
DEPARTMENT OF COMPUTER SCIENCE

Improving the Performance of Single and

Multi-Application Workloads on Heterogeneous

Clustered Many-Core Platforms

Panayiotis Petrides

A Dissertation Submitted to the University of Cyprus in Partial

Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

May, 2018

Pan
ay

iot
is

Petr
ide

s

c© Panayiotis Petrides, 2018

Pan
ay

iot
is

Petr
ide

s

VALIDATION PAGE

Doctoral Candidate: Panayiotis Petrides

Doctoral Dissertation Title: Improving the Performance of Single and

Multi-Application Workloads on Heterogeneous Clustered Many-Core Platforms

The present Doctoral Dissertation was submitted in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy at the Department of Computer Science and was

approved on the May 4, 2018 by the members of the Examination Committee.

Examination Committee:

Research Supervisor:

Associate Professor Pedro Trancoso

Committee Member:
Professor Constantinos Pattichis

Committee Member:
Professor Paraskevas Evripidou

Committee Member:
Professor João Cardoso

Committee Member:
Professor Dimitris Gizopoulos

i

Pan
ay

iot
is

Petr
ide

s

DECLARATION OF DOCTORAL CANDIDATE

The present Doctoral Dissertation was submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy of the University of Cyprus. It is a product of original

work of my own, unless otherwise mentioned through references, notes, or any other state-

ments.

. [Full Name of Doctoral Candidate]

. [Signature of Doctoral Candidate]

ii

Pan
ay

iot
is

Petr
ide

s

Περίληψη

Τα τελευταία χρόνια οι αρχιτεκτονικές επεξεργαστών έχουν αναπτυχθεί προς την κατε-

ύθυνση των πολλαπλών πυρήνων, με αποτέλεσμα την βελτίωση της επίδοσης τους αποφε-

ύγοντας ταυτόχρονα τους περιορισμούς από την κατανάλωση ενέργειας. Ο αυξανόμενος

αριθμός πυρήνων σε ένα ολοκληρωμένο κύκλωμα δεν προσφέρει μόνο τα πλεονεκτήματα

της δυνητικής μαζικής παραλληλίας αλλά ταυτόχρονα δίνει την δυνατότητα στους κα-

τασκευαστές να εξερευνήσουν νέες αρχιτεκτονικές, όπως την ενσωμάτωση στο ίδιο ο-

λοκληρωμένο κύκλωμα πυρήνων διαφορετικών χαρακτηριστικών. Τα οφέλη αυτών των

αρχιτεκτονικών συνοδεύονται όμως και με προκλήσεις.

Ο αυξανόμενος αριθμός πυρήνων σε μια πολυπύρηνη αρχιτεκτονική μπορεί να τύχει

εκμετάλλευσης από εφαρμογές με υψηλό βαθμό παραλληλίας. Η μεταφορά μιας εφαρμογής

σε αυτού του είδους τις αρχιτεκτονικές δεν είναι μια απλή διαδικασία αλλά μια ευρύτερη

εργασία που λαμβάνει υπόψιν τόσο την αρχιτεκτονική του συστήματος όσο και τα χα-

ρακτηριστικά της εφαρμογής. Ως μελέτη περίπτωσης (case study), χρησιμοποιήθηκαν

εφαρμογές συστημάτων υποβοήθησης λήψης αποφάσεων (Decision Support System), οι

οποίες μεταφέρθηκαν σε αρχιτεκτονική πολλαπλών πυρήνων χρησιμοποιώντας την κοινή

ενσωματωμένη στο κύκλωμα μνήμη (on-chip shared memory) για την προεπεξεργασία

δεδομένων (prefetching buffer). Τα αποτελέσματα δείχνουν ότι όταν οι αιτήσεις για δε-

δομένα αντιμετωπίζονται ικανοποιητικά τότε γίνεται εκμεταλλεύσιμη και η παραλληλία των

εφαρμογών.

Ενώ κάποιες εφαρμογές επωφελούνται από τον αυξανόμενο αριθμό παράλληλων πυ-

ρήνων, σε πολλές περιπτώσεις η χρήση πολυπύρηνων επεξεργαστών στοχεύει στην παράλ-

ληλη εκτέλεση πολλαπλών εφαρμογών. Αυτό μπορεί να οδηγήσει σε παρεμβολές μεταξύ

iii

Pan
ay

iot
is

Petr
ide

s

των υπό εκτέλεση εφαρμογών. Για την αντιμετώπιση αυτής της πρόκλησης, προτάθηκε

μια απλή και μη παρεμβατική προσέγγιση χρησιμοποιώντας τεχνολογία εικονικοποίησης

(virtualization techniques) στον ίδιο επεξεργαστή. Οι διαφορετικές εικονικές μηχανές

μπορούν να θεωρηθούν ως Τομείς Επίδοσης (Performance Domains) προσφέροντας προ-

βλεψιμότητα επίδοσης για τις διάφορες εφαρμογές. Τα πειραματικά αποτελέσματα δείχνουν

ότι επιτυγχάνεται απομόνωση της εκτέλεσης των εφαρμογών σε ένα εικονικοποιημένο πε-

ριβάλλον και ταυτόχρονα μειώνονται οι παρεμβολές μεταξύ των εφαρμογών.

Οι μελλοντικοί επεξεργαστές πολλαπλών πυρήνων μεγάλης κλίμακας αναμένεται να ε-

ίναι μια συλλογή συμπλεγμάτων ετερογενών πυρήνων για να ικανοποιήσουν τις απαιτήσεις

των εφαρμογών. Προκειμένου να ικανοποιηθεί η δυναμική συμπεριφορά των εφαρμογών,

προτείνεται ένα σύστημα χρόνου εκτέλεσης (run time system) το οποίο είναι υπεύθυνο

για την εύρεση ενός καλύτερου πόρου που ταιριάζει σε μια εφαρμογή σε κάθε διαφορετική

φάση της εκτέλεσής τους. Ο προτεινόμενος ετερογενής χρονοπρογραμματιστής (sched-

uler) αξιολογήθηκε τόσο σε πραγματική αρχιτεκτονική πολλαπλών πυρήνων (Intel SCC48

πυρήνων) όσο και με τη χρήση προσομοιωτή (Sniper) για εφαρμογές από τη σουίτα αναφο-

ράς SPEC CPU2006. Τα αποτελέσματα δείχνουν ότι η μεταφορά εφαρμογών σε πυρήνες

που ταιριάζουν καλύτερα στις απαιτήσεις τους, οδηγούν σε μείωση του χρόνου εκτέλεσης

τους μεταξύ 15% και 36% σε σύγκριση με τυχαίο στατικό χρονοπρογραμματισμό.

Δεδομένης της αυξανόμενης πολυπλοκότητας και πολυμορφίας των πυρήνων του ε-

πεξεργαστή, καθώς και των απαιτήσεων της εφαρμογής, θα χρειαστεί η ανάπτυξη πε-

ρισσότερων από τις προαναφερόμενες τεχνικές για την αντιμετώπιση των προκλήσεων.

Επομένως, οι μελλοντικοί ετερογενείς επεξεργαστές πολλαπλών πυρήνων θα πρέπει να

περιλαμβάνουν ένα στρώμα εικονικοποίησης το οποίο θα μπορούσε να αποτελείται από

όλες τις προτεινόμενες τεχνικές αλλά και άλλες με ένα αρθρωτό τρόπο ούτως ώστε να

υποστηρίζει και πυρήνες που αλλάζουν δυναμικά τα χαρακτηριστικά τους.

iv

Pan
ay

iot
is

Petr
ide

s

Abstract

In recent years processor architectures have evolved towards chips with multiple

cores, thus delivering the expected performance while avoiding the power wall.

Increasing the number of devices on a chip will not only offer the benefit of increasing

the potential for parallelism but will also allow manufacturers to explore new designs

such as including in the same chip cores of different characteristics. The benefits will

come also with challenges in exploiting the performance both for single and multi-

application workloads.

The increasing number of cores on a clustered many-core architecture can be

exploited by applications with high degree of parallelism. Porting an application

for such architectures is not trivial but a joint task of considering both the underly-

ing architecture and the applications’ behavior. Memory-bound applications with

high degree of parallelism can create an increasing number of memory requests,

which must be satisfied without becoming a performance bottleneck. As a case

study, a Decision Support System (DSS) workloads was ported to a clustered many-

core architecture and the on-chip memory, shared among all cores, was used as a

prefetching buffer. The results show that parallelism can be well exploited when the

memory requests are well handled.

While some applications benefit from the increasing number of parallel cores, in

many cases the use of many-core processors will be for the co-execution of multiple

applications. This might happen because of the limited degree of parallelism of

the applications or in order to achieve higher throughput and resource utilization.

Nevertheless, this can lead to application interference. To address this, a simple

v

Pan
ay

iot
is

Petr
ide

s

and non-intrusive approach using virtualization on the same processor was pro-

posed. The different Virtual Machines can be seen as Performance Domains since

the isolation offers performance predictability for the different applications. The ex-

perimental results show that the performance overhead of executing on a virtualized

environment is not significant.

While Performance Domains provide isolation, they are static containers that do

not adapt well to the dynamic behavior of applications. Future large-scale many-

core processors are expected to be organized as a collection of NUMA clusters of

heterogeneous cores as to satisfy applications demands. In order to satisfy the appli-

cations’ dynamic behavior, a runtime system (monitor and scheduler), is proposed.

This system is responsible for finding a best matching resource for an application at a

certain execution phase. The proposed heterogeneous and NUMA-aware scheduler

was evaluated both on a real many-core architecture (48-core Intel SCC) and using a

simulator (Sniper) for workloads composed of applications from the SPEC CPU2006

benchmark suite. The results indicate that even when all cores are busy, migrating

processes to cores that match better the requirements of applications results in a

reduction of the execution time between 15% and 36% compared to a random static

scheduling.

Given the increasingly complexity and diversity in the hardware resources, as

well as the application demands, more and more of the above-mentioned techniques

should be developed to address the challenges. Therefore, the vision is for future

heterogeneous many-core processors is to include a virtualization layer which could

be composed of all of the proposed techniques and others in a modular way and

thus also be able to even support hardware that changes dynamically at runtime.

vi

Pan
ay

iot
is

Petr
ide

s

Acknowledgments

A long journey full of experiences and knowledge has been completed. A journey

that provided me with knowledge not only in the field of this thesis, but also knowl-

edge and experience of how to overcome difficulties and how to get the most of each

experience. This journey would have never been completed without the continuous

support and believe in this work by my advisor, Pedro Trancoso. His contribution

and advice were valuable both in terms of completing this thesis but also to help

overcoming the difficulties and challenges which this road was full of. Thank you

for believing in this journey and holding the compass as my mentor.

The ones I owe the most of appreciation and I am thankful for believing in me

are my parents, Petros and Eleni. I thank you for being in my life and providing me

with your advices and support. I am grateful of having you in my life and with your

own way are supporting me not only during this journey but to my whole life.

Also I wanted to thank my two sisters, Irene and Katerina. With your support

and help you helped to this journey each one with your own way. Your help was

continuous and valuable to me.

A big thank you to a special person in my heart, Eleni. I could see in your eyes

your believe of succeeding through this journey and I can assure you that it was of

the greatest help. Thank you for your patience, your support and your love.

I also wanted to thank two little guys. Chuck and Bass. You both changed my

world and taught me how to become a better person. I will always be grateful for

the time spent together and your unconditional devotion.

Finally, I wanted to thank all the CASPER group members that I have had the

vii

Pan
ay

iot
is

Petr
ide

s

pleasure to work together, Kyriakos, Demos, Marios, Andreas and Constantinos.

Our collaboration means a lot and my memories from CASPER group will accom-

pany me.

To everybody at the Department of Computer Science, thank you for the excellent

cooperation all these years. Special thanks to Melina and Savvoula and to the IT

team, Savvas and Maria for providing all the support and even more.

viii

Pan
ay

iot
is

Petr
ide

s

Contributions of this Thesis

Conference and workshop proceedings:

1. P. Petrides and P. Trancoso. “Heterogeneous- and NUMA-aware Scheduling for
Many-core Architectures”, in Proceedings of the 10th ACM International Systems
and Storage Conference (SYSTOR 2017), pp. 2:1-2:12, Haifa, Israel, May 2017.

2. P. Petrides and P. Trancoso. “Addressing the Challenges of Future Large-Scale
Many-core Architectures”, in Proceedings of the ACM International Conference
on Computing Frontiers (CF ’13), pp. 1-4, Ischia, Italy, May 2013.

3. P. Petrides, A. Diavastos, C. Christofi, and P. Trancoso. “Scalability and Effi-
ciency of Database Queries on Future Many-Core Systems”, in Proceedings of the
21st IEEE Euromicro international Conference on Parallel, Distributed, and
Network-Based Processing (PDP), pp. 24-28, February 2013.

4. P. Petrides, G. Nicolaides and P. Trancoso. “HPC Performance Domains on Multi-
core Processors with Virtualization”, in Proceedings of the 25th International
Conference on Architecture of Computing Systems (ARCS 2012), pp. 123-134,
Munich, Germany, February 2012.

5. P. Petrides, A. Diavastos, and P. Trancoso. “Exploring Database Workloads on
Future Clustered Many-Core Architectures”, in Proceedings of the 3rd Many-
core Applications Research Community Symposium (MARC 2011), Ettlingen,
Germany, July 2011.

6. P. Petrides, F. Pratas, L. Sousa, and P. Trancoso, “Virtualization for Morphable
Multi-Cores”, in Proceedings of the 2nd Workshop on Parallel Programming
and Run-Time Management Techniques for Many-core Architectures (PARMA
2011), Lake Como, Italy, February 2011.

Technical reports:

7. P. Petrides, F. Pratas, L. Sousa, P. Trancoso. ”Exploiting Location-Aware Task
Execution on Future Large-scale Many-core Architectures”, University of Cyprus
Technical Report TR-12-4, Computer Science Department, on May 24, 2012.

8. P. Petrides, F. Pratas, L. Sousa, P. Trancoso, “Virtualization for Morphable Multi-
Cores”, HiPEAC Technical Report, TR-HiPEAC-0013, July 2010.

ix

Pan
ay

iot
is

Petr
ide

s

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.2.1 Applications Parallelism . 3

1.2.2 Performance Domains . 3

1.2.3 Clustered Many-Core Architectures 4

1.2.4 Modular Virtualization Layer 5

1.3 Thesis Statement . 6

1.4 Objectives and Contributions . 6

1.4.1 Goal . 6

1.4.2 Objective 1: Parallelism on a Clustered Many-Core Architecture 6

1.4.3 Objective 2: Guarantee Performance 7

1.4.4 Objective 3: Heterogeneous and NUMA-aware Scheduling . . 7

1.4.5 Thesis Vision for the Future . 8

2 DSS Workload Parallelism on a Clustered Many-Core Architecture 9

2.1 Motivation . 10

2.2 Related Work . 11

2.3 Intel SCC Clustered Many-Core Architecture 12

2.3.1 On-Chip Shared Memory . 14

2.4 Database Workloads . 15

2.5 Algorithms Implementations . 17

2.5.1 Data-Parallel Sequential Scan (DPSS) 17

2.5.2 Parallel Nested-Loop Join . 17

2.5.3 Hash Join . 19

2.5.4 Data Prefetching . 20

2.6 Experimental Setup . 21

2.7 Experimental Results . 22

2.7.1 Performance Evaluation . 22

2.7.2 Power and Performance Efficiency 26

x

Pan
ay

iot
is

Petr
ide

s

2.8 Summary . 28

3 Multi-Core Performance Domains for HPC Applications 30

3.1 Motivation . 31

3.2 Related Work . 33

3.3 Virtual Machines, HPC and Performance Domains on Multi-core Pro-

cessors . 34

3.4 Experimental Setup . 35

3.5 Experimental Results . 39

3.6 Summary . 44

4 Heterogeneous and NUMA-aware Scheduling 48

4.1 Motivation . 49

4.2 Related Work . 51

4.3 Challenges of Clustered Many-Core Architectures 54

4.3.1 Clustered Many-Core Architectures 54

4.3.2 Non-Uniform Memory Latency 56

4.3.3 Asymmetric Cores . 58

4.3.4 Aggregate Off-chip Bandwidth 60

4.3.5 Understanding and Classifying Applications Behaviour . . . 61

4.4 Scheduling Policy . 64

4.4.1 Classification Phase . 64

4.4.2 Applications Scheduling . 65

4.4.3 Implementation Details . 67

4.5 Experimental Setup . 69

4.6 Experimental Results on the Intel SCC 70

4.7 Simulating Clustered Many-core Architectures 74

4.7.1 Scaling the Number of Cores within a Cluster 74

4.7.2 Changing Cores Diversity within a Cluster 76

4.8 Discussion . 78

4.9 Summary . 79

5 Modular Virtualization Layer 81

5.1 Motivation . 81

5.2 Multi-core Architectures . 83

xi

Pan
ay

iot
is

Petr
ide

s

5.2.1 Static Multi-core Configurations 83

5.2.2 Dynamic Multi-core Configurations 86

5.3 Virtualization of Morphables Multi-Cores 90

5.3.1 Hypervisor Mechanisms and Services 91

5.4 Integration of the Proposed Techniques 96

5.5 Summary . 97

6 Conclusions and Future Work 98

6.1 Achieved Objectives and Contributions 98

6.2 Open Research Questions . 100

6.2.1 Direction 1: Machine Learning Algorithms 100

6.2.2 Direction 2: Dynamic Heterogeneous Many-Cores 101

6.2.3 Direction 3: Fault-tolerance . 101

6.2.4 Direction 4: Morphable Many-Cores Runtime System 102

xii

Pan
ay

iot
is

Petr
ide

s

List of Figures

2.1 Intel SCC Architecture . 13

2.2 Intel SCC Memory Architecture as used by the programmer through

the RCCE message passing API . 14

2.3 TPC-H Q6. The parameters used were: DATE=2005, DISCOUNT=10,

and QUANTITY=1000000. 16

2.4 Simplified version of TPC-H Q12. The parameters used were: SHIP-

MODE1=1, SHIPMODE2=2 and DATE=2009. 16

2.5 Simplified version of TPC-H Q3. The parameters used were: DATE=2007

and SEGMENT=3. 17

2.6 Table A: (a) logical and (b) physical data organization for parallel

nested-loop join operation. 18

2.7 Table A: (a) logical and (b) physical data organization for hash join

operation. 18

2.8 Description of data prefetching using the MPB. 19

2.9 Normalized scalability of Q12 query. 23

2.10 Normalized scalability of Q3 query. 24

2.11 Data-parallel sequential scan (Q6) normalized execution time and

breakdown. 25

2.12 Normalized power-performance efficiency of Q3 query. 26

2.13 Normalized power-performance efficiency of Q12 query. 27

2.14 Normalized power-performance efficiency of Q6 query. 28

3.1 (a) Virtualization techniques bare-metal and hosted and (b) perfor-

mance domains on a multi-core system. 34

3.2 Execution Variance on VirtualBox Native and Xen for: Scenario 1 (a)

and (b), Scenario 2 (c) and (d), Scenario 3 (e) and (f). 40

3.3 Execution Variance on VirtualBox Native and Xen for: Scenario 4 (a)

and (b), Scenario 5 (c) and (d), Scenario 6 (e) and (f), Scenario 7 (g) and

(h). 41

3.4 Execution Variance on VirtualBox Native and Xen for Scenario 8. . . 43

xiii

Pan
ay

iot
is

Petr
ide

s

3.5 Execution Variance on VirtualBox Native and Xen for Scenario 9. . . 44

3.6 Execution Variance on VirtualBox Native and Xen for Scenario 10. . 45

3.7 Execution Variance on VirtualBox Native and Xen for Scenario 11. . 45

3.8 Performance comparison between: (a) VirtualBox and Native Execu-

tion and (b) Xen and Native Execution. 46

4.1 Cluster of a Many-Core Processor. The arrows show the distance

of a core to the memory controller and their thickness represent the

accumulated bandwidth on the links. 50

4.2 Core Clock Frequency System Configuration 55

4.3 Core to Memory Controller Distance Model Execution Performance

Influence for SPEC and NAS applications. 57

4.4 Core to Memory Controller Distance Effect Simulated Execution Per-

formance Influence for SPEC applications. 58

4.5 Non-Uniform Execution Influence for SPEC and NAS applications. . 59

4.6 Core Frequency and Location Effect for Simulated Execution of SPEC

applications. 59

4.7 Core Frequency and Location Effect 60

4.8 Cumulative Bandwidth Performance Influence for SPEC CPU2006

and NAS applications. 61

4.9 Simulated Cumulative Bandwidth Performance Influence for SPEC

CPU2006. 61

4.10 Applications Classification comparing coefficients a and b. 64

4.11 Applications to Resources Assignment. 66

4.12 Classification Steps for Distance and Frequency. 67

4.13 Proposed Scheduler Execution Time Improvement compared to a Ran-

dom Static Task Assignment Policy. 67

4.14 Energy Delay Product Comparison between a Random Static Assign-

ment Policy and the Proposed Dynamic Scheduling Policy. 73

4.15 Simulated Scenarios Potential Performance. 76

4.16 Simulated Scheduler Scenarios Achieved Performance. 77

4.17 Different Policies Performance. 77

4.18 Different Policies Performance. 78

5.1 System layers. 83

xiv

Pan
ay

iot
is

Petr
ide

s

5.2 Classification of Static Architectures . 84

5.3 Static Architecture . 85

5.4 Morphable Architecture and its Components: Private Memory (PM), Se-

quential Processing Core (SPC), Parallel Processing Core (PPC) 87

5.5 Hypervisor Architecture. 92

5.6 Bandwidth demands for short executing applications. 93

5.7 Bandwidth demands for long executing applications. 93

xv

Pan
ay

iot
is

Petr
ide

s

List of Tables

2.1 TPC-H Queries input sizes. 22

3.1 PARSEC Application Description. 36

3.2 Experiments scenarios for 2 and 4 instances of virtual machines. . . 38

4.1 Applications classification memory or compute-bound based on co-

efficients a and b. 63

4.2 SPEC CPU2006 Applications Scenarios and Execution Times Variance. 69

4.3 Clustered Many-Core Architectures Environments. 70

4.4 Moving memory-bound applications closer to the memory controller,

Scenario 1. 72

4.5 Simulated SPEC CPU2006 Applications Scenarios. 75

xvi

Pan
ay

iot
is

Petr
ide

s

Chapter 1
Introduction

Achieving high levels of application performance on a many-core architecture envi-

ronment considering the characteristics of both available resources and applications

demands is not a trivial task. Different approaches exist in order to exploit the

increasing number of resources and at the same time target on high performance

of applications. In particular, one approach is to target single application perfor-

mance by exploiting its own parallelism while another approach is to target multi-

ple application performance by exploiting throughput parallelism. Both approaches

result in different challenges, which are identified as: (i) tuning single application

performance by considering both many-core underlying resources and application

characteristics, (ii) minimizing interference between co-executing applications and

(iii) satisfying the dynamic demands of applications when executing on a clustered

heterogeneous many-core environment.

1.1 Motivation

The current de-facto standard in processor design is the multi-core architecture which

emerged as a way to provide at the same time energy efficiency and increasing com-

puting power. Moreover, as technology and on-chip integration keeps evolving, the

number of cores per chip tends to increase resulting in what is known as many-

core architectures. At the same time, processors start integrating cores of different

characteristics and include features to change their characteristics dynamically at

runtime as to improve their efficiency. While the increasing number of cores may

result in a larger degree of parallelism, improving an application performance by

1

Pan
ay

iot
is

Petr
ide

s

exploiting its parallelism should be a joint task of considering both underlying ar-

chitecture and applications behavior. Additionally, throughput performance of such

systems will raise the challenges of co-executing multiple applications of different

demands, both in terms of memory and computational resources, within the same

chip. Considering processors evolution, they are becoming very complex systems

and as the number of cores increases some features make the execution non-uniform

across different cores. Cores grouped into clusters are a way to overcome design

complexity but in turn it leads to new challenges. The key for determining the best

matching core for a certain application is to find out the application’s memory and

computational requirements. Given that no previous knowledge of the application

is assumed, whenever an application enters the system, it is important to have the

mechanisms to acquire enough information about its behaviour in terms of resource

requirements. A runtime environment, which considers both application demands

and available resources, is needed for hiding the underlying architecture to running

applications and at the same time to satisfy applications demands and utilize the

available resources.

1.2 Problem Statement

As the number of cores increases in a single chip processor, several challenges arise:

wire delays, contention for out-of-chip accesses, and core heterogeneity. In order to

address these issues and satisfy the demands of the applications, future large-scale

many-core processors are expected to be organized as a collection of Non-Uniform

Memory Accesses (NUMA) clusters of heterogeneous cores. The work in this thesis is

focused on many-core clustered architectures and more specifically to study: (i) how

to achieve single application performance by exploiting the underlying architecture

characteristics, (ii) resource isolation by forming performance domains which will

guarantee applications performance and (iii) satisfy applications dynamic behavior

on heterogeneous clustered many-core architecture. To address these issues but at

the same time achieve high levels of applications performance in a clustered many-

core architecture it is essential to answer the questions presented in the following

sections.

2

Pan
ay

iot
is

Petr
ide

s

1.2.1 Applications Parallelism

The increasing number of cores on a clustered many-core architecture can be ex-

ploited by applications with high degree of parallelism resulting in performance

improvement. Porting an application for such architectures is not a trivial task but

a joint task of considering both underlying architecture and application behavior.

Memory-bound applications with high degree of parallelism can create an increasing

number of memory requests, which must be satisfied without becoming a perfor-

mance bottleneck. Decision Support System (DSS) workloads are known to be one of

the most time-consuming database workloads that process large data sets. Tradition-

ally, DSS queries have been accelerated using large-scale multiprocessors. Clustered

many-core architectures provide specific benefits which could be exploited in order

to achieve high levels of performance of such workloads. Different implementations

of these workloads result on different performance, therefore architecture charac-

teristics should be considered to achieve high levels of performance. In addition,

enhancements of such architectures, i.e. on-chip memory shared among all cores,

could be used as a prefetching buffer resulting on further improvement of the per-

formance for such workloads.

Research Question 1: How is it possible to achieve high levels of scalability and efficiency

of memory demanding applications exploiting many-core architecture characteristics?

1.2.2 Performance Domains

The use of virtualization has traditionally been as to divide the physical machine into

different domains for three major purposes. First, to allow the installation of different

Operating Systems (OS) on the same machine. Second, to provide isolation between

users logged on to the different domains. Third, to improve the overall system

utilization by offering more virtual processors than the ones available physically.

The objective of virtualization was the better management of the complex underlying

hardware as well as improving the utilization but not compromising on isolation.

Nevertheless, these benefits usually come with a price - performance overhead.

Obviously, the addition of an intermediate layer between the hardware and the

application leads to some performance degradation, which should be minimized.

As the number of cores increases in multi-core processors, more applications

execute at the same time. This may lead to interference between the different ap-

3

Pan
ay

iot
is

Petr
ide

s

plications, and consequently a negative impact on their performance. The isolation

properties provided by virtualization methods may offer performance predictability

for the executed applications by eliminating in some cases the negative effects of co-

execution interference. Therefore, introducing the benefits of applications isolation

offered by virtualization techniques on HPC applications can result on performance

guarantee and system utilization.

Research Question 2: How is it possible to offer performance guarantees for the co-

execution of multiple high-performance computing applications on many-core systems with-

out adding significant overheads?

1.2.3 Clustered Many-Core Architectures

The increasing number of processing units per chip results in a higher demand for

“feeding” those units with both instructions and data. At the same time, neither the

number of pins on the chip, nor the links to memory improve at the same rate as

the number of cores. Moreover, the complexity of the interconnection network of

large-scale multi-core architectures increases with the number of cores. The above

mentioned multi-core issues result in limiting the scalability in terms of number of

cores of these architectures. The proposed large scale clustered many-core archi-

tecture by Intel, also known as the Intel SCC [1] addresses the above limitations.

Clustered many-core architectures consist of tiles of cores with private L1 and L2

cache, interconnected by a 2D-grid network. Off-chip memory requests are served

by a number of memory controllers which are dedicated to a cluster of cores. In such

architectures specific factors should be studied to define their impact to applications

performance and consequently system throughput. More specifically, as the num-

ber of cores per cluster increases, so does their distance to the memory controller.

This factor leads to non-uniform memory accesses (NUMA) and consequently in-

fluences the application execution time. Future clustered many-core architectures

may consist of resources of different computational capabilities. This configuration

can result on different performance and power efficient domains, which can sat-

isfy different application requirements and therefore increasing system throughput

and power efficiency. Given the application, determining appropriate resources for

power-performance efficiency is not a trivial task. In addition, given the architecture

characteristics of a clustered heterogeneous many-core architecture it is very diffi-

4

Pan
ay

iot
is

Petr
ide

s

cult in practice to coordinate the scheduling operations during runtime. The key

for determining the best matching core for a certain application is to find out the

application’s memory and computational requirements.

Research Question 3: How can a runtime system dynamically chracterize and assign

the best matching resources for multiple high-performance applications on a heterogeneous

clustered many-core system?

