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ABSTRACT

Ένα κατανεμημένο σύστημα ή δίκτυο μπορεί να θεωρηθεί ως ένα σύνολο υποσυστημάτων που 
μπορούν να μοιράζονται πληροφορίες μέσω διασυνδέσεων, οι οποίες αποτελούν μια 
κατευθυνόμενη τοπολογία επικοινωνίας. Τα κατανεμημένα συστήματα αποδεικνύονται ζωτικής 
σημασίας για την αποτελεσματικότητα της εκτέλεσης διαφόρων καθηκόντων στους τομείς του 
συνεταιριστικού ελέγχου, του κατανεμημένου συντονισμού και του ελέγχου των συστημάτων 
πολλαπλών χρηστών. Αυτή η διδακτορική διατριβή αφορά νέους κατανεμημένους αλγόριθμους 
για εξισορρόπηση βάρους σε κατευθυνόμενες (επικοινωνιακές) τοπολογίες. Μια κατευθυνόμενη 
τοπολογία (κατευθυνόμενος γράφος) με μη αρνητικά (ή θετικά) βάρη που αποδίδονται σε κάθε 
άκρη είναι ισορροπημένη εάν, για κάθε κόμβο, το άθροισμα των βαρών των εισερχόμενων 
άκρων ισούται με το άθροισμα των βαρών των εξωτερικών άκρων. Οι νέοι αλγόριθμοι που 
παρουσιάζονται σε αυτή τη διατριβή μπορούν να διευκολύνουν την ανάπτυξη στρατηγικών για 
την παραγωγή ισορροπημένων κατευθυνόμενων γράφων, με κατανεμημένο τρόπο, και να 
βρουν πολυάριθμες εφαρμογές στον συντονισμό και τον έλεγχο των συστημάτων πολλαπλών 
στοιχείων. 
Στο πρώτο μέρος αυτής της διπλωματικής εργασίας, αντιμετωπίζουμε το πρόβλημα της 
εξισορρόπησης βάρους σε ένα σύστημα πολλαπλών στοιχείων. Παρουσιάζουμε ένα νέο 
κατανεμημένο αλγόριθμο που λειτουργεί πάνω από μια στατική τοπολογία και λύνει το 
πρόβλημα εξισορρόπησης βάρους όταν τα βάρη περιορίζονται σε μη αρνητικούς ακέραιους 
αριθμούς. Ο προτεινόμενος αλγόριθμος αποδεικνύεται ότι συγκλίνει σε ένα γράφο με 
ισορροπημένο βάρος μετά από έναν πεπερασμένο αριθμό επαναλήψεων που αυστηρά 
υπολογίσαμε. Αυτός ο αλγόριθμος μπορεί επίσης να θεωρηθεί ως μια κατανεμημένη μέθοδος 
για την απόκτηση ενός συνόλου ακέραιων ροών που εξισορροπούν ένα δίκτυο ροής. 
Στο δεύτερο μέρος της εργασίας, εξετάζουμε το πρόβλημα της εξισορρόπησης βάρους σε ένα 
σύστημα πολλαπλών στοιχείων κάτω από μια κατευθυνόμενη (στατική) τοπολογία διασύνδεσης 
παρουσία περιορισμένων ή απεριόριστων καθυστερήσεων (απώλεια πακέτων) στους 
συνδέσμους επικοινωνίας. Συγκεκριμένα, παρουσιάζουμε έναν νέο κατανεμημένο αλγόριθμο ο 
οποίος επιλύει το πρόβλημα εξισορρόπησης βάρους σε πεπερασμένο αριθμό βημάτων με την 
παρουσία αυθαίρετων χρονικών καθυστερήσεων που μπορεί να επηρεάσουν τη μετάδοση σε μια 
συγκεκριμένη σύνδεση σε μια συγκεκριμένη χρονική στιγμή. Στη συνέχεια, παρουσιάζουμε μια 
έκδοση βασισμένη σε συμβάντα του προτεινόμενου πρωτοκόλλου, στον οποίο κάθε κόμβος 
αποφασίζει αυτόνομα όταν πρέπει να πραγματοποιηθούν ενημερώσεις επικοινωνίας και 
ελέγχου. Παρουσιάζοντας πτώσεις πακέτων πάνω από τους συνδέσμους επικοινωνίας, ο 
αλγόριθμος μπορεί να τροποποιηθεί για να συγκλίνει σε ένα σύνολο βαρών που σχηματίζουν 
ένα ισορροπημένο γράφημα μετά από έναν πεπερασμένο αριθμό επαναλήψεων (με πιθανότητα 
ένα). Σε όλες τις παραπάνω περιπτώσεις, ο προκύπτων ισορροπημένος γράφος φαίνεται να είναι
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μοναδικός και ανεξάρτητος από τον τρόπο με τον οποίο εμφανίζονται οι καθυστερήσεις ή οι 
σταγόνες πακέτων κατά την εκτέλεση του αλγορίθμου.  
Στο τρίτο μέρος αυτής της εργασίας εξετάζουμε το πρόβλημα της εξισορρόπησης βάρους σε 
ένα σύστημα πολλαπλών στοιχείων κάτω από μια στατική κατευθυνόμενη τοπολογία 
διασύνδεσης παρουσία κατώτερων και ανώτατων ορίων περιορισμού στα άκρα των άκρων. 
Παρουσιάζουμε έναν καινοτόμο κατανεμημένο αλγόριθμο για τη λήψη αποδεκτών και 
ισορροπημένων ακέραιων βαρών για την περίπτωση όταν υπάρχουν κατώτεροι και ανώτεροι 
περιορισμοί βάρους στους συνδέσμους επικοινωνίας. Σε σύγκριση με τους κατανεμημένους 
αλγορίθμους, ο πρόσθετος περιορισμός εδώ είναι ότι κάθε βάρος άκρου πρέπει να βρίσκεται 
μέσα σε ένα δεδομένο διάστημα, ενώ οι ανταλλαγές επικοινωνίας (αλλά όχι απαραίτητα η 
αντιστοίχιση βαρών) μεταξύ γειτονικών κόμβων θεωρούνται αμφίδρομες. 
Στο τέταρτο μέρος αυτής της εργασίας εξετάζουμε το πρόβλημα της εξισορρόπησης του 
βάρους σε ένα σύστημα πολλαπλών στοιχείων πάνω σε μια κατευθυνόμενη (στατική) 
τοπολογία διασύνδεσης, κάτω από περιορισμούς στις κατώτατες και ανώτερες τιμές στα άκρα 
των άκρων, παρουσία περιορισμένων ή απεριόριστων καθυστερήσεων (πτώση πακέτων) στις 
συνδέσεις επικοινωνίας. Συγκεκριμένα, παρουσιάζουμε έναν καινοτόμο κατανεμημένο 
αλγόριθμο ο οποίος επιλύει το πρόβλημα εξισορρόπησης του βάρους του σε ακέραιο αριθμό 
επαναλήψεων κάτω από κατώτερους και ανώτερους περιορισμούς βάρους πάνω στους 
συνδέσμους επικοινωνίας για την περίπτωση όπου αυθαίρετες χρονικές καθυστερήσεις 
επηρεάζουν τη μετάδοση σε συγκεκριμένο σύνδεσμο σε συγκεκριμένο χρόνο. Επιπλέον, 
παρουσιάζουμε μια έκδοση βασισμένη σε συμβάντα του προτεινόμενου πρωτοκόλλου, στον 
οποίο κάθε κόμβος αποφασίζει αυτομάτως όταν θα πρέπει να πραγματοποιηθούν ενημερώσεις 
επικοινωνίας και ελέγχου, έτσι ώστε οι προκύπτουσες εκτελέσεις δικτύου να έχουν ως 
αποτέλεσμα ένα γράφο με ισορροπημένο βάρος και όλοι οι κόμβοι να σταματήσουν τελικά να 
εκτελούν μεταδόσεις. Στη συνέχεια, επεκτείνουμε την εφαρμογή του προτεινόμενου 
αλγορίθμου στην περίπτωση όπου πιθανές πτώσεις πακέτων επηρεάζουν τους συνδέσμους 
επικοινωνίας.
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ABSTRACT

A distributed system or network can be viewed as a set of subsystems that can share

information via interconnection links, which form a generally directed communication

topology. Distributed systems prove to be of vital importance for the effectiveness

of performing various tasks in the areas of cooperative control, distributed coordina-

tion, and control of multicomponent systems. This doctoral thesis concerns novel dis-

tributed algorithms for weight balancing over directed (communication) topologies. A

directed topology (digraph) with nonnegative (or positive) weights assigned on each edge

is weight-balanced if, for each node, the sum of the weights of in-coming edges equals the

sum of the weights of out-going edges. The novel algorithms introduced in this thesis

can facilitate the development of strategies for generating weight balanced digraphs, in

a distributed manner, and find numerous applications in coordination and control of

multi-component systems.

In the first part of this thesis, we address the problem of integer weight balancing in

a multi-component system. We introduce a novel distributed algorithm that operates

over a static topology and solves the weight balancing problem when the weights are

restricted to be nonnegative integers. The proposed algorithm is shown to converge to

a weight balanced digraph after a finite number of iterations that we explicitly bound.

This algorithm can also be viewed as a distributed method for obtaining a set of integer

flows that balance a flow network.

In the second part of the thesis, we investigate the problem of integer weight balancing

in a multi-component system under a directed (static) interconnection topology in the

presence of bounded or unbounded delays (packet drops) in the communication links.

Specifically, we present a novel distributed algorithm which solves the integer weight

balancing problem in the presence of arbitrary (time-varying and inhomogeneous) de-

lays that might affect the transmission at a particular link at a particular time. Then,

we present an event-based version of the proposed protocol in which each node au-

tonomously decides when communication and control updates should occur. In the

presence of packet drops over the communication links, the algorithm can be modified

to converge to a set of weights that form a balanced graph after a finite number of

iterations (with probability one). In all the above cases, the resulting weight balanced

digraph is shown to be unique and independent on how delays or packet drops manifest

themselves during the execution of the algorithm.

In the third part of this thesis, we investigate the problem of integer weight balancing in a

multi-component system under a static directed interconnection topology in the presence

of lower and upper limit constraints on the edge weights. We present a novel distributed
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algorithm for obtaining admissible and balanced integer weights for the case when there

are lower and upper weight constraints on the communication links. Compared with

the distributed algorithms mentioned earlier, the additional constraint here is that each

edge weight has to lie within a given interval, whereas communication exchanges (but

not necessarily the assignment of weights) between neighboring nodes are assumed to

be bidirectional.

In the fourth part of this thesis we investigate the problem of integer weight balancing

in a multi-component system over a directed (static) interconnection topology, under

lower and upper limit constraints on the edge weights, in the presence of bounded or

unbounded delays (packet drops) in the communication links. Specifically, we present

a novel distributed algorithm which solves the integer weight balancing problem under

lower and upper weight constraints over the communication links for the case where

arbitrary (time-varying and inhomogeneous) time delays affect the transmission at a

particular link at a particular time. Furthermore, we present an event-based version of

the proposed protocol in which each node autonomously decides when communication

and control updates should occur so that the resulting network executions still result

in a weight balanced digraph and all nodes eventually stop performing transmissions.

Then, we extend the applicability of the proposed algorithm to the case where possible

packet drops affect the communication links.
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Chapter 1

Introduction

The successful operation of a distributed system or network depends on a number of basic

protocols to circulate and process data between its components. In distributed systems

whose functionality does not simply consist of transmitting data, but also involves con-

trol and decision tasks (e.g., workload balancing across available computing resources or

leader election), traditional routing protocols may be inadequate or insufficient. For this

reason, the design of algorithms and protocols for distributed computation has attracted

significant attention by the communication, control and computer science communities

over the past few decades (e.g., [1–6], and references therein).

A distributed system or network consists of a set of components (nodes) that can share

information with neighboring components via connection links (edges), forming a gener-

ally directed interconnection topology (digraph). The digraphs that describe the com-

munication and/or physical topology typically prove to be of vital importance for the

effectiveness of distributed strategies in performing various tasks [2, 7, 8]. In many ap-

plications, the assignment of weights to the edges of this graph in a way that forms a

balanced digraph (i.e., for each node, the sum of the weights on its incoming edges equals

the sum of the weights on its outgoing edges) is key to enabling the desired functional-

ity. For example, applications where balance plays a key role include network adaptation

strategies based on the use of continuous second order models [9], and distributed adap-

tive strategies to tune the coupling weights of a network based on local information of

node dynamics [10]. Weight balancing is also closely related to weights that form a

doubly stochastic digraph, which find applications in multi-component systems (such

as sensor networks) where one is interested in distributively averaging measurements at

each component. Doubly stochastic digraphs play a key role in networked control prob-

lems, including distributed averaging [8, 11–13] and distributed convex optimization

[14–16]. In particular, weight-balance is important in the well-studied case where a set

of components (nodes) want to distributively average their individual measurements (in

this scenario, each node provides a local measurement of global quantity). One approach

1
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Introduction 2

towards average consensus is to follow a linear iteration, where (instead of routing the

value of each node to all other nodes) each node repeatedly updates its value to be a

weighted linear combination of its own value and the values of its neighbouring nodes.

The choice of the weights has a relevant effect on how the interconnection behaves and

whether average consensus is reached. For example, it has been shown that nonnegative

weights that form a primitive doubly stochastic matrix (and thus also balance the graph)

is a sufficient condition for asymptotic average consensus [17, 18].

Because of the numerous algorithms available in the literature that use of weight as-

signments that are balanced or even form a doubly stochastic matrix (possibly with self

weights for each node), an important research question is to characterize when a digraph

can be given such edge weight assignments. In this thesis we focus on nonzero weight

assignments. In addition to its theoretical interest, the consideration of nonzero weight

assignments is also relevant from a practical perspective, as the use of the maximum

number of edges generally leads to higher algebraic connectivity [19], which in turn af-

fects positively the rate of convergence [20–23] of the algorithms that are to be executed

over doubly stochastic digraphs.

Once a characterization of weight-balanceable (doubly stochasticable) digraphs is avail-

able, the next natural question is the design of distributed strategies that allow the

components to find the appropriate weight assignments so that the overall interaction

digraph is weight balanced or doubly stochastic. Therefore, we present novel distributed

control algorithms to address these challenges.

1.1 Literature Review

Previous work on weight balancing consists of the following:

� In [18, 24] the authors introduce a synchronized distributed strategy on a directed

communication network in which each agent provably balances its incoming and

outgoing edge weights in finite time. In this algorithm, each individual agent

can send a message to one of its out-neighbours and receive a message from its in-

neighbours. Furthermore, as explained in [18, 24], once weight-balance is achieved,

the nodes can easily obtain weights that form a doubly stochastic matrix in a dis-

tributed manner (in order to use them, for instance, to asymptotically reach av-

erage consensus). [The proposed algorithm achieves this weight assignment under

the assumption that individual agents can add self-weights to the structure of the

digraph.]

� In [25] the authors introduce a distributed algorithm in which each agent is as-

sumed to be able to distinguish the information coming from the other agents
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according to the identifier of the sender. Also, a global stopping time is set at

which the iterations stop to perform weight-balancing.

� In [26] the authors introduce a synchronized distributed strategy on a directed

communication network in which each agent provably balances its incoming and

outgoing edge weights in an asymptotic fashion. In this algorithm each individual

agent can send a message to all of its out-neighbours and receive messages from

all its in-neighbours. The authors show that the proposed distributed algorithm

guarantees geometric convergence rate. The simplicity of the algorithm has allowed

its extension to asynchronous operation, which is a valuable contribution given that

in reality there are inevitable delays in the exchange of information) as well as its

continuous-time analog, that guarantees average consensus without the need to

obtain a doubly stochastic matrix.

� In [27] the authors introduce a synchronized distributed strategy on a directed

communication network in which each agent provably balances its incoming and

outgoing edge weights in an asymptotic fashion. In this algorithm, each individual

agent is assumed to be able to send a messages to all of its out-neighbours and

receive messages from all its in-neighbours. Specifically, each agent calculates a

fraction λ which has as numerator the sum of incoming weights and as denominator

the sum of outgoing weights, and then changes the weights of its incoming and

outgoing links accordingly.

1.2 Motivation and Applications

The study of weight-balanced graphs/matrices has proven to play an important role

in the analysis and convergence of distributed coordination algorithms since they find

numerous applications in distributed adaptive control or synchronization in complex

networks. The main applications of weight-balanced graphs/matrices are shown below:

Balancing of Physical Quantities: In [17] a traffic-flow problem is studied consisting

of n junctions and m one-way one way streets. Such an application shows that the goal

of ensuring a smooth traffic flow is associated with balanced weights on an appropri-

ately defined digraph. Weight balanced digraphs appear also in the design of stable

flocking algorithms for agents with significant inertial effects, where weight-balance al-

lows for the decoupling of the centroid dynamics from the internal group formation [28].

Additionally, examples of applications where balance plays a key role include network

adaptation strategies based on the use of continuous second order models [9], and dis-

tributed adaptive strategies to tune the coupling weights of a network based on local

information of node dynamics [10]. Weight balancing can also be associated with the

matrix balancing problem in network optimization which is, in turn, associated with
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numerous applications, such as predicting the distribution matrix of telephone traffic

[29]. Furthermore, the weight balancing problem is related to matrix scaling problems

which have been addressed in the context of nonnegative matrices [27]. One of the early

motivations for the matrix scaling problem was the desire to start from the stochastic

matrix of a Markov chain and obtain a scaled version of it that is doubly stochastic

and adheres to the sparsity structure of the original one. Many applications of matrix

scaling can also be found in economy or accounting models (where it is important to

balance the flow-of-funds), urban planning, statistics, and demography.

Doubly Stochastic Weights: In all of the above applications, weights are associated

with the physical interactions in a distributed control system, and are assigned to edges

of the physical digraph. There are also many applications where weight balancing plays

a significant role in the cyber digraph of a given distributed control system. In particu-

lar, weight balancing is closely related to weights that form a doubly stochastic digraph,

which find applications in multi-component systems (such as sensor networks) where

one is interested in distributively averaging measurements at each component. Doubly

stochastic digraphs play a key role in networked control problems, including distributed

averaging [8, 11–13, 30] and distributed convex optimization [14–16]. Convergence in

gossip algorithms also relies on the structure of doubly stochastic digraphs, see [20, 21].

In particular, weight-balance is important in the well-studied case where a set of com-

ponents (nodes) want to distributively average their individual measurements (in this

scenario, each node provides a local measurement of global quantity). One approach

towards average consensus is to follow a linear iteration, where (instead of routing the

value of each node to all other nodes) each node repeatedly updates its value to be a

weighted linear combination of its own value and the values of its neighbouring nodes.

Asymptotic average consensus is then guaranteed (i.e., the nodes asymptotically reach

consensus to the average of their initial values [2, 8, 31, 32]) if the weights used in the

linear iteration form a doubly stochastic matrix (which correspond to a balanced di-

graph) [31]. The choice of the weights is important in how the interconnection behaves

and whether average consensus is reached. For example, it has been shown that nonneg-

ative weights that form a primitive doubly stochastic matrix (and thus also balance the

graph) is a sufficient condition for asymptotic average consensus as long as the digraph is

strongly connected [17, 18]. Average consensus is a special case of the consensus problem

which has received significant attention from the computer science community [1] and

the control community (see [2, 7, 13]), due to its applicability to diverse areas, includ-

ing multi-component systems, cooperative control [33], modeling of flocking behavior in

biological and physical systems (e.g., [2, 7, 8]) and estimation and tracking [34].

Flow Balancing: A weighted digraph that has a real or integer value (called the edge

weight) associated with each edge is also similar to a flow network where each edge

receives a flow that typically cannot exceed a given capacity (or, more generally, has to
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lie within a given interval). Flows must satisfy the restriction that the amount of flow

into a node equals the amount of flow out of it, unless the node is a source, which has

only outgoing flow, or a sink, which has only incoming flow. Thus, the weight-balancing

problem we deal with in this thesis can also be viewed as the problem of producing a

feasible circulation in a directed graph with upper and lower flow constraints [35]. [In

such settings, a circulation in a directed graph is an assignment of nonnegative weights

to the cycles of the graph and is called feasible if the flow in each edge (i.e., the sum of

the weights of the cycles containing this edge) lies between the corresponding upper and

lower flow constraints.] Additionally, the problem we deal with can be also viewed as a

particular case of the standard network flow problem (see, e.g., [36]), where there is a

cost associated to the flow on each link, and the objective is to minimize the total cost

subject to constraints on the flows. Moreover, flow algorithms find further applications

in a variety of other problems, like the maximum flow problem [37], auction algorithms

[38], and energy minimization [39].

Balancing with Integer Weights: Digraphs that are balanced with integer weights

find numerous applications in a variety of problems like swarm guidance [40], fractional

packing [41, 42], matching in bipartite graphs [43], and edge-disjoint paths [44].

1.3 Main Contributions

As stated previously, this thesis focuses on the development of distributed novel al-

gorithms that facilitate the development of strategies for generating weight balanced

digraphs. The main contributions of this thesis are as follows:

� In Section 3.1 we introduce a novel distributed algorithm which achieves integer

weight balancing in a multi-component system. We present its formal description

along with an illustrative example. Then, we show that the proposed distributed

algorithm converges to a weight balanced digraph after a finite number of iter-

ations, for which we obtain explicit bounds. Finally, we present examples and

simulations for the distributed algorithm.

� In Section 4.3 we introduce a novel distributed algorithm which achieves integer

weight balancing in a multi-component system, in the presence of time delays over

the communication links. We present its formal description, along with an illus-

trative example, and we show that the proposed distributed algorithm converges

to a weight balanced digraph after a finite number of iterations in the presence of

bounded time delays over the communication links. Then, in Section 4.4, we dis-

cuss an event-triggered version of the proposed distributed algorithm and we show

that it results in a weight balanced digraph after a finite number of iterations in
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the presence of arbitrary (time-varying, inhomogeneous) but bounded time delays

over the communication links.

� In Section 4.5 we show that the proposed distributed algorithm presented in Sec-

tion 4.3 is also able to converge (with probability one) to a weight balanced digraph

in the presence of unbounded delays (packet drops).

� In Section 5.3 we introduce a novel distributed algorithm which achieves integer

weight balancing in a multi-component system, in the presence of specified lower

and upper limit constraints on the edge weights. We present its formal description

along with an illustrative example. Then, we show that as long as the conditions

hold, then the proposed distributed algorithm converges to a weight balanced

digraph after a finite number of iterations. Finally, we present examples and

simulations for the proposed distributed algorithm.

� In Section 6.3 we introduce a novel distributed algorithm which achieves integer

weight balancing in a multi-component system under specified lower and upper

limit constraints on the edge weights, in the presence of time delays over the

communication links. We show that as long as the conditions hold, then the

proposed distributed algorithm converges to a weight balanced digraph after a

finite number of iterations. In Section 6.4, we discuss an event-triggered extension

regarding the operation of the aforementioned distributed algorithm and we show

that it results in a weight balanced digraph after a finite number of iterations.

� In Section 6.5 we introduce a novel distributed algorithm which achieves integer

weight balancing in a multi-component system under specified lower and upper

limit constraints on the edge weights, in the presence of unbounded delays (packet

drops) over the communication links. We show that as long as the conditions hold,

then the proposed distributed algorithm converges to a weight balanced digraph

after a finite number of iterations.

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2, we present some basic notions and

notation needed for our development. Then we present the problem formulation and

we discuss a possible solution in a centralized fashion. In Chapter 3, we introduce the

distributed algorithm which achieves balance with integer weights after a finite number

of iterations. In Chapter 4, we present the distributed algorithm which achieves integer

weight balancing in the presence of bounded delays after a finite number of iterations.

We also analyze the case of unbounded delays (packet drops) in the communication

links and discuss an event-triggered version of the algorithm (that can be used to avoid

APOSTOLO
S I. 

RIKOS



Introduction 7

unnecessary transmissions). In Chapter 5, we present the conditions for the existence of

a set of integer weights (within the allowable intervals) that balance a weighted digraph.

Then, we present the distributed algorithm which achieves integer weight balancing in a

multi-component system, in the presence of specified lower and upper limit constraints

on the edge weights. In Chapter 6, we present the distributed algorithm, which achieves

integer weight balancing under lower and upper limit constraints on the edge weights

in the presence of bounded delays after a finite number of iterations. We also analyze

the case of unbounded delays (packet drops) in the communication links and discuss

an event-triggered version of the algorithm (that can be used to avoid unnecessary

transmissions). Finally, in Chapter 7 we conclude this thesis with a brief summary and

remarks about future work.
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Chapter 2

Preliminaries, Problem Statement

and Centralized Approach

In this chapter, we first introduce some key notions and notation in Section 2.1. Then,

we state and discuss the problem under consideration in Section 2.2 and present a

centralized approach of the problem in Section 2.3.

2.1 Graph-Theoretic Notions

The sets of real, integer and natural numbers are denoted by R, Z and N, respectively.

The symbol N0 denotes the set of nonnegative integers while the positive part of Z is

denoted by the subscript + (e.g. Z+). Vectors are denoted by small letters whereas

matrices are denoted by capital letters. A matrix with nonnegative elements is called

nonnegative matrix and is denoted by A ≥ 0 while a matrix with positive elements is

called positive matrix and is denoted by A > 0.

A distributed system whose components can exchange masses of certain quantities of

interest (weights or flows) via (possibly directed) links, can conveniently be captured by

a digraph (directed graph). A digraph of order n (n ≥ 2), is defined as Gd = (V, E),

where V = {v1, v2, . . . , vn} is the set of nodes and E ⊆ V × V − {(vj , vj) | vj ∈ V} is the

set of edges. A directed edge from node vi to node vj is denoted by (vj , vi) ∈ E , and

indicates that vj can receive information or physical quantities from vi. We will refer to

the digraph Gd as the physical topology.

