
Department of Electrical and Computer Engineering

SEMIoTICS: Semantically-enhanced IoT-enabled

Intelligent Control Systems

George M. Milis

A dissertation submitted to the University of Cyprus in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

June, 2018

Geo
rge

 M
. M

ilis

c© George M. Milis, 2018

Geo
rge

 M
. M

ilis

VALIDATION PAGE

George M. Milis

SEMIoTICS: Semantically-enhanced IoT-enabled Intelligent Control Systems

The present Doctoral Dissertation was submitted in partial fulfillment of the requirements for

the Degree of Doctor of Philosophy at the Department of Electrical and Computer Engineer-

ing, and was approved on June 18, 2018 by the members of the Examination Committee.

Committee Chair
Dr. Maria Michael

Research Supervisor
Dr. Marios Polycarpou

Research Supervisor

Dr. Christos Panayiotou

Committee Member
Dr. George Pallis

Committee Member
Dr. Riccardo Ferrari

iii

Geo
rge

 M
. M

ilis

Geo
rge

 M
. M

ilis

DECLARATION OF DOCTORAL CANDIDATE

The present doctoral dissertation was submitted in partial fulfillment of the require-

ments for the degree of Doctor of Philosophy of the University of Cyprus. It is a

product of original work of my own, unless otherwise mentioned through refer-

ences, notes, or any other statements.

iv

Geo
rge

 M
. M

ilis

Geo
rge

 M
. M

ilis

PerÐlhyh

Aut n thn epoq , h anjrwpìthta dianÔei thn epan�stash tou {DiadiktÔou twn Prag-

m�twn} (Internet of Things - IoT), . Ektim�tai ìti mèqri to 2020 o arijmìc twn sundede-

mènwn sto diadÐktuo suskeu¸n me dunatìthta antallag c dedomènwn pijanìn na uperbeÐ

ta 50 disekatommÔria. Autèc oi suskeuèc, mèsw thc sundesimìthtac touc, epaux�noun

thn teqnht nohmosÔnh twn susthm�twn se di�forouc tomeÐc efarmog¸n. H allhle-

pÐdrash twn susthm�twn me to fusikì kai teqnhtì touc perib�llon belti¸netai sh-

mantik� mèsw prohgmènwn dunatot twn anÐqneushc sumb�ntwn, an�lushc kai an�lhyhc

kat�llhlwn dr�sewn. Basik prìklhsh apì th skopi� tou autìmatou eufuoÔc elègqou

mèsw anatrofodìthshc, eÐnai h dunatìthta eÔkolhc enswm�twshc nèwn stoiqeÐwn IoT

 tropopoÐhshc/diamìrfwshc ufist�menwn susthm�twn elègqou qwrÐc na qrei�zetai na

stamat sei h leitourgÐa tou sust matoc kai na epanasqediasteÐ.

H ereunhtik koinìthta anagn¸rise prìsfata thn prìklhsh tou sqediasmoÔ euèli-

ktwn kai prosarmìsimwn susthm�twn elègqou pou ja epwfeloÔntai apì thn se pragma-

tikì qrìno allag tou arijmoÔ kai tou tÔpou twn diajèsimwn suskeu¸n se èna sÔsthma

meg�lhc klÐmakac. Sta plaÐsia aut c thc ereunhtik c ergasÐac, ekmetalleuìmaste te-

qnologÐec apì thn ereunhtik perioq tou {shmasiologikoÔ diadiktÔou}, proqwr¸ntac

sto sqediasmì miac kainotìmac arqitektonik c eufu¸n susthm�twn elègqou, basismènhc

stic teqnologÐec shmasiologik c montelopoÐhshc kai to DiadÐktuo twn Pragm�twn

(Semantically-Enhanced, IoT-enabled Intelligent Control Systems (SEMIoTICS)). H

upì anafor� arqitektonik kai sÔsthma, SEMIoTICS, enswmat¸nei èna upì-sÔsthma

{Epìpth} pou me th seir� tou basÐzetai se èna {Gr�fo Apoj keushc Gn¸shc} gia th

dieukìlunsh thc shmasiologik c perigraf c twn sunistws¸n stoiqeÐwn kai thn ulopo-

Ðhsh twn mhqanism¸n exagwg c logik¸n sumperasm�twn. Stìqoc eÐnai h epakìloujh

suneq c enhmèrwsh thc diamìrfwshc tou sust matoc elègqou. To sÔsthma elègqou

pou prokÔptei, epitrèpei thn se pragmatikì qrìno prosarmog stic trèqousec dunatìth-

tec pou diajètoun ta epÐ mèrouc diajèsima stoiqeÐa.

v

Geo
rge

 M
. M

ilis

DeÐqnoume th dunatìthta efarmog c tou SEMIoTICS mèsw epexhghmatik¸n senarÐwn

sthn perioq twn Eufu¸n KtirÐwn (Smart Buildings). Sugkekrimèna, parousi�zoume ton

trìpo me ton opoÐo to upì-sÔsthma {Epìpthc} eÐnai se jèsh na uposthrÐxei th diadiktua-

k (epana-)diamìrfwsh tou sust matoc elègqou, ¸ste na epilÔei to prìblhma rÔjmishc

thc jermokrasÐac q¸rou se ktÐria pollapl¸n zwn¸n. Met� apì opoiad pote allag

stic diajèsimec dunatìthtec anÐqneushc, an�lushc /kai an�lhyhc dr�shc akìmh kai

stic paramètrouc tou Ðdiou tou ktirÐou, to upì-sÔsthma {Epìpthc} xekin� mia diadikasÐa

kat� thn opoÐa anakt� apojhkeumènec gn¸seic sqetik� me to ktÐrio kai ta diajèsima

stoiqeÐa tou sust matoc elègqou kai tic qrhsimopoieÐ gia na diamorf¸sei se pragma-

tikì qrìno èna sqèdio katanom c twn stoiqeÐwn gia thn ulopoÐhsh tou apaitoÔmenou

elègqou, kaj¸c kai ikanèc leitourgÐec gia th bèltisth dianom tou s matoc elègqou se

(en dun�mei uparktoÔc) pollaploÔc energopoihtèc se k�je z¸nh tou ktirÐou.

vi

Geo
rge

 M
. M

ilis

Abstract

Humanity is currently experiencing the Internet of Things (IoT) revolution, where

by 2020 it is estimated that the number of connected and data exchanging devices

may exceed 50 billion. These Internet-enabled devices augment the intelligence of

systems within a domain of applications, by significantly improving the interaction

through advanced sensing, analysis and actuation capabilities. A key challenge

from a feedback control viewpoint is the ability to seamlessly integrate new IoT

components or modify existing configurations in feedback control settings without

having to halt the operation of the system and redesign the overall feedback control

scheme.

The control research community has recently recognised the challenge of design-

ing flexible and adaptable control systems that will take advantage of the online

evolution of numbers and types of devices in a large-scale system. The work in the

framework of this Dissertation exploits technologies from the semantic web domain,

for the design of a novel Semantically-enhanced IoT-enabled Intelligent Control Sys-

tems (SEMIoTICS) architecture. SEMIoTICS incorporates a supervisor module that

integrates a declarative-logic knowledge graph to facilitate the semantic annotation

of IoT components and logic-based deductive inference mechanisms for the subse-

quent continuous and online informed re-configuration of feedback control systems,

adapting to the capabilities of available cyber-physical components.

We demonstrate the applicability of SEMIoTICS through illustrative scenarios

from the Smart Buildings domain. More specifically, we present how the supervi-

sor is able to support the online (re-)configuration of feedback controllers for the

space heating problem in multi-zone buildings. Following a change in the avail-

able sensing, analysis and/or actuation capabilities or even in the building envelope

parameters, the semantically-enhanced supervisor initiates a process that retrieves

stored knowledge about the building and the available control system cyber-physical

vii

Geo
rge

 M
. M

ilis

components and uses it to configure online a distributed feedback control scheme.

In addition, each controller is given the ability to optimally split and allocate the

control signal to multiple actuators in a building zone.

viii

Geo
rge

 M
. M

ilis

Acknowledgments

My journey towards producing this Doctorate Dissertation has been a long yet

interesting and much rewarding experience. Thankfully, throughout this journey

I was surrounded by people and organizations who provided support at various

levels and of various kinds, the whole of it very important for my achievements to

date as a worker, as a researcher, and as a human being.

I hereby express my sincere thanks and gratitude to my supervisors, Prof. Marios

M. Polycarpou and Prof. Christos G. Panayiotou, for holding my hand during my

first research steps, as well as for providing continuous guidance and advices until

the last moment of producing my research results; their patience and understanding

have played a catalytic role to my personal development.

Being part of the ‘KIOS Research and Innovation Center of Excellence” family

for the last eight years has been a real inspiration. The research and technical skills,

as well as the personality of members of this family are unique. Thank you all for

spending time with me in identifying research questions, in social and philosophical

discussions, as well as in having fun. Taking the risk of (unintentionally) skipping

some of them and by no means assuming any order, I especially thank the rest of the

KIOS members with whom I had the chance to collaborate for the production of my

PhD research: Elias Kyriakides, Maria Michael, Markos Asprou, Panayiotis Kolios,

Stelios Timotheou, Panayiotis Papadopoulos, Vasso Reppa, Kalina Georgiades, Skevi

Chrysanthou, Despina Petrou. In addition, I separately express my sincere thanks

to Demetris Stavrou and Demetrios Eliades, who made an extra effort coping with

me during my down times and helping me to keep getting up after any difficulty. It

is my pleasure and relief knowing that we will continue collaborating and pursuing

high targets.

Apart from the KIOS family, my PhD journey was supported by many other

people. First of all, I acknowledge the contribution and I thank the rest of the

ix

Geo
rge

 M
. M

ilis

members of my Examination Committee, namely Dr. George Pallis and Dr. Riccardo

Ferrari, for taking the time to review my work and provide valuable expert feedback

towards securing the high quality of the research outcomes.

My research work and results would not have been undertaken and completed

without the financial support by: i) the University of Cyprus, ii) the European Re-

search Council (ERC) under the project ERC-AdG-291508 “Fault-Adaptive Monitor-

ing and Control of Complex Distributed Dynamical Systems” (FAULT-ADAPTIVE);

and iii) the European Union’s Horizon 2020 Research and Innovation Programme,

under Grant Agreement No 739551 (KIOS CoE). I acknowledge this and I feel the

responsibility of returning their investment in the form of technological and societal

advancements in the years to come.

This PhD Dissertation is dedicated to my parents, Michalis Milis and Eleni Tofa,

for showing me the sky and providing me with all necessary tools to touch it,

to my brother Marios and his family who have always been there for me, and,

more importantly, to my beloved wife Emiliana and our two angels, Marianna and

Michalis, for making my life journey so worthwhile and beautiful. Thank you.

x

Geo
rge

 M
. M

ilis

Publications

Dissertation Journal Articles

1. G.M. Milis, C.G. Panayiotou, and M.M. Polycarpou, “SEMIoTICS: Semantically-

enhanced IoT-enabled Intelligent Control Systems,” IEEE Internet of Things

Journal, 2017, doi:10.1109/JIOT.2017.2773200,

Available at: http://ieeexplore.ieee.org/document/8106780/.

2. G.M. Milis, C.G. Panayiotou, and M.M. Polycarpou, “Semantically-Enhanced

Online Configuration of Feedback Control Schemes,” IEEE Transactions on Cy-

bernetics, vol. 48, no. 3, pp. 1081-1094, 2017, doi:10.1109/TCYB.2017.2680740 ,

Available at: http://ieeexplore.ieee.org/document/7891022/

Dissertation Conference Papers

1. G.M. Milis, D.G. Eliades, C.G. Panayiotou, and M.M. Polycarpou, “A cognitive

agent architecture for feedback control scheme design,” 2016 IEEE Symposium

Series on Computational Intelligence (SSCI), Athens, 2016.

doi: 10.1109/SSCI.2016.7850187

2. G.M. Milis, D.G. Eliades, C.G. Panayiotou, and M.M. Polycarpou, “A Cogni-

tive Fault-Detection Design Architecture,” 2016 International Joint Conference on

Neural Networks (IJCNN), Vancouver, BC, 2016, pp. 2819-2826. doi: 10.1109/I-

JCNN.2016.7727555

3. G.M. Milis, D.G. Eliades, C.G. Panayiotou, and M.M. Polycarpou, “Semantic

mediation in smart water networks,” 2015 IEEE Symposium Series on Computa-

tional Intelligence, Cape Town, 2015, pp. 617-624. doi: 10.1109/SSCI.2015.96

4. G.M. Milis, M. Asprou, E. Kyriakides, C.G. Panayiotou, and M.M. Polycarpou,

“Semantically-enhanced configurability in state estimation structures of power

xi

Geo
rge

 M
. M

ilis

systems,” 2015 IEEE Symposium Series on Computational Intelligence, Cape Town,

2015, pp. 679-686. doi: 10.1109/SSCI.2015.104

5. G.M. Milis, C.G. Panayiotou, and M.M. Polycarpou, “Towards a Semantically

Enhanced Control Architecture,” in 2012 IEEE International Symposium on Intel-

ligent Control, Dubrovnik, 2012, pp. 1195-1200. doi: 10.1109/ISIC.2012.6398273

Dissertation Unpublished Journal Articles

1. G.M. Milis, C.G. Panayiotou, and M.M Polycarpou, “IoT-enabled Plug-and-

Play Control for the Energy and Comfort Performance in Smart Buildings,”

IEEE Internet of Things Journal, 2018. [to be submitted].

Other Related Publications

1. G. Milis et al., “Integrated modelling of medical emergency response process

for improved coordination and decision support,” Healthcare Technology Letters,

vol. 3, no. 3, pp. 197-204, 9 2016, doi: 10.1049/htl.2016.0039,

Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=7889137&isnumber=7889097

2. G. M. Milis, E. Kyriakides, and A. M. Hadjiantonis, Electrical Power Systems

Protection and Interdependencies with ICT. Berlin, Heidelberg: Springer-Verlag

GmbH Berlin Heidelberg, 2012, pp. 216–228.

3. G. M. Milis, E. Kyriakides, and A. M. Hadjiantonis, “On the complexities of

interdependent infrastructures for wide area monitoring systems,” in 2012

Complexity in Engineering (COMPENG). Proceedings, Aachen, 2012, pp. 1-6, doi:

10.1109/CompEng.2012.6242951

4. P. Kolios, G. Milis, C. Panayiotou, T. Staykova and H. Papadopoulos, “A

resource-based decision support tool for emergency response management,”

in 2nd International Conference on Information and Communication Technologies for

Disaster Management (ICT-DM), Rennes, 2015, pp. 159-165, doi: 10.1109/ICT-

DM.2015.7402032

5. J. Kantorovitch, A. Giakoumaki, A. Korakis, H. Papadopoulos, G. Milis, P.

Kolios and T. Staykova, “Knowledge modelling framework,” in 2nd Interna-

xii

Geo
rge

 M
. M

ilis

tional Conference on Information and Communication Technologies for Dis-

aster Management (ICT-DM), Rennes, 2015, pp. 145-151, doi: 10.1109/ICT-

DM.2015.7402037

xiii

Geo
rge

 M
. M

ilis

xiv

Geo
rge

 M
. M

ilis

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Dissertation Thesis Statement and Contributions 4

1.3 Dissertation Outline . 7

2 Background Knowledge and State-of-the-art Overview 9

2.1 Logic Theories, Deductive Inference and Declarative Languages . . . 9

2.1.1 The road towards modern logic 10

2.1.2 First Order Logic . 11

2.1.3 Syllogism - Deductive Inference Systems 12

2.1.4 Ontology languages and Description Logic 15

2.2 Background on Feedback Control System Components 16

2.2.1 Plant dynamics . 16

2.2.2 Actuator . 16

2.2.3 Controller . 17

2.2.4 Sensor . 17

2.2.5 State Estimator . 18

2.2.6 Learning Component - Approximator 19

2.2.7 Pre-Control Processing Function 19

2.2.8 Post-Control Processing Function 19

2.3 State-of-the-Art . 20

3 SEMIoTICS Architecture and System 27

3.1 Problem Formulation . 27

3.2 Reference Architecture . 30

3.3 Semantically-enhanced Supervisor . 32

3.3.1 The knowledge Graph . 33

xv

Geo
rge

 M
. M

ilis

3.3.2 Semantic Annotation . 38

3.3.3 Semantic annotation models of components 42

Plant . 43

Sensor . 43

Actuator . 44

Controller . 46

3.3.4 Semantic Reasoning . 47

Actuator-Plant-Sensor Matching 49

Semantic matching of a controller 50

3.3.5 Use Case . 52

Exploring more complex knowledge and semantic relations . 61

3.3.6 The Configurations Graph . 62

3.3.7 Configuration option selection 62

3.3.8 Illustrative Scenarios Execution 66

3.4 Complexity and Scalability . 68

3.5 Implementation Details . 74

4 Online Synthesis of Distributed Feedback Control Schemes 79

4.1 Case with one actuator per zone . 79

4.2 Case with multiple actuators per zone: optimal allocation of control

signal . 85

4.3 Simulation Results and Impact . 87

5 SEMIoTICS applications in Critical Infrastructures 93

5.1 Semantically-enhanced Reconfigurability in State Estimation Struc-

tures of Power Systems . 93

5.1.1 Introduction . 93

5.1.2 The need for flexible architectures 95

5.1.3 Formulation . 96

5.1.4 Proposed Solution . 98

5.1.5 Knowledge Graph and Semantic Reasoning Process 100

5.1.6 Use Cases . 102

5.2 Semantic Mediation in Smart Water Networks 104

5.2.1 Background on modeling and control of hydraulics 107

xvi

Geo
rge

 M
. M

ilis

5.2.2 Formulation . 109

5.2.3 Solution . 111

5.2.4 Semantic Reasoning and Configuration Selection 113

5.2.5 Case Study . 114

5.3 A Semantically-enhanced Fault-Detection Design Architecture 116

5.3.1 Problem formulation . 118

Basic Components . 119

Advanced Components . 121

Semantically-enhanced Supervisor 122

5.3.2 SEMIoTICS (FD) Architecture 123

5.3.3 Semantic Reasoning and (FDS) Configuration Selection 125

5.3.4 Use Case: Water-Tank Contamination Event Detection 125

5.3.5 Remarks . 129

6 Conclusions and Future Work 131

xvii

Geo
rge

 M
. M

ilis

xviii

Geo
rge

 M
. M

ilis

List of Figures

1.1 A top-down view of a large-scale commercial building, equipped

with several control systems for air-quality monitoring, temperature

regulation, lighting control, water distribution monitoring, security

system. Heterogeneous static and mobile sensors and actuators are

deployed in several locations of the building. The systems are main-

tained by technicians’ teams and control operators/engineers. Devices

and human operators are able to communicate through cloud services. 3

1.2 The SEMIoTICS module acts as a middle layer between the control

operators/engineers shown in Fig. 1.1 and the (physical or cloud-

based) feedback control components in the building 5

3.1 A plant with multiple IoT components available at time step kI, form-

ing nI possible “Control System Configurations”. A supervisor gen-

erates the respective selection signal σI 28

3.2 The SEMIoTICS architecture . 31

3.3 An open-plan office with inner temperature x1, ambient temperature

w1, a deployed temperature sensor f s
1 , one heating actuator f a

1 and a

temperature controller f c
1 . 33

3.4 A set of terms that a human would use in order to describe the plant

in Fig. 3.3 . 34

3.5 The types/classes to which the “things” belong 35

3.6 Relations between “things” of the same or of different classes. Coloured,

continuous-line arrows illustrate explicit relations between things of

certain types, whereas dashed-line arrows illustrate indirect relations

between things of certain types . 37

xix

Geo
rge

 M
. M

ilis

3.7 Representation of relation graphs: The graph G(F s,U,E(F s,U)) is high-

lighted with light blue colour, the graph G(U,L,E(U,L)) is highlighted

with light green, the graph G(Y,M,E(Y,M)) is highlighted with light

orange, the graph G(Y,P,E(Y,P)) is highlighted with light red, and the

graph G(M,Q,E(M,Q)) is highlighted with light purple. The “prime”

superscript is used to illustrate the potential of having multiple “things”

in each class. 37

3.8 A control system component with an example semantic model of an

input, an output and a parameter . 41

3.9 The semantic model of a certain plant f p, with one input vp, one output

xp and one parameter ζp . 44

3.10 The semantic model of a certain sensor f s, with one input xs, one

output ys and one parameter ζs . 45

3.11 The semantic model of a certain actuator f a, with one input ua, one

output va and one parameter ζa . 45

3.12 The semantic model of a certain controller f c, with one input yc, one

output uc and one parameter ζc . 46

3.13 Semantic Matching: Actuator - Plant 50

3.14 Semantic Matching: Sensor - Function - Controller 51

3.15 A building with two adjacent rooms. Circles represent sensors, tri-

angles represent actuators, diamond-shapes represent controllers and

rectangles represent processing functions. Details about the compo-

nents are given in the context of the examples. 52

3.16 The building with two adjacent rooms as shown in Fig. 3.15, marking

also the three detected configuration options; one with double blue

line, another with dashed orange line and a third with red line 58

3.17 The configuration of a feedback control system, comprising the plant

f p
1 , the actuator f a

1 , the sensor f s
1 and the controller f c

1 60

3.18 A diagrammatic representation of the Configurations Graph resulted

from the Semantic Reasoning process 63

xx

Geo
rge

 M
. M

ilis

3.19 A 24-hour simulation of the plant’s control operation. At k1: The

sensor f s
1 stops transmitting and SEMIoTICS re-configures the control

system to operate with the available open loop controller; At k2: Sen-

sor f s
4 is installed, however, measuring in degrees Fahrenheit; At k3:

A pre-control function becomes available, which transforms degrees

Fahrenheit to Celsius; At k4: Additional sensors become available,

measuring Room 1 temperature, occupancy of room, opening of door

connecting the two rooms. Several pre-control and parameter func-

tions are available as well and Room 1 is not occupant; At k5: Room

1 is occupant again, while the opening of the door causes the Room 2

temperature to be considered a valid measurement for Room 1 tem-

perature, with certain weight. 67

3.20 A diagrammatic representation of the tools and technologies adopted

for the implementation of SEMIoTICS 75

4.1 A building with three zones spanning two floors. It involves 12 wall-

areas with 3 doors and 4 windows, 4 ceiling-areas and 2 floor-areas.

The zones have temperatures xi, i ∈ {1, 2, 3}. The ambient temperature

is modelled by w1 and the floor temperature by w2. 80

4.2 Extended SEMIoTICS architecture, incorporating the “Controller Syn-

thesis” module . 83

4.3 A 4-hour execution of the three simulations, presenting the results

only for zone 1 . 91

5.1 The typical architecture of an ECC, where the key position of the SE

is highlighted. [Source: [124]] . 94

5.2 Block diagram of the SE implementation, focusing on the relation with

the plant, the measurement signals and the rest of the monitoring and

control applications. 97

5.3 The SEMIoTICS architecture customised for the proposed SE im-

plementation; The Supervisor Σ undertakes the maintenance of the

Knowledge Graph, the semantic reasoning and the configuration se-

lection process. Sensors, State Estimators and Pre-SE Functions are

part of the online configuration selection. 99

5.4 Three-bus EPS with five measurement devices (12 single measurements)100

xxi

Geo
rge

 M
. M

ilis

5.5 The typical architecture of a WDN Monitoring and Control system.

Our contribution focuses on the components highlighted with blue

transparent colour . 106

5.6 A simple WDN with six junction nodes; water is supplied by a reser-

voir and a tank. When the tank water level goes below 110ft, the

pump is activated, and when the tank water level goes above 140ft,

the pump stops. 109

5.7 Block diagram of the tank head regulation implementation. A set

of sensors measure part of the states of a WDN (i.e., the tank and

junction heads and pipe flows). Then a state estimator (SE) estimates

the complete set of states, by producing the vector y′ = x̂, which is

then fed to the controller to help it compute the input to the set of

available actuators (e.g., pumps, valves). 111

5.8 The customised SEMIoTICS-based architecture, where the Supervisor

Σ performs the reconfiguration of the control system 112

5.9 Block diagram of the architecture. Top: the System on which fault de-

tection is performed; Middle: the Semantically-enhanced Supervisor

Σ; Bottom: the Fault-Detection Scheme. 124

5.10 A water storage tank utilised in the illustrative use case 126

xxii

Geo
rge

 M
. M

ilis

List of Tables

3.1 The components’ database with the respective semantic annotations

of end-points . 53

3.2 Results of configuration options and selection 61

3.3 Sets participating in Semantic Reasoning 70

3.4 Complexity of Semantic Reasoning Queries 72

3.5 Scalability experimental results . 73

4.1 List of simulation parameters and (indicative) values 88

4.2 Simulation results . 91

5.1 Components’ list and semantic annotations at time k0 = 0 126

xxiii

Geo
rge

 M
. M

ilis

xxiv

Geo
rge

 M
. M

ilis

Main Notation

x A vector of the states of a plant/system

w A vector of uncontrolled inputs (disturbances) to a plant/system

y A measurement vector associated with a plant/system

y′ A vector of processed measurements of plant states

u A vector of control decisions aiming to drive the inputs to a plant/system

u′ A vector of processed control decisions

v A vector of controlled inputs to a plant/system

ζ A parameters vector

r A state-reference vector associated with a plant/system

K The set of discrete time samples of the continuous signals at 1-sec intervals.

k ∈ K An index of the discrete time samples of a certain period of time

kI, I = 0, 1, 2, ... Times at which events happen, which change the availability of IoT

components in the plant.

k+
I The discrete time samples for kI < k < kI+1

p, s, y, c,u, a, ζ, e, θ When used as superscripts, they help differentiating between

variables referring to the models of plants, sensors, pre-control functions, con-

trollers, post-control functions, actuators, parameter-functions, state-estimators

and approximation functions respectively

xxv

Geo
rge

 M
. M

ilis

f p, f s, f y, f c, f u, f a, f ζ, f e, f θ Functions representing the models and/or implementa-

tions of plants, sensors, pre-control functions, controllers, post-control func-

tions, actuators, parameter-functions, state-estimators and approximation

functions respectively

ζp, ζs, ζy, ζc, ζu, ζa, ζζ, ζe, ζθ Parameter vectors associated with the implementations

of plants, sensors, pre-control functions, controllers, post-control functions,

actuators, parameter-functions, state-estimators and approximation functions

respectively

F The set of all control system components each time available in the system/-

plant

F
p,F s,F y,F c,F u,F a,F ζ,F e,F θ Subsets of the set F , with elements the control

system components of type plants, sensors, pre-control functions, controllers,

post-control functions, actuators, parameter-functions, state-estimators and

approximation functions respectively respectively

f I
J , I = 0, 1, 2, ... and J = 1, 2, ...,nI The J-th of the nI control system configuration able

to offer the required control service to the plant following the changes at time

kI.

σI The configuration selection decision, which activates one of the configura-

tions, following the time kI

Σ The Semantically-enhanced Supervisor module of SEMIoTICS

GI The state of the declarative-language-based “Knowledge Graph” that hosts

the available experts’ knowledge at time kI

SI The state of the set of feedback-control (semantic) specifications given to the

function (e.g., the characteristics of the desired state) at time kI

C The space of all possibilities for configuration decisions

CI The set of all valid configurations of the feedback-control system at time kI -

The Configurations Graph at time kI

C(I,J) A sub-graph of the Configurations Graph CI, which defines the configuration

options J = 1, ...,nI

xxvi

Geo
rge

 M
. M

ilis

L The set of plant’s features of interest (locations)

Q The set of physical properties associated with the defined features of interest

(locations)

P The set of components’ capabilities and expected effect on plant’s states, in-

puts, parameters, etc.

M The set of measurement units associated with the defined properties of fea-

tures of interest

U The set of all inputs defined by available components

Y The set of all outputs defined by available components

Z The set of all parameters defined by available components. It also acts as a

“Parameters Registry”

Λ The semantic annotation space, defined by four dimensions: Λ ≡ L×Q×P×M

λ(·) The Semantic Annotation operation

xxvii

Geo
rge

 M
. M

ilis

xxviii

Geo
rge

 M
. M

ilis

Chapter 1

Introduction

1.1 Motivation

Today’s engineered systems more and more employ cyber and physical components

with advanced communication capabilities [6], such as sensors for monitoring sys-

tem properties, electrical and mechanical actuators, controllers and other software

tools implementing algorithms for data and signal processing. This trend is be-

coming even more prominent due to the emerging level of maturity of the Internet

of Things (IoT) paradigm and the subsequent proliferation and high penetration

of smart portable and embedded devices connected to cyber-physical systems and

networks. Due to this IoT revolution, it is estimated that by 2020 the number of con-

nected and data exchanging devices may exceed 50 billion [34], suggesting a future

where machines will interact with each other and the environment in a context-

aware framework [67]. IoT components augment the intelligence of systems within

a domain of applications through their capability to exploit (wireless) Internet con-

nectivity and use standard communication protocols, e.g. MQTT [83]. They are able

to cover a broad range of functionalities, from observing and measuring properties of

physical features of interest, to processing collected data and information, to making

and/or supporting decisions, to acting and affecting these properties after receiving

appropriate instructions.

Large-scale smart buildings are good candidate consumers of IoT components,

due to their advanced monitoring and control requirements. Fig. 1.1 shows a top-

down view of a large-scale commercial building. We spend a big part of our lives

in such buildings and we require them to offer a comfortable and safe environment,

Geo
rge

 M
. M

ilis

and in addition operated in a cost-effective manner. Therefore, many large-scale

buildings are already equipped with Building Automation Systems (BAS) and sub-

systems that monitor and control air quality, lighting, water distribution, security, as

well as heating, ventilation and air-conditioning (HVAC). Building owners/operators

typically purchase the systems from certain integrators that use equipment from

certain vendors, most times vendor-specific and technology-specific. The integrators

are responsible to appoint a team of technical persons to perform the installations

of fixed types and numbers of devices in the building, as well as train a team of

operators to maintain a set of pre-programmed functions and generated reports.

Current solutions for monitoring and feedback control applications typically as-

sume pre-deployed sensing and actuation devices, as well as pre-designed feedback

control intelligence. However, the IoT ecosystem is rapidly evolving and IoT-enabled

equipment/components, including mobile devices and virtual ones running through

a computer terminal or on the cloud, can take advantage of the readily available

wireless internet infrastructure and be deployed and/or removed online, thus mod-

ifying the available sensing, actuation and signal processing capabilities in general

as shown in Fig. 1.1. The IoT components may either be ordered, installed and

maintained by experts within a relevant upgrade plan or they may be installed by

occupants following ad-hoc purchases of IoT-enabled devices or they may become

available at run-time through the sensing infrastructure on the mobile phones of

building occupants.

Assume a broken lighting sensor; the lighting control system could make use

of a luminosity sensor from an Android device of an occupant, e.g. to turn on the

lights when they are off yet the luminosity level appear to be low for the needs of

the occupants in the room. The HVAC could use information from the local weather

station or it could make use of a window opening measurement from the security

system to improve its decision making. Also, an HVAC system may utilize a newly

installed electric heater to supplement its actuation capacity to effectively control the

temperature considering cost-optimality as well. A temperature regulation system

could be reconfigured automatically so as to utilize the output of a newly installed

occupancy sensor to lower the reference value of the zone temperature when the zone

is not occupied, thus saving energy. The security system could detect occupants’

presence in a room using information from a CO2 measurement installed for the

air-quality system. Such flexibility is not provided by current control systems and

2

Geo
rge

 M
. M

ilis

it is clearly not practical or economical to have control engineers on-call, to design

new feedback control loops whenever a change in the components occurs. Building

operators will expect their control systems to exploit such seamless intelligence;

i.e., be able to utilize the new measurements, as well as utilize the processing and

actuation capabilities online, towards performing better against certain Quality of

Service (QoS) criteria related to occupants’ comfort, energy efficiency, quality of the

air, robustness of the solution, and so on.

Figure 1.1: A top-down view of a large-scale commercial building, equipped with

several control systems for air-quality monitoring, temperature regulation, lighting

control, water distribution monitoring, security system. Heterogeneous static and

mobile sensors and actuators are deployed in several locations of the building.

The systems are maintained by technicians’ teams and control operators/engineers.

Devices and human operators are able to communicate through cloud services.

The control community has recently identified the above research challenge [107].

The cited report identifies the need to build interoperable components (sensors, mod-

els, algorithms, actuators) that will exhibit plug-and-play capabilities, suggesting the

exploitation of technologies that deal with online discovery and composition of ser-

vices, from the Web domain [84]. The objective would be for control applications to

deal with dynamic compatibilities between cyber-physical components. To respond

to the above described challenges and build the prescribed flexibility, new control

3

Geo
rge

 M
. M

ilis

system architectures are required, able to facilitate the online recognition of devices,

the acquisition of their capability characteristics and finally the self-reconfiguration

of the control system to incorporate the new capabilities. This is an important aspect

for the practical adoption of IoT devices in monitoring and control applications of

large-scale systems [21], where the topology of the systems is too complex to handle

with traditional monolithic architectures. The smaller components will be enabled

to work autonomously to accomplish certain tasks in some part of the system and

co-operate effectively with the rest of the system, so as to address higher-level mon-

itoring and control challenges [116].

1.2 Dissertation Thesis Statement and Contributions

Thesis Statement: The configuration or reconfiguration needs of feedback control

loops in certain classes of large-scale systems, where the availability of sensors, ac-

tuators, controllers and other signal processing functions changes dynamically over

time, is effectively automated through the use of ontology-based knowledge mod-

els and deductive inference techniques (see Section 2.1), which facilitate the online

management of information about the components, the storage of knowledge about

feedback control engineering, as well as the implementation of necessary reasoning

algorithms. This functionality becomes available through the design of a Supervisor

system which undertakes to communicate with all deployed components, as well

as with human operators and cloud services, “understand” what sensing, actuation,

processing and control capability is available in the system and “think” on behalf

of the operators/engineers to appropriately re-configure all feedback control loops.

