
DEPARTMENT OF COMPUTER SCIENCE

Self-Stabilizing State Machine Replication

in Static and Reconfigurable

Asynchronous Message-Passing Systems

Ioannis Marcoullis

A dissertation submitted to the University of Cyprus

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

July, 2018

Ioa
nn

is
Marc

ou
llis

c© Ioannis Marcoullis, 2018

Ioa
nn

is
Marc

ou
llis

VALIDATION PAGE

Doctoral Candidate: Ioannis Marcoullis

Doctoral Dissertation Title: Self-Stabilizing State Machine Replication in Static

and Reconfigurable Asynchronous Message-Passing Systems

The present Doctoral Dissertation was submitted in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy at the Department of Computer Science and was

approved on July 4th, 2018 by the members of the Examination Committee.

Examination Committee:

Research Supervisor

Associate Professor Chryssis Georgiou

Committee Chair
Associate Professor Anna Philippou

Committee Member
Assistant Professor George Pallis

Committee Member
Professor Maria Potop-Butucaru

Committee Member
Professor Stefan Schmid

iii

Ioa
nn

is
Marc

ou
llis

DECLARATION OF DOCTORAL CANDIDATE

The present Doctoral Dissertation was submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy of the University of Cyprus. It is a product of original

work of my own, unless otherwise mentioned through references, notes, or any other state-

ments.

Ioannis Marcoullis

.

iv

Ioa
nn

is
Marc

ou
llis

Περίληψη

Η μέθοδος Αναπαραγωγής Μηχανής Καταστάσεων (ΑΜΚ) (state machine replication)

στον κατανεμημένο υπολογισμό είναι θεμελιώδης στη χρήση πλεονασμού πόρων για την

επίτευξη ανοχής σφαλμάτων. Στοχεύει στη συνεχή διατήρηση της συνέπειας πολλών αν-

τιγράφων (replicas) ενός –πιθανώς δυναμικού– κατανεμημένου αντικειμένου, παρέχοντας

έτσι αυξημένη διαθεσιμότητα (availability), προσπαθώντας όμως παράλληλα να περιο-

ρίσει, κατά το δυνατόν, τις επιπτώσεις στην επίδοση του συστήματος. Δύο καταξιωμένα

μοντέλα παροχής ΑΜΚ είναι η ομοφωνία (consensus) και ο εικονικός συγχρονισμός

(virtual synchrony). Αλγόριθμοι ΑΜΚ βάσει ομοφωνίας έχουν μελετηθεί και χρησι-

μοποιηθεί ευρέως. Πρόσφατα, η ΑΜΚ με ανοχή αυθαίρετων σφαλμάτων προτάθηκε ως

εναλλακτική του μοντέλου Απόδειξης-Εργασίας (Proof-of-Work) για τον ορισμό της σει-

ράς των “blocks” στα “blockchains”. Κυριότερος λόγος είναι η δυνατότητα του πιο

πάνω μοντέλου να υπερβαίνει το πρόβλημα της φθίνουσας επίδοσης που προκαλούν οι αυ-

ξανόμενες ανάγκες για συναλλαγές, αλλά και της υψηλής κατανάλωσης ενέργειας. Στον

αντίποδα, η ΑΜΚ με βάση τον εικονικό συγχρονισμό απευθύνεται σήμερα προς υπηρεσίες

νέφους (cloud services) με ανάγκες για υψηλές ταχύτητες.

Τα συστήματα που υλοποιούν ΑΜΚ παρέχουν εγγυήσεις επί τῇ βάσει παραδοχών όπως

η ύπαρξη ανώτατου ορίου στον ρυθμό εισόδου/εξόδου των αντιγράφων (επεξεργαστών ή

εξυπηρετητών) στο σύστημα, καθώς και των σφαλμάτων τα οποία μπορούν να επισυμβούν,

οι αλάνθαστοι πιθανοτικοί έλεγχοι σφαλμάτων, αλλά και η υπόθεση αρχικοποίησης όλων

των συστημικών μεταβλητών σε μια ορθή κατάσταση. Εάν όμως τα πιο πάνω, έστω

και προσωρινά, παραβιαστούν από παροδικά σφάλματα, τότε αυτό μπορεί να αλλοιώσει

την κατάσταση ενός ή περισσοτέρων αντιγράφων, περιλαμβανομένου του μετρητή του

i

Ioa
nn

is
Marc

ou
llis

προγράμματός τους. Συνεπώς, το σύστημα οδηγείται σε μια αυθαίρετη κατάσταση που

το εξαναγκάζει σε διαρκώς εσφαλμένη υπηρεσία, ή σε μόνιμη διακοπή της υπηρεσίας, έως

ότου υπάρξει ανθρώπινη διορθωτική παρέμβαση. Τα αυτοσταθεροποιούμενα συστήματα

(self-stabilizing systems) ενισχύουν τα ανεκτικά σφαλμάτων συστήματα, επιτρέποντάς

τους να ανακάμπτουν αυτόματα από παροδικά σφάλματα. ΄Ετσι, και σε συνδυασμό με άλλες

τεχνικές ανοχής σφαλμάτων, η αυτοσταθεροποίηση παρέχει μια περιεκτική και εύρωστη

στρατηγική ανοχής σφαλμάτων και ανάκαμψης.

Η παρούσα διατριβή προτείνει αυτοσταθεροποιούμενες αλγοριθμικές λύσεις με απο-

δεδειγμένες εγγυήσεις σε προβλήματα που σχετίζονται με την ΑΜΚ. Στο πλαίσιο αυτό,

παρουσιάζουμε την πρώτη πρακτικά-αυτοσταθεροποιούμενη (practically-self-stabilizing)

ΑΜΚ που εδράζεται στο μοντέλο εικονικού συγχρονισμού για ένα στατικό σύνολο αντι-

γράφων που δύνανται να καταρρεύσουν. ΄Επειτα, εισαγάγουμε δυναμικότητα στο σύνολο

των αντιγράφων, και παρέχουμε το πρώτο αυτοσταθεροποιούμενο σύστημα αναδιαμόρφω-

σης (reconfiguration) που μπορεί να οδηγήσει σε διαμορφοποιήσιμο ΑΜΚ, βασισμένο

είτε σε μοντέλο εικονικού συγχρονισμού, είτε ομοφωνίας. Τέλος αντιμετωπίζουμε το πιο

δύσκολο μοντέλο σφαλμάτων, τα αυθαίρετα σφάλματα (arbitrary/Byzantine faults), και

προτείνουμε έναν ανθεκτικό σε αυθαίρετα σφάλματα αυτοσταθεροποιούμενο αλγόριθμο

ΑΜΚ, που βασίζεται σε υλοποιήσιμους ανιχνευτές σφαλμάτων. Η διατριβή συνεισφέρει

επίσης ορισμένα επιμέρους αποτελέσματα, όπως ένα αυτοσταθεροποιούμενο κατανεμημένο

μετρητή που μπορεί να υλοποιήσει αυτοσταθεροποιούμενη κατανεμημένη κοινή μνήμη πολ-

λαπλών γραφέων και αναγνωστών (multi-writer multi-reader shared memory emula-

tion), καθώς και καινοτόμες τεχνικές σχεδιασμού και αποδείξεων. Σε γενική θεώρηση

τα τρία αποτελέσματα καλύπτουν ένα σημαντικό κενό στον δρόμο για την υλοποίηση

αυτοσταθεροποιούμενων συστημάτων “blockchain” βασισμένων σε ΑΜΚ, αλλά και αυ-

τοσταθεροποιούμενης διαμορφοποιήσιμης ανεκτικής σε αυθαίρετα σφάλματα ΑΜΚ.

ii

Ioa
nn

is
Marc

ou
llis

Abstract

State machine replication (SMR) in distributed computing is fundamental when

employing redundancy of storage to facilitate fault-tolerance. It aims at maintaining

the consistency of the state of several copies of a -possibly dynamic- distributed

object, thus, providing increased availability. At the same time, it strives to reduce the

impact on the system’s performance. Research on cloud systems has significantly

benefited from accumulated knowledge on SMR to quickly progress towards making

cloud services efficient and reliable. Two established paradigms providing SMR are

consensus and virtual synchrony (VS). Consensus-based SMR algorithms are widely-

studied and used, and well-understood. Recently, Byzantine-tolerant SMR was

proposed as an alternative to the Proof-of-Work (PoW) paradigm of block ordering

in blockchains. This is because it is suggested to overcome the poor performance

scalability of PoW and avoid the high energy consumptions. On the other hand,

systems that provide the VS property are today directed towards high-speed cloud

services.

Systems implementing SMR provide guarantees based on assumptions like

bounded churn rates, bounded replica failures, failure-free probabilistic error de-

tection mechanisms, or that system variables are started in a consistent state. If these

are, even temporarily, violated due to the occurrence of transient faults, then this

may corrupt the state of a single or multiple replicas, including its program coun-

ters. Subsequently, this leads the system to an arbitrary state, causing it to become

possibly unavailable, unless there is human intervention. Self-stabilizing systems

enhance existing fault tolerant systems to allow them to automatically recover from

iii

Ioa
nn

is
Marc

ou
llis

transient failures. In this way, and combined with other fault-tolerance techniques,

self-stabilization provides a comprehensive and robust fault-resilience and recovery

strategy.

This thesis proposes self-stabilizing algorithmic solutions with proven guarantees

to several SMR-related problems. In this framework, we initially present the first

practically-self-stabilizing VS-based SMR for a static crash-prone replica set. We then

introduce dynamicity in the membership of the replica set, and provide a modular

self-stabilizing reconfiguration scheme that can lead to self-stabilizing reconfigurable

SMR (based on either VS or consensus). We then address the more challenging

failure model of Byzantine faults, and propose a malicious-tolerant self-stabilizing

SMR algorithm based on implementable failure detectors. The thesis also bears

several by-products such as a self-stabilizing counter that can be incremented in

distributed fashion, and novel design and proof techniques. Considered together,

the three results cover a significant gap towards achieving self-stabilizing versions of

SMR-based blockchain frameworks or of reconfigurable Byzantine-tolerant SMRs.

iv

Ioa
nn

is
Marc

ou
llis

Acknowledgments

I would like to express my indebtedness to my supervisor Chryssis Georgiou for

his firm and inspiring guidance, indefatigable support and patient encouragement

in all of the years of my doctoral studies. His inspiring example of persistence

and excellence in research, combined with his integrity of character have positively

impacted my development as a researcher and as a person. I would like to thank

him for all the practical and financial support, for keeping his office door always

open, and particularly, for the precious time that he invested in me, often taken from

his personal/family time (for which I apologize).

My deep gratitude goes towards Elad Schiller for significantly enhancing my

understanding of the area of self-stabilization, and generally my approach towards

problem solving. His persistence in clear, rigorous and accurate statements of re-

search results have greatly improved the presentation of this dissertation, but have

also enriched my research and proof techniques over the past five years.

It was an honor collaborating with Shlomi Dolev and being introduced, first

hand, to the principles of self-stabilization. His insightful advices have guided the

presented research in many ways that I could never imagine. I would like to thank

him for the meetings we had, which were always vibrant and joyful, and his remarks

and comments, which were persistently to the point even at times when I could not

realize this.

I am grateful that, over all the years of my studies, I had splendid labmates at the

Foundations of Computing Systems and Theoretical Computer Science laboratory. I

am thankful to all of them for being around at times of very intense effort, expressing

v

Ioa
nn

is
Marc

ou
llis

their support, and providing useful feedback. I hope that I have contributed to their

efforts in a useful and constructive way as well.

I am thankful to the members of the faculty of the Computer Science Department

with whom I collaborated over these years as part of my teaching assistance duties,

and for always displaying a constructive high standard of professionalism in their

duties. Similarly, I would also like to thank the Department’s staff who willingly

and patiently provided their important services whenever required.

I would like to take this opportunity to acknowledge the support provided by

the University, especially through the two doctoral scholarships that proved very

helpful in bringing this work to end.

Rightfully, my deepest gratitude and indebtedness goes to my parents, Christos

and Andreani, and my sisters for their care and patience over these long years of my

studies. Without their ethical and material support this would have been impossible.

Finally, I would like to thank all the people who have at various times and places

taken interest and encouraged me to follow doctoral studies. To this end, I thank Fr.

Andreas for his encouragement ensuing this degree, and all the people who have,

for months, lifted my own duties and responsibilities to grant me the required time

to complete this dissertation.

vi

Ioa
nn

is
Marc

ou
llis

Thesis Contributions

This thesis is founded on the knowledge acquired by the author’s involvement in

the authorship of the following journal articles and conference papers:

Journal Articles

1. Shlomi Dolev, Chryssis Georgiou, Ioannis Marcoullis, and Elad M. Schiller,
Practically-Self-Stabilizing Virtual Synchrony. Journal of Computer and System
Sciences, Vol. 96, pp. 50–73, 2018.

Conference and Workshop Proceedings

2. Shlomi Dolev, Chryssis Georgiou, Ioannis Marcoullis, and Elad M. Schiller.
Self-stabilizing Byzantine Tolerant Replicated State Machine Based on Failure
Detectors. In Proc. of the 2nd International Symposium on Cyber Security Cryp-
tography and Machine Learning (CSCML 2018). pp. 84-100, Be’er Sheva, Israel,
2018.

3. Shlomi Dolev, Chryssis Georgiou, Ioannis Marcoullis, and Elad M. Schiller,
Self-stabilizing Reconfiguration. In Proc. of the 5th International Conference on
Networked Systems (NETYS 2017). pp. 51-68, Marrakech, Morocco, 2017.

4. Ioannis Marcoullis, Self-stabilizing Middleware Services. In Proc. of the Doctoral
Symposium of the 17th International Middleware Conference. Article 2, Trento, Italy,
2016.

5. Shlomi Dolev, Chryssis Georgiou, Ioannis Marcoullis, and Elad M. Schiller.
Poster Abstract: Self-stabilizing Reconfiguration. In Proc. of the Posters and
Demos Session of the 17th International Middleware Conference. pp. 13-14, Trento,
Italy, 2016.

6. Shlomi Dolev, Chryssis Georgiou, Ioannis Marcoullis, and Elad M. Schiller.
Self-stabilizing Virtual Synchrony. In Proc. of the 17th International Symposium
on Stabilization, Safety and Security of Distributed Systems (SSS 2015). pp. 248-264,
Edmonton, Canada, 2015.

7. Shlomi Dolev, Chryssis Georgiou, Ioannis Marcoullis, and Elad M. Schiller.
Brief Announcement: Self-stabilizing Virtual Synchrony. In Proc. of the 29th
International Symposium on Distributed Computing (DISC 2015). pp. 655-656,
Tokyo, Japan, 2015.

vii

Ioa
nn

is
Marc

ou
llis

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Prior Work . 4

1.3 Contributions . 8

1.4 Document Structure . 13

2 Related Work 14

2.1 State Machine Replication . 14

2.1.1 Consensus and State Machine Replication 14

2.1.2 Virtual Synchrony . 16

2.1.3 Consensus-based and VS-based SMR 17

2.2 Shared Memory Emulation . 18

2.2.1 Non-Self-Stabilizing SME . 18

2.2.2 Self-Stabilizing SME . 19

2.3 Reconfiguration . 20

2.3.1 Crash-Tolerant Reconfiguration 21

2.3.2 Byzantine-Tolerant Reconfiguration 22

2.4 Byzantine Fault Tolerance . 23

2.4.1 Non-Self-Stabilizing BFT . 23

2.4.2 Self-Stabilizing BFT . 24

2.5 Data-link Protocols and Failure Detectors 26

2.5.1 Self-Stabilizing Data-Link Protocols 26

2.5.2 Failure Detectors . 27

3 System Settings and Definitions 29

3.1 Distributed Setting . 29

3.2 Failure Model . 29

3.3 Communication and Data Link Implementation 30

3.4 The Interleaving Model . 31

3.5 Self-Stabilization . 32

viii

Ioa
nn

is
Marc

ou
llis

4 Practically-Self-Stabilizing Virtual Synchrony 33

4.1 Specific System Settings and Definitions 35

4.1.1 Practically-Self-Stabilization . 35

4.1.2 Complexity Measures . 35

4.1.3 The Virtual Synchrony Task . 36

4.2 Solution Outline . 37

4.3 Practically-Self-Stabilizing Labeling Scheme and Counter Algorithm 38

4.3.1 Labeling Algorithm for Concurrent Label Creations 39

4.3.2 Labeling Algorithm Correctness Proof 45

4.3.3 Increment Counter Algorithm 57

4.4 Virtually Synchronous Stabilizing Replicated State Machine 65

4.4.1 Preliminaries . 65

4.4.2 Virtual Synchrony Algorithm 68

4.4.3 Correctness Proof of Algorithm 4 72

4.5 Chapter Summary . 80

5 Self-Stabilizing Reconfiguration 82

5.1 Specific System Settings and Definitions 82

5.1.1 Distributed Setting . 82

5.1.2 Communication . 83

5.1.3 The (N,Θ)-failure detector . 84

5.1.4 The System Reconfiguration Task. 85

5.2 Solution Outline . 86

5.3 Reconfiguration Stability Assurance 88

5.3.1 Algorithm Description . 88

5.3.2 Correctness . 98

5.4 Reconfiguration Management . 119

5.4.1 Algorithm Description . 119

5.4.2 Correctness . 121

5.5 Joining Mechanism . 128

5.5.1 Algorithm description . 128

5.5.2 Correctness . 129

5.6 Applications of the Reconfiguration Scheme 131

5.7 Chapter Summary . 134

ix

Ioa
nn

is
Marc

ou
llis

6 Self-Stabilizing Byzantine Fault Tolerance Based on Failure Detectors 135

6.1 Specific System Settings and Definitions 135

6.2 Solution Outline . 136

6.3 View Establishment . 139

6.3.1 Algorithm Description . 139

6.3.2 Correctness . 147

6.4 State Replication Algorithm . 158

6.4.1 Preliminaries . 158

6.4.2 Algorithm Description . 160

6.4.3 Correctness . 166

6.5 Primary Monitoring . 176

6.5.1 Failure Detection . 177

6.5.2 View Change upon Suspected Primary 180

6.6 Extensions . 184

6.6.1 Relaxing the Assumptions for View Establishment 184

6.6.2 Optimality . 186

6.7 Chapter Summary . 186

7 Conclusions and Future Work 187

7.1 Summary . 187

7.2 Future Directions and Objectives . 189

x

Ioa
nn

is
Marc

ou
llis

List of Algorithms

1 The nextLabel() function . 40

2 Practically-self-stabilizing Labeling Algorithm 44

3 Practically-self-stabilizing Increment Counter 61

4 Practically-self-stabilizing Virtually Synchronous SMR 70

5 Self-stabilizing Reconfiguration Stability Assurance 91

6 Self-stabilizing Reconfiguration Management 120

7 Self-stabilizing Joining Mechanism . 129

8 Self-stabilizing View Establishment: Coordinating Automaton 142

9 Self-stabilizing View Establishment: View Predicates and Actions . . . 144

10 Self-stabilizing Byzantine Replication 161

11 Self-stabilizing Failure Detector . 177

12 Self-stabilizing View Change . 181

xi

Ioa
nn

is
Marc

ou
llis

List of Figures

3.1 State convergence and closure for stabilizing algorithms. 32

4.1 Example of a virtually synchronous execution. 36

4.2 Variables and Operators for Algorithm 2 (Labeling Scheme). 43

4.3 Variables and Operators for Algorithm 3 (Increment Counter). 57

4.4 Macros for Algorithm 3 (Increment Counter). 58

4.5 The maintainCntrs() operator. 60

4.6 Interfaces and Variables for Algorithm 4 (Virtually Synchronous SMR. 69

4.7 Macros and Procedures for Algorithm 4 (Virtually Synchronous SMR). 71

5.1 Reconfiguration scheme architecture. 87

5.2 Variables for Algorithm 5 (Reconfiguration Stability Assurance). . . . 89

5.3 Macros/Interface Functions for Alg. 5 (Reconf. Stability). 90

5.4 The configuration replacement automaton. 92

6.1 Modules and Interface Functions for the Self-stabilizing BFT. 138

6.2 View establishment coordinating automaton. 140

6.3 Variables and Macros for Algorithm 9 (View Establishment). 143

6.4 An instance of a view transition. 145

6.5 Variables and Constants for Algorithm 10 (BFT replication). 159

6.6 Macros for Algorithm 10 (BFT Replication). 160

xii

Ioa
nn

is
Marc

ou
llis

List of Tables

4.1 Notation for the labeling scheme correctness. 52

6.1 View establishment automaton predicates. 140

6.2 Case analysis for different cases of automaton steps. 154

xiii

Ioa
nn

is
Marc

ou
llis

Chapter 1
Introduction

This thesis provides algorithmic solutions to problems in distributed computing

that employ the state machine replication approach and are proved to recover to

their designed behavior from any deviant system state. The solutions consider

asynchronous static and dynamic message-passing systems under various failure

models.

1.1 Motivation

Distributed computing, distributed data storage and more recently, the emergence of

cloud computing, has rendered fault-tolerance a vital and highly desired system prop-

erty. System failures, let them be power failures, hardware failures, communication

interruptions or DoS attacks, can have such adverse repercussions on industries,

services, and governments, that the commodity of fault-tolerance has major day-to-

day gains. To this end, introducing redundancy, namely keeping multiple copies of

a distributed object, is a standard technique that renders systems more robust by

masking replica (or processor) failures and providing availability and performance in

the case of queries. Redundancy, though, gives rise to an important problem; that of

consistency. How can one retain consistency of state in every single replica when the

distirbuted object is being changed possibly concurrently? The user of a distributed

system must be able to receive a consistent, up-to-date view of the distributed object

it is querying or processing.

Replication [1] is a well known and widely studied paradigm in distributed com-

puting for creating multiple copies of a possibly dynamic object. The aim is to ensure

that redundancy is leveraged towards masking failures and providing availability,

1

Ioa
nn

is
Marc

ou
llis

but not at the expense of the reliability of data, and also attempting to preserve per-

formance during replica updates [2]. There are several approaches, and, depending

on the task, one may choose to relax the need for strong consistency, for example, to

achieve better performance and availability [3].

Several methods have been suggested over the years to retain the consistency of

replicated objects. Transactional replication is a well-studied paradigm [4] on which

many such replication services are built especially for carrying out operations on

databases. State machine replication (SMR) [5, 6] emulates the state transitions of one

replica—possibly of a leader also known as primary or coordinator—in every other

replica in the system through the execution of the same commands, with the same

input, on the same state variables, and in the same order. Two of the standard and

well-established techniques to implement SMR are (i) consensus-based techniques

(e.g., Paxos [7]), and (ii) via Group Communication Systems (GCS) that implement

the virtual synchrony (VS) paradigm [8–10].

Nowadays, consensus-based Byzantine-fault-tolerant (BFT) SMR is a hot topic

because of its use in implementing distributed ledgers, a form of which is the

blockchain [11–14]. On the other hand, the virtual synchrony paradigm can be found

in the structure of several existing replication systems, and recent implementations

of such systems are directed towards high-speed cloud services [15, 16]. In general,

BFT is a highly researched topic, since every large scale network will at some point

(in many cases continuously) experience more severe failures than crashes. This

may be due to intended or unintended malicious behavior.

Systems that facilitate replication are often found struggling with the changes in

the membership of the replica set, which is often referred to as the configuration. The

environments in which they function tend to be dynamic with processors joining

and departing either graciously or by crashing. As time passes, the configuration

composition perishes and application support becomes problematic. For long-lived

systems, it is imperative to have a reconfiguration mechanism to introduce new repli-

cas to the configuration and exclude departed or inefficient ones.

Fault-tolerant systems provide guarantees, given that some assumptions hold. It

is possible that in some instances system assumptions are violated. For example, a

system might be tolerant to a minority of failures of its processing entities, or to less

than a third of those to exhibit malicious behavior. This is something that cannot

be actually controlled. The same holds for assumptions about bounded churn rates,

2

Ioa
nn

is
Marc

ou
llis

i.e., bounded rates of processor joins and leaves/crashes. A common assumption

of many reconfiguration services is that a majority or quorum1 of the configuration

is never lost [17, 18]. Another example is systems that offer guarantees with high

probability, e.g., error detection. While such assumptions may be sufficient for a long

period of a system’s lifetime, some rare violations cannot be excluded, and these

may have detrimental effects.

For example, a soft error (some accidental bit-flip) may force a counter to acquire

its maximal value, and thus drive the system to either non-progress or to a permanent

violation of the system’s safety properties. A corrupt program counter or program

variable can bring the system to an arbitrary state from which it cannot recover,

since it was not anticipated by the system’s designers. The system remains useless,

requiring human intervention to recover and personnel to be always on-call.

Self-stabilizing systems [19, 20] are designed to automatically recover the system

back to its working state and desired behavior. Such systems have a comprehensive

approach towards faulty states that usually system designers consider as impossible

to reach. In this way, self-stabilizing systems guarantee convergence to a legitimate

system state starting from any possible system state, and closure when this legitimate

state has been reached, and until the guarantees of the system are violated again.

Impressively, this approach can even cope with the almost universal designers’

assumption that the system and its variables start in a consistent initial state. In

general, automatic recovery reduces the cost of recovery, and possibly the off-time,

making systems more available, and provides added-value as far as their maintain-

ability is concerned. The self-stabilization research community has produced many

results for a plethora of problems that are basic to distributed computing. State ma-

chine replication, as might be expected, has drawn the attention of many members

of the self-stabilization community that aim to enhance existing solutions with the

stabilization property.

An overview of the current state of the art, as Section 1.2 and to a greater extend

Section 2 present, reveals several challenging open questions on fault-tolerant self-

stabilizing replication services. Contrary to consensus, virtual synchrony has not up

to this day received the attention of the self-stabilizing community, neither have im-

portant elements enabling dynamic participation in replication services such as the

1Sets of pairwise interconnected servers (e.g., majority of servers form a quorum system).

3

Ioa
nn

is
Marc

ou
llis

reconfiguration service. Moreover, while the use of implementable failure detectors

is a well known technique to circumvent impossibility results that otherwise require

stronger asynchrony or non-determinism, it is not obvious that they have been used

in the types of problems that we consider. This thesis seeks to address these prob-

lems while moving in the direction of a deployable self-stabilizing, reconfigurable,

fault-tolerant SMR system; desirably a Byzantine-tolerant one.

1.2 Prior Work

In this section we present some background knowledge of the topics and a selection

of important (for this thesis) related works. This serves as a prelude to presenting

the thesis’s contributions.

Self-stabilization. A self-stabilizing algorithm is defined as an algorithm, which,

started from any initial arbitrary state, automatically converges to the system’s de-

sired behavior, i.e., to a legal system state, within bounded time [6,19,21,22]. Edsger

Dijkstra was the first to identify the self-stabilization property for distributed algo-

rithms while solving the mutual exclusion task [20]. Leslie Lamport [23] commenting

on Dijkstra’s paper, held it to be Dijkstra’s “most brilliant work”, and “a milestone

in work on fault tolerance”, as well as a “very fertile field for research”, a charac-

terization that is today justified given the mounting number of published research

papers on self-stabilization (including an annual conference on self-stabilization).

For asynchronous message-passing systems, it may be proved impossible to

bound the stabilization time (as per the traditional self-stabilization definition). This

is because predictions on when stale information will appear at a given proces-

sor to cause a safety violation are impossible to make, e.g., they are dependent

on asynchrony. This motivates the study of weaker forms of stabilization [24].

Although we cannot bound the stabilization time, we can leverage upon the pos-

sibility to bound the number of possible safety violations. This approach is called

pseudo-stabilization [25]. A similar, but more recent, approach is practically-self-

stabilization [24, 26–28], which is more inclusive in terms of the problems that it can

tackle. In particular, it requires a bounded number of safety violations in a number

of computation steps that is big enough to be considered infinite. We elaborate,

further motivate, and more formally define the notion in Section 4, but for a more

4

Ioa
nn

is
Marc

ou
llis

complete account see [24] 2.

A necessary element to quantify the contributions of this work is the metric

of an asynchronous round. Most of the guarantees of our self-stabilization results

are using this metric. An asynchronous round for an algorithm A includes the

complete execution of A from every processor in the system from the first line to

the last, and the receipt of all the messages that every such processor sent by other

processors. It is intuitive that faster processors may complete many rounds, but the

metric considers the last processor to achieve the propagation of its information to

every other processor. Note that for the case where there are failures, only correct

processors are considered in the definition of the asynchronous rounds.

Practically-Self-Stabilizing Counters. Many systems like the ones performing

replication (e.g., GCSs requiring group identifiers, of Paxos implementations requir-

ing ballot numbers) assume access to an infinite (unbounded) counter. Practically,

no integer counter can be implemented as unbounded, since hardware has finite

capabilities. A practically infinite counter implemented as a τ-bit counter (e.g., 64-bit

with τ = 64) is not truly infinite, but it is large enough to provide counters for the

lifetime of most conceivable systems when started at 0. Indeed, it is not difficult

to verify that a 264-bit counter incremented per nanosecond can last for around 500

years, essentially an infinity for most of today’s running systems. Nevertheless,

transient faults can corrupt the counter to spontaneously attain its maximal value.

The bounded labeling scheme and the use of practically unbounded sequence

numbers proposed by Alon et al. [27], allow the creation of practically-self-stabilizing

bounded-sized solutions to the never-exhausted counter problem in the restricted

case of a single writer. In [26], a practically-self-stabilizing version of Paxos was

developed, which led to a practically-self-stabilizing consensus-based SMR imple-

mentation. To this end, they extended the labeling scheme of [27] to allow for

multiple counter writers, since unbounded counters are required for ballot num-

bers. Extracting this scheme for other uses does not seem intuitive. We further detail

the scheme in Section 4.3.
2This paper was only very recently accepted at the NETYS 2018 conference, where it received the

Best Paper Award. This indicates an appreciation of the community to this notion as a potentially

fruitful research direction in the area of stabilizing algorithms. The paper makes considerable use of

the extended labeling scheme presented in this thesis and detailed in Section 4.

5

Ioa
nn

is
Marc

ou
llis

Virtual Synchrony. Virtual Synchrony (VS) is an important property provided by

several Group Communication Systems (GCSs) that has proved to be valuable in

the scope of fault-tolerant distributed systems where communicating processors are

organized in groups with changing membership [8,29,30]. During the computation,

groups change allowing an outside observer to track the history (and order) of the

groups, as well as the messages exchanged within each group.

The VS property guarantees that any two processors that both participate in two

consecutive such groups, should deliver the same messages in their respective group.

Group communication systems that realize the VS abstraction provide services, such

as group membership and reliable group multicast. The group membership service is

responsible for providing the current group view of the recently live and connected

group members, i.e., a processor set and a unique view identifier, which is a sequence

number of the view installation. The group multicast service facilitates reliable

delivery of messages (all-or-none delivers them), although the delivery order may

be specified by the service. Thus, a virtually synchronous multicast is one which

guarantees delivery of a message within the view it was sent in, unless the sender

crashes [31, p.350]. We will mainly be referring to reliable totally-ordered delivery

(also known as atomic message delivery) that requires all non-crashed processors

of a view to deliver the same messages to the upper layers in the same order. This

is necessary to facilitate SMR, albeit it faces the restrictions of the FLP result when

implemented in asynchrony in the presence of failures.

Shared Memory Emulation. The shared memory primitive considers a shared ob-

ject called “register”, which is accessible through the operations read and write [32].

Concurrent reads and writes give rise to the challenge of preserving data consistency,

although the primitive is simpler to conjecture about in relation to the message-

passing one. Leslie Lamport [33] defined several notions of consistency (like safety

and regularity), but the strictest one is atomicity. We only refer to this notion of atom-

icity as this is compatible to the guarantees that our services provide. The shared

memory model may be emulated on a message-passing system through algorithms

like the seminal atomic shared memory emulation protocol of Attiya, Bar-Noy and

Dolev (known as ABD) [32]. This tolerates f crash failures that are up to a minority

of the whole set, i.e., f < n/2. Here, a single processor is the writer that can write a

value to the register. An extension by [34] allows for multiple writers with an extra

6

Ioa
nn

is
Marc

ou
llis

communication round for the writer. The service can be run in a static environment

on a fixed set of processors, but also in a dynamic environment using a reconfigura-

tion service to provide a set of reliable processors to act as service providers. We see

this in the sequel.

Reconfiguration. Dynamic environments in which the participating processors

(servers) that form the configuration join and depart continuously are always a

challenging problem to every such system. Reconfiguration is a fundamental and

indispensable component to any large scale system that provides long-lived ser-

vices. Existing solutions for providing reconfiguration in dynamic systems, such

as [17] and [18], do not consider transient faults and self-stabilization, because their

correctness proofs (implicitly) depend on a coherent start [35], and also assume that

crash failures can never prevent the quorum configuration to facilitate configuration

updates, i.e., the quorum system never collapses before a reconfiguration completes.

They also often use unbounded counters for ordering consensus messages, or for

shared memory emulation and by that facilitate configuration updates, e.g., [17]. As

we saw before, such counters can occasionally be subject to corruption with adverse

results.

Byzantine Fault Tolerance. The most severe failure model of distributed comput-

ing is the Byzantine one [36], in which some processors may act arbitrarily by not

following the protocol. This model abstracts the intention of the faulty processor,

by including all such errors, e.g., malicious agent actions, a processor with a virus,

or a communication fault in some processor, causing packet corruption of outgoing

data [31]. State machine replication in the presence of Byzantine processors is a long

studied problem [37, 38]. A milestone of this research line is Lamport et al.’s result

that agreement is achievable only if faulty processors constitute less than a third of

the processor set [36].

A seminal paper on BFT replication is Practical Byzantine Fault Tolerance (PBFT)

by Castro and Liskov [38]. It achieves Byzantine-tolerant replication that is optimal

in the number of Byzantine processors, i.e., n = 3 f + 1. The service requires a consis-

tent initial state, in which processors have a common integer view, and an unbounded

local memory, although garbage collection procedures are well-defined. The pro-

cessor whose identifier coincides with the view is the primary that coordinates the

7

Ioa
nn

is
Marc

ou
llis

view. It is responsible to assign sequence numbers to client requests, so that the

other servers execute these in a common order, thus achieving SMR. Cryptography

is used to ensure the authenticity of client requests sent by the (possibly malicious)

primary to the other processors. It is also used to verify the authenticity of the other

servers’ messages. The process is then a three-phase protocol to establish that the

sequence number assigned by the primary will be accepted by 2 f + 1 processors.

This ensures that at least f + 1 correct processors accepted this, which is a majority

of correct processors, and ensures that eventually every other correct processor will

attain this request with the same request number.

Liveness is maintained using timeouts to check whether the primary is progress-

ing the state machine. If this is not the case (although detection may be imperfect),

a view change procedure commences. Correct processors in a view v await from the

new primary (who has the identifier equal to v + 1 mod n) to send a set of pending

requests and a stable checkpoint of previous executed requests. If the other pro-

cessors accept this, based on the encrypted-proved messages sent, they proceed to

the next view. Otherwise, the processor with the next identifier will be expected to

send this information and become the primary. We later review several optimization

done to the above basic protocol, or other approaches. Nevertheless, PBFT remains

a landmark in the research of BFT replication.

The only work available on self-stabilizing Byzantine-Fault-Tolerant SMR is by Bi-

nun et al. [39] that assumes a semi-synchronous setting and employs a self-stabilizing

byzantine-tolerant clock synchronization algorithm [40] to enforce a new instance of

Byzantine agreement upon every clock pulse. In particular, upon a clock pulse the

system initiates n + 1 instances of a leaderless version of BFT for each processor to

obtain a common vector of message histories. This defines a sequence of executions.

1.3 Contributions

This thesis contributes three main novel results by providing algorithmic self-

stabilizing solutions to significant problems in distributed computing. It initially

provides the first practically-self-stabilizing SMR service based on virtual Synchrony,

which runs on a static set of crash-prone processors. It proceeds to provide the first

self-stabilizing reconfiguration scheme that allows services such as the virtually

synchronous SMR to run on a dynamic membership. The third work is the first

8

Ioa
nn

is
Marc

ou
llis

failure-detector-based Byzantine-Fault-Tolerant replication, that is essentially a self-

stabilizing version of the seminal paper on Practical Byzantine Fault Tolerance [38].

We proceed to detail the contributions, without neglecting that these are not confined

to the main results themselves. Indeed, en route to presenting the results, we also

expose important by-products of this work that are possibly of independent interest

and of general use.

Practically-self-stabilizing virtually synchronous SMR. The virtually syn-

chronous SMR scheme is built with the stabilization notion of practically-self-

stabilization that provides guarantees on the number of possible safety violations

that an asynchronous system may experience starting in an arbitrary state. We con-

sider a system with a fixed set of n crash-prone processing entities called processors.

The system employs a practically-self-stabilizing counter increment algorithm

that is an extension of the one of Alon et al. [27] that facilitates the increment of the

distributed counter by any processor in the system and not just the writer. Extending

the scheme is not a straight-forward exercise. This is because stale messages in

the communication links from a corrupt initial state may cause a phenomenon of

endless cyclic adoptions of the crashed processors’ counters. There is need to clean

the system from this information debris before converging to a global maximal view.

We prove that the system can clean corrupt labels with O(n3) violations of safety,

which is a rather extreme case scenario. The space complexity (i.e., memory usage)

in labels is alsoO(n3). The extended scheme proves its value by being modular and of

general use as a practically-self-stabilizing black-box tool. It also lends itself easily to

a straight-forward implementation of a Multi-writer Multi-reader (MWMR) shared

memory emulation by the simple attachment of a value to the maximal counter. The

rest is merely applying the multiple-writer version [34] of the ABD algorithm [32].

The SMR algorithm is constructed around a reliable multicast service realizing

the virtual synchrony property. Data links, via packet exchange, implement a token

passing abstraction used to implement a heartbeat, and in extent, a failure detector

to provide the membership of the current multicast processor group (also known

as the view). This is the (Θ)–failure detector presented for the self-stabilizing Paxos

scheme [26]. The system is coordinator-based with the coordinator being the pro-

cessor that draws the highest counter. The coordinator is “reused” and is the one

to change the view if it detects changes to the composition of the current view, by

9

Ioa
nn

is
Marc

ou
llis

incrementing the counter and using it as the new view identifier. The reuse of the

coordinator over several multicast rounds proves efficient in relation to consensus-

based approaches. We prove our algorithm to be practically-self-stabilizing and

require at most O(n) forced view creations, i.e., safety violations, in order to guar-

antee the existence of a non-changing non-faulty coordinator. Such a coordinator is

defined with respect to our failure detector with the liveness assumption that less

than half of the processors suspect this processor in a computation that is practically

infinite. This work is detailed in Chapter 4, and parts of it appear in [41–43].

Self-stabilizing Reconfiguration service. Departing from the previous system set-

ting, we consider a dynamically changing set of crash-prone processors, of which at

most N are live and connected at any time in the computation. Of the N participants,

some or all constitute the set of configuration members. A reconfiguration service

enhances the longevity of any application running on the configuration. As such, it

is not confined to the application of replication, although, as we detail in Section 2,

reconfiguration is mostly related to replication and shared memory emulation. The

reconfiguration service proposed is the first, to our knowledge, self-stabilizing re-

configuration service. As such, it can recover from more adverse situations like the

collapse of the configuration quorum system (e.g., of the majority), or from conflicts

of the system’s participants about the current configuration. The system can even

bootstrap in cases where the configuration known by processors in the system’s

initial state is completely strange to the system’s current membership.

The service comprises three modules. These grant to the application considerable

control over customized configuration and reconfiguration decisions. In particular,

the system is composed of a lower layer algorithm responsible to monitor the com-

mon knowledge about the current configuration. To this end, it either follows a

brute-force reconfiguration technique that is a hard reset of the configuration, or a

delicate form of reconfiguration. While brute reconfiguration allows every processor,

even joining ones to enter the configuration, delicate reconfiguration only allows the

application participants to decide and become members of the configuration. Both

involve the convergence to a common processor set provided by a proposed eventu-

ally perfect failure detector, although the delicate form has the weaker requirement

that only joined participants need to agree on the configuration membership. We

use an enhanced version of the (Θ)-failure detector to get the (N,Θ)–failure detector

10

Ioa
nn

is
Marc

ou
llis

(an approach suggested in [44, 45]).

In the case of conflicting configuration knowledge, the lower layer is proved to

self-stabilize and converge back to a state with a common configuration withinO(N)

asynchronous rounds. The design and proof of the algorithm is not trivial, and

employs an automaton-based lockstep progression of configuration convergence

and installation.

The upper layer sits on top of the lower layer. and is responsible to check the

well-being of the configuration and the existence of a majority or in general some

quorum of processors of the configuration. It has a black box evaluation function

that captures the general view that the question of when a reconfiguration is initiated

is an application-based decision [35]. Self-stabilization is proved to take place within

an additional O(1) asynchronous rounds after the lower layer has stabilized. The

technical difficulty lies in keeping the upper layer modular, yet unable to hinder the

progress of a pending reconfiguration at the lower layer.

The joining mechanism completes the system and is the access point of joining

processors to the application. It ensures that their local state is cleaned from any pre-

existing stale information that may pollute the system upon induction. The approach

is again application-based, since the joining mechanism gives to the application the

right to allow or deny access. In this way one can control the churn (and thus

the predefined system upper bound N). This work is detailed in Chapter 5, and

preliminary versions appear in [43, 46, 47].

Self-stabilizing Byzantine-Fault-Tolerance. Looking towards more severe forms

of failures in the SMR problem, a natural first step is to provide self-stabilizing

Byzantine-fault-tolerant replication. Following the seminal paper by Castro and

Liskov [38] on Practical Byzantine Fault Tolerance (PBFT), we build a self-stabilizing

version. This guarantees convergence and retains the safety of the replication task in

asynchrony, with progress being provided under given liveness assumptions. The

solution is detailed for a fixed processor set of n = 5 f + 1 processors where f may

act maliciously at any time and not follow the system’s protocol. We later explain

how our solution works for optimal resilience, i.e., for n = 3 f + 1. The scheme is

composed of three modules.

Following the PBFT approach of using the view to define the primary processor,

our first module “View Establishment” has the task to ensure that correct processors

11

Ioa
nn

is
Marc

ou
llis

have a consistent view that cannot be overthrown by malicious behavior. This is the

most critical part, since, having a primary, correct processors can then converge to a

single replica state. Managing convergence to a consistent view in the presence of

Byzantine processors injecting arbitrary messages, and in the existence of other stale

information in local states and communication channels is very demanding, and it

is impossible without a series of assumptions [48–51]. To this respect, we present an

automaton-based solution where convergence requires a fragment of the computa-

tion to be free of failures (even under this constraint, view establishment is still very

challenging as one infers from Section 6.3). The automaton-based solution is similar

to the one of the self-stabilizing reconfiguration work, but here it is presented in a

modular way, in an effort to demonstrate that this automaton coordinating approach

is applicable to other problems beyond the one considered. In Section 6.6, we relax

this constraint by introducing a novel event-driven (unreliable) failure detector that

can be tuned to ensure (in all reasonable executions) that enough responses from

non-byzantine processors are received.

The second module offers the replication service following the three-phase pro-

tocol of PBFT with the following differences. We provide bounds on the message

queues as this is vital for self-stabilization to be possible. Also, as we prefer to use in-

formation theoretically secure schemes, rather than computationally cryptographic

secure schemes based on message signing [52], we require that clients contact all

replicas. The primary is still the one to decide the order, but the replicas, through

a self stabilizing all-to-all exchange procedure, validate the requests suggested to

be processed by the primary. In the existence of a primary, the replication service

requires O(n) asynchronous rounds to converge to a unique replica state.

The third component is the primary monitoring module that ensures the live-

ness of the system by checking that the primary is making progress by ordering

requests. We substitute the timer-based approach of Liskov with a suitable failure

detector. In particular, we follow the approach of Baldoni et al. [53], to propose a

self-stabilizing implementation of a failure detector that checks both the responsive-

ness of the replicas (including the primary), and whether the primary is progressing

the state machine. This module stabilizes from an arbitrary initial state within O(n)

asynchronous rounds, although after a view exists, it only needs O(1) rounds.

Diverging from the approach of the self-stabilizing BFT of [39], we do not use

clock synchronization and timeouts, but rather, we base our solution on the self-

12

Ioa
nn

is
Marc

ou
llis

stabilizing failure detector and automaton-based coordination technique mentioned

above. This approach encapsulates weaker synchronization guarantees than [39].

In view of [11], this result is an important step towards realizing self-stabilizing

BFT-based infrastructure for blockchain systems. This work is detailed in Chapter 6

and a preliminary version appears in [54].

As a general contribution, our systems, when compared with corresponding non-

stabilizing services, require bounded local memory and bounded-sized messages.

Additionally, they do not require a consistent initial state. These properties are innate

to stabilizing protocols.

1.4 Document Structure

The remaining parts of this thesis are structured as follows.

In Chapter 2 we study prior work and related literature.

In Chapter 3 we define the system settings for the different problems that we

tackle, the self-stabilization notions that appear, and the metrics that we use. Given

the diversity of the tasks that we tackle within the vicinity of SMR, we defer discus-

sion of some system-specific details to the dedicated chapters. We also keep task

definitions to their respective chapters.

Chapter 4 presents the practically-self-stabilizing virtually synchronous SMR

scheme. In particular, we first present the practically-self-stabilizing version of

the labeling scheme and counter increment counter with their correctness proofs

(Section 4.3), and then detail the virtual synchrony algorithm (Section 4.4).

Chapter 5 considers the self-stabilizing reconfiguration scheme, the upper layer

under the name of Reconfiguration Stability and Assurance (Section 5.3), the upper

layer under the name of Reconfiguration Management (Section 5.4) and the joining

mechanism (Section 5.5).

The Self-stabilizing Byzantine Fault Tolerance service in Chapter 6 is composed

of the View Establishment module (Section 6.3), the Replication module (Section 6.4)

and the Primary Monitoring module (Section 6.5).

We conclude with Chapter 7 where we overview the thesis work, and discuss

future research directions of the presented line of work.

13

Ioa
nn

is
Marc

ou
llis

Chapter 2
Related Work

We overview related work in the research areas considered by this thesis. Research on

self-stabilization is considered in the presentation of every corresponding problem

that we study.

2.1 State Machine Replication

Leslie Lamport was the first to introduce State Machine Replication (SMR), presenting

it as an example in [5]. Schneider [55] gave a more systematic approach to the design

and implementation of SMR protocols. A server (replica) defines a state machine

with state variables that are modified by operations. When a client issues a request

to a server with a specific operation, the server, under certain conditions, executes

the operation and a state transition takes place. SMR requires replicas to define a

common order of execution of such requests, in order to generate the same state

transitions, and thus retain the same state [56]. This approach has the underlying

assumption of a consistent initial state. In the case of self-stabilization this is not

something given, but rather it is what is being asked for, namely, for the system to be

able to converge to a consistent legal system state that also defines a legal replication

state from which to continue replication.

2.1.1 Consensus and State Machine Replication

The consensus problem [7, 57] requires that a set of processors, each with an initial

value, to eventually agree on a single such value. Any solution to consensus must

provide the following three properties: the decided value is one of the processors’

initial values (validity), all correct processors decide on the same value (agreement),

14

Ioa
nn

is
Marc

ou
llis

and all correct processors eventually decide (termination). It was shown that there

is no deterministic algorithm providing termination (which is the liveness property

of consensus) in any asynchronous system with faulty processors. This holds even

in the case where only a single processor is crash-prone. This result is known as

the “FLP impossibility”, or simply the “FLP” [58]. Fortunately, there are several

approaches to circumvent this impossibility [37]. Popular ways to do this, are to

introduce synchrony and assume a known delay to the system’s communication,

or to use randomization and thus sacrifice determinism [59]. Another way is to

employ a failure detection mechanism [60], while some works move on to modify

the problem and ask for weaker guarantees.

Intuitively, a consensus-based replicated state machine runs repeated instances of

consensus to allow replicas to reach an agreed order of execution of state operations.

Indeed, consensus is probably the most well-established and favored technique

to achieve SMR. The best-known consensus algorithm is the Paxos protocol by

Lamport [7]. The protocol considers replicas that maintain the application state and

communicate with clients, but also leaders and acceptors that coordinate the replica.

They communicate to reach to a common value and announce this to the replicas

that are responsible to execute/store and report on the result.

Paxos has seen a series of optimizations and specializations tackling different

failure models [61–63]. Google Chubby [64], Google Spanner [65] and more recently

Google Cloud Spanner, all employ some implementation of the Paxos algorithm to

achieve consensus and also to cater for replication. Raft [66], a Paxos alternative also

implements consensus-based SMR, and it is suggested to be easier to understand

(than Paxos) from an engineering point of view.

Dolev et al. [28] consider the shared memory model to give practically-self-

stabilizing consensus. (Although this appears to be the first work on practically-self-

stabilization, the term was not established at the time). They then build a consensus

algorithm for a rotating coordinator that works with bounded memory, and is used

to implement a replicated state machine. The replicated state machine is composed

of multiple instances (incarnations) of the consensus algorithm that are identified

and ordered with a counter. To this end, they propose a self-stabilizing wait-free

reset in order to deal with counter exhaustion, the result of a transient fault. Liveness

is provided by a self-stabilizing version of the ♦S failure detector which is the proven

weakest failure detector to solve consensus [60, 67].

15

Ioa
nn

is
Marc

ou
llis

More recently, a practically-self-stabilizing version of Paxos [26], made use of

the practically-self-stabilizing labeling scheme of Alon et al. [27] to acquire ballot

numbers. To achieve the result it was required to extend the scheme to allow for

multiple writers to increment the counters that the labels implement. The paper fol-

lows the Paxos protocol, deviating only when self-stabilization issues arise. Liveness

is provided by the (Θ)-failure detector that we detail in Section 2.5.1.

Extracting the extended version of Alon et al.’s labeling scheme from the pro-

posed Paxos protocol does not seem intuitive. In this thesis we extend Alon et al.’s

scheme in a way that it remains decoupled from the application, which in our case

is the virtually synchronous SMR. Our version of the scheme also requires smaller

messages, since it only sends pairs of counters, whilst the one of [26] sends vectors.

2.1.2 Virtual Synchrony

A different approach to consensus when aiming for SMR is to use systems that im-

plement the virtual synchrony (VS) paradigm, commonly provided by Group Com-

munication Systems (GCS) [8–10, 68, 69]. GCSs [10, 30, 69, 70] can implement SMR

based on reliable multicast within process groups, also catering for some delivery

order guarantees [71]. Two fundamental components of these systems is the member-

ship service, and the reliable group multicast service [10]. A group membership service

is responsible to provide a functioning set of processors upon which applications

can run. A reliable group multicast service is a service providing reliable message

delivery (i.e., either all correct processors deliver a message or none), and possibly

giving some other delivery guarantees (e.g., FIFO or causal ordering).

Birman et al. [29] were the first to suggest VS by implementing Isis1. This initiated

a line of work with improvements in the efficiency of ordering protocols [9,16,72–74].

The project that started with Isis proceeded with similar systems implementing vir-

tually synchronous reliable multicast, such as the Isis Toolkit [9], Horus [30] and

Ensemble [75]. These were used in air-traffic control (in France), chemical refinery

plants, stock-exchange markets (of New York and Switzerland) and elsewhere [8].

While Isis and its direct descendants work in the primary partition (i.e., with a ma-

jority group among the system’s set of processors), other research groups developed

1The name originates from the Egyptian goddess Isis, and has nothing to do with the so-called

“Islamic State of Iraq and Syria”, a synonymy that has forced the rebranding of Isis2 to “Vsync”!

16

Ioa
nn

is
Marc

ou
llis

solutions that can cope with partitionable and merging groups (e.g., Totem [69] and

Transis [68]). A concise account of the evolution and use of the VS model for SMR,

as well as a comparison with consensus-based SMR (e.g., Paxos) is given in [8]. For a

comparison of Virtual Synchrony with the database transactional model (a different

approach to replication) see [76].

The group membership and the identifier of such a group constitute the view.

In general, VS attempts to make an asynchronous execution appear as synchronous

to the user (hence the name), by forcing that the views are totally ordered in the

computation, and all members of a view v that move to the consecutive view v′

will have delivered the same messages. This distinguishes the time at which a

message is received by the communication layer, from the time it is delivered to the

upper layers. In general, virtual synchrony requires reliable delivery of messages

within a view, and thus, all non-crashed members or a view deliver a message of

none delivers it. Different implementations of VS provide a range of guarantees on

the ordering of messages within the same view. One may want to relax the strict

guarantees provided by the atomic broadcast (known as ABCAST) to achieve better

performance with FIFO or causal ordering [8]. In general, the synchronization of

the views that VS imposed is aimed at helping developers reason about their system

without becoming entangled to its asynchrony.

A self-stabilizing GCS is suggested by [45]; it is based on a self-stabilizing group

membership service in [77] and on token circulation on a virtual ring of processors,

and does not adopt a virtually synchronous approach. To our knowledge there is no

work on self-stabilizing virtual synchrony, besides the one considered in this thesis.

2.1.3 Consensus-based and VS-based SMR

Comparing the two models, namely consensus and VS, is a rather intriguing task due

to the fact that historically the notions have both initially diverged from the primal

meaning of state machine replication, and have today converged in many ways [8].

Multicasting with the virtual synchrony approach often progresses more efficiently

than the consensus-based solutions [8], although theoretically implementing strong

virtual synchrony guarantees can be harder than consensus [78]. Virtual Synchrony

is deemed to have a simpler group membership protocol compared to Paxos, and it

runs this as a separate service rather than as part of the protocol.

17

Ioa
nn

is
Marc

ou
llis

Nowadays, one can find systems that draw paradigms from both models, such as

Google Chubby [64] and Apache ZooKeeper, which is currently employed by Yahoo!

for many of its services [79]. Descendants of Isis such as Vsync [15] and Derecho [16]

are directed towards high-speed cloud services and offer implementations of Paxos,

while virtual synchrony handles membership [74]. In fact, they are suggested to be

among the most efficient implementations of Paxos [16].

2.2 Shared Memory Emulation

In Section 1.2 we discussed Shared Memory Emulation (SME), i.e., how to emulate

shared memory model operations over a message-passing system. We continue

by further reviewing this area, with special attention given to self-stabilizing SME

literature.

2.2.1 Non-Self-Stabilizing SME

The seminal result on atomic shared memory emulation by Attiya, Bar-Noy and

Dolev (known as ABD) [32] provides guarantees about the consistency of a dis-

tributed shared object. In particular, it guarantees atomicity [33, 80]. The atomic

single-writer multiple-reader protocol proposed is simple to understand, and this

explains part of its success and influence2. The approach has generated work in both

static settings and dynamic ones, and in both the crash failure and the Byzantine

failure model. The service can be run in a static environment on a fixed set of proces-

sors, but also in a dynamic environment using a reconfiguration service to provide

a set of reliable processors to act as service providers. We see this in the sequel.

ABD works as follows. The single processor that can write a value to the register,

called the writer, maintains an integer counter from which it draws numbers to

timestamp the version of any value written to the register. Whenever a write is

required, the writer increments the counter, and together with the value it writes it

to the quorum by sending it to the processors, and then waiting for a response from

some quorum (e.g., a majority) before returning. The quorum pair-wise intersection

property ensures that whenever a reader performs a read and gathers a majority of

responses, it will certainly recover the value of a previous completed write. The two-

2It was awarded the Edsger W. Dijkstra Paper Prize in Distributed Computing in 2011.

18

Ioa
nn

is
Marc

ou
llis

phase read (composed of a read and a write back to the processors) ensures atomicity.

An extension by [34] allows for multiple writers with an extra communication round

for the writer, since the timestamp in this case is not maintained only by a single

writer.

Attiya and Bar-Noy [81] propose a single-writer multi-reader register emulation

in the presence of Byzantine servers and semi-Byzantine clients (that may either

stop-fail or perform a memory access operations incorrectly, but these operations

are confined to specific memory objects). Malkhi and Reiter [82] consider shared

memory emulation as an example service when they propose quorum systems that

are Byzantine-tolerant. On the practical side, DepSky [83] is an implementation of

a single-writer multi-reader shared register emulation on a set of untrusted storage

clouds that can fail in an arbitrary way.

2.2.2 Self-Stabilizing SME

In recent years, a line of work has produced results on practically- and pseudo- self-

stabilizing versions of shared memory emulation, in both synchronous and asyn-

chronous message passing systems [26, 27, 84]. Alon et al. [27] propose a bounded

labeling scheme that they use to gain practically unbounded sequence numbers

to use as timestamps. In this way they leverage the creation of a practically-self-

stabilizing single-writer multiple-reader (SWMR) shared memory emulation closely

following the idea of the ABD algorithm [32]. The labels and the idea above were

used to build a pseudo-stabilizing version of the SWMR [84].

Bonomi et al. [85] provide a pseudo-stabilizing Byzantine-tolerant algorithm for

a multi-writer multi-reader regular register. The result considers a system of crash-

prone clients performing reads and writes on a set of n > 5 f servers where at most f

may be malicious. This upper bound on the number of malicious servers is proved

for building stabilizing regular registers. The approach uses the labeling scheme

by Alon et al. [27] to timestamp the write operations, and also provides a finite set

of labels for readers to identify their read operations and verify whether they are

missing responses by using the guarantees of a FIFO data-link implementation. The

multi-writer register is built on top of a single-writer one, and it is suggested to be

the first work on shared memory emulation to tackle both Byzantine behavior and

transient faults.

19

Ioa
nn

is
Marc

ou
llis

In [86] the proposed stabilizing Byzantine-tolerant single-writer single-reader

regular register is enhanced with the labeling scheme by Alon et al. [27] to pro-

vide atomic single-writer multi-writer atomic registers. These are practically-self-

stabilizing. The setting is asynchronous and at most f < n/8 processors may exhibit

malicious behavior.

A more challenging failure model is the mobile Byzantine one, that allows Byzan-

tine agents to move to different servers. This is a realistic approach for a long-lived

system where compensated processors are repaired possibly by running an auto-

mated recovery routine, while others that were not among the initial set of f possibly

faulty, may become malicious. The approach has received theoretical interest [87,88].

In a continuation of this line of work, Bonomi et al. [89] consider the synchronous

round-based setting where any number of clients may fail by crashing. Servers are

subject to mobile Byzantine failures. The results consider four different models of

mobile Byzantine failures that are defined in the related literature. These vary as

to whether, after recovery, servers can detect that they were compensated or not,

and as to the instance of a round that a faulty agent is permitted to move. The self-

stabilizing multi-writer multi-reader parametric algorithm of this work is suggested

to tackle all four models for different bounds on the number of mobile agents f for

each of the mobile-Byzantine models. The bounds are proven and the algorithm is

said to be tight in its complexity with respect to each of these.

2.3 Reconfiguration

Distributed systems that work in dynamic asynchronous environments often em-

ploy quorum configurations [90, 91], i.e., interconnected sets of active processors

(servers or replicas), to provide services (such as shared storage [35]) to the system’s

participants. Over time, the configuration may gradually lose active participants

due to voluntary leaves and stop failures. There is, therefore, the need to allow the

participation of newly arrived processors and, from time to time, to reconfigure so that

the new configuration is built on a more recent participation group. We overview

such reconfiguration services for the crash-tolerant model, and we look into several

attempts to address Byzantine-tolerant reconfiguration.

20

Ioa
nn

is
Marc

ou
llis

2.3.1 Crash-Tolerant Reconfiguration

Over the last years, a number of reconfiguration techniques have been proposed,

mainly for state machine replication, and for the emulation of atomic shared memory,

e.g., RAMBO [17], DynaStore [18], Geoquorums [92], and others [93–102]. These

works concern the crash-failure model. We review some of the best known.

RAMBO [17] combines a reconfiguration mechanism with a quorum-based repli-

cation service to provide atomic SME that, as suggested, guarantees high reliability

and availability. The techniques involved are: (i) replication to provide service over

short intervals of time where crashes/departures from the configuration are expected

to be low, and (ii) reconfiguration in the long run when the configuration accumulates

significant losses. It guarantees consistency for a variety of system failures, with

the assumption that the quorum system does not collapse before a reconfiguration

finishes. Service does not stop even when replication and reconfiguration run con-

currently, although this comes with the overhead of garbage collecting the histories

of past configurations that have completed all the operations required to preserve

the consistency of the distributed object.

While RAMBO uses consensus to allow participants to agree on a configuration,

DynaStore [18] is suggested to avoid this through the use of non-atomic snapshots

that generate a directed acyclic graph, the vertexes of which correspond to the

different configurations that can be produced. Under suitable assumptions, the

DynaStore algorithm achieves reconfiguration. The read and write operations are

similar to those of ABD. The provided algorithm, i.e., DynaStore, is also deemed

to be evidence that dynamic read/write storage is a weaker problem than dynamic

consensus.

The work on GeoQuorums [92] takes a different approach. It builds atomic

memory on top of an ad hoc network of mobile nodes that gather within geographic

areas called “focal points”. It assumes the existence of a GPS service to provide real-

time timestamps for the reads and writes. For a theoretical comparison of RAMBO,

DynaStore, GeoQuorums and others see [35], and for a practical evaluation based

on implementation performances see [103].

More recently, Nogueira et al. [104] attempted to make reconfiguration more scal-

able and faster with “fast elasticity”. To this end, they propose a modular partition

transfer protocol for creating and destroying state partitions. This is suggested to

21

Ioa
nn

is
Marc

ou
llis

make the service more suitable for cloud systems.

When considering reconfiguration, two important questions are posed:

(i) How does the system choose the next configuration? This question drove research ef-

forts to characterize the fault-tolerance guarantees that can be provided by different

quorum system designs. For an in-depth discussion see [91].

(ii) When does the system reconfigure? One simple decision would be to reconfig-

ure when a fraction (e.g., 1/4th) of the members of a configuration appear to have

failed. More complex decisions could use prediction mechanisms (possibly based

on statistics), but generally this is regarded as an application-orientated decision.

