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Περίληψη

Στην παρούσα διατριβή, παρουσιάζεται ένας αριθμός από διαταρακτικούς υπολογισμούς

που αφορούν την επανακανονικοποίηση διάφορων τοπικών και μη τοπικών αδρονικών

τελεστών, όπως επίσης την επανακανονικοποίηση άλλων θεμελιωδών ποσοτήτων της

Κβαντικής Χρωμοδυναμικής, για παράδειγμα της ισχυρούς σταθεράς σύζευξης. Οι

περισσότεροι από αυτούς τους υπολογισμούς έχουν πραγματοποιηθεί στο φορμαλισμό

της Θεωρίας Πεδίων στο Πλέγμα, χρησιμοποιώντας μια μεγάλη οικογένεια βελτιωμένων

διακριτοποιημένων δράσεων, οι οποίες εφαρμόζονται ευρέως σε αριθμητικές

προσομοιώσεις από μεγάλες διεθνείς ομάδες (π.χ. ETMC, QCDSF,

Wuppertal-Budapest Collaboration). Οι υπολογισμοί είναι οι ακόλουθοι:

• Η μελέτη ενός βρόχου στην θεωρία διαταραχών της επανακανονικοποίησης και μίξης
μη τοπικών φερμιονικών τελεστών, που περιλαμβάνουν μία ευθεία γραμμή Wilson

(straight Wilson line), χρησιμοποιώντας διαστατική ομαλοποίηση της θεωρίας και

στην παρουσία μη μηδενικών μαζών των κουάρκ. Τέτοιοι τελεστές εμφανίζονται

σε μία καινούργια, πολλά υποσχόμενη προσέγγιση για τον υπολογισμό παρτονικών

κατανομών στο πλέγμα.

• Ο υπολογισμός ενός βρόχου στην θεωρία διαταραχών των συναρτήσεων

επανακανονικοποίησης και συντελεστών μίξης μη τοπικών φερμιονικών τελεστών,

που περιλαμβάνουν μία γραμμή Wilson σχήματος staple (staple-shaped Wilson

line), χρησιμοποιώντας διαστατική ομαλοποίηση και ομαλοποίηση στο πλέγμα

(φερμιόνια τύπου Wilson/clover και γκλουόνια τύπου Symanzik-improved). Η

εργασία αυτή σχετίζεται με τις μη διαταρακτικές μελέτες παρτονικών κατανομών

που εξαρτώνται από την εγκάρσια ορμή των παρτονίων.

• Η γενίκευση της διαταρακτικής μας μελέτης στο πλέγμα για μη τοπικούς
φερμιονικούς τελεστές, που περιλαμβάνουν μια γραμμή Wilson (Wilson line) με

ένα αυθαίρετο αριθμό από γωνιώδη σημεία.

• Η υπό εξέλιξη μελέτη διορθώσεων ανώτερης τάξης στους συντελεστές μετατροπής
από το RI′ σχήμα επανακανονικοποίησης στο MS. Ο υπολογισμός αφορά μη

τοπικούς τελεστές με μία ευθεία γραμμη Wilson (straight Wilson line).

• Ο υπολογισμός δύο βρόχων στην θεωρία διαταραχών της διαφοράς μεταξύ των
συντελεστών επανακανονικοποίησης των μονήρων και μη μονήρων ως προς τη γεύση
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Περίληψη v

διγραμμικών φερμιονικών τελεστών, χρησιμοποιώντας την εξής βελτιωμένη δράση:

γκλουόνια τύπου Symanzik και φερμιόνια τύπου staggered με διπλά “εύσωμους”

(stout-smeared) γκλουονικούς συνδέσμους (links). Τα αποτελέσματά μας μπορούν

να συνδυαστούν με δεδομένα από προσομοιώσεις προκειμένου να ληφθεί μια μη

διαταρακτική εκτίμηση των συντελεστών επανακανονικοποίησης για τους μονήρεις

τελεστές.

• Ο υπό εξέλιξη υπολογισμός του συντελεστή τριών βρόχων της συνάρτησης β στο
πλέγμα, χρησιμοποιώντας την εξής βελτιωμένη δράση: γκλουόνια τύπου Symanzik

και φερμιόνια με εύσωμους (stout-smeared) γκλουονικούς συνδέσμους (links). Τα

αποτελέσματά μας μπορούν να συνδυαστούν με εκτεταμένες προσομοιώσεις

προκειμένου να προσεγγίσουμε την επανακανονικοποιημένη σταθερά σύζευξης στο

σχήμα “Wilson flow”, η οποία επί του παρόντος τυγχάνει ενεργούς διερεύνησης

από έναν αριθμό ερευνητικών ομάδων.
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Abstract

In this Thesis, we present a number of perturbative calculations regarding the

renormalization of several local and nonlocal hadron operators, as well as the

renormalization of other fundamental quantities of Quantum Chromodynamics, such

as the strong running coupling. Most of our computations have been performed in the

context of Lattice Field Theory using a large family of improved lattice actions, which

are currently employed in numerical simulations by major international groups (e.g.

ETMC, QCDSF, Wuppertal-Budapest Collaboration). The calculations are the

following:

• The one-loop study of renormalization and mixing of nonlocal straight Wilson-

line operators in dimensional regularization and in the presence of nonzero quark

masses. These operators are relevant to a novel and very promising approach for

calculating parton distribution functions on the lattice.

• The one-loop calculation of the renormalization factors and mixing coefficients

of nonlocal staple-shaped Wilson-line operators, in both continuum (dimensional

regularization) and lattice regularizations (Wilson/clover fermions and Symanzik-

improved gluons). Our work is relevant to the nonperturbative investigations of

transverse momentum-dependent distribution functions on the lattice.

• The extension of our perturbative study to general Wilson-line lattice operators

with an arbitrary number of cusps.

• The ongoing study of higher-loop contributions to the conversion factors between

the RI′ and the MS schemes for the straight Wilson-line operators.

• The two-loop computation of the difference between the renormalization factors of

flavor singlet and nonsinglet bilinear quark operators, using Symanzik improved

gluons and staggered fermions with twice stout-smeared links. Our results can

be combined with nonperturbative data in order to estimate the nonperturbative

renormalization factors for the singlet operators.

• The ongoing calculation of the three-loop coefficient of the lattice β-function,

using Symanzik improved gluons and stout-smeared fermions. Our results can

be combined with extensive simulations in order to make contact with the

renormalized coupling in the “Wilson flow” renormalization scheme, which is

being very actively investigated by a number of groups at present.
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Chapter 1

Introduction

One of the four known fundamental interactions of nature, which act between

elementary particles, is the strong interaction. It is responsible for giving most of the

mass that we see in the Universe, as its action causes the binding of nucleons to form

atomic nuclei. Quantum Chromodynamics (QCD) is believed to be the fundamental

theory which describes strong interactions. In this theory, hadrons, the structural

elements of visible matter, are not elementary particles; they consist of quarks

(fermions) and gluons (gauge bosons), which are governed by the strong force. These

particles have an additional quantum number, called color charge, which allows

gluons (in contrast to photons) to be self-interacting. Today we know that quarks

come in six flavors (up, down, charm, strange, top, bottom) and three color charges.

Given that QCD is based on the nonabelian group SU(3), there are eight species of

gluons carrying a color charge, corresponding to the eight generators of SU(3).

QCD is different from other fundamental theories in that it has two specific features:

it is an asymptotically free theory in high-energy regions, i.e., quarks and gluons

interact very weakly at short distances, and it is a confining theory, i.e., it forbids

break-up of hadrons into their constituent quarks; this is why quarks have never been

seen as isolated entities. The latter property poses fundamental difficulties in

applying to QCD the classical analytical methods of Quantum Field Theory, which

were very successful in the study of Quantum Electrodynamics. Since confinement is

a consequence of the dynamics at low-energy regions where perturbation theory

breaks down, a nonperturbative treatment of the theory is needed. The best method,

at present, to evaluate hadronic observables is using the space-time discrete version of

1
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QCD known as Lattice QCD; it can only be carried out by numerical simulations,

usually on the fastest possible supercomputers.

1.1 QCD on the lattice

The lattice formulation of QCD was first proposed in 1974 by K. Wilson [1]; it opened

the way to the study of nonperturbative phenomena using numerical methods. It is

the only known nonperturbative regularization of QCD that provides a powerful tool

for studying the low-energy properties of strong interactions from first principles. In

particular, lattice QCD calculations can give information for the dynamics of QCD

from low to high momentum regions (e.g. studies of scaling phenomena, or quark

confinement) and for the hadron structure and properties (e.g. hadron masses, decay

constants, electromagnetic and weak form factors, quark and gluon structure functions

(parton distribution functions), spin and topological features) [2, 3]. They also provide

input to phenomenology and to searches for Physics beyond the Standard Model (e.g.

nucleon σ-terms related to the scattering cross section of dark matter candidates on

nucleons [4]). Furthermore, they provide input to ongoing experiments, give predictions

on observables that are not easily accessible experimentally and give guidance to new

experiments within a robust theoretical framework [5].

In the lattice regularization of QCD, Euclidean space-time is discretized on a hypercubic

lattice with lattice spacing a. The fermionic degrees of freedom are distributed on

lattice sites, while the bosonic ones are placed on the links connecting neighbouring

sites. The (finite) lattice spacing acts as the ultraviolet regulator, which renders the

quantum field theory finite at high-energy regions; in particular, a induces a momentum

cutoff, which restricts the domain of integration to the finite interval −π/a < pµ < π/a

(first Brillouin zone), when lattice calculations are made in momentum space. At low-

energy regions, the (finite) lattice size L plays the role of the infrared regulator. The

continuum theory is recovered by extrapolating lattice results to an infinite lattice size

(L −→∞) and by taking the limit of vanishing lattice spacing (a −→ 0), which can be

reached by tuning the bare coupling constant to zero according to the renormalization

group.

Unlike continuum regularization schemes, lattice QCD allows numerical computations

of the path integral that defines the theory. These computations are performed by

GREGORIS SPANOUDES



Chapter 1 Introduction 3

means of Monte Carlo simulations, with inputs the hadronic scale and bare quark

masses. The Wick rotation leading from Minkowski to Euclidean spacetime is a

necessary step in order to enable simulations via Monte Carlo methods. However, not

all physical quantities are amenable to a Wick rotation; a notable case is the

scattering amplitudes. A number of methods have been devised to circumvent this

limitation for some of these quantities. A particular case regards distribution

functions on the lattice; it will be discussed further in Chapter 2. The accuracy of

such numerical calculations, however, is limited by the presence of statistical and

systematic errors. The statistical error arises by the use of Monte Carlo importance

sampling to evaluate the path integral and it is the most straightforward error to

estimate. There are various sources of systematic uncertainties and their significance

depends on the particular quantity under consideration and on the parameters of the

lattice being used. Some of the main systematic errors are: discretization effects

(lattice artifacts), finite volume effects, extrapolation from unphysically heavy pion

masses, and truncation effects in renormalization of composite operators. Simulations

are performed at finite (nonzero) values of the lattice spacing and at finite values of

lattice size, giving unwanted contributions to the nonperturbative estimates, even in

the continuum limit. Due to large computational cost, lattice calculations are often

performed at a sequence of unphysically heavy pion masses and then extrapolated to

the physical pion mass, leading to systematic uncertainties. Also, before taking the

continuum limit, one must renormalize the corresponding operators and fields that

are involved in the calculations, and match them to some common continuum scheme

[typically the perturbatively-defined modified minimal subtraction (MS) scheme] used

by phenomenologists; a conversion factor from the nonperturbative lattice scheme to

the MS scheme must be used, which is calculated necessarily in perturbation theory

giving truncation effects. All these sources of errors need to be under control by the

current lattice calculations in order to make meaningful contact with experimental

data.

A significant progress in numerical simulations has taken place in the last years. This

has been due to improvements in the algorithms and the development of new techniques,

as well as, the increase in computational power, that have enabled simulations to be

carried out at parameters very close to their physical values. In this respect, lattice-

QCD calculations have reached a level where they not only complement, but also guide

current and forthcoming experimental programs [6, 7]. Some examples of the advances

of numerical simulations within lattice QCD are the calculations of the low-lying hadron
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spectrum, hadron structure calculations [2, 3] addressing open questions, such as the

spin decomposition [8] of the proton, and the calculation of the hadronic contributions

to the anomalous magnetic moment of the muon g − 2 [9, 10].

1.2 Improved lattice actions

The formulation of a continuum action on the lattice is not unique. In principle, the

only restriction in discretizing the Lagrangian of a continuum theory is its recovery in

the continuum limit1. In general, lattice actions cannot preserve all of the symmetries

of the continuum actions; for instance, it is obvious that Lorentz invariance is violated

by the discrete grid. However, it is important to construct gauge invariant lattice

actions as the renormalizability of a quantum field theory of vector fields is based

on gauge symmetry. There is not an optimal lattice action to use in all cases; each

version has advantages and disadvantages depending on what features are of interest

in the physical system under study, e.g., chiral symmetry, flavor symmetry, locality,

or unitarity. Furthermore, any lattice action gives rise to discretization effects, which

are irrelevant to the continuum theory. These effects disappear only in the continuum

limit when the lattice spacing is sent to zero. In a numerical simulation one always

works with finite a, and the discretization errors have to be under control before taking

the continuum limit, i.e. before extrapolating to vanishing a; having small errors

the extrapolation will be safer and more reliable, and quite accurate results will be

produced even from calculations with larger values of a, which are less expensive in

terms of computer time. Improved actions with smaller discretization errors have been

constructed for a better behavior at all lattice spacings.

Presently, many improved versions of lattice actions are used in numerical simulations

by major international groups (e.g., ETMC, MILC, QCDSF, etc.). The most frequent

fermion actions are the Wilson/clover [12], the staggered [13], and the

Ginsparg-Wilson (overlap [14–16] and domain wall [17, 18]). All of these actions have

discretization errors of order O(a2). The main problem in a näıve lattice formulation

of fermion action is that it describes 24 equivalent fermion fields in the continuum

limit; this is known as “doubling problem”. All the above improved actions have

dealt with this problem sacrificing, however, some features/symmetries of the

1Actually, even this natural requirement can be by-passed [11].
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continuum theory. According to the Nielsen-Ninomiya theorem [19], a lattice fermion

formulation with locality, without species doubling and with an explicit continuous

chiral symmetry is impossible. The Wilson/clover action has no doublers and is local;

thus, it breaks chiral symmetry explicitly. A variant of the Wilson/clover action is the

twisted-mass action [20], in which all errors linear in a are automatically removed

(without tuning of parameters) under “maximal twist” [21–23]. Also, a simple

modification which can reduce chiral-symmetry breaking errors and can lead to more

convergent results in simulations is the use of smeared gauge fields in the covariant

derivatives of the fermion action, such as stout [24] (e.g., SLiNC fermions [25]), HYP

[26] and HEX [27] links. The staggered action is also local, however, it introduces

four (instead of sixteen) doublers. It has the advantage of preserving one nonsinglet

axial symmetry and, consequently of having automatic O(a) improvement and no

additive mass renormalization; however, it has the disadvantage of generating four

unphysical species of fermions, which are characterized by a new degree of freedom,

called “taste”. Contributions from the unwanted tastes are removed by taking the

fourth-root of the fermion determinant appearing in the path integral. However, for

nonzero values of lattice spacing taste-mixing effects occur. Smearing techniques can

also reduce taste-symmetry violating errors of staggered actions (e.g., Asqtad

fermions [28], HISQ [29]). Ginsparg-Wilson actions pose a continuum-like chiral

symmetry [30] without introducing unwanted doublers at the expense of being

nonultralocal. However, they have the drawback of being computationally expensive

with their cost being at least an order of magnitude greater than for other actions.

In the gauge part of the improved actions, the Symanzik-improvement program [31] has

been applied using the concept of “on-shell improvement” [32] for reducing disretization

errors of order O(a2). The Symanzik-improved action includes four parts corresponding

to all possible independent closed loops made of four and six links. It depends on four

parameters (one for each loop); each particular choice for the values of these coefficients

leads to a different improved action. The most popular actions (choices) are the tree-

level Symanzik, tadpole improved Lüscher-Weisz [32, 33], DBW2 [34], and Iwasaki

[35]. There is also a “nonperturbative” Symanzik improvement program, where the

coefficients are determined by evaluating an improvement condition nonperturbatively

(see [36]). In the following chapters we will concentrate on the actions used for our

calculations: Wilson/clover, stout-smeared staggered, and SLiNC fermions and Wilson,

tree-level Symanzik, and Iwasaki gluons.
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1.3 Perturbative calculations in lattice QCD

Although lattice regularization is adopted for nonperturbative calculations via

numerical simulations, perturbative computations on the lattice are still essential.

Comparison of lattice results to experimental data requires appropriate

renormalization of the lattice fields, bare parameters and composite operators, as

dictated by Quantum Field Theory. This often relies on perturbation theory. In many

cases nonperturbative estimates of renormalization factors are very difficult to obtain

via numerical simulations due to complications such as possible mixing with other

operators, whose signals are hard to disentangle. In this case, mixing patterns become

more transparent when looked at using perturbative renormalization rather than

nonperturbatively. Also, perturbative results for short-distance quantities can be

compared with the corresponding results taken by nonperturbative techniques, in

order to check the validity of perturbative and nonperturbative methods.

Furthermore, progress in modern simulation algorithms, along with a continuous

increase in computational power in Supercomputing Centers, has made it possible for

present-day numerical simulations to be performed at ever decreasing values of the

lattice spacing; nevertheless, the values of a which are attainable at present, still lead

to substantial deviations of lattice results from the continuum limit (a −→ 0), and

sophisticated extrapolations to that limit are essential before accurate predictions can

be made from lattice simulations. To this end, it is very important to devise means of

reducing lattice artifacts from measured quantities. This can be done in lattice

perturbation theory.

In addition, perturbation theory provides a method for systematically matching

between different renormalization schemes. In particular, in order to establish the

right connection of the lattice scheme to the physical continuum theory, the

evaluation of the conversion factor which turns renormalized quantities defined in a

nonperturbative scheme on the lattice, e.g., the modified regularization-independent

(RI′) scheme [37, 38], to a continuum scheme, e.g., MS, is required; this calculation

can be done only in perturbation theory, since continuum schemes are typically

defined perturbatively.

Perturbative calculations are extremely complex on the lattice. Algebraic expressions

for typical two-loop Feynman diagrams contain millions of terms. Consequently, most
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of the observables under study, despite their great physical importance, have only

been studied partially (e.g. to one loop, to the lowest order in lattice spacing, using

unimproved lattice actions). This constitutes a major source of systematic error, at

a time when simulations are striving at becoming ever more precise. There are a

small number of higher-loop calculations performed on the lattice in the last decades.

Some of them are: the two-loop relation between the bare lattice coupling and the MS

coupling in SU(N) gauge theories [39]; the two-loop calculation of running coupling,

using the Schrödinger functional, in pure SU(2) gauge theory [40], in pure SU(3) gauge

theory [41], and in QCD [42, 43]; the three-loop β function with Wilson fermions

[44], clover fermions [45, 46], and overlap fermions [47]; the two-loop matching of

the lattice bare quark masses to the MS masses with staggered quarks [48]; the two-

loop renormalization functions of local fermion bilinear operators [49, 50], and the

O(a2) corrections to various fermionic matrix elements [51–53]. There has been also

progress in the context of numerical stochastic perturbation theory, e.g. the three-

loop renormalization of fermion bilinear operators [54], and the two-loop calculation of

gradient-flow coupling in finite volume with Schrödinger functional boundary conditions

in pure SU(3) gauge theory [55].

1.4 Thesis overview

The present dissertation focuses on two main directions: the perturbative

renormalization of several quantum local and nonlocal operators, which are related to

hadron structure, and the perturbative study of other fundamental quantities of

QCD, in particular the β-function and Λ-scale. Our calculations have been performed

using improved versions of lattice actions used in state-of-the-art numerical

simulations. The outline of this thesis is as follows.

In Chapter 2 we provide a brief introduction to the main directions of hadron

structure calculations on the lattice, giving emphasis on the topics of nucleon spin

content and parton distributions, which are related to a part of our calculations

presented in Chapters 3 – 6.

In Chapter 3 we examine the effect of nonzero quark masses on the renormalization

of gauge-invariant nonlocal quark bilinear operators, including a finite-length Wilson
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line (called Wilson-line operators). These operators are involved in a novel and very

promising approach for computing parton distribution functions on the lattice. We

present our perturbative calculations of the bare Green’s functions, the renormalization

factors in RI′ and MS schemes, as well as the conversion factors of these operators

between the two renormalization schemes. Our computations have been performed

in dimensional regularization at one-loop level, using massive quarks. The conversion

factors can be used to convert the corresponding lattice nonperturbative results to

the MS scheme. Also, our study is relevant for disentangling the additional operator

mixing which occurs in the presence of nonzero quark masses, both on the lattice and

in dimensional regularization.

In Chapter 4 we present one-loop results for the renormalization of nonlocal quark

bilinear operators, containing a staple-shaped Wilson line, in both continuum and

lattice regularizations. The continuum calculations were performed in dimensional

regularization, and the lattice calculations for the Wilson/clover fermion action and

for a variety of Symanzik-improved gauge actions. We extract the strength of the

one-loop linear and logarithmic divergences (including cusp divergences), which

appear in such nonlocal operators; we identify the mixing pairs which occur among

some of these operators on the lattice, and we calculate the corresponding mixing

coefficients. We also provide the appropriate RI′-like scheme, which disentangles this

mixing nonperturbatively from lattice simulation data, as well as the one-loop

expressions of the conversion factors, which convert the lattice data to the MS

scheme. Our results can be immediately used for improving recent nonperturbative

investigations of transverse momentum-dependent distribution functions on the

lattice. Furthermore, extending our perturbative study to general Wilson-line lattice

operators with an arbitrary number of cusps, we present results for their

renormalization factors, including identification of mixing and determination of the

corresponding mixing coefficients, based on our results for the staple operators.

In Chapter 5 we extend the work in Chapter 3 including a two-loop calculation of

straight Wilson-line operators for massless fermions in dimensional regularization, from

which one can extract the conversion factor between different renormalization schemes,

as well as the anomalous dimension of the operators. The conversion factor up to

two loops may be applied to nonperturbative data on the renormalization functions, to

bring them to the MS-scheme at a better accuracy. Furthermore, knowledge of the two-

loop expression for the anomalous dimension of Wilson-line operators will improve the
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method for extracting linear divergences, and will eliminate systematic uncertainties

related to the truncation of the conversion factor. As the computation is still ongoing

we present our preliminary results.

In Chapter 6 we present the perturbative computation of the difference between the

renormalization factors of flavor singlet (
∑

f ψ̄fΓψf , f : flavor index) and nonsinglet

(ψ̄f1Γψf2 , f1 6= f2) bilinear quark operators (where Γ = 11, γ5, γµ, γ5 γµ, γ5 σµ ν) on the

lattice. The computation is performed to two loops and to lowest order in the lattice

spacing, using Symanzik improved gluons and staggered fermions with twice stout-

smeared links. The stout smearing procedure is also applied to the definition of bilinear

operators. A significant part of this work is the development of a method for treating

some new peculiar divergent integrals stemming from the staggered formulation. Our

results can be combined with precise simulation results for the renormalization factors

of the nonsinglet operators, in order to obtain an estimate of the renormalization factors

for the singlet operators.

Chapter 7 includes some background information for the strong running coupling, the

β-function and Λ-parameter of QCD, as well as a brief description of the background

field method which is applied in our calculations of Chapter 8.

The computation of the three-loop coefficient of the lattice β-function, using

Symanzik improved gluons and SLiNC fermions in an arbitrary representation of the

gauge group SU(Nc), is the main goal of the ongoing project described in Chapter 8.

This computation allows us to evaluate the ratio of energy scales ΛL/ΛMS and the

two-loop relation between the bare coupling constant g0 and the renormalized one in

the MS scheme, gMS . Our results can be combined with extensive simulations and

the scaling properties of gMS , in order to reach a low momentum-regime. A similar

procedure can be applied to make contact with the renormalized coupling in the

“Wilson gradient flow” renormalization scheme, which is being very actively

investigated by a number of groups at present (e.g. QCDSF Collaboration).

Finally, in Chapter 9 we summarize and present our conclusions.

For completeness, we have included an appendix containing notation and conventions

adopted in the main body of the Thesis.

GREGORIS SPANOUDES



Chapter 1 Introduction 10

Most of the results presented here have already been published in the following papers

and conference proceedings:

1. M. Constantinou, M. Hadjiantonis, H. Panagopoulos, G. Spanoudes, “Singlet

versus Nonsinglet Perturbative Renormalization of Fermion Bilinears”, Phys.

Rev. D94 (2016) 114513, arXiv: 1610.06744.

2. H. Panagopoulos, G. Spanoudes, “Singlet vs Nonsinglet Perturbative

Renormalization factors of Staggered Fermion Bilinears”, EPJ Web of

Conferences 175 (Proceedings of Lattice 2017 Conference) (2017) 14004, arXiv:

1709.10447.

3. G. Spanoudes, H. Panagopoulos, “Renormalization of Wilson-line operators in

the presence of nonzero quark masses”, Phys. Rev. D98 (2018) 014509, arXiv:

1805.01164.

4. G. Spanoudes, H. Panagopoulos, “Perturbative investigation of Wilson-line

operators in Parton Physics”, PoS Confinement2018 094 (Conference

proceedings of XIIIth Quark Confinement and the Hadron Spectrum), 2018,

arXiv: 1811.03524.

5. M. Constantinou, H. Panagopoulos, G. Spanoudes, “One-loop renormalization
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Chapter 2

Hadron structure on the lattice

2.1 Introduction

Among the frontiers of hadronic Physics is the investigation of the structure of hadrons

from first principles. Lattice QCD is an ideal ab initio formulation to study hadron

structure since benchmark quantities of QCD, such as hadron form factors, can be

determined directly from the evaluation of hadron matrix elements without ambiguities

associated to fits. The computation of these key observables within the lattice QCD

formulation is a fundamental element for obtaining reliable predictions on quantities

which are not easily accessible in experiments, and also on observables which explore

Physics beyond the Standard Model.

Hadron structure calculations are typically based on studying two-point and three-point

correlation functions defined as:

G2−pt(−→p ′, tf ) =
∑
−→xf

e−i
−→xf ·−→p ′Γ0

βα〈Jα(−→xf , tf )Jβ(
−→
0 , 0)〉, (2.1)

G3−pt
O (Γµ;−→p ′, tf ;−→q , t) =

∑
−→xf ,−→x

e−i
−→xf ·−→p ′ei

−→x ·−→q Γµβα〈Jα(−→xf , tf )O(−→x , t)Jβ(
−→
0 , 0)〉, (2.2)

where Γk ≡ Γ0γ5γk (k = 1, 2, 3), Γ0 ≡ (11 + γ0)/4, O(−→x , t) is a local fermion bilinear

operator, Jα(−→x , t) is a hadron interpolating operator, (
−→
0 , 0), (−→x , t), (−→xf , tf ) are the

source, insertion and sink space-time coordinates, respectively, and −→p , −→q = −→p ′−−→p ,
−→p ′ are the momentum of the initial hadron state, transfer momentum, and momentum

11
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of the final hadron state, respectively. Physical signals are extracted from appropriate

dimensionless ratios of G2−pt and G3−pt
O , such as:

RO(Γµ;−→p ′, tf ;−→p , t) =
G3−pt
O (Γµ;−→p ′, tf ;−→q , t)
G2−pt(−→p ′, tf )

×√
G2−pt(−→p ′, tf ) G2−pt(−→p ′, t) G2−pt(−→p , tf − t)
G2−pt(−→p , tf ) G2−pt(−→p , t) G2−pt(−→p ′, tf − t)

, (2.3)

by searching for a plateau region in the t-dependence. The above ratio is considered

optimized since it does not contain potentially noisy two-point functions at large

separations and because correlations between its different factors reduce the

statistical noise. From three-point correlation functions one extracts matrix elements

of fermion bilinear operators, which can be parametrized in terms of generalized form

factors, e.g.,

〈N(p′, s′)|ψ(x)γµγ5ψ(x)|N(p, s)〉 ∼ uN(p′, s′)[GA(q2)γµγ5 +GP (q2)
qµγ5

2mN

]uN(p, s).

(2.4)

A number of observables probing hadron structure can be derived by the calculation of

hadron form factors, such as axial charge, quark momentum fraction, Dirac and Pauli

radii, nucleon spin and parton distributions. In this work, our calculations focus on

nucleon spin content and parton distributions.

2.2 Nucleon spin

An important open issue in hadronic Physics is the nucleon spin structure; the question

of how the nucleon spin is distributed amongst its constituent particles is still unsolved.

The original interpretation of this puzzle was that valence quarks carry all of the nucleon

spin; since the proton is a stable particle, it exists in the lowest possible energy level.

This means that its quark wave function is in the s-orbital ground state, which is

spherically symmetric with no spatial contribution to its angular momentum. Thus,

the proton spin is expected to be equal to the sum of the constituent quark spin. As the

magnitude of proton spin is 1/2, it was assumed that two of the valence quarks have

their spins parallel to the proton spin, while the third one is polarized in the opposite

direction. However, in 1987 DIS experiments of European Muon Collaboration at
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CERN showed that only a small amount of the proton spin was actually carried by the

valence quarks [56]. The problem of where the missing spin lies was called “the proton

spin crisis”. More recent experiments have tried to resolve this problem; we now know

that a part of the nucleon spin is carried by polarized gluons and sea quarks. Also, the

orbital angular momentum of both quarks and gluons contributes to the total nucleon

spin. These facts are expressed by the sum rule [57, 58]:

1

2
=
∑
q

(Lq +
1

2
∆Σq) + Jg, (2.5)

where Lq is the total quark orbital angular momentum, ∆Σq/2 is the total quark spin

and Jg is the total gluon angular momentum (spin + orbital angular momentum).

Therefore, it is understood that the complete picture of the spin content of a nucleon

requires to take into account its nonperturbative structure. Lattice calculations can

strongly contribute to this direction of research.

The individual quark contributions (valence and see quarks) to the nucleon spin can

be determined by the evaluation of nucleon matrix elements of local fermion bilinear

operators; in particular, the total sum of the quark spin equals to the axial charge

gqA: Σq = gqA. This quantity is defined by the forward matrix element of the axial

current. There are two types of diagrams entering the evaluation of nucleon matrix

elements, shown in Fig. 2.1: connected and disconnected1 diagrams of three-point

correlation functions of local fermion bilinear operators. The axial charge is defined

q = p p

(x , t)

(x i , ti)(x f , tf )

O Γ

q = p p

(x , t)

(x i , ti)(x f , tf )

O Γ

Figure 2.1: Connected (left) and disconnected (right) contributions to the
nucleon three-point function.

as gqA = Gq
A(0), where Gq

A(q2) is the axial form factor given in Eq. (2.4). While

matrix elements of connected diagrams can be evaluated nonperturbatively with quite

good precision, the disconnected ones are notoriously difficult to study via numerical

1It is called disconnected diagram because there is a fermion loop, which is not directly connected
to the external points; however, as the diagram involves full propagators, it includes also virtual gluons
emmited and absorbed from the fermion lines. In this sense, all elements of this diagram are connected
with each other.
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simulations; in principle, disconnected diagrams require the nonperturbative evaluation

of the full fermion propagator, which is a very noisy and expensive to compute task.

During the last few years various stochastic noise reduction techniques (see e.g., [59]

and references therein) have been employed for the computation of the disconnected

loop and first results already appear in the literature [60–64]. Also, an alternative

method for the calculation of the matrix elements of local fermion bilinear operators,

which avoids the direct evaluation of the noisy disconnected diagram, is the Feynman-

Hellmann approach [65, 66].

In order to establish connection to experiments, proper renormalization of the matrix

elements is essential. For the renormalization of disconnected contributions one should

take into account the flavor singlet operators. For example, the knowledge of the axial

singlet renormalization factor is required to compute the light quarks’ contribution to

the nucleon spin [67]. Given that the renormalization factors of the nonsinglet operators

can be calculated nonperturbatively with quite good precision, we can combine the

perturbative result of the difference between the renormalization factors of singlet and

nonsinglet operators with the nonperturbative nonsinglet estimates of Z-factors, in

order to renormalize the disconnected contributions. The computation of this difference

at two-loop level using improved staggered actions is presented in Chapter 6.

2.2.1 Renormalization of local operators

Matrix elements of local operators appear often in quantum field theory calculations.

A plethora of hadronic properties, such as hadron masses and decay constants, can be

extracted by matrix elements and correlation functions of composite quantum field

operators. A whole variety of such operators, made out of quark fields, has been

considered and studied in numerical simulations on the lattice, including local

bilinears ψ̄(x)Γψ(x), extended bilinears ψ̄(x)ΓDµDν . . . ψ(x), and four-fermi operators

(ψ̄Γ1ψ)(ψ̄Γ2ψ), where Γ (and Γ1,Γ2) = 11, γ5, γµ, γ5 γµ, σµ ν (σµν = [γµ, γν ]/2i). In

particular, fermion bilinear operators are related to conserved fermion currents

appearing in calculations of mass spectrum, form factors and structure functions of

hadrons. Extended bilinear operators, including covariant derivatives, are related to

the moments of unpolarized, helicity and transversity parton distributions. An

example of such extended operators is the energy-momentum tensor, e.g.,

ψ̄γ{µDν}(τ
a/2) ψ (curly brackets denote symmetrization and subtraction of the trace;
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τa are flavor matrices), whose matrix elements are connected with the anomalous

magnetic moment of the muon. Four-fermi operators are related to the transition

amplitudes between hadronic states. A proper renormalization of these operators is

essential for the extraction of physical results from the dimensionless quantities

measured in numerical simulations.

An issue that arises in studying renormalization of local operators is whether the

latter is multiplicative or if mixing occurs. Operators with the same quantum

numbers and the same or lower mass dimension, can mix due to quantum corrections.

In general, action symmetries (e.g. C, P, T symmetries) can restrict the operator

mixing: operators which have a different behavior under symmetry transformations

cannot mix. Admissible candidates for mixing are operators which either are gauge

invariant, or BRS-variations, or vanishing by the equation of motion. On the lattice,

where some symmetries (e.g. rotational invariance) possessed by continuum theories

are restored only asymptotically, mixing is far more pronounced than in continuum

regularization schemes. For instance, operator mixing is exacerbated when using

lattice actions with inexact chiral symmetry; in this case operators with different

chiralities can mix. In the case of fermion bilinear operators of dimension 3, there is

no mixing (except flavor singlet scalar operator
∑

f ψ̄f11ψf , f : flavor content), and,

thus, they can be multiplicatively renormalized. The flavor singlet scalar operator

mixes with the identity at the quantum level since it has a nonzero perturbative

vacuum expectation value; thus it receives also an additive renormalization which

subtracts its vacuum expectation value. In the case of higher dimensional fermion

operators, such as bilinear operators with covariant derivatives and four-fermi

operators, a complicated mixing pattern is induced. Therefore, the perturbative

computation of the mixing matrices for the renormalization of such operators is

essential, in order to disentangle as much as possible the corresponding physical

signals from Monte Carlo measurements.

2.3 Parton distributions on the lattice

Parton distributions are an essential tool for studying the rich internal structure of

hadrons. They encode the distribution of a hadron’s momentum and spin among its

constituent parts (called partons), in a reference frame where the hadron has infinite
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momentum. In such a frame the momentum of the parton is almost collinear with the

hadron momentum, so that the hadron can be seen as a stream of free partons, each

carrying a fraction of the longitudinal momentum. The parton model was originally

introduced by Richard Feynman in 1969 as a way to analyze high-energy hadron

collisions [68, 69]. After the validation of quark model and the consolidation of the

confining theory of Quantum Chromodynamics (QCD), partons were matched to the

fundamental particles: quarks, antiquarks and gluons. Since then parton distributions

are widely employed in collider experiments for interpreting the showers of radiation

produced from QCD processes.

There are three categories of parton distributions based on their dependence on

variables defined in the longitudinal and transverse directions with respect to the

hadron momentum:

1. Parton distribution functions (PDFs) are single-variable functions which

represent the number density of partons carrying a given fraction x of the

longitudinal hadron momentum, while the hadron is moving with a large

(infinite-limit) momentum. For example, the quark PDFs are defined as:

q
Γ
(x) =

∫ ∞
−∞

dz−

4π
exp(−ixP+z−)

〈
N
∣∣∣ψ(z−) Γ W (z−, 0)ψ(0)

∣∣∣N〉, (2.6)

where W (z−, 0) is the Wilson line, which joins the light-like separated quark and

antiquark fields together, given by:

W (z−, 0) = P
{

exp
[
− ig

∫ z−

0

dη−A+(η−)
]}
, (2.7)

z± ≡ (z0 ± zi)/
√

2 and P± ≡ (P 0 ± P i)/
√

2 are the light-cone space and

momentum coordinates of a hadron moving to the ith direction, respectively, x

is the fraction of the hadron momentum carried by each constituent parton,∣∣∣N〉 is a hadron state, and Γ = γ+, γ5γ
+, γ+γ⊥ (where γ+ ≡ (γ0 + γi)/

√
2 and

γ⊥ · γ+ = 0) corresponds to the unpolarized, helicity and transversity types of

PDFs respectively.

2. Generalized parton distributions (GPDs) [58, 70–73] are a generalization of

PDFs, which involve off-diagonal matrix elements of parton fields at a light-like

separation. They depend on two additional kinematic variables, besides the
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fraction x: t ≡ ∆2 and ξ ≡ −2∆+/P , where P ≡ (P + P ′)/2, ∆ ≡ P ′ − P , and

P (P ′) is the incoming (outgoing) hadron momentum. While PDFs provide

information on the one-dimensional structure of a hadron (in the longitudinal

direction with respect to the hadron momentum), GPDs contribute to the

whole three-dimensional hadron picture. For example, the definition of the

quark GPDs is given below:

F q
Γ(x, ξ, t) =

∫ ∞
−∞

dz−

4π
exp(ixP

+
z−)
〈
N ′
∣∣∣ψ(− z−

2

)
ΓW

(
− z

−

2
,
z−

2

)
ψ
(z−

2

)∣∣∣N〉∣∣∣ z+=0,

zT=0

.