In addition, the resulting module facilitates the offering of additional flexibility and

intelligence by synthesizing online control schemes for certain applications.

The above “Thesis Statement” is proved in the smart building domain with

the design of the “Semantically-Enhanced IoT-enabled Intelligence Control Systems

(SEMIoTICS)” module as shown in Fig. 1.2 on the right. SEMIoTICS adds a middle

layer between the human operators, e.g. control engineers and the feedback control

components deployed in the system.

More specifically, the contributions related to this Dissertation are summarized

4

Geo
rge

 M
. M

ilis

Figure 1.2: The SEMIoTICS module acts as a middle layer between the control

operators/engineers shown in Fig. 1.1 and the (physical or cloud-based) feedback

control components in the building

as:

• Design and development of the Semantically-enhanced IoT-enabled Intelligent

Control Systems (SEMIoTICS) reference architecture and system [77, 80]:

SEMIoTICS is a novel, logical-inference-based system architecture and method,

applicable to a class of dynamical systems. SEMIoTICS addresses in general

a variable structure control problem, assuming that there is no pre-designed

single controller that poses all required adaptation capabilities to learn and

accommodate the changes in the controlled system and/or the control system

components (e.g., in case of replacing a faulty sensor). It incorporates a super-

visor that uses ontological knowledge graphs to model the expert knowledge

about individual components in a consistent way, so as to be exploitable by ma-

chines. It subsequently performs deductive (semantic) reasoning to decide the

online composition/re-configuration of feedback control loops, thus address-

ing the design-operation continuum challenge, as recognised by the CPSoS EU

project with relation to the cyber-physical systems of systems [24]. The control

system switches online between different configurations when components are

plugged-in. The switching among extracted control system configurations is

5

Geo
rge

 M
. M

ilis

decided and enforced through a discrete-state logic-based deductive reason-

ing process [9]. This mechanism assumes that the available control modes

(configurations) are not defined in advance; they are configured online using

components from an evolving database of control system components, able

to interoperate in a modular architecture but without hard-coded interfaces.

At discrete events, the logic-based system exploits modelled knowledge and

subsequent (standards’ based) semantic characterisations of components’ inter-

faces, as well as deductive inference rules to produce the switching signal. The

knowledge is stored in “knowledge graphs” formed by meaningful relations

between modelled knowledge entities of pre-defined types [39,104]. We apply

SEMIoTICS in the Smart Buildings domain to facilitate the re-configuration of a

heating control system where various IoT components are gradually deployed

and incorporated online.

• Online synthesis of distributed feedback control schemes in the Smart Build-

ings domain, with optimal control signal allocation capability to drive multiple

heating devices:

A core benefit from SEMIoTICS is the inherent flexibility to exploit redundancy

of “Things” capabilities by deciding and implementing alternative configura-

tions of a specific feedback control system. The latter is a feature that can be

deliberately exploited by control system engineers to design components that

adhere to relevant technical and QoS specifications. We designed a method that

allows the online synthesis of a distributed scheme of model-based controllers

(one controller per building zone), which are able to retrieve existing building

knowledge online and allow the plug-and-play temperature control. In addi-

tion, the controllers are designed so as to be able to split the control signal into

multiple signals driving additional heating devices in the zone they control.

The control scheme provides functionality which is specific to an application

domain, a class of systems and/or a set of control problems. In our work, we

demonstrate this feature for the heating control in multi-zone buildings, with

the aim to improve the performance against energy savings and occupant’s

thermal comfort criteria. Similar SEMIoTICS-compatible components can be

designed for other types of plants and domains.

• Horizontal and vertical applications of SEMIoTICS in Critical Infrastructure

6

Geo
rge

 M
. M

ilis

Systems [76, 78, 79]:

We show the customisation and transferability of SEMIoTICS to certain use

cases in Critical Infrastructures such as the Water Distribution Networks (WDNs)

and the Electric Power Systems (EPSs), as well as in vertical research areas such

as the fault detection schemes (FDSs).

First, we present the application of SEMIoTICS to the online (re-)configuration

of state estimation structures in EPSs; this use case involves changing the

domain knowledge to cover the EPS, customizing the semantic reasoning and

configuration selection processes to consider the EPS state estimation and using

components relevant to the domain and addressed problem. Then, we present

the application of SEMIoTICS to the online (re-)configuration of the tank-head

feedback control scheme in WDNs; the use case involves changing the domain

knowledge to cover the WDN and using feedback control components relevant

to the domain and addressed problem. Finally, we present the application of

SEMIoTICS to the contamination event detection in WDNs; in addition to the

domain knowledge change introduced with the previous use case, this use case

involves the re-design of the reasoning and configuration selection processes

to consider components from the fault detection area.

1.3 Dissertation Outline

The Dissertation is organized as follows: Chapter 2 discusses first the history of logic

theories and how the community ended up with first-order logic and declarative

languages used in our work for deductive reasoning. It then presents a component-

based analysis of a feedback control system, which is used as the basis for SEMIoTICS

semantic models and reasoning. Finally, it offers insights into the current state-of-

the-art in the research areas related to the Dissertation work. Chapter 3 details the

work related to our first contribution. Specifically, the Chapter starts with a general

formulation of the problem being considered, with reference to the proposed novel

architecture. It then provides a detailed description of the design of SEMIoTICS

modules and processes. It defines the “Knowledge Graph” and the respective se-

mantic annotations of individual control system components, as well as the pairwise

composition models in a feedback loop orchestration. It then defines and details the

7

Geo
rge

 M
. M

ilis

“Semantic Matching”, the “Semantic Reasoning”, and the “Configuration Selection”

operations after building the “Configurations Graph”. It continuous with discussing

the scalability aspects of the SEMIoTICS semantic reasoning and configuration se-

lection processes and ends with presenting the implementation technical details of

SEMIoTICS. The second contribution of our work is detailed in Chapter 4, which

presents the design of SEMIoTICS-compatible controllers that are synthesized and

plugged online and assume the heating control in a multi-zone building. The con-

trollers deal also with cost-optimal ways of splitting and allocating the control signal

to multiple actuators in each zone. Chapter 5 details the work related to the third

contribution, by presenting the exploitation of SEMIoTICS in Critical Infrastructures,

such as the Water Distribution Networks and the Electric Power Grid, dealing with

state estimation, control and fault-detection problems. Finally, Section 6 concludes

the Dissertation and discusses the overall impact of the work and promising future

directions.

8

Geo
rge

 M
. M

ilis

Chapter 2

Background Knowledge and

State-of-the-art Overview

2.1 Logic Theories, Deductive Inference and Declara-

tive Languages

The study of “Logic” has its roots in the Aristotelian theory of syllogism (deduction)

[101]. According to Aristotle, a syllogism is “speech (logos) in which certain things

have been supposed, different from those supposed results of necessity because of their being

so”. The “things supposed” comprise the premise (protasis), while the “results of

necessity” comprise the conclusion (sumperasma), that is, the logical consequence.

For instance, a statement C is the consequence (result of necessity) of the fact that A

and B being true (they are supposed), if its logical truthfulness cannot be challenged

given the truthfulness of the things supposed.

The Aristotelian theory of logic had remained dominant until the mid 19th cen-

tury, followed by approximately one hundred years of research that led to the con-

ception of “modern logic”. During that transformation time, G.E. Moore and B.

Russel had put effort in formalising logic by referring to “common sense” [82, 106],

then they started adding bounds and discussing the “set theory” as the foundations

for mathematics. During early twentieth century, the bounds became narrower

following the realisation of the “paradoxes of logic” and the work of B. Russel on

“Types theory”. These led to the establishment of “First-Order Logic (FOL)”, oth-

erwise called the “modern logic”, which had not happened before the mid 20th

century [39].

9

Geo
rge

 M
. M

ilis

2.1.1 The road towards modern logic

During the second half of the 19th century, logic was studied within the frame-

work of the classical philosophy, as well as in relation with the science of math-

ematics; algebra, axiomatics and analysis. Since the late 19th century the the-

ory of logic started becoming a blend of the propositional and predicate logic

(http://www.iep.utm.edu/prop-log/) on one hand and the theory of sets and

relations on the other hand. At that time, “thinking” was considered the ability

of mind to relate between “things”, i.e., derive conclusions about properties of cer-

tain things based on knowledge about properties of other things. This process of

“thinking”, performed by the mind, is essentially a mapping between pre-stored

knowledge about things. Based on this understanding, B. Russell [105] formed the

“symbolic logic” within the areas of “calculus of propositions”, “calculus of classes”

and “calculus of relations”. B. Russel, together with Peano and Frege agreed in their

separate works that mathematics were actually “symbolic logic”, i.e., the symbols

are used to help expressing logical propositions and relations between things.

More specifically, at the beginning of the 20th century, the work of Russell, Peano

and Frege considered the logical systems within the bounds of the theory of sets.

They had believed in the principle of “comprehension”, meaning that a thing/object

could be fully described by certain attributes, properties, qualities, etc. However,

later this theory faced certain contradictions (or paradoxes or antinomies), with the

most significant being the “Russell’s paradox”, which was formulated in terms of

notions of the set theory itself, i.e. the notion of negation and membership. The

discovery of the paradoxes, led to the revision of the foundations of set-theory and

its effect on logic and mathematics. In order to resolve the issues revealed by the

paradoxes, Russell developed his “Theory of Types”, which was incorporated into

his work on “Principia Mathematica”, co-authored with Whitehead [105]. The theory

of types [104] introduced the notion of “types” of elements of a set. This way, the

notion of “comprehension” was preserved. According to van der Waerden, in his

Moderne Algebra [28], the “Theory of Types” was then the most important system of

logic. However, in 1931, Godel announced his first “incompleteness theorem” [47].

During that time (1930), the early work of Skolem [110] on the Zermelo sys-

tem and the work of Von Neumann on his logic system [85], led to the appearance

of “First Order Logic (FOL)” as the basic system for logic. Hilbert & Ackermann’s

10

Geo
rge

 M
. M

ilis

“Grundzuge der theoretischen Logik” [26] shows that FOL was studied as a separate

system of logic by around 1928. This book shows also that the use of higher-order

logic would be possible and necessary when one would require to analyse meta-

concepts of mathematics. FOL was adopted as the natural system of logic by 1950,

adhering to: i) The principle of deduction (conditions of arguments to be correct fol-

lowing analysis of their validity); ii) The principle of universality (logical sentences

formed independently of specific topic); iii) The “Kant’s principle” (study the for-

mulation of arguments and deductions using logical variables and not instantiations

within a domain of discourse; iv) The Leibnizian ideal (compute logical deductions

with machine algorithms). The latter was first achieved by Boole with his algebra

of logic. Then, Frege made an impressive step forward and Godel followed by

establishing certain implementation limitations.

The concept “domain of discourse” was defined by G. Boole in 1854 in his work

“Laws of Thought”, as:

“In every discourse, whether of the mind conversing with its own thoughts, or of the

individual in his intercourse with others, there is an assumed or expressed limit within which

the subjects of its operation are confined. The most unfettered discourse is that in which

the words we use are understood in the widest possible application, and for them the limits

of discourse are co-extensive with those of the universe itself. But more usually we confine

ourselves to a less spacious field. Sometimes, in discoursing of men we imply (without

expressing the limitation) that it is of men only under certain circumstances and conditions

that we speak, as of civilized men, or of men in the vigour of life, or of men under some other

condition or relation. Now, whatever may be the extent of the field within which all the objects

of our discourse are found, that field may properly be termed the domain of discourse...”

In summary, it can be deduced that around 1900 logic was conceived as a theory

of sentences, sets and relations; almost until 1930 the established logic system was

(simple) type theory, while by 1950 FOL became the paradigm logical system.

2.1.2 First Order Logic

In general, a first-order language system assigns variable symbols to logical con-

stants. The language also defines the “domain of discourse”, which specifies the

range of the variables, in line with the Russel’s Theory of Types. Sentences written

using such languages have clear semantics. For instance, assume the domain of

11

Geo
rge

 M
. M

ilis

discourse D, being a set of objects of a certain type. An example of a first-order

statement within this domain could be the x, a(x), stating that some logical sentence

x is true and at the same time it’s logical transformation through the predicate a(x)

is also true. If a domain of discourse is not clearly defined, the logical derivations

may not be always feasible. For instance, the sentence ∀x, x > y cannot be logically

interpreted without knowing the domains of the logical variables x and y. So, if x

and y are real numbers, the statement is false because there are real numbers that can

be greater than other real numbers. But, if x is a positive number and y is a negative

number, the statement becomes always true since all positive numbers are greater

than any negative number. Moreover, assuming D being the domain of building

zones, we can define the adjacency of two building zones as a binary predicate a(·),

taking two building zones are arguments and returning> if the two zones are indeed

adjacent or ⊥ if they are not.

If the validity or not of any given sentence can always be deduced through

some language system, then this language is said to be “complete”. According to

Godel, the FOL language system is complete, although mathematical systems cannot

guarantee in general syntactic and semantic completeness [47]. This understanding

made FOL a sufficient language for codifying mathematical proofs. Moreover, the

tools utilised in mathematical proofs (theorems, sentences, etc.) can be explicitly

supported by quantification expressions such as the “given any”, “there is”, “for

any”, “for each”. For instance, the sentence: ∀x(a(x) 7→ b(x)) may be written.

Summarizing, to guarantee completeness, a FOL language always needs to define

a “domain of discourse” D, also defining the classes Ω of all terms used in the

language. For instance, an n-ary relation r is essentially a mapping of the form Ω(r):

D
n
7→ {true, false}. That is, a statement is true if is can be inferred by some logical

deduction within the domain D. In mathematics, a formula is logically valid only

if it is true no matter the instantiation of the variables in the defined domain of

discourse. Certain “axioms” can be also defined within a domain of discourse, as

being true anyway and helping the inference.

2.1.3 Syllogism - Deductive Inference Systems

Basic systems of “Logic” deal with certain logical “statements” or “sentences” be-

ing true or false. The logical statements under consideration are typically called

12

Geo
rge

 M
. M

ilis

“propositions” (see also the terms “propositional logic”or “sentential logic” or even

“zero-order logic”). Logical statements can be combined using “logical connectives”.

For instance, the “and” (conjunction), the “or” (disjunction), the “not” (negation)

and the “if” (denoting condition of existence) are logical connectives of the English

language. Moreover, “logical axioms” can be pre-defined, stating things that are

believed to be true by design. A third element of logic systems are the “inference

rules”, which specify given knowledge about the truthfulness of combinations of

propositions through logical connectives. In logic, an “inference rule” is a logical n-

ary function that takes as input certain statements, analyzes their syntax and returns

a conclusion. For example, in the “modus ponens” inference system, an inference

rule takes two inputs, one statement in the form “if a then b” and another in the form

“a”, and returns the conclusion “b”. A fourth element are the “quantifiers”, which are

operators that map propositions (their symbolic representation) to a specific domain

of discourse.

It has been mentioned earlier, that according to the Kant’s principle, only the

form of the statements should matter and not the instances of the logical variables.

We take an example of a syllogism from Aristotle: All men are speakers. No oyster

is a speaker. Therefore, no oyster is a man. This example can be transformed to the

first-order sentence: ∀a, b(a). 6 b(c). Therefore, b , c. Another example would be:

Statement 1: IF <high temperature> THEN <feeling hot>. Statement 2: <feeling

hot>. Deduction: <high temperature>. This example can be also transformed to

FOL as: Statement 1: a → b . Statement 2: b . Deduction: a. The given statements

are what we know is true (knowledge facts). Other knowledge can be inferred by

the given statements after applying some inference mechanism. The knowledge

facts and the inference rules are considered known a-priori in deductive inference,

either because they are part of the expect knowledge or because they can be derived

analytically using a-priori knowledge of the system.

Therefore, the concept “Deductive Inference” is concerned with checking whether

a statement is true given the truthfulness of another statement or a combination of

statements through logical connectives. There are many such systems for first-order

logic, including the “Hilbert-style deductive systems”, the “natural deduction”, the

“sequent calculus”, the “tableaux method”, and the “resolution”. It is noted that

derivations of proofs in “proof theory” are essentially deductions . A deductive

inference system is considered “sound” if any statement that can be derived in

13

Geo
rge

 M
. M

ilis

the system as true is logically valid. Conversely, a deductive inference system is

“complete” if every logically valid statement can be derived through the system.

All above mentioned deductive inference systems are both sound and complete.

The conclusions in these deductive inference systems do not typically consider the

semantic interpretations of the statements in a domain of discourse. On the other

hand, in FOL, deductive inference is only semi-decidable, that is, if a logically implies

b then this can be deduced by a deductive inference system. However, if a does not

logically imply b, this does not mean that a logically implies 6 b.

In general, the deductive inference systems use several logical and non-logical

symbols from the alphabet, such as:

• The quantifier symbols ∀ and ∃

• The logical connectives: ∧ for conjunction,∨ for disjunction,⇒ for implication,

⇔ or ≡ for biconditional, ¬ or˜for negation, etc.

• Parentheses, brackets, and other punctuation symbols.

• An infinite set of variables, often denoted by lower-case letters at the end of the

alphabet x, y, z, ·. Variables are often distinguished by sub-scripts: x0, x1, x2, ·.

• An equality symbol, e.g., =

• The truth constants are included, e.g., > for “true” and ⊥ for “false”.

• Additional logical connectives that may be required, such as “NAND” and

“exclusive OR”.

On the other hand, non-logical symbols represent semantic relations, i.e. map-

pings of knowledge objects within a domain of discourse. In the past, FOL con-

sidered a single fixed set of non-logical symbols to apply deductive inference. The

current practice, however, is to define a different set of non-logical symbols within the

bounds of an application. Such definition of logical symbols can be made through

“ontology languages”. Ontology languages are essentially collections of a finite

number of n-ary predicates/symbols, representing relations between n objects. For

example, man(x) is an example of a predicate of arity 1, which defines that “x is a

man”; father(x, y) is a predicate of arity 2, interpreted as “x is the father of y”.

14

Geo
rge

 M
. M

ilis

For completeness, we note here that there are also other types of inference: i)

“Inductive inference”, where the rules are not considered known a-priori; possible

rules are derived from the propositions and the observations/experiences, as if the

logic system is “identified” from inputs and outputs; ii) “Abductive inference”,

where the observations/experiences as well as the rules are considered known, and

the logically valid truths are inferred accordingly. E.g., I observe something (fault

detection) and knowing how the system works I try to infer what might have caused

it (fault isolation).

2.1.4 Ontology languages and Description Logic

Ontology languages allow the encoding of pre-existing or acquired knowledge about

a specific domain of discourse. They typically include also inference (or “reasoning”)

rules that help with making logical conclusions above the modelled knowledge. On-

tology languages are usually declarative languages and are commonly based either

on FOL or on “Description Logic” (DL) [9]. DL is a family of formal knowledge

representation languages, which are typically subsets of FOL (less expressive than

FOL). They are used to represent a domain of discourse in a structured way, of-

fering clear decidability with no gaps due to adding constraints. DLs usually use

binary predicated (two-variable logic). There are enough good-quality reasoning

mechanisms (decision procedures) designed and implemented for DLs.

DLs have been used as the logical formalism for “ontologies” and the “Semantic

Web”. For instance, the Web Ontology Language (OWL) and its profile is based on

DLs [60]. In DLs usually a “unary predicate” of FOL, is called a “class”, a “binary

predicate” is called a “property” and a “constant” is called an “individual”. DLs

pose certain relationships with other logics as well. For instance, Fuzzy description

logic combines fuzzy logic with DLs. Fuzzy logic deals with the notions of vague-

ness and uncertainty about the classes of certain logical variables. These properties

are common in intelligent systems, where concepts do not have clear boundaries.

Fuzzy logic therefore generalises the description logic to deal with vague concepts.

In addition, the “Temporal Description Logic” allows reasoning about time depen-

dent concepts and can be the combination of DL with a modal temporal logic such

as “Linear Temporal Logic”. Concluding, DLs are a very good tool for representing

knowledge and inference rules, and subsequently inferring mappings and values

15

Geo
rge

 M
. M

ilis

from known facts. Examples are given in Section 3.3.1 where the SEMIoTICS knowl-

edge graph is discussed.

2.2 Background on Feedback Control System Compo-

nents

In general, a feedback control system decides about the action to be applied on a

plant via its inputs. In a discrete-time implementation, whereK is the set of discrete

time samples of the continuous signals at a certain sampling rate and k is an index of

this set, the plant’s input v(k) is a vector of signals produced by the actuators at time

k ∈ K . A feedback control system implementation, can be considered as consisting

of sub-components, some of which are basic (mandatory) for all implementations

of feedback control systems while others are required only in certain cases. These

components are reviewed in the sequel.

2.2.1 Plant dynamics

First of all, a control system is always implemented to offer a service to a specific

plant. The dynamics of the plant, adopting a discrete time formulation, are generally

described by (2.1).

x(k + 1) = f p
(
x(k), v(k),w(k), φ(k), h(k); ζp(k)

)
(2.1)

where x(k) ∈ Rnx is the vector of state-variables of dimension nx, describing the

plant, f p(·) is a function representing the plant’s dynamics, x(k + 1) is the value of

the state at next time sample, v(k) ∈ Rnv is the input signal of dimension nv produced

by controlled actuators, w(k) ∈ Rnw is the input signal of dimension nw produced

by uncontrolled sources, φ(k) is a signal modelling faults introduced in the plant’s

dynamics, h(k) is the input signal produced by third interdependent systems and ζp

is a vector of other parameters related to the plant dynamics.

2.2.2 Actuator

Then, a first component of a feedback control system is the “Actuator”, given by

(2.2).

16

Geo
rge

 M
. M

ilis

v(k) = f a (u(k); ζa(k)) (2.2)

where v(k) is the plant input signal discussed earlier, f a(·) is the implementation of a

function that produces the signal acting on the plant, u(k) is a computed signal that

drives the action and ζa is a vector of other parameters required by the available

actuation implementation.

2.2.3 Controller

A second component in a feedback control system is the “Controller” given by (2.3).

u(k) = f c
(
y(k), r(k), x̂(k), f̂ p(k); ζc

)
(2.3)

where u(k) is the control decision signal defined earlier, f c(·) is the control algorithm

that derives the signal, y(k) is the signal representing the plant’s output as given to

the controller, r(k) is the plant’s state reference trajectory, x̂(k) is the estimated plant

state (optionally used), f̂ p(k) is the estimated value of unknown plant dynamics

(optionally used) and ζc is a vector of parameters required by the adopted controller

implementation.

In practice, the controllers can range in complexity from a simple ON/OFF control

to PID control to adaptive control algorithms, etc. For instance, the control function

f c(·) may be a bang-bang controller that compares the measured states y(k) with the

desired states r(k) and returns a vector of binary signals indicating whether the

measurements are greater than the desired values or not. Another example may be a

fuzzy control implementation, where the control decision is the defuzzification of a

linguistic value, e.g., “fast”, which was the output of the triggering of a set of fuzzy

rules on the fuzzified plant output [35].

2.2.4 Sensor

A third component of a feedback control system is the “Sensor”, which undertakes

the task of measuring the state of the plant and is given by (2.4).

y(k) = f s
(
x(k), v(k),w(k), φ(k), h(k); ζs

)
(2.4)

17

Geo
rge

 M
. M

ilis

where y(k) is the signal produced by the installed sensing devices, f s(·) is the model of

a sensor device, x(k) is a vector of the plant states, v(k),w(k), φ(k), h(k) are the various

types of plant’s input vectors discussed earlier and ζs is a vector of parameters

required by the adopted implementation of the sensing. For instance, the sensing

parameters may correspond to measurement accuracy given by the manufacturer or

the location of the device derived from expert knowledge about the system operation,

etc.

In summary, at a minimum, the feedback control system is composed of the

components specified above, forming a composite function f a
◦ f c
◦ f s. That is, the

input to the plant is a function of the control decision which in turn is a function of

the plant’s (state) measurements.

2.2.5 State Estimator

In addition to the above described components, additional ones may be required

by certain feedback-control systems. For instance, the estimation signal of the plant

states, x̂(k), may be computed by a separate component. In that case, a “State-

Estimation” component can be considered, given by (2.5).

x̂(k) = f e
(
x̂(k − 1), f̂ p(k), y(k),u(k); ζe

)
(2.5)

where x̂(k) is the estimated plant states signal at the current discrete time step, f e(·) is

a state-estimation function, y(k) and u(k) are the vectors of plant’s measured output

and known control signal respectively, ζe is a vector of other parameters required by

the adopted implementation of the state estimator, x̂(k− 1) is the vector of estimated

previous values of the plant state, and f̂ p(k) is the estimated value for unknown plant

dynamics (if required). For instance, the State-Estimation module may correspond to

a “Kalman filter” which produces estimates based on some prior knowledge about

the plant states, a measurement vector and certain parameters of measurement and

state’s uncertainty; it can also be a “Luenberger observer” which, based on a known

model of the plant dynamics and the available measurements, produces estimates

of the plant state.

18

Geo
rge

 M
. M

ilis

2.2.6 Learning Component - Approximator

Furthermore, in the case of having a plant model with unknown dynamics f p(·) (or

part of the f p(·)), a “Learning Component” can be utilized, to learn the unknown

function using a suitable approximation structure (e.g., neural network, polynomial

function, radial-basis functions, wavelets, etc.), such that f̂ p(·) approximates f p(·).

This component can be described in general by (2.6).

f̂ p(k) = f θ
(
y(k),u(k); ζθ

)
(2.6)

where f̂ p(k) is the approximated value of the unknown function, f θ(·) is the adopted

online learning implementation and ζθ are any other parameters required by the

adopted implementation (e.g., the convergence rate, knowledge about the structure

of the function) [35].

2.2.7 Pre-Control Processing Function

In some cases, the measured plant output needs to be processed by a separate com-

ponent before being fed to the controller. For instance, if a plant state is measured

by more than one sensors, we may want to fuse the measurements and use the

computed signal in the controller; alternatively this could correspond to data vali-

dation/reconstruction. This step is undertaken by a “Pre-Control Function”, defined

as in (2.7).

y′(k) = f y (y(k); ζy) (2.7)

where y′(k) is the processed plant output, f y(·) is the adopted measurement process-

ing implementation, y(k) is the actual sensor measurements vector and ζy are any

other parameters required by the adopted processing implementation (e.g., knowl-

edge about the proximity of devices to the state location). Then, the controller

implementation f c(·) receives as input the signal produced by the function f y(·)

instead of the actual measurement.

2.2.8 Post-Control Processing Function

Similarly, the output of the controller, u(k) may need to be processed before fed to

the actuators. For instance, consider the case where a single control signal needs to

19

Geo
rge

 M
. M

ilis

drive two actuators. This can be implemented by a “Post-Control Function”, given

in (2.8).

u′(k) = f u (u(k); ζu) (2.8)

where u′(k) is the processed control decision, f u(·) is the adopted control signal

processing implementation, u(k) is the actual control signal and ζu are any other

parameters required by the adopted processing implementation (e.g., knowledge

about the type of actuation devices). Then, the actuators receive the signal u′(k)

instead of the control signal u(k).

2.3 State-of-the-Art

A lot of work has been undertaken to date by the control community towards de-

signing control algorithms with online adaptation capabilities that aim to facilitate

the flexibility of the control system to accommodate system uncertainties and/or

time variations. For instance, approaches to designing fault-tolerant control sys-

tems are presented in [13], while the textbooks [8] and [63] comprise comprehensive

information sources on approaches to design adaptive controllers. Combining adap-

tation capabilities with online learning of unknown system dynamics, has been also

addressed in research; the textbook [35] discusses general methodologies for de-

signing adaptive approximation-based control systems. The authors in [69,112] and

more recently in [11], have worked towards adapting to and accommodating online

changes in the system’s dynamics and order (e.g., when new sensors or actuators

are plugged in a closed-loop system), for linear systems. A more recent approach

to the control reconfiguration and fault detection in non-linear systems can be seen

in [100].

The aforementioned work deals with the design of controllers with pre-defined

structure, which however have the required adaptation capabilities to maintain

satisfactory performance in the presence of certain system uncertainty and changes.

Nevertheless, there are cases where the design of a single-structure controller is not

practical or it cannot satisfy the control objectives. Such cases are addressed by

another research area, the “variable structure control” [58]. This area assumes that

the control system switches among several pre-defined control structures that take

20

Geo
rge

 M
. M

ilis

over when certain criteria are met (e.g., when a regulated state crosses the bounds of

certain pre-defined areas in the state-space). This type of systems are a special case of

“hybrid dynamical systems” that have been studied extensively in the literature [74].

Beyond the dynamic changes that necessitate the adaptation and/or switching

of control structures, a complementary challenge present in large-scale systems is

the size of the control problem in combination with the complexity of the plants

in terms of modelling, as well as the heterogeneity of control system modules that

need to be employed. These challenges led the research community to exploit the

“divide and conquer” principle, by breaking the large-scale systems into parts that

can be modelled and controlled separately and by adopting modular architectures

of control systems. An early effort towards introducing the need for a modular

architecture for the control system design and the concept of structuring the data

exchanged based on standardised descriptions of their characteristics, has been

discussed in [14]. More recent efforts [57], though not focusing specifically on the

control problem, address the modelling of cyber-physical systems as collections of

services offered by specific physical devices and cyber tools within certain time and

domain context. These services are then invoked to perform specific tasks. Moreover,

the authors in [45] are taking advantage of the cloud computing paradigm to offer

middleware solutions that allow abstraction of services of physical units for online

invocation. A more recent work [18] focuses specifically in the Building Automation

Systems (BAS) domain and creates a library of models capturing the dynamics and

input-output relations of cyber-physical modules present in real BAS setups. The

library contains algebraic and differential models, with discrete and/or continuous

states, linear and non-linear, accounting for a large number of possible configurations

between the underline modules. The objective is to facilitate BAS engineers to design

specific solutions by choosing and configuring models from the subject library. To

facilitate the automation of the process, the instantiation of the parameters used in the

models can be performed online, by retrieving the information from existing building

designs [23]. The authors in [27, 71], address the modular architecture problem

by a software programming and operating system perspective. They develop a

Building Application Stack and a Building Operating System Services architecture, which

allows developing applications based on existing software system modules and

subsequently developing control applications for buildings that are decoupled from

hardware and building specificity. The work further automates the interoperability

21

Geo
rge

 M
. M

ilis

of the system modules/applications, by implementing metadata models for their

description and fuzzy queries for abstraction of their configuration.

A big challenge accompanying the modules (component-based) architectures

discussed above was the interoperability of the modules and how to facilitate it and

automate it. Responding to this challenge, the research community had investi-

gated the use of pre-defined knowledge models that capture the characteristics of

the components and the knowledge about them, in machine-readable format. These

models are also called “semantic models” since they focus on defining the meaning

and capabilities of components and not their implementations. The use of semantic

and knowledge models in control systems had been proposed earlier, as can be seen

in [102]. In this article, the semantic knowledge models are considered as an artificial

intelligence tool, required to be used for the modelling of knowledge about plants,

control system components and control goals. An architecture is then proposed,

which allows the control system to reason upon the modelled knowledge and select

appropriate control systems from a pre-existing bank of control systems. The idea

behind this approach is very close to what we develop in our work, however, we

were not able to locate information in the literature about continuation of those early

efforts. The concept of expert knowledge modelling in control systems is also used

in [72], mainly focusing on the validation of simulation software at the semantic

level, i.e., in terms of the meaning and capabilities of software functions, rather than

the facilitation of their online interoperability. A more system theoretic approach

to presenting the concepts of semantic control systems can be found in [66], which

discussed the notion of semantic rules as mappings between physical phenomena

and explained that control is in general rule-following, be it functional or semantic

rules. Furthermore, concrete examples of using semantic knowledge models in the

smart buildings domain, are observed in the literature. For instance, the “DOGont”

ontology [15] deals with the current issues of vendors’ and technologies’ heterogene-

ity in domotic environments. [Note: an ontology is a standard format (XML-like

text) representing knowledge facts in the form of triplets 〈 subject - property - ob-

ject 〉 [49]. More details can be found in Section 3.3.1]. Also, the authors in [87]

describe an ontology-based expert system that is able to transparently control the

home automation processes by learning from the human users’ behaviour. A more

recent and complete approach in the Building Automation Systems (BAS) domain

is the one in [92], where the authors design the BASont ontology. This ontology

22

Geo
rge

 M
. M

ilis

explicitly combines the current Building Information Models [23] with abstract and

concrete knowledge from the building automation systems’ devices and end-points.

This work offers a good basis for building control applications that need to receive

online information about the devices’ location and capabilities. Combining the in-

formation with the reasoning capabilities of ontologies, makes it possible to support

effective online configuration and decision making use cases. Knowledge modelling

efforts have been undertaken also in the Computational Intelligence domain, where

a significant milestone was the approval of the IEEE Standard for Fuzzy Markup

Language (IEEE Std 1855-2016), which specifies an interoperability framework for

fuzzy logic controllers [4, 61].

More recently, the emergence of the IoT paradigm and the growing ecosystem of

IoT-enabled devices that exploit (wireless) Internet connectivity, have created new

opportunities in-line with the modular architecture discussed above, as well as new

challenges for large-scale cyber-physical systems and subsequently for their effective

monitoring and control. The IoT vision is exactly for the capabilities of components

(e.g., sensors, actuators, signal processing functions, decision making functions) to

be consumed as “services” by cyber implementations of control algorithms thus

offering more advance and composite services [107]. The term “composition” refers

to utilising a variety of different services/things in a system that explores their indi-

vidual functionalities, so that it can be observed from a higher level as offering one

single (composite) service. This paradigm has emerged from the “Web services”,

a key technology of Web 2.0 that in late 1990’s enabled web resources to exchange

messages and offer enhanced interaction between cyber sources and humans [94].

The technologies behind these cyber services are still emerging [90], while in parallel

the focus has been on the semantics of the content and artificial intelligence (Web

3.0) to enable knowledge structuring and meaning-aware interaction between Web

services. The IoT has already become part of this technological evolution [25, 53],

bringing the physical world into play, with smart devices connected to each other

and speaking to each other via machine-to-machine communication [83] to perform

composite tasks without human intervention. Innovation in this area is currently

happening since knowledge and technology are now becoming mature enough to

facilitate full automation of control component-based architectures with online con-

figuration capabilities.