For a discussion on this topic see the related discussion in [35].

To our knowledge, there is no work tackling the self-stabilizing reconfiguration

task besides the one considered in this thesis. There are several reasons why ex-

isting reconfiguration techniques do not claim to be self-stabilizing. One of their

basic assumptions is that the system starts in a consistent configuration, in which all

processors are in their initial state, and that all processors are aware of a single con-

figuration. Starting from that state, the system must strive to preserve consistency

as long as a predefined churn rate of processors’ joins and leaves is not violated and

unbounded storage is available. Systems offering reconfiguration also often assume

unbounded counters to order consensus messages that facilitate configuration up-

dates, or to timestamp writes for shared memory emulation (e.g., [17]). Transient

faults can lead such counters to become exhausted, or be otherwise corrupted. An-

other downside of existing systems is that they usually do not address the issue

of recovering after the quorum system has collapsed. All of the above make such

systems unable to automatically recover from the arbitrary system states forced by

transient failures.

2.3.2 Byzantine-Tolerant Reconfiguration

As Lamport, Malkhi and Zhou note in [97], the vast body of the work in reconfigura-

tion mostly considers fail-stop failures. They themselves provide some intuition as to

how their reconfigurable replicated state machine could tolerate malicious faults, by

using a malicious tolerant consensus protocol, but also by having enough clients re-

questing to stop the current configuration and choosing the new one. Unfortunately,

there is no more discussion on this.

22

Ioa
nn

is
Marc

ou
llis

BFT-SMART [105] is suggested to support reconfigurable Byzantine-Fault-

Tolerance. In spite of the existence of an experimental evaluation of their reconfig-

uration service, its correctness is not theoretically proved. Moreover, it is assumed

that a special trusted client provides the configuration to be installed, and this re-

moves a part of the difficulty of the reconfiguration task. Even though the problem

they solve still does not appear to be trivial, it does not seem to be as difficult as the

Byzantine-Tolerant reconfiguration that we discuss about.

In general, it remains a challenging open question whether a reconfigurable BFT

service is possible to construct, and under what guarantees this is attainable. The

only certain thing is that there is scarce evidence of work on reconfigurable BFT

that provides provable guarantees [106]. There is therefore some way to go before

proceeding to enhance such a service with the stabilization property.

2.4 Byzantine Fault Tolerance

We now review Byzantine Fault Tolerant replication with and without the self-

stabilization property.

2.4.1 Non-Self-Stabilizing BFT

Replication in Byzantine asynchronous message-passing environments has received

much attention with the classic result by Castro and Liskov [38] known as Practical

Byzantine Fault Tolerance (PBFT). PBFT achieves replication by imposing a total

order of execution on clients’ requests. To this end, it employs a primary replica

(server) to monitor the allocation of request identifiers for the n = 3 f + 1 secondary

replicas that execute. Since f of them might be faulty, execution is expected by only

2 f + 1. The problem studies malicious behavior by the servers and does not directly

address such behavior by clients.

Briefly, a client request received by the primary is allocated a sequence number

and sent as a pre-prepare message to all other servers. Note that the authenticity of a

client’s request is guaranteed due to the assumption of strong encryption primitives

that prevent the message forgery. If servers receive a legitimate copy of the pre-

prepare message, they issue a prepare message and this is sent to all the other servers,

while waiting for 2 f + 1 such prepare messages to move to a similar commit phase

23

Ioa
nn

is
Marc

ou
llis

and then execute. Liveness is conditioned by timeouts to ensure that a primary not

progressing the replication is ousted and a new one is installed. The paper has many

optimizations to practically enhance performance3, e.g., checkpoints, and garbage

collection.

PBFT was followed by several other works that took different approaches or

achieved optimizations [107], but it does not seem that many diverged from PBFT’s

general idea. In Zyzzyva [108], requests are executed in a speculative order and

clients agree to commit changes based on history. In [109] the Spinning algorithm

suggests that a version of [38] with a rotating primary can be more efficient, especially

when facing a malicious primary that consistently delays, but not to the point of

forcing its change. In [105], BFT-SMART proceeds in providing a more efficient

implementation of BFT replication while also catering for state transfer. Aublin et

al. [110] propose ABSTRACT, an abstraction for developing replication protocols

and with this they develop a new optimized BFT protocol. An important work in

tackling byzantine consensus (and thus Byzantine SMR) in the asynchronous setting,

is Byzantine Paxos [63] with its optimizations, e.g., [111,112]. Adapt [113] reconciles

different existing BFT protocols by adapting itself to use the “most suitable” protocol

according to an evaluation mechanism.

Over the years, research has circumvented the impossibility results for

the asynchronous BFT state machine problem by means of introducing non-

determinism (e.g., [114]), restricting the asynchrony, adding failure detectors (e.g.,

Peer-review [115] and Baldoni et al. [53]) or using wormholes in hybridized architec-

tures. A different approach assumes the use of some local trusted components that

may only crash (but are assumed to not exhibit malicious behavior). Such are MinBFT

and MinZyzzyva [116], which also manage to reduce throughput requirements in

relation to PBFT. For a survey on related literature one can refer to [37]. Lately, BFT

has also been studied due to the relation and use of BFT consensus in blockchain

consensus models [117, 118], e.g., by the Hyperledger blockchain platform [119].

2.4.2 Self-Stabilizing BFT

Self-stabilizing algorithms that tolerate both transient failures and Byzantine failures

as well, are very challenging as we discussed in Section 1.3. The Byzantine agreement

3This is the “practical” aspect of PBFT.

24

Ioa
nn

is
Marc

ou
llis

algorithm by Daliot and Dolev [120] assumes a bounded message transmission delay,

to achieve agreement of all correct processors to a value suggested by a possibly

faulty initiator. It does so by associating the servers’ local-time with the protocol

initiation of the initiator. The message exchange takes place with a proposed reliable

broadcast primitive, while the solution is suggested to be optimal in time.

As we have already documented, a newer work available on self-stabilizing

Byzantine tolerant replication is by Binun et al. [39] that presents the first self-

stabilizing BFT replication service assuming semi-synchrony and known bounds on

message delivery. In particular, they employ the self-stabilizing Byzantine-tolerant

clock synchronization algorithm of [40] so that upon every clock pulse, n+1 instances

of leaderless Byzantine consensus are initiated, one for the system state and n for

each of the processors’ histories, so that processors will agree on a common message

history and replica state. The work concludes with an evaluation of a prototype

of this algorithm, implemented as a self-stabilizing Byzantine-tolerant replicated

Hadoop master node. The evaluation suggests that the cost of self-stabilization is

not prohibitive, and that building efficient fault-tolerant self-stabilizing systems is

both practical and possible.

Generally, in tackling the problem of BFT, one may employ the authenticated

model with unforgeable digital signatures, or the unauthenticated, where the source

of a message can be verified [121]. To our knowledge, self-stabilizing solutions that

assume public key cryptography are very limited in number (e.g., [122]) and come

under the assumption that correct processors do not leak their private keys. The

unauthenticated model is the one usually employed, but with the assumption of

existence of self-stabilizing authenticated links that guarantee the identity of the

sender of a message. Such an implementation of data-links is proposed by [123].

The issue is twofold. Primarily, one cannot guarantee that during transient faults

the primary keys have not been exposed to other processors [52]. Indeed, in [121]

it is assumed that this does not happen in order to probabilistically build self-

stabilizing and Byzantine-tolerant overlay networks. Secondly, self-stabilization is

particularly suited to mobile Byzantine failures [87], where the malicious agents may

move to different processes, since it can model such failures as transient faults. When

considering such mobility, assuming public key cryptography is not useful, since the

private key of a now correct processor may have leaked when it was compromised.

This can be exploited by currently malicious agents. The line of work on mobile

25

Ioa
nn

is
Marc

ou
llis

Byzantine failures and self-stabilizing atomic memory [86, 89, 123] was reviewed in

Section 2.2.

2.5 Data-link Protocols and Failure Detectors

Here we review data-link and failure detector protocols that are relevant to our work.

2.5.1 Self-Stabilizing Data-Link Protocols

There is considerable work on self-stabilizing data-link protocols [124], e.g., for the

alternating bit protocol [125] and generally for the sliding window protocol [126]. For

our purposes, we assume that our system runs on a stabilizing data-link layer that

provides reliable FIFO communication over unreliable bounded capacity channels

as the ones of [127, 128].

The general idea of [127] and of [128], which also handles duplication errors in the

channels, is the following. A processor that sends a packet π to another processor,

inserts a copy of π to the FIFO queue that represents the communication channel to

the receiver. Since links have bounded capacity, respecting the capacity implies that

there are possible omissions of either new packets, or one of the already sent packets.

When π is received, it is dequeued from the queue representing the channel. Data

packets are retransmitted until more acknowledgments than the total capacity cap

arrive. Intuitively, this ensures that the (at most cap) stale packets from an arbitrary

state are not considered, although the actual details of the papers handle several

subtle issues.

This data-link enables the two connected processors to constantly exchange a

“token”. Specifically, the sender constantly sends packet π1 until it receives enough

acknowledgments (more than the capacity). Then, it constantly sends packet π2, and

so on and so forth. This assures that the receiver has received packet π1 before the

sender starts sending packet π2. This can be viewed as a token exchange. We use

this abstraction of the token that carries messages back and forth between any two

communication entities, to implement a heartbeat to (imperfectly) detect whether a

processor is communicating or not; when a processor in no longer active, the token

will not be returned back to the other processor. We discuss this further in the next

section.

26

Ioa
nn

is
Marc

ou
llis

2.5.2 Failure Detectors

Failure detection enables asynchronous fault-tolerant distributed systems to provide

liveness guarantees [67]. There is a huge literature on the topic of failure detection.

The discussion will focus on the results that are more relevant to this thesis.

The (Θ)-failure detector. The (Θ)-failure detector was introduced in [129], but a

self-stabilizing version was produced by Blanchard et al. [26]. It is implemented

as follows. Every processor p uses the token-based mechanism described above to

implement a heartbeat with every other processor. In particular, for every processor

q in the system, p maintains a heartbeat integer counter. Whenever p receives the

token from q over their data link, p resets the counter of q to zero, and increments all

the integer counters associated with every other processor by one, up to a predefined

threshold value W. If the heartbeat counter of a processor q′ reaches W, the failure

detector of p considers q as “suspected” (and thus possibly inactive or crashed). In

other words, the failure detector at processor p considers processor q′ to be active

if and only if the heartbeat associated with q is strictly less than W. In this thesis

we employ the self-stabilizing version of the (Θ)-failure detector either as it is, or

enhanced.

In particular, for the virtual synchrony algorithm (Chapter 4), we employ the

(Θ)-failure detector, but with weaker requirements than [26], because in [26] it is

required to solve consensus, and naturally they resort to a failure detector at least

as strong as Ω [60]. The VS algorithm does not require an eventually perfect failure

detector that ensures that after a certain time, no active processor suspects any other

active processor. Our requirements, on the other hand, are stronger than the weakest

failure detector required to implement atomic registers (where at most a minority of

failures are assumed), namely the Σ failure detector [130], since virtual synchrony is

a more difficult task.

For the self-stabilizing reconfiguration service (Chapter 5) we enhance the (Θ)-

failure detector to form the (N,Θ)-failure detector. This reports on the N most

responsive processors, where N is an upper bound to the number of processors that

are live and connected at any time in the computation.

For the self-stabilizing BFT service that we propose in Chapter 6 we have greater

requirements. We need to detect both responsiveness (i.e., whether processors are

27

Ioa
nn

is
Marc

ou
llis

actively communicating), and also progression of computation by the primary pro-

cessor. Following the approach of Baldoni et al. [53], we use both the (Θ)-failure

detector to check the responsiveness of the primary and the heartbeat along with

the threshold to produce an enhanced version of the (Θ)-failure detector to check

that the primary is progressing the state machine. In particular, every non-primary

processor uses the heartbeat to monitor the client requests for which a primary’s

action is pending. If the heartbeat exceeds the threshold, meaning that the primary

has not processed requests for a given number of token exchanges, then the primary

is suspected as faulty (more details in Chapter 6).

Byzantine Failure Detectors. Byzantine failure detectors identify and permanently

suspect malicious processors. This simplifies the design of state machine replication,

since the actions and messages of detected processors are ignored. Baldoni et al. [53]

use a pair of Byzantine failure detectors. The muteness failure detector ♦M detects

non-responsiveness, and another component to detect Byzantine behavior. Alvisi at

el. [131] use a statistical approach to estimate the risk posed by faulty processors.

PeerReview [115] implements the notion of accountability by storing secure records

of messages sent and received to ensure that correct processors are never suspected.

Building self-stabilizing Byzantine failure detectors with proven guarantees and

strength is another open research direction. For the purposes of our BFT implementa-

tion in Chapter 6 this was not necessary, as we only required checking responsiveness

and progress of the state machine by the primary processor.

28

Ioa
nn

is
Marc

ou
llis

Chapter 3
System Settings and Definitions

We present the general system settings and definitions. Any system settings and

definitions that are specific to the work of each of the next chapters are given at the

beginning of each chapter.

3.1 Distributed Setting

We consider an asynchronous message-passing system. The system is composed of

communicating entities named processors. Every processor joins the system carrying

a unique integer identifier from an ordered set I, such that pi is the processor with

identifier i ∈ I.

In Chapters 4 and 6 we consider a fixed set of processors P, such that |P| = n;

in particular, I = {1, 2, · · · ,n}. In Chapter 5 we consider the number of live and

connected processors at any point in the computation to be bounded by some integer

N such that N � |I|.

Since we tackle problems with both static (fixed) and dynamic processor sets, we

define this in the problems’ dedicated sections.

3.2 Failure Model

In Chapters 4 and 5 any processor may fail by crashing at any point in the compu-

tation, and from this point it takes no further steps. A processor that has failed by

crashing is referred to as crashed, whereas a non-crashed processor is called active or

correct.

29

Ioa
nn

is
Marc

ou
llis

In Chapter 6 at most f processors may (intentionally or not) exhibit Byzantine

(malicious) behavior, i.e., fail to follow the defined protocol. They are referred to as

faulty. Processors that fail by crashing are included in f , since a crashed processor

is modeled as a malicious one that does not perform the communication part of the

protocol. A non-faulty processor, i.e., one that does not exhibit malicious behavior

is called correct. We define the size of f in Chapter 6.

Additionally, the system may also suffer transient faults, which are short-term

violations of the system’s design assumptions. These may corrupt the system’s

state and introduce stale information in local variables and program counters of any

number of processors, as well as in the communication links. We assume that the

hardware, the program’s code and any hard-coded system parameters are left intact.

3.3 Communication and Data Link Implementation

The network topology is that of a fully connected graph. We assume that the system

runs on top of a stabilizing data-link layer that provides reliable FIFO communication

over unreliable bounded capacity channels such as the ones of [127,128]. Every pair

of processors exchange low-level messages called packets to enable a reliable delivery

of high-level messages. When no confusion is possible, we use the term “messages”

for packets.

Communication links have bounded capacity, so that the number of messages in

any link at every given instance is bounded by a constant cap; a parameter known

to processors. Packets sent may be lost, reordered, or duplicated but not arbitrar-

ily created, although the channels may initially (after transient faults) contain stale

packets. Due to the boundedness of the channels, the total number of stale packets

in the communication links is also bounded O(n2cap) (and O(N2cap) for Chapter 5)

system-wide. Although packets may be spontaneously omitted (lost) from the chan-

nels, we assume that communication channels are fair, thus, a packet sent infinitely

often is received infinitely often.

When processor pi sends a packet, π, to processor p j, the operation send inserts a

copy of π to the FIFO queue that represents the communication channel from pi to p j,

while respecting an upper bound on the number of packets in the channel, possibly

omitting the new packet or one of the already sent packets. When p j receives π from

pi, π is dequeued from the queue representing the channel.

30

Ioa
nn

is
Marc

ou
llis

One version of a self-stabilizing FIFO data link implementation that we can

use, is based on the fact that communication links have bounded capacity. Packets

are retransmitted until more than the total capacity acknowledgments arrive. It

is assumed that acknowledgments are sent only when a packet arrives (i.e., not

spontaneously) [127, 128]. Over this data-link, the two connected processors can

constantly exchange a “token”. Specifically, the sender (possibly the processor with

the highest identifier among the two) constantly sends packet π1 until it receives

enough acknowledgments (more than the capacity). Then, it constantly sends packet

π2, and so on and so forth. This ensures that the receiver has received packet π1

before the sender starts sending packet π2. This can be viewed as a token exchange.

We use the abstraction of the token carrying messages back and forth between any

two communication entities, to implement a heartbeat to (imperfectly) detect whether

a processor is active or not; when a processor in no longer active, the token will not

be returned back to the other processor.

Some specific communication requirements are given in the corresponding spe-

cific settings section of each chapter.

3.4 The Interleaving Model

Every processor pi executes a program that is a sequence of (atomic) steps. Each atomic

step starts with local computations and ends with a communication operation, i.e.,

packet send or receive. We assume the standard interleaving model where at most

one step is executed in every given moment. An input event can either be the arrival

of a packet or a periodic timer triggering pi to (re)send. Note that the system is

asynchronous and the rate of the timer is totally unknown.

The state σi, of an active processor pi, consists of pi’s variable values and the

content of pi’s incoming communication channels. Whenever pi executes a step, this

can change the σi. The tuple of the states σi of all active processors pi that are active

at a specific instance of the computation defines the system state at that instance. An

execution (or run) R = c0, a0, c1, a1, . . . is an alternating sequence of system states cx and

steps ax, such that each state cx+1, except the initial system state c0, is obtained from

cx by the execution of step ax. A computation step a is applicable if there exists a state

c′ which is reached after step a is taken in state c. An execution is fair when every

correct processor that has an applicable step ai infinitely often, executes ai infinitely

31

Ioa
nn

is
Marc

ou
llis

c1
sa f e

c4

Convergence Closure

Only legal states

c3

c2

c1

c2
sa f e

c3
sa f e

c4
sa f e

c5
sa f e

Figure 3.1: Stabilizing algorithms guarantee that after the period of convergence from any system

state (even illegal ones such as c1, ..., c4), we are lead to a set of safe states (e.g., c1
sa f e, ..., c

5
sa f e), and we

never deviate from these unless a new transient fault takes place.

often. The system’s task is a set of executions called legal executions (LE) in which the

task’s requirements hold.

3.5 Self-Stabilization

An algorithm is self-stabilizing with respect to LE when every (unbounded) execution

R of the algorithm has a suffix R′ that is in LE. Consider a state cs such that any

fair execution of an algorithm starting from cs belongs to LE. We say that cs is a

safe state with respect to LE and the executed algorithm. We thus require that any

self-stabilizing algorithm guarantees convergence to a such state that is safe within

bounded time (polynomial w.r.t. to the system’s dimensions), and also closure to the

set of safe states. See also Figure 3.1.

The code of a self-stabilizing algorithm reflects the requirement for non-

termination in that it usually consists of a do−forever loop that contains communi-

cation operations with the neighbors and validation that the system is in a consistent

state as part of the transition decision. An iteration of an algorithm formed as a

do − forever loop is a complete run of the algorithm starting in the loop’s first line

and ending at the last line, regardless of whether it enters branches.

Notation. We indicate a variable var in the local state of a processor pi by vari, i.e., with

a subscript of the processor’s identifier. Similarly, an execution of a function/macro

f un() by pi with f uni(). When it is clear from the context that var (or f un()) is owned

(called) by pi, then the subscript may be omitted. We may use the same notation

with predicates defined for proofs.

32

Ioa
nn

is
Marc

ou
llis

Chapter 4
Practically-Self-Stabilizing Virtual Synchrony

A relatively new self-stabilization paradigm is practically-self-stabilization [24,26–28].

Consider an asynchronous system with bounded memory and data link capacity,

which contains stale information due to a transient fault. Such corrupt data may

appear unexpectedly at any processor as they lie in communication links, or may

(indefinitely) remain “hidden” in some processor’s local memory until they are

added to the communication links as a response to some other processor’s input.

Whilst these are bounded in number due to the boundedness of the links and local

memory, they can eventually force the system to lose its safety guarantees. Such

corrupt information may repeatedly drive the system to an undesired state of non-

functionality. This is true for all systems and self-stabilizing systems are required

to eradicate all corrupted information. In fact, whenever they appear, the self-

stabilizing system is required to regain consistency and in some sense stabilize. One

can consider this as an adversary with a limited number of chances to interrupt the

system, but only itself knows when it will do this.

In this perspective, self-stabilization, as it was proposed by Dijkstra [20], is not the

best design criteria for asynchronous systems for which we cannot specifically define

when stabilization is expected to finish (in some metric like asynchronous rounds,

for example). The newer criterion of practically-stabilizing systems is closely re-

lated to pseudo-self-stabilizing systems [25], as we explain next. Burns, Gouda

and Miller [25] deal with the above challenge by proposing the design criteria of

pseudo-self-stabilization, which merely bounds the number of possible safety viola-

tions. Namely, their approach is to abandon Dijkstra’s seminal proposal [20] to bound

the period in which such violations occur (using some metric like asynchronous cy-

cles). We consider a variation on the design criteria for pseudo-self-stabilization

33

Ioa
nn

is
Marc

ou
llis

systems that can address additional challenges that appear when implementing a

decentralized shared counter that uses a constant number of bits.

Self-stabilizing systems can face an additional challenge due to the fact that a

single transient fault can cause the counter to attain its maximum possible value and

still (it is often the case that) the system needs to be able to increment the counter

for an unbounded number of times. The challenge becomes greater when there is

no elegant way to show that the system can always maintain an order among the

different values of the counter by, say, wrapping to zero in such integer overflow

events. Arora, Kulkarni and Demirbas [132] overcome the challenge of integer

overflow by using non-blocking resets in the absence of faults described [132]. In

case faults occur, the system recovery requires a blocking operation, which performs

a distributed global reset. This work considers a design criteria for message-passing

systems that perform in a wait-free manner even when recovering from transient

faults.

From the theoretical point of view, systems that take an extraordinary large

number of steps (that exceeds the counter maximum value, or even an infinite

number of steps) are bound to violate any ordering constraints. This is because of

the asynchronous nature of the studied system, which could arbitrarily delay a node

from taking steps or defer the arrival of a message until such violations occur after,

say, a counter wraps around to zero. Having practical systems in mind, we consider

systems for which the number of sequential steps that they can take throughout

their lifetime is not greater than an integer that can be represented using a constant

number of bits. For example, Dolev, Kat and Schiller [28] assume that counting

from zero to 264
− 1 using sequential steps is not possible in any practical system

and thus consider only a practically infinite period, of 264 sequential steps, that the

system takes when demonstrating that safety is not violated. The design criteria

of practically-self-stabilizing systems [24, 26, 27] requires that there is a bounded

number of possible safety violations during any practically infinite period of the

system execution.

We proceed to present the practically-self-stabilizing Virtual Synchrony scheme

that we already discussed and motivated in Chapters 1 and 2. We start with the

required specific definitions and system settings.

34

Ioa
nn

is
Marc

ou
llis

4.1 Specific System Settings and Definitions

We present the required definitions specific to this setting.

4.1.1 Practically-Self-Stabilization

An execution Rp is a practically infinite execution if it contains a chain of steps ordered

according to Lamport’s happened-before relation [5] that are longer than 2τ (τ being,

for example, 64); namely they are practically infinite for any given system [28] (see

discussion in Section 1.2). Similar to an infinite execution, a processor that fails by

crashing, stops taking steps, and any processor that does not crash, eventually takes

a practically infinite number of steps.

We define the system’s abstract taskT by a set of variables (of the processor states)

and constraints, which we call the system requirements, in a way that implies the

desired system behavior [19]. Note that an execution R can satisfy the abstract task

and still not belong to LE, because R considers only a subset of variables, whereas

the states of executions that are in LE consider every variable in the processor states

and message fields. An algorithm is practically-self-stabilizing (or just practically-

stabilizing) with relation to the task T if in any practically infinite execution it has a

bounded number of deviations T [24].

4.1.2 Complexity Measures

The above definition of practically-stabilizing algorithms, suggests that there are

a bounded number of corrupt elements in the state (either messages or local stale

corruptions) that might force the system to deviate from its task even if these may

or may not appear due to asynchrony. Whenever a deviation happens, a number of

algorithmic operations are required to satisfy T once again. This defines a natural

measure of complexity, in particular, we bound the deviations as the total number

of times recovery operations take place throughout an execution. These operations

differ by algorithm, i.e., it is label creations in the labeling scheme, counter increments

for the counter increment algorithm and view creations in the virtual synchrony

algorithm.

35

Ioa
nn

is
Marc

ou
llis

Figure 4.1: An execution satisfying the VS property. The grey boxes indicate a new view installation,
and the example shows four views. View v1 initially with membership {p1, p4, p5}. The reliable
multicast reaches all members of the group. Two new processors p2 and p3 join the group, forming
view v2. In this view, p5 crashes before completing its multicast which is ignored (dashed lines). The
new view v3 is formed to exclude p5, and in it, p1 manages a successful multicast before crashing.
The multicast of p3 is reliable and guaranteed to be delivered to all non-crashed within the view, that
is excluding p1 which might or might not have received it (dotted line). A new view is then formed to
encapture the failure of p1.

4.1.3 The Virtual Synchrony Task

The virtual synchrony task uses the notion of a view, a group of processors that

perform multicast within the group and is uniquely identified, to ensure that any

two processors that belong to two views that are consecutive according to their

identifier, deliver identical message sets in these views. The legal execution of virtual

synchrony is defined in terms of the input and output sequences of the system with

the environment. When a majority of processors are continuously active, every

external input (and only the external inputs) should be atomically accepted and

processed by the majority of the active processors. The system works in the primary

majority, i.e., it does not deal with partitions and requires that a view contains a

majority of the system’s processors, i.e., its membership size is always greater than

n/2. Therefore, there is no delivery and processing guarantee in executions in which

there is no majority, still in these executions any delivery and processing is due to

a received environment input. Figure 4.1 is an example of a virtually synchronous

execution.

Notation. Throughout the chapter we use the following notation. Let y and y′ be

two objects that both include the field x. We denote (y =x y′) ≡ (y.x = y′.x).

36

Ioa
nn

is
Marc

ou
llis

4.2 Solution Outline

The virtually synchronous SMR algorithm presented in this chapter as Algorithm 4

is built incrementally. We start by building a counter algorithm to provide view

identifiers as required by the task. At the heart of our counter algorithm is the un-

derlying labeling algorithm (Algorithm 2) that extends the labeling scheme of Alon

et al. [27] to support multiple writers, whilst the algorithm specifies how processors

exchange their label information in the asynchronous system and how they main-

tain proper label bookkeeping so as to “discover” the greatest label and discard all

obsolete ones.

By extending the labels with integer counters, we provide a multi-purpose

practically-self-stabilizing counter algorithm (Algorithm 3) using only bounded

memory and communication bandwidth. With this, many writers can increment

the counter concurrently for an unbounded number of times in the presence of pro-

cessor crashes and unbounded communication delays. An immediate application of

our counter algorithm, as we explain in Section 4.3.3, is a practically-self-stabilizing

MWMR register emulation.

The practically-self-stabilizing counter algorithm, together with implementations

of a practically-self-stabilizing reliable multicast service and membership service that

we propose, are composed to yield a practically-self-stabilizing coordinator-based

Virtual Synchrony solution. Our Virtual Synchrony solution yields a practically-self-

stabilizing State Machine Replication (SMR) implementation (Algorithm 4). As this

implementation is based on virtual synchrony rather than consensus, the system can

progress in more extreme asynchronous executions than consensus-based SMR.

In the sequel, Section 4.3 details the practically-self-stabilizing Labeling Scheme

and Increment Counter algorithms. Section 4.4 presents the practically-self-

stabilizing Virtual Synchrony algorithm and the resulting replicate state machine

emulation.

37

Ioa
nn

is
Marc

ou
llis

4.3 Practically-Self-Stabilizing Labeling Scheme and

Counter Algorithm

Many system like the ones performing replication (e.g. GCSs requiring group identi-

fiers, Paxos implementations requiring ballot numbers) assume access to an infinite

(unbounded) counter. We proceed to give a practically-stabilizing, practically infi-

nite counter based on a bounded labeling scheme. Note that by a practically infinite

(or unbounded) counter we imply that a τ-bit counter (e.g., 64-bit) is not truly infi-

nite (since this is anyway not implementable on hardware), but it is large enough

to provide counters for the lifetime of most conceivable systems when started at

0. We refer the reader to the example provided by Blanchard et al. [26], where a

64-bit counter initialized at 0 and incremented per nanosecond is calculated to last

for around 500 years, essentially an infinity for most of today’s running systems.

The task of a practically-self-stabilizing labeling scheme is for every processor

that takes an infinite number of steps to reach to a label that is maximal for all active

processors in the system. The task of maintaining a practically infinite counter, is for

every processor that takes an infinite yet bounded number of steps, to eventually be

able to monotonically increment the counter from 0 to 2τ. The latter task depends

on the former to provide the maximal label in the system to be used as a sequence

number epoch, so that within the same epoch, the integer sequence number is

incremented as a practically infinite counter. It is implicit that the tasks are performed

in the presence of corrupt information that might exist due to transient faults.

Our solutions are practically infinite, in the following way. A bounded amount

of stale information from the corrupt initial state, may unpredictably corrupt the

counter. In such cases, processors are forced to change their labels and restart their

counters. A processor cannot predict whether a corrupt piece of information exists,

or when will it make its appearance as this is essentially the work of asynchrony. Our

solutions guarantee that only a bounded number of labels will need to change, or

that only a bounded number of counter increments will need to take place before

we reach to one that is eligible to last its full 2τ length, less the fact that this maximal

value is practically unattainable.

We first present and prove the correctness of a practically-stabilizing labeling

algorithm, and then explain how this can be extended to implement practically

38

Ioa
nn

is
Marc

ou
llis

stabilizing, practically unbounded counters in Section 4.3.3.

4.3.1 Labeling Algorithm for Concurrent Label Creations

Preliminaries

Bounded labeling scheme. The bounded labeling scheme of Alon et al. [27] im-

plements an SWMR register emulation in a message-passing system. The labels (also

called epochs) allow the system to stabilize, since once a label is established, the

integer counter related to this label is considered to be practically infinite, as a 64-bit

integer is practically infinite and sufficient for the lifespan of any reasonable system.

We extend the labeling scheme of [27] to support multiple writers, by including the

epoch creator (writer) identity to break symmetry, and decide which epoch is the

most recent one, even when two or more creators concurrently create a new label.

Formally defined, we consider the set of integers D = [1, k2 + 1] such that k ∈ N

a known constant to the processors, which we determine in Corollary 4.3.2. A

label (or epoch) is a triple 〈lCreator, sting,Antistings〉, where lCreator is the iden-

tity of the processor that established (created) the label, Antistings ⊂ D with

|Antistings| = k, and sting ∈ D. Given two labels `i, ` j, we define the relation `i

≺lb ` j ≡ (`i.lCreator < ` j.lCreator) ∨ (`i.lCreator = ` j.lCreator ∧ ((`i.sting ∈ ` j.Antistings)

∧ (` j.sting < `i.Antistings))); we use =lb to say that the labels are identical. Note that

the relation ≺lb does not define a total order. For example, when `i =lCreator ` j and

(`i.sting < ` j.Antistings) and (` j.sting < `i.Antisting) these labels are incomparable.

As an example, consider the situation with k = 3, and D = {1, 2, . . . , 10}. Assume

the existence of three labels `1 = 〈i, 2, 〈3, 5, 9〉〉, `2 = 〈i, 1, 〈2, 9, 10〉〉, and `3 = 〈i +

1, 1, 〈3, 5, 9〉〉. In this case, `1 ≺lb `3 and `2 ≺lb `3, since the creator of `3 has a greater

identity than the creator of `1 and `2. We can also see that `1 ≺lb `2, since the sting of

`1, namely 2, belongs to the antistings set of `2 (which is 〈2, 9, 10〉) while the opposite

is not true for the sting of `2. This makes `2 “immune” to the sting of `1.

As in [27], we demonstrate that one can still use this labeling scheme as long

as it is ensured that eventually a label greater than all other labels in the system

is introduced. We say that a label ` cancels another label `′, either if they are

incomparable or they have the same lCreator but ` is greater than `′ (with respect to

sting and Antistings). A label with creator pi is said to belong to pi’s domain.

39

Ioa
nn

is
Marc

ou
llis

Algorithm 1: The nextLabel() function; code for pi

1 For any non-empty set X ⊆ D, function pick(d,X) returns d arbitrary elements of X;
2 input S = 〈`1, `2 . . . , `k〉 set of k labels;
3 output 〈i,newSting,newAntistings〉;

4 let newAntistings = {` j.sting : ` j ∈ S};
5 newAntistings← newAntistings ∪ pick(k − |newAntistings|, D \ newAntistings);
6 return 〈i, pick(1,D \ (newAntistings ∪ {∪` j∈S` j.Antistings})),newAntistings〉;

Creating a largest label. Function nextLabel(), Algorithm 1, gets a set of at most k

labels as input and returns a new label that is greater than all of the labels of the

input, given that all the input labels have the same creator i.e., the same lCreator.

This last condition is imposed by the labeling algorithm that calls nextLabel(), as we

will see further down with a set of labels from the same processor. It has the same

functionality as the function called Nextb() in [27], but it additionally appends the

label creator to the output. The function essentially composes a new Antistings set

from the stings of all the labels that it receives as input, and chooses a sting that is in

none of the Antistings of the input labels. In this way it ensures that the new label

is greater than any of the input. Note that the function takes k Antistings of k labels

that are not necessarily distinct, implying at most k2 distinct integers and thus the

choice of |D| = k2 + 1 allows to always obtain a greater integer as the sting. For the

needs of our labeling scheme, k = 4(n3cap + 2n2
− 2n) + 1 (Corollary 4.3.2).

Scheme idea and challenges. When all processors are active, the scheme can be

viewed as a simple extension of the one of [27]. Informally speaking, the scheme

ensures that each processor pi eventually “cleans up” the system from obsolete labels

of which pi appears to be the creator (for example, such labels could be present in the

system’s initial arbitrary state). Specifically, pi maintains a bounded FIFO history

of such labels that it has recently learned, while communicating with the other

processors, and creates a label greater than all that are in its history; call this pi’s local

maximal label. In addition, each processor seeks to learn the globally maximal label,

that is, the label in the system that is the greatest among the local maximal ones.

We note here that compared to Alon et al. [27], which only had a single writer

upon the failure of whom there would be no progress thus stabilization would not be

the main concern, we have multiple label creators. If these creators were not allowed

to crash then the extension of the scheme would be a simple exercise. Nevertheless,

40

Ioa
nn

is
Marc

ou
llis

when some processors can crash the problem becomes incrementally more difficult as

we now explain. The problem lies in cleaning the system of these crashed processors’

labels since they will not “clean up” their local labels. Each active processor needs to

do this itself, indirectly, without knowing which processor is inactive, i.e., we do not

employ any form of failure detection for this algorithm. To overcome this problem,

each processor maintains bounded FIFO histories on labels appearing to have been

created by other processors. These histories eventually accumulate the obsolete

labels of the inactive processors. The reader may already see that maintaining these

histories, also creates another source of possible corrupt labels. We show that even

in the presence of (a minority of) inactive processors, starting from an arbitrary state,

the system eventually converges to use a global maximal label.

Let us explain why obsolete labels from inactive processors can create a problem

when no one ever cleans (cancels) them up. Consider a system starting in a state

that includes a cycle of labels `1 ≺ `2 ≺ `3 ≺ `1, all of the same creator, say px, where

≺ is a relation between labels. If px is active, it will eventually learn about these

labels and introduce a label greater than them all. But if px is inactive, the system’s

asynchronous nature may cause a repeated cyclic label adoption, especially when px

has the greatest processor identifier, as these identifiers are used to break symmetry.

Say that an active processor learns and adopts `1 as its global maximal label. Then, it

learns about `2 and hence adopts it, while forgetting about `1. Then, learning of `3 it

adopts it. Lastly, it learns about `1, and as it is greater than `3, it adopts `1 once more,

as the greatest in the system; this can continue indefinitely. By using the bounded

FIFO histories, such labels will be accumulated in the histories and hence will not

be adopted again, ending this vicious cycle.

The Labeling Algorithm

The labeling algorithm (Algorithm 2) specifies how the processors exchange their

label information in the asynchronous system and how they maintain proper label

bookkeeping so as to “discover” their greatest label and cancel all obsolete ones.

Specifically, we define the abstract task of the algorithm as one that lets every node

to maintain a variable that holds the local maximal label. We require that, after the

recovery period and as long as there are no calls to nextLabel() (Algorithm 1), these

local maximal label actually refer to the same global maximal label.

41

Ioa
nn

is
Marc

ou
llis

As we will be using pairs of labels with the same label creator, for the ease of

presentation, we will be referring to these two variables as the (label) pair. The first

label in a pair is called ml. The second label is called cl and it is either ⊥, or equal to

a label that cancels ml (i.e., cl indicates whether ml is an obsolete label or not). The

variables and operators employed by Algorithm 2 are presented in Figure 4.2.

The processor state. Each processor stores an array of label pairs, maxi[n], where

maxi[i] refers to pi’s maximal label pair and maxi[j] considers the most recent value

that pi knows about p j’s pair. Processor pi also stores the pairs of the most-recently-

used labels in the array of queues storedLabelsi[n]. The j-th entry refers to the queue

with pairs from p j’s domain, i.e., that were created by p j. The algorithm makes sure

that storedLabelsi[j] includes only label pairs with unique ml from p j’s domain and

that at most one of them is legitimate, i.e., not canceled. Queues storedLabelsi[j] for

i , j, have size n + m whilst storedLabelsi[i] has size 2(mn + 2n2
− 2n) where m is the

system’s total link capacity in labels. We later show (c.f. Lemmas 4.3.3 and 4.3.4)

that these queue sizes are sufficient to prevent overflows of useful labels.

High level description. Each pair of processors periodically exchange their max-

imal label pairs and the maximal label pair that they know of the recipient. Upon

receipt of such a label pair couple, the receiving processor starts by checking the in-

tegrity of its data structures and upon finding a corruption it flushes its label history

queues. It then moves to see whether the two labels that it received can cancel any

of its non-canceled labels and if the received labels themselves can be canceled by

labels that it has in its history. Upon finishing this label housekeeping, it tries to find

its local maximal view, first among the non-cancelled labels that other processors

report as maximal, and if not such exist among its own labels. In latter case, if no

such label exists, it generates a new one with a call to Algorithm 1 and using its

own label queue as input. At the end of the iteration the processor is guaranteed to

have a maximal label, and continues to receive new label pair couples from other

processors.

Information exchange between processors. Processor pi takes a step whenever it

receives two pairs 〈sentMax, lastSent〉 from some other processor. We note that in a

legal execution p j’s pair includes both sentMax, which refers to p j’s maximal label

42

Ioa
nn

is
Marc

ou
llis

Variables:
max[n] of 〈ml, cl〉: max[i] is pi’s largest label pair, max[j] refers to p j’s label pair (canceled when
max[j].cl , ⊥).
storedLabels[n]: an array of queues of the most-recently-used label pairs, where storedLabels[j]
holds the labels created by p j ∈ P. For p j ∈ (P \ {pi}), storedLabels[j]’s queue size is limited to
(n + m) w.r.t. label pairs, where n = |P| is the number of processors in the system and m is the
maximum number of label pairs that can be in transit in the system. The storedLabels[i]’s queue
size is limited to (n(n2 + m)) pairs.
Operators:
The operator add(`) adds lp to the front of the queue, and emptyAllQueues() clears all storedLabels[]
queues. We use lp.remove() for removing the record lp ∈ storedLabels[]. Note that an element is
brought to the queue front every time this element is accessed in the queue.

Figure 4.2: Variables and Operators for the Labeling Scheme (Algorithm 2); code for pi.

pair max j[j], and lastSent, which refers to a recent label pair that p j received from pi

about pi’s maximal label, max j[i] (line 12).

Whenever a processor p j sends a pair 〈sentMax, lastSent〉 to pi, this processor

stores the value of the arriving sentMax field in maxi[j] (line 15). However, p j may

have local knowledge of a label from pi’s domain that cancels pi’s maximal label, ml,

of the last received sentMax from pi to p j that was stored in max j[i]. Then p j needs

to communicate this canceling label in its next communication to pi. To this end, p j

assigns this canceling label to max j[i].cl which stops being⊥. Then p j transmits max j[i]

to pi as a lastSent label pair, and this satisfies lastSent.cl �lb lastSent.ml, i.e., lastSent.cl

is either greater or incomparable to lastSent.ml. This makes lastSent illegitimate and

in case this still refers to pi’s current maximal label, pi must cancel maxi[i] by assigning

it with lastSent (and thus maxi[i].cl = lastSent.cl) as done in line 16. Processor pi then

processes the two pairs received (lines 17 to 24).

Label processing. Processor pi takes a step whenever it receives a new pair message

〈sentMax, lastSent〉 from processor p j (line 13). Each such step starts by removing stale

information, i.e., misplaced or doubly represented labels (line 5). In the case that

stale information exists, the algorithm empties the entire label storage. Processor pi

then tests whether the arriving two pairs are already included in the label storage

(storedLabels[]), otherwise it includes them (line 18). The algorithm continues to see

whether, based on the new pairs added to the label storage, it is possible to cancel a

non-canceled label pair (which may well be the newly added pair). In this case, the

algorithm updates the canceling field of any label pair lp (line 19) with the canceling

43

Ioa
nn

is
Marc

ou
llis

Algorithm 2: Practically-Self-Stabilizing Labeling Algorithm; code for proces-
sor pi

1 Macros:
2 legit(lp) = (lp = 〈•,⊥〉)
3 labels(lp) : return (storedLabels[lp.ml.lCreator])
4 double(j, lp) = (∃lp′ ∈ storedLabels[j] : ((lp , lp′) ∧ ((lp =ml

lp′) ∨ (legit(lp) ∧ legit(lp′)))))
5 staleIn f o() = (∃p j ∈ P, lp ∈ storedLabels[j] : (lp ,lCreator j) ∨ double(j, lp))
6 recordDoesntExist(j) = (〈max[j].ml, •〉 < labels(max[j]))
7 notgeq(j, lp) = if (∃lp′ ∈ storedLabels[j] : (lp′.ml �lb lp.ml)) then return(lp′.ml)

else return(⊥)
8 canceled(lp) = if (∃lp′ ∈ labels(lp) : ((lp′ =ml lp) ∧ ¬legit(lp′))) then return(lp′)

else return(〈⊥,⊥〉)
9 needsUpdate(j) = (¬legit(max[j]) ∧ 〈max[j].ml,⊥〉 ∈ labels(max[j]))

10 legitLabels() = {max[j].ml : ∃p j ∈ P ∧ legit(max[j])}
11 useOwnLabel() = if (∃lp ∈ storedLabels[i] : legit(lp)) then max[i]← lp

else storedLabels[i].add(max[i]← 〈nextLabel(),⊥〉) // For every
lp ∈ storedLabels[i], we pass in nextLabel() both lp.ml and lp.cl.

12 upon transmitReady(p j ∈ P \ {pi}) do transmit(〈max[i],max[j]〉)
13 upon receive(〈sentMax, lastSent〉) from p j

14 begin
15 max[j]← sentMax;
16 if ¬legit(lastSent) ∧ max[i] =ml lastSent then max[i]← lastSent;
17 if staleIn f o() then storedLabels.emptyAllQueues();
18 foreach p j ∈ P : recordDoesntExist(j) do labels(max[j]).add(max[j]);
19 foreach p j ∈ P, lp ∈ storedLabels[j] : (legit(lp) ∧ (notgeq(j, lp) , ⊥)) do

lp.cl← notgeq(j, lp);
20 foreach p j ∈ P, lp ∈ labels(max[j]) : (¬legit(max[j])∧ (max[j] =ml lp)∧ legit(lp))

do lp← max[j];
21 foreach p j ∈ P, lp ∈ storedLabels[j] : double(j, lp) do lp.remove();
22 foreach p j ∈ P : (legit(max[j]) ∧ (canceled(max[j]) , 〈⊥,⊥〉)) do

max[j]← canceled(max[j]);
23 if legitLabels() , ∅ then max[i]← 〈max≺lb(legitLabels()),⊥〉;
24 else useOwnLabel();

label of a label pair lp′ such that lp′.ml �lb lp.ml (line 19). It is implied that since

the two pairs belong to the same storage queue, they have the same processor as

creator. The algorithm then checks whether any pair of the maxi[] array can cause

canceling to a record in the label storage (line 20), and also line 21 removes any

canceled records that share the same creator identifier. The test also considers the

case in which the above update may cancel any arriving label in max[j] and updates

this entry accordingly based on stored pairs (line 22).

After this series of tests and updates, the algorithm is ready to decide upon a

maximal label based on its local information. This is the �lb-greatest legit label pair

44

Ioa
nn

is
Marc

ou
llis

among all the ones in maxi[] with respect to their ml label (line 23). When no such

legit label exists, pi requests a legit label in its own label storage, storedLabelsi[i], and

if one does not exist, will create a new one if needed (line 24). This is done by

passing the labels in the storedLabelsi[i] queue to the nextLabel() function. Note that

the returned label is coupled with a ⊥ as the cl and the resulting label pair is added

to both maxi[i] and storedLabeli[i].

4.3.2 Labeling Algorithm Correctness Proof

We now show the correctness of the algorithm starting with a proof overview.

Proof overview. The proof considers a execution R of Algorithm 2 that may initiate

in an arbitrary configuration (and include a processor that takes practically infinite

number of steps). It starts by showing some basic facts, such as: (1) stale information

is removed, i.e., storedLabelsi[j] includes only unique copies of p j’s labels, and at most

one legitimate such label (Corollary 4.3.1), and (2) pi either adopts or creates the

�lb-greatest legitimate local label (Lemma 4.3.2). The proof then presents bounds on

the number adoption steps (Lemmas 4.3.3 and 4.3.4), that define the required queue

sizes to avoid label overflows.

The proof continues to show that active processors can eventually stop adopting

or creating labels, by tackling individual cases where canceled or incomparable

label pairs may cause a change of the local maximal label. We show that such labels

eventually disappear from the system (Lemma 4.3.5) and thus no new labels are

being adopted or created (Lemma 4.3.6), which then implies the existence of a global

maximal label (Lemma 4.3.7). Namely, there is a legitimate label `max, such that for

any processor pi ∈ P (that takes a practically infinite number of steps in R), it holds

that maxi[i] = `max. Moreover, for any processor p j ∈ P that is active throughout

the execution, it holds that pi’s local maximal (legit) label pair maxi[i] = `max is the

�lb-greatest of all the label pairs in maxi[] and there is no label pair in storedLabelsi[j]

that cancels `max, i.e., ((maxi[j].ml �lb `max.ml) ∧ ((∀` ∈ storedLabelsi[j] : legit(`)) ⇒

(`.ml �lb `max.ml))). We then demonstrate that, when starting from an initial arbitrary

configuration, the system eventually reaches a configuration in which there is a

global maximal label (Theorem 4.3.3).

Before we present the proof in detail, we provide some helpful definitions and

45

Ioa
nn

is
Marc

ou
llis

notation.

Definitions. We define H to be the set of all label pairs that can be in transit in

the system, with |H| = m. So in an arbitrary configuration, there can be up to m

corrupted label pairs in the system’s links. We also denote Hi, j as the set of label

pairs that are in transit from processor pi to processor p j. The number of label pairs in

Hi, j obeys the link capacity bound. Recall that the data structures used (e.g., maxi[],

storedLabelsi[], etc) store label pairs. For convenience of presentation and when clear

from the context, we may refer to the ml part of the label pair as “the label”. Note

that in this algorithm, we consider an iteration as the execution of lines 13–24, i.e.,

the receive action.

No stale information

Lemma 4.3.1 says that the predicate staleIn f o() (Fig. 4.2, line 5) can only hold during

the first execution of the receive() event (line 13).

Lemma 4.3.1. Let pi ∈ P be a processor for which ¬staleIn f oi() (line 5) does not hold during

the k-th step in R that includes the complete execution of the receive() event (from line 13

to 24). Then k = 1.

Proof. Since R starts in an arbitrary configuration, there could be a queue in

storedLabelsi[] that holds two label records from the same creator, a label that is not

stored according to its creator identifier, or more than one legitimate label. There-

fore, staleIn f oi() might hold during the first execution of the receive() event. When

this is the case, the storedLabelsi[] structure is emptied (line 17). During that receive()

event execution (and any event execution after this), pi adds records to a queue

in storedLabelsi[] (according to the creator identifier) only after checking whether

recordDoesntExist() holds (line 18).

Any other access to storedLabelsi[] merely updates cancelations or removes du-

plicates. Namely, canceling labels that are not the �lb-greatest among the ones that

share the same creating processors (line 19) and canceling records that were canceled

by other processors (line 20), as well as removing legitimate records that share the

same ml (line 21). It is, therefore, clear that in any subsequent iteration of receive()

(after the first), staleIn f o() cannot hold. �

Lemma 4.3.1 along with the lines 5 and 22 of the Algorithm, imply Corollary 4.3.1.

46

Ioa
nn

is
Marc

ou
llis

Corollary 4.3.1. Consider a suffix R′ of execution R that starts after the execution of a

receive() event. Then the following hold throughout R′: (i) ∀pi, p j ∈ P, the state of pi encodes

at most one legitimate label, ` j =lCreator j and (ii) ` j can only appear in storedLabelsi[j] and

maxi[] but not in storedLabelsi[k] : k , j.

Local �lb-greatest legitimate local label

Lemma 4.3.2 considers processors for which staleIn f o() (Fig. 4.2, line 5) does not

hold. Note that ¬staleIn f o() holds at any time after the first step that includes the

receive() event (Lemma 4.3.1). Lemma 4.3.2 shows that pi either adopts or creates the

�lb-greatest legitimate local label pair and stores it in maxi[i].

Lemma 4.3.2. Let pi ∈ P be a processor such that¬staleIn f oi() (Fig. 4.2, line 5), and Lpre(i) =

{maxi[j].ml : ∃p j ∈ P ∧ legit(maxi[j]) ∧ (∃〈maxi[j].ml, x〉 ∈ (labels(maxi[j]) \ {maxi[j]})⇒

(x = ⊥))} be the set of maxi[]’s labels that, before pi executes lines 17 to 24, are legitimate both

in maxi[] and in storedLabelsi[]’s queues. Let Lpost(i) = {maxi[j].ml : ∃p j ∈ P∧legit(maxi[j])}

and 〈`,⊥〉 be the value of maxi[i] immediately after pi executes lines 17 to 24. The label 〈`,⊥〉

is the �lb-greatest legitimate label in Lpost(i). Moreover, suppose that Lpre(i) has a �lb-greatest

legitimate label pair, then that label pair is 〈`,⊥〉.

Proof. 〈`,⊥〉 is the �lb-greatest legitimate label pair in Lpost(i). Suppose that

immediately before line 23, we have that legitLabelsi() , ∅, where legitLabelsi() =

{maxi[j].ml : ∃p j ∈ P ∧ legit(maxi[j])} (Fig. 4.2, line 10). Note that in this case

Lpost(i) = legitLabelsi(). By the definition of �lb-greatest legitimate label pair and

line 23, maxi[i] = 〈`,⊥〉 is the �lb-greatest legitimate label pair in Lpost(i). Suppose

that legitLabelsi() = ∅ immediately before line 23, i.e., there are no legitimate labels in

{maxi[j] : ∃p j ∈ P}. By the definition of �lb-greatest legitimate label pair and line 11

(Fig. 4.2), maxi[i] = 〈`,⊥〉 is the �lb-greatest legitimate label pair in Lpost(i).

Suppose that rec = 〈`′,⊥〉 is a �lb-greatest legitimate label pair in Lpre(i), then

` = `′. We show that the record rec is not modified in maxi[] until the end of the

execution of lines 17 to 24. Moreover, the records that are modified in maxi[], are not

included in Lpre(i) (it is canceled in storedLabelsi[]) and no records in maxi[] become

legitimate. Therefore, rec is also the �lb-greatest legitimate label pair in Lpost(i), and

thus, ` = `′.

Since we assume that staleIn f oi() does not hold, line 17 does not modify rec.

Lines 18, 19 and 21 might add, modify, and respectively, remove storedLabelsi’s

47

Ioa
nn

is
Marc

ou
llis

records, but it does not modify maxi[]. Since rec is not canceled in storedLabelsi[] and

the �lb-greatest legitimate label pair in maxi[], the predicate (legit(max[j])∧ notgeq(j))

does not hold and line 19 does not modify rec. Moreover, the records in maxi[], for

which that predicate holds, become illegitimate. �

Bounding the number of labels

Lemmas 4.3.3 and 4.3.4 present bounds on the number of adoption steps. These are

n + m for labels by labels that become inactive in any point in R and (mn + 2n2
− 2n)

for any active processor. Following the above, choosing the queue sizes as n + m

for storedLabelsi[j] if i , j, and 2(nm + 2n2
− 2n) + 1 for storedLabelsi[i] is sufficient to

prevent overflows given that m is the system’s total link capacity in labels.

Maximum number of label adoptions in the absence of creations. Suppose that

there exists a processor, p j, that has stopped adding labels to the system (the else

part of line 24), say, because it became inactive (crashed), or it names a maximal label

that is the �lb-greatest label pair among all the ones that the network ever delivers to

p j. Lemma 4.3.3 bounds the number of labels from p j’s domain that any processor

pi ∈ P adopts in R.

Lemma 4.3.3. Let pi, p j ∈ P, be two processors. Suppose that p j has stopped adding labels to

the system configuration (the else part of line 24), and sending (line 12) these labels during

R. Processor pi adopts (line 23) at most (n + m) labels, ` j : (` j =lCreator j), from p j’s unknown

domain (` j < labelsi(` j)) where m is the maximum number of label pairs that can be in transit

in the system.

Proof. Let pk ∈ P. At any time (after the first step in R) processor pk’s state encodes

at most one legitimate label, ` j, for which ` j =lCreator j (Corollary 4.3.1). Whenever pi

adopts a new label ` j from p j’s domain (line 23) such that ` j : (` j =lCreator j), this implies

that ` j is the only legitimate label pair in storedLabelsi[j]. Since ` j was not transmitted

by p j before it was adopted, ` j must come from pk’s state delivered by a transmit

event (line 12) or delivered via the network as part of the set of labels that existed

in the initial arbitrary state. The bound holds since there are n processors, such as

pk, and m bounds the number of labels in transit. Moreover, no other processor can

create label pairs from the domain of p j. �

48

Ioa
nn

is
Marc

ou
llis

Maximum number of label creations. Lemma 4.3.4 shows a bound on the number

of adoption steps that does not depend on whether the labels are from the domain

of an active or (eventually) inactive processor.

Lemma 4.3.4. Let pi ∈ P and Li = `i0 , `i1 , . . . be the sequence of legitimate labels, `ik =lCreator i,

from pi’s domain, which pi stores in maxi[i] through the reception (line 13) or creation of

labels (line 24), where k ∈N. It holds that |Li| ≤ n(n2 + m).

Proof. Let Li, j = `i0, j, `i1, j, . . . be the sequence of legitimate labels that pi stores in maxi[j]

during R and Ci, j = `c
i0, j
, `c

i1, j
, . . . the sequence of legit labels that pi receives from p j’s

domain. We consider the following cases in which pi stores L’s values in maxi[i].

(1) When `ik = `j0,j′ , where pj,pj′ ∈ P and k ∈N. This case considers the situation

in which maxi[i] stores a label that appeared in max j[j′] at the (arbitrary) starting

configuration, (i.e. ` j0, j′ ∈ L j, j′). There are at most n(n−1) such legitimate label values

from pi’s domain, namely n − 1 arrays max j[] of size n.

(2) When `ik = `jk′ ,j′ = `c
j0,j′

, where pj,pj′ ∈ P, k,k′ ∈N and `jk′ ,j′ , `jk′ ,j. This

case considers the situation in which maxi[i] stores a label that appeared in the

communication channel between p j and p j′ at the (arbitrary) starting configuration,

(i.e. `c
j0, j′
∈ C j, j′) and appeared in max j[j′] before p j communicated this to pi. There

are at most m such values, i.e., as many as the capacity of the communication links

in labels, namely |H|.

(3) When `ik is the return value of nextLabel() (the else part of line 24). Processor

pi aims at adopting the �lb-greatest legitimate label pair that is stored in maxi[],

whenever such exists (line 23). Otherwise, pi uses a label from its domain; either one

that is the �lb-greatest legit label pair among the ones in storedLabelsi[i], whenever

such exists, or the returned value of nextLabel() (line 24).

The latter case (the else part of line 24) refers to labels, `ik , that pi stores in

maxi[i] only after checking that there are no legitimate labels stored in maxi[] or

storedLabelsi[i]. Note that every time pi executes the else part of line 24, pi stores the

returned label, `ik , in storedLabelsi[i]. After that, there are only three events for `ik not

to be stored as a legitimate label in storedLabelsi[i]:

(i) execution of line 17, (ii) the network delivers to pi a label, `′, that either cancels `ik

(`′.cl �lb `ik .ml), or for which `′.ml �lb `ik .ml, and (iii) `ik overflows from storedLabelsi[i]

after exceeding the (n(n2 + m) + 1) limit which is the size of the queue.

Note that Lemma 4.3.1 says that event (i) can occur only once (during pi’s first

49

Ioa
nn

is
Marc

ou
llis

step). Moreover, only pi can generate labels that are associated with its domain (in

the else part of line 24). Each such label is �lb-greater-equal than all the ones in

storedLabelsi[i] (by the definition of nextLabel() in Algorithm 1).

Event (ii) cannot occur after pi has learned all the labels ` ∈ remoteLabelsi for which

` < storedLabelsi[i], where remoteLabelsi = (((∪p j∈P localLabelsi, j) ∪ H) \ storedLabelsi[i])

and localLabelsi, j = {`′ : `′ =lCreator i, ∃p j ∈ P : ((`′ ∈ storedLabels[i]) ∨ (∃ pk ∈ P : `′ =

max j[k].ml))}. During this learning process, pi cancels or updates the cancellation

labels in storedLabelsi[i] before adding a new legitimate label. Thus, this learn-

ing process can be seen as moving labels from remoteLabelsi to storedLabelsi[i] and

then keeping at most one legitimate label available in storedLabelsi[i]. Every time

storedLabelsi[i] accumulates a label ` that was unknown to pi, the use of nextLabel()

allows it to create a label `ik that is �lb-greater than any label pair in storedLabelsi[i]

and eventually from all the ones in remoteLabelsi.

Note that remoteLabelsi’s labels must come from the (arbitrary) start of the system,

because pi is the only one that can add a label to the system from its domain and

therefore this set cannot increase in size. These labels include those that are in

transit in the system and all those that are unknown to pi but exist in the max j[•] or

storedLabels j[i] structures of some other processor p j. By Lemma 4.3.3 we know that

|storedLabels j[i]| ≤ n + m for i , j. From the three cases of Li labels that we detailed at

the beginning of this proof ((1)–(3)), we can bound the size of remoteLabelsi as follows:

for p j ∈ P : j , i we have that |remoteLabelsi| ≤ (n−1)(|max[]|+ |storedLabels j[i]|) + |H| =

(n− 1)(n + (n + m)) + m = mn + 2n2
− 2n. Since pi may respond to each of these labels

with a call to nextLabel(), we require that storedLabelsi[i] has size 2|remoteLabelsi| + 1

label pairs in order to be able to accommodate all the labels from |remoteLabelsi|

and the ones created in response to these, plus the current greatest. Thus, what is

suggested by event (ii) of pi, i.e., receiving labels from remoteLabelsi, stops happening

before overflows (event (iii)) occurs, since storedLabelsi[i] has been chosen to have a

size that can accommodate all the labels from remoteLabelsi and those created by pi

as a response to these. This size is 2(mn + 2n2
− 2n) + 1 = 2(n3cap + 2n2

− 2n) + 1 (since

m = n2cap) which is O(n3). �

From the end of the proof of Lemma 4.3.4, we get Corollary 4.3.2.

Corollary 4.3.2. The number k of antistings needed by Algorithm 1 is 2 · (2(n3cap + 2n2
−

2n) + 1) (twice the queue size).

50

Ioa
nn

is
Marc

ou
llis

Pair diffusion

The proof continues and shows that active processors can eventually stop adopting

or creating labels. We are particularly interested in looking into cases in which

there are canceled label pairs and incomparable ones. We show that they eventually

disappear from the system (Lemma 4.3.5) and thus no new labels are being adopted

or created (Lemma 4.3.6), which then implies the existence of a global maximal label

(Lemma 4.3.7).

Lemmas 4.3.5 and 4.3.6, as well as Lemma 4.3.7 and Theorem 4.3.3 assume the

existence of at least one processor, punknown ∈ P whose identity is unknown, that

takes practically infinite number of steps in R. Suppose that processor pi ∈ P takes a

bounded number of steps in R during a period in which punknown takes a practically

infinite number of steps. We say that pi has become inactive (crashed) during that

period and assume that it does not resume to take steps at any later stage of R (in

the manner of fail-stop failures, as defined in Chapter 3).

Consider a processor pi ∈ P that takes any number of (bounded or practically

infinite) steps in R and two processors p j, pk ∈ P that take a practically infinite number

of steps in R. Given that p j has a label pair ` as its local maximal, and there exists

another label pair `′ such that (`′.ml �lb `.ml) ∨ `′.cl �lb `.ml and they have the same

creator pi. Algorithm 2 suggests only two possible routes for some label pair `′ to

find its way in the system through p j. Either by p j adopting `′ (line 23), or by creating

it as a new label (the else part of line 24). Note, however, that p j is not allowed to

create a label in the name of pi and since `′ =lCreator i, the only way for `′ to disturb

the system is if this is adopted by p j as in line 23. We use the following definitions

for estimating whether there are such label pairs as ` and `′ in the system.