1.2.4 Modular Virtualization Layer

As technology advances and architectures change, tuning the same applications over

and over for the new architectures becomes an overwhelming task. Also, by using

the same core designs, manufacturers are able to produce many different processors,

depending on the number of available cores and their configuration. A virtualization

layer or hypervisor can hide the complexity and diversity of the hardware. This

virtualization layer can operate as the manager of the underlying hardware hiding

some complexity of the system from the Operating System. In other words, by

offering this virtualization layer along with the hardware it is possible to offer a

standard set of core services to the upper layers, such as thread scheduling, memory

prefetching, and hardware reconfiguration. For example a regular Operating System

could use the scheduling services provided by the virtualization layer to do the

mapping of the tasks among the available cores. This mapping could be as simple

as just randomly distributing the threads among the different cores or as complex as

making architecture-aware decisions that, based on online monitoring information

of the application behavior, are able to select the best matching cores available. The

mentioned services are supported by a group of mechanisms transparent to the user

and/or the Operating System.

5

Pan
ay

iot
is

Petr
ide

s

1.3 Thesis Statement

In order for applications to exploit the performance benefits of multiple heterogeneous cores

in a system you need a runtime environment that can help with different tasks such as

data prefetching, performance isolation between co-execution, and best matching of resources

determined dynamically. The vision is that future many-core chips will have a virtuallization

layer that will support these and many more services transparently to the user.

1.4 Objectives and Contributions

1.4.1 Goal

The main goal of this thesis is to address the challenges raised for future many-core

architectures. First, the architectural characteristics of clustered many-core architec-

tures are exploited as to achieve high performance efficiency. Secondly, virtualization

technique are explored as a way to achieve isolation and minimize the impact of in-

terference on shared resources for co-executing applications. Finally, a scheduling

policy is proposed for clustered many-core architectures having as an objective to

satisfy the requirements of the applications in terms of available resources during

runtime. To present the findings the proposed implementations are evaluated using

applications from different domains. The objectives and contributions of this thesis

are stated below.

1.4.2 Objective 1: Parallelism on a Clustered Many-Core Architec-

ture

To answer Research Question 1 (Section 1.2.1), the benefits of using future many-core

architectures are exploited, more specifically on-chip clustered many-core architec-

tures, on memory demanding applications. To achieve this goal the performance of

the basic database algorithms parallelized are analyzed using the RCCE program-

ming API [2] provided for the Intel SCC. Different implementations for the data

parallel sequential scan, nested-loop and hash join query algorithms were imple-

mented. Additionally, the impact on performance using a shared on-chip memory

message passing buffer (MPB) as a prefetching buffer is also studied. The algorithms

6

Pan
ay

iot
is

Petr
ide

s

are the basis for the execution of standard representatives DSS queries taken from

the TPC-H benchmark suite [3]. Real database workloads were selected, which rep-

resent different database algorithms, and their performance is evaluated on a real

system, the Intel SCC experimental processor [4], using the proposed method of data

prefetching.

Contribution: This work exploits the characteristics of clustered many-core ar-

chitectures for the benefit of memory demanding applications. More specifically,

the on-chip message passing buffer is used as a prefetching mechanism which stores

data for all cores to be used when needed. Therefore, the off-chip memory accesses

are minimized and eviction of useful data from L2 caches. The MPB is used in two

ways: (i) as a whole, where each core writes only to its own MPB and reads from all

and (ii) as 48 different buffers, where each core writes and reads only to and from

its own MPB [5, 6]. More details on the implementation and results of this work are

presented in Chapter 2.

1.4.3 Objective 2: Guarantee Performance

To address Research Question 2 (Section 1.2.2), virtualization is used as a way to split

the multi-core processor into different Performance Domains. The objective is to pro-

vide a way for several applications to execute on the multi-core processor but at the

same time to guarantee performance isolation. Therefore, an application executing

on a certain performance domain will maintain its performance independently of the

load in the rest of the multi-core processor. In addition, this solution is non-intrusive,

i.e. it does not require any changes to the application and can thus be applied to any

existing executable.

Contribution: The contribution of this work is firstly the analysis of the feasibil-

ity of such a solution and secondly to study the different virtualization methods,

i.e. hosted and bare-metal virtualization. Performance penalty suffered by HPC

applications when co-executing on top of different VMs is also studied [7]. More

details on the implementation and results of this work are presented in Chapter 3.

1.4.4 Objective 3: Heterogeneous and NUMA-aware Scheduling

To address Research Question 3 (Section 1.2.3), a runtime system is proposed for clus-

tered many-core architectures which should determine the best matching core for

7

Pan
ay

iot
is

Petr
ide

s

a certain application by identifying the application’s memory and computational

requirements. It is important to acquire enough data to perform application classi-

fication and to classify the application as memory- or compute-bound so it is given

the best matching core. In addition to the placement, the runtime should constantly

monitor the behaviour of the applications. If changes are observed, for example re-

sulting from an application entering a new phase, a classification phase is triggered

in order to determine a new better placement. Since classification of applications is

applied on a system with applications co-executing, this is achieved by indirectly

observing how the performance is affected from the interference on shared resources.

Contribution: The main contributions of this work is: (i) propose a dynamic on-

line classification methodology by determining the degree of memory- and compute-

bound for each application, (ii) propose and implement a scalable dynamic schedul-

ing policy for future heterogeneous many-core architectures, (iii) evaluate the sched-

uler using real applications applications (from SPEC benchmark suite) on a real

many-core architecture (the 48-core Intel SCC processor) and (iv) study its scalability

and extension over a simulated many-core architecture [8, 9]. More details on the

implementation and results of this work are presented in Chapter 4.

1.4.5 Thesis Vision for the Future

Future multi-core processors will be composed of cores with different computational

and memory capabilities, which are also able to change their configuration at run-

time resulting in Morphable architectures. Morphable multi-core architectures are

composed of several asymmetric cores which have the capability of changing their

configuration at different levels for both their logic and memory elements. This

results in a more efficient hardware platform that besides being able to adapt the

application execution to the hardware underneath, is also able to adapt the hardware

to the demands of the different applications and/or phases. Managing and exploiting

such future large-scale systems, not only in terms of software but also the hardware

architecture and design, is not a trivial task. The vision of this thesis for future many-

core processors is that they will be coupled with a Virtualization Platform, which will

be able to wrap the complexity of the underlying hardware and manage its resources

transparently to achieve an improvement of the overall system efficiency [10].

8

Pan
ay

iot
is

Petr
ide

s

Chapter 2
DSS Workload Parallelism on a Clustered

Many-Core Architecture

The increasing number of cores on a clustered many-core architecture can be ex-

ploited by applications with high degree of parallelism resulting in performance

improvements. Porting an application for such architectures is not a trivial task but

a joint task of considering both underlying architecture and applications behavior.

Memory-bound applications with high degree of parallelism can create an increasing

number of memory requests, which must be satisfied without becoming a perfor-

mance bottleneck. Decision Support System (DSS) workloads are known to be one

of the most time-consuming database workloads that process large data sets [11].

Traditionally, DSS queries have been accelerated using large-scale multiprocessors.

In this work the benefits of using future many-core architectures are exploited, more

specifically on-chip clustered many-core architectures. To achieve this goal different

representative data parallel versions of the original database scan and join algo-

rithms are proposed. Additionally, the impact on the performance when on-chip

memory, shared among all cores, is used as a prefetching buffer is also studied. For

the experiments of this work the behaviour of three queries from the standard DSS

benchmark TPC-H executing on the Intel Single chip Cloud Computer experimental

processor (Intel SCC) is studied. Results show that parallelism can be well exploited

by such architectures and how important it is to have a balance between computa-

tion and data intensity. Moreover, the experimental results show that performance

improvement of 5x and 10x for the corresponding query implementation without

data prefetching. Finally this work shows how the system could be used efficiently

to achieve high power-performance efficiency when using the proposed prefetching

9

Pan
ay

iot
is

Petr
ide

s

buffer.

2.1 Motivation

The multi-core architecture is the de-facto standard in processor design. This ar-

chitecture offers the benefit of an increased degree of parallelism to provide better

performance, without the drawbacks of previous monolithic designs, such as high

power consumption and complex design. As technology improves, the integration

level increases leading to an increase in the number of cores per chip. While this

results in a further increase of the degree of parallelism, it may not necessarily lead

to improved performance, even when considering highly parallel applications. The

increasing number of processing units per chip results in a higher demand for “feed-

ing” those units with both instructions and data. At the same time, neither the

number of pins on the chip, nor the links to memory improve at the same rate as

the number of cores. Moreover, the complexity of the interconnection network of

large-scale multi-core architectures increases with the number of cores. The above

mentioned multi-core issues result in limiting the scalability in terms of number of

cores of these architectures. The proposed large scale many-core architecture by

Intel, also known as the Intel SCC [1] addresses the above limitations.

Database applications are of the most demanding workloads. More specifically,

Decision Support Systems (DSS) database applications combine the processing of

large data sets along with the computation of statistical information extracted from

data. The goal is first to show the advantages that a future clustered many-core

architecture, like the Intel SCC experimental processor [1], could have in a large

scale data center that handles DSS applications. Secondly, the benefits of prefetching

are presented for the studied workloads when a shared on-chip memory is used as a

prefetching buffer. Finally the power-performance efficiency analysis of the system

for the different query implementations is shown.

This work analyzes the performance of the basic database algorithms parallelized

using the RCCE programming API [2] provided for the Intel SCC. Different imple-

mentations for the data parallel sequential scan, nested-loop and hash join query

algorithms were selected. For the proposed implementations the impact on perfor-

mance when a shared on-chip memory is used as a prefetching buffer is also studied.

The algorithms are the basis for the execution of standard representatives DSS queries

10

Pan
ay

iot
is

Petr
ide

s

taken from the TPC-H benchmark suite [3]. Real database workloads, which repre-

sent different database algorithms, were selected and their performance is evaluated

on a real system, the Intel SCC experimental processor, using the proposed method

of data prefetching. Results show performance improvement by factors of 5x to

10x when data prefetching is used. Moreover, with a small performance loss high

benefits in power consumption are gained resulting to high power-performance

efficiency.

2.2 Related Work

Different works study the performance evaluation and optimization of database

workloads. Porting and evaluating the performance of such workloads in different

systems is being of a large interest due to the fact that large data centers are executing

such workloads and performance and power efficiency is of their most interest.

Data prefetching is a technique widely used for reducing the memory latencies

by fetching data to the processors cache before it is requested in order to avoid

misses that would otherwise occur. Data prefetching can be done automatically

in hardware [12], where the prefetcher predicts the next data to be requested, or

in software where data requests are explicitly placed by the programmer of the

compiler in the code [13]. An example of data prefetching for accelerating the

execution of database workloads is in [14]. Pre-execution [15] is an alternative

prefetching mechanism using an extra thread called helper thread that executes

portions of the code ahead of the execution threads. Trancoso et al. [11] investigated

the acceleration of decision support queries when executed on Cell/Be [16] and GPUs

using Rapidmind [17] as a common platform. For their evaluation they used different

workloads from the TPC-H benchmark suite. They implemented a nested loop join

and a hash join algorithm exploiting the streaming processing model in order to

optimize the performance of the queries. Their experimental results show speedups

up to 21x. In [18] the authors presented an efficient way of memory copy operations

on the Intel SCC experimental processor where they manage to use the LUT entries

of each core in order to direct forward the necessary data to the corresponding core.

In [19] the authors investigate the performance behaviour of a pipelined parallel

sorting ported for the Intel SCC experimental processor showing that a combination

of pipelined mergesort and sample sort best fits in such architectures.

11

Pan
ay

iot
is

Petr
ide

s

Different works have focused on dynamic voltage and frequency scaling [20].

Isci et al. in [21] show multiple power domains offer power savings in CMP systems

over a single power domain. Ioannou et al. in [22], propose a hierarchical power

management scheme applicable to reduce the energy consumption on many-core

architectures by reducing the running frequency/voltage of the cores. The experi-

ments conducted by the authors on an Intel SCC machine show that their power

management scheme is capable of an average reduction of energy consumption by

11.4% while the execution time is increased on average by 7.7% compared to the

baseline execution without the use of the power management scheme. In [23]

the authors presented an analysis of power and energy consumption of Intel SCC

research processor. The authors used time and power profiling of a very simple

parallel application. They also study the effects of power and energy consumption

of the system by varying the number of cores, clock frequency and voltage level.

This work studies the performance and parallelism scalability of database queries

algorithms using different techniques in order to optimize their performance like

data prefetching. Moreover, power-performance efficiency analysis of database

algorithms using different implementations is presented. Finally, experiments were

executed on a representative many-core architecture platform, the Intel SCC, and

they show how the selected workloads can be benefit in such architectures.

2.3 Intel SCC Clustered Many-Core Architecture

The Intel SCC experimental processor is a 48-core ‘concept vehicle’ created by Intel

Labs as a platform for many-core software research [1]. This processor consists of

24 dual-core tiles interconnected by a 2D-grid network. The tiles are organized in a

6x4 mesh with each tile containing:

• Two P54C cores with 16KB L1 and 256KB L2 cache dedicated to each core;

• A 16KB Message Passing Buffer (MPB) for storing messages to be sent to other

cores (8KB per core);

• A Traffic Generator for testing the performance capabilities of the mesh net-

work;

• A Mesh Interface Unit (MIU) to connect to the network;

12

Pan
ay

iot
is

Petr
ide

s

Management Console PC

System
FPGA

PCIe

Tile

Tile

R

R

Tile

R

Tile

R
0,0

0,3

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R
5,0

5,3

System Interface

D
IM

M
D

IM
M

D
IM

M
D

IM
M

M
C

M
C

M
C

M
C

P54C
(16K L1)

256KB
L2

P54C
(16K L1)

256KB
L2

MIU

Traffic
Gen

MPB

Router

Tile

Figure 2.1: Intel SCC Architecture

The MIU connects each tile to a router, to finally create a mesh interconnection

network. The MIU is responsible for packetizing data that will go onto the network

and de-packetizing data that come from the network. This unit is shared by the two

cores in a round-robin scheme [24].

The maximum main memory the system can support is 64GB. The 32-bit memory

addresses of the core are translated into system addresses by the MIU through

a lookup table (LUT) [24]. The systems’ main memory is located outside the

chip and four DDR3 Memory Controllers (MC) are used to move data on and off

chip. Figure 2.2 presents an overview of the SCC Memory Architecture and how

the programmer can view the system and the core’s memory through the RCCE

message passing API [24]. The SCC supports both distributed and shared memory

programming models and the systems’ memory is configured and separated in four

regions:

• Private off-chip memory: Each core’s LUT is configured such that a specific

region of the off-chip DRAM (equally divided to all) is only accessible by that

core.

13

Pan
ay

iot
is

Petr
ide

s

Figure 2.2: Intel SCC Memory Architecture as used by the programmer through the RCCE message

passing API

• Shared off-chip memory: This region of the off-chip DRAM is mapped by all

LUTs and all cores have direct access to it through any MC. These data are not

cached as the system does not provide cache-coherence;

• Shared on-chip memory: Also called Message Passing Buffer (MPB), this on-

chip SRAM is cached in the L1 caches of the cores;

• L2 cache: used only by the private off-chip memory

2.3.1 On-Chip Shared Memory

As described above the shared on-chip memory (MPB) is used for messages ex-

changed between cores where each core has a chunk of 8KB adding in a total 384KB

of shared on-chip memory. Data from MPB are cached in cores’ L1 cache. Except

from a small amount of the MPB that is used by the system, it is possible to use

the rest of it to move data closer to the cores and therefore minimize the delays of

accessing data previously located to the off-chip memory.

In this work is studied how this shared on-chip memory can be used as a prefetch-

ing buffer. More specifically, it studies how data for all cores can be stored in this

buffer in order to be used when needed. Therefore minimizing the off-chip memory

accesses and eviction of useful data from L2 caches. MPB size is limited to 384KB

and each core writes to its own chunk of 8KB. Therefore the MPB is used in two

14

Pan
ay

iot
is

Petr
ide

s

ways: (i) as a whole, where each core writes only to its’ own MPB and reads from

all and (ii) as 48 different buffers, where each core writes and reads only to and from

its’ own MPB. Section 2.5 describes in detail how the MPB is used as a prefetching

buffer for the different query algorithms.

2.4 Database Workloads

This work is focused on the execution of the basic database algorithms and their

parallel implementation. As such, the queries analyzed in this work were imple-

mented as programs that execute the operations determined by the queries and their

results were validated. Three different queries from TPC-H benchmark suite [3] of

different complexity and demands have been ported. More specifically Queries 3,

6 and 12, which from now on are referenced as Q3, Q6 and Q12. Figures 2.3, 2.4

and 2.5 describe the three queries in the original SQL code. The selected queries are

of different complexity both in terms of the amount of data uses and in terms of the

operations performed on the data [25]. More specifically, the selected queries include

representative operations performed in DSS workloads. In particular, simple table

scan performing an aggregate sum on specific field is included in Q6, whereas Q12

joins two tables and performs a count on the items satisfying the query condition.

Finally, Q3 joins three tables and selects a specific field when the query conditions

are satisfied. Therefore, the selected query algorithms that encapsulate the repre-

sentative operations of DSS workloads both in terms of operations and in terms of

combining different data sets for obtaining the desired results. The processing data

is formatted in two ways in order to evaluate different implementations of the query

algorithms.

In the first format data are stored row-wise, i.e. all attributes of a particular record

are stored in the same row of a two-dimensional array. Let’s consider a table (Table

A) which is composed of records containing three attributes: attr1, attr2, and attr3.

For each record a new row is created that stores all its attributes.

Another format of data is hashing the data according to the key, primary or

foreign, on which tables can be joined. More specifically, discrete linked lists of

records are created based on the tables’ key on which the join operation is performed.

For example, consider Figure 2.6 (c) and (d), Tables’ A records are hashed ac-

cording to their primary key whereas Tables’ B records are hashed according to

15

Pan
ay

iot
is

Petr
ide

s

s e l e c t

sum(l e x t e n d e d p r i c e ∗ l d i s c o u n t)

as revenue

from

l i n e i t e m

where

l s h i p d a t e >= date ‘ [DATE] ‘

and l s h i p d a t e < date ‘ [DATE] ‘

+ i n t e r v a l ‘ 1 ‘ year

and l orderkey = o rderkey

and l d i s c o u n t between

[DISCOUNT] − 0 . 0 1 and + 0 . 0 1

and l q u a n t i t y < [QUANTITY] ;

Figure 2.3: TPC-H Q6. The parameters used were: DATE=2005, DISCOUNT=10, and QUAN-

TITY=1000000.

s e l e c t

sum(case when

o o r d e r p r i o r i t y = ‘1−URGENT‘ or

o o r d e r p r i o r i t y = ‘2−HIGH‘

then 1 e lse 0 end)

as h i g h l i n e c o u n t

from

orders , l i n e i t e m

where

o rderkey = l orderkey

and l shipmode in

(‘ [SHIPMODE1] ‘ , ‘ [SHIPMODE1] ‘)

and l commitdate < l r e c e i p t d a t e

and l s h i p d a t e < l commitdate

and l r e c e i p t d a t e > date ‘ [DATE] ‘

and l r e c e i p t d a t e > date ‘ [DATE] ‘

+ i n t e r v a l ‘ 1 ‘ year ;

Figure 2.4: Simplified version of TPC-H Q12. The parameters used were: SHIPMODE1=1, SHIP-

MODE2=2 and DATE=2009.

their foreign key. The join operation between Table A and B can then be performed

directly.

16

Pan
ay

iot
is

Petr
ide

s

s e l e c t

l orderkey ,

from

customer , orders , l i n e i t e m

where

c mktsegment = ‘ [SEGMENT] ‘

and c cus tkey = o custkey

and l orderkey = o rderkey

and o orderdate < date ‘ [DATE] ‘

and l s h i p d a t e > date ‘ [DATE] ‘ ;

Figure 2.5: Simplified version of TPC-H Q3. The parameters used were: DATE=2007 and SEG-

MENT=3.

2.5 Algorithms Implementations

The query algorithms implemented for the purpose of this work are: (i) data-parallel

sequential scan, (ii) nested-loop join and (iii) hash join. More details on their imple-

mentation follows.

2.5.1 Data-Parallel Sequential Scan (DPSS)

Given the data layout as presented above, for this work, the simple sequential scan

algorithm is used as to exploit both load balancing and locality while traversing

the data. For the purpose of this work, all records are traversed and the records’

attributes are checked against a certain condition. The condition may be a simple

attribute comparison or a complex boolean function. This operation is mapped to

the Intel SCC by implementing the condition to be tested and by sending to each

core the input parameters which are the data streams that are used to evaluate the

scan condition.

2.5.2 Parallel Nested-Loop Join

For the join operation the nested-loop join algorithm is used. Each table has a number

of rows equal to the number of records and the data of each record are organized in

columns. To perform this operation each record of the outer loop is compared with

all the records of the inner loop in an iterative way. Parallelization is achieved by

splitting the data of the outer loop to all cores.

17

Pan
ay

iot
is

Petr
ide

s

(a)

Table A

R1 attr1

 attr2

 attr3

R3 attr1

 attr2

 attr3

R2 attr1

 attr2

 attr3

R4 attr1

 attr2

 attr3

. . .
Rn attr1

 attr2

 attr3

Table A

attr1 attr2 attr3R1

R2

R3

R4

. . .

Rn

(b)

Figure 2.6: Table A: (a) logical and (b) physical data organization for parallel nested-loop join

operation.

(a)

Table A

R1 Pr. Key

 attr2

 attr3

R3 Pr. Key

 attr2

 attr3

R2 Pr. Key

 attr2

 attr3

R4 Pr. Key

 attr2

 attr3

. . .
Rn Pr. Key

 attr2

 attr3

(b)

Table B

R1 attr1

 For. Key

R3 attr1

 For. Key

R2 attr1

 For. Key

R4 attr1

 For. Key
. . . Rn attr1

 For. Key

R1 attr2

 attr3 . . .

. . .

Primary

Key ID1

R3 attr2

 attr3

Rn attr2

 attr3

R2 attr2

 attr3

R4 attr2

 attr3

Rm attr2

 attr3

. . .

Primary

Key ID2

R1 attr1 . . .Foreign

Key ID1
R2 attr1 Rn attr1

. . .

Foreign

Key ID2
R3 attr1 . . .R4 attr1 Rm attr1

Hash

Table A

Hash

Table B

Figure 2.7: Table A: (a) logical and (b) physical data organization for hash join operation.

18

Pan
ay

iot
is

Petr
ide

s

OFF-CHIPON-CHIP

. . .

CPU0

L1

16KB L2

256KB

Each core writes to its own

MPB

STEP 1

Each core reads from its own

MPB

STEP 2A

8KB

8KB

8KB

.

.

.

8KB

8KB

0

1

2

46

47

MPB

CPU1

L1

16KB L2

256KB

CPU46

L1

16KB L2

256KB

CPU47

L1

16KB L2

256KB

Cores

. . .

CPU0

L1

16KB L2

256KB
8KB

8KB

8KB

.

.

.

8KB

8KB

0

1

2

46

47

MPB

CPU1

L1

16KB L2

256KB

CPU46

L1

16KB L2

256KB

CPU47

L1

16KB L2

256KB

Cores

Q6

Q6

. . .

CPU0

L1

16KB L2

256KB
8KB

8KB

8KB

.

.

.

8KB

8KB

0

1

2

46

47

MPB

CPU1

L1

16KB L2

256KB

CPU46

L1

16KB L2

256KB

CPU47

L1

16KB L2

256KB

Cores

Each core reads from all MPBs

STEP 2B

Q3, Q12

Q12

0

1

2

.

.

.

46

47

DRAM

Figure 2.8: Description of data prefetching using the MPB.

2.5.3 Hash Join

Another implementation of the join operation that is evaluated for the selected

queries algorithms is the hash-join algorithm. In this case all records of each table are

organized according to the key that the join operation is performed on as described

in Section 2.4. Therefore the join operation is performed on each lists’ key and

if the condition is satisfied then all its records are examined. In the case of Q12

where only two tables are joined this operation is performed only once and if the

condition is satisfied then it proceeds with the operations defined in the where clause

of the query. In the case of Q3 although there are three joined tables. First Tables

A and B are joined, as in Q12, and the results produced from this operation are

forwarded to the second step where these results are joined with Table C using the

same method of hashed data. Parallelization of the hash join implementation of the

queries algorithms is achieved by splitting the data in the first level of join. Meaning

each core takes a chunk of data of the first table that is joined in the algorithm. For

example in Q12 where Tables A and B are joined, Table A is split among cores. In

19

Pan
ay

iot
is

Petr
ide

s

the case of Q3 where Tables A, B and C are joined Table A is split among cores.

2.5.4 Data Prefetching

In order to use data prefetching and minimize the number of off-chip memory

accesses the MPB of the system is used. To achieve this the previously mentioned

algorithms in Sections 2.5.1, 2.5.2 and 2.5.3 are implemented using the MPB as a

prefetching and storing buffer for most commonly used data, in an effort to optimize

the performance. Data fetched or read from the MPB are controlled at user level by

specifying which data and when are to be used.

For the Q6 query which is a simple scan operation, the MPB of each core is used to

fetch and store portions of data, 8KB long, from main memory. From there on these

data are copied directly to L1 cache and the necessary operations are performed. In

this case each core writes and reads data only to and from it’s own MPB. In Figure 2.8

the representation of this algorithm is depicted. In Step 1 each core copies data from

the off-chip main memory to its’ local MPB and in Step 2A it copies those data to

its’ L1 cache for calculation. These two steps are iterative steps until all data are

processed.

For the Q12 query the data prefetching scheme is used only for the nested-loop

join implementation. The reason that the prefetching could not be used on the hash-

join implementation is related to the organization of the data and that moved data

are moved from one table to the MPB then the hashing implementation would no

longer exist. On the other hand if the hash table is moved into the MPB there would

still be a need to go off-chip in order to access the data directed by the hash table

(currently located in the main memory). This would result in a larger overhead,

minimal cache misses reduction and eviction of necessary data from L2 cache, since

main memory is cached in L2. For the nested-loop join algorithm of Q12 the MPB

is used to store data from the inner-most table (Table B) and let the outer-most table

(Table A) to be cached in L2. In Figure 2.8, Q12 algorithm for data prefetching uses

Steps 1 and 2B. Each core will copy data from Table B to its’ local MPB (Step 1) and

then each core will read and perform calculations on data from all the MPB chunks

(Step 2B). Step 1 and 2B are iterative because Table B cannot fit in the total of 384KB of

the systems’ MPB, so as soon as all cores finish Step 2B they will repeat this process

again until all data are processed.

20

Pan
ay

iot
is

Petr
ide

s

For the Q3 query the data prefetching is used on both nested-loop join and

a hybrid implementation of hash-join and nested-loop join. For the nested-loop

algorithm the inner-most table (Table C) is stored in the MPB. Table C is chosen to be

prefetched and stored in the MPB since it is the table that is most frequently used and

thus resulting in a significant reduction of the last level cache misses. Also, it has the

smallest size and in this case it could fit for both input sizes in the MPB of the system.

For the hybrid implementation, where both hash-join and nested-loop join are used,

the hash-join operation is performed for the first join operation (Tables A and B)

and for the records satisfying the query condition a nested-loop join with Table C is

performed. In Figure 2.8 Steps 1 and 2B depict this implementation showing that

Step 1 in Q3 will only be executed once and each core will copy a portion of Table C

to its’ local MPB. In the case that Table C does not fit in the MPB the algorithm will

become iterative and continue fetching data from main memory just as it happens

with Q12. Finally in Step 2B each core will read and perform calculations on data

from all the MPBs of the system.

2.6 Experimental Setup

For the evaluation of this work the Intel SCC experimental processor is used, Rock-

yLake version [1]. The operating system used for the Intel SCC cores is the default

Linux kernel provided by the RCCE SCC Kit 1.4.0 [2]. The host PC, responsible for

controlling the applications execution on the Intel SCC processor, is configured with

Intel Core i7 processor 3.7GHz and 4GB of main memory. For porting and executing

the applications on the SCC the RCCE 1.4.0 toolchain was used.

The workloads used for this work were selected from the TPC-H queries as

described in Section 2.5. Different input sizes were used for evaluation in order to

study their performance scalability. The input data sets were generated using the

dbgen tool. The input sizes 0.01 and 01 as well as the number of tables used for each

query execution are: (i) Q3 use of 3 Tables of total size of 4.24MB and 93.56MB, (ii)

Q6 use 1 Table of size 4.24MB and 93.56MB and (iii) Q12 use of 2 Tables of total size

3.74MB and 91.14MB.

For the purpose of this work the power consumption is also measured of the

system in order to calculate the power-performance efficiency of the system. In

terms of calculating the power consumption of the chip an application is developed

21

Pan
ay

iot
is

Petr
ide

s

Table 2.1: TPC-H Queries input sizes.

Query Tables Input Size 0.01 Input Size 0.1

Q3 3 4.24MB 93.56MB

Q6 1 3.71MB 74.24MB

Q12 2 3.74MB 91.14MB

that measures the power consumption using the same technique used by the SCC

GUI performance meter and involves reading the FPGA emulated registers that

hold the appropriate values. The measurement is calculated using the product

of the total SCC chip voltage and the total current flowing through the chip. To

enhance the precision of the used meter the power measurement is being collected

several times every second during the whole execution time of each scenario. At

the end of the scenario execution the average power consumption was calculated

from the measurements done during the execution. For the experiments of this work

the frequency of the cores is scaled to three different frequencies: (i) 100MHz, (ii)

266MHz and (iii) 533MHz. The frequency scaling is performed before the execution

of each scenario using the library provided by the RCCE toolchain. In order to

calculate the power-performance efficiency of the system the following metric is

used:

NormalizedE f f iciency = ExecutionTime∗Powerbaseline
ExecutionTimei∗Poweri (2.1)

The experimental results were normalized using the formula in 2.1 for the dif-

ferent implementations to the single core execution of the base line scenario of each

query executing at 533MHz (where i are the different implementations of the query

algorithms, i.e. Nested-Loop Join, Hash Join etc). Higher the results the better.

