc are the wave packet centers in real and momentum space respectively,
an(k) is the expansion coefficients whose exact form is not important as long as the above
requirement on the wave packet spread is satisfied, and |un(k)〉 is the periodic part of the
Bloch function |Ψn(k)〉 = eik·r |un(k)〉. The spirit of the semiclassical model is that the
fast varying periodic lattice potential is taken into account by the use of the Bloch functions
|un(k)〉 while the slowly varying external perturbations are treated semiclassically. In the
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Chapter 1 Section 1.4

presence of weak electric (E) and magnetic (B) fields, the equation of motion of the wave
packet center is usually given in the following form [8]

drc
dt

=
1

~
∇kcEn(kc) (1.9)

~
dkc
dt

= eE +
e

c

drc
dt
×B (1.10)

where En(kc) is the unperturbed band energy of the electron. According to this set of equa-
tions, the electron dynamics is solely determined by the band energy. In fact, the quantity
En(kc) is so important that techniques developed to calculate the band structure have become
an independent field in Solid State Physics. The wave packet is expanded in the basis of the
cell functions |un(k)〉 which are the eigenstates of the following effective Hamiltonian

H(k) =
1

2m
(−i~∇+ ~k)2 + Vcrys(r). (1.11)

If the electron adiabatically moves from k1 to k2, which can be done by simply applying an
electric field, the electron’s wavefunction will acquire an extra geometrical type of phase.
M. C. Chang and Q. Niu [35] in 1996, and G. Sundaram and Q. Niu [130] in 1999, were the
first to enhance the above semiclassical equations of motion by incorporating Berry curva-
ture corrections. They use an effective Lagrangian of the motion with generalized variables
the electron’s main position and the electron’s main crystal momentum, whereas the external
(electric and magnetic) fields were taken into account as perturbations. Under the approxi-
mations that: (i) the external fields vary slowly over the spatial extension of the wave packet,
and (ii) the fields do not cause excitations (adiabatic approximation), and by employing a
time-dependent variational principle for the trial wave packet, they found the two extended
semiclassical equations of motion

drc
dt

=
1

~
∇kcẼn(kc) −

dkc
dt
×Bn(kc) (1.12)

~
dkc
dt

= eE +
e

c

drc
dt
×B, (1.13)

where
Bn(kc) = i 〈∇kcun(kc)| × |∇kcun(kc)〉 (1.14)

is the Berry curvature evaluated with respect to the cell periodic states. In this framework,
they found that the electron acquires an extra velocity that is proportional to the Berry cur-

vature − dkc
dt
×Bn(kc) which is sometimes referred to as the “anomalous velocity” of the

electron. As we shall see, a part of our work described below leads to even further extensions
of the above equations of motion that involve additional types of Berry quantities (that can
be interpreted as electric field in k-space).
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Chapter 1 Section 1.4

1.4 Outline of the dissertation

Motivated by the increased importance of boundary effects in topological states of matter,
combined with the involvement of geometric and topological concepts within a quantum
mechanical framework, this dissertation is dedicated to the reformulation and extension of
some fundamental concepts, which in turn lead to important measurable consequences. The
outcomes of this dissertation are briefly reviewed below:

� Theoretical study of orbital magnetization

We reconsider the modern theory of orbital magnetization by defining additional quantities
that incorporate a non-Hermitian effect due to anomalous operators that break the domain
of definition of the Hermitian Hamiltonian. As a result, boundary contributions to the ob-
servable are rigorously and analytically taken into account. In this framework, we extend
the standard velocity operator definition in order to incorporate an anomaly of the posi-
tion operator that is inherent in band theory, which results in an explicit boundary velocity
contribution. Using the extended velocity, we define the electrons’ intrinsic orbital circu-
lation and we argue that this is the main quantity that captures the orbital magnetization
phenomenon. As evidence of this assertion, we demonstrate the explicit relation between
the nth band electrons’ collective intrinsic circulation and the approximated, evaluated with
respect to Wannier states, local and itinerant circulation contributions that are frequently
used in the modern theory of orbital magnetization. A quantum mechanical formalism for
the orbital magnetization of extended and periodic topological solids (insulators or metals)
is re-developed without any Wannier-localization approximation or heuristic extension [33].
It is also shown that, as a result of the non-Hermitian effect, an emerging covariant deriva-
tive enters the one-band (adiabatically deformed) approximation k-space expression for the
orbital magnetization. In the corresponding many-band (unrestricted) k-space formula, the
non-Hermitian effect contributes an additional boundary quantity which is expected to give
locally (in momentum space) giant contributions whenever band crossings occur along with
Hall voltage, due to imbalance of electron accumulation at the opposite boundaries of the
material.

� Theoretical study of boundary contributions with application to spin current

We show how one can set up a global quantum equation of motion for transport processes,
without any local conservation law being necessary (in contrast to the established practice),
provided that additional boundary operators are taken into account and the system is closed.
The global quantum equation of motion: (i) provides a way for defining operators in an
extended manner, (ii) leads to a bulk-boundary relation for stationary states (having the form
of a gain-loss balance equation that relates the boundary rate of change of an observable with
its corresponding bulk change), as well as, (iii) gives a way for defining linear approximation
dissipation equations near equilibrium. By employing the extended definition of an operator,
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we first review the spin current definition [121] and show that, together with the bulk spin
generation, spin generation over the boundaries has to also be zero, in order for their operator
to have a well defined value; the spin generation over the boundaries is explicitly attributed
to a non-Hermitian boundary operator and has not been pointed out in this manner so far. We
then define the intrinsic spin current operator as the time derivative of a correlation function
between electron’s position and electron’s spin. The intrinsic spin current has two parts, the
bulk part and a boundary one, the latter attributed to the non-Hermitian effect. Its value is
always well-defined without any constraints being involved whatsoever. For any stationary
state, there exists a gain-loss detailed balance relation that explicitly relates the bulk intrinsic
spin current with the corresponding boundary one, while, for systems that lack local spin-
torques (in a given direction), the spin current turns zero value (provided that the state under
consideration has a well-defined spin in the given direction) due to the position and spin
being uncorrelated.

� Derivation of a dynamical Hellmann-Feynman theorem and application to topolog-
ical transport processes

On could argue in general that topological quantum states of matter are studied and classified
by two different kinds of methods. Within the first kind, one examines the phases that are
accumulated during cyclic processes with respect to parameters that vary with time, whereas
in the second kind of methods, one explicitly studies an observable’s expectation value by
using time-dependent linear response methods. In the first kind of methods the quantities in-
volved are Berry connections which are gauge-dependent quantities, whereas in the second
kind the quantities involved are Berry curvatures that are gauge-invariant quantities. It is fair
to state that, although in this work none of these has been followed, we have still derived
results on expectation values of observables to all orders in the fields (no linear response
assumption). By just using quantum dynamics in an appropriate way, we have derived an
extended and dynamical Hellmann-Feynman (HF) theorem for general non-adiabatic pro-
cesses. The theorem is derived for a time-dependent vector parameter and takes into account
boundary contributions due to an emerging non-Hermitian effect. We present therefore a for-
mula for the observables that explicitly depends on generalized Berry curvatures and takes
into account boundary contributions. We show that, when dealing with states that are la-
beled by time-dependent parameters (as for example in the extended HF theorem that we
have derived), it creates a complication in the standard (in band theory) way of transfor-
mation between the discrete sum over static parameters (such as crystal momentum) to a
counterpart Riemann integral over continuous variables. We resolve this issue by taking into
account the arbitrary Jacobian of transformation between the initial value of a parameter and
the time-evolved one. This way of transformation engages measurable consequences when
the parameter velocity-field behaves as a compressible fluid field. This complication is pre-
cisely the “paradox” that appears in the semiclassical modification of density of states [149],
which has not been realized or identified in this manner.
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Several applications of the theorem showing its usefulness are made:
(i) We have derived a generalized Maxwell type of equation (in parameter space) with
monopole sources, where the fields are the generalized Berry curvatures of the theorem.
For flux preserving motions, the generalized Maxwell type of equation takes the familiar
form of Faraday’s law accompanied by a current that has two parts, the first part being the
monopole current whereas the second being a divergenceless free part. The current satisfies a
continuity equation leading to conservation of the total monopole charge of the system. This
Maxwell type of equation is a generalization of the Maxwell type of equation that is found
in the last few years [70] in the study of Weyl semimetals, which has arisen by heuristic
analogy to the electromagnetic induction law and without any detailed derivation.
(ii) We have studied the particle transport in the adiabatic limit (Thouless pump) as well
as in dynamical and non-adiabatic limit. By using the extended velocity operator we have
confirmed that the quantization of the particle transport in the adiabatic limit is a boundary
effect. This is accomplished by using the dynamical HF theorem together with the non-
Hermitian boundary velocity. In the counterpart study of the non-adiabatic transport we
find that the quantization of the particle transport breaks down due to a non-trivial (non-
integrable) Aharonov-Anandan phase.
(iii) We have reconsidered the electric polarization in the framework of the so-called modern
theory of polarization. We have shown that there is a boundary contribution that has been
overlooked. This boundary contribution is zero only when the Bloch states satisfy periodic
boundary conditions (over the realistic boundaries of the material) during the adiabatic driv-
ing, thus no voltage must be present during the adiabatic cyclic evolution.
(iv) We have derived two sets of quantum equations of motion for the electron without any
localization or adiabatic approximation involved. One is for spinless motion and the other
for spinfull one. These quantum equations of motion are extensions of the semiclassical ones
[130] that where derived by means of a time-dependent variational method, applied to a trial
localized wavepacket under the adiabatic approximation. The electron’s velocity that we
found depends explicitly on two generalized Berry curvatures as well as on a non-Hermitian
boundary term. We argue that the spinfull quantum equations of motion can be applied to the
quantum anomalous Hall effect. Based on the spinfull equations of motion, and by show-
ing explicitly the approximations involved, we have derived a modification of the density
of states for a spinfull motion. In comparison to the semiclassical counterpart modification,
the magnetic field is replaced by the total magnetic field, that is, the externally applied field
plus the effective one due to spin-orbit coupling; at the same time, the modification takes
into account an extra term that involves the monopole charges which were discarded in the
semiclassical study.
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� Derivation of a dynamical HF theorem in a complete and orthonormal basis accom-
panied by applications

The dynamical extension of the Hellmann-Feynman theorem that we have made, although
practical and useful, cannot extract analytically the combined information of (i) the dynamics
captured by the expansion coefficients and (ii) the topology of the Hilbert space that is instan-
taneously occupied. On the other hand, during the last few years a lot of theoretical as well
as experimental work is carried out in the study of time-dependent and non-equilibrium sys-
tems, where topological patterns of behavior may emerge under certain constraints. There-
fore, by using an orthonormal basis we have further analyzed the dynamical extension of
the Hellmann-Feynman theorem. We have found a formula for the observables that depends
on emerging non-Abelian curvatures as well as on non-Hermtian boundary contributions.
The formula has an inherited gauge structure that is attributed solely to the dimensions of
the Hilbert space that are instantaneously occupied, irrespectively of the energy scale of the
quantum system. Therefore, the gauge structure comes up either when the electron is spin-
less and not relativistic or when it is a spinfull and high energy one. It is remarkable that the
form of these non-Abelian Berry curvatures resembles the Yang-Mills field strength tensors.
In the fully dynamic limit, when all expansion coefficients evolve in time coupled one to each
other, these non-Abelian Berry curvatures turn to zero. On the other hand, whenever only
one dimension of the available Hilbert space is at every instant occupied, then, the gauge
structure is lost and the observables are given by Abelian curvatures. By way of applica-
tion of this extension we can justify the theoretical results that have come out the last few
years in non-equilibrium transport studies, where they find that the conductivity, as well as
the particle transport, are given as integrals of Berry curvatures weighted by the occupation
numbers.

We should probably stress that all the new quantities emphasized above have indeed
been defined for the first time in this work. All interpretations and results are based on
these quantities and have been derived during the period of carrying out this dissertation.
In particular, the non-Hermitian effect (that had earlier been noted as a “paradox” in the
Ehrenfest theorem, and is here also encountered in the Hellmann-Feynman theorem) stands
out as something that seems to have been entirely overlooked in the Solid State literature,
various cases where it shows up deserving further investigation.
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Chapter 2

Orbital magnetization

As we already declared in the Introduction, we shall begin with the orbital magnetization1 as
the observable under investigation and we shall see that this leads to results - especially on
subtle boundary contributions - that have largely been ignored in the literature.

Boundary effects are ubiquitous in condensed matter systems. However, how these ef-
fects influence bulk quantities such as the bulk orbital magnetization M seems to be still
unclear [38, 92, 20]. Circular dichroism measurements have confirmed the existence of
surface states with non-trivial orbital moment textures in k-space [104, 74] due to Orbital
Rashba Effect [103], while gigantic orbital magnetization values are predicted to occur in
the vicinity of band crossings at the surfaces of sp alloys [54]. A simple and direct method
to link boundary properties with bulk quantities, if found, would conceptually give a direct
realization of a bulk-boundary correspondence in a general sense. Hints of such a link have
appeared but they have not yet been combined in a single theoretical framework for con-
densed matter systems. In the chemists’ community the link between boundary effects and
“bulk” quantities seems to have been studied in detail and is formalized as surface integrals
(fluxes) of certain generalized currents in the so-called atomic theorems [13, 12, 15] that de-
termine atom properties viewed as parts (fragments) of a molecule; for example, the atomic
dielectric polarization [15] and atomic magnetic susceptibility [14] have been determined
within that method. In the mathematical physics community the connection between bound-
ary effects and bulk quantities can be attributed to anomalous operators that break the domain
of definition of the Hamiltonian operator, thereby leaving residues either in the Ehrenfest the-
orem [47, 48, 66] or in the Hellmann-Feynman [49] theorem; these can be converted into
space coordinate surface integrals (for 3D systems) over the system’s boundaries. In this
paper we rigorously take into account these boundary residues as non-Hermitian effects in
order to model the boundary contributions to the orbital magnetization of non-interacting
electrons.

In general, anomalous operators act on states that belong within a given Hilbert space,
where the Hamiltonian is assumed Hermitian and the system is closed, and they produce

1This chapter is adapted from K. Kyriakou and K. Moulopoulos [81] which is currently under review in
Physical Review B.
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Chapter 2 Section 2.0

states that are outside this given Hilbert space; this leads to emergent non-Hermiticity in the
Hamiltonian which is precisely the above mentioned boundary residue.

One of the most common examples of such an anomalous operator (that leaves a bound-
ary residue in the Ehrenfest theorem) is the position operator r whenever periodic boundary
conditions at the ends of the system are adopted for the wavefunctions. In Solid State Physics
one usually bypasses this kind of anomaly as in Ref.[110] by redefining a proper (periodic)
operator for the electrons’ position that does not leave any boundary residue and by working
with its expectation value. In this work we deal with this problem in a direct way, that is
we maintain the standard electrons’ expectation value 〈r〉 as defined within the Schrödinger
picture (despite the fact that the electrons’ position expectation value 〈r〉 becomes undefined
within the Bloch representation in the thermodynamic limit, its displacement ∆〈r〉 after a
finite time interval is always a well-defined quantity as shown in Appendix A) and simply
extend the standard velocity operator by adding to it an extra operator term that takes into
account the non-Hermitian effect of the Hamiltonian operator. The expectation value of the
added operator term is determined entirely from the boundaries of the system and it rigor-
ously gives a boundary velocity contribution for the electron (although formalized in a bulk
framework).

Therefore, having in mind the evolution of the quantum state under consideration as
well as the position operator expectation value within the Schrödinger picture, we are led to
define the velocity operator in an extended form as, vext = v + vb where v is the standard
velocity operator as given in the literature (which can be viewed as a bulk property) and vb

is the added boundary operator term that takes into account the non-Hermitian effect. In this
fashion, the extended velocity operator expectation value 〈vext〉 is always equal to the rate

of change of the electrons’ position expectation value 〈vext〉 =
d

dt
〈r〉 irrespectively of the

system’s size or the boundary conditions to be imposed on the wavefunction; it should be
noted that the latter equality is not guaranteed if the boundary velocity operator is not taken
into account, and this has been the source of paradoxes[66].

The above boundary velocity vb expectation value, can be used as a probe with respect
to transport properties that are carried by the system’s boundaries. However, although the
boundary velocity expectation value 〈vb〉 is well defined and not zero within Bloch repre-
sentation in the thermodynamic limit, the expectation value of certain observable operators
involved in orbital magnetization calculations in the literature, can be undefined, e.g. the po-
sition operator expectation value 〈r〉 and the circulation operator expectation value 〈r× v〉.
Such subtle behaviors, as well as relevant consequences with respect to the modern theory
of orbital magnetization, are presented in Sec.2.1.3 and summarized in Table 2.1.

Orbital magnetization is the quantity to be crucially affected by the above non-Hermitian
effect and it is this observable that is the focus of our treatment. Before we start, let us note
that, although in conventional materials the orbital magnetization is only of the order of a few
per cent of the total magnetization, in materials with topologically nontrivial band structures
the electrons’ collective orbital magnetization can be larger than spin magnetization which
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Chapter 2 Section 2.0

has been confirmed in experiments [131, 58, 107], owing to large orbital magnetization con-
tribution arising from the effective reciprocal space monopoles near the band crossings.

Nowadays, the so-called modern theory of orbital magnetization M has been argued
to have come to a mature stage [132]. Three main methods for deriving the bulk orbital
magnetization formula in the context of modern theory are currently widespread: a quantum
mechanical method with direct calculation of circulating currents for trivial band insulators
in the presence of boundaries [133, 33], a semiclassicall wave packet approximation method
[149, 148, 35] and one that takes the derivative of free energy with respect to magnetic
fields under periodic boundary conditions [120, 37]. In the first of the above methods two
incompatible features had to be overcome in order for the magnetization to be a genuine
bulk property, namely adoption of periodic boundary conditions (PBCs) and usage of the
circulation operator r × v in the Bloch representation. This was done with the aid of the
Wannier representation which can be rigorously employed in normal insulators with zero
Chern number.

Furthermore, it has been argued that bulk behavior of observables in crystalline materials
is ensured when computing within PBCs. In spite of this belief, and contrary to what has been
stated in the literature [112, 19], the system by construction has a “terminated” boundary
surface (assuming a 3D material), the one on which PBCs are imposed; boundary contribu-
tions due to non-Hermitian effects are therefore generally not ruled out, especially whenever
observables incorporate anomalous operators, such as the position operator that enters the
expressions for the electron’s magnetic and electric dipolar moment.

In the spirit of re-examining the orbital magnetization formula within a quantum me-
chanical theoretical framework that takes into account boundary effects and at the same time
relaxes the Wannier-localization approximation, we were motivated to define a circulation

operator that contains the extended velocity operator in the form
1

2
(r× vext − vext × r),

in order to analytically determine the orbital magnetization of a system of effectively non-
interacting electrons (i.e. in a density functional theory framework). Although this circu-
lation operator takes into account boundary contributions as a consequence of the extended
velocity operator vext, its expectation value is still problematic in the Bloch representation
within PBCs and it becomes undefined for extended systems in the thermodynamic limit (see
Appendix A).

In spite of the undefined expectation value of the latter circulation operator in periodic
and extended systems, and to our surprise, we found out that it can always be decomposed
into two distinct parts, namely, an intrinsic one that has a definite value and an extrinsic
one that carries the undefined value. The intrinsic one has an intensive and bulk behavior
that properly counts the local and circulating probability micro-currents embodied in the
(generally) extended wavefunction’s structure with boundary contributions being explicitly
taken into account due to the non-Hermitian effect.

Specifically, the expectation value of the intrinsic orbital circulation is found to have the
following properties: (i) it does not depend on the system’s size and has a finite value within
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Chapter 2 Section 2.0

PBCs in the Bloch representation in the thermodynamic limit, (ii) it carries information about
the electrons’ orbital circulating probability micro-currents which are encoded as structured
wavefunction in real space (for free electrons and plane waves it becomes zero), (iii) its value
does not depend on the position origin (as long as the shift of the origin can be attributed
to a unitary transformation of the wavefunction) and (iv) it takes into account boundary
contributions as a consequence of the non-Hemitian effect.

Although we do not use any Wannier states in this work, we nevertheless demonstrate
how an explicit relation between the electrons’ nth band collective intrinsic circulation (eval-
uated with respect to Bloch eigenstates) and a starting point formula of the modern theory
of orbital magnetization (namely, the electrons’ collective circulation evaluated with respect
to Wannier states) can be established. This is accomplished by using the standard velocity,
the newly defined boundary velocity and the intrinsic circulation and by assuming that each
Bloch eigenstate satisfies the periodic gauge. In this respect, we expand each Bloch eigen-
state into the basis of localized bulk Wannier states and localized surface orbitals, and as a
result the nth band electrons’ collective intrinsic circulation (initially evaluated with respect
to Bloch eigenstates) acquires two distinct contributions which are the same as the ones given
in Ref.[133], that is, the collective local circulation contribution (LC) plus the collective itin-
erant circulation contribution (IC), the latter being, in our formulation, explicitly attributed
to the new boundary velocity. It is important to re-emphasize that, using the relation between
the boundary and the standard velocity, the IC can be recast in a form that can be evaluated
as a bulk property.

In this framework we propose that the intrinsic circulation is the proper quantity that
encodes the electrons’ intrinsic orbital behavior in periodic (or moderately disordered) and
extended systems, without the need of any approximation, and as such it must be employed
in a rigorous quantum mechanical theoretical framework for calculating the orbital magneti-
zation.

In the fashion described above, we exploit the intrinsic orbital circulation in order to
model the orbital magnetization of non-interacting electrons and as such we use it to derive
two quantum mechanical formulas, one as an r-space and another one as a “reciprocal” k-
space formula, both being relaxed from any Wannier-localization approximation.

The r-space formula is derived for an extended system within PBCs over the terminated
boundaries, giving therefore the bulk orbital magnetization.

In the derivation of the k-space expression we relax the PBCs constraint, and as a con-
sequence, certain interesting features emerge. Namely, a covariant derivative appears in the
one-band (adiabatically deformed) approximation formula for the orbital magnetization as
an emerging operator, and survives due to the non-Hermitian effect that is attributed to the
anomalous momentum gradient operator ∂k that enters the static (off-diagonal) Hellmann-
Feynman theorem that we derive in Appendix C. In the many-band (unrestricted) formula
the non-Hermitian effect contributes an additional boundary quantity which explicitly de-
pends on the off-diagonal matrix elements of the boundary velocity operator vb as well as
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Chapter 2 Section 2.1

on a new boundary momentum gradient operator kb (defined in Eq. (2.46)). The latter ad-
ditional boundary quantity, is expected to give locally (in momentum space) giant orbital
magnetization contributions (due to its structure) whenever band crossings occur along with
Hall voltage as a consequence of boundary conditions that may generally break the standard
Born-von Kármán periodicity.

The theoretical method that we propose can be employed either for calculating the built-
in orbital magnetization of solids in the absence of external fields [133, 33] or for calculating
the induced orbital magnetization as a response to external fields, e.g. to an electric field [90].
In this work we determine the built-in magnetization in solids when time reversal symmetry
is assumed to be broken, either from a staggered magnetic field that averages to zero over
the unit cell, or through spin-orbit coupling to a background of ordered local moments.

2.1 Definitions

2.1.1 Extended velocity operator

By taking into account the evolution of the state under consideration, and by demanding
that the velocity operator expectation value must always be equal with the rate of change of

the electrons’ expectation value
d

dt
〈r〉, it is necessary to define the velocity operator in an

extended theoretical framework as,

vext = v + vb (2.1)

where,
v =

i

~
[H(r, t), r] (2.2)

is the standard velocity operator and

vb =
i

~
(
H(r, t)+ −H(r, t)

)
r (2.3)

is the boundary velocity operator.
The introduction of this new operator vb is rather naturally motivated by Refs.[47, 48]

and its expectation value is not zero only whenever the position operator becomes anomalous
due to the non-Hermitian effect, in which case there are paradoxes first noted in Ref.[66].

For closed systems 〈Ψ(t)|Ψ(t)〉 = 1, the Hamiltonian is Hermitian H(r, t)+ = H(r, t)

with respect to the states that belong within the domain of its definition and these states form
the given Hilbert space. The non-Hermitian effect emerges whenever the state rΨ(r, t) does
not belong within the given Hilbert space, that is H(r, t)+(rΨ(r, t)) 6= H(r, t) (rΨ(r, t)),
which is a characteristic property of all wavefunctions Ψ(r, t) that satisfy PBCs over the

system boundaries.
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Although the expectation value of the boundary velocity operator Eq. (2.3) given by

〈vb〉 =
i

~
(〈H(r, t)Ψ(t)| rΨ(t)〉 − 〈Ψ(t)|H(r, t)rΨ(t)〉) (2.4)

is by definition a bulk quantity, due to space-volume integration (assuming a 3D system) in
position representation, it can always and equivalently be evaluated as a boundary quantity
due to the structure (and symmetry) of the integrands that allows an integration by parts.

In this respect, by working in position representation, for real scalar and vector potentials
and after a straightforward integration by parts, the expectation value of Eq. (2.3) is given
in the form

〈vb〉 = −
‹
S

r (Jpr(r, t)·dS) +
i~
2m

‹
S

|Ψ(r, t)|2dS (2.5)

with S being the terminated boundary surface of the system where the boundary conditions
are imposed, and Jpr(r, t)=Real[Ψ(r, t)∗v Ψ(r, t)] is the standard local probability current
density (for a spinless electron). The general form of Eq. (2.5) can be further reduced for
periodic systems. Specifically, by assuming a wavefunction u(r, t) that is cell-periodic in
the bulk and at the same time satisfies Born-von Kármán periodic boundary conditions over
the material’s boundaries, Eq. (2.4) takes the form

〈vb〉 =
i

~
(〈H(r, t)u(t)| ru(t)〉cell − 〈u(t)|H(r, t)ru(t)〉cell) (2.6)

where we have used the normalization convention 〈u(t)|u(t)〉cell = 1, as well as the fact that
u(r, t) belongs within the domain of definition of the Hamiltonian, that is,
〈H(r, t)u(t)|u(t)〉 − 〈u(t)|H(r, t)u(t)〉 = 0. By then exploiting the symmetry of the in-
tegrands and performing integration by parts, Eq. (2.6) takes the simplified form

〈vb〉 = −
‹
cell

r (Jpr(r, t)·dS) (2.7)

that is valid for periodic systems.
The first term of Eq. (2.5) can be seen as a position-weighted probability flux through

the boundaries of the system, while the second and purely imaginary part, cancels a possible
imaginary remnant part of the standard velocity operator expectation which is given by

〈v〉 =

˚
V

Jpr(r, t)dV −
i~
2m

‹
S

|Ψ(r, t)|2dS. (2.8)

By adding Eq. (2.5) and Eq. (2.8), that is 〈vext〉 = 〈v〉+ 〈vb〉 we see that 〈vext〉 is always
a real quantity as expected (see discussion below).

The boundary velocity operator can also be useful in the study of materials with strong
spin-orbit coupling interaction if a modification of its expectation value form is made, that is,
by taking into account the spin dependence of the standard velocity operator (as an outcome

of the non-relativistic limit of the Dirac equation) v =
1

m
Π +

~
4m2c2

σ ×∇V (r) that en-
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Chapter 2 Section 2.1

ters the local probability current density Jpr(r, t)=Real[Ψ(r, t)†v Ψ(r, t)] which now must
be evaluated with respect to spinors.

With the aid of Eq. (2.1) – (2.3), the extended velocity operator can be recast in the form

vext =
i

~
(H(r, t)+r− rH(r, t)), (2.9)

and the equality 〈vext〉 =
d

dt
〈r〉 holds irrespectively of the position operator behavior (hence

irrespective of the boundary conditions). By the definition as given in Eq. (2.9) and by work-
ing in the position representation r+ = r, we can easily deduce that the extended velocity
operator is always a Hermitian operator v+

ext = vext and its expectation value is always
real, in agreement with a summation of Eq. (2.5) and (2.8) without the need of any specific
boundary conditions to be imposed, which is also valid even for open systems where the
Hamiltonian is not a Hermitian operator.

A simple and intuitive criterion to demonstrate the necessity of introducing the extended
velocity operator is as follows: Consider a stationary and extended plane wave state of a
free electron of mass m with well defined momentum ~k in a finite volume V. The sys-
tem is assumed to be closed, that is the electrons’ wavefunction is normalized to unity at
every instant t within the volume V , 〈Ψ(t)|Ψ(t)〉 = 1. In this fashion, the electrons’ dis-
placement ∆〈r〉 must always be smaller than (or equal to) the systems’ size. Using the

standard velocity definition v =
i

~
[H(r, t), r] the elctrons’ displacement acquires the value

∆〈r〉 =
~k

m
t which will eventually lead the electron out of the system. This paradox is

bypassed within the extended velocity operator definition, as it turns out that the boundary
velocity contributes an equal magnitude and opposite sign than the bulk electrons’ velocity
〈v〉 resulting in zero displacement ∆〈r〉 = 0 at every instant t for the assumed stationary
state. In fact, the extended velocity operator guarantees that every stationary state (irrespec-
tively of the static potentials) will always produce zero displacement for the electron, that is
d

dt
〈r〉 = 〈vext〉 = 〈v〉+ 〈vb〉 = 0, as expected from the trivial fact that the position operator

expectation value is a static quantity with respect to any stationary state.
In this fashion, we can develop a simple and direct method to link boundary effects with

bulk properties as a form of a bulk-boundary correspondence in a general sense for every
stationary state, namely 〈v〉n = −〈vb〉n where n indexes the Hamiltonian eigenstate; this
is an example, therefore, of a bulk formulation that properly takes into account boundary
currents that are rigorously related to the bulk band structure.

There are two important features of the extended velocity operator vext that can be de-
duced from its off-diagonal matrix elements with respect to the (generally time-dependent)
Hamiltonian instantaneous eigenstates |n(t)〉. These are derived by direct application of
Eq. (2.9) and Eq. (2.1) and are given by

〈m(t)|v|n(t)〉+ 〈m(t)|vb|n(t)〉 =
i

~
(Em(t)− En(t)) 〈m(t)|r|n(t)〉 (2.10)
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where, the off-diagonal matrix elements of the boundary velocity operator are explicitly
calculated (after a straightforward integration by parts) as

〈m(t)|vb|n(t)〉 = −1

2

‹
S

r
(
(vψm)†ψn + ψ†m vψn

)
·dS +

i~
2m

‹
S

ψ†m ψn dS, (2.11)

ψn = ψn(r, t) = 〈r|n(t)〉 are the Hamiltonian’s instantaneous eigenfunctions and v is the
velocity operator given by Eq. (2.2). Eq. (2.11) can be viewed as the off-diagonal counterpart
of Eq. (2.5).

The two important features then follow. First, the off-diagonal position matrix elements
in Eq. (2.10) will explicitly be involved in the many-band (unrestricted) formula of the or-
bital magnetization that we will derive in this article; therefore, boundary contributions due
to the off-diagonal boundary velocity matrix elements will explicitly be taken into account.
Second, the off-diagonal position matrix elements in Eq. (2.10) are proportional to the elec-
trons’ transition dipole moment, therefore the emission and absorption of photons can be
rigorously related with boundary properties owing to the off-diagonal boundary velocity ma-
trix elements.

Generalizing the results of this subsection we point out that, whenever one defines an op-
erator in an extended way Oext so that its expectation value 〈Oext〉 is equal with the rate of

change of the expectation value of a given Hermitian operator G, that is 〈Oext〉 =
d

dt
〈G〉,

the definition of Oext can be consistently given by the Ehrenfest theorem, as long as a
corresponding boundary operator Ob is taken into account. The expectation value of the
boundary operator 〈Ob〉 is extremely sensitive to the boundary conditions of the wavefunc-
tion and takes a nonzero value only whenever the given Hermitian operator G (entering the
theorem) becomes anomalous due to the non-Hermitian effect. Specifically, by working in
position representation, due to symmetry of the integrand, after a straightforward integra-
tion by parts, the expectation value 〈Ob〉 is always cast in the form of a boundary integral
(assuming real scalar and vector potentials) of a generalized current JG flux as

〈Ob〉 =
i

~
〈Ψ(t)|

(
H(r, t)+ −H(r, t)

)
G |Ψ(t)〉 =

‹
S

JG dS (2.12)

where the generalized current density JG is given by

JG = −1

2
n·
(
(vΨ(r, t))† + Ψ(r, t)†v

)
GΨ(r, t). (2.13)

The wavefunction Ψ(r, t) entering Eq. (2.13) can be either the electrons’ two component
spinor wavefunction for spinfull electron (and this will be nontrivially useful in solids with
strong spin-orbit interaction) or the scalar wavefunction for spinless electron motion (where
the generalized current has the same structure but with the dagger operation † being replaced
by the complex conjugation ∗ operation only) and n is the unit vector locally normal to the
surface S. For the special case of G = r and either spinlfull or spinless electron motion,
by analytically calculating the directional velocity operator n·v action on GΨ(r, t) within
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Eq. (2.13) and Eq. (2.12), we recover Eq. (2.5). Alternatively, if we choose G to be the
identity operator I , then JG becomes the usual probability current Jpr and for a closed sys-
tem Eq. (2.12) becomes zero, which is consistent with the conservation of total probability
(valid for states belonging within the Hilbert space of closed systems).

2.1.2 Intrinsic and extrinsic orbital circulation

In order to define the electrons’ intrinsic and extrinsic orbital circulation for an extended and
periodic system, we first choose to define a Hermitian circulation operator as

C =
1

2
(r× vext − vext × r) (2.14)

namely the electrons’ orbital circulation operator that employs the extended velocity op-
erator; it is therefore designed to take into account the inherited anomaly of the position
operator when computing circulating currents in periodic systems. The circulation opera-
tor always behaves as a Hermitian operator C+ = C irrespectively of the wavefunctions’
boundary conditions as evidenced from Eq. (2.14) and Eq. (2.1). With the aid of Eq. (2.1)
– (2.3) and r× r = 0, the circulation operator can be recast in the forms

C =
i

2~
r×

(
H(r, t)+ +H(r, t)

)
r

and
C = r× v +

1

2
r× vb.

It is interesting to note that in the latter form of C the
1

2
r× vb term is an anti-Hermitian

operator that has imaginary expectation value which exactly cancels any remnant imaginary
part of the r × v term expectation value. Direct calculation gives the orbital circulation
operator C expectation value form, which is found to be

〈Ψ(t)|C |Ψ(t)〉 = Im[ i 〈Ψ(t)| r× v |Ψ(t)〉 ] =

˚
V

r× Jpr(r, t)dV (2.15)

where the quantum state under consideration |Ψ(t)〉 is normalized within the volume V of
the system. In spite of the cautious definition of the circulation operator in order to take
into account the possible anomaly of the position operator for periodic systems, it is shown
in Appendix A that its expectation value 〈C〉 with respect to a Bloch eigenstate does not
quite lead to any theoretical progress as it becomes undefined for an extended system in the
thermodynamic limit.

Motivated, however, by classical mechanics, either by rigid body dynamics or by contin-
uous medium (hydrodynamical) theories, we find out that the expectation value of the circu-
lation operator 〈C〉 can always be decomposed into two distinct parts. Namely, an intrinsic
circulation part 〈Cintr〉 that always has an intensive and bulk behavior (with well defined
value within Bloch representation in the thermodynamic limit) and an extrinsic circulation
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part 〈Cextr〉 that has an extensive and position origin-dependent behavior (with undefined
value within Bloch representation in the thermodynamic limit). The definitions of the intrin-
sic and extrinsic circulations are given by

〈Ψ(t)|Cintr |Ψ(t)〉 = Im[ i 〈Ψ(t)| (r− 〈r〉)× v |Ψ(t)〉 ] =

˚
V

(r− 〈r〉)× Jpr(r, t)dV

(2.16)
and

〈Ψ(t)|Cextr |Ψ(t)〉 = Im[ i 〈Ψ(t)| 〈r〉 × v |Ψ(t)〉 ] =

˚
V

〈r〉 × Jpr(r, t)dV (2.17)

respectively, where V is the volume of the system and 〈r〉 =

˚
V

r |Ψ(r, t)|2dV is the posi-

tion operator expectation value that takes an undefined value within Bloch representation in
the thermodynamic limit (as shown in Appendix A).

The intrinsic circulation 〈Cintr〉 has no ambiguity and is a position origin-independent
quantity whenever the shift of the position origin causes a U(1) transformation for the scalar
wavefunction (assuming a spinless electron). The origin-independence is a consequence of
the combined transformation (under a shift of the position origin) of the operator
((r− 〈r〉)× v) and the U(1) transformation of the wavefunction that compensate each other.
For spinfull electrons the velocity operator acquires spin-dependence and, as long as the shift
of the position origin can be described by an SU(2) transformation of the spinor wavefunc-
tion, the intrinsic circulation remains a position origin-independent quantity without any
ambiguity.

The electrons’ intrinsic orbital circulation as given by Eq. (2.16) has an inherited bound-
ary contribution which is revealed when taking into account Eq. (2.1) and Eq. (2.5) – (2.8).
In the special case of a stationary state |Ψn(t)〉 the electrons’ intrinsic orbital circulation has
the explicit boundary dependence given in

〈Ψn(t)|Cintr |Ψn(t)〉 =

˚
V

r× Jpr(n)(r)dV − 〈r〉n ×
‹
S

r (Jpr(n)(r).dS). (2.18)

Assuming an extended Bloch eigenstate Ψn(r, t,k) that obeys PBCs over the boundaries
of the system (and is normalized within its volume V ), and in spite of the position operator
(undefined) expectation value 〈r〉 that explicitly enters Eq. (2.16), we find after a straightfor-
ward calculation shown in Appendix A that the electrons’ intrinsic orbital circulation takes
a well-defined value at the infinite volume limit V →∞, given by

〈Ψn(t,k)|Cintr |Ψn(t,k)〉 =

˚

Vcell

(r− 〈un(k)| r |un(k)〉cell)× Jpr(n)(r,k)dV (2.19)

with un(r,k) the cell periodic eigenstates, where all space integrals have been truncated
(due to symmetry of the integrands) and evaluated within a unit cell of volume Vcell, the local
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probability current density being determined with respect to a Bloch eigenstate. It is evident
from Eq. (2.19) that the intrinsic circulation is a bulk and intensive quantity of a periodic
and extended system. On the contrary, the extrinsic circulation as given from Eq. (2.17),
takes an undefined value for a periodic and extended system (owing to the position operator
expectation value); it is therefore not a proper quantity to model any bulk or boundary prop-
erty of such a periodic and extended system. We note that, in deriving Eq. (2.19) we have
assumed the normalization convention 〈Ψn(k)|Ψn(k)〉 = 〈un(k)|un(k)〉cell = 1, that is we

have assumed a Bloch state in the form |Ψn(k)〉 =
1√
N
eik.r |un(k)〉 where N is the total

number of the unit cells enclosed within the volume V of the system.
Summarizing, and with Eq. (2.16) as well as Eq. (2.19) in mind, we can conclude that

the quantity (r− 〈r〉)× Jpr(r, t) is a well defined local intrinsic circulation density, even if
it is computed with respect to an extended Bloch state in the thermodynamic limit where the
electrons’ position expectation value acquires an undefined value.

Physical meaning of the intrinsic orbital circulation

A physically and intuitively important feature of the intrinsic orbital circulation is that it is
a quantity that properly counts the circulating probability micro-currents embodied in the
wavefunction’s structure. In order to clarify this feature in a simple manner let as consider
two spinless and free electron motions in 3D space: one electron with well defined linear
momentum vector ~k and another one with partially well defined linear momentum vector,
e.g. only its z component ~kzez (with kx and ky being undetermined). We assume that each
electron is in an extended state motion that is normalized within a volume V . The free elec-
tron motion with well defined linear momentum vector ~k, hence with a plane wave form
for the wavefunction, has a local probability current density that is a homogeneous vecto-
rial quantity proportional to ~k/m. On the contrary, the free electron motion with partially
well defined linear momentum ~kzez has a local probability current density that is an inho-
mogeneous vectorial quantity with a constant z component proportional to ~kz/m. Using
Eq. (2.16), we can easily find that the intrinsic orbital circulation of the free electron motion
with well defined linear momentum ~k is zero (due to the homogeneous local probability
current density), while the intrinsic orbital circulation of the free electron with partially well
defined linear momentum ~kzez is non-vanishing (due to the inhomogeneous local probabil-
ity current density) and takes contributions only from the x and y non-constant components
of the local probability current density that may constitute a vortex circulating probability
micro-current field on the planes normal to ez (with free electron vortex state being an ex-
ample, see below).

Considering such a structured wavefunction, its phase is indeterminate on the disloca-
tion lines (in 3D space) where the modulus of the wavefunction takes a zero value. The
intrinsic orbital circulation of the electron as given by Eq. (2.16) becomes zero, namely,˚

V

r× Jpr(r, t)dV − 〈r〉×
˚

V

Jpr(r, t)dV = 0 whenever, in the simplest scenario, the

local probability current density is zero (the gradient of the wavefunction’s phase is zero)
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Figure 2.1: Vortex beams propagating along the z-axis carrying intrinsic longitudinal orbital
angular momentum 〈Lz〉 = ~ ` per particle. The 3D schematics show the phase fronts
(cyan) and probability-current streamlines (orange) for beams with different vortex charges.
Adapted from [21].

or whenever the local probability current density is a homogeneous quantity (the gradient of
the wavefunction’s phase has a constant and well-defined value), therefore the wavefunction
is structureless. On the contrary, in structured wavefunctions the electrons’ intrinsic orbital
circulation is generally not zero and has two competing contributions as given in Eq. 2.16,
which are explicitly dependent on the local probability current density field. The bigger the
difference of these two competing contributions the bigger the electrons’ intrinsic orbital
circulation, which occurs for example whenever the internal structure of the wavefunction

has such a symmetry that makes some of the components of
˚

V

Jpr(r, t)dV become zero.

The latter symmetry feature is found in the free electron motion that are described by vortex
states [86, 21] illustrated in Fig. 2.1, where the electron has well defined linear momentum
~kzez only in the z direction and at the same time has a well defined canonical orbital an-
gular momentum along the same direction (characterized by the azimuthal index l). Due
to the rotational (azimuthal) symmetry of the wavefunction, the azimuthal component of˚

V

Jpr(r, t)dV becomes zero.

Structured wavefunctions appear naturally in motions under external potentials, e.g. in
atomic orbitals with nonzero mechanical angular momentum or in Landau states in a mag-
netic field. In this respect, we generally expect that the ionic environment will in principle
produce structured and extended cell periodic electronic wavefunctions un(r,k), with the
dislocation lines being periodically ordered in the bulk owing to the periodicity of un(r,k),
while spiraling probability micro-currents around those lines can be taken into account by
Eq. (2.16) and Eq. (2.19). Intrinsic orbital circulation is the starting point quantity for the
microscopic understanding of the orbital magnetization origin and as such will be used in
the following to model the orbital magnetization in band theory without the need of any
Wannier-localization approximation.
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Table 2.1: Matrix elements evaluated with respect to Bloch eigenstates in the thermodynamic
limit.

Operator Matrix element Value Origin Boundary
Velocity is

r 〈ψn| r |ψn〉 undefined dependent well defined

r 〈ψn| r |ψm〉 n 6= m well defined independent well defined

r× v 〈ψn| r× v |ψn〉 undefined dependent well defined

i

~
r×Hk

HS∑
m

|um〉 〈um| r
i

~

HS∑
m

〈un| r |um〉 × Em 〈um| r |un〉 well defined independent zero

r− 〈ψn| r |ψn〉 〈ψm| ( r− 〈ψn| r |ψn〉) |ψm〉 well defined independent well defined

(r− 〈ψn| r |ψn〉)× v 〈ψn| (r− 〈ψn| r |ψn〉)× v |ψn〉 well defined independent well defined

〈ψn| r |ψn〉 × v 〈ψn| 〈ψn| r |ψn〉 × v |ψn〉 undefined dependent well defined

Physical meaning of the extrinsic orbital circulation

The extrinsic orbital circulation 〈Cextr 〉 = Im[ i 〈 r 〉 × 〈v 〉 ] is an extensive quantity that
counts the circulation of the global probability current 〈v 〉 with respect to a specific position
origin. It does not carry any tractable information about the structure of the wavefunction or
the circulating probability micro-currents (due to being a position origin dependent quantity),
and has an undefined value within Bloch representation in the thermodynamic limit (owing
to the position operator expectation value being undefined).

2.1.3 Subtle behaviors and relevant consequences within Bloch repre-
sentation

The scope of this subsection is ultimately to facilitate a comparison of our results (derived
in later sections) with the literature, and more specifically (i) to point out the behavior of
operators (with respect to their expectation values and position origin dependence) that are
commonly used in the modern theory of orbital magnetization, and (ii) to show some subtle
consequences that emerge due to implicit Hermiticity assumptions that were silently made
during calculations in recent theoretical works [92, 20, 19].

The expectation value of the position operator with respect to a Bloch eigenstate
〈ψn(k)| r |ψn(k)〉 turns out to be an undefined value in the thermodynamic limit, as shown
by Eq. (A.4) derived in Appendix A. On the other hand, the corresponding off-diagonal
matrix elements 〈ψn(k)| r |ψm(k)〉 given by Eq. (A.5) (also derived in Appendix A) remain
well defined quantities. In this respect we also note that the matrix elements of the operator
( r− 〈ψn(k)| r |ψn(k)〉), evaluated with respect to any Bloch state, have a well defined value
in the thermodynamic limit. This can be shown by taking the expectation value with respect
to |ψm(k′)〉, that is ( 〈ψm(k′)| r |ψm(k′)〉 − 〈ψn(k)| r |ψn(k)〉), which by using the 3D ana-
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logue of Eq. (A.12), shows that the undefined terms cancel each other and, as a result, the
expectation has a well defined value.

The same pattern, that is, the undefined terms canceling each other, is what makes the
intrinsic circulation Im[i 〈ψn(k)| (r− 〈ψn(k)| r |ψn(k)〉)× v |ψn(k)〉] have a well defined
value in the thermodynamic limit. On the other hand, the real part of the circulation oper-
ator expectation value Im[ i 〈ψn(k)| r× v |ψn(k)〉 ], is an undefined quantity as shown by
Eq. (A.11). For what follows it is worth pointing out that, in all the above mentioned calcu-
lations, no constraint is assumed with respect to the boundary velocity expectation value.

By then using the Bloch form of the considered state as well as v =
i

~
[H(r), r] and

r× r = 0, the circulation operator takes the form −1

~
Im[ 〈un(k)| r×Hk(r,k) r |un(k)〉 ]

where Hk(r,k) = e−ik.rH(r)eik.r. Assuming then that the state r |un(k)〉 can be ex-
panded in the complete orthonormal basis of the cell periodic eigenstates |um(k)〉, that is,

using the closure relation I =
HS∑
m

|um(k)〉 〈um(k)| and acting from the left on the above

state r |un(k)〉, the circulation operator becomes

−1

~

HS∑
m

Im[ 〈un(k)| rHk(r,k)|um(k)〉 × 〈um(k)| r |un(k)〉 ]

which has far reaching consequences. Firstly, the latter operator is now transformed into a
well defined quantity due to taking the form

−1

~

HS∑
m6=n

Im[ 〈un(k)| r |um(k)〉Em(k)× 〈um(k)| r |un(k)〉 ],

where we have used 〈un(k)| r |un(k)〉 × 〈un(k)| r |un(k)〉 = 0. This is the basic idea be-
hind the theoretical work made in Refs [92, 20, 19] which, however, was performed in a
slightly different way. Specifically, these works used a spectral resolution of the Hamilto-

nian H(r) = IH(r)I , where the closure is given by I =
HS∑
m

|φm〉 〈φm| and |φm〉 are the

orbitals. As a result of this spectral resolution, the (undefined) diagonal matrix elements of
the position operator are excluded from their circulation operator formula.

The subtle consequence of the above two calculations, is that one unintentionally assumes
that the state r |φn〉 belongs within the domain of H(r), that is, certain boundary conditions
for φn(r) are assumed which guarantee that the wavefunction rφn(r) also belongs within
the domain of definition of the Hamiltonian, and as a result the non-Hermitian boundary

velocity Eq. (2.4) becomes zero. Specifically, the identification r |φn〉 =
HS∑
m

Cm |φm〉 is

the one that enforces the state r |φn〉 to belong within the domain of the Hamiltonian and
the boundary velocity expectation value to become zero. This is evident when one (i) takes

the inner product of r |φn〉 with
i

~
〈φn|

(
H(r)+ −H(r)

)
, (ii) uses Eq. (2.3) for the definition
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of the boundary velocity operator vb, and (iii) exploits the fact that the states |φn〉 belong
within the domain of definition of H(r) which finally gives

〈φn|vb |φn〉 =
i

~
〈φn|

(
H(r)+ −H(r)

)
r |φn〉 =

i

~

HS∑
m

Cm 〈φn|
(
H(r)+ −H(r)

)
|φm〉 = 0.

In this framework, the method of calculation used by Refs [92, 20, 19], enforced on one hand
the circulation operator to have a well defined value, but, on the other hand, unwillingly, they
induced Hermiticity which sweeps away boundary contributions to the orbital magnetization;
in this respect, the conclusion about the irrelevance of the boundary on the orbital magnetiza-
tion of metals that was made by Ref. [92], although reasonable, is rather unjustified. We also
point out that, due to the above mentioned spectral resolution of the Hamiltonian (performed
within the circulation operator) the orbitals |φn〉 that were assumed in Refs [92, 20, 19] , must
have zero standard (bulk) velocity expectation value 〈φn|v |φn〉 = 0 owing to the relation
〈φn|v |φn〉 = −〈φn|vb |φn〉 that holds for any stationary eigenstate of the Hamiltonian.

To demonstrate at a glance the various subtleties hidden in the literature, in Table 2.1
we summarize the behavior of certain operators that are related to the modern theory of
orbital magnetization: we summarize their values, their position origin dependence, as well
as relevant boundary constraints. The presented values are results of calculations performed
with respect to Bloch eigenstates in the thermodynamic limit.

2.1.4 Decomposition of the intrinsic orbital circulation into local (LC)
and itinerant circulation (IC) contributions

At this point it is useful to make a connection between the one electron’s intrinsic circu-
lation as given by Eq. (2.16) and the decomposition of the nth band collective electrons’
circulation that was made in a rather ambiguous way, namely, to local circulation (LC) and
itinerant circulation (IC) in the seminal work of Ref. [133] in order to model the orbital mag-
netization of normal insulators within a quantum mechanical method. Therein, they started
from the assumption that each electron’s eigenstate can be represented by an exponentially
localized Wannier function (thus the Bloch states that they used satisfy the periodic gauge
|Ψn(k + G)〉 = |Ψn(k)〉 and have zero Chern invariant) and they began their calculation
with a collective circulation computed with respect to these Wannier functions, turning at the
end of their calculation to the Bloch eigenstates. In the present work we follow an opposite
route, that is we start our calculation from the one electron’s intrinsic circulation Eq. (2.16)
without any gauge assumptions (restrictions) with respect to the Bloch eigenstates, and us-
ing those states as building blocks in the many-body Slater determinant wavefunction we
determine analytically the electrons’ (ground state) collective orbital magnetization. By then
taking into account the above mentioned relation between the standard and the boundary ve-
locity for stationary states 〈v〉n = −〈vb〉n, the electrons’ intrinsic circulation with respect
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to a Bloch eigenstate Ψn(r, t,k) is given by

〈Ψn(k)|Cintr |Ψn(k)〉 = Im[ i 〈Ψn(k)| r× v |Ψn(k)〉 ] + Im[ i 〈r〉n × 〈Ψn(k)|vb |Ψn(k)〉 ].
(2.20)

In order to establish the connection with Ref. [133] method we assume that the Bloch eigen-
states Ψn(r, t,k) entering Eq. (2.20) satisfy the periodic gauge and we expand it as

|Ψn(k)〉 =
1√
N

∑
R

eik.R |n,R〉 =
1√
N

∑
RI

eik.RI |n,RI〉+
1√
N

∑
RS

eik.RS |n,RS〉

(2.21)
where N is the number of primitive cells of the system, |n,RI〉 is the nth band Wannier
function in the bulk cell R and |n,RS〉 is the nth surface localized orbital on the surface
cell RS . By then taking into account that the expectation value of the boundary velocity
〈Ψn(k)|vb |Ψn(k)〉 is determined by a boundary integral, that is, only the boundary localized
orbitals |n,RS〉 enter into the expansion of the expectation value

〈Ψn(k)|vb |Ψn(k)〉 =
1

N

∑
RS′

∑
RS

eik.(RS −R′S) 〈n,R′S|vb |n,RS〉 , (2.22)

we calculate the nth band collective electrons’ intrinsic circulation given by

Cn(coll) =
V

(2π)3

˚
BZ

〈Ψn(k)|Cintr |Ψn(k)〉 d3k, which takes the form

Cn(coll) =
∑
R

〈n,R| r× v |n,R〉

+
∑
R′

∑
R

∑
R′
S

∑
RS

δR′+R′
S ,R+RS

〈n,R′| r |n,R〉 × 〈n,R′S|vb |n,RS〉 .