There is a risk for two label pairs from pi’s domain, ` j and `k, to cause such

a disturbance when either they cancel one another or when it can be found that

one is not greater than the other. Thus, we use the predicate riski, j,k(` j, `k) =

(` j =i `k) ∧ legit(` j) ∧ (notGreater(` j, `k) ∨ canceled(` j, `k)) to estimate whether p j’s

state encodes a label pair, ` j =lCreator i, from pi’s domain that may disturb the

system due to another label, `k, from pi’s domain that pk’s state encodes, where

canceled(` j, `k) = (legit(` j)∧¬legit(`k)∧` j =ml `k) refers to a case in which label ` j is can-

celed by label `k, notGreater(` j, `k) = (legit(` j)∧ legit(`k)∧`k.ml �lb ` j.ml) that refers to a

case in which label `k is not �lb-greater than ` j and (` j =i `k) ≡ (` j =lCreator `k =lCreator i).

51

Ioa
nn

is
Marc

ou
llis

Notation Definition Remark

hNamei, j,k {(` j, `k) : ` j = max j[j] ∧ (∃〈`k, •〉 ∈ Hk, j)}
In transit from pk to p j

as sentMax feedback about
maxk[k]

hAcki, j,k {(` j, `k) : ` j = max j[k] ∧ (∃〈•, `k〉 ∈ Hk, j)}
In transit from pk to p j

as lastSent feedback about
maxk[j]

maxi, j,k {(max j[j],maxk[k])}
Local maximal labels of p j and
pk

acki, j,k {(max j[j],maxk[j])}
` j is p j’s local maximal label
and `k = maxk[j]

storedi, j,k {{max j[j]} × storedLabelsk[i]}
A label `k in storedLabelsk[i]
that can cancel ` j = max j[j]

Table 4.1: The notation used to identify the possible positions of label pairs ` j and `k that can cause
canceling as used in Lemmas 4.3.5 to 4.3.7 and in Theorem 4.3.3.

These two label pairs, ` j and `k, can be the ones that processors p j and pk name

as their local maximal label, as in maxi, j,k = {(max j[j],maxk[k])}, or recently received

from one another, as in acki, j,k = {(max j[j],maxk[j])}. These two cases also appear when

considering the communication channel (or buffers) from pk to p j, as in hNamei, j,k =

{(` j, `k) : ` j = max j[j]∧(∃〈`k, •〉 ∈ Hk, j)} and hAcki, j,k = {(` j, `k) : ` j = max j[k]∧(∃〈•, `k〉 ∈

Hk, j)}. We also note the case in which pk stores a label pair that might disturb the

one that p j names as its (local) maximal, as in storedi, j,k = {{max j[j]} × storedLabelsk[i]}

We define the union of these cases to be the set risk = {(` j, `k) ∈ maxi, j,k ∪ acki, j,k ∪

hNamei, j,k ∪ hAcki, j,k ∪ storedi, j,k : ∃pi, p j, pk ∈ P ∧ stopped j ∧ stoppedk ∧ riski, j,k(` j, `k)},

where stoppedi = true when processor pi is inactive (crashed) and f alse otherwise.

The above notation can also be found in Table 4.1.

Lemma 4.3.5. Suppose that there exists at least one processor, punknown ∈ P whose identity

is unknown, that takes practically infinite number of steps in R during a period where p j

never adopts labels (line 23), ` j : (` j =lCreator i), from pi’s unknown domain (` j < labels j(` j)).

Then eventually risk = ∅ .

Proof. Suppose this Lemma is false, i.e., the assumptions of this Lemma hold and

yet in any configuration c ∈ R, it holds that (` j, `k) ∈ risk , ∅. We use risk’s definition

to study the different cases. By the definition of risk, we can assume, without the

loss of generality, that p j and pk are active throughout R.

Claim: If p j and pk are active throughout R, i.e. stopped j = stoppedk = False, then

52

Ioa
nn

is
Marc

ou
llis

risk , ∅ ⇐⇒ riski, j,k = True. This means that there exist two label pairs (` j, `k)

where `k can force a cancellation to occur. Then the only way for this two labels

to force risk , ∅ is if, throughout the execution, `k never reaches p j.

The above claim is verified by a simple observation of the algorithm. If `k reaches

p j then lines 16, 20 and 22 guarantee a canceling and lines 18 and 19 ensure that

these labels are kept canceled inside storedLabels j[]. The latter is also ensured by

the bounds on the labels given in Lemmas 4.3.3 and 4.3.4 that do not allow queue

overflows. Thus to include these two labels to risk, is to keep `k hidden from p j

throughout R. We perform a case-by-case analysis to show that it is impossible for

label `k to be “hidden” from p j for an infinite number of steps in R.

The case of (` j, `k) ∈ hNamei, j,k. This is the case where ` j = max j[j] and `k is a label

inHk, j that appears to be maxk[k]. This may also contain such labels from the corrupt

state. We note that p j and pk are active throughout R. The stabilizing implementation

of the data-link ensures that a message cannot reside in the communication channel

during an infinite number of transmit() – receive() events of the two ends. Thus `k,

which may well have only a single instance in the link coming from the initial corrupt

state, will either eventually reach p j or it become lost. In the both cases (the first by

the Claim for the second trivially) the two clashing labels are removed from risk and

the result follows.

The case of (` j, `k) ∈ hAcki, j,k. This is the case where ` j = max j[j] and `k is a label

inHk, j that appears to be maxk[j]. The proof line is exactly the same as the previous

case.

This case follows by the same arguments to the case of (` j, `k) ∈ acki, j,k.

The case of (` j, `k) ∈ maxi, j,k. Here the label pairs ` j and `k are named by p j

and pk as their local maximal label. We note that p j and pk are active throughout

R. By our self-stabilizing data-links and by the assumption on the communication

that a message sent infinitely often is received infinitely often, then pk transmits its

maxk[k] label infinitely often when executing line 12. This implies that p j receives

`k infinitely often. By the Claim the canceling takes place, and the two labels are

eventually removed from the global observer’s risk set, giving a contradiction.

The case of (`j, `k) ∈ acki,j,k. This is the case case where the labels (` j, `k) belong to

{(max j[j],maxk[j])}. Since processor pk continuously transmits its label pair in maxk[j]

(line 12) the proof is almost identical to the previous case.

53

Ioa
nn

is
Marc

ou
llis

The case of (`j, `k) ∈ storedi,j,k. This case’s proof, follows by similar arguments to

the case of (` j, `k) ∈ maxi, j,k. Namely, pk eventually receives the label pair ` j = max j[j].

The assumption that riski, j,k(` j, `k) holds implies that one of the tests in lines 19 and

22 will either update storedLabelsk[i], and respectively, maxk[j] with canceling values.

We note that for the latter case we argue that p j eventually received the canceled

label pair in maxk[j], because we assume that p j does not change the value of max j[j]

throughout R.

By careful and exhaustive examination of all the cases, we have proved that there

is no way to to keep `k hidden from p j throughout R. This is a contradiction to our

initial assumption, and thus eventually risk = ∅. �

These two label pairs, ` j and `k, can be the ones that processors p j and pk name

as their local maximal label, as in maxi, j,k = {(max j[j],maxk[k])}, or recently received

from one another, as in acki, j,k = {(max j[j],maxk[j])}. These two cases also appear when

considering the communication channel (or buffers) from pk to p j, as in hNamei, j,k =

{(` j, `k) : ` j = max j[j]∧(∃〈`k, •〉 ∈ Hk, j)} and hAcki, j,k = {(` j, `k) : ` j = max j[j]∧(∃〈•, `k〉 ∈

Hk, j)}. We also note the case in which pk stores a label pair that might disturb the one

that p j names as its (local) maximal, as in storedi, j,k = {{max j[j]} × storedLabelsk[i]}.

Lemma 4.3.6. Suppose that risk = ∅ in every configuration throughout R and that there

exists at least one processor, punknown ∈ P whose identity is unknown, that takes practically

infinite number of steps in R. Then p j never adopts labels (line 23), ` j : (` j =lCreator i), from

pi’s unknown domain (` j < labels j(` j)).

Proof. Note that the definition of risk considers almost every possible combination

of two label pairs ` j and `k from pi’s domain that are stored by processor p j, and

respectively, pk (or in the channels to them). The only combination that is not

considered is (` j, `k) ∈ storedLabels j[i] × storedLabelsk[i]. However, this combination

can indeed reside in the system during a legal execution and it cannot lead to a

disruption for the case of risk = ∅ in every configuration throughout R because

before that could happen, either p j or pk would have to adopt ` j, and respectively, `k,

which means a contradiction with the assumption that risk = ∅.

The only way that a label in storedLabels[] can cause a change of the local maximum

label and be communicated to also disrupt the system, is to find its way to max[].

Note that p j cannot create a label under pi’s domain (line 24) since the algorithm

does not allow this, nor can it adopt a label from storedLabels j[i] (by the definition of

54

Ioa
nn

is
Marc

ou
llis

legitLabels(), Fig. 4.2, line 10). So there is no way for ` j to be added to max j[j] and

thus make risk , ∅ through creation or adoption.

On the other hand, we note that there is only one case where pk extracts a label

from storedLabelsk[i] : i , k and adds it to maxk[j]. This is when it finds a legit label

` j ∈ maxk[j] that can be canceled by some other label `k in storedLabelsk[i]), line 22.

But this is the case of having the label pair (` j, `k) in storedi, j,k. Our assumption that

risk = ∅ implies that storedi, j,k = ∅. This is a contradiction. Thus a label `k cannot

reach maxk[] in order for it to be communicated to p j.

In the same way we can argue for the case of two messages in transit,H j,k ×Hk, j

and that risk = ∅ throughout R. �

Lemma 4.3.7. Suppose that risk = ∅ in every configuration throughout R and that there

exists at least one processor, punknown ∈ P whose identity is unknown, that takes practically

infinite number of steps in R. There is a legitimate label `max, such that for any processor pi ∈ P

(that takes a practically infinite number of steps in R), it holds that maxi[i] = `max. Moreover,

for any processor p j ∈ P (that takes a practically infinite number of steps in R), it holds that

((maxi[j].ml �lb `max.ml) ∧ ((∀` ∈ storedLabelsi[j] : legit(`))⇒ (`.ml �lb `max.ml))).

Proof. We initially note that the two processors pi, p j that take an infinite number

of steps in R will exchange their local maximal label maxi[i] and max j[j] an infinite

number of times. By the assumption that risk = ∅, there are no two label pairs in the

system that can cause canceling to each other that are unknown to pi or p j and are

still part of maxi[i] or maxi[j]. Hence, any differences in the local maximal label of

the processors must be due to the labels’ lCreator difference.

Since maxi[i] and max j[j] are continuously exchanged and received, assuming

maxi[i].ml ≺lb max j[j].ml where the labels are of different label creators, then pi will

be led to a receive() event of 〈sentMax j, lastSent j〉 where maxi[i].ml ≺lb sentMax j.ml.

By line 15, sentMax j is added to maxi[j] and since risk = ∅ no action from line 16 to

line 22 takes place. Line 23 will then indicate that the greatest label in maxi[•] is that

in maxi[j] which is then adopted by pi as maxi[i], i.e., pi’s local maximal. The above

is true for every pair of processors taking an infinite number of steps in R and so we

reach to the conclusion that eventually all such processors converge to the same `max

label, i.e., it holds that ((maxi[j].ml �lb `max.ml) ∧ ((∀` ∈ storedLabelsi[j] : legit(`)) ⇒

(`.ml �lb `max.ml))). �

55

Ioa
nn

is
Marc

ou
llis

Convergence

Theorem 4.3.3 combines all the previous lemmas to demonstrate that when starting

from an arbitrary starting configuration, the system eventually reaches a configura-

tion in which there is a global maximal label.

Theorem 4.3.3. Suppose that there exists at least one processor, punknown ∈ P whose identity

is unknown, that takes practically infinite number of steps in R. Within a bounded number

of steps, there is a legitimate label pair `max, such that for any processor pi ∈ P (that takes

a practically infinite number of steps in R), it holds that pi has maxi[i] = `max. Moreover,

for any processor p j ∈ P (that takes a practically infinite number of steps in R), it holds that

((maxi[j].ml �lb `max.ml) ∧ ((∀` ∈ storedLabelsi[j] : legit(`))⇒ (`.ml �lb `max.ml))).

Proof. For any processor in the system, which may take any (bounded or practically

infinite) number of steps in R, we know that there is a bounded number of label

pairs, Li = `i0 , `i1 , . . ., that processor pi ∈ P adds to the system configuration (the else

part of line 24), where `ik =lCreator i (Lemma 4.3.4). Thus, by the pigeonhole principle

we know that, within a bounded number of steps in R, there is a period during

which punknown takes a practically infinite number of steps in R whilst (all processors)

pi do not add any label pair, `ik =lCreator i, to the system configuration (the else part of

line 24).

During this practically infinite period (with respect to punknown), in which no

label pairs are added to the system configuration due to the else part of line 24,

we know that for any processor p j ∈ P that takes any number of (bounded or

practically infinite) steps in R, and processor pk ∈ P that adopts labels in R (line 23),

` j : (` j =lCreator j), from p j’s unknown domain (` j < storedLabelsk(j)) it holds that

pk adopts such labels (line 23) only a bounded number times in R (Lemma 4.3.3).

Therefore, we can again follow the pigeonhole principle and say that there is a period

during which punknown takes a practically infinite number of steps in R whilst neither

pi adds a label, `ik =lCreator i, to the system (the else part of line 24), nor pk adopts labels

(line 23), ` j : (` j =lCreator j), from p j’s unknown domain (` j < labelsk(` j)).

We deduce that, when the above is true, then we have reached a configuration

in R where risk = ∅ (Lemma 4.3.5) and remains so throughout R (Lemma 4.3.6).

Lemma 4.3.7 concludes by proving that, whilst punknown takes a practically infinite

number of steps, all processors (that take practically infinite number of steps in

R) name the same �lb-greatest legitimate label pair which the theorem statement

56

Ioa
nn

is
Marc

ou
llis

Variables: A label lbl is extended to the triple 〈lbl, seqn,wid〉 called a counter where seqn, is
the sequence number related to lbl, and wid is the identifier of the creator of this seqn. A
counter pair 〈mct, cct〉 extends a label pair. cct is a canceling counter for mct, such that
cct.lbl ⊀lb mct.lbl or cct.lbl = ⊥. We rename structures max[] and storedLabels[] of Alg. 2
to maxC[] and storedCnts[] that hold counter pairs instead of label pairs. Variable status ∈
{MAX REQUEST,MAX WRITE,COMPLETE}.
Operators: add(ctp) - places a counter pair ctp at the front of a queue. If ctp.mct.lbl already exists
in the queue, it only maintains the instance with the greatest counter w.r.t. ≺ct, placing it at the
front of the queue. If one counter pair is canceled then the canceled copy is retained. We consider
an array field as a single sized queue and use add().

Figure 4.3: Variables and Operators for Counter Increment; code for pi.

specifies. Thus no label ` =lCreator j in maxi[•] or in storedLabelsi[j] may satisfy `.ml �lb

`max.ml. �

Algorithm complexity

The required local memory of a processor comprises of a queue of size (in labels)

2(n3cap+2n2
−2n) that hosts the labels with the processor as a creator (Corollary 4.3.2).

The local state also includes n − 1 queues of size n + n2cap to store labels by other

processors, and a single label for the maximal label of every processor. We conclude

that the space complexity is of order O(n3) in labels. Given the number of possible

labels in the system by the same processor is β = n3cap + 2n2
− 2n, as shown in the

proof of Lemma 4.3.4, we deduce that the size of a label in bits is O(β log β).

By Theorem 4.3.3 we can bound the stabilization time based on the number of

label creations. Namely, in an execution with O(n · β) label creations (e.g., up to n

processors can create O(β) labels), there is a practically infinite execution suffix (of

size 2τ iterations) where the receipt of a label which starts an iteration never changes

the maximal label of any processor in the system.

4.3.3 Increment Counter Algorithm

We adjust the labeling algorithm to work with counters, so that our counter incre-

ment algorithm is a stand-alone algorithm. In this subsection, we explain how we

can enhance the labeling scheme presented in the previous subsection to obtain a

practically (infinite) self-stabilizing counter increment algorithm.

57

Ioa
nn

is
Marc

ou
llis

// Where macros coincide with Algorithm 2 we do not restate them.

1 Macros:
2 exhausted(ctp) = (ctp.mct.seqn ≥ 2τ)
3 cancelExh(ctp) : ctp.cct← ctp.mct
4 cancelExhMaxC() : foreach p j ∈ P, c ∈ maxC[j] : exhausted(c) do cancelExh(maxC[j]);
5 legit(ctp) = (ctp.cct = ⊥〉)
6 staleCntrIn f o() = staleIn f o() ∨ (∃p j ∈ P, x ∈ storedCnts[j] : exhausted(x) ∧ legit(x))
7 retCntrQ(ct) : return (storedCnts[ct.lbl.lCreator])
8 retMaxCnt(ct) = return (max≺ct (ct, ct′)) where ct′ ∈ retCntrQ(ct) ∧ (ct =lbl ct′)
9 legitCnts() = {maxC[j].mct : ∃p j ∈ P ∧ legit(maxC[j])}

10 useOwnCntr() = if (∃cp ∈ storedCnts[i] : legit(lp)) then maxC[i]← cp
else storedCnts[i].add(maxC[i]← 〈〈nextLabel(), 0, i〉,⊥〉) // For every cp ∈ storedCnts[i],
we pass to nextLabel() both cp.mct.lbl and cp.cct.lbl.

11 getMaxSeq() : return maxwid({maxseqn({ctp : ctp.mct ∈ legitCnts() ∧ maxC[i] =mct.lbl ctp})})
12 initWrite = {〈maxC[i], responseSet, status〉 ← 〈maxC[i](), ∅,MAX WRITE〉; }
13 increment() = {maxC[i]← 〈maxC[i].mct.lbl,maxC[i].mct.seqn + 1, i〉; }
14 correctResponse(A,B) = return ((status = MAX REQUEST ∧ (A,B < {⊥})) ∨ ((status =

MAX WRITE) ∧ (〈A,B〉 = 〈⊥,maxCi[i]〉))

Figure 4.4: Macros for the Increment Counter (Algorithm 3).

From labels to counters and to a counter version of Algorithm 2

Counters. To achieve this task, we now need to work with practically unbounded

counters. A counter cnt is a triplet 〈lbl, seqn,wid〉, where lbl is an epoch label as defined

in the previous subsection, seqn is a τ-bit integer sequence number and wid is the

identifier of the processor that last incremented the counter’s sequence number, i.e.,

wid is the counter writer. Then, given two counters cnti, cnt j we define the relation

cnti ≺ct cnt j ≡ (cnti.lbl ≺lb cnt j.lbl) ∨ ((cnti.lbl = cnt j.lbl) ∧ (cnti.seqn < cnt j.seqn)) ∨

((cnti.lbl = cnt j.lbl)∧ (cnti.seqn = cnt j.seqn)∧ (cnti.wid < cnt j.wid)). Observe that when

the labels of the two counters are incomparable, the counters are also incomparable.

The relation ≺ct defines a total order (as required by practically unbounded coun-

ters) for counters with the same label, thus, only when processors share a globally

maximal label. Conceptually, if the system stabilizes to use a global maximal label,

then the pair of the sequence number and the processor identifier (of this sequence

number) can be used as an unbounded counter, as used, for example, in MWMR

register implementations [17, 34].

Structures. We convert the label structures max[] and storedLabels[] of the labeling

algorithm into the structures maxC[] and storedCnts[] that hold counters rather than

labels (see Figure 4.3). Each label can yield many different counters with different

〈seqn,wid〉. Therefore, in order to avoid increasing the size of the queues of storedCnts

58

Ioa
nn

is
Marc

ou
llis

(with respect to the number of elements stored), we only keep the highest sequence

number observed for each label (breaking ties with the wid).

This is encapsulated in the definition of the add() operator (Figure 4.3 – Operators).

In particular, we define the operator add(ctp) (Fig. 4.3) to enqueue a counter pair ctp

to a queue of storedCnts[n], where in case a counter with the same label already exists,

the following two rules apply: (1) if at least one of the two counters is canceled we

keep a canceled instance, and (2) if both counters are legitimate, we keep the greatest

counter with respect to 〈seqn,wid〉. The counter is placed at the front of the queue.

In this way we allow for labels for which the counters have not been exhausted to be

reused. We denote a counter pair by 〈mct, cct〉, with this being the extension of a label

pair 〈ml, cl〉, where cct is a canceling counter for mct, such that either cct.lbl ⊀lb mct.lbl

(i.e., the counter is canceled), or cct.lbl = ⊥.

Exhausted counters. These are the ones satisfying seqn ≥ 2τ, and they are treated

in a way similar to the canceled labels in the labeling algorithm; an exhausted

counter mct in a counter pair 〈mct, cct〉 is canceled, by setting mct.lbl = cct.lbl (i.e., the

counter’s own label cancels it) and hence cannot be used as a local maximal counter

in maxCi[i]. This cannot increase the number of labels that are created, since the

initial set of corrupt counters remains the same as the one for labels, for which we

have already produced a proof in Section 4.3.1.

The enhanced labeling algorithm. Figure 4.5 presents a standalone version of the

labeling algorithm adjusted for counters. Each processor pi uses the token-based

communication to transmit to every other processor p j its own maximal counter and

the one it currently holds for p j in maxCi[j] (line 1). Upon receipt of such an update

from p j, pi first performs canceling of any exhausted counters in storedCnts[] (line 4),

in maxC[] (line 6) and in the received couple of counter pairs (line 5). Having catered

for exhaustion, it then calls maintainCntrs(〈•, •〉) with the received two counter pairs

as arguments. This is essentially a counter version of Algorithm 2. Macros that

require some minor adjustments to handle counters are seen in Figure 4.4 lines 5

to 10. We also address the need to update counters of maxC[] w.r.t. seqn and wid

based on counters from the storedCnts[] structure and vice versa in lines 18 and 10.

We define the operator add(ctp) (Fig. 4.3) to enqueue a counter pair ctp to a queue

of storedCnts[n], where in case a counter with the same label already exists the

following two rules apply: (1) if at least one of the two counters is cancelled we

keep a canceled instance, and (2) if both counters are legitimate, we keep the greatest

59

Ioa
nn

is
Marc

ou
llis

// Lines 1 and 2 run in the background.

1 upon transmitReady(p j ∈ P \ {pi}) do transmit(〈maxC[i],maxC[j]〉);
2 upon receive(〈sentMax, lastSent〉) from pk do processCntr(sentMax, lastSent, j)

3 procedure processCntr(counter pair sentMax, counter pair lastSent), int k) begin
4 foreach p j ∈ P, ctp ∈ storedCnts[j] : legit(ctp) ∧ exhausted(ctp) do cancelExh(ctp);
5 if (∃ctp′ ∈ 〈sentMax, lastSent〉 : exhausted(ctp′)) then cancelExh(ctp′);
6 cancelExhMaxC(); maintainCntrs(sentMax, lastSent);

7 operator maintainCntrs(counter pair sentMax, counter pair lastSent), int k)
8 begin
9 if sentMax , NULL then maxC[k]← sentMax;

10 if lastSent , NULL ∧ ¬legit(lastSent) ∧ maxC[i] =mct.lbl lastSent then maxC[i].add(lastSent);
11 if staleCntrIn f o() then storedCnts.emptyAllQueues();
12 foreach p j ∈ P : recordDoesntExist(j) do retCntrQ(maxC[j]).add(maxC[j]);
13 foreach p j ∈ P, cp ∈ storedCnts[j] : (legit(cp) ∧ (notgeq(j, cp) , ⊥)) do cp.cct← notgeq(j, cp);
14 foreach p j ∈ P : ((¬legit(maxC[j]) ∨ (cp <mct.seqn maxC[j])) ∧ (maxC[j] =ml cp) ∧ legit(cp)

where cp ∈ retCntrQ(maxC[j]) do cp← maxC[j];
15 foreach p j ∈ P, cp ∈ storedCnts[j] : double(j, cp) do cp.remove();
16 foreach p j ∈ P : (legit(maxC[j]) ∧ (canceled(maxC[j]) , 〈⊥,⊥〉)) do
17 maxC[j]← canceled(maxC[j])

18 foreach p j ∈ P, cp ∈) do maxC[j]← getMaxCnt(maxC[j]);
19 if legitCnts() , ∅ then maxC[i]← 〈max≺ct (legitCnts()),⊥〉;
20 else useOwnCntr();

Figure 4.5: The maintainCntrs() operator (code for pi).

counter with respect to 〈seqn,wid〉. The counter is placed at the front of the queue.

Counter Increment Algorithm

Algorithm 3 shows a self-stabilizing counter increment algorithm where multiple

processors can increment the counter. We start with some useful definitions and

proceed to describe the algorithm.

Quorums. We define a quorum set Q based on processors in P, as a set of processor

subsets of P (named quorums), that ensure a non-empty intersection of every pair

of quorums. Namely, for all quorum pairs Qi,Q j ∈ Q such that Qi,Q j ⊂ P, it must

hold that Qi ∩ Q j , ∅. This intersection property is useful to propagate information

among servers and exploiting the common intersection without having to write a

value v to all the servers in a system, but only to a single quorum, say Q. If one

wants to retrieve this value, then a call to any of the quorums (not necessarily Q),

is expected to return v because there is least one processor in every quorum that

60

Ioa
nn

is
Marc

ou
llis

Algorithm 3: Increment Counter; code for pi

1 interface function incrementCounter() begin
2 let 〈responseSet, status〉 ← 〈∅,MAX REQUEST〉;
3 repeat
4 if status = MAX REQUEST ∧ (∃Q ∈ Q : Q ⊆ {responseSet}) then
5 initWrite(); increment()

6 else if status = MAX WRITE ∧ (∃Q ∈ Q : Q ⊆ {responseSet}) then
7 〈status← COMPLETE〉

8 foreach p j ∈ P do send 〈status,maxC[i],maxC[j]〉;
9 until status = COMPLETE;

10 return maxC[i]

11 upon receive of m = 〈subj, sentMax, lastSent〉 from p j begin
12 if (m.subj = MAX REQUEST) then send 〈ACK,maxCi[i],maxCi[j]〉 to p j;
13 else if (m.subj = MAX WRITE) then
14 processCntr(sentMax, lastSent, j); send 〈ACK,⊥, lastSent〉 to p j;

15 else if (m.subj = ACK ∧ correctResponse(sentMax, lastSent)) then
16 processCntr(sentMax, lastSent, j); responseSet← j

also belongs to Q. In the counter algorithm we exploit the intersection property to

retrieve the currently greatest counter in the system, increment it, and write it back

to the system, i.e., to a quorum therein. Note that majorities form a special case of a

quorum system.

Algorithm description. To increment the counter, a processor pi enters status

MAX REQUEST (line 2) and starts sending a request to all other processors, waiting

for their maximal counter (via line 8). Processors receiving this request respond with

their current maximal counter and the last sent by pi (line 12). When such a response

is received (line 15), pi adds this to the local counter structures via the counter book-

keeping algorithm of Figure 4.5. Once a quorum of responses (line 4) have been

processed, maxC[i] holds the maximal counter that has come to the knowledge of

pi about the system’s maximal counter. This counter is then incremented locally

and pi enters status MAX WRITE by initiating the propagation of the incremented

counter (line 5), and waiting to gather acknowledgments from a quorum (the con-

dition of line 6). When the latter condition is satisfied, the function returns the new

counter. This is, in spirit, similar to the two-phase write operation of MWMR regis-

ter implementations, focusing on the sequence number rather than on an associated

value.

61

Ioa
nn

is
Marc

ou
llis

Proof of correctness

Proof outline. Initially we prove, by extending the proof of the labeling algorithm,

that starting from an arbitrary configuration the system eventually reaches to a

global maximal label (as given in Theorem 4.3.3), even in the presence of exhausted

counters (Lemma 4.3.4). By using the intersection property of quorums we establish

that a counter that was written is known by at least one processor in every quorum

(Lemma 4.3.5. We then combine the two previous lemmas to prove that counters

increment monotonically.

Lemma 4.3.4. In a bounded number of steps of Algorithm 4.5 every processor pi has counter

maxCi[i] = ct with ct.lbl = `max the globally maximal non-exhausted label.

Proof. For this lemma we refer to the enhanced labeling algorithm for counters

(Figure 4.5). The lemma proof can be mapped on the arguments proving lemmas

Lemma 4.3.1 to Lemma 4.3.4 of Algorithm 2. Specifically, consider a processor pi

that has performed a full execution of processCntr() (Fig. 4.5 line 3) at least once due

to a receive event. This implies a call to maintainCntrs and thus to staleCntrIn f o()

(Fig. 4.5 line 11) which will empty all queues if exhausted non-canceled counters

exist. Also there is a call to cancelExhaustedMaxC() which cancels all counters that

are exhausted in maxC[]. By observation of the code, after a single iteration, there is

no local exhausted counter that is not canceled.

Since every counter that is received and is exhausted becomes canceled, and since

the arbitrary counters in transit are bounded, we know that there is no differentiation

between exhausted labels that may cause a counter’s label to be canceled. Namely,

the size of the queues of storedCnts[] remain the same while at the same time provide

the guarantees provided by the proof of the labeling algorithm. It follows from

the labeling algorithm correctness and by our cancellation policy on the exhausted

counters, that Theorem 4.3.3 can be extended to also include the use of counters

without any need to locally keep more counters than there are labels.

We proceed to deduce that, eventually, any processor taking practically infinite

number of steps in R obtains a counter with globally maximal label `max.

�

For the rest of the proof we refer to line numbers in Algorithm 3.

62

Ioa
nn

is
Marc

ou
llis

Lemma 4.3.5. In an execution where Lemma 4.3.4 holds, it also holds that∀Q ∈ Q,∃p j ∈ Q :

maxC j[j] = ct∧(ct′ ≺ct ct), where ct′ ∈ {storedCntsk[k′]∪maxCk[k′] : ct′ =lbl ct}pk,pk′∈P\{ct},

i.e., ct′ is every counter in the system with identical label but less than ct w.r.t. seqn or wid

and ct is the last counter increment.

Proof. Observe that upon a quorum write, the new incremented counter ct with the

maximal label lb is propagated (lines 6 and 8) until a quorum of acknowledgments

have been received. Upon receiving such a counter by pi, a processor p j will first

add ct to its structures via processCntr() and will then acknowledge the write. If this

is the maximal counter that it has received (there could be concurrent ones) then the

call to processCntr() will also have the following effects: (i) the counter’s seqn and

wid will be updated in the storedCnts j[] structure in the queue of the creator of lb, (ii)

maxC j[j]← ct.

Since pi waits for responses by a quorum before it returns, it follows that by the

intersection property of the quorums, the lemma must hold when pi reaches status

COMPLETE. �

Theorem 4.3.6. Given an execution R of the counter increment algorithm in which at least

a majority of processors take a practically infinite number of steps, the algorithm ensures that

counters eventually increment monotonically.

Proof. Consider a configuration c ∈ R′ where R′ is a suffix of R in which Lemma 4.3.4

holds, and in which ctmax is the counter which is maximal with respect to ≺ct. There

are two cases that the counter may be incremented.

In the first case, a legal execution, the counter ctmax is only incremented by a

call to incrementCounter(), By Lemma 4.3.5 any call to incrementCounter() will return

the last written maximal counter (namely ctmax). When this is incremented giving

ct′max then ct′max.seqn = ctmax.seqn + 1 which is monotonically greater than ct′max and in

case of concurrent writes the wid is unique and can break symmetry enforcing the

monotonicity.

The second case arises when ctmax comes from the arbitrary initial state, is not

known by a quorum, and resides in either a local state or is in transit. When ctmax

eventually reaches a processor, it becomes the local maximal and it is propagated

either via counter maintenance or in the first stage of a counter increment when the

maximal counters are requested by the writer. In this case the use of ctmax is also a

63

Ioa
nn

is
Marc

ou
llis

monotonic increment, and from this point onwards any increment in R′ proceeds

monotonically from ctmax, as described in the previous paragraph. �

Algorithm Complexity

The local memory of a processor implementing the counter increment is not different

in order to the labeling algorithm’s, since converting to the counter structures only

adds an integer (the sequence number). Hence the space complexity of the algorithm

is O(n3) in counters. The upper bound on stabilization time in the number of counter

increments that are required to reach a period of practically infinite counter incre-

ments can be deduced by Theorem 4.3.6. For some t such that 0 ≤ t ≤ 2τ in an

execution with O(n · β · t) counter increments (recall that β = n3cap + 2n2
− 2n), there

is a practically infinite period of (2τ) monotonically increasing counter increments in

which the label does not change.

MWMR Register Emulation

Having a practically-self-stabilizing counter increment algorithm, it is not hard to

implement a practically-self-stabilizing MWMR register emulation. Each counter is

associated with a value and the counter increment procedure essentially becomes a

write operation: once the maximal counter is found, it is increased and associated

with the new value to be written, which is then communicated to a majority of

processors. The read operation is similar: a processor first queries all processors

about the maximum counter they are aware of. It collects responses from a majority

and if there is no maximal counter, it returns ⊥ so the processor needs to attempt to

read again (i.e., the system hasn’t converged to a maximal label yet). If a maximal

counter exists, it sends this together with the associated value to all the processors,

and once it collects a majority of responses, it returns the counter with the associated

value (the second phase is a required to preserve the consistency of the register

(c.f. [17, 32]).

64

Ioa
nn

is
Marc

ou
llis

4.4 Virtually Synchronous Stabilizing Replicated State

Machine

Group communication systems (GCSs) that guarantee the virtual synchrony prop-

erty, essentially suggest that processes that remain together in consecutive groups

(called views) will deliver the same messages in the desired order [8]. This is partic-

ularly suited to maintain a replicated state machine service, where replicas need to

remain consistent, by applying the same changes suggested by the environment’s re-

quests. A key advantage of multicast services (with virtual synchrony) is the ability

to reuse the same view over many multicast rounds, which allows every automaton

step to require just a single multicast round, as compared to other more expensive

solutions.

GCSs provide the VS property by implementing two main services: a reliable

multicast service, and a membership service to provide the membership set of the

view, whilst they also assume access to unbounded counters to use as unique view

identifiers. We combine existing self-stabilizing versions of the two services (with

adaptations where needed), and we use the counter from the previous section to

build the first (to our knowledge) practically-self-stabilizing virtually synchronous

state machine replication. While the ideas appear simple, combining the services is

not always intuitive, so we first proceed to a high-level description of the algorithm

and the services, and then follow the algorithm with a more technical description

and the correctness proof.

4.4.1 Preliminaries

The algorithm progresses in state replication by performing multicast rounds once

a view is installed, where a view is a tuple composed of a members’ set taken from

P, and of a unique identifier (ID) that is a counter as defined in the previous section.

This view must include a primary partition (defined formally in Definition 4.4.1),

namely it must contain a majority of the processors in P, i.e., n/2 + 1. In our version,

a processor, the coordinator, is responsible: (1) to progress the multicast service which

we detail later, (2) to change the view when its failure detector suggests changes to

the composition of the view membership. Therefore, the output of the coordinator’s

failure detector defines the set of view members; this helps to maintain a consistent

65

Ioa
nn

is
Marc

ou
llis

membership among the group members, despite inaccuracies between the various

failure detectors.

On the other hand, the counter increment algorithm that runs in the background

allows the coordinator to draw a counter for use as a view identifier and in this case,

the counter’s writer identifier (wid) is that of the view’s coordinator. This defines

a simple interface with the counter algorithm, which provides an identical output.

Pairing the coordinator’s member set with a counter as view identity we obtain a

view. Of course as we will describe later, reaching to a unique coordinator may

require issuing several such view proposals, of which one will prevail. We first

suggest a possible implementation of a failure detector (to provide membership)

and of a reliable multicast service over the self-stabilizing FIFO data link given in

Chapter 3, and then proceed to an algorithm overview.

Definition 4.4.1 (Primary Partition). We say that the output of the (local) failure detectors

in execution R includes a primary partition when it includes a supporting majority of

processors Pmaj : Pmaj ⊆ P, that (mutually) never suspect at least one processor, i.e., ∃p` ∈ P

for which |Pmaj| > bn/2c and (pi ∈ (Pmaj ∩ FD`))⇐⇒ (p` ∈ (Pmaj ∩ FDi)) in every c ∈ R,

where FDx returns the set of processors that according to px’s failure detector are active.

Failure detector. The use of failure detection for our virtual synchrony algorithm

is merely for liveness. Inaccurate failure detection that violates the liveness assump-

tion of Definition 4.4.1 can lead to continuous changes in views or coordinators.

Following [26], we present a possible implementation of a self-stabilizing failure

detector. As stated there, the implementation works under a partial synchrony as-

sumption; this assumption is strong enough to implement a perfect failure detector,

whilst, as we discuss below, our algorithm requires a weaker failure detector than

this. (Recall the discussion in Section 2.5.2.)

The failure detector is implemented as follows. Every processor p uses the

token-based mechanism to implement a heartbeat (see Chapter 3) with every other

processor, and maintain a heartbeat integer counter for every other processor q in

the system. Whenever processor p receives the token from processor q over their

data link, processor p resets the counter’s value to zero and increments all the integer

counters associated with the other processors by one, up to a predefined threshold

value W. Once the heartbeat counter value of a processor q reaches W, the failure

detector of processor p considers q as inactive. In other words, the failure detector at

66

Ioa
nn

is
Marc

ou
llis

processor p considers processor q to be active, if and only if the heartbeat associated

with q is strictly less than W.

As an example, consider a processor p which holds an array of heartbeat counters

for processors pi, p j, pk such that their corresponding values are 〈2, 5,W − 1〉. If p j

sends its heartbeat, then p’s array will be changed to 〈3, 0,W〉. In this case, pk will be

suspected as crashed, and the failure detector reading will return the set pi, p j as the

set of processors considered correct by p.

Note that our virtual synchrony algorithm, employs the same implementation

but has weaker requirements than [26] that solve consensus, and thus they resort

to a failure detector at least as strong as Ω [60]. Specifically, in Definition 4.4.1 we

pose the assumption that just a majority of the processors do not suspect at least one

processor of P for sufficiently long time, in order to be able to obtain a long-lived

coordinator. This is different, as we said before, to an eventually perfect failure

detector that ensures that after a certain time, no active processor suspects any other

active processor.

Our requirements, on the other hand, are stronger than the weakest failure de-

tector required to implement atomic registers (when more than a majority of failures

are assumed), namely the Σ failure detector [130], since virtual synchrony is a more

difficult task. In particular, whilst the Σ failure detector eventually outputs a set of

only correct processors to correct processors, we require that this set in at least half of

the processors, will contain at least one common processor. In this perspective our

failure detector seems to implement a self-stabilizing version of a slightly stronger

failure detector than Σ. It would certainly be of interest for someone to study what is

the weakest failure detector required to achieve practically-self-stabilizing virtually

synchronous state replication, and whether this coincides with our suggestion.

Reliable multicast implementation. The coordinator of the view controls the ex-

change of messages (by multicasting) within the view. The coordinator requests,

collects and combines input from the group members, and then it multicasts the

updated information. Specifically, when the coordinator decides to collect inputs,

it waits for the token (see Chapter 3) to arrive from each group participant. When-

ever a token arrives from a participant, the coordinator uses the token to send the

request for input to that participant, and waits the token to return with some input

(possibly ⊥, when the participant does not have a new input). Once the coordinator

67

Ioa
nn

is
Marc

ou
llis

receives an input from a certain participant with respect to this multicast invocation,

the corresponding token will not carry any new requests to receive input from the

same participant; of course, the tokens continue to move back and forth to sustain

the heartbeat-based failure detector. When all inputs are received, the processor

combines them and again uses the token to carry the updated information. Once

this is done, the coordinator can proceed to the next input collection.

We provide the pseudocode for the practically-stabilizing replicate state machine

implementation as Algorithm 4, and an algorithm description followed by the cor-

rectness analysis.

4.4.2 Virtual Synchrony Algorithm

Algorithm Outline. The algorithm is coordinator-led. Namely, each processor

ensures that it has its coordinator. If it does not have a coordinator, it may either pro-

pose or wait until through the exchange of information, it either finds a coordinator,

or finds enough support to propose. A coordinator on its side, proposes and installs

the new view and builds the new state based on collected messages and states (with

majorities ensuring state integrity). It then proceeds to lead multicast rounds by first

collecting all the messages by the view members, and then propagating them back

to the view members for them apply the required side-effects on the replica.

Detailed description

The existence of a coordinator p` is in the heart of Algorithm 4. Processors that

belong to and accept p`’s view proposal are called the followers of p`. The algorithm

determines the availability of a coordinator and acts towards the election of a new one

when no valid such exists (lines 2–6). The pseudocode details the coordinator-side

(lines 7–10) and the follower-side (lines 11–14) actions. At the end of each iteration,

Algorithm 4 defines how p` and its followers exchange messages (lines 15, 16).

Variables. The state of each processor includes its current view, and status =

{Propose, Install,Multicast}, which refers to either usual message multicast opera-

tion (when in Multicast), or view establishment rounds in which the coordinator

can first Propose a new view and then proceed to Install it once conditions are met.

During multicast rounds, rnd denotes the round number, state stores the replica,

msg[n] is an array that includes the last delivered messages to the state machine,

68

Ioa
nn

is
Marc

ou
llis

Interfaces: f etch() next multicast message, apply(state,msg) applies the step msg to state (while
producing side effects), synchState(replica) returns a replica consolidated state, synchMsgs(replica)
returns a consolidated array of last delivered messages, f ailureDetector() returns a vector of pro-
cessor pairs 〈pid, crdID〉, inc() is a call to the incrementCounter() interface function of Algorithm 3
and returns a counter.

Variables: rep[n] = 〈view = 〈ID, set〉, status ∈ {Multicast, Propose, Install}, (multicast round number)
rnd, (replica) state, (last delivered messages) msg[n] (to the state machine), (last f etched) input (to the state
machine), propV = 〈ID, set〉, (no coordinator alive) noCrd, (recently live and connected component) FD〉:
an array of the state machine’s replica, where rep[i] refers to the one that processor pi maintains,
and rep[j] refers to the last arriving message from p j containing p j’s rep[j]. A local variable FDin
stores the f ailureDetector() output. FD is an alias for {FDin.pid}, i.e. the set of processors that the
failure detector considers as active. Let crd(j) = {FDin.crdID : FDin.pid = j}, i.e. the id of p j’s local
coordinator, or ⊥ if none.

Figure 4.6: Interfaces and Variables for Algorithm 4, code for processor pi

which is the input fetched by each group member and then aggregated by the coor-

dinator during the previous multicast round. During multicast rounds, it holds that

propV = view. However, whenever propV , view we consider propV as the newly

proposed view and view as the last installed one. Each processor also uses noCrd and

FD to indicate whether it is aware of the absence of a recently active and connected

valid coordinator, and respectively, of the set of processor present in the connected

component, as indicated by its local failure detector.

Interfaces. Algorithm 4 assumes access to the application’s message queue via

f etch(), which returns the next multicast message, or ⊥ when no such message is

available. It also assumes the availability of the automaton state transition function,

apply(state,msg), which applies the aggregated input array, msg, to the replica’s state

and produces the local side effects. The algorithm collects the followers’ replica

states and uses synchState(replica) to return the new state. Function f ailureDetector()

provides access to pi’s failure detector by returning a set of responsive processors. It

also returns the processor that every processor considers as its coordinator. Function

inc() (counter increment) is a call to the incrementCounter() function (of Section 4.3.3).

It fetches a new and unique counter to be used as a view identifier, ID. This can be

totally ordered by �ct and ID.wid is the identity of the processor that incremented the

counter. The state variables, constants and interfaces can also be seen in Figure 4.6.

We proceed with a detailed explanation of the algorithm’s functionality. The

descriptive macros of Algorithm 4 are rigorously defined in Figure 4.7.

69

Ioa
nn

is
Marc

ou
llis

Algorithm 4: Practically-self-stabilizing automaton replication using virtual
synchrony, code for processor pi

1 Do forever begin
2 readFD();
3 candCoords← f indCandidateCoordSet();
4 maxValCrd← f indCandidateCoordWithMaxViewID();
5 setCoordVariables();
6 if proposeRequired&Permitted() then 〈status, propV〉 ← 〈Propose, 〈inc(),FD〉〉;
7 else if sel f Coordinator() ∧ roundProceedReady() then
8 if status = Multicast then coordinateMcastRnd();
9 else if status = Install then coordinateInstall() ;

10 else if status = Propose then coordinatePropose();

11 else if ¬sel f Coordinator() ∧ roundReadyToFollow() then
12 if status = Multicast then f ollowMcastRnd();
13 else if status = Install then f ollowInstall();
14 else if status = Propose then f ollowPropose();

15 sendUpdates();

16 Upon message arrival m from p j do rep[j]← m;

Replica consistency. Each participant maintains a replica of the state machine and

the last processed (composite) message. We bound the memory used to store the

history of the replicated state machine by keeping the (encapsulated influence of the

history represented by the) current state of the replicated state machine. In addition,

each participant maintains the last delivered message set to ensure common reliable

multicast, as the coordinator may stop being active prior to ensuring that all members

received a copy of the last multicast message.

Whenever a new view is installed, the coordinator inquires all members

(forming a majority) for the most updated state and delivered message (macro

coordinateInstall() in line 9). Since at least one of the members, say pi, participated in

the view in which the last completed state machine transition took place, pi’s infor-

mation will be recognized as associated with the largest counter. This is adopted by

the coordinator that assigns the most up-to-date state and available delivered mes-

sages to all the current group members (via f ollowInstall() line 13), thus satisfying

the virtual synchrony property.

Performing multicast rounds. As part of the replication procedure, the coordinator

leads consecutive multicast rounds by first collecting inputs received from the en-

vironment before ensuring that all group members apply these inputs to the replica

state machine (procedure coordinateMcastRnd() line 8). Note that the received mul-

70

Ioa
nn

is
Marc

ou
llis

1 Macros:
2 readFD() = {FDin← f ailureDetector()};
3 f indCandidateCoordSet() = {p` = rep[`].propV.ID.wid ∈ FD : (|rep[`].propV.set| > bn/2c) ∧

(|rep[`].FD| > bn/2c) ∧ (p` ∈ rep[`].propV.set) ∧ (pk ∈ rep[`].propV.set↔ p` ∈ rep[k].FD) ∧
((rep[`].status = Multicast)→ (rep[`].(view = propV) ∧ crd(`) = `)) ∧
((rep[`].status = Install)→ crd(`) = `)};

4 f indCandidateCoordWithMaxViewID() = {p` ∈ seemCrd : (∀pk ∈ seemCrd : rep[k].propV.ID �ct

rep[`].propV.ID)}
5 setCoordVariables() = {noCrd← (|maxValCoord| , 1); crdID← maxValCoord};
6 proposeRequiredAndPermitted() = ((|FD| > bn/2c) ∧ (majNoCrd() ∨ repropose());
7 majNoCrd() = ((|maxValCoord| , 1) ∧ (|{pk ∈ FD : pi ∈ rep[k].FD ∧ rep[k].noCrd}| > bn/2c));
8 repropose() = ((maxValCoord = {pi}) ∧ (FDi , propV.set) ∧ (|{pk ∈ FDi : rep[k].propV = propV}|
> bn/2c)));

9 sel f Coordinator() = (maxValCoord = {pi});
10 roundProceedReady() = (∀p j ∈ view.set : rep[j].(view, status, rnd) = (view, status, rnd)) ∨ ((status ,

Multicast) ∧ (∀p j ∈ propV.set : rep[j].(propV, status) = (propV,Propose));
11 coordinateInstall() = {(view, status, rnd)← (propV,Multicast, 0)};
12 coordinatePropose() = {(state, status,msg)← (synchState(rep), Install, synchMsgs(rep))};
13 roundReadyToFollow() = (rep[`].rnd = 0 ∨ rnd < rep[`].rnd ∨ rep[`].(view , propV));
14 f ollowInstall() = {rep[i]← rep[`]};
15 f ollowPropose() = {(status, propV)← rep[`].(status, propV)};

16 Procedures:
17 coordinateMcastRnd() do begin
18 apply(state,msg); input← f etch();
19 foreach p j ∈ P do if p j ∈ view.set then msg[j]← rep[j].input else msg[j]← ⊥;
20 rnd← rnd + 1;

21 f ollowMcastRnd() do begin
22 rep[i]← rep[`]; apply(state, rep[`].msg);
23 input← f etch();

24 sendUpdates() do begin
25 let m = rep[i];
26 let sendSet = (seemCrd ∪ {pk ∈ propV.set : maxValCoord = {pi}} ∪ {pk ∈ FD : noCrd ∨ (status =

Propose)});
27 foreach p j ∈ sendSet do send(m);

Figure 4.7: Macros and Procedures for Algorithm 4, code for processor pi

ticast messages consist of input (possibly ⊥) from each of the processors, thus, the

processors need to apply one input at a time, and the processors may apply them

in an agreed upon sequential order, say from the input of the first processor to the

last. Alternatively, the coordinator may request one input at a time in a round-robin

fashion and multicast it. Finally, to ensure that the system stabilizes when started in

an arbitrary configuration, the coordinator assigns the state of its replica to the other

members (via sendUpdates() line 15 and f ollowMcastRnd() line 12).

71

Ioa
nn

is
Marc

ou
llis

Determining coordinator availability. The system may reach a configuration with

no coordinator due to an arbitrary initial configuration, or due to the coordinator’s

crash failure. Each participant detecting the absence of a coordinator, seeks for

potential candidates for the task based on the exchanged information. Processor

p regards processor q as a candidate (f indCandidateCoordSet(), line 3), if q is active

according to p’s failure detector, and there is a majority of processors that appear to

support this based on p’s knowledge, which due to asynchrony may be inaccurate. If

there are more than one candidates, processor p selects the one with the view bearing

the highest identifier, i.e., counter (f indCandidateCoordWithMaxViewID() line 4). If

there is one, then p considers this to be the coordinator and waits to hear from it or

learn that it is not active.

If there is no such processor, and if based on its local knowledge there

is a majority of processors that also do not have a coordinator (condition

proposeRequiredAndPermitted() line 6), then processor p proceeds to propose a new

view. This has a view ID acquired from the increment counter algorithm and a view

set composed of the processors that p’s failure detector reports as active (line 6). As

we show, if p’s proposal is accepted from all the processors in the view (i.e., they

have all executed f ollowPropose() line 14 and then propagated this via sendUpdates()

back to p), then p proceeds to install the view, unless another processor who has

obtained a higher counter does so.

We also note that GCSs providing VS often leverage on the system’s ability

to preserve (when possible) the coordinator during view transitions rather than

venturing to install a new one, a certainly more expensive procedure. Our solution

naturally follows this approach through our assumption of a supportive majority

(Definition 4.4.1), where coordinators have the support of a majority of processors

by never being suspected throughout a very long period. During such a period, our

algorithm persists on using the same coordinator even when views change.

4.4.3 Correctness Proof of Algorithm 4

Outline. The correctness proof shows that starting from an arbitrary state in an

execution R of Algorithm 4 satisfying Definition 4.4.1, we reach a configuration c ∈ R

in which some processor with supporting majority p` will propose a view including

its supporting majority (Lemmas 4.4.1 and 4.4.2). This view is either accepted by all

72

Ioa
nn

is
Marc

ou
llis

its member processors or in the case where p` experiences a failure detection change,

it can repropose a view (Lemma 4.4.3). We conclude with Theorem 4.4.4 proving

that any execution suffix of R that begins from such a configuration c will preserve

the virtual synchrony property and implement state machine replication. We begin

with some definitions.

Definitions. For a processor p` which has a supporting majority, predicate

supMaj(`) = True, and its supporting majority set is denoted by Pmaj(`). Once the sys-

tem considers p` as the view coordinator, Pmaj(`) can extend the support throughout

R and thus p` continues to emulate the automaton with them. Furthermore, there

is no clear guarantee for a view coordinator to continue to coordinate for an un-

bounded period when it does not meet the criteria of Definition 4.4.1 throughout R.

Therefore, for the sake of presentation simplicity, the proof considers any execution

R with only definitive suspicions, i.e., once processor pi suspects processor p j, it does

not stop suspecting p j throughout R. The correctness proof implies that eventually,

once all of R’s suspicions appear in the respective local failure detectors, the system

elects a coordinator that has a supporting majority throughout R.

Consider a configuration c in an execution R of Algorithm 4 and a processor pi ∈ P.

We define the local (view) coordinator of pi, say p`, to be the only processor that, based

on pi’s local information, has a proposed view satisfying the conditions of lines 3

and 4 in Fig. 4.7 such that maxValCoord = {p`}. p` is also considered the global (view)

coordinator if for all pk in p`’s proposed view (propV`), it holds that maxValCoordk =

{p`}. We write (global(`) = True) ⇔ (propV`.set ⊆ {pk ∈ P : maxValCoordk = {p`}}).

When pi has a (local) coordinator then pi’s local variable noCrd = False, whilst when

it has no local coordinator, noCrd = True. Moving to the proof, we consider the

following useful remark on Definition 4.4.1 of page 66.

Remark: Definition 4.4.1 suggests that we can have more than one processor that

has supporting majority. In this case, it is not necessary to have the same supporting

majority for all such processors. Thus for two such processors pi, p j with respective

supporting majorities Pmaj(i) and Pmaj(j) we do not require that Pmaj(i) = Pmaj(j), but

Pmaj(i) ∩ Pmaj(j) , ∅ trivially holds.

From this point onward we refer to an execution R of Algorithm 4 as an execution

of infinite number of steps starting in an arbitrary system configuration, and in

which Definition 4.4.1 holds.

73

Ioa
nn

is
Marc

ou
llis

Lemma 4.4.1. Consider a processor pi which has a local coordinator pk, such that pk is either

inactive or ¬supMaj(k) throughout R. There is a configuration c ∈ R, after which pi does

not consider pk to be its local coordinator.

Proof. We prove that eventually maxValCrdi = pk stop holding. There are the two

possibilities regarding processor pk.

Case 1: Processor pk is inactive throughout R. By our responsiveness failure detector,

eventually pk < FDi. The threshold W that we set for our failure detector determines

how soon pk is suspected. Then pk < FDi ⇒ pk < candCoords ⇒ pk < maxValCoordi,

i.e., pi stops considering pk as its local coordinator. By definitive suspicions, pi does

not stop suspecting pk throughoutR.

We study the case where pk is active, but ¬supMaj(k). Two subcases exist:

Case 2(a): pk is the coordinator of itself and considers itself to have support from a ma-

jority of others’ failure detectors. Namely, (pk ∈ maxValCrdk)⇒ (pk ∈ candCoordsk)⇒

(|FDk| ≥ bn/2c). By sendUpdates() (line 15), pk propagates repk[k] to pi in every iteration.

By the assumption that @Pmaj(k) then eventually |FDk| < dn/2e thus (pk ∈ maxValCrdk)

becomes false. Then,

(i) If pk does not find a new coordinator, noCrdk = True, and pk propagates this

to pi. By the detailed description of f indCandidateCoordSet() (Fig. 4.7 line 3), since

|repi[k].FD| � bn/2c then (pk < candCoordsi)⇒ (pk < maxValCrdi).

(ii) Alternatively, pk may find a new coordinator before propagating repk[k]. If pk has

a coordinator other than itself, then it propagates repk[k] only to its coordinator, thus

pi does not receive this information. We refer to the next case:

Case 2(b): pk has a different local coordinator than itself, say p`, namely, maxValCrdk =

`. We remind that the failure detector token returns both the set of responsive pro-

cessors, and the processor they consider as their coordinator (Fig. 4.6). As per

the algorithm’s notation, the coordinator of processor pk known by pi is given by

crdi(k). Since pi’s failure detector regards pk as active, then crdi(k) is indeed updated

(remember that pi receives the token with pk’s crd(k) infinitely often from pk), other-

wise pk is removed from FD and is not a valid coordinator for pi. Thus eventually,

crdi(k) = ` , k. We conclude that pk stops being pi’s coordinator. �

We now define the notion of “propose” to be used in the sequel.

Definition 4.4.2. Processor p` ∈ P with status = Propose, is said to propose a view

propV`, if in a complete iteration of Algorithm 4, p` either satisfies maxValCoord` = {p`} or

74

Ioa
nn

is
Marc

ou
llis

satisfies all the conditions of line 6 to create propV`. A proposal is completed when propV`

is propagated through sendUpdates() (line 15) to all the members of FD`.

The above definition does not imply that p` will continue proposing the view propV`,

since the replicas received from other processors may force p` to either exclude itself

from maxValCoord` or create a new view (see Lemma 4.4.3). Also note that the origins

of such a proposed view are not defined, i.e., it may be the result of the arbitrary

initial state

Lemma 4.4.2. Consider an execution R starting with no global coordinator, the system

reaches a configuration in which at least one processor with a supporting majority will

propose a view.

Proof. Let p` ∈ P such that supMaj(`) = True. Assume for contradiction that through-

out R, no processor satisfying supMaj() proposes a view. Then p` either does not

have a coordinator or has a non-global local coordinator.

Case 1: p` does not have a coordinator (noCrd` = True). Since p` is assumed to not

propose, it must be that the conditions for proposeRequired&Permitted() (line 6) do not

hold. We note that:

(1) |FD`| ≥ bn/2c holds since we assumed supMaj(`).

(2) In the second condition of proposeRequiredAndPermitted(), both (i) majNoCrd`() =

((|maxValCoord`| , 1) ∧ (|{pi ∈ FD` : p` ∈ rep`[i].FD` ∧ rep`[i].noCrd}| > bn/2c))

and (ii) repropose`() = ((maxValCoord` = {p`}) ∧ (FD` , propV`.set) ∧ (|{pi ∈ FD :

rep[i].propV = propV}| > bn/2c)) must fail due to our assumption that p` never pro-

poses. Indeed (ii) fails since noCrd` = True⇒ maxValCoord` , {p`}.

(3) Note that, (noCrd` = True) ⇒ (|maxValCrd| , 1) (see definition of

setCoordVariables() in Fig. 4.7).

From (1), (2) and (3) we deduce it is sufficient for condition (|{pi ∈ FD` : p` ∈ rep`[i].FD`

∧ rep`[i].noCrd}| > bn/2c)) to be satisfied for p` to propose.

Let’s assume that only one processor p j ∈ Pmaj(`) ⊆ FD` is required to switch

from noCrd j = False to True in order for p` to gain a majority of processors without a

coordinator. But if noCrd j = False then p j must already have a coordinator, say pk. If

supMaj(k) = True then the lemma trivially holds. It must be that supMaj(k) = False.

Lemma 4.4.1 guarantees that p j eventually stops considering pk as its coordinator, and

so noCrd = True and by the propagation of its replica, majNoCrd`() holds, allowing

p` to propose. But this implies a contradiction, so the following case must hold.

75

Ioa
nn

is
Marc

ou
llis

Case 2: p` has a coordinator, say pk′ . Using the same arguments of the previous

paragraph for p` rather than for p j leads to contradiction and thus the lemma follows.

�

Lemma 4.4.2 establishes that at least one processor with supporting majority will

propose a view in the absence of a valid coordinator. We now move to prove that

such a processor will only propose one view, unless it experiences changes in its

FD that render the view proposal’s membership obsolete. The lemma also proves

that any two processors with supporting majority will not create views in order to

compete for the coordinatorship.

Lemma 4.4.3 (Closure and Convergence). In an execution R, the system reaches a con-

figuration where some p` satisfying supMaj(`) proposes a view propV`, and only proposes a

new view if repropose`() = True (Fig. 4.7, line 8). Moreover, global(`) holds throughout R.

Proof. We distinguish the following cases:

Case 1: Only one processor p` satisfying supMaj() exists. By Lemma 4.4.2, p`

eventually proposes propV`, based on its current FD` reading. Therefore, Pmaj(`) ⊆

propV`.set. By Lemma 4.4.1, processors without a supporting majority stop proposing

and being local coordinators of any p j ∈ propV`.set. By propagation of information

(line 15), it eventually it holds that ∀p j ∈ propV`.set, rep j[j].propV = rep j[`].propV =

propV` and rep`[j] = propV`.

The only condition that may prevent some p j ∈ propV`.set from adopting propV` is

if for some p j′ ∈ rep j[`].propV`.set it holds that p` < rep j[j′].FD (Fig. 4.7, line 3). Plainly

put, p j believes that p j′ suspects p`. Then, p` will either suspect p j′ and propose a

view (via repropose()) or p j has obsolete information and as soon as its information

is updated by propagation from p j′ , p j adopts propV`. By supMaj(`), p` has at least

a majority of propV`.set to accept propV`. This allows p` and only p` to repropose a

view. The processors that accepted the previous proposed view will accept this one

as well. If propV` is accepted by all in propV`.set then p` proceeds to install the view.

Thus p` eventually satisfies global(`) if it is the single majority-supported processor.

Case 2: More than one processor with supporting majority. Consider two proces-

sors p`, p`′ that satisfy supMaj() and each creates a view. By the correctness of our

counter algorithm, inc() returns two distinct and ordered counters to use as view

identifiers. Without loss of generality, we assume that propV` proposed by p` has

76

Ioa
nn

is
Marc

ou
llis

the greatest identifier of all the counters created by calls to inc(). We identify the

following four subcases:

Case 2(a): p` ∈ FD`′ ∧ p`′ ∈ FD`. Then p`′ proposes propV`′ and p` receives

propV`′ , but propV`′ .ID �ct propV`.ID (line 3) so maxValCrd = {p`} , {p`′} Proposal

propV` is also propagated and since it is maximal in propV`.ID, it is adopted by all

pi ∈ propV`.set including p`′ . Thus any processor satisfying supMaj() like p`′ will

propose at most once, and p` will become the sole coordinator. Note that in case

where the failure detection reading changes for p` the reasoning is the same as

Case 1 of this lemma, by noticing that if p` manages to get a majority of processors

of propV.set then p` will change its proposed view without losing this majority.