(2.8)

3. Transverse-momentum dependent parton distribution functions (TMDs) [74–77]

are also a generalization of PDFs, which involve the transverse momentum kT of

the parton to the hadron’s direction of movement. They complement the GPDs

picture of the three-dimensional hadron structure. For example, the quark TMDs

are defined as:

Φq
Γ(x, kT ) =

∫ ∞
−∞

d2zT

(2π)2

∫ ∞
−∞

dz−

4π
exp(ixP+z− − ikT · zT )·〈

N
∣∣∣ψ(0) Γ W [0,±∞, (z−, zT )]ψ(z−, zT )

∣∣∣N〉∣∣∣
z+=0

, (2.9)

where zT is the transverse space coordinates to the z±. The path of the Wilson

line W [0,±∞, (z−, zT )], which connects the quark and antiquark fields, can be a

product of two subsequent Wilson lines from 0 to infinity and back from infinity to

(z−, zT ). Another way of parametrizing this Wilson line is to take a staple-shaped

link with its vertical segments having infinite length.

Important information is still missing for all three types of distributions: The most well-

studied are PDFs, while GPDs and TMDs are only very limitedly studied due to the

difficulty in extracting them experimentally and theoretically. All these functions are

crucial for the complete understanding of the three-dimensional structure of hadrons.

Parton distributions have the advantage of being process-independent; this means

that measurements from different processes can give information on these quantities.

They have also the advantage of being accessible both experimentally and

theoretically. Ever since the discovery of quarks in the nucleon, tremendous

experimental effort and resources have been devoted to the measurement of the

detailed distribution of quarks and gluons in the hadrons. According to QCD
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factorization theorems [78], the cross section for a hard scattering process can be

factorized as convolution of a partonic cross section, which is analytically calculable

in perturbative QCD, and a parton distribution: PDFs are accessed in inclusive or

semi-inclusive processes, such as deep inelastic scattering (DIS) and semi-inclusive

DIS (SIDIS)[79]; GPDs are reached in exclusive scattering processes, such as deeply

virtual Compton scattering (DVCS) [80], and TMDs in hard processes in SIDIS

[75, 76]. Global analyses of cross section data [81–90] from high-energy experiments

have provided precise results for parton distributions for certain cases of parton

flavors, spin structures and kinematic regions. However, a complete picture of parton

distributions is yet to be achieved due to several limitations in the experimental

programs or in the phenomenological models, e.g., the very small x-region is difficult

to access from experiments [91–93] and models cannot capture the full QCD

dynamics. Theoretical investigations of parton distributions from first principles are

possible candidates to overcome these limitations and, thus, they are expected to

provide complementary information in this area of research. The development of a

theoretical systematic approach for calculating parton distributions leads to a faster

and less expensive way of improving the precision of such computations than the

construction of more advanced and powerful colliders. Lattice QCD simulations are

the only current tool for such ab-initio investigations.

Because of the highly nonlinear nature of the parton dynamics, parton distributions

can be fully evaluated only with nonperturbative methods, such as lattice simulations.

However, they are light-cone correlation functions, and thus their time dependence

does not allow the direct computation of parton distributions on a Euclidean lattice.

This led to a long history of investigations of alternative quantities related to the

distribution functions, which are accessible in a Euclidean spacetime. Such quantities

are the Mellin moments of parton distributions; using the operator product expansion

(OPE), the distribution functions can be parametrized in terms of local operators with

covariant derivatives which give their moments. First moments of PDFs have been

computed accurately in Refs. [94–97], via calculations of matrix elements of local

operators in lattice simulations. These moments are directly related to measurable

quantities, for example, the axial charge and quark momentum fraction. However,

a precise calculation of higher moments is extremely difficult to obtain via lattice

simulations: Signal-to-noise ratio decreases with the addition of covariant derivatives

in the operators and an unavoidable power-law mixing under renormalization appears
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for higher moments. Hence, the reconstruction of the full parton distributions from

their moments is practically unfeasible.

2.3.1 Quasi-PDFs approach

Novel approaches for an ab initio evaluation of distribution functions on the lattice

have been employed in recent years. Such an approach is “quasi-PDFs”, proposed by

X. Ji [98]. This method is summarized in three steps:

1. First, instead of computing light-cone correlation functions, one projects outside

of the light cone and considers equal-time correlation functions, which are called

quasi-distribution functions. For example, the definition of parton

quasi-distribution functions (quasi-PDFs) is:

q̃
Γ
(x, µ, Pµ) =

∫ ∞
−∞

dz

4π
e−ixPµz

〈
N
∣∣∣ψ(z) Γ W (z, 0)ψ(0)

∣∣∣N〉, (2.10)

where

W (z, 0) = P
{

exp
[
− ig

∫ z

0

dζAµ(ζ)
]}

(2.11)

and Γ = γµ, γ5γµ, γµγ⊥. These functions are purely spatial and thus they are

accessible on the lattice. We note that the Wilson line involved in quasi-PDFs is

a straight line in a spatial direction µ.

2. The second step is the renormalization of quasi-distribution functions. Since

these functions are calculable on the lattice, one can renormalize them

nonperturbatively in the lattice regularization, using a

Regularization-Independed (RI′)-like scheme [99, 100]. The lattice version of the

straight Wilson line is given by W (z, 0) =
( n∓1∏
`=0

U±µ(`aµ̂)
)†
, n ≡ z/a, where

upper (lower) signs correspond to n > 0 (n < 0).

3. The last step is the matching of the renormalized quasi distributions to the

corresponding physical light-cone distributions, using the Large Momentum

Effective Field Theory (LaMET) [101]. The generic matching formula forGREGORIS SPANOUDES
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quasi-PDFs is:

q (x, µ) = q̃(x, µ, Pµ)− αs(µ)

2π
q̃(x, µ, Pµ) δZ(1)

(
µ

Pµ

)
−αs(µ)

2π

∫ ∞
−∞

Z(1)

(
ξ,
µ

Pµ

)
q̃

(
x

ξ
, µ, Pµ

)
dξ

|ξ|
+O(α2

s), (2.12)

where αs(µ) is the strong coupling constant at the scale µ and Z(1) (δZ(1)) is

the one-loop difference between vertex (wave function) corrections for the finite

and infinite momentum cases. The matching can also be performed using an

intermediate step of converting the RI′-renormalized quasi distribution to the

MS scheme (commonly used in phenomenology) and after that matching to the

physical distribution.

The application of Ji’s approach on the lattice is currently under investigation by many

research groups and so far the outcomes are very promising for the correct estimate of

a physical distribution function. Exploratory lattice simulations [102–111], as well as

perturbative one-loop calculations [112–114] of quasi-PDFs for the unpolarized, helicity,

and transversity cases, have been performed. Furthermore, perturbative calculations

of the matching between quasi-PDFs and physical PDFs have been implemented in

Refs.[101, 115–120]; a discussion about subtleties on the continuation of PDFs to the

Euclidean region can be found in Refs.[112, 121–123]. The quasi-PDF framework is

also applied to TMDs [124–130], GPDs [131, 132], hadronic light-cone distribution

amplitudes (DA) [133–137], and proton spin structure [138]. An overview of recent

progress in the study of quasi-PDFs can be found in Ref. [139]. The increasing progress

in studying these functions on the lattice has led to more and more reliable results.

However, many theoretical and technical challenges are still needed to be overcomed.

2.3.2 Renormalization of nonlocal Wilson-line operators

An important issue, which needs to be addressed in order to obtain meaningful results

from lattice investigations, is the renormalization of quasi-distribution functions in a

fully nonperturbative manner. This can be obtained by the renormalization of the

corresponding nonlocal operator OzΓ, which is involved in the definition of Eq. (2.10):

OzΓ = ψ̄(z)ΓP

{
exp

(
ig

∫ z

0

dζAµ(ζ)

)}
ψ(0), (2.13)
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where Γ = 11, γ5, γµ, γν , γ5 γµ, γ5 γν , γµ γν , γν γρ, µ 6= ν 6= ρ 6= µ, and z is the Wilson

line’s length; the presence of a Wilson line ensures the gauge invariance of the

nonlocal operator. While local operators have been used extensively in perturbative

and nonperturbative calculations, nonlocal operators were limitedly studied. In

particular, calculations using nonlocal operators with Wilson lines in a variety of

shapes appear in the literature within continuum perturbation theory.

Starting from the seminal work of Mandelstam [140], Polyakov [141],

Makeenko-Migdal [142], there have been investigations of the renormalization of

Wilson loops for both smooth [143] and nonsmooth [144] contours. Due to the

presence of the Wilson line, power-law divergences arise for cutoff regularized

theories, such as lattice QCD. These divergences can be eliminated to all orders in

perturbation theory, by an exponential renormalization factor that depends on the

length L of the contour and the ultraviolet cutoff scale a: Z ∼ exp(−c L/a), where c

is a dimensionless quantity. Also, contours containing singular points [144], such as

cusps and self-intersections, introduce additional multiplicative renormalization

factors. In the case of dimensional regularization and in the absence of cusps and

self-intersections, it has been proven that all divergences in Wilson loops can be

reabsorbed into a renormalization of the coupling constant [143]. Wilson-line

operators have been further studied in continuum theory with a number of

approaches, including an auxiliary-field formulation [145, 146], and the Mandelstam

formulation [147]. Particular studies of Wilson-line operators with cusps in one and

two loops, can be found in Refs. [144, 148, 149]. There is also related work, in the

context of the heavy quark effective theory (HQET)2 [151–154], including

investigations in three loops [155].

In recent years, several aspects of the properties of nonlocal Wilson-line operators

have been addressed, including the feasibility of a calculation from lattice QCD

[102, 105, 107, 110], their renormalizability [113, 156–161] and appropriate

renormalization prescriptions [99, 114, 162]. The renormalization has proven to be a

challenging and delicate process in which a number of new features emerge, as

compared to the case of local operators: power-law divergences (as in continuum),

mixing between operators with different Dirac structures and the matrix elements

contain an imaginary part. While information on physical quantities is obtained from

hadron matrix elements, calculated nonperturbatively in numerical simulations of

2The interrelation between Wilson-line operators and HQET currents is demonstrated in Ref. [150].
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lattice QCD, perturbation theory played a crucial role in the development of a

complete renormalization prescription. Perturbative calculations can reveal possible

mixing with operators of equal or lower dimension, which must be taken into account

in the nonperturbative renormalization prescriptions. In this case, the nonlocality of

Wilson-line operators combined with a chiral-symmetry breaking lattice action lead

to the appearance of finite mixing. Also, nonperturbative evaluations of the

renormalization factors cannot be obtained directly in the MS scheme, which is

typically used in phenomenology, since the definition of MS is perturbative in nature.

Most naturally, one calculates them in a RI′-like scheme, and then introduces the

corresponding conversion factors between RI′ and MS schemes, which rely necessarily

on perturbation theory.

The first perturbative lattice calculation of Wilson-line operators was made in Ref.

[114], to one loop for massless quarks, using the Wilson/clover fermion action and a

variety of Symanzik-improved gluon actions. It was shown that besides the presence

of logarithmic and linear divergences, similar to those expected from the continuum,

finite mixing is also present among operators of twist-2 and twist-3, i.e. there are 4

mixing pairs between operators with the following Dirac matrices: (1, γ1),

(γ5γ2, γ3γ4), (γ5γ3, γ4γ2), and (γ5γ4, γ2γ3), where by convention 1 is the direction of

the straight Wilson line and 2, 3, and 4 are directions perpendicular to it. The

complete mixing pattern led to the proposal of a nonperturbative RI-type scheme

[99, 163], also employed in Ref. [100]. In this scheme, the elimination of both linear

and logarithmic divergences is ensured by the same renormalization condition. This

development of the renormalization of nonlocal operators has been a crucial aspect in

state-of-the-art numerical simulations, e.g. the work of Refs. [164, 165]. There are

also other attempts for renormalizing the straight-line operators or directly the

quasiPDFs nonperturbatively, using alternative techniques, such as the static quark

potential [115, 166, 167], the gradient flow [168–170] and the auxiliary-field formalism

[118, 146, 158, 159, 171]. This perturbative calculation was the starting point and the

inspiration for further studies of Wilson-line operators leading to a number of

extensions with the goal of improving current nonperturbative investigations. Such

extensions are:

• The one-loop calculation of Green’s functions at a nonzero fermion mass. The

inclusion of nonzero quark masses can cause perceptible changes in the

renormalization of heavy-quark quasi-PDFs, as simulations cannot be
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performed exactly at zero renormalized mass; these changes includes the

operator-mixing pattern. The calculation of the conversion factors between a

massive RI′ and MS schemes, appropriate for such nonlocal operators, has been

studied by our group and it is presented in Chapter 3.

• The one-loop study of the renormalization for staple-shaped operators both in

continuum and lattice regularizations. After the work of Ref. [114] on straight

Wilson-line operators, in which operator mixing was revealed, the question of

whether nonlocal operators with staple-shaped Wilson lines renormalize

multiplicatively was raised. These operators are involved in a Euclidean

formulation of TMDs, which are currently under investigation for the nucleon

and pion in lattice QCD [125, 126, 128]. Our work on staple operators is

presented in Chapter 4.

• The higher-loop calculation of the conversion factors between RI′ and MS

schemes. Such calculations can eliminate systematic uncertainties related to the

truncation of the conversion factor applied to nonperturbative data. The

two-loop calculation for straight Wilson-line operators has been performed by

our group and it is described in Chapter 5.

• The calculation of the one-loop lattice artifacts to all orders in the lattice spacing.

Such a procedure has been successfully employed to local operators [67-69]. The

subtraction of the unwanted contributions of the finite lattice spacing from the

nonperturbative estimates is essential in order to reduce large cut-off effects in

the renormalized Green’s functions of the operators and to guarantee a rapid

convergence to the continuum limit. A preliminary work on the lattice artifacts

of straight Wilson-line operators has been performed by M.Constantinou and H.

Panagopoulos. This project is beyond the scope of the current thesis.

2.3.3 Other approaches

For completeness, we note that there are also alternative approaches for extracting

physical PDFs on the lattice, which are currently under investigation, e.g., Ioffe-time

distributions (called pseudo-PDFs) [172–175], in which the same Wilson-line operators

are involved as in the case of quasi-PDFs, Compton amplitudes utilizing the operator

product expansion [176], and “lattice cross sections” [115, 177].
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Perturbative renormalization of

nonlocal operators related to

heavy-quark quasi-PDFs

3.1 Introduction

Parton quasi-distribution functions (quasi-PDFs) are nowadays widely employed in

the nonperturbative study of hadron structure in lattice QCD. So far, they have been

studied from many points of view. Several aspects are being investigated both

perturbatively and nonperturbatively, using various techniques (see a review in Ref.

[178]). An important issue, which needs to be addressed in order to obtain

meaningful results from lattice investigations, is the renormalization of quasi-PDFs in

a fully nonperturbative manner. Given that quasi-PDFs are directly related to the

matrix elements of nonlocal Wilson-line operators, the renormalization of quasi-PDFs

can be obtained by the renormalization of the corresponding operator. To date, all

lattice studies of the renormalization of Wilson-line operators have only considered

massless fermions, expecting that the presence of quark masses can cause only

imperceptible changes; this is indeed a reasonable assumption for light quarks.

However, for heavy quarks this statement does not hold. In addition, simulations

cannot be performed exactly at zero renormalized mass. One could, of course, adopt

a zero-mass renormalization scheme even for heavy quarks, but such a scheme is less

direct and entails additional complications. Thus, it would be useful to investigate

24
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the significance of finite quark masses on the renormalization of Wilson-line

operators. This is the goal of the present work.

In this work, we calculate the conversion factors from RI′ to the MS scheme, in

dimensional regularization (DR) at one-loop level for massive quarks. The conversion

factors can be combined with the regularization independent (RI′)-renormalization

factors of the operators, computed in lattice simulations, in order to calculate the

nonperturbative renormalization of these operators in MS. Nonperturbative

evaluations of the renormalization factors cannot be obtained directly in the MS

scheme, since the definition of MS is perturbative in nature; most naturally, one

calculates them in a RI′-like scheme, and then introduces the corresponding

conversion factors between RI′ and the MS scheme, which rely necessarily on

perturbation theory. Given that the conversion between the two renormalization

schemes does not depend on regularization, it is more convenient to evaluate it in

DR. Thus, the perturbative calculation of conversion factors is an essential ingredient

for a complete study of quasi-PDFs. This work is a continuation of Ref. [114], in

which, among other results, one-loop conversion factors of Wilson-line operators are

presented for the case of massless quarks.

In studying composite operators, one issue which must be carefully addressed is that of

possible mixing with other similar operators. Many possibilities are potentially present

for the nonlocal operators which we study:

(A) Operators involving alternative paths for the Wilson line joining the quark pair

will not mix among themselves, as demonstrated in Ref. [146] (and also in Refs.

[143, 144] for the case of closed Wilson loops). This property is related to

translational invariance and is similar to the lack of mixing between a local

composite operator O(x) with O(y). Given that a discrete version of

translational invariance is preserved on the lattice, nonlocal operators involving

different paths should not mix also on the lattice.

(B) Operators involving only gluons will also not mix. This can be seen, e.g., via the

auxiliary field approach (e.g., Ref. [146]); as a specific case, the operator of Eq.

(3.1) cannot mix with an operator containing the gluon field strength tensor in

lieu of the quark fields (joined by a Wilson line in the adjoint representation),

since this operator is higher dimensional.
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(C) There may also be mixing among operators with different flavor content in a RI′

scheme, depending on the scheme’s precise definition. However, the mixing is

expected to be at most finite and thus not present in the MS scheme; by

comparing to the massless case, in which exact flavor symmetry allows no such

mixing, the difference between the massive and massless case will bear no

superficial divergences, since the latter are UV regulated by the masses. The

auxiliary field approach, by involving only composite operators in the

(anti-)fundamental representation of the flavor group, shows that no flavor

mixing needs to be introduced.

Even in the absence of quark masses, bare Green’s functions of Wilson-line operators

may contain finite, regulator-dependent contributions which cannot be removed by a

simple multiplicative renormalization; as a consequence, an appropriate (i.e.,

regularization-independent) choice of renormalization prescription for RI’ necessitates

the introduction of mixing matrices for certain pairs of operators [114], both in the

continuum and on the lattice. The results of the present work demonstrate that the

presence of quark masses affects the observed operator-mixing pairs, due to the

chiral-symmetry breaking of mass terms in the fermion action. Compared to the

massless case on the lattice [114], the mixing pairs remain the same for operators with

equal masses of external quark fields, i.e., (11, γ1), (γ5γ2, γ3γ4), (γ5γ3, γ4γ2), and

(γ5γ4, γ2γ3), where by convention 1 is the direction of the straight Wilson line and 2,

3, and 4 are directions perpendicular to it. However, for operators with different

masses of external quark fields, flavor-symmetry breaking leads to additional mixing

pairs: (γ5, γ5γ1), (γ2, γ1γ2), (γ3, γ1γ3), and (γ4, γ1γ4). As a consequence, the

conversion factors are generally nondiagonal 2 × 2 matrices. This is relevant for

disentangling the observed operator mixing on the lattice. Also, comparing the

massive and the massless cases, the effect of finite mass on the renormalization of

Wilson-line operators becomes significant for strange quarks, as well as for heavier

quarks. These are features of massive quasi-PDFs, which must be taken into account

in their future nonperturbative study.

The outline of this chapter is as follows. In Sec. 3.2 we provide the theoretical setup

related to the definition of the operators which we study, along with the necessary

prescription of the renormalization schemes. Sec. 3.3 contains our results for the bare

Green’s functions in DR, the renormalization factors, as well as the conversion factors
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of these operators between the renormalization schemes. Also, a discussion on technical

aspects, such as the methods that we used to calculate the momentum-loop integrals,

as well as the limits of vanishing regulator and/or masses, is provided in this section. In

Sec. 3.4, we present several graphs of the conversion factor matrix elements for certain

values of free parameters. Finally, in Sec. 3.5, we summarize and conclude.

We have also included an appendix; a list of Feynman parameter integrals, which

appear in the expressions of our results, is relegated to Appendix 3.A.

3.2 Theoretical Setup

3.2.1 Definition of Wilson-line operators

The Wilson-line operators are defined by a quark and an antiquark field in two different

positions, a product of Dirac gamma matrices and a path-ordered exponential of the

gauge field (called Wilson line), which joins the fermion fields together, in order to

ensure gauge invariance. For simplicity, we choose the Wilson line to be a straight

path of length z in the µ direction1; thus, the operators have the form:

OΓ = ψ̄(x)ΓP

{
exp

(
ig

∫ z

0

dζAµ(x+ ζµ̂)

)}
ψ(x+ zµ̂), (3.1)

where Γ = 11, γ5, γµ, γν , γ5 γµ, γ5 γν , γµ γν , γν γρ, µ 6= ν 6= ρ 6= µ, and z is the length

of the Wilson line; γ5 = γ1γ2γ3γ4 . The quark and antiquark fields may have different

flavors: ψf and ψ̄f ′ ; flavor indices will be implicit in what follows. Operators with

Γ = (γµ or γν), (γ5γµ or γ5γν), (γµγν or γνγρ) correspond to the three types of PDFs:

unpolarized, helicity, and transversity, respectively.

3.2.2 Definition of renormalization schemes

Taking into account the presence of nonzero fermion masses in our calculations, we

adopt mass-dependent prescriptions for the renormalization of Wilson-line operators.

1For the sake of definiteness, we will often choose µ = 1 in the sequel.
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We define the renormalization factors which relate the bare OΓ with the renormalized

operators ORΓ via2

ORΓ = Z−1
Γ OΓ. (3.2)

[In the presence of operator mixing, this relationship is appropriately generalized; see

Eq. (3.8)]. The corresponding renormalized one-particle irreducible (1-PI) amputated

Green’s functions of Wilson-line operators ΛR
Γ = 〈ψRORΓ ψ̄R〉amp are given by

ΛR
Γ = Z

1/2
ψf
Z

1/2
ψf ′

Z−1
Γ ΛΓ, (3.3)

where ΛΓ = 〈ψOΓ ψ̄〉amp are the bare amputated Green’s functions of the operators

and Zψf is the renormalization factor of the fermion field with flavor f , defined by

ψRf = Z
−1/2
ψf

ψf [ψf (ψ
R
f ) is the bare (renormalized) fermion field]. In the massive case,

renormalization factors of the fermion and antifermion fields appearing in bilinear

operators of different flavor content may differ among themselves, as the fields have

generally different masses.

3.2.2.1 Renormalization conditions for fermion fields and masses

At this point, we provide the conditions for the mass-dependent renormalization of

fermion fields, as well as the multiplicative renormalization of fermion masses: mR =

Z−1
m mB [mB (mR) are the bare (renormalized) masses for each flavor]; the latter is not

involved in our calculations, but we include it for completeness.

In MS, renormalization factors Zψ of the fermion field and Zm of the fermion mass

must contain, beyond tree level, only negative powers of ε (the regulator in DR in D

dimensions, D ≡ 4−2ε); their values are fixed by the requirement that the renormalized

fermion self-energy be a finite function of the renormalized parameters mMS and gMS

(g = µεZgg
MS; µ is a dimensionful scale):

〈ψMSψ̄MS〉 = lim
ε→0

(
Z−1
ψ 〈ψψ̄〉

∣∣∣∣∣ g=µεZggMS

mB=ZmmMS

)
. (3.4)

2All renormalization factors, generically labeled Z, depend on the regularization X (X = DR, LR,
etc.) and on the renormalization scheme Y (Y = MS, RI′, etc.) and should thus properly be denoted
as ZX,Y , unless this is clear from the context.
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In RI′, convenient conditions for the fermion field of a given flavor and the corresponding

mass are

ZX,RI′

ψ tr
(
− i/q〈ψψ̄〉−1

)∣∣∣
qν =q̄ν

= 4Nc q̄
2, (3.5)

ZX,RI′

ψ tr
(

11〈ψψ̄〉−1
)∣∣∣

qν =q̄ν
= 4Nc m

RI′ = 4Nc (ZX,RI′

m )
−1
mB, (3.6)

where q̄ν is the RI′ renormalization scale 4-vector, mRI′ is the RI′-renormalized fermion

mass, Nc is the number of colors, and the symbol X can be any regularization, such as

DR or lattice. These conditions are appropriate for lattice regularizations which do not

break chiral symmetry, so the Lagrangian mass m0 coincides with the bare mass mB,

e.g., staggered/overlap/domain wall fermions. For regularizations which break chiral

symmetry, such as Wilson/clover fermions, a critical mass mc is induced; one must first

find the value of mc by a calibration in which one requires that the renormalized mass

for a “benchmark” meson attains a desired value, e.g., zero pion mass, and then set

mB = m0 −mc.

3.2.2.2 Renormalization conditions for Wilson-line operators

As is standard practice, we will derive the factors ZΓ by imposing appropriate

normalization conditions on the quark-antiquark Green’s functions of OΓ.

In the spirit of MS, ZDR,MS
Γ contains, beyond tree level, only negative powers of ε. Here,

we note that the leading poles in n-loop diagrams of bare Green’s functions, O(1/εn)

(n ∈ Z
+), are multiples of the corresponding tree-level values and thus do not lead

to any mixing. Subleading poles will not lead to divergent mixing coefficients, as is

implicit in the renormalizability proofs of Refs. [143, 144, 146]. So, in the MS scheme,

we can use the standard definitions of renormalization factors, as in Eq. (3.2).

In RI′, things are more complicated. There is, a priori, wide flexibility in defining

RI′-like normalization conditions for Green’s functions. Given that no mixing is

encountered in MS renormalization and given that any other scheme can only differ

from MS by finite factors, one might a priori expect to be able to adopt a deceptively

simple prescription, in which RI′-renormalized operators are simply multiples of their

bare counterparts, satisfying a standard normalization condition:

Tr
[
ΛRI′

Γ (Λtree
Γ )†

]
qν =q̄ν

= Tr
[
Λtree

Γ (Λtree
Γ )†

]
= 4Nc, (3.7)
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where Λtree
Γ = Γ exp(iqµz) is the tree-level value of the Green’s function of operator OΓ

and ΛRI′

Γ is defined through Eqs. (3.2) and (3.3). There is, however, a fundamental

problem with such a prescription: the renormalized Green’s function resulting from

Eq. (3.7) will depend on the regulator which was used in order to compute it (and,

thus, it will not be regularization independent, as the name RI suggests). As was

pointed out in Ref. [114], bare Green’s functions of OΓ, computed on the lattice,

contain additional contributions proportional to the tree-level Green’s function of OΓ′ ,

where Γ′ = Γγµ + γµΓ (whenever the latter differs from zero). Such contributions

will not be eliminated by applying the renormalization prescription of Eq. (3.7), thus

leading to renormalized Green’s functions which differ from those obtained in DR.

It should be pointed out that, in all cases, the renormalized functions will contain

a number of tensorial structures, the elimination of which may be possible at best

only at a given value of the renormalization scale. However, the main concern here is

not the elimination of mixing contributions, desirable as this might be; what is more

important is to establish a RI′ scheme which is indeed regularization independent, so

that nonperturbative estimates of renormalization factors can be converted to the MS

scheme using conversion factors which are regulator independent.

Given the preferred direction µ of the Wilson-line operator, there is a residual rotational

(or cubic, on the lattice) symmetry with respect to the three remaining transverse

directions, including also reflections. As a consequence, given an appropriate choice

of a renormalization scheme, no mixing needs to occur among operators which do not

transform in the same way under this residual symmetry. In particular, mixing can

occur only among pairs of operators (OΓ,OΓγµ).

Denoting generically the two operators in such a pair by (OΓ1 ,OΓ2), the corresponding

renormalization factors will be 2× 2 mixing matrices:

ORI′Γi
=

2∑
j=1

[
(ZX,RI′

Γ1,Γ2
)
−1
]
ij
OΓj , (i = 1, 2). (3.8)

More precisely, the mixing pairs (OΓ1 ,OΓ2) are formed by (Γ1,Γ2) = (11, γ1), (γ5, γ5γ1),

(γ2, γ1γ2), (γ3, γ1γ3), (γ4, γ1γ4), (γ5γ2, γ3γ4), (γ5γ3, γ4γ2), and (γ5γ4, γ2γ3). Therefore,

the renormalized 1-PI amputated Green’s functions of Wilson-line operators have the
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following form:

ΛRI′

Γi
=

2∑
j=1

(ZX,RI′

ψf
)1/2 (ZX,RI′

ψf ′
)1/2

[
(ZX,RI′

Γ1,Γ2
)
−1
]
ij

ΛΓj . (3.9)

Thus, an appropriate renormalization condition, especially for lattice simulations, is

Tr
[
ΛRI′

Γi
(Λtree

Γj
)†
]
qν =q̄ν

= Tr
[
Λtree

Γi
(Λtree

Γj
)†
]

= 4Nc δij. (3.10)

Combining Eqs. (3.9) and (3.10), the RI′ condition takes the form:

(ZX,RI′

Γ1,Γ2
)
ij

=
1

4Nc

(ZX,RI′

ψf
)1/2 (ZX,RI′

ψf ′
)1/2 Tr

[
ΛΓi (Λtree

Γj
)†
]
qν=q̄ν

. (3.11)

Based on the above symmetry arguments, such a RI′ condition will indeed be

regularization independent, for all regularizations which respect the above

symmetries.

One could of course adopt more general definitions of RI′, e.g., a prescription in which

each of the 16 operators OΓ can contain admixtures of some of the remaining operators:

ORI′

Γi
=

16∑
j=1

[
(ZX,RI′)−1

]
ij
OΓj , (i = 1, · · · , 16), (3.12)

in such a way that the renormalized Green’s functions will satisfy a condition similar

to Eq. (3.10), but with the indices i, j ranging from 1 to 16. However, such a definition

would introduce additional finite mixing, which would violate the rotational symmetry

in the transverse directions, e.g., mixing among Oγ1 and Oγ2 ; such a violation would

occur whenever the RI′ renormalization scale four-vector q̄ is chosen to lie in an oblique

direction. To avoid such unnecessary mixing, it is thus natural to adopt the “minimal”

prescription of Eqs. (3.8) - (3.11). Since this prescription extends beyond one-loop

order, it may be applied to nonperturbative evaluations of the renormalization matrices

ZL,RI′ .

Let us note that, as it stands, Eq. (3.10) leads to renormalization factors which

depend on the individual components of q̄, rather than just q̄2 and q̄µ; consequently,

the renormalization factors of, e.g., Oγ2 and Oγ3 will have different numerical values.

One could, of course, define RI′ in such a way that the residual invariance is manifest;
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this can be seen by analogy with local operators, e.g., OVi = ψ̄(x)γiψ(x), where ZV is

often defined as the average over ZVi (i = 1,2,3,4), and, in doing so, ZV turns out to

depend only on the length of the renormalization scale four-vector. Adopting such a

definition, the values of the conversion factors can be read off our bare Green’s

functions [see Eqs. (3.23) - (3.34) below] in a rather straightforward way, and they

will indeed depend only on q̄2 and q̄µ. However, in defining the RI′ scheme for

Wilson-line operators, we have aimed at being as general as possible and thus did not

take any averages, as above, in order to accommodate possible definitions employed in

nonperturbative investigations of the renormalization factors; after all, the conversion

factors which we calculate must be applicable precisely to these investigations. It goes

without saying that if one chooses all components of the renormalization scale

four-vector, perpendicular to the Wilson line, to vanish, then residual rotational

invariance is automatically restored.

Finally, one could define RI′ in such a way that renormalization factors would be strictly

real, e.g., by taking the absolute value of the lhs in Eq. (3.10); indeed, the choice of

the definition of RI′, leading to complex renormalization factors, is not mandatory,

but it is a natural one, following the definition used in nonperturbative investigations.

All these choices are related to the MS scheme via finite conversion factors; thus, no

particular choice is dictated by the need to remove divergences, either in dimensional

regularization or on the lattice.

3.2.3 Conversion factors

As a consequence of the 2 × 2 matrix form of the RI′ renormalization factors, the

conversion factors between RI′ and MS schemes will also be 2 × 2 mixing matrices.

Being regularization independent, they can be evaluated more easily in DR. They are

defined as

[
CMS,RI′

Γ1,Γ2

]
ij

= (ZDR,MS
Γi

)−1 ·
[
ZDR,RI′

Γ1,Γ2

]
ij

=
2∑

k=1

[
(ZLR,MS

Γ1,Γ2
)−1
]
ik
·
[
ZLR,RI′

Γ1,Γ2

]
kj
. (3.13)

We note in passing that the definition of the MS scheme depends on the prescription

used for extending γ5 to D dimensions3; this, in particular, will affect conversion factors

3See, e.g., Refs. [50, 179–183] for a discussion of four relevant prescriptions and some conversion
factors among them.
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for the pseudoscalar and axial-vector operators. However, such a dependence will only

appear beyond one loop. Now, the Green’s functions in the RI′ scheme can be directly

converted to the MS scheme through

(
ΛMS

Γ1

ΛMS
Γ2

)
=

ZLR,MS
ψf

ZLR,RI′

ψf

1/2ZLR,MS
ψf ′

ZLR,RI′

ψf ′

1/2

(ZLR,MS
Γ1,Γ2

)−1 · (ZLR,RI′

Γ1,Γ2
) ·
(

ΛRI′

Γ1

ΛRI′

Γ2

)

=
1

(CMS,RI′

ψf
)1/2 (CMS,RI′

ψf ′
)1/2

(CMS,RI′

Γ1,Γ2
) ·
(

ΛRI′

Γ1

ΛRI′

Γ2

)
, (3.14)

where CMS,RI′

ψf
≡ ZLR,RI′

ψf
/ZLR,MS

ψf
= ZDR,RI′

ψf
/ZDR,MS

ψf
is the conversion factor for a

fermion field of a given flavor.

3.3 Computation and Results

In this section, we present our one-loop results for the bare Green’s functions of Wilson-

line operators, the renormalization factors, and the conversion factors between RI′ and

MS schemes, using dimensional regularization. In this regularization, Green’s functions

are Laurent series in ε, where ε is the regulator, defined by D ≡ 4− 2ε, and D is the

number of Euclidean spacetime dimensions, in which momentum-loop integrals are well

defined. We also describe the method that we used to calculate the momentum-loop

integrals presented in the Green’s functions. Furthermore we investigate the operator

mixing.

3.3.1 The integration method

In this subsection, we describe the method that we used to evaluate the D-dimensional

momentum-loop integrals, appearing in the calculation of the bare Green’s functions.

First, we introduce Feynman parameters. Second, we perform the standard integrations

over the (D−1) directions perpendicular to the Wilson line (see, e.g., Ref. [184]). Next,

we perform the remaining nontrivial integration over the parallel direction, which has

an exponential z dependence. This procedure gives the following formulae, in terms ofGREGORIS SPANOUDES
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modified Bessel functions of the second kind, Kν :

A(α) =

∫
dDp

(2π)D
eipµz

(p2 + 2 k · p+m2)α
=

21−α−D/2 |z|α−D/2 e−ikµz

πD/2 Γ(α) (m2 − k2)α/2−D/4
·

K−α+D/2(
√
m2 − k2 |z|), (3.15)∫

dDp

(2π)D
eipµz pν1 · · · pνn

(p2 + 2 k · p+m2)α
=

(−1)n Γ(α− n)

2n Γ(α)

∂

∂kν1

· · · ∂

∂kνn
A(α− n). (3.16)

After the momentum integrations, we perform Laurent expansion in ε, keeping terms

up to O(ε0). In this step, we have to be careful when interchanging the integration

over Feynman parameters with the limit of a vanishing regulator (ε → 0). In the

massive case, studied in the present paper, the interchange is permissible; however this

interchange is not generally valid, as is exemplified by the following term stemming

from diagram 1 of Fig. 3.1, in the massless case4:

B(ε) =

∫ 1

0

dx
exp(iqµzx) q2x2 |z| 1+ε ε(
q2 x (1− x)

)(1+ε)/2
K1+ε(

√
q2x(1− x) |z|). (3.17)

A naive limit ε→ 0− of this term would simply give 0, due to the multiplicative factor

of ε. However, this is incorrect, given the existence of a pole at x = 1. Expanding the

integrand of Eq. (3.17) into a power series of (1− x):

K1+ε(
√
q2x(1− x) |z|) =

1

2
Γ(1+ε)

(
√
q2x(1− x) |z|)−1−ε

2−1−ε +O
(

(1−x)(1+ε)/2
)
, (3.18)

exp(iqµzx) = exp(iqµz) +O(1− x), (3.19)

we isolate the pole:∫ 1

0

dx
[
2ε ε Γ(1 + ε)

exp(iqµz)

(q2)ε(1− x)1+ε
+O

(
(1− x)(1+ε)/2

)]
. (3.20)

The terms of order O
(

(1−x)(1+ε)/2
)

are integrable in the limit ε→ 0−, and thus they

give 0. In the leading term of Eq. (3.20), we must perform the Feynman parameter

integral first, and after that, we take the limit ε → 0−. Then, a finite but nonzero

result remains:

lim
ε→0−

B(ε) = − exp(iqµz). (3.21)

4Diagram 1 is actually UV convergent; however, in order to avoid spurious IR divergences, it is
convenient to evaluate it in D > 4 dimensions (ε < 0) and take the limit ε→ 0− in the end.
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Therefore, the naive interchange of limit and integration sets a contribution erroneously

to zero. To avoid such errors, we use a subtraction of the form:

lim
ε→0

∫
dx I(ε, x) =

∫
dx lim

ε→0

(
I(ε, x)− I1(ε, x)

)
+ lim

ε→0

∫
dx I1(ε, x), (3.22)

where I(ε, x) is a term of the original expression and I1(ε, x) denotes the leading terms

of I(ε, x) in a power series expansion with respect to (x−xi) about all singular points xi;

here, x denotes Feynman parameters and/or ζ variables stemming from the definition

of OΓ. Such a subtraction must also be applied when we take the massless limit of our

results, m→ 0, for the same reasons.

