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ABSTRACT

Eva kataveunuévo ocvotnua i diktvo pmopei va Bewpnbei wg £va 6Volo vTOGLOTHHATWY TTOV
pmopodv va potpalovtar mAnpogopieq péow StacvvOicewv, OL Omoieg AmMOTENOLV  fua
katevBuvopevn tomoloyia emkovwviag. Ta katavepnuéva cvoTipata anodetkvoovtat (wTIKNg
ONUACLAG YLt TNV ATOTEAECUATIKOTNTA TNG EKTENEONG SLaPOpwV KAONKOVTWY GTOVG TOUEIG TOV
OVVETALPLOTIKOV EAEYXOV, TOV KATAVEUNUEVOL CLVTOVIOUOD Kal TOL EAEYXOL TWV CLOTHUATWY
TOAAATADV Xpnotwv. Avth 1 Sidaktopikn StatpiPr agopd véovg kataveunpévovg akyoplpovg
yia e§looppomnmon Pdpovg oe katevBuvopeveg (emkovwviakég) Tomoloyieg. Mia katevBuvopevn
Tonoloyia (katevBuvopevog ypagog) pe pn apvntika (1 Oetika) Papn mov amodidovtal oe kdbe
dkpn eival ooppomnpévn edv, ya kabe koppo, to dbpoopa Twv Papwv TwV eoEPXOUEVWY
dkpwv oovtal pe to dfpotopa Twv Papwv Twv efwtepikwy akpwv. Ot véor alyopiBuot mov
napovotdlovrat oe avth TN StatpiPr] umopovv va StevkoAbvovv TV avamtuln oTPATNYIKWOY yla
TNV Tapaywyn Looppomnuévov Katevbuvouevwy ypagwy, (e KATAVEUNUEVO TPOTO, Kal va
Bpovv moAvapiOies EQapPUOYEG OTOV CLVTOVIOUO Kal TOV €AEYXO TWV GLOTNUATWY TOANATADV
oTolyeiwv.

210 MPWTO UEPOG auThg NG OSmAwpaTikng epyaociag, avtipetwmiCovpe to TPOPANpa NG
e€looppomnong Papovg oe éva ovotnua moAamAdv ototxeiwv. Ilapovoidfovpe éva véo
KaTaveunuévo alyoplbpo mov Aertovpyel mAvw amd . OTATIKN TOmoAoyia Kat AVvel TO
npoPAnua eglooppomnong Pdpovg otav Ta Papn mEpLopilovTal oe U APVNTIKOVG AKEPALOVG
aptBpovg. O mpotevopevog alyoplBuog amodetkvoeTar OTL OVLYKALVEL O éva Ypago Ue
LoOppoTNUEVO PAPOG HETA amd €vav memepacpévo aplud emavalnyewv TOv  avoTnpd
vrohoyioape. Avtog o alyopiBuog pmopei emiong va Bewpndei wg pa kataveunuévn pébodog
yla TNV anodKTNOon €VOG GLVONOV aKkéPALWY PowV TIOL e§looppOoTOvY €va SikTvo porg.

Y10 Sebtepo pepog NG epyaociag, eetalovpe o MPOPANpa TG e§loopponnong Papovg oe €va
oVOTNHA TOAATADV OTOLXEIWV KATW Ao [ua katevBuvopevn (otatikn) Tomoloyia dtacvvdeong
Tapovoiot  TEPLOPIOUEVWY 1]  aTeploploTwy  kabvoteproewv (amwAel TAKETWV)  OTOVG
OVVOEDOVG ETIKOLVWVIAG. ZVYKEKPLHEVA, Tapovatdlovpe Evav véo kataveunuévo alyoptbuo o
omoiog emAveL To TPOPAnua e§looppodmnong Papovg oe memepaouévo aptBud Pnudtwy pe v
napovoia avbaipeTwv xpovikdv KabvoTepnoewV TOL UTOPEL VA EMNPEACOLY TN LETASOOT| OF pia
OUYKEKPIHEVT] GOVEEOT OF (LA GUYKEKPLHEVT] XPOVIKI] OTLYHN. ZT OUVEXELR, TTAPOLOLALOVHE pa
¢kdoon Paolopévn oe ouUPAVTA TOL TPOTEIVOUEVOL TPWTOKOAAOV, 0TOV omoio kdbe KOpPog
ano@acilel avtdévopa Otav TPEMEL Vo TIpaypatomonBoly  EVUEPWOELS ETIKOLVWVING Kat
eAéyxov. ITapovolalovtag MTWOEG TAKETWY TAVW antd TOVG OLVOECHOUS ETKOLVWVING, O
alyopiBpog pmopei va tpomomonBei yia va ovykAivel og éva chvolo Bapwv mov oxnuatitovv
€V LOOPPOTINUEVO YPAPNUA HETA aTtd évav Tiemepacévo aplBuo emavaknyewv (pe mbavotnta

€va). X OAEG TIG TAPATIAV® TIEPITTWOELG, O TPOKVTITWYV LOOPPOTINHEVOG YPAPOG QALVETAL VL Elval



v

povadikog kat avefdpTnTog and Tov TPOTO e Tov omoio epupavifovtat ot kaBvoteproelg 1} ot
0TayOVEG TAKETWV KATA TNV eKTEAEOT) TOL ahyopibuov.

210 Tpito UEPOG TG TNG epyaociag egetdlovpe To TPOPANpa NG e&looppommong Papovg oe
éva oboTNUa TOAATMAWV OTolXElwV KATW amd pa otatikn katevBuvopevn Tomoloyia
S0 vdeong mapovoia KATWTEPWV KAl AVWTATOV OpiwV TEPLOPIOHOV OTA AKPA TWV AKPWYV.
[Tapovotdfovpe £vav KAUVOTOHO KATAVEUNUEVO alyoplBuo yia T Afyn amodektwv Kot
LOOPPOTINUEVWY AKEPALWY BAPWYV YA TNV TEPIMTWON OTAV VITAPXOLY KATWTEPOL KAl AVWTEPOL
TEPLOPLOHOL PAPOVG OTOVG OLVOEOUOVG EMUKOLVWVIAG. Xg CUYKPLON HE TOVG KATAVEUNHEVOLG
alyopiBuovg, o mpochetog meploptopds edw eivar 6Tt kabe Papog dxpov mpémel va Ppioketat
péoa oe éva dedopévo Staotnua, evw ot avtallayég emkotvwviag (aAld oxt amapaitnta N
avtiotoixion Bapwv) petald yertovikwv kOpuPwv Bewpodvtat appidpopes.

210 Tétapto pépog avtrg g epyaociag efetalovpe To MPOPAnua g efloopponnong Tov
Bdpovg oe éva cvotnua moOAamAwv oToyeiwv TAvw of pa katevBuvopevn (OTATIKN)
Tomoloyia StaohVEeonG, KATW amd TMEPLOPIOHOVE OTIG KATWTATEG KAl AVWTEPES TLUEG OTA AKPA
TOV AKPWYV, TTAPOLOia TEPLOPIOUEVOV 1) ATEPLOPLIOTWY KaBLOTEPIOEWY (TTWOT TAKETWV) OTIG
OUVOEDEL  ETUKOLVWVIAG.  ZUYKEKPLUEVA, TIAPOVOLAJOVHE £VAV  KALVOTOHO KATAVEUNUEVO
alyoptBpo o omoiog em\vel To TPOPANUa e§looppommong Tov Papoug Tov e aképato aptiuod
EMAVAAYEWY KATW amO KATWTEPOVG KAl OVWTEPOVG TEPLOPLOUOVS PAPOVG TAVW OTOVG
ovvOEoOVG  emIKOVWVIAG Yyl TNV mepintwon omov avBaipeteg xpovikég kabuoTepr|oelg
emnpedfovv TN HETAS00N Ot OLYKEKPIEVO OVVOEOHO Ot OLYKeKpluévo Xpovo. EmmAéov,
napovotdlovpe a €kdoon Baciopévn oe GVUPAVTA TOV TPOTELVOUEVOL TPWTOKOAAOV, OTOV
omoio kdbe kOpPog amopaaciletl avtopdtwg dtav Ba mpénet va mpaypatomomBodv eviuepboelg
EMKOVWVIOG Kal €AEYXOV, £TOL (DOTE OL TMPOKVLTITOVOEG €KTEAEOEIG SIKTVUOV VA €XOLV WG
AmOTENETUA €VA YPAPO LE LOOPPOTINUEVO BAPOG Kat OAOL oL KOUPOL Vo OTARATHOOVY TENIKA Va
eKTENODV UeTAdOOEIG. XTN OULVEXELQ, EMEKTEIVOUHE TNV EQAPUOYH] TOVL TPOTELVOUEVOL
alyopifpov otnv mepintwon 6mov mBAVEG MTWOELS TAKETWY eMNPeAlOVY TOVG CLVOEGHOVG

ETIKOLVWVIAG.



ABSTRACT

A distributed system or network can be viewed as a set of subsystems that can share
information via interconnection links, which form a generally directed communication
topology. Distributed systems prove to be of vital importance for the effectiveness
of performing various tasks in the areas of cooperative control, distributed coordina-
tion, and control of multicomponent systems. This doctoral thesis concerns novel dis-
tributed algorithms for weight balancing over directed (communication) topologies. A
directed topology (digraph) with nonnegative (or positive) weights assigned on each edge
is weight-balanced if, for each node, the sum of the weights of in-coming edges equals the
sum of the weights of out-going edges. The novel algorithms introduced in this thesis
can facilitate the development of strategies for generating weight balanced digraphs, in
a distributed manner, and find numerous applications in coordination and control of
multi-component systems.

In the first part of this thesis, we address the problem of integer weight balancing in
a multi-component system. We introduce a novel distributed algorithm that operates
over a static topology and solves the weight balancing problem when the weights are
restricted to be nonnegative integers. The proposed algorithm is shown to converge to
a weight balanced digraph after a finite number of iterations that we explicitly bound.
This algorithm can also be viewed as a distributed method for obtaining a set of integer
flows that balance a flow network.

In the second part of the thesis, we investigate the problem of integer weight balancing
in a multi-component system under a directed (static) interconnection topology in the
presence of bounded or unbounded delays (packet drops) in the communication links.
Specifically, we present a novel distributed algorithm which solves the integer weight
balancing problem in the presence of arbitrary (time-varying and inhomogeneous) de-
lays that might affect the transmission at a particular link at a particular time. Then,
we present an event-based version of the proposed protocol in which each node au-
tonomously decides when communication and control updates should occur. In the
presence of packet drops over the communication links, the algorithm can be modified
to converge to a set of weights that form a balanced graph after a finite number of
iterations (with probability one). In all the above cases, the resulting weight balanced
digraph is shown to be unique and independent on how delays or packet drops manifest
themselves during the execution of the algorithm.

In the third part of this thesis, we investigate the problem of integer weight balancing in a
multi-component system under a static directed interconnection topology in the presence

of lower and upper limit constraints on the edge weights. We present a novel distributed
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algorithm for obtaining admissible and balanced integer weights for the case when there
are lower and upper weight constraints on the communication links. Compared with
the distributed algorithms mentioned earlier, the additional constraint here is that each
edge weight has to lie within a given interval, whereas communication exchanges (but
not necessarily the assignment of weights) between neighboring nodes are assumed to
be bidirectional.

In the fourth part of this thesis we investigate the problem of integer weight balancing
in a multi-component system over a directed (static) interconnection topology, under
lower and upper limit constraints on the edge weights, in the presence of bounded or
unbounded delays (packet drops) in the communication links. Specifically, we present
a novel distributed algorithm which solves the integer weight balancing problem under
lower and upper weight constraints over the communication links for the case where
arbitrary (time-varying and inhomogeneous) time delays affect the transmission at a
particular link at a particular time. Furthermore, we present an event-based version of
the proposed protocol in which each node autonomously decides when communication
and control updates should occur so that the resulting network executions still result
in a weight balanced digraph and all nodes eventually stop performing transmissions.
Then, we extend the applicability of the proposed algorithm to the case where possible

packet drops affect the communication links.



Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Professor Christoforos
N. Hadjicostis for the continuous support of my Ph.D. study and related research, for
his patience, motivation, and immense knowledge. His guidance helped me in while
researching and writing this thesis. I could not have imagined having a better advisor
and mentor for my Ph.D. study.

Besides my advisor, I would like to thank my thesis committee, Professor Georgios
Ellinas, Professor Ioannis Krikidis, Professor Themistoklis Charalambous, and Profes-
sor Gabriele Oliva, for their insightful comments and encouragement, but also for the
suggestions and questions, which prompted me to widen my research from various per-
spectives.

My sincere thanks also goes to Professor Andrea Gasparri for the excellent collaboration
we had.

I would also like to thank my fellow Ph.D. students, Christoforos Keroglou and Nicolas
Manitara, for the stimulating discussions, the sleepless nights we were working together,
and all the fun we have had during the last years.

Special thanks goes to my friends in Cyprus, Greece and others scattered around the
world. Thank you for your thoughts, well-wishes, phone calls, e-mails, texts, visits,
advice, and being there whenever I needed a friend.

Last but not the least, I would like to thank my family: my parents, Ioannis Rikos and
Tamara Papakonstantinou, and my brother, Filippos Rikos. Words cannot express how
grateful I am for all of the sacrifices that youve made on my behalf, for supporting me

spiritually throughout my Ph.D. studies and, in general, in my life.



I would like to dedicate this thesis
to my beloved family



Contents

Validation Page i
Declaration of Doctoral Candidate ii
Abstract in Greek iii
Abstract in English v
Acknowledgements vii
List of Figures xii
1 Introduction 1
1.1 Literature Review . . . . . . . . . . . 2
1.2 Motivation and Applications . . . . . . ... ... ... 3
1.3 Main Contributions . . . . . . . . . . ... 5
1.4 Thesis Organization . . . . . . . . .. .. 6

2 Preliminaries, Problem Statement and Centralized Approach 8
2.1 Graph-Theoretic Notions . . . . . . .. ... ... .. . ... 8
2.2 Problem Statement for Weight Balancing . . . . ... ... ... ... .. 9
2.3 Centralized Algorithm for Weight Balancing . . . . . ... ... ... ... 10
2.3.1 Formal Description of Centralized Algorithm . . . . ... ... .. 10

2.3.2 lustrative Example of Centralized Algorithm . . . . . . . ... .. 11

2.3.3 Bound on Number of Iterations of Centralized Algorithm . . . . . 13

2.3.4 Simulation Study . . . . .. ... o o 14

3 Distributed Weight Balancing 16
3.1 Distributed Algorithm for Weight Balancing . . . . . . . .. ... ... .. 16
3.1.1 Formal Description of Distributed Algorithm . . ... ... .. .. 17

3.1.2  Illustrative Example of Distributed Algorithm . . . . . . ... . .. 18

3.2 Execution Time Analysis of Distributed Algorithm . . . . . ... ... .. 21
3.3 Simulation Study . . . . . ... 27

ix



Contents b
3.4 Chapter Summary . . . . . . . . . . e e 28
Weight Balancing over
Unreliable Communication 30
4.1 Modeling Time Delays and Packet Drops . . . .. .. .. .. ... .... 30
4.2 Problem Statement . . . . . .. ... 32
4.3 Distributed Algorithm for Weight Balancing

in the Presence of Time Delays . . . . .. .. ... ... ... ....... 33
4.3.1 Formal Description of Distributed Algorithm . . . ... ... ... 33
4.3.2 Tllustrative Example of Distributed Algorithm . . . . . . . ... .. 35
4.3.3 Execution Time Analysis of Distributed Algorithm . . . . . .. .. 37
4.4  Extension to Event-Triggered Operation . . . . . . .. .. ... ... ... 40
4.4.1 Formal Description of Distributed Algorithm . . . . ... .. ... 41
4.4.2 Execution Time Analysis of Distributed Algorithm . . . . ... .. 41
4.5 Distributed Algorithm for Weight Balancing
in the Presence of Packet Dropping Links . . . . . ... ... ... .... 43
4.5.1 Simulation Study . . . . . . ... oo 44
4.6 Chapter Summary . . . . . . . .. . . e 48
Weight Balancing under
Link Capacity Constraints 49
5.1 Graph-Theoretic Notions and Problem Statement . . . . . . .. ... ... 49
5.1.1 Problem Statement . . . . . . . . .. ... o 50
5.2 Integer Circulation Conditions . . . . . .. ... ... ... .. ...... 51
5.3 Distributed Algorithm for Weight Balancing
under Link Capacity Constraints . . . . . . .. .. .. .. ... ... .. 51
5.3.1 Formal Description of Distributed Algorithm . . . ... ... ... 53
5.3.2 Illustrative Example of Distributed Algorithm . . . . . . .. .. .. 56
5.3.3 Proof of Algorithm Completion . . . . . .. ... ... ... .... 57
5.3.4 Simulation Study . . . . .. ... oo 64
5.4 Chapter Summary . . . . . . . . .. . e 65
Weight Balancing under
Link Capacity Constraints
over Unreliable Communication 67
6.1 Modeling Time Delays and Packet Drops . . . . . . ... ... ... ... 68
6.2 Problem Statement . . . . . . ... Lo 69
6.3 Distributed Algorithm for Weight Balancing
in the Presence of Time Delays . . . . . . ... ... ... ... ...... 69
6.3.1 Formal Description of Distributed Algorithm . . . .. ... .. .. 71
6.3.2 Proof of Algorithm Completion . . . . . .. ... ... ... .... 73
6.4 Extension to Event-Triggered Operation . . . . . . .. ... .. ... ... 76
6.4.1 Formal Description of Distributed Algorithm . . . .. . ... ... 76
6.4.2 Proof of Algorithm Completion . . . . . . .. .. ... ... .... 76
6.5 Distributed Algorithm for Weight Balancing
in the Presence of Packet Dropping Links . . . . . ... ... ... .... 78
6.5.1 Formal Description of Distributed Algorithm . . ... ... .. .. 80
6.5.2 Proof of Algorithm Completion . . . . . .. ... ... ... .... 81



Contents xi
6.6 Simulation Study . . . . . .. .. Lo 85
6.7 Chapter Summary . . . . . . . ... 87

7 Conclusions
and Future Directions 89
7.1 Conclusions . . . . . . . o o 89
7.2 Future Directions . . . . . . . . . . . e 91

List of Publications 93

Bibliography 94



List of Figures

2.1
2.2
2.3

2.4
2.5

2.6
2.7

2.8

3.1
3.2
3.3
3.4
3.5
3.6

3.7

3.8

4.1
4.2
4.3
4.4

Example of weight balanced digraph. . . . . . . .. .. .. ... ... 10
Weighted digraph with initial weights and initial imbalance for each node. 12
Selection of a path between a node with positive imbalance and a node

with negative imbalance. . . . . . . . .. ..o oo 12
Calculation of imbalance for each node. . . . . . . . .. ... ... .... 12
Selection of a path between a node with positive imbalance and a node

with negative imbalance. . . . . . . . . ... oL Lo oo 13
Resulting weight balanced digraph. . . . . . . . .. ... ... ... .... 13

Total imbalance plotted against the number of iterations for a random
digraph of 20 nodes when the proposed centralized algorithm is executed. 15
Total imbalance plotted against the number of iterations for a random
digraph of 50 nodes when the proposed centralized algorithm is executed. 15

Weighted digraph with initial weights and initial imbalance for each node. 19
Distribution of weights to outgoing edges by nodes with positive imbalance. 19

Weight balanced digraph after 17 iterations. . . . . . . . . .. .. .. ... 20
Weighted digraph with initial weights and initial imbalances. . . . . . .. 24
Weight balanced digraph after 25 iterations. . . . . . . .. .. .. ... .. 25
Transfer of positive imbalance from node vy on the left to node v,, on the

right. . . . . L 26

Comparison between Algorithm 2, the weight balancing algorithm pro-
posed in [47] and the imbalance-correcting algorithm [24]. Top figure:
Average total imbalance plotted against the number of iterations for 1000
random digraphs of 20 nodes. Bottom figure: Average total imbalance
plotted against the number of iterations for 1000 random digraphs of 20
NOdes. . . . .. e e e e 28
Comparison between Algorithm 2, the weight balancing algorithm pro-
posed in [47] and the imbalance-correcting algorithm [24]. Top figure:
Average total imbalance plotted against the number of iterations for 1000
random digraphs of 50 nodes. Bottom figure: Average total imbalance
plotted against the number of iterations for 1000 random digraphs of 50
NOAES. . . . . o e e 29

Weighted digraph with initial weights and initial imbalances for each node. 36

Distribution of imbalance from positively imbalanced nodes. . . . . . . . . 36
Distribution of delayed imbalance from positively imbalanced nodes. . . . 37
Final weight balanced digraph. . . . . . ... ... ... ... ... 38

xii



List of Figures

xiii

4.5 Total delayed imbalance plotted against the number of iterations for a
random digraph of 20 nodes in the case where 7 = 0 (solid line), 0 <
7;; < T where 7 = 10 (dashed line) and in the case where 7; = 7 = 10
(dashed-dotted line). . . . . .. .. ... ..
4.6 Total delayed imbalance plotted against the number of iterations for a
random digraph of 20 nodes in the case where 7 = 0 (solid line), 0 <
7;; < T where 7 = 10 (dashed line) and in the case where 7; = 7 = 10
(dashed-dotted line). . . . . . . .. ... ...
4.7 Total delayed imbalance plotted against the number of iterations for a
random digraph of 20 nodes in the case where 7 = 0 (solid lines), 0 <
7;; < T where 7 = 10 (dashed lines) and in the case where 7; = 7 = 10
(dashed-dotted lines). . . . . . .. ... ... ..
4.8 Average total delayed imbalance plotted against the number of iterations
in logarithmic scale for 1000 random digraphs of 20 nodes each in the case
where 7 = 0 (solid lines), 0 < 7;; < 7 where 7 = 10 (dashed lines) and in
the case where 7;; =7 = 10 (dashed-dotted lines). . . .. ... .. .. ..
4.9 Average total delayed imbalance plotted against the number of iterations
in logarithmic scale for 1000 random digraphs of 50 nodes each in the case
where 7 = 0 (solid lines), 0 < 7;; < 7 where 7 = 10 (dashed lines) and in
the case where 7;; =7 = 10 (dashed-dotted lines). . . .. ... .. .. ..

5.1 Weighted digraph with initial weights and initial imbalances for each node. 56

5.2 Distribution of imbalance from positively imbalanced nodes. . . . . . . . .
5.3 Calculation of edge weights from positively imbalanced nodes. . . . . . . .
5.4 Final weight balanced digraph. . . . . . . ... ... ... ... ...
5.5 Example of digraph where the Integer Circulation Conditions in Sec-
tion 5.2 do not hold for the dashed edges. . . . . . .. .. ... ... ...
5.6 Execution of Algorithm 5 for the case when the integer circulation condi-
tions do not hold for a random graph of 20 nodes. Top figure: Absolute
imbalance e[k] plotted against number of iterations. Bottom figure: Node
weight imbalances x;[k] plotted against number of iterations. . . . .. ..
5.7 Execution of Algorithm 5 for the case when the integer circulation con-
ditions hold for a random graph of 20 nodes. Top figure: Absolute im-
balance e[k] plotted against number of iterations. Bottom figure: Node
weight imbalances z[k] plotted against number of iterations. . . ... ..
5.8 Total (absolute) imbalance e[k| plotted against the number of iterations
for the distributed algorithm (averaged over 100 graphs of 20 nodes each)
in the case where the integer circulation conditions hold. . . . . . . . . ..
5.9 Total (absolute) imbalance e[k| plotted against the number of iterations
for the distributed algorithm (averaged over 100 graphs of 50 nodes each)
in the case where the integer circulation conditions hold. . . . . . . .. ..

6.1 Digraph where nodes exchange their desirable weights in the presence of
time delays. . . . . . ..
6.2 Digraph where nodes exchange their desirable weights. . . . . . . .. . ..

o7



List of Figures

Xiv

6.3

6.4

6.5

Execution of Algorithm 6 for the case when the integer circulation con-
ditions hold for a random graph of 20 nodes with transmission delays
0 < m; <7 where T = 10. Top figure: Total (absolute) imbalance ¢[k]
(blue line) and perceived total imbalance e)[k] (red line) plotted against
number of iterations. Bottom figure: Node weight imbalances x;[k] plot-
ted against number of iterations. . . . . .. ... L 0oL
Execution of Algorithm 7 for the case when the integer circulation con-
ditions hold for a random graph of 20 nodes with transmission delays
0 < m; < 7 where T = 10. Top figure: Total (absolute) imbalance ¢[k]
(blue line) and perceived total imbalance eP)[k] (red line) plotted against
number of iterations. Bottom figure: Node weight imbalances x;[k] plot-
ted against number of iterations. . . . . . .. ... ... L.
Execution of Algorithm 8 for the case when the integer circulation condi-
tions hold for a random graph of 20 nodes with packet drop probability
qji = 0.8. Top figure: Total (absolute) imbalance e[k] (blue line) and
Perceived Total Tmbalance ) [k] (red line) plotted against number of it-
erations. Bottom figure: Node weight imbalances x;[k] plotted against
number of iterations. . . . . . .. .. L Lo



Chapter 1

Introduction

The successful operation of a distributed system or network depends on a number of basic
protocols to circulate and process data between its components. In distributed systems
whose functionality does not simply consist of transmitting data, but also involves con-
trol and decision tasks (e.g., workload balancing across available computing resources or
leader election), traditional routing protocols may be inadequate or insufficient. For this
reason, the design of algorithms and protocols for distributed computation has attracted
significant attention by the communication, control and computer science communities
over the past few decades (e.g., [1-6], and references therein).