2.7 Experimental Results

2.7.1 Performance Evaluation

For the first analysis the performance behaviour is compared of the different queries

algorithms executed on the Intel SCC experimental processor as described in Sec-

tion 2.5 and their scalability is studied for the target architecture. Moreover, it is

22

Pan
ay

iot
is

Petr
ide

s

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

1 2 4 8 16 32 48

Sp
ee
du

p

Number of cores

Q12 Scalability Results

Nested‐loop Join Nested‐loop Join with Prefetching Hash Join

Figure 2.9: Normalized scalability of Q12 query.

studied how the data prefetching scheme proposed can improve their performance.

The results presented herein are for 533MHz cores’ frequency due to the limited

space available, even though 266MHz and 100MHz show the same behavior.

In Figure 2.9 the performance behavior and scalability of the different imple-

mentations of Q12 query is presented. In Figure 2.9 execution times are normalized

to the corresponding execution of the nested-loop join implementation for a single

core. Results show first of all the hash join algorithm outperforms the nested-loop

join implementation by a factor more than 10x. This performance difference can be

explained from the way data are mapped and the efficiency of the hash join imple-

mentation. In the case of the loop-join implementation each record of the outer table

must be compared with all the records of the inner table, therefore resulting to more

comparisons in contrast to the hash join implementation. The second important ob-

servation is when the prefetching scheme is used for the nested-loop join algorithm.

It can be observed that up to 5x performance improvement can be gained compared

to the nested-loop implementation as a result of devoting MPB for data that are

mostly used. In particular data are prefetched to MPB and these data are stored

without being influenced from evictions of L2 cache, therefore data reuse can be

achieved without any additional main memory accesses. Using performance coun-

ters and monitoring the L2 cache of the core it was observed that the data prefetching

implementation reduces the L2 cache misses by a factor of 700. Even though using

data prefetching, the performance of the hash join implementation could not be

outperformed as a result of their significant difference to their data organization and

algorithm implementation. As for the scalability of the different implementations,

23

Pan
ay

iot
is

Petr
ide

s

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

1 2 4 8 16 32 48

Sp
ee
du

p

Number of cores

Q3 Scalability Results

Nested‐loop Join Nested‐loop Join with Prefetching Hash Join Hash Join with Prefetching

Figure 2.10: Normalized scalability of Q3 query.

it is possible to see that nested-loop join (with or without data prefetching) scales

well whereas hash join implementation is stable to the number of cores. This can be

explained from the fact that the hash join implementation algorithm complexity is

limited and data transfers dominate the computation time, in a ratio of 1:20 compu-

tations over data transfers, resulting in no performance improvement as the number

of cores increases.

In Figure 2.10 the performance behaviour and scalability of the different imple-

mentations of Q3 query is presented. In Figure 2.10 execution times are normalized

to the corresponding nested-loop join implementation on a single core. The first ob-

servation is that the nested-loop join implementation using data prefetching does not

improve the performance compared to the implementation without data prefetch-

ing. This is explained from the fact that the table stored in the MPB can fit in the

L2 cache of the core compared to the limited size of the MPB. This results in higher

overheads on fetching data from the main memory to the MPB until all data are

processed. The difference to the execution times when using data prefetching is due

to two main factors. First in the case of scenarios with 4,8 and 48 cores, records

are equally divided among cores, as explained previously, but the number of each

cores records that satisfy the condition varies among cores in an average of 20%. In

addition, there is the overhead of the prefetching scheme. More specifically, data

chunks of 8KB are always read from MPB regardless if they satisfy or not the where

clause condition. Instead in the nested loop-join implementation data from main

memory will only be read until the where condition is satisfied. In the case where the

condition is not satisfied or all data must be read the two implementations converge.

24

Pan
ay

iot
is

Petr
ide

s

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

1 2 4 8 16 32 48

N
or
m
al
iz
ed

 E
xe
cu
0o

n
Ti
m
e

Number of cores
Transfer Compute

Figure 2.11: Data-parallel sequential scan (Q6) normalized execution time and breakdown.

Another important observation is the fact that the hash join implementation out-

performs the nested-loop implementation having the behaviour of Q12. The most

important observation is the fact that the hybrid implementation of Q3 using first

hash join and the data that satisfy the condition are then passed to a nested-loop join

where the table on which they are compared are already stored in the MPB. This

implementation shows important performance improvement over the other imple-

mentations as a result of gaining the most from both the hash join implementation

but also from the prefetching scheme.

It is also important to observe the scalability of the different implementations

of the Q3 query. A good scalability can be observed, but not at the same level as

the scalability of Q12 query. This could be explained by comparing the two queries

algorithm complexity over the data sizes processed. More specifically Q12 is a well

balanced query between computation and data size and therefore shows a better

scalability compared to Q3 which has near the same data size but higher complexity

than Q12. More specifically the ratio of computation over data transfers of Q12 is 5x

larger than the one of Q3.

In Figure 2.11 the normalized execution time of the data-parallel sequential scan

implementation for Q6 is presented. The execution time is normalized to the execu-

tion time of the corresponding sequential scan on a single core. It can be observed

that no significant performance improvement can be achieved with the use of data

prefetching. This is a result of the simplicity of the query algorithm where data ac-

cesses dominate the computation time with a ratio of 1:30 of computations over data

25

Pan
ay

iot
is

Petr
ide

s

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

1 2 4 8 16 32 48

N
or
m
al
iz
ed

 P
ow

er
‐P
er
fo
rm

an
ce

Effi
ci
en

cy

Number of cores

Q3 Nested‐loop Join (533MHz) Q3 Nested‐loop Join with Prefetching (266MHz)

Q3 Hash Join (266MHz) Q3 Hash Join,Nested‐loop Join with Prefetching (266MHz)

Figure 2.12: Normalized power-performance efficiency of Q3 query.

transfers. Also the fact that no data reuse is made in this algorithm does not allow

the prefetching scheme to improve its performance opposed to the data prefetching

implementations of Q3 and Q12 queries.

2.7.2 Power and Performance Efficiency

Another aspect of this work is to study the power-performance efficiency of the

executed query implementations on the Intel SCC research processor. For this set of

experiments the frequency of cores is scaled to 266MHz and 100MHz. As defined in

equation 2.1 the higher the results the better for the different scenarios investigated.

The most relevant results are depicted.

In Figure 2.12 the power-performance efficiency results of Q3 implementations

is presented using as a baseline the nested-loop join implementation without data

prefetching. Results show that high power-performance efficiency can be achieved

if the proposed hybrid implementation is used, which is consist of the hash join and

nested-loop join using prefetching. The results of the proposed hybrid implemen-

tation of Q3 query show that even if the frequency of cores is scaled to 266MHz

high power-performance efficiency can be achieved compared to the other imple-

mentations of the same query. More specifically it can be observed that 600 more

power-performance efficiency improvement can be achieved with the hybdrid im-

plementation using data prefetching, where even though there is a small loss in

performance high benefits in power consumption are gained.

In Figure 2.13 the power-performance efficiency results of Q12 implementations

is presented using as a baseline the nested-loop join implementation without data

26

Pan
ay

iot
is

Petr
ide

s

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1 2 4 8 16 32 48

N
or
m
al
iz
ed

 P
ow

er
‐P
er
fo
rm

an
ce

Effi
ci
en

cy

Number of cores
Q12 Nested‐loop Join (266MHz) Q12 Nested‐loop Join with Prefetching (266MHz)

Q12 Hash Join (266MHz)

Figure 2.13: Normalized power-performance efficiency of Q12 query.

prefetching. Results depict that high power-performance efficiency, increased by a

factor of up to 1400, can be achieved using the hash join implementation of Q12

even if cores’ frequency is scaled to 266MHz. Results show that up to 4 cores the

power-performance efficiency of the selected implementation remains stable and

afterwards reduces. Therefore higher system execution efficiency can be achieved if

executing multiple instances of the same implementation in fewer cores per instance.

Another important observation that can be extracted from these results is the high

efficiency of the nested-loop join implementation using data prefetching over the

nested-loop join implementation without the use of prefetching.

In Figure 2.14 the normalized power-performance efficiency of Q6 implementa-

tions using as a baseline the data-parallel sequential scan with no data prefetching

is presented. Results show that up to 4 cores the power-performance efficiency of

the selected implementation remains stable and afterwards reduces. It is relevant

to mention that the two implementations do not differ much between then either

using data prefetching or not. It is also important to mention that the system is more

efficient and it can result in higher throughput if a single core scaled to the 266MHz

is used for multiple execution instances of the same algorithm.

It is important to mention that if the target is high power-performance efficiency,

the Intel SCC experimental processor cores frequency can be scaled down. Also dif-

ferent implementations are more suitable at each case depending on the complexity

of the algorithm and their data sizes.

Overall the results were very encouraging for the use of data prefetching for

future large-scale many-core processors even for demanding database applications.

27

Pan
ay

iot
is

Petr
ide

s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 2 4 8 16 32 48

N
or
m
al
iz
ed

 P
ow

er
‐P
er
fo
rm

an
ce

Effi
ci
en

cy

Number of cores
Q6 Sequen<al Scan (266MHz) Q6 Sequen<al Scan with Prefetching (266MHz)

Figure 2.14: Normalized power-performance efficiency of Q6 query.

Performance improvement by factors of 5x to 10x when data prefetching is used are

observed. Moreover, the scalability of such workloads is studied in a representative

many-core architecture, the Intel SCC experimental processor, and this work show

that the query algorithms that benefit the most from such architectures are the

ones which balance well the ratio of computation over data transfers. Finally, this

work analysis shows that with a small performance loss high benefits in power

consumption can be gained, resulting to high power-performance efficiency.

2.8 Summary

Database applications are of the most demanding workloads. Three different queries

were ported from the TPC-H benchmark suite on the Intel SCC experimental proces-

sor and their performance behaviour was studied when data prefetching is applied

using the on-chip shared memory of the system. Experiments depicted that when

there is no data reusage on the query algorithms (Q6) data prefetching shows no

significant improvement. For medium complexity query algorithm with high input

data size (Q12) nested-loop join algorithm using data prefetching can achieve up to

5x speedup. Although in this case hash join implementation is more efficient due

to the simplicity of its algorithm. Finally for high complex queries in terms of the

operations performed and high input data size (Q3) using a hybrid implementation

of hash join and nested-loop join with data prefetching it is possible to improve

performance by a factor of 10.

Another aspect of this work was to evaluate the power-performance efficiency

of the different queries implementations in order to investigate the most efficient

28

Pan
ay

iot
is

Petr
ide

s

implementation. Results showed that in the case of simple query algorithms, like Q6

and Q12 hash join implementation, scaling down the systems’ cores frequency and

reducing the number of cores (executing the respective implementation) can achieve

both high power-performance efficiency and throughput when executing the query

in multiple instances on the system. Finally, in the case of Q3 the results show that

high power-performance efficiency can be achieved for the hybrid hash join and

nested-loop join using data prefetching implementation even if cores frequencies

are scaled to 266MHz compared to the other implementations.

29

Pan
ay

iot
is

Petr
ide

s

Chapter 3
Multi-Core Performance Domains for HPC

Applications

As the number of cores increases in multi-core processors, some applications benefit

from the increasing number of parallel cores, in many cases the use of many-core

processors will be for the co-execution of multiple applications. This might hap-

pen because of the limited degree of parallelism of the applications or in order to

achieve higher throughput and resource utilization. In this chapter a simple and non-

intrusive approach is presented which guarantees performance isolation for High

Performance Applications. This is achieved using virtualization by creating multiple

virtual machines on the same processor, which can be seen as different Performance

Domains. While previously this technique has been explored for increasing utiliza-

tion, in this work it is exploited for improving performance of multiple co-executing

applications. For the purpose of this work two different virtualization approaches

are studied: (i) conventional hosted virtualization and (ii) bare-metal virtualization.

To study the feasibility of this technique, the performance of applications when ex-

ecuting within a virtual machine is analyzed. The isolation properties provided by

both virtualization methods offer performance predictability for the executed appli-

cations. Experimental results show that the performance overhead of executing on a

virtualized environment is not significant, with the bare-metal virtualization result-

ing in an overhead of only 3%. Most importantly, virtualization is able to eliminate

in some cases the negative effects of co-execution interference, thus applications run-

ning on virtual machines may achieve a better performance than running natively

on the system.

30

Pan
ay

iot
is

Petr
ide

s

3.1 Motivation

The use of virtualization has traditionally been as to divide the physical machine

into different domains for three major purposes. First, to allow the installation of

different Operating Systems (OS) on the same machine [26]. Second, to provide

isolation between users logged on to the different domains. Third, to improve the

overall system utilization by offering more virtual processors than the ones available

physically [27]. This type of virtualization was used extensively in the times of the

mainframe computers. The objective of virtualization was the better management of

the complex underlying hardware as well as improving the utilization but not com-

promising on isolation. Nevertheless, these benefits came with a price - performance

penalty. Obviously, the addition of an intermediate layer between the hardware and

the application leads to some performance degradation.

Given the performance issue and the fact that after the mainframes, most systems

were personal computer (PC) based, virtualization was not very popular for those

smaller systems. Nevertheless, recent technology advances are leading again to the

use of virtualization. First there are large data-center systems that are designed for

peak use and therefore suffer from very small to average utilization. While these

systems store critical data for the business, the owners would like to open them to

external users as to increase the utilization. One such example is Amazon and their

EC2 system [28]. The performance penalty of virtualization, in this case, is not that

relevant compared to the benefits obtained such as the users isolation and improved

system utilization.

At another level, important changes in the processor technology and architecture

are observed. In order to overcome the power and design complexity limitations, the

industry has shifted the processor architecture from the traditional monolithic single

core to the multi-core. As the number of available cores increases in the processor,

there are opportunities to execute applications with larger degree of parallelism, or

alternatively executing more applications at the same time. A naı̈ve approach using

existing OS may lead to interference in the performance of the different applications

that are running simultaneously. This becomes a serious issue if someone is inter-

ested to use part of the multi-core resources for the execution of HPC applications.

On the other hand, as the number of cores increases, the processor becomes harder to

manage. Tasks such as scheduling, fault-tolerance and thermal violation avoidance

31

Pan
ay

iot
is

Petr
ide

s

become more complex.

In this work the use of virtualization is proposed as a way to address the above

mentioned issues. In particular it is proposed to use Virtual Machines (VM) as a way

to split the multi-core processor into different Performance Domains. The objective

is to provide a way for several applications to execute on the multi-core processor

but at the same time to guarantee performance isolation. Therefore an application

executing on a certain performance domain will maintain its performance indepen-

dently of the load in the rest of the multi-core processor. In addition, this solution

is non-intrusive, i.e. it does not require any changes to the application and can thus

be applied to any existing executable. The proposed solution of using a VM as to

implement a Performance Domain is trivial. Nevertheless, the contribution of this

work is firstly the analysis of the feasibility of such a solution and secondly to study

the different virtualization methods, i.e. hosted and bare-metal virtualization. More

specifically, this work is focused on analyzing the performance penalty suffered by

HPC applications when co-executing on top of different VMs.

For the experiments of this work applications from the Princeton Application

Repository for Shared-Memory Computers suite (PARSEC) [29] are used. These are

multithreaded programs focusing on emerging workloads and designed to be rep-

resentative of next-generation shared-memory programs for chip-multiprocessors.

They were executed on top of Oracle VirtualBox [30] to study hosted virtualization

and Xen hypervisor [31] in order to study bare-metal virtualization, on a system with

two quad-core processors. The results observed show that the different character-

istics of each application have a considerable impact on the penalty suffered by the

execution on a virtualized machine (VM) and varies according to the virtualization

method used. More specifically, this performance penalty ranges between 10 and

37%, on hosted virtualization, and 1 to 3 %, on bare-metal.

Finally, the creation of different domains using separate virtual machines on the

same system show that these virtual machines are able to satisfy the isolation prop-

erties even in terms of performance for HPC applications. Moreover the interference

of application co-execution on a native system is limited due to the virtualization

properties provided. Therefore, in several cases the execution on a virtual system

achieves better performance than on the native system. All these results lead to

conclude that it is possible to use virtualization as a way to reserve a portion of the

multi-core resources for HPC execution independently of the load on the rest of the

32

Pan
ay

iot
is

Petr
ide

s

multi-core. More specifically, results show that the use of bare-metal virtualization

can satisfy the performance demands and deliver performance predictability for

HPC applications.

3.2 Related Work

Using virtual machines is not a new trend and it has not been ignored by the high

performance computing society. Because of the benefits they offer, there is a large

interest in using virtual machines for HPC despite the performance penalty that is

caused by the additional virtualization layer.

Macdonell and Lu [32] state that VMs is a good solution to abstract out the

heterogeneity in order to fully utilize metacomputers and grids. Although the use

of VMs has overheads, recent improvements in software and hardware support

reduce the overheads for HPC applications. On their work the authors show a

simple quantitative study of the overheads of running the benchmarks BLAST, HM-

Mer and GROMACS under VMWare. In the paper they support that while not

perfect, VMs are emerging as a pragmatic tool in HPC. Menon et al. [33] used a

system-wide statistical profiling toolkit implemented for the Xen virtual machine

environment in order to analyze the performance overheads incurred by network-

ing applications running in Xen VMs and their work was focused on networking

applications. Soltesz et al. [34] presented an alternative approach to hypervisors

which suite better for HPC clusters. Their approach was a synthesis of resource con-

tainers and security containers applied to general-purpose time-shared operating

systems. Their results showed the benefits that HPC clusters can retrieve from these

techniques and therefore achieving efficiency and isolation. The work by Youseff

et al. [35] states that despite of the potential benefits, performance advances, and

recent research indicating its potential, virtualization is currently not used in high-

performance computing (HPC) environments. As they say one reason for this is

the perception that the remaining overhead that VMMs introduce is unacceptable

for performance-critical applications and systems. The authors conclude that Xen

the paravirtualizing system poses no statistically significant overhead over other OS

configurations currently in use at LLNL for HPC clusters. Huang et al. [36] present

a case for HPC with virtual machines by introducing a framework which addresses

the performance and management overhead associated with VMbased computing.

33

Pan
ay

iot
is

Petr
ide

s

Two key ideas in their design are: Virtual Machine Monitor (VMM) bypass I/O and

scalable VM image management. Rodrı́guez et al. [27] propose to achieve better

management of physical resources by dynamically reallocating and adjusting local

resources according to demand. They present and evaluate a component to provide

dynamic adjusting of CPU resources in a multi-core VM-based resource provider.

Matthews et al. [26] showed that in an operating system level virtualization system,

applications suffer from high execution time variance compared to other virtualiza-

tion methods. Payer et al. [37] proposed extending the Xen Hypervisor scheduler

in order to isolate the systems’ CPU resources from the additional scheduling jitter

introduced by the Linux kernel scheduler.

Overall, many research works have focused on the use of virtualization for the

execution of HPC applications. Most of these works are based on the Xen Hypervisor

and also on the design of efficient communication between multiple processors. In

this work virtualization solutions for a multi-core processor [10] are studied. More

specifically, this work is focused on performance isolation for HPC applications

showing that without any modifications on the system or applications high levels of

performance can be achieved.

3.3 Virtual Machines, HPC and Performance Domains

on Multi-core Processors

VM VM

Hardware

Virtualization Layer (Hypervisor)

Guest OS Guest OS

ApplicationApplication ApplicationApplication

VM VM

Hardware

Virtualization Layer

Guest OS Guest OS

ApplicationApplication ApplicationApplication

Host Operating System

Hosted VirtualizationBare-metal Virtualization

Hardware

(a)

VM
VMCORE 1 CORE 2 CORE 3 CORE 4

CORE 5 CORE 6 CORE 7 CORE 8

Virtual Machine 2Virtual Machine 1

(b)

Figure 3.1: (a) Virtualization techniques bare-metal and hosted and (b) performance domains on a

multi-core system.

34

Pan
ay

iot
is

Petr
ide

s

In general, virtualization is used to abstract the system from the physical re-

sources that are actually present. There are mainly two ways of implementing it (see

Figure 3.1 (a)): Hosted Virtualization, and Bare-metal Virtualization. The former

is usually implemented on top of a Host Operating System while the latter uses a

hypervisor layer directly on top of the hardware. Bare-metal virtualization provides

some interesting features, for example besides providing memory management, and

CPU scheduling, it considerably reduces the interpretation overheads using fewer

resources, and it allows the OS kernels to work on top of it as-is. A hypervisor is

a layer of software, more like a modified Linux kernel, which runs directly on a

systems hardware. As such, it is like replacing the operating system and thereby

allowing to run multiple operating systems concurrently as if they had their own

hardware without having extra layers between them. In this chapter the use of

virtualization in multi-core systems is studied, and more specifically their use for

High Performance Computing (HPC) maintaining high levels of performance and

performance isolation.

With the use of virtualization it is possible to achieve isolation among the execu-

tion of different applications running at the same time on the same multi-core. This

isolation means that it is possible to split the multi-core into different Performance

Domains. Consequently, an application running within such a domain receives all

the resources assigned to that domain. The Performance Domains can be exploited

to execute HPC applications that will achieve a speedup close to native execution.

The relevant advantage is the fact that the performance achieved by that application

on that domain is isolated from the execution of any other applications on other

domains and therefore limiting their interference compared to a native system. Fig-

ure 3.1 (b) depicts a multi-core processor where the cores are grouped into different

Virtual Machines, which in turn implement the Performance Domains. Different roles

for each Domain can be assigned. For example one domain could be dedicated

for HPC application execution and other domains for interactive job execution and

software development and testing.

3.4 Experimental Setup

For the purpose of this work two sets of experiments were performed. The objectives

of these experiments are first to investigate the different configurations of VMs in

35

Pan
ay

iot
is

Petr
ide

s

terms of assigned cores per VM, and second to study the performance interference

between different application executing concurrently and the use of virtual machines

to provide performance isolation.

Table 3.1: PARSEC Application Description.

Application Brief Description

Blackscholes Performs option pricing using the Black-Scholes partial differential

equation (PDE) method

Bodytrack Performs the tracking of people in security camera images

Facesim Simulates the motions of a human face

Fluidanimate Models the fluid dynamics for animation purposes using the Smoothed

Partical Hydrodynamics (SPH) method

Raytrace Renders a 2D image out of a 3D model using the ray-tracing method

For all experiments an 8-core computer system equipped with two 4-core Intel(R)

Xeon(R) CPU E5320 processors running at 1.86GHz is used. These processors are

configured with 128KB of private L1 cache and 8MB of shared L2 cache. This system

was running the 64-bit version of Ubuntu 9.04. This is what is called in this work

the native system although in the virtualization terminology this is known as the host

system.

The hosted virtualization for this work was implemented using the Virtual Box

package from Oracle [30] version 3.1. VirtualBox is a collection of powerful virtual

machine tools, targeting desktop computers, enterprise servers and embedded sys-

tems. With VirtualBox, you can virtualize 32-bit and 64-bit operating systems on

machines with Intel and AMD processors, either by using hardware virtualization

features provided by these processors or by software [30]. For bare-metal virtual-

ization the Xen hypervisor version 4.0.2 [31] is used. After producing the image of

the Virtual Machine using Virtual Box and Xen the resources that could be used are

allocated to the machine. Either only Virtual Box VMs or XenVMs are used for each

set of experiments but with the same system configurations. The memory allocated

to the VM was 4GB of RAM. The number of processors allocated was either 2 or 4

cores for the virtual machine resulting in two different virtual machines: VM2 and

VM4. In order to have fair comparisons, VM had the same OS installed as the one

36

Pan
ay

iot
is

Petr
ide

s

for the native machine, the Ubuntu 9.04 OS, which in the virtualization terminology

is known as the guest system.

The workload used for the experiments of this work consists of five applica-

tions from the PARSEC benchmark suite [29]. PARSEC is a benchmark suite com-

posed of multithreaded programs that focus on emerging workloads and was de-

signed to be representative of next-generation shared-memory programs for chip-

multiprocessors. The applications come from many different areas such as computer

vision, video encoding, financial analytics, animation physics and image process-

ing. The five applications used in this work were selected in order to represent

different categories of applications with different characteristics on their execution

and they are: Blackscholes, Bodytrack, Facesim, Fluidanimate, and Raytrace. Their brief

description is presented in Table 3.1. Applications were selected in order to have rep-

resentative workloads of applications with different characteristics and behaviour

during execution [29]. More specifically the characteristics of the selected applica-

tions are: (i) Blackscholes, has a small number of read and write operations, which

will not suppress the shared resources of the system, (ii) Facesim and Raytrace are

applications with large number of read and write operations and high FPOS and are

selected in order to study how they interfere their execution with other applications

on the shared resources of the system, and (iii) Bodytrack was selected according to its

characteristics of high reads and low writes but with high number on synchroniza-

tion operations (locks and barriers) to study its behaviour during co-execution with

other applications. It can be seen from the selected applications that they have dif-

ferent characteristics in terms of both memory and resource requirements.With such

a set it is possible to ensure that representative workloads of applications of different

characteristics are selected and at the same time to study how their co-execution

influences each applications’ performance.

The PARSEC applications used have been parallelized with POSIX threads (pthreads).

For the presented experiments the applications are compiled using parsecmgmt which

is the main tool that comes with PARSEC to build and run packages. The config-

uration gcc-pthreads is used as to build the parallel executable of the applications.

The compiler used was gcc-3.4 and g++ compiler. When running the PARSEC ap-

plications he native input data set is used which is the input intended for large-scale

experiments of performance measurements and research.

The scenarios of the applications concurrently executing on the different VMs are

37

Pan
ay

iot
is

Petr
ide

s

Table 3.2: Experiments scenarios for 2 and 4 instances of virtual machines.

Scenarios for 2 Instances of VMs

Scenario Concurrent Applications Execution

Scenario 1 Bodytrack, Blackscholes

Scenario 2 Bodytrack, Raytrace

Scenario 3 Bodytrack, Fluidanimate

Scenario 4 Bodytrack, Facesim

Scenario 5 Blackscholes, Raytrace

Scenario 6 Blackscholes, Fluidanimate

Scenario 7 Blackscholes, Facesim

Scenarios for 4 Instances of VMs

Scenario Concurrent Applications Execution

Scenario 8 Blackscholes, Bodytrack, Raytrace, Fluidanimate

Scenario 9 Blackscholes, Bodytrack, Raytrace, Facesim

Scenario 10 Blackscholes, Bodytrack, Fluidanimate, Facesim

Scenario 11 Bodytrack, Raytrace, Fluidanimate, Facesim

38

Pan
ay

iot
is

Petr
ide

s

depicted in Table 3.2. For the first set of experiments, 2 Virtual Machines instances

of 4 cores each are created. For the second set of experiments 4 Virtual Machines

instances of 2 cores each are used. Furthermore, the number of parallel threads of

each application was varied from 2 to 4.

The measurement of the execution time was performed using the time shell com-

mand of Linux on both the native and the VM systems. The start of the applications

execution was concurrent to all VMs. In the case of applications with different execu-

tion times, the ones with the smallest time of execution were re-executed to reach the

time of execution of longest applications without considering their extra execution

in the results measurements. This assumption was made in order to have uniform

interference of applications executed in the system. If otherwise mentioned, the

execution time and other metrics refer to the real or total execution time reported by

the time command. As for the execution time on the VMs, the time measurement

was validated using a different process where on the VM (guest system) a simple

client program requests the time to be measured by a simple server on the native or

host system. The differences between the two methods were negligible.

3.5 Experimental Results

For the first set of experiments 2 VMs with 4 cores each are used. As described

in Section 2.6 7 Scenarios are selected for execution. Those Scenarios are executed

on Virtual Box, Xen hypervisor and Native and with number of threads for each

application varying from 2 to 4. In Figures 3.2 (a) and (b) the results from the

Scenario 1 are presented and in Figures 3.3 (e) and (f) the results for Scenario 6. In

Figures 3.2 and 3.3, the y-axis shows the execution time on the different VMs and

the x-axis shows the number of threads per application in the order described in

Table 3.2. For example, in Scenario 1 and 2-2 setup, both applications are executed

with 2 parallel threads each whereas in setup 2-4 Bodytrack is executed with 2 parallel

threads and Blackscholes with 4 parallel threads.

From the results it is possible to observe that for all applications and both scenar-

ios, when increasing the number of threads from 2 to 4, it is possible to observe the

reduction in the execution time as expected. The degree of reduction is determined

by the characteristics of the applications as mentioned later. For the execution with

8 threads, it is possible to observe different behaviors for the native and virtualized

39

Pan
ay

iot
is

Petr
ide

s

0.00
2000.00
4000.00
6000.00
8000.00

10000.00
12000.00
14000.00
16000.00
18000.00

2‐2 2‐4 2‐8 4‐2 4‐4 4‐8 8‐2 8‐4 8‐8

Ex
ec
u/

on
 T
im

e
[m

se
c
]

#threads per VM (2 VMs of 4 cores each)

Bodytrack

Xen

VirtualBox

Na/ve

(a)

0.00
5000.00

10000.00
15000.00
20000.00
25000.00
30000.00
35000.00
40000.00
45000.00

2‐2 2‐4 2‐8 4‐2 4‐4 4‐8 8‐2 8‐4 8‐8

Ex
ec
u0

on
 T
im

e
[m

se
c
]

#threads per VM (2 VMs of 4 cores each)

Blackscholes

Xen

VirtualBox

Na0ve

(b)

0.00
2000.00
4000.00
6000.00
8000.00
10000.00
12000.00
14000.00
16000.00
18000.00

2‐2 2‐4 2‐8 4‐2 4‐4 4‐8 8‐2 8‐4 8‐8

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (2 VMs of 4 cores each)

Bodytrack

XEN

VirtualBox

Na7ve

(c)

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

2‐2 2‐4 2‐8 4‐2 4‐4 4‐8 8‐2 8‐4 8‐8

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (2 VMs of 4 cores each)

Raytrace

XEN

VirtualBox

Na8ve

(d)

0.00
2000.00
4000.00
6000.00
8000.00
10000.00
12000.00
14000.00
16000.00
18000.00

2‐2 2‐4 2‐8 4‐2 4‐4 4‐8 8‐2 8‐4 8‐8

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (2 VMs of 4 cores each)

Bodytrack

XEN

VirtualBox

Na7ve

(e)

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

35000.00

2‐2 2‐4 2‐8 4‐2 4‐4 4‐8 8‐2 8‐4 8‐8

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (2 VMs of 4 cores each)

Fluidanimate

XEN

VirtualBox

Na8ve

(f)

Figure 3.2: Execution Variance on VirtualBox Native and Xen for: Scenario 1 (a) and (b), Scenario

2 (c) and (d), Scenario 3 (e) and (f).