The final expression depends on the Feynman parameter integrals and/or the integrals

stemming from the definition of OΓ; these can be integrated numerically for all values

of q, z, and quark masses used in simulations.

3.3.2 Bare Green’s functions

There are four one-loop Feynman diagrams corresponding to the two-point Green’s

functions of operators OΓ, shown in Fig. 3.1. The last diagram (d4) does not depend

d1
m1m2

d2
m1m2

d3
m1m2

d4
m1m2

Figure 3.1: Feynman diagrams contributing to the one-loop calculation of the
Green’s functions of Wilson-line operator OΓ. The straight (wavy) lines represent
fermions (gluons). The operator insertion is denoted by double straight line.

on the quark masses, and therefore its contribution is the same as that of the massless

case. Below, we provide our results for the bare Green’s function of operators for

each Feynman diagram separately. Our expressions depend on integrals of modified

Bessel functions of the second kind, Kn, over Feynman parameters. These integrals

are presented in Eqs. (3.65) - (3.80) of Appendix 3.A. For the sake of brevity, we use

the following notation: fij ≡ fi (q, z,mj), gij ≡ gi (q, z,mj), and hi ≡ hi (q, z,m1,m2).

Also, index µ is the direction parallel to the Wilson line; indices ν, ρ, and σ are the

directions perpendicular to the Wilson line; and µ, ν, ρ, and σ are all different among

themselves. Furthermore, µ̄ is the MS renormalization scale, µ̄ ≡ µ (4π/eγE)1/2, where
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µ (not to be confused with the spacetime index µ) appears in the renormalization of

the D-dimensional coupling constant; g = µε Zg g
R, and γE is the Euler constant.

In addition, Cf = (N2
c − 1)/(2Nc) is the Casimir operator, and β is the gauge fixing

parameter, defined such that β = 0 (1) corresponds to the Feynman (Landau) gauge.

Finally, symbols S (scalar), P (pseudoscalar), Vµ (vector in the µ direction), Vν (vector

in the ν direction), Aµ (axial-vector in the µ direction), Aν (axial-vector in the ν

direction), Tµν (tensor in the µ, and ν directions), and Tνρ (tensor in the ν, and ρ

directions) correspond to the operators OΓ with Γ = 11, γ5, γµ, γν , γ5γµ, γ5γν , γµγν ,

γνγρ, respectively. We note that only tree-level values for the quark masses appear in

the following one-loop expressions:

Λd1
S =

g2Cf
16π2

{
Λtree
S

[
(β − 4)

(
− 4h1 − 2izqµh2 + |z|

(
h4 +m1m2h5 − q2h7

) )
+ β

(
q2 −m1m2

) [1

2
z2
(
h2 − q2h3

)
+ |z|

(
izqµ (h5 − h6 − h7)

−
(
h5 − 2h6 + q2h8

) )]]

+ Λtree
S /q i (m1 +m2)

[
β

(
|z|
(
h5 − q2h8

)
− 1

2
z2
(
h2 + q2h3

))
− 2 |z| (h5 − h6)

]
+ Λtree

Vµ (m1 +m2) z
[
(β + 2)h1 − β

(
|z| q2 (h5 − h6 − h7)− izqµh2

)]}
,

(3.23)

Λd1
P = γ5 Λd1

S {m2 7→ −m2}, (3.24)
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Λd1
Vµ

=
g2Cf
16π2

{
Λtree
Vµ

[
− 4 (β − 1)h1 + |z|

[
(β + 2)h4 − (β − 2)

(
m1m2h5 + q2h7

) ]
+ 2βzqµ

[
zqµh2 − i (h1 + h2) + i |z| (h5 − h6 − h7)

]
+ β

(
q2 +m1m2

) [
|z|
(
h6 − q2h8

)
− 1

2
z2
(
h2 + q2h3

) ]]
+
(

Λtree
Vµ /q m1 + /qΛtree

Vµ m2

)
β
[
− |z|

(
zqµ (h5 − h6 − h7)− i

(
h6 − q2h8

) )
+

1

2
iz2
(
h2 − q2h3

) ]
+ Λtree

S (m1 +m2)
[
z(β − 4)h1 − 2i |z| qµ(β − 2) (h5 − h6)

]
+ Λtree

S /q
[
2 |z| qµ

(
β (h5 − h6 +m1m2h8)− 2h7

)
− βz2qµ (h2 −m1m2h3)

+ 2iz (βh1 − 2h2)− iβz |z|
(
q2 +m1m2

)
(h5 − h6 − h7)

]}
,

(3.25)

Λd1
Vν

=
g2Cf
16π2

{
Λtree
Vν

[
− 2
(

2 (β − 1)h1 + (β − 2) izqµh2

)
− (β − 2) |z|

(
m1m2h5 + q2h7 − h4

)
+
(
q2 +m1m2

)
β
[
|z|
(

izqµ (h5 − h6 − h7) +
(
h6 − q2h8

) )
+

1

2
z2
(
h2 − q2h3

) ]]
+
(
Λtree
Vν /q m1 + /qΛtree

Vν m2

)
iβ
[
|z|
(
h6 − q2h8

)
− 1

2
z2
(
h2 + q2h3

) ]
+ Λtree

Tµν (m1 −m2) βz
[
− h1 + |z| q2 (h5 − h6 − h7)− izqµh2

]
+ Λtree

Vµ zqν

[
β
(

i |z|
(
q2 −m1m2

)
(h5 − h6 − h7) + 2 (zqµh2 − ih1)

)
− 4ih2

]
−
(

Λtree
Vµ /q m1 + /qΛtree

Vµ m2

)
βz |z| qν (h5 − h6 − h7)

+ Λtree
S (m1 +m2) iqν

[
− 2(β − 2) |z| (h5 − h6) + βz2h2

]
+ Λtree

S /qqν

[
β
(

2 |z| (h5 − h6 +m1m2h8)− z2 (h2 −m1m2h3)
)
− 4 |z|h7

]}
(3.26)

Λd1
Aµ(ν)

= γ5 Λd1
Vµ(ν)
{m2 7→ −m2}, (3.27)
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Λd1
Tµν

=
g2Cf
16π2

{
Λtree
Tµνβ

[
− 2

(
2h1 − z2q2

µh2

)
+ |z|

[
h4 + q2

(
h5 − h7 + 2izqµ (h5 − h6 − h7)

)]
− 2izqµ(h1 + h2)−

(
q2 −m1m2

) (
|z| q2h8 +

1

2
z2
(
h2 + q2h3

) )]

+
(

Λtree
Tµν/q m1 + /qΛtree

Tµν m2

)[
β
[1

2
iz2
(
h2 − q2h3

)
− |z|

(
zqµ (h5 − h6 − h7)

+ i
(
h5 − 2h6 + q2h8

) )]
+ 2i |z| (h5 − h6)

]
− Λtree

Vν (β − 2)z (m1 −m2)h1

+ Λtree
Vν /qβ

[
2 (|z| qµm1m2h8 − izh1) + iz |z|

(
q2 −m1m2

)
(h5 − h6 − h7)

+ z2qµ (h2 +m1m2h3)

]
− Λtree

Vµ iβz2qν(m1 −m2)h2 + Λtree
Vµ /qβqν

[
z2 (h2 −m1m2h3)− 2 |z|m1m2h8

]
+ Λtree

S βzqν

[
2 (ih1 − zqµh2)− i |z|

(
q2 −m1m2

)
(h5 − h6 − h7)

]
+ Λtree

S /qβz |z| qν (m1 −m2) (h5 − h6 − h7)

}
, (3.28)

Λd1
Tνρ

=
g2Cf
16π2

{
Λtree
Tνρβ

[
− 2 (2h1 + izqµh2) + |z|

(
h4 + q2 (h5 − h7)

)
+
(
q2 −m1m2

) [1

2
z2
(
h2 − q2h3

)
− |z|

(
q2h8 − izqµ (h5 − h6 − h7)

)]]
+
(

Λtree
Tνρ/q m1 + /qΛtree

Tνρm2

)
i
[
− β

(1

2
z2
(
h2 + q2h3

)
+ |z|

(
h5 − 2h6 + q2h8

) )
+ 2 |z| (h5 − h6)

]
+ εµνρσ Λtree

Aσ (m1 +m2)
[
− βz |z| q2 (h5 − h6 − h7) + (β − 2) zh1 + iβz2qµh2

]
+
(

Λtree
Tµνqρ − Λtree

Tµρqν

)
βz
[
2 (ih1 − zh2qµ)− i |z|

(
q2 +m1m2

)
(h5 − h6 − h7)

]
+
[ (

Λtree
Tµνqρ − Λtree

Tµρqν

)
/q m1 + /q

(
Λtree
Tµνqρ − Λtree

Tµρqν

)
m2

]
βz |z| (h5 − h6 − h7)

+
(

Λtree
Vν qρ − Λtree

Vρ qν

)
iβz2 (m1 −m2)h2

−
(

Λtree
Vν qρ − Λtree

Vρ qν

)
/qβ
[
z2 (h2 +m1m2h3) + 2 |z|m1m2h8

]}
, (3.29)
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Λd2
S =

g2Cf
16π2

{
Λtree
S

[
(β − 1)

[
2f11 − 2− 1

ε
− log

(
µ2

q2 +m2
1

)
+
m2

1

q2
log

(
1 +

q2

m2
1

)]
+ βq2

(
iqµ (g31 − zf31) +

(
q2 +m2

1

)
g41 −

(
q2 − q2

µ

)
g51

)
− 2iqµg21

]
+ Λtree

S /qβm1

[
− qµ (g31 − zf31) + ig41

(
q2 +m2

1

)
− ig51

(
q2 − q2

µ

) ]
+ Λtree

Vµ m1 (2g11 − βzf21) + Λtree
Vµ /qi

(
βzf21 − 2 (g11 − g21)

)}
, (3.30)

Λd2
Γ = Λd2

S Γ, (3.31)

Λd3
S =

g2Cf
16π2

{
Λtree
S

[
(β − 1)

[
2f12 − 2− 1

ε
− log

(
µ2

q2 +m2
2

)
+
m2

2

q2
log

(
1 +

q2

m2
2

)]
+ βq2

(
iqµ (g32 − zf32) +

(
q2 +m2

2

)
g42 −

(
q2 − q2

µ

)
g52

)
− 2iqµg22

]
+ Λtree

S /qβm2

[
− qµ (g32 − zf32) + ig42

(
q2 +m2

2

)
− ig52

(
q2 − q2

µ

) ]
+ Λtree

Vµ m2 (2g12 − βzf22) + /qΛtree
Vµ i
(
βzf22 − 2 (g12 − g22)

)}
, (3.32)

Λd3
Γ = Γ Λd3

S , (3.33)

Λd4
Γ =

g2Cf
16π2

Λtree
Γ

[
4 + (β + 2)

(
2γE +

1

ε
+ log

(
1

4
z2µ2

))]
. (3.34)

UV-divergent terms of order O(1/ε) arise from the last three diagrams. These terms

are multiples of the tree-level values of Green’s functions and therefore do not lead to

any mixing. However, there are finite terms for each OΓ with different Dirac

structures than the original operator; some of these terms are responsible for the

finite mixing which occurs in RI′. In particular, they lead to the expected mixing

within the pairs (Γ,Γγµ) or equivalently (Γ, γµΓ). This is a consequence of the

violation of chiral symmetry by the mass term in the fermion action, as well as the

flavor-symmetry breaking when masses have different values. For the case of equal

masses (no flavor-symmetry breaking) m1 = m2, the mixing pattern reduces to

(Γ, 1
2
{Γ, γµ}), which is the same as the pattern for massless quarks on the lattice. Our

findings are expected to be valid also on the lattice.
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The one-loop Green’s functions exhibit a nontrivial dependence on dimensionless

quantities involving the Wilson-line length z, the external quark momentum q, and

the quark masses mi (i = 1, 2): zqµ, zmi. This dependence is in addition to the

standard logarithmic dependence on µ̄: log(µ̄2/q2). Also, we note that our results are

not analytic functions of z near z = 0; this was expected due to the appearance of

contact terms beyond tree level. For the case z = 0, the nonlocal operators are

replaced by local massive fermion bilinear operators; their renormalization is

addressed in Ref. [185], using a generalization of the RI-SMOM scheme, called

RI-mSMOM. Further, the Green’s functions of Feynman diagrams satisfy the

following reflection relations, with respect to z:

Λd1
Γ (z,m1,m2) =

1

4
tr(Γ2)

[
Λd1

Γ (−z,−m2,−m1)
]†
, (3.35)

Λd2
Γ (z,m) =

1

4
tr(Γ2)

[
Λd3

Γ (−z,−m)
]†
, (3.36)

Λd4
Γ (z) =

1

4
tr(Γ2)

[
Λd4

Γ (−z)
]†
. (3.37)

[Note that (1/4) tr(Γ2) = ±1, depending on Γ.] The total one-loop bare Green’s

functions of operators OΓ are given by the sum over the contributions of the four

diagrams:

Λ1-loop
Γ =

4∑
i=1

Λdi
Γ . (3.38)

3.3.3 Renormalization factors

3.3.3.1 Renormalization factors of fermion field and mass

The perturbative determination of Zψ and Zm proceeds in textbook fashion by

calculating the bare fermion self-energy in DR to one loop; we present it here for

completeness. The Feynman diagram contributing to this two-point Green’s function

is shown in Fig. 3.2. Denoting by Σ the higher-order terms O(g2) of the 1-PI

Figure 3.2: Feynman diagram contributing to the one-loop calculation of the
fermion self-energy. The straight (wavy) lines represent fermions (gluons).

amputated Green’s function of the fermion field, the inverse full fermion propagator
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takes the following form: 〈ψψ̄〉−1 = i/q + m11 − Σ. Writing Σ in the more useful form:

Σ = i/q Σ1(q2,m) + m 11 Σ2(q2,m), we present the one-loop results for the functions

Σ1,Σ2:

Σ1(q2,m) =
g2Cf
16π2

(β − 1)

{
1 +

1

ε
+ log

(
µ2

q2 +m2

)
− m2

q2

[
1− m2

q2
log

(
1 +

q2

m2

)]}
+O(g4), (3.39)

Σ2(q2,m) =
g2Cf
16π2

{
2 + (β − 4)

[
2 +

1

ε
+ log

(
µ2

q2 +m2

)
− m2

q2
log

(
1 +

q2

m2

)]}
+O(g4). (3.40)

The renormalization conditions for Zψ and Zm in the RI′ scheme, using the above

notation, take the following perturbative forms:

ZDR,RI′

ψ =
1

1− Σ1

∣∣∣
qν=q̄ν

, (3.41)

ZDR,RI′

m =
1− Σ1

1− Σ2

∣∣∣
qν=q̄ν

. (3.42)

Thus, in the presence of finite fermion masses, the results for the renormalization factors

of the fermion field and mass are given below:

ZDR,RI′

ψ = 1 +
g2Cf
16π2

(β − 1)

[
1

ε
+ 1 + log

(
µ2

q2 +m2

)
− m2

q̄2

(
1− m2

q̄2
log

(
1 +

q̄2

m2

))]
+O(g4), (3.43)

ZDR,RI′

m = 1 +
g2Cf
16π2

[
− 3

ε
+ β − 5− 3 log

(
µ2

q2 +m2

)
− (β − 4)

m2

q̄2
log

(
1 +

q̄2

m2

)

+ (β − 1)
m2

q̄2

(
1− m2

q̄2
log

(
1 +

q̄2

m2

))]
+O(g4). (3.44)

We recall that the mass appearing in the above expressions is the renormalized mass,

which coincides with the bare mass to this order. The results for Zψ and Zm are in

agreement with Ref. [186], in the massless limit and for q̄ = µ̄.
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The renormalization factors in the MS scheme can be readily inferred from Eqs. (3.43)

and (3.44) by taking only the pole part in epsilon:

ZDR,MS
ψ = 1 +

g2Cf
16π2

1

ε
(β − 1) +O(g4), (3.45)

ZDR,MS
m = 1 +

g2Cf
16π2

1

ε
(−3) +O(g4). (3.46)

3.3.3.2 Renormalization factors of Wilson-line operators

Now, we have all the ingredients for the extraction of renormalization factors of Wilson-

line operators in the RI′ and MS schemes. By writing Zψf and ΛΓ in the form:

ZDR,Y
ψf

= 1 + g2zYψf +O(g4), (3.47)

ΛΓi = Λtree
Γi

+ Λ1-loop
Γi

+O(g4), (i = 1, 2), (3.48)

where5

Λ1-loop
Γi

= g2

2∑
j=1

λij Λtree
Γj

+ · · · , λij =
1

4Nc

1

g2
Tr
[
Λ1-loop

Γi
(Λtree

Γj
)†
]
, (3.49)

the condition for the renormalization of Wilson-line operators in the RI′ scheme, up to

one loop, reads[
ZDR,RI′

Γ1,Γ2

]
ij

= δij + g2δij

(1

2
zRI

′

ψf
+

1

2
zRI

′

ψf ′
+ λii

∣∣∣
qν=q̄ν

)
+ g2(1− δij)λij

∣∣∣
qν=q̄ν

. (3.50)

The equivalent expression for ZDR,MS
Γ follows from Eq. (3.50), by keeping in λij only

pole parts in epsilon; the latter appear only for i = j, leading to

ZDR,MS
Γi

= 1 + g2
(1

2
zMS
ψf

+
1

2
zMS
ψf ′

+ λii

∣∣∣
1/ε

)
. (3.51)

5The Green’s functions Λ1-loop
Γi

also contain additional Dirac structures [see Eqs. (3.23) - (3.34)],

which do not contribute to the evaluation of renormalization factors ZΓ in the MS scheme, as they
are O(ε0) terms, nor in RI′, as the trace in Eq. (3.11) gives zero.GREGORIS SPANOUDES
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Our final results are presented below. In the MS scheme, the renormalization factors

of operators have the form:

ZDR,MS
Γ = 1 +

g2Cf
16 π2

3

ε
+O(g4), (3.52)

in agreement with Refs. [146, 147, 155]. As we observe, they are independent of

operator Γ, fermion masses, Wilson-line length z, and gauge parameter β. In RI′,

the renormalization factors are given with respect to the conversion factors, which are

presented in the next section:

[
ZDR,RI′

Γ1,Γ2

]
ij

=
[
CMS,RI′

Γ1,Γ2

]
ij

+
g2Cf
16π2

3

ε
δij +O(g4). (3.53)

The above relation stems from the one-loop expression of Eq. (3.13).

3.3.4 Conversion factors

We present below our results for all the matrix elements of 2× 2 conversion factors in

a compact way. We use the same notation as in Sec. 3.3.2 for bare Green’s functions;

the only difference is that the Feynman parameter integrals, appearing here, depend

on the RI′ scale q̄ instead of the external momentum q:
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[
CS,Vµ

]
11

= 1 +
g2Cf
16π2

{
7− 3β + 2(β + 2)γE + 2(β − 1)

(
f11 + f12

)
− (β − 4)

(
4h1 − |z|h4

)
+ 3 log

(
µ2

q2

)
+ (β + 2) log

(
1

4
z2q2

)
+

1

2
(β − 1)

[
− m2

1

q̄2
− m2

2

q̄2

+
m2

1

q̄2

(
2 +

m2
1

q̄2

)
log

(
1 +

q̄2

m2
1

)
+
m2

2

q̄2

(
2 +

m2
2

q̄2

)
log

(
1 +

q̄2

m2
2

)
+ log

(
1 +

m2
1

q̄2

)
+ log

(
1 +

m2
2

q̄2

)]
+ 2 |z|m1m2(β − 2)h5

+ β |z|
(
q̄2 −m1m2

)(
2h6 − q̄2h8

)
− q̄2 |z|

(
βh5 + (β − 4)h7

)
+ βq̄2

[
(m2

1 + q̄2) g41 + (m2
2 + q̄2) g42 − (q̄2 − q̄2

µ)
(
g51 + g52

)]
+

1

2
βz2
(
q̄2 −m1m2

)(
h2 − q̄2h3

)
− 2 i q̄µ

(
g11 + g12

)
+ izq̄µ

[
β
(
f21 + f22

)
− 2(β − 4)h2

]
+ iβq̄2q̄µ

[
g31 + g32 − z

(
f31 + f32

)]
+ iβz |z| q̄µ

(
q̄2 −m1m2

)(
h5 − h6 − h7

)}
+O(g4),

(3.54)

[
CS,Vµ

]
12

=
g2Cf
16π2

{
− βz

(
m1f21 +m2f22

)
− βq̄2

µ

[
m1

(
g31 − zf31

)
+m2

(
g32 − zf32

)]
+ iβq̄µ

[
m1(m2

1 + q̄2)g41 +m2(m2
2 + q̄2)g42 − (q̄2 − q̄2

µ)
(
m1g51 +m2g52

)]
+ 2
(
m1g11 +m2g12

)
+
(
m1 +m2

)[
(β + 2)zh1 − iβq̄2 |z| q̄µh8

+ i |z| q̄µ
(

(β − 2)h5 + 2h6

)
+

1

2
iβz2q̄µ

(
h2 − q̄2h3

)
− βq̄2z |z|

(
h5 − h6 − h7

)]}
+O(g4),

(3.55)
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[
CS,Vµ

]
21

=
[
CS,Vµ

]
12

+
g2Cf
16π2

(
m1 +m2

){
− 6zh1 − 3i(β − 2) |z| q̄µ

(
h5 − h6

)
+ βz |z|

(
q̄2 − q̄2

µ

) (
h5 − h6 − h7

)}
+O(g4),

(3.56)

[
CS,Vµ

]
22

=
[
CS,Vµ

]
11

+
g2Cf
16π2

{
− 12h1 − 12izq̄µh2 + 3 |z|

[
2h4 −m1m2

(
(β − 2)h5 − βh6

)]
− 2β |z|m1m2(q̄2 − q̄2

µ)h8 + |z| (q̄2 + 2q̄2
µ)
[
β
(
h5 − h6

)
− 2h7

]
− βz2

(
q̄2 − q̄2

µ

) (
h2 +m1m2h3

)}
+O(g4),

(3.57)

[CP,Aµ ]ij = [CS,Vµ ]ij{hk 7→ (−1)1+δijhk,m1 7→ −m1} (3.58)

(where i, j = 1, 2 and k = 1, 2, · · · , 8),

[
CVν ,Tµν

]
11

=
[
CP,Aµ

]
11

+
g2Cf
16π2

{
− 12h1 − 4izq̄µh2 + |z| (q̄2 + 2q̄2

ν)
[
β
(
h5 − h6

)
− 2h7

]
+ |z|

[
2h4 +m1m2

(
(β − 2)h5 − βh6 + 2βq̄2

νh8

)]
− βz2q̄2

ν

(
h2 −m1m2h3

)}
+O(g4),

(3.59)

[
CVν ,Tµν

]
12

= −
[
CP,Aµ

]
12

+
g2Cf
16π2

(
m1 −m2

){
2zh1 + i(β − 2) |z| q̄µ

(
h5 − h6

)
− βz |z| q̄2

ν

(
h5 − h6 − h7

)}
+O(g4),

(3.60)

[
CVν ,Tµν

]
21

= −
[
CP,Aµ

]
21
− g2Cf

16π2

(
m1 −m2

){
2zh1 + i(β − 2) |z| q̄µ

(
h5 − h6

)
− βz |z| q̄2

ν

(
h5 − h6 − h7

)}
+O(g4),

(3.61)
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[
CVν ,Tµν

]
22

=
[
CP,Aµ

]
22

+
g2Cf
16π2

{
− 4h1 + 4izq̄µh2 + |z| (q̄2 − 2q̄2

ν)
[
β
(
h5 − h6

)
− 2h7

]
− |z|

[
2h4 +m1m2

(
(β − 2)h5 − βh6 + 2βq̄2

νh8

)]
+ βz2q̄2

ν

(
h2 −m1m2h3

)}
+O(g4),

(3.62)

[CAν ,Tρσ ]ij = (−εµνρσ)1+δij [CVν ,Tµν ]ij{hk 7→ (−1)1+δijhk,m1 7→ −m1} (3.63)

(where i, j = 1, 2 and k = 1, 2, · · · , 8; εµνρσ is the Levi-Civita tensor, ε1234 = 1).

Our results are in agreement with Ref. [114] in the massless limit6. A consequence of

the above relations is that, in the case of equal quark masses m1 = m2, the nondiagonal

matrix elements of CP,Aµ and CVν ,Tµν vanish. Also, the matrix elements of conversion

factors satisfy the following reflection relation with respect to z:

[CΓ1,Γ2(q̄, z,m1,m2)]ij = (−1)1+δij [C∗Γ1,Γ2
(q̄,−z,m1,m2)]

ij
. (3.64)

This means that the real part of diagonal (nondiagonal) matrix elements is an even

(odd) function of z, while the imaginary part is odd (even).

3.4 Graphs

In this section, we illustrate our results for conversion factors by selecting certain values

of the free parameters used in simulations. To this end, we plot the real and imaginary

parts of the conversion factor matrix elements as a function of Wilson-line length, z.

For input, we employ certain parameter values, used by ETMC in the ensemble of

dynamical Nf = 2 + 1 + 1 twisted mass fermions of Ref. [110]; i.e., we set7 g2 = 3.077,

6Checking agreement is quite nontrivial; it requires the elimination of certain integrals over
Feynman parameters, integration by parts, as well as the interchange of the limit operation with
integration.

7A most natural choice for the coupling constant would be its MS value, even though the choice
of bare vs renormalized coupling constant should, in principle, be irrelevant for one-loop results, such
as the ones we plot in this section. Nevertheless, these plots are meant to reveal some salient features
of the conversion factors, which certainly are not affected by selecting g2 ∼ 3.77 (MS) rather than
g2 = 3.077 (lattice); indeed, given the simple linear dependence on g2 of the quantities plotted, the
effect of a change in g2 can be inferred by inspection. For precise quantitative values of the conversion
factors, one should of course refer to our results in algebraic form, presented in Sec. 3.3.
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β = 1 (Landau gauge), Nc = 3, µ̄ = 2 GeV, and q̄ = 2π
32a

(nz, 0, 0,
nt
2

+ 1
4
), for a = 0.082

fm (lattice spacing), nz = 4, and nt = 8 (the Wilson line is taken to lie in the z direction,

which, by convention, is denoted by µ = 1). Expressed in GeV, q̄ = (1.887, 0, 0, 2.048)

GeV. To examine the impact of finite quark masses on the conversion factors, we plot

six different cases of external quark masses:

1. massless quarks (m1 = m2 = 0)

2. m1 = m2 = 13.2134 MeV, corresponding to the bare twisted mass used in Ref. [110]

3. one up and one strange quark (m1 = 2.3 MeV, m2 = 95 MeV)

4. two strange quarks (m1 = m2 = 95 MeV)

5. one up and one charm quark (m1 = 2.3 MeV, m2 = 1275 MeV)

6. two charm quarks (m1 = m2 = 1275 MeV).

As regards the q̄ dependence, we have not included further graphs for the sake of

conciseness; however, using a variety of values for the components of q̄, we find no

significant difference. More quantitative assessments can be directly obtained from our

algebraic results.

In Figs. 3.3 and 3.4, we present graphs of some representative conversion factors

(CS,V1 , CP,A1) for the six cases of external quark masses. The plots are given only for

positive values of z, since the behavior of conversion factors for negative values follows

the reflection relation of Eq.(3.64). We observe that the real part of the conversion

factor matrix elements is an order of magnitude larger than the imaginary part and

that the diagonal elements are an order of magnitude larger than the nondiagonal

elements. Also, for increasing values of z, the real part of diagonal elements tends

to increase, while the imaginary part as well as the real part of nondiagonal elements

tend to stabilize. Diagonal elements are almost equal to each other, as regards both

their real and imaginary parts; a similar behaviour is also exhibited by the nondiagonal

elements. Further, the diagonal elements of CS,V1 and CP,A1 behave almost identically,

while the nondiagonal elements have different behavior; this is to be expected, given

that the cases of equal masses give zero nondiagonal elements for CP,A1 . Comparing

the six cases, we deduce that the impact of mass becomes significant when we include

a strange or a charm quark; the presence of a strange quark causes changes of order

0.005 − 0.01 for real parts, and 0.001 − 0.003 for imaginary parts, while the presence

of a charm quark causes changes of order 0.07− 0.14 for real parts and 0.015− 0.03 for

imaginary parts. On the contrary, the cases of massless quarks and m1 = m2 = 13.2134

MeV are almost coincident. Therefore, we conclude that, for quark masses quite smaller

than the strange quark mass, we may ignore the mass terms in our calculations, while
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Figure 3.3: Real (left panels) and imaginary (right panels) parts of the conversion
factor matrix elements for the operator pair (S, V1) as a function of z, for different
values of quark masses [g2 = 3.077, β = 1, Nc = 3, µ̄ = 2 GeV,
q̄ = 2π

32 (0.082 fm)(4, 0, 0, 17
4 )].
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Figure 3.4: Real (left panels) and imaginary (right panels) parts of the conversion
factor matrix elements for the operator pair (P , A1) as a function of z, for different
values of quark masses [g2 = 3.077, β = 1, Nc = 3, µ̄ = 2 GeV,
q̄ = 2π

32 (0.082 fm)(4, 0, 0, 17
4 )].
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for larger values, the mass terms are significant.

Regarding the convergence of the perturbative series, we note that one-loop

contributions are a small fraction of the tree-level values, which is a desirable

indication of stability. Nevertheless, given that these contributions are not

insignificant, a two-loop calculation would be certainly welcome; this is further

necessitated by the fact that the one-loop contributions for the real parts of the

diagonal matrix elements of the conversion factors do not sufficiently stabilize for

large values of z.

3.5 Summary

In this work, we have presented the one-loop calculation, in dimensional regularization,

of the renormalization factors for nonlocal quark operators, including a straight Wilson

line, which are involved in the definition of quasi-PDFs. The novel aspect of this work

is the presence of nonzero quark masses in our computations, which results in mixing

among these operators, both in the continuum and on the lattice.

The operator mixing, observed in Ref. [114] for massless fermions on the lattice, is

extended into more operator pairs for massive fermions. More precisely, for operators

with equal masses of external quark fields, the mixing pairs are the same as those of

massless fermions; i.e., the unpolarized quasi-PDF in direction µ (parallel to the Wilson

line) mixes with the twist-3 scalar operator, and the helicity quasi-PDF in direction ν

(perpendicular to µ) mixes with the transversity quasi-PDF in directions perpendicular

to µ and ν. However, for operators with different masses of external quark fields, there

are additional pairs: the helicity quasi-PDF in direction µ mixes with the pseudoscalar

operator, and the unpolarized quasi-PDF in direction ν mixes with the transversity

quasi-PDF in the µ and ν directions. Thus, before matching to the physical massive

PDFs, one must eliminate the mixing nonperturbatively. To this end, we extend the

RI′ scheme suggested in Ref. [114] including the additional mixing pairs.

To convert the nonperturbative RI′ estimates of renormalization factors to the MS

scheme, we have calculated the one-loop conversion factors between the two schemes

in DR for massive quarks. Because of the operator-pair mixing in the continuum,
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the conversion factors are generally nondiagonal 2×2 matrices. Comparing with the

massless case, the impact of quark masses on the conversion factors becomes significant

for values near or greater than the strange quark mass. Our findings can be used to

the corresponding nonperturbative studies of heavy-quark quasi-PDFs.

Appendices

3.A List of Feynman parameter Integrals

In this appendix, we present a list of Feynman parameter integrals, which appear in

the expressions of our results. They do not have a closed analytic form, but they are

convergent and can be computed numerically in a straightforward manner, for any

given value of their arguments. We can classify them into three types of integrals:

1. f1 - f3: integrals over the Feynman parameter x

2. g1 - g5: double integrals over the Feynman parameter x and variable ζ (the location

of gluon fields along the Wilson line)

3. h1 - h8: double integrals over the Feynman parameters x1 and x2.

These integrals are functions of the external momentum 4-vector qν , the Wilson-line

length z, and the external quark masses m1 and/or m2. Also, they involve a modified

Bessel function of the second kind, K0 or K1. For the sake of brevity, we use the

following notation:

s ≡
(
q2 (1− x)x+m2x

)1/2

and t ≡
(
q2 (1− x1 − x2) (x1 + x2) +m2

1 x1 +m2
2 x2

)1/2

,

f1 (q, z,m) =

∫ 1

0

dx exp (−iqµxz) K0 (|z| s) , (3.65)

f2 (q, z,m) =

∫ 1

0

dx exp (−iqµxz) K0 (|z| s) (1− x), (3.66)

f3 (q, z,m) =

∫ 1

0

dx exp (−iqµxz) K0 (|z| s) (1− x)
x2

s2
, (3.67)

GREGORIS SPANOUDES



Chapter 3 Perturbative renormalization of nonlocal operators related to heavy-quark
quasi-PDFs 52

g1 (q, z,m) =

∫ 1

0

dx

∫ z

0

dζ exp (−iqµxζ) K0 (|ζ| s) , (3.68)

g2 (q, z,m) =

∫ 1

0

dx

∫ z

0

dζ exp (−iqµxζ) K0 (|ζ| s) x, (3.69)

g3 (q, z,m) =

∫ 1

0

dx

∫ z

0

dζ exp (−iqµxζ) K0 (|ζ| s) (1− x)
x2

s2
, (3.70)

g4 (q, z,m) =

∫ 1

0

dx

∫ z

0

dζ exp (−iqµxζ) K0 (|ζ| s) (1− x)
x2

s2
ζ, (3.71)

g5 (q, z,m) =

∫ 1

0

dx

∫ z

0

dζ exp (−iqµxζ) K0 (|ζ| s) (1− x)
x3

s2
ζ, (3.72)

h1 (q, z,m1,m2) =

∫ 1

0

dx1

∫ 1−x1

0

dx2 exp (−iqµ(x1 + x2)z) K0 (|z| t) , (3.73)

h2 (q, z,m1,m2) =

∫ 1

0

dx1

∫ 1−x1

0

dx2 exp (−iqµ(x1 + x2)z) K0 (|z| t) (1− x1 − x2),

(3.74)

h3 (q, z,m1,m2) =

∫ 1

0

dx1

∫ 1−x1

0

dx2 exp (−iqµ(x1 + x2)z) K0 (|z| t) (1− x1 − x2)·

(x1 + x2)2

t2
, (3.75)

h4 (q, z,m1,m2) =

∫ 1

0

dx1

∫ 1−x1

0

dx2 exp (−iqµ(x1 + x2)z) K1 (|z| t) t, (3.76)

h5 (q, z,m1,m2) =

∫ 1

0

dx1

∫ 1−x1

0

dx2 exp (−iqµ(x1 + x2)z) K1 (|z| t) 1

t
, (3.77)

h6 (q, z,m1,m2) =

∫ 1

0

dx1

∫ 1−x1

0

dx2 exp (−iqµ(x1 + x2)z) K1 (|z| t) (x1 + x2)

t
,

(3.78)

h7 (q, z,m1,m2) =

∫ 1

0

dx1

∫ 1−x1

0

dx2 exp (−iqµ(x1 + x2)z) K1 (|z| t) (1− x1 − x2)2

t
,

(3.79)

h8 (q, z,m1,m2) =

∫ 1

0

dx1

∫ 1−x1

0

dx2 exp (−iqµ(x1 + x2)z) K1 (|z| t) (1− x1 − x2)·

(x1 + x2)2

t3
. (3.80)
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Chapter 4

Perturbative renormalization of

staple-shaped operators related to

TMDs on the lattice

4.1 Introduction

In this work we generalize our calculations regarding Wilson-line operators (Ref. [114],

Chapter 3) to include nonlocal operators with a staple-shaped Wilson line. We compute

their Green’s functions to one-loop level in perturbation theory using dimensional (DR)

and lattice (LR) regularizations. The functional form of the Green’s functions reveals

the renormalization pattern and mixing among operators of different Dirac structure,

in each regularization. We find that these operators renormalize multiplicatively in

DR, but have finite mixing in LR. Results for both regularizations have been combined

to extract the renormalization functions in the lattice MS scheme. In addition, the

results in DR have been used to obtain the conversion factor between RI-type and

MS schemes. We also present an extension to operators containing a Wilson line of

arbitrary shape on the lattice, with n cusps.

Staple-shaped nonlocal operators (see Fig. 4.1) are crucial in studies of TMDs, which

encode important details on the internal structure of hadrons. In particular, they give

access to the intrinsic motion of partons with respect to the transverse momentum,

through the formalism of QCD factorization, that can be used to link experimental data

53
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to the three-dimensional partonic structure of hadrons. An operator with a staple of

infinite length, η→∞, (see Fig. 4.1) enters the analysis of semi-inclusive deep inelastic

scattering (SIDIS) processes1 in a kinematical region where the photon virtuality is

large and the measured transverse momentum of the produced hadron is of the order

of ΛQCD [187].

0

`

v
´v

?
´v+`

´!1

Figure 4.1: Staple-shaped gauge links as used in analyses of SIDIS and Drell-Yan
processes. For notation, see Ref. [125].