The aforementioned vision, in order to be successfully pursued, requires knowl-

23

Geo
rge

 M
. M

ilis

edge from a broad range of ICT-related fields, as well as from the systems theory and

automatic control domains. The W3C Semantic Sensor Network Incubator Group

(SSN-XG), as well as the Open Geospatial Consortium (OGC) have been among

the first who identified the challenge. They created the “Semantic Sensor Network

(SSN)” [55] and the “SensorML” standard [109] respectively, for the semantic char-

acterisation of sensors’ operation. The standards have recently published updates

that take into consideration also the modelling of actuation and other processing

operations. During the last few years, several groups have started working on top

of the above standards, to address the interoperability, evolve-ability and online re-

configuration challenges of IoT-enabled systems. The authors in [73] have worked

on the conceptual matching of heterogeneous lexical sources and ontologies in the

IoT and Smart Cities domains. The authors in [42] have used rule-based systems

for the automatic construction of topical ontologies from real-world IoT sensor mea-

surements. They also developed a distributed mechanism to index IoT resources

and their data, based on their location, thus enabling online grouping by similar-

ity [36]. Another group used knowledge models to process large amount of IoT

data and produce added-value knowledge for Smart City applications [118]. Other

works [25, 53] model IoT components as Web resources, thus enabling their online

discovery and utilisation of their capabilities. An attempt to design self-configurable

systems composed of IoT components has been also presented in [21]. There is also

work from the “smart factory” domain and the Industry 4.0 concept, with teams

working on modelling the information about factory objects (hardware or software)

using semantic knowledge formalisms [50] and also modelling the IoT resources and

processes towards optimal resource management [113]. Other researchers have also

acknowledged the need for additional flexibility in the IoT paradigm and started ex-

ploiting the Building Information Model [89,95]. Another such example is the work

in [92], which has been discussed earlier and which resulted in an ontological model

able to facilitate advance online decision making use cases. The same work has been

used and extended with additional Resource Description Framework (RDF)-based

information concepts to facilitate the fault diagnosis use cases in the Building Au-

tomation domain [37]. More specifically, this work uses ontological models of the

buildings domain, so as to enable the encoding of building information in machine-

readable format and subsequently the online passing of parameters’ values required

by a certain fault diagnosis method. As a result, it enables the online synthesis of the

24

Geo
rge

 M
. M

ilis

fault diagnosis scheme, where building parameters are not known apriori. The idea

and the technologies involved in this work are very relevant to our work on online

synthesis of distributed feedback control schemes, discussed in Chapter 4.

The above presented work addresses spherically and extensively the services’

and data semantic interoperability challenge in the IoT domain. It mainly focuses

on the sensing and data collection and manipulation capabilities, which support IoT

applications in general. In an IoT perspective, the key challenge still remains the

implementation of the feedback control systems as compositions of components

acting as providers and/or consumers of “services” thus allowing flexibility in

adapting to components’ changes. IoT-enabled applications will not be able to offer

effective monitoring and control services, if the semantic models do not explicitly

consider the systems’ modelling and control design details. The need to extend the

semantic models towards conceptualising control and other processing entities as

well, has been partially addressed in [70]. The author identified the need to model

sensors, actuators and controllers, presenting a “Semantic Smart Gateway Frame-

work” that acts as an interoperability service and mediator between IoT application

providers and consumers. Although this work effectively models the semantics

of control from an input-output perspective, it does not take a control-theoretic

view, thus it is not opening the way to deal with the internal dynamics and online

(context-aware) re-configuration of IoT-enabled control systems. The incorporation

of feedback control capability, requires on one hand the ICT experts with their un-

derstanding of the concepts of services’ online composition and on the other hand

the control experts with their understanding of systems’ dynamics and control.

The work related to this Dissertation is within the above framework. We advance

the state of art by combining existing tools from the two different aforementioned

areas and addressing certain IoT-related challenges. We address in general a vari-

able structure control problem, since we assume that there is no pre-designed single

controller that poses all required adaptation capabilities to learn and accommodate

the changes in the controlled system and/or the control system components (e.g.,

in case of replacing a faulty sensor). We consider a plug-and-play capability in our

proposed solution, in terms of having a mechanism that enables the control system

to switch online between different configurations when components are plugged-

in. The switching among extracted control system configurations is decided and

enforced through a discrete-state logic-based deductive reasoning process [9]. The

25

Geo
rge

 M
. M

ilis

explicit design of this mechanism is a key contribution. This mechanism assumes

that the available control modes (configurations) are not defined in advance; they

are configured online using components from an evolving library of control system

components as discussed in aforementioned literature review, able to interoperate

in a modular architecture but without hard-coded interfaces. At discrete events,

the logic-based system exploits modelled knowledge and subsequent (standards’

based) semantic characterisations of components’ interfaces, as well as deductive

inference rules to produce the switching signal. The knowledge is stored in “knowl-

edge graphs” formed by meaningful relations between modelled knowledge entities

of pre-defined types [39,104]. These are further clarified in the context of the Disser-

tation.

Our work moves one step further, by exploiting IoT-enabled re-configuration

capabilities for the comfort- and cost- effective online evolution of feedback control

schemes in smart building automation systmes. Currently, the building automation

industry is dominated by big players [119] who provide solutions for HVAC, lighting,

security and other applications, as well as integration capabilities explored by local

integrating companies through network equipment and communication protocols.

However, the flexibility of the solutions remains within the bounds of a pre-defined

set of components that are compatible with the overall system by design. The

bounds become narrower when it comes to feedback control options, since the need

for portability of the solutions leads to using basic model-free control structures (e.g.,

on-off control, tunable PID control, IF-THEN-ELSE control) [40]. In this work we use

model-based feedback linearization controllers [35] and we show their portability

through the online passing of building topology and parameters. We also apply the

work from the cost-effective load demand generation in electric power systems [46],

to perform cost-effective heating control in buildings using multiple heating devices

deployed online.

To the best of our knowledge these challenges have not yet been addressed.

Our work aims to turn advanced intelligent feedback control and decision making

methods accessible to emerging IoT-enabled building automation systems.

26

Geo
rge

 M
. M

ilis

Chapter 3

SEMIoTICS Architecture and System

3.1 Problem Formulation

Large-scale complex systems are typically equipped with a large number of com-

ponents and subsystems and they evolve over time as new technology becomes

available, leading to the addition of new or replacement of existing components.

For example, in the context of a smart building, new IoT devices (e.g., occupancy

sensors, CO and CO2 sensors, heaters, humidifiers) may be plugged-in and become

available. On the other hand, feedback control systems are typically designed for

certain plants, taking into account certain measurable variables, known dynamics,

certain actuation capabilities, as well as other pre-assumed relevant information.

With the current technological advancements, it becomes desirable for control sys-

tems to be equipped with self-reconfiguration mechanisms, so as to incorporate

any new components online, thus ensuring continuous operation and satisfaction of

control specifications (e.g., user safety, comfort, energy efficiency).

Consider the plant in Fig. 3.1, characterised by a vector of state variables x ∈ Rnx ,

with nx being the dimension of the state vector. In a Smart Building context, these

can represent room temperature, humidity, lighting, air quality, etc.. We assume that

the state variables need to be controlled to satisfy certain control objectives. The

satisfaction of the objectives is achieved through the design of a control system able

to generate an appropriate plant input vector v ∈ Rnv of dimension nv and provide

the expected control service to the plant. For generality, the vector w ∈ Rnw represents

nw uncontrolled inputs to the plant. In an IoT context, the plant may be equipped

with multiple components from the types discussed in Section 2.2; sensors able to

27

Geo
rge

 M
. M

ilis

measure its states, actuators able to act on and affect its states, controllers able to

consume the measurements and drive the actuators, other functions able to process

and transform the produced signals when required, etc.. Instances of sensors may

represent thermistors, occupancy sensors, limit switches, smoke detectors and so on.

Instances of actuators may be the heating elements used to adjust the temperature,

a lamp to adjust the lighting, a motor to open a window, and so on.

Figure 3.1: A plant with multiple IoT components available at time step kI, forming

nI possible “Control System Configurations”. A supervisor generates the respective

selection signal σI

As mentioned also in Section 2.2, we consider a discrete-time formulation, where

K is the set of discrete time samples of the continuous signals and k ∈ K is an index

of the discrete samples set. We assume that at certain times kI ∈ K , I = 0, 1, 2, ...

events happen that change the availability of IoT components in the plant. With k+
I

we denote the index of the discrete time steps for kI ≤ k < kI+1 (the time between

28

Geo
rge

 M
. M

ilis

two consecutive events where available components change). Within each such

period without changes, we assume a finite set FI of available components, which

correspond to a set of valid control system configurationsCI = { f I
J |J = 1, 2, ...,nI}, able

to offer the required control service to the plant. A control system configuration in

the time window kI ≤ k < kI+1 is formulated as in (3.1),

v(k+
I) = f I

J (x(k+
I), k+

I ; σI) (3.1)

where σI represents the configuration selection decision, which activates, or not, a

configuration option. Depending on the process and the given specifications, an en-

gineer (human) would have selected and designed a feedback control system using

specific instances of the components in FI, as well as specific domain knowledge

expertise. In other words, to make a decision, the engineer relies on thinking and

reasoning which considers the available knowledge about the domain and the feed-

back control engineering, including the associated semantics of each control system

component.

We address the challenge of designing a reference architecture and a semantically-

enhanced Supervisor system Σ (light-green-highlighted module), with the ability to

utilize pre-modelled knowledge and a set of feedback-control specifications, imple-

ment inference mechanisms and (re-)configure a suitable feedback-control system

online, for a large class of plants. The decision about the configuration of the control

system, can be formulated as in (3.2).

σI = fσ(GI,SI,FI) (3.2)

where σI is the decision signal that models the selection of one specific control system

configuration from the set CI, denoted as f I
J∗ ; fσ(·) is a function implementing the

reasoning and the decision about the configuration; GI is the state of the declarative-

language-based “Knowledge Graph” that hosts the available experts’ knowledge at

time kI; SI is the state of the set of feedback-control (semantic) specifications given

to the function at time kI (e.g., the characteristics of the desired state, the weights to

pre-defined criteria, etc.); FI is the set of all available control system components at

time kI, presented earlier.

The challenges discussed above, are addressed through the design and develop-

ment of the “Semantically-Enhanced IoT-enabled Intelligent Control Systems (SEMI-

29

Geo
rge

 M
. M

ilis

oTICS)” reference architecture and its core processes. SEMIoTICS processes are built

around a semantically-enhanced supervisor Σ. The next sections, zoom into the

design of Σ and provide details about the implementation of the function fσ and the

subsequent enforcement of the configuration. It is noted that the implementation

of the function fσ is two-fold. It first involves a “Semantic Reasoning” process that

relies on logical queries in the “Knowledge Graph” G, detailed in Section 3.3.4. Sec-

ond, it involves a “Configuration Selection” process which minimizes an objective

function that considers pre-defined quality-of-service (QoS) criteria as detailed in

Section 3.3.7.

3.2 Reference Architecture

SEMIoTICS and the respective reference architecture are presented in Fig. 3.2. We

consider each selected “Control System Configuration” f I(·) (the pointer J∗ is omit-

ted for notation clarity) as a composition of instances of specific types of available

components as a result of a change at time kI. Each composition consists of zero or

more sensors producing the signal-vector y(k+
I), one or more controllers producing

the control decision signal u(k+
I), one or more actuators producing the plant input

vector v(k+
I) and zero or more of other signal processing functions. The latter are

further classified into: i) “Pre-Control Functions” that transform plant state mea-

surements to the signal-vector y′(k+
I); ii) “Post-Control Functions” that transform the

control decision signal to the signal-vector u′(k+
I); and iii) “Parameter Functions”

that utilize measurements of plant properties and produce/update values of general

plant and control system parameters stored in a “Parameters Registry” set Z. The

parameter vectors required by the respective types of participating components con-

tain elements from this set, i.e., ζs, ζy, ζc, ζu, ζa, ζζ ∈ Z. As discussed in Section 2.2,

designs of feedback-control systems may require more types of components, e.g.,

“State Estimators” and “Online Learning” structures; however, we do not consider

these types of components in the current version of SEMIoTICS.

The inputs and outputs of the components comprise the signals involved in

the feedback loop continuous information flow (black continuous lines). On the

other hand, the values of parameters (e.g., openings of windows in a building, set-

points of heating elements, reference plant state trajectories, etc.) are considered

retrieved on-demand and/or on-availability, from dedicated “Parameter Functions”

30

Geo
rge

 M
. M

ilis

Figure 3.2: The SEMIoTICS architecture

(blue dashed lines). The components are considered implementing internally certain

functionality relevant to their type. For instance, a “Post-Control Function” may im-

plement an amplifier of a control signal so as to properly drive an available actuator;

a “Pre-Control Function” may act on the measured signals to perform data valida-

tion/reconstruction or state-estimation, e.g., Kalman filter, Luenberger observer, etc.;

a controller may be a simple On/Off function or a PID implementation or a more

31

Geo
rge

 M
. M

ilis

advanced non-linear and adaptive control algorithm. SEMIoTICS considers all com-

ponents as syntactically modelled by the general formulas in Section 2.2. Whether a

specific component will take part in a control system configuration f I(·), is defined

by the Semantically-enhanced Supervisor module Σ through the selection decision

σI (double orange line), as detailed in the sequel.

3.3 Semantically-enhanced Supervisor

In this section we go into the design of the sub-modules and operations of the

supervisor Σ. All operations of Σ are built on top of the “Knowledge Graph”G, which

is a super-graph of many (bipartite) graphs formed by semantic relations between

modelled knowledge objects of pre-defined types (see Section 3.3.1 in the sequel). To

model the knowledge we use declarative language, i.e. ontologies, building on top of:

i) the W3C OWL-S standardisation effort that deals with the semantic composition of

(Web) services/components [75]; and ii) the Semantic Sensor Network (SSN) ontology

which is a joint effort of the W3C and the Open Geospatial Consortium (OGC) and

describes sensors and actuators, as well as the features-of-interest and their specific

properties, which they observe/affect [55].

Referring back to Fig. 3.2, it can be seen that the modelled knowledge can be

updated/inserted online by human experts. For instance, an engineer may provide

information about a new sensor, the topology of the plant, and so on. In addition,

updates of the knowledge can be performed automatically through Web/Cloud ser-

vices, e.g., retrieving information about a component from online sources, assuming

that such information is kept in a remote database in the form of “semantic drivers”

(see the Building Information Model [23] in the smart buildings domain). Finally,

the “Knowledge Graph” also retrieves information directly from the available IoT

control system components, so as to become aware of their characteristics and capa-

bilities, location, etc.. The communication requirements are technically addressed by

adopting established message formatting standards and communication protocols,

like MQTT [83]. The operation of modelling the knowledge about the characteristics

and capabilities of control system components is called “semantic annotation” and

is presented in Section 3.3.2 in the sequel.

32

Geo
rge

 M
. M

ilis

3.3.1 The knowledge Graph

This section uses an illustrative scenario aiming at clarifying the way the “Knowledge

Graph” is built and how the semantic (deductive) inference is performed over the

stored knowledge, to implement the decision mechanism for the switching and

subsequent re-configuration of the feedback control system.

Consider the scenario of an office as in Fig. 3.3, where a digital sensor device

f s
1 is deployed, measuring the temperature of the office x1 in degrees Celsius. The

office is also equipped with a heating device f a
1 which introduces heat to the office

at some energy rate in kW. In addition, a controller f c
1 is deployed to regulate the

temperature of the office by controlling the operation of the heating device (actuator).

There is also a door on the south wall of the office, through which energy losses Eloss

can potentially appear, however, it is initially considered fully closed and made of

material with zero heat transfer coefficient.

Figure 3.3: An open-plan office with inner temperature x1, ambient temperature

w1, a deployed temperature sensor f s
1 , one heating actuator f a

1 and a temperature

controller f c
1

Considering the office with the dynamics of its temperature state, we identify

the terms that a human would use in order to describe the plant. As shown also

in Fig. 3.4, these are the features “office” and “ambient” that are of interest to

the specific description, their physical properties “temperature” and “energy”, the

measurement units “Celsius (oC)” and “kW”, as well as the temperature sensor f s
1 , the

33

Geo
rge

 M
. M

ilis

heating actuator f a
1 and the controller f c

1 . These linguistic terms describe “things”

which comprise either cyber-physical entities or other types of entities and real-

world phenomena and concepts. From a knowledge (logic) perspective, any plant

can be considered as a set of “things” (knowledge objects), defined as follows:

Figure 3.4: A set of terms that a human would use in order to describe the plant in

Fig. 3.3

Definition 1. Things: O = {oi|i = 1, · · · ,nO} is the finite set of all “things” which an

expert would use as a convention, to describe what exists in a subject plant. (The

terms “individuals” and “instances” are also used to refer to these “things”, in the

ontology engineering domain.)

The “things” are not all of the same type. The type of each “thing” is an important

part of the knowledge which experts assume in order to share the same meaning

(refer also to the Theory of Types by Russel, Section 2.1). For instance, a non-

expert would not be able to understand the description without knowing that the

linguistic term “Celsius” refers to a unit of measurement, while the linguistic term

“office” denotes a location feature of the plant. This is further formalized through

a convention about the types of “things”, which is defined, for the purposes of our

work, as follows:

Definition 2. Classes: Ω = {ωi|i = 1, · · · ,nΩ;ωi ⊆ O} is the set of all types/classes to

which the “things” belong. Note that each element of Ω is a subset of the set O.

According to the current example, elements of Ω are the set of sensors (F s
∈ F),

the set of actuators (F a
∈ F), the set of controllers (F c

∈ F), the set of plant features of

34

Geo
rge

 M
. M

ilis

interest (L), the set of physical properties (Q), as well as the set of measurement units

(M). In addition, it can be seen from the analysis in Section 3.1 that all components

are essentially functional mappings between certain inputs to certain outputs. The

inputs to a function describing the operation of component, are distinguished to

inputs that correspond to core feedback control signals (e.g., sensor measurements,

control decisions, actions to plant, etc.) defined as “inputs” and to inputs that

represent other “parameters” required by the components to perform their duty.

Therefore, three additional classes of “things” are defined here asU for the “inputs”,

Y for the outputs andZ for the “parameters”. The subset of the inputs of a specific

sensor f s
1 is then defined as U(f s

1). For completeness of the description we add also

the set of components’ capabilities (P), which helps to describe the role of an input,

output or parameter signal. Fig. 3.5 presents the grouping of all aforementioned

“things” in the pre-defined set of classes. It is noted that in general, each “thing”

may belong to more than one classes, however, for simplicity we consider in our

work that each one belongs to only one class.

Figure 3.5: The types/classes to which the “things” belong

Further to the classes of “things”, the full understanding of the meaning is fa-

cilitated by the (semantic) relations between them. That is, “Celsius” (m1 ∈ M) is a

measurement unit of “temperature” (q1 ∈ Q), while f s
1 ∈ F

s is a “sensor” that has

output ys
1 ∈ Y which represents the physical property “temperature”. Such logical

relations, comprise a third convention assumed by humans when sharing knowl-

edge. In general, relations comprise mappings between “things” of one class/type

to “things” of another and their definition is given below:

Definition 3. Relation-graph: G(Vo,Vd,E(Vo,Vd)
n) defines a non-balanced graph with

vertices being the elements of the setsVo,Vd
∈ Ω and edges being the elements of the

35

Geo
rge

 M
. M

ilis

set E(Vo,Vd)
n = {(vo

i , v
d
j)|v

o
i ∈ V

o, vd
j ∈ V

d, i ∈ {1, ...,nVo}, j ∈ {1, ...,nVd}}, which represent

the arcs connecting elements of the origin set Vo to elements of the destination set

V
d. (The term “properties” and “relations” are used in the ontology engineering

domain).

Typically, a “Relation-graph” is bipartite, i.e., the sets Vo and Vd comprise dis-

tinct classes of “things”, as shown with the coloured continuous-line arrows in Fig

3.6. However, in the case when the “Relation-graph” describes mapping between

“things” of the same class (e.g., two distinct features-of-interest), then the origin

and destination sets of vertices converge to one. Furthermore, in the case where

multiple relations are required and defined between the same pair of classes, a sub-

script n = 1, 2, · · · is used with the set of edges E in the above definitions, in order

to differentiate between the relations. For example, a building consists of several

rooms (features of interest). Within each room, one or more other features of interest

may be identified. Then, one relation may represent that a feature-of-interest “is

part of” another feature-of-interest (or “contains” for the inverse relation), as show

with the purple line in Fig. 3.6. This relation is represented by G(L,L,E(L,L)
1), using

the notation of “Definition 3”. Another relation is that a feature-of-interest “is adja-

cent to” some other feature-of-interest which is also bi-directional and is represented

by G(L,L,E(L,L)
2). See for instance the relation shown with the pink arrow in Fig.

3.6, where it is assumed that a second office exist and that it is adjacent to the first

one. Other relations between features-of-interest may also be defined as needed.

In the case where the features-of-interest correspond to spatial (relative or absolute)

locations, relevant relations comprise a very important property of cyber-physical

components, as the operation of the latter is often highly associated with their spatial

properties.

Using the notation introduced with “Definition 3”, Fig. 3.7 shows another view

of the graph with the sub-graphs (“Relation-graphs”), which represent various re-

lations between “things” in the subject plant. As before, the nodes of the graphs

represent “things” while their classes are shown with dashed-line rectangle contain-

ers. An edge that connects two “things” represents the relation that exists between

them. The visualised edges represent ten different “Relation-graphs”, however, for

readability purposes, only five of them are highlighted with different colours.

Multi-edge paths between “things” represent “composite” relations, i.e., relations

36

Geo
rge

 M
. M

ilis

Figure 3.6: Relations between “things” of the same or of different classes. Coloured,

continuous-line arrows illustrate explicit relations between things of certain types,

whereas dashed-line arrows illustrate indirect relations between things of certain

types

Figure 3.7: Representation of relation graphs: The graph G(F s,U,E(F s,U)) is

highlighted with light blue colour, the graph G(U,L,E(U,L)) is highlighted with

light green, the graph G(Y,M,E(Y,M)) is highlighted with light orange, the graph

G(Y,P,E(Y,P)) is highlighted with light red, and the graph G(M,Q,E(M,Q)) is high-

lighted with light purple. The “prime” superscript is used to illustrate the potential

of having multiple “things” in each class.

not explicitly defined in advance. For example, assuming that sensor f s
1 is located on

the feature of interest “desk 1” and that the latter is located within the office, as shown

with the respective arrows in Fig. 3.6, we can deduce that the output of the sensor, ys
1

actually represents the temperature of the office, further to the temperature on desk

37

Geo
rge

 M
. M

ilis

1. This is captured with the blue dashed line in the same figure, which represents

the respective composite relation. The same concept is illustrated in Fig. 3.7, where

the bipartite graph G(Y,Q,E(Y,Q)) can be considered as formed by vertices from the

sets Y and Q and edges the paths of length 2 from nodes in Y to nodes in Q (e.g.,

the path (y, q,m). This is a relation that is derived from the composition of two other

relations, using an inference rule (see Section 2.1).

Since the relations are defined from specific origin class to specific destination

class, the respective graphs are directed in general. However, in most cases the con-

verse relation also exists, which results in bidirectional (or non-directional) graphs.

For instance, considering the illustrative example introduced earlier, saying that sen-

sor f s
1 is “located in” l1 : office, would have the same meaning as saying l1 “contains”

sensor f s
1 . Wherever the converse of relations utilized in our work are meaningful,

the edges are shown as non-directional or bi-directional.

Summarizing, the Knowledge Graph G is a super-graph of many “relation

graphs” (sub-graphs). The classes and the nodes (“things”) in these sub-graphs

define the size of the overall Knowledge Graph G, while the number and types of

relations that are defined between different classes of “things”, represent the con-

nectivity ofG. The following section describes how the “Knowledge Graph” is used

in practice for the semantic annotation of the feedback control system components

and the subsequent implementation of the semantic reasoning (deductive inference)

process.

3.3.2 Semantic Annotation

The SEMIoTICS Knowledge Graph, G, provides explicit support for all considered

types of control system components: Plant, Sensors, Actuators, Controllers, Process-

ing Functions (Pre-Control, Post-Control and Parameter Functions). For its design

we adopt certain parts of the OWL-S “Service Profile” model [75], which facilitate

the modelling of the service offered by each type of component. I.e., each compo-

nent has inputs, outputs, parameters, as well as some additional information for

its categorisation. For simplicity, at this stage we do not use the OWL-S concepts

of “pre-conditions” (certain state conditions which need to hold for a service to be

invocable) and “effects” (certain state values, beyond outputs, that are the result of

the execution of a service).

38

Geo
rge

 M
. M

ilis

The semantic characterisation of the control system components is mainly based

on the SSN ontology [55]. The SSN ontology defines sensors and actuators as “Sys-

tems” that “observe”/“act-on” a certain “property” of a “feature-of-interest” of the

environment/plant in which they are deployed. For instance, a sensor may measure

the property “temperature” of the feature-of-interest “room 1” in a given building.

The same ontology defines that such a “System”, in order to provide its intended

service, implements a “Procedure” that has certain “Inputs” and “Outputs”. In our

work we extend this by modelling sensors, actuators, controllers, other processing

functions and the plant itself as components that transform properties of the plant’s

features-of-interest, towards offering a collaborative control service. To avoid com-

plexity and without loss of generality, we do not use the SSN ontology in its full

detail but we adopt the parts that help us define our semantic models. Moreover, we

adopt the concept “feature-of-interest” to refer to specific objects in a physical plant,

which correspond to specific “locations” in the plant. “Locations” here do not refer

to a representation of coordinates in a geographic map; they refer to parts of the plant

and objects in the plant that correspond to certain relative positions; e.g., “heater

1”, “room 1” “window 1” are locations and subsequently “features-of-interest” in

the plant. In order to model relations between locations, we adopt concepts of the

GeoSPARQL model [43], e.g. “touches”, “inside”, “contains”.

We model explicitly the services offered by control system components and fa-

cilitate their online invocation, by combining the “Procedure” concept of SSN with

the “Service” concept of OWL-S. That is, beyond inputs and outputs we consider

additional “parameters” required by each component. Also, we incorporate cate-

gorisation of the services in terms of their “capability” on the specific properties of

“features-of-interest” that are represented by inputs, outputs and parameters. For

the convenience of the reader, we may refer to the inputs, outputs and parameters

associated with a component/service, collectively as “end-points” of that componen-

t/service. The adopted way of annotating/describing the components, allows us to

model the knowledge about all produced/consumed signals using the “Five Ws and

one H” method [52], which has been proposed for capturing and communicating

the correct information about an entity in a reporting or decision making context.

As an example, Fig. 3.8 shows the semantic annotation of an input, an output

and a parameter of a component. It can be seen that the semantic annotation space

Λ is defined by four dimensions: Λ ≡ L × Q × P ×M, as also introduced earlier in

39

Geo
rge

 M
. M

ilis

Section 3.3.1. That is, an element of the space Λ is represented by the specific values

in a quadruple of respective variables:

• Variable l represents the plant’s “feature-of-interest” and answers to the ques-

tion “WHERE”, taking values from the set L = {office, zone 1, zone 2,door,

window, ambient,wall 1, ceiling 1,heater 1, ...}. The set can be the output of

the building design using a CAD software. e.g. an extract of a BIM [23].

• Variable q represents the studied property of the feature-of-interest and answers

to the question “WHAT”, taking values from the setQ = {temperature, energy,

opening,flow rate,filtration rate, fan speed, time, ...}. The values of this set, as

well as of the measurement unit below, can be retrieved from existing models

(e.g., the current version or future extensions of the Building Information Model

[23]).

• Variable p represents the role of the signal/variable in the control system con-

figuration and answers to the question “WHY”, taking values from the set

P = {state, stateMeasurement, controlDecision,disturb, referenceValue,

plantTopology, regulate, increase,decrease, ...}. These values are given at the

time of annotating the component, either manually selected by the engi-

neer/technician or automatically by downloading the information from the

Internet.

• Variable m represents the measurement unit of the property, where applicable,

and answers to the question “HOW”, taking values from the set

M = {Celsius,Fahrenheit,kWatt,kilogramsPerSecond,percentage, ...}

Note that the question “WHO” is explicitly answered through the link of end-

points to specific components, whereas the question “WHEN” is out of the scope of

the decision making performed by the supervisor Σ. The size of the above sets can

change online, adding or removing elements, without affecting the operation of the

system.

The “Semantic Annotation” operation is defined as in 3.3 below:

λ(·) : A 7→ Λ (3.3)

whereA ⊃ {U,Y,Z} denotes the set of all end-points of components. For instance,

the annotated input in Fig. 3.8 may represent the measured temperature state of

40

Geo
rge

 M
. M

ilis

Figure 3.8: A control system component with an example semantic model of an

input, an output and a parameter

the “office” in degrees Celsius and denotes a point in the space Λ, as: λ(yc
1) =

{l : office, q : temperature, p : stateMeasurement,m : Celsius}. In the same way,

the semantic annotations of the example output and parameter are: λ(uc
1) = {l :

heater, q : flow rate, p : controlDecision,m : kilogramsPerSecond} and λ(ζc
1) = {l :

door, q : opening, p : plantTopology,m : percentage}.

There are cases where a semantic annotation does not define a specific value

for one or more of the annotation space variables. In such cases, the annotation

is considered as covering an area of the semantic annotation space instead of a

single point. In these cases, instead of a value we use the symbol of the respective

set. For instance, if no specific measurement unit was defined for the above door

opening, the semantic annotation would be: λ(ζc
1) = {l : door, q : opening, p :

topologyParameter,m :M}.

We clarify that a component with multiple end-points is associated with a vector

of semantic annotations, elements of Λ. For instance, in the case of a PID controller

41

Geo
rge

 M
. M

ilis

with its coefficients exposed as a parameter vector in SEMIoTICS, these will corre-

spond to a (equal size) vector of semantic annotations of parameters. We further

clarify that the modelled control system components do not necessarily coincide

with single physical devices or software tools; i.e., a single device may implement

more than one of these components, each one with its own syntactic profile and

semantic annotations. For instance, a device that measures the occupancy and uses

that value to estimate the CO2 concentration in a room, offering both values as out-

put, will be modelled as two components: i) a “Sensor” receiving a “state” signal

(e.g., occupancy of room) and producing a signal of capability “stateMeasurement”;

ii) A “Pre-control Function” that uses a “stateMeasurement” signal and produces a

processed “stateMeasurement” signal. This helps towards breaking the dynamics

of a control system into smaller components which cooperate to provide the overall

control service.

3.3.3 Semantic annotation models of components

The semantic annotation operation is clarified in the sequel through the illustrative

example of Fig. 3.3. For convenience, we repeat here that the scenario involves an

office with its temperature state and three deployed components: the sensor f s
1 , the

actuator f a
1 and the controller f c

1 . The respective plant dynamics are represented by

f p
1 . The sensor has an inputs-set U(f s

1) and an outputs-set Y(f s
1). The respective sets

for the other components are defined in the same way. In addition, the following

domain knowledge is assumed stored in the “Knowledge Graph”:

• L = {l1 : office, l2 : ambient, l3 : door}

• Q = {q1 : temperature, q2 : heat-energy, q3 : U-value, q4 : valveOpening}

• P = {p1 : increase, p2 : state, p3 : plantTopology, p4 : stateMeasurement, p5 :

controlDecision}

• M = {m1 : Celsius,m2 : Fahrenheit,m3 : kW,m4 : W/m2K,m5 : percentage}

In order to further visualise the semantic annotations and facilitate understand-

ing, we formalise the encoding of the knowledge about the components in a layered

hierarchical view, as informally introduced in Section 3.3.1. The following three

layers are used: i) the “Feedback Control Components” layer which contains the

42

Geo
rge

 M
. M

ilis

“things” that represent the actual implementations of the respective functions (i.e.,

plant, sensor, controller, actuator, etc.); ii) the “Profile” layer which contains the

end-points of all components; iii) the “Semantic Annotation” layer which contains

the sub-graphs that define the semantic annotation space Λ, including the domain

specific knowledge, i.e., physical properties, measurement units and relative or di-

rect features-of-interest / locations. The semantic models of the components are then

graphically introduced, so as to enable subsequent understanding of the semantic

reasoning towards extraction of control systems configurations.

Plant

For presentation clarity, we consider plants with one input-variable and one param-

eter, which are mapped to an output-variable. This is represented by the model

shown in Fig. 3.9. In general, multiple end-points can be considered, simply by

introducing more nodes of the classes U, Y and Z respectively. The full semantic

model of a plant consists of a tree that has as root the plant node. Then the tree has

as many branches as the number of end-points of the component. For visualisation

purposes, these branches are marked by green, blue and red edges respectively. It

can be seen that the semantic annotations of the presented end-points are given by

(3.4).

λ(vp) = {l1 : office, q2 : heat-energy, p1 : increase,M}

λ(xp) = {l1 : office, q1 : temperature, p2 : state,M}

λ(ζp) = {l3 : door, q3 : U-value, p3 : plantTopology,M}

In the example, the input vp corresponds to the heat energy introduced in the

office, the output xp corresponds to the office temperature state, while the parameter

ζp corresponds to the thermal performance of the door (U-value). The grey edges in

Fig. 3.9 represent the semantic relation between the measurement units (M) and the

physical properties (Q), which is not used for the annotation of the plant itself.

Sensor

Adopting the same profile view of components, a sensor can be viewed as a com-

ponent that receives as input some physical property and produces as output a

signal or a time series measured in some measurement units. Fig. 3.10 illustrates

43

Geo
rge

 M
. M

ilis

Figure 3.9: The semantic model of a certain plant f p, with one input vp, one output

xp and one parameter ζp

the semantic model of a sensor f s. Similarly to the “plant” the semantic model tree

associated with the sensor has “thing” f s as a root node and three branches: one for

the plant state xs as input, one for the sensor measurement ys as output and one for

a parameter ζs. The semantic annotations related to the sensor’s semantic model are

given in (3.4). For presentation clarity, the annotations of parameters are omitted in

this case and in the sequel.