(2.23)

Assuming then that the crystal has inversion symmetry in the bulk 〈n,−RI | r |n,−RI〉 =

−〈n,RI | r |n,RI〉, that is
∑
RI

〈n,RI | r |n,RI〉 = 0, as well as that for R′S 6= RS the ma-

trix elements 〈n,R + RS −R′S| r |n,R〉 can be taken as zero, the nth band electrons’ col-
lective intrinsic circulation takes the approximate form

Cn(coll) =
∑
R

〈n,R| r× v |n,R〉 +
∑
RS

〈n,RS| r |n,RS〉 × 〈n,RS|vb |n,RS〉 (2.24)

where the first term on the right hand side of Eq. (2.24) gives the electrons’ nth band collec-
tive local circulation contribution (LC) and the second term the collective itinerant circulation
contribution (IC) illustrated in Fig. 2.2, as given respectively in Ref. [133].

In Ref. [133] and [33] they notice that the itinerant circulation (IC) contribution that
involves only the surface WFs can always be calculated as a bulk quantity that involves
the bulk WFs, and they emphasize that this is quite remarkable and one of their central
results. Their finding is explained whenever in the starting Eq. (2.20) we use the bulk
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Figure 2.2: The itinerant current 〈n,RS|vb |n,RS〉 (indicated by arrows) associated with
each nth surface localized orbital centered at 〈n,RS| r |n,RS〉 which is used by [133]
in order to calculate their itinerant surface contribution (IC) to the orbital magnetization.
Adapted from [133].

expression Eq. (2.4) for the boundary velocity expectation value and at the same time replace
〈H(r)Ψn(k)| rΨn(k)〉 with its equal 〈Ψn(k)| rH(r)Ψn(k)〉 , which is true for all stationary
states according to Eq. (2.9) (and the vanishing of its expectation value). Therefore, with the
aid of the extended velocity operator and the intrinsic circulation definitions, we can elucidate
and rigorously explain the origin of the heuristic partitioning of the orbital magnetization that
was made in Ref.[133] and [33].

2.2 Orbital magnetization quantum formulas

In this section we use the electrons’ intrinsic orbital circulation presented in Sec. 2.1 in or-
der to derive quantum mechanical formulas for the orbital magnetization of non-interacting
electrons by accounting for the circulating probability micro-currents. The formulas that we
derive are applicable either to conventional or to topological crystalline materials, under peri-
odic or realistic boundary conditions for the electrons’ wavefunctions, while any localization
assumptions are absent.

In a system of non-interacting electrons we can define the (single-eigenstate) orbital mag-
netization Mn(k) per electron as

Mn(k) =
mn(k)

V
=

e

2cV
〈Ψn(t,k)|Cintr |Ψn(t,k)〉 (2.25)

where mn(k) is the electrons’ orbital magnetic moment, Ψn(r, t,k) is a Bloch eigenstate,
V is the volume of the system, c is the speed of light and e < 0 is the electron charge.

2.2.1 r-space orbital magnetization quantum formula

In the derivation of the r-space formula we do not take into account the realistic boundary
contributions to the orbital magnetization due to the realistic wavefunctions’ boundary con-
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ditions; rather we provide a formula that has a bulk character. Namely, we calculate the
orbital magnetization within PBCs which are imposed on the wavefunction over a “termi-
nated” boundary surface of the (3D) material in the thermodynamic limit.

Using Eq. (2.19) for the electrons’ intrinsic orbital circulation and Eq. (2.25) for the
orbital magnetization per electron, as well as the collective electrons’ ground state mag-
netization (assumed to be evaluated with respect to a many-body Slater determinant wave-

function) given by M =
1

(2π)3

∑
En≤µ

˚
BZ

fn(k, µ) mn(k) d3k, where µ is the Fermi energy

and fn(k, µ) is the occupation function, the bulk orbital magnetization of spinless and non-
interacting electrons is given by

M =
e

2c(2π)3

∑
En≤µ

˚

BZ

fn(k, µ)

˚
Vcell

( r− 〈un(k)| r |un(k)〉cell)× Jpr(n)(r,k)dV

 d3k

(2.26)
where all expectation value position-integrals are truncated (due to symmetry) and carried
out within a primitive cell of volume Vcell as shown in Appendix A. The orbital magneti-
zation r-space formula is the first major result in this work and the integrand of Eq. (2.26)
can be seen as a local orbital magnetization density with respect to real space.

We re-emphasize that, although the position operator that enters Eq. (2.16) has by itself
an undefined expectation value 〈r〉 within Bloch representation, its problematic behavior
does not show up and it effectively behaves as a well defined operator when it appears within
Eq. (2.16) and subsequently within Eq. (2.26). Therefore, the position operator does not
have to be “sandwiched” between the ground-state projector and its complement as done in
Ref. [19] in order to get a well defined local expression for the electrons’ orbital magnetiza-
tion with respect to periodic and extended states, but this can be realized in a straightforward
manner with Eq. (2.26).

As evidenced from Eq. (2.26), the orbital magnetization acquires significant value when-
ever the difference between the two competing contributions gets as large as possible. We
therefore expect that the orbital magnetization will have significant contributions from those
states that possess some kind of rotational symmetry within the unit cell that results in˚

Vcell

Jpr(n)(r,k)dV → 0. Although we have considered spinless electrons, the orbital mag-

netization as given by Eq. (2.26) is a property that silently carries an explicit spin depen-
dence. In crystals with strong spin-orbit interaction the velocity operator acquires spin de-

pendence v =
1

m
Π +

~
4m2c2

σ ×∇Vcry(r) which is inherited in the local probability cur-

rent density Jpr(n)(r,k)=Real[Ψn(r,k)+vΨn(r,k)] that enters Eq. (2.26). Therefore, in
materials with strong spin-orbit interaction where the spin degree of freedom is essential,
the orbital magnetization is directly influenced (apart from the wavefunctions) by the crystal
force field that interacts with the electron.
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2.2.2 k-space orbital magnetization quantum formula

In this subsection we derive an orbital magnetization formula that is valid for general bound-
ary conditions for the electrons’ wavefunction. Boundary contributions are explicitly taken
into account as a consequence of the emergent non-Hermitian effect.

In order to derive the k-space formula we assume that, each electrons’ motion is de-
scribed from a (generally) extended and stationary form eigenstate (normalized within the

volume of the material) in the form |Ψn(t,k)〉 = e
−1

~
En(k)t

eik.r |un(k)〉 and no Wannier-
localization approximation is involved. The bulk values of each (position representation)
wavefunction un(r,k) are assumed to be periodic (with respect to any direct lattice vector
translation R), while we relax this property near the boundaries of the material in order to
take into account the realistic boundary contributions. We derive below a k-space orbital
magnetic formula mn(k) for each electron, starting from

mn(k) =
e

2c
Im[ i 〈Ψn(t,k)| (r− 〈r〉n)× v |Ψn(t,k)〉 ] (2.27)

(cf. Eqs (2.16) and (2.25)), and by straightforward generalization we provide the collec-
tive orbital magnetization formula for non-interacting electrons calculated with respect to a
many-body Slater determinant wavefunction. The formula we derive will explicitly incor-
porate k derivatives (with the thermodynamic limit assumed), thus we are cautious from
the very beginning against possible k-dependent ambiguities of our final result. For this
reason we consider the dynamical phase as well as an arbitrary k-dependent phase (due to
gauge freedom) for the wavefunctions from the very beginning of our derivation. There-
fore, the Bloch type quantum eigenstates that we consider (for each electron) have the form
|Ψn(t,k)〉 = eik.r eiΘn(t,k) |un(k)〉, where Θn(t,k) is the dynamical phase augmented
by an additional k-dependent gauge phase. The Θn(t,k) phase has explicit form, for a

static H , given by Θn(t,k) = −1

~
En(k)t+ Λ(k).

By taking into account the above Bloch type eigenstate for each electron, the standard
velocity operator as given by Eq. (2.2), and the Schrödinger equation that evolves the quan-
tum eigenstate, the action of the standard velocity operator on the Bloch type eigenstate is
given, as analytically derived in Appendix B, by

v |Ψn(t,k)〉 = −1

~
eik.reiΘn(t,k) (Hk(r,k)− En(k)) |∂kun(k)〉+

1

~
∂kEn(k) |Ψn(t,k)〉 .

(2.28)
where Hk(r,k) = e−ik.rH(r)eik.r. In view of Eq. (2.27), the orbital magnetic moment
for each electron is given by

mn(k) = − e

2c~
Im[ i 〈un(k)| (r− 〈r〉n) × (Hk(r,k)− En(k)) |∂kun(k)〉 ]. (2.29)

It is now helpful to see the origin of the electron’s orbital magnetic moment Eq. (2.27)
and Eq. (2.29); a comparison with the semi-classical counterpart of a localized wave packet

44

Kyri
ak

ou
 Kyri

ak
os



Chapter 2 Section 2.2

[148] will be made at the end of this subsection after Eq. (2.49). In virtue of Eq. (2.27)
and Eq. (2.19), the orbital magnetic moment is always a well defined quantity even if the
wavefunction is an extended one and the volume V of the system infinite. It is a quan-
tity that emerges due to the circulating probability micro-currents embodied in the wave-
function’s (bulk as well as boundary) structure. For free electron and plane wavefunction,
namely, a wavefunction with a well defined crystal momentum ~k, the electron’s orbital
magnetic moment Eq. (2.27) becomes zero. In virtue now of Eq. (2.29), where Eq. (2.28)
has been used, although the orbital magnetic moment holds its above mentioned physi-
cal origin, is now also explicitly dependent on the remnant non-Hermitian boundary term
(Hk(r,k)− En(k))|∂kun(k)〉 of the Hellmann-Feynman theorem, a fact first noticed in
Ref. [49]. Specifically, by taking the inner product of Eq. (2.28), with 〈Ψn(t,k)|, the
electrons standard velocity expectation value is found to be

〈un(k)|v|un(k)〉 =
1

~
∂kEn(k)− 1

~
〈un(k)| (Hk(r,k)− En(k)) |∂kun(k)〉 , (2.30)

where the second term on the right side of Eq. (2.30) is precisely the non-Hermitian bound-
ary term of Ref. [49], which emerges due to the momentum gradient operator ∂k that be-
comes anomalous. In this respect, despite the fact that the electron’s orbital magnetic mo-
ment Eq. (2.27) is an intensive quantity, when we transform it into a k-derivative formula,
Eq. (2.29), this is dominated by the remnant boundary term (Hk(r,k)− En(k))|∂kun(k)〉.

We then express the action of the operator r− 〈r〉n on the eigenstate |un(k)〉 as a
k-derivative formula, and then substitute the result in Eq. (2.29). This is done by tak-
ing into account that the time-independent eigenstate |un(k)〉 can be recast in the form
|un(k)〉 = e−ik.r e−iΛ(k) |Ψn(k)〉, where the time-dependence has been eliminated. In
this manner, the action of the position operator on the eigenstate |un(k)〉 is expressed as a
k-derivative given by

r |un(k)〉 = i |∂kun(k)〉 − ∂kΛ(k) |un(k)〉 − i e−ik.r e−iΛ(k) |∂kΨn(k)〉 . (2.31)

Accordingly, the expectation value of the position operator r with respect to the eigenstate
|un(k)〉 takes the form

〈un(k)| r |un(k)〉 = Ann(k)− ∂kΛn(k)− i 〈Ψn(k)|∂kΨn(k)〉 , (2.32)

where Ann(k) = i 〈un(k)|∂kun(k)〉 is the Abelian Berry connection. By acting with
Eq. (2.32) on |un(k)〉 and then subtracting the product from Eq. (2.31) we obtain the
identity

( r− 〈r〉n) |un(k)〉 = ( i∂k −Ann(k)) |un(k)〉 − i e−ik.r e−iΛ(k) |∂kΨn(k)〉

+ i e−ik.r e−iΛ(k) 〈Ψn(k)|∂kΨn(k)〉 |Ψn(k)〉 . (2.33)
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The first two terms on the right hand side of Eq. (2.33) can be recast in the form,

( i∂k −Ann(k)) |un(k)〉 = i∂̃k |un(k)〉 (2.34)

where
∂̃k = ( 1− |un(k)〉〈un(k)| ) ∂k (2.35)

is the one-band covariant derivative that will explicitly enter the final many-body orbital
magnetization formula as an emerging operator, and as such has never shown up in the
literature of modern theory of orbital magnetization. In this fashion, Eq. (2.33) takes the
form

( r− 〈r〉n) |un(k)〉 = i
∣∣∣∂̃kun(k)

〉
− i e−ik.r e−iΛ(k) |∂kΨn(k)〉

+ i e−ik.r e−iΛ(k) 〈Ψn(k)|∂kΨn(k)〉 |Ψn(k)〉 . (2.36)

We then expand the state |∂kΨn(k)〉 of Eq. (2.36) on the complete basis of the Bloch

eigenstates |ψm(k′)〉 using the identity operator I =
HS∑
m

˚
BZ

d3k′ |ψm(k′)〉 〈ψm(k′)|, that

is we use |∂kΨn(k)〉 =
HS∑
m

˚
BZ

d3k′ 〈ψm(k′)|∂kψn(k)〉 |ψm(k′)〉. By then taking into ac-

count that the operator (r− 〈r〉n) is by definition Hermitian (without the need of any spe-
cific boundary conditions to be imposed) owing to the position representation that we are
working in (r+ = r) and to the reality of the position operator expectation value 〈r〉n, we
let it act on the left to the eigenstate 〈un(k)| in Eq. (2.29), which is carried out by taking the
Hermitian conjugate of Eq. (2.36) and then plugging it into Eq. (2.29). In this respect and
as analytically shown in Appendix B, Eq. (2.29) takes the form (B.14), namely

mn(k) = − e

2c~
Im
[ 〈
∂̃kun(k)| × (Hk(r,k)− En(k)) |∂kun(k)

〉 ]
− e

2c~
∑
m6=n

Im [ 〈Ψn(k)|∂kΨm(k)〉 × 〈um(k)|Hk(r,k)− En(k) |∂kun(k)〉 ] ,

(2.37)

which, by using the identity (Hk(r,k)− En(k))|∂kun(k)〉=(Hk(r,k)− En(k))
∣∣∣∂̃kun(k)

〉
,

takes the form

mn(k) = − e

2c~
Im
[ 〈
∂̃kun(k)| × (Hk(r,k)− En(k)) |∂̃kun

〉 ]
− e

2c~
∑
m6=n

Im [ 〈Ψn(k)|∂kΨm(k)〉 × 〈um(k)|Hk(r,k)− En(k) |∂kun〉 ] .

(2.38)

Now, some further analysis is in order concerning the off-diagonal elements in Eq. (38).
As rigorously shown in Appendix C, by deriving an off-diagonal Hellmann-Feynman the-
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orem that takes into account non-Hermitian corrections, the off-diagonal matrix elements
〈Ψn(k)|∂kΨm(k)〉 are found to be emergent non-Hermitian boundary quantities, that are
given by

〈ψn(k)|∂kψm(k)〉 =
Snm(k)

(En(k)− Em(k))
(2.39)

where the matrix elements of the non-Hermitian term Snm(k) are always transformed after
an integration by parts (due to symmetry of the integrands) into a boundary quantity that is
given by

Snm(k) =
i~
2

‹
S

n·
(

(vψn)∗ + ψ∗n v
)
∂kψm dS, (2.40)

where Snm(k) is defined as

Snm(k) = 〈H(r)ψn(k)|∂kψm(k)〉 − 〈ψn(k)|H(r)∂kψm(k)〉

=
〈
Ψn(k)|

(
H(r)+ −H(r)

)
∂kΨm(k)

〉
. (2.41)

By then using the considered Bloch eigenstate |Ψm(k)〉 = eik.r eiΛ(k) |um(k)〉 in the non-
Hermitian boundary term expression Snm(k), we transform the non-Hermitian boundary
term and express it in a form that is evaluated only by the use of the cell periodic eigenstates.
Straightforward calculation shows that

Snm(k) = ~ 〈un(k)|vb |um(k)〉+ 〈un(k)|kb |um(k)〉 , (2.42)

where,

〈un(k)|vb |um(k)〉 =
i

~
(〈Hk(r,k)un(k)| rum(k)〉 − 〈un(k)|Hk(r,k)rum(k)〉) (2.43)

are the off-diagonal matrix elements of the boundary velocity operator vb defined as

vb =
i

~
(
Hk(r,k)+ −Hk(r,k)

)
r, (2.44)

while

〈un(k)|kb |um(k)〉 = 〈Hk(r,k)un(k)| ∂kum(k)〉 − 〈un(k)|Hk(r,k)∂kum(k)〉 (2.45)

are the off-diagonal matrix elements of the boundary momentum gradient “operator” defined
as

kb =
(
Hk(r,k)+ −Hk(r,k)

)
∂k , (2.46)

where the Hamiltonian Hk(r,k) is the standard Hk(r,k) = e−ik.rH(r)eik.r and um ≡
um(r,k) are the cell-periodic eigenfunctions. In position representation and after an inte-
gration by parts, both the above off-diagonal matrix elements are always transformed (due

47

Kyri
ak

ou
 Kyri

ak
os



Chapter 2 Section 2.2

to symmetry of the integrands) to boundary quantities given by

〈un(k)|vb |um(k)〉 = −1

2

‹
S

n·
(

(v un)∗ + u∗n v
)

rum dS

= −1

2

‹
S

r
(
(v un)∗um + u∗nv um

)
·dS +

i~
2m

‹
S

u∗n um dS
(2.47)

(which comes out from Eq. (2.11)), and

〈un(k)|kb |um(k)〉 =
i~
2

‹
S

n·
(

(v un)∗ + u∗n v
)
∂kum dS

(2.48)

respectively, where um = um(r,k) are cell-periodic in the bulk. We note that Eq. (2.47) and
Eq. (2.48) are not zero only whenever the position operator r and the momentum gradient
operator ∂k become anomalous respectively. For example, for bulk localized states (defined
as the ones that the wavefunction um(r,k) and all of its derivatives are zero over the mate-
rials boundaries) both operators behave as normal operators and have zero matrix elements,
〈un(k)|vb |um(k)〉 = 0 and 〈un(k)|kb |um(k)〉 = 0 respectively. On the other hand, for ex-
tended states that satisfy PBSs over the material boundaries 〈un(k)|vb |um(k)〉 6= 0 while
〈un(k)|kb |um(k)〉 = 0. We also point out that the matrix elements 〈un(k)|vb |um(k)〉 and
〈un(k)|kb |um(k)〉, thus also their sum Snm(k), can equally be computed as bulk quantities
whenever the integrations by parts are not performed.

Using Eq. (2.38) and Eq. (2.39) we find the second major result in this work, namely
the k-space orbital magnetic moment of each electron mn(k) that is given by

mn(k) = − e

2c~
Im
[ 〈
∂̃kun(k)| × (Hk(r,k)− En(k)) |∂̃kun(k)

〉 ]
− e

2c~
∑
m6=n

Im
[

1

(En(k)− Em(k))
Snm(k)× 〈um(k)|Hk(r,k)− En(k) |∂kun(k)〉

]
. (2.49)

It is worth noticing that, due to the off-diagonal Hellmann-Feynman theorem Eq. (C.6),
the combination of the off-diagonal matrix elements (Anm(k)− 〈un(k)| r |um(k)〉), where
Amn(k) = i 〈um(k)|∂kun(k)〉 is the non-Abelian Berry connection, turns out to be a
boundary-dependent quantity that emerges due to the non-Hermitian effect and is given by

i 〈ψn(k)|∂kψm(k)〉 = (Anm(k)− 〈un(k)| r |um(k)〉) = i
Snm(k)

(En(k)− Em(k))
, (2.50)

which can be viewed as a new result in the Berry phase literature showing the role of the
non-Hermitian effect on Berry curvatures.

By using Eq. (2.49) we can now make a comparison with the semi-classical electron’s
orbital magnetic moment given by Ref. [148]. In that framework, the electron’s state |Wo〉,
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is a localized wave packet state, composed of one band Bloch states. The wave packet is
sharply centered in k-space around the wave vector kc and its center of mass is well de-
fined and given by 〈Wo| r |Wo〉 = rc. Due to the self rotation of the wave packet around its
center of mass, they found that the electron acquires an intrinsic orbital magnetic moment

given by mn(kc) =
ie

2c~
〈∂kcun(kc)| × (Hkc(kc)− En(kc)) |∂kcun(kc)〉 where they have

use the convention e > 0. If we assume that the electron’s state is a bulk state, as well as that
the electron completely avoids the boundaries of the system where it is enclosed, hence the
wavefunction un(r,k) and all of its derivatives are zero over the boundaries, then, all non-
Hermitian boundary terms become zero. In this respect, letting Snm(k) = 0 in Eq. (2.49)
we find mn(k) = − e

2c~
Im
[〈
∂̃kun(k)| × (Hk(r,k)− En(k)) |∂kun(k)

〉]
where we have

used (Hk(r,k)− En(k))
∣∣∣∂̃kun(k)

〉
= (Hk(r,k)− En(k))|∂kun(k)〉. Furthermore, by us-

ing the one-band covariant derivative Eq. (2.35), we make the replacement〈
∂̃kun(k)

∣∣∣ = 〈∂kun(k)|+ 〈un(k)|∂kun(k)〉〈un(k)| in the above approximated mn(k) which
results into

mn(k) = − e

2c~
Im [〈∂kun(k)| × (Hk(r,k)− En(k)) |∂kun(k)〉]

− e

2c~
Im [〈un(k)|∂kun(k)〉 × 〈un(k)| (Hk(r,k)− En(k)) |∂kun(k)〉] .

The term 〈un(k)| (Hk(r,k)− En(k)) |∂kun(k)〉 in the above equation, is also a
non-Hermitian boundary term, which by assumption is also zero. In this respect, for the
assumed bulk states, defined as the ones that the electron completely avoids the boundaries,
the electron’s magnetic moment is given by

mn(k)|BulkLocalized State = − e

2c~
Im [〈∂kun(k)| × (Hk(r,k)− En(k)) |∂kun(k)〉] (2.51)

which is a form that has the same structure as the real part of semi-classical electron’s orbital
magnetic moment Re[mn(kc)] = Im[imn(kc)] of Ref. [148].

It is evident that, the semi-classical electron’s orbital magnetic moment mn(kc) does not
explicitly take into account contributions from the realistic boundaries of a material, and as a
consequence, the electrons’ magnetization formulas that are derived by semi-classical means
do not take into account such boundary contributions. We expect that our more general result
Eq. (2.49) will be able to provide such contributions.

Moreover, our own result for the electrons’ orbital magnetic moment formula Eq. (2.49)
satisfies the two basic invariant properties, namely it is invariant with respect to gauge trans-
formations of the form un(k)→ eifn(k)un(k) and with respect to a shift of the zero of
the Hamiltonian Hk(r,k)→ Hk(r,k) + ε; we expect therefore that the many body orbital
magnetization formula that we derive further below will share the same invariant properties.

At this point it is useful to make some further remarks that may be important. In the
modern theory of orbital magnetization, they implement by heuristic argument the many-
band covariant derivative [90, 113, 91] in order to make their final orbital magnetization
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formulas gauge invariant. In a different context, namely in the study of the polarization
current produced by a homogeneous but time-dependent electric field [126], the many-band
covariant derivative is also implemented in the time dependent Schrödinger equation in order
to consider in a gauge invariant manner the action of the position operator on the time-
dependent and cell-periodic states.

As will be explicitly shown in the next subsection a boundary contribution that is encoded
by the one-band covariant derivative is hidden within the first term of the right hand side of
our Eq. (2.49) and it is attributed to the emerging momentum gradient operator ∂k anomaly.

Having in mind that the combination of (Anm(k)− 〈un(k)| r |um(k)〉) is the one that
rigorously and explicitly gives the boundary contributions, if one does not take into account
the off-diagonal position matrix elements 〈un(k)| r |um(k)〉 within Eq. (2.50), thus contri-
butions coming from the boundaries are lost, then it is evident from Eq. (2.50) (if this is
substituted into Eq. (2.38)) that the magnetization will explicitly be expressed in terms of
the many-band covariant derivative which will appear as an emerging operator within our
formulation; it should be noted that the latter many-band covariant derivative is frequently
used in the literature of the orbital magnetization in a heuristic manner that is based on the
gauge invariance argument. This is therefore another possible deficiency of the heuristically
found results in the literature that are based on the gauge invariance argument, namely that
they ignore the off-diagonal position matrix elements 〈un(k)| r |um(k)〉.

Finally, let us in what follows use our general result Eq. (2.49) (or Eq. (2.38)) to provide
a general result for the total orbital magnetization and apply it to particular cases, by always
keeping an eye on corresponding results in the literature. (The total final result is Eq. (2.55)
below.) Let us, however, first start with the simplest one-band case.

One-band formula

In the one-band formula we assume that each combination of the off-diagonal matrix ele-
ments (Anm(k)− 〈un(k)| r |um(k)〉) can be neglected, due to

Snm(k)

(En(k)− Em(k))
→ 0

which is a good approximation for conventional insulators with large band gap and negligible
boundary contributions as evidenced from Eq. (2.40) and Eq. (2.42). If we assume that in
Eq. (49) each of the non-Hermitian effect terms Snm(k) is zero, then ~ 〈un(k)|vb |um(k)〉 =

−〈un(k)|kb |um(k)〉 must be satisfied, which in the simplest scenario is fulfilled whenever
the electrons completely avoid the boundaries of the material and at the same time no band-
crossings exist in the Brillouin zone.

In a different point of view, the assumption of zero value for the off-diagonal matrix
elements, namely, (Anm(k)− 〈un(k)| r |um(k)〉) = 0 (cf. Eq. (2.50)) can be attributed to
adiabatically deformed Bloch eigenstates |Ψm(k)〉 with respect to crystal momentum differ-
entiation, that is, |∂kΨm(k)〉 = 〈Ψm(k)|∂kΨm(k)〉 |Ψm(k)〉. The latter equality is satisfied
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whenever each one of the off-diagonal amplitudes 〈Ψn(k)|∂kΨm(k)〉 is zero which defines
the restriction 〈Ψn(k)|∂kΨm(k)〉 = 0 for n 6= m. Substituting Ψm(r,k) = eik.rum(r,k)

in the latter adiabatically deformed restriction we find the former assumption of zero value
for each one of the off-diagonal matrix elements (Anm(k)− 〈un(k)| r |um(k)〉).

In this respect and within the one-band (adiabatically deformed) approximation, the
many-body electron orbital magnetization (Eq. (2.49)) is given by

M = − e

2c~(2π)3

∑
En≤µ

˚

BZ

fn(k, µ) Im
[ 〈
∂̃kun(k)| × (Hk(r,k)− En(k)) |∂̃kun(k)

〉 ]
d3k

(2.52)
which satisfies the two basic invariant properties, namely, it is gauge invariant and invariant
with respect to a shift of the zero of the Hamiltonian.

Although we have apparently dropped out any boundary contributions of the orbital mag-
netization by approximating the off-diagonal matrix elements Snm(k) values as zero, there
still exists an explicit boundary contribution within Eq. (2.52) which is attributed to the one-
band covariant derivative. Specifically, if we use the definition of the one-band covariant
derivative as given by Eq. (2.35) we can recast the integrand of Eq. (2.52) in the following
form〈
∂̃kun(k)| × (Hk(r,k)− En(k)) |∂̃kun(k)

〉
= 〈∂kun(k)| × (Hk(r,k)− En(k)) |∂kun(k)〉

−iAnn(k)× 〈un(k)|Hk(r,k)− En(k) |∂kun(k)〉 .
(2.53)

The second term on the right hand side of Eq. (2.53) gives a non-zero boundary contribu-
tion to the orbital magnetization only whenever the non-Hermitian effect with respect to the
momentum gradient operator emerges, that is

〈un(k)|Hk(r,k)− En(k) |∂kun(k)〉 = −
〈
un(k)|Hk(r,k)+ −Hk(r,k) |∂kun(k)

〉
= −i~

2

‹
S

n·
(

(v un)∗ + u∗n v
)
∂kun dS 6= 0

(2.54)

where un = un(r,k) are the cell-periodic eigenfunctions. If we further assume within a
stricter approximation that the position operator r and the momentum gradient operator
∂k are separately normal operators, that is the expectation value of the boundary momen-
tum gradient operator 〈un(k)|kb |un(k)〉 is zero, 〈un(k)|Hk(r,k)− En(k) |∂kun(k)〉 = 0,
we can replace the covariant derivative entering Eq. (2.52) with the normal derivative that
yields the orbital magnetization formula that was derived in Ref. [133] but with the cor-
rect opposite sign between the Hamiltonian operator and the energy. Alternatively, if one
assumes from the beginning a solid with one band denoted by n then, the sum in the second
term on the right side of Eq. (2.38), will not be present due to the one band closure rela-

51

Kyri
ak

ou
 Kyri

ak
os



Chapter 2 Section 2.2

tion I =

˚
BZ

d3k′ |ψn(k′)〉 〈ψn(k′)|, that must be used in Eq. (B.12) and subsequently in

Eq. (B.13) leading to Eq. (4.31).

Many-band formula

In the many-band formula we don’t a priori make any assumption with respect to the behav-
ior of the position operator r and the momentum gradient operator ∂k, thus no restrictions
for the wavefunctions’ boundary conditions are made; the goal is to derive a general formula
applicable to non-interacting electrons within topological materials, insulators or semimet-
als. In this respect, and because of Eq. (2.49), the many-band orbital magnetization formula
of non-interacting electrons within a periodic solid is given by

M =Cφ
∑
En≤µ

˚

BZ

fn Im
[〈
∂̃kun(k)| × (Hk(r,k)− En(k)) |∂̃kun(k)

〉]
d3k

+Cφ
∑
En≤µ

∑
m6=n

˚

BZ

fn Im
[

Snm(k)

(En(k)− Em(k))
× 〈um(k)|Hk(r,k)− En(k) |∂kun(k)〉

]
d3k

(2.55)

where Cφ = − e

2c~(2π)3
and fn = fn(k, µ), which is valid for arbitrary boundary condi-

tions on the wavefunctions um(r,k). Orbital magnetization many-band formula Eq. (2.55)
is the major result of this work; it rigorously provides within a quantum mechanical theoret-
ical framework, and without any Wannier-localization approximation or heuristic extension
[33], the manner in which one could generally model the orbital magnetization of periodic
topological solids.

The energy differences in the denominator of the second term on the right hand side of
Eq. (2.55) captures the possible local (in momentum space) gigantic orbital magnetization
contributions in the vicinity of band crossings. These gigantic orbital magnetization contri-
butions are predicted to occur only whenever band crossings exist along with an imbalance
of electron accumulation at the opposite boundary surfaces of the material that creates a Hall
voltage.

In order to verify the need of the presence of a Hall voltage, we will show that within
PBSs for the wavefunctions (thus with no electron accumulation occurring) no gigantic lo-
cal contribution of the orbital magnetization is possible even if the material is topological.
Within PBCs the momentum gradient operator ∂k does not break the domain of definition
of the Hamiltonian, that is the wavefunctions un(r,k) and ∂kun(r,k) both satisfy periodic
boundary conditions in r-space. Indeed, the latter periodicity of ∂kun(r,k) can be deduced
from the periodicity un(r + L,k) = un(r,k), where L is the length of the material, by dif-
ferentiating both sides with respect to the momentum k (which is treated as an independent
parameter in the assumed thermodynamic limit) that gives ∂kun(r + L,k) = ∂kun(r,k). In
this fashion, each one of the matrix elements 〈un(k)|kb |um(k)〉 is zero due to symmetry,
and any emergence of the non-Hermitian effect owing to the momentum gradient operator ∂k
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anomaly is prohibited. We point out that the absence of this non-Hermitian effect is invariant
with respect to twisted boundary conditions of the form un(r + L,k) = eif(L,k)un(r,k)

as long as the system is closed.
By recasting the 〈um(k)|Hk(r,k)− En(k) |∂kun(k)〉 term entering the right hand side

of Eq. (2.55) in the form

〈um(k)|Hk(r,k)− En(k) |∂kun(k)〉 = (Em(k)− En(k))〈um(k)|∂kun(k)〉

− 〈um(k)|kb |un(k)〉 , (2.56)

as well as by taking into account the non-Hermitian boundary term as given by Eq. (2.42)

Snm(k) = ~ 〈un(k)|vb |um(k)〉+ 〈un(k)|kb |um(k)〉 ,

then, under periodic boundary conditions the boundary momentum gradient “operator” kb

matrix elements given by Eq. (2.48) are zero 〈um(k)|kb |un(k)〉 = 0, and the multi-band
and unrestricted orbital magnetization formula Eq. (2.55) takes the form

M = − e

2c~(2π)3

∑
En≤µ

˚

BZ

fn(k, µ) Im [ 〈∂kun(k)| × (Hk(r,k)− En(k)) |∂kun(k)〉 ] d3k

+
e

2c(2π)3

∑
En≤µ

∑
m6=n

˚

BZ

fn(k, µ) Im [ 〈un(k)|vb |um(k)〉 × 〈um(k)|∂kun(k)〉 ] d3k

(2.57)

where we have also replaced the one-band covariant derivative with the normal one〈
∂̃kun(k)| × (Hk(r,k)− En(k)) |∂̃kun(k)

〉
= 〈∂kun(k)| × (Hk(r,k)− En(k)) |∂kun(k)〉

(2.58)
due to 〈un(k)|kb |un(k)〉 = 0 in accordance with Eq. (2.53) and Eq. (2.54).

It is now clear from Eq. (2.57) that, whenever a Hall voltage is zero owing to periodic
boundary conditions, the orbital magnetization cannot acquire local gigantic values, even if
the material is topological with non-trivial band structure crossings, while whenever imbal-
ance of electron charge is formed, local gigantic orbital magnetization contributions near the
band crossings are generically expected to occur.

It is also interesting to point out that, whenever the material’s realistic boundary con-
ditions are periodic, by expanding the cell periodic functions in a Fourier series over all
reciprocal lattice vectors G, namely, un(r,k) =

∑
GCn(k,G)e−iG·r, it is evident that

∂kun(r,k) is periodic in space (as well as un(r,k) and the Hamiltonian Hk(r,k)). By
then using the normalization convention 〈Ψn(t,k)|Ψn(t,k)〉 = 〈un(k)|un(k)〉cell = 1, that

is, assume a Bloch state in the form |Ψn(t,k)〉 =
1√
N
e
−1

~
En(k)t

eik.r |un(k)〉, we replace

|un(k)〉 → 1√
N
|un(k)〉 in all terms in Eq. (2.57) (the initially assumed eigenstate was nor-
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malized over the volume V without taking into account the cell normalization convention,

therefore it defers by a factor
1√
N

) and exploiting the symmetry of the integrands, the orbital

magnetization formula it truncates into the form

M = − e

2c~(2π)3

∑
En≤µ

˚

BZ

fn(k, µ) Im [ 〈∂kun(k)| × (Hk(r,k)− En(k)) |∂kun(k)〉cell ] d
3k

+
e

2c(2π)3

∑
En≤µ

∑
m6=n

˚
BZ

fn(k, µ) Im [ 〈un(k)|vb |um(k)〉cell × 〈um(k)|∂kun(k)〉cell ] d
3k

where all space integrals are performed within one primitive cell, and the off-diagonal matrix
elements of the boundary velocity are given by

〈un(k)|vb |um(k)〉 = −1

2

‹
cell

r
(
(v un)∗um + u∗nv um

)
·dS

(2.59)

in accordance with Eq. (2.47), where we have taken into account that un(r,k) are periodic
over the unit cell boundaries. Eq. (2.59) can be thought as the k-space analog of Eq. (2.26).

It is worth comparing (i) the orbital magnetization formula of periodic solids that is
given by Eq. (2.57) with the one that was proposed in Ref.[33] by a heuristic argument,
as well as, (ii) compare the general orbital magnetization formula Eq. (2.55) with the one
derived in Ref. [92], where they propose a theoretical approach to discriminate the separate
contributions of the total magnetization, that is, the one contribution coming from the bulk
states and the other coming from the surface states.

(i) Orbital magnetization formula Eq. (2.57), is relaxed from any Wannier localization
approximation as well as from the periodic gauge approximation, and it is therefore valid
for topological materials as long as the electrons’ wavefunctions satisfy periodic boundary
conditions (zero Hall voltage) over the materials boundaries. The heuristic extension of the
orbital magnetization formula [133] by an additional term, assumed to be proportional to the
chemical potential, that was made in Ref. [33] in order to model the orbital magnetization
of Chern insulators and metals, is rigorously given by the second term of the right hand
side of Eq. (2.57). This term has explicit boundary contributions due to the off-diagonal
matrix elements of the boundary velocity operator vb which are not zero due to the emerging
non-Hermitian effect of the position operator r that becomes anomalous within periodic
boundary conditions, as should be expected.

(ii) In Ref. [92] they use the standard circulation operator together with the spectral reso-
lution of the Hamiltonian, and as a result of this spectral resolution, the (undefined) diagonal
matrix elements of the position operator are excluded from the circulation operator formula;
one can therefore evaluate the standard circulation operator expectation value (even in the
thermodynamic limit within PBCs), hence one can calculate the orbital magnetization. Due
to the spectral resolution within the circulation operator, the assumed orbitals must satisfy
〈φn|v |φn〉 = −〈φn|vb |φn〉 = 0 owing to 〈φn|vb |φn〉 = 0, therefore, the orbitals that are
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taken into account indeed describe bound bulk states. Then, Ref. [92] extracted their result
from the semi-classical orbital magnetization formula given in Ref. [149], and they stated
that the remaining part gives the boundary contribution of the orbital magnetization. The
theoretical method that they use rests on the argument that the semi-classical orbital mag-
netization formula given in Ref. [149] correctly gives the total (bulk and boundary) orbital
magnetization of non interacting electrons. We argue that this may not be entirely true due
to the approximations that are made during the derivation of the Ref. [149] orbital magneti-
zation formula. First, as we have shown in the derivation of Eq. (2.51), the structure of the
semi-classical electron’s orbital magnetic moment can be attained by the unrestricted quan-
tum formula Eq. (2.49) whenever the electron’s state is a localized bulk state, that is, when
the electron completely avoids the boundaries of the system where it is enclosed. There-
fore, the orbital magnetization that is evaluated only by taking into account the electron’s
semi-classical orbital magnetic moment, does not account for magnetization contributions
coming from all possible states, i.e. does not take into account topologically non trivial
extended states. On the other hand, the semi-classical orbital magnetization formula given
in Ref. [149], namely as the derivative of the electrons’ total energy with respect to the
magnetic field (at zero magnetic field), besides the contribution coming from the electrons’
intrinsic orbital moment, it also acquires two extra terms that come up due to the modified
density of states. One is attributed to the explicit magnetic field dependence of the density of
states and the other is due to the resulting change in the Fermi volume. The two extra terms
cannot carry any topologically non trivial information, on one hand due to the localized
wavepacket employed, and on the other hand due to the explicit assumption ∇k ·Ωn(k) = 0,
where Ωn(k) is the Berry curvature, that was made in Ref. [149] for deriving the modified
density of states (hence Berry type of monopoles, crucial for the non trivial topology, were
ignored). In this framework, these two extra terms most probably represent corrections to the
semi-classical orbital magnetization formula and do not carry any topologically non trivial
information. We argue therefore that, although the method followed in Ref. [92] is rea-
sonable, the findings do not represent the orbital magnetization of topologically non trivial
surface states, but they instead provide trivial corrections to the orbital magnetization for non
localized states. This discussion here is given so that our results Eq. (2.55) or Eq. (2.57)
can be directly compared with the state of the art results.
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Chapter 3

Defining operators in an extended
framework: The spin current

The general viewpoint and methodology of the previous Chapter, and in particular the defini-
tion of appropriate boundary operators that reflect the non-Hermitian effect, is here applied
to spin physics. The coherent accumulation and motion of magnetic moments associated
with the spin of electrons, is a central concept of spintronics in condensed matter systems
in the quest of processing and storing information within the spin degree of freedom. The
pure motion of spins has the unique property that it uses minimal charge carriers to deliver
substantial angular momentum, thus generating the least possible Joule heat. In spite of the
primary importance of coherent spin accumulation and spin transport, there does not exist
up to now a generally accepted agreement on the correct definition of the corresponding op-
erators, namely, the spin-accumulation rate of change operator and the spin-current operator
[108, 40, 128, 121, 125, 24, 44, 4, 23]. The reason for this controversy is that in any closed
system that lacks spin-rotation invariance (which i.e. can be broken by spin-orbit interaction
or by spin-spin interactions) it does not exist any given direction in the material along which

the spin is conserved SnΨ(r, t) 6= ±~
2

Ψ(r, t), where Sn = S·n is the projection of the spin
in the given direction n ; therefore, no local spin magnetization conservation law can be de-
rived in a form of a continuity equation, and as a consequence it is said that, no quantum me-
chanical spin-current operator can unambiguously be well-defined. The technical reason for

this discrepancy is the bulk source term Ψ†(r, t)
i

~
[H(r, t),S ]Ψ(r, t) 6= 0 that enters the lo-

cal continuity equation which breaks the conservation of spin density Ψ†(r, t)SΨ(r, t) with
respect to position coordinates, in contrast to the electron charge density Ψ†(r, t)eΨ(r, t)

that is conserved. Most of the theoretical methods used so far with respect to the proper defi-
nition of the spin-current operator, use the local spin density and rely on local continuity-like
equations with bulk source terms; while the divergence term of certain quantities entering
them is introduced without any rigorous and explicit consideration of the material’s bound-
aries with respect to operator’s behavior and to its macroscopic expectation values.

In our point of view, and as we will actually show, the bulk source terms are not quite a
problem in the quest of the proper definition of an observable’s operator; rather an expected
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Chapter 3 Section 3.0

term, namely the divergence term entering the local continuity-like equation (commonly used
in the quest of the spin current operator) is a real “problem”. In particular, the divergence
term is an emerging quantity that comes up due to the non-Hermitian effect and is generally
overlooked in the standard theory of Hermitian operator’s definition within Schrödinger pic-
ture, that is, its coordinate (volume) integration is frequently set to zero which is rarely the
case.

Doubts about the reality of the dissipationless spin transport in equilibrium ground-states
in Rashba mediums as an outcome of the conventional spin current have been raised [108,
125, 129]. By using a local continuity-like equation with a source term, Ref. [128] show that

in order to completely describe the transport of the spin density
d

dt
Ψ†(r, t) S Ψ(r, t) one has

to introduce the angular spin current density apart from the linear spin current. By using a
restrictive assumption, namely, that the expectation value of the bulk spin torque is zero, as
well as that the spin torque density over the system’s boundaries can be neglected, Ref. [121]
have proposed an alternative spin current operator. This is defined as the time derivative of

the spin displacement operator
d(rSz)

dt
(where the Heisenberg picture is implied and the z

component of the spin is used), with the effective spin current density ReΨ†(r)
d(rSz)

dt
Ψ(r)

satisfying a continuity equation and supporting important conclusions concerning conser-
vation of spin currents [127, 155, 147]. Compared to the conventional spin current, the
Ref. [121] definition is more complete as it explicitly takes into account an additional contri-

bution, which depends explicitly on the spin torque and is given by
1

2
(r τz(r, t) + τz(r, t) r)

where τz(r, t) is the spin torque in the z direction. As we will show, and based on our ex-
tended theoretical framework for defining operators, the boundary spin torque density that
is neglected by Ref. [121], is rigorously attributed to a non-Hermitian effect boundary term
that has not pointed out yet and we explicitly define it in this work. This boundary term gives
the expectation value of a boundary spin torque, which must be zero in order for this spin
current operator to have a well defined value. In this respect, whenever both limitations are
satisfied, the time derivative of the spin displacement operator has a well-defined value in
periodic systems (where the spin torque τz(r, t) is a periodic quantity) with respect to Bloch
states in the thermodynamic limit. On the contrary, if any one of the spin torque expectation
values, either the bulk or the boundary one, is not zero, then, this spin current behaves as an
extensive quantity of a periodic system and scales linearly with the system’s size, therefore
has an undefined value. As a matter of fact and as we will show, the two limitations for the
validity of this spin current are attributed to its definition, that is, it is an observable that is
generally origin dependent unless the bulk and the boundary spin torques expectation values
happen to be zero. In this respect, the vanishing of the bulk and the boundary spin torques,
makes this spin current operator behave as a proper, intensive operator.

The purpose of this chapter is twofold, first to show a rigorous and unambiguous the-
oretical framework within Schrödinger picture of how one may define operators (in closed
systems) in an extended manner without the need of any conservation law by defining addi-
tional boundary operators that take into account the non-Hermitian effect terms, and second,
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to provide a rigorous definition for the intrinsic spin-current operator.
In this quest we will show that: (i) the boundary contributions are explicitly attributed to

anomalies of the spin and position operators, (ii) the boundary contributions are encoded by
boundary operators that we will explicitly define, (iii) the expectation values of the boundary
operators are extremely sensitive to the boundary conditions of the spinor wavefunctions (as
they are calculated by boundary integrals), and finally, (iv) for stationary states of closed
systems, there exist a quantum mechanical relation between the bulk and the boundaries
that has the form of a gain-loss detailed balance relation; whenever the bulk of the system
behaves as a source, the boundaries operates as a sink and vice versa.

Motivated by classical mechanics continuous medium (hydrodynamical) theories, where
angular momentum cannot be transferred (propagate) within a medium whenever the resul-
tant local torque is zero in each medium position at every instant, we expect that, in quantum
systems, the spin density of an equilibrium state can propagate only whenever local, non
zero spin-torques, exist within the system. In this framework, we are defining the intrinsic
spin current operator as the time derivative of the correlation function between position and
spin. The expectation value of the intrinsic spin current operator have three basic properties,
namely: (i) its value is independent of the position origin, (ii) it has a well defined value
without any restrictions with respect to periodic systems and Bloch representation in the
thermodynamic limit, and finally, (iii) for systems that lacks local spin-torques (in the bulk
and over boundaries), the value of the intrinsic spin current turns to zero with respect to a
stationary state (provided that the stationary state is a spin eigenstate also); in other words,
whenever the correlation between position and spin is a constant quantity, then, the intrinsic
spin current turns to zero.

In the chemists’ literature, although they had never defined any operator in an extended
manner, they had explicitly taken into account boundary contributions in the so-called atomic
theorems [11, 13, 12] in order to determine atom properties viewed as parts (fragments) of
a molecule. This was made within the quantum action principle generalized to an open
system, that explicitly gives boundary and “bulk” contributions. The boundary contributions
are formalized as surface integrals (fluxes) of certain generalized currents and have been used
for example in the determination of atomic dielectric polarization [15] and atomic magnetic
susceptibility [14].

In the mathematical physics literature, paradoxes related to anomalous operators entering
the Ehrenfest theorem have been noticed [47, 48, 66], but to date there has not appeared any
generally accepted theoretical framework for taking into account these operator anomalies,
within quantum formulas that provide observables in condensed matter systems. Specifically,
every assumed closed system 〈Ψ(t)|Ψ(t)〉 = 1 evolves by a Hamiltonian that is Hermitian
H(r, t)+ = H(r, t) with respect to the states Ψ(r, t) that belong within the domain of its
definition DH , which form the given Hilbert space. An operator G that enters the Ehrenfest
theorem causes the non-Hermitan effect, whenever the states GΨ(r, t) do not belong within
the given Hilbert space, that is, H(r, t)+(GΨ(r, t)) 6= H(r, t) (GΨ(r, t)), which is true
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whenever the states GΨ(r, t) and Ψ(r, t) do not satisfy the same boundary conditions,
and, as result a residue term remains in the theorem [47, 48, 66].

In this chapter, we are rigorously considering these residue terms in the Ehrenfest theo-
rem within a theoretical framework that takes into account the non-Hermitian effect contri-
butions that are explicitly attributed to additional boundary operators that we define. We will
show that, for every closed system and in position representation, a boundary operator ex-
pectation value is explicitly evaluated by a boundary integral over the terminated boundaries
of the system; such a boundary operator therefore rigorously gives an additional boundary
contribution to the quantum equation of motion of the observable’s expectation value.

A common paradigm of such an anomalous operator is the position operator r whenever
periodic boundary conditions (Born-von Kármán) are adopted for the wavefunctions
Ψ(r + L, t) = Ψ(r, t). These boundary conditions make the position operator r an anoma-
lous operator due to the fact that the state rΨ(r, t) breaks the periodicity, that is,
(r + L)Ψ(r + L, t) 6= rΨ(r, t).

On the the other hand for spinor wavefunctions Ψ(r, t) = (Ψ1(r, t), Ψ2(r, t))T , the spin
S (matrix) operator behaves as a normal operator and preserves the periodic boundary condi-
tions owing to SΨ(r + L, t) = SΨ(r, t), not leaving therefore any non-Hermitian boundary
residue in the Ehrenfest theorem. But, if one assumes a less restrictive boundary condition,
namely, periodic boundary condition for the probability density of the spinor wavefunction
Ψ†(r + L, t)Ψ(r + L, t) = Ψ†(r, t)Ψ(r, t), then, the spinor wavefunction is periodic up to
an SU(2) phase. Specifically, assuming a domain of definition DH where each spinor wave-
function is periodic up to a specific SU(2) phase, then, each spinor wavefunction within the
domain must satisfy

Ψ(r + L, t) = e
−iS·n

~
ϕ

Ψ(r, t) = U(Sn, ϕ)Ψ(r, t), (3.1)

where n is the direction about which the spinor wavefunction is rotated by an angle ϕ.
Therefore, a quantum state SΨ(r, t) belongs to the domain of the boundary conditions
(given by Eq. (3.1)), when it satisfies SΨ(r + L, t) = U(Sn, ϕ)SΨ(r, t). Acting on both
sides of Eq. (3.1) with S gives

SΨ(r + L, t) = U(Sn, ϕ)SΨ(r, t) + [S, U(Sn, ϕ)]Ψ(r, t), (3.2)

thus, the quantum state SΨ(r, t) breaks the boundary conditions when [S, U(Sn, ϕ)] 6= 0.
In this framework, the spin operator S becomes anomalous and leaves a (non-Hermitian)
residue term in the Ehrenfest theorem which we will explicitly take into account. It is useful
to note that this non-Hermitian effect of the spin S operator can be used as a probe (detector)
for the spin Hall effect, where different spin orientations over the material’s boundaries are
present (due to bulk spin torques that are exerted on the electron’s wavefunction as a result
of strong spin-orbit interaction) but the probability density is periodic.

Provided that the non-Hermitian effect boundary term in the Ehrenfest theorem is taken
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Chapter 3 Section 3.1

Figure 3.1: Interacting charge and spin currents. In (a) a longitudinal charge current is
converted into transverse spin current by the Spin Hall effect. In (b) a longitudinal spin
current is converted into transverse charge current by the inverse Spin Hall effect.

into account, one can unambiguously set up a self-consistent quantum equation of motion
(with respect to the expectation value) for any spin dependent quantity. In this framework,
for equilibrium, stationary and pure states, the expectation value of any extended operator
is always zero (which is not generally true for the standard bulk operators), therefore, one
can work in a quantum mechanical framework (as a counterpart of the statistical mechanical
one) and derive reciprocal factors that relate the charge current to a produced spin current
(spin Hall effect) and vice versa, relating therefore the spin current to a produced charge
current (inverse spin Hall effect) [121, 56, 142, 71] as depicted in Fig.3.1. Specifically, for a
quantum system that is near equilibrium and evolves irreversibly into equilibrium, where all
extended operators have zero expectation value, one can employ a phenomenological linear
dissipation approximation equation for the time derivative of an extended operator expec-
tation value, and then derive Onsager reciprocal relations [99, 100, 32] between (different)
coupled transport processes.