To date, only limited studies of TMDs exist in lattice QCD (see, e.g.,

Refs. [125, 128, 188, 189] and references therein), such as the generalized Sivers and

Boer-Mulders transverse momentum shifts for the SIDIS and Drell-Yan cases. These

studies include staple links of finite length that is restricted by the spatial extent of

the lattice volume. To recover the desired infinite length one checks for convergence

as the length increases, and an extrapolation to η→∞ is applied. More recently, the

connection between nonlocal operators with staple-shaped Wilson line and orbital

angular momentum [190, 191] has been discussed. This relies on a comparison

between straight and staple-shaped Wilson lines, with the staple-shaped path yielding

the Jaffe-Manohar [192, 193] definition of quark orbital angular momentum, and the

straight path yielding Ji’s definition [193–195]. The difference between these two can

be understood as the torque experienced by the struck quark as a result of final state

interactions [193, 194].

An important aspect of calculations in lattice QCD is the renormalization that needs

to be applied on the operators under study (unless conserved currents are used). As

is known from older studies [143, 145–147, 196], the renormalization of Wilson-line

operators in continuum theory (except DR) includes a divergent term e−δmL, where

δm is a dimensionful quantity whose magnitude diverges linearly with the regulator,

and L is the total length of the contour. For staple-shaped operators, L = (2|y|+ |z|),
where y ≶ 0 and z ≶ 0 define the extension of the staple in the y−z plane, chosen to

1Staple-shaped operators appear also in Drell-Yan process, with the staple oriented in the opposite
direction compared to SIDIS.
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be spatial. The existing lattice calculations of staple-shaped operators assume that the

lattice operators have the same renormalization properties as the continuum operators,

in particular that there is no mixing present. This allows one to focus on ratios between

such operators [125, 128, 188, 189] in order to cancel multiplicative renormalization,

which is currently unknown2. However, as we show in this work, this is not the case

for operators where finite mixing is present and must be taken into account.

One of the main goals of this study is to provide important information that may

impact nonperturbative studies of TMDs and potentially lead to the development of a

nonperturbative renormalization prescription similar to the case of quasi-PDFs

discussed in Chapter 3. The chapter is organized in five sections including the

following: In Sec. 4.2 we provide the set of operators under study, the lattice

formulation, the renormalization prescription for nonlocal operators that mix under

renormalization and the basics of the conversion to the MS scheme. Section 4.3

presents our main results in dimensional and lattice regularization. This includes

both the renormalization functions and conversion factors between the RI′ and MS

schemes. An extension of the work to include general nonlocal Wilson-line operators

with n cusps is presented in Sec. 4.4, while in Sec. 4.5 we give a summary and

conclusions. For completeness we include two appendices where we give a list of

Feynman parameter integrals, which appear in the Green’s functions of staple

operators (Appendix 4.A), as well as the expressions related to the renormalization of

the fermion fields (Appendix 4.B).

4.2 Calculation Setup

In this section we briefly introduce the setup of our calculation, along with the notation

used in this chapter. We give the definitions of the operators and the lattice actions; we

also provide the renormalization prescriptions that we use in the presence of operator

mixing.

2The question of whether nonlocal operators with staple-shaped Wilson lines renormalize
multiplicatively was raised in Ref. [128] after the work on straight Wilson-line operators [114].GREGORIS SPANOUDES



Chapter 4 Perturbative renormalization of staple-shaped operators related to TMDs on
the lattice 56

4.2.1 Operator setup

The staple-shaped Wilson-line operators have the following form:

OΓ ≡ ψ̄(x) Γ W (x, x+ yµ̂2, x+ yµ̂2 + zµ̂1, x+ zµ̂1) ψ(x+ zµ̂1), (4.1)

where W denotes a staple with side lengths |z| and |y|, which lies in the plane specified

by the directions µ̂1 and µ̂2 (see Fig. 4.2); it is defined by

W (x, x+yµ̂2, x+ yµ̂2 + zµ̂1, x+ zµ̂1) =

P
{(

eig
∫ y
0 dζAµ2 (x+ζµ̂2)

)
·
(
eig

∫ z
0 dζAµ1 (x+yµ̂2+ζµ̂1)

)
·
(
eig

∫ y
0 dζAµ2 (x+zµ̂1+ζµ̂2)

)† }
.

(4.2)

The symbol Γ can be one of the following Dirac matrices: 11, γ5, γµ, γ5γµ, σµν (where

µ, ν = 1, 2, 3, 4 and σµν = [γµ, γν ]/2). For convenience, we adopt the following notation

for each Dirac matrix: S ≡ 11, P ≡ γ5, Vµ ≡ γµ, Aµ ≡ γ5γµ, Tµν ≡ σµν and the

standard nomenclature for the corresponding operators: OS : scalar, OP : pseudoscalar,

OVµ : vector, OAµ : axial-vector and OTµν : tensor. Of particular interest is the study

of vector, axial-vector and tensor operators, which correspond to the three types of

TMDs: unpolarized, helicity and transversity, respectively.

The fermion and antifermion fields appearing in OΓ can have different flavor indices.

Operators with different flavor content cannot mix among themselves; further, for mass-

independent renormalization schemes, flavor-nonsinglet operators which differ only in

their flavor content will have the same renormalization factors and mixing coefficients.

Results for the flavor-singlet case will be identical to those for the flavor-nonsinglet

case at one loop, but they will differ beyond one loop and nonperturbatively; however,

the setup described below [Eqs. (4.7 – 4.12)] will be identical in both cases.

x x+ zµ̂1

x+ yµ̂2 x + yµ̂2 + zµ̂1

µ̂1

µ̂2

Figure 4.2: Staple-shaped Wilson line W (x, x+ yµ̂2, x+ yµ̂2 + zµ̂1, x+ zµ̂1).
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4.2.2 Lattice actions

In our lattice calculation we make use of the Wilson/clover fermion action [12]. In

standard notation it reads

SF =− a3

2

∑
x,f,µ

ψf (x)
[
(r − γµ)Uµ(x) ψf (x+ aµ̂) + (r + γµ)U †µ(x− aµ̂) ψf (x− aµ̂)

]
+ a3

∑
x,f

ψf (x) (4r + amf
o) ψf (x)

− a3

32

∑
x,f,µ,ν

cSW ψf (x) σµν

[
Qµν(x)−Qνµ(x)

]
ψf (x) , (4.3)

where a is the lattice spacing and

Qµν = Uµ(x) Uν(x+ aµ̂) U †µ(x+ aν̂) U †ν(x)

+ Uν(x) U †µ(x+ aν̂ − aµ̂) U †ν(x− aµ̂) Uµ(x− aµ̂)

+ U †µ(x− aµ̂) U †ν(x− aµ̂− aν̂) Uµ(x− aµ̂− aν̂) Uν(x− aν̂)

+ U †ν(x− aν̂) Uµ(x− aν̂) Uν(x+ aµ̂− aν̂) U †µ(x). (4.4)

Following common practice, we henceforth set the Wilson parameter r equal to 1. The

clover coefficient cSW will be treated as a free parameter, for wider applicability of the

results. The mass term (∼ mf
0) will be irrelevant in our one-loop calculations, since

we will apply mass-independent renormalization schemes. The above formulation, and

thus our results, are also applicable to the twisted mass fermions [197] in the massless

case. One should, however, keep in mind that, in going from the twisted basis to

the physical basis, operator identifications are modified (e.g., the scalar density, under

“maximal twist”, turns into a pseudoscalar density, etc.).

For gluons, we employ a family of Symanzik improved actions [198], of the form,

SG =
2

g2
0

[
c0

∑
plaq.

Re Tr {1− Uplaq.} + c1

∑
rect.

Re Tr {1− Urect.}

+ c2

∑
chair

Re Tr {1− Uchair} + c3

∑
paral.

Re Tr {1− Uparal.}
]
, (4.5)

where Uplaq. is the 4-link Wilson loop and Urect., Uchair, Uparal. are the three possible

independent 6-link Wilson loops (see Fig. 4.3). The Symanzik coefficients ci satisfy
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the following normalization condition:

c0 + 8c1 + 16c2 + 8c3 = 1. (4.6)

plaquette rectangle chair parallelogram

Figure 4.3: The four Wilson loops of the Symanzik improved gauge actions.

For the numerical integration over loop momenta we selected a variety of values for

ci, which are shown in Table 4.1; for the sake of compactness, in what follows we

will present only results for some of the most frequently used sets of values: Wilson,

Tree-level Symanzik and Iwasaki gluons.

Gluon action c0 c1 c2 c3

Wilson 1 0 0 0
TL Symanzik 5/3 -1/12 0 0
TILW, βc0 =8.60 2.3168064 -0.151791 0 -0.0128098
TILW, βc0 =8.45 2.3460240 -0.154846 0 -0.0134070
TILW, βc0 =8.30 2.3869776 -0.159128 0 -0.0142442
TILW, βc0 =8.20 2.4127840 -0.161827 0 -0.0147710
TILW, βc0 =8.10 2.4465400 -0.165353 0 -0.0154645
TILW, βc0 =8.00 2.4891712 -0.169805 0 -0.0163414
Iwasaki 3.648 -0.331 0 0
DBW2 12.2688 -1.4086 0 0

Table 4.1: Values of the Symanzik coefficients for selected gluon actions: Wilson,
Tree Level (TL) Symanzik, Tadpole Improved Lüscher-Weisz (TILW), Iwasaki,
Doubly Blocked Wilson (DBW2). (Note: β = 2Nc/g

2
0).

4.2.3 Renormalization prescription

The renormalization of nonlocal operators is a nontrivial process. As shown in a

previous study of straight-line operators in Ref. [114], a hidden operator mixing is

present in chirality-breaking regularizations, such as the Wilson/clover fermions on
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the lattice. This mixing does not involve any divergent terms; it stems from finite

regularization-dependent terms, which are not present in the MS renormalization

scheme, as defined in dimensional regularization (DR). Thus, our first goal is to

compute perturbatively all renormalization functions and mixing coefficients which

arise in going from the lattice regularization (LR) to the MS scheme. Ultimately, a

nonperturbative evaluation of all these quantities is desirable; to this end, and given

that the very definition of MS is perturbative, we must devise an appropriate,

RI′-type renormalization prescription which reflects the operator mixing. We will

proceed with the definition of the renormalization factors of operators, as mixing

matrices, in textbook fashion. We modify the prescription described in Ref. [114] to

correspond to the resulting operator-mixing pairs of the present calculation, which

are different from those found in the straight-line operators. The reason behind this

difference is explained in detail in Sec. 4.4. The mixing pairs found from our

calculation on the lattice are (see Sec. 4.3.2.2): (OP ,OAµ2
), (OVi ,OTiµ2

), where i can

be any of the three orthogonal directions to the µ̂2 direction. The remaining

operators do not show any mixing, and thus their renormalization factors have the

typical 1 × 1 form [see Eq. (4.9)]. Taking into account all the above, we define the

renormalization factors which relate each bare operator OΓ with the corresponding

renormalized one via the following equations:OYP
OYAµ2

 =

ZX,Y
P ZX,Y

(P,Aµ2 )

ZX,Y
(Aµ2 ,P ) ZX,Y

Aµ2

−1 OP
OAµ2

 , (4.7)

OYVi
OYTiµ2

 =

 ZX,Y
Vi

ZX,Y
(Vi,Tiµ2

)

ZX,Y
(Tiµ2

,Vi)
ZX,Y
Tiµ2

−1 OVi
OTiµ2

 , (i 6= µ2) (4.8)

OYΓ = (ZX,Y
Γ )

−1OΓ, Γ = S, Vµ2 , Ai, Tij, (i 6= j 6= µ2 6= i), (4.9)

where X(Y ) stands for the regularization (renormalization) scheme: X = DR,LR, . . .,

Y = MS,RI′, . . . As our one-loop calculations will show, in dimensional regularization

there is no operator mixing and thus the mixing matrices are diagonal; this property

is actually expected to hold to all loops, based on similar arguments as those of Refs.

[143, 144, 146].

As is standard practice, the calculation of the renormalization factors of OΓ stems from

the evaluation of the corresponding one-particle-irreducible (1-PI) two-point amputated

Green’s functions ΛΓ ≡ 〈ψf OΓ ψ̄f ′〉amp. According to the definitions of Eqs. (4.7 – 4.9),
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the relations between the bare Green’s functions and the renormalized ones are given

by3

(
ΛY
P

ΛY
Aµ2

)
= (ZX,Y

ψf
)
1/2

(ZX,Y
ψf ′

)
1/2

ZX,Y
P ZX,Y

(P,Aµ2 )

ZX,Y
(Aµ2 ,P ) ZX,Y

Aµ2

−1 ΛX
P

ΛX
Aµ2

 , (4.10)

(
ΛY
Vi

ΛY
Tiµ2

)
= (ZX,Y

ψf
)
1/2

(ZX,Y
ψf ′

)
1/2

 ZX,Y
Vi

ZX,Y
(Vi,Tiµ2

)

ZX,Y
(Tiµ2

,Vi)
ZX,Y
Tiµ2

−1 ΛX
Vi

ΛX
Tiµ2

 , (i 6= µ2) (4.11)

ΛY
Γ = (ZX,Y

ψf
)
1/2

(ZX,Y
ψf ′

)
1/2

(ZX,Y
Γ )

−1
ΛX

Γ , Γ = S, Vµ2 , Ai, Tij, (i 6= j 6= µ2 6= i), (4.12)

where ZX,Y
ψf

, ZX,Y
ψf ′

are the renormalization factors of the external quark fields of flavors

f and f ′ respectively, defined through the relation,

ψYf(f ′) = (ZX,Y
ψf(f ′)

)
−1/2

ψf(f ′). (4.13)

We note that in the case of massless quarks, the flavor content does not affect the

renormalization factors of fermion fields or the Green’s functions of OΓ, and thus we

omit the flavor index in the sequel. We also note that for regularizations which break

chiral symmetry (such as Wilson/clover fermions), an additive mass renormalization is

also needed, beyond one loop; however, this is irrelevant for our one-loop calculations.

The expressions of ΛΓ depend on the coupling constant g0, whose renormalization factor

is defined through

gY = µ(D−4)/2(ZX,Y
g )

−1
g0, (4.14)

where µ is related to the MS renormalization scale µ̄ (µ̄ ≡ µ(4π/eγE)1/2, γE is Euler’s

constant) and D is the number of Euclidean spacetime dimensions (in DR: D ≡ 4−2ε,

in LR: D = 4). For our one-loop calculations, ZX,Y
g is set to 1 (tree-level value).

There are four one-loop Feynman diagrams contributing to ΛΓ, shown in Fig. 4.4.

Diagrams d2 − d4 are further divided into subdiagrams, shown in Fig. 4.5, depending

on the side of the staple from which gluons emanate.

In our computations we make use of two renormalization schemes: the modified

minimal-subtraction scheme (MS) and a variant of the modified

3In the right-hand sides of Eqs. (4.10 – 4.12) it is, of course, understood that the regulators must
be set to their limit values.
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d1 d2 d3 d4

Figure 4.4: Feynman diagrams contributing to the one-loop calculation of the
Green’s functions of staple operator OΓ. The straight (wavy) lines represent
fermions (gluons). The operator insertion is denoted by a filled rectangle.

d4 (a) d4 (b) d4 (c)

d4 (d) d4 (e) d4 (f)

d3 (a) d3 (b) d3 (c)

d2 (a) d2 (b) d2 (c)
d2

d3

d4

Figure 4.5: Subdiagrams contributing to the one-loop calculation of the Green’s
functions of staple operator OΓ. The straight (wavy) lines represent fermions
(gluons). The operator insertion is denoted by a staple-shaped line.

regularization-independent scheme (RI′). The second one is needed for the

nonperturbative evaluations of the renormalized Green’s functions ΛΓ on the lattice,

which will be converted to MS, through appropriate conversion factors. For our

perturbative lattice calculations, the renormalization factors of OΓ in the MS scheme

can be derived by calculating Eqs. (4.10 – 4.12) for both X = LR and X = DR, and

demanding that their left-hand sides are X-independent and, thus, identical in the

two regularizations.

For the RI′ scheme, we extend the standard renormalization conditions for the bilinear

operators, consistently with the definitions of Eqs. (4.10 – 4.12),

tr
[ΛRI′

P

ΛRI′

Aµ2

 (
(Λtree

P )
†

(Λtree
Aµ2

)
†
) ]∣∣∣∣∣ qν=q̄ν

(∀ν)

= tr
[Λtree

P

Λtree
Aµ2

 (
(Λtree

P )
†

(Λtree
Aµ2

)
†
) ]

= 4Nc112×2,
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tr
[ΛRI′

Vi

ΛRI′

Tiµ2

((Λtree
Vi

)
†

(Λtree
Tiµ2

)
†
) ]∣∣∣∣∣ qν=q̄ν

(∀ν)

= tr
[Λtree

Vi

Λtree
Tiµ2

((Λtree
Vi

)
†

(Λtree
Tiµ2

)
†
) ]

= 4Nc112×2,

(i 6= µ2), (4.15)

tr
[
ΛRI′

Γ (Λtree
Γ )

†
]∣∣∣∣∣ qν=q̄ν

(∀ν)

= tr
[
Λtree

Γ (Λtree
Γ )

†
]

= 4Nc, Γ = S, Vµ2 , Ai, Tij, (i 6= j 6= µ2 6= i),

(4.16)

where Λtree
Γ ≡ Γ exp(iqµ1z) is the tree-level value of the Green’s functions of OΓ, q̄ is

the RI′ renormalization scale four-vector, and Nc is the number of colors. Note that

the traces appearing in Eqs. (4.15 – 4.16) regard only Dirac and color indices; in

particular, Eqs. (4.15) and (4.15) retain their 2 × 2 matrix form, and thus they each

correspond to four conditions. We mention that an alternative definition of the RI′

scheme can be adopted so that the renormalization factors depend only on a minimal

set of parameters, (q̄2, q̄µ1 , q̄µ2), rather than all the individual components of q̄; this

can be achieved by taking the average over all allowed values of the indices i, j, in

conditions (4.15) and (4.16), whenever i, j are present. This alternative scheme is not

so useful in lattice simulations, where, besides the two special directions of the plane

in which the staple lies, the temporal direction stands out from the remaining spatial

directions; this leaves us with only one nonspecial direction, and thus this choice of

normalization is not particularly advantageous in this case.

The RI′ renormalization factors of fermion fields can be derived by imposing the

massless normalization condition,

tr
[
SRI′(Stree)

−1
]∣∣∣∣∣
q2=q̄2

= tr
[
Stree(Stree)

−1
]

= 4Nc, (4.17)

where SRI′ ≡ 〈ψRI′ψ̄RI′〉 is the RI′-renormalized quark propagator and Stree ≡ (i/q)−1 is

its tree-level value.

4.2.4 Conversion to the MS scheme

The conversion of the nonperturbative RI′-renormalized Green’s functions ΛRI′

Γ to the

MS scheme can be performed only perturbatively, since the definition of MS is

perturbative in nature. The corresponding one-loop conversion factors between the
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two schemes are extracted from our calculations, and their explicit expressions are

presented in Sec. 4.3. As a consequence of the observed operator-pair mixing, some of

the conversion factors will be 2× 2 matrices, just as the renormalization factors of the

operators. Following the definitions of Eqs. (4.7 – 4.8), they are defined asCMS,RI′

P CMS,RI′

(P,Aµ2 )

CMS,RI′

(Aµ2 ,P ) CMS,RI′

Aµ2

=

ZX,MS
P ZX,MS

(P,Aµ2 )

ZX,MS
(Aµ2 ,P ) ZX,MS

Aµ2

−1ZX,RI′

P ZX,RI′

(P,Aµ2 )

ZX,RI′

(Aµ2 ,P ) ZX,RI′

Aµ2

, (4.18)

 CMS,RI′

Vi
CMS,RI′

(Vi,Tiµ2
)

CMS,RI′

(Tiµ2
,Vi)

CMS,RI′

Tiµ2

=

ZX,MS
Vi

ZX,MS
(Vi,Tiµ2

)

ZX,MS
(Tiµ2

,Vi)
ZX,MS
Tiµ2

−1ZX,RI′

Vi
ZX,RI′

(Vi,Tiµ2
)

ZX,RI′

(Tiµ2
,Vi)

ZX,RI′

Tiµ2

, (i 6= µ2),

(4.19)

CMS,RI′

Γ = (ZX,MS
Γ )

−1
(ZX,RI′

Γ ), Γ = S, Vµ2 , Ai, Tij, (i 6= j 6= µ2 6= i). (4.20)

Being regularization independent, they can be evaluated more easily in X = DR; in

this regularization there is no operator mixing, and thus the conversion factors of OΓ

turn out to be diagonal. We note in passing that the definition of the MS scheme

depends on the prescription used for extending γ5 to D dimensions4; this, in particular,

will affect conversion factors for the pseudoscalar and axial-vector operators. However,

such a dependence will only appear beyond one loop.

Given that the conversion factors are diagonal, the Green’s functions of OΓ in the RI′

scheme can be directly converted to the MS scheme through the following relation,

valid for all Γ:

ΛMS
Γ = (CMS,RI′

ψ )
−1
CMS,RI′

Γ ΛRI′

Γ , (4.21)

where CMS,RI′

ψ ≡ (ZX,MS
ψ )

−1
ZX,RI′

ψ is the conversion factor for fermion fields.

4.3 Calculation procedure and Results

In this section we proceed with the one-loop calculation of the renormalization factors

of the staple operators in the RI′ and MS renormalization schemes, both in dimensional

and lattice regularizations. We apply the prescription described above, and we present

our final results. We also include the one-loop expressions for the conversion factors

between the two schemes.
4See, e.g., Refs. [50, 179–183] for a discussion of four relevant prescriptions and some conversion

factors among them.
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4.3.1 Calculation in dimensional regularization

4.3.1.1 Methodology

We calculate the bare Green’s functions of the staple operators in D Euclidean

spacetime dimensions (where D ≡ 4 − 2ε and ε is the regulator), in which

momentum-loop integrals are well-defined. The methodology for calculating these

integrals is briefly described in the work of Ref. [183] regarding straight Wilson-line

operators, as well as on Chapter 3 section 3.3, and it is summarized below: We follow

the standard procedure of introducing Feynman parameters. The momentum-loop

integrals depend on exponential functions of the µ1- and/or µ2-component of the

internal momentum [e.g., exp(ipµ1z), exp(ipµ1ζ)]. The integration over the

components of momentum without an exponential dependence is performed using

standard D-dimensional formulae (e.g., [184]), followed by a subsequent nontrivial

integration over the remaining components pµ1 and/or pµ2 . The resulting expressions

contain a number of Feynman parameter integrals and/or integrals over ζ-variables

stemming from the definition of OΓ, which depend on modified Bessel functions of the

second kind, Kn and which do not have a closed analytic form; they are listed in

Appendix 4.A. We expand these expressions as Laurent series in ε and we keep only

terms up to O(ε0). The full expressions of the bare Green’s functions of OΓ are given

in the following subsection.

4.3.1.2 Green’s functions in dimensional regularization

In this subsection, the full expressions for the one-loop amputated Green’s functions

of the staple operators Λ1−loop
Γ , calculated in dimensional regularization (DR), are

presented in a compact form [Eqs. (4.22 – 4.31)]. From these expressions it is

straightforward to derive the renormalized Green’s functions, both in the MS scheme

[by removing the O(1/ε) terms] and in any variant of the RI′ scheme, as described in

Sec. 4.2.3; the corresponding conversion factors [Eqs. (4.18 – 4.20)] also follow

immediately. The functions Λ1−loop
Γ depend on integrals of modified Bessel functions

of the second kind, Kn, over Feynman parameters and/or over ζ-variables stemming

from the definition of the staple operators. These integrals are denoted by

Pi ≡ Pi(q
2, qµ1 , z), Qi ≡ Qi(q

2, qµ1 , qµ2 , z, y) and Ri ≡ Ri(q
2, qµ1 , qµ2 , z, y); they are

listed in Appendix 4.A [Eqs. (4.67 – 4.84)].
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Λ1-loop
S =

g2CF
16π2

{
Λtree
S

[[[
(8− β)

(
2 +

1

ε
+ log

(
µ2

q2

))
+ 2(β + 6)γE + (β + 2) log

(
q2z2

4

)
+ 4 log

(
q2y2

4

)
+ 4

(
2
y

z
tan−1

(y
z

)
− log

(
1 +

y2

z2

))
+ 2(β + 2)P1

− 2β
√
q2 |z|P4 + 2qµ1

(
2Q4 − i

(
2Q1 − βz(P1 − P2)

))
+ 4qµ2

(
R6 −R2 + i(R1 −R4)

)]]]
+ Λtree

Tµ1µ2

[[[
4
√
q2(yQ3 + zR5)

]]]
+ Λtree

Vµ1
/q

[[[
− 4Q4

]]]
+ Λtree

Vµ2
/q

[[[
4i(R4 −R1)

]]]}
,

(4.22)

Λ1-loop
P = γ5Λ1-loop

S , (4.23)

Λ1-loop
Vµ1

=
g2CF
16π2

{
Λtree
Vµ1

[[[
β + (8− β)

(
2 +

1

ε
+ log

(
µ2

q2

))
+ 2(β + 6)γE + (β + 2) log

(
q2z2

4

)
+ 4 log

(
q2y2

4

)
+ 4

(
2
y

z
tan−1

(y
z

)
− log

(
1 +

y2

z2

))
+ 2(βP1 − 2P2)

− 1

2
βq2z2(P1 − P2)− 2iqµ1

(
2(Q1 +Q2 + zP3)− βz(P1 − P2)

)
− 2
√
q2 |z| (βP4 − 2P5) + 4qµ2

(
R6 −R2 + i(R1 −R4)

)]]]
+ Λtree

Vµ2

[[[
4i

(√
q2(yQ5 + zR8) + qµ1

(
R4 −R1 + i(R3 −R7)

))]]]
+ Λtree

S /q

[[[
i
(

4(Q2 − zP3)− β
√
q2z |z| (P4 − P5)

)
+ qµ1

(
2
|z|√
q2

(
(β − 2)P4 + 2P5

)
+ βz2P3

)]]]

+ Λtree
Tµ1µ2

/q

[[[
4i(R4 −R1)

]]]}
, (4.24)
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Λ1-loop
Vµ2

=
g2CF
16π2

{
Λtree
Vµ2

[[[
(8− β)

(
2 +

1

ε
+ log

(
µ2

q2

))
+ 2(β + 6)γE + (β + 2) log

(
q2z2

4

)
+ 4 log

(
q2y2

4

)
+ 4

(
2
y

z
tan−1

(y
z

)
− log

(
1 +

y2

z2

))
+ 2(βP1 − 2P2)

− β
√
q2 |z|P4 + 2qµ1

(
2Q4 − i

(
2Q1 − βz(P1 − P2)

))
− 4qµ2(R2 +R3 −R6 −R7)

]]]
+ Λtree

Vµ1

[[[
− i
(

4
√
q2(yQ5 + zR8)

+ qµ2

(
4(Q2 + zP3 − iQ4)− β

√
q2z |z| (P4 − P5)

))]]]
+ Λtree

S /q

[[[
4(R3 −R7) + qµ2

(
2
|z|√
q2

(
(β − 2)P4 + 2P5

)
− βz2P3

)]]]

+ Λtree
Tµ1µ2

/q

[[[
4Q4

]]]}
, (4.25)

Λ1-loop
Vν

=
g2CF
16π2

{
Λtree
Vν

[[[
(8− β)

(
2 +

1

ε
+ log

(
µ2

q2

))
+ 2(β + 6)γE + (β + 2) log

(
q2z2

4

)
+ 4 log

(
q2y2

4

)
+ 4

(
2
y

z
tan−1

(y
z

)
− log

(
1 +

y2

z2

))
+ 2(βP1 − 2P2)

− β
√
q2 |z|P4 + 2qµ1

(
2Q4 − i

(
2Q1 − βz(P1 − P2)

))
+ 4qµ2

(
R6 −R2 + i(R1 −R4)

)]]]
+ Λtree

Vµ1
qν

[[[
− i
(

4(Q2 + zP3 − iQ4)− β
√
q2 z |z| (P4 − P5)

)]]]
+ Λtree

Vµ2
qν

[[[
4i
(
R4 −R1 + i(R3 −R7)

)]]]
+ εµ1µ2νρ Λtree

Aρ

[[[
4
√
q2(yQ3 + zR5)

]]]
+ Λtree

S /qqν

[[[
2
|z|√
q2

(
(β − 2)P4 + 2P5

)
− βz2P3

]]]
+ Λtree

Tµ1ν
/q

[[[
4Q4

]]]

+ Λtree
Tµ2ν

/q

[[[
4i(R1 −R4)

]]]}
, (ν 6= µ1, µ2) (4.26)

Λ1-loop
Aµ1

= γ5Λ1-loop
Vµ1

, Λ1-loop
Aµ2

= γ5Λ1-loop
Vµ2

Λ1-loop
Aν

= γ5Λ1-loop
Vν

, (ν 6= µ1, µ2) (4.27)
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Λ1-loop
Tµ1µ2

=
g2CF
16π2

{
Λtree
Tµ1µ2

[[[
β + (8− β)

(
2 +

1

ε
+ log

(
µ2

q2

))
+ 2(β + 6)γE + (β + 2) log

(
q2z2

4

)
+ 4 log

(
q2y2

4

)
+ 4

(
2
y

z
tan−1

(y
z

)
− log

(
1 +

y2

z2

))
+ 2(β − 2)P1

− 1

2
βq2z2(P1 − P2)− 2iqµ1

(
2(Q1 +Q2)− βz(P1 − P2)

)
− β

√
q2 |z|P4 − 4qµ2(R2 +R3 −R6 −R7)

]]]
+ Λtree

S

[[[
− 4
√
q2(yQ3 + zR5) + 4iqµ1

(
R4 −R1 + i(R3 −R7)

)
+ iqµ2

(
4(Q2 − iQ4)− β

√
q2 z |z| (P4 − P5)

)]]]
+ Λtree

Vµ1
/q

[[[
4(R3 −R7) + βqµ2z

2P3

]]]
+ Λtree

Vµ2
/q

[[[
− i
(

4Q2 − β
√
q2 z |z| (P4 − P5)

)
− βqµ1z

2P3

]]]}
, (4.28)

Λ1-loop
Tµ1ν

=
g2CF
16π2

{
Λtree
Tµ1ν

[[[
β + (8− β)

(
2 +

1

ε
+ log

(
µ2

q2

))
+ 2(β + 6)γE + (β + 2) log

(
q2z2

4

)
+ 4 log

(
q2y2

4

)
+ 4

(
2
y

z
tan−1

(y
z

)
− log

(
1 +

y2

z2

))
+ 2(β − 2)P1

− 1

2
βq2z2(P1 − P2)− 2iqµ1

(
2(Q1 +Q2)− βz(P1 − P2)

)
− β

√
q2 |z|P4 + 4qµ2

(
R6 −R2 + i(R1 −R4)

)]]]
+ Λtree

Tµ1µ2

[[[
4iqν(R4 −R1 + i(R3 −R7))

]]]
+ Λtree

Tµ2ν

[[[
4i
(√

q2(yQ5 + zR8) + qµ1(R4 −R1 + i(R3 −R7))
)]]]

+ Λtree
S qν

[[[
i
(

4(Q2 − iQ4)− β
√
q2 z |z| (P4 − P5)

)]]]
+ Λtree

Vµ1
/q

[[[
βqνz

2P3

]]]
+ Λtree

Vν /q

[[[
− i
(

4Q2 − β
√
q2 z |z| (P4 − P5)

)
− βqµ1z

2P3

]]]
+ εµ1µ2νρ Λtree

Aρ /q

[[[
4i(R1 −R4)

]]]}
, (ν 6= µ1, µ2) (4.29)

Λ1-loop
Tµ2ν

= −γ5 εµ1µ2νρ Λ1-loop
Tµ1ρ

, (ν 6= µ1, µ2) (4.30)
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Λ1-loop
Tνρ

= −γ5 εµ1µ2νρ Λ1-loop
Tµ1µ2

, (ν, ρ 6= µ1, µ2). (4.31)

In Eqs. (4.30, 4.31), εµ1µ2νρ is the Levi-Civita tensor, ε1234 = 1.

4.3.1.3 Renormalization factors

Our one-loop results for the renormalization factors of the staple operators in both MS

and RI′ schemes are presented below.

In the MS scheme, only the pole parts [O(1/ε) terms] contribute to the renormalization

factors. Diagram d1 has no 1/ε terms, as it is finite in D = 4 dimensions. Also, it gives

the same expressions with the corresponding straight-line operators, because it involves

only the zero-gluon operator vertex. This statement is true in any regularization. As

we expected, the divergent terms arise from the remaining diagrams d2 − d4, in which

end point [Eq. (4.33)], contact [Eq. 4.34)] and cusp divergences [Eq. (4.35)] arise. We

provide below the pole parts for each subdiagram:

Λd1
Γ |1/ε = Λ

d2(a)
Γ |1/ε = Λ

d2(b)
Γ |1/ε = Λ

d3(b)
Γ |1/ε = Λ

d3(c)
Γ |1/ε = Λ

d4(e)
Γ |1/ε = 0, (4.32)

Λ
d2(c)
Γ |1/ε = Λ

d3(a)
Γ |1/ε =

g2CF
16π2

Λtree
Γ

1

ε
(1− β), (4.33)

Λ
d4(a)
Γ |1/ε = Λ

d4(b)
Γ |1/ε = Λ

d4(c)
Γ |1/ε =

g2CF
16π2

Λtree
Γ

1

ε
(2 + β), (4.34)

Λ
d4(d)
Γ |1/ε = Λ

d4(f)
Γ |1/ε =

g2CF
16π2

Λtree
Γ

1

ε
(−β), (4.35)

where CF = (N2
c − 1)/(2Nc) and β is the gauge fixing parameter, defined such that

β = 0 (1) corresponds to the Feynman (Landau) gauge. It is deduced that diagrams

d2, d3 give the same pole terms as in the case y = 0, since only end points affect these

diagrams (no cusps). Also, the result for the cusp divergences of angle π/2 agrees

with previous studies of nonsmooth Wilson-line operators for a general cusp angle θ

[144, 148, 149]: it follows from these studies that the one-loop result corresponding to

each of the diagrams d4(d) and d4(f) is given by −(g2CF )/(16π2ε) (2θ cot θ+β), which

is indeed in agreement with Eq. (4.35). By imposing that the MS-renormalized Green’s

functions of OΓ are equal to the finite parts (exclude pole terms) of the corresponding

bare Green’s functions, we derive the renormalization factors of OΓ in MS, using Eqs.
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(4.10 – 4.12); the result is given below,

ZDR,MS
Γ = 1 +

g2CF
16π2

7

ε
+O(g4), (4.36)

where we make use of the one-loop expression for the renormalization factor ZDR,MS
ψ ,

given in Appendix 4.B [Eq. (4.85)]. Since the pole parts are multiples of the tree-level

values Λtree
Γ , the nondiagonal elements of the MS renormalization factors, defined in

Eqs. (4.7, 4.8), are equal to zero. The diagonal elements, shown in Eq. (4.36), depend

neither on the Dirac structure, nor on the lengths of the staple segments; further, they

are gauge invariant.

In the RI′ scheme, there are additional finite terms, which contribute to the

renormalization factors of OΓ [according to the conditions of Eqs. (4.15 – 4.16)].

These terms depend on the external momentum, and they stem from all Feynman

diagrams. They are also multiples of the tree-level values of the Green’s functions. As

a consequence, the RI′ mixing matrices, defined in Eqs. (4.7, 4.8), are also diagonal.

Therefore, there is no operator mixing in DR. The results for ZDR,RI′

Γ , together with

ZDR,MS
Γ [Eq. (4.36)], lead directly to the conversion factors CMS,RI′

Γ through the

relation,

ZDR,RI′

Γ = CMS,RI′

Γ +
g2CF
16π2

7

ε
+O(g4). (4.37)

Our resulting expressions for the conversion factors are given in the following subsection

[Eqs. (4.38 – 4.42)].

4.3.1.4 Conversion factors

We present below our results for the conversion factors of staple operators between

the RI′ and MS schemes. Since the renormalization factors of OΓ are diagonal in both

MS and RI′ schemes, the conversion factors will also be diagonal. Our expressions

depend on integrals of modified Bessel functions of the second kind Kn, over one

Feynman parameter and possibly over one of the variables ζ appearing in Eq. (4.2).