Case 2(b): p` < FD`′ ∧ p`′ < FD`. By this condition, none of the two processors

are informed of the other’s proposal directly, and they exclude the other by the first

condition of f indCandidateCoordSet(). Eventually by propagation, ∀pi ∈ propV`.set ∩

propV`′ .set it holds that maxValCrdi = {p`}. It is possible that briefly global(`′) = True

but eventually global(`) holds making the latter false. What is more crucial, is that

p`′ cannot make another proposal, since it will not have a majority of processors that

do not have a coordinator. This is deduced from the intersection property of the two

majorities (propV`.set and propV`′ .set) and reasoning of previous cases.

Case 2(c): p` ∈ FD`′ ∧ p`′ < FD`. Here we note that since p` has the greatest

counter but has not included p`′ to its propV`.set, it should eventually be able to get

all the processors in propV`.set to follow some propV` by using the arguments of Case

2(a). In the mean time p`′ will, in vain, be waiting for a response from p` accepting

propV`′ . By reasoning of previous cases, p`′ does not repropose.

Case 2(d): p` < FD`′ ∧ p`′ ∈ FD`. This case is not symmetric to the above due to

our assumption that p` is the one that has drawn the greatest view identifier from

inc(). Here propV`.set includes p`′ so p` waits for a response from p`′ to proceed to the

installation of propV`. On the other hand, p`′ will be waiting for responses from the

processors in propV`′ .set. Any pi ∈ propV`.set ∩ propV`′ .set cannot keep propV` (even

if initially it has accepted it, since it does not satisfy condition p`′ ∈ rep[`].propV.set

⇔ p` ∈ rep[`′].FD of f indCandidateCoorSet() (Fig. 4.7, line 3). Thus pi accept propV`′

instead of propV`, and p` cannot repropose due to lack of a majority.

By the above exhaustive examination of cases, we reach to the result. The above

proof guarantees both convergence to a legal execution and closure, since p` remains

the coordinator as long as it has a supporting majority. �

77

Ioa
nn

is
Marc

ou
llis

Theorem 4.4.4. An execution R of Algorithm 4 simulates an automaton replication pre-

serving the virtual synchrony (VS) property.

Proof. Consider a finite prefix R′ of R. Assume that in this prefix Lemma 4.4.3 holds,

i.e., we reach a configuration in which ∃p` : global(`)∧ supMaj(`), and p` coordinates

view v. We define a multicast round to be a sequence of ordered events: (i) f etch() input

and propagate to coordinator, (ii) coordinator propagates the collected messages of

this round, (iii) messages are delivered and (iv) all view members apply() side effects.

The VS property is preserved between two consecutive rounds r, r′ that may belong

to different views v, v′ (with possibly identical coordinators p`, p`′) respectively, if and

only if ∀pi ∈ v.set∩ v′.set it holds that every repi[i].inputi at round r is in rep[`′].msg[i]

of round r′. Our proof is progressive: Claim 4.4.5 proves that VS is preserved

between any two consecutive multicast rounds, Claim 4.4.6 that VS is preserved in

two consecutive views with the same coordinator and Claim 4.4.7 preservation in

two consecutive view installations where the coordinator changes.

Claim 4.4.5. VS is preserved between r and r′ where v = v′.

Proof. Remark: In any multicast round, p` executes coordinateMcastRnd() (line 8)

only once and a follower executes f ollowMcastRnd() (line 12) only once, since the

conditions in lines 7 and 8 are only satisfied in the first iteration after p`’s change of

round number is received.

Suppose that there exists an input in pi ∈ v.set at round r that is not applied in r′

by all processors. By the Remark we note that f etch() is called only once per round

to collect input from the environment. This is the only line modifying the input

field. For followers rep[i] ← rep[`] is in f ollowMcastRnd() (Fig. 4.7, line 22) and for

the coordinator it is in the definition of coordinateMcastRnd(). At this point followers

have already produced side effects for the previous round (using apply()) based on

the messages and state of the previous round. Similar arguments apply for the

coordinator. So line 19 of this procedure populates the msg array with messages and

including m. Then p` continuously propagates its current replica but cannot change

it by the Remark and until condition (∀ pi ∈ v.set : rep`[i].(view, status, rnd) = (view`,

status`, rnd`)) (of roundProceedReay()) holds again. This ensures that the coordinator

will change its msg array only when every follower has executed f ollowMcastRnd()

and responded back.

78

Ioa
nn

is
Marc

ou
llis

Any follower that keeps a previous round number does not allow the coordinator

to move to the next round. If the coordinator moves to a new round, it is implied

that rep[i] ← rep[`] and thus message m was received by any follower pi, by our

assumptions that the replica is propagated infinitely often and the data links are

stabilizing. Thus, by the assumptions, any message m is certainly delivered within

the view and round it was sent by the coordinator, thus preserving the VS property,

and achieving state replication. �

Claim 4.4.6. VS is preserved between r and r′ where v , v′ and p` = p`′ .

Proof. This implies repropose`() holds and so the coordinator p` (currently in view

v) creates a new proposed view propV′. The last condition of roundProceedReady()

(Fig. 4.7, 10) guarantees that p` will not execute coordinateMcastRnd() and thus will

not change its rep.(state, input,msg) fields until all processors of propV`.set have sent

their replicas. Followers that accept propV` enter status Propose leading to the in-

stallation of the view. What is important is that VS is preserved since no follower

is changing rep.(state, input,msg) during this procedure, since they do not execute

f ollowMcastRnd() and moreover each sends its replica to p` by line 15. Once the

replicas of all the followers have been collected, the coordinator creates a consoli-

dated state and msg array of all messages that were either delivered or pending. Then

p`’s new replica is communicated to the followers who adopt this state as their own

as part of Install (Fig. 4.7, line 14). Thus VS is preserved and once all the processors

have replicated the state of the coordinator, a new series of multicast rounds can

begin by producing the side effects required by the input collected before the view

change. �

Claim 4.4.7. VS is preserved between r and r′ where v , v′ and p` , p`′ .

Proof. Practically we would like to see that VS is also preserved when coordinators

change. We assume that p` had a supporting majority throughout R′. Define a

matching suffix R′′ to prefix R′, such that R′′ initiates with a loss of supporting

majority for p`. Notice that since Definition 4.4.1 is required to hold, then some other

processor with supporting majority in R′′, p`′ , will by Lemma 4.4.2 propose the view

v′ with the highest view ID. By the intersection property of majorities and the fact

that a view set can only be formed by a majority set, ∃pi ∈ v.set ∩ v′.set. Thus, the

“knowledge” of the system, (state, input,msg) is retained by at least one processor.

79

Ioa
nn

is
Marc

ou
llis

As detailed in Claim 4.4.6, if a processor pi has noCrd = True or is in status

Propose it does not incur any changes to its replica. If it entered the Install phase,

then this implies that the proposing processor has created a consolidated state that pi

has replicated. What is noteworthy is that whether in status Propose or Install, if the

proposer collapses (becomes inactive or suspected), the VS property is preserved. It

follows that, once status Multicast is reached by all followers, the system can start a

practically infinite number of multicast rounds. �

Thus, by the self-stabilization property of all the components of the system

(counter increment algorithm, the data links, the failure detector and multicast)

a legal execution is reached in which the VS property is guaranteed and common

state replication is preserved. �

Algorithm Complexity

The local memory for this algorithm consists of n copies of two labels, of the encap-

sulated state (say of size |S| bits) and of other lesser size variables. These give a space

complexity of orderO(nβ log β+ n|S|); recall that β = n3cap + 2n2
− 2n. Stabilization time

can be provided by a bound on view creations. It is, therefore, implicit that stabi-

lization is dependent upon the stabilization of the counter algorithm, i.e., O(n · β · t),

before processors can issue views with identifiers that can be totally ordered. When

this is satisfied, then Lemma 4.4.3 suggests that O(n) view creations are required to

acquire a coordinator, namely, in the worse case where every processor is a proposer.

Once a coordinator is established then Theorem 4.4.4 guarantees that there can be

practically infinite multicast rounds (0 to 2τ).

4.5 Chapter Summary

State-machine replication (SMR) is a service that simulates finite automata by letting

the participating processors to periodically exchange messages about their current

state as well as the last input that has led to this shared state. Thus, the processors

can verify that they are in sync with each other. A well-known way to emulate SMR

is to use reliable multicast algorithms that guarantee virtual synchrony [71, 133]. To

this respect, we have presented the first practically-self-stabilizing algorithm that

guarantees virtual synchrony (equipped with a failure detector as the one of [26]),

80

Ioa
nn

is
Marc

ou
llis

and used it to obtain a practically-self-stabilizing SMR emulation; within this emula-

tion, the system progresses in more extreme asynchronous executions in contrast to

consensus-based SMRs, like the one in [26]. One of the key components of the virtual

synchrony algorithm is a practically-self-stabilizing counter algorithm, that estab-

lishes an efficient practically unbounded counter, which in turn can be directly used

to implement a practically-self-stabilizing MWMR register emulation; this counter

scheme extends the one of Alon et al. [27] that implements SWMR registers. It can be

considered as a more modular extension of the counter scheme of [27], in comparison

to the one of [26], since it is application-independent, and it also requires smaller

messages sizes, as it sends label pairs rather than n-sized label vectors.

81

Ioa
nn

is
Marc

ou
llis

Chapter 5
Self-Stabilizing Reconfiguration

We now present the first self-stabilizing crash-tolerant reconfiguration service that

can recover from an arbitrary system state resulting from transient faults. We have

already exposed the novelty of the approach in Chapter 1. We start with the necessary

specific system settings and assumptions.

5.1 Specific System Settings and Definitions

We present the required definitions specific to this setting.

5.1.1 Distributed Setting

As already given in Chapter 3, we consider a dynamic system where the number of

live and connected processors at any time of the computation is bounded by some N

such that N � |I|. We assume that the processors are crash-prone and that they have

knowledge of the upper bound N, but not of the actual number of active processors.

Intentional processor departures are modeled as crashes (i.e., a processor leaves the

computation without any warning procedure, and the system handles the departure

as a crash). New processors may join the system using a joining procedure at any

point in time with an identifier drawn from I, such that this identifier is only used

by this processor forever. While running the joining procedure they are referred to

a joiners. A participant is an active processor that has joined the computation. Note

that N accounts for all active processors, both participants and those that are still

joining.

82

Ioa
nn

is
Marc

ou
llis

5.1.2 Communication

Due to the possibility of arbitrary faults and because of the dynamic nature of

the network, we may not assume that a processor has knowledge of the identifier

of another processor with which it is communicating. We, thus, employ two anti-

parallel data-links, where every packet of one data-link is identified by the identifiers

of the sender and receiver of the data link it participates in. For example, if the

communication link connects pi and p j, packets of the data link in which pi acts as

the sender that traverse from pi to p j are identified by the label pi, while the label of

packets traversing from p j are extended by adding p j to the label to form the label

pi, p j. Any packet with label px, py arriving to pi where x , i is ignored since this

implies that pi was not the intended recipient. Thus, eventually the data link in

which pi is the sender is implemented by packets with label pi traversing from pi

to p j. The analogous holds for the packets implementing the data link in which p j

serves as the sender. Thus, both parties will eventually know the identifier of the

other party. They can then regard the token of the data link in which the sender has

the greater identifier among them, to be the used token.

Using the underlying packet exchange protocol described, a processor pi that has

received a packet from some processor p j which did not belong to pi’s failure detector,

engages in a two phase protocol with p j in order to “clean” their intermediate

link. This is done before any messages are delivered to the algorithms that handle

reconfiguration, joining and applications. We follow the snap-stabilizing data link

protocol detailed in [134]. A snap-stabilizing protocol is one which allows the system

(after faults cease) to behave according to its specification upon its first invocation.

We require that every data-link established between two processors is initialized and

cleaned straight after it is established. In contrast to [134] where the protocol is run

on a tree and initiated from the root, our case requires that each pair of processors

takes the responsibility of cleaning their intermediate link. Snap-stabilizing data

links do not ignore signals indicating the existence of new connections, possibly

some physical carrier signal from the port. In fact, when such a connection signal is

received by the newly connected parties, they start a communication procedure that

considers the bound on the packet in transit and possibly in buffers too, to clean all

unknown packets in transit. They repeatedly send the same packet until more than

the round trip capacity acknowledgments arrive.

83

Ioa
nn

is
Marc

ou
llis

5.1.3 The (N,Θ)-failure detector

We consider the (N,Θ)-failure detector that uses the token exchange and heartbeat

detailed above. This is an extension of the Θ-failure detector used in [26] and dis-

cussed in Section 2.5.2. It allows each processor pi to order other processors according

to how recently they have communicated. Each processor pi maintains an ordered

heartbeat (integer) counter vector nonCrashed, with an entry corresponding to each

processor pk that exchanges the token (i.e., sends a heartbeat) with pi. Specifically,

whenever pi receives the token from p j, it sets the counter corresponding to p j to 0

and increments the counter of every other processor by one. In this way, pi manages

to rank every processor pk according to their mutual token exchanges and in relation

to the token exchanges that it has performed with some other processor p j. So the

processor that has most recently contacted pi is the first in pi’s vector.

The technique enables pi to obtain an estimate on the number of processors ni

that are active in the system; ni ≤ N. Assuming that pc is the most recently crashed

processor, then every processor remaining active processor will eventually exchange

the token with pi many times, and their heartbeat counter will be set to zero, while pc’s

will be increasing continuously. Eventually, every other active processor’s counter

will become lower than pc’s and pc will be ranked last in nonCrashed. Moreover, while

difference between heartbeat counters of non-crashed processors does not become

large, the difference of these counters and that of pc increases to form a significant

ever-expanding “gap”. The last processor before the gap is the ni
th processor and this

provides an estimate on the number of active processors. These ni processors are the

ones trusted by processor pi to be active. Since there are at most N processors in the

computation at any given time, we can ignore any processors that rank below the Nth

vector entry. If, for example, the first 30 processors in the vector have corresponding

counters of up to 30, then the 31st will have a counter much greater than that, say

100; so ni will be estimated at 30. This estimation mechanism is suggested in [44]

and in [45].

84

Ioa
nn

is
Marc

ou
llis

5.1.4 The System Reconfiguration Task.

We refer to a (quorum) configuration as a bounded size set of processors, which we

refer to as config1. We say that the system has a valid configuration, called conflict-

free, when no two processors that are active in the system store different values in

their config variables. Note that the system does not accept a config to be empty,

i.e., to take the value of the empty set. The system assigns the symbol ⊥ to config

whenever it detects a configuration conflict and is thus in the process of configuration

reset. By the end of the reset process, the system shall store in all config variables

identical and valid configuration values. Note that the reset configuration process

is the recovery strategy from transient faults; a process that ends when the system

state returns to be conflict-free.

Once the system is conflict-free, only participants can call for the establishment

of new configurations, proposing a non-empty trusted participant set to replace

the current configuration. Newly arrived processors can become participants, as

long as no reconfiguration occurs. While reconfiguration is in progress, the system

may block changes to the participation set and stop considering any additional

reconfiguration requests. Thus, when there are no configuration conflicts, and all

participating processors have the same view on the participation set, the system’s

ability to replace the existing configuration with a proposed one depends on the

participant’s crash rate. This recovery strategy implies that the system is always able

to converge to a valid configuration even when the churn rate had been too high

with respect to crashing participants. For this purpose, the (N,Θ)-failure detector

needs to be eventually and temporarily reliable, in order to allow the recovery strategy

to attain a conflict-free configuration; but after that, it can be unreliable, as long

as the crash rate of participating processors is such that the system can replace the

current configuration on timewith a new one. A violation of the latter assumption is

a transient fault from which the system recovers via the configuration reset process.

Complexity metric. We define an asynchronous round of a fair execution R as the

shortest prefix of R in which every correct processor pi completed an iteration Ii, and

all messages pi sent during Ii were received.

1In the context of self-stabilization, the term (quorum) configuration must not be confused with

the term (system) configuration [19]. We consistently, use state to mean a system state, and we use

configuration to mean quorum configuration.

85

Ioa
nn

is
Marc

ou
llis

5.2 Solution Outline

Our scheme comprises of two layers that appear as a single “black-box” module

to an application that uses the reconfiguration service. The objective is to provide

the application with a conflict-free configuration, such that no two active processors

consider different configurations.

The first layer, called Reconfiguration Stability Assurance or recSA for short (de-

tailed in Section 5.3), is mainly responsible for detecting configuration conflicts (that

could be a result of transient faults). It deploys a brute-force technique for converging

to a conflict-free new configuration. It also employs another technique for delicate

configuration replacement when a processor notifies that it wishes to replace the

current configuration with a new set of participants. For both techniques, proces-

sors use the (N,Θ)-failure detector (detailed in Section 2.5.2) to obtain membership

information, and configuration convergence is reached when failure detectors have

temporal reliability. Once a uniform configuration is installed, the failure detectors’

reliability is no longer needed and from then on our liveness conditions consider

unreliable failure detectors.

The decision for requesting a delicate reconfiguration is controlled by the other

layer, called Reconfiguration Management or recMA for short (detailed in Section 5.4).

Specifically, if a processor suspects that the dependability of the current configuration

is under jeopardy, it seeks to obtain a majority approval from the active members

of the current configuration, and request a (delicate) reconfiguration from recSA.

Moreover, in the absence of such a majority (e.g., configuration replacement was not

activated “on time” or the churn assumptions were violated), the recMA can aim

to control the recovery via a recSA reconfiguration request. Note that the current

participant set can, over time, become different than the configuration member set.

As new members arrive and others leave, changing the configuration based on

system membership would imply a high frequency of (delicate) reconfigurations,

especially in the presence of high churn. We avoid unnecessary reconfiguration

requests by requiring a weak liveness condition: if a majority of the configuration

set has not collapsed, then there exists at least one processor in the failure detector of

each active processor that is known to trust this majority. Such active configuration

members can aim to replace the current configuration with a newer one (that would

provide an approving majority for prospective reconfigurations) without the use of

86

Ioa
nn

is
Marc

ou
llis

?

6

?

?

-�

?

Reconfiguration Stability Assurance

Application

Management

Joining

Mechanism

Reconfiguration

evalCon f ig() passQuery()

participate()estab()
getCon f ig()

allowReco()

Self-stabilizing Reconfiguration Scheme

Figure 5.1: The reconfiguration scheme modules internal interaction and the interaction
with the application. The Reconfiguration Stability Assurance (recSA) layer provides
information on the current configuration and on whether a reconfiguration is not taking
place using the getCon f ig() and allowReco() interfaces. This is based of local informa-
tion. The Reconfiguration Management (recMA) layer uses the prediction mechanism
evalCon f ig() which is application based to evaluate whether a reconfiguration is required.
If a reconfiguration is required, recMA initiates it with estab(). Joining only proceeds if
a configuration is in place and if no reconfiguration is taking place. When the joining
mechanism has received a permission to access the application (using passQuery()) it can
then join via participate(). The direction of an arrow from a module A to a module B
illustrates the transfer of the specific information from A to B.

the brute-force stabilization technique.

Joining mechanism: We complement our reconfiguration scheme with a self-

stabilizing joining mechanism (detailed in Section 5.5) that manages and controls

the inclusion of new processors into the system. Caution is required here so that

newly joining processors do not “contaminate” the system state with stale informa-

tion (due to arbitrary faults). For this, together with other techniques, we follow a

snap-stabilizing data link protocol (cf. Section 2.5.2). We have designed our joining

mechanism so that the decision of whether new members should be included in the

system or not is application-controlled. In this way, the churn (regarding new arrivals)

can be “fine-tuned” based on the application requirements; we have modeled this by

having joining processors obtaining approval from a majority of the members of the

current configuration (if no reconfiguration is taking place). These, in turn, provide

such approval if the application’s (among other) criteria are met. We note that in the

event of transient faults, such as an unavailable approving majority, recSA ensures

87

Ioa
nn

is
Marc

ou
llis

recovery via brute-force stabilization that includes all active processors.

Figure 5.1 depicts the interaction between the modules and the application. We

continue to detail the three modules: recSA in Section 5.3, recMA in Section 5.4, and

the Joining Mechanism in Section 5.5. We conclude by suggesting how the services

of Chapter 4 could take advantage of the reconfiguration scheme to run in a dynamic

environment.

5.3 Reconfiguration Stability Assurance

We present the Reconfiguration Stability Assurance layer (recSA), which is a self-

stabilizing algorithm for assuring a correct and consistent configuration while al-

lowing the updates from the Reconfiguration Management layer (Section 5.4). We

first describe the algorithm (Section 5.3.1) and then we prove its correctness (Sec-

tion 5.3.2).

5.3.1 Algorithm Description

We first present an overview of the algorithm and then proceed to a line-by-line

description.

Overview

The recSA layer uses a self-stabilizing algorithm, Algorithm 5, for assuring correct

configuration while allowing the updates from the reconfiguration management

layer. Algorithm 5 guarantees that (1) all active processors have eventually identical

copies of a single configuration, (2) when participants notify the system that they

wish to replace the current configuration with another, the algorithm selects one

proposal and replaces the current configuration with it, and (3) joining processors

can become participants eventually.

The algorithm combines two techniques: one for brute force stabilization that

recovers from stale information and a complementary technique for delicate (con-

figuration) replacement, where participants jointly select a single new configuration

that replaces the current one. As long as a given processor is not aware of ongo-

ing configuration replacements, Algorithm 5 merely monitors the system for stale

information, e.g., it makes sure that all participants have a single (non-empty) config-

88

Ioa
nn

is
Marc

ou
llis

Variables: The following arrays consider both pi’s own value (entry i) and p j’s most
recently received value (entry j).

config[]: an array in which config[i] is pi’s view on the current configuration. Note
that pi assigns the empty (configuration) value ⊥ after receiving a conflicting (different)
non-empty configuration value.
FD[]: an array in which FD[i] represents pi’s failure detector. Note that we consider
only the trusted processors rather than the suspected ones. Namely, crashed processors
are eventually suspected. FD[].part is the participant set, where FD[i].part is an alias
for {p j ∈ FD[i] : config[j] ,]} and FD[j].part refers to the last value received from p j.
Namely, the FD field of every message encodes also this participation information.
prp[] is an array of pairs 〈phase ∈ {0, 1, 2}, set ⊆ I〉, where prp[i] refers to pi’s configuration
replacement notifications. In the pair prp[i], the field set can either be ⊥ (indicating ‘no
value’) or the proposed processor set.
all[] is an array of Booleans, where all[i] refers to the case in which pi observes that all
trusted processors had noticed its current (maximal) notification and they hold the same
notification.
allSeen: a list of processors pk for which pi received the all[k] indication.
echo[] is an array in which echo[i] is (FD[i].part,prp[i], all[i])’s alias and echo[j] refers to
the most recent value that pi received from p j after p j had responded to pi with the most
recent values it received from pi.

Figure 5.2: Variables and Operators for Self-stabilizing Reconfiguration Stability Assurance; code
for pi.

uration. During these periods the algorithm allows the invocation of configuration

replacement processes (via the estab(set) interface, triggered by the Reconfiguration

Management layer) as well as the acceptance of joining processors as participants

(via the participate() interface, triggered by the Joining layer). During the process

of configuration replacement, the algorithm selects a single configuration proposal

and replaces the current one with that proposal before returning to monitor for

configuration disagreements (Figure 5.4).

While the system reconfigures, there is no immediate need to allow joining pro-

cessors to become participants. By temporarily disabling this functionality, the

algorithm can focus on completing the configuration replacement using the current

participant set. To that end, only participants broadcast their states at the end of the

do forever loop (line 14), and only their messages arrive to the other active proces-

sors (line 15). Joining processors receive such messages, but cannot broadcast before

their safe entry to the participant set via the function participate() (Fig. 5.3, line 6),

which enables pi’s broadcasting. Note that non-participants monitor the intersec-

89

Ioa
nn

is
Marc

ou
llis

1 Interface functions:
2 function chsCon f ig() = return(choose({config[k]}pk∈FD[i] \ {]})), where choose(∅) = ⊥ else

choose(set) ∈ set;
3 function getCon f ig() = {if allowReco() then return(chsCon f ig()) else return(config[i])};
4 function allowReco() = (allSeen() ∧

∧
pk∈FD[i].part echo(k)) ∧ (¬((pi < (∩p j∈FD[i]\{pi}FD[j])) ∨

(|{config[k]}pk∈FD[i]\ {]}| > 1) ∨ ({FD[i].part} , {FD[k].part, echo[k].FD.part}pk∈FD[i]) ∨ (∃pk ∈ FD[i] :
(con f ig[k] = ⊥) ∨ ((prp[k], all[k]) , (dfltNtf, true))));

5 function estab(set) = {if (allowReco() ∧ (set < {config[i], ∅})) then
(prp[i], all[i], allSeen)← (〈1, set〉, f alse, ∅)};

6 function participate() = {if (allowReco()) then config[i]← chsCon f ig()};

7 Constants, macros and functions: dfltNtf = 〈0,⊥〉 /∗ the default notification tuple ∗/
8 macro myAll(k) = return (all[k]∨ (∃p` ∈ allSeen : i = k ∧ prp[i].phase + 1 mod 3 = prp[`].phase));
9 macro degree(k) = return (2 · prp[k].phase + |{1 : myAll(k)}|); /∗ pk’s most recently received prp∗/

10 macro corrDeg(k, k′) = return ({degree(k), degree(k′)} ∈ {{x, x + 1}, {x, x} : x ∈ {0, . . . , 4}} ∪
{{0, 5}, {5, 5}});

11 macro echoNoAll(k) = return ({(FD[i].part,prp[i])} = {(echo[k].part, echo[k].prp)});
12 macro echo(k) = return ({(FD[i].part,prp[i],myAll(i))} = {echo[k]} ∧

degree(k) − degree(i)(mod 6) ∈ {0, 1});
13 macro con f igSet(val) = {foreach pk ∈ I do (config[k],prp[k])← (val,dfltNtf)}; /∗ access to pi’s

config ∗/
14 macro increment(prp) = {case (prp.phase) of 1 : return((〈2, prp.set〉), f alse); 2 : return((dfltNtf,

f alse)); else return ((prp[i], all[i])); }
15 macro allSeen() = (all[i] ∧ FD[i].part ⊆ (allSeen ∪ {pi}));
16 macro modMax() ={if (1 ∈ Phs ∧ 2 < Phs ∧ prp[i].phase , max Phs) then {allSeen←
∅; return max Phs} else return prp[i].phase, where Phs = {prp[k].phase}pk∈FD[i].part}

17 macro maxNt f () = {if {(degree(k) − degree(i))(mod 6)}pk∈FD[i].part * {0, 1} then return prp[i] else
return 〈modMax(),maxlex{prp[k].set}pk∈FD[i].part〉}

Figure 5.3: Macros and Interface Functions for the Reconfiguration Stability Assurance module
(Algorithm 5).

tion between the current configuration and the set of active participants (line 6). In

case it is empty, the processors (participants or not) essentially begin a brute-force

stabilization (outlined below) where joining processors are no longer blocked from

becoming participants.

Brute-force stabilization. The algorithm detects the presence of stale information

and recovers from these transient faults. Configuration conflicts are one of several

kinds of such stale information and they refer to differences in the field config,

which stores the configuration values. Processor pi can signal to all processors that

it had detected stale information by assigning ⊥ to configi and by that start a reset

process that nullifies all config fields in the system (lines 6 and 8). Algorithm 5 uses

the brute-force technique for letting processor pi to assign its set of trusted processors

to configi (line 9). This set is provided by pi’s failure detector FDi. Note that by the

90

Ioa
nn

is
Marc

ou
llis

Algorithm 5: Self-stabilizing Reconfiguration Stability Assurance; code for pro-
cessor pi

1 do forever begin
2 foreach pk < FD[i].part do (config[k],prp[k])← (],dfltNtf); /∗ clean after crashes ∗/
3 prp[i]← maxNt f ();
4 all[i]←

∧
pk∈FD[i].part(echoNoAll(k));

5 foreach pk ∈ FD[i].part : all[k] do allSeen← allSeen ∪ {pk};
6 if ((∃pk:((prp[k] = 〈0, s〉)∧ (s , ⊥))∨ (config[k] ∈ {⊥, ∅})))∨ (∃pk ∈ FD[i].part:¬corrDeg(i, k))∨

({pk ∈ FD[i].part : prp[i].phase + 1 mod 3 = prp[k].phase} * allSeen) ∨ (∃p` ∈ FD[i].part :
prp[`] = 〈2, •〉 ∧ |{prp[k].set , ⊥}pk∈FD[i].part| > 1) ∨ (({(FD[i],FD[i].part)}
= {(FD[k],FD[k].part)}pk∈FD[i].part) ∧ ((config[i] , ⊥) ∧ ((config[i] ∩ FD[i].part) = ∅))) then
con f igSet(⊥)

7 if ({prp[k].phase}pk∈FD[i].part = {0}) then /∗ when no notification arrived ∗/

8 if |{config[k]}pk∈FD[i] \ {⊥,]}| > 1 then con f igSet(⊥); /∗ nullify the configuration upon conflict ∗/

9 if (config[i] = ⊥∧ |{FD[j] : p j ∈ FD[i]}| = 1) then con f igSet(FD[i]); /∗reset during admissible

runs ∗/

10 else
11 if (allSeen() ∧

∧
pk∈FD[i].part echo(k)) then ((prp[i], all[i]), allSeen)← (increment(prp[i]), ∅);

12 if prp[i].phase = 2 then config[i]← prp[i].set;

13 if config[i] ,] then
14 foreach p j ∈ FD[i] do send(〈FD[i], config[i],prp[i],myAll(i), (FD[j].part,prp[j], all[j])〉)

15 upon receive m = 〈FD, config,prp, all, echo〉 from p j do
(FD[j], config[j],prp[j], all[j], echo[j])← m ;

16 upon interrupt pi’s booting do foreach pk do (config[k],prp[k], all[k])← (],dfltNtf, f alse);
echo[k]← (FD[k].part,prp[k], all[k]);

end of the brute-force process, all active processors (joining or participant) become

participants. We show that eventually all active processors share identical (non-⊥)

config values by the end of this process.

Delicate (configuration) replacement. Participants can propose to replace the cur-

rent configuration with a new one, set, via the estab(set) interface. This replacement

uses the configuration replacement process, which for the purposes of the overview,

we abstract as the automaton depicted in Figure 5.4. When the system is free from

stale information, the configuration uniformity invariant (of the config field values)

holds. Then, any number of calls to the estab(set) interface starts the configuration

replacement process, which controls the configuration replacement using the follow-

ing three phases: (1) selecting (deterministically and uniformly) a single proposal

(while verifying the eventual absence of “unselected” proposals), (2) replacing (de-

terministically and uniformly) all config fields with the jointly selected proposal, and

(3) bringing back the system to a state in which it merely tests for stale information.

91

Ioa
nn

is
Marc

ou
llis

0 1

2

In the absence of
proposals, monitor
stale information.

When there is at least
one proposal, select

one uniformly.

Once a single proposal
exists, replace the current

configuration with it.

Once a single configuration
exists, return to stale

information monitoring

Figure 5.4: The configuration replacement automaton.

The configuration replacement process requires coordinated phase transition.

Algorithm 5 lets processor pi to represent proposals as prpi[j] = (phase, set), where

p j is the processor from which pi received the proposal, phase ∈ {0, 1, 2} and set is a

processor set or the null value, ⊥. The default proposal, 〈0,⊥〉, refers to the case in

which prp encodes “no proposal”. When pi calls the function estab(set), it changes

prp to 〈1, set〉 (Fig. 5.3, line 5) as long as pi is not aware of an ongoing configuration

replacement process, i.e., allowReco() returns true. Upon this change, the algorithm

disseminates prpi[i] and by that guarantees eventually that allowReco() returns false

for any processor that calls it. Once that happens, no call to estab(set) adds a new

proposal for configuration replacement and no call to participate() lets a joining

processor to become a participant (Fig. 5.3, line 6). The algorithm can then use the

lexical value of the prpi[]’s tuples to select one of them deterministically. To that

end, each participant ensures that all other participants report the same tuples by

waiting until they “echo” back the same values as the ones it had sent to them.

Once that happens, participant pi makes sure that the communication channels do

not include other “unselected” proposals by raising a flag (alli = true) and waiting

for the echoed values of these three fields, i.e., participant set, prpi[i] and alli. This

waiting lasts until the echoed values match the values of any other active participant

in the system (while monitoring their well-being). Before this participant proceeds,

it makes sure that all active participants have noticed its phase completion. Each

processor p maintains the allSeen variable; a set of participants that have noticed p’s

phase completion (line 5) and are thus added to p’s allSeen set.

The above mechanism for phase transition coordination allows progression in a

unison fashion. Namely, no processor starts a new phase before it has seen that all

92

Ioa
nn

is
Marc

ou
llis

other active participants have completed the current phase and have noticed that

all other have done so (because they have identical participant set, prp and all[]

values). This is the basis for emulating every step of the configuration replacement

process (line 12) and making sure that the phase 2 replacement occurs correctly

before returning to the monitoring phase 0, in which the system simply tests for

stale information. We show that since the failure detectors monitor the participants’

well-being, this process terminates. This procedure is illustrated with the automaton

of Figure 5.4. The variables for Algorithm 5 can be found in Figure 5.2, and the macros

and interface functions in Figure 5.3.

Detailed description

We now proceed to a detailed, line-by-line description of Algorithm 5.

Variables. The algorithm uses a number of fields that each active participant broad-

casts to all other system processors. The processor stores the values that they receive

in arrays. Namely, we consider both pi’s own value (the i-th entry) and p j’s most

recently received value (the j-th entry).

• The field config[] is an array in which config[i] is pi’s view on the current con-

figuration. Note that pi assigns the empty (configuration) value⊥ after receiving

a conflicting non-empty configuration value, i.e., the received configuration

is different than pi’s configuration. We use the symbol] for denoting that

processor pi is not a participant, i.e., configi[i] =].

• The field FD[] is an array in which FD[i] represents pi’s failure detector of trusted

processors (without the list of processors that are suspected to be crashed).

• FD[].part is the participant set, where FD[i].part is an alias for {p j ∈ FD[i] :

config[j] ,]} and FD[j].part refers to the last value received from p j. Namely,

the FD field of every message encodes also this participation information.

• The field prp[] is an array of pairs 〈phase ∈ {0, 1, 2}, set ⊆ I〉, where prp[i] refers

to pi’s configuration replacement notifications. In the pair prp[i], the field set

can either be ⊥ (‘no value’) or the proposed processor set.

93

Ioa
nn

is
Marc

ou
llis

• The field all[] is an array of Booleans, where all[i] refers to the case in which pi

observes that all trusted processors have noticed its current (maximal) notifi-

cation and they hold the same notification.

• The field echo[] is an array in which echo[i] is an alias of (FD[i].part,prp[i], all[i])

and echo[j] refers to the most recent value that pi has received from p j after p j

had responded to pi with the most recent values it got from pi.

• The variable allSeen is a set that includes the processors pk for which pi received

the all[k] indication.

Constants, functions and macros. The constant dfltNtf (Fig. 5.3, line 7) denotes

the default notification (of a configuration replacement proposal) tuple 〈0,⊥〉. The

following functions define the interface between Algorithms 5 and 6 (Reconfigura-

tion Management layer) and the Joining Mechanism (Algorithm 7). Note that the

behavior which we specify below considers legal executions. All the line references

below can be found in Figure 5.3.

• The function chsCon f ig() (line 2) returns config whenever there is a single such

non-] value. Otherwise, ⊥ is returned.

• The function getCon f ig() (line 3) allows Algorithms 6 and 7 to retrieve the

value of the current quorum configuration, i.e., configi[i]. We note that during

legal executions, this value is a set of processors whenever pi is a participant.

However, this value can be]whenever pi is not a participant and ⊥ during the

process of configuration reset.

• The function allowReco() (line 4) returns f alse whenever (1) pi was not recog-

nized as a trusted processor by a processor that pi trusts, (2) there are con-

figuration conflicts, (3) the participant sets have yet to stabilize, (4) there is

an on-going process of brute force stabilization, or (5) there is a delicate (con-

figuration) replacement in progress. This part of the interface allows Algo-

rithms 6 and 7 to test for the presence of local evidence according to which

Algorithm 5 shall disable delicate (configuration) replacement and joining to

the participant set.

• The function estab(set) (line 5) provides an interface that allows the recMA

layer to request from Algorithm 5 to replace the current quorum configuration

94

Ioa
nn

is
Marc

ou
llis

with the proposed set, which is a non-empty group of participants. Note

that Algorithm 5 disables this functionality whenever allowReco() = f alse or

set = config[i].

• The function participate() (line 6) provides an interface that allows the Joining

Mechanism to request from Algorithm 5 to let pi join the participant set, which is

the group that can participate in the configuration and request the replacement

of the current configuration with another (via the estab(set) function). Note

that Algorithm 5 disables this functionality whenever allowReco() = f alse and

thus there exists a single configuration in the system, i.e., the call to chsCon f ig()

(line 2) returns the single configuration that all active participants store as

their current quorum configuration. This is except for the case in which

{configi[k]}pk∈FDi[i] \ {]} = ∅. Here, chsCon f ig() returns ⊥, which starts a re-

set process in order to deal with a complete collapse where the quorum system

includes no active participants.

Algorithm 5 uses the following macros.

• The macro myAll(k) (line 8) returns the disjunction of the value stored in all[k]

and the value of pi ∈ allSeen.

• The macro degree(k) (line 9) calculates the degree of pk’s most-recently-received

notification degree, which is twice the notification phase plus one whenever all

participants are using the same notification (and zero otherwise), where each

notification is a configuration replacement proposal.

• The macro corrDeg(k, k′) (line 10) tests whether pk and pk′ have degrees that

differ by at most one when considering operations in (mod 6).

• The macros echoNoAll(k) and echo(k) (lines 11, and 12 respectively) test whether

pi was acknowledged by all participants for the values it has sent. The former

function considers just the fields that are related to its own participant set and

notification, whereas the latter considers also the field all[].

• The macro modMax() (line 16) assumes that no two processors in FD[i].part

have two notifications that pi stores for which the degree differs by more than

one. The function returns that maximum phase value when considering an

order relation that is based on modulo 3 arithmetics.

95

Ioa
nn

is
Marc

ou
llis

• The macro maxNt f () (line 17) selects a notification with the maximal lexico-

graphical value or returns ⊥ in the absence of notification that is not the de-

fault (phase 0) notification. We define our lexicographical order between prp1

and prp2, as prp1 ≤lex prp2 ⇐⇒ ((prp1.phase < prp2.phase) ∨ ((prp1.phase =

prp2.phase) ∧ (prp1.set ≤lex prp2.set))), where prp1.set ≤lex prp2.set can be de-

fined using a common lexical ordering and by considering sets of processors

as ordered tuples that list processors in, say, an ascending order with respect

to their identifiers.

• The macro con f igSet(val) (line 13) acts as a wrapper function for accessing pi’s

local copies of the field config. This macro also makes sure that there are no

(local) active notifications.

• The macro increment(phs) (line 14) performs the transition between the phases

of the delicate configuration replacement technique.

• The macro allSeen() (line 15) tests whether all active participants have noticed

that all other participants have finished the current phase.

The do forever loop. A line-by-line walkthrough of the pseudocode of Algorithm 5

follows.

Cleaning up, removal of stale information and invariant testing. The do forever

loop starts by making sure that non-participant nodes cannot have an impact on pi’s

computation (line 2) before testing that pi’s state does not include any stale informa-

tion (line 6). Algorithm 5 tests for the following four types of stale information.

Type (1) – All the notifications (of configuration replacement proposals) are valid,

Type (2) – There are no configuration conflicts or an active reset process,

Type (3) – The phase information (including the set allSeen) are not out of synch, and

Type (4) – There are active participants in config.

These are formalized in Definition 5.3.1. In case any of these tests succeeds, the

algorithm starts a configuration reset process by calling con f igSet(⊥) also known as

brute-force stabilization.

The brute-force stabilization technique. As long as no active notifications are

present locally (line 7), every processor performs this technique for transient fault

recovery. In the presence of configuration conflicts, the algorithm starts the config-

uration reset process (line 8). Moreover, during the configuration reset process, the

96

Ioa
nn

is
Marc

ou
llis

algorithm waits until all locally trusted processors report that they trust the same set

of processors (line 9).

The delicate replacement technique — phase synchronization. This technique

synchronizes the system phase transitions by making sure that all active participants

work with the same notification.

Each active participant tests whether all other trusted participants have echoed

their current participant set and notifications and also that they have the same values

with respect to these two fields (line 3). The success of this test assigns true to the

field alli[i]. The algorithm then extends this test to include also the field all[] (line 5),

where alli[j] refers to the case in which node p j has reported to pi that it has passed

the previous test (line 3). Upon the success of this test with respect to participant pk,

the algorithm adds pk to the set allSeeni. Once processor pi receives reports from all

participants that the current phase is over, it moves to the next phase (line 11).

The delicate replacement technique — finite-state-machine emulation. Each of the

three phases represent an automaton state (line 11); recall Figure 5.4 and the con-

figuration replacement process discussed in the Algorithm’s description overview.

During phase 1, the system converges to a single notification. During phase 2, the

system replaces the current configuration with the proposed one. Next, the system

returns to its ideal state, i.e., phase 0, which allows new participants to join, as well

as further reconfigurations (line 12).

Message exchange and the control of newly arrived processors. When a participant

finishes executing the do forever loop, it broadcasts its entire state (line 14). Once

these messages arrive, processor pi stores them (line 15). The only way for a newly

arrived processor to start executing Algorithm 5 is by responding to an interrupt call

(line 16). This procedure notifies the processor state and makes sure that it cannot

broadcast messages (line 14). The safe entry of this newly arrived processor to the

participant set, is via the function participate() (Fig. 5.3, line 6), which enables pi’s

broadcasting. Thus, a non-participant merely follows the system messages until the

function allowReco() returns true and allows its join to the participant set by a call (of

the Joining Mechanism) to the function participate() (Fig. 5.3, line 6).

97

Ioa
nn

is
Marc

ou
llis

5.3.2 Correctness

We begin by defining three type of executions, that play a key role in the algorithm’s

correctness.

An execution R is fair when every active processor pi that has a step ai applicable

infinitely often, executes ai infinitely often. A fair execution R is admissible when

throughout R the failure detector values of active processors are identical, do not

change, and consist of only themselves (the set of active processors). I.e., ∀c ∈ R,

pi, p j ∈ I that are active in R, it holds FDi[i] = FD j[j] and pk ∈ FDi[i] ⇐⇒ pk is active.

We also consider a “weaker” form of admissible executions: A fair execution R is

admissible w.r.t. participants when FDi[i].part = FD j[j].part and pk ∈ FDi[i] ⇐⇒ pk

is active in R, where FDi[i].part is pi’s view on the participation set. Note that the

set of all admissible executions contains the set of all admissible w.r.t. participants

executions, because the former considers joining processors whereas the latter does

not.

To guarantee the success of a reset process we assume that the system eventually

reaches an admissible execution until the reset process terminates. In some sense,

the above assumption implies that the algorithm completes the reset process by

having a temporal access to reliable failure detectors. However, once Algorithm 5

completes this process, safety holds forever thereafter because, as shown in the proof,

the system cannot include stale information (or start another reset process) after the

reset process termination. In other words, once the reset process establishes safety,

the failure detector reliability is no longer needed, because the success of Algorithm 5

to achieve its task does not require that the system reaches admissible executions,

and liveness is conditioned by the failure detector’s unreliable signals. In the case of

delicate (configuration) replacement, it suffices for the system to reach an admissible

w.r.t. participants execution (since new processor joining is blocked), unless it ends

up running the reset process (in which case all active processors, including joining

ones become participants). In practice, one expects admissible w.r.t. participants

executions to be realized much faster than admissible executions; furthermore, one

expects the system to undergo delicate replacements more frequently than reset

replacements. Hence the weaker form of admissibility seems to be leading to more

efficient implementations of the proposed reconfiguration scheme.

For bounding the convergence time of our reconfiguration scheme we will be

98

Ioa
nn

is
Marc

ou
llis

using the notion of asynchronous rounds, defined below. We regard this as a natural

complexity measure for an asynchronous setting, such as the one we consider in this

work.

An asynchronous round of a fair execution R is the shortest prefix of R in which

every active processor pi completes an iteration (of the do forever loop) Ii and all

messages pi sent during Ii were received. When R is an admissible execution w.r.t.

participants, then an asynchronous round is defined over only the active processors

that are participants in R.

Next, we provide an outline of the proof and then proceed in steps to establish

the correctness of the algorithm.

Proof Outline

The correctness proof of Algorithm 5 shows that eventually all stale information

is cleaned (line 2) or is detected and causes a configuration reset with a call to

con f igSet(⊥) (line 6). This is proved to result to a common configuration being in-

stalled. In particular, Definition 5.3.1 distinguishes the four types of configuration

conflicts and stale information that can exist in the system. Following the defini-

tion, Lemma 5.3.1 proves that all notifications are valid and so stale information of

type-1 stop existing in the system. Lemma 5.3.2 proves that configuration conflicts

seize, thus type-2 stale information stops. Lemmas 5.3.8 and 5.3.15 show that all

processors the follow the phase information in lock step or the system is led to a

reset. Both cases imply that there is no type-3 stale information eventually. Finally,

Lemma 5.3.7 establishes that there is no non-⊥ configuration for which the local

failure detector of a processor sees no active members, and thus there is no type-4

staleness. The above result in Theorem 5.3.16, which proves convergence within

O(N) asynchronous rounds. The correctness proof is completed with the closure

proof (Theorem 5.3.17), which shows that since there are no configuration conflicts

after convergence, the only way to change a view is via a call to estab(set) by the

upper layer recMA, and this results to a view being replaced.

Configuration conflicts and stale information

We begin by classifying the stale information into four types.

Definition 5.3.1. We say that processor pi in system state c has a stale information in c of:

99

Ioa
nn

is
Marc

ou
llis

• type-1: when (∃pk : ((prpi[k] = 〈0, s〉) ∧ (s , ⊥))) (cf. line 6).

• type-2: when (∃pk : (configi[k] ∈ {⊥, ∅})) (cf. line 6) or c encodes a (configuration)

conflict, i.e., there are two active processors pi and p j for which configi[i] , config j[j],

configi[i] , configi[j], or m j,i.config , configi[i] in any message in the communica-

tion channel from pi to p j.

• type-3: when (∃pk ∈ FDi[i].part:¬corrDeg(i, k))∨ ({pk ∈ FDi[i].part : prpi[i].phase+

1 mod 3 = prpi[k].phase} * allSeeni) ∨ (∃p` ∈ FDi[i].part : prpi[`] = 〈2, •〉 ∧

|{prpi[k].set , ⊥}pk∈FDi[i].part| > 1)

• type-4: when (({(FDi[i],FDi[i].part)} = {(FDi[k],FDi[k].part)}pk∈FDi[i].part) ∧

((configi[i] , ⊥) ∧ ((configi[i] ∩ FDi[i].part) = ∅)).

Lemma 5.3.1 (No type-1 stale information). Let R be a fair execution. Within O(1)

asynchronous rounds, the system reaches a state c ∈ R in which the invariant of no type-1

stale information holds thereafter.

Proof. Let c ∈ R be a system state in which processor pi has an applicable step ai

that includes the execution of the do forever loop (line 1 to 14). Every processor pi

takes this step within O(1) asynchronous rounds. We note that immediately after

ai, processor pi has no type-1 stale information (line 6 removes it). Moreover, that

removal always occurs before ai sends any message m (line 14). Therefore, within

O(1) asynchronous rounds, for every active processor p j that receives message m

from pi (line 15), it holds that (m.phase = 0) ⇐⇒ (m.prp = (0,⊥)) as well as for every

item prpi[k] : pk ∈ I. Once this invariant holds for every pair of active processors pi

and p j, the system reaches state c. We conclude the proof by noting that Algorithm 5

never assigns to prpi[j] a values that violates this claim invariant. �

Dealing with explicit and spontaneous replacements

We say that a processor pi’s state encodes a (delicate) replacement when prpi[j] , 〈0,⊥〉

and we say that a message mi, j in the channel from pi to p j encodes a (delicate)

replacement when mi, j.prp , 〈0,⊥〉. Given a system execution R, we say that R does

not include an explicit (delicate) replacement when throughout R no node pi calls estab().

Suppose that execution R does not include an explicit (delicate) replacement and

yet there is a system state c ∈ R in which a processor state or a message in the

100

Ioa
nn

is
Marc

ou
llis

communication channels encodes a (delicate) replacement. In this case, we say that

R includes a spontaneous (delicate) replacement.

Lemma 5.3.2 (No type-2 stale information). Let R be an admissible execution that does

not include explicit (delicate) replacements nor spontaneous ones. WithinO(1) asynchronous

rounds, the system reaches a state c ∈ R in which the invariant of no type-2 stale information

holds thereafter.

Proof. Note that any of R’s steps that includes the do forever loop (line 1 to 14)

does not run lines 5 to 12 (since R does not include an explicit nor spontaneous

replacement). If R’s starting system state does not include any configuration con-

flicts, we are done. Suppose that R’s starting system state does include a conflict,

i.e., ∃pi, p j ∈ I : (configi[i] = ⊥) ∨ (configi[i] , configi[j]) ∨ (configi[i] , config j[j])

or there is a message, mi, j, in the communication channel from pi to p j, such that

the field (mi, j.config[k] = ⊥) : pk ∈ FDi[i] ∨ (mi, j.config , configi[i]), where both pi

and p j are active processors. In Claims 5.3.3, 5.3.4 and 5.3.5 we show that in all of

these cases, within O(1) asynchronous rounds, ∀pi ∈ I : configi[i] ∈ {⊥,FDi[i]} holds

before showing in Claim 5.3.6 that, within O(1) asynchronous rounds, there are no

configuration conflicts.

Claims 5.3.3, 5.3.4 and 5.3.5 consider the values in the field config that are either

held by an active processor pi ∈ I or in its outgoing communication channel to

another active processor p j ∈ I. We define the set S = {Si ∪ S outi}pi∈I to be the set of

all these values, where Si = {configi[j]}p j∈FDi[i] and S outi = {mi, j.config}p j∈FDi[i].

Claim 5.3.3. Suppose that in R’s starting system state, there are processors pi, p j ∈

I that are active in R, for which |S \ {⊥,]}| > 1, where ∃S′ ⊆ S : S′ ∈

{{configi[i], configi[j]}, {configi[i],mi, j.config}}. Within O(1) asynchronous rounds, the

system reaches a state in which configi[i] ∈ {⊥,FDi[i]} holds.

Proof. Suppose that S′ = {configi[i], configi[j]} holds. Immediately after R’s start-

ing state, processor pi has an applicable step that includes the execution of the do

forever loop (line 1 to 14). In that step, which occurs within O(1) asynchronous

rounds, the if-statement condition (|{configi[k] : pk ∈ FDi[i]} \ {⊥,]}| > 1) (line 8’s

if-statement) holds, pi assigns ⊥ to configi[i] and the proof is done. Suppose that

S′ = {configi[i],mi, j.config} holds. Upon mi, j’s arrival, which occurs withinO(1) asyn-

chronous rounds, processor pi assigns mi, j.config to configi[j] (line 15) and the case

of S′ = {configi[i], configi[j]} holds. �

101

Ioa
nn

is
Marc

ou
llis

Claim 5.3.4. Suppose that in R’s starting system state, there are processors pi, p j ∈ I that are

active in R, for which |S \ {⊥,]}| > 1, where ∃S′ ⊆ S : S′ ∈ {{configi[i], config j[j]}}. Within

O(1) asynchronous rounds, the system reaches a state in which configi[i] ∈ {⊥, FDi[i]} or

config j[j] ∈ {⊥,FDi[i]} holds.

Proof. Suppose, towards a contradiction, for any system state c ∈ R that neither

configi[i] ∈ {⊥, FDi[i]} nor config j[j] ∈ {⊥, FDi[i]}. Note that pi and p j exchange mes-

sages within O(1) asynchronous rounds, because whenever processor pi repeatedly

sends the same message to processor p j, it holds that p j receives that message within

O(1) asynchronous rounds and vice versa. Such a message exchange implies that

the case of |S \ {⊥,]}| > 1 (Claim 5.3.3) holds within O(1) asynchronous rounds,

where ∃S′ ⊆ S : S′ ∈ {{configi[i],mi, j.config}, {config j[j],mi, j.config}}. Thus, we reach

a contradiction and therefore, within O(1) asynchronous rounds, the system reaches

a state in which configi[i] ∈ {⊥,FDi[i]} or config j[j] ∈ {⊥,FDi[i]} hold. �

Claim 5.3.5. Suppose that in R’s starting system state, there is a processor pi ∈ I that is

active in R, for which configi[i] ∈ {⊥, FDi[i]}. Within O(1) asynchronous rounds, (1) for

any system state c ∈ R, it holds that configi[i] ∈ {⊥, FDi[i]}. Moreover, (2) R = R′ ◦ R′′

has a suffix, R′′, for which ∀c′′ ∈ R′′ : ∀pi, p j : ({mi, j.config, config j[i], config j[j]} \

{⊥,FDi[i]}) = ∅.

Proof. We prove each part of the statement separately.

Part (1). We start the proof by noting that ∀pi, p j ∈ I, it holds that, throughout R, we

have that FDi[i]’s value does not change and that FDi[i] = FD j[j], because this lemma

assumes that R is admissible. To show that configi[i] ∈ {⊥,FDi[i]} holds in any c ∈ R,

we argue that any step ai ∈ R in which pi changes configi[i]’s value includes the

execution of line 8 or line 9 (see the remark at the beginning of this lemma’s proof

about ai ∈ R not including the execution of lines 5 to 12), which assign to configi[i]

the values ⊥, and respectively, FDi[i].

Part (2). In this part of the proof, we first consider the values in mi, j.config and

config j[i] before considering the one in config j[j].

Part (2.1). To show that in c′′ ∈ R′′ it holds that ∀pi, p j : {mi, j.config, config j[i]} \

{⊥,FDi[i]} = ∅, we note that when pi loads a message mi, j (line 14) before sending

to processor p j, it uses configi[i]’s value for the field config. Thus, within O(1)

asynchronous rounds, mi, j.config ∈ {⊥,FDi[i]} and therefore config j[i] ∈ {⊥,FDi[i]}

102

Ioa
nn

is
Marc

ou
llis

records correctly in c′′ ∈ R′′ the most recent mi, j’s value that p j receives from pi

(line 15).

Part (2.2). To show that, within O(1) asynchronous rounds, config j[j] ∈ {⊥,FDi[i]},

we note that once p j changes the value of config j[j], it holds that config j[j] ∈ {⊥,FDi[i]}

thereafter (due to the remark in the beginning of this lemma, which implies that only

lines 8 and 9 can change config j[j], and by the part (1) of this claim’s proof while

replacing the index i with j). Suppose, towards a contradiction, that p j does not

change that value of config j[j] throughout R and yet config j[j] < {⊥,FDi[i]}. Note

that (|{FD[j] : p j ∈ FD[i]}| = 1) (see the second clause of the if-statement condition in

line 9) holds throughout R, because R is admissible. Therefore, whenever pi takes

a step that includes the execution of the do forever loop (line 1 to 14), processor

pi assigns FDi[i] to configi[i] (line 9) and sends to p j the message mi, j, such that

mi, j.config = configi[i] (because it executes line 14) and configi[i] = FDi[i] (see part

(2.1) of this proof). Since pi sends mi, j repeatedly, processor p j receives mi, j withinO(1)

asynchronous rounds and stores in config j[i] = mi, j.config = configi[i] = FDi[i] , ⊥.

Immediately after that step, the system state allows p j to take a step in which the

condition (|{config j[k] : p j ∈ FD j[k]} \ {⊥,]}| > 1) (line 8’s if-statement) holds and p j

changes config j[j]’s value to⊥. Thus, this part of the proof ends with a contradiction,

which implies that the system reaches a state in which config j[j] ∈ {⊥,FDi[i]}. �

Claim 5.3.6. Suppose that in R’s starting system state, it holds that for every two pro-

cessors pi, p j ∈ I that are active in R, we have that ({configi[i], config j[i],mi, j.config} \

{⊥,FDi[i]}) = ∅, where mi, j is a message in the channel from pi to p j. Within O(1) asyn-

chronous rounds, the system reaches a state in which configi[i] = FDi[i].

Proof. By this claim assumptions, we have that in R’s starting system state, the if-

statement condition (|{configi[k] : pk ∈ FDi[k]} \ {⊥,]}| > 1) (line 8) does not hold.

Moreover, |{FDi[j] : p j ∈ FDi[i]}| = 1 (line 9) holds throughout R, because R is

admissible. Therefore, this claim’s assumptions with respect to R’s starting states

actually hold for any system state c ∈ R, because only lines 8 and 9 can change

the value of configi[i] ∈ {⊥, FDi[i]}, which later pi uses for sending the message

mi, j (line 14), and thus also mi, j.config ∈ {⊥,FDi[i]} as well as config j[i] ∈ {⊥,FDi[i]}

records correctly the most recent mi, j’s that p j receives from pi (line 15).

To conclude this proof, we note that immediately after any system state c ∈ R,

processor pi has an applicable step ai ∈ R that includes the execution of line 9 (by

103

Ioa
nn

is
Marc

ou
llis

similar arguments to the ones used by the first part of this proof). Moreover, ai

does not include the execution of line 8, because, by the first part of this proof,

the condition of the if-statement of line 8 does not hold. In the system state that

immediately follows ai, the invariant configi[i] = FDi[i] holds. Note that ai is taken

within O(1) asynchronous rounds. �

By this lemma’s assumption, there is no configuration c ∈ R replacement state nor

replacement message. Claim 5.3.6 implies that the system reaches a state cnoCon f ∈ R

that has no configuration conflict within O(1) asynchronous rounds. Thus, cnoCon f is

safe. This completes the proof of Lemma 5.3.2. �

Lemma 5.3.7 (No type-4 stale information). Let R be an admissible execution of Algo-

rithm 5. Within O(1) asynchronous rounds, the system reaches a state c ∈ R in which the

invariant of no type-4 stale information holds thereafter.

Proof. Without the loss of generality, suppose that there is no system state in R that

encodes a configuration conflict. (We can make this assumption without losing gen-

erality because Lemma 5.3.2 implies that this claim is true whenever this assumption

is false.) Moreover, let c ∈ R be a system state in which processor pi has, within O(1)

asynchronous rounds, an applicable step ai that includes the execution of the do

forever loop (line 1 to 14).

Since R is admissible, ({(FDi[i],FDi[i].part)} = {(FDi[k],FDi[k].part)}pk∈FDi[i].part)

holds in c. Therefore, the case in which ((configi[i]∩FDi[i].part) = ∅) in c implies a call

to the function con f igSet(⊥) (line 6) in the step that immediately follows. By using

Lemma 5.3.2, we have that this lemma is true within O(1) asynchronous rounds. �

Phase and degree progressions

Let R be an execution of Algorithm 5 that is admissible with respect to the participant

sets. Suppose that pi is a processor that is active in R, and that pi ∈ FD[i].part. We

say that processor pi is an active participant in R.

Notation. Let pi, p j, pk ∈ I be processors that are active participants in R and c ∈ R a

system state. We denote by:

• NA(c) = {(prp j[k],myAll j(k))}p j,pk∈FDi[i].part ∪ {(prp j[k],myAll j(k)) : m j,k =

〈•,prp j[k],myAll j(k), (•)〉 ∈ channelk, j}p j,pk∈FDi[i].part ∪ {(echo j[k].prp, echo j[k].all) :

m j,k = 〈•, (•, echo j[k].prp, echo j[k].all)〉 ∈ channelk, j}p j,pk∈FDi[i].part \ {(〈0,⊥〉, •)} the

104

Ioa
nn

is
Marc

ou
llis

set of all pairs that includes the notification (of a configuration replacement

proposal) and all fields that appear in c (after excluding the default notifica-

tion, 〈0,⊥〉, while including all the information in the processors’ states and

communication channels as well as their replications, e.g., the echo field).

• N(c) = {n : (n, a) ∈ NA(c)} the set of notifications that appear in c.

• D(c,n) = {2 · n.phase + |{1 : a}| : (n, a) ∈ NA(c)}, the degree set of notification

n ∈ N(c).

• S(c,n) = {n′ : ((n′ ∈ N(c)) ∧ (n.set = n′.set))} the set of all notifications n′ ∈ N(c)

that have the same set field as the one of a given notification n ∈ N(c) that

appears in a given system state c ∈ R, and S(c) = {n.set : n ∈ N(c)} is the set of

all notification sets in c.

We proceed to define the notion a proposal conformity, which intuitively suggests

that the phase of pi conforms to p j if their prp are the same, and pk’s phase precedes

that of p j by one modulo 3. At the same time, pk remains in the allSeen j set which

allows p j to catch up with pk’s phase.

Definition 5.3.2 (Proposal conformity). We say that prp j[j] conforms to prpk[k], and use

prp j[j] ;prp prpk[k] to denote this, when (prp j[j].set = prpk[k].set) ∧ (((prp j[j].phase =

prpk[k].phase) ∨ (prpk[k].phase = (prp j[j].phase + 1)(mod 3))) =⇒ (pk ∈ allSeen j)).