A digraph is called strongly connected if for each pair of vertices vj , vi ∈ V, vj 6= vi,

there exists a directed path from vi to vj , i.e., we can find a sequence of vertices vi ≡
vl0 , vl1 , . . . , vlt ≡ vj such that (vlτ+1 , vlτ ) ∈ E for τ = 0, 1, . . . , t − 1. All nodes that

have edges to node vj are said to be in-neighbors of node vj and belong to the set

N−j = {vi ∈ V | (vj , vi) ∈ E}. The cardinality of N−j is called the in-degree of node

8
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Preliminaries, Problem Statement and Centralized Approach 9

vj and is denoted by D−j . The nodes that have edges from node vj comprise its out-

neighbors and are denoted by N+
j = {vl ∈ V | (vl, vj) ∈ E}. The cardinality of N+

j is

called the out-degree of vj and is denoted by D+
j . We also let Nj = N+

j ∪N−j denote the

neighbors of node vj , and Dj = D+
j +D−j denote the total degree of node vj . A weighted

digraph Gd = (V, E ,F) is a digraph in which each edge (vj , vi) ∈ E is associated with a

real or integer value fji called the edge weight; matrix F = [fji] with value fji at its jth

row, ith column position (where fji = 0 if (vj , vi) does not belong in E).

Definition 1. Given a weighted digraph Gd = (V, E ,F) of order n, the total in-weight

of node vj is denoted by S−j and is defined as S−j =
∑

vi∈N−j
fji, whereas the total

out-weight of node vj is denoted by S+j and is defined as S+j =
∑

vl∈N+
j
flj .

Definition 2. Given a weighted digraph Gd = (V, E ,F) of order n, the weight imbalance

of node vj is denoted by xj and is defined as xj = S−j − S+j .

Definition 3. Given a weighted digraph Gd = (V, E ,F) of order n, the total imbalance

(or absolute imbalance) of digraph Gd is denoted by ε and is defined as ε =
∑n

j=1 |xj |.

Definition 4. A weighted digraph Gd = (V, E ,F) is called weight balanced if its total

imbalance (or absolute imbalance) is equal to 0, i.e., ε
4
=
∑n

j=1 |xj | = 0.

2.2 Problem Statement for Weight Balancing

We are given a strongly connected digraph Gd = (V, E), with a set of nodes V =

{v1, v2, . . . , vn} and a set of edges E ⊆ V × V − {(vj , vj) | vj ∈ V}. We want to de-

velop a distributed algorithm that allows the nodes to iteratively adjust the weights on

their edges so that they eventually obtain a set of integer weights {fji | (vj , vi) ∈ E}
that satisfy the following:

1. fji ∈ N for every edge (vj , vi) ∈ E ;

2. fji = 0 if (vj , vi) /∈ E ;

3. S+j = S−j for every vj ∈ V.

The algorithms we develop in this thesis are iterative, and we use k to denote the

iteration. For example, S+j [k] will denote the value of the total out-weight of node vj at

time instant k, where k ∈ N0.

In Figure 2.1 we can see an example of a digraph which satisfies the conditions presented

above. As we can see, for every node v1, v2, v3, v4 and v5 the total in-weight (equal

to 4, 4, 6, 4 and 4 respectively) is equal to the total out-weight. Thus, the digraph in

Figure 2.1 is weight balanced.
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Figure 2.1: Example of weight balanced digraph.

2.3 Centralized Algorithm for Weight Balancing

We now introduce an algorithm which solves the integer weight balancing problem over

a multi-component system in a centralized fashion.

The centralized algorithm takes as input a strongly connected digraph Gd = (V, E). It

initializes the weights of all edges to unity and then iteratively performs the following

steps until the graph is balanced:

1. Computes the weight imbalance of each node.

2. Pick one node with positive imbalance and one with negative imbalance; if there

is more than one pair of nodes satisfying such a condition, any pair can be chosen

(something like that).

3. Find a path in the digraph from the node with positive imbalance to the node

with negative imbalance (this is always possible as long as the graph is strongly

connected).

4. Increase the weights of all the edges in the path by the value of the weight imbalance

of the positively imbalanced node.

We discuss why the algorithm results in a weight balanced graph (and how many steps

it takes to do so), after we describe the algorithm more formally.

2.3.1 Formal Description of Centralized Algorithm

A formal description of the proposed centralized algorithm is presented in Algorithm 1.
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Algorithm 1 Centralized balancing with integer weights

Input
A strongly connected digraph Gd = (V, E) with n = |V| nodes and m = |E| edges.
Initialization
Set k = 0; each node vj ∈ V sets its out-going edge weights as

flj [0] =

{
0, if vl /∈ N+

j ,

1, if vl ∈ N+
j .

Iteration
For k = 0, 1, 2, . . . , each node vj ∈ V does the following:

1. It computes its weight imbalance xj [k] = S−j [k]− S+j [k].

2. It selects one node v+ with positive imbalance br+ and one node v− with negative
imbalance br− (e.g., it selects the node with the largest positive imbalance and the
node with the smallest negative imbalance, respectively).

3. It finds a non-cyclic path v+ = vj0 , vj1 , · · · , vjt = v− from v+ to v−.

4. It increases the weight on each edge on the path, which connects v+ to v−, by br+,
i.e.,

fje+1,je [k + 1] = fje+1,je [k] + br+

for e = 0, 1, · · · , t− 1. (All the other weights are left unchanged.)

5. It repeats (increases k to k + 1 and goes back to Step 1).

2.3.2 Illustrative Example of Centralized Algorithm

We first illustrate the centralized algorithm. We then explain why it results in a weight

balanced digraph after a finite number of iterations (bounded by n− 1 = |V| − 1 in the

worst-case).

Consider the digraph Gd = (V, E) in Figure 2.2, where V = {v1, v2, · · · , v7}, E =

{e1, e2, · · · , e13}, E ⊆ V × V − {(vj , vj) | vj ∈ V}. The weight on each edge is ini-

tialized to fji[0] = 1 for (vj , vi) ∈ E (otherwise fji[0] = 0). As a first step, we compute

the weight imbalance xj [0] = S−j [0]− S+
j [0] for each node (this is shown in Figure 2.2).

Once we compute the imbalance of each node, the centralized algorithm selects (ran-

domly or otherwise) one node with positive imbalance, say v5, and one node with negative

imbalance, say v7. A path from node v5 to node v7 is selected (e.g., the path v5, v7) and

the weights of all the edges in the path are increased by the value of the weight imbal-

ance of the positively imbalanced node v5 (namely, by the value of the weight imbalance

x5 = 2), as shown in Figure 2.3.

At the next iteration, after the increase of the weights of all the edges of the path v5, v7,

we recalculate the imbalance for each node vj as xj [1] = S−j [1]−S+
j [1]. This can be seen

in Figure 2.4.
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Figure 2.2: Weighted digraph with initial weights and initial imbalance for each node.
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Figure 2.3: Selection of a path between a node with positive imbalance and a node
with negative imbalance.
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Figure 2.4: Calculation of imbalance for each node.

At the next iteration, one node with positive imbalance, say v7, and one node with

negative imbalance, say v4 are selected. A path from node v7 to node v4 is created (e.g.,

the path v7, v4) and the weights of all the edges in the path are increased by the value

of the weight imbalance of the positively imbalanced node v7 (namely, by the value of

the weight imbalance x4 = 1), as shown in Figure 2.5.
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Figure 2.5: Selection of a path between a node with positive imbalance and a node
with negative imbalance.

The process is repeated until the graph becomes weight balanced. In this particular

example, this occurs after four iterations and the final weights are shown in Figure 2.6.
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Figure 2.6: Resulting weight balanced digraph.

We will next explain why the proposed centralized algorithm results in a weight balanced

digraph after a finite number of iterations (bounded by n− 1 in the worst-case).

2.3.3 Bound on Number of Iterations of Centralized Algorithm

Notice that each edge appears as the incoming edge of exactly one node and as the

outgoing edge of exactly one (other) node. Thus, we immediately have that

n∑
j=1

xj [k] = 0 , for all k .

This means that if there is a node with positive imbalance at Step 2 of the iteration,

then there has to be at least one node with negative imbalance (and vice-versa). Also,

notice that the adjustment of weights in Step 3 of the iteration, achieves the following:

1. It balances the node v+ that had positive imbalance.
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2. It does not change the imbalance of all other intermediate nodes vj1 , · · · , vjt−1 in

the path v+ = vj0 , vj1 , · · · , vjt = v− from v+ to v−.

3. It increases the imbalance of the node v− that had negative imbalance.

Note that if a node starts balanced or becomes balanced during any iteration, it remains

balanced for the remainder of the algorithm (because Steps 1, 2, and 3 do not affect

the imbalance of intermediate nodes in the path that is selected, and only these nodes

can be balanced). Furthermore, at each iteration, at least one node becomes balanced

(namely, the node with positive imbalance that is picked at Step 1). Note that it is

possible for two nodes to become balanced at each iteration (if the node with negative

imbalance that is picked happens to also become balanced; in fact, this is the case at the

last iteration). Thus, it is easy to see that the algorithm takes at most n− 1 iterations

to reach a set of weights that forms a weight balanced graph.

Another easily obtainable bound on the number of iterations is the following: if we

think of the absolute balance of the graph at iteration k as ε[k] =
∑n

j=1 |xj [k]|, then each

iteration decreases this imbalance by at least 2 (i.e.,
∑n

j=1 |xj [k+ 1]| ≤∑n
j=1 |xj [k]|−2)

unless the graph is balanced. [Note that
∑n

j=1 |xj [0]| is necessarily an even number

(because the sum of positive balances is equal to the negative of the sum of the negative

imbalances, and both of them are integer numbers). Also, each iteration decreases the

sum of the positive imbalances by at least 1; thus, the absolute sum of the negative

imbalances also has to decrease by at least 1 as well.]

The above discussion implies the proposition below.

Proposition 1. The number of iterations T required by the proposed centralized algo-

rithm to balance a digraph Gd = (V, E) satisfies T ≤ min(n− 1, 12
∑n

j=1 |xj [0]|).

2.3.4 Simulation Study

In this section, we present simulation results for random graphs of size n = 20 and 50

nodes.

Figure 2.7 shows the case of a random digraph of n = 20 nodes. Here we can see that

the proposed centralized algorithm converges to a weight balanced digraph after a finite

number of iterations.

Figure 2.8 shows the same case as Figure 2.7 with the difference that the network

consists of 50 nodes. The increase in network size does not cause any major changes in

performance and the conclusions are the same as in Figure 2.7.APOSTOLO
S I. 
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Figure 2.7: Total imbalance plotted against the number of iterations for a random
digraph of 20 nodes when the proposed centralized algorithm is executed.
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Figure 2.8: Total imbalance plotted against the number of iterations for a random
digraph of 50 nodes when the proposed centralized algorithm is executed.APOSTOLO
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Chapter 3

Distributed Weight Balancing

In this chapter, we present a novel distributed algorithm which deals with the problem

of balancing a weighted digraph.

This chapter is organized as follows. In Section 3.1 we introduce a novel distributed

algorithm which achieves integer weight balancing in a multi-component system. In

Sections 3.1.1 - 3.3 we present a formal description of the proposed distributed algorithm

and demonstrate its performance via an illustrative example. Then, in Section 3.2, we

show that the proposed distributed algorithm converges to a weight balanced digraph

after a finite number of iterations and we calculate an explicit bound on the number of

iterations required. In Section 3.3 we present simulation results and comparisons for the

proposed distributed algorithm. The chapter is concluded in Section 3.4.

3.1 Distributed Algorithm for Weight Balancing

In this section we present a distributed algorithm (Algorithm 2) in which the nodes

iteratively adjust the positive integer weights of their outgoing edges, such that the

digraph becomes weight balanced after a finite number of iterations. We assume that

each node observes but cannot set the weights of its incoming edges, and based on these

weights it adjusts the weights on its outgoing edges. It is required that the weights on

the outgoing edges of each node can be adjusted differently if necessary. (Note that

this requirement is not present in [45] where each node sets equal weights to all of its

outgoing edges; when restricting ourselves to integer weights, however, this requirement

becomes necessary for balancing to be possible, see, for example, [46]).

Given a strongly connected digraph Gd = (V, E), Algorithm 2 has each node vj ∈ V
initialize the weights of all of its outgoing edges to n (or some constant greater than

or equal to unity1). Then, it enters an iterative stage where each node vj performs the

1It will become evident from our analysis that this constant does not have to be the same for all
nodes (and its value does not affect the termination of the algorithm), but for simplicity we take it to
be n in this analysis. Note that if all edge weights were initialized to 1, the execution of Algorithm 2

16
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following steps (a formal description of Algorithm 2 appears later):

1. The node computes its weight imbalance.

2. If the node has positive imbalance, it increases the integer weights of its outgoing

edges so that it becomes weight balanced (assuming no further changes by its in-

neighbors on its incoming edges). Specifically, the outgoing edges are assigned, if

possible, equal integer weights; otherwise, if this is not possible, they are assigned

integer weights such that the maximum difference among them is equal to unity.

This means that some of the outgoing edges of each node might get larger weights

(by unity) than others, and we assume that each node selects a priori a fixed

(possibly randomly selected) ordering of its out-neighbors that determines the

precedence with which outgoing edges get higher weight.2

3. If the node has negative imbalance, it decreases (if possible) the integer weights

of its outgoing edges so that i) they have value greater or equal to unity, and ii)

its weight imbalance becomes equal to −1 (assuming no further changes by its

in-neighbors on its incoming edges). As in Step 2 above, the outgoing edges are

assigned, if possible, equal integer weights; otherwise, if this is not possible, they

are assigned integer weights (greater or equal to unity) such that the maximum

difference among them is equal to unity (again, we assume each node determines

which of its outgoing edges get higher weight based on some a priori fixed ordering

of its out-neighbors).

For simplicity, we assume that during the execution of the distributed algorithm, the

nodes update the weights on their outgoing edges in a synchronous manner, but it should

be evident from our proof that the algorithm can also be extended to asynchronous

settings where, during each iteration, a node is selected (randomly or otherwise) to

update the weights on its outgoing edges based on its imbalance at that point.3

3.1.1 Formal Description of Distributed Algorithm

A formal description of the proposed distributed algorithm is presented in Algorithm 2.

is identical to the execution of the algorithm in [47] because nodes with negative imbalance never take
any action.

2The exact ordering is not critical and, in fact, other strategies are possible as long as they keep some
balance among weights. For example, the algorithm proposed in [46], by having each node with positive
imbalance increase the weight of the outgoing edge with minimum weight, also imposes some sort of
balance among the weights on its outgoing edges. This algorithm has been shown to complete in finite
time, but a explicit bound on the number of steps required has not been obtained.

3A key requirement in that case is that, as long as the graph is not balanced, no node is completely
excluded from selection.
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Algorithm 2 Distributed balancing with integer weights

Input
A strongly connected digraph Gd = (V, E) with n = |V| nodes and m = |E| edges.
Initialization
Set k = 0; each node vj ∈ V sets its outgoing edge weights as

flj [0] =

{
0, if vl /∈ N+

j ,

n, if vl ∈ N+
j .

Node vj also orders its out-neighbors in the set N+
j in some random (but fixed) order.

Iteration
For k = 0, 1, 2, . . . , each node vj ∈ V does the following:

1. It computes its weight imbalance xj [k] = S−j [k]− S+j [k].

2. If xj [k] > 0, it sets the values of the weights on its outgoing edges as flj [k + 1] =⌊
S−j [k]

D+
j

⌋
, ∀vl ∈ N+

j . Then, it chooses the first S−j [k]−D+
j

⌊
S−j [k]

D+
j

⌋
of its outgoing

edges (according to the ordering of its out-neighbors chosen during initialization),
and increases their value by 1 so that |flj − fhj | ≤ 1,∀vl, vh ∈ N+

j .

3. If xj [k] < −1, it does the following:

(i) If

⌊
S−j [k]

D+
j

⌋
≥ 1, then node vj sets the values of the weights on its outgoing edges

as flj [k+1] =

⌊
S−j [k]

D+
j

⌋
, ∀vl ∈ N+

j . Then, it chooses the first 1+S−j [k]−D+
j

⌊
S−j [k]

D+
j

⌋
of its outgoing edges (according to the ordering of its out-neighbors chosen during
initialization), and increases their weight by 1 so that |flj−fhj | ≤ 1,∀vl, vh ∈ N+

j .

(ii) If

⌊
S−j [k]

D+
j

⌋
= 0, then node vj sets the values of the weights on its outgoing

edges as flj [k + 1] = 1.

4. It repeats (increases k to k + 1 and goes back to Step 1).

3.1.2 Illustrative Example of Distributed Algorithm

Consider the digraph Gd = (V, E) in Figure 3.1, where V = {v1, v2, . . . , v7}, E =

{e1, e2, . . . , e13}, E ⊆ V × V − {(vj , vj) | vj ∈ V}. The weight on each edge is initialized

to flj [0] = 7 for (vl, vj) ∈ E (otherwise flj [0] = 0).

As a first step, each node computes its weight imbalance xj [0] = S−j [0] − S+j [0] (the

corresponding imbalances are shown in Figure 3.1). Algorithm 2 requires each node

with positive imbalance to increase the value of the weights on its outgoing edges by

equal integer amounts (or with maximum difference between them equal to unity), so

that the total increase makes the node balanced. This ensures that weights remain

strictly positive and S+j [k + 1] = S−j [k]. In particular, the balance of node vj will

become zero, unless the weights of its incoming edges are changed by its in-neighbors.

In this case, the nodes that have positive imbalance (equal to 14 and 7, respectively)
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Figure 3.1: Weighted digraph with initial weights and initial imbalance for each node.

are nodes 5 and 6, which distribute their imbalance to their outgoing edges as shown in

Figure 3.2. For example, node 5 has imbalance x5[0] = 14 and sets f65[1] = 7 + 7 = 14

and f75[1] = 7 + 7 = 14.

v6 v7

v3 v5 v4

v1 v2

x1 = − 3 x2 = − 3

x3 = 6 x4 = −4

x5 = − 6

x6 = 4 x7 = 6

7

7

7 − 3 7 7

7 − 3 7 − 3

7 + 7 7 + 7

7 − 3

7 − 3

7 − 3

7 + 7

Figure 3.2: Distribution of weights to outgoing edges by nodes with positive imbal-
ance.

The distributed algorithm also requires each node with negative imbalance to decrease

the value of the weights on its outgoing edges by equal integer amounts (or with max-

imum difference between them equal to unity), so that i) the weights are at least 1

and ii) the total decrease makes the nodes imbalance equal to −1. This ensures that

weights remain strictly positive and S+j [k + 1] = S−j [k] + 1. The balance of node vj

remains negative at −1, unless the weights of its incoming edges are changed by its

in-neighbors. In this case, the nodes that have negative imbalance (all equal to −7) are

nodes 3, 4 and 7, which distribute their imbalance to their outgoing edges as shown in

Figure 3.2. For example, node 7 has imbalance x7[0] = −7 and sets f67[1] = 7 − 3 = 4

and f47[1] = 7− 3 = 4.

In the next iteration, after the integer weight update on the outgoing edges of each node

with positive (or negative) imbalance at k = 0, the nodes recalculate their imbalance as
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xj [1] = S−j [1] − S+j [1], and the process is repeated. After a finite number of iterations,

which we explicitly bound in the next section, we reach the weighted digraph with the

integer weights shown in Figure 3.3. In this example, this occurs after 17 iterations.

v6 v7

v3 v5 v4

v1 v2

x1 = 0 x2 = 0

x3 = 0 x4 = 0

x5 = 0

x6 = 0 x7 = 0

9

7

11 9 6

10 3

14 14

4

7

7

21

Figure 3.3: Weight balanced digraph after 17 iterations.

Remark 3.1. Note that Algorithm 2 resembles [48] in many ways: when a node has

positive imbalance, it increases the weights on its outgoing edges; whereas when it has

negative imbalance, it decreases the weights on its outgoing edges. The restriction to

integers, however, creates some “anomalies” that need to be addressed. In particular,

one has to worry about the following cases:

(i) When the imbalance is positive but not divisible by the out-degree of the node, it

is not possible to increase the weights of the outgoing edges by equal integer amounts.

In order to keep the weights on its outgoing edges integer-valued, the node makes the

needed adjustments while allowing the weights to differ by at most 1.

(ii) The same applies when the imbalance is negative (in which case the weights have

to decrease). An obvious additional constraint in this case is the fact that the weights

have to be kept strictly positive.

(iii) An interesting feature of Algorithm 2 is that when the imbalance of a node is

negative, the node adjusts the weights on its outgoing edges so that it achieves an

imbalance of −1 (not zero) assuming no changes in their incoming weights. The reasons

for this choice become clear in the proof of termination later on.

Remark 3.2. It is worth pointing out that Algorithm 2 is similar to the weight balancing

algorithm presented in [47], but allows nodes to adjust the weights of their outgoing

edges regardless of whether they have positive or negative imbalance; this means that

Algorithm 2 will typically converge faster than the algorithm presented in [47] (though

in the worst case they will take a similar number of iterations to converge).
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3.2 Execution Time Analysis of Distributed Algorithm

Herein, we calculate an explicit bound on the number of iterations required, in the

worst-case, for the given digraph to become balanced. Our bound is O(n3m2) iterations

and, since m < n2, we can also bound the number of iterations as O(n7). Note that the

bound we obtain also applies for the imbalance-correcting algorithm in [46] (note that

[46] established convergence in finite time for the imbalance-correcting algorithm, but

did not provide a bound on the number of iterations). Thus, the importance of the result

in this section is that the number of iterations (for both our proposed algorithm and for

the imbalance-correcting algorithm in [46]) is polynomial in the size of the digraph and

not exponential.

Let the total imbalance of the digraph at iteration k be

ε[k] =
n∑
j=1

|xj [k]| ,

where xj [k] = S−j [k] − S+j [k] with S−j [k] =
∑

vi∈N−j
fji[k] and S+j [k] =

∑
vl∈N+

j
flj [k].

Clearly, the total imbalance is a nonnegative quantity that is zero if and only if the

digraph is balanced. Also, since we have
∑

j xj [k] = 0 (because each weight fji[k]

appears twice, once with a positive sign and once with a negative sign), we see that: (i)

the total imbalance of the digraph at any given k is an even number, and (ii) if there

is a node with positive imbalance, then there is also (at least one) node with negative

imbalance. For convenience, in the remainder of this section, we will sometimes refer to

nodes with positive (negative) imbalance as positive (negative) nodes, and to nodes with

zero imbalance as balanced nodes.

Proposition 2. During the execution of Algorithm 2, we have

ε[k + 1] ≤ ε[k] ≤ ε[0] ≤ n2(n− 2) .

Proof. Since the digraph is assumed to be strongly connected, each node has at least

one incoming edge and at least one outgoing edge. Also, each node has at most n − 1

incoming edges and at most n− 1 outgoing edges. Since at initialization all edges have

weight n, we have |xj [0]| ≤ n(n− 2), which means that ε[0] ≤ n2(n− 2).

To gain some insight, assume (for now) that at iteration k, only node vj changes the

weights on its outgoing edges (with the other nodes not making any changes regardless

of their imbalance). We have the following three cases to consider:

(i) Case 1: Node vj has positive imbalance xj [k]. In such case, node vj uniformly4

increases the weights on its outgoing edges in such a way so that xj [k+ 1] = 0 (because

4It is possible that some weights are not increased, but, due to the fixed ordering of the out-neighbors
of node vj (with which weights are increased by one over the value of other weights), we have flj [k+1] ≥
flj [k] for all vl ∈ N+

j .
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S+j [k+ 1] = S−j [k] and S−j [k+ 1] = S−j [k] —since no other node updates the weights on

its outgoing edges). In order to see how the total imbalance changes, we look at

ε[k + 1]− ε[k] =
∑n

l=1 |xl[k + 1]| − |xl[k]|
(a)
= −xj [k] +

∑
vl∈N+

j
|flj [k + 1]− flj [k] + xl[k]| − |xl[k]|

(b)

≤ −xj [k] +
∑

vl∈N+
j
|flj [k + 1]− flj [k]|

(c)
= −xj [k] +

∑
vl∈N+

j
(flj [k + 1]− flj [k])

= 0 .

(a) follows because xj [k+ 1] = 0, xj [k] is positive, and only nodes in N+
j see changes in

their weights from incoming edges; in particular, node vl sees its incoming weight from

node vj increase by flj [k + 1] − flj [k]. (b) stems from the triangle inequality, and (c)

from Step 2 of Algorithm 2 and the fact that flj [k + 1] ≥ flj [k] for vl ∈ N+
j . Note that

equality holds in Case 1 if all nodes in N+
j have positive or zero balance.

(ii) Case 2: Node vj with negative imbalance xj [k] ≤ −2. In this case, node vj decreases

the weights on its outgoing edges so that xj [k + 1] = −aj for some integer aj ≥ 1. The

aim is for aj to be unity (in Step 3.1 of Algorithm 2) but this may not be possible as the

weights on the outgoing edges of vj are constrained to remain above unity (in Step 3.2

of Algorithm 2). Using similar arguments as in the previous case (but keeping in mind

the difference in the signs of the various quantities), we have

ε[k + 1]− ε[k] = aj − |xj [k]|+∑l 6=j |xl[k + 1]| − |xl[k]|
= aj + xj [k] +

∑
vl∈N+

j
|flj [k + 1]− flj [k] + xl[k]| − |xl[k]|

≤ aj + xj [k] +
∑

vl∈N+
j
|flj [k + 1]− flj [k]|

(d)
= aj + xj [k]−∑vl∈N+

j
(flj [k + 1]− flj [k])

= 0 ,

where (d) follows from the fact that the total decrease in the weights satisfies

∑
vl∈N+

j
(flj [k + 1]− flj [k]) = S+j [k + 1]− S+j [k]

= S−j [k] + aj − S+j [k]

= aj + xj [k] .

In Case 2, equality holds if all nodes in N+
j have negative or zero balance.

(iii) Case 3: Node vj with xj [k] = −1 or xj [k] = 0. In this case, node vj does not do

anything so we easily conclude that ε[k + 1]− ε[k] = 0.

Clearly, the arguments in the above three cases establish that ε[k + 1] ≤ ε[k] in an

asynchronous setting where, at each iteration k, a single node vj is selected (randomly

or otherwise) to update the weights on its outgoing edges based on its imbalance xj [k]
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at that point. In fact, with a little bit of book-keeping, we can extend the above

argument in the synchronous setting of Algorithm 2, where nodes adjust the weights on

their outgoing edges simultaneously. The key difference is that now the weights on the

incoming edges of each node vj may change: S−j [k + 1] is no longer identical to S−j [k]

and has to be explicitly accounted for. Letting ∆fji = fji[k + 1]− fji[k], we have

ε[k + 1]− ε[k] =
∑n

j=1 |xj [k + 1]| − |xj [k]|
=

∑
vj∈V |S

−
j [k + 1]− S+j [k + 1]| − |xj [k]|

=
∑

vj∈V |
∑

vi∈N−j
∆fji −

∑
vl∈N+

j
∆flj + xj [k]| − |xj [k]|.