40

Pan
ay

iot
is

Petr
ide

s

0.00
2000.00
4000.00
6000.00
8000.00
10000.00
12000.00
14000.00
16000.00
18000.00
20000.00

2‐2 2‐4 2‐8 4‐2 4‐4 4‐8 8‐2 8‐4 8‐8

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (2 VMs of 4 cores each)

Bodytrack

XEN

VirtualBox

Na7ve

(a)

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

35000.00

40000.00

2‐2 2‐4 2‐8 4‐2 4‐4 4‐8 8‐2 8‐4 8‐8

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (2 VMs of 4 cores each)

Facesim

XEN

VirtualBox

Na8ve

(b)

0.00
5000.00
10000.00
15000.00
20000.00
25000.00
30000.00
35000.00
40000.00
45000.00

2‐2 2‐4 2‐8 4‐2 4‐4 4‐8 8‐2 8‐4 8‐8

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (2 VMs of 4 cores each)

Blackscholes

XEN

VirtualBox

Na8ve

(c)

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

2‐2 2‐4 2‐8 4‐2 4‐4 4‐8 8‐2 8‐4 8‐8

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (2 VMs of 4 cores each)

Raytrace

XEN

VirtualBox

Na8ve

(d)

0.00
5000.00

10000.00
15000.00
20000.00
25000.00
30000.00
35000.00
40000.00
45000.00

2‐2 2‐4 2‐8 4‐2 4‐4 4‐8 8‐2 8‐4 8‐8

Ex
ec
u0

on
 T
im

e
[m

se
c
]

#threads per VM (2 VMs of 4 cores each)

Blackscholes

Xen

VirtualBox

Na0ve

(e)

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

35000.00

2‐2 2‐4 2‐8 4‐2 4‐4 4‐8 8‐2 8‐4 8‐8

Ex
ec
u0

on
 T
im

e
[m

se
c
]

#threads per VM (2 VMs of 4 cores each)

Fluidanimate

Xen

VirtualBox

Na0ve

(f)

0.00
5000.00
10000.00
15000.00
20000.00
25000.00
30000.00
35000.00
40000.00
45000.00

2‐2 2‐4 2‐8 4‐2 4‐4 4‐8 8‐2 8‐4 8‐8

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (2 VMs of 4 cores each)

Blackscholes

XEN

VirtualBox

Na8ve

(g)

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

35000.00

40000.00

2‐2 2‐4 2‐8 4‐2 4‐4 4‐8 8‐2 8‐4 8‐8

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (2 VMs of 4 cores each)

Facesim

XEN

VirtualBox

Na8ve

(h)

Figure 3.3: Execution Variance on VirtualBox Native and Xen for: Scenario 4 (a) and (b), Scenario

5 (c) and (d), Scenario 6 (e) and (f), Scenario 7 (g) and (h).

41

Pan
ay

iot
is

Petr
ide

s

environments. For the virtualized environments both Virtual Box and Xen provide

the same performance for 8 threads as it was for 4. This is due to the fact that

within the VM, the execution is limited to the available resources to the VM which

in this case is 4 cores. As for the native execution, while for Scenario 1 Blackscholes

shows a further reduction of the execution time from 4 to 8 threads, for Scenario

6 Fluidanimate shows an increase in the execution time from 4 to 8 threads. Notice

that in both cases the changes in performance for the 8 threads create an interference

with the reference application Bodytrack and Blackscholes for the Scenarios 1 and 6

respectively. The reason for this different behavior has to do with the characteristics

of the combined applications. For example, Bodytrack does seem to allow Blackscholes

to “steal” cores in Scenario 1 while 8 threads of both Blackscholes and Fluidanimate

seem to result in a thrashing of the system as both applications’ performance suffer

considerably.

For the second set of this work experiments 4 VMs with 2 cores each are used.

As described in Section 2.6, 4 Scenarios are selected for execution. Those scenarios

are executed on Virtual Box, Xen hypervisor and Native and with number of threads

per application varying from 2 to 4 with all possible combinations for the different

applications. In Figures 3.4, 3.5, 3.6 and 3.7 the y-axis shows the execution time

on the different VMs and the x-axis shows the number of threads per application

in the order described in Table 3.2. For example, in Scenario 8 and 2-2-2-2 setup

all applications are executed having 2 parallel threads each whereas setup 2-2-2-4

Blackscholes, Bodytrack, Raytrace are executed with 2 parallel threads and Fluidanimate

with 4 parallel threads.

The results depicted in Figure 3.4 show the execution time of the applications

on the different environments (VirtualBox, Xen and native) for the different setups.

The first important observation from the depicted results is that the execution time

in the Virtualized environments seems very stable. Notice that a virtual machines

is running with only 2 cores each and that the executions are from 2 to 4 threads.

Therefore, it is expected that the performance does not change for the different

setups.

It can be observed the small execution variance between the virtualized envi-

ronments and the native execution. These results justify the performance isolation

offered by the virtualization environments. Also from the experiments, it is obvious

that both VirtualBox and Xen add an extra overhead on the applications execution

42

Pan
ay

iot
is

Petr
ide

s

compared to the native. This overhead ranges from to 10 to 37% of additional over-

head for VirtualBox and from 1 to 3% for Xen. These results shows that a bare-metal

virtualization system can deliver the performance very close to the performance on

the native system.

0

5,000

10,000

15,000

20,000

25,000

2‐
2‐
2‐
2

2‐
2‐
2‐
4

2‐
2‐
4‐
4

2‐
4‐
4‐
4

4‐
4‐
4‐
4

2‐
2‐
4‐
2

2‐
4‐
4‐
2

4‐
4‐
4‐
2

2‐
4‐
2‐
2

4‐
4‐
2‐
2

4‐
4‐
2‐
4

4‐
2‐
2‐
2

4‐
2‐
4‐
2

4‐
2‐
4‐
4

2‐
4‐
2‐
4

4‐
2‐
2‐
4 Ex
ec
u.

on
 T
im

e
[m

se
c]

#threads per VM (4 VMs of 2 cores each)

Bodytrack

XEN

VirtualBox

Na.ve 0

10,000

20,000

30,000

40,000

50,000

2‐
2‐
2‐
2

2‐
2‐
2‐
4

2‐
2‐
4‐
4

2‐
4‐
4‐
4

4‐
4‐
4‐
4

2‐
2‐
4‐
2

2‐
4‐
4‐
2

4‐
4‐
4‐
2

2‐
4‐
2‐
2

4‐
4‐
2‐
2

4‐
4‐
2‐
4

4‐
2‐
2‐
2

4‐
2‐
4‐
2

4‐
2‐
4‐
4

2‐
4‐
2‐
4

4‐
2‐
2‐
4 Ex
ec
u/

on
 T
im

e
[m

se
c
]

#threads per VM (4 VMs of 2 cores each)

Blackscholes

XEN

VirtualBox

Na/ve

0
5,000

10,000
15,000
20,000
25,000
30,000

2‐
2‐
2‐
2

2‐
2‐
2‐
4

2‐
2‐
4‐
4

2‐
4‐
4‐
4

4‐
4‐
4‐
4

2‐
2‐
4‐
2

2‐
4‐
4‐
2

4‐
4‐
4‐
2

2‐
4‐
2‐
2

4‐
4‐
2‐
2

4‐
4‐
2‐
4

4‐
2‐
2‐
2

4‐
2‐
4‐
2

4‐
2‐
4‐
4

2‐
4‐
2‐
4

4‐
2‐
2‐
4 Ex
ec
u/

on
 T
im

e
[m

se
c
]

#threads per VM (4 VMs of 2 cores each)

Raytrace

XEN

VirtualBox

Na/ve 0

10,000

20,000

30,000

40,000

50,000

2‐
2‐
2‐
2

2‐
2‐
2‐
4

2‐
2‐
4‐
4

2‐
4‐
4‐
4

4‐
4‐
4‐
4

2‐
2‐
4‐
2

2‐
4‐
4‐
2

4‐
4‐
4‐
2

2‐
4‐
2‐
2

4‐
4‐
2‐
2

4‐
4‐
2‐
4

4‐
2‐
2‐
2

4‐
2‐
4‐
2

4‐
2‐
4‐
4

2‐
4‐
2‐
4

4‐
2‐
2‐
4 Ex
ec
u/

on
 T
im

e
[m

se
c
]

#threads per VM (4 VMs of 2 cores each)

Fluidanimate

XEN

VirtualBox

Na/ve

Figure 3.4: Execution Variance on VirtualBox Native and Xen for Scenario 8.

The different behavior observed from the experimental results can be explained

by the characteristics of the applications executed. These applications are classified

according to their characteristics. In the first class belong applications that are

heavy computational and that use little data. As the execution of the virtualized

code is performed natively on the system these applications are expected to suffer

only a small performance overhead from virtualization. One such application is

BlackScholes which shows better performance very close to the native execution. The

second class includes applications that handle large input data sets and as such their

overhead is slightly larger. In this class both Fluidanimate and Raytrace can fit. Finally,

in the last class includes applications that suffer from the virtualized environment.

In the case of such workload Bodytrack is such application. The overhead observed

for Bodytrack application is mainly due to the high number of barriers, i.e. lock- and

barrier-based synchronizations, and the high number of waits of condition variables,

in contrast to the other applications [29].

Studying the results depicted in Figures 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7 closer it

can observed that there are cases where the performance on the virtualized system

is better than on the native system. As explained before, this is due to the fact that

in a native system the co-execution of applications may result in contention in the

43

Pan
ay

iot
is

Petr
ide

s

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

2‐
2‐
2‐
2

2‐
2‐
2‐
4

2‐
2‐
4‐
4

2‐
4‐
4‐
4

4‐
4‐
4‐
4

2‐
2‐
4‐
2

2‐
4‐
4‐
2

4‐
4‐
4‐
2

2‐
4‐
2‐
2

4‐
4‐
2‐
2

4‐
4‐
2‐
4

4‐
2‐
2‐
2

4‐
2‐
4‐
2

4‐
2‐
4‐
4

2‐
4‐
2‐
4

4‐
2‐
2‐
4

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (4 VMs of 2 cores each)

Bodytrack

XEN

VirtualBox

Na7ve

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

2‐
2‐
2‐
2

2‐
2‐
2‐
4

2‐
2‐
4‐
4

2‐
4‐
4‐
4

4‐
4‐
4‐
4

2‐
2‐
4‐
2

2‐
4‐
4‐
2

4‐
4‐
4‐
2

2‐
4‐
2‐
2

4‐
4‐
2‐
2

4‐
4‐
2‐
4

4‐
2‐
2‐
2

4‐
2‐
4‐
2

4‐
2‐
4‐
4

2‐
4‐
2‐
4

4‐
2‐
2‐
4

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (4 VMs of 2 cores each)

Blackscholes

XEN

VirtualBox

Na7ve

0

5,000

10,000

15,000

20,000

25,000

30,000
2‐
2‐
2‐
2

2‐
2‐
2‐
4

2‐
2‐
4‐
4

2‐
4‐
4‐
4

4‐
4‐
4‐
4

2‐
2‐
4‐
2

2‐
4‐
4‐
2

4‐
4‐
4‐
2

2‐
4‐
2‐
2

4‐
4‐
2‐
2

4‐
4‐
2‐
4

4‐
2‐
2‐
2

4‐
2‐
4‐
2

4‐
2‐
4‐
4

2‐
4‐
2‐
4

4‐
2‐
2‐
4

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (4 VMs of 2 cores each)

Raytrace

XEN

VirtualBox

Na7ve

0

10,000

20,000

30,000

40,000

50,000

60,000

2‐
2‐
2‐
2

2‐
2‐
2‐
4

2‐
2‐
4‐
4

2‐
4‐
4‐
4

4‐
4‐
4‐
4

2‐
2‐
4‐
2

2‐
4‐
4‐
2

4‐
4‐
4‐
2

2‐
4‐
2‐
2

4‐
4‐
2‐
2

4‐
4‐
2‐
4

4‐
2‐
2‐
2

4‐
2‐
4‐
2

4‐
2‐
4‐
4

2‐
4‐
2‐
4

4‐
2‐
2‐
4

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (4 VMs of 2 cores each)

Facesim

XEN

VirtualBox

Na8ve

Figure 3.5: Execution Variance on VirtualBox Native and Xen for Scenario 9.

resources and thus a performance degradation. A simple analysis of the results is

presented in Figure 3.8. When considering the virtualization with Virtual Box, for

19% of the experiments the execution on the virtualized environment achieved a

better performance than the native execution. As for the virtualization with Xen,

this value increased to 60%, i.e. for 60%, of the experiments the execution in the Xen,

environment achieved a better performance than the native execution.

Overall the experimental results show that the execution on virtualized environ-

ments (specially when using Xen) offers performance isolation at a negligible cost

in terms of performance overhead. This performance isolation allows for applica-

tions to achieve their predicted speedup without suffering any interference from

co-execution of other applications on the same processor at the same time. This is

becoming more relevant for large-scale multi-core processors which should be kept

fully utilized by running simultaneously different applications.

3.6 Summary

Virtualization is a technique that offers many benefits such as hiding the hardware

complexities or creating different images of the hardware as to isolate users or

install different systems. One disadvantage of hosted virtualization is the fact that

the introduction of an intermediate layer between the hardware and the operating

system results in performance penalty. This technique was revived recently as

44

Pan
ay

iot
is

Petr
ide

s

0

5,000

10,000

15,000

20,000

25,000

2‐
2‐
2‐
2

2‐
2‐
2‐
4

2‐
2‐
4‐
4

2‐
4‐
4‐
4

4‐
4‐
4‐
4

2‐
2‐
4‐
2

2‐
4‐
4‐
2

4‐
4‐
4‐
2

2‐
4‐
2‐
2

4‐
4‐
2‐
2

4‐
4‐
2‐
4

4‐
2‐
2‐
2

4‐
2‐
4‐
2

4‐
2‐
4‐
4

2‐
4‐
2‐
4

4‐
2‐
2‐
4

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (4 VMs of 2 cores each)

Bodytrack

XEN

VirtualBox

Na6ve

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

2‐
2‐
2‐
2

2‐
2‐
2‐
4

2‐
2‐
4‐
4

2‐
4‐
4‐
4

4‐
4‐
4‐
4

2‐
2‐
4‐
2

2‐
4‐
4‐
2

4‐
4‐
4‐
2

2‐
4‐
2‐
2

4‐
4‐
2‐
2

4‐
4‐
2‐
4

4‐
2‐
2‐
2

4‐
2‐
4‐
2

4‐
2‐
4‐
4

2‐
4‐
2‐
4

4‐
2‐
2‐
4

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (4 VMs of 2 cores each)

Blackscholes

XEN

VirtualBox

Na7ve

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

2‐
2‐
2‐
2

2‐
2‐
2‐
4

2‐
2‐
4‐
4

2‐
4‐
4‐
4

4‐
4‐
4‐
4

2‐
2‐
4‐
2

2‐
4‐
4‐
2

4‐
4‐
4‐
2

2‐
4‐
2‐
2

4‐
4‐
2‐
2

4‐
4‐
2‐
4

4‐
2‐
2‐
2

4‐
2‐
4‐
2

4‐
2‐
4‐
4

2‐
4‐
2‐
4

4‐
2‐
2‐
4

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (4 VMs of 2 cores each)

Fluidanimate

XEN

VirtualBox

Na7ve

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

2‐
2‐
2‐
2

2‐
2‐
2‐
4

2‐
2‐
4‐
4

2‐
4‐
4‐
4

4‐
4‐
4‐
4

2‐
2‐
4‐
2

2‐
4‐
4‐
2

4‐
4‐
4‐
2

2‐
4‐
2‐
2

4‐
4‐
2‐
2

4‐
4‐
2‐
4

4‐
2‐
2‐
2

4‐
2‐
4‐
2

4‐
2‐
4‐
4

2‐
4‐
2‐
4

4‐
2‐
2‐
4

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (4 VMs of 2 cores each)

Facesim

XEN

VirtualBox

Na7ve

Figure 3.6: Execution Variance on VirtualBox Native and Xen for Scenario 10.

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

2‐
2‐
2‐
2

2‐
2‐
2‐
4

2‐
2‐
4‐
4

2‐
4‐
4‐
4

4‐
4‐
4‐
4

2‐
2‐
4‐
2

2‐
4‐
4‐
2

4‐
4‐
4‐
2

2‐
4‐
2‐
2

4‐
4‐
2‐
2

4‐
4‐
2‐
4

4‐
2‐
2‐
2

4‐
2‐
4‐
2

4‐
2‐
4‐
4

2‐
4‐
2‐
4

4‐
2‐
2‐
4

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (4 VMs of 2 cores each)

Bodytrack

XEN

VirtualBox

Na7ve

0

5,000

10,000

15,000

20,000

25,000

30,000

2‐
2‐
2‐
2

2‐
2‐
2‐
4

2‐
2‐
4‐
4

2‐
4‐
4‐
4

4‐
4‐
4‐
4

2‐
2‐
4‐
2

2‐
4‐
4‐
2

4‐
4‐
4‐
2

2‐
4‐
2‐
2

4‐
4‐
2‐
2

4‐
4‐
2‐
4

4‐
2‐
2‐
2

4‐
2‐
4‐
2

4‐
2‐
4‐
4

2‐
4‐
2‐
4

4‐
2‐
2‐
4

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (4 VMs of 2 cores each)

Raytrace

XEN

VirtualBox

Na7ve

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

2‐
2‐
2‐
2

2‐
2‐
2‐
4

2‐
2‐
4‐
4

2‐
4‐
4‐
4

4‐
4‐
4‐
4

2‐
2‐
4‐
2

2‐
4‐
4‐
2

4‐
4‐
4‐
2

2‐
4‐
2‐
2

4‐
4‐
2‐
2

4‐
4‐
2‐
4

4‐
2‐
2‐
2

4‐
2‐
4‐
2

4‐
2‐
4‐
4

2‐
4‐
2‐
4

4‐
2‐
2‐
4

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (4 VMs of 2 cores each)

Fluidanimate

XEN

VirtualBox

Na7ve

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

2‐
2‐
2‐
2

2‐
2‐
2‐
4

2‐
2‐
4‐
4

2‐
4‐
4‐
4

4‐
4‐
4‐
4

2‐
2‐
4‐
2

2‐
4‐
4‐
2

4‐
4‐
4‐
2

2‐
4‐
2‐
2

4‐
4‐
2‐
2

4‐
4‐
2‐
4

4‐
2‐
2‐
2

4‐
2‐
4‐
2

4‐
2‐
4‐
4

2‐
4‐
2‐
4

4‐
2‐
2‐
4

Ex
ec
u&

on
 T
im

e
[s
]

#threads per VM (4 VMs of 2 cores each)

Facesim

XEN

VirtualBox

Na7ve

Figure 3.7: Execution Variance on VirtualBox Native and Xen for Scenario 11.

45

Pan
ay

iot
is

Petr
ide

s

80.86%

19.14%

Percentage of Cases where Execu;on Time is
be@er (VirtualBox Vs Na;ve)

NATIVE
VirtualBox

(a)

40.23%

59.77%

Percentage of Cases where Execu<on Time is
BeAer (XEN Vs NATIVE)

NATIVE
XEN

(b)

Figure 3.8: Performance comparison between: (a) VirtualBox and Native Execution and (b) Xen and

Native Execution.

to improve the utilization in large data-center systems. The limitations of hosted

virtualization are minimized with the use of bare-metal virtualization and from the

results it is obvious that applications’ performance may benefit from the use of this

technique. With the availability of processors with increasing number of cores and

increased complexity, virtualization will soon become present in all systems. As

such, it is important to understand the benefits that can be obtained for multi-core

systems as well as the impact of the different kinds of virtualization on applications

and specially on the most demanding HPC applications, as they require to exploit

all available performance.

This work analyzes the performance overhead and performance isolation of par-

allel applications while executing on top of different virtualization environments on

a 8-core based system. The results of the experiments show that for most applica-

tions the overhead is relatively small. Virtualization shows to be an important tool

as to create performance domains where the performance of HPC applications can

be safeguard, independent of the applications executing on the rest of the multi-

core processor. Also, it is important to mention that by using vitualization not

only predictable performance is achieved but also the interference of applications

co-executing is limited on the virtualized system compared to their co-execution on

the native system. It can be also observed that for more than half of the presented

experiments the execution on the bare-metal virtualized system achieved better

performance than the native execution. Moreover, the overhead observed for the

execution of the applications was only up to 3%. Performance isolation provided

46

Pan
ay

iot
is

Petr
ide

s

by virtualization, allows applications to achieve their predicted speedup without

suffering any interference from co-execution of other applications on the same pro-

cessor at the same time. This is becoming more relevant for large-scale multi-core

processors on which full utilization is desired by running simultaneously different

applications. Overall the results were very encouraging for the use of virtualization

for future large-scale multi-core processors even for demanding HPC applications.

47

Pan
ay

iot
is

Petr
ide

s

Chapter 4
Heterogeneous and NUMA-aware Scheduling

As the number of cores increases in a single chip processor, several challenges arise:

wire delays, contention for out-of-chip accesses, and core heterogeneity. In order

to address these issues and the applications demands, future large-scale many-core

processors are expected to be organized as a collection of NUMA clusters of hetero-

geneous cores. In this chapter a scheduler is proposed that takes into account the

non-uniform memory latency, the heterogeneity of the cores, and the contention to

the memory controller to find the best matching core for the application’s memory

and compute requirements. Scheduler decisions are based on an on-line classi-

fication process that determines applications requirements either as memory- or

compute-bound. This work is evaluated on both a real clustered many-core ar-

chitecture, the 48-core Intel SCC [1], and its adaptability and scalability using a

simulated clustered many-core architecture. On both cases applications from the

SPEC CPU2006 benchmark suite were used. Results show that even when all cores

are busy, migrating processes to cores that match better the requirements of applica-

tions results in overall performance improvement. In particular a reduction of the

execution time from 15% to 36% is observed compared to a random static scheduling

policy. In addition, the effectiveness and adaptability of the proposed approach is

evaluated using the Sniper simulator [38]. Results show that as the number of cores

within a cluster increases, the proposed scheduling policy can still reduce execution

time of applications of up to 30% for compute-bound applications and up to 16% for

memory-bound applications.

48

Pan
ay

iot
is

Petr
ide

s

4.1 Motivation

The current de-facto standard in processor design is the multi-core architecture which

emerged as a way to provide at the same time energy efficiency and increasing com-

pute power. Moreover, as technology and on-chip integration keeps evolving, the

number of cores per chip tends to increase. At the same time, processors start

integrating cores of different characteristics and include features to change their

characteristics dynamically at runtime as to improve the efficiency of hardware.

While the increasing number of cores may result in a larger degree of parallelism, it

may not necessarily lead to improved performance. Considering processors evolu-

tion, they are becoming very complex systems and as the number of cores increases

some features make the execution non-uniform across different cores. In this work

three factors that affect the non-uniformity of applications execution are identified:

(1) non-uniform memory latency due to variable number of hops from the core

to the memory controller; (2) non-uniform execution due to cores with different

characteristics (heterogeneous or different operation modes of identical cores); (3)

non-uniform memory latency due to contention on the access to a shared memory

controller.

The target architecture for this work is one where the many-core processor is

composed of different clusters of cores, each one served by a different memory

controller. The different distances of cores to the memory controller within a cluster

determine the non-uniform latency to memory. In addition, it is assumed that cores

are heterogeneous, in this work heterogeneity is emulated by having cores execute at

different operating modes (low-power versus high-performance). A cluster of such

an architecture is depicted in Figure 4.1.

The key for determining the best matching core for a certain application is to find

out the application’s memory and computational requirements. As it is assumed no

previous knowledge of the application, whenever an application enters the system,

the scheduler assigns it to different cores as to acquire enough data to perform the

classification. It is important to classify the application as memory- or compute-

bound so it is given the best matching core. In addition, it is necessary to have an

order among different applications of the same category. Priority should be given

to the applications with the highest requirements. For example, the applications

with the highest memory requirements should be placed on the cores closest to the

49

Pan
ay

iot
is

Petr
ide

s

core 14 core 15 core 16 core 17

core 04 core 05

core 12 core 13

core 00 core 01 core 02 core 03

R RR

RRRDDR3
MC

Figure 4.1: Cluster of a Many-Core Processor. The arrows show the distance of a core to the memory

controller and their thickness represent the accumulated bandwidth on the links.

memory controller.

After the classification and the ordering within each category, the scheduler uses

a heuristic to place the application in the best matching core. If such a core is not

free, then it considers the overhead of displacing the application from that core

versus the cost of assigning the incoming application to an alternative non-optimal

matching core. In addition to the placement, the scheduler monitors constantly

the behaviour of the applications. If changes are observed, for example resulting

from an application entering a new phase, a classification phase is triggered in

order to determine a new better placement. Finally, it should be mentioned that

since classification of applications is applied on a live system with applications

co-executing, indirectly it is observed how the performance is affected from the

interference on shared resources.

Given the application, determining appropriate resources for power-performance

efficiency is not a trivial task. In addition, given the multiple goals that the proposal

tries to satisfy it is very difficult in practice to coordinate the scheduling operations.

This work propose a scalable heuristic dynamic scheduling policy, which tries to

satisfy applications requirements in terms of computation and memory during their

execution. The impact of the different factors affecting applications performance is

quantified from specific performance penalty functions using the gathered metrics.

The proposed scheduler is evaluated on a 48-core Intel SCC [1] with applications

50

Pan
ay

iot
is

Petr
ide

s

from SPEC and NAS benchmark suites. Applications are classified based on their

computation and memory requirements. This classification is a result of studying

the execution of applications and gathering the required information, such as IPC,

off-chip memory requests and last level cache misses among others. The impact of

each factor is quantified and used by the proposed scheduler in order to improve ap-

plications performance. From the experimental results it is shown that the proposed

scheduling balances very well the power-performance efficiency of the system and

in addition improves their performance, compared to an agnostic static assignment

policy. In particular, it is observed a reduction of the execution time up to 36% for the

compute-bound applications and up to 15% for memory-bound applications when

compared to a random static scheduling policy.

Moreover, to study the proposed scheduler effectiveness and adaptability a clus-

tered many-core architecture is simulated using the Sniper simulator [38]. The

objectives of this simulation were as the number of cores within a cluster increases to

explore: (i) the effectiveness of the proposed scheduler; (ii) each scheduling decision

factor impact to applications performance; (iii) the proposed scheduler adaptability

on different ratios of cores with different characteristics in terms of core frequency.

The main contribution of this work is:

• Propose a dynamic on-line classification methodology by determining the de-

gree of memory- and compute-bound for each application.

• Propose and implement a scalable dynamic scheduling policy for future het-

erogeneous many-core architectures.

• Evaluate the scheduler using applications from SPEC benchmark suite on the

48-core Intel SCC processor.

• Evaluate the effectiveness and adaptability of the proposal on larger simulated

clustered many-core architectures.

4.2 Related Work

Characterizing applications behaviour has been studied from different researchers

over the years. In addition, focusing on scheduling and resource management

based on applications’ behaviour and systems resources has been presented over

51

Pan
ay

iot
is

Petr
ide

s

the years targeting high-performance computing systems, improving applications

performance, resource utilization among others. In this section the work most

relevant to this one is presented, particularly focusing on policies and methods used

in order to address challenges raised from clustered and multi-core systems.

Rogers et al. [39] showed that the scalability of multi-core architectures is limited

from the off-chip bandwidth. Studies focused on how to reduce memory latency

using different scheduling techniques. Awasthi et al. [40] showed how an effective

dynamic page migration policy can reduce memory latency and improve a multi

Memory Controller system throughput. Characterizing applications in terms of

computation power and memory requirements was the target of different works

such as [41]. Long et al. [42] tried to characterize different applications from SPEC

benchmark suite according to their bandwidth requirements. Winter et al. [43]

used the Hungarian algorithm to characterize applications and to determine which

resource is the most appropriate but their interference is assumed limited.

One of the first approaches on resource management is batch scheduling. In this

approach the resource allocation is the users responsibility to specify the priority

of each job and it is stored in queues on which the job with the highest priority is

scheduled first [44–46]. On the same context is the modern cluster resource man-

agement, where users must specify their resource requirements. Fairness policies

can be adopted from this techniques in order to monitor jobs resource requirements

and resource availability and utilization [47,48]. Model-based scheduling [49,50] is

another approach of addressing scheduling for resource management and applica-

tions performance. One proposal is the use of utility functions [49]. These functions

are derived from off-line measurements of raw resource utilization describing appli-

cations execution on the system environment and are used to optimize both resource

utilization and applications execution. Feedback-driven techniques are also adopted

by this approach in order to introduce reinforcement learning and optimize utility

functions. Also, off-line workloads models can be used in order to optimize utility

functions [51–53].