Lemma 5.3.8. Let R be an execution of Algorithm 5 that is admissible with respect to the

participant sets and that does not include an explicit (delicate) replacement. Suppose that in

R’s starting system state, c, there are notifications (of configuration replacement proposals),

i.e., N(c) , ∅. Moreover, suppose that for any active participant pi ∈ I and any c∗ ∈ R it

holds that (prpi[i],myAlli(i)) = (n∗i , a
∗

i) ∈ NA(c∗). Within O(1) asynchronous rounds, the

system reaches a state c~ ∈ R in which one of the following is true:

(i) (n∗i , a
∗

i) < NA(c~),

(ii) the system takes a step (immediately after c~) in which there is a call to the function

con f igSet(⊥) (line 6), or

(iii) the following invariants (1) to (7) hold.

(1) Within O(1) asynchronous rounds, the system reaches a state c′ ∈ R in which for any

p j ∈ FDi.part that is an active participant in R, it holds that (prp j[i], all j[i]) = (n∗i , a
∗

i)

and FD j[i].part = FDi.part and FD j[j].part = FDi.part. Moreover, prpi[i] ;prp prp j[j]

or prp j[j] ;prp prpi[i] in c′.

105

Ioa
nn

is
Marc

ou
llis

(2) Suppose that invariant (1) holds in every system state of R. WithinO(1) asynchronous

rounds, the system reaches a state c′ ∈ R in which it holds that echoi[j].prp = n∗i ,

echoi[j].part = FDi[i].part in c′.

(3) Suppose that invariants (1) and (2) hold in every system state of R. Within O(1)

asynchronous rounds, the system reaches a state c′ ∈ R, such that myAlli(i) = true

holds in c′.

(4) Suppose that invariants (1), (2) and (3) hold in every system state of R. Within

O(1) asynchronous rounds, the system reaches a state c′ ∈ R, in which it holds that

all j[i] = true in c′, where p j ∈ FDi[i].part.

(5) Suppose that invariants (1) to (4) hold in every system state of R. Within O(1)

asynchronous rounds, the system reaches a state c′ ∈ R, in which it holds that echoi[j] =

(FDi[i].part,prpi[i],myAlli(i)) in c′, where p j ∈ FDi[i].part.

(6) Suppose that invariants (1) to (5) hold in every system state of R. Within O(1)

asynchronous rounds, the system reaches a state c′ ∈ R, in which it holds that pi ∈

allSeen j in c′, where p j ∈ FDi[i].part.

(7) Suppose that invariants (1) to (6) hold in every system state c′ ∈ R. Within O(1)

asynchronous rounds, the system reaches a state c′′ ∈ R, such that there exists an

active participant pk ∈ P for which the if-statement condition of line 11 holds in c′′.

Specifically, ∀pk ∈ FD j[j].part : degree j(k) − degree j(j)(mod 6) ∈ {−1, 0, 1} holds

in c′ and either (7.1) ∀pk ∈ FD j[j].part : degree j(k) − degree j(j)(mod 6) ∈ {0} and

this part holds for any such pk, or (7.2) the if-statement condition of line 11 holds

in c′′ for any pk ∈ FD j[j].part : degree j(k) − degree j(j)(mod 6) ∈ {−1} but not for

p′k ∈ FD j[j].part : degree j(k) − degree j(j)(mod 6) ∈ {0, 1}.

Proof. Suppose that cases (i) and (ii) do not occur during R. We prove invariants (1) to

(7) hold within O(1) asynchronous rounds (or show a contradiction with the lemma

assumptions, such that, at some system state during R, the value of (prpi[i],myAlli(i))

is not (n∗i , a
∗

i)).

(1) Since pi repeatedly sends message mi, j to every active processor p j ∈ FDi[j].part

(line 14), where mi, j = 〈•,n∗i , a
∗

i 〉, message mi, j arrives within O(1) asynchronous

rounds to p j (line 15 and the definition of fair execution, Section 5.3.2). This causes

p j to store (n∗i , a
∗

i) in (prp j[i], all j[i]) (because of our assumption that prpi[i] = n∗i

106

Ioa
nn

is
Marc

ou
llis

and myAlli(i) = a∗i hold in every c∗ ∈ R). By this lemma assumption that R is

admissible with respect to the participant sets and similar arguments to the above,

we get that FD j[i].part = FDi.part in c′′. The same assumption also implies that

FD j[j].part = FDi.part in c′′.

Note that the proof is done when assuming that, throughout O(1) asynchronous

rounds, prpi[i] ;prp prp j[j] and therefore we assume, towards a proof by contra-

diction, that prp j[j] = n∗j 6;prp n∗i = prpi[i] in c′. Suppose, without the loss of

generality, that n∗j is lexicographically greater than n∗i (generality is not lost due

to the symmetry between pi and p j with respect to prp j[j] = prpi[j] = n∗j and

prpi[i] = prp j[i] = n∗i). For each of the following four cases, we show a contra-

diction, and therefore, prpi[i] ;prp prp j[j] in c′.

• Let A = {degreei(k) − degreei(i)}pk∈FDi[i].part. Suppose that neither A ⊆ {−1, 0}

nor A ⊆ {0, 1} in c′. Line 6 and the definition of corrDeg() (Fig. 5.3, line 10)

imply that, within O(1) asynchronous rounds from c′, the system takes a step

that includes a call to con f igSet(⊥). This is a contradiction with this lemma

assumption (that there is no call to con f igSet(⊥)), see assumption (ii). Moreover,

({pk ∈ FDi[i].part : prpi[i].phase+1 mod 3 = prpi[k].phase} * allSeeni) must hold

in c′. The reason is that this lemma assumes that there is no call to con f igSet(⊥)

and therefore the if-statement condition of line 6 must not hold.

• The case of (degreei(j) − degreei(i)) = 0 in c′ leads to a contradiction. The proof

of this statement follows:

– Suppose that (prpi[i].set = prpi[j].set). This implies that prpi[i] ;prp prpi[j]

in c′ and then prp j[j] ;prp prpi[i] in c′ since prp j[j] = prpi[j].

– Suppose that (prpi[i].set , prpi[j].set). By the assumption that prpi[j] = n∗j
is lexicographically greater than prpi[i] = n∗i and line 3, we have that pi

assigns prpi[j].set to prpi[i].set in its first step after c′ that includes the exe-

cution of the do-forever loop (lines 1 to 14). This violates our assumption

that pi does not change the value of prpi[i]. Thus, a contradiction.

• Assuming that (degreei(j) − degreei(i)) = 1 in c′ leads to a contradiction due to

the same arguments as the latter instance of the previous case.

• Suppose that (degreei(j)−degreei(i)) = (−1) in c′. Earlier in this proof, we showed

that pi stores (n∗j, a
∗

j) in (prpi[j], alli[j]) and p j stores (n∗i , a
∗

i) in (prp j[i], all j[i]).

107

Ioa
nn

is
Marc

ou
llis

Therefore, (degree j(i) − degree j(j)) = 1 in c′. Hence, the proof follows from the

previous item.

(2) By similar arguments to the ones that show the arrival of mi, j in part (1) of

this proof, processor p j ∈ FDi[i].part repeatedly sends the message m j,i = 〈•,prp =

n∗j, •, echo = (•,n∗i , •)〉 to pi, which indefinitely stores n∗j in prpi[j] and n∗i in echoi[j]

(line 15) within O(1) asynchronous rounds. Using arguments that are similar to the

above, we have that echoi[j].part = FDi[i].part in c′.

(3) We show that, within O(1) asynchronous rounds, pi takes a step that includes

the execution of the do forever loop (lines 1 to 14), such that immediately af-

ter that step, the system reaches a state in which myAlli(i) = true holds (due

to line 3) in c′. We prove that, within O(1) asynchronous rounds, the system

reaches a state in which ∀pk ∈ FDi[i].part : echoNoAlli(k). Specifically, we show that

(FDi[i].part,prpi[i]) = (echoi[k].part, echoi[k].prp). Note that by this part assumption,

we know that invariant (2) holds and therefore FDi[i].part = echoi[k].part in every

system state in R. Moreover, echoi[j].prp = n∗i and prpi[j] = n∗j in every system state

in R.

Note that the proof is done if myAlli(i) = true or n∗i = n∗j in c′. Suppose, towards

a proof by contradiction, that neither myAlli(i) = true nor n∗i = n∗j in c′. By part

(1) of this proof, we know that n∗i ;prp n∗j in c′, which implies that n∗i .set = n∗j.set

(Definition 5.3.2). Thus, it can only be that n∗i .phase , n∗j.phase. However, this means

that (∃pk∈FDi[i].part¬corrDegi(i, k)) in c′, which contradicts this lemma assumption that

pi does not call con f igSet(⊥) (line 6).

(4) By similar arguments that appear in parts (1) and (2) of this proof, processor pi

sends repeatedly the message mi, j = 〈•, all = true, •)〉 to processor p j. The message

mi, j arrives, within O(1) asynchronous rounds, to p j (line 15 and the assumption that

a message sent infinitely often is received infinitely often, Chapter 3). Once that

happens, processor p j stores true in all j[i] (as well as the notification n in prp j[i]).

This holds for every system state c′ that follows mi, j’s arrival to p j.

(5) By similar arguments that appear in parts (1) and (2) of this proof, pro-

cessor p j sends repeatedly the message m j,i = 〈•,prp = n∗j, all = true, echo =

(FDi[i].part,n∗i , true)〉 to processor pi. The message m j,i arrives, within O(1) asyn-

chronous rounds, to pi (line 15 and the assumption that a message sent infinitely

often is received infinitely often, Section 3). Once m j,i arrives, pi stores (n∗i , true) in

108

Ioa
nn

is
Marc

ou
llis

echoi[j]. This holds for every system state c′ that follows m j,i’s arrival to pi.

(6) We show that, once the invariants of parts (1) to (5) of this proof hold, the for-each

condition of line 5 holds as well. The for-each condition of line 5 requires that for

any p j ∈ FDi[i].part to have all[k], where the index k is substituted here with j. By

part (4) of this lemma, we have that all[k] holds.

(7) We need to show that, for p j ∈ FD j[j].part (or another pk ∈ FD j[j].part), it holds that

(allSeen j() ∧
∧

pk∈FD j[j].part echo(k)) (line 11), where ({(FD j[j].part,prp j[j],myAll j(j))} =

{echo j[k]} ∧ degree j(k) − degree j(j)(mod 6) ∈ {0, 1}) (line 12, Fig. 5.3).

We note that part (6) of this proof implies allSeen j() and part (5) implies

{(FD j[j].part,prp j[j],myAll j(j))} = {echo j[k]}. By the assumption of this proof

that no reset occurs during R, we have that ∀pk ∈ FD j[j].part : degree j(k) −

degree j(j)(mod 6) ∈ {−1, 0, 1} (because otherwise the if-statement condition in line 6

would hold and a reset would occur). We note that the proof is done in the

case of ∀pk ∈ FD j[j].part : degree j(k) − degree j(j)(mod 6) ∈ {0, 1}. Suppose that

∃pk ∈ FD j[j].part : degree j(k) − degree j(j)(mod 6) ∈ {−1} in system state c′. By part (1)

of this proof, it holds that degree j(k) − degree j(j)(mod 6) ∈ {1} in c′ (note that j and k

are swapped) and therefore the if-statement condition of line 11 holds for pk. Thus,

the system has reached the state c′′. �

We proceed to prove that the phase of the configuration mechanisms stabilizes

within a bounded period.

Theorem 5.3.9. Let R be an admissible execution w.r.t. participants of Algorithm 5 (which

may include explicit delicate or spontaneous replacements). Within O(N) asynchronous

rounds, R has a suffix that does not include a system state and pi, p j ∈ I for which Equation 5.1

holds.

(∃pk ∈ FD[i].part : ¬corrDeg(i, k))∨

(∃pk ∈ FDi[i].part : (prp j[k].phase = (prp j[j].phase + 1)(mod 3)) (5.1)

∧(pk < allSeen j))

Proof. Let R′ be a suffix of R that the system reaches withinO(1) asynchronous rounds

during which stale information of type-1,-2 and-4 is removed from the system, cf.

Lemmas 5.3.1, 5.3.2 and 5.3.7 as well as the statement of Claim 5.3.11. We use

lemmas 5.3.10, 5.3.12 and 5.3.13 to show that, within O(N) asynchronous rounds, R′

has a suffix that does not include a system state in which Equation 5.1 holds.

109

Ioa
nn

is
Marc

ou
llis

Lemma 5.3.10. Suppose that during R′ there is no processor p j ∈ FDi[i].part that changes

(prp j[j], all j[j]) more than thirteen times. In this case, within O(N) asynchronous rounds

during R, either:

(i) the system reaches a state c~ ∈ R in which NA(c~) = ∅,

(ii) the system takes a step in which there is a call to the function con f igSet(⊥) (line 6), or

(iii) the invariants (1) to (7) hold.

Proof. The lemma proof is treated incrementally in three steps.

Step 1 – Suppose that during the first O(1) asynchronous rounds of R′, no processor

p j ∈ FDi[i].part changes (prp j[j], all j[j]). Conditions (i) to (iii) hold within these O(1)

asynchronous rounds.

Proof. The proof of this step is implied by Lemma 5.3.8.

Step 2 – Suppose that during R′ there is at most one processor p j ∈ FDi[i].part that changes

(prp j[j], all j[j]) at most once (while all the other processors pk ∈ FDi[i].part do not change

(prpk[j], allk[j])). Conditions (i) to (iii) hold within O(1) asynchronous rounds.

Proof. Suppose that, within O(1) asynchronous rounds, processor p j takes a step a j ∈

R′ that changes (prp j[j], all j[j]). By Step 1, this step holds within O(1) asynchronous

rounds from ak.

Suppose, towards a contradiction, that processor pk takes a step ak ∈ R′ that

changes (prpk[j], allk[j]) only after more than O(1) asynchronous rounds from the

starting system state of R′. By Step 1, within O(1) asynchronous rounds from the

starting state of R′, one of the conditions (i) to (iii) holds. For the cases in which

conditions (i) or (ii) hold, the proof is done. Suppose that invariants (1) to (7)

(Lemma 5.3.8) hold. By line 11, ak occurs within O(1) asynchronous rounds from the

starting system state of R′. However, we assumed (towards a contradiction) that ak

is the only step in R′ that changes (prpk[j], allk[j]) and it does not occur within O(1)

asynchronous rounds from the starting system state of R′. Thus, a contradiction and

the claim is true.

Step 3 – Suppose that during R′ all processors p j ∈ FDi[i].part change (prp j[j], all j[j]) at

most x times. Conditions (i) to (iii) hold within O(xN) asynchronous rounds.

Proof. We first consider the case of x = 1 and then the case of x > 1.

The case of x = 1. Let pk1 ∈ FDi[i].part be the first processor that changes the value

110

Ioa
nn

is
Marc

ou
llis

of (prp, all) (if such change exists in R′), say, in step ak1 ∈ R1, where R1 = R′. The

step ak1 occurs within O(1) asynchronous rounds in R1 (by similar arguments to the

ones for Step 2). Let us consider the suffix R2 of R1 that starts immediately after ak1 .

Let pk2 ∈ FDi[i].part be the second processor that changes the value of (prp, all) (if

such change exists in R2), say, in step ak2 ∈ R2. By the same arguments as above, ak2

occurs within O(1) asynchronous rounds from the start of R2. In the same manner,

we can construct R` to include at most one step in which processor p` changes

(prp`[`], all`[`]). The proof of case x = 1 holds when considering R` for any ` ≤ N

and observing that a` occurs within O(N) asynchronous rounds from the start of R′.

The case of x > 1. Let ak1 , ak2 , . . . , ak` , where ` ≤ xN, be the sequence of steps in which

any processor in FDi[i].part changes the value of (prp, all). Let us write R′ = R1◦. . .◦R`

such that each sub-execution, say, R`, includes at most one step from the sequence

ak1 , ak2 , . . . , ak` , which is ak` for the case of R`. By similar arguments to this case of x = 1,

for any `′ < `, it holds that R′` includes at mostO(1) asynchronous rounds. Moreover,

ak` occurs within O(1) asynchronous rounds in R`. This proves that conditions (i) to

(iii) hold within O(xN) asynchronous rounds.

This completes the proof of Lemma 5.3.10. �

Claim 5.3.11 details the way in which the order of updates to the pair (prp,myAll(•))

appear is the system.

Claim 5.3.11. Let p j, pk ∈ FDi[i].part and (prp j,k,0, all j,k,0) be the value of (prp j[k], all j[k])

in R’s starting system state. Moreover, let pa j,k,0 = (prp j,k,0, all j,k,0), (prp j,k,1, all j,k,1), . . . be

the sequence of all values that p j stores in (prp j[k], all j[k]) during R.

(1) Within O(1) asynchronous rounds, there exists y ∈ Z+, such that the sequence

pa j,k,y = (prp j,k,y, all j,k,y), (prp j,k,y+1, all j,k,y+1), . . . is a sub-sequence of the pak,k,0 =

(prpk,k,0, allk,k,0), (prpk,k,1, allk,k,1), . . . sequence. That is, pa j,k,y of R′ includes a subset of

element in pak,k,0 while keeping their order of appearance in R′. Moreover,

(2) suppose that message m′ is in transit from pk to p j in system state c ∈ R′ and that

in c the value of (prpk[k], allk[k]) is (prp j,k,x, all j,k,x). Then, m′ = 〈prp j,k,x′ , all j,k,x′
〉, where

x′ ∈ {0, . . . , x}. Furthermore,

(3) suppose that message m′′ = 〈prp j,k,x′′ , all j,k,x′′
〉 is in transit from pk to p j after m′ while

(prpk[k], allk[k]) = (prp j,k,x′′′ , all j,k,x′′′). Then x′′ ∈ {x′, . . . , x′′′}.

Proof. The proof of parts (1) to (3) is by the communication fairness assumption, the

111

Ioa
nn

is
Marc

ou
llis

correctness of the self-stabilizing end-to-end data link algorithm (Chapter 3), which

uses a token circulation mechanism for providing reliable FIFO communications of

messages sent in line 14 and received in line 15. �

Lemma 5.3.12. Suppose that there is a processor p j ∈ FDi[i].part that changes

(prp j[j], all j[j]) more than thirteen times. In this case, within O(N) asynchronous rounds

during R′, the system reaches to a state c∗ ∈ R′ in which Equation 5.2 holds.

∀pk,p`∈FD j[j].part : ((prpk[`] = prp j[j]) ∧ ((prp j[k], all j[k]) = (prp j[j], all j[j] = true)))∧ (5.2)

(∃m∈channel j,k∪channelk, j: j∈{k,`} =⇒ m = (•,prp j[j], all j[j] = true, (•,prp j[j], all j[j] = true)))∧

(∃m∈channelk,`: j<{k,`} =⇒ m = (•,prp j[j], •, (•,prp j[j], •)))∧

(p j ∈ allSeenk) ∧ (all j[j] ∧ FD j[j].part ⊆ (allSeen j ∪ {p j}))

Proof. Let R′′ be a prefix of R′ that includes O(xN) asynchronous rounds during

which at least one processor p j ∈ FDi[i].part takes at least x ≥ 13 steps that change

(prp j[j],myAll j(j)) without having conditions (i) to (iii) of Lemma 5.3.10 hold at any

state of R′′. Denote by c j,y ∈ R′′ the system state that immediately precedes the step

a j,y in which p j changes (prp j[j],myAll j(j)) for the y-th time during R′′. We show

that there exists z ≤ 13 so that it is possible to choose p j ∈ FDi[i].part, such that

Equation 5.2 holds in c j,z.

Note that whenever p j changes (prp j[j],myAll j(j)) during R′ (in a way that does

not assign dfltNtf to prp), it does so by taking a step that includes either a call to

estab(), or an execution of line 3, or line 11 (that is, either a call to maxNt f () or to

increment()).

Showing that changes to (prpj[j],myAllj(j))’s degree are modulo six. We use the

following two fact for observing that each individual processor in p j ∈ FDi[i].part

changes the value of (prp j[j],myAll j(j)) only in the modulo six manner.

(a) The changes from an even degree value to an odd one, i.e., the assignment of

true to all, is according to the process carried out by lines 3 to 11.

(b) The changes from an odd degree value to an even one is according to estab() and

increment(). Specifically, estab() changes the processor state only from degree

1 to 2 (while increment() takes no effect). The definition of increment() implies

that a degree of 3 changes to 4 as well as 5 changes to 0.

112

Ioa
nn

is
Marc

ou
llis

Therefore, each p j ∈ FDi[i] changes (prp j[j],myAll j(j))’s degree modulo six.

The values of (prp,myAll) change concurrently and in a unison manner. We can

see that different processors in FD j[j].part are not more than one value away (modulo

six) from each other in the system state c j,y, which immediately precedes the step in

which p j changes (prp j[j],myAll j(j)). This is because the steps in which these changes

occur, include the execution of line 6, which means that∀pk ∈ FD[j].part : corrDeg(j, k)

holds in c j,y since we assume that conditions (i) to (iii) of Lemma 5.3.10 do not hold

during R′′ and that the statement of Claim 5.3.11 does hold. Therefore, during R′

changes to (prp j[j],myAll j(j)) are concurrent and in a unison manner.

Showing that (FDj[j].part ⊆ (allSeenj ∪ {pj}) ∧ (allj[j] = true)). Recall the value of

z ≤ 13 = 2 · 6 + 1, which can associate with increments that causes two modulo six

wrap arounds and then one more increment. Due to the two arguments above, we

can claim that p j changes the value of (prp j[j], all j[j]) to (〈2, •〉, f alse) at least twice

and then changes the value of (prp j[j], all j[j]) to (〈0, •〉, true) once more.

Let c j,y ∈ R′′ : y ≤ z− 2 be the system state that immediately precedes the step a j,y

in which p j changes (prp j[j], all j[j]) to (〈2, •〉, f alse) for the second time during R′′ and

c j,y′ ∈ R′′ : y′ = y + 2 be the system state that immediately precedes the step a j,y′ in

which p j changes (prp j[j], all j[j]) from (〈2, •〉, true) to (〈0,⊥〉, f alse). In both times that

p j changes the value of (prp j[j], all j[j]) to (〈2, •〉, f alse), the if-statement condition of

line 11 must be true. That is, in both times, (FD j[j].part ⊆ (allSeen j ∪ {p j}) ∧ (all j[j] =

true)) is true in the system states that immediately precede these two steps that

change (prp j[j], all j[j]) to (〈2, •〉, f alse) and then p j empties allSeen j (lines11 and

Fig. 5.3, line 14). This implies that between the first time and the second time

that p j changed (prp j[j], all j[j]) to (〈2, •〉, f alse), node p j had emptied allSeen j and

then p j changes (prp j[j], all j[j]) to (〈1, •〉, true) as well as adds all the elements in

(FD j[j].part \ {p j}) to allSeen j (line 5).

Showing that ∀pk,p`∈FDj[j].partprpk[`] = prpj[j] ∧ (prpj[k], allj[k]) = (prpj[j], allj[j]).

Due to Claim 5.3.11 as well as line 3 and line 5, the only way that the above scenario

could happen is by having the following.

(A) For each pk ∈ FD j[j].part, there are system states ck,yk , c
′
k,yk ∈ R′′, such that

ck,yk appears before c′k,yk , and
∧

p`∈FD j[j].part(echoNoAllk(`)) holds in ck,yk (imme-

113

Ioa
nn

is
Marc

ou
llis

diately before pk takes a step that includes the execution of line 3) as well as

(all j[k]) holds in c′k,yk (immediately before p j takes a step that includes the exe-

cution of line 5). We note that since a j,y refers to the time in which p j changes

(prp j[j], all j[j]) to (〈1, •〉, f alse) for the second time in R′′, then by Claim 5.3.11

and lines 3 and 5 we know that ck,yk , c
′
k,yk in R′′, rather than just in R.

(B) By using similar arguments to the ones that appear above, for each pk ∈

FD j[j].part there are system states ck,y′k , c
′
k,y′k ∈ R′′, such that c′k,yk appears be-

fore ck,y′k (because of the way that increment() changes p j’s degree), ck,y′k appears

before c′k,y′k , and
∧

p`∈FD j[j].part(echoNoAllk(`)) holds in ck,y′k as well as all j[k] holds

in c′k,y′k .

Using the definitions of echoNoAll() (Fig. 5.3, line 11) we can write this as follows:

(A) ∀pk ∈ FD j[j].part : ∀p` ∈ FD j[j].part : prpk[`] = prp j[j] = 〈1, •〉 in ck,yk and

∀pk ∈ FD j[j].part : (prp j[k], all j[k]) = (prp j[j], all j[j]) = (〈1, •〉, true) and in c′k,yk .

(B) ∀pk ∈ FD j[j].part : ∀p` ∈ FD j[j].part : prpk[`] = prp j[j] = 〈2, •〉 in ck,y′k and

∀pk ∈ FD j[j].part : (prp j[k], all j[k]) = (prp j[j], all j[j]) = (〈2, •〉, true) in c′k,y′k .

Arguing about the first processor to change (prp, all). Suppose, without the loss

of generality, that p j is the first among all the processors pk ∈ FD j[j].part that changes

the value of (prpk[k], allk[k]) from (〈2, •〉, true) to (〈0, •〉, f alse) for the second time

during R′′ at step a j,y′ , which immediately follows c j,y′ . Since p j is the first to change

and any processor pk ∈ FD j[j].part (including p j = pk) needs invariant (B) to hold

in order to change the value of (prpk[k], allk[k]), we have that in c j,y′ invariant (B)

holds both for the case of c′k,yk and c′k,y′k . Therefore, ∀pk,p`∈FD j[j].part : ((prpk[`] =

prp j[j])∧((prp j[k], all j[k]) = (prp j[j], all j[j] = f alse))) holds in c j,y′ . Using Claim 5.3.11

as well as lines 11, 14 and 15, we also get ∀pk,p`∈FD j[j].part : (m ∈ channel j,k∪channelk, j =⇒

m = (•,prp j[j], all = f alse, (•,prp j[j], all = f alse))) as well as p j ∈ allSeenk holds in

c j,y′ . Since we have already showed all j[j] ∧ (FD j[j].part ⊆ (allSeen j ∪ {p j})), we have

that Equation 5.2 holds in c j,y′ . Since y′ = z we get the result as required by the

lemma. �

Lemma 5.3.13. Suppose that R′ starts from system state c, such that c is either c~

(Lemma 5.3.10) or c∗ (Lemma 5.3.12). Execution R′ does not include a system state in

which Equation 5.1 holds.

114

Ioa
nn

is
Marc

ou
llis

Proof. The lemma holds immediately for the case of c~ (Lemma 5.3.10). The rest of

the proof considers the case of c∗ (Lemma 5.3.12). We show that when c = c∗ is the

starting system state of R′, no system state in R′ satisfies Equation 5.1.

The proof of Lemma 5.3.12 shows that there is a processor p j ∈ FDi[i].part for

which Equation 5.2 holds in a system state (which does not satisfy Equation 5.1)

and immediately precedes a step in which p j changes (prp j[j], all j[j] = true) to

((prp j[j].phase + 1)(mod 3), all j[j] = f alse). This brings the system to a state c′ ∈ R′

that does not satisfy Equation 5.1.

Note that in c′ and in the system states that follow, processor p j cannot change

that value of ((prp j[j].phase + 1)(mod 3), all j[j] = f alse) before every processor pk ∈

FDi[i].part ∪ {p j} changes the value of (prpk[k], allk[k] = true). This is due to the

process that line 3, 5 and 11 control. Moreover, the fact that Equation 5.1 does not

hold in c′, does not prevent from pk to change the value of (prpk[k], allk[k]) via a call

to the function increment() (line 11), because in c, and therefore in c′, we have that

p j ∈ allSeenk holds (cf. Equation 5.2). Therefore, by similar arguments to the ones

that appear in the first part of the proof of Step 3 of Lemma 5.3.10, the system reaches

a state, within O(N) asynchronous rounds, in which Equation 5.3 holds (while not

supporting Equation 5.1).

∀pk,p`∈FD j[j].part : ((prpk[`] = prp j[j]) ∧ ((prp j[k], all j[k]) = (prp j[j], all j[j] = f alse)))∧

(5.3)

(m ∈ channel j,k ∪ channelk, j =⇒ m = (•,prp j[j], all = f alse, (•,prp j[j], all = f alse)))

Moreover, by using again similar arguments to the ones that appear in the first

part of the proof of Step 3 of Lemma 5.3.10, the system reaches a state in which

Equation 5.2 holds once more (while not supporting Equation 5.1). Furthermore,

once Equation 5.2 holds, the same arguments can be repeated, as much as necessary,

throughout R′. �

This concludes the proof of Theorem 5.3.9. �

Corollary 5.3.14 is implied by Equation 5.1 of Theorem 5.3.9.

Corollary 5.3.14. Let R be an admissible execution w.r.t. participants of Algorithm 5 (which

may include explicit delicate or spontaneous replacements). Denote R’s starting system state

115

Ioa
nn

is
Marc

ou
llis

by c and suppose that 〈1, false〉 ∈ NA(c) ∧ (〈0, false〉 ∈ NA(c) ∨ 〈2, •〉 ∈ NA(c)). Within

O(N) asynchronous rounds, either (i) the system reaches a state c′ ∈ R that encodes no

notifications, or (ii) there is a step that includes a call to the function con f igSet(⊥) (line 6).

Algorithm 5 is self-stabilizing

Let ai ∈ R be a step in which processor pi calls the function estab(set) (Fig. 5.3,

line 5), and in which the if-statement condition (allowReco() ∧ (set < {config[i], ∅}))

does hold in the system state that immediately precedes ai. We say that ai is an

effective (configuration establishment) step in R. Similarly, we consider ai ∈ R to be a

step in which processor pi calls the function participate() (line 6), and in which the

if-statement condition allowReco() does hold in the system state that immediately

precedes ai. Let R = R′ ◦ RVNER ◦ R′′′ be an execution that does include explicit

(delicate) replacements, where R′ and R′′′ are a prefix, and respectively, a suffix of R.

Let us consider RVNER, which is a part of execution R. We say that RVNER virtually does

not include explicit (delicate) replacements (VNER) when for any step a ∈ RVNER that

includes a call the function estab(set) (Fig. 5.3, line 5) or participate() (Fig. 5.3, line 6) is

ineffective. Given a system state c ∈ R, we say that c includes no notification if none

of its active processors stores a notification and there are no notifications in transit

between any two active processors.

Lemma 5.3.15 (Eventually there is an VNER part). Let R be an admissible execution

w.r.t. participants of Algorithm 5 (which may include explicit delicate or spontaneous

replacements). (1) Within O(N) asynchronous rounds, the system reaches a state c ∈ R

after which an VNER part, RVNER, starts. (2) After c, the system reaches, within O(N)

asynchronous rounds, a state cgoodNtf ∈ RVNER that has either (2.1) no notifications, i.e.,

NA(cgoodNtf) = ∅ or (2.2) exactly one notification in the system, i.e., NA(cgoodNtf) = {n},

which becomes within O(1) asynchronous rounds the system configuration after reaching a

state in which invariants (1) to (7) of Lemma 5.3.8 hold in cgoodNtf.

Proof. The proof looks into two cases. In the first case, we assume that R has a prefix

R′ of O(N) asynchronous rounds in which there is at least one step ax that includes

a call to the function estab(set) (Fig. 5.3, line 5). The proof of this case shows that

within O(1) asynchronous rounds from ax, the system reaches VNER execution part

that allows the satisfaction of the conditions in parts (2) of this lemma within O(N)

asynchronous rounds. The second case assumes that no such step ax effectively

116

Ioa
nn

is
Marc

ou
llis

calls the function estab(set) (Fig. 5.3, line 5) during R′. This assumption basically

means that R′ is an VNER execution and the rest of the proof of this case follows the

arguments that we give the first case. Therefore, the reminder of the proof focuses

only on the first case and assume that R has a prefix R′ ofO(N) asynchronous rounds

in which there is at least one step ax in which a processor calls the function estab(set)

(Fig. 5.3, line 5).

Let c′′ ∈ R be a system state that occur O(N) asynchronous rounds after the first

effective step ax ∈ R′ that includes a call to the function estab(set). We denote by R′′

the prefix of R that ends at c′′. Let R′′′ be the prefix of R that extends R′′ by O(1)

asynchronous rounds. Recall that the proof is done if during R′′′ the system either

(i) reaches a state that encodes no notifications, i.e., NA(cgoodNtf) = ∅, (ii) includes a

step in which there is a call to the function con f igSet(⊥) , or (iii) includes an VNER

part. We show that R′′′ includes one of these cases.

Suppose that ∃c~ ∈ R′′ : c~ , c′′ ∧ 〈1, false〉 ∈ NA(c~) ∧ (〈0, false〉 ∈ NA(c~)

∨〈2, •〉 ∈ NA(c~)). It is implied by Corollary 5.3.14 that either (i) in the last

system state c′′ of R′′, it does not hold that 〈1, false〉 ∈ NA(c′′) ∧ (〈0, false〉 ∈

NA(c′′) ∨ 〈2, •〉 ∈ NA(c′′)), or (ii) R′′′ includes a step in which there is a call to the

function con f igSet(⊥) (line 6). In both cases the proof is done, because it satisfies

part (2.1).

Suppose that @c~ ∈ R′′ : 〈1, false〉 ∈ NA(c~). In this case, R′′ is an VNER part of

execution R, because it cannot be that R′′ includes an effective step that includes a

call to the function estab(set) (Fig. 5.3, line 5).

Suppose that @c~ ∈ R′′ : (〈0, •〉 ∈ NA(c~) ∨ 〈2, •〉 ∈ NA(c~)). This case implies that

∀c~ ∈ R′′ : (〈1, •〉 ∈ NA(c~)). This means that prpi[j] = 〈1, •〉, where pi, p j ∈ I are

active participants in R. Therefore, R′′ is an VNER part of execution R (by definition

of VNER).

In the latter two cases, we showed that R′′ is a VNER part of R (which means

R′′′ includes a VNER part). For these cases, the proof of part (2) follows from

Lemma 5.3.8 and Theorem 5.3.9. �

Theorem 5.3.16 demonstrates the eventual absence of stale information, which

implies that Algorithm 5 convergences eventually, i.e., it is self-stabilizing.

Theorem 5.3.16 (Convergence). Let R be an admissible execution of Algorithm 5. Within

O(N) asynchronous rounds the system reaches a state c ∈ R in which none of the invariants

117

Ioa
nn

is
Marc

ou
llis

of type-1, type-2, type-3 and type-4 of stale information hold thereafter.

Proof. Lemma 5.3.1 shows that there is no type-1 stale information eventually (O(1)

asynchronous rounds). Lemma 5.3.2 shows that there is no type-2 stale informa-

tion eventually (O(1) asynchronous rounds). Lemmas 5.3.8 and 5.3.15 say that the

system either reaches a state in which there are no notifications or there is at most

one notification (for which invariants (1) to (7) of Lemma 5.3.8 hold) that later be-

comes the system configuration. Note that both cases imply that there is no type-3

stale information eventually (O(N) asynchronous rounds). Lemma 5.3.7 shows that

eventually there is no type-4 stale information (O(1) asynchronous rounds). �

Theorem 5.3.17 (Closure). Let R be an execution of Algorithm 5. Suppose that execution

R starts from a system state, c, that includes no stale information. (1) For any system state

c ∈ R, it holds that c includes no stale information. Suppose that the step that immediately

follows c includes a call to estab(). (2) The only way that set becomes a notification is via a

call to estab(set) (Fig. 5.3, line 5) and the only way that a processor becomes a participant

is via a call to participate() (Fig. 5.3, line 6). (3) If notifications exist, the configuration is

replaced within O(N) asynchronous rounds.

Proof. The proof essentially follows from established results above.

Part (1). Since there is no stale information in the system state that immediately

proceeds c, there is no stale information in c. This follows from a close investigation

of the lines that can change the system state in a way that might introduce stale

information; the most relevant lines are the ones that deal with notifications (line 3

and lines 5 to 12) and new participants (line 16). Thus, the proof is completed via

Lemma 5.3.15 as well as parts (2) and (3) of this proof.

Part (2). This is immediate from lines 5 and 6 (of Fig. 5.3).

Part (3). It is not difficult to see that R includes an RVNER part (Lemma 5.3.15, Part

(1)). Then, the proof completes by applying Lemma 5.3.8 and Theorem 5.3.9 as

well as 5.3.15 twice: Once for showing the selection of a single notification during

phase 1 (before moving to phase 2), and the second time for showing that the

selected notification replaces the quorum configuration (before returning to phase

0). Specifically, Lemma 5.3.15 says that the conditions for applying Lemma 5.3.8

holds until returning to phase 0, and Theorem 5.3.9 bounds the time that it takes

(O(N) asynchronous rounds). �

118

Ioa
nn

is
Marc

ou
llis

5.4 Reconfiguration Management

The Reconfiguration Management recMA layer shown in Algorithm 6 bears the

weight of initiating or triggering a reconfiguration when (i) the configuration majority

has been lost, or (ii) when the prediction function evalCon f () indicates to a majority

of members that a reconfiguration is needed to preserve the configuration. To

trigger a reconfiguration, Algorithm 6 uses the estab(set) interface with the recSA

layer. In this perspective, the two algorithms display their modularity as to their

workings. Namely, recMA controls when a reconfiguration should take place, but

the reconfiguration replacement process is left to recSA, which will install a new

configuration also trying to satisfy recMA’s proposal of the new configuration’s

set. Several processors may trigger reconfiguration simultaneously, but, by the

correctness of Algorithm 5, this does not affect the delicate reconfiguration, and by

the correctness of Algorithm 6, each processor can only trigger once when this is

needed.

In spite of using majorities, the algorithm is generalizable to other (more complex)

quorum systems, while the prediction function evalCon f () can be either very simple,

e.g., asking for reconfiguration once 1/4th of the members are not trusted, or more

complex, based on application criteria or network considerations. More elaborate

methods may also be used to define the set of processors that Algorithm 6 proposes

as the new configuration. Our current implementation, aiming at simplicity of

presentation, defines the set of trusted participants of the proposer as the proposed

set for the new configuration.

5.4.1 Algorithm Description

Preserving a majority. The algorithm strives to ensure that a majority of the con-

figuration is active. Although majority is a special case of a quorum, the solution

in extensible to host other quorum systems that can be built on top of the con f ig

set, in which case, the algorithm aims at keeping a robust quorum system where

robustness criteria are subject to the system’s dynamics and application require-

ments. In this vein, the presented algorithm employs a configuration evaluation

function evalCon f () used as a black box, which predicts the quality of the current

con f ig and advises any participant whether a reconfiguration of con f ig needs to take

119

Ioa
nn

is
Marc

ou
llis

Algorithm 6: Self-stabilizing Reconfiguration Management; code for proc. pi

1 Interfaces: evalCon f () returns True/False on whether a reconfiguration is required or not by
using some (possibly application-based) prediction function. The rest of the interfaces are
specified in Algorithm 5. allowReco() returns True if a reconfiguration is not taking place, or
False otherwise. estab(set) initiates the creation of a new configuration based on the set.
getCon f ig() returns the current local configuration.

2 Variables: needRecon f [] is an array of size at most N, composed of booleans {True,False},
where needRecon fi[j] holds the last value of needRecon f j[j] that pi received from p j as a result of
exchange (lines 19 and 20) and needRecon f is an alias to needRecon fi[i], i.e., of pi’s last reading
of evalCon f (). Similarly, noMaji[] is an array of booleans of size at most N on whether some
trusted processor of pi detects a majority of members that are active per the reading of line 12.
noMaji[j] (for i , j) holds the last value of noMaj j[j] that pi received from p j. Finally,
prevCon f ig holds pi’s believed previous con f ig.

3 macro core() =
⋂

p j∈FDi[i].part FD[j].part;

4 macro f lushFlags() = {foreach p j ∈ FD[i] do needRecon f [j]← (noMaj[j]← False)};

5 Do forever begin
6 if pi ∈ FD[i].part then
7 curCon f = getCon f ig();
8 needRecon f [i]← (noMaj[i]← False);
9 if prevCon f ig < {curCon f ,⊥} then f lushFlags();

10 if allowReco() = True then
11 prevCon f ig← curCon f ;

12 if (|{p j ∈ curCon f ∩ FD[i]}| < (|curCon f |
2 + 1)) then noMaj[i]← True;

13 if (noMaj[i] = True) ∧ (|core()| > 1) ∧ (∀pk ∈ core() : noMaj[k] = True) then
14 estab(FD[i].part);
15 f lushFlags();

16 else if (needRecon f [i]← evalCon f (curCon f)) ∧

(|{p j ∈ curCon f ∩ FD[i] : needRecon f [j] = True}| > |curCon f |
2) then

17 estab(FD[i].part);
18 f lushFlags();

19 foreach p j ∈ FD[i].part do send(〈noMaj[i],needRecon f [i]〉);

20 Upon receive m from p j do if pi ∈ FD[i].part then 〈noMaj[j],needRecon f [j]〉 ← m;

place. Given that local information is possibly inaccurate, we prevent unilateral

reconfiguration requests –that may be the result of inaccurate failure detection– by

demanding that a processor must first be informed of a majority of processors in the

current con f ig that also require a reconfiguration (lines 16–18).

Majority failure. On the other hand, we ensure liveness by handling the case where

either the prediction function does not manage to prevent the collapse of a majority,

or an initial arbitrary state lacks a majority but there are no con f ig inconsistencies that

can trigger a delicate reconfiguration (via the estab() interface). Lines 13–15 tackle this

case by defining the core of a processor pi to be the intersection of the failure detector

120

Ioa
nn

is
Marc

ou
llis

readings that pi has for the processors in its own failure detector, i.e., ∩p j∈FDi[i]FDi[j].

If this local core agrees that there is no majority, i.e. that noMaj = True, then pi can

request a new con f ig. As a liveness condition to avoid triggering a new con f ig due

to FD inconsistencies when there actually exists a majority of active configuration

members, we place the majority-supportive core assumption on the failure detectors, as

seen in Definition 5.4.1 below. Simply put, the assumption requires that if a majority

of the current configuration is active, then the core of every processor pt that is a

participant, contains at least one processor ps with a failure detector supporting that

a majority of con f ig is trusted. Furthermore, pt has knowledge that ps can detect a

majority of trusted members.

Detailed description. The algorithm is essentially executed only by participants as

the condition of line 6 suggests. Line 7 reads the current configuration, while line 8

initiates the local noMaji[i] and needRecon fi[i] variables to False. If a change from the

previous configuration has taken place, the arrays noMaj[] and needRecon f [] are reset

to False (line 9). The algorithm proceeds to evaluate whether a reconfiguration is

required by first checking whether a reconfiguration is already taking place (line 10)

through the allowReco() interface of recSA. If this is not the case, then it checks

whether it can see a trusted majority of configuration members, and updates the

local noMaji[i] boolean accordingly (line 12). If noMaji[i] = True, i.e., no majority

of members is active, and line 13 finds that all the processors in its core also fail

to find a majority of members, then pi can trigger a reconfiguration using estab(set)

with the current local set of participants as the proposed new configuration set

(lines 14–15). The needRecon fi[] and noMaji[] arrays are again reset to False to

prevent other processors that will receive these to trigger. Line 16 checks whether

the prediction function evalCon f ig() suggests a reconfiguration, and if a majority of

members appears to agree on this, then the triggering proceeds as above. Participants

continuously exchange their noMaj and needRecon f variables (lines 19–20).

5.4.2 Correctness

The Reconfiguration Management algorithm is responsible for triggering a reconfig-

uration when either a majority of the members crash or whenever the (application-

based) con f ig evaluation mechanism evalCon f ig() suggests to a members’ majority

121

Ioa
nn

is
Marc

ou
llis

that a reconfiguration is required. The correctness proof ensures that, given the

assumption of majority-supportive core holds, Algorithm 6 can converge from a

transient initial state to a safe state, namely, that after recMA has triggered a recon-

figuration, it will never trigger a new one before the previous one is completed and

only if a new event makes it necessary.

Terminology. We use the term steady con f ig state to indicate a system state in an

execution where a con f ig has been installed by Algorithm 5 at least once, and the

system state is conflict-free. A legal execution R for Algorithm 6, refers to an execution

that converges to a steady con f ig state. Moreover, a reconfiguration in R takes place

only when a majority of the configuration members fails, or when a majority of the

members requires a reconfiguration. The system remains conflict-free and moves

to a new steady con f ig state with a new configuration. To guarantee progress we

suggest the following liveness assumption.

Definition 5.4.1 (Majority-supportive core). Consider a steady con f ig state in an ex-

ecution R where the majority of members of the established con f ig never crashes. The

majority-supportive core assumption requires that every participant pi with a local core

∩p j∈FDi[i]FDi[j] containing more than one processor, must have a core with at least one active

participant pr whose failure detector trusts a majority of the con f ig, and for such a processor

noMaji[r] = False throughout R.

Remark: We say that Algorithm 5 is triggered when a reconfiguration is initialized.

By Algorithm 6, the only way that Algorithm 6 can cause a triggering of Algorithm 5

is through a call to the estab() interface with Algorithm 5 on lines 14 and 17.

Proof Overview. The correctness of recMA first considers local stale informa-

tion and then stale information in the communication are removed (Lemmas 5.4.1

and 5.4.2). It then proceeds to prove that given the majority supportive core assump-

tion, if there is a configuration majority, this is not abruptly overthrown, and if the

majority has collapsed, or the evaluation function requires a view change, this even-

tually takes place (Lemmas 5.4.3 and 5.4.4). Lemma 5.4.5 is vital since it guarantees

that this layer does not force reconfiguration requests while a reconfiguration takes

place at the lower layer. Theorem 5.4.6 concludes the proof.

122

Ioa
nn

is
Marc

ou
llis

Lemma 5.4.1. Starting from an arbitrary initial state of an execution R, where stale infor-

mation exists, then, within O(N) asynchronous rounds, Algorithm 6 converges to a steady

con f ig state where local stale information and stale information in the communication links

is removed.

Proof. Consider a processor pi with an arbitrary initial local state where stale infor-

mation exists (1) in the program counter, (2) in noMaji[•] and needRecon fi[•] and (3)

in prevCon f .

Case 1 – Stale information may initiate the algorithm in a line other than the first of

the pseudocode. If pi’s program counter starts after line 10 and if a reconfiguration is

taking place, then Algorithm 6 may force a second reconfiguration while Algorithm 5

is already reconfiguring. The counter for example could start on lines 14 and 17.

This would force a brute reconfiguration. This triggering cannot be prevented in

such a transient state, but we note that any subsequent iteration of the algorithm is

prevented from accessing estab() lines (as in Remark 5.4.2) before the reconfiguration

is finished.

Case 2 – We note that after a triggering as the one described above, the fields of arrays

noMaji[•] and needRecon fi[•] are set to False. Moreover, in every iteration noMaji[i]

and needRecon fi[i] are set to False. During a reconfiguration these values are prop-

agated to other processors and pi receives their corresponding values. Within O(1)

asynchronous rounds, pi receives noMaj j[j] (needRecon f j[j]) from some participant

p j, and overwrites any transient values. Lemma 5.4.2 bounds the number of recon-

figurations that may be triggered by corruption that is not local, i.e., that emerges

from corrupt noMaj (needRecon f) values that arrive from the communication links.

Case 3 – We anticipate that any reconfiguration returns a different configuration than

the previous one. In a transient state though, the previous configuration (prevCon f ig)

and the current configuration curCon f may coincide. This ignores the check of line 9

that sets noMaji[•] and needRecon fi[•] to False upon the detection of a reconfiguration

change. This forms a source of a potential unneeded reconfiguration. Nevertheless,

prepCon f ig receives the most recent configuration value on every iteration of line 11

and thus the above may only take place once throughout R per processor.

Eliminating these sources of corruption, we reach a steady con f ig state without

local stale information. Note that the result holds within just O(1), but since the

reconfiguration service recSA layer requiresO(N), the worse case analysis isO(N). �

123

Ioa
nn

is
Marc

ou
llis

Lemma 5.4.2. Consider a steady con f ig state c in an execution R where the majority-

supportive core assumption holds throughout, the majority of con f ig processors never crash

and there is never a majority of members supporting evalCon f () = True. There is a bounded

number of triggerings of Algorithm 5 that are a result of stale information, namelyO(N2cap).

These are removed within O(N) asynchronous rounds.

Proof. By Remark 5.4.2, the only way that the algorithm may interrupt a steady

con f ig state, is by reaching lines 14 and 17 that have a call to estab(). We assume that

some member pt ∈ con f ig has triggered Algorithm 5 at some system state ct ∈ R,

and we examine whether and when this state is attainable from c. We note that in a

complete iteration of Algorithm 6, pt must have no reconfiguration taking place while

triggering, since this is a condition to reach the above mentioned lines imposed by

line 10. We first prove that if there is a triggering it must be due to initial corrupt

information and then argue that this can take place a bounded number of times.

Case 1 – The reconfiguration was initiated by line 14. This implies that the condition

of line 13 is satisfied, i.e., at some system state ct ∈ R, pt has local information

that satisfies (noMajt[t] = True) ∧ (|coret()| > 1) ∧ (∀pk ∈ coret() : noMajt[k] = True).

Condition (noMajt[t] = True) may be true locally for pt, only due to failure detector

inaccuracy, because, by the claim, the majority of processors in the con f ig never fails

throughout R. Condition |coret()| > 1 suggests that pt has at least two participant

processors in its core (without requiring pt ∈ coret()). By the majority-supportive core

assumption and the above, we are guaranteed that∃ps ∈ coret() : |FDs[s]∩con f igs[s]| >
|con f igs[s]|

2 throughout R and noMajt[s] = True ⇐⇒ noMajs[s] = True. But in this case,

noMajs[s] = False and noMajt[s] = True which contradicts the majority supportive

assumption. We thus reach to the result.

Note that noMajt[s] = True can reside in pt’s local state or in the communication

links that may carry stale information. Because of the boundedness of our system,

we can have one instance of corrupt noMajt[s] = True in pt’s local state, and cap

instances in the communication link. I.e., such information may cause a maximum

of 1 + cap ·N triggerings per processor. Any processor that enters the system cannot

introduce corrupt information to the system due to the data-links protocols and the

joining mechanism. Thus majority supportive assumption is also attainable even

when starting from arbitrary states.

Case 2 – The reconfiguration procedure was triggered by line 16. This implies that

124

Ioa
nn

is
Marc

ou
llis

for pt, both conditions were true, i.e., (a) (needRecon ft ← evalCon ft(con f igt)) and (b)

|{p j ∈ con f igt ∩ FDt : needRecon ft[j] = True}| > |con f igt|

2 . We note that the needRecon ft[t]

variable is always set to False upon the beginning of every iteration. Thus the

local function evalCon ft() due to pt’s failure detector and other application criteria

explicitly suggested a reconfiguration in the specific iteration in which pt triggered the

reconfiguration. From the claim, there is no majority of processors in the con f ig that

supports a reconfiguration, even at the time when pt triggered the reconfiguration.

Thus needRecon ft[s] = True must reside in pt’s local state and in the communica-

tion links. We can have one instance of corrupt needRecon ft[s] = True in pt’s local

state, and cap instances in the communication links. I.e. such information may

cause a maximum of 1 + cap ·N triggerings per processor. Note that after every such

triggering, the source of triggering is eliminated by reseting needRecon f ig[] to False

(lines 9, 15 and 18). From this point onwards any processor that enters the system

cannot by the data-links and the joining mechanism introduce corrupt information

to the system.

So the possible triggerings in the system attributed to stale information are con-

fined to O(N2cap) and by Algorithm 5 guarantees we always reach a steady con f ig

state within O(N) asynchronous rounds. These are eliminated within O(1) asyn-

chronous rounds by the definition of an asynchronous round and the reliable FIFO

data links. �

Let csa f e denote a safe system state where all possible sources of triggerings at-

tributed to the arbitrary initial state have been eliminated. We denote an execution

starting from csa f e as Rsa f e.

Lemma 5.4.3. Consider an execution Rsa f e where the majority-supportive core assumption

holds throughout, the majority of con f ig processors never crash and there is never a majority

of the con f ig with local evalCon f () = True. This execution is composed of only steady

con f ig states.

Proof. By Lemma 5.4.2 there is a bounded number of triggerings due to initial arbi-

trary information. Given that we have reached a safe system state, these triggerings

do not occur. The last con f ig change, has by line 9 reset all the fields in noMaj[]

and needRecon f [] to False and this holds for all participants (even if they are not

members of the con f ig). By our assumption a majority of processors does not crash.

125

Ioa
nn

is
Marc

ou
llis

The majority-supportive core assumption states that throughout Rsa f e there exists at

least one processor pi in the core of pt that always has noMaji[i] = False and pt has

noMajt[i] = False . Thus the condition of line 13 can never be true, and thus there

is no iteration of the algorithm that can reach line 14. Similarly, since no majority of

processors in the con f ig change to needRecon f = True in this execution, and the local

states are exchanged continuously over the token-based data-link, line 17 cannot be

true. Thus any system state in R is a steady con f ig state. �

Lemma 5.4.4. Starting from an Rsa f e execution, Algorithm 6 guarantees that if (1) a majority

of con f ig members collapse or if (2) a majority of members require a reconfiguration as per

the prediction function, within O(1) asynchronous rounds a reconfiguration takes place.

Proof. We consider the two cases separately.

Case 1 – If a majority of the members collapses, then based on the failure detector’s

correctness, a non-crashed participant pt will eventually stop including a majority

of con f ig members in its failure detector and participants (FD.part) set. We re-

mind that rejoins are not permitted. Since the majority-supporting core assumption

does not apply in this case, any processor in pt’s core must eventually reach to the

same conclusion as pt. Every such participating processor ps ∈ coret() propagates

noMajs[s] = True in every iteration. By the assumption that a packet sent infinitely

often arrives infinitely often, any processor such as pt collects a noMaj = True from

every member like ps core and thus within O(1) asynchronous rounds enables a

reconfiguration.

Case 2 – The arguments are similar to Case 1. The difference lies in that the pro-

cessor pt must within O(1) asynchronous rounds receive needRecon f ig = True from

a majority of con f ig members (rather than the local core processors) before it moves

to trigger a reconfiguration. �

Lemma 5.4.5. Starting from an Rsa f e execution, any triggering of Algorithm 5 (lines 14

and 17) related to a specific event (majority collapse or agreement of majority to change

con f ig), can only cause a one per participant concurrent trigger. After the con f ig has been

established, no triggerings that relate to this event take place.

Proof. We consider the two cases that can trigger a reconfiguration (Remark 5.4.2),

and assume that pt is the first processor to trigger estab(). Assume first that pt has

called Algorithm 5 two consecutive times, without a con f ig being completely estab-

lished between the two calls. Note that a processor can access estab() in either of

126

Ioa
nn

is
Marc

ou
llis

lines 14 or 17 but not both in a single iteration. A call to estab() initiates a recon-

figuration and thus any subsequent check of pt in line 10 returns False from pt’s

recSA layer. Thus pt cannot access lines 14 or 17 until the reconfiguration has been

completed. This implies that pt can never trigger for a second time unless the new

con f ig has been established. Note that if pt triggers, another processor satisfying the

conditions of line 10 may trigger concurrently, but is also subject to the trigger-once

limitation. On the other hand, due to the exchange of information in Algorithm 5,

when one processor triggers other processors eventually find their proposals and

join the reconfiguration. So not every single processor’s Reconfiguration Manage-

ment module needs to trigger. Convergence to a single con f ig is guaranteed by

Algorithm 5.

We conclude by indicating that lines 15 and 18 reset both arrays noMajt[] and

needRecon ft[] immediately after estab(). Thus the triggering data used for this event

are not used again. Moreover, upon configuration change, the same arrays are

again set to False for the processors that have not triggered Algorithm 5 themselves

through Algorithm 6. We thus reach a new steady con f ig state, and no more trigger-

ings can take place due to the same event that had caused the reconfiguration. �

Theorem 5.4.6. Let R be an execution starting from an arbitrary system state. Within

O(N) asynchronous rounds, Algorithm 6 guarantees that R reaches an execution suffix Rsa f e

which is a legal execution.

Proof. By Lemmas 5.4.1 and 5.4.2, we are guaranteed that we reach a safe system

state csa f e where stale information from the arbitrary initial state cannot force a

triggering of new con f ig. This is the suffix Rsa f e. Lemma 5.4.3 ensures that after we

have reached csa f e, and until a new triggering takes place that is caused by a loss of

majority or a majority of the con f ig deciding to reconfigure, the current con f ig will

not be changed for any other reason. Lemma 5.4.5 guarantees that after a change, we

return to a steady con f ig state. Hence, withinO(N) asynchronous rounds required by

Algorithm 5, and anotherO(1) asynchronous rounds, we reach to the legal execution

Rsa f e . �

127

Ioa
nn

is
Marc

ou
llis

5.5 Joining Mechanism

Every processor that wants to become a participant, uses the snap stabilizing data-

link protocol (see Section 5.1) so as to avoid introducing stale information after it

establishes a connection with the system’s processors. Algorithm 5 enables a joiner to

obtain the agreed con f ig when no reconfiguration is taking place. Note that, in spite

of having knowledge of this con f ig, a processor should only be able to participate in

the computation if the application allows it. In order to sustain the self-stabilization

property, it is also important that a new processor initializes its application-related

local variables to either default values or to the latest values that a majority of the

configuration members suggest. The joining protocol, Algorithm 7, illustrates the

above and introduces joiners to the system, but only as participants and not as con f ig

members.

The critical difference between a participant and a joiner is that the first is allowed

to send configuration information via the recSA layer, whereas the latter may only

receive.

5.5.1 Algorithm description

The algorithm is executed by non-participants, while participants only execute the

communication side (line 18).

The joiner’s side. Upon a call to the join() procedure, a joiner sets all the entries

of its pass[] array to False (line 5) and resets application-related variables to default

values, (lines 8). The processor then enters a do-forever loop, the contents of which

it executes only while it is not a participant (line 7). A joiner then enters a loop in

which it tries to gather enough support from a majority of configuration members.

In every iteration, the joiner sends a “Join” request (line 14) and stores the True/False

responses by any configuration member p j in pass[j], along with the latest application

state that p j has send. If a majority of active members has granted a pass = True and

there is no reconfiguration taking place, then participate() is called to allow the joining

processor to become a participant.

The participant’s side. A participant only executes the do–forever loop (line 6),

but none of its contents since it always fails the condition of line 7. Participants

128

Ioa
nn

is
Marc

ou
llis

Algorithm 7: Self-stabilizing Joining Mechanism; code for processor pi

1 Interfaces. The algorithm uses following interfaces from Algorithm 5. allowReco() returns True
if a reconfiguration is not taking place. participate() makes pi a participant. getCon f ig() returns
the agreed configuration from Algorithm 5 or ⊥ if reconfiguration is taking place. The
passQuery() interface to the application, returns a pass, i.e., a Boolean True/False in response to
a request to grant a joining permission to a joining processor.

2 Variables. state[] is array of containing application states, where state[i] represents pi’s local
variables and state[j] the state that pi most recently received by p j. pass[] collects all the passes
that pi receives from configuration members.

3 Functions. resetVars() initializes all variables related to the application based on default
values. initVars() initializes all variables related to the application, based on the states
exchanged with the configuration members.

4 procedure join() begin
5 foreach p j ∈ FD do pass[j]← False;
6 do forever begin
7 if pi < FD[i].part then
8 resetVars();
9 repeat

10 let comCon f = getCon f ig();

11 if allowReco() ∧ (|{p j ∈ comCon f ∩ FD[i] : pass[j] = True}| > |comCon f |
2) then

12 initVars();
13 participate();

14 foreach p j ∈ FD[i].part do send(“Join”);

15 until pi ∈ FD[i].part;

16 upon receive (“Join”) from p j ∈ FD \ FD[i].part do begin
17 if pi ∈ con f ig ∧ allowReco() = True then send(〈passQuery(), statei〉);

18 upon receive m = 〈pass, state〉 from p j ∈ FD do if pi < FD[i].part then 〈pass[j], state[j]〉 ← m;

however respond to join requests (line 17) by checking whether a joining processor

has the correct configuration, and whether a reconfiguration is not taking place, as

well as if the application can accept a new processor. If the above are satisfied, then

the participant sends a pass = True and its applications’ state, otherwise it responds

with False.

5.5.2 Correctness

The term legal join initiation indicates a processor’s attempt to become a participant

by initiating Algorithm 7 on line 4, and not on any other line of the join() procedure.

If the latter case occurred it would indicate a corruption to the program counter.

Lemma 5.5.1. Consider an arbitrary initial state in an execution R. There are up to

N possible instances of processors introducing corruption to the system. Within O(N)

asynchronous rounds we reach a corruption-free execution suffix of R.

129

Ioa
nn

is
Marc

ou
llis

Proof. Processors may be found with an uninitialized or falsely initialized local state

due to a transient fault in their program counter which allowed them to reach

line 12 without a legal join initiation. In an arbitrary initial state, any processor

with stale information may manage to become a participant. There can be up to

N such processors, i.e., the maximal number of active processors. Nevertheless, a

processor trying to access the system after this, is forced to start the execution of

join() from line 4. From this, and the fact that stale information is removed within

O(N) asynchronous rounds (via Algorithm 5), the result follows. �

Lemma 5.5.2. Consider any processor pi performing a legal join initiation. In the existence

of other participants in the system, this processor never becomes a participant through the

join() procedure during reconfiguration.

Proof. We consider the situation where participants exist and reconfiguration is tak-

ing place, thus allowReco() is False. In order for pi to become a participant, it needs

to gather a pass from at least a majority of the configuration members. This can only

happen if a configuration is in place, and if each of these members is not reconfig-

uring. Thus if a pass is granted, it must be that during the execution more than a

majority of True passes have arrived at pi. Note that since the propagation of passes

is continuous if a reconfiguration starts, then passes can also be retracted. Finally,

since getting a majority of passes can coincide with the initialization of a reconfigu-

ration, we note that due to asynchrony this processor is considered a participant of

the previous configuration, since it has full knowledge of the system’s state and is

also known by the previous configuration members. �

Lemma 5.5.3. Consider an execution R where Lemma 5.5.2 holds, such that during R, a

processor p becomes a participant. Then p cannot cause a reconfiguration, unless there exists

a majority of the configuration set, or if there is no majority of the con f ig that requires a

reconfiguration.