3.1 Operators within Schrödinger picture

3.1.1 Extended operator

By taking into account, (i) the time-evolution of the state under consideration (in Schrödinger
picture), and (ii) the boundary conditions of the (spinor) wavefunction that belongs within

a given Hilbert space DH (of closed systems
d

dt
〈Ψ(t)|Ψ(t)〉 = 0), we suggest that one may

readily define an operator Oext in an extended theoretical framework by using the equation
of motion

〈Oext〉 =
d

dt
〈G〉 . (3.3)

The equation Eq. (3.3) is always valid without any subtleties or restrictions involved pro-
vided that, in the definition of the extended operator Oext, an additional, boundary operator
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Ob that emerges due to a possible non-Hermitian behavior of the Hamiltonian H(r, t) is
always taken into account. In this framework, the extended operator is given by

Oext = O +Ob (3.4)

where
O =

i

~
[H(r, t),G] +

dG

dt
(3.5)

is the standard (bulk) operator and

Ob =
i

~
(
H(r, t)+ −H(r, t)

)
G (3.6)

is the boundary operator. Although the explicit form of H(r, t)+ may not be found when the
given Hermitian operator G becomes anomalous (therefore we cannot define it as a regular
operator), we can always evaluate the expectation value of the boundary operator 〈Ob〉 by
employing the explicit form of the Hamiltonian operator H(r, t). In this fashion, we assume
a one electron spinfull Hamiltonian H(r, t) given by

H(r, t) =
1

2m
Π(r, t)2 + V (r, t)− e~

2mc
σ ·B(r, t) + α(r, t,σ)·Π(r, t) (3.7)

where, Π(r, t) = p− e

c
A(r, t) is the kinematic momentum operator and σ the vector Pauli

matrix. The third term on the right of Eq. (3.7) is the Zeeman term representing the inter-
action of the electron’s spin with the magnetic field, while α(r, t,σ) in the fourth term rep-
resents the interaction of the electron’s spin with the orbital motion. For the non-relativistic
limit of the Dirac equation and pure spin-orbit interaction, that term is given by

α(r, t,σ) =
~

4m2c2
σ ×∇V (r, t). (3.8)

As analytically shown in Appendix D: by (i) working in the position representation, (ii)
using the explicit form of the Hamiltonian operator Eq. (3.7), and by (iii) taking into account
that the scalar and vector potentials are real quantities, after a straightforward integration by
parts (assuming a 3D system), the volume integration giving the expectation value of the
boundary operator 〈Ob〉 is always transformed to a surface integral of a generalized vector
current JG(r, t,n) over the terminated boundary surface S of the system (on which the
boundary conditions of the spinor wavefunctions are imposed), given by

〈Ob〉 =
i

~
(〈H(r, t)Ψ(t)|GΨ(t)〉 − 〈Ψ(t)|H(r, t)GΨ(t)〉)

= −
‹
S

JG(r, t,n) ds. (3.9)
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The generalized vector current JG(r, t,n) is given from

JG(r, t,n) =
1

2
n ·
(
(vΨ(r, t))† + Ψ(r, t)†v

)
GΨ(r, t), (3.10)

where v is the standard (bulk) velocity operator given by

v =
i

~
[H(r, t), r] =

Π(r, t)

m
+α(r, t,σ) (3.11)

and n is a unit vector that is locally normal to the boundary surface that encloses the system.
Due to the structure of the generalized vector current, that is JG(r, t,n) = (n·a)b,

where a =
1

2

(
(vΨ(r, t))† + Ψ(r, t)†v

)
and b = GΨ(r, t), it can always be rewritten as

JG(r, t,n) = n·
←→
JG(r, t) where

←→
JG(r, t) is a generalized second rank (Cartesian) tensor

current that is given by the dyadic product of the vectors a and b and is denoted as a b. In
this respect, the generalized tensor current is given by

←→
JG(r, t) =

1

2

(
(vΨ(r, t))† + Ψ(r, t)†v

)
GΨ(r, t) (3.12)

and the expectation value of the boundary operator can be recast in the form of a flux of a
generalized tensor current given by

〈Ob〉 = −
‹
S

ds·
←→
JG(r, t). (3.13)

We note that, whenever the operator G that enters the Ehrenfest theorem is a scalar
operator, the (second rank) tensor generalized current Eq. (3.12) is truncated to a (first rank)
vector quantity.

Although our findings are based on the model Hamiltonian Eq. (3.7) which is continuous
and quadratic in momentum (due to the kinetic energy), they can be modified and used to
topological materials with linear dispersion relation. In this framework, we may ignore the
kinetic energy term in Eq. (3.7) and use the approximated model Hamiltonian

H(r, t) = α(r, t,σ) ·Π(r, t) + V (r, t)− e~
2mc

σ ·B(r, t),

where the ferromagnetic properties of the solid can likewise be model with a mean Zeeman-
like filed that acts on the electrons’ spins. In this approximation, the expectation value of the
boundary operator 〈Ob〉 is readily evaluated by Eq. (3.12) – (3.13) and the velocity operator

is given by v =
i

~
[H(r, t), r] = α(r, t,σ).

The simplest example to see the necessity of the boundary operator Ob is the motion
of a spinless and free electron. If we assume that the motion is described by a common
eigenstate of the Hamiltonian H(r) and momentum p, thus the electron has a well de-
fined energy E and momentum ~k, then, by using G = r in Eq. (3.3), we deduce that

the equation of motion of the electron’s main position
d

dt
〈r〉 = 0 is not satisfied if we don’t
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take into account the boundary velocity expectation value, owing to 〈p〉 = ~k 6= m
d

dt
〈r〉.

Specifically, explicit calculation of the bulk velocity operator expectation value Eq. (3.9)
gives 〈Ob〉 = −~k, verifying that the expectation value of the extended (velocity) operator

operator is zero 〈Oext〉 =
d

dt
〈r〉 = 0, as it should be for every stationary state according

to Eq. (3.3). Similarly, after a time lapse T , the change of an operator G expectation value
is correctly evaluated without any ambiguities by taking into account the extended operator
definition

∆〈G〉 =

ˆ t+T

t

〈Oext〉 dt. (3.14)

At this point, it is helpful to see the physical as well as the mathematical origin of the

boundary operator with respect to closed systems
d

dt
〈Ψ(t)|Ψ(t)〉 = 0. In this framework,

we assume that, the potentials are created by known sources so that, either they are inside
the system, or they lie in the environment and their potentials penetrate into the system:

(i) From a physical point of view we argue that, in every closed quantum system, the
boundary operator expectation value 〈Ob〉 captures the exchange of the observable in ques-
tion between the system and its environment. Specifically, in every closed system of in-
distinguishable particles we may have entering and leaving particles, provided that the net
particles’ number always remains constant. Each entering or leaving particle may carry
different, i.e. momentum, angular momentum, spin or kinetic energy, which may result
in a change of the system’s global observable quantity in quest, but without changing the
net particle’s number of the particles. In this framework, we may define two categories of
closed quantum systems, namely, the ones that are closed and isolated and the ones that
are closed but not isolated. In the former ones, the wavefunction as well as all its spatial
derivatives are zero over the system’s boundaries, thus, the boundary operator expectation
value with respect to any arbitrary operator G always turns zero value as evidence from
Eq. (3.12) – (3.13); in topological systems, it seems that this is rarely the case. On the
other hand, the latter ones, closed but not isolated systems, fulfill only the basic require-
ment, that is, the system’s net particle number is held fixed. In this respect, by replacing

G→ I in Eq. (3.3) and assuming
d

dt
〈Ψ(t)|Ψ(t)〉 = 0, as well as by taking into account

the time evolution of the quantum system (thus the potentials are being taken into account),

one finds the condition
〈
O(I)

b

〉
= −
‹
S

ds·JI(r, t) = 0 which all closed systems must sat-

isfy. Those wavefunctions Ψ(r, t) that fulfill proper boundary conditions over the system’s
boundaries and satisfy

〈
O(I)

b

〉
= 0, form the given Hilbert space of closed systems, or

equivalently, form the domain of definition of the Hermitian Hamiltonian DH . Although
these systems are closed, their isolation is broken whenever there exist a nonzero outgoing
(or incoming) boundary current of a physical quantity, such as momentum, orbital angu-
lar momentum, spin or kinetic energy. This phenomenon is captured by the correspond-

ing boundary operators that result into non zero currents 〈Ob〉 = −
‹
S

ds·
←→
JG(r, t) 6= 0.

Therefore, for any physical quantity, the boundary operator expectation value Eq. (3.13)
represents the outgoing (or incoming) boundary current of the observable quantity in ques-
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tion, the standard bulk operator expectation value Eq. (3.5) represents the creation (or sink)
of this current within the bulk, and the extended operator expectation value Eq. (3.4) gives
the net, global current of this physical quantity for the system.
(ii) From a mathematical point of view [47, 48], the boundary operator is attributed to an
emerging non-Hermitian effect due to the operator G that breaks the domain of definition
of the Hermitian Hamiltonian. In this language, H(r, t)+Ψ(r, t) = H(r, t)Ψ(r, t) with re-
spect to the spinor wavefunctions Ψ(r, t) that satisfies certain boundary conditions and ful-
fills

〈
O(I)

b

〉
= 0. On the other hand, the wavefunctions GΨ(r, t) may satisfy such differ-

ent boundary conditions over the system’s boundaries, that they don’t belong within the
given Hilbert space of the closed system. In this fashion, the Hamiltonian H(r, t) will
not be Hermitian with respect to these states, which is locally indicated by the inequality
H(r, t)+GΨ(r, t) 6= H(r, t) GΨ(r, t). In order to verify that the wavefunctions GΨ(r, t)

indeed lie outside the given Hilbert space of the assumed closed system, we have to integrate
over the system’s coordinates the local quantity

Ψ(r, t)+H(r, t)+GΨ(r, t)−Ψ(r, t)+H(r, t) GΨ(r, t).

This volume integration, denoted in bra-ket notation as

〈H(r, t)Ψ(t)|GΨ(t)〉 − 〈Ψ(t)|H(r, t)GΨ(t)〉 ,

is equal (up to physical constants) with the boundary operator expectation value Eq. (3.9).
This indicates that 〈Ob〉 is not zero only whenever the action of the operator G creates
wavefunctions that lie outside the given Hilbert space of the Hermitian Hamiltonian; we can
therefore say that the boundary operator expectation value is not zero owing to an emerging
non-Hermitian effect.

Each extended defined operator Eq. (3.4), can be expressed in a more compact form.
Namely, by expanding the commutation relation in Eq. (3.5), and by using Eqs. (3.6) and
(3.4), it is recast in the form

Oext =
i

~
(
H(r, t)+G−GH(r, t)

)
+
dG

dt
, (3.15)

which for closed and isolated systems that satisfyH(r, t)+GΨ(r, t)−H(r, t) GΨ(r, t) = 0,

is reduced to the standard, textbook definition of an observable operator.
Furthermore we point out that, by examining Eq. (3.3) we can deduce that any extended

operator expectation value 〈Oext〉, is always a real quantity with respect to the given Hilbert
space, provided that the operator G is Hermitian with respect to the given boundary con-
ditions of the system, that is, it satisfies 〈GΨ(t)|Ψ(t)〉 − 〈Ψ(t)|GΨ(t)〉 = 0. Such is for
example the case when the operator G is, the position operator r = r+ (working in posi-
tion representation is implied), or the spin operator S = S+ (due to Pauli matrices satisfying
σi = σ+

i ), or any symmetric combination of position and spin operators. For these exam-
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ples G = G+, and the extended operator is Hermitian Oext = O+
ext as evidenced from

Eq. (3.15).
By assuming that the operator G is always a Hermitian operator with respect to any arbi-

trary states, which do not necessarily belong to the same Hilbert space, that is,
〈Φ(t)|GΨ(t)〉 = 〈GΦ(t)|Ψ(t)〉, it is easy to show by straightforward calculation that, the

standard bulk expectation value 〈O〉 =
i

~
〈Ψ(t)|H(r, t)GΨ(t)〉 − i

~
〈Ψ(t)|GH(r, t)Ψ(t)〉

and the non-Hermitian boundary expectation value

〈Ob〉 =
i

~
〈H(r, t)Ψ(t)|GΨ(t)〉 − i

~
〈Ψ(t)|H(r, t)GΨ(t)〉 ,

satisfy 〈O〉 − 〈O〉∗ = −( 〈Ob〉 − 〈Ob〉∗). Therefore, even if 〈O〉 has a complex expec-
tation value, its imaginary part is canceled by the imaginary part of 〈Ob〉 when the two
expectation values are added to give the extended operator 〈Oext〉 expectation value.

At this point it is also interesting to note a dual picture, that can show up when the
system does not exchange any observable quantity in question with the environment but, at
the same time it does not have constant particle number. We can formalize this dual picture
by taking into account Eq. (3.15) as well as Eqs. (3.3) – (3.6), and by remaining within cases
with system’s spinor wavefunctions Ψ(r, t) as follows. We assume an effective Hamiltonian
Heff(r, t) that has the form

Heff(r, t) = H(r, t) +K (3.16)

and which is enforced to satisfy

Heff(r, t)
+GΨ(r, t) = Heff(r, t) GΨ(r, t),

behaving therefore as a Hermitian operator with respect to GΨ(r, t) spinor wavefunctions.
The K operator is defined by taking advantage of Eq. (3.9) and the above mentioned Her-
miticity of the effective Hamiltonian. Thus, K is defined by

〈Ob〉 = − i
~

(〈KΨ(t)|GΨ(t)〉 − 〈Ψ(t)|KGΨ(t)〉) . (3.17)

Taking now into account that 〈H(r, t)Ψ(t)|Ψ(t)〉 − 〈Ψ(t)|H(r, t)Ψ(t)〉 = 0, we see that
〈Heff(r, t)Ψ(t)|Ψ(t)〉 − 〈Ψ(t)|Heff(r, t)Ψ(t)〉 is equal to 〈KΨ(t)|Ψ(t)〉 − 〈Ψ(t)|KΨ(t)〉
and the conclusion drawn is simple. If the defined operator K satisfies
〈KΨ(t)|Ψ(t)〉 − 〈Ψ(t)|KΨ(t)〉 6= 0, then the effective Hamiltonian will not be Hermitian
with respect to Ψ(r, t), that is, Heff(r, t)

+Ψ(r, t) 6= Heff(r, t) Ψ(r, t) and (i) the system will
behave as an open one with respect to the effective Hamiltonian, namely

d(ef)

dt
〈Ψ(t)|Ψ(t)〉 = − i

~
(〈Heff(r, t)Ψ(t)|Ψ(t)〉 − 〈Ψ(t)|Heff(r, t)Ψ(t)〉) 6= 0

as well as (ii) the effective equation of motion of the observable G will be given from
Eq. (3.15) by replacing Heff(r, t)

+G = Heff(r, t)G, where by definition the boundary ex-
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pectation value is zero 〈Ob〉ef = 0. In this framework, the effective system is certainly
behaving as an isolated one with respect to the current of the observable quantity G over
the system’s boundaries, while it may behave as an open one with respect to the system’s
particle number. Specifically, whenever the expectation value of the defined operator K is
an imaginary quantity, that is, 〈KΨ(t)|Ψ(t)〉 − 〈Ψ(t)|KΨ(t)〉 6= 0, then the K operator is
an anti-hermitian operator with respect to Ψ(r, t) wavefunctions, and the effective system
also behaves as an open one. A simple example to achieve this, and at the same time sat-
isfy Eq. (3.17), is by employing a purely imaginary scalar potential, that is, K = iVK(r, t)

where VK(r, t) is a real quantity. The imaginary scalar potential has to be chosen in or-

der to satisfy 〈Ob〉 = −2

~
〈Ψ(t)|VK(r, t)GΨ(t)〉, while the time evolution of the effec-

tive system’s particle number is governed by
d(ef)

dt
〈Ψ(t)|Ψ(t)〉 = −2

~
〈Ψ(t)|VK(r, t)|Ψ(t)〉.

In this simple example it is evident that each one expectation value, namely, 〈O〉 and 〈Ob〉,
are separately purely real quantities, although it is generally only their sum that should be
a real quantity. These conclusions pose now the opposite question. Given an open system
whose time evolution is governed by the static non-Hermitian Hamiltonian Heff(r), under
what conditions can it have all of its energy expectation values real? The answer is given by
means of Eq. (3.16) which indicates that, whenever 〈Ψ(t)|KΨ(t)〉 = 0, then the two ex-
pectation values coincide 〈Ψ(t)|Heff(r)Ψ(t)〉 = 〈Ψ(t)|H(r)Ψ(t)〉 and the initially assumed

open system behaves as a closed one
d(ef)

dt
〈Ψ(t)|Ψ(t)〉 = 0.

In summary, whenever one deals with closed systems, then, by using our extended the-
oretical framework for defining operators within Schrödinger picture Eq. (3.4), the rate of
change of an observable G expectation value is rigorously given by

d

dt
〈G〉 = 〈Oext〉 = 〈O〉+ 〈Ob〉 , (3.18)

and this equation, together with Eqs. (3.5) – (3.6), as well as Eq. (3.13), have been be used as
the building blocks of this work. Firstly, in order to define our intrinsic spin current operator,
and secondary, in order to review the currents defined in Ref. [128] and Ref. [121], that
were both derived by local means and without taking into account any non-Hermitian effect
term whatsoever.

3.1.2 Extended operator’s equation of motion

By using Eq. (3.18), as well as by assuming that the operator G is Hermitian with respect to
the Hilbert space of the assumed closed system (the observable’s expectation value 〈Oext〉
being therefore a real quantity) we can deduce two important properties. That is: (i) for those

quantum states that the extended operator has stationary expectation value
d

dt
〈Oext〉 = 0,

we can deduce an explicit relation between the standard (bulk) and the boundary operator
expectation values and, (ii) for irreversible and non-equilibrium quantum states that are near
equilibrium, where the extended operator expectation value satisfies the approximated linear
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dissipation equation
d

dt

〈
O i
ext

〉
= −kij

〈
O j
ext

〉
, with kij being phenomenological transport

coefficients (where repeated indices denote summation), we can form reciprocal relations
between phenomenological transport coefficients.

Stationary expectation values

The steady states that are giving stationary expectation values with respect to an extended
operator, can be separated into two groups, namely, the ones in which 〈Oext〉 = 0, and those
in which 〈Oext〉 = C where C is a constant vector quantity.

In the first group, by assuming that the operator G is time-independent, it is evident that
the relation 〈Oext〉 = 0 is satisfied whenever the system is in a stationary eigenstate of a

static Hamiltonian, that is |Ψ(t)〉 = exp(− i
~
En t) |n〉, where n indexes the band energy, and

the system is therefore in an equilibrium state. In these equilibrium states 〈G〉n = g, where
g is a constant quantity, which results into 〈Oext〉n = 0. As evidenced from Eq. (3.18),
any such stationary state satisfies a bulk-boundary relation given by

〈O〉n = −〈Ob〉n , (3.19)

where the operator G is assumed to be static. In this framework, Eq. (3.19) forms a strict bal-
ance relation in a type of a gain and loss between the standard (bulk) and the non-Hermitian
effect (boundary) contributions with respect to the global “current” of the observable G

denoted as
d

dt
〈G〉, and it states that, whenever the bulk of the system behaves as a source,

the boundaries operates as a sink and vice versa. By defining the isolated stationary states
(in a macroscopic sense with respect to the system’s boundaries) as the ones that satisfy
〈Ob〉n = 0, we can deduce from Eq. (3.19) that the standard (bulk) operator, evaluated with
respect to such states, satisfies 〈O〉n = 0, thus the boundary operator expectation value can
be used as a probe (detector) of such isolated states.

In the second group where 〈Oext〉 = C, the system has to be in such a state that sat-

isfies
d

dt
〈G〉 = 〈O〉+ 〈Ob〉 = C. The latter equation suggests that the expectation value

of G must be equal to 〈G〉 = g +C.t, where g is also a constant. By assuming again that
the operator G is time-independent, as well as that the Hamiltonian H(r) is static, then,
by taking into account that the system is in a superposition of Hamiltonian’s eigenstates

|Ψ(t)〉 =
∑

nCn exp(−
i

~
En t) |n〉, by explicit calculation we see that by no means we can-

not satisfy the equation

d

dt
〈Ψ(t)|G |Ψ(t)〉 =

∑
n

∑
m

CnC
∗
m

d

dt
exp(− i

~
(En − Em) t)

×〈m|G |n〉 = C

with C non-zero constant. On the other hand, if the operator G has an explicit linear time-

dependence, namely,
dG

dt
= C, whereC is the above mentioned constant, then, if the system
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is in a single stationary eigenstate |n〉 of the Hamiltonian, the second restriction 〈Oext〉 = C

is satisfied
d

dt
〈Ψ(t)|G |Ψ(t)〉 =

〈
n | dG

dt
|n
〉

= C. In this framework, there exist a bulk-

boundary relation
〈O〉n −C = −〈Ob〉n (3.20)

with respect to any operator G that has linear time dependence.

Reciprocal relations

By using Eq. (3.18) and the extended operator definition Oext, we can always form a
quantum equation of motion for an operator’s G expectation value without any subtleties
concerning emerging non-Hermitian behaviors being involved. In example, for G = r and
within periodic boundary conditions for the wavefunctions, the quantum equation of mo-

tion of the position operator expectation value
d

dt
〈r〉 cannot be satisfied by only taking

into account the standard bulk velocity operator
i

~
[H(r, t), r], rather it is satisfied only

when the boundary operator is also taken into account, that is
d

dt
〈r〉 = 〈Oext〉. In this

respect, we are asking a plausible question: given the equation of motion of an extended

operator expectation value
d

dt
〈Oext〉, can we draw conclusions concerning its irreversible

equation of motion towards the values 〈Oext〉 = 0 and
d

dt
〈Oext〉 = 0 ? In other words,

an initially equilibrium system is perturbed and then left alone; can we make approximate
estimates with respect to the irreversible process that returns the system back to an equi-
librium, stationary eigenstate of a static Hamiltonian? The answer is yes within a linear
approximation dissipation equation, that is, near 〈Oext〉 = 0. We take a Taylor expan-

sion of
d

dt
〈Oext〉 near equilibrium, and assume that each component of

d

dt

〈
O i
ext

〉
has the

function form
d

dt

〈
O i
ext

〉
= f i( 〈O x

ext〉 , 〈O
y
ext〉 , 〈O z

ext〉 ). The expansion around the equilib-

rium value 〈Oext〉 = 0 gives
d

dt

〈
O i
ext

〉
= −kij

〈
O j
ext

〉
− λijk

〈
O j
ext

〉 〈
O k
ext

〉
+ · · ·where re-

peated indices denotes summation, kij and λijk are phenomenological transport coefficients
and f i(0, 0, 0) = 0. Within a linear dissipation approximation, the above expansion is re-

duced into
d

dt

〈
O i
ext

〉
= −kij

〈
O j
ext

〉
, where

d

dt

〈
O i
ext

〉
can be thought as the generalized

“force” that cause the time evolution of
〈
O j
ext

〉
. In matrix notation, the irreversible, linear

quantum equation of motion takes the form

d

dt


〈O x

ext〉

〈O y
ext〉

〈O z
ext〉

 = −


kxx kxy kxz

kyx kyy kyz

kzx kzy kzz



〈O x

ext〉

〈O y
ext〉

〈O z
ext〉

 . (3.21)

Due to
〈
O j
ext

〉
being real quantities, it is evident that the phenomenological transport coeffi-

cients kij are also real quantities, therefore, the matrix composed of the coefficients is a real
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matrix. We are interested in the irreversible, attenuating solutions of the above matrix equa-
tion, that is we seek solutions of the form

〈
O j
ext(t→∞)

〉
= 0. The general solution form

of the above matrix equation, is given by (〈O x
ext〉 , 〈O

y
ext〉 , 〈O z

ext〉)
T = e−λt (c1, c2, c3)T

where ci and λ are constants. By substituting this form in Eq. (3.21) we end up with the
eigenvalue equation 

kxx − λ kxy kxz

kyx kyy − λ kyz

kzx kzy kzz − λ



c1

c2

c2

 = 0. (3.22)

Taking now into account that, the elements kij of the matrix K in Eq. (3.21) are all real
quantities, then, in order for all eigenvalues λ to be all purely real and at least one positive, so
that there exists an exponential attenuating solution for each

〈
O j
ext

〉
, it is necessary that the

matrix K has to be a Hermitian one, therefore, kij = kji. In this respect, within a linear dissi-
pation approximation equation (with respect to the time evolution of the extended operator’s
expectation value Eq. (3.21)), one can justify a quantum mechanical theoretical framework
to derive Onsager reciprocal relations [99, 100] for irreversible transport processes.

Mixed States

Although all of our prior theoretical analysis resides on pure states, it is easy to extend
the way that one can define an operator in an extended manner for a mixed states (within
Schrödinger picture).

When the system is in a mixed state, the ensemble average of G is given by

[G] =
∑
i

wi
〈
Ψ(i)(t)|G |Ψ(i)(t)

〉
where wi weights the expectation values of the ensemble members and satisfies

∑
iwi = 1.

Then, we may define the ensemble average extended value as [Oext ] =
d

dt
[G], which is

given by

[Oext ] =
∑
i

dwi
dt

〈
Ψ(i)(t)|G | Ψ(i)(t)

〉
+
∑
i

wi
〈
Ψ(i)(t) |Oext | Ψ(i)(t)

〉
(3.23)

where
〈
Ψ(i)(t)|Oext | Ψ(i)(t)

〉
=

d

dt

〈
Ψ(i)(t)|G |Ψ(i)(t)

〉
is given from Eq. (3.18) and

dwi
dt

accounts for the time evolution of the populations. Choosing a convenient complete or-

thonormal base I =
∑

n |n〉〈n|, then, Eq. (3.23) is recast in the form

[Oext ] =
∑
n

〈n|µG + ρOext | n〉 (3.24)
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where µ is the population density matrix operator given by

µ =
∑
i

dwi
dt

∣∣Ψ(i)(t)
〉 〈

Ψ(i)(t)
∣∣ (3.25)

and ρ is the density matrix given from

ρ =
∑
i

wi
∣∣Ψ(i)(t)

〉 〈
Ψ(i)(t)

∣∣ . (3.26)

Within this framework, whenever the populations acquires a static value
dwi
dt

= 0, the en-
semble average extended value [Oext] may also acquire a stationary value C, that is,

[Oext ] =
d

dt
[G] = C, where we may assume that for C = 0 the ensemble is “unpolarized”.

Therefore, whenever the ensemble average extended value gets a static value, there exists an
involved bulk-boundary relation that is given by∑

n

〈n| ρO | n〉 = C −
∑
n

〈n| ρOb | n〉 (3.27)

even though the system may not be in the lowest energy configuration.

3.1.3 Local continuity-like equations

Although it is an operator’s expectation (global) value that represents the observable, it is
instructive to make a connection with the methodology that is mainly followed in the the-
oretical works that concerns the spin transport [128, 121, 125, 24, 44, 23, 155]. In these
methods, the starting point formulas are local, continuity-like equations with respect to the
rate of change of the observable’s G density. Based on our work, a local continuity-like
equation can be derived by using the expectation value equation Eq. (3.18) in position rep-
resentation, as well as by taking into account Eq. (3.13) and Eq. (3.5). In this respect, the
expectation value Eq. (3.18) when calculated over position coordinates, has the local solu-
tion (due to the assumed volume V of the system being arbitrary) that can be expressed in a
form of a local, continuity-like equation given by

Ψ†(r, t)

(
i

~
[H(r, t),G] +

dG

dt

)
Ψ(r, t)−∇·

←→
JG(r, t) =

d

dt
Ψ†(r, t)GΨ(r, t). (3.28)

We note that Eq. (3.28) can also be derived by local means. This is done by: (i) taking
the time derivative of the density of the observable Ψ†(r, t)GΨ(r, t), (ii) using the time-

dependent equation for the evolution of the spinor wavefunction i~
d

dt
Ψ(r, t) = H(r, t)Ψ(r, t),

(iii) using the assumed Hamiltonian given by Eq. (3.7), and (iv) performing algebraic ma-
nipulations such as the ones made in the integrands of the expressions in the appendix D.

The first thing to note in the local Eq. (3.28), is that the divergence term ∇·
←→
JG(r, t)

should be absent within the standard definition of Hermitian operators (assuming zero non-
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Hermitian effect) rather than the bulk source-term (which is thought to be the problem in
the literature). In this respect, and although we are considering closed systems, the bulk
source-term cannot be ignored and naturally breaks the continuity equation for the density
of the observable Eq. (3.28) when the expectation value 〈Ψ(t)|G |Ψ(t)〉 is not zero. The
breaking of the local conservation does not lead to any theoretical problem with respect to
a proper definition of an observable’s operator (also noticed by [125] in the quest of the
proper definition of the spin current operator), contrary to what is commonly stated in the
literature [128, 121, 24, 44]. As a matter of fact, Eq. (3.28) provides a local, quantum
mechanical, micro-balance equation for the density of an observable (in analogous manner
as in hydrodynamical theories) which takes into account the evolution of the state under
consideration as well as the bulk and the boundary sources.

In summary, the divergence term can be viewed as the source term that produces the
boundary time-evolution of the observable’s expectation value 〈Ψ(t)|G |Ψ(t)〉 which is
not zero only whenever the operator G becomes anomalous, while the bulk source-term
can be viewed as the one that produces the standard, bulk time-evolution. In spite the fact
that the local balance equation Eq. (3.28) breaks the local conservation law, an alterna-
tive local equation for the observable’s density, that satisfies a local conservation law, can
be derived. This can be done by defining a local current density (flux) of the observable

as J(r, t) =
d

dt
Ψ†(r, t)GΨ(r, t), and a local density by ρ(r, t) = −∇·

(
Ψ†(r, t)GΨ(r, t)

)
,

which clearly satisfy a local conservation law

−∇·J(r, t) =
dρ(r, t)

dt
. (3.29)

The latter conservation law Eq. (3.29) resembles the polarization current of classical elec-

trodynamics, with the polarization current density given by Jp(r, t) =
dP(r, t)

dt
and the

polarization charge density from ρp(r, t) = −∇·P(r, t), where P(r, t) is the polarization

of the medium.
It is now helpful to see the usage of the local Eq. (3.28) for some observable operators:

(i) The particle’s local number density is defined as Ψ†(r, t)Ψ(r, t) and the rate of change

of the local number density by
d

dt
Ψ†(r, t)Ψ(r, t); in this respect, by replacing the G in

Eq. (3.28) with the identity operator G→I , and for assumed closed system‹
S

ds·JI(r, t) = 0, Eq. (3.18) gives the particle number conservation with respect to those

states that belongs within the domain of definition of the Hermitian Hamiltonian, that is
d

dt
〈Ψ(t)|Ψ(t)〉 = 0, irrespectively of whether the quantum state under consideration is a

stationary (equilibrium) state or a non-equilibrium state.
(ii) For an assumed closed system the particle’s local position density is defined as
Ψ†(r, t) r Ψ(r, t) and the rate of change of the particle’s local position density by
d

dt
Ψ†(r, t) r Ψ(r, t). Therefore, by replacing G with the position operator r in the lo-

cal Eq. (3.28), the particle’s position expectation value time derivative
d

dt
〈Ψ(t)| r |Ψ(t)〉
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given by Eq. (3.18), acquires two explicit contributions, namely, the one due to the standard

bulk velocity operator
i

~
[H(r, t), r] expectation value, and a boundary one, due to the non-

Hermitian effect term given by Eq. (3.13). A simple example to show the necessary presence
of the boundary non-Hermitian effect velocity part is given as follows: Consider a stationary
and extended plane wave state of a free electron of mass m with well defined momentum ~k

in a finite volume V. The system is assumed to be closed, that is the electrons’ wavefunc-
tion is normalized to unity at every instant t within the volume V , 〈Ψ(t)|Ψ(t)〉 = 1. In this
respect, the electrons’ displacement ∆〈r〉 must always be smaller than (or equal to) the sys-

tems’ size. Using the standard velocity definition v =
i

~
[H(r, t), r] the elctrons’ displace-

ment acquires the value ∆〈r〉 =
~k

m
t which will eventually lead the electron out of the sys-

tem; this paradox is bypassed by taking into account the non-Hermitian velocity part that, as
it turns out, contributes an equal magnitude and opposite sign than the bulk electrons’ veloc-
ity 〈v〉 resulting in zero displacement ∆〈r〉 = 0 at every instant t for the assumed stationary
state.
It is worthwhile to point out that, although the system is assumed closed with fixed number
of electrons, the particle’s main position 〈Ψ(t)| r |Ψ(t)〉 is not a conserved quantity (with
respect to space coordinates) as is evident from Eq. (3.28) due to the standard velocity op-
erator expectation value that is not zero; however, we can still define the electron’s velocity
without any need to modify the continuity-type Eq. (3.28).
(iii) For an assumed closed system, we can define the particle’s local spin density as

Ψ†(r, t) S Ψ(r, t) and the rate of change of the local spin density by
d

dt
Ψ†(r, t) S Ψ(r, t).

Therefore, by replacing G = S and according to Eq. (3.18) and Eq. (3.28), we can evaluate

the particle’s spin expectation value rate of change
d

dt
〈Ψ(t)|S |Ψ(t)〉 that has two explicit

contributions, namely, a standard bulk one given from the expectation value of Eq. (3.5) and
a boundary, non-Hermitian effect one, given from Eq. (3.13). It is worth pointing out that,
the spin expectation value 〈Ψ(t)|S |Ψ(t)〉 is not a conserved quantity with respect to space
coordinates (in a similar manner as the particle’s main position) according to Eq. (3.28)

whenever the bulk source term is not zero, that is, the bulk torque operator
i

~
[H(r, t),S]

expectation value is not zero.

3.2 Spin-accumulation rate of change operator

In Ref. [128], and without realizing the necessary presence of the non-Hermitian effect terms,
the authors found out, by using a local continuity-like equation that, in order to completely

describe the so-called spin transport
d

dt
Ψ†(r, t) S Ψ(r, t), one has to introduce the angular

spin current apart from the linear spin current. The angular spin current, was attributed
to the bulk source term that violates the conservation of spin in the local continuity equa-
tion. On the other hand, no inside observation about the unexpected emergence (within the
standard theory of Hermitian operator’s definition) of the linear spin current owing to the
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non-Hermitian effect was ever made.
This spin transport or spin accumulation rate of change, can be studied as a special case of

the general theoretical method that was presented in Sec.3.1, by defining a proper operator
in an extended manner. This is made by replacing the abstract G operator in Eq. (3.18)
with the spin (matrix) operator S that gives

〈τ 〉+ 〈τ b〉 =
d

dt
〈S〉 , (3.30)

where we can rigorously define the bulk electron’s spin-accumulation rate of change operator
as

τ =
i

~
[H(r, t),S] , (3.31)

and the boundary spin-accumulation rate of change operator as

τ b =
i

~
(
H(r, t)+ −H(r, t)

)
S. (3.32)

The above two operators, namely, τ and τb can also be interpreted as the bulk and the
boundary torque operators respectively.

The bulk spin-accumulation rate of change operator expectation value 〈τ 〉 can explic-
itly be evaluated by employing the specific Hamiltonian of the system and the quantum
state under consideration. Therefore, for the Hamiltonian given either from Eq. (3.7) or by
Eq. (3.14), and by using [σi, σj] = 2i εijk σk, giving [σ ·B,σ] = −2iB× σ and
[(σ ×∇V )·Π,σ] = −2i (∇V × Π)× σ, we find the explicit form of the bulk
spin-accumulation rate of change (bulk spin torque) operator that is given by

τ =

(
− e

mc
B(r, t) +

1

2m2c2
(∇V (r, t)×Π(r, t))

)
× S. (3.33)

The expectation value of the boundary spin-accumulation rate of change (boundary spin
torque) operator 〈τ b〉, is also evaluated by employing the specific Hamiltonian of the system
Eq. (3.7) and the state under consideration. In this respect, we replace G = S in Eqs. (3.12)
– (3.13) which leads to

←→
JS(r, t) =

1

2

(
(vΨ(r, t))† + Ψ(r, t)†v

)
SΨ(r, t) (3.34)

and
〈τ b〉 = −

‹
S

ds·
←→
JS(r, t). (3.35)

The expectation values 〈τ 〉 and 〈τ b〉, are the analogs of the angular spin current and
the linear spin current given in Ref. [128], and according to our formulation, the expectation
value of the boundary spin-accumulation rate of change operator 〈τ b〉 is not zero only when-
ever the spin operator S becomes anomalous breaking the domain of definition DH of the
Hamiltonian.
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Whenever the calculations are performed with respect to a stationary state, that is, the

spin expectation value is constant
d

dt
〈Ψn(t)|S |Ψn(t)〉 = 0, then according to Eq. (3.30)

there exists a strict gain-loss balance relation between the standard (bulk) spin expectation
value rate of change and the boundary spin accumulation rate of change given by

〈τ 〉n = −〈τ b〉n , (3.36)

suggesting that, for stationary states, whenever the bulk of the system behaves as a spin
source the boundaries operates as a spin sink and vice versa.

Furthermore, by defining the localized stationary states (in a macroscopic sense with
respect to the system’s boundaries) as the ones that satisfy 〈τ b〉n = 0, implying that the
spin operator S behaves as a normal operator (in the sense that it does nor break the domain
of definition of the Hamiltonian operator) and the boundary integral Eq. (3.35) is zero, we
deduce from Eq. (3.36) that the standard, bulk spin-accumulation rate of change operator
expectation value (with respect to such stationary and localized states) is also zero 〈τ 〉n = 0.
In this framework, the spin expectation value 〈S〉n can be assumed as separately constant,
in the bulk as well as on the boundaries.

On the other hand, if we assume a spin Hall stationary state in which spins are created in
the bulk and sink over the boundaries, then according to Eq. (3.36), 〈τ b〉n = −〈τ 〉n− 6= 0

indicating that the spin S is behaving as an anomalous operator due to the non-Hermitian
effect, that is, the spin polarization orientation over the opposite boundaries of the material
is altered due to acquired SU(2) phases induced by the bulk spin torques that influence the
electron’s spinor wavefunction.

Owing to the form of Eq. (3.33), it is evident that S·τ = 0 which implies that, in the
bulk of any material, the spin is performing an involved precession motion around the di-

rection of the vector − e

mc
B(r, t) +

1

2m2c2
(∇V (r, t)×Π(r, t)) . Actually, this is a generic

feature of the spin in every closed system, that is, it makes an involved precession motion
both in the bulk and at the boundaries of the material owing to the exerted local spin torques.
This generic, bulk and boundary precession of the spin, can globally be explained due to

σ2
i = I and S2 = 3

~
2
I , which leads to

d

dt

〈
Ψ(t)|S2 |Ψ(t)

〉
= 0 for every closed system ow-

ing to
d

dt
〈Ψ(t)|Ψ(t)〉 = 0. Local analysis of this precession, for bulk and boundary regions,

can be made by using Eq. (3.18) if we replace G→ S·S. In this respect, the rate of change
of the modulus of the spin in the bulk is given by the expectation of the operator S·τ which
turns to zero due to the latter operator being locally zero. Similarly, the rate of change of the
modulus of the spin over the boundaries turns also to zero (for an assumed closed system),

as evident from Eq. (3.12) – (3.13) when we replace G→ S·S = 3
~
2
I .

In the case we want to study the spin torque in a given direction, i.e. the z direction, we
replace the abstract vector operator G in Eq. (3.18) with the scalar operator Sz and the
tensor generalized current

←→
JS(r, t) is simplified to a vector quantity, that is
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JSz(r, t) =
1

2

(
(vΨ(r, t))† + Ψ(r, t)†v

)
SzΨ(r, t)

= Re
(

1

2
Ψ(r, t)† {v, Sz}Ψ(r, t)

)
(3.37)

where {, } denotes the anticommutator, and the boundary torque is given respectively by

〈
τb(z)

〉
= −
‹
S

ds·JSz(r, t). (3.38)

3.3 Defining extended current operators

In transport phenomena, flux is defined as the rate of flow of a property per unit area, which
has the dimensions [quantity].[time]−1.[area]−1. In this respect, by assuming a single parti-
cle system and using the transport definition of flux, we can define a local micro-flux (for an

assumed 3D system) of an observable as
d

dt
Ψ†(r, t)rQΨ(r, t), that has the desirable dimen-

sions, namely, [quantity].[time]−1.[area]−1 where, r is the position operator and Q is the
magnitude of the assumed scalar property.

The coordinate integration (over the system’s volume) of the micro-flux, gives the global

value
d

dt
〈Ψ(t)| rQ |Ψ(t)〉 that has dimensions [quantity].[time]−1.[length], representing there-

fore a global propagation (within the medium) of the quantity Q that is captured by the
quantum mechanical operator G = rQ.

In this fashion, and according to Sec. 3.1, we can define an extended current operator as

Jext = J + Jb (3.39)

that has two explicit contributions, namely, the standard (bulk) one given by

J =
i

~
[H(r, t), rQ] + r

dQ
dt

(3.40)

and a boundary one due to the non-Hermitian effect (owing to the anomalous action of the
operator rQ) given by

Jb =
i

~
(
H(r, t)+ −H(r, t)

)
rQ. (3.41)

The expectation value of the standard current operator 〈Ψ(t)|J |Ψ(t)〉, represents the bulk
propagation of the property Q, and the expectation value of the boundary operator
〈Ψ(t)|Jb |Ψ(t)〉 the boundary propagation respectively.

3.3.1 Extended charge current operator

It is useful to see a simple example of Eq. (3.40) and Eq. (3.41), by examining the charge e

propagation in a closed system, that is, by assuming Q = e for the assumed single particle
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system. In this fashion, the value of
d

dt
〈Ψ(t)| e r |Ψ(t)〉 represents the global propagation

of the charge and has two explicit contributions. Specifically, the first one 〈Ψ(t)|Je |Ψ(t)〉,
is given by the expectation value of Eq. (3.40) for Q = e, and represents the bulk propa-
gation that is given by the standard velocity operator expectation value times the electron
charge e. The second one 〈Ψ(t)|Jeb |Ψ(t)〉, has a non-Hermitian origin, and is given by
the expectation value of Eq. (3.41) which (in position representation and for real scalar and
vector potentials) is always truncated to a boundary integral over the terminate boundaries
of the system. It represents the transmission of electric charge through the boundaries and
its expectation value is not zero whenever the position operator becomes anomalous. It is
worth pointing out that the charge transport can be formalized by means of Eq. (3.40) and
Eq. (3.41), even though no local conservation law is satisfied by the position weighted charge
density Ψ†(r, t)e rΨ(r, t). The conservation of the charge on the other hand, is captured by
the local charge density Ψ†(r, t)eΨ(r, t) that satisfies a local conservation law.

3.3.2 Extended spin current operator

We now turn to the transport of the spin property and the method used in Ref. [121]. In
order to resolve two critical flaws of the conventional spin current definition, that is, (i)
spin is not a conserved quantity (does not satisfy a local conservation law) as well as (ii)
it does not describe transport, they provided an improved spin current definition for spin-
orbit coupled systems within an explicit restriction, namely, that no global spin generation

in the bulk is made 〈Ψ(t)| τz |Ψ(t)〉 =

〈
Ψ(t)| i

~
[H(r, t), Sz] |Ψ(t)

〉
= 0, due to symmetry

reasons. By then working in the Heisenberg picture, they defined the spin current (of the z
component of the spin) as the time derivative of the spin displacement operator rSz, that is,

Jsp(z) =
d(rSz)

dt
. In a recent work Ref. [147] they provided also the operator form of this

spin current as Jsp(z) =
i

~
[H(r, t), rSz].

Incorporating now our formalism (within Schrödinger picture), and without any con-
straint with respect to the spin density Ψ(r, t)†SzΨ(r, t) conservation, the propagation of
the spin Sz property (spin current), is formalized by means of Eq. (3.40) and Eq. (3.41) by
replacing Q = Sz. In this respect, the extended spin current operator is given by

J
sp(z)
ext = Jsp(z) + J

sp(z)
b , (3.42)

where the bulk propagation of the z component of the spin is given by the standard (bulk)
spin current operator

Jsp(z) =
i

~
[H(r, t), rSz] , (3.43)

which is identical to the one given in Ref. [147] while the boundary spin propagation is
given by the boundary operator

J
sp(z)
b =

i

~
(
H(r, t)+ −H(r, t)

)
rSz. (3.44)

76

Kyri
ak

ou
 Kyri

ak
os



Chapter 3 Section 3.3

By expanding the commutator of the right side of Eq. (3.43), the standard spin current
operator is recast in the form

Jsp(z) = v Sz + r τz (3.45)

where v =
i

~
[H(r, t), r] is the standard (bulk) velocity operator, and τz =

i

~
[H(r, t), Sz]

is the standard (bulk) z component of the spin torque operator. For the Hamiltonian of
Eq. (3.7), the spin torque τ is given by Eq. (3.33), and the z component of the spin torque by
τz = τ ·ez. Although not obvious, the right side of Eq. (3.45) is a properly symmetric oper-

ator. This is explicitly shown by using the expressions, v Sz =
1

2
(v Sz + Sz v) +

1

2
[ v, Sz ]

and r τz =
1

2
(r τz + τz r) +

1

2
[ r, τz ], as well as the commutation relation identity

[ r, τz ] = −[ v, Sz ]. In this respect, the standard spin current operator can be recast in the
form

Jsp(z) =
1

2
(v Sz + Sz v) +

1

2
(r τz + τz r) (3.46)

which obviously shows that it is a properly symmetric operator. The first term on the right
side of Eq. (3.46) is the conventional spin current operator, while the second term is a
contribution owing to the spin torque.

Due to the explicit (linear) dependence of the spin current operators Eq. (3.44) and
Eq. (3.45) by the position operator r, we have to examine their behavior with respect to
periodic systems. This investigation shows that, both operators are generally ill defined
operators with respect to periodic systems. Namely, each one of the spin current expectation
values behaves as an extensive quantity for a periodic system because their values scale
linearly with respect to the system’s length, therefore they have an undefined value in the
thermodynamic limit.

In order to show the above assertion, we assume a 3D cubic crystal and a spinor Bloch

form wavefunction ψk(r, t) =
1√
N
eik.ruk(r, t) that satisfies Born-von Kármán periodic

boundary conditions over the material’s boundaries where uk(r, t) are the cell periodic part
of the wavefunction.

We adopt the normalization convention 〈ψk(t)|ψk(t)〉 = 〈uk(t)|uk(t)〉cell = 1, thus, N
are the total number of primitive cells enclosed by the volume V the system. By now taking
the expectation value of Eq. (3.45) with respect to the Bloch wavefunction ψ(r,k, t) and at
the same time exploiting the symmetry of the integrands, namely, taking into account that the
spinor cell periodic wavefunction u(r,k, t) as well as that the operators v(r, t) and τz(r, t)
are cell periodic, we find that the standard (bulk) spin current expectation value is given by

〈
ψk(t)|Jsp(z)|ψk(t)

〉
=

〈
uk(t)|Jsp(z)|uk(t)

〉
cell

+

(
(Nx − 1)

2
αx +

(Ny − 1)

2
αy +

(Nz − 1)

2
αz

)
〈uk(t)| τz |uk(t)〉cell

(3.47)

where the expectation value of the z component of the standard (bulk) spin torque τz = τ ·ez,
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evaluated with respect to a cell periodic state within one primitive cell, is related to the Bloch
state expectation value by 〈uk(t)| τz |uk(t)〉cell = 〈ψk(t)| τz |ψk(t)〉.

Similarly, the expectation value of Eq. (3.44) is recast in the form〈
ψk(t)|Jsp(z)b |ψk(t)

〉
=

〈
uk(t)|Jsp(z)b |uk(t)

〉
cell

+

(
(Nx − 1)

2
αx +

(Ny − 1)

2
αy +

(Nz − 1)

2
αz

)〈
uk(t)| τb(z) |uk(t)

〉
cell

(3.48)

where the expectation value of the z component of the boundary spin torque operator
τb(z) = τ b ·ez, is evaluated with respect to a Bloch state by〈
uk(t)| τb(z) |uk(t)

〉
cell

=
〈
ψk(t)| τb(z) |ψk(t)

〉
. In deriving the latter equation that relates the

boundary spin torques expectation values, we have used the bulk counterpart expression of
Eq. (3.32) for the expectation value of the boundary spin torque, namely,〈
ψk(t)| τb(z) |ψk(t)

〉
=
i

~
(〈H(r, t)ψk(t)|Szψk(t)〉 − 〈ψk(t)|H(r, t)Szψk(t)〉), and exploited

the translation symmetry of the integrands. By summing now Eq. (3.47) and Eq. (3.48) we
find the equation of motion of the spin displacement operator rSz caused by the extended
spin current operator J

sp(z)
ext expectation value, which is given by

d

dt
〈ψk(t)| rSz |ψk(t)〉 =

〈
ψk(t)|Jsp(z)ext |ψk(t)

〉
=
〈
ψk(t)|Jsp(z)|ψk(t)

〉
+
〈
ψk(t)|Jsp(z)b |ψk(t)

〉
(3.49)

that leads as to two conclusions:
First, in order for the spin current operators Eq. (3.43) and Eq. (3.44), to have a well

defined and intensive value in periodic systems, the standard (bulk) spin torque expectation
value 〈ψk(t)| τz |ψk(t)〉 as well as the boundary (non-Hermitian effect) spin torque expec-
tation value

〈
ψk(t)| τb(z) |ψk(t)

〉
have to be simultaneously zero. We stress that, the zero

boundary spin torque restriction, was not pointed out in this manner in Ref. [121], rather
they assumed that the boundary spin torque density can be neglected. Moreover, by taking
into account the boundary spin torque Eq. (3.38), we can deduce that, whenever is zero,
then, the spin operator Sz behaves as a normal operator and no spin Hall effect is possible.
In virtue of Eq. (3.30), the two restrictions of zero bulk and boundary spin torques, are sat-

isfied whenever the z component of the spin is a constant of the motion
d

dt
〈Sz〉 = 0 (within

bulk and over boundaries), which is fulfilled, either due to the above mentioned symmetry
reasons, or more generally for any stationary state and without any symmetry considerations
being involved, in which cases the right side of Eq. (3.49) has a well defined value.

Second, in order for the spin current to be rigorously given by the time derivative of the
spin displacement operator Eq. (3.49), the non-Hermitian boundary contribution Eq. (3.48)
has to be taken into account, which was also not noticed in Ref. [121].

The two restrictions with respect to the validity of this extended spin current operator,
namely, the zero bulk and zero boundary spin torques, guarantees that its expectation value is
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origin independent. This argument is verified by assuming a shift by L of the position origin,
that is, r→ r− L. In this respect, the expectation value of Eq. (3.42) is transformed

as
d

dt
〈 rSz〉 →

d

dt
〈 rSz〉 − L

d

dt
〈Sz〉, from which it is clear that the extended spin current

operator Eq. (3.42) is position origin independent whenever
d

dt
〈Sz〉 = 0.

3.4 Intrinsic spin current operator

Although the spin density is generally a non-conserved quantity with respect to materials that
carry local spin-torques, the modulus of the spin is always a constant of the motion as long
as the system is closed. In this respect, the electron’s spin makes a precession motion around
an involved direction (varying in space and time) in the bulk and over the boundaries of the
material. In this framework we define the electron’s extended intrinsic spin current as the
time derivative of the correlation between electron’s position and electron’s spin. Whenever
the two observables, spin and position, are uncorrelated, the extended spin current operator
turns to zero value.

3.4.1 Extended intrinsic spin current operator

Based on the method developed in Sec.3.3, we define the local, intrinsic micro-flux of the

z component of the spin as
d

dt
Ψ†(r, t) (r− 〈r〉)SzΨ(r, t), which has the desirable dimen-

sions, namely, [spin].[time]−1.[area]−1, where (r− 〈r〉) is the electron’s induced position
displacement operator due to the action of the spin Sz operator on the quantum state un-
der consideration. Similarly, the coordinate integration (over the system’s volume) of this

intrinsic micro-flux, gives the global value
d

dt
〈Ψ(t)| (r− 〈r〉)Sz |Ψ(t)〉 that has dimen-

sions [spin].[time]−1.[length], representing therefore the global intrinsic propagation of the
z component of the spin that is captured by the quantum mechanical operator G defined as
G = (r− 〈r〉)Sz. By inserting this G operator in Eq. (3.5) and Eq. (3.6) we find the two
operators of the observable, namely, the standard “bulk” intrinsic spin current operator given
by

Osp(z)
int =

i

~
[H(r, t), (r− 〈r〉)Sz]−

d 〈r〉
dt

Sz (3.50)

and the boundary intrinsic spin current operator given from

Osp(z)
int (b) =

i

~
(
H(r, t)+ −H(r, t)

)
(r− 〈r〉)Sz. (3.51)

We employ our extended velocity operator definition for the second term of the right hand
side of Eq. (3.50). In this respect, the extended velocity operator is given by,

vext = v + vb (3.52)
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where,
v =

i

~
[H(r, t), r] (3.53)

is the standard (bulk) velocity operator and

vb =
i

~
(
H(r, t)+ −H(r, t)

)
r (3.54)

is the boundary velocity operator (see Eq. (2.3)).
By following the steps of derivation of Eq. (3.50) and Eq. (3.51) with the use of the

Ehrenfest theorem, as well as using the identities 〈 〈v〉Sz〉 = 〈v 〈Sz〉〉 and 〈 〈vb〉Sz〉 =

〈vb 〈Sz〉〉 during the derivation, we find the final forms of the bulk and the boundary intrinsic
spin current operators denoted as J sp(z) and J sp(z)

b respectively.
In this respect, the bulk intrinsic spin current operator J sp(z) is given by

J sp(z) = ( v − 〈v〉)Sz + ( r− 〈r〉) τz, (3.55)

where we have expanded the commutator on the right side of Eq. (3.50) and use

v =
i

~
[H(r, t), r] as well as τz =

i

~
[H(r, t), Sz], while the boundary intrinsic spin current

operator J sp(z)
b is given from

J sp(z)
b =

i

~
(
H(r, t)+ −H(r, t)

)
(r − 〈r〉)Sz −

i

~
(
H(r, t)+ −H(r, t)

)
r 〈Sz〉 , (3.56)

where the second term on the right side of Eq. (3.56) is attributed to the boundary veloc-
ity operator. The boundary intrinsic spin current operator J sp(z)

b can be recast in a more
symmetrical form given by

J sp(z)
b =

i

~
(
H(r, t)+ −H(r, t)

)
( rSz − 〈r〉Sz − r〈Sz〉) . (3.57)

The two terms of the bulk intrinsic spin current operator J sp(z) in Eq. (3.55) have a simple
interpretation, namely: (i) the first one represents the spin current due to an induced velocity
shift (v − 〈v〉) produced by the action of the spin Sz operator on the quantum state under
consideration, while (ii) the second term gives a spin current contribution due to an induced
position displacement of the particle (r− 〈r〉) produced by the action of the spin torque τz

on the above mentioned quantum state.
By using Eq. (3.55) and Eq. (3.57), we find the extended intrinsic spin current operator

that is given by
J sp(z)

ext = J sp(z) +J sp(z)
b , (3.58)

which is the necessary operator that causes the equation of motion of the operator (r− 〈r〉)Sz
by satisfying the equation

d

dt
〈Ψ(t)| (r− 〈r〉)Sz |Ψ(t)〉 =

〈
Ψ(t)|J sp(z)

ext |Ψ(t)
〉

(3.59)
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without any constraints with respect to the expectation values of the bulk and the boundary
spin torques being involved.