A distributed system or network consists of a set of components (nodes) that can share
information with neighboring components via connection links (edges), forming a gener-
ally directed interconnection topology (digraph). The digraphs that describe the com-
munication and/or physical topology typically prove to be of vital importance for the
effectiveness of distributed strategies in performing various tasks [2, 7, 8]. In many ap-
plications, the assignment of weights to the edges of this graph in a way that forms a
balanced digraph (i.e., for each node, the sum of the weights on its incoming edges equals
the sum of the weights on its outgoing edges) is key to enabling the desired functional-
ity. For example, applications where balance plays a key role include network adaptation
strategies based on the use of continuous second order models [9], and distributed adap-
tive strategies to tune the coupling weights of a network based on local information of
node dynamics [10]. Weight balancing is also closely related to weights that form a
doubly stochastic digraph, which find applications in multi-component systems (such
as sensor networks) where one is interested in distributively averaging measurements at
each component. Doubly stochastic digraphs play a key role in networked control prob-
lems, including distributed averaging [8, 11-13] and distributed convex optimization
[14-16]. In particular, weight-balance is important in the well-studied case where a set
of components (nodes) want to distributively average their individual measurements (in

this scenario, each node provides a local measurement of global quantity). One approach



Introduction 2

towards average consensus is to follow a linear iteration, where (instead of routing the
value of each node to all other nodes) each node repeatedly updates its value to be a
weighted linear combination of its own value and the values of its neighbouring nodes.
The choice of the weights has a relevant effect on how the interconnection behaves and
whether average consensus is reached. For example, it has been shown that nonnegative
weights that form a primitive doubly stochastic matrix (and thus also balance the graph)
is a sufficient condition for asymptotic average consensus [17, 18].

Because of the numerous algorithms available in the literature that use of weight as-
signments that are balanced or even form a doubly stochastic matrix (possibly with self
weights for each node), an important research question is to characterize when a digraph
can be given such edge weight assignments. In this thesis we focus on nonzero weight
assignments. In addition to its theoretical interest, the consideration of nonzero weight
assignments is also relevant from a practical perspective, as the use of the maximum
number of edges generally leads to higher algebraic connectivity [19], which in turn af-
fects positively the rate of convergence [20-23] of the algorithms that are to be executed
over doubly stochastic digraphs.

Once a characterization of weight-balanceable (doubly stochasticable) digraphs is avail-
able, the next natural question is the design of distributed strategies that allow the
components to find the appropriate weight assignments so that the overall interaction
digraph is weight balanced or doubly stochastic. Therefore, we present novel distributed

control algorithms to address these challenges.

1.1 Literature Review
Previous work on weight balancing consists of the following:

m In [18, 24] the authors introduce a synchronized distributed strategy on a directed
communication network in which each agent provably balances its incoming and
outgoing edge weights in finite time. In this algorithm, each individual agent
can send a message to one of its out-neighbours and receive a message from its in-
neighbours. Furthermore, as explained in [18, 24], once weight-balance is achieved,
the nodes can easily obtain weights that form a doubly stochastic matrix in a dis-
tributed manner (in order to use them, for instance, to asymptotically reach av-
erage consensus). [The proposed algorithm achieves this weight assignment under
the assumption that individual agents can add self-weights to the structure of the

digraph.]

m In [25] the authors introduce a distributed algorithm in which each agent is as-

sumed to be able to distinguish the information coming from the other agents
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according to the identifier of the sender. Also, a global stopping time is set at

which the iterations stop to perform weight-balancing.

m In [26] the authors introduce a synchronized distributed strategy on a directed
communication network in which each agent provably balances its incoming and
outgoing edge weights in an asymptotic fashion. In this algorithm each individual
agent can send a message to all of its out-neighbours and receive messages from
all its in-neighbours. The authors show that the proposed distributed algorithm
guarantees geometric convergence rate. The simplicity of the algorithm has allowed
its extension to asynchronous operation, which is a valuable contribution given that
in reality there are inevitable delays in the exchange of information) as well as its
continuous-time analog, that guarantees average consensus without the need to

obtain a doubly stochastic matrix.

m In [27] the authors introduce a synchronized distributed strategy on a directed
communication network in which each agent provably balances its incoming and
outgoing edge weights in an asymptotic fashion. In this algorithm, each individual
agent is assumed to be able to send a messages to all of its out-neighbours and
receive messages from all its in-neighbours. Specifically, each agent calculates a
fraction A which has as numerator the sum of incoming weights and as denominator
the sum of outgoing weights, and then changes the weights of its incoming and

outgoing links accordingly.

1.2 Motivation and Applications

The study of weight-balanced graphs/matrices has proven to play an important role
in the analysis and convergence of distributed coordination algorithms since they find
numerous applications in distributed adaptive control or synchronization in complex
networks. The main applications of weight-balanced graphs/matrices are shown below:
Balancing of Physical Quantities: In [17] a traffic-flow problem is studied consisting
of n junctions and m one-way one way streets. Such an application shows that the goal
of ensuring a smooth traffic flow is associated with balanced weights on an appropri-
ately defined digraph. Weight balanced digraphs appear also in the design of stable
flocking algorithms for agents with significant inertial effects, where weight-balance al-
lows for the decoupling of the centroid dynamics from the internal group formation [28].
Additionally, examples of applications where balance plays a key role include network
adaptation strategies based on the use of continuous second order models [9], and dis-
tributed adaptive strategies to tune the coupling weights of a network based on local
information of node dynamics [10]. Weight balancing can also be associated with the

matrix balancing problem in network optimization which is, in turn, associated with
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numerous applications, such as predicting the distribution matrix of telephone traffic
[29]. Furthermore, the weight balancing problem is related to matrix scaling problems
which have been addressed in the context of nonnegative matrices [27]. One of the early
motivations for the matrix scaling problem was the desire to start from the stochastic
matrix of a Markov chain and obtain a scaled version of it that is doubly stochastic
and adheres to the sparsity structure of the original one. Many applications of matrix
scaling can also be found in economy or accounting models (where it is important to
balance the flow-of-funds), urban planning, statistics, and demography.

Doubly Stochastic Weights: In all of the above applications, weights are associated
with the physical interactions in a distributed control system, and are assigned to edges
of the physical digraph. There are also many applications where weight balancing plays
a significant role in the cyber digraph of a given distributed control system. In particu-
lar, weight balancing is closely related to weights that form a doubly stochastic digraph,
which find applications in multi-component systems (such as sensor networks) where
one is interested in distributively averaging measurements at each component. Doubly
stochastic digraphs play a key role in networked control problems, including distributed
averaging [8, 11-13, 30] and distributed convex optimization [14-16]. Convergence in
gossip algorithms also relies on the structure of doubly stochastic digraphs, see [20, 21].
In particular, weight-balance is important in the well-studied case where a set of com-
ponents (nodes) want to distributively average their individual measurements (in this
scenario, each node provides a local measurement of global quantity). One approach
towards average consensus is to follow a linear iteration, where (instead of routing the
value of each node to all other nodes) each node repeatedly updates its value to be a
weighted linear combination of its own value and the values of its neighbouring nodes.
Asymptotic average consensus is then guaranteed (i.e., the nodes asymptotically reach
consensus to the average of their initial values [2, 8, 31, 32]) if the weights used in the
linear iteration form a doubly stochastic matrix (which correspond to a balanced di-
graph) [31]. The choice of the weights is important in how the interconnection behaves
and whether average consensus is reached. For example, it has been shown that nonneg-
ative weights that form a primitive doubly stochastic matrix (and thus also balance the
graph) is a sufficient condition for asymptotic average consensus as long as the digraph is
strongly connected [17, 18]. Average consensus is a special case of the consensus problem
which has received significant attention from the computer science community [1] and
the control community (see [2, 7, 13]), due to its applicability to diverse areas, includ-
ing multi-component systems, cooperative control [33], modeling of flocking behavior in
biological and physical systems (e.g., [2, 7, 8]) and estimation and tracking [34].

Flow Balancing: A weighted digraph that has a real or integer value (called the edge
weight) associated with each edge is also similar to a flow network where each edge

receives a flow that typically cannot exceed a given capacity (or, more generally, has to



Introduction 5

lie within a given interval). Flows must satisfy the restriction that the amount of flow
into a node equals the amount of flow out of it, unless the node is a source, which has
only outgoing flow, or a sink, which has only incoming flow. Thus, the weight-balancing
problem we deal with in this thesis can also be viewed as the problem of producing a
feasible circulation in a directed graph with upper and lower flow constraints [35]. [In
such settings, a circulation in a directed graph is an assignment of nonnegative weights
to the cycles of the graph and is called feasible if the flow in each edge (i.e., the sum of
the weights of the cycles containing this edge) lies between the corresponding upper and
lower flow constraints.] Additionally, the problem we deal with can be also viewed as a
particular case of the standard network flow problem (see, e.g., [36]), where there is a
cost associated to the flow on each link, and the objective is to minimize the total cost
subject to constraints on the flows. Moreover, flow algorithms find further applications
in a variety of other problems, like the maximum flow problem [37], auction algorithms
[38], and energy minimization [39].

Balancing with Integer Weights: Digraphs that are balanced with integer weights
find numerous applications in a variety of problems like swarm guidance [40], fractional

packing [41, 42], matching in bipartite graphs [43], and edge-disjoint paths [44].

1.3 Main Contributions

As stated previously, this thesis focuses on the development of distributed novel al-
gorithms that facilitate the development of strategies for generating weight balanced

digraphs. The main contributions of this thesis are as follows:

m In Section 3.1 we introduce a novel distributed algorithm which achieves integer
weight balancing in a multi-component system. We present its formal description
along with an illustrative example. Then, we show that the proposed distributed
algorithm converges to a weight balanced digraph after a finite number of iter-
ations, for which we obtain explicit bounds. Finally, we present examples and

simulations for the distributed algorithm.

m In Section 4.3 we introduce a novel distributed algorithm which achieves integer
weight balancing in a multi-component system, in the presence of time delays over
the communication links. We present its formal description, along with an illus-
trative example, and we show that the proposed distributed algorithm converges
to a weight balanced digraph after a finite number of iterations in the presence of
bounded time delays over the communication links. Then, in Section 4.4, we dis-
cuss an event-triggered version of the proposed distributed algorithm and we show

that it results in a weight balanced digraph after a finite number of iterations in
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the presence of arbitrary (time-varying, inhomogeneous) but bounded time delays

over the communication links.

m In Section 4.5 we show that the proposed distributed algorithm presented in Sec-
tion 4.3 is also able to converge (with probability one) to a weight balanced digraph
in the presence of unbounded delays (packet drops).

m In Section 5.3 we introduce a novel distributed algorithm which achieves integer
weight balancing in a multi-component system, in the presence of specified lower
and upper limit constraints on the edge weights. We present its formal description
along with an illustrative example. Then, we show that as long as the conditions
hold, then the proposed distributed algorithm converges to a weight balanced
digraph after a finite number of iterations. Finally, we present examples and

simulations for the proposed distributed algorithm.

m In Section 6.3 we introduce a novel distributed algorithm which achieves integer
weight balancing in a multi-component system under specified lower and upper
limit constraints on the edge weights, in the presence of time delays over the
communication links. We show that as long as the conditions hold, then the
proposed distributed algorithm converges to a weight balanced digraph after a
finite number of iterations. In Section 6.4, we discuss an event-triggered extension
regarding the operation of the aforementioned distributed algorithm and we show

that it results in a weight balanced digraph after a finite number of iterations.

m In Section 6.5 we introduce a novel distributed algorithm which achieves integer
weight balancing in a multi-component system under specified lower and upper
limit constraints on the edge weights, in the presence of unbounded delays (packet
drops) over the communication links. We show that as long as the conditions hold,
then the proposed distributed algorithm converges to a weight balanced digraph

after a finite number of iterations.

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2, we present some basic notions and
notation needed for our development. Then we present the problem formulation and
we discuss a possible solution in a centralized fashion. In Chapter 3, we introduce the
distributed algorithm which achieves balance with integer weights after a finite number
of iterations. In Chapter 4, we present the distributed algorithm which achieves integer
weight balancing in the presence of bounded delays after a finite number of iterations.
We also analyze the case of unbounded delays (packet drops) in the communication

links and discuss an event-triggered version of the algorithm (that can be used to avoid
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unnecessary transmissions). In Chapter 5, we present the conditions for the existence of
a set of integer weights (within the allowable intervals) that balance a weighted digraph.
Then, we present the distributed algorithm which achieves integer weight balancing in a
multi-component system, in the presence of specified lower and upper limit constraints
on the edge weights. In Chapter 6, we present the distributed algorithm, which achieves
integer weight balancing under lower and upper limit constraints on the edge weights
in the presence of bounded delays after a finite number of iterations. We also analyze
the case of unbounded delays (packet drops) in the communication links and discuss
an event-triggered version of the algorithm (that can be used to avoid unnecessary
transmissions). Finally, in Chapter 7 we conclude this thesis with a brief summary and

remarks about future work.



Chapter 2

Preliminaries, Problem Statement

and Centralized Approach

In this chapter, we first introduce some key notions and notation in Section 2.1. Then,
we state and discuss the problem under consideration in Section 2.2 and present a

centralized approach of the problem in Section 2.3.

2.1 Graph-Theoretic Notions

The sets of real, integer and natural numbers are denoted by R, Z and IN, respectively.
The symbol INg denotes the set of nonnegative integers while the positive part of Z is
denoted by the subscript + (e.g. Z4). Vectors are denoted by small letters whereas
matrices are denoted by capital letters. A matrix with nonnegative elements is called
nonnegative matrix and is denoted by A > 0 while a matrix with positive elements is
called positive matrix and is denoted by A > 0.

A distributed system whose components can exchange masses of certain quantities of
interest (weights or flows) via (possibly directed) links, can conveniently be captured by
a digraph (directed graph). A digraph of order n (n > 2), is defined as Gg = (V, &),
where V = {v1,v2,...,v,} is the set of nodes and £ CV x V — {(v;,v;) | v; € V} is the
set of edges. A directed edge from node v; to node v; is denoted by (vj,v;) € £, and
indicates that v; can receive information or physical quantities from v;. We will refer to
the digraph G, as the physical topology.

A digraph is called strongly connected if for each pair of vertices vj,v; € V, v; # v,
there exists a directed path from v; to vj, i.e., we can find a sequence of vertices v; =
Vig, Viys - - -V, = v; such that (v,,,v,) € € for 7 = 0,1,...,¢t — 1. All nodes that
have edges to node v; are said to be in-neighbors of node v; and belong to the set
N ={vi € V| (vj,v;) € £}. The cardinality of N;™ is called the in-degree of node
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v; and is denoted by D;. The nodes that have edges from node v; comprise its out-
neighbors and are denoted by /\/']-+ ={v, € V| (u,v;) € £}. The cardinality of /\/’j+ is
called the out-degree of vj and is denoted by Dj. We also let N = ./\/jJr UN;" denote the
neighbors of node v;, and D; = D;r +D; denote the total degree of node v;. A weighted
digraph G4 = (V, &, F) is a digraph in which each edge (v;,v;) € € is associated with a
real or integer value fj; called the edge weight; matrix F = [f;;] with value f}; at its jth
row, ith column position (where f;; = 0 if (v;,v;) does not belong in &).

Definition 1. Given a weighted digraph G; = (V, £, F) of order n, the total in-weight

of node v; is denoted by Sj_ and is defined as Sj_ = Zvi N fji, whereas the total
out-weight of node v; is denoted by S;r and is defined as S;f = ZvleNj Wi

Definition 2. Given a weighted digraph G; = (V, &€, F) of order n, the weight imbalance

of node v; is denoted by x; and is defined as x; = Sj_ — S;r.

Definition 3. Given a weighted digraph Gy = (V, &, F) of order n, the total imbalance
(or absolute imbalance) of digraph Gg is denoted by ¢ and is defined as e = 377 |;].

Definition 4. A weighted digraph G; = (V, &, F) is called weight balanced if its total

. . . . A
imbalance (or absolute imbalance) is equal to 0, i.e., e = > 7, |z;| = 0.

2.2 Problem Statement for Weight Balancing

We are given a strongly connected digraph G; = (V,€), with a set of nodes V =
{v1,v2,...,v,} and a set of edges £ C V x V — {(vj,v;) | v; € V}. We want to de-
velop a distributed algorithm that allows the nodes to iteratively adjust the weights on
their edges so that they eventually obtain a set of integer weights {f;; | (vj,v;) € £}
that satisfy the following:

1. fji € IN for every edge (vj,v;) € &;
2. fji =0if (’Uj,?)i) ¢ 5;

3. S;r = Sj_ for every v; € V.

The algorithms we develop in this thesis are iterative, and we use k£ to denote the
iteration. For example, Sf [k] will denote the value of the total out-weight of node v; at
time instant k, where k& € IN.

In Figure 2.1 we can see an example of a digraph which satisfies the conditions presented
above. As we can see, for every node vy, vy, v3,v4 and vs the total in-weight (equal
to 4,4,6,4 and 4 respectively) is equal to the total out-weight. Thus, the digraph in
Figure 2.1 is weight balanced.



Preliminaries, Problem Statement and Centralized Approach 10

.7,‘1:0 2 (L’QZO

x4:O 1‘5:0

FiGure 2.1: Example of weight balanced digraph.

2.3 Centralized Algorithm for Weight Balancing

We now introduce an algorithm which solves the integer weight balancing problem over
a multi-component system in a centralized fashion.

The centralized algorithm takes as input a strongly connected digraph Gy = (V,&). Tt
initializes the weights of all edges to unity and then iteratively performs the following

steps until the graph is balanced:

1. Computes the weight imbalance of each node.

2. Pick one node with positive imbalance and one with negative imbalance; if there
is more than one pair of nodes satisfying such a condition, any pair can be chosen

(something like that).

3. Find a path in the digraph from the node with positive imbalance to the node
with negative imbalance (this is always possible as long as the graph is strongly

connected).

4. Increase the weights of all the edges in the path by the value of the weight imbalance

of the positively imbalanced node.

We discuss why the algorithm results in a weight balanced graph (and how many steps

it takes to do so), after we describe the algorithm more formally.

2.3.1 Formal Description of Centralized Algorithm

A formal description of the proposed centralized algorithm is presented in Algorithm 1.
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Algorithm 1 Centralized balancing with integer weights

Input

A strongly connected digraph G; = (V,£) with n = [V| nodes and m = |€| edges.
Initialization

Set k = 0; each node v; € V sets its out-going edge weights as

0, ifv & N,
f’j[o]:{ 1, ifo e N
b ,] .

Iteration
For k =0,1,2,..., each node v; € V does the following:

1. It computes its weight imbalance z;[k] = S; [k] — S;r [k].

2. It selects one node v with positive imbalance br* and one node v~ with negative
imbalance br~ (e.g., it selects the node with the largest positive imbalance and the
node with the smallest negative imbalance, respectively).

3. It finds a non-cyclic path v = vy, vj,, -+ ,vj;, = v~ from v" to v.

4. Tt increases the weight on each edge on the path, which connects v™ to v—, by br™,
ie.,
fje+17je [k + 1] = fje—‘—l,je [k] + b,r+

fore=0,1,---,¢t — 1. (All the other weights are left unchanged.)

5. It repeats (increases k to k + 1 and goes back to Step 1).

2.3.2 Illustrative Example of Centralized Algorithm

We first illustrate the centralized algorithm. We then explain why it results in a weight
balanced digraph after a finite number of iterations (bounded by n —1 = [V| — 1 in the
worst-case).

Consider the digraph G; = (V,€) in Figure 2.2, where V = {v,ve,--- 07}, E =
{e1,e2,- - ,e13}, € TV xV —{(vj,v) | v; € V}. The weight on each edge is ini-
tialized to f;;[0] = 1 for (vj,v;) € E (otherwise f;;{0] =0). As a first step, we compute
the weight imbalance z;[0] = S;7[0] — S;r [0] for each node (this is shown in Figure 2.2).
Once we compute the imbalance of each node, the centralized algorithm selects (ran-
domly or otherwise) one node with positive imbalance, say vs, and one node with negative
imbalance, say vy. A path from node vs to node vy is selected (e.g., the path vs,v7) and
the weights of all the edges in the path are increased by the value of the weight imbal-
ance of the positively imbalanced node v; (namely, by the value of the weight imbalance
x5 = 2), as shown in Figure 2.3.

At the next iteration, after the increase of the weights of all the edges of the path vs, v7,
we recalculate the imbalance for each node v; as x;[1] = S;7[1] — S;“[l]. This can be seen

in Figure 2.4.
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FIGURE 2.2: Weighted digraph with initial weights and initial imbalance for each node.
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FIGURE 2.3: Selection of a path between a node with positive imbalance and a node
with negative imbalance.
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FIGURE 2.4: Calculation of imbalance for each node.

At the next iteration, one node with positive imbalance, say vy, and one node with

negative imbalance, say vy are selected. A path from node v7 to node vy is created (e.g.,

the path vy, v4) and the weights of all the edges in the path are increased by the value

of the weight imbalance of the positively imbalanced node v7 (namely, by the value of

the weight imbalance x4 = 1), as shown in Figure 2.5.
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FIGURE 2.5: Selection of a path between a node with positive imbalance and a node
with negative imbalance.

The process is repeated until the graph becomes weight balanced. In this particular

example, this occurs after four iterations and the final weights are shown in Figure 2.6.

1’1:0 1 .Z'QZO

FIGURE 2.6: Resulting weight balanced digraph.

We will next explain why the proposed centralized algorithm results in a weight balanced
digraph after a finite number of iterations (bounded by n — 1 in the worst-case).
2.3.3 Bound on Number of Iterations of Centralized Algorithm

Notice that each edge appears as the incoming edge of exactly one node and as the

outgoing edge of exactly one (other) node. Thus, we immediately have that
n
> ajk] =0, forall k.
j=1

This means that if there is a node with positive imbalance at Step 2 of the iteration,
then there has to be at least one node with negative imbalance (and vice-versa). Also,

notice that the adjustment of weights in Step 3 of the iteration, achieves the following:

1. It balances the node v™ that had positive imbalance.
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2. It does not change the imbalance of all other intermediate nodes vj,,--- ,v;,_, in

the path v = v, v;,, -+ ,v;, = v~ from vT to v™.
3. It increases the imbalance of the node v~ that had negative imbalance.

Note that if a node starts balanced or becomes balanced during any iteration, it remains
balanced for the remainder of the algorithm (because Steps 1, 2, and 3 do not affect
the imbalance of intermediate nodes in the path that is selected, and only these nodes
can be balanced). Furthermore, at each iteration, at least one node becomes balanced
(namely, the node with positive imbalance that is picked at Step 1). Note that it is
possible for two nodes to become balanced at each iteration (if the node with negative
imbalance that is picked happens to also become balanced; in fact, this is the case at the
last iteration). Thus, it is easy to see that the algorithm takes at most n — 1 iterations
to reach a set of weights that forms a weight balanced graph.

Another easily obtainable bound on the number of iterations is the following: if we
think of the absolute balance of the graph at iteration k as e[k] = > 7_; |2;[k]|, then each
iteration decreases this imbalance by at least 2 (i.e., Y20, |z;[k +1]] < 3770 [x;[k][ - 2)
unless the graph is balanced. [Note that » 7, |2;[0]] is necessarily an even number
(because the sum of positive balances is equal to the negative of the sum of the negative
imbalances, and both of them are integer numbers). Also, each iteration decreases the
sum of the positive imbalances by at least 1; thus, the absolute sum of the negative
imbalances also has to decrease by at least 1 as well.]

The above discussion implies the proposition below.

Proposition 1. The number of iterations T required by the proposed centralized algo-

rithm to balance a digraph Gg = (V, €) satisfies T < min(n — 1,1 iy lz5[0])).

2.3.4 Simulation Study

In this section, we present simulation results for random graphs of size n = 20 and 50
nodes.

Figure 2.7 shows the case of a random digraph of n = 20 nodes. Here we can see that
the proposed centralized algorithm converges to a weight balanced digraph after a finite
number of iterations.

Figure 2.8 shows the same case as Figure 2.7 with the difference that the network
consists of 50 nodes. The increase in network size does not cause any major changes in

performance and the conclusions are the same as in Figure 2.7.
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FIGURE 2.7: Total imbalance plotted against the number of iterations for a random
digraph of 20 nodes when the proposed centralized algorithm is executed.
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FiGUrE 2.8: Total imbalance plotted against the number of iterations for a random
digraph of 50 nodes when the proposed centralized algorithm is executed.



Chapter 3

Distributed Weight Balancing

In this chapter, we present a novel distributed algorithm which deals with the problem
of balancing a weighted digraph.

This chapter is organized as follows. In Section 3.1 we introduce a novel distributed
algorithm which achieves integer weight balancing in a multi-component system. In
Sections 3.1.1 - 3.3 we present a formal description of the proposed distributed algorithm
and demonstrate its performance via an illustrative example. Then, in Section 3.2, we
show that the proposed distributed algorithm converges to a weight balanced digraph
after a finite number of iterations and we calculate an explicit bound on the number of
iterations required. In Section 3.3 we present simulation results and comparisons for the

proposed distributed algorithm. The chapter is concluded in Section 3.4.

3.1 Distributed Algorithm for Weight Balancing

In this section we present a distributed algorithm (Algorithm 2) in which the nodes
iteratively adjust the positive integer weights of their outgoing edges, such that the
digraph becomes weight balanced after a finite number of iterations. We assume that
each node observes but cannot set the weights of its incoming edges, and based on these
weights it adjusts the weights on its outgoing edges. It is required that the weights on
the outgoing edges of each node can be adjusted differently if necessary. (Note that
this requirement is not present in [45] where each node sets equal weights to all of its
outgoing edges; when restricting ourselves to integer weights, however, this requirement
becomes necessary for balancing to be possible, see, for example, [46]).

Given a strongly connected digraph G; = (V, &), Algorithm 2 has each node v; € V
initialize the weights of all of its outgoing edges to n (or some constant greater than

or equal to unity'). Then, it enters an iterative stage where each node v; performs the

Tt will become evident from our analysis that this constant does not have to be the same for all
nodes (and its value does not affect the termination of the algorithm), but for simplicity we take it to
be n in this analysis. Note that if all edge weights were initialized to 1, the execution of Algorithm 2

16
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following steps (a formal description of Algorithm 2 appears later):

1. The node computes its weight imbalance.

2. If the node has positive imbalance, it increases the integer weights of its outgoing
edges so that it becomes weight balanced (assuming no further changes by its in-
neighbors on its incoming edges). Specifically, the outgoing edges are assigned, if
possible, equal integer weights; otherwise, if this is not possible, they are assigned
integer weights such that the maximum difference among them is equal to unity.
This means that some of the outgoing edges of each node might get larger weights
(by unity) than others, and we assume that each node selects a priori a fixed
(possibly randomly selected) ordering of its out-neighbors that determines the

precedence with which outgoing edges get higher weight.?