Proof. We assume that p enters the computation with a legal join initiation. If p

triggers a reconfiguration in the absence of the above two cases, then this implies

that p has managed to become a participant while carrying corrupt information

which have triggered a reconfiguration either directly or indirectly (through Algo-

rithm 6). Corruption can either be local or in the communication links. Since the

snap-stabilizing data-link protocol runs before the processor calls join(), this removes

130

Ioa
nn

is
Marc

ou
llis

data-link corruption for newly joining participants. We turn to the case of a corrupt

local state. By the legal join initiation assumption, p must have reset its state on

line 8. Before joining, the majority of members must acknowledge the latest state

of p and p initiates its variables to legal values. It is therefore impossible that p can

become a participant while it carries a corrupt state. Therefore, p cannot cause a

reconfiguration. �

Theorem 5.5.4. Consider an arbitrary initial state of an execution R of Algorithm 7. Within

O(N) asynchronous rounds the system reaches an execution suffix in which every joining

processor p will continue trying to join a participant if the application allows it. Additionally,

this new processor cannot trigger a delicate reconfiguration before becoming a participant

and cannot trigger a delicate reconfiguration without majority loss or majority agreement

after it becomes a participant.

Proof. By Lemma 5.5.1, within O(N) asynchronous rounds the system reaches an

execution suffix where all joining processors enter the computation with a legal join

initiation and a configuration installed and known. We assume that a reconfigura-

tion is not taking place, that messages sent infinitely often are eventually received

infinitely often, and that the application interface invoked by the participating pro-

cessors allows p to join. Then p will eventually have a failure detector including a

majority of member processors and will send its “Join” request to a majority (line 14).

Since there is no reconfiguration taking place, p must learn the current configura-

tion from Algorithm 5, which should agree with the con f ig held by other processors.

Thus each member must grant a pass to p by sending True through line 17. Therefore,

p will gather a majority supporting its entrance and will eventually satisfy line 11.

This allows it to reach line 13 and thus p becomes a participant. Notice that if the

application does not give permission of entry via passQuery(), then p cannot become

a participant unless this changes, but p will continue sending requests. Finally,

Lemma 5.5.3 ensures that the new participant does not cause perturbations to the

current configuration, and hence the result. �

5.6 Applications of the Reconfiguration Scheme

Several self-stabilizing algorithms for the message-passing system, are designed

for a static membership set that may suffer crash failures. Our reconfiguration

131

Ioa
nn

is
Marc

ou
llis

scheme allows for such applications to endure more adverse membership dynamics.

When a configuration exists and no reconfiguration is taking place, the applications

work in the same way as in their static version, since they run their service on

the configuration set in the same way as in the original static setting. A main

consideration, however, is what takes place during a reconfiguration, and how the

service continues after this event.

A general framework for adapting the static algorithm to form a reconfigurable

one, involves developing an interface between the application algorithm that defines

what takes place during a reconfiguration and after the reconfiguration. Namely,

how is the algorithm adapted to work with the new set of processors (of the new

configuration) that it will be using to provide service. This would involve changes

in the size and content of data structures and the set of processors with which it

communicates. We note that using this framework, the algorithms are suspending,

namely, they do not provide service during reconfiguration, albeit we believe that

it is possible (under certain conditions) to find more elaborate frameworks that are

able to sustain service during reconfiguration.

In general, it remains an interesting open question whether a self-stabilizing ser-

vice, such as reconfigurable SMR or distributed shared memory that does not sus-

pend, is possible. In [93], Birman et al. discuss the tradeoffs of suspending and

non suspending reconfiguration (such as the ones provided in [17] and [18]). It is

argued, that suspending services provide simpler solutions, and may be enhanced

for more efficient reconfiguration decisions so that the time for reconfiguration and

state transfer before reconfiguration can be reduced. It is also part a future work

to provide the complete details of a framework that will allow the most modular

employment of the reconfiguration scheme by applications. We now briefly suggest

three applications that can benefit from our scheme.

Reconfigurable Labeling and Counter Increment Algorithms. Recall the

practically-self-stabilizing labeling scheme and counter algorithm of Section 4.3.

We can now adjust that solution to benefit from our reconfiguration mechanism. We

let the configuration members run the service. The configuration runs the labeling

algorithm and maintains a globally maximal label and counter. Whenever a new

counter is needed, then a member of the configuration runs the cunter algorithm to

provide one greater one. In this way, every configuration that is established can be

132

Ioa
nn

is
Marc

ou
llis

regarded as an instance of the static case of the labeling and counter schemes pre-

sented in Section 4.3. Since the scheme has epochs containing processor identifiers,

configuration members need to take extra care when moving from one configura-

tion to the next. In particular, the label/counter structures and labels/counters that

are moved to the next configuration need to be adjusted to refer only to the new

configuration membership via an interface that can possibly be generalized for any

application.

Reconfigurable Virtually Synchronous State Machine Replication. Recall the

practically-self-stabilizing virtual synchrony algorithm of Section 4.4. The algorithm

is coordinator-based and works on the primary component given the supportive ma-

jority assumption on the failure detectors. This assumption states that a majority

of processors of the (fixed) processor set mutually never suspect some processor

on their failure detectors throughout an infinite execution, given that this processor

does not crash. The proof of Section 4.4 establishes that such a supported proces-

sor eventually becomes the coordinator throughout the execution. A configuration

member can become the coordinator if no coordinator exists, by using the counter

algorithm in order to use the counter as an identifier for its proposed process group.

The proposer with the greatest counter becomes the coordinator. It is possible to

achieve reconfigurable state replication by allowing the coordinator to decide when

should reconfigurations take place, and also describe how the coordinator can con-

trol joins to the computation. The transfer of state from one configuration to the next

is ensured by the introduction of new processors to the system with default (null)

states and by the processors synchronizing their states before the coordinator moves

to call reconfiguration.

Self-stabilizing Reconfigurable Emulation of Shared Memory. Birman et al. [93]

show how a virtually synchronous solution can lead to a reconfigurable emulation of

shared memory. Following this approach, and using self-stabilizing reconfigurable

SMR solution, and the increment counter scheme of Section 4.3, we can obtain

a self-stabilizing reconfigurable emulation of shared memory. Given a conflict-free

configuration, a typical two-phase read and write protocol can be used for the shared

memory emulation. In the event of a delicate reconfiguration, the coordinator of the

virtual synchrony algorithm suspends reads and writes on the register and once

133

Ioa
nn

is
Marc

ou
llis

a new configuration is established, the emulation continues. Virtual synchrony

ensures that the state of the system, in this case the state of the object, is preserved.

In the event of a brute force reconfiguration (e.g., due to transient faults or violation

of the churn rate), the system will automatically recover and eventually reach a legal

execution (in this case the state of the system may be lost).

5.7 Chapter Summary

We presented the first self-stabilizing reconfiguration scheme that recovers automat-

ically from transient faults, such as temporary violations of the predefined churn

rate or the unexpected activities of processors and communication channels, using a

bounded amount of local storage and message size. We discussed how this scheme

could be used for the implementation of several dynamic distributed services, such

as a self-stabilizing reconfigurable virtual synchrony, which in turn can be used for

developing self-stabilizing reconfigurable SMR and shared memory emulation so-

lutions. We use a number of bootstrapping techniques for allowing the system to

always recover from arbitrary transient faults, for example, when the current con-

figuration includes no active processors. We believe that the presented techniques

provide a generic blueprint for different solutions that are needed in the area of self-

stabilizing high-level communication and synchronization primitives, which need

to deal with processor joins and leaves as well as transient faults.

134

Ioa
nn

is
Marc

ou
llis

Chapter 6
Self-Stabilizing Byzantine Fault Tolerance Based

on Failure Detectors

We now proceed to the last part of this thesis. The presented self-stabilizing algo-

rithm is the first to employ failure detectors to address the task of self-stabilizing

BFT replication. Already in Chapter 1 we highlighted the contributions and the

challenges of this task. We now proceed with the specific system settings and the

presentation of the service.

6.1 Specific System Settings and Definitions

As a reminder of Chapter 3, we consider an asynchronous message-passing system

with a fixed set of processors (servers or replicas) P, where |P| = n. At most f = (n −

1)/5 of processors may (intentionally or not) exhibit malicious (Byzantine) behavior,

i.e., fail to follow the protocol (in Section 6.6 we increase this to f = (n − 1)/3). We

denote the set of correct processors by C. We also assume that messages reaching

p j from pi are guaranteed to have originated from pi, unless they are the result of a

transient fault, i.e., a malicious processor pk (where i , j , k) cannot impersonate pi

sending a message to p j [52].

Complexity metric. We use the metric of an asynchronous round of a fair execution

R as in the previous chapter, namely, it is the shortest prefix of R in which every

correct processor pi completed an iteration Ii, and all messages pi sent during Ii were

received.

135

Ioa
nn

is
Marc

ou
llis

6.2 Solution Outline

Our solution is composed of three modules.

View Establishment module: This is the most critical and challenging module. It

is composed of two parts: A coordinator automaton and a series of predicates

(Algorithm 8) called by the automaton (Algorithm 9). It establishes a consistent

view (and state) among n − f replicas, where n is the number of replicas and f an

upper bound on the number of faulty replicas as discussed in Section 3. Managing

convergence to a consistent view in the presence of Byzantine processors injecting

arbitrary messages, and in the existence of other stale information in local states and

communication channels is very demanding and it is impossible without a series

of assumptions [48–51]. To this respect, we present an automaton-based solution

where convergence requires a fragment of the computation to be free of failures (still,

note that even under this constraint, view establishment is very challenging as one

can infer from Section 6.3). In Section 6.6, we relax this constraint.

Replication module: The replication module (given as Algorithm 10) follows the

replication scheme by Castro and Liskov [38], but adjusted to also cope with stale

information. When there appears to be a common view and hence a primary, the

replicas progress the replication. In case an inconsistent replica state is detected (due

to stale information), then this module requests a view establishment and falls back to

a default state. As we prefer to use information theoretically secure schemes, rather

than computationally cryptographic secure schemes based on message signing, we

require that clients contact all replicas. The primary is still the one to decide the order,

but the replicas, through a self stabilizing all-to-all exchange procedure, validate the

requests suggested to be processed by the primary; a request is valid if it has been

seen by a strong majority of correct ((n − f)/2 + f) replicas (see Section 6.4).

Primary Monitoring module: The primary is monitored by a view change mecha-

nism, employing a failure detector (FD) to decide when a primary is suspected and,

thus, a view change is required (Section 6.5). In case the primary is found to im-

pede the replication progress, it is considered faulty and the module proceeds to

change the primary, by installing the next view. We propose an implementation of

a self-stabilizing FD that checks both the responsiveness of the replicas (including

the primary), and whether the primary is progressing the state machine. Our re-

136

Ioa
nn

is
Marc

ou
llis

sponsiveness FD can be seen as a self-stabilizing version of the muteness FD given

in [135] but adapted to an asynchronous environment following the technique dis-

cussed in [136]; our self-stabilizing implementation follows [26].

We follow [38] in their use of views, and we employ a bounded integer counter

in the domain [0,n − 1], so that a processor in view i considers processor pi as the

view’s primary. A processor that suspects the primary pi as faulty and sees some

support for this suspicion by other processors, requests a view change to view i + 1.

Since there are only at most f faulty processors there can be at most f consecutive

faulty primaries before we reach to a non-faulty one, namely in the case where the

identifiers of the faulty processors are consecutive. In case where stale information

(due to transient faults) is detected, the system establishes a view by moving to a

commonly-known system-imposed incorruptible view (e.g., view 0).

The first step towards providing safety is to ensure that a view is in place and

so a primary is known to progress the replication. This is provided by the View

Establishment module (Algorithms 8 and 9). During this process, it is possible that

a processor will adopt a view that it regards as adoptable, or move to request a view

establishment to move to the default fallback view and replica state. When there

appears to be a common view for a majority of processors, called a serviceable view,

then processors progress the replication unless they detect an inconsistent replica

state, in which case, the replication module (Algorithm 10) requires a view establish-

ment while it moves to a fallback default state. The failure detector (Algorithm 11)

suspects the primary based on its responsiveness and on whether it progresses the

replication. If a sufficient number of processors suspect the primary at least once,

a view change process is initiated by the view change (primary monitor) module

implemented as Algorithm 12.

Thresholds. Following the approach of [11], we define important thresholds that

the algorithm uses to take decisions based on n = 5 f +1 processors. We then suggest

how these thresholds can be adjusted for the optimal n = 3 f + 1 (cf. Section 6.6). The

benefit of n = 5 f +1 is that it gives simpler and “cleaner” solutions, and also requires

less correct processors to progress the replication. We establish our view with n − f

processor support which is the maximal support that can be demanded. As such,

a view that was indeed established (and was not the result of an arbitrary initial

state), must be held by at least max{n − 2 f ,n/2} correct processors. A view needs to

137

Ioa
nn

is
Marc

ou
llis

?

6

? ?

6

6

-
�

�
Failure

Detector

Coordinating

Automaton Actions
Predicates and

init()
needReset()
getIn f o()

autoMaxCase()
automaton()

View Change

Replication

getView()
allowService()

getPendReqs()

View Establishment

resetAll()
setIn f o() getView()

getPhs()

Primary Monitoring

suspected()

viewChange() replicaFlush()

noViewChange()
allowService()
repRequestReset()
getView()

Figure 6.1: Modules and Interface functions. (Information flows from A → B .) Within the View

establishment module, the two components Coordinating Automaton, and Predicates and Actions

have the following interfaces: getIn f o() and setIn f o() merely return and change the view. Function

needReset() returns True/False on whether a reset is required, triggering one with resetAll(), which

causes a reset of the view, the coordinating variables (via init) and the replica, via replicaFlush. The

coordinating automaton calls upon the predicates and actions using automaton(•) and checks cases

until it reaches the maximal case with autoMaxCase(). Function getView(j) when called by p j returns

the current view if it can provide service, otherwise>. If it is called by pi with i , j then it returns the

last view reported by p j to pi. Function allowService() returns True if there is a serviceable view and

no view establishment is taking place. In case of detected replica state corruption, the Replication

module via repRequestReset() requests a view reset from the View Establishment module. Interface

replicaFlush() imposes a fallback/default DEF STATE on replication related variables when a reset

of the view takes place. getPendReqs() returns a set of pending requests that need to be executed by

the current primary, or a pending view change request that needs to be executed by the proposed

primary. suspected() returns True if the primary is suspected. noViewChange() returns False when

a view change is taking place. The Primary Monitoring module requests a view increment via

viewChange() when there is sufficient evidence that the primary is not making progress.

provide the following properties: (i) Correct processors should adopt an established

view, i.e., one supported by at least n − 2 f processors. This is an adoptable view. (ii)

A view needs to provide safety for the replication service, so a majority of correct

processors needs to have this view, i.e., we need d(n − f)/2e + f (serviceability). It is

not hard to see that for n = 5 f + 1, the two properties coincide on 3 f + 1. This is not

the case for stronger f , for which the adoptability property is below serviceability

(see Section 6.6.2).

Figure 6.1 depicts the modules, their components, and the interaction between

138

Ioa
nn

is
Marc

ou
llis

them. The View Establishment module is in Section 6.3, and the Replication module

follows in Section 6.4. The Primary Monitoring in Section 6.5.2 includes both the

Failure Detector and the View Change protocol. We conclude with discussion on

optimizations.

6.3 View Establishment

This module provides a unique view to the correct processors, and conducts view

changes upon the instruction of the primary monitoring module (Section 6.5.2). We

start with the algorithm description and continue with the correctness proof.

6.3.1 Algorithm Description

Overview. The module is implemented as a Coordinating Automaton (Algorithm 8)

and View Predicates and Actions (Algorithm 9). Algorithm 8 defines a two-state (or

phase) automaton and imposes a lockstep transition of phases/views among at least

3 f + 1 correct processors in a unison manner. It does so by employing a witnessing

mechanism by which a processor pi may only proceed to a view or phase change if

the following conditions hold:

Cond 1: pi’s view and phase were reported back by 4 f + 1 other processors.

Cond 2: pi has reported back to the other processors that Cond 1 is satisfied.

Cond 3: at least 4 f + 1 processors acknowledge that Cond 2 was reported true

by pi.

Upon finding such a set of witnesses, pi may proceed to perform an action and

change to one of the two phases.

Phase/view transitions are rigorously defined as a series of automaton predicates

and corresponding actions that can be executed only when a processor’s local (view

and phase-related) state is witnessed. These are seen in Algorithm 9. We depict

the phase coordinating automaton of Algorithm 8 in Figure 6.2, and the view es-

tablishment predicates and actions of Algorithm 9 are presented and explained in

Table 6.1.

In a nutshell, Phase 0 is a monitoring phase that checks for view change requests,

view conflicts or replica state conflicts. The latter are detected by the Replication

module. Upon finding a conflict or seeing a view change instruction, and given that

139

Ioa
nn

is
Marc

ou
llis

Prepare next view for adoption.
prec: (witnesSeen()∧ automaton(‘pred’, 0, x)) where x ∈ {0, 1}

eff: automaton(‘act’, 0, x); nextPhs();

phs = 0 phs = 1

Install next view as the current one.
prec: (witnesSeen() ∧ automaton(‘pred’ , 1, 1))

eff: automaton(‘act’, 1, 1); nextPhs();
Monitoring
prec: (¬witnesSeen()) ∨
(witnesSeen() ∧
automaton(‘pred’, 0, 2))
eff: ‘No action’

Wait for witnesses and
next view support.

prec: (¬witnesSeen()) ∨
(witnesSeen() ∧

automaton(‘pred’, 1, 2))
eff: ‘No action’

Reset from phase 1.
prec: (witnesSeen() ∧ automaton(‘pred’ , 1, 3))

eff: resetAll();

Reset from Phase 0.
prec: (witnesSeen() ∧
automaton(‘pred’, 0, 3))
eff: resetAll();

Adopt a new
transit-adoptable view.

prec: (witnesSeen() ∧
automaton(‘pred’ , 1, 0))

eff: automaton(‘act’, 1, 0);
adopt();

Figure 6.2: The view establishment coordinating automaton (Algorithm 8) for processor pi ∈ P. The
automaton(type, phase, case) function assigns different actions to different predicates and actions per
phase. Each predicate with the corresponding action is formally defined in Algorithm 9 (lines 9–26)
and also appears in Table 6.1.

Phase,Case Predicates Action

0, 0
∃v ∈ {viewsi[j]}p j∈P : transitAdoble(j, 0, ‘Follow’) ∧ (vi.cur , v.cur) adopti(v) †

(A view pair that was found to be adoptable is not pi’s view.) (Adopt this view.)

0, 1
vChangei ∧ establishablei(0,‘Follow’) nextViewi(); †

(View change instructed by view primary monitoring.) (Increment view.)

0, 2
transitAdoblei(i, 0,‘Remain’) ∨ (vpi = RST PAIR)

Return ‘No action’
(Monitoring)

0, 3 No transit adoptable view. resetAlli();

1, 0
∃v ∈ {viewsi[j]}p j∈P : transitAdoble(j, 1,‘Follow’) ∧ (vi.cur , v′.cur) adopti(v);

(A view pair that was found to be adoptable and does not match pi’s next

view.)
(Adopt this view.)

1, 1
establishablei(vpi, 1,‘Follow’) establishi(); †

(The view intended to be installed appears establishable.) (Apply changes to view.)

1, 2
transitAdoble(i, 1,‘Remain’)

Return ‘No action’
(Waiting to gather support for vpi.next.)

1, 3 No transit adoptable view. resetAlli();

For all actions where automaton(‘act’, •, •) , ‘No action’, pi also performs a resetVchangei().
† These actions are also escorted with a call to nextPhs(). (Reset actions always
move the phase to 0.)

Table 6.1: The predicates for view transitions by case and phase.

this knowledge is known to the other processors through the witnessing mechanism

that will be described next, the automaton moves to Phase 1 whilst taking appropriate

action. At this point it is preparing to install a new phase and view. In the case of

view change, its current is incremented by one, or in the case of conflicts, it is set to

the default view. Again, upon seeing that this preparing of view change is witnessed

and if this is justified by the views reported by the other processors, the algorithm

installs the new view and moves back to the monitoring Phase 0. Replication is only

possible when a majority of correct processors (i.e., 3 f + 1) with the same view is in

Phase 0.

140

Ioa
nn

is
Marc

ou
llis

Local variables and information exchange. The module uses the variable type vPair,

which is a pair of views 〈cur,next〉, where each view is an integer in {0, 1, . . . ,n−1}∪{⊥}.

Processors have a common hard-coded fallback view DF VIEW (say 0) and a reset

vPair RST PAIR = 〈⊥,DF VIEW〉 used in case of corruption. Processor pi maintains

an array of vPairs called viewsi[n]. The field viewsi[i] is pi’s current vPair. Specifically,

viewsi[i].cur (with alias vpi) is pi’s current view and next only differs to cur if a view

transition is taking place, i.e., the automaton is in Phase 1, and awaits for witnesses to

install viewsi[i].next as its current view. For regular view transitions triggered by the

primary monitoring module, a processor at Phase 1 should have vpi.next = vpi.cur+1.

Via the propagation mechanism of Algorithm 8, line 21, pi sends viewsi[i] to every

p j ∈ P. Correspondingly, when pi, receives a copy of views j[j] from p j (Algorithm 8,

line 22), it stores p j’s vPair in viewsi[j]. When the boolean vChangei is True, this

records a request by the primary monitoring mechanism of pi to increment the view.

The integer phase array phs[n] contains fields with values in {0, 1} indicating

automaton Phases 0 or 1. Field phsi[i] is pi’s phase and phsi[j] is the last reported

phase by p j acquired via the propagation mechanism. Algorithm 8 uses echoi[j] as

an alias of the triple 〈phsi[j], witnessesi[j], viewsi[j]〉. The boolean array witnessesi[n]

stores witnessesi[j] = True if p j has sent a message m j,i.〈•, (phsi, witnessesi, viewsi)〉

to pi, such that phsi = phsi[i] and viewi = viewsi[i]. If m j,i also satisfies witnessesi =

witnessesi[i] = True, then p j is added to the witnesSet set.

Detailed description of the View Establishment Coordinating Automaton (Algo-

rithm 8). This algorithm essentially runs (or “coordinates”) the automaton and is

responsible for the propagation and receipt of information. It imposes a lockstep

movement of processors through the automaton to ensure that they act on “in-

formed” decisions, and that all correct processors can proceed to the next phase/view.

To this end, it uses the following macros and functions.

• Macro echoNoWitni(k) (line 6) checks whether the view and phase that processor

pk reported about pi (i.e., the echo alias echoi[k]), match pi’s view and phase.

• Macro witnesSeeni() (line 7) is correct when the witnesSeti set discussed before

(and also including pi), is of size greater than 4 f .

• Macro nextPhs() (line 8) proceeds the phase from 0 to 1 and from 1 to 0, also

emptying the witnesSet set.

141

Ioa
nn

is
Marc

ou
llis

Algorithm 8: Self-stabilizing View Establishment: Coordinating Automaton;
code for processor pi

1 Variables: phs[i] is an array of phases in {0, 1}where phs[i] is pi’s phase and phs[j] is p j’s last
reported phase.

2 witnesses[n] is an array of Booleans, where witnesses[i] refers to the case where pi observes that
4 f + 1 processors had noticed the most recent value of getIn f oi(i) (that returns views[i]) and
phs[i].

3 witnesSet is a set of processors pk for which pi received witnesses[k] = True.
4 echo[n] is an array where echo[i] is an alias to (views[i], phs[i],witnesses[i]) and echo[j] is the most

recent values that pi received from p j after p j responded to pi with the most recent values it
received from pi.

5 Alias. The processor set P.wi is an alias to X ⊆ P : {p j ∈ witnesSeti : (echoi[i] = echoi[j])} ∪ {pi}.
6 Macros: echoNoWitn(k) = return (〈vpi, phs[i]〉 = 〈echo[k].views, echo[k].phs〉)
7 witnesSeen() = return (witnesses[i] ∧ (|P.wi| ≥ 4 f + 1))
8 nextPhs() = {〈phs[i],witnesses[i],witnesSet〉 ← 〈(phs[i] + 1 mod 2),False, ∅〉; }

9 Interface functions: getPhs(k) = return phs[k];
10 init() = {witnesSet← ∅; foreach p j ∈ P do 〈phs[j],witnesses[j]〉 ← 〈0,False〉};

11 do forever begin
12 if Alg9.needReset() then Alg9.resetAll();
13 witnesses[i]← (|{p j ∈ P : echoNoWitn(j)}| ≥ 4 f + 1);
14 witnesSet← witnesSet ∪ {p j ∈ P : witnesses[j])};
15 if witnesSeen() then
16 let case = 0;
17 while (¬Alg9.automaton(‘pred’, phs[i], case) ∨ (Alg9.autoMaxCase(phs[i]) ≥ case) do

case← case + 1;
18 if (Alg9.autoMaxCase(phs[i]) ≥ case) then
19 let ret = Alg9.automaton(‘act’, phs[i], case); // Automaton executed

20 if (ret < {‘No action’,‘Reset’}) then nextPhs();

21 foreach p j ∈ P do send
〈phs[i],witnesses[i],Alg9.getIn f o(i), (phs[j],witnesses[j],Alg9.getIn f o(j))〉;

22 upon receive m from p j do if (valid(m, j)) then (phs[j],witnesses[j], echo[j])← m.(p,w, e);
Alg9.setIn f o(m, j);

• The interface function getPhs(k) (line 9) returns phsi[k] if called by pi.

• The interface function init() (line 10) resets the variables of the coordinating

automaton algorithm to default values.

Line-by-line explanation. The algorithm begins with a stale information check

(line 12) that can trigger a reset if local stale information is found. A processor

pi running the algorithm checks whether pi is witnessed sufficiently, and raises its

witnessesi[i] flag if at least 4 f + 1 processors acknowledge its view and phase when

each p j of them satisfies echoNoAlli(j). A processor p j is called a witness and is added

to the set witnesSeti (line 14) if it notifies pi that its witnesses flag witnesses j[j] is

142

Ioa
nn

is
Marc

ou
llis

1 Variables: The array views[n] stores an array of n vPairs. Field views[i] stores pi’s view
and views[j] where j , i stores the latest view reported by processor p j about itself.
Alias vp j = viewsi[j] and phs(j) = Alg8.getPhs(j). Variable vChange is a boolean. The
type mode ∈ {‘Remain’, ‘Follow’}.

2 Constants: DF VIEW a default/fallback hardwired vPair. A reset vPair
RST PAIR = 〈⊥,DF VIEW〉.

3 Macros:
4 staleV(k) = return ((Alg8.get[k] = 0 ∧ ¬legitPhsZero(views[k])) ∨ (phs(j) = 1 ∧
¬legitPhsOne(views[k])))

5 legitPhsZero(vPair vp) = return (((vp.cur = vp.next)∨ (vp = RST PAIR)) ∧ typeCheck(vp))
6 legitPhsOne(vPair vp) = return ((vp.cur , vp.next) ∧ typeCheck(vp))
7 typeCheck(vPair vp) = return ((∀x ∈ vp.〈cur,next〉 : x ∈ [0,n − 1] ∪ {⊥}) ∧ (vp.next , ⊥))
8 valid(m, k) = return ((m.phs = 0 ∧¬legitPhsZero(m.views[k]))∨(m.phs = 1
∧¬legitPhsOne(m.views[k])))

9 sameVSet(int j, phase φ) = {pk ∈ P : (phs(k) = φ) ∧ (vpk = vp j) ∧ ¬staleV(k)}
10 transitAdopble(int j, phase φ,mode d) = return(|sameVSet(vp j, phs(j)) ∪ transitSet(j, φ, d)|
≥ 3f + 1)

11 transitSet(int j, phase φ,mode t) = {pk ∈ P : (phs(k) , φ) ∧ transitCases(int j, vpk, φ, t) ∧
¬staleV(k)}

12 transitionCases(int j, vPair vp, phase φ,mode t) = {select(φ, t):
13 case (•,‘Remain’) = return (vp.next = vp j.cur)
14 case (0,‘Follow’) = return (vp.next = vp j.cur + 1 mod n)
15 case (1,‘Follow’) = return (vp.cur = vp j.next);}
16 adopt(vPair vp) = {vpi.next← vp.cur〉};
17 establishable(phase φ,mode d) = return(|sameVSet(vpi, phs(i))| + |transitSet(φ, d)| ≥ 4 f + 1)
18 establish() = {vpi.cur← vpi.next};
19 nextView() = {views[i].next← (views[i].cur + 1 mod n)};
20 resetVchange() = {vChange← False; };

Figure 6.3: Variables and Macros for the View Establishment Algorithm; code for pi.

True. Finally, pi satisfies the macro witnesSeen() if every p j in a 4 f + 1-strong set of

witnesses also satisfy echoi[i] = echoi[i], namely they have acknowledged pi’s view,

phase and pi’s witnessing flag. Note that when the phase or view change, the

witnessing procedure starts all over, requiring several algorithm iterations, and as

will be proved later O(1) asynchronous rounds.

Since witnesSeen() (line 15) is the condition to allow the view change automaton

to proceed, we note that we later prove that the fact that witnesSeeni() holds for pi

cannot stop witnesSeen j() from holding as well, and that one processor cannot move

phases without waiting for the other processors. Lines 16 and 17 iterate through

case, until the first case holds. This case is executed and if this not a non-action

143

Ioa
nn

is
Marc

ou
llis

Algorithm 9: Self-stabilizing View Establishment: View Predicates and Actions;
code for processor pi)

1 Interface functions:
2 function needReset() = return (staleV(i) ∨ Alg10.replicaFlush())
3 function resetAll() = {viewsi[i]← RST PAIR; Alg8.init(); Alg10.repRequestReset(); return

(‘Reset’); }
4 function viewChange() = {vChange← True};
5 function getView(j) begin
6 if (j = i) ∧ (phs(i) = 0 ∧ witnesSeen()) then (if (allowService()) then return (vpi.cur));
7 else return (views[j].cur);

8 function allowService() = return
(((|sameVSet(vpi, ∗)| ≥ 3 f + 1) ∧ (phs[i] = 0 ∧ vpi.cur = vpi.next)))

9 function automaton(type, phase, case) begin
10 select(type, phase, case):
11 case (‘pred’, 0, 0) = return (∃vp ∈ {viewsi[j]}p j∈P : transitAdoble(j, 0,

‘Follow’) ∧ (vpi.cur , vp.cur))
12 case (‘act’, 0, 0) = {adopt(vp); resetVchange(); }
13 case (‘pred’, 0, 1) = return (vChange ∧ establishable(0,‘Follow’))
14 case (‘act’, 0, 1) = {nextView(); resetVchange(); }
15 case (‘pred’, 0, 2) return (transitAdoble(i, 0,‘Remain’) ∨ vpi = RST PAIR))
16 case (‘act’, 0, 2) = return (‘No action’)
17 case (‘pred’, 0, 3) = return (True)
18 case (‘act’, 0, 3) = {resetAll(); resetVchange(); }
19 case (‘pred’, 1, 0) = return (∃vp ∈ {viewsi[j]}p j∈P : transitAdoble(j, 1,‘Follow’) ∧

(vpi.next , vp.cur))
20 case (‘act’, 1, 0) = {adopt(vp′); resetVchange(); }
21 case (‘pred’, 1, 1) = return (establishable(vpi, 1,‘Follow’))
22 case (‘act’, 1, 1) = {{if vpi = RST PAIR then Alg10.replicaFlush(); }

establish(); resetVchange(); }
23 case (‘pred’, 1, 2) = return (transitAdoble(i, 1,‘Remain’))
24 case (‘act’, 1, 2) = return (‘No action’)
25 case (‘pred’, 1, 3) = return (True)
26 case (‘act’, 1, 3) = {resetAll(); resetVchange(); }

27 function autoMaxCase(phase) = {select(phase) case 0: return 3; case 1: return 3;}
28 function getIn f o(k) = return (views[k]);
29 function setIn f o(x, j) = {views[j]← x.views)};

predicate the phase is incremented (lines 18–20). The propagation of information

and its receipt is done via lines 21 and 22.

Detailed description of the View Establishment algorithm (Algorithm 9). This

part of the module is composed of a series of macros and functions as follows:

144

Ioa
nn

is
Marc

ou
llis

... ...

V1

V01

V1

V12

V12

V1

V12

V2

V2

V12

x ∈ x ∈ x ∈ x ∈ x ∈

y ∈ z ∈ y ∈ z ∈ y ∈

|V1
| + |V01

|

≥ 3 f + 1

x remains
at 〈v1, v1

〉

x follows
to 〈v1, v2

〉

x remains
at 〈v1, v2

〉

x follows
to 〈v2, v2

〉

x remains
at 〈v2, v2

〉

vpx.cur
=

vpy.next

vpx.cur + 1 mod n
=

vpz.next

vpx.cur
=

vpy.next

vpx.next
=

vpz.cur

vpx.cur
=

vpy.next

|V1
| + |V12

|

≥ 4 f + 1
|V12
| + |V1

|

≥ 3 f + 1
|V12
| + |V2

|

≥ 4 f + 1
|V2
| + |V12

|

≥ 3 f + 1

Figure 6.4: A change of view on the perspective of a processor px from view v1 to view v2. When
px ∈ V1 this implies that px has view v1 and V1 is the set of processors that have reported to px that
they have v1. Set V12 is the set of processors have a view pair 〈v1, v2〉 and are thus transiting to v2.
The gray bars indicate the time required for witnesSeenx() (Alg. 8, line 15) to hold in order for px to
execute the automaton and perform the actions seen in the figure. The figure depicts how transit sets
work to ensure that a change to the view pair never leads to a reset, since there are enough processors
to support a remain to this view pair, but allows for processors to follow to the next view once they
see sufficient support.

• Macros of lines 4–7 check for stale information in the view pairs and view pair

structures.

• Macro valid(m, k) (line 8) checks whether message m by pk is valid and not

stale in its structure (though it might conform with the structure we are not

guaranteed it is not stale, i.e., it might come from an arbitrary initial state of

the communication links).

• Macro sameVSet(vPair vp, phase φ) (line 9) returns a set of processors that have

vp as their current non-stale view and φ as their phase.

• Macro transitSet(phase φ,mode ∈ {‘Remain’, ‘Follow’}) (line 11) is called with

‘Remain’ when the processor wants to get the set that would support the

lowest threshold to remain in its current view. If no such support is found

then this will lead to a reset. The macro is also called with ‘Follow’ in order

to get the set that could support following other processors to a new view or

to a view change depending on the phase. To this end it employs the macro

transitionCases() to give a per case response (cf. Figure 6.4).

• Macro transitAdopble(phase φ,mode) (line 10) takes the combined cardinalities

of size of sameVSet() and transitSet() to determine whether the set of processors

145

Ioa
nn

is
Marc

ou
llis

that report to be transiting to view vp amount to more than 3 f +1 (cf. Figure 6.4).

In this case it is considered safe to remain to the current view.

• Macro adopt(vp) (line 16) performs the actual assignment of vp. E.g., for pro-

cessor pi, it assigns viewsi[i]← vp.

• Macro establishable(phaseφ, vPair vp) (line 17) checks whether the 4 f +1 threshold

to move to a view change (phase 0) or to a new view (phase 1) is reached. It

employs transitSet() and transitCases() as explained above, but with the ‘Follow’

mode.

• If establishablei() is satisfied when pi is in phase 1, then establishi() installs the new

view (line 18). If establishablei() is satisfied in phase 0, then macro nextViewi()

(line 19) increments the vpi.next and proceeds to phase 1.

• Macro resetVchange() (line 20) resets the flag variable vChange to False once

the request by the Primary Monitoring module has been considered and has

triggered a view change.

• Function needReset() returns True if staleV() = True or the replication algorithm

requires a reset.

• Function resetAll() (line 3) calls for a complete reset of all modules when the

view is found in an unanticipated state.

• Function getView() (line 5), when called with getViewi(i), returns pi’s current

view if this is serviceable, otherwise it returns>. If is called by pi as getViewi(j)

for j , i, then it returns the last view reported by p j to pi, i.e., viewsi[j].

• The automaton() function (line 9) is analyzed thoroughly in Table 6.1.

• Function autoMax(k) (line 27) returns the maximal number of case that the

automaton predicates have depending on the phase k.

• Function getIn f o(k) (line 28) returns view-related information about processor

pk. Specifically it returns viewsi[k]. Its setter counterpart is setIn f o(mk,i, k)

(line 29) that extracts the view from a message m coming from pk and updates

viewsi[k] with it.

146

Ioa
nn

is
Marc

ou
llis

6.3.2 Correctness

We proceed with the correctness proof by introducing the required definitions and

notation.

Executions. A fair execution R is mal-admissible when, throughout R, the set of

f = n/5 + 1 malicious processors remains the same. A fair execution is mal-free if

throughout the execution, every malicious processor behaves as a correct one. A

consistency set Σ is a subset Σ ⊆ P : |Σ| ≥ 4 f +1 such that every processor in Σ executes

the algorithm as a correct processor (as defined in Section 3). If the processors of Σ do

not change their phase throughout R, we call R a phase-fixed execution. If processors

of Σ do not change any field of their view pair throughout R, we call R a view-fixed

execution. Recall that C is the set of correct processors (see Section 6.1).

Threat. We denote by L j,i the set of messages in the communication link from

processor p j to pi. The messages are either added by p j or may be the result of an

arbitrary initial state and the message number respects the link capacity. Given a

system state c in a fair execution R, a message m ∈ L j,i is a threat to processor pi ∈ C at c

if predicate threat(m, i) holds, such that threat(m, i) = True ⇐⇒ (∃v ∈ {viewsi[`]}p`∈P :

(v = viewsi[i] = viewsi[j]) ∧ transAdopblei(viewsi[i]) ∧ (validi(m, j)) ∧ ((m.views[j].cur ,

v.cur) ∨ (m.phs[j] , 0))). In other words, if pi has view v (i.e., it is adoptable) and

relies on p j to make v adoptable locally, and there exists a message in L j,i stating that

p j does not support v, then pi’s view is in jeopardy.

Stable view. A stable view is a view that malicious processors cannot overthrow.

Thus, a stable view implies convergence, and characterizes an execution composed

of only a legal system state. Given a state c in a mal-admissible execution R, the

supporters’ set of view pair vp = 〈v, v〉 is denoted by Vsup(vp), such that

Vsup(vp) = {pi ∈ C : (phsi[i] = 0) ∧ (viewsi[i] = vp) ∧ ¬staleVi(i)}.

We say that a view v of view pair vp = 〈v, v〉 is a stable view if ∃X ⊆ Vsup(vp) such that

the following properties hold:

1. |X| ≥ 3 f + 1,

2. ∀pi ∈ X ((X ⊆ witnesSeti) ∧ (|{p j ∈ X : phsi[j] = 0 ∧ ¬staleVi(j)}| ≥ 3 f + 1)),

3. ∀pi, p j ∈ X (@m ∈ L j,i : (threat(m, i)).

147

Ioa
nn

is
Marc

ou
llis

We refer to the X with the maximal number of processors as the strong support set

for stable view v and write Vssup(v).

View reset. A view reset, or simply a reset is a call to resetAll() (Alg. 8, line 3). This

has the effect of setting variables to default values and also returning the phase of

the coordinating automaton to 0.

Task description. The view establishment taskVE includes all the system states of

mal-admissible executions in which there is a stable view, or where a stable view is

followed by a view change leading to a new stable view.

Proof Outline. We establish the correctness of the View Establishment module by

first proving the convergence from an arbitrary state where stale information may

exist and a stable view may be absent to a state with stable view. En route to prove

the convergence theorem (Theorem 6.3.10), we first show that stale information that

is locally detectable and messages with detectable stale content are removed within

O(1) asynchronous rounds (Claim 6.3.1 and Corollary 6.3.2). We then continue to

prove a series of invariants that hold for a view-fixed execution and prove that the

automaton guarantees that processors that are correct, exchange their local informa-

tion within O(1) asynchronous rounds (Lemma 6.3.4).

Lemma 6.3.8 carries on to prove that, withinO(n) asynchronous rounds, the mod-

ule brings the correct processors to a common view and phase, and any subsequent

change to these is performed in lockstep by 4 f + 1 processors of Σ. Lemma 6.3.9

shows that a single malicious adversary’s activity in combination with an arbitrary

initial state can block the system from converging to a stable view. To overcome

this obstacle, we assume for the convergence theorem (Theorem 6.3.10) that we have

mal-free1 executions. Theorem 6.3.11 proves closure, i.e., if there was convergence to

a stable view, then within O(1) asynchronous rounds of a mal-admissible execution

the system remains to a stable view even if there are view changes (instructed by the

Primary Monitoring module). We note that we do the proof for an execution R that

is a mal-admissible one, and in which there is a consistency set Σ. If a result diverges

from this rule, it is clearly stated.

Lemma 6.3.1. Let R be a mal-admissible execution R of the View Establishment module

starting in an arbitrary system state. Within O(1) asynchronous rounds, it holds that

∀pi ∈ C (staleVi(i) = False).
1We revisit this assumption in Section 6.6

148

Ioa
nn

is
Marc

ou
llis

Proof. Consider processor pi ∈ C that performs at least one complete iteration of

Algorithm 8. This includes an execution of line 12. This is a call to Alg9.needReseti().

If Alg9.staleVi(i) = True ⇒ Alg9.needReseti() = True that leads to an execution of

Alg8.resetAlli(). This is an assignment of viewsi[i] ← RST PAIR. Since RST PAIR is

never stale (by legitPhsZero(RST PAIR) = True), we proceed to show that pi never

introduces stale information back to its state.

If Alg9.staleVi(i) = False, by examination Algorithm 9, pi assigns a value to

viewsi[i] only via adopt() (Fig. 6.2, line 16), establish() (Fig. 9, line 18) and nextView()

(Fig. 9, line 19), i.e., automaton actions for cases (0, 0), 〈1, 0〉 and 〈0, 1〉 correspond-

ingly. Since both adopti(v) and establishi(v) imply that a view v adopted never satisfies

staleV() (the check inside sameVset(•) and transitSet(•)), it is not possible to install a

stale view. Macro nextViewi() merely increments the viewi[i].next that was not stale,

since in a complete iteration, the passing from line 12 will have imposed a RST PAIR

for viewsi[i]. 2

Since every correct processor takes the above step to clean their local stale infor-

mation before performing their send actions (Alg. 22, line 21), we have the following

side result of Lemma 6.3.1 given as a corollary.

Corollary 6.3.2. Within O(1) asynchronous rounds of a mal-admissible execution R of the

View Establishment module, it holds that ∀p j ∈ P and ∀pk ∈ C any message m added by pk

to Lk, j, never encodes valid j(m, k) = True.

Claim 6.3.3. Consider an execution R of View Establishment module where Corollary 6.3.2

holds. Then:

(i) when R does not include a view reset it holds that: R view-fixed ⇐⇒ R phase-fixed,

(ii) otherwise it holds that: R view-fixed =⇒ R phase-fixed, but R phase-fixed 6=⇒ R

view-fixed.

Proof. By the cases of Alg. 9, function automaton(), we see that the cases of predicates

with an action returning ‘No action’ incur no changes to phase or view. The predicates

that have a corresponding action that is not a call to resetAll(), imply both a view

change and a phase change. This proves (i). On the other hand, predicates with

corresponding actions including a call to resetAll(), imply that the phase returns to

0. Thus, if the phase is already at 0, then the view pair changes to RST PAIR but the

view remains 0. This proves (ii). 2

149

Ioa
nn

is
Marc

ou
llis

Lemma 6.3.4. Let R be a view-fixed execution of Algorithm 8 with a consistency set Σ.

Within O(1) asynchronous rounds, the system either calls a reset, or it reaches a state c∗ ∈ R

in which invariants (1) to (5) hold.

(1) Within O(1) asynchronous rounds, the system reaches a state c′ ∈ R in which for any

processors pi, p j ∈ Σ, it holds that (phsi[i] = phs j[i]) ∧ (viewsi[i] = views j[i]).

(2) Suppose that invariant (1) holds in every system state of R. WithinO(1) asynchronous

rounds, the system reaches a state c′ ∈ R in which for any processors pi, p j ∈ Σ, it holds

that (echoi[j].phs = phsi[i]) ∧ (echoi[j].views = viewsi[i]).

(3) Suppose that invariants (1) and (2) hold in every system state of R. Within O(1)

asynchronous rounds, the system reaches a state c′ ∈ R in which for any processor

pi ∈ Σ, it holds that witnessesi[i] = True.

(4) Suppose that invariants (1) to (3) hold in every system state of R. Within O(1)

asynchronous rounds, the system reaches a state c′ ∈ R in which for any processors

pi, p j ∈ Σ, it holds that witnesses j[i] = True and pi ∈ witnesSet j.

(5) Suppose that invariants (1) to (4) hold in every system state of R. Within O(1)

asynchronous rounds, the system reaches a state c′ ∈ R, in which it holds that echoi[i] =

echoi[j]) = True and witnesSeeni() = True in R.

Proof. Suppose that a reset does not take place during R. We prove invariants (1) to

(5) hold within O(1) asynchronous rounds.

(1) By the repeated propagation of mi, j = 〈phsi[i], •, •, viewsi[i]〉 (line 21), within

O(1) asynchronous rounds p j ∈ Σ receives and stores mi, j.phs in phs j[i] and mi, j.views

in views j[i] (line 22 and the assumption that messages that are sent infinitely often

are received infinitely often). Thus, (phsi[i] = phs j[i]) ∧ (viewsi[i] = views j[i]) and this

completes the proof for invariant (1).

(2) By similar arguments as for invariant (1), we argue that by invariant (1), proces-

sor p j sends m j,i = 〈•, (phs j[i], •, getIn f o j(i) = views j[i])〉 to processor pi infinitely often,

pi receives m j,i infinitely often. Thus, within O(1) asynchronous rounds, pi stores m j,i

in echoi[j] (and does so in every subsequent state in R after the first assignment), such

that echoi[j] = (phsi[j], •, viewsi[j]) = m j,i.(phs j[i], •, viewsi[j]) = (phsi[i], viewsi[i]), hence

the result. Note that this invariant directly implies that echoNoAlli(j) = True.

150

Ioa
nn

is
Marc

ou
llis

(3) By the last remark in the proof of invariant (2), within O(1) asynchronous

rounds, there are 4 f + 1 processors pk ∈ Σ for which echoNoWitni(k) = True. Thus the

condition (|pk ∈ P : echoNoWitni(k)| ≥ 4 f + 1) is satisfied and witnessesi[i] = True.

(4) By similar arguments as for invariant (1) applied to the witnessesi[i] field,

witnessesi[i] = True = witnesses j[i] holds within O(1) asynchronous rounds. This

implies that when p j next executes line 14, pi ∈ P : witnesses j[i] is satisfied and pi is

added to witnesSet j, and thus invariant (4) is satisfied.

(5) From the arguments for invariants (1) and (2) applied to witnessesi[i] rather

than phs[i] and views[i], within O(1) it holds that echoi[i] = echoi[j]. By applying

invariants (1) – (4) to p j, and since both pi, p j ∈ Σ, it holds that p j ∈ witnesSeti. Since

witnessesi[i] = True and since all p j ∈ Σr {pi} satisfy the conditions p j ∈ witnesSeti and

echoi[i] = echoi[j], and by the fact that |Σ| ≥ 4 f + 1, witnesSeeni() = True (line 7) within

O(1) asynchronous rounds. Hence the result. 2

Remark: Each processor p j ∈ Σ that does not reset, changes the values of (phs j[j],

witnesses j[j], views j[j]) from a view v to v′, following four consecutive transition states:

(i) (0,True, 〈v, v〉), (ii) (1,False, 〈v, v′〉), (iii) (1,True, 〈v, v′〉) (iv) (0,False, 〈v′, v′〉). This

four-stage transition requires the execution of Alg. 8, line 18. In particular, to go

from (i) to (ii), the automaton j(‘pred’, 0, case) needs to hold for cases either 1 or 2. To

go from (iii) to (iv), automaton j(‘pred’, 1, 0) needs to hold. Both cases call nextPhs()

that causes witnesses j[j] to become False. For transitions (ii) to (iii) and (iv) to (i),

Algorithm 8 is responsible to assign True to all j[j].

Claim 6.3.5. Suppose that during the first O(1) asynchronous rounds of R, it holds that no

pi ∈ Σ changes (phsi[i], witnessesi[i], viewsi[i]). Then either, the system takes a step with a

call to reset, or the invariants of Lemma 6.3.4 hold.

Proof. The claim defines a view-fixed execution. Thus there is either a call to reset,

or the invariants of Lemma 6.3.4 hold. 2

Claim 6.3.6. Suppose that during R, it holds that pi ∈ Σ changes

(phsi[i],witnessesi[i], viewsi[i]) at most once, while all other pk ∈ Σ : k , i do not change

(phsk[i],witnessesk[i], viewsk[i]). Within O(1) asynchronous rounds the system either, takes

a step with a call to reset, or the invariants of Lemma 6.3.4 hold.

Proof. If there is not a call to a reset then by Claim 6.3.3 the conditions of the claim

imply a view fixed execution. This implies that the invariants (1) to (5) can hold.

151

Ioa
nn

is
Marc

ou
llis

Suppose towards a contradiction that some pk , pi takes a step ak changing

(phsk[j], witnessesk[j], viewsk[j]), after O(1) asynchronous rounds from the starting

state of R. If this change is due to a reset, then the proof is done. Assume this is not

due to a reset. Then it must be that the invariants of Lemma 6.3.4 hold. By line 15, ak

occurs within O(1) asynchronous rounds from the starting state of R. This, though,

contradicts our assumption about ak, and hence the result. 2

Claim 6.3.7. Suppose that during R each processor pi ∈ Σ changes

(phsi[i],witnessesi[i], viewsi[i]) at most x times. Within O(xn) asynchronous rounds

the system either, takes a step with a call to reset, or the invariants of Lemma 6.3.4 hold.

Proof. Without loss of generality we assume that Σ remains the same throughout

R. We build the proof inductively, by first proving the result for x = 1. For this

case, let (again without loss of generality) pk1 be the first processor that changes

(phs,witnesses, views), say in step ak1 ∈ R1
1, where R = R1

1◦R
1
2◦· · · . Step ak1 occurs within

O(1) asynchronous rounds (Claim 6.3.6). Let suffix R2
2 start immediately after ak1 , and

in this, processor pk2 makes a step ak2 . This again takes O(1) asynchronous rounds

from the initial state of R1
2. In this vein we continue to construct the execution R such

that R = R1
1 ◦R1

2 ◦ · · · ◦R1
n, such that pkn takes step akn , again withinO(1) asynchronous

rounds. Thus, for x = 1 require O(n) asynchronous rounds. Intuitively, we build the

cases where x > 1 by appending to Rn a series of suffixes R2
1 ◦ · · · ◦ R2

n in which each

processor takes a step with its second. Thus, inductively, execution R = R1
1 ◦ · · · ◦ Rx

n

within O(xn) asynchronous rounds. 2

Lemma 6.3.8. Let R be an execution of Algorithm 8 and Σ the consistency set. Suppose

that there exists a processor p j ∈ Σ that changes (phs j[j],witnesses j[j], views j[j]) more than

9 times. In this case, within O(n) asynchronous rounds during R, the system either calls a

reset, or it reaches a state c∗ ∈ R in which Equation 1 holds.

152

Ioa
nn

is
Marc

ou
llis

Equation 1.

(∃S : (p j ∈ S) ∧ (|S| ≥ 4 f + 1) ∧ (∀pk,p`∈S :
(((phsk[`], viewsk[`]) = (phs j[j], views j[j])) ∧ ((echo j[k] = echo j[j]) ∧ witnesses j[j] = True))∧

(6.1)

(∃m∈L j,k∪Lk, j ⇒ m = (phs j[j],witnesses j[j] = True, views j[j], echo j[j]))∧
(6.2)

(∃m∈Lk,`: j<{k,`} ⇒ m = (phs j[j], •, views j[j], (phs j[j], •, views j[j])))∧
(6.3)

(p j ∈ witnesSetk)∧
(6.4)

(witnesses j[j] ∧ (|witnesSet j ∪ {p j}| ≥ 4 f + 1))))
(6.5)

Proof. Let R′ be a prefix of R that includesO(xn) asynchronous rounds during which

at least one processor p j ∈ Σ takes at least z ≥ 9 steps that change (phs j[j],witnesses j[j],

views j[j]) without a reset taking place. Denote with c j,y the system state that precedes

the step a j,y of p j that changes this triple for the yth time.

A. Parts (4) and (5) of Equation 1 hold. Assume that a processor p j ∈ Σ is the

first to make at least z ≥ 9 changes to (phs j[j], witnesses j[j], views j[j]). Then by Re-

mark 6.3.2, p j cycles through the four transition phases at least twice, and further

implies that p j changes (phs j[j], witnesses j[j], views j[j]) = (1,True, •) twice, and ex-

ecutes automaton j(‘act’, 1, 0) twice and then changes to (0,True, •) once more. The

latter has two implications: (1) Alg. 8, line 15 condition of the if statement holds

when automaton j(‘act’, 1, 0) is called, (2) since the call to automaton j(‘act’, 1, 0) is fol-

lowed by a call to nextPhs j() (Alg. 8, line 20), then witnesSet j becomes empty, and

transitions to (0,False, •) by the definition of nextPhs().

Consequently, between the first and the second execution of automaton j(‘act’, 1, 0),

implication (2) holds and p j empties witnesSet j and repopulates witnesSet j with p j ∈

Σ again. Therefore, at c j,z−2, that is immediately before reaching (0,False, •) for

the second time, (1,True, •) holds, i.e., part (5) of Equation 1 that (witnesses j[j] ∧

(|witnesSet j ∪ {p j}| ≥ 4 f + 1)) holds. Since no processor pk makes a step immediately

after c j,z−2 other than p j, no pk empties witnesSeenk at c j,z−2. By Claim 6.3.7, the above

requires O(9n) ∈ O(n) asynchronous rounds.

B. The values of (phs,witnesses, views) change concurrently and in a unison manner

for any processor in Σ. We assume that no resets take place within R. We prove

that if p j, pk ∈ Σ proceed in unison, this implies that if pk obtains a view v+ and does

153

Ioa
nn

is
Marc

ou
llis

Situation Phase, View Possible Automaton Cases Resulting
situation

(1) (0, 〈v+, v+
〉)

(0, 1) (1a) (3)
(0, 2) (1b) (1)

(2) (0, 〈v−, v−〉)
(0, 0) (2a) (3)
(0, 1) (2b) (3)
(0, 2) (2c) (2)

(3) (1, 〈v−, v+
〉)

(1, 1) (3a) (1)
(1, 2) (3b) (3)

(4) (1, 〈v−, v∗〉) with ∗ , + (1, 0) (3)

Table 6.2: Case analysis for Lemma 6.3.8, distinguishing the different cases (situations) where the
automaton acts and which overall effects it has.

not change this within O(1) asynchronous rounds, then p j with some view v− , v+

also changes its view to v+. We define the following three sets regarding the global

support to views :

(i) V− = {pk ∈ P : viewsk[k] = 〈v−, v−〉},

(ii) V± = {pk ∈ P : viewsk[k] = 〈v−, v+
〉},

(iii) V+ = {pk ∈ P : viewsk[k] = 〈v+, v+
〉}.

We proceed with the case analysis that we distinguish by the starting and resulting

(phase, view (pair)) states.

The proof is by exhaustive case analysis, for which we define the possible situa-

tions that a processor px meets in moving from view v− to v+ in Table 6.2. We assume

that the conditions of Alg. 8 line 15, hold for px, i.e., witnesSeenx j() = True, and is

(without loss of generality) the first processor to change the triple.

Before px changes the triple – Situation (2c). Since px does not change the view then

this is Situation (2b) where 3 f + 1 ≤ |V−|+ |V±| < 4 f + 1 (i.e., automaton(‘pred’, 0, 2) =

True).

From (0, 〈v−,v−〉) to (1, 〈v−,v+
〉) – Situation (2b). The step that px takes includes that

automaton(‘pred’, 0, 1) = True. I.e., |V−|+ |V±| ≥ 4 f +1 and vChangex j = True. Note that

if vChangex j = True it is guaranteed that another 4 f processors have vChange = True

by the Primary Monitoring mechanism as proved therein. If px is the first to proceed,

then |V±| = 0. Note that this ensures unison for 4 f + 1 processors, since these need

to have the same view and vChange flag, for any of these to proceed.

Before px moves from (1, 〈v−,v+
〉 to (1, 〈v+,v+

〉) – Situation (3b). Since px does

not change the view then this is Situation (2b), where |V−| + |V±| ≥ 3 f + 1 and

|V±| + |V+
| < 4 f + 1 (i.e., automaton(‘pred’, 1, 2) = True). Note that since px moved to

154

Ioa
nn

is
Marc

ou
llis

this point having seen |V−| + |V±| ≥ 4 f + 1, and by Parts (4) and (5) of Equation 1, px

does not proceed to a new step until its view is witnessed.

From (1, 〈v−,v+
〉) to (1, 〈v+,v+

〉) – Situation (3a). The step that px takes includes that

automaton(‘pred’, 0, 1) = True, i.e., |V±| + |V+
| ≥ 4 f + 1. If px is the first to proceed

|V±| = 4 f + 1. If not, then there must be a number of processors in |V+
|. We note

that it is impossible for both of automaton(‘pred’, 0, 1) and automaton(‘pred’, 0, 2) to

fail for px, since the witnessing mechanism implies that another 4 f + 1 processors

are aware of this view and taking their steps must move to this view. Note that this

is the desired case, at which we reach Situation (1).

From (0, 〈v−,v−〉) to (1, 〈v−,v+
〉) – Situation (2a). Since processors proceed with 4 f +1,

it is possible that some f processors are left behind the process. Since this is not a case

for reset, automaton(‘pred’, 0, 0) becomes True upon finding that |V±| + |V+
| ≥ 3 f + 1.

That this will be True before a reset takes place (automaton(‘pred’, 0, 3)), is implied by

the order of execution of the automaton cases, and also by the FIFO communication

and witnessing mechanism.

From (1, 〈v−, ∗〉) to (1, 〈v−,v+
〉) (where ∗ , v+) – Situation (2a). This is Situation 4, the

respective for Situation (2a) in phase 1.

For both Situations (2a) and (4) we note that progress may be possible without

these processors (as they are at most f), but within 1 step (and O(1) asynchronous

round) they can enter back to the view held by most of the processors, and thus

be included in the 4 f + 1 required to satisfy Situations (2b) and (3a). Note that

the combined cardinalities of V−, V+ and V± encapsulate abstractly the notion of

transitAdoble() (Alg. 8, line 10) and establishable() (Alg. 8 line 17) that allow some

overlap of processors in previous current and next views. We conclude that the

witnessing mechanism and the thresholds implemented by the automaton impose a

lockstep behavior in the changes of views (and thus phases).

C. Parts (1), (2) and (3) of Equation 1 hold. By Part B of the proof we infer that

indeed there exists a set S′ of size 4 f +1, that is accumulated just before estable() = True

(in automaton(‘pred’, 0, 1) and automaton(‘pred’, 1, 1)) holds. The first processor that

makes a transition to either phase 1 by Situation 3b of the previous part of the proof, or

to phase 0 by Situation 3a (because it is the first one for which estable() = True) needs to

satisfy the conditions of line 15. This processor will take the step to change the triple

(phase,witnesses, views). The set S′ that enabled the satisfaction of estable() = True can

155

Ioa
nn

is
Marc

ou
llis

be identified as the set S of Equation 1, which thus exists, making the proof correct. 2

We proceed to prove that the consistency set that was assumed to exist in many

of the previous results is not attainable in the presence of Byzantine behavior.

Lemma 6.3.9. Let R be a mal-admissible execution. There exists an initial state in which no

consistency set Σ can make progress.

Proof. We define a system state that is the result of a transient fault. We let |Σ| = 5 f

and ∃Σ′,Σ′′ ⊂ Σ : (Σ′ ∪ Σ′′ = Σ) ∧ (|Σ′| = 3 f) ∧ (|Σ′′| = 2 f). Note that the definition

implies that (Σ′ ∩ Σ′′ = ∅). Also, ∀pi ∈ Σ′ (phsi[i] = 0,witi[i] = True, viewsi[i] = v)

where v is some view, and ∀p j ∈ Σ′′ (phsi[i] = 0,witi[i] = True, views j[j] = RST PAIR).

Moreover, P r Σ = {pc} some processor pc that is malicious by not responding, and

∀pi ∈ Σ′ (viewsi[c] = v) and ∀p j ∈ Σ′ ((views j[c] = v′) ∧ (v′ , v)).

We argue that there is no Σ excluding pc that can make progress and estab-

lish a stable view. Within O(1) asynchronous rounds all processors in Σ sat-

isfy witnesSeen() and thus can execute an automaton predicate. We note that

∀pi ∈ Σ′((automatoni(‘pred’, 0, 2)) = True) since they see v as transitAdoble(), and that

∀p j ∈ Σ′((automaton j(‘pred’, 0, 2)) = True) since they have views equal to RST PAIR.

But automatoni(‘act’, 2, 0) is a ‘No Action’ predicate. Thus there can be no progress,

and the system always remains in an illegal system state without a stable view. 2

In view of this case that can be generalized to include a group of cases, we argue

that in the absence of malicious behavior the system can converge to a stable view.

We thus use the notion of a mal-free execution. In the case of Lemma 6.3.9, a mal-free

execution forces pc to state a view, that will either, support v, or force a reset, and

thus there is progress.

Theorem 6.3.10 (Convergence). Consider a mal-free execution of the View Establishment

module starting in an arbitrary state. WithinO(n) asynchronous rounds, the system reaches

a state in which there is a stable view v. Moreover, every correct processor eventually adopts

view v.