Most recent work focused on how applications interference on shared resources,

such as caches, influences their performance. Different approaches were proposed

in order to address this issue with most of them focusing on the interference of appli-

cations on a shared cache [54]. The target of such works is to quantify or predict the

interference between co-scheduled applications. One approach of addressing this

52

Pan
ay

iot
is

Petr
ide

s

issue is the disjoint resource utilization where applications with disjoint resource

requirements are co-scheduled in order to minimize interference. This approach is

achieved by either using hardware measurements information or using working sets

sizes to make co-scheduling decisions. Another approach of addressing this issue is

by using interference experiments [53, 55]. This approach uses on-line experiments

with different combinations of applications and the highest performing combina-

tion is selected. Predicting interference is another approach of addressing this issue

[56–59]. In this approach, past measurements or performance models to predict

the expected interference between applications is used in order to take scheduling

decisions. Most of these works are focusing on the slowdown from cache effects

or analytical models to predict cache misses for co-scheduled applications [60–62].

Fedorova et al. [63] suggested that the Operating System should handle scheduling

of threads by monitoring physical variables [64]. Shelepov and Fedorova [65, 66]

address the scheduling in heterogeneous multi-core systems in the case of short-

lived threads, which do not allow monitoring to reach a near optimal scheduling

solution. They schedule threads according to their architectural signatures, which

are composed of certain microarchitecture-independent characteristics, generated

offline relying on the developer that a thread will exhibit a typical behaviour during

the generation of the signature. If that case cannot be ensured, the signature should

be generated through several runs and their results combined to obtain the final

signature. Li et al. [67] focused on load balancing to increase performance using a

NUMA-aware scheduling technique. Kumar et al. [68,69] focus on developing algo-

rithms to schedule applications on cores that best match their execution requirements

for two types of cores on a small exploration space. Haritatos et al. [70] suggested a

co-scheduling approach for CMPs by monitoring applications interference on shared

resources and focused on utilizing the entire memory of CMPs. Heirman et al. [71]

proposed a scheduling policy that dynamically matches applications’ working set

size and off-chip bandwidth requirements with the available off-chip bandwidth

proposing hardware adjustments.

Kaliorakis et al. [72] studied error detection on a many-core system using func-

tional online error detection methodology in many-core architectures. Their ap-

proach was to accelerate the online error detection methodology but at the same

time reduce the duration of the test programs executed and limiting the contention

of cores to shared resources. In this work they used both memory- and compute-

53

Pan
ay

iot
is

Petr
ide

s

intensive workloads. Their findings show that memory-intensive workloads are af-

fected the most by the excessive traffic in the interconnection network and the DRAM

controllers. Their approach to overcome this challenge, and therefore improve the

performance of such workloads, is a proposed parallelization method which uti-

lizes both private memory of the cores and the shared on-chip MPB memory. Their

results show that they succeed to minimize the effect of both access latencies and

the traffic to the DRAM controllers and therefore accelerating the performance of

memory-intensive workloads.

This work, compared to the related work presented above, differs in the fol-

lowing main aspects. First, it targets and evaluates many-core architectures. It

is shown that two main factors affect applications execution in such architectures.

More specifically, the first factor is the distance of a core to the memory controller

and the second factor is the cores’ computational capabilities. Secondly, this work

tries to tackle these factors by proposing an on-line scheduling policy, which has no

previous knowledge of applications’ execution behaviour on a many-core architec-

ture and in addition with no user interference or off-line profiling. Applications are

classified either as memory- or compute-bound by evaluating the respective factors

of each application at runtime. A methodology for dynamic on-line classification

of applications using performance penalty functions is proposed, which can deter-

mine the impact of each factor for each application, and can predict its impact to

other system resources. The on-line scalable heuristic scheduling policy manages to

minimize the performance impact of the above mentioned factors and at the same

time increase system throughput. In addition, the proposed scheduler manages to

quantify application requirements and tries to satisfy them at runtime.

4.3 Challenges of Clustered Many-Core Architectures

In this section, the architecture of scalable many-core systems is described, which

are the target of this work, and focus on the challenges for such architectures.

4.3.1 Clustered Many-Core Architectures

Clustered many-core architectures consist of tiles of cores with private L1 and L2

cache, interconnected by a 2D-grid network. Off-chip memory requests are served

54

Pan
ay

iot
is

Petr
ide

s

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

R R R R R R

R R R R R R

R R R R R R

R R R R R RMC

MC

MC

MC

533MHz Domain 800MHz Domain 266MHz Domain

Figure 4.2: Core Clock Frequency System Configuration

by a number of memory controllers which are dedicated to a cluster of cores [1].

In such architectures specific factors should be studied to define their impact to

applications performance and consequently system throughput. More specifically,

as the number of cores per cluster increases, so does their distance to the mem-

ory controller. This factor leads to non-uniform memory accesses (NUMA) and

consequently influences the application execution time.

Future clustered many-core architectures may consist of resources of different

computational capabilities. This configuration can result on different performance

and power efficient domains, which can satisfy different application requirements

and therefore increasing system throughput and power efficiency. In this work

heterogeneity is emulated by defining domains of cores of different operation modes

(low power, standard and high-performance) as depicted in Figure 4.2.

It can also be considered that in such architectures, the number of cores per mem-

ory controller will increase faster than the number of on-chip memory controllers.

This is a consequence of the available area and the off-chip pins that do not allow

the increase on the number of on-chip memory controllers. This effect becomes

more pronounced as the cumulative off-chip bandwidth requests of co-executing

applications saturate the off-chip bandwidth.

Examples of clustered many-core architectures are the Intel SCC [1] and Tilera

55

Pan
ay

iot
is

Petr
ide

s

[73] processors. For the purpose of this work the 48-core Intel SCC processor is

used as a case study. Intel SCC has dual-core tiles interconnected by a 2D-grid

network. A mesh interface unit (MIU) connects the tiles to a router of the network.

The addresses corresponding to this memory are mapped through a single memory

controller. Off-chip memory requests are served by a number of memory controllers

which are dedicated for each cluster (12 cores per memory controller).

4.3.2 Non-Uniform Memory Latency

The first factor studied on a clustered many-core architecture is how the distance

of a core to the memory controller can influence applications performance. For the

purpose of this work, it is considered that each memory controller is responsible for

a cluster of cores, as the configuration of the Intel SCC processor. As depicted in

Figure 4.1 the number of routers (R) that are involved in the route from a core to

the memory controller are considered as hops (H). The further a core is, the more

hops are involved to its route to the memory controller and therefore its distance

is higher. This distance affects the delay of off-chip memory requests and therefore

this factor becomes more serious as the number of cores per cluster increases. The

arrows depicted in Figure 4.1 show the route that memory requests take in order to

reach the memory controller that serves the corresponding core.

Figure 4.3 depicts applications behaviour as the distance of a core to the memory

controller increases. The first observation is that some applications are influenced

more from this distance than others. Applications affected the most are memory-

bound and those are: dc, bt, lu, sp, ua, sphinx and libquantum. Compute-bound

applications, such as ep and povray, do not show significant performance degradation

due to this factor.

The second observation is that, application overheads change in a linear way and

therefore it can be predicted for each application at each distance. In order to justify

these findings applications behaviour is classified in terms of distance using the IPC

metric at each execution point as presented in Figure 4.3 (trend line of model graph).

D(H) = a ×H,

a =
IPCx − IPCy

Hx −Hy

(4.1)

56

Pan
ay

iot
is

Petr
ide

s

0.0%

5.0%

10.0%

15.0%

20.0%

0 1 2 3 4 5

O
v
e
r
h
e
a
d

dc

dc dc-model

0.0%

5.0%

10.0%

15.0%

20.0%

0 1 2 3 4 5

O
v
e
r
h
e
a
d

bt

bt bt-model

0.0%

5.0%

10.0%

15.0%

20.0%

0 1 2 3 4 5

O
v
e
rh
e
a
d

ep

ep ep-model

0.0%

5.0%

10.0%

15.0%

20.0%

0 1 2 3 4 5

O
v
e
r
h
e
a
d

lu

lu lu-model

0.0%

5.0%

10.0%

15.0%

20.0%

0 1 2 3 4 5

O
v
e
rh
e
a
d

sp

sp sp-model

0.0%

5.0%

10.0%

15.0%

20.0%

0 1 2 3 4 5

O
v
e
r
h
e
a
d

ua

ua ua-model

0.0%

5.0%

10.0%

15.0%

20.0%

0 1 2 3 4 5

O
v
e
rh
e
a
d

sphinx

sphinx sphinx-model

0.0%

5.0%

10.0%

15.0%

20.0%

0 1 2 3 4 5

O
v
e
rh
e
a
d

libquantum

libquantum libquantum-model

0.0%

5.0%

10.0%

15.0%

20.0%

0 1 2 3 4 5

O
v
e
rh
e
a
d

povray

povray povray-model

Figure 4.3: Core to Memory Controller Distance Model Execution Performance Influence for SPEC

and NAS applications.

As it could be considered that in such architectures the number of cores per mem-

ory controller will increase faster than the number of on-chip memory controllers,

the same experiments have been executed on a simulated many-core architecture us-

ing the Sniper simulator [38]. More specifically, the distance of a core to the memory

controller is increased up to 10 in order to study its impact. More details regarding

the simulation environment used for this evaluation can be found in Section 4.5.

As depicted in Figure 4.4 the same observations can be extracted as with the

real results. More specifically, application overheads change in a linear way and the

impact of distance to memory-bound applications is becoming more dominant as

the distance of the core to the memory controller increases.

Based on these measurements the distance factor D(H) is defined using IPC

values at each core distance as described in Equation 4.1. To determine coefficient

a, IPCx and IPCy are measured at two different cores, of same core frequency, with

distance Hx and Hy to the memory controller. These measurements can classify an

application, based on coefficient a, if it is influenced by distance or not as presented

in Figure 4.3.

57

Pan
ay

iot
is

Petr
ide

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

P
e

rf
o

rm
a

n
ce

 O
v

e
rh

e
a

d
 [

%
]

Distance to MC [hops]

Core to Memory Controller Distance Execution (Core Frequency 1GHz)

sphinx povray libquantum mcf bwaves namd cactus calculix

Figure 4.4: Core to Memory Controller Distance Effect Simulated Execution Performance Influence

for SPEC applications.

4.3.3 Asymmetric Cores

The second factor studied on a clustered many-core architecture is cores of different

computational capabilities and more specifically, different cores frequencies and the

impact on the applications’ performance. Three different frequencies are selected

based on the Intel SCC specifications. More specifically, the default core frequency

configuration of 533MHz is selected as the baseline, the 266MHz, as the low-power

cores, and 800MHz, which is the maximum available core frequency on the system

as the high-performance cores.

Figure 4.5 shows the influence of cores’ frequency to applications performance.

Results are normalized to the execution on the default 533MHz core frequency and

at the same core to memory-controller distance. The first observation is, compute-

bound applications, ep and povray, are influenced the most from core frequency.

Memory-bound applications, dc, bt, lu, sp, ua, sphinx and libquantum, do not show

significant performance degradation from core frequency configuration.

F(f) = b × f ,

b =
IPCx − IPCz

fi − f j

(4.2)

Equation 4.2 presents the core frequency factor F(f) in terms of core frequency

f. In order to determine coefficient b IPCx and IPCy are measured at two different

cores with frequency fi and fj respectively having the same core to memory con-

troller distance. Having these measurements, the application can be classified if core

58

Pan
ay

iot
is

Petr
ide

s

-120.00%

-70.00%

-20.00%

30.00%

0 200 400 600 800 1000

Im
p
ro
v
e
m
e
n
t

dc

dc dc-model

-120.00%

-70.00%

-20.00%

30.00%

0 200 400 600 800 1000

Im
p

ro
v

e
m

e
n

t

bt

bt bt-model Linear (bt-model)

-120.00%

-70.00%

-20.00%

30.00%

0 200 400 600 800 1000

Im
p

ro
v

e
m

e
n

t

ep

ep ep-model Linear (ep-model)

-120.00%

-70.00%

-20.00%

30.00%

0 200 400 600 800 1000

Im
p
ro
v
e
m
e
n
t

lu

lu lu-model

-120.00%

-70.00%

-20.00%

30.00%

0 200 400 600 800 1000

Im
p
ro
v
e
m
e
n
t

sp

sp sp-model

-120.00%

-70.00%

-20.00%

30.00%

0 200 400 600 800 1000

Im
p
ro
v
e
m
e
n
t

ua

ua ua-model

-120.00%

-70.00%

-20.00%

30.00%

0 200 400 600 800 1000

Im
p
ro
v
e
m
e
n
t

sphinx

sphinx sphinx-model

-120.00%

-70.00%

-20.00%

30.00%

0 200 400 600 800 1000

Im
p
ro
v
e
m
e
n
t

libquantum

libquantum libquantum-model

-120.00%

-70.00%

-20.00%

30.00%

80.00%

0 200 400 600 800 1000

Im
p
ro
v
e
m
e
n
t

povray

povray povray-model

Figure 4.5: Non-Uniform Execution Influence for SPEC and NAS applications.

frequency influences its execution as depicted in Figure 4.5.

In order to capture this behaviour, applications execution is monitored collecting

their IPC metrics. Figure 4.5 depicts for each application its behaviour in terms of

execution time and the same time its behaviour in terms of IPC measured (model

graph). It can be observed that each applications behaviour can be described by

monitoring the IPC metric.

0%

5%

10%

15%

20%

25%

30%

35%

0 1 2 3 4 5 6 7 8 9 10

P
e

rf
o

rm
a

n
ce

 O
v

e
rh

e
a

d
 [

%
]

Distance to MC [hops]

Execution on 750MHz compared to 1GHz

sphinx povray libquantum mcf bwaves namd cactus calculix

Figure 4.6: Core Frequency and Location Effect for Simulated Execution of SPEC applications.

59

Pan
ay

iot
is

Petr
ide

s

7.96% 7.82%

55.22%

9.99%
3.76%

33.18%

8.85% 9.39% 9.38%
5.31% 4.56%

53.24%

-0.18% -0.10%

31.78%

-3.55% -1.48% 0.54%0.92%

-3.13%

-25.53%

-3.93%
-17.44%

-100.00%

-2.05%
-4.14% -3.02%

-7.71%

-6.75%

-26.53%

-17.92%

-22.26%

-104.67%

-16.54% -16.84% -9.92%

-120.00%

-100.00%

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

sp
h

in
x

li
b

q
u

a
n

tu
m

p
o

v
ra

y

d
c

b
t

e
p lu sp u
a

sp
h

in
x

li
b

q
u

a
n

tu
m

p
o

v
ra

y

d
c

b
t

e
p lu sp u
a

1 4

O
v

e
rh

e
a

d

Core Distance

Core Frequency Location Effect

800Mhz

266MHz

Figure 4.7: Core Frequency and Location Effect

4.3.4 Aggregate Off-chip Bandwidth

In order to study the pressure on the memory controller, due to the combined band-

width requirements of multiple applications, it is examined how the performance

is affected when applications are co-executed on all cores of a cluster. The worst

case scenario would be to execute only memory-bound applications in all cores of

a cluster. In future large-scale many-core processors the number of cores per clus-

ter will increase faster than the number of on-chip memory controllers making the

problem more pronounced. This is due to the fact that the available area and the

off-chip pins do not allow the increase in the number of on-chip memory controllers.

Moreover, even if it is considered that the number of memory controllers will scale

with the number of cores, it is still valid to assume that a memory-aware mechanism

will be needed in order to distribute the memory requirements across the different

controllers. Therefore, it is important to study the bandwidth utilization on future

large-scale many-core processors executing applications’ which are either memory-

or compute-bound. The thickness of arrows depicted in Figure 4.1 show the cumu-

lative memory bandwidth requirements as processes concurrently demand access

to off-chip memory. Figure 4.8 shows how the limited off-chip bandwidth affects the

execution time applications when all cores served by a memory controller are occu-

pied. As a baseline it is considered the execution of the corresponding application

60

Pan
ay

iot
is

Petr
ide

s

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

0 2 4 6 8 10 12 14

E
x
e

cu
ti

o
n

 O
v

e
rh

e
a

d

Number of concurrent executing applications

Cumulative Off-Chip Bandwidth Effect

dc vs baseline

bt vs baseline

ep vs baseline

lu vs baseline

sp vs baseline

ua vs baseline

sphinx

libquantum

povray

Figure 4.8: Cumulative Bandwidth Performance Influence for SPEC CPU2006 and NAS applications.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

4 6 8 12 16

E
x
e

cu
ti

o
n

 O
v

e
rh

e
a

d

Number of concurrent executing applications

Simulated Cumulative Off-Chip Bandwidth Effect

sphinx povray libquantum mcf bwaves namd cactus calculix

Figure 4.9: Simulated Cumulative Bandwidth Performance Influence for SPEC CPU2006.

alone in a cluster and on the closest core to the memory controller. Results show that

when all cores of a cluster are busy a performance overhead of memory-bound ap-

plications is observed whereas for compute-bound applications this effect is limited.

This influence increases gradually and reaches the maximum when all the cores of a

cluster concurrently execute applications resulting to a performance overhead of up

to 12%.

4.3.5 Understanding and Classifying Applications Behaviour

Table 4.1 presents the values calculated for both coefficient a and b. From the

measurements it is possible to classify each application either as memory or compute-

61

Pan
ay

iot
is

Petr
ide

s

bound by comparing the values of the two coefficient, if a > b then is classified as

memory-bound otherwise compute-bound, as depicted in Figure 4.10. It should be

mentioned that results are aligned with [41] where applications were classified either

as compute- or memory-bound based to their Misses Per Kilo Instructions (MPKI).

In Figure 4.7 it is demonstrated the impact of both cores’ frequency and dis-

tance to memory controller normalized to the default core frequency of 533MHz

with distance 1 (baseline execution). More specifically, it represents the overhead

of applications’ execution to the corresponding resources, i.e. the increase to the

execution time compared to the corresponding baseline execution. Results show

that cores with low frequency should be placed closer to the memory controller and

cores of high frequency should be placed on cores with higher distance in order

to minimize the effect of both frequency and distance to application performance.

More specifically, it can be observed that applications placed on a low frequency,

i.e. 266MHz, and high distance to the memory controller, i.e. 4 hops to the memory

controller, demonstrate large performance degradation. This effect becomes more

important on memory-bound demanding applications. Based on the above observa-

tions and results the selected architecture configuration is selected as the one shown

in Figure 4.2.

As presented earlier both core frequency and distance effect can be described by

linear functions, therefore applications behaviour can be predicted by measuring

their behaviour on cores where one of the effects factors remains constant and the

other one varies in order to isolate the effects. For example, in order to measure dis-

tance effect the behaviour of the application is measured on two different distances

ensuring cores’ frequency constant. Taking the two measurements applications be-

haviour on different distances can be described. With the same concept, by changing

cores’ frequency and ensuring constant core-to-memory controller distance, appli-

cations behaviour for different cores frequencies can be described. As presented

previously the IPC for each application is monitored varying only one factor. This

approach was selected since the architecture of the Intel SCC does not offer any

performance counters to monitor the extended L2 cache memory.

This proposal can predict applications behaviour on different resources if the

previously mentioned conditions are satisfied. More specifically, if pairs of resources

with one effect variable and the other one constant exist on the system, it is possible

to determine the effect of each factor on applications execution. In addition, it

62

Pan
ay

iot
is

Petr
ide

s

Table 4.1: Applications classification memory or compute-bound based on coefficients a and b.

Application Factor a Factor b Classification

dc 0.030 0.003 Memory bound

bt 0.014 0.004 Memory bound

lu 0.047 0.002 Memory bound

sp 0.049 0.003 Memory bound

ua 0.044 0.002 Memory bound

sphinx 0.032 0.001 Memory bound

libquantum 0.034 0.002 Memory bound

mcf 0.040 0.024 Memory bound

bwaves 0.110 0.068 Memory bound

ep 0.013 0.025 Compute bound

povray 0.004 0.014 Compute bound

namd 0.030 0.114 Compute bound

cactus 0.040 0.074 Compute bound

calculix 0.050 0.144 Compute bound

63

Pan
ay

iot
is

Petr
ide

s

O
v
e

rh
e
a

d

b2

b1

a2

a1
a QUEUE

b QUEUE

a1

b2

Figure 4.10: Applications Classification comparing coefficients a and b.

must be noted that the classification phase, determining coefficients a and b, can be

completed in two steps. As depicted in Figure 4.12, there is a need of two distinct

couples of resources where the measurements and conditions can take place.

4.4 Scheduling Policy

In this Section, the proposed scheduling policy and implementation details of the

selected case study is presented.

4.4.1 Classification Phase

As described earlier, in order to quantify core to memory controller distance and

cores’ frequency effect, it is needed to capture their behaviour to the different re-

sources. To achieve this, a classification phase is needed during which coefficients a

and b, as presented in 4.3.2 and 4.3.3, are determined for each application.

This work proposes that this phase is performed at the beginning of execution

of each application. More specifically, when an application starts its execution on

the system it is placed randomly at any available resource. The following metrics

are gathered: its IPC, cores’ frequency and distance to the memory controller for

a specific time slice. On the next time slice this application is moved to another

core with the same frequency but different core distance, gathering the same metrics

as depicted in Step 1 of Figure 4.12. From the gathered measurements coefficient

a of Equation 4.1 can be evaluated and therefore cores’ distance effect. At the

next time slice applications are moved to another core with different frequency

but to an already examined distance. The same metrics are gathered: IPC, cores’

64

Pan
ay

iot
is

Petr
ide

s

frequency and distance metrics as depicted in Step 2 of Figure 4.12. Having these

measurements coefficient b of Equation 4.2 can be evaluated and therefore determine

cores’ frequency effect. It must be mentioned that all the above exchanges are

performed within the same cluster of cores in order to avoid any interference of the

cumulative off-chip bandwidth to the measurements.

If discrete couples of cores exist, with the above mentioned characteristics, on the

system, exchanges of applications to resources can occur as a single migration at each

step. Moreover, due to the fact that the classification is performed on-line where other

applications are co-executing on the system, migrations of applications that were

perfectly assigned may occur. The trade-off of this occurrence is that first knowledge

of the application behaviour is earned and secondly that a miss-placed application

will be fixed during scheduling phase. It is important to mention that there is no

knowledge of applications’ behaviour before execution but instead applications are

classified during runtime. The classification process continues during the whole

execution of applications, since they might enter a different phase of execution with

different requirements. In addition, application migration from one core to another

has limited overhead impact on their execution and based on the experimental results

is less than 1% on the total execution time of the application.

Having coefficients a and b for each application it can be evaluated for each factor

how they influence applications’ performance. Two discrete queues are constructed,

one having applications where a > b and another with the rest of the applications.

Consequently there are applications that distance affects their execution and applica-

tions which are influenced by cores’ frequency. The queues are ordered from largest

to smallest value of a and b respectively.

4.4.2 Applications Scheduling

Having the queues created during the classification phase (Figure 4.10), scheduling

to system cores takes place. An on-line hierarchical heuristic policy is used of

assigning applications to cores. The first criteria is to satisfy applications belonging

in a queue by assigning them to cores with the nearest distance. The second criteria is

to satisfy applications in the b queue, by assigning them to cores with high frequency.

It should be noted that the two queues are exclusive, therefore an application can be

included only to one of them.

65

Pan
ay

iot
is

Petr
ide

s

.

H1

H2

H4

H3

Cluster 1 Cluster 2 Cluster 3 Cluster 4

a1a5a3a7b2b4b6b8

H1

H2

H4

H3

Cluster 1 Cluster 2 Cluster 3 Cluster 4

a1a5a3a7b2b4b6b8

H1

H2

H4

H3

Cluster 1 Cluster 2 Cluster 3 Cluster 4

a1a5a3a7b2b4b6b8

H1

H2

H4

H3

Cluster 1 Cluster 2 Cluster 3 Cluster 4

a1a5a3a7b2b4b6b8

Step 1

Step 2 Step n

a1 a5 a3 a7

a1 a5 a3 a7 a1 a5 a3 a7

b2 b4 b6 b8

a10 a17 a13 a15

a21

a10 a17 a13 a15

a43 a27 a23a25 a39 a35 a31 a33 a20 a11 a36a34 a48 a9 a19

b12 b14 b16 b47

b46 b18 b22 b24 b45 b26 b32b44 b28 b38 b30 b29 b42 b41b37 b40

Figure 4.11: Applications to Resources Assignment.

Figure 4.11 shows the steps of the scheduler. First applications that belong to

a queue are assigned to the nearest cores to the memory controller of the system.

More specifically, a round-robin technique assigns applications to different clusters

in order, first to exploit all minimum distances and second to optimize utilization

of off-chip bandwidth between clusters (Figure 4.11, Step 2). After completing as-

signing applications of a queue, applications included in the b queue are assigned

(Figure 4.11, Step n). With the same concept using a round-robin technique, ap-

plications are assigned to each cluster core whose frequency satisfies applications’

behaviour. It should be noted that during this placement low frequency cores are

selected only if no other resources of higher frequency are available. Application

migration from one core of the system to another adds a limited overhead to their

execution, as described earlier is measured to be less than 1% to the total execution

time of each application.

In the case where an application is placed to a resource which does not fulfill

its criteria, due to the fact that there is no such resource available, it is moved to a

better matching resource when it becomes available since it remains at the respective

queue.

During the execution of the whole application, it may enter different phases with

different requirements. More specifically, for a phase of execution an application

becomes more sensitive to distance rather than cores’ frequency and vice-versa. In

order to capture this behaviour monitoring applications execution continues and

compare its measurements. If changes to the metrics are observed then the classi-

66

Pan
ay

iot
is

Petr
ide

s

Corex Corey Corex Corez

Ha Hb Ha Ha

fi fi fi fj

APP APP

Step 1: Determining D(H) Step 2: Determining F(f)

Figure 4.12: Classification Steps for Distance and Frequency.

Figure 4.13: Proposed Scheduler Execution Time Improvement compared to a Random Static Task

Assignment Policy.

fication phase is performed for the application, within the cluster that is assigned,

in order to redetermine the factors that application becomes sensitive. In the case

where an application changes its behaviour a and b are reconstructed by triggering

the classification process as described earlier.

4.4.3 Implementation Details

For the purpose of this work real applications are selected from the SPEC CPU2006

benchmark suite [74]. The classification methodology is validated with [75] and

[41]. Results show that the proposed classification is aligned with these studies and

the classification methodology captures applications requirements.

As it is assumed no previous knowledge about the characteristics of the ap-

plications, in order to determine dynamically at runtime the category where each

application belongs, their execution is monitored. IPC metrics are collected (using

program counters) of the applications and classify their behaviour as, compute- or

memory-bound. Information regarding cores status (if it is idle or busy) is collected

during runtime. Cores that have the same frequency belong to the same group,

which is called from now on frequency domain, and as described earlier in this

67

Pan
ay

iot
is

Petr
ide

s

work, three different frequency domains are considered.

In order to capture applications behaviour during their execution a mechanism is

needed that can capture specific metrics such as the memory usage per application at

each core, each cores’ frequency and state, i.e. idle or busy. Applications’ executing

at each core are characterized either as memory- or compute-bound processes ac-

cording to the metrics gathered. Memory-bound processes are stored in the a queue

and compute-bound processes are stored in the b queue. These queues are updated

and reconstructed if a change to applications behaviour is identified. Finally, these

queues are stored on the host PC where the scheduling policy is executed.

The queues created are used by the scheduler which is responsible for mapping

applications to system cores that will provide best match. The scheduling policy aims

to satisfy the requirements of applications executing on the system considering not

only the characteristics of processes but also the system characteristics as described

earlier.

Due to the targeted architecture, where the experiments and scheduling policy

were tested, specific details had to be addressed. More specifically, the Intel SCC

experimental processor is a clustered many-core architecture and therefore process

migration between cores is not as easy as in shared memory architectures. In order to

address this issue a well known technique used on clustered processor architectures

is adopted. This technique is known as process check-pointing and its purpose is

to save the state of a process executing and resuming its execution from that same

point. To achieve this, the cryopid [76] check-pointing library was ported to the

Intel SCC research processor. Cryopid can be linked to existing applications and

provide independent check-pointing functionality without the need of any kernel

modifications. As the library is part of the application’s process, it can access all

resources in the same way the original application does. Moreover, it can take

checkpoints at any given time, being independent of time-frame constraints imposed

by the application. This technique is effective and of low overhead and therefore

can be adopted in order to achieve this work target. More specifically, the overhead

of check-pointing and restarting the application from one core to another is up to

1% to the total execution time of the corresponding application executing on a core

clocked on 533MHz and close to the memory controller.

Tasks migration from one core to another is triggered by the Task Assignment

Policy, which determines the cores that will participate. It is considered that a

68

Pan
ay

iot
is

Petr
ide

s

future large-scale many-core architecture will have the characteristics of a clustered

many-core architecture and therefore it should be performed in two steps. First, it

checkpoints and freezes the execution of processes currently executing on the cores

by sending a signal to the corresponding core. Secondly, it triggers the resume of

processes execution on the destination cores as determined by the scheduler.

4.5 Experimental Setup

Table 4.2: SPEC CPU2006 Applications Scenarios and Execution Times Variance.