Consider now the following partition of V: set A = {vj | xj [k] > 0}, set B = {vj |xj [k] ≤
−2}, and set C = {vj | xj [k] = −1 or xj [k] = 0}. Using these partitions,

ε[k + 1]− ε[k]
(e)
=

∑
vj∈A |

∑
vi∈N−j

∆fji| − xj [k]

(f)
+

∑
vj∈B |

∑
vi∈N−j

∆fji − aj |+ xj [k]

(g)
+

∑
vj∈C |

∑
vi∈N−j

∆fji + xj [k]|+ xj [k] ,

where (e) follows from Case 1, (f) follows from Case 2, and (g) from the fact that

xj [k] ≤ 0 for vj ∈ C. Using the triangle inequality on each line we have

ε[k + 1]− ε[k] ≤ ∑
vj∈A

∑
vi∈N−j

|∆fji| − xj [k] +
∑

vj∈B
∑

vi∈N−j
|∆fji|

+ aj + xj [k] +
∑

vj∈C
∑

vi∈N−j
|∆fji|

=
∑

vj∈A
∑

vl∈N+
j
|∆flj | − xj [k] +

∑
vj∈B

∑
vl∈N+

j
|∆flj |

+ aj + xj [k] +
∑

vj∈C
∑

vl∈N+
j
|∆flj |

= 0,

where the key was to re-arrange the summation of the |∆fji| and to take advantage of

the inequalities we proved earlier, in Cases 1, 2 and 3.

Note that Proposition 2 essentially gives us a way to analyze the execution time of

the proposed algorithm (and also the algorithm in [46]). The basic idea is to bound

the number of steps K it takes for ε[k + K] to become strictly smaller than ε[k]. In

Proposition 3 below, we argue that K ≤ m2, where m is the number of edges of the

digraph; this implies that the execution time of the algorithm can be bounded by

Execution Time ≤ m2 ε[0]

2
≤ [n(n− 1)]2

n2(n− 2)

2
≤ αn7 ,

where α is a natural number (i.e., α ∈ N). [Note that the number of edges m in a

digraph satisfies m ≤ n(n−1), the initial total imbalance satisfies5 ε[0] ≤ n2(n−2), and

5Note that the total initial imbalance depends on the initial weights that each node assigns to its
outgoing edges. For the case where each node initializes the weights of its outgoing edges to be equal
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each decrease that takes place is by at least two (since ε[k] is always an even number).]

Proposition 3. During the execution of Algorithm 2, we have

ε[k +K] < ε[k], k = 0, 1, 2, ...

when ε[k] > 0 and K > m2 (m = |E| is the number of edges in the given digraph Gd).

Before providing the proof of Proposition 3, we discuss an example of a “difficult”

digraph in order to provide intuition about the problem.

Example 3.1. Consider the digraph Gd = (V, E) in Figure 3.4, where V = {v1, v2, . . . , v8},
E = {e1, e2, . . . , e15}, E ⊆ V ×V − {(vj , vj) | vj ∈ V}. Edges {e1, e2, . . . , e15} are not de-

noted in the figure to avoid cluttering the diagram. The weight on each edge is flj [0] = 1

for (vl, vj) ∈ E (otherwise, flj [0] = 0). Gd involves of 4 cycles C1, C2, C3, C4, which com-

prise of the following edges:

C1 : < (v2, v1), (v3, v2), (v1, v3) >,

C2 : < (v4, v2), (v5, v4), (v3, v5), (v2, v3) >,

C3 : < (v6, v4), (v7, v6), (v5, v7), (v4, v5) >,

C4 : < (v8, v6), (v7, v8), (v6, v7) >.

v1

v2

v3

v4

v5

v6

v7

v8

x1 = 1

x2 = 0

x3 = 0

x4 = 0

x5 = 0

x6 = 0

x7 = 0

x8 = −1

1

11 11 11

1

1

1

1

1 1

11

Figure 3.4: Weighted digraph with initial weights and initial imbalances.

Initially, each node computes its weight imbalance xj [0] = S−j [0] − S+j [0] (this initial

imbalance is indicated in Figure 3.4). The only node that will take action is node v1,

which has positive imbalance equal to 1 (all other nodes have imbalance zero or −1).

Note that node v1 will increase the weight on edge (v2, v1), causing an imbalance to node

v2 who will then be forced to take action. Depending on whether v2 increases the weight

on edge (v3, v2) or (v4, v2), node v3 or node v4 will be forced to take action. Thus, there

are different possibilities (executions of the algorithm) that depend on the fixed ordering

of out-neighbors, and below we consider a particular such execution. [Note that at each

iteration, only one node takes action because all other nodes have imbalance zero or

to unity then the execution time of the proposed distributed algorithm can be bounded by O(n6) time
steps.
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−1: initially node v1, then node v2, etc.; thus, we use the term “transferring of the

imbalance” to indicate the fact that the imbalanced node forces an out-neighbor to be

imbalanced.]

• In the first 3 iterations, the imbalance gets transferred to nodes v2, v3 and then

back to node v1. Note that the choices we made here were for node v2 to transfer

the imbalance to node v3, and for node v3 to transfer the imbalance back to node

v1.

• In the next 7 iterations, the imbalance gets transferred to nodes v2, v4, v5, v3, v2,

v3 and back to v1. Again, at each iteration, only one node has positive imbalance:

first node v1, then node v2, then v4, then v5, then v3, then v2, then v3, and finally

v1. Note that, given the previous choices, the only choice we had here was whether

at node v4 we increase the weight at edge (v6, v4) or edge (v5, v4); we assumed the

latter.

• In the next 11 iterations, the imbalance gets transferred to nodes v2, v4, v6, v7, v5,

v4, v5, v3, v2, v3, and back to v1, respectively.

• In the last 4 iterations, the imbalance gets transferred to nodes v2, v4, v6, and v8

respectively.

• The resulting balanced digraph is shown in Figure 3.5 and is reached after 25

iterations.

Summarizing, we have that cycle C1 was crossed four times, cycle C2 was crossed three

times, cycle C3 was crossed two times, and cycle C4 was crossed one time. As a result,

the number of iterations required, in order for digraph Gd to reach weight balance, is

4|C1|+ 3|C2|+ 2|C3|+ |C4|, where |Ci| is the length of cycle Ci.

v1

v2

v3

v4

v5

v6

v7

v8

x1 = 0

x2 = 0

x3 = 0

x4 = 0

x5 = 0

x6 = 0

x7 = 0

x8 = 0

1

43 32 21

5

4

2

1

4 3

23

Figure 3.5: Weight balanced digraph after 25 iterations.

We are now ready to proceed with the proof of Proposition 3.
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Proof. Since ε[k] > 0, we have at least one node with positive imbalance, say node v1,

and at least one node with negative imbalance, say node vn.

Note that, at each iteration of Algorithm 2, node vn (in fact, any node with negative

imbalance) will retain its negative imbalance unless at least one of its in-neighbors vni ,

(vn, vni) ∈ E , has positive imbalance and increases the weight on the edge (vn, vni). The

reason is that the changes that vn initiates on the weights on its outgoing edges can

only make its imbalance −1; thus, for the imbalance to become zero or positive, it has

to be that one or more of its incoming weights are increased. This can only happen if

one or more of its in-neighbors have positive imbalance, at which point it follows from

the proof of Proposition 2 (strict inequality for Case 1) that the total imbalance will

decrease (by at least two).

In order to determine a bound on the number of steps K required for the total imbalance

to decrease, we can assume without loss of generality that negative nodes remain negative

(because at the moment any negative node becomes balanced or positive, we also have

a decrease in the total imbalance). Consider the (worst6) case where v1 has imbalance

b for some positive integer b, vn has imbalance −b, and the remaining nodes v2, v3, ...,

vn−1 are all balanced (refer to Figure 3.6, where v1 is the node on the far left and vn is

the node on the far right). At the first iteration, node v1 sends its imbalance to at least

one of its out-neighbors (by increasing the weight on at least one of its outgoing edges).

This out-neighbor (resp. these out-neighbors) of node v1 does (resp. do) the same at

the next iteration, and this process is repeated. If, at any point, node vn is reached, the

overall imbalance will decrease by at least two (i.e., ε[k + 1] ≤ ε[k]− 2).

!"#
!$#

%&#%$#

%'#
%(#

v1

vn

C1
C2

C3

CN

...

Figure 3.6: Transfer of positive imbalance from node v1 on the left to node vn on the
right.

Let us now analyze the number of iterations it takes for node vn to be reached (i.e., for

one of its in-neighbors to become positive). Observe the following:

(i) At each iteration, the imbalance gets transferred from a node to one or more of that

nodes’s out-neighbors. If more than one out-neighbors are involved, then the decrease

will occur faster; thus, we consider the case when the imbalance gets transferred to only

one out-neighbor.

(ii) As the iterations proceed, mark the first time an edge is traversed for the second

6It will become evident that this is the worst case scenario at the completion of the argument.
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time, and call the cyclic sequence of edges visited up to this point C1 (refer to Figure 3.6).

Note that C1 is a cyclic sequence of edges (not nodes, i.e., a certain node may be visited

more than once while traversing cycle C1). Also note that C1 has at most n(n−1) edges

because that is the total number of edges of the digraph.

(iii) While traversing C1 for the second time, we will be forced at some point to traverse

a new edge (that has not been traversed before (otherwise, the digraph is not strongly

connected). The reason is the fact that the weights on the out-going edges from each

node cannot differ by more than unity (this is where the notion of approximate balance

among the weights on the out-going edges plays are role). Let C2 denote the set of edges

traversed until the time we stop traversing new edges (i.e., we are forced to traverse an

edge that we have already visited). Let C2 be the set of edges that are not in C1 and

have been visited so far.

(iv) We can continue in this fashion (defining Ci as shown in Figure 3.6) until we reach

node vn. Note that the number of cycles N satisfies N ≤ m (where m = |E| is the

number of edges of the given digraph Gd) because each cycle has at least one edge and

the digraph has a total of n(n− 1) cycles.

From the above discussion (see also Example 3.1), we have

#(iterations to reach vn) ≤
N∑
i=1

(N − i+ 1)|Ci| ≤ Nm ,

since
∑N

i=1 |Ci| ≤ m. Finally, each cycle Ci has at least one edge, which means we can

have at most m cycles. This allows us to conclude that #(iterations to reach vn) ≤ m2 ,

which completes the proof of the proposition.

Remark 3.3. The bound we obtain is actually m2 ε[0]
2 and can easily be improved (if one

looks at the last equation in Section IV and realizes that it is in our best interest to

have cycle 1 have size |C1| = m − (N − 1) and all other cycles have size equal to 1) to

m2 ε[0]
2 . In terms of the example we provide, this bound suggests m2/2 iterations which is

113. Nevertheless, the main motivation in obtaining our bound was to establish that the

number of iterations is bounded by a number that is polynomial (and not exponential)

in the size of the graph.

3.3 Simulation Study

We compare the proposed algorithms with the current state-of-the-art. Specifically, we

run Algorithm 2 in large digraphs (of size n = 20 and 50) and compare their performance

against two other algorithms: (a) the weight balancing algorithm in [47] in which each

node vj with positive imbalance xj > 0, increases the weights of its outgoing edges by
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equal integer amounts (if possible) so that it becomes weight balanced, (b) the imbalance-

correcting algorithm in [24] in which every node vj with positive imbalance xj > 0 adds

all of its weight imbalance xj to the outgoing node with the lowest weight w.

Figure 3.7 shows the cases of: (i) 1000 averaged digraphs of 20 nodes each, where every

edge is initialized to 1, and (ii) 1000 averaged digraphs of 20 nodes each, where every

edge is initialized to 20, respectively. Figure 3.7 shows that for the first case Algorithm 2

converges as fast as the one in [47] (as expected due to the particular initialization used).

For the second case we have that when the edge’s initialization is greater than 1 then

Algorithm 2 is the fastest among algorithms [24, 47].
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Figure 3.7: Comparison between Algorithm 2, the weight balancing algorithm pro-
posed in [47] and the imbalance-correcting algorithm [24]. Top figure: Average total
imbalance plotted against the number of iterations for 1000 random digraphs of 20
nodes. Bottom figure: Average total imbalance plotted against the number of itera-

tions for 1000 random digraphs of 20 nodes.

Figure 3.8 shows the same cases as Figure 3.7, with the difference that the network

consists of 50 nodes. The performances do not change due to the network size and the

conclusions are the same as in Figure 3.7.

3.4 Chapter Summary

In this section, we described an iterative distributed algorithm and established that

it converges to a weight balanced digraph after a finite number of steps. We have

also bounded the execution time of the proposed algorithm as O(n7), where n is the

number of nodes in the digraph and we demonstrated the operation, performance, and

advantages of the proposed algorithm via various simulations.
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Figure 3.8: Comparison between Algorithm 2, the weight balancing algorithm pro-
posed in [47] and the imbalance-correcting algorithm [24]. Top figure: Average total
imbalance plotted against the number of iterations for 1000 random digraphs of 50
nodes. Bottom figure: Average total imbalance plotted against the number of itera-

tions for 1000 random digraphs of 50 nodes.
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Chapter 4

Weight Balancing over

Unreliable Communication

In this chapter, we present a novel distributed algorithm which deals with the problem

of balancing a weighted digraph in the presence of time delays and packet drops over the

communication links. The algorithm presented in this chapter has appeared in [49, 50].

This chapter is organized as follows. In Section 4.1 we present the additional notation

needed in this chapter and the model used for the time delays and the way they manifest

themselves, while in Section 4.2 we present the problem formulation. In Section 4.3 we

introduce a novel distributed algorithm which achieves integer weight balancing in a

multi-component system, in the presence of time delays over the communication links.

We present a formal description of the proposed distributed algorithm, demonstrate its

performance via an illustrative example and show that it converges to a weight balanced

digraph after a finite number of iterations in the presence of bounded time delays over the

communication links. In Section 4.4 we discuss an event-triggered version of the proposed

distributed algorithm and show that it results in a weight balanced digraph after a finite

number of iterations in the presence of arbitrary (time-varying, inhomogeneous) but

bounded time delays over the communication links. In Section 4.5 we show that the

proposed distributed algorithm is also able to converge (with probability one) to a weight

balanced digraph in the presence of unbounded delays (packet drops). In Section 4.5.1

we present simulation results and comparisons of the proposed distributed algorithm

and the chapter is concluded in Section 4.6.

4.1 Modeling Time Delays and Packet Drops

In this chapter, we assume that node vj assigns a unique order in the set {0, 1, ...,D+
j −1},

to each of its outgoing edges. The order of link (vl, vj) is denoted by Plj (such that

{Plj | vl ∈ N+
j } = {0, 1, ...,D+

j − 1}) and will be used later on as a way of allowing

30

APOSTOLO
S I. 

RIKOS



Weight Balancing over Unreliable Communication 31

node vj to make changes to its outgoing edge weights in a predetermined round-robin1

fashion.

Furthremore, for the development of the results in this chapter, we assume that a trans-

mission on the link from node vj to node vl initiated at time step k undergoes an a

priori unknown delay τlj [k], where τlj [k] is an integer that satisfies 0 ≤ τlj [k] ≤ τ lj ≤ ∞
(i.e., delays are bounded2). The maximum delay is denoted by τ = max(vl,vj)∈E τ lj . In

the weight balancing setting we consider, node vj is in charge of assigning weights flj [k]

to each link (vl, vj) and of sending to each out-neighbor vl the value flj [k]. Under the

above delay model, the weight flj [k] becomes available to node vl at time step k+ τlj [k].

From the perspective of node vj , the delayed weight for link (vj , vi), ∀vi ∈ N−j , at time

step k is given by

f ji[k] = fji[klast], where klast = max{s | s+ τji[s] ≤ k}, (4.1)

i.e., f ji[k] is the most recently sent weight fji[·] seen at node vj by time step k.

The weights available on the incoming links of node vj at time step k comprise the

values received by its in-neighbors by that time, i.e., it is the set of values in the set

{fji[s] | 0 ≤ s ≤ k, s + τji[s] ≤ k, vi ∈ N−j } where fji[s] denotes the value sent by

the in-neighbor vi to node vj at time step s, and is received at vj by time step k.

The protocol we propose has each node vj update the information state at time k by

combining (in a linear fashion) its own outgoing-edge values flj [k],∀vl ∈ N+
j (which are

available without delay) and the possibly delayed information received by time step k

from its in-neighbors {fji[s] | 0 ≤ s ≤ k, s + τji[s] ≤ k, vi ∈ N−j }, i.e., the values that

arrive at node vj by time k.

Remark 4.1. In our case, the above definition of f ji[k] is equivalent to f ji[k] = max{fji[s]
| s + τji[s] ≤ k} because, during the execution of the algorithm presented later, the

weights fji on each edge (vj , vi) are assigned by node vi in a non-decreasing manner,

i.e., for vj ∈ N+
i , fji[k] ≤ fji[k + 1], where k ∈ N0.

Proposition 4. When fji[k] are non-decreasing and delays are bounded, the above

delay model, implies that f ji[k + τ ] ≥ fji[k].

Proof. The proof follows directly from the definition of f ji[k]. We have that f ji[k+τ ] =

fji[klast] where klast = max{s | s+τji[s] ≤ k+τ}. Obviously, klast ≥ k because τji[k] ≤ τ .

Since the weights of each edge are non-decreasing we have that f ji[k + τ ] = fji[klast] ≥
fji[k].

1Each node vj updates (increases) the weights of its out-neighbors by following a unique predeter-
mined order. More specifically, following this predetermined order, node vj updates (increases by unity)
its weights, one at a time, until it becomes balanced. The next time it needs to update the weights of its
out-neighbors, it will continue from the outgoing edge it stopped the previous time and cycle through
the edges in a round-robin fashion according to the unique predetermined ordering.

2We later relax the assumption of bounded delays and consider packet dropping links.
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Definition 5. Given a weighted digraph Gd = (V, E ,F) of order n, the total in-weight

seen at time step k by node vj is S−j [k] =
∑

vi∈N−j
f ji[k]. Since, for every node, the

weights of its outgoing edges are available without delay, the total out-weight of node

vj at time step k is the same as in Definition 1 (denoted by S+j [k]).

Definition 6. Given a weighted digraph Gd = (V, E ,F) of order n, the delayed weight

imbalance of node vj , calculated at time step k, is xj [k] = S−j [k]− S+j [k].

Definition 7. Given a weighted digraph Gd = (V, E ,F) of order n, the total delayed

imbalance of digraph Gd, at a time step k, is ε[k] =
∑n

j=1 |xj [k]|.

Apart from bounded delays, unreliable communication links in practical settings could

also result in possible packet drops (i.e., unbounded delays) in the corresponding com-

munication network. To model packet drops, we assume that, at each time step k, a

packet that is sent from node vi to node vj on link (vj , vi) ∈ E is dropped with probabil-

ity qji, where we have qji < 1. For simplicity, we assume independence between packet

drops at different time steps or different links. We establish that, in both cases, despite

the presence of bounded delays or packet drops, the proposed distributed algorithm con-

verges, after a finite number of iterations, to a weight balanced digraph that is identical

to the one obtained under no packet drops (in the case of packet drops this convergence

occurs with probability one).

4.2 Problem Statement

We are given a strongly connected digraph Gd = (V, E), with a set of nodes V =

{v1, v2, . . . , vn} and a set of edges E ⊆ V × V − {(vj , vj) | vj ∈ V}. We want to de-

velop a distributed algorithm that allows the nodes to iteratively adjust the weights on

their edges so that they eventually obtain a set of integer weights {fji | (vj , vi) ∈ E}
that satisfy the following:

1. fji ∈ N for every edge (vj , vi) ∈ E ;

2. fji = 0 if (vj , vi) /∈ E ;

3. S+j = S−j = S−j for every vj ∈ V.

We introduce and analyze a distributed algorithm that allows each node to assign integer

weights to its outgoing links, so that the resulting weight assignment is balanced. The

proposed algorithm is able to handle arbitrary but bounded time-delays that may affect

the information exchange between agents in the system. We also explicitly bound the

number of steps required for convergence. Among other implications, this bound estab-

lishes that the proposed algorithm completes its operation in polynomial time, as long
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as the underlying digraph is strongly connected or is a collection of strongly connected

digraphs.3

4.3 Distributed Algorithm for Weight Balancing

in the Presence of Time Delays

Given a strongly connected digraph Gd = (V, E), the algorithm has each node initialize

the weights of all of its outgoing edges to unity. We consider for now that in digraph

Gd, each link transmission can undergo an arbitrary but bounded delay. In order to

handle delays, we employ a strategy where the nodes run a weight balancing protocol

and process weight information as soon as it arrives. According to this protocol, each

node enters an iterative stage where it performs the following steps:

1. It computes its delayed weight imbalance according to the latest received weight

values from its in-neighbors.

2. If it has positive (delayed) imbalance, it increases by 1 the integer weights of its

outgoing edges one at a time, following the priority order until it becomes weight

balanced. This means that the outgoing edges are assigned, if possible, equal

integer weights; otherwise, if this is not possible, they are assigned integer weights

such that the maximum difference among them is equal to one (it should be clear

that for a given S−j the order among the outgoing links of node vj make this

assignment unique).

We argue that the above distributed algorithm obtains integer weights that balance the

digraph after a finite number of iterations (which we bound in terms of the number of

nodes/edges of the given digraph). Using a path-based analysis of the algorithm, we

prove that the resulting weight balanced digraph is unique and independent of the link-

delays that may occur during the execution of the algorithm. For simplicity, we assume

that during the execution of the distributed algorithm, the nodes update the weights on

their outgoing edges in a synchronous4 manner based on the information available at each

node at that particular instant. Note that if the delay between asynchronous changes in

weights of different links can be bounded by some maximum delay then asynchronous

updates can be captured by our synchronized delayed communication model if we allow

an increase in τ̄ .

4.3.1 Formal Description of Distributed Algorithm

A formal description of the proposed distributed algorithm is presented in Algorithm 3.

3As discussed in [24], this is a necessary and sufficient condition for weight-balancing to be possible.
4Even though we do not discuss this issue in the thesis, asynchronous operation is not a problem for

the distributed algorithm.
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Algorithm 3 Distributed balancing in the presence of time delays

Input
A strongly connected digraph Gd = (V, E) with n = |V| nodes and m = |E| edges.
Initialization
Set k = 0; each node vj ∈ V does the following:

1. It assigns a unique priority order to its outgoing edges as Plj , for vl ∈ N+
j (such

that {Plj | vl ∈ N+
j } = {0, 1, ...,D+

j − 1}).

2. It sets its outgoing edge weights as

flj [0] =

{
0, if (vl, vj) /∈ E ,
1, if (vl, vj) ∈ E .

3. It sets its (perceived) incoming weights to be equal to unity, f ji[0] = 1, ∀vi ∈ N−j .

4. It transmits the weights flj [0] on each outgoing edge (vl, vj) ∈ E to each vl ∈ N+
j .

Iteration
For k = 0, 1, 2, . . . , each node vj ∈ V does the following:

1. It receives the weights on its incoming edges f ji[k]. More specifically, for each

node vi ∈ N−j let Fji = {fji[s+ τji[s]] | s+ τji[s] = k} be the set of weights of link
(vj , vi) ∈ E that arrive at node vj at time step k. We have that

f ji[k + 1] =

{
f ji[k], if Fji = ∅,
max{f ji[k],maxfji∈Fji

{f ji}}, if Fji 6= ∅.

2. It computes its weight imbalance according to the latest received weight values
from its in-neighbors

xj [k + 1] = S−j [k + 1]− S+j [k + 1].

3. If xj [k + 1] = br+j > 0, it sets the values of the weights on its outgoing edges to

flj [k+1] =

⌊
S
−
j [k+1]

D+
j

⌋
, ∀vl ∈ N+

j . Then, it chooses the set of the first (according to

the priority order) S
−
j [k+1]−D+

j

⌊
S
−
j [k + 1]

D+
j

⌋
outgoing edges, and increases their

weight by 1 so that |flj [k+1]−fhj [k+1]| ≤ 1,∀vl, vh ∈ N+
j and S+j [k+1] = S−j [k].

4. It transmits the new weights flj [k + 1] on each outgoing edge (vl, vj) ∈ E to the
corresponding out-neighbor vl ∈ N+

j .

5. It repeats (increases k to k + 1 and goes back to Step 1).APOSTOLO
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The following lemma is useful in our analysis later on.

Lemma 4.2. Suppose that at iteration k node vj has in-weights {f ji[k] | vi ∈ N−j }.
Given a unique order Plj, where vl ∈ N+

j , on its outgoing links (such that {Plj | vl ∈
N+
j } = {0, 1, ...,D+

j − 1}), we have that

flj [k + 1] = Flj(
∑

vi∈N−j

f ji[k]).

Moreover, Flj is monotonically non-decreasing in its argument, i.e., Flj(x) ≥ Flj(y) if

x ≥ y.

Proof. From the algorithm description we have that for integer x, we have that

Flj(x) =

⌊
x

D+
j

⌋
+ indl(x),

where

indl =

 1, if Plj < x−
⌊

x
D+
j

⌋
D+
j ,

0, otherwise.

Flj(x) is clearly monotonic in its argument.

We now illustrate the distributed algorithm via an example and then explain why it

asymptotically results in a weight balanced digraph after a finite number of iterations.

We also obtain bounds on its execution time.

4.3.2 Illustrative Example of Distributed Algorithm

Consider the digraph Gd = (V, E) in Figure. 4.1, where V = (v1, v2, . . . , v6), E =

(m31, . . . ,m46), E ⊆ V × V − {(vi, vi) | vi ∈ V}. The weight on each edge is initial-

ized to flj [0] = 1 for (vl, vj) ∈ E and each node assigns a unique priority order to each

of its outgoing edges. For the purposes of this example, let us assume that the priority

orders are as follows:

• v1 : P31 = 1,

• v2 : P32 = 1,

• v3 : P13 = 1, P23 = 2, P43 = 3,

• v4 : P54 = 1, P64 = 2,

• v5 : P15 = 1, P35 = 2, P45 = 3,

• v6 : P26 = 1, P46 = 2.
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(For example, node v4 will first increase f54 and then f64). As a first step, each node

computes its weight imbalance xj [0] = S−j [0] − S+j [0], ∀vj ∈ V (these values are shown

in Figure. 4.1).
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x1 = 1

x2 = 1

x3 = 0

x4 = 1

x5 = −2

x6 = −1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 4.1: Weighted digraph with initial weights and initial imbalances for each
node.