Proof. By Lemma 6.3.1 and Corollary 6.3.2 any stale information satisfying the

definition of staleVi() is removed from the local state and the communication channels

of pi ∈ P. Within one complete iteration of Algorithm 8, there is a call to needReseti()

(line 12) that also checks whether the replication module requests a view reset (via

function Alg6.5.repRequestReseti()). This takes O(1) asynchronous rounds.

156

Ioa
nn

is
Marc

ou
llis

If needReseti() = True then there is a call to resetAlli() that sets

(phsi[i],witnessesi[i], viewsi[i]) to (0,False,RST PAIR). If there is a stable view v, then

by its propagation, within O(1) asynchronous rounds the automaton predicates as

proved in Lemma 6.3.8, Part. B, will allow pi to make a step by changing its triple

to (1,False, v). Within O(n) asynchronous rounds, pi will make the step towards

(0,False, v) which installs the view.

If, on the other hand, there is no such view, then within O(n) asynchronous

rounds (by Lemma 6.3.8), transitAdoblei() should not hold for any processor, and at

least 4 f +1 processors should set their triples to (0,False,RST PAIR). The system then

proceeds to install a view via the two automaton predicates automatoni(‘pred’, 0, 1)

and automatoni(‘pred’, 1, 1). The latter has the action that viewsi[i] takes the value

〈DF VIEW,DF VIEW〉 which becomes stable. This completes the convergence

proof. 2

Theorem 6.3.11 (Closure). Consider a mal-admissible execution R, starting with a state

that encodes a stable view v. Either, v remains stable throughout R, or within O(1) asyn-

chronous rounds the system reaches c ∈ R with a new stable view v′.

Proof. Assuming convergence under a mal-free execution, the only factor that

further challenges the correctness of the view establishment module is the pres-

ence of malicious behavior during mal-admissible executions. Since a stable view

is defined on correct processors, and since the consistency set Σ was defined for

4 f + 1 correctly behaving processors, the proof carries through. Changes to the

table view are conducted either: (i) through the view change (automaton pred-

icates automatoni(‘pred’, 0, 1) and automatoni(‘pred’, 1, 1)), or (ii) by the adoption

of an adoptable view (via the automaton predicates automatoni(‘pred’, 0, 0) and

automatoni(‘pred’, 1, 0)).

Suppose that the view change from v to v′ is supported by 3 f +1 correct processors

that satisfy automaton(‘pred’, 0, 2). It is possible that the f malicious processors may

support such a change if, for example, v′ is malicious. Due to the unison manner of

phase-view progress proved in Lemma 6.3.8, Part B, the correct processors always

proceed with a 3 f + 1 core. This ensures that while trying to accumulate 4 f + 1

support to satisfy the estable() conditions, a correct processor pi is always able to

satisfy transitAdoble(i, phs,‘Remain’) within O(n) asynchronous rounds. Thus, view

v remains stable even through the transition, and this is not lost until v′ is installed

157

Ioa
nn

is
Marc

ou
llis

by correct processors one-by-one.

The predicates automatoni(‘pred’, 0, 0) and automatoni(‘pred’, 1, 0) and the defini-

tion of transitSet() allow slow correct processors to catch up with installing the view

within O(1) asynchronous rounds. This provides liveness by allowing correct pro-

cessors to join the correct view and thus provide service. 2

6.4 State Replication Algorithm

The replication module (Algorithm 10) conducts SMR if there is a serviceable view.

Our protocol follows Castro and Liskov [38], deviating only when catering for self-

stabilization. In particular, (i) we introduce specific bounds for all our structures, (ii)

we require that clients communicate their requests to all replicas. We proceed with

a description of our solution and its correctness.

6.4.1 Preliminaries

Clients and requests. Processors receive requests from a known fixed set of clients

C, where |C| = K. Following the typical well-formedness condition, clients do not

send a new request before a previous one is complete, i.e., until it receives f + 1

identical responses. It is beyond the scope of this work to establish whether the

content of a given request is malicious [38], as we concentrate on the server side.

The BFT replication task. Consider the set of correct processors C ⊂ P, and a set of

client requests K = {κ1, κ2, · · · , κK}. We define the BFT replication task to be that all

processors in C agree on a total order of execution of the requests of K . Moreover,

the client that issued the request eventually receives f +1 identical request responses.

After a transient fault takes place, safety (i.e., identical replica state) may be violated,

until the system converges back to a legal state.

Sequence numbers. To impose a total order in the execution of requests, the primary

assigns a unique sequence number sq ∈ [0,MAXINT] to each received request. This

is an integer incremented from a practically inexhaustible counter e.g., a 64-bit one2.

A transient fault may corrupt the counter to attain its maximum value abruptly. In

2If MAXINT = 264 then, incremented per nanosecond, it can last for 500 years (virtually an infinity

for any existing system).

158

Ioa
nn

is
Marc

ou
llis

Structures, Variables and Constants of Algorithm 10.

Constants – Notation: K the size of the clients set. Kσ the watermark from which the primary
is allowed to use above the sequence number of its last executed request, to assign to pending
requests, where σ us a system-defined constant. DEF STATE = 〈∅, ∅, ∅, ∅, ∅,False,False〉 a default
(or incorruptible fallback) state for queues and variables of the rep structure (see below). We define
the relation! between two states A,B, such that A! B implies that A is a prefix of B (or vice
versa) or that they are equal.

Variables: A request q by client c is formed as follows: q = 〈c, t, o〉 where t is a totally-
ordered timestamp (local to c) and o is the requested operation. An accepted request takes
the form req = 〈(request) q, (view) v, (seq. num.) sq〉. The replica’s structure rep[n] =

〈repState, rLog, pendReqs, reqQ, lastReq, conFlag, viewChanged〉 where repState is the replica’s state.
rLog is a list of at most MAXINT requests storing 〈req, xSet〉 where xSet is the set of those that
committed or claim to have executed a request (with |xSet| ≥ n).
Queue pendReqs holds the requests received from clients, and has size σK. reqQ
holds at most 3σK requests in process request messages of the form 〈req, (status) st ∈
〈PRE−PREP,PREP,COMMIT〉〉. lastReq[K] an array of holding the last executed request of
each client 〈(request) q, (reply) r〉. conFlag a boolean field True when a state conflict is detected,
and viewChanged a boolean field True when a change of view/primary is detected. Referring to
fields in repi[i]. f ield, we may omit the rep[i] part. seqn is an integer counter in [0,MAXINT]3 which
is the maximal known to have been assigned to a request. needFlush is a boolean. The variable
f lush is a boolean that the view establishment module modifies to demand a reset of the replica
state after a view establishment. Variable prim stores the last reading of the primary’s identifier
from the view establishment algorithm.

Figure 6.5: Self-stabilizing Byzantine Replication Algorithm structures, variables and constants;
code for processor pi.

this case we reset the view, the state and reset sq to 0. Note that during view changes

we do not reset the sequence number.

While we cope with transient faults corrupting the request counter, we may still

have a malicious primary that tries to propose arbitrarily high sequence numbers

to the requests in order to exhaust the counter. We follow Castro and Liskov in

restricting a faulty primary from exhausting the counter by imposing an upper and

lower bound on the sequence numbers that other processors will accept from the

primary. We bound the sequence numbers sq that the primary can use for a request

in any given instance of the execution to σK, where K is the cardinality of the clients

set C, and σ is a system defined integer constant. Under this bound, the primary

can only assign a sequence number to a pending request if (i) this is the lowest

unassigned one that it is locally aware of, and (ii) if this sequence number is not σK

away from the sequence number of the last executed request.

159

Ioa
nn

is
Marc

ou
llis

1 Macros: f lushLocal() = {seqn← 0; foreach p j ∈ P do rep[j]← ⊥};
2 msg(status t, int j) = return {x : x ∈ rep[j].reqQ.req ∧ x.status = t};
3 lastExec() = return (maxx∈rLog(x.sq));
4 lastCommonExec() = return (x : max(x.req.sq : (x ∈ {rep[j].rLog}p j∈P) ∧ (|{pk ∈ P : x ∈ rep[k].rLog}|
≥ 3 f + 1)));

5 con f lict() = (|{p j ∈ P : rep[j].conFlag = True}| ≥ 4 f + 1);
6 comPre f States(d) = {if (∃S ⊆ {rep[j].repState}p j∈P : (x, y ∈ S⇔ (x! y)) ∧ (|S| ≥ d)) then return S;

else return ∅};
7 getDsState() = {if (((∃Π ⊆ P : (Π = {p j ∈ P : repi[j]! (X = f indConsState(comPre f States(2 f + 1),

2 f + 1))}) ∧ (2 f + 1 ≤ |Π| < 3 f + 1)) (∃Π′ ⊆ P : ∀pk ∈ Π′(repi[k] = ⊥))∧ (|Π| + |Π′| ≥ 4 f + 1)) then
return (X); else return (⊥); }

8 double() = return (∃x, x′ ∈ rep[i].reqQ : x.q = x′.q ∧ x , x′);
9 staleReqSeqn() = return ((lastExec() + σK > MAXINT);

10 unsupReq() = return (∃x ∈ {rep[i].reqQ.q} : (|{p j ∈ P : x ∈ {rep[j].reqQ.q}}| < 2 f + 1))
11 staleRep() = return (staleReqSeqn() ∨ unsupReq() ∨ (∃x ∈ {rep[i].rLog} : |x.xSet| ≤ 3 f + 1) ∨

double());
12 knownPendReqs() = return ({x ∈ pendReqs : (|{p j ∈ P : x ∈ rep[j].{pendReqs, reqQ.req}}| ≥ 3 f + 1)})
13 knownReqs(status t) = return ({x ∈ reqQ : (|{p j ∈ P : x.req ∈ rep[j].msgQ.req} ∧ x.status ∈ t|
≥ 3 f + 1)})

14 delayed() = return (lastExec() < lastCommonExec() + 3Kσ)
15 existsPPrepMsg(x, prim) = return (∃y ∈ msg(PRE−PREP, prim) : y.req.q = x)
16 unassignedReqs() = return ({x ∈ pendReqs : (¬existsPPrepMsg(x, prim)) ∧ x < knowReqs({PREP,

COMMIT})})
17 acceptReqPPrep(x, prim) = return ((x ∈ knownPendReqs()) ∧ (∃y ∈ msgQ : (y.req.q = x.q) ∧

existsPPrepMsg(y, prim) ∧ (y.v = prim) ∧ (lastExec() ≤ y.sq < lastExec() + σK) ∧
(@z ∈ rep[i].{reqQ.req, rLog.req} : (z.q = y.q) ∧ (z.sq = y.sq)))

18 committedSet(x) return ({p j ∈ P : (x ∈ msg({COMMIT}, j)) ∨ (x ∈ rep[j].rLog.req)})

19 Interface functions:
20 getPendReqs() = {if ¬viewChanged then return (knownPendReqs()∩ unassignedReqs()) else return
{‘View Change’}}

21 repRequestReset() = {if needFlush then {needFlush← False; return (True)} else return (False);}
22 replicaFlush() = { f lush← True; }

Figure 6.6: Variables and Macros for the BFT Replication algorithm; code for processor pi.

6.4.2 Algorithm Description

We proceed with a detailed presentation of the Algorithm 10.

Variables. A request q by client c is formed as a triple 〈c, t, o〉 where t is a totally-

ordered timestamp (local to c) and o is the requested operation. We call this an

unassigned request since it has not been assigned a sequence number. An assigned

request takes the form req = 〈(request) q, (view) v, (seq. num.) sq〉. The replica’s

structure rep[n] = 〈(replica state) repState, (executed req. log) rLog, (pending req.

queue) pendReqs, (requests under process queue) reqQ, (last per client executed

request) lastReq, (last assigned sq. num.) seqn, (conflict flag) conFlag〉, where repState

160

Ioa
nn

is
Marc

ou
llis

Algorithm 10: Self-stabilizing Byzantine Replication; code for processor pi

1 do forever begin
2 if (¬viewChanged ∧ Alg9.allowService()) then viewChanged←

((rep[i] , ⊥) ∧ (Alg9.getView(i) , prim));
3 prim← Alg9.getView(i);
4 if (viewChanged = True ∧ prim = i) then
5 if (∃X ⊆ P : (p j ∈ X⇔ (rep j[j].viewChange = True ∧ prim = Alg9.getView(j))) ∧

(|X| ≥ 4 f + 1)) then
6 renewReqs(X); f indConsState(comPre f State(3 f + 1)); viewChanged← False;

7 else if (viewChanged) ∧ (rep[prim].〈viewChanged, prim〉 = rep[i].〈False, prim〉) ∧
(|{p j ∈ P : prim = Alg9.getView(j)}| ≥ 4 f + 1) ∧ checkNewVstate(prim) then
rep[i]← rep[prim]; vChanged← False;

8 let (X,Y) = (f indConsState(comPre f States(3 f + 1)), getDsState(prim));
9 if (X = ⊥ ∧ Y , ⊥) then X← Y;

10 if (¬(conFlag[i]← (X = ⊥)) ∧ (¬(rep[i].repState! X) ∨
(rep[i].repState = DEF STATE) ∨ delayed()) then rep[i]← X;

11 if staleRep() ∨ con f lict() then f lushLocal(); rep[i]← ⊥; needFlush← True;
12 if f lush then f lushLocal();
13 pendReqs.enqueue({knownPendReqs()});
14 if (Alg9.allowService() ∧ ¬needFlush) then
15 if noViewChange() ∧ ¬viewChange then
16 if (prim = i) then
17 foreach x ∈ rep[i].pendReqs do
18 if (seqn < lastExec() + σK) then

reqQ.add({〈〈x, prim, (seqn← seqn + 1)〉,PRE−PREP〉,
〈〈x, prim, (seqn← seqn + 1)〉,PREP〉)});

19 else foreach x ∈ knownPendReqs() r unassignedReqs() : x < {rep[j].reqQ}p j∈P.req.q
do

20 if (acceptReqPPrep(x, prim)) then reqQ.add(〈y,PREP〉);

21 foreach x ∈ reqQ : knownReqs({PREP}) do x.status← COMMIT;
pendReqs.remove(x);

22 foreach x ∈ reqQ : knownReqs({PREP,COMMIT}, i)} do
23 if (|X = committedSet(x)| ≥ 3 f + 1) ∧ (x.sq = lastExec() + 1) then
24 lastReq.enqueue(〈{x}, apply(x)〉); rLog.add(〈x,X〉); pendReqs.remove(x);

reqQ.remove(x);

25 foreach p j ∈ P r {pi} do send rep[i] to p j;
26 foreach (cl, x) ∈ C × lastReq : x.req.q.c = cl do send x to cl;;

27 Upon receipt m = rep from p j do if allowService() then
28 if (noViewChange()) then rep[j]← m else rep[j].repState← m.repState;

29 Upon receipt of request q from client c do if (noViewChange() ∧ allowService()) then
pendReqs.enqueue(q);

30 Upon receipt of m = 〈q,ACK〉 from client c do lastReq.remove(〈m.q, •, •〉);

is the replica’s state (the replicate) which is an ordered sequence log. We define the

relation! between two states A,B with prefixes A′,B′, such that A ! B implies

161

Ioa
nn

is
Marc

ou
llis

that A is a prefix of B (or vice versa) or that they are equal, i.e., A ! B ⇐⇒

∃A′,B′ : (A′ = B ∨ B′ = A). List rLog has a size of at most MAXINT processed

requests storing 〈req, xSet〉 where xSet is the set of those that committed or claim to

have executed a request (with |xSet| ≥ n). A default fallback state DEF STATE =

〈∅, ∅, ∅, ∅, ∅,False,False〉.

Queue pendReqs holds the requests received from clients, and has size σK.

Queue reqQ holds at most 3σK requests messages of the form 〈req, (status) st ∈

〈PRE−PREP,PREP,COMMIT〉〉. Array lastReq[K] holds the last request reply

〈(request) q, (client) c, (reply) r〉 to each client. The field seqn is an integer counter in

[0,MAXINT] that is the maximal known to have been assigned to any request. The

variable conFlag a boolean field that is True when a state conflict is detected, and

viewChanged a boolean field that is True when a change of view/primary is detected.

Referring to fields in repi[i]. f ield, we may omit the rep[i] part.

The variable needFlush is a boolean reporting to the view establishment module

whether a reset is required. The variable f lush is a boolean that the view establish-

ment module modifies to demand a reset of the replica state after a view establish-

ment. Variable prim stores the last reading of the primary’s identifier from the view

establishment algorithm.

Operators, Macros and Interface functions.

• Operator enqueue(x) adds an element (or set of elements) x to a queue. If any

element enqueued already exists, then only the most recent copy of it is kept

and it is carried to the back of the queue.

• Operator remove(x) removes element x from a structure while add(x) adds ele-

ment x to a structure.

• Operator apply() executes any request operations that are known to be com-

mitted.

• Operator f indConsState(S, x) returns a consolidated replica state rep[] based on a

set of processor states S with common non-empty repState prefix and consistency

among request queues reqQ and pendReqs(). It returns ⊥ if such a replica state

set does not exist (indicated as ∅); It produces dummy requests in the case

where at least 3 f + 1 processors appear to have committed a sufficient number

of requests but they have no evidence of a previous request exists or is assigned.

162

Ioa
nn

is
Marc

ou
llis

This request is blocking the execution of the requests that follow.

• Operator renewReqs() is executed by a new primary, in order to issue a consistent

set of pending requests messages for reqQ and pendReqs where these are now

allocated for execution to the new view.

• Operator checkNewVstate() checks the state proposed by a newly installed pri-

mary after a view change. This involves checking whether the proposed pre-

prepare messages of committed processors are verified by another 3 f + 1 pro-

cessors and the new state has a correct prefix as per f indConsState().

• Macro f lushLocal() resets all local values of rep[].

• Macro msg(status t, int j) returns all the requests the p j reported to pi that have

a specific status or set of statuses (e.g., PRE−PREP or {PREP,COMMIT}).

• Macro lastExec() returns the last request sequence number executed by pi.

• Macro lastCommonExec() returns the last request that pi sees locally to have

been executed by at least 3 f + 1 processors.

• Macro con f lict() returns True if 4 f + 1 processors report to have their conflict

flag conFlag = True.

• Macro comPre f States(d) returns a set of repStates that satisfy the common prefix

relation! for at least than d processors. If no such exists then it returns ∅.

• Macro getDsState() returns a prefix suggested by 2 f +1 ≤ x < 3 f +1 processors,

with the requirement that there exist another y processors that have rep[] = ⊥

such that x + y ≥ 4 f + 1. If such a prefix doesn’t exist it returns ⊥.

• Macro double() returns True if the reqQ of pi contains two copies of a request

and they have different view or sequence number.

• Macro staleReqSeqn() returns True if the sequence number has reached the

maximal counter value MAXINT.

• Macro unsupReq() returns True if a request exists in reqQ less than 2f+1 times.

• Macro staleRep() = returns True if any of double(), unsupReq() or staleRep() are

True.

• Macro knownPendReqs() returns a set of requests that appear in the

repi[i].pendReqs and also appear in the message queues of at least another 3 f +1

163

Ioa
nn

is
Marc

ou
llis

processors.

• Macro knownReqs(status t) returns a set of requests that appear in the repi[i].reqQ

and of at least another 3 f + 1 processors and have a status in t.

• Macro unassignedReqs() returns the set of pending requests for which pi has

neither seen a PRE−PREP message from the primary, nor has it seen 3 f + 1

processors that have a PREP message for the same client request.

• Macro acceptReqPPrep(x, prim) returns True if there is a pre-prepare message

from the primary prim for a request x and the request content is the same for

3 f + 1 processors with the same sequence number and view identifier.

• Function getPendReqs() returns to the calling Algorithm the set of requests in

repi[i].pendReqs that were not assigned a sequence number by the primary and

also appear in the request queues of that other processors report to pi.

• Function repRequestReset() allows the view establishment algorithm to set the

needFlush flag of the replication module to False after it has taken into consid-

eration the fact that it requires a reset. This ensures that the view establishment

module does not trigger a reset repeatedly due to a single request.

• Function replicaFlush() allows the view establishment algorithm to demand a

reset of the replica’s state because it has performed a reset, which is a sign of a

corrupt state. It does so by setting the flag f lush to True.

Detailed Description. Algorithm 10 implements the replication procedure by first

checking and handling replica state conflicts possibly requiring a reset (lines 10–12).

It then processes messages that have not been assigned a sequence number (lines 14–

20), and then proceeds to maintain the queues of prepared and committed requests,

before applying effects to the replica for committed requests (lines 21–24). It finally

propagates information to the other replicas and to the clients (lines 25–26). Lines 27

– 30 define the receive side of the communication. A more detailed description from

processor pi’s view follows.

Line 2 checks if there was a completed view change that resulted in itself being the

primary, and in this case (and only in the first iteration) it sets Boolean vChangedi =

True. Line 3 reads the current value of the view/primary into prim. If pi detects that

it has become the primary line 4, then by line 5 it waits for 4 f + 1 processors with

164

Ioa
nn

is
Marc

ou
llis

viewChanged flags to accumulate before executing renewReqs() and f indConsState(),

which will have the following effects: it creates a pre-prepare message for every

committed request that had not been executed by 4 f + 1 processors. It also creates

a consolidated state with a common repState prefix and rLog prefix. (line 6). If

viewChanged holds then if there is a set of 4 f +1 processors with the same view and the

primary of this view appears with a flag viewChanged = False and checkNewVstate()

checks the consistency of the state and the requests that the new primary has sent,

then pi sets vChangedi() = False (line 7).

Line 8 draws the consolidated state based on 3 f + 1 and by getDsState() the

consolidated state in the special case where there are 2 f + 1 to 3 f correct processors

with a common replicate prefix and 2 f to f +1 corresponding correct processors with

in the DEF STATE. A processor among the latter group will not find the first case of

consolidated state but will be able to eventually (as we argue in the proof) find the

second type of consolidate state. Line 10 checks for conflicts (and sets the conflict

flag to True) and also adopts a common prefix (as a state transfer) in case its prefix is

obsolete and the requests it has do not allow it to catch up by executing the replica.

In case of conflict or detected local stale information the local variables are reset,

and there is a request to the view establishment module to perform a view change

(line 11). If the view establishment module performed a reset, then it instructs for a

reset of all local variables in the other modules (line 12). Until this point, the action

were orientated towards self-stabilization and ensuring (based on local information)

that there are no stale information from an arbitrary initial state.

Line 13 adds to pendReqs any requests that were not received by the communi-

cation with the client (line 29), but they appear as being known by another 3 f + 1

processors. Pending requests are processed by the primary (lines 16 – 18) by as-

signing them the next available sequence number restricted by an integer parameter

σ · K from the sequence number of the last reported executed request. Non-primary

nodes (line 19) wait for the primary’s ordering of the requests before adding them

to the prepared views, or in case 3 f + 1 processors appear to have a common se-

quence number for this request, it accepts this and adds the request to the reqQ with

status PREP (lines 19–20). Line 21 moves known messages from prepare to com-

mit status, and removes this request from pending. (Note that as per the definition

PBFT [38], the PRE−PREP and PREP phases define the order within a specific view,

while commits across any view.) If 3 f + 1 processors appear to have reached status

165

Ioa
nn

is
Marc

ou
llis

COMMIT for a request (line 22) this is considered as committed. Line 23 executes

the committed clients’ requests (by calling apply()) and adds them in order in the

rLog queue, but also in lastReq, which is used to inform clients of their last executed

requests (line 26).

Requests are removed from lastReq once they are acknowledged (line 30) or once

they are dequeued by newer requests. The iteration is completed by sending the

replica information to the other processors (line 25). Lines 27–28 treats the receipt of

rep[] from other processors. If a view establishment is taking place, this is discarded,

if a view change is taking place then only the repState part is stored as no new requests

are accepted during a view changes.

6.4.3 Correctness

Definitions. Two correct processors pi, p j with replica states Si,S j have a common state

prefix (CSP), if the replica state that applied the least number of transitions (say, Si) is

equal to a prefix of the state of the other processor, i.e., Si = S′j : S j = S′j ◦ S′′j . Correct

processors pi, p j have a consistent CSP (CCSP) if they have a CSP and their transitions

history is identical, and the system does not encode a corrupted message or local

stale information that can make the two states to divert. Definition 6.4.1 specifies

the replication task. A system state satisfying the replication task RT defined below

is a sa f e one. Moreover, RT defines the set of legal executions.

Definition 6.4.1 (Replication task). Consider an execution R starting in an arbitrary state

c. A safe system state satisfying the replication task RT is a state in which there exists a

set of correct processors Ps ⊆ C, where |Ps| ≥ 2 f + 1, that have:

(a) a CCSP,

(b) a common history of executed requests rLog = rLog′ ◦ rLog′′, where:

(i) Prefix rLog′ is an identically ordered log of executed messages with sequence numbers

[0, k], and

(ii) Suffix rLog′′ (where |rLog′′| ≥ 3Kσ) may differ in every processor in Ps, such that at

least one p ∈ Ps has rLog′′ = ∅ and other processors can have 0 ≥ |rLog′′| ≥ 3Kσ. For all

processors in Ps, all the requests in rLog′′ have sequence numbers in [k + 1, k + 3Kσ].

(c) The communication link Li, j between two correct processors pi, p j ∈ Ps does not contain a

corrupt rep[•] that can force the receiving end to adopt a repState that can lead to a call to

f lushLocal() or an assignment needFlush← False.

166

Ioa
nn

is
Marc

ou
llis

Proof Outline. The proof only considers mal-admissible executions, and, unless

stated otherwise, it assumes that a view is in place and known by every correct pro-

cessor. Initially, it establishes that within O(1) asynchronous rounds there is no local

stale information (Claim 6.4.1). We then deduce that the system manages within

O(1) asynchronous rounds to establish that there is a CCSP, that the order of execu-

tions is agreed upon, and that the communication channels cannot cause corruption.

The proof continues to show that if there is a CCSP satisfying the RT , then either

every correct processor will take this CCSP, or a reset takes place at most once in the

execution (Lemma 6.4.9). Lemma 6.4.3 suggests that after a view reset, there is a safe

system state and correct processors start from a common default CCSP DEF STATE.

This leads to Theorem 6.4.10 which is the convergence theorem. We conclude with

the closure theorem (Theorem 6.4.11) that proves that after convergence (i.e., within

O(1) asynchronous rounds), correct processors executing Algorithm 10 always sat-

isfyRT and perform state replication. We also argue that the safety (i.e., the integrity

of the state and request order) is not affected upon a primary (view) change.

Claim 6.4.1. Within one complete iteration of Algorithm 10, a correct processor pi ∈ C has

no local stale information as the ones defined by predicate staleRep() (Fig. 6.6, line 11).

Proof. A complete iteration of Algorithm 10 contains a call to staleRepi() (line 11),

which, if it returns True, will allow a call to f lushLocali(). By the definition of

f lushLocal() the local structures are set to a default (empty) state. We argue that

staleRep() never holds again.

Specifically, double() never holds again since before adding a request from

pendReqs to reqQ it is checked not to be a double entry by condition @z ∈

repi[i].{reqQi, rLogi} : (z.sq = y.sq)) where y is a request in the primary’s PRE−PREP

requests that was assigned a sequence number (line 19). Condition staleReqSeqn()

does not hold since the seqn after a reset is set to 0 and does not reach the MAXINT

unless a transient fault takes place. Also, unsupRep() = False since every message is

added to the reqQ only if it is known to be acknowledged by 3 f + 1 processors. Since

the queues are emptied then there is no local support for any corrupt request, and

for requests received, the support arrives with new messages from other processors.

Line 19 adds only when 3 f + 1 support exists for a message, and thus there are

2 f + 1 correct processors that will always support this message, thus dissatisfying

the requirements of usnsupRe() for less than 2 f + 1 support for a request. Finally,

167

Ioa
nn

is
Marc

ou
llis

(∃x ∈ {rep[i].rLog} : |x.xSet| ≤ 3 f + 1) does not hold after a reset, since the condition to

add a request to rLog is to have an |xSet| ≥ 3 f + 1 by line 23.

We conclude that, upon the execution of the first complete iteration of every

correct processor in the system, the result holds. 2

Claim 6.4.2. Let R be a fair execution starting in an arbitrary initial state. Within O(1)

asynchronous rounds, the system reaches a state c ∈ R where there are no corrupt messages

from the initial arbitrary state that can make part (c) of RT be False.

Proof. By the specification of the data link protocols (Section 3) defining FIFO

communication, and by the fair execution assumption, the completion of an asyn-

chronous round implies the receipt (by correct processors) of all the messages that a

correct processor sent at that iteration. This implies that when these messages were

received, all the corrupt messages will also have been received. Thus the link carries

no other messages that come from the initial arbitrary state. The result follows. 2

Claim 6.4.3. Let R be an execution starting in an arbitrary initial state such that part (b) of

the RT is not satisfied. Within O(1) asynchronous rounds, the system reaches a state c ∈ R

in which (b) is satisfied or there is a call for a view reset.

Proof. By the communication (lines 25 and 28) a processor pi sends rLogi and receives

rep j[j].rLog for all processors p j ∈ C and possibly of some malicious processors. Since

part (b) of RT does not hold, it must be that more than 3 f + 1 correct processors

pk will have that delayedk() = True since (lastExeci() < lastCommonExeci() + 3Kσ). We

note that in this case, the processors cannot catch up with the replication (the reqQ()

can only accommodate 3Kσ messages) and f indConsState() will return ⊥ based on

the received information, letting conFlag = True. Thus, each of processors pk raises

their conFlag and is led to a reset. The result follows since the reset state is a safe one

in which (b) is satisfied, as proved in the following result. 2

Claim 6.4.4. A system state with a default replica state DEF STATE held by 3 f + 1 correct

processors is a safe system state.

Proof. DEF STATE satisfies the definitions of RT . Part (a) of RT is satisfied since

the DEF STATE is trivially a CCSP which forms a common repState. Part (b) holds

since the pendReqsi and reqQi queues are all emptied upon a localFlushi(), so there

cannot be inconsistencies in the message queues, nor a delayed() message sequence

number. Part (c) holds by the reasoning of the following Claim 6.4.2. 2

168

Ioa
nn

is
Marc

ou
llis

Claim 6.4.5. Let R be an execution starting in an arbitrary state and c ∈ R be the system

state that completes a view reset. Within O(1) asynchronous rounds the system reaches a

safe system state with respect to the replication task.

Proof. By the view establishment algorithm, automaton(‘act’, 1, 1) has a first action

that is a call to replicaFlush(). This sets variable f lush of Algorithm 10 to True. In

the next iteration of Algorithm 10 by pi, f lushi = True and this satisfies the condi-

tion of line 12. There is thus a call to f lushLocali() in the very next iteration after

the view change. A view reset is followed by at least 3 f + 1 correct processors be-

cause establishing a view requires 4 f + 1 processors. This implies that the above

call to f lushLocal() is performed by at least 3 f + 1 correct processors. This satisfies

parts (a) and (b) of the task RT directly, and (c) is also satisfied since Claim 6.4.2

holds. The result comes within O(1) asynchronous rounds following the O(n) asyn-

chronous rounds required by the View Establishment module for the view reset

(Theorem 6.3.10), and by Claim 6.4.4. 2

Lemma 6.4.6. Let R be an execution starting in a state that does not have a CCSP among

2 f + 1 correct processors that satisfies the definition of RT . Within O(n) asynchronous

rounds at least 3 f + 1 correct processors pi ∈ C reach a reset state repi[i] = DEF STATE.

Proof. We assume, as a worse case, that the f malicious processors attempt to

support some corrupt state prefix Sc that exists in the system state. Since there is

no CCSP, there are y < 2 f + 1 correct processors that may have Sc. Within a single

asynchronous round, pi with or without repStatei = Sc will send and receive the states

of every single correct processor via lines 25 and 28. In the next iteration, line 8 will

assign Xi = f indConsStatei(comPre f Statesi()) = ⊥, since comPre f Statesi() will return ∅,

i.e., it will not find a common state prefix among 3 f + 1 processors. By line 10 pi

assigns conFlagi[i] ← True. Within another O(1) asynchronous round, every correct

processor p j exchanges its rep j[j] and decides upon rep j[j].conFlag = True, while it

is informed of repi[i].conFlag = True. The result considers the O(n) asynchronous

rounds required for the view establishment.

In the next iteration (con f licti() = True) implies the execution of f lushLocali()

and a set of the flag repRequestReset = True (line 11). This initiates a view reset by

Algorithm 8. Lemma 6.4.5 leads to the result. 2

Lemma 6.4.7. Let R be a fair execution starting in an arbitrary initial state. Within O(1)

169

Ioa
nn

is
Marc

ou
llis

asynchronous rounds, the execution has a suffix R′ that contains no violations of conditions

(a), (b) and (c) characterizing RT , unless 2 f + 1 ≤ |Ps| < 3 f .

Proof. Claims 6.4.2, 6.4.3, and Lemma 6.4.6 tackle deviations from each of conditions

(c), (b) and (a) respectively, leading to either a state reset or the adoption of a CCSP

satisfying the definition of RT . 2

Lemma 6.4.8. Consider an execution R starting in a safe system state and where processor

pi executes a request that is not part of the reqQ of a majority of correct processors. Within

O(1) asynchronous rounds, pi reassigns a correct CCSP.

Proof. This request may be the result of an initial arbitrary state. The result follows

from the definition of the safe system state. Since there exists a CCSP, namely Su,

known by 3 f + 1 processors, within O(1) asynchronous rounds, pi has knowledge

of the CCSP. The f indConsState() operator and the conditions of line 11 will reassign

the CCSP to repi[i] since repi[i].repState 6! Su, and since repi[i].rLog differs from 3 f +1

the other processors. Given the arguments of Lemma 6.4.9 we deduce the result. 2

Lemma 6.4.9. Let R be an execution with a state Su that is a CCSP satisfying parts (a) to (c)

of the definition of RT , and where Ps is the set of processors that have (some prefix of) state

Su. Within O(1) asynchronous rounds, every correct processor pi has repi[i].repState! Su.

Proof. Within O(1) asynchronous rounds, by the communication mechanism

(lines 25 and 27) the processors of Ps propagate Su to all the correct processors.

We study the following two cases.

Case 1 – (|Ps| ≥ 3f + 1). Every correct pi < Ps with repi[i].repState 6! Su may initially

apply repi[i].repState = DEF STATE. Upon receiving Su from the 3 f +1 correct proces-

sors, pi has an iteration in which line 8 assigns Xi = f indConsState(comPre f States(3 f +

1)) which is equal to Su. Since repi[i].repState is either equal to DEF STATE or not a

prefix of Su, by line 10 it assigns xi = Su to repi[i].repState and this gives the result.

Case 2 – (2f + 1 ≤ |Ps| < 3f). Note that initially in this case, the state is depen-

dent on the malicious processors’ good will, since they may retract their support

and force a collapse of the state. Again, the propagation of Su by the members

of Su takes place and it is possible that another f malicious processors (includ-

ing the primary) are pretending to hold Su. Since we have no guarantees that

f indConsState(comPre f States(3 f + 1)) will return Su, we use the macro getDsState()

(line 7). This will return Su only when the combined number of processors that

170

Ioa
nn

is
Marc

ou
llis

have Su or the DEF STATE as rep[] is at least 4 f + 1. By the reasoning of Claim 6.4.6

correct processors that do not have Su, will, withinO(1) asynchronous rounds, move

to the DEF STATE. Finally, |Ps| ∪ |{p j ∈ C : rep j[j] = DEF STATE}| ≥ 4 f + 1. This

satisfies getDsState() that returns Su. By lines 8–10 we have that repi[i] = Su. Note

that the getDsState() is strong enough to impose that, once achieved, the state is no

longer dependent on malicious processors since even if malicious processors retract

their support, this leaves 3 f + 1 correct processors, enough to provide support as per

Case 1. 2

From the above we deduce the following convergence theorem.

Theorem 6.4.10 (Convergence). Consider an execution R of Algorithm 10 starting in an

arbitrary state. Within O(n) asynchronous rounds, the system reaches a safe system state

csa f e ∈ R.

Proof. Claims 6.4.1 – 6.4.3 show that local stale information as well as corrupt

message in the communication links are removed. Claim 6.4.4 shows that if

the DEF STATE is a CCSP satisfying RT then this defines a safe system state.

Lemma 6.4.6 proves that in the absence of a CCSP satisfying RT there is a call

to Algorithm 8 that result to a safe system state (with DEF STATE as the CCSP).

Lemma 6.4.7 suggests that any violation to the RT are eventually eliminated from

the system for the case where the CCSP is supported by more than 3 f + 1 correct

processors, and Lemma 6.4.9 shows how the system will either reach to a safe system

state with |Ps| ≥ 3 f + 1, or the execution reaches view reset that again results to a

safe system state by Lemma 6.4.3. Essentially Lemma 6.4.9 shows that consensus

is reached. Hence, Algorithm 10 allows convergence to the system task RT within

O(n) asynchronous rounds. 2

Theorem 6.4.11 (Closure). Consider an execution R of Algorithm 10 starting in a safe

system state c. Any subsequent state c′ ∈ R is a safe system state. Then R is a legal execution

with respect to the replication task RT (Definition 6.4.1).

Proof. We proceed to prove closure incrementally. Claim 6.4.12 establishes closure in

the presence of a correct primary that progresses the state machine without delays,

thus, the primary monitoring mechanism of other processors does not request a

change. We define our liveness criteria for this assumption in the Primary Monitoring

171

Ioa
nn

is
Marc

ou
llis

module. As a second step, Claim 6.4.13 proves that safety is not lost if the primary

acts maliciously. We conclude with Claim 6.4.14 showing that safety is retained

between any number of view changes.

Liveness Assumption 1. Let R be an execution of Algorithm 10 starting in a safe initial

state. Throughout execution R, the primary pi replicates at a pace that allows |lastExec j() −

lastExeci()| < σK to hold, where p j ∈ C is the first processor to execute the committed request

lastExec j(). (It is possible to have i = j.)

Note that in order to commit, 3 f +1 processors are required to appear as commit-

ted to this request with the same request number (line 21). Thus there exist at any

point 2 f + 1 correct processors satisfying the |lastExec j() − lastExeci()| < σK condition

of the above liveness assumption.

Claim 6.4.12. Let R be a mal-admissible execution starting with a safe system state c in

a view i with a correct primary pi, and a view change is never requested by the Primary

Monitoring module. Any subsequent state c′ ∈ R is safe.

Proof. Note that a client may only issue a single request to the system and until this

is executed, it does not send a new one, but it continuously propagates its request to

all the processors in P. We assume that Liveness Assumption 1 holds.

Step 1 – At least 2f + 1 processors pj ∈ C add q̃ to repj[j].pendReqs.

By the continuous propagation of requests on behalf of the clients, and the fair

execution assumption, q̃ should be delivered to every p j and added to rep j[j].pendReqs

(line 29). A correct processor may also add a request to pendReqs via line 13 when

3 f + 1 processors appear to acknowledge the receipt of q̃ to one another via the

propagation of rep[]. Since pi is correct and communicating, it must receive q̃ in one

of the two ways above.

Step 2 – Primary pi assigns a sequence number to q̃ if seqni < lastExeci() + σK.

Line 16 is satisfied only by the primary of the view, and line 17 is satisfied only

if seqni < lastExeci() + σK. Since a client never injects two different requests before

the first one is processed, there can be only K requests in the pending queue of the

primary. A correct primary that is progressing replication always among the fastest

3 f + 1 processors (something desired for a primary) will only need to stay within K

from lastExeci(). But, since liveness-wise this is not something that one would like to

assume, and to allow more flexibility for progress, the system defines σ to grant the

172

Ioa
nn

is
Marc

ou
llis

primary a margin of σK rather than just K request numbers. This is still restrictive,

since σK � MAXINT, and so a primary cannot attempt to exhaust the counter by

assigning a value close to MAXINT. The primary removes q̃ from repi[i].pendReqs

and adds it to repi[i].reqQi with status PRE−PREP, the current view (line 17), and

the sequence number, and propagates this via line the communication mechanism.

It also moves this request to status PREP, since it does not require to verify the

sequence number and its validity as the other processors need to do. The replication

procedure hereon does not involve the primary as a coordinating entity, and the

primary performs replication as any of the other processors.

Step 3 – WithinO(1) asynchronous rounds, at least 2 f + 1 processors p j ∈ C execute

the operation of q̃ and add it to rep j[j].rLog in the order instructed by the primary.

Within an asynchronous round after Step 2 holds, all correct processors p j receive

repi[i].reqQ, which implies that they receive 〈〈q̃, i, seqNumber〉,PRE−PREP〉. They

accept this only if the conditions of line 19 hold (requiring at least 3 f + 1 processors

to have observed this request with the same view and seqNum), and the conditions

of line 20 hold. This requires the uniqueness of the sequence number assigned,

and that it is also within lastExec j() + σK. Hence, every p j that remains within the

lastExec j() + σK bound, accepts this message given that |lastExec j() − lastExeci()| < σK

holds (as per our assumption).

Upon acceptance every such p j removes q̃ from rep j[j].pendReqs stopping the

Failure Detector from inquiring about q̃ from this point onward. This adds it to

repi[i].reqQi with status PREP, along with the current view (line 17), and the sequence

number seqNumber, and propagates this via the communication mechanism. Line 22

confirms that the request is committed if this appears as status PREP, or COMMIT, or

is executed in rLog, only if this is reported by 3 f processors. Within one asynchronous

round, every correct processor p j that had accepted q̃ propagates a PREP message

for q̃, and receives at least 3 f + 1 such evidence (where the f may be from malicious

processors) from a set of processors X.

This implies that q̃ is committed and may be executed. The assumption of a

correct primary pi, implies pi never skips a request number when assigning to a

request. Thus condition q̃.seqNumber = lastExec j() + 1 of line 23 holds once all

previous requests are executed. We note that f indConsState() is assumed to produce

dummy requests in case 3 f + 1 processors appear to have committed a sufficient

173

Ioa
nn

is
Marc

ou
llis

number of requests but there is no evidence that a previous request number exists

or is assigned. Upon execution of q̃ the safe state is preserved per the RT definition.

and this concludes the proof. 2

Claim 6.4.13. Let R be a mal-admissible execution starting with a safe system state c in a

view i with a malicious primary pm. Any subsequent state c′ ∈ R is safe.

Proof. We prove that none of conditions (a), (b) or (c) of RT is violated by the mali-

cious actions of pm, while pm may also collude with the other malicious processors.

Condition (a) is not violated – A malicious primary is limited to the following

actions that deviate from those of a correct primary:

1. Stop assigning sequence number to requests or stop propagating them.

2. Assigning a request number that was either reused, or does not obey the

lastExeci() +σK bound (which forces a violation of the Liveness Assumption 1).

3. Sending different request number to different processors.

4. Sending a rep[] that does not comply with the CCSP.

5. Modify a client’s request.

Case (1) does affect correct processors, since at most K client requests will be accu-

mulated in pendReqs of each processor. Clients will then wait for responses and will

not send new requests. This is clearly a liveness issue to be settled in Section 6.5.

Case (2) does not affect the state of every correct processor p j, since for a malicious

request qm the acceptPPrepMsg() macro protects against accepting a sequence number

violating lastExec j() < qm.seqNumber ≤ lastExec j() + σK.

Case (3) cannot violate the correctness of the replica, by the fact that a set X of 3 f + 1

processors need to appear as agreeing to progress a request under the same sequence

number. As such, there can be no other group Y of processors of size 3 f + 1 such

that |X∩Y| ≤ f + 1. This implies that there always exists p j ∈ C∩X∩Y that is aware

of the first assignment of the sequence number, and does not allow a reassignment.

Case (4) does not affect correctness, since f indConsState() returns a state that is based

on 3 f + 1 processors and gives no privilege to the primary’s rep[].

Case (5) is proved by the observation that macro acceptPPrepMsg() requires that the

qm request matches the client’s request and another 3 f +1 processors’ requests. Thus

it is impossible for pm to force a different request than that of the client.

We conclude that Condition (a) of RT is not violated.

174

Ioa
nn

is
Marc

ou
llis

Condition (b) is not violated – This condition is derived from the proofs of

Lemma 6.4.12 and Condition (a), since every request that we examine is executed

according to the order set by the primary, or if not set properly, a request is not

executed and there is no progress in rLog.

Condition (c) is not violated – We have proved that any message sent by the primary

or the other malicious processors cannot make correct processors to accept a different

order of execution, since a consensus of 3 f + 1 is initially required on the order.

This concludes the proof. 2

Claim 6.4.14. Let R′ be a suffix of execution R as described in Claim 6.4.13, in which there

was a view change. Every c ∈ R′ is a safe state and satisfies the conditions of RT .

Proof. Consider the prefix R of R′ with CCSP Su, and correct processors pi, p j, where

p j has a request q̃ ∈ rep j[j].pendReqs. We assume that a view change takes place and is

concluded when the first processor pk in the system has the new view v = i (i.e., pi is

the new primary), and allowServicek() = True. Every correct processor pk that had the

previous view, executes line 2 to find that (repk[k] , ⊥) is True, and (Alg9.getView(i) ,

prim) = True, thus setting repk[k].viewChange = True. Note that any subsequent

iteration does not allow line 2 to modify this line since repk[k].viewChanged , False.

There are now two cases.

Case 1 – Primary pi is correct. This implies that once pi has Alg9.getViewi(i) = i it

detects a change of view and sets repi[i].viewChange = True. This also satisfies line 4.

Since every correct pk has repk[k].viewChanged = True and propagates this via line 25,

within O(1) asynchronous rounds ∀pk ∈ P(repk[k].viewChanged = True), and line 5

holds.

The primary executes renewReqs() on a set of 4 f + 1 processors that have view

i, and have their viewChange = True. For q̃ of processor p j, this implies that if was

prepared by at least one processor, then within the 4 f + 1 processors, there exist f + 1

correct ones that have prepared q̃. This is due to the intersection of the 4 f + 1 that

pi chooses with the 3 f + 1 required that prepared the request. Since these are more

than the malicious, pi can safely find the prepared requests even in the presence of

f colluding processors. Operator renewReqs() creates a new pre-prepare message

for each prepared requests and adds the commit message to the reqQ. Operator

f indConsState() makes sure that the state is consistent with the contents of reqQ and

rLog. The primary may use these to catch up with the replication if it is not up-to-date

175

Ioa
nn

is
Marc

ou
llis

(i.e., in a state transfer way. Thus pi reaches to a repi[i] that does not omit requests

that may have been prepared in the previous view with a sequence number sq, by

adding them to the current view with the same sq. It then propagates this repi[i] with

repi[i].viewChanged = False (lines 6 and 26).

At the side of correct p j, rep j[j].viewChanged = True until the primary pi sends a

consolidated state. The conditions of line 7 eventually apply for every correct proces-

sor, since they all detect a view changed, and should see within O(1) asynchronous

rounds of pi’s actions that (rep j[j].〈viewChanged, prim〉 = rep j[i].〈False, prim〉). If 4 f +1

processors have the same view, then p j calls checkNewVState j(). Essentially it checks

the procedures done by pi at line 6 to check the correctness of repi[i]. Upon success

repi[i] is adopted.

Case 2 – Primary pi is malicious. In this case the primary may not progress again,

but this will cause a second view change. A correct processor p j does not change

rep j[j].viewChanged = True until the first response of the primary. It also does

not perform replication and accept requests. By the reasoning stated for Case 1,

and that p j bases their acceptance of the primary’s state on checkNewVState j() and

4 f + 1 processors’ states, it follows that p j’s state cannot take up any corrupt values

proposed by the faulty primary.

Since in both cases every correct processor takes the correct state without loss of

requests, or malicious addition of others to the state, we conclude that the conditions

of RT hold. 2

By the above claims we conclude that Theorem 6.4.11 holds. 2

6.5 Primary Monitoring

The primary is monitored by a view change mechanism, which employs a failure

detector to decide when a primary is suspected and, thus, a view change is required.

View change facilitates the liveness of the system, since if a malicious processor does

not correctly progress the replication it is changed. We proceed to present the two

parts of the module.

176

Ioa
nn

is
Marc

ou
llis

Algorithm 11: Self-stabilizing Failure Detector; code for processor pi

1 Constants: T an integer threshold.

2 Variables: beat[n] is an integer heartbeat array where beat[j] corresponds to p j’s
heartbeat and beat[i] is unmodified and remains 0. FDset is the set of processors that
are responsive according to their heartbeat, cnt is a counter related to the primary or a
proposed primary of pi’s current view. primSusp[n] is a boolean array of {True/False}
where primSusp[j] indicates whether processor p j suspects the primary of its current
view or not. curCheckReq the requests’ set (of size at most σK) that is currently being
checked for progress. prim holds the most recently read primary from the view
establishment module.

3 The token passing mechanism (Sec. 3) piggybacks FDset[i] and primSusp[i] when sent
to other processors, and updates fields FDset[j] and primSusp[j] upon receipt of the
token from p j.

4 Macro reset() sets all fields of primSusp[•] to False, set curPendReqs to ∅ and beat[•] and
cnt[•] to 0.

5 Interface function:
6 suspected() = (|{p j ∈ P : (getView(j) = getView(i)) ∧ (primSusp[j] = True)}| ≥ 3 f + 1))

7 Upon receipt of token j from p j begin
8 // (Responsiveness check.)

9 beat[j]← (beat[i]← 0);
10 foreach pk ∈ P r {p j, pi} do beat[k]← beat[k] + 1;
11 FDset← {p` ∈ P : beat[`] < T};
12 // (Primary-progress check.)

13 if prim , getView(i) then foreach p j ∈ P do reset();
14 prim← getView(i);
15 if (Alg9.allowService() ∧ noViewChange()) then
16 if (j = prim) then
17 if (∃x ∈ curCheckReqs : x < getPendReqs()) ∨ (curCheckReq = ∅) then
18 (cnt[j], curCheckReq)← (0, getPendReqs())

19 else cnt[j]← cnt[j] + 1;

20 else if (prim = getView(j)) then primSusp[j]← token j.primSusp;
21 foreach {pk ∈ P r {pprim}} do {cnt[k]← 0}; // reset all counters except primary’s;
22 if prim = i then cnt[i]← 0;
23 if (¬primSusp[i]) then primSusp[i]← ((pprim < FDset) ∧ (cnt[i] > T));

24 else if (¬Alg9.allowService()) then reset();

6.5.1 Failure Detection

We base our FD (Algorithm 11) on the token-passing mechanism described in Sec-

tion 3.3, and follow the approach of [53] to check both: (i) the responsiveness of

processors, (ii) that the primary pprim is progressing the state machine.

Responsiveness check (lines 9–11). Every processor pi maintains a heartbeat integer

177

Ioa
nn

is
Marc

ou
llis

counter for every other processor p j. Whenever processor pi receives the token from

processor p j over their data link, processor pi resets p j’s counter to zero and incre-

ments all the counters associated with the other processors by one, up to a predefined

threshold value T. Once the heartbeat counter value of a processor p j reaches T, the

FD of processor pi suspects p j to be unresponsive. In other words, the FD at processor

pi considers processor p j to be active if and only if the heartbeat associated with p j

is strictly less than T. Note that malicious processors can intentionally remain unre-

sponsive and then become responsive again. A correct processor cannot distinguish

this behavior from inaccuracies of the FD (due to packet delays) that make a correct

processor appear briefly unresponsive, but eventually appears as responsive when

its delayed packets are received. Nevertheless, the use of the FD is to suggest which

processors are responsive at a given time.

Primary progress check (lines 13–24). To achieve liveness, processors need to be able

to check whether the primary is progressing the state machine by imposing order on

the requests received as instructed by Algorithm 10. The responsiveness FD can only

suspect a non-responsive primary. A faulty primary can be very responsive at the

level of packets, and thus evade suspicion by sending messages that are unrelated

to the requests of the clients. A different type of detection is required, that examines

how the primary is proceeding with assigning sequence numbers to requests.

To this end, the primary’s progress check uses the heartbeat FD to provide liveness

but not safety as follows. The failure detector of pi holds a set of requests curCheckReq

that it drew from the replication module the last time that progress was detected

by the primary. Processor pi uses the interface getPendReqsi() (in line 17) to check

for progress in relation to curCheckReqsi. Since getPendReqsi() returns the requests

that are not prepared but are known by 3 f + 1, the primary cannot be suspected for

requests that existed in the system or that are introduced by malicious processors.

Note that in the case where a view change has taken place, getPendReqs() returns

‘ViewChange’ that implies that the progress requested by the new primary is to

return a new consolidated state as detailed in Section 6.4.

If at least one request of curCheckReq is removed from the currently pending

requests, then the counter cnti[prim] is reset to 0, and curCheckReqs is updated by

getPendReqs (line 18). Note that the approach is self-stabilizing, since if curCheckReqs

is the result of an arbitrary initial state this is cleaned within one iteration of the

178

Ioa
nn

is
Marc

ou
llis

algorithm. If there was no progress, then the primary’s counter cnt[] is incremented

(line 19). Due to the possibility of corruption, we reset the cnt[] of every non-primary

in every round (line 21). Line 23 determines whether a primary p j is locally suspected

if its counter is beyond the threshold for responsiveness or request progress and

sets primSusp[j] = True. The interface suspected() (line 6) considers the primary as

suspected if 3 f + 1 processors consider it as suspected.

Suspicion of primary. If processor pi suspects its primary, i.e., primSusp[i] = True,

then while the primary does not change, primSusp[i] remains True. This is to prevent

a malicious primary from manipulating the failure detectors of correct processors

continuously and ensuring that once a primary has been suspected by at least 2 f + 1

processors at most once, it will be changed. So this “forces” a malicious primary

to either be suspected by correct processors and cause a view change or to progress

the replication. Note that in the worse case, there are only f malicious primaries

consecutively before reaching to a correct one. This is not a perfect failure detector

since it allows for 2 f correct processors to err on suspecting the primary once or

more. We thus form the following failure detection assumption to complement

Liveness Assumption 1.

Liveness Assumption 2. Consider an execution R of Algorithm 10 starting at a safe system

state with a correct primary pi. Then throughout R, no more than 2 f + 1 correct processors

may suspect pi, i.e., @S ⊆ C : (∀p j ∈ S (primSusp j = True)) ∧ (|S| ≥ 2 f + 1).

Correctness. We prove that Algorithm 11 is self-stabilizing. In particular we prove

the following Lemma.

Lemma 6.5.1. Consider an execution R of Algorithm 11 starting in an arbitrary state. Then

only at most one correct primary pprim may be suspected as a result of stale information.

Proof. Processor pi running Algorithm 11 may suspect correct pprim due to corruption

in primSuspi, beati[prim] or cnti[prim]. Starting in an arbitrary state may lead to

primSusp = True, either by corruption of primSusp, or of assignment due to corruption

by the variables checked at line 23. A falsely initiated beat[prim] becomes False again

upon the first receipt of the counter of pprim, i.e., line 9.

The primary progress check can have corruption in curCheckReqs and thus check

for requests that were never issued (line 18), but this will be deemed as progress. If

cnt[prim] > T then this is amended only if pprim progresses the replication, such the

179

Ioa
nn

is
Marc

ou
llis

pi’s replication module presents a different requests set to curCheckReqs (per line 18’s

condition). By Claim 6.4.12 this is done in O(1) asynchronous rounds.

If the above stale information cause a view change (by suspected() = True then we

note that by the initialization of primSusp, beati[•] and cnti[•], line 21 sets all these

variables to default 0 values. The result follows, since for any new primary the

counters start from 0, primSusp = False, and the pending requests set is set to the ∅.

This completes the proof. 2

6.5.2 View Change upon Suspected Primary

Algorithm outline. A processor propagates messages about which processors have

reported to require a view change. If 3 f + 1 processors appear to have suspected the

primary, then the processor stops providing service even if itself has not suspected

the primary itself. The above guarantees that since f of 3 f + 1 processors may

be malicious, at least 2 f + 1 correct processors have firmly suspected the primary.

The replication mechanism is left with 3 f processors, which is not enough to make

progress, so the view change is forced upon the system by the 2 f +1 correct processors

who are the majority of correct processors. The view change is initiated upon seeing

that the intersection of those that require view change becomes 4 f + 1.

Variables. The local state of processor pi for this algorithm is the tuple vcmi[n] =

〈vStatus, prim,needChange, needChgSet〉 where vcmi[i] holds pi’s values and vcmi[j]

holds p j’s last value copy of vcm j[j] that was sent via the communication in lines 16–

17. Variable vStatus ∈ {OK,noService, vChange} is the status of the processor regarding

the requirement to change view, where OK requires no change, noService is a stop

to service provision, and vChange is the status when the service is stopped and

4 f + 1 processors are found to require a view change. Variable prim holds the

reading of primary in the last iteration of the algorithm, the boolean needChange

is True when pi requires a change, and needChgSet is that set of processors that

appear to pi as requiring a view change. DEF STATE is a default value for vcm =

〈OK, getView(),False, ∅〉.

Macros and Functions. Algorithm 12 uses the macros and provides the interface

functions that follow.

• Macro cleanState() imposes the DEF STATE to each entry of vcmi[•].

180

Ioa
nn

is
Marc

ou
llis

Algorithm 12: Self-stabilizing View Change; code for processor pi

1 Variables: Tuple vcm[n] = 〈vStatus, prim,needChange, needChgSet〉where
vStatus ∈ {OK, noService, vChange}, needChange, is a boolean in {True,False} and
needChgSet a set of processors that appear to require a view change. vcm[i] holds pi’s
values and vcm[j] holds p j’s last gossiped value to pi. DEF STATE is a default value
for vcm = 〈OK, getView(),False, ∅〉.

2 Macros: cleanState() = {foreach p j ∈ P do vcm[j]← DEF STATE; }
3 supChange(int x) = return (∃X ⊆ P : (∀p j, p j′ ∈ X : vcm[j].prim = vcm[j′].prim) ∧

(|
⋂

pk∈X vcm[k].needChgSet| ≥ 3 f + 1) ∧ (|X| ≥ x))

4 Interface function: noViewChange() = (vStatus = OK);

5 do forever begin
6 if prim , getView(i) then cleanState();
7 (prim,needChange)← (getView(i),Alg11.suspected());
8 if (Alg9.allowService()) then
9 if (prim = getView(i)) ∧ (vStatus , vChange) then

10 needChgSet← needChgSet ∪ {p j ∈ P : getView(i) = getView(j) ∧
vcm[j].needChange = True};

11 if ((|{vcm[j].vStatus = noService}p j∈P| < 2 f + 1)) then vStatus← OK;
12 if (vStatus = OK) ∧ (supChange(3 f + 1)) then vStatus← noService;
13 else if (supChange(4 f + 1)) then vStatus← vChange; viewChange();

14 else if (prim = getView(i)) ∧ (vStatus = vChange) then viewChange();
15 else cleanState();

16 foreach p j ∈ P do send vcm;

17 Upon receive m from p j do vcm[j]← m;

• Macro supChange(x) returns True if there is a set of processors size x with the

same primary, and this set supports a view change, and also each member of

the set sees an intersection of needChgSet sets of size at least 3 f + 1.

• Interface function noViewChange() returns True if the status is not noService

nor vChange, i.e., status = OK.

Detailed description. Primary pi first checks if the primary has changed based on

the current reading of getViews() (line 9), and the previous reading of this function.

Processor pi resets the status and variables only if the status is not yet vChange.

Processor pi executing Algorithm 9 first reads the FD (line 7), and then checks

whether the view establishment module returns a current view (line 8).

If any of these two conditions fail, pi adds processors that have their needChange

flag to True to the needChgSet (line 10). Line 11 resets the status to OK if there is no

support to change the view, and it copes with arbitrary changes to the status.

181

Ioa
nn

is
Marc

ou
llis

The algorithm then moves from status OK to noService if there are more than

3 f + 1 processors in needChgSet (line 12). If the processor sees 4 f + 1 processors in

needChgSet it moves to status vChange and calls the viewChange() interface function

of the view establishment module to initiate the view change procedure to the next

view (line 13). While a view does not change, it holds a set of processors needChgSet,

and it adds to this any processors that report having seen suspected(). While in status

vChange and the view not having changed, the algorithm renews its request to the

view establishment module (line 14). Line 15 captures the case where the view

change has finished and the local variables are set to their defaults. Lines 16 and 17

implement the communication between the processors.

Correctness. We define the following task description for the view change module.

An execution R is legal with respect to the view change taskVT , if:

(i) There are no calls to vChange() by correct processors if the Liveness Assumptions 1

and 2 hold for primary pi ∈ C.

(ii) If the current primary pm is suspected by 2 f + 1 correct processors, then a view

change is initiated that results to a new view m + 1.

Theorem 6.5.2. Consider an execution R starting in an arbitrary state, that respects Liveness

Assumptions 1 and 2. Within O(n) asynchronous rounds the system reaches an execution

suffix R′ which belongs to the legal executions ofVT .

Proof. We prove the result with the following two lemmas. Lemma 6.5.3 proves that

Condition (i) (that defines the convergence property of VT) eventually holds, and

correspondingly Condition (ii) that defines the closure property ofVT is shown by

Lemma 6.5.4 to hold within O(n) rounds.

Lemma 6.5.3 (Convergence – Condition (i) ofVT). Consider an execution R = R′ ◦R′′

starting in an arbitrary state. If there is a prefix R′ of R′ that has at most one call to

viewChange() that is completed by the View Establishment module, then Condition (i) of

VT holds throughout the suffix R′′ of R′.

Proof. We assume that a set of processors pi ∈ C calls viewChangei() due to stale

information in the state of vcmi[•], and this causes a view change to eventually

initiate at the View Establishment module. Line 14 renews the request in every

iteration until the View Establishment module eventually starts the procedure to

change the view. Upon detection of a change of primary by line 6 the cleanStatei()

182

Ioa
nn

is
Marc

ou
llis

procedure imposes the DEF STATE. This ensures that if the new primary is not

suspected, no variable of vcmi[i] will lead to a view change on pi’s behalf.