Based on Eq. (3.59), the expectation value of the extended spin current operator〈
Ψ(t)|J sp(z)

ext |Ψ(t)
〉

, has the intuitive interpretation of the time derivative of the correlation
between electron’s spin and electron’s position

d

dt
〈Ψ(t)| (r− 〈r〉)Sz |Ψ(t)〉 =

d

dt
(〈 rSz〉 − 〈 r 〉〈Sz〉) ,

measuring therefore of how spin projection along ez direction and position co-vary with one
another. In this framework, whenever the correlation between the electron’s spin projection
along ez direction and position, is constant in time, then, the extended intrinsic spin current
operator turns zero expectation value. In the simplest case, whenever spin’s projection and
position are uncorrelated, e.g. when spin Sz is constant of the motion, the extended spin
current operator turns zero value.

By now using Eqs. (3.55) – (3.59) we can determine the basic properties of the bulk
intrinsic spin current operator J sp(z) which are:
(i) For stationary states there exists a gain-loss detailed balance relation that explicitly relates
the bulk expectation value with the corresponding boundary one given by〈

J sp(z)
〉
n

= −
〈
J sp(z)

b

〉
n
, (3.60)

implying that, whenever the bulk of the system behaves as a source of spin current the bound-
aries operates as a sink and vice versa.
(ii) By defining the localized stationary states (in a macroscopic sense with respect to the
system’s boundaries) as the ones that satisfy

〈
J sp(z)

b

〉
n

= 0, implying that a boundary in-
tegral of the form Eq. (3.9) with G = rSz − 〈r〉Sz − r〈Sz〉 is zero, we can deduce from
Eq. (3.60) that the standard, bulk intrinsic spin current expectation value (with respect to
such stationary and localized state) is also zero.
(iii) For systems that do not exert spin torques in the z direction τz = 0, the expectation value
of the bulk intrinsic spin current operator Eq. (3.55) is zero

〈
J sp(z)

〉
n

= 0 provided that
the Hamiltonian’s stationary eigenstate is an eigenstate of the z component of the spin also.
Accordingly, taking into account Eq. (3.57) as well as that the eigenstate belongs within the
domain of definition of the Hamiltonian, that is, 〈Ψn(t)|(H(r)+ −H(r))|Ψn(t)〉 = 0, the
boundary intrinsic spin current expectation value turns also zero

〈
J sp(z)

b

〉
n

= 0.
(iv) The expectation values of, the extended intrinsic spin current Eq. (3.59), bulk intrinsic
spin current Eq. (3.55) as well as of the boundary spin current Eq. (3.57), are separately
position origin-independent quantities, which can be verified by assuming a shift by L of the
position origin r→ r− L.
(v) The expectation values, of the bulk and boundary intrinsic spin currents,

〈
J sp(z)

〉
and〈

J sp(z)
b

〉
respectively, are always well defined quantities without any restrictions being

involved, e.g. with respect to spin generation in the bulk or over the boundaries. In or-
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der to prove this assertion, we calculate their expectation values with respect to a spinor

Bloch wavefunction ψk(r, t) =
1√
N
eik.ruk(r, t) that satisfies Born-von Kármán periodic

boundary conditions over the material’s boundaries. The method of calculation is identical
to the ones used in Sec.3.3 where we computed the expectation values of Eq. (3.44) and
Eq. (3.45). Specifically, by exploiting the symmetry of the integrands, that is, taking into ac-
count that the spinor wavefunction uk(r, t) as well as that the operators v(r, t) and τz(r, t)
are cell periodic, we find that the standard (bulk) intrinsic spin current expectation value with
respect to a periodic system is given by〈

ψk(t)|J sp(z)|ψk(t)
〉

= 〈uk(t)| (r− 〈uk(t)| r |uk(t)〉cell) τz |uk(t)〉cell

+ 〈uk(t)| (v − 〈uk(t)|v |uk(t)〉cell) τz |u(t)〉cell .

(3.61)

without any undefined quantities being involved.
Although the expectation value of the boundary intrinsic spin current is computed by

a boundary integral over the terminated surface of the system, we use the bulk expression
counterpart given by〈

ψk(t)|J sp(z)
b |ψk(t)

〉
=

i

~
〈Hk(r, t)uk(t)|( rSz − 〈r〉Sz − r〈Sz〉) |uk(t)〉

− i
~
〈uk(t)|Hk(r, t)( rSz − 〈r〉Sz − r〈Sz〉) |uk(t)〉

where Hk(r, t) = e−k.rH(r, t)ek.r, in order to exploit the symmetry of the integrands. By
doing so, we find that all undefined terms cancel each other and the boundary intrinsic spin
current is given by〈
ψk(t)|J sp(z)

b |ψk(t)
〉

=
i

~
〈
uk(t)|

(
Hk(r, t)+ −Hk(r, t)

)
( rSz − 〈 r 〉cell Sz − r 〈Sz 〉cell) |uk(t)

〉
cell

,

(3.62)

without any undefined quantities being involved whatsoever. Moreover, the right side of
Eq. (3.62) can be transformed and evaluated as a boundary integral over the unit cell. At this
point, it is worth comparing our extended intrinsic bulk spin current Eq. (3.58), with the one
defined in Ref. [121] and given by Eq. (3.46), as well as with the conventional spin current

defined as
1

2
(v Sz + Sz v). The comparison shows that:

(i) The conventional spin current cannot be derived by means of a global quantum equation
of motion, whenever the spin Sz is not conserved (e.g. in systems with non zero local spin
torque τz) and the non-Hermitian boundary velocity of the electron 〈vb〉 is not zero. On the
other hand, if we assume that, no local spin torques are exerted in the z direction τz = 0 and
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the quantum state under consideration has a well-defined spin Sz eigenvalue ±~
2

, as well
as that the boundary velocity operator expectation value is zero 〈vb〉 = 0, then, according
to Eqs. (3.44), (3.46) and (3.49), the conventional spin current operator satisfies trivially the

quantum equation of motion
d

dt
〈rSz〉 =

1

2
〈 (v Sz + Sz v) 〉. In this framework we conclude

that, the conventional spin current cannot be employed whenever spin dependent interactions
and boundary non-Hermitian effects are present.
(ii) The Ref. [121] spin current

〈
Jsp(z)

〉
given by Eq. (3.46), is an extension of the conven-

tional spin current operator owing to explicitly taking into account the local spin torques that
are exerted on the electron’s spin Sz, but, on the other hand it has an undefined value in peri-
odic systems. Only whenever no global spin generation in the bulk is made 〈 τz 〉 = 0, due to
bulk symmetry reasons, its value Eq. (3.47) turns well defined. On the other hand, only the
bulk symmetry is not adequate for this operator to satisfy the quantum equation of motion
d

dt
〈rSz〉 =

〈
Jsp(z)

〉
assumed in Ref. [121]. In order for the latter equation to be satisfied,

the boundary spin propagation expectation value Eq. (3.48) has to also be zero
〈
J
sp(z)
b

〉
= 0

meaning that,
〈
uk(t)|Jsp(z)b |uk(t)

〉
cell

= 0 as well as
〈
ψk(t)| τb(z) |ψk(t)

〉
= 0, thus no spin

Hall effect is possible. In summary, the Ref. [121] spin current expectation value cannot
generally satisfy a quantum equation of motion, unless certain constraints are satisfied, thus
the Ref. [121] spin current operator cannot be generally employed for arbitrary interactions
(due to the above mentioned symmetry constraints being involved) to study coupled transport
processes.

(iii) Our extended intrinsic spin current operator Eq. (3.58) always has a well defined
value and satisfies a quantum equation of motion Eq. (3.59) without any constraints being in-
volved, provided that the system is closed. In this respect, it can be used to study interactions
that cause the time evolution of the extended spin current expectation value that is captured

by the quantum equation of motion
d

dt

〈
Ψ(t)|J sp(z)

ext |Ψ(t)
〉

= F sp(z) where F sp(z) denotes
the spin force expectation value. The latter equation is in accordance with the quantum ana-

logue of Newton’s 2nd law, namely the quantum equation of motion
d

dt
〈Ψ(t)|Jmext|Ψ(t)〉 =

F, where the extended particle’s mass current Jmext expectation value is defined by

〈Jmext 〉 = m 〈Ψ(t)|vext|Ψ(t)〉 =
d

dt
〈Ψ(t)| rm|Ψ(t)〉. In this framework, near the equilib-

rium stationary states that satisfy
〈

Ψ(t)|J sp(z)
ext |Ψ(t)

〉
= 0, one can use a linear dissipation

approximation equation for an assumed irreversible process, that is use Eq. (3.21) applied
to the extended intrinsic spin current and study the dissipation of the extended intrinsic spin
current. This method gives the coupled first order differential equations


F sp(z)x

F sp(z)y

F sp(z)z

 = −


kxx kxy kxz

kyx kyy kyz

kzx kzy kzz



〈
J sp(z)
ext x

〉
〈
J sp(z)
ext y

〉
〈
J sp(z)
ext z

〉
 , (3.63)
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where the elements kij of the above matrix are all real quantities and satisfy kij = kji, in
order that an exponential attenuating solution exist for each

〈
J sp(z)
ext i

〉
. In the right side of

Eq. (3.63) the extended intrinsic spin current is given by definition as〈
J sp(z)

ext

〉
=

d

dt
〈( r− 〈 r 〉)Sz〉.

The counterpart irreversible linear charge current dissipation equation is given by


F ch
x

F ch
y

F ch
z

 = −


µxx µxy µxz

µyx µyy µyz

µzx µzy µzz



〈
J chext x

〉
〈
J chext y

〉
〈
J chext z

〉
 , (3.64)

where by definition,
〈
Jchext

〉
=

d

dt
〈 re 〉 and Fch =

d

dt
〈vext e〉 =

e

m
Felec =

e2

m
E , where E is

the electric field acting on the electron charge and m is its mass. Eq. (3.63) and Eq. (3.64)
can be expressed in compact forms as F sp(z)i = kij

〈
J sp(z)
ext j

〉
and F ch

i = µij
〈
J chext j

〉
re-

spectively. By having in mind that the spin dipole 〈( r− 〈 r 〉)Sz〉 will saturate to a con-
stant value at the end of the irreversible process, we express the extended intrinsic spin
current as a linear dissipation equation given by

〈
J sp(z)
ext j

〉
= hjn (Cn − 〈( rn − 〈 rn 〉)Sz〉),

where hjn are phenomenological coefficients and Cn the (constant) value in which each
〈( rn − 〈 rn 〉)Sz〉 will saturate in equilibrium. Accordingly, having in mind that each 〈 re 〉
will also saturate to a constant value when equilibrium is reached, we express the extended
charge current as

〈
J chext j

〉
= νjl (Rl − 〈 rl e〉) where νjl are phenomenological coefficients

and each Rl is the (constant) value in which 〈 rl e〉 will saturate. In this fashion, one can
couple Eq. (3.63) with Eq. (3.64), and form Onsager relations that relate the extended intrin-
sic spin current generated by an electric force Fch to the extended charge current generated
by a spin-electric force F sp(z).
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Chapter 4

Topology in transport processes:
Extended Hellmann-Feynman theorem

We now proceed to some independent study with the purpose to extend an elementary quan-
tum mechanical theorem so that it can become a tool for the investigation of transport prop-
erties in Solid State Physics. In spite of the independent nature of this study, we will witness
an overlap with the viewpoint reflected in the previous two Chapters; the outcomes of the
present Chapter will inherit the non-Hermitian effects of Chapters 2 and 3 in combination
with nontrivial topology.

Collective robust patterns of behaviors such as the precise quantization of the transverse
conductivity in the quantum Hall effect [77], are attributed to the so-called topology of the
first (magnetic) Brillouin zone of the Hilbert space [135, 78]. These collective topological
properties, in the simplest case, emerge when the Hamiltonian H of the system varies slowly
with time, either due to explicit time-dependence or implicitly by a time-dependent param-
eter. With time, this kind of change, makes each electron’s ground-state wavefunction to
deviate infinitesimally from stationarity (the wavefunction is an instantaneous eigenfunction
of H), resulting into an extra, geometrical type of phase for the wavefunction during the
time-evolution. When the extra phase is non-integrable (cannot be expressed as a regular
function of the parameter), it signals that the quantum system is set into a topological quan-
tum process1, which is stable against local perturbations and sometimes maintains quantum
coherence even at high temperatures (i.e. it can exhibit robustness to environmental deco-
herence).

The topological quantum processes can roughly be separated into two general categories,
the first one described by equilibrium quantum states (the quantum state is parallel to an in-
stantaneous eigenstate of the Hamiltonian), and the second one described by non-equilibrium
quantum states where the wavefunction is in a coherent superposition and occupies more than

1 Since the seminal theoretical work of M.V. Berry [17], all of the scientific community was standing on the
Fock’s false observation, who unintentionally excluded all topological processes. He suggested that, during all
processes that the wavefunction evolves in time adiabatically, one can always eliminate the extra phases by a
proper adjustment of the wavefunction’s phase with a regular function, that is, by performing a regular U(1)
gauge transformation.
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one direction of the available Hilbert space. The study of equilibrium quantum processes is
in a very mature state, while the study of the non-equilibrium is at an ongoing research stage
(i.e some new topological invariants have been suggested based on the time-evolution oper-
ator [76, 83, 31, 116], as well as some dynamical order parameters have been used for the
description of topological phase transitions [65, 26, 68, 138, 53, 117, 64]).

The equilibrium quantum processes, are mainly studied by three different methods:
In the first kind of methods, which resides on the route opened by M.V. Berry, one studies

the phases that are accumulated by the wavefunctions during closed (cyclic) process when
a time-dependent parameter undergoes a periodic evolution (when the accumulated phase
is not zero, it indicates that the wavefunctions carry non-trivial topological charge). In this
kind of methods, the local (on the path of integration) quantities involved are the Berry
connections which are not gauge-invariant quantities.

In the second and third kind of methods, gauge-invariant topological quantities such as
Berry curvatures, are explicitly engaged into observable formulas, therefore, one can directly
study the impact of topology to collective transport properties. Specifically, in the second
kind of methods, one employs a quantum mechanical framework and uses a first order (linear
response) time-dependent perturbation theory (alternatively the adiabatic limit of Kubo for-
mula), in order to calculate for example the electron’s velocity expectation value. Within this
method, an electron that is assumed to initially be in a non-degenerate ground state, acquires
an extra velocity term (named anomalous velocity) besides its group velocity, that explicitly
depends on a Berry curvature, which has topological origin. This extra velocity contribution,
is responsible for the quantization of the transverse Hall conductivity [77, 135, 78], as well
as, plays a crucial role in the theoretical explanation of the anomalous quantum Hall effect
[73, 34, 94, 145, 59, 85, 18, 84, 62, 124]. As will be shown (based on a dynamic Hellmann-
Feynman (HF) theorem that we have derived), there exist two other velocity contributions in
general: the one is of topological origin and is attributed to another Berry curvature, and the
other is of non-Hermitian boundary origin. These extra contributions will be explicitly used
to study the (Thouless pump) particle transport [134, 97, 122, 89, 105, 156, 141], as well as
the polarization current [75, 101, 109, 114, 111, 126, 139, 57] in a dielectric medium.

The third method is a semiclassical one, first derived by M. C. Chang, D. Sundaram and
Q. Niu [35, 130]. In this method the electron’s motion is described by a trial wave packet
constructed from Bloch eigenstates (with small spread in crystal momentum space compared
to the Brillouin zone). An effective Lagrangian of the motion, with generalized variables the
electron’s main position and the electron’s main crystal momentum is defined, whereas the
external (electric and magnetic) fields are taken into account as perturbations. Under the
approximations that: (i) the external fields vary slowly over the spatial extension of the wave
packet, as well as that (ii) the fields do not cause excitations (adiabatic approximation), by
employing a time-dependent variational principle for the trial wave packet one finds the
two equations of motion; one for the electron’s main position and the other for the crystal
momentum motion. Within this method, the velocity of the wave packet’s center acquires an
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extra contribution (besides the group velocity) which explicitly depends on a Berry curvature.
Having in mind all three above methods, a plausible theoretical question has motivated

us: “Can one use a kind of a Hellmann-Feynman theorem to study such topological quantum
processes?” The answer is affirmative yes, and up to date, to the best of our knowledge, there
has not been any extension of the known static Hellmann-Feynman (HF) theorem [63, 50]
that can be applied to dynamic topological transport processes and at the same time take into
account boundary contributions as an emerging non-Hermitian effect. In this respect, a brief
review of known forms of the Hellmann-Feynman theorem will be given followed by our
derivation accompanied by interesting implications (i.e. equation of motion of the elemen-
tary parameter volume ∆VR(t) that causes complications when one transforms a sum over
states to a counterpart Riemann integration, and a Maxwell type of equation with monopoles
for flux preserving motions), followed by certain applications (i.e. particle transport with
boundaries explicitly taken into account, electronic polarization with boundary contributions
explicitly included, quantum equations of motion as extension of the semiclassical counter-
parts, and modification of the density of states for spinfull motions with monopole sources
included).

The known HF theorem is a very practical method for calculating expectation values
of observables with respect to stationary eigenstates of static Hamiltonians by taking the
derivative of the energy eigenvalue with respect to a static parameter that is assumed to take
continuous values. After the first derivation of the HF theorem [63, 50], Epstein utilized
it, and showed its direct relation to time-independent perturbation theory [46]. These two
methods deal with static parameters and time-independent eigenstates of the Hamiltonian.

An extension that uses time-dependent parameters and relates the theorem to adiabati-
cally evolving eigenstates of the Hamiltonian is hardly known and has only been noted in
passing [10, 9]. Another extension was later made by us, a preliminary report of which
has been given in [80]. All forms of the HF theorem mentioned above, have a common
assumption: the states that are created by the action of the parameter’s differential operator
are assumed to belong within the domain of definition of the Hermitian Hamiltonian (thus
belong within the given Hilbert space) which is hardly the case. This kind of anomaly leaves
a residue in the HF theorem and was first noted in [49]. Based on this observation [49], they
have generalized the static HF theorem (applied to static parameters and time-independent
eigenstates of the Hamiltonian) in order to take into account these extra anomalous terms
(differential operators that cause such non-Hermitian effect are sometimes called anoma-
lous operator, and by definition create states that lie outside the given Hilbert space). These
residue terms, are always transformed to a surface integral (assuming a 3D system) over the
material boundaries, therefore giving an extra boundary contribution (that explicitly depends
on the realistic boundary conditions of the wavefunctions).
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4.1 Formulating the dynamical extension of the HF theo-
rem

Dynamic vector parameter R(t):

We consider a real vector parameter R that has an arbitrary time-dependence (without any
adiabatic approximation involved), namely, R =R(t,Ro) where Ro is the initial value
of the parameter satisfying Ro =R(0,Ro). Therefore, the parameter satisfies the general

equation of motion R = Ro +

ˆ t
0

∂R

∂t′
dt′, and its time derivative is given by

∂R

∂t
=
∂R(t,Ro)

∂t
. The theorem that we are to prove is for a continuous vector parame-

ter R, therefore the initial value Ro is assumed to have continuous values. The Hamilto-
nian of the system H(t,R), apart from the implicit time-dependence (via the parameter)
may also have an arbitrary explicit time-dependence. The derivation that is given owes its
existence to the Hamiltonian being the generator of time evolution of quantum states. We
provide the derivation for a single-particle state while the generalization to a many-particle
system is straightforward. A particle’s motion is generally encoded in its normalized time-
dependent state |Ψ(t,R)〉 which evolves either by the time-dependent Schrödinger equation
for non-relativistic and spinless particle, or by the time-dependent Dirac equation for spin-
full particle. We assume for simplicity a one particle quantum system. The motion of the
particle is described by a general state, not necessarily an eigenstate of the Hamiltonian
nor a localized state (such as a narrow wave packet). The system is assumed to be closed
〈Ψ(t,R)|Ψ(t,R)〉 = 1, and the quantum state time evolution is determined by the time-
dependent equation

i~
d

dt
|Ψ(t,R)〉 = H(t,R) |Ψ(t,R)〉 , (4.1)

where the Hamiltonian is either of Schrödinger or Dirac type. The time derivative in Eq. (4.1)
is the total time derivative given by

d

dt
=

∂

∂t
+
∂R

∂t
·∇R (4.2)

where ∇R =
3∑
i=1

ei
∂

∂Ri

. The initial value of the parameter Ro that implicitly enters Eq. (4.1)

can be used to label the quantum states |Ψ(t,R)〉. The expectation value of the Hamiltonian

〈Ψ(t,R)|H(t,R) |Ψ(t,R)〉 = E(t,R) (4.3)

can be seen as the instantaneous time-dependent “energy” of the particle E(t,R). Differen-
tiation with respect to the parameter R of both sides of Eq. (4.3) gives

〈Ψ |∇RH |Ψ〉 =∇RE − 〈∇RΨ |HΨ〉 − 〈Ψ|H∇RΨ〉 . (4.4)
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Taking now into account that the parameter gradient operator ∇R can generally be an
anomalous operator, that is, the states |∇RΨ〉 may not belong within the domain of the Her-
mitian Hamiltonian which is expressed by the non-trivial inequality
〈HΨ |∇RΨ〉 = 〈Ψ |H+∇RΨ〉 6= 〈Ψ |H∇RΨ〉, we recast Eq. (4.4) in the form

〈Ψ |∇RH |Ψ〉 =∇RE−〈∇RΨ |HΨ〉− 〈HΨ|∇RΨ〉+
〈
Ψ |
(
H+ −H

)
∇RΨ

〉
. (4.5)

By then using Eq. (4.1) in Eq. (4.5) we find

〈Ψ |∇RH |Ψ〉 =∇RE+
〈
Ψ |
(
H+ −H

)
∇RΨ

〉
−i~

(〈
∇RΨ | dΨ

dt

〉
−
〈
dΨ

dt
|∇RΨ

〉)
.

(4.6)
Applying the total time derivative Eq. (4.2) on Eq. (4.6) we get

〈Ψ |∇RH |Ψ〉 = ∇RE +
〈
Ψ |
(
H+ −H

)
∇RΨ

〉
−i~

(〈
∇RΨ | ∂Ψ

∂t

〉
−
〈
∂Ψ

∂t
|∇RΨ

〉)
−i~

(〈
∇RΨ | ∂R

∂t
·∇RΨ

〉
−
〈
∂R

∂t
·∇RΨ|∇RΨ

〉)
.

(4.7)

Using then the vector identity,
∂R

∂t
× (A×B) = A

(
∂R

∂t
·B
)
−
(
∂R

∂t
·A
)

B in the last

term on the right hand side of Eq. (4.7), we finally find

〈O(t,R)〉 =∇RE(t,R) + S(t,R) − ~E(t,R)− ~
∂R

∂t
×B(t,R), (4.8)

where
〈O(t,R)〉 = 〈Ψ(t,R) |∇RH(t,R) |Ψ(t,R)〉 (4.9)

is the observable in quest, whereas

B(t,R) = i 〈∇RΨ(t,R)| × |∇RΨ(t,R)〉 (4.10)

is a generalized Berry curvature in the R×R space and

E(t,R) = i

〈
∇RΨ(t,R) | ∂Ψ(t,R)

∂t

〉
− i
〈
∂Ψ(t,R)

∂t
|∇RΨ(t,R)

〉
(4.11)

is a second generalized Berry curvature in the t×R space. The S(t,R) term is a non-
Hermitian boundary quantity which, by working in position representation and assuming real
scalar and vector potentials, is always transformed to a boundary integral (due to symmetry
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of the integrands) over the system’s boundaries and is given (assuming a 3D system) by

S(t,R) =
〈
Ψ(t,R) |

(
H(t,R)+ −H(t,R)

)
∇RΨ(t,R)

〉
=

i~
2

‹
S

n·
(

(v Ψ(t,R))+ + Ψ(t,R)+ v
)
∇RΨ(t,R) dS, (4.12)

where v =
i

~
[H(t,R), r] is the standard velocity operator and n is the unit vector that is

locally normal to the surface that encloses the system. The dynamical extension of the HF
theorem given by Eq. (4.8) is the first major result of this chapter, and one of the major
results of this dissertation.

As is evident from the structure of the dynamical HF Eq. (4.8), the observables 〈O(t,R)〉
that are given by this theorem always have a part that is transverse to the direction of the pa-
rameter variation ∂R which is given by

〈O(t,R)〉tran = −~ ∂R

∂t
×B(t,R), (4.13)

as easily confirmed by 〈O(t,R)〉tran · ∂R = 0 (where we have used the vector identity
∂R×A · ∂R = A · ∂R× ∂R = 0), while the first three terms

〈O(t,R)〉 =∇RE(t,R) + S(t,R) − ~E(t,R) (4.14)

may have longitudinal as well transverse part. It is interesting to note that, when the assumed
parameter R is static, the transverse part turns to zero 〈O(t,R)〉tran = 0 (the generalized
curvature B(t,R) need not be zero), while, when the quantum state does not have explicit
time dependence, the generalized curvature E(t,R) turns to zero by definition Eq. (4.11).

The general form of the theorem Eq. (4.8), has a very interesting property. Namely, when
the assumed Hamiltonian H does not depend explicitly on the parameter R, but on the other
hand the quantum states explicitly depend on it (the parameter enters the wavefunction due to
symmetry reasons as a constant of the motion, or in virtue of a large gauge transformation),
then, by definition 〈O(t,R)〉 = 0, one can clearly relate the boundary contribution S(t,R)

of an observable to bulk quantities such as, the gradient of the “energy” and the generalized
curvatures (such examples are discussed in Sec.4.1.3 as well as in 4.3.1 and 4.3.2). Fur-
thermore, if the boundary contribution is expressed by the expectation value of a boundary
operator (such as the boundary velocity operator), then, there is a relatively simple way that
one can relate boundary contributions of an observable to the bulk topology of the projec-
tive Hilbert space via the generalized Berry curvatures. We explicitly use this argument in
applications of the theorem for the particle transport.

Static vector parameter:

Whenever the vector parameter is static R(t) = Ro, we use Eqs. (4.8) – (4.12) and substi-

tute
∂R(t)

∂t
= 0 as well as ∇R =∇Ro .
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Dynamic scalar parameter λ(t):

For a real scalar dynamic parameter, we replace R(t) 7→ λ(t) as well as ∇R 7→
∂

∂λ
in

Eq. (4.7) that results to

〈O(t, λ)〉 =
∂

∂λ
E(t, λ) + S(t, λ) − ~ E(t, λ). (4.15)

where the initial value λo of the parameter λ = λ(t, λo) is assumed to take continuous
values. The curvature E(t, λ) is given by

E(t, λ) = i

〈
∂Ψ(t, λ)

∂λ
| ∂Ψ(t, λ

∂t

〉
− i
〈
∂Ψ(t, λ)

∂t
| ∂Ψ(t, λ)

∂λ

〉
, (4.16)

and the boundary non-Hermitian term by

S(t, λ) =

〈
Ψ(t, λ) |

(
H(t, λ)+ −H(t, λ)

) ∂Ψ(t, λ)

∂λ

〉
=

i~
2

‹
S

n·
(

(v Ψ(t, λ))+ + Ψ(t, λ)+ v
) ∂Ψ(t, λ)

∂λ
dS. (4.17)

We conclude that, for a scalar parameter and 3D system no transverse contribution can be
defined.

4.1.1 Adiabatic limit of the extended HF theorem

It is instructive to derive the adiabatic limit of the extended HF theorem Eq. (4.8), because
numerous quantum processes related to topological invariant properties, are studied within
this limit. In this respect, we assume an adiabatic evolved quantum state with initially well
defined energy, namely, |Ψ(t,R)〉 ≡ eiΘn(t,R) |n(t,R)〉 where |n(t,R)〉 is the instanta-
neous eigenstate of the Hamiltonian satisfying the eigenvalue equation

H(t,R) |n(t,R)〉 = En(t,R) |n(t,R)〉

and Θn(t,R) is the total (sum of dynamic and geometric) phase of the wavefunction satis-
fying the equation

−~dΘn(t,R)

dt
= En(t,R)− i~

〈
n(t,R)| dn(t,R)

dt

〉
.

By substituting |Ψ(t,R)〉 ≡ eiΘn(t,R) |n(t,R)〉 in all members of Eq. (4.8), that is, by
using

|∇RΨ(t,R)〉 ≡ eiΘn(t,R) i∇RΘn(t,R) |n(t,R)〉+ eiΘn(t,R) |∇Rn(t,R)〉 ,
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as well as∣∣∣∣∂Ψ(t,R)

∂t

〉
≡ eiΘn(t,R) i

∂Θn(t,R)

∂t
|n(t,R)〉+ eiΘn(t,R)

∣∣∣∣∂n(t,R)

∂t

〉
,

we find after straightforward calculation,

〈O(t,R)〉n =∇REn(t,R) + Sn(t,R)− ~
∂R

∂t
×Bn(t,R) − ~En(t,R), (4.18)

where,
〈O(t,R)〉n = 〈n(t,R) |∇RH(t,R) |n(t,R)〉 (4.19)

is the observable in quest, and

Bn(t,R) = i 〈∇Rn(t,R)| × |∇Rn(t,R)〉 (4.20)

is the standard Berry curvature evaluated with respect to the Hamiltonian’s instantaneous
eigenstates. Accordingly

En(t,R) = i

〈
∇Rn(t,R) | ∂n(t,R)

∂t

〉
− i
〈
∂n(t,R)

∂t
|∇Rn(t,R)

〉
(4.21)

is a Berry curvature in t×R space, while the non-Hermitian boundary term is given by

Sn(t,R) =
〈
n(t,R) |

(
H(t,R)+ −H(t,R)

)
∇Rn(t,R)

〉
=

i~
2

‹
S

n·
(

(v Φn)+ + Φ+
n v
)
∇RΦn dS, (4.22)

where Φn ≡ Φn(t,R) = 〈 r |n(t,R)〉. In deriving Eqs. (4.20) and (4.21) we have used the
normalization condition 〈n(t,R)|n(t,R)〉 = 1, which upon differentiation gives the rela-
tions

〈∇Rn(t,R)|n(t,R)〉+ 〈n(t,R)|∇Rn(t,R)〉 = 0

and 〈
∂n(t,R)

∂t
|n(t,R)

〉
+

〈
n(t,R)|∂n(t,R)

∂t

〉
= 0

that have been used. Furthermore, we have used that the states |n(t,R)〉 belong within the
domain of definition of the Hamiltonian H(t,R), that is

〈
n(t,R) |

(
H(t,R)+ −H(t,R)

)
n(t,R)

〉
= 0.

4.1.2 Symmetry considerations

From the symmetries of the instantaneous eigenvalue equation

H(t,R)ψn(r, t,R) = En(t,R)ψn(r, t,R), (4.23)
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where ψn(r, t,R) = 〈r |n(t,R)〉, the symmetries of the curvatures themselves can some-
times be deduced, which gives valuable information about the topology of the projective
Hilbert space of the energy band En(t,R). In the latter eigenvalue equation, the time t and
the parameter momentum R are assumed to be fixed parameters.

Continuous Symmetries

Whenever the Hamiltonian does not have explicit time dependence
∂H

∂t
= 0, then H ≡ H(R),

thus the instantaneous eigenstates ψn(r, t,R) do not have explicit time dependence owing to
the eigenvalue equation H(R)ψn(r,R) = En(R)ψn(r,R). As a result, the Berry curvature
given by Eq. (4.21) turns to zero En(R) = 0 by definition.

Discrete Symmetries

This section is useful in band theory applications if we identify the parameter as the wave
vector R ≡ k, where the instantaneous wavefunction has the ansatz form
Ψn(r, t,k) = eik·run(r, t,k). The states un(r, t,k) need not be cell periodic. For simplic-
ity reasons we assume spinless motion, that is, the Hamiltonian is a scalar operator and the
wavefunctions un(r, t,k) are scalar quantities. We further assume that the initial Hamilto-
nian does not have explicit wave vector (parameter) dependence, therefore the wavefunctions
ψn(r, t,k) satisfies the eigenvalue equation

H(t)ψn(r, t,k) = En(t,k)ψn(r, t,k), (4.24)

and accordingly, the wavefunction un(r, t,k) fulfills the equation

e−ik·rH(t) eik·r un(r, t,k) = En(t,k)un(r, t,k). (4.25)

Time reversal

In a time-reversal symmetric (spinless) Hamiltonian, under the action of the anti-unitary
operator O that performs the inversions

(i, r, t,k) 7−→ (−i, r,−t,−k),

the Hamiltonian remains invariant

O
(
e−ik·rH(t) eik·r

)
O−1 = e−ik·rH(t) eik·r.

As a result, the eigenfunctions of a time-reversal invariant Hamiltonian satisfies the symme-
tries

ψn(r, t,k) = ψn(r,−t,−k)∗ and un(r, t,k) = un(r,−t,−k)∗,
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up to a U(1) phase eiλ which is neglected for simplicity (the curvatures and the non-
Hermitian boundary term are invariant with respect to such phases). In this respect, the
curvatures satisfy the following symmetries

Bn(t,k) = i 〈∇kn(t,k)| × |∇kn(t,k)〉 = i
〈
∇kn(−t,−k)∗

∣∣× ∣∣∇kn(−t,−k)∗
〉

= −i 〈∇kn(−t,−k)| × |∇kn(−t,−k)〉

= −i
〈
∇(−k)n(−t,−k)

∣∣× ∣∣∇(−k)n(−t,−k)
〉

= −Bn(−t,−k) (4.26)

and

En(t,k) = i

〈
∇kn(t,k) | ∂n(t,k)

∂t

〉
− i
〈
∂n(t,k)

∂t
|∇kn(t,k)

〉

= i

〈
∇kn(−t,−k))∗ | ∂n(−t,−k))∗

∂t

〉
− i
〈
∂n(−t,−k))∗

∂t
|∇kn(−t,−k))∗

〉

= −
(
i

〈
∇kn(−t,−k)) | ∂n(−t,−k))

∂t

〉
− i
〈
∂n(−t,−k))

∂t
|∇kn(−t,−k))

〉)
= −En(−t,−k). (4.27)

We note that the above time-reversal symmetry transformation rules remain the same in
spinfull motions. That is, the curvature Bn(t,k) is transformed according to Eq. (4.26) and
En(t,k) according to Eq. (4.27), although the wavefunction becomes a two-component
spinor un(r, t,k) ≡ (an(r, t,k), bn(r, t,k))T in the non-relativistic limit. In these spin-
full motions, due to the spin-orbit coupling term in the Hamiltonian, the anti-unitary time-
reversal operator O becomes a matrix quantity that also interchanges the components of the
spinor wavefunction, resulting in a symmetry transformation

(an(r, t,k), bn(r, t,k))T =
(
−bn(r,−t,−k)∗, an(r,−t,−k)∗

)T
,

that gives the symmetries of the curvatures.

Space inversion

In a space-inversion symmetric (spinless) Hamiltonian, under the action of the unitary oper-
ator O that performs the inversions

(i, r, t,k) 7−→ (i,−r, t,−k),

the Hamiltonian remains invariant

O
(
e−ik·rH(t) eik·r

)
O−1 = e−ik·rH(t) eik·r.

94

Kyri
ak

ou
 Kyri

ak
os



Chapter 4 Section 4.1

As a result, the eigenfunctions of this space-inversion symmetric Hamiltonian satisfy the
symmetries

ψn(r, t,k) = ψn(−r, t,−k) and un(r, t,k) = un(−r, t,−k).

As a result, the curvatures satisfy the following symmetries

Bn(t,k) = i 〈∇kn(t,k)| × |∇kn(t,k)〉 = i 〈∇kn(t,−k)| × |∇kn(t,−k)〉

= i
〈
∇(−k)n(t,−k)

∣∣× ∣∣∇(−k)n(t,−k)
〉

= Bn(t,−k) (4.28)

and

En(t,k) = i

〈
∇kn(t,k) | ∂n(t,k)

∂t

〉
− i
〈
∂n(t,k)

∂t
|∇kn(t,k)

〉

= i

〈
∇kn(t,−k)) | ∂n(t,−k))

∂t

〉
− i
〈
∂n(t,−k))

∂t
|∇kn(t,−k))

〉

= −
(
i

〈
∇(−k)n(t,−k)) | ∂n(t,−k))

∂t

〉
− i
〈
∂n(t,−k))

∂t
|∇(−k)n(t,−k))

〉)
= −En(t,−k). (4.29)

The symmetries Eq. (4.27) and Eq. (4.29) of the Berry curvature En(t,k) are not fre-
quently used in the literature. We believe that they are important in topological transport
process, e.g. in Thouless pump, because they give a simple criterion to know when the
collective pump charge will be zero. For example, in an adiabatic pump process of a fully
occupied band (in a gapped insulator), the total transported charge in any one of the direc-
tions during the cycle will be zero provided that the space inversion-symmetry is unbroken.

Mirror inversion

Driven by the last conclusion, with respect to a zero Thouless pump by any inversion sym-
metric Hamiltonian, this lead us to examine the mirror inversion as a lower symmetry. Our
aim is to indicate the symmetries of the curvature En(t,k) in a given Cartesian direction.
In this respect, we assume that the Hamiltonian is invariant under the action of the unitary
operator O

O
(
e−ik·rH(t) eik·r

)
O−1 = e−ik·rH(t) eik·r

that performs the mirror inversions over the plane x = 0

(i, x, y, z, t, kx, ky, kz) 7−→ (i,−x, y, z, t,−kx, ky, kz).
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The eigenfunctions satisfy the symmetries

ψn(x, y, z, t, kx, ky, kz) = ψn(−x, y, z, t,−kx, ky, kz)

and
un(x, y, z, t, kx, ky, kz) = un(−x, y, z, t,−kx, ky, kz).

Therefore, the curvature En(t,k) satisfies the following symmetry

En(t, kx, ky, kz) · ex = En, x(t, kx, ky, kz)

= i

〈
∂n(t,k)

∂kx
| ∂n(t,k)

∂t

〉
− i
〈
∂n(t,k)

∂t
| ∂n(t,k)

∂kx

〉
= −En, x(t,−kx, ky, kz). (4.30)

The latter equation implies that, in the directions that there exists a reflection symmetry, the
collective pumped charge of a fully occupied band is expected to always be zero. This kind
of mirror symmetry is for example broken by a homogeneous electric field Ex(t) along the
x direction, which results to the mirror symmetry-breaking Hamiltonian

H(r, t) =
1

2m

(
−i~ ∂

∂x
+ e

ˆ t

0

Ex(t
′)dt′

)2

+
1

2m

(
−i~ ∂

∂y

)2

+
1

2m

(
−i~ ∂

∂z

)2

+Vcrys(r).

4.1.3 Static limit of the extended HF theorem

In the static limit of the dynamical HF theorem, we assume that the Hamiltonian as well as

the parameter are static; that is,
∂R

∂t
= 0 and H = H(R). We apply the static limit of the

HF theorem into an eigenstate of the Hamiltonian |Ψ(t,R)〉 ≡ eiΘn(t,R) |n(R)〉, where
|n(R)〉 is a Hamiltonian’s eigenstate satisfying the eigenvalue equation
H(R) |n(R)〉 = En(R) |n(R)〉, and Θn(t,R) is the phase of the wavefunction satisfying

the equation −~dΘn(t,R)

dt
= En(R). In this fashion, employing Eq. (4.18) we replace

∂R

∂t
= 0 as well as En(t,R) = 0 due to the considered eigenstate |n(R)〉 that does not

have an explicit time dependence. In this respect, Eq. (4.18) is simplified into

〈n(R) |∇RH(R) |n(R)〉 =∇REn(R) + Sn(R) (4.31)

which is the form of the generalized static HF theorem that was derived in Ref.[49]. The
simplest example where one can ascertain the necessity of presence of the boundary non-
Hermitian term Sn(R), is a free electron motion in 1D. In this respect, we assume the
Hamiltonian
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H = − ~2

2m

d2

dx2
which does not have any parameter dependence. We consider an electron’s

motion, described by an eigenstate of the Hamiltonian Φk =
1√
L
eikx with well defined en-

ergy given by
~2k2

2m
, where ~k is the momentum of the electron and L is the normalization

constant. When one uses the electron’s momentum R ≡ k (assumed to take continuous val-
ues) as a parameter, by employing the standard static HF theorem without the non-Hermitian
term (the 1D analogue of Eq. (4.31) without the boundary term S(k)), will eventually lead

to a paradox since
〈
dH

dk

〉
= 0 while

dE(k)

dk
=

d

dk

~2k2

2m
=

~2k

m
6= 0. The paradox is re-

solved whenever one takes into account the boundary non-Hermitian term S(k). Specifically,
the 1D analogue of Eq. (4.31) is given by

0 =
dE(k)

dk
+ S(k), (4.32)

where S(k) is truncated to a two point formula (cf. Eq. (4.22))

S(k) =
i~
2

[(
(v Φk)

∗ + Φ∗k v
) dΦk

dk

]x+L

x

. (4.33)

We substitute in Eq. (4.33) the standard velocity operator v = −i~
m

∂

∂x
, as well as (v Φk) =

1√
L

~k
m
eikx =

~k
m

Φk and
dΦk

dk
=

1√
L
i x eikx = i xΦk. In this respect, Eq. (4.33) takes

the value

S(k) =
i~
2

[(
~k
m

Φ∗k −
i~
m

Φ∗k
∂

∂x

)
i xΦk

]x+L

x

(4.34)

=
i~
2

[
i ~ k
m
|Φk|2x+

~
m
|Φk|2 + i xΦ∗k (v Φk)

]x+L

x

=
i~
2

[
2
i ~ k
m
|Φk|2x+

~
m
|Φk|2

]x+L

x

=
i~2

2mL
[2 i k x+ 1]x+L

x

=
i~2

2mL
(2 i k L) = −~2k

m
,

which together with
dE(k)

dk
=

~2k

m
verifies Eq. (4.32) and guarantees the validity of the

static HF theorem. Therefore, whenever the momentum gradient operator
d

dk
becomes

anomalous, the boundary non-Hermitian effect term cannot be excluded from the HF the-
orem.

In this respect, one can draw a clear conclusion: whenever the initial Hamiltonian does
not depend explicitly on the momentum ∇kH(k) = 0, rather than involving the momen-
tum only in the form of the considered state (i.e. whenever Bloch states are employed and
the crystal momentum is assumed as the parameter), one must also use the non-Hermitian
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boundary term Sn(k) as a probe for detecting information about the dispersion relation with
respect to the boundary behavior of the Bloch functions

∇kEn(k) = −Sn(k). (4.35)

Consequently, by defining the bulk localized eigenstates of the Hamiltonian as the ones that
their values and all of their derivatives are zero over the boundaries of the material, that is
Sn(k) = 0, it is evident from Eq. (4.35) that these states will have flat band dispersion
relations ∇kEn(k) = 0.

We suggest that, by employing Eq. (4.35), one can theoretically explain the changing of
the dispersion relation slope in relation to the localization of the involved states.

For example, in the Quantum Hall Effect, the bulk states are localized and described by
flat bands (Landau levels) dispersion relations En(k) ≡ En = constant, while the states
near the boundaries have dispersion relations with non-zero slopes that are approximately
linear [60]. This kind of behavior, can most probably be theoretically explained when the
non-Hermitian boundary term is taken into account (although this has to be worked out in
detail).

Moreover, in Dirac and Weyl semimetals [6, 137, 151, 72, 28], linear dispersion relations
are found near the vicinity of degenerate points in the Brillouin zone, which represent the
bulk electrons’ physics near these degeneracy points. Although the electrons’ motions are
not fully relativistic (apart from correction due to spin-orbit coupling), these are theoretically
explained by employing various model Hamiltonians H(k) which are effectively relativistic.
We suggest that, these emerging relativistic linear dispersion relations that are accompanied
by exotic boundary behaviors such as Fermi arcs, can alternatively be explained by employ-
ing the non-Hermitian boundary term. Specifically, by taking a Taylor expansion of the
non-Hermitian boundary term Sn(k) near a degenerate point ko we find

∇kEn(k) = −Sn(ko)− ((k− ko)·∇k)Sn(k)|k=ko +O(k2) + . . . . (4.36)

Provided that the linear dispersion relation En(k) profile is experimentally obtained, one can
extract information about the boundary term Sn(k) by keeping only up to first order terms
in the Taylor expansion. By then, employing the Bloch functions Ψn(r,k) in Eq. (4.22),
further information about the behavior of the wavefunction at the boundary can be extracted.

4.1.4 Non-adiabatic motion: Floquet states

The dynamic extension Eq. (4.8) can in principle be employed to non-adiabatic quantum
processes where the quest for topological invariants is still in an ongoing research state
[76, 42, 83, 31, 116, 27, 98, 105, 141, 79]. In this framework, by assuming periodic in
time Hamiltonian H(t+ T,R(t+ T )) = H(t,R(t)), where the time of T is the period of
driving and a parameter that has the same time periodicity R(t+ T ) = R(t), we apply a
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Floquet state |Ψ(t,R)〉 ≡ e
−
i

~
εa t |Φεa(t,R)〉 into Eq. (4.8), where |Φεa(t,R)〉 are the

Floquet modes that are periodic in time |Φεa(t,R)〉 = |Φεa(t+ T,R)〉 and εa is the static

quasienergy (restricted to the interval ∆εa =
2π~
T

called first Floquet-zone which contains
all the physically non-equivalent quantum states). After a straightforward calculation we find

〈O(t,R)〉a =∇REa(t,R) + Sa(t,R)− ~
∂R

∂t
×Ba(t,R) − ~Ea(t,R), (4.37)

where
〈O(t,R)〉a = 〈Φεa(t,R) |∇RH |Φεa(t,R)〉 (4.38)

and
Ea(t,R) = 〈Φεa(t,R)|H |Φεa(t,R)〉 . (4.39)

The curvatures are given by

Ba(t,R) = i 〈∇RΦεa(t,R)| × |∇RΦεa(t,R)〉 (4.40)

and

Ea(t,R) = i

〈
∇RΦεa(t,R) | ∂Φεa(t,R)

∂t

〉
− i
〈
∂Φεa(t,R)

∂t
|∇RΦεa(t,R)

〉
(4.41)

while the non-Hermitian boundary term is given from

Sa(t,R) =
〈
Φεa(t,R)|

(
H+ −H

)
∇RΦεa(t,R)

〉
=

i~
2

‹
S

n·
(

(v Φa)
+ + Φ+

a v
)
∇RΦn dS, (4.42)

where Φa ≡ Φεa(t,R) are the time periodic Floquet wavefunctions.

Discrete Symmetries

Our extended HF theorem applied to a Floquet state, is useful in band theory if we identify
the parameter as the crystal momentum R ≡ k. We further assume an initial Hamiltonian
that does not depend on the parameter, as well as take into account that the Floquet states
satisfy the eigenvalue equation

HF (t) Φεa(r, t,k) = εa Φεa(r, t,k), (4.43)

where the Floquet operator is given by

HF (t) = H(t)− i~ d
dt
.
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If we now express the Floquet state Φεa(r, t,k) as

Φεa(r, t,k) = eik·ruεa(r, t,k)

where uεa(r, t,k) is periodic in time uεa(r, t,k) = uεa(r, t+T,k), then, from the symme-
tries of the eigenvalue equation

e−ik·rHF (t) eik·r uεa(r, t,k) = εa uεa(r, t,k) (4.44)

we can deduce the symmetries of the curvatures themselves (which are evaluated with respect
to the Floquet states), thus we can find valuable information about the topology of the projec-
tive Hilbert space of the Floquet band. We claim that, the implications of the discrete sym-
metries, namely, (i) time reversal, (ii) space inversion and (iii) mirror inversion symmetry,
are completely analogous with the ones performed for the instantaneous eigenstates of the
Hamiltonian, making therefore, the results given by Eqs. (4.26) – (4.30), straightforwardly
mapped to the Floquet system, with the identification

Ψn(r, t,k) 7−→ Φεa(r, t,k).

4.2 Implications of the theorem

4.2.1 Lagrangian and Eulerian description of the parameter space

In the dynamic and extended HF theorem Eq. (4.8) that we have derived, the velocity of

the parameter
∂R

∂t
=
∂R(t,Ro)

∂t
is assumed to be arbitrary, and the equation of motion of

each quantum state is defined by i~
d

dt
|Ψ(t,R)〉 = H(t,R) |Ψ(t,R)〉. In this respect, one

can use the initial value of the parameter Ro in order to label each inequivalent quantum
state. Under certain boundary conditions for the wavefunctions (e.g. periodic) at an initial
moment to, one can find an elementary parameter volume ∆Vo(to,Ro) that is “attached” to
each inequivalent state. Furthermore, if the system has lowered translation symmetry over
position coordinates (i.e. the distance between any two adjacent primitive cells within the
crystal, or between two adjacent magnetic cells when there is magnetic field) than the large
periodic boundary conditions, one can define a larger volume ∆VBZ(to) (the first Brillouin
zone or the first magnetic Brillouin zone) in which all inequivalent states are restricted. These
labeled and countable quantum states, form a projective Hilbert space, the topology of which
discriminates the conventional from the topological quantum processes. A subtle question
that as far as we know hasn’t been considered in a quantum mechanical framework2, is
what are the consequences of the time evolution of the (i) elementary parameter volume
∆Vt(t,Ro) per quantum state, as well as that (ii) of the larger volume ∆VBZ(t) where all

2In a semiclassical framework the phase-space volume ∆Vk(t)Vr(t) time evolution has been studied [149]
leading to an apparent modification of the density of states.
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the elementary volumes are being enclosed. The method mentioned above is quite similar to
the Lagrangian description of fluid mechanics as we will show. In this respect we review the
basic ideas of the Lagrangian and Eulerian descriptions, and subsequently apply these ideas
to quantum mechanics wavefunctions that depend on a parameter R that varies with time.

In the Lagrangian description of fluid mechanics, one uses the parcels picture for the fluid
(the fluid is composed by countable and distinguishable parcels) with each parcel having a
prescribed label and volume. Let us assume for a moment that the parameter R denotes
the position of a labeled parcel. In the Lagrangian description in a given space t×R, the
trajectory of each labeled parcel is defined by R =R(t,Ro), where time t and the initial
position of the parcel Ro are independent variables (while the position R is a dependent
one). In this framework, the velocity of each parcel is defined as

υR(t,Ro) =
∂R

∂t
=
∂R(t,Ro)

∂t
(4.45)

On the contrary, in the Eulerian, field description formalism, within a given space t×R

time t and position R are the independent variables, and a priori there does not exist a
parameter path. A velocity in the Eulerian description vR(t,R) is defined by using the
inverse transformation Ro(t,R) in Eq. (4.45), and is defined by the equation

vR(t,R) = υR(t,Ro(t,R)) =
∂R

∂t
. (4.46)

4.2.2 Time evolution of a volume in parameter space

As time evolves, each volume over parameter space (either the volume per quantum state or
the collective volume) expands or dilates according to the equation

∆Vt(t) = DetJ(t, to) ∆Vo, (4.47)

where DetJ(t, to) denotes the determinant of the Jacobian matrix of the transformation. The
Jacobian matrix, captures the transformation of the initial value of the parameter (equiva-
lently the initial position of a fluid parcel) R(to) =R(to,Ro) to a subsequent one
R(t) =R(t,Ro). The latter transformation, as well as the Jacobian matrix, are completely
arbitrary in our formulation because it is assumed that the velocity of the parameter is arbi-
trary. Therefore, the Jacobian matrix is solely determined by the way that one defines the
velocity of the parameter. The time evolution of the Jacobian matrix is given by

d

dt
DetJ(t, to) =∇R ·vR DetJ(t, to), (4.48)

and by taking the total time derivative of Eq. (4.47) and then substituting in Eq. (4.48) one
finds the time evolution of each quantum state’s elementary parameter volume that is given
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by
d

dt
ln∆Vt(t) =∇R ·vR =∇R ·

∂R

∂t
. (4.49)

The latter equation implies for our extended HF theorem formalism the following: Each
volume in the parameter space ∆Vt(t), evolves in time according to the divergence of the
assumed velocity of the parameter that one employs. As evidenced from Eq. (4.49), when
the velocity of the parameter has zero divergence ∇R ·vR = 0, each assumed volume in the
parameter space remains constant and the t×R space behaves as an incompressible fluid.