3. If the node has negative imbalance, it decreases (if possible) the integer weights
of its outgoing edges so that i) they have value greater or equal to unity, and ii)
its weight imbalance becomes equal to —1 (assuming no further changes by its
in-neighbors on its incoming edges). As in Step 2 above, the outgoing edges are
assigned, if possible, equal integer weights; otherwise, if this is not possible, they
are assigned integer weights (greater or equal to unity) such that the maximum
difference among them is equal to unity (again, we assume each node determines
which of its outgoing edges get higher weight based on some a priori fixed ordering

of its out-neighbors).

For simplicity, we assume that during the execution of the distributed algorithm, the
nodes update the weights on their outgoing edges in a synchronous manner, but it should
be evident from our proof that the algorithm can also be extended to asynchronous
settings where, during each iteration, a node is selected (randomly or otherwise) to

update the weights on its outgoing edges based on its imbalance at that point.?

3.1.1 Formal Description of Distributed Algorithm

A formal description of the proposed distributed algorithm is presented in Algorithm 2.

is identical to the execution of the algorithm in [47] because nodes with negative imbalance never take
any action.

2The exact ordering is not critical and, in fact, other strategies are possible as long as they keep some
balance among weights. For example, the algorithm proposed in [46], by having each node with positive
imbalance increase the weight of the outgoing edge with minimum weight, also imposes some sort of
balance among the weights on its outgoing edges. This algorithm has been shown to complete in finite
time, but a explicit bound on the number of steps required has not been obtained.

3A key requirement in that case is that, as long as the graph is not balanced, no node is completely
excluded from selection.
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Algorithm 2 Distributed balancing with integer weights

Input

A strongly connected digraph G; = (V,£) with n = [V| nodes and m = |€| edges.
Initialization

Set k = 0; each node v; € V sets its outgoing edge weights as

0, ifwv ¢ N,
flj[o]:{n ifvlej\/'].Jr
9 ]'

Node v; also orders its out-neighbors in the set ./\/;r in some random (but fixed) order.
Iteration
For k =0,1,2,..., each node v; € V does the following:

1. It computes its weight imbalance x;[k] = S; [k] — S;r [k].

2. If »j[k] > 0, it sets the values of the weights on its outgoing edges as fi;[k + 1] =

- Sk

{SJDJ‘HC]J , Yo € N +. Then, it chooses the first S; (k] - D;L ;) J[r ]
J

edges (according to the ordering of its out-neighbors chosen during initialization),

and increases their value by 1 so that |f;; — fx;| < 1,Vu, v, € J\f;r.

of its outgoing

3. If z;[k] < —1, it does the following:
(i) If LS%LHJ > 1, then node v; sets the values of the weights on its outgoing edges
J
- Sk
as fij[k+1] = LS%LIC}J , Vo, € /\/’f. Then, it chooses the first 1+S;~ [k]-DF { i | ]J
i

J Dj&-

J
of its outgoing edges (according to the ordering of its out-neighbors chosen during
initialization), and increases their weight by 1 so that | fi; — fi;| < 1, Vo, vy € J\f;“.

S
(i) If { JDLHJ = 0, then node v; sets the values of the weights on its outgoing

J

edges as fi;[k + 1] = 1.

4. Tt repeats (increases k to k + 1 and goes back to Step 1).

3.1.2 Illustrative Example of Distributed Algorithm

Consider the digraph G; = (V,€) in Figure 3.1, where V = {vj,v9,...,v7}, €& =
{e1,e2,...,e13}, E TV xV —{(vj,v;) | v; € V}. The weight on each edge is initialized
to f1;{0] =7 for (v, vj) € € (otherwise fi;[0] = 0).

As a first step, each node computes its weight imbalance z;[0] = S;[0] — S;r [0] (the
corresponding imbalances are shown in Figure 3.1). Algorithm 2 requires each node
with positive imbalance to increase the value of the weights on its outgoing edges by
equal integer amounts (or with maximum difference between them equal to unity), so
that the total increase makes the node balanced. This ensures that weights remain
strictly positive and S;’ [k + 1] = S;[k]. In particular, the balance of node v; will
become zero, unless the weights of its incoming edges are changed by its in-neighbors.

In this case, the nodes that have positive imbalance (equal to 14 and 7, respectively)
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FI1GURE 3.1: Weighted digraph with initial weights and initial imbalance for each node.

are nodes 5 and 6, which distribute their imbalance to their outgoing edges as shown in
Figure 3.2. For example, node 5 has imbalance z5[0] = 14 and sets fg5[1] =7+ 7 =14
and fr5[l] =7+ 7= 14.

FI1GUrE 3.2: Distribution of weights to outgoing edges by nodes with positive imbal-
ance.

The distributed algorithm also requires each node with negative imbalance to decrease
the value of the weights on its outgoing edges by equal integer amounts (or with max-
imum difference between them equal to unity), so that i) the weights are at least 1
and ii) the total decrease makes the nodes imbalance equal to —1. This ensures that
weights remain strictly positive and S; [k + 1] = S; [k] + 1. The balance of node v,
remains negative at —1, unless the weights of its incoming edges are changed by its
in-neighbors. In this case, the nodes that have negative imbalance (all equal to —7) are
nodes 3, 4 and 7, which distribute their imbalance to their outgoing edges as shown in
Figure 3.2. For example, node 7 has imbalance z7[0] = —7 and sets fe7[1] =7 -3 =4
and fyr[1]=7—-3=14

In the next iteration, after the integer weight update on the outgoing edges of each node

with positive (or negative) imbalance at k = 0, the nodes recalculate their imbalance as
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z;[1] = S§; 1] - S;“[l], and the process is repeated. After a finite number of iterations,
which we explicitly bound in the next section, we reach the weighted digraph with the

integer weights shown in Figure 3.3. In this example, this occurs after 17 iterations.

1‘1:0 9 CEQZO

1‘320 :0

\/
/7\

FI1GURE 3.3: Weight balanced digraph after 17 iterations.

Remark 3.1. Note that Algorithm 2 resembles [48] in many ways: when a node has
positive imbalance, it increases the weights on its outgoing edges; whereas when it has
negative imbalance, it decreases the weights on its outgoing edges. The restriction to
integers, however, creates some “anomalies” that need to be addressed. In particular,
one has to worry about the following cases:

(i) When the imbalance is positive but not divisible by the out-degree of the node, it
is not possible to increase the weights of the outgoing edges by equal integer amounts.
In order to keep the weights on its outgoing edges integer-valued, the node makes the
needed adjustments while allowing the weights to differ by at most 1.

(ii) The same applies when the imbalance is negative (in which case the weights have
to decrease). An obvious additional constraint in this case is the fact that the weights
have to be kept strictly positive.

(ili) An interesting feature of Algorithm 2 is that when the imbalance of a node is
negative, the node adjusts the weights on its outgoing edges so that it achieves an
imbalance of —1 (not zero) assuming no changes in their incoming weights. The reasons

for this choice become clear in the proof of termination later on.

Remark 3.2. Tt is worth pointing out that Algorithm 2 is similar to the weight balancing
algorithm presented in [47], but allows nodes to adjust the weights of their outgoing
edges regardless of whether they have positive or negative imbalance; this means that
Algorithm 2 will typically converge faster than the algorithm presented in [47] (though

in the worst case they will take a similar number of iterations to converge).
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3.2 Execution Time Analysis of Distributed Algorithm

Herein, we calculate an explicit bound on the number of iterations required, in the
worst-case, for the given digraph to become balanced. Our bound is O(n3m?) iterations
and, since m < n?, we can also bound the number of iterations as O(n"). Note that the
bound we obtain also applies for the imbalance-correcting algorithm in [46] (note that
[46] established convergence in finite time for the imbalance-correcting algorithm, but
did not provide a bound on the number of iterations). Thus, the importance of the result
in this section is that the number of iterations (for both our proposed algorithm and for
the imbalance-correcting algorithm in [46]) is polynomial in the size of the digraph and
not exponential.

Let the total imbalance of the digraph at iteration k be
elk] = > [kl
j=1

where z;[k] = S [k] — S;’ [k] with S [k] = Zv,-é/\fj_ fjilk] and S;r[k] = Zvle/\/j* fi;[k].
Clearly, the total imbalance is a nonnegative quantity that is zero if and only if the
digraph is balanced. Also, since we have > x;[k] = 0 (because each weight f;[k]
appears twice, once with a positive sign and once with a negative sign), we see that: (i)
the total imbalance of the digraph at any given k is an even number, and (ii) if there
is a node with positive imbalance, then there is also (at least one) node with negative
imbalance. For convenience, in the remainder of this section, we will sometimes refer to
nodes with positive (negative) imbalance as positive (negative) nodes, and to nodes with

zero imbalance as balanced nodes.

Proposition 2. During the execution of Algorithm 2, we have

ek +1] < elk] < e[0] < nP(n—2).

Proof. Since the digraph is assumed to be strongly connected, each node has at least
one incoming edge and at least one outgoing edge. Also, each node has at most n — 1
incoming edges and at most n — 1 outgoing edges. Since at initialization all edges have
weight n, we have |2;[0]| < n(n — 2), which means that €[0] < n?(n — 2).

To gain some insight, assume (for now) that at iteration k, only node v; changes the
weights on its outgoing edges (with the other nodes not making any changes regardless
of their imbalance). We have the following three cases to consider:

(i) Case 1: Node v; has positive imbalance x;[k]. In such case, node v; uniformly*

increases the weights on its outgoing edges in such a way so that x;[k + 1] = 0 (because

Tt is possible that some weights are not increased, but, due to the fixed ordering of the out-neighbors
of node v; (with which weights are increased by one over the value of other weights), we have fi;[k+1] >
flj [k‘] for all v; € ./\/-J+
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S;“ [k+1] = S [k] and S [k + 1] = S, [k] —since no other node updates the weights on

its outgoing edges). In order to see how the total imbalance changes, we look at

elk +1] — el#] 2oimy |milk + 1| = | [K]]

—z;lk] + Zwe/\/f | figlk + 1] = fis[k] + 2[K]| — [2[K]|
—x;[k] + Zyle,/\/’].* | fijlk + 1] = fi;[K]

—aj k] + X eny (fijlk +1] = fijlk])
= 0.

—
S
N

—
INS

—~
o
~

(a) follows because z;[k + 1] = 0, z;[k| is positive, and only nodes in ./\/'j+ see changes in
their weights from incoming edges; in particular, node v; sees its incoming weight from
node v; increase by fi;[k + 1] — fi;[k]. (b) stems from the triangle inequality, and (c)
from Step 2 of Algorithm 2 and the fact that f;[k + 1] > fi;[k] for v; € ./\fj+. Note that
equality holds in Case 1 if all nodes in /\/].Jr have positive or zero balance.

(ii) Case 2: Node v; with negative imbalance x;[k] < —2. In this case, node v; decreases
the weights on its outgoing edges so that x;[k + 1] = —a; for some integer a; > 1. The
aim is for a; to be unity (in Step 3.1 of Algorithm 2) but this may not be possible as the
weights on the outgoing edges of v; are constrained to remain above unity (in Step 3.2
of Algorithm 2). Using similar arguments as in the previous case (but keeping in mind

the difference in the signs of the various quantities), we have

elk+1] —elk] = a; — [o;[k][ + 32,4 [w[k + 1]| — |a[K]]

aj +@j[k] + 30, et fijlk + 1] = fijlk] + aa[k]] = [aa K]
aj + 25 k] + 22, encr filh + 1] = fij[K]]

aj +xj[k] =32, ey (fislk + 1] = fis[K])

0,

A
& IN

where (d) follows from the fact that the total decrease in the weights satisfies

Yuenctfiglk + 1 = flk]) = SFlk+1] - SF(k]
= S [k]+a; —S][K]
= aj +zj[k].

In Case 2, equality holds if all nodes in /\/j+ have negative or zero balance.

(iii) Case 3: Node v; with x;[k] = —1 or z;[k] = 0. In this case, node v; does not do
anything so we easily conclude that e[k + 1] — ¢[k] = 0.

Clearly, the arguments in the above three cases establish that e[k 4+ 1] < ¢[k] in an
asynchronous setting where, at each iteration £, a single node v; is selected (randomly

or otherwise) to update the weights on its outgoing edges based on its imbalance k]
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at that point. In fact, with a little bit of book-keeping, we can extend the above
argument in the synchronous setting of Algorithm 2, where nodes adjust the weights on
their outgoing edges simultaneously. The key difference is that now the weights on the
incoming edges of each node v; may change: S [k + 1] is no longer identical to S5 [k]

and has to be explicitly accounted for. Letting Af;; = fji[k + 1] — fji[k], we have

elk+1] —elk] = 25y sk + 1| — |5k
= Yev|Sy [k +1] = 8 [k +1]| — [x;[]]
= Luev| Dpens Afii = Lyeny Afig + ikl = |z5[k]]

Consider now the following partition of V: set A = {v; | z;[k] > 0}, set B = {v; | z;[k] <
—2}, and set C = {v; | zj[k] = —1 or z;[k] = 0}. Using these partitions,

—~
3}
~

ek +1] —elk] = X eal Xyen Afiil —ajlk]
(f)
o Desl Xnen; Afii — ajl + (k]
(9)
+

2vjec | Den Afji + @ilk]l + 2j[k]

where (e) follows from Case 1, (f) follows from Case 2, and (g) from the fact that

xj[k] <0 for v; € C. Using the triangle inequality on each line we have

< ZUJ‘GA Zvie/\f; |Afjil — x5lk] + Z’U]'EB Zvie/\/’; |Afjil
+ aj+ ikl + X, ec quie/\/j‘ |A il

> v el Zvle/\/j |Afi] — k] + 22, e Zvle/\/j* |A fi]
aj + 25k + 220 ec pent |l

-0,

elk + 1] — e[k]

+

where the key was to re-arrange the summation of the |Af;;| and to take advantage of

the inequalities we proved earlier, in Cases 1, 2 and 3. ]

Note that Proposition 2 essentially gives us a way to analyze the execution time of
the proposed algorithm (and also the algorithm in [46]). The basic idea is to bound
the number of steps K it takes for €[k + K] to become strictly smaller than ¢[k]. In
Proposition 3 below, we argue that K < m?, where m is the number of edges of the

digraph; this implies that the execution time of the algorithm can be bounded by

0 ?(n —2
Execution Time < m2€[2] < [n(n — 1)]271(712) <an”,
where « is a natural number (i.e., « € IN). [Note that the number of edges m in a

digraph satisfies m < n(n — 1), the initial total imbalance satisfies® £[0] < n?(n —2), and

®Note that the total initial imbalance depends on the initial weights that each node assigns to its
outgoing edges. For the case where each node initializes the weights of its outgoing edges to be equal
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each decrease that takes place is by at least two (since €[k] is always an even number).]

Proposition 3. During the execution of Algorithm 2, we have
elk+ K] <elk], £=0,1,2,..

when [k] > 0 and K > m? (m = |£] is the number of edges in the given digraph Gg).

Before providing the proof of Proposition 3, we discuss an example of a “difficult”

digraph in order to provide intuition about the problem.

Example 3.1. Consider the digraph G = (V, £) in Figure 3.4, where V = {v;, v9, ..., vs},
E={e,e,....e15}, ECV XV —{(vj,v5) | v; € V}. Edges {e1,e2,...,e15} are not de-
noted in the figure to avoid cluttering the diagram. The weight on each edge is f;;[0] = 1
for (v, v;) € € (otherwise, f;;[0] =0). Gq involves of 4 cycles Cy, C, C3, Cy, which com-
prise of the following edges:
Cy: < (vg,v1), (vg, va), (v1, v3)
Co: < (va,02), (vs,0a), (v3,05)
Cs: (vﬁ,v4), (v7,v6), (vs,v7), (Va,v5) >
Ca: < (vs,v6),( (v6, v7) >.

>,
(

, (v2,v3) >

FIGURE 3.4: Weighted digraph with initial weights and initial imbalances.

Initially, each node computes its weight imbalance z;[0] = S;7[0] — Sjr [0] (this initial
imbalance is indicated in Figure 3.4). The only node that will take action is node vy,
which has positive imbalance equal to 1 (all other nodes have imbalance zero or —1).
Note that node v; will increase the weight on edge (v2,v1), causing an imbalance to node
v9 who will then be forced to take action. Depending on whether vs increases the weight
on edge (v3,v2) or (vg,v2), node vg or node vy will be forced to take action. Thus, there
are different possibilities (executions of the algorithm) that depend on the fixed ordering
of out-neighbors, and below we consider a particular such execution. [Note that at each

iteration, only one node takes action because all other nodes have imbalance zero or

to unity then the execution time of the proposed distributed algorithm can be bounded by O(nG) time
steps.
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—1: initially node vy, then node vy, etc.; thus, we use the term “transferring of the
imbalance” to indicate the fact that the imbalanced node forces an out-neighbor to be

imbalanced.]

e In the first 3 iterations, the imbalance gets transferred to nodes vo, vs and then
back to node v;. Note that the choices we made here were for node v to transfer
the imbalance to node v3, and for node v3 to transfer the imbalance back to node

V1.

e In the next 7 iterations, the imbalance gets transferred to nodes v, vy, vs, v3, Vo,
vg and back to v{. Again, at each iteration, only one node has positive imbalance:
first node vy, then node vs, then v4, then vs, then vs, then vy, then v3, and finally
v1. Note that, given the previous choices, the only choice we had here was whether
at node vy we increase the weight at edge (vg, v4) or edge (vs, v4); we assumed the

latter.

e In the next 11 iterations, the imbalance gets transferred to nodes v, vy, vg, v7, Us,

vy, Us, V3, V2, v3, and back to vi, respectively.

e In the last 4 iterations, the imbalance gets transferred to nodes wvo, vy, vg, and vg

respectively.

e The resulting balanced digraph is shown in Figure 3.5 and is reached after 25

iterations.

Summarizing, we have that cycle C1 was crossed four times, cycle Cy was crossed three
times, cycle C3 was crossed two times, and cycle Cy was crossed one time. As a result,
the number of iterations required, in order for digraph G; to reach weight balance, is
4|Cy| + 3|C2| + 2|C3| + |C4|, where |C;] is the length of cycle C;.

1

FI1GURE 3.5: Weight balanced digraph after 25 iterations.

We are now ready to proceed with the proof of Proposition 3.
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Proof. Since e[k] > 0, we have at least one node with positive imbalance, say node vy,
and at least one node with negative imbalance, say node v,,.

Note that, at each iteration of Algorithm 2, node v, (in fact, any node with negative
imbalance) will retain its negative imbalance unless at least one of its in-neighbors v,,,,
(Un,vn,;) € &, has positive imbalance and increases the weight on the edge (v, vy,;). The
reason is that the changes that v, initiates on the weights on its outgoing edges can
only make its imbalance —1; thus, for the imbalance to become zero or positive, it has
to be that one or more of its incoming weights are increased. This can only happen if
one or more of its in-neighbors have positive imbalance, at which point it follows from
the proof of Proposition 2 (strict inequality for Case 1) that the total imbalance will
decrease (by at least two).

In order to determine a bound on the number of steps K required for the total imbalance
to decrease, we can assume without loss of generality that negative nodes remain negative
(because at the moment any negative node becomes balanced or positive, we also have
a decrease in the total imbalance). Consider the (worst®) case where v; has imbalance
b for some positive integer b, v,, has imbalance —b, and the remaining nodes v, vs, ...,
vp—1 are all balanced (refer to Figure 3.6, where vy is the node on the far left and v, is
the node on the far right). At the first iteration, node v; sends its imbalance to at least
one of its out-neighbors (by increasing the weight on at least one of its outgoing edges).
This out-neighbor (resp. these out-neighbors) of node v; does (resp. do) the same at
the next iteration, and this process is repeated. If, at any point, node v,, is reached, the

overall imbalance will decrease by at least two (i.e., e[k + 1] < €[k] — 2).

YL
(%1 C
C Cs i
Cy 2

FIGURE 3.6: Transfer of positive imbalance from node v; on the left to node v,, on the
right.

Let us now analyze the number of iterations it takes for node v, to be reached (i.e., for
one of its in-neighbors to become positive). Observe the following:

(i) At each iteration, the imbalance gets transferred from a node to one or more of that
nodes’s out-neighbors. If more than one out-neighbors are involved, then the decrease
will occur faster; thus, we consider the case when the imbalance gets transferred to only
one out-neighbor.

(ii) As the iterations proceed, mark the first time an edge is traversed for the second

5Tt will become evident that this is the worst case scenario at the completion of the argument.
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time, and call the cyclic sequence of edges visited up to this point C (refer to Figure 3.6).
Note that C is a cyclic sequence of edges (not nodes, i.e., a certain node may be visited
more than once while traversing cycle C). Also note that C; has at most n(n —1) edges
because that is the total number of edges of the digraph.

(iii) While traversing C for the second time, we will be forced at some point to traverse
a new edge (that has not been traversed before (otherwise, the digraph is not strongly
connected). The reason is the fact that the weights on the out-going edges from each
node cannot differ by more than unity (this is where the notion of approximate balance
among the weights on the out-going edges plays are role). Let Co denote the set of edges
traversed until the time we stop traversing new edges (i.e., we are forced to traverse an
edge that we have already visited). Let Cy be the set of edges that are not in C; and
have been visited so far.

(iv) We can continue in this fashion (defining C; as shown in Figure 3.6) until we reach
node v,. Note that the number of cycles N satisfies N < m (where m = |£]| is the
number of edges of the given digraph G;) because each cycle has at least one edge and
the digraph has a total of n(n — 1) cycles.

From the above discussion (see also Example 3.1), we have

N
# (iterations to reach v,) < Z(N —i+1)|Ci| < Nm,
i=1

since Zf\i 1 |Ci| < m. Finally, each cycle C; has at least one edge, which means we can
have at most m cycles. This allows us to conclude that #(iterations to reach v,) < m? ,

which completes the proof of the proposition. O

Remark 3.3. The bound we obtain is actually m2# and can easily be improved (if one

looks at the last equation in Section IV and realizes that it is in our best interest to
have cycle 1 have size |C1] = m — (N — 1) and all other cycles have size equal to 1) to

2@. In terms of the example we provide, this bound suggests m? /2 iterations which is

m
113. Nevertheless, the main motivation in obtaining our bound was to establish that the
number of iterations is bounded by a number that is polynomial (and not exponential)

in the size of the graph.

3.3 Simulation Study

We compare the proposed algorithms with the current state-of-the-art. Specifically, we
run Algorithm 2 in large digraphs (of size n = 20 and 50) and compare their performance
against two other algorithms: (a) the weight balancing algorithm in [47] in which each

node v; with positive imbalance z; > 0, increases the weights of its outgoing edges by
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equal integer amounts (if possible) so that it becomes weight balanced, (b) the imbalance-
correcting algorithm in [24] in which every node v; with positive imbalance z; > 0 adds
all of its weight imbalance x; to the outgoing node with the lowest weight w.

Figure 3.7 shows the cases of: (i) 1000 averaged digraphs of 20 nodes each, where every
edge is initialized to 1, and (ii) 1000 averaged digraphs of 20 nodes each, where every
edge is initialized to 20, respectively. Figure 3.7 shows that for the first case Algorithm 2
converges as fast as the one in [47] (as expected due to the particular initialization used).
For the second case we have that when the edge’s initialization is greater than 1 then

Algorithm 2 is the fastest among algorithms [24, 47].

Average of 1000 Graphs of 20 nodes with initial value 1
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F1cURE 3.7: Comparison between Algorithm 2, the weight balancing algorithm pro-

posed in [47] and the imbalance-correcting algorithm [24]. Top figure: Average total

imbalance plotted against the number of iterations for 1000 random digraphs of 20

nodes. Bottom figure: Average total imbalance plotted against the number of itera-
tions for 1000 random digraphs of 20 nodes.

Figure 3.8 shows the same cases as Figure 3.7, with the difference that the network
consists of 50 nodes. The performances do not change due to the network size and the

conclusions are the same as in Figure 3.7.

3.4 Chapter Summary

In this section, we described an iterative distributed algorithm and established that
it converges to a weight balanced digraph after a finite number of steps. We have
also bounded the execution time of the proposed algorithm as O(n”), where n is the
number of nodes in the digraph and we demonstrated the operation, performance, and

advantages of the proposed algorithm via various simulations.
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FIGURE 3.8:
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imbalance plotted against the number of iterations for 1000 random digraphs of 50
nodes. Bottom figure: Average total imbalance plotted against the number of itera-

tions for 1000 random digraphs of 50 nodes.



Chapter 4

Weight Balancing over

Unreliable Communication

In this chapter, we present a novel distributed algorithm which deals with the problem
of balancing a weighted digraph in the presence of time delays and packet drops over the
communication links. The algorithm presented in this chapter has appeared in [49, 50].
This chapter is organized as follows. In Section 4.1 we present the additional notation
needed in this chapter and the model used for the time delays and the way they manifest
themselves, while in Section 4.2 we present the problem formulation. In Section 4.3 we
introduce a novel distributed algorithm which achieves integer weight balancing in a
multi-component system, in the presence of time delays over the communication links.
We present a formal description of the proposed distributed algorithm, demonstrate its
performance via an illustrative example and show that it converges to a weight balanced
digraph after a finite number of iterations in the presence of bounded time delays over the
communication links. In Section 4.4 we discuss an event-triggered version of the proposed
distributed algorithm and show that it results in a weight balanced digraph after a finite
number of iterations in the presence of arbitrary (time-varying, inhomogeneous) but
bounded time delays over the communication links. In Section 4.5 we show that the
proposed distributed algorithm is also able to converge (with probability one) to a weight
balanced digraph in the presence of unbounded delays (packet drops). In Section 4.5.1
we present simulation results and comparisons of the proposed distributed algorithm

and the chapter is concluded in Section 4.6.

4.1 Modeling Time Delays and Packet Drops

In this chapter, we assume that node v; assigns a unique order in the set {0, 1, ..., Dj -1},
to each of its outgoing edges. The order of link (v;,v;) is denoted by Pj; (such that
{Pj | v € ./\/;r} = {0, 1,...,D}' — 1}) and will be used later on as a way of allowing

30



Weight Balancing over Unreliable Communication 31

node v; to make changes to its outgoing edge weights in a predetermined round-robin'
fashion.