Once each node computes its imbalance, the distributed algorithm requires each node

with positive imbalance to increase the value of the weights on its outgoing edges by equal

integer amounts (or with maximum difference between them equal to one) according

to the predetermined priority order that each node assigned to its outgoing edges, so

that the total increase makes the node balanced. In this case, the nodes that have

positive imbalance are nodes v1, v2 and v4 (equal to x1[0] = 1, x2[0] = 1 and x4[0] = 1)

respectively), and they increase their outgoing edges as shown in Figure 4.2.
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v4
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x4 = 0

x5 = −2

x6 = −1

1

2

1
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1

1

1

2

1
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1

1

Figure 4.2: Distribution of imbalance from positively imbalanced nodes.

In Figure 4.2 we can see that the edges m31,m32,m54 have now values equal to 2. Note

here that the nodes v1, v2 and v4 increased the edge-weights f31, f32 and f54 respectively,

since the corresponding nodes had the highest order (as chosen by the nodes during the

initialization step). Nodes v3 and v5 will receive the new weights of their incoming edges

after a number of iterations equal to the corresponding time-delay for each edge i.e., v3

and v5 will receive them after τ31[0], τ32[0] and τ54[0], respectively. For example, let us

consider that the time delays are equal to τ31[0] = 6, τ32[0] = 3 and τ54[0] = 7. This
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means that node v3 will receive the new weight of m31 at k = 6 and the new weight

of m32 at k = 3, while v5 will receive the new weight of m54 at k = 7. In Figure 4.3,

we can see the digraph at time step k = 5. Here, node v3 has received the new weight

of edge m32 and has increased its outgoing edge m13 by 1 (because it has the highest

priority order) while it maintains the value of its outgoing edge m23 (which has the

second priority order) the same (and equal to 1) because the new weight of the edge

m31 has not yet arrived.
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x2 = 0

x3 = 0

x4 = 0

x5 = −2

x6 = −1

1
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1

1

2

1

1

1

1

Figure 4.3: Distribution of delayed imbalance from positively imbalanced nodes.

Note here that all the nodes in the digraph continue to send the same values on their

outgoing edges at every iteration until they receive updated weights on their incoming

edges. This means that the time delays τ31[0], τ32[0] and τ54[0] are not necessarily the

time-steps after which the nodes v3 and v5 will be informed for the new weights of their

incoming edges. For example, if τ32[0] = 3 then v3 will receive the new weight f32[1] = 2

at iteration k = 3; however, at iteration k = 1 node v2 re-sends its outgoing weights

to its out-neighbors; thus, if τ32[1] = 1 then v3 will receive the new weight f32[1] = 2

at iteration k = 2 (it will also receive it at k = 3) and it will act accordingly (it will

essentially ignore it).

After the integer weight update on the outgoing edges of each node with positive imbal-

ance at k = 0, the nodes check for updated incoming edge weights fji[1], ∀(vj , vi) ∈ E
(assuming that f ji[1] = f ji[0] = fji[0] if no weight is received). Then they recalculate

their imbalances xj [1], ∀vj ∈ V, and the process is repeated. After a finite number of

iterations, which we explicitly bound in the next sections, we reach the weighted di-

graph with integer weights shown in Figure 4.4. As we will argue later on the thesis,

this weighted digraph is the same irrespective of how time-delays manifest themselves.

4.3.3 Execution Time Analysis of Distributed Algorithm

In this section we analyze the functionality of the distributed algorithm and we prove that

it solves the weight balancing problem in the presence of arbitrary (time-varying, inho-

mogeneous) but bounded time delays that may appear during the information exchange
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Figure 4.4: Final weight balanced digraph.

between agents in the system. Specifically, we prove that the proposed distributed al-

gorithm results in a set of weights that form a weight balanced matrix after O(n6τ)

iterations, where n is the number of nodes of the given digraph and τ is the maximum

delay in the digraph; also we show that the resulting weight balanced digraph is unique

(irrespective of how delays manifest themselves) and identical to the one we obtain when

transmissions between nodes happen instantaneously (no delays). We begin the analysis

with the following theorem.

Setup: Consider an arbitrary strongly connected digraph Gd = (V, E), where V =

(v1, v2, . . . , vn) is the set of nodes, and E ⊆ V × V − {(vj , vj) | vj ∈ V} is the set of

edges. Consider an execution of the proposed distributed algorithm where there are no

delays (τ = 0) and denote the resulting weights on the edges as

f∗lj [0] = 1, f∗lj [1], ..., f∗lj [k], ... ∀(vl, vj) ∈ E .

Consider another execution of the proposed distributed balancing algorithm where there

are arbitrary but bounded delays (0 < τ < ∞) and denote the resulting set of weights

as

Transmitted : flj [0] = 1, flj [1], ..., flj [k], ... ∀(vl, vj) ∈ E ,

Received : f lj [0] = 1, f lj [1], ..., f lj [k], ... ∀(vl, vj) ∈ E .

Theorem 4.3. Under the above setup, we have for all (vl, vj) ∈ E and all k ≥ 0

1. f∗lj [k + 1] ≥ f∗lj [k],

2. flj [k + 1] ≥ flj [k],

3. f lj [k + 1] ≥ f lj [k].

Proof. Consider the case when τ = 0. At Step 2 of the proposed algorithm (at an

arbitrary iteration k), if node vj has positive imbalance xj [k] > 0 then it increases the

weights on its outgoing edges so that it becomes weight balanced (i.e., f∗lj [k+1] ≥ f∗lj [k],
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∀vl ∈ N+
j ). If node vi has negative (or zero) imbalance xj [k] ≤ 0, it leaves the weights

of its outgoing edges unchanged (i.e., f∗lj [k+1] = f∗lj [k], ∀vl ∈ N+
j ). As a result, we have

f∗lj [k + 1] ≥ f∗lj [k],∀(vl, vj) ∈ E .

Consider now the case when arbitrary but bounded time-delays (τ > 0) affect link

transmissions. Using a similar argument as above we easily establish that flj [k + 1] ≥
flj [k],∀(vl, vj) ∈ E . By the definition of f lj [k + 1] we have that f lj [k + 1] = flj [klast]

where klast = max{s | s + τlj [s] ≤ k + 1}. Similarly, f lj [k] = flj [k
′
last] where k′last =

max{s | s+τlj [s] ≤ k}. Clearly, k′last ≤ klast and since flk[k+1] ≥ flj [k] and klast ≥ k′last
we have that

f lj [k + 1] ≥ f lj [k],∀vl ∈ N+
j ,

which completes the proof.

After establishing monotonicity for the weights of the outgoing edges for every node in

the digraph, we continue with the following theorem.

Theorem 4.4. Under the above setup, it holds that for every k,

f lj [k] ≤ f∗lj [k] ≤ f lj [(k + 1)(τ + 1)], ∀(vl, vj) ∈ E . (4.2)

Proof. The proof is by induction. For k = 0, we have at initialization f lj [0] = f∗lj [0] ≤
f lj [τ + 1], where f lj [0] = f∗lj [0] = 1, and (4.2) holds (since flj [k] and f∗lj [k] are non

decreasing and min{flj [k]} = 1, for every k). Let us assume that for every (vl, vj) ∈ E
we have

f lj [k] ≤ f∗lj [k] ≤ f lj [(k + 1)(τ + 1)],

by the induction hypothesis. We would like to show that

f lj [k + 1] ≤ f∗lj [k + 1] ≤ f lj [(k + 2)(τ + 1)], ∀(vl, vj) ∈ E .

The fact that f lj [k + 1] ≤ f∗lj [k + 1] is a consequence of Theorem 4.3; we have that

f lj [k+ 1] = flj [klast] where klast = max{s | s+ τji[s] ≤ k+ 1}. Clearly, klast ≤ k+ 1 and

(from Theorem 4.3) flj [klast] ≤ flj [k+1]. As a result, we have that f lj [k+1] ≤ flj [k+1].

To show that f lj [k + 1] ≤ f∗lj [k + 1] we observe that

i) f lj [k] ≤ f∗lj [k] (by induction hypothesis),

ii) It follows from Lemma 4.2 that flj [k + 1] = Flj(
∑

vi∈N−j
f ji[k]) ≤ f∗lj [k + 1] =

Flj(
∑

vi∈N−j
f∗ji[k]), ∀(vl, vj) ∈ E .

As a result, since f lj [k + 1] ≤ flj [k + 1] and flj [k + 1] ≤ f∗lj [k + 1] we have that

f lj [k + 1] ≤ f∗lj [k + 1].
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We are left with showing that f∗lj [k + 1] ≤ f lj [(k + 2)(τ + 1)]. From the induction

hypothesis, we have that f∗lj [k] ≤ f lj [(k + 1)(τ + 1)]. We observe that

i) f∗lj [k+ 1] = Flj(
∑

vi∈N−j
f∗ji[k]) ≤ Flj(

∑
vi∈N−j

f ji[(k+ 1)(τ + 1)]) = flj [(k+ 1)(τ +

1) + 1],

ii) flj [(k + 1)(τ + 1) + 1] ≤ f lj [(k + 2)(τ + 1)] (from Proposition 4).

As a result, we have that f∗lj [k + 1] ≤ f lj [(k + 2)(τ + 1)] and (4.2) holds.

Now, we can proceed with the final theorem where we establish that the proposed

balancing algorithm converges to a set of weights that form a weight balanced digraph,

which is unique and independent of the occurring delays.

Theorem 4.5. Under the above setup, the proposed balancing algorithm under no delays

(τ = 0) converges to a set of weights f∗lj that form a weight balanced digraph after a

finite number of steps bounded by O(n6) while the proposed balancing algorithm in the

presence of nonzero delays (τ > 0) converges to a set of weights flj = f∗lj , ∀(vl, vj) ∈ E,

after O(n6τ) iterations.

Proof. As shown in [47], for the case where τ = 0, the proposed distributed algorithm

reaches a set of weights that forms a weight balanced digraph F ∗ after a finite number

of steps bounded by O(n6), where n is the number of nodes in the digraph. This means

that for every (vl, vj) ∈ E , ∃k0 ∈ N0 for which f∗lj [k+ 1] = f∗lj [k],∀k ≥ k0. From (4.2) we

have f lj [(k0 + 1)(τ + 1)] ≥ f∗lj [k0] and f lj [(k0 + 1)(τ + 1)] ≤ f∗lj [(k0 + 1)(τ + 1)]; however,

since f∗lj [k0] = f∗lj [(k0 + 1)(τ + 1)] we have f lj [(k0 + 1)(τ + 1)] = f∗lj [k0], which means

that the proposed algorithm reaches a set of weights flj = f lj = f∗lj ,∀(vl, vj) ∈ E after

(k0 + 1)(τ + 1) time steps. As a result, since the τ = 0 case completes its operation

after O(n6) steps (from [47]), then the proposed distributed algorithm completes its

operation after O(n6τ) steps where n and τ are the number of nodes and the maximum

delay in the given digraph, respectively. Furthermore, since f lj [(k0 +1)(τ+1)] = f∗lj [k0],

∀(vl, vj) ∈ E , then the resulting edge weights are equal to the resulting edge weights of

the case where no delays affect link transmissions.

4.4 Extension to Event-Triggered Operation

Motivated by the need to reduce energy consumption, communication bandwidth, net-

work congestion, and/or processor usage, many researchers have considered the use

of event-triggered communication and control [51, 52]. In this section, we discuss an

event-triggered operation of the proposed distributed algorithm where each agent au-

tonomously decides when communication and control updates should occur so that the

resulting network executions still result in a weight balanced digraph after a finite num-

ber of steps in the presence of arbitrary (time-varying, inhomogeneous) but bounded
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time delays that might affect link transmissions. More specifically, following the pro-

posed event-triggered strategy, we can prove that (i) all nodes eventually stop transmit-

ting, and (ii) the proposed distributed algorithm is able to obtain a set of weights that

balance the corresponding digraph after a finite number of iterations.

4.4.1 Formal Description of Distributed Algorithm

A formal description of the algorithm’s event-triggered version is presented in Algo-

rithm 4.

4.4.2 Execution Time Analysis of Distributed Algorithm

Proposition 5. Under the above setup, the proposed event-triggered balancing al-

gorithm converges, in the presence of bounded delays (τ > 0), to a set of weights

flj = f∗lj , ∀(vl, vj) ∈ E , after a finite number of steps bounded by O(n6τ) iterations

(where the set of weights f∗lj is the set of weights obtained by the nominal algorithm

that runs with no even-triggering and no delays).

Proof. As shown in [47], when τ = 0 the distributed algorithm in Section 4.3.1 reaches,

after a finite number of steps bounded by O(n6) (where n is the number of nodes in the

digraph), a set of weights f∗lj , ∀(vl, vj) ∈ E , that forms a weight balanced digraph. This

means that there exists k0 ∈ N0, such that, for every (vl, vj) ∈ E , we have f∗lj [k + 1] =

f∗lj [k] = f∗lj , ∀ k ≥ k0.
Consider now the event-triggered operation of the proposed distributed balancing algo-

rithm in the presence of bounded delays in the communication links. The operation of

the event-triggered version is identical to the operation of the proposed distributed algo-

rithm with delays introduced in Section 4.3.1 if we assume that in the latter algorithm

all transmissions of identical weights (that occur in the original version of the algorithm

but not in the event-triggered version) suffer the maximum possible delay. As a result,

since the operation of both algorithms is identical5, we have that the event-triggered

operation of the distributed algorithm will converge to a set of weights that form a

weight balanced digraph after a finite number of steps bounded by O(n6τ) iterations.

Also, since ∃ k0 ∈ N0 for which flj [k + 1] = flj [k] = f∗lj , ∀ k ≥ k0, from Step 3 of the

algorithm, we can see that all nodes eventually stop transmitting (and the weights are

identical to the weights obtained by the algorithm in Section 4.3.1).

Remark 4.6. It is interesting to note here that event-triggering comes at the cost of speed

in the sense that retransmissions of identical weights could have potentially allowed

the receiving node to learn the weight change earlier (particularly if the delay after a

5The operation is identical under different delays in each case.
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Algorithm 4 Event-triggered distributed balancing in the presence of time delays

Input
A strongly connected digraph Gd = (V, E) with n = |V| nodes and m = |E| edges.
Initialization
Set k = 0; each node vj ∈ V does the following:

1. It assigns a unique priority order to its outgoing edges as Plj , for vl ∈ N+
j (such

that {Plj | vl ∈ N+
j } = {1, 2, ...,D+

j }).

2. It sets its outgoing edge weights as

flj [0] =

{
0, if (vl, vj) /∈ E ,
1, if (vl, vj) ∈ E .

3. It sets its (perceived) incoming weights to be equal to unity, f ji[0] = 1, ∀vi ∈ N−j .

4. It transmits the new weights flj [0] on each outgoing edge (vl, vj) ∈ E to each
vl ∈ N+

j .

Iteration
For k = 0, 1, 2, . . . , each node vj ∈ V does the following:

1. It receives the weights on its incoming edges f ji[k+ 1]. More specifically, for each

in-neighboring node vi ∈ N−j let Fji = {fji[s + τji[s]] | s + τji[s] = k + 1} be the
set of weights of link (vj , vi) ∈ E that arrive at node vj at time step k + 1. We
have that

f ji[k + 1] =

{
f ji[k], if Fji = ∅,
max{f ji[k],maxfji∈Fji

{f ji}}, if Fji 6= ∅.

2. If f ji[k + 1] = f ji[k] for each vi ∈ N−j then skip Steps 3, 4, and 5. Point out that
this is the major difference from the previous algorithm.

3. It computes its weight imbalance according to the latest received weight values
from its in-neighbors

xj [k + 1] = S−j [k + 1]− S+j [k + 1].

4. If xj [k + 1] = br+j > 0, it sets the values of the weights on its outgoing edges to

flj [k + 1] =

⌊
S
−
j [k+1]

D+
j

⌋
, ∀vl ∈ N+

j . Then, it chooses the set of the first (according

to the priority order) S
−
j [k + 1] − D+

j

⌊
S
−
j [k + 1]

D+
j

⌋
outgoing edges, and increases

their weight by 1 so that |flj [k+ 1]− fhj [k+ 1]| ≤ 1,∀vl, vh ∈ N+
j and S+j [k+ 1] =

S−j [k + 1].

5. It transmits the new weights flj [k + 1] on each outgoing edge (vl, vj) ∈ E to the
corresponding out-neighbor vl ∈ N+

j .

6. It repeats (increases k to k + 1 and goes back to Step 1).
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triggering is large, in which case it could be offset by a smaller delay in a subsequent

transmission).

Remark 4.7. It is important to note here that the proposed distributed balancing al-

gorithm (along with its event triggered operation) is able to converge (with probability

one) to a set of weights that form a balanced graph after a finite number of iterations

in the case where there are different (possibly unbounded) delay distributions (except

the uniform one which was thoroughly analyzed) in the communication links during the

information exchange between nodes in the network.

4.5 Distributed Algorithm for Weight Balancing

in the Presence of Packet Dropping Links

Apart from bounded delays, unreliable communication links in practical settings could

also result in possible packet drops (i.e., unbounded delays) in the corresponding commu-

nication network. In this section, we analyze the performance of the proposed distributed

weight balancing algorithm in the presence of possible packet drops in the communica-

tion links. To model packet drops, we assume that, at each time step k, a packet that

is sent from node vi to node vj on link (vj , vi) ∈ E is dropped with probability qji,

where we have qji < 1. For simplicity, we assume independence between packet drops at

different time steps or different links. We establish that, despite the presence of packet

drops, the proposed distributed algorithm converges, with probability one, to a weight

balanced digraph after a finite number of iterations. This weight balanced digraph is

identical to the one obtained under no packet drops.

Proposition 6. Consider the above setup, where the proposed balancing algorithm,

with no packet drops and no delays, converges to a set of weights f∗lj that form a weight

balanced digraph after a finite number of steps bounded by O(n6). In the presence

of packet drops occurring with probability qlj , qlj < 1, ∀(vl, vj) ∈ E (independently

between different links and different time steps), the proposed balancing algorithm also

converges, with probability one, to a set of weights flj = f∗lj , ∀(vl, vj) ∈ E , after a finite

number of iterations.

Proof. As mentioned earlier and shown in [47] for the case where τ = 0, the proposed

distributed algorithm reaches a set of weights F ∗ that forms a weight balanced digraph

after a finite number of steps bounded by O(n6), where n is the number of nodes in

the digraph. This means that for every (vl, vj) ∈ E , ∃ k0 ∈ N0 for which f∗lj [k + 1] =

f∗lj [k],∀ k ≥ k0.
Consider now an execution of the proposed distributed balancing algorithm where pack-

ets containing information are dropped with probability qlj < 1 for each communication
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link (vl, vj) ∈ E , and assume independence between packet drops at different time steps

and different links.

During transmissions on link (vl, vj), we have that at each transmission, a packet goes

through with probability 1 − qlj > 0. Thus, if we consider klj consecutive uses of link

(vl, vj), the probability that at least one packet will go through is 1− qkljlj , which will be

arbitrarily close to 1 for a sufficiently large klj .

Specifically, for any (arbitrarily small) ε > 0, we can choose

klj =

⌈
log ε

log qlj

⌉
,

to ensure that each transmission goes through at least once within klj steps with prob-

ability 1− ε.
Let τ = max(vl,vj)∈E{klj}; then since the proposed distributed algorithm completes

under no packet drops in O(n6) steps, we can conclude that it will complete by O(n6τ)

steps with probability (1 − ε)n6|E| in the presence of packet drops (note that |E| is the

number of edges in the given digraph). By making ε arbitrarily small we can make

this probability arbitrarily close to 1. Moreover, since this particular execution of the

algorithm (that occurs with probability (1−ε)n6|E|) is essentially identical to an execution

of the algorithm in Section 4.3.1 with delays that are bounded by τ , the final weights are

identical to the weights of that algorithm (i.e., for large enough k we have flj [k] = f∗lj

for all (vl, vj) ∈ E).

Remark 4.8. Note here that the presence of packet drops can be dealt in a way identical

to the presence of unbounded delays in the communication links during the information

exchange between nodes in the network. In fact, when the delays in the communication

links are unbounded, then the proposed distributed algorithm is still able to obtain a set

of weights that balance the corresponding digraph after a finite number of iterations.

Remark 4.9. It is worth pointing out that the proposed distributed algorithm is able

to converge (with probability one) to a set of weights that form a balanced graph after

a finite number of iterations when there are both possible packet drops and arbitrary

but bounded time delays in the communication links, while the resulting weight bal-

anced digraph is again unique and independent of how packet drops and delays manifest

themselves in link transmissions.

4.5.1 Simulation Study

In this section, we present simulation results and comparisons for the proposed dis-

tributed algorithm. Specifically, we present detailed numerical results for a random

graph of size n = 20 and for the average of 1000 random digraphs of 20 and 50 nodes
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each. We illustrate the behavior of the proposed distributed algorithm for the follow-

ing three different scenarios: (i) the scenario where there are no packet drops in the

communication links (vj , vi) ∈ E and each node vj transmits the weights flj [k + 1] of

each outgoing edge (vl, vj) ∈ E to each vl ∈ N+
j at each iteration k, (ii) the scenario

where there are packet drops with equal probability q (where 0 ≤ q < 1) for every

communication link (vj , vi) ∈ E and each node vj transmits the weights flj [k + 1] of

each outgoing edge (vl, vj) ∈ E to each vl ∈ N+
j at each iteration k, (iii) the scenario

where there are no packet drops at the communication links (vj , vi) ∈ E and each node

vj transmits only once the updated weights flj [k + 1] of each outgoing edge (vl, vj) ∈ E
to each vl ∈ N+

j . Each scenario of the proposed distributed algorithm is analyzed in a)

the absence of time-delays in the communication links (i.e., τlj [k] = 0, ∀ (vl, vj) ∈ E)

and b) the presence of time-delays in the communication links (i.e., 0 ≤ τlj [k] ≤ τlj ,

∀ (vl, vj) ∈ E).

Note here that in the case where τlj [k] = 0, ∀ (vl, vj) ∈ E we have that f lj [k] = flj [k]

and the proposed distributed algorithm is identical to the algorithm presented in [47],

where we consider the transmission between nodes to happen instantaneously.

Figure 4.5 shows what happens in the case of a randomly created graph of 20 nodes, in

which the operation of the proposed distributed algorithm includes no packet drops at

the communication links (vj , vi) ∈ E and each node vj transmits the weights flj [k + 1]

of each outgoing edge (vl, vj) ∈ E to each vl ∈ N+
j at each iteration k. We plot the total

delayed imbalance as a function of the number of iterations k for the cases where τ = 0

(solid line), τ = 10 (dashed line) and τlj = τ = 10, ∀(vl, vj) ∈ E (dashed-dotted line).

The plot demonstrates that the proposed distributed algorithm is able to obtain a set

of weights that balance the corresponding digraph after a finite number of iterations as

argued in the previous section.

Figure 4.6 shows the same case as Figure 4.5, with the difference that the operation

of the proposed distributed algorithm includes packet drops with equal probability q

(where 0 < q < 1) for every communication link (vj , vi) ∈ E and each node vj transmits

the weights flj [k+1] of each outgoing edge (vl, vj) ∈ E to each vl ∈ N+
j at each iteration

k. Here, the plot suggests, that the proposed distributed algorithm is able to obtain a

set of weights that balance the corresponding digraph after a finite number of iterations.

Figure 4.7 shows the same case as Figures 4.5 and 4.6, with the difference being that

the operation of the proposed distributed algorithm includes no packet drops at the

communication links (vj , vi) ∈ E but each node vj transmits only once the updated

weights flj [k + 1] of each outgoing edge (vl, vj) ∈ E to each vl ∈ N+
j . Here, the plot

demonstrates that the proposed distributed algorithm is able to obtain a set of weights

that balance the corresponding digraph after a finite number of iterations.

Figure 4.8 shows what happens for the average of 1000 random digraphs of 20 nodes each

for the three scenarios of the proposed distributed algorithm presented in Figures 4.5, 4.6
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Figure 4.5: Total delayed imbalance plotted against the number of iterations for a
random digraph of 20 nodes in the case where τ = 0 (solid line), 0 < τlj < τ where

τ = 10 (dashed line) and in the case where τlj = τ = 10 (dashed-dotted line).
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Figure 4.6: Total delayed imbalance plotted against the number of iterations for a
random digraph of 20 nodes in the case where τ = 0 (solid line), 0 < τlj < τ where

τ = 10 (dashed line) and in the case where τlj = τ = 10 (dashed-dotted line).

and 4.7 respectively. Note that the plot colors of the three scenarios in Figures 4.5, 4.6

and 4.7, remain the same in Figure 4.8 (i.e., the scenarios of Figures 4.5, 4.6 and 4.7 are

shown with blue, red and green, respectively, in Figure 4.8). We plot the average total

delayed imbalance as a function of the number of iterations k in logarithmic scale for

τ = 0 (solid lines), τ = 10 (dashed lines) and τlj = τ = 10, ∀(vl, vj) ∈ E (dashed-dotted

lines). Here we can see that the first scenario of the proposed distributed algorithm

(presented in Figure 4.5) is identical to the third one (presented in Figure 4.7) for

the case where there are no time-delays in the communication links (i.e., τlj [k] = 0,
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Figure 4.7: Total delayed imbalance plotted against the number of iterations for a
random digraph of 20 nodes in the case where τ = 0 (solid lines), 0 < τlj < τ where

τ = 10 (dashed lines) and in the case where τlj = τ = 10 (dashed-dotted lines).

∀ (vl, vj) ∈ E). However, the first scenario (Figure 4.5) generally outperforms the second

and third scenarios (Figures 4.6 and 4.7, respectively) for the case where there are time-

delays in the communication links (i.e., 0 ≤ τlj [k] ≤ τlj , ∀ (vl, vj) ∈ E).
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Figure 4.8: Average total delayed imbalance plotted against the number of iterations
in logarithmic scale for 1000 random digraphs of 20 nodes each in the case where τ = 0
(solid lines), 0 < τlj < τ where τ = 10 (dashed lines) and in the case where τlj = τ = 10

(dashed-dotted lines).