An alternative, and presumably the simplest way for one to see how each quantum state’s
elementary parameter volume ∆V (R) evolves in time, is by using the convection theorem

d

dt

˚

V (t)

F ·dV (t) =

˚

V (t)

(
dF

dt
+ F ∇R ·vR

)
dV (t)

where F is an arbitrary scalar function. By setting the arbitrary scalar function F equal to
one F = 1, and by considering an infinitesimal volume over which ∇R ·vR can be assumed
as constant, one can derive Eq. (4.49).

4.2.3 Band Theory: Sum of states when the volume in the (parameter)
crystal momentum space changes with time

In band theory we label each single particle’s state by its band index n and its corresponding
crystal momentum k index. By further assuming that the crystal momentum is constant of
the motion, we may equally replace k = ko, where ko is the initial value of the crystal
momentum. In order to compute a collective non-interacting electrons’ property, we use the

above mentioned labels and sum over all available values of the indices, that is
∑
n

BZ∑
ko

. In

the thermodynamic limit, the crystal momentum takes continuous values and each sum over
crystal momenta is transformed into a Riemann integral according to the limit

lim
∆Vko→0

(
BZ∑
ko

∆Vko

)
→
˚

BZ

dVko . (4.50)

Each infinitesimal volume ∆Vko is assumed to be determined once and for all by the initial
coordinate boundary conditions of the wavefunctions, provided that that the boundary condi-
tions do not change with time. For periodic boundary conditions for the wavefunctions and
for a 3D system, this infinitesimal volume is the volume per quantum state in crystal mo-

mentum space and is equal to ∆Vko =
(2π)3

V
for spinless electrons, where V is the volume

of the material. Therefore, the sum is transformed into the integral expression

BZ∑
ko

→ V

(2π)3

˚

BZ

dVko . (4.51)
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On the assumption that the crystal momentum is a parameter that is changing with time,
then the infinitesimal volume dVk(t) at time t need not coincide with the initial counter-
part dVko at time to, that is, dVk(t) 6= dVko . Employing the Jacobian of the transformation
namely, dVk(t) = DetJ(t, to)dVko , we find

BZ∑
kt

→ V

(2π)3

˚

FBZ(t)

1

DetJ(t, to)
dVk(t). (4.52)

where FBZ(t) denotes a time-dependent Brillouin zone.

We note that, in Eq. (4.52) the quantity
1

DetJ(t, to)
dVk(t) is constant in time, and the

limits of integration FBZ(t) changes only due to external fields that can form an irreducible
electric-magnetic translation group [7, 153, 25]. In time, these groups may create a zone
FBZ(t) (that depends on the fields) having a different volume than the initial Brillouin
zone.

By using Eq. (4.48) and Eq. (4.49), we find that the time evolution of the Jacobian of
the transformation is determined by

d

dt
lnDetJ(t, to) =

d

dt
ln∆Vk(t) =∇k ·vk =∇k ·

∂k

∂t
, (4.53)

implying that the divergence of the crystal momentum velocity field vk is the quantity that
determines the equation of motion of the Jacobian matrix of the transformation. Equations
(4.52) and (4.53) constitute a transformation from the Lagrangian, labeled description of
inequivalent quantum states, to a counterpart Eulerian field description, where a priori the
quantum states cannot be labeled.

In the formulation of Eq. (4.52) we have silently made an assumption, namely, each
infinitesimal volume ∆Vko that is occupied by one particle does change size over time.
On the other hand, the volume of the first Brillouin zone may change over time according

to Eq. (4.53), thus, whenever ∇k ·
∂k

∂t
6= 0, the particles behave as a compressible fluid

within the crystal momentum space. Solving now Eq. (4.53) for DetJ(t, to), and taking
into account that DetJ(to, to) = 1, the sum over the crystal momentum is transformed (in
the thermodynamic limit) to an integration given by

BZ∑
kt

→ V

(2π)3

˚

BZ(t)

e
−
ˆ t
to

(
∇k ·

∂k

∂t′

)
dt′

dVk(t). (4.54)

When the crystal momentum is a static parameter
∂k

∂t
= 0, or when its velocity field

vk(t,k) =
∂k

∂t
behaves as an incompressible fluid within the first Brillouin zone ∇k ·

∂k

∂t
= 0,

Eq. (4.54) is simplified to the standard one.
At this point is worth making an observation. A classical mechanical system behaves as
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canonical whenever the phase-space volume is conserved

d

dt
ln (∆Vk(t)∆Vp(t)) =∇k ·

∂k

∂t
+∇r ·

∂r

∂t
= 0

owing to the Hamilton’s equation that couple the two canonical variables, that is,
∂k

∂t
= −∇rH and

∂r

∂t
=∇kH , which always results into the conservation of the phase-

space volume. On the quantum mechanical formalism that we have employed, where the
observables become operators, a priori there does not exist such relation between two inde-
pendent generalized quantities; we only have the equation of motion of parameters that can
be defined arbitrarily. In this respect, in the semiclassical framework study made by [149],
the phase-space volume ∆Vk(t)Vr(t) conservation was found to be violated, leading to an
apparent modification of the density of states3.

4.2.4 Maxwell type of equations in t×R space generated by the dy-
namical HF theorem

By taking the curl of both sides of Eq. (4.8) and using the vector identity
∇ × (A×B) = A (∇ ·B) − B (∇ ·A) + (B ·∇) A − (A ·∇) B, as well as
∇R ×∇RE(t,R) = 0, we find the relation

∇R × E = LvB +B ∇R·vR − vR∇R ·B −
1

~
∇R×(〈O〉 − S) (4.55)

where
LvB = (vR ·∇R)B − (B·∇R) vR (4.56)

is the Lie derivative of the vector field B(t,R) with respect to the parameter’s velocity
vR(t,R) vector field. Eq. (4.55) is a general Maxwell type of equation in t×R space
with monopole sources and without any conservation law being involved. The generalized
curvature E(t,R) behaves as an effective electric field, whereas the curvature B(t,R) as
an effective magnetic field in R-space.

Flux preserving motion

Motivated by magnetohydrodynamics theories [144], we pursuit Lie drag invariants. By
using the 2D analogue of the convection theorem for an arbitrary surface S(t) that is moving

with the flow (with velocity vR =
∂R

∂t
), the flux of the generalized Berry curvature B(t,R)

3This violation is justified according to [22, 45], due to the assumed generalized coordinates (rc(t), kc(t))
employed in the semiclassical treatment of the wavepacket motion [149, 130] that are not canonical variables.
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is Lie dragged with the flow when

d

dt

¨

S(t)

B·dS =

¨

S(t)

(
∂B
∂t
−∇R×(vR×B) + vR∇R ·B

)
·dS = 0, (4.57)

where the surface S(t) is arbitrary. By taking into account that the surface S(t) is arbitrary,
the generalized Berry curvature satisfies the local equation

∂B
∂t
−∇R×(vR×B) + vR∇R ·B = 0, (4.58)

which by using the Lie derivative LvB is expressed as

∂B
∂t

+ LvB +B ∇R ·vR = 0. (4.59)

Substituting Eq. (4.59) into Eq. (4.55) we find a Maxwell type of equation

∇R × E = −JR −
∂B
∂t

(4.60)

for the advected flux motion, where

JR = vR∇R ·B +
1

~
∇R×(〈O〉 − S) (4.61)

is the current that is entering into the Maxwell equation. Taking the divergence of both sides
of Eq. (4.58) (which guarantees the Lie dragging) we find

∂

∂t
∇R ·B +∇R · (vR∇R ·B) = 0, (4.62)

which with the aid of Eq. (4.61) is transformed into a continuity equation

∂ρM
∂t

+∇R · JR = 0 (4.63)

where ρM is defined by
ρM =∇R ·B (4.64)

and is the topological monopole charge density. Continuity equation Eq. (4.63) alongside
with Eq. (4.57), implies that the total topological monopole charge is conserved

d

dt

‹

S(t)

B ·dS =
d

dt

˚

V (t)

∇R ·B dV =
dQM

dt
= 0, (4.65)

for flux preserving motions, meaning that, either no monopole charges are created (annihi-
lated), or monopole and anti-monopole charges form into pairs.

By identifying the parameter as the wave vector of crystal momentum R ≡ k, then, the
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Maxwell type of equations (4.60) and (4.55) are the generalization of the Maxwell type of
equation that has been found over the past years in the study of Weyl semimetals [69, 70],
which has arisen by heuristic analogy to the electromagnetic induction law and without any
detailed derivation.

4.3 Particle transport

As a first application we study the Thouless charge pump [134] using the dynamical HF
theorem that we have derived. The Thouless charge pump serves as a simple yet fundamental
example of topology in quantum systems. The hallmark of this effect is the transport of
a precisely quantized amount of charge during an adiabatic cycle in the parameter space.
This remarkable phenomenon, has recently been demonstrated by experiments in a one-
dimensional chains of ultra-cold atoms trapped in an optical lattice [88, 96, 87].

Our purpose is threefold, (i) first to reveal the practical aspect of evaluating an observable
within the HF theorem, (ii) second to show the importance of the boundary non-Hermitian
term in the HF theorem, and finally, (iii) to make use of the boundary velocity operator
Eqs. (2.3) – (2.4) that we have already used in the orbital magnetization of the electrons.

4.3.1 Adiabatic process (Thouless pump)

The adiabatic particle transport was first studied by D. J. Thouless [134] using first order
(linear response) time-dependent perturbation theory. In the introduction of his article he
explicitly raises the theoretical question: “If the potential is changed slowly in such a way
that it returns to its starting value in time T , is the integrated current across the boundary
quantized?” He affirmatively found that the transported charge is quantized due to topolog-
ical reasons, provided that the system is an insulator evolving in time adiabatically and the
thermodynamic limit is taken. In his study, no explicit consideration of the boundaries of
the system has been made. The Thouless pump shares the same topological origin as the
quantized Hall conductivity [135, 78], and may thus be regarded as a dynamical version of
the Integer Quantum Hall effect.

We will study the transport in a slightly different context. Instead of assuming a slid-
ing potential V (r− υ t ex) like in the original problem [134], we assume an electric field
along ex direction which is periodic in space (over x coordinates with period equal to the
lattice constant) as well as over time t. Each electron’s wavefunction evolves in time by the
Hamiltonian

H(r, t) =
1

2m
p2 + eφ(x, t) + Vcrys(r) (4.66)

where m and e are the mass and charge of the electron respectively, and p the canonical mo-
mentum operator. The time-dependent scalar potential is periodic in time φ(x, T ) = φ(x, 0),

and produces the periodic in time electric field E(x, t) = −∇φ(x, t) = −dφ(x, t)

dx
ex, with

boundary condition E(x, 0) = E(x, T ) = 0. Moreover, we assume that the scalar potential
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is periodic over position coordinate x at every moment φ(x+ na, t) = φ(x, t), where n is
an integer and a is the primitive cell length in x direction (hence φ has the same period-

icity with Vcrys in the x-direction), as well as
dφ(x, t)

dx
=
dφ(x+ na, t)

dx
, which produces

the periodic electric field E(x, t) = E(x+ na, t). Therefore, the Hamiltonian Eq. (4.66) is
periodic in time H(r, 0) = H(r, T ) and coordinates H(r + R, t) = H(r, t), where R is a
Bravais lattice vector.

The crucial property that we assume, is that the scalar potential breaks the mirror sym-
metry along the x direction resulting to φ(x, t) 6= φ(−x, t). This is analogous to the case of
the Thouless sliding scalar potential V (x− υ t, y, z) 6= V (−x− υ t, y, z) which also breaks
the mirror symmetry over x direction. Each electron’s state evolves in time according to the
time-dependent Schrödinger equation (TDSE)

i~
d

dt
|Ψ(t)〉 =

(
1

2m
p2 + eφ(x, t) + Vcrys(r)

)
|Ψ(t)〉 . (4.67)

We assume that each electron is initially in a non-degenerate ground state,
|Ψ(to)〉 ≡ |ψn(to)〉, where n labels the energy. The ground state energy band is for all mo-
ments 0 ≤ t ≤ T separated by a gap from the upper bands. Each electron’s ground state
wavefunction satisfies periodic boundary conditions over the material’s boundaries

ψn(r + L, to) = ψn(r, to),

where L denotes the (vector) length of the material in each direction. Assuming that the
electric field E(x, t) is slowly changing with time, meaning T →∞, each ground state
evolves in time adiabatically

Ψn(r, t) = eiΘn(t)ψn(r, t),

where Θn(t) is the total phase of the wavefunction (the sum of the dynamic and the geo-
metric adiabatic phase). Each wavefunction ψn(r, t) satisfies the instantaneous eigenvalue
equation (

1

2m
p2 + eφ(x, t) + Vcrys(r)

)
ψn(r, t) = En(t)ψn(r, t). (4.68)

By following [134], we assume that the electron’s wavefunction has the form

ψn(r, t,k) = eik·run(r, t,k), (4.69)

and the un(r, t,k) satisfies periodic boundary conditions un(r + L, t,k) = un(r, t,k),
which constrains the allowed wave vector k-values by the condition eik·L = 1. In order
to apply the dynamic and extended HF theorem Eq. (4.8) we need to define a continuous

parameter R and its corresponding velocity
∂R

∂t
. The parameter definition is made by using

the assumed form of the quantum state. Namely, we define the parameter R as the static wave
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vector R ≡ k which has zero corresponding velocity
∂R

∂t
≡ ∂k

∂t
= 0. In order for the ap-

plication of the theorem to be valid, the parameter k has to be a continuous one. Therefore,
we assume that the length of the system L is infinite, which results to infinitesimal mini-
mum spacing between the allowed values of the wave vectors ∆k→ 0. By noting that the
Hamiltonian H(r, t) does not depend on any parameter ∇kH(r, t) = 0, application of the
adiabatic form of our extended HF theorem Eq. (4.18) with respect to the state ψn(r, t,k)

gives
0 =∇kEn(t,k) + Sn(t,k) − ~En(t,k), (4.70)

where

En(t,k) = i

〈
∇kψn(t,k) | ∂ψn(t,k)

∂t

〉
− i
〈
∂ψn(t,k)

∂t
|∇kψn(t,R)

〉
(4.71)

and

Sn(t,k) =
〈
ψn(t,k) |

(
H(r, t)+ −H(r, t)

)
∇kψn(t,k)

〉
=

i~
2

‹
S

n·
(

(vψn)+ + ψ+
n v
)
∇kψn dS. (4.72)

By now using Eq. (4.69) into Eq. (4.72), that is, taking into account that

∇kψn(r, t,k) = i rψn(r, t,k) + eik·r∇kun(r, t,k),

the non-Hermitian boundary term is transformed into

Sn(t,k) = i
〈
ψn(t,k) |

(
H(r, t)+ −H(r, t)

)
rψn(t,k)

〉
+
〈
un(t,k) |

(
Hk(r, t,k)+ −Hk(r, t,k)

)
∇kun(t,k)

〉
(4.73)

where Hk(r, t,k) = eik·rH(r, t)eik·r.
Because we have assumed periodic boundary conditions, ψn(r + L, t,k) = ψn(r, t,k) as
well as un(r + L, t,k) = un(r, t,k), the quantum state ∇kun(r, t,k) is periodic with re-
spect to space coordinates ∇kun(r + L, t,k) =∇kun(r, t,k), it therefore belongs within
the domain of definition of the Hamiltonian Hk(r, t,k) which results to

〈
un(t,k) |

(
Hk(r, t,k)+ −Hk(r, t,k)

)
∇kun(t,k)

〉
= 0.

On the other hand, the quantum state rψn(r, t,k) lies outside of the domain of definition
of periodic wavefunctions, and leaves a residue on our extended and dynamical HF theorem.
Employing our non-Hermitian boundary velocity defined by Eq. (2.4)

〈vb(t,k)〉n =
i

~
〈
ψn(t,k) |

(
H(r, t)+ −H(r, t)

)
rψn(t,k)

〉
,
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as well as Eq. (4.73), the HF theorem Eq. (4.70) that governs the adiabatic particle transport
is recast in the form

〈vb(t,k)〉n = −1

~
∇kEn(t,k) + En(t,k). (4.74)

To the best of our knowledge, it is the first time that the particle transport is explicitly related
with a non-Hermitian boundary velocity 〈vb(t,k)〉n, together with an effective electric field
En(t,k) (an “electric curvature”) that originates from the extended HF theorem. Having in

mind Eq. (2.1) which gives
d

dt
〈r〉n = 〈v〉n + 〈vb〉n, the time integral

T́

0

〈vb(t,k)〉n dt can

be interpreted as the displacement of the electron through the boundaries of the material. We
stress that, owing to the Bloch functions which are not cell periodic, the boundary velocity
expectation value 〈vb(t,k)〉n cannot be simplified to a quantity that is evaluated over the
boundaries of the unit cell in contrast to the example given in Eq. (2.7).

The electron’s boundary velocity in x direction is therefore given by

〈vb(t,k)〉n, x = −1

~
∂En(t,k)

∂kx
+ En, x(t,k) (4.75)

where the electric curvature is given from

En, x(t,k) = i

〈
∂ψn(t,k)

∂kx
| ∂ψn(t,k)

∂t

〉
− i
〈
∂ψn(t,k)

∂t
| ∂ψn(t,k)

∂kx

〉
(4.76)

Assuming now for simplicity a simple cubic crystal with lattice constant a, the collective
electrons’ displacement over the material’s boundaries in the x direction, for a fully occupied
band, is given by

∆x(Boundary) =
∑
k

T̂

0

(
〈vb(t,k)〉n, x dt

)
→ V

(2π)3

˚

BZ

 T̂

0

〈vb(t,k)〉n, x dt

 dkx dky dkz,

(4.77)
which gives

∆x(Boundary) = −1

~
V

(2π)3

T̂

0

dt

+π/aˆ

−π/a

dky

+π/aˆ

−π/a

dkz

 +π/aˆ

−π/a

∂En(t,k)

∂kx
dkx



+
V

(2π)3

T̂

0

dt

+π/aˆ

−π/a

dky

+π/aˆ

−π/a

dkz

 +π/aˆ

−π/a

En, x(t,k) dkx

 . (4.78)

The first term is zero

+π/aˆ

−π/a

∂En(t,k)

∂kx
dkx = 0 due to symmetry of the instantaneous “energy”
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E(t,k) over the edges of the Brillouin zone, and the collective displacement is given by

∆x(Boundary) =
V

(2π)3

+π/aˆ

−π/a

dky

+π/aˆ

−π/a

dkz

 T̂

0

+π/aˆ

−π/a

En, x(t,k) dt dkx

 . (4.79)

The integral over kx is not zero (according to Eq. (4.30)) due to the mirror symmetry that is
broken by the external electric field along the x direction. Moreover, the integration over the
manifold spanned by dkx dt is quantized due to topological reasons and is given by T̂

0

+π/aˆ

−π/a

En, x(t,k) dt dkx

 = 2π C
(n)
1 , C

(n)
1 ∈ Z (4.80)

where C(n)
1 is the first Chern number [95]. The first Chern number defines the mapping

from the parameter space (t,k) to the complex projective space of normalized Bloch states
Ψn(r, t,k). Non-zero Chern number indicates that the mapping is non-trivial. For example,
because we have assumed periodic boundary conditions at every instant,
ψn(r + L, t,k) = ψn(r, t,k) as well as un(r + L, t,k) = un(r, t,k), it implies that the
Bloch states are generally periodic over the parameter k up to a phase ψn(r, t,k + G) =

eiΘG ψn(r, t,k) where G is a reciprocal lattice vector. Similarly, because we have as-
sumed time-periodic Hamiltonian, the Bloch states are periodic over the parameter t up
to a phase ψn(r, t+ T,k) = eiΘT ψn(r, t,k). The last two equations imply that the Bloch
states Ψn(r, t,k) are not in general single-valued quantities in the parameter space (t,k).
Non-zero first Chern number C(n)

1 indicates that the Bloch states Ψn(r, t,k) cannot be ev-
erywhere single-valued in the parameter space domain 0 ≤ t ≤ T and −π

a
≤ t ≤ π

a
.

Therefore, the collective electrons’ displacement is equal to

∆x(Boundary) = C
(n)
1

V

(2π)2

+π/aˆ

−π/a

dky

+π/aˆ

−π/a

dkz = C
(n)
1

N α3

(2π)2

(
2π

α

)2

, (4.81)

where N is the total number of unit cells of the material. Eq. (4.81) implies that, after one
period T of adiabatic driving, the displacement per particle in the x direction and over the
boundaries of the material, or equivalently, the displacement of the center of mass of the
electrons in the x direction and over the boundaries, is quantized in units of lattice constant
a (along the x direction) given by

∆x(Boundary)

N
= C

(n)
1 α. (4.82)

This implies that the center of mass of the electrons performs a quantized rigid displace-
ment over the boundaries along the x direction, or equivalently the electrons behaves as an
incompressible fluid in k-space.
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Accordingly, the collective electrons’ displacement over y and z directions are zero

∆y(Boundary) = ∆z(Boundary) = 0 (4.83)

due to the mirror inversion symmetries

En, y(t, kx, ky, kz) = −En, y(t, kx,−ky, kz)

and
En, y(t, kx, ky, kz) = −En, y(t, kx, ky,−kz)

that are satisfied by the curvatures along those directions.
We conclude that, in the original problem of charge pumping [134] studied with a sliding

potential V (r− υ t ex) along the x direction, or in our study with periodic in time t and
coordinate x electric field, the mirror symmetry must be broken along the x direction, which
results to

En, y(t, kx, ky, kz) 6= −En, y(t,−kx, ky, kz),

and which, together with topology, provide the nontrivial (i.e. nonzero) quantization.
As an outcome, we argue that, in materials such as conventional metals which most prob-

ably show large internal screening (within adiabatic evolution) of the externally applied elec-
tric field, mirror inversion symmetry along the electric field will not be broken. As a result,
the Berry curvature En, x(t,k) contribution to the longitudinal conductivity due to each pair
of electrons with opposite crystal momentums −kx and kx will sum to zero. Therefore, no
considerable contribution by the curvature En, x(t,k) to the longitudinal collective conduc-
tivity is expected. On the other hand, in Weyl semimetals [6, 28, 151] where there is at least
one direction where the mirror symmetry is broken, the curvature’s En(t,k) contribution to
conductivity is expected to be significant.

4.3.2 Non-adiabatic process (periodic driving)

Non-adiabatic particle transport using the Floquet-Bloch bands εa and the counterpart peri-
odic in time Floquet states, was first made in [122] where they showed that the quantization of
the particle transport breaks down due to emergence of band gaps at the quasienergy bands.
In a very recent study [105], by performing a careful Floquet analysis of a closed, clean,
and non-interacting driven Rice-Mele model in the thermodynamic limit, they found that the
pumped charge deviates from the topologically quantized value for a suddenly switched-on
periodic driving.

In this respect and in an analogous manner to the one in Sec.4.3.1, we propose that one
can use the Floquet-Bloch band εa and the counterpart Floquet states in order to study the
non-equilibrium charge pump with the dynamical HF theorem. We assume the Hamiltonian
Eq. (4.66) having the same potentials as in Sec.4.3.1, with the difference that the scalar
potential is periodic over repeated cycles, and changes fast over time. The scalar potential
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satisfies the boundary condition φ(x, nT ) = φ(x, T ), where n is the integer number of the
cycles. The Hamiltonian H(r, t) does not depend on any parameter ∇kH(r, t) = 0, there-
fore we use the HF theorem Eq. (4.37) of Sec.4.1.4 by identifying the parameter as the
static crystal momentum R ≡ k. Each electron’s wavefunction evolves in time according
to the TDSE

i~
d

dt
Ψ(r, t,k) = H(r, t) Ψ(r, t,k) (4.84)

and the quantum state has the form Ψ(r, t,k) ≡ e
−
i

~
εa t

Φεa(r, t,k). The Floquet states
Φεa(r, t,k) are periodic in time Φεa(r, t,k) = Φεa(r, t+ T,k) and satisfy the eigenvalue
equation(

H(r, t)− i~ d
dt

)
Φεa(r, t,k) = HF (r, t)Φεa(r, t,k) = εa(k)Φεa(r, t,k) (4.85)

where εa(k) is the quasienergy.
We assume that each Floquet state is expressed with respect to the Floquet-Bloch state

[55]
Φεa(r, t,k) = eik·rua(r, t,k), (4.86)

where ua(r, t,k) is periodic both in r and t. Application of the HF theorem Eq. (4.37) with
respect to the Floquet state Φεa(r, t,k) gives

0 =∇kEa(t,k) + Sa(t,k) − ~Ea(t,k), (4.87)

where the “energy” is given by

Ea(t,k) = 〈Φεa(t,k)|H(t) |Φεa(t,k)〉 = εa(k) + i~
〈

Φεa(t,k) | d
dt

Φεa(t,k)

〉
. (4.88)

By assuming time-reversal symmetry in the eigenvalue equation Eq. (4.85), results to the
symmetry εa(k) = εa(−k) for the quasienergy. Using the counterpart of Eq (4.78) for a
single period and for a fully occupied quasienergy band gives

∆x(Boundary) = −1

~
V

(2π)3

T̂

0

dt

+π/aˆ

−π/a

dky

+π/aˆ

−π/a

dkz

 +π/aˆ

−π/a

∂En(t,k)

∂kx
dkx



+
V

(2π)3

T̂

0

dt′
+π/aˆ

−π/a

dky

+π/aˆ

−π/a

dkz

 +π/aˆ

−π/a

En, x(t,k) dkx

 . (4.89)
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Taking into account Eq. (4.88) and the symmetry relation εa(k) = εa(−k) we find

∆x(Boundary)

N
= − 1

(2π)3

V

N

+π/aˆ

−π/a

dky

+π/aˆ

−π/a

dkz

×
+π/aˆ

−π/a

∂

∂kx

 T̂

0

i

〈
Φεa(t,k) | d

dt
Φεa(t,k)

〉
dt

 dkx

+ C
(n)
1 α. (4.90)

The first term on the right side of Eq. (4.90) captures the non-adiabatic deviation from
the topologically quantized value C

(n)
1 α due to a non-trivial (non-integrable) Aharonov-

Anandan phase [1]. In the special case of parallel transport of the Floquet states〈
Φεa(t,k) | d

dt
Φεa(t,k)

〉
= 0,

the quasienergy coincides with the expectation value of the Hamiltonian εa(k) ≡ Ea(t,k)

according to Eq. (4.88), and the displacement of the center of mass of the electrons in the x
direction over the boundaries is quantized in units of lattice constant a.

4.4 Electric polarization

Charge pumping has played a central role in the development of the Modern Theory of Polar-
ization [75, 101, 109, 114, 111] in periodic and extended systems. It has theoretically been
recognized that in an extended system, only the change in polarization has physical meaning,
and it can be quantified by using the Berry phase of the electronic wave functions. The mod-
ern theory, in agreement with the experiment, avoids addressing the “absolute” polarization
of a given equilibrium state, quite in agreement with the experiments, which invariably mea-
sure polarization differences.

We now give a short review of the subtle issues concerning the “absolute” polarization
definition, and then use our extended velocity operator definition Eqs. (2.1) –(2.8), together
with the dynamical extended HF theorem in order to give a formula that evaluates the polar-
ization difference.

In a classical description, the dipole moment of a single point particle is defined as
pi = qi ri where qi is the charge of the particle. This “absolute” definition of the dipole mo-
ment is a position origin dependent quantity. For a collection of charge particles, the sums
of all individual dipole moments p =

∑
i

pi =
∑
i

qi ri gives the collective dipole moment

p of the sample. This collective dipole moment is an origin independent quantity provided
that the total charge of the sample is zero. The polarization P of a material is defined as

the dipole moment density per volume of the material P =
dp

dV
, and it is known that is not a
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gauge invariant quantity [67]. On the other hand, the polarization differences are well defined

quantities without any ambiguity and are related to the polarization current Jp =
dP

dt
.

In a quantum mechanical description, for the bulk electronic polarization of a periodic
insulator, a plausible analogy from the classical description, is to find the collective dipole
moment of all electrons p =

∑
i

〈pi〉 =
∑
i

e 〈ψi(t)| ri |ψi(t)〉, and then divide by the vol-

ume of the material to find the polarization itself. This however causes serious problems
since, for periodic and extended systems, the expectation value of the position operator
〈ψi(t)| ri |ψi(t)〉 within Bloch representation and in the thermodynamic limit is an undefined
quantity (besides being a position origin dependent quantity as well). This was a perplexing
issue for some years until the development of the Modern Theory of Polarization [75, 101].

As we have shown in Appendix A, for a periodic and extended system in the thermody-
namic limit, the electron’s displacement

∆ 〈ψ(t)| r |ψ(t)〉

is a well defined quantity provided that one uses our extended velocity operator definition

∆ 〈ψ(t)| r |ψ(t)〉 =

ˆ T

0

〈ψ(t)|vext |ψ(t)〉 dt.

In this respect, the collective induced polarization of non-interacting electrons is given by

∆P =
1

V

∑
i

e ∆ 〈ψi(t)| r |ψi(t)〉 (4.91)

where V is the volume of the material and e is the electron charge.
We assume the Hamiltonian Eq. (4.66) and the same potentials as in Sec.4.3.1, that is,

a periodic crystal potential together with a time periodic scalar potential φ(x, T ) = φ(x, 0),
which is also periodic over position coordinates. Our aim is to calculate the collective elec-
trons’ displacement that gives the collective induced dipole moment, which in turn provides
the quantum electronic induced polarization. Each electron’s state evolves in time according
to the TDSE

i~
d

dt
Ψ(r, t) =

(
1

2m
p2 + eφ(x, t) + Vcrys(r)

)
Ψ(r, t). (4.92)

We use the ansatz wavefunction

ψ(r, t,k) = eik·ru(r, t,k), (4.93)

where the static wave vector k is a continuous, static vector parameter. Substituting Eq. (4.93)
in Eq. (4.92), gives

i~
d

dt
u(r, t,k) =

(
1

2m
(p + ~k)2 + eφ(x, t) + Vcrys(r)

)
u(r, t,k), (4.94)
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where the quantum state u(r, t,k) is evolved over time by the Hamiltonian

Hk(r, t,k) =
1

2m
(p + ~k)2 + eφ(x, t) + Vcrys(r). (4.95)

We assume that the electron is initially in the ground state. The scalar potential turns
on and changes slowly over time T →∞, resulting in each ground state evolving in time
adiabatically.

u(r, t,k) ≡ eiΘn(t,k)un(r, t,k),

where Θn(t,k) is the total phase of the wavefunction (the sum of the dynamic and the
geometric adiabatic phase) and un(r, t,k) is the instantaneous eigenstate of the Hamiltonian
Hk(r, t,k). We now apply the adiabatic form of the HF theorem Eqs. (4.18) – (4.22) on
Eq. (4.94) for the Hamiltonian Hk(r, t,k) and the static vector parameter k. The gradient
of the Hamiltonian with respect to the wave vector gives

∇kHk(r, t,k) =
i

~
[Hk(r, t,k), r] = v

which is the (bulk) standard velocity operator. Therefore, we find

〈v〉n =∇REn(t,k) + Sk,n(t,k) − ~En(t,k), (4.96)

where,

En(t,k) = i

〈
∇kun(t,k) | ∂un(t,k)

∂t

〉
− i
〈
∂un(t,k)

∂t
|∇kun(t,k)

〉
(4.97)

is the t×R space corresponding Berry curvature, while the non-Hermitian boundary term
is given by

Sk,n(t,k) =
〈
un(t,k) |

(
Hk(t,k)+ −Hk(t,k)

)
∇kun(t,R)

〉
. (4.98)

The crucial difference with respect to the theoretical approach that was made in the study
of the topological particle transport (Thouless pump), is that, the states un(r, t,k) are as-
sumed to be cell periodic in the bulk of the material at every instant, but, need not satisfy
periodic boundary conditions over the boundaries of the material. Therefore, except from
the initial moment t = 0, we do not assume periodic boundary condition for the Bloch and
the cell periodic wavefunctions at every instant. In this respect, we employ the boundary
conditions

un(r + L, 0,k) = un(r, 0,k) and un(r + L, T,k) = eiΘun(r, T,k),

where Θ is a phase, while at intermediate times 0 ≤ t ≤ T the modulus of the wavefunction
may not be periodic

|un(r + L, t,k)| 6= |un(r, t,k)|
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(analogous boundary conditions are satisfied by the Bloch states).
This breaking of the periodicity over the material boundaries is due to an assumed im-

balance of the electron accumulation over opposite boundaries during the time-periodic evo-
lution of the Hamiltonian and can be attributed to a piezoelectric effect. In this framework
Sk,n(t,k) is not zero and cannot be neglected. By taking into account Eq. (4.73) which
relates the boundary velocity with the boundary terms of our extended HF theorem

Sn(t,k) = ~ 〈vb 〉n + Sk,n(t,k), (4.99)

where vb is our non-Hermitian boundary velocity defined by Eq. (2.4) and

Sn(t,k) =
〈
Ψn(t,k) |

(
H(r, t)+ −H(r, t)

)
∇kΨn(t,k)

〉
then, Eq. (4.96) is transformed into

〈v 〉n + 〈vb 〉n =
1

~
∇kEn(t,k) +

1

~
Sn(t,k) − En(t,k). (4.100)

By using the extended velocity operator definition Eqs. (2.1) – (2.3) given by

〈vext 〉n = 〈v 〉n + 〈vb 〉n =
d

dt
〈 r 〉n ,

we find the electron’s main position time derivative given from

d

dt
〈 r 〉n =

1

~
∇kEn(t,k) +

1

~
Sn(t,k) − En(t,k). (4.101)

Therefore, the adiabatic electron’s displacement after the cyclic evolution of the Hamiltonian
over a period of time T , is given by

∆ 〈un(t,k)| r |un(t,k)〉 =

ˆ T

0

(
1

~
∇kEn(t,k) +

1

~
Sn(t,k) − En(t,k)

)
dt (4.102)

Next, by using Eq.(4.91), we calculate the induced electronic polarization for a single fully
occupied band, which is now given by

∆Pn =
e

V

V

(2π)3

˚

BZ

T̂

0

(
1

~
∇kEn(t,k) +

1

~
Sn(t,k) − En(t,k)

)
dt dkx dky dkz.

(4.103)
Due to time-reversal symmetry, the contributions from the group velocity cancel out resulting
in

∆Pn =
e

~(2π)3

T̂

0

dt

˚

BZ

Sn(t,k) d3k − e

(2π)3

T̂

0

dt

˚

BZ

En(t,k) d3k. (4.104)
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Figure 4.1: Two possible realizations of the piezoelectric effect in a crystal strained along a
piezoelectric axis. In (a) the crystal is not shorted, and induced charges pile up at its surfaces.
In (b) the crystal is inserted into a shorted capacitor; the surface charges are then removed
by the electrodes, and the induced polarization is measured by the current flowing through
the shorting wire. Adapted from [114].

Comparing Eq. (4.104) to the Modern Theory of Polarization [75, 101, 139], we have
found an extra non-Hermitian boundary contribution to the electronic polarization captured
by Sk,n(t,k), that most probably captures the piezoelectric effect as shown in (a) of Fig-
ure 4.1 (although this needs to be investigated further). In the special case that the states
un(r, t,k) satisfy periodic boundary conditions at every instant, the boundary non-Hermitian
contribution turns to zero Sk,n(t,k) = 0. This can be shown by expanding the cell periodic
functions in a Fourier series over all reciprocal lattice vectors G, namely,
un(r, t,k) =

∑
GCn(t,k,G)e−iG·r. This shows that ∇kun(r, t,k) as well as un(r, t,k),

are periodic over position coordinates, which by employing Eq. (4.22) results to
Sk,n(t,k) = 0 due to symmetry 4.

4.5 Quantum equations of motion for a spinless
electron

In this section we derive a set of quantum equations of motion with respect to an assumed
closed system that conserves the particle number 〈Ψ(t,R)|Ψ(t,R)〉 = 1. The first equation
gives the velocity of the electron and is derived by means of our extended and dynami-
cal HF theorem Eq. (4.7). The second one gives the equation of motion of the parameter
and is derived by means of an extended Ehrenfest theorem [47, 48] that takes into account
the boundary non-Hermitian contributions. In the derivation we do not use: (i) specific
orthonormal basis set, (ii) semiclassical localization approximation, and (iii) adiabatic time-
evolution (in contrast to the common practice that is used in the semiclassical derivations
[35, 130, 41, 148, 36, 39] where: (i) they employ as basis states the time-independent Bloch
states, (ii) they assume localization in both momentum and space coordinates, and (iii) adia-
batic time-evolution is used).

4Provided that the electrons are spinless and no spin-Hall effect is present.
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4.5.1 Theoretical framework of the method

The basic idea is to use an initial Hamiltonian H(r, t) that does not depend on any param-
eter, and insert a time dependent parameter with a large gauge transformation. Namely, we
assume a time dependent wave vector as the parameter R(t) ≡ k(t) and the ansatz

|Ψ(t,k)〉 = eiΛ(r, t,k(t)) |u(t,k)〉 , (4.105)

where the phase Λ(r, t,k(t)) explicitly depends on space coordinates r, time t, as well as
on the time-dependent parameter k(t).

The quantum state |Ψ(t,k)〉 evolves in time by the time-dependent equation

i~
d

dt
|Ψ(t,k)〉 = H(r, t) |Ψ(t,k)〉 , (4.106)

while |u(t,k)〉 evolves by

i~
d

dt
|u(t,k)〉 = Hk(r, t,k) |u(t,k)〉 , (4.107)

where

Hk(r, t,k) = e−iΛ(r, t,k)H(r, t) eiΛ(r, t,k) + ~
dΛ(r, t,k)

dt
(4.108)

is the gauge-transformed Hamiltonian that is explicitly dependent on the parameter. We then
apply our dynamical and extended HF theorem to the Hamiltonian Eq. (4.108) in order to
evaluate the electron’s velocity. In order to explicitly involve the standard velocity operator

v =
i

~
[H(r, t), r] into the theorem, we assume that the phase has the form

Λ(r, t,k(t)) = k(t)·r + λ(k(t)), (4.109)

thus Eq. (4.108) is given by

Hk(r, t,k) = e−ik·rH(r, t) eik·r + ~
(
∂k

∂t
·r +

dλ(k)

dt

)
. (4.110)

We now act with the momentum gradient operator ∇k on both sides of the above equation
which gives

∇kHk(r, t,k) =∇k

(
e−ik·rH(r, t) eik·r

)
+ ~

(
∇k

(
∂k

∂t
·r
)

+ ∇k

(
dλ(k)

dt

))
.

(4.111)
The first term on the right side of Eq. (4.111) is equal to

∇k

(
e−ik·rH(r, t) eik·r

)
= [Hk(r, t,k) , i r ] = ~

(
i

~
[Hk(r, t,k) , r ]

)
= ~vk,

(4.112)
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where vk is the standard velocity operator.
In our formulation, the wave vector k(t) is an arbitrary time-dependent parameter. De-

pending on its definition, it may not have zero k-space derivatives, that is ∇k
∂ki
∂t
6= 0, thus

the second term on the right side of Eq. (4.111) is not generally zero. In this respect we
define the phase λ(k) in such a way that〈

u(t,k) |
(
∇k

dΛ(r, t,k)

dt

)
|u(t,k)

〉
= 0, (4.113)

resulting to
〈u(t,k) |∇kHk(r, t,k) |u(t,k)〉 = ~ 〈u(t,k)|vk |u(t,k)〉 . (4.114)

Eq. (4.113) and (4.114) will be directly used in what follows.

4.5.2 Velocity of the spinless electron

We assume that the electron moves within a crystal environment, subject to arbitrary electric
and magnetic fields. Therefore, the initial Hamiltonian is

H(r, t) =
1

2m

(
p− e

c
A(r, t)

)2

+ e φ(r, t) + Vcrys(r), (4.115)

where e is the electron charge (e < 0), m is the bare electron mass and c the speed of light.
The electron interacts with the electric field

E(r, t) = −∇r

(
φ(r, t) +

1

e
Vcrys(r)

)
− 1

c

dA(r, t)

dt

as well as with the magnetic field

B(r, t) =∇r ×A(r, t),

which results to the classical Lorentz force given by the second Newton’s law

dΠ

dt
= eE(r, t) +

e

c

dr

dt
×B(r, t),

where Π is the classical kinematic momentum of the electron.
With the ansatz |Ψ(t,k)〉 = ei (k·r + λ(k)) |u(t,k)〉, the Hamiltonian Eq. (4.115)

takes the explicit gauge transformed form

Hk(r, t,k) =
1

2m

(
p− e

c
A(r, t) + ~k

)2

+ e φ(r, t) + Vcrys(r) + ~
(
∂k

∂t
·r +

dλ(k)

dt

)
.

(4.116)
Using now Eqs. (4.113) – (4.114), as well as our extended HF theorem Eq. (4.8) for param-
eter R(t) ≡ k(t), we find the standard velocity expectation value of the electron which is
given by
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〈v 〉 =
1

~
∇kEk(t,k) +

1

~
Sk(t,k) − E(t,k)− ∂k

∂t
×B(t,k), (4.117)

where all involved quantities are evaluated with respect to the quantum state |u(t,k)〉 . The
electron’s velocity expectation value

〈v 〉 ≡ 〈u(t,k)|vk |u(t,k)〉 = 〈Ψ(t,k)|v |Ψ(t,k)〉

where v =
i

~
[H(r, t) , r ], is invariant with respect to the large gauge transformation

Eq. (4.109) that has been performed. The generalized curvatures are given by

B(t,k) = i 〈∇ku(t,k)| × |∇ku(t,k)〉 (4.118)

and
E(t,k) = i

〈
∇ku(t,R) | ∂u(t,k)

∂t

〉
− i
〈
∂u(t,k)

∂t
|∇ku(t,k)

〉
(4.119)

respectively, whereas the non-Hermitian boundary term is given by

Sk(t,k) =
〈
u(t,k) |

(
Hk(t,k)+ −Hk(t,k)

)
∇ku(t,k)

〉
=

i~
2

‹
S

n·
(

(vk u(t,k))+ + u(t,k)+ vk
)
∇ku(t,k) dS. (4.120)

We stress that, each of the generalized curvatures B(t,k) and E(t,k), as well as the bound-
ary non-Hermitian term Sk(t,k), are gauge-invariant quantities with respect to U(1) trans-
formation of the form |u(t,k)〉 → eiλ(k) |u(t,k)〉. Therefore, the part of the velocity that
is attributed to the curvatures and the non-Hermitian boundary term, does not depend on the
specific choice of λ(k) that was made in Eq. (4.113). On the other hand, the “energy”

Ek(t,k) = 〈u(t,k)|Hk(t,k) |u(t,k)〉 (4.121)

is shifted by the time-derivative of the phase ~
(
∂k

∂t
·r +

dλ(k)

dt

)
as evident from (4.116),

which is the typical case of large gauge transformations with gauge functions that explicitly
depend on time, and changes the part of the electron’s velocity that is attributed to the gradi-

ent of the “energy”. Due to Eq. (4.113), the part of the group velocity
1

~
∇kEk(t,k) that

is attributed to the phase λ(k) is given by

1

~
∇k

〈
~
dλ(k)

dt

〉
= ~∇k

dλ(k)

dt
= −

〈
∇k

(
∂k

∂t
·r
)〉

,

indicating that the group velocity does also not have any gauge ambiguity with respect to the
phase λ(k).

The electron’s standard velocity expectation value Eq. (4.117) is one of our major
applications of the extended HF theorem, and we argue that it generalizes the semiclassical
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electrons’ velocity [35, 130, 41, 148, 36, 39].
Taking into account Eq. (4.73) which relates the boundary velocity with the boundary

terms of the HF theorem
S(t,k) = ~ 〈vb 〉 + Sk(t,k), (4.122)

where vb is the non-Hermitian boundary velocity defined by Eq. (2.4), and the boundary
terms of the HF theorem are given by

S(t,k) =
〈
Ψ(t,k) |

(
H(r, t)+ −H(r, t)

)
∇kΨ(t,k)

〉
and

Sk(t,k) =
〈
u(t,k) |

(
Hk(r, t,k)+ −Hk(r, t,k)

)
∇ku(t,k)

〉
respectively, then, Eq. (4.117) is transformed into

〈v 〉+ 〈vb 〉 =
1

~
∇kE(t,k) +

1

~
S(t,k) − E(t,k)− ∂k

∂t
×B(t,k). (4.123)

By using the extended velocity operator definition Eqs. (2.1) – (2.3) that is defined as

〈vext 〉 = 〈v 〉+ 〈vb 〉 =
d

dt
〈 r 〉 ,

we rigorously find the electron’s main position equation of motion

d

dt
〈 r 〉 =

1

~
∇kE(t,k) +

1

~
S(t,k) − E(t,k)− ∂k

∂t
×B(t,k), (4.124)

without any semiclassical or localization approximation being involved.

4.5.3 Equation of motion of the parameter-wavevector

The electron’s velocity in Eq. (4.117) depends explicitly on the time derivative of the

wavevector
∂k

∂t
, which for the moment is an arbitrary parameter. We now define the equa-

tion of motion of the wavevector in a physically plausible manner. Namely, we demand that,
for a free electron motion the parameter becomes a static quantity. In this framework, we
define the time derivative of the wavevector k (times ~) to be equal with the time derivative
of the electron’s kinematic momentum expectation value

~
∂k

∂t
=

d

dt
〈Π 〉 . (4.125)

The time derivative of the kinematic momentum expectation value
d

dt
〈Π 〉 is calculated by

the Ehrenfest theorem with the non-Hermitian boundary terms taken into account [47, 48].
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Due to the kinematic momentum which is a gauge invariant quantity

〈Ψ(t,k)|Π |Ψ(t,k)〉 = 〈u(t,k)|Πk |u(t,k)〉 ,

d

dt
〈Π 〉 is equally calculated either by using

Π = −i~∇r −
e

c
A(r, t) (4.126)

and the Hamiltonian Eq. (4.115), or by using

Πk = −i~∇r −
e

c
A(r, t) + ~k (4.127)

and the gauge-transformed Hamiltonian Eq. (4.116).
For simplicity reasons, we choose to work with the Hamiltonian H(r, t) that is given by

Eq. (4.115). Therefore, according to the Ehrenfest theorem

d

dt
〈Ψ(t,k)|Π |Ψ(t,k)〉 = 〈Ψ(t,k)|F |Ψ(t,k)〉 + 〈Ψ(t,k)|F b |Ψ(t,k)〉 (4.128)

where
F =

i

~
[H(r, t),Π] +

dΠ

dt
(4.129)

is the standard (bulk) operator which gives the bulk quantum force that is exerted on the
electron, whereas

F b =
i

~
(
H(r, t)+ −H(r, t)

)
Π (4.130)

is the non-Hermitian effect operator, which gives the boundary counterpart force.
Using the Hamiltonian Eq. (4.115) and the kinematic momentum Eq. (4.126), by straight-

forward calculation, we find the bulk force operator F which is given by

F = eE(r, t)−∇rVcrys(r) +
e

2c

(
v ×B(r, t)−B(r, t)× v

)
. (4.131)

The first two terms give the forces that are exerted on the electron by the externally applied
electric field and the internal electric field of the crystal. The last term gives the velocity-
dependent force due to the externally applied magnetic field, where v is the standard veloc-
ity operator which does not commute with the magnetic field B(r, t) when the field is not
homogeneous. In this respect, the bulk force that is exerted on the electron is given by

〈F 〉 = e 〈E 〉 − 〈∇rVcrys 〉 +
e

2c
〈v ×B 〉 − e

2c
〈B× v 〉 . (4.132)

For purposes of later application, when the spin-orbit interaction is included (which be-
haves as an effective inhomogeneous internal magnetic field), it is helpful to express the
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operator of the local external magnetic field B(r, t) as

B(r, t) = B(r, t)− 〈B(r, t)〉+ 〈B(r, t)〉 , (4.133)

where 〈B(r, t)〉 ≡ 〈Ψ(t,k)|B(r, t)|Ψ(t,k)〉. Therefore, the expectation value of the bulk
force Eq. (4.132) is equivalently expressed as

〈F 〉 = e 〈E 〉 − 〈∇rVcrys 〉+
e

c
〈v 〉 × 〈B 〉

+
e

2c
〈v × (B− 〈B 〉) 〉 − e

2c
〈 (B− 〈B 〉)× v 〉 (4.134)

where the second line captures the part of the magnetic force due to deviation of the external
magnetic field from homogeneity, which turns to zero whenever the external magnetic field
is homogeneous B(r, t) ≡ B(t).

The expectation value of the boundary force 〈F b 〉 is calculated by assuming G ≡ Π

in Eqs. (3.9) – (3.10) of Chap.3, that gives

〈F b 〉 =
〈
Ψ(t,k) |

(
H(r, t)+ −H(r, t)

)
ΠΨ(t,k)

〉
= −1

2

‹
S

n·
(

(v Ψ(r, t,k))∗ + Ψ(r, t,k)∗ v
)
ΠΨ(r, t,k) dS, (4.135)

where S is the boundary surface that encloses the material and n is the unit vector that
is locally normal to the surface. In general, whenever the wavefunction is not zero at the
boundaries of the material, the boundary force may not be zero. For the special case of zero
external fields E = 0 and B = 0, the boundary force is definitely zero with respect to a
Bloch eigenstate whenever the boundaries do not break the periodicity of the cell periodic
states. In order to prove this claim, we calculate the 1D analogue of Eq. (4.135) (which
truncates to a two point formula) with respect to Bloch eigenstate Ψn(x, k) = eikxun(k, x)

which gives

〈 Fb 〉 = − ~2

2m

[
∂Ψn(x, k)

∂x

∗∂Ψn(x, k)

∂x
−Ψn(x, k)∗ ∂

2Ψn(x, k)

∂x2

]x = L

x = 0

where L is the length of the system over which we assume periodic boundary conditions
Ψn(x+ L, k) = Ψn(x, k). Taking then into account that

∂Ψn(x, k)

∂x
= ikΨn(x, k) + eikx

∂un(x, k)

∂x
,

and expanding the cell periodic functions in a Fourier series over all reciprocal lattice vectors
G, namely, un(x, k) =

∑
G

Cn(k,G)e−iGx, it is evident that all terms within the boundary

force expression 〈 Fb 〉 are periodic, resulting to zero boundary force 〈 Fb 〉 = 0 for Bloch
states that satisfy periodic boundary conditions. Similarly, the bulk force is also zero within
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Table 4.1: Quantum equations of motion for a spinless electron.

Quantity Equation

〈 r 〉 d

dt
〈 r 〉 =

1

~
∇kE(t,k) +

1

~
S(t,k) − E(t,k)− ∂k

∂t
×B(t,k)

〈Π 〉 d

dt
〈Π 〉 = −〈∇rVcrys 〉 + 〈F b 〉 + e 〈E 〉 +

e

2c
〈v ×B 〉 − e

2c
〈B× v 〉

k(t) ~
∂k

∂t
=

d

dt
〈Π 〉

this approximation

〈 F 〉 = −
ˆ L

0

|Ψn(x, k)|2 ∂Vcryst(x)

∂x
dx = −

ˆ L/2

−L/2
|Ψn(x− L

2
, k)|2

∂Vcryst(x−
L

2
)

∂x
dx

= −
ˆ L/2

−L/2
|Ψn(x, k)|2 ∂Vcryst(x)

∂x
dx = 0,

because the integrand |Ψn(x, k)|2 ∂Vcryst(x)

∂x
is an antisymmetric quantity. In this respect,

whenever the bulk and the boundary forces are zero, our parameter k is identical with the
static crystal momentum of band theory.

In conclusion, for a spinless electron that moves within a crystal and is subject to external
fields, we have derived two equations of motion, one for the electron’s main position derived
by our extended HF theorem, and the other for the main kinematic momentum derived by
the Ehrenfest theorem, which are all presented in Table 4.1. The two equations are cou-

pled to each other owing to the definition of the velocity of the parameter ~
∂k

∂t
=

d

dt
〈Π 〉.

We stress that, the states that we have assumed are generally extended ones, with no semi-
classical wavepacket localization involved. In this manner, our equations can be thought as
the quantum mechanical generalization of the semiclassical counterpart equations of motion

[35, 130, 41, 148, 36, 39]. Moreover, the electrons velocity
d

dt
〈 r 〉 that we give in Table

4.1, can rigorously be employed in topological quantum processes such as in quantum Hall
effects which are attributed to delocalized and extended states.

In this framework, one can identify the part of the electron’s velocity(
d

dt
〈 r 〉
)
trans

= − ∂k

∂t
×B(t,k) = −1

~
d

dt
〈Π 〉×B(t,k) = −1

~
〈F 〉×B(t,k), (4.136)

as the one that is always transverse to the bulk quantum force 〈F 〉 that is exerted on the
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electron. Furthermore, by defining an effective electric field Eeff withing the material as

〈F 〉 = e Eeff, (4.137)

one can employ a simplified relation(
d

dt
〈 r 〉
)
trans

= − e
~

Eeff ×B(t,k), (4.138)

in order to model the transverse response (with respect to the quantum force) of the electron.