Execution Time Execution

Scenario Applications RND (sec) Time Scheduler

Worst Best Average (sec)

1 povray 6885.6 4431.1 6266.7 4581.5

sphinx 45986.2 35015.8 39584.7 38068.2

2 povray 6885.65 4432.1 6265.8 4640.8

libquantum 55007.1 45370.4 48473.6 41327.8

povray 7486.9 6436.1 6961.5 4621.4

3 sphinx 39407.5 38129.2 38768.4 38370.5

libquantum 50301.9 44595.2 47448.6 47448.6

4 sphinx 41919.6 33501.6 38710.5 38479.3

libquantum 55167.1 47375.9 49645.2 45502.8

5 povray 10936 3126.2 6640.3 5460.6

For the experiments of this work applications from the SPEC CPU2006 [74] and

NAS [77] benchmark suite are used. The applications were selected according to

their characteristics, as mentioned in Section 4.3, using their reference input data

sets. Applications of memory- and compute-bound characteristics are selected. For

this work the Intel SCC experimental processor, RockyLake version, is used as real

clustered many-core architecture. The system main memory was configured with

32GB in total. By changing the voltage/frequency domains of the Intel SCC exper-

imental processor [24] three different domains are created, each composed of 16

cores. The maximum available frequency configuration of a core on the Intel SCC

69

Pan
ay

iot
is

Petr
ide

s

research processor is 800MHz and the default is 533MHz. These frequencies are

selected as the high-performance frequencies. In addition, 266MHz core frequency

is selected as the low-power core frequency. The 48 cores are split into three voltage

frequency domains (266MHz, 533MHz, and 800MHz) of 12 cores, as depicted in

Figure 4.2, in order to emulate the heterogeneity of the system. The mesh intercon-

nection network, the DDR3 memory and the Memory Controllers were all clocked

at the default frequency of 800MHz. The Operating System used for the Intel SCC

cores is the default Linux kernel provided by the RCCE SCC Kit 1.4.0. The applica-

tion checkpointing and resume is performed using the Cryopid [76] checkpointing

library which was ported to the Intel SCC experimental processor. The power con-

sumption is measured using the same technique used by the SCC GUI performance

meter by reading the FPGA emulated registers that hold the appropriate values. The

random static assignment is selected as the baseline for comparing the results of the

proposed scheduler.

Table 4.3: Clustered Many-Core Architectures Environments.

Configuration Intel SCC Simulation

Off-chip Bandwidth per Memory Controller 1.6 GB/sec 32 GB/sec

Cores per Memory Controller 12 32

Core Architecture IA-32 x86 (P54C) Nehalem x86

800 MHz 1 GHz

Cores Frequency 533 MHz 750 MHz

266 MHz

L1 Instruction cache size 16KB 32KB

L1 Data cache size 16KB 32KB

L2 cache size 256KB 512KB

4.6 Experimental Results on the Intel SCC

In this work analysis the proposed scheduler is evaluated according to two differ-

ent metrics: (i) performance and (ii) energy-delay product (EDP). The presented

analysis compares the results gathered from the proposed scheduler with a ran-

70

Pan
ay

iot
is

Petr
ide

s

dom static assignment policy (RND). The scenarios selected for the evaluation of

the proposed scheduler are depicted in Table 4.2. Random static assignment was

selected as the baseline according to which processes are statically executed on the

preassigned core. The results presented are the average obtained from the execution

of 5 different random assignments for each scenario. According to the number of

applications and the possible scenarios, only the most representative ones have been

selected. For each scenario it is assumed that the applications are initially randomly

assigned to the system cores and all cores of the system are occupied [75]. The

proposed scheduling policy was evaluated on how it performs in the cases where:

(i) equal number of compute- and memory-bound are executing (Scenario 1 and 2);

(ii) different memory- and compute-bound applications are co-executing (Scenario

3); (iii) different memory-bound applications executing (Scenario 4); and (iv) only

compute-bound applications are executing (Scenario 5).

The first evaluation of the proposed scheduler shows its impact on the exe-

cution time of the selected applications co-executing on the target architecture. Ta-

ble 4.2 depicts the execution time for the random static assignment and the proposed

scheduling policy. It is important to notice that random static assignment suffers

from variance. This is a result of two factors: (i) applications can be assigned to a

core that does not satisfy their requirements and (ii) the core to memory controller

distance and the off-chip bandwidth for memory-bound applications is not consid-

ered. The proposed scheduling policy results are below the average of the random

static assignment for almost all scenarios. In addition, they are considerably lower

than the worst random execution cases. In Figure 4.13 it is presented the average

improvement of execution time for the proposed scheduling policy over the ran-

dom static assignment for the different scenarios. From the results a significant

performance improvement in both memory- and compute-bound applications can

be observed. More specifically, povray shows a performance improvement of up to

36%, in Scenario 1. In addition, memory-bound applications achieve a performance

improvement up to 15%, in Scenario 2. Finally, it is important to mention that an

overall performance improvement of all applications in the different scenarios is

observed. It is important to notice that the results presented in Figure 4.13 include

the cost of migration and thus it can be concluded that there is low overhead to the

execution times of the applications due to migration.

Lets consider the scenario in which equal number of memory and compute-

71

Pan
ay

iot
is

Petr
ide

s

Table 4.4: Moving memory-bound applications closer to the memory controller, Scenario 1.

Initial Core Application Destination Improvement

(Distance) (Distance)

Core 24 (1) sphinx - 4.39%

Core 25 (1) sphinx - 3.71%

Core 26 (2) sphinx Core 00 (1) 2.27%

Core 27 (2) sphinx Core 01 (1) 2.26%

Core 36 (2) sphinx - 4.23%

Core 37 (2) sphinx - 3.82%

Core 38 (3) sphinx Core 12 (2) 3.59%

Core 39 (3) sphinx Core 13 (2) 2.59%

bound applications are co-executing in the same voltage/frequency domain (sphinx

and povray in the 533MHz domain), Scenario 1. In this scenario memory controllers

are initially responsible for only one type of application. In this case, the intra-

domain application migration phase takes place exchanging an equal number of

compute- and memory-bound applications from one controller to another bringing

memory-bound applications closer to the memory controller. Table 4.4 depicts the

results of exchanges between applications on cores closer to the memory controller on

Scenario 1. Both initial and destination cores belong to the same voltage/frequency

domain but they are connected on different memory controllers. One important

observation of these results is that in this case memory-bound applications can

benefit by utilizing the memory bandwidth and bringing them closer to the memory

controller. It is important to notice that even though applications in cores 26, 27, 38

and 39 migrate from one core to another, overall they show improvement in their

performance. From the experimental results it is shown that the proposed scheduling

policy improves applications performance by satisfying their requirements during

their execution.

Figure 4.14 presents the energy-delay product (EDP) of the proposed scheduler

compared to RND. As energy-delay product is considered to be the product of energy

consumption and the total time of execution of the application. For example, for

the proposed scheduling policy EDP is calculated as the sum of the products of the

72

Pan
ay

iot
is

Petr
ide

s

Figure 4.14: Energy Delay Product Comparison between a Random Static Assignment Policy and

the Proposed Dynamic Scheduling Policy.

energy consumption at each voltage/frequency domain, in which the application

is executed, multiplied by the time that the application executes at each domain.

The results are normalized to the EDP result of each application using the static

random assignment on the 266MHz domain. Each bar shows the contribution of

each domain through the whole execution of each application. The first conclusion

is that the proposed scheduler benefits the compute-bound applications in terms of

both performance and power consumption on an average of 15% for all executed

scenarios. This is because compute-bound applications have a priority over memory-

bound applications for the execution on domains with higher voltage/frequency and

therefore their execution time is reduced. Studying these results more carefully it

can be observed that memory-bound applications show an increase on the power

consumption of the system. This behaviour arises from the fact that memory-

bound applications are assigned to domains of lower voltage/frequency and are

only assigned to domain of higher voltage/frequency whenever a core of such a

domain is available. Even though someone could expect that this would have a

significant impact on their performance, results show that this performance benefit

comes at a power cost. Finally, in the case of Scenario 3 it is possible to observe

that after the completion of the compute-bound application, the memory-bound

applications compete between themselves for the high voltage/frequency domain

cores. This results in the high overhead in the efficiency for 42% as observed. From

the results presented it is important to observe that the proposed scheduling policy

73

Pan
ay

iot
is

Petr
ide

s

is a greedy policy and thus benefits compute-bound applications in terms of both

performance and power consumption. As for the memory-bound applications it is

possible to observe that while their performance is improved, in some cases there is

a penalty regarding their power consumption.

4.7 Simulating Clustered Many-core Architectures

In order to study the effectiveness of the proposed scheduling policy on future large

scale many-core architectures, it is necessary to use a simulator to test different

design points from the Intel SCC. More specifically, the number of cores per cluster

is scaled to 32. In addition, each cluster consists of more sophisticated cores, i.e.

Nehalem cores, and each memory controller dedicated to a cluster has a maximum

off-chip memory bandwidth of 32GB/sec as depicted in Table 4.3. Within the cluster

equal number of cores of the selected core frequencies, 750MHz and 1GHz, co-exist.

Finally, equal number of applications are co-executing within the cluster for each

scenario.

The described configuration of the simulated clustered many-core architecture

was selected for the following reasons: (i) to investigate if the proposed scheduling

policy is effective as the number of cores within the cluster increases; (ii) to further

evaluate the proposed scheduling policy as the diversity of cores within a cluster

changes, forming other possible configurations of clustered many-core architectures.

4.7.1 Scaling the Number of Cores within a Cluster

As described previously, the effectiveness of the proposed scheduling policy is ex-

amined when the number of cores within a cluster scales to 32. First the potential

performance of each application executing in each scenario is evaluated. More

specifically, for each scenario it is measured the worst and best execution of each

application while co-executing within the system. Figure 4.15 depicts applications

execution between the best and the worst placement of an application to the cluster

cores. For example, in Scenario 1 if povray has a potential performance benefit of

about 17% when it is placed to a best matching resource compared to a non matching

resource. From the presented results, it can be observed that it is important for appli-

cations to be placed to a best matching resource since satisfying their requirements

74

Pan
ay

iot
is

Petr
ide

s

Table 4.5: Simulated SPEC CPU2006 Applications Scenarios.

Scenario Applications Scenario Applications

1 povray 6 bwaves

sphinx libquantum

2 povray 7 cactus

libquantum bwaves

povray cactus

3 sphinx 8 sphinx

libquantum

4 libquantum 9 cactus

sphinx libquantum

5 calculix 10 cactus

bwaves namd

in terms of resources can result in overall performance improvement. It must be

noted that in some cases a limited potential performance degradation is observed.

This is a result of having applications of the same requirements in terms of resources

co-executing within the system, therefore competing for the same resources. It is

considered that the best potential performance in such a case to be the one with

limited impact to the less demanding application and maximizing the performance

of the most demanding application. For example, in Scenario 4 both applications

sphinx and libquantum are memory-bound but libquantum is more demanding than

sphinx (factor a > factor b).

To evaluate the proposed scheduling policy the same scenarios are executed

for the simulated clustered many-core architecture and the proposed scheduling

policy is enabled. In Figure 4.16 the results of each application for each scenario are

depicted. More specifically, results show how close to its potential execution each

application is (as defined previously in Figure 4.15) when the proposed scheduling

policy is executed. From these results it can be observed that almost for all scenarios

the proposed scheduling policy manages to achieve the potential performance of

each application. Moreover, it is important to note that the proposed scheduling

policy can mitigate well the increasing number of cores within a cluster and maintain

75

Pan
ay

iot
is

Petr
ide

s

17%

4%

18% 17%

31%

5% 6%

-1%

9%

33%

-1%

7%

-1%

20%

-3%

16%

-2%

19%

4%

21%

49%

-10%

0%

10%

20%

30%

40%

50%

60%

p
o

v
ra

y

sp
h

in
x

p
o

v
ra

y

li
b

q
u

a
n

tu
m

p
o

v
ra

y

sp
h

in
x

li
b

q
u

a
n

tu
m

sp
h

in
x

li
b

q
u

a
n

tu
m

ca
lc

u
li

x

b
w

a
v

e
s

b
w

a
v

e
s

li
b

q
u

a
n

tu
m

ca
ct

u
s

b
w

a
v

e
s

ca
ct

u
s

sp
h

in
x

ca
ct

u
s

li
b

q
u

a
n

tu
m

ca
ct

u
s

n
a

m
d

Scenario1 Scenario2 Scenario3 Scenario4 Scenario5 Scenario6 Scenario7 Scenario8 Scenario9 Scenario10

N
o

rm
a

li
ze

d
 R

a
n

g
e

 o
f

W
o

rs
t

to
 B

e
st

 I
P

C

Simulated Scenarios Potential Performance

Figure 4.15: Simulated Scenarios Potential Performance.

its effectiveness to applications performance.

Furthermore, the effectiveness of combining both core frequency and core dis-

tance factor is studied. In Figure 4.17 the achieved performance compared to the

potential for each scenario application is presented. More specifically, the proposed

scheduling policy is executed by enabling only one factor (single factor), either core

distance (Distance) or core frequency (Frequency). The results depicted in Figure 4.17

show that considering both factors to the scheduler decisions can result on higher

overall applications performance. Moreover, it is important to note that the proposed

scheduling policy does not show high variances through the different scenarios com-

pared to a single factor scheduling policy. Nevertheless, the proposed scheduling

policy shows a consistency through the different scenarios achieving high potential

performance of executed applications.

4.7.2 Changing Cores Diversity within a Cluster

Additionally to the previous experiments, the proposed scheduling policy behaviour

as the diversity of cores within a cluster changes in terms of number of cores is

studied. More specifically, its behaviour is studied when the ratio of low end cores

(clocked at 750MHz) are occupying the 75% of the total number of cores of the cluster.

In Figure 4.18 is depicted both single factor scheduling and the proposed scheduling

policy results for selected scenarios. Results show that the effectiveness of the

proposed scheduling policy remains at high levels and at the same time outperforms

76

Pan
ay

iot
is

Petr
ide

s

100% 100%
97% 97%

100% 99% 102% 102%

93% 95%
100% 100% 101%

83%

103%
99% 100%

93%
98%

95%

118%

0%

20%

40%

60%

80%

100%

120%

140%

p
o

v
ra

y

sp
h

in
x

p
o

v
ra

y

li
b

q
u

a
n

tu
m

p
o

v
ra

y

sp
h

in
x

li
b

q
u

a
n

tu
m

sp
h

in
x

li
b

q
u

a
n

tu
m

ca
lc

u
li

x

b
w

a
v

e
s

b
w

a
v

e
s

li
b

q
u

a
n

tu
m

ca
ct

u
s

b
w

a
v

e
s

ca
ct

u
s

sp
h

in
x

ca
ct

u
s

li
b

q
u

a
n

tu
m

ca
ct

u
s

n
a

m
d

Scenario1 Scenario2 Scenario3 Scenario4 Scenario5 Scenario6 Scenario7 Scenario8 Scenario9 Scenario10

S
ch

e
d

u
le

r
IP

C
 n

o
rm

a
li

ze
d

 t
o

 B
e

st
 I

P
C

Scheduler Performance

Figure 4.16: Simulated Scheduler Scenarios Achieved Performance.

0%

20%

40%

60%

80%

100%

120%

140%

p
o

v
ra

y

sp
h

in
x

p
o

v
ra

y

li
b

q
u

a
n

tu
m

p
o

v
ra

y

sp
h

in
x

li
b

q
u

a
n

tu
m

sp
h

in
x

li
b

q
u

a
n

tu
m

ca
lc

u
li

x

b
w

a
v

e
s

b
w

a
v

e
s

li
b

q
u

a
n

tu
m

ca
ct

u
s

b
w

a
v

e
s

ca
ct

u
s

sp
h

in
x

ca
ct

u
s

li
b

q
u

a
n

tu
m

ca
ct

u
s

n
a

m
d

Scenario1 Scenario2 Scenario3 Scenario4 Scenario5 Scenario6 Scenario7 Scenario8 Scenario9 Scenario10

S
ch

e
d

u
le

r
IP

C
 n

o
rm

a
li

ze
d

 t
o

 B
e

st
 I

P
C

Different Scheduling Policies Results

Scheduler Distance Frequency

Figure 4.17: Different Policies Performance.

77

Pan
ay

iot
is

Petr
ide

s

0%

20%

40%

60%

80%

100%

120%

povray sphinx povray libquantum povray sphinx libquantum sphinx libquantum

Scenario1 Scenario2 Scenario3 Scenario4

S
ch

e
d

u
le

r
IP

C
 n

o
rm

a
li

ze
d

 t
o

 B
e

st
 I

P
C

Different Scheduling Policies Results

Scheduler Distance Frequency

Figure 4.18: Different Policies Performance.

the single factor scheduling. Moreover, the proposed scheduling policy maintains

a stable performance through the different scenarios compared to the single factor

scheduling which shows a high variance.

4.8 Discussion

Future many-core architectures will come with many challenges in order to exploit

their potential performance. This work identified specific challenges of such architec-

tures. More specifically, the challenges identified and which influence applications

performance are: (i) the core to memory controller distance effect, (ii) cores diversity

in terms of cores’ frequency and (iii) the off-chip memory controller contention. The

proposed solution of addressing these challenges is a portable online NUMA-aware

heterogeneous scheduling policy which tries to satisfy applications characteristics

and demands according to the available resources. Moreover, the factors used in the

proposed scheduling policy can be used either combined or stand alone (single fac-

tor scheduling) in order to be used according to the target system characteristics. For

example, if a system is identified that only cores’ frequency is influencing application

performance then it could use the single factor scheduling to satisfy applications de-

mands to the available resources. Finally, the scheduling policy is implemented in a

modular way using the different factors for identifying applications characteristics.

Therefore, other factors may be added to capture other characteristics or behaviour

78

Pan
ay

iot
is

Petr
ide

s

of executed applications within a system and thus extend its applicability to other

architectures as well.

The portability of the proposed online NUMA-aware heterogeneous scheduling

policy it is shown by porting it to a simulator to study other many-core architectures.

The experimental results show that the befits are not limited to the Intel SCC pro-

cessor, but it could mitigate and perform as designed to other architectures as well.

Moreover, it can be considered that the proposed solution can be ported to other

existing many-core architectures, such the Intel Xeon Phi multi-core [78], which can

be seen as the commercial successor of the Intel SCC processor [79]. Therefore, the

proposed scheduling policy could also be ported to the Intel Xeon Phi multi-core

addressing the same challenges and exhibit the performance potentials as exploited

for the Intel SCC processor.

Furthermore, as described earlier, a system may have resources that may affect

applications execution by a single factor, i.e. cores’ characteristics. An example of

an architecture that includes cores of different characteristics is the big.LITTLE by

ARM [80]. In this case, the proposed scheduling policy could be used with the single

factor scheduling implementation and considering only the cores’ capabilities and

characteristics for satisfying applications demands.

From the above presented examples, it is depicted that the proposed scheduling

policy it is not limited to a specific architecture. On the contrary, it can be ported

and maintain its applicability to existing and widely used architectures of different

characteristics.

4.9 Summary

In this chapter a dynamic scheduling policy is proposed that tries to address the fac-

tors that affect the performance of applications executing on future heterogeneous

NUMA many-core processors. This work is implemented both on a representative

many-core architecture, the 48-core Intel SCC processor, and on an alternative sim-

ulated many-core architectures. This work has shown via experimental results that

these factors are: (i) non-uniform memory latency, (ii) the different characteristics

of cores in such architectures and (iii) the limited off-chip bandwidth offered by the

memory controller to the cores. The experimental results for the proposed scheduler

show that satisfying applications requirements during their execution can improve

79

Pan
ay

iot
is

Petr
ide

s

significantly their performance. In particular, compute-bound applications can im-

prove their execution time up to 36% and memory-bound applications up to 15%.

Moreover, experimental results show that the energy efficiency of the system is im-

proved, by approximately 40%, and the same time achieve a very good performance,

by approximately 18%, for compute-bound applications. Given the priority of the

proposed policy, memory-bound applications show smaller improvements in both

performance and power consumption. The results are very encouraging for the use

of such feature-aware assignment policies for future many-core processors.

80

Pan
ay

iot
is

Petr
ide

s

Chapter 5
Modular Virtualization Layer

In the recent years there has been a shift in processor architecture towards chips

with multiple cores, thus avoiding the power and complexity walls. The increasing

number of cores will lead in the future to three major challenges: (1) core memory

hierarchies configuration, (2) management of such complex hardware, and (3) pro-

grammability and/or portability for such systems. In order to achieve a better match

between the hardware and the demands of different applications and their phases,

future processors will have to offer cores with different specifications which could

even change dynamically at run-time. For addressing these issues it is possible to

envision that for future processors the hardware will be packaged along with a vir-

tualization layer that hides the hardware complexity and at the same time monitors

the application behavior as to transparently improve its performance at run-time.

The virtualization layer must be built in a modular way including a core component

and providing to the Operating System (OS) and programmer a standard interface

to utilize the hardware.

5.1 Motivation

Multi-core processors have been introduced as a solution to continue the perfor-

mance increase rate and at the same time keeping the design within the required

power budget. Increasing the number of devices on a chip not only will offer the

benefit of increasing the potential for parallelism but also it will allow manufac-

turers to explore new designs such as including in the same chip cores of different

characteristics. As different applications, and even different phases of the same

application, have different demands, a processor with a diversity of cores would

81

Pan
ay

iot
is

Petr
ide

s

be able to achieve a better application-to-hardware match [81]. Consequently, this

results in a better power-performance efficiency.

Clearly, this increasing of the number of cores on a chip along with the fact

that diverse types of cores will be available, requires a higher management effort.

Currently it is already possible to observe this issue as it is difficult to efficiently

port a certain application for different available multi-core architectures [82]. It is

therefore only natural to expect that the effort involved in tuning applications will

increase dramatically for larger scale multi-core chips that include cores of different

characteristics, which in some cases could even change their configuration dynam-

ically at run-time. This work proposes that future multi-core architectures contain

processing cores and memory hierarchies that are able to change their configurations

at run-time. These can be called Morphable multi-cores.

This effort is currently exported up to the level of the programmer who has in

many cases to use different languages and libraries in order to exploit the benefits

of different architectures [83, 84]. Some effort is currently underway in expressing

the parallelism using abstractions as to be able to generate the code automatically

for different platforms like Intel Parallel Studio [85], Rapidmind [17], Intel’s Ct [86],

and OpenCL [87]. Nevertheless, in most cases the use of general constructs results

in significant performance overheads [11] as it is hard to efficiently map programs

to the different architectures.

As technology advances and architectures change, tuning the same applications

over and over for the new architectures becomes an overwhelming task. Also, by

using the same core designs, manufacturers are able to produce many different pro-

cessors, depending on the number of available cores and their configuration. The

objective of this work is a virtualization layer or hypervisor which will hide the com-

plexity and diversity of the hardware as depicted in Figure 5.1. This virtualization

layer operates as the manager of the underlying Morphable multi-core, releasing

the programmer from this demanding task, and also hiding some complexity of

the system from the OS. In other words, by offering this virtualization layer along

with the hardware it is possible to offer a standard set of core services to the upper

layers, such as thread scheduling, memory prefetching, and hardware reconfigu-

ration. For example a regular OS could use the scheduling services provided by

the virtualization layer to do the mapping of the tasks among the available cores.

This mapping could be as simple as just randomly distributing the threads among

82

Pan
ay

iot
is

Petr
ide

s

the different cores or as complex as making architecture-aware decisions that, based

on online monitoring information of the application behavior, are able to select the

best matching cores available. The mentioned services are supported by a group of

mechanisms transparent to the user/OS. Examples of such mechanisms are: resource

detection, thread monitoring, fault-tolerance, among others.
Ph

ys
ic

al
 L

ay
er

H
yp

er
vi

so
r

us
er

/O
S

H
ardw

are
Softw

are

...

Services

Mechanisms

Core1 Core2 ... CoreN

Figure 5.1: System layers.

5.2 Multi-core Architectures

5.2.1 Static Multi-core Configurations

As explained previously, the evolution of multi-core processors in the last few years

allowed manufacturers to exploit new designs with different organizations. The or-

ganizations of modern multi-core architectures can be mainly classified as shown in

Figure 5.2: symmetric homogeneous multi-cores, asymmetric homogeneous multi-

cores and heterogeneous multi-cores.

In symmetric multi-core architectures, all the cores share the same characteris-

tics (e.g. Instruction Set Architecture (ISA), hardware design). This architecture

type is used in most modern architectures, such as the Intel and AMD CPUs, and

latest NVIDIA GPUs, mostly because of how easy it is to design and use them.

The increasing power consumption, the limited off-chip bandwidth [88], and in-

83

Pan
ay

iot
is

Petr
ide

s

CPU X

L2 Cache

CPU Y CPU Y

GPU

CPU

L2 Cache

CPU CPU

CPU CPU CPU

CPU

L2 Cache

CPU CPU

CPU
L1 L1 L1

L1 L1 L1

L1 L1 L1

L1 L1

L1 L1

Heterogeneous
Symmetric Asymmetric

Homogeneous

Figure 5.2: Classification of Static Architectures

trinsic technological issues (e.g., increase in permanent faults due to the technology

down-scaling [89]), lead to different architectural configurations, such as the Ne-

halem [90] or the new Intel SCC architecture [4] which have groups of processing

cores served by different memory controllers as an effort to increase the memory

bandwidth per core and overcome the Bandwidth Wall limitation [91]. Other non-

symmetric configurations combine cores with distinct capabilities to achieve a better

application-to-hardware match, and consequently improving the performance-to-

power ratio.

Asymmetric multi-cores are more attractive than heterogeneous because they do

not require multiple binaries or dynamic binary translation, and can still provide

enough flexibility to improve the application-to-hardware match. An example of an

asymmetric system is the Intel SCC where the number of cores associated to each

memory controller can vary, thus having groups of cores with different memory

bandwidth capabilities. Examples of heterogeneous architectures include the IBM

Cell/BE [16], the AMD fusion [92], and the GPUs when considered along with the

host processor.

Without compromising the hypervisors’ generality, this work is focused on asym-

metric architectures and their main characteristics to design a Morphable multi-core

that provide the best support to the upper layers, i.e., applications, OS and hypervi-

sor. Extending the proposed approach to support heterogeneous architectures with

different ISAs should be achievable. Instead of demanding for N different binary

codes, the hypervisor could be extended with an hardware translation mechanism

such as the one used in Transmeta Crusoe [93].

84

Pan
ay

iot
is

Petr
ide

s

Details of the proposed architecture

As previously mentioned, the proposed architecture falls into the category of asym-

metric homogeneous multi-core systems. Thus, all the cores implemented share the

same baseline ISA, which can be any canonical ISA such as x86. In addition, some

cores may also include ISA extensions, e.g., for multimedia (such as MMX/SSE [94]

or AltiVec [95]) and cryptography.

H
ar

dw
ar

e
La

ye
r

Private Memory

Shared Memory

Hypervisor

Specialized
Cores

Parallel
Processing

Cores

Private Memory

Sequential
Processing

Cores

Figure 5.3: Static Architecture

The architecture consists of several cores with different functionalities as de-

picted in Figure 5.3, which combined in are able to improve the overall system

performance. Since the hypervisor is general enough to manage architectures with

different characteristics, there is not a strict definition of how the processor cores

should be configured. However, considering in a broad sense the requirements of

actual applications, the cores are divided into three large groups according to the

roles they assume. The first two groups include general purpose cores for (a) parallel

processing, and (b) sequential processing. The third group (c) specialized hardware,

is used to support the Mechanisms provided by the hypervisor [96] (see Section 5.3).

The amount of parallelism contained in the different applications is the main

factor that lead to distinguish between parallel and sequential processing cores. Se-

quential cores are mainly design to improve sequential execution, implementing

techniques for example for aggressive ILP, while parallel processing cores are opti-

mized for parallel execution. The latter cores are simpler and therefore it is possible

to have more of them in the same circuit area, increasing the degree of parallelism.

In addition, it is possible to also implement vector structures and other techniques

85

Pan
ay

iot
is

Petr
ide

s

to increase throughput. Both types of cores have access to two different types of

memories: private memory and shared memory. This feature is built into the archi-

tecture because it reduces the overall memory latency, and makes the use of memory

bandwidth more efficient. Also another strategy to increase the memory bandwidth

supported per core is to have groups of cores served by different memory controllers.

The main purpose of the specialized hardware is to implement unique features

to support the hypervisor Mechanisms.

The complexity of this hardware depends on the mechanisms supported, and

moreover it requires an ISA extension in order to allow the hypervisor to directly in-

teract with the specialized hardware and vice-versa. Also, because the ISA extension

refers only for the specialized hardware, it does not interfere with the actual logical

execution of an application, i.e. any program using the architecture does not require

any changes in the binary code. Regarding the hypervisor Services, as explained

in Section 5.3, the hypervisor should allocate general cores to execute these specific

functions.

5.2.2 Dynamic Multi-core Configurations

The fact that applications behavior is unpredictable at hardware design time repre-

sents a limitation as it is not straightforward to define a priori the attributes of the

several cores to be implemented. Reconfiguration is a way to surpass this limitation,

and it appears naturally as a solution to dynamically reconstruct the architecture

according to application requirements. Consequently, it is possible to improve the

overall performance and at the same time have a more efficient architecture. How-

ever, reconfiguration introduces a new level of complexity into the system. Once

more, the hypervisor can be used to encapsulate this additional complexity in a

transparent way.

Reconfiguration can be performed at different granularities. Very fine-grain

reconfiguration is not the best option in this case due the high reconfiguration time

overheads.