Figure 4.9 shows the same cases as Figure 4.8, with the difference being that the network

consists of 50 nodes. The performance of the proposed distributed algorithm does not

change due to the network size and the conclusions are the same as in Figure 4.8.

APOSTOLO
S I. 

RIKOS



Weight Balancing over Unreliable Communication 48

10
0

10
1

10
2

10
3

0

50

100

150

200

250

Number of Iterations (Log)

A
ve

ra
ge

 T
ot

al
 D

el
ay

ed
 Im

ba
la

nc
e

Total Delayed Imbalance vs Iterations for Average of 1000 Graphs of 50 Nodes

 

τ = 0
0 < τ < 10
τ = 10
p = 0.5,  τ = 0
p = 0.5,  0 < τ < 10 
p = 0.5,  τ = 10
τ = 0
0 < τ < 10
τ = 10

Figure 4.9: Average total delayed imbalance plotted against the number of iterations
in logarithmic scale for 1000 random digraphs of 50 nodes each in the case where τ = 0
(solid lines), 0 < τlj < τ where τ = 10 (dashed lines) and in the case where τlj = τ = 10

(dashed-dotted lines).

4.6 Chapter Summary

In this chapter, we introduced a novel distributed iterative algorithm and established

that it converges to a weight balanced digraph after a finite number of steps. We

have also bounded the execution time of the proposed algorithm as O(n6τ), where n is

the number of nodes and τ is the maximum delay in the digraph, and argued that the

resulting weight balanced digraph is unique and independent of how the delays that affect

link transmissions materialize. We also added extensions to handle the cases of packet

drops over the communication links and event-triggered operation. In both scenarios,

the proposed algorithm converges (with probability one) to a set of weights that form

a balanced graph after a finite number of iterations while the resulting weight balanced

digraph is unique and independent of how packet drops affect link transmissions. We also

demonstrated the operation, performance, and advantages of the proposed algorithm via

various simulations.

APOSTOLO
S I. 

RIKOS



Chapter 5

Weight Balancing under

Link Capacity Constraints

In this chapter, we present a novel distributed algorithm which deals with the problem

of balancing a weighted digraph in the presence of link capacity constraints over the

communication links. The algorithm presented in this chapter has appeared in [53].

This chapter is organized as follows. In Section 5.1 we present additional notation and

the problem formulation. In Section 5.2 we present the conditions for the existence of a

set of integer weights (within the allowable intervals) that balance a weighted digraph.

In Section 5.3 we introduce a novel distributed algorithm which achieves integer weight

balancing in a multi-component system, in the presence of specified lower and upper

constraints on the edge weights. We present a formal description of the proposed dis-

tributed algorithm and demonstrate its performance via an illustrative example. Then

we show that, as long as the conditions presented in Section 5.2 hold, the proposed

distributed algorithm converges to a weight-balanced digraph after a finite number of

iterations and we conclude by we presenting simulation results and comparisons.

5.1 Graph-Theoretic Notions and Problem Statement

In this chapter, we assume that a pair of nodes vj and vi that are connected by an

edge in the digraph Gd (i.e., (vj , vi) ∈ E and/or (vi, vj) ∈ E) can exchange information

among themselves (in both directions). In other words, the communication topology is

captured by the undirected graph Gu = (V, Eu) that corresponds to a given directed

graph Gd = (V, E), where

Eu = ∪(vj ,vi)∈E{(vj , vi), (vi, vj)} = E ∪ Er ,

with Er = {(vi, vj) | (vj , vi) ∈ E}. [Recall that a graph is undirected if and only if

(vj , vi) ∈ E implies (vi, vj) ∈ E .]

49
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Also, we assume that node vj assigns a unique order in the set {0, 1, ...,Dj − 1} to each

of its outgoing and incoming edges. The order of link (vl, vj) (or (vj , vi)) is denoted

by P
(j)
lj (or P

(j)
ji ) (such that {P (j)

lj | vl ∈ N+
j } ∪ {P

(j)
ji | vi ∈ N−j } = {0, 1, ...,Dj − 1})

and will be used later on as a way of allowing node vj to make changes to its outgoing

and incoming edge weights in a unique predetermined order. This unique order is used

during the execution of the proposed distributed algorithm as a way of allowing node vj

to transmit messages to its out- and in-neighbors in a round-robin1 fashion.

Given a digraph Gd = (V, E) we can associate nonnegative integer weights fji ∈ N0 on

each edge (vj , vi) ∈ E . In this thesis, these weights will be restricted to have positive

integer values and lie in an interval [lji, uji], i.e., 0 < lji ≤ fji ≤ uji and fji ∈ N, for

every (vj , vi) ∈ E . We will also use matrix notation to denote (respectively) the integer

weight, lower limit, and upper limit matrices by the n× n matrices F = [fji], L = [lji],

and U = [uji], where F (j, i) = fji, L(j, i) = lji, U(j, i) = uji, and fji ∈ N, for every

(vj , vi) ∈ E (obviously fji = lji = uji = 0 when (vj , vi) /∈ E).

5.1.1 Problem Statement

We are given a strongly connected digraph Gd = (V, E), as well as lower and upper

bounds lji and uji (lji ≤ uji, lji, uji ∈ R) on each each edge (vj , vi) ∈ E . We want to

develop a distributed algorithm that allows the nodes to iteratively adjust the weights

on their edges so that they eventually obtain a set of integer weights {fji | (vj , vi) ∈ E}
that satisfy the following:

1. fji ∈ N0 for each edge (vj , vi) ∈ E .

2. lji ≤ fji ≤ uji for each edge (vj , vi) ∈ E ;

3. S+j = S−j for each vj ∈ V;

The distributed algorithm needs to respect the communication constraints imposed by

the undirected graph Gu that corresponds to the given directed graph Gd.

Remark 5.1. One of the main differences of this chapter with chapters 3 and 4 is that

the algorithms presented in this chapter require a bidirectional communication topology,

whereas the aforementioned algorithms assume a communication topology that matches

the weight (physical) topology. We should point out that direct application of these

earlier algorithms to the problem that is of interest in this chapter will generally fail

(because weights are restricted to lie within lower and upper limits). Also, note that there

are many applications where the physical topology is directed but the communication

1Each node vj transmits to its out- and in-neighbors by following a unique predetermined order. The
next time it needs to transmit to an out- or in-neighbor, it will continue from the outgoing or incoming
edge it stopped the previous time and cycle through the edges in a round-robin fashion according to the
unique predetermined ordering.
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topology is bidirectional (e.g., traffic weight in an one way street is directional, but

communication between traffic lights at the end points of the street will, in fact, be

bidirectional). In such cases, the algorithms proposed here are directly applicable. More

generally, in many applications, the communication topology does not necessarily match

the physical one.

5.2 Integer Circulation Conditions

Given a strongly connected digraph Gd = (V, E), with lower and upper bounds lji and

uji (0 < lji ≤ uji) on each edge (vj , vi) ∈ E , the necessary and sufficient conditions

for the existence of a set of integer weights {fji | (vj , vi) ∈ E} that satisfy the capacity

constraints (i.e., lji ≤ fji ≤ uji for each edge (vj , vi) ∈ E), and balance constraints (i.e.,

S+j = S−j for every vj ∈ V), can be stated (by adopting Theorem 3.1 in [36]) as follows:

(i) for every (vj , vi) ∈ E , we have

dljie ≤ bujic, (5.1)

and

(ii) for each subset of nodes S, S ⊂ V, we have

∑
(vj ,vi)∈E−S

dljie ≤
∑

(vl,vj)∈E+S

buljc , (5.2)

where

E−S = {(vj , vi) ∈ E | vj ∈ S, vi ∈ V − S} , (5.3)

E+S = {(vl, vj) ∈ E | vj ∈ S, vl ∈ V − S} . (5.4)

5.3 Distributed Algorithm for Weight Balancing

under Link Capacity Constraints

In this section we provide an overview of the operation of a distributed balancing al-

gorithm (Algorithm 5) and discuss a possible enhancement. The algorithm is iterative

and operates by having, at each iteration, nodes with positive weight imbalance at-

tempt to change the integer weights on both their incoming and outgoing edges so that

they become weight balanced. At each iteration k, each node vj compares the total

in-weight from the weights of its incoming edges against the total out-weight from the

weights of its outgoing edges. If its weight imbalance is positive (xj [k] > 0) then it

increases (decreases) the weights of its outgoing (incoming) edges according to the order

chosen at initialization. Finally, it transmits the amount of change it desires for each
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incoming/outgoing edge to the corresponding in/out neighbor; the node also receives

the amount of change its neighbors desire for the corresponding edges, based on which

it calculates the new edge weights; the above procedure is repeated at each iteration.

We establish that, if the necessary and sufficient integer circulation conditions for the

existence of a set of integer weights that balance the given digraph are satisfied, the

algorithm completes after a finite number of iterations. We next describe the iterative

algorithm in more detail.

Initialization. At initialization, each node is aware of the feasible weight interval on

each of its incoming and outgoing edges, i.e., node vj is aware of lji, uji for each vi ∈ N−j
and llj , ulj for each vl ∈ N+

j . Furthermore, the weights are initialized at the ceiling of

the lower bound of the feasible interval, i.e., fji[0] = dljie. This initialization is always

feasible but not critical and could be any integer value in the feasible weight interval

[lji, uji] (according to condition (5.1) an integer exists in the interval [lji, uji]). Also

each node vj chooses a unique order P
(j)
lj and P

(j)
ji for its outgoing links (vl, vj) and

incoming links (vj , vi) respectively, such that {P (j)
lj | vl ∈ N+

j } ∪ {P
(j)
ji | vi ∈ N−j } =

{0, 1, ...,Dj − 1}.
Iteration. At each iteration k ≥ 0, node vj is aware of the integer weights on its

incoming edges {fji[k] | vi ∈ N−j } and outgoing edges {flj [k] | vl ∈ N+
j }, and calculates

its weight imbalance xj [k] according to Definition 2.

A. Selecting desirable weights: Each node vj with positive weight imbalance (i.e., with

xj [k] > 0) attempts to change the integer weights in both its incoming edges and its

outgoing edges. No attempt to change weights is made if node vj has negative or zero

weight imbalance. When xj [k] > 0, node vj attempts to change the weights at its

incoming edges {fji[k + 1] | vi ∈ N−j }, and outgoing edges {flj [k + 1] | vl ∈ N+
j } in

a way that drives its weight imbalance xj [k + 1] to zero (at least if no other changes

are inflicted on the weights). More specifically, it goes through the links (incoming

and outgoing) according to their ordering and changes their weights by a unit value,

by +1 or −1, depending whether they are outgoing or incoming edges, respectively. If

an outgoing (incoming) edge has reached its max (min) value then its weight does not

change and node vj proceeds in changing the next one according to the predetermined

order. According to the integer circulation conditions, each node vj ∈ V with positive

weight imbalance at iteration k (xj [k] > 0) will always be able to calculate a weight

assignment for its incoming and outgoing edge weights so that its weight imbalance

becomes zero (at least if no other changes are inflicted on the weights of its incoming

or outgoing links). This means that the selection of desirable weights in the above

algorithm is always feasible. The resulting additive change desired by node vj on fji[k]

of edge (vj , vi) ∈ E at iteration k will be denoted by c
(j)
ji [k].

Note: Next time node vj needs to change the weights of its incoming/outgoing edges,

it will continue from the edge it stopped the previous time and cycle through the edge
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weights in a round-robin fashion according to the ordering chosen at initialization. If

an edge reaches its maximum or minimum value, then its weight does not increase

of decrease and node vj proceeds in changing the next one (according to the chosen

ordering). The total change amount desired by node vj on the weight fji[k] of edge

(vj , vi) ∈ E (or the weight flj [k] of edge (vl, vj) ∈ E) at iteration k will be denoted by

c
(j)
ji [k] (or c

(j)
lj [k]).

B. Integer weight adjustment. Since the integer weight fji on each edge (vj , vi) ∈ E affects

positively the weight imbalance xj [k] of node vj and negatively the weight imbalance xi[k]

of node vi, we need to take into account the possibility that both nodes are attempting

to inflict changes on the integer weights simultaneously. Suppose that after one iteration

of the algorithm (say at iteration k), node vi increases the weight fji[k] of its outgoing

edge (vj , vi) by an integer value c
(i)
ji [k] while node vj decreases the weight fji[k] of its

incoming edge (vj , vi) by an integer value c
(j)
ji [k]. The new weight on edge (vj , vi) ∈ E is

taken to be fji[k+ 1] = fji[k] + c
(i)
ji [k] + c

(j)
ji [k]. (Since we have lji ≤ fji[k] + c

(i)
ji [k] ≤ uji

and lji ≤ fji[k]+c
(j)
ji [k] ≤ uji, where c

(i)
ji ≥ 0 and c

(j)
ji ≤ 0, we have that lji ≤ fji[k+1] =

fji[k] + c
(i)
ji [k] + c

(j)
ji [k] ≤ uji.]

Remark 5.2. In the enhanced version of Algorithm 5, each node vj with negative weight

imbalance xj [k] < −1 attempts to add 1 to the weights of its incoming edges {fji[k +

1] | vi ∈ N−j }, and subtract 1 from the weights of its outgoing edges {flj [k+1] | vl ∈ N+
j }

one at a time, following the predetermined order in a round-robin fashion, until its weight

imbalance xj [k + 1] becomes equal to −1 (at least if no other changes are inflicted on

the weights).

Remark 5.3. The above weight adjustment signifies that after iteration k of the proposed

distributed algorithm, once nodes vi and vj determine whether to increase (decrease) by

c
(i)
ji [k] (c

(j)
ji [k]) the weight of edge (vj , vi) (where c

(i)
ji [k],−c(j)ji [k] ∈ N0), the new weight

of edge (vj , vi) will be fji[k + 1] = fji[k] + c
(i)
ji [k] + c

(j)
ji [k]. According to the weight

adjustment we have that 1 ≤ lji ≤ fji[k]+c
(i)
ji [k] ≤ uji and 1 ≤ lji ≤ fji[k]+c

(j)
ji [k] ≤ uji,

where c
(i)
ji [k] ≥ 0, and c

(j)
ji [k] ≤ 0 respectively. As a result we have that 1 ≤ lji ≤

fji[k] + c
(i)
ji [k] + c

(j)
ji [k] ≤ uji ⇒ 1 ≤ lji ≤ fji[k + 1] ≤ uji and fji[k + 1] ∈ N0.

5.3.1 Formal Description of Distributed Algorithm

A formal description of the proposed distributed algorithm is presented in Algorithm 5.

Remark 5.4. In Steps 3 and 4 of the algorithm, after node vj calculates the new

weight assignment for both its incoming and outgoing edges, it transmits the amount of

change on each outgoing and incoming edge. The weight assignment on edge (vj , vi)

is determined by the two incident nodes (vj and vi) and the new weight becomes

fji[k + 1] = fji[k] + c
(i)
ji [k] + c

(j)
ji [k] where c

(i)
ji [k] (or c

(j)
ji [k]) is the change desired by

node vi (or vj). According to the Integer Circulation Conditions in Section 5.2, each
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Algorithm 5 Distributed Balancing Under Link Capacity Constraints

Input
1) A strongly connected digraph Gd = (V, E) with n = |V| nodes, m = |E| edges.
2) lji, uji for every (vj , vi) ∈ E .
Initialization
Set k = 0; each node vj ∈ V does:
1) It sets the weights on its incoming/outgoing edge weights as

fji[0] = dljie, ∀vi ∈ N−j ,

flj [0] = dllje, ∀vl ∈ N+
j .

2) It assigns a unique order to its outgoing (or incoming) edges (vl, vj) (or (vj , vi)) as

P
(j)
lj (or P

(j)
ji ), for vl ∈ N+

j (or vi ∈ N−j ) (such that {P (j)
lj | vl ∈ N+

j } ∪ {P
(j)
ji | vi ∈

N−j } = {0, 1, ...,Dj − 1}).
Iteration
For k = 0, 1, 2, . . . , each node vj ∈ V does the following:
1) It computes its weight imbalance as

xj [k] =
∑

vi∈N−j

fji[k]−
∑

vl∈N+
j

flj [k].

2) If xj [k] > 0, it increases (decreases) by 1 the integer weights flj [k] (fji[k]) of its out-
going (incoming) edges vl ∈ N+

j (vi ∈ N−j ) one at a time, following the predetermined

order P
(j)
lj (P

(j)
ji ) until its weight imbalance becomes zero (if an edge has reached its

maximum (minimum) value and it cannot be increased (decreased) further, its weight
does not change and node vj proceeds in changing the next one according to the prede-
termined order.
(Enhanced version only) If xj [k] < −1, it decreases (increases) by 1 the integer weights
flj [k] (fji[k]) of its outgoing (incoming) edges vl ∈ N+

j (vi ∈ N−j ) one at a time, follow-

ing the predetermined order P
(j)
lj (P

(j)
ji ) until its weight imbalance becomes −1 (if an

edge has reached its minimum (maximum) value and it cannot be decreased (increased)
further, its weight does not change and node vj proceeds in changing the next one ac-
cording to the predetermined order).

3) It transmits the amount of change c
(j)
lj [k] (or c

(j)
ji [k]) on each outgoing (or incoming)

edge.

4) It receives the amount of change c
(l)
lj [k] (or c

(i)
ji [k]) from each outgoing (or incoming)

edge. Then, it sets its incoming and outgoing weights to be

fji[k + 1] = max(min(fji[k] + c
(i)
ji [k] + c

(j)
ji [k], uji), lji)

for its incoming weights and

flj [k + 1] = max(min(flj [k] + c
(l)
lj [k] + c

(j)
lj [k], ulj), llj)

for its outgoing weights.
5) It repeats (increases k to k + 1 and goes back to Step 1).
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node vj ∈ V with nonzero weight imbalance will always be able to calculate desired

changes for its incoming and outgoing edge weights, so that its weight imbalance be-

comes zero (or equal to −1). This means that the selection of desirable weights in the

above algorithm is always feasible.

Remark 5.5. Note that, in the enhanced version of Algorithm 5, no attempt to change

weights is made if node vj has weight imbalance equal to −1 or zero. If nodes with

negative weight imbalance were as aggressive as nodes with positive weight imbalance

(and tried to make weight changes that would make their balance zero), then one could

run into periodicity problems. As an example, consider the case of a ring digraph Gd
with nodes V = {v1, v2, v3, v4} and edges E = {e21, e32, e43, e14} where e21 = (v2, v1),

e32 = (v3, v2), e43 = (v4, v3) and e14 = (v1, v4). Suppose the edge orders are as follows:

for v1, P
(1)
21 = {0}, P (1)

14 = {1}; for v2, P
(2)
32 = {0}, P (2)

21 = {1}; for v3, P
(3)
43 = {0}, P (3)

32 =

{1}; and for v4, P
(4)
14 = {0}, P (4)

43 = {1} (i.e., each node will first change the weight of

its outgoing link and then the weight of its incoming link). If all nodes (with positive

or negative weight imbalance) tried to make weight changes to balance themselves, the

edge weights for time steps k = 0, 1, 2, 3, 4, would be

k = 0 : w21[0] = 1, w32[0] = 1, w43[0] = 2, w14[0] = 2,

k = 1 : w21[1] = 2, w32[1] = 1, w43[1] = 1, w14[1] = 2,

k = 2 : w21[2] = 2, w32[2] = 2, w43[2] = 1, w14[2] = 1,

k = 3 : w21[3] = 2, w32[3] = 1, w43[3] = 1, w14[3] = 2,

k = 4 : w21[4] = 1, w32[4] = 1, w43[4] = 2, w14[4] = 2.

We see that at iteration k = 4, weights (thus, node balances) are exactly the same as at

k = 0; moreover, the ordering in which changes will be made at the edges of each node

is also exactly the same as in iteration k = 0. We conclude that we have encountered

periodic behavior and the digraph Gd will never become balanced (i.e., wlj [k] = wlj [k+4],

∀(vl, vj) ∈ E and xj [k] = xj [k + 4], ∀vj ∈ V).

Remark 5.6. The operation of Algorithm 5 and its enhanced version, can be extended

also for the case where each node vj does not necessarily want a weight imbalance equal

to zero, but rather demands a weight imbalance equal to x
(s)
j 6= 0. When

∑n
j=1 x

(s)
j = 0,

and for each S (where S ⊂ V) we have
∑

(vj ,vi)∈E−S
dljie ≤

∑
(vl,vj)∈E+S

buljc+
∑

vj∈S x
(s)
j

(where E−S and E+S were defined in (5.3) and (5.4)), then every node can obtain a nonzero

weight imbalance equal to x
(s)
j as long as the nodes with positive weight imbalance

operate according to Step 2 until their weight imbalance becomes equal to x
(s)
j , and the

nodes with negative weight imbalance operate according to Step 3 until their weight

imbalance becomes equal to x
(s)
j − 1.
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We now illustrate the distributed algorithm via an example and then explain why it

results in a weight balanced digraph after a finite number of iterations. We also obtain

bounds on its execution time.

5.3.2 Illustrative Example of Distributed Algorithm

Consider the digraph Gd = (V, E) in Figure 5.1, where V = (v1, v2, . . . , v5), E =

(m21, . . . ,m45), E ⊆ V × V − {(vj , vj) | vj ∈ V}, L = [lji] and U = [uji] for every

(vj , vi) ∈ E . The weight on each edge is initialized to fji[0] = dljie for (vl, vj) ∈ E and

each node assigns a unique order to each of its outgoing and incoming edges. For the

purposes of this example, let us assume that this order is as follows:

• v1 : P
(1)
21 = 1, P

(1)
31 = 2, P

(1)
41 = 3,

• v2 : P
(2)
32 = 1, P

(2)
52 = 2, P

(2)
21 = 3,

• v3 : P
(3)
43 = 1, P

(3)
53 = 2, P

(3)
32 = 3, P

(3)
31 = 4,

• v4 : P
(4)
14 = 1, P

(4)
43 = 2, P

(4)
45 = 3,

• v5 : P
(5)
45 = 1, P

(5)
52 = 2, P

(5)
53 = 3.

(For example, node v2 will first increase f32, then f52 and then it will decrease f21.) As a

first step, each node computes its weight imbalance xj [0] =
∑

vi∈N−j
fji[0]−∑vl∈N+

j
flj [0]

(these values are shown in Figure 5.1).

v4 v5

v3

v1 v2

x1 = 2 x2 = 3

x3 = −2

x4 = −1 x5 = −2

[5.4, 10]

[6.2, 9]

[1.2, 7][9.2, 15]

[2, 5] [1, 6]

[1.3, 5] [2.6, 9]

6

2 1

2 3

7

10 2

Figure 5.1: Weighted digraph with initial weights and initial imbalances for each
node.

Once each node computes its imbalance, the distributed algorithm requires each node

with positive weight imbalance to increase (decrease) by 1 the integer weights flj [k]

(fji[k]) of its outgoing (incoming) edges vl ∈ N+
j (vi ∈ N−j ) one at a time, following

the predetermined order Plj until its weight imbalance becomes zero. In this case, the

nodes that have positive weight imbalance are nodes v1 and v2 (equal to x1[0] = 2 and

x2[0] = 3) respectively), and they increase their outgoing edges as shown in Figure 5.2.
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v4 v5

v3

v1 v2

+1

+1

−1

+1

+1

x1 = 2 x2 = 3

x3 = −2

x4 = −1 x5 = −2

[5.4, 10]

[6.2, 9]

[1.2, 7][9.2, 15]

[2, 5] [1, 6]

[1.3, 5] [2.6, 9]

6

2 1

2 3

7

10 2

Figure 5.2: Distribution of imbalance from positively imbalanced nodes.

In the next step of the distributed algorithm each node transmits the amount of change

c
(j)
lj [k] (or c

(j)
ji [k]) on each outgoing (or incoming) edge and receives the amount of change

c
(l)
lj [k] (or c

(i)
ji [k]) from each outgoing (or incoming) edge. Then, it sets its incoming

(outgoing) weights to be fji[k+ 1] = fji[k] + c
(i)
ji [k] + c

(j)
ji [k] (flj [k+ 1] = flj [k] + c

(l)
lj [k] +

c
(j)
lj [k]). This can be seen in Figure 5.3.

v4 v5

v3

v1 v2

x1 = 2 x2 = 3

x3 = −2

x4 = −1 x5 = −2

[5.4, 10]

[6.2, 9]

[1.2, 7][9.2, 15]

[2, 5] [1, 6]

[1.3, 5] [2.6, 9]

6 + 1 − 1

2 + 1 1 + 1

2 3

7

10 2 + 1

Figure 5.3: Calculation of edge weights from positively imbalanced nodes.

Each node, after the integer weight update on its outgoing and incoming edges, recalcu-

lates its imbalances xj [1], ∀vj ∈ V, and the process is repeated. After a finite number of

iterations, shown in the next section, we reach the weighted digraph with integer weights

shown in Figure. 5.4.

5.3.3 Proof of Algorithm Completion

We show that, as long as the Integer Circulation Conditions in Section 5.2 hold, then

the total imbalance ε[k] in Definition 3 goes to zero after a finite number of iterations of

Algorithm 5. This implies that the weight imbalance xj [k] for each node vj ∈ V goes to

zero after a finite number of iterations, and thus (from the updates in Algorithm 5) the

integer weight fji[k] on each edge (vj , vi) ∈ E stabilizes to an integer value f∗ji (where
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v4 v5

v3

v1 v2

x1 = 0 x2 = 0

x3 = 0

x4 = 0 x5 = 0

[5.4, 10]

[6.2, 9]

[1.2, 7][9.2, 15]

[2, 5] [1, 6]

[1.3, 5] [2.6, 9]

7

3 3

3 3

7

10 4

Figure 5.4: Final weight balanced digraph.

f∗ji ∈ N0) within the given lower and upper limits, i.e., 1 ≤ lji ≤ f∗ji ≤ uji for all

(vj , vi) ∈ E .

We begin by establishing some preliminary results.

Proposition 7. Consider the problem formulation described in Section 5.1. At each

iteration k during the execution of Algorithm 5, it holds that

1. For any subset of nodes S ⊂ V, let E−S and E+S be defined by (5.3) and (5.4)

respectively. Then,

∑
vj∈S

xj [k] =
∑

(vj ,vi)∈E−S

fji[k]−
∑

(vl,vj)∈E+S

flj [k] ;

2.
∑n

j=1 xj [k] = 0;

3. ε[k] = 2
∑

vj∈V−[k] |xj [k]| where V−[k] = {vj ∈ V | xj [k] < 0}.