Furthremore, for the development of the results in this chapter, we assume that a trans-
mission on the link from node v; to node v; initiated at time step & undergoes an a
priori unknown delay 7;k], where 7;[k] is an integer that satisfies 0 < 7;[k] <73 < o0
(i.e., delays are bounded?). The maximum delay is denoted by 7 = MAX (g, 0;)ee Tlj- 10
the weight balancing setting we consider, node v; is in charge of assigning weights f;;[k]
to each link (v;,v;) and of sending to each out-neighbor v; the value fi;[k]. Under the
above delay model, the weight f;;[k] becomes available to node v; at time step k + 7;[k].
From the perspective of node vj, the delayed weight for link (vj,v;), Vu; € J\f;, at time
step k is given by

Fiilk] = fjilkiase], where kg = max{s | s + 7;;[s] <k}, (4.1)

ie., fji [k] is the most recently sent weight fj;[-] seen at node v; by time step k.

The weights available on the incoming links of node v; at time step £ comprise the
values received by its in-neighbors by that time, i.e., it is the set of values in the set
{fjils] | 0 < s <k, s+ 75[s] <k, vi €N} where fji[s] denotes the value sent by
the in-neighbor v; to node v; at time step s, and is received at v; by time step k.
The protocol we propose has each node v; update the information state at time k by
combining (in a linear fashion) its own outgoing-edge values fi;[k], Vv, € ./\/']7L (which are
available without delay) and the possibly delayed information received by time step k
from its in-neighbors {fji[s] | 0 < s < k, s + 7ji[s] < k, v; € N}, L., the values that

arrive at node v; by time k.

Remark 4.1. In our case, the above definition of f ;;[k] is equivalent to f;[k] = max{fj;[s]
| s + 7ji[s] < k} because, during the execution of the algorithm presented later, the
weights f;; on each edge (vj,v;) are assigned by node v; in a non-decreasing manner,
ie., for v; € Nit, fjilk] < fjilk + 1), where k € No.

Proposition 4. When fj;[k] are non-decreasing and delays are bounded, the above

delay model, implies that f;;[k +7] > fji[k].

Proof. The proof follows directly from the definition of ?ﬂ[k‘] We have that ?ji [k+7] =
fjilkiast) where kjqsr = max{s | s+7j;[s] < k+7}. Obviously, kjast > k because 7 [k] < 7.
Since the weights of each edge are non-decreasing we have that ?ﬂ- [k + 7] = fjilkiast]
Jiilk]-

'Bach node v; updates (increases) the weights of its out-neighbors by following a unique predeter-
mined order. More specifically, following this predetermined order, node v; updates (increases by unity)
its weights, one at a time, until it becomes balanced. The next time it needs to update the weights of its
out-neighbors, it will continue from the outgoing edge it stopped the previous time and cycle through
the edges in a round-robin fashion according to the unique predetermined ordering.

2We later relax the assumption of bounded delays and consider packet dropping links.

0o Al
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Definition 5. Given a weighted digraph G, = (V, £, F) of order n, the total in-weight

seen at time step k by node v; is S, [k] = 3, o\ fjlk]. Since, for every node, the
€N

weights of its outgoing edges are available without delay, the total out-weight of node

vj at time step k is the same as in Definition 1 (denoted by S;r [k]).

Definition 6. Given a weighted digraph G; = (V, &, F) of order n, the delayed weight

imbalance of node vj, calculated at time step k, is ;[k] = S [k] — SJTF [k].

Definition 7. Given a weighted digraph G; = (V, &, F) of order n, the total delayed
imbalance of digraph Gy, at a time step k, is g[k] = >7_, [;[k]|.

Apart from bounded delays, unreliable communication links in practical settings could
also result in possible packet drops (i.e., unbounded delays) in the corresponding com-
munication network. To model packet drops, we assume that, at each time step k, a
packet that is sent from node v; to node v; on link (v;,v;) € € is dropped with probabil-
ity g;;, where we have ¢;; < 1. For simplicity, we assume independence between packet
drops at different time steps or different links. We establish that, in both cases, despite
the presence of bounded delays or packet drops, the proposed distributed algorithm con-
verges, after a finite number of iterations, to a weight balanced digraph that is identical
to the one obtained under no packet drops (in the case of packet drops this convergence

occurs with probability one).

4.2 Problem Statement

We are given a strongly connected digraph G; = (V,€), with a set of nodes V =
{v1,v2,...,v,} and a set of edges £ C V x V — {(vj,v;) | v; € V}. We want to de-
velop a distributed algorithm that allows the nodes to iteratively adjust the weights on
their edges so that they eventually obtain a set of integer weights {f;; | (vj,v;) € £}
that satisfy the following:

1. fji € N for every edge (vj,v;) € &;
2. fji = O if (’Uj,?}i) Qf g;
+ _ Q- ¢ .

3. Sj = 8]- =S, for every v; € V.
We introduce and analyze a distributed algorithm that allows each node to assign integer
weights to its outgoing links, so that the resulting weight assignment is balanced. The
proposed algorithm is able to handle arbitrary but bounded time-delays that may affect
the information exchange between agents in the system. We also explicitly bound the

number of steps required for convergence. Among other implications, this bound estab-

lishes that the proposed algorithm completes its operation in polynomial time, as long
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as the underlying digraph is strongly connected or is a collection of strongly connected

digraphs.?

4.3 Distributed Algorithm for Weight Balancing

in the Presence of Time Delays

Given a strongly connected digraph G; = (V, £), the algorithm has each node initialize
the weights of all of its outgoing edges to unity. We consider for now that in digraph
G4, each link transmission can undergo an arbitrary but bounded delay. In order to
handle delays, we employ a strategy where the nodes run a weight balancing protocol
and process weight information as soon as it arrives. According to this protocol, each

node enters an iterative stage where it performs the following steps:

1. Tt computes its delayed weight imbalance according to the latest received weight

values from its in-neighbors.

2. If it has positive (delayed) imbalance, it increases by 1 the integer weights of its
outgoing edges one at a time, following the priority order until it becomes weight
balanced. This means that the outgoing edges are assigned, if possible, equal
integer weights; otherwise, if this is not possible, they are assigned integer weights
such that the maximum difference among them is equal to one (it should be clear
that for a given 3]-_ the order among the outgoing links of node v; make this

assignment unique).

We argue that the above distributed algorithm obtains integer weights that balance the
digraph after a finite number of iterations (which we bound in terms of the number of
nodes/edges of the given digraph). Using a path-based analysis of the algorithm, we
prove that the resulting weight balanced digraph is unique and independent of the link-
delays that may occur during the execution of the algorithm. For simplicity, we assume
that during the execution of the distributed algorithm, the nodes update the weights on

4 manner based on the information available at each

their outgoing edges in a synchronous
node at that particular instant. Note that if the delay between asynchronous changes in
weights of different links can be bounded by some maximum delay then asynchronous
updates can be captured by our synchronized delayed communication model if we allow

an increase in 7.

4.3.1 Formal Description of Distributed Algorithm

A formal description of the proposed distributed algorithm is presented in Algorithm 3.

3 As discussed in [24], this is a necessary and sufficient condition for weight-balancing to be possible.
“Even though we do not discuss this issue in the thesis, asynchronous operation is not a problem for
the distributed algorithm.
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Algorithm 3 Distributed balancing in the presence of time delays

Input

A strongly connected digraph Gg = (V,£) with n = [V| nodes and m = |€| edges.
Initialization

Set k = 0; each node v; € V does the following:

1.

3.

4.

It assigns a unique priority order to its outgoing edges as P;, for v; € /\/'j+ (such
that {P; | v, € Nj7} = {0,1,.., D} —1}).

. It sets its outgoing edge weights as

) if s Vg ga
fi; (0] = { 2, if EZ;:; is.

It sets its (perceived) incoming weights to be equal to unity, ?ji[()} =1, Y € N?‘

It transmits the weights f;;[0] on each outgoing edge (v;,v;) € £ to each v; € ./\fj+.

Iteration
For £ =0,1,2,..., each node v; € V does the following:

1.

It receives the weights on its incoming edges fﬂ[k] More specifically, for each
node v; € N~ let Fj; = {fji[s + 7ji[s]] | s+ 7j[s] = k} be the set of weights of link
(vj,v;) € € that arrive at node v; at time step k. We have that

B B Tz[k]L B if Fj; =0,
fji[k + 1] S { Hfax{fji[kLmaxfjie]-'ji{fji}}’ if .Fji % 0.

. It computes its weight imbalance according to the latest received weight values

from its in-neighbors

Tilk+1] =8 [k +1] - S [k +1].

If z;[k + 1] = br;f > 0, it sets the values of the weights on its outgoing edges to

fijlk+1] = {S" lgkj ”J , Yo € ./\/'f. Then, it chooses the set of the first (according to
i

. — + |85 [k +1] . . .
the priority order) S j [k+1]— Dj — o outgoing edges, and increases their
J

weight by 1 so that | fi;[k+1]— fr;[k+1]| < 1, Vv, v, € /\f;r and S;r[k—i- 1] =38, [k].

. It transmits the new weights fi;[k 4+ 1] on each outgoing edge (v;,v;) € £ to the

corresponding out-neighbor v; € /\/']-Jr.

. It repeats (increases k to k + 1 and goes back to Step 1).
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The following lemma is useful in our analysis later on.

Lemma 4.2. Suppose that at iteration k node v; has in-weights {?ﬂ[k] | v; € j\/y‘}
Given a unique order Py, where v; € Nj*, on its outgoing links (such that {P; | v, €
/\/f} =1{0,1, ---,Dj —1}), we have that

filk +1] = F5( Y Fulk)).
viEN'jf

Moreover, Fi; is monotonically non-decreasing in its argument, i.e., Fij(x) > Fi;(y) if

T >y.

Proof. From the algorithm description we have that for integer x, we have that

Fijx) = L;J +indy(z),

J

where
1, if P <ax— V‘J DT,
indl = ! DJJ'r J
0, otherwise.
Fij(x) is clearly monotonic in its argument. O

We now illustrate the distributed algorithm via an example and then explain why it
asymptotically results in a weight balanced digraph after a finite number of iterations.
We also obtain bounds on its execution time.

4.3.2 Illustrative Example of Distributed Algorithm

Consider the digraph G = (V,€) in Figure. 4.1, where V = (vi,v9,...,v5), &€ =
(ma1,...,mas), E TV XV —{(vi,v;) | v € V}. The weight on each edge is initial-
ized to fi;[0] =1 for (v;,v;) € € and each node assigns a unique priority order to each
of its outgoing edges. For the purposes of this example, let us assume that the priority

orders are as follows:
e v : Py =1,
e vy : Py =1,
e v3: Pi3=1,P3 =2, Py3 =3,
o vy: Psy=1,FPsy =2,
o v5: Pi5=1,Ps5=2,Py5 =3,

° U6:P26:1,P46:2.
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(For example, node vy will first increase fs54 and then fg4). As a first step, each node
computes its weight imbalance z;[0] = S; [0] — S;r [0], Yv; € V (these values are shown

in Figure. 4.1).

T 1

N

To=1

FIGURE 4.1: Weighted digraph with initial weights and initial imbalances for each
node.

Once each node computes its imbalance, the distributed algorithm requires each node
with positive imbalance to increase the value of the weights on its outgoing edges by equal
integer amounts (or with maximum difference between them equal to one) according
to the predetermined priority order that each node assigned to its outgoing edges, so
that the total increase makes the node balanced. In this case, the nodes that have
positive imbalance are nodes v1,v2 and vg (equal to Z1[0] = 1,T2[0] = 1 and 74[0] = 1)

respectively), and they increase their outgoing edges as shown in Figure 4.2.

T 0

N

FIGURE 4.2: Distribution of imbalance from positively imbalanced nodes.

In Figure 4.2 we can see that the edges ms;1, m32, ms4 have now values equal to 2. Note
here that the nodes v, v9 and v, increased the edge-weights f31, f32 and f54 respectively,
since the corresponding nodes had the highest order (as chosen by the nodes during the
initialization step). Nodes v3 and vs will receive the new weights of their incoming edges
after a number of iterations equal to the corresponding time-delay for each edge i.e., vg
and vs will receive them after 731[0], 732[0] and 754[0], respectively. For example, let us

consider that the time delays are equal to 731[0] = 6, 732[0] = 3 and 754[0] = 7. This
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means that node vg will receive the new weight of ms3; at k = 6 and the new weight
of mso at k = 3, while vz will receive the new weight of ms4 at k = 7. In Figure 4.3,
we can see the digraph at time step k = 5. Here, node vz has received the new weight
of edge mg3o and has increased its outgoing edge my3 by 1 (because it has the highest
priority order) while it maintains the value of its outgoing edge mgs (which has the
second priority order) the same (and equal to 1) because the new weight of the edge

ma31 has not yet arrived.

o =0 Tg = —1

FIGURE 4.3: Distribution of delayed imbalance from positively imbalanced nodes.

Note here that all the nodes in the digraph continue to send the same values on their
outgoing edges at every iteration until they receive updated weights on their incoming
edges. This means that the time delays 731[0], 732[0] and 754[0] are not necessarily the
time-steps after which the nodes v3 and vs will be informed for the new weights of their
incoming edges. For example, if 732[0] = 3 then v3 will receive the new weight f33[1] = 2
at iteration k = 3; however, at iteration £ = 1 node vy re-sends its outgoing weights
to its out-neighbors; thus, if 735[1] = 1 then v3 will receive the new weight f32[1] = 2
at iteration £ = 2 (it will also receive it at k¥ = 3) and it will act accordingly (it will
essentially ignore it).

After the integer weight update on the outgoing edges of each node with positive imbal-
ance at k = 0, the nodes check for updated incoming edge weights fj;[1], V(vj,v;) € €
(assuming that f;;[1] = f;;[0] = f;[0] if no weight is received). Then they recalculate
their imbalances z;[1], Vv; € V, and the process is repeated. After a finite number of
iterations, which we explicitly bound in the next sections, we reach the weighted di-
graph with integer weights shown in Figure 4.4. As we will argue later on the thesis,

this weighted digraph is the same irrespective of how time-delays manifest themselves.

4.3.3 Execution Time Analysis of Distributed Algorithm

In this section we analyze the functionality of the distributed algorithm and we prove that
it solves the weight balancing problem in the presence of arbitrary (time-varying, inho-

mogeneous) but bounded time delays that may appear during the information exchange
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71 =0

@g mlo%)@

FIGURE 4.4: Final weight balanced digraph.

between agents in the system. Specifically, we prove that the proposed distributed al-
gorithm results in a set of weights that form a weight balanced matrix after O(n%7)
iterations, where n is the number of nodes of the given digraph and 7 is the maximum
delay in the digraph; also we show that the resulting weight balanced digraph is unique
(irrespective of how delays manifest themselves) and identical to the one we obtain when
transmissions between nodes happen instantaneously (no delays). We begin the analysis
with the following theorem.

Setup: Consider an arbitrary strongly connected digraph G; = (V, &), where V =
(v1,v2,...,vy) is the set of nodes, and € C V x V — {(vj,v;) | v; € V} is the set of
edges. Consider an execution of the proposed distributed algorithm where there are no

delays (7 = 0) and denote the resulting weights on the edges as

fi;[()] - 1afl>;[1}7 7fl§[k]7 V(’UZ,’U]) €&

Consider another execution of the proposed distributed balancing algorithm where there
are arbitrary but bounded delays (0 < 7 < co) and denote the resulting set of weights
as

Transmitted : fi;{0] = 1, fi;[1], ..., fij[k], ... Y(v,v5) € €,

Received : f1;[0] =1, fi;[1], ..., f1;[K], ... V(u,v5) € €.
Theorem 4.3. Under the above setup, we have for all (vj,v;) € € and all k > 0
1 fplk+1) > £ K]
2. fijlk +1] > fi;[K],
3. ?lj k+1] > 71;’ [k].

Proof. Consider the case when 7 = 0. At Step 2 of the proposed algorithm (at an
arbitrary iteration k), if node v; has positive imbalance z;[k] > 0 then it increases the

weights on its outgoing edges so that it becomes weight balanced (i.e., f5[k+1] > f};[k],
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Y, € N’;“) If node v; has negative (or zero) imbalance z;[k] < 0, it leaves the weights

of its outgoing edges unchanged (i.e., I [k+1] = I [k], Vo, € j\/’f) As a result, we have

Consider now the case when arbitrary but bounded time-delays (7 > 0) affect link
transmissions. Using a similar argument as above we easily establish that fi;[k + 1] >
fijk],¥ (v, v;) € . By the definition of f;;[k + 1] we have that fi;[k + 1] = fi;[kiast]
where kiqsy = max{s | s + 7;[s] < k+ 1}. Similarly, f;;[k] = fij[k,s] where k.., =
max{s | s+7;[s] < k}. Clearly, kj,,, < kiqst and since fip[k+1] > fi;[k] and kigst > K,
we have that

Filk +1] > fij[k], Yo € N,
which completes the proof. O

After establishing monotonicity for the weights of the outgoing edges for every node in

the digraph, we continue with the following theorem.

Theorem 4.4. Under the above setup, it holds that for every k,
Filk] < [kl < File + D)7 + 1)), Y(u,v5) € €. (4.2)

Proof. The proof is by induction. For k = 0, we have at initialization flj 0] = I 0] <
fi;[T + 1], where f;[0] = fi;[0] = 1, and (4.2) holds (since fi;[k] and fj}[k] are non
decreasing and min{ fi;[k]} = 1, for every k). Let us assume that for every (v;,v;) € €

we have

Fylk] < f5lk] < fiyl(k+1)(F + 1)),

by the induction hypothesis. We would like to show that
fylk+1] < flk+1] < fiyl(k+2)(T + 1)), Y(u,v)) € E.

The fact that f;[k + 1] < fi;lk + 1] is a consequence of Theorem 4.3; we have that
fi;lk+1] = fijlkias] where kigsp = max{s | s+ 7ji[s] < k+1}. Clearly, kjgse < k+1 and
(from Theorem 4.3) fi;[kiast] < fij[k+1]. As aresult, we have that fj;[k+1] < fi;[k+1].
To show that f;;[k + 1] < fi;[k + 1] we observe that

i) ?lj [k] < f;[k] (by induction hypothesis),

ii) It follows from Lemma 4.2 that fi;[k + 1] = ]:lj(zvie/\/j* filk]) < [k +1] =
fz]‘(zwg\/j— f1i1kD), (v, v5) € €.
As a result, since fi [k + 1] < fi[k + 1] and fi;[k + 1] < fi;lk + 1] we have that
filk +1] < [k +1].
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hypothesis, we have that f;[k] < fi;l(k +1)(T + 1)]. We observe that

We are left with showing that f5[k + 1] < f;[(k +2)(7 4+ 1)]. From the induction

D) fislk+1 = Fiy(Cpen; Filk]) < Fij (Cyenr Fiiltk+DE+ D)) = fijl(k+1)(T+
1) + 1],

i) fi;{(k+1)(7T+ 1)+ 1] < fi;[(k +2)(7 + 1)] (from Proposition 4).
As aresult, we have that f;[k 4+ 1] < f1;1(k+2)(T +1)] and (4.2) holds. O

Now, we can proceed with the final theorem where we establish that the proposed
balancing algorithm converges to a set of weights that form a weight balanced digraph,

which is unique and independent of the occurring delays.

Theorem 4.5. Under the above setup, the proposed balancing algorithm under no delays
(T = 0) converges to a set of weights fl’;- that form a weight balanced digraph after a
finite number of steps bounded by O(n®) while the proposed balancing algorithm in the
presence of nonzero delays (T > 0) converges to a set of weights fi; = fl’;,V(vl,vj) eg,

after O(nS7) iterations.

Proof. As shown in [47], for the case where 7 = 0, the proposed distributed algorithm
reaches a set of weights that forms a weight balanced digraph F* after a finite number
of steps bounded by O(n®), where n is the number of nodes in the digraph. This means
that for every (v;,v5) € €, ko € No for which fjs[k+1] = f%[k],Vk > ko. From (4.2) we
have f;[(ko+1)(T+1)] > f1i[ko] and Fil(ko+1)(T+1)] < fii[(ko+1)(7 +1)]; however,
since f7:[ko] = f};[(ko + 1)(T + 1)] we have fiillko + DT +1)] = f1i[ko], which means
that the proposed algorithm reaches a set of weights fi; = f; = fl’;.,V(vl,vj) € & after
(ko + 1)(T + 1) time steps. As a result, since the 7 = 0 case completes its operation
after O(n%) steps (from [47]), then the proposed distributed algorithm completes its
operation after O(n%7) steps where n and 7 are the number of nodes and the maximum
delay in the given digraph, respectively. Furthermore, since f;;[(ko+1)(7+1)] = 1Kol
V(v,v5) € €, then the resulting edge weights are equal to the resulting edge weights of

the case where no delays affect link transmissions. O

4.4 Extension to Event-Triggered Operation

Motivated by the need to reduce energy consumption, communication bandwidth, net-
work congestion, and/or processor usage, many researchers have considered the use
of event-triggered communication and control [51, 52]. In this section, we discuss an
event-triggered operation of the proposed distributed algorithm where each agent au-
tonomously decides when communication and control updates should occur so that the
resulting network executions still result in a weight balanced digraph after a finite num-

ber of steps in the presence of arbitrary (time-varying, inhomogeneous) but bounded
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time delays that might affect link transmissions. More specifically, following the pro-
posed event-triggered strategy, we can prove that (i) all nodes eventually stop transmit-
ting, and (ii) the proposed distributed algorithm is able to obtain a set of weights that

balance the corresponding digraph after a finite number of iterations.

4.4.1 Formal Description of Distributed Algorithm

A formal description of the algorithm’s event-triggered version is presented in Algo-
rithm 4.

4.4.2 Execution Time Analysis of Distributed Algorithm

Proposition 5. Under the above setup, the proposed event-triggered balancing al-
gorithm converges, in the presence of bounded delays (7 > 0), to a set of weights
fij = [, Y(u,v;) € €, after a finite number of steps bounded by O(n%7) iterations
(where the set of weights f[;. is the set of weights obtained by the nominal algorithm

that runs with no even-triggering and no delays).

Proof. As shown in [47], when 7 = 0 the distributed algorithm in Section 4.3.1 reaches,
after a finite number of steps bounded by O(n®) (where n is the number of nodes in the
digraph), a set of weights Tl V(v,v;) € €, that forms a weight balanced digraph. This
means that there exists ko € INo, such that, for every (v;,v;) € €, we have fjs[k + 1] =
FilM = £ ¥ B> ho.

Consider now the event-triggered operation of the proposed distributed balancing algo-
rithm in the presence of bounded delays in the communication links. The operation of
the event-triggered version is identical to the operation of the proposed distributed algo-
rithm with delays introduced in Section 4.3.1 if we assume that in the latter algorithm
all transmissions of identical weights (that occur in the original version of the algorithm
but not in the event-triggered version) suffer the maximum possible delay. As a result,
since the operation of both algorithms is identical®, we have that the event-triggered
operation of the distributed algorithm will converge to a set of weights that form a
weight balanced digraph after a finite number of steps bounded by O(n°®7) iterations.
Also, since 3 ky € INg for which f;[k + 1] = fi;[k] = f1;:V k = ko, from Step 3 of the
algorithm, we can see that all nodes eventually stop transmitting (and the weights are

identical to the weights obtained by the algorithm in Section 4.3.1). O

Remark 4.6. It is interesting to note here that event-triggering comes at the cost of speed
in the sense that retransmissions of identical weights could have potentially allowed

the receiving node to learn the weight change earlier (particularly if the delay after a

5The operation is identical under different delays in each case.
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Algorithm 4 Event-triggered distributed balancing in the presence of time delays

Input

A strongly connected digraph Gz = (V, €) with n = |V| nodes and m = |€| edges.
Initialization

Set k = 0; each node v; € V does the following:

1.

It assigns a unique priority order to its outgoing edges as Py;, for v; € /\f;r (such
that {P; | v € ./\/J*} ={1,2, 7]);})

. It sets its outgoing edge weights as

[0, if (v,v5) €€,
13l0] = { 1, if (vl,v;) €f.

3. It sets its (perceived) incoming weights to be equal to unity, fji[O} =1,V € j\fj*.
4. It transmits the new weights f;;[0] on each outgoing edge (v;,v;) € £ to each
U] € ./\/;+
Iteration

For k£ =0,1,2,..., each node v; € V does the following:

1. Tt receives the weights on its incoming edges fﬂ[kz + 1]. More specifically, for each

in-neighboring node v; € N~ let Fj; = {fji[s + 7j[s]] | s + 7ji[s] = k + 1} be the
set of weights of link (vj,v;) € £ that arrive at node v; at time step k + 1. We
have that

_ [ Falk, =0,
fji[k + 1] = { Hfax{fji[k‘]’maxfjie]-'ji{fji}}’ if .Fji =+ 0.

If [k + 1] = f;;[k] for each v; € N~ then skip Steps 3, 4, and 5. Point out that
this is the major difference from the previous algorithm.

It computes its weight imbalance according to the latest received weight values
from its in-neighbors

Tilk +1] =8, [k +1] = S [k +1].

Izl 4+ 1) = br;r > 0, it sets the values of the weights on its outgoing edges to

fijlk+1] = F]’ gj I]J , Yo, € ./\/’j+. Then, it chooses the set of the first (according

J

S;[k+1]
D
J
their weight by 1 so that | fi;[k + 1] — frilk +1]| < 1,V vy, € /\/'jJr and S;’ [k+1] =

S; [k +1].

to the priority order) S; [k + 1] — Df \‘

J outgoing edges, and increases

. It transmits the new weights f;;[k 4+ 1] on each outgoing edge (v;,v;) € & to the

corresponding out-neighbor v; € /\/'j+.

6. It repeats (increases k to k + 1 and goes back to Step 1).
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triggering is large, in which case it could be offset by a smaller delay in a subsequent

transmission).

Remark 4.7. It is important to note here that the proposed distributed balancing al-
gorithm (along with its event triggered operation) is able to converge (with probability
one) to a set of weights that form a balanced graph after a finite number of iterations
in the case where there are different (possibly unbounded) delay distributions (except
the uniform one which was thoroughly analyzed) in the communication links during the

information exchange between nodes in the network.

4.5 Distributed Algorithm for Weight Balancing
in the Presence of Packet Dropping Links

Apart from bounded delays, unreliable communication links in practical settings could
also result in possible packet drops (i.e., unbounded delays) in the corresponding commu-
nication network. In this section, we analyze the performance of the proposed distributed
weight balancing algorithm in the presence of possible packet drops in the communica-
tion links. To model packet drops, we assume that, at each time step k, a packet that
is sent from node v; to node v; on link (vj,v;) € £ is dropped with probability g;s,
where we have ¢;; < 1. For simplicity, we assume independence between packet drops at
different time steps or different links. We establish that, despite the presence of packet
drops, the proposed distributed algorithm converges, with probability one, to a weight
balanced digraph after a finite number of iterations. This weight balanced digraph is

identical to the one obtained under no packet drops.