Although a fully reconfigurable design allows to implement more efficient mod-

ules, these are also slower because the hardware requires complex routing mecha-

nisms, and controllers due to the wide range of possible configurations.

Due to these overheads, this work is focused in a coarse-grain reconfigurable

86

Pan
ay

iot
is

Petr
ide

s

approach, which allows to configure only the most relevant parts of the architecture.

In other words, the architecture may include a discrete set of configurations in a

limited reconfiguration space, thus reducing the design complexity and overheads.

Nevertheless, it is still flexible enough to adapt the architecture to the application

requirements at run-time. The denomination ”morphable” designates those archi-

tectures which are not fully reconfigurable but are still able to adapt at run-time.

Examples of other polymorphic architectures are the TRIPS [97], and the Core Fu-

sion [98].

Finally, with the introduction of the dynamic configuration capabilities, the static

architecture design provided in the previous section (Figure 5.3) is extended into

the one shown in Figure 5.4. In addition to the specialized hardware mentioned

before, the new architecture also requires a dedicated reconfiguration controller,

which is used to support reconfiguration. Moreover, the configuration capabilities

can be described by considering separately the computational elements, the on-chip

memory hierarchy, and the memory controllers.

H
ar

dw
ar

e
La

ye
r

Shared Memory

HypervisorPM

SPC

SPC

Specialized
Cores

PM
PM

PPC

PPC

PM

PPC

PM

PPC Reconfiguration

Figure 5.4: Morphable Architecture and its Components: Private Memory (PM), Sequential Pro-

cessing Core (SPC), Parallel Processing Core (PPC)

Computational Element Reconfiguration

Reconfiguration or ”morphing” at the computational elements level is performed by

selecting from of a fixed number of possible hardware configurations. The different

configurations are obtained by performing reconfiguration at different levels: at

the lower-level with the use hardware components that are reconfigurable, such as

87

Pan
ay

iot
is

Petr
ide

s

computational elements that may be merged [98], or memory elements that may

change size, associativity or block size [99]; and at a higher-level where the voltage-

frequency of the cores may be changed, or where some cores may be switched

off [100].

Low-level reconfiguration is achieved by directly implementing configurable

multi-core architectures, such as the Core Fusion [98]. This means that the proposed

architecture can combine different embedded architectures that are already recon-

figurable on their own. This only requires the adaptation of the reconfiguration

specialized hardware to the embedded architectures. For example, if a massively

parallel application is detected by the system, the hardware is configured to offer as

much parallelism as possible by having simpler processing cores, and if there is the

need for accelerating a specific computationally intensive thread, the cores can be

“merged” to combine their processing power. On the other hand, configurations at a

higher-level would concern particular architectural characteristics such as frequency,

and number of active cores, computational units and memory.

Finally, adapting the frequency and the number of active cores at run-time ac-

cording to the processing workload allows the processor to balance power consump-

tion, performance, and thermal efficiency. For example if some cores are idle, their

frequency can be reduced or they can be turned off to save power, or if for a cer-

tain period there is the need to accelerate a particular section of the execution, the

frequency can be temporarily increased to improve performance. This type of recon-

figurability works in a similar way to the power management system implemented

on the IBM POWER6 architecture [100]

On-chip Memory Hierarchy and Reconfiguration

The design of the on-chip memory hierarchy is also of major importance to improve

the architecture efficiency. In order to support a single address image to all cores in a

multi-core processor, the on-chip memory can have at least one level of the hierarchy

which is shared by all cores. This memory level may consists of a single memory

module or by several separate modules (one per core in the extreme case), together

with a coherence mechanism that ensures the correct update and access to the data

shared in those modules.

When scaling the chip for a large number of cores, several factors affect the

88

Pan
ay

iot
is

Petr
ide

s

performance of the memory models as described above. First, designing a single

large memory module is a difficult task but the most limiting factor will be the

contention in the access by all cores to that single module. Second, even though

partitioning that memory module into smaller pieces to be distributed among the

different cores would solve the contention, the coherence mechanism results in a

considerable overhead as the number of cores increases [101]. In addition, the

behavior of the applications is different for different data structures. For example,

in a parallel application certain data structures are shared among all threads while

others are private to each thread. Mapping private data to the shared memory space

may result in displacing useful data of another thread, and wasting resources for

coherence where it is not required.

Considering all of the above it can be predicted that an efficient on-chip memory

hierarchy for future large-scale processors will consist of both private and shared

memory modules. The ratio between the sizes of these two spaces will depend from

application to application and even from thread to thread. As such, it is proposed

that caches should be able to be reconfigured at run-time, namely with respect to

its line width, associativity and size. Thus, applications that require complex data

management can benefit from the support provided by the shared memory, while

applications with larger data parallelism that require higher memory bandwidth can

benefit from the faster private memory. Also, when executing different independent

applications on the same multi-core processor, there is no need to support a shared

memory module between the different memory spaces.

Memory Controller Reconfiguration

As stated before, the increase of the number of cores on a chip leads to memory

bandwidth limitations. Hardware solutions have been proposed to reduce this

effect by servicing different processing cores by different memory controllers. The

overall idea is to increase the available memory bandwidth per core. An example of

such an architecture is the Intel SCC which contains 4 memory controllers, each one

servicing a group of 12 cores.

This work proposes to go a step further and reconfigure, at run-time, the as-

signment of memory controllers to the different cores according to the application’s

demands. Thus, for a pool of available controllers these can be distributed to serve

89

Pan
ay

iot
is

Petr
ide

s

the processing cores according to the applications demands. For example if an ap-

plication running on one core requires high memory bandwidth a controller can be

assigned to serve only this core, while the other cores are served by the remaining

controllers.

5.3 Virtualization of Morphables Multi-Cores

This work is focused on Bare-metal Virtualization [31,102] and how its mechanisms

and characteristics can be used in order to provide portability among different hard-

ware configurations, and at the same time with low overhead for applications’

execution. More specifically, the target of this work is to have a hypervisor, which

will abstract the underlying hardware of the system from the OS and application

layer.

The proposed platform targets systems composed by resources of different char-

acteristics, and also systems whose characteristics can vary in time according to the

applications. As stated in the previous section, the hypervisor will be designed in

a modular way, with fundamental characteristics common to all systems. The only

characteristic that will differ among different systems is the plug-ins and services

supported for specific architectures. For example, for a reconfigurable system, the

platform will provide the specific services in order to manage the reconfiguration of

the devices (without disruption in the execution).

Finally, the functionality offered by the hypervisor should work transparently to

the user/OS. The hypervisor has built-in mechanisms to monitor the behavior of the

applications and thus take decisions accordingly. While these decisions may not be

optimal, the fact that in this case the application is unaware of the architecture is

a major benefit. Nevertheless, the hypervisor also provides a higher-level interface

that allows the user/OS to control the usage of hypervisor’s mechanisms. For ex-

ample the user can fine-tune applications performance in order to exploit system’s

hardware characteristics at a more fine-grain level by triggering reconfiguration or

assigning the executed threads to specific resources. Also the OS can use the offered

features and extend them in order to improve scheduling decisions.

90

Pan
ay

iot
is

Petr
ide

s

5.3.1 Hypervisor Mechanisms and Services

The functionalities of the hypervisor are implemented as a set of Mechanisms and

Services. Figure 5.5 presents the Mechanisms and Services supported by the hyper-

visor and their detail description follows in the next paragraphs. By Mechanisms is

defined the basic functionalities provided by the hypervisor in order to abstract the

architecture to the upper layers in a transparent way.

Resource Detection Mechanism (RDM): This mechanism identifies the under-

lying hardware in terms of computational and memory features. Through this

mechanism, the hypervisor will be aware of the current configuration of the under-

lying hardware and their performance capabilities. Typical information collected by

this Mechanism includes the frequency and characteristics of each core, the memory

cache configurations for each core and its peak performance. This information can

be gathered by reading the performance counters [103] of the system. Another pos-

sible way to collect such information is by executing benchmarks composed by small

kernels. This information is collected at the boot time and is stored into the Resource

DataBase (RDB). The ISA extension allows upper layers to access the information

collected by this mechanism as well as to trigger the update of the stored informa-

tion when reconfiguration occurs. For example, in the case when cores dynamically

change their frequency this mechanism must periodically update its information.

Threads Managing Mechanism (TMM): This mechanism is responsible for mon-

itoring and migrating threads between cores. Threads’ execution is monitored to

gather statistics in terms of computation and memory demands, such as bandwidth

utilization. The statistics data gathered are recorded in a Thread Database (TDB).

Online monitoring techniques [63, 104] focus on monitoring the execution of an ap-

plication through the hardware counters statistics in order to determine memory and

computational demands of an application. For each thread the hypervisor organizes

information for every interval of a given number of instructions, also named a phase,

and stores the main statistics obtained (e.g. CPI, cache misses, and bandwidth) for

the N last execution phases. The monitoring of the threads will provide the informa-

tion needed in order to identify the characteristics of the thread. This information

can then be used for improving the performance at run-time, and to make better

scheduling decisions. For example, a bandwidth-aware scheduler would use this

information to perform its decisions. This information can be gathered using the

91

Pan
ay

iot
is

Petr
ide

s

hardware performance counters [103, 105].

In order to accomplish that, a hardware performance counter per thread will be

needed. Notice that in addition to the local cache information, the TMM needs also to

monitor the cache coherence traffic and memory access patterns to identify possible

access sharing and conflict patterns. This can also be achieved using the hardware

performance counters as presented in [106]. Finally TMM also implements efficient

schemes for migrating threads between cores.Thread migration from one core to

another should occur with the minimal performance overhead (which maybe occur

due to data transfer from the already executing core to the new assigned core) and

be transparent among other threads, in order not to influence their execution.

Core Monitoring Mechanism (CMM): This mechanism monitors cores’ resource

utilization, temperature, idle time of the core, working frequency, power consump-

tion through the hardware performance counters.

Thread Recognition Mechanism (TRM): The data stored in the TDB is used

by the TRM to categorize the different Threads and identify them using a Thread

Template (TT), which represents a description of the Thread’s behavior according to

its memory, computational and bandwidth demands.

Hypervisor

M
ec
ha
ni
sm

s
(H
ar
dw
ar
e) RDM

RDB TDB

TMM SCMTRM CMM

Se
rv
ic
es

(S
of
tw
ar
e)

PRS RGS

Figure 5.5: Hypervisor Architecture.

The Services implement functionalities to facilitate the hypervisor usage, or to im-

prove the performance of the applications. The Services include support for general

operations such as prefetching and scheduling schemes, and functionalities that are

92

Pan
ay

iot
is

Petr
ide

s

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	

Ba
nd

w
id
th
	
 [G

B/
s]
	

#cores	

100-­‐00-­‐00%	

50-­‐50-­‐00%	

50-­‐25-­‐25%	

50-­‐00-­‐50%	

33-­‐33-­‐33%	

25-­‐50-­‐25%	

00-­‐100-­‐00%	

25-­‐25-­‐50%	

00-­‐50-­‐50%	

00-­‐00-­‐100%	

Figure 5.6: Bandwidth demands for short execut-

ing applications.

0	

20	

40	

60	

80	

100	

120	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	

Ba
nd

w
id
th
	
 [G

B/
s]
	

#cores	

100:00:00	

50:50:00	

50:00:50	

00:100:00	

33:33:33	

25:50:25	

50:05:05	

25:25:50	

00:50:50	

00:00:100	

Figure 5.7: Bandwidth demands for long executing

applications.

dedicated to the specific underlying hardware, such as reconfiguration. The user/OS

has the option of using the provided Services or implementing their own extensions.

Finally the Services are supported by the previous described Mechanisms.

Low-level Scheduling Service (SCS): The Low-level

Scheduling Service, is a baseline scheduling engine that can map the application

threads to the architecture processing cores according to their demands. It uses

online monitoring information, namely information collected by the several mecha-

nisms offered in the system, in order to decide which core fits best for the execution

of threads. Many studies were focused on how to schedule applications’ threads in

order to achieve high levels of performance using information obtained by offline

and online monitoring techniques [63, 65, 104].

In this work the hypervisor uses online information provided by the RDM, TMM,

CMM and TRM mechanisms, in order to determine the most suitable run-time

scheduling assignment of the threads for each particular application [107, 108]. As

Bower [109] has shown, the scheduling of an applications’ threads must take into

consideration the current state of each core in order to achieve the desired perfor-

mance levels.

The data sharing information of the executing threads, provided by the TRM, can

be used to take better decisions such as guiding the scheduling of threads done by

the OS to more appropriate resources.

For example, in a multi-core where the L2 is shared pair-wise such as the Intel

Quad-core Xeon processor, two sharing threads should be scheduled to the cores

sharing the L2 (which do not suffer from conflicting misses) while conflicting threads

should be scheduled to cores having different L2 caches. The scheduler should also

be able to identify certain types of applications which can be directly mapped to

specific types of cores. For example, parallel threads can be directly pinned to

parallel processing cores.

93

Pan
ay

iot
is

Petr
ide

s

In more details, regarding the bandwidth-aware scheduler, different applications

according both to their execution time and their bandwidth demands are profiled.

From the preliminary results applications are able to be categorized according to

their execution time to: short, medium and long, and according to their band-

width demands to: low, medium and high bandwidth demanding applications.

Figures 5.6 and 5.7 present for short and long executed applications the bandwidth

demands of different applications’ combinations of different bandwidth demands.

More specifically, the X%- Y% - Z% notation resembles low, medium and high band-

width demanding applications ratio executing simultaneously on the system. It

can be observed from the results depicted that the bandwidth demand increases as

the number of cores increases and that the different combinations of applications

also suppress the off-chip bandwidth. From the analysis of these results it can be

shown that if the bandwidth requirements of the applications are not satisfied there

is a high impact to the applications performance. More specifically, if there is no

bandwidth utilization policy among the available memory controllers assigned to

the cores of the system, impact to applications performance can be as high as slow-

ing down more than X times. If a bandwidth-aware scheduling policy is applied,

where the bandwidth of the memory controllers is utilized and no under-utilization

or over-utilization is observed among controllers, preliminary results has shown

that for both short and long executing applications a performance improvement of

almost 2X for most of the applications combinations can be achieved. It is important

to mention also that the bandwidth utilization of the controllers assigned to the

different cores can be achieved by balancing the applications, or the threads, that

are executed to the cores of each assigned controller. Migrating the applications

between cores served from different controllers can be achieved by monitoring their

execution according to their bandwidth demands.

A practical example would be the case where a bandwidth-aware scheduler is

implemented on the Intel SCC architecture [4] to distribute the application threads

by processing cores served by different memory controllers according to their de-

mands. As stated before, memory bandwidth has become a limitation with the

increasing number of cores in recent architectures and it will be important for future

architecture to have efficient scheduling mechanism that take advantage of the ap-

plications’ different memory bandwidth requirements to improve the overall system

performance. Namely, the scheduling mechanism takes into consideration the fact

94

Pan
ay

iot
is

Petr
ide

s

that different processing cores are served by different memory controllers and thus

assign applications to different cores trying to balance the applications requirements

and the overall memory bandwidth capabilities. In this case the hypervisor would

use the TMM to obtain the bandwidth requirements of each thread for every phase,

and according to that information and the placement of the threads at that given in-

stant, if a bandwidth violation is detected, i.e., if the maximum bandwidth supported

by the controlled responsible for a given group of threads is violated, the scheduler

tries to redirect some of the threads to a different controller with smaller bandwidth

utilization. This redirection is performed using TMM, to migrate the threads to a

different core served by another controller, or if in a system with reconfigurability

capabilities, the core may just be reconnected to a different memory controller using

the Reconfiguration Service.

Prefetching Services (PRS): Many applications have irregular memory access

patterns that can not be captured neither by the compiler as they may depend on

dynamically determined values, nor by prefetching engines as they are irregular.

Thus, a careful monitoring of the data accesses may result in identifying non trivial

memory access patterns. The streams of data are stored to save the effort of identify-

ing these data streams. Based on these streams, an intelligent prefetching identifies

irregular memory access patterns and triggers the prefetching service in order to

increase applications performance.

Among others, Papadopoulos et al. [110] proposed a similar system. This

prefetching should be done transparently to the OS and application. Information

provided by the thread template recognition mechanism to the platform, i.e. memory

access patterns, will trigger the prefetching service.

Reconfiguration Services (RES): This service is relevant when the underlying

hardware has the ability to change its configuration dynamically at run-time, namely

to control the three types of reconfigurable capabilities described in Section 5.2.

The main difference between this Service and the one presented before is that

in order to perform the hardware reconfigurations, there is a need to have a recon-

figuration controller which must be implemented in hardware [111]. The RES will

work very closely with the SCS: before a thread is scheduled, ideally the system

would be reconfigured for the best match between thread demands and available

hardware. The reconfiguration of the cores may be performed in two different

ways: (i) user/OS reconfiguration requests and (ii) hypervisor reconfiguration. In

95

Pan
ay

iot
is

Petr
ide

s

(i) the user/OS has the privilege to determine the configuration of the system for

the application as to exploit its characteristics and the system’s resources, while in

(ii) the hypervisor automatically determines the configuration that achieves the best

performance for the running applications by using the statistics inferred from the

monitoring mechanisms. Overall, the reconfiguration of the systems’ components

is achieved by modifying registers or memory positions reserved for that purpose.

These registers can be accessed by the user/OS through specific ISA extensions. As

a practical example lets consider again the bandwidth-aware scheduler, and that a

certain moment it detects a memory bandwidth violation (see SCS description). The

SCS may take two possible actions to compensate for the bandwidth violation, one

is to migrate the thread responsible for the violation to another core, which is served

by a different controller. However, a second strategy is to use the RES to reconfigure

the controller connections in order to redirect the traffic to another controller without

actually migrating the threads. The system may decide which solution is the best

for every given case depending on the overheads associated, i.e., in the first case the

latency due to re-cacheing and other effects of migrating the threads to a different

core, and in the second case the latency of performing the hardware reconfiguration.

5.4 Integration of the Proposed Techniques

In the previous chapters different techniques have been presented which fit the vision

of the modular virtualization layer for supporting such architectures. More specif-

ically, the Heterogeneous NUMA-aware scheduling policy presented in Chapter 4,

includes a number of mechanisms as described in this section. These mechanisms

are: Resource Detection, Thread Monitoring and Thread Migration. Therefore, they

can be integrated to the hypervisor and provide the desired functionalities since

they are portable as presented in Chapter 4. Moreover, the scheduling policy itself

can be seen as a module of the Threads Migration Mechanism, which will consider

applications demands in terms of resources and assign a best matching resource for

their execution. Additionally, the data prefetching technique presented in Chap-

ter 2 can be integrated as the extended hypervisor mechanism for prefetching. The

presented techniques and their integration to the proposed modular virtualization

layer will result on a whole system which will manage both the underlying hardware

and the executed applications. Its target is both single and multi-application perfor-

96

Pan
ay

iot
is

Petr
ide

s

mance improvement. As presented in Chapter 3, the proposed virtualization layer

adds very limited overhead to the performance of the executed applications. More-

over, exploiting the isolation properties provided by the virtualization techniques,

resources can be logically divided into different Domains by a Domain Service to

provide performance predictability of co-executed applications.

5.5 Summary

Future multi-core processors will be composed of cores with different computational

and memory capabilities, which are also able to change their configuration at run-

time. In this chapter tries to address the issue of managing and exploiting such

future large-scale systems not only in terms of software, by means of a virtualization

approach proposing for that an hypervisor, but also the hardware architecture and

design. A Virtualization Platform is proposed, i.e. a complete system able to wrap the

complexity of the underlying hardware, through a hypervisor module. In addition,

the design a Morphable multi-core is proposed, where its resources are managed

by the hypervisor to transparently tune and achieve an improvement of the overall

system efficiency.

The hypervisor proposed in this chapter manages applications’ threads transpar-

ently to the OS and the applications. It supports a set of Mechanisms and Services,

which are supported by specialized hardware. Moreover, the fact that the system

is able to adapt at run-time to the applications’ demands releases the programmer

from knowing the details of the architecture. However, the user and/or OS has

the possibility to implement hardware-aware applications using ISA extensions that

give access to the implemented Mechanisms in order to fine-tune and improve ap-

plications’ performance levels. Moreover, the proposed Morphable multi-core is

composed of several asymmetric cores which have the capability of changing their

configuration at different levels for both their logic and memory elements. This

results in a more efficient hardware platform that besides being able to adapt the

application execution to the hardware underneath, is also able to adapt the hard-

ware to the demands of the different applications and/or phases. Although this

two-way adaptation increases the adaptability of the overall system at the cost of

some additional complexity, it is still handled in a transparent way by the proposed

hypervisor.

97

Pan
ay

iot
is

Petr
ide

s

Chapter 6
Conclusions and Future Work

Achieving high levels of application performance on a many-core architecture envi-

ronment considering the characteristics of both available resources and applications

demands is not a trivial task. Different approaches exist in order to exploit the in-

creasing number of resources and at the same time target on high performance of

applications. In particular, one approach is to target single application performance

by exploiting its own parallelism while another approach is to target multiple appli-

cation performance by exploiting throughput parallelism. Both approaches result in

different challenges. This thesis is focused on these challenges which are identified

as: (i) tuning single application performance by considering both many-core under-

lying resources and application characteristics, (ii) minimizing interference between

co-executing applications and (iii) satisfying the dynamic demands of applications

when executing on a clustered heterogeneous many-core environment.

6.1 Achieved Objectives and Contributions

To achieve high levels of scalability and efficiency of memory demanding applica-

tions exploiting many-core architecture characteristics (Objective 1 - Parallelism on a

Clustered Many-Core Architecture), three different queries are ported from the TPC-

H benchmark suite on the Intel SCC experimental processor. Their performance

behaviour is studied when data prefetching is applied using the on-chip shared

memory of the system. Experiments depict that when there is no data reusage on

the query algorithms (Q6) data prefetching shows no significant improvement. For

medium complexity query algorithm with high input data size (Q12) nested-loop

join algorithm using data prefetching can achieve up to 5x speedup. Although in

98

Pan
ay

iot
is

Petr
ide

s

this case hash join implementation is more efficient due to the simplicity of its algo-

rithm. Finally for high complex queries in terms of the operations performed and

high input data size (Q3) using a hybrid implementation of hash join and nested-

loop join with data prefetching it is posssible to improve performance by a factor 10.

Additionally, the power-performance efficiency of the different queries implementa-

tions is investigated for the most efficient implementation. Results show that in the

case of simple query algorithms, like Q6 and Q12 hash join implementation, scaling

down the systems’ cores frequency and reducing the number of cores (executing

the respective implementation) can achieve both high power-performance efficiency

and throughput when executing the query in multiple instances on the system.

In order to offer performance guarantees for the co-execution of multiple high-

performance computing applications on many-core systems without adding signif-

icant overheads (Objective 2 - Guarantee Performance), the performance overhead

and performance isolation is analyzed of parallel applications while executing on top

of different virtualization environments. Results show that for most applications the

overhead is relatively small. Virtualization shows to be an important tool as to create

performance domains where the performance of HPC applications can be safeguard,

independent of the applications executing on the rest of the multi-core processor.

Also, it is important to mention that by using vitualization not only predictable per-

formance is achieved but also the interference of applications co-executing is limited

on the virtualized system compared to their co-execution on the native system. It can

be also observed that for more than half of the presented experiments the execution

on the bare-metal virtualized system achieved better performance than the native

execution. Moreover, the overhead observed for the execution of the applications

was only up to 3%. Performance isolation provided by virtualization, allows appli-

cations to achieve their predicted speedup without suffering any interference from

co-execution of other applications on the same processor at the same time. This is

becoming more relevant for large-scale multi-core processors on which full utiliza-

tion is desired by running simultaneously different applications. Overall the results

were very encouraging for the use of virtualization for future large-scale multi-core

processors even for demanding HPC applications.

Given the application, determining appropriate resources for power-performance

efficiency is not a trivial task. In addition, given the architecture characteristics of

a clustered heterogeneous many-core architecture it is very difficult in practice to

99

Pan
ay

iot
is

Petr
ide

s

coordinate the scheduling operations during runtime. The key for determining the

best matching core for a certain application is to find out the application’s memory

and computational requirements. These findings had led to the proposed schedul-

ing policy which dynamically find the best matching resources for multiple high-

performance applications on a heterogeneous clustered many-core system (Objec-

tive 3 - Heterogeneous and NUMA-aware Scheduling) considering the non-uniform

memory latency, the heterogeneity of the cores, and the contention to the memory

controller to find the best matching core for the application’s memory and compute

requirements. Results of the proposed scheduler show that satisfying applications

requirements during their execution can improve significantly their performance.

In particular, compute-bound applications can improve their execution time up to

36% and memory-bound applications up to 15%. Moreover, the experimental re-

sults show that the energy efficiency of the system is improved, of about 40%, and

the same time achieve a very good performance, of about 18%, for compute-bound

applications. Given the priority of the proposed policy, memory-bound applications

show smaller improvements in both performance and power consumption. The

results are very encouraging for the use of such feature-aware assignment policies

for future many-core processors.

6.2 Open Research Questions

The results of this thesis show that in order for applications to exploit the perfor-

mance benefits of multiple heterogeneous cores in a system there is a need of a

runtime environment that can help with different tasks such as data prefetching,

performance isolation between co-execution, and best matching of resources de-

termined dynamically. At the same time, new research directions arise from the

outcome of this work.

6.2.1 Direction 1: Machine Learning Algorithms

This thesis proposes a runtime system which considers the non-uniform memory la-

tency, the heterogeneity of the cores, and the contention to the memory controller to

find the best matching core for the application’s memory and compute requirements

on a clustered many-core system. This proposed runtime could be further enhanced

100

Pan
ay

iot
is

Petr
ide

s

with machine learning algorithms features which could identify similar behaviours

of applications execution and find a best matching resource more effectively. The

target of such enhancement will be to recognize applications behaviour during ex-

ecution and satisfy their demands throughout execution. Additionally, recognizing

execution patterns will allow the system to recognize future needs of applications

and apply near optimal placement through application placement planning. The

runtime though needs to be adapted in order to recognize patterns of applications

execution and at the same time not to be intrusive to applications.

6.2.2 Direction 2: Dynamic Heterogeneous Many-Cores

This thesis studied static clustered many-core heterogeneous architectures, having

their configuration predefined and static through the whole execution of applica-

tions. In the future it can be considered that resources within a many-core archi-

tecture can change their configuration dynamically, i.e. core frequency. Initiating

the change of resource configuration dynamically through the runtime can further

improve its effectiveness. Changing resources configurations dynamically can result

in forming performance domains suitable for applications execution and at the same

time achieve higher power-performance utilization of the system. Additionally, dif-

ferent targets may be set for the runtime such as high performance levels or efficient

power-performance efficiency.

6.2.3 Direction 3: Fault-tolerance

Another direction of this work could be extending the functionality of the proposed

runtime system for clustered many-core architectures to incorporate fault-tolerance

and how it should react in case of failures of the hardware. Failures on large-

scale many-core systems it is possible to occur either caused by hardware or by

disabling cores. In such a case, the runtime should be able to react and mitigate

its consequences by rescheduling applications to other available resources. This

enhancement will increase the reliability of a system, ensuring that applications

execution will not failed due to hardware faults.

101

Pan
ay

iot
is

Petr
ide

s

6.2.4 Direction 4: Morphable Many-Cores Runtime System

Incorporating all proposed mechanisms presented in this thesis under a runtime

system for morphable many-core architectures is another direction of this work.

More specifically, each mechanism presented can be seen as a service of a runtime

system targeting morphable many-core architectures. Additionally, the level of re-

configuration of the underlying hardware can be investigated enriching the runtime

effectiveness and mitigating the challenges raised from the static many-core archi-

tectures.

102

Pan
ay

iot
is

Petr
ide

s

Bibliography

[1] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins,
H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella,
P. Salihundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann,
M. Gries, T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. V. D.
Wijngaart, and T. Mattson, “A 48-core ia-32 message-passing processor with
dvfs in 45nm cmos,” in 2010 IEEE International Solid-State Circuits Conference -
(ISSCC), Feb 2010, pp. 108–109.

[2] I. A. C. Ureña, M. Riepen, and M. Konow, “Rckmpi - lightweight
mpi implementation for intel’s single-chip cloud computer (scc),” in
Proceedings of the 18th European MPI Users’ Group Conference on Recent
Advances in the Message Passing Interface, ser. EuroMPI’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 208–217. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2042476.2042500

[3] Transaction Processing Council, “TPC Benchmark H (Decision Support) Stan-
dard Specification, Revision 2.6.1,” June 2006.

[4] Intel, “Single-chip Cloud Computer,” http://techresearch.intel.com/UserFiles/en-
us/File/terascale/SCC-Overview.pdf, 2009.

[5] P. Petrides, A. Diavastos, and P. Trancoso, “Exploring decision
support queries on futured many-core architectures,” in 3rd Many-
core Applications Research Community (MARC) Symposium. Proceedings of
the 3rd MARC Symposium, Ettlingen, Germany, July 5-6, 2011. KIT
Scientific Publishing, Karlsruhe, 2011, pp. 81–84. [Online]. Available:
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023937

[6] P. Petrides, A. Diavastos, C. Christofi, and P. Trancoso, “Scalability and effi-
ciency of database queries on future many-core systems,” in 2013 21st Euromi-
cro International Conference on Parallel, Distributed, and Network-Based Processing,
Feb 2013, pp. 24–28.