4.5.4 Maxwell type of equation

Assuming a flux preserving motion, we now use Eq. (4.60) which gives the Maxwell type
of equation

∇k × E(t,k) = −Jk −
∂B(t,k)

∂t
(4.139)

where the current is defined by

Jk =
∂k

∂t
∇k ·B(t,k) + ∇k×

(
〈v〉 − 1

~
Sk(t,k)

)
. (4.140)

The current satisfies the continuity equation

∂ρM
∂t

+∇k · Jk = 0 (4.141)

where ρM is the magnetic monopole charge density given from

ρM =∇k ·B(t,k) (4.142)

in accordance with Eqs. (4.63) – (4.64), and the above equations are precisely the general-
ization of the semiclassical Maxwell type of equations that have been heuristically found in
the study of Weyl semimetals [69, 70] in the last few years.

4.5.5 Relation to the semiclassical equations of motion

We are now making a comparison between our quantum mechanical equations of motion
with the semiclassical [35, 130, 148, 41] counterpart. In this respect, we use the closure
relation of the static Bloch states

I =
HS∑
n

˚

BZ

d3ko |ψn(ko)〉 〈ψn(ko)| ,
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where ko is the static crystal momentum, and expand the quantum state |Ψ(t,k(t))〉 in the
basis of the static Bloch states resulting to

|Ψ(t,k(t))〉 =
HS∑
n

˚

BZ

Cn(t,ko,k(t)) |ψn(ko)〉 d3ko. (4.143)

The time-dependent expansion coefficients Cn(t,ko,k(t)) = 〈ψn(ko)|Ψ(t,k(t))〉 evolve in
time in a way that is determined by the time-dependent Schrödinger equation. Expressing
each static Bloch eigenstate as |Ψn(ko)〉 = eiko ·r |un(ko)〉, where |un(ko)〉 are the cell
periodic states, the quantum state takes the form

|Ψ(t,k(t))〉 =
HS∑
n

˚

BZ

Cn(t,ko,k(t)) eiko ·r |un(ko)〉 d3ko. (4.144)

Multiplying the right side of Eq. (4.144) by eik(t)·r e−ik(t)·r, where k(t) is a time-
dependent arbitrary parameter, the assumed quantum state finally takes the form

|Ψ(t,k(t))〉 = eik(t)·r
 HS∑

n

˚

BZ

Cn(t,ko,k(t)) ei (ko − k(t))·r |un(ko)〉 d3ko

 .

(4.145)
If we now identify

HS∑
n

˚

BZ

Cn(t,ko,k(t)) ei (ko − k(t))·r |un(ko)〉 d3ko = |u(t,k(t))〉 , (4.146)

we end up with the assumed general ansatz

|u(t,k(t))〉 = eik(t)·r |u(t,k(t))〉

that we have already used. Having in mind that, in our Eq. (4.124) that determines the equa-
tion of motion of the electron’s position expectation value, the generalized curvatures, as
well as the “energy” are evaluated with respect to the state |u(t,k(t))〉, whereas the bound-
ary non-Hermitian term S(t,k) is evaluated with respect to the |Ψ(t,k(t))〉 state, we are
now in position to make a comparison with the semiclassical counterpart equations of motion
[130, 148, 41].

We assume an electron that initially moves within a crystal without the external fields. Its
initial state is a single band (ground state) narrow wavepacket, that is, it has sharp distribution
in the Brillouin zone, as well as it is narrowly localized around its center of mass in real
space. We identify the initial value of the parameter as the initial value of the main wave
vector (center) of the wave packet k(0) ≡ kc(0). We turn on the static electric and magnetic
fields, and assume that the length scale of perturbations (the length scale of the externally
applied potentials) are much larger than the spatial spread of the wavepacket, therefore the
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electric and magnetic fields can be approximated as homogeneous vector fields over the
extend of the wavepacket in real space. We further assume adiabatic evolution, that is, the
external fields do not cause transitions to higher energy bands. We identify our parameter
wave vector k(t) as the time-dependent main wave vector of the wavepacket k(t) ≡ kc(t),
which results to

|un(t,kc(t))〉 =

˚

BZ

Cn(t,ko,kc(t)) e
i (ko − kc(t))·r |un(ko)〉 d3ko. (4.147)

By using the identification

~
∂k(t)

∂t
≡ ~

∂kc(t)

∂t
=

d

dt
〈Π 〉 ,

as well as the equation of motion of the kinematic momentum given in Table 4.1, we find the
equation of motion of the main wave vector that is given by

~
∂kc(t)

∂t
= eE(rc(t)) +

e

c
〈v〉 ×B(rc(t)), (4.148)

where the non-Hermitian boundary force is assumed to be zero

〈F b 〉 = 0

due to the spatial localization of the wavepacket.
Again, in deriving Eq. (4.148) we have assumed that the wavepacket is narrowly localized

around its center of its mass rc(t), as well as that the external fields are approximately
homogeneous over the extend of the wavepacket, thus we have replaced

〈E 〉 = 〈u(t,kc(t))|E(r) |u(t,kc(t)) 〉 ≈ E(rc(t)),

as well as

1

2
〈v ×B−B× v 〉 =

1

2
〈u(t,kc(t))|v ×B(r)−B(r)× v |u(t,kc(t)) 〉

≈ 1

2
〈v 〉 ×B(rc(t)) − B(rc(t))× 〈v 〉

= 〈v 〉 ×B(rc(t)).

Furthermore, because of the assumed localization, the non-Hermitian boundary terms and
the boundary velocity turns to zero

Sk(t,k) = S(t,k) = 0,

〈vb〉 = 0.
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Within this approximation we can replace

〈v 〉 =
d

dt
〈 r 〉 =

drc(t)

dt

in Eq. (4.148) resulting to

~
∂kc(t)

∂t
= eE(rc(t)) +

e

c

drc(t)

dt
×B(rc(t)). (4.149)

For the electron’s velocity expectation value Eq. (4.117), we take into account the fol-
lowing approximation. The localized quantum state |un(t,kc(t))〉 given by Eq. (4.146), is
assumed to be non-degenerate and to evolve in time adiabatically. Due to this kind of time
evolution, the time-evolved quantum state has the form

|un(t,kc(t))〉 = eiΘn(t,kc) |un(kc(t))〉 ,

where Θn(t,kc) is the total (dynamic plus geometric) phase of the wavefunction, and the
quantum state |un(kc(t))〉 satisfies the instantaneous eigenvalue equation

Hk(kc(t)) |un(kc(t))〉 = En(kc(t)) |un(kc(t))〉 ,

where the Hamiltonian is given by Eq. (4.116) and the electromagnetic potentials A(r)

and φ(r) are constant in time. In this framework, the instantaneous (localized) eigenstate
|un(kc(t))〉 does not have explicit time dependence, which results to

|un(t,kc(t))〉 =

˚

BZ

Cn(ko,kc(t)) e
i (ko − kc(t))·r |un(ko)〉 d3ko

≡ eiΘn(t,kc) |un(kc(t))〉 . (4.150)

Using the above equation for the form of the localized quantum state |un(t,kc(t))〉 we
deduce that

E(t,kc(t)) = 0, (4.151)

because the curvature E(t,kc(t)) is evaluated with respect to |un(kc(t))〉 that does not
have explicit time-dependence. Therefore, the electron’s main position equation of motion
is given by

drc(t)

dt
=

1

~
∇kcEn(kc(t))−

∂kc(t)

∂t
×B(kc(t)), (4.152)

where the curvature B(t,kc(t)) is calculated with respect to |un(kc(t))〉 in agreement with
the one given by [35, 130, 148].
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4.5.6 Solution of the coupled quantum equations of motion

Taking now into account Eq. (4.117), as well as Eqs. (4.125), (4.128), (4.131) and (4.135),
we solve the coupled equations

〈v 〉 = vk − E −
∂k

∂t
×B (4.153)

~
∂k

∂t
= 〈Ftotal 〉 + e 〈E 〉 +

e

c
〈v 〉 × 〈B 〉 (4.154)

where
vk =

1

~
∇kEk +

1

~
Sk (4.155)

is the sum of the group velocity and a contribution due to the non-Hermitian boundary effect,
whereas

〈Ftotal 〉 = −〈∇rVcrys 〉 +
e

2c
〈v × (B− 〈B 〉) 〉 − e

2c
〈 (B− 〈B 〉)× v 〉 + 〈F b 〉

(4.156)
is the composition of forces due to crystal environment, inhomogeneous magnetic field and

the boundaries. Solving then Eqs. (4.153) – (4.154) for 〈v 〉 and
∂k

∂t
, we find

D 〈v 〉 = vk − E −
1

~

(
〈Ftotal 〉+ e 〈E 〉

)
×B − e

~c

(
vk ·B − E ·B

)
〈B 〉 (4.157)

and

D ~
∂k

∂t
= 〈Ftotal 〉+ e 〈E 〉 +

e

c

(
vk − E

)
× 〈B 〉

− e

~c

(
〈Ftotal 〉·〈B 〉+ e 〈E 〉·〈B 〉

)
B, (4.158)

where
D = 1− e

~c
〈B 〉·B. (4.159)

From Eq. (4.157) we see that the electron’s standard velocity has roughly three contributions
which are:
(i) the first one given by

v − E

which contributes mainly to the longitudinal conductivity,
(ii) the second one

−1

~

(
〈Ftotal 〉+ e 〈E 〉

)
×B

which is responsible for the quantization of the transverse Hall conductivity, and
(iii) the last one

− e

~c

(
v ·B − E ·B

)
〈B 〉
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which is in the direction of the main value of the externally applied magnetic field.

4.5.7 Sum of states when the crystal momentum k changes with time

We now use Eqs. (4.157) – (4.159) in order to demonstrate how the sum over time-dependent
crystal momentums k can be converted to an integration (in the thermodynamic limit).
Our aim is to explicitly find the Jacobian of the transformation dVk(t) = DetJ(t, to)dVko

in Eq. (4.52). The Jacobian of the transformation evolves in time according to the equation

d

dt
lnDetJ(t, to) =

d

dt
ln∆Vk(t) =∇k ·

∂k

∂t
.

Because the semiclassical counterpart modified density of states for the phase space vol-
ume ∆Vk(t)Vr(t) was derived, (i) by using the semiclassical equations of motion [130, 148],
as well as (ii) by means of a number of approximations such as the absence of monopoles
[149], we now give a quantum mechanical derivation without the need of the semiclassical
position-momentum phase space, and show explicitly the approximations involved with the
aim to possibly find an exact closed result. We start the calculation by taking the divergence
∇k of both sides of Eq. (4.158) and then apply the following approximations:

1st approximation

We assume that all involved expectation values 〈. . . 〉 do not depend on the crystal momen-
tum k. Therefore, we find

~ (∇kD)· ∂k

∂t
+ ~D∇k ·

∂k

∂t
=

e

c
〈B 〉 ·∇k ×

(
vk − E

)
− e

~c

(
〈Ftotal 〉·〈B 〉+ e 〈E 〉·〈B 〉

)
∇k ·B

2nd approximation

We assume adiabatic time evolution, whereas the electron’s motion is described by a non-
degenerate state that is at every instant an eigenstate of the Hamiltonian. Therefore, all
expectation values are assumed to be taken with respect to instantaneous eigenstates of the
Hamiltonian 〈. . . 〉 ≡ 〈. . . 〉n .

3rd approximation

We assume that the Hamiltonian of motion Eq. (4.116) does not have explicit time de-
pendence Hk ≡ Hk(r,k). Thus the instantaneous eigenstates |un〉 ≡ |un(k)〉 do not have
explicit time dependence, which results to zero Berry curvature En by definition

En = i

〈
∇Run(k) | ∂un(k)

∂t

〉
− i
〈
∂un(k)

∂t
|∇kun(k)

〉
= 0.
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Due to the latter approximation, the Berry curvature Bn(k) has not gotten any time depen-
dence, which in turn results to D ≡ Dn(k). In this framework, the total time derivative of

Dn(k) is given by ∇kDn(k) · ∂k

∂t
=
dDn(k)

dt
.

4th approximation

We assume that the curl of the boundary non-Hermitian term is zero

∇k × Snk(k) = 0.

Result

With the above four approximations we find

~
dDn(k)

dt
+ ~Dn(k)∇k ·

∂k

∂t
= − e

~c

(
〈Ftotal 〉·〈B 〉+ e 〈E 〉·〈B 〉

)
∇k ·Bn(k),

which gives

dlnDn(k)

dt
+ ∇k ·

∂k

∂t
= − e

~2c

(
〈Ftotal 〉·〈B 〉+ e 〈E 〉·〈B 〉

) ∇k ·Bn(k)

Dn(k)
, (4.160)

that leads to the equation of motion of the Jacobian of the transformation

d

dt
lnDetJ(t, to) = −dlnDn(k)

dt
− e

~2c

(
〈Ftotal 〉·〈B 〉+ e 〈E 〉·〈B 〉

) ∇k ·Bn(k)

Dn(k)
.

(4.161)
The Jacobian satisfies DetJ(to, to) = 1, and by assuming the boundary condition
Dn(k(to)) = 1, then, by time integration of Eq. (4.161) we find

lnDetJ(t, to) = −lnDn(k)− e

~2c

tˆ

to

(
〈Ftotal 〉·〈B 〉+ e 〈E 〉·〈B 〉

)∇k ·Bn(k)

Dn(k)
dt′.

(4.162)
By exponentiating the above equation we finally get

1

DetJ(t, to)
= Dn(k) e

e

~2c

tˆ

to

(
〈Ftotal 〉·〈B 〉+ e 〈E 〉·〈B 〉

)∇k ·Bn(k)

Dn(k)
dt′

, (4.163)

that has to be substituted in Eq. (4.52) within the approximations (1– 4). Our Eq. (4.163)
provides a quantum derivation of the semiclassical counterpart presented in Ref. [149], that
however also takes into account the monopoles of the projective Hilbert space. In the absence
of monopoles, ∇k ·Bn(k) = 0, or when

(
〈Ftotal 〉·〈B 〉+ e 〈E 〉·〈B 〉

)
= 0, one recovers

the semiclassical counterpart formula. We re-emphasize that Eq. (4.163) is valid only within
the assumed approximations (1 – 4) and for a spinless electron motion.
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4.6 Quantum equations of motion for a spinfull electron

In this section we extend the quantm equations of motion derived in Section4.5 in order to
take into account the electron’s spin (or pseudospin) degree of freedom which take part in
most topological materials with high atomic numbers. For such motions we use the non-
relativistic limit of the Dirac equation with the Zeeman and spin-orbit coupling terms taken
into account. The theoretical framework of the method is analogous to that of Sec.4.5.1,
but with the difference that the assumed quantum state is now a two-component spinor.
Therefore, we use the U(1) ansatz form

|Ψ(t,k)〉 = eiΛ(r, t,k(t)) |u(t,k)〉 , (4.164)

where the quantum state |u(t,k)〉 is a two component spinor

|u(t,k)〉 ≡ ( |ua(t,k)〉 , |ub(t,k)〉 )T .

The initial Hamiltonian is now

H(r, t) =
1

2m

(
p− e

c
A(r, t)

)2

+ e φ(r, t) + Vcrys(r) +Hz(r, t) +Hs.o(r, t) (4.165)

where e is the electron charge (e < 0), m is the bare mass of electron and c the speed of
light, while

Hz(r, t) = − e~
2mc

σ ·B(r, t) (4.166)

is the Zeeman term, and

Hs.o(r, t) =
~

4m2c2

(
σ × (e∇φ(r, t) +∇Vcrys(r))

)
·
(
p− e

c
A(r, t)

)
(4.167)

is the spin-orbit coupling term.

4.6.1 Velocity of the spinfull electron

Using similar arguments as in Eqs. (4.106) – (4.114), the bulk velocity operator is now given
by

1

~
∇kHk(r, t,k) =

i

~
[Hk(r, t,k) , r ] =

1

m

(
p + ~k− e

c

(
A(r, t) + Aeff(r, t)

))
≡ vk

(4.168)
where

Aeff(r, t) = − ~
4emc

σ ×
(
e∇φ(r, t) +∇Vcrys(r)

)
(4.169)

comes from the spin-orbit coupling and plays the role of an SU(2) effective gauge vector
potential. Therefore, we identify as kinematic momentum operator the quantity

Πk = p + ~k(t)− e

c

(
A(r, t) + Aeff(r, t)

)
. (4.170)
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According then to our extended HF theorem Eq. (4.8) for parameter R(t) ≡ k(t), the ve-
locity operator expectation value is given by

〈vk 〉 =
1

~
∇kEk(t,k) +

1

~
Sk(t,k) − E(t,k)− ∂k

∂t
×B(t,k). (4.171)

4.6.2 Equation of motion of the parameter-wavevector

In an analogous manner to that of Sec.4.5.3 we use the initial (before the U(1) transforma-
tion) kinematic momentum operator

Π = p− e

c

(
A(r, t) + Aeff(r, t)

)
, (4.172)

as well as the initial Hamiltonian Eq. (4.165) and define the time derivative of the wavevec-
tor k (times ~) to be equal with the time derivative of the electron’s kinematic momentum
expectation value

~
∂k

∂t
=

d

dt
〈Π 〉 . (4.173)

The time derivative of the kinematic momentum expectation value
d

dt
〈Π 〉 is calculated by

the Ehrenfest theorem with the non-Hermitian boundary terms taken into account [47, 48].
According to Ref. [119], the kinematic momentum Eq. (4.172) satisfies the commutation re-

lation [Πα , Πβ] = i
~e
m2c

εαβγB
total +

e2

m2c2
[Aeff

α , Aeff
β ] where εαβγ is the Levi-Civita sym-

bol whereas
Btotal(r, t) = B(r, t) + Beff(r, t) (4.174)

is the total magnetic field. The effective magnetic field

Beff(r, t) = ∇×Aeff(r, t) (4.175)

is present due to strong spin-orbit coupling, whereas the standard magnetic field is given by
B = ∇×A(r, t).

By only keeping terms up to
1

c2
(in agreement with the accuracy of the Hamiltonian

Eq. (4.165)) the bulk force operator F is given by

F =
i

~
[H(r, t), Π ]− e

c

(
∂A(r, t)

∂t
+
∂Aeff(r, t)

∂t

)
≈ eEtotal(r, t) − ∇rVcrys(r) +

e

2c

(
v ×Btotal(r, t) − Btotal(r, t)× v

)
,

where the total electric field is given by

Etotal(r, t) = E(r, t) + Eeff(r, t), (4.176)
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with the effective electric field

Eeff(r, t) =
~

2mc
∇ (σ ·B(r, t)) (4.177)

being a Stern-Gerlach type of electric field.
Accordingly, the non-Hermitian boundary force operator is given from

F b =
i

~
(
H(r, t)+ −H(r, t)

)
Π. (4.178)

In an analogous manner as in Eq. (4.133), we express the total magnetic field in the form

Btotal(r, t) = Btotal(r, t)−
〈
Btotal(r, t)

〉
+
〈
Btotal(r, t)

〉
, (4.179)

therefore, the time derivative of the kinematic momentum expectation value is given by

d

dt
〈Π 〉 = 〈F 〉 ≈ e

〈
Etotal 〉− 〈∇rVcrys 〉+

e

c
〈v 〉 ×

〈
Btotal 〉

+
e

2c

〈
v ×

(
Btotal −

〈
Btotal 〉) 〉− e

2c

〈 (
Btotal −

〈
Btotal 〉)× v

〉
+ 〈F b 〉 . (4.180)

4.6.3 Solution of the coupled spinfull quantum equations of motion

In an analogous manner as in the spinless motion Eqs. (4.153) – (4.154), the two coupled
equations of motion are expressed as

〈v 〉 = vk − E −
∂k

∂t
×B (4.181)

~
∂k

∂t
= 〈F 〉 + e

〈
Etotal 〉 +

e

c
〈v 〉 ×

〈
Btotal 〉 (4.182)

where
vk =

1

~
∇kEk +

1

~
Sk (4.183)

is the sum of the group velocity and a contribution due to the non-Hermitian boundary effect,
whereas

〈F 〉 = −〈∇rVcrys 〉+ 〈F b 〉

+
e

2c

〈
v ×

(
Btotal −

〈
Btotal 〉) 〉− e

2c

〈 (
Btotal −

〈
Btotal 〉)× v

〉
.

(4.184)

Solving then Eq. (4.181) – (4.182) for 〈v 〉 and
∂k

∂t
, we find the two spinfull quantum
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equations

C 〈v 〉 = vk − E −
1

~

(
〈F 〉+ e

〈
Etotal 〉)×B − e

~c

(
vk ·B − E ·B

) 〈
Btotal 〉

(4.185)

and

C ~∂k

∂t
= 〈F 〉+ e

〈
Etotal 〉 +

e

c

(
vk − E

)
×
〈

Btotal 〉
− e

~c

(
〈F 〉·

〈
Btotal 〉+ e

〈
Etotal 〉·〈Btotal 〉)B, (4.186)

where
C = 1− e

~c
〈

Btotal 〉 ·B (4.187)

with 〈
Btotal 〉 = 〈B 〉+

〈
Beff 〉 .

Eqs. (4.185) – (4.187) are the generalization of the spinless quantum equations of motion that
we derived in Sec. 4.5, and we believe that, due the explicit spin dependence, they can be ap-
plied to quite general non-interacting topological quantum processes. The spinfull electron
has three velocity contributions, namely, the first one v − E that contributes mainly to the

longitudinal conductivity, the second one −1

~

(
〈F 〉+ e

〈
Etotal 〉)×B that is in a direction

normal to the quantum force (which can presumably be used to model the transverse quantum
anomalous Hall conductivity), and the last one
− e

~c

(
v ·B − E ·B

) 〈
Btotal 〉 which is in the direction of the main total magnetic field. (In

all of them, the extra non-Hermitian effect has been incorporated.)

4.6.4 Sum of states in spinfull motions when the crystal momentum k

changes with time

Assuming the same approximations (1 – 4) of Sec.4.5.7, we can straightforwardly map the
spinless result Eq. (4.163) to the spinfull one by substituting

E 7→ Etotal

B 7→ Btotal

Ftotal 7→ F

Dn(k) 7→ Cn(k)
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in Eqs. (4.157) – (4.159). This gives a closed result of the Jacobian of the transformation

1

DetJ(t, to)
= Cn(k) e

e

~2c

tˆ

to

(
〈F 〉·

〈
Btotal 〉+ e

〈
Etotal 〉·〈Btotal 〉)∇k ·Bn(k)

Cn(k)
dt′

,

(4.188)
which is a new result and extends the semiclassical modification of density of states [150,
22, 45] to topological spinfull motions provided that the approximations (1 – 4) are satisfied.

A simplified model for the Quantum Anomalous Hall Effect

As a final application, and always within the non-interacting electron approximation, we as-
sume that each electron is confined in a thin film of, either a magnetically doped or magnetic
proximity topological insulator [34, 18, 62, 85], without any externally applied magnetic
field.

In order to apply our quantum equations of motion, we assume the Hamiltonian

H(r, t) =
1

2m

(
p− e

c
A(r, t)

)2

+ Vcrys(r) +Hz(r) +Hs.o(r, t) (4.189)

and use a phenomenological inhomogeneous magnetic field B(r) in the Zeeman term

Hz(r, t) = − e~
2mc

σ ·B(r), (4.190)

in order to break the time-reversal symmetry. This microscopic magnetic field is assumed
to be of Haldane’s type, that is, it is periodic over space coordinates and averages to zero
〈B(r) 〉 = 0, therefore no net macroscopic magnetic field is present. Moreover, this type
of inhomogeneous microscopic magnetic field is coupled to the electron’s spin σ, thus it
can be thought of as a term that probes the local ordered magnetic moments of the electron.
We assume that this kind of microscopic magnetic field depends on the magnetic doping (or
magnetic proximity) and for undoped material is zero.

The spin-orbit coupling term that has no effect on the time-reversal symmetry is given by

Hs.o(r, t) =
~

4m2c2

(
σ ×∇Vcrys(r)

)
·
(
p− e

c
A(r, t)

)
,

where −1

c

dA(r, t)

dt
= E(r) is the externally applied electric field.

Each electron’s (standard) velocity (see Eq. (4.185)) is given by

C 〈v 〉 = vk − E −
1

~

(
〈F 〉+ e

〈
Etotal 〉)×B − e

~c

(
vk ·B − E ·B

) 〈
Beff 〉

(4.191)
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where
C = 1− e

~c
〈

Beff 〉 ·B. (4.192)

If we assume a 2D material, then, the Berry curvature B is in the direction normal to the
material, let’s say ez direction, which results to(

vk ·B − E ·B
)

=
(
vk − E

)
·ez B = 0

because each one of vk and E has in-plane direction as evident by their definition (the
momentum gradient operator ∇k having in-plane direction for 2D materials).

All the quantities involved in Eq. (4.191) are evaluated with respect to the time-dependent
state |u(t,k)〉 which evolves in time by the Hamiltonian

Hk(r, t,k) = e−ik·rH(r) eik·r + ~
(
∂k

∂t
·r +

dλ(k)

dt

)
, (4.193)

where H(r) is given by Eq. (4.189). This Hamiltonian is generally time-dependent, thus it
is difficult to analytically find the time-dependent states. On the other hand, if there exists a
steady-state limit where the quantum force that is exerted on the electron is approximatively
zero

~
∂k

∂t
→ 0,

then, the latter Hamiltonian is translation invariant and we can study these steady-state limit
quantum processes in a topological band theory framework. In this framework, we assume
a homogeneous and static externally applied electric field, with the vector potential given
by A(t) = −ctE. Assuming that the electron is initially in a (non-degenerate) ground state,
and considering the steady state limit, then, we may assume adiabatic evolution (provided
that the external electric field is sufficiently low) of each ground state.

The electron’s velocity is then given by

Cn 〈v 〉n = vk,n(t,k) − En(t,k) − 1

~

(
〈F 〉n + e

〈
Etotal 〉

n

)
×Bn(t,k), (4.194)

where the total electric field is given by

〈
Etotal 〉

n
= E +

~
2mc

〈∇ (σ ·B(r)) 〉n .

We then define as collective electric field the quantity

Ecol =

(
1

e
〈F 〉n +

〈
Etotal 〉

n

)
, (4.195)

which by definition has four contributions coming from: (i) the externally applied electric
field E, (ii) the Stern-Gerlach type of electric field due to the inhomogeneous microscopic
magnetic field B(r), (iii) the electric field created by the crystal environment, and (v) an
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effective electric field due to the boundary non-Hermitian force.
The electron’s velocity component in x direction is given by

〈 vx 〉n =
1

Cn

(
vx(t,k) − Ex(t,k) − e

~
Ey,col Bz(t,k)

)
, (4.196)

where − e
~
Ey,col Bz(t,k) is a velocity contribution due to the collective electric field in the

y direction. We assume that the electric field of the (perfect) crystal averages to zero, as well
as that the externally applied electric field is in the x direction E = Eex. In this respect, the
collective electric field Ey,col is created solely due to boundary forces and the bulk Stern-
Gerlach type of force in the y direction. Now one can sum Eq. (4.196) over all single particle
sates of the fully occupied bands, in order to find the collective electrons’ velocity. It should
be noted that, in order to convert the sum to an integration in the thermodynamic limit, we
cannot use Eq. (4.188) because the Berry curvature En(t,k) is not zero. Instead we make
a different kind of approximation, namely, the incompressible fluid one,

d

dt
lnDetJ(t, to) =∇k ·

∂k

∂t
= 0

which results to DetJ(t, to) = DetJ(to, to) = 1. By using now Eq. (4.52), we find that the
transverse conductivity of fully occupied bands is given by

σxy =
∑
n,k

1

Ey,col

e

S
〈 vx 〉n →

e

(2π)2

¨

BZ

1

Ey,col

1

Cn

(
vx(t,k) − Ex(t,k)

)
dkxdky

− e2

h

1

2π

¨

BZ

1

Cn
Bz(t,k)dkxdky (4.197)

where S is the sample area.
The above result can be used to model the various contributions to the Quantum Anoma-

lous Hall effect such as the skew scattering5 contribution. This contribution can be encoded
for example in the effective magnetic field

〈
Beff

〉
n

that is attributed to the spin-orbit cou-
pling, as well as in the effective Stern-Gerlach type of electric field

〈
Eeff

〉
n

which is in
turn encoded in the collective electric field Ey,col. In this framework, for a “pure” transverse
motion of the electron we may assume(

vx(t,k) − Ex(t,k)
)
→ 0

in accordance to Eq. (4.191), and together with a limit of zero effective magnetic field〈
Beff

〉
n
→ 0 which (by expanding Eq. (4.192)) leads to

1

Cn
≈ 1 +

e

~c
〈

Beff 〉
n
·Bn +

( e
~c
〈

Beff 〉
n
·Bn

)2

(4.198)

5The asymmetric scattering of the electrons in the presence of spin-orbit coupling and Ferromagnetism
which leads to unbalanced transverse motion.
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in accordance to Eq. (4.192), we conclude that the transverse conductivity is given by

σxy ≈ −
e2

h

1

2π

¨

BZ

(
1 +

e

~c
〈

Beff 〉
n
·Bn +

( e
~c
〈

Beff 〉
n
·Bn

)2
)
Bz(t,k) dkxdky.

(4.199)
The first term in the integrand gives a quantized value for topological reasons (first Chern
number), while the other two terms gives corrections due to the non-zero effective magnetic
field. We hope that this result may shed some light upon the controversy resulting from the
difficulty to interpret experimental results in this area [145].
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Chapter 5

Topological stabilization in dynamic
transport processes

The topological characterization of equilibrium quantum systems1 undergoing linear re-
sponse or adiabatic evolutions as a result of perturbations, seems to have been studied in
considerable depth and is nowadays in a mature state. These states are characterized ei-
ther by their abelian geometric phases, or by the explicit calculation of expectation values
within linear response methods. The topological equilibrium states of matter display many
striking features, ranging from the precise quantization of macroscopic properties (such as
the transverse Hall conductivity in the Quantum Hall Effect), to the emergence of fractional
excitations and gapless edge states. A fundamental characteristic of an observable that is
quantized due to topology, is that its value is immune against local perturbations such as
local sample defects.

On the other hand, in systems that are out of equilibrium and occupy more than one di-
mensions of the available Hilbert space, that is, the quantum state is made of coherent super-
position of different eigenstates, much less is known about the topological behavior. In the
point of view of geometrical phases, these non-equilibrium topological quantum processes
can be characterized by means of non-Abelian geometric phases [146, 82, 5].

As a general rule, the inductions of quantum phases by global perturbations are inher-
ently nonequilibrium phenomena, and thus their understanding is quite challenging. Even
some basic questions such as the physical signatures of the induced phases and how such
phases can be stabilized in a steady state do not yet have satisfactory answers. In this frame-
work, much theoretical [30, 143, 29, 140, 83, 136, 76, 27, 118, 156, 122, 105, 42, 55] and
experimental [89, 115] work, has being carried out the last few years in the quest to find
patterns of behaviors that emerge due to the combination of dynamics and the topology
of the projective Hilbert space that is instantaneously occupied. In this theoretical quest,
some new topological invariants have been proposed based on the time-evolution operator
[76, 83, 31, 116], as well as some dynamical order parameters for topological phase tran-

1By equilibrium it is meant that the quantum states occupy one dimension of the available Hilbert space for
all times.
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sitions [65, 26, 68, 138, 53, 117, 64]. Most of the above mentioned theoretical studies,
are performed either by using the orthonormal basis of the instantaneous eigenstates of the
Hamiltonian within linear-response time-dependent perturbation theory, or within Floquet
theory for time periodic systems by using the complete set of the periodic Floquet modes.

With this in mind, we derive in this Chapter a dynamical extension of the Hellmann-
Feynman theorem for closed systems (the total number of the particles being conserved)
by using a complete and orthonormal basis. Our motivation is to find the simplest possible
theoretical method which gives a formula for an observable’s expectation value that (i) incor-
porates the real time dynamics as well as (ii) takes into account the instantaneous topology
of the Hilbert space. The theorem that we derive is valid for any complete orthonormal basis
state set, therefore it can be applied either to the instantaneous eigenstates of the Hamilto-
nian or to the time periodic Floquet modes. We will witness the appearance of interesting
generalizations of non-Abelian curvatures, of both magnetic and electric type, intertwined
with the non-Hermitian effect discussed in the previous Chapters.

5.1 Derivation of the theorem

We consider a real vector parameter R that has an arbitrary time-dependence (without
any adiabatic approximation involved), namely, R =R(t,Ro) where Ro is the initial
value of the parameter satisfying Ro =R(0,Ro). Therefore, the parameter satisfies the

general equation of motion R = Ro +

ˆ t
0

∂R

∂t′
dt′, and its time derivative is given by

∂R

∂t
=

∂R(t,Ro)

∂t
. The theorem that we are about to prove is for a continuous vector

parameter R, therefore the initial value of the parameter Ro is assumed to have contin-
uous values. The Hamiltonian of the system H(t,R), apart from the implicit time de-
pendence (via the parameter), may also have an arbitrary explicit time-dependence. The
derivation that is given owes its existence to the Hamiltonian being the generator of time
evolution of quantum states. We provide the derivation for a single particle state while
the generalization to a many-particle system is straightforward. Particle’s motion is gen-
erally encoded in its normalized time-dependent state |Ψ(t,R)〉 which evolves either by
the time-dependent Schrödinger equation for non-relativistic and spinless particle, or by the
time-dependent Dirac equation for spinfull particle. Specifically, the wavefunction can in
general be, either a scalar complex number Ψ(r, t,R) for spinless electron, or a complex
vector, namely, a two component spinor Ψ(r, t,R) = (Ψ1(r, t,R), Ψ2(r, t,R))T for the
non-relativistic limit of Dirac’s equation, or a relativistic four component spinor for a Dirac
fermion Ψ(r, t,R) = (Ψ1(r, t,R), Ψ2(r, t,R), Ψ3(r, t,R), Ψ4(r, t,R))T.

We assume for simplicity a one particle quantum system. The motion of the parti-
cle is described by a general state, not necessarily an eigenstate of the Hamiltonian nor
a localized state (such as a narrow wave packet). The system is assumed to be closed
〈Ψ(t,R)|Ψ(t,R)〉 = 1, and the quantum state time evolution is determined by the time-
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dependent equation

i~
d

dt
|Ψ(t,R)〉 = H(t,R) |Ψ(t,R)〉 , (5.1)

where the Hamiltonian is either of Schrödinger or Dirac type. The time derivative in Eq. (5.1)
is the total time derivative given by

d

dt
=

∂

∂t
+
∂R

∂t
·∇R (5.2)

where ∇R =
3∑
i=1

ei
∂

∂Ri

. The initial value of the parameter Ro that implicitly enters Eq. (5.1)

can be used to label the quantum states |Ψ(t,R)〉. The expectation value of the Hamiltonian

〈Ψ(t,R)|H(t,R) |Ψ(t,R)〉 = E(t,R) (5.3)

can be seen as the instantaneous time-dependent “energy” of the particle E(t,R). Differen-
tiation with respect to the parameter R of both sides of Eq. (5.3) gives

〈Ψ |∇RH |Ψ〉 =∇RE − 〈∇RΨ |HΨ〉 − 〈Ψ|H∇RΨ〉 . (5.4)

Taking now into account that the parameter gradient operator ∇R can generally be an
anomalous operator, that is, the states |∇RΨ〉 may not belong within the domain of the Her-
mitian Hamiltonian, which is expressed by the non-trivial inequality
〈HΨ |∇RΨ〉 = 〈Ψ |H+∇RΨ〉 6= 〈Ψ |H∇RΨ〉, we recast Eq. (5.4) in the form

〈Ψ |∇RH |Ψ〉 =∇RE−〈∇RΨ |HΨ〉− 〈HΨ|∇RΨ〉+
〈
Ψ |
(
H+ −H

)
∇RΨ

〉
. (5.5)

By using Eq. (5.1) in Eq. (5.5) we find

〈Ψ |∇RH |Ψ〉 =∇RE+
〈
Ψ |
(
H+ −H

)
∇RΨ

〉
−
(〈
∇RΨ | i~dΨ

dt

〉
+

〈
i~
dΨ

dt
|∇RΨ

〉)
.

(5.6)
We then consider an orthonormal basis 〈m(t,R)|n(t,R)〉 = δmn, where the basis states
|n(t,R)〉 need not be the instantaneous eigenstates of the Hamiltonian H(t,R) of the sys-
tem, rather they only depend explicitly on the same parameter R, and we project the assumed
time-dependent state |Ψ(t,R)〉 on this basis

|Ψ(t,R)〉 =
HS∑
n

Cn(t,R) |n(t,R)〉 , (5.7)

where the sum runs over all Hilbert space (since the upper limit of the sum does not depend
on time) and only the Nocc(t) occupied states (with Cn(t,R) 6= 0) contribute to the sum,
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namely

Cn(t,R)


6= 0 for n ≤ Nocc(t),

= 0 for n > Nocc(t).

(5.8)

By using Eq. (5.8) one can express the sum of Eq. (5.7) as

|Ψ(t,R)〉 =

Nocc(t)∑
n

Cn(t,R) |n(t,R)〉 ,

but this causes difficulties for taking the total time derivative of |Ψ(t,R)〉, since the upper
limit of the sum is an integer number that depends on time. Therefore, we use Eq. (5.7) and
after taking the total time derivatives we turn into Eq. (5.8).

We assume that one uses the same orthonormal basis set |n(t,R)〉 for all times, and that
the number Nocc(t) of basis states that are occupied is defined at first by the initial quan-
tum state |Ψ(to,Ro)〉 in combination with the orthonormal basis states, but, in subsequent
times this number is governed by the dynamics of the system (generated by the Hamiltonian
operator). Because the considered system is assumed closed

d

dt
〈Ψ(t,R)|Ψ(t,R)〉 = 0, (5.9)

the basis states |n(t,R)〉 that one may use, are constrained to belong within the domain of
definition of the Hamiltonian H(t,R) owing to

d

dt
〈Ψ|Ψ〉 =

i

~
(〈HΨ|Ψ〉 − 〈Ψ|HΨ〉) =

HS∑
m

HS∑
n

C∗mCn
〈
m|
(
H+ −H

)
n
〉

= 0, (5.10)

which implies the constraint 〈Hm|n〉 = 〈m|Hn〉. The superposition of |Ψ(t,R)〉 is con-
sidered in a general framework in order to (i) capture the dynamics that drives the system
as encoded by the expansion coefficients Cn(t,R), and to, (ii) take into account possible
symmetries of the system (either over position coordinates or over time) which create degen-
eracies that are generally taken into account within the sum of Eq. (5.7); thus the indices
n are assumed to run also within the degeneration subspace. In this respect, the indices
n of Eq. (5.7) are taken into account in the most general sense and can label all above
mentioned combinations. For example, when one considers a periodic in time Hamilto-
nian H(t+ T,R(t+ T )) = H(t,R(t)), where the time of T is the period of driving, and
also a parameter that has the same time periodicity R(t+ T ) = R(t), one can use as an or-

thonormal basis the complete set of the Floquet modes I =
HS∑
a

|Φa(t,R)〉 〈Φa(t,R)| which

are periodic in time |Φa(t+ T,R)〉 = |Φa(t,R)〉. The Floquet modes satisfies the eigen-
value equation HF (t,R) |Φa(t,R)〉 = εa(R) |Φa(t,R)〉, where εa(R) is the quasienergy

(restricted into the interval ∆εa =
2π~
T

called first Floquet-zone, that contains all the physi-
cally non-equivalent quantum states) and HF (t,R) is the Floquet operator defined by
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HF (t,R) = H(t,R)− i~ d
dt

. In this framework, on can take advantage of the discrete time
symmetry of the Hamiltonian, and the quantum state Eq. (5.7) can be expanded in the Flo-

quet modes |Ψ(t,R)〉 =
HS∑
a

Ca (t,R) |Φa(t,R)〉. A single Floquet mode

|Ψ(t,R)〉 ≡ Ca(t,R) |Φa(t,R)〉, when inserted in Eq. (5.1) gives the time-dependent state

of the system which is given by |Ψa(t,R)〉 = e
−
i

h

ˆ t

0

εa(R)dt′

|Φa(t,R)〉. On the other
hand, the use as an orthonormal basis of the instantaneous eigenstates of the Hamiltonian
H(t,R) allows one to keep track of the real time occupation of the Hilbert space as produced
by the interaction of the system with the (externally) applied potentials, which is captured by
the expansion coefficients Cn(t,R) dynamics, as well as to take into account the space sym-
metries of the Hamiltonian and the topology of the instantaneous eigenstates. For example,
if we consider a state |Ψ(t,R)〉 that is for all times the ground state of a degenerate system,
that is, for every index n in the expansion of Eq. (5.7) the instantaneous eigenvalue equation
H(t,R) |n(t,R)〉 = Eg(t,R) |n(t,R)〉 is satisfied (with Eg(t,R) being the ground state
energy of the system) we have

i~
d

dt
|Ψ(t,R)〉 = H(t,R) |Ψg(t,R)〉 = H(t,R)

∑
n∈S

Cn(t,R) |n(t,R)〉

= Eg(t,R) |Ψg(t,R)〉 , (5.11)

where the index n labels each different orthonormal eigenstate within the degeneration sub-
space denoted by S, and then the method that we will develop can give valuable information
on the observable in quest, with respect to the embedded degenerate Hilbert subspace of the
system and the topology of the degenerate eigenstates.

Substituting now Eq. (5.7) into Eq. (5.1) and exploiting the orthonormality of the basis
states 〈m(t,R)|n(t,R)〉 = δmn we find the equation of motion for each coefficient that is
given by

i~
dCn
dt

=
HS∑
l

Cl

(
〈n|Hl〉 − i~

〈
n|dl
dt

〉)
, (5.12)

where the sum runs over all Hilbert space. By using Eq. (5.8), the above equation of motion
of the expansion coefficients is equally expressed as

i~
dCn
dt

=
occ∑
l

Cl

(
〈n|Hl〉 − i~

〈
n|dl
dt

〉)
. (5.13)

where the sum runs now only within occupied states.
The purpose now is to use the equation of motion of the expansion coefficients Eq. (5.12)

(that incorporates the dynamics) together with Eqs. (5.7) – (5.8), in order to express each
term of Eq. (5.6) as a function of the expansion coefficients and the assumed orthonormal
basis states. At the end of the calculation, this will result into the dynamical and extended
Hellmann-Feynman theorem projected on an orthonormal basis.
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In this framework, we start our calculation with the gradient of the “energy” ∇RE of
the first term on the right side of Eq. (5.6) which takes the form

∇RE = ∇R

(
HS∑
m

HS∑
n

C∗mCn 〈m|Hn〉

)

=
HS∑
m

HS∑
n

∇R

(
C∗mCn

)
〈m|Hn〉+

HS∑
m

HS∑
n

C∗mCn∇R〈m|Hn〉

≡
occ∑
m

occ∑
n

∇R

(
C∗mCn

)
〈m|Hn〉+

occ∑
m

occ∑
n

C∗mCn∇R〈m|Hn〉 . (5.14)

Analogously, the second non-Hermitian term on the right side of Eq. (5.6) is transformed
into

〈
Ψ |
(
H+ −H

)
∇RΨ

〉
=

HS∑
m

HS∑
n

C∗mCn
〈
m|
(
H+ −H

)
∇R n

〉
=

occ∑
m

occ∑
n

C∗mCn
〈
m|
(
H+ −H

)
∇R n

〉
. (5.15)

where we have made use of C∗m∇RCn 〈m| (H+ −H)n〉 = 0.
We proceed now into the calculation of the third and fourth terms right side of Eq. (5.6).

By taking into account the superposition expansion Eq. (5.7), the total time derivative of
|Ψ(t,R)〉 is given from

∣∣∣∣dΨ

dt

〉
=

HS∑
n

(
dCn
dt
|n〉+ Cn

∣∣∣∣dndt
〉)

. (5.16)

By then using the equation of motion
dCn
dt

of the expansion coefficients Eq. (5.12) the
above equation takes the form

∣∣∣∣i~dΨ

dt

〉
=

HS∑
n

HS∑
l

Cl

(
〈n|Hl〉 − i~

〈
n|dl
dt

〉)
|n〉+

N∑
n=1

i~Cn
∣∣∣∣dndt

〉
, (5.17)

which by using Eq. (5.8) is expressed as

∣∣∣∣i~dΨ

dt

〉
=

occ∑
n

occ∑
l

Cl

(
〈n|Hl〉 − i~

〈
n|dl
dt

〉)
|n〉+

N∑
n=1

i~Cn
∣∣∣∣dndt

〉
, (5.18)

Similarly, the action of the parameter gradient operator on |Ψ(t,R)〉, when one takes
into account the superposition expansion Eq. (5.7), gives

|∇RΨ〉 =
occ∑
n

( (∇RCn) |n〉+ Cn |∇R n〉 ) . (5.19)
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Accordingly, the dagger form of Eq. (5.17) and Eq. (5.19) are given by〈
i~
dΨ

dt

∣∣∣∣ =
occ∑
m

occ∑
l

C∗l
(
〈l|Hm〉 − i~

〈
l|dm
dt

〉)
〈m| −

occ∑
m

i~C∗m
〈
dm

dt

∣∣∣∣ , (5.20)

where we have use
〈
dl

dt
|m
〉

= −
〈
l|dm
dt

〉
, and

〈∇RΨ| =
occ∑
m

( (
∇RC

∗
m

)
〈m|+ C∗m 〈∇Rm|

)
(5.21)

Taking now the inner product of Eq. (5.21) with Eq. (5.17) we find〈
∇RΨ | i~dΨ

dt

〉
=

occ∑
m

occ∑
n

occ∑
l

(
∇RC

∗
m

)
Cl

(
〈n|Hl〉 − i~

〈
n|dl
dt

〉)
δmn

+
occ∑
m

occ∑
n

occ∑
l

C∗mCl
(
〈n|Hl〉 − i~

〈
n|dl
dt

〉)
〈∇Rm|n〉

+
HS∑
m

HS∑
n

i~
(
∇RC

∗
m

)
Cn

〈
m|dn

dt

〉

+
occ∑
m

occ∑
n

i~C∗mCn
〈
∇Rm|

dn

dt

〉
. (5.22)

The first term on the right side of the above equation is simplified to

occ∑
m

occ∑
n

occ∑
l

(
∇RC

∗
m

)
Cl

(
〈n|Hl〉 − i~

〈
n|dl
dt

〉)
δmn

=
occ∑
m

occ∑
l

(
∇RC

∗
m

)
Cl

(
〈m|Hl〉 − i~

〈
m|dl
dt

〉)
,

which by interchanging the dummy variables l and n is recast in the form

occ∑
m

occ∑
n

(
∇RC

∗
m

)
Cn

(
〈m|Hn〉 − i~

〈
m|dn

dt

〉)
.

Taking into account the above expression as well as by using 〈∇Rm|n〉 = −〈m|∇Rn〉 in
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the second term on the right side of Eq. (5.22), we find〈
∇RΨ | i~dΨ

dt

〉
=

occ∑
m

occ∑
n

(
∇RC

∗
m

)
Cn 〈m|Hn〉

−
occ∑
m

occ∑
n

occ∑
l

C∗mCl
(
〈n|Hl〉 − i~

〈
n|dl
dt

〉)
〈m|∇Rn〉

+
occ∑
m

occ∑
n

i~C∗mCn
〈
∇Rm|

dn

dt

〉
. (5.23)

By interchanging the dummy variables l and n in the second term on the right side of

Eq. (5.23), the
〈
∇RΨ | i~dΨ

dt

〉
term is finally rearranged into

〈
∇RΨ | i~dΨ

dt

〉
=

occ∑
m

occ∑
n

(
∇RC

∗
m

)
Cn 〈m|Hn〉

−
occ∑
m

occ∑
n

occ∑
l

C∗mCn 〈m|∇Rl 〉 〈l|Hn〉

+
occ∑
m

occ∑
n

occ∑
l

i~C∗mCn 〈m|∇Rl 〉
〈
l |dn
dt

〉

+
occ∑
m

occ∑
n

i~C∗mCn
〈
∇Rm|

dn

dt

〉
. (5.24)

Similarly, by using Eqs. (5.20) – (5.21) and performing analogous calculations, or equiv-
alently by taking the complex conjugate of Eq. (5.23) and then interchanging the dummy

variables n with m, we evaluate the
〈
i~
dΨ

dt
|∇RΨ

〉
term which is found to be

〈
i~
dΨ

dt
|∇RΨ

〉
=

occ∑
m

occ∑
n

C∗m (∇RCn) 〈m|Hn〉

+
occ∑
m

occ∑
n

occ∑
l

C∗mCn 〈m|Hl〉 〈 l |∇Rn〉

−
occ∑
m

occ∑
n

occ∑
l

i~C∗mCn
〈
m|dl
dt

〉
〈 l |∇Rn〉

−
occ∑
m

occ∑
n

i~C∗mCn
〈
dm

dt
|∇R n

〉
. (5.25)
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By adding then Eq. (5.24) with Eq. (5.25) we get〈
∇RΨ | i~dΨ

dt

〉
+

〈
i~
dΨ

dt
|∇RΨ

〉
=

occ∑
m

occ∑
n

∇R

(
C∗mCn

)
〈m|Hn〉

−
occ∑
m

occ∑
n

C∗mCn

(
occ∑
l

(〈m|∇Rl 〉 〈l|Hn〉 − 〈m|Hl〉 〈 l |∇Rn〉)

)

+i~
occ∑
m

occ∑
n

C∗mCn

(
occ∑
l

(
〈m|∇Rl 〉

〈
l |dn
dt

〉
−
〈
m|dl
dt

〉
〈 l |∇Rn〉

))

+i~
occ∑
m

occ∑
n

C∗mCn
(〈
∇Rm|

dn

dt

〉
−
〈
dm

dt
|∇R n

〉)
. (5.26)

We will now take into account the action of the total time derivative

d

dt
=

∂

∂t
+
∂R

∂t
·∇R

on the basis states |n 〉, as well as use the vector identity

∂R

∂t
× (A×B) = A

(
∂R

∂t
·B
)
−
(
∂R

∂t
·A
)

B.

In this respect, the term(
〈m|∇Rl 〉

〈
l |dn
dt

〉
−
〈
m|dl
dt

〉
〈 l |∇Rn〉

)
within the sum of Eq. (5.26) takes the form

〈m|∇Rl 〉
〈
l |dn
dt

〉
−
〈
m|dl
dt

〉
〈 l |∇Rn〉 =

∂R

∂t
× ( 〈m|∇Rl 〉 × 〈 l |∇Rn〉 )

+ 〈m|∇Rl 〉
〈
l |∂n
∂t

〉
−
〈
m|∂l
∂t

〉
〈 l |∇Rn〉 .

(5.27)

By then defining the non-Abelian Berry connection

Amn(t,R) = i 〈m|∇Rn 〉 , (5.28)

as well as the the non-Abelian Berry potential

Φmn(t,R) = i

〈
m|∂n

∂t

〉
, (5.29)
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Eq. (5.27) is recast in the form

〈m|∇Rl 〉
〈
l |dn
dt

〉
−
〈
m|dl
dt

〉
〈 l |∇Rn〉 = − ∂R

∂t
×( Aml ×Aln )− ( Aml Φln − Φml Aln ) .