Proposition 6. Consider the above setup, where the proposed balancing algorithm,
with no packet drops and no delays, converges to a set of weights fi;' that form a weight
balanced digraph after a finite number of steps bounded by O(n®). In the presence
of packet drops occurring with probability ¢, ¢; < 1, V(v,v;) € € (independently
between different links and different time steps), the proposed balancing algorithm also
converges, with probability one, to a set of weights f;; = f[;-, V(v,v5) € &, after a finite

number of iterations.

Proof. As mentioned earlier and shown in [47] for the case where 7 = 0, the proposed
distributed algorithm reaches a set of weights F™* that forms a weight balanced digraph
after a finite number of steps bounded by O(n®), where n is the number of nodes in
the digraph. This means that for every (v, v;) € €, 3 ko € No for which fi[k + 1] =
fl’;.[k},v k > k.

Consider now an execution of the proposed distributed balancing algorithm where pack-

ets containing information are dropped with probability ¢;; < 1 for each communication
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link (v;,v;) € €, and assume independence between packet drops at different time steps
and different links.

During transmissions on link (v;,v;), we have that at each transmission, a packet goes
through with probability 1 — ¢g;; > 0. Thus, if we consider k;; consecutive uses of link
(v, vj), the probability that at least one packet will go through is 1 — qulj, which will be
arbitrarily close to 1 for a sufficiently large k;;.

Specifically, for any (arbitrarily small) € > 0, we can choose

loge
kp; =
& LongJ ’

to ensure that each transmission goes through at least once within k;; steps with prob-

ability 1 —e.

Let 7 = max(y, ,,)ee{kij}; then since the proposed distributed algorithm completes
under no packet drops in O(n%) steps, we can conclude that it will complete by O(n®7)
steps with probability (1 — €)""/€l in the presence of packet drops (note that |£] is the
number of edges in the given digraph). By making e arbitrarily small we can make
this probability arbitrarily close to 1. Moreover, since this particular execution of the
algorithm (that occurs with probability (1—e)""[€]) is essentially identical to an execution
of the algorithm in Section 4.3.1 with delays that are bounded by 7, the final weights are
identical to the weights of that algorithm (i.e., for large enough k we have fi;[k] = f};

for all (v;,v;) € &). O

Remark 4.8. Note here that the presence of packet drops can be dealt in a way identical
to the presence of unbounded delays in the communication links during the information
exchange between nodes in the network. In fact, when the delays in the communication
links are unbounded, then the proposed distributed algorithm is still able to obtain a set

of weights that balance the corresponding digraph after a finite number of iterations.

Remark 4.9. Tt is worth pointing out that the proposed distributed algorithm is able
to converge (with probability one) to a set of weights that form a balanced graph after
a finite number of iterations when there are both possible packet drops and arbitrary
but bounded time delays in the communication links, while the resulting weight bal-
anced digraph is again unique and independent of how packet drops and delays manifest

themselves in link transmissions.

4.5.1 Simulation Study

In this section, we present simulation results and comparisons for the proposed dis-
tributed algorithm. Specifically, we present detailed numerical results for a random

graph of size n = 20 and for the average of 1000 random digraphs of 20 and 50 nodes
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each. We illustrate the behavior of the proposed distributed algorithm for the follow-
ing three different scenarios: (i) the scenario where there are no packet drops in the
communication links (vj,v;) € £ and each node v; transmits the weights f;[k + 1] of
each outgoing edge (v;,v;) € £ to each v, € J\/jr at each iteration k, (ii) the scenario
where there are packet drops with equal probability ¢ (where 0 < g < 1) for every
communication link (vj,v;) € £ and each node v; transmits the weights fi;[k + 1] of
each outgoing edge (v;,v;) € &€ to each v, € /\/'J-Jr at each iteration k, (iii) the scenario
where there are no packet drops at the communication links (v;,v;) € £ and each node
vj transmits only once the updated weights f;[k + 1] of each outgoing edge (v;,v;) € €
to each v; € ./\/'j+. Each scenario of the proposed distributed algorithm is analyzed in a)
the absence of time-delays in the communication links (i.e., 7;[k] = 0, V (v;,v;) € €)
and b) the presence of time-delays in the communication links (i.e., 0 < 7;[k] < 75,
V (v, v5) € E).

Note here that in the case where 7;[k] = 0, V (v, v;) € € we have that f;[k] = fi;[k]
and the proposed distributed algorithm is identical to the algorithm presented in [47],
where we consider the transmission between nodes to happen instantaneously.

Figure 4.5 shows what happens in the case of a randomly created graph of 20 nodes, in
which the operation of the proposed distributed algorithm includes no packet drops at
the communication links (v;,v;) € £ and each node v; transmits the weights fi;[k + 1]
of each outgoing edge (v;,v;) € € to each v; € ./\/'j+ at each iteration k. We plot the total
delayed imbalance as a function of the number of iterations k& for the cases where 7 = 0
(solid line), 7 = 10 (dashed line) and 7; = 7 = 10, V(v;,vj) € £ (dashed-dotted line).
The plot demonstrates that the proposed distributed algorithm is able to obtain a set
of weights that balance the corresponding digraph after a finite number of iterations as
argued in the previous section.

Figure 4.6 shows the same case as Figure 4.5, with the difference that the operation
of the proposed distributed algorithm includes packet drops with equal probability ¢
(where 0 < g < 1) for every communication link (v;,v;) € £ and each node v; transmits
the weights f;;[k+ 1] of each outgoing edge (v;,v;) € € to each v; € /\/]-Jr at each iteration
k. Here, the plot suggests, that the proposed distributed algorithm is able to obtain a
set of weights that balance the corresponding digraph after a finite number of iterations.
Figure 4.7 shows the same case as Figures 4.5 and 4.6, with the difference being that
the operation of the proposed distributed algorithm includes no packet drops at the
communication links (vj,v;) € £ but each node v; transmits only once the updated
weights fi;[k + 1] of each outgoing edge (v;,v;) € £ to each v € ./\/'jJr. Here, the plot
demonstrates that the proposed distributed algorithm is able to obtain a set of weights
that balance the corresponding digraph after a finite number of iterations.

Figure 4.8 shows what happens for the average of 1000 random digraphs of 20 nodes each
for the three scenarios of the proposed distributed algorithm presented in Figures 4.5, 4.6
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FI1GURE 4.5: Total delayed imbalance plotted against the number of iterations for a
random digraph of 20 nodes in the case where 7 = 0 (solid line), 0 < 7; < 7 where
7 = 10 (dashed line) and in the case where 7;; = 7 = 10 (dashed-dotted line).
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FIGURE 4.6: Total delayed imbalance plotted against the number of iterations for a

random digraph

of 20 nodes in the case where 7 = 0 (solid line), 0 < 7; < 7 where

7 = 10 (dashed line) and in the case where 7;; = 7 = 10 (dashed-dotted line).

and 4.7 respectively. Note that the plot colors of the three scenarios in Figures 4.5, 4.6

and 4.7, remain the same in Figure 4.8 (i.e., the scenarios of Figures 4.5, 4.6 and 4.7 are

shown with blue, red and green, respectively, in Figure 4.8). We plot the average total

delayed imbalance as a function of the number of iterations k in logarithmic scale for
7 =0 (solid lines), 7 = 10 (dashed lines) and 7; =7 = 10, V(v;,v;) € £ (dashed-dotted

lines). Here we can see that the first scenario of the proposed distributed algorithm

(presented in Figure 4.5) is identical to the third one (presented in Figure 4.7) for

the case where there are no time-delays in the communication links (i.e., 7;[k]

=0,
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Total Delayed Imbalance vs Iterations for Random Graph of 20 Nodes
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FicURE 4.7: Total delayed imbalance plotted against the number of iterations for a
random digraph of 20 nodes in the case where 7 = 0 (solid lines), 0 < 7;; < T where
7 = 10 (dashed lines) and in the case where 7;; = 7 = 10 (dashed-dotted lines).

V (v, vj) € £). However, the first scenario (Figure 4.5) generally outperforms the second
and third scenarios (Figures 4.6 and 4.7, respectively) for the case where there are time-

delays in the communication links (i.e., 0 < 7;[k] < 75, V (v1,v5) € £).
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FIGURE 4.8: Average total delayed imbalance plotted against the number of iterations

in logarithmic scale for 1000 random digraphs of 20 nodes each in the case where 7 = 0

(solid lines), 0 < 7;; < 7 where 7 = 10 (dashed lines) and in the case where 7;; = 7 = 10
(dashed-dotted lines).

Figure 4.9 shows the same cases as Figure 4.8, with the difference being that the network
consists of 50 nodes. The performance of the proposed distributed algorithm does not

change due to the network size and the conclusions are the same as in Figure 4.8.
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Total Delayed Imbalance vs Iterations for Average of 1000 Graphs of 50 Nodes
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FIGURE 4.9: Average total delayed imbalance plotted against the number of iterations

in logarithmic scale for 1000 random digraphs of 50 nodes each in the case where 7 = 0

(solid lines), 0 < 7; < 7 where T = 10 (dashed lines) and in the case where 7;; =7 = 10
(dashed-dotted lines).

4.6 Chapter Summary

In this chapter, we introduced a novel distributed iterative algorithm and established
that it converges to a weight balanced digraph after a finite number of steps. We
have also bounded the execution time of the proposed algorithm as O(n%7), where n is
the number of nodes and 7T is the maximum delay in the digraph, and argued that the
resulting weight balanced digraph is unique and independent of how the delays that affect
link transmissions materialize. We also added extensions to handle the cases of packet
drops over the communication links and event-triggered operation. In both scenarios,
the proposed algorithm converges (with probability one) to a set of weights that form
a balanced graph after a finite number of iterations while the resulting weight balanced
digraph is unique and independent of how packet drops affect link transmissions. We also
demonstrated the operation, performance, and advantages of the proposed algorithm via

various simulations.



Chapter 5

Weight Balancing under
Link Capacity Constraints

In this chapter, we present a novel distributed algorithm which deals with the problem
of balancing a weighted digraph in the presence of link capacity constraints over the
communication links. The algorithm presented in this chapter has appeared in [53].

This chapter is organized as follows. In Section 5.1 we present additional notation and
the problem formulation. In Section 5.2 we present the conditions for the existence of a
set of integer weights (within the allowable intervals) that balance a weighted digraph.
In Section 5.3 we introduce a novel distributed algorithm which achieves integer weight
balancing in a multi-component system, in the presence of specified lower and upper
constraints on the edge weights. We present a formal description of the proposed dis-
tributed algorithm and demonstrate its performance via an illustrative example. Then
we show that, as long as the conditions presented in Section 5.2 hold, the proposed
distributed algorithm converges to a weight-balanced digraph after a finite number of

iterations and we conclude by we presenting simulation results and comparisons.

5.1 Graph-Theoretic Notions and Problem Statement

In this chapter, we assume that a pair of nodes v; and v; that are connected by an
edge in the digraph G4 (i.e., (vj,v;) € £ and/or (v;,v;) € £) can exchange information
among themselves (in both directions). In other words, the communication topology is
captured by the undirected graph G, = (V,&,) that corresponds to a given directed
graph Gg = (V, ), where

gu = U(Uj,vi)eg{((l)j,'l)i), (Ui7vj)} = (C/‘ U 57‘ s

with & = {(vi,v;) | (vj,v;) € €}. [Recall that a graph is undirected if and only if
(vj,vi) € & implies (vi,vj) S 5]

49
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Also, we assume that node v; assigns a unique order in the set {0,1,...,D; — 1} to each
of its outgoing and incoming edges. The order of link (v;,v;) (or (vj,v;)) is denoted
by P (or P (such that {PY | vy € N} U{PY |v; e N7} = {0,1,..,D; — 1})
and will be used later on as a way of allowing node v; to make changes to its outgoing
and incoming edge weights in a unique predetermined order. This unique order is used
during the execution of the proposed distributed algorithm as a way of allowing node v;
to transmit messages to its out- and in-neighbors in a round-robin' fashion.

Given a digraph G; = (V,£) we can associate nonnegative integer weights fj; € INg on
each edge (vj,v;) € €. In this thesis, these weights will be restricted to have positive
integer values and lie in an interval [lj;, u;;], i.e., 0 < l; < fji < uj; and fj; € N, for
every (vj,v;) € €. We will also use matrix notation to denote (respectively) the integer
weight, lower limit, and upper limit matrices by the n x n matrices F' = [f;;], L = [l;s],
and U = [uj;], where F'(j,i) = fji, L(j,i) = Ui, U(4,1) = uji, and fj; € N, for every
(vj,v;) € € (obviously fj; = lji = uj; = 0 when (v;,v;) ¢ £).

5.1.1 Problem Statement

We are given a strongly connected digraph G; = (V, &), as well as lower and upper
bounds I;; and wj; (Ij; < uji, i, uj; € R) on each each edge (vj,v;) € £. We want to
develop a distributed algorithm that allows the nodes to iteratively adjust the weights
on their edges so that they eventually obtain a set of integer weights {fj; | (vj,v;) € £}
that satisfy the following:

1. fji € Ny for each edge (vj,v;) € €.
2. Ui < fji < wuj; for each edge (vj,v;) € &;

+ _ ¢— . .
3. Sj —Sj for each v; € V;

The distributed algorithm needs to respect the communication constraints imposed by

the undirected graph G, that corresponds to the given directed graph G.

Remark 5.1. One of the main differences of this chapter with chapters 3 and 4 is that
the algorithms presented in this chapter require a bidirectional communication topology,
whereas the aforementioned algorithms assume a communication topology that matches
the weight (physical) topology. We should point out that direct application of these
earlier algorithms to the problem that is of interest in this chapter will generally fail
(because weights are restricted to lie within lower and upper limits). Also, note that there

are many applications where the physical topology is directed but the communication

'Bach node v; transmits to its out- and in-neighbors by following a unique predetermined order. The
next time it needs to transmit to an out- or in-neighbor, it will continue from the outgoing or incoming
edge it stopped the previous time and cycle through the edges in a round-robin fashion according to the
unique predetermined ordering.
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topology is bidirectional (e.g., traffic weight in an one way street is directional, but
communication between traffic lights at the end points of the street will, in fact, be
bidirectional). In such cases, the algorithms proposed here are directly applicable. More
generally, in many applications, the communication topology does not necessarily match

the physical one.

5.2 Integer Circulation Conditions

Given a strongly connected digraph G; = (V, &), with lower and upper bounds /;; and
uji (0 < lj; < uy;) on each edge (vj,v;) € &, the necessary and sufficient conditions
for the existence of a set of integer weights {f;; | (vj,v;) € £} that satisfy the capacity
constraints (i.e., lj; < fj; < uj; for each edge (vj,v;) € £), and balance constraints (i.e.,

Sj+ = &, for every v; € V), can be stated (by adopting Theorem 3.1 in [36]) as follows:

(i) for every (vj,v;) € &, we have
[Li] < lugil, (5.1)

and

(ii) for each subset of nodes S, S C V, we have

>ooMls > luyl, (5.2)

(vjvi)e€g (v1,v5)€EL
where
(SE == {(vj,vi)€5|vj68, UiEV—S}, (5.3)
5; = {(u,vj)e€|v; eS8, yeV-S§}. (5.4)

5.3 Distributed Algorithm for Weight Balancing

under Link Capacity Constraints

In this section we provide an overview of the operation of a distributed balancing al-
gorithm (Algorithm 5) and discuss a possible enhancement. The algorithm is iterative
and operates by having, at each iteration, nodes with positive weight imbalance at-
tempt to change the integer weights on both their incoming and outgoing edges so that
they become weight balanced. At each iteration k, each node v; compares the total
in-weight from the weights of its incoming edges against the total out-weight from the
weights of its outgoing edges. If its weight imbalance is positive (x;[k] > 0) then it
increases (decreases) the weights of its outgoing (incoming) edges according to the order

chosen at initialization. Finally, it transmits the amount of change it desires for each
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incoming/outgoing edge to the corresponding in/out neighbor; the node also receives
the amount of change its neighbors desire for the corresponding edges, based on which
it calculates the new edge weights; the above procedure is repeated at each iteration.
We establish that, if the necessary and sufficient integer circulation conditions for the
existence of a set of integer weights that balance the given digraph are satisfied, the
algorithm completes after a finite number of iterations. We next describe the iterative
algorithm in more detail.

Initialization. At initialization, each node is aware of the feasible weight interval on
each of its incoming and outgoing edges, i.e., node v; is aware of [;;, uj; for each v; € /\/}7
and [;;, u;; for each v; € ./\/'j+. Furthermore, the weights are initialized at the ceiling of
the lower bound of the feasible interval, i.e., f;;[0] = [l;;]. This initialization is always
feasible but not critical and could be any integer value in the feasible weight interval
(lji, uji] (according to condition (5.1) an integer exists in the interval [I;;,uj]). Also
each node v; chooses a unique order Pl(]J )
incoming links (v, v;) respectively, such that {Pl(jj) | v € /\/’f} U {Pj(f ) | v € N7} =
{0,1,...,D; — 1}.

Iteration. At each iteration k& > 0, node v; is aware of the integer weights on its

and Pj(f) for its outgoing links (v, v;) and

incoming edges {f;i[k] | v; € N } and outgoing edges {fi;[k] | v, € ./\/'j+}, and calculates
its weight imbalance z[k] according to Definition 2.

A. Selecting desirable weights: Each node v; with positive weight imbalance (i.e., with
xzjlk] > 0) attempts to change the integer weights in both its incoming edges and its
outgoing edges. No attempt to change weights is made if node v; has negative or zero
weight imbalance. When z;[k] > 0, node v; attempts to change the weights at its
incoming edges {fji[k + 1] | v € N}, and outgoing edges {fij[k +1] [ v, € N} in
a way that drives its weight imbalance x;[k + 1] to zero (at least if no other changes
are inflicted on the weights). More specifically, it goes through the links (incoming
and outgoing) according to their ordering and changes their weights by a unit value,
by +1 or —1, depending whether they are outgoing or incoming edges, respectively. If
an outgoing (incoming) edge has reached its max (min) value then its weight does not
change and node v; proceeds in changing the next one according to the predetermined
order. According to the integer circulation conditions, each node v; € V with positive
weight imbalance at iteration k (z;[k] > 0) will always be able to calculate a weight
assignment for its incoming and outgoing edge weights so that its weight imbalance
becomes zero (at least if no other changes are inflicted on the weights of its incoming
or outgoing links). This means that the selection of desirable weights in the above
algorithm is always feasible. The resulting additive change desired by node v; on f;;[k]
of edge (vj,v;) € £ at iteration k will be denoted by cgz)[k]

Note: Next time node v; needs to change the weights of its incoming/outgoing edges,

it will continue from the edge it stopped the previous time and cycle through the edge
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weights in a round-robin fashion according to the ordering chosen at initialization. If
an edge reaches its maximum or minimum value, then its weight does not increase
of decrease and node v; proceeds in changing the next one (according to the chosen
ordering). The total change amount desired by node v; on the weight fj;[k] of edge
(vj,v;) € € (or the weight fi;[k] of edge (v;,v;) € £) at iteration k will be denoted by
DIk] (or k).

B. Integer weight adjustment. Since the integer weight f;; on each edge (v;, v;) € & affects
positively the weight imbalance x[k] of node v; and negatively the weight imbalance x;[k]
of node v;, we need to take into account the possibility that both nodes are attempting
to inflict changes on the integer weights simultaneously. Suppose that after one iteration
of the algorithm (say at iteration k), node v; increases the weight f;;[k] of its outgoing
edge (vj,v;) by an integer value ng)
incoming edge (vj,v;) by an integer value c%) [k]. The new weight on edge (vj,v;) € £ is
taken to be fji[k+1] = fji[k] +c; @) Lkl + c%) [k]. (Since we have l;; < fji[k] + c§? (k] < uji
and l; < fj;[k] +c§g) (k] < wj;, where cg-? >0 and cg-z) < 0, we have that I;; < fj[k+1] =
Ll + )1k + ¢ k) < uji]

(k] while node v; decreases the weight f;;[k] of its

Remark 5.2. In the enhanced version of Algorithm 5, each node v; with negative weight
imbalance x;[k] < —1 attempts to add 1 to the weights of its incoming edges {f;i[k +
1] | v; € N}, and subtract 1 from the weights of its outgoing edges { fi;[k+1] | v, € ./\/;“}
one at a time, following the predetermined order in a round-robin fashion, until its weight
imbalance x;[k + 1] becomes equal to —1 (at least if no other changes are inflicted on

the weights).

Remark 5.3. The above weight adjustment signifies that after iteration k of the proposed
distributed algorithm, once nodes v; and v; determine whether to increase (decrease) by
cg-? k] (cgl)[k]) the weight of edge (vj,v;) (where ng) (K], —cﬁ:)[k] € INy), the new weight
of edge (vj,v;) will be fj[k + 1] = fulk] + c%) (k] + cgz)[k] According to the weight
adjustment we have that 1 <1 < fj;[k] —i—cg-? (k] <wujjand 1 <1 < fﬂ[k]+c§z)[k] < s,
where ng) [k] > 0, and c%) [k] < 0 respectively. As a result we have that 1 < [;; <
fiilk] + )[k] +C( DIE] < wji = 1 < Ljg < fialk + 1] < wji and fiilk + 1] € No.

5.3.1 Formal Description of Distributed Algorithm

A formal description of the proposed distributed algorithm is presented in Algorithm 5.

Remark 5.4. In Steps 3 and 4 of the algorithm, after node v; calculates the new
weight assignment for both its incoming and outgoing edges, it transmits the amount of
change on each outgoing and incoming edge. The weight assignment on edge (vj,v;)
is determined by the two incident nodes (v; and v;) and the new weight becomes
fiilk +1] = filk] + ¢; ) J k] + cgjl)[k] where cﬁ-) [k] (or cgi)[k]) is the change desired by

node v; (or v;). According to the Integer Circulation Conditions in Section 5.2, each
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Algorithm 5 Distributed Balancing Under Link Capacity Constraints

Input

1) A strongly connected digraph G4 = (V,€) with n = |V| nodes, m = |€| edges.
2) lji, uj; for every (vj,v;) € €.

Initialization

Set k = 0; each node v; € V does:

1) It sets the weights on its incoming/outgoing edge weights as

fji[o] = ”ji—|, Vvi 6_/\/;7
fi5100 = T3], Yo € N}

2) It assigns a unique order to its outgoing (or 1ncom1ng) edges (vg,v5) (or (’UJ,UZ)) as

l(]]) (or P(J)) for v, € N‘f (or v; € Nj7) (such that {P | v € N+} U{ ’ vi €
/\/’] }=1{0,1,...,D; — 1}).
Iteration

For k =0,1,2,..., each node v; € V does the following:
1) It computes its weight imbalance as

S Fulkl = D fiylk]

v; E./\/'; [ G./\[;L

2) If 2;[k] > 0, it increases (decreases) by 1 the integer weights fi;[k] (f;ji[k]) of its out-
going (incoming) edges v; € ./\fj+ (v; € ./\f]_) one at a time, following the predetermined

order Pl(]] ) (P](Z] )) until its weight imbalance becomes zero (if an edge has reached its
maximum (minimum) value and it cannot be increased (decreased) further, its weight
does not change and node v; proceeds in changing the next one according to the prede-
termined order.
(Enhanced version only) If x;[k] < —1, it decreases (increases) by 1 the integer weights
fijk] (fji[k]) of its outgoing (incoming) edges v; € /\/’j+ (v; € N}7) one at a time, follow-
ing the predetermined order Pl(j ) (Pj(i] )) until its weight imbalance becomes —1 (if an
edge has reached its minimum (maximum) value and it cannot be decreased (increased)
further, its weight does not change and node v; proceeds in changing the next one ac-
cording to the predetermined order).
3) It transmits the amount of change c(] )[k] (or c(J )[k]) on each outgoing (or incoming)
edge.
4) Tt receives the amount of change Cl(;‘) [k] (or c(l) [k]) from each outgoing (or incoming)
edge. Then, it sets its incoming and outgoing welghts to be

Fjilk + 1] = max(min(f5; k] + ¢ k] + ¢ k], uz0), i)

Jt

for its incoming weights and

flj [k + 1] = max(min(flj [k] + Cl(;) [k] + Cl(])[k], ulj), llj)

for its outgoing weights.
5) It repeats (increases k to k + 1 and goes back to Step 1).
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node v; € V with nonzero weight imbalance will always be able to calculate desired
changes for its incoming and outgoing edge weights, so that its weight imbalance be-
comes zero (or equal to —1). This means that the selection of desirable weights in the

above algorithm is always feasible.

Remark 5.5. Note that, in the enhanced version of Algorithm 5, no attempt to change
weights is made if node v; has weight imbalance equal to —1 or zero. If nodes with
negative weight imbalance were as aggressive as nodes with positive weight imbalance
(and tried to make weight changes that would make their balance zero), then one could
run into periodicity problems. As an example, consider the case of a ring digraph Gy
with nodes V = {vy,vs,v3,v4} and edges € = {ea1, €32, €43, €14} where ez = (va,v1),
€39 = (v3,v2), €43 = (114,113) and eyy = (vl,v4) Suppose the edge orders are as fOHOWS‘
for vy, P. 21 = {0}, P = {1}; for vg, P. 32 = {0}, P2 = {1}; for vs, P43 {0}, P32 =
{1}; and for vy4, P 14 = {0}, P4(§) = {1} (i.e., each node will first change the weight of
its outgoing link and then the weight of its incoming link). If all nodes (with positive
or negative weight imbalance) tried to make weight changes to balance themselves, the

edge weights for time steps k =0, 1,2, 3,4, would be

k=0 wa1]0] = 1, ws32[0] = 1, wy3[0] = 2, w14[0] = 2,
k=1 wo1[1l] = 2, w32[1] = 1, wys[1] = 1, wi4[l] = 2,
k=2 wo1[2] = 2, w32[2] = 2, wy3[2] = 1,w14[2] =1,
k=3 w1 [3] = 2, w32[3] = 1, wy3[3] = 1, w14[3] = 2,
k=4 w1 [4] = 1, wsa[4] = 1, was[4] = 2, wi4[4] = 2.