These integrals are denoted by Pi ≡ Pi(q̄
2, q̄µ1 , z), Qi ≡ Qi(q̄

2, q̄µ1 , q̄µ2 , z, y) and

Ri ≡ Ri(q̄
2, q̄µ1 , q̄µ2 , z, y); they are defined in Eqs. (4.67 – 4.84) of Appendix 4.A.GREGORIS SPANOUDES
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CRI′,MS
S = 1 +

g2CF
16π2

{
(15− β) + 2(β + 6)γE + 7 log

(
µ2

q2

)
+ (β + 2) log

(
q2z2

4

)
+ 4 log

(
q2y2

4

)
+ 4

(
2
y

z
tan−1

(y
z

)
− log

(
1 +

y2

z2

))
+ 2(β + 2)P1

− 2β
√
q2 |z|P4 − 2iqµ1

(
2Q1 − βz(P1 − P2)

)
+ 4qµ2

(R6 −R2)

}
+O(g4), (4.38)

CRI′,MS
Vµ1

= 1 +
g2CF
16π2

{
15 + 2(β + 6)γE + 7 log

(
µ2

q2

)
+ (β + 2) log

(
q2z2

4

)
+ 4 log

(
q2y2

4

)
+ 4

(
2
y

z
tan−1

(y
z

)
− log

(
1 +

y2

z2

))
+ 2(βP1 − 2P2)

− 2
√
q2 |z| (βP4 − 2P5)− 1

2
βq2z2(P1 − P2) + 4qµ2

(R6 −R2)

− iqµ1

(
4Q1 − 2z

(
β(P1 − P2)− 4P3

)
+ β

√
q2 z |z| (P4 − P5)

)
+ q2

µ1

(
2
|z|√
q2

(
(β − 2)P4 + 2P5

)
+ βz2P3

)}
+O(g4), (4.39)

CRI′,MS
Vν

= 1 +
g2CF
16π2

{
(15− β) + 2(β + 6)γE + 7 log

(
µ2

q2

)
+ (β + 2) log

(
q2z2

4

)
+ 4 log

(
q2y2

4

)
+ 4

(
2
y

z
tan−1

(y
z

)
− log

(
1 +

y2

z2

))
+ 2(βP1 − 2P2)− β

√
q2 |z|P4 − 2iqµ1

(
2Q1 − βz(P1 − P2)

)
+ 4qµ2

(R6 −R2) + q2
ν

(
2
|z|√
q2

(
(β − 2)P4 + 2P5

)
− βz2P3

)}
+O(g4), (ν 6= µ1), (4.40)
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CRI′,MS
Tµ1ν

= 1 +
g2CF
16π2

{
15 + 2(β + 6)γE + 7 log

(
µ2

q2

)
+ (β + 2) log

(
q2z2

4

)
+ 4 log

(
q2y2

4

)
+ 4

(
2
y

z
tan−1

(y
z

)
− log

(
1 +

y2

z2

))
+ 2(β − 2)P1 − β

√
q2 |z|P4 −

1

2
βq2z2(P1 − P2) + 4qµ2

(R6 −R2)

− iqµ1

(
4Q1 − 2βz(P1 − P2) + β

√
q2 z |z| (P4 − P5)

)
+ βz2

(
q2
µ1

+ q2
ν

)
P3

}
+O(g4), (ν 6= µ1), (4.41)

CP = CS, CAµ1
= CVµ1

, CAν = CVν , CTρσ = CTµ1ν
, (µ1, ν, ρ, σ are all different).

(4.42)

We note that the real parts of the above expressions, as well as the bare Green’s

functions, are not analytic functions of z (y) near z → 0 (y → 0); in particular, the

limit z → 0 leads to quadratic divergences, while the limit y → 0 leads to logarithmic

divergences. The singular limits were expected, due to the appearance of contact terms

beyond tree level. In the case y = 0, the staple operators are replaced by straight-line

operators of length |z|, the renormalization of which is addressed in our work of Ref.

[114]. In the case z = 0, the nonlocal operators are replaced by local bilinear operators,

the renormalization of which is studied, e.g., in Refs. [49, 50, 182, 186].

Since our results for the conversion factors will be combined with nonperturbative data,

it is useful to employ certain values of the free parameters mostly used in simulations.

To this end, we set: µ̄ = 2 GeV and β = 1 (Landau gauge). For the RI′ scale we

employ values which are relevant for simulations by ETMC [110], as follows: aq̄ =

(2π
L
n1,

2π
L
n2,

2π
L
n3,

2π
T

(n4 + 1
2
)), where a is the lattice spacing, (L3×T ) is the lattice size

and (n1, n2, n3, n4) is a 4-vector defined on the lattice. A standard choice of values for

ni is the case n1 = n2 = n3 6= n4, in which the temporal component n4 stands out from

the remaining equal spatial components. As an example we apply (n1, n2, n3, n4) =

(4, 4, 4, 9), L = 32, T = 64 and a = 0.09 fm. For a better assessment of our results,

we plot in Fig. 4.6 the real and imaginary parts of the quantities CΓ, defined through

CRI′,MS
Γ = 1 + g2CF

16π2 CΓ + O(g4), as functions of the dimensionless variables z/a and

y/a, using the above parameter values. In the case y = 0, we use the expressions of

the conversion factors for straight-line operators, calculated in Ref. [114], while in the

case z = 0, we use the one-loop expressions of the conversion factors for local bilinear

operators, written in Refs. [49, 50]. For definiteness, we choose µ1 = 1 and µ2 = 2.
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Figure 4.6: Real (left panels) and imaginary (right panels) parts of the quantities
CS = CP , CV1 = CA1 and CV2 = CV3 = CA2 = CA3 , involved in the one-loop

expressions of the conversion factors: CRI′,MS
Γ = 1 + g2CF

16π2 CΓ +O(g4), as functions
of z/a and y/a [for β = 1, µ̄ = 2 GeV , a = 0.09 fm,
aq̄ = (2π

L n1,
2π
L n2,

2π
L n3,

2π
T (n4 + 1

2)), L = 32, T = 64, (n1, n2, n3, n4) = (4, 4, 4, 9)].
Here, we choose µ1 = 1 and µ2 = 2.
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Graphs for CV4 = CA4 , CT12 = CT13 = CT42 = CT34 and CT14 = CT32 are not included in

Fig. 4.6, as their resulting values are very close to those of CV2 (fractional differences:

. 10−3).

The real parts of CΓ are even functions of both z/a and y/a. In Fig. 4.6, one observes

that, for large values of z/a, they tend to stabilize, while for large values of y/a they

tend to increase; thus, a two-loop calculation of the conversion factors is essential

for more sufficiently convergent results. Further, the dependence on the choice of Γ

becomes milder for increasing values of z/a and y/a. Regarding the imaginary parts

of CΓ, they are odd functions of z/a and even functions of y/a. For large values of z/a

or y/a, they tend to converge to a positive value. In particular, when both z/a and

y/a take large values, the imaginary parts tend to zero. For large values of y/a and,

simultaneously, small values of z/a, the imaginary parts of CΓ demonstrate a small

fluctuation around zero, which differs for each Γ, either in form (e.g., CV2 and CS have

opposite signs for given values of z/a, y/a) or in magnitude (e.g., the fluctuation of

CS is bigger and sharper than the fluctuation of CV1). As regards the q̄ dependence,

we have not included further graphs for the sake of conciseness; however, testing a

variety of values for the components of aq̄, used in simulations, we find no significant

difference, especially for large values of z/a and y/a.

4.3.2 Calculation in lattice regularization

4.3.2.1 Methodology

At first, let us give the lattice version of the staple operators,

Olatt.
Γ ≡ ψ̄(x) Γ W (x, x+maµ̂2, x+maµ̂2 + naµ̂1, x+ naµ̂1) ψ(x+ naµ̂1), (4.43)

W (x, x+maµ̂2, x+maµ̂2 + naµ̂1, x+ naµ̂1) ≡(m∓1∏
`=0

U±µ2(x+ `aµ̂2)
)
·
( n∓1∏
`=0

U±µ1(x+maµ̂2 + `aµ̂1)
)
·

(m∓1∏
`=0

U±µ2(x+ naµ̂1 + `aµ̂2)
)†
, n ≡ z/a, m ≡ y/a, (4.44)
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where upper (lower) signs of the first and third parenthesis correspond tom > 0 (m < 0)

and upper (lower) signs of the second parenthesis correspond to n > 0 (n < 0). The

calculation of the bare Green’s functions of such nonlocal operators on the lattice is

more complicated than the corresponding calculation of local operators; the products

of gluon links lead to expressions whose summands, taken individually, contain possible

additional IR singularities along a whole hyperplane, instead of a single point [terms

∼ 1/ sin(pµ/2) or 1/ sin2(pµ/2)]. Also, the UV-regulator limit, a→ 0, is more delicate

in this case, as the Green’s functions depend on a through the additional combinations

z/a, y/a, besides the combination aq (where q is the external quark momentum). Thus,

we have to modify the standard methods of evaluating Feynman diagrams on the lattice

[199], in order to apply them in the case of nonlocal operators.

The procedure that we used for the calculation of the bare Green’s functions of Olatt.
Γ is

briefly described in the work of Ref. [114] regarding straight Wilson-line operators, and

it is summarized below: The main task is to write the lattice expressions, in terms of

continuum integrals, which are easier to calculate, plus lattice integrals independent of

aq; however, the latter will still have a nontrivial dependence on z/a and y/a. To this

end, we perform a series of additions and subtractions to the original integrands: we

extend the standard procedure of Kawai et al. [199], in order to isolate the possible IR

divergences stemming from the integration over the pµ component, which appears on

the integrals’ denominators [∼ 1/ sin(pµ/2) or 1/ sin2(pµ/2)]. To accomplish this, we

add and subtract to the original integrands the lowest order of their Laurent expansion

in pµ. Also, in order to end up with continuum integrals, we add and subtract the

continuum counterparts of the integrands; then, the integration region can be split up

into two parts: the whole domain of the real numbers minus the region outside the

Brillouin zone. The above operations allow us to separate the original expressions into

a sum of two parts: one part contains integrals which can be evaluated explicitly for

nonzero values of a, leading to linear or logarithmic divergences, and a second part for

which a naive a→ 0 limit can be taken, e.g.,∫
dpf(p)ei(z/a)p → 0,

∫
dpf(p) sin2(

z

a
p)→ 1

2

∫
dpf(p). (4.45)

The numerical integrations entail a very small systematic error, which is smaller than

the last digit presented in all results shown in the sequel.
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4.3.2.2 Green’s functions and operator mixing

The results for the bare lattice Green’s functions of the staple operators are presented

below in terms of the MS-renormalized Green’s functions, derived by the corresponding

calculation in DR,

ΛLR
Γ = ΛMS

Γ − g2CF
16 π2

ei qµ1z · F + O(g4), (4.46)

F =
[
Γ
(
α1+3.7920 β+α2

|z|+ 2 |y|
a

+log
(
a2µ̄2

)
(8− β)

)
+sgn(y)

[
Γ, γµ2

] (
α3+α4 cSW

)]
,

(4.47)

where αi are numerical constants which depend on the gluon action in use; their values

are given in Table 4.2 for the Wilson, Tree-level Symanzik and Iwasaki gluon actions5.

We note that α2, α3, and α4 have the same values (up to a sign) as the corresponding

coefficients in the straight-line operators [114].

Gluon action α1 α2 α3 α4

Wilson -22.5054 19.9548 7.2250 -4.1423
Tree-level Symanzik -22.0931 17.2937 6.3779 -3.8368
Iwasaki -18.2456 12.9781 4.9683 -3.2638

Table 4.2: Numerical values of the coefficients α1−α4 appearing in the one-loop
bare lattice Green’s functions ΛLR

Γ .

In Eqs. (4.46, 4.47), we observe that there is a linear divergence [O(1/a)], which

depends on the length of the staple line (|z| + 2 |y|); this was expected according to

the studies of closed Wilson-loop operators in regularizations other than DR [143].

This divergence arises from the tadpolelike diagram d4 and in particular from the

subdiagrams d4(a), d4(b), d4(c). We note that the coefficient α2 entering the strength

of the linear divergence, is given by

α2 = −1

2

∫ π

−π

d3p

(2π)3
D(p̄)νν , (4.48)

where D(p)µν is the gluon propagator, ν̂ is the direction parallel to each straight-

line segment of the Wilson line and p̄ equals the four-vector momentum p with pν →
0. Moreover, additional contributions of different Dirac structures than the original

operators appear ([Γ, γµ2 ] terms); these contributions arise from the “sail” diagrams

5A more precise result for the numerical constant 3.7920, which multiplies the β parameter, is
16π2P2, where P2 = 0.02401318111946489(1) [39].
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d2, d3 and in particular from the subdiagrams d2(c), d3(a). In order to obtain on the

lattice the same results for the MS-renormalized Green’s functions as those obtained

in DR, we have to subtract such regularization dependent terms in the renormalization

process. A simple multiplicative renormalization cannot eliminate these terms; the

introduction of mixing matrices is therefore necessary. However, for the operators with

Γ = S, Vµ2 , Ai, Tij, where i 6= j 6= µ2 6= i, the contribution [Γ, γµ2 ] is zero, and, thus,

there is no mixing for these operators. In conclusion, there is mixing between the

operators (OP ,OAµ2
), (OVi ,OTiµ2

), where i 6= µ2, as we have mentioned previously.

This feature must be taken into account in the nonperturbative renormalization of

TMDs.

4.3.2.3 Renormalization factors

The MS renormalization factors can be derived by the requirement that the terms in

Eq. (4.47) vanish in the renormalized Green’s functions. Thus, through Eqs. (4.10 –

4.12), one obtains the following results for the diagonal and nondiagonal elements of

the renormalization factors:

ZLR,MS
Γ = 1 +

g2CF
16π2

[
(eψ1 + 1− α1)− α2

|z|+ 2 |y|
a

+ eψ2 cSW + eψ3 c
2
SW − 7 log

(
a2µ̄2

) ]
+ O(g4), (4.49)

ZLR,MS
(P,Aµ2 ) = ZLR,MS

(Aµ2 ,P ) = ZLR,MS
(Vi,Tiµ2

) = ZLR,MS
(Tiµ2

,Vi)
=
g2CF
16π2

sgn(y)(−2)
[
α3 + α4cSW

]
+O(g4),

(4.50)

where the coefficients eψi stem from the renormalization factor of the fermion field

ZLR,MS
ψ , given in Appendix 4.B [Eq. (4.89)].

A number of observations are in order, regarding the above one-loop results: both

diagonal and nondiagonal elements of the renormalization factors are operator

independent, just as the corresponding renormalization factors in DR. Also, the

dependence of the diagonal elements on the clover coefficient cSW is entirely due to

the renormalization factor of fermion fields; on the contrary, the dependence of the

nondiagonal elements on cSW is derived from the Green’s functions of the operators,

and in particular it is different for each choice of gluon action. Consequently, tuning

the clover coefficient we can set the nondiagonal elements of the renormalization

factors to zero and, thus, suppress the operator mixing. At one-loop level, this can be
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done by choosing cSW = −α3/α4. For the gluon actions given in this paper, the

values of the coefficient cSW , which lead to no mixing at one loop, are 1.7442 for

Wilson action, 1.6623 for tree-level Symanzik action and 1.5222 for Iwasaki action;

these values are the same as those, which eliminate the mixing in the case of

straight-line operators [114].

In the RI′ scheme, the renormalization factors can be read off our expressions for the

conversion factors, given in Eqs. (4.38 – 4.42), in a rather straightforward way,

ZLR,RI′

Γ = CMS,RI′

Γ +
g2CF
16π2

[
(eψ1 + 1− α1)− α2

|z|+ 2 |y|
a

+ eψ2 cSW + eψ3 c
2
SW

− 7 log
(
a2µ̄2

) ]
+O(g4), (4.51)

ZLR,RI′

(P,Aµ2 ) = ZLR,RI′

(Aµ2 ,P ) = ZLR,RI′

(Vi,Tiµ2
) = ZLR,RI′

(Tiµ2
,Vi)

=
g2CF
16π2

sgn(y)(−2)
[
α3 + α4cSW

]
+O(g4).

(4.52)

Since the conversion factors are diagonal, the one-loop nondiagonal elements of the RI′

renormalization factors are equal to the corresponding MS expressions.

4.4 Extension to general Wilson-line lattice

operators with n cusps

This work on staple operators, along with studies on straight-line operators ([114],

Chapter 3), lead us to some interesting conclusions about nonlocal operators. From

these two cases, we can completely deduce the renormalization coefficients of a

general Wilson-line operator with n cusps, defined on the lattice; in particular, we

determine both the divergent (linear and logarithmic) and the finite parts of

multiplicative renormalizations, as well as all mixing coefficients. We can also justify

the nature of the mixing in each case.

All the above coefficients can be deduced from the difference between the bare Green’s

functions on the lattice and the corresponding MS-renormalized Green’s functions,

obtained in DR: ∆ΛΓ ≡ ΛLR
Γ −ΛMS

Γ . Below we have gathered results for these differences,

in the case of both straight-line (Ref. [114]) and staple (this work) operators, presented

separately for each Feynman diagram:
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Straight-line operators,

(
Λstraight

Γ

)LR

di
−
(

Λstraight
Γ

)MS

di
≡ −g

2CF
16π2

eiqµ1z · F straight
di

+O(g4), (i = 1, 2, 3, 4),

(4.53)

where

F straight
d1

= 0, (4.54)

F straight
d2+d3

= 2 Γ
[
α5 + 3.7920 β + (1− β) log(a2µ̄2)

]
+ sgn(z)(Γγµ1 + γµ1Γ)(α3 + α4cSW ),

(4.55)

F straight
d4

= Γ

[
α6 − 3.7920 β + (2 + β) log(a2µ̄2) + α2

|z|
a

]
. (4.56)

Staple operators,

(
Λstaple

Γ

)LR

di
−
(

Λstaple
Γ

)MS

di
≡ −g

2CF
16π2

eiqµ1z · F staple
di

+O(g4), (i = 1, 2, 3, 4), (4.57)

where

F staple
d1

= 0, (4.58)

F staple
d2+d3

= 2 Γ
[
α5 + 3.7920 β + (1− β) log(a2µ̄2)

]
+ sgn(y)(Γγµ2 − γµ2Γ)(α3 + α4cSW ),

(4.59)

F staple
d4

= Γ
{

3
[
α6 − 3.7920 β + (2 + β) log(a2µ̄2)

]
+ α2

|z|+ 2|y|
a

+2
[
α7 + 3.7920 β − β log(a2µ̄2)

] }
. (4.60)

The coefficients αi are numerical constants, which depend on the Symanzik coefficients

of the gluon action in use; their values for Wilson, tree-level Symanzik and Iwasaki

gluons are given in Tables 4.2 and 4.3. Comparing the above results for the two types

Gluon action α5 α6 α7

Wilson -4.4641 -4.5258 0
Tree-level Symanzik -4.3413 -3.9303 -0.8099
Iwasaki -4.1637 -1.9053 -2.1011

Table 4.3: Numerical values of the coefficients α5−α7 appearing in the one-loop
bare lattice Green’s functions of Wilson-line operators (straight line and staple).

of operators, we come to the following conclusions which can be generalized to Wilson-

line lattice operators of arbitrary shape:
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• The linear divergence [O(1/a)] depends on the Wilson line’s length.

• Diagram d1 gives a finite, regulator-independent result in all cases.

• The only contribution of sail diagrams (d2 and d3) to ∆ΛΓ comes from their

end points. This is because any parts of a segment which do not include the

end points will give finite contributions to ΛLR
Γ , in which the näıve continuum

limit a → 0 can be taken, leading to the same result as in DR and thus to a

vanishing contribution in ∆ΛΓ. Consequently the shape of the Wilson line is

largely irrelevant and, indeed, all numerical coefficients in Eq. (4.59) coincide

with those in Eq. (4.55). The only dependence on the shape regards the Dirac

structure of the operator which mixes with OΓ. The mixing terms depend on

the direction of the Wilson line in the end points. For the straight Wilson line,

the direction in both end points is sgn(z)µ̂1, which leads to the appearance of

the additional Dirac structure sgn(z)(Γγµ1 + γµ1Γ) upon adding together sail

diagrams d2 and d3. For the staple Wilson line, the direction in the left end point

is sgn(y)µ̂2 and in the right end point is −sgn(y)µ̂2; thus, the additional Dirac

structure which appears upon adding the two sail diagrams is sgn(y)(Γγµ2−γµ2Γ).

The mixing pairs for each type of nonlocal operator can be also explained

(partially) by symmetry arguments. For straight-line operators, there is a

residual rotational (or cubic, on the lattice) symmetry (including reflections)

with respect to the three transverse directions to the µ̂ direction parallel to the

Wilson line. As a consequence, operators which transform in the same way

under this residual symmetry can mix among themselves, under

renormalization; i.e., mixing can occur only among the pairs of operators (OΓ,

OΓγµ). This argument can now be applied to a general Wilson line: given that

only end points contribute, mixing can occur only with OΓγµ , where µ̂ refers to

the directions of the two end points of the line. Clearly, the subsets of operators

which finally mix depend on the commutation properties between Γ and γµ. We

note that, if the fermion action in use preserves chiral symmetry, then none of

the operators will mix with each other.

• The tadpole diagram (d4) for the staple operators gives, aside from the linearly

divergent terms, two types of contributions: one corresponds to each of the three

straight-line segments [first square bracket in Eq. (4.60)], which is identical to the

corresponding contribution from the straight Wilson line, multiplied by a factor
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of 3, and another contribution for each of the two cusps [second square bracket

in Eq. (4.60)], multiplied by a factor of 2, which cannot be obtained from the

study of straight-line operators.

As a consequence of the above, it follows that the difference ΛLR
Γ − ΛMS

Γ for a general

Wilson-line operator with n cusps (and, hence, n+ 1 segments), defined on the lattice,

can be fully extracted from the combination of our results for the straight-line and

the staple operators: the contributions of each straight-line segment and each cusp,

appearing in the general operators, are obtained from Eqs. (4.53 – 4.60). Therefore,

without performing any new calculations, the result for the Green’s functions of general

Wilson-line lattice operators with n cusps, is determined below,

(
Λgeneral

Γ

)LR

di
−
(

Λgeneral
Γ

)MS

di
≡−g

2CF
16π2

eiqµ1z ·Fgeneral
di

+O(g4), (i= 1, 2, 3, 4), (4.61)

where

Fgeneral
d1

= 0, (4.62)

Fgeneral
d2+d3

= 2 Γ
[
α5 + 3.7920 β + (1− β) log(a2µ̄2)

]
+ (Γ/̂µi + /̂µfΓ)(α3 + α4cSW ), (4.63)

Fgeneral
d4

= Γ
{

(n+ 1)α6 − 3.7920 β + [2(n+ 1) + β] log(a2µ̄2) +
L

a
α2 + nα7

}
, (4.64)

L is the Wilson line’s length and µ̂
i

(µ̂
f
) is the direction of the Wilson line in the initial

(final) end point. In the above relations, it is explicit that there is mixing between the

pairs of operators (OΓ,OΓ/̂µi+/̂µfΓ). Proceeding further with the renormalization of these

operators, we extract the renormalization factors in the MS scheme,

ZLR,MS
Γ(diag.) = 1+

g2CF
16π2

[
eΓ−α2

L

a
+eψ2 cSW +eψ3 c

2
SW − (2n+3) log

(
a2µ̄2

) ]
+O(g4), (4.65)

ZLR,MS
Γ(nondiag./mix.) =

g2CF
16π2

(−1)
[
α3 + α4cSW

]
+O(g4), (4.66)

where eΓ =
[
eψ1 + 1− 2α5 − (n+ 1)α6 − nα7

]
and eψi are given in Appendix 4.B. It

is worth noting that the results in Eqs. (4.65, 4.66) are both gauge invariant, as was
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4.5 Summary and Conclusions

In this work, we have studied the one-loop renormalization of the nonlocal

staple-shaped Wilson-line quark operators, both in dimensional regularization (DR)

and on the lattice (Wilson/clover massless fermions and Symanzik-improved gluons).

This is a follow-up calculation of Ref. [114], in which straight-line nonlocal operators

are studied. These perturbative studies are parts of a wider community effort for

investigating the renormalization of nonlocal operators employed in lattice

computations of parton distributions (PDFs, GPDs, TMDs) of hadronic Physics. A

novel aspect of this calculation is the presence of cusps in the Wilson line included in

the definition of the nonlocal operators under study, which results in the appearance

of additional logarithmic divergences. Perturbative studies of such nonsmooth

operators had not been carried out previously on the lattice. As in the case of the

straight-line operators, certain pairs of these nonlocal operators mix under

renormalization, for chirality-breaking lattice actions, such as the Wilson/clover

fermion action. The path structure of each type of nonlocal operator (straight-line,

staple, . . . ) leads to different mixing pairs. The results of the present study provide

additional information on the renormalization of general nonlocal operators on the

lattice.

Particular novel outcomes of our calculation are:

• The one-loop results for the amputated two-point one-particle-irreducible (1-PI)

Green’s functions of the staple operators both in DR [Eqs. (4.22 – 4.31)] and on

the lattice [Eqs. (4.46, 4.47)].

• The mixing pairs of the staple operators: (OP ,OAµ2
), (OVi ,OTiµ2

), i6=µ2 (for

notation, see Sec. 4.2.1). We propose a minimal RI′-like condition [Eqs. (4.15 –

4.16)], which disentangles this mixing and which is appropriate for

nonperturbative calculations of parton-distribution functions on the lattice.

• The one-loop expressions for the renormalization factors of the staple operators in

both dimensional and lattice regularizations, in the MS scheme and the proposed

RI′ scheme [Eqs. (4.36, 4.37, 4.49 – 4.52)].

• The one-loop conversion factors between the RI′ and MS schemes [Eqs. (4.38 –

4.42)].
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• An extension of our calculations to general Wilson-line lattice operators with

n cusps; we have provided results for their renormalization factors [Eqs. (4.65,

4.66)].

Our results are useful for improving the nonperturbative investigations of transverse

momentum-dependent distribution functions (TMDs) on the lattice. Such an example

is the calculation of the generalized g1T worm-gear shift in the TMD limit (|η|→∞);

this quantity involves a ratio between the axial and vector operators. A recent study

of TMDs on the lattice [128] reveals tension between results for g1T in the clover and

domain-wall formulations. This is not observed in other structures and is an indication

of nonmultiplicative renormalization. Our proposed RI′-type scheme can be applied

to the nonperturbative evaluation of renormalization factors and mixing coefficients

of the unpolarized, helicity and transversity quasi-TMDs; this is expected to fix the

inconsistency between the two calculations of g1T . Also, our one-loop conversion factors

can be used to convert the RI′ nonperturbative results to the MS scheme. Our results

for general Wilson-line lattice operators with n cusps can be used in the nonperturbative

renormalization of more general continuum nonlocal operators.

Comparing our results for the staple operators with the corresponding ones for the

straight-line operators, we deduce that the strength of the linear divergences is the

same for both types of operators; the presence of cusps lead to additional logarithmic

divergences in the staple operators. Also, the observed mixing pairs among operators

with different Dirac structures depend on the direction of Wilson line in the end

points, and thus, they are different between the two types of operators: the

straight-line operator OΓ mixes with O{Γ,γµ1}, while the staple operator OΓ mixes

with O[Γ,γµ2 ] (for notation, see Sec. 4.2.1). However, the values of the mixing

coefficients are the same in the two cases.
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Appendices

4.A List of Feynman Parameter Integrals

In this appendix, we present a list of Feynman parameter integrals, which appear in

the expressions of our results. In what follows, we use the notation: s ≡
√
q2(1− x)x.

P1(q2, qµ1 , z) ≡
∫ 1

0

dx e−iqµ1xz K0 (s |z|) , (4.67)

P2(q2, qµ1 , z) ≡
∫ 1

0

dx e−iqµ1xz K0 (s |z|)x, (4.68)

P3(q2, qµ1 , z) ≡
∫ 1

0

dx e−iqµ1xz K0 (s |z|)x(1− x), (4.69)

P4(q2, qµ1 , z) ≡
∫ 1

0

dx e−iqµ1xz K1 (s |z|)
√

(1− x)x, (4.70)

P5(q2, qµ1 , z) ≡
∫ 1

0

dx e−iqµ1xz K1 (s |z|)
√

(1− x)x x, (4.71)

Q1(q2, qµ1 , qµ2 , z, y) ≡
∫ 1

0

dx

∫ z

0

dζ e−iqµ1xζ cos(qµ2xy)K0

(
s
√
y2 + ζ2

)
, (4.72)

Q2(q2, qµ1 , qµ2 , z, y) ≡
∫ 1

0

dx

∫ z

0

dζ e−iqµ1xζ cos(qµ2xy)K0

(
s
√
y2 + ζ2

)
(1− x),

(4.73)

Q3(q2, qµ1 , qµ2 , z, y) ≡
∫ 1

0

dx

∫ z

0

dζ e−iqµ1xζ cos(qµ2xy)K1

(
s
√
y2 + ζ2

) √(1− x)x√
y2 + ζ2

,

(4.74)

Q4(q2, qµ1 , qµ2 , z, y) ≡
∫ 1

0

dx

∫ z

0

dζ e−iqµ1xζ sin(qµ2xy)K0

(
s
√
y2 + ζ2

)
(1− x), (4.75)

Q5(q2, qµ1 , qµ2 , z, y) ≡
∫ 1

0

dx

∫ z

0

dζ e−iqµ1xζ sin(qµ2xy)K1

(
s
√
y2 + ζ2

) √(1− x)x√
y2 + ζ2

,

(4.76)
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R1(q2, qµ2 , y) ≡
∫ 1

0

dx

∫ y

0

dζ cos(qµ2xζ) K0 (s |ζ|) (1− x), (4.77)

R2(q2, qµ2 , y) ≡
∫ 1

0

dx

∫ y

0

dζ sin(qµ2xζ) K0 (s |ζ|) , (4.78)

R3(q2, qµ2 , y) ≡
∫ 1

0

dx

∫ y

0

dζ sin(qµ2xζ) K0 (s |ζ|) (1− x), (4.79)

R4(q2, qµ1 , qµ2 , z, y) ≡
∫ 1

0

dx

∫ y

0

dζ e−iqµ1xz cos(qµ2xζ) K0

(
s
√
z2 + ζ2

)
(1− x),

(4.80)

R5(q2, qµ1 , qµ2 , z, y) ≡
∫ 1

0

dx

∫ y

0

dζ e−iqµ1xz cos(qµ2xζ) K1

(
s
√
z2 + ζ2

) √(1− x)x√
z2 + ζ2

,

(4.81)

R6(q2, qµ1 , qµ2 , z, y) ≡
∫ 1

0

dx

∫ y

0

dζ e−iqµ1xz sin(qµ2xζ) K0

(
s
√
z2 + ζ2

)
, (4.82)

R7(q2, qµ1 , qµ2 , z, y) ≡
∫ 1

0

dx

∫ y

0

dζ e−iqµ1xz sin(qµ2xζ) K0

(
s
√
z2 + ζ2

)
(1− x),

(4.83)

R8(q2, qµ1 , qµ2 , z, y) ≡
∫ 1

0

dx

∫ y

0

dζ e−iqµ1xz sin(qµ2xζ) K1

(
s
√
z2 + ζ2

) √(1− x)x√
z2 + ζ2

.

(4.84)

4.B Renormalization of fermion fields

In this appendix, we have gathered useful expressions regarding the renormalization of

fermion fields in both dimensional (DR) and lattice (LR) regularizations, taken from,

e.g., Refs. [186] and [200], respectively. We give the one-loop expressions for the

renormalization factors in the MS and RI′ schemes, as well as the conversion factors

between the two schemes,

ZDR,MS
ψ = 1 +

g2CF
16π2

(β − 1)
1

ε
+O(g4), (4.85)

ZDR,RI′

ψ = 1 +
g2CF
16π2

(β − 1)

(
1

ε
+ 1 + log

(
µ̄2

q̄2

))
+O(g4), (4.86)

CRI′,MS
ψ =

ZDR,RI′

ψ

ZDR,MS
ψ

=
ZLR,RI′

ψ

ZLR,MS
ψ

= 1 +
g2CF
16π2

(β − 1)

(
1 + log

(
µ̄2

q̄2

))
+O(g4), (4.87)
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ZLR,RI′

ψ = 1 +
g2CF
16π2

[
eψ1 + 4.7920 β + eψ2 cSW + eψ3 c

2
SW + (1− β) log

(
a2q̄2

)]
+O(g4),

(4.88)

ZLR,MS
ψ =

ZLR,RI′

ψ

CRI′,MS
ψ

= 1 +
g2CF
16π2

[
(eψ1 + 1) + 3.7920 β + eψ2 cSW + eψ3 c

2
SW

+ (1− β) log
(
a2µ̄2

) ]
+O(g4).

(4.89)

The numerical constants eψi depend on the gluon action in use; their values for Wilson,

tree-level Symanzik and Iwasaki improved gluon actions are given in Table 4.4.

Gluon action eψ1 eψ2 eψ3
Wilson 11.8524 -2.2489 -1.3973
Tree-level Symanzik 8.2313 -2.0154 -1.2422
Iwasaki 3.3246 -1.6010 -0.9732

Table 4.4: Numerical values of the coefficients eψ1 -eψ3 appearing in the one-loop
renormalization factors of fermion fields on the lattice.
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Chapter 5

Higher-loop renormalization of

Wilson-line operators related to

quasi- PDFs

5.1 Introduction

In this work we extend our studies on Wilson-line operators to two-loop order. In

particular, we calculate the two-loop renormalization factors of straight Wilson-line

operators in the RI′ and MS schemes using dimensional regularization; the

computation considers only massless fermions. We also extract the conversion factors

between the two schemes. The motivation behind this study is mainly based on an

argument in Ref.[99] about the truncation effects coming from the one-loop

conversion factors. In this paper, it is claimed that two-loop corrections of the

conversion factors are expected to eliminate the unphysical feature of the real part of

the nonperturbative renormalized matrix elements becoming negative for large

Wilson-line lengths. In particular, numerical experiments indicate that a natural

change of the conversion factor by two-loop contributions (∼ 10−20 %), should be

enough to suppress the unwanted effect. A by-product of this two-loop calculation is

the anomalous dimension of the Wilson-line operators to next order in g2 (also found

in Refs. [155, 201, 202] in the context of HQET); this is useful for improving the

method for eliminating the linear divergences, nonperturbatively (see Ref.[114]).

86
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In the rest of this chapter, we provide the setup of our calculation (Sec. 5.2) and our

preliminary results on the calculation of two-loop contributions to the bare Green’s

functions of Wilson-line operators (Sec. 5.3).

5.2 Setup

The theoretical setup related to the definition of the straight Wilson-line operators

OΓ, along with the necessary prescription of the renormalization schemes is provided

in Chapter 3. We note that, as we use massless fermions, the mixing pattern reduces

to the following pairs1: (Γ1,Γ2) = (11, γ1), (γ5γ2, γ3γ4), (γ5γ3, γ4γ2), and (γ5γ4, γ2γ3),

where by convention 1 is the direction of the straight Wilson line and 2, 3, and 4 are

directions perpendicular to it.

For the extraction of the two-loop renormalization factors of operators, the two-loop

expression for the renormalization function of the fermion field Zψ, as well as, the

one-loop expression for the renormalization function of the coupling constant Zg are

involved (besides the two-loop expression for the bare two-point Green’s function of

OΓ, ΛΓ). By writing Zψ, Zg, and ΛΓ in the form2:

Zψ = 1 + g2
0z

(1)
ψ + g4

0z
(2)
ψ +O(g6

0), (5.1)

Zg = 1 + g2
0z

(1)
g +O(g4

0), (5.2)

ΛΓi = Λtree
Γ1

[
δi1 + g2

0λ
(1)
i1 + g4

0λ
(2)
i1 +O(g6

0)
]

+ Λtree
Γ2

[
δi2 + g2

0λ
(1)
i2 + g4

0λ
(2)
i2 +O(g6

0)
]

+ · · · , (i = 1, 2), (5.3)

the renormalization factors of OΓ in RI′, reads:

1originally found in Ref. [114].
2The Green’s functions ΛΓi may also contain additional Dirac structures, which do not contribute

to ZΓi defined in RI′ or MS.
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[
ZDR,RI′

Γ1,Γ2

]
ij

= δij

{
1 + g2

RI′

[(
z

(1)
ψ

)DR,RI′

+ λ
(1)
ii

]
+ g4

RI′

[(
z

(2)
ψ

)DR,RI′

+ λ
(2)
ii

+
(
z

(1)
ψ

)DR,RI′

λ
(1)
ii + 2

(
z

(1)
ψ

)RI′(
z(1)
g

)DR,RI′

+ 2
(
z(1)
g

)DR,RI′

λ
(1)
ii

]

+O(g6
RI′)

}∣∣∣∣∣
qν =q̄ν

+ (1− δij)

{
g2

RI′λ
(1)
ij + g4

RI′

[
λ

(2)
ij +

(
z

(1)
ψ

)DR,RI′

λ
(1)
ij + 2

(
z(1)
g

)DR,RI′

λ
(1)
ij

]

+O(g6
RI′)

}∣∣∣∣∣
qν =q̄ν

(5.4)

The equivalent expression for ZDR,MS
Γ follows from Eq. (5.4), by keeping in λ

(1)
ij , λ

(2)
ij

only pole parts in ε; the latter appears only for i = j, leading to

ZDR,MS
Γi

=

{
1 + g2

MS

[(
z

(1)
ψ

)DR,MS

+ λ
(1)
ii

]
+ g4

MS

[(
z

(2)
ψ

)DR,MS

+ λ
(2)
ii +

(
z

(1)
ψ

)DR,MS

λ
(1)
ii

+2
(
z

(1)
ψ

)DR,MS(
z(1)
g

)DR,MS

+ 2
(
z(1)
g

)DR,MS

λ
(1)
ii

]
+O(g6

MS
)

}∣∣∣∣∣
1/ε2,1/ε

(5.5)

The expressions of Zψ and Zg are well-known beyond one loop [186].

5.3 Calculation and results

There are fifty-six two-loop Feynman diagrams contributing to the two-point Green’s

function of operators, shown in Figs. 5.1, 5.2. The methodology for calculating the

momentum-loop integrals corresponding to these Feynman diagrams is briefly described

in our previous work in Chapter 3. Here we extend this methodology to two loops.