In an analogous manner, the term
(〈
∇Rm|

dn

dt

〉
−
〈
dm

dt
|∇R n

〉)
that enters the sum in

Eq. (5.26) takes the form〈
∇Rm|

dn

dt

〉
−
〈
dm

dt
|∇R n

〉
=

∂R

∂t
× 〈∇Rm| × |∇R n〉

+

〈
∇Rm|

∂n

∂t

〉
−
〈
∂m

∂t
|∇R n

〉
,

which by defining the Berry curvatures

Bmn(t,R) = i 〈∇Rm| × |∇R n〉 (5.30)

and
Emn(t,R) = i

〈
∇Rm|

∂n

∂t

〉
− i
〈
∂m

∂t
|∇R n

〉
, (5.31)

is recast in the form〈
∇Rm|

dn

dt

〉
−
〈
dm

dt
|∇R n

〉
= −i ∂R

∂t
×Bmn − iEmn. (5.32)

Finally, by introducing the matrix elements of the Hamiltonian

Emn(t,R) = 〈m|Hn〉 (5.33)

we recast Eq. (5.26) in the form〈
∇RΨ | i~dΨ

dt

〉
+

〈
i~
dΨ

dt
|∇RΨ

〉
=

occ∑
m

occ∑
n

∇R

(
C∗mCn

)
Emn

+ i
occ∑
m

occ∑
n

C∗mCn
occ∑
l

(AmlEln − Eml Aln)

−i~
occ∑
m

occ∑
n

C∗mCn
occ∑
l

(
∂R

∂t
× ( Aml ×Aln ) + ( Aml Φln − Φml Aln )

)

~
occ∑
m

occ∑
n

C∗mCn
(
∂R

∂t
×Bmn + Emn

)
(5.34)
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Substituting then Eq. (5.34) and Eqs. (5.14) – (5.15) into Eq. (5.6) we find

〈O(t,R)〉 =
occ∑
m

occ∑
n

C∗mCn∇REmn +
occ∑
m

occ∑
n

C∗mCnSmn

− i
occ∑
m

occ∑
n

C∗mCn
occ∑
l

( AmlEln − Eml Aln )

− ~
occ∑
m

occ∑
n

C∗mCn

(
Emn − i

occ∑
l

( Aml Φln − Φml Aln )

)

−~ ∂R

∂t
×

occ∑
m

occ∑
n

C∗mCn

(
Bmn − i

occ∑
l

Aml ×Aln

)

where
〈O(t,R)〉 = 〈Ψ(t,R) |∇RH(t,R) |Ψ(t,R)〉 (5.35)

is the observable in quest, that can be related to a “generalized force” given by

〈F (t,R)〉 = −〈Ψ(t,R) |∇RH(t,R) |Ψ(t,R)〉

= −〈O(t,R)〉 . (5.36)

Eq. (5.35) is our generalized extended dynamical HF theorem.
The non-Hermitian term Smn(t,R), by working in position representation and assuming

real scalar and vector potentials, is always transformed to a boundary integral (due to sym-
metry of the integrands) over the system’s boundaries and is given (assuming a 3D system)
by

Smn(t,R) =
〈
m(t,R) |

(
H(t,R)+ −H(t,R)

)
∇Rn(t,R)

〉
=
i~
2

‹
S

n·
(

(v Φ+
m + Φ+

m v
)
∇RΦn dS,

(5.37)

where v =
i

~
[H(t,R), r] is the standard velocity operator, n is the unit vector that is lo-

cally normal to the surface that encloses the system and Φm ≡ Φm(t,R) = 〈 r |m(t,R) 〉.
The form of the dynamical extended HF theorem Eq. (5.35) is the first major result of

this theoretical analysis. It is applicable to dynamic quantum processes of closed systems,
and it is based on the dynamics as encoded in the expansion coefficients equation of motion,
as well as in the topology of the projective Hilbert space that is spanned by the basis states
that are occupied; this way one can extract patterns of behaviors that come up owing to the
dynamics and the topology.

Due to the emerging gauge structure of the observable’s 〈O(t,R)〉 expectation value
formula Eq. (5.35), we are surprisingly led to define three different non-Abelian Berry
curvatures, quantities that are explicitly involved into the dynamical extension of the HF
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theorem that we have derived.
Namely, we define the non-Abelian curvature

F (B)
mn = Bmn − i

occ∑
l

Aml ×Aln, (5.38)

that involves the Berry “magnetic field” Bmn, a second one that involves the Berry “electric
field” Emn and is given from

F (E)
mn = Emn − i

occ∑
l

( Aml Φln − Φml Aln ) , (5.39)

with connections Amn and Φml given by Eq. (5.28) and Eq. (5.29), and the last one that
involves the Hamiltonian’s matrix elements and is given by

F (E)
mn = i

occ∑
l

( AmlEln − Eml Aln ) . (5.40)

In this fashion, the dynamical and extended HF theorem is compactly recast in the form

〈O(t,R)〉 =
occ∑
m

occ∑
n

C∗mCn∇REmn +
occ∑
m

occ∑
n

C∗mCnSmn

−
occ∑
m

occ∑
n

C∗mCnF (E)
mn − ~

occ∑
m

occ∑
n

C∗mCnF (E)
mn

−~ ∂R

∂t
×

occ∑
m

occ∑
n

C∗mCnF (B)
mn. (5.41)

The non-Abelian Berry curvatures F (B)
mn and F (E)

mn are emerging quantities with inherited
non-Abelian gauge structure. These curvatures come up irrespectively of the energy scale
of the quantum system, that is, they are independent of the character of the local probability
amplitude field Ψ(r, t,R). They appear, either when the wavefunction is a scalar complex
number (thus describing a spinless low energy quantum motion) or for a complex spinor
wavefunction that describes a relativistic high energy spinfull motion. It is remarkable that
the form of the non-Abelian curvatures that results from our derivation has similar structure
to the ones of the field strength tensors of Yang-Mills theory [152]. The origin of these non-
Abelian curvatures that we have found is attributed to the occupation of the available Hilbert
space2. Specifically, whenever the quantum state under consideration |Ψ(t,R)〉 spans more
than one dimension of the available Hilbert space, that is, the state is at any instant made

2Whenever the basis states |n 〉 do not have explicit time-dependence, the non-Abelian curvature F (E)
mn

becomes zero by definition.
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up by a coherent superposition of orthonormal basis states, the non-Abelian structure of the
observable in quest comes up. On the other hand, whenever the assumed quantum state is
at all times aligned in only one direction of the available Hilbert space (therefore the state is
parallel to a single basis state), the non-Abelian Berry curvatures are truncated into Abelian
quantities and the observable in quest 〈O(t,R)〉 looses its internal non-Abelian gauge struc-
ture. A quantum process described by a coherent superposition may appear for example: (i)
due to an adiabatic time evolution of a degenerate ground state, or (ii) due to a quantum
quench that sets the system into a non-equilibrium state (after the quench) where the ex-
pansion coefficients evolve in time adiabatically, uncoupled to each other, with no optical
transitions taking place, or finally, (iii) due to time-dependent driving where certain coupling
between the expansion coefficients is expected. In addition, the observable in quest has an
inherited non-Hermitian boundary contribution Smn that do not depend on the dynamics,
rather they depend only on the spatial boundary conditions of the wavefunctions.

The observables 〈O(t,R)〉 that are given by Eq. (5.41) always have a part that is trans-
verse to the direction of the parameter variation ∂R which is given by

〈O(t,R)〉tran = −~ ∂R

∂t
×

occ∑
m

occ∑
n

C∗mCnF (B)
mn, (5.42)

as easily confirmed by 〈O(t,R)〉tran · ∂R = 0 (where we have used the vector identity
∂R×A · ∂R = A · ∂R× ∂R = 0), while the first four terms on the right side of Eq. (5.41)
may have longitudinal as well transverse part.

Due to the structure of the observable Eq. (5.41) one intuitively expects that, in virtue of
this dynamical extended HF theorem, in dynamic quantum processes where only the diagonal
non-Abelian curvatures survive, that is the only nonzero curvatures are

F (B)
nn = Bnn − i

occ∑
l

Anl ×Aln

and

F (E)
nn = Enn − i

occ∑
l

( Anl Φln − Φnl Aln ) ,

which are real and gauge invariant quantities by definition, then the standard topology (1st
Chern class) of the systems (that is defined by the fluxes of the Abelian curvatures Bnn
and Enn) must be extended in order to include the fluxes of the extra terms in the above
equations. These circumstances are analyzed further in Sec.5.2.

5.1.1 Emerging many-band covariant derivatives

Due to the structure of the non-Abelian Berry curvatures F (B)
mn and F (E)

mn, these can be
transformed and equally expressed by the occupied-band covariant derivatives that we define
below. Specifically, we define the (parameter) gradient occupied-band covariant derivative
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as

∇̃R =

(
1−

occ∑
l

| l 〉 〈 l |

)
∇R, (5.43)

and the time occupied-band covariant derivative as

∂̃

∂t
=

(
1−

occ∑
l

| l 〉 〈 l |

)
∂

∂t
(5.44)

respectively. When each one of the above abstract occupied-band covariant derivatives acts
on a state |n〉 gives ∣∣∣∇̃Rn

〉
= |∇Rn〉 −

occ∑
l

〈 l |∇Rn〉 | l 〉 (5.45)

and ∣∣∣∣∣ ∂̃n∂t
〉

=

∣∣∣∣∂n∂t
〉
−

occ∑
l

〈
l |∂n
∂t

〉
| l 〉 (5.46)

respectively.
By now using Eq. (5.45) as well as Eq. (5.28) and Eq. (5.30), and by exploiting the

orthogonality of the basis states 〈m|n〉 = δmn, a straightforward calculation shows that the
non-Abelian Berry curvature F (B)

mn of Eq. (5.38) is equally expressed as

F (B)
mn = i

〈
∇̃Rm| × |∇̃R n

〉
. (5.47)

Similarly, by using Eqs. (5.45) – (5.46) as well as Eq. (5.29) and Eq. (5.31), and the or-
thogonality of the basis states, straightforward calculation shows that the non-Abelian Berry
curvature F (E)

mn of Eq. (5.39) is equally given by

F (E)
mn = i

〈
∇̃Rm|

∂̃n

∂t

〉
− i

〈
∂̃m

∂t
|∇̃R n

〉
. (5.48)

These two covariant derivatives are useful for two reasons.
First, by using them one can easily show the gauge invariance in the time-parameter

space t×R with respect to a large global gauge transformation that transforms each one
of the basis states |n〉 → eiΛ(t,R) |n〉, where Λ(t,R) is real scalar function. Under this
global gauge transformation, Eqs. (5.45) – (5.46) transforms (covariantly) like

∣∣∣∇̃Rn
〉
→

eiΛ(t,R)
∣∣∣∇̃Rn

〉
and

∣∣∣∣∣ ∂̃n∂t
〉
→ eiΛ(t,R)

∣∣∣∣∣ ∂̃n∂t
〉

respectively, which shows that the non-

Abelian Berry curvatures F (B)
mn and F (E)

mn evaluated by Eqs. (5.47) – (5.48) are gauge-
invariant with respect to this kind of global time-parameter gauge transformations, therefore
they can carry a topological charge.

Second, whenever all the dimensions of the available Hilbert space are occupied due
to the dynamics, that is, all expansion coefficients evolve in time coupled to each other,
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we replace
occ∑
l

→
HS∑
l

, which leads to ∇̃R = 0 and
∂̃

∂t
= 0, that gives F (B)

mn = 0 and

F (E)
mn = 0.

5.1.2 One basis state formula

In the adiabatic and non-degenerate limit, and whenever the time-dependent state |Ψ(t,R)〉
is aligned to a single basis state at all times

|Ψ(t,R)〉 ≡ Cν(t,R) |ν(t,R)〉 , (5.49)

therefore the occupied Hilbert space behaves as an effective one-dimension space, then, each

sum in Eq. (5.41) is truncated into a single index ν term
occ∑
i

→ δiν without any summation

taking place. In this one basis-state limit the non-Abelian curvatures truncates to

F (B)
mn → Bνν F (E)

mn → Eνν F (E)
mn → 0, (5.50)

as evidenced from Eqs. (5.38) – (5.40), and each one curvature F (B)
νν ≡ Bνν and

F (E)
νν = Eνν is evaluated with respect to the state |ν(t,R)〉 in virtue of Eqs. (5.30) – (5.31).

By taking into account the normalization condition, that is, replacing |Cν(t,R)|2 = 1 within
Eq. (5.41), one finds the observable’s expectation value in this one-basis state approximation,
which is evaluated as an Abelian quantity by

〈O(t,R)〉 =∇REνν + Sνν − ~Eνν − ~
∂R

∂t
×Bνν .

(5.51)

5.1.3 Matrix formulation

By combining Eq. (5.7) and Eq. (5.35) which gives

〈O(t,R)〉 =
occ∑
m

occ∑
n

C∗mCn 〈m|∇RH(t,R)|n〉 , (5.52)

and then taking into account Eq. (5.41), each component

O(t,R)mn = 〈m(t,R) |∇RH(t,R) |m(t,R)〉

of the observable in quest is given by

O(t,R)mn =∇REmn + Smn −F (E)
mn − ~F (E)

mn − ~
∂R

∂t
×F (B)

mn. (5.53)
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By using the Eq. (5.53) terms as matrix elements, we construct a vector-valued matrix equa-
tion (with the entries being vectors) for the observable in quest given by

O(t,R) =∇RE + S −F (E) − ~F (E) − ~
∂R

∂t
×F (B). (5.54)

In this equation, E is a scalar-valued matrix constructed from the elements Emn, while all
other bold and calligraphic letters, S, F (E), F (E) as well as F (B), denote the respective
matrices (which do not generally commute with each other, thus, they satisfy non-Abelian
algebra). In this fashion, the observables’ expectation value 〈O(t,R)〉 is given by the matrix
product

〈O(t,R)〉 = C(t,R)†O(t,R) C(t,R)

= C(t,R)†
(
∇RE + S −F (E) − ~F (E) − ~

∂R

∂t
×F (B)

)
C(t,R)

(5.55)

where

C(t,R) =



C1(t,R)

C2(t,R)

C3(t,R)
...

CN(t,R)


(5.56)

is the column vector of the expansion coefficients. By using Eqs. (5.38) – (5.40) and

Eqs. (5.28) – (5.31), as well as 〈∇Rn|m 〉 = −〈n|∇Rm 〉 and
〈
∂n

∂t
|m
〉

= −
〈
n|∂m
∂t

〉
,

by straightforward calculation one can show the following relations

(Emn)∗ = Enm(
F (E)
mn

)∗
= F (E)

nm(
F (E)
mn

)∗
= F (E)

nm(
F (B)
mn

)∗
= F (B)

nm, (5.57)

giving therefore that the respective matrices

E† = E(
F (E)

)†
= F (E)(

F (E)
)†

= F (E)(
F (B)

)†
= F (B) (5.58)
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are Hermitian. On the other hand, taking into account the domain of definition of the Hamil-
tonian 〈n | (H+ −H)m〉 = 0, by deriving both of its members with respect to the parameter
∇R, we find

〈
∇Rn |

(
H+ −H

)
m
〉

+ 〈(∇RH)n |m〉 − 〈n | (∇RH)m〉+
〈
n |
(
H+ −H

)
∇Rm

〉
= 0.

The first term of the left side of this equation is expressed as

〈
∇Rn |

(
H+ −H

)
m
〉

= −
〈(
H+ −H

)
∇Rn |m

〉
= −

〈
m |

(
H+ −H

)
∇Rn

〉∗
By then using the definition Smn = 〈m | (H+ −H)∇Rn〉 we find the relation

−(Smn)∗ + 〈(∇RH)n |m〉 − 〈n | (∇RH)m〉+ Snm = 0

which results into

(Smn)∗ = Snm + 〈(∇RH)n |m〉 − 〈n | (∇RH)m〉 , (5.59)

that implies that the matrix S is Hermitian whenever the operator ∇RH(t,R) belongs
within the domain of definition of the Hamiltonian. Having in mind that each matrix can
always be separated into a Hermitian and an anti-Hermitian part, then Eq. (5.59) provides
the anti-Hermitian part of the matrix S which cancels the corresponding anti-Hermitian
part of the observable’s matrix O. We remind that the matrix S is not zero only whenever
the parameter gradient operator ∇R gives states that do not belong within the domain of
definition of the Hamiltonian.

5.1.4 Unitary transformations

The time evolution of the expansion coefficients given from

i~
dCn
dt

=
occ∑
l

〈
n|
(
H(t,R)− i~ d

dt

)
l

〉
Cl

=
occ∑
l

〈n| HF (t,R) l 〉Cl, (5.60)

where
HF (t,R) = H(t,R)− i~ d

dt
, (5.61)

can equally be expressed as a matrix equation given by

i~
dC(t,R)

dt
= HF (t,R) C(t,R), (5.62)

156

Kyri
ak

ou
 Kyri

ak
os



Chapter 5 Section 5.1

where C(t,R) is the column vector given from Eq. (5.56) and HF (t,R) is the Hermitian
matrix given by

HF (t,R) =


〈1 |HF 1 〉 〈1 |HF 2 〉 . . . 〈1 |HF N 〉

〈2 |HF 1 〉 〈2 |HF 2 〉 . . . 〈2 |HF N 〉
...

... . . .
...

〈N |HF 1 〉 〈N |HF 2 〉 . . . 〈N |HF N 〉

 . (5.63)

The above Hermitian matrix HF (t,R) captures the real time coupling between the expan-
sion coefficients due to the dynamics that are encoded by the potentials within the Hamilto-
nian operator H(t,R) and the orthonormal basis states |n 〉 that are being used. Whenever
the time-dependent quantum state |Ψ(t,R)〉 is in a superposition and it occupies more than
one dimension of the available Hilbert space, then, we can assume a unitary transformation
of the expansion coefficients given by

C(t,R) = U(t,R) C ′(t,R). (5.64)

The unitary matrix U(t,R) is an N ×N matrix (where N is the instantaneous number of
the dimensions of the Hilbert space that are occupied) satisfying

U(t,R)† U(t,R) = U(t,R)−1 U(t,R) = I

while C ′(t,R) is the new column vector. In other words, Eq. (5.64) denotes a linear trans-
formation of the expansion coefficients given by

Cm(t,R) =
occ∑
l

Uml(t,R)C ′l(t,R). (5.65)

Owing to Eq. (5.64), the expansion coefficients satisfy

C(t,R)† C(t,R) = C ′(t,R)† C ′(t,R),

which means that this kind of unitary transformation preserves the normalization

〈Ψ(t,R)|Ψ(t,R)〉 =
occ∑
m

|Cm(t,R)|2 =
occ∑
n

|C ′n(t,R)|2 = 1 (5.66)

without affecting the basis states |n 〉. Therefore, the action of any complex unitary matrix
U(t,R) conserves the norm of the state-vector |Ψ(t,R)〉, which implies that they generate
rotations in the Hilbert space over a unit sphere, resulting into the formation of a (generally
non-Abelian) U(N) group with elements the complex unitary matrices. The complex unitary
matrix transformation Eq. (5.64) together with Eq. (5.62), implies that the equation of
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motion of the new expansion coefficients is given by

i~
dC ′(t,R)

dt
=

(
U(t,R)−1HF (t,R)U(t,R)− i~U(t,R)−1dU(t,R)

dt

)
C ′(t,R). (5.67)

The (complex) unitary matrix transformation Eq. (5.64) together with Eq. (5.67), indicates
that this kind of unitary transformation changes the coupling between the expansion coeffi-
cients without increasing the total number of dimensions of the Hilbert space that are occu-
pied. For example, assume an initial basis state set where the matrix HF (t,R) is diagonal
and the expansion coefficients C(t,R) evolve uncoupled to each other, then, a unitary trans-
formation with a constant matrix U results to new expansion coefficients C ′(t,R) that will
evolve by the matrix U−1HF (t,R)U which is not anymore diagonal, but, the total number
of occupied dimensions is the same.

By now using the gauge freedom of the expansion coefficients column vectors C(t,R),
we perform a unitary transformation and substitute Eq. (5.64) into Eq. (5.55) which gives

〈O〉 = C ′ † U−1

(
∇RE + S −F (E) − ~F (E) − ~

∂R

∂t
×F (B)

)
U C ′

The above equation, together with the gauge freedom of choosing any appropriate unitary
matrix U(t,R), has far reaching consequences. Specifically, having in mind that the matrix
in the following parenthesis(

∇RE + S −F (E) − ~F (E) − ~
∂R

∂t
×F (B)

)
is a Hermitian matrix, then, by means of a unitary similarity transformation, one can always
choose such a unitary matrix U(t,R) that transforms the quantity

U(t,R)−1

(
∇RE + S −F (E) − ~F (E) − ~

∂R

∂t
×F (B)

)
U(t,R)

into a diagonal matrix

U(t,R)−1

(
∇RE + S −F (E) − ~F (E) − ~

∂R

∂t
×F (B)

)
U(t,R)

=

(
∇RẼ + S̃ − F̃

(E)
− ~ F̃

(E)
− ~

∂R

∂t
× F̃

(B)
)
diagonal

(5.68)

In this framework, by choosing a convenient unitary matrix U(t,R), the expectation
value of the observable 〈O(t,R)〉 given by Eq. (5.41), can equally be calculated by a
unitary similar diagonal form given from

〈O(t,R)〉 =
occ∑
n

|C ′n|2
(
∇RẼnn + S̃nn − F̃

(E)

nn − ~F̃
(E)

nn − ~
∂R

∂t
× F̃

(B)

nn

)
. (5.69)
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It is now wort pointing out the origin of the above mentioned unitary transformations. These
are attributed to local gauge transformations of the wavefunctions

Ψ(r, t,R) = eiΛ(r, t,R)Φ(r, t,R) (5.70)

where Ψ(r, t,R) =
occ∑
m

Cm(t,R)ψm(r, t,R) and Φ(r, t,R) =
occ∑
l

C ′l(t,R)ψl(r, t,R).

The wavefunctions ψn(r, t,R) are the orthonormal basis state wavefunctions, which are
assumed to be the same before and after the gauge transformation, whereas Cn(t,R) and
C ′l(t,R) are the respective expansion coefficients. Λ(r, t,R) is a real scalar function for
scalar wavefunctions and a Hermitian matrix for spinor wavefunctions. The gauge transfor-
mation Eq. (5.70) gives

occ∑
m

Cm(t,R)ψm(r, t,R) =
occ∑
l

C ′l(t,R) eiΛ(r, t,R)ψl(r, t,R), (5.71)

which by exploiting the orthogonality of the basis states results to

Cm(t,R) =
occ∑
l

〈
ψm |eiΛ(r, t,R)|ψl

〉
C ′l(t,R), (5.72)

that has the same structure as Eq. (5.65). We note that, for spinless electrons, if one as-
sumes a gauge function Λ(t,R) that does not depend on the position coordinates, then,

Cm(t,R) =
occ∑
l

eiΛ(t,R) 〈ψm |ψl 〉C ′l(t,R) = eiΛ(t,R)C ′m(t,R), indicating that the gauge

function must have coordinates dependence, in order to give a linear transformation that
changes the expansion coefficients column vectors by a unitary matrix U(t,R) that is not
diagonal.

5.1.5 Maxwell type of equation

By taking the curl of both sides of Eq. (5.54) and using the vector identity
∇× (A×B) = A (∇ ·B)−B (∇ ·A) + (B ·∇) A− (A ·∇) B we find

∇R ×F (E) = LvF (B) +F (B)∇R ·vR − vR∇R ·F (B) − 1

~
∇R×

(
O − S −F (E)

)
where

LvF (B) = (vR ·∇R)F (B) −
(
F (B) ·∇R

)
vR (5.73)

is the Lie derivative of the curvature matrix F (B)(t,R) with respect to the vector field
vR(t,R). Eq. (5.73) is a general Maxwell type of equation in t×R space without any
conservation law being involved.

In the modern magnetohydrodynamics theories, one can formulate geometrical objects
(i.e. vectors or tensors) that are Lie dragged and advected with the flow. In this framework,
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by working (compactly) with the vector-valued matrix Eq. (5.54) (rather than working with
each one equation of the matrix vector elements Eq. (5.53)), if one assumes that the flux

¨
S(t)

F(t,R)(B) · d2S

is advected with the flow, one can derive a local Maxwell type of equation where the topolog-
ical charges are conserved. By using the 2D analogue of the convection theorem for arbitrary

surface S(t) that is moving with the flow with velocity vR =
dR

dt
, then, the curvature matrix

F (B)(t,R) flux is Lie dragged with the flow when

d

dt

¨

S(t)

F (B) · dS =

¨

S(t)

(
∂F (B)

∂t
−∇R×

(
vR×F (B)

)
+ vR ∇R ·F (B)

)
· dS = 0. (5.74)

Because the surface S(t) is arbitrary, the curvature matrix F (B)(t,R) satisfies the local
equation

∂F (B)

∂t
−∇R×

(
vR×F (B)

)
+ vR ∇R ·F (B) = 0, (5.75)

which guarantees the Lie dragging. By using the Lie derivative LvF (B), the local Eq. (5.75) is
expressed as

∂F (B)

∂t
+ LvF (B) + F (B) ∇R·vR = 0. (5.76)

Substituting Eq. (5.76) into Eq. (5.73) we find a (vector-valued matrix) Maxwell type of
equation

∇R ×F (E) = −JR −
∂F (B)

∂t
(5.77)

where
JR = vR∇R ·F (B) +

1

~
∇R×

(
O − S −FE

)
(5.78)

is the vector-valued matrix of the current that is entering into the Maxwell equation. Taking
the divergence of both sides of Eq. (5.75) (which guarantees the Lie drag) we find

∂

∂t
∇R ·F (B) +∇R ·

(
vR∇R ·F (B)

)
= 0, (5.79)

which with the aid of Eq. (5.78) is transformed into a continuity equation

∂ρM
∂t

+∇R · JR = 0 (5.80)

where ρM is defined by
ρM =∇R ·F (B) (5.81)

and is the scalar matrix of the topological monopole charge density. Note that, whenever all
the dimensions of the available Hilbert space are occupied due to the dynamics, then each
one entry of the matrix F (B)

mn = 0 is separately zero, which results to ρM = 0, implying that
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no topological monopole charges can be found. Hence, if no constraints in Hilbert space
occupancies, the nontrivial topology is lost.

5.2 Topological Invariants

5.2.1 Single dimension of the available Hilbert space occupied:
Chern class

When only one dimension of the available Hilbert space is occupied, the non-Abelian Berry
curvature is simplified into the diagonal Abelian Berry curvature
F (B)
mn(t,R)→ Bnn(t,R) which is a real quantity Bnn(t,R)∗ = Bnn(t,R). The flux of
Bnn(t,R) over a closed manifold is a topological invariant

1

2π

‹
S

Bnn(t,R)·dS = C
(n)
1 ∈ Z (5.82)

called the first Chern number. This topological invariant is due to an obstruction to single-
valuedness (integrability) of the wavefunction, with respect to the parameter coordinates R,
which is more easily shown within the Dirac string method.

Dirac string method

We use the vector identity ∇R × (fV ) =∇Rf × V + f∇R × V into the integrand of
Eq. (5.82) which gives

Bnn(t,R) = i 〈∇R n| × |∇R n〉

= i∇R × 〈n|∇R n〉 − i 〈n|∇R ×∇R n〉 ,

(5.83)

where the last term i 〈n|∇R ×∇R n〉 is a singular term that is not zero due to a Dirac
string formation. If the assumed wavefunction Ψn = 〈 r|n〉 is everywhere single-valued (in-
tegrable) over the manifold, then, for any closed tangent line on the manifold it must satisfy˛
C

∇RΨn ·dR = 0, which by using the Stokes theorem implies the local relation

∇R ×∇RΨn = 〈 r|∇R ×∇R n〉 = 0, that is precisely the integrability condition. There-
fore, by assuming that the wavefunction is integrable all over the manifold
〈n|∇R ×∇R n〉 = 0, and by employing Eq. (5.83) in Eq. (5.82) we find

1

2π

‹
S

Bnn(t,R)·dS =
i

2π

‹
S

∇R × 〈n|∇R n〉·dS = 0

for a closed manifold. Thus a zero Chern number indicates that there does not exist a Dirac
string in parameter space.

Assuming a scalar wavefunction Ψn = |Ψn|eiSn , where |Ψn| is its modulus and Sn its
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phase, we define as Dirac string (or dislocation line), in parameter space, the segment of a
line where the phase Sn is undetermined (with respect to parameter coordinates) and non-
integrable ∇R ×∇RSn 6= 0, but the modulus of the wavefunction |Ψn| is not zero. By
assuming that the modulus of the wavefunction is integrable quantity∇R ×∇R|Ψn| = 0 (in

order that the wavefunction to be normalized
˚

V

|Ψn|2d3r = 1), this kind of Dirac string

in parameter space exists on the lines where ∇R ×∇RΨn = i |Ψn|eiSn∇R ×∇RSn 6= 0.
Because the phase factor eiSn is single-valued, the phase satisfies˛
C

∇RSn · dR =

¨
S

∇R ×∇RSn · dS = 2πn where n is an integer. Then, for a single

Dirac string penetrating once the manifold we may define

∇R ×∇RSn = 2πn δ2(R−Rstring)

where δ2(R−Rstring) is the 2D vector Dirac delta function with direction parallel to the
dislocation line. Then, the singular contribution of the Berry curvature is given by

− i 〈n|∇R ×∇R n〉 ≡ −i2
˚

V

|Ψn|2∇R ×∇RSn d
3r

= 2πn δ2(R−Rstring)

˚
V

|Ψn|2 d3r

= 2πn δ2(R−Rstring). (5.84)

By using Eq. (5.83) and Eq. (5.84) we find

− n δ2(R−Rstring) =
1

2π

(
∇R ×Ann(t,R) − Bnn(t,R)

)
, (5.85)

which is precisely the integrand that is used for the calculation of the Z2 invariant [51, 52]
that probes the obstruction to single-valuedness over the half Brillouin zone in the quantum
spin Hall effect.

Therefore, within this kind of Dirac string formulation one finds

1

2π

‹
S

Bnn(t,R) · dS =
2πn

2π

‹
S

δ2(R−Rstring) · dS = n

where n is an integer. The integer n is a topological invariant (called topological charge),
which is a gauge invariant property with respect to any global gauge transformation in param-
eter space |n 〉 → eiΛ(R) |n 〉, even if the assumed gauge function Λ(R) is a function that
has singularities ∇R ×∇RΛ(R) 6= 0. This global topological invariant property, is guaran-
teed due to the definition of the diagonal Berry curvature Eq. (5.83), which guarantees local
gauge invariance in t×R space. Namely, by assuming the local (in t×R space) gauge
transformation |n 〉 → eiΛ(R) |n 〉 in Bnn(t,R) = i 〈∇R n| × |∇R n〉, after a straight-
forward calculation one finds Bnn(t,R)→ Bnn(t,R).
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Fiber bundle method

If one assumes that the basis states |n 〉 are everywhere single-valued in t×R space and
neglects the singular term in Eq. (5.83), the diagonal Berry curvature in use is given by

Bnn(t,R) ≡ i∇R × 〈n|∇R n〉 = i∇R ×Ann, (5.86)

which is a gauge-dependent quantity with respect to a singular gauge transformation. As is
evident from Eq. (5.86), in topologically non-trivial systems satisfying
1

2π

‹
S

Bnn(t,R)·dS 6= 0, the diagonal Berry connection Ann must have singularities,

namely, there is at least one point on the closed manifold where the Berry connection is
undefined. It is a fact that, for topologically non-trivial systems, the Berry connection calcu-
lated with respect to a basis state |n 〉 cannot be regular function of R all over the manifold
without at least one singularity. In fiber bundle theory, one avoids the singularity problem
by employing more than one Berry connections. In this fashion, one separates the closed
manifold into two regions (patches), the north (N) one having a regular Berry connection
AN(t,R) = i 〈n|∇R ×∇R n〉 and the south one (S) that also has a regular Berry con-
nection AS(t,R) = i 〈 ñ|∇R ×∇R ñ〉 evaluated with respect to a gauge transformed basis
state | ñ 〉 = eiΛ(R) |n 〉. In the overlapping region, this two connections are related by a
singular gauge transformation given by AS(t,R) = AN(t,R)−∇RΛ(R), where Λ(R)

is called transition function and accounts for the singular gauge transformation. In this re-
spect, by separating the closed manifold into two open manifolds, the north (N) part and the
respective south part (S), the flux of the diagonal Berry curvature over the closed manifold
is given by

1

2π

‹
S

Bnn(t,R)·dS =
1

2π

‹
SN

Bnn(t,R)·dS +
1

2π

‹
SS

Bnn(t,R)·dS

=
1

2π

˛
C

(AN(t,R)−AS(t,R))·dR

=
1

2π

˛
C

∇RΛ(R) · dR = n (5.87)

where n is an integer.

Elementary consideration

It is interesting to note the connection of the diagonal Berry curvature
Bnn(t,R) = i 〈∇R n| × |∇R n〉 with respect to obstructions to analyticity in an elementary
manner. We assume that the basis states |n 〉 are the (instantaneous) eigenstates of the (Her-
mitian) Hamiltonian H(t,R), therefore they satisfy the eigenvalue equation H(t,R) |n 〉 =

En |n 〉 for each value of the parameter R. The latter equation implies that the quantum
states |n 〉 are functions of the energy En while the energy En can be a function of the pa-
rameter R. Therefore, a one to one map can exist that, for each value of the parameter R
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one can define one analytic function of the energy En(R) as well as one quantum state |n 〉,
which is symbolically indicated by the map R 7→ En(R) 7→ |n 〉. In this respect, the action
of the parameter gradient operator ∇R on the quantum state can be evaluated by the chain
rule

|∇R n 〉 =∇REn(R)

∣∣∣∣ ∂ n∂En

〉
,

that gives

Bnn(t,R) = i 〈∇R n| × |∇R n〉

= i

〈
∂ n

∂En
| ∂ n
∂En

〉
∇REn(R)∗ ×∇REn(R),

(5.88)

indicating that the Berry curvature curvature Bnn(t,R) is always zero whenever the ana-
lyticity is not broken. The analytic behavior is broken at those values of the parameter R,
where the real energy En(R) becomes a singular function of the parameter due to degener-
acy which makes it locally a multiply-valued quantity, thus the derivative∇REn(R) cannot
be defined. Similarly, at the degeneracy points the Hamiltonian’s eigenfunction Ψn(t, r,R)

is not analytic function of the energy En and the derivative
∂Ψn(t, r,R)

∂En
cannot be defined

either.

5.2.2 Multiple dimensions of the available Hilbert space occupied:
Chern class and Stiefel-Whitney class

Whenever more than one dimensions of the Hilbert space are occupied and the system is
in a superposition of orthonormal basis states, one has to evaluate the flux of the diagonal
non-Abelian Berry curvature

1

2π

‹
S

F (B)
nn (t,R)· dS, (5.89)

where F (B)
nn is a purely real quantity as seen by Eq. (5.57). The non-Abelian Berry curva-

ture is given according to Eq. (5.38) from

F (B)
nn = Bnn − i

occ∑
l

Anl ×Aln,

where each term is separately a real quantity

B∗nn = Bnn and (iAnl ×Aln)∗ = (iAnl ×Aln)

164

Kyri
ak

ou
 Kyri

ak
os



Chapter 5 Section 5.2

where we have made use of Aln = A∗nl. Taking into account that Ann ×Ann = 0, as well
as that Aln = A∗nl, we express Eq. (5.89) in the form

1

2π

‹
s

F (B)
nn · dS =

1

2π

‹
S

Bnn · dS +
1

2π

occ∑
l 6=n

‹
S

i
(

A∗nl ×Anl

)
· dS. (5.90)

The first term on the right side of Eq. (5.90) is the first Chern number, while the value of
the second term is for the moment unknown. When only the diagonal non-Abelian Berry
curvature F (B)

nn is taken into account, each one cross product Anl ×Aln that enters into
the above sum is a gauge invariant quantity (with respect to gauge transformations of the
form |n 〉 → eiΛ(R) |n 〉, which results to Anl ×Aln → Anl ×Aln ). On the other hand,
when one takes into account the off-diagonal Berry curvature F (B)

mn , then, it is the sum

of all cross products which is the quantity that is gauge invariant
occ∑
l

i (Aml ×Aln) →

occ∑
l

i (Aml ×Aln). The latter considerations suggest that, each cross product i (Anl ×Aln)

that enters in the diagonal non-Abelian Berry curvature F (B)
nn can be linked separately to the

topology of a given manifold.

Elementary consideration

By using similar arguments as in the Abelian consideration Eq. (5.88), namely, employing
the definition of the non-Abelian Berry connection Anl(t,R) = i 〈n|∇Rl 〉 as well as taking
into account the eigenvalue equation H(t,R) | l 〉 = El | l 〉 we find

i
(
A∗nl ×Anl

)
= i

∣∣∣∣〈n| ∂ l∂El

〉∣∣∣∣2 ∇REl(R)∗ ×∇REl(R) (5.91)

indicating that the cross product i (Anl ×Aln) is always zero

i (Anl ×Aln) = 0,

provided that the bands El(R) that takes place into the superposition are analytic functions
of the parameter. The analytic behavior is broken in those occupied bands (denoted by l) and
at those values of the parameter R, where the real energy El(R) becomes a singular function
of the parameter due to degeneracy (which makes it locally a multiple value quantity, thus
the derivative∇REl(R) cannot be defined). Similarly, at the degeneracy points the Hamil-
tonian’s eigenfunction Ψl(t, r,R) is not analytic function of the energy El and the derivative
∂Ψn(t, r,R)

∂El
cannot be defined either. In general, whenever the off-diagonal Berry connec-

tion Anl(t,R) is (for any occupied band l and every value of the parameter R) either a
purely real or a purely imaginary quantity, then, the vectors Anl(t,R) and Aln(t,R) are
parallel to each other resulting to Anl(t,R)×Aln(t,R) = 0.
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Stiefel-Whitney class

The first Stiefel-Whitney class [95] is an obstruction to the orientability of a manifold while
the second Stiefel-Whitney class is an obstruction to linear dependence. In contrast to the
rest of the characteristic classes, the Stiefel-Whitney class cannot be expressed in terms of
the curvature of the bundle. It is very interesting that in a recent theoretical study, concerning
the band topology and linking structure of nodal line semimetals with Z2 monopoles charges
[3], it was found that the non-trivial band topology is characterized by the second Stiefel-
Whitney class, although the study was made for an equilibrium quantum processes.

We are now going to study the

1

2π

occ∑
l 6=n

‹
S

i
(
A∗nl ×Anl

)
· dS (5.92)

term that enters in Eq. (5.90). By expressing the manifold’s elementary surface in Eq. (5.92)
as

dS = dRa × dRb

where dRa and dRb are tangent vectors on the manifold, then, the integrand of Eq. (5.92)
can equally be expressed as

i
(
A∗nl ×Anl

)
·(dRa × dRb) = i(A∗nl ·dRa)(Anl ·dRb) − i(A∗nl ·dRb)(Anl ·dRa). (5.93)

Alternatively, by using

A∗nl ×Anl = 2iReal[Anl]× Im[Anl]

the integrand can equally be expressed by

i
(
A∗nl ×Anl

)
· (dRa × dRb)

= −2
( (

Real[Anl]·dRa

)(
Im[Anl]·dRb

)
−
(

Real[Anl]·dRb

)(
Im[Anl]·dRa

) )
(5.94)

Torus manifold

When the manifold of integration is a torus Eq. (5.92) can be evaluated by

1

2π

occ∑
l 6=n

‹
S

i
(
A∗nl ×Anl

)
· dS

= − 1

π

occ∑
l 6=n

(˛
S1

Real[Anl]·dR
˛
S2

Im[Anl]·dR −
˛
S2

Real[Anl]·dR
˛
S1

Im[Anl]·dR
)
,

(5.95)
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Figure 5.1: Relative magnetic helicity over a torus evaluated by the differences of the off-
diagonal Berry’s phases over the toroidal and poloidal directions.

which is given by the differences of the off-diagonal Berry’s phases over the toroidal direc-
tion S1 (with the major radius) and over the poloidal S2 direction (with the minor radius)
illustrated in Fig. 5.1, and has the form of a generalized relative magnetic helicity over
toroidal and poloidal, directions which is a topological invariant.

Arbitrary closed manifold

For arbitrary closed manifold embedded in 3D parameter space, by using the divergence the-
orem we transform the surface (flux) integration of Eq. (5.92) to a bulk volume integration,
which by using the vector identity ∇R ·(A×B) = B ·∇R×A − A ·∇R×B takes the
form

1

2π

occ∑
l 6=n

‹
S

i
(
A∗nl ×Anl

)
· dS

=
1

π

occ∑
l 6=n

˚
V

(
Real[Anl] ·∇R×Im[Anl] − Im[Anl] ·∇R×Real[Anl]

)
dV

(5.96)

where V is the volume that is enclosed by the surface S. The latter integral has the form
of a generalized relative helicity [144] which is a topological quantity. It describes the
topology of the “magnetic” field lines of ∇R×Real[Anl] with respect to the field lines
of ∇R×Im[Anl], and without having analytical proof, we suspect that it captures the link-
ing between these field lines as illustrated in Fig. 5.2.

5.3 Dynamic topological processes

In what follows we describe certain dynamic processes where the observable in quest
〈O(t,R)〉 is assumed to be evaluated with the HF theorem that we have derive. The purpose
is to indicate in the simplest manner, how and when the topology of the Hilbert space is
expected to play an important role in the quantization and robustness of observables.
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Figure 5.2: Generalized helicity as the linking between the real and imaginary part of the
off-diagonal Berry curvature. (Recall that the magnetic helicity is directly connected to the
Gauss linking number, see i.e. [154], p. 327.)

5.3.1 Degenerate eigenstate of the Hamiltonian evolving adiabatically

We assume that the considered state |Ψg(t,R)〉 =
∑
n∈S

Cn(t,R) |n(t,R)〉 is a time-dependent,

degenerate ground state with well defined instantaneous “energy”Eg(t,R) satisfying the
eigenvalue equation

H(t,R) |Ψg(t,R)〉 =
∑
n∈S

Cn(t,R)H(t,R) |n(t,R)〉

= Eg(t,R) |Ψg(t,R)〉 . (5.97)

Each orthonormal state |n(t,R)〉 has the same “energy” given by
H(t,R) |n(t,R)〉 = Eg(t,R) |n(t,R)〉, and the sum in Eq. (5.97) runs over all different
orthonormal eigenstates within the degeneracy subspace S. We assume a degenerate adi-
abatic approximation, that is, no excitation to higher energy levels than the ground state

Eg is possible, thus all the sums entering Eq. (5.41) are truncated into
occ∑
i

→
∑
i∈S

. Using

Eq. (5.33) and the orthogonality condition of the degenerate states Eln = Enn δln = Eg δln,
the non-Abelian curvature F (E)

mn turns up to be zero

F (E)
mn = i

∑
l∈S

( AmlEg δln − Eg δml Aln )

= iAmn (Eg − Eg ) = 0, (5.98)
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while no simplification occurs for F (E)
mn and F (B)

mn . Similarly, the first term on the right side
of Eq. (5.41) turns into∑

m∈S

∑
n∈S

C∗mCn∇REmn =
∑
m∈S

∑
n∈S

C∗mCn δmn∇REg

= ∇REg
∑
m∈S

|Cm|2

= ∇REg (5.99)

where we have used the normalization condition 〈ψg(t,R)|ψg(t,R)〉 =
∑
m∈S
|Cm|2 = 1. There-

fore, Eq. (5.41) takes the form

〈O(t,R)〉g = ∇REg +
∑
m∈S

∑
n∈S

C∗mCnSmn

− ~
∑
m∈S

∑
n∈S

C∗mCnF (E)
mn

−~ ∂R

∂t
×
∑
m∈S

∑
n∈S

C∗mCnF (B)
mn, (5.100)

which by making a unitary transformation of the expansion coefficients

C(t,R) = U(t,R) C ′(t,R),

where U(t,R) is a unitary matrix, turns into the diagonal form

〈O(t,R)〉g =∇REg +
∑
n∈S

|C ′n|2Snn− ~
∑
n∈S

|C ′n|2F (E)
nn−~

∂R

∂t
×
∑
n∈S

|C ′n|2F (B)
nn . (5.101)

Equal probability amplitude approximation

We now employ an “ergodic” approximation for the degenerate ground state Eg, that is,
we assume that each one degenerate state |n(t,R)〉 with energy Eg in the superposition
|Ψg(t,R)〉 =

∑
n∈S

Cn(t,R) |n(t,R)〉, has the same probability to come out in a measurement.

|C1(t,R)|2 = |C2(t,R)|2 = |C3(t,R)|2 = · · · = |CN(t,R)|2 ,

which by using the normalization condition gives,

〈ψg(t,R) |ψg(t,R) 〉 =
∑
m∈S

|Cm(t,R)|2 = |Cg(t,R)|2
∑
m∈S

= |Cg(t,R)|2 d(S) = 1,

(5.102)
where d(S) denotes the degree of degeneracy of the subspace, thus each expansion coeffi-
cient is given by

Cg(t,R) =
1√
d(S)

. (5.103)
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Using then the unitary (matrix) transformation freedom, together with the ergodic approxi-
mation Eq. (5.103), we find the dynamic HF theorem, that can be applied to such a degen-
erate state, which has the form

Og(t,R) =∇REg +
1

d(S)

∑
n∈S

Snn −
~

d(S)

∑
n∈S

F (E)
nn −

~
d(S)

∂R

∂t
×
∑
n∈S

F (B)
nn . (5.104)

5.3.2 Non-topological limit: fully occupied Hilbert space due to dynam-
ics

We now assume that each expansion coefficient Cn(t,R) evolves in time according to
Eq. (5.60) coupled to all other coefficients due to dynamical driving of the system. Specif-
ically, we assume that the Hilbert space is at every instant fully occupied, irrespectively of
the initial occupation of the Hilbert space; that is, we assume in Eq. (5.60) that〈

n|
(
H(t,R)− i~ d

dt

)
l

〉
6= 0 ∀ n 6= l. (5.105)

In this limit we replace
occ∑
l

→
HS∑
l

in all formulas, and with the aid of the closure relation

I =
HS∑
l

| l(t,R)〉 〈 l(t,R)| we surprisingly find that the non-Abelian curvatures F (B)
mn and

F (E)
mn turn to zero, that is

F (B)
mn = Bmn − i

HS∑
l

Aml ×Aln

= Bmn + i
HS∑
l

〈m|∇Rl 〉 × 〈 l |∇R n〉

= Bmn − i
HS∑
l

〈∇Rm| l 〉 × 〈 l |∇R n〉

= Bmn − i 〈∇Rm|

(
HS∑
l

| l 〉 〈 l |

)
× |∇R n〉

= Bmn − i 〈∇Rm| × |∇R n〉

= 0, (5.106)
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as well as

F (E)
mn = Emn − i

HS∑
l

( Aml Φln − Φml Aln )

= Emn + i
HS∑
l

(
〈m|∇Rl 〉

〈
l |∂n
∂t

〉
−
〈
m |∂l

∂t

〉
〈 l |∇Rn 〉

)

= Emn − i
HS∑
l

(
〈∇Rm| l 〉

〈
l |∂n
∂t

〉
−
〈
∂m

∂t
| l
〉
〈 l |∇Rn 〉

)

= Emn − i 〈∇Rm|

(
HS∑
l

| l 〉 〈 l |

)∣∣∣∣∂n∂t
〉

+i

〈
∂m

∂t

∣∣∣∣
(

HS∑
l

| l 〉 〈 l |

)
|∇Rn〉

= Emn − i
(〈
∇Rm|

∂n

∂t

〉
−
〈
∂m

∂t
|∇Rn

〉)
= 0. (5.107)

In an analogous manner, the non-Abelian curvatures F (E)
mn truncate into

F (E)
mn = i

HS∑
l

(AmlEln − Eml Aln)

= −
HS∑
l

(〈m|∇Rl 〉 〈 l |Hn〉 − 〈m |Hl〉 〈 l |∇Rn〉)

= −
HS∑
l

(−〈∇Rm| l 〉 〈 l |Hn〉 − 〈Hm | l〉 〈 l |∇Rn〉)

= + 〈∇Rm|

(
HS∑
l

| l 〉 〈 l |

)
|Hn〉

+ 〈Hm |

(
HS∑
l

| l 〉 〈 l |

)
|∇Rn〉

= 〈∇Rm|Hn〉+ 〈Hm|∇Rn〉 , (5.108)

and as result the observable O(t,R) expectation value, in this fully occupied Hilbert space
due to the dynamics, is given by

O(t,R) =
HS∑
m

HS∑
n

C∗mCn∇REmn +
HS∑
m

HS∑
n

C∗mCnSmn

−
HS∑
m

HS∑
n

C∗mCnF (E)
mn ,
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showing that the non-Abelian curvatures F (B)
mn and F (E)

mn that carry the topology of the
projective Hilbert have been eliminated due to the dynamics.

5.3.3 Topological limit in non-adiabatic processes: Separable Hilbert
space

Guided by the previous subsection we assume a quantum state

|Ψ(t,R)〉 =
HS∑
n

Cn (t,R) |n(t,R)〉, (5.109)

that evolves in a non-adiabatic manner by a time-dependent Hamiltonian but is subject to
one constraint, namely, there is a domain of the Hilbert space that remains unoccupied in all
times. In this framework Eq. (5.109) is expressed as

|Ψ(t,R)〉 =
∑
n∈Sa

Cn |n 〉+
∑
n∈Sb

Cn |n 〉

where the Hilbert space H is the union of the two domains H := Sa ∪ Sb, and the quantum
state takes the form

|Ψ(t,R)〉 = Ca |Φa 〉+ Cb |Φb 〉 , (5.110)

where ∑
n∈Sa

Cn |n 〉 = Ca |Φa 〉 (5.111)

and ∑
n∈Sb

Cn |n 〉 = Cb |Φb 〉 . (5.112)

Assuming that the state |Φa〉 is normalized, then |Ca|2 =
∑
n∈Sa

|Cn|2 gives the probability of

the system to be found in the domain Sa of the Hilbert space, and analogously, taking into
account that the state |Φb〉 is normalized, then |Cb|2 =

∑
n∈Sb

|Cn|2 gives the probability of

the system to be found in the Sb counterpart domain of the Hilbert space. In this respect, the
Hilbert space is transformed into an effective two-dimension space with states |Φa〉 and |Φb〉,
that are orthonormal 〈Φa|Φb〉 = δab. By assuming now that the quantum state remains within
the domain Sa for all times, that is |Ca|2 =

∑
n∈Sa

|Cn|2 = 1 and |Cb|2 = 0, the quantum state

acquires the form
|Ψ(t,R)〉 = Ca |Φa 〉 , (5.113)

where Ca is clearly a phase factor and the Hilbert space of the system is truncated into an
effective one-dimensional space.
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Single state expression

In an analogous manner as in the single-state approximation Eqs. (5.49) – (5.51), the ob-
servable’s expectation value O(t,R) takes the form

O(t,R) =∇REaa + Saa − ~Eaa − ~
∂R

∂t
×Baa.

(5.114)

where Eaa and Baa are generalized non-adiabatic Berry curvatures given by

Baa(t,R) = i 〈∇RΦa| × |∇RΦa〉 (5.115)

and
Eaa(t,R) = i

〈
∇RΦa|

∂Φa

∂t

〉
− i
〈
∂Φa

∂t
|∇RΦa

〉
, (5.116)

while the non-Hermitian boundary term is given by

Saa(t,R) =
〈
Φa |

(
H(t,R)+ −H(t,R)

)
∇RΦa

〉
(5.117)

and the gradient of the “energy” from

∇REaa =∇R 〈Φa|H(t,R) |Φa〉 . (5.118)

Eqs. (5.114) – (5.118) are essentially the counterparts of Eqs. (4.8) – (4.12) derived in the
dynamic extension of the HF in Chapter 4.

Time periodic system: single Floquet state

Assuming that, (i) the parameter R is periodic in time R(t) = R(t+ T ), as well as that
(ii) the Hamiltonian is also periodic H(t+ T,R(t+ T )) = H(t,R(t)), then we can choose
the phase factor Ca of the state |Ψ(t,R)〉 of Eq. (5.113), that lies within the effective
one-dimensional Hilbert space, in such a manner that |Φa(t,R)〉 is periodic in time, that is
|Φa(t,R)〉 = |Φa(t+ T,R)〉, while |Ψa(t+ T,R)〉 = (Ca(t+ T,R)/Ca(t,R)) |Ψa(t,R)〉.
By inserting Eq. (5.113) into Eq. (5.1), we find the equation of motion of the phase factor
Ca(t,R) that is given by

i~
d

dt
lnCa(t,R) = 〈Φa(t,R)|H(t,R)− i~ d

dt
|Φa(t,R)〉 , (5.119)

where by definition the right hand side of Eq. (5.119) is periodic in time. In this respect, the
phase factor is given by

Ca(t,R) = Ca(0,Ro) e
− i
~

ˆ t
0

〈Φa|H(t′,R)− i~ d

dt′
|Φa〉 dt′

, (5.120)
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which gives the dynamic phase together with the Aharonov-Anandan phase. If one further
assumes that the state |Ψa(t,R)〉 is a Floquet state, that is, it satisfies the eigenvalue equa-

tion,
(
H(t,R)− i~ d

dt

)
|Φa(t,R)〉 = εa |Φa(t,R)〉, where εa is the static quasienergy,

then, the phase factor is simply given by e
−
i

~
εa t

, and the effective one-dimensional Hilbert

space state is given by |Ψ(t,R)〉 ≡ e
−
i

~
εa t |Φa(t,R)〉. In this fashion, Eqs. (5.114)

– (5.118) are evaluated with respect to a single time periodic Floquet state |Φa(t,R)〉.

Time periodic system: coherent superposition of Floquet states

Assuming now that the states |n 〉 in Eq. (5.111)∑
n∈Sa

Cn |n 〉 = Ca |Φa 〉 ,

are the Floquet states, then, the matrix HF (t,R) given by Eq. (5.63) is diagonal, thus
each expansion coefficient Cn(t,R) evolves over time uncoupled to any other and has the

form Cn(t,R) = Cn(0,R)e
−
i

~
εn t

where εn is the quasienergy. Therefore, the observable
in quest is given by Eq. (5.41) where the sums will run over all occupied Floquet eigenstates
and the expansion coefficients are uncoupled to each other.