We see that at iteration k = 4, weights (thus, node balances) are exactly the same as at
k = 0; moreover, the ordering in which changes will be made at the edges of each node
is also exactly the same as in iteration £k = 0. We conclude that we have encountered
periodic behavior and the digraph G4 will never become balanced (i.e., wy;[k] = wy;[k+4],
V(vi,v;) € € and zj[k] = x;[k + 4], Vv; € V).

Remark 5.6. The operation of Algorithm 5 and its enhanced version, can be extended
also for the case where each node v; does not necessarily want a weight imbalance equal
j=1 JS) =0,
and for each S (where S C V) we have Z (v 00)€E5 [1ji] < Z(vl v))eEd Lugj] + Zv cs :v( °)
(where £5 and £ were defined in (5.3) and (5.4)), then every node can obtain a nonzero

(s)

weight imbalance equal to T

to zero, but rather demands a weight imbalance equal to a: ;é 0. When Y%

as long as the nodes with positive weight imbalance
operate according to Step 2 until their weight imbalance becomes equal to ajg-s), and the
nodes with negative weight imbalance operate according to Step 3 until their weight
(s) -1

imbalance becomes equal to T
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We now illustrate the distributed algorithm via an example and then explain why it
results in a weight balanced digraph after a finite number of iterations. We also obtain

bounds on its execution time.

5.3.2 Illustrative Example of Distributed Algorithm

Consider the digraph G; = (V,€) in Figure 5.1, where V = (vi,ve,...,v5), € =
(mat,...,mu5), € TV xV —{(vj,v;) | v; € V}, L = [lj;] and U = [uy;] for every
(vj,v;) € €. The weight on each edge is initialized to f;;[0] = [l;;] for (v;,v;) € € and
each node assigns a unique order to each of its outgoing and incoming edges. For the

purposes of this example, let us assume that this order is as follows:
o vy : P =1P =2 P =3,
o vy: PP =1,P2 =2 PP =3
o v3: PP =1,P =2 PP =3 PY =4,
o v, : Py =1,P% =2, P% =3,
o v5: P =1,P) =2 P =3

(For example, node vy will first increase f3o, then f50 and then it will decrease f21.) As a
first step, each node computes its weight imbalance z;[0] = >°, Ny Fiil0] =22, ¢ N f1;10]

(these values are shown in Figure 5.1).

.’E1:2 6 £2—3
— 54,10 T

[1,6]

9.2,15] [1.2,7)

[1.3,5] [2.6,9]

_ [62 9] _

FIGURE 5.1: Weighted digraph with initial weights and initial imbalances for each
node.

Once each node computes its imbalance, the distributed algorithm requires each node
with positive weight imbalance to increase (decrease) by 1 the integer weights fi;[k]
(fji[k]) of its outgoing (incoming) edges v; € ./\/j+ (vi € Nj7) one at a time, following
the predetermined order FP; until its weight imbalance becomes zero. In this case, the
nodes that have positive weight imbalance are nodes v; and vy (equal to z1][0] = 2 and

x2[0] = 3) respectively), and they increase their outgoing edges as shown in Figure 5.2.



Weight Balancing under Link Capacity Constraints 57

T, =2 +1 6 1 @2 =3
/,\
@ [5.4,10] @

+1 +1
2 1
+1
[2, 5] [1,6]

10 2
[9.2,15] 9 Sr5=-2_ 3 [1.2,7]
[1.3,5]  [26,9]

7 D)
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FI1GURE 5.2: Distribution of imbalance from positively imbalanced nodes.

In the next step of the distributed algorithm each node transmits the amount of change
cl(]J ) [k] (or c%) [k]) on each outgoing (or incoming) edge and receives the amount of change

cl(jl.) [k] (or cg.? [k]) from each outgoing (or incoming) edge. Then, it sets its incoming

((()};tgoing) weights to be fji[k + 1] = filk] + c\? (K] + S (k] (fis[k + 1] = fis[K] + e} [K] +
J

¢’ [k]). This can be seen in Figure 5.3.

lj
x1 =2 64+1—1 To =3
@ [5.4,10] @
241 1+1
[2, 5] [1,6]
10 241
[9.2,15] 9 13 =—2_ 3 [1.2,7]
[1.3,5] [26,9]
7
T4 = -1 [6'279] T5 = -2

FIGURE 5.3: Calculation of edge weights from positively imbalanced nodes.

Each node, after the integer weight update on its outgoing and incoming edges, recalcu-
lates its imbalances x;[1], Yv; € V, and the process is repeated. After a finite number of
iterations, shown in the next section, we reach the weighted digraph with integer weights

shown in Figure. 5.4.

5.3.3 Proof of Algorithm Completion

We show that, as long as the Integer Circulation Conditions in Section 5.2 hold, then
the total imbalance e[k] in Definition 3 goes to zero after a finite number of iterations of
Algorithm 5. This implies that the weight imbalance x;[k| for each node v; € V goes to

zero after a finite number of iterations, and thus (from the updates in Algorithm 5) the

*

integer weight f;;[k] on each edge (v;,v;) € & stabilizes to an integer value f7; (where
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7 @
x4 =0 [6'279] I5 = 0

FIGURE 5.4: Final weight balanced digraph.

*
Jji
(Uj, ’Uz') ef.

€ INp) within the given lower and upper limits, ie., 1 < Ij; < [5i < ug; for all

We begin by establishing some preliminary results.

Proposition 7. Consider the problem formulation described in Section 5.1. At each

iteration k£ during the execution of Algorithm 5, it holds that

1. For any subset of nodes S C V), let & and €& be defined by (5.3) and (5.4)

respectively. Then,

domilkl= > fulkl— Y fylkl;

v; €8 (vjvi)EES (vi,05)€€L

2. Z?:l zj[k] = 0;
3. glk] = QZvjeV*[k} |z k]| where V™ [k] = {v; € V| ;[k] < 0}.

Proof. To prove the first statement, let

Es = {(Uj,’t)i) e& | Uj €S, v ES}
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be the set of edges that are internal to the set S. From the definition of the weight

imbalance for node v;, we have (after re-arranging the summations)

Soalkl = D | D fulkl— D0 filk]

v;ES v;ES viG/\/’j_ Ulej\/;r
= > k=)D K+
(Ujv'ui)egg (’Ul;Uj)EEg
+ > fulkl= Y fislk]
(vj,vi)EES (v1,0;)EEs
= > falk - Yo fulk.
(Ujvvi)egg (vl,vj)esg

For the second statement, we can take any S C V and argue that

Yozl = Y K+ Y K

vjEV UjES ijst
= Z fﬂ[k] - Z flj [k] +
(vj,vi)eﬁg (vl»vj)egg
+ Y k- > fylk]
(vj,vi)€E, 5 (Ul:Uj)ES\J;r_s
= 0,

where the last line follows from the fact that 6'; =&, gsand &5 = E;F_ S

For the third statement, notice that, from the definition of €[k] in Definition 3, we have

elk] = Y lzlH]

’UjGV

= D K+ Dyl
v; EVT K] v; EV=V (K]

= Y mEl+ Y
v; €V~ K] v; EV-V[K]
v; €V~ k]

where the third line follows from the definition of V~[k] (all nodes have nonnegative

balance) and the last line follows from the second statement of this proposition. ]

Proposition 8. Consider the problem formulation described in Section 5.1. Let V™ [k] C
V be the set of nodes with negative weight imbalance at iteration k, i.e., V7 [k] = {v; €

V | z[k] < 0}. During the execution of Algorithm 5, we have that

Vo [k+1] CV[K].
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Proof. We will argue that nodes with nonnegative weight imbalance at iteration k£ can
never reach negative weight imbalance at iteration k + 1, thus establishing the proof of
the proposition.

Consider a node v; with a nonnegative weight imbalance z;[k] > 0. Node v; may attempt
to make weight changes on its edges: c(] )[k:] <0 for all v; € N and c(] )[k] > 0 for all
v € /\fj+. If no in-neighbor or out-neighbor of node v; attempts to inflict changes on the
weights of these edges, then it is not hard to see that the weight imbalance of node v;

at iteration k£ + 1 will be

gilk+1 = Y fulk+ 1= Y fylk+1]

v N v EN] *
=" (Fiilkl + D) = ST (flk] + k)
v; E/\fj* v EJ\/Jer

= zj[k] —a;[k] =0

(because, by design, the changes in the weights are chosen so that the balance becomes
7€ero).
If one (or more) of the in-neighbors or out-neighbors of node v; have nonegative balance,

then they will also attempt to make changes on the weights. In particular,

Fiilk + 1) = flk] + VK] + D[k

71
where cg? [k] > 0, and
l
Filk + 1) = figlk] + e (K] + e k] |

where cl(;.) [k] < 0. Putting these together we have

wilk+1 = D fulk+1= D fiylk+1]

viE./V’]-_ UIGN*
= N (fulk] + k] + P R]) —
Ui€N7
0
- Z (fi; (K] "’Czj k] + ¢ k)
UlE./\/’jJr
= 0+ > - N VK]
UZ‘E./\/’; UZG./\/jjL
> 0.

For the first case where all neighbors of node v; do not belong in V™ [k] then x;[k], x;[k] >
0, for every v; € ./\/'j_ and v; € ./\/'j+. This means that during iteration k of Algorithm 5,
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the edge weights of v; will change by its in/out neighbors (i.e., the weights of the
incoming edges (vj;,v;) will be increased by cg? [k] where v; € /\/'j* while the weights of
the outgoing edges will be decreased by c}é) [k] where v, € ./\/';r) In that case the weight
imbalance of node v; will increase (x;[k + 1] > x;[k]). For the new weight imbalance of
vj (i.e., z;[k 4+ 1]) we have that it will either remain negative (i.e., z;[k + 1] < 0), or it
will become nonegative v; € V™ [k + 1]. For the second case, if all the neighbors of node
vj belong in V7[k] they will not make any weight changes on the edges that connect
them with node v; and so we have that v; € V~[k + 1]. But if some of the neighbors
v; and vy (where v; € N and v € /\/]Jr) do not belong in V~[k| (i.e., x;[k],x;[k] > 0)

then they will increase the incoming and decrease the outgoing edge weights by cg-zi) (k]
O]
]
xjlk + 1] > x;[k]). For the new weight imbalance of v; (i.e., z;[k + 1]) we have that it

and ¢;. [k] respectively and so the weight imbalance of node v; will be improved (i.e.,
will either remain negative (i.e., z;[k + 1] < 0) or it will become nonegative and remain
so for the rest of the iterations (i.e., zj[k + 1] > 0). As a result we have that during the
execution of Algorithm 5, V~[k + 1] C V™ [k], Vk > 0. O

Proposition 9. Consider the problem formulation described in Section 5.1. During the

execution of Algorithm 5, it holds that
0<elk+1]<clk], VE>0,

where €[k] > 0 is the total imbalance of the network at iteration k (as defined in Defi-

nition 3).

Proof. From the third statement of Proposition 7, we have e[k+1] = 2 Zvj ev- (k1) 15 [k+
1)} and e[k] = 23", cy- iy [25[K]|, whereas from Proposition 8, we have V™ [k+1] C V™ [k].
Consider a node v; € V™ [k] with weight imbalance x;[k] < 0. We analyze below the

following two cases:
1. All neighbors of node v; have negative or zero weight imbalance;
2. At least one neighbor of node v; has positive weight imbalance.

In both cases, node v; above will not make any weight changes on its edges. In the first
case, the weight imbalance of node v; will not change (i.e., zj[k + 1] = z;[k] < 0). In
the second case, we have x;[k] > 0 or z;[k] > 0, for some v; € N or v, € /\/'j*'. This
means that during iteration £ of Algorithm 5, the edge weights of v; might change by
its in/out neighbors (i.e., the weight of an incoming edge (vj,v;) might be increased by
et
by ¢

[k] > 0 (for some) v; € ./\/j_ or the weight of an outgoing edge might be decreased

l(]l‘) [k] > 0 (for some) v; € /\/';r) Thus, in the second case, the weight imbalance of

node v; will satisfy x;[k+ 1] > x;[k]. In fact, we will have that either z;[k+1] > 0 (i.e.,
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vj € V7[k +1]) or z;[k + 1] < 0 and |z;[k + 1]| < |z;[k]|. As a result, in both cases, we
have e[k + 1] < ¢[k| (using the third statement in Proposition 7). O

According to the above proposition we have that the total imbalance e[k of the net-
work at iteration k (as defined in Definition 3) will be reduced after a finite number of

iterations.

Proposition 10. Consider the problem formulation described in Section 5.1 where the
integer circulation conditions are satisfied. Algorithm 5 balances the weights in the
graph in a finite number of steps (i.e., 3 ko s.t. Yk > ko, fjilko] = fjilk], V(vj,vi) € €
and z;[k] = x[ko] = 0, Vu; € V).

Proof. By contradiction, suppose Algorithm 5 runs for an infinite number of iterations
and the total imbalance remains positive (i.e., €[k] > 0 for all k). Then, there is always
(at each k) at least one node with positive weight imbalance. Let VT[k] = {v; €
V | zj[k] > 0} be the set of nodes that have positive weight imbalance at time step
k. Let V' denote the set of nodes that have positive weight imbalance infinitely often.
[Since nodes with positive weight imbalance can become balanced (but not negatively
balanced), this means that nodes in the set V' could become balanced at some iteration,
as long as they become positively imbalanced at later iterations.] Also, we can define the
set of nodes V™ as V™~ = limy_,o V™ [k], where V™ [k] = {v; € V| 2;[k] < 0}. This set is
well defined (due to the fact that positively imbalanced nodes cannot become negatively
balanced) and contains at least one node with negative weight imbalance (otherwise the
graph is balanced). The above discussion implies that as k goes to infinity, the set of
nodes V can be partitioned into three sets: V=, V¥ and V — (V* U V™) (the latter is
the set of nodes that remain balanced after a finite number of steps —and never obtain

positive imbalance again). This is shown in Fig. 5.5.

FicUure 5.5: Example of digraph where the Integer Circulation Conditions in Sec-
tion 5.2 do not hold for the dashed edges.

Since the graph is strongly connected, nodes in the set V* need to be connected to/from
nodes in the other two sets. This is shown via the dashed edges in Fig. 5.5 (note that

the presence of all four types of edges is not necessary, but there has to be at least one
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edge from a node in VT to a node in one of the two other sets, and at least one edge
from a node in one of the two other sets to a node in V).

Take & C V to be VT and note that S has at least one node (since the number of
nodes is finite). Consider a node v; € V™ that has at least one in-neighbor v; in S
and/or at least one out-neighbor v; in S. Since v; (and/or v;) has a positive weight
imbalance infinitely often, it will eventually attempt to change the weight f;;[k] (or
fi;1k]) by cg-? [k] > 0 (or Cz(;') [k] < 0). If this change happens, then x;[k + 1] > x;[k] so
that v; either arrives at a nonegative weight imbalance (i.e., z;[k + 1] > 0, which is a
contradiction) or 0 > x;[k + 1] > x;[k] (implying? that e[k + 1] < ¢[k], which is also a
contradiction because, if the integer valued e[k| decreases infinitely often, it will become
zero, thus z;[k] = 0 for all v; € V).

Consider now a node v, that has zero weight imbalance and has at least one in-neighbor
vy in § and/or at least one out-neighbor vy in S. Since vy (or vy ) has a positive weight
imbalance infinitely often, it will eventually attempt to change the weight fj[k] (or
fvy[k]) by c§3;2 [k] > 0 (or c,(,l;2 [k] < 0). If this change happens, then node vy would
eventually reach positive weight imbalance at some iteration, and this would happen
infinitely often which is a contradiction because v;» belongs in the set of nodes with zero
weight imbalance (at least after a large enough number of steps).

Thus, for Algorithm 5, the only possibility left is that the weights of edges outgoing
from nodes in & cannot increase and the weights of edges incoming to nodes in § cannot

decrease. In other words, for k > kg for some large enough k¢ we have

fiilkl = [li] - V(v ) € &
fiilk] = lug)  V(u,v5) € EF,

where €5 and £F are defined by (5.3) and (5.4) respectively.
From the first statement of Proposition 7, for the set S, we have that Zvj cs Tjlk] =

2wy wnees 13kl = 20, et S5kl Thus, we have

Z lji— Z Uy = Z:Ej[k]>0,

(vjvi)EES (vl,vj)ec‘fg' v;ES

which means that the Integer Circulation Conditions in Section 5.2 do not hold (i.e., we
reach a contradiction).

As a result we have that if the Integer Circulation Conditions in Section 5.2 hold, the
total imbalance e[k| decreases after a finite number of iterations, and Algorithm 5 results

in a weight-balanced digraph after a finite number of iterations. O

*From the third statement of Proposition 7, we have e[k + 1] = 2 Zujevf[kﬂ] |z;[k + 1]] and e[k] =
2 Zuje\)*[k] | [K]|-
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As a result we have that if the integer circulation conditions hold, the total imbalance
e[k] decreases after a finite number of iterations, and the algorithm results in a weight

balanced digraph after a finite number of iterations.

5.3.4 Simulation Study

In this section, we present simulation results for the proposed distributed algorithm.
Specifically, we first present numerical results for a random graph of size n = 20 illus-
trating the behavior of Algorithm 5 for two different cases: (i) the case when the integer
circulation conditions do not hold, thus, a set of integer weights that balance the digraph
cannot be obtained; (ii) the case when the integer circulation conditions hold and a set
of integer weights that balance the graph can be obtained. The weights are initialized
at the ceiling of the lower bound of the feasible interval, i.e., f;;[0] = [1;;].

Figure 5.6 shows what happens in the case of a randomly created graph of 20 nodes,
in which the integer circulation conditions do not hold. In the first case, we plot the
absolute imbalance e = 3%, ||, Vv; € V (as defined in Definition 3) and in the second
case the nodes weight imbalances x;[k] (as defined in Definition 2) as a function of the
number of iterations k for the distributed algorithm. The plots suggest that the proposed

distributed algorithm is unable to obtain a set of weights that balance the corresponding

digraph.
Absolute Imbalance vs Iterations for Random Graph of 20 Nodes
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FIGURE 5.6: Execution of Algorithm 5 for the case when the integer circulation con-

ditions do not hold for a random graph of 20 nodes. Top figure: Absolute imbalance

e[k] plotted against number of iterations. Bottom figure: Node weight imbalances x;[k]
plotted against number of iterations.

Figure 5.7 shows the same case as Figure 5.6, with the difference that the integer circu-
lation conditions hold. Here, the plots suggest that the proposed distributed algorithm
is able to obtain a set of integer weights that balance the corresponding digraph after a

finite number of iterations.



Weight Balancing under Link Capacity Constraints 65

Absolute Imbalance vs Iterations for Random Graph of 20 Nodes
100 T T T T T T T T T

3
c 80 4
k)
8 60 g
E
o 40t g
=
2 20} 4
<

0 L I I L

0 10 20 30 40 50 60 70 80 90 100
Number of Iterations
Node Weight Imbalances vs Iterations for Random Graph of 20 Nodes

8 20 T T T T T T T T T
o
c
kS|
= 4
Qo
E
= -
(=2
k)
2 4
Q
=}
o L L L L
P4

. . .
30 40 50 60 70 80 90 100
Number of Iterations

FIGURE 5.7: Execution of Algorithm 5 for the case when the integer circulation condi-

tions hold for a random graph of 20 nodes. Top figure: Absolute imbalance €[k] plotted

against number of iterations. Bottom figure: Node weight imbalances x;[k] plotted
against number of iterations.

Remark 5.7. Note that both Figures. 5.6 and 5.7 illustrate some of the properties es-
tablished in the analysis in the previous section: for example: once nodes have positive
weight imbalance, they retain a positive or zero weight imbalance; while nodes have neg-
ative weight imbalance, their imbalance increases monotonically; the absolute imbalance

is monotonically non-increasing, and so forth.

Figure 5.8 shows what happens in the case of 100 averaged graphs of 20 and 50 nodes
each when the integer circulation conditions hold. We plot the average total (abso-
lute) imbalance e[k] = >77_, |2;[k]| (as defined in Definition 3) as a function of the
number of iterations k for the distributed algorithm. The plot suggests that the pro-
posed distributed algorithm is able to obtain a set of integer weights that balance the

corresponding graph after a finite number of iterations.

5.4 Chapter Summary

In this chapter, we introduced and analyzed a novel distributed algorithm which achieves
integer weight balancing in a multi-component system in the presence of lower and upper
constraints on the edge weights. We analyzed its functionality, established its correctness
and showed that it achieves integer weight balancing after a finite number of steps. We
also demonstrated the operation, performance, and advantages of the proposed algorithm

via various simulations.
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Chapter 6

Weight Balancing under
Link Capacity Constraints

over Unreliable Communication

In this chapter, we present a novel distributed algorithm which deals with the problem
of balancing a weighted digraph under link capacity constraints in the presence of time
delays and packet drops over the communication links.

This chapter is organized as follows. In Section 6.1 we present the additional notation
needed in this chapter and we recall the modeling of time delays and packet drops and
the way they manifest themselves. In Section 6.2 we present the problem formulation.
In Section 6.3 we introduce a novel distributed algorithm which achieves integer weight
balancing under link capacity constraints in the presence of time delays over the com-
munication links. We present a formal description of the proposed distributed algorithm
and show that as long as the conditions presented in Section 5.2 hold, then the proposed
distributed algorithm converges to a weight balanced digraph after a finite number of
iterations in the presence of bounded time delays over the communication links. In Sec-
tion 6.4 we discuss an event-triggered operation of the proposed distributed algorithm
and show that it results in a weight balanced digraph after a finite number of iterations
in the presence of arbitrary (time-varying, inhomogeneous) but bounded time delays
over the communication links. In Section 6.5 we show that the proposed distributed
algorithm is also able to converge (with probability one) to a weight balanced digraph in
the presence of unbounded delays (packet drops). In Section 6.6 we present simulation

results and comparisons and the chapter is concluded in Section 6.7.

67
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6.1 Modeling Time Delays and Packet Drops

In this chapter, we assume that a transmission from node v; to node v; at time step

k undergoes an a prior: unknown delay Tl(jj )

Tl(jj )[k:] < 7y < oo (i.e., delays are bounded). The maximum delay is denoted by 7 =

[k] which is an integer that satisfies 0 <

max(y, v,)ee Tij- In the weight balancing setting we consider, node vj is in charge of

assigning the actual weight fi;[k] to each link (v;,v;), and then transmits to node v; the
()
j :
assumes bidirectional communication), node v; (v;) receives the change amount cl(j)[k]

amount of change ¢’ [k] it desires at time step k. Under the above delay model (which
(cl(]l.) [k]), proposed by node v; (v;) over the actual (perceived) weight fi;[k] (fl(f) [k]), at
time step k + Tl(jj)[k] (k+ Tl(jl) [k]).

From the perspective of node vj, the delayed weight change for link (v;,v;), Yo, € N J*,
at time step k is given by

k

_a !

o) [k = > k. (6.1)
ko=k—T, kot [ko]=k

ie., Efjl.) [k] is the sum of weight changes cl(jl) sent from v; and seen from node v; at time

step k.

Apart from bounded delays, unreliable communication links in practical settings could
also result in possible packet drops (i.e., unbounded delays) in the corresponding com-
munication network. To model packet drops, we assume that a transmission on each
link (v;,v;) from node v; to node v; is unreliable which means that each particular edge
may drop packets with some (non-total) probability. We assume independence between
packet drops at different time steps or different links (or even different directions of the
same link), so that, we can model a packet drop via a Bernoulli random variable:

if m=0,

Pﬂm@ﬂznﬁz{%“ (6.2)

1—gqj, iftm=1,

where x(j,4) = 1 if the transmission from node v; to node v; at time step k is successful.
We also define the matrix @ = [g;;] where gj; is the entry at the 4t row and i*" column;
we take g;; = 1 for (vj,v;) ¢ &, and can set ¢;; = 0 if the link is reliable. We establish
that, despite the presence of packet drops, the proposed distributed algorithm converges,
with probability one, to a weight balanced digraph after a finite number of iterations
(as long as a feasible solution exists and ¢;; < 1 for all links (v;,v;) € &,).

Note that, in this chapter, the integer weight f;; on edge (vj,v;) € £ is assigned by node
v;. More specifically, f;; is assigned by node v;; due to possible (bounded or unbounded)
time delays the perceived weight f](f ) on this link by node v; might be different. This

means that each node will know exactly the weights on its outgoing edges f;; but only
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have access to perceived weights f;f ) on its incoming edges, which will be equal to f;; if

node v; is able to successfully communicate with node v;.

Definition 8. Given a weighted digraph G; = (V, €, F), along with a perceived weight

(»)

assignment F), = | f](f )], the total perceived in-weight of node v; is defined as S; ™ and

is defined as Sj_(p) = Zvie/\/j‘ ](f).

Definition 9. Given a weighted digraph G; = (V, £, F) of order n, the perceived weight

imbalance x§-p) of node v; is a:g»p) = S;(p)

digraph Gy is defined as e®) = Z?Zl ]mgp )\.

— S;r while the perceived total imbalance of

6.2 Problem Statement

We are given a strongly connected digraph Gg = (V, £), as well as lower and upper limits
lj; and uj; (0 < lj; < uj;, where [j;,uj; € R) on each each edge (vj,v;) € €. Considering
that link transmissions undergo arbitrary, bounded or unbounded delays (i.e., packet
drops), we want to develop a distributed algorithm that allows the nodes to iteratively
adjust the integer weights on their edges so that they eventually obtain a set of integer

weights { fj; | (vj,v;) € €} that satisfy the following:
1. fji € IN for each edge (vj,v;) € &;
2. Ui < fji <y for each edge (vj,v;) € &;
3. S;’ =8 = Sj_(p) for each v; € V.

The distributed algorithm needs to respect the communication constraints imposed by
the undirected graph G, that corresponds to the given directed graph G,.
We introduce and analyze a distributed algorithm that allows each node to assign integer

weights to its outgoing links, so that the resulting weight assignment is balanced.