Proof. To prove the first statement, let

ES = {(vj , vi) ∈ E | vj ∈ S, vi ∈ S}
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be the set of edges that are internal to the set S. From the definition of the weight

imbalance for node vj , we have (after re-arranging the summations)

∑
vj∈S

xj [k] =
∑
vj∈S

 ∑
vi∈N−j

fji[k]−
∑

vl∈N+
j

flj [k]


=

∑
(vj ,vi)∈E−S

fji[k]−
∑

(vl,vj)∈E+S

flj [k] +

+
∑

(vj ,vi)∈ES

fji[k]−
∑

(vl,vj)∈ES

flj [k]

=
∑

(vj ,vi)∈E−S

fji[k]−
∑

(vl,vj)∈E+S

flj [k] .

For the second statement, we can take any S ⊂ V and argue that

∑
vj∈V

xj [k] =
∑
vj∈S

xj [k] +
∑

vj∈V−S
xj [k]

=
∑

(vj ,vi)∈E−S

fji[k]−
∑

(vl,vj)∈E+S

flj [k] +

+
∑

(vj ,vi)∈E−V−S

fji[k]−
∑

(vl,vj)∈E+V−S

flj [k]

= 0 ,

where the last line follows from the fact that E+S = E−V−S and E−S = E+V−S .

For the third statement, notice that, from the definition of ε[k] in Definition 3, we have

ε[k] =
∑
vj∈V
|xj [k]|

=
∑

vj∈V−[k]

|xj [k]|+
∑

vj∈V−V−[k]

|xj [k]|

=
∑

vj∈V−[k]

|xj [k]|+
∑

vj∈V−V−[k]

xj [k]

= 2
∑

vj∈V−[k]

|xj [k]| ,

where the third line follows from the definition of V−[k] (all nodes have nonnegative

balance) and the last line follows from the second statement of this proposition.

Proposition 8. Consider the problem formulation described in Section 5.1. Let V−[k] ⊂
V be the set of nodes with negative weight imbalance at iteration k, i.e., V−[k] = {vj ∈
V | xj [k] < 0}. During the execution of Algorithm 5, we have that

V−[k + 1] ⊆ V−[k].
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Proof. We will argue that nodes with nonnegative weight imbalance at iteration k can

never reach negative weight imbalance at iteration k + 1, thus establishing the proof of

the proposition.

Consider a node vj with a nonnegative weight imbalance xj [k] ≥ 0. Node vj may attempt

to make weight changes on its edges: c
(j)
ji [k] ≤ 0 for all vi ∈ N−j and c

(j)
lj [k] ≥ 0 for all

vl ∈ N+
j . If no in-neighbor or out-neighbor of node vj attempts to inflict changes on the

weights of these edges, then it is not hard to see that the weight imbalance of node vj

at iteration k + 1 will be

xj [k + 1] =
∑

vi∈N−j

fji[k + 1]−
∑

vl∈N+
j

flj [k + 1]

=
∑

vi∈N−j

(fji[k] + c
(j)
ji [k])−

∑
vl∈N+

j

(flj [k] + c
(j)
lj [k])

= xj [k]− xj [k] = 0

(because, by design, the changes in the weights are chosen so that the balance becomes

zero).

If one (or more) of the in-neighbors or out-neighbors of node vj have nonegative balance,

then they will also attempt to make changes on the weights. In particular,

fji[k + 1] = fji[k] + c
(j)
ji [k] + c

(i)
ji [k] ,

where c
(i)
ji [k] ≥ 0, and

flj [k + 1] = flj [k] + c
(j)
lj [k] + c

(l)
lj [k] ,

where c
(l)
lj [k] ≤ 0. Putting these together we have

xj [k + 1] =
∑

vi∈N−j

fji[k + 1]−
∑

vl∈N+
j

flj [k + 1]

=
∑

vi∈N−j

(fji[k] + c
(j)
ji [k] + c

(i)
ji [k])−

−
∑

vl∈N+
j

(flj [k] + c
(j)
lj [k] + c

(l)
lj [k])

= 0 +
∑

vi∈N−j

c
(i)
ji [k]−

∑
vl∈N+

j

c
(l)
lj [k]

≥ 0 .

For the first case where all neighbors of node vj do not belong in V−[k] then xi[k], xl[k] ≥
0, for every vi ∈ N−j and vl ∈ N+

j . This means that during iteration k of Algorithm 5,
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the edge weights of vj will change by its in/out neighbors (i.e., the weights of the

incoming edges (vj , vi) will be increased by c
(i)
ji [k] where vi ∈ N−j while the weights of

the outgoing edges will be decreased by c
(l)
lj [k] where vl ∈ N+

j ). In that case the weight

imbalance of node vj will increase (xj [k + 1] > xj [k]). For the new weight imbalance of

vj (i.e., xj [k + 1]) we have that it will either remain negative (i.e., xj [k + 1] < 0), or it

will become nonegative vj ∈ V−[k+ 1]. For the second case, if all the neighbors of node

vj belong in V−[k] they will not make any weight changes on the edges that connect

them with node vj and so we have that vj ∈ V−[k + 1]. But if some of the neighbors

vi and vl (where vi ∈ N−j and vl ∈ N+
j ) do not belong in V−[k] (i.e., xi[k], xl[k] ≥ 0)

then they will increase the incoming and decrease the outgoing edge weights by c
(i)
ji [k]

and c
(l)
lj [k] respectively and so the weight imbalance of node vj will be improved (i.e.,

xj [k + 1] > xj [k]). For the new weight imbalance of vj (i.e., xj [k + 1]) we have that it

will either remain negative (i.e., xj [k + 1] < 0) or it will become nonegative and remain

so for the rest of the iterations (i.e., xj [k+ 1] ≥ 0). As a result we have that during the

execution of Algorithm 5, V−[k + 1] ⊆ V−[k], ∀k ≥ 0.

Proposition 9. Consider the problem formulation described in Section 5.1. During the

execution of Algorithm 5, it holds that

0 ≤ ε[k + 1] ≤ ε[k] , ∀k ≥ 0 ,

where ε[k] ≥ 0 is the total imbalance of the network at iteration k (as defined in Defi-

nition 3).

Proof. From the third statement of Proposition 7, we have ε[k+1] = 2
∑

vj∈V−[k+1] |xj [k+

1]| and ε[k] = 2
∑

vj∈V−[k] |xj [k]|, whereas from Proposition 8, we have V−[k+1] ⊆ V−[k].

Consider a node vj ∈ V−[k] with weight imbalance xj [k] < 0. We analyze below the

following two cases:

1. All neighbors of node vj have negative or zero weight imbalance;

2. At least one neighbor of node vj has positive weight imbalance.

In both cases, node vj above will not make any weight changes on its edges. In the first

case, the weight imbalance of node vj will not change (i.e., xj [k + 1] = xj [k] < 0). In

the second case, we have xi[k] ≥ 0 or xl[k] ≥ 0, for some vi ∈ N−j or vl ∈ N+
j . This

means that during iteration k of Algorithm 5, the edge weights of vj might change by

its in/out neighbors (i.e., the weight of an incoming edge (vj , vi) might be increased by

c
(i)
ji [k] ≥ 0 (for some) vi ∈ N−j or the weight of an outgoing edge might be decreased

by c
(l)
lj [k] ≥ 0 (for some) vl ∈ N+

j ). Thus, in the second case, the weight imbalance of

node vj will satisfy xj [k+ 1] ≥ xj [k]. In fact, we will have that either xj [k+ 1] ≥ 0 (i.e.,
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vj /∈ V−[k + 1]) or xj [k + 1] < 0 and |xj [k + 1]| ≤ |xj [k]|. As a result, in both cases, we

have ε[k + 1] ≤ ε[k] (using the third statement in Proposition 7).

According to the above proposition we have that the total imbalance ε[k] of the net-

work at iteration k (as defined in Definition 3) will be reduced after a finite number of

iterations.

Proposition 10. Consider the problem formulation described in Section 5.1 where the

integer circulation conditions are satisfied. Algorithm 5 balances the weights in the

graph in a finite number of steps (i.e., ∃ k0 s.t. ∀k ≥ k0, fji[k0] = fji[k], ∀(vj , vi) ∈ E
and xj [k] = xj [k0] = 0, ∀vj ∈ V).

Proof. By contradiction, suppose Algorithm 5 runs for an infinite number of iterations

and the total imbalance remains positive (i.e., ε[k] > 0 for all k). Then, there is always

(at each k) at least one node with positive weight imbalance. Let V+[k] = {vj ∈
V | xj [k] ≥ 0} be the set of nodes that have positive weight imbalance at time step

k. Let V+ denote the set of nodes that have positive weight imbalance infinitely often.

[Since nodes with positive weight imbalance can become balanced (but not negatively

balanced), this means that nodes in the set V+ could become balanced at some iteration,

as long as they become positively imbalanced at later iterations.] Also, we can define the

set of nodes V− as V− = limk→∞ V−[k], where V−[k] = {vj ∈ V | xj [k] < 0}. This set is

well defined (due to the fact that positively imbalanced nodes cannot become negatively

balanced) and contains at least one node with negative weight imbalance (otherwise the

graph is balanced). The above discussion implies that as k goes to infinity, the set of

nodes V can be partitioned into three sets: V−, V+, and V − (V+ ∪ V−) (the latter is

the set of nodes that remain balanced after a finite number of steps –and never obtain

positive imbalance again). This is shown in Fig. 5.5.

V+

V − (V− ∪ V+)

V−

1

Figure 5.5: Example of digraph where the Integer Circulation Conditions in Sec-
tion 5.2 do not hold for the dashed edges.

Since the graph is strongly connected, nodes in the set V+ need to be connected to/from

nodes in the other two sets. This is shown via the dashed edges in Fig. 5.5 (note that

the presence of all four types of edges is not necessary, but there has to be at least one
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edge from a node in V+ to a node in one of the two other sets, and at least one edge

from a node in one of the two other sets to a node in V+).

Take S ⊂ V to be V+ and note that S has at least one node (since the number of

nodes is finite). Consider a node vj ∈ V− that has at least one in-neighbor vi in S
and/or at least one out-neighbor vl in S. Since vi (and/or vl) has a positive weight

imbalance infinitely often, it will eventually attempt to change the weight fji[k] (or

flj [k]) by c
(i)
ji [k] ≥ 0 (or c

(l)
lj [k] ≤ 0). If this change happens, then xj [k + 1] > xj [k] so

that vj either arrives at a nonegative weight imbalance (i.e., xj [k + 1] ≥ 0, which is a

contradiction) or 0 > xj [k + 1] > xj [k] (implying2 that ε[k + 1] < ε[k], which is also a

contradiction because, if the integer valued ε[k] decreases infinitely often, it will become

zero, thus xj [k] = 0 for all vj ∈ V).

Consider now a node vj′ that has zero weight imbalance and has at least one in-neighbor

vi′ in S and/or at least one out-neighbor vl′ in S. Since vi′ (or vl′) has a positive weight

imbalance infinitely often, it will eventually attempt to change the weight fj′i′ [k] (or

fl′j′ [k]) by c
(i′)
j′i′ [k] ≥ 0 (or c

(l′)
l′j′ [k] ≤ 0). If this change happens, then node vj′ would

eventually reach positive weight imbalance at some iteration, and this would happen

infinitely often which is a contradiction because vj′ belongs in the set of nodes with zero

weight imbalance (at least after a large enough number of steps).

Thus, for Algorithm 5, the only possibility left is that the weights of edges outgoing

from nodes in S cannot increase and the weights of edges incoming to nodes in S cannot

decrease. In other words, for k ≥ k0 for some large enough k0 we have

fji[k] = dljie ∀(vj , vi) ∈ E−S ,

flj [k] = buljc ∀(vl, vj) ∈ E+S ,

where E−S and E+S are defined by (5.3) and (5.4) respectively.

From the first statement of Proposition 7, for the set S, we have that
∑

vj∈S xj [k] =∑
(vj ,vi)∈E−S

fji[k]−∑(vl,vj)∈E+S
flj [k]. Thus, we have

∑
(vj ,vi)∈E−S

lji −
∑

(vl,vj)∈E+S

ulj =
∑
vj∈S

xj [k] > 0 ,

which means that the Integer Circulation Conditions in Section 5.2 do not hold (i.e., we

reach a contradiction).

As a result we have that if the Integer Circulation Conditions in Section 5.2 hold, the

total imbalance ε[k] decreases after a finite number of iterations, and Algorithm 5 results

in a weight-balanced digraph after a finite number of iterations.

2From the third statement of Proposition 7, we have ε[k + 1] = 2
∑
vj∈V−[k+1] |xj [k + 1]| and ε[k] =

2
∑
vj∈V−[k] |xj [k]|.

APOSTOLO
S I. 

RIKOS



Weight Balancing under Link Capacity Constraints 64

As a result we have that if the integer circulation conditions hold, the total imbalance

ε[k] decreases after a finite number of iterations, and the algorithm results in a weight

balanced digraph after a finite number of iterations.

5.3.4 Simulation Study

In this section, we present simulation results for the proposed distributed algorithm.

Specifically, we first present numerical results for a random graph of size n = 20 illus-

trating the behavior of Algorithm 5 for two different cases: (i) the case when the integer

circulation conditions do not hold, thus, a set of integer weights that balance the digraph

cannot be obtained; (ii) the case when the integer circulation conditions hold and a set

of integer weights that balance the graph can be obtained. The weights are initialized

at the ceiling of the lower bound of the feasible interval, i.e., fji[0] = dljie.
Figure 5.6 shows what happens in the case of a randomly created graph of 20 nodes,

in which the integer circulation conditions do not hold. In the first case, we plot the

absolute imbalance ε =
∑n

j=1 |xj |, ∀vj ∈ V (as defined in Definition 3) and in the second

case the nodes weight imbalances xj [k] (as defined in Definition 2) as a function of the

number of iterations k for the distributed algorithm. The plots suggest that the proposed

distributed algorithm is unable to obtain a set of weights that balance the corresponding

digraph.
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Figure 5.6: Execution of Algorithm 5 for the case when the integer circulation con-
ditions do not hold for a random graph of 20 nodes. Top figure: Absolute imbalance
ε[k] plotted against number of iterations. Bottom figure: Node weight imbalances xj [k]

plotted against number of iterations.

Figure 5.7 shows the same case as Figure 5.6, with the difference that the integer circu-

lation conditions hold. Here, the plots suggest that the proposed distributed algorithm

is able to obtain a set of integer weights that balance the corresponding digraph after a

finite number of iterations.
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Figure 5.7: Execution of Algorithm 5 for the case when the integer circulation condi-
tions hold for a random graph of 20 nodes. Top figure: Absolute imbalance ε[k] plotted
against number of iterations. Bottom figure: Node weight imbalances xj [k] plotted

against number of iterations.

Remark 5.7. Note that both Figures. 5.6 and 5.7 illustrate some of the properties es-

tablished in the analysis in the previous section: for example: once nodes have positive

weight imbalance, they retain a positive or zero weight imbalance; while nodes have neg-

ative weight imbalance, their imbalance increases monotonically; the absolute imbalance

is monotonically non-increasing, and so forth.

Figure 5.8 shows what happens in the case of 100 averaged graphs of 20 and 50 nodes

each when the integer circulation conditions hold. We plot the average total (abso-

lute) imbalance ε[k] =
∑n

j=1 |xj [k]| (as defined in Definition 3) as a function of the

number of iterations k for the distributed algorithm. The plot suggests that the pro-

posed distributed algorithm is able to obtain a set of integer weights that balance the

corresponding graph after a finite number of iterations.

5.4 Chapter Summary

In this chapter, we introduced and analyzed a novel distributed algorithm which achieves

integer weight balancing in a multi-component system in the presence of lower and upper

constraints on the edge weights. We analyzed its functionality, established its correctness

and showed that it achieves integer weight balancing after a finite number of steps. We

also demonstrated the operation, performance, and advantages of the proposed algorithm

via various simulations.APOSTOLO
S I. 
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Figure 5.8: Total (absolute) imbalance ε[k] plotted against the number of iterations
for the distributed algorithm (averaged over 100 graphs of 20 nodes each) in the case

where the integer circulation conditions hold.
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Figure 5.9: Total (absolute) imbalance ε[k] plotted against the number of iterations
for the distributed algorithm (averaged over 100 graphs of 50 nodes each) in the case

where the integer circulation conditions hold.
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Chapter 6

Weight Balancing under

Link Capacity Constraints

over Unreliable Communication

In this chapter, we present a novel distributed algorithm which deals with the problem

of balancing a weighted digraph under link capacity constraints in the presence of time

delays and packet drops over the communication links.

This chapter is organized as follows. In Section 6.1 we present the additional notation

needed in this chapter and we recall the modeling of time delays and packet drops and

the way they manifest themselves. In Section 6.2 we present the problem formulation.

In Section 6.3 we introduce a novel distributed algorithm which achieves integer weight

balancing under link capacity constraints in the presence of time delays over the com-

munication links. We present a formal description of the proposed distributed algorithm

and show that as long as the conditions presented in Section 5.2 hold, then the proposed

distributed algorithm converges to a weight balanced digraph after a finite number of

iterations in the presence of bounded time delays over the communication links. In Sec-

tion 6.4 we discuss an event-triggered operation of the proposed distributed algorithm

and show that it results in a weight balanced digraph after a finite number of iterations

in the presence of arbitrary (time-varying, inhomogeneous) but bounded time delays

over the communication links. In Section 6.5 we show that the proposed distributed

algorithm is also able to converge (with probability one) to a weight balanced digraph in

the presence of unbounded delays (packet drops). In Section 6.6 we present simulation

results and comparisons and the chapter is concluded in Section 6.7.
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6.1 Modeling Time Delays and Packet Drops

In this chapter, we assume that a transmission from node vj to node vl at time step

k undergoes an a priori unknown delay τ
(j)
lj [k] which is an integer that satisfies 0 ≤

τ
(j)
lj [k] ≤ τ lj ≤ ∞ (i.e., delays are bounded). The maximum delay is denoted by τ =

max(vl,vj)∈E τ lj . In the weight balancing setting we consider, node vj is in charge of

assigning the actual weight flj [k] to each link (vl, vj), and then transmits to node vl the

amount of change c
(j)
lj [k] it desires at time step k. Under the above delay model (which

assumes bidirectional communication), node vl (vj) receives the change amount c
(j)
lj [k]

(c
(l)
lj [k]), proposed by node vj (vl) over the actual (perceived) weight flj [k] (f

(p)
lj [k]), at

time step k + τ
(j)
lj [k] (k + τ

(l)
lj [k]).

From the perspective of node vj , the delayed weight change for link (vl, vj), ∀vl ∈ N+
j ,

at time step k is given by

c
(l)
lj [k] =

k∑
k0=k−τ , k0+τ (l)lj [k0]=k

c
(l)
lj [k0], (6.1)

i.e., c
(l)
lj [k] is the sum of weight changes c

(l)
lj sent from vl and seen from node vj at time

step k.

Apart from bounded delays, unreliable communication links in practical settings could

also result in possible packet drops (i.e., unbounded delays) in the corresponding com-

munication network. To model packet drops, we assume that a transmission on each

link (vj , vi) from node vi to node vj is unreliable which means that each particular edge

may drop packets with some (non-total) probability. We assume independence between

packet drops at different time steps or different links (or even different directions of the

same link), so that, we can model a packet drop via a Bernoulli random variable:

Pr{xk(j, i) = m} =

{
qji, if m = 0,

1− qji, if m = 1,
(6.2)

where xk(j, i) = 1 if the transmission from node vi to node vj at time step k is successful.

We also define the matrix Q = [qji] where qji is the entry at the jth row and ith column;

we take qji = 1 for (vj , vi) /∈ Eu and can set qji = 0 if the link is reliable. We establish

that, despite the presence of packet drops, the proposed distributed algorithm converges,

with probability one, to a weight balanced digraph after a finite number of iterations

(as long as a feasible solution exists and qji < 1 for all links (vj , vi) ∈ Eu).

Note that, in this chapter, the integer weight fji on edge (vj , vi) ∈ E is assigned by node

vi. More specifically, fji is assigned by node vi; due to possible (bounded or unbounded)

time delays the perceived weight f
(p)
ji on this link by node vj might be different. This

means that each node will know exactly the weights on its outgoing edges flj but only
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have access to perceived weights f
(p)
ji on its incoming edges, which will be equal to flj if

node vj is able to successfully communicate with node vl.

Definition 8. Given a weighted digraph Gd = (V, E ,F), along with a perceived weight

assignment Fp = [f
(p)
ji ], the total perceived in-weight of node vj is defined as S−(p)j and

is defined as S−(p)j =
∑

vi∈N−j
f
(p)
ji .

Definition 9. Given a weighted digraph Gd = (V, E ,F) of order n, the perceived weight

imbalance x
(p)
j of node vj is x

(p)
j = S−(p)j − S+j while the perceived total imbalance of

digraph Gd is defined as ε(p) =
∑n

j=1 |x
(p)
j |.

6.2 Problem Statement

We are given a strongly connected digraph Gd = (V, E), as well as lower and upper limits

lji and uji (0 < lji ≤ uji, where lji, uji ∈ R) on each each edge (vj , vi) ∈ E . Considering

that link transmissions undergo arbitrary, bounded or unbounded delays (i.e., packet

drops), we want to develop a distributed algorithm that allows the nodes to iteratively

adjust the integer weights on their edges so that they eventually obtain a set of integer

weights {fji | (vj , vi) ∈ E} that satisfy the following:

1. fji ∈ N for each edge (vj , vi) ∈ E ;

2. lji ≤ fji ≤ uji for each edge (vj , vi) ∈ E ;

3. S+j = S−j = S−(p)j for each vj ∈ V.

The distributed algorithm needs to respect the communication constraints imposed by

the undirected graph Gu that corresponds to the given directed graph Gd.
We introduce and analyze a distributed algorithm that allows each node to assign integer

weights to its outgoing links, so that the resulting weight assignment is balanced.

6.3 Distributed Algorithm for Weight Balancing

in the Presence of Time Delays

In this section we provide an overview of the distributed weight balancing algorithm

operation; the formal description of the algorithm is provided in Algorithm 6. The

algorithm is iterative and operates by having, at each iteration, nodes with positive

perceived weight imbalance attempt to change the integer weights on both their incoming

and/or outgoing edges so that they become weight balanced. We assume that each node

is in charge of assigning the weights on its outgoing edges. More specifically, fji is

assigned by node vi; due to possible time delays the perceived weight f
(p)
ji on this link

by node vj might be different. This means that each node will know exactly the weights
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on its outgoing edges but only have access to perceived weights on its incoming edges.

We use k to denote the iteration and index variables. For example, the change amount

from node vj on the weight fji[k] of edge (vj , vi) ∈ E at iteration k will be denoted by

c
(j)
ji [k].

Note: Each node vj can only calculate its perceived weight imbalance x
(p)
j (as defined

in Definition 9) at each iteration k. This means that it has no access to the total (or

perceived total) imbalance of the digraph Gd.

Remark 6.1. Note here that the integer weight flj on edge (vl, vj) ∈ E is assigned by

node vj . Thus, node vj has access to the true weight flj of edge (vl, vj) while node vl

has access to a perceived weight f
(p)
lj , which will be equal to flj if node vj is able to

successfully communicate with node vl.

We describe the operation of the iterative algorithm and establish that, if the necessary

and sufficient Integer Circulation Conditions in Section 5.2 are satisfied, the algorithm

completes after a finite number of iterations.

Initialization. At initialization, each node is aware of the feasible weight interval on

each of its incoming and outgoing edges, i.e., node vj is aware of lji, uji for each vi ∈ N−j
and llj , ulj for each vl ∈ N+

j . Furthermore, the weights are initialized at the ceiling of

the lower bound of the feasible interval, i.e., fji[0] = dljie. This initialization is always

feasible but not critical and could be any integer value in the feasible weight interval

[lji, uji] (according to Section 5.2) an integer always exists in the interval [lji, uji]). Also

each node vj chooses a unique order P
(j)
lj and P

(j)
ji for its outgoing links (vl, vj) and

incoming links (vj , vi) respectively, such that {P (j)
lj | vl ∈ N+

j } ∪ {P
(j)
ji | vi ∈ N−j } =

{0, 1, ...,Dj − 1}.
Iteration. At each iteration k ≥ 0, node vj is aware of the perceived integer weights on

its incoming edges {f (p)ji [k] | vi ∈ N−j } and the (actual) weights on its outgoing edges

{flj [k] | vl ∈ N+
j }, which allows it to calculate its perceived weight imbalance x

(p)
j [k]

according to Definition 9.

A. Selecting Desirable Weights. Each node vj with positive perceived weight imbalance

(i.e., x
(p)
j [k] > 0) attempts to change the weights on its incoming edges {fji[k] | vi ∈ N−j }

and/or outgoing edges {flj [k] | vl ∈ N+
j } in a way that drives its perceived weight

imbalance x
(p)
j [k + 1] to zero (at least if no other changes are inflicted on the weights).

No attempt to change weights is made if node vj has negative or zero perceived weight

imbalance. Specifically, node vj attempts to add +1 (or subtract −1) to its outgoing

(or incoming) integer weights one at a time, according to a predetermined (cyclic) order

until its perceived weight imbalance becomes zero. If an outgoing (incoming) edge has

reached its max (min) value (according to the feasible interval on that particular edge),

then its weight does not change and node vj proceeds to change the next one according

to the predetermined order, in a round-robin fashion. The desired weight change by node
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vj on edge (vj , vi) ∈ E at iteration k will be denoted by c
(j)
ji [k]; similarly, the desired

weight by node vj on edge (vl, vj) ∈ E at iteration k will be denoted by c
(j)
lj [k].

Note: Next time node vj has positive perceived weight imbalance it continues increasing

(decreasing) its outgoing (incoming) edges by 1, one at a time, following the (cyclic)

predetermined order starting from the edge it stopped the previous time it had positive

weight imbalance.

B. Exchanging Desirable weights. Once the nodes with positive perceived weight imbal-

ance calculates the desirable weight change for each incoming {c(j)ji [k] | vi ∈ N−j } and

outgoing {c(j)lj [k] | vl ∈ N+
j } weight, they take the following steps in sequence:

1) Node vj transmits the desirable weight change c
(j)
ji [k] (c

(j)
lj [k]) to each in- (out-) neigh-

bor vi (vl).