λ(xs) = {l3 : door, q1 : temperature, p2 : state,M}

λ(ys) = {l3 : door, q1 : temperature, p4 : stateMeasurement,m1 : Celsius}

where the input xs corresponds to the temperature at the window and the output ys

corresponds to the same signal measured in degrees Celsius.

Actuator

An actuator receives an input command or an input signal by a controller and

produces an output signal that affects a physical property. The semantic model of

an actuator f a is given in Fig. 3.11. It can be seen that the semantic annotations of

the actuator’s input ua and output va are given by (3.4).

44

Geo
rge

 M
. M

ilis

Figure 3.10: The semantic model of a certain sensor f s, with one input xs, one output

ys and one parameter ζs

Figure 3.11: The semantic model of a certain actuator f a, with one input ua, one

output va and one parameter ζa

45

Geo
rge

 M
. M

ilis

Figure 3.12: The semantic model of a certain controller f c, with one input yc, one

output uc and one parameter ζc

λ(ua) = {l1 : office, q4 : valveOpening, p5 : controlDecision,m5 : percentage}

λ(va) = {l1 : office, q2 : heat-energy, p1 : increase,M}

that is, the actuator receives a valve opening signal in [0, 1] and introduces respective

heat energy in the office through hot liquid flow-rate in the pipes of the heating device

and subsequently heat radiation or hot air blowing.

Controller

The semantic model of a controller is given in Fig. 3.12. The controller object f c is

the root node and has one input yc, one output uc and one parameter ζc. It is noted

that the controller is typically considered in relation with a specific plant (either due

to its design or due to its potential deployment) and, as such, it inherits the feature-

of-interest properties from its input signal. The respective semantic annotations are

given by (3.4).

λ(yc) = {l1 : office, q1 : temperature, p4 : stateMeasurement,m2 : Fahrenheit}

λ(uc) = {l1 : office, q4 : valveOpemning, p5 : controlDecision,m5 : percentage}

46

Geo
rge

 M
. M

ilis

that is, the controller receives a temperature signal from the office in Fahrenheit and

outputs a valve opening signal in [0, 1].

The semantic models of the key components have been presented above, while

the models for the Pre- and Post-Control Functions are not visualised but can be

derived in a similar way, annotating their end-points. The use of the models will be

made clear through more application use-cases in following Sections.

It is emphasised that the semantic models of the components, which include the

semantic annotations of all their end-points, can be either imported manually by

human experts or retrieved from pre-defined Internet sources hosting the structured

information in the form of “semantic drivers” of components (e.g., through a Build-

ing Information Model [23] prepared during the design phase of a building). What

is achieved by the proposed modelling, is the encoding of the required knowledge

in machine readable format. The semantic matchings of the components and the

subsequent semantic reasoning mechanism are discussed in the next sequel.

3.3.4 Semantic Reasoning

At this state, the semantic annotations of all end-points of components are consid-

ered pre-defined in the “Knowledge Graph” G. Subsequently, the Supervisor Σ

executes the “Semantic Reasoning” process to extract the nI possible control system

configurations at time kI and subsequently executes the “Configuration Selection”

process (see Section 3.3.7) to generate the decision signal σI (double orange line in

Fig. 3.2) and select one of the options to be applied as f I(·), based on pre-defined

criteria. First, the “Semantic Reasoning” process considers these “Semantic Annota-

tions” and tries to evaluate their “Semantic Matching”. The latter is defined as the

operator (3.4).

ρ : Λ ×Λ 7→ {>,⊥} (3.4)

This operator takes as input a pair of semantic annotations and returns ‘>’ (true)

if the two annotations share at least one point in the space Λ, otherwise it returns ‘⊥’

(false). The Semantic Matching operator is used in two different cases:

1. Output-Input semantic matching: it checks all individual outputs of com-

ponents (elements of the set Y) to all individual inputs (elements of the set

47

Geo
rge

 M
. M

ilis

U), considering the type of components and their role in the feedback con-

trol loop. For instance, a sensor output signal annotated with the quadruple

{office, temperature, stateMeasurement,Celsius} semantically matches with the

input of a controller annotated with the quadruple

{office, temperature, stateMeasurement,M}. This can be a simple “propor-

tional controller” whose gain is not affected by the specific measurement unit

but it only depends on the difference from a respective reference value. Note

that the controller’s input annotation is a sub-space containing the single-point

annotation of the sensor’s output. Note also that the outputs of “Parameter

Functions” and their semantic matching to existing parameters in the “Param-

eters Registry” (setZ) are also included in this case.

2. Parameters semantic matching: it checks whether any of the parameters stored

in the “Parameters Registry”Z semantically match with parameters required

by components. For instance, a parameter required by a controller and anno-

tated with the quadruple {office, temperature, referenceValue,Fahrenheit}, will

match with a stored parameter annotated with the same quadruple.

Further to the direct matching between semantic annotations as described above,

the “Semantic Reasoning” process explores also transformations of these annota-

tions within the semantic annotation space Λ. Typically, the control system signals

are assumed in spaces of real numbers and the transformations happen between

such spaces of different dimensions. This is convenient during the design of fixed-

configuration control loops, where the knowledge about the involved components

and their variables is implicitly passed in the implementations by the human expert.

However, if we want a machine to perform configurations of closed loops online,

then we have to model explicitly the representation of the signals, and subsequently

the transformations, in a higher-dimension space. That is, for example, the states

vector can be denoted as x ∈ Rnx×Λnx and the controlled inputs vector as v ∈ Rnv×Λnv

respectively. This way, each component not only transforms the real value of signals

but it also affects their semantic annotations. For instance, a “state” signal with

a semantic annotation given by {office, temperature, state,M}, when measured by

a temperature sensor with output in Celsius, will be transformed to a signal with

semantic annotation {office, temperature, state,Celsius}.

Beyond the semantic transformations that happen when signals pass through

48

Geo
rge

 M
. M

ilis

certain control system components, the semantic annotation of a signal can be trans-

formed also using “semantic rules” [66], which implement deductive inference. Such

rules comprise the encoding of expert knowledge about whether we can move from

one point of the semantic annotation space Λ to another, without affecting the “true

meaning” of the variable in the subject domain usage. For instance, the semantic

annotation of a sensor’s output {door 1, temperature, state,Celsius}, can be trans-

formed to {office, temperature, state,Celsius} provided that the things “door 1” and

“office” are linked through the relation “within”, defined using the concepts of the

GeoSPARQL ontology mentioned earlier. As defined in Section 3.3.1, these rules

comprise composite relations as compositions of “relation graphs”; the edges of

these graphs are not explicitly defined but they are implemented as paths of length

> 2. The currently defined relations and semantic rules are exploited by the supervi-

sor Σ in the reasoning process, to evaluate whether certain semantic transformations

can be applied for enabling the semantic matching.

At each execution of the “Semantic Reasoning” process, following an event at

time kI, the supervisor iterates within the controllers and tries to match their inputs

and outputs considering that a component can be used only if all its inputs match

with outputs of other components and also all its required parameters match with

parameters in the “Parameters Registry”. The operation detects all semantically

valid matchings between control system components and extracts the nI candidate

control system configuration options. From these valid options, one needs to be

selected to operate the control system. The selection mechanism is described in

Section 3.3.7, where also examples are given.

The following sub-sections go into further details on the semantic matching

process between end-points of components.

Actuator-Plant-Sensor Matching

The first task of the Supervisor Σ when executing the “Semantic Reasoning” process

is to find actuators able to act on the inputs of the plant subject to control, as well

as sensors that can measure the outputs of the plant. The actuator-plant matching is

shown in Fig. 3.13. For visualisation clarity, only the output branch of the actuator

and the input branch of the plant are shown. Moreover, the parameters’ matching is

again omitted for simplicity and visualisation clarity. It can be seen that the semantic

49

Geo
rge

 M
. M

ilis

annotation of the actuator’s output (λ(va) = {l1, q2, p1,M}), is equal to the semantic

annotation of the plant’s input (λ(vp) = {l1, q2, p1,M}).

Figure 3.13: Semantic Matching: Actuator - Plant

The matching of a plant output to a sensor’s input is not visualised, however, it

is very similar to the one discussed above.

Semantic matching of a controller

Once the “Semantic Reasoning” process has found appropriate actuators and sen-

sors, it moves on to find appropriate controller(s). The visualisation of the semantic

matchings between a controller output and an actuator input, as well as between a

sensor output and a controller input, is omitted as these can be derived from under-

standing the previous examples. However, we visualise the case where the output

signals of certain components need to be processed before being fed as inputs to

other components. For instance, there can be a function available and semantically

annotated in the knowledge graph, which is able to transform a signal from one

measurement unit to another. For example, the function f y(ys) = 9
5 ys + 32 can be

used to transform degrees Celsius (oC) to degrees Fahrenheit (oF), when required for

temperature measurements. Fig. 3.14 illustrates the intervention of such function

to transform the measurement unit of the signal produced by the sensor (‘Celsius’)

50

Geo
rge

 M
. M

ilis

before this is fed to the controller that expects a signal in ‘Fahrenheit’. The semantic

annotation of the sensor’s output is given by the set λ(ys) = {l3, q1, p4,m1}, while the

semantic annotation of the controller’s input is given by the set λ(yc) = {l1, q1, p4,m2}.

No semantic matching can be confirmed with these two annotations passing through

the respective operator. However, if the signal is processed first by the function f y(.),

the output signal will have a transformed semantic annotation represented by the

set λ(y′s) = {l3, q1, p4,m1}. Furthermore, according to the defined relation graphs, the

location l1 : office “contains” the location l1 : door, which means that the two loca-

tions exploit a semantic relation. This triggers a semantic rule which defines that: a

signal from an end-point of a component is associated with a subject feature-of-interest if it

has a direct semantic relation with is or if it is associated with some other feature-of-interest

that is “within” the subject feature-of-interest. As a result, the semantic matching of the

sensor and the controller becomes feasible through the function f y(.), the semantic

relation “within” defined between the two locations (features-of-interest) and the

aforementioned semantic rule that builds a composite semantic relation (see Section

3.3.1).

Figure 3.14: Semantic Matching: Sensor - Function - Controller

The transformation of control signals before being fed to an actuator can be

modelled in a very similar way and is not presented here.

51

Geo
rge

 M
. M

ilis

3.3.5 Use Case

Consider now the two-zone building of Fig. 3.15 consisting of two rooms with

certain openings and a number of deployed monitoring and control components.

Circles represent sensors (six in total), triangles represent actuators (one in total),

diamond-shapes represent controllers (three in total) and rectangles represent pro-

cessing functions (five in total). Assuming that we give this information to a control

engineer and we ask him/her to manually design a heat regulation system for “Room

1”, he/she will ask for additional information about the components, their charac-

teristics, their capabilities according to manufacturer, etc.

Figure 3.15: A building with two adjacent rooms. Circles represent sensors, triangles

represent actuators, diamond-shapes represent controllers and rectangles represent

processing functions. Details about the components are given in the context of the

examples.

We can then provide the control engineer with all information about the deployed

52

Geo
rge

 M
. M

ilis

components, in the form discussed in Sections 3.3.1 and 3.3.2 for the storing of

knowledge about the domain, the components and their semantic annotations. First,

the following list summarizes the domain knowledge currently available in the

Knowledge Graph:

• M = {m1 : Celsius,m2 : Fahrenheit,m3 : Joule,m4 : W/m2K,m5 : on/off,m6 :

[0,100]}

• Q = {q1 : temperature, q2 : heat-energy, q3 : U-value, q4 : flowRate}

• L = {l1 : room 1, l2 : ambient, l3 : door 1, l4 : west wall 1}

• P = {p1 : increase, p2 : state, p3 : plantTopology, p4 : stateMeasurement, p5 :

controlDecision}

Second, Table 3.1 presents the semantic annotations of all end-points of the control

system components shown in Fig. 3.15.

Table 3.1: The components’ database with the respective semantic annotations of

end-points

Plant

f p
1 Inputs: λ(vp

1) = {room 1,heat energy, increase,M}

λ(wp
1) = {ambient, temperature,P,M}

Outputs: λ(xp
1) = {room 1, temperature, state,M}

λ(xp
2) = {room 1, occupancy, state,M}}

λ(xp
3) = {window, opening, state,M}}

λ(xp
4) = {door 1, opening, state,M}

λ(xp
5) = {room 2, temperature, state,M}

λ(xp
6) = {ambient, temperature, state,M}

Parameters: λ(ζp
1) = {window, opening, topologyParameter,percentage}

λ(ζp
2) = {door 1, opening, topologyParameter,percentage}

Sensors

f s
1 Inputs: λ(xs

1) = {room 1, temperature, state,M}

Outputs: λ(ys
1) = {room 1, temperature, stateMeasurement,Celsius}

53

Geo
rge

 M
. M

ilis

f s
2 Inputs: λ(xs

2) = {ceiling 1, temperature, state,M}

Outputs: λ(ys
2) = {ceiling 1, temperature, stateMeasurement,Fahrenheit}

f s
3 Inputs: λ(xs

3) = {room 2, temperature, state,M}

Outputs: λ(ys
3) = {room 2, temperature, stateMeasurement,Celsius}

f s
4 Inputs: λ(xs

4) = {ambient, temperature, state,M}

Outputs: λ(ys
4) = {ambient, temperature, stateMeasurement,Celsius}

f s
5 Inputs: λ(xs

5) = {door 1, opening, state,M}

Outputs: λ(ys
5) = {door 1, opening, stateMeasurement,percentage}

f s
6 Inputs: λ(xs

6) = {room 1, occupancy, state,M}

Outputs: λ(ys
6) = {room 1, occupancy, stateMeasurement, {>,⊥}}

Pre-control processing functions

f y
1 Inputs: λ(y

1) = {room 1, temperature, stateMeasurement,Fahrenheit}

Outputs: λ(y′y1) = {room 1, temperature, stateMeasurement,Celsius}

f y
2 Inputs: λ(yy

2) = {room 1, ‘temperature’, stateMeasurement,Celsius}

λ(yy
3) = {room 1, ‘temperature’, stateMeasurement,Celsius}

λ(yy
4) = {room 1, ‘temperature’, stateMeasurement,Celsius}

Outputs: λ(y′y2) = {room 1, temperature, stateMeasurement,Celsius}

Controllers

f c
1 Inputs: λ(yc

1) = {room 1, temperature, stateMeasurement,Celsius}

Outputs: λ(uc
1) = {room 1,flow rate, controlDecision, on-off}

Parameters: λ(ζc
1) = {room 1, temperature, referenceValue,Celsius}

f c
2 Inputs: λ(yc

2) = {L, temperature, stateMeasurement,Celsius}

Outputs: λ(uc
2) = {L,flow rate, controlDecision,percentage}

Parameters: λ(ζc
2) = {window 1, opening,plantTopology,percentage}

λ(ζc
3) = {door 1, opening,plantTopology,percentage}

f c
3 Inputs: λ(yc

3) = {ambient, temperature, stateMeasurement,Celsius}

Outputs: λ(uc
3) = {room 1,flow rate, controlDecision,percentage}

Post-control processing functions

f u
1 Inputs: λ(uu

1) = {room 1,flow rate, controlDecision,percentage}}

Outputs: λ(u′u1) = {room 1,flow rate, controlDecision, on-off}

54

Geo
rge

 M
. M

ilis

Actuators

f a
1 Inputs: λ(ua

1) = {west wall 1,flow rate, controlDecision,percentage}}

Outputs: λ(va
1) = {west wall 1,heat energy, increase, Joule}

Parameter functions

f ζ1 Inputs: λ(yζ1) = {room 1, occupancy, stateMeasurement, {>,⊥}}

Outputs: λ(ζ1) = {room 1, temperature, referenceValue,Celsius}

f ζ2 Inputs: λ(yζ2) = {ambient, temperature, state,Celsius}

Outputs: λ(ζ2) = {ambient, temperature,uncontrolledInput,Celsius}

f ζ3 Inputs: λ(yζ3) = {door 1, opening, stateMeasurement,percentage}

According to the available information, two temperature sensors, f s
1 and f s

2 are

deployed in “room 1”, measuring the temperature of the office xp
1, the first one in

degrees Celsius (modelled by m1 ∈ M) and the second one in degrees Fahrenheit

(modelled by m2 ∈ M). A third sensor, f s
3 measures the temperature of the “Room

2” in degrees Celsius, while sensor f s
4 which measures the ambient temperature in

degrees Celsius. Sensor f s
5 measures the opening of the door on the wall that is

shared between the two rooms. Finally, f s
6 measures the occupancy of “Room 1”,

indicating whether the room is occupant or not. The room is also equipped with

a heating device f a
1 which introduces heat at some energy rate in kW. The heating

device expects an input signal in the range [0, 1] and produces an action proportional

to those values. In practice, the input commands may be represented by different

actual values, e.g., 0/1 meaning ‘1’ for ON and ‘0’ for OFF, or a percentage value in

the range [0, 1] or in the range [0, 100]. All these are stored as different knowledge

objects of the type measurement units,M.

In addition, appropriate controllers are deployed to regulate the temperature

of the office by controlling the operation of the actuator. It is noted that we focus

here on the knowledge modelling of control system components and the subsequent

reasoning towards configuration selection and not on the specific implementation

of the controllers. Therefore, for the sake of the example, it has been assumed

that the Supervisor Σ has at its disposal, in the database F , only the following three

controllers; a threshold controller, a proportional controller and a periodic open-loop

controller. These are presented below:

55

Geo
rge

 M
. M

ilis

[Reminding note: the use of the variables’ superscripts from the set {p, s, y, c,u, a, ζ}

facilitates the differentiation between variables associated with the implementation

of specific types of components from the set { plant, sensor, pre-control function,

controller, post-control function, actuator, parameter-function }].

i. Threshold Controller: A bang-bang controller which produces an “on” signal

when the measured value of a physical property is less than its desired value

and an “off” signal when the value is greater. This controller receives a mea-

surement value of some physical property as an input. The controller is given

by (3.5), where a dead-zone is also considered to avoid reactions to measure-

ment noise or other high-frequency oscillations introduced by the controller.

uc
1(yc

1(t), rc
1(t), t) =

 1 if (rc
1(t) − yc

1(t)) > ε

0 otherwise
(3.5)

where uc
1(.) is the control decision produced by controller f c

1 , yc
1(t) > 0 is the

measurement of the state assumed by the controller, rc
1(t) > 0 is the reference

value of the state and ε is a small positive value that defines the size of the

dead-zone. Such controller may be used to regulate the temperature of a room

close to a reference value, during periods where the outside temperature is

lower than the reference value.

ii. Proportional Controller: A controller that produces a signal proportional to

the tracking error (yc
2(t) − rc

2(t)), which defines the level of operation of an

actuator. The controller receives as input the measured value of a physical

property, while it is also given a reference value and, optionally, a vector

of other parameters of the plant (e.g., opening of the window), which help

in calculating the gain for maintaining certain response properties, e.g. rise

time. By default, the parameters are considered constant and are given to the

controller upon deployment. This controller is given by:

uc
2(yc

2(t), rc
2(t), t) = Γ(θ)(yc

2(t) − rc
2(t)), (3.6)

where uc
2(.) is the control decision produced by the controller, yc

2(t) is the mea-

surement of a plant’s state, as assumed by the controller, rc
2(t) is the reference

value of that state of the plant, Γ is the proportional gain function and θ is a

56

Geo
rge

 M
. M

ilis

vector of parameters which affect the gain calculation for stable control. Such

controller may be used for the regulation of the temperature in a room at

specific value.

iii. Periodic Open Loop Controller: An open-loop controller which produces an

“on/off” signal to an actuator based on internal cycle configuration. The con-

troller operates with a default cycle, exchanging between an “off” time-period

followed by an “on” time-period. It also offers an input end-point through

which the ambient temperature can be consumed to configure the “on” and

“off” periods. For instance, the “on” period may be increasing from 50% to

100% proportional to the distance of the ambient temperature from an upper

bound. The exact implementation of the function is out of the scope of this

example. The controller is given by (3.7).

uc
3(t) =

 1 if nT ≤ t ≤ (n + a)T

0 if (n + a)T ≤ t ≤ (n + 1)T
(3.7)

where T defines one operation cycle, i.e. the time between two consecutive

turn-on events of the controller, a ∈ (0, 1) is the parameter that configures the

“on” and “off” periods in the cycle and it depends on the ambient temperature

as explained above, uc
3(t) is the control decision produced by the controller

f c
3 and n ∈ {0, 1, 2, ...}. Such controller might be utilised for the control of a

ventilation fan, to clean the inside air at fixed cycles.

The components’ database contains also a set of functions: i) the pre-control

function f y
1 (y) = 5

9 (y − 32), which transforms the temperature measurement unit

Fahrenheit to the temperature measurement unit Celsius; ii) the pre-control function

f y
2 that performs an averaged fusion of input signals; iii) the post-control function f u

1

that transforms a control signal given in percentage, to the control value expected by

the heating device; iv) the parameter function f ζ1 that lowers the reference value of

the temperature to 18oC instead of the default 25oC, when the room is not occupied;

and v) the parameter function f ζ2 that reads the ‘door 1’ opening measurement and

updates the Knowledge Graph by connecting the two rooms through the relation

‘within’ when the opening exceeds 80%. The reasoning behind this, is that the rooms’

temperatures become almost equal if there is enough air flow across the opening.

57

Geo
rge

 M
. M

ilis

Given the available components and semantic annotations, the control engineer

performs the required reasoning and comes up with three possible control system

configuration options, that are able to implement the heat regulation of “Room 1”.

These are shown in Fig. 3.16, with the blue double line, the yellow dashed line and

the red line respectively. Note that the semantic annotations of parameters, and the

subsequent semantic matchings, are omitted in the descriptions below, to reduce

complexity.

Figure 3.16: The building with two adjacent rooms as shown in Fig. 3.15, marking

also the three detected configuration options; one with double blue line, another

with dashed orange line and a third with red line

The configuration option marked with the double blue line considers the control

system operating with a small set of components, comprising the temperature sensor

f s
1 , the heating device f a

1 and the controller f c
1 that reads the room temperature and

drives the heating device directly. Applying the semantic reasoning process using

the information in Table 3.1, it can be seen that the first output of the plant f p
1

58

Geo
rge

 M
. M

ilis

semantically matches with the input of the sensor f s
1 , since:

λ(xp
1) = λ(xs

1) = {room 1, temperature, state,M}.

Then, the output of f s
1 semantically matches the input of f c

1 , since:

λ(ys
1) = λ(yc

1) = {room 1, temperature, stateMeasurement,Celsius}.

Following the same logic, the control engineer checks the semantic matching of

the output of the controller f c
1 to the input of the actuator f a

1 . It can be seen that

the output of the controller does not define a specific feature-of-interest, whereas

the actuator’s input instantiates the respective variable as l : west wall 1. That is,

the input’s annotation comprises a point within the area formed by the output’s

annotation, thus the respective semantic matching is confirmed. Then, checking the

potential matching of f a
1 output to the (controlled) input of the plant, we see that the

first defines a point that does not lie within the area formed by the second. However,

the feature/location west wall 1 is within the feature/location room 1 and this relation is

assumed captured in the Knowledge Graph through a dedicated “Relations Graph”.

This enables the semantic transformation of the annotation of the actuators’ output

to a point that lies within the area formed by the annotation of the plant’s input.

The above described semantic matchings are also illustrated as part of Fig. 3.17,

using the graphical convention introduced in Section 3.3.2. The colouring conven-

tion, however, has been adjusted here to facilitate the illustration of the semantic

matching for a complete closed-loop. For instance, all edges participating in the

matching of the actuator to the plant are marked with a green line and similarly

different colour is utilised to mark the semantic matchings between other types of

components.

The second configuration option, marked with the yellow/orange dashed line,

considers the use of the open loop controller f c
3 (this would be necessary if f s

1 stopped

transmitting), which does not expect a state measurement, however uses the ambient

temperature measurement from sensor f s
4 in order to set its operation cycle parameter

α. The default cycle configuration parameter that defined the “on” period of the

controller is assumed a = 0.4. Then, the “on” period of the controller becomes

longer within the a pre-defined on-off cycle when the ambient temperature is lower

than a pre-defined threshold. The output of the controller is processed through the

post-control function f u
1 , which transforms the percentage value produced by the

controller, to the on-off signal required by the heating device f a
1 . This configuration

option is composed of the components { f p
1 , f s

4 , f c
3 , f u

1 , f a
1 }

59

Geo
rge

 M
. M

ilis

Figure 3.17: The configuration of a feedback control system, comprising the plant

f p
1 , the actuator f a

1 , the sensor f s
1 and the controller f c

1

The third configuration option, marked with the red line, still considers the heat-

ing device f a
1 as producing the signal for the plant’s input vp

1. However, it uses the

controller f c
2 , which takes as input the output of f y

2 , which fuses the measurements

from f s
1 and f s

2 (the latter’s output is also processed by f y
1 for the transformation

of the Fahrenheit signal m2 : Fahrenheit to a signal in Celsius, m1 : Celsius). In

addition, function f ζ1 utilizes the occupancy measurement and updates the tem-

perature reference value, allowing the controller f c
2 to save energy. Moreover, the

temperature of ‘room 2’, output of sensor f s
3 , can be also fused together with the

other measurements when the opening of the door causes the change in the rela-

tion between the two rooms. The configuration option consists of the components:

{ f p
1 , { f

s
1 , f s

2 , f s
3 , f s

4 }, { f
y

1 , f y
2 }, f c

2 , f u
1 , f a

1 , { f
ζ
1 , f ζ2 }}.

Beyond the three configuration options identified above by applying the semantic

reasoning process manually, when we execute the automatic implementation of the

semantic reasoning process of the Supervisor Σ, we end up with nine (9) different

60

Geo
rge

 M
. M

ilis

configuration options, as shown also in Table 3.2. The same table shows, in addition,

the evaluation cost of each configuration option, assuming two scenarios in relation

with the selection criteria defined later in Section 3.3.7; one with the two criteria

given equal significance and another with the energy saving criterion given 80%

significance comparing to 20% of the thermal comfort criterion. The time needed

for the execution of the reasoning process and the configuration decision making is

also given. It can be seen that, considering the reasoning as well as the testing of

the configurations through simulation, the time to complete the process and select a

single configuration option is about 6 minutes. The time-to-decision is considered an

important factor when it comes to the adoption of this solution in real environments,

since it may affect the stability properties of plants with fast dynamics. The latter is

further discussed in Section 3.4.

Table 3.2: Results of configuration options and selection

Conf. Conf. Options Cost

(50-50)

Cost

(80-20)

Time

(min)

fI(·) C(I,1) = { f a
1 , f c

1 , f s
1 } 0.2075 0.0830

C(I,2) = { f a
1 , f u

1 , f c
3 , f s

4 } 0.1787 0.2716

C(I,3) = { f a
1 , f c

1 , { f
s
3 , f s

5 } f
ζ
1 } 0.2089 0.0829

C(I,4) = { f a
1 , f c

1 , f y
1 , f s

2 } 0.2083 0.0831

C(I,5) = { f a
1 , f c

1 , f y
2 , { f

s
1 , f s

2 , f s
3 , f s

4 }} 0.2085 0.0828 5.94

C(I,6) = { f a
1 , f c

2 , f s
1 , f ζ1 } 0.1601 0.2071

C(I,7) = { f a
1 , f c

2 , { f
s
3 , f s

5 , f s
4 }} 0.1757 0.2627

C(I,8) = { f a
1 , f c

2 , f y
1 , f s

2 } 0.1594 0.1887

C(I,9) = { f a
1 , f c

2 , f y
1 , f y

2 , { f
s
1 , f s

2 , f s
3 , f s

4 }, f ζ1 , f ζ2 } 0.1561 0.1808 6.58

Exploring more complex knowledge and semantic relations

It is emphasised that further to the above examples, the Semantic Reasoning process

can be used for more advance transformation paths, e.g., given the occupancy of a

room, derive implicit knowledge about the increase in temperature and/or Carbon

61

Geo
rge

 M
. M

ilis

dioxide concentration. With the SEMIoTICS architecture, such knowledge is not

necessarily available in advance, but it can be incorporated in the control system

online through the update of the Knowledge Graph G.

Consider that, at some time during the operation of the system, another sensor

f s
7 is also deployed and measures the physical property ‘opening’ of the window

(defined as q5 ∈ Q) in the measurement unit ‘percentage’, represented by the object

m6 ∈ M. The semantic model of the plant is also enriched with a new output

that represents the measurable window opening. The execution of the Semantic

Reasoning process will lead to another control system configuration, where the

sensor f s
7 will be confirmed as measuring the window opening, while the controller

f c
3 may be adjusted to consume that measurement through an optional input for

parameters, to update its gain using the new knowledge about the plant. Visual

presentation of the resulted configurations are not given due to high complexity of

the graphs.

3.3.6 The Configurations Graph

The next task of the “Semantic Reasoning” process is to build the “Configurations

Graph” associated with the event at time kI. This graph is modelled as: CI = (NI,EI),

where the elements ofNI are the end-points of components that have been confirmed

as semantically matching with each other and the elements of EI are the respective

representations of potential signal flows in a control system configuration. Each

configuration option J = 1, ...,nI is essentially a sub-graph C(I,J), formed by parts of

the above-mentioned graph.

Fig. 3.18 illustrates in diagrammatic form the resulted Configurations Graph from

the semantic reasoning process in Section 3.3.5. It can be seen that the Configurations

Graph is defined on a diagram showing the actual control system components. In

order to show how to read the diagram, the configuration option C(I,1) is marked

again with double blue line.

3.3.7 Configuration option selection

As a final task, the Supervisor Σ explores the “Configurations Graph” (at each time kI)

and applies a pre-defined logic to select one of the detected configuration options and

produce the decision signal σI, using pre-defined QoS criteria. The “Configuration

62

Geo
rge

 M
. M

ilis

Figure 3.18: A diagrammatic representation of the Configurations Graph resulted

from the Semantic Reasoning process

Selection” operation is formulated as in (3.8).

argmin
f I
J (·)

nψ∑
j=1

ω jψ j(·) (3.8)

where the process iterates through all implementations f I
J (·) of the nI valid control

system configurations at time kI; we want to keep the one that minimizes the above

formula. In this formula, ψ j, j = 1, ...,nψ define the pre-defined QoS criteria utilised

for the selection process and ω j, j = 1, ...,nψ define the weights assumed for each

criterion in the current implementation. The weights take values in the range [0, 1]

and model the significance given to each criterion by the building operator.

To implement the logic of the configuration selection operation, a simple solution

63

Geo
rge

 M
. M

ilis

would be to use the first one of the detected configuration options. Another option

would be to associate the control system configurations with a rating mechanism,

such as for the components participating in “well-performing” configurations to

have their rating score increased by a certain value. A third option would be to test

each configuration option for a certain amount of time on the real system and choose

the one with higher performance against the pre-defined QoS criteria. A fourth

option would be to test each configuration in a simulation, using pre-defined models

for the plant and the actuators. Each option has its own advantages and drawbacks;

the first two fail to provide high confidence about the real system operation and

performance, while the third requires that untested configuration options are put in

operation, with unpredicted behaviour. The fourth option makes the assumption

that the installation of a SEMIoTICS architecture is accompanied by test-models of

the plant and actuating components. These are not trivial to obtain, especially for the

plant. However, recent work [100] already considers online generation of models

for a fault diagnosis application in buildings.

In our work, we chose and implemented the fourth option. That is, each of

the valid configuration options is passed through a fixed-time simulation test and

is evaluated against the QoS criteria. The simulation test uses a pre-defined (test)

model of the plant, instantiated with certain parameters so as to offer evaluation

on equal basis. In addition, the actuators are also assumed accompanied by their

model implementations for testing purposes. We define two cost-criteria (nψ = 2),

as follows:

1. Occupants’ Thermal Comfort: ψ1 = 1 −
K
ε
i

Khc
i

2. Energy efficiency: ψ2 = 1 −
∑

k∈K̃ (ci(vi(k))
cmax

)

where K̃ ⊆ K defines the period of time during which the performance is evaluated,

K
hc
i ⊆ K̃ is the period of time during which the zone i was occupant, therefore mak-

ing the occupants’ thermal comfort criterion applicable,K ε
i ⊆ K

hc
i is the time period

during which the zone i temperature remained within the comfort zone; without

loss of generality, the latter is defined as the operation with zone i temperatures

(xi(k)) deviating from the desired values (ri(k)) by more than ε. I.e., |xi(k) − ri(k)| > ε.

Moreover, vi(k) is the vector of inputs in zone i, ci(·) is a function-vector represent-

ing the cost of producing the zone i inputs (it is noted that each heating device is

64

Geo
rge

 M
. M

ilis

associated with its own cost function), cmax is a theoretical maximum cost, acting as

normalization factor. The first criterion is based on the thermal comfort standards

of ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning En-

gineers) [86] where a metric of thermal comfort is defined as “the occupied time

within a defined time period in which the environmental conditions in an occupied

space remain inside the comfort zone”. The ASHRAE defines also more complex

thermal comfort models, taking multiple variables and factors into account, which

can be incorporated if an application requires it. The second criterion considers the

distance from the maximum normalised accumulated cost of producing the zone i

inputs.