[7] P. Petrides, G. Nicolaides, and P. Trancoso, “Hpc performance domains on
multi-core processors with virtualization,” in Architecture of Computing Systems
– ARCS 2012, A. Herkersdorf, K. Römer, and U. Brinkschulte, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 123–134.

[8] P. Petrides and P. Trancoso, “Addressing the challenges of future large-scale
many-core architectures,” in Proceedings of the ACM International Conference
on Computing Frontiers, ser. CF ’13. New York, NY, USA: ACM, 2013, pp.
6:1–6:4. [Online]. Available: http://doi.acm.org/10.1145/2482767.2482776

[9] P. Petrides and P.Trancoso, “Heterogeneous- and numa-aware scheduling for
many-core architectures,” in Proceedings of the 10th ACM International Systems
and Storage Conference, ser. SYSTOR ’17. New York, NY, USA: ACM, 2017,
pp. 2:1–2:12. [Online]. Available: http://doi.acm.org/10.1145/3078468.3078482

103

Pan
ay

iot
is

Petr
ide

s

http://dl.acm.org/citation.cfm?id=2042476.2042500
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023937
http://doi.acm.org/10.1145/2482767.2482776
http://doi.acm.org/10.1145/3078468.3078482

[10] P. Petrides, F. Pratas, L. Sousa, and P. Trancoso, “Virtualization for morphable
multi-cores,” in Proceedings of the 2nd Workshop on Parallel Programming and Run-
Time Management Techniques for Many-Core Architectures (PARMA) (co-located
with ARCS 2011), February 2011, pp. 137–143.

[11] P. Trancoso, D. Othonos, and A. Artemiou, “Data parallel acceleration of deci-
sion support queries using Cell/BE and GPUs,” in Proceedings of the 6th ACM
conference on Computing frontiers. ACM New York, NY, USA, 2009, pp. 117–126.

[12] T. Sherwood, S. Sair, and B. Calder, “Predictor-directed stream buffers,” in Pro-
ceedings 33rd Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO-33 2000, 2000, pp. 42–53.

[13] D. Koufaty and J. Torrellas, “Compiler support for data forwarding in scal-
able shared-memory multiprocessors,” in Proceedings of the 1999 International
Conference on Parallel Processing, 1999, pp. 181–190.

[14] K. Papadopoulos, K. Stavrou, and P. Trancoso, “Helpercoredb: Exploiting
multicore technology to improve database performance,” in 2008 IEEE Inter-
national Symposium on Parallel and Distributed Processing, April 2008, pp. 1–11.

[15] C.-K. Luk, “Tolerating memory latency through software-controlled pre-
execution in simultaneous multithreading processors,” in Proceedings 28th An-
nual International Symposium on Computer Architecture, 2001, pp. 40–51.

[16] J. A. Kahle et al., “Introduction to the Cell multiprocessor,” IBM Journal of
Research and Development, vol. 49, no. 4/5, p. 589, 2005.

[17] M. Monteyne and R. Inc, “RapidMind Multi-Core Development Platform,”
Rapid-Mind, Tech. Rep, 2007.

[18] M. W. van Tol, R. Bakker, M. Verstraaten, C. Grelck, and C. R. Jesshope,
“Efficient memory copy operations on the 48-core intel scc processor,” in Many-
core Applications Research Community (MARC) Symposium, 2011, pp. 13–18.

[19] K. Avdic, N. Melot, C. Kessler, and J. Keller, “Pipelined parallel sorting on the
intel scc,” in Fourth Swedish Workshop on Multicore Computing (MCC), 2011, pp.
96–101.

[20] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal, “Adaptive, transparent frequency
and voltage scaling of communication phases in mpi programs,” in SC 2006
Conference, Proceedings of the ACM/IEEE, Nov 2006, pp. 14–14.

[21] C. Isci, A. Buyuktosunoglu, C. y. Cher, P. Bose, and M. Martonosi, “An analysis
of efficient multi-core global power management policies: Maximizing perfor-
mance for a given power budget,” in 2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06), Dec 2006, pp. 347–358.

[22] N. Ioannou, M. Kauschke, M. Gries, and M. Cintra, “Phase-based application-
driven hierarchical power management on the single-chip cloud computer,” in
2011 International Conference on Parallel Architectures and Compilation Techniques,
Oct 2011, pp. 131–142.

104

Pan
ay

iot
is

Petr
ide

s

[23] P. Thanarungroj and C. Liu, “Power and energy consumption analysis on intel
scc many-core system,” in 30th IEEE International Performance Computing and
Communications Conference, Nov 2011, pp. 1–2.

[24] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy, J. Howard,
S. Vangal, N. Borkar, G. Ruhl, and S. Dighe, “The 48-core scc processor: the
programmer’s view,” in 2010 ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis, Nov 2010, pp. 1–11.

[25] H. Vandierendonck and P. Trancoso, “Building and validating a reduced tpc-h
benchmark,” in 14th IEEE International Symposium on Modeling, Analysis, and
Simulation, Sept 2006, pp. 383–392.

[26] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos,
G. Hamilton, M. McCabe, and J. Owens, “Quantifying the performance
isolation properties of virtualization systems,” in Proceedings of the 2007
Workshop on Experimental Computer Science, ser. ExpCS ’07. New York, NY,
USA: ACM, 2007. [Online]. Available: http://doi.acm.org/10.1145/1281700.
1281706

[27] F. Rodrı́guez, F. Freitag, and L. Navarro, “On the use of intelligent local re-
source management for improved virtualized resource provision: challenges,
required features, and an approach,” in HPCVirt ’08: Proceedings of the 2nd
workshop on System-level virtualization for high performance computing. New
York, NY, USA: ACM, 2008, pp. 24–31.

[28] Amazon, “Amazon Elastic Compute Cloud: Getting Started Guide,”
http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/,
2009.

[29] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark Suite:
Characterization and Architectural Implications,” in PACT ’08: Proceedings of
the 17th international conference on Parallel architectures and compilation techniques,
October 2008, pp. 72–81.

[30] Sun, “Sun Microsystems VirtualBox,” http://www.virtualbox.org/, 2010.

[31] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in Proceedings
of the nineteenth ACM symposium on Operating systems principles, ser. SOSP
’03. New York, NY, USA: ACM, 2003, pp. 164–177. [Online]. Available:
http://doi.acm.org/10.1145/945445.945462

[32] C. Macdonell and P. Lu, “Pragmatics of virtual machines for high-performance
computing: A quantitative study of basic overheads,” 2007.

[33] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and W. Zwaenepoel,
“Diagnosing performance overheads in the xen virtual machine environment,”
in Proceedings of the 1st ACM/USENIX international conference on Virtual
execution environments, ser. VEE ’05. New York, NY, USA: ACM, 2005, pp.
13–23. [Online]. Available: http://doi.acm.org/10.1145/1064979.1064984

105

Pan
ay

iot
is

Petr
ide

s

http://doi.acm.org/10.1145/1281700.1281706
http://doi.acm.org/10.1145/1281700.1281706
http://doi.acm.org/10.1145/945445.945462
http://doi.acm.org/10.1145/1064979.1064984

[34] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors,” in Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007, ser. EuroSys
’07. New York, NY, USA: ACM, 2007, pp. 275–287. [Online]. Available:
http://doi.acm.org/10.1145/1272996.1273025

[35] L. Youseff, R. Wolski, B. Gorda, and C. Krintz, “Paravirtualization
for hpc systems,” in Proceedings of the 2006 International Conference on
Frontiers of High Performance Computing and Networking, ser. ISPA’06.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 474–486. [Online]. Available:
http://dx.doi.org/10.1007/11942634 49

[36] W. Huang, J. Liu, B. Abali, and D. K. Panda, “A case for high performance
computing with virtual machines,” in ICS ’06: Proceedings of the 20th Annual
International Conference on Supercomputing. New York, NY, USA: ACM, 2006,
pp. 125–134.

[37] H. Payer, H. Röck, and C. M. Kirsch, “Get what you pay for: Providing
performance isolation in virtualized execution environments,” 09 2010.

[38] T. E. Carlson, W. Heirmant, and L. Eeckhout, “Sniper: Exploring the level of
abstraction for scalable and accurate parallel multi-core simulation,” in 2011
International Conference for High Performance Computing, Networking, Storage and
Analysis (SC), Nov 2011, pp. 1–12.

[39] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin, “Scaling the
bandwidth wall: Challenges in and avenues for cmp scaling,” in Proceedings
of the 36th Annual International Symposium on Computer Architecture, ser. ISCA
’09. New York, NY, USA: ACM, 2009, pp. 371–382. [Online]. Available:
http://doi.acm.org/10.1145/1555754.1555801

[40] N. Ioannou, M. Kauschke, M. Gries, and M. Cintra, “Phase-based
application-driven hierarchical power management on the single-chip cloud
computer,” in Proceedings of the 2011 International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 131–142. [Online]. Available:
http://dx.doi.org/10.1109/PACT.2011.19

[41] A. Jaleel, “Memory Characterization of Workloads Using Instrumentation-
Driven Simulation,” Retrieved from http://www.glue.umd.edu/ ajaleel/work-
load/.

[42] G. Long, D. Fan, and J. Zhang, “Characterizing and understanding the band-
width behavior of workloads on multi-core processors,” in Euro-Par ’09:
Proceedings of the 15th International Euro-Par Conference on Parallel Processing.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 110–121.

[43] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker, “Scalable thread scheduling
and global power management for heterogeneous many-core architectures,”
in Proceedings of the 19th International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’10. New York, NY, USA: ACM, 2010, pp.
29–40. [Online]. Available: http://doi.acm.org/10.1145/1854273.1854283

106

Pan
ay

iot
is

Petr
ide

s

http://doi.acm.org/10.1145/1272996.1273025
http://dx.doi.org/10.1007/11942634_49
http://doi.acm.org/10.1145/1555754.1555801
http://dx.doi.org/10.1109/PACT.2011.19
http://doi.acm.org/10.1145/1854273.1854283

[44] D. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Parallel job scheduling - a
status report,” in Job Scheduling Strategies for Parallel Processing, ser. Lecture
Notes in Computer Science, D. Feitelson, L. Rudolph, and U. Schwiegelshohn,
Eds. Springer Berlin Heidelberg, 2005, vol. 3277, pp. 1–16. [Online].
Available: http://dx.doi.org/10.1007/11407522 1

[45] D. G. Feitelson, “Job Scheduling in Multiprogrammed Parallel Systems,” IBM
Research Report 19790, Tech. Rep., 1997.

[46] D. G. Feitelson and L. Rudolph, “Gang scheduling performance benefits
for fine-grain synchronization,” Journal of Parallel and Distributed Computing,
vol. 16, pp. 306–318, 1992.

[47] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained resource
sharing in the data center,” in Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation, ser. NSDI’11. Berkeley,
CA, USA: USENIX Association, 2011, pp. 295–308. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1972457.1972488

[48] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, and E. Baldeschwieler, “Apache hadoop yarn: Yet another resource
negotiator,” in Proceedings of the 4th Annual Symposium on Cloud Computing,
ser. SOCC ’13. New York, NY, USA: ACM, 2013, pp. 5:1–5:16. [Online].
Available: http://doi.acm.org/10.1145/2523616.2523633

[49] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A resource allocation
model for qos management,” in Proceedings Real-Time Systems Symposium, Dec
1997, pp. 298–307.

[50] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle,
“Managing energy and server resources in hosting centers,” in Proceedings
of the Eighteenth ACM Symposium on Operating Systems Principles, ser. SOSP
’01. New York, NY, USA: ACM, 2001, pp. 103–116. [Online]. Available:
http://doi.acm.org/10.1145/502034.502045

[51] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. I. Jordan, and D. A. Patterson,
“Automatic exploration of datacenter performance regimes,” in Proceedings
of the 1st Workshop on Automated Control for Datacenters and Clouds, ser.
ACDC ’09. New York, NY, USA: ACM, 2009, pp. 1–6. [Online]. Available:
http://doi.acm.org/10.1145/1555271.1555273

[52] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca,
“Jockey: Guaranteed job latency in data parallel clusters,” in Proceedings
of the 7th ACM European Conference on Computer Systems, ser. EuroSys
’12. New York, NY, USA: ACM, 2012, pp. 99–112. [Online]. Available:
http://doi.acm.org/10.1145/2168836.2168847

[53] F. Sironi, D. Bartolini, S. Campanoni, F. Cancare, H. Hoffmann, D. Sciuto, and
M. Santambrogio, “Metronome: Operating system level performance man-
agement via self-adaptive computing,” in Design Automation Conference (DAC),
2012 49th ACM/EDAC/IEEE, June 2012, pp. 856–865.

107

Pan
ay

iot
is

Petr
ide

s

http://dx.doi.org/10.1007/11407522_1
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://doi.acm.org/10.1145/2523616.2523633
http://doi.acm.org/10.1145/502034.502045
http://doi.acm.org/10.1145/1555271.1555273
http://doi.acm.org/10.1145/2168836.2168847

[54] M. Otoom, A. Jaleel, and P. Trancoso, “Using personality metrics to improve
cache interference management in multicore processors,” in Proceedings of the
14th ACM international Conference on Computing Frontiers, ser. CF ’17, 2017, pp.
1–4.

[55] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up: Increasing
utilization in modern warehouse scale computers via sensible co-locations,”
in Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-44. New York, NY, USA: ACM, 2011, pp.
248–259. [Online]. Available: http://doi.acm.org/10.1145/2155620.2155650

[56] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An analysis
of performance interference effects in virtual environments,” in 2007 IEEE
International Symposium on Performance Analysis of Systems Software, April 2007,
pp. 200–209.

[57] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “The impact
of memory subsystem resource sharing on datacenter applications,” in
Proceedings of the 38th Annual International Symposium on Computer Architecture,
ser. ISCA ’11. New York, NY, USA: ACM, 2011, pp. 283–294. [Online].
Available: http://doi.acm.org/10.1145/2000064.2000099

[58] A. Verma, P. Ahuja, and A. Neogi, “Power-aware dynamic placement of hpc
applications,” in Proceedings of the 22Nd Annual International Conference on
Supercomputing, ser. ICS ’08. New York, NY, USA: ACM, 2008, pp. 175–184.
[Online]. Available: http://doi.acm.org/10.1145/1375527.1375555

[59] R. West, P. Zaroo, C. A. Waldspurger, and X. Zhang, “Online
cache modeling for commodity multicore processors,” SIGOPS Oper.
Syst. Rev., vol. 44, no. 4, pp. 19–29, Dec. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1899928.1899931

[60] J. M. Calandrino, “On the design and implementation of a cache-aware soft
real-time scheduler for multicore platforms,” Ph.D. dissertation, Chapel Hill,
NC, USA, 2009, aAI3366308.

[61] D. Tam, R. Azimi, and M. Stumm, “Thread clustering: Sharing-aware
scheduling on smp-cmp-smt multiprocessors,” in Proceedings of the 2Nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007, ser. EuroSys
’07. New York, NY, USA: ACM, 2007, pp. 47–58. [Online]. Available:
http://doi.acm.org/10.1145/1272996.1273004

[62] X. Zhang, S. Dwarkadas, G. Folkmanis, and K. Shen, “Processor hardware
counter statistics as a first-class system resource,” in Proceedings of the
11th USENIX Workshop on Hot Topics in Operating Systems, ser. HOTOS’07.
Berkeley, CA, USA: USENIX Association, 2007, pp. 14:1–14:6. [Online].
Available: http://dl.acm.org/citation.cfm?id=1361397.1361411

[63] A. Fedorova, D. Vengerov, and D. Doucette, “Operating system scheduling on
heterogeneous core systems,” in Proceedings of 2007 Operating System Support
for Heterogeneous Multicore Architectures, 2007.

108

Pan
ay

iot
is

Petr
ide

s

http://doi.acm.org/10.1145/2155620.2155650
http://doi.acm.org/10.1145/2000064.2000099
http://doi.acm.org/10.1145/1375527.1375555
http://doi.acm.org/10.1145/1899928.1899931
http://doi.acm.org/10.1145/1272996.1273004
http://dl.acm.org/citation.cfm?id=1361397.1361411

[64] A. Fedorova, S. Blagodurov, and S. Zhuravlev, “Managing contention for
shared resources on multicore processors,” Commun. ACM, vol. 53, no. 2,
pp. 49–57, Feb. 2010. [Online]. Available: http://doi.acm.org/10.1145/1646353.
1646371

[65] D. Shelepov and A. Fedorova, “Scheduling on heterogeneous multicore pro-
cessors using architectural signatures,” in Proceedings of the Workshop on the
Interaction between Operating Systems and Computer Architecture, 2008, pp. 21–
25.

[66] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez, Z. F.
Huang, S. Blagodurov, and V. Kumar, “Hass: A scheduler for heterogeneous
multicore systems,” SIGOPS Oper. Syst. Rev., vol. 43, no. 2, pp. 66–75, Apr.
2009. [Online]. Available: http://doi.acm.org/10.1145/1531793.1531804

[67] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficient operating
system scheduling for performance-asymmetric multi-core architectures,”
in Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, ser. SC
’07. New York, NY, USA: ACM, 2007, pp. 1–11. [Online]. Available:
http://doi.acm.org/10.1145/1362622.1362694

[68] M. Becchi and P. Crowley, “Dynamic thread assignment on heterogeneous
multiprocessor architectures,” in Proceedings of the 3rd Conference on
Computing Frontiers, ser. CF ’06. ACM, 2006, pp. 29–40. [Online]. Available:
http://doi.acm.org/10.1145/1128022.1128029

[69] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I.
Farkas, “Single-isa heterogeneous multi-core architectures for multithreaded
workload performance,” in Proceedings of the 31st Annual International
Symposium on Computer Architecture, ser. ISCA ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 64–75. [Online]. Available:
http://dl.acm.org/citation.cfm?id=998680.1006707

[70] A.-H. Haritatos, G. Goumas, N. Anastopoulos, K. Nikas, K. Kourtis, and
N. Koziris, “Lca: A memory link and cache-aware co-scheduling approach for
cmps,” in Proceedings of the 23rd International Conference on Parallel Architectures
and Compilation, ser. PACT ’14. New York, NY, USA: ACM, 2014, pp.
469–470. [Online]. Available: http://doi.acm.org/10.1145/2628071.2628123

[71] W. Heirman, T. E. Carlson, K. V. Craeynest, I. Hur, A. Jaleel, and L. Eeckhout,
“Undersubscribed threading on clustered cache architectures,” in 2014 IEEE
20th International Symposium on High Performance Computer Architecture (HPCA),
Feb 2014, pp. 678–689.

[72] M. Kaliorakis, M. Psarakis, N. Foutris, and D. Gizopoulos, “Accelerated online
error detection in many-core microprocessor architectures,” in 2014 IEEE 32nd
VLSI Test Symposium (VTS), April 2014, pp. 1–6.

[73] Tilera, “Tile-MX Multicore Processor,” http://www.tilera.com.

[74] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH Comput.
Archit. News, vol. 34, pp. 1–17, September 2006. [Online]. Available:
http://doi.acm.org/10.1145/1186736.1186737

109

Pan
ay

iot
is

Petr
ide

s

http://doi.acm.org/10.1145/1646353.1646371
http://doi.acm.org/10.1145/1646353.1646371
http://doi.acm.org/10.1145/1531793.1531804
http://doi.acm.org/10.1145/1362622.1362694
http://doi.acm.org/10.1145/1128022.1128029
http://dl.acm.org/citation.cfm?id=998680.1006707
http://doi.acm.org/10.1145/2628071.2628123
http://doi.acm.org/10.1145/1186736.1186737

[75] P. Petrides, F. Pratas, L. Sousa, and P. Trancoso, “Exploiting location-aware task
execution on future large-scale many-core architectures,” Technical Report TR-
12-4, University of Cyprus, Department of Computer Science, 2012.

[76] CryoPID, “A Process Freezer for Linux,” http://cryopid.berlios.de/.

[77] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan,
and S. Weeratunga, “The nas parallel benchmarks,” Int. J. High Perform.
Comput. Appl., vol. 5, no. 3, pp. 63–73, Sep. 1991. [Online]. Available:
http://dx.doi.org/10.1177/109434209100500306

[78] Intel, “Intel Xeon Phi Coprocessor,” https://software.intel.com/en-
us/articles/intel-xeon-phi-coprocessor-codename-knights-corner.

[79] I. Labs, “History of Many-Core Leading to Intel Xeon Phi,”
http://download.intel.com/newsroom/kits/xeon/phi/pdfs/Many-Core-
History Backrounder.pdf.

[80] ARM, “big.LITTLE Technology,” https://www.arm.com/products/processors/biglittleprocessing.php.

[81] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” Computer,
vol. 41, no. 7, pp. 33–38, July 2008.

[82] F. Pratas, P. Trancoso, A. Stamatakis, and L. Sousa, “Fine-grain parallelism
using multi-core, cell/be, and gpu systems: Accelerating the phylogenetic
likelihood function,” in 2009 International Conference on Parallel Processing, Sept
2009, pp. 9–17.

[83] L. Dagum and R. Menon, “Open MP: An Industry-Standard API for Shared-
Memory Programming,” IEEE Computational Science and Engineering, vol. 5,
no. 1, pp. 46–55, 1998.

[84] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel program-
ming with CUDA,” ACM Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008.

[85] Intel, “Parallel Studio,” http://software.intel.com/en-us/intel-parallel-studio-
home/.

[86] A. Ghuloum, E. Sprangle, J. Fang, G. Wu, and X. Zhou, “Ct: A flexible paral-
lel programming model for tera-scale architectures,” Intel Technology Journal,
vol. 11, no. 4, October 2007.

[87] A. Munshi, “OpenCL: Parallel computing on the GPU and CPU,” SIGGRAPH,
Tutorial, 2008.

[88] B. Rogers, G. Bell, X. Jiang, and Y. Solihin, “Scaling the bandwidth wall:
challenges in and avenues for CMP scaling,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture. ACM New York, NY, USA,
2009, pp. 371–382.

[89] H. Iwai, “Technology roadmap for 22nm and beyond,” in 2009 2nd International
Workshop on Electron Devices and Semiconductor Technology, June 2009, pp. 1–4.

[90] Intel, “Intel 64 and IA-32 Architectures Optimization Reference Manual,”
http://developer.intel.com/products/processor/manuals/, 2008.

110

Pan
ay

iot
is

Petr
ide

s

http://dx.doi.org/10.1177/109434209100500306

[91] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin, “Scaling
the bandwidth wall: challenges in and avenues for CMP scaling,” in ISCA ’09:
Proceedings of the 36th Annual International Symposium on Computer Architecture.
New York, NY, USA: ACM, 2009, pp. 371–382.

[92] A. Devies, “The future is fusion: The Industry-Changing Impact of Accelerated
Computing,” Advanced Micro Devices, 2008.

[93] J. Dehnert, B. Grant, J. Banning, R. Johnson, T. Kistler, A. Klaiber, and J. Matt-
son, “The Transmeta Code Morphinga Software: using speculation, recovery,
and adaptive retranslation to address real-life challenges,” in Proceedings of the
international symposium on Code generation and optimization: feedback-directed and
runtime optimization. IEEE Computer Society Washington, DC, USA, 2003,
pp. 15–24.

[94] A. Strey and M. Bange, “Performance Analysis of Intel’s MMX and SSE: A
Case Study,” Lecture Notes in Computer Science, pp. 142–147, 2001.

[95] J. Tyler, J. Lent, A. Mather, and H. Nguyen, “AltiVeca: Bringing vector tech-
nology to the PowerPCa processor family,” in IEEE Int. Conf. Performance,
Computing Communications, 1999, pp. 437–444.

[96] D. Upton and K. Hazelwood, “Heterogeneous Chip Multiprocessor Design
for Virtual Machines,” in 2nd Workshop on Software Tools for Multicore Systems
(STMCS), Mar. 2007.

[97] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. Keckler,
and C. Moore, “Exploiting ILP, TLP, and DLP with the polymorphous TRIPS
architecture,” ACM SIGARCH Computer Architecture News, vol. 31, no. 2, pp.
422–433, 2003.

[98] E. Ipek, M. Kirman, N. Kirman, and J. Martinez, “Core fusion: accommodating
software diversity in chip multiprocessors,” in Proceedings of the 34th Annual
International Symposium on Computer Architecture. ACM, 2007, p. 197.

[99] M. Qureshi, D. Thompson, and Y. Patt, “The V-way cache: Demand based
associativity via global replacement,” in Annual International Symposium on
Computer Architecture, vol. 32. IEEE Computer Society 1999, 2005, p. 544.

[100] H.-Y. McCreary, M. A. Broyles, M. S. Floyd, A. J. Geissler, S. P. Hartman, F. L.
Rawson, T. J. Rosedahl, J. C. Rubio, and M. S. Ware, “Energyscale for ibm
power6 microprocessor-based systems,” IBM Journal of Research and Develop-
ment, vol. 51, no. 6, pp. 775–786, Nov. 2007.

[101] D. Lilja, “Cache coherence in large-scale shared-memory multiprocessors: Is-
sues and comparisons,” ACM Computing Surveys (CSUR), vol. 25, no. 3, pp.
303–338, 1993.

[102] J. Smith and R. Nair, Virtual machines: versatile platforms for systems and processes.
Morgan Kaufmann Pub, 2005.

[103] F. Parienté, “Performance Analysis and Monitoring using Hardware Coun-
ters,” developers. sun. com/solaris/articles/hardware counters. html, 2001.

111

Pan
ay

iot
is

Petr
ide

s

[104] M. Becchi and P. Crowley, “Dynamic thread assignment on heterogeneous
multiprocessor architectures,” in Proceedings of the 3rd conference on Computing
frontiers. ACM, 2006, p. 40.

[105] M. Pettersson, “Linux x86 performance-monitoring counters driver,” 2001.

[106] J. Marathe, A. Nagarajan, and F. Mueller, “Detailed cache coherence charac-
terization for openmp benchmarks,” in ICS ’04: Proceedings of the 18th Annual
International Conference on Supercomputing. New York, NY, USA: ACM, 2004,
pp. 287–297.

[107] J. Hourd, C. Fan, J. Zeng, Q. Zhang, M. Best, A. Fedorova, and C. Mustard,
“Exploring Practical Benefits of Asymmetric Multicore Processors,” PESPMA
2009, pp. 55–60, 2009.

[108] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu: A unified
platform for task scheduling on heterogeneous multicore architectures,”
Concurrency and Computation: Practice and Experience, vol. 23, no. 2, pp.
187–198, Feb. 2011. [Online]. Available: http://dx.doi.org/10.1002/cpe.1631

[109] F. Bower, D. Sorin, and L. Cox, “The impact of dynamically heterogeneous
multicore processors on thread scheduling,” IEEE Micro-Institute of Electrical
and Electronics Engineers, vol. 28, no. 3, pp. 17–25, 2008.

[110] K. Papadopoulos, K. Stavrou, and P. Trancoso, “Helpercoredb: Exploiting
multicore technology to improve database performance,” in 2008 IEEE Inter-
national Symposium on Parallel and Distributed Processing, April 2008, pp. 1–11.

[111] K. Compton and S. Hauck, “Reconfigurable computing: a survey of systems
and software,” ACM Computing Surveys (CSUR), vol. 34, no. 2, pp. 171–210,
2002.

112

Pan
ay

iot
is

Petr
ide

s

http://dx.doi.org/10.1002/cpe.1631

	Introduction
	Motivation
	Problem Statement
	Applications Parallelism
	Performance Domains
	Clustered Many-Core Architectures
	Modular Virtualization Layer

	Thesis Statement
	Objectives and Contributions
	Goal
	Objective 1: Parallelism on a Clustered Many-Core Architecture
	Objective 2: Guarantee Performance
	Objective 3: Heterogeneous and NUMA-aware Scheduling
	Thesis Vision for the Future

	DSS Workload Parallelism on a Clustered Many-Core Architecture
	Motivation
	Related Work
	Intel SCC Clustered Many-Core Architecture
	On-Chip Shared Memory

	Database Workloads
	Algorithms Implementations
	Data-Parallel Sequential Scan (DPSS)
	Parallel Nested-Loop Join
	Hash Join
	Data Prefetching

	Experimental Setup
	Experimental Results
	Performance Evaluation
	Power and Performance Efficiency

	Summary

	Multi-Core Performance Domains for HPC Applications
	Motivation
	Related Work
	Virtual Machines, HPC and Performance Domains on Multi-core Processors
	Experimental Setup
	Experimental Results
	Summary

	Heterogeneous and NUMA-aware Scheduling
	Motivation
	Related Work
	Challenges of Clustered Many-Core Architectures
	Clustered Many-Core Architectures
	Non-Uniform Memory Latency
	Asymmetric Cores
	Aggregate Off-chip Bandwidth
	Understanding and Classifying Applications Behaviour

	Scheduling Policy
	Classification Phase
	Applications Scheduling
	Implementation Details

	Experimental Setup
	Experimental Results on the Intel SCC
	Simulating Clustered Many-core Architectures
	Scaling the Number of Cores within a Cluster
	Changing Cores Diversity within a Cluster

	Discussion
	Summary

	Modular Virtualization Layer
	Motivation
	Multi-core Architectures
	Static Multi-core Configurations
	Dynamic Multi-core Configurations

	Virtualization of Morphables Multi-Cores
	Hypervisor Mechanisms and Services

	Integration of the Proposed Techniques
	Summary

	Conclusions and Future Work
	Achieved Objectives and Contributions
	Open Research Questions
	Direction 1: Machine Learning Algorithms
	Direction 2: Dynamic Heterogeneous Many-Cores
	Direction 3: Fault-tolerance
	Direction 4: Morphable Many-Cores Runtime System