Firstly, we follow the standard procedure of introducing Feynman parameters. Then,

the momentum-loop integrals take the following general form:∫
dDp1

(2π)D

∫
dDp2

(2π)D
eip1µz1 eip2µz2 (p1ν1

· · · p1νn) (p1ρ1
· · · p1ρm)f({αi})

[α1p2
1 + α2p2

2 + α3p1 · p2 + α4p1 · q + α5p2 · q + α6]
β
, (5.6)
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Figure 5.1: Feynman diagrams contributing to the two-loop calculation of the
Green’s functions of straight-line operator OΓ. The straight (wavy, dashed) lines
represent fermions (gluons, qhosts). The operator insertion is denoted by a filled
rectangle. (1/2)GREGORIS SPANOUDES
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Figure 5.2: Feynman diagrams contributing to the two-loop calculation of the
Green’s functions of straight-line operator OΓ. The straight (wavy, dashed) lines
represent fermions (gluons, qhosts). The operator insertion is denoted by a filled
rectangle. (2/2)

where αi (i = 1−6) depends on Feynman parameters, f({αi}) is a function of αi and q

is the external momentum. The integration over the components of momentum without

an exponential dependence is performed using standard D-dimensional formulae (e.g.,

[184]), followed by a subsequent nontrivial integration over the remaining components

p1µ and p2µ. This procedure leads to the following two-loop formulae:

A(β) ≡
∫

dDp1

(2π)D

∫
dDp2

(2π)D
eip1µz1 eip2µz2

[α1p2
1 + α2p2

2 + α3p1 · p2 + α4p1 · k1 + α5p2 · k2 + α6]
β

=
21−βαD−β1 s

(D−β)/2
2

πDΓ(β)s
D/2
1

KD−β(
√
s2) exp[

−ik1µα4(2α2z1 − α3z2)

s1

] ·

exp[
−ik2µα5(2α1z2 − α3z1)

s2

], (5.7)

∫
dDp1

(2π)D

∫
dDp2

(2π)D
eip1µz1 eip2µz2 (p1ν1

· · · p1νn) (p1ρ1
· · · p1ρm)

[α1p2
1 + α2p2

2 + α3p1 · p2 + α4p1 · k1 + α5p2 · k2 + α6]
β

=

(−1)n+m Γ(β − n−m)

αn4α
m
5 Γ(β)

∂

∂k1ν1

· · · ∂

∂k1νn

∂

∂k2ρ1

· · · ∂

∂k2ρm

A(β − n−m), (5.8)

where s1 ≡ 4a1a2 − a2
3,

s2 ≡
[
(α6/α1)− (α2α

2
4k

2
1 + α1α

2
5k

2
2 − α3α4α5k1k2)/(α1s1)

]
·
[
z2

1 + (α3z1 − 2α1z2)2/s1

]
,

and Kν(z) is a modified Bessel function of the second kind. We note that the formula
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in Eq. (5.7) is only valid for s1 > 0, s2 > 0, α1 6= 0, D < (3/4+β); the same conditions

for s1, s2, α1 are also valid for the formula in Eq. (5.8), while the condition for D is

modified as D < (3/4 + β − n/2−m/2). In order to perform Laurent expansion in ε,

it might be necessary to make subtractions in the original integrand so that possible

poles (in the integration region of Feynman parameters and/or ζ-variables stemming

from the definition of OΓ) be isolated and interchange between integration and limit

(of vanishing regulator) operations can be applied in the remaining convergent part

(see 3.3.1).

So far we have completed the calculation of the Green’s functions of straight Wilson-line

operators for the first twenty diagrams (d1 − d20), including some of the most delicate

ones, such as diagrams with up to four gluons stemming from the definition of the

operators, which result in multiple integrations over the position of gluons along the

Wilson line, combined with overlapping divergences (e.g., d18). Preliminary results of

our calculations are presented below. We provide only a small part of our current results

because the length of the expression for each diagram is very large. The expressions

for the bare Green’s functions of Wilson-line operators for the “tadpole”-like diagrams

d1 − d7 are:

Λd1
Γ =

g4C2
F

(16π2)2 Λtree
Γ

{
(β + 2)2 1

ε2
+
[
2(β + 2)

(
4 + (β + 2)(2γE + log

(
µ̄2z2

4

)
)
)]1

ε

+4(β + 2) log

(
µ̄2z2

4

)(
(β + 2) log

(
µ̄2z2

4

)
+ 4γE(β + 2) + 8

)
−π2(β + 2)2 + 16

(
γ2
E(β + 2)2 + 4γE(β + 2) + 2(β + 3)

)}
, (5.9)

Λd2
Γ =

g4CF

(16π2)2Nc

Λtree
Γ

{
(β + 2)2

2

1

ε2
+
[(β + 2)

2

(
2(β + 2)

(
2γE + log

(
µ̄2z2

4

))

+β + 10
)]1

ε
+

1

4

(
8
(
β2 + 10β + 2γ2

E(β + 2)2

+γE(β + 2)(β + 10) + 20
)

+ 4(β + 2) log

(
µ̄2z2

4

)
(

(β + 2) log

(
µ̄2z2

4

)
+ β + 4γE(β + 2) + 10

)
−π2(β + 2)2

)}
, (5.10)
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Λd3
Γ =

g4C2
F

(16π2)2 Λtree
Γ

{
(β + 2)2

2

1

ε2
+
[
(β + 2)

(
(β + 2)

(
2γE + log

(
µ̄2z2

4

))

+β + 6

)]1

ε
+

1

12

(
48
(
β2 + 8β + γ2

E(β + 2)2

+γE(β + 2)(β + 6) + 14
)

+ 12(β + 2) log

(
µ̄2z2

4

)
(

(β + 2) log

(
µ̄2z2

4

)
+ 2(β + 2γ(β + 2) + 6)

)
+π2(β + 2)2

)}
, (5.11)

Λd4
Γ =

g4CFNc

(16π2)2 Λtree
Γ

{
− 3

4
β(β + 2)

1

ε2
− β

2

[
3(β + 2)

(
2γE + log

(
µ̄2z2

4

))

+2(β + 5)

]
1

ε
− 1

24
β

(
36(β + 2) log2

(
µ̄2z2

4

)
+48(β + 3γE(β + 2) + 5) log

(
µ̄2z2

4

)
+ 48

(
2β + 3γ2

E(β + 2)

+2γE(β + 5) + 9
)
− 5π2(β + 2)

)}
, (5.12)

Λd5+d6
Γ =

g4CFNc

(16π2)2 Λtree
Γ

{
(3β + 10)

4

1

ε2
+

1

8

[
4(3β + 10) log

(
µ̄2z2

4

)

+(β(3β + 24γE + 2) + 80γE + 88)
]1

ε
+

1

24

(
6 log

(
µ̄2z2

4

)
+
(

(6β + 20) log

(
µ̄2z2

4

)
+ (β(3β + 24γE + 2) + 80γE + 88)

)
+3(β(13β + 14) + 400) + 12γE(β(3β + 12γE + 2) + 40γE

+88) + π2(3β + 10)

)}
, (5.13)
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Λd7
Γ =

g4CFNf

(16π2)2 Λtree
Γ

{
− 1

ε2
+−2

[
log

(
µ̄2z2

4

)
+ 2(1 + γE)

]
1

ε

+
1

6

(
− 12 log

(
µ̄2z2

4

)(
log

(
µ̄2z2

4

)
+ 4(1 + γE)

)

−π2 − 48γE(2 + γE)− 108

)}
, (5.14)

where CF ≡ (N2
c −1)/(2Nc), Nc (Nf ) is the number of colors (flavors) and β is the gauge

parameter [β = 0 (1) in Feynman (Landau) gauge]. Diagrams which are not tadpole-

like present a highly nontrivial dependence on z and on the external momentum q,

extending the one-loop expressions shown in Chapter 3. As an example, we provide

the resulting expression for diagram d18 (for simplicity) in the Feynman gauge (β = 0):

Λd18
Γ =

g4CF

(16π2)2Nc

Λtree
Γ

∫ z

0

ζ1

∫ ζ1

0

dζ2

∫ 1

0

dx1

∫ 1

0

dx2

{
− 2 e−iqµζ2

(1− x1)x1ζ2
1 + x2(ζ2 − x1ζ1)2

+

∫ 1−x2

0

dx3

[
K0

(√
q2(1− x2 − x3)(x2 + x3)[(1− x1)x1ζ2

1 + x3(ζ2 − x1ζ1)2]/x3

)
·

e−iqµx1(1−x2−x3)ζ1 e−iqµ(x2+x3)ζ2
q2

x3

(
− 1 + x1(1− x2 − x3) + 2(x2 + x3)2

+
(1− x1)x1(1− x2 − x3)(x2 + x3)ζ1(2 ζ1 − ζ2)

(1− x1)x1ζ2
1 + x3(ζ2 − x1ζ1)2

)

−K1

(√
q2(1− x2 − x3)(x2 + x3)[(1− x1)x1ζ2

1 + x3(ζ2 − x1ζ1)2]/x3

)
·

e−iqµx1(1−x2−x3)ζ1 e−iqµ(x2+x3)ζ2 2

√
q2(1− x2 − x3)(x2 + x3)

x3 [(1− x1)x1ζ2
1 + x3(ζ2 − x1ζ1)2]

·(
1− 2x1 + iqµ(x2 + x3)(ζ2 − x1ζ1) +

(1− x1)x1ζ1(2 ζ1 − ζ2)

(1− x1)x1ζ2
1 + x3(ζ2 − x1ζ1)2

)]}
.

(5.15)

Calculations for the remaining diagrams d21 − d56 are still in progress. Our work will

continue beyond the completion of this Thesis. The full results will be produced and

published in the near future.GREGORIS SPANOUDES



Chapter 6

Two-loop renormalization of

staggered fermion bilinears: singlet

vs nonsinglet operators

6.1 Introduction

In this work we study the renormalization of fermion bilinears OΓ = ψ̄Γψ on the

lattice, where Γ = 11, γ5, γµ, γ5 γµ, γ5 σµ ν (σµν = [γµ, γν ]/2i). We consider flavor singlet

(
∑

f ψ̄fΓψf , f: flavor index) as well as nonsinglet (ψ̄f1Γψf2 , f1 6= f2) operators, to two

loops in perturbation theory. More specifically, we compute the difference between

the renormalization functions of singlet and nonsinglet operators. Our calculations

were performed making use of a class of improved lattice actions: Symanzik improved

gluons and staggered fermions with twice stout-smeared links. Previous calculations of

this difference have been performed in Refs. [49, 50], using Wilson gluons and clover

fermions, and also in Ref. [203], using the SLiNC action.

The most demanding part of this study is the computation of the two-point Green’s

functions of OΓ , up to two loops. From these Green’s functions we extract the

renormalization functions for OΓ : ZL,Y
Γ (L: lattice regularization, Y (= RI ′, MS):

renormalization schemes). As a check on our results, we have computed them in an

arbitrary covariant gauge. Our expressions can be generalized, in a straightforward

manner, to fermionic fields in an arbitrary representation.

94
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Flavor singlet operators are relevant for a number of hadronic properties including, e.g.,

topological features or the spin structure of hadrons. Matrix elements of such operators

are notoriously difficult to study via numerical simulations, due to the presence of

(fermion line) disconnected diagrams, which in principle require evaluation of the full

fermion propagator. In recent years there has been some progress in the numerical study

of flavor singlet operators; furthermore, for some of them, a nonperturbative estimate

of their renormalization has been obtained using the Feynman-Hellmann relation [65].

Perturbation theory can give an important cross check for these estimates, and provide a

prototype for other operators which are more difficult to renormalize nonperturbatively.

Given that for the renormalization of flavor nonsinglet operators one can obtain quite

accurate nonperturbative estimates, we will focus on the perturbative evaluation of

the difference between the flavor singlet and nonsinglet renormalization; this difference

first shows up at two loops.

Perturbative computations beyond one loop for Green’s functions with nonzero external

momenta are technically quite involved, and their complication is greatly increased

when improved gluon and fermion actions are employed. For fermion bilinear operators,

the only two-loop computations in standard perturbation theory thus far have been

performed by our group [49, 50], employing Wilson gluons and Wilson/clover fermions.

Similar investigations have been carried out in the context of stochastic perturbation

theory [204].

Staggered fermions entail additional complications as compared to Wilson fermions.

In particular, the fact that fermion degrees of freedom are distributed over

neighbouring lattice points requires the introduction of link variables in the definition

of gauge invariant fermion bilinears, with a corresponding increase in the number of

Feynman diagrams. In addition, the appearance of 16 (rather than 1) poles in the

fermion propagator leads to a rather intricate structure of divergent contributions in

two-loop diagrams.

A novel aspect of the calculations is that the gluon links, which appear both in the

staggered fermion action and in the definition of the bilinear operators in the

staggered basis, are improved by applying a stout smearing procedure up to two

times, iteratively. Compared to most other improved formulations of staggered
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fermions, the stout smearing action leads to smaller taste violating effects [205–207].

Application of stout improvement on staggered fermions thus far has been explored,

by our group, only to one-loop computations [183]; a two-loop computation had never

been investigated before.

Further composite fermion operators of interest, to which one can apply our

perturbative techniques, are higher dimension bilinears such as: ψ̄ΓDµψ (appearing

in hadron structure functions) and four-fermion operators such as: (s̄Γ1 d) (s̄Γ2 d)

(appearing in ∆S = 2 transitions, etc.); in these cases, complications such as operator

mixing greatly hinder nonperturbative methods of renormalization, making a

perturbative approach all that more essential.

The outline of this chapter is as follows: Sec. 6.2 presents a brief theoretical

background in which we introduce the formulation of the staggered fermion action

and the bilinear operators in the staggered basis, as well as all necessary definitions of

renormalization schemes and of the quantities to compute. Sec. 6.3 contains the

calculational procedure and the results which are obtained. A method for the

evaluation of a list of nontrivial divergent two-loop integrals, which stem from the

staggered formalism, is briefly described in this section. In Sec. 6.4 we discuss our

results and we plot several graphs for certain values of free parameters, like the stout

and clover coefficients.

6.2 Formulation

6.2.1 Lattice actions

In our calculation we made use of the staggered formulation of the fermion action on the

lattice [13], applying a twice stout smearing procedure on the gluon links. In standard

notation, it reads:

SSF = a4
∑
x,µ

1

2a
χ(x) ηµ(x)

[˜̃
Uµ(x) χ(x+aµ̂)− ˜̃U †µ(x−aµ̂) χ(x−aµ̂)

]
+a4

∑
x

mχ(x) χ(x)

(6.1)

where χ(x) is a one-component fermion field, and ηµ(x) = (−1)
∑
ν<µ nν

[x = (a n1, a n2, a n3, a n4), ni ε Z ]. The relation between the staggered field χ(x)
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and the standard fermion field ψ(x), is given by:

ψ(x) = γx χ(x) , ψ̄(x) = χ̄(x) γ†x,

γx = γn1
1 γn2

2 γn3
3 γn4

4 , x = (a n1, a n2, a n3, a n4), ni ε Z (6.2)

The mass term will be irrelevant, since we will apply mass-independent renormalization

schemes (RI ′, MS). The gluon links
˜̃
Uµ(x), appearing above, are doubly stout links,

defined as: ˜̃
Uµ(x) = ei Q̃µ(x) Ũµ(x) (6.3)

where Ũµ(x) is the singly stout link, defined as [24]:

Ũµ(x) = eiQµ(x) Uµ(x) (6.4)

where

Qµ(x) =
ω

2 i

[
Vµ(x)U †µ(x)− Uµ(x)V †µ (x)− 1

Nc

Tr
(
Vµ(x)U †µ(x)− Uµ(x)V †µ (x)

)]
(6.5)

Vµ(x) represents the sum over all staples associated with the link Uµ(x) and Nc is the

number of colors. Correspondingly, Q̃µ(x) is defined as in Eq.(6.5), but using Ũµ as

links (also in the construction of Vµ). To obtain results that are as general as possible,

we use different stout parameters, ω, in the first (ω1) and the second (ω2) smearing

iteration.

For gluons, we employ the Symanzik improved action SG, defined in Eq. (4.5). The

algebraic part of our computation was carried out for generic values of Symanzik

coefficients ci; for the numerical integration over loop momenta we selected a number

of commonly used sets of values, which are shown in Table 4.1.

6.2.2 Definition of bilinear operators in the staggered basis

The absence of Dirac indices in the staggered action leads to the assigning of a single

fermion field component to each lattice site. Hence, the action contains only four rather

than sixteen fermion doublers, which are called “tastes”. So, in the staggered formalism

a physical fermion field ψ(x) with taste components is defined as a linear combination
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of the single-component fermion fields χ(x) that live on the corners of 4-dimensional

elementary hypercubes of the lattice. In standard notation:

ψα,t(y) =
1

2

∑
C

(γC) α,t χ(y)C , χ(y)C =
1

2

∑
α,t

(ξC) α,t ψα,t(y) (6.6)

where χ(y)C ≡ χ(y + aC)/4, y denotes the position of a hypercube inside the lattice

(yµ ∈ 2Z), C denotes the position of a fermion field component within a specific

hypercube (Cµ ∈ {0, 1}), γC = γC1
1 γC2

2 γC3
3 γC4

4 , ξC = ξC1
1 ξC2

2 ξC3
3 ξC4

4 , ξµ = γ∗µ , α is

a Dirac index and t is a taste index. In terms of fermion fields with taste components

one can now define fermion bilinear operators as:

OΓ,ξ = ψ̄(x) (Γ⊗ ξ) ψ(x) (6.7)

where Γ and ξ are arbitrary 4 × 4 matrices acting on the Dirac and taste indices of

ψα,t(x), respectively. After transforming to the staggered basis via Eq. (6.6), the

operator OΓ,ξ can be written as [180]:

OΓ,ξ =
∑
C,D

χ̄(y)C
(
Γ⊗ ξ

)
CD UC,D χ(y)D , (6.8)

(
Γ⊗ ξ

)
CD ≡

1

4
Tr
[
γ†C Γ γD ξ

]
(6.9)

In order to ensure the gauge invariance of the above operators, one inserts the

quantity UC,D, which is the average of products of gauge link variables along all

possible shortest paths connecting the sites y + C and y + D. In this work we focus

on taste-singlet operators, thus ξ = 11. Using the relations γµγC = ηµ(C)γC+µ̂ and

tr(γ†CγD) = 4δC,D, we calculate the quantity
(
Γ⊗ 11

)
CD

for each operator Γ:

1

4
Tr
[
γ†C 11 γD

]
= δC,D ,

1

4
Tr
[
γ†C γµ γD

]
= δC,D+2 µ̂

ηµ(D) ,

1

4
Tr
[
γ†C σµν γD

]
=

1

i
δC,D+2 µ̂+2 ν̂

ην(D) ηµ(D +2 ν̂) ,

1

4
Tr
[
γ†C γ5 γµ γD

]
= δC,D+2 µ̂+2 (1,1,1,1) ·

ηµ(D) η1(D +2 µ̂) η2(D +2 µ̂) η3(D +2 µ̂) η4(D +2 µ̂) ,

1

4
Tr
[
γ†C γ5 γD

]
= δC,D+2 (1,1,1,1) η1(D) η2(D) η3(D) η4(D) (6.10)
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where a+2 b ≡ (a+ b) mod 2. Now, the operators can be written as:

OS(y) =
∑
D

χ̄(y)D χ(y)D (6.11)

OV (y) =
∑
D

χ̄(y)D+2 µ̂
UD+2 µ̂,D

χ(y)D ηµ(D) (6.12)

OT (y) =
1

i

∑
D

χ̄(y)D+2 µ̂+2 ν̂
UD+2 µ̂+2 ν̂,D

χ(y)D ην(D) ηµ(D +2 ν̂) , µ 6= ν (6.13)

OA(y) =
∑
D

χ̄(y)D+2 µ̂+2 (1,1,1,1) UD+2 µ̂+2 (1,1,1,1),D χ(y)D ηµ(D) ·

η1(D +2 µ̂) η2(D +2 µ̂) η3(D +2 µ̂) η4(D +2 µ̂) (6.14)

OP (y) =
∑
D

χ̄(y)D+2 (1,1,1,1) UD+2 (1,1,1,1),D χ(y)D η1(D) η2(D) η3(D) η4(D)(6.15)

where S(Scalar), P(Pseudoscalar), V(Vector), A(Axial Vector), T(Tensor) correspond

to: Γ = 11, γ5, γµ, γ5γµ, γ5 σµν . With the exception of the Scalar operator, the remaining

operators contain averages of products of up to 4 gluon links (in orthogonal directions)

between the fermion and the antifermion fields. For example, the average entering the

tensor operator of Eq. (6.14) is:

UD+2 µ̂+2 ν̂,D
=

1

2

[
U †ν(y + aD +2 aµ̂) U †µ(y + aD) + {µ↔ ν}

]
(6.16)

(Eq. 6.16 is valid when (D +2 µ̂+2 ν̂)i ≥ Di, i = 1, 2, 3, 4, and takes a similar form for

all other cases.)

Just as in the staggered fermion action, the gluon links used in the operators, are

doubly stout links. We have kept the stout parameters of the action (ωA1 , ωA2) distinct

from the stout parameters of the operators (ωO1 , ωO2), for wider applicability of the

results. The presence of gluon links in the definition of bilinear operators creates new

Feynman diagrams which do not appear in the Wilson-like fermion actions, leading to

nontrivial contributions in our two-loop calculation.
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6.2.3 Momentum representation of fermion action and

bilinear operators in the staggered formulation

In order to express the staggered action and bilinear operators in momentum space,

we use some useful relations, such as the following equivalent expression of ηµ(x):

ηµ(x) = eiπµ̄ n , x = an , µ̄ =

µ−1∑
ν=1

ν̂ (6.17)

Also, the summation over the position of OΓ, followed by Fourier transformation leads

to expressions of the form:

∑
yµ ε 2Z

ei y·k =
1

16
(2π)4

∑
C

δ
(4)
2π (k + π C) (6.18)

where δ
(4)
2π (k) stands for the standard periodic δ-function with nonvanishing support

at kmod2π = 0. In addition, the summation over the index D in the definition of OΓ,

after Fourier transformation, may give expressions such as:

∑
D

e−iπ(C−E)·D = 16 δC,E (6.19)

where E = (E1, E2, E3, E4), Eµ ∈ {0, 1}. Furthermore, expressions like eik(D+2 µ̂)a (for

Vector and similar expressions for all other operators), which arise through Fourier

transformations of the fermion and the antifermion fields, can be written in the

following useful form:

eik(D+2 µ̂)a = eikDa[cos(kµa) + ieiπD·µ̂ sin(kµa)] (6.20)

Finally, since contributions to the continuum limit come from the neighbourhood of

each of the 16 poles of the external momenta q, at qµ = (π/a)Cµ, it is useful to define

q′µ and Cµ through

qµ = q′µ +
π

a
Cµ ( mod(

2π

a
) ), (Cµ ε {0, 1}) (6.21)

where the “small” (physical) part q′ has each of its components restricted to one half of

the Brillouin zone: −π/(2a) ≤ q′µ ≤ π/(2a). Thus, conservation of external momenta
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takes the form:

δ
(4)
2π (a q1 − a q2 + πD) =

1

a
δ(4)(q′1 − q′2)

∏
µ

δC1µ+2C2µ+2Dµ,0
(6.22)

6.2.4 Renormalization of fermion bilinear operators

The renormalization functions ZΓ for lattice fermion bilinear operators, relate the bare

operators OΓ0 = ψ̄Γψ to their corresponding renormalized continuum operators OΓ

via:

OΓ = ZΓOΓ0 (6.23)

Renormalization functions of such lattice operators are necessary ingredients in the

prediction of physical probability amplitudes from lattice matrix elements. In order

to calculate the renormalization functions ZΓ, it is essential to compute the 2-point

amputated Green’s functions of the operators OΓ0 ; they can be written in the following

form:

ΣS(aq) = 11 Σ
(1)
S (aq) (6.24)

ΣP(aq) = γ5 Σ
(1)
P (aq) (6.25)

ΣV(aq) = γµ Σ
(1)
V (aq) +

qµ/q

q2
Σ

(2)
V (aq) (6.26)

ΣA(aq) = γ5 γµ Σ
(1)
A (aq) + γ5

qµ/q

q2
Σ

(2)
AA(aq) (6.27)

ΣTT(aq) = γ5 σµν Σ
(1)
T (aq) + γ5

/q

q2
(γµqν − γνqµ) Σ

(2)
T (aq) (6.28)

where Σ
(1)
Γ = 1 +O(g2

0), Σ
(2)
Γ = O(g2

0), g0: bare coupling constant.

The RI ′ renormalization scheme is defined by imposing renormalization conditions on

matrix elements at a scale µ̄. The renormalization condition giving ZL,RI′

Γ (L: Lattice)

is:

lim
a→0

[
ZL,RI′

ψ ZL,RI′

Γ Σ
(1)
Γ (aq)

]
q2=µ̄2,
m=0

= 1 (6.29)

where Zψ is the renormalization function for the fermion field (ψ = Z
−1/2
ψ ψ0, ψ(ψ0):

renormalized (bare) fermion field). Such a condition guarantees that the renormalized

Green’s function of OΓ (the quantity in brackets in Eq. 6.29) will be a finite function

of the renormalized coupling constant g for all values of the momenta (g = µ−εZ−1
g g0
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where µ is the mass scale introduced to ensure that g0 has the correct dimensionality in

D = 4−2ε dimensions). Comparison between the RI ′ and the MS schemes is normally

performed at the same scale µ̄ = µ(4π/eγE)1/2.

The RI ′ renormalization prescription, as given above, does not involve Σ
(2)
Γ ;

nevertheless, renormalizability of the theory implies that ZL,RI′

Γ will render the entire

Green’s function finite. An alternative prescription, more appropriate for

nonperturbative renormalization, is:

lim
a→0

[
ZL,RI′

ψ Z
L,RI′(alter)
Γ

tr(ΓΣΓ(aq))

tr(ΓΓ)

]
q2=µ̄2,
m=0

= 1 (6.30)

where a summation over repeated indices µ and ν is understood. This scheme has

the advantage of taking into account the whole bare Green’s function and therefore is

useful for numerical simulations where the arithmetic data for ΣΓ cannot be separated

into two different structures. The two prescriptions differ between themselves (for V,

A, T) by a finite amount which can be deduced from lower loop calculations combined

with continuum results.

Conversion of renormalization functions from RI ′ to the MS scheme is facilitated by

the fact that renormalized Green’s functions are regularization independent; thus the

finite conversion factors:

CΓ(g, α) ≡ ZL,RI′

Γ

ZL,MS
Γ

=
ZDR,RI′

Γ

ZDR,MS
Γ

(6.31)

(DR: Dimensional Regularization, α: gauge parameter) can be evaluated in DR, leading

to ZL,MS
Γ = ZL,RI′

Γ /CΓ(g, α). For the Pseudoscalar and Axial Vector operators, in order

to satisfy Ward identities, additional finite factors ZP
5 (g) and ZA

5 (g), calculable in DR,

are required:

ZL,MS
P =

ZL,RI′

P

CSZP
5

, ZL,MS
A =

ZL,RI′

A

CVZA
5

. (6.32)

The inclusion of these factors in the definitions of ZP and ZA amount to a variant

convention on the MS scheme. These factors are gauge independent; we also note that

the value of ZA
5 for the flavor singlet operator differs from that of the nonsinglet one.GREGORIS SPANOUDES
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The values of ZP
5 , Z

A(singlet)
5 and Z

A(nonsinglet)
5 , calculated in Ref. [182], are:

ZP
5 (g) = 1− g2

(4π)2
(8CF ) +

g4

(4π)4

(2

9
CFNc +

4

9
CFNf

)
+O(g6) (6.33)

Z
A(singlet)
5 (g) = 1− g2

(4π)2
(4CF ) +

g4

(4π)4

(
22C2

F −
107

9
CFNc +

31

18
CFNf

)
+O(g6)

(6.34)

Z
A(nonsinglet)
5 (g) = 1− g2

(4π)2
(4CF ) +

g4

(4π)4

(
22C2

F −
107

9
CFNc +

2

9
CFNf

)
+O(g6)

(6.35)

where CF ≡ (N2
c − 1)/(2Nc) and Nf is the number of flavors.

We list below all relevant conversion factors relating the RI ′, RI ′-alternative and

MS schemes. Given that the conversion factors are regularization independent, the

renormalization functions ZΓ appearing below may be evaluated in any regularization

scheme.

Conversion factors between RI ′ and MS schemes

CMS,RI′

Γ ≡ CΓ ≡
ZRI′

Γ

ZMS
Γ

(6.36)

CMS,RI′

S(singlet) = 1 +
g2
RI′

(4π)2
CF (αMS + 4)

+
g4
RI′

24(4π)4
CF

[(
24 α2

MS
+ 96 αMS − 288 ζ(3) + 57

)
CF + 166 Nf

−
(

18 α2
MS

+ 84 αMS − 432 ζ(3) + 1285
)
Nc

]
+ O(g6

RI′) (6.37)

CMS,RI′

P (singlet) = 1 +
g2
RI′

(4π)2
CF (αMS − 4)

+
g4
RI′

24(4π)4
CF

[(
24 α2

MS
− 96 αMS − 288 ζ(3)− 711

)
CF +

530

3
Nf

−
(

18 α2
MS

+ 84 αMS − 432 ζ(3) +
3839

3

)
Nc

]
+ O(g6

RI′) (6.38)

CMS,RI′

V (singlet) = 1 + O(g8
RI′) (6.39)

CMS,RI′

A(singlet) = 1 − g2
RI′

(4π)2
(4CF ) +

g4
RI′

(4π)4

(
22C2

F −
107

9
CFNc +

31

18
CFNf

)
+O(g6

RI′)

(6.40)
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CMS,RI′

T (singlet) = 1 +
g2
RI′

(4π)2
CF αMS

+
g4
RI′

216(4π)4
CF

[(
216 α2

MS
+ 4320 ζ(3)− 4815

)
CF + 626 Nf

+
(

162 α2
MS

+ 756 αMS − 3024 ζ(3) + 5987
)
Nc

]
+ O(g6

RI′) (6.41)

CMS,RI′

Γ(nonsinglet) = CMS,RI′

Γ(singlet), Γ 6= Aµ (6.42)

CMS,RI′

A(nonsinglet) = 1 − g2
RI′

(4π)2
(4CF ) +

g4
RI′

(4π)4

(
22C2

F −
107

9
CFNc +

2

9
CFNf

)
+O(g6

RI′)

(6.43)

where ζ(x) is the Riemann’s zeta function. The conversion of gauge parameter α

between the two schemes is given by:

αRI′ =
αMS

CMS,RI′

Aµ

(6.44)

where the conversion factor CMS,RI′

Aµ
for the gluon field Aµ is given by 1:

CMS,RI′

Aµ
≡
ZRI′
Aµ

ZMS
Aµ

= 1 +
g2
RI′

36(4π)2

[(
9 α2

MS
+ 18 αMS + 97

)
Nc− 40 Nf

]
+O(g4

RI′) (6.45)

Conversion factors between RI ′ and RI ′alternative schemes

CRI′,RI′alter
Γ ≡ ZRI′alter

Γ

ZRI′
Γ

(6.46)

CRI′,RI′alter
S(singlet) = CRI′,RI′alter

S(nonsinglet) = CRI′,RI′alter
P (singlet) = CRI′,RI′alter

P (nonsinglet) = 1 (6.47)

CRI′,RI′alter
V (singlet) = CRI′,RI′alter

V (nonsinglet) = CRI′,RI′alter
A(nonsinglet) =

1− g4
RI′

(4π)4
CF

(3

4
CF −

251

36
Nc +

19

18
Nf

)
+O(g6

RI′) (6.48)

CRI′,RI′alter
A(singlet) = 1− g4

RI′

(4π)4
CF

(3

4
CF −

251

36
Nc +

1

18
Nf

)
+O(g6

RI′) (6.49)

CRI′,RI′alter
T (singlet) = CRI′,RI′alter

T (nonsinglet) = 1 +O(g6
RI′) (6.50)

1Not to be confused with the conversion factor CMS,RI′

A for the axial vector operator!
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Conversion factors between RI ′alternative and MS schemes

CMS,RI′alter
Γ ≡ ZRI′alter

Γ

ZMS
Γ

(6.51)

CMS,RI′alter
Γ(singlet/nonsinglet) = CMS,RI′

Γ(singlet/nonsinglet) C
RI′,RI′alter
Γ(singlet/nonsinglet) (6.52)

6.3 Computation and Results

In the previous section, the calculation setup was presented in rather general terms.

Here we focus on the two-loop difference between flavor singlet and nonsinglet operator

renormalization. Given that this difference first arises at two loops, we only need

the tree-level values of Zψ, Zg and of the conversion factors CΓ, ZP
5 (Zψ = Zg =

CΓ = ZP
5 = 1). Since CΓ = 1, the difference up to two loops will not depend on the

renormalization scheme for all operators Γ, except for the axial vector case. There

are two factors contributing to this scheme dependence: On one hand, the conversion

factor ZA
5 between RI ′ and MS differs for the singlet and nonsinglet operators (see Eqs.

6.32, 6.34, 6.35); on the other hand, non-identical contributions of the form γ5qµ/q/q
2

in the Green’s functions for the singlet and nonsinglet axial vector operators lead to a

nontrivial conversion between the RI ′ and RI ′-alternative schemes, as shown in Eq.

(6.54). In addition, for our computations we will use mass-independent renormalization

schemes; this means that the renormalized mass of quarks will be taken to be zero.

6.3.1 Results on the two-loop difference between flavor singlet

and nonsinglet operator renormalization

In this subsection, we present the computational procedure and results on the two-loop

difference between flavor singlet and nonsinglet operator renormalization using the

staggered formulation of the fermion action (Eq. 6.1). There are 10 two-loop Feynman

diagrams contributing to this difference in the evaluation of the Green’s functions

(Eqs. 6.24 - 6.28), shown in Fig. 6.1. They all contain an operator insertion inside a

closed fermion loop, and therefore vanish in the flavor nonsinglet case. Note that only

diagrams 6 and 7 appear in the continuum. Furthermore, diagrams 3, 4, 8, 9 and 10

appear only in the staggered formulation (and not in Wilson-like fermion actions), due
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to the presence of some new vertices with gluon lines stemming from the definition of

bilinear operators (from the product UC,D in Eq. 6.8). These diagrams involve operator

vertices (the cross in the diagram) with up to two gluons. For OS only diagrams 1,

2, 5, 6 and 7 contribute, since UC,D = 11. In order to simplify our calculations of ZΓ,

we worked with
∑

yOΓ(y) so that no momentum enters the diagrams at the operator

insertion point.

6 7 8 9 10

54321

Figure 6.1: Diagrams (in staggered formulation) contributing to the difference
between flavor singlet and nonsinglet values of ZΓ. Solid (wavy) lines represent
fermions (gluons). A cross denotes insertion of the operator OΓ.

The evaluation of the above diagrams using the improved staggered action is more

complicated than the evaluation of the corresponding diagrams in Wilson-like actions

(Wilson gluons and clover fermions: [49, 50], SLiNC: [203]). One reason for this is the

appearance of divergences in nontrivial corners of the Brillouin zone. Also, the presence

of operator vertices with gluon lines, besides increasing the number of diagrams, gives

terms with unusual offsets in momentum conservation delta functions (e.g., δ
(4)
2π (p1 +

p2 + πµ̂)); it turns out that these terms vanish in the final expression of each diagram.

In addition, the two (rather than one) smearing steps of gluon links in the fermion

action, as well as in the operators, lead to extremely lengthy vertices; the lengthiest

cases which appeared in our computation are the operator vertices with two gluons

(∼ 800000 terms for the Axial Vector). Since these vertices appear only with their

fermion lines contracted among themselves (diagrams: 4 and 10), we do not need to

compute them as individual objects; we have used this fact in order to simplify the

expression for diagrams 4 and 10. Also, the gluon propagator must now be inverted

numerically for every choice of values for the Symanzik coefficients and for each value of

the loop momentum 4-vector; an inversion in closed form exists, but it is not efficient.

Comparing to our previous evaluation of these diagrams with Wilson gluons and clover
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fermions [49, 50] and with SLiNC action [203], we will find neither any new superficial

divergences (ln2(a2µ̄2) terms) nor any new subdivergences (ln(a2µ̄2) terms).

Another important issue for the above diagrams is exploiting the underlying

symmetries. For example in the Wilson-like actions, the denominator of the fermion

propagator satisfies the symmetry pµ → −pµ,∀µ; in the staggered case there is

another symmetry: pµ → pµ + πν̂, where µ, ν can be in the same or in different

directions. This is a consequence of the semi-periodicity of the function sin2(pµ),

which appears in the denominator of the staggered propagator (rather than

sin2(pµ/2)). These symmetries help us to reduce the number of terms in the

diagrams, eliminating odd integrands.