2) Node vj receives the delayed desired weight changes c
(i)
ji [k] (c

(l)
lj [k]) from each in-

(out-) neighbor vi (vl). If no weight change is received due to time delays, then node

vj assumes that c
(i)
ji [k] = 0 (c

(l)
lj [k] = 0) for the corresponding incoming (outgoing) edge

(vj , vi) ((vl, vj)).

3) It calculates its new outgoing (perceived incoming) weights flj [k+1] = flj [k]+c
(j)
lj [k]+

c
(l)
lj [k] (f

(p)
ji [k+1] = f

(p)
ji [k]+c

(j)
ji [k]+c

(i)
ji [k]). Then, the new outgoing (perceived incoming)

weights are adjusted so that the new weight is projected onto the feasible interval [llj , ulj ]

([lji, uji]) of the corresponding edge. This (along with all the parameters involved) can

be seen in Figure 6.1.

Remark 6.2. Since the weight fji on each edge (vj , vi) ∈ E affects positively the weight

imbalance xj [k] of node vj and negatively the weight imbalance xi[k] of node vi, we

need to take into account the possibility that both nodes desire a change on the weight

simultaneously. Thus, the proposed algorithm attempts to coordinate the weight change.

The challenge however, is the fact that time delays may occur during transmissions (in

either direction) while the nodes are trying to agree on a weight value.

vi

v7v2

vj

v6v5

vl
c
(i)
ji [k] c

(i)
ji [k]

or 0

c
(j)
lj [k] c

(j)
lj [k]

or 0

c
(j)
ji [k]

c
(j)
ji [k]or 0

c
(l)
lj [k]

c
(l)
lj [k]or 0

Figure 6.1: Digraph where nodes exchange their desirable weights in the presence of
time delays.

6.3.1 Formal Description of Distributed Algorithm

A formal description of the proposed distributed algorithm is presented in Algorithm 6.
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Algorithm 6 Distributed weight Balancing Algorithm in the Presence of Time Delays

Input
1) A strongly connected digraph Gd = (V, E) with n = |V| nodes and m = |E| edges.
2) lji, uji for every (vj , vi) ∈ E .
Initialization
Set k = 0; each node vj ∈ V does:
1) It sets the weights on its perceived incoming and outgoing edge weights as

f
(p)
ji [0] = dljie, ∀vi ∈ N−j ,

flj [0] = dllje, ∀vl ∈ N+
j .

2) It assigns a unique order to its outgoing and incoming edges as P
(j)
lj , for vl ∈ N+

j or

P
(j)
ji , for vi ∈ N−j (such that {P (j)

lj | vl ∈ N+
j } ∪ {P

(j)
ji | vi ∈ N−j } = {0, 1, ...,Dj − 1}).

Iteration
For k = 0, 1, 2, . . . , each node vj ∈ V does the following:
1) It computes its perceived weight imbalance as in Definition 9

x
(p)
j [k] =

∑
vi∈N−j

f
(p)
ji [k]−

∑
vl∈N+

j

flj [k].

2) If x
(p)
j [k] > 0, it calculates the desired amount of change for the weights on its outgoing

and incoming edges. Specifically, it increases (decreases) by 1 the integer weights flj [k]

(f
(p)
ji [k]) of its outgoing (incoming) edges vl ∈ N+

j (vi ∈ N−j ) one at a time, following the

predetermined order P
(j)
lj (P

(j)
ji ) until its weight imbalance becomes zero (if an edge has

reached its maximum value, its weight does not change and node vj proceeds in changing
the next one according to the predetermined order). Then, it stores the desired change

amount for each outgoing edge as c
(j)
lj [k] and each incoming edge as c

(j)
ji [k].

3) If x
(p)
j [k] > 0, it transmits the desired weight change c

(j)
lj [k] (c

(j)
ji [k]) on each outgoing

(incoming) edge.

4) It receives the (possibly delayed) desired weight change c
(l)
lj [k] (c

(i)
ji [k]) from each

outgoing (incoming) edge. [If no weight change is received due to time delays it assumes

c
(l)
lj [k] = 0 (c

(i)
ji [k] = 0) for the corresponding outgoing (incoming) edge.]

5) It sets its new outgoing weights to be

flj [k + 1] = flj [k] + c
(j)
lj [k] + c

(l)
lj [k],

and its new perceived incoming weights to be

f
(p)
ji [k + 1] = f

(p)
ji [k] + c

(j)
ji [k] + c

(i)
ji [k].

6) It adjusts the new outgoing weights according to the corresponding upper and lower
weight constraints as

flj [k + 1] = max{llj ,min{ulj , flj [k + 1]}},

and its new perceived incoming weights according to the corresponding upper and lower
weight constraints as

f
(p)
ji [k + 1] = max{lji,min{uji, f (p)ji [k + 1]}}.

7) It repeats (increases k to k + 1 and goes back to Step 1).
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Remark 6.3. According to the Integer Circulation Conditions in Section 5.2, each node

vj ∈ V with positive perceived weight imbalance at iteration k (x
(p)
j [k] > 0) will always

be able to calculate a weight assignment for its incoming and outgoing edge weights

so that its perceived weight imbalance becomes zero (at least if no other changes are

inflicted on the weights of its incoming or outgoing links). This means that the selection

of desirable weights in Algorithm 6 is always feasible.

Remark 6.4. It is important to note here that the total perceived in-weight S−(p)j of node

vj might be affected from possible time delays at Step 4 of Algorithm 6. Specifically, if

transmissions are affected from possible time delays then vj sets f
(p)
ji [k + 1] = f

(p)
ji [k] +

c
(j)
ji [k] where c

(j)
ji [k] < 0 (since nodes only attempt to make changes on the weights if

their perceived balance is positive, node vi will only attempt to increases the weight

fji[k] of edge (vj , vi)). This means that during the execution of Algorithm 6 we have

f
(p)
ji [k] ≤ fji[k] for each edge (vj , vi) ∈ E , at each time step k.

Remark 6.5. The weight adjustment in Algorithm 6 signifies that after iteration k of

the proposed distributed algorithm, once node vj calculates the desired weight changes

for its incoming (outgoing) edges c
(j)
ji [k] (c

(j)
lj [k]), ∀ vi ∈ N−j (∀ vl ∈ N+

j ), it receives

the delayed desired weight changes from its in- (out-) neighbors c
(i)
ji [k] (c

(l)
lj [k]). Then,

the new weight of edge (vj , vi) ((vl, vj)) will be f
(p)
ji [k + 1] = f

(p)
ji [k] + c

(i)
ji [k] + c

(j)
ji [k]

(flj [k+ 1] = flj [k] + c
(l)
lj [k] + c

(j)
lj [k]). According to Step 6 of the proposed algorithm we

always have that 0 < lji ≤ f (p)ji [k + 1] ≤ uji and 0 < llj ≤ flj [k + 1] ≤ ulj .

6.3.2 Proof of Algorithm Completion

In this section we analyze the functionality of the distributed algorithm and we prove

that it solves the weight balancing problem in the presence of arbitrary (time-varying,

inhomogeneous) but bounded time delays that may appear during the information ex-

change between agents in the system.

Proposition 11. Consider the problem formulation described in Section 6.2. Let

V−[k] ⊂ V be the set of nodes with negative weight imbalance at iteration k, i.e.,

V−[k] = {vj ∈ V | xj [k] < 0}. During the execution of Algorithm 6, we have that

V−[k + 1] ⊆ V−[k].

Proof. We will first argue that nodes with nonnegative perceived weight imbalance at

iteration k can never reach negative perceived weight imbalance at iteration k + 1.

Combining this with the fact that the perceived weight imbalance of a node is always

below its actual weight imbalance, we establish the proof of the proposition.
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Consider a node vj with a nonnegative perceived weight imbalance x
(p)
j [k] ≥ 0 (from

Remark 6.4, since x
(p)
j [k] ≤ xj [k], ∀ k ≥ 0, we have that also xj [k] ≥ 0).

We analyze below the following two cases:

1. at least one neighbor of node vj has positive perceived weight imbalance,

2. all neighbors of node vj have negative or zero perceived weight imbalance.

In both cases, since x
(p)
j [k] ≥ 0, node vj will attempt to change the weights of (some of)

its incoming and outgoing edges. Specifically, node vj will calculate the desirable weight

change c
(j)
ji [k] (c

(j)
lj [k]) for its incoming (outgoing) edges (vj , vi) ((vl, vj)) where vi ∈ N−j

(vl ∈ N+
j ). Then, it transmits the desired weight change c

(j)
ji [k] (c

(j)
lj [k]) to its incoming

(outgoing) edges (vj , vi) ((vl, vj)) where vi ∈ N−j (vl ∈ N+
j ). In the first case, we have

(i) x
(p)
i [k] > 0 for some vi ∈ N−j , or (ii) x

(p)
l [k] > 0 for some vl ∈ N+

j .

For (i) we have that during iteration k of Algorithm 6, the incoming edge weights of vj

might change by its in-neighbors (i.e., the weight of an incoming edge (vj , vi) might be

increased to be equal to fji[k+ 1] = fji[k] + c
(i)
ji [k] for some vi ∈ N−j ). In this case, since

the transmission of c
(i)
ji [k] from vi to vj might suffer time delay, we have that vj sets its

outgoing weights to be flj [k+ 1] = flj [k] + c
(j)
lj [k], and its perceived incoming weights to

be f
(p)
ji [k + 1] = f

(p)
ji [k] + c

(j)
ji [k]. Thus, we have that x

(p)
j [k + 1] = 0. [Note that, after

τ
(i)
ji [k] time steps (during the iteration k+ τ

(i)
ji [k]) node vj will receive the desired weight

change c
(i)
ji [k] which was sent from node vi at time step k. Then it will update its its

perceived incoming weights to be f
(p)
ji [k+ τ

(i)
ji [k] + 1] = f

(p)
ji [k+ τ

(i)
ji [k]] + c

(i)
ji [k+ τ

(i)
ji [k]],

which means that x
(p)
j [k+ τ

(i)
ji [k] + 1] > 0.] As a result, for (i) we have that nonnegative

perceived weight imbalance of node vj at iteration k remains nonnegative at iteration

k + 1.

For (ii) we have that the outgoing edge weights of vj might change by its out-neighbors

vl ∈ N+
j and it can be argued in a similar manner.

In the second case, we have x
(p)
i [k] ≤ 0 for every vi ∈ N−j , and x

(p)
l [k] ≤ 0 for every

vl ∈ N+
j . This means that the neighbors of vj will not attempt to change the weights

of its incoming and outgoing edges. As a result, since vj will transmit its desired weight

changes and then set its outgoing weights to be flj [k+1] = flj [k]+c
(j)
lj [k] and its perceived

incoming weights to be f
(p)
ji [k + 1] = f

(p)
ji [k] + c

(j)
ji [k], we have that x

(p)
j [k + 1] = 0.

As a result we have that during iteration k of Algorithm 6, nodes with nonnegative

perceived weight imbalance can never reach negative perceived weight imbalance at it-

eration k + 1. From Remark 6.4, since x
(p)
j [k] ≤ xj [k], ∀ k ≥ 0, we have that also

nodes with nonnegative weight imbalance can never reach negative weight imbalance,

thus establishing the proof of the proposition.
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Proposition 12. Consider the problem formulation described in Section 6.2. During

the execution of Algorithm 6, it holds that

0 ≤ ε[k + 1] ≤ ε[k] , ∀k ≥ 0 ,

where ε[k] ≥ 0 is the total imbalance of the network at iteration k (see Definition 3).

Proof. From the third statement of Proposition 7, we have ε[k+1] = 2
∑

vj∈V−[k+1] |xj [k+

1]| and ε[k] = 2
∑

vj∈V−[k] |xj [k]|, whereas from Proposition 11, we have V−[k + 1] ⊆
V−[k].

Consider a node vj ∈ V−[k] with weight imbalance xj [k] < 0 (obviously we have that

also x
(p)
j [k] < 0 since x

(p)
j [k] ≤ xj [k], ∀ k ≥ 0 from Remark 6.4).

We analyze below the following two cases:

1. all neighbors of node vj have negative or zero perceived weight imbalance,

2. at least one neighbor of node vj has positive perceived weight imbalance.

In both cases, node vj will not make any changes on its edges. In the first case, the

weight imbalance of node vj will not change (i.e., xj [k + 1] = xj [k] < 0). In the second

case, we have (i) x
(p)
i [k] ≥ 0 for some vi ∈ N−j , or (ii) x

(p)
l [k] ≥ 0 for some vl ∈ N+

j .

For (i) we have that during the iteration k of Algorithm 6, the incoming edge weights of

vj might change by its in-neighbors (i.e., the weight of an incoming edge (vj , vi) might

be increased to be equal to fji[k + 1] = fji[k] + c
(i)
ji [k] for some vi ∈ N−j ). In this

case (regardless of whether we have a delay during the transmission of c
(i)
ji [k] from vi

to vj) we have ε[k + 1] ≤ ε[k] (using the third statement in Proposition 7). For (ii)

we have that during iteration k of Algorithm 6, the out-neighbor of vj might transmit

the desired change amount of the outgoing edge weights to node vj . In this case, if the

transmission of c
(l)
lj [k] is delayed, then the weight imbalance of vj will not change (i.e.,

xj [k+ 1] = xj [k] < 0), but when vj receives c
(l)
lj [k+ τ

(l)
lj [k]] then the weight imbalance of

node vj will satisfy xj [k+ 1] ≥ xj [k]. As a result, for both cases, we have ε[k+ 1] ≤ ε[k]

(using the third statement in Proposition 7).

Proposition 13. Consider the problem formulation described in Section 6.2 where

the Integer Circulation Conditions in Section 5.2 are satisfied. Algorithm 6 balances the

weights in the graph in a finite number of steps (i.e., ∃ k0 so that ∀k ≥ k0, fji[k0] = fji[k],

∀(vj , vi) ∈ E and xj [k] = xj [k0] = 0, ∀ vj ∈ V).

Proof. By contradiction, suppose Algorithm 6 runs for an infinite number of iterations

and its total imbalance remains positive (i.e., ε[k] > 0 for all k). During the execution

of the proposed distributed balancing algorithm, transmissions on each communication

link (vl, vj) ∈ E are affected by arbitrary (time-varying and inhomogeneous) bounded
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time delays. We have that the delays that affect transmissions on each link (vl, vj) ∈ E
are bounded (i.e., 0 ≤ τ

(j)
lj [k] ≤ τ lj ≤ ∞). Thus, the packets transmitted on each link

(vl, vj) ∈ E will eventually reach the corresponding node after a finite number of steps.

Suppose now that Algorithm 6 runs for an infinite number of iterations and by contra-

diction its total imbalance remains positive (i.e., ε[k] > 0 for all k). This means that

always (at each k) there will exist at least one node with positive weight imbalance

and thus the proof of this Proposition becomes identical to the proof of Proposition 10

(because, as argued above, its perceived imbalance will eventually become positive, once

all transmitted packets are received).

As a result, we have that if the Integer Circulation Conditions in Section 5.2 hold, the

total imbalance ε[k] decreases after a finite number of iterations, and Algorithm 6 results

in a weight-balanced digraph after a finite number of iterations.

6.4 Extension to Event-Triggered Operation

Motivated by the need to reduce energy consumption, communication bandwidth, net-

work congestion, and/or processor usage, many researchers have considered the use

of event-triggered communication and control [51, 52]. In this section, we discuss an

event-triggered operation of the proposed distributed algorithm where each agent au-

tonomously decides when communication and control updates should occur so that the

resulting network executions still result in a weight-balanced digraph after a finite num-

ber of steps in the presence of arbitrary (time-varying, inhomogeneous) but bounded

time delays that might affect link transmissions. More specifically, following the pro-

posed event-triggered strategy, we can prove that (i) all nodes eventually stop transmit-

ting, and (ii) the proposed distributed algorithm is able to obtain a set of weights that

balance the corresponding digraph after a finite number of iterations.

6.4.1 Formal Description of Distributed Algorithm

A formal description of the algorithm’s event-triggered operation is presented in Algo-

rithm 7.

6.4.2 Proof of Algorithm Completion

Proposition 14. Consider the problem formulation described in Section 6.2 where the

integer circulation conditions in Section 5.2 are satisfied. Algorithm 7 balances, the

weights in the graph in a finite number of steps [even in the presence of bounded delays]

(i.e., ∃ k0 so that ∀k ≥ k0, fji[k0] = fji[k], ∀(vj , vi) ∈ E and xj [k] = xj [k0] = 0, ∀ vj ∈ V).

Proof. The event-triggered operation of Algorithm 7 is identical to the operation of

Algorithm 7 with delays if we assume that in the latter algorithm all transmissions
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Algorithm 7 Event-Triggered Distributed Balancing in the Presence of Time Delays

Input
(Inputs are the same as Algorithm 6).
Initialization
For k = 0, each node vj ∈ V does the following:
(Steps 1, 2 are the same as Algorithm 6).
3) (Same as Iteration-Step 1 in Algorithm 6).
4) (Same as Iteration-Step 2 in Algorithm 6).
5) (Same as Iteration-Step 3 in Algorithm 6).

6) If x
(p)
j [0] > 0, it sets its outgoing weights to be

flj [1] = flj [0] + c
(j)
lj [0],

and its new perceived incoming weights to be

f
(p)
ji [1] = f

(p)
ji [0] + c

(j)
ji [0].

Iteration
For k = 1, 2, 3, . . . , each node vj ∈ V does the following:
1) Event triggered condition: If no weight change is received due to time delays then
node vj skips Steps 2, 3, 4, 5, 6, and 7 below; otherwise (event triggered condition) it

receives the delayed desired weight change c
(l)
lj [k] (c

(i)
ji [k]) from each outgoing (incoming)

edge and performs the steps below.
2) It sets its outgoing weights to be

flj [k + 1] = flj [k + 1] + c
(l)
lj [k],

and its new perceived incoming weights to be

f
(p)
ji [k + 1] = f

(p)
ji [k + 1] + c

(i)
ji [k].

3) (Same as Step 1 in Algorithm 6).
4) (Same as Step 2 in Algorithm 6).
5) (Same as Step 3 in Algorithm 6).

6) If x
(p)
j [k] > 0, it sets its outgoing weights to be

flj [k + 1] = flj [k] + c
(j)
lj [k],

and its new perceived incoming weights to be

f
(p)
ji [k + 1] = f

(p)
ji [k] + c

(j)
ji [k].

7) (Same as Step 6 in Algorithm 6).
8) It repeats (increases k to k + 1 and goes back to Step 1).
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of desired weight changes suffer the maximum possible delay. As a result, since the

operation of both algorithms is identical1, we have that Algorithm 7 will converge to a

set of weights that form a weight-balanced digraph after a finite number of steps. Also,

since ∃ k0 so that ∀k ≥ k0, fji[k0] = fji[k], ∀(vj , vi) ∈ E and xj [k] = xj [k0] = 0, ∀ vj ∈ V,

from Step 1 of Algorithm 7, we can see that all nodes eventually stop transmitting.

6.5 Distributed Algorithm for Weight Balancing

in the Presence of Packet Dropping Links

In this section we provide an overview of the distributed weight balancing algorithm

operation; the formal description of the algorithm is provided in Algorithm 8. The

algorithm is iterative and operates by having, at each iteration, nodes with positive

perceived weight imbalance attempt to change the integer weights on both their incoming

and/or outgoing edges so that they become weight balanced. Again, we assume that

each node is in charge of assigning the weights on its outgoing edges (i.e., fji is assigned

by node vi; due to possible packet drops the perceived weight f
(p)
ji on this link by node

vj might be different) which means that each node will know exactly the weights on its

outgoing edges but only have access to perceived weights on its incoming edges.

Note that the operation of Algorithm 8 is similar to Algorithm 6 with the main difference

being that each node is required to calculate and transmit the desirable weights (and

not the desired change amounts) for its incoming and outgoing edges.

We describe the operation of iterative algorithm and establish that, if the necessary and

sufficient integer circulation conditions for the existence of a set of integer weights that

balance the given digraph are satisfied, the algorithm completes, almost surely, after a

finite number of iterations.

Initialization. Same as Algorithm 6.

Iteration. At each iteration k ≥ 0, node vj is aware of the perceived integer weights on

its incoming edges {f (p)ji [k] | vi ∈ N−j } and the (actual) weights on its outgoing edges

{flj [k] | vl ∈ N+
j }, which allow it to calculate its perceived weight imbalance x

(p)
j [k]

according to Definition 9.

A. Selecting Desirable weights: Each node vj with positive perceived weight imbalance

(i.e., x
(p)
j [k] > 0) attempts to change the weights on its incoming edges {fji[k] | vi ∈ N−j }

and/or outgoing edges {flj [k] | vl ∈ N+
j } in a way that drives its perceived weight

imbalance x
(p)
j [k + 1] to zero (at least if no other changes are inflicted on the weights).

No attempt to change weights is made if node vj has negative or zero perceived weight

imbalance. Specifically, node vj attempts to add +1 (or subtract −1) to its outgoing (or

incoming) integer weights one at a time, according to a predetermined (cyclic) order until

1The operation is identical under different delays in each case.
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its perceived weight imbalance becomes zero. If an outgoing (incoming) edge has reached

its max (min) value (according to the feasible interval on that particular edge), then its

weight does not change and node vj proceeds in changing the next one according to the

predetermined order. The desired weight by node vj on edge (vj , vi) ∈ E at iteration k

will be denoted by f
(j)
ji [k]; similarly, the desired weight by node vj on edge (vl, vj) ∈ E

at iteration k will be denoted by f
(j)
lj [k].

Note: Next time node vj has positive perceived weight imbalance it continues increasing

(decreasing) its outgoing (incoming) edges by 1, one at a time following the (cyclic)

predetermined order starting from the edge it stopped the previous time it had positive

balance.

B. Exchanging Desirable weights: Once the nodes with positive perceived weight imbal-

ance calculate the desirable incoming {f (j)ji [k] | vi ∈ N−j } and outgoing {f (j)lj [k] | vl ∈
N+
j } weights, they take the following steps in sequence:

1) Node vj transmits (receives) the calculated desirable weights f
(j)
ji [k] (f

(l)
lj [k]) to (from)

their in- (out-) neighbor vi (vl). [Nodes with non-positive perceived weight imbalance

simply transmit the values f
(p)
ji [k].]

2) If no weight is received from out-neighbor vl (due to a packet drop), then node vj

assumes that f
(l)
lj [k] = flj [k] for the corresponding outgoing edge (vl, vj) which suffered

a packet drop on the transmission on the reverse link from node vl to node vj . Then it

calculates its new outgoing weights flj [k + 1] = f
(l)
lj [k] + f

(j)
lj [k]− flj [k] (projected onto

the feasible interval [llj , ulj ]) and it transmits them to each corresponding out-neighbor

vl ∈ N+
j .

3) It receives the new incoming weights {f (p)ji [k+ 1] | vi ∈ N−j } from each corresponding

in-neighbor. If no weight is received then node vj assumes that f
(p)
ji [k + 1] = f

(j)
ji [k] for

the corresponding incoming edge (vj , vi) which suffered a packet drop. This (along with

all the parameters involved) can be seen in Figure 6.2.

vi

v7v2

vj

v6v5

vl

fji[k + 1] f
(p)
ji [k]

or f
(j)
ji [k]

flj [k + 1] f
(p)
lj [k]

or f
(l)
lj [k]

f
(j)
ji [k]

f
(j)
ji [k]or fji[k]

f
(l)
lj [k]

f
(l)
lj [k]or flj [k]

Figure 6.2: Digraph where nodes exchange their desirable weights.

Remark 6.6. The different weights that the nodes are exchanging (and what happens

in the case of a packet drop) are shown in Fig. 6.2. Specifically, at each iteration k,

each node vj calculates its perceived weight imbalance x
(p)
j [k] and if its positive then it

calculates the desired weights for its incoming and outgoing edges (f
(j)
ji [k] and f

(j)
lj [k]
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respectively). Then, it sends the desired incoming weight f
(j)
ji [k] to its in-neighbors

vi ∈ N−j while it receives (if there is no packet drop) the desired incoming weight

f
(l)
lj [k] from its out-neighbors vl ∈ N+

j . If there is a packet drop, it assumes that

f
(l)
lj [k] = flj [k]. It then calculates the new weight for its outgoing edges flj [k + 1],

∀ vl ∈ N+
j , and transmits them to vl ∈ N+

j , while it receives the new weights from

its in-neighbors (if no incoming weight is received then it assumes f
(p)
ji [k + 1] = f

(j)
ji [k],

otherwise f
(p)
ji [k + 1] = fji[k + 1]).

Depending on the possible packet drops that might occur during the exchange of the

desirable weights, we have the following four cases:

1. f
(j)
ji [k] is dropped,

2. both f
(j)
ji [k] and fji[k + 1] are dropped,

3. fji[k + 1] is dropped,

4. no packet is dropped.

For the first two cases, the new weight on edge (vj , vi) ∈ E is taken to be fji[k+1] = f
(i)
ji [k]

where lji ≤ f
(i)
ji [k] ≤ uji (the difference in the two cases is that in the second case the

perceived value of the weight at node vj is f
(p)
ji [k + 1] = f

(j)
ji [k].

For the third and fourth cases, the new weight on edge (vj , vi) ∈ E is taken to be

fji[k+1] = [f
(i)
ji [k+1]+f

(j)
ji [k+1]−fji[k]]

bujic
dljie (where [x]

bujic
dljie denotes the projection onto

the interval). The difference in the two cases is that in the third case f
(p)
ji [k+1] = f

(j)
ji [k],

while in the fourth f
(p)
ji [k + 1] = f

(i)
ji [k + 1] + f

(j)
ji [k + 1]− fji[k].

6.5.1 Formal Description of Distributed Algorithm

A formal description of the proposed distributed algorithm is presented in Algorithm 8.

Remark 6.7. According to the integer circulation conditions, each node vj ∈ V with

positive perceived weight imbalance at iteration k (x
(p)
j [k] > 0) will always be able to

calculate a weight assignment for its incoming and outgoing edge weights so that its

perceived weight imbalance becomes zero (at least if no other changes are inflicted on

the weights of its incoming or outgoing links). This means that the selection of desirable

weights in Algorithm 8 is always feasible.