The above described method presents certain limitations. Specifically, large

multi-zone buildings may be equipped with high numbers of IoT components, es-

pecially if we consider also the sensing infrastructure of modern smart phones. In

such cases, the “Semantic Reasoning” process may end up with high numbers of

configuration options, particularly due to the multiple alternatives of measurement

signals. Therefore, passing all detected configuration options through simulation

tests, becomes impractical. An immediate solution to the problem would be to test a

random subset of n∗I configurations from the list of detected options following time kI

(e.g., n∗I ∈ [2, 10]). The actual number of options to be considered, may depend on the

application and the reasonable re-configuration time-window. A drawback of this

solution would be that it does not take into consideration any quality characteristics

of configuration options. To address this, we define a “similarity measure” to make

a more informed decision about the configuration options to consider for the control

system. The “similarity measure” |J1 − J2|I is implemented as a logic-programming

function, which calculates the difference between two configuration options C(I,J1)

and C(I,J2) in terms of number and types of edges in C(I,J2) that need to be added/re-

moved in order to end up with C(I,J1). We use this measure to select n∗I configuration

options to pass through the simulation test, by explicitly excluding the ones with

similarity between them lower than a pre-defined threshold. That is, we require that

|J1 − J2|I ≥ δ with δ being the lower similarity allowed between two exploited con-

figuration options. This way, the configuration selection process guarantees that the

tested options will not be very similar to each other, thus allowing wider exploration

of the “Configurations Graph”.

Section 3.4 discusses the scalability characteristics of the solution, triggered also

65

Geo
rge

 M
. M

ilis

by the findings of Section 3.3.5 as presented in Table 3.2 in terms of the time required

for the selection process to be completed.

3.3.8 Illustrative Scenarios Execution

Here we go through an execution of a scenario where several components’ chang-

ing events are introduced, leading to SEMIoTICS re-configuring the control system

in-line with the use case presented earlier in Section 3.3.5. As expected, SEMI-

oTICS utilises the each time available knowledge and makes decisions for the re-

configuration of the system so as to continue offering the required control service

without downtime and at the extent possible.

We repeat that the objective of the control system is the heat-regulation of the tem-

perature of Room 1 at 25 oC. Fig. 3.19 shows on the top sub-figure the temperature

of Room 1 through a 24-hour simulation where five changes of components are in-

troduced. The bottom sub-figure shows the respective heat energy input introduced

by the heating devices. The scenario is described below:

At k0 = 0 (i.e., the initial deployment and configuration of components is assumed

happening at k = 0), the control system is operating with the configuration marked

with double blue line in Fig, 3.18, that is, with a small set of components comprising

the temperature sensor f s
1 , the heating device f a

1 and the controller f c
1 . It can be seen

that the controller drives the actuator and increases the temperature to reach the

reference value and maintains it there according to its capabilities. Note that the

ambient temperature is modelled as varying between 6 and 15 degrees Celsius in a

24-hour cycle.

Later during the operation of the system, at time k1 > k0, the sensor f s
1 stops

transmitting. SEMIoTICS executes the Semantic Reasoning and the Configuration

Selection processes, so as to re-configure the feedback control system. Since no

measurement is available, the result is to select the open loop controller to drive

the heating device. We assume also that the ambient temperature measurement

becomes available. This configuration is the one marked with orange dashed line in

Fig. 3.18. It can be seen that the temperature regulation performance degrades due

to the different capabilities of the open loop controller.

At time k2 > k1, the building operator installs a new sensor, f s
4 , which measures

the temperature of Room 1, however, in degrees Fahrenheit. This results in re-

66

Geo
rge

 M
. M

ilis

(a) Room 1 Temperature State over the simulation time

(b) Room 1 Heat Energy Input over the simulation time

Figure 3.19: A 24-hour simulation of the plant’s control operation. At k1: The

sensor f s
1 stops transmitting and SEMIoTICS re-configures the control system to op-

erate with the available open loop controller; At k2: Sensor f s
4 is installed, however,

measuring in degrees Fahrenheit; At k3: A pre-control function becomes available,

which transforms degrees Fahrenheit to Celsius; At k4: Additional sensors become

available, measuring Room 1 temperature, occupancy of room, opening of door con-

necting the two rooms. Several pre-control and parameter functions are available as

well and Room 1 is not occupant; At k5: Room 1 is occupant again, while the opening

of the door causes the Room 2 temperature to be considered a valid measurement

for Room 1 temperature, with certain weight.

67

Geo
rge

 M
. M

ilis

configuring the system which operates again with the controller f c
1 . It can be seen

that the wrong interpretation of the signal by the controller results in turning into

the “off” state and letting the temperature to drop. Then, at time k3, the pre-

control function that transforms the degrees Fahrenheit to degrees Celsius becomes

available. SEMIoTICS re-configures the control system to use that functionality and

the control system operates again as required.

At time k4, more sensing capabilities become available: sensor f s
3 measures the

temperature of Room 2, sensor f s
5 measures the opening of the door in the wall

separating the two rooms and sensor f s
6 measures the occupancy of Room 1. During

that time, a user of the first room has an activated temperature measurement as well

on her mobile device (f s
2). In parallel, the pre-control temperature fusion function

becomes available, which provides a weighted average of the outputs of f s
1 and

f s
2 . Moreover, a parameter function becomes available, which uses the occupancy

measurement to lower the reference temperature to 18oC. The scenario assumes

at this event that Room 1 is not occupant. SEMIoTICS re-configures the system

and chooses the controller f c
2 to drive the heating device. It can be seen that the

temperature of the room is left to drop to the new reference value and then it is

regulated there with lower heating power, thus also saving energy.

Finally, at time k5, Room 1 becomes occupant again. Moreover, a pre-control

function becomes available, which monitors the opening of the door and changes

the knowledge in the “Knowledge Graph” marking the Room 2 as practically being

part of Room 1. As a result, the controller makes use of the new knowledge and

the fusion function considers also the temperature of Room 2 (f s
3) in its weighted

average. Since the room is occupant, it can also be seen that the controller brings the

temperature back to 25oc.

It is emphasised that the re-configurations of the system happen online, adopting

the design of the processes presented in the previous sections.

3.4 Complexity and Scalability

The online reconfigurability features of SEMIoTICS do not come without a cost.

The Semantic Reasoning process is inherently a decision problem of combinatorial

nature, since it involves searching through the “Knowledge Graph” aiming to build

the “Configurations Graph” and subsequently searching through the “Configura-

68

Geo
rge

 M
. M

ilis

tions Graph” to detect the sub-graphs that meet certain criteria so as to comprise

feedback control system configuration options. The process is executed every time

SEMIoTICS is informed of a change in the “Knowledge Graph”, i.e. annotation of

new components or changes of plant topology, etc.. Depending on the application,

the time required for the process to complete and return the list of configuration

options may be an important factor. This time is associated with the computational

complexity of the process execution, which is typically a challenge in combinatorial

problems. We investigate here the computational complexity of the semantic rea-

soning process and how this associates with the scale of the problem, i.e. the size

of the building and the number and types of deployed control system components.

The findings provide useful information related to the scalability of the solution.

Computational complexity typically concerns how algorithms scale as their input

size increases, and is measured either in terms of the time needed to solve the

problem or in terms of the size of the input vector. The semantic reasoning process

is a decision problem, which takes as input the state of the “Knowledge Graph” at

time kI (following an event of change in components), denoted as GI. The state of

the “Knowledge Graph” comprises a set of stored knowledge facts, i.e. set of triplets

formed by edges and their adjacent nodes (see Section 3.3.1).

The size of the input to the process is defined by the cardinality of the set of stored

knowledge facts. The cardinality of this set is associated with the cardinalities of the

sets in Table 3.3. The sets refer to the execution of the semantic reasoning process

at time kI, however, pointer I is omitted in the Table for clarity of the notation. In

this work we do not emphasize on designing the decision algorithm with the lowest

computational complexity to execute the semantic reasoning process; we are rather

concerned with gaining insight to the scalability of the solution, given our existing

algorithm and implementation.

The first five rows refer to sets that may evolve more frequently during the

operation of SEMIoTICS and can become of big size, the subsequent five rows refer

to sets with rather few elements that are expected to evolve much less frequently

(e.g., by annotating new physical properties or locations in a building), and the

last row refers to a set that depends on the semantic connectivity between the

available components in the “Configurations Graph” and it cannot be pre-estimated.

Although the actual execution time of the semantic reasoning process is an important

factor, it highly depends on the hardware infrastructure on which SEMIoTICS runs.

69

Geo
rge

 M
. M

ilis

Table 3.3: Sets participating in Semantic Reasoning

Set Description

F The set of annotated control system components, with cardinality n f .

U The set of annotated inputs of control system components, with cardi-

nality nu.

Y The set of annotated outputs of control system components, with cardi-

nality ny.

Z The set of annotated parameters of control system components, with

cardinality nζ.

Θ The set of registered parameters in the Parameters Registry, with cardi-

nality nθ

Ω The set of different types of control system components (i.e., sensors,

actuators, controllers, pre-control functions, post-control functions, pa-

rameter functions), with cardinality nω.

Q The set of capabilities that the signals can associate with, with cardinality

nq

L The set of features-of-interest defined for the underline system topology,

with cardinality nl.

P The set of properties of features-of-interest the signals can associate

with, with cardinality np.

M The set of measurement units the components can associate with, with

cardinality nm.

E The set of edges, i.e. matching pairs of outputs and inputs, in the

respective Configurations Graph.

70

Geo
rge

 M
. M

ilis

Therefore, the findings presented here cannot be translated to time-complexity; they

rather comprise indications about the scalability of SEMIoTICS.

The semantic reasoning process is implemented as a set of logical queries, which

essentially query the Knowledge Graph and subsequently the Configurations Graph

to extract certain sub-graphs. Assuming that we want to retrieve all knowledge facts

in the graph, then the respective query will search through all different types of edges

and all their respective pairs of adjacent nodes. That is, the query would require a

total of nNnEnN executions of the basic operation of a triplet matching (the latter is

considered covering also the search within pre-indexed lists). This number roughly

defines the complexity of the query, which is polynomial in the space of input size

n2
NNE (PSPACE(n2

NNE)). In practice, the search in the semantic reasoning process

is performed on pre-defined relation sub-graphs, which reduces the complexity to

PSPACE(n2
N).

The core logical query of the semantic reasoning process, is the “Output-to-Input

Semantic Matching”. The query takes as input an output of a component and an

input of another component or a parameter of a component and a parameter in

the registry Z. Since the semantic annotation space is defined by a quadruple of

graph nodes in different relation sub-graphs, the query involves searching within

the four different relation graphs. Taking for example the relation graph that con-

nects end-point nodes to a “physical property” node, the worst case will appear

when the output node is linked to a different “physical property” node than the

input node, with the two “physical properties” associated through a third relation

graph. This will require n2
q instantiations of the triplet matching operation. The same

holds for the other three pairs of relation graphs and a matching is only confirmed if

the operation succeeds in all cases. Therefore, the output-input semantic matching

query requires n2
qn2

l n2
pn2

m instantiations of the triplet matching operation, which gives

PSPACE(n2
qn2

l n2
pn2

m) complexity. This core query is used extensively throughout the

semantic reasoning process, therefore we refer to its complexity asO(sm) for simplic-

ity. The input space of this query comprises very rarely updated and rather small

numbers.

Building on the above core query, we analyse the rest of the queries executed by

the semantic reasoning process and we present their resulted complexity in Table

3.4. Query sq1 concerns the composition of pairs of component types, e.g. plants

to sensors, controllers to actuators, and so on, query sq2 concerns the building of

71

Geo
rge

 M
. M

ilis

the Configurations Graph and depends on multiple executions of sq1, and query sq3

navigates through the already created Configurations Graph and extracts all valid

configuration options. It can be seen that the theoretical results reveal complexity

figures which can become challenging for very large input size.

Table 3.4: Complexity of Semantic Reasoning Queries

ID Query Complexity

sq1 Pairwise component-

types composition

PSPACE(n2
f nynuO(sm))

sq2 Build Configuration

Graph

PSPACE(O8(sq1)) = PSPACE(n16
f n8

yn8
uO

8(sm))

sq3 Extract configuration

options

PSPACE(m(ps)
I m(sy)

I m(syc)
I m(cau)

I

m(ua)
I m(ap)

I m(sζ)
I m(ζθ)

I)

It can be seen that the complexity of the semantic reasoning process depends

on the number of components and subsequently the number of end-points (inputs,

outputs and parameters) these components have, as well as on the connectivity

between the components. That is, bigger number of components that do not increase

connectivity (e.g., a building to which we add zones where each zone is separately

equipped with certain sensors and actuators) is not expected to have high impact on

the complexity of the extraction of configuration options. On the other hand, a small

number of components with high connectivity (e.g., adding redundant sensors and

actuators in a zone) will affect all three queries. As mentioned, we do not attempt here

a thorough theoretical analysis of the complexity, since this would highly depend

on the specific design and implementation of the semantic reasoning process. We

rather study the scalability of the solution in practical terms. We experiment with

a maximum of 1000 components, assuming SEMIoTICS could run on a 20-floor

building with 10 zones per floor and 5 components per zone on average. Bigger

buildings or groups of buildings can make use of multiple instances of SEMIoTICS

with certain information exchange between them, however, we do not consider such

architectures in the framework of this Dissertation. The simulation results help us

derive useful conclusions about the scalability characteristics of the solution.

Table 3.5 shows indicative experiment results from executions on an average

72

Geo
rge

 M
. M

ilis

laptop with Intel Core i5 7th Gen processor. The columns of the table present the

time (in seconds) for the following tasks:

Task 1: Build the Configurations Graph

Task 2: Extract all control system configuration options

Task 3: Test the performance of a single control system configuration option,

towards Configuration Selection

Task 4: Put the selected control system configuration option in operation

Table 3.5: Scalability experimental results

Experiment Task 1 Task 2 Task 3 Task 4

5 components,

1 configuration option
1.6 1.76 1.77 1.23

20 components,

1 configuration option
2.26 2.55 3.59 2.90

100 components,

1 configuration option
1.82 2.05 4.85 3.24

100 components,

more than 500 configuration options
1.81 ∞ - -

100 components,

50 configuration options
1.53 10.2 5.5 4.14

1000 components,

100 configuration options
4.4 194.4 7.5 6

Note that the table reports the time for a single evaluation of a configuration

option; this would be roughly multiplied by the number nI of configurations consid-

ered for the selection of the best performing one. The results help us derive useful

conclusions about the scalability characteristics of the solution. It can be seen that

73

Geo
rge

 M
. M

ilis

the process of building the Configurations Graph takes around 1.5 − 4 seconds for

the whole range of the experiments input size and as such it is not expected to be

a scalability bottleneck for using SEMIoTICS in large buildings. Then, the process

of extracting the configuration options from the “Configurations Graph” highly de-

pends on the configurations’ redundancy and it is not affected by the number of

components in the building. We observe that a very large number of configuration

options causes the system to stop responding, which creates a significant scalability

issue. We overcome this issue by cutting the number of considered configuration

options to a manageable level (nI < n∗I), depending on the application (see Section

3.3.7). Finally, the time required to test a configuration option, as well as the time

required to put one in operation, increase with the number and heterogeneity of com-

ponents, however, it is not expected to negatively affect the scalability for the size of

the considered buildings and use cases with the same time-response characteristics,

like the heating control in multi-zone buildings.

3.5 Implementation Details

Fig. 3.20 presents the tools and technologies adopted for the implementation of

SEMIoTICS modules, as well as the interfacing and communication technologies

used for the interaction between modules. The subject diagram is positioned on

top of a faded version of the SEMIoTICS architecture, in order to facilitate the

understanding of the direct relation between tools/technologies on one hand and

specific modules and communication links on the other hand.

More specifically, the following dynamics of the plant, as well as the orchestra-

tion of the simulation scenarios are implemented as Matlab scripts [115]. The control

system components are implemented as individual Matlab functions, with certain

inputs and outputs, in-line with the syntax presented in Section 2.2. It is noted

that the functions implementing the components of type “Sensor” and “Actuator”

comprise virtual simulations of their expected physical operation; the functions im-

plementing the rest of the components which are on the cyber part, i.e., “Controllers”,

“Pre-Control Functions”, “Post-Control Functions”, “Parameter Functions” and “Pa-

rameters Registry” may serve as real implementations as well. The invocation of the

components’ functions is performed in Matlab, with direct function calls using the

information from the configuration selection decision.

74

Geo
rge

 M
. M

ilis

Figure 3.20: A diagrammatic representation of the tools and technologies adopted

for the implementation of SEMIoTICS

75

Geo
rge

 M
. M

ilis

It is noted that in a real implementation of SEMIoTICS, the components are

located either in remote physical locations in the plant or in remote Web/Cloud

locations of providers. The interaction would be implemented through dedicated

RESTful APIs [99] or implementations of the widely used MQTT communication

protocol [83] in IoT applications. Furthermore, although it is out of the scope of

this Dissertation, we emphasize that a real implementation should consider the

communication and energy/battery limitations of remote IoT devices, especially due

to the need for IoTs to communicate additional information beyond the signal values.

The research community is progressing fast in investigating solutions that overcome

these limitations and that remove any barriers from adopting the IoT paradigm

and subsequently the SEMIoTICS architecture. The most promising solutions come

from the domain of “edge computing”. For instance, the authors in [120] propose

a framework called AdaM, which can run on the hardware of IoTs and implement

adaptive sampling and adaptive filtering of data streams, thus saving energy and

communication cost by adapting the communication based on the characteristics

of the signal. Another interesting approach is the one of [122], where instead of

communicating data, the IoTs learn a model of the data streams they produce and

exchange only the parameters of the model with a central processing unit that also

helps them adjust those parameters.

Web/Cloud services communicate with the “Knowledge Graph” through the

aforementioned communication protocols as well. As already mentioned, we do not

specifically implement the communication with these protocols in the framework of

this Dissertation. We rather simulate any relevant interactions in the scenarios e.g.,

reading temperature data from a Web service of a local weather station. We are cur-

rently working towards implementing the protocols part by integrating SEMIoTICS

in existing IoT platforms.

The “Knowledge Graph” G is implemented in Protege [111]. This is a widely

adopted and very powerful framework tool for creating and linking ontologies

(knowledge models) and is provided for free by the University of Stanford, USA. The

knowledge models we reuse, develop and merge, are exported through Protege in

the “Terse RDF Triple Language” (Turtle) syntax [125] of the OWL/RDF data models.

This format is similar to the one used by SPARQL semantic query language [121].

Human users are able to interact with the “Knowledge Graph” either directly

through the Protege tool (e.g., this is applicable for the responsible knowledge engi-

76

Geo
rge

 M
. M

ilis

neer of a SEMIoTICS instance) or through dedicated Web-based interfaces. We do

not specifically implement the latter in the framework of the Dissertation; we rather

simulated in Matlab any such interaction, e.g. a technician creating the semantic an-

notation of a newly installed sensor or a domain expert introducing a new physical

property and its measurement units.

The “Semantic Reasoning” is implemented using the SWI Prolog [2] which is a

free implementation of the Prolog logic programming language. The selection of

Prolog was done due to the inherent flexibility it provides to not only query the

knowledge graph but also implement the required higher-level reasoning rules for

the control system configuration options’ extraction, with very good performance.

The communication between Matlab and Prolog is achieved through JPL [41], which

is a Java interface to Prolog. We have used this interface directly through Matlab,

since the latter is built on top of Java and provides transparent integration.

Alternatively to the use of Prolog, e.g. in case a Prolog engine/server is not avail-

able, implementations of SEMIoTICS may consider the use of SPARQL [121] that is

a pure query-script language that facilitates running pattern-matching queries on

knowledge graphs. This can be used in Internet applications, as well as directly on

IoT devices, since it has smaller computational power requirements. The drawback

would be some decrease in computational efficiency, since SPARQL implementations

make use of storage means that do not transparently work with graph data structures,

thus generating additional needs for data processing at the low level. A much better

solution in terms of computational efficiency would be the “GraphX” [68], which is

a lightweight graph processing and querying library. GraphX overcomes the main

drawbacks of SPARQL implementations, by employing pure RDF-compatible data

representation structures, thus being able to support many of common computations

on graphs. Still, Prolog provides a more powerful and computationally efficient tool

for the implementation of the semantic reasoning process and should be considered

in applications where the use of a Prolog engine is not excluded. Besides the pure

graph-based operation and its efficient backtracking search algorithm, the key ad-

vantage of Prolog is the ability to write higher-level functions to perform multiple

lower level reasoning, thus hiding the complexity of the logic operations from the

application layer.

The communication of Prolog with the “Knowledge Graph” is achieved through

the use of the SWI-Prolog Semantic Web Library 3.0 [114], which provides inherent

77

Geo
rge

 M
. M

ilis

logic programming functions for the interfacing with the Turtle format of the Graph.

The implementation details of the Configuration Selection process are similar to

the ones of the Semantic Reasoning process. That is, a dedicated Matlab function

undertakes the interaction with the rest of the modules, while Prolog is used for the

execution of the required semantic queries and the returning of the logically valid

results from the Knowledge Graph.

Finally, the diagram presents also the Components Synthesis process/module,

which again has same implementation details as the Semantic Reasoning process.

This module, as well as its interaction with the Semantic Reasoning process and the

Knowledge Graph and Components Database, will be introduced and detailed in

Chapter 4.

78

Geo
rge

 M
. M

ilis

Chapter 4

Online Synthesis of Distributed

Feedback Control Schemes

In this Chapter we describe how we further exploit the capabilities of SEMIoTICS,

to achieve the online synthesis of components, which can take part in semantically

valid control system configurations. Without loss of generality, and in order to

improve the readability of the formulation, we consider the building shown in

Fig. 4.1, comprised of three rooms/zones. The objective is to apply heating control in

the building, assuming homogeneous heat capacity in each zone and thus modelling

the inside temperature with the state-vector x(k) ∈ R3. We also assume homogeneous

ambient and floor temperatures, modelled by the vector w(k) ∈ R2.

The building is assumed controlled by a Building Management System (BMS),

which is equipped by an instance of SEMIoTICS, aiming to allow online (re-)configuration

of the control system as detailed in Chapter 3. Our hypothesis is that we can synthe-

size and plug specific controllers automatically, so as to achieve better performance

against certain pre-defined QoS criteria.

4.1 Case with one actuator per zone

Heating control in buildings, e.g. in HVAC systems, is currently performed by ap-

plying simple strategies, e.g. using a thermostat to activate/inactivate the valve of a

variable refrigerator flow unit (VRF) at few pre-defined levels or apply proportional

flow-rate through valve/fan control [48]. Literature also presents model-based con-

trol methods for achieving better control performance and energy savings in HVAC

79

Geo
rge

 M
. M

ilis

Figure 4.1: A building with three zones spanning two floors. It involves 12 wall-

areas with 3 doors and 4 windows, 4 ceiling-areas and 2 floor-areas. The zones have

temperatures xi, i ∈ {1, 2, 3}. The ambient temperature is modelled by w1 and the

floor temperature by w2.

systems [123]. However, the latter do not typically find their way to real applications,

since the dependence on plant models reduces significantly the portability of the so-

lutions and subsequently the potential return on the investment. In our work we

80

Geo
rge

 M
. M

ilis

utilise the SEMIoTICS reference architecture and system to allow the online passing

of building topology and heat characteristics’ parameters to model-based controllers,

thus achieving their online synthesis and subsequently the plug-and-play control of

heating devices. The solution is portable since the operation of the system does not

depend on the prior knowledge of the building or the heating devices’ parameters,

which are considered given as input, through the “Knowledge Graph” GI.

More specifically, we design controllers adhering to the syntactical form pre-

sented in Section 2.2. E.g., a controller being part of the configuration selected at

time kI, is modelled by uI(k) = fc(y′I(k); ζc
I(k)), where uI(k) is the vector of control

decision signals, y′I(k) is a vector of (potentially processed) measurement signals and

ζc
I(k) is a vector of parameter values. These vectors have appropriate dimensions

and content, which depend on the order of the system and the specific implementa-

tion of the controller operating in the time interval [kI, kI+1). Specifically, the vector

ζc
I(k) corresponds to internal parameters of the controller implementation that can

be passed to the controller online, as will be explained later. The end-points pro-

ducing/consuming these signals are subject to the Semantic Matching and Semantic

Reasoning operations detailed in Sections 3.3.2 and 3.3.4 respectively. Therefore, if

the controller is selected in a configuration, its end-points’ signals will be routed

accordingly. The details of the low-level communication architectures and routing

protocols are not in the scope of this Dissertation.

We start by defining the plant subject to control (the pointer I is omitted from the

notation, since the same controllers’ synthesis process is executed once following

each kI). The heat flow equations of the zones in Fig. 4.1 are derived using the

Fourier’s law and the conservation of energy [17], considering that the heat energy

flow-rate per surface unit area is proportional to the negative temperature gradient

across the surface. Assuming heat flowing through a surface in one dimension, the

heat equation of zone i, with i ∈ {1, 2, 3}, in a discrete time formulation, is given by

(4.1):

xi(k + 1) =xi(k) + ai(ζp(k))xi(k) + hT
i (ζp(k))x(i,adj)(k) + dT

i (ζp(k))w(k)

+ gi(xi(k), k; ζc(k))ui(k) + γ̄i(ζp(k)) (4.1)

where xi(k + 1) is the homogeneous temperature value in zone i at time k + 1, the

scalar function ai(·) depends on a heat parameters’ vector ζp(k) (heat characteristics

81

Geo
rge

 M
. M

ilis

and areas of building surface structures and openings at time k, as detailed in the

sequel), x(i,adj)(k) is a vector of appropriate dimensions representing the temperatures

of adjacent zones to zone i, hi(ζp(k)) is the associated vector of scalar functions that

depend on the state interdependency heat parameters, w(k) and di(ζp(k)) are vectors

of appropriate dimensions representing the ambient and floor temperatures and the

dynamics associated with them, respectively. The model accounts also for a heat

energy input ui(k) affecting the state through the function gi(xi(k), k; ζc(k)), where

ζc
⊆ ζp is the part of the parameters associated with the controlled input, as well as

some bounded additional uncertainties (e.g., due to model inaccuracies), grouped

here in the term γ̄i(ζp(k)).

In this use case, the vector ζc represents the zone desired temperature, the un-

controlled ambient and floor temperatures, the heating device characteristics (max-

imum flow-rate; specific heat capacity of present liquid/gas; the inflow air temper-

ature; etc.), as well as the plant characteristics (volume of subject zone; specific

heat capacity and mass density of air in the zone; the area, thickness and thermal

conductivity of the material of each wall and opening; the doors/windows opening

percentages). The following operations are executed automatically through SEMI-

oTICS. The “Knowledge Graph” is able to model the building topology in detail,

and thus enable the semantic annotation of the parameters, by linking to the DogOnt

ontology [15]. The values for the above parameters are assumed extracted from a

“Building Information Model” [23,95]. This facilitates SEMIoTICS, following change

events at times kI, to synthesize online the temperature change model of a building

by retrieving the parameters ζc from the “Knowledge Graph” stateGI. The synthesis

is performed by the “Controller Synthesis” module of the Supervisor Σ, represented

by the blue-highlighted box in the extended SEMIoTICS architecture in Fig. 4.2. The

operation of this module is triggered by the “Semantic Reasoning” process before

the triggering of the “Configuration Selection” process.

With certain modifications, the previously described plant model is brought to

the general form in 4.2.

xi(k + 1) − xi(k) =ai(ζp(k))xi(k) + ξi(xi(k),w(k); ζp(k)) + gi(xi(k); ζc(k))ui(k) (4.2)

The model is feedback linearizable, since, gi(·) never becomes zero for the plant

we consider in our work and the resulted linear model is controllable [88]. Therefore,

82

Geo
rge

 M
. M

ilis

Figure 4.2: Extended SEMIoTICS architecture, incorporating the “Controller Syn-

thesis” module

we use a feedback linearization controller and choose a signal ui(k) of the form in

(4.3), to regulate the state to follow a reference signal ri(k).

83

Geo
rge

 M
. M

ilis

ui(k) =g−1
i (y′i(k); ζc(k))[−ξi(y′i(k),w(k); ζc(k)) + νi(k)] (4.3)

where y′i(k) is a (potentially processed) measurement of the state xi(k) at time step

k, ζc(k) ⊆ ζp(k) is the aforementioned vector of controller-defined parameters and

νi = −Kc
i (y′i(k) − ri(k)) is a proportional linear control law. The control gain Kc

i is

computed so as to stabilise the linearised dynamics of the zone, by placing the poles

of the closed-loop system on the negative part of the horizontal axis in the s-plane

in a way to achieve a high to moderate error convergence rate and smooth enough

response.

For each building zone that has at least one heating device installed, the “Con-

troller Synthesis” module synthesizes a controller as in (4.3). The semantic an-

notation of each controller is created online and stored in GI. This involves the

annotations of:

i) the vector y′i , with one element representing the respective zone temperature,

as well as additional elements representing the temperature measurements of

adjacent zones, where applicable;

ii) the scalar control decision ui, representing the heating device flow-rate;

iii) the vector of parameters ζc, with multiple elements to cover the full list of

parameters defined earlier.

Where the above controllers are selected by SEMIoTICS following an event at kI, the

state measurement and parameter vectors are generated and passed to them online,

taking advantage of the SEMIoTICS semantic annotation, semantic matching and

semantic reasoning processes. It is noted that SEMIoTICS makes no pre-assumption

on the existence of actuators (i.e., heating devices) in any of the zones. Therefore,

the “Components Synthesis” module synthesizes a distributed control scheme, i.e.,

a separate controller function for each zone where there is at least one semantically

matching actuator installed. The full state measurements, as well as the knowledge

about disturbances and plant parameters are shared among the zone controllers.

84

Geo
rge

 M
. M

ilis

4.2 Case with multiple actuators per zone: optimal al-

location of control signal

The control signal in each zone is utilised to drive a semantically matching heating

device, considering the outcome of the “Configuration Selection” process. In an IoT

framework, however, additional heating devices may become available in a zone.

We show here how we modify the aforementioned controllers to allow allocation of

the control signal to multiple actuators in a cost-effective way. The solution considers

variable liquid flow units that heat certain volume of liquid and allow the radiation

of heat into a zone.

Accounting for multiple actuators in a zone, changes the plant model to the one

in (4.4).

xi(k + 1) =xi(k) + ai(ζp(k))xi(k) + ξi(xi(k),w(k); ζp(k))

+

na
i∑

j=1

gi j(xh
ij(k), xi(k),ui j(k); ζc(k)) (4.4)

where the heat energy input dynamics are produced by na
i actuators installed in

zone i, where i ∈ {1, 2, 3} and are given by the sum of all individual input dynamics

affecting the state. The pointer j = 1, 2, ...,na
i serves each time as iterator of the

heating devices in zone i. Using the heat energy flow parameters, we can write this

sum as in (4.5):

u′i(k) =
1

Hair

na
i∑

j=1

Ch
ijA

h
ij(x

h
ij(k) − xi(k)) (4.5)

where Hair is the heat capacity of the air computed using the zone air volume, mass

density and specific heat capacity, Ch
ij is the heat transfer coefficient of the surface

of the heating device j in zone i measured in W/m2oC, Ah
ij is the surface area of the

heating device j in m2, xh
ij(k) is the temperature of the liquid in the same heating

device in oC and xi(k) is the zone i temperature state at time k. The heating device

liquid temperature is affected by the device’s internal dynamics and is controlled

by the flow of hot liquid through a valve, as shown in (4.6), where Hl
i j is the heat

capacity of the liquid in the heating device j of zone i, ūi j is the maximum valve

opening and subsequently the maximum liquid flow-rate that can be achieved by

85

Geo
rge

 M
. M

ilis

that heating device, Cl
i j is the specific heat capacity of the liquid of device j, Th

ij is the

constant temperature of the inflow liquid of the heating device j in zone i.

xh
ij(k) =xh

ij(k − 1) −
1

Hl
i j

Ch
ijA

h
ij(x

h
ij(k − 1) − xi(k − 1)) +

1
Hl

i j

ūi jui j(k)Cl
i j(T

h
ij − xh

ij(k − 1))

(4.6)

Substituting (4.6) into (4.5) and then into (4.4), we end up with a model of the

form in (4.7).

xi(k + 1) =xi(k) + ai(ζp(k))xi(k) + ξi(xi(k),w(k); ζp(k)) + u′i(k) (4.7)

We again design a feedback linearization controller, this time choosing the signal

u′i(k) of the form in (4.8).

u′i(y′i(k); ζc(k)) = −ξi(y′i(k),w(k); ζc(k)) + νi (4.8)

where again the linear control law is given by νi = −Kc
i (y′i(k) − ri(k)). The overall

control input dynamics cancel all other non-linearities. What remains is to compute

individual control signals ui j(k) with j = 1, ...,na
i , so as to sum up to the total required

control input u′i(k) for the zone i.

We formulate the problem as an “Economic Dispatch” process, which is usually

used in the control centres of the Electric Power Systems (section 12.4 of [46]). It

concerns the dispatch of the power load demand to available generator units in an

area, in the most cost-effective way. The semantic annotation of each heating device

in the “Knowledge Graph” G, defines its operation-cost parameters, which help to

compute the function: ci j(k) = (αi j +βi jui j(k)+γi jui j
2(k))c f . This is a quadratic function

mapping the output heat power of a heating device at time k to the cost of producing

it; c f models the cost of electricity, fuel cost, energy losses, etc. The formulation of

the optimization problem is given in (4.2). The objective is to minimize the total

cost of operating the devices. The cost is measured in a unit of currency per time of

operation.

86

Geo
rge

 M
. M

ilis

argmin
ui j(k)

na
i∑

j=1

(αi j + βi jui j(k) + γi ju2
i j(k))c f

s.t:
na

i∑
j=1

Ch
ijA

h
ijūi jCl

i j(T
h
ij(k) − xh

ij(k))ui j(k)

HairHl
i j

= u′i(k),

0 ≤ ui j(k) ≤ ūi j,∀ j

Therefore, at times k ∈ K , the designed controller for each zone, computes the

total control input dynamics u′i(k), which considers the dynamics of all available

heating devices, and solves online the optimisation problem of finding the part of

the control signal to be allocated to each of the available na
i units in the zone, such as

for the overall cost to be minimised. It is noted that the minimum is achieved when

all heating units operate at equal incremental operating cost [46], which is found

by adding the energy preservation constraint on the overall cost function with a

Lagrange multiplier and applying the partial derivative-based minimization criteria.

We enforce also inequality constraints, limiting the minimum and maximum control

signal that each unit can accommodate. The result is that the system exploits the

cost of the installed heating devices in a zone in order to allocate the control signal.