The contribution of the diagrams in Fig. 6.1 to ZS, ZP, ZV, ZT vanishes identically

just as in continuum regularizations. The closed fermion loop of the diagrams which

contribute to ZS, ZP, ZT, gives an odd number of exponentials of the inner momentum;

this leads to odd integrands, which equal zero, due to the symmetry of the staggered

propagator mentioned above. So, for the cases of ZS, ZP, ZT, the contribution vanishes

diagram by diagram. Conversely, for the case of ZV, each diagram vanishes when we

add its symmetric diagram (diagrams 6+7, 8+9). Therefore, only ZA is affected. In

particular, only diagrams 6 - 9 contribute to ZA; the remaining diagrams vanish. Then,

for the Axial Vector operator, our result can be written in the following form:
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Z
RI′(singlet)
A (aµ̄)− ZRI′(nonsinglet)

A (aµ̄) =

− g4
0

(4π)4
CF Nf

{
6 ln(a2µ̄2) + α1 + α2 (ωA1 + ωA2) + α3 (ω2

A1
+ ω2

A2
)

+ α4 ωA1 ωA2 + α5 (ω3
A1

+ ω3
A2

) + α6 ωA1 ωA2 (ωA1 + ωA2) + α7 (ω4
A1

+ ω4
A2

)

+ α8 ω
2
A1
ω2
A2

+ α9 ωA1 ωA2 (ω2
A1

+ ω2
A2

) + α10 ω
2
A1
ω2
A2

(ωA1 + ωA2)

+ α11 ωA1 ωA2 (ω3
A1

+ ω3
A2

) + α12 ω
3
A1
ω3
A2

+ α13 ω
2
A1
ω2
A2

(ω2
A1

+ ω2
A2

)

+ α14 ω
3
A1
ω3
A2

(ωA1 + ωA2) + α15 ω
4
A1
ω4
A2

+ α16 (ωO1 + ωO2) + α17 ωO1 ωO2

+ α18 (ωA1 + ωA2) (ωO1 + ωO2) + α19 ωA1 ωA2 (ωO1 + ωO2)

+ α20

[
(ω2

A1
+ ω2

A2
) (ωO1 + ωO2) + (ωA1 + ωA2) ωO1 ωO2

]
+ α21 (ω2

A1
+ ω2

A2
) ωO1 ωO2 + α22 (ω3

A1
+ ω3

A2
) (ωO1 + ωO2)

+ α23 ωA1 ωA2

[
(ωA1 + ωA2) (ωO1 + ωO2) + ωO1 ωO2

]
+ α24 (ω3

A1
+ ω3

A2
) ωO1 ωO2 + α25 ωA1 ωA2 (ω2

A1
+ ω2

A2
) (ωO1 + ωO2)

+ α26 ωA1 ωA2

[
ωA1 ωA2 (ωO1 + ωO2) + (ωA1 + ωA2)ωO1 ωO2

]
+ α27 ω

2
A1
ω2
A2
ωO1 ωO2

+ α28 ωA1 ωA2

[
ωA1 ωA2 (ωA1 + ωA2) (ωO1 + ωO2) + (ω2

A1
+ ω2

A2
) ωO1 ωO2

]
+ α29 ω

3
A1
ω3
A2

(ωO1 + ωO2) + α30 ω
2
A1
ω2
A2

(ωA1 + ωA2) ωO1 ωO2

+ α31 ω
3
A1
ω3
A2
ωO1 ωO2

}
+O(g6

0) (6.53)

The numerical constants αi have been computed for various sets of values of the

Symanzik coefficients; their values are listed in Table 6.1 for the Wilson, Tree-level

Symanzik and Iwasaki gluon actions. The errors quoted stem from extrapolation of

the results of numerical integration over loop momenta for different lattice sizes. The

extrapolation methods that we used are described in Ref. [208]. The computation

was performed in a general covariant gauge, confirming that the result is gauge

independent, as it should be in MS. The computation with staggered fermions gives

rise to some nontrivial divergent integrals, which cannot be present in the Wilson

formulation due to the different pole structure of the fermion propagator. In the

following subsection, we provide a brief description of the manipulations performed to

evaluate such divergent terms. We note that the result for the Axial Vector operator,

as we expected, has a scale dependence; it has the same divergent behaviour just as in

the Wilson case and in the continuum, i.e. 6 ln(a2µ̄2). This is related to the axial
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Wilson TL Symanzik Iwasaki
α1 17.420(1) 16.000(1) 14.610(1)
α2 -116.049(7) -81.342(5) -41.583(2)
α3 839.788(9) 539.121(6) 230.050(1)
α4 2175.14(3) 1394.12(2) 591.88(1)
α5 -3462.830(1) -2098.136(5) -801.633(3)
α6 -19565.9(1) -11858.6(1) -4528.6(1)
α7 6424.33(2) 3740.18(1) 1337.93(1)
α8 200966.5(4) 117179.7(4) 41977.1(1)
α9 92171.5(3) 53720.8(1) 19237.6(1)
α10 -1026448(1) -580271(2) -198722(1)
α11 -183998.3(3) -103929.7(3) -35561.1(1)
α12 5517230(30) 3037110(10) 1003641(1)
α13 2145810(10) 1180684(4) 389979(1)
α14 -11889300(40) -6386950(30) -2046240(10)
α15 26137700(200) 13729010(10) 4278680(10)
α16 24.9873(2) 18.0489(4) 9.9571(2)
α17 -97.4550(2) -62.2675(1) -26.5359(1)
α18 -292.3650(5) -186.8025(4) -79.6078(2)
α19 4864.513(9) 2921.876(6) 1107.333(2)
α20 1621.504(3) 973.959(2) 369.111(1)
α21 -10617.81(2) -6122.11(1) -2169.30(1)
α22 -3539.269(6) -2040.705(4) -723.099(1)
α23 -31853.42(5) -18366.34(3) -6507.89(1)
α24 25847.14(3) 14435.59(2) 4881.52(1)
α25 77541.41(1) 43306.78(6) 14644.54(2)
α26 232624.2(3) 129920.3(2) 43933.6(1)
α27 -1844375(1) -1002465(1) -326727(1)
α28 -614791.6(6) -334155.0(4) -108909.0(2)
α29 1736048.1(8) 920956.7(7) 290916.1(3)
α30 5208144(2) 2762870(2) 872748(1)
α31 -15545543(1) -8065557(2) -2478207(1)

Table 6.1: Numerical coefficients for the Axial Vector operator using staggered
fermions.

anomaly. As was expected, this logarithmic divergence originates in diagrams 6 and

7, which are the only ones present in the continuum.

Finally, the presence of a term of the form γ5 qµ 6q/q2 in the Green’s function of the

Axial Vector operator (Eq. 6.27) implies that, in the alternative RI ′ scheme mentioned
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in Sec. 6.2.4, the above result is modified by a finite term, as below:

Z
RI′alter(singlet)
A (aµ̄)− ZRI′alter(nonsinglet)

A (aµ̄) =

Z
RI′(singlet)
A (aµ̄)− ZRI′(nonsinglet)

A (aµ̄) +
g4

0

(4π)4
CF Nf +O(g6

0) (6.54)

Furthermore, according to the conversion relations between RI ′ and MS schemes (6.40

- 6.43), in the MS scheme we must also add a finite term, as below:

Z
MS(singlet)
A − ZMS(nonsinglet)

A =

Z
RI′(singlet)
A − ZRI′(nonsinglet)

A +
g4

0

(4π)4
(−3

2
CFNf ) +O(g6

0) (6.55)

6.3.2 Evaluation of a basis of nontrivial divergent two-loop

Feynman diagrams in the staggered formalism

In this subsection we present the procedure that we used to evaluate nontrivial divergent

integrals which appeared in our two-loop computation using staggered fermions. In the

Wilson-like actions, the two-loop divergent integrals can be expressed in terms of a basis

of standard integrals found in Ref. [39], along with manipulations found in Ref. [50].

However, in the staggered case, the divergent integrals are not related to those standard

integrals in an obvious way. Some further steps are needed to this end.

In our computation, there appeared 4 types of nontrivial divergent 2-loop integrals,

using staggered fermions; they are listed below:

I1µν =

∫ π

−π

d4k

(2π)4

◦
kµ

◦
kν

(k̂2)2 (k̂ + aq)2

∫ π

−π

d4p

(2π)4

1
◦
p2 (

◦
p+k)2

(6.56)

I2µν =

∫ π

−π

d4k

(2π)4

◦
kµ sin(aqν)

(k̂2)2 (k̂ + aq)2

∫ π

−π

d4p

(2π)4

1
◦
p2 (

◦
p+k)2

(6.57)

I3µνρσ =

∫ π

−π

d4k

(2π)4

◦
kµ

◦
kν

(k̂2)2 (k̂ + aq)2

∫ π

−π

d4p

(2π)4

sin(2pρ) sin(2pσ)

(
◦
p2)2 (

◦
p+k)2

(6.58)

I4µνρσ =

∫ π

−π

d4k

(2π)4

◦
kµ sin(aqν)

(k̂2)2 (k̂ + aq)2

∫ π

−π

d4p

(2π)4

sin(2pρ) sin(2pσ)

(
◦
p2)2 (

◦
p+k)2

(6.59)
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where p̂2 =
∑

µ p̂
2
µ, p̂µ = 2 sin(pµ/2),

◦
p

2
=
∑

µ

◦
p

2

µ,
◦
pµ = sin(pµ) and q is an external

momentum. The crucial point is the presence of expressions like
◦
p

2
or (

◦
p+k)2 rather

than p̂2 or (p̂+ k)2 in the denominators of the above integrals. This behaviour comes

from the tree-level staggered fermion propagator. Also, the other crucial point is the

fact that we cannot manipulate these integrals via subtractions of the form:

1
◦
p

2 =
1

p̂
2 +

( 1
◦
p

2 −
1

p̂
2

)
(6.60)

in order to express them in terms of a standard tabulated integral plus additional

terms which are more convergent; such a procedure is applicable, e.g., in the case of

the Wilson fermion propagator
[
1/
(
◦
p

2
+r2(p̂2)2/4

)]
or in other less divergent integrals

with staggered fermion propagators. The reason for which such a subtraction cannot

be applied is the existence of potential IR singularities at all corners of the Brillouin

zone (not only at zero momentum), in the staggered fermion propagator. Therefore,

such a subtraction will not alleviate the divergent behaviour at the remaining corners

of the Brillouin zone.

For the above integrals we followed a different approach. At first, we perform the

substitution pµ → p′µ + π Cµ, where −π/2 < p′µ < π/2 and Cµ ∈ {0, 1}, which

is the same substitution that we applied to external momenta. Now the integration

region for the innermost integral breaks up into 16 regions with range [−π/2, π/2]; the

contributions from these regions are identical. To restore the initial range [−π, π], we

apply the following change of variables: p′µ → p′′µ = 2p′µ. Then we obtain:

I1µν = 16

∫ π

−π

d4k

(2π)4

◦
kµ

◦
kν

(k̂2)2 (k̂ + aq)2

∫ π

−π

d4p

(2π)4

1

p̂2 (p̂+ 2k)2
(6.61)

I2µν = 16

∫ π

−π

d4k

(2π)4

◦
kµ sin(aqν)

(k̂2)2 (k̂ + aq)2

∫ π

−π

d4p

(2π)4

1

p̂2 (p̂+ 2k)2
(6.62)

I3µνρσ = 64

∫ π

−π

d4k

(2π)4

◦
kµ

◦
kν

(k̂2)2 (k̂ + aq)2

∫ π

−π

d4p

(2π)4

◦
pρ
◦
pσ

(p̂2)2 (p̂+ 2k)2
(6.63)

I4µνρσ = 64

∫ π

−π

d4k

(2π)4

◦
kµ sin(aqν)

(k̂2)2 (k̂ + aq)2

∫ π

−π

d4p

(2π)4

◦
pρ
◦
pσ

(p̂2)2 (p̂+ 2k)2
(6.64)

where we omit the double prime from p. The above integrals are similar to standard

divergent integrals, computed in Ref. [39]. The only difference is the presence of a
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factor of 2 in the denominators, i.e. 1/(p̂+ 2k)2. This can be treated via subtraction

methods. We define:

A(k) =

∫ π

−π

d4p

(2π)4

1

p̂2 (p̂+ k)2
(6.65)

Aas(k) ≡ 1

(4π)2
[− ln(k2) + 2] + P2 (6.66)

Bρσ(k) =

∫ π

−π

d4p

(2π)4

◦
pρ
◦
pσ

(p̂2)2 (p̂+ k)2
(6.67)

B̃ρσ(2k) ≡ 1

2(4π)2

◦
kρ
◦
kσ

k̂2
+ δρσ[

1

4
A(2k)− 1

32
P1] (6.68)

where the values of the numerical constants P1 and P2 are noted in Ref. [39]. Aas(k)

and B̃ρσ(2k) are asymptotic values of A(k) and Bρσ(2k), respectively:

A(k) = Aas(k) +O(k2), Bρσ(2k) = B̃ρσ(2k) +O(k2) (6.69)

The first two integrals I1µν and I2µν contain the quantity A(2k) and the remaining two

integrals I3µνρσ and I4µνρσ the quantity Bρσ(2k). We apply the following subtractions:

A(2k) = A(k) + [Aas(2k)− Aas(k)] + [A(2k)− A(k)− Aas(2k) + Aas(k)] (6.70)

Bρσ(2k) = B̃ρσ(2k) + [Bρσ(2k)− B̃ρσ(2k)] (6.71)

Integrals I1µν and I2µν separate into 3 sub-integrals. The first sub-integral with the

quantity A(k) is already computed in Ref. [39] (for I1µν) or can be converted into

standard divergent integrals of Ref. [39] using integration by parts (for I2µν). The

second sub-integral with the quantity [Aas(2k) − Aas(k)] = − ln 4/(4π)2 is a one loop

divergent integral computed in Ref. [39] or [209]. The third sub-integral with the

quantity [A(2k)−A(k)−Aas(2k)+Aas(k)] = O(k2) is convergent and so we can integrate

it numerically for a→ 0 (In particular, it gives zero for I2µν). Also, integrals I3µνρσ and

I4µνρσ separate into 2 sub-integrals. The first sub-integral with the quantity B̃ρσ(2k)

gives expressions which can be converted into standard integrals of Refs. [39, 209–

211] or into the above I1µν , I2µν integrals. The second sub-integral with the quantity

[Bρσ(2k) − B̃ρσ(2k)] = O(k2) is convergent and so we can integrate it numerically

for a → 0 (In particular, it gives zero for I4µνρσ). Therefore, according to the aboveGREGORIS SPANOUDES
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manipulations, the final expressions for the four integrals are given by:

I1µν =
{ 2

(2π)4

[
− ln(a2q2) +

3

2
− ln 4

]
+

1

2π2
P2

}qµqν
q2

+ δµν

{ 2

(4π)4

[
ln(a2q2)

]2

− 1

4π2

[
P2 +

1

(4π)2

(5

2
− ln 4

)]
ln(a2q2)

− 1

4π2

[
P2 +

3

2(4π)2
ln 4
]

+ 4X2 +G1

}
+ O(a2q2) (6.72)

I2µν =
{ 1

(2π)4

[
ln(a2q2)− 2 + ln 4

]
− 1

π2
P2

}qµqν
q2

+O(a2q2) (6.73)

I3µνρσ =
1

3(2π)4

qµqνqρqσ
q4

+ δρσ

{ 2

(2π)4

[
− ln(a2q2) +

5

3
− ln 4

]
− 1

(4π)2
(P1 − 8P2)

}qµqν
q2

+
1

12(2π)4

{
δµν

qρqσ
q2

+ δµρ
qνqσ
q2

+ δµσ
qνqρ
q2

+ δνρ
qµqσ
q2

+ δνσ
qµqρ
q2

}
+ δµνδρσ

{ 2

(4π)4

[
ln(a2q2)

]2

− 1

4π2

[
P2 −

1

8
P1 +

1

(4π)2

(51

2
− ln 4

)]
ln(a2q2)

− 1

4π2

[(1

3
− ln 4

)
P2 −

11

144
P1 +

3

2(4π)2

( 1

27
− ln 4

)]
−1

2
P1 P2 + 4X2 +G1 +G3

}
+ (δµρδνσ + δµσδνρ)

{ 1

(12π)4

[
− ln(a2q2) +

1

6

]
+

1

6π2
(P1 + 3P2) +G2

}
+ δµνρσ

{ 1

(2π)4
+

1

2(4π)2
− 1

3π2
P1 +G4

}
+O(a2q2) (6.74)

I4µνρσ = − 1

2(2π)4

qµqνqρqσ
q4

− 4

(4π)4

{
δµρ

qνqσ
q2

+ δµσ
qνqρ
q2

}
+ δρσ

{ 1

(2π)4

[
ln(a2q2)− 9

4

]
− 1

2(2π)2
(P1 − 8P2)

}qµqν
q2

+O(a2q2) (6.75)

where P1, P2, X2 are given in Ref. [39] and G1 −G4 are given below:

G1 = 0.000803016(6) (6.76)

G2 = −0.0006855532(7) (6.77)

G3 = 0.00098640(7) (6.78)

G4 = 0.00150252(2) (6.79)GREGORIS SPANOUDES
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6.4 Discussion

The numerical value of the difference between singlet and nonsinglet renormalization

functions can be very significant, depending on the values of the parameters employed

in the action. In order to assess the importance of this difference, we present here

several graphs of the results for certain values of ci, ωA1 , ωA2 , ωO1 and ωO2 .

Firstly, we note that the result (6.53) is symmetric under the exchange of ωAs as well

as under the exchange of ωOs. This fact is consistent with the requirement that the

results for (ωO1 = 0, ωO2 = ω) and (ωO1 = ω, ωO2 = 0) should coincide, since they both

correspond to a single smearing step; similarly for the coefficients ωA1 and ωA2 . These

properties provide nontrivial consistency checks of our computation.

In Fig. 6.2 we present 2D graphs of our results by selecting the following parameter

values:

1. ωA1 = ωA2 = ωO1 = ωO2 = ω

2. ωA1 = ωA2 = ω, ωO1 = ωO2 = 0 (No smearing procedure in the links of

operators)

3. ωA1 = ω, ωA2 = ωO1 = ωO2 = 0 (One smearing step only in the links of

fermion action)

4. ωA1 = ωO1 = ω, ωA2 = ωO2 = 0 (One smearing step in the links of fermion

action and operators).

The vertical axis of theses plots corresponds to

Zdiff.
A ≡

[
Z

(singlet)
A (aµ̄)− Z(nonsinglet)

A (aµ̄)
] (
− g4

o

(4π)4NfCF

)−1

for µ̄ = 1/a. We plot the

results for gluon actions: Wilson, tree-level Symanzik, Iwasaki in the same graph. We

notice that the plots for the Iwasaki action are flatter than for the remaining actions

but the Wilson action has the smallest values of Zdiff
A .
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Figure 6.2: Plots of Zdiff.
A ≡

[
Z

(singlet)
A − Z(nonsinglet)

A

] (
− g4

o

(4π)4NfCF

)−1
, as a

function of ω for the parameter values: upper left: ωA1 = ωA2 = ωO1 = ωO2 = ω,
upper right: ωA1 = ωA2 = ω, ωO1 = ωO2 = 0, lower left: ωA1 = ω,
ωA2 = ωO1 = ωO2 = 0, lower right: ωA1 = ωO1 = ω, ωA2 = ωO2 = 0.

In Figs. (6.3 - 6.5) we present 3D graphs of our results by selecting the following

parameter values:

Fig. 6.3: ωA1 , ωA2 : free parameters and ωO1 = ωO2 = 0 (No smearing procedure

in the links of operators)

Fig. 6.4: ωA1 , ωO1 : free parameters and ωA2 = ωO2 = 0 (One smearing step in the

links of fermion action and operators)

Fig. 6.5: ωA1 = ωA2 , ωO1 = ωO2 .

Just as in 2D graphs, the vertical axis of theses plots corresponds to Zdiff.
A for µ̄ = 1/a.

We notice again that the plots for the Iwasaki action are flatter than the remaining

actions. Also, from the first trio of graphs (Fig. 6.3), we notice that there is only one

minimum, on the 45◦ axis. Therefore, the two smearing steps of the fermion action

give better results than only one smearing step. Also, in Fig. 6.4, as well as in Fig.

6.5, we observe that the stout smearing of the action is more effective in minimizing

Zdiff.
A than the stout smearing of operators.
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Figure 6.3: Plots of Zdiff.
A ≡

[
Z

(singlet)
A − Z(nonsinglet)

A

] (
− g4

o

(4π)4NfCF

)−1
, as a

function of ωA1 and ωA2 for ωO1 = ωO2 = 0 (upper left: Wilson action, upper
right: TL Symanzik action, lower: Iwasaki action).

Figure 6.4: Plots of Zdiff.
A ≡

[
Z

(singlet)
A − Z(nonsinglet)

A

] (
− g4

o

(4π)4NfCF

)−1
, as a

function of ωA1 and ωO1 for ωA2 = ωO2 = 0 (upper left: Wilson action, upper
right: TL Symanzik action, lower: Iwasaki action).
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Figure 6.5: Plots of Zdiff.
A ≡

[
Z

(singlet)
A − Z(nonsinglet)

A

] (
− g4

o

(4π)4NfCF

)−1
, as a

function of ωA1 and ωO1 for ωA2 = ωA1 and ωO2 = ωO1 (upper left: Wilson action,
upper right: TL Symanzik action, lower: Iwasaki action).
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Chapter 7

Strong running coupling on the

lattice

7.1 Introduction

In an interacting field theory, coupling constants λ are the fundamental parameters

(along with the particles’ masses) in terms of which predictions for observables are

expressed. They encode the underlying dynamics of a field theory, as they describe

the strength of the forces among the particles of the theory in different momentum

regions. The denomination of “coupling constants” is actually misleading; they are not

really constants, but they depend on a momentum renormalization scale µ. When µ

takes values close to the scale of the momentum transfer Q in a given process then

λ(µ2 ' Q2) is indicative of the effective strength of the underlying interactions in that

process. Thus, we also refer to them as “running couplings” (they “run” with the

momentum scale).

In nonabelian gauge theories, such as QCD, the evolution of the running coupling as a

function of µ is of fundamental interest, especially at regions where scaling is verified.

In particular, the strong interactions of quarks have totally different behavior from low

to high momentum regions; at high momentum scales, QCD acts as an asymptotically

free field theory, while it is confining at low momentum scales. Therefore, the strong

coupling decreases with increasing momentum transfer, and vanishes at asymptotically

high momentum scales. This means that the study of particle reactions at high energies

118
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can be worked out using a perturbative expansion in powers of coupling constant.

However, at low energies the strong coupling is so large that the perturbative expansion

is not reliable. In this case, a nonperturbative treatment of the theory, such as lattice

discretization, is required in order to reach a low momentum regime.

In lattice formulations of QCD, bare parameters depend on the lattice spacing a.

Measurable quantities must not be affected by the variation of the theory’s regulator;

thus, bare parameters must be tuned with a in an appropriate way so that

observables are fixed to their physical values. However, for sufficiently small values of

lattice spacing, the a-dependence of bare parameters must be universal, i.e.,

independent of the observable considered. In order to ensure the finiteness of any

observable, the bare coupling constant must vanish in the continuum limit

corresponding to asymptotic freedom. However, numerical simulations on the lattice

are performed at finite values of the bare parameters. Since the values of the bare

lattice coupling are rather large, there are additional unwanted contributions to

αs = g2/(4π), which are numerically significant. This is not, however, useful for

comparing to results for αs obtained from experiment. This is because the latter

results give αs in the MS scheme, which is commonly used in analysis of experimental

data, and the conversion factor between these two schemes is known to converge

extremely poorly in perturbation theory. Instead one must use a method which

directly determines αs in a scheme closer to MS.

Different computational strategies are being pursued and several nonperturbative

definitions of the stong coupling constant have been considered. Such a method

regards the definition of αs using the Schrödinger functional (SF) [212–215], in which

one can nonperturbatively control the evolution of αs to high-energy scales (using

step-scaling functions), where the perturbative expansion converges. In this scheme,

results for αs can be produced not only for a wide range of low energies, but also in

high energies where comparisons with perturbation theory can be made. A similar

(more recent) method, which uses also step-scaling functions, regards the definition of

αs using the gradient flow (GF) scheme [216–218]. This scheme is more promising

than SF because GF couplings have small statistical errors at large values of bare

couplings, in contrast to the SF couplings, which have small statistical errors at small

values of bare couplings. In both methods, conversion of the coupling to the MS

scheme is required; however, this can be done only perturbatively.
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7.2 β-function and Λ-parameter

The coupling constant satisfies the following renormalization group (RG) equation:

µ
dg

dµ

∣∣∣
bare

parameters

= β(g) = −(b0g
3 + b1g

5 + b2g
7 + · · ·), (7.1)

where β(g) is called beta-function and it is involved in the Callan-Symanzik equation:[
µ
∂

∂µ
+ β(g)

∂

∂g
+ nγ1(g) +mγ2(g)

]
G(n,m)({xi};µ, g) = 0, (7.2)

where n,m are the number of quark and gluon fields in the Green’s function G(n,m) and

γ1 and γ2 are the anomalous dimensions of the quark and gluon fields. The coefficients

b0, b1 are universal, regularization independent constants, and they have been already

known in the literature from calculations in dimensional regularization (DR) [219]. On

the contrary, bi(i ≥ 2) depends on the regulator. The minus sign in Eq. (7.1) implies

the asymptotically free behavior of the strong interactions for processes involving large

momentum transfers (hard processes).

Knowledge of the β-function leads to the solution of Eq. (7.1):

Λ = µ(b0g
2)
−b1/(2b20)

e−1/(2b0g2) exp

{
−
∫ g

0

dg′
[

1

β(g′)
+

1

b0g′
3 −

b1

b2
0g
′

]}
, (7.3)

where Λ is an integration constant, which corresponds to the scale where the

perturbatively-defined coupling would diverge (µ ∼ Λ), i.e., its value is indicative of

the momentum range where nonperturbative dynamics dominates; it is the

nonperturbative scale of QCD, which characterizes the low momentum Physics. For

large µ (µ� Λ), the asymptotic solution of the RG equation reads:

αs(µ
2) ' 1

b0t

[
1 − b1

b2
0

ln t

t
+
b2

1(ln2t− ln t− 1) + b0b2

b4
0t

2

−
b3

1(ln3t− 5
2
ln2t− 2 ln t+ 1

2
) + 3b0b1b2 ln t− 1

2
b2

0b3

b6
0t

3

]
, (7.4)

where t ≡ ln(µ2/Λ2).GREGORIS SPANOUDES
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On the lattice, the corresponding RG equation for the bare coupling g0 is:

− a∂g0

da

∣∣∣ physical
quantities

= βL(g0) = −(b0g
3
0 + b1g

5
0 + bL2 g

7
0 + · · ·), (7.5)

where βL is the lattice form of β-function and it dictates the asymptotic dependence of

the bare coupling constant g0 on the lattice spacing a, required to maintain fixed the

renormalized coupling at a given scale. The asymptotic solution of Eq. (7.5) is given

by:

aΛL = exp
(
− 1

2b0g2
◦

)
(b0g

2
0)
−b1/(2b20)

[1 + qg2
0 +O(g4

0)] (7.6)

where q = (b2
1−b0b

L
2 )/(2b3

0) and ΛL is the lattice form of Λ-parameter which corresponds

to the conversion unit of dimensionless quantities coming from numerical simulations

into measurable predictions for physical observables.

It is important to calculate on the lattice higher-order corrections of β-function, such

as the coefficient bL2 , for a given lattice formulation, in order to verify the two-loop

asymptotic prediction of ΛL. We recall that Monte Carlo simulations are actually

performed at g0 ' 1, and so deviations from the two-loop formula might not be

negligible. Also the knowledge of bL2 can be also used to improve the perturbative

relation between the MS-renormalized coupling and bare lattice coupling g0, which is

useful in calculations concerning running couplings [212, 213, 220–226]. The

calculation of bL2 is the main goal of our work in Chapter 8 using Symanzik-improved

gluons and Wilson/clover fermions with a stout improvement.

7.3 The background field method

A useful technique in the evaluation of the matching between different couplings is

the background field method [227–229]. The aim of this method is the simplification

of quantum computations related to gauge and gravitational theories without losing

explicit gauge invariance. Such calculations concerns the renormalization of

nonabelian gauge theories; using dimensional regularization, the extended symmetry

properties of the functional integral in the presence of a background gauge field have

been exploited to establish the renormalizability of such theories to all orders of

perturbation theory [230]. A particular example is the renormalization of the effective

action: the introduction of a background field results in a gauge-invariant effective
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action with respect to gauge transformations of the background field and it does not

require any further counterterms besides those already needed in the absence of the

background field.

The basic idea of the background field method is to write the gauge field in the action

as the sum of two fields, the quantum field Qµ(x) and the background field Bµ(x):

Aµ(x) = Bµ(x) + g0Qµ(x). (7.7)

The quantum field is now the “fundamental” field of the theory (it is integrated in

the path integral determination of Green’s functions), while the background is just

an arbitrary external source field, which is coupled to the dynamical fields of the

theory. The gauge-fixing term, which breaks the gauge invariance with respect to

transformations of the quantum field, is chosen in such a way that the invariance of the

action under gauge transformations of the background field is preserved. The gauge-

invariant effective action is just the background field effective action considered as a

functional of Bµ(x), once the functional integration over the quantum field is performed.

This effective action can be obtained from the calculation of the one-particle-irreducible

two-point function of the background field.

The extension of the background field method to the lattice formulation of quantum

field theories is really important for nonperturbative numerical studies. Lüscher and

Weisz [231] have shown that pure lattice gauge theory with a background gauge field

is renormalizable to all orders in perturbation theory. No additional counterterms are

required besides those already needed in the absence of a background field, as it happens

in the continuum case. Their argument, based on renormalizability of pure lattice gauge

theory, BRS, background gauge and shift symmetries of the lattice functional integral,

can be extended to full lattice QCD in the Wilson formulation. An essential point is

the renormalizability of lattice gauge theory with Wilson fermions proved by Reisz to

all orders in perturbation theory [232].

On the lattice, the background field technique can be approached in more than one way.

Different lattice actions may be chosen and the precise way in which the background

field is introduced is arbitrary to some extent. However, the differences between the

choices of lattice actions should be irrelevant in the continuum limit. The background
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field on the lattice is introduced by decomposing the gauge link variable as follows

[211]:

Uµ(x) = UQ
µ (x)UB

µ (x),

UQ
µ (x) = eig0aQµ(x+aµ̂/2),

UB
µ (x) = eiaBµ(x+aµ̂/2) (7.8)

where Qµ(x) = Qa
µ(x)T a, Bµ(x) = Ba

µ(x)T a, tr(T aT b) = δab/2, T a are the generators

of SU(N). Since the gauge link is now a product of two different field links, there is a

freedom in interpreting the gauge transformation:

[Uµ(x)]Λ = Λ(x)Uµ(x)Λ−1(x+ aµ̂); (7.9)

the latter can be viewed in two ways: The first one considers the quantum field as a

matter field which transforms purely locally, while the background field transforms as

a true gauge field:

[UQ
µ (x)]

Λ
= Λ(x)UQ

µ (x)Λ−1(x)

[UB
µ (x)]

Λ
= Λ(x)UB

µ (x)Λ−1(x+ aµ̂) (7.10)

The second one considers the background field as invariant, while the quantum field is

now the true gauge field:

[UQ
µ (x)]

Λ
= Λ(x)UQ

µ (x)Λ−1(x+ aµ̂)

[UB
µ (x)]

Λ
= UB

µ (x) (7.11)

Let us call the first interpretation of gauge transformations as “background gauge

transformations” and the second one as “quantum gauge transformations”. As the

background is an external field, which is not involved in the path integration, the

gauge-fixing term, which ensures the finiteness of path integrals, can be chosen to

preserve the gauge invariance under background transformations.

The fact that exact gauge invariance is preserved in the background field formalism,

leads to a relation between the renormalization factors of background field ZB and of

coupling constant Zg [233]:

ZB(g0, aµ) Z2
g (g0, aµ) = 1. (7.12)
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Thus, the matching formula between the lattice bare coupling constant and a

renormalized one can be extracted by the evaluation of ZB, instead of Z2
g , which is

simpler as there is no need to evaluate any three-point Green’s functions.
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Chapter 8

Lattice study of QCD β-function

with improved actions

8.1 Introduction

The study of the strong running coupling α(µ) = g2(µ)/(4π) in nonperturbative

renormalization schemes is very active in the latest years; a number of extensive

numerical simulations have been performed by a number of groups, giving promising

results [234–238]. Of particular interest is the computation of α(µ) at low-momentum

regions where scaling phenomena is verified (e.g., color confinement). Knowledge of

the perturbative relation between the bare running coupling α0 = g2
0/(4π) and the

MS-renormalized running coupling αMS = g2
MS
/(4π) at high orders, is important in

such estimations; it is combined with these simulations in order to reach a

nonperturbative regime [239].

Another important quantity, which has attracted much attention, is the scale parameter

ΛL associated with a lattice formulation of QCD [225, 240]. Knowledge of the three-

loop correction (linear in g2
0) of ΛL is important in order to verify asymptotic scaling

predictions. To this end we need to compute the three-loop (linear in g7
0) lattice bare

Callan-Symanzik β-function. The bare β-function dictates the asymptotic dependence

of the bare coupling constant g0 on the lattice spacing a, required to maintain fixed

the renormalized coupling at a given scale. The β-function can be derived from the

125
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combination of the two-loop relation between αMS and α0 (mentioned above) and the

knowledge of the three-loop MS-renormalized β-function [219]1.

The main objective of this work is the computation of the three-loop coefficient of

the bare β-function, bL2 , on the lattice for SU(Nc) gauge group and Nf multiplets of

fermions. The computation was performed with the use of the following improved

lattice actions (which have small discretization errors): Symanzik improved gluons and

SLiNC fermions in an arbitrary representation of the gauge group SU(Nc). The SLiNC

action [25] utilizes stout smeared links in order to suppress effects of finite lattice size.

This action is being used by the QCDSF Collaboration, in simulations of QCD with

dynamical quark flavors. An additional objective is the computation of the ratio of

energy scales ΛL/ΛMS
2 , in an arbitrary representation.

Previous calculations of bL2 and ΛL/ΛMS have been carried out using various

techniques and discretization prescriptions. Older results involving Wilson gluons

[39, 242], Symnazik improved gluons (only ΛL/ΛMS) [243], Wilson fermions [44],

clover fermions [45, 46], overlap fermions [47] can be found in the literature.

Corresponding computations for the SLiNC action, which is widely used in recent

simulations, have never been done before, due to their sheer difficulty. Our results can

be used to confirm some of the existing results mentioned before.

Furthermore, the results of such calculations can be used to make contact with a low

momentum-regime of QCD. In particular, our results will be combined with extensive

simulations performed by members of QCDSF Collaboration who have several aims,

among them: the precise determination of the QCD scale ΛQCD, the non-perturbative

running of the renormalized coupling constant and the determination of hadronic

properties using the “Wilson gradient flow” scheme, which is being very actively

investigated by a number of groups at present [244].

This chapter is organized as follows. In Sec. 8.2 we formulate the problem, giving some

useful relations, and in general, the theoretical setup of our calculation, including also

the definition of the lattice actions which are used. Sec. 8.3 contains our one- and

1The MS-renormalized β-function is now known up to five loops [241].
2The ΛL parameter is a dimensionful quantity; as such it cannot be directly obtained from the

lattice. Instead, the quantity which is calculable is the ratio between ΛL and the scale parameter in
some continuum renormalization scheme such as MS: ΛL/ΛMS.
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two-loop results for the β-function. The two-loop calculation is still ongoing, and we

consider here only a part of this.

8.2 Formulation

8.2.1 Preliminaries

As mentioned in Chapter 7, for the lattice regularization a bare β-function is defined

as:

βL(g0) = −adg0

da
|
g,µ̄

(8.1)

where µ̄ = µ(4π/eγE)1/2 is the renormalization momentum scale used in the MS scheme

of dimensional regularization (the currently most widely used scheme for the analysis

of experimental data in high-energy Physics), γE is the Euler constant, a is the lattice

spacing and g(g0) is the renormalized (bare) coupling constant. It is well known that in

the asymptotic limit for QCD (g0 → 0), one can write the expansion of the β-function

in powers of g0, that is:

βL(g0) = −b0g0
3 − b1g0

5 − bL2 g0
7 +O(g0

9) (8.2)

The coefficients b0, b1 are universal, regularization independent constants, while bLi (i ≥
2) depends on the regulator; it, generally, differs from one to another lattice action and

it must be determined perturbatively.

The coefficient bL2 can be extracted from the renormalization function Zg, relating the

bare coupling constant g0 to the renormalized coupling constant gMS:

g0 = Z(L,MS)
g (g0, aµ̄)× gMS (8.3)

The combination of Eqs. (8.1) and (8.3) leads to the following relation:

βL(g0) = −g0a
d

da
lnZg(g0, aµ̄)|µ̄,g (8.4)

where it is being perceivable that the evaluation of bL2 requires the computation of the

three-loop expression of Zg.
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However, the knowledge of the MS-renormalized β-function (in dimensional

regularization) up to three loops:

β(gMS) = µ̄
dgMS

dµ̄
|a,g0 = −b0g

3
MS
− b1g

5
MS
− b2g

7
MS

+O(g9
MS

) (8.5)

allows to calculate bL2 using only the two-loop expression of Z2
g . Indeed comparing Eq.

(8.4) with the definition of β(gMS) written in the form:

β(gMS) = −gMSµ̄
d

dµ̄
lnZg(g0, aµ̄)|a,g0

, (8.6)

one can derive an exact relation, valid to all orders of perturbation theory:

βL(g0) =
(

1− g2
0

∂

∂g2
0

lnZ2
g

)−1

Zgβ(g0Z
−1
g ) (8.7)

Writing Z2
g as:

(
Z(L,MS)
g (g0, aµ̄)

)2

= 1 + g0
2(b0 ln(a2µ̄2) + l0) + g0

4(b1 ln(a2µ̄2) + l1) +O(g0
6) (8.8)

and inserting it in Eq. (8.7), we extract the relation:

bL2 = b2 − b1l0 + b0l1. (8.9)

The quantities b0, b1 and b2 have been known in the literature for quite some time [219]:

b0 = 1
(4π)2

(
11
3
Nc − 2

3
Nf

)
, (8.10)

b1 = 1
(4π)4

[
34
3
N2
c −Nf

(
13
3
Nc − 1

Nc

)]
, (8.11)

b2 = 1
(4π)6

[
2857
54
N3
c +Nf

(
− 1709

54
N2
c + 187

36
+ 1

4N2
c

)
+N2

f

(
56
27
Nc − 11

18Nc

)]
(8.12)

Thus, the evaluation of bL2 requires the determination of the 2-loop quantity l1 and

the 1-loop quantity l0. The constant l0 is further related to the ratio of the Λ

parameters associated with the particular lattice regularization and the MS

renormalization scheme:
ΛL

ΛMS

= exp
( l0

2b0

)
(8.13)

Furthermore, using the asymptotic relation of βL(g0) (8.2) and the fact that ΛL is a

particular solution of the RG (Renormalization Group) equation
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(
− a ∂

∂a
+ βL(g0) ∂

∂g0

)
ΛL = 0, one can derive the 2-loop corrected asymptotic scaling

relation between a and g0:

aΛL = exp
[
−
∫ g0 dg

βL(g)

]
= exp

(
− 1

2b0g2
0

)
(b0g

2
0)
−b1/(2b20)

[1 + qg2
0 +O(g4

0)] (8.14)

where

q =
b2

1 − b0b
L
2

2b3
0

(8.15)

8.2.2 Using the background field formulation

The most convenient and economical way to proceed with calculating Z2
g is to use the

background field technique [211, 231, 233], described in Chapter 7, section 7.3. In this

technique, the following relation is valid:

Z
(L,MS)
B (g0, aµ)×

(
Z(L,MS)
g (g0, aµ)

)2

= 1, (8.16)

where ZB is the background field renormalization function:

Bµ0(x) = [Z
(L,MS)
B (g0, aµ̄)]1/2BMS

µ (x), where Bµ0(BMS
µ ) is the bare (MS-renormalized)

background field. In this framework, instead of Z2
g , one needs to compute ZB, with no

need to evaluate any 3-point Green’s functions. For this purpose, we consider the

1-particle-irreducible 2-point Green’s function of background gluon field, both in the

continuum (ΓBBR (p)abµν) and on the lattice (ΓBBL (p)abµν).