Remark 6.8. It is important to note here that the total perceived in-weight S−(p)j of node

vj might be affected from possible packet drops at Step 7 of Algorithm 8. Specifically, if

a packet drop occurs; then vj assumes f
(p)
ji [k+1] = f

(j)
ji [k] where f

(j)
ji [k] ≤ fji[k+1] (since

nodes only attempt to make changes on the weights if their perceived weight imbalance

is positive, node vi can only increase the weight of edge (vj , vi)). This means that during

the execution of Algorithm 8 we have f
(p)
ji [k] ≤ fji[k] for each edge (vj , vi) ∈ E , at each

time step k.
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Algorithm 8 Distributed weight Balancing Algorithm in the Presence of Packet Drops

Input
(Inputs are the same as Algorithm 6).
Initialization
(Steps 1, 2 are the same as Algorithm 6).
Iteration
For k = 0, 1, 2, . . . , each node vj ∈ V does the following:
1) It computes its perceived weight imbalance as in Definition 9

x
(p)
j [k] =

∑
vi∈N−j

f
(p)
ji [k]−

∑
vl∈N+

j

flj [k].

2) If x
(p)
j [k] > 0, it increases (decreases) by 1 the integer weights flj [k] (f

(p)
ji [k]) of its

outgoing (incoming) edges vl ∈ N+
j (vi ∈ N−j ) one at a time, following the predetermined

order P
(j)
lj (P

(j)
ji ) until its weight imbalance becomes zero (if an edge has reached its

maximum value, its weight does not change and node vj proceeds in changing the next
one according to the predetermined order). It stores the desirable weights on each

incoming edge as f
(j)
ji [k] and each outgoing edge as f

(j)
lj [k].

3) If x
(p)
j [k] ≤ 0, it sets f

(j)
lj [k] = flj [k] (and f

(j)
ji [k] = f

(p)
ji [k]) for its outgoing (incoming)

edges in E+j (E−j ).

4) It transmits the new weight f
(j)
ji [k] on each incoming edge.

5) It receives the new weight f
(l)
lj [k] from each outgoing edge (if no weight was received

then it assumes that f
(l)
lj [k] = flj [k]).

6) It sets its outgoing weights to be flj [k + 1] = f
(l)
lj [k] + f

(j)
lj [k]− flj [k].

7) It transmits the new weight flj [k + 1] on each outgoing edge.

8) It receives new weight f
(p)
ji [k + 1] from each incoming edge (if no weight is received

then it assumes that f
(p)
ji [k + 1] = f

(j)
ji [k]).

9) It repeats (increases k to k + 1 and goes back to Step 1).

6.5.2 Proof of Algorithm Completion

In this section, we show that, as long as the Integer Circulation Conditions in Section 5.2

hold, then the total imbalance ε[k] in Definition 3 goes to zero after a finite number of

iterations of Algorithm 8. This implies that the weight imbalance xj [k] for each node

vj ∈ V goes to zero after a finite number of iterations, and thus (from the weight

updates in Algorithm 8) the integer weight fji[k] on each edge (vj , vi) ∈ E stabilizes

to an integer value f∗ji (where f∗ji ∈ N0) within the given lower and upper limits, i.e.,

1 ≤ lji ≤ f∗ji ≤ uji for all (vj , vi) ∈ E .

Proposition 15. Consider the problem formulation described in Section 6.2. Let

V−[k] ⊂ V be the set of nodes with negative weight imbalance at iteration k, i.e.,

V−[k] = {vj ∈ V | xj [k] < 0}. During the execution of Algorithm 8, we have that

V−[k + 1] ⊆ V−[k].
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Proof. We will first argue that nodes with nonnegative perceived weight imbalance at

iteration k can never reach negative perceived weight imbalance at iteration k + 1.

Combining this with the fact that the perceived weight imbalance of a node is always

below its actual weight imbalance, we establish the proof of the proposition.

Consider a node vj with a nonnegative perceived weight imbalance x
(p)
j [k] ≥ 0 (from

Remark 6.8, since x
(p)
j [k] ≤ xj [k], ∀ k ≥ 0 we have that also xj [k] ≥ 0).

We analyze below the following two cases:

1. at least one neighbor of node vj has positive perceived weight imbalance,

2. all neighbors of node vj have negative or zero perceived weight imbalance.

In both cases, since x
(p)
j [k] ≥ 0, node vj will attempt to change the weights of (some of)

its incoming and outgoing edges. Specifically, node vj calculates the desirable weight

f
(j)
ji [k] (f

(j)
lj [k]) for its incoming (outgoing) edges (vj , vi) ((vl, vj)) where vi ∈ N−j (vl ∈

N+
j ).

In the first case, both in- and out-neighbors (vi and vl respectively) of vj will calculate

the desirable weights for their incoming and outgoing edges. Depending on the possible

packet drops that might occur during the transmissions from node vi to node vj , we

consider the following two scenarios:

a) No packet is dropped,

b) At least one packet is dropped.

Recall that from the perceptive of node vj the following transmissions take place: first,

node vj sends f
(j)
ji [k] to each in-neighbor vi ∈ N−j . Then it receives f

(l)
lj [k] from every

out-neighbor vl ∈ N+
j and finally, once it calculates the new weights flj [k + 1] for

its outgoing edges (vl, vj) (where vl ∈ N+
j ), it transmits them to every out-neighbor

vl ∈ N+
j .

For the first scenario (a), we have

x
(p)
j [k + 1] =

∑
vi∈N−j

f
(p)
ji [k + 1]−

∑
vl∈N+

j

flj [k + 1] (6.3)

=
∑

vi∈N−j

(f
(i)
ji [k] + f

(j)
ji [k]− fji[k])−

−
∑

vl∈N+
j

(f
(j)
lj [k] + f

(l)
lj [k]− flj [k]) .

Since ∑
vi∈N−j

f
(j)
ji [k] =

∑
vl∈N+

j

f
(j)
lj [k], (6.4)
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(6.3) becomes

x
(p)
j [k + 1] =

∑
vi∈N−j

(f
(i)
ji [k]− fji[k])−

−
∑

vl∈N+
j

(f
(l)
lj [k]− flj [k]) . (6.5)

Also, since f
(i)
ji [k] ≥ fji[k] and f

(l)
lj [k] ≤ flj [k], ∀ (vj , vi), (vl, vj) ∈ E , we conclude

x
(p)
j [k+ 1] ≥ 0, ∀vj ∈ V. As a result we conclude that, for scenario (a), the nonnegative

perceived weight imbalance of node vj at iteration k remains nonnegative at iteration

k + 1.

For scenario (b), let us assume (without loss of generality) that fji[k + 1], sent from

node vi to node vj at Step 7 of the proposed algorithm, suffered a packet drop while all

the other transmissions were successful. We have that

x
(p)
j [k + 1] =

∑
vi′∈N−j

f
(p)
ji′ [k + 1]−

−
∑

vl∈N+
j

flj [k + 1] (6.6)

= f
(j)
ji [k] +

∑
vi′∈N−j −{vi}

(fji′ [k + 1]) + f
(j)
ji [k]−

−
∑

vl∈N+
j

(f
(j)
lj [k] + f

(l)
lj [k]− flj [k]) ,

which, in a similar manner, leads to the conclusion that x
(p)
j [k + 1] ≥ 0, ∀vj ∈ V.

Thus, for scenario (b), we conclude that if only the transmission from node vi to node

vj suffered a packet drop, the nonnegative perceived weight imbalance of node vj at

iteration k remains nonnegative at iteration k + 1.

The remaining scenarios, where multiple transmissions suffer packet drops during the

same iteration k, as well as the remaining cases, where all neighbors of node vj have

negative or zero perceived weight imbalance, can be argued in a similar manner.

As a result we have that during an iteration k of Algorithm 8, nodes with nonnega-

tive perceived weight imbalance can never reach negative perceived weight imbalance at

iteration k + 1. From Remark 6.8, since x
(p)
j [k] ≤ xj [k], ∀ k ≥ 0, we have that also

nodes with nonnegative weight imbalance can never reach negative weight imbalance,

thus establishing the proof of the proposition.

Proposition 16. Consider the problem formulation described in Section 6.2. During

the execution of Algorithm 8, it holds that

0 ≤ ε[k + 1] ≤ ε[k] , ∀k ≥ 0 ,
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where ε[k] ≥ 0 is the total imbalance of the network at iteration k (see Definition 3).

Proof. From the third statement of Proposition 7, we have ε[k+1] = 2
∑

vj∈V−[k+1] |xj [k+

1]| and ε[k] = 2
∑

vj∈V−[k] |xj [k]|, whereas from Proposition 15, we have V−[k + 1] ⊆
V−[k].

Consider a node vj ∈ V−[k] with weight imbalance xj [k] < 0 (obviously we have that

also x
(p)
j [k] < 0 since x

(p)
j [k] ≤ xj [k], ∀ k ≥ 0 from Remark 6.8).

We analyze below the following two cases:

1. all neighbors of node vj have negative or zero perceived weight imbalance,

2. at least one neighbor of node vj has positive perceived weight imbalance.

In both cases, node vj will not make any weight changes on its edges. In the first case,

the weight imbalance of node vj will not change (i.e., xj [k + 1] = xj [k] < 0). In the

second case, we have (i) x
(p)
i [k] ≥ 0 for some vi ∈ N−j , or (ii) x

(p)
l [k] ≥ 0 for some

vl ∈ N+
j .

For (i) we have that during the iteration k of Algorithm 8, the incoming edge weights of

vj might change by its in-neighbors (i.e., the weight of an incoming edge (vj , vi) might

be increased to be equal to fji[k+1] = f
(i)
ji [k] for some vi ∈ N−j ). In this case (regardless

if we have a packet drop during the transmission of fji[k + 1] from vi to vj) we have

ε[k+1] ≤ ε[k] (using the third statement in Proposition 7). For (ii) we have that during

iteration k of Algorithm 8, the out-neighbor of vj might transmit the new outgoing edge

weights to node vj (i.e., vj might receive the new f
(l)
lj [k] from some vl ∈ N+

j ). In this

case, if f
(l)
lj [k] suffers a packet drop, the weight imbalance of vj will not change (i.e.,

xj [k+ 1] = xj [k] < 0). If f
(l)
lj [k] is transmitted successfully then the weight imbalance of

node vj will satisfy xj [k+ 1] ≥ xj [k]. As a result, for both cases, we have ε[k+ 1] ≤ ε[k]

(using the third statement in Proposition 7).

Proposition 17. Consider the problem formulation described in Section 6.2 where the

Integer Circulation Conditions in Section 5.2 are satisfied. Algorithm 8 balances the

weights in the graph in a finite number of steps, with probability one (i.e., ∃ k0 so that

almost surely ∀k ≥ k0, fji[k0] = fji[k], ∀(vj , vi) ∈ E and xj [k] = xj [k0] = 0, ∀vj ∈ V).

Proof. By contradiction, suppose Algorithm 8 runs for an infinite number of iterations

and its total imbalance remains positive (i.e., ε[k] > 0 for all k). During the execution

of the proposed distributed balancing algorithm, packets containing information are

dropped with probability qlj < 1 for each communication link (vl, vj) ∈ E (we assume

independence between packet drops at different time steps and different links and link

directions). During transmissions on link (vl, vj), we have that at each transmission, a

packet goes through with probability 1−qlj > 0. Thus, if we consider klj consecutive uses

of link (vl, vj), the probability that at least one packet will go through is 1− qkljlj , which
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will be arbitrarily close to 1 for a sufficiently large klj . Specifically, for any (arbitrarily

small) ε > 0, we can choose

klj =

⌈
log ε

log qlj

⌉
,

to ensure that each transmission goes through by klj steps with probability 1− ε.
Suppose now that Algorithm 8 runs for an infinite number of iterations (where infinite

successful packet transmissions occurred on each link (vl, vj), for a sufficiently large

klj) and, by contradiction, its total imbalance remains positive (i.e., ε[k] > 0 for all

k). This means that always (at each k) there will exist at least one node with positive

weight imbalance and thus the proof of this Proposition becomes identical to the proof

of Proposition 10.

As a result we have that if the Integer Circulation Conditions in Section 5.2 hold, the

total imbalance ε[k] decreases after a finite number of iterations, and Algorithm 8 results

in a weight-balanced digraph after a finite number of iterations.

6.6 Simulation Study

In this section, we present simulation results and comparisons for the proposed dis-

tributed algorithms. Specifically, we present detailed numerical results for a random

graph of size n = 20 and for the average of 1000 random digraphs of 20 and 50 nodes

each. We illustrate the behavior of the proposed distributed algorithm for the following

three different scenarios: (i) the scenario where Algorithm 6 operates in a randomly

created graph of 20 nodes where for every communication link (vj , vi) ∈ E there are

bounded transmission delays 0 < τlj < τ where τ = 10 (independently between different

links and link directions) and each node vj transmits the desired weight change c
(j)
lj [k]

(c
(j)
ji [k]) on each outgoing (incoming) edge (vl, vj) ∈ E ((vj , vi) ∈ E) to each vl ∈ N+

j

(vi ∈ N−j ), at each iteration k, (ii) the scenario where Algorithm 7 operates in a ran-

domly created graph of 20 nodes where for every communication link (vj , vi) ∈ E there

are bounded transmission delays 0 < τlj < τ where τ = 10 (independently between dif-

ferent links and link directions) and each node vj transmits only once the desired weight

change c
(j)
lj [k] (c

(j)
ji [k]) on each outgoing (incoming) edge (vl, vj) ∈ E ((vj , vi) ∈ E) to each

vl ∈ N+
j (vi ∈ N−j ), (iii) the scenario where Algorithm 8 operates in a randomly created

graph of 20 nodes where for every communication link (vj , vi) ∈ E there are packet drops

with equal probability q (where 0 ≤ q < 1) (independently between different links and

link directions) and each node vj transmits the new weight flj [k + 1] (f
(j)
ji [k]) on each

outgoing (incoming) edge (vl, vj) ∈ E ((vj , vi) ∈ E) to each vl ∈ N+
j (vi ∈ N−j ), at each

iteration k. Note that the the integer circulation conditions (presented in Section 5.2)

hold of all three different scenarios.
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In Fig. 6.3 we show the operation of Algorithm 6 in a randomly created graph of 20 nodes

where for every communication link (vj , vi) ∈ E there are bounded transmission delays

0 < τlj < τ where τ = 10 (independently between different links and link directions)

and each node vj transmits the desired weight change c
(j)
lj [k] (c

(j)
ji [k]) on each outgoing

(incoming) edge (vl, vj) ∈ E ((vj , vi) ∈ E) to each vl ∈ N+
j (vi ∈ N−j ), at each iteration

k. In the first case, we plot the absolute imbalance ε =
∑n

j=1 |xj |, ∀vj ∈ V (blue line)

and the perceived total imbalance ε(p) =
∑n

j=1 |x
(p)
j | (red line) against the number of

iterations k. In the second case the nodes balances xj [k] (as defined in Definition 2) as

a function of the number of iterations k for the distributed algorithm. Here, the plot

suggests that the absolute imbalance ε becomes equal to zero after a finite number of

iterations, which means that Algorithm 6 is able to obtain a set of integer weights that

balance the corresponding digraph after a finite number of iterations in the presence of

bounded transmission delays 0 < τlj < τ , where τ = 10, on each link (vl, vj) ∈ E .
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Figure 6.3: Execution of Algorithm 6 for the case when the integer circulation condi-
tions hold for a random graph of 20 nodes with transmission delays 0 < τlj < τ where
τ = 10. Top figure: Total (absolute) imbalance ε[k] (blue line) and perceived total
imbalance ε(p)[k] (red line) plotted against number of iterations. Bottom figure: Node

weight imbalances xj [k] plotted against number of iterations.

In Fig. 6.4 we show the operation of Algorithm 7 for the same case as Fig. 6.3. Here

the plot suggests that Algorithm 7 is able to obtain a set of integer weights that balance

the corresponding digraph after a finite number of iterations in the presence of bounded

transmission delays 0 < τlj < τ , where τ = 10, on each link (vl, vj) ∈ E , for the case

where each node vj transmits only once the desired weight change.

In Fig. 6.5 we show the operation of Algorithm 8 for the same cases as Figs. 6.3 and

6.4. The plot suggests that Algorithm 8 is able to obtain a set of integer weights that

balance the corresponding digraph after a finite number of iterations in the presence of

packet dropping links with probability q = 0.8, on each link (vl, vj) ∈ E .
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Figure 6.4: Execution of Algorithm 7 for the case when the integer circulation condi-
tions hold for a random graph of 20 nodes with transmission delays 0 < τlj < τ where
τ = 10. Top figure: Total (absolute) imbalance ε[k] (blue line) and perceived total
imbalance ε(p)[k] (red line) plotted against number of iterations. Bottom figure: Node

weight imbalances xj [k] plotted against number of iterations.
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Figure 6.5: Execution of Algorithm 8 for the case when the integer circulation condi-
tions hold for a random graph of 20 nodes with packet drop probability qji = 0.8. Top
figure: Total (absolute) imbalance ε[k] (blue line) and Perceived Total Imbalance ε(p)[k]
(red line) plotted against number of iterations. Bottom figure: Node weight imbalances

xj [k] plotted against number of iterations.

6.7 Chapter Summary

In this chapter, we introduced and analyzed a novel distributed algorithm which achieves

integer weight balancing in a multi-component system under lower and upper constraints

on the edge weights in the presence of time delays over the communication links. We

analyzed its functionality, established its correctness and showed that it achieves integer
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weight balancing after a finite number of steps. We also added extensions to handle the

cases of packet drops over the communication links and event-triggered operation where

we showed that in both scenarios, the proposed algorithm converges (with probability

one) to a set of weights that form a balanced graph after a finite number of iterations We

also demonstrated the operation, performance, and advantages of the proposed algorithm

via various simulations.
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Chapter 7

Conclusions

and Future Directions

7.1 Conclusions

In this thesis, we presented distributed algorithms for weight balancing over a static

directed graph. In Chapter 3 we presented a distributed algorithm which deals with the

problem of balancing a weighted digraph. The proposed distributed algorithm operates

by having each node compute its weight imbalance and then increase the integer weights

of its outgoing edges so that it becomes weight balanced. Specifically, the outgoing edges

are assigned, if possible, equal integer weights; otherwise, if this is not possible, they

are assigned integer weights such that the maximum difference among them is equal to

unity. We showed that our distributed algorithm results in a weight balanced digraph

after a finite number of iterations (bounded in the worst case by O(n7)) and we also

carried out numerical simulations to illustrate the operation and potential advantages

of the proposed distributed algorithm.

In Chapter 4, we presented a novel distributed algorithm which deals with the problem

of balancing a weighted digraph in the presence of time delays (bounded by a maximum

value τ) and packet drops over the communication links. This algorithm operates by

having each node compute its delayed weight imbalance according to the latest received

weight values from its in-neighbors. Then, if it has positive (delayed) imbalance, it in-

creases by 1 the integer weights of its outgoing edges one at a time, following a fixed

priority order (in a round robin fashion) until it becomes weight balanced. This means

that the outgoing edges are assigned, if possible, equal integer weights; otherwise, if

this is not possible, they are assigned integer weights such that the maximum difference

among them is equal to one. We showed that our distributed algorithm converges to a

set of weights flj = f∗lj ,∀(vl, vj) ∈ E , after O(n6τ) iterations (where f∗lj is a set of weights

that form a weight balanced digraph) after a finite number of steps bounded by O(n6)

89
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under no delays (τ = 0). Then, we extended this result for the case where communi-

cation links could also result in possible packet drops (i.e., unbounded delays) in the

corresponding communication network where we showed that the proposed distributed

algorithm converges, with probability one, to a set of weights flj = f∗lj , ∀(vl, vj) ∈ E ,

after a finite number of iterations despite the presence of packet drops occurring with

probability qlj , where f∗lj is the set of weights that form a weight balanced digraph and

are obtained after a finite number of steps bounded by O(n6) under no packet drops

(qlj = 0). Following these developments, we presented an event-triggered version of the

proposed distributed algorithm where each agent autonomously decides when commu-

nication and control updates should occur so that the resulting network executions still

result to a set of weights flj = f∗lj , ∀(vl, vj) ∈ E , after a finite number of steps bounded

by O(n6τ) iterations (where the set of weights f∗lj is the set of weights obtained by the

nominal algorithm that runs with no even-triggering and no delays). We also carried out

numerical simulations to show the operation and potential advantages of the proposed

distributed algorithm.

In Chapter 5, we presented a novel distributed algorithm which deals with the problem of

balancing a weighted digraph in the presence of upper and lower weight constraints over

the communication links. Our distributed algorithm operates by having each node com-

pute its weight imbalance according to the weight values from its out- and in-neighbors.

Then, if it has positive imbalance it attempts to add +1 (or subtract −1) to its outgo-

ing (or incoming) integer weights one at a time, according to a predetermined (cyclic)

order, in a round robin fashion, until its weight imbalance becomes zero. Each node

transmits the amount of change it calculated on each outgoing (or incoming) edge while

it receives the amount of change calculated by its out- and in-neighbors; it then assigns

integer weights on its incoming and outgoing edges with respect to the corresponding

upper and lower weight constraints. We showed that our distributed algorithm results

in a weight balanced digraph after a finite number of iterations and carried out numer-

ical simulations to illustrate the operation and potential advantages of the proposed

distributed algorithm.

Finally, in Chapter 6, we presented a novel distributed algorithm which deals with the

problem of balancing a weighted digraph within the allowable edge weight intervals in the

presence of time delays and packet drops over the communication links. Our distributed

algorithm operates by having each node compute its perceived weight imbalance accord-

ing to the latest received weight values from its in-neighbors. When the communication

links are subject to time delays, a node has positive perceived imbalance, it calculates

the desired change amount for each incoming and outgoing links by adding +1 (or sub-

tracting 1) to its outgoing (or incoming) integer weights one at a time, according to a

predetermined (cyclic) order until its weight imbalance becomes zero. The node subse-

quently transmits the amount of change it calculated on each outgoing (or incoming)
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edge while it receives the amount of change calculated by its out- and in-neighbors, and

assigns integer weights on its incoming and outgoing edges with respect to the corre-

sponding upper and lower weight constraints. We showed that our distributed algorithm

results in a weight balanced digraph after a finite number of iterations. The operation

of the proposed algorithm was extended for the case where we have event-driven actua-

tors, enabling a more efficient use of the available resources. Specifically, we presented

an event-triggered operation of the proposed distributed algorithm where each agent

autonomously decides when communication and control updates should occur so that

the resulting executions still result to a weight balanced digraph after a finite number of

iterations. Finally, the operation of the proposed algorithm was extended for the case

where communication links could also result in possible packet drops (i.e., unbounded

delays) in the corresponding communication network. In this case, we showed that the

proposed distributed algorithm converges, with probability one, to a weight balanced

digraph after a finite number of iterations. We also carried out numerical simulations to

illustrate the operation and potential advantages of the proposed distributed algorithm.

7.2 Future Directions

In this thesis we have that weight-balanced graphs/matrices play an important role

in the analysis and convergence of distributed coordination algorithms. The algorithms

introduced in this thesis can also be used for other applications. A distributed algorithm

which deals with the problem of balancing a weighted digraph, introduced and analyzed

in Chapter 3, can be used for the case where each agent in the network wants to calculate

a common quantized value equal to the exact average of the initial values (i.e., the nodes

need to reach quantized consensus). Specifically, by assuming that each node has two

initial values (the quantized measurement along with the value 1) we can implement

a “mass summation” algorithm in which every node sums the incoming values and

then directly transmits them to an out-neighbor, chosen according to the predetermined

priority order. This iteration will allow each agent to obtain two integer values, the ratio

of which is equal to the average of the initial values of the nodes. The extension towards

quantized average consensus has applications in capacity and memory constrained sensor

networks, load balancing in processor networks, and others.

In Chapter 5 we presented a novel distributed algorithm which deals with the problem

of balancing a weighted digraph in the presence of upper and lower weight constraints

over the communication links and we extended its operation, in Chapter 6, for the cases

where we have time delays and packet drops over the communication links. The presence

of constraints over the communication links means that the differences of the resulting

link weights (that form a weight balanced digraph) are also constrained and depend on

the upper and lower weight intervals and the graph structure. Given a weight balanced
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digraph, one can use a finite-time algorithm, based on max-consensus, to obtain a doubly

stochastic matrix which find applications in distributed averaging. In this matrix the

link weight differences are also constrained (since they depend on the weight balanced

digraph) and affect the asymptotic convergence rate towards average consensus. Thus,

the design of a distributed algorithm which calculates a set of weights that form a

weight balanced digraph in the presence of upper and lower weight constraints and

minimizes the link weight differences is an important open problem, which will allow us

to perform distributed averaging under the maximum possible rate of convergence (i.e.,

the convergence rate under which every node reaches, asymptotically, average consensus

will be the maximum possible).

The operation of the proposed distributed algorithm, presented in Chapters 5 and 6,

can also be extended to the case where nodes with negative weight imbalance also at-

tempt to change the integer weights in both its incoming edges and its outgoing edges

with respect to the corresponding upper and lower weight constraints. Depending on

the graph structure, this could improve the speed under which we are able to obtain a

set of weights that form a weight balanced digraph, which means that once the nodes

have reached a weight balanced digraph, they can move on to some other distributed

computation (e.g., average consensus). Furthermore, the proposed algorithm operation

can be extended to handle more realistic scenarios in which the edges are able to take

values in multiple spaces. This extension is highly important since, firstly, it can handle

the case where each edge may suffer damages and will be unable to obtain a certain

range of values, and secondly, a possible solution of this problem will lead to the def-

inition of a new circulation theorem, thus improving and extending the one presented

in Section 5.2, possibly leading to improved versions of algorithms which deal with the

standard and maximum flow problem, auction problem, and energy minimization prob-

lem. Finally, the proposed algorithm operation relies on bi-directional communication

(i.e., the communication topology is captured by the undirected graph that corresponds

to the network digraph). This assumption may not be valid for applications which

require directed communication since transmitting and receiving information requires

energy, which is typically a sparse commodity in many networked applications, such as

sensor networks and mobile ad hoc communication networks. Thus, the extension of

the operation of the proposed algorithm for the case when the communication topology

matches exactly the physical topology (i.e., the communication topology is captured by

a directed graph) is an open problem which will extend the range of applications towards

more realistic scenarios.APOSTOLO
S I. 
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