It is emphasized that the solution makes no pre-assumption about the number of

heating devices. Moreover, the operation parameters of the heating devices, which

are required to compute their flow-rate, are extracted online from the respective

semantic annotations of the devices.

4.3 Simulation Results and Impact

We run three heating control simulations for the building in Fig. 4.1, with the

feedback control configurations managed online by an instance of SEMIoTICS (Fig.

4.2). The values for the parameters discussed in Section 4.1 are taken from the

literature and are listed in Table 4.1 for convenience, together with several other

simulation-specific parameters. The three simulations are identical as far as the

content of this table is concerned. Moreover, the following scenario is implemented

in all three simulations:

87

Geo
rge

 M
. M

ilis

Table 4.1: List of simulation parameters and (indicative) values

Parameter name Value

Model of ambient temperature Erbs formula [33]

Sensor recording (sec) 1

Sensor sampling for control (sec) 60

Reference zone temperatures (oC)

Zone 1: 25

Zone 2: 23

Zone 3: 27

Floor temperature (oC) 15

Maximum liquid flow rates of all

heating devices (kg/s)
0.025

Zones volumes (m3)

Zone 1: 6 x 4 x 2.80

Zone 2: 6 x 4 x 2.80

Zone 3: 4 x 4.5 x 2.80

Specific heat capacity of air

on constant pressure (J/kgoC)
1004

Specific heat capacity of air

on constant volume (J/kgoC)
717

Density of air at 25oC, at sea level

(kg/m3)
1.2250

Specific heat capacity of water (J/kgoC) 4184

Density of water (kg/m3) 998

Thermal conductivity of walls’ material

(W/moC)
0.15

Thermal conductivity of doors’ material;

wood oak (W/moC)
0.09

Thermal conductivity of windows’ material;

glass (W/moC)
0.096

88

Geo
rge

 M
. M

ilis

Thickness of doors (m) 0.10

Thickness of windows (m) 0.05

Thickness of walls (m) 0.30

Area of openings (m2)
doors: 2

windows: 1.2

Heating devices’ inflow liquid temperature (oC) 40

Electricity kWatt-hour cost, normal tariff (EUR) 0.157

Electricity kWatt-hour cost, low tariff (EUR) 0.07

Heat oil cost (EUR) 0.09

Volume of liquid in coils of main

heating devices (m3)
0.02

Volume of liquid in coils of secondary

heating devices (m3)
0.002

Maximum liquid flow rate of

heating devices (kg/s)
0.025

Heat transfer coefficients of main

heating devices (W/m2oC)
12

Heat transfer coefficients of secondary

heating devices (W/m2oC)
150

Initially, each of the three zones is equipped with one IoT-enabled temperature

sensor and one heating device. The “Components Synthesis” module synthesizes

three controllers online, as presented in Section 4.1, one for each of the three zones.

Each zone is controlled separately, in a distributed setting. Three occupancy sensors

are installed, one in each zone, detecting whether there is any presence in the zone

or not. In addition, three “Parameter Functions” are given, one for each zone,

which reduce the reference value of the zone temperature from its current value to

18oC if the zone is not occupied. Moreover, sensors are deployed on all doors and

windows, measuring their opening percentage. Respective ”Parameter Functions”

are also given, which update the values of the opening parameters in the “Parameters

Registry” Z. At certain non-periodical and non-predictable time intervals, zone 1

89

Geo
rge

 M
. M

ilis

becomes unoccupied (as detected by the installed occupancy sensors). The same

happens in zone 3. Also, “window 1” presents a 2% opening during another time

interval and this is taken into consideration by SEMIoTICS accordingly.

The three simulations differ in terms of utilization of certain control system

components during each configuration:

Simulation 1: The three zones are equipped with IoT-enabled heating devices

with heat and cost parameters as defined for the “main heating devices” in

Table 4.1. These devices operate with heat-oil fuel.

Simulation 2: The three zones are equipped with IoT-enabled heating devices

with heat and cost parameters as defined for the “secondary heating devices”

in Table 4.1. These devices operate on electricity.

Simulation 3: Zone 1 and zone 3 are equipped with both the aforementioned

main and secondary IoT-enabled heating devices each. No change in zone 2.

Fig. 4.3a shows the simulated temperature dynamics of zone 1 for each of the

three simulation scenarios described above, whereas Fig. 4.3b shows the heat energy

input to the plant as produced by the heating devices described earlier. To facilitate

visualisation, we show 4-hour executions of the simulations, presenting the results

only for zone 1. The figures help obtain a visual idea of how the feedback control

behaves through each of the three simulations.

In order to further study the impact of the solution, we model the building’s

overall performance, per each zone i ∈ {1, 2, 3}. We adopt the QoS criteria introduced

in Section 3.3.7 to model the building’s thermal QoS per each zone. It is noted

that the evaluation of the performance is performed outside of the online decision

making process and aims at measuring the impact of SEMIoTICS operation in retro-

spect, within certain operation intervals. Table 4.2 presents the results of the three

executions against the occupants’ thermal comfort and the energy efficiency criteria

defined in Section 3.3.7, this time from the full 24-hour executions of the simulations.

We emphasize that the focus of our work is not on the design of new types of

controllers. We demonstrate that SEMIoTICS offers effective automatic synthesis

features for the control applications in large-scale buildings, which enable the online

plugging of components that improve certain characteristics of the overall system.

Specifically, our results show:

90

Geo
rge

 M
. M

ilis

(a) The temperature of zone 1 in a 4-hour simulation of SEMIoTICS, for each of the three

described simulation executions

(b) The heat energy entering zone 1 in a 4-hour simulation of SEMIoTICS, for each of the

three described simulation executions

Figure 4.3: A 4-hour execution of the three simulations, presenting the results only

for zone 1

Table 4.2: Simulation results

Characteristic Simulation 1 Simulation 2 Simulation 3

Occupants’ Thermal Comfort 0.926 0.974 0.978

Energy Efficiency 0.21 0.0 0.08

91

Geo
rge

 M
. M

ilis

1. The ability to synthesize, semantically annotate and plug model-based “Con-

trollers” online, which make use of existing sensing and actuation capabilities

and a vector of parameters that is also passed online; the parameters can be up-

dated online through respective “Parameter Functions” that are also pluggable

online.

2. The ability to equip the controllers with mechanisms to retrieve information

about the characteristics of actuators online and run optimization processes to

allocate the control signals in a cost-effective way. It can be seen that the use

of the optimization mechanism, taking advantage of multiple actuators online

(“Simulation 3”), managed to retain the occupant’s thermal comfort at the

levels achieved by the heating device with the fast dynamics (“Simulation 2”),

considerably improving at the same time the energy efficiency of the solution

by about 8% comparing to the case where the expensive devices were used

(“Simulation 1”). The energy consumption of the expensive devices was used

as a normalization factor, thus shown as zero energy efficiency for comparison

purposes.

It is noted that the actual improvements highly depend on the events to which

SEMIoTICS will be called to respond during execution, however, we show how the

solution exploits the available components so as to find an optimal involving two

QoS criteria; the thermal comfort and the energy efficiency. It is also noted again

that the controllers synthesized and plugged online, do not make any assumptions

regarding the pre-existence of particular devices; instead, they semantically describe

their end-points, so that their participation in feedback control system configurations

is achieved if/when their connection is semantically validated through SEMIoTICS.

92

Geo
rge

 M
. M

ilis

Chapter 5

SEMIoTICS applications in Critical

Infrastructures

5.1 Semantically-enhanced Reconfigurability in State

Estimation Structures of Power Systems

5.1.1 Introduction

The Electric Power System (EPS) comprises a very critical infrastructure for the

operation of our modern society and economy. Therefore, the effective monitoring

and control of an EPS is considered of utmost importance and is undertaken by a set

of components that perform a wide range of functionalities and together comprise

the “Energy Control Centre” (ECC) application. Considerable resources are allocated

by international organizations and governments, as well as private organisations, to

advance the state-of-art and subsequently the effectiveness of all components of the

ECC.

One of the most critical components of an ECC, is the “State Estimator” (SE),

which serves several functions that support the reporting to the human operators, as

well as functions that support the operation planning, the stability and the security

of the EPS. The key position of the SE is illustrated in Fig. 5.1 [124]. In essence, the

SE produces an estimate of the operating state of the system (i.e., voltage magnitude

and phase angle of each bus) in consecutive time intervals, by processing redundant

measurements acquired by selected substations of the system. The usual measure-

ments are the real and reactive power injections, real and reactive power flows of the

93

Geo
rge

 M
. M

ilis

Typical energy control center
applications

Figure 5.1: The typical architecture of an ECC, where the key position of the SE is

highlighted. [Source: [124]]

transmission lines, as well as the voltage magnitudes at the system buses. A strict

prerequisite for obtaining a unique solution by the SE is to have a fully observable

power system through the utilised measurements.

The reliance of many ECC components on the state estimation imposes that the

SE must provide as accurate and reliable results as possible. With the recent ad-

vancements in the measurement technology of EPS and the observed progress in the

actual deployment of Phasor Measurement Units (PMUs) in the measurement layer

of EPS, the research community has been investigating ways to take advantage of

the available synchronized phasor measurements for improving the performance of

the SE. Although the cost of PMUs has been decreased and is foreseen to further

decrease in the near future, at the moment the measuring and communication in-

frastructure required for the deployment of PMUs turn the adoption of SE that rely

solely on the PMU measurements impractical. This is further emphasized by the

fact that conventional measurements can be useful in many other monitoring and

control functions, such as measurement calibration and bad data detection meth-

ods [3]. Therefore, the research has been focusing on hybrid architectures for the SE

that utilise both conventional and synchronized measurements for estimating the

94

Geo
rge

 M
. M

ilis

operating state of the EPS. A potential problem in the hybrid architectures is the

inclusion of the electric-current phasor measurements (PMU measurements) in the

measurement vector that is usually detrimental to the performance of SE [3]. Many

alternative techniques have been proposed for overcoming this issue, by utilising

the concept of “pseudo measurements” [7, 12, 19, 20, 81], converting the electric cur-

rent measurement to e.g., active power flow through an appropriate transformation

function.

5.1.2 The need for flexible architectures

The common denominator in all hybrid state estimation techniques is that they

require the use of a different SE implementation to be able to consume both types

of measurements under synchronisation conditions. In current practice, the design

of SE architectures is based on a fixed configuration of specific sub-components,

with static measurement devices’ configuration and predetermined state estimation

routines. That is, the SE algorithm developer needs to design the algorithm based on

pre-acquired knowledge about the available devices and their specifications or the

technicians that install the devices need to know the specifications of the supervisory

control and data acquisition (SCADA) system (mainly the SE implementation) in

advance. Moreover, the EPS operators need to decide in advance whether they will

perform the state estimation based only on conventional measurements or whether

they will adopt any of the hybrid architectures discussed above, together with the

corresponding (static) implementation of the SE. These cases reveal the inflexibility of

the existing SE architectures. Although this does not create significant inconvenience

in today’s operation procedures, since the need for changes in the components (i.e.,

sensing devices and SE implementations) is not so frequent, it is expected that the

flexibility may become more important in the near future and as the EPS adopt the

IoT paradigm.

The today’s Smart Grid advancements [62] with the improved integration of

the Electric Power Grid with the ICT infrastructure, reveal the need and open up

additional opportunities to offer flexibility in the SE architectures. A “smart” imple-

mentation would be expected to present online adaptability to changes in the com-

position of the measurement vector (e.g., introduction of new conventional and/or

PMU devices, removal or moving of PMU devices to other positions in the network

95

Geo
rge

 M
. M

ilis

topology, availability of new SE implementations) and perform any necessary online

reconfigurations, in order to avoid the need of manual replacement of components

and subsequent downtime. Therefore, our work contributes with the introduction

of an SE architecture that can be used in several ECC applications and allows online

(re)configurability. The proposed SE architecture is enriched with the semantically-

enhanced Supervisor Σ of SEMIoTICS, which stores structured knowledge about the

available components (e.g., measurement devices and SE algorithms’ implementa-

tions), performs semantic reasoning after any change in the available components

and takes decisions about the online reconfiguration of the SE. The situation aware-

ness is achieved by utilising an adapted version of the SEMIoTICS “Knowledge

Graph” G that fully describes the types of the components, their characteristics,

their locations, as well as the physical properties they measure.

5.1.3 Formulation

The state estimation process can be illustrated with the block diagram of Fig. 5.2,

where the vector of the states of the EPS (that is, the voltage magnitude and angle at

all buses) is defined as x ∈ Rnx , the measurements’ vector produced by the installed

set of measurement devices is given by y ∈ Rny , while x̂ ∈ Rnx denotes the vector of

the estimated system states. The diagram shows that the SE uses the set of available

measurements as input and produces an estimate of the system states which is then

utilised by several other monitoring and control functions that act on the system and

support its operation.

The estimation of the EPS state is performed based on different approaches, with

the one most commonly used being the WLS (Weighted Least Squares). According

to the WLS method, the state vector x of the system is determined iteratively by

minimizing the weighted residuals between the estimated and the actual acquired

measurements, J(x) = [y−h(x)]W[y−h(x)], where h(x) is the function-vector associat-

ing the state variables to the measurements, and W is the inverse of the measurement

error covariance matrix. Details on these state estimation algorithms can be found

in [3]. It is assumed that the network topology and parameters are known prior

to the state estimation and also the EPS is completely observable by the measure-

ments contained in vector y. In general, the measurement vector of an SE is given as

y = [P f low,Pinj,Q f low,Qinj, |V|, θV, |I|, θI]T, where the elements represent respectively

96

Geo
rge

 M
. M

ilis

EPS

Other ECCA
/ SCADA
functions

SE

x

)(xh

y

x̂

S

Figure 5.2: Block diagram of the SE implementation, focusing on the relation with

the plant, the measurement signals and the rest of the monitoring and control appli-

cations.

vectors of active and reactive power flows in lines, active and reactive power in-

jected on buses, as well as voltage and electric current magnitudes and angles. In

case of no availability of PMU units, the phasor measurements are not present and

the measurement vector is adjusted accordingly.

It is emphasised here that, on one hand it has been proved beneficial for the

SE to use a hybrid structure for exploiting also the PMU measurements [91], but

on the other hand the PMU devices, like any measurement device, are subject to

failures (e.g., broken GPS communication links) which would turn the hybrid SE

not applicable and subsequently would necessitate the return to a conventional

SE architecture. Furthermore, the today’s widely adopted practice by Utilities, is

to operate a SE that considers the locations of measurement devices pre-defined.

However, the recent advancements in technology justify a demand for additional

flexibility in the SE architecture, which would turn it possible to adapt online to

changes happening in the content of the measurement vector, as well as to changes

in the available SE algorithms’ implementations.

More specifically, assuming a conventional SE, operating on a vector of conven-

tional measurements (no PMU measurements), it is desirable for the SE architecture

to be able to adapt online when PMUs are installed in specific locations of the EPS

topology. It is also desirable for the SE to continue operating when these PMUs

are mobile and can therefore move from one location to another, which will subse-

97

Geo
rge

 M
. M

ilis

quently change the mapping to the system states. Finally, the SE should continue

operating when PMUs or conventional devices are removed from the network due

to any reason (assuming still an observable system). The proposed architecture and

solution is presented in the sequel.

5.1.4 Proposed Solution

The proposed architecture for the ECC is depicted in Fig. 5.3, which comprises a

customised version of the SEMIoTICS architecture detailed in Section 3. The index

I ∈ {0, 1, 2, ...} is the index of the SE architecture configurations that are selected

following a change in the components’ availability. In configuration I, the oper-

ation of the EPS is monitored by a set of sensors F s
I , e.g., conventional sensors

and PMUs. As mentioned earlier, in hybrid SE implementations, specific types of

measurements (e.g., measurements of electric-current which present differentiation

challenges through their mathematical relation to the voltage states of the system)

may degrade the SE performance. In such cases, the measurements pass through

a set of appropriate transformation functions F y
I before given to the selected SE

function from the set F se
I . For instance, the electric current of a line is converted to

an active power value, resulting to a “pseudo-measurement”.

In order to achieve the objective of shifting from one configuration to another

when required, an instance of the semantically-enhanced Supervisor Σ is utilised,

which is responsible for making the decisions and orchestrating the components.

The Supervisor Σ first detects and identifies any new components added. The phys-

ical communication among components is facilitated through an assumed existing

communication protocol, e.g., with extensions to the currently adopted SCADA sys-

tems (the details of this fall outside the scope of our work). Subsequently, Σ becomes

aware of the characteristics and capabilities of the new components, through their

semantic annotations (Section 3.3.2). Once the semantic annotations are received by

Σ, they are stored in the “Knowledge Graph” G, thus facilitating awareness of their

functionality and capabilities. Subsequently, an implementation of the “Semantic

Reasoning” process is utilized to reconfigure the existing SE architecture considering

all available components, e.g., to return to conventional SE if PMU measurements

are lost. It is emphasised that any switching to a new configuration happens strictly

in the time between subsequent estimation cycles and no interruption of a running

98

Geo
rge

 M
. M

ilis

Figure 5.3: The SEMIoTICS architecture customised for the proposed SE implemen-

tation; The Supervisor Σ undertakes the maintenance of the Knowledge Graph, the

semantic reasoning and the configuration selection process. Sensors, State Estima-

tors and Pre-SE Functions are part of the online configuration selection.

99

Geo
rge

 M
. M

ilis

1 2

3

V and I phasors

Pflow, Qflow

Pinj, Qinj

PMU PMU

Figure 5.4: Three-bus EPS with five measurement devices (12 single measurements)

estimation execution is performed. It is assumed that the time between two subse-

quent estimation executions is enough to allow /Sigma to complete the reasoning and

decide on the new configuration. In case of multiple valid configurations, the “Con-

figuration Selection” process selects one of them taking into account pre-defined

criteria as explained in the sequel.

The key advantage of the proposed architecture is the inherited flexibility and

automation of the components’ wiring layer, through the incorporation of the Super-

visor Σ. The structured knowledge representation, enables a machine to undertake

tasks that would otherwise be undertaken by humans (e.g., the update of the SE

implementation when the measurement vector changes). The same approach can be

adopted in other parts of the ECC application, where such flexibility may be of use.

The following section gives details about the processes executed by Σ.

5.1.5 Knowledge Graph and Semantic Reasoning Process

The implementation of the decision mechanism for the online configuration of the

SE is clarified through an illustrative case study.

Let assume a three-bus EPS as in Fig. 5.4, where five measurement devices are

installed, performing twelve sensing tasks in total. As shown, the devices measure

the injected power on bus 1, the flow of power on lines 1 − 2, 1 − 3 and 2 − 3, as

well as the voltage and electric-current phasors on bus 2. The voltage magnitude is

measured in kV, the electric-current magnitude in kA, the angles in degrees and the

power in kW (active) and kVAr (reactive).

100

Geo
rge

 M
. M

ilis

The “things” contained in the introduced EPS are:

• Twelve sensors (f s
i ∈ Fs, i = 1, ..., 12)

• The buses and transmission lines as features-of-interest (system locations):

{l j| j = 1, ..., 6}, e.g. ‘bus1’

• Physical properties: {q1 : active electric power, q2 : reactive electric power, q3 :

voltage magnitude, q4 : current magnitude, q5 : voltage angle, q6 : current angle}

• Components’ capabilities: {p1 : state, p2 : stateMeasurement,

p3 : processedStateMeasurement, p4 : stateEstimation}

• Measurement units: {m1 : kW,m2 : kVArs,m3 : kV,m4 : kA,m5 : degrees,m6 :

pu}

All above “things” are included in the “Knowledge Graph” G using the mecha-

nisms discussed in 3.3.1. Let assume now a SE architecture as in Fig. 5.3, deployed in

the control centre of the introduced EPS, such as to estimate the voltage magnitudes

and angles of the three buses. The mapping of the measurement vector to the system

states is given by (5.1),

yy(k+
I) = f y(ys(k+

I)) = f y(hI(x(k+
I)) + ws(k+

I)) (5.1)

where x(k+
I) ∈ R5 is the vector of voltage magnitudes and angles of the three buses,

in per-unit (pu), following the event I = 0 at time k > k0; ys(k+
I) ∈ R12 is the measure-

ments’ vector produced by the deployed measurement devices; hI(·) are the known

mappings of system states to measurements for the time following k0; ws(k+
I) is the

noise associated with the measurements; f y(.) is a function-vector representing the

processing of measurement signals that is applied (if and when required), to ensure

compatibility with what the SE expects to receive.

The objective is for the Supervisor Σ to choose a subset of components from

the available ones after a change event, based on the matching of their semantic

annotations, so as to ensure the SE operates properly. The “Semantic Reasoning”

process considers the types of the components and their expected role in the SE

implementation. The position of each type of component is fixed, with sensors

always positioned to measure EPS outputs and then passing the measurements to

the SE either directly or after processing. Then, the process considers the matching

101

Geo
rge

 M
. M

ilis

of the outputs to the inputs based on their semantic annotations. That is, the value

produced by a sensor can be fed to the SE only if its location, physical property and

measurement unit match to the respective properties expected by the SE.

The “Configuration Selection” process considers the SE implementations ranked

off-line based on the following QoS criteria: i) preference is given to hybrid im-

plementations if PMUs exist, otherwise conventional implementations are used; ii)

preference is given to implementations that make use of the maximum number of

measurements. Therefore, in case more than one semantically valid SE implementa-

tions are found, the one with higher ranking against the pre-defined QoS criteria will

be selected. The “Semantic Reasoning” and “Configuration Selection” processes are

combined in algorithm 1. The execution of the algorithm is made clearer with the

illustrative use cases in Section 5.1.6.

5.1.6 Use Cases

For the purpose of presenting the concept, two SE implementations are assumed

available (f se
1 , f se

2) in the components’ database F , from which the Supervisor Σ will

select according to the semantic reasoning output. The f se
1 is a WLS implementation

of a conventional estimator and as such it uses only the eight conventional mea-

surements from the twelve in the example EPS of Fig. 5.4. On each execution it

(iteratively) estimates the EPS states. On the other hand, the f se
2 is a WLS imple-

mentation of a hybrid estimator, which is able to use additionally the synchrophasor

measurements from the PMUs and integrate them in the iterative estimation of the

states. The implementation is making use of “pseudo-measurements” to overcome

the issue with the current phasor measurement, discussed in [7].

Concerning the measurement devices, it is assumed that no PMU is initially

deployed at the EPS of Fig. 5.3. That is, the measurement vector at configuration

I = 0, comprises eight measurements (modelled here as eight sensors respectively),

including the active and reactive power injected on Bus 1, as well as the active and

reactive power flows of all three lines. As explained in Section 5.1.5, each of the

measurements corresponds to a specific location in the EPS (e.g., specific bus or

line side) and a specific measurement unit (e.g., kW, V). On the other hand, the

SE implementations need to receive measurements from specific locations, specific

physical properties (e.g., reactive power, voltage) and specific measurement units

102

Geo
rge

 M
. M

ilis

Algorithm 1 Semantic Reasoning and Configuration Selection Algorithm

procedure Run algorithm

2: for each SE application under the control of Supervisor Σ do

Find all sensors that are capable of measuring the properties expected by

the SE.

4: for each available SE implementation, starting with the one of higher

offline ranking do

Find whether the sensors identified earlier measure all of its required

inputs.

6: Exploit also available transformation functions for the sensor’s output

signals.

if successful then f lag = 1

8: Exit loop

else

10: Continue with next SE implementation

end if

12: end for

if f lag == 1 then

14: Configuration is confirmed, therefore use the respective components

and continue the operation of the SE.

end if

16: end for

end procedure

(pu), as derived by the function vector h0(x).

During the execution of algorithm 1, the semantic matching is checked be-

tween available sensors and SE implementations. For instance, the semantic an-

notation of the output of sensor f s
1 producing a value in kW at Bus 1 is λ(ys

1) =

{l1 = Bus 1, q1 = active electric power, p2 = stateMeasurement,m1 = kW}. On the

other hand, the semantic annotation of one of the inputs of the SE implemen-

tation f se
1 representing the active power injected at Bus 1 in pu is λ(x̂se

1) = {l1 =

Bus 1, q1 = active electric power, p2 = stateMeasurement,m6 = pu}. It can be seen

that λ(ys
1) , λ(x̂se

1), that is, the specific measurement cannot be used directly in the SE.

The matching becomes possible only through a transformation function f y
1 which is

103

Geo
rge

 M
. M

ilis

able to appropriately transform the kW unit to pu for the specific EPS. The semantic

matching of other measurements to the respective inputs of the SE implementation

f se
1 is checked and confirmed in the same way. Since we do not implement any

online performance evaluation of the selected configurations, we assume that the SE

implementations are ranked off-line, based on certain criteria, e.g. number of PMU

measurements utilised, etc. Therefore, at configuration I = 0, considering the QoS

criteria for the off-line ranking, the Supervisor Σ will select f se
1 to execute the iterative

state estimation.

At time k1 > k0, the PMU has been deployed on Bus 2 (location l2). This PMU

is modelled with four (virtual) sensors semantically annotated in the Knowledge

Graph, measuring the magnitudes and angles of the voltage and electric current at the

subject location. Following the detection of this new availability of components, the

Supervisor Σ re-executes the algorithm 1 before the next state estimation execution,

to select the SE configuration I = 1. Checking for f se
2 first, which has the higher

off-line ranking if all measurements can be consumed, Σ is able to confirm the

semantic matching of all but one measurements to the corresponding f se
2 inputs; the

function-vector h1(x) is assumed updated properly. The not matching measurement

is associated with the electric current phasor produced by the sensor f s
2 in m4 = kA,

since f se
2 expects a power flow “pseudo-measurement” in pu. However, it is assumed

that in parallel to the installation of the PMU, a function f y
2 becomes available and is

semantically annotated in the Knowledge Graph, which transforms f s
2 output to the

expected active power “pseudo-measurement”. The semantic matching can be then

confirmed, thus enabling the Supervisor Σ to selects the hybrid estimator f se
2 and feed

its inputs with all available measurements in order to execute the state estimation.

It is noted here that the SE implementation f se
1 also belongs to a semantically valid

configuration option, however, that configuration does not make use of all available

measurements and as such it is rejected by the pre-defined QoS criteria.

5.2 Semantic Mediation in Smart Water Networks

Water Distribution Networks (WDN) are the infrastructures responsible for deliver-

ing drinking water to consumers. They are considered among the most Critical In-

frastructures, along with Electric Power Systems and Telecommunications Systems.

The effective monitoring and control of these systems is of vital importance since

104

Geo
rge

 M
. M

ilis

they can significantly affect the health, safety, security and/or economic well-being

of the citizens when disrupted or when their operation degrades. The advancements

in coupling WDN with the ICT infrastructure, combined with the more recent intro-

duction of smart sensing and actuation technologies, have enabled the enhancement

of “Supervisory Control And Data Acquisition (SCADA)”-based applications. In

current WDNs, these applications assume pre-defined configuration and character-

istics of the involved components (sensors, actuators, controllers, etc.). In our work,

we have explored how a SEMIoTICS-based architecture may contribute to the online

configuration of the WDN monitoring and control architectures by exploiting and

reasoning over the capabilities of deployed devices.

Typically, the objectives of WDNs are to deliver water of sufficient quality and

quantity to the consumers, maximize the efficiency of this delivery, as well as guaran-

tee the safety of the system. WDNs are essentially large-scale systems, which consist

of pipe networks and dynamical elements such as water storage tanks, pumps and

valves to control pressures and flows in the system, as well as sensors measuring

various hydraulic and quality water characteristics. In practice, the state-of-the-art

in the monitoring and control of these systems, involves the use of SCADA systems

coupled with an ICT infrastructure that enables the transfer of data and further

processing of sensing and actuation signals [16]. Figure 5.5, presents the typical

architecture of a WDN monitoring and control system, capturing both the hydraulic

and quality characteristics. Hydraulic sensors measure tank water levels, hydraulic

heads of junctions (i.e., the surface elevation of the junction comparing to some

reference level), flows and pressures, while quality sensors measure pH, chlorine

concentrations, Oxidation Reduction Potential, Total Organic Carbon, etc.. The in-

puts to the system are generated by hydraulic actuators (e.g., valves, pumps), as well

as quality actuators (e.g., chlorine disinfection boosters). The control decisions are

implemented based on pre-defined rules or control algorithms that map the mea-

surements to appropriate actions. It is also noted that, in practice, water utilities

typically employ manual sampling and control. However, in some countries they

have started employing various types of sensors, such as Automatic Meter Readers

(AMR) to measure water consumption in real-time, as well as other hydraulic and

quality sensors; in contrast, real-time monitoring and control algorithms are still

under research and have not been exploited by the WDN operators.

As the number of sensors and actuators in the WDNs increases, so does the com-

105

Geo
rge

 M
. M

ilis

Figure 5.5: The typical architecture of a WDN Monitoring and Control system. Our

contribution focuses on the components highlighted with blue transparent colour

plexity in managing these elements and reconfiguring the system whenever a sensor

or actuator is added or removed. In practice, the measurements from the WDN

are retrieved by physical devices of appropriate types and of a variety of (vendor-

dependent) specifications. Therefore, either the control engineer needs to design the

control law based on pre-acquired knowledge about the available devices and their

specifications or the technicians that install the devices need to know the specifica-

tions of the SCADA system and the control algorithms in advance, so as to install

appropriate devices. These cases show the existing inflexibility of the current WDN

monitoring and control architectures. The recent advancements in Smart Water Net-

works and related sensing and actuation capabilities create additional considerable

opportunities and challenges towards offering flexibility in the monitoring, control

and event detection architectures [29–31]. However, changes in the sensing and

actuation capabilities during operation of the system, may necessitate changes in

the monitoring and control algorithms, as well. This implies a need for intervention

of human experts, e.g., control engineers to update the controllers given any new

sensing and actuation capabilities.

We introduce a customised version of the SEMIoTICS architecture and system,

106

Geo
rge

 M
. M

ilis

so as to contribute to accommodating component changes and subsequent online

(re-)configurability. The semantically-enhanced Supervisor Σ executes its “Semantic

Reasoning” process after any change in the available components and takes decisions

about the online re-configuration of the system. The situation awareness is achieved

by utilizing a properly adjusted version of the “Knowledge Graph” G, which fully

describes the types of the components, their characteristics, their locations, as well

as the physical properties they measure or act upon. Structuring the knowledge

representation, enables a machine (i.e., the Supervisor Σ) to undertake the tasks that

would otherwise be undertaken by humans.

5.2.1 Background on modeling and control of hydraulics

Modelling methodologies for WDN hydraulic and quality dynamics and their faults

have received significant attention during the last decade [51, 108], while they are

still an area of active research. The present work focuses on the hydraulic charac-

teristics of a WDN, so as to achieve a simple presentation of the proposed semantic

enhancements and demonstrate the concept.

The hydraulic feedback control problem in water systems can be defined as the

problem of computing at each discrete time k, the input vector u(k), representing the

instructions to be given to the pumps and valves, so that the measured hydraulic

parameters y(k) (tank water levels, hydraulic heads, as well as the pipe flows) operate

within certain bounds or follow a reference signal vector r(k) specified for safe

operation. The control law is given by (5.2).

uc(k) = f c(yc(k), r(k); ζc). (5.2)

The above control law depends on the (potentially pre-processed) measurement

or estimation of the hydraulic parameters, i.e., the vector yc(k) is in general a transfor-

mation of the actual measurements vector y(k). The latter is defined as the hydraulic

analysis problem in WDNs, which considers computing the hydraulic head at each

junction (i.e., surface elevation comparing to a reference level), the water levels at

each tank and the flows at each pipe. To solve this problem, the topology of the

network and pipe characteristics, the control inputs, as well as the demand at each

node, are assumed known a priori. Typically, structural information of the network

is available by the water utilities, while pipe characteristics may require field mea-

107

Geo
rge

 M
. M

ilis

surements and nodal demands at each discrete time can only be estimated using

historical data and other hydraulic measurements available (if no online demand

sensors are used by the utility to monitor each consumer).

The dynamic relation of water flow in pipes and the differences in the hydraulic

heads can be described by a set of ordinary differential equations. In practice,

however, the heads and flows are approximated using an iterative optimization

algorithm (e.g., gradient descent), in discrete time and in steady state, so that the

conservation of mass and energy is satisfied [117]. For example, consider a water

distribution network composed of pipes, junctions and water storage units. The

topology of this network can be represented as a graph with edges corresponding

to pipes, and nodes corresponding to junctions and water storage units. At discrete

time k with sampling time ∆t, let di(k) be the consumer demand outflow at the i-th

junction node, and let w j(k) correspond to the flow in the j-th pipe connected to

junction i (j ∈ Ai whereAi is the set of pipe indices which are connected to the i-th

node, assuming that inflows have a positive sign and outflows have a negative sign).

In accordance to the principle of mass conservation, the sum of all pipe inflows and

pipe outflows must equal to the demand (Kirchhoff’s junction rule), such that:

∑
j∈Ai

w j(k) = di(k) (5.3)

Furthermore, in accordance to the principle of energy conservation, the flow-

head-loss relationship across each link in the network must be balanced. Let hi(k) be

the hydraulic head, i.e. a measurement of water pressure expressed in length units,

at the i-th node. For water moving from node j (higher head) to node i (lower head)

with flow wl(k) in the l-th pipe, the flow-head-loss relationship is given by:

h j(k) − hi(k) = fh(wl(k)) (5.4)

where fh(·) is a nonlinear function, such that fh(wl(k)) = αrwl(k)α f + αmwl(k)2, which

depends on the pipe resistance coefficient αr, the flow exponent α f and the minor

loss coefficient αm. These parameters are computed using empirical methods [103].

Therefore, the set of hydraulic equations in a WDN is constructed, and at each

discrete time, a gradient optimization algorithm is solved to estimate the heads

at each junction/tank, using the current demand flows, current control inputs and

current tank heads [117].