We have adopted the notation of Ref.[39],where these functions can be expressed in

terms of scalar amplitudes νR(p), ν(p):

ΓBBR (p)abµν = −δab(δµνp2 − pµpν)(1− νR(p))/g2
MS
, (8.17)∑

µ

ΓBBL (p)abµµ = −δab3p̂2(1− ν(p))/g2
0, (8.18)

νR(p) =
∞∑
` =1

g2`
MS
ν

(`)
R (p), (8.19)

ν(p) =
∞∑
` =1

g2`
0 ν

(`)(p). (8.20)

where p̂2 =
∑

µ p̂
2
µ, p̂µ = (2/a)sin(apµ/2). The tensor structure of these Green’s

functions, as given above, is implied by the symmetries of the theory. Using the relation
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between the background-field 2-point functions: ΓBBR (p)abµν = ΓBBL (p)abµν +O(a), as well

as Eqs. (8.3, 8.17 - 8.20), we can express Z2
g in terms of νR(p), ν(p):

Z2
g =

1− ν(p)

1− νR(p)
(8.21)

A similar relation is obtained for the renormalization factor Zλ (λ0 = Zλ λMS, where

λ0(λMS) is the inverse bare (MS-renormalized) gauge parameter), where the scalar

terms νR(p), ν(p) are replaced with the scalar terms ωR(p), ω(p), which are stemming

from the definition of quantum field self-energy in the continuum (ΓQQR (p)abµν) and on

the lattice (ΓQQL (p)abµν) respectively. That is:

ΓQQR (p)abµν = −δab[(δµνp2 − pµpν)(1− ωR(p)) + λMS pµpν ], (8.22)∑
µ

ΓQQL (p)abµµ = −δabp̂2[3(1− ω(p)) + λ0], (8.23)

ωR(p) =
∞∑
` =1

g2`
MS
ω

(`)
R (p), (8.24)

ω(p) =
∞∑
` =1

g2`
0 ω

(`)(p), (8.25)

and

Zλ =
1− ω(p)

1− ωR(p)
. (8.26)

Combining Eq. (8.21) with Eq. (8.26), we are led to the following expression for Z2
g :

Z2
g =

{
1 + g2

0

[
ν

(1)
R (p)− ν(1)(p)

]
+ g4

0

[
ν

(2)
R (p)− ν(2)(p) + λMS

∂ν
(1)
R (p)

∂λMS

×

(
ω

(1)
R (p)− ω(1)(p)

)]
+O(g6

0)

}
λMS =λ0

(8.27)

The amplitudes ν
(1)
R (p), ω

(1)
R (p), ν

(2)
R (p) calculated in dimensional regularization, have

been already known in the literature3 [44, 245]:

ν
(1)
R (p) =

Nc

16π2

[
− 11

3
ln(

p2

µ̄2
) +

205

36
+

3

2
λ−1

MS
+

1

4
λ−2

MS

]
+

Nf

16π2

[
2

3
ln(

p2

µ̄2
)− 10

9

]
, (8.28)

3The fermionic part of ν
(2)
R (p) is given in the Feynman gauge (λMS = 1), since our calculations do

not need this quantity in general gauge.
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ω
(1)
R (p) =

Nc

16π2

[(
− 13

6
+

1

2
λ−1

MS

)
ln(

p2

µ̄2
) +

97

36
+

1

2
λ−1

MS
+

1

4
λ−2

MS

]
+

Nf

16π2

[
2

3
ln(

p2

µ̄2
)− 10

9

]
,

(8.29)

ν
(2)
R (p) =

N2
c

(16π2)2

[(34

3
− 13

4
λ−1

MS
− 1

3
λ−2

MS
+

1

4
λ−3

MS
− 1

16
λ−4

MS

)
ln(

p2

µ̄2
) +

(2687

72
− 57

8

)
+
(
− 187

48
+

5

4
ζ(3)

)
λ−1

MS
+
(
− 161

144
− 1

8

)
λ−2

MS
− 3

16
λ−3

MS
− 1

16
λ−4

MS

]
+

Nf

(16π2)2

[
Nc

(
3 ln(

p2

µ̄2
)− 401

36

)
+

1

Nc

(
− ln(

p2

µ̄2
) +

55

12
− 4ζ(3)

)]
︸ ︷︷ ︸ (8.30)

for λMS = 1

Therefore, we only have to calculate the amplitudes ν(1)(p), ω(1)(p), and ν(2)(p). The

quantities `0 and `1 can be also expressed in terms of νR(p), ν(p), ωR(p), ω(p):

`0 = −b0 ln(a2µ̄2) +

[
ν

(1)
R (p)− ν(1)(p)

]
λMS=λ0

, (8.31)

`1 = −b1 ln(a2µ̄2) +

[
ν

(2)
R (p)− ν(2)(p) + λMS

∂ν
(1)
R (p)

∂λ
MS

(
ω

(1)
R (p)− ω(1)(p)

)]
λMS=λ0

.(8.32)

Finally, the relation between the MS-renormalized running coupling αMS and the bare

running coupling α0 can be easily read from Eq. (8.27):

αMS = α0 + α2
0 d1(aµ̄) + α3

0 d2(aµ̄) +O(α4
0),

d1(aµ̄) =

[
− 4π

(
ν

(1)
R (p)− ν(1)(p)

)]
λMS =λ0

,

d2(aµ̄) = (4π)2

[(
ν

(1)
R (p)− ν(1)(p)

)2

−
(
ν

(2)
R (p)− ν(2)(p)

+λMS

∂ν
(1)
R (p)

∂λMS

(
ω

(1)
R (p)− ω(1)(p)

))]
λMS =λ0

. (8.33)

Given that the effective action is gauge invariant, we can choose to perform our

computations in the Feynman gauge; Eq. (8.33) then implies that ν(2)(p), ν
(2)
R (p) and

ω(1)(p), ω
(1)
R (p) can be computed directly in the Feynman gauge λ0 = 1, and only

ν
(1)
R (p) needs to be computed in a general gauge.
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8.2.3 Lattice actions

In our calculation we used the SLiNC fermion action [25]. This action is similar to

the Wilson/clover action, defined in Eq. (4.3), with the following modification: the

gluon links appearing in the Wilson part (not in the clover term; i.e., the first two

lines in Eq. (4.3)) are replaced by stout-smeared links, Ũµ(x), as defined in Eq. (6.4)).

Following common practice, we henceforth set the Wilson parameter r equal to 1. Both

the stout coefficient ω and the clover coefficient cSW will be treated as free parameters,

for wider applicability of the results. As is customarily done, one may restrict attention

to “mass-independent” renormalization schemes, in which normalization conditions on

Green’s functions are placed at zero renormalized mass. We note that the MS scheme

is automatically mass independent, since pole terms do not contain masses. Thus,

by adopting such a scheme, the β-function will be independent of the renormalized

fermionic masses.

For gluons, we employ the Symanzik improved action SG, defined in (4.5). We use a

number of commonly used sets of values for the Symanzik coefficients ci, given in Table

4.1.

Furthermore, a choice of gauge is required. We introduce the following gauge-fixing

term [211]:

Sgf = λ0a
4
∑
x,µ,ν

Tr
{
D−µQµ(x)D−ν Qν(x)

}
(8.34)

where

D−µQν(x) =
1

a

[
Qν(x)− UB

µ

−1
(x− aµ̂) Qν(x− aµ̂) UB

µ (x− aµ̂)
]

(8.35)

Although this term breaks gauge invariance of quantum field, it succeeds in preserving

gauge invariance of background field.

From the variation of the gauge-fixing term under a gauge transformation of the type

(7.11), δ
[
D−µQµ(x))

]
/δΛ(x), we are led to the Faddeev-Popov action; only terms

necessary for our computation, i.e. up to O(g2
0), are shown here:GREGORIS SPANOUDES
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SFP = 2a4
∑
x,µ

Tr
{

(D+
µ ω(x))†

(
D+
µ ω(x) + ig0 [Qµ(x), ω(x)] +

1

2
ig0a

[
Qµ(x), D+

µ ω(x)
]

− 1

12
g2

0a
2
[
Qµ(x),

[
Qµ(x), D+

µ ω(x)
]]

+ · · ·
)}

(8.36)

where ω(ω†) is the ghost (antighost) field and

D+
µ ω(x) =

1

a

[
UB
µ (x)ω(x+ aµ̂)UB

µ

−1
(x)− ω(x)

]
(8.37)

Finally, the change of integration variables from links to vector fields yields a Jacobian

that can be rewritten as the usual measure term Smeas. in the action:

Smeas =
1

12
Ncg

2
0a

2
∑
x,µ

Tr
{
Qµ(x)Qµ(x) + · · ·

}
(8.38)

Therefore, the full action is:

S = SF + SG + Sgf + SFP + Smeas.. (8.39)

8.3 Calculations, results and discussion

The computation is broken into the following tasks: Firstly, we construct a total of

twenty-five vertices stemming from the total action. Some of the more complicated

vertices, such as the one containing 2 background and 4 quantum gluon fields, contain

several thousands of terms. Secondly, we calculate all relevant one- and two-loop

Feynman diagrams contributing to the amplitudes ν(1)(p), ω(1)(p), and ν(2)(p) (see

below). Upon contraction of the corresponding vertices we obtain huge algebraic

expressions (many millions of terms for two-loop diagrams). Thirdly, we extract the

one-loop amplitudes ν(1)(p), ω(1)(p), and the two-loop amplitude ν(2)(p). A very

delicate and complicated task regards the extraction of the dependence of the Green’s

functions, on the external momentum p; this task is briefly described in the next

subsection 8.3.1. Finally, we extract the quantities `0, `1, bL2 , ΛL/ΛMS, q and the

perturbative relation between αMS and α0, as defined previously.
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8.3.1 Extraction of external momentum

In this subsection, we describe the methodology for calculating the lattice momentum-

loop integrals appearing in the bare Green’s functions of background and quantum

fields. This task is to make explicit the functional dependence of Green’s functions

on the external momentum p. In particular, there arise terms of the form p0, p2,

p2 ln(a2p2), p2[ln(a2p2)]2,
∑

µ p
4
µ/p

2, whose coefficients can be expressed as integrals of

lengthy algebraic expressions over the internal (loop) momenta. The general idea is

to decompose the given expression (to be integrated over internal momenta) in terms

of a limited set of potentially divergent integrands, plus other terms which can be

evaluated by näıve Taylor expansion in the external momentum, to the desired order.

To this end, we perform two kinds of subtractions among the (fermion, and/or gluon)

propagators, both in one-loop calculations and beyond. The first kind reduces the

number of divergent integrals to a mimimal set of familiar (in the literature) integrals;

to give an example:

1

q̃2 =
1

q̂2
+
q̂2 − q̃2

q̃2q̂2
(8.40)

Dµν(q) = Dplaq.
µν (q) +

[
Dµν(q)−Dplaq.

µν (q)
]

(8.41)

where q is the (internal) loop momentum, q̃2 is the inverse fermionic propagator: q̃2 =

(q̂2r/2)
2
+
∑

µ sin
2qµ, Dµ,ν(q) is the Symanzik improved gluon propagator and Dplaq.

µν (q)

is the plaquette Wilson gluon propagator: Dplaq.
µν (q) = δµν/q̂

2. The second kind of

subtractions is used in order to perform a Taylor expansion of convergent terms, in

external momentum p to the desired order; it has the following general form (to be

performed iteratively):

f(q + p) = f(q) +
[
f(q + p)− f(q)

]
. (8.42)

The order of implementation of these two kinds of subtractions is not obvious, especially

beyond one loop.

The completion of the above procedure leaves us with loop integrals having no

dependence on external momenta, which must be integrated numerically. A number

of technical issues must be dealt with before numerical integration: for example, it is

necessary to keep the Lorentz indices of the trigonometric functions of internal

momenta independent of those in the rest of the expression. Each integral is
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expressed as a sum over the discrete Brillouin zone of a finite lattice. The integration

is performed for an extensive range of lattice sizes. At the end, we extrapolate our

results from finite lattices towards an infinite lattice; we also estimate the systematic

errors which stem from such a procedure. The extrapolation methods that we used

are described in Ref. [208].

8.3.2 One-loop computation

There are six one-loop Feynman diagrams contributing to ν(1)(p) and 7 diagrams

contributing to ω(1)(p), shown in Figs. 8.1 and 8.2 respectively. During the

Figure 8.1: 1-loop diagrams contributing to ν(1)(p). Wavy lines ending on a cross
represent background gluons. Solid (dashed) lines represent fermions (ghosts).

Figure 8.2: 1-loop diagrams contributing to ω(1)(p). Wavy (solid, dashed) lines
represent quantum gluons (fermions, ghosts). The solid box denotes a vertex
stemming from the measure part of the action.

computation of the above diagrams, there arise terms of the form p̂0, p̂µ, p̂2
µ, p̂µp̂ν , p̂

2.

Some forms are inconvenient; there are quadratically divergent terms (p̂0), linearly

divergent terms (p̂µ) and terms which break Lorentz invariance in the continuum limit

(p̂2
µ). These troublesome terms cancel in the sum of all diagrams or they are excluded

by symmetry. Therefore, we are left with the terms p̂µp̂ν , p̂
2, as we expected.
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Our results for ν(1)(p) and ω(1)(p) are presented below, in general gauge λ0:

ν(1)(p) =
Nc

16π2

[
− 11

3
ln(a2p2) + cν

(1)

Nc
+

3

2
λ−1

0 +
1

4
λ−2

0

]
+

1

Nc

1

16π2
cν

(1)

1/Nc
+

Nf

16π2

[
2

3
ln(a2p2) + cν

(1)

Nf

]
+O(a2p2), (8.43)

ω(1)(p) =
Nc

16π2

[(
− 13

6
+

1

2
λ−1

0

)
ln(a2p2) + cω

(1)

Nc
+ cω

(1)

λ
−1
0 Nc

λ−1
0 +

1

4
λ−2

0

]
+

1

Nc

1

16π2
cω

(1)

1/Nc
+

Nf

16π2

[
2

3
ln(a2p2) + cω

(1)

Nf

]
+O(a2p2), (8.44)

where

cω
(1)

λ−1
0 Nc

= −0.88629444(4), (8.45)

cν
(1)

Nf
= cω

(1)

Nf
= −2.16850086(2) + 0.79694512(11) cSW − 4.712691443(4) c2

SW (8.46)

and the numerical constants cν
(1)

i , cω
(1)

i (i = Nc, 1/Nc) are listed in Table 8.1 for different

gluon actions. We notice that the fermionic contributions in ω(1)(p), as well as the

Gluon action cν
(1)

Nc
cν

(1)

1/Nc
= cω

(1)

1/Nc
cω

(1)

Nc

Wilson 32.5328199(5) -19.7392089(2) 22.3156745(1)
TL Symanzik 18.860597(3) -6.6594802(3) 10.308794(3)
TILW, βc0 =8.60 10.5954557(3) 1.3040804(4) 3.06253640(3)
TILW, βc0 =8.45 10.2868675(4) 1.5985007(6) 2.7923321(3)
TILW, βc0 =8.30 9.8615392(2) 2.0038705(5) 2.4199523(3)
TILW, βc0 =8.20 9.5977109(3) 2.2550514(4) 2.1889929(4)
TILW, βc0 =8.10 9.2575332(5) 2.5786980(4) 1.8912290(2)
TILW, βc0 =8.00 8.8354866(3) 2.9797868(4) 1.5218513(2)
Iwasaki -1.152587(2) 11.888842(1) -8.5190295(6)
DBW2 -25.693965(165) 32.281461(3) -29.853124(130)

Table 8.1: Numerical coefficients for the quantities ν(1)(p) and ω(1)(p).

contributions of the form 1/Nc, are identical to those in ν(1)(p). Furthermore, we

observe that the one-loop results are independent of the stout-smearing coefficient ω.

The above results are in agreement (up to 5 - 6 decimal places) with previous results

for Wilson/Symanzik gluons and Wilson/clover fermions [39, 44, 45, 243].

The resulting one-loop quantity `0, as well as the ratio ΛL/ΛMS, and the first coefficient

in the expansion of running coupling d1(aµ̄), are given by:

`0 =
Nc

16π2
c`0Nc

+
1

Nc

1

16π2
c`01/Nc

+
Nf

16π2
c`0Nf

, (8.47)
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ΛL

ΛMS

= exp

[
Ncc

`0
Nc

+ 1
Nc
c`01/Nc

+Nfc
`0
Nf

22
3
Nc − 4

3
Nf

]
, (8.48)

d1(aµ̄) = − 1

4π

[(
11

3
Nc −

2

3
Nf

)
ln(a2µ̄2) +Ncc

`0
Nc

+
1

Nc

c`01/Nc
+Nfc

`0
Nf

]
, (8.49)

where

c`0Nc =
205

306
− cν(1)

Nc , (8.50)

c`01/Nc = −cν(1)

1/Nc , (8.51)

c`0Nf = −3.27961197(2) + 0.79694512(11) cSW − 4.712691443(4) c2
SW (8.52)

8.3.3 Two-loop computation

There are fifty-one two-loop Feynman diagrams contributing to ν(2)(p), shown in Figs.

8.3 - 8.4. Each diagram is meant to be symmetrized over the color indices, Lorentz

indices and momenta of the two external background fields. Below, we present our

preliminary results for the simpler diagrams, the tadpoles d46 − d51:

p̂2ν
(2)
i (p) =

[∑
j,k

(
c

(i)
G (j,k)

)
p2jN2k

c +
∑
`,m,n,r

(
c

(i)
F (`,m,n,r)

)
p2`cmSWω

nNfN
r
c

]
(8.53)

where (i = 46+47+48, 49+50+51), (j = 0, 1), (k = −1, 0, 1), (` = 0, 1), (m = 0, 1, 2),

(n = 0, 1, 2, 3, 4), (r = −1, 1). The coefficients c
(i)
G (j,k), and c

(i)
F (`,m,n,r) are given in

Tables (8.2, 8.3), for Wilson, tree-level Symanzik and Iwasaki gluons. Coefficients not

appearing in this table are zero. The numerical integrations entail a small systematic

error; we keep only the first five decimal digits in our results. Our results are in

agreement with previous results for Wilson gluons and Wilson/clover fermions [39, 44,

45, 243].

Results for other diagrams are not included in this Thesis, as the calculation is ongoing.

This work is extremely demanding in terms of conceptual and technical complexity,

but also in terms of computational resources. In particular, extracting the external

momentum up to the second order, as described in section 8.3.1, millions of terms

are produced for each diagram. The size of these expressions often places special

requirements on RAM. We intend to investigate some other arrangements, in order to

complete the computation in the near future.
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Figure 8.3: 2-loop diagrams contributing to ν(2)(p). Wavy lines (without) ending
on a cross represent (quantum) background gluons. Solid (dashed) lines represent
fermions (ghosts). Solid boxes denote vertices stemming from the measure part of
the action. A solid circle is a one-loop fermion mass counterterm. Both directions
of the ghost (fermion) arrow in diagram 27 (29) must be considered. (1/2)
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Figure 8.4: 2-loop diagrams contributing to ν(2)(p). Wavy lines (without) ending
on a cross represent (quantum) background gluons. Solid (dashed) lines represent
fermions (ghosts). Solid boxes denote vertices stemming from the measure part of
the action. A solid circle is a one-loop fermion mass counterterm. Both directions
of the ghost (fermion) arrow in diagram 27 (29) must be considered. (2/2)
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Coefficient Wilson Tree-level Symanzik Iwasaki

c46+47+48
G (0,1) 2.40247(12) 0.16082(1) 0.17577(2)

c46+47+48
G (1,0) -0.36158(2) -0.01763(1) -0.00607(1)

c46+47+48
G (1,1) 0.09040(1) 0.00564(1) 0.00534(1)

c46+47+48
F (0,0,0,−1) 0.06203(1) 0.00536(1) 0.00693(1)

c46+47+48
F (0,0,0,1) 0.06203(1) 0.00536(1) 0.00693(1)

c46+47+48
F (0,0,1,−1) 1.51384(31) 0.06582(1) 0.03475(1)

c46+47+48
F (0,0,1,1) -3.10804(23) -0.15790(1) -0.11796(1)

c46+47+48
F (0,0,2,−1) -7.40132(108) -0.32062(5) -0.17028(2)

c46+47+48
F (0,0,2,1) 11.48770(100) 0.49898(4) 0.26796(2)

c46+47+48
F (0,1,0,−1) 0.00635(1) 0.00034(1) 0.00024(1)

c46+47+48
F (0,1,0,1) -0.02539(1) -0.00134(1) -0.00095(1)

c46+47+48
F (0,1,1,−1) -0.02346(1) -0.00119(1) -0.00078(1)

c46+47+48
F (0,1,1,1) 0.05988(1) 0.00286(1) 0.00168(1)

c46+47+48
F (0,2,0,1) 1.13002(9) 0.05671(1) 0.03678(1)

c46+47+48
F (1,0,1,−1) 0.28544(3) 0.00841(1) -0.00170(1)

c46+47+48
F (1,0,1,1) 0.00846(1) 0.00721(1) 0.01427(1)

c46+47+48
F (1,0,2,−1) -5.97145(27) -0.25905(1) -0.13728(1)

c46+47+48
F (1,0,2,1) 3.96778(22) 0.17199(1) 0.09075(1)

c46+47+48
F (1,0,3,−1) 11.10200(63) 0.48093(1) 0.25543(1)

c46+47+48
F (1,0,3,1) -5.55101(44) -0.24046(1) -0.12772(1)

c46+47+48
F (1,1,0,−1) 0.00317(1) 0.00017(1) 0.00012(1)

c46+47+48
F (1,1,0,1) -0.00080(1) -0.00004(1) -0.00003(1)

c46+47+48
F (1,1,1,−1) -0.03299(1) -0.00169(1) -0.00114(1)

c46+47+48
F (1,1,1,1) 0.02550(1) 0.00133(1) 0.00093(1)

c46+47+48
F (1,1,2,−1) 0.03519(1) 0.00178(1) 0.00117(1)

c46+47+48
F (1,1,2,1) -0.01760(1) -0.00089(1) -0.00058(1)

c46+47+48
F (1,2,0,−1) -0.18833(1) -0.00945(1) -0.00613(1)

c46+47+48
F (1,2,0,1) 0.04708(1) 0.00236(1) 0.00153(1)

Table 8.2: Numerical coefficients for the quantity ν(2)(p) for the diagrams
d46 + d47 + d48.GREGORIS SPANOUDES
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Coefficient Wilson Tree-level Symanzik Iwasaki

c49+50+51
G (0,−1) -2.20769(1) -0.17004(1) -0.18512(1)

c49+50+51
G (0,0) 2.36345(1) 0.164452(1) 0.137555(1)

c49+50+51
F (0,0,0,−1) 0.24985(1) 0.01293(1) 0.00955(1)

c49+50+51
F (0,0,0,1) -0.24985(1) -0.01293(1) -0.00955(1)

c49+50+51
F (0,0,1,−1) -2.41898(1) -0.110748(1) -0.06358(1)

c49+50+51
F (0,0,1,1) 0.10192(1) -0.05751(1) -0.12111(1)

c49+50+51
F (0,0,2,−1) 9.67591(1) 0.43068(1) 0.23758(1)

c49+50+51
F (0,0,2,1) -3.99855(1) -0.02995(1) 0.16921(1)

c49+50+51
G (1,−1) 1.23370(1) -0.02132(1) -0.08316(1)

c49+50+51
G (1,0) -2.67389(1) 0.04611(1) 0.20856(1)

c49+50+51
G (1,1) 1.44106(1) -0.02306(1) -0.12579(1)

c49+50+51
F (1,0,1,−1) -2.79376(1) -0.13014(1) -0.07790(1)

c49+50+51
F (1,0,1,1) 2.78102(1) 0.13733(1) 0.09304(1)

c49+50+51
F (1,0,2,−1) 13.30440(1) 0.59680(1) 0.33294(1)

c49+50+51
F (1,0,2,1) -8.81439(1) -0.37470(1) -0.18050(1)

c49+50+51
F (0,0,3,−1) -14.51390(1) -0.64602(1) -0.35636(1)

c49+50+51
F (0,0,3,1) 9.67591(1) 0.43068(1) 0.23758(1)

Table 8.3: Numerical coefficients for the quantity ν(2)(p) for the diagrams
d49 + d50 + d51.
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Conclusions

In this thesis, we study the perturbative renormalization of several quantum operators

and other fundamental quantities, in the context of strong interaction Physics on the

lattice. To this end, a number of higher-order calculations using a large family of

improved lattice actions, which are currently used in numerical simulations by major

international groups (e.g., ETMC, QCDSF, Wuppertal-Budapest Collaborations), are

performed and presented in this dissertation. Our perturbative analysis of these

calculations will be a guidance to the development of nonperturbative

renormalization prescriptions. Also our results will give a cross check for

nonperturbative estimates and will be combined with nonperturbative data in order

to convert the lattice results to renormalized quantities in continuum renormalization

schemes. Let us summarize our conclusions form these calculations.

In Chapter 3, we have evaluated the two-point bare Green’s functions of straight

Wilson-line operators, the renormalization factors in RI′ and MS schemes, as well as

the conversion factors of these operators between the two renormalization schemes.

The novel aspect of this work is the presence of nonzero quark masses in our

computations, which results in mixing among these operators into pairs, both in the

continuum and on the lattice. Finite mixing appears in the continuum, due to the

chiral-symmetry breaking of mass terms in the fermion action. Comparing to the

massless case on the lattice [14], the mixing pairs remain the same for flavor-singlet

operators, i.e. (OΓ1 ,OΓ2), where (Γ1,Γ2) = (1, γ1), (γ5γ2, γ3γ4), (γ5γ3, γ4γ2),

(γ5γ4, γ2γ3), where by convention 1 is the direction of the straight Wilson line and 2,

3, 4 are directions perpendicular to it. However, for the nonsinglet operators with

142
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different masses of external quark fields, flavor-symmetry breaking leads to additional

mixing pairs: (γ5, γ5γ1), (γ2, γ1γ2), (γ3, γ1γ3), (γ4, γ1γ4). As a consequence, the

conversion factors are generally nondiagonal 2 × 2 matrices. This is relevant for

disentangling the observed operator mixing on the lattice. Also, comparing the

massive and the massless cases, the effect of finite mass on renormalization of

Wilson-line operators becomes significant for strange quarks (the third lightest quark

flavor), as well as for heavier quarks. These are features of heavy-quark quasi-PDFs,

which must be taken into account in their future nonperturbative study.

In Chapter 4, we have studied the one-loop renormalization of the nonlocal

staple-shaped Wilson-line quark operators, both in dimensional regularization (DR)

and on the lattice (Wilson/clover massless fermions and Symanzik-improved gluons).

A novel aspect of this calculation is the presence of cusps in the Wilson line included

in the definition of the nonlocal operators under study, which results in the

appearance of additional logarithmic divergences. Operator mixing also occurs for

chirality-breaking lattice actions. The mixing pairs are: (OΓ1 ,OΓ2), where (Γ1,Γ2) =

(γ5, γ5γµ2), (γi, γiγµ2), i 6= µ2 (for notation, see Sec. 4.2.1) which differ from those of

straight-line operators. This study is relevant for the nonperturbative investigations

of quasi-TMDs. Also, the results of the present study provide additional information

on the renormalization of general nonlocal operators on the lattice. The observed

mixing pairs among operators with different Dirac structures depend on the direction

of Wilson line in the end points. Thus, for a Wilson-line operator with n cusps, the

mixing pattern is (OΓ,OΓ/̂µi+/̂µfΓ), where µ̂
i

(µ̂
f
) is the direction of the Wilson line in

the initial (final) end point.

In Chapter 5, a natural continuation of the one-loop calculation for the conversion

factors between RI′-renormalized and MS-renormalized straight-line operators to two-

loops is presented. Higher-loop corrections will eliminate large truncation effects from

the nonperturbative results. Based on extensive studies for systematic uncertainties on

the renormalization functions for the straight Wilson line [99, 246], we find empirically

that the one-loop conversion factor is sufficient for lattice spacing satisfying |z|/a ≤
7−8 and (aµ)2 within the interval 2 ≤ (aµ)2 ≤ 4. Outside these regions, a two-loop

conversion factor would be called for; clearly, however, other systematic uncertainties

will also become more relevant (lattice artifacts, volume effects, etc). We provide

preliminary results regarding only a number of the two-loop Feynman diagrams that

contribute to the Green’s functions of straight-line operators.
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In Chapter 6, we have computed the two-loop difference between the singlet and

nonsinglet perturbative renormalization factors of all staggered quark bilinears. As

we observed, the difference is nonzero only for the axial vector operator. Our result is

presented in RI′ and MS renormalization schemes, as well as in an alternative RI′

scheme, more appropriate for nonperturbative calculations. A novel aspect of the

calculation is that the gluon links, which appear both in the staggered fermion action

and in the definition of the staggered bilinear operators, are improved by applying a

stout smearing procedure up to two times, iteratively. Compared to most other

improved formulations of staggered fermions, the stout smearing action leads to

smaller taste violating effects [205, 206, 247]. Application of stout improvement on

staggered fermions thus far has been explored, by our group, only to one-loop

computations [47]; a two-loop computation had never been investigated before. Our

result demonstrates that the two smearing steps of the fermion action give better

results than only one smearing step. Also, the stout smearing of the action is more

effective in minimizing the difference of singlet and nonsinglet renormalization factor

of axial vector operator than the stout smearing of operators. A significant part of

this work is the development of a method for treating new nontrivial divergent

integrals stemming from the staggered formalism.

Finally, in Chapter 8, we have presented the one-loop calculation of the two-point

Green’s functions of background and quantum gluon fields, which are related to the

definition of lattice β function. We observed that the one-loop results are independent

of the stout-smearing coefficient. We extract the ratio of energy scales ΛL/ΛMS, as well

as the first coefficient d1(aµ̄) in the perturbative expansion of the running coupling.

The computation of two-loop Feynman diagrams contributing to the two-point Green’s

functions of background field, is still in progress. Such computations using the SLiNC

action, which is widely used in recent simulations, have never been done before. The

results of such calculations can be used to make contact with a low momentum-regime of

QCD. In particular, our results will be combined with extensive simulations performed

by members of QCDSF Collaboration in the “Wilson gradient flow” scheme, which is

being very actively investigated by a number of groups at present.

There are several future plans in which our work can be extended:

• The first one is the one-loop evaluation of lattice artifacts to all orders in the

lattice spacing, for a range of numerical values of the external quark momentum,
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of the momentum renormalization scales, and of the action parameters, which

are mostly used in simulations. Such a procedure has been successfully employed

to local operators [53, 248, 249]. The subtraction of the unwanted contributions

of the finite lattice spacing from the nonperturbative estimates is essential in

order to reduce large cutoff effects in the renormalized Green’s functions of the

local and nonlocal operators studied in this dissertation and to guarantee a rapid

convergence to the continuum limit.

• Secondly, we intend to add stout smearing on gluon links appearing in the

definition of the straight-line and staple-shaped operators and to investigate its

impact to the elimination of ultraviolet (UV) divergences and of operator

mixing; modern simulations employ such smearing techniques for more

convergent results.

• Thirdly, our perturbative analysis can be also applied to the study of further

composite Wilson-line operators, relevant to different quasidistribution functions,

e.g., gluon quasi-PDFs, etc.

• Moreover, a possible extension of the work regarding singlet and nonsinglet

local operators is the application of other actions currently used in numerical

simulations (e.g. several variants of staggered fermion action: HYP smearing

[26], HEX smearing [27], Asqtad [250]), including actions with more steps of

stout smearing. In these cases, additional contributions to the renormalization

functions are more convergent, and thus their perturbative treatment is simpler;

nevertheless, the sheer size of the vertices (already with two stout-smearing

steps we have encountered ∼ 106 terms) renders the computation quite

cumbersome.

• Finally, extended versions of ψ̄Γψ may be studied; in this case the Feynman

diagrams of Fig. 6.1 will apply also to Wilson fermions and loop integrands will

typically contain a plethora of new terms, which however will be convergent.
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Notation and Conventions

In this appendix we specify our notation and conventions adopted in the main body

of the Thesis. The conventions regard the Euclidean formulation of QCD, the Dirac

algebra, the Lie algebra of su(Nc) and D-dimensional definitions of fields, operators,

momentum vectors, and other quantities.

A.1 The Euclidean formulation of QCD

In Euclidean spacetime1, QCD action reads:

SQCD =

∫
d4x

[
Nf=6∑
f=1

ψ̄f (x)
(
γµDµ(x) +mf11

)
ψf (x) +

1

2
tr
(
Gµν(x)Gµν(x)

)]
, (A.1)

where the quark (antiquark) field ψf (x), [ψ̄f (x) ≡ ψ†f (x)γ4] is a 4-spinor in Dirac space

and an SU(3) triplet in color space, for each flavor f ; the gluon field strength tensor

Gµν(x) [= −Gνµ(x)], (µ, ν = 1, 2, 3, 4) is defined by:

Gµν(x) =
i

g0

[Dµ(x), Dν(x)], (A.2)

where g0 is the bare coupling constant and Dµ(x) is the Euclidean covariant derivative:

Dµ(x) = ∂µ − ig0Aµ(x). (A.3)

1A Wick rotation from real to imaginary times x0 → −ix4 changes the geometry of spacetime from
Lorentzian to Euclidean.

146
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The trace in Eq. (A.1) is taken over color indices. The gluon field Aµ(x) is an su(3)

algebra element in color space, and thus, can be written as Aµ(x) = Aaµ(x)T a, where

T a are the generators of the algebra and a = 1, . . . , N2
c − 1 (Nc = 3). Moreover, γµ is a

4×4 Euclidean Dirac matrix defined in Sec. A.2. Also, the bare quark mass mf differs

for quarks with different flavor.

A.2 Dirac Algebra

In Euclidean spacetime, the Dirac matrices γµ (µ = 1, 2, 3, 4) obey the anticommutation

relations:

{γµ, γν} = 2δµν11, (A.4)

where δµν is the Euclidean metric tensor and 11 is the 4 × 4 unit matrix. In addition,

the γ5 Dirac matrix is defined as the product:

γ5 = γ1γ2γ3γ4, (A.5)

which satisfies the following relations:

{γ5, γµ} = 0, γ2
5 = 11. (A.6)

In chiral representation the Euclidean Dirac matrices have the following explicit 4× 4

form:

γ1 =


0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

 , γ2 =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 , γ3 =


0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0

 ,

γ4 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , γ5 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 . (A.7)

It is obvious that γµ = γ†µ = γ−1
µ , (µ = 1, 2, 3, 4, 5).GREGORIS SPANOUDES
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A.3 su(Nc) Lie algebra

The fundamental representation of the SU(Nc) group is given by complex Nc × Nc

matrices which are unitary and have their determinant equal to 1, i.e. if Ui are elements

of SU(Nc) they obey U †i = U−1
i and det(Ui) = 1. A convenient way of representing

a SU(Nc) matrix is to express it as an exponential of basis matrices T a, the so-called

generators of su(Nc) Lie algebra. In particular, an element U of SU(Nc) is written as:

U = exp(i

N2
c−1∑
a=1

φaT a) (A.8)

where φa are used to parametrized U and a = 1, . . . (N2
c − 1) [(N2

c − 1) is the number

of independent parameters that are needed to describe the SU(Nc) matrices]. The

generators T a must be traceless, complex and hermitian Nc×Nc matrices obeying the

commutation relations:

[T a, T b] = ifabcT c, (A.9)

where fabc is called structure constants and they are completely antisymmetric in an

orthonormal basis of generators. A particular choice for the normalization condition,

which is adopted in the Thesis, is:

tr(T aT b) =
1

2
δab. (A.10)

Some useful identities of generators and structure constants are:

T aT a = CF 11, (A.11)

facdf bcd = CAδ
ab, (A.12)

where CF = (N2
c −1)/(2Nc) and CA = Nc are the Casimir operators in the fundamental

and adjoint representations, respectively.

A.4 D-dimensional quantities

Regarding the extension of 4-dimensional quantities to D-dimensional quantities in

our calculations using the dimensional regularization, we adopt the following standard

choices:
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• The continuum Euclidean action has the same form as the 4-dimensional one,

defined in Eq. (A.1), where the sums over vector indices µ, ν range from 1 to D

rather than 1 to 4. We note that all D components of the quantum fields are

nonzero. However, in the case of introducing background fields in the action,

these fields have only 4 out of D components not equal to zero.

• The unit matrix in Dirac space obeys tr(11) = 4.

• A standard extension of γ5 in D-dimensions satisfies the following relations [251]:

{γ5, γµ} = 0, (µ = 1, 2, 3, 4), (A.13)

[γ5, γµ] = 0, (otherwise). (A.14)

However, in our particular one-loop calculations, only the (anti)commutator of

γ5 with γµ, (µ = 1, 2, 3, 4) was needed and thus the corresponding results do not

depend on the chosen extension of γ5. Therefore, violations of chiral symmetry,

coming from the choice of γ5 extension to D dimensions are absent.

• External momentum vectors are considered as only 4-dimensional.
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