Since a view change cannot take place if 3 f +1 correct processors do not converge

to this (see automaton predicate (0, 1) and (1, 1) of Algorithm 9), then there exist at

least 3 f +1 processors that exchange correct and default vcm[•] information when the

view change takes place or after this. By this, supChange() cannot hold neither due

to initial corrupt information, nor due to existing. This is because a view change at

Algorithm 9 already takesO(1) and thus any messages with stale vcm[•] are received

before line 6 is run. This implies that the new primary initiates at pi’s view change

state with a DEF STATE. 2

Following the above Lemma 6.5.3, we assume that the primary is changed in a

prefix R′ of an execution R = R′ ◦ R′′, and R′′ starts when the first correct processor

pi that gets the new primary via Alg9.getViewi(i) executes line 6.

Lemma 6.5.4 (Closure – Condition (ii) ofVT). Consider an execution prefix R′′ where

the Liveness Assumptions 1 and 2 hold throughout. Then either the primary pk is correct

and is the primary throughout R′′, or pk acts in a way that violates the liveness assumptions

and a view change is initiated.

Proof. We study the two cases.

Primary pk ∈ C. Since during pk’s primacy, the Liveness Assumptions are never

violated, this that there can be up to 2 f correct processors pi that suspect pk at some

point (by a call to Alg11.suspected()) and add themselves to needChgSet, along with

the other 2 f − 1 correct processors, and possibly f malicious processors that want

to overthrow pk. Thus there cannot be a call to supChange() that will return True,

since the last condition that |X| ≥ 3 f + 1 is never satisfied for the correct processors.

Hence, pk remains the primary throughout.

Primary pk < C and violates Liveness Assumptions 1 and 2. If pk violates the

Liveness Assumptions then this implies it was suspected at least once by 2 f + 1

processors. This does not still cause a change of primary. Another f (malicious

or correct) processors are required to report a suspicion of the primary. The pri-

mary though must make progress, otherwise it will be suspected by more correct

processors, so it is forced to provide some liveness.

Nevertheless, if supChangei(3 f + 1) is called by correct pi (line 12) an returns True,

then this is True at every correct processor, because of the need for an intersection

183

Ioa
nn

is
Marc

ou
llis

of needChgSet at 3 f + 1 processors. Assume that 2 f + 1 correct processors have

exchanged their needChgSet and find 3 f + 1 common processors in needChgSet. Then

they set vStatus← NoService and by line 11 this is irrevocable since they are at least

2 f + 1 and so the condition of this line is not met to set the vStatus back to OK.

The progress of replication is dependent on decisions with 3 f + 1 support, but

at this point only at most 3 f continue to have vStatus = OK. Thus there is no more

progress, and the primary is eventually suspected by the FDs of the other correct pro-

cessors, since it will eventually seize to have available sequence numbers (violation

of Liveness Assumption 1). Within O(1) asynchronous rounds, every correct proces-

sor proceeds to build a needChgSet of size 3 f + 1. This satisfies supChangei(4 f + 1) for

every correct processor pi and thus enter vStatus = vChange.

This is not changed until the view changes (line 6), and thus, since view estab-

lishment also requires 4 f + 1 processors to proceed, at least 3 f + 1 correct processors

are lead to view changes which suffices to drive the rest as well, either by satisfying

supChange() or through the View Establishment module (automaton predicates 0, 1

and 1, 1). By showing that a view change was initiated we complete this proof, since

installing the new view is handled by other modules. 2

The two lemmas combined prove that we reach to the execution suffix R′ that

always satisfies theVT specification, and hence the result. 2

6.6 Extensions

6.6.1 Relaxing the Assumptions for View Establishment

Recall that the convergence proof for view establishment (Section 6.3) assumed mal-

free executions (that is, a view is guaranteed to be established in the absence of

Byzantine behavior). We now discuss how we can relax this assumption.

Tolerating crash failures during view establishment. We can first weaken this as-

sumption by allowing establishment in the presence of faulty processors that can

be non-responsive (either intentionally or they have crash-failed). Such assump-

tions can give rise to problematic (extreme, but still plausible) scenarios as the one

described in Lemma 6.3.9. We can settle such issues, by deploying our responsive-

ness FD (note that the FD detector is not used in Section 6.3) and have the liveness

assumption that a majority (i.e., 3 f + 1) of correct, mutually responsive processors,

184

Ioa
nn

is
Marc

ou
llis

support the stable view. One can see that the proofs written for the view establish-

ment convergence under the above liveness assumption and in conjunction with the

responsiveness FD lead to convergence in the presence of unresponsive (or crashed)

faulty processors while dealing with stale information.

Tolerating malicious behavior during view establishment. As expected, to be able

to establish a view in the presence of both malicious behavior and stale information,

stronger assumptions are required (cf. [48]).

Such a liveness assumption would be k-admissibility: Assume a ratio of k between

the fastest token round trips in a data link to the fastest non-faulty processors and

the slowest non-faulty processors. In other words, under k-admissibility, a ratio

of k is assumed between the fastest and the slowest non-faulty processor (when a

fast correct processor exchanges k tokens, then at least one token is exchanged by

the slowest correct processor). We can consider an event-driven FD implemented as

follows: When pi broadcasts a message over the data-link token to all its neighbors,

pi resets a counter for each attached link and starts counting the number of data-link

tokens arriving back to it, until at least n − 2 f distinct counters reach a value that

is at least k. Then, under k-admissibility, processor pi can safely assume that values

from all non-faulty processors (i.e., n − f) arrived.

In other words, given k, the above simple FD can be tuned to ensure correct

processors get replies from all correct processors. (In a synchronous system k would

be small, and as asynchrony increases, k would need to increase.) Also, if a solution

takes decisions based on a threshold (fraction) of processors (as in our solution), then

k can be reduced, hence making the liveness assumption requiring “less synchrony”.

In some sense, this FD can be considered as an on-demand failure detector than can

be tuned based on the “level” of synchrony of the system. The introduction of

this FD allows us, for the first time, to avoid the constant overhead of background

bookkeeping.

The event-based failure detector allows us to restate our view establishment

convergence proof (Theorem 6.3.10), provided that we have k-admissibility. This

ensures that we can find a consistency set Σ in the presence of malicious behavior.

Since all the other results are proved for mal-admissible executions, the correctness

becomes immediate once we circumvent the result of Lemma 6.3.9. This is what we

achieve with the proposed failure detector, and so we have the following result.

185

Ioa
nn

is
Marc

ou
llis

Corollary 6.6.1. Consider a mal-admissible and k-admissible execution of the View Estab-

lishment module enhanced with the event-based failure detector and starting in an arbitrary

state. Within O(n) asynchronous rounds the system reaches a state in which there is a stable

view v. Moreover, every correct processor eventually adopts v.

6.6.2 Optimality

Our solution presented in Section 6.4 assumes that at most f = (n − 1)/5 of the pro-

cessors are faulty. As discussed there, to establish a view, we require the agreement

of n − f processors (i.e., 4 f + 1), to adopt an established view and correct processors

to sustain it, max{n − 2 f ,n/2} processors must support it (i.e., 3 f + 1), whereas in

order to make decisions regarding the progress of the replication (servicable view)

we need d(n − f)/2e + f processors (i.e., 3 f + 1) to agree (strong majority of correct

processors). This is also the threshold we need for a primary to be suspected, and

n − f to proceed to change the view.

We have parameterized our solution so that these thresholds can be adjusted

for different ratios between faulty and correct processors (as explained, we used

n = 5 f + 1 as it makes the presentation easier to follow). In particular, for the optimal

resilience (cf. [11]) ratio of f ′ = (n − 1)/3, and going over the correctness proofs of

our solution, it follows that establishing a view will require agreement of 2 f ′ + 1

processors, adopting a view will require the support of 3
2 f ′ + 1 processors, whereas

serviceabilty requires 2 f ′+1 processors to agree (the same threshold required in [38]).

6.7 Chapter Summary

We presented the first self-stabilizing BFT algorithm based on an implementable fail-

ure detector to provide liveness. The approach is modular and allows for suggested

extensions and also to achieve optimal resilience. The result paves the way towards

self-stabilizing distributed blockchain system infrastructure.

186

Ioa
nn

is
Marc

ou
llis

Chapter 7
Conclusions and Future Work

7.1 Summary

In this thesis we study important problems in the field of self-stabilizing State Ma-

chine Replication for asynchronous message-passing systems, and we address them

by providing algorithmic solutions with proven guarantees. In particular, we present

the first, to our knowledge, practically-self-stabilizing virtually synchronous SMR

protocol for a static set of crash-prone processors, the first self-stabilizing reconfig-

uration algorithm for a dynamic crash-prone set of processors, and the first self-

stabilizing Byzantine-Fault-Tolerant SMR that is based on failure detectors. We

briefly summarize the contributions.

Our stabilizing virtually synchronous SMR protocol (Chapter 4) satisfies the

guarantee of practically-self-stabilization, a newer notion of stabilization that has

recently attracted research interest. The service works on a static set of crash-

prone processors. We build our SMR protocol by combining several stabilizing

components of independent interest. We first present a practically-self-stabilizing

labeling and counter scheme. Our counter extension is modular and it is more

efficient in relation to the recently proposed one of [26]; it only requires sending a

pair of labels rather than a vector of labels. The counter is readily extendable to

implement a multi-writer multi-reader shared memory emulation. Together with a

suitable proposed multicast service and a failure detector to provide membership,

we construct the first practically-self-stabilizing virtually synchronous replicated

state machine implementation, with proven guarantees.

In Chapter 5, we present the first self-stabilizing reconfiguration scheme. It au-

tomatically recovers from transient faults arising from temporary violations of the

187

Ioa
nn

is
Marc

ou
llis

predefined churn rate, or the unexpected activities of processors and communica-

tion channels. Our blueprint for self-stabilizing reconfigurable distributed systems

can withstand a temporal violation of such assumptions, and recover once condi-

tions are resumed. It achieves this with only a bounded amount of local storage

and message size. While non-stabilizing systems do not offer guarantees once the

quorum configuration is lost, our solution guarantees recovery to a correct behavior

after the collapse of the quorum system. Indeed, the solution can even bootstrap

in the case where processors have conflicting knowledge of the configurations and

none of the members of the known configurations are active. Our scheme enables

self-stabilizing services to run on a dynamic set of processors, and by this it enables

the deployment of long-lived self-stabilizing services. We address the problems of

when to initiate a reconfiguration and of how to choose the configuration set as

application-based decisions. We thus provide the application with the capability to

address its needs via suitable interfaces to evaluate the current configuration, and

propose a new configuration.

In Chapter 6, we provide a novel asynchronous self-stabilizing Byzantine-fault-

tolerant replicated state machine service. Diverging from the approach of the existing

work on self-stabilizing BFT [39], we do not use clock synchronization and timeouts,

but rather, we base our solution on a self-stabilizing failure detector that we detail,

and for which we provide a proposed implementation. This is the first work to

combine self-stabilization and BFT replication that is based on failure detectors, thus

encapsulating weaker synchronization guarantees than [39]. To relax the constraints

on Byzantine behavior that are required due to the impossibility results, we propose

a series of optimizations. To this end we propose a novel tunable event-based

(unreliable) failure detector.

The thesis employs a novel approach toward the design and proof of the self-

stabilizing algorithms proposed. In particular, in the work in Chapter 5, and more

apparently in the work on BFT SMR (Chapter 6), we structure our solutions to impose

a lockstep progress of processors through an automaton’s states. We complement

our results with guarantees given in suitable metrics. The results have bounded

requirements in local memory and message sizes.

188

Ioa
nn

is
Marc

ou
llis

7.2 Future Directions and Objectives

This line of work leads to some challenging future research directions. A natu-

ral ultimate aim of this work would be to deploy a self-stabilizing reconfigurable

Byzantine-tolerant SMR service. To this end one would first need to have a firm grasp

of a reconfigurable non-stabilizing version of BFT. Unfortunately, at the moment, the

work of even non-stabilizing reconfigurable BFT is scanty. This is underlined in Sec-

tion 2.3.2.

This work has significant potential applications to emerging topics. An ex-

tension of our current work, especially of the self-stabilizing PBFT, is to con-

struct self-stabilizing blockchain system infrastructure, and study the impact of

the self-stabilization property to the system’s performance in relation to existing

non-stabilizing approaches. Another direction is to use our approach to create co-

ordinated self-stabilizing cloud-based microservices and thus guarantee eventual

consistency to facilitate robust higher-level services [137].

One open issue arising from the reconfiguration scheme of Chapter 5, is to study

whether we can have non-suspending self-stabilizing reconfigurable services. Since

we establish liveness for our work using failure detection, it is also seems natural to

establish what is the weakest failure detector required to solve such problems given

added difficulty of transient faults.

Another important direction is to put the theoretical correctness guarantees of the

completed works to test. Implementations of these algorithms should be prototyped

and experimentally evaluated with proper simulations. A possible evaluation can

move along the following non-exhaustive list of criteria.

• Testing the stabilization time of the modules given different types of initial

corrupt states.

• Testing scalability, i.e., how the number of processors affects stabilization time

and delays for view installation (in the virtual synchrony SMR service) and for

reconfiguration.

• Test against non-stabilizing implementations to see the actual cost of stabi-

lization. This will provide an indication of the tradeoffs between having a

valuable fault-tolerant feature like self-stabilization, against the increased cost

in message exchange and some (possible) delays in reconfiguration time.

189

Ioa
nn

is
Marc

ou
llis

The algorithms presented can certainly accept many optimizations, with the easi-

est being to make stabilization related messages more infrequent at the cost of slower

stabilization. In this sense the cost of stabilization is tunable. One may choose to

reduce stabilization-related communication at the expense of slower stabilization.

Of course, a bounded increase in communication costs cannot capture the benefits

of having a service that can automatically recover from state corruption. As long as

the necessary infrastructure and the program are unaffected, the proposed services

will eventually return the system to its desired behavior, contrary to other solutions

that can provide no guarantees for such scenarios. One may also study the case

for making the above solutions adaptive, so that stabilization-related messages be-

come very frequent only when the system is stabilizing (e.g., when there is brute

reconfiguration), but this may not always be possible.

190

Ioa
nn

is
Marc

ou
llis

Bibliography

[1] B. Charron-Bost, F. Pedone, and A. Schiper, Eds., Replication: Theory and
Practice, ser. Lecture Notes in Computer Science, vol. 5959. Springer, 2010.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-11294-2

[2] R. van Renesse and R. Guerraoui, “Replication techniques for availability,”
in Replication: Theory and Practice, ser. Lecture Notes in Computer Science,
B. Charron-Bost, F. Pedone, and A. Schiper, Eds., vol. 5959. Springer, 2010,
pp. 19–40. [Online]. Available: https://doi.org/10.1007/978-3-642-11294-2 2

[3] K. Birman, D. Freedman, Q. Huang, and P. Dowell, “Overcoming cap with
consistent soft-state replication,” Computer, vol. 45, no. 2, pp. 50–58, Feb 2012.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987. [Online]. Available:
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx

[5] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978. [Online]. Available:
http://doi.acm.org/10.1145/359545.359563

[6] M. Schneider, “Self-stabilization,” ACM Computer Survey, vol. 25, no. 1, pp. 45–
67, Mar. 1993. [Online]. Available: http://doi.acm.org/10.1145/151254.151256

[7] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst., vol. 16,
no. 2, pp. 133–169, 1998. [Online]. Available: http://doi.acm.org/10.1145/
279227.279229

[8] K. Birman, “A history of the virtual synchrony replication model,” in
Replication, ser. Lecture Notes in Computer Science, B. Charron-Bost,
F. Pedone, and A. Schiper, Eds. Springer Berlin Heidelberg, 2010, vol. 5959,
pp. 91–120. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-11294-2 6

[9] K. P. Birman and T. A. Joseph, “Reliable communication in the presence
of failures,” ACM Trans. Comput. Syst., vol. 5, no. 1, pp. 47–76, Jan. 1987.
[Online]. Available: http://doi.acm.org/10.1145/7351.7478

[10] G. V. Chockler, I. Keidar, and R. Vitenberg, “Group communication specifica-
tions: a comprehensive study,” ACM Computing Surveys (CSUR), vol. 33, no. 4,
pp. 427–469, 2001.

[11] I. Abraham, D. Malkhi et al., “The blockchain consensus layer and bft,” Bulletin
of EATCS, vol. 3, no. 123, 2017.

[12] M. Herlihy, “Blockchains and the future of distributed computing,” in
Proceedings of the ACM Symposium on Principles of Distributed Computing,
PODC 2017, Washington, DC, USA, July 25-27, 2017, 2017, p. 155. [Online].
Available: http://doi.acm.org/10.1145/3087801.3087873

[13] I. Abraham and D. Malkhi, “Bvp: Byzantine vertical paxos,” Distributed Cryp-
tocurrencies and Consensus Ledgers (DCCL), 2016.

191

Ioa
nn

is
Marc

ou
llis

http://dx.doi.org/10.1007/978-3-642-11294-2
https://doi.org/10.1007/978-3-642-11294-2_2
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/151254.151256
http://doi.acm.org/10.1145/279227.279229
http://doi.acm.org/10.1145/279227.279229
http://dx.doi.org/10.1007/978-3-642-11294-2_6
http://doi.acm.org/10.1145/7351.7478
http://doi.acm.org/10.1145/3087801.3087873

[14] S. Ølnes, J. Ubacht, and M. Janssen, “Blockchain in government: Benefits
and implications of distributed ledger technology for information sharing,”
Government Information Quarterly, vol. 34, no. 3, pp. 355–364, 2017. [Online].
Available: https://doi.org/10.1016/j.giq.2017.09.007

[15] K. Birman and H. Sohn, “Hosting dynamic data in the cloud with isis2
and the ida DHT,” in Proceedings of the First ACM SIGOPS Conference
on Timely Results in Operating Systems, TRIOS@SOSP 2013, Farmington,
PA, USA, November 3, 2013, 2013, pp. 10:1–10:15. [Online]. Available:
http://doi.acm.org/10.1145/2524211.2524212

[16] S. Jha, J. Behrens, T. Gkountouvas, M. Milano, W. Song, E. Tremel,
S. Zink, K. Birman, and R. van Renesse, “Building smart memories and
high-speed cloud services for the internet of things with Derecho,” in
Proceedings of the 2017 Symposium on Cloud Computing, SoCC 2017, Santa
Clara, CA, USA, September 24 - 27, 2017, 2017, p. 632. [Online]. Available:
http://doi.acm.org/10.1145/3127479.3134597

[17] S. Gilbert, N. A. Lynch, and A. A. Shvartsman, “Rambo: a robust,
reconfigurable atomic memory service for dynamic networks,” Distributed
Computing, vol. 23, no. 4, pp. 225–272, 2010. [Online]. Available:
http://dx.doi.org/10.1007/s00446-010-0117-1

[18] M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer, “Dynamic atomic storage
without consensus,” J. ACM, vol. 58, no. 2, p. 7, 2011. [Online]. Available:
http://doi.acm.org/10.1145/1944345.1944348

[19] S. Dolev, Self-Stabilization. MIT Press, 2000.

[20] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control,” Com-
munications of the ACM, vol. 17, no. 11, pp. 643–644, 1974.

[21] J. Brzezinski, M. Szychowiak, and D. Wawrzyniak, “Self-stabilization in dis-
tributed systems-a short survey,” in Foundations of Computing and Decision
Sciences, 2000.

[22] M. G. Gouda, R. R. Howell, and L. E. Rosier, “The instability of
self-stabilization,” Acta Informatica, vol. 27, no. 8, pp. 697–724, 1990. [Online].
Available: http://dx.doi.org/10.1007/BF00264283

[23] L. Lamport, “1983 invited address solved problems, unsolved problems and
non-problems in concurrency,” in Proceedings of the 3rd Annual ACM Symposium
on Principles of Distributed Computing (PODC’84). New York, NY, USA: ACM,
1984, pp. 1–11. [Online]. Available: http://doi.acm.org/10.1145/800222.806731

[24] I. Salem and E. M. Schiller, “Practically-self-stabilizing vector clocks in the
absence of execution fairness,” in Proceedings of the 6th International Conference
on Networked Systems (NETYS’18), 2018, technical report at http://arxiv.org/abs/
1712.08205.

[25] J. E. Burns, M. G. Gouda, and R. E. Miller, “Stabilization and pseudo-
stabilization,” Distrib. Comput., vol. 7, no. 1, pp. 35–42, Nov. 1993. [Online].
Available: http://dx.doi.org/10.1007/BF02278854

192

Ioa
nn

is
Marc

ou
llis

https://doi.org/10.1016/j.giq.2017.09.007
http://doi.acm.org/10.1145/2524211.2524212
http://doi.acm.org/10.1145/3127479.3134597
http://dx.doi.org/10.1007/s00446-010-0117-1
http://doi.acm.org/10.1145/1944345.1944348
http://dx.doi.org/10.1007/BF00264283
http://doi.acm.org/10.1145/800222.806731
http://arxiv.org/abs/1712.08205
http://arxiv.org/abs/1712.08205
http://dx.doi.org/10.1007/BF02278854

[26] P. Blanchard, S. Dolev, J. Beauquier, and S. Delaët, “Practically self-stabilizing
paxos replicated state-machine,” in Proceedings of the 2nd International
Conference on Networked Systems (NETYS’14), 2014, pp. 99–121. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-09581-3 8

[27] N. Alon, H. Attiya, S. Dolev, S. Dubois, M. Potop-Butucaru, and S. Tixeuil,
“Practically stabilizing SWMR atomic memory in message-passing systems,”
Journal of Computer and System Sciences, vol. 81, no. 4, pp. 692–701, 2015.
[Online]. Available: http://dx.doi.org/10.1016/j.jcss.2014.11.014

[28] S. Dolev, R. I. Kat, and E. M. Schiller, “When consensus meets
self-stabilization,” J. Comput. Syst. Sci., vol. 76, no. 8, pp. 884–900, 2010.
[Online]. Available: https://doi.org/10.1016/j.jcss.2010.05.005

[29] K. P. Birman, T. A. Joseph, T. Räuchle, and A. El Abbadi,
“Implementing fault-tolerant distributed objects,” IEEE Trans. Software
Eng., vol. 11, no. 6, pp. 502–508, 1985. [Online]. Available: http:
//doi.ieeecomputersociety.org/10.1109/TSE.1985.232242

[30] R. V. Renesse, K. P. Birman, and S. Maffeis, “Horus: A flexible group commu-
nication system,” Communications of the ACM, pp. 76–83, 1996.

[31] A. S. Tanenbaum and M. van Steen, Distributed systems - principles and paradigms
(2nd edition). Pearson Education, 2007.

[32] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly in
message-passing systems,” Journal of the ACM, vol. 42, no. 1, pp. 124–142, Jan.
1995. [Online]. Available: http://doi.acm.org/10.1145/200836.200869

[33] L. Lamport, “On interprocess communication. part I: basic formalism,”
Distributed Computing, vol. 1, no. 2, pp. 77–85, 1986. [Online]. Available:
https://doi.org/10.1007/BF01786227

[34] N. A. Lynch and A. A. Shvartsman, “Robust emulation of shared
memory using dynamic quorum-acknowledged broadcasts,” in Digest
of Papers of the 27th Annual International Symposium on Fault-Tolerant
Computing (FTCS’97), 1997, pp. 272–281. [Online]. Available: http:
//dx.doi.org/10.1109/FTCS.1997.614100

[35] P. M. Musial, N. C. Nicolaou, and A. A. Shvartsman, “Implementing
distributed shared memory for dynamic networks,” Commun. ACM, vol. 57,
no. 6, pp. 88–98, 2014. [Online]. Available: http://doi.acm.org/10.1145/2500874

[36] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,”
ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul. 1982. [Online].
Available: http://doi.acm.org/10.1145/357172.357176

[37] M. Correia, G. S. Veronese, N. F. Neves, and P. Verı́ssimo, “Byzantine consensus
in asynchronous message-passing systems: a survey,” IJCCBS, vol. 2, no. 2, pp.
141–161, 2011. [Online]. Available: https://doi.org/10.1504/IJCCBS.2011.041257

[38] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Proceedings of
the Third USENIX Symposium on Operating Systems Design and Implementation
(OSDI), New Orleans, Louisiana, USA, February 22-25, 1999, 1999, pp. 173–186.

193

Ioa
nn

is
Marc

ou
llis

http://dx.doi.org/10.1007/978-3-319-09581-3_8
http://dx.doi.org/10.1016/j.jcss.2014.11.014
https://doi.org/10.1016/j.jcss.2010.05.005
http://doi.ieeecomputersociety.org/10.1109/TSE.1985.232242
http://doi.ieeecomputersociety.org/10.1109/TSE.1985.232242
http://doi.acm.org/10.1145/200836.200869
https://doi.org/10.1007/BF01786227
http://dx.doi.org/10.1109/FTCS.1997.614100
http://dx.doi.org/10.1109/FTCS.1997.614100
http://doi.acm.org/10.1145/2500874
http://doi.acm.org/10.1145/357172.357176
https://doi.org/10.1504/IJCCBS.2011.041257

[39] A. Binun, T. Coupaye, S. Dolev, M. Kassi-Lahlou, M. Lacoste,
A. Palesandro, R. Yagel, and L. Yankulin, “Self-stabilizing byzantine-tolerant
distributed replicated state machine,” in Stabilization, Safety, and Security of
Distributed Systems - 18th International Symposium, SSS 2016, Lyon, France,
November 7-10, 2016, Proceedings, 2016, pp. 36–53. [Online]. Available:
https://doi.org/10.1007/978-3-319-49259-9 4

[40] S. Dolev and J. L. Welch, “Self-stabilizing clock synchronization in the
presence of byzantine faults,” J. ACM, vol. 51, no. 5, pp. 780–799, 2004.
[Online]. Available: http://doi.acm.org/10.1145/1017460.1017463

[41] S. Dolev, C. Georgiou, I. Marcoullis, and E. M. Schiller, “Self-stabilizing
virtual synchrony,” in Proceedings of the 17th International Symposium on
Stabilization, Safety, and Security of Distributed Systems, SSS 2015, 2015, pp.
248–264. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-21741-3 17

[42] ——, “Practically-self-stabilizing virtual synchrony,” Journal of Computer
and System Sciences, vol. 96, pp. 50–73, 2018. [Online]. Available:
https://doi.org/10.1016/j.jcss.2018.04.003

[43] I. Marcoullis, “Self-stabilizing middleware services,” in Proceedings of the
Doctoral Symposium of the 17th International Middleware Conference, Middleware
Doctoral Symposium 2016, Trento, Italy, December 13, 2016, 2016, pp. 2:1–2:4.
[Online]. Available: http://doi.acm.org/10.1145/3009925.3009927

[44] S. Dolev and T. Herman, “Superstabilizing protocols for dynamic distributed
systems,” Chicago J. Theor. Comput. Sci., vol. 1997, 1997. [Online]. Available:
http://cjtcs.cs.uchicago.edu/articles/1997/4/contents.html

[45] S. Dolev, E. Schiller, and J. L. Welch, “Random walk for self-stabilizing group
communication in ad hoc networks,” IEEE Trans. Mob. Comput., vol. 5, no. 7,
pp. 893–905, 2006. [Online]. Available: https://doi.org/10.1109/TMC.2006.104

[46] S. Dolev, C. Georgiou, I. Marcoullis, and E. M. Schiller, “Self-stabilizing
reconfiguration,” in Networked Systems - 5th International Conference, NETYS
2017, Marrakech, Morocco, May 17-19, 2017, Proceedings, 2017, pp. 51–68.
[Online]. Available: https://doi.org/10.1007/978-3-319-59647-1 5

[47] ——, “Self-stabilizing reconfiguration,” in Proceedings of the Posters and Demos
Session of the 17th International Middleware Conference, Middleware Posters and
Demos 2016, Trento, Italy, December 12-16, 2016, 2016, pp. 13–14. [Online].
Available: http://doi.acm.org/10.1145/3007592.3007600

[48] J. Beauquier and S. Kekkonen-Moneta, “Fault-tolerance and self-stabilization:
impossibility results and solutions using self-stabilizing failure detectors,”
Int. J. Systems Science, vol. 28, no. 11, pp. 1177–1187, 1997. [Online]. Available:
https://doi.org/10.1080/00207729708929476

[49] E. Anagnostou and V. Hadzilacos, “Tolerating transient and permanent
failures (extended abstract),” in Distributed Algorithms, 7th International
Workshop, WDAG ’93, Lausanne, Switzerland, September 27-29, 1993, Proceedings,
1993, pp. 174–188. [Online]. Available: https://doi.org/10.1007/3-540-57271-
6 35

194

Ioa
nn

is
Marc

ou
llis

https://doi.org/10.1007/978-3-319-49259-9_4
http://doi.acm.org/10.1145/1017460.1017463
http://dx.doi.org/10.1007/978-3-319-21741-3_17
https://doi.org/10.1016/j.jcss.2018.04.003
http://doi.acm.org/10.1145/3009925.3009927
http://cjtcs.cs.uchicago.edu/articles/1997/4/contents.html
https://doi.org/10.1109/TMC.2006.104
https://doi.org/10.1007/978-3-319-59647-1_5
http://doi.acm.org/10.1145/3007592.3007600
https://doi.org/10.1080/00207729708929476
https://doi.org/10.1007/3-540-57271-6_35
https://doi.org/10.1007/3-540-57271-6_35

[50] S. Dubois, M. Potop-Butucaru, and S. Tixeuil, “Dynamic FTSS in asynchronous
systems: The case of unison,” Theor. Comput. Sci., vol. 412, no. 29, pp.
3418–3439, 2011. [Online]. Available: https://doi.org/10.1016/j.tcs.2011.02.012

[51] S. Dubois, M. Potop-Butucaru, M. Nesterenko, and S. Tixeuil, “Self-stabilizing
byzantine asynchronous unison,” J. Parallel Distrib. Comput., vol. 72, no. 7, pp.
917–923, 2012. [Online]. Available: https://doi.org/10.1016/j.jpdc.2012.04.001

[52] S. Dolev, K. Eldefrawy, J. A. Garay, M. V. Kumaramangalam, R. Ostrovsky,
and M. Yung, “Brief announcement: Secure self-stabilizing computation,”
in Proceedings of the ACM Symposium on Principles of Distributed Computing,
PODC 2017, Washington, DC, USA, July 25-27, 2017, 2017, pp. 415–417.
[Online]. Available: http://doi.acm.org/10.1145/3087801.3087864

[53] R. Baldoni, J. Hélary, M. Raynal, and L. Tanguy, “Consensus in byzantine
asynchronous systems,” J. Discrete Algorithms, vol. 1, no. 2, pp. 185–210, 2003.
[Online]. Available: https://doi.org/10.1016/S1570-8667(03)00025-X

[54] S. Dolev, C. Georgiou, I. Marcoullis, and E. M. Schiller, “Self-stabilizing
byzantine tolerant replicated state machine based on failure detectors,”
in Cyber Security Cryptography and Machine Learning - Second International
Symposium, CSCML 2018, Beer Sheva, Israel, June 21-22, 2018, Proceedings, 2018,
pp. 84–100. [Online]. Available: https://doi.org/10.1007/978-3-319-94147-9 7

[55] F. B. Schneider, “Implementing fault-tolerant services using the state machine
approach: A tutorial,” ACM Comput. Surv., vol. 22, no. 4, pp. 299–319, 1990.
[Online]. Available: http://doi.acm.org/10.1145/98163.98167

[56] F. B. Schneider and L. Zhou, “Implementing trustworthy services using
replicated state machines,” IEEE Security & Privacy, vol. 3, no. 5, pp. 34–43,
2005. [Online]. Available: https://doi.org/10.1109/MSP.2005.125

[57] H. Attiya and J. Welch, Distributed computing: fundamentals, simulations, and
advanced topics, 2nd Edition. John Wiley & Sons, 2004, vol. 19.

[58] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed
consensus with one faulty process,” J. ACM, vol. 32, no. 2, pp. 374–382, Apr.
1985. [Online]. Available: http://doi.acm.org/10.1145/3149.214121

[59] J. Aspnes, “Randomized protocols for asynchronous consensus,” Distributed
Computing, vol. 16, no. 2-3, pp. 165–175, 2003. [Online]. Available:
http://dx.doi.org/10.1007/s00446-002-0081-5

[60] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest failure detector for
solving consensus,” Journal of the ACM, vol. 43, no. 4, pp. 685–722, 1996.
[Online]. Available: http://doi.acm.org/10.1145/234533.234549

[61] E. Gafni and L. Lamport, “Disk paxos,” Distributed Computing, vol. 16, no. 1, pp.
1–20, 2003. [Online]. Available: http://dx.doi.org/10.1007/s00446-002-0070-8

[62] L. Lamport, “Fast paxos,” Distributed Computing, vol. 19, no. 2, pp. 79–103,
2006. [Online]. Available: http://dx.doi.org/10.1007/s00446-006-0005-x

195

Ioa
nn

is
Marc

ou
llis

https://doi.org/10.1016/j.tcs.2011.02.012
https://doi.org/10.1016/j.jpdc.2012.04.001
http://doi.acm.org/10.1145/3087801.3087864
https://doi.org/10.1016/S1570-8667(03)00025-X
https://doi.org/10.1007/978-3-319-94147-9_7
http://doi.acm.org/10.1145/98163.98167
https://doi.org/10.1109/MSP.2005.125
http://doi.acm.org/10.1145/3149.214121
http://dx.doi.org/10.1007/s00446-002-0081-5
http://doi.acm.org/10.1145/234533.234549
http://dx.doi.org/10.1007/s00446-002-0070-8
http://dx.doi.org/10.1007/s00446-006-0005-x

[63] ——, “Byzantizing paxos by refinement,” in Proceedings of the 25th International
Symposium on Distributed Computing (DISC’11), 2011, pp. 211–224. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-24100-0 22

[64] M. Burrows, “The chubby lock service for loosely-coupled distributed
systems,” in 7th Symposium on Operating Systems Design and Implementation
(OSDI ’06), November 6-8, Seattle, WA, USA, 2006, pp. 335–350. [Online].
Available: http://www.usenix.org/events/osdi06/tech/burrows.html

[65] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, W. C. Hsieh, S. Kanthak, E. Kogan,
H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig,
Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and D. Woodford, “Spanner:
Google’s globally-distributed database,” in 10th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2012, Hollywood, CA,
USA, October 8-10, 2012, 2012, pp. 261–264. [Online]. Available: https:
//www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett

[66] D. Ongaro and J. K. Ousterhout, “In search of an understandable
consensus algorithm,” in 2014 USENIX Annual Technical Conference, USENIX
ATC ’14, Philadelphia, PA, USA, June 19-20, 2014., 2014, pp. 305–
319. [Online]. Available: https://www.usenix.org/conference/atc14/technical-
sessions/presentation/ongaro

[67] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM, vol. 43, no. 2, pp. 225–267, 1996.
[Online]. Available: http://doi.acm.org/10.1145/226643.226647

[68] D. Dolev and D. Malki, “The transis approach to high availability cluster
communication,” Commun. ACM, vol. 39, no. 4, pp. 64–70, Apr. 1996. [Online].
Available: http://doi.acm.org/10.1145/227210.227227

[69] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A.
Lingley-Papadopoulos, “Totem: A fault-tolerant multicast
communication system,” Commun. ACM, vol. 39, no. 4, pp. 54–63, 1996.
[Online]. Available: http://doi.acm.org/10.1145/227210.227226

[70] A. Fekete, N. Lynch, and A. Shvartsman, “Specifying and using a partitionable
group communication service,” ACM Transactions on Computer Systems (TOCS),
vol. 19, no. 2, pp. 171–216, 2001.

[71] A. Bartoli, “Implementing a replicated service with group communication,”
Journal of Systems Architecture, vol. 50, no. 8, pp. 493–519, 2004. [Online].
Available: http://dx.doi.org/10.1016/j.sysarc.2003.11.003

[72] K. Birman, A. Schiper, and P. Stephenson, “Lightweight causal and atomic
group multicast,” ACM Trans. Comput. Syst., vol. 9, no. 3, pp. 272–314, Aug.
1991. [Online]. Available: http://doi.acm.org/10.1145/128738.128742

[73] K. P. Birman, “The process group approach to reliable distributed computing,”
Commun. ACM, vol. 36, no. 12, pp. 37–53, Dec. 1993. [Online]. Available:
http://doi.acm.org/10.1145/163298.163303

196

Ioa
nn

is
Marc

ou
llis

http://dx.doi.org/10.1007/978-3-642-24100-0_22
http://www.usenix.org/events/osdi06/tech/burrows.html
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
http://doi.acm.org/10.1145/226643.226647
http://doi.acm.org/10.1145/227210.227227
http://doi.acm.org/10.1145/227210.227226
http://dx.doi.org/10.1016/j.sysarc.2003.11.003
http://doi.acm.org/10.1145/128738.128742
http://doi.acm.org/10.1145/163298.163303

[74] ——, Guide to Reliable Distributed Systems - Building High-Assurance Applications
and Cloud-Hosted Services, ser. Texts in Computer Science. Springer, 2012.
[Online]. Available: http://dx.doi.org/10.1007/978-1-4471-2416-0

[75] R. van Renesse, K. P. Birman, M. Hayden, A. Vaysburd, and D. A. Karr,
“Building adaptive systems using ensemble,” Softw., Pract. Exper., vol. 28, no. 9,
pp. 963–979, 1998. [Online]. Available: https://doi.org/10.1002/(SICI)1097-
024X(19980725)28:9〈963::AID-SPE179〉3.0.CO;2-9

[76] R. Guerraoui and A. Schiper, “Transaction model vs. virtual synchrony model:
Bridging the gap,” in Theory and Practice in Distributed Systems, International
Workshop, Dagstuhl Castle, Germany, September 5-9, 1994, Selected Papers, 1994,
pp. 121–132. [Online]. Available: https://doi.org/10.1007/3-540-60042-6 9

[77] S. Dolev and E. Schiller, “Communication adaptive self-stabilizing group
membership service,” IEEE Transactions on Parallel and Distributed Systems,
vol. 14, no. 7, pp. 709–720, 2003.

[78] A. Schiper and A. Sandoz, “Primary partition ”virtually-synchronous
communication” harder than consensus,” in Distributed Algorithms, 8th
International Workshop, WDAG ’94, Terschelling, The Netherlands, September
29 - October 1, 1994, Proceedings, 1994, pp. 39–52. [Online]. Available:
https://doi.org/10.1007/BFb0020423

[79] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-
free coordination for internet-scale systems,” in 2010 USENIX Annual
Technical Conference, Boston, MA, USA, June 23-25, 2010, 2010. [Online].
Available: https://www.usenix.org/conference/usenix-atc-10/zookeeper-wait-
free-coordination-internet-scale-systems

[80] M. Raynal, Concurrent Programming - Algorithms, Principles, and Foundations.
Springer, 2013. [Online]. Available: https://doi.org/10.1007/978-3-642-32027-9

[81] H. Attiya and A. Bar-Or, “Sharing memory with semi-byzantine clients and
faulty storage servers,” Parallel Processing Letters, vol. 16, no. 4, pp. 419–428,
2006. [Online]. Available: https://doi.org/10.1142/S0129626406002745

[82] D. Malkhi and M. K. Reiter, “Byzantine quorum systems,” Distributed
Computing, vol. 11, no. 4, pp. 203–213, 1998. [Online]. Available:
https://doi.org/10.1007/s004460050050

[83] A. N. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “Depsky:
Dependable and secure storage in a cloud-of-clouds,” TOS, vol. 9, no. 4, pp.
12:1–12:33, 2013. [Online]. Available: http://doi.acm.org/10.1145/2535929

[84] S. Dolev, S. Dubois, M. G. Potop-Butucaru, and S. Tixeuil, “Crash resilient and
pseudo-stabilizing atomic registers,” in Proceedings of the 16th International
Conference on the Principles of Distributed Systems (OPODIS’12), 2012, pp.
135–150. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-35476-2 10

[85] S. Bonomi, M. Potop-Butucaru, and S. Tixeuil, “Stabilizing byzantine-fault
tolerant storage,” in 2015 IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2015, Hyderabad, India, May 25-29, 2015, 2015, pp. 894–903.
[Online]. Available: https://doi.org/10.1109/IPDPS.2015.89

197

Ioa
nn

is
Marc

ou
llis

http://dx.doi.org/10.1007/978-1-4471-2416-0
https://doi.org/10.1002/(SICI)1097-024X(19980725)28:9<963::AID-SPE179>3.0.CO;2-9
https://doi.org/10.1002/(SICI)1097-024X(19980725)28:9<963::AID-SPE179>3.0.CO;2-9
https://doi.org/10.1007/3-540-60042-6_9
https://doi.org/10.1007/BFb0020423
https://www.usenix.org/conference/usenix-atc-10/zookeeper-wait-free-coordination-internet-scale-systems
https://www.usenix.org/conference/usenix-atc-10/zookeeper-wait-free-coordination-internet-scale-systems
https://doi.org/10.1007/978-3-642-32027-9
https://doi.org/10.1142/S0129626406002745
https://doi.org/10.1007/s004460050050
http://doi.acm.org/10.1145/2535929
http://dx.doi.org/10.1007/978-3-642-35476-2_10
https://doi.org/10.1109/IPDPS.2015.89

[86] S. Bonomi, S. Dolev, M. Potop-Butucaru, and M. Raynal, “Stabilizing server-
based storage in byzantine asynchronous message-passing systems: Extended
abstract,” in Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015, 2015,
pp. 471–479. [Online]. Available: http://doi.acm.org/10.1145/2767386.2767441

[87] F. Bonnet, X. Défago, T. D. Nguyen, and M. Potop-Butucaru, “Tight bound on
mobile byzantine agreement,” Theor. Comput. Sci., vol. 609, pp. 361–373, 2016.
[Online]. Available: https://doi.org/10.1016/j.tcs.2015.10.019

[88] J. A. Garay, “Reaching (and maintaining) agreement in the presence
of mobile faults (extended abstract),” in Distributed Algorithms, 8th
International Workshop, WDAG ’94, Terschelling, The Netherlands, September
29 - October 1, 1994, Proceedings, 1994, pp. 253–264. [Online]. Available:
https://doi.org/10.1007/BFb0020438

[89] S. Bonomi, A. D. Pozzo, and M. Potop-Butucaru, “Optimal self-
stabilizing synchronous mobile byzantine-tolerant atomic register,” Theor.
Comput. Sci., vol. 709, pp. 64–79, 2018. [Online]. Available: https:
//doi.org/10.1016/j.tcs.2017.08.020

[90] D. Peleg and A. Wool, “Crumbling walls: A class of practical and efficient
quorum systems,” Distributed Computing, vol. 10, no. 2, pp. 87–97, 1997.
[Online]. Available: http://dx.doi.org/10.1007/s004460050027

[91] M. Vukolic, Quorum Systems: With Applications to Storage and Consensus,
ser. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, 2012. [Online]. Available: http://dx.doi.org/10.2200/
S00402ED1V01Y201202DCT009

[92] S. Dolev, S. Gilbert, N. A. Lynch, A. A. Shvartsman, and J. L. Welch,
“Geoquorums: implementing atomic memory in mobile ad hoc networks,”
Distributed Computing, vol. 18, no. 2, pp. 125–155, 2005. [Online]. Available:
http://dx.doi.org/10.1007/s00446-005-0140-9

[93] K. Birman, D. Malkhi, and R. van Renesse, “Virtually synchronous
methodology for dynamic service replication,” Microsoft Research, Tech. Rep.
MSR-TR-2010-151, 2010. [Online]. Available: http://research.microsoft.com/
apps/pubs/default.aspx?id=141727

[94] V. Bortnikov, G. Chockler, D. Perelman, A. Roytman, S. Shachor, and
I. Shnayderman, “Reconfigurable state machine replication from non-
reconfigurable building blocks,” CoRR, vol. abs/1512.08943, 2015. [Online].
Available: http://arxiv.org/abs/1512.08943

[95] M. K. Aguilera, I. Keidar, D. Malkhi, J. Martin, and A. Shraer,
“Reconfiguring replicated atomic storage: A tutorial,” Bulletin of
the EATCS, vol. 102, pp. 84–108, 2010. [Online]. Available: http:
//albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/43/48

[96] A. Spiegelman, I. Keidar, and D. Malkhi, “Dynamic reconfiguration: A tuto-
rial,” OPODIS 2015, 2015.

198

Ioa
nn

is
Marc

ou
llis

http://doi.acm.org/10.1145/2767386.2767441
https://doi.org/10.1016/j.tcs.2015.10.019
https://doi.org/10.1007/BFb0020438
https://doi.org/10.1016/j.tcs.2017.08.020
https://doi.org/10.1016/j.tcs.2017.08.020
http://dx.doi.org/10.1007/s004460050027
http://dx.doi.org/10.2200/S00402ED1V01Y201202DCT009
http://dx.doi.org/10.2200/S00402ED1V01Y201202DCT009
http://dx.doi.org/10.1007/s00446-005-0140-9
http://research.microsoft.com/apps/pubs/default.aspx?id=141727
http://research.microsoft.com/apps/pubs/default.aspx?id=141727
http://arxiv.org/abs/1512.08943
http://albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/43/48
http://albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/43/48

[97] L. Lamport, D. Malkhi, and L. Zhou, “Reconfiguring a state machine,”
SIGACT News, vol. 41, no. 1, pp. 63–73, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1753171.1753191

[98] H. Attiya, H. C. Chung, F. Ellen, S. Kumar, and J. L. Welch, “Simulating
a shared register in an asynchronous system that never stops changing -
(extended abstract),” in Distributed Computing - 29th International Symposium,
DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, 2015, pp. 75–91.
[Online]. Available: http://dx.doi.org/10.1007/978-3-662-48653-5 6

[99] E. Gafni and D. Malkhi, “Elastic configuration maintenance via a parsimonious
speculating snapshot solution,” in Distributed Computing - 29th International
Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, 2015, pp.
140–153. [Online]. Available: http://dx.doi.org/10.1007/978-3-662-48653-5 10

[100] L. Jehl, R. Vitenberg, and H. Meling, “Smartmerge: A new approach
to reconfiguration for atomic storage,” in Distributed Computing - 29th
International Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings,
2015, pp. 154–169. [Online]. Available: http://dx.doi.org/10.1007/978-3-662-
48653-5 11

[101] R. Baldoni, S. Bonomi, A. M. Kermarrec, and M. Raynal, “Implementing a
register in a dynamic distributed system,” in Distributed Computing Systems,
2009. ICDCS ’09. 29th IEEE International Conference on, June 2009, pp. 639–647.

[102] G. V. Chockler, S. Gilbert, V. Gramoli, P. M. Musial, and A. A. Shvartsman,
“Reconfigurable distributed storage for dynamic networks,” J. Parallel
Distrib. Comput., vol. 69, no. 1, pp. 100–116, 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2008.07.007

[103] L. Jehl and H. Meling, “The case for reconfiguration without consensus:
Comparing algorithms for atomic storage,” in 20th International Conference
on Principles of Distributed Systems, OPODIS 2016, December 13-
16, 2016, Madrid, Spain, 2016, pp. 31:1–31:17. [Online]. Available:
https://doi.org/10.4230/LIPIcs.OPODIS.2016.31

[104] A. Nogueira, A. Casimiro, and A. Bessani, “Elastic state machine replication,”
IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 9, pp. 2486–2499, 2017. [Online].
Available: https://doi.org/10.1109/TPDS.2017.2686383

[105] A. N. Bessani, J. Sousa, and E. A. P. Alchieri, “State machine replication for the
masses with BFT-SMART,” in 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2014, Atlanta, GA, USA, June 23-26, 2014,
2014, pp. 355–362. [Online]. Available: https://doi.org/10.1109/DSN.2014.43

[106] R. Rodrigues and B. Liskov, “Rosebud: A scalable byzantine-fault-tolerant
storage architecture,” Massachusetts Institute of Technology, Department of
Computer Science, Tech. Rep., 12 2003.

[107] C. Cachin, “State machine replication with byzantine faults,” in Replication:
Theory and Practice, ser. Lecture Notes in Computer Science, B. Charron-Bost,
F. Pedone, and A. Schiper, Eds., vol. 5959. Springer, 2010, pp. 169–184.
[Online]. Available: https://doi.org/10.1007/978-3-642-11294-2 9

199

Ioa
nn

is
Marc

ou
llis

http://doi.acm.org/10.1145/1753171.1753191
http://dx.doi.org/10.1007/978-3-662-48653-5_6
http://dx.doi.org/10.1007/978-3-662-48653-5_10
http://dx.doi.org/10.1007/978-3-662-48653-5_11
http://dx.doi.org/10.1007/978-3-662-48653-5_11
http://dx.doi.org/10.1016/j.jpdc.2008.07.007
https://doi.org/10.4230/LIPIcs.OPODIS.2016.31
https://doi.org/10.1109/TPDS.2017.2686383
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1007/978-3-642-11294-2_9

[108] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. L. Wong,
“Zyzzyva: Speculative byzantine fault tolerance,” ACM Trans. Comput.
Syst., vol. 27, no. 4, pp. 7:1–7:39, 2009. [Online]. Available: http:
//doi.acm.org/10.1145/1658357.1658358

[109] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “Spin one’s
wheels? byzantine fault tolerance with a spinning primary,” in 28th IEEE
Symposium on Reliable Distributed Systems (SRDS 2009), Niagara Falls, New
York, USA, September 27-30, 2009, 2009, pp. 135–144. [Online]. Available:
https://doi.org/10.1109/SRDS.2009.36

[110] P. Aublin, R. Guerraoui, N. Knezevic, V. Quéma, and M. Vukolic, “The next
700 BFT protocols,” ACM Trans. Comput. Syst., vol. 32, no. 4, pp. 12:1–12:45,
2015. [Online]. Available: http://doi.acm.org/10.1145/2658994

[111] M. Pires, S. Ravi, and R. Rodrigues, “Generalized paxos made byzantine
(and less complex),” in Stabilization, Safety, and Security of Distributed
Systems - 19th International Symposium, SSS 2017, Boston, MA, USA,
November 5-8, 2017, Proceedings, 2017, pp. 203–218. [Online]. Available:
https://doi.org/10.1007/978-3-319-69084-1 14

[112] J. Martin and L. Alvisi, “Fast byzantine consensus,” IEEE Trans. Dependable
Sec. Comput., vol. 3, no. 3, pp. 202–215, 2006. [Online]. Available:
https://doi.org/10.1109/TDSC.2006.35

[113] J. P. Bahsoun, R. Guerraoui, and A. Shoker, “Making BFT protocols really
adaptive,” in 2015 IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2015, Hyderabad, India, May 25-29, 2015, 2015, pp. 904–913.
[Online]. Available: https://doi.org/10.1109/IPDPS.2015.21

[114] M. Ben-Or, “Another advantage of free choice: Completely asynchronous
agreement protocols (extended abstract),” in Proceedings of the Second Annual
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
Montreal, Quebec, Canada, August 17-19, 1983, 1983, pp. 27–30. [Online].
Available: http://doi.acm.org/10.1145/800221.806707

[115] A. Haeberlen, P. Kouznetsov, and P. Druschel, “PeerReview: practical
accountability for distributed systems,” in Proceedings of the 21st ACM
Symposium on Operating Systems Principles 2007, SOSP 2007, Stevenson,
Washington, USA, October 14-17, 2007, 2007, pp. 175–188. [Online]. Available:
http://doi.acm.org/10.1145/1294261.1294279

[116] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verı́ssimo,
“Efficient byzantine fault-tolerance,” IEEE Trans. Computers, vol. 62, no. 1, pp.
16–30, 2013. [Online]. Available: https://doi.org/10.1109/TC.2011.221

[117] A. Baliga, “Understanding blockchain consensus models,” Persistent Systems
Ltd, Tech. Rep, Tech. Rep., 2017.

[118] M. Vukolic, “The quest for scalable blockchain fabric: Proof-of-work
vs. BFT replication,” in Open Problems in Network Security - IFIP WG
11.4 International Workshop, iNetSec 2015, Zurich, Switzerland, October
29, 2015, Revised Selected Papers, 2015, pp. 112–125. [Online]. Available:
https://doi.org/10.1007/978-3-319-39028-4 9

200

Ioa
nn

is
Marc

ou
llis

http://doi.acm.org/10.1145/1658357.1658358
http://doi.acm.org/10.1145/1658357.1658358
https://doi.org/10.1109/SRDS.2009.36
http://doi.acm.org/10.1145/2658994
https://doi.org/10.1007/978-3-319-69084-1_14
https://doi.org/10.1109/TDSC.2006.35
https://doi.org/10.1109/IPDPS.2015.21
http://doi.acm.org/10.1145/800221.806707
http://doi.acm.org/10.1145/1294261.1294279
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1007/978-3-319-39028-4_9

[119] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in Workshop on
Distributed Cryptocurrencies and Consensus Ledgers, 2016.

[120] A. Daliot and D. Dolev, “Self-stabilizing byzantine agreement,” in Proceedings
of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed
Computing, PODC 2006, Denver, CO, USA, July 23-26, 2006, 2006, pp. 143–152.
[Online]. Available: http://doi.acm.org/10.1145/1146381.1146405

[121] G. V. Chockler, R. Guerraoui, I. Keidar, and M. Vukolic, “Reliable distributed
storage,” IEEE Computer, vol. 42, no. 4, pp. 60–67, 2009. [Online]. Available:
https://doi.org/10.1109/MC.2009.126

[122] D. Dolev, E. N. Hoch, and R. van Renesse, “Self-stabilizing and
byzantine-tolerant overlay network,” in Principles of Distributed Systems,
11th International Conference, OPODIS 2007, Guadeloupe, French West Indies,
December 17-20, 2007. Proceedings, 2007, pp. 343–357. [Online]. Available:
https://doi.org/10.1007/978-3-540-77096-1 25

[123] S. Dolev, O. Liba, and E. M. Schiller, “Self-stabilizing byzantine resilient
topology discovery and message delivery - (extended abstract),” in Networked
Systems - First International Conference, NETYS 2013, Marrakech, Morocco,
May 2-4, 2013, Revised Selected Papers, 2013, pp. 42–57. [Online]. Available:
https://doi.org/10.1007/978-3-642-40148-0 4

[124] B. Awerbuch, B. Patt-Shamir, and G. Varghese, “Self-stabilizing end-to-end
communication,” J. High Speed Networks, vol. 5, no. 4, pp. 365–381, 1996.
[Online]. Available: https://doi.org/10.3233/JHS-1996-5404

[125] Y. Afek and G. M. Brown, “Self-stabilization over unreliable communication
media,” Distributed Computing, vol. 7, no. 1, pp. 27–34, 1993. [Online].
Available: http://dx.doi.org/10.1007/BF02278853

[126] A. M. Costello and G. Varghese, “Self-stabilization by window washing,”
in Proceedings of the 15th Annual ACM Symposium on Principles of
Distributed Computing (PODC’96), 1996, pp. 35–44. [Online]. Available:
http://doi.acm.org/10.1145/248052.248056

[127] S. Dolev, S. Dubois, M. Potop-Butucaru, and S. Tixeuil, “Stabilizing
data-link over non-fifo channels with optimal fault-resilience,” Inf.
Process. Lett., vol. 111, no. 18, pp. 912–920, 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.ipl.2011.06.010

[128] S. Dolev, A. Hanemann, E. M. Schiller, and S. Sharma, “Self-stabilizing
end-to-end communication in (bounded capacity, omitting, duplicating
and non-fifo) dynamic networks - (extended abstract),” in Proceedings
of the 14th International Symposium on Stabilization, Safety, and Security
of Distributed Systems (SSS’12), 2012, pp. 133–147. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33536-5 14

[129] F. Bonnet and M. Raynal, “Early consensus in message-passing systems
enriched with a perfect failure detector and its application in the theta
model,” in Eighth European Dependable Computing Conference, EDCC-8 2010,
Valencia, Spain, 28-30 April 2010, 2010, pp. 107–116. [Online]. Available:
https://doi.org/10.1109/EDCC.2010.22

201

Ioa
nn

is
Marc

ou
llis

http://doi.acm.org/10.1145/1146381.1146405
https://doi.org/10.1109/MC.2009.126
https://doi.org/10.1007/978-3-540-77096-1_25
https://doi.org/10.1007/978-3-642-40148-0_4
https://doi.org/10.3233/JHS-1996-5404
http://dx.doi.org/10.1007/BF02278853
http://doi.acm.org/10.1145/248052.248056
http://dx.doi.org/10.1016/j.ipl.2011.06.010
http://dx.doi.org/10.1007/978-3-642-33536-5_14
https://doi.org/10.1109/EDCC.2010.22

[130] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos, P. Kouznetsov,
and S. Toueg, “The weakest failure detectors to solve certain fundamental
problems in distributed computing,” in Proceedings of the Twenty-Third Annual
ACM Symposium on Principles of Distributed Computing, PODC 2004, St. John’s,
Newfoundland, Canada, July 25-28, 2004, 2004, pp. 338–346. [Online]. Available:
http://doi.acm.org/10.1145/1011767.1011818

[131] L. Alvisi, D. Malkhi, E. T. Pierce, and M. K., “Fault detection for byzantine
quorum systems,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 9, pp.
996–1007, 2001. [Online]. Available: https://doi.org/10.1109/71.954640

[132] A. Arora, S. S. Kulkarni, and M. Demirbas, “Resettable vector clocks,” J.
Parallel Distrib. Comput., vol. 66, no. 2, pp. 221–237, 2006. [Online]. Available:
https://doi.org/10.1016/j.jpdc.2005.07.001

[133] R. Khazan, A. Fekete, and N. A. Lynch, “Multicast group communication as a
base for a load-balancing replicated data service,” in DISC, ser. Lecture Notes
in Computer Science, vol. 1499. Springer, 1998, pp. 258–272.

[134] S. Dolev and N. Tzachar, “Empire of colonies: Self-stabilizing and self-
organizing distributed algorithm,” Theor. Comput. Sci., vol. 410, no. 6-7, pp.
514–532, 2009. [Online]. Available: http://dx.doi.org/10.1016/j.tcs.2008.10.006

[135] A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper, “Muteness failure
detectors: Specification and implementation,” in Dependable Computing -
EDCC-3, Third European Dependable Computing Conference, Prague, Czech
Republic, September 15-17, 1999, Proceedings, 1999, pp. 71–87. [Online].
Available: https://doi.org/10.1007/3-540-48254-7 7

[136] A. Mostéfaoui, E. Mourgaya, and M. Raynal, “Asynchronous implementation
of failure detectors,” in 2003 International Conference on Dependable Systems and
Networks (DSN 2003), 22-25 June 2003, San Francisco, CA, USA, Proceedings, 2003,
pp. 351–360. [Online]. Available: https://doi.org/10.1109/DSN.2003.1209946

[137] M. Demirbas, A. Charapko, and A. Ailijiang, “Does the cloud need
stabilizing?” CoRR, vol. abs/1806.03210, 2018. [Online]. Available:
http://arxiv.org/abs/1806.03210

202

Ioa
nn

is
Marc

ou
llis

http://doi.acm.org/10.1145/1011767.1011818
https://doi.org/10.1109/71.954640
https://doi.org/10.1016/j.jpdc.2005.07.001
http://dx.doi.org/10.1016/j.tcs.2008.10.006
https://doi.org/10.1007/3-540-48254-7_7
https://doi.org/10.1109/DSN.2003.1209946
http://arxiv.org/abs/1806.03210

	Introduction
	Motivation
	Prior Work
	Contributions
	Document Structure

	Related Work
	State Machine Replication
	Consensus and State Machine Replication
	Virtual Synchrony
	Consensus-based and VS-based SMR

	Shared Memory Emulation
	Non-Self-Stabilizing SME
	Self-Stabilizing SME

	Reconfiguration
	Crash-Tolerant Reconfiguration
	Byzantine-Tolerant Reconfiguration

	Byzantine Fault Tolerance
	Non-Self-Stabilizing BFT
	Self-Stabilizing BFT

	Data-link Protocols and Failure Detectors
	Self-Stabilizing Data-Link Protocols
	Failure Detectors

	System Settings and Definitions
	Distributed Setting
	Failure Model
	Communication and Data Link Implementation
	The Interleaving Model
	Self-Stabilization

	Practically-Self-Stabilizing Virtual Synchrony
	Specific System Settings and Definitions
	Practically-Self-Stabilization
	Complexity Measures
	The Virtual Synchrony Task

	Solution Outline
	Practically-Self-Stabilizing Labeling Scheme and Counter Algorithm
	Labeling Algorithm for Concurrent Label Creations
	Labeling Algorithm Correctness Proof
	Increment Counter Algorithm

	Virtually Synchronous Stabilizing Replicated State Machine
	Preliminaries
	Virtual Synchrony Algorithm
	Correctness Proof of Algorithm 4

	Chapter Summary

	Self-Stabilizing Reconfiguration
	Specific System Settings and Definitions
	Distributed Setting
	Communication
	The (N,)-failure detector
	The System Reconfiguration Task.

	Solution Outline
	Reconfiguration Stability Assurance
	Algorithm Description
	Correctness

	Reconfiguration Management
	Algorithm Description
	Correctness

	Joining Mechanism
	Algorithm description
	Correctness

	Applications of the Reconfiguration Scheme
	Chapter Summary

	Self-Stabilizing Byzantine Fault Tolerance Based on Failure Detectors
	Specific System Settings and Definitions
	Solution Outline
	View Establishment
	Algorithm Description
	Correctness

	State Replication Algorithm
	Preliminaries
	Algorithm Description
	Correctness

	Primary Monitoring
	Failure Detection
	View Change upon Suspected Primary

	Extensions
	Relaxing the Assumptions for View Establishment
	Optimality

	Chapter Summary

	Conclusions and Future Work
	Summary
	Future Directions and Objectives