108

Geo
rge

 M
. M

ilis

Tanks are dynamic elements in the system and can be considered as nodes in the

WDN; the head state of the i-th water tank node is given by (5.5).

hi(k + 1) = hi(k) +

∑
j∈Ai

w j(k)

fTi(hi(k))
∆t, (5.5)

where the tank head hi(k) corresponds to the relative tank water level plus the tank

elevation, and the function fTi(·) computes the cross-sectional area of the i-th tank at

a certain height. Initial tank heads are typically known.

Currently, a number of off-the-shelf software tools are used to perform the hy-

draulic analysis in WDNs, such as the open-source EPANET [103].

5.2.2 Formulation

Consider the network in Fig. 5.6. The arrows indicate the flow of water in pipes, as

well as the inflow of the tank (wi, i = 0, ..., 9). The tank flow is indicated by w0. The

nodes indicate the junctions with their hydraulic heads represented by hi, i = 0, ..., 7

and the corresponding consumer demand outflows di. The tank head is indicated

by h0.

11,dh 22 ,dh
33 ,dh 44 ,dh

55 ,dh
66 ,dh77 ,dh

0h
0w

1w 2w

3w

4w
5w

6w

7w
8w

9w

Figure 5.6: A simple WDN with six junction nodes; water is supplied by a reservoir

and a tank. When the tank water level goes below 110ft, the pump is activated, and

when the tank water level goes above 140ft, the pump stops.

Consider also the control objective to regulate the tank head h0(k) at a given

reference level r0(k) (or within a certain bound), at discrete times k, through the

application of a control law as in (5.2). In this example, the pump is activated only

when the tank water levels has reached a minimum value (110 ft), and the pump

stops working when the water level has reached a maximum value (140 ft).

109

Geo
rge

 M
. M

ilis

As explained in Section 5.2.1, the tank and junction heads, if not directly mea-

sured, are estimated iteratively at each discrete time k, using the mass conservation

equations on junctions, as well as the energy conservation equations that require the

head-loss functions. The parameters of the head-loss functions fh(·) are considered

known or are computed empirically. In addition, the demand flows at each con-

sumption node di, i = 1, ..., 7, as well as the initial tank head h0(0), are known. At

time k, an optimization algorithm is used to compute the unknown states. Then, the

new tank head is computed again and the problem is solved for the next discrete

time k + 1.

The tank head regulation process can be illustrated with the block diagram of

Fig. 5.7, where the vector of the states of the WDN (i.e., the tank and junction

heads and pipe flows) is defined as x ∈ Rnx , the measurements’ vector produced by

the installed set of measurement devices is given by y ∈ Rny , while y′ = x̂ ∈ Rnx

denotes the vector of the estimated system states after the application of the iterative

optimization algorithms. The diagram shows that a controller uses the measured or

estimated tank-head as input and produces an action signal that is then utilized by

the actuators (e.g., pumps, valves) to act on the system and affect the tank-head.

The control implementation for the regulation of the tank-head is typically

comprised of a set of pre-defined rules, such as the following: IF <tank-head>

<expression referring to tank head> THEN <action to be performed on the

specific tank>. In current practice, the design of such control architectures in

WDNs, is based on a fixed configuration of specific components, with specific mea-

surement and actuation devices deployed and pre-determined control laws. That is,

the WDN operators need to decide in advance the types of components to use and

where to deploy them in the network’s topology, as well as implement in advance

the respective control rules. Moreover, integration of control components (e.g., after

a change happens) typically requires manual configuration by an experienced engi-

neer. It is therefore typical to interrupt the normal system operation to modify the

control system, i.e., to manually configure the new sensor/actuator in the SCADA

system, as well as manually modify the logic in the micro-controller (for when to

turn-on/turn-off a pump).

As the scale of the system increases, having highly specialized personnel which is

able to perform the above described increasingly complex functions, becomes a real

challenge. A “smart water” cyber-physical implementation would be expected to be

110

Geo
rge

 M
. M

ilis

able to adapt to changes in the configuration of the control system (e.g., removal of a

faulty tank water-level sensor, addition of pipe flow or tank inflow measurement, up-

dated set of control rules, etc.) and perform any necessary re-configurations online,

in order to avoid the need of downtime. We demonstrate here the use of a customised

version of SEMIoTICS architecture and system, which introduces an intermediate

layer that becomes aware of the characteristics of available components, performs

the necessary output-input semantic matchings and makes an online decision on

how to (re)configure the control system.

Figure 5.7: Block diagram of the tank head regulation implementation. A set of

sensors measure part of the states of a WDN (i.e., the tank and junction heads and

pipe flows). Then a state estimator (SE) estimates the complete set of states, by

producing the vector y′ = x̂, which is then fed to the controller to help it compute

the input to the set of available actuators (e.g., pumps, valves).

5.2.3 Solution

The relevant customised SEMIoTICS architecture for the tank head regulation prob-

lem, is depicted in Fig. 5.8, where I ∈ {0, 1, 2, ...} is the index of the different control

architecture configurations. In configuration I, the operation of the WDN is mon-

itored by a set of sensors F s
I , e.g., tank and junction head, as well as pipe flow

sensors. The measurements may pass through a set of pre-control processing func-

tions F y
I (such function might also be the state estimator that computes missing

state-values). Then the appropriate control implementation is chosen from a set of

available controllers F c
I , to drive a set of matching actuators F a

I .

The semantically-enhanced Supervisor Σ first detects and identifies any new

111

Geo
rge

 M
. M

ilis

Figure 5.8: The customised SEMIoTICS-based architecture, where the Supervisor Σ

performs the reconfiguration of the control system

component(s) added. The physical communication among components is facilitated

through an assumed existing communication protocol, e.g., with extensions to the

112

Geo
rge

 M
. M

ilis

currently adopted SCADA systems (the details of this fall outside the scope of our

work). Subsequently, Σ becomes aware of the characteristics and capabilities of

the new components, through their semantic annotations (see Section 3.3.2). The

semantic annotation of each component describes its characteristics and capabilities.

Once this information is received by Σ and is stored in the “Knowledge Graph”

G, it is integrated with the existing knowledge available about the overall system.

The whole of the information is in turn used to apply the “Semantic Reasoning”

process and reconfigure the control system considering all available components,

e.g., to utilize the state estimation function if the tank water level (or tank head) is

not measured directly. The Supervisor Σ becomes aware of any new measurement

(e.g., a flow sensor) or actuation unit (e.g., a valve) and/or controller deployed in the

WDN. It is emphasized here that the switching to a new configuration is triggered

by changes in components. In case the change corresponds to failures of running

components, the control service to the WDN will unavoidable be interrupted until

the new configuration is put in operation. To reduce inconvenience, the switching

is performed between two consecutive control decisions. The time constants of

the WDN allow the appropriate selection of the time between consecutive control

decisions, so as to be enough for Σ to complete the reasoning and decide upon the

new configuration.

5.2.4 Semantic Reasoning and Configuration Selection

An illustrative scenario follows, aiming at clarifying how the semantic reasoning is

performed over the stored knowledge facts to implement the decision mechanism

for the online configuration of the WDN control system. Let assume the simple

WDN of Fig. 5.6, where the initial configuration (I = 0) of the tank head regulation

system consists of a sensor measuring the tank head h0 (or water level) in meters

(m) and an on/off pump which increases the pressure in another place of the system,

in order for water to flow into the tank. In addition, a simple programmable logic

controller (PLC) is considered available, implementing “IF-THEN” rules that, given

the desired level of water in the tank, map the measured level to decisions on

whether to close or open the pump. The “things” contained in the introduced

system are essentially one sensor (f s
1), the physical property “tank-head” (q1), the

measurement unit “meters” (m1), as well as the “tank” and the “pump-position” as

113

Geo
rge

 M
. M

ilis

system features-of-interest/locations (l1 and l2 respectively).

The semantic reasoning process first considers the types of the components and

their expected role in the WDN control implementation. The position of each type of

component is fixed, with sensors always positioned to measure WDN outputs and

then passing the measurements to a controller either directly or after processing.

Then, the output-input semantic matching is performed. The semantic reasoning

and configuration selection processes of the Supervisor Σ, are described through the

algorithm 2. The controllers are assumed ranked off-line according to pre-defined

quality criteria, e.g., give priority to controllers that utilise bigger number of available

components. This reduces the complexity of the configuration selection process. The

details of the ranking is out of the scope of this work.

The execution of the algorithm will be made clearer with the use case below.

5.2.5 Case Study

Consider the configuration I = 0 introduced earlier and the control objective of regu-

lating the tank-head at a desired point. The re-configuration algorithm first explores

the actuators that can act on the tank-head in the example WDN. The semantic

annotation of the output of actuator f a
1 is given by: λ(va

1) = {l2 = pump,Q, p1 =

regulate,m2 = m3/h}. The semantic annotation of the input of the plant is: λ(vp
1) =

{l1 = tank, q2 = tank water inflow, p1 = regulate,M}. Moreover, the pump position

directly affects the tank head, therefore, the location l2 is modelled in the “Knowledge

Graph” G as related to the tank location l1. Through the location transformation,

it can be derived that the two semantic annotations share a point in the respective

four-dimensional semantic annotation space.

The next step of the algorithm considers the matching between a controller and

the selected actuator in previous step. The input of the actuator is semantically anno-

tated as: λ(ua
1) = {l2 = pump, q1 = flowRate, p2 = controlDecision,m3 = on/off}. On

the other hand, the output of the controller is annotated as: λ(uc
1) = {l1 = tank, q1 =

flowRate, p2 = controlDecision,m3 = on/off}. Again, the semantic matching is con-

firmed through the locations’ transformation. The semantic matching of the plant’s

output to the sensor input and the semantic matching of the sensor’s output to the

controller’s input are checked in the same way.

At time k1 > k0, the sensor f s
1 stops working and needs to be replaced. Since

114

Geo
rge

 M
. M

ilis

Algorithm 2 Semantic Reasoning and Configuration Selection Algorithm

1: procedure Run algorithm

2: Find all actuators that are capable of acting on the tank water level

3: If no appropriate actuators can be found, then report inability to meet the

control objectives and stop, otherwise proceed to next step.

4: Find all sensors that are capable of measuring the hydraulic parameters.

5: for each available controller implementation, starting from the one with

higher off-line ranking do

6: Check if it has the capacity to drive the actuators found in previous step.

7: Exploit also available transformation functions for the control signals.

8: If successful, f lag1 = 1

9: if f lag1 == 1 then

10: Find whether the sensors identified earlier measure all required by the

controller’s inputs.

11: Exploit also available transformation functions for the sensor’s output

signals.

12: If successful, f lag2 = 1

13: Exit loop

14: else

15: Allow capacity to drive fewer actuators than available and continue

with the next controller

16: end if

17: end for

18: if f lag2 == 1 then

19: Match is confirmed, therefore close the loop with the matching compo-

nents and continue operation of the system for the specific application.

20: end if

21: end procedure

an immediate replacement is difficult to be found, the utility gives instructions to

technicians to install two other sensors, f s
2 with output semantic annotation: λ(ys

2) =

{l3 = pipe entering tank, q2 = tank water inflow, p3 = stateMeasurement,m4 = feet}

and f s
3 with output semantic annotation: λ(ys

3) = {l4 = pipe leaving tank, q3 =

tank water outflow, p3 = stateMeasurement,m4 = feet}. The Knowledge Graph G

115

Geo
rge

 M
. M

ilis

has been also enriched by an “adjacent-to” relation between locations l3 and l4 with

l1, as well as the semantic annotation of a function f y
1 that takes as input the inflow

and outflow of the tank and computes the tank head, as discussed in Section 5.2.1.

The change of the components triggers the execution of the algorithm 2 by the Su-

pervisor Σ, which exploits whether a new configuration I = 1 can be achieved by

utilizing the new components.

As far as the semantic matchings of the available actuator to the plant and the

controller to the actuator are concerned, the algorithm retrieves exactly the same

results as for configuration I = 0. However, when it comes to the matching of the

sensor’s output to the controller’s input, this can be confirmed only through the

function f y
1 which produces the signal expected by the controller f c

1 after processing

the outputs of the sensors f s
2 and f s

3 . The outputs of the sensors (a value in feets) is a

measurement unit of the tank head as required, therefore the Supervisor Σ decides

the configuration I = 1.

5.3 A Semantically-enhanced Fault-Detection Design

Architecture

Large-scale systems consist of several cyber and physical components, like sensors

for monitoring system states, electrical and mechanical actuators, controllers, and

a number of other data/signal processing components. Over time, it is inevitable

that one or more of these components will fail or system dynamics will move out of

expected bounds due to external events, necessitating the utilization of fault/event

detection and isolation mechanisms [22,64]. By enabling the detection and diagnosis

of miss-operation of systems, these mechanisms can help, e.g., in saving energy, in

reducing economic cost and/or in avoiding critical consequences of cascading effects

due to inter-dependencies with other systems.

During the last two decades, various methodologies have been developed and

proposed for detecting, identifying, isolating and accommodating faults [22, 59, 64].

In general, fault detection methods can be classified into model-free (or data-driven)

and model-based methods.

Model-free methods are the most commonly used, since they can be developed

without the requirement of understanding the details of the underline system’s

116

Geo
rge

 M
. M

ilis

dynamics [64]. Examples are, quantitative methods (e.g., neural networks, statis-

tical classifiers), and qualitative methods (e.g., expert systems, fuzzy logic, pattern

recognition, trend analysis) [127].

Model-based methods, on the other hand, require additional modelling and

calibration effort, since a model with physical significance has to be developed using

a-priori knowledge of the system. Again, there are examples of quantitative methods

(e.g., observer-based/Kalman-filter state and parameter estimation, parity space) and

qualitative methods (e.g., fault-trees and other causal models) [127].

Fault diagnosis methodologies with learning capabilities have also been pro-

posed in the past years, which combine model-based analytical redundancy and

computational intelligence tools, i.e. neural networks, to detect faults and to learn

the unknown fault dynamics [38,93,126]. By learning the unknown fault dynamics,

isolating the type of fault and identifying its magnitude, it is possible to change the

control input to accommodate the fault, during operation [97].

Designing a fault-detection scheme for a certain system is a complicated proce-

dure which relies on the knowledge and reasoning capabilities of a human expert. In

practice, a human expert should have a broad background knowledge of tools (e.g.,

state-of-the-art fault-detection methods, online learning methods based on compu-

tational intelligence, state-estimation methods, etc.) and in which situations these

are best suited, in order to make an informed selection that fully exploits the avail-

able measurements, constraints and objectives. Depending on the system which

needs the fault-detection service, as well as the preferred fault-detection method,

different schemes can be designed, consisting of smaller components. In practice, it

is very rare, if not impossible, to find and employ a human expert of such breadth

of knowledge whenever a fault-detection scheme is required for a certain system.

An additional drawback in current practices is the lack of mechanisms to allow

online (and where possible automatic) replacement of individual components or of

the overall fault-detection scheme. Therefore, in case new and advance methods

become available and are implemented as components, they can only be deployed

by expert engineers who will re-design the overall fault detection scheme. This may

inhibit industry adoption of advanced fault-detection methodologies and may act

as a barrier to the exploitation of research results.

The above motivated our work on designing a SEMIoTICS-based architecture and

system, to be able to reproduce part of the reasoning procedure of a human expert,

117

Geo
rge

 M
. M

ilis

towards designing fault-detection schemes. This architecture allows new compo-

nents (e.g., new on-line learning algorithms or new fault-detection algorithms) to be

gradually deployed as they become available, by automatically configuring the com-

ponents participating in the fault-detection scheme. It is emphasized that our work

does not focus on the design of any new fault-detection algorithms or components,

but rather on the online configuration of fault-detection schemes using existing

components. Moreover, it is envisioned that the adoption of a component-based

fault-detection design will facilitate the faster exploitation, testing and demonstra-

tion of academic research in industrial applications. To demonstrate the application

of the SEMIoTICS architecture, a case-study of configuring a contamination event

detection scheme with online learning capabilities for drinking water distribution

networks is presented in this section.

5.3.1 Problem formulation

Fault detection is defined as the problem of determining whether a system is oper-

ating under normal or abnormal conditions (e.g., due to the occurrence of a system,

actuator or sensor fault). Typically, a fault-detection algorithm is specifically de-

signed for a certain system, taking into account the system’s measurable variables,

known dynamics and other information available. The output of a fault-detection

algorithm at discrete time k, is given by:

d(k) = f (y(k),u(k); ζ), (5.6)

where f (·) is a fault-detection composite function, y(k) and u(k) are the measured

output vector and the known input vector of the system respectively and ζ is a set of

parameters related to the system and the considered fault-detection implementation.

In general, the detection signal d(k) can be a vector corresponding to a set of various

fault-level classes. Depending on the specifications, the detection signal d(k) can be:

i) binary, i.e., of the form {0, 1} or {True, False}, thus informing of the detection of a

fault or not; ii) a real number, e.g., representing the probability or the risk of fault

existence; iii) a more generic class of values, e.g., a fault class type, a color-based

risk-level scheme, a linguistic variable, a fuzzy value, etc.

Similarly to the feedback control case, two families of fault-detection algorithms

are typically considered: the “model-free” and the “model-based” methods [64].

118

Geo
rge

 M
. M

ilis

The former process the measured output signals plus other known or computed

signals that may be required, in order to generate certain features (e.g., operation

state). These features are passed through a “detection logic” component and are

compared to their value in non-faulty operation. Typical examples are the limit-

checking approach, the change-detection approach (such as the CUSUM) [10] and

other statistical-based approaches. In addition, learning methodologies have also

been applied within a model-free fault detection context [5]. On the other hand, the

“model-based” fault-detection methods process the measured output and known in-

put signals utilizing also a known system-model, in order to generate certain features

(e.g., state estimation residuals). As in the model-free case, these features are then

passed through a “detection logic” module and are compared to their values in non-

faulty operation. Typical examples are the analytical redundancy fault-detection

schemes, utilizing tools such as state-estimation, filtering, parametric uncertainty

learning and adaptive approximations [44, 65, 93, 96–98]. In the general case, the

fault-detection algorithm fd(·) can be considered as composed of sub-components,

some of which are basic (mandatory) for all implementations of fault-detection while

others are required only in certain cases. All these components are discussed in the

sequel.

Basic Components

The first basic component of a fault-detection scheme is the “Detection logic”, given

by the function:

d(k) = f d(r(k), t(k); ζd), (5.7)

where d(k) is the detection signal defined also in (5.6), f d(·) is the detection logic

implementation, r(k) is a feature signal which is computed by a separate function

in order to be compared against a threshold signal t(k), and ζd is a set of other

parameters required by the adopted detection-logic method.

The second basic component in a fault-detection scheme is the “Feature” given

by the function:

r(k) = f r(y(k),u(k), x̂(k); ζr), (5.8)

where r(k) is the feature signal defined in (5.7), f r(·) is the implementation of a method

119

Geo
rge

 M
. M

ilis

to derive the signal, y(k) and u(k) are the measurable outputs and the known inputs

of the system respectively, if available, x̂(k) is the estimated system state (optionally

used) and ζr is a set of parameters required by the adopted method.

As an example, in a model-free fault-detection scheme, the detection logic func-

tion f d may be a limit-check, e.g., comparing the measured state r(k) ≡ y(k) or its

difference r(k) ≡ y(k)−y(k−1)
∆τ with a given upper and/or lower bound t(k), such that

|r(k)| ≤ t(k). Another example is the CUSUM change-detection method, where the

cumulative sum of the differences of the measured state from a pre-defined parame-

ter (e.g., the statistical mean of the state signal) are compared with a given threshold.

In a model-based fault-detection scheme, the detection logic function f d may be

comparing the state-estimation error r(k) ≡ y(k) − x̂(k) with a given or computed

threshold signal.

A third basic component of a fault-detection scheme is the “Threshold”, which

undertakes the task of generating the threshold signal against which to compare the

detection-logic features and is given by the function:

t(k) = f t(g(·), y(k),u(k); ζt), (5.9)

where t(k) is the threshold signal defined in (5.7), f t(·) is the implementation of a

method to derive a threshold, g(·) is a function representing new (additive) system

dynamics, y(k) and u(k) are the measurable outputs and known controlled inputs of

the system respectively (optionally available) and ζt is a set of parameters required by

the adopted implementation of the function. For instance, the threshold parameters

may correspond to bounds on parameters or on parts of the system state dynamics,

derived from expert knowledge about the system operation or from the off-line

processing of historical data, etc.; it may be the output of a stochastic process on

the detection logic features or it may be computed given knowledge about a system

model with parameter uncertainty or function uncertainty. In all cases, the threshold

may be a constant value or a time-varying adaptive signal.

In summary, at a minimum, the fault-detection scheme is composed of the func-

tions specified above, such that f ≡ f d(f r(·), f t(·), ζ). That is, the detection logic

component compares measured or computed features of the system, against a pre-

selected or computed threshold signal.

120

Geo
rge

 M
. M

ilis

Advanced Components

In addition to the three basic components described in the previous sub-section, addi-

tional components may be required by certain model-based fault-detection schemes.

For instance, in some model-based cases the estimation signal of the system states

x̂(k) is required. For this, a “State-Estimation” component is required, given by:

x̂(k + 1) = f e(g(·), y(k),u(k); ζe), (5.10)

where x̂(k + 1) is the estimated system states signal at the next time step, f e(·) is

the adopted implementation of the state-estimation, y(k) and u(k) are the vectors

of system’s measured output and known system inputs respectively, ζe is a set of

other parameters required by the adopted implementation and g(·) is a function

representing a new additive part of the system state dynamics. For instance, the

State-Estimation component may correspond to a “Kalman filter” which produces

estimates based on some prior knowledge about the states, a measurement vector

and certain parameters of measurement and state’s uncertainty; it can also be a

“Luenberger observer” which, based on a known model of system dynamics and the

available measurements, produces estimates of the state. The state-estimation may

be also implemented as a black-box by a system simulation, e.g., using the EPANET

software for simulating water distribution systems1 or CONTAM for simulating

contaminant propagation in buildings2.

Furthermore, in the case of having a system model with unknown dynamics

g(·), a “Learning Component” can be utilized, to learn the unknown function us-

ing a suitable approximation structure (e.g., neural network, polynomial function,

radial-basis functions, wavelets, fuzzy systems, etc), such that g ≡ ĝ. This module

undertakes the task to learn an unknown part of the overall state dynamics function

and can be described in general by:

ĝ(k) = f θ(y(k),u(k), ζθ) (5.11)

where ĝ(k) is the estimated value of the unknown function, f θ(·) is the adopted online

learning implementation and ζθ are any other parameters required by the adopted

implementation (e.g., the convergence rate, knowledge about the structure of the

1http://www.epa.gov/water-research/epanet
2http://www.nist.gov/el/building_environment/contam_software.cfm

121

Geo
rge

 M
. M

ilis

function, etc.). The output of this component may be used as input to components

allowing update of the system model on which they base their implementation (e.g.,

certain State-Estimation or Threshold components).

All implementations of components (functions) of the types discussed above,

can be considered as being elements of a function-set F , thus forming a database

of components (similarly to the case of control system components). The set F is

defined as a superset of the following sub-sets of components:

• F
d = { f d

i |i = 1, ...,nd}: all implementations of the Detection-logic function, with

cardinality nd

• F
r = { f r

i |i = 1, ...,nr}: all implementations of the Feature function, with cardi-

nality nr

• F
t = { f t

i |i = 1, ...,nt}: all implementations of the Threshold function, with

cardinality nt

• F
e = { f e

i |i = 1, ...,ne}: all implementations of the State-Estimation function,

with cardinality ne

• F
θ = { f θi |i = 1, ...,nθ}: all implementations of the Online Learning function,

with cardinality nθ

Semantically-enhanced Supervisor

Depending on the system and the given fault detection specifications, an expert

engineer would have selected and designed a fault-detection scheme using imple-

mentations of all basic components and possibly utilized additional components

for state-estimation and learning, depending on the availability of measurements,

models of state dynamics, as well as specific domain knowledge expertise. In other

words, for the decision, the expert engineer relies on reasoning which considers the

available knowledge about the domain and the fault-detection systems engineering,

including the associated semantics of each component.

In this Section we describe a new, SEMIoTICS-based architecture, which is able

to utilize pre-modelled expert knowledge and a set of fault-detection specifications

(including performance criteria) and automatically design and configure a suitable

fault-detection scheme, for a large class of systems. The subscript I, I = 0, 1, ..., when

122

Geo
rge

 M
. M

ilis

used with variables or sets, denotes the state of the subject variable or the subject set

following the re-configuration event I at time kI. The challenge is formulated as:

σI = f σ(GI,SI,FI), (5.12)

f ≡ fF(σI,F
d

I ,F
r

I ,F
t

I ,F
e

I ,F
θ

I), (5.13)

where function f is the constructed fault-detection scheme, σI is a set of decision

signals that correspond to the selection of specific components from the subsets of

FI defined earlier, fσ(·) is the function implementing the semantic reasoning and

the configuration selection processes, fF(·) is the function which enforces the de-

cision and the subsequent construction of the function f (·), GI is the state of the

respective “Knowledge Graph” that models the available knowledge, SI is the set of

fault-detection specifications given to the function (e.g., the preferred form for the

detection signal).

5.3.2 SEMIoTICS (FD) Architecture

The SEMIoTICS-based fault-detection (FD) architecture, which implements the func-

tions described in the previous section, is depicted in Fig. 5.9. The top-part of the

figure illustrates the system on which the fault-detection service is performed. As-

suming, for generality, a controlled plant by a closed-loop configuration, the system

comprises the “Plant” with its states x(k) measured by a set of “Sensors”, the con-

trol configuration and the driven set of “Actuators” that act on the “Plant”. The

bottom-part of the figure shows the composite fault-detection scheme, comprising

all components discussed in previous section, with their end-point connections. The

inputs to the fault-detection scheme from the system are the measured outputs y(k)

and the known controlled inputs u(k). The output is the resulted detection signal

d(k). It is noted that the dashed-line boxes host the sets of available components of

each type at time kI. The selection of specific implementations is performed through

the decision signal σI (orange double line) given by the semantically-enhanced Su-

pervisor Σ. The middle layer illustrates the design of the Supervisor Σ, which, in

terms of processes, it is identical to the design described in 3. That is, the Supervisor

Σ utilizes the state of the stored knowledge in the “Knowledge Graph”GI (including

the semantic annotations of components) and any given specifications SI and pro-

duces a decision as to what implementations of components to adopt for the fault

123

Geo
rge

 M
. M

ilis

detection. The decision signal σI is considered driving a function fF(·) that invokes

the selected implementations found in FI, the database of components at time kI.

Figure 5.9: Block diagram of the architecture. Top: the System on which fault

detection is performed; Middle: the Semantically-enhanced Supervisor Σ; Bottom:

the Fault-Detection Scheme.

124

Geo
rge

 M
. M

ilis

The following sub-sections go into details on the implementation of the “Semantic

Reasoning” and “Configuration Selection” processes.

5.3.3 Semantic Reasoning and (FDS) Configuration Selection

The definitions and the design of the “Knowledge Graph” G have been already

described in 3.3.1. What changes for the purposes of the application in fault detection

schemes are the types of components and their fixed choreography, which affects

the resulting “Configurations Graph”. That is, the sets of sensors and actuators

are considered pre-defined, the outputs of the components of types “Feature” and

“Threshold” are given to components of type “Detection Logic”, the outputs of

components of type “Online Learning” are given to inputs of components of type

“Threshold” and the outputs of components of type “State Estimation” are given to

inputs of components of type “Feature”. The combined objective of the semantic

reasoning and configuration selection processes can be briefly described as: Given

the measured-known variables of the underline system, find the required types of components

and the exact implementations of them that meet the pre-defined specifications. In case of

inability to find an appropriate fault-detection scheme configuration, the process

terminates and informs accordingly. An illustrative use case is presented in the

sequel, to clarify the processes.

5.3.4 Use Case: Water-Tank Contamination Event Detection

The use case is related to the problem of contamination event detection in drinking

water distribution networks, exploiting the dynamics and measurements of chlorine

concentrations, as approached in [32]. The underlying assumption is that contam-

inants injected in drinking water will react with and affect the concentration of

chlorine [54]. For instance, a bacterial toxin may decrease the concentration of free

chlorine. The low cost of sensors measuring chlorine concentration turns them ap-

propriate for wide use by water utilities in the system monitoring for contamination

events.

In most of the cases, the actual chlorine reaction dynamics are not known, result-

ing to the use of empirical models [56]. Chlorine concentration dynamics depend

on a reaction rate coefficient, which in turn depends on several pipe parameters.

Different studies have proposed various models based on laboratory experiments,

125

Geo
rge

 M
. M

ilis

ranging from first-order linear models to more complex second-order ones.

Figure 5.10: A water storage tank utilised in the illustrative use case

Consider a water storage tank of cylindrical shape in a water network, as depicted

in Fig. 5.10. Water treated with chlorine is added into the tank from a pipe at the

top and water is removed from the tank from a pipe situated at the bottom of the

tank. Let k denote the discrete time with sampling interval ∆τ measured in hours.

The system state is denoted as x(k) = [x1(k), x2(k), x3(k)]> and the controlled inputs

are denoted as u(k) = [u1(k),u2(k)]>, where: x1(k) is the tank volume in litres (L); x2(k)

is the chlorine concentration of the tank water in mg/L; x3(k) is the concentration

of a certain contaminant in mg/L; u1(k) is the volume of water entering the tank in

litres (L), and is controlled through a valve; and u2(k) is the chlorine inflow in the

tank measured in mg and is controlled using a set-point chlorination booster system.

There is also an uncontrolled input u3(k) representing the volume of water exiting

the tank, driven by consumer demands. The state-space formulation of the water

tank system is as given in [32].

All components used in the use case, as well as the respective knowledge intro-

duced in the Knowledge Graph G through their semantic annotation are listed in

Table 5.1. For clarity of the concept’s proof, only one measured system output (chlo-

rine concentration) and only one known system input (chlorine inflow) are assumed;

the inclusion of the rest can be addressed in a similar way.

Table 5.1: Components’ list and semantic annotations at time k0 = 0

Specifications

S = {detection signal as m1: ‘true-or-false’, at location l1: ‘tank-1’, for the property

p3: ‘chlorine-concentration’ }

126

Geo
rge

 M
. M

ilis

Detection Logic

f d
1 Inputs: λ(r1) = {L,Q, feature,M }

λ(t1) = {L,Q, threshold,M}

Outputs: λ(d1) = {L, binary,detection, true/false}

f d
2 Inputs: λ(r2) = {L,Q, feature,M }

λ(t2) = {L,Q, threshold,M }

Outputs: λ(d2) = {L,probability,detection, [0,1]}

Threshold

f t
1 Parameters: λ(ζ1) = {L,Q,histStateData,M}

Outputs: λ(t3) = {L, constantBound, threshold,M}

f t
2 Inputs: λ(y3) = {tank-1, chlConcentration, stateMeasurement,mg/L}

λ(u1) = {tank-1, chlorineInflow,knownSystemInput,mg/L}

(optional) λ(g1) = {L,Q, systemDynamics,M}

Outputs: λ(t4) = {L,Q, threshold,mg/L}

Feature

f r
1 Inputs: λ(y1) = {L,Q, stateMeasurement,M}

Outputs: λ(r3) = {L,Q, feature,M}

f r
2 Inputs: λ(y2) = {tank1, chlConcentration, stateMeasurement,mg/L}

λ(x̂1) = {tank1, chlConcentration, stateEstimation,M}

Outputs: λ(r4) = {L,Q, feature,mg/L}

State Estimation

f e
1 Inputs: λ(u2) = {tank1, chlorineInflow,knownSystemInput,mg/L}

λ(g2) = {L,Q, systemDynamics,M

Outputs: λ(x̂2) = {tank1, chlConcentration, stateEstimation,mg/L}

Online Learning

f θ1 Inputs: λ(y4) = {tank1, chlConcentration, stateMeasurement,mg/L}

λ(u3) = {tank1, chlorineInflow,knownSystemInput,mg/L

Outputs: λ(ĝ1) = {tank1, chlConcentration, systemDynamics,mg/L}

Parameter Functions

-

127

Geo
rge

 M
. M

ilis

Initially, the “State Estimation” and “Online Learning” components are not avail-

able. The Supervisor Σ selects the “Detection logic” component f d
1 because the

component f d
2 violates the specification regarding the output in units ‘true/false’.

Moreover, the “Feature” component f r
1 is selected since the semantic annotation of

its output matches with the semantic annotation of the input of the selected “Detec-

tion Logic” component, while the semantic annotation of its input is matched with

the measured system state. The component f r
2 cannot be used since, although it

matches the input of the “Detection Logic” component, there is no component pro-

ducing an output of type ‘estimatedState’ which it requires as input. Subsequently,

the “Threshold” component f t
2 is selected since it produces an output that matches

with the respective input of the “Detection Logic” component and its two inputs

are matched by measured and known variables of the system. The input that corre-

sponds to the system dynamics function is not matched since there is no component

producing a relevant output, however, it is mentioned as optional. At this stage, a

possible configuration of the fault-detection scheme has been found, with compo-

nent f d
1 producing the detection signal and receiving inputs from components f r

1 and

f t
2. It can be seen that all specifications are met by this configuration. Therefore, the

configuration is confirmed and the decision signal σ0 is generated.

At time k1 > k0, two more components become available in the database, one

“State Estimation” and one “Online Learning”, as listed in the respective rows

of Table 5.1. The availability of the new components causes the re-execution of

the Semantic Reasoning and Configuration Selection processes and produces the

following results:

The “Detection logic” component f d
1 is selected again for the same reason as in

the previous configuration. The “Feature” component f r
2 is selected since it produces

an output that matches the input of the selected “Detection Logic” component and

its inputs are now both matched, the first with the measured system state (as for

the f r
1) and the second with the output of the “State Estimation” component. Then,

the same “Threshold” component f t
2 is selected as before. This time its input that

corresponds to the system dynamics function is also matched by the output of

the “Online Learning” component that became available. The “Online Learning”

component f θ1 is finally selected as well. It has been seen above that its output

matches with the input of the selected “State Estimation” component, while both its

inputs are matched by the measured system output and the known system input

128

Geo
rge

 M
. M

ilis

respectively. A possible configuration of the fault-detection scheme comprises the

component f d
1 producing the detection signal and receiving inputs from components

f r
2 and f t

2, while the component f r
2 and f t

2 receive input from the component f e
1 and

the latter receives input from the component f θ1 . All specifications are met by

this configuration, as well, therefore it is confirmed and the decision signal σ1 is

generated.