6.3 Distributed Algorithm for Weight Balancing

in the Presence of Time Delays

In this section we provide an overview of the distributed weight balancing algorithm
operation; the formal description of the algorithm is provided in Algorithm 6. The
algorithm is iterative and operates by having, at each iteration, nodes with positive
perceived weight imbalance attempt to change the integer weights on both their incoming
and /or outgoing edges so that they become weight balanced. We assume that each node
is in charge of assigning the weights on its outgoing edges. More specifically, f;; is
assigned by node v;; due to possible time delays the perceived weight f](f ) on this link

by node v; might be different. This means that each node will know exactly the weights
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on its outgoing edges but only have access to perceived weights on its incoming edges.
We use k to denote the iteration and index variables. For example, the change amount
from node v; on the weight f;;[k] of edge (v;,v;) € £ at iteration k will be denoted by
D1k].

Note: Each node v; can only calculate its perceived weight imbalance xg-p ) (as defined
in Definition 9) at each iteration k. This means that it has no access to the total (or

perceived total) imbalance of the digraph G .

Remark 6.1. Note here that the integer weight f;; on edge (v;,v;) € € is assigned by
node vj. Thus, node v; has access to the true weight f;; of edge (v;,vj) while node v;
has access to a perceived weight fl(;.g ), which will be equal to fj; if node v; is able to

successfully communicate with node vj.

We describe the operation of the iterative algorithm and establish that, if the necessary
and sufficient Integer Circulation Conditions in Section 5.2 are satisfied, the algorithm
completes after a finite number of iterations.

Initialization. At initialization, each node is aware of the feasible weight interval on
each of its incoming and outgoing edges, i.e., node v; is aware of [;;, uj; for each v; € ./\/’;
and l;;,uy; for each v; € ./\/;r. Furthermore, the weights are initialized at the ceiling of
the lower bound of the feasible interval, i.e., f;;[0] = [l;;]. This initialization is always
feasible but not critical and could be any integer value in the feasible weight interval
[Lji, uji] (according to Section 5.2) an integer always exists in the interval [l;;,uj]). Also
each node v; chooses a unique order Pl(]] )
incoming links (vj, v;) respectively, such that {PI(JJ Vv € Ny u {Pj(f ) | v € N} =
{0,1,...,D; — 1}.

Iteration. At each iteration k& > 0, node v; is aware of the perceived integer weights on

and PJ(ZJ) for its outgoing links (v;,v;) and

its incoming edges { fj(f ) [k] [vi € N} and the (actual) weights on its outgoing edges
{fijlk] |u € /\/'f}, which allows it to calculate its perceived weight imbalance mgp ) [k]
according to Definition 9.

A. Selecting Desirable Weights. Each node v; with positive perceived weight imbalance
(i.e., IL‘g-p) [k] > 0) attempts to change the weights on its incoming edges { f:[k] | v; € N}
and/or outgoing edges {fi;[k] | v € /\/f} in a way that drives its perceived weight
imbalance xgp ) [k + 1] to zero (at least if no other changes are inflicted on the weights).
No attempt to change weights is made if node v; has negative or zero perceived weight
imbalance. Specifically, node v; attempts to add +1 (or subtract —1) to its outgoing
(or incoming) integer weights one at a time, according to a predetermined (cyclic) order
until its perceived weight imbalance becomes zero. If an outgoing (incoming) edge has
reached its max (min) value (according to the feasible interval on that particular edge),
then its weight does not change and node v; proceeds to change the next one according

to the predetermined order, in a round-robin fashion. The desired weight change by node



Weight Balancing under Link Constraints over Unreliable Communication 71

vj on edge (vj,v;) € € at iteration k will be denoted by c(j )[k:]; similarly, the desired
weight by node v; on edge (v;,v;) € € at iteration k will be denoted by cgg) [k].
Note: Next time node v; has positive perceived weight imbalance it continues increasing
(decreasing) its outgoing (incoming) edges by 1, one at a time, following the (cyclic)
predetermined order starting from the edge it stopped the previous time it had positive
weight imbalance.
B. FExchanging Desirable weights. Once the nodes with positive perceived weight imbal-
ance calculates the desirable weight change for each incoming {cﬁ)[k] | v; € /\/'J_} and
outgoing {cgg) (k] | v € N. -+} weight, they take the following steps in sequence:

1) Node v; transmits the desirable weight change c(] ) (k] (cl(j] ) [k]) to each in- (out-) neigh-
bor v; (vy).
2) Node v; receives the delayed desired weight changes 65-? (k] (EI(JZ.) [k]) from each in-

(out-) neighbor v; (v;). If no weight change is received due to time delays, then node

()

vj assumes that Eg-? [k] = 0 (¢

(v, 0i) (o1, v5))-
3) It calculates its new outgoipg (percgz’ved incoming) weights fi;[k+1] = fi;[k ]—I—cl] [k]+
cl ; [ ] ( f](f ) [k+1] = f (f ) [k]—I—cg-ji) (k] —1—65-? [k]). Then, the new outgoing (perceived incoming)

[k] = 0) for the corresponding incoming (outgoing) edge

weights are adjusted so that the new weight is projected onto the feasible interval [I;;, ;]
([lji,uji]) of the corresponding edge. This (along with all the parameters involved) can

be seen in Figure 6.1.

Remark 6.2. Since the weight fj; on each edge (vj,v;) € € affects positively the weight
imbalance z;[k] of node v; and negatively the weight imbalance z;[k] of node v;, we
need to take into account the possibility that both nodes desire a change on the weight
simultaneously. Thus, the proposed algorithm attempts to coordinate the weight change.
The challenge however, is the fact that time delays may occur during transmissions (in

either direction) while the nodes are trying to agree on a weight value.

—(7) =)
¢k G |k
71 [ ] 1% [ ] 0

or 0 or 0 €1y (k]
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FIGURE 6.1: Digraph where nodes exchange their desirable weights in the presence of
time delays.

6.3.1 Formal Description of Distributed Algorithm

A formal description of the proposed distributed algorithm is presented in Algorithm 6.
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Algorithm 6 Distributed weight Balancing Algorithm in the Presence of Time Delays
Input

1) A strongly connected digraph Gy = (V,€) with n = |V| nodes and m = || edges.

2) lj;, uj; for every (vj,v;) € E.

Initialization

Set k = 0; each node v; € V does:

1) It sets the weights on its perceived incoming and outgoing edge weights as

fj(zp)[o] [Lii], Vv EN
fi510] = Tlz1, Yo € N}

2) It assigns a unique order to its outgoing and incoming edges as PZ(JJ ), for v; € /\/’;r or
PY for v; € N (such that {Pl(j]) | v € /\/’f} U {PJ(ZJ) |vi € N; }=1{0,1,...,D; — 1}).

P’
Iteration
For k =0,1,2,..., each node v; € V does the following:

1) It computes its perceived weight imbalance as in Definition 9

wk)= 3 AU = YD fulk

v; E./\[f ] EJ\/’;F

2) If xg-p ) [k] > 0, it calculates the desired amount of change for the weights on its outgoing
and incoming edges. Specifically, it increases (decreases) by 1 the integer weights fj;[k]
(fji (p )[ k]) of its outgoing (incoming) edges v; € /\/jJr (vi € Nj7) one at a time, following the
predetermined order P(] ) (PJ(Z )) until its weight imbalance becomes zero (if an edge has
reached its maximum value, its weight does not change and node v; proceeds in changing
the next one according to the predetermined order). Then, it stores the desired change

amount for each outgoing edge as cl(j) [k] and each incoming edge as cgz) [k].

3) If xgp ) [k] > 0, it transmits the desired weight change cl(j)[k:] (cgz)[k}) on each outgoing

(incoming) edge.

4) Tt receives the (possibly delayed) desired weight change El(jl.) [k] (ES-? [k]) from each

outgoing (incoming) edge. [If no weight change is received due to time delays it assumes
(l)[k] 0 (EE-ZZ-) [k] = 0) for the corresponding outgoing (incoming) edge.]

5) It sets its new outgoing weights to be

fuilk + 1) = fylk] + 2 k] + 20 [R),

and its new perceived incoming weights to be
B0+ 1) = £P 1] + 52 ] + 2 3.

6) It adjusts the new outgoing weights according to the corresponding upper and lower
weight constraints as

figlk + 1] = max{lj;, min{w;, fi;[k + 1]} },

and its new perceived incoming weights according to the corresponding upper and lower
weight constraints as

f(p) [k + 1] = max{l;;, min{uy;, f; (p) [k +1]}}.

7) It repeats (increases k to k + 1 and goes back to Step 1).
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Remark 6.3. According to the Integer Circulation Conditions in Section 5.2, each node
vj € V with positive perceived weight imbalance at iteration k ( () [k] > 0) will always
be able to calculate a weight assignment for its incoming and outgoing edge weights
so that its perceived weight imbalance becomes zero (at least if no other changes are
inflicted on the weights of its incoming or outgoing links). This means that the selection
of desirable weights in Algorithm 6 is always feasible.

(p)

Remark 6.4. Tt is important to note here that the total perceived in-weight S; of node
v; might be affected from possible time delays at Step 4 of Algorithm 6. Specifically, if
transmissions are affected from possible time delays then v; sets fj(f ) k+1] = fj(f ) (k] +
cgz)[k‘] where cﬁ)[k‘] < 0 (since nodes only attempt to make changes on the weights if
their perceived balance is positive, node v; will only attempt to increases the weight
fjilk] of edge (vj,v;)). This means that during the execution of Algorithm 6 we have

fj(l)[ | < fjilk] for each edge (vj,v;) € &, at each time step k.

Remark 6.5. The weight adjustment in Algorithm 6 signifies that after iteration k& of
the proposed distributed algorithm, once node v; calculates the desired weight changes
for its incoming (outgoing) edges c(])[k:] (cl(j)[k:]), Vv €N (Vu € j\/‘f), it receives
the delayed desired weight changes from its in- (out-) neighbors gl) (k] (El(]l) [k]). Then,
the new weight of edge (vj,v;) ((v1,v;)) will be fP[k + 1] = P k] + ) [k] + ) [k]
(fi;lk+1] = fi;[k] + Cz]) (k] + cl(j:) [k]). According to Step 6 of the proposed algorlthm we

always have that 0 < [;; < f;f) [k +1] <wuj;and 0 <l < fijlk + 1] < wyy.

6.3.2 Proof of Algorithm Completion

In this section we analyze the functionality of the distributed algorithm and we prove
that it solves the weight balancing problem in the presence of arbitrary (time-varying,
inhomogeneous) but bounded time delays that may appear during the information ex-

change between agents in the system.

Proposition 11. Consider the problem formulation described in Section 6.2. Let
V~[k] C V be the set of nodes with negative weight imbalance at iteration k, i.e.,
V~[k] = {vj € V| z;|k] < 0}. During the execution of Algorithm 6, we have that

Volk+1] C V(K.

Proof. We will first argue that nodes with nonnegative perceived weight imbalance at
iteration k£ can never reach negative perceived weight imbalance at iteration k + 1.
Combining this with the fact that the perceived weight imbalance of a node is always

below its actual weight imbalance, we establish the proof of the proposition.
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Consider a node v; with a nonnegative perceived weight imbalance :cgp ) [k] > 0 (from
Remark 6.4, since xg-p) (k] < zj[k], V k > 0, we have that also x;[k] > 0).

We analyze below the following two cases:
1. at least one neighbor of node v; has positive perceived weight imbalance,
2. all neighbors of node v; have negative or zero perceived weight imbalance.

In both cases, since xg»p) [k] > 0, node v; will attempt to change the weights of (some of)
its incoming and outgoing edges. Specifically, node v; will calculate the desirable weight
change c(j)[k:] (cl(])[k:]) for its incoming (outgoing) edges (v, vi) ((vi,v;)) where v; € N
(v € /\/’;r) Then, it transmits the desired weight change cg)[k:] (cg )[k]) to its incoming
(outgoing) edges (vj,v;) ((vi,v;)) where v; € N~ (v € /\ff) In the first case, we have
(i) xz(.p) [k] > 0 for some v; € N7, or (ii) xl(p) [k] > 0 for some v; € /\/'].Jr.

For (i) we have that during iteration k of Algorithm 6, the incoming edge weights of v,
might change by its in-neighbors (i.e., the weight of an incoming edge (vj;,v;) might be
increased to be equal to fj;[k+1] = f[k] + [k:] for some v; € Nj7). In this case, since
the transmission of cg-? [k] from v; to v; mlght suffer time delay, we have that v; sets its
outgoing weights to be fi;[k+ 1] = fi;[k] + clj [k:] and its perceived incoming weights to
be f [ 1] = f(p) (k] + c(j) [k]. Thus, we have that :):(p) [k + 1] = 0. [Note that, after
Tj(z) [k] time steps (during the iteration k+ 7'( )[k]) node v; will receive the desired weight
change C§'i) [k] which was sent from node v; at time step k. Then it will update its its
perceived incoming weights to be f;f) [k + T](? k] +1] = f;f) [k + T](ii) [k]] + E%) [k + T;;) [K]],
which means that x( )[k + T(l) [k] +1] > 0.] As a result, for (i) we have that nonnegative
perceived weight imbalance of node v; at iteration k remains nonnegative at iteration
k+1.

For (ii) we have that the outgoing edge weights of v; might change by its out-neighbors
v € /\fjJr and it can be argued in a similar manner.

In the second case, we have xgp ) [k] < 0 for every v; € N, and :cl(p ) [k] < 0 for every
v € /\/’j+. This means that the neighbors of v; will not attempt to change the weights
of its incoming and outgoing edges. As a result, since v; will transmit its desired weight
changes and then set its outgoing weights to be fi;[k+1] = fi;[k ]+cl] [k] and its perceived
incoming weights to be f(p) k+1] = f](f) (k] + cgz)[k] we have that ac( )[k +1] =0.

As a result we have that during iteration k of Algorithm 6, nodes with nonnegative
percetved weight imbalance can never reach negative perceived weight imbalance at it-
eration k£ 4+ 1. From Remark 6.4, since x(p ) (k] < zj[k], V k > 0, we have that also
nodes with nonnegative weight imbalance can never reach negative weight imbalance,

thus establishing the proof of the proposition. O
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Proposition 12. Consider the problem formulation described in Section 6.2. During

the execution of Algorithm 6, it holds that
0<elk+1] <elk], VE>0,

where €[k] > 0 is the total imbalance of the network at iteration k& (see Definition 3).

Proof. From the third statement of Proposition 7, we have e[k+1] =23, oy 4] 25 [k+
1]| and €[k] = 22%_@/,[,6] |zj[k]|, whereas from Proposition 11, we have V™[k + 1] C
V~[k].

Consider a node v; € V™~ [k| with weight imbalance z;[k] < 0 (obviously we have that
also $§p) [k] < 0 since azgp) (k] < xjlk], V k>0 from Remark 6.4).

We analyze below the following two cases:
1. all neighbors of node v; have negative or zero perceived weight imbalance,
2. at least one neighbor of node v; has positive perceived weight imbalance.

In both cases, node v; will not make any changes on its edges. In the first case, the

weight imbalance of node v; will not change (i.e., zj[k + 1] = z;[k] < 0). In the second

case, we have (i) :ng) [k] > 0 for some v; € N}, or (ii) xl(p) [k] > 0 for some v; € j\/j‘".

For (i) we have that during the iteration k of Algorithm 6, the incoming edge weights of

vj might change by its in-neighbors (i.e., the weight of an incoming edge (vj,v;) might

be increased to be equal to fj;[k + 1] = fji[k] + cg.? [k] for some v; € Nj7). In this
(

case (regardless of whether we have a delay during the transmission of cj? [k] from v;
to vj) we have e[k + 1] < ¢[k] (using the third statement in Proposition 7). For (ii)
we have that during iteration & of Algorithm 6, the out-neighbor of v; might transmit

the desired change amount of the outgoing edge weights to node v;. In this case, if the
O]
lj

zjlk+1] = z;[k] < 0), but when v; receives 6l(]l.) [k + Tl(jl) [k]] then the weight imbalance of

node v; will satisfy x;[k + 1] > x;[k]. As a result, for both cases, we have e[k + 1] < e[k]

transmission of ¢;; [k| is delayed, then the weight imbalance of v; will not change (i.e.,

(using the third statement in Proposition 7). O

Proposition 13. Consider the problem formulation described in Section 6.2 where
the Integer Circulation Conditions in Section 5.2 are satisfied. Algorithm 6 balances the
weights in the graph in a finite number of steps (i.e., 3 kg so that Vk > ko, fji[ko] = fjilk],
V(vj,v;) € € and xjlk] = xj[ko] =0, V vj € V).

Proof. By contradiction, suppose Algorithm 6 runs for an infinite number of iterations
and its total imbalance remains positive (i.e., e[k] > 0 for all k). During the execution
of the proposed distributed balancing algorithm, transmissions on each communication

link (v;,v;) € € are affected by arbitrary (time-varying and inhomogeneous) bounded
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time delays. We have that the delays that affect transmissions on each link (v;,v;) € £
are bounded (i.e., 0 < Tl(jj) [k] <715 < 00). Thus, the packets transmitted on each link
(v, vj) € € will eventually reach the corresponding node after a finite number of steps.
Suppose now that Algorithm 6 runs for an infinite number of iterations and by contra-
diction its total imbalance remains positive (i.e., €[k] > 0 for all k). This means that
always (at each k) there will exist at least one node with positive weight imbalance
and thus the proof of this Proposition becomes identical to the proof of Proposition 10
(because, as argued above, its perceived imbalance will eventually become positive, once
all transmitted packets are received).

As a result, we have that if the Integer Circulation Conditions in Section 5.2 hold, the
total imbalance e[k] decreases after a finite number of iterations, and Algorithm 6 results

in a weight-balanced digraph after a finite number of iterations. O

6.4 Extension to Event-Triggered Operation

Motivated by the need to reduce energy consumption, communication bandwidth, net-
work congestion, and/or processor usage, many researchers have considered the use
of event-triggered communication and control [51, 52]. In this section, we discuss an
event-triggered operation of the proposed distributed algorithm where each agent au-
tonomously decides when communication and control updates should occur so that the
resulting network executions still result in a weight-balanced digraph after a finite num-
ber of steps in the presence of arbitrary (time-varying, inhomogeneous) but bounded
time delays that might affect link transmissions. More specifically, following the pro-
posed event-triggered strategy, we can prove that (i) all nodes eventually stop transmit-
ting, and (ii) the proposed distributed algorithm is able to obtain a set of weights that

balance the corresponding digraph after a finite number of iterations.

6.4.1 Formal Description of Distributed Algorithm

A formal description of the algorithm’s event-triggered operation is presented in Algo-
rithm 7.

6.4.2 Proof of Algorithm Completion

Proposition 14. Consider the problem formulation described in Section 6.2 where the
integer circulation conditions in Section 5.2 are satisfied. Algorithm 7 balances, the
weights in the graph in a finite number of steps [even in the presence of bounded delays]

(i.e., = ko so that Vk > ko, fji[ko] = fji[k], V(vj,vi) € &£ and T 5 [k‘] = I‘j[k‘o] = 0, v Vg S V)

Proof. The event-triggered operation of Algorithm 7 is identical to the operation of

Algorithm 7 with delays if we assume that in the latter algorithm all transmissions
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Algorithm 7 Event-Triggered Distributed Balancing in the Presence of Time Delays
Input
(Inputs are the same as Algorithm 6).
Initialization
For k = 0, each node v; € V does the following:
(Steps 1, 2 are the same as Algorithm 6).
3) (Same as Iteration-Step 1 in Algorithm 6).
4) (Same as Iteration-Step 2 in Algorithm 6).
5) (Same as Iteration-Step 3 in Algorithm 6).
)

6) If ZL‘(p [0] > 0, it sets its outgoing weights to be

Fisl1) = figlo] + 2 [o],

and its new perceived incoming weights to be

AP0 = 1270] + (o).

Iteration

For k=1,2,3,..., each node v; € V does the following:

1) Ewvent triggered condition: If no weight change is received due to time delays then
node v; skips Steps 2, 3, 4, 5, 6, and 7 below; otherwise (event triggered condition) it

receives the delayed desired weight change Egj.) (k] (65? [k]) from each outgoing (incoming)
edge and performs the steps below.
2) It sets its outgoing weights to be

l
Sl +11 = fislhe + 1] + 2] W,
and its new perceived incoming weights to be

FPM+ 1) = £P1k + 1] + ) [K].

3) (Same as Step 1 in Algorithm 6).
4) (Same as Step 2 in Algorithm 6).
5) (Same as Step 3 in Algorithm 6).
6) If (p)[ k] > 0, it sets its outgoing weights to be

figlhe + 1] = fislk] + 7 [K],
and its new perceived incoming weights to be
FPlk+1] = £ k] + ¢ k).

7) (Same as Step 6 in Algorithm 6).
8) It repeats (increases k to k + 1 and goes back to Step 1).
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of desired weight changes suffer the maximum possible delay. As a result, since the
operation of both algorithms is identical!, we have that Algorithm 7 will converge to a
set of weights that form a weight-balanced digraph after a finite number of steps. Also,
since 3 kg so that Vk > ko, fjiko] = fjilk], V(vj,v;) € € and x;[k] = xj[ko] =0,V v; € V,

from Step 1 of Algorithm 7, we can see that all nodes eventually stop transmitting. [

6.5 Distributed Algorithm for Weight Balancing
in the Presence of Packet Dropping Links

In this section we provide an overview of the distributed weight balancing algorithm
operation; the formal description of the algorithm is provided in Algorithm 8. The
algorithm is iterative and operates by having, at each iteration, nodes with positive
perceived weight imbalance attempt to change the integer weights on both their incoming
and/or outgoing edges so that they become weight balanced. Again, we assume that
each node is in charge of assigning the weights on its outgoing edges (i.e., f;; is assigned
by node v;; due to possible packet drops the perceived weight f;lp ) on this link by node
vj might be different) which means that each node will know exactly the weights on its
outgoing edges but only have access to perceived weights on its incoming edges.

Note that the operation of Algorithm 8 is similar to Algorithm 6 with the main difference
being that each node is required to calculate and transmit the desirable weights (and
not the desired change amounts) for its incoming and outgoing edges.

We describe the operation of iterative algorithm and establish that, if the necessary and
sufficient integer circulation conditions for the existence of a set of integer weights that
balance the given digraph are satisfied, the algorithm completes, almost surely, after a
finite number of iterations.

Initialization. Same as Algorithm 6.

Iteration. At each iteration k > 0, node v; is aware of the perceived integer weights on
its incoming edges { fj(f ) [k] [vi € N} and the (actual) weights on its outgoing edges
{fijlk] | v € /\f;r}, which allow it to calculate its perceived weight imbalance xgp ) [k]
according to Definition 9.

A. Selecting Desirable weights: Each node v; with positive perceived weight imbalance
(i.e., mgp) [k] > 0) attempts to change the weights on its incoming edges { f:[k] | v; € N}
and/or outgoing edges {fi;[k] | v € /\ff} in a way that drives its perceived weight
imbalance xgp ) [k + 1] to zero (at least if no other changes are inflicted on the weights).
No attempt to change weights is made if node v; has negative or zero perceived weight
imbalance. Specifically, node v; attempts to add +1 (or subtract —1) to its outgoing (or

incoming) integer weights one at a time, according to a predetermined (cyclic) order until

!The operation is identical under different delays in each case.
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its perceived weight imbalance becomes zero. If an outgoing (incoming) edge has reached
its max (min) value (according to the feasible interval on that particular edge), then its
weight does not change and node v; proceeds in changing the next one according to the
predetermined order. The desired weight by node v; on edge (vj,v;) € £ at iteration k
will be denoted by f;; U )[ k]; similarly, the desired weight by node v; on edge (v;,v;) € £
at iteration k will be denoted by £.7[k].

Note: Next time node v; has positive perceived weight imbalance it continues increasing
(decreasing) its outgoing (incoming) edges by 1, one at a time following the (cyclic)
predetermined order starting from the edge it stopped the previous time it had positive
balance.

B. Ezxchanging Desirable weights: Once the nodes with positive perceived weight imbal-
ance calculate the desirable incoming { f](f )[k] | v; € N;} and outgoing { fl(jj ) (k] | v €
./\/j+} weights, they take the following steps in sequence:

1) Node v; transmits (receives) the calculated desirable weights f](i ) (k] ( fl(;) [k]) to (from)
their in- (out-) neighbor v; (v;). [Nodes with non-positive perceived weight imbalance
simply transmit the values f}f ) [k].]

2) If no weight is received from out-neighbor v; (due to a packet drop), then node v,
assumes that fz(;) (k] = fij[k] for the corresponding outgoing edge (v, v;) which suffered
a packet drop on the transmission on the reverse link from node v; to node v;. Then it
calculates its new outgoing weights fi;[k + 1] = fl(jl)[k:] + fl(jj )[k:] — fi;[k] (projected onto
the feasible interval [I;;, u;;]) and it transmits them to each corresponding out-neighbor
v € ./\/'jJr.

3) It receives the new incoming weights { fj(f ) [k+1] | v € _/\/'J -~} from each corresponding
in-neighbor. If no weight is received then node v; assumes that f](f ) k+1] = f](f )[k:] for
the corresponding incoming edge (v;, v;) which suffered a packet drop. This (along with

all the parameters involved) can be seen in Figure 6.2.

f(J (l)
7 )
V \\k or fl] flj (K]
[+ 1] il fl;” [K] - (@
or f J)[k] or (l) (k]

FIGURE 6.2: Digraph where nodes exchange their desirable weights.

Remark 6.6. The different weights that the nodes are exchanging (and what happens
in the case of a packet drop) are shown in Fig. 6.2. Specifically, at each iteration k,
each node v; calculates its perceived weight imbalance x(p ) [k] and if its positive then it

calculates the desired weights for its incoming and outgoing edges ( f](] )[k] and fl(j )[k]

1
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respectively). Then, it sends the desired incoming weight fj(f)[k:] to its in-neighbors
vy € /\/j_ while it receives (if there is no packet drop) the desired incoming weight
fg) [k] from its out-neighbors v; € /\/'j+. If there is a packet drop, it assumes that
fl(;) (k] = fij[k]. It then calculates the new weight for its outgoing edges fi;[k + 1],
Vo € ./\/’j+, and transmits them to v; € /\/J»Jr, while it receives the new weights from
its in-neighbors (if no incoming weight is received then it assumes f](f ) k+1] = f](f ) [k],
otherwise fj(f) (k+1] = filk +1]).

Depending on the possible packet drops that might occur during the exchange of the

desirable weights, we have the following four cases:
1. fj(i)[k} is dropped,
2. both f)[k] and f;;[k + 1] are dropped,
3. fjilk + 1] is dropped,
4. no packet is dropped.