5.3.4 Topological limit in adiabatic and non-equilibrium systems

We now assume a quantum state that is made of a coherent quantum superposition of dif-
ferent eigenstates individually undergoing quantum adiabatic evolution. Therefore, each
expansion coefficient Cn(t,R) evolves in time according to〈

n|
(
H(t,R)− i~ d

dt

)
l

〉
= 0 ∀ n 6= l (5.121)

which prohibits any kind of transitions, either within the degeneracy subspace or optical
transitions. In this limit, the occupation of the available Hilbert space is constant due to
d

dt
|Cn(t,R)| = 0 (the Hermitian matrix HF (t,R) of Eq. (5.63) is diagonal), but on the

other hand, the non-equilibrium quantum state can occupy the whole Hilbert space, therefore,
the quantum state that is encountered in this approximation can be thought as a dark quantum
state. Using the total time derivative Eq. (5.2), as well as the definition of the non-Abelian
Berry connection Eq. (5.28) and Berry potential Eq. (5.29), the non-excitation constraint
Eq. (5.121), evaluated with respect to the states 〈m | and | l 〉, is expressed as

Eml − ~
∂R

∂t
·Aml − ~Φml = 0 ∀ l 6= m. (5.122)
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Multiplying both sides of Eq. (5.122) with Aln we find the constraint

EmlAln − ~
(
∂R

∂t
·Aml

)
Aln − ~ΦmlAln = 0 ∀ l 6= m. (5.123)

Similarly, the non-excitation constraint Eq. (5.121), evaluated with respect to the states
〈 l | and |n 〉, is expressed as

Eln − ~
∂R

∂t
·Aln − ~Φln = 0 ∀ l 6= n. (5.124)

Multiplying both sides of Eq. (5.124) with Aml we find the constraint

AmlEln − ~Aml

(
∂R

∂t
·Aln

)
− ~AmlΦln = 0 ∀ l 6= n. (5.125)

Subtracting now Eq. (5.123) from Eq. (5.125) we find the constraint

(AmlEln − EmlAln)− ~
∂R

∂t
× (Aml ×Aln)− ~ (AmlΦln − ΦmiAln) = 0 (5.126)

for l 6= m and l 6= n.
Therefore, by using Eq. (5.126) constraint into the observable’s 〈O(t,R)〉 formula

Eq. (5.35), leads into the apparent truncation of the sums

occ∑
l

→
occ∑
l

δlmδln

involved in the formulas of F (E), F (E) and F (B). In this respect, in the adiabatic limit, the
curvatures are now given by

F (E)
mn = i

HS∑
l

δlmδln ( AmlEln − Eml Aln ) = 0, (5.127)

as well as

F (E)
mn = Emn − i

HS∑
l

δlmδln ( Aml Φln − Φml Aln )

= Emn (5.128)

end

F (B)
mn = Bmn − i

HS∑
l

δlmδln Aml ×Aln

= Bmn, (5.129)
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while the observable in quest is given by

〈O(t,R)〉 =
occ∑
m

occ∑
n

C∗mCn∇REmn +
occ∑
m

occ∑
n

C∗mCnSmn

− ~
occ∑
m

occ∑
n

C∗mCn Emn − ~
∂R

∂t
×

occ∑
m

occ∑
n

C∗mCnBmn.

(5.130)

We point out that, Eq. (5.130) cannot be simplified any further by means of a unitary trans-
formation of the expansion coefficients

C(t,R) = U C ′(t,R)

(with U a constant unitary matrix) into a diagonal form, because this kind of transformation
would induce coupling between the expansion coefficients which are assumed to evolve in
time uncoupled one to each other.

5.4 Particle transport in non-adiabatic and time-periodic
system

As a final application we study the particle transport in manner analogous to the one of
Sec.4.3.2 of Chapter 4. Thus we assume the same Hamiltonian and potentials, but, with the
essential difference that each electron’s quantum state is a coherent superposition of different
Floquet states. Each electron’s wavefunction evolves in time according to

i~
d

dt
Ψ(r, t,k) = H(r, t) Ψ(r, t,k) (5.131)

and the quantum state has the form

Ψ(r, t,k) = eik·ru(r, t,k) = eik·r
Sa∑
n

Cn(t,k)Φn(r, t,k) (5.132)

where Φn(r, t,k) are the Floquet eigenstates and the sum runs over all occupied Floquet

states. The Floquet operator HF (r, t) = H(r, t)− i~ d
dt

is diagonal with respect to the
states Φn(r, t,k). The Hamiltonian H(r, t) is periodic over time and space coordinates,
and does not depend on any parameter. We assume periodic boundary conditions over
space coordinates thus ψ(r + L, t,k) = ψ(r, t,k) as well as, u(r + L, t,k) = u(r, t,k)

and Φn(r + L, t,k) = Φn(r, t,k). Using the Hamiltonian H(r, t) and the Floquet states
as basis states, as well as by using the static crystal momentum k as the parameter, thus
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k = R, the dynamical extension of the HF theorem in Eq. (5.41) gives

0 =
occ∑
m

occ∑
n

C∗mCn
(
∇REmn + Smn −F (E)

mn − ~F (E)
mn

)
, (5.133)

where all quantities are evaluated with respect to the Floquet eigenstates, and the “energy”
is given by

Emn(t,k) = 〈Φm(t,k)|H(r, t) |Φn(t,k)〉 = εn(k)δmn + i~
〈

Φm(t,k) | d
dt

Φn(t,k)

〉
.

The matrix elements of the boundary velocity and the counterpart boundary terms of the HF
theorem are related by

Smn(t,k) = ~ 〈vb 〉mn + Sk,mn(t,k), (5.134)

where vb is the non-Hermitian boundary velocity defined by Eq. (2.4), and the matrix ele-
ments of the non-Hermitian boundary terms Sk,mn(t,k) are assumed to be zero in accor-
dance to Sec. 4.3.2. Therefore, by applying Eq. (5.134) into Eq. (5.133) we find

〈vb 〉 =
occ∑
m

occ∑
n

C∗mCn 〈vb 〉mn

=
occ∑
m

occ∑
n

C∗mCn
(

1

~
∇REmn −

1

~
F (E)
mn −F (E)

mn

)
, (5.135)

which is the generalization of Eq. (4.74) of Chapter 4. In this framework, the extension of
Eqs. (4.89) – (4.90) is given by

∆x(Boundary) =− V

(2π)3

occ∑
m

occ∑
n

C∗mCn

+π/aˆ

−π/a

dky

+π/aˆ

−π/a

dkz

+π/aˆ

−π/a

∂

∂kx

 T̂

0

i

〈
φm|

dφn
dt

〉
dt

dkx

+
1

~
V

(2π)3

occ∑
m

occ∑
n

C∗mCn

+π/aˆ

−π/a

dky

+π/aˆ

−π/a

dkz

 T̂

0

+π/aˆ

−π/a

F (E)
xmn dt dkx



+
V

(2π)3

occ∑
m

occ∑
n

C∗mCn

+π/aˆ

−π/a

dky

+π/aˆ

−π/a

dkz

 T̂

0

+π/aˆ

−π/a

F (E)
xmn dt dkx


(5.136)

from which it is evident that the particle transport is given in terms of the non-Abelian curva-
tures F (E)

xmn and F (E)
xmn weighted by the occupation numbers. We hope that, theoretical in-

vestigations in non-equilibrium and closed quantum systems [141, 105, 89, 42, 29, 136, 143],
could take advantage of the general dynamical extension of the HF theorem Eq. (5.41) that
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we have derived, and that even the special cases that we have worked out above can provide
useful insights for future investigations.
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Chapter 6

Conclusions

This dissertation was motivated by the inadequacy of existing formulations of adiabatic and
non-adiabatic transport theory to capture non-Hermitian boundary effects, as well as by the
need to find a formula for the observables that takes into account at the same time the dy-
namics and the topology of the instantaneous occupied Hilbert space in the simplest manner
possible. In this respect, the dissertation was dedicated to the reformulation and extension of
some fundamental concepts and theorems which resolve the above mentioned inadequacies.
The results are summarized further below.

We have reconsidered the Modern Theory of Orbital Magnetization through careful def-
inition of additional quantities that rigorously and analytically take into account the bound-
ary contributions to the orbital magnetization. These contributions are shown to originate
from non-Hermitian effects that emerge whenever the position operator r and the momen-
tum gradient operator ∂k (that enter the Ehrenfest and the Hellmann-Feynman theorems
respectively) become anomalous, in the sense that they break the domain of definition of
the Hamiltonian operator. In this theoretical framework, we have first extended the stan-
dard velocity operator definition in order to incorporate the anomaly of the position operator
that is inherited in band theory, and this results in an explicit boundary velocity contribu-
tion. Using the extended velocity, we have defined the electrons’ intrinsic orbital circula-
tion within Bloch representation which we have shown that is an intensive and well defined
quantity of periodic solids that properly counts the circulating micro-currents embodied in
the wavefunctions’ bulk and boundary structure. Using the defined electrons’ intrinsic cir-
culation, we have made a rigorous connection between the nth band electrons’ collective
intrinsic circulation and the local (LC) and itinerant circulation (IC) contributions, that are
used within Wannier-localization and periodic gauge approximation in the Modern Theory
of Orbital Magnetization [133, 33, 132]. With these concepts in hand, we have been able to
rigorously reconsider the theory and derive quantum mechanical expressions for the orbital
magnetization of non-interacting electrons that move within extended and topological solids
(insulators or semimetals), without any Wannier-localization approximation [133, 132] or
heuristic extension [33] been made. We have rigorously shown that, in the one-band approx-
imation k-space formula, a one-band covariant derivative enters the magnetization formula
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Chapter 6 Conclusions

as an emerging operator due to the non-Hermitian effect that is attributed to the anomaly of
the momentum gradient operator ∂k; the one-band covariant derivative can be replaced by
the normal derivative only whenever PBCs are satisfied. In the many-band and unrestricted
k-space formula of the orbital magnetization, the non-Hermitian effect has been shown to
contribute an additional boundary term that originates from the anomalies of the position op-
erator r and the momentum gradient operator ∂k. This additional boundary term is expected
to give local gigantic orbital magnetization contributions in the vicinity of band crossings in
topological materials (insulators or semimetals) whenever band crossings occur along with
Hall voltage due to imbalance of electron accumulation at the opposite boundaries of the
material under study. These local gigantic orbital magnetization contributions are encoded
in the emerging non-Hermitian effect of the momentum gradient operator ∂k that becomes
anomalous whenever the PBCs for the electrons’ wavefunctions are broken. On the contrary,
whenever Hall voltage is zero and the electrons’ wavefunctions satisfy PBCs, the momentum
gradient operator ∂k has a well defined behavior and, as a consequence, gigantic boundary
contributions are not possible. By making a comparison between our derived formula and the
one that had heuristically been given (in order to model the orbital magnetization of Chern
insulators and metals) in Ref. [33], we have shown the (previously unnoticed) property that,
within periodic boundary conditions, the orbital magnetization has explicit boundary con-
tributions encoded in the off-diagonal matrix elements of the boundary velocity operator
(which are not zero due to the emerging non-Hermitian effect of the position operator that
becomes anomalous within PBCs). Finally, we point out that, all boundary contributions that
emerge due to non-Hermitian effects can equally be calculated as bulk properties whenever
the integrations by parts are not performed.

We have shown how one can set up a global quantum equation of motion within
Schrödinger picture and study transport processes without any local conservation law be-
ing necessary in contrast to the established practice. This is achieved whenever additional,
non-Hermitian effect boundary operators, are taken into account. By using the global quan-
tum equation of motion we have shown how one can define an operator in an extended
manner without any subtleties involved. This extended operator definition, leads into a bulk-
boundary detailed balance relation for any stationary state, relating therefore the bound-
aries’ rate of change of an observable with the corresponding bulk one. Moreover, it pro-
vides a way for defining linear approximation dissipation equations near equilibrium, there-
fore, one can derive Onsager reciprocal relations within a quantum mechanical framework.
Our extended theoretical framework of studying transport processes, has then been applied
in spin physics in order to resolve the controversies and ambiguities with respect to the
coherent spin accumulation and spin transport. Specifically, there does not exist up to
now a generally accepted agreement on the correct definition of the corresponding opera-
tors, namely, the spin-accumulation rate of change operator and the spin-current operator
[108, 40, 128, 121, 125, 24, 44, 4, 23]. The reason for this controversy is that in any closed
system that lacks spin-rotation invariance there is no given direction in the material along

180

Kyri
ak

ou
 Kyri

ak
os



Chapter 6 Conclusions

which the spin is conserved; therefore, no local spin magnetization conservation law can be
derived in a form of a continuity equation, and as a consequence it is said that, no quantum
mechanical spin-current operator can unambiguously be well-defined. In this framework, by
employing our extended operator definition and without any local conservation law being
necessary, we had reviewed the Ref. [121] spin current definition (which is presumably the
most widely accepted definition) and shown the limitation of its validity in comparison to our
theoretical framework. Namely, in addition to the bulk spin generation, spin generation over
the boundaries has to also be zero in order that their spin current operator definition to have a
well defined value (in the thermodynamic limit); this spin generation over the boundaries al-
though attributed to a non-Hermitian boundary operator in the present work, has not been so
far recognized as such. We then defined the intrinsic spin current operator as the time deriva-
tive of the correlation between electron’s position and electron’s spin. The intrinsic spin
current has two parts, a bulk one and a boundary one that is attributed to the non-Hermitian
effect. Our definition of the spin current has always a well defined value without any con-
straints being involved whatsoever. For any stationary state there exist a gain-loss detailed
balance relation that explicitly relates the bulk intrinsic spin current with the corresponding
boundary one. For systems that lack local spin-torques in a given direction, both the bulk
and the boundary intrinsic spin current turn zero value each (provided that the state under
consideration has a well-defined spin in that specific direction) due to the position and spin
being uncorrelated.

By just using quantum dynamics in an appropriate way, we have derived an extended
and dynamical Hellmann-Feynman theorem for general non-adiabatic processes. The re-
sulting formula for the dynamics of the observables is found to have profound connections
to generalized Berry curvatures as well as to boundary contributions due to an emerging
non-Hermitian effect. A complication when dealing with states that are labeled by time-
dependent parameters has been resolved. Specifically, we have shown how the standard (in
band theory) way of transformation between the discrete sum over static parameters (such
as crystal momentum) to a counterpart Riemann integral over continuous variables can be
modified when dealing with time-dependent parameters. This complication is overcome
when the arbitrary Jacobian of transformation between the initial value of a parameter and
the time-evolved one is taken into account. This way of transformation engages measurable
consequences when the parameter velocity-field behaves as a compressible fluid field. This
complication is precisely the “paradox” that appears in the semiclassical modification of den-
sity of states [149], which has not been realized or identified in this manner. Several applica-
tions of the theorem showing its usefulness have been made: (i) For flux preserving motions
we have derived a Maxwell type of equation (in parameter space) with monopole sources
which is a generalization of the counterpart Maxwell type of equation that has been found
in the last few years [70] in the study of Weyl semimetals, and which has arisen by heuris-
tic analogy to the electromagnetic induction law and without any detailed derivation. (ii) A
study of the particle transport in the non-adiabatic limit [105] has been made, showing that
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the adiabatic quantization breaks down due to a non-trivial Aharonov-Anandan phase. (iii)
Similarly, a study of the electric polarization has also been performed indicating that there
is a boundary non-Hermitian contribution that has been so far overlooked in the so called
Modern Theory of Polarization [75, 101, 109, 114, 111]. (iv) Two sets of quantum equations
of motion for the electron have been derived without any localization or adiabatic approxi-
mation involved. One is for spinless motion and the other for spinfull one. These quantum
equations of motion are extensions of the semiclassical ones [130] that had been derived
by means of a time-dependent variational principle applied to a trial localized wavepacket
under the adiabatic approximation. The electron’s velocity that we found depends explicitly
on two generalized Berry curvatures as well as on a non-Hermitian boundary term. We have
applied the spinfull quantum equations of motion to the Quantum Anomalous Hall Effect
in a magnetically doped topological insulator [34, 18, 62, 85] and we have given a formula
for the transverse Hall conductivity that, besides the topologically quantized values, acquires
two other correction terms which emerge due to the non-zero effective magnetic field that is
created by the strong spin-orbit coupling.

By using an orthonormal basis we have analyzed further the dynamical extension of the
Hellmann-Feynman theorem. We have found a formula for the observables that depends on
the dynamics through the expansion coefficients together with the topology of the instanta-
neous occupied Hilbert space. Interestingly, the observables turned out to have dependence
on non-Abelian Berry curvatures when the quantum state occupies more than one dimensions
in Hilbert space. The form of these non-Abelian Berry curvatures resembles the Yang-Mills
field strength tensors [152]. The extension to multiple bands, allows the generalization of the
invariants that come from the Abelian curvatures to the counterpart invariants that originate
from the non-Abelian curvatures within the many bands. These new topological invariants
have the form of generalized relative helicities [144]. In the fully dynamical limit, when all
expansion coefficients evolve in time coupled to each other, these non-Abelian Berry curva-
tures turn to zero. By way of application of this extension we have studied the particle trans-
port in the strong non-adiabatic limit where the quantum state is in a coherent superposition
of different Floquet states. The particle transport was found to be given in terms non-Abelian
curvatures weighted by the occupation numbers. We believe that the theoretical investiga-
tions in non-equilibrium and closed quantum systems [141, 105, 89, 42, 29, 136, 143] which
are performed in the last few years by means of the time-dependent perturbation theory or
the Kubo formula (both being more laborious and complicated methods than ours), could
take advantage of the general dynamical extension of the HF theorem Eq. (5.41) that we
have derived. By straightforward application one can easily find formulas for observables’
expectation values that incorporate in a combined way both the topology of the instantaneous
occupied Hilbert space and the dynamics in arbitrary time-dependent systems.

In summary, our dissertation gives a new perspective for a single theoretical formulation
that is appropriate in describing a coexistence of boundary non-Hermitian effects together
with non-trivial dynamical topological contributions in general quantum Condensed Matter
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systems. It is hoped that the methods and results presented here will be relevant to future
investigations where the above combination of factors plays the central role.
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Appendix A

Calculations of: Position expectation
value 〈r〉n, displacement ∆ 〈r〉,
orbital circulation 〈C〉n, and intrinsic
orbital circulation 〈Cintr〉n

In the following all calculations are performed for one electron states within Bloch represen-
tation.

A.1 Explicit calculation of 〈r〉n
For simplicity and without loss of generality we assume 1D configuration (while the gener-
alization to 3D is straightforward). We assume a closed system 〈Ψ(t)|Ψ(t)〉 = 1 of length
Lx with PBSs for the wavefunction over the edges. We calculate the electrons position ex-
pectation value 〈Ψ(t)|x |Ψ(t)〉 with respect to a Bloch eigenstate

|Ψn(t, k)〉 =
1√
Nx

e
− i
~
En(k)t

eikx |un(k)〉 .

The length Lx of the system is equal to Lx = Nxαx, where αx is the primitive cell length and
Nx the number of the primitive cells of the system. The Bloch state |Ψn(t, k)〉 is normal-
ized within the length Lx of the system, thus 〈Ψn(k)|Ψn(k)〉 = 〈un(k)|un(k)〉cell = 1, where
〈un(k)|un(k)〉cell is calculated within one primitive cell and a normalization constant is as-
sumed to be absorbed in the cell periodic state |un(k)〉. The electrons’ position expectation
value is a quantity that is position origin-dependent and is given by

〈ψn(k)|x |ψn(k)〉 =
1

Nx

ˆ Lx

0

x |un(x, k)|2 dx (A.1)
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where the lower limit of the space integration is the starting point of the 1D system that
coincides with the position-origin. Using the periodicity of the cell periodic states un(x, k)

we “transfer” all (Nx− 1) primitives cells in the position of the 1st primitive cell (adjacent to
the position origin), which gives

〈ψn(k)|x |ψn(k)〉 =

ˆ αx

0

|un(x, k)|2 x dx (A.2)

+
1

Nx

αx (1 + 2 + 3 + ...+ (Nx − 1))

ˆ αx

0

|un(x, k)|2 dx

= 〈un(k)|x |un(k)〉cell +
1

Nx

αxNx
(Nx − 1)

2
〈un(k)|un(k)〉cell

(A.3)

where the cell subscript denotes that the space integrals are evaluated within the primitive
cell located at the systems edge. Using the normalization condition Eq. (A.2) takes the form

〈ψn(k)|x |ψn(k)〉 =
αxNx

2
+
(
〈un(k)|x |un(k)〉cell −

αx
2

)
. (A.4)

Performing analogous calculation as that in Eq. (A.2), we evaluate the off-diagonal ma-
trix elements of the position operator for n 6= m which gives

〈ψn(k)|x |ψm(k)〉 = 〈un(k)|x |um(k)〉cell + αx
(Nx − 1)

2
〈un(k)|um(k)〉cell ,

where using 〈ψn(k)|ψm(k)〉 = 〈un(k)|um(k)〉cell = δnm, we finally find that the off-diagonal
matrix elements are given by

〈ψn(k)|x |ψm(k)〉 = 〈un(k)|x |um(k)〉cell . (A.5)

Therefore, in the system’s infinite length limit Lx → ∞, the number of primitive cells
enclosed within the system also becomes infinite Nx → ∞, and as a result, the electrons’
position expectation value Eq. (A.4) takes an undefined value (due to the first term of the
right hand side), in contrast to the off-diagonal position matrix elements Eq. (A.5) which
they return a well defined value.

A.2 Explicit calculation of ∆〈r〉

We assume a position periodic and closed system of length Lx. We will calculate the elec-
trons’ displacement after a finite time interval T in the limit of infinite length Lx →∞ and
show that is a well-defined quantity. We assume that the electron is in an extended and
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time-dependent Bloch type state at every instant, that is,

|Ψ(t, k(t))〉 =
1√
Nx

eik(t)x |u(t, k(t))〉 ,

where the state |u(t, k(t))〉 has arbitrary time-dependence and is cell-periodic at every in-
stant, as well as |Ψ(t, k(t))〉 is normalized to unity at every instant

〈Ψ(t, k(t))|Ψ(t, k(t))〉 = 〈u(t, k(t))|u(t, k(t))〉cell = 1.

Using similar reasoning as in Eq. (A.4) we find that the electrons’ displacement is given by

∆ 〈x 〉 = ∆ 〈Ψ(t, k(t))|x |Ψ(t, k(t))〉

=
1

Nx

〈u(t+ T, k(t+ T ))|x |u(t+ T, k(t+ T ))〉 − 1

Nx

〈u(t, k)|x |u(t, k)〉

= 〈u(t+ T, k(t+ T ))|x |u(t+ T, k(t+ T ))〉cell − 〈u(t, k(t))|x |u(t, k(t))〉cell
(A.6)

where the undefined terms
αxNx

2
canceled each one another. In this fashion, Eq.(A.6) takes

the form

∆ 〈x〉 =

ˆ t+T

t

d

dt′
〈u(t′, k(t′))|x |u(t′, k(t′))〉cell dt

′, (A.7)

where, by using the extended velocity operator vext defined in Eq. (2.9) in the main text, it
turns out that the electron displacement in a position periodic system has to be evaluated as

∆ 〈x〉 =

ˆ t+T

t

〈u(t′, k(t′))|vext |u(t′, k(t′))〉cell dt
′. (A.8)

A.3 Explicit calculation of 〈C〉n
We calculate the electrons’ circulation operator expectation value 〈C〉 given by Eq. (2.15) of

the main text with respect to a Bloch eigenstate |Ψn(t,k)〉 =
1√
N
e
− i
~
En(k)t

eik.r |un(k)〉
that satisfies PBSs over the edges. For simplicity we assume a 2D system while the gener-
alization to 3D is straightforward. The system has length Lx = Nxαx in the x direction and
Ly = Nyαy in the normal y direction, where N = NxNy is the total number of primitive
cells within the system and αxαy is the area of the primitive cell. The Bloch eigenstate
is normalized within the area LxLy, therefore a normalization constant is assumed to be
absorbed within the cell periodic states, 〈Ψn(k)|Ψn(k)〉 = 〈un(k)|un(k)〉cell = 1. The elec-
trons’ circulation is given by

〈Ψn(k)|C |Ψn(k)〉 =
1

NxNy

ˆ Nxαx

0

ˆ Nyαy

0

r× Jpr(n)(x, y,k)dxdy (A.9)
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where the local probability current density, is evaluated with respect to the cell periodic
eigenstate un(r,k) and is a cell-periodic quantity. We first carry out the integral
1

Ny

ˆ Nyαy

0

r× Jpr(n)(x, y,k)dy, where we exploit the periodicity of the local probability

current density and “transfer” (Ny − 1) primitives cells along the y direction on the y = 0

line which gives

1

Ny

ˆ Nyαy

0

r× Jpr(n)(x, y,k)dy

=

ˆ αy

0

r× Jpr(n)(x, y,k)dy +
1

Ny

(1 + 2 + ...+ (Ny − 1))αy ×
ˆ αy

0

Jpr(n)(x, y,k)dy

=

ˆ αy

0

r× Jpr(n)(x, y,k)dy +
1

Ny

Ny
(Ny − 1)

2
αy ×

ˆ αy

0

Jpr(n)(x, y,k)dy.

Exploiting the periodicity of the local probability current, we perform analogous calculation
for the integral along the x direction which gives

1

NxNy

ˆ Nxαx

0

dx

(ˆ Nψαψ

0

r× Jpr(n)(x, ψ,k)dy

)
=

ˆ αx

0

ˆ αy

0

r× Jpr(n)(x, y,k) dxdy

+

(
(Nx − 1)

2
αx +

(Ny − 1)

2
αy

)
×
ˆ αx

0

ˆ αy

0

Jpr(n)(x, y,k) dxdy.

(A.10)

Eq. (A.9) with the aid of Eq. (A.10) finally takes the form

〈Ψn(k)|C |Ψn(k)〉 =

ˆ αx

0

ˆ αy

0

r× Jpr(n)(r,k)dxdy

+

(
(Nx − 1)

2
αx +

(Ny − 1)

2
αy

)
×
ˆ αx

0

ˆ αy

0

Jpr(n)(r,k)dxdy

(A.11)

where all space integrals are taken within one primitive cell adjacent to a system’s edge and
located at the position origin. The first term on the right hand side of Eq. (A.11) is always
a well-defined quantity even in the thermodynamic limit. Therefore, in the thermodynamic
limit the electrons’ circulation becomes infinite due to the second term of the right hand side
of Eq. (A.11.)

A.4 Explicit calculation of 〈Cintr〉n
We calculate the electrons’ intrinsic circulation 〈Cintr〉 given by Eq. (2.16) of the main

text with respect to a Bloch eigenstate |Ψn(t,k)〉 =
1√
N
e
− i
~
En(k)t

eik.r |un(k)〉 in a 2D
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system identical to the one of the previous subsection. Therefore, we have to calculate

〈Ψn(k)|Cintr |Ψn(k)〉n =
1

NxNy

ˆ Nxαx

0

ˆ Nyαy

0

r× Jpr(n)(x, y,k)dxdy

− 〈r〉n ×
1

NxNy

ˆ Nxαx

0

ˆ Nyαy

0

Jpr(n)(x, y,k)dxdy.

The first term of the right hand side of Eq. (A.12) is given by Eq. (A.11). The electrons’
position expectation value 〈r〉n is given by the 2D generalization of Eq. (A.2), that is,

〈r〉n =

(
(Nx − 1)

2
αx +

(Ny − 1)

2
αy

)
+ 〈un(k)| r |un(k)〉cell (A.12)

and the space integral of the local probability current density is easily truncated within one
primitive cell adjacent to a system’s edge (located at the position origin) due to the cell
periodicity of the probability current, thus giving

1

NxNy

ˆ Nxαx

0

ˆ Nyαy

0

Jpr(n)(x, y,k) dxdy =

ˆ αx

0

ˆ αy

0

Jpr(n)(x, y,k) dxdy

Substituting Eq. (A.11) and Eq. (A.12) – (A.13) into Eq. (A.12) we finally obtain

〈Ψn(k)|Cintr |Ψn(k)〉 =

ˆ αx

0

ˆ αy

0

( r− 〈un(k)| r |un(k)〉cell)×Jpr(n)(x, y,k)dxdy (A.13)

where the two terms ±
(

(Nx − 1)

2
αx +

(Ny − 1)

2
αy

)
×
ˆ αx

0

ˆ αy

0

Jpr(n)(r,k)dxdy, each

one undefined in the thermodynamic limit,have canceled each other.
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Action of the velocity operator v on a
Bloch eigenstate, and of the operator
(r− 〈r〉n) on a cell periodic state

B.1 Action of v on a Bloch eigenstate |Ψn(t,k)〉

At first we derive a general k-derivative formula that gives the action of the standard velocity
operator Eq. (2.2) on a Bloch type state of the form |Ψ(t,k)〉 = eik.r |Φ(t,k)〉, where k is a
static wave vector (assumed to take continuous values). This is accomplished by taking into
account the specific Bloch type form of the state |Ψ(t,k)〉 as well as the time evolution of

the state by i~
d

dt
|Ψ(t,k)〉 = H(r) |Ψ(t,k)〉, that is governed by a static Hamiltonian H(r).

Under these conditions, the action of the position operator on the state |Ψ(t,k)〉 can be
expressed as

r |Ψ(t,k)〉 = −i |∂kΨ(t,k)〉+ ieik.r |∂kΦ(t,k)〉 . (B.1)

Acting on both sides of Eq. (B.1) with the Hamiltonian H(r) of the system, and taking into
account that the Hamiltonian does not depended on the wavevector, that is [H(r), ∂k ] = 0,
we find

H(r)r |Ψ(t,k)〉 = −i∂k (H(r) |Ψ(t,k)〉) + ieik.rHk(r,k) |∂kΦ(t,k)〉 (B.2)

where the Hamiltonian Hk(r,k) is defined by Hk(r,k) = e−ik.rH(r)eik.r. The term
∂k (H(r) |Ψ(t,k)〉) of the right hand side of Eq. (B.2) can be recast in the form

∂k (H(r) |Ψ(t,k)〉) = i rH(r) |Ψ(t,k)〉+ eik.r i~
d

dt
|∂kΦ(t,k)〉 (B.3)

where we have used

H(r) |Ψ(t,k)〉 = i~
d

dt
|Ψ(t,k)〉 = eik.r i~

d

dt
|Φ(t,k)〉 ,
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as well as

∂k

(
eik.r i~

d

dt
|Φ(t,k)〉

)
= −~ eik.rr

d

dt
|Φ(t,k)〉+ eik.r i~

d

dt
|∂kΦ(t,k)〉

and
−~eik.rr

d

dt
|Φ(t,k)〉 = r i2~

d

dt

(
eik.r |Φ(t,k)〉

)
= i rH(r) |Ψ(t,k)〉 .

Substituting Eq. (B.3) into Eq. (B.2) we find that the action of commutator [H(r), r] on the
Bloch type state |Ψ(t,k)〉 is given by

[H(r), r] |Ψ(t,k)〉 = i eik.r
(
Hk(r,k)− i~ d

dt

)
|∂kΦ(t,k)〉 . (B.4)

The action of the commutator on a stationary Bloch type state of the form
|Ψn(t,k)〉 = eik.r eiΘn(t,k) |un(k)〉 where Θn(t,k) is the dynamical phase with an addi-

tional k-dependent gauge phase, that is, Θn(t,k) = −1

~
En(k)t+ Λn(k) can be calculated

by replacing |Φ(t,k)〉 = eiΘn(t,k) |un(k)〉 within Eq. (B.4). This gives

[H(r), r] |Ψn(t,k)〉 = i eik.reiΘn(t,k)
(
Hk(r,k) + ~

d

dt
Θn(t,k)

)
|∂kun(k)〉

+ i~
(
∂k
d

dt
Θn(t,k)

)
|Ψn(t,k)〉 (B.5)

where we have used that
d

dt
|un(k)〉 = 0, as well as

(
Hk(r,k) + ~

d

dt
Θn(t,k)

)
|un(k)〉 = 0.

From Eq. (B.5) we can deduce that the action of the standard velocity operator v on a sta-
tionary Bloch type state is given from

v |Ψn(t,k)〉 = −1

~
eik.reiΘn(t,k) (Hk(r,k)− En(k)) |∂kun(k)〉+

1

~
∂kEn(k) |Ψn(t,k)〉 .

(B.6)

B.2 Action of (r− 〈r〉) on a cell-periodic eigenstate |un(k)〉

We assume a Bloch type eigenstate in the form |Ψn(t,k)〉 = eik.r eiΘn(t,k) |un(k)〉 where
Θn(t,k) is the dynamical phase with an additional k-dependent gauge phase, that is,

Θn(t,k) = −1

~
En(k)t+ Λ(k). The time-independent eigenstate |un(k)〉 can be recast in

the form
|un(k)〉 = e−ik.r e−iΛ(k) |Ψn(k)〉 (B.7)

where the time-dependence has been eliminated as expected.
In the position representation and by using Eq. (B.7), the action of the position operator

on the eigenstate |un(k)〉 can be transformed to a k-derivative identity given by

r |un(k)〉 = i |∂kun(k)〉 − ∂kΛ(k) |un(k)〉 − i e−ik.r e−iΛ(k) |∂kΨn(k)〉 . (B.8)
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Accordingly, the expectation value of the position operator r with respect to the eigen-
state |un(k)〉 takes with the aid of Eq. (B.8) the form

〈un(k)| r |un(k)〉 = Ann(k)− ∂kΛn(k)− i 〈Ψn(k)|∂kΨn(k)〉 , (B.9)

where Ann(k) = i 〈un(k)|∂kun(k)〉 is the Abelian Berry connection. By acting with Eq. (B.9)
on |un(k)〉 and then subtracting the product from Eq. (B.8) we find the identity

( r− 〈r〉n) |un(k)〉 = ( i∂k −Ann(k)) |un(k)〉

− i e−ik.r e−iΛ(k) ( |∂kΨn(k)〉 − 〈Ψn(k)|∂kΨn(k)〉 |Ψn(k)〉 ) .
(B.10)

By then using the one-band covariant derivative definition, that is,

i∂̃k |un(k)〉 = ( i∂k −Ann(k))|un(k)〉 ,

where ∂̃k is given by ∂̃k = ( 1− |un(k)〉〈un(k)| ) ∂k, Eq. (B.10) takes the form

( r− 〈r〉n) |un(k)〉 = i
∣∣∣∂̃kun(k)

〉
−ie−ik.r e−iΛ(k) |∂kΨn(k)〉+i 〈Ψn(k)|∂kΨn(k)〉 |un(k)〉 .

(B.11)
We then expand the state |∂kΨn(k)〉 on the complete basis of the Bloch eigenstates

|ψm(k′)〉 using the closure relation I =
HS∑
m

˚
BZ

d3k′ |ψm(k′)〉 〈ψm(k′)|, that is

|∂kΨn(k)〉 =
HS∑
m

˚
BZ

d3k′ 〈ψm(k′)|∂kψn(k)〉 |ψm(k′)〉 ,

which gives

( r− 〈r〉n) |un(k)〉 = i
∣∣∣∂̃kun(k)

〉
−i

HS∑
m

˚
BZ

d3k′ 〈ψm(k′)|∂kψn(k)〉 ei(Λ(k′)− Λ(k))ei(k
′ − k).r |um(k′)〉

+i 〈Ψn(k)|∂kΨn(k)〉 |un(k)〉 .

and then use the Hermitian conjugate of Eq. (B.12) to evaluate the orbital magnetic moment
of the electron, that is

mn(k) = − e

2c~
Im[ i 〈un(k)| (r− 〈r〉n) × (Hk(r,k)− En(k)) |∂kun(k)〉 ]. (B.12)
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This way Eq. (B.12) takes the form

mn(k) = − e

2c~
Im[
〈
∂̃kun(k)| × (Hk(r,k)− En(k)) |∂kun(k)

〉
]

+
e

2c~
Im[

HS∑
m

˚
BZ

d3k′ ei(Λ(k)− Λ(k′)) 〈Ψm(k′)|∂kΨn(k)〉∗

×
〈
um(k)| ei(k− k′).r(Hk(r,k)− En(k) |∂kun(k)

〉
]

− e

2c~
Im[ 〈Ψn(k)|∂kΨn(k)〉∗ × 〈un(k)|Hk(r,k)− En(k) |∂kun(k)〉 ].

Assuming then that the states, ∂kun(r,k) as well as um(r,k) and the HamiltonianHk(r,k),
are periodic in space within the material, then, Eq. (B.13) takes the form

mn(k) = − e

2c~
Im[
〈
∂̃kun(k)| × (Hk(r,k)− En(k)) |∂kun(k)

〉
]

+
e

2c~
Im[

HS∑
m

˚
BZ

d3k′ ei(Λ(k)− Λ(k′)) 〈∂kΨn(k)|Ψm(k′)〉 (B.13)

× δ(k− k′) 〈um(k)| (Hk(r,k)− En(k) |∂kun(k)〉 ]

− e

2c~
Im [ 〈∂kΨn(k)|Ψn(k)〉 × 〈un(k)|Hk(r,k)− En(k) |∂kun(k)〉 ] .

which finally gives

mn(k) = − e

2c~
Im
[ 〈
∂̃kun(k)| × (Hk(r,k)− En(k)) |∂kun(k)

〉 ]
− e

2c~
Im

[
HS∑
m6=n

〈Ψn(k)|∂kΨm(k)〉 × 〈um(k)| (Hk(r,k)− En(k) |∂kun(k)〉

]
(B.14)

where we have used 〈∂kΨn(k)|Ψm(k)〉 = −〈Ψn(k)|∂kΨm(k)〉 that is valid due to m 6= n.
Eq. (B.14) is Eq. (4.31) of the main text. As a final step, we find an expression for
〈ψn(k)|∂kψm(k)〉, provided that n 6= m, and then replace it in the sum of Eq. (B.14).
This is accomplished by the off-diagonal Hellmann-Feynman theorem that we derive in the
Appendix C.
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Off-diagonal Hellmann-Feynman
theorem and
the matrix elements 〈ψn(k)|∂kψm(k)〉

We develop an off-diagonal Hellmann-Feynman theorem by starting from the eigenvalue
equation

(H(r)− Em(k)) |ψm(k)〉 = 0. (C.1)

where H(r) is the initial system’s Hamiltonian. Specifically, for the purpose of calculations
of this work, we use the initial Hamiltonian of the system which does not depend on the
wavevector k, that is, ∂kH(r) = 0. The result that we derive, is easily extended to include a
Hamiltonian that has explicit parameter dependence by simply adding to it the term that has
the derivative of the Hamiltonian with respect to the parameter.

By assuming that the crystal momentum takes continuous values, we act with the mo-
mentum gradient operator ∂k on Eq. (C.1) obtaining

− ∂kEn(k) |ψm(k)〉 + (H(r)− En(k)) |∂kψm(k)〉 = 0. (C.2)

and then take the inner product of Eq. (C.2) with 〈ψn(k)| which gives

− ∂kEn(k)δnm + 〈ψn(k)| (H(r)− En(k))|∂kψm(k)〉 = 0. (C.3)

We now take into account a possible anomaly of the momentum gradient operator due to
the non-Hermitian effect, that emerges whenever the gradient operator ∂k breaks the domain
of definition DH of the Hamiltonian H(r). In this framework, the wavefunctions ψm(r,k)

and ∂kψm(r,k) fulfill different boundary conditions over the edges of the system, and as
a result they don’t belong within the same domain of definition, that is, ψm(r,k) ∈ DH

while ∂kψm(r,k) /∈ DH . Therefore, whenever the non-Hermitian effect emerges, the term
〈ψn(k)| (H(r)− Em(k)) |∂kψm(k)〉 entering Eq. (C.3) is not zero as a result of the follow-
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ing non-trivial inequality

〈Hk(r,k)ψn(k)|∂kψm(k)〉 =
〈
ψn(k)|Hk(r,k)+∂kψm(k)

〉
6= 〈ψn(k)|Hk(r,k) ∂kψm(k)〉 .

We treat this non-Hermitian effect by expressing the term 〈ψn(k)|H(r) ∂kψm(k)〉 as

〈ψn(k)|H(r) ∂kψm(k)〉 = 〈H(r)ψn(k)|∂kψm(k)〉 − Snm(k) (C.4)

where the Snm(k) term represents the non-Hermitian effect and is a boundary quantity.
Its explicit boundary integral form is given below. In this respect, by taking into account
Eq. (C.4), Eq. (C.3) takes the form

∂kEn(k) δnm = (En(k)− Em(k)) 〈ψn(k)|∂kψm(k)〉 − Snm(k), (C.5)

which for n 6= m gives 〈ψn(k)|∂kψm(k)〉 as a function of Snm(k), given by

〈ψn(k)|∂kψm(k)〉 =
Snm(k)

(En(k)− Em(k))
. (C.6)

We now give the explicit integral form of Snm(k). Specifically, (i) by using Eq. (C.4)
as the definition of the Snm(k), (ii) by working in the position representation, and (iii) after
an integration by parts (assuming a 3D system), the matrix elements of the non-Hermitian
term Snm(k) are always transformed, due to symmetry of the integrands, into a boundary
quantity that is given by

Snm(k) =
i~
2

‹
S

n·
(

(vψn)∗ + ψ∗n v
)
∂kψm dS, (C.7)

where ψm = ψm(r,k) are the Bloch eigenfunctions, v is the standard velocity operator and
n is the unit vector that is locally normal to the surface S. The corresponding abstract form
of Snm(k) is given by

Snm(k) =
〈
Ψn(k)|

(
H(r)+ −H(r)

)
∂kΨm(k)

〉
.

It is now intuitively useful to give the extension of Eq. (C.5) to the one that includes the
explicit dependence of the Hamiltonian on a static parameter, in order to show the neces-
sity of a non-Hermitian boundary term that solves a “paradox” concerning the band theory.
First we present the “paradox” and then we show how this is resolved by taking into ac-
count the non-Hermitian term Snm(k). When one uses the cell periodic eigenstates and ap-
plies the Hellmann-Feynman theorem into the equation 〈un(k)|Hk(r,k)|un(k)〉 = En(k),
one finds the standard velocity expectation value with respect to the dispersion relation
derivative, that is 〈un(k)| ∂kHk(r,k)|un(k)〉 = ∂kEn(k) 6= 0. On the other hand, if one
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uses the Bloch eigenstates, that is applies the Hellmann-Feynman theorem into the equation
〈ψn(k)|H(r)|ψn(k)〉 = En(k), one deduces that ∂kEn(k) = 0. These sorts of subtleties are
attributed to non-Hermitian boundary terms that are not properly taken into account. Specif-
ically, by assuming a Hamiltonian H(r,R), where R is a general parameter, then Eq. (C.5)
takes the form

∂REn(R) δnm = (En(R)− Em(R)) 〈ψn(R)|∂Rψm(R)〉

+ 〈ψn(R)| ∂RH(r,R) |ψm(R)〉 − Snm(R) (C.8)

where |ψn(R)〉 are the eigenstates of the Hamiltonian. By way of an example, using
the diagonal form of Eq. (C.5) and assuming R ≡ k as well as an initial Hamiltonian
H(r) we find ∂kEn(k) = −Snn(k). In this manner, one will deduce that the bands are
always flat (or equivalently that the group velocity is always zero) if the non-Hermitian
boundary contribution is not taken into account, which will lead to an apparent “paradox”.
Using now the Bloch form eigenstate |Ψn(k)〉 = eik.r eiΛ(k) |un(k)〉 into the boundary
term Snn(k) = 〈H(r)ψn(k)|∂kψn(k)〉 − 〈ψn(k)|H(r)∂kψn(k)〉, as well as by taking into
account Eq. (2.30) and the explicit form of the boundary velocity definition Eq. (2.3) of the
main text, the relation between the boundary velocity and the standard (group) velocity for
stationary states 〈vb〉n = −〈v〉n is restored and the “paradox” is resolved.
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Boundary operator expectation value

We assume a Hermitian operator G that may be a function of G(r,π, t,σ). Using a Carte-
sian coordinate system, the operator components are given by

G = Gxex +Gψeψ +Gzez. (D.1)

In order to analytically evaluate the expectation value of the boundary operator Eq. (3.6)
we need the explicit form of the Hamiltonian of the system. Therefore, we assume the
Hamiltonian Eq. (3.7) which is convenient to separate into

H(r, t) = H1(r, t) +H2(r, t), (D.2)

where
H1(r, t) =

1

2m
Π(r, t)2 + V (r, t) (D.3)

is the spinless part and

H2(r, t) = − e~
2mc

σ ·B(r, t) + α(r, t,σ)·Π(r, t) (D.4)

is the relativistic correction term. In this respect, the expectation value of the boundary
operator Eq. (3.9) is given by

〈Ob〉 = 〈Ob1〉+ 〈Ob2〉 (D.5)

where
〈Ob1〉 =

i

~
(〈H1(r, t)Ψ(t)|GΨ(t)〉 − 〈Ψ(t)|H1(r, t)GΨ(t)〉) (D.6)

is the non-Hermitian boundary contribution due to the spinless part of the Hamiltonian and

〈Ob2〉 =
i

~
(〈H2(r, t)Ψ(t)|GΨ(t)〉 − 〈Ψ(t)|H2(r, t)GΨ(t)〉) (D.7)

is the boundary contribution due to the relativistic correction (spin dependent) terms.
In this framework we will evaluate separately Eq. (D.6) and Eq. (D.7), and then add them
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to get Eq. (D.5).

Analytic calculation of 〈Ob1〉

By taking into account that the scalar potential that enters the Hamiltonian H1(r, t) is a real
quantity, the expectation value of the boundary operator Ob1 is given by

〈Ob1〉 =
i

2m~

˚
V

(
( Π2Ψ)†GΨ−Ψ†Π2 GΨ

)
dV, (D.8)

where Ψ ≡ Ψ(r, t) is the two component spinor wavefunction. The x component of
Eq. (D.8) is given from

〈Ob1〉x =
i

2m~
ex

˚
V

(
( Π2Ψ)†GxΨ−Ψ†Π2GxΨ

)
dV, (D.9)

where we have make use of the constant direction of the Cartesian unit vector ex. Using the
explicit form of the kinematic momentum operator Π = −i~∇− e

c
A(r, t), Eq. (D.9) takes

the form

〈Ob1〉x =
i

2m~
ex

˚
V

(
(−i~∇− e

c
A) ·ΠΨ )†GxΨ − Ψ† (−i~∇− e

c
A) ·ΠGxΨ

)
dV

(D.10)
that leads to

〈Ob1〉x =
i

2m~
ex(i~)

˚
V

∇ ·
(

( ΠΨ )†GxΨ + Ψ†ΠGxΨ
)
dV

− i

2m~
ex(i~)

˚
V

(
( ΠΨ )† · ∇(GxΨ) + ∇Ψ† ·ΠGxΨ

)
dV

− i

2m~
ex
e

c

˚
V

(
( A ·ΠΨ )†GxΨ − Ψ†A ·ΠGxΨ

)
dV (D.11)

which gives

〈Ob1〉x = − 1

2m
ex

‹
S

(
( ΠΨ )†GxΨ(r, t) + Ψ†ΠGxΨ

)
·ds

+
i

2m~
ex

˚
V

(
( ΠΨ )† · (−i~)(∇GxΨ) − (−i~∇Ψ)† ·ΠGxΨ

)
dV

− i

2m~
ex
e

c

˚
V

A·
(

( ΠΨ )†GxΨ − Ψ†ΠGxΨ
)
dV. (D.12)
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Replacing now −i~∇ = Π +
e

c
A in the second term of the right hand side of Eq. (D.12)

we find

〈Ob1〉x = − 1

2m
ex

‹
S

(
( ΠΨ )†GxΨ + Ψ†ΠGxΨ

)
·ds

+
i

2m~
ex

˚
V

(
( ΠΨ )† ·(Π +

e

c
A)(GxΨ) − ((Π +

e

c
A)Ψ)† ·ΠGxΨ

)
dV

− i

2m~
ex
e

c

˚
V

A ·
(

( ΠΨ )†GxΨ − Ψ†ΠGxΨ
)
dV (D.13)

which finally gives

〈Ob1〉x = − 1

2m
ex

‹
S

(
( ΠΨ )†GxΨ + Ψ†ΠGxΨ

)
·ds. (D.14)

Taking now into account that ds = n ds, where n is the unit vector that is locally normal to
the surface S, Eq. (D.14) can be recast in the form

〈Ob1〉x = −1

2
ex

‹
S

n·
(

(
Π

m
Ψ )† + Ψ†

Π

m

)
GxΨ ds (D.15)

where we have use n·∇ = nx
∂

∂x
+ nψ

∂

∂ψ
+ nz

∂

∂z
, in order to restructure the term

Ψ(r, t)† (ΠGxΨ(r, t) )·ds in the form n·
(
Ψ(r, t)†Π

)
GxΨ(r, t) ds.

By adding all of the Cartesian components 〈Ob1〉 = 〈Ob1〉x + 〈Ob1〉ψ + 〈Ob1〉z we find
the form of the 〈Ob1〉 that is given by

〈Ob1〉 = −1

2

‹
S

n·
(

(
Π

m
Ψ )† + Ψ†

Π

m

)
GΨ ds (D.16)

Analytic calculation of 〈Ob2〉

The expectation value of the boundary contribution 〈Ob2〉 does not depend on the Zeeman
term; this is because each one of the Pauli matrices satisfies σi = σ†i , therefore,
(σ ·B)† = B·σ = σ ·B, which leads to the zero contribution

i

~
〈Ψ(t)|

(
HZ

+ −HZ

)
G |Ψ(t)〉 = − ie

2mc

˚
V

(
((σ ·B)Ψ)†GΨ − Ψ† (σ ·B)GΨ

)
dV

= − ie

2mc

˚
V

(
Ψ†
(

(σ ·B)− (σ ·B)
)

GΨ
)
dV = 0.

In this respect Eq. (D.7) is given from 〈Ob2〉 =
i

~
〈Ψ(t)|

(
HS.O

+ −HS.O

)
G |Ψ(t)〉 and

the x component of it by

〈Ob2〉x =
i

~
ex

˚
V

(
(α ·Π Ψ)†GxΨ − Ψ†α·ΠGxΨ

)
dV. (D.17)
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Using α(r, t,σ)† = α(r, t,σ) that gives (αΨ(r, t))† = Ψ(r, t)†α, as well as
α·Π = Π·α+ i~(∇·α),
and the following properties:

(α·Π Ψ)† = (Π·αΨ)† + ( i~(∇·α) Ψ)†

= +i~
(
∇·(αΨ)†

)
− e

c
A·(αΨ)† − i~Ψ† (∇·α)

= +i~
(
∇·(Ψ†α)

)
− e

c
A·(Ψ†α) − i~Ψ† (∇·α)

= +i~∇Ψ(r, t)† ·α + i~Ψ† (∇·α) − e

c
A·(Ψ†α) − i~Ψ† (∇·α)

= +i~∇Ψ† ·α − e

c
Ψ†A·α (D.18)

together with

α·ΠGxΨ = Π·αGxΨ + i~(∇·α)GxΨ

= −i~∇·(αGx Ψ) − e

c
A·(αGx Ψ) + i~(∇·α)Gx Ψ,

(D.19)

we find

〈Ob2〉x =
i

~
ex

˚
V

(
i~∇Ψ† ·αGxΨ −

e

c
Ψ†A ·αGxΨ

)
dV

− i

~
ex

˚
V

(
−i~Ψ†∇·(αGx Ψ) − e

c
Ψ†A·(αGx Ψ) + i~Ψ† (∇·α)Gx Ψ

)
dV

=
i

~
ex(i~)

˚
V

∇·
(
Ψ†αGxΨ

)
dV − i

~
ex(i~)

˚
V

Ψ† (∇·α)Gx ΨdV

= −ex

‹
S

(
Ψ†αGxΨ

)
·ds (D.20)

where we have used

∇·α =
~

4m2c2
∇·(σ ×∇V (r, t)) =

~
4m2c2

(∇V (r, t)·(∇× σ)− σ ·(∇×∇V (r, t)) ) = 0.

By adding all of the Cartesian components 〈Ob2〉 = 〈Ob2〉x + 〈Ob2〉ψ + 〈Ob2〉z we find
the form of the 〈Ob2〉 that is given by

〈Ob2〉 = −
‹
S

n·(Ψ†α) GΨds. (D.21)

Using (αΨ(r, t))† = Ψ(r, t)†α in Eq. (D.21) we restructure it in the symmetrical form

〈Ob2〉 = −1

2

‹
S

n·
(
(αΨ)† + Ψ†α

)
GΨds. (D.22)
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Boundary operator expectation value: 〈Ob1〉+ 〈Ob2〉

Noting that α =
i

~
[HS.O , r ], the expectation value of 〈Ob〉 is finally given by

〈Ob〉 = 〈Ob1〉+ 〈Ob2〉

= −1

2

‹
S

n·
(

((
Π

m
+α)Ψ)† + Ψ†(

Π

m
+α)

)
GΨ ds

= −1

2

‹
S

n·
(
vΨ)† + Ψ†v

)
GΨ ds (D.23)

where v =
i

~
[H(r, t), r] =

Π

m
+α.
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