5.3.5 Remarks

The work presented in this Section was an effort to automate the design process

of a fault-detection scheme. The expert engineering and domain knowledge have

been modelled in SEMIoTICS “Knowledge Graph”G and the semantically-enhanced

Supervisor Σ was customised to be able to reproduce part of the cognitive process and

reasoning performed by the engineer when designing the fault-detection scheme.

The primary impact of these results is the fact that clear semantic interfaces have been

defined between parts of the fault-detection scheme, which enables industrial set-ups

and/or academic prototypes to allow online plugging-in of new implementations of

components without the need to re-design the whole of the fault-detection scheme.

The automation of the selection process in case of multiple matching configurations

has been left out of this proof of concept, however, it can be performed based on

quality-related criteria about the components.

129

Geo
rge

 M
. M

ilis

130

Geo
rge

 M
. M

ilis

Chapter 6

Conclusions and Future Work

The present Dissertation presented SEMIoTICS, a novel control system architecture,

which enables the utilization of logic-based reasoning over declarative language

models of IoT-enabled control system components, for the online re-configuration of

feedback control systems. We showed that the system is able to extract configuration

options online and implement some logic to evaluate them against pre-defined cost

criteria so as to choose the best performing option for the operation of the feedback

control system.

The applicability of the results has been tested with application use-cases and

simulations from the smart buildings domain, as well as with smaller use-cases

from the domains of Water Distribution Networks and Electric Power Grids. The

use of such systems in large-scale buildings can considerably increase the flexibility

of adding IoT components in control loops, either through physical installations or

through downloading/importing software functions. It reduces the need for human

intervention to components’ changes and potentially increases the operation lifetime

of a feedback control system. It has been shown that SEMIoTICS is able to respond

to changes in the measurement, analysis and/or actuation capability and switch to

a different (semantically valid) feedback control configuration. The key advantages

are summarised as: i) unlike typical switching control systems, there is no pre-

requisite for the system to know in advance the instances of the components or their

capabilities. Our solution requires that the components syntactically adhere to the

models presented in Section 2.2. It also requires that the end-points of the compo-

nents be semantically described (online) in accordance with the semantic annotation

operation defined in Section 3.3.2. As long as these two hold, the implementation

131

Geo
rge

 M
. M

ilis

details of the components do not need to be known to SEMIoTICS in advance; ii)

The switching decision is made online, by the Supervisor Σ, which is equipped with

a logic-based system that exploits expert knowledge and deductive inference rules

and helps producing an explicit decision signal. The expert knowledge comprises

knowledge about the application domain, standards-compatible modelling of com-

ponents, and feedback control system configuration rules; Current related work in

literature, either does not address the re-configuration challenge at the closed-loop

level or it does not provide an explicit mechanism for making the switching decisions

when the configurations are not known in advance. For instance, existing solutions

would neither have been able to feed a controller with the signal of a new sensor

online nor to take advantage of a signal processing function online.

The provided solution has the following application limitations: i) although in

theory the method works with wired components as well (for instance when certain

standard communication protocols are employed, e.g., the BACnet/IP protocol [1]

which facilitates plugging in of new components), its applicability is more straight-

forward with wireless IoT-enabled components; ii) new components deployed in

the system must first be semantically described using the pre-defined models, other-

wise they cannot be used effectively; iii) the logic-based switching decision-making

is computationally intensive (see Section 3.4), therefore, it may not be applicable to

systems with very fast dynamics, where the re-configuration decisions take more

time than the system can accommodate without compromising the stability char-

acteristics; iv) the system can only use types of components already considered in

the modelling, i.e., sensors, actuators, controllers, pre- and post-control processing

functions, and parameter functions; v) the supported measurement and actuation

capability is limited by the modelled domain knowledge, i.e., the system cannot use

an occupancy sensor if the property “occupancy” is not already described in the

model, however, it provides online means of adding this new knowledge.

SEMIoTICS architecture and system has been tested through illustrative scenarios

from the smart buildings domain, however, it is potentially applicable to a range of

domains where IoT-enabled feedback control loops can be considered. It is clarified,

however, that the application of SEMIoTICS in different domains requires the prior

update of the knowledge model (not the core schema) so as to consider the domain

features-of-interest and their properties.

Another studied aspect was the scalability characteristics of SEMIoTICS. The

132

Geo
rge

 M
. M

ilis

Semantic Reasoning process that helps making the re-configuration decision is a

combinatorial problem; it involves searching through combinations of linguistic

variables’ values in a graph, to satisfy certain logical constraints, which comes with

increased computational cost and time. Although improvements can be achieved

by combining the implementation with appropriate scaling and parallelization of

computing resources, the solution may not be applicable to systems that cannot

tolerate the re-configuration cost (in terms of time and computational load). We run

certain experiments that help us derive important conclusions about the scalability

characteristics of the solution. It appears that SEMIoTICS can be used in large-

scale multi-zone buildings with big numbers of components without significant

performance issues. However, there needs to be an upper bound to the number

of configuration options SEMIoTICS examines, since high connectivity between

components results in prohibitively low performance.

Finally, we went further into exploiting the plug-and-play features of SEMI-

oTICS for the automatic synthesis and online plugging of components in the smart

buildings domain. Specifically, we presented the design of a distributed feedback

linearization controllers’ scheme for the heating control in a multi-zone building,

where the synthesis of each zones’ heating model is performed online by passing

the required parameters to the respective controller. This enables SEMIoTICS to use

the model-based feedback linearization controllers in a plug-and-play way. Fur-

thermore, we presented a second design of the aforementioned control scheme that

solves an online optimization problem and allocates the control signal within a zone,

in an optimal way in terms of pre-defined quality-of-service criteria. This enables

certain types of heating devices to be plugged in a zone and play for the heating con-

trol. It is shown that the solution is able to exploit the available components and the

knowledge about the plant to make much more informed decisions, aiming to im-

prove the occupants’ comfort, as well as reduce the respective energy consumption

costs.

We are currently working on applying SEMIoTICS in lab-based test-bests so as

to demonstrate its plug-and-play features more effectively.

133

Geo
rge

 M
. M

ilis

134

Geo
rge

 M
. M

ilis

Bibliography

[1] BACnet/IP Tutorial. Accessed: 2016-10-21. [Online]. Available: http:
//www.bacnet.org/Tutorial/BACnetIP/

[2] “SWI Prolog,” 1987. [Online]. Available: http://www.swi-prolog.org/

[3] A. Abur and A. G. Exposito, Power system state estimation: Theory and Imple-
mentation. New York: Basel: CRC Press, 2004.

[4] G. Acampora and V. Loia, “Fuzzy control interoperability and scalability
for adaptive domotic framework,” IEEE Transactions on Industrial Informatics,
vol. 1, no. 2, pp. 97–111, May 2005.

[5] C. Alippi, Intelligence for Embedded Systems: A Methodological Approach. Cham:
Springer International Publishing, 2014, ch. Fault Diagnosis Systems, pp. 249–
270.

[6] P. J. Antsaklis, B. Goodwine, V. Gupta, M. McCourt, Y. Po Wu, M. Xia, H. Yu,
and Z. Feng, “Control of cyberphysical systems using passivity and dissipa-
tivity based methods,” Eur. J. Control, vol. 19, no. 5, pp. 379–388, 2013.

[7] M. Asprou and E. Kyriakides, “Enhancement of hybrid state estimation using
pseudo flow measurements,” in Power and Energy Society General Meeting, 2011
IEEE, Detroit, USA, 2011, pp. 1–7.

[8] K. J. Astrom and B. Wittenmark, Adaptive Control, 2nd ed. Prentice Hall, 1994.

[9] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. Patel-Schneider,
Eds., The Description Logic Handbook. Cambridge University Press, 2003.

[10] M. Basseville and I. V. Nikiforov, Detection of abrupt changes: theory and applica-
tion. Prentice-Hall, Inc., April 1, 1993.

[11] J. Bendtsen, K. Trangbaek, and J. Stoustrup, “Plug-and-Play Con-
trol—Modifying Control Systems Online,” IEEE Trans. Control Syst. Technol.,
vol. 21, no. 1, pp. 79–93, 2013.

[12] T. S. Bi, X. H. Qin, and Q. X. Yang, “A novel hybrid state estimator for including
synchronized phasor measurements,” Electric Power Systems Research, vol. 78,
no. 8, pp. 2452–2458, 2009.

[13] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and fault-
tolerant control. Springer Verlag, 2003.

[14] M. Boasson, “Control systems software,” IEEE Trans. Autom. Control, vol. 38,
no. 7, pp. 1094–1106, 1993.

135

Geo
rge

 M
. M

ilis

[15] D. Bonino and F. Corno, DogOnt - Ontology Modeling for Intelligent Domotic
Environments. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.
790–803. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-88564-1_51

[16] M. A. Brdys and B. Ulanicki, Operational control of water systems: structures,
algorithms, and applications. New York, USA: Prentice Hall, 1994.

[17] J. R. Cannon, The One–Dimensional Heat Equation, 1st ed., ser. 23. Cam-
bridge–New York–New Rochelle–Melbourne–Sidney: Addison-Wesley Pub-
lishing Company/Cambridge University Press, 1984.

[18] N. Cauchi and A. Abate, “Benchmarks for cyber-physical systems: A modular
model library for building automation systems,” in IFAC Conference on Analysis
and Design of Hybrid Systems 2018, 07 2018.

[19] S. Chakrabarti, E. Kyriakides, G. Ledwich, and A. Ghosh, “On the inclusion of
phasor measurements in a power state estimation,” IET Generation, Transmis-
sion, and Distribution, vol. 4, no. 10, pp. 1104–1115, 2010.

[20] S. Chakrabarti, E. Kyriakides, G. Valverde, and V. Terzija, “State estimation
including synchronized measurements,” in Power Tech Conf., Bucharest, 2009,
pp. 1–5.

[21] I. Chatzigiannakis, H. Hasemann, M. Karnstedt, O. Kleine, A. Kröller, M. Leg-
gieri, D. Pfisterer, K. Römer, and C. Truong, “True self-configuration for the
IoT,” in 2012 3rd IEEE Int. Conf. on the Internet of Things, Oct 2012, pp. 9–15.

[22] J. Chen and R. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems.
Norwell, MA, USA: Kluwer Academic Publishers, 1999.

[23] D. Conover, D. Crawley, S. Hagan, D. Knight, C. Barnaby, C. Gulledge,
R. Hitchcock, S. Rosen, B. Emtman, G. Holness, D. Iverson, M. Palmer, and
C. Wilkins, An Introduction to Building Information Modeling (BIM) - A Guide for
ASHRAE Members. Amer. Soc. of Heating, Refrig. and Air-Cond. Eng., 2009.

[24] B. Copigneaux, S. Engell, R. Paulen, M. Reniers, C. Sonntag, and H. Thompson,
“Proposal of a European Research and Innovation Agenda on Cyber-physical
Systems of Systems – 2016-2025,” CPSoS EU FP7-ICT Project (contract no.
611115) Consortium, Tech. Rep., 04 2016.

[25] S. Datta, R. D. Costa, and C. Bonnet, “Resource discovery in internet of things:
Current trends and future standardization aspects,” in 2015 IEEE 2nd World
Forum on Internet of Things (WF-IoT), Dec 2015, pp. 542–547.

[26] W. A. David Hilbert, Ed., Grundzuge der theoretischen Logik. Springer, Berlin,
1928, (2nd edition 1937). Reprint London, Allen and Unwin, 1948.

[27] S. Dawson-Haggerty, A. Krioukov, J. Taneja, S. Karandikar, G. Fierro, N. Kitaev,
and D. Culler, “BOSS: Building Operating System Services,” in Proc. 10th
USENIX Symposium on Networked Systems Design and Implementation (NSDI),
2013.

[28] B. L. V. der Waerden, Ed., Moderne Algebra. Springer, Berlin, 1930.

136

Geo
rge

 M
. M

ilis

[29] D. G. Eliades and M. M. Polycarpou, “A fault diagnosis and security frame-
work for water systems,” IEEE Transactions on Control Systems Technology,
vol. 18, no. 6, pp. 1254 –1265, Nov. 2010.

[30] ——, “Water contamination impact evaluation and source-area isolation using
decision trees,” ASCE Journal of Water Resources Planning and Management, 2011,
(available online).

[31] ——, “Leakage fault detection in district metered areas of water distribution
systems,” Journal of Hydroinformatics, vol. 14, no. 4, pp. 992–1005, 2012.

[32] D. Eliades, C. Panayiotou, and M. Polycarpou, “Contamination event detec-
tion in drinking water systems using a real-time learning approach,” in 2014
International Joint Conference on Neural Networks (IJCNN), July 2014, pp. 663–670.

[33] D. Erbs, W. Beckman, and S. Klein, “Estimation of degree-days and ambi-
ent temperature bin data from monthly-average temperatures,” ASHRAE J.;
(United States), vol. 25:6, 06 1983.

[34] D. Evans, “The Internet of Things - How the Next Evolution of the Internet Is
Changing Everything,” CISCO, Tech. Rep., 04 2011.

[35] J. Farrell and M. Polycarpou, Adaptive Approximation Based Control: Unifying
Neural, Fuzzy and Traditional Adaptive Approximation Approaches, N. J. W. Hobo-
ken, Ed. J. Wiley, 2006.

[36] Y. Fathy, P. Barnaghi, and R. Tafazolli, “Distributed spatial indexing for the
internet of things data management,” in 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), May 2017, pp. 1246–1251.

[37] R. M. G. Ferrari, H. Dibowski, and S. Baldi, “A message passing algorithm for
automatic synthesis of probabilistic fault detectors from building automation
ontologies,” in 20th IFAC World Congress, Jul 2017, pp. 4268–4274.

[38] R. M. G. Ferrari, T. Parisini, and M. M. Polycarpou, “Distributed fault detection
and isolation of large-scale discrete-time nonlinear systems: An adaptive ap-
proximation approach,” IEEE Trans. Autom. Control, vol. 57, no. 2, pp. 275–290,
2012.

[39] J. Ferreiros, “The road to modern logic-an interpretation,” Bulletin of
Symbolic Logic, vol. 7, no. 4, pp. 441–484, 12 2001. [Online]. Available:
http://projecteuclid.org/euclid.bsl/1182353823

[40] M. Fliess and C. Join, “Model-free control,” International Journal of
Control, vol. 86, no. 12, pp. 2228–2252, 2013. [Online]. Available:
https://doi.org/10.1080/00207179.2013.810345

[41] Fred Dushin, “JPL - A Java Interface to Prolog,” 2003. [Online]. Available:
http://www.swi-prolog.org/packages/jpl/java_api/

[42] F. Ganz, P. Barnaghi, and F. Carrez, “Automated semantic knowledge acqui-
sition from sensor data,” IEEE Systems Journal, vol. 10, no. 3, pp. 1214–1225,
Sept 2016.

137

Geo
rge

 M
. M

ilis

[43] GeoSPARQL - A Geographic Query Language for RDF Data. Accessed:
2017-07-24. [Online]. Available: http://www.opengeospatial.org/standards/
geosparql

[44] J. Gertler, “Analytical redundancy methods in fault detection and isolation,”
in Preprints of IFAC/IMACS Symposium on Fault Detection, Supervision and Safety
for Technical Processes SAFEPROCESS’91, 1991, pp. 9–21.

[45] P. Glotfelter, T. Eichelberger, and P. J. Martin, “PhysiCloud : A Cloud-
Computing Framework for Programming Cyber-Physical Systems,” in 2014
IEEE Conf. on Control Applications (CCA), 2014.

[46] D. J. Glover, M. S. Sarma, and T. J. Overbye, “Power System Controls,” in
Power Systems Analysis and Design, 5th ed., S. Meherishi and T. Altieri, Eds.
Stanford, USA: Global Engineering: Christopher M. Shortt, 2012, pp. 639–689.

[47] K. Godel, “Über formal unentscheidbare sätze der principia mathematica und
verwandter systeme i,” Monatshefte für Math. u. Physik, vol. 38, pp. 173–198,
1931.

[48] W. Goetzler, “Variable Refrigerant Flow Systems,” ASHRAE Journal, 2017.
[Online]. Available: http://www.msidata.com/assets/VRF-explanation.pdf

[49] A. Gómez-Pérez, M. Fernandez-Lopez, and O. Corcho, Ontological Engineer-
ing with examples from the areas of Knowledge Management, e-Commerce and the
Semantic Web. First Edition, 1st ed. London, U.K.: Springer-Verlag London,
2004.

[50] I. Grangel-González, L. Halilaj, G. Coskun, S. Auer, D. Collarana, and
M. Hoffmeister, “Towards a semantic administrative shell for industry 4.0
components,” in 2016 IEEE Tenth International Conference on Semantic Comput-
ing (ICSC), Feb 2016, pp. 230–237.

[51] W. M. Grayman, “A Quarter of a Century of Water Quality Modeling in Dis-
tribution Systems,” in Proc. ASCE Water Distribution Systems Analysis, 2006,
p. 12.

[52] C. Griffiths and M. Costi, GRASP : the solution. Cardiff, UK: Proactive Press,
2011.

[53] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture for the
web of things,” in 2010 Internet of Things (IOT), Nov 2010, pp. 1–8.

[54] J. Hall, A. Zaffiro, R. Marx, P. Kefauver, R. Krishman, R. Haught, and J. Her-
rmann, “On-line water quality parameters as indicators of distribution sys-
tem,” Journal of the American Water Works Association, vol. 99, no. 1, pp. 66–77,
2007.

[55] A. Haller, K. Janowicz, S. Cox, D. L. Phuoc, K. Taylor, M. Lefrançois,
R. Atkinson, R. García-Castro, J. Lieberman, and C. Stadler. Semantic
Sensor Network Ontology. Accessed: 2017-07-24. [Online]. Available:
https://www.w3.org/TR/vocab-ssn/

138

Geo
rge

 M
. M

ilis

[56] F. Hua, J. West, R. Barker, and C. Forster, “Modelling of chlorine decay in
municipal water supplies,” Water Research, vol. 33, no. 12, pp. 2735–2746, Aug.
1999.

[57] J. Huang, F. Bastani, I. L. Yen, J. Dong, W. Zhang, F. J. Wang, and H. J. Hsu,
“Extending service model to build an effective service composition framework
for cyber-physical systems,” in IEEE Int. Conf. on Service-Oriented Computing
and Applications, SOCA’ 09, 2009.

[58] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: a survey,”
IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 2–22, Feb 1993.

[59] I. Hwang, S. Kim, Y. Kim, and C. Seah, “A survey of fault detection, isolation,
and reconfiguration methods,” Control Systems Technology, IEEE Transactions
on, vol. 18, no. 3, pp. 636–653, May 2010.

[60] P. P.-S. I. Horrocks, “Reducing owl entailment to description logic satisfiabil-
ity,” In Proc. of the 2nd International Semantic Web Conference (ISWC), 2003,
http://www.cs.man.ac.uk/ horrocks/Publications/download/2003/HoPa03c.

[61] 1855-2016 — IEEE Standard for Fuzzy Markup Language, IEEE Std., 2016.

[62] IEEE SmartGrid. Accessed: 2016-10-21. [Online]. Available: http:
//smartgrid.ieee.org/

[63] P. A. Ioannou and J. Sun, Robust Adaptive Control. Englewood Cliffs, NJ:
Prentice-Hall, 1996.

[64] R. Isermann, Fault-Diagnosis Systems: An Introduction From Fault Detection to
Fault Tolerance. New York, NY, USA: Springer-Verlag, 2006.

[65] ——, “Supervision, fault-detection and fault-diagnosis methods—an intro-
duction,” Control engineering practice, vol. 5, no. 5, pp. 639–652, 1997.

[66] C. Joslyn, “Semantic control systems,” World Futures: Journal of General Evolu-
tion, vol. 45, no. 1-4, pp. 87–123, 1995.

[67] D. Jung and A. Savvides, “Estimating Building Consumption Breakdowns
using ON/OFF State Sensing and Incremental Sub-Meter Deployment,” in 8th
ACM Conf. on Embedded Networked Sensor Systems (SenSys), 2010.

[68] B. Kassaie, “SPARQL over graphx,” CoRR, vol. abs/1701.03091, 2017. [Online].
Available: http://arxiv.org/abs/1701.03091

[69] T. Knudsen, “Awareness and its use in Plug and Play Process Control,” in 2009
European Control Conf. (ECC), Aug 2009, pp. 4078–4083.

[70] K. Kotis and A. Katasonov, “Semantic interoperability on the internet
of things: The semantic smart gateway framework,” Int. J. Distrib.
Syst. Technol., vol. 4, no. 3, pp. 47–69, Jul. 2013. [Online]. Available:
http://dx.doi.org/10.4018/jdst.2013070104

[71] A. Krioukov, G. Fierro, N. Kitaev, and D. Culler, “Building application stack
(BAS),” in Proc. of the Fourth ACM Workshop on Embedded Sensing Systems for
Energy-Efficiency in Buildings - BuildSys ’12. New York, USA: ACM Press,

139

Geo
rge

 M
. M

ilis

2012, p. 72. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2422531.
2422546

[72] Y. Lirov, E. Y. Rodin, B. G. McElhaney, and L. W. Wilbur, “Artificial
Intelligence Modelling of Control Systems,” The Society for Modeling and
Simulation International, vol. 50, no. 1, pp. 12–24, Jan. 1988. [Online]. Available:
http://dx.doi.org/10.1177/003754978805000103

[73] X. Liu, B. Cheng, J. Liao, P. Barnaghi, L. Wan, and J. Wang, “Omi-dl: An
ontology matching framework,” IEEE Transactions on Services Computing, vol. 9,
no. 4, pp. 580–593, July 2016.

[74] J. Lygeros, C. Tomlin, and S. Sastry, Hybrid Systems: Modeling, Analysis and
Control. Univeristy of California, Barkeley, 2008.

[75] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,
S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and
K. Sycara. (2004) OWL-S: Semantic Markup for Web Services. Accessed:
2017-07-24. [Online]. Available: https://www.w3.org/Submission/OWL-S/

[76] G. Milis, D. Eliades, C. Panayiotou, and M. Polycarpou, “A Cognitive Fault-
Detection Design Architecture,” in IJCNN, World Congress in Computational
Intelligence, 2016.

[77] G. Milis, C. Panayiotou, and M. Polycarpou, “Semantically-Enhanced
Online Configuration of Feedback Control Schemes,” IEEE Trans. on
Cybernetics, vol. 48, no. 3, pp. 1081–1094, 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/7891022/

[78] G. M. Milis, M. Asprou, E. Kyriakides, C. G. Panayiotou, and M. M. Polycar-
pou, “Semantically-enhanced configurability in state estimation structures of
power systems,” in 2015 IEEE Symposium Series on Computational Intelligence,
Dec 2015, pp. 679–686.

[79] G. M. Milis, D. G. Eliades, C. G. Panayiotou, and M. M. Polycarpou, “Se-
mantic mediation in smart water networks,” in 2015 IEEE Symposium Series on
Computational Intelligence, Dec 2015, pp. 617–624.

[80] G. M. Milis, C. G. Panayiotou, and M. M. Polycarpou, “Semiotics:
Semantically-enhanced iot-enabled intelligent control systems,” IEEE Internet
of Things Journal, 2017.

[81] Z. Ming, V. A. Centeno, J. S. Thorp, and A. G. Phadke, “An alternative for in-
cluding phasor measurements in state estimators,” IEEE Transactions on Power
Systems, vol. 21, no. 4, pp. 1930–1937, 2006.

[82] G. E. Moore, “A Defence of Common Sense,” in Contemporary British Philosophy
(2nd series), J. H. Muirhead, Ed. Allen and Unwin, London, 1925, pp. 192–233.

[83] Machine-to-machine Internet-of-Things Connectivity Protocol. Accessed:
2017-01-25. [Online]. Available: http://mqtt.org/

[84] M. Mrissa, C. Ghedira, D. Benslimane, and Z. Maamar, Context and Semantic
Composition of Web Services. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 266–275. [Online]. Available: http://dx.doi.org/10.1007/11827405_26

140

Geo
rge

 M
. M

ilis

[85] J. V. Neumann, “Eine axiomatisierung der mengenlehre,” Journal fur die reine-
und angewandte Mathematik, vol. 154, pp. 219–240, 1925, reprint in Collected
Works, vol. 1, Oxford, Pergamon, 1961.

[86] A. S. of Heating and A.-C. E. (ASHRAE), “STANDARD 55 – THERMAL
ENVIRONMENTAL CONDITIONS FOR HUMAN OCCUPANCY,” 2013.
[Online]. Available: https://www.ashrae.org/technical-resources/bookstore/
standard-55-thermal-environmental-conditions-for-human-occupancy

[87] A. Pablo, R. Valiente, and A. Lozano-Tello, “Ontology and SWRL-Based Learn-
ing Model for Home Automation Controlling,” in Ambient Intelligence and Fu-
ture Trends-Int. Symposium on Ambient Intelligence (ISAmI 2010), J. C. Augusto,
J. M. Corchado, P. Novais, and C. Analide, Eds. Berlin: Springer Berlin
Heidelberg, 2010, pp. 79–86.

[88] P. M. Papadopoulos, V. Reppa, M. M. Polycarpou, and C. G. Panayiotou,
“Distributed diagnosis of actuator and sensor faults in hvac systems,” in 20th
IFAC World Congress, D. Dochain, D. Henrion, and D. Peaucelle, Eds., vol. 50,
no. 1. IFAC (International Federation of Automatic Control) Hosting by
Elsevier Ltd, Jule 2017, pp. 4209–4215.

[89] P. Pauwels and D. Van Deursen, “IFC-to-RDF: adaptation, aggregation
and enrichment,” in First Int. Workshop on Linked Data in Architecture and
Construction, Abstracts, 2012, pp. 1–3. [Online]. Available: http://
multimedialab.elis.ugent.be/ldac2012/documents/LDACworkshopreport.pdf

[90] C. Petrie, Web Service Composition. Springer International Publishing, Switzer-
land, 2016.

[91] A. G. Phadke and J. S. Thorp, Synchronized phasor measurements and their appli-
cations. New York: Springer, 2008.

[92] J. Ploennigs, B. Hensel, H. Dibowski, and K. Kabitzsch, “Basont - a modular,
adaptive building automation system ontology,” in IECON 2012 - 38th Annual
Conference on IEEE Industrial Electronics Society, Oct 2012, pp. 4827–4833.

[93] M. M. Polycarpou and A. J. Helmi, “Automated fault detection and accom-
modation: a learning systems approach,” Systems, Man and Cybernetics, IEEE
Transactions on, vol. 25, no. 11, pp. 1447–1458, 1995.

[94] Q.Z.Sheng, X. Qiao, A. Vasilakos, C. S. ands S. Bourne, and X. Xu, “Web
services composition: A decade’s overview,” Information Sciences, vol. 280, pp.
218–238, Oct 2014.

[95] L. Z. Raja and R. A. Issa, “Ontology-based partial building information model
extraction,” Journal of Computing in Civil Engineering, vol. 27, no. 6, pp. 576–584,
2013.

[96] V. Reppa, M. M. Polycarpou, and C. G. Panayiotou, “Multiple sensor fault
detection and isolation for large-scale interconnected nonlinear systems,” in
Proc. Eur. Control Conf., Zurich, Switzerland, 2013, pp. 1952–1957.

[97] ——, “Adaptive approximation for multiple sensor fault detection and isola-
tion of nonlinear uncertain systems,” Neural Networks and Learning Systems,
IEEE Transactions on, vol. 25, no. 1, pp. 137–153, 2014.

141

Geo
rge

 M
. M

ilis

[98] V. Reppa and A. Tzes, “Fault detection and diagnosis based on parameter set
estimation,” IET control theory & applications, vol. 5, no. 1, pp. 69–83, 2011.

[99] RestApiTutorial.com, “Learn REST: A RESTful Tutorial.” [Online]. Available:
https://www.restapitutorial.com/

[100] S. Riverso, F. Boem, G. Ferrari-Trecate, and T. Parisini, “Plug-and-Play Fault
Detection and Control-Reconfiguration for a Class of Nonlinear Large-Scale
Constrained Systems,” IEEE Trans. Autom. Control, vol. 61, no. 12, pp. 3963–
3978, Dec 2016.

[101] S. Robin, “Aristotle’s Logic,” in The Stanford Encyclopedia of Philosophy, winter
2016 ed., E. N. Zalta, Ed. Metaphysics Research Lab, Stanford University,
2016.

[102] E. Rodin, “Semantic Control Theory,” Applied Mathematics Letters, vol. 1, no. 1,
pp. 73–78, 1988.

[103] L. A. Rossman, EPANET 2 Users manual, EPA/600/R-00/057, National Risk
Management Research Laboratory, Office of Research and Development, U.S.
Environmental Protection Agency, Cincinnati, OH, Sep. 2000.

[104] B. Russel, “Mathematical logic as based on the theory of types,” American
Journal of Mathematics, vol. 30, pp. 222–262, 1908.

[105] B. Russell, Ed., The principles of mathematics. Cambridge University Press,
1903, (2nd edition 1937). Reprint London, Allen and Unwin, 1948.

[106] B. Russell, Common Sense and Nuclear Warfare, 1st ed. Routledge, Oxford, UK,
May 2001.

[107] T. Samad, “Control systems and the internet of things [technical activities],”
IEEE Control Systems, vol. 36, no. 1, pp. 13–16, Feb 2016.

[108] D. Savic, Z. Kapelan, and P. Jonkergouw, “Quo vadis water distribution model
calibration?” Urban Water Journal, vol. 6, no. 1, pp. 3–22, Feb 2009.

[109] Sensor Model Language (SensorML). Accessed: 2016-10-21. [Online].
Available: http://www.opengeospatial.org/standards/sensorml

[110] T. Skolem, “Einige bemerkungen zur axiomatischen begriindung der men-
genlehre,” Dem Femte skandinaviska mathematikerkongressen, Akademiska
Bokhandeln, 1923, helsinki.

[111] Stanford Center for Biomedical Informatics Research, “A free, open-source
ontology editor and framework for building intelligent systems,” 2016.
[Online]. Available: https://protege.stanford.edu/

[112] J. Stoustrup, “Plug & Play Control: Control Technology Towards New
Challenges,” European Journal of Control, vol. 15, no. 3-4, pp. 311–330, Aug. 2009.
[Online]. Available: http://ejc.revuesonline.com/article.jsp?articleId=13584

[113] K. Suri, W. Gaaloul, A. Cuccuru, and S. Gerard, “Semantic framework for
internet of things-aware business process development,” in 2017 IEEE 26th
International Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), June 2017, pp. 214–219.

142

Geo
rge

 M
. M

ilis

[114] SWI Prolog, “SWI-Prolog Semantic Web Library 3.0.” [Online]. Avail-
able: http://www.swi-prolog.org/pldoc/doc_for?object=section(%27packages/
semweb.html%27)

[115] The MathWorks, Inc., “MATLAB - MathWorks.” [Online]. Available:
https://www.mathworks.com/products/matlab.html

[116] W. A. H. Thissen and P. M. Herder, “System of Systems Perspectives on Infras-
tructures,” in System of Systems Engineering, M. Jamshidi, Ed. John Wiley &
Sons, Inc., Hoboken, NJ, USA, 2008, ch. 11.

[117] E. Todini and S. Pilati, “A gradient method for the analysis of pipe networks,”
in Proc. Computer Applications for Water Supply and Distribution, Leicester, UK,
1987, p. 20.

[118] R. Toenjes, D. Kuemper, and M. Fischer, “Knowledge-based spatial reasoning
for iot-enabled smart city applications,” in 2015 IEEE International Conference
on Data Science and Data Intensive Systems, Dec 2015, pp. 736–737.

[119] Top 5 Vendors in the Global Integrated Building Management Systems
Market from 2017-2021: Technavio. Accessed: 2018-02-23. [Online].
Available: https://www.businesswire.com/news/home/20170106005181/en/
Top-5-Vendors-Global-Integrated-Building-Management

[120] D. Trihinas, G. Pallis, and M. Dikaiakos, “Low-cost adaptive monitoring tech-
niques for the internet of things,” IEEE Transactions on Services Computing,
2018.

[121] W3C. (2004) Semantic Web Query Standards. Accessed: 2016-10-21. [Online].
Available: http://www.w3.org/standards/semanticweb/query

[122] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan,
“When edge meets learning: Adaptive control for resource-constrained dis-
tributed machine learning,” CoRR, vol. abs/1804.05271, 2018.

[123] E. Witrant, S. Mocanu, and O. Sename, “A hybrid model and mimo control for
intelligent buildings temperature regulation over wsn,” in IFAC Proceedings
Volumes, vol. 42, no. 14. Elsevier Ltd, 2009, pp. 420–425.

[124] A. Wood, B. Wollenberg, and G. Sheble, Power Generation, Operation and
Control, 3rd ed. Wiley, 2013. [Online]. Available: http://eu.wiley.com/
WileyCDA/WileyTitle/productCd-0471790559.html

[125] World Wide Web Consortium (W3C), “PrimerExampleTurtle -
OWL,” 2008. [Online]. Available: https://www.w3.org/2007/OWL/wiki/
PrimerExampleTurtle

[126] X. Zhang, M. M. Polycarpou, and T. Parisini, “A robust detection and isolation
scheme for abrupt and incipient faults in nonlinear systems,” IEEE Transactions
on Automatic Control, vol. 47, no. 4, pp. 576–593, Apr. 2002.

[127] Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-tolerant
control systems,” Annual reviews in control, vol. 32, no. 2, pp. 229–252, 2008.

143

Geo
rge

 M
. M

ilis