For the first two cases, the new weight on edge (v;,v;) € £ is taken to be fj;[k+1] = f](;) [k]
where 1j; < f](f) [k] < wj; (the difference in the two cases is that in the second case the
perceived value of the weight at node v; is f;f) k+1] = fj(f)[k]

For the third and fourth cases, the new weight on edge (vj,v;) € £ is taken to be
fiilk+1] = [f](? [k+1] +fj{) [k+1]— filk]] %Z]:]J (where [z] }Z];]J denotes the projection onto
the interval). The difference in the two cases is that in the third case f](f) ) [k+1] = f](f ) [k],
while in the fourth f & [k + 1] = /1 [k + 1] + [k + 1] — filk].

)

6.5.1 Formal Description of Distributed Algorithm

A formal description of the proposed distributed algorithm is presented in Algorithm 8.

Remark 6.7. According to the integer circulation conditions, each node v; € V with
positive perceived weight imbalance at iteration k (xg-p ) [k] > 0) will always be able to
calculate a weight assignment for its incoming and outgoing edge weights so that its
perceived weight imbalance becomes zero (at least if no other changes are inflicted on
the weights of its incoming or outgoing links). This means that the selection of desirable
weights in Algorithm 8 is always feasible.

() of node

Remark 6.8. It is important to note here that the total perceived in-weight Sj_
v; might be affected from possible packet drops at Step 7 of Algorithm 8. Specifically, if
a packet drop occurs; then v; assumes f](f) [k+1] = f](g) [k] where f](g) (k] < fjilk+1] (since
nodes only attempt to make changes on the weights if their perceived weight imbalance
is positive, node v; can only increase the weight of edge (v;,v;)). This means that during
the execution of Algorithm 8 we have f](-f) (k] < fji[k] for each edge (v;,v;) € £, at each

time step k.
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Algorithm 8 Distributed weight Balancing Algorithm in the Presence of Packet Drops
Input

(Inputs are the same as Algorithm 6).

Initialization

(Steps 1, 2 are the same as Algorithm 6).

Iteration

For £ =0,1,2,..., each node v; € V does the following:

1) It computes its perceived weight imbalance as in Definition 9

wW = 3 AP = Y Syl

v; G./\/; ] E./\/—]Jr

2) If xg-p ) [k] > 0, it increases (decreases) by 1 the integer weights fi;[k] ( f;p ) [k]) of its
outgoing (incoming) edges v; € /\/']-Jr (v; € N’j_) one at a time, following the predetermined

order PZ(JJ ) (Pj(zj )) until its weight imbalance becomes zero (if an edge has reached its
maximum value, its weight does not change and node v; proceeds in changing the next
one according to the predetermined order). It stores the desirable weights on each
incoming edge as f](f )[k‘] and each outgoing edge as fl(f) [k].

3) If acg-p) [k] <0, it sets fl(f)[k] = fi;1k] (and f](f)[k:] = f;f) [k]) for its outgoing (incoming)
edges in 5]* (&) |

4) It transmits the new weight f](i )[k:] on each incoming edge.

5) It receives the new weight fl(jl) [k] from each outgoing edge (if no weight was received
then it assumes that fl(jl) (k] = fi;(k]).

6) It sets its outgoing weights to be fi;[k + 1] = fl(;) (k] + fl(j)[k] — fijlk].

7) It transmits the new weight fi;[k + 1] on each outgoing edge.

8) It receives new weight fj(f ) [k + 1] from each incoming edge (if no weight is received
then it assumes that f;f) k+1] = f](f) [k]).

9) It repeats (increases k to k + 1 and goes back to Step 1).

6.5.2 Proof of Algorithm Completion

In this section, we show that, as long as the Integer Circulation Conditions in Section 5.2
hold, then the total imbalance €[k] in Definition 3 goes to zero after a finite number of
iterations of Algorithm 8. This implies that the weight imbalance x;[k] for each node
v; € V goes to zero after a finite number of iterations, and thus (from the weight

updates in Algorithm 8) the integer weight fj;[k] on each edge (vj,v;) € & stabilizes

7t
1 <lji < f; < wyi for all (vj,v;) € €.

to an integer value (where ]*Z € INy) within the given lower and upper limits, i.e.,

Proposition 15. Consider the problem formulation described in Section 6.2. Let
V~[k] C V be the set of nodes with negative weight imbalance at iteration k, i.e.,

V7~ [k] = {v; € V| z;[k] < 0}. During the execution of Algorithm 8, we have that

V[k+1] CV [k
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Proof. We will first argue that nodes with nonnegative perceived weight imbalance at
iteration k£ can never reach negative perceived weight imbalance at iteration k + 1.
Combining this with the fact that the perceived weight imbalance of a node is always
below its actual weight imbalance, we establish the proof of the proposition.

Consider a node v; with a nonnegative perceived weight imbalance xg-p ) (k] > 0 (from
Remark 6.8, since $§p) (k] < zj[k], V k > 0 we have that also z;[k] > 0).

We analyze below the following two cases:
1. at least one neighbor of node v; has positive perceived weight imbalance,

2. all neighbors of node v; have negative or zero perceived weight imbalance.

In both cases, since xg»p ) [k] > 0, node v; will attempt to change the weights of (some of)
its incoming and outgoing edges. Specifically, node v; calculates the desirable weight
f](f) [k] (fl(]?)[k]) for its incoming (outgoing) edges (v;,vi) ((vi,v;)) where v; € N~ (v, €
,/\[J ).

In the first case, both in- and out-neighbors (v; and v; respectively) of v; will calculate
the desirable weights for their incoming and outgoing edges. Depending on the possible
packet drops that might occur during the transmissions from node v; to node v;, we

consider the following two scenarios:
a) No packet is dropped,
b) At least one packet is dropped.

Recall that from the perceptive of node v; the following transmissions take place: first,
node v; sends f](f )[k] to each in-neighbor v; € N;". Then it receives fl(;)[k] from every
out-neighbor v; € /\/’j+ and finally, once it calculates the new weights f;;[k + 1] for
its outgoing edges (v, v;) (where v; € ./\/j+), it transmits them to every out-neighbor
v € ./\/'j+.

For the first scenario (a), we have

fPler1] = 30 Pk 30 iyl 1) (63)

v; 6/\6-7 vy 6/\/;r
= " P+ £LH - k) -
v E/\/'jf

= 3" G+ £V~ filk) -

(i E./\/’]+

Since

S k=Y 1P, (6.4)

v; E./\/; [ E./\/;L
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(6.3) becomes

e k+1 = 3 (R = falk) -
v; G./\/’;

~ 3" (YR - £k - (6.5)

vy E/\/J+

Also, since fj(;)[k] > fjilk] and fl(]l)[k:] < fi;lk], ¥V (vj,v), (v,v;) € &, we conclude
xg»p ) [k+1] >0, Yv; € V. As a result we conclude that, for scenario (a), the nonnegative
perceived weight imbalance of node v; at iteration k remains nonnegative at iteration
k+ 1.

For scenario (b), let us assume (without loss of generality) that f;;[k + 1], sent from
node v; to node v; at Step 7 of the proposed algorithm, suffered a packet drop while all
the other transmissions were successful. We have that

Ph+1 = > fPk+1] -
Ui/GN{

— > filk+1] (6.6)

vy E./\[J+

PR+ Y (Faelk+ 1) + £k -

v,/ €./\fj7 —{vi}

= > PR+ £V - £k

v EJ\fj+

which, in a similar manner, leads to the conclusion that IL‘g-p ) k+1] >0, Yv; € V.
Thus, for scenario (b), we conclude that if only the transmission from node v; to node
v; suffered a packet drop, the nonnegative perceived weight imbalance of node v; at
iteration k£ remains nonnegative at iteration k 4+ 1.

The remaining scenarios, where multiple transmissions suffer packet drops during the
same iteration k, as well as the remaining cases, where all neighbors of node v; have
negative or zero perceived weight imbalance, can be argued in a similar manner.

As a result we have that during an iteration k£ of Algorithm 8, nodes with nonnega-
tive perceived weight imbalance can never reach negative perceived weight imbalance at
iteration k + 1. From Remark 6.8, since xg-p) (k] < zj[k], V kE > 0, we have that also
nodes with nonnegative weight imbalance can never reach negative weight imbalance,

thus establishing the proof of the proposition. O

Proposition 16. Consider the problem formulation described in Section 6.2. During

the execution of Algorithm 8, it holds that

0<elk+1]<elk], VE>0,
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where ¢[k] > 0 is the total imbalance of the network at iteration k (see Definition 3).

Proof. From the third statement of Proposition 7, we have e[k+1] =23, oy 41y 25 [k+
1]| and €[k] = QZvjevf[k] |zj[k]|, whereas from Proposition 15, we have V™[k + 1] C
V7 [k].

Consider a node v; € V~[k| with weight imbalance x;[k] < 0 (obviously we have that
also $§p) [k] < 0 since azg-p) (k] < xjlk], V k>0 from Remark 6.8).

We analyze below the following two cases:

1. all neighbors of node v; have negative or zero perceived weight imbalance,
2. at least one neighbor of node v; has positive perceived weight imbalance.

In both cases, node v; will not make any weight changes on its edges. In the first case,
the weight imbalance of node v; will not change (i.e., z;[k + 1] = z;[k] < 0). In the
second case, we have (i) :cl(p ) [k] > 0 for some v; € N7, or (i) arl(p ) [k] > 0 for some
v € ./\/’jJr.

For (i) we have that during the iteration k of Algorithm 8, the incoming edge weights of
v; might change by its in-neighbors (i.e., the weight of an incoming edge (v;,v;) might
be increased to be equal to fj;[k+1] = f](ii) [k] for some v; € N;7). In this case (regardless
if we have a packet drop during the transmission of f;;[k + 1] from v; to v;) we have
e[k +1] < ¢[k] (using the third statement in Proposition 7). For (ii) we have that during
iteration k£ of Algorithm 8, the out-neighbor of v; might transmit the new outgoing edge
weights to node v; (i.e., v; might receive the new fl(;) [k] from some v; € /\ff) In this
case, if fl(;) [k] suffers a packet drop, the weight imbalance of v; will not change (i.e.,
zjlk+1] = z;[k] <0). If fl(jl) [k] is transmitted successfully then the weight imbalance of
node v; will satisfy z;[k + 1] > z;[k]. As a result, for both cases, we have e[k + 1] < ¢[k]
(using the third statement in Proposition 7). O

Proposition 17. Consider the problem formulation described in Section 6.2 where the
Integer Circulation Conditions in Section 5.2 are satisfied. Algorithm 8 balances the
weights in the graph in a finite number of steps, with probability one (i.e., 3 kg so that
almost surely Yk > ko, fji[ko] = fjilk], V(vj,v;) € € and z;[k] = (ko] = 0, Yv; € V).

Proof. By contradiction, suppose Algorithm 8 runs for an infinite number of iterations
and its total imbalance remains positive (i.e., [k] > 0 for all k). During the execution
of the proposed distributed balancing algorithm, packets containing information are
dropped with probability ¢;; < 1 for each communication link (v;,v;) € £ (we assume
independence between packet drops at different time steps and different links and link
directions). During transmissions on link (v;,v;), we have that at each transmission, a
packet goes through with probability 1—¢;; > 0. Thus, if we consider k;; consecutive uses

of link (v, v;), the probability that at least one packet will go through is 1 — qlkjlj, which
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will be arbitrarily close to 1 for a sufficiently large k;;. Specifically, for any (arbitrarily

log e
ki =
" [longj ’

to ensure that each transmission goes through by k;; steps with probability 1 — e.

small) € > 0, we can choose

Suppose now that Algorithm 8 runs for an infinite number of iterations (where infinite
successful packet transmissions occurred on each link (v;,v;), for a sufficiently large
ki;) and, by contradiction, its total imbalance remains positive (i.e., e[k] > 0 for all
k). This means that always (at each k) there will exist at least one node with positive
weight imbalance and thus the proof of this Proposition becomes identical to the proof
of Proposition 10.

As a result we have that if the Integer Circulation Conditions in Section 5.2 hold, the
total imbalance [k| decreases after a finite number of iterations, and Algorithm 8 results

in a weight-balanced digraph after a finite number of iterations. O

6.6 Simulation Study

In this section, we present simulation results and comparisons for the proposed dis-
tributed algorithms. Specifically, we present detailed numerical results for a random
graph of size n = 20 and for the average of 1000 random digraphs of 20 and 50 nodes
each. We illustrate the behavior of the proposed distributed algorithm for the following
three different scenarios: (i) the scenario where Algorithm 6 operates in a randomly
created graph of 20 nodes where for every communication link (vj,v;) € £ there are
bounded transmission delays 0 < 7;; < 7 where 7 = 10 (independently between different
links and link directions) and each node v; transmits the desired weight change cl(j)[k]
(cgi)[kr]) on each outgoing (incoming) edge (v;,v;) € € ((vj,v;) € &) to each v € ./\/;r
(vi € N}7), at each iteration k, (ii) the scenario where Algorithm 7 operates in a ran-
domly created graph of 20 nodes where for every communication link (vj,v;) € £ there
are bounded transmission delays 0 < 7;; < 7 where 7 = 10 (independently between dif-
ferent links and link directions) and each node v; transmits only once the desired weight
%))
lj
v € /\fjJr (v; € /\fj_), (iii) the scenario where Algorithm 8 operates in a randomly created

change ¢’ [k] (cﬁ) [k]) on each outgoing (incoming) edge (v, v;) € € ((v4,v:) € £) to each
graph of 20 nodes where for every communication link (v;,v;) € £ there are packet drops
with equal probability ¢ (where 0 < g < 1) (independently between different links and
link directions) and each node v; transmits the new weight fi;[k + 1] ( f](,f ) [k]) on each
outgoing (incoming) edge (v;,v;) € € ((vj,v;) € €) to each v; € N? (v; € Nj), at each
iteration k. Note that the the integer circulation conditions (presented in Section 5.2)

hold of all three different scenarios.
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In Fig. 6.3 we show the operation of Algorithm 6 in a randomly created graph of 20 nodes
where for every communication link (v;,v;) € £ there are bounded transmission delays
0 < 75 < T where 7 = 10 (independently between different links and link directions)
()
lj
(incoming) edge (v;,v;) € € ((vj,v;) € £) to each vy € ./\/'j+ (vi € N7), at each iteration

and each node v; transmits the desired weight change ¢’ [k] (cgz)[k:]) on each outgoing

k. In the first case, we plot the absolute imbalance ¢ = >\, |z;], Yv; € V (blue line)

and the perceived total imbalance e®) = > |x§-p )

iterations k. In the second case the nodes balances x;[k] (as defined in Definition 2) as

| (red line) against the number of

a function of the number of iterations k for the distributed algorithm. Here, the plot
suggests that the absolute imbalance € becomes equal to zero after a finite number of
iterations, which means that Algorithm 6 is able to obtain a set of integer weights that
balance the corresponding digraph after a finite number of iterations in the presence of

bounded transmission delays 0 < 7;; < 7, where 7 = 10, on each link (v;,v;) € €.

Absolute and Perceived Absolute Imbalance vs Iterations for a Random Graph of 20 Nodes
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FIGURE 6.3: Execution of Algorithm 6 for the case when the integer circulation condi-

tions hold for a random graph of 20 nodes with transmission delays 0 < 7;; < T where

7 = 10. Top figure: Total (absolute) imbalance €[k] (blue line) and perceived total

imbalance £®)[k] (red line) plotted against number of iterations. Bottom figure: Node
weight imbalances x;[k] plotted against number of iterations.

In Fig. 6.4 we show the operation of Algorithm 7 for the same case as Fig. 6.3. Here
the plot suggests that Algorithm 7 is able to obtain a set of integer weights that balance
the corresponding digraph after a finite number of iterations in the presence of bounded
transmission delays 0 < 7;; < 7, where 7 = 10, on each link (v;,v;) € &, for the case
where each node v; transmits only once the desired weight change.

In Fig. 6.5 we show the operation of Algorithm 8 for the same cases as Figs. 6.3 and
6.4. The plot suggests that Algorithm 8 is able to obtain a set of integer weights that
balance the corresponding digraph after a finite number of iterations in the presence of

packet dropping links with probability ¢ = 0.8, on each link (v;,v;) € £.
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AbsoIng and Perceived Absolute Imbalance vs Iterations for a Random Graph of 20 Nodes
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FI1GURE 6.4: Execution of Algorithm 7 for the case when the integer circulation condi-

tions hold for a random graph of 20 nodes with transmission delays 0 < 7;; < 7 where

7 = 10. Top figure: Total (absolute) imbalance ¢[k] (blue line) and perceived total

imbalance £®)[k] (red line) plotted against number of iterations. Bottom figure: Node
weight imbalances z;[k] plotted against number of iterations.

Abso{ute and Perceived Absolute Imbalance vs Iterations for a Random Graph of 20 Nodes
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FIGURE 6.5: Execution of Algorithm 8 for the case when the integer circulation condi-

tions hold for a random graph of 20 nodes with packet drop probability g;; = 0.8. Top

figure: Total (absolute) imbalance £[k] (blue line) and Perceived Total Imbalance €(®) [k]

(red line) plotted against number of iterations. Bottom figure: Node weight imbalances
z;[k] plotted against number of iterations.

6.7 Chapter Summary

In this chapter, we introduced and analyzed a novel distributed algorithm which achieves
integer weight balancing in a multi-component system under lower and upper constraints
on the edge weights in the presence of time delays over the communication links. We

analyzed its functionality, established its correctness and showed that it achieves integer
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weight balancing after a finite number of steps. We also added extensions to handle the
cases of packet drops over the communication links and event-triggered operation where
we showed that in both scenarios, the proposed algorithm converges (with probability
one) to a set of weights that form a balanced graph after a finite number of iterations We
also demonstrated the operation, performance, and advantages of the proposed algorithm

via various simulations.



Chapter 7

Conclusions

and Future Directions

7.1 Conclusions

In this thesis, we presented distributed algorithms for weight balancing over a static
directed graph. In Chapter 3 we presented a distributed algorithm which deals with the
problem of balancing a weighted digraph. The proposed distributed algorithm operates
by having each node compute its weight imbalance and then increase the integer weights
of its outgoing edges so that it becomes weight balanced. Specifically, the outgoing edges
are assigned, if possible, equal integer weights; otherwise, if this is not possible, they
are assigned integer weights such that the maximum difference among them is equal to
unity. We showed that our distributed algorithm results in a weight balanced digraph
after a finite number of iterations (bounded in the worst case by O(n7)) and we also
carried out numerical simulations to illustrate the operation and potential advantages
of the proposed distributed algorithm.

In Chapter 4, we presented a novel distributed algorithm which deals with the problem
of balancing a weighted digraph in the presence of time delays (bounded by a maximum
value 7) and packet drops over the communication links. This algorithm operates by
having each node compute its delayed weight imbalance according to the latest received
weight values from its in-neighbors. Then, if it has positive (delayed) imbalance, it in-
creases by 1 the integer weights of its outgoing edges one at a time, following a fixed
priority order (in a round robin fashion) until it becomes weight balanced. This means
that the outgoing edges are assigned, if possible, equal integer weights; otherwise, if
this is not possible, they are assigned integer weights such that the maximum difference
among them is equal to one. We showed that our distributed algorithm converges to a
set of weights fi; = f%, V(vi,v;) € €, after O(n57) iterations (where [7; 1s a set of weights
that form a weight balanced digraph) after a finite number of steps bounded by O(n®)

89
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under no delays (7 = 0). Then, we extended this result for the case where communi-
cation links could also result in possible packet drops (i.e., unbounded delays) in the
corresponding communication network where we showed that the proposed distributed
algorithm converges, with probability one, to a set of weights fi; = ff}, V(v,v;) € €,
after a finite number of iterations despite the presence of packet drops occurring with
probability ¢;;, where fi;' is the set of weights that form a weight balanced digraph and
are obtained after a finite number of steps bounded by O(n®) under no packet drops
(q;j = 0). Following these developments, we presented an event-triggered version of the
proposed distributed algorithm where each agent autonomously decides when commu-
nication and control updates should occur so that the resulting network executions still
result to a set of weights f; = fl’;, V(vi,v;) € &, after a finite number of steps bounded
by O(n%7) iterations (where the set of weights [7; is the set of weights obtained by the
nominal algorithm that runs with no even-triggering and no delays). We also carried out
numerical simulations to show the operation and potential advantages of the proposed
distributed algorithm.

In Chapter 5, we presented a novel distributed algorithm which deals with the problem of
balancing a weighted digraph in the presence of upper and lower weight constraints over
the communication links. Our distributed algorithm operates by having each node com-
pute its weight imbalance according to the weight values from its out- and in-neighbors.
Then, if it has positive imbalance it attempts to add +1 (or subtract —1) to its outgo-
ing (or incoming) integer weights one at a time, according to a predetermined (cyclic)
order, in a round robin fashion, until its weight imbalance becomes zero. Each node
transmits the amount of change it calculated on each outgoing (or incoming) edge while
it receives the amount of change calculated by its out- and in-neighbors; it then assigns
integer weights on its incoming and outgoing edges with respect to the corresponding
upper and lower weight constraints. We showed that our distributed algorithm results
in a weight balanced digraph after a finite number of iterations and carried out numer-
ical simulations to illustrate the operation and potential advantages of the proposed
distributed algorithm.

Finally, in Chapter 6, we presented a novel distributed algorithm which deals with the
problem of balancing a weighted digraph within the allowable edge weight intervals in the
presence of time delays and packet drops over the communication links. Our distributed
algorithm operates by having each node compute its perceived weight imbalance accord-
ing to the latest received weight values from its in-neighbors. When the communication
links are subject to time delays, a node has positive perceived imbalance, it calculates
the desired change amount for each incoming and outgoing links by adding +1 (or sub-
tracting 1) to its outgoing (or incoming) integer weights one at a time, according to a
predetermined (cyclic) order until its weight imbalance becomes zero. The node subse-

quently transmits the amount of change it calculated on each outgoing (or incoming)
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edge while it receives the amount of change calculated by its out- and in-neighbors, and
assigns integer weights on its incoming and outgoing edges with respect to the corre-
sponding upper and lower weight constraints. We showed that our distributed algorithm
results in a weight balanced digraph after a finite number of iterations. The operation
of the proposed algorithm was extended for the case where we have event-driven actua-
tors, enabling a more efficient use of the available resources. Specifically, we presented
an event-triggered operation of the proposed distributed algorithm where each agent
autonomously decides when communication and control updates should occur so that
the resulting executions still result to a weight balanced digraph after a finite number of
iterations. Finally, the operation of the proposed algorithm was extended for the case
where communication links could also result in possible packet drops (i.e., unbounded
delays) in the corresponding communication network. In this case, we showed that the
proposed distributed algorithm converges, with probability one, to a weight balanced
digraph after a finite number of iterations. We also carried out numerical simulations to

illustrate the operation and potential advantages of the proposed distributed algorithm.

7.2 Future Directions

In this thesis we have that weight-balanced graphs/matrices play an important role
in the analysis and convergence of distributed coordination algorithms. The algorithms
introduced in this thesis can also be used for other applications. A distributed algorithm
which deals with the problem of balancing a weighted digraph, introduced and analyzed
in Chapter 3, can be used for the case where each agent in the network wants to calculate
a common quantized value equal to the exact average of the initial values (i.e., the nodes
need to reach quantized consensus). Specifically, by assuming that each node has two
initial values (the quantized measurement along with the value 1) we can implement
a “mass summation” algorithm in which every node sums the incoming values and
then directly transmits them to an out-neighbor, chosen according to the predetermined
priority order. This iteration will allow each agent to obtain two integer values, the ratio
of which is equal to the average of the initial values of the nodes. The extension towards
quantized average consensus has applications in capacity and memory constrained sensor
networks, load balancing in processor networks, and others.

In Chapter 5 we presented a novel distributed algorithm which deals with the problem
of balancing a weighted digraph in the presence of upper and lower weight constraints
over the communication links and we extended its operation, in Chapter 6, for the cases
where we have time delays and packet drops over the communication links. The presence
of constraints over the communication links means that the differences of the resulting
link weights (that form a weight balanced digraph) are also constrained and depend on

the upper and lower weight intervals and the graph structure. Given a weight balanced
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digraph, one can use a finite-time algorithm, based on max-consensus, to obtain a doubly
stochastic matrix which find applications in distributed averaging. In this matrix the
link weight differences are also constrained (since they depend on the weight balanced
digraph) and affect the asymptotic convergence rate towards average consensus. Thus,
the design of a distributed algorithm which calculates a set of weights that form a
weight balanced digraph in the presence of upper and lower weight constraints and
minimizes the link weight differences is an important open problem, which will allow us
to perform distributed averaging under the maximum possible rate of convergence (i.e.,
the convergence rate under which every node reaches, asymptotically, average consensus
will be the maximum possible).

The operation of the proposed distributed algorithm, presented in Chapters 5 and 6,
can also be extended to the case where nodes with negative weight imbalance also at-
tempt to change the integer weights in both its incoming edges and its outgoing edges
with respect to the corresponding upper and lower weight constraints. Depending on
the graph structure, this could improve the speed under which we are able to obtain a
set of weights that form a weight balanced digraph, which means that once the nodes
have reached a weight balanced digraph, they can move on to some other distributed
computation (e.g., average consensus). Furthermore, the proposed algorithm operation
can be extended to handle more realistic scenarios in which the edges are able to take
values in multiple spaces. This extension is highly important since, firstly, it can handle
the case where each edge may suffer damages and will be unable to obtain a certain
range of values, and secondly, a possible solution of this problem will lead to the def-
inition of a new circulation theorem, thus improving and extending the one presented
in Section 5.2, possibly leading to improved versions of algorithms which deal with the
standard and maximum flow problem, auction problem, and energy minimization prob-
lem. Finally, the proposed algorithm operation relies on bi-directional communication
(i.e., the communication topology is captured by the undirected graph that corresponds
to the network digraph). This assumption may not be valid for applications which
require directed communication since transmitting and receiving information requires
energy, which is typically a sparse commodity in many networked applications, such as
sensor networks and mobile ad hoc communication networks. Thus, the extension of
the operation of the proposed algorithm for the case when the communication topology
matches exactly the physical topology (i.e., the communication topology is captured by
a directed graph) is an open problem which will extend the range of applications towards

more realistic scenarios